
SY27 -7244-1 

OS/VS2 
Systems Supervisor Logic 

Volume 1 

Release 1.6 

., . '.it­



J 


Second Edition (September 1974) 

This edition is a minor revision of SY27-7244-0 
incorporating TNL SN27-1403. These publications are 
still current. 

This edition applies to release 1.6 of OS/VS2 and to all subsequent 
releases until otherwise indicated in new editions or Technical 
Newsletters. Changes are continually made to the information 
herein; before using this publication in connection with the 
operation of IBM systems, consult the IBM System/360 and System/370 
Bibliography, GA22-6822, and the current SRL Newsletter. 

Copies of this and other IBM publications can be obtained through 
IBM Branch Offices. 

A form for reader's comments appears at the back of this publica­
tion. Address any additional comments concerning the contents of 
this publication to: IBM Corporation, Programming Publications, 
Department 636, Neighborhood Road, Kingston, New York 12401 

~ Copyright International Business Machines Corporation 1972 



PREFACE 

This manual describes the logic of the 
OS/vS2 supervisor, its relationshif to the 
other fortions of the control program, and 
the interaction between supervisor modules. 
The information in this manual is intended 
for personnel who are responsitle for 
determining sources of error within or mak­
ing modifications to the VS2 supervisor. 

Two short sections that follow this pre­
face can help you use this manual effec­
tively. -How This Manual Is Organized" 
describes the organization of the manual: 
where to find overview material to refresh 
your memory, and where to find detailed 
information to correct errors or modify the 
system. -How to Read the Method-of­
Operation Diagrams" explains the format of 
the diagrams and the symbols that are used 
in the diagrams. 

The communications task and checkpoint/ 
restart logic are not documented in this 
manual. The communications task is docu­
mented in the OS/VS2 Job Management Logic 
PLM, Order No. SY28-0649; checkpoint/ 
restart logic is documented in the OS/VS 
Checkpoint/Restart Logic PLM Order ~ 
SY24-5159. 

Prerequisite Knowledge and Reading 

If you do not know the basic concepts of 
and services provided ty the VS2 Supervi­
sor, you should read the following 
publication: 

OS/VS Supervisor Services and Macro 
Instructions, GC27-6979 

Other Publications to Which the Text Refers 

The publications listed below are 
referred to within the section shown in 

parentheses. The publications are listed 
alphabetically according to the first 
descriptive word in the title. 

osjvs Debugging Guide (Termination), 
GC28-0632 

OSjVS2 Dynamic Support System Logic 
(Interruption Superv~sion), SY28-0679 

OS/VS2 IPl and NIP Loqic (Virtual 
Storage Supervision), SY27-7243 

OSjVS2 Job Management Logic 

(Termination), SY28-0620 


OS/VS OPEN/CLOSE/EOV Loqic (Contents 
Supervision), SY26-3785 

OS/VS2 Planning and Use Guide (Introduc­
tion), GC28-0600 

CS/VS Recovery Management SUEPort Logic 
(Interruption Supervision), SY27-7252 

OS/VS2 Service Aids Lggic (Termination), 
GY28-0635 

OS/VS TCAM logic (Termination), 

GY30-2039 


OS/VS2 TSO Control Program Logic (Timer 
SUfervision and Termination), 
SY28-0649 

Notice to Reader: No IBM publication order 
numbers are provided in references to put­
lications in the body of this manual. 
Please use the list above to find the order 
number for publications you find mentioned 
in the text. 

iii 



HOW 	 THIS MANUAL IS ORGANIZED 

This manual, which describes the logic 
of the VS/2 supervisor, is divided into two 
volumes. Volume 1 (Sections 1 through 9) 
uses text, conventional illustrations, and 
method-of-operation diagrams to explain 
basic concepts and to describe how the 
supervisor works. In addition, Volume 1 
contains a glossary of terms and acronyms 
used in this publication. Volume 2 con­
tains tables and other reference material 
that is to be used in conjunction with 
Volume 1 to isolate supervisor errors. 

The 	sections in Volume 1 are: 

1: 	 WHAT THE SUPERVISOR IS AND DOES 
Briefly describes the functions per­
formed by the supervisor. This sec­
tion explains the general operation of 
the supervisor and describes the rela­
tionship of the supervisor to the 
computer. 

The diagrams at the end of this sec­
tion illustrate how the supervisor 
processes interruptions and where it 
passes control to perform the services 
required by those interruptions. 
These diagrams are also a visual table 
of contents for the rest of the dia­
grams in Volume 1. 

2: 	 INTERRUPTION SUPERVISION 

3: 	 TASK SUPERVISION 

4: 	 CONTENTS SUPERVISION 

5: 	 PAGING SUPERVISION 

6: 	 VIRTUAL STORAGE SUPERVISION 

7: 	 TIMER SUPERVISION 

8: 	 TERMINATION 
Each of these sections (2 through 8) 
describes one major area of the super­
visor: "Interruption supervision,· 
"Task Supervision," "Contents Supervi­
sion," and so on. Each section 
explains the basic concepts and gener­
al logic of the functional area, 
including descriptions of operational 
characteristics such as queuing tech­
niques and the use of control blocks. 

The descriptive material in each sec­
tion is followed by a set of method­
of-operation diagrams. The first dia­
gram is a table of contents for the 
detailed diagrams in the set. The set 
also includes overview diagrams that 
illustrate the fUnctional flow and 

refer you to the more detailed dia­

grams in the set. These detailed dia­

grarr.s illustrate the input, processing 

steps, and output, and they contain ~ 

symtolic names that tie the processing . . 

steps to the prograrr listing. Parti ­
cularly complex functions are also 

flowcharted. The flowcharts fellow 

the detailed diagram for that 

function. 


9: 	 GLOSSARY 

Defines terms and acronyms used in 

this publication. 


The 	sections in Volume 2 are: 

10: 	 PROGRAM ORGANIZATION 

Program Organization Diagrams 
Illustrates the program structure 
for each function. These diagrams 
contain module names, routine names, 
and entry points. 

Synopses of Routines 
lists each major routine in the 
supervisor in alphabetic order and 
provides a short description of the 
routine. 

11: 	 DIRECTORY 
Consists of three tables: the "Module J.... 
Directory," the n Entry Point J::irec­
tory,· and a table of routines invoked 
by SVC instructions. 

12: 	 DATA AREAS 
Describes the major data areas and 
control blocks used by supervisor 
modules. 

13: 	 DIAGNOS~IC AIDS 

Registers on Entry and Exit 
Lists the register contents upon 
entry to and exit from each routine. 
The entries are arranged alphabetic­
ally by entry point name. 

Control Blocks Referenced and Set 
Matrix 

Cross-references control blocks to 
the supervisor modules that 
reference or set them. 

Completion Codes, Wait State Codes, 
and Messages Tables 

Lists completion codes, wait state 
codes, and messages and identifies 
the fUnction and the segment of code 
within the function that caused the 
code or message to be issued. 

iv 



HOW TO READ THE METHOD-OF-OPERATION left is labeled and boxed, as is the output 
DIAGRAMS on the right. The processing is divided 

into a series of steps, numbered sequen­
The method-of-operation diagrams tially. If further explanation of a pro­

illustrate the functions performed by the cessing stEP is needed, that explanation 
supervisor. There is a set of these dia­ appears in the notes on the page facing the 
grams for each major component. The first diagram. The notes also contain symbolic 
diagram in each set is a visual table of names so that you can get to the pertinent 
contents. code in the program listing as quickly as 

possible. 
Within each set, the diagrams are 

arranged in a hierarchy, starting with the Arrows are used to signify data move­
least detailed diagram (usually, an over­ rrent, data reference, data modification, 
view diagram) and continuing to the most and processing flow. The arrow conventions 
detailed. The detailed diagrams illustrate are shown in Figure aa. 
the input, the processing steps, and the 
output for each function performed. OthEr conventions used in the detailed 

method-of-operation diagrams are illus­
The detailed diagrams are read left to trated and explained in Figure ab and 

right, top to bottom. The input on the Figure ac. 

Primary Entry/Exit Path -- Shows the path 
followed to accomplish the principle function 
of the body of code described by the diagram • 

• Secondary Path -- Shows the path used by a 
processing step to accomplish a subordinate 
function. 

Pointer -- Shows that a field in one data area 
contains the address of another field or data 
area. 

Data Reference -- Shows that the contents of----------. 
a dato area are tested or read to determine 
the course of subsequent processing. 

Data Transfer -- Shows that data from one 
location is moved or copied into another 
location. 

Control Information Modification -- Shows 
the setting or changing of switches or pointer.; 
that will be used to determine the cour.;e of 
subsequent processing. 

:r Interruption -- Shows the path followed when 
an I/o, SVC, external/timer, program, or 
machine interruption occurs. 

Figure aa. 	 Legend showing meaning of arrows 
in method-of-operation diagrams. 

v 



~ ..... 

This symbol indicates 
that there is a note on 
the facing page that 
pertains to this segment 
of input or output. 

Control block fields 
are shaded when they 
are not involved in 
this diagram. Shading 
is not meant to show 
exact displacement. 

Figure abo 

These numbers indicate Entry points are shown 	 Subroutine blocks 
processing steps. If wi th i n the process i ng 	 within the processing 
further explanation of block and subroutine 	 block indicate the 
a step is needed, it is blocks. 	 subroutine is contained 
provided in the notes 	 within the same module 
on the facing page. 	 as the processing steps. Diagram number and 

title for this diagram.

/
From ABC to 
update the CB 

An arrow pointing to a 
number within aInput 
processing block means 
that processing 

" 

[I IEAPOINT continues at the step 
on this diagram 
correspondi ng to the 
number.--.., .., 1 Find new va Ive. 

I 
I 
I 

Update CB. :---j 2 
If already done Subroutine blocks 

shown outside the
I processing blockCB 	 I 3 Record the change.I 	 indicate routines are 

not in the same moduleI 
as the processing steps.

CBFIELD --I
L ___ .L 4 

If special processing ___________•• 0.3, Step 2 ~ 

is required. 
A number in the lower 
right-hand corner of a 
subroutine block 
indicates the method of 
operation diagram that 
describes the subroutine 
in more detail. 

-5 Set return code. 	 Return code = 0 

To Caller 

Processing 

Internal Routine 

ENPOINT 

4 

Diagram 0.1 
Sample Diagram 

Output 

CB 

CBF IELD 

External Routine 

IEAPNT 

0.9 

A pair of these symbols 	 An arrow pointing to a 
is used in place of an 	 number outside the 

arrow when it is not 	 processing block means 

possible to draw an 	 that processing 
continues on another 
diagram indicated by 
the number. 

Sample Method-of-Operation diagram showing the diagramming conventions used in this manual. 

L\w 	 l 



(' ( r 
Number and name of Method-oF-Operation 
diagram to whi ch Not-es apply. 

Label within the routine ot which 
code for the processing step begins. 

There are no detoi led 
notes for Steps 4 and 5. 

Notes 

Notes 

Notes 

for 

for 

for 

Step 1. 

Step 2. 

Step 3. 

Routine that performs Step 1. 

The number 5 appears even though there are no 
notes for Step 5, because there is an identifiable 
routine name or label associated with the step. 

Figure ac. Sample extended-description page for a Method-of-Operation diagram. 

<:: 
t--. 
t--. 



J 




Guide to Section Tabs in Volume 1 

SECTION 1: Introduction to the Supervisor, 
and Virtual Storage Concepts ............. . 


SECTION 2: Interruption Supervision ................... 0 

SECTION 3: Task Supervision ......................... EI 

SECTION 4: Contents Supervision ...................... a 

SECTION 5: Paging Supervision ....................... D 

SECTION 6: Virtual Storage Supervision. . . . . . . . . . . . . . . . D 

SECTION 7: Timer Supervision ........................ D 

SECTION 8: Termination .............................. D 

SECTION 9: Glossary................................. D 

Index to Volumes 1 and 2 ............................ . Index 

In Volume 2: SECTION 10: Program Organization 
SECTION 11: Directory 
SECTION 12: Data Areas 
SECTION 13: Diagnostic Aids 
Index to Volumes 1 and 2 

ix 





CONTENTS 

SECTION 1: INTRODUCTION TO THE SUPERVISOR AND VIRTUAL STORAGE 

CONCEPTS • • • • • • • • • 1 


WHAT THE SUPERVISOR IS AND DOES • 3 

Basic Concepts of Virtual Storage Supervision • • 3 


concept of Virtual Storage 3 

Translation of Virtual Addresses 3 

Paging • • • • • • • • • • • 5 


Organization of virtual Storage • • • • • • • • • • • • •• 6 

Use of Real Storage • 8 

Storage Protection • • • • 9 

Interruption Handling • 9 

Supervisor Services • • • 10 


Task Supervision 11 

Contents Supervision • • • • • 13 

Paging Supervision • • • • • • • 14 

Virtual Storage supervision • 15 

Timer Supervision • • • • • · • • • 15 

Task Termination • • . • • • • • • 16 


special Features •••.••• • • • • 16 

Authorized Program Facility • • • 16 

Automatic priority Grouping • • • • • 16 

Shared Direct Access Storage Device • • • • • • • 16 

System Management Facilities • • • • • • • 16 

Time Sharing Option • • • 16 

Time Slicing •••••••••• • 17 

Tracing Facilities • • • • • • • • • • • • • 17 


Summary of the supervisor's Role • 17 


SECTION 2: INTERRUPTION SUPERVISION • 
 • 27 

HOW INTERRUPTIONS ARE HANDLED • • • • • • • • • • • • • • 29 

Input/Output Interruption Handling 29 

SVC Interruption Handling • • • • • • • • • • • • • • • • • • 30 


Saving the status of the Interrupted Program •••••• • • • • 30 

Determining Whether the Disabled SVC Routine is in Real Storage • 31 

Enabling and Disabling Interruptions •••• • • 31 

Minor FUnctions of SVC Interruption Handling •••• . • • 31 


Timer/External Interruption Handling •• • • • • • ••••••• 32 

Program Interruption Handling • • • • • • • • • • • • • • 32 


Processing for Particular Program Interruptions • • • • 33 

Translation Specification Exceptions • • • • 33 

Recursion . . • • • • • • • • • • • • . 33 

Event Recording • • • • • • • • • • • • • • • • • • 33 

Page Translation Exceptions • • • • • • • 33 

Segment Translation Exceptions • • • • • • • • • • 34 

Program Interruptions from SSM (Set System Mask) Instructions • • 34 

program-check Interruptions • • • • • • • 34 


Tracing EVents • • • • • • • • 35 


SECTION 3: TASK SUPERVISION 
 • • 61 

HOW TASKS ARE SUPERVISED • • 63 

Permanent Tasks • • • • • • . 63 

Dynamic Tasks • • • 63 


Creating a Task • • • • • 63 

The Two TCB Queues •••••• • 
 • 63 

TCB Pointers •••• • • • _ 64 

Allocating CPU Time to competing Tasks 
 • 64 
Summary of Task Supervision • • 
 • 65 

SECTION 4: CONTENTS SUPERVISION • • • • .163 


xi 



HOW MODULES (CONTENTS) ARE SUPERVISED • • • • •••••••••165 
Calling the LINK, LOAD, and XCTL Routines .165 
Searching Virtual and Auxiliary Storage .165 

The Job Pack Area • • • • • • • • • • •• 165 
LPA Storage Areas • • • • • • .166 
Time Sharing Link Pack Area • .167 
Auxiliary Storage Libraries • • • • • • • .167 

SECTION 5: PAGING SUPERVISION • .199 

HOW PAGING IS SUPERVISED .201 
Organization of the Paging Supervisor • •• 201 
Entries to the Paging Supervisor • .201 
Paging Supervisor Algorithms • • • • • .201 

The Page Replacement Algorithm • .202 
The Task Disablement Algorithm .202 

Page Management • • • • • • . • •••••• 203 
Control Blocks and Tables • • • • • • ••••••••••• 203 
External Storage Management • • .203 
Real Storage Management • • .203 

Request Management • • • • • • • • • • • • • • •••••••• 204 

SECTION 6: VIRTUAL STORAGE SUPERVISION • •• 395 

HOW VIRTUAL STORAGE IS SUPERVISED. • • • • • • • • • • • • .397 
Subpools •• • • • • • • • • • • • • • • • • • • • .397 
System Queue Area After Initialization • • • • • • • • .401 
Allocating Space in the System Queue Area .402 
Allocating Space in a Local System Queue Area. • • ••••.•• 402 

Normal Requests for LSQA Storage • • • • .403 
Subpool 233, 243, and 253 Allocation ••••••••• 403 
Subpool 234, 244, and 254 Allocation .403 
subpool 235, 241, 245 and 255 Allocation .403 

Allocating and Freeing Pages in a System Work Area • • • • • .403 
Allocating and Freeing Quickcells • • • • • .404 
supervising External Page Storage. • • • • • • • • .404 
Allocating Space for a Region. • • • • • • • • • • • • • • • .405 

Region Reference-Validity Map • • • • • • • • • • .406 
Allocating Space Within a Region • • • • • ••••••••• 406 

Management of Unallocated Storage Within a Region • • .407 
Supervision of Allocated Space Within a Region • • • • • .407 
Processing the Initial Request for Subpool Space •••• .407 
processing Subsequent Requests for Subpool space •••••.••408 
processing if the Requested Space is not Available ••••••• 408 

Recording Storage Usage Information. • • • • • • • ••••••• 409 
FREEMAIN Routines. • • • • • • . • • • • • • • • .409 

Freeing the Entire Space Assigned to a Region •• 409 
Freeing Space Within a Region. • • ••••••••• 409 
Freeing Space in an LSQA or the SQA • • •••••••••••410 

SECTION 7: TIMER SUPERVISION .495 

HOW TIMER OPERATIONS ARE SUPERVISED • .497 
TIME Routine •• • • ••••••••497 
STIMER Routine •••••••• • • • • • • • ·.498 
TTIMER Routine • • • • • • • • • .498 
Timer Second-Level Interruption Handler • • .498 
Timer Queues • • • • • • .498 

SECTION 8: TERMINATION • • • .519 

HOW TASKS ARE TERMINATED • • • • • • • • • • • .521 
Normal Termination -- EOT (End of Task) • • ••••• 521 
Scheduling Abnormal Termination -- ABTERM ••••••••••• .522 
Abnormal Termination -- ABEND. • • • • • • • • • • .522 
Dumping Specified Areas of Virtual Storage -- SVCDUMP • • .523 
Dumping Selected Areas of Virtual Storage -- ABDUMP • • • • • .523 

xii 



STA Services and ASIR (ABEND/STA Interface Routine) 

SECTION 9: GLOSSARY OF TERMS AND ABBREVIATIONS 

WHAT VS2 TERMS AND ABBREVIATIONS MEAN • • • • • • • • . . 
Reference Words used in the Entries . • • • • • • • 
Acknowledgment to the American National Standards Institute . 

GLOSSARY 

INDEX • • • 

• .524 

••• 663 

.665 
•••• 665 

• .665 

• • .666 

• .681 

xiii 



ILLUSTRATIONS 

Figure 1-1. Translation of a virtual address into a real address 4 

Figure 1-2. Explanation of page-out operations. 6 

Figure 1-3. Explanation of page-in operations••• • • • • 7 

Figure 1-4. Organization of virtual storage. • 8 

Figure 1-5. Organization of real storage. • • •• 8 

Figure 1-6. General flow of the supervisor • • • • • • • • 10 

Figure 1-7. Flow of control after the ATTACH macro instruction is 

issued. (Shows typical processing for a supervisor macro ­
instruction.) . •• • • • • • • • • • • • • • • • • • • • • 12 

Figure 1-8. Use of the RB queue in passing control to different 

programs • • • . • • • • • • • • • • • • • • • • • • • • • • • • • 13 

Figure 1-9. The contents directory. • ••••••••••••••• 14 

Figure 2-1. Actions taken by the SVC First-Level and Second-Level 

Interruption Handlers to save program status information. • • • • • • 30 

Figure 3-1. Permanent TCBS that form the teginning of the task 


Figure 3-2. Example of a subtask queue showing how TCB pointers 

queue. •••••••••••••••••••• • • • . • • • 63 


link a subtask to related subtasks. • • • • • • • • • • • • • • • 64 

Figure 3-3. Portion of the task queue showing two suhgroups in an 


Figure 4-1. Important operands in the LINK, LOAD, and XCTL macro 


Figure 6-4. Control blocks used to allocate storage in the system 


automatic priority group. • • • • • • • • • • • • • • • • • • 65 

Figure 3-4. Factors in the dispatching of APG tasks. • • • • 66 

Figure 3-5. Processing if a requested resoUrce is not in use. • 94 

Figure 3-6. Processing if a requested resource is in use. ••••• 94 

Figure 3-7. Return codes for the ENQ routine. •••••• • •• 95 


instructions. • • • • • • • • • • • • • • • • • • • • • • .165 

Figure 4-2. Control blocks for modules in the JPA. • • • • • .166 

Figure 5-1. Moyement of Page Frame Tatle Entries (PFTEs) •••• 204 

Figure 6-1. Table showing attributes and uses of subpools. • • .398 

Figure 6-2. VSS control blocks after system initialization. • ••• 401 

Figure 6-3. An LSQA segment after initialization. • .402 


work area. ................. . . . . . . . . .404 

Figure 6-5. Virtual storage after allocation of an LSQA and region 

for one pageable (V=V) task. • ••••••••••••••••••• 405 

Figure 6-6. Virtual storage after allocation of LSQAs and regions 


Figure 6-8. Control blocks used to manage unallocated storage 


Figure 6-9. Control blocks used to supervise allocated storage 


for one pageable task and one nonpageable task•••••••••••• 405 

Figure 6-7. Format of the region reference-validity map •••••••406 


within a region. ••••••••..•.••••••••••• .407 


within a region. •••••.•.••.•••••••.. • •• 408 

Figure 7-1. Operation of the task timing queue (for TASK timing). .499 

Figure 7-2. operation of the clock cORparator queue (for REAL and 

WAIT timing). • • • • • • • ••••••••••••••••••• 499 


J 


xiv 



DIAGRAMS 

\.. 

Diagram 1.1 Supervisor Overview and Visual Table of contents for 
Diagrams · 19. . . . · · · · · · · · · · · · · · · · · · · · · · · Diagram 1.2 Type-1 SVC Processing Performed by the Superviscr 22· Diagram 1.3 Types 2, 3, and 4 SVC Processing Performed by the 

Supervisor . . . · · 
· · · · · · · · · · · · · · · · · · · · · · · · 23 
Diagram 2.0 Interruption Supervision Visual Table of contents 
 · · · 37 
Diagram 2.1 I/O Interruption Handling 
 · · · · · · · · · · · · · · · 38 
Diagram 2.2 Type-1 SVC Interruption Handling 
· · · · · · · · · · 40 
Diagram 2.3 Handling Types 2, 3, and 4 SVC Interruptions 
· · · · · · 42 
Diagram 2.4 External Interruption Handling 
· · · · · · · · · 44 
Diagram 2.5 Program Interruption Handling 
 · · · · · 46 
Diagram 2.6 SSM Interruption Processing 48· · · · · · Diagram 2.7 Page Fault Processing · · 50· · · · · · ·· · · Diagram 2.8 (steps 1-7) Program-Check Interruption Handling · · · 52· Diagram 2.8 (steps 8-12) Program-Check Interruption Handling · · 54 


· · · · · · · · · · · · · · Diagram 2.9 P IPIX Routine · 56 

Diagram 2.10 Tracing Supervisor Interruptions · 58· · · · · · Diagram 2.11 Tracing Start I/O Operations 60· · · · · · · · Diagram 3.0 Task Supervision Visual Table of Contents 
 · · · · · · · 68 
Diagram 3.1 Overview of Task Supervis ion 
 · · · · · · 69 
Diagram 3.2 (Steps 1-4) ATTACH Routine · 70 

Diagram 3.2 (Steps 5-12) ATTACH Routine · 
 · · · · · · · · · · 72 
Diagram 3.2 (Steps 13-16) ATTACH Routine · · 74· · · Diagram 3.3 CHAP Routine 
 · · · · · · · · · · · · · · · · 76 
Diagram 3.4 EXTRACT Routine 
· · · · · · · · · · · · 78 
Diagram 3.5 (steps 1-6) DETACH Routine · 80· · · · · · Diagram 3.5 (Steps 7-10) DETACH Routine 
 · · · · · · · · · · · · · · 82 
Diagram 3.6 SPIE Routine · · · · · · 84· · · · · · Diagram 3.7 WAIT Routine · · · · 86· · · · · · · · Diagram 3.8 (Steps 1-4) POST Routine 88· · · · · · · Diagram 3.8 (steps 5-10) POST Routine · · 90· · · · · · · · · · Diagram 3.9 ENQ Routine 
 · · · · · · · · 92 
Diagram 3.10 DEQ Routine · · · · · · · · · · · · · · · · · .124 

96 
Diagram 3.11 Stage 1 Exit Effector · · · · · · · · Diagram 3.12 Stage 2 Exit Effector .126· · · · · · · · · · · · · Diagram 3.13 (Steps 1-4) Stage 3 Exit Effector .128· · · · Diagram 3.13 (steps 5-7) stage 3 Exit Effector .130· · · · Diagram 3.14 Exit Routine .132· · · · · · · · · · · · Diagram 3.15 Type-1 Exit Routine · .146 

Diagram 3.16 Task Switch Routine · · · · · · .148
· · · · · · · · · Diagram 3.17 Dispatcher · .150· · · · · · · · · · Diagram 3.18 STATUS Routine · · .152.8· · · Diagram 3.19 Validity Check Routine 
· · · · · · · · · · · · .154 
Diagram 3.20 TESTAUTH Routine 
· · · · · · · · · .156 
Diagram 3.21 MODESET Routine 
 · · · · · · · · · · · · .158 
Diagram 3.22 System Task ABEND Recovery (STAR) Exit Routine of the 
System Error Task · .160· · · · · · · · · · · · · · · · · · Diagram 4.0 Contents Supervision Visual Table of Contents · .168 


· ·Diagram 4.1 Overview of Contents supervision · .169 

Diagram 4.2 (Steps 1-4) LINK Routine .170· · · · · · Diagram 4.2 (steps 5-7) LINK Routine · · .172· · · · · · · · Diagram 4.3 Routing to Searching Routines 
 · · · · · · · · · .174 
Diagram 4.4 IEAVVMSR: Searching the LPA Directory .176· · · · · Diagram 4.5 BLDL/Program Fetch Interface .178· · · · · · Diagram 4.6 SYNCH Routine · .180· · · · · · · · · Diagram 4.7 LOAD Routine · · .182· · · · · · · · Diagram 4.8 XCTL Routine 
· · · · · · · · .184 
Diagram 4.9 DELETE Routine 
 · · · · · · · · · · · .186 
Diagram 4.10 IDENTIFY Routine · .188· Diagram 4.11 Overlay Supervisor · · · · · .190· · · · · · · · · Diagram 4.12 (Steps 1-7) Program Fetch .192· · · · · · · · · · · · Diagram 4.12 (steps 8-15) Program Fetch 
· · · · · · · · · · · · .196 L 

xv 



Diagram 5.0 Paging Supervisor Visual Table of Contents. .207 


Diagram 5.3 Page I/O Interruption Processing •• • •••• • •• 212 


Diagram 5.6 (Steps 1-5) Real storage Allocation Routine 


Diagram 5.6 (Steps 6-11B) Real Storage Allocation Routine 


Diagram 5.6 (Steps 11C-15) Real Storage Allocation Routine 


Diagram 5.7 (Steps 1-3) Real Storage Reclamation Subroutine 


Diagram 5.7 (Steps 4-5) Real Storage Reclamation Subroutine 


Diagram 5.8 SQA/LSQA Allocation Routine (Allocating a Page Frame 


Diagram 5.10 V=R Allocation Routine (Allocating Page Frames for a 


Diagram 5.11 V=R Release Routine (Allocating an Intercepted Page to 


Diagram 5.13 V=R Flush Routine (Attempting to Get Needed V=R Page 


Diagram 5.16 Page Replacement - Allocation Scheduling and Root Exit 


Diagram 5.29 Page I/O Post - Page-out, Page-in, and Notification 


Diagram 5.30 Release Routine (User SVC) (Releasing Real and 


Diagram 5.31 Release Routine (Supervisor Branch) (Releasing Real 


Diagram 5.32 (steps 1-6) Release Routine (Branch) (Releasing Real 


Diagram 5.32 (Steps 7-15) Release Routine (Branch) (Releasing Real 


Diagram 5.33 Release - Subroutines for Searching PCBs and Freeing 


Diagram 5.1 Missing Page Interruption processing •••• .210 

Diagram 5.2 Queued (Delayed) Request Processing - Paging Task • • .211 


Diagram 5.4 Page SVC Interruption Processing •••••••• • .215 

Diagram 5.5 Branch Entry Page Processing •••••••• .217 


(Allocating a Page Frarr,e) • • • • • • •.• • • • • • • • • • •••• 218 


(Allocating a Page Frarre) • • • • • • • • • • • • • • • • • • • •• 220 


(Allocating a Page Frame) • • • • • • • • • • • • • • • • • • .222 


(Reclaiming a Page Frame) • • • • • • • • • • • • • • • • ." • • .224 


(Reclaiming a page Frame) ••••••••••••••••••••••226 


for the SQA or an LSQA) • • • • • • • • • • • • • • • • •• • •• 228 

Diagram 5.9 Reserve Replenish Queue Processor • • . • • • .230 


V=R Region) . • . • • • • • • • • . • • • • • • • • • • • • • • • • .234 


a V=R Region) • • • • • • • • • . • • • • • • • • • • • • • • .236 

Diagram 5.12 V=R Region Free Routine (Freeing a V=R Region) •• 238 


Frames) • • • • • • • • • • • • . • • • • • ••• 240 

Diagram 5.14 Move Page Routine • • • • • • • • • • .242 

Diagram 5.15 (Steps 1-3) Page Replacement Routine. .244 

Diagram 5.15 (Steps 4-5) Page Replacement Routine. • ••••• 246 


Processing • • • • • • • • • ••• 248 

Diagram 5.17 PFTE Enqueue Routine. • • • • • • • • • • •• 250 

Diagram 5.18 PFTE Dequeue Routine. • • • • • • • • • • •• 252 

Diagram 5.19 Task Disablement Algorithm and Threshold Checking ••• 254 

Diagram 5.20 Page Service Interface Routine. .256 

Diagram 5.21 (Steps 1-2) FIX/LOAD Subroutine •• 258 

Diagram 5.21 (steps 3-5) FIX/LOAD Subroutine •• 260 

Diagram 5.21 (Steps 6-10) FIX/LOAD Subroutine. .262 

Diagram 5.21 (Steps 11-12) FIX/LOAD Subroutine • • • • • •••• 264 

Diagram 5.21 (steps 13-17) FIX/LOAD Subroutine • • • • • .266 

Diagram 5.21 (Step 18) FIX/LOAD Subroutine • • • • .268 

Diagram 5.21 (Steps 19-21) FIX/LOAD Subroutine .270 

Diagram 5.22 (steps 1-6) FREE Subroutine • • • • .274 

Diagram 5.22 (steps 7-9) FREE Subroutine • • • • • .276 

Diagram 5.22 (Steps 10-12) FREE Subroutine • • • • • •••••• 278 

Diagram 5. 23 Fast Fix Routine • • • • • • • • • • • • • • • 280 

Diagram 5.24 FIX/LOAD Asynchronous Completion Routine •• 282 

Diagram 5.25 Delay Post Queue Handler. • • • .284 

Diagram 5.26 FOE Merge Routine •••••••••••••••••286 

Diagram 5.27 Find Page Routine • • • • • • • • • • • • • ••• 288 

Diagram 5.28 Page I/O Post and Task Post Queue Processor •• 290 


Subroutines • • • • • • • • • • • • • • • • • • • . • • .292 


External Page Storage) ••.•••••••••••••••• .294 


and External Page storage) •••••••••••••••••••••296 


and External Page Storage) • • • • • • • • • • • • • • • .298 


and External Page Storage) ••••••••••••• • ••••• 300 


Real Storage • • • • • • • . • • • • • • • • • • • • •••••• 302 

Diagram 5.34 Create Page Table Routine • • • • • • .304 

Diagram 5.35 Destroy Page Table Routine. • ••••••••• 306 

Diagram 5.36 Swap Control Routine. • • • .308 

Diagram 5.37 swap-in Set-up Subroutine • • • • • ••• 310 


J 


xvi 



Diagram 5.38 (Steps 1-7) Swap-in Completion Routines for Stages 1, 

3, and 4 ., • • • • • • • • • • • . • • • •• • • • • • • 314 

Diagram 5.38 (Steps 8-10) Swap-in Completion Routines for stages 1, 


Diagram 5.42 (Steps 1-5) Swap-out - CMPLOUT Subroutine (Deciding 


Diagram 5.42 (Steps 5-6) Swap-out - CMPLOUT Subroutine (Deciding 


Diagram 5.43 (Steps 1-3) Swap-out - External Address Assignment 


Diagram 5.43 (Steps 4-5) Swap-out - External Address Assignment 


Diagram 5.45 (Steps 1-7) Page I/O Supervisor - Subroutines for 


Diagram 5.45 (steps 8-13) page I/O Supervisor - Subroutines for 


Diagram 5.45 (Steps 14-20) Page I/O Supervisor - Subroutines for 


Diagram 5.52 Move/Build/Relate PCB - Subroutines for Queuing and 


Diagram 5.55 Paging Supervisor Appendages (Channel End, Abnormal 


Diagram 5.56 Paging Supervisor Appendages - SUbroutines for Freeing 


Diagram 5.63 (steps 1-3) Auxiliary Storage Manager (Handling 


Diagram 5.63 (Steps 4-7) Auxiliary Storage Manager (Handling 


Diagram 5.63 (Steps 8-11) Auxiliary Storage Manager (Handling 


3, and 4 ....• • • . • . • • • • . . • • • • .316 

Diagram 5.39 (Steps 1-3B) Swap-in Completion Subroutine. .318 

Diagram 5.39 (steps 3C-5) swap-in Completicn Subroutine •• • •••• 320 

Diagram 5.39 (steps 6-7) Swap-in Completion Subroutine · .322 

Diagram 5.40 (Steps 1-6) Swap-out Control Subroutine • .324 

Diagram 5.40 (Steps 7-12) Swap-out Control Subroutine ••. • •••• 326 

Diagram 5.41 Swap-out Completion Routine ••••••. • .328 


Which pages Are To Be Swapped Out) .................330 


Which pages Are To Be Swapped Out) .................332 


Subroutines • • • • . • . • • • • • • • • • • • • . • • • . . • • • . 334 


Subroutines. • • . . • • • • • • • • • • • • • .336 

Diagram 5.44 (Steps 1-6) page I/O supervisor . • • • • • • • • • . .338 

Diagram 5.44 (Steps 7-12) Page I/O Supervisor •••••••••••• 340 


Building and Queuing Channel Programs • • • . . • • • • • • .342 


Building and Queuing Channel Programs •••••••.•••••••• 344 


Building and Queuing Channel Programs • • • • • • • • • • • .346 

Diagram 5.46 Program Check Interruption Extension. . • • .348 

Diagram 5.47 Real to Virtual Address Translation Routine •• 350 

Diagram 5.48 Move PCB Routine. • ••••• 352 

Diagram 5.49 Build PCB Routine • • • • • • • • • • • • • .354 

Diagram 5.50 Relate PCB Routine .•••..•••••••••••.• 356 

Diagram 5.51 Release Queue Suppression Routine •••• 358 


Dequeuing PCBS •. . . • . • . • . . . . . • • • • • • .360 

Diagram 5.53 Queue Scanner (paging Task) ••.••••••.•• • .362 

Diagram 5.54 paging Supervisor Error Recorder •••••••••• • .364 


End) •..•.••..•••••••••••••••• • .366 


Resources and Handling Errors • • . . • . • • • • • • • . .368 

Diagram 5.57 Termination Interface and Page Hook Routines • .370 

Diagram 5.58 FIX Quiesce and Purge Routines •••• .372 

Diagram 5.59 (Steps 1-5) FIX Restore Routine •••• · .374 

Diagram 5.59 (steps 6-8) FIX Restore Routine ••.• · .376 

Diagram 5.60 (Steps 1-5) Subroutines for Purging PCBs • • ••••378 

Diagram 5.60 (Steps 6-7) Subroutines for purging PCBs • • .380 

Diagram 5.60 (steps 8-11) Subroutines for Purging PCBs • .382 

Diagram 5.61 Swap SVC Interface Routine •••••••• • •• 384 

Diagram 5.62 Migration Routine •.••.••••••• • .386 


External Page Storage) •.••••••••••.••••.•• .388 


External Page storage) •••.•.••.•..••.••••••.•390 


External Page Storage) ••••••.••••• • • • . • .392 

Diagram 6.0 Virtual Storage supervision Visual Table of Contents •• 411 

Diagram 6.1 Overview of GETMAIN and FREE~AIN . . • • • • • .412 

Diagram 6.2 (Steps 1-5) Overview of Allocating storage. .414 

Diagram 6.2 (Steps 6-10) Overview of Allocating Storage •• 416 

Diagram 6.3 Process ing Subpools .••.••••• . .418 

Diagram 6.4 Allocating Storage for Control Blocks • • •• • •• 420 

Diagram 6.5 Creating an SPQE • . • • • • • •• 422 

Diagram 6.6 Searching FBQEs • • . • .424 

Diagram 6.7 Searching FQES • • • • • • • • .426 

Diagram 6.8 Updating FQEs to Allocate Space •••••• 428 

Diagram 6.9 Purging Modules • • . .• •••• . .430 

Diagram 6.10 Updating the TCT • • • • • .432 

Diagram 6.11 Allocating LSQA Segments •••••••••••434 


xvii 



Diagram 6.12 Initializing LSQA Quickcell Areas .436· · · · · · · Diagram 6.13 Allocating a Quickcell .438· · · · · · Diagram 6.14 (Steps 1-5) Allocating a Region · .440· · · · Diagram 6.14 (Steps 6-10) Allocating a Region · .442· · Diagram 6.15 (steps 1-4) Allocating a. Specific Region .444· · · · · Diagram 6.15 (Steps 5-9) Allocating a Specific Region .446· · · · · · · Diagram 6.16 Allocating a Specific V=R Region .447· · · · · · · · Diagram 6.17 Allocating a Nonspecific V=V Region .448· · · · · · · · · Diagram 6.18 Allocating a Nonspecific V=R Region .450· Diagram 6.19 Unsuccessful Virtual Region Allccation .452· Diagram 6.20 A:"locating a SWA Segment .454· · · · · · · · · · Diagram 6.21 Allocating a SWA page .456· · · · · · · Diagram 6.22 Allocating 4K or More · · · · · · .458· · · · · · · · · · · Diagram 6.23 Monitoring Batch Processing Storage · .460 


·
Diagram 6.24 Monitoring TSO Storage · .462 

Diagram 6.25 Out-of-Storage Processing · · · · · · · · · .464· Diagram 6.26 Error Processing for GETMAIN/FREEMAIN · · · · .466· · Diagram 6.27 Overview of Releasing Storage .468· · · · · · · · Diagram 6.28 Freeing a Subpool .470· · · · · · Diagram 6.29 Freeing storage within a Region .472 


· · · · · · · · · Diagram 6.30 Freeing More than 4K .474 

Diagram 6.31 Freeing Storage in the SQA or an LSQA .476 


· · · · · Diagram 6.32 Freeing Space for an LSQA .478 

Diagram 6.33 Freeing Space for a Region .480· · · · · · Diagram 6.34 Locating an FQE to Free Space .482· · · · · · · · Diagram 6.35 Updating an FQE to Free Space .484· Diagram 6.36 Freeing 4K Blocks .486· · · · · · · · · Diagram 6.37 Freeing a Quickcell .488 


· · · · · ·Diagram 6.38 Freeing a SWA Segment .490 

Diagram 6.39 Freeing a SWA page .491·· · · · · · · · Diagram 6.40 Monitoring the Release of External Pages .492· Diagram 7.0 Timer Supervision Visual Tal::le of contents · .500 


·Diagram 7.1 Overview of Timer Supervision .501
· · · Diagram 7.2 TIME Routine . .502 


· · · · · · · · · · · · Diagram 7.3 STIMER Routine . .504 

Diagram 7.4 TTIMER Routine .506. · · · · · · · · 
Diagram 7.5 (Steps 1-6) Timer Second-Level Interruption Handler .508· Diagram 7.5 (Steps 7-8) Timer Second-Level Interruption Handler · .510 

Diagram 7.5 (Step 9) Timer Second-Level Interruption Handler · .512 


· · · · · · · · · · Diagram 7.6 Timer Enqueue Routine · .514 

Diagram 7.7 Timer Dequeue Routine .516· · · · · · · · · · · · · · Diagram 8.0 Termination Visual Tal::le of contents .525· Diagram 8.1 Overview of Termination .526· · · · · · · Diagram 8.2 Overview of EOT Routines .527· · · · · · · · Diagram 8.3 (Steps 1-5E) EOT Mainline Processing .528· · · · · · Diagram 8.3 (Steps 5F-9) EOT Mainline Processing .530 


· · · · · · .. · · · · · · · Diagram 8.4 Erase TCB Subroutine .532 

Diagram 8.5 (Steps 1-8) Dequeue TCB Subroutine .534·· · · · · · Diagram 8.5 (Steps 9-13) Dequeue TCB Subroutine 
 · · · · · · · .536 
Diagram 8.6 Purge TAXEs Subroutine .538 

Diagram 8.7 Purge Timer Subroutine · · · · · · .540
· · · · · · · · · · · · Diagram 8.8 Release Loaded Programs Subroutine · .542· · · · · Diagram 8.9 Release storage Subroutine .544· · · · · Diagram 8.10 Overview of the ABTERM Routines .546· · · · · Diagram 8.11 AETERM Prologue .548·· · · · · · · · · · · · · Diagram 8.12 (steps 1-8A) Mainline ABTERM Processing .550· · · · · Diagram 8.12 (Steps 8B-9D) Mainline ABTERM Processing .552· Diagram 8.12 (Steps 9E-9L) Mainline ABTERM Processing · .554 


· · · · · · Diagram 8.13 Overview of the ABEND Routine · .556 

Diagram 8.14 (Steps 1-9) ABEND Initialization Phase .558· · Diagram 8.14 (steps 10-13) ABEND Initialization Phase .560 


·Diagram 8.15 (Steps 1-10) ABEND Interface with ASIR .562 

Diagram 8.15 (Steps 11-14) ABEND Interface with ASIR .564· · · · · · · Diagram 8.16 (Steps 1-9) ABEND Initial Housekeeping Phase .566 


· ·Diagram 8.16 (Steps 10-16) ABEND Initial Housekeeping Phase .568 

Diagram 8.16 (Steps 17-24) ABEND Initial Housekeeping Phase .570· Diagram 8.17 Mainline ABEND Processing .572· ·· · · · · · Diagram 8.18 ABEND Open Phase · · · · · · · · · · .574· · · · · · J 

xviii 



Diagram 8.19 

Diagram 8.19 

Diagram 8.20 

Diagram 8.20 

Diagram 8.20 

Diagram 8.21 

Diagram 8.21 

Diagram 8.22 

Diagram 8.23 

Diagram 8.23 

Diagram 8.24 

Diagram 8.25 

Diagram 8.26 

Diagram 8.26 

Diagram 8.27 

Diagram 8.27 

Diagram 8.27 

Diagram 8.28 

Diagram 8.29 

Diagram 8.30 

Diagram 8.31 

Diagram 8.32 

Diagram 8.33 

Diagram 8.34 

Diagram 8.35 

Diagram 8.36 

Diagram 8.37 

Diagram 8.38 

Diagram 8.39 

Diagram 8.40 

Diagram 8.41 

Diagram 8.42 

Diagram 8.43 

Diagram 8.43 

Diagram 8.43 

Diagram 8.44 

Diagram 8.44 

Diagram 8.45 

Diagram 8.46 

Diagram 8.46 

Diagram 8.47 


CHARTS 

Chart 3-l. 
Chart 3-2. 
Chart 3-3. 
Chart 5-l. 
Chart 8-l. 
Chart 8-2. 

(Steps 1-5) ABEND ABDUMP Phase · · (Steps 6-11) ABEND ABDUMP Phase 
(steps 1-9) ABEND Close Phase 
(Steps 10-19) ABEND Close Phase 
(Steps 20-26) ABEND Close Phase · · · · · (Steps 1-7) ABEND Final Housekeeping Phase · (Steps 8-14) ABEND Final Housekeeping Phase · 
ABEND Must-Complete Phase · · 	· · · · · · · · (steps 1-8) ABEND Critical Error Phase · · 	· · (Steps 9-16) ABEND Critical Error Phase 
ABEND Recursion Phase · · · · · · · · · · · Overview of the SVCDUMP and ABDUMP Routines 
(Steps 1-6) SVCDUMP Routine · · 	· · (Steps 7-12) SVCDUMP Routine · · 	· (Steps 1-7) ABDUMP Mainline Processing · (Steps 8-12) ABDUMP Mainline Processing 
(Steps 13-23) ABDUMP Mainline processing 
ABDUMP - Formatting the Header and PSW · · · ABDUMP - Formatting Control Blocks I · ABDUMP - Formatting Control Blocks II 
ABDUMP - Formatting QCBs · · · · · ABDUMP - Displaying the Save Area 

ABDUMP Interface Routine · · · · · · 
· · 	· · ABDUMP - Displaying the Nucleus · · 	· · · · · ABDUMP - Displaying Registers · · 	· · ABDUMP - Formatting Trace Data · · · · ABDUMP - Displaying subpools · · · · · · ABDUMP OUTPUT, OUTPUT5, and PRINT Routines 
ABDUMP FORMAT and FORMATOl Routines · · · ABDUMP FORMAT20 and FORMAT22 Routines 
ABDUMP FORMET Routine · · 	· · · Overview of the STA Services and ASIR Routines 
(Steps 1-3) STA Services Routine · · (Step 4) STA Services Routine · 	 · · (steps 5-6) STA Services Routine · 
(Steps 1-8) ASIR Phase 1 

1 · · 	 · · · (steps 9-12) ASIR Phase · · 	· · · ASIR Phase 2 . . . . . · · 	· · · (Steps 1-6) ASIR Phase 3 · · 	 · · · (steps 7-14) ASIR Phase 3 · · ASIR Phase 4 . . . . . · 	 · · · 

ENQ/DEQ/RESERVE • • 
Exit routine 
Dispatcher • • • • 
Reserve Replenish Queue Processor •• 
REMOVERB Subroutine 
MCQEL Subroutine 

.576 

.578 

· · .580· .582 

· .584 

· .586 

· .588 

· · 	.592· · · · · · .596 
.598 

· .600 
.603 
.604 
.606 

· · .608 
.610 

· .612 

· · .614· · .616 
.618 
.620 
.622 
.624 

· .626 
.628 

· .630 

· · .632· · .634 

· · .636 

· · 	.638· .640 

· .642 

· · 	.644· · .646 

· .648 

· · .650· · 
· .652 

.654· · .656· · .658· .660 

• 98 
• •• 135 

.152 

.232 
• 	 •. 590 

.594 

xix 





SECTION 1 


Introduction to the Supervisor, 

and Virtual Storage Concepts 


WHAT THE SUPERVISOR IS AND DOES••••••••••••••••••••••••••••••••••••••• 3 

Basic Concepts of Virtual Storage supervision••••••••••••••••••••••••• 3 


Concept of Virtual Storage•••••••••••••••••••••••••••••••••••••••••• 3 

Translation of Virtual Addresses •••••••••••••••••••••••••••••••••••• 3 


iii •••••••paging•..•••...•••.•.•••••...•••.•.••••.•.•.•..•••••.•••.•.. 5 

Organization of Virtual Storage••••••••••••••••••••••••••••••••••••••• 6 

Use of Real Storage••••••••••••••••••••••••••••••••••••••••••••••••••• 8 

Storage Protection................................................... . 9 

Interruption Handling ...••••.••••••.•••••••.••.••••••••••••••••••••.•• 9 

Supervisor Services ................................................. . 10 


Task supervisio~. ~ •••..•.......•••.••.••.•.••.•.•••••...•••.•.••. 11 

Contents Superv1s1on•..•.••..••••...••••••.•••...••.•..•••....••• 13 

paging Supervision.........................• ".........••.....••... 14 

Virtual Storage Supervision •••••••••••.•••••.•••••.••••••.••••••• 15 

Timer Supervision••••••.•••.•.•••••.•••••.••••...•••••..•.••••••• 15 

Tas k Termination .••••...•••.•.•••••.••••••.••••.•••••••.••••.••.• 16 


Special Features ••••••.•••••••.•••••.•••••..•••.•••••••••••••..•••••. 16 

Authorized Program Facility•••.••••••.•.••..•••••••••••••.•••••.• 16 

Automatic Priority Grou~in9 •••••••..••••••••••••••••••••••••••••• 16 

Shared Direct Access Storage Device •••••••••••••••••••••••••••••• 16 

s¥stem Ma~agemen~ Facilities•••.•••••.••••••.•••••••••••.•••••••. 16 

T1me Shar1Dg Opt1on .••••••.•••••.••••..••••.••••••.••••••••••••.. 16 

Time Slicing•••.•••••.•..••.•••.•••.••••.•.•••.••••.••...••.••••• 17 

Tracing Facilities•••••••••..•••••••••••••••••••.••.•.•.••••••••• 17 


Summary of the supervisor's Role •••.••••••.•••••••••••••••••••••••••• 17 

~ethod of Operation Diagrams for Section 1••••••••••••••••••••••••••• 19 


Section 1: Introduction to the Supervisor and Virtual Storage Concepts 1 





WHAT THE SUPERVISOR IS AND DOES 


The VS2 supervisor is one part of the 
control program of the IBM OS/VS2 Operating 
System: it controls the basic computing 
system and programming resources needed to 
perform several data processing tasks con­
currently. The supervisor manages real 
(main) storage and auxiliary storage so 
that problem programs can occupy and use an 
address range greater than the address 
range of real storage. This address space 
is called virtual storage. 

Job steps, designated by the job manage­
ment routines as tasks, are carried out 
under the control of the supervisor, which 
allocates needed resources on the basis of 
priorities. The supervisor assigns the 
resources to perform tasks, keeps track of 
all such assignments, and ensures that the 
resources are freed upon task completion. 
If one resource is required by several 
tasks, the supervisor queues requests for 
the resource and controls use of the 
resource. By handling competing demands 
for resources and by controlling the execu­
tion of programs, the supervisor ensures 
more efficient use of the central proces­
Sing unit, real storage, auxiliary storage, 
system and user programs, and other system 
resources. 

Besides the supervisor, the control pro­
gram consists of the job management, input/ 
output supervision, data management, and 
recovery management components. The entire 
control program is introduced in the VS2 
Planning and Use Guide. 

BASIC CONCEPTS OF VIRTUAL STORAGE 
SUPERVISION 

A virtual storage system introduces a 
number of new machine and programming con­
cepts. Among these are: 

• 	 The concept of virtual storage as 

opposed to real storage. 


• 	 The concept of translating addresses 
from virtual addresses to real 
addresses. 

• 	 The concept of paging, which is the 
process of moving fixed-size pages of 
code and data into and out of real 
storage. 

These concepts are described in the follow­
ing subsections. 

CONCEPT OF VIRTUAL STORAGE 

The VS2 supervisor manages virtual 
storage so that users can effectively use 
virtual address space as though it were 
real storage. The virtual storage address 
space is divided into blocks of 4,096 bytes 
(4K) called pages. These pages may reside 
in external page storage (the portion of 
auxiliary storage used to store pages), in 
real storage, or both. The pages are 
transferred into and out of real storage as 
needed by the system or the users' pro­
grams. This process is called paging. 

When a program refers to a virtual 
address, that virtual address is translated 
by relocation hardware into its correspond­
ing real storage address. If the page con­
taining that virtual address is not in real 
storage, the CPU generates a page transla­
tion exception (a missing page interrup­
tion). This interruption notifies the 
supervisor to bring in the needed page from 
external page storage. The process of 
bringing a page into real storage is called 
a page-in. The entire virtual address 
translation and paging process are trans­
parent to the problem program, allowing the 
programmer to use the virtual address space 
as though it were real storage. 

When a page is no longer needed in real 
storage, it is moved to external page 
storage to make real storage available for 
another page. This process is called a 
page-out. The page is moved to external 
page storage only if it has been changed: 
otherwise, it is merely overlaid when a new 
page is read into storage. 

TRANSLATION OF VIRTUAL ADDRESSES 

As the CPU executes instructions, the 
system uses dynamic address translation, a 
System/370 hardware feature, to translate 
each virtual address into its real storage 
equivalent. If the virtual address does 
not have a real storage equivalent (that 
is, if the page containing the address is 
not in real storage), the CPU generates an 
interruption notifying the supervisor that 
a page must be brought from external page 
storage into real storage. Translation 
occurs only when virtual storage is 
addressed by the CPU. The entire process 
is automatic. Storage references by chan­
nels for I/O operations are not subject to 
the translation process. 

Section 1: Introduction to the Supervisor and Virtual Storage Concepts 3 



To facilitate address translation, vir­ Figure 1-1 shows the translation of a 
tual storage is logically divided in 64K sample virtual address. The virtual 
blocks called segments. There are 256 such address is divided into three parts: the J.. 
segments. Each segment is divided into segment number, the page number, and the 
sixteen 4K blocks called pages. This in-page displacement (number of bytes the 
organization enables the dynamic address address is displaced from the beginning of 
translation feature to use a two-level the page). The dynamic address translation 
table-lookup process to determine the real feature translates each virtual address as 
storage address. the CPU Executes instructions. To begin 

the process, the translation feature 
obtains the origin of the segment table 

The first-level table used for address (xxxOOO in the example) from a control 
translation is the segment table. It con­ register called the segment table origin 
tains an entry for each 64K segment of vir ­ register (step 1 in Figure 1-1). This con­
tual storage. Each segment table entry trol register is initialized by the nucleus 
points to a page table, which is the initialization program, which builds the 
second-level table used for address trans­ segment table. The translation feature 
lation. Each page table contains 16 then uses the segment number (X'DE' in the 
entries, one for each 4K page in the seg­ example) of the virtual address to deter­
ment. The page table entry contains the mine the entry in the segment table for the 
address of the page in real storage (the segment in which that virtual address 
first 12 bits of the final translated resides. 
address). Because each page must reside on 
a 4K boundary, the last 12 bits of the page The segment table entry (at location 
address are always zero. xxx378 in the example) points to a page 

VIRTUAL ADDRESS Segment Page Displacement 

Number Number Within Page 

~,.....,..,~ 

o IDE I C I 2 4 6 I 
o 78 	 115 16 h9 20 I 31rJ: L _________________________ -, 

I 
: L-----------l 1 

Segment Table 

Origin Register 
 CD • CD + ® 	

I 

1I 
xxxOOO DETERMINE SEGMENT 	 DETERMINE PAGE TABLE ~ CREATE REAL STORAGE~ 	 1 

TABLE ENTRY ADDRESS ENTRY ADDRESS ADDRESS 

Rea I Storage 
 1 

Address of 	 Mu Itiply the segment Multiply the page number Append the 12-bit 1 
Segment Table 	 number by 4 to account by 2 to account for width displacement of the 1 

for width of the segment of the page table: virtual address to the first I 
table: 2 x C = 18 (hex) 12 bits of the real storage I 

4 x DE = 378 (hex) 	 Add the result to the page address to complete the IAdd the resu I t to the table origin address to address translation. 

segment table origin obtain the address of the I 

address to obtain the page table entry for this I 

segment table entry for virtual address. 
 I 
this virtual address. 

1 I 
I 
I 

1 	 1 

Segment Table 	 Page Table 

xxxOOO OOFBOO 	 i-.J 
Page Table Origin 

xxx378 00FB18 +~ .. I 	 I 
OOFBOO 	 OlE ~ 00 OlE 246- -	 I 

0 78 31 0 11 12 15 0 78 1920 31 
Address of page table for First 12 bits are the real 
this virtual address storage address of the REAL STORAGE ADDRESS 

page containing the ....... 

virtual address being 
translated 

Legend 
____ Indicates use of portions of the virtual address • ­
..--. Indicates the flaw of address translation. 

Figure 1-1. Translation of a virtual address into a real address. 



table (at location OOFBOO in the example). 
The page table contains 16 entries, one for 
each page in the segment. The translation 
feature uses the page number (X'C' in the 
example) of the virtual address to deter­
mine which page in the segment contains the 
virtual address (step 2). This number is 
used to calculate the address of the page 
table entry for that page (X'OOFB18' in the 
example). The page table entry contains 
the real storage address for that page (the 
first 12 bits of the desired real storage 
address). As mentioned earlier, a page, 
when in real storage, must reside on a 4R 
boundary. Thus, the last 12 bits of the 
real storage address for a page are zeros. 

The in-page displacement portion of the 
virtual address (x'246' in the example) is 
appended to the 12-bit address in the page 
table entry to obtain the desired real 
storage address (step 3). The CPU then 
uses the real storage address as it 
executes instructions. 

If the page table entry is flagged inva­
lid, the CPU generates a page translation 
exception. The page translation exception 
is a program interruption (code X'll') and 
indicates that the page containing the vir­
tual address is not in real storage. This 
interruption (also called a missing page 
interruption) indicates that the page must 
be transferred from external page storage 
to real storage. 

If the segment table entry is marked 
invalid, the CPU generates a segment trans­
lation exception. This exception is a pro­
gram interruption (code X'10') and indi­
cates that: (1) no page table has been 
created for the segment, or (2) the virtual 
address being translated is protected from 
the task referencing it (see ·storage Pro­
tection· later in this section). 

If, during the translation process, the 
dynamic address translation feature cannot 
locate the segment table, the segment table 
entry, or the page table, the CPU generates 
a translation specification error. The 
translation specification error is a pro­
gram interruption (code X'12'). It indi­
cates that a control program or hardware 
failure has prevented translation of the 
virtual address. See Diagram 1.1 to see 
how missing page page interruptions, seg­
ment translation errors, and translation 
specification errors are processed. 

PAGING 

In the VS2 system, a program normally 
executes with only some of its pages in 

real storage. The specific pages needed at 
any given time depend upon the structure 
and addressing pattern of the program. 
When a page is needed, it is brought into 
real storage. When no longer needed, it is 
released or transferred to external page 
storage. As mentioned earlier, this 
transfer of pages between real storage and 
external storage is called paging. 

As an instruction is executed, the vir­
tual addresses are translated as explained 
in the preceding subsection, ·Translation 
of Virtual Addresses·. If a virtual 
address that is being translated resides in 
a page not in real storage, the CPU 
generates a missing page interruption. 
This interruption notifies the paging 
supervisor, a set of paging routines in the 
VS2 supervisor, that a page must be brought 
into real storage (paged in). 

When real storage is needed for a page 
being paged in, the real storage is made 
available by the paging supervisor. The 
paging supervisor selects what it deter­
Ir.ines to be the least needed page and makes 
the real storage it occupies available for 
the page-in. If the selected page in real 
storage was modified during execution, it 
is actually written out to external page 
storage (paged out). (The hardware main­
tains a bit in the storage key that indi­
cates whether the contents of a page frame 
have been changed.) If the page was not 
modified and an exact copy of the page 
already exists on external page storage, 
the page is not written out; it is merely 
overlaid by the incoming page. 

The paging supervisor maintains three 
sets of tables to keep track of all pages. 
The first two sets of tables, the segment 
tables and the page tables, are used for 
dynamic address translation. The paging 
supervisor uses a third table, the external 
page table, to keep track of all pages on 
external page storage. For every page 
table entry there is a corresponding 
external page table entry which contains 
the external page storage address at which 
that page is recorded on a paging device. 

The VS2 supervisor does not maintain an 
image of virtual storage. The pages of 
virtual storage are actually in real 
storage, on external storage, or both. 
They are not stored in contiguous locations 
or in any sequential order. They are 
placed in real storage wherever a page 
frame is available; they are stored on 
external page storage wherever a page slot 
is available. The three sets of tables, 
which are organized according to page 
addresses, record the physical location of 
each page. 

Section 1: Introduction to the Supervisor and Virtual Storage Concepts 5 



The paging supervisor maintains a list of available page 
frames ,that are least likely to be referenced. When a 
page frame is needed so that a page can be brought into 
real storage, the paging supervisor uses one of these 
available frames. When the number of available frames 
falls below a value specified during nucleus initialization, 
the paging routines select the page frames containing the . 
least-used pages and make them available for use. The 
paging routines use the page replacement algorithm to select 
the least~sed pages, and the process is based on the 
settings of the change and reference bits in the storage keys 
associated with each page frame. 

The selection of page frames continues until the 
predetermined number of available page frame is reached. 
During the process, page frames that contain unreferenced 
pages are selected before page frames that contain 
referenced pages. Page frames that contain unchanged 
pages are selected before page frames that contain changed 
pages. 

Entry for 

Page 1 

Page 2 

Page 3 

Page 4 

Page 5 

Page 6 

Page 7 

Page 8 

If the page in a selected frame has been changed, a copy of the 
changed page is actually maved to external page storage before the 
page frame is made available. If the page in a selected page frame 
has not been changed, a copy is not moved to external page storage, 
and no page-out is required. 

In this Illustration, the page frames occupied by Page 8 and Page 
4 have been made available. The page table entries for these pages 
have been marked invalid. Since Page 8 was not changed, there is 
no need to move it to externa I page storage and the external storage 
address remains the same. Page 4, however, has been changed. 
Therefore, a copy of it is paged out to an available external page 
storage slot. The external page table entry is updated for Page 4 and 
the external storage slot formerly occupied by Page 4 (called "Old 
Page 4" in this illustration) is now available for use when another 
page -out is necessary. Note that pages are not necessari Iy transferred 
to external page storage sequentially. 

PAGE TABLE 


Rea I Storage Address 


Real Storage Address 


Real Storage Address 


Real Storage Address 


Real Storage Address 


Real Storage Address 


"Marked invalid 

REAL STORAGE PAGE FRAMES 

Page 2 Page 7 

Page 8 
(Unchanged) 

Page 6 

Page 1 
Page 4 

(Changed) 

After Page-Out 

Figure 1-2. Explanation of page-out operations. 

Figures 1-2 and 1-3 illustrate the pag­
ing process using a virtual storage of 
eight pages and a real storage of 24K bytes 
(a real storage large enough for six 
pages). Real storage is logically divided 
into 4K blocks called page frames, and each 
page frame is on a 4K boundary. In the 
example, real storage consists of six page 
frames. For purposes of this illustration, 
the pages are numbered. In the VS2 system, 
the pages are identified by their page 
addresses. 

ORGANIZATION OF VIRTUAL STORAGE 

In its simplest form, virtual storage 
consists of nothing but address space - ­
the total 16,277,216 addressable bytes in 
the system. More concretely, virtual 
storage consists of pages fixed in real 
storage, pages stored on the paging 
devices, and various parameters and control 
information in the supervisor. 

It is the parameters and control infor­
mation that give form and organization to 
what otherwise seems to be an amorphous 
thing called virtual storage. 

The system must 

EXTERNAL PAGE TABLE 

External Storage Address 

External Storage Address 

External Storage Address 

- New External Storage Address 

External Storage Address 

External Storage Address 

External Storage Address 

External Storage Address 

EXTERNAL PAGE STORAGE 

"- ­ ~ 

~~~ ~Pa e ~~j 
~a~~ ~ ~~~ 

.A 

.~Pa e 4 ~;~ ~~~ 

reserve certain po~tions 
of the total address space for specific 
purposes (for example, space must be 
reserved for the system nucleus, for the 
fixed link pack area modules and BIDI 
entries, and for a minimum system queue 
area in which to build system control 
blocks). 

The supervisor must also know how much 
address space can be used for other pur­
poses, such as how much space can be allo­
cated to nonpageable (V=R) tasks and how 
wuch to pageable (V=V) tasks. 

And, while the system is running, the 
supervisor must keep track of how much 
storage is being used for the different 
purposes, and it must ensure that the 
limits on the different areas are not 
exceeded. 

For these reasons, the supervisor 
divides the virtual address space into dis­
tinct sections. Each section is reserved 
for a particular purpose, and whenever 

6 



When an executing pragram refers to a virtual 
address that is not in real storage, the virtuol 
address cannot be translated to a real address, and 
a missing page interruption is generated. Control 
is given to the paging supervisor. The paging 
supervisor first attempts to reclaim the page. If 
the needed page occupies a page frame that has 
been made available for a page-in but that page 
frame has not yet been re-used, the page is 
reclaimed and a page-in is avoided. The paging 
supervisor merely updates the page table entry far 
the reclaimed page, and removes the page frome 
from the available I ist (called the available page 
queue). Page 4, for example, could be reclaimed. 

In this illustration, the executing pragram has 
referred to a virtual address in Page 3. Since Page 
3 was not in real starage (see Figure 1-2), a copy 
of that page was paged into the page frame 
formerly occupied by Page 8. The page table 
entry for Page 3 was updated so that it now contoins 
the real storage address of the page frame now 
occupied by Page 3. The needed page is now in 
real storage and when the interrupted progrom 
regains control, it can continue executing. 

The first time a page is referred to, a page-in 
is nat required. There is no associated page on 
external page storage. The paging supervisar 
merely allocates an available page and optianally, 
clears it. 

Entry for 

Page 1 

Page 2 

Page 3 

Page 4 

Page 5 

Page 6 

Page 7 

Page 8 

PAGE TABLE 

Real Storage Address 

Real Storage Address 

New Real Storage Address r- ­

· Real Storage Address 

· 
Real Storage Address 


Real Storage Address 


· 

·Marked invalid 

REAL STORAGE PAGE FRAMES 

Page 2 Page 7 

EXTERNAL PAGE TABLE 

External Storage Address 

External Storage Address 

External Storage Address 

External Storage Address 

External Storage Address 

External Storage Address 

External Storage Address 

External Storage Address 

EXTERNAL PAGE STORAGE 

~ i'-- ~ 
Page 3 Page 6 

==!> 
~tj ~ag~jPage 1 Page 4 

r r@§ ~age~ 
~~~ ~~~ ~age~

After Page-In 

• Figure 1-3. Explanation of page-in operations • 

storage is requested for that purpose, the 
storage is allocated from the section of 
virtual address space reserved for that 
purpose. The size of each section is esta­
blished during nucleus initialization and 
is based on parameters received by the sys­
tem at that time. 

The space for one section may exist tot ­
ally in real storage (as it does for the 
system nucleus), or it may be a combination 
of real storage space and pages on paging 
devices (as it does for a pageable task). 
Thus, some sections are fixed in real 
storage and other sections are paged. 

Figure 1-4 illustrates the organization 
of virtual storage. Keep in mind that the 
illustration depicts the way in which vir ­
tual storage looks when all the pages are 
laid out sequentially. The VS2 supervisor 
keeps no such image. To construct this 
image after the system is in operation, you 
would have to sort through, combine, and 
order the pages in real storage and extern­
al storage using the page tables and other 
control information as a guide. 

The SQA (system queue area) is reserved 
for non-job-oriented and non-job-step­

oriented control blocks and tables (such as 
the segment tables) that are maintained by 
the control program. It is reserved in 
segment multiples. As long as an SQA page 
is allocated for use, it is nonpageable and 
is usually fixed in the high end of real 
storage. The number of SQA pages fixed in 
real storage increases and decreases to 
meet the needs of the system. 

The pageable LPA (pageable link pack 
area) contains selected reenterable rour­
tines that can be used concurrently by all 
tasks in the systerr. It is pageable and 
the fixed link pack area is an extension of 
this area (see below). 

The pageable BLDL table contains the 
list of directory entries for the SYS1. 
LINKLIB data set. The pageable BLDL table 
can exist only if the user does not specify 
a fixed ELDL table. 

The master scheduler region is used by 
the master scheduler task and the communi­
cations task. 

Section 1: Introduction to the supervisor and Virtual storage Concepts 7 



YIRTUAL STORAGE 	 DYNAMIC AREA 

H 
System Queue Area 

Region B (Y~Y) 

Reg ion A (Y~Y) 

(for nonpageable regions) 
(Unassigned) 

Fixed BLDL Table* 
Reg ion C (Y~R) 

Fixed Link Pack Area 

System Nucleus 

--- Y~R Limit 


Low'--_______-' *These sections are mutually exclusive. 

Figure 1-4. 	 Organization of virtual 
storage. 

The master schedUler LSQA is the local 
system queue area for the master scheduler. 
(The local system queue area is explained 
below. ) 

The dynamic area is used for execution 
of user and system tasks. The area is 
divided into two parts; the part below the 
V=R LIMIT is used for nonpageable regions 
and the area above the line is used for 
pageable regions. Regions for nonpageable 
(V=R) tasks are allocated from the lower 
part, and regions for pageable (V=V) tasks 
are allocated from the upper part. 

An LSQA (local system queue area) is 
reserved for each initiator, in the high 
end of the dynamic area. It is allocated 
in segment multiples. Each LSQA is used to 
store job-oriented or job-step-oriented 
control blocks, including the queues of 
control blocks that contain the information 
necessary to keep track of the free and 
allocated space within the region. The 
LSQA also contains the page tables and the 
external page tables for the region. Pages 
allocated in each LSQA are fixed in real 
storage and their number increases and 
decreases to meet the needs of the job or 
job step. 

At system initialization, the user can 
set the V=R limit by specifying the size of 
the dynamic area to be reserved for non­
pageable (V=R) regions. Problem programs 
that cannot be paged during execution must 
occupy V=R regions. These regions are 
allocated pages below the V=R limit. The 
virtual addresses of these pages have real 

storage equivalents. The region is fixed 
in real storage at these identical real 
s~or~ge addresses, thus ensuring that a ~ 
m~ss~ng page interruption never occurs and •. 
that a virtual address in that region is 
identical to the real storage address after 
translation. Pages for V=V regions are 
allocated from the dynamic area above the 
V=R limit. 

The fixed BLDL table is a BLDL table 
that the user has specified to be fixed in 
real storage. It is nonpageable and the 
virtual and real storage addresses are 
identical. A system contains either a 
fixed BLDL table or a pageable BLDL table, 
but not both. 

The fixed LPA (fixed link pack area) is 
present only if the operator specifies it 
at IPL time. It is an extension of the 
pageable link pack area and is searched 
first (that is, before the pageable link 
pack area). It is not pageable and its 
virtual and real storage addresses are 
identical. 

The system nucleus contains the control 
program routines that must be permanently 
fixed in real storage. The nucleus is not 
paged and begins at virtual address zero. 
Its virtual and real addresses are 
identical. 

USE OF REAL STORAGE 

Figure 1-5 shows the organization of 
real storage. Page frames in the fixed 
area contain the system nucleus, the fixed 
link pack area, and the fixed BLDL table. 
The real storage addresses of the page 
frames and the virtual addresses of the 
pages are identical. The pages are not 
paged out of real storage, the page frames 
are not eligible for use by other pages, 
and copies of the pages are not kept on 
external page storage. 

High Page frames available for: 

• SQA and LSQA pages (which Ore fixed 

in real storage) 


• 	Pageable link pack area and BLDL table 

pages 


Real storage available• 	Pageable (Y~Y) regions 
for paging r-------------- ­

Page frames eligible for nonpageable (Y~R) 


regions (Can be used for pageable items 

when all frames are not occupied by 

nonpageable tasks) 


Fixed BLDL Table 

Fixed Link Pack Area Permanently fixed 
area of real storage 

System Nucleus 

Low 	

} 
-	 - - Y~R Limit 

Figure 1-5. Organization of real storage. 

8 



All page frames in the rest of real 
storage are eligible for paging. However, 
pages allocated for the SQA (system queue 
area) or an LSQA (local system queue area) 
must reside in real storage until they are 
no longer needed. Thus, page frames con­
taining SQA or LSQA pages are not eligible 
for paging until those pages are freed. 
Copies of SQA and LSQA pages are not kept 
in external page storage (except LSQA pages 
for TSO regions). 

Pages for all pageable programs can use 
the page frames in the pageable area. 
These pages are paged out of real storage, 
the page frames are eligible for use by 
other pages, and copies of the pages are 
kept in external page storage. The virtual 
addresses and the real storage addresses 
are probably different. 

The V=R limit established for virtual 
storage also applies to real storage. If 
the user requests a V=R region for a non­
pageable task, the pages for that region 
reside in the page frames below the V=R 
limit. The pages of the nonpageable pro­
gram occupy the page frames whose addresses 
are the same as the virtual addresses of 
the pages that they contain. The virtual 
and the real addresses are identical. The 
pages are not paged out of real storage, 
the page frames are not eligible for use by 
other pages until the V=R region is freed, 
and copies of the pages are not kept on 
external page storage. When page frames 
below the V=R limit are not being used for 
V=R regions, they are eligible for use by 
other pages. However, if a page that does 
not belong to a V=R region must be long­
fixed in real storage, the supervisor 
attempts to place that page in a page frame 
above the V=R limit. In so doing, the 
supervisor avoids page-frame allocation 
that inhibits allocation of V=R regions. 

STORAGE PROTECTION 

Storage protection is a feature that 
prevents unauthorized access to virtual 
storage by all except the intended users. 
The larger addressable storage of the VS2 
system allows users to start more than 15 
regions, and consequently, storage protec­
tion has been extended to cover the addi­
tional number of regions. The VS2 system 
still uses the 16 standard protection keys. 
It supplements this key protection with a 
segment validation process. 

Key-O programs have access to all allo­
cated areas of virtual storage. Non-key-O 
programs have read-only access to the 
shared areas of the system (for example, 
the system nucleus, the SQA segments, and 
LSQA segments) and full access to their own 
regions. 

System programs (such as the supervisor 
or data management routines) are assigned 
protection key O. Nonpageable programs are 
assigned protection keys 2 through 15. 
(Thus the user can run a maximum of 14 non­
pageable programs at anyone time.) All 
pageable programs are assigned protection 
key 1. If a pageable or nonpageable user 
program attempts to reference fetch­
protected or non-key-O virtual storage 
assigned to another nonpageable program, 
the system generates a storage protection 
interruption. The protection keys prevent 
nonpageable programs from referencing the 
non-key-O areas of all pageable programs 
and other nonpageable programs. They also 
protect all pageable programs from all non­
pageable programs. 

Since all pageable programs are assigned 
protection key 1, the VS2 system uses a 
segment validation process to protect these 
programs from each other. Two segment 
tables are used: one for all system and 
nonpageatle programs and a second for all 
non-key-O pageable programs. Both segment 
tables point to the same set of page 
tables. Each segment of virtual storage 
allocated to a program is represented by a 
segment table entry in a segment table. 
All segments allocated to pageable programs 
are represented by segment table entries in 
the second segment table. 

Whenever a pageable program is dis­
patched, the dispatcher marks as valid all 
segment table entries for that program's 
region. All other segment table entries 
for nonshared areas are marked invalid. 
Whenever a pageable program attempts to 
address virtual storage in a segment whose 
segment table entry is marked invalid, the 
system generates a segment translation 
error during virtual address translation. 
The system treats a segment translation 
error as though it were a storage protec­
tion check. This process protects pageable 
programs from each other. 

Nonpageable programs cannot be totally 
isolated. Since key-O areas are not fetch­
protected and since nonpageable programs 
use the system segment table, nonpageable 
programs can reference key-O areas in other 
regions, including pageable regions. 

INTERRUPTION HANDLING 

All supervisor activity begins with an 
interruption. In an IBM System/370, the 
interruption is a machine characteristic: 
it is the means by which the supervisor 
gets control of the CPU to provide 
resources for the performance of tasks. An 
interruption may be planned (specifically 
requested in the program currently being 
executed by the CPU) or unplanned (caused 

Section 1: Introduction to the Supervisor and Virtual storage Concepts 9 



by an event that may be either related or 
unrelated to the task currently being 
Ferformed). 

There are five types of interruptions: 

• 	 Supervisor call (SVC) interruption: a 
request for a Farticular supervisor 
service. 

• 	 Timer/external interruFtion: an atten­
tion signal from the System/370 clock 
comparator or CPU timer, the console 
interruption key, or the direct control 
feature. 

• 	 Input/output interruption: the signal
that an input/output event has 
occurrred. 

• 	 Program interruption: a signal that a 
Frogram has attempted an invalid 
action, has met an exception condition 
during dynamic address translation, has 
executed an SSM (set system mask) 
instruction, or is having interruptions 
monitored by the dynamic support system 
<nSS) • 

• 	 Machine-check interruption: the signal 
that a machine error has occurred. See 
the OS/VS Recovery Management Support 
Logic manual for details. 

Overall operation of the supervisor is 
shown in Figure 1-6. 

The program being executed in the per­
formance of task A has been interrupted, 
possibly because it contained a request for 
a supervisor service, possibly because an 
input/output operation has been completed 
for an entirely different task. 

The interruption-handling portion of the 
supervisor (represented by the top box in 
Figure 1-6) analyzes the interruption, 
based on control information passed to it 
at the time of the interruFtion. Each of 
the five interruption types has associated 
with it two program status words (PSWs) 
called -old- PSW and -new· PSW. The old 
PSW contains the information needed by the 
supervisor to analyze the interruption. 
The new PSW contains the address of the 
appropriate interruption-handling routine. 

When an interruption occurs, the CPU 
stores the contents of the current PSW in 
the old PSW for that type of interruption, 
and loads the new PSW. By loading the new 
PSW, the CPU places itself in supervisor 
state and passes control to the associated 
interruption-handling portion of the super­
visor. The supervisor then passes control 
to those parts of the control Frogram that 
perform the services required as a result 
of the interruption. For a more detailed 
introduction to interruption handling, see 
Section 2 and Diagram 1.1. 

Machine ~ Interruption Handling 

Program Being 
Executed for Task A 

loads new 
Ps-N • Analyze the interruption. 

• Determine the required control 
program action. 

• Route control to appropriate 
part of control program. 

Any Performing the Service 
interruption 

• Supervise use of real storage. 

• Establish, alter, or end a task. 

• Establ ish I inkage to a program in 
virtual storoge or on auxil iary 
storoge. 

• Allocate or free virtual storage. 

• Supervise use of the clock 
comparator and the CPU timer. 

Prog ram Be ing • Handle console communications. 
Executed for Task B • Supervise input/output operations. 

• Provide system environment 
recording and/or attempted 
recovery • 

• Serial ize the use of resources. 

Note: 	 Some of these se rv ices may 
require another service, and 
may thus cause the supervisor 
cycle to be restarted with 
another interruption. 

Dispatch i ng 

• Process requests for asynchronous 
exits. 

• Determine which ready task has 
the highest priority. 

• 	Route control to a routine that is 
Load old to be executed for that task. 
PSW 

Note: 	 The dispatcher may determine - that the interrupted task 
shou I d be resumed, or that a 
different task should be 
dispatched. 

Figure 1-6. General flow of the supervisor. 

SUPERVISOR SERVICES 

The supervisor itself performs many of 
the services that are requested through an 
interruption (these services are repre­
sented by the middle box in Figure 1-6). 
services that the supervisor provides may 
be grouped into these general categories: 

• 	 Task supervision. The task sUFervision 
routines create a task in response to a 
request to attach a subtask to an 
already existing task. The routines 
determine in what order tasks are to be 
executed. Task supervision routines 

10 



also perform the exiting procedures that 
prepare for the return of control from a 
completed program. 

• 	 contents supervision. The contents 
supervision routines keep records of 
all programs in virtual storage, and 
schedule the execution of these pro­
grams for tasks. The Program Fetch 
routine brings requested programs into 
virtual storage from auxiliary storage. 

• 	 paging supervision. The paging super­
vision routines manage real storage and 
external page storage. They ensure 
that pages are brought into real 
storage when needed. 

• 	Virtual storage supervision. The vir ­
tual storage supervision routines 
assign virtual storage needed to per­
form job steps and tasks within job 
steps. 

• 	 Timer supervision. The timer supervi­
sionroutines control the use of the 
System/370 clock comparator and CPU 
timer. 

• 	 Task termination. The termination rou­
tines perform normal and abnormal ter­
mination of tasks. 

Most supervisor services are requested 
by issuing a macro instruction. The last 
machine instruction of the resulting macro 
expansion is an SVC instruction. When 
executed, the SVC instruction causes an SVC 
interruption. Control passes to the SVC 
interruption handlers which, in turn, pass 
control to the routine that performs the 
requested service. Diagrams 1.1 through 
1.3 illustrate SVC processing. 

Most SVC routines are executed in a dis­
abled state; that is, they cannot be inter­
rupted by I/O or external events during 
processing. To avoid missing page inter­
ruptions while disabled, these SVC routines 
have special prologues (preliminary rou­
tines) to ensure that all pages needed dur­
ing their processing are in real storage 
before disabled processing begins. These 
SVC prologues use the MODESET service of 
task supervision to enable interruptions. 
They then reference all needed virtual 
addresses. This referencing causes all the 
pages in which those virtual addresses 
reside to be paged into real storage by 
paging supervision. The SVC prologue then 
issues a MODESET SVC to disable interrup­
tions. The disabled SVC routine can then 
process the service request without incur­
ring a missing page interruption. 

After a control program service has been 
performed, the supervisor determines which 
task is to be performed next. The dis­

patcher (a task superv1s10n routine repre­
sented by the bottom block in Figure 1-6) 
returns control to a processing program or 
another supervisor routine. As seen in 
Figure 1-6, the program to which control 
passes need not be the one that was inter­
rupted. The dispatcher may determine that 
as a result of the interruption, task B, 
which has a higher priority than task A, 
should be performed next. 

Each major category of supervisor pro­
cessing is described more fully in the fol­
lowing subsections. 

Task Supervision 

Each task to be performed by the system 
is represented by a TCB (task control 
block). The TCB contains control and sta­
tus information related to the task, and 
pointers to system resources assigned to 
the task. 

When the operating system is generated, 
six key TCBS are built into the system. 
These TCBs represent the paging task, the 
system error task, the dynamic support sys­
tem task, the communications task, the 
dynamic device reconfiguration task, and 
the master scheduler task of job manage­
ment. All other task control blocks are 
constructed by the supervisor ATTACH rou­
tine, at the request of either the control 
program or a user program. The master 
scheduler can attach initiator/terminator 
tasks. Initiator/terminator routines 
attach job-step tasks and subtasks. An 
entire tree structure of related tasks may 
thus be formed. 

All TCBs in the system are chained 
together, according to dispatching priori ­
ty, to form the task queue. The paging TCB 
is at the top of the queue, followed in 
order by the system error TCB, the dynamic 
support system TCB, the communications TCB, 
and the master scheduler TCB. The dis­
patching priorities of other tasks are 
aSSigned by the supervisor according to the 
parameters given in the ATTACH macro 
instructions. When several TCBS with the 
same priority appear in the TeB queue, they 
are arranged on the queue in descending 
order in the sequence in which they were 
created (that is, the first TCB created at 
that priority is the highest, the second 
TeB created is the next lower on the queue, 
and so on). 

Figure 1-7 shows the flow of control 
that results from issuance of the ATTACH 
macro instruction. This flow is typical of 
the processing that follows most supervisor 
macro instructions. 

Section 1: Introduction to the Supervisor and Virtual Storage Concepts 11 



-----

Program Performing SVC Interruption 
Task A Handler 

Branch to ATTACH 
Routine 

SVC 

Inter­
 r 

ATTACH Routineruption 
ATTACH Task B 

Branch to 

GETMAIN Routines1L 

GETMAIN 
Routines 

Program That 
Performs the New 
Task B Branch to 

Dispatcher, 

Dispatcher 

Return to 

~ 

load PSW to Program 
That Performs Highest­
Priority Reedy Tas~, 

Figure 1-7. 	 Flow of control after the 
ATTACH macro instruction is 
issued. (Shows typical pro­
cessing for a supervisor macro 
instruction. ) 

The ATTACH routine, like other SVC rou­
tines, is entered as a result of an SVC 
interruption. The SVC interruption­
handling routines analyze the interruption, 
determine which service is required, and 
then branch to the ATTACH routine. The 
ATTACH routine obtains virtual storage for 
a TCB by branching to the GETMAIN routine. 
When the required storage has been allo­
cated, the ATTACH routine regains control. 
It initializes certain fields in the TCB 
and places it on the task queue. 

After the ATTACH routine has initialized 
the TCB that represents the new task, it 
branches to the dispatcher. The dispatcher 
examines the task queue to find the 
highest-priority task that is ready to be 
performed. This task mayor may not be the 
one that was being performed at the time 
the original SVC interruption occurred. 
For example, if task B has been attached as 
a subtask of task A, and if B has a higher 

dispatching priority than A, then task B 
~ill be performed before task A is resumed. 

The supervisor controls the order in 
which tasks are performed. This control is 
accomplished by the dispatcher, working 
through the task queue. The task queue 
serves as a record of the status of every 
task in the system. The highest-priority 
task represented on the task queue may not 
be the one to be dispatched; it may be 
~aiting for some event (through the WAIT 
Racro instruction, for example) or for a 
resource that has been serialized (through 
the ENQ macro instruction). To be dis­
patched, a task must be the highest­
priority ready task on the queue (that is, 
the highest-priority task that is currently 
ready to begin processing). 

The time-slicing feature is included in 
the system, and the dispatcher contains 
code to perform time-slicing. The dis­
patcher controls time-slicing through the 
TSCE (time-slice control element); there is 
one TSCE, asseRbled at system generation, 
for each time-slice group. 

The user can also identify a single 
priority level as an APG (automatic priori ­
ty group) at system generation or system 
initialization. However, a time-slicing 
group cannot be identified as an automatic 
priority group. The dispatcher dispatches 
tasks within the automatic priority group 
according to a special algorithm that 
attempts to provide optimum use of CPU and 
I/O resources by these tasks. For more 
information on automatic priority groups, 
see -Automatic Priority Grouping· under 
·Special Features· in this section. 

Task supervision also provides routines 
that prepare for the return of control from 
a completed program and perform the actual 
return of control. Control may return to a 
mainline program or to a supervisor rou­
tine. The exiting procedures determine the 
type of program that has completed its 
execution, and perform different clean-up 
operations according to the type of 
program. 

The dispatcher is usually entered to 
return control to a program belonging to 
the highest-priority ready task. There are 
some cases, however, in which the dispatch­
er is not entered to return control: for 
instance, when the completed program is a 
type-1 SVC routine that has not indicated 
the need for a task switch. 

For a more detailed introduction to task 
supervision, see Section 3. 

12 



Program A TCB 	 created in advance of an interruption 
ty the CIRB routine at the user's requ­
est, but are not placed on an RB queue 
until an interruption or event actuallyCD 	 CD Program B occurs. 

Request Block 
LINK Program B ­.... 


Program B 
RETURN _ 

®Request Block 

Program A 

CD Program A issues 	 CD Contents supervision ®When Program B 
a LINK macro 	 routines construct a completes processing, 
instruction 	 new RB to represent control passes back to 
specifying 	 Program B's level of Program A. 
Program B. 	 control. 

Figure 1-8. 	 Use of the RB queue in passing 
control to different programs. 

contents Supervision 

contents supervision is accomplished 
through a structure of queues that are very 
closely related to the task queue. These 
are the request block queues. 

Request blocks (RBs) represent levels of 
control within a task. contents supervi­
sion routines construct an RB for the first 
level of control in a new task (the first 
program to be executed for a task): this 
RB and RBs for subsequent levels are 
chained on the TCB's RB queue. The 
subsequent-level programs are programs that 
are called by higher-level programs and 
must be executed before the higher-level 
programs can be completed. Figure 1-8 
illustrates the process. If program A 
issues a LINK macro instruction specifying 
program B, contents supervision routines 
construct a new RB to represent program B's 
level of control. The supervisor uses the 
RB queue as a record of control levels. As 
new programs are called, the supervisor can 
pass control to the succeeding levels and, 
as the routines complete their operation, 
it can pass control back up the line, 
regardless of the number of times a task is 
interrupted. 

There are five types of RBs: 

• 	 IRBs (interruption request blocks), 
which control routines that must be 
executed in the event of asynchronous 
interruptions or events. IRBs are 

• 	 PREs (proqram request blocks), which 
represent nonsupervisory routines that 
must be executed in the performance of 
a task. PRBs are created by the con­
tents supervision routines that perform 
the ATTACH, LINK, SYNCH, and XCTL 
functions. 

• 	 SVRBs (supervisor request blocks), 
which represent supervisor routines. 
SVRBs are created by the SVC 
interruption-handling routines. They 
are queued in the same way as PRBs. 

• 	 SIRB (system interruFtion request 
block), which is used only for the sys­
tem error task. There is only one SIRB 
in the system. 

• 	 TIRBs (task interruFtion request 
blocks), which represent control pro­
gram services that must be performed 
asynchronously. The ATTACH routine 
creates one TIRB for each task. 

Contents supervision routines construct 
only one type of RB: the PRB. 

The supervisor maintains a record of all 
programs in virtual storage -- their attri ­
butes, locations, and use statuses. This 
record is called the contents directory. 
The contents directory is made up of four 
items: (1) the LPD (link pack area direc­
tory); (2) the LPAQ (link pack area queue); 
(3) the JPAQ (job pack area queue); and (4) 
the load list. Figure 1-9 illustrates the 
queuing structure of the contents 
directory. 

The LPD is a record of every program in 
the pageable link pack area. The link pack 
area contains reenterable routines speci­
fied by the control program or by the user. 
It is loaded by the nucleus initialization 
program from the SYS1.LPALIB data set. The 
programs in the link pack area can be used 
repeatedly by any task in the system. 

The entries in the LPD are LPDEs (link 
pack directory entries). The LPD resides 
in the link pack area and is pageatle. 

The LPAQ is a record of every program in 
the link pack area that is presently in 
use. The entries in the LPAQ are CDEs 
(contents directory entries). When a pro­
gram represented in the LPAQ is requested 
for a task, it will normally be represented 
in the task's RB queue by a PRB; the 
address of this PRB will be inserted in the 
CDE. The LPAQ resides in the system queue 

section 1: Introduction to the Supervisor and Virtual Storage Concepts 13 



VIRTUAL STORAGE 


SYSTEM QUEUE AREA 


Link Pack Area Queue 


CDE (contents directory 

f--­entry) 


CDE 


LINK PACK AREA 

LPA Program LPA Program 
(not in use) (in use) 

Link Pack Directory 


LPDE (I ink pack directory
'­
entry) 


LPDE I- ­

LOCAL SYSTEM QUEUE AREA 

Lood List 


- LLE (lood I ist entry) 


LLE "L Job Pack Area Queue 

LLE CDE ­I 
CDE ­

CDE 

~ -

REGION 

Program for Program for 
Job Step Job Step 

SYSTEM NUCLEUS1 J 

Figure 1-9. The contents directory. 

area and is not paged. Whenever a link 
pack program is requested for use, the LPDE 
for that program is used to create a CDE 
which is placed on the LPAQ. The CDE is 
deleted from the LPAQ when the program is 
no lenger needed. The LPAQ reduces the 
amount of paging necessary to locate a link 
}';:ack program. 

The load lists represent programs that 
tasks in regions have requested by issuing 
LOAD macro instructions. Each requested 
program was either found in the link pack 
area or was loaded into the job pack area 
in virtual storage. The entries in the 
load list are LLEs (load list elements), 
not CDEs. Each load list element is asso­
ciated with a CDE in the JPAQ or LPAQ; the 
programs represented in the load list are 
thus also represented in one of the other 
queues. 

There is a JPAQ for each job step in 
which the LOAD macro instruction has been 
used to load programs into the job pack 
area. The JPAQ, like the LPAQ, is made up 
of CDEs. The JPAQ is used to record the 
locations of and control the use of rou­
tines in the job pack area. These routines 
can te either reenterable or not reenter­
able, and they are normally used more than 
once by routines in the job step. The JPAQ 
resides in the local system queue area for .....\ 
the jot-step region and is not paged. ~ 

For a more detailed introduction to con­
tents supervision, see Section 4. 

paging supervision 

Paging supervision routines manage the 
exchange of pages between real storage and 
external page storage (see ·Paging- under 
-Basic concepts of Virtual Storage- earlier 
in this section). The entire }';:aging pro­
cess is transparent to the problem program. 

To make the most efficient use of real 
storage and minimize the amount of CPU time 
used for paging, the paging supervision 
routines use two algorithms: the page 
replacement algorithm and the task disable­
If,ent algorithm. The page replacement 
algorithm is used to find and release 
least-used pages in real storage when page 
frames must be made available for other, 
Ifore needed, pages. The task disablement 
algorithm is used to determine whether 
excessive paging is being done. If the 
rate of paging is excessive, one of the 
lower-priority active tasks is set nondis­
patchable to lessen the contention for real 
storage. When the paging rate has returned 
to a more normal level, the tas'ks are set 
dispatchable again. 

14 



If a missing page interruption can be 
satisfied by reclaiming the page in real 
storage, it is. However, if further pro­
cessing is required before the needed page 
can be paged in, paging supervision rou­
tines construct a PCB (page control block). 
This PCB represents the paging request and 
records the status of the needed page. It 
is queued to one of ten PCB queues. Eight 
of the queues have associated paging pro­
cessors, each of which handles the particu­
lar paging function required by the PCBs on 
that queue. When the paging routines have 
completed processing, the page is in real 
storage and the user continues processing. 

For a more detailed introduction to pag­
ing supervision, see Section 5. 

Virtual Storage Supervision 

The supervisor controls tasks through 
the task queue and the RB queues; it con­
trols programs through the RB queues and 
the contents directory. Another major 
function, controlling virtual storage, is 
accomplished through a series of virtual 
storage queues. 

When the job management routines design­
ate a job step as a task, they request a 
region of virtual storage to be used in 
performing that task. The size of the 
region is specified by the user; the region
contains the job pack area for the step, 
and all additional working space needed. 

All requests for virtual storage are 
handled by the GETMAIN routines. The 
supervisor maintains virtual storage queues 
to reflect storage assignments; the GETMAIN 
routines simply adjust these queues to 
reflect new assignments. 

When there are no job steps in the sys­
tem, all of the dynamic area of virtual 
storage is treated as one region. It is 
represented to the supervisor by an FBQE 
(free block queue element) and a PQE (par­
tition queue element) in the system queue 
area. The PQE contains the address of the 
F'BQE, and the FBQE contains the address of 
the beginning of the free area. When space 
is requested for a job step, the GETMAIN 
routines subtract the requested area size 
from the free area and build a new FBQE and 
PQE for the new region. The address of the 
PQE is placed in the TCB of the job-step
task. 

After job-step initialization, a program 
performing a task may request virtual 
storage by issuing the GETMAIN macro 
instruction. The GETMAIN SVC routine allo­
cates the storage only within the region 
assigned to the job step or within the 
local system queue area or the system queue 
area. Storage is allocated in the local 

system queue area and the system queue area 
only if the requester is a supervisor 
routine. 

The supervisor maintains a se~arate 
chain of queue elements for allocation 
~ithin a region. This chain kee~s track of 
sub~ools within the region. A subpool is 
all of the virtual storage requested under 
a label called a subpool number. All of 
storage in a subpool does not need to be 
requested at the same time nor does it need 
to be contiguous. The chief advantages of 
subpools are: (I) that the storage can be 
shared between tasks, and (2) that all of 
the storage identified by a subpool number 
can be released with one FREEMAIN macro 
instruction. 

The supervisor FREEMAIN routines are 
used to free virtual storage when it is no 
longer needed. Space assigned to a job 
step, space within a region, space within 
the local system queue area, and s~ace 
within the system queue area are all freed 
by the FREEMAIN routines. These routines 
nake s~ace available by adding elements to 
chains in which are recorded all free areas 
in virtual storage, and by adjusting the 
queues of allocated space. 

For a more detailed introduction to vir­
tual storage supervison, see Section 6. 

Timer Supervision 

Timer supervision routines support the 
System/370 time-of-day clock, clock com­
~arator, and CPU timer features. These 
routines enable the programmer to obtain 
the date and time of day, measure periods 
of time, or schedule activity for a specif­
ic time of day. The routines are executed 
as a result of the macro instructions TIME, 
STIMER, and TIMER, and are handled just 
like any other SVC routines. 

Timer supervision maintains two queues 
of TQES (timer queue elements): one for 
task-timing requests and the other for 
real- and wait-timing requests. The TQEs 
are constructed by the STIMER routine, and 
each element represents a request for a 
type of timed interval. The TQE is placed 
on the a~propriate queue in the order in 
~hich the requested interval expires. When 
a time interval expires or a particular 
time of day is reached, a timer interrup­
tion occurs. This interruption causes the 
Timer Interruption Handler to remove the 
top element from the appropriate timer 
queue and to determine what action to be 
taken. Examples of required action are: 
(1) scheduling a timer exit, or (2) making 
a task ready and eligible for dispatching. 

For a more detailed introduction to 
timer supervision, see Section 7. 

Section 1: IntrodUction to the Supervisor and Virtual Storage Concepts 15 



Task Termination 

The supervisor performs the processing 
needed when a task is terminated, either 
normally or abnormally. The termination 
processing includes releasing system 
resources that were assigned to the task. 

The End of Task (EOT) routine performs 
normal terrdnation processing. Abnormal 
termination is performed by the ABTERM and 
ABEND routines. The STA Services and ASIR 
(ABEND/STA Interface) routines provide a 
means for recovery from errors causing 
abnormal termination. The ABDUMP and 
SVCDUMP routines provide a dump of control 
blocks and virtual storage related to the 
terminating task. 

For a more detailed introduction to ter­
mination, see Section 8. 

SPECIAL FEATURES 

The following subsections describe spe­
cial program features provided in the 
supervisor. 

Authorized Program Facility 

The APF (authorized program facility) 
restricts the use of sensitive system ser­
vice to authorized users. The authoriza­
tion consists of a code designated by the 
installation, applied at the job-step 
level, and used with programs residing in 
the SYS1.LINKLIB data set, the SYS1.SVCLIB 
data set, and the link pack area. The 
facility is supported primarily by contents 
supervision and task supervision. 

Both problem programs and system pro­
grams can test whether a task has authori­
zation to use a specific fUnction by issu­
ing the TESTAUTH SVC macro instruction (SVC 
119) • 

Automatic Priority Grouping 

The automatic priority grouping 
mechanism operates within the dispatcher. 
The user may specify a single dispatching 
priority as an APG (automatic priority 
group). Tasks within the APG are dis­
patched in a way that makes best use of the 
system's CPU and I/O capabilities. The 
dispatcher identifies these tasks as 1/0­
oriented or CPU-oriented, according to 
which facility they use more (paging I/O is 
excluded from this determination). The 
dispatcher shifts the APG tasks on the task 
queue so that the I/O-oriented tasks are 
dispatched first. For more information, 
see -Section 3: Task supervision.­

Shared Direct Access Storage Device 

The shared DASD (shared direct access 
storage device) feature enables indepen­
dently operating data processing systems to 
share direct access storage devices. The 
feature employs the two-channel switch and 
its control corr~ands, device reserve and 
device release. The shared DASD feature is 
a general name for control program func­
tions that actually reserve and release 
each device. Essentially, this feature 
controls the use of a serially reusable 
resource, the device and the shared data. 

System Management Facilities 

SMF (system management facilities) is a 
standard feature of the control program. 
It gathers and records information used to 
evaluate system, data set, and direct 
access volume usage. SMF functions are 
performed by job management, input/output 
support, direct access device storage mana­
gement, and supervisor routines. The 
supervisor performs the following SMF 
functions: 

• 	 ~aintains a record of system wait time. 

• 	 Assists in handling time limit 

expirations. 


• 	 Counts and records references to user 

data sets. 


• 	 Controls the output limit for SYSOUT 

data sets. 


• 	 ~aintains a record of virtual and real 

storage usage. 


• 	 Records paging statistics. 

Time Sharing Option 

TSO (the time sharing option), a stan­
dard OS/vS2 facility, adds general-purpose 
time sharing to the facilities available 
_ith the VS2 control program, and the 
supervisor supports TSO operations. This 
facility enables users at remote terminals 
to execute programs concurrently and to 
interact with these programs during execu­
tion. The installation can dedicate its 
system to time-sharing operations er it can 
run time-sharing and batch-processing 
operations concurrently. 

The time sharing option consists ef a 
control program (containing IBM-supplied 
service routines and command processors) 
and a number of IBM Program Products 
(available from IBM for a license fee). 
The TSO control program, an extension of 
the VS2 control program, does the ..\. 
following: ..." 

16 



L 
• Identifies and verifies the time shar­ cified by the installation. Any task in 

ing user. the system that is not defined within the 

• 	 Defines the user job. 

• 	 Assigns the user jot an amount of 
execution time (as determined by 
installation, and called the selected 
scheduling algorithm). 

• 	 Ensures a specified percentage of 

execution time for tatch-processing 

operations (when required). 


• 	 Logically disconnects the user job from 
the operating systEm before the job is 
swapped out of real storage (called 
nquiescingW the jot); logically recon­
nects the user job to the operating 
system when the jot is swapped into 
real storage (called "restoring" the 
job. ) 

• 	 Establishes and maintains communica­
tions between the terminal user, his 
programs, and the 'ISO control program. 

• 	 Handles attention interruptions from 
the terminal user. 

• 	 Provides an optional set of SMF records 
for the TSO system. 

• 	 Allows optional system control task 
exits to installation-supplied 
routines. 

• 	 Provides an optional record of the 
information that is passed to the Time 
Sharing Driver via the Time Sharing 
Interface Program from such TSO system 
routines as the Region Control Task, 
the Time Sharing Control Task, and the 
Time Sharing Dispatcher. 

For a complete description of the TSO 
control program, see the OS/vS2 TSO Control 
Program Logic manual. 

Time Slicing 

The time-slicing mechanism operates 
within the dispatcher. A priority is 
assigned to a group of tasks which are to 
be time-sliced; time-slicing occurs only 
among the tasks in the group and only when 
the priority level of the group is the 
highest priority level that has a ready 
task. Each task in the group is dispatched 
for the specified time slice. The dis­
patching of tasks within the group con­
tinues until all the tasks are waiting, or 
a task of higher priority than that of the 
group becomes ready. 

The group of tasks to be time-sliced, 

time-sliced group is dispatched under the 
regular conditions; that is, the task is 
dispatched when it is the highest-priority 
ready task, and it remains active until it 
either waits or until a task of higher 
priority becomes ready. 

Tracing Facilities 

Two facilities, the trace table facility 
and GFT (generalized trace facility), are 
provided to assist in tracing program flow 
by mcnitoring and recording system events. 

Trace Table Facility: The trace table 
facility is an optional feature specified 
at systen generation or nucleus initializa­
tion. The trace table routines place 
entries, each of which is associated with a 
certain type of event, in a trace table. 
The size of the table is also a system 
generation or NIP option: when the table is 
filled, the routine overlays old entries 
with new entries beginning with the oldest 
entry in the table. Trace table entries 
are formatted and printed out on SNAP dumps 
and stand-alone dunps. For more informa­
tion, see "Section 2: Interruption 
Supervision." 

Generalized Trace Facility: The genera­
lized trace facility is invoked as a system 
task when the operator issues the START 
conmand. When GTF is started, the operator 
selects specific events to be traced and 
may select to record the trace data either 
in virtual storage or on an external 
device. When the internal storage option 
is selected, the recorded data is compar­
able to that provided by the trace table 
facility. When the external device storage 
option is selected, the recorded data is 
nore comprehensive. 

When GTF is active, the trace table 
facility, if present, is disabled. When 
the trace records are maintained in virtual 
storage, ABDUMP provides formatted trace 
data for abnormally terminated programs 
when a SYSABEND DD statement has been 
included. When trace records are stored on 
an external device, a trace EDIT function 
of I~DPRDMP can be used to provide the out­
put cf selected data. 

Support for GTF is included in the 
interruption supervision function of the 
supervisor (see Section 2.) For a complete 
description of GTF logic, see the OS/VS 
Service Aids Logic manual. 

SUMMARY CF THE SUPERVISOR'S ROLE 

the length of the time slice, and the The supervisor is a collection of pro­
priority of the time-sliced tasks are spe- grams for handling interruptions and pro-

section 1: Introduction to the Supervisor and Virtual Storage Concepts 17 

L 



viding services in res~onse to them. These 
interruptions are the basic method by which 
the control program manages data processing 
tasks. The supervisor functions are large­
ly performed by routines that manipulate a 
network of control queues -- the task 
queue, the RB queues, the contents direc­
tory, the paging queues, the real storage 
queues, the virtual storage queues, the 
ENQ/DEQ resource queues, and the timer 
queues. 

The processing after a timer/external, 
input/output, program, or machine-check 
interruption is generally straightforward. 
The ~rocessing after an svc interruption is 
more complicated. Diagrams 1.1 through 1.3 
illustrate supervisor interruption 
processing. 

18 



r r r 

Diagram 1.1 (Page 1 of 3) 
Supervisor Overview and Visual Table 
of Contents for Diagrams

Machine Check Interruption SVC Interruption 

MACHINE CHECK HANDLER 

Recovery Management Support SYC FIRST -LEYEL INTERRUPTION HANDLER C/) 
m 
o Save register contents of the interrupted
rt (See OS/VS Recovery program • SeeOlagram 1.2 for 

Management Support
.... 

a description of the o 
~O,d., No. SY27-7239) See Diagram 2.2: Type-1 SVC ::1 lype-ISYC routines. 

Interruption Handling ,processed- by the svperv1sOf .... See Diagram 2.0: Interruption Supervision 
Visual Table of Contents 

See "Section 2: 
H 
::1 
rt 
ti 
o 
C. 

~ 
rt.... 
g 
rt 
o 

A Type-1 SYCrt 
Routine:::r om 

C/)
s:: 

It'l 
/I) 

~ .... 
til 
o 
ti 

III I I ABTERM TYPE-I EXITC. 
::1 o Type-l SVC routines are part of the nucleus PROLOGUE Routine 


and are disabled for I/o and external 
<.... interruptions. These routines do not issue 
ti SVC instructions because they cannot be 
rt restarted ofter an SVC interruption. They See Diagram 8.11 

can restart after a missing page interruption.~ 
I-' 

S' 
Type-2 SVC routines ore part of the nucleus 

C/) m
but may be enabled for I/O and external 
interruptions during part of their processing. 

Directly to These routines may issue SVC instructions. 
ti interrupted
III routineType-3 SVC routines ore nonresident. (They 
/I) reside in the link pack area.) They may be 

enabled for I/o interruptions. These routines 
() 

IQ m 
may issue SVC instructions.o 

::1 
Type-4 SVC routines are nonresident. (Theyn D 

/I) reside in the link pack area.) They may be 
DISPATCHER"0 enabled for I/o and external interruptions. 


rt These routines may issue SVC instructions. See'

til 

.... 
\D 



to.) 	 Diagram 1.1 (Page 2 of 3)o 	
Supervisor Overview and Visual Table 

Program Interruption of Contents for Diagrams 

~ 
PROGRAM FIRST-LEVEL INTERRUPTION HANDLER 

Determine the cause of the i nterru pt ion • See Diagram 2.5: Program Interruption 
Handling 

See Diagram 2.0: Interruption Supervision 
Visual Table of Contents 

See "Section 2: Interruption Supervision" 

Interruption Interruption Interru pt ion Interruption Interruption Interruption Interruption 
Code: Code: X'lO' Code: X" 1 I Code: X'12' Code: X'13' Code: X'40' Code: X'SO' 
X'D' through 
X'F' Segment Translation Page Translation Translation SSM Interruption, Monitor Call Program Event 

Exception Exception (missing Specification (MC) Interruption Recording (PER) 
Program -Check Page Interruption) Exception Processing handled Interruption 
Interruption (Handled as Q by Program FLIH 

program-check See Diagram 2.7: 

See Diagram 2.8: interruption Page Fault See Diagram 2.6: 

Program-Check code X'4') Processing SSM Interruption 

Interl\Jption Processing 

Handling 


I I 
• f 	 I 1 

PAGING SUPERVISION 	 DISPATCHERABTERM PROLOGUE PAGING SUPERVISOR 	 GENERALIZED TRACE 
ERROR RECORDERPROGRAM CHECK 	 FACILITY (GTF) 

Schedu I e abnorma 1 INTERRUPTION EXTENSION 
If the tosk that prodl"lcedtermination of the 	 Record the interruption. Select the next 
translation specification task to receive 

Initiate page-in for
task. 

exception is in key 0 (See OS/VS Service Aids control. 
missing page. (supervisor state), the Logk, Order No. SY28-6635) 

error is considered major 
and the system is placed 
in a disabled wait state. 
Otherwise, the error is 
considered minor and the 
tosk is schedu led for 
abnormal termination. 

See Diagram 5.46: 

Program Check 

Interruption See Diagram 5.54: 


See Diagram 8.11: 
 Extension 	 Paging Supervisor 

ABTERM Prologue Error Recorder 


See Diagram 5.1 : 

See Diagram 8.10: Missing Page See Diagram 5.5: 

Overview of the Interruption Branch Entry Page 

ABTERM Routines Processing Processing See Diagram 3.17: 
Dispatcher 

See Diagram 8.0: See Diagram 5.0: See Diagram 5.0: 
Termination Visual Paging Supervision Paging Supervision See Diagram 3.0: 
Table of Contents Visual Table of Visual Table of Task Supervision 

Contents Contents Visual Table of Contents 
See "Section 8: 

Termination" See "Section 5= Paging See "Section 5: Paging See "Section 3: 
Supervision" Supervision" Task Supervision" 

l, 	 ~ "-' 



r r r 

Diagram 1.1 (Page 3 of 3) 

Supervisor Overview and Visual Table 

of Contents for Diagrams 

External Interruption I/O Interruption 

EXTERNAL FIRST -LEVEL 

CIl INTERRUPTION HANDLER 

CD 
o Determine the cause of the interruption. 
rt­.... 
o 
::3 

See Diagram 2.4: 

See Diagram 2.0: 

External Interruption 
Handling 
Interruption Supervision 
Visual Table of Contents 

.... See "Section 2: Interruption Supervision ll 

H 
::3 Interruption Code: I Interruption Code: 

rt­ X'lO07' X'lOOS' 

Ii 


& Operator Key ICPU Timer 

Interruption Interruptionc: o 

rt­.... 
o
::s 
rt­
o 
rt­:::r 
ID 

CIl COMMUNICATIONS TASK 
c: EXTERNAL INTERRUPTION 

'rl PROCESSOR 
til 

~ .... (See OS;VS2 Job Management 

en Logk, O,de, No. SY2B-0621) 

o 
Ii 

III 
::3 
a. 
<:.... 
I'i 

c:rt­
III 
I-' 

CIl 

rt­
o 
I'i 
III 

\Q 
til 

(') 
o 
::3 
o 
ID 
"d 
rt­
en 

IV .... 

I/O FIRST -LEVEL INTERRUPTION 
HANDLER 
Pass control to the I/O 
supervisor. 

See Diagram 2.1: I/O Interruption 
Handling 

See Diagram 2.0: Interruption Supervision 
Visual Table of Contents 

See "Section 2: Interruption Supervision" 

I/O SUPERVISOR 

(See OS;VS I/O Supe,v;,o, 
Logic, Order No. SY24-S156) 

Interruption Code: 
X'lOQ4' 

Clock Comparator 
Interruption 

TIMER SECOND-LEVEL 
INTERRUPTION HANDLER 

Process clock comparator 
and CPU timer interruptions. 

See Diagram 7.5: Timer 
Second-Leve 1 Interruption 
Hand ler 

See Diagram 7.0: Timer 
Supervision Visual Tobie of 
Contents 

See IISection 7: Timer 
Supervision" 



Diagram 1.2 '" Type-1 SVC Processing'" Performed by the Supervisor 

svc FIRST-LEVEL INTERRUPTION HANDLER 

DETAILED Diagl"Qm 3,7 Diagram 3.14 Diagram 6.2 Diagram 6.27 
DIAGRAM 

OVERVIEW Diagram 3.1 Diagram 3,1 Diagram 6.1 Diagram 6.1 
DIAGRAM 

TEXT Section 3: Task Section 3: Task Section 6: Virtual Section 6: Virtual 
INTRODUCTION Supervision Supervision Storage Supervision Storage Supervision 

10 43 79 107 112 113 115 119 

Releose Routine PGFIXjPGFREE/
+-

Stage•1 • 	 • • svc• .­
REGMAI N Routine Set Status Routine MODE SET•Routine (PGRLSE, PGLOAD/PGRLSE TESTAUTH Routine

Exit Effector 	 Routine
nonsupervisor) (supervisor) 

• Determine whether • Create IRBs and • Adiust a task', • Make available all • FIX: Fix virtual • Obtain page control • Determ ine whether 
o GETMAIN or TIRBs. dispatchobil it;. real and external storage (I(eas in blocks (PCBs). a program is 
FREEMAIN macro page storoge wholly real storage and authorized to use 
instruction was associated with a make them • Place one PCB on the resource ar 
issued, and pass ?WI. specified area of ineligible for the swap queue for function. 
control to either virtuol address page-out. further 
the GETMAIN space. by 
routines (Diogrom • FREE: Make one on the queue 
6.2) or the • Return to the Type~l previously fixed for swap root PCBs. 
FREEMAI N routines Exit Routine or the areas eligible for 
(Diogram 6.27). coller. page-out. 

• 	 LOAD; Bring 
specified areas of 
virtuol storage 
into real storage 
from external 
page storage. 

• RELEASE: 	 Branch 
to the Release 
routine (I EAPCLR). 

Diagram 6.2 and Diagram 3. II Diagram 3.18 Diagram 3.21 Diagram 5.30 Diagram 5,20 Diagram 5.61 Diagram 3.20 
Diagram 6.27 

Diagram 6.1 Diagram 3,1 Diagram 3,1 Diagram 3.1 Diagram 5.4 Diagram 5,4 Diagram 5,4 Diagram 3.1 

Section 6: Virtual Section 3: Task Section 3: Task Section 3: Task Section 5: Paging Section 5: Paging Section 5: Paging Section 3: Task 
Storage Supervision Supervision Supervision Supervision Supervision Supervision Supervision Supervision 

l., l 	 L 




(
r 	 r 

Diagram 1.3 (Page 1 of 4) 
Types 2, 3, and 4 SVC Processing 
Performed by the Supervisor 

S v C SECOND-LEVEL INTERRUPTION HANDLER 

en 
(l) 
n 
rt 
~. 

o::s 
~ 

H 

~ 
11 

8. 
c:: 
n 
rt 

o 
~. 

::s 
rt 
o 
rt::r 
(l) 

en 
c:: 

't"l 
(l) 

~ 
~. 

en 
o 
11 

1\1 
t:S 
0­

<: 
~. 

11 
rtc: 
1\1 
I-' 

en 
rt 
o 
11 
1\1 

IQ 
(l) 

g 
::s 
n 

~ 
en 

"-l 
Col) 

SVC NUMBER 

NAME OF 
ROUTINE 

DESCRIPTION 

DETAILED 
DIAGRAM 

OVERVIEW 
DIAGRAM 

TEXT 
INTRODUCTION 

, 2 
(Type 2) 

POST Routine 

• 	 Signal the occurrence of 
on awaited event to the 
waiting program. 

Diagram 3.8 

Diagram 3.1 

Section 3: Task 
Supervision 

(Type 2) (Type 2) (Typ. 2)

• 
6 	

• 
7 

• 
8 

LINK Routine XCTL Routine LOAD Routine 

• 	 Pass control to a specified • Pass control to a specified • Bring the load module 
entry point. The load entry point. The load containing a specified 
module is brought into module containing the entry point into virtual 
virtual storage if a usable entry point is brought into storoge if a usable copy 
copy is not available. virtual storage if a usable is not available. 
After the execution of the copy is not available. 
coiled program, control No return is made to the 
is returned to the instruc- program issuing the XCTL 
tion following the LINK macro instruction. 
macro instruction. 

Diagram 4.2 Diagram 4.8 Diagram 4.7 

Diagram 4.1 Diagram 4.1 Diagram 4.1 

Section 4: Contents Section 4: Contents Section 4: Contents 

Supervision Supervision Supervision 



• • 

IV 
l:: 

Diagram 1.3 (Page 2 of 4) 
Types 2, 3, and 4 SVC Processing 
Performed by the Supervisor 

S v C SECOND-LEVEL INTERRUPTION HANDLER 

SVC NUMBER 

NAME OF 
ROUTINE 

DESCRIPTION 

DETAILED 
DIAGRAM 

OVERVIEW 
DIAGRAM 

TEXT 
INTRODUCTION 

• 
9 

(Type 2) 

DELETE Routine 

• Decrease the use count for 

modules fetched by a LOAD 
macro instruction. 

• Free storage occupied by a 
module that was requested 
through a LOAD macro 
instruction and is no longer 
needed. 

Diagram 4.9 

Diagram 4.1 

Section 4: Contents 
Supervision 

• 
11 

(T ype 2) 

TIME Routine 

• 	 Determine the time of day 
and date and return both 
to the caller. 

Diagram 7.2 

Diagram 7.1 

Section 7: Timer 
Supervision 

• 
12 

(T ype 2) 

SYNCH Routine 

• 	 Allow a supervisor routine 
to synchronously exit to a 
user program. 

Diagram 4.6 

Diagram 4.1 

Section 4: Contents 
Supervision 

-

• 
13 

(Type 4) 

ABEN D Routine 

• 	 Free control blocks, 
storage, and other 
resources used by the 
terminating task (or tasks) 
and subtasks. 

• 	 Invoke ASIR if a STA user 
exit routine exists. 

• 	 Invoke ABDUMP if 
requested. 

Diagrams 8.14 
through 8.24 

Diagram 8.13 

Section 8: Termination 

• 
14 

(Type 2) 

SPI E Routine 

• 	 Perform the processing 
necessary to allow the user 
to specify an exit routine 
to be schedu led after a 
program interruption • 

Diagram 3.6 

Diagram 3.1 

Section 3: Task Supervision 

37 40 
(Type 3) (Type 2) 

SEGLD or SEGWT Routine EXTRACT Routine 

• Load specified overlay 	 • Obtain information for a 
segments. 	 task from that task IS TCB 

or the TCB of a subtask. 

Diagram 4.12 	 Diagram 3.4 

Diagram 4.1 	 Diagram 3.1 

Section 4: Contents Section 3: Task 
Supervision Supervision 

~ l 	 L, 




----- - ----- ------ -

r ( 	 r 

Diagram 1.3 (Page 3 of 4) 
Types 2, 3, and 4 SVC Processing 
Performed by the Supervisor 

S v C SECOND-LEVEL INTERRUPTION HANDLER 

en 
(!) 
(") 
rt.... 
o 
::; 

I-' 

H 

~ 
11 
o 
0­
s= 
~ .... 
o 
::; 

rt 
o 
rt 
::T 
(!) 

en 
t:: 

't1 
(!) 

~ .... 
en 
o 
11 

III 
::; 
0­

....< 
~ 
t:: 
~ 
en 
g 
11 
III 

(!) '" 

(j 
o 
::; 
(") 
(!) 
't1 
rt en 

IV 
U1 

SVC NUMBER 

NAME OF 
ROUTINE 

DESCRIPTION 

DETAILED 
DIAGRAM 

OVERVIEW 
DIAGRAM 

TEXT 
INTRODUCTION 

• 
41 

(T ype 3) 

IDENTIFY Routine 

• Inform 	the supervisor of a 
module's embedded entry-
point name that was not 
established by the linkage 
editor. 

Diagram 4.10 

Diagram 4.1 

Section 4: Contents 
Supervision 

• 
42 

(Type 2) 

ATTACH Routine 

• Create a task control block 
(TCB) to represent the task. 

• 	Schedule linkage to 
contents supervision to 
obtoin the program to be 
first executed for the new 
task. 

Diagram 3.2 

Diagram 3.1 

Section 3: Task 
Supervision 

• 
44 

(Type 2) 

CHAP Routine 

• 	Change the dispatching 

priority for a task or 

subtask. 


,Diagram 3.3 

Diagram 3.1 

Section 3: Task 

Supervision 


• 
46 

IType 2) 

TTIMER Routine 

• 	Calculate the time 
remaining in a requested 
interval. 

• Cancel the interval. 

Diagram 7.4 

Diagram 7.1 

Section 7: Timer 
Supervision 

• 
47 

IType 2) 

STIMER Routine 

• 	Calculate and schedule a 
requested timed interval. 

Diagram 7.3 

Diagram 7.1 

Section 7: Timer 
Supervision 

48 51 

(Type 2) (T ype 4) 


...•
DEQ Routine SVCDUMP Routine 

• Remove requests for 	 • Branch to ABDUMP to 
resources from the resource display control blocks and 
queues. storage for the specified 

task. 

• Display the virtual storage 
specified by the key 0 
issuer of the SVC 51 macro 
instruction. 

Diagram 3.10 Diagram 8.26 

Diagram 3.1 Diagram 8.25 

Section 3: Task Section 8: 
Supervision Termination 



---- ----

t.) 

0'1 

SVC NUMBER 

NAME OF 
ROUTINE 

DESCRIPTION 

DETAILED 
DIAGRAM 

OVERVIEW 
DIAGRAM 

TEXT 
INTRODUCTION 

• 
56 

(Type 2) 

ENQ/ilESERVE Routine 

• Queue requests for 

resources (data sets I 
records, programs, etc.) to 
control access. 

Diagram 3.9 

Diagram 3.1 

Section 3: Task 
Supervision 

S v C 

60 
(Type 3) 

STA•Services 

• 	Create a STA control block 
containing the address of a 
user-written exit routine 
and a parameter list. 
ABEND invokes the 
ABEND/STA Interfoce 
routine to schedu Ie the user 
exit routine upon abnormal 
termination. 

Diagrams 8.43 
through 8.47 

Diagram 8.42 

Section 8: 
Termination 

Diagram 1.3 (Page 4 of 4) 
Types 2, 3, and 4 SVC Processing 
Performed by the Supervisor 

SECOND-LEVEL INTERRUPTION HANDLER 

62 
(Type 2) 

•DETACH Routine 

• Remove the specified reB 
from the task queue. 

• Free t-he TCBls storage 
space and the assoc ioted 
problem-program register 
save area. 

Diagram 3.5 

Diagram 3.1 

Section 3: Task 
Supervision 

- - - -

l" 	 l '-' 



SECTION 2 

Interruption Supervision 

D 


HOW INTERRUPTIONS ARE HANDLED•••••••••••••••••••••••••••••••••••••••• 29 

Input/Output Interruption Handling••••••••••••••••••••••••••••••••••• 29 

SVC Interruption Handling•••..•••••.••.••••••••••••••••.••••••••••••• 30 


Saving the Status of the Interrupted Program••••••••••••••••••••• 30 

Determining Whether the Disabled SVC Routine is in Real 

Storage. . . . . . . . . . . . . . . • • • . . . . . . . • • . . . . . . • . . • . • . . . • • . • . . . . • . • . . • .. 31 

Enabling and Disabling Interruptions ••••••••••••••••••••••••••••• 31 

Minor Functions of SVC Interruption Handling••••••••••••••••••••• 31 


Timer/External Interruption Handling••••••••••••••••••••••••••••••••• 32 

Program Interruption Handling•••••••••••••••••••••••••••••••••••••••• 32 


Processing for Particular Program Interruptions •••••••••••••••••••• 33 

Translation Specification Exceptions ••••••••••••••••••••••••••••• 33 

Recursion. . • .. . . . . . . . . . . . . . . . . . . . • . . . .. . . . . . . . . . . • . . . . . . . . . . . . . . . .. 33 

Event Recording •.•••••••••••••••••••••••••••••••••••••••••••••••• 33 

Page Translation Exceptions •••••••••••••••••••••••••••••••••••••• 33 

Segment Translation Exceptions••••••••••••••••••••••••••••••••••• 34 

Program Interruptions from SSM (Set System Mask) Instructions •••• 34 

Program-check Interruptions •••••••••••••••.••••••••.••••••••••••• 34 


Tracing EVents.......................................................... 35 

Method of Operation Diagrams for Interruption Supervision •••••••••••• 37 


section 2: Interruption Supervision 27 



J 




HOW INTERRUPTIONS ARE HANDLED 


Any interruption, except a rrachine-check 
interruption, causes CPU control to be 
taken from the executing program and given 
to an interruption-handling routine of the 
supervisor. There are four interruption­
handling routines in the supervisor, one 
for each type of interruption except the 
machine check. (A machine check causes 
control to be passed directly to the 
Machine Check Handler, a standard recovery 
program of the operating system.) 

The five types of interruptions are: 

• 	 InFut/output interruptions, which occur 
when an I/O operation terminates, when 
an I/O error occurs, or an I/O device 
is made ready. 

• 	 SVC interruptions, which occur when an 
SVC instruction is executed. 

• 	 External/timer interruptions, which 
occur when the interrupt key is pressed 
on the system operator's console, or a 
time interval expires. 

• 	 Program interruptions, which occur when 
a program attempts an invalid operation 
(for example, execution of a privileged 
instruction by a program in problem 
state), when a data error is detected 
(for example, overflow), or when an 
address translation exception, enable/ 
disable interruption, or event­
monitoring interruption occurs. 

• 	 Machine-check interruptions, which 
occur when the CPU detects a hardware 
malfunction. 

An interruption causes the current PSW 
to be saved as the old PSW, and the new PSW 
to be executed. The new PSW causes control 
to be passed to the appropriate 
interruption-handling routine. 

In most cases, the interruption handler 
does not do the detailed processing itselfi 
instead, it analyzes the interruption and 
routes control to an interruption proces­
sing routine. 

For input/output interruptions, the 
interruption handler branches to the Input/ 
output Supervisor which performs input/ 
output services and handles input/output 
errors. 

For SVC interruptions, the interruption 
handler determines which SVC service is 
required, causes the SVC routine to be 

trought into real storage (if necessary), 
and passes control to it. 

For external/timer interruptions, the 
interruption handler determines the cause 
of the interruption and branches either to 
a tiIl'er service routine or to an external 
service routine. 

For program interruptions, the interrup­
tion handler determines the cause of the 
interruption and does one or more of the 
following: 

• 	 Branches to the DSS Program Interrup­
tion Handler if DSS (the dynamic sup­
port system> is active (see the OS/VS 
Dynamic Support System Logic manual for 
Ir,ore information on CSS operations). 

• 	 Branches to the paging supervisor for 
processing of address translation 
exceptions. 

• 	 Eranches to a user error-handling 

routine. 


• 	 Branches to the generalized trace faci­
lity to record the event. 

• 	 Enatles or disables interruptions. 

• 	 Terminates the task in which the inter­
ruption occurred. 

The interruption handlers are disabled 
for all interruptions except machine checks 
so that they will not lose control tefore 
they have saved critical information atout 
the interrupted program. This information 
consists of the register contents and the 
PSW information necessary to return control 
to the interrupted program after the inter­
ruption has teen processed. 

This section contains descriptions of 
I/O, SVC, external/timer, and program 
interruption handling. Machine-check 
handling is not described in this manual. 
For a description of machine-check handl­
ing, see the OS/VS Recovery Management Sup­
port Logic manual. 

INPUT/OUTPUT INTERRUPTIONBANDLING 

(See Diagram 2.1) 

When an input/output interruption 
occurs, the I/O FLIH (Input/Output First ­
Level Interruption Handler) is entered 

Section 2: Interruption Supervision 29 



automatically as the result of the loading 
of the I/O new PSW. 

The I/O FLIH branches to the input/ 
output supervisor and, if necessary, the 
Page I/O Post routine. The input/output 
supervisor performs all input/output ser­
vices and error handling for I/O interrup­
tions while the Page I/O Post routine notes 
completion of paging I/O operations. 

The I/O FLIH branches to the system 
management facility's Wait-time Collection 
routine if the system was in wait state at 
the time of the interruption. The I/O FLIH 
also interfaces with the system Trace rou­
tine to have the interruption recorded. 

The I/O FLIH returns to either the 
interrupted program or the dispatcher 
depending on whether system services are 
required as a result of the I/O 
interruption. 

SVC INTERRUPTION HANDLING 

(See Diagrams 2.2 and 2.3) 

When a system or user program executes a 
macro instruction, the last machine 
instruction of the resulting macro­
expansion is often an SVC instruction. 
When executed, the SVC instruction causes 
an SVC interruption. The part of the 
supervisor that receives immediate control 
is called the SVC FLIH (SVC First-Level 
Interruption Handler). 

0 CD 

Action by the SVC First-Level 

Machine Action 
Interruption Handler 

General Registers

\ ~:';"",,,O" Register contents 
for the 
interruptedCurrent PSW 
program

I I 
IEASCSAvJt

SVC Old 

P9N 
 ~ 
I J 

SVC Register Save 
Area in Lower Real 
Storage 

Saving the Status of the Interrupted 
Program 

The current PSW, containing the address ~ 
of the next executable instruction, is 
stored by the machine in location X'20' in 
lower real storage. The SVC FLIH saves the 
register contents and old PSW of the inter­
rupted routine to permit control to be 
returned to the routine at its next execut­
able instruction. The register contents 
are saved by the SVC FLIH in a special SVC 
save area in lower real storage, called 
IEASCSAV. Figure 2-1, Farts A and B show 
the saving of the PSW and the register con­
tents, respectively, by the machine and ty 
the SVC FLIH. 

The register contents and old PSW remain 
in lower real storage or are moved to other 
save areas, depending on the type of SVC 
routine to be executed. If a type-1 SVC 
routine is to te executed, the register 
contents and old PSW are left in lower real 
storage. If one of the other types of SVC 
routines is to be executed, the information 
is moved to other save areas. 

The reason for this is that a tYFe-1 SVC 
routine cannot issue an SVC instruction or 
a macro instruction that expands into an 
SVC instruction. In addition, during 
execution of type-1 SVC routines, interrup­
tions are disatled, ensuring that an SVC 
instruction will not be issued in another 
routine. consequently, there is no danger 
of a second entry to SVC processing during 
execution of a type-1 SVC routine and 
therefore no danger of having the informa­
tion for the current interruption overlaid. 

@ 
Action by the SVC Second-Level Interruption Handler 

Because non-type-l SVC routines can be interrupted, the SVC Second-Level 

Interruption Handler moves the SVC old P9N and the interrupted routine's 

register contents. 

IEASCSAV SVC Old PSW 

I I 
Interrupted 

Program's RB 


RBOP9N 
SVRB 

D 
~ 

IRegister Save Area I 

Figure 2-1. Actions taken by the SVC First-Level and Second-Level Interruption Handlers 
to save program status information. 

30 



However, any of the other types of SVC 
routines can be interrupted by an SVC 
interruption. This requires that the sta­
tus information for the current interrup­
tion be moved to new areas to prevent it 
from being lost. 

To determine the type of SVC routine 
that will be executed, the SVC FLIH 
examines the SVC table. There are two 
parts to this table, one containing entries 
for user-supplied SVC routines, the other 
containing entries for IBM-supplied SVC 
routines. The number and type of routines 
in the two parts depend on the particular 
system that the user specified at system 
generation. There is one entry in the SVC 
table for each SVc routine in the generated 
system. Each entry contains a code showing 
the svc type. 

If the SVC table indicates that a type-l 
routine is to be executed, the svc FLIH 
branches to the routine, and the status 
information for the current interruption is 
left in lower real storage. 

But, if the SVC routine is not type-l, 
and is interruptable, the svc FLIH branches 
to the svc SLIH (SVC Second-Level Interrup­
tion Handler) to create an SVRB (supervisor 
request block). The SVRB is used to hold 
the interrupted routine's register contents 
and return information for the SVC routine. 
The SVC SLIH moves the SVC old PSW, the ILC 
(instruction length code), and the inter­
ruption code to the interrupted routine's 
RE. The register contents are moved to the 
SVRB instead of the RB because the RB may 
lack a register save area. The SVRB is 
constructed by using the quickcell alloca­
tion teChnique described in "Section 6: 
Virtual Storage Supervision." 

The SVC SLIH also sets status bits in 
the SVRB. These bits indicate that the 
SVRE is a dynamic request block that can be 
freed by the supervisor's Exit routine and 
that no attention exits can be taken while 
the SVRB is active. The SVc SLIH then adds 
the SVRB to the head of the RB queue 
belonging to the interrupted routine's TeB. 
(For an explanation of the RB queue, see 
"Section 3: Task Supervision.") 

Determining Whether the Disabled SVC 
Routine is in Real Storage 

After the SVRB has been initialized and 
added to the RB queue, the SVC SLIH deter­
mines whether the SVc routine is to receive 
control disabled, and if so, whether it is 
in real storage. To do this, it tests the 
"type" bits in the SVC table entry passed 
by the SVC First-Level Interruption Handl­
er. Type-2 SVc routines are located in the 
nucleus and therefore are fixed in real 
storage. Type-3 and type-4 SVC routines 

that receive control disabled might not be 
in real storage, so the svc SLIH issues a 
Load Real Address (LRA) instruction and 
tests the condition code to determine 
whether the SVC routine is present. 

Enabling and Disabling Interruptions 

If the SVC routine is in real storage 
and is to receive control with interrup­
tions disabled, the SVC SLIH branches 
directly to it since the svc SLIH itself is 
already disabled. 

If the SVc routine is to receive control 
with interruptions enabled, the SVC SLIB 
branches to MODESET (a centralized facility 
to set the system mask -- see "Section 3: 
Task Supervision"). MODESET changes the 
system mask to enable interruptions as 
requested, and then returns control to the 
SVc SLIH. Upon return from MODESET, the 
SVC SLIH restores general registers 0, 1, 
13, and 15 from the SVRB register save area 
so that they contain the same values as 
~hen the SVC was issued, and then branches 
to the SVc routine. 

When a type-3 or type-4 SVc routine to 
be entered disabled is not in real storage, 
the SVC SLIH branches to MODESET to enable 
interruptions. While enabled, the SVc SLIH 
references the first instruction of the SVC 
routine, causing the SVC routine to be 
paged in by the paging supervisor. When 
the SVC routine has been paged in, the SVC 
SLIH issues a MOtESET SVC (SVC 107) to dis­
able interruptions. When control is 
returned frore MODESET, the SVC SLIH 
restores registers 0, 1, 13, and 15 from 
the SVRB general register save area so they 
will have the same values as when the SVc 
was issued, and branches to the SVC 
routine. 

~inor Functions of SVC Interruption 
Handling 

In addition to the major fUnctions 
already described, the SVC interruption 
handlers perform five minor functions: 

1. 	 They use the TESTAUTH routine to veri ­
fy that the issuer is authorized to 
use an SVc routine that requires 
authorization. (If the user is not 
authorized, the task issuing the SVC 
is scheduled for abnormal 
termination. ) 

2. 	 They check the validity of the SVc 

number. 


3. 	 They allow the interruption to be 

recorded. 


4. 	 They make available the addresses of 
three important control blocks (CVT, 

Section 2: Interruption Supervision 31 



TCB, and RB) for use by other supervi­
sor routines during later processing 
of the SVC interruption. 

5. 	 They pass the address of the appropri­
ate exit routine in the return regist ­
er so that the SVC routine, when com­
plete, can return control by means of 
a simple branch, without the need for 
tests. 

TlMER/EXTERNAL INTERRUPTION HANDLING 

(See Diagram 2.4.) 

The External FLIH (External First-Level 
Interruption Handler) receives control 
after an external interruption. It saves 
the contents of the general registers of 
the interrupted program in the current TCB. 
If the system wait TCB is the current TCB, 
the External FLIH passes control to the 
system management facility's Wait-Time 
Collection routine. This routine returns 
control to the External FLIH. 

The External FLIH saves the external old 
PSW and the interruption code in the cur­
rent RB. It then provides for tracing by
branching to CVTTRACE and by issuing a Mon­
itor Call instruction to have the external 
interruption recorded by the generalized 
trace facility. 

The External FLIH determines the cause 
of the interruption from the interruption 
code. It then passes control to the Timer 
Second-Level Interruption Handler if the 
interruption was caused by the clock com­
parator or CPU timer, or to the coItmunica­
tions task's External Interruption Handler 
if it is an operator key interruption. On 
return from the Timer SLIH or the communi­
cations task's External Interruption Handl­
er, the External FLIH stores the time-of­
day (TOO) clock value into a special save 
area within the system management facili ­
ty's EXCP Counter routine. 

The TOO clock value must be stored as a 
precaution for the case in which the system
wait TCB is the current TCB, and a clock 
comparator or CPU timer interruption occurs 
but no task switch occurs. In this case, 
if the TOO clock value in the EXCP Counter 
routine had not been reset by the External 
FLIH, the calculated wait time would 
include execution time for the external 
interruption handlers. 

Only clock comparator, CPU timer, and 
interrupt key interruptions are processed. 
All other external interruptions are 
ignored. 

The External FLIH then branches to the 
dispatcher, which determines the next task 
to receive control. 

PROGRA~ INTERRUPTION HANDLING 

(See Diagra.ms 2.5 2.9) 

When a program interruption occurs, an 
interruption code describing the cause of 
the interruption is stored at locaticn 
X'SE'. There are four types of program 
interruptions; program-check interruFtions, 
address translation exceptions, enable/ 
disable interruptions, and event monitoring 
interruptions. The following are brief 
descriptions of these types of program 
interruptions. 

• 	 Program-check interruptions: These 
interruptions (indicated by prcgram 
interruption codes X'Ol' through X'OF') 
are caused by invalid actions such as 
using incorrect addresses, issuing 
invalid operation codes, or issuing 
privileged instructions. Additional 
causes of program-check interruptions 
are fixed-point overflow, decimal over­
flow, exponent underflow, and loss of 
significance. These interruptions can 
l;e masked out. 

• 	 Address translation exceptions: These 
interruptions (indicated by interrup­
tion codes X'lO' through X'12') are 
caused by a segment translation excep­
tion, a page translation exception 
(also called a missing page interrup­
tion), or a translation specification 
exception. A page translation excep­
tion (page fault) is the most frequent 
cne and generally occurs when a program 
tries to access a virtual storage 
address in a page that has not yet been 
brought into real storage. 

• 	 Enable/disable interruptions: These 
interruptions (indicated by interrup­
tion code X'13') are caused by a pro­
gram's issuing a Set System Mask (SSM) 
instruction to alter the interruption 
state of the system. 

• 	 Event monitoring interruptions: These 
interruptions (indicated by interrup­
tion codes X'40' and X'SO') are caused 
by the PER (program event recording) 
feature or by a Monitor Call (MC) 
instruction. 

Interruptions other than the PER inter­
ruption are mutually exclusive. Multiple 
interruption conditions can occur concur­
rently since the PER interruption can occur 
simultaneously with each of the other kinds 
of program interruption. 

32 

http:Diagra.ms


L 
The Program Interruption Handler is 

given control automatically after any pro­
gram interruption. Upon entry, all inter­
ruptions, except machine checks. are dis­
abled and dynamic address translation is 
inhibited to prevent translaticn specifica­
tion recursions. After saving the status 
information for the interrupted program, 
the Program Interruption Handler determines 
the cause of the interruption by examining 
the interruption code at location X'SE'. 
It then processes the interruption, handl­
ing translation specification exceptions 
first, invalid recursions next, and then 
page transalation exceptions and the other 
causes of program interruptions other than 
translation specification exceptions, the 
Program Interruption Handler enables itself 
to receive dynamic address translation 
exceptions. 

PROCESSING FOR PARTICULAR PROGRAM 
INTERRUPTIONS 

The following subsections provide more 
detailed information on particular types of 
program interruptions and how they are 
processed. 

Translation Specification Exceptions 

(See Diagram 2.5) 

A translation specification exception is 
an interruption that occurs when a page 
table entry, segment table entry, or the 
control register pointing to the segment 
table contains information in an invalid 
format. Translation specification excep­
tions are indicated by program interruption 
code X'12'. 

For a translation specification inter­
ruption, the Program Interruption Handler 
branches to the paging supervisor's error 
routine (IEAPSER). If the interruption 
occurred in a system module, indicated by 
protection key 0, the Program Interruption 
Handler branches to the paging supervisor 
with register 0 set to indicate major 
trouble. When major trouble is indicated, 
the paging supervisor puts the system in a 
wait state. If the trouble is minor, the 
paging supervisor error routine calls 
ABTERM to schedule termination of the spe­
cified task and returns control to the Pro­
gram Interruption Handler, which records 
the interruption via the Trace routine and 
the generalized trace facility. The Pro­
gram Interruption Handler then exits to the 
dispatcher to allow the task to be abnorm­
ally terminated. 

Recursion 

(See Diagram 2.5) 

Recursion is not a specific type of 
interruption, it is an unanticipated reen­
trance into the Program Interruption Handl­
er that occurs when the Program Interrup­
tion Handler or one of its extensions 
causes another program interruption. 

A valid recursion can occur in the resi­
dent GTF (generalized trace facility) 
extension of the Program Interruption 
Handler and is resolved by the GTF exten­
sion, whiCh reestatlishes the original pro­
gram interruption conditions. The GTF 
extension resaves the low storage address 
save area, control registers, old PSW, and 
interruption code, and uses these to rees­
tablish the information required by the 
program Interruption Handler when a valid 
recursion occurs. 

Recursions that occur when the GTF 
extension is not executing are treated as 
errors, and the task that was executing is 
abnormally terminated. 

Event Recording 

(See Diagram 2.5) 

EVent recording occurs as a result of a 
PER or MC (Monitor Call) program interrup­
tion, or when the Program Interruption 
Handler processes any interruption for 
which the tracing option is in effect. 

For MC program interruptions, the GTF 
resident routine is used. This routine 
returns control directly to the interrupted 
program. No event recording is performed 
for invalid recursions. 

PER interruptions are serviced by the 
DSS (dynamic support system) Program Inter­
ruption Handler and its related routines 
(see the OS/VS Dynamic Support System Logic 
rranual) • 

For interruptions consisting o( only MC 
or PER, the supervisor's Program Interrup­
tion Handler exits to the interrupted pro­
gram via LPSW, unless a task switch has 
teen established by GTF, in which case GTF 
passes control to the dispatcher. 

Page Translation Exceptions 

(See Diagrams 2.5 and 2.7) 

A page translation exception (also 
called a missing page interruption) occurs 
when a virtual address cannot be translated 
because the invalid bit in the page tatle 
entry for the address is set. Page trans­
lation exceptions (page faults) are signi­
fied by program interruption code X'11'. A 
page fault can also be caused by referenc­
ing an invalid page; this condition is 

Section 2: Interruption supervision 33 



treated as a protection exception program 
check (see Diagrams 2.5 and 2.8). 

When a page fault occurs in the input/ 
output supervisor while the wIOS-in­
processw switch is set, the current task is 
abnormally terminated via the ABTERM Prolo­
gue routine. If a page fault occurs in a 
disabled routine and the system lock is on, 
the task is also scheduled for abnormal 
termination by the ABTERM Prologue routine. 
If the interruption occurs in a disabled 
routine and the system lock is not on, the 
Program Interruption Handler turns it on 
(until the referenced page is available) to 
prohibit the execution of tasks that run 
with interruptions disabled. Only tasks 
that run with interruptions enabled are 
dispatched until the system lock is turned 
off by the dispatcher. 

When a page fault occurs in a user task 
and the user has a valid SPIE exit routine, 
the exit routine is dispatched. Otherwise, 
to process a page fault, the Program Inter­
ruption Handler branches to the paging 
supervisor's Program-Check Interruption 
Extension (IEAPIX). The extension either 
reclaims the referenced page, assigns the 
page for the first time, or initiates a 
paging operation. The Program-Check Inter­
ruption Extension returns to the Program 
Interruption Handler indicating whether the 
page was reclaimed, assigned, or is to be 
paged in. The Program Interruption Handler 
exits directly to the task if the page was 
reclaimed or assigned, or to the dispatcher 
to perform a task switch. 

When an invalid page has been 
referenced, the prograro Interruption Handl­
er changes the interruption code to a pro­
tection exception and handles it as a norm­
al program-check interruption. 

Segment Translation Exceptions 

(See Diagrams 2.5 and 2.8) 

When a segment address cannot be trans­
lated by the hardware because the segment
table address is invalid, or the Wsegment­
invalidw bit in the segment table entry is 
set, a segment translation exception 
occurs. Segment translation exceptions are 
signified by program interruption code 
X'lO'. 

When a segment translation exception 
occurs, the Program Interruption Handler 
treats it the same as it treats a page 
translation exception when an invalid page 
has been referenced: the Program Interrup­
tion Handler changes the interruption code 
to a protection exception and handles it as 
a normal program-check interruption. 

Proqram Interruptions from SSM (Set System 
~ask) Instructions 

(See Diagrams 2.5 and 2.6) ~ 
A centralized facility, MODESET, is used 

to set the system mask to enable or disable 
interruptions. Any attempt to change the 
system mask with an SSM instruction causes 
a program interruption (interrupticn code 
X'13') • 

To prevent a recursion that would result 
from a page translation interruption, the 
Frogram Interruption Handler issues a Load 
Real Address instruction to determine if 
the SSM operand is in real storage. If the 
operand is not in real storage, the inter­
ruption handler uses the paging supervi­
sor's Program-check Interruption Extension 
(IEAPIXi) to obtain the page containing the 
operand. When the SSM operand is in real 
storage, the state of the supervisor lock 
determines if and when the Program Inter­
ruption Handler must set the system mask as 
indicated by the SSM operand. 

If the state indicated by the SSM 
instruction is the same as the state of the 
requester, the interruption is treated as a 
NOP and control is returned to the inter­
rUpted routine by using an LPSW 
instruction. 

If the supervisor lock is set and the J 
issuer of the SSM instruction is the paging .• 
supervisor, the Program Interruption Handl­
er sets the system mask as indicated by the 
SSM operand. If the supervisor lock is set 
and the issuer of the SSM instruction is 
not the paging supervisor, the Program 
Interruption Handler stacks the SSM 
instruction, (decrements the address in the 
old PSW ty four bytes and stores it in the 
RB, saves registers in the TCB, and flags 
the RB nondispatchable until the supervisor 
lock is off). It indicates a task switch 
if necessary (if IEATCBP=IEATCBP+4) by set­
ting IEATCBP to zero. If a task switch has 
been scheduled, the Program Interruption 
Handler exits to the dispatcher; otherwise, 
it returns control to the user via an LPSW. 

Program-Check Interruptions 

(See Diagrams 2.5 and 2.8) 

The Program Interruption Handler 
receives control automatically after any 
program-check interruption. It tests the 
old PSW to determine whether the interrup­
tion occurred in the supervisor or in user 
code. 

If the interruption occurred in a rou­
tine in the supervisor state, control is. .\.. 
passed to the ABTERM Prologue routine which ~ 

34 



schedules abnormal termination of the task 
that was interrupted. 

If the interruption occurred in user 
code, the Program Interruption Handler 
tests the TCB for a PIE (program interrup­
tion element) address. A PIE is a control 
block associated with a user's error­
handling routine. If the user anticipates 
a program-check interruption and wishes to 
perform his own error handling, he issues a 
SPIE (set program interruption element) 
macro instruction. In response to the SPIE 
macro instruction, the SPIE service routine 
constructs a PIE and inserts its address in 
the TCB. 

If the supervisor finds no PIE address 
in the TCB (indicating that the user did 
not specify a routine to process program 
interruptions), the ABTERM Prologue routine 
is entered. If a PIE address is found, the 
Program Interruption Handler tests to 
determine whether the PIE is in real 
storage. If a PIE exists and is not in 
real storage, the Program Interruption 
Handler uses the Program-check Interruption 
Extension of the paging supervisor to page 
in the control block. 

The Program Interruption Handler then 
tests the -in-use- bit in the PIE. This 
bit is set whenever control is given to the 
user's error-handling routine. If the bit 
is on, it means that the current program­
check interruption occurred while the error 
routine was processing a previous program­
check interruption, and the task must be 
terminated. If the -in-use- bit is zero, 
the Program Interruption Handler determines 
whether the PICA is in real storage and if 
not, uses the paging supervisor's program­
Check Interruption Extension to page in the 
control block. Then the Program Interrup­
tion Handler determines whether the kind of 
program interruption that occurred was spe­
cified in the SPIE macro instruction. If 
it was, control is passed to the user's 
error-handling routine. If it was not, 
control is passed to the ABTERM Prologue 
routine which, with the ABTERM routine, 
schedules the abnormal termination of the 
task. 

When a user error-handling routine com­
pletes its processing, the supervisor Exit 

routine is entered, and the interrupted 
program regains control via the dispatcher. 

TRACING EVENTS 

(See Diagrams 2.10 and 2.11) 

The Trace function records up to 32 
bytes of information, in the form cf a 
Trace tatle entry, each time it is called. 
The information it records depends upon 
which of the six entry points is used. For 
each entry point, Trace processing is tai ­
lored to a specific caller as follows: 

Caller 	 Trace Information Recorded 
Dispatcher 	 PSW to be dispatched; regi­

sters 0, 1, and 15 of the 
task to be dispatched; TCB 
to be dispatched, time 
stamp. 

External FLIH 	 Old psw; registers 0, 1, 
and 15; timer queue element 
address (if a timer inter­
ruption occurred); time 
stamp. 

I/O FLIH 	 Old PSW; CSW; time stamp. 

lOS Start I/O 	 Condition code; device 
address; CAW; CSW; TCB 
associated with I/O; time 
stamp. 

Program FLIH 	 Old psw; registers 0, 1, 
and 15; page or segment 
exception address; current 
TCB; time stamp. 

SVC FLIH 	 Old psw; registers 0, 1, 
and 15; current TCB; time 
stamp. 

The tracing option is selected at nuc­
leus initialization time. If the tracing 
option is selected (that is, the numter of 
Trace entries > 0) the nucleus initializa­
tion program sets CVT~CE = BR 10; other­
wise, CVTTRACE is set = BR 11 (to return 
directly to the caller, bypassing the trac­
ing function). 

A dump of the trace table can be 
obtained via SVC DUMP or ABDUMP. 

section 2: Interruption Supervision 35 



J 


J 




(
r r 

• Diagram 2.0 

Interruption Supervision 
Visual Table of Contents 

Interruption 
Supervision 

Tracing 
Interruptions 

I 
I I J J I I 

I/O Interruption Type-I SVC Handling External Program Tracing Supervisor Tracing Start 
Handling Interruption Types 2, 3, and Interruption Interruption Interruptions I/O Operations 

Handling 4SVC Hand1 ing Handling 

2.1 2.2 Interruptions 2.3 2.4 2.5 2.10 2.11 

I 
I ,- ­

SSM Interruption Page Fault Program-Check PIPIX Routine 
Processing Processing Interl uption 

Hand ling 

2.6 
'-- ­ --~ 2.8 2.9 

en 
(1) 

~ .... 
o 
::l 

IV 

1-1 

~ 
(1) 
11 a 
'tl 
M­.... 
o 
::l 

.g en 

(1) 
11 
<.... 
en.... 
o 
::l 

w ..... 



--
CXI 
IN 	 Diagram 2.1 

I/O Interruption Handling 

Input Processing 	 Output
I/O Interruption 

DSSIEAQIOOOControl Register 1 	 I 
Dynamic support systemI-Address of segment tobl e i4-- -, 	 I 

I 1 Enter 055 (dynamic support system), if 

DSS is active. Issue perfonnance hook. GTF I 


IIORGSW 
 I1+-- ---, I 

I Genecollzed trace facility I J Contml Reg"ter 1
I L_ 2 Set segment toble origin register if not .... 	 Address of 5 stem 

segmen a eICVTPTR 1+- 1 	 ...""""..,;: :.r..""""""""~l'~I Ialready,et. 	 t t bi-+--­ ,Ilocation X'IO' 

I 	 ~"""""~ :.r..""""""""~ :.r..~ ~ 10RGSW ~'0 
11/0 old PSW 	 1, • ~ RB for Interrupted Program 

location X'38' ~--- If 10RGSW j, set 5 ~,--- 3 
~,,:;:cT<" 

11/0 new PSW I 	 I ~ 	 ~~I Ilocation X'78' OthelWise, set IORGSW and save statusI 	 I ,:,H"I , of interrupted program. 

I I IEASAVIf TeB is the system woit time reB 	 SMF Wait Time Routine ~J._S -,---- 4 	 II 
Updates the system 	 .>I TeB generalI I wait time. 	 registers----1 L ___ 

5 Record the interruption if tracing option
I was selected during nuclues 

_...1 initial izatian, CVTTRACE 

om I/O 	 Trace Routine• 
L. 
6 Process I/O request. 	 TRIO 


----.., 	 2.10 
DISMISS 

,I 	
...I 

I/O Superv isor 

---, 
1 l_ Provides I/O services ---- 7 If a paging operation caused the and error handling,----I interruption, branch to the paging 
I supervisor to post completion of the 

IEAODSOI paging I/O operation. Paging Supervisor 

+1 IAsynchronous exit flags 1+-- ---j 
I 

IEAPIOP 
I, 5.28 

I 
Reset entry switch.8I 	 ..."'~~ 

L 	 __ ..----- Exit to dispatcher if task switch or9 	 Dispatcher Control Register I 
asynchronous exit has been scheduled. 

IEAODS ISame as at entry I 
3.17 

11/0 Old PSW 

location X'38'U ... 	
I 

10 	Restore I/O old P'YN I registers 0-15, To interrupted program TCB 

and control register 1. via LPSW 	 [;i~.l\lij;'.·.....•..•••···· ..• 

TCBGRS 

!1"ihi;QnM1G'/\;" 

~ l 	 ~ 




(
r 	 r 

Diagram 2.1 I/O Interruption Handling I!~odule IEAVNVOOl 
r------------------------------------------------------------T-------~--------l 

1 IROUTINE 1 1 

1 NOTES 1NAME 1LABEL 1 

~------------------------------------------------------------t--------t--------~

3 	 When the I/O First-Level Interruption Handler (I/O IIEAQIOOO 1 1 

FLIHl is entered initially, it sets the I/O criginal 1 1 1 

entry switch (iORGSWl. This switch permits the I/O FLIHI 1 1 

to distinguish between an initial entry for an I/O 1 1 1 

operation (when register contents and status information I I I 

must be saved) and recursions like those resulting froll! I I I 

retries of the 1/0 o.eration due to errors (.hen regist-I 1 1 

er contents have already been savedl. 1 1 1 


1 1 1 

4 	 IlEAQWAIT 1 1 


1 1 1 

5 	 The I/O FLIH branches to CVTTRACE which contains either IIEAQIOOOI NIOS 


a BR 11 or a branch instruction to the Trace routine IIEAQTRCE 1TRIO 

(if the tracin9 option was selected). Centrel is re­ 1 1 

turnEd t.c the I/O FLIH. 
 1 1 


1 1 

6 	 IlEACIOOOI 


1DISMISS 1 

1 1 


7 	 IIEAPIOP 1 

1 1 


8 	 IIEAQIOOOIOFFIOSW 

1 1 


A task switch is pending if IEATCBP / IEATC.BP+ 4. An IIEAQIOOOIIODISP 

asynchronous exit _-routine is pending if 1 1 

IEAODS01+1 ~ X'FO'. 1 1 


1 1 


9 


110 The I'SW saved in the to. RB (RBOPSWl of the cnrcnt TCB liEAQIOOOI 
1 (IEATCBP+4J is restored to the I/O old PSW location, 1 1 

1 control req1ster 1 is set to the aFproFriate segrrent 1 1 

1 table, general registers are restored, an MC instruction 1 1 

I is issueJ via a HOCK lraCrQ instruction, and control i!..,> I I 

1 Fassed to the interrupted program via LPSW. 1 1 1 


~ ~L_____________________________________________________________ ________ ________J 

en 
(1) 
n 
rt.... 
g 
I\) 

H 
~ 

~ 

a I'i 

~ .... 
o 
~ 

en 
tr!= 
(1) 

~ .... 
en .... 
g 
IN 
IQ 

http:IEATC.BP


~ 	 Diagram 2.2 
o 	 Type-1 SVC Interruption Handling 

Input Processing 	 Output.... 
SVC 

Interruption 
 IEAQSCOO 

Registers 0-15 	 ..... 
Enter DSS if DSS is active. 	 DSS 

Contents same as when 

the interruption occurred. 


I system ~';";:_i;; ~ 
1---- 2 Set segment toble origin register and 
save the status of the interrupted task. 

--"I 	

~"_k --" r'·~···'.·~.! . . ".'.I 	 .1I TCBGRS


Isvc;;;d psw j4- ----I
I 

3 Record the interruption if the trace C~:::~~===lF~~~=~I' II . ........ 

option was selected.location X'20' 	 I 

I --"0..1 CVTTRACE ..... '.. ...... ..- i R~B 
ITCB 	

Trace Routine I RBOPSW 


TRSVC I
~~C'W'd __ -1 
Record the 
interruption. 

r-- ­ 4 Request GTF to record the interruption. 2.10 
5:C'W+TL~ 

I 	

L____ _ 
ABTERM only 

I 	 ,-------- ­Monitor Call -.to-	 i Regl,te, I --,I program Program FLiH 
I interruption I IE,,", code X'047' I : 

ItAuPKOOi 2.5 i Reg;,te, 13 I 
IsVC interruption code t4-­

location X'8A' I 5 If the SVC number is not in the ... 	 I I Add,ess of IEAOABOI I I
SVCTABLE I SVC table 	 ABTERM 

J 	 L _________JContains addresses of IEAOABOI.....user-supplied and 
8.11 Dispatcher onlyIBM-suppl;ed SVC 1----------,f<?utines ---,1-___ I 	 .......
6 	 Test authorization for this SVC routine. TESTAUTH : IIEATCBI'cO (ta,k ,witch) I 1 

If invalid, terminate the task. L _________ J
IEAVTEST 

3.20 Register 3 

[ Add-ress of CVTr-- ­ 7 	 Determine whether the SVC request can 

be processed now, and whether an
I 	 Register 4 
SVRB must be constructed for it. Take

I IAddr~s of-~r~nt TCBaction as follows: 

~ 
Register 5I 

I must be deferred, branch to the ..... IAddress of-~~nt-Rs~ 
dispatcher. Dispatcher 

7 A. If execution of the SVC routine 

---I 
I 	 IEAODS i ~I;;:-'~-- ---i 
I 3.17

---I 	 I IAddress of SVC entry I I SVC 
SLiH 

7 B. If no SVRB i5 needed, branch to I Reg;,t"' 7 I only 

-r 
I 	 ___.111 ~o~;in:-I svc I IAdd,ess of IEASCSAV I 

I 	 I I 

the SVC routine. 	 1 

I 	 II 	 Processes the 5VC I Regl,te, 12 II request.
J i IAdd,essofIEAQTROO 	 I I1.2

7 C. If an SVRB must be constructed, L _________ --1 
branch to the SVC SllH. 	 SVC SLiH Register 14 

IEAQTROO Address of Type-lI2.3 	 Exit routine 

Registers 0, 1, 13, 
and 15 

I{Unchanged)--~ 

L ~/ 	 l" 




r ( r 

Diagram 2.2 Type-l SVC Interrupticn Handling (Module IEAV~VOO) 
r------------------------------------------------------------T--------T--------, r----T-------------T-------------T-----------T-------------T-------------------l 
I IROU'IINE I I I Isvc Issu ed I I I I 

I NOTES INAME ILAEEL I I Iby Paging I I I I 

~------------------------------------------------------------+--------+--------i I ISupervisor? I I I I 


1 The segment table register is set to the address of the IIEAQSCOOI I I I (CVTP3IC=1 I I I I 

system segment table if it is not already set. I I I I lor IEATCB+4=@ I IInterruptions I I 


I I I ISupervisor IPaging Sup. I IEnatled I I 

3 
 The SVC First-Level Interruption Handler (SVC FLIH) IIEAQTRCEITRSVC I ILock Set? ITCB) IType-l SVC?lin SVC? IAction Taken I 


branches to CVTTRACE which contains either a BR 11 Stepl (CVTSYSLK=FF) I (CVTPGSUP) I (IGCTYPE=O) I (IGCABLE=l) I loy SVC FLIH ____ I 

(return) or a BR 10 to TRSVC (if the traoe opticn was I I I 7A I yes I no I I no IBacks up PS<i in I 

selected) . Control is returned to the SVC FLIH. I I I I I I I IRB so the SVC I 


I I I I I I I I instruction will I 

4 A Monitor Call instruction is issued (via the HOCK macro I I I I I I I Ireexecute when I 


instruction) for the SVC interruption class. If event I I I I I I I Ithe supervisor I 

monitoring is in effect for the class, a prograw inter- I I I I I I I Ilock is reset, I 

ruption results. (See Diagram 2.5.) I I I I I I I land branches to I 


I I I I I I I Ithe dispatcher. I 

5 


I I I 


The SVC FLIH compares the SVC number (in the SVC I IEAQSCOOI IGCERRORI ~----+-------------+-------------+-----------+-------------+-------------------1 

interruption code) with the SVC table to see if the I I I I 7B I no I I yes I IBranches to I 

number is valid for this systeIte When an SVC number is I I I I ~-------------+-------------+-----------+-------------iType-1 SVC I 

less than the lowest user SVC number in the system or I I I I I yes I yes I yes I Iroutine. I 

higher than the highest IBM SVC number, the SVC FLIH I I I ~----+-------------+-------------+-----------+-------------+-------------------1 

branches to ABTERM to schedule abnormal termination of I 7C I no I I no I IBranches to svc I 

the task. I I I I r------------+-------------+-----------+-------------iSLIH to con- I 


I I I I I yes I yes I no I Istruct an SVRB I 

6 The SVC FLIH inspects the fUnction code in the APF IIEAVTESTI I I ~-------------+-------------+-----------+-------------iand to start the I 


I yes _____________ ___________ I ___________________ I 


I I I 


table. If zero, processing continues at step 7. Other-I I I I _____________ I I no _____________yes ISVC routine. J
L____~ ~ ~ ~ ~ 

wise, the SVC FLIH checks whether the current task is inl I 

supervisor state or key o. If it is, Frocessing COD- I I 

tinues at Step 7. If it is not, the SVC FLIH branches I I 

to the task supervision TESTAUTH routine to deterwine I I 

whether the SVC issuer is authorized for the requested I I 

functions. If TESTAUTH determines that the SVC issuer I I 

is not authorized for that SVC, the SVC FLIH branches tol I 

AHTERM to schedule abnormal terwination of the task. Ifl I 

the SVC issuer is properly authorized, processing con- I I 

tinues at Step 7. I I 


I I

7 The SVC FLIH checks control block fields to deterwine IIEAQSCOOI 

its next action, as shown in the following table: I I 

_______________________________________________________ _____i _______-i________ 

C/l
m 
~ .... 
o 
tl 

'" 
H 

~ 
m 

a 11 


"0 

rt .... 
o 
tl 

C/l

t5 
~ 
<.... 
Ul .... 
o 
tl 

~ 
~ 



-= 
'" 

Input 
Register 3 

~;;ofCVT 

Register 4 

Address of current reB 

Register 5 

Address of top RB of TCB 

Register 6 

Address of SVC entry 

Register 7 

Address of I EASCSAV 

IEASCSAV 

SVC issuer's registers 

SVC old PSW 

location X'14' 

SVC 	interruption code 

location X'SA I 

SVC number 

location X'8S' 

From SVC FLiH 

to bu ild on SVRB 

}4­
r

_L 
I 

I+­
I 

-t ­
I 

14­
I 

-t ­
I 
I 
I 
I 
I 
I 
I 
I 

14- --j 
I 

re­ -1
I 

I 

I 


~ --' 

Processing 

•IEAQTROO 

1 Save SVC issuer's status. 

2 Obtain storage for an SVRB. 

3 

4 

5 

Initial ize SVRB fields and add SVRB 

to the RB queue. 

If the SVC routine is to be entered 
disabled and is not in real storage 

Change the system mask if the SVC 
routine is to run with interruptions 

enabled. 

6 Exit to sve routine. 

7 Enable interruptions. 

8 Page in the SVC routine. 

9 Disable interruptions 

QCBRANCH 

Get space for control 
block. 

6.13 

..,""""""',... ~""""""'" 

It 7 

MO DES ET 
IEAMODBR 

Enable interruptions. 

3.21 

... 

An sve Routine 

Process the SVC"1 .3 

MODESET 

IEAMODBR 

3.21 

IEAQPKOO 

Process page fault. 

2.5 

IEAQPKOO 

Process MODESET 
SVC interruption. 

2.5 

J .. 
An sve Routine 

Process the SVC. 

1.3 

Diagram 2.3 
Handling Types 2, 3, and 4 
SVC Interruptions 

Output 
RB 4 
Ii: /.'.;/ .... '.'\". 

RBOPSW 

lilt.' .c;:;;·.:\\;\;~,~1~ RBINLNTH 

V~ .' > .:,. 
RBINTCOD ~ 

v 111 .:\..... .1Il 

SVRB 4 

r .;To ''',5' 
RBSIZE 

..~ ;··;·· ...;:·'il:lt""", 
~ RBGRSAVE 

~.~:':f.: '~~:.f:.;;;::!:." 
~ RBSTAB
iii! '~r>':;jj;''''~: ,:.'I 	 ­RBLINK 

I 
,.!~iii! ....'.> 

TCB 

iii! .....\';! 

-


'",'. TCBRBP 

I.". 	
,;.~~ 1:111 

TCBATT 
til; ..' 'ii\ 

Register 3 

Address of (VTI 	 I 
Register 4 

Address of TeBI 	 I 
Register 5 

Address of SVRBI 	 I 
Register 14 

Return address SVC 3 I 	 I 
Registers 0, 1, 13, and 15 

Same as at interruptionI 	 I 

L 	 L L 



(r r 
Diagram 2.3 Handling Types 2, 3, and 4 SVC Interruptions (Module IEAVNVOO) 
r-------------------------------------------------------------T-------~--------, 

1 1ROUTINE 1 1 

1 NarES 1NAME 1LABEL 1 

~------------------------------------------------------------+--------+--------~

since the RB may not have a register save area, the SVC IIEAQTROO 

SLIH moves the registers of the interrupted program to 1 

the save area of the SVRB (REGRSAVE). Hereafter, if thel 

currently requested SVC routine causes a new SVC inter- I 
ruption, its register contents and old PSW will be 1 

stored in lower real storage without causing the origin-I 

al SVC issuer's status to he lest. The SVC SLIH sets 1 

RBSIZE to the number of douhlewords in the SVRB, and 1 

sets fields in RBSTAB and RBSTAB2 to indicate the RB is 1 

a dynawic SVRB (this tells the Exit routine that the 1 

SVRB can be freed). If the SVC is type-3 or type-4, thel 

SVC SLIH sets field RSTABl bit RETRSVRB. This bit is a 1 

signal to contents sUFervision routines that, for loads I 

of an SVC subsequent to the first load, contents sUFer- I 

vision rr.ust fill the RBCDE field with a pOinter to the 1 

CDE for that load. The RBCDE pOinter will be used by 1 

ABDUMP to determine the address and size of the SVC 1 

module to include in the printed dump. This indicator 1 

is necessary, since, for loads of all svc routines, the I 

SVC interruption handlers branch directly to the virtuall 

address of the SVC routine as indicated in the SVC table 1 

(no CDEs are examined and no RBCDE pointer is filled 1 

in). WithGut special processing, ABDUMP would be unable 1 

to distinguish between first and subsequent loads of an 1 

SVC routine and would in every case print out the first 1 

load. The SVC SLIH stores the SVRB address into TCBRBP 1 

and stores the previcus top RB address into RBLINK. 1 

Then, it sets TCEATT=X'20' to prevent attention exits 1 

f.rom being executed while the SVC routine is running. 1 

Then, the SVC SLIH sets the first word of the RB old PSW 

equal to the first word of the SVC new PSW tc indicate 

that the svc routine is key 0, supervisor state, with 
translation enabled. 

While enabled, the SVC SLIH refers to the first instruc­

tion of the SVC routine. This produces a program inter­ 1 

ruption that causes the SVC routine to be paged into 1 

real storage. The SVC SLIH regains control ~h€n the 1 

paging operation has been corrpleted. 1 


1 

If the SVC routine is to be entered disabled, the SVC 1 

SLIH issues a MODESE~ SVC. If the system lock was set 1 

while paging was in process, the MODESET SVC is deferred 1 1 

by the SVC FLIH. The page containing the SVC routine 1 1 

must be retested to ensure that it is still in real 1 
 1 

storage. If it is nct, the page-in function (Step 7) isl 1 

=~~~~~~~~_______________________________________________~1_______~1________ 

CJl 
/I) 
n 
cT .... 
o::s 
I'.) 

H 

~ 
/I) 

11 
a 
"Ci 
cT .... 
o::s 

.a CJl 

~ 
<:.... 
Cfl .... 
o::s 

~ 
w 

3 


8 


1 

1 

1 

19 

1 

1 

1 

1 


l1 ____ 



~ 	 Diagram 2.4 
~ External Interruption Handling 

Input Processing 	 Output 

ICVTPTR j4­
location X'10' 

(Interruption 	code ~ 
location X'96' 

External 	 StatusIEAQEXOO ,---------,Interrupt '" 1 	 .. IEnter DSS if DSS is active. DSS 

Registers 0-15 I 
Dynamic support system 

IEASAV I 
Contents same as when -- 2 	 Set segment table origin register and Ithe interruption occurred -r 	 -:J Registe, contents of 1 

save status of interrupted program. ·1 interllJpted programI 
If the current TeB is the system waitI I -- 3 	

TCBTCB IEAQWAIT

I External old PSW ]4- I I 
Updote system wait 


location X I 1S' 

II 

time. 	 I TCBGRSI I 	 I 
I ITCB 	 -- 4 Record the interruption, if the trace .. 	 I TCBRBPI I option was selected. 	 CVTTRACE I
IJ 

RB 

I Trace Routine 

"I 	 • , 
..J TREX 

2.10 

5 Request GTF to record the interruption. Monitor Call .......... CL _______-' Program FLiH 

__ -1 GTF records the 
interruption. Control Register 1 

2.5 
1 Add,ess of systemDetermine cause of the interruption:r- 6 

segment table 

J 	 1 
• 	 Clock comparator or CPU timer Timer SliH 

IEAOTIOO 
7.5 

• Operator key 	 Communications Task 

IEEBC1PE 

SYSWSAVE 

7 Store time-of-day value. 1 1 ... 
Dispatcher

'" 
I IEAODS 

3.171 

\.
'-' 	 '-' 




______ ________ 

(r 	 r 
Diagram 2.4 External Interruption Handling (Module IEAVNVOO)
r------------------------------------------------------------T--------T--------, 
I IROUTINE I I 
I NOTES INAME ILABEL I 
~------------------------------------------------------------+--------+--------i

2 	 The External First-Level Interruption Handler (External I I 
FLIH) first stores registers 14 and 15 in IEASAV; then I I 
it uses these registers to store registers 0 through 15 I I 
into the TCBGRS field of the TCB whose address is in I I 
IEATCBP+4. It then stores the external old PSW in the I I 
current RB (RBOPSW). 

3 

4 	 The External FLIH branches to CVTTRACE which contains 
either a BR 11 (return) or a BR 10 instruction to the 
Trace routine (if tracing was selected during NIP). 
Control is returned to the External FLIH. 

5 	 A Monitor Call (Me) instruction is issued via a BOOK 

I I 
I I 
IIEAQWAITI 
I I 
IIEAQEXOOIEXTRACE 
I IEAQTRCE ITREX 
I I 
I I 
I I 
IIEAPSER I 

macro instruction. The macro expansion generates the MCI I 
instruction with the class set to external interruption. I I 
This causes a program interruption if event monitoring 
for this class is in effect. (See Diagram 2.5.) 

The External FLIH branches to the Timer SLIH if the 
interruption code is X'1004' (clock comparator) or if 
x'1005' (CPU timer). It branches to the comnunications 
task external interruption handler if byte 135, bit I, 

6 

CIl 
m 
~ 
fJ· 
o::s 
I\J 

H 
::s 
rt 
m 
Ii 

Ii 

C 
'0 
rt 
fJ· 
o::s 
CIl .g 
m 
Ii 
<: 
fJ· 
en 
fJ· 
o::s 

U1 """ 

is one. Interruption codes other than these are 
ignored. 

7 	 The External FLIB stores the TOD clock value in 
SYSWSAVE so that the time required to process this 
interruption will not be charged to the WAIT TCB.L______________________________________________________

I I 
I I 
I I 
IIEAOTIOOI 

IIEEBC1PE I 

I I 
I I 
I I 
I I 
I I 
IIEAVEXOOI 
IIEAODS I 
I Ii ________J~ 



~ • Diagram 2.5 
0\ Program Interruption Handling 

Input .... Processing 	 Output 

o 
[Addr~~-~-- of (VT I 

location X'lO' 

IProgram old PSW 14­
location X'28' 

~newPSW -}e­
location X'68' 

Ilns.tructio~th-~-~-d-e 

location X'8D' 

IProgram interruption code ~ 
location X'8E' 

General registers at 
time of interruption 

[lliWPIRF 14­

CVT 

CVTSTATE 

- CVTSLID 

CVTSEIC 

Un,t;;;, 

CVTTRACE 

TeB for Second Exit Task 

PVT 

IpVTPGMCK ~ 


Program 

Interruption 

-----,
I 

-----, 1­
iTi 
I I I 
I I L_ 

I I
--""1 I 

I L __ 
I 
I 
I 
I 

-, I 

I I 

I--L---­

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 


-.J I r-L+ ___ 
I 
I 
I 
I 
I 

__ --.J 

IEAQPKOO 

1 Enter DSS if DSS is active. DSS Control Register 1 

Address of systemDynamic support 
segment tablesystem J 

2 	 Save general registers and set STOR to 
system segment toble. 

.5 
To Pog ing Supe rv isor 
Register 0 

3 	 If not a tronslotion specification O=min~~;---i~ 
exception, 

Register 1 

4 	 Abnormally terminate, or wait. IEAPSER TeB indicator 

Schedule abnormal 
terminotion or wait. 

5.54 Current PSW 

5 	 Enable dynamic odd,ess tmnslotion. .."",.,.-: ~""""""""""'~ Bit 5=1 ~ 
6 	 If the interruption is a Monitor Call or • _____'-_-I~--IEM;r; 

GTF recursion. IEAGTF 

Process Monitor Call To ABTERM 
or GTF recursion. Register 1 I i :>l ~X'F7'


7 If second exit tosk is in control or lJ .. 

recursion is invalid IEADABOI Register 4 


Abnormally terminate Address of TeB 
task. 

-'"8 Record the interruption. CVTTRACE 

To TRP! (Trace) 

Registers 0, l;---~~. ' " 
B.ll 

15 restored ITRPI 

Record program 
interruption. 

2.10 

9 	 If paging supervisor was interrupted PAGEHOOK 

Put system in 	 To Interrupted Task10 Determine which type of interruption disabled wait state 
occurred and proceed accordingly: General registers 

and PSW restored
• 	 Page fault 2.6, Step 1 

• 	 Set System Mask 2.7, Step 1 

• 	 Segment translation exception; 

change to program check interruption. 


• 	 Program check interruption 2.8, Step 1 

11 	 If task switch is indicated, save PSVV 
and registers. IEADDS 

Dispatch the next 
task. 

3.13 

12 Return to the interrupted task. I•••••••,~ To Interrupted Task 
• via LPSW 

~. l 	 ~ 




(
r r 

eDiagram 2.5 program Interruption Handling (Module IEAVNVOO) 
r------------------------------------------------------------y-------~--------~ 

I IRCUTINE I I 
r------------------------------------------------------------T-------~-------,
I IROUTINE I I 

I NOTES INAME ILABEL I I NOTES INAME ILABEL I 
~------------------------------------------------------------+--------+--------~1 The program new PSW contains the address of IEAQPKOO and I 

is set to supervisor state, protection key 0, with I/O I 
and external interruptions disabled, and dynamic address I 
translation inhibited. The general registers are the I 

~-----------------------------------------------------------.-+--------+--------~6 The Program FLIH branches to the GTF routine if the I IEAQPKOOIPIGTF 
program interruption code is X'40' (indicating a Monitor I I 
call interruption) or if the CVTSTATE flag is on (indi- I I 
eating GTF is in process for a previous Monitor Call). I I 

'} 

same as when the interruption occurred. 

The Program Interruption Handler (Program FLIH) is 

I 
I

IEAQPKOOI 

GTF returns to the Program FLIH only if the recursion 
cannot be handled. Normally, GTF returns directly to 
the interrupted routine or to the dispatcher. 

I 
I 
I 

I 
I 
I 

entered at IEAQPKOO whenever the CPU detects any of the 
hexadecimal interrupticn codes 0-18, 40, and 80. The 
processing performed is determined by these codes. The 
first function performed is saving the register contents 

I 
I 
I 
I 

7 If CVTSEIC = I, a second exit routine is in control. 
There can be no valid program interruptions ether than 
Me interruptions in second exit routines. The Program 

I I 
IIEAQPKOOIPIOAB 
IIEAQAB011 
I I 

in a special save area in lower real storage IEAPKSAV 
(no base register is needed, so no register contents arel 
destroyed). I 

I 
I 
I 

FLIH recursion flag tested is in IEAVPIRF. 
Prologue 1 routine is used to terminate the 
task. 

The ABTERM 
current 

I 
I 
I 

I 
I 
I 

13 The Program FLIH 
is correct. 

ensures that the CVT pointer at X'10' 
I I 
IIEAQPKOOI 
I I 

8 The Program FLIH restores registers 0, 
branches to CVTTRACE. 

1, and 15 and 
I I 
IIEAQPKOOI 
IIEAQTRCEITRPI 

4 The Program FLIH branches to the paging supervisor 
error routine with register 0, bits 14 and 15, set to 
zero if the error is minor (program old PSW p key 0) or 
with register 0, bits 14 and 15, set to zero if the 

I I 
IIEAQPKOOI 
IIEAPSER IPISPEC 
I 
I 

9 
I 

If PVTPGMCK=O the paging supervisor was in control when I 
the program interruption occurred. PFLIH exits to the I 
PAGEHOOK routine of the paging supervisor which puts the I 
system in a disabled wait state. I 

I 
I 
I 
I 
I 

error is major (indicating that the operating system wasl 
in control at the time of the failure). For both major I 
and minor errors, register I, bytes 3 and 4 = X'OOOl' tol 

I
10 Program interruption codes: X'OOll'=page fault; X'0013'I 

=SSM; X'0010'=segment translation exception (changed to I 

I 
I 
I 

indicate entry from the Program FLIH. For minor errors, I 
Program FLIH enables translation exceptions, and the I 
paging supervisor tries to recover. The Program FLIH I 
regains control only if the error is minor. For major I 
errors, the paging supErvisor places the system in a I 
disabled wait state. I

L____________________________________________________________~________L________J 

X'0004'=protection violation program check). 

11 A task switch is indicated when TCBABTRM is set or when 
the current TCB equals the new TCB (IEATCBF=IEATCBF+4). 
The Program FLIH saves registers in the TCB and the old 
PSW in the RB. 

12 The appropriate segment tabie address is placed in 
control register I, general registers are restored, and 
control is returned directly to the interrupted routine 

I I 
I I 
IIEAQPKOOIPIDPCH2 
I I 
I I 
I I 
I I 
IIEAQPKOO IPIRTRN1 
I I 
I I 

via LPSW of the program old PSW. I IL____________________________________________________________~________~________ 

C/) 
ro 
C'l 
rT.... 
o::s 
~ 

H 

~ 
ro 
11 a 
"0 
rT.... 
g 
C/) 

.g 
ro 
11 
<.... 
[II.... 
g 

""-.J 



~ 
co 

Input 

Program old 	PSW ~ 
location X128' 

r I~~uction length code rt­
location X'8D' 

Program interruption code I 
location XtBE' 

----, 
'-I 

I 
1-----­
I 


_-.J 


~;om Diagram 2.5 
ep 10 to process 

SSM interruptions p 
.... 

--, 
I 

I 


--I
L ___ _ 

......, 
I 
I 
I 
I

r"t-- ­
I I 

- -i I 
I I 

_......J I 
I 
L_ 

• Diagram 2.6 
SSM Interruption Processing 

rocessing 

! GTF 1 
Branch to GTF I if GTF is active. Generalized traceJ 

facility 

2 Locate the SSM mask. 

PIPIX 
3 Obtain page if SSM is not in real storage. Interface with 

paging supervisor. 

2.10 	 Output fcom Step 4. 

4 If the system mask can be changed ~"""""""''l'''''''''''''''''''''''~i~-.! Pcogcam old PSW 
, • 2.5, Step 12 	 location X'2B' 

Output from Step 6 

5 Stack the SSM instruction. 

i!!! location X'28' 
j! RB """"""""'...."""""""""",."'-11+1........•. J 


prog•...•r•.•m ......p.••.s......IV..• o..... 0...I.d 

I b? f:i!"'~~ Rj~ 
6 Force a task switch. 	 RBOPSW 

iI'. 	 I 
.-.."""""""'~~"""""""""l 

I IEATCBP 

••••••••••••••••~ 2.5, Step " ~"'{..! _=0__-" 

TCB 

rc:~:r;l; ::'StSlF::<;:-:' '1~~\,1' ::>1 

L 	 ( L· 



(
r 	 r 

Diagram 2.6 SSM Interruption Processing (Module IEAVNVOO) 
r------------------------------------------------------------T--------r--------, 
I IROUTINE I I 

I NOTES INAME ILAEEL I 

~------------------------------------------------------------+--------t--------~

1 	 A branch instruction is issued for the SSM class via a IIEAQPKOOIPICKSSM I 

HOOK macro instruction. If event monitoring for that I I I 

class is not in effect, the hocking routine returns. I I I 


I I I 

2 	 The Program FLIH obtains the address of the instruction I IEAQPKOOI PIFLSSMO 


that caused the interruption by backing up the next I I 

sequential instruction address (NSI) portion of the old I I 

PSW by the instruction length (ILC). It then adds the I I 

base (bits 0-3 of byte 2) and displacement specified in I 

the instruction. (If the base register is zero, the I 
base value is zero. Otherwise, the register contents I 

are obtained from IEAPKSAV.) The Program FLIH then I 

tests the operation code to determine whether the inter-I 


an EXECUTE instruction, the base and displacement sum isl 

the address of the SSM instruction, and the above Froce-I 


rUFtion was caused by direct issuance of the SSM I 

instruction, or by the EXECUTE instruction. If this is I 


dure is repeated to obtain the mask. When the SSM I 

instruction is found, the Progran. FLIH adds the index I 

register value to the base/displacement sum to obtain I 

the address of the mask. I 


I

3 	 A Load Real Address instruction is used to determine IIEAQPKOOIPIFLSSMll 


whether the SSM operand is in real storage. If the masklIEAPIX IPIPIXI I 

is not in real storage, the Program FLIH creates a I I I 

pseudo-page fault and branches to the paging supervisor I I I 

program interruption extension (IEAPIX). If the return I I I 

oode from IEAPIX is 0 (indicating that paging I/O is I I I 

required), the program old PSW is reset to be reexecutedl I I 

after the paging oFeration is completed. The request isl I I 

treated as a page fault. However, if the page is I I I 

reclaimed, processing continues at step q. I I I 


I I I 

4 	 The old PSW system mask is changed if it is not already IIEAQPKOO I PISMKTSTI 


equal to the SSM operand and if the superviscr leek is I I I 

off (or if the paging task is the current task). If I I I 

these conditions are in effect, bits 6 and 7 of the SSM I I I 

operand are used to reFlace bits 6 and 7 of the user's I I I


CIl old PSW. These bits regulate I/O and external interrup-I I I(1) 
tions. Otherwise, processing continues at Step 5. I I I 


rt I I I 

f.<. 	 5 The RB is set nondisFatchable (RBSLOCK=l) and the IIEAQPKOO I PIPAGSUPI 

() 

o program old PSW NSI is backed up by the length in the I I I 

::l ILC so that it points to the instruction that caused thel I I 


IV interruption. I I I 

I I I 


; 
6 The recursion flag is set, the new TeE address is set IIEAQPKOOIPIDPCH2 I 


H to zero to force a task switch, the program old FSW is I I I 

stored in the RBOPSW field, the register contents in I I I 

IEAPKSAV are moved into the current TCB (TCBGRS), and I I I
(1) control is passed to the disFatcher. 	 I I I11 	 L____________________________________________________________ _______ ________ J 

a 
~ ~ 

'0 
rt 
f.<. 

g 
CIl 
.g 
(1) 
11 

<:
f.<. 
en 
f.<. 

g 
~ 
\Q 



\J1 	 • Diagram 2.7 o 
Page Fault Processing 

From Diagram 2.5 Step 10 
to process page fau ItsInput 	 Processing. ~~~~~~------------------------~ 

.. 
-r=-1----- - - - - 1 Determine whether user has a vol id 	 2.8, Step 2 

SPIE exit routine and if S0, process 


CVT I I 
 like a program check. 

PIPIX 	 Output to D;spotch., 

[CVTSYLK I 	 I I 2 Try to relaim page. • ••••~I;;nt;;e;;irfi;;o~ce;-;:;w:jjiti;h~p;;;o;g;;:;n;gl L I 

I I supervisor. Program Old PSW 

I 	 I .---I(_____ 
ill! 

I 	 I !.2:..:,9J i"''' ~ Return oddress I 
IProgram interruption code ~ If successful 	 2,5, Step 11 ill! .-IE_A_P_K_S_A_V____~-~~ 

location X'SE' . h . . ,T 	 1_.. ~ Program Interrupt;on I3 	 Dispatc next task If Interrupted rout me ~-.... H dlTCB 	 I I , bl d ~ an er status
Isenae. 	 ~I 	 I 

j! DPF Save Area
TCBPIE ----\ L ---	 4 Save status 01 system. ...;.................."""" .............,.:....."'......, ......~ I .


I 	
I 

[=~==============:!============!:::::>I~ Interrupted routine'sI status
TCBABTRM 	 I 


I 

I 
 - - - 5 Ensure new and old TCB pointers orer ~m~i;;:t~r- valid, and exit to the dispatcher. 2.5, Step 11

PIE 	 I I after paging I/O ..
I I has completed for 

•••~ PITY1RET 	 IEAODS_-.J I 	 a Type-l disabled 


page fault 

PIEPICA 

• ...................~ Abnormally terminate.
I 6 II ABTERM has been scheduled 3',17 

I 
Otherwise, restore type-l SVC status.I 

From dispatcherI 
after paging I/O ......


I for a non-type-l t-"'"•••tI PIDPFRET 


TEATCBP I 
 disabled page fau 

7 	 Restore Program Interruption HandlerAddress of current TCB ----I ___ -1 	 status. 
+4 Address of new TCB 

IEAODS 

8 	 Return to dispatcher if abnormal Abnormally terminate. 
termination is scheduled. 3.17 

... 
9 	 Return to interrupted routine. 2.5, Step 12 

- -- -	 ----1 .. 

l,. '­ L 



(
r r 

Diagram 2.7 Page Fault Processing (Module lEAVNVOO) 
r------------------------------------------------------------y--------r--------, 
I IROUTINE I I 

I NOTES INAME ILABEL I 

~------------------------------------------------------------+--------+--------~

1 If the program old PSW is in problem prograro state and I I I 
the extended PICA flag (TCBPIE17) is set in the TCE, the I I I 
program FLIH ensures that the TCE ~oints to a valid PIE I I I 
in real storage which ~oints to a valid PICA also in I I I 
real storage. The PIE must not be in use for ancther I I I 
prograrr. interruption and the PICA must indicate that the I I I 
exit routine can process the page fault. I I I 

I I I 
2 IIEAQPKOOIPIPIX I 

I I 
3 After it has been determined that a page fault needs IIEAQPKOOI PIPFIO 

I/O processing, if the user is enatled, exit can be rr.adel 
directly to the dispatcher since the task switch and I 
status information are valid. However, if the user is I 
disabled, it is necessary to save the status of the sys-I 
tern at the time of the interru~tion. I 

I 
The Program FLIH saves the program old psw, ILC, and 
registers at the time of the interruption in a special

4 
save area (DPF save area). Then. it saves its own 
register contents in IEAPKSAV, sets the program old PSW 
to return to PIDPFRET, and, if it is a type-l SVC rou­
tine that was interrupted, saves svc registers, the SVC 
old PSW, ILC, and sets the program old PSW to return to 
PITY1RET. 

5 

ABTERM has been scheduled if TCBABTRM 1.6 

I 

I 

I 
I 

I 

I 

lEAQPKOO I PIDFXIT 
I 
I 
I 
I 
I 
I 
I 
I 

IEAQPKOOIPITSKS2 
I 

lEAQPKOOIPITY1RETI 
I I

7 I lEAQPKOOI PIDPFRETI 
~L____________________________________________________________ ________L________J 

[J) 
tD 
(') 
rI" 
fo'. 
o
::s 
I\.l 

;; 
1-1 

tD 
11 a 

't:S 
rI"
fo'. 
o::s 
[J) 
s:= 

't:S 
tD 
11 
<:
fo'. 
en 
fo'. 
o::s 

c.n 
~ 



(J1 	 • Diagram 2.8 (Steps 1-7) ...., Program-Check Interruption Handling 

Input • .. 
Monitor Call 


[ Prog ~~~~uption code re­ - -, 
 .. 
location X'SE' 	 I 


I 
 1 	 Record the interruption. IEAQPKOOSVRB I 
Program Process Me 

U I 	 Interruption Interruption
=UPR -,-}_ I 2.5 

.~~:" t ' ' , ,':, I I 


I L ---- 2 If this is a translation specification 2.5, Step 11 

I exception and termination is scheduled • 


I If termination is not scheduled 	 2.5, Step 12 

I IEAOPLOOI r- ---- 3 If there is no SP1E exit routine, 	 Schedule abnormal 
abnormally term inate. termination.I 

8.11I 
.....J 4 	 Determine whether PIE can be used 


and if not, free any temporary save 

area and abnormally terminate. 
 FREEMAIN 

RMBRANCH 
Free save area. 

6.1 

5 	 Ensure PIE and PICA are in real storage. I 8 
If they are go to Step 8. 

If not I create pseudo-page fault. IEAPIX 


Page in PIE or PICA. 

5.46 
IEAPSAV 

Interrupted routine's 
reg ister contents 

r ­
--I 

I 

---- ­ 6 If pseudo-page fault requires I/o 
processing: 

• Go to Diagram 2.7 if the user is 

Program old PSW l'4­
I 

-l 
disabled. 

• Get save area from user's lSQA. 

2.7, Step 4 

GETMAIN 
X'2S' 

Instruction length code ]4­
I 

--.J 
RMBRANCH 

Get storage for 
Output to D;'potcher 

X'SD' sove area. Page Fau I t Sove Area 
6.1 

• Save status and set program old 
PSW return address to PIPIERT. 

po;; 

Program old PSW, ILC, 
interruption code, 

r----~ registers of interrupted 

From Jtcher 

.. 
~ 

7 

• Exit to dispatcher. 

PIPIERET 

~"""""""",.,-:"""""""'1 
2.5, Step 10 j!I 

iii!! 
jI! 

L..­

I......- ­

tmk 
IEAPSAV 

Program Interruption 
Handler's registers 

Restore status I then go to Step 4. • 4 jI!l",.,-: ~ Program old PSW I 
location X'28' 

l.,L 	 ~ 



r 	 r (' 

Diagram 2.8 (steps 1-7) Program-Check Interruption Handling (Module lEAVNVOO) 
r------------------------------------------------------------T-------~--------, 

\ IROUTI~E I I 

I NOTES INAME ILABEL I 

~------------------------------------------------------------+--------+--------~

1 	 \IEAQPKOO\PIPROGTF 
I I 


2 	 If the program interruption code is X'12' Ctranslaticn IIEAQPKOOIPIDPCH 

eXC€ftion), no further processing is necessary and the I I 

program FLIH exits to the dispatcher for a task switch I \ 

or returns to the interrupted routine via LPSW~ \ I 


I I

3 If the interrupted routine is in problem program state, IIEAQPKOO PLOGADR 

it 	is necessary to determine whether the user has SF€ci-1 
fied a SPIE exit routine to handle this interruption. 	 I 

The TCBPIE field indicates this. If the interrupted 	 \ 
routine is in supervisor state, a PIE may exist for an 	 I 

SVC routine. If so, field RPUPR is on and the PIE I 

address is in the SVRP's extended save area. If there I 

is no SPIE, the Program FLIH resets the Program FLIH I 

recursion flag, and exits to the ABTERM prologue routine I 

to schedule abnormal ter~ination of the interrupted I 

routine. 	 I 


I I

£\ 	 When paging I/O is required for a PIE or PICA and the IIEAQPKOO\PICHKPIEI 


user is enabled, a test is made to determine whether IPIPIX2 \ PIPGPICA \ 

there is a dynamic save area. If there is nct, RMBRANCH\ PIPIPEIO\ 

is used to acquire the save area from the user's LSQA. \ \ 

Following this, or if there already was a save area, I I 

status is saved as fcllows, the program old PSW, ILC, I I 

interruption code, and the registers at the time of the I I 

interruption are saved, and the program old PSW in low I I 

storage is set to reenter the Program FLIH at PIPIERET I I 

in key 0, supervisor state, and disabled. The program I I 

FLIH save area in low storage (IEAPSAVl is then set withl I 

the current contents of Program FLIH's registers, the I I 

interrupted routine's registers and PSW are noved to thel I 

TCB and RB respectively, and control is passed to the I I 

dispatcher. I I
L____________________________________________________________ _______ _______J~ ~ 

en 
(1) 

~ .... 
o 
:; 
II.) 

H 

~ 
(1) 
Ii a 
to 
rt .... 
g 
en 
.§ 
~ 
<:.... 
Ul .... 
o 
:; 

U'I 
W 



VI 

~ • Diagram 2.8 (Steps 8-12) 


Program-Check Interruption Handling 
From 2.8, Step 5 Input 	 Processing .... 

I Program interruption code -.., ... FREEMAINf4- 8 Release temporary save area if one 
X'BE' I 

exists • 	 RMBRANCH
I 

~ 


I Free save area. 

I 6.1 

I 

I

PIE IEAQPLOO 

r---'---- 9 Abnormally terminate task if PICA 
I 

Schedule abnormal 
~ cannot handle this kind of interruption.PIEPICA -- -1 	 termination.rl 	 --. Output to ~PIE rouHneI B.ll 

I PIE 
IPICA 	 10 Move status of interrupted routine into
I 	 ->I

I Interrupted I
l 
 PI E. 
--- _-I 	 routine1s status 

IEAPKSAV 

I	General reg;,te" at I 

time of interruption I 


I Program old PSN f4- 1-- ------ 11 Change PSW to Be mode. & ............"1 ~....................................................................., ~~ Be -mode Prog ram old PSW I 

X'2B' 


... 

12 Dispatch SPIE exit routine. 	 2.5, Step 10 

J 
II'" 

l., l 	 \w 



r' r 	 r 

Diagram 2.8 (Steps 8-12) Prcg<alf;-Check Interrupticn Handling (Module IEAVNVOO) 
r------------------------------------------------------------T--------T--------,
I 	 IROU'J'INE 1 1 

I NOTES 	 INAME 1LABEL I 

~------------------------------------------------------------+--------t--------~
1 9 Each interruption code has corresfcnding bits in IIEAQPKOOIPICHECK 1 

1 PICAIT/-lK which indicaTe whether the interruftion is to 1 1 1 

I be processed by the user's exit routine. 1 1 1 

I 	 I 1 1 

110 	 When it has been determined that the interruption is to I I I 


be handled by the user's exit routine, the PIE is warkedl I 

"in use," registers 14-2 are moved from IEAPKSAV to the I I 

PIE, tne program old PSW is reforrratted frorr EC rrode to I I 

BC mode and saved in the PIE, the address of a special I I 

SVC 3 (EXIT) instruction is Flaced in the register 14 I I 

slot of the Program FLIH save area (this is used by Exit I I 

to determine if the issuer is a SPIE exit routine), and I I 

the address of the exit routine is placed in the regist-I I 

er 15 slot and in the Frogram old PSW. Following this, I I 

the program old PSW rrask is set frem the PICA frcgrarr I I 

mask, and, if this is for a Fage fault, the address of I I 

the page causing the interruption is saved in the I I 

register 0 slot of the Program FLIH save area. I I 


~ ~l ____________________________________________________________ ________ ________J 

C/) 
(\) 

~ .... 
o
::s 
I\) 

H 

~ 
(1) 

a t1 

'0 
rt .... 
o
::s 
C/) 

.g 
~ 
<:.... 
en .... 
g 
U1 
U1 



VI Diagram 2.9 
0\ PIPIX Routine 

From program interruption 

handler routines to interface 

with the paging supervisor 


Processing 
... 

PIPIX 

'" 
1 Free temporary save area. FREEMAIN 

I RMBRANCH 
6.1 

Output 
~., L. 2 If I/O .. • I h . ABTERM PrologueI IEAPE.;>vv r- ---,------ 5upervlsorISlncontro,ortesupervlsor.. 1

VT I lock is on and program old PSW is disabled IEAOPlOO I 

C I 8.11 CVT 

l\lrllr:,~T"_---- :_'Y:2 '-__ _ _ _ _ 3 Set the supervisor lock, if PS'N is disabled, and : 

CVTSYLKS ~ - _..J save the TCB address. ~ CVTSLKS I..""'~"""""""""'-1 T 
IEAPKSAV CVTSLI Dfl")j J 

General registers 4 Save status. 

[~~~~===J::=~=:~I 5 Branch to paging supervisor; then restore status : Paging Supervisor 

PI old PSW IEAPIX 


I 5M 

~P~IIL~C~========J=::~::~
I 

.........~..~~.,~====~~======~
6 Bronch to GTF, ;f acHve GTF I 
IEATCBP 

It~A~d~dr~e~ss~o~f~n~ew~T~C~B=F:I=~=~J ...~~......~.....~I________________J
Address of old TCB 

r':;·.;~.:. "~r- -------- ::::~::::"::,:;:~" ,.~'''~'""''".. 
'>_';_:~'$t~~ • if PIE/PICA prefixing flag is not set 2.8, Step 1 

ABTERM Prologue I 
• if PIE/PICA prefixing flag is set IEAOPLOO 

8.11 

9 If the page was reclaimed -I ... 


~ '- \.. 




____________________________________________________________ ________ 

r ( 	 r 

Diagram 2.9 PIPIX Routine (Module IEAVNVOOl 
r------------------------------------------------------------T-------~--------, 

I IROUTINE I I 

I NOTES INAME ILABEL I 

~------------------------------------------------------------+--------+--------1

2 	 Before exiting to the ABTERI! Prologue routine, the IPIPIX 
Program FLIH turns off the Program FLIH recursion flag. I 


I 

3 I 


I 

4 
 The status must be saved because the Program I 


Interruption Handler Extension of the paging supervisor I 

may cause a Monitor call program interruption. I 


I 

6 
 If the return code from the paging supervisor is 0, I 


PIPIX resets the "PIE/PICA prefixing flag" and, if the I 

supervisor lock has teen set for this request, PIPIS I 

sets the ~inhibit second exits flag.- I 


I 

8 	 If the requester owns the sUFervisor leck, PIPIX sets I 


it. 
 I 

I


9 	 If the return code from the paging supervisor is 4, the I 

page was reclaimed. PIPIX sets the "PIE/PICA prefixing I 

flag" and returns control to the caller+4. I 


l 	 ~ 

I I 

I I 

I I 

IPIPIXDSBI 

I I 

PICALPIXI 


I 

I 

I 


PINEEDIOI 
I 

I 

I 

I 

I 

I 

I 


PICRC4 	 I 

I 

I


i ________J 

CIl 
II) 

~ .... 
o 
::I 

IV 


H 

~ 
II) 
11 
a 
't:l 
rt .... 
o 
::I 

CIl 
.g 
~ 
<:.... 
CJl .... 
g 
Con 
..,J 



VI Diagram 2.10
<XI Tracing Supervisor Interruptions 

From supervisor routines 
to record interruption dotoInput 	 Processing Output 

For all entry points ~ 
2 4r P'SW ;;':-to-;:pe-;;is;- - --l 	 TRDISP (from dispatcher) 

Z ZI state protection key=O
I I/O and external TREX (from External FLlH) 

EC-moc!e ISystem Ie M C ; I Instruction 
e Pro-

K IA r gramI interruptions disabled I I 	 PSW mask W C address 
0 mask 0TRIO (from I/O FLlH)

Register 10 I From Dispatcher 
y P 

s s

I IAddress of Trace entry point I" ;:-gi~;;- - --., 


TRPI (from Program FLlH)I I 	 I 
Reg;ster 11 I r-rl Address of new RB I TRSVC (from SVC FLlH) A IlnterruPHonU~t=~re~ ____ I~ I Register 14 I BC-mode I System I : IM code I~ IC I:;:~ IlnstrucHonAAddress of new TeB 	 PSN mask y W Trace Ice mask address 

Hex. lower real storage L ________ J 	 Store the time in the next trace table 
entry • P codej 

Loc.~~~~____~~~~ 

18 	 Trace Table Entry1 
X'O' (See expansion below)TCBGRS 2 Store registers 0,1, and 15 if coller 	 t- ­I 

20 	 is the External FliH. c===~~===:::::=> XIS' Register 15 Register 0I 
X'lO' Register 1 

RB
28 	 X'lB' Time stamp 

RBOPSW
38 I I/O old P;W .. 

, 	 3 Record old PSW and convert it from A.i rRBINLNTH 	 EC mode to BC mode (for I/O
40 Command status word 	 Trace Table Entry~-l 	 interruptions, record device address)

gi\l\\,,!:J~ ".,."',,' •... ,:,.J A I Interruption

RBINTCOD


54 Address of Trace header ...J IKI code I I IPro­1 r ­	 l C gram IInstruction4 Set interruption trace code. ............................................'-1~ !>':st:m e ~ 

~~~ i' ,i~,iJ 	 C C mask addressy,p Trace I 

85 External IlC I I code 

86 External interruption code 
 ~ I I 	 20',. 

I 1 	 I89 SVC ILC 

SA SVC interruption code I I 	 Irc.\· , "';, I 	 "0' I'·~ ,~,..'. nlL_ I- - - - - - - - -1- - 5 Record CSW for I/O interruption. 	 CSW8D Program ILC I I 	 X'10'1-_____
8E Program interruption code L __ 
1---------1-- 6 Record TQE flags and TeB address for : X'lS,ILI---- ­

external interruptions. 
 :>( B 
BA I 1/0 channel and device address 	 I 

Trace Code ValueI 
CollerTrace Header 	 System System 

lock on lock ofI TRPTR (~urrent entry) 	 1 
Dispatcher X'FO'TRBEG (F;~t entry) 	 X'70'

1 
External FliH X'90 ' X'1O' 


I I/O FLiH X'DO' X'SO' 

Program FLiH X'BO' X'30' 


7 Record TCB address and registers 0, 1, 

TREND (Lost entry) 

SVC FLiH X'AO' X'20' 
CVT 	 and 15 for calls from SVC FlIH,: r Program FLlH, and dispatcher. 	 Trace Table Enhy 

~ I 1 	 II X'OO'CVTTPC 

I 8 Record page address for page faults. 	 Register 15 Register 0 
________ .J 

II 
X'10' Register 1 Address of page foulICVTSYLK (System lock) !+- - - -	 BR 11 I 
X'lB' TCB address•••1~:ller 
~ 

1 	 oExternal, Program, and SVC FlIHs 

[Registe-;:-;-O,l, and is-;;relhe-;;m;r... __ +- ______ _ -.J B) >(TQE flags for external interruptions) 

L9.,s whe~e~errupti.9..!!..o~re~ ...J 

~ l 	 L. 




r ( 	 r 

Diagram 2.10 Tracing supervisor Interruptions (Module IEAQTRCE) 
r------------------------------------------------------------T-------~--------, 

I IROUnNE I I 

I NOTES I NAME I LA EEL I 

~------------------------------------------------------------+--------+--------~

1 	 The address of the next trace table entry address is IPRECOM 

equal to TRPTR+32 if that value is less than TREND (the I 

final entry). If TRPTR+32 equals or exceeds TREND, I 

TRPTR is changed to equal TRBEG (the beginning address).1 

Bits 2-5 of the time-of-day value (time stamp> are 
copied into the last four bits of the next trace table 
entry. 

2 


3 	 The ECTOBC subroutine is used to convert the PSW frorr 
EC mode to EC mode for all but I/O interruptions. For 
I/O interruptions, TRIO converts the I/O old PSW and 
replaces the instruction address field with the I/O 
channel and device address. 

4 	 The trace code is set by either TRDISP, TREX, TRIO, 
TRPI, or TRSVC, whichever was called to record the par­
ticular event. 

5 

If the external interruption code is X'1004', the cleck 
comparator caused thE interruption. If the code is 
X' 1005', the CPU tirr,er caused the interrupticn.. The 

6 


flags of the appropriate TQE are recorded in the trace 
table entry. 

7 	 The TRDISP subroutine stores registers 0, 1, and 15 

contained in the new TCB for calls from the dispatcher. 
For SVC and program interruptions, the current Tea and 
current registers 0, 1, and 15 are recorded. 

The address of the page fault or segment translation 
exception is stored in the trace table entry. 

8 

L____________________________________________________________ 

en 
(I) 
n 
rt
"",o::s 
IV 


H 

~ 
(I) 

a 
t; 

"0 
rt
"",o::s 

.g en 

~ 
<:
"",
C/l
"",g 
IJI 
\D 

I 

I 

I 

I 

ITREX 
I 

IECTOBC 

ITRIO 

I 

I 

I 

I 

I I 

I I 

I I 

I I 

ITRIO 1102 

I I 

ITREX I EXT3 
I I 

I I 

I I 

I I 

I I 

ITRDISP IDSP2 

ITRSVC ITRCOMM 

I I 

I I 

I I 

I IPOSTCOM 

I I 

~_______~________ 



a­ Diagram 2.11o 
Tracing Start I/O Operations 

From I/o supervisor to 

record •
Input Start I/o operations Processing~!:~-------------------" ... 

Register 1 

rl Address of I/O RQ E Output 
TRSIO 

Register 6 
Trace TobIe Entry 

I ~ -..,Device address Store the time in the next trace table entry.
I X'QO' cc I Device address CAW 

Register 9 I 
X'08' CSW 

Condition code --'----- 2 Record the device addressI r I 

and condition code. X'lO' 

Register 10 
xr18' TeB address Time stamp 

I Address of TRSIO I r- ­ 3 Record the CAW and CSW, 

I 
Register 11 I 

I Return address Ir--+- 4 Record the reB address.I ­
I I BR 11 

I I 5 Return To I/o supervisor 
x'00' I I 

I Ix'04' 
I I 

x'08' h' I I 
_.J I x'OC' Address of TC B I 

I 
I 

lower real storage 
I 

Hex ILoc. 
I 


40 CSW ----I 

II I 
I 
I ___ --l 


48 CAW 


~ L L 



SECTION 3 

Task Supervision 

HOW TASKS ARE SUPERVISED••••••••••••••••••••••••••••••••••••••••••••• 63 
Permanent Tasks.................................................. 63 

Dynamic Tasks...................................................... 63 


creating a Task...................................................... 63 

The Two TeB Queues................................................... 63 


TeB Pointers..................................................... 64 

Allocating CPU Time to Competing Tasks ••••••••••••••••••••••••••••••• 64 
Summary of Task Supervision•••••••••••••••••••••••••••••••••••••••••• 65 
Method of Operation Diagrams for Task supervision •••••••••••••••••••• 68 

Section 3: Task Supervision 61 



J 




HOW TASl{S ARE SUPERVISED 

Task superv1s1on controls the execution 
of tasks and allocates CPU time to compet­
ing tasks. Diagram 3.1 shows the routines 
that make up task supervision. 

Task supervision routines that are ~ype-
1 and type-2 SVC routines provide serV1ces 
that can be requested by problem programs 
or system programs by issuing a Racro 
instruction (for example, ATTACH). The 
routines that are not shown as type-lor 
type-2 SVCs are entered directly by other 
system routines. 

A task is described by a TCE (task con­
trol block). The TCB contains information 
needed to control the execution of the task 
(see the description of the TCB in Section 
12) • 

There are two types of tasks: permanent 
tasks and dynamic tasks. Each task is 
represented by one TCB with chaining fields 
that form two TCB queues: the task queue, 
which includes all active tasks in the sys­
tem, and the subtask queue for the job 
step. (These queues are described under 
·The Two TCB Queues· later in this section. 

Permanent Tasks 

When the operating system is generated, 
the TeBs for the permanent system tasks are 
built into the nucleus. These TCBs are the 
beginning of the task queue (see Figure 
3-1) • 

Dynamic Tasks 

Dynamic tasks are created by task super­
vision in response to a system or user 
ATTACH request. When the ATTACH routine 
creates a task, it builds the TCB that 
represents the task usually in the LSQA 
(local system queue area) of the requester. 
But if the LSQA operand is specified in the 
ATTACH request, the ATTACH routine places 
the TCB and other control blocks associated 
with the task in a new LSQA for the new 
subtask. 

CREATING A TASl{ 

The following is the basic sequence of 
task creation: The master scheduler, which 
is a permanent task, attaches an initiator/
terminator task, which is a job management 
task. Initiator/terminator tasks attach 
job-step tasks, which in turn attach 
subtasks. 

The advantage of subtasking is that sub­
tasks compete for the use of the CPU when 

Communications 
Poging Supervisor TCB

Vector Table 

CVTHEAD System Error TC B 

Dynamic Support 
System TCB 

Communications Task 
TCB 

Dynamic Device 
Reconfiguratian TCB 

Master Scheduler TCB 

Nate: 	 The TCSs are queued in descending order according to dispotching 

priority • 


Figure 3-1. 	 Per~anent TCBS that form the 
beginning of the task queue. 

either the job-step task or one of its sub­
tasks must wait. When a job-step task that 
uses subtasking must wait, it is not neces­
sarily another job step that gains control. 

THE TWO TCB QUEUES 

The AT~ACH routine establishes pointers 
in a new TCB in such a way that the TeB 
becomes part of two TCB queues: the task 
queue, and the subtask queue for a job 
step. 

The task queue contains all TeBs in the 
system. On this queue, the TCBs are 
chained in a descending order of priority, 
with the permanent system tasks having the 
highest positions on the queue. The CHAP 
routine manipulates this queue when it 
changes the dispatching priorities of 
tasks, and the dispatcher tests the TCBs on 
this queue to determine which task should 
be dispatched next. 

There is a subtask queue for each job 
step in the system. The subtask queue 
starts with the job-step TeB and contains a 
TCB for each task attached by the job-step 
task or one of its subtasks. The TCBs on 
this queue show the order in which the TCBs 
for the job step were created. The ter­
mination routines use the subtask queue to 
determine the sequence for freeing the job 
step's resources when the job step is 
abnormally terminated. 

Section 3: Task Supervision 63 



--

TCB Pointers 

The relationship of tasks on the task 
queue is indicated by two chaining fields: 

Points to the TCB for the 
next lower priority task on 
the task queue. 

• 	 TCBTCB 

• 	 TCBBACK -- Points to the TCB for the 
next higher priority task on 
the task queue. 

The relationship of subtasks on a subtask 
queue is indicated by four chaining fields: 

• 	TCBOTC Points to the TCB for the 
task that attached this 
subtask. 

• 	 TCBLTC Points to the TeB for the 
task last attached by this 
task. 

• 	 TCBNTC Points to the TCB for the 
task previously attached by 
the task that attached this 
task. 

• 	 TCBJSTCB -- Points to the first TCB for 
the job step. 

Figure 3-2 shows a subtask queue. In 
the figure, task 0 is a job-step task and 
has two subtasks, tasks 1 and 2. Task 1 
was attached first. Task 2 has one sub­
task, task 3. 

ALLOCATING CPU TIME TO COMPETING TASKS 

The dispatcher determines which task is 
to be dispatched next and passes control to 
the current routine of that task. The task 
to be dispatched next is one of the 
following: 

• 	 The current task, whose performance is 
being resumed. 

• 	 Another ready task of higher priority
than the current task. 

• 	 Another ready task of lower priority 
than the current task, if the current 
task is waiting or is nondispatchable. 

• 	Another task in the same time-sliced 
group. 

• 	 Another task in the APG. 

The interrupted routine of the current 
task is given control if no supervisor rou­
tine has indicated the need for a task 
switch. If a task switch has been indi­
cated, however, the dispatcher gives con­
trol to the current routine of the highest 
priority ready task. This task may be of 
higher or lower priority than the current 

® 
TCBOTC 

TCBlTC 


TCBNTC = 0 


TCBJSTCB =0 


CD 	 CD 
TCBOTC f--- TCBOTC f-- ­

,- TCBlTC TCBlTC =0 

TCBNTC TCBNTC =0 

TCBJSTCB f--- TCBJSTCB -
CD TCBOTC 

TCBlTC =0 

TCBNTC =0 

TCBJSTCB 

Figure 3-2. 	 Example of a subtask queue 
showing how TCB pointers link 
a subtask to related subtasks. 

task. The address of the ·new· task's TCB 
is found either in the NEW TeB pointer 
(IEATCBF), or through a search of the task 
queue. 

If the dispatcher does not find a rou­
tine that can be dispatched, it dispatches 
a dummy task which is part of the nucleus. 
The dummy task has no associated routines 
and places the CPU in an enabled wait 
state. After a future interruption, one of 
the nonready tasks may be readied by an 
interruption handler, and CPU execution can 
continue. 

In addition, the dispatcher handles task 
and job-step timing. One or more priority 
levels may have been identified as time­
sliced groups. For tasks within these 
groups, the dispatcher determines which 
time-sliced task is to receive control next 
and dispatches the task with the time 
interval identified for that group. 

A single priority level may be identi ­
fied at system generation or system initia­
lization time as an APG (automatic priority 
group). (A time-slicing group cannot be 
identified as an automatic priority group.) 
Tasks within an automatic priority group 
are dispatched in a way that makes best use 
of the system's CPU and I/O resources. 

The APG tasks constitute a subset of the 
entire task queue. In addition, the APG is 
divided into two subgrou~s as shown in 
Figure 3-3. 

64 



I/O CPU 
Subgroup Subgroup 

Figure 3-3. 	 Portion of the task queue 
showing two subgroups in an 
automatic priority group. 

Note that the VS2 dispatcher operates 
with a priority-ordered task queue. A 
search of the task queue proceeds from left 
to right. Tasks that the CHAP or ATTACH 
service routines place in the APG are 
marked as I/O-oriented tasks and are queued 
at the head of the APG section of the 
queue. This permits prompt identification 
of the characteristics of new APG tasks. 
The Task Switch routine signals task 
switches between APG tasks only when the 
current task is a CPU-oriented task and the 
contending task is an I/O-oriented task. 
This eliminates unnecessary task switching 
overhead between APG tasks that have essen­
tially the same characteristics. 

Tasks are dispatched and shifted within 
the APG according to their characteristics. 
Tasks are considered to be CPU-oriented if 
they utilize their entire time interval 
without voluntarily relinquishing control 
of the CPU. (A task may be CPU-oriented 
even if it uses more I/O time than CPU 
time.) Tasks are I/O-oriented if they seem 
to involve more use of I/O (paging I/O is 
excluded from this determination). 

All tasks in the APG are dispatched with 
a timed interval. The decision on whether 
a task is I/O-oriented is based on whether 
the task uses its entire interval of 
allotted time. Unused portions of the 
interval are moved when page faults stop a 
task or a task is preempted by higher 
priority tasks. 

Important features of the APG group are: 

• 	 Tasks within the I/O subgroup are 
arranged in such a way that those using 
smaller portions of their interval are 
ranked higher in the queue. 

• 	 CPU tasks receive control in a cyclic 
manner, thus ensuring that any avail ­
able CPU time is distributed equitably 
among them. This ensures that through­
put time for CPU-oriented tasks is in 
proportion to their stand-alone run 
time. In addition, potential I/O tasks 
are not kept at the bottom of the CPU 
subgroup indefinitely. 

The algorithm that governs the selection 
and dispatching of APG tasks is based on 
the information in Figure 3-4. The follow­
ing are the self-adjusting characteristics 
and parameters associated with the VS2 
dispatcher: 

1. 	 The original time interval that is 

assigned to APG tasks. 


2. 	 An incremental ti«oe that can be added 
or subtracted from the original time 
interval. 

3. 	 A lower limit on the adjusted time 

interval. 


4. 	 An upper limit on the adjusted time 

interval. 


5. 	 A predetermined value expressing the 
desired ratio of X to Y, where X 
total number of times APG tasks used 
their full time interval, and Y = sum 
of X and total number of times APG 
tasks voluntarily surrendered CPU con­
trol. (Note: X and Yare reset to 0 
at the end of each statistics 
interval.) 

6. 	 A statistics interval used to deter­
mine the frequency with which the dis­
patching algorithm adjusts itself. 

Paratr,eters 2 through 6 can be specified at 
system generation or system initialization. 
The initial value of parameter 1 is: 

(upper limit + lower limit) - 2 

Throughout a statistics interval, all APG 
tasks are dispatched with the same time 
interval. Counts are kept of the X and Y 
values. When the statistics interval con­
cludes, the ratio of X to Y is computed and 
compared to the value of parameter 5. If 
the calculated value is lower, the resolu­
tion of the algorithm is not adequate to 
detect enough CPU-oriented tasks. Accor­
dingly, the current value of parameter 1 is 
decreased by the magnitude of parameter 2 • 
Conversely, if too few I/o-oriented tasks 
are being identified by the algorithm, the 
value of parameter 1 is increased. 

SUMMARY OF TASK SUPERVISION 

In summary, the ATTACH routine of task 
supervision creates TCBs for all but per­
tr:anent system tasks. After it queues these 
TCBs, other task supervision routines main­
tain the status of all tasks in the system. 
A short summary of each routine accompanies 
the diagrams, which follow. 

Section 3: Task Supervision 65 



r----------------------------------T--------T-------------------------------------------,
I Reason for I New I I 

l-:~~s~~~~=~:______________________l-~~;~~~-l-~:=~~~-:~~~~______________________________j ~ 

Original Task Status - I/O 

Preemption by task above the APG I/O Save unused portion of interval: 
control to preempting task. 

pass 

Time interval end CPU Set up full interval for next dispatch of 
task: mark task CPU-oriented and queue at 
top of CPU subgroup: locate next task by 
searching from top of APG. 

Voluntary surrender I/O Set up full interval for next dispatch of 
task: queue task within I/O subgroup 
based on portion of interval used: locate 
next task by searching from top of APG. 

~----------------------------------+--------+-------------------------------------------i 
Original Task status - CPU 

Preemption by I/O task or by 
task above the APG. 

CPU Save unused portion of interval: 
control to preempting task. 

pass 

Time interval end CPU set up full interval for next dispatch of 
task: queue task at end of CPU subgroup: 
locate next task by searching from top of 
CPU subgroup. 

Voluntary surrender I/O Set up full interval for next dispatch of 
task: queue task at end of I/O subgroup 
and mark task I/O-oriented: locate next 
task by searching from top of CPU 

L-_________________________________~________~__________________________________________subgroup. 

Figure 3-Q. Factors in the dispatching of APG tasks. 

66 





- -

0 ­
co 

I 
ATTACH 
Routine 

3.2 

I 

DEQ 
Routine 

3.10 

Index to Diograms by Module 

Name for Task Supervision 


Module Diagram 
Name Number(s) 

IEAVATOO 3.2 
'----- ­

IEAVCHOO 3.3 

IEAVED02 3.5 

IEAVEFOO 3.11 

IEAVENQI 3.9,3.10 

IEAVETOO 3.14 

IEAVMODE 3.21 

3.12, 3.13, 

IEAVNUOO 
3.15--3.17, 
3.19,3.20, 
3.22 

IEAVSETS 3.18 

IEAVSY50 3.7,3.8 

IEAVT BOO 3.4, 3.6 

I 
CHAP 
Routine 

3.3 

I 
Stage 1 Exit 
Effector 

3.11 

I 
EXTRACT 
Routine 

3.4 

I 
Stage 2 Exit 
Effector 

3.12 

I 
STATUS 
Routine 

3.18 

Overview of Task 

Supervision 


3.1 

I 
DETACH 
Routine 

3.5 

I 
SPIE 
Routine 

3.6 

I 
Stage 3 Exit 
Effector 

3.13 

I 
Exit 
Routine 

3.14 

I 
Validity Check 
Routine 

.~ '--­

I 
TESTAUTH 
Routine 

3.20 

J 
WAIT 
Routine 

3.7 

I 
Type-l Exit 
Routine 

3.15 

I 
MODESET 
Routine 

3.21 

• Diagram 3.0 
Task Supervision 
Visual Table of Contents 

I J 
POST ENQ 

I 
Routine Routine 

3.8 3.9j 

I I 
Task Switch Dispatcher 


Routine 


3.16 3.17 

I 
System Task 
ABEN D Recovery 
(STAR) Ex;t 
Routine of the 
System Error Task 

3.22 

c ~'-' 



r r r 

• Diagram 3.1 

Overview of Task Supervision 

TYPE-l SVC ROUTINES Type-l Exit Routine 

Caller issues a macro ~ 3.15 


WAIT Routine

instruction Handles the return from type-l SVC
3.7 

routines.I Suspends tcsk execution pending an event. 

~ Stage 1 Exit Effector 

3.11 


Begins the scheduling of an asynchronous 

SVC First-Level exit routine. 

Interruption Handler 
 ~ 

2.2 STATUS Routine 
3.18 

Adjusts task dispatchobility. 

TESTAUTH Routine 
3.20 


I Tests authorization. 


MODESET Routine 
3.21 Exit Routine 


I Adjusts the system mask. 3.14 

...... Handles exiting procedures for programs 


other than type-l SVCs (Exit is a type-l 

SVC Second-level SVC).
TYPE 2 SVC ROUTINES Dispatcher 
Interruption Handler 


ATTACH Routine 
 3.17 
2.3 

3.2 ,Selects and passes control to ready tasks.~I Creates a subtask. 

CHAP Routine 
3.3 

Changes task priority.I I 
Ready task, which may be 

EXTRACT Routine the caller. 
3.4 

The Stage 2 and 3 Exit Effectors 
I Supplies control block information. 3.11 

Schedule asynchronous exit routines. 
DETACH Routine 

3.5 
Val idity_ Check Routine 

I EI iminates a task. I 3.19 

Verifies storage addresses.
CIl SPIE Routine 
II) 3.6 o Task Switch Routine

Specifies an exit routine to be enteredrt 3.16.... following a program check. 

Compares dispatching priorities for a 


::s possible task switch. 

o 

POST Routine 

w 3.8 
Reschedules task execution following 
occurrence of on awaited event . ..., 

III ENQ Routine 
CJ) 3.9 
~ 

Serializes use of symbolically named 
CIl resources 
C 

"0 
DEQ Routine 

Ii 
(1) 

3.10 System Task ABEN D Recovery (STAR) Exit 
<: Routine of the System Error Task Frees resources (requested through ENQ).... 

no longer needed. 3.22en.... Readies the system error task after it fails. 
o ­::s 

0\ 
\.Q 



-.J 
o 

Input 

Register 1 

Address of problem 
program parameter 

list 

OR 

Register 15 

Address of supervisor 
parameter list 

From SVC SliH to 
process an ATTACH 
request 

•••1IGC042 

if ATTACH was issued by a callerr--­ Caller
in a STAE exit routine 

via SVC 3I 
I 

2 Ensure that parameter list is in real 
ABTERM

storage (for all callers) and is valid 

(for collers without a key of 0). 
 Error 

IEAOABOO 

8.12 

MODESET Routine 

IEAVMODBR 
Enable to reference 
missing pages. 

3.21 
Error 

____...., Caller3 Enforce tosk structure rules. ___...1 	 , via SVC 3 

4 	 Ensure that the new subtask will have 
access to any specified STAI exit Error 
routines if it is abnormally 

_____••' Caller
terminated. 

, 	 v;a SVC 3 

(Continued ot Step 5) 

Diagram 3.2 (Steps 1-4) 
ATTACH Routine 

Output 

Register 15 

Return code 

X'04': 	ATTACH was issued in STAE 
exit routine. No subtosk 
was created. 

Register 1 

Completion code 

X'72A': Invalid parameter list. 

Register 15 

Return code 

X' 14': 	 Attempt to attach a job-step 
task by a non-job-step task. 
No subtask created. 

X'lB': 	 Attempt to attach a job-step 
task when subtasks are not 
job steps, >Jr to attach non­
job-steps when subtasks are 
job steps. No subtosk 
created. 

Register 15 

Return code 

X'OB': 	 Insufficient storage to 
schedule the STA I exit 
routine. No sub task created. 

X'OC': The exit routine or parameter 
list for the STAI operand is 
invalid. No subtask created. 

l, L 	 ~ 




r r 	 r 

Diagram 3.2 (Steps 1-q) A!TACH Routine (Module lEAVATOO) 
r------------------------------------------------------------T--------T--------, 
I IROUnNE I I 

I NOTES INAME ILABEL I 

r------------------------------------------------------------+--------+--------~ 
I The ATTACH routine ~ermits a problem program or system IA!TACH IlGC042 I 

I program to attach a subtask. The ATTACH routine creates a I I I 

I TCE to represent the suttask, places control information inl I I 

I the new TeB, allocates storage to the subtask, ~laces the I I 

I new TCB on the two TCB queues, and schedules linkage to I I 

I contents supervision to obtain the first frograrr to be I I 


executed for the new subtask. When the new subtask has the I I 

highest priority among the ready tasks, the specified pro- I I 

gram is given control. I I 


I I 

Caller's with a key of 0 can specify the creation of one orl I 

more LSQA (local system queue area) segments to the TCB fori I 

the new subtask. This type of request is called ATTACH I I 

with LSQA. I I 


I I

2 	 I INOSTAE 


I I

3 	 I ITASKRULEI 


I I I
4 If the ATTACH macro instruction was issued with the STAll ISTAETEST 
operand, the ATTACH routine ensures that the ne~ sub- I 

task will have access to the s~ecified STAl exit routine I 

if the subtask is scheduled for abnormal termination. I 

The STAI operand has no effect on ATTACH with lSQA I 

requests. I 


I 

STAI exit routines perform the same functions for a sub-I 
task that a STAE exit routine ferforms. ATTACH issues al 

STAI SVC to create a dummy SCB (91A control block) which I 

points to the exit routine, and then queues it to the I 

calling routine's TCE. (The new subtask's TCE does not I 

yet exist.) I 


~L______________________________________________________ ______ I________~________ 

CIl 

I'D 


~ .... 
g 
w 

t-:l 
OJ 
en 
~ 

CIl 

.a 
I'D 
t; 
<: .... 
en .... 
o 
::l 

~ 
~ 



..:I 

'" 
Diagram 3.2 (Steps 5-12) 
ATTACH Routine 

Processing 

5 For an ATTACH with lSQA request, 
obtain storage for the new subtask's 
LSQA and TCB. GEHAAIN Routine 

RMBRANCH 

6.1 
Output 

6 Ensure that when the new subtask ends, 

Error 
-10.. 

Caller 
via SVC 3 Register 15 

IReturn code I 
it has access to any end-oF-task exit 
routines specified in the macro call 
(EXTR operand). Stage 1 Exit Effector 

X'lC': Attach with LSOA faned; 
no subtask created. 

Input b0 IGC043BR 
Obtain IRB, lOE, and 
reB storage as 
necessary . 

3.1l 

7 Complete processing STAI exit routine 
(Begun at Step 4). GETMAIN Routine 

Register 1 

Address of problem 
program parameter 

list 

I 
GMBRANCH 
Obtain storage for STAI 
SCB in SP 255. 

6.1 

Register 15 

IX'10' I 
OR 

Error ... 
Caller 
via SVC 3 r~ Storage for a STAI request is not 

available for propagation of 
STAls from the caller to the new 

Register 15 

Address of supervisor I Error 

suhtask. No subtosk created. 

parameter list ABTERM 

IEAOABOO 
8.12 

Register 1 

ICompletion code I 
X'52A'; Insufficient storage to 

rlRegister 4 

Address of caller's 
TCB I 

8 Obtain a TlRB for possible asynchronous 
processi ng for the new subtask. Stage 1 Exit Effector 

IGC043BR 

propagate an SeB 
during an ATTACH 
without a STA I operand. 

~ TCB 

9 Initialize the new subtask's TCB: 

> A. Set fields based on supervisor 

3.11 

TCB 

ISee "Section 12, Data Areas" for I 
parameter list. 

Task Switch a description of the fields. 

B. Transfer unchanged field from 
caller's TCB. .---­ !III 

IEAODS02 

3.16 
10 Establish limit and dispatching priorities. 

Coller's TCB 

11 

12 

Add new subtask TeB to TeB task,queue. 

Test for task switch. ~I 
Queue Relationships among a TCB, 1QE, IRB, and 
End-of- Task Exit Rautine 

Subtask Queue: TCB's Belonging to Subtasks of the Caller's Task 
End-of- Task 

(Continued at Step 13) 

~-I~ ~-~ Exit Routine 

--­
--­

I 10E IRB --­
--­--­~-~ --­
--­

l, (. '-' 



r ( 	 r 

Diagram 3.2 (Steps 5-12) ATTACH Routine (Module IEAVATOO) 
r------------------------------------------------------------T-------~--------, 

1 1 ROUTINE 1 1 

1 NOTES 1NAME 1LABEL 1 

~------------------------------------------------------------+--------+--------~

5 	 1ATTACH 1 KEYOTEST 1 

1 1 1 


6 	 At ETXR, ATTACH determines whether the requester has 1 IETXR 1 

supplied the address of an asynchronous (end-of-task) 1 1 1 

exit routine. If so, ATTACH must get storage for and 1 1 1 

initialize an IRB and an IQE. 
 1 


1 

An 	 IRB (interruption request block) is used in 1 

scheduling an asynchronous exit routine. 1 


1 

• 	 An IQE (interrupticn queue element) represents a pend-I 


ing reguest for the asynchronous exit routine. 1 

1 


An IRB with the specified address way already exist 1 

because another task has requested the same asynchronous 1 

exit routine. In this case, ATTACH calls GETMAIN to get 

storage for an IQE, and uses the existing IRE. If no 

IRB exists, ATTACH calls the stage 1 Exit Effectcr 

(CIRB) to build the IRB. 

Type of Status 
ATTACH of IRB TCBill 
With LSQA 	 Exists RMBRANCH RMBRAI'CH 

With LSQA 	 None exists CIRB 
CIRB IIGC043BR) (IGC043BR)RMBRANCH 

Without Exists RMBRANCH RMBRANCH 
LSQA 

Without None exists CIRB CIRB 
LSQA CIRB 

ATTACH propagates to the new subtask's TCB. The STAI 1 PROPSTAI 1 

SCBS that were queued to the calling routine's TCB. 1 1 


1 1 


7 


8 	 ICOMN 1 

1 1 

IATOK2 1
10 

1 1 


112 If this is not an ATTACH with LSQA, a dummy RB is 
1 ready state. INEWTEST11presented to the Task Switch routine. This RB is in a 
L____________________________________________________________1________1________1 


CIl 
(!) 
n 
r!­"".o 
::l 

w 

1-3 

III 

C/l 

~ 

CIls: 
(!) '" 
~ 
"".C/l

"".o 
::l 

-..I 

W 




-.J 
.c: 

Processing-
13 Prepare the ATTACH SVRB to be used as the 

RB for the new subtask • 

14 	If an ECB for the new subtask has been specified, 
cheek its validity. 

15 	 Resoive storage and module ownership for the 
new subtask. 

16 Pass contral ta the LINK routine. 

Validity Check 

IEAOVLO 1 

Test key and 

alignment. 


3.19 

ABTERM 

IEAOA BOO 

8.12 

ABTERM 

IEAOABOO 

8.12 

LINK RcuHne (4.2) 
Step 2 

Diagram 3.2 (Steps 13-16) 
ATTACH Routine 

Output 
Register 1 

Completion codes 

X'42A ': 	An invalid EC8 address 
was supplied. 

X'l2A': 	An attempt was made to 
give a shared or owned 
subpoo r to the subtask. 

X'22A': 	 An attempt was made to 
give or share a 
supervisor subpool. 

X'32A': 	 An attempt was made to 
give the job pack area 
while it contained CDEs 
whose use count was not 
o. 

Register 0 

IAddress af EP name or PDS DE I 
Register 1 

IAddress af DCB I 
Register 4 

IAddress of new TCB I 

L 	 L L 



Diagram 3.2 (Steps 13-16) ATTACH Routine (Module IEAVATOO) 
r------------------------------------------------------------T--------T--------,
1 1ROUTINE 1 1 

1 NOTES INA~E 1LABEL 1 

~-----------------------------------------------------------+--------+--------~ 


r 


en 
III 


:+ .... 
g 
w 

1-3 

I» 
CII 
~ 

.s 
en 

~ 
~ .... 
CII .... 
g 
-.J 

( 	 r 

113 	 If this is an ATTACH with LSQA, ATTACH copies the reque-IATTACH 
1 	 ster's SVRB into the new subtask's LSQA, and frees the I 

1 	 requester's SVRB. I 

I 	 I 

114 	 I 

I
15 	 The ATTACH routine allocates subpools to the new 

I 
I 


subtask according to the input farameters. ~he GIVE I 

farameter causes allccation of subpools to the subtask I 

for its exclusive use. The SHARE rarameter rerroits the I 

frog rams of the originating task and the programs of thel 

new subtask to share the same subfools. I 


I 

ATTACH exits to the dispatcher, which allows any poss- I 

ible task switch to take place. When the ne~ subtask isl 

dispatched, processing resumes at Step 16. I 


1

16 If a register save area is requested, 72 bytes are I 

I 	 obtained from subpool 250. At NOSAVE, the registers I 

I 	 are set up to pass control to contents supervisicn. I
l ____________________________________________________________ ________~ 

1 

I 

I 

I 

IECB 

I 

I~TOK4 

IGETSAVE 

INOSAVE 

I I 

~________ J 

VI 



-.I 
(1\ 

Input 
Register 0 

Value to add to 
dispatching priority 

Register 1 

Address of fullword 
containing TCB address 

Register 4 

Address of caller's 
TCB 

Fullword 

Address of leB 

TCB 

Diagram 3.3 
CHAP Routine 

Fcom SVC SLiH to 
process a CHAP request 

Output 

I GC044 

1 Ensure that input address is valid (for 

colle" without a key of 0) ond in ,eol I . .._.., _ 
_ ..__.. 
sto,age (all calle,,). • 	 IEAOVL01+4 


Test key and 

alignment. 


3.19 

Register 1 IGCOOOlC 

Completion Code 

IEAVMODBR 

X'22C': Address of TeB 
word is inval id. 

X'12C': No rCB could 
be found.-----, 

I Enable to reference 
missing pages-l I 

I 
3.21 


I 
 I 2 Find the specified reB. 

I
I I 

I


I 
I 3 Process change in priority for a TSO 	 IGC0001C 
I 	 rCB

task:I 

I 
 A. Compute new priority.
I 

I 
 B. 	 Reorder task queue if necessary.
I 

ReorderedI • 9I No reorderI 
Caller via SVC 3IL __ 


4 If task is in a time-slicing group, 

adiust time-slicing pointers. 


5 	Set dispatching priority for specified 

task (TSO task already processed). 


6 	 If task is moved into a time-slicing 

group, adjust time-slicing pointers. 


TCB 

7 Set APG indicator if the task is being 

moved ;nto the APG. ~""""" ...."""""~ 

8 Reorder task queue if necessary. 

9 Test for task s''1itch. 

3.16 

Legend: DP:; dispatching priority volue 

Note: Each TeBTeB field points to the 

TeB of next lower dispatching priority. 


~ L 	 l.,. 




r ( r 

Diagram 3.3 CHAP Routine (Module IEAVCHOO) 
r------------------------------------------------------------T-------~--------, r------------------------------------------------------------T--------T--------, 
I I ROUTINE I I I I ROUTINE I I 
I NOTES INAME ILABEL I I NOTES INAME I LABEL I 
~------------------------------------------------------------+--------+--------1 

The CHAP routine permits a problerr. !,rogram or systerr ICHAP IIGC044 
~------------------------------------------------------------+--------+--------~4 If TCBFTS = 1, the subject task is a member of a time- ICHAP ITSTSBIT I 

program to alter its dispatching priority or the dispatch- I sliced group. TCBFTS is set to 0, because a change in I I I 
ing priority of one of its subtasks. The subtask must I the dispatching priority shifts a time-sliced task out I I I 
belong to the issuer; that is, the suttask must have been I of its group. I I I 
attached by a routine belonging to the caller's task, and 
its TCB must therefore be on the caller's subtask queue. 

I 
I Pointers must be adjusted in the TSCE (time-slicing 

I 
I 

I 
ICHKTSCE 

I 
I 

A program issuing the ChAP macro instruction may change 
I 

thel 
control element) to reflect the change in priority. 
the address of the TCB is the sarre as the address in 

Ifl 
thel 

dispatching priority of a s!,ecified task to any value 
between 0 and the issuer's limit prioritY4 The distinc­
tion between dispatching and linit friorities is as 
follows. 

I 
I 
I 
I 

TSFIRST, TSNEXT, 
three fields are 

Field Containing 

and TSLAST fields in the TSCE, 
set equal to zero. 

Mea ni ng a nd CHAP 

all I 
I 
I 
I 

I TCB Address Processi~ I 
Although both priorities are specified as parameters of the I 
ATTACH macro instruction, they serve different functions 4 I 

TSFIRST 
TSLAST 

but not Specified task is not the only one 
in the group. CHAP places address 

I 
I 

The dispatching priority determines the appropriate posi­
tion of a TCB in the task queue, and also the nExt routinE 

I 
I 

of the next lower-level task 
task queue into TSFIRST. 

on I 
I 

to be placed in execution by the dispatcher. The dispatch-I 
er places in execution the current program having the ready I TSLAST and TSNEXT Specified task is last in the group 
TCB with the highest dispatching priority. I but not TSFIRST and next to be dispatched. CHAP 

In contrast, the limit Friority is used by the CHAP 
I 

routine I 
places address from TSFIRST into 
TSNEXT and address of next-higher­

to determine the maximum value to which it Ray increase the I level on the TCB queue into TSLAST. 
dispatching priority of the task. I 

I TSLAST but not CHAP !,laces address of next higher-
If 0 is supplied in register I, the dispatching I IOWNTCB TSNEXT level task TCB on task queue into 
priority of the caller is to be changed. The address ofl I TSLAS'I. 
the caller's TCB was placed in register 4 the by SVC I I 
Second-Level Interruption Handler (SLIB), and no validi-I I 5 When changing the dispatching priority of a non-TSO I DOCHAPI 
ty check of the address is required. I I task, CHAP follows the rules listed in the notes for I 

2 If a valid address is supplied in register 1, CHAP 
I 
I 

I 
IKEYTEST 

step 3. For non-TSO tasks, the dispatching priority is 
in field TCEDSP, and the limit priority is in field 

I 
I 

3 

compares the specified TCB address with the addresses ofl 
the TCBs that represent the caller's subtasks. If the I 
subtask is not found, CHAP abnorrrally terminates the I 
caller. I 

I 
The CHAP routine does not make this test if the caller'sl 
TCB (address in register 4) is the subject. I 

If the priority of a TSO task (TCBTSTSK =1) is being 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
IDOCHAP 

6 

8 

TCBLMP. 

The pointers in the TSCE are set to acconmodate 
TCB, which is pointed to by TSLAST. If this is 
task in the group, TSFIRST and TSNEXT must also 
the new task. 

the new I 
the onlyl 
foint tol 

I 
I 

The TCE is queued according to its dispatching priority, I 
but at the end of its priority level. There are two I 

I 
I 
ICHK4TSP 
I 
I 
I 
I 
I LOCPLACE I 
I I 

en 
(b 
(') 
rT 
~. 

o 
:; 

w 

adjusted, only TSO tasks within the requester's sub­
group, as specified ty the TJBX (time sharing job block 
extension) can be affected by the CHAP request. 

The TCB fields that CBAP changes are TCBTSDP, contain­
ing the dispatching !,riority; and TCBTSLP, containing 
the limit priority. The new priorities, shown telow in 
column 2, are determined by CHAP, which adds the number 
input in register 0 to the current priority to obtain 
the new total. 

I 
I 
I 
I 
I 

I 
I'IBTASK 
I 
I 
I 
I 
I 
I 
I 
I 
I 

exceptions: (1) a nEW APG task is marked I/O and queued I I I 
at the top of its priority level, and (2) any ncn-TSC I I I 
tasks with a priority of zero are queued ahead of TSO I I I 
tasks with a priority of zero. I I I

l ____________________________________________________________~________~________ J 

Priority Requested New-priorities 'ISXREST 
Total S 0 'ICBTSDP - 0 

1-3 
QJ 
Ul 
:>I" 

Total> caller's 
'ICBTSLP 

'ICBTSDP, TCBTSLP 
TCETSLP of caller 

en
c:: 

Total .:5 caller's TCBTSDP total; if 
'ICBTSDP ~ TCBTSLP, set 

I'[j 'ICBTSLP new TCETSDF 
(b 

~ If the priority of the LOGON task is set lower than any 
~. 

Ul 
of the subtasks, the dispatching priority of these sub­
tasks is set at the new level of the LOGON task.l ____________________________________________________________~________~________ J 

~. 

o 
:; 

~ 
~ 



-..I 
co 

Diagram 3.4 
EXTRACT Routine 

From SVC SliH to process 
an EXTRACT request 

~IGC040 
Register 1 

~ Address of 
parameter list 

-­ --------­ 1 Ensure that parameter I ist and answer 
area are in real storage and valid. 

Vol idity Check 

IEAOVL01+4 

Test key and alignment. 

Register 4 3.19 

Address of coller's 
TCB -­ -----, 

Paramete r List 

Answer area address 

TCB address I or 0 

IExtract 
field 0 

I 
I 
I 
I 
I 
I 
I 

..... 

MODESET Routine 

IEAVMODBR 
Enable to reference 
missing pages. 

3.21 
Output 

Branch entry Ifor disabled 
Isupervisor 

routines (no I 
validity checking) I 

Invalid EXTRACT 

~ 

ABEND 

IGCOOOlC 

8.14 

Register 1 

I Completion code I 
IGC040 + 8 X'128': Invalid answer 

L_ 2 Determine whether the TeB address X'228': 
area 

Invalid 

supplied is for a subtask or for its own Inval id TeB parameter list 

TCB. 

X'328': Invalid subtask 

TCB specified I 

3 Extract required information and place 
it in the answer area. 

Answer area (supplied by user) 

Requested fields 

-I 

\., l ~ 




r r 	 r 

Diagram 3.4 EXTRACT Routine (Module IEAVTBOO) 
,------------------------------------------------------------T--------T--------, 
I IROUTINE I I 

I NOTES INA~E ILABEL I 

~-----------------------------------------------------------+--------+-------~

The EXTRACT routine permits a protlem program or system IEXTRACT IIGC040 I 

program to request information frow its own TCE or the TCB I I I 

of a subtask. Through the TCB, the JSCB (job step control I I I 

block) and CSCB (command scheduling control block) can te I I I 

referred to and certain information can be extracted from I I I 

these control blocks. The information taken from the TCE I I I 

or subsidiary control block is stored in a caller-sFecifiedl I I 

list in the caller's region. I I I 


I I I 

2 	 For non-key-O caller's only, the input TCB address must I IGOODSTUF 


match either the address of the caller's TCE or the I I 

address of a TeE representing one of the caller's I I 

subtasks. I I 


I I 

If the caller does not supply a TCE address, EXTRACT I I 

Uses the address of the caller's TCE, placed in register I I 

4 by SVC SLIH. EXTRACT bypasses Step 2 if it uses the I I 

register 4 address. I I 


I I

3 	 EXTRACT tests each bit of the extract field in the I IQSTORE 


parameter list. This field reFresents the FIELDS pararr-I I 

eter of the EXTRACT macro instruction. (See OS/VS I I 

Supervisor Services and Macro Instructions for a I I 

list of the TCB fields that can be extracted.) For eachl I 

bit set, EXTRACT copies appropriate information from I I 

the TCB into the answer area. I I 


L____________________________________________________________ ________ ________~ ~ 

CIl 

III 


~ 
~. 

o 
:; 

w 

t-,l 

III 

en 
~ 

CIl .g 
(1) 
1"1 

-=~. 
en 
~. 

o:; 

..., 
\D 



---

----

----

---- --

co 	 Diagram 3.5 (Steps 1-6) o DETACH Routine 
From SVC SLIH to process 
o DET ACH request 

Input 
---a.... ----,. 

---, 

X'QQ': Do not honor 

STAE exit. 


X'80': Honor STAE exit. 


Register 4 


Address of caller's TCB 


o ----t--- ._-­

-
IGC062 

Validity Check 

Ensure that the TCB address is valid (for1 	 IEAVLK01+4 
callers without a key of 0), and in real 

storage (all callers). Test key and alignment. 


3.19 

MODESET Routine 

IEAMODBR 

Enable to reference 
missing pages. Output 

3.21 

Invalid or ABEND 
Not found 

IGCOOOlC Register 1 

Completion codeI I8.14Invalid or 
X'23E': Not yol id or

Not found oaddress, or 
TCB not found. 

Find TCB of subtosk being detached.2 

If this subtask has not completed 

execution 


3 	

• 7 
~CB 

Dequeue the completed subtask's TCB by 

updating TCB pointers. 
 f TCBLTC

4 	 .., ....""" ~....""'...."" ...., ....~ r--0::;­
1 

B 
'- ­FREEMAIN 	 I 

r------JRMBRANCH5 	 Free problem program save area. TCB .TCB 

6.1 ~~Ii
6 	 Free TCB and LSQA segrnent(s) if TeB • TCBNTC I TCBNTC=O I 

owns LSQA, or free TeB in subpool 253. t ...... I 
Coller via SVC 3 ,. Register 15 

Return codeI I 
X'OO': Successful detach. 
X'041: Incomplete subtask 

(Continued at Step 7) 
detached, STAE exit 
of subtask allowed. 

X'OS': 	 LSQA segment could 
not be freed; subtask 
has been removed. 

,
~ ~ 



r ( r' 

Diagram 3.5 (Steps 1-6) DETACH Routine (Module IEAVED02) 
r------------------------------------------------------------T-------~--------l 

I IROUTINE I I 
I NOTES INAME ILABEL I 
~------------------------------------------------------------t--------t--------~ 

The DETACH routine permits a prograll being executed for IDETACH IIGC062 
an originating task tc detach its subtask if the subtask I I 
has been normally or abnormally terrr.inated. The DETACH I I 
routine checks whether the address of the subtask' s TCB I I 
passed to the DETACH routine is valid, and whether the sub-I I 
task has been terminated. It dequeues the subtask's TCE I I 
from the subtask queue and frees storage areas belonging tol I 
the subtask, including the subtask's TCB. I I 

I 
If the caller specifies an invalid TCB address, the DETACH I 
routine abnormally terminates the caller's task. If the I 
suhtask has not been normally or abnormally terminated 
before the DETACH request, DETACH abnormally tenrinates it 
as ~art of its ~rocessing. 

[J Meaning of TCB fields referred to: 

TCBFC Equals 1 if the task has teen terminated. 

TCBFSA Address of Froblero Frogram save area. 

TCBOLSQA Equals 1 if the subtask owns LSQA segment(s). 

TCBIQE Address of an IQE or zero. 

TCBFA Equals 1 if the task is abnormally 


terminating. 

2 DETACH compares the input TCB address (in register 1) ICHKRET 
with the TeBS that r€Fresent the caller's suttasks I 
until: I 

I 
• The TCE that represents the subtask to be detached is I 

en 
(1) 
o 
rl'.... 
o 
::s 
w 

... 
QJ 

C/l 

~ 

en 
c:: 
'rl 
(1) 

~ .... 
C/l.... 
o::s 

co .... 

found, or 

• DETACH finds a 0 in the TCBN'I'C field, and the 
specified TCB has not been found. 

5
l ______________________________________________________

I 
I 
I 
I 
I 

I IDTFREE 
______i ________ ________~ 



(Xl Diagram 3.5 (Steps 7-10) N 
DETACH Routine 

Input Processing 
TCB 

~ FREEMAIN 
TCBIOE 14--------- -------- 7 Bypass end-of-tosk exit routine; free 

control areas. RMBRANCHt=== Free IOE, IRB, IRB
TCBFA ~------- -----.......... 


t= 
 save area.

8 If task is not already abnormally 


6.1terminating, STA exit routine con 
execute jf requester has allowed STA Output
exit and if a STA exit exists. IfRegister 1 ABTERM 

• 
task is abnormally terminntinq, go 

Address of TCB to step 10• IEAOABOO 
to be detached Register 1 

8.12• I Compl,etion code I 
"> X'33E': Subtask scheduled 

X'OO': Do not honor STA for abnormal 
exit. • 10 termination and STA 

X'80': Honor STA exit. exit 01 lowed to 
execute (STA re.ry 
not allowed). 

9 Schedule abnormal termination for tasks X'13E': Subtask scheduled ABTERMnot already abnormally terminating (no for abnormal 
STA exit allowed). IEAOABOO termination. (STA 

exit not allowed).
8.12 ~ 

WAIT Routine 

IGCOOI 

3.7 

10 Wait for termination, then • 2 

~. l.,.'­



r r r 

Diagram 3.5 (Steps 7-10) DETACH Routine (Module IEAVEL02) 
r-----------------------------------------------------------~--------T--------,1 IROUTINE I 1 
I NOTES IN~E ILABEL I 
~----------------------------------------------------------+--------f--------i 

L____________________________________________________________~ ________J 

I 8 
I 
1 

If TCBIQE equals 0, then no ETXR exists. 
use count is greater than 1, then the use 
decremented and the IRE is not freed. 

If the IRE 
count is 

IDETACH 
I 
I 

ICTABN 
1 
1 

I 
I 
I 

I 
1 9 

I 
I 

I 
ISTATEST 

I 
I 

1
110 

1 
1 

I I 
ITESTSCNDI _______~ 

en 
/I) 

~ .... 
o::s 
w 

>':l 
III 
en 
~ 

.g en 

/I) 
11 
<:.... 
en.... 
g 

w 
00 



Q) 

+= 

From SVC SLiH to process a 
SPIE request 

Input 

--, r-- ­
I I 
I I 
I I 

____ I JI 

I 
I 
I 

--1----­
I 
I 
I 
I 
I 
IL_____ _ 

PICA 

,- ­
_____________...1 

• Diagram 3.6 
SPIE Routine 

ProcP!':!':ina 

IGCOl4 

Obtain storage for a PIE if a PIE does 

not a 1ready exist. If a PI E exists, go 

to Step 4. 
 Get 32 bytes from 

subpool 250. 
6.1 

2 	 Ensure that the PIE address is valid 

(for callers with a key of nonzero) 

and in real storage (all callers). 


3 Save the caller's program mask. 

4 	 If this is not the task's first SPIE, save 

the PICA address from the PIE for 

return to caller. 


5 	 If the new PICA address equals 0, set 

'he coller's PSW mask from TCBPMASK. -.11-______+-. 

Free the PI E. ~...... 

6 Repeat Step 2 for PICA address. 

7 	 Set the mask in the caller's PSN with 

the PICA mask. 


8 	 Set the extended PICA indicator for 

page faults if applicable. ABEND if 

unauthorized. 


9 Save the new PICA address in the PIE. 

_I FREEMAIN 

• 

Coller via SVC 3 

...--.----v'1 rRe-,9_ls_,e_r_l___...,

ICompletion code 

X'20E': Invalid PIE address. 
X'IOE', Involld PICA 

address. 
X'30E': Unauthorized 

requester for program 

check code 17. 

TCB 

~ l 	 ~ 




r ( 	 r 

oDiagram 3.6 SPIE Routine (Module lEAVTBOOl 

If, after the execution of the SPIE routine, a program­
check interruption occurs in a program being executed for 
the issuer's task, the information in the PICA determines 
how the program interruption is to be processed. 

If an interruption occurs, the interruption su~ervisor 
stores in the PIE the information needed by the user's exit I 

routine to handle the interruption. This inforlr.aticn 
 I 

includes the program check old PSW and registers 14-2. I 


I 

For the interruption supervisor to pass control to the I 

correct error handling routine, it Rust be able to test for I 

the existence of a user routine. The main function of the I 

SPIE routine is to place in the TCB of the macro-issuing I 

program an indirect pOinter to the user routine. If, afterl 
a program-check interruption has occurred, the supervisor I 

finds an address in the pointer field, it passes control tol 

the user routine to handle the interruption. Otherwise, I 

the supervisor's Program Check FLIH schedules abnormal ter-I 


r------------------------------------------------------------T-------~--------l 

I I ROUTINE I I 

I NarES INAME ILABEL I 

~------------------------------------------------------------+--------+--------~

1 	 If the TCBPIE field equals 0, this is the first tirr,e ISPIE 

that the caller has issued a SPIE macro. A ne~ PIE must I 

be buHt. I 


I
2 For an already existing PIE, only the first word must bel 

tested. I 


I 

4 	 If a PIE exists from the execution of an earlier SFIE, I PICASAV 

the FICA address it contains is returned to the caller I 

in 	register 1. The caller may use this address in a I 

later SPIE macro to restore this PICA. I 


I

5 	 Whenever a caller issues a SPIE macro with nc I RESPM 


operands, a zero PICA address results from the macro I 

expansion. The saved prograrr rr.ask (TCBPMASKl is used to I 

set the program mask in the caller's PSW. Thus, a SPIE I 

macro with no operands cancels the effect of a previous I 

SPIE macro. I 


I

6 If the system is enabled at this pOint, processing must I 


begin again at step 2. I 

I 


If PICAEXT is not equal to zero, the TCBPIE17 tit is setl 

equal to 1 if the user is authorized. I 


I 

8 	 The TCBPIE17 bit makes it possible to avoid inspection I 


of the PIE and PICA every tirr.e a missing page interrup­
 I 

tion occurs. The TCBPIE17 bit equals 1 if the user has I 

provided an exit routine for this type of interruption. I 


I

I 9 	 I ISETNEWPC I

l ____________________________________________________________ ________L________ J~ 

mination of the task whose 

CIl 
CD 
C'l 
rt 

o"". 
:I 

w 

1-3 

1\1 
CII 
lOI" 

CIl 
t: 

'1:'1 
CD 

~ 
"".CII 

o"". 
:I 

00 
U'1 

error caused the program I 




CI 
CIO 

From SVC SLiH to process 
a WAIT request 

Input 

• IGCOOI 
Register a 

Number of events 1 If the specified wait count 

equals 0, return to the caller. 

Register 1 

True form -- Address of 
ECB 

Complemented form - ­	 2 Ensure that the specified ECB I
Address of ECB list addresses are valid (for caller's 

without a key of zero) and in real 

Diagram 3.7 
WAIT Routine 

I .. 
Caller 

Validity Check 

IEAOVLOI 
Test key and 01 ignment. 

3.19 

MODESET Routine 
Output 

For 011 ABENDs 

Enable to reference 

missing pages. 

3.21 Register 1 

• Error
ECB ABTERM 

IEAOABOO 

8.12 

3 If the number of ECBs is less than 
RB the wait count, abnormally terminate Error 

the caller. 

~........~ 
_.....................r....·..··.............··_........................... 

4 	 Determine whether the requester A ~ ~........~ 
"~'""'" oo, ..",.oc•••,,,,, --1 	 &. 

If so, 

........i)'I
..........._.........1................................................,.... ~ 


5 'M'." ~~ ,,'" ........, ............................. ......."'1 	 l... 


storage (all callers). 	 >I Completion code I 
X'201': 	 Invalid ECB ocIdress. 
X'lOl': 	 Number of ECBs is 


less than the wait 

count. 


X'301': 	 Attempt to set wait 
bit that is set. 

1'l[[····.1. 1?UIv. 
RBECBWT 

r,·t •. c 
RBXWAIT 

1.~,:~rlitf:J 
RBWCF 

ECB 

I~""""'+I ~ 
-Wait bitI
h 	....................................................~ ~........-.! IEATCBP=O 
 I

6 	 Apply a real time limit to the waiting 
task if possible. Timer Enqueue Routine 

IEAQTEOO 
7.6 

7 Turn on the explicit wait bit for all 
but STiMER requesters. ......................................~ ~~ 


.. 
To ready task via 
Type-l Exit Routine 

I I" 

lv< 	 l L 



r 	 r 

Diagram 3.7 WAIT Routine (Module'IEAVSY50) 
r------------------------------------------------------------y--------y--------, 
I IROUTINE I I 
I NOTES INAME I LABEL I 
~------------------------------------------------------------+--------+--------~ 

The WAIT routine permits a protlem program or system IWAIT IIGCOOl 
program to stop its execution until a specified nurrter of I 
events have occurred, such as the completion of one or Iforel 
I/O operations. when the specified events have occurred, I 
the POST routine indicates the occurrence of the awaited I 
event or events and makes the program ready (no longer I 
waiting), so that its execution can continue. I 

I 

3 I
The RBECBWT tit in the caller's RB is set when the ECBWT 

caller specifies a smaller wait count than numcer of I 

EBCs. This means that the caller awaits fewer events I 

than the maximum number that can occur. For exarrple, if I 

a WAIT request is fulfilled ty the completion of one of I 

three possible I/O operations, the wait bit set in each I 

of the two ECBS not yet posted is now misleading. If 

the RBECBWT bit is set, the POST routine clears the wait 

bit in each of the ECBs not yet posted, and also clears 

the RBECBWT bit. The misleading indicators are thus 

rerooved. 

4 Wait Decrease PKEY 

Event Flag Wait 

Complete? Set count Action 

Yes NJ\ ;;-0­

Yes NA ¢O 

NO Yes NA 

No No NA 

L-__________________________________ 

Cfl 
(1) 

~ .... 
o 
::l 

w 

1-:3 

III 

en 
~ 

Cfl 

.a 
m 
11 
<:.... 
en .... 
o 
::l 

co 
-.I 

• 	 Reset RBECBWT=O and 
clear wait flags in any 
ECBs in the list. 

• 	 Return via SVC 3. 

• 	 continue frocessing ECBs. 
• 	 Go to Step 5 if this is 

the last ECB. 

• 	 ABTERM -- code X30L 

• 	 set ECB wait flag. 
• 	 Put address of caller·s I 

RB in ECB for POST. I 
• 	 Continue processing I 

ECBs. If this is the I 
last ECB, store wait 
count in RBWCF and go
~~_=~~:_:~_______________1

I 

_____ ____J 

r 
r------------------------------------------------------------T--------T--------, 
I IROUTINE I I 
I NOTES INAME ILAEEL I 
~------------------------------------------------------------+--------+--------~ 
I 6 A time limit cannot te applied if: 	 IWAIT IJSTIME I 
I 	 I I 

• 	 A task in the subtask queue for the jot step is not I I 
waiting. I I 

• 	 The jot-step task has no higher level task 

(TCBOTC = 0). 


• 	 The task is a TSO task. 

• 	 The caller has a key of O. 

• 	 There is no initiator TQE. 

• 	 There is a real job-step TQE on the tiffier queue. 

A task in the subtask queue for the job step has 
issued a STIMER ffiacro in its highest-level RB. 

• 	 WAIT has been called by the STIMER routine. 

7 When STIMER issues a WAIT macro instruction, it is re­
questing an interruption after a timed interval. It is 

not necessary for the WAIT routine to place additional 

time limits on the job step. A STIMER request is calledl 
an implicit wait. I 

I 
Other calls to the WAIT routine are explicit requests. I 
The RBXWAIT bit is set to indicate explicit requEsts. I

l ____________________________________________________________L-_______~ 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

________ J 



Q) Diagram 3.8 (Steps 1-4) 
Q) 

POST Routine 
From SVC SliH to process a POST 
request (at SVC entry point; see 
notes for branch entry points) 

Input 
I .. 

IGCOO2 --,. Vol;d;ty Check 
Register Input (see table 

IEAOVLOI
of "Registers on Entry and 1 Ensure thot referenced addresses are 
Exit" in Section 13 for vol id and in rea I storage, as necessary. Test key and alignment. 
register numbers for various 
entry points): 3.19 

One reg ister MODESET Routine 

Post code 


IGC107 

Enobl e to reference Output 
missing pages. 

Another register 

Add ress of EC B or 3.21 

I 

parameter list for 
interregion posts 

Register 1 

Completion codeI I 
2 Test interregion POST requests for TSIP 

X'102': TSO is not active 
authorization and validity. IKJVAI01 and an interregion 

(Time Sharing POST was requestedi• Interface Program)

I or invalid ECB. 

• 
X'202': The tosk being posted 

TESTAUTH Routine is not in an explicit 
wait; invclid RB. 

IEAVTEST 

Test user's 
authorization. 

3.20 

Add ress of RB ABEND3 If the task being posted is not in anr-­--l explicit wait t this is an invalid request. IGCOOOlC
II 8.14II 
II 
II 
II _-1-------------t 

I ..L.. ---- 4 If the task has already been posted, exit. Co Iler (no output) 

(Continued at Step 5) 

~ L L 



____________________________________________________________ ________ ________ 

r ( r 

Diagram 3.8 (steps 1-4) POST Routine (Module IEAVSY50) 
r------------------------------------------------------------T--------y--------,
I IROUTINE I I 
I NOTES INAME ILABEL I 
~------------------------------------------------------------+--------+--------i 

en 
('D 
n 
rt 
1-" 
o 
::1 

W 

The pos'r routine permits a program (the 'posting" program I POST 
or caller) to signal the occurrence of an event, such as 
the completion of an I/O operation, awaited by a waiting 
program. The routine signals (posts) the event's occur­
rence by altering a bit in a specified ECB (event ccntrcl 
block) shared by both the waiting and posting programs. 

The POST routine also places in the event control block a 
post code supplied by the posting program. The post code 
may later be inspected ty the waiting program, after it 
resumes execution, to determine the type of event that 
occurred. The POST routine determines whether the program 
that is awaiting the posted event can be made ready (wheth­
er all awaited events have occurred). 

If the waiting prograrr can te made ready, and belongs to a 
task of higher dispatching priority than that of thE post­
ing program, the POST routine indicates to the dispatcher 
that a task switch is needed (a ready program having higher I 
priority than that of the caller should be dispatched). Ifl 
a time limit has been applied to the waiting task, it is I 
removed. I 

I 
After branch entries and interregion SVC entries (see I 
table below), POST returns contrcl to the caller without I 
completing its processing if it is necessary to enable I 
to bring the pages into storage. Before returning to I 
the caller, POST provides for an asynchronous reentry to 
itself. It does this by calling GETMAIN to get storage 
for an SQE (supervisor queue element), initializing the 
SQE, and calling the stage 2 Exit Effector tc tegin 
scheduling the asynchronous reentry. This reentry will 
accomplished under the task being posted. The stage 2 
Exit Effector queues the SQE on an asynchronous exit 
queue (see Diagram 3.9). 

Asynchronous reentry protects supervisor routines from 
time-consuming processing involved in ensuring that 
pages are in real storage. In addition, many of POST's 
callers could not tolerate an enabling of the system. 
With asynchronous reentry, the waiting routine, not the 
caller of POST, will incur the missing page 
interruption. 

2 If a TSO task is being posted, the TJB is referenced 
to determine whether the user is in storage. For the 

active user, processing continues. If the task is 

swaFped out, an IPPB (interpartition POST block) is 
created, and the TSIP (Time sharing Interface Prograrr) 
is called to bring the task into storage. POST is then 
called by the RCT (Region Control Task). 

4 I 
~ 

IIGC002 

I 
I 
I 
I 
I 
I 
ITSTJID 
I 
I 
I 
I 
I 
I 
I 
IPOSTTESTI 
~ J 

...;I 

CJ) 

:>I" 

en 

('D '" 
~ 

~ 
1-" 
CJ) 

1-" 
o 
::1 

co 
\D 

III 



\D 	 Diagram 3.8 (Steps 5-10) 
o POST Routine 

Processing 	 Ou 

5 	 If WAIT has not set the wait bit I set the 1.. I .. -. ..... 
complete bit and post code. ......................................'j........................................................~'t...-.! W Ic IPost code 

Coller 

6 	 If the wait count is 0, the waiting task 

is abnormally terminating. Set the 

complete bit and post code 


••••••••••••• Caller 
RB 

7 	 Decrease the wait count. If it is not 

equal to 0, set the complete bit and 

post code. 


• ••••••••••~caller 

8 	 If there are additional ECSs, set the 

complete bits in them, and the complete 

bit and post code in the original ECB. 

Turn off the wait bits in all ECBs. 


9 	 Remove any real time limits placed on 

the waiting task. 


10 Test for a task switch. 


3.16 


IEAODS02 

•••••••••••••~ Branch to caller 
for branch entries 

To caller via SVC 
3 for SVC entries 

l,.\.r 	 L 




_______ ________ ________ 

r t r 

Liagram 3.8 (Steps 5-10) POST Routine (Module IEAVSY50) 
r------------------------------------------------------------T-------~--------, 

1 1ROUTINE 1 1 
1 NOTES lNAME 1LABEL 1 
~------------------------------------------------------------t--------+--------~ 

L_____________________________________________________ J 

1
I 8 
1 

If proccssinq 
enai,leu, POST 

of the EeL; list causes the system 
must begin again at Step 1. 

to be 
1 
IPOST 
1 

1
I 
1 

1
I 
1 

1
110 On branch entries, POST does net effect a task switch, 

1
I 

1
1 

1
I 

1 even if one is indicated. control returns to the call­ 1 1 1 
I er, anu no task swit.ch OCC'HS until the dislOatcher is 1 I 1 
I entered again. I 1 1 

~ ~ 

CIl 
(1) 

~ .... 
g 
Vol 

t-3 
III 
Ul 
~ 

.§ 
CIl 

~ 
<.... 
Ul .... 
o::s 

ID 
I-' 



Ie 
I\) 

Diagram 3.9 
ENQ Routine 

From SVC SLiH to 
process an ENQ req uest 

Input -
~ IGC056 

Regi~ter 1 

Address of parameter 
list 

1 Ensure that referenced addresses are 
valid and in real storage. 

Inval id requests 
ABEND 

IGCOOOIC 

8.14 

Parameter List 

Address of major name 
Address of minor name 

2 If necessary I create the major and 
minor QCBs. 

I' 

3 	 Create a OEL and place it on the QEL 
queue. 

Output 

4 	 If the resource is available, return to 
Callerthe caller. 

I 	
I.:>I Possible return code 

The resource is not available:5 
... 

Dispatcher (3.17) 
Step 1 

• 	 Place the caller in a wait state 

OR 

• 	 Return control and indicate that 
the resource is not available. Coller via SVC 3 

I 

~, L 	 L 




r r r 

Diagram 3.9 ENQ Routine (Module IEAVENQ1) 
r------------------------------------------------------------T-------~--------, 

I I ROU'IINE I I 
I NOTES INA~E I LABEL I 

r------------------------------------------------------------T-------~--------, 

I IROU'IINE I I 
I NOTES INAME I LABEL I 

~------------------------------------------------------------+--------+--------~ 
The ENQ routine, working with the DEQ routine, ~ermits IENQ IIGC056 
programs issuing the ENQ rracro instruction or the RESERVE I 
macro instruction to gain control of a resource or set of I 
resources. The requested resource rray be one or rr,ore data I 
sets, records within a data set, programs, or work areas I 
within storage. The symbolic narre cf the resource, not thel 
actual resource itself, is used by ENQ to control access. I 

I 
The ENQ routine places in a resource queue all resource I 
requests specified in the caller's nacro instruction. If I 
no other ENQ-issuing ~rogram is using any of the requested I 
resources, the ENQ routine, via the Exit routine and the I 
dispatcher, returns control to the caller, which then gains 
access to its resource(s). But if any requested resource 
is already in use by another ENQ-issuing program, being 
executed for another task, the ENQ routine nay {lace the 
caller in a wait condition until the resource becomes 
available. 

2 

3 

4 

ENQ searches the resource queues to determine whether 
the requested resource is already in use. ENQ searches 
the major QCB queue for a rrajor QCB that contains the 
specified qname. If it finds the qname, at least one 
resource in the set of resources is in use, and the rou­
tine then searches the associated minor QCB queue for 
the rname. 

If the requested resource is not in use, as indicated 
by the absence of QCBs with the specified Qname and 
Rname, control is returned to the caller. Depending on 
the input to the service routine, a return code Iray or 
may not be issued, and a QEL mayor may not te con­
structed and placed on the rescurce queues. (Refer to 

ENDMAJ 
jENCMIN 
I 
I 
I 
I 
I 
I 
ICREATQELI 
I I 
ITESTEND I 
I I 
I I 
I I 
I I 
I I 

Figure 3-5 for the various results.) I I I 
l ____________________________________________________________ i ________i ________J 

~------------------------------------------------------------+--------+--------~5 If another requester has access to the resource, as in- IENQ IERRX5 
dicated by a major and minor QCB containing the resource I IRET12 
names, resultant processing depends on the particular I 
RET option that the caller has s~ecified, on the ty~e ofl 
request - ­ shared (S) or exclusive (E)-- and on the I 
types of QELs already on the queue. (Figure 3-6 lists I 
the different forms of resultant processing.) I 

I 
Note in Figure 3-6 that a QEL is constructed and placed I 
on a QEL queue if the requester wants access to the I 
resource and is willing to wait for it. The requester's I 
willingness to wait for the resource is indicated ty a I 
RET option of HAVE, NONE, or the omission of the RET I 
operand. The RET option of TEST never causes creation I 
of a QEL (see Figure 3-7). If RET is USE, a QEL is I 
created only if the requester can have immediate access I 
to the resource. I 

I 
Note that if all previous QELs on the queue and the ~re­
sent request are both for ·shared· resources, there is 
no need for the caller to wait. The new requester and 
those represented by the ·shared­ previous QELs cn the 
queue may share the resource on a task-priority tasis. 
Thus, a requester need not have its QEL at the tcp of 
the ·shared" group of QELs. Any requester represented 
in the shared group may be executed if other requesters 
represented in the group are waiting for an event, such 
as an I/O completion, provided at least cne rrerrcer of 
the grou~ is at the to~ of the queue. Control is 
returned to the caller if the requested resource or 
resources are availatle, or to the current routine of 
the next highest priority ready task if the caller ~ust 
wait because the requested resource is in USE. If the 
caller is to receive centrol, the return path is via thel 
Exit routine and the dis~atcher. But if the current I 
routine of another task is to receive control, the I 
return path is via the dis~atcher only. To determine I 
the appropriate return path, ENQ tests the RE wait ccuntl 
field in the current SVRB. If the RB wait count is 0, I 
all requested resources are available and the caller canl 
receive control. But if the RB wait count is greater I 
than 0, the caller is effectively in a wait condition I 

I and cannot be given control. I
l ____________________________________________________________~________i ________ 

en 
Ct> 
C'l 
cT 
~. 

o::s 
w 

~ 
(II 

~ 

~ 
'l'1 

Ct> 

~ 
~. 
(II 
~. 

o::s 

\0 
W 



\Q 	 r--------------T-------------------------T-------------T----------T------------, r-------------------T---------------T------------------------------------------, 
I I I I Control I I I Type of Previous I I I 
I I I I is Re- I I I QEL and Present I RET parameter I I"" I I I QCB and/or I turned tol Meaning I I Request I is: I Resultant processing I 
I I I QEL Ccn- I Caller I of I ~-------------------+---------------+------------------------------------------~ 
I I Meaning of RET I structed andl With code I Return I 1. The previous I USE or TEST I Sets return code equal to 4 and, via the I 
I RJ:,T Parameter I Parameter I Queued I of: I Code I QEL on the I I Exit routine and the Dispatcher, returns I 

queue is I I control to the caller. A QEL is not con-I 
I TEST I Tests the queues to I no I 0 I Resource isl -exclusive,· I I structed to represent the request. I 
I I determine if the caller I I I availaUe I or the present ~---------------t------------------------------------------~ 

~--------------+-------------------------+-------------+----------+------------~ 

I I can have ilTmediate use I I I I request is I HAVE, NONE or I Places requester into wait condition by I 
I I of the resource. Never I I I I -exclusive- I omitted I increasing SVRB wait count, constructs a I 
I I constructs control I I I I I I QEL and places it on a QEL queue, indi- I 
I I blocks. I I I I I I cates that a task switch is needed, I 

I I branches to the Dispatcher to perform a I 
I USE I Places QCB and/or QEL on I yes I 0 I Resource is I I I task switch. If RET is HAVE, a return I 
I I queues only if caller I I I available I I I code of 0 is also produced and passed to I 
I I can have irrmediate I I I I I I requester after resource becomes I 
I I access to the resource. I I I I I I available. I 

~--------------+-------------------------+-------------t----------t------------~ 

~--------------+-------------------------+-------------t----------t------------~ ~-------------------t---------------t------------------------------------------~ 
I HAVE I Celay can l:e tolerated. I yes I 0 I Resource 'is I 2. The previous I TEST I Sets return code equal to 0 and, via the I 
I I Places QCB and/or QEL on I I I available I QELs and the I I Exit routine and the Dispatcher, returns I 
I I queues. I I I I present re- I I control to the caller. Nc QEL is I 

quest are both I I constructed. I 
I NONE or I Same as HAVE but I yes I no cede I I 'shared,' or I I I 
I omitted I froduces no return code. I I I I ~---------------+------------------------------------------~ 
~--------------+-------------------------t-------------+----------+------------~ 

~--------------+-------------------------t-------------+----------+------------~ 

There is no I NONE or I Constructs a new QEl, places it on a QEL I 
I CHNG I Converts a shared ~EL to I no I 8 I No QEL I previous QEL I omitted I queue, and via the Exit routine and the I 
I I exclusive if (al the QELI I I existed to I for the re- I I Dispatcher, returns control to the I 
I I is shared (b) the QEL I I I be con- I source (that I I caller. I 
I I has control of the I I I verted I is, the QEL ~---------------t------------------------------------------~ 
I I resource & (c) no other I I I I queue is elT,ptyl I USE or HAVE I Sets return code equal to 0, constructs a I 
I I QEL is sharing. I I I I I I new QEL, places it en a QEl queue, and I
l ______________ _________________________.L_____________ J.. __________l._____ __..______ J~ 

I I via the Exit routine and the Dispatcher, I 
I I returns control to the caller. I 

~-------------------+---------------t------------------------------------------~ 
Figure 3-5. Processing if a requested 	 I 3. The caller I CBNG I Sets return code equal to 4 and, via the I 

I does not con- I I Exit routine and the Dispatcher, returns Iresource is not in use. I trol and re- I I control to the caller. No QEL is I 
I source or is I I constructed. I 
I a~ft~ I I I 
I sharing I I I 
t-------------------+---------------+------------------------------------------~ 
I 4. The caller has I CHNG I Set return code equal to 0, changes I 
I control of re- I I QEL to Exclusive and, via the Exit rou- I 
I source and QEL I I tine and Dispatcher, returns control to I 
I is shared with I I the caller. I 
I no other QEL I I I 
I sharing I I Il ___________________ _______________ __________________________________________J~ ~ 

Figure 3-6. 	 Processing if a requested 
resource is in use. 

~ 	 L L 



r ( r 

r------------~-------------------T---------------T----------------------------, 

I Return Code I RE'I'=TES'I, USE, !lAVE I RET=CHNG I ECE= I 


~-------------+-------------------+---------------+----------------------------1 
I 20 I The caller's task I Net used I The caller's task is I 

I I is already en- I I already enqueued but does I 

I I queued but does I I net have control of I 

I I not have control I I resource. No QEL created. I 

I I of resource. I I I 


~-------------+-------------------+---------------+-------~--------------------~ 
I 16 I Net used I Not used I Previous ENQ with ECB I 

I I I I request still pending. I 


~-------------+-------------------+---------------+----------------------------~ 
I 12 I Resource is I Resource is I Resource is perrranently I 

I I permanently I Ferreanently I unavailable. No QEL I 

I I unavailable. I unavailable. I created. I 


~-------------+-------------------+---------------+----------------------------1 
I 8 I The caller's task I No QEL exists I caller's task is already I 

I I is already en- I for the I enqueued and has control I 

I I queued and has I caller. I of resource. No QEL I 

I I control of I I created. I 

I I resource. I I I 


~-------------+-------------------+---------------+----------------------------~ 
I 4 I The resource is inl The caller I Resource is in use and I 

I I use, and the I does not I caller's request has been I 

I I caller's request I have sole I placed on queue. I 

I I has not been en- I centrol of I I 

I I queued. !Only I resource. I I 

I I TEST & USE.) I I I 


~-------------+-------------------+---------------+----------------------------~ 
I 0 I The resource is I Reseurce is I Resource is available and I 

I I available, cr I new under I caller's request has teen I 

I I the caller's I exclusive I enqueued. I 

I I request has been I control. I I 

I I enqueued. I I I 


~ ~ ~l _____________ ___________________ _______________ ____________________________J 

Figure 3-7. 

en 
(1) 

~ .... 
o 
::I 

w 

..;J 
IIJ 
en 
~ 

.g en 

~ 
<:.... 
en .... 
o 
::I 

\Q 
U1 

Return codes for the ENQ routine. 



10 Diagram 3.10 
0\ DEQ Routine 

From SVC SLiH to process 
o DEQ request 

Input 
IGC048 

Ensure that referenced addresses are Register 1 r- ­	 ABEND 
vol id and in real storage.I IGCOOOlC 

Address of parameter list _....I 	 Output 
8.14 

Paramete r List 


Address of major nome 
 2 Ffee Q ELs that represent a request for 


Address of minor name 
 Updated resou ree queuesI 	 a ,"source whose use is now complete. """"':~.""""""""""~I' 

3 	 Free QCBs if there are no mare requests. """"""""""""""""'1 ' 

4 	 Reduce the wait count for the next ENQ 
requester; test whether this requester is 
ready, 

5 	 Test for a task switch to the readied 
requester. 

6 Return to the caller or readied requester. 	 Caller or readied 
routine via SVC 3 

~, L 	 L 




r ( 	 r 

Diagram 3.10 DEQ RoutinE lI"odule IEAVENQ1) 
r------------------------------------------------------------T--------T--------1 
I IROU'IINE I I 
I NOTES INAME I LAEEL I 
~------------------------------------------------------------+--------+--------~ 

When the Frograrr finishes using the resource(s), it IDEQ IIGC048 I 
issues a DEQ macro instruction which causes the DEQ routinel I I 
to remove one or more elements from the request queue and I I I 
to 	reduce the wait count for the waiting Frcgrarr. If the I I I 
wait count is now 0, the CEQ routine, via the E~it routine I I I 
and the dispatcher, may return control to the l'revicusly I I I 
waiting (now ready) program. The program then gains accessl I I 
to its resource (s). I I I 

I I I2 	 To update the resource queues, CEQ searches for the QEL I IPARMLOOPI 
that reFresents a request that should now be dequeued. I I I 
It first finds both a ITa jor CCE and a minor QCE contain-I I I 
ing the specified resource names. DEQ then examines thel I I 
QEL queue associated with the sl'ecified resource. If I I I 
the caller's TCE address matches that stored in one of I I I 
the QELs logically at the tol' of its queue, DEQ dequeuesl I I 
the QEL and, via supervisor linkage to FREEMAIN, frees I I I 
the space that the QEL occupies. I I I 

I I I 
I 3 DEQ examines the QCB queues to determine if any CCE may I I PROCMIN I 

be released. If there are no rrore QELs queued tc the I I I 
miner QCB for the resource, there are no further I I I 
requests for the resource, and the minor QCB can l:e I I I 
released. In this case, DEQ remCves the mincr QCB from I I I 
its queue and frees the space it occupies. It then I I I 
examines the minor QCB queue to decide whether the rrinorl I I 
QCB is needed and can l:e similarly eliminated. If there I I I 
are no minor QCBS queued to the rrajor QCE, there are no I I I 
outstanding requests for the entire set of resources. I I I 
In this case, DEQ remOves the rrajor QCE froIT its queue I I I 
and frees its space. LEQ then processes in a similar I I I 
manner any other input parameters that represent QELs to I I I 
be dequeued. I 

I
4 	 For each SVRB whose awaited resources are available, as I I LOOP1 

indicated by a zero RE wait count, the DEQ routine tEstsl I REDUCE 
whether the associated requester can be dispatched. If I 
the requester's task is of higher disFatching Friority I 
than the caller's, the requester may be dispatched in I 
place of the caller. 	 I 

I
5 	 For each SVRE that has a zero wait count, DEC calls the I ITASKWTH 

supervisor's Task Switch routine to compare dispatching I 

priorities. If the readied requester's TeE has a higher 


en ~riority than the caller's, the Task Switch routine

tD indicates this fact to the disFatcher l:y placing the('l 

requester's TeE address in the -new· TeE pointer,rt 
IEATCBP. 

o"". 
ts 	 6 DEQ returns control to the caller or a readied request­


er, via the Exit routine and the dispatcher. The Exit
w routine dequeues the SVRE froIT its RB queue and frEES 
the space that the SVRE occuFies. The dispatcher 
decides whether to return control to the caller cr tc a 

1-:3 readied requester, depending on the contents of the 
OJ Wnew" TeB pointer, IEA~CEP. If the w new • TeE ~ointer 
CJl contains the address of the current TeB, the dispatcher 
~ returns control to the caller~ Otherwise, the dis~atch­


er returns control tc the requester whose TeE address isl
en 
in the pointer. In this case a task switch has I
c:: 

1M 	 I occu rred. I 
~ ~l ____________________________________________________________ ________ ________tD 

~ 
"".CJl 

o"". 
ts 

I,Q 
~ 



Chart 3-1 (page 1 of 25). ENQ/DEQ/RESERVE 

J 

IGC056 

ENQUEUEC~~~ 

~ 
f'OD 
~ 

98 



Chart 3-1 (page 2 of 25). ENQ/DEQ/RESERVE 

section 3: Task Supervision 99 




Chart 3-1 (page 3 of 25). ENQ/DEQ/RESERVE 

J 


100 



Chart 3-1 (page 4 of 25). ENQ/DEQ/RESERVE 

.J-0 

~ 

Section 3: Task Supervision 101 




Chart 3-1 (page 5 of 25). ENQ/DEQ/RESERVE 

NO 

102 



Chart 3-1 (page 6 of 25). ENQ/DEQ/RESERVE 

section 3: Task supervision 103 




Chart 3-1 (page 7 of 25). ENQ/DEQ/RESERVE 

104 




Chart 3-1 (page 8 of 25). ENQ/DEQ/RESERVE 

Section 3: Task SUpervision 105 




Chart 3-1 (page 9 of 25). ENQ/DEQ/RESERVE 

IGC048 

CA~QUEUQDEQUEUE 

mL/-+ 

~ 
I"i9J 
~ 

106 



Chart 3-1 (page 10 of 25). ENQ/DEQ/RESERVE 

Section 3: Task Supervision 107 




Chart 3-1 (page 11 of 2S). ENQ/DEQ/RESERVE 

108 




Chart 3-1 (page 12 of 25). ENQ/DEQ/RESERVE 

~ ~ 
f1iJ [11]. 
~ V 

Section 3: Task supervision 109 



Chart 3-1 (page 13 of 25). ENQ/DEQ/RESERVE 

DECSVRB 

CA~~ 

~~___N_O~T~RC""':~ 

YES G 

110 



Chart 3-1 (page 14 of 25). ENQ/DEQ/RESERVE 

Section 3: Task Supervision 111 




Chart 3-1 (page 15 of 25). ENQ/DEQ/RESERVE 

NO 8 
~~40-+ 

TSTSHR 

YBS :s OEL 
SHAPED": 

NO 

NO 

SKIP1 

°0 

112 



~;~o "' 
s~~~~ 

YES t::\ 
V 

Chart 3-1 (page 16 of 2S). ENQ/DEQ/RESERVE 

G 
,-__________~::~S~VT(".;,.~ 


YES 

Section 3: Task supervision 113 



Chart 3-1 (page 17 of 25). ENQ/DEQ/RESERVE 

J 


114 



Chart 3-1 (page 18 of 25). ENQ/DEQ/RESERVE 

GETCORE2 

Section 3: Task Supervision 115 




Chart 3-1 (page 19 of 25). ENQ/DEQ/RESERVE 

ADDMINOR 

CA~~ 

116 



Chart 3-1 (page 20 of 25). ENQ/DEQ/RESERVE 

FINDMIN 

CA~~ 

NO 

YES 

Section 3: Task Supervision 117 



Chart 3-1 (page 21 of 25). ENQ/DEQ/RFSERVE 

J 

FINDQEL 

CA~~ 

J 

118 



Chart 3-1 (page 22 of 25). ENQ/DEQ/RESERVE 

CHKLIST 

CA~~ 

REs~-._j~____~ 
Bl 

Section 3: Task supervision 119 



Chart 3-1 (page 23 of 25). ENQ/DEQ/RESERVE 

J 


J 

120 



Chart 3-1 (page 24 of 25). ENQ/DEQ/RESERVE 

GETPAGE VALCOREl 

CA~::-J CA~::-J 

Section 3: Task Supervision 121 



Chart 3-1 (page 25 of 25). ENQ/DEQ/RESERVE 

J 

VALCORE2 ERRX2 

ERRXa'A3 
DE~- NO ~EL.CA~::-J LRE~8y ~H~RE. 

122 





I-' 
tv Diagram 3.11 
~ Stage 1 Exit Effector 

From SVC FLiH to begin scheduling 

Input 
an asynchronous exit routine 

IGC043 

Register 0 

Entry-point address of 
exit routine 

ATTAC 
branch 

IGC043BR 

Register 1 

Option bits {work area 
size} -, 

1 Obtain storage for an IRS or TlRB. 
GETMAIN Routine 

RMBRANCH 

6.1 

2 Obtain a work area if requested with IRB. 
Output 

3 Obtain save area if requested with I RB. 

Register 1 

Address of IRB or TlRB 

L ___ 
4 Initialize IRS or TIRB. 

IRBorTiRB 

For branch entries, 
to caller via branch 

For SVC entries, to 
caller via Type-l 
Exit routine 

~ L ~. 




r r 	 r 

Diagram 3.11 Stage 1 Exit Effector (Module IEAVEFOO) 
r------------------------------------------------------------T-------~--------, 

I IROUTINE I I 
I NOTES INAME ILABEL I 
~------------------------------------------------------------+--------+--------~ 

A user program may request the future execution of an IStage 1 IIGC043 
exit routine to handle an unpredictable event, such as an IExit 
end-af-task condition, expiration of a timer interval, er I 
special I/O handling (fer example, tape label checking or I 
I/O error checking). 	 I 

I 
The scheduling of user exit routines, called asynchronous I 
exit routines, is handled cy three supervisor routines: I 
the Stage 1 Exit Effector, the Stage 2 Exit Effector, and I 
the Stage 3 Exit Effecter. Note that these routines do notl 
schedule the execution of user frogral(l-check l:outines. I 
ABEND processing that results from a program interruption I 
can be intercepted by a SPIE macro instruction cr, in the I 
absence of SPIE, by a STAE macro instruction. See Diagram I 
3.5 for a description of the SPIE routine. 	 I 

I 
Through the exit effectors, a supervisor routine can also I 
request that a superviscr service be deferred until the I 
supervisor routine can cperate under the TCB of the task itl 
is servicing. This prevents page faults at tirr·es when sys-I 
tern integrity or performance might te impaired. I 

I 
The Stage 1 Exit Effectcr is called by supervisor or data I 
management routines. Its purFose is to create and initia- 1 

lize, according to input ~arameters, either an IRB (inter- I 
ruption request block) to control a user exit rcutine whose 
future use is requested ty the caller, or a TIRB (task 
interruption request block) that permits the su~ervisor to 
defer execution until it can execute under the TCE of the 
task being serviced. 

Data management routines enter the Stage 1 Exit Effecter at 
IGC043 to begin scheduling routines that handle asynch­
ronous events. 

The ATTACH routine enters at IGC043BR to create an IRE and 
a TIRE for a new subtask. 

2 	 The caller uses the work area to build IQEs (interrup­
tion queue ele[llent.s). For exalt",le, the ATTACH rcutine 
builds an IQE for each asynchronous exit routine. 

3 	 The information ",laced in the IRB during initialization 
en 	 includes the save area address, the entry-pOint address
(1) of the user exit routine, the size of the RB, and theo psw to be loaded to start execution of the asynchronousrt .... 	 exit routine• 

L____________________________________________________________i ________i ________Jo
::s 
w 

>'3 
~ 
IJJ 
:>;' 

enc: 
'0 
(1) 

~ .... 
IJJ .... 
g 
~ 
N 

U1 




... Diagram 3.12 

'" Stage 2 Exit Effector 

'" From supervisor and data management 
routines to perform the second step in 
scheduling an asynchronous exit routine 

Input Output 
IEAOEFOO 

Register 1 

IAddress of IOE, ROE, or 
SOE 	 Calling routine has built an IOE, ROE, Register 1 

or sa E. Queue it on the appropriate 
exit queue. or[======!=======::!:="-.I Address of IOE, ROE,......., sa E in true form
IQE: Complemented address 


ROE: True address, high­
 ~E~AroJ 
order byte=X'OQ' 

SaE: True address, high­ ~E~MOA 

order byte=X'40' 
roE~MOS 

2 Set the Stage 3 switch for the dispatcher".' i ~L'_EA_OD_S_Ol___----l 

111_ •• Branch to 
• caller 

L 	 L·
'­



r r 	 r 

Diagram 3.12 stage 2 Exit Effector (Module lEAVNUOO) 
r------------------------------------------------------------T-------~--------, 
I IROUTINE I I 
I NOTES INAME I LABEL I 
~------------------------------------------------------------+--------+--------i 
I 1 'I'he exit queue on which the Stage 2 Exit Effecter I'laces IStage 2 IIEAEFOO 
I the input queue element depends on whether the queue IExit I 
I element is an IQE (interruption queue element), an RQE IEffector 
I (request queue elerrent), or an SQE (supervisor queue 
I element). 

Type of Type of 
Queue Exit 
Element Purpose Queue 
-m-- Supervisor routine wants to AEQJ 

schedule an asynchronous 
exit routine. 

RQE 	 Data management routine AEQA 
wants to schedule an 
asynchronous routine. 

SQE 	 Supervisor wants to schedule AEQS I 
an asynchronous su~ervisor I 
service. I 

I
2 	 This indicates to the dispatcher that an I 

asynchronous event is available for scheduling and I 
causes the dispatcher to call the Stage 3 Exit I 

I Effector. 	 I IL____________________________________________________________ ________L ________J~ 

en 
Cb 
C"l 
rt 
1-" 
o 
i:j 

w 

t-'3 
QJ 
en 
:;.;' 

enc: 
ttl 
Cb 

~ 
1-" 
en 
1-" 
o 
i:j 

... 
-..I '" 



I-> 
!oJ 
co 

Input 

Any queue elements on 

their exit queues: 
SOE on AEOS 
10E on AEQJ 
ROE on AEOA 

Branch entry from the dispatcher when 
the Stage 3 switch is set, to complete 
scheduling an asynchronous exit routine 

Processing 
IEAOEF03 

Schedule any available SQEs: 

• 	 Queue SO E to TlRB. 
• 	 Activote the TIRB and queue to 

the T(B. 
• 	 Check for a tosk switch. 

2 	 Schedule any available IQEs: 

• 	 Queue JOE to IRS. 
• 	 Activate the IRB and queue 

it to the TCB. 

• 	 Check for a task switch. 

3 	 Oueue ovoiloble ROEs to IRB. 

4 	 Queue ROEs for the system error task 
to an SIRB. 

Diagram 3.13 (Steps 1-4) 
Stage 3 Exit Effector 

~"""+0 Output 

SQE, 10E, or ROE 

iIEAODS01--l 

•••••••••••••• 	Dispotcher (3.17) 
Step 1 

L L 	 L 




________ ______ __ 

____ ____________________ _ _________________ ________ ________ 

r ( 	 r 

Diagram 3.13 (Steps 1-4) Stage 3 Exit Effector (Module IEAVNUOO) 
r------------------------------------------------------------T-------~--------l 

I 	 IROUTINE I I 
I NOTES 	 INAME I LABEL I 
r------------------------------------------------------------+--------+--------~ 

The dispatcher enters the Stage 3 Exit Effector when it IStage 3 IIEAOEF03 
finds that Stage 2 has Flaced at least one element on IExit I 
an asynchronous exit queue and turned on IEAODSOl tc signallEffector 
that an asynchronous' exit routine or asynchronous event is 
ready for scheduling. 

SQES represent a request for a supervisor service cn an 
asynchronous basis. An SQE cannot be processed if: 

• 	 The TCB that the SQE Foints to represents a task 
responsible for setting the supervisor lock (set 
if a disabled Fage fault occurs). 

• 	 The SQE is in Furge status (Bit 0 of SQEFLAGS=1) 

ABTERM uses the SQE/TIRB processing to schedule ABEND. 
If the TeB is being abnormally terwinated, only the 
special ABTERM SQE will te scheduled. 

2 An IQE cannot be processed if: 

• 	 Asynchronous events are not allowed for thE task 
requesting the exit routine. 

• 	 A TIRE is at the top of the TeB's RB chain. A task 
can become interlocked if it depends on asynchronous 
processing represented by a TIRB occuring tefore 
processing represented ty an IRB. 

• 	 The TCB that the IQE represents is the task responsi­
ble for setting the supervisor lock. 

If an IQE exists, the Stage 3 Exit Effector determines 
whether its IRB is a norwal IRB or an attention IRB for 
a TSO task. 

If the IRB is not an attention IRB (RBATNXIT=1), execu­
tion continues with the chaining process. If it is an 
attention IRE, the TeB associated with this IRE and all 
lower-level tasks in this user·s task structure are 
checked to determine whether attention exits and asynch­
ronous exits are permitted. If not, processing con­
tinues with the next IQE. If these exits are ~ermitted,en the IQE is scheduled by gueueing the IQE in the usualIII 

:+ 
 manner.

L____________________________________________________________ 

.... 
o 
tj 

w 

1-3 

III 

CJl 

~ 

t5 
en 

III 

Ii 

<I
.... 
CJl.... 
o 
tj 

.... 

'" 
'" 

IRBINTL 

~ ~ 

r------------------------------------------------------------T--------r--------, 
I I ROUTINE I I 

I NOTES INAME ILABEL I 

~------------------------------------------------------------+--------+--------~

3 The same limitations that apply to IQEs apFly to RQES. IStage 
IExit 

3 I 
I 

Effector 

4 One or more of the RQEs nay refresent a request ty an 
I/O routine for the use of a system error handling 
routi~e. 

For each RQE representing a request to use an error rou­
tine, Stage 3 tests first whether a special system requ­
est block is Wactive,W that is, already queued tc its 
system error TCE. The systerr. error TCB is a permanent 
TCE of high priority whose current RdummyW RE is ncrrral­
ly in a wait conditicn. The request tlock that repre­
sents a system error handling routine is called the sys­
tem interruftion request tlock, or SIRB. 

If the SIRB is already queued to the system error TeB, 
the Wactive W bit (RBFACTV) is set in the SIRE·S status 
field. In this case, the error routine has already been 
scheduled for another request. The new request rrust 
then be deferred and await the next execution of Stage 
3, when the dispatcher is next entered. I 

I 
If the SIRE is not Wactive,R that is, not queued tc the I 
system error TeE, Stag€ 3 removes the ~QE from its asyn­ I 
chronous exit queue and queues it to the SIRE. Stage 3 I 
then initializes the SIRE. As part of this initializa­ I 
tion, it sets the RB old PSW to rrovide reentry to the I 
werror fetch sequenceR (ERFETCH) of Stage 3. I 

I 
Besides altering the RE cld PSW, Stage 3 queues the SIRB I 
to the system error TCE. I 

I 
After stage 3 queues the SIRE to the systerr errcr TeE, I 
it defers subsequent error requests on the RQE queue. I 
~hese requests are not processed until the SIRE teccrres I 
Winactive,· removed frcm its TeB during execution of the I 

.~~~~~~~~____ I~ I~ IJ 



.... 	 Diagram 3.13 (Steps 5-7) 
o 
w 	 Stage 3 Exit Effector 

From the dispatcher to find an 

error recovery routine and pass 

control to it 


processlng 	 o 
CDSEARCH Routine 

-->.. 
IEAQCDSRERFETCH 

4.2 

IEAWMSR Routine 

5 	 Call contents supervision to search 
for the requested error recovery 
routine. 4.4 

Register 1 
.......
~ 	 Completion code J 

X'8061: Routine could
ABTERM not be fou nd. 

IEAOABOO 

8.12 

MODESET Routine 

6 Ensure that it is in real storage. 
IGCI07 

3.21 

From the )r recovery .....routine t, hedule its Error recovery 
next pha routine 

Input I .. 	
~ 

IECXTLER 

Register 13 
Register 15 

Binary code identifying ..... 
Dispatcher (3.17) Entry point of errorthe next phase of the --- 7 Set up for reentry to ERFETCH. 


error recovery routine 
 Step I 	 recovery routinel J 

~ l 	 ~ 




________ 

r 


CIl 
/I) 
C'l 
rt.... 
o 
t:S 

w 

~ 
en 
:01" 

CIl 
c:= 
Itj 
/I) 

~ .... 
en .... 
o 
t:S 

... 

W... 


( (' 
Diagram 3.13 (Steps 5-7) Stage 3 Exit Effector (Mcdule IEAVNUOO) 
r------------------------------------------------------------T-------~--------, 

I IROUTINE I I 
I NOTES INA~E I LABEL I 
~----------------------------------------------------------+--------+--------~
I 7 Successive phases of error routines are scheduled ty IStage 3 I I ECXTLER I 
I the Stage 3 Exit Effector; a systell' error routine IExit I I 
I branches to IECXTLER, which causes ERFETCH to be IEffector I I 
I reentered to search for the next phase. I I IL____________________________________________________________~_______~ J 



Diagram 3.14... 
W Exit Routine 
IV 

From user or system programs (except 

type-l SVCs) to handle exiting from 

th ese prog rams 


Input -
IGCOO3 

Current TCB 1 	If a caller is a user program check routine, 

see the notes for this step. 


Next Higher 
Level RB 

2 Free STA control blocks. 

Exiting RB 

3 Perform special processing based on the Last program for the 
End-of-Task (EOT)type of RB that represents the completed task is exiting 
Routine program. 

8.3 

4 	Adjust the dispatchobility of the task as 
required. Output 

I5 	If the next higher level RB is waiting, 
or the task is not dispotchable f force 
a task switch. ;>t IEATCBP=O I 

I 

J 
6 Free the RB of the completed program. Dispatcher (3.17) 

Step I I 

~ <. 	 \., 




r r 	 r 

Diagram 3.14 Exit Routine (!(odule IEAVETOO) 
r------------------------------------------------------------T--------T--------, r------------------------------------------------------------T--------T--------, 
I I ROUTINE I I I IROUTINE I I 
I NOTES INAME I LABEL I I NOTES I NAME ILAEEL I 
r------------------------------------------------------------+--------+--------i ~------------------------------------------------------------+--------+--------1 

The Exit routine, a tYFe-1 SVC routine, handles the exit- IExit IIGC003 The RBOPSW is constructed from two IExit 
in9 procedures for programs other than type-l SVC routines. I Routine different sources because (1) the user I 
Problem programs or systelTi programs gain sU'fervisor- program-check routine has the option I 
assisted linkage to the Exit routine ty issuing a RETURN of sFecifying a return Foint in the I 
macro instruction; type-l SVC routines obtain a similar interruFted Frogram that is different I 
result by using an SVC 3 instruction. from the point of interrupticn, and I 

therefore may store this return address I 

The Exit routine determines the type of program that is in the right half of the prograIr old PSW 

exiting. The program can be a user Frograw-check exit rou­ in the PIE; and (2) the user program­

tine, an asynchronous exit routine, an svc routine, a user check routine rray have accidentally 

program, or a supervisor routine operating under a TIRE altered the left half of the program old 

(task interruFtion request tlock). For each tYFe of exit ­	 PSW stored in the PIE. 
ing program, some special processing is performed. 

The Exit routine branches to the 

If the completed program was the first-executed Frogram of dispatcher, which returns control 

its task, and therefore is considered to be at the "highest to the interrupted user program. 

control level- within that task, the Exit routine reco­

gnizes an end-of-task condition and branches to the End-of­ 2 If the returning program is not a user Frogram-check 

Task routine (EOT) to perform norrral termination of the routine, the Exit routine examines the SCB (STA control 

caller's task. block) queue pointed to by the TCBNSTAE field in the 


TCB. If there are no SCBs or if ABEND is in progress, 

The Exit routine dequeues the RE under which the COITFleted the SCL processing is by~ssed and Exit determines the 

program was operating for all types of comFleted programs FB type. Exit removes from the queue and frees all SCBsl 

except user program-check routines, which have no REs. If for the exiting prograII exceFt those SCBS for which the I 

the RE had been dynamically acquired, the Exit routine exiting program issued a STAE macro instruction with thel 

frees the space occupied by the RE. XCTL option. The search of the queue terminates when ani 


SCB is found for an RB other than the RB for the exiting I 

The Exit routine branches to the disFatcher. program. When the RE for the Frogram that is exiting is 


the last PRB, Exit frees all SCBS, including those for 
User program- • Ensure that PIE is in real storage. EDUX STAI. 
check routine 
(no RB) • Restore interruFted routine's registers 3 Exit determines the tYFe of Frogram that is exiting by 

from lew storage to the TCB general examining the RBSTAB field of its associated request 
register save area. Registers 14-2 are block. This RB is always first on the RB queue when 
restored from the PIE to the TCB general Exit is entered. DeFending on the type of RE, the Exit 
register save area. 	 routine performs special processing. 

• 	 Clear first-tirre lcgic switch in the User program • Restore user's registers from lo~ EDTR 
PIE to mark the PIE inactive for the (PRB) storage to the TCB general register 
prograw interruption FLIH. An actiVE 	 save area. 
PIE leads FLIP to interpret the 
progra~-check interruption as cccurring • If the returning user program is the 
in the program check routine, causing last to be executed for the task,en abnormal terrrination of the current 	 branch to the EOT (End-of-Task) rou­I1l task. 	 tine to perform normal taskg. termination . .... • Set uF the RB old PSW in the interruFted 

o program's RB. The Exit routine takes Exit routine branches to EOT routine.
::l thE left half from the left half cf the 

SVC old PSW, and the right half froIr • Go to CDEXIT to determine whether therew 
information in the PIE. The PSW infor­ are other requests for use of the com­
maticn in the PIE is in EC rrode. pleted Frogram, and to prepare for re­____________________________________________________________i ________i ________ J entry to the program if there are such 

f.;J requests. After CDEXIT, execution con­
III tinues at Step 4.en 
:>I" 

• CDEXIT tests whether the exiting Frograml ICDEXIT 

en has a CCE (contents directory entry); I I 


the existence of a CDE is indicated in I I.a the CDE field of the PRB. If there is I II1l no CDE, the exiting program was entered I I11 via the SYNCH macro instruction, which I I .... 	 nct build case, 

.... 
-= does a CDE; in this the I I 
en CDEXIT routine returns control to Exit. I I 

If there is a CDE, CDEXIT continues I Io processing. I IL-_____________________________________________________ ______ ________ ________J~ ~::l 

i-> 
W 
W 



,.. r------------------------------------------------------------T--------T--------, r------------------------------------------------------------T-------~--------, 

I IROUTINE I I I IROUTINE I Iw 
~ I NOTES INAME I LABEL I I NOTES INAME I LABEL I 

~------------------------------------------------------------+--------t--------~ ~------------------------------------------------------------+--------+--------~ 
CDEXIT finds the major CDE associated IExit Type 2, 3, • Exit restores the registers belonging IExit IEDSVRB I 
with the PRB of the complete routine, or 4 SVC to the caller of the completed SVC I I I 
and then reduces the use/responsibility routine routine from the SVRB register save I I I 
count in the najor CDE. CDEXIT updates (SVRE) area to the TCB general register save I I I 
the RB address in the CDE so it points area. Execution continues at step 4. I I I 
to the next PRE that will control the I I 
program. This next PRB is associated IRB, SIRE, • Processing of a completed program I SKIPATTNI 
with a task different from that cf the or TIRB controlled by an SIRB continues at I I 
caller. Step 4. I I 

I I
CDEXIT makes the new PRB ready by plac­ IRB or TIRB • If there are additional requests for ISKIPATTN 
ing 0 in its wait count field; the dis­ use cf a program represented by an I 
patcher will test this field before dis-I IRB or a TIRE, prepare the program for I 
patching the program. CDEXIT also sets I reuse ty setting up the HB old PSW and I 
the right half of the old PSW field in I the TCB general register save area. I 
the new PRB, in preparation for later I I 
entry to the contents supervision at I Exit branches to the dispatcher. I 
IEAQCS03 in CDEPILOG (Diagran 4.2). I I 

I • If there are no additional requests for WAITEST 
The CDEPILOG subroutine is executed whenl use of a completed module, Exit calls 
the dispatcher recognizes the ne~ FRB's I the WAIT routine at JSTI!(E, to test if 
task as the highest priority ready task. I all the RBs in the region are in a wait 
(CDEPILOG performs final preparation fori state without any time limitations. 
linkage to the requested progra~.) I WAIT' applies time limits if there are 

I none. Execution continues at Step 4. 
After preparing the next PRE to control I 
the program, CDEXIT branches to the Taskl TSO Task • Start all subtasks via a branch entry IKJATTN 
Switch routine. This routine tests I with to IGC07902 (Diagram 3.18). 
whether the TCB for the previously wait-I Attention IRE 
ing PRB nay replace the current TCB. I 
The Task Switch routine returns control I • Free the TALE. 
to CDEXIT. I 

I Execution continues at SKIPATIN, see 
If there are nc other requests fcr the I CDHKEEP above. 
exiting program, CDEXIT uses its subrou-I 
tine, the CDHKEEP routine. CDHKEEP setsl 4 If the TCBSTPPR flag is set, indicating that a task is EDNEXT 
the "nonfunctional" flag in the CDE to I to be set nondispatchable when no longer executing a 
indicate that the progran; has been I privileged program (RBATTN=O for all RBS), a search of 
executed. Although this flag is meanin-I the RB queue is necessary. 
gful only for nonreusable prcgrans, it I 
is always set at this point. I 5 No task switch is made if NEW does not equal OLD 

I already. 
CDHKEEP tests the use/responsibility I 
count in the CDE to determine whether I 6 Exit then sets the RE for the exiting program inactive IEDACT 
there are other requests for the exiting I and removes it from the RB queue and frees, if possible, I 
program. If the use/responsibility I the RB area. If the exiting RB is an IRB with a problem I I 
count is not 0, there is at least one I program save area, the save area is also freed. Exit I I 
outstanding request for the program, and then branches directly to the dispatcher. I IL____________________________________________________________ ________ ________J~ ~CDHKEEP returns control to Exit (or to 

CDHKEEP's caller). 


If, however, the use/res~onsibility 


count is 0, there is no outstanding 

request for tile ~rogram. In this case, 

thE routine tests the program's 

attributes. 

If the program's storage can be freed, 

either the C[;PURGE subroutine in 

GETMAIN, or ancther subroutine of Exit 

routine (CDDESTRY), frees the storage. IC[;DESTRY I 


I I 
Control returns to the Exit routine I I 
(step 4), or another caller. I I I

L____________________________________________________________ ________ ________ J~ ~ 

l \..'-' 



Chart 3-2 (page 1 of 11). Exit routine 

section 3: Task Supervision 135 




Chart 3-2 (page 2 of 11). Exit routine 

136 



Chart 3-2 (page 3 of 11). Exit routine 

~0-+ 
EDTNX 

Section 3: Task supervision 137 



Chart 3-2 (page 4 of 11). Exit routine 

m0'-' 
EDREN 

fO't\.LJ-' 

NO 

YES 

~ 
I"DD 
~ 

138 



Chart 3-2 (page 5 of 11). Exit routine 

PTR 

J 

PTRr:-= TCB 

Section 3: Task Supervision 139 



Chart 3-2 (page 6 of 11). Exit routine 

J 


J 


J 

140 



• Chart 3- 2 (page 7 of 11). Exit routine 

J-ES 
t!J 


Section 3: Task Supervision 141 




• Chart 3-2 (page 8 of 11). Exit routine 

J 


J 


142 



Chart 3-2 (page 9 of 11). Exit routine 

YES 

Section 3: Task supervision 143 




NO 

Chart 3-2 (page 10 of 11). Exit routine 

o 
A2 ~
 

CDHKEEP 

CA~::=J 

.,l 


144 



• Chart 3-2 (page 11 of 11). Exit routine 

A2l' 
CDDESTRY 

CA~~ 

L 

Section 3: Task Supervision 145 



.... 
l= 
0\ 

From type-l SVC routines to return 
control to the caller of the type-l 
SVC routine if possible 

Input 	 Processing 
••~IIEAOXEOO 

IEATCBP+4 I .. -------, 	 Indicate that registers are no longer 
saved in the low storage SVC save 

TCB area. 
I 
I 
I 
I 
I--l 
I 

I 2 If the col fer has indicated the need 
I for a tosk switch or has been abnormally 

I terminated, go to Step 6. 
IEASCSAV+8 I 
Low storage SVC save area IL_____ 

Registers belonging to 3 If the caller of the SVC routine is a 

the caller of the type-l nonpageoble task t go to Step 5. 

SVC routine 

4 	If the NSI for 0 disabled pegeable 
task is not in real storage I go to 
Step 6. 

5 	Set up STOR to point to the user 
segment table, restore the caller's 
registers, and pass control to the caller 
of the SVC routine. 

6 	Save information for eventual return 
to the caller of the SVC routine. 

Diagram 3.15 
Type-1 Exit Routine 

Output 

IEATYPEI 

~"""',.. ~"""",,...~ "0 ~ 
..""~ 

• 6 

t 5 

• 6 

STOR 

Address of user segment table 

•••••••••••••• 	LPSW to the 
caller of the RB TCB 

SVC routine 

Branch to the 

Dispatcher (3.17) 
Step 1 

L l 	 L, 




(
r 	 r 

Diagram 3.15 Type-l Exit Routine (Module IEAVNUOO) 
r------------------------------------------------------------T-------~--------, 

I IROUTINE I I 

I NOTES INAME ILABEL I 

~------------------------------------------------------------+--------+--------~ 

The Type-1 Exit routine returns control following executionlType-l IIEAOXEOO 

of a type-1 sve routine. It determines whether control IExit I 

should be returned directly to the caller of the sve rou- I I 

tine or to the dispatcher. It passes control to the dis- I I 

patcher if the SVC routine has indicated the need fer a I I 

task switch by altering the "new" TeB pointer, IEATCBP, or I I 

if a disabled page fault would be incurred by passing ccn- I I 

trol directly to the caller. I I 


I I

1 	 Type-1 Exit is entered from any type-l SVC routine via a 

branch. Its first step is to set the type-l switch to 
zero. ABTERM USes this switch to determine ~hether a 
type-l SVC routine called it. 

2 	 Some type-l sve routines can place a task in a wait con­

dition or make a program ready, thus requiring a task I 

switch. The Type-l Exit routine tests IEA'l'CEP and I 

IEATCB+4. If the pointers are equal, no task switch is I 

required. I 


I 

If the task is being abnormally terminated, control alsol 

goes to the dispatcher. I 


I 

4 	 This branch to the dispatcher should not occur often, I 


because it neans a disal:led routine was exposed to page I 

faults. The dispatcher handles this special ccnditicn. I 


I 

If the caller of the SVC routine is a disabled task and I 

the NSI is in real storage, or it is a pageable task butl 

is not disabled, the Type-l Exit routine returns ccntroll 

to it. I I


l ____________________________________________________________ i ________i ________J 

en 
m 
~ .... 
o 
i:::1 

w 

>'l 

III 


~ 

.a 
en 

m 
Ii 
<:.... 
en .... 
g 
I-' 
~ 
...J 



00 

~ 
l!:: 

From supervisor routines to test 
for Q tosk switch 

Input 

••~IIEAODS02Register 10 


Address of input TCB L...-..,
-·~-I 

I 1 	 Compare the priority of the input TCB 

I 	 with the priority of NEW (or OLD, if 

NEW = 0). 

CVT 
• If input priority is lower 

• If the input priority is higher 

2 	 If the tosks are members of a time­I TCBFTS 1..--.1-------­ slicing group 

3 	 If the tasks are APG members (see 
exception in notes). 

4 	 If the input TCB is lower than the 
current TCB on the ready queue. 

5 	 If the input TCB represents a 
dispotchable tosk f indicate a task 
switch. 

Diagram 3.16 
Task Switch Routine 

Output 

IEATCBP = address of 
input TCB 

I 
~ 


I 

•••••••••••••• Caller I


5 	 I

I

I

I

I 


•••••••••••• Coller I

I

I 


•••••••••••••~caller I

I

I

I 


............~Caller I

I

I

I 


~""""'~ ~"""""~ 
•••••••••••••• caller 

~ L, 	 L 




(' 	 ( r 
.Diagram 3.16 The Task Switch Routine (Module IEAVNUOO) 
r------------------------------------------------------------T-------~--------~ r------------------------------------------------------------T--------T--------1 
I IROUTINE I I , ,ROUTINE I ,
I NOTES I NAME , LABEL I I NOTES 	 'NAME 'LABEL , 
~------------------------------------------------------------+--------+--------~ ~------------------------------------------------------------+--------+--------~

The Task Switch routine is used by any disai::led sUF,ervisor 'Task IIEAODS02 3 If Task Switch is co~paring two tasks that are members ITask I 

routine that wants to determine whether a newly readied ISwitch of an APG (automatic Friority group; TCBAPG = 1), and iflSwitch I 

task, which may be of higher priority than the caller of , the newly readied task is I/O oriented (TCBCFU = 0) and I ,

the supervisor routine, should te dispatched in place of , the comparison task is CPU oriented (TCBCPU = 1), Task, ,

the caller's task. I Switch may signal a task switch (based on SteF 5). , ,
, I ,
A supervisor routine can enter the Task Switch routine I 4 Task Switch examines the task queue, beginning with the , ISWNEXT 
after it has reduced a rrogram's RB wait count to 0, or I comparison task's TCB. If it finds a task of lower' I 

after it has cleared a nondisFatchability flag in a TCB. , priority than the inFut task before it reaches the input I ,

For example, the POST routine may make ready a program that, task's TCB, or reaches the end of the task queue i::efore , , 

was awaiting the completion of an I/O operation, or the DEC it finds the input task's TCB, Task Switch may signal a , ,

routine may make ready a rrogram that was awaiting a seri­ task switch (based on SteF 5). " 

ally reusable resource. In either case, the sUfervisor 
 I I
routine dces not know if the readied routine belongs to a 5 The following tests determine whether the TCE address ofl ISWSETNEW 
task of higher priority than that of the caller, and does the input task can i::e placed in IEATCBP, and thus 
not know whether it should reFlace the caller as the cur­ brought to the attention of the dispatcher:
rently dispatchable program. The supervisor routines use 

the Task Switch routine to resolve these questicns. • Task must he dispatchable (TCBFLGS=O). 


First, Task Switch checks IEATCBP, the NEW TeB Fcinter. • Highest RB level of the task cannot be waiting (REWCF

Normally IEATCBP contains the address of the TCB belong­ f[lust equa 1 0). 

ing to the task that will be next dispatched. IEATCEP 

Foints either to the TCB of the caller's task, to the If the supervisor lock is set (CVTSYLK = 1) and the 

TCB of a preViously readied task, or is O. If IEATCEP newly readied task is responsible for it, then the 

is not 0, Task Switch compares the priority in the TCB task is disFatchai::le. If the task is not responsible

that IEATCB points to with the priority in the input for the supervisor lock, and it wishes to disatle cr 

TCB. 	 it is already disatled, it is not a dispatchable task. 


Otherwise, the task is disFatchable. 

l ____________________________________________________________ ________~________~If 	the first word of the TCB pointer equals 0, Task 

Switch compares the disFatching Friority of the newly 

readied routine to the priority in the TeB pointed to by 

IEATCBP+4, the OLD TCB pOinter. ,
, 

2 	 The Task Switch routine tests the time-slicing bit in , 

the TCBs. If either task is a member of a time-slicing , 

group (TCBFTS = 1), Task Switch cannot indicate a task I 


CIl 
(I) 
o 
rt 
~. 

o::s 
w 

1-3 
III 
(/) 

~ 

CIl
s:: 
'0 
(I) 
Ii 
<: 
~. 

Ul 

o 
~. 

::s 

I-' 

'" ~ 



p Diagram 3.17 
UI Dispatchero 

From supervisor routines to 

dispatch on eligible tosk 


Input 	 Processing 
IEAODS 

IEATCBP (NEW) I 	 14-~- - - - - --1-1 Detennine the next tosk whose current 

I 	 ...JIEATCBP+4 (OLD) 	 routine is to be given control. 

2 	 If NEW = OLD, go to Step 6, and 
give control to the task pointed to 
by OLD. 

3 	 Save the status of OLD. Output 

PSW 

4 If the NEW task is indicated, go to From RBOPSW 
Step 6 and give control to NEW. 

All registers 

~TCBGRS 

5 	 Neither NEW nor OLD is ready. 
Search for an e I ig ible task. 

Register 0 

Address of TCB, or 0 

Register 156 Ensure storage protection. Ready Task 
Return code :J

From the paging 
X'OO': Successfu I 
X'04': No action taken 

IEAODSl 

Register 1 

I 
Register 1 


X·OO I : Select a task to set I 14­ 7 Set the task dispatchoble or non­ Address of selected job­
nondispatchoble dispatchoble. •••••••••••••~ Paging supervisor step TCB, or 0 

I 
Register 15 


X'04': Select a tosk to set 
 IEAODS2 
Return code J 

dispotchable I 
X'OO': Region selected 
X'04': No selection 

8 Select a region for migration to a possible 
secondary paging device. •••••••••••••~ Paging supervisor 

L, L 	 L 




r ( 	 r 

Diagram 3.17 Dispatcher (Module IEAVNUOO) 
r------------------------------------------------------------T--------y--------, r------------------------------------------------------------T--------T--------,
1 IROUTINE 1 1 1 	 IROUTINE 1 1 

1 NOTES 1NAME 1LABEL 1 1 NOTES 	 1NAME 1LABEL 1 

~------------------------------------------------------------+--------+--------i r------------------------------------------------------------+--------+--------i

Upon entry to the dispatcher, OLD (IEATCBP+4) contains the IDis- IIEAOtS 3 The dispatcher saves registers in the TCB and calls IDis- IDSWTASK 1 

address of the last user routine's TCB to have control lpatcher the Timer Dequeue routine to dequeue all task TQES on lpatcher I 1 

before the supervisor. NEW (IEATCBP) contains the address 1 the timer queue. 1 1 1 

of the TCB for the program to receive control next, or 1 1 1 1 

equals 0, indicating that the dispatcher is to determine 1 5 The dispatcher calls Timer Enqueue to set up task 1 1DSSEARCHI 

which task is to receive control next. 	 1 timing. 1 1 1 


1 1 1 1 

If the two TCB pointers are not equal, and the NEW TCB 	 The task that will gain control has been selected. The 1 IDSENTER 1
1 	 6 

pOinter (IEATCBP) does not contain 0, IEATCBP peints to the dispatcher ensures storage protection. The STaR (seg­ 1 1 1 

NEW TCB whose current routine will be given control. ment table origin register) must point to the proper 1 1 1 


segment table. For pageable tasks with a nOnzerc Fro­
 1 1 1

1-5 Several possible comtinations of the NEW-OID pointers 	 tection key, segment table entries must be validated. 1 1 1 


exist: 1 1 1 

7 The paging supervisor enters the dispatcher to request 1 IIEAODS01 

• 	 NEW equals OID: It may be possible to redispatch that a task be made temporarily nondispatchatle. This 1

OLD. is an attempt to lcwer a high paging rate. 
 1 


1 

• 	 NEW equals 0: OLD cannot be dispatched, the task Nonpageable and TSO tasks are not eligible for selection 1 


queue should be searched downward from OLt to find a by the dispatcher. However, if no other eligible task 1 

new ready task. can be found, the dispatcher will call TSO to allow TSO 1 


to take action. 	 1 

• 	 NEW does not equal 0 or OLD: It may be possible to 1 


dispatch 	NEW. The dispatcher also sets tasks dispatchable when the 1 

paging supervisor requests it. 
 1 


• 	 OLD has X'SO' in the high-order byte: The OLD was 1 	 1 

removed from the system before the dispatcher gained 1 8 Nonpageable regions and TSO regions are not considered I 

control. The task te receive control is deterrr,ined for migration. The selected is the job-step task of thel
1

from the contents cf NEW. 	 lowest dispatching priority among the eligible job 1
1 


1 
 steps. 1 

2 If OLD=APG then special APG processing is necessary, 1
1 


depending on whether OLD qave u~- control due to an 1 	 No call is made to the dispatcher when pages are being 1
. 
explicit wait or because its timer interval expired. 1 	 transferred from a secondary paging device to a primary 1


L____________________________________________________________ ________~________J~ 

paging device. 	 1 1 1
L____________________________________________________________ ________L________ J~ 

til 
m 
~ .... 
o::s 
1.1.1 

t-3 
III 

CIl 

)01" 

.a til 

m 
I'i 
<:.... 
CIl.... 
o::s 

~ 
U1 
~ 



• Chart 3-3 (page 1 of 7). Dispatcher 

IEAOOS 

C::;::ER) 


G- o 
IS TCB = 

F~~}:; 
NOP 

IEATCBP + 4 -
o 

NO 

J 
152 



• Chart 3-3 (page 2 of 7). Dispatcher 

Section 3: Task supervision 152.1 



• Chart 3-3 (page 3 of 7). Dispatcher 

J 

152.2 



• Chart 3-3 (page 4 of 7). Dispatcher 

Section 3: Task Supervision 152.3 



• Chart 3-3 (page 5 of 7). Dispatcher 

152.4 



• Chart 3-3 (page 6 of 7). Dispatcher 

Section 3: Task Su~ervision 152.5 



• Chart 3.... 3 (page 7 of 7). Dispatcher 

J 

DISPCHEK 

CA~~ 

~L/'-+ 
DJS03 

152.6 





IV 

Register 15 

_______.....~IIEAODS02 
it is O.TCB 

'" . I 1 3.16[~TCB:R}-------- ---, 
I ~""""""'I··"""""""',.."'--- 3 For STOP requests, set the stop or stop­

pending indicator5. ~""""""'~""""'"""i"All SVC entries 
Caller via Type-1For branch entries: 

OR Exit routi ne 

Register 0 


Parameter 1 ist I C- Retu rn codeTask Switch Register 1 4 Set or reset primary or secondary 
dispatchability fields for tosk or tasks. IEAODS02 X'OO': Successful 


I 
 Parameter list 


Register 13 
 3.16 

I Secondary mask OR TCB 
Dispatchabi I ity

Caller flags and must­

5 Set or reset must-complete status for step complete flags 
or system. Caller adiusted.D

Register 15 

IfATRSCN Retu rn codeC 
X'OO': Successful 

,...--- 6 Return the address of a single subtask. (For 
STATUS, select the next subtask and return 

Register 8 I to one of the steps above. If there are no Register 10 
Address of highest level I more subtosks, exit.) 

Address of selectedtosk --1 
I 

task 


Register 10 
 I Coller 

Add ress of task from I 
__J 
which search is to 
start 

I-' 
U'I 

From SVC FlIH or branch entry from 
a supervisor routine to process a 
STATUS request 

(X) 

Input 
IGC079, IGC07902 (bronch entry) 

Register 0 
If only one task is specified by a calleri- ­
with a key of nonzero f find its TeBSTART/STOP mosk bits 

and oction code I (START/STOP, nonzero key, SVC entry
I only).

Register 1 I 

TeB address, or 0 if all 
 I 

_-J 2 If th is is a START request I decrease thesubtasks are affected 
start/stop count; check for task switch if 

Diagram 3.18 
STATUS Routine 

Output 

Register 15 

Return code 

X'04': Not found 

Caller 

Tosk Switch 

L,l, (. 



C":"7 ~ 

r 	 r' r 

Diagram 3.18 STATUS Routine (Module IEAVSETS) 
r------------------------------------------------------------T-------~--------, r------------------------------------------------------------T-------~--------l 

I IROUTINE I I I IROUTINE I I 

I NOTES INAME ILABEL I I NOTES INAME ILABEL I 

~------------------------------------------------------------+--------+--------i ~------------------------------------------------------------+--------+--------i 

The STATUS routine permits a problem or system program to ISTATUS IIGC079 6 When entered via the macro instruction STATUS SET, ,"C, ISTATUS IMCSTEP I 

change TCB fields that control the dispatchability of a I I STEP SYSTEM, the STATUS routine sets the caller's task I lor I 

task. I I in "step" or "system" must-complete status. (If the I MCSYSTEMI 


I I RESET operand is specified, the must-complete status I I 

Routines with a protection key of 0 can use the STATUS rou-I I that was previously set is cleared.) The routine sets I I 

tine to set or reset the status of particular tasks. The I I the must-complete flag in the current TCE, the prohibit-I I 

affected task status can be either the "must-conplete" sta-I I asynchronous-exits flag in the current TCE, and the step I I 

tus or the "nondispatchal:le" status. I I or system "must-complete" dispatchability flag in other I I 


I I TCES of the job step or system. I I 

Problem prograns are restricted to the SVC interface, and I I I I 

can control only the start/stop count in the TCE. I I If STEP was specified, then all tasks in the job step, I I 


I I including the initiator, are affected. If SYSTEM was I I

1-3 When a user issues a STATUS n,acro instruction with thel IPROCEED specified, then all tasks below the permanent system I I 


START or STOP operand, the routine determines whether I tasks are affected. I I 

the specified subtask of the current task or all suh- I 
 I I 
tasks of the current task are to be modified. When I For STEP or SYSTEM, the caller's task is always exempt I I 

START is specified, the stop/start count is decreased inl from being set nondispatchable. I I


L____________________________________________________________~________ _ _______Jthe suhtask TCB(S), and the appropriate dispatchability I 

flags may be cleared. When STOP is specified, the stop/I 


dispatchability flags are set. A task is set nondis- I 


nondispatchable when a system routine is no longer I:eingl 


start count is increased in thE suttask TCB(s) and the I 


patchable only if no system routines are being executed I 

for it, as indicated by the TCBATT flag. If a system I 

routine is being executed for the task, the TCBSTPPR I 

flag is set to indicate that this task should be made I 


executed for it. I 

I 


4 	 The STATUS rcutine sets the specified dispatchability I IGC07902 

flag or flags in the specified set of TCEs. (If RESET I 


current task and the permanent system tasks. If STEP is 

specified, all tasks in the job step are set nondis­

patchahle except the current task. If a TCE address 

starting with the job-step task is specified, the task 

and its descendants are set nondispatchable. If the 


is specified, the specified dispatchability flag or I 

flags are cleared in the specified set of TCES.) Fcur I 

sets of tasks can I:e specified: the system, the job I 

step, a specified task and its related lower-level I 

tasks, or a single task. If SYSTEM is specified, all I 

tasks of the system are set nondispatchal:le except the I 


current task is among the descendants, its status is not 
changed. If E is specified, only the task explicitly

C/l identified is set nondispatchable.
CD 
o The particular dispatchability flag or flags that arert.... set (or cleared) in each TCE depend on the mask bit 
o number specified in the STATUS macro instruction. 
t:! ------------------------------------------------------------~--------~--------
(.oJ 

t-3 
III 

en 
~ 

C/l
c:: 

"0 
(1) 

~ .... 
en .... 
o 
t:! 

.... 
c.n 
(.oJ 



___ _ ----

.... • Diagram 3.19 
U1 Validity Check Routine 
~ 

From supervisor routines at various 

entry points to verify an input address 


Input 
l 

..... 
-,.

(Different registe~ for 
each entry point, but 
same input) 

...... 
., 

r--- ­
User's reB 	 I 

I,-- ­ I 

-i 
-.J 

-, 
I 
1 

IL 

---. 
-,. 

-
IEAOVLOO 

1 	 If the user's TeB address is not supplied, 

extract it from IEATCBP+4. 
 • 3 

Output 
IEAOVL01+4 

psw 

2 	 Input address must be on a fullword .?I Condition cocleto I
boundary • 

• Not on a fu IIword 
boundaryIEAOVLOl 	 Caller 

Invalid • Not in an assigned

3 If the user is a pcgeable tosk, and if segment 


the input address is not in 0 segment 

assigned to the task's region, set the 
 • Not addressable 
condition code. 

• Not user key .. 

Caller 

Invalid 

4 	 If the input address is not in real 

storage or available for page-in, 
 IEAPTRV 

set the condition code. 

5.47 

Ifl 
~ 

Caller 

5 	 If the protection key of the storage Invalid 

in which the input address resides is Ls 

not equal to the protection key of 

the uS!3r 1s tosk, set the condition 


Collercode. 
Invalid I 	 PSW

1[1 .?I Condition code==O I
I 

Caller (validIEAOVL02 
address) 

Register 10 

Return code6 	Oetennine whether the input address ?I I 
is in real storage or available for 

X'OO': Valid address in Ipage-in (no protection key check). 
real storage. 

X'04': Valid address in 
virtual storage. 

Caller X'OS': Invalid segment. 
X'12': Invalid page 

(unossigned by 
GETMAIN). 

--...... ~ 

\., 	 L '­



r r 	 r 

• Diagram 3.19 Validity Check Routine (Module IEAVNUOOl 

r------------------------------------------------------------T--------.--------, r------------------------------------------------------------T--------T--------, 
, IROUTINE I I , IROUTINE I I 
I NOTES INAME ILAEEL I I NOTES INAME I LABEL , 
~------------------------------------------------------------+--------+--------~ ~------------------------------------------------------------+--------+--------~

Supervisor routines use the Validity Check routine to IValiditylIEAOVLOOI If the return from the IRA instruction indicates that 'Validity' , 
check storage addresses passed by user ~rograms. For Check IEAOVL011 the input address does not point to a valid SGTE (seg- 'Check , 
each input address, the Validity Check routine tests the +4 I ment table entry), Validity Check sets a nonzero ocndi- , , 
following: fullword alignment (optional), whether the IEAOVL011 tion code and returns control to the caller. I , 
address is in real storage, whether the address is in a I , ,valid segment, and whether the in~ut address is in storage 	 I The return from the LRA instruction may indicate that 
with a protection key that matches the protection key of I the input address points to a valid SGTE, but that the , 
the caller of the supervisor routine (optional). Eecause I PTE (page table entry) does not pOint to a page in real , 
all pageable tasks have the same protection key, Validity I storage. In this case, Validity Check gets the real , 
Check must perform segment validation to ensure storage I storage address of the PTE and enters the paging super­ , 
security. I visor at l~APTRV. Subroutine IEAPTRV converts the real , , storage address of the PTE to a virtual storage address. , 
If an address is invalid, the routine informs the calling I , 
supervisor routine by returning a nonzero condition cede or Validity Check now tests the PGTPAM bit in the PTE. If 

a return code. the bit equals 1, the page containing the input address 


has been assigned by GETMAIN and is valid. If the page

3 If a user is a pageatle task (TCBRV=O), protection key is invalid, validity Check returns a nonzero conditicn 


tests are not enough to guarantee system security code. 

because all pageable regions have the same protection 


5
key. Bits 8-15 of the input address identify the AfteI Validity Check determines whether the input 
storage segment containing the input address. TCBSTI address is within the user's region (Ste~ 4), the 
contains the address of the first segment assigned to storage key of the useI's task is compared to the key of 
the user task, and the TCBSCT field the count of addi­ the storage in which the input address lies. If the 
tional segments. The input address must be in the I page is not in real storage, the key is found in the 
user's storage as defined in the TCB. , XPTPROT field of the XPTE (external page table entry).,I4 	 Validity Check issues an LRA instruction. If the input I , 6 Supervisor routines enter Validity Check at IEAOVL02 to ,IEAOVL02, 
address is in real storage, or can be faged into real I , determine whether an address is in real storage or " 
storage, Validity Check simply compares the protection I , available for page-in. The frocessing is identical to , , 

. 	 _~I________1 ________J , Step 4, exceFt that return codes in register 10 are I Ikeys 1n Step 5. 	 I
l ___________________________________________________________ I passed to the calling supervisor routine instead of a , , 

, condition code in the PSW. I I I 
~ ~L____________________________________________________________ ________ ________J 

en 
III 

~ .... 
o
::s 
w 

t-3 
III 
en 
~ 

en 
.a 
III 
Ii 
-=.... 
en .... 
g 
.... 
VI 
VI 



VI 
t-> 	 Diagram 3.20 
0'1 TESTAUTH Routine 

From supervisor routines to 
test authorization 

Input 

IEAVTEST 

If the oddress of the TCB that 
represents the task being tested is not 
in register 4, copy it there. 

From SVC 
FLiH to 
process a 
TESTAUTH 
request. 


IGC119 


--, 
I .-- 2 	 If no authorization code was passed f 

determine this from the JSCB. -1-­ I 	 Output
I I I 
I I II L -r- 3 	 Determine whether invalid authorization I I Caller via Type-l 

or function codes were passed. Exit routine orI I branch
I I 
L_ -1-- 4 Determine whether the task is X'OSI: Invalid authorization 

I 
 authorized for the requested function. 
 or function code 

I 
I 5 Set the return code. 

I X'OO': Task is authorized

I for specified function.••••_1.' Co."er vi.o Type-l

I 
 , EXI t routl ne or X'04': Task is not authorized. 

branch

I 
______-1I 

~. 	 L '­



r' r r 
Diagram 3.20 TESTAUTH Routine (Module IEAVNUOO) 
r------------------------------------------------------------T-------~--------, 
I I ROUTINE I I 

I NOTES INAME ILABEL I 

~------------------------------------------------------------t--------+--------~ 
I The TESTAUTh routine is called by problem progoc'ams r:r ITESTAUTHIIGCl19 I 


en 
m o 
rt".... 
o::s 
w 

~ 
QI 
en 
~ 

en 
d 

"CI 
m 
~ .... 
en .... 
g 
f-> 

-.J 

I system programs to test whether a task has the authoriza- I 

I tion to request a specific function. As input I-ararreters, I 

I TESTAUTB accepts a function code and, optionally, an I 

I authorization code. If no authorization code is specified, I 

I TESTAUTH uses the job-step authorization, found in the JSCBI 

I (job-step control block). The input parameters are indexes I 

I to a matrix called IEAVAUTH, which is built in the nucleus I 

I during system generaticn. I 

I I 

I 3 TESTAUTB compares the authorization code against the I 

I first }:,yte of IEAVAU'IH, and compares the function code I 

I against the second byte. If either authorization code I 

I or fUnction code is greater than X' 02', it is invalid. I 

I The only valid codes for either parameter are 0, weaning I 

I nonrestricted, and 1, indicating restricted. I 

I I

I For exe.filple, a supervisor routine with an authorization I 

I code of 1 can perfonr, both restricted (code 1) and non- I 

I restricted (code 0) operations. I 

I I

I 4 The authorization and function codes are the indexes to I 

I the mat.< ix in the third byte of IEAVAUTH. Using the I 

I authorizaticn code as the row identifier, and the fUDC- I 
I tion code as the column identifier, TESTAUTH finds the I 

I matrix element. Only if the authorization code is 0 andl 

I the function code is 1 is the user unauthorized. I
l ____________________________________________________________ ________~ 

I I 

I I 

I I 

I I 

I I 

I I 

I I 

I 

I 

IROTEST 

I
i ________ 

VI 



.... 	 Diagram 3.21 
\J1 MODESET Routine co 

From SVC FliH to process a 
MODESET request 

Input 	 Processing Output 
••~IIGC107 

,~ SVCOPSW
Register 1 	 i'~ 
I Parameter list --.-- -----,.....----- If an error in the macro cell is detected ___.-11.. Caller I I IIII I IIRegister 4 I 	 56 78 II 15II 

Bit 5: Address translationI 

I Bit 6: I/O summary 
Bit 7: External interl1Jption 

I 	
I 

I 
Bits 8-11: Protection key 14------- 2 Enable or disable the SVC old PSW if 
Bit 15: Mode indicator (1=I 	 specified in MODESET macro. 

I 	 ~""~ ~""~ problem mode) 

I 	
I
I 

I 
I ~ 14------ 3 Adjust mode if specified.
I 	 ~""'~ ~""'~ Register 1 I 
I 	

I II I Inverse of specifiedI operationI
-----4------- 4 Set key value to callerls key (KEY= 	 Register 15 

14------ NZERO specified) or set key equal to 	 I 
Completion code

I 	 o (K EY=ZERO specified). 
I 	 ~""'~ 

X'QO': Successfu I execution.I I X'04 1 : Null parameter list,I 
reserved bits used I or 
invalid bit pair. 

II 
1.4------ 5 Adjust the system mask as specified. ~"""~ X'OB': Undefined operation • 

From disabled, key-o, •••_1. Ca.ller vi~ Type-I 
supervisor routines to EXIt routme 
change system mask 

Register 8 

•••~IIIEAMODBR 	 Inverse of specified 
operationI I

Register 8 
Register 9 


Parameter list ]4--­ -----,------ 6 If an error is detected in parameter 

list 
 ___..1.1 Caller 	 l Completion code (same I 

Register 10. 	 I as above) 

Return address 
 J 	 I 

I 
I 	 Current PSN 

~--- 7 	 Adjust the system mask in the current 
PSN as specified. ~..""""""""'~ ~~.1I11 

5 6 7 

••••II~Coller via BR 10 

L 	 \. L 



r r 	 r' 

Diagram 3.21 MODESET Routine (Module IEAVMOCE)
r------------------------------------------------------------T--------T--------, 
I IRomINE I I 

I NOTES INA~E I LAPEL I 

r------------------------------------------------------------+--------+--------~ 

By 	 entering the MODESET routine through a macro call, an IMOCESET IIGC107 
authorized problem prograro or systerr ~rograrr can change itsl 
system mask, change its mode, and change its protection I 

key. In this case, MGDESET alters the SVCOPSW, which ccn- I 
troIs the calling task. 	 I 


I 

A disabled supervisor routine with a key of 0 can enter I 

MODESET at a branch entry ~oint to change its own systen I 

mask. In this case, MODESET alters the system ITask in the I 

current PSW, which belongs to the calling task becausE nO I 

interru~ticn has occurred. I 


I 

2 I
In the MODESET macro, both the ENABLE and SYSMASK 


operands request changes to the system mask. These two I 

parameters should be coded in a single call to MODESET. 
 I 

MODESET sets the masks requested by the ENABlE o~erand I 

before setting the masks requested by the SYSMASK I 

operand (Step 5). Therefore, the SYSMASK o~erand over­ I 
rides ENABLE when toth are coded. I 


I 

The operands have slightly different effects. The I 

ENABLE operand specifies that the I/O summary tit (tit I 

6) and the external interrupticn tit (bit 7) are to te I 

turned off. I 


I 

Through the SYSMASK operand, the caller can individually I 

control bits 5, 6, and 7 of the PSW. Bit 5 is the I 

address translation tit. 
 I 


I

4 	 If MODESET is setting to a nonzero key, segment valida- I 


tion may be necessary. I 

I


5 	 When the SYS~ASK operand is specified, MODESET ~laces inl 
register 1 the necessary parameters to reestablish the I 


I caller's system mask. A special MODESET operand, REG, I 

I which cannot be specified in conjunction with any other I 

I operands, uses register 1 as set u~ by MODESET tc I 

I restore the system mask. I 

I 	 I 

I If SYSMASK is not coded, the ccntents of register 1 are I 

I 
 unpredictable upon return from MODESET. 	 I 

I 	 I 

16 After a branch entry, ~ODESET ~laces the parameters I 


CIl I necessary to restore the caller's system mask in regis- I
tD Iter 8. 	 I
L____________________________________________________________4 _______-i________ ~ 
~. 

o 
t:I 

w 

..;J 
III 


~ 
CIl .a 
tD 
1'1 
<l 
~. 
[II 
~. 

g 
..... 
(JI 
IQ 



~ 	 Diagram 3.22 
C'> 
o 	 System Task ABEND Recovery (STAR) 

Exit Routine of the System Error Task 
From the ABEN D-STAE Interface routines • 
(ASIR) to reody the system error tosk Processing Output 

I I rIS-U-PR-S-TA-R-(e-X-H-ro~ut-in-e)-------------------' 
Input MODESET Routine 

IGC107 
TCB PRB r--- 1 Find the ROE, if any, associated with Disable system. lOB 

For I the tosk thot caused the I/O error. If 3.21 
system 	 I not found "5 . 
error I 

I 108 pointed to by the RQ E. 1'IIt.........................................................~" 
I 
I 

task 	 2 Set the permanent error flag in the ~" 

Register 1 ...lIIIIii....41--t-- -J 
X'B06' 

3 Abnormally terminate the task that 
caused the I/O error. ABTERM 

IEAOABOO 

8.12 

4 Free the RQ E. ERREXCP Routine 

IGC015 

Post I/O; free ROE. 
Address of PHOEN IX 

From ASIR 
Return code X'Q4'routines to I•••I~.I~ ASIR Phose 3 (8.46) 

complete 5 Set registers for reentry to PHOENIX. 	 (ASIR purges 011 but 
top RB.) 

PHOENIX (retry routine) 

MODESET Routine 

IGC107 

Disable system.
TCB PRB 6 	 Place the system error task in a wait 3.21 

state, ready to be scheduled for the 
next request. ~ 

• ••••I .. I~ ~t~~a;cher (3.17) 

lr L 	 \., 




r r r 

Diagram 3.22 System Task ABEND Recovery (STAR) Exit Routine of the System Error 

Task (1·1odule IEAVNUOO) 
r------------------------------------------------------------T--------T--------,
I IROUTINE I I 
I NOTES I NAME I LABEL I 
r-----------------------------------------------------------+--------+--------~
I When the systerr. errcr task fails, the System Task ABEND I S'IAR I 
I Recovery (STAR) routine gains contrcl. The STAR routine isl I 
I in the system error tasK, and has two parts -- an exit rou-I I 
I tine and a retry routine. I I 
I I I 

Both the exit and retry routines are disabled during !Tcst I I 
of their execution. The exit routine schedules abnorwal I I 
termination of the task that the system error task was try-I I 
ing to correct. The retry routine places the system error I I 
task in a wait state, ready to service another I/O errOI. I I 

I 
The STAR routine searches the RB queue cf the systeK SUPRSTAR 
errcr task for the SIRE, trying to find the RQE (rEquest 
queue element) that belongs to the task that caused the 

1 

I/O error. RQES are built by data managemEnt routines 
and are used by the I/O supervisor to schedule I/O 
requests. 

If STAR finds an RQE, it inspects the RQETCB field to 

determine whether this is a norrral RQE (RQETCE , 0), or 

a dummy RQE (RQETCE ; 0). If thE RQE is a dummy, STAR 

records a paging device error. and there is nO task to 

abnormally terminate. In this case. STAR continues at 

Step 5. 

If the RQE points to an lOB (input/output blcck), S'IAR 

turns off the error-in-process flag (IOBFLAG1), and setsl 

the permanent-error [lag (IOBFLAG2). I 


I
6 ISTAR I PHOENIX 

L____________________________________________________________ ________ ________ J~ ~ 

en 
(1) 
n 
rt 
~. 

o 
::t 

IN 

1-3 
III 
en 
:>I" 

en 
.g 
~ 
-= ~. 

en 
1-" 
o 
::t 

.... 
C7I .... 





SECTION 4 

Contents Supervision 

HOW MODULES (CONTENTS) ARE SUPERVISED••••••••••••••••••••••••••••••• 165 

Calling the LINR, LOAD, and XCTL Routines ••••••••••••••••••••••••••• 165 

Searching Virtual and Auxiliary Storage••••••••••••••••••••••••••••• 165 


The Job Pack Area ••••••••••••••.••.••••••••.••••••.••.••.••••••• 165 

LPA Storage Areas ••••••••••••••••••••••••••••••••••••••••••••••• 166 

Time Sharing Link Pack Area ••••••••••••••••••••••••••••••••••••• 161 

Auxiliary Storage Libraries ••••••••••••••••••••••••••••••••••••• 161 


Method of Operation Diagrams for Contents Supervision••••••••••••••• 168 


Section 4: Contents Supervision 163 






The routines of contents supervision 
search virtual and auxiliary storage for 
requested modules and schedule their use. 
The LINK, SYNCH, LOAD, XCTL, DELETE, and 
IDENTIFY SVC routines comprise contents 
supervision. The overlay supervisor and 
Program Fetch are also part of contents 
supervision. 

Diagram 4.0 (a visual table of contents 
to the diagrams in this section) and Dia­
gram 4.1 (a diagram showing the overall 
logic of contents supervision) point to the 
diagrams for each of the above routines. 
To help you understand the operations 
described by the diagrams, the following 
subsections describe: 

• 	 Calling the LINK, LOAD, and XCTL rou­
tines by issuing a macro instruction 
(see OS/VS Supervisor Services and 
Macro Instructions for detailed 
information) • 

• 	 Searching virtual and auxiliary storage 
to find requested modules. 

CALLING THE LINK, LOAD, AND XCTL ROUTINES 

Problem programs and system programs 
call contents supervision to find a 
requested module by issuing a LINK, LOAD, 
or XCTL macro instruction. Certain impor­
tant operands in the macro call determine 
which storage is searched and the order of 
the search. The operands are shown in 
Figure 4-1. Only one of the first three 
operands can be coded, and the DCB operand 
is optional. 

SEARCHING 	 VIRTUAL AND AUXILIARY STORAGE 

The contents supervision routines find a 
module by scanning control blocks that 
represent modules. These control blocks 
form different queues and directories, and 
each queue or directory describes a dif ­
ferent part of storage. The queues and 
directories are: 

• JPA (job pack area) 

• 	 LPA (link pack area) 

• 	 TSLPA (time sharing link pack area) 

• 	 Auxiliary storage libraries 

HOW MODULES (CONTENTS) ARE SUPERVISED 

r---------T-------------------------------,
II 	Operand I Meaning 

r---------+-------------------------------~
EP 	 is the entry-point name in 


the module to be given 

control. 


EPLOC 	 is the address of the entry­
point name in the module to 
be given control. 

DE 	 is the name field of a list 
entry for the entry-point 
name. The list entry is con­
structed using the BLDL macro 
instruction. The DCB operand 
must indicate the same DCB 
(data control block) used in 
the BLDL macro instruction. 

DCB 	 is the address of the DCB for 
the partitioned data set con­
taining the entry-point name 
for the module to be given 
control. The address of the 
data control block for the 
link and job libraries is 
designated by specifying an 
address of 0, or by omitting

IL the DCB operand. 	 J_________4-______________________________ 

Figure 4-1. 	 Important operands in the 
LINK, LOAD, and XCTL macro 
instructions. 

The Job Pack 	Area 

The JPA (job pack area) in virtual 
storage contains modules needed for the 
execution of jobs. The JPA is in subpools 
251 and 252 of a region. Problem programs, 
including TSO tasks, execute in the JPA. 
~odules in the JPA may be executed only by 
the user in whose region they are stored. 

Modules in the JPA are represented by 
CDEs (contents directory entries). Each 
CDE contains: 

• 	 The name of the module it represents. 

• 	 A pointer to the module's entry point. 

• 	 A use count (in fields CDROLL and 
CDUSE) which represents the total numb­
er of successful requests for a module 
by ATTACH, LINK, LOAD, and XCTL macro 
instructions. (The maximum use count 
is 4095.) 

Section 4: Contents Supervision 165 



If a caller has specified an alias entry 
point within a called module, there are two 
CDEs for the module. The major CDE con­
tains the entry-point name, and a minor CDE 
contains the alias entry-point name. 

The Job Pack Area Queue: The CDEs repre­
senting a user's modules in the JPA are 
chained together and are called the JPAQ 
(job pack area queue). The JPAQ is in the 
LSQA assigned to a region. Each job step 
in the system has its own JPAQ, and the 
first CDE on the JPAQ represents the first 
module requested by the job step. The 
beginning of the JPAQ is pointed to by the 
TCBJPQ field in the job-step TCB. 

The Load List: Each time a module is allo­
cated to a requester by the LOAD routine, 
the use count in the CDE is increased, as 
noted previously. Also, an LLE (load list 
element) is created if one does not exist, 
and its responsibility count (LLECOUNT) is 
increased. The LLEs for each task in the 
job step are chained together to form the 
load list, which is the first queue 
searched by the LOAD routine. Figure 4-2 
shows the control blocks for modules in the 
JPA, inclUding LLEs. 

The need for a responsibility count in 
the LLE separate from the use count in the 
CDE is not readily apparent. Each time a 
module is successfully allocated by the 
LOAD routine, the requesting routine may 
issue a DELETE macro when it no longer 
needs the module. The DELETE routine 
decreases the use and responsibility 
counts, and frees the module and its 
storage areas if they are both 0, meaning 
that there are no more outstanding 
requests. 

LPA Storage Areas 

The LPA (link pack area) contains: (1) 
modules that may be executed concurrently 
by all tasks in the system, and (2) a dire­
ctory of those modules. There are three 
LPA storage areas: 

• The 	LPA directory 

• The 	link pack area 

• The Fixed LPA 

The LPA Directory: The LPA directory is 
created in pageable storage during nucleus 
initialization. It contains an LPDE (link 
pack directory entry) for each entry point 
in the LPA modules. LPDEs for major entry 
points contain a CDE and a compressed 

TCB for Caller's Task 

Caller's RB Queu~""-

ITCBLLS I 	 ""­SVRB for Contents '--.. JSupervision 
~ 
~ 	 """ 

........... 
Caller's PRB 

........... 
~ 
~ I RBCDE I 
~ I 
~ I 
~ 

'--.. 
Job Pack Area Queuer--cD"E---' ""­
I 
I I 

CDE for I 
Caller's ProgramI 

Load List for Call er's Task I I1--------, I 
I II 	 Load List I CDE 


Element
I I 	 I I I * I
I 	 II
I I I I CDE 


I Load List I I 
 IElementI I 	 I II
I 	 II 	 CDE
I I 

I Load List I 

I 
I I * I 


I I Element I I I 

I I I CDE 

L...- ______ ---.J 

I I
I 
I CDE 

Legend I * I 
Delineates queue 

- Pointer 

CDE for module loaded for caller's task 

Figure 4-2. 	 Control blocks for modules in 
the JPA. 

extent list, while LPDEs for alias entry 
points contain the name of a related major 
IPDE rather than a compressed extent list. 
LPDEs are organized during nucleus initia­
lization, and are not chained as are the 
CDEs on the LPAQ and the JPAQ. Diagram 4.4 
describes the search for an LPDE that 
represents a module that cannot be found on 
the LPAQ. 

The Link Pack Area: The link pack area 
contains the LPA modules. All type-3 and 
type-4 SVC routines and all ERPs (error 
recovery procedures) are placed in this 
area, which is pageable. 

166 



All LPA modules in use are represented 
by CDEs on the LPAQ (link pack area queue). 
When an LPA module is no longer needed (the 
use count in the CDE reached zero), the 
control blocks that represent it in the LPA 
are removed by the Exit routine. These 
modules are still represented by LPDEs on 
the LPA directory. 

The Fixed LPA: During nucleus initializa­
tion, the user may specify that any module 
in the LPA is placed in a permanently fixed 
area of real storage. This area is called 
the fixed LPA and is not paged. These 
modules are also represented by CDEs on the 
LPAQ, and they are used in preference to an 
identical paged copy of the module in the 
LPA. 

Time Sharing Link Pack Area 

The TSLPA (time sharing link pack area) 
is in the TSC (time sharing control) 
region, and contains TSO modules that may 
te executed concurrently by all TSO tasks 
in the system. These modules are repre­
sented by CDEs on the TSLPAQ (time sharing 
link pack area queue). 

Auxiliary Storage Libraries 

When the contents supervision routines 
cannct find a requested module in virtual 
storage, BLDL searches the libraries on 
auxiliary storage. Modules on auxiliary 
storage are represented by PDS DEs (parti­
tioned data set directory entries). 

Section 4: Contents Supervision 167 



I-" 	 • Diagram 4.0 
cr­
co 	 Contents Supervision 

Visual Table of ConteAts 

LINK SYNCH 
Routine Routine 

4.6 

IEAVVMSR, 
Searching the 

LPA Directory 


4.4 

Index to Diagrams by Module 
Name for Contents Supervision 

Module 	 Diagram 
Name 	 Number(s) 

IEAVIDOO 	 4.10 

4.2,4.4,
IEAVLKOO 4.6--4.9 

IEAVLK01 	 4.3,4.5 

IEWFETCH 	 4.12 

IEWSUOVR 	 4.11 

IEWSWOVR 	 4.11 

(.... L 	 l. 




r r 	 r 

• Diagram 4.1 

Overview of Contents Supervision 

~ 	 Except for Program Fetch and the SYNCH routine, each ofSYNCH Routine 
these routines provide services that can be requested by 
problem or system programs vic macro call. Program Fetch 

The SYNCH routine permits supervisor routines to take has bronch entry points, and the SYNCH routine is avoUob 
synchronous exits to processing programs. SYNCH calls the to supervisor programs by supervisor call (SVC). 
CDEPILOG subroutine to schedule the processing program. 4.6 

Contents supervision consists of many subroutines because it 
must seorch various parts of storage. SY NCH I LOAD, and 
XCTl enter these subroutines by branching to LINK, which 
in tum calls the subroutines, or by branching directly to thl 
subroutines. Diagrams 4.2 through 4.5 describe these 
important subroutines. 

~ LOAD Routine 

The LOAD routine finds a requested module and builds an 

LLE, CDE, and an extent list for the module if necessary. 

After a LOAD request, control returns directly to the caller,: 
 ....the requested module does not gain control. 

4.7 -po 

~ XCTL Rovtine 

The XCTL routine finds a requested modu Ie and passes 
control to it. The caller does not regain control. 4.8 ~ 

r 

T 

1SVC First-Level and Second-Level I .. LINK Routine 
Interruption Handlers 31 

2.2, 2.3 
The LINK routine finds a requested module by calling 

Overlay Supervisor searching subroutines. When the module is available, LINK - passes control to it. After the module executes, the coller 
regains control at the instruction following the LINK mocro 

The overlay supervisor determines whether a requested module instruction. 4.2is in virtual storage, and causes the loading of a requested 
overlay segment that is not in virtual storage. The overlay 

CIl supervisor passes control to the caller or to an address in the CD 
requested overlay segment. o 	 4.11 

rt.... 
o --.. Program Fetch :l 

~ 

.eo 
Program Fetch loads a specified module or overlay segment 

~ DELETE Routine into virtual storage. 
4.12

() 
o 	 When a module brought into virtual storage via the LOAD 

routine is no longer needed, the DELETE routine frees the ~ module's storage.CD 	 4.9 

~ 
en 
CIl 
to:: 
'tl 

IDENTIFY Routine ro 
~ .... The IDENTIFY routine infonns the supervisor of a module's 
en embedded entry-point nome that was not established by the.... linkage editor. Also, for modules brought into storage byo the loader, IDENTIFY creates a major CDE. ::I 4.10 

I-> 
(7\ 
\Q 



Diagram 4.2 (Steps 1-4) 
-.J ""' LINK Routineo 

From SVC SUH after a LINK macro 
instruction has been issued to pass 
control to a requested module 

Processi 	 OutputInput 

.-.IIIGC006 


Register 15 


Address of parameter list 	 Ensure that the parameter list is ~-
From ATTACH (3.2) in real storage. 

and XCTL (4.8) to 

pass control to a 


Register 9 

Address of entry-point name J 
2 Set register 8 to caller's JPAQRegister 10 

address and set contents supervision 

Address of DCB SVRB to look I;ke a PRB. 


From the dispatcher 
(3.17), CDSETUP 
(4.3), and LOAD 
(4. 7) to pass contro1

Some as for CDADVANS, except to or load a requested 
Register 8 module
IAddress of contents directory I 


to be searched 
--.L _____ _ 
•••~I CDCONTRL, IEAQCS02 

3 	 Search for the requested module in 
the contents directory indicated in 
register 8. 

4 	 If the module could not be found, 
pass control to CDSETUP to direct Register 8 

Routing to Searchingthe search. Address of contents directory 
Routines (4.3) 

last searched
Step I 

Register 9 

(Cof1tinued at Step 5) 	 Address of entry-point 
name 

Register 10 

A~ofDCB ­ 1 

requested module 

•••~ICDADVANS, IEAQCSOI 

l, l., 	 l, 




( rr 
• Diagram 4.2 (Steps 1-4) LINK Routine (Module IEAVIKOO) 
r------------------------------------------------------------T-------~--------, 

I IROUTINE I I 

I NOTES INAME ILABEL I 

~------------------------------------------------------------+--------+--------1
I The LINK routine is the central routine of cont€nts sup€r- IIINK IIGC006 I 

I vision. It directs the XCTL, LOAD, and ATTACH routines to I I I 

I the subroutines of contents supervision to find and attain I I I 

I linkage to a requested "odule, or to load a requested I I I 

I module. I I I 

I I I I 

I 1 LINK calls lXPREFIX to ensure that the parameter list I LXPREFIXI LXPREFIXI 

I is in real storage. I I I 

I I I I 

I 2 The two high-order bits of the RESTAB field in the IGINREGS IGINREGS I 

I SVRE (supervisor request block) are set to 1 to make I I I 

I the SVRB look like a PRB (prograrr request blcck). New I I I 

I ABEND can free the module if the requester atnormally I I I 

I termina tes. I I I 

I I I I 

I The address of the requester's JFAQ (jcb pack area I I I 

I queue) is placed in register 8 to indicate to CDSEARCH I I I 

I which queue is ~o he searched. I I I
l ____________________________________________________________ ________~________ J~ 

en 
CD 
g. 
~. 

o::s 
J:: 

n o 
~ 
m 
rt 
CJ) 

en 
.g 
~ 
< 
~. 

CJ) 

o 
~. 

::s 

... 

oo,J ... 




-..I 
t-> 	 Diagram 4.2 (Steps 5-7) 

"" 	 LINK Routine 
From ALIAS1 (4.5) to determine 
whether a module is available 

Input 
(from ALlAS1) 

•••IPLUSCONT 

Registers 0 and 1 5 Determine whether the module con 
Name of requested module J be used immediately. 

Register 8 

Address of contents directory 
lost searched • Cannot be used. Go to Diagram 

4.3, Step 1. 
Register 9 ,.------- • Can be used later (being fetched 

Address of entry-point na~e-J or is a reusable module that is in I From 4.4, Step 3 
use and this is not a LOAD).

and 4.5, Step 3 toRegister 10 
allocate the 

• Can be used now. Continue.IAddress of DCB 	 requested module 

Register 11 

•••MI CDEMERGE
I Address o~~~-~ 

6 	 Increase the use count in the CDE. 

7 	 If a job-step is being attached, set 
the JSCB authorized if the CDe is 
authorized.SVRB 

Otherwise, exit. 

__..._ ..... .J 
LOAD request 

All other requests 

CDLDRET 

See Diagram 4.7 for 
output from a lOAD 

req uested module 
and chain tt behind 
the contents 
supervision SVRB. Remove contents 

supervision SVRB. 

Output 

X'406 1 - Not a LOAD request, 
but load-only module 

IGC0001C 

...._ ...~Dispatcher (3.17) 
Step 1 

TCB 

SVRB 

3.14 

PRB 

Dispatcher (3.17), 
Step 1. When the 
task is next 
dispatched, the Register 15 

dispatcher loads the Address of requested 
PSW from the new module 
PRB. 

l, '-	 l, 




(
r r 

o Diagram 4.2 (Steps 5-7) LIN~ Routine (Module IEAVLKOO) 
r------------------------------------------------------------T-------~--------, 

I IROUTINE I I 
I NOTES INAME ILABEL I 
~------------------------------------------------------------+--------+--------~
I 6 If the CDE (contents directory entry) for the requested ICEMOPUP ICDMOPUP I 
I module is in the TSLPA (time sharing link pack area), I I I 
I or if the requester is a TSO task, CDMOPUP dces not I I I 
I increase the use count. I I IL____________________________________________________________~________~________J 

C/l 
(I) 
n 
rt.... 
o 
t! 

"" 
(') 
o 
~ 
(I) 

t! 
rt 
ell 

C/l
s:: rc 
(I) 

~ .... 
ell .... 
o 
t! 

.... 
-.j 
w 



.... 

..,J 
~ 

From the LINK routine (4.2), 
Steps 4 and 5, to continue the 

Diagram 4.3 
Routing to Searching Routines 

Input Output 

Register 8 

Address of queue last 
searched 

Register 9 

Address of enfTy-point 
name or DE save area 

CDSETUP determines the search 
order for contents supervision and 
calls the correct searching routine. 

Output to LINK (4.2), Step 3, 
is: 

Register 8 

Address of next contents 
directory to search 

Register 10 

Addre.. of OCB 

2 Search for module requested by EP 
or EPLOC form of mgcro' 

Register 11 

Address of requested CDe 
JPAQ (already searched in LIN K) 

Register 12 

Address of major CDE ~ 
From IEAWMSR 
(4.4) to search 
LPAQ 

Specified library, or JOBLIB if 
none is specified. 

________• ___IIIII~BLDt/Progrom Fetch 

Interface (4.5) 
Step 1 

search for the requested module 

Processing 

3 LPAQ 	 LINK Routine (4.2) 
Step 3 

4 TSLPAQ : 	 LINK Routine (4.2) 
Step 3 

5 LPA directory 	 IEAWMSR (4.4) 
Step 1 

6 SVCLIB 	 BLOt/Progrom Fetch 
Interface (4.5) 
Step 1 

7 LINKLIB ________...___.t~BLDl/Program Fetch 

Interface (4.5) 
Step 1 

3 	 Search for module requested by DE 
furm of macro: 

1 JPAQ (already searched in LIN K) 

2 LPAQ 	 LINK Routine (4.2), 	 _3 

3 TSLPAQ 	 LINK Routine (4.2) 

Step 3 

4 LPA directory 	 lEA WMSR (4.4) 
Step 1 

5 Librory specified, or default 	 BLOl/Progrom Fetch 
Interface (4.5) 
Step 1 

~ l 	 ~, 




r 


en 
(1) 
o 
rt .... 
o 
t;j 

~ 

n o 
~ 
(1) 

i:S 
rt 
til 

en 
.::: 

Itj 
(1) 

~ .... 
til .... 
g 
.... 
(J1 

( r 
Diagram Q.3 Routing to Searching Routines (Module IEAVLKOIJ 
r------------------------------------------------------------T-------~--------, 

I IFOUTINE I I 
I NOTES INAME ILABEL I 
~------------------------------------------------------------+--------+--------~ 
I CDSETUP is a subroutine of contents supervision. It ICDSETUP ICDSETUP I 
I determines the search order for a requested module ta~ed ani I I 
I input parameters. The areas searched in Steps 2 and 3 are I I I 
I named in the order that they will be searched based on the I I I 
I type of macro issued. I I IL____________________________________________________________ _______ ________ J~ ~ 

-..I 



~ Diagram 4.4 
-.I IEAVVMSR: Searching a-

the lPA Directory 
CDSETUP calls IEAWMSR to 
find the LPDE that represents 
the requested module 

Input Processing Output 
Register 0 

Address of LPDE 

First four characters 
Search the lPA directory. IEAWMSRof entry-point name --T- 1 

I 
JIBR 14, Found 

BR 14+4, Not FoundLast four characters _--.J Active LPAQ 
of entry-point name ,I~2 If the LPDE for the module cannot BlDljProgrom Fetch 

be found, go to SATMAR. Interfoce (4.5) ~ 
Step I 

3 Build and queue the CDE on the ~ 
LPAQ. DETOLPAQ XTLST . .. ­

LINK Routine 
Step 6 r 

Error Register 1 

Comp letian codeI, ?\ I 
ERRORTAB X'806 1 - Alias represented by a- minor lPDE is not 

represented by a major 

.. LPDE 

ABEND 

IGCOOOIC 

8.14 

l, L l, 




(
r r 

Diagram li.li IEAVVMSR.Searching the LPA Directory (Io!odule IEAVLROO) 
r------------------------------------------------------------~-------T--------, 

I IROUTINE I I 
I NOTES INAME I LABEL I 
~------------------------------------------------------------+--------+--------~
I 1 IEAVVMSR computes an index factor into the LPA directory IIEAWMSR IIEAVVMSR I 
I by doing an Exclusive OR on the halves of the names in I I I 
I registers 0 and 1, and then dividing the result by the I I I 
I value found in location IEAWMDI (placed there by NIP). I I I 
I The remainder is multiplied by 32 and added to the I I I 
I address of the LPA directory (in CVTLPDIR). IEAVVMSR now I I I 
I has the address of an LPDE (link pack directory entry) I I I 
I in the LPA directory, and determines whether the name inl I I 
I the LPDE, or the name in another LPDE in the chain I I I 
I matches the input name. I I IL-___________________________________________________________ ________ ________J~ ~ 

en 
(1) 
(') 
rt.... 
o 
t:I 

.c:: 

() 
o;; 
(1) 

;; 
CJ) 

ens:: 
'0 
(1) 

~ .... 
Ul .... 
o 
t:I 

i-> .... .... 



---

-.I 
I-" 

(X) 

From CDSETUP routine (4.3) to find 
and load requested modules 

Input 	 ­ ---------~ 

~ SATMAR 

1 If a COE for the module, and a work. 

l. area for BLDl and Program Fetch do 
not exist, get storage for and 

directory . initialize them. 
Address of contents 

Register 9 

Address of entry-point 
name or DE save crea 2 If this is a mioor CDE, go to ALIAS 1 

Register 10 

Address of DCB 

3 If DE form of macro, go to DEFOUND 

4 	 Go to BLDL, no DE coded. 

__..J 
5 	 If the PDS DE is found by BLDL, go to 

DEFOUND, opposite Step 3. 

6 	 If the PDS DE is not found, and all 
libraries have been searched, go to 
ERRORTAB. 

7 	 When BLDL has searched the JOBUB 
unsuccessfully, or a library other than 
JOBUB or SVCUB unsuccessfully, go 
to CDSETUP. 

8 	 Return to Step 4 to search LINK LIB 
after searching SVCUB, or to 
cOJY1olete the JOBUB search. 

• Diagram 4.5 
BLDL/Program Fetch Interface 

Program Fetch Work Area 

• 	 GETMAIN Routine 

RMBRANCH 

6.1 


I ALIASI I 
 BLDL Work Area 

;; 	Build or find mojor LINK Routine (4.2) 

CDE, lood the module~ Step 5 


IMinor found 

DEFOUND Program Fetch 

Load the req uested 
Examine the PDS DE. module 4.12 

LINK Routine (4.2) 
Step 6 

BLDL Routine.... IECPBLDL 
Search for PDS DE. 

Register 1 

ERRORTAB 	 Completion codeI 	 I 
X '806' - BLD L unsuccessfu 1 

ABEND or I/O error during BLDl 

IGCOOO1C 
,8.14 

Routine to Searching 
Routines (4.3) 
Step 1 

...... 4 

-

L, 	 '­ L 



r ( r 

Diagram Q.5 BLDL/Program Fetch Interface (Mcdule IEAVLK01) 
r------------------------------------------------------------T--------T--------, 
I IROUTINE I I 

I NOTES INA~E ILAPEL I 

~------------------------------------------------------------+--------+--------~ 

L____________________________________________________________ L ________L ________J 

I 1 SATMAR creates a CCE (contents directory entry) and ISATMAR ISATMAR I 
I queues it to the job-step TCE. The CDf is built prier I I I 
I 
I 

to BLDL and prograrr Fetch processing to ensure that sub-I 
sequent requests for the same rrodule will be deferred I 

I 
I 

I 
I 

I during BLDL or Program Fetch processing. I I I 
I 
I 4 EUILDEL is a contents supervision subroutine that calls 

I 
IBUILDEL 

I 
ISUILCEL 

I 
I 

I the BLDL routine. BLDL trys to find the PDS DE I I I 
I (partitioned data set directory entry) for the requested I I I 
I module. I I I 

en 
CD 

:+ .... 
g 
.c: 

(") 

~ 
CD 
::1 
rt' 
en 

.a en 

CD 
1"'1 
<:.... 
en .... 
o 
::1 

~ 

\D 
-.I 



I-' 
CIO 
o 

From SVC SLiH after a SYNCH 
SVC has been issued, to pass 
control to a user program 

IGC012 

Input 

Get PRB storage from the lSQA. 

2 Move the first 40 bytes of the 
contents supervision SVRB to the 
new PRB. 

3 	 Chain the PRB to the SVRB. 

4 	 Initialize the PRB resume PSW in 
the standard format. 

6 If a PICA exists, move the program 
mask from the PICA to the resume 
PSw. 

--,.r--- 5 	 Set state and protection key in the 
resume PSW. 

Diagram 4.6 
SYNCH Routine 

Output 

TCB 

RMBRANCH 
Get storage from 
subpool255. 

SVRB 

(caller's) 

IGC003 
Remove contents 

supervision SVRB. 

Dispatcher (3.17), Step 1. 
When the tosk is next 
dispatched, the 
dispatcher loads the PSW 
from the new PRB. 

~ 	 ~ 
 ~ 




(
r 	 r 

Diagram 4.6 SYNCH Routine C~odule IEAVLKOO) 
r------------------------------------------------------------T--------y--------, 
I I ROUTINE I I 
I NOTES INAME ILABEL I 
~------------------------------------------------------------+--------+--------~ 
I The SYNCH routine makes it possible for a supervisor ISYNCH IIGC012 
I routine to take a synchronous exit to a user program. I 
I SYNCH initializes a PRB and schedules execution of the I 
I requested program. After the user program has teen I 

executed, the supervisor routine that issued the SYI'CH I 
macro instruction regains control. 	 I 

I 
After minor hous€kee~ing processing, SYNCH passes I 
CDEPILOG THRUX control to CDEPILOG at THRUX. I 

I 
The PRB is chained behind the SVRE because the Exit rou-I 

tine later removes the top RB on the RB queue and the I 

module represented by the request level RB gains I 

control. 


2 

I 
I 

4 	 Standard format for the PSW is X'070DOOOOOO'. This rray I 

be modified in steps 5 and 6. The RBOPSW is called the I 

resume PSW in the steps above. The dispatcher loads I 

this PSW to give control to the user ~rogram. I 


I
5 	 If the SYNCH request was not to enter a STAE exit rou- I 


tine CTCBSYNCH=O), the requested program will execute I 

with the protection key in the caller's TCB CTCBFKF) andl 

in problem state. I 


I 
If 	the SYNCE request was to enter a STAE exit routine, I 
the RBOPSW is set to indicatee supervisor state if I 
SCBSUPER equals 1, and key 0 if SCBKEYO equals 1. If I 
SCBSUPER equals 0, the RBOPSw is set tc indicate protleml 
state, and if SCBKEYO equals 0, the RBOPSW is set equal I 
to the protection key in the caller's TCB. I I

L____________________________________________________________ _______ ________~ ~ 

en 
(!) 
o 
rt 
1-" 
o 
1:1 

~ 

(') 
o 
~ 
(!) 

~ 
CfJ 

en 
d 
to 
(!) 

~ 
1-" 
CfJ 
1-" 
o 
1:1 

.... 
0) .... 



I-" 
CX) Diagram 4.7 
I\) LOAD Routine 

From SVC SLiH after a LOAD 
macro instruction has been 

issued, to load the requested 

module 


Input 

Register 0 

Address of entry-point 1 Ensure that referenced addresses 

name or PDS DE are in rea I storage. 
 Output

2 Set register 8 to caller's JPAQ address 
and set contents supervision SVRB to 
look like a PRB. 

r 3 Search the requester's lood list. 

I If module is found, continue at 
Step 4._---1 

4 	Determine whether the module 
can be used immediately. --...I - CDALLOCI- I 

CDE 

____________~I~I.. LINK Rautine (4.2)•
• Cannot be used. 

Step 3 
• Can be used later (being fetched), 

• Can be used now. Go to Step 5. 

5 Increment the use count in the CDE. 
Register 1 

Completion code 

X'9()s' - Use count exceeds 4095 
or responsibility count 
exceeds 255, 

X'606' - lPA module too large 
to fix. 

6 Build and initialize the LLE. 

Caller via the 
Exit routine Size of module 

(SVC 3) 

~. L 	 L 




(
r 	 r 

• Diagram 4.7 LOAD Routine (Module lEAVLKOO)

r------------------------------------------------------------T--------T--------l 
I l~mmE I I 
I NOTES INA~E ILAEEL I 
~------------------------------------------------------------+--------+--------~

The LOAD routine brings a module containing a s~ecified 
entry point into virtual storage if a usable cOfY is not 
available. It increases by 1 the responsibility and use 
counts, and returns control to the requester. 

LOAD calls DALPRFIX to enSure that the address of the1 
entry-~oint name or PDS DE for the requested module is 
in real storage .. 

The two high order bytes of the RBSTAB field in the 
SVRB (supervisor request block) are set to 1 to make 
the SVRB look like a PRB (prograu request blcck). New 
ABEND can free the SVRE if the requester abnormally 

2 

terminates. 

The address of the requesting JPAQ (job pack area 
queue) is placed in register 8 in case LINK must con­
tinue to search for the module. Also, LOAD sets the 
lower order bit in RBCDFLGS equal to 1 to indicate that 
this is a load request. 

5 	 If the CDE for the requested ~odule is in the TSLPA and 
if the requester is a ~so task, CDMOPUP does not 
increase the use count in the CDE. 

If 	the use count exceeds 4095, the requester is 
abnormally terminated. 

6 	 If no LLE exists, CDLDRET gets storage for an ILE and 
chains it to the caller'S load list. If the caller is 
a nonpageable task and the requested module is in the 
LPA, the requested module is fixed by calling the PGFLX 
routine. 

CDLDRET increases the responsitility count in the lIE, 
and if it exceeds 255, the requester is abncrmally 

I terminated.L____________________________________________________________ 

CIl 
/I) 
C'l 
rt.... 
o::s 
~ 

n 
o 
~ 
/I)
::s 
rt 
C/) 

CIl 
~ 

"0 
/I) 

~ .... 
C/) .... 
g 

ILOAD IIGC008 I 
I I I 
I I I 
I I I 
I I I 
IDALPRFIXIDALPRFIX 
I I 
I I 
I I 
IGINREGS IGINREGS 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
ICDMOPUP ICDMOPUP 
I I 
I I 
I I 
I I 
I I 
I I 
ICDLDRET ICDLDRET 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
~________~________J 

I-' 

1M 
00 



00 
~ 	 Diagram 4.8 

XCTL Routine := 
From SVC SLiH ofter on XCTl 

macro instruction has been issued, 

to pass control to a requested 

module 


Input 	 Processing 
IGC007 

Register 15 

Address of paramter list ~~------ Ensure that the parameter list 

is in real storage. 


2 	 If the requester has issued a STAE 
without the XCTL option, free 
the SCB. ~----------

3 	 If the requester is operating with 
an IRB or TIRB, set the caller's 
resume PSW to SVC 3, and call RB 

LINK Routine (4.2)LINK. 
Step 2 

SCB 

4 If the requester is operating with 
a PRB, queue it above the contents 
supervision SVRB, and go to LINK. 

Remove PRB. 
Dispatcher passes 
control to LINK 

3.14 

5 	 The requester is operating with 
on SVRB. ~ 

CDSEARCH 
LINK Routine (4.2) 

Search for the 
requested module 
in the LPA. 

6 If the requested module is found, Entry-point address of 
initial ize the new SVRB and exit. requested module 

Removes contents 
supervision's SVRB.7 Seorch the LPA directory. 	 lEAWMSR Routine 

SRCHDIRC 
4.4 

8 	 If the module is not found, 
abnormally terminat the caller. 

9 	 Initialize the new SVRB, and exit. 
(Sl'!e output from Step 6) 

8.14 

l. (. 	 L 




r 


CIl 
(1) 
n 
rt.... 
o 
ts 
.j:: 

n 
o 
~ 
(1) 

~ 
CIl 

CIlc: 
'tj 
(1) 

~ .... 
CIl .... 
g 
... 
Q) 

U1 

r 	 r 

Diagram 4.8 XCTL Routine (Module IEAVLKOO)
r------------------------------------------------------------T--------T--------, 
I IROUTINE I I 

I NOTES INAfl:E I LABEL I 

~------------------------------------------------------------+--------+--------~ 

The XCTL routine provides linkage to a specified load 
module. The requested ~odule is executed with the same keyl 

IXC~L IIGC007 
I 

I 
I 

and in the same state as the requester. The XCTL 
itself completely services only XCTL requests fer 

reutine I 
callers I 

I 
I 

I 
I 

represented by an SVRB. XCTL calls the LINK routine to I 
honor requests made by callers operating with a PRB or IRB.I 

I 
I 

I 
I 

XCTL ensures that the requester dces not regain control 
after the requested module has teen executed. 

1 	 XCTL calls LXPREFIX to ensure that the parameter list 
is 	in real storage. 

2 	 If the SCBXCTL2 flag in the SCBSTA is equal to 1, the 
caller issued a STA with XCTL option before issuing an 
XCTL. XCTL frees STAE SCBs that do not indicate the 
XCTL option. 

XCTL marks as noncancellable (sets SCBXCTL1=1) all 
I STAESCBS that indicate an XCTL option, and were r.ot 
I 	 issued by a supervisor program. The routine does this 
I 	 to prevent the Exit routine frcm freeing therr. 
I 
I 3 	 Setting the resume PSW to an SVC 3 instruction causes 
, 	 the requester to exit when the requested module exits. 

A requester represented ty a TIRB follows this path to 
the CDADVANS entry pCint in LI~K. 

4 	 XCTL moves the caller's PRE ahead of the contents 
supervision SVRB on the RB queue.. The Exit routine 
removes the PRE, and when the task is next dispatched, 
processing continuEs at CDABVANS. 

6 The XC~'L routine sets the resurre PSW (RBOPSW) in the 
requested rrodule's SVRP to the module's entry-point 
address. 

9 	 Same as Step 6.
l ____________________________________________________________ 

I I I 
I I I 
I I I 
I I I 
I LXPREFIXI LXPREFlXI 
I I I 
I I I 
XCTL ISTAELOOPI 

IRBPROC 

PRBPPOC 

I FOUNDUM 
I 
I 
I

I IFOUNDE~ 
~________L________ J 



00 
... 	 Diagram 4.9 

DELETE Routine C1'I 
From SVC S L I H after a 
DELETE macro instruction 

has been issued 


Input 

Register 0 

Address of entry-point t..­
Ensure that the input address is in 

name r 	 1 
rea I storage. 

r-- ­ Search for the module to be 

---.J deleted. 


2 	
----I~I CDLLSRCH I 
--~-l 

Caller via....___________-+_.... Exit routine 

3 	 Decrease the responsibility count (SVC 3) 
in the LLE. 

4 	 If the responsibility count equals 
0, free the llE. 

RMBRANCH 

6.1 
5 	 If the caller is in V=R storage, 

and the module being deleted 
is in the LPA, go to PGFREE. 

Free an lPA module 

loaded by a V~ 
tas~( . 

6 	 Decrease the use count in the 
CDE, and go to Step 8 if it does 
not equal O. 

7 	 The use count equals O. Mark 
the CDE no longer needed. 

CDHKEEP 
Free CDE and module 

15 

8 	 Zero register 15, and exit. 

Caller via 
Exit routine 
(SVC 3) 

~ 	 L L 



r r 	 r 

Diagram 4.9 DELETE Routine (Module lEAVLKOOl 
r------------------------------------------------------------T-------~--------l 

I IROUTINE I I 

I NOTES INAME ILABEL I 

~------------------------------------------------------------+--------+--------~
I When a module brought into virtual storage via the LOAD 
I routine is no longer needed by the program that requested 
I it, the requesting progralT, issues a DELETE lI,acrc instruc-

IDELETE IIGC009 I 
I I I 
I I I 

I tion. The DEL£TE routine then decreases ty one the respon
I sibility count in the lcad list element (LLE). When the 
I responsibility count reaches zero, DELETE frees the LLE. 

-I 
I 
I 

I 
I 
I 

I 
I 
I 

I 
I 

If the module being deleted is not a ~so module or repre­
sented by a CDE in the TSLPA, the DELETE routine also 

I 
I 

I 
I 

I 
I 

I decreases the use count in the ccntents directory entry I I I 
I (CDEl. I I I 
I I I I 

DELETE calls DALPRFIX tc enSure that the address of the IDALPRFIXIDALPRFIX 
requested module's entry-point name is in real storage. 

3 	 The LLE responsibility count is a record of the number 
of outstanding LOAD requests for the module. 

6 	 The CDE use count represents the total number of 
requests for a program via ATTACH, LINK, LOAD, and XCTL 
macro instructions. The count increases each tine one 
of these macros is successfully issued, and decreases 
each time a DELE'l'E is issued. 

The CDUSE and COROLL fields contain the use count. The 
overflow from CDUSE is in CDROLL. When the count in 
these fields is zero, DELETE sets the CDATTR field tc 
indicate that the module is no longer usable. In this 
case, the CDHKEEP routine frees the real storage occu­
pied by the program, its extent list, and its major and 
minor COEs. I I ____________________________________________________________~________~________J 

en 
til 

:+ .... 
o 
ts 

~ 

n o 
~ 
m 
rt 
en 

.g en 

til 

~ .... 
en .... 
g 
j-> 
co .... 



..... 
co Diagram 4.10 
co IDENTIFY Routine 

From SVC S LlH after the 

IDENTIFY macro instruction 

hsa been issued 


Input 	 Output 
IGC04! 

Each time one of the steps places 
one of the return codes below in1 Ensure that referenced addresses register 15, IDENTIFY returns to 

ore in rea I storage. the caller via the Exit routine. 

X'lOl - Caller is not operating 
r ­ 2 Requesting program must be Error with a PRB.::>(A) 	 0> 
I operating with a PRB. 

XI lSI - Invalid parameter list.I 	 ~ 
3 If this is a request for a maior 	 X'lC' - Invalid extent list or 

I 
I 	 @:>CDE, check for errors in 	 module address. Error ~ 

request. 
-+---1----...J 

X'20' - An extent address is not 
in subpoo! O.0> 

@> X'041 - Entry-point name and 
address already exist.....4 Search for duplicate module name. ..... IEAOCDSR 

X'OSI - Entry-point name 
..... Search JPAO, LPAO, duplicates the name of0>

and TSLPAQ. a load module 
currently available.Found ~ 

~ X'14' - ~n IDE~T1FY macro 
5 Check validity of request. ~ Instruction was 

previously issued using 
the same entry-point 
name but a different 
address.

6 Determine where the minor CDE 
should be built and get storage, @> XIOC' - Entry-point address is 
or get storage in subpool 255 for not within an elegible 

~~ 	 -I 
~ 

a moior CDE. 	 GETMAIN Routine load module. 

~ X'QQ' - Successful completion. 

7 	 Initialize and chain the CDE (and 
6.1 

extent list if major CDE) in CDE 
queue. c:=:===>(I) 

Caller via 
Exit Routine 
(SVC 3) 

L L 	 l".. 




r ( 	 r 

Diagram 4.10 IDENTIFY Routine (Module IEAVIDOO) 
r------------------------------------------------------------T-------~--------l 

I IROCTINE I I 

I NOTES INAME ILABEL I 

~------------------------------------------------------------t--------t--------~

The IDENTIFY routine informs the sUfervisor of a ~odulp's IICE~~IFYIIGC041 I 

embedded entry-point name (a name that was not established I I I 

by the linkage editor). IDENTIFY informs the supervisor bYI I I 

creating a winer CDE (ccntents directory entry) to refre- I I I 

sent the embedded entry-point name. I I I 


I I I 

The IDENTIFY routine can also build a major CDE and an I I I 

extent list in subpccl 255 for a module brought directly I I I 

into storage by the loader. This allows the sUfervisor to I I I 

identify the mcdule. 
 I I I 


I I I 

If register 0 equals 0, a major CDE is reguested. In IIDPREFIXIIDPREFIXI 

this case. IDPREFIX ensures that the parameter list cr I I I 

entry-point address in register 1 is in real storage. I I I 


I I I 

If register 0 contains an address, IDPREFIX ensures that I I I 

the address of the module nane is in real stcrage. I I I 


I I I

3 	 Beginning with this step, all processing to build a IMAJORCDEIMAJORCDEI 


major CDE is handled by a subroutine of IDENTIFY, called I I I 

MAJORCDE. Because MAJORCDE Ferforms the same functicns I I I 

as IDENTIFY does to build a minor CDE, it is shown in I I I 

Steps 4-7 above along with IDENTIFY processing. I I I 


I I I 

6 	 Minor CDES may be built in the JPAQ, TSLPAQ, or LPAQ, I I I 


depending upon where the major CDE is located. I I I

L______________________________________________________ ______ i ________i ________J 

en 
ID 
(') 
cT.... 
o 
tj 

~ 

(') 
o 
~ 
C1> 
tj 
cT en 
en 
d 

'1:! 
ID 

~ .... 
en .... 
o 
tj 

~ 
CO 
10 



-----------

overlay segment. 

IGC037 

,... Diagram 4.11 
ID Overlay Supervisor o 

From requester via branch or 
Second level Interruption 
Handler to load requested 

Input 
INPUT 

Register 0 

oindicates SEGlD 

Nonzero indicates SEGWT 
 If the requested overlay segment is 

in virtual storage, and ENTAB is ENTAB, which 
prepared to branch to it I go to I................~ 
branches to the ENTAB. requested overlay 


ENTAB entry address of segment 

requested overlay segment 
 2 Issue a LINK to IEWSZOVR in the 

overlay supervisor. 

INPUT 
IEWSZOVR 

Registers 1 and 2 same as above 

Register 9 3 	If the overlay segment is in virtual 

storage, go to: 


Overlay segment number 
• Step 7 for BR or CA lL. 

Register 12 
• Step 8 for SEGlD or SEGWT entry.I Address of SEGTAB 

,-- 4 If the overlay segment is being loaded 
for a previous SEG lO request I wait 


~-------- for the loading to complete. 

_-.J 

ECB SEG LD Processor.. 	 5 Update status indicators in SEGTAB SEGlD IOVAl02iiiiiii.....~ Request loading of Iond ENTAB. 
overlay segments. ­Completion flag 

6 	 Request loading of overlay segments 
marked in SEGTAB; go to: 
• Step 7 for BR or CA II 
• Step 8 for SEGlD or SEGWT entry. 	 Program Fetch 

Load req uested 
overlay segments. 

4.12 

7 	Alter ENTAB entries to permit 
unassisted branch to overlay 
segments. 

Error 
ABTERM8 Check for error conditions. 

lEAOABOO 
8.12 

SEGTAB or ENTAB 
for branch to 
requested overlay 
segment 

L ~ 	 L 




r r 	 r 

r------------------------------------------------------------T-------~--------,
1 1ROUTINE 1 1 
1 NOTES INA~E ILAEEL 1 
~------------------------------------------------------------+--------+--------~ 

In both cases, the overlay supervisor exarrines the SEGTAB 1Overlay 
to determine whether the requested overlay segment is ISuper­
already in virtual storage, and whether all overlay SEg- Ivisor 
ments between the requested overlay segment and the rcot 
overlay segment are in virtual storage. All must te in 
virtual storage, and if they are not, the overlay supervi­
sor calls program Fetch to load them. 

When an overlay prograw is link-edited, the linkage editor 
builds an SEGTAB (overlay segment table), and one or more After the required overlay segments are in virtual storage, 
ENTABs (entry tables). It rrakes these tables part of tht if the callEr has issued a CALL or branch instruction, the 
overlay module. overlay supervisor alters the ENTABS of the loaded overlay 

segments. The modified ENTABs permit future branches tc 
loaded overlay segments without help from the overlay 
supervisol: .. 

Finally, depending on how it was called, the overlay super-I 
visor passes control to the: 1 

1 
• 	 caller before loading is corr.plete (SEGLD) 1 

1 
There can be an ENTAB in each overlay segment of the pro- I. • caller after loading is corrplete (SEGWT) 1 

1 1 
1 • Branch address in the requested overlay segment after 1 
1 it is loaded (CALL or tranch instruction). 1l ____________________________________________________________ ________~________J~ 

CIl 

II) 


:+ .... 
o::s 
~ 

() 
o 
~ 
~ 
rI' 
C/l 

CIl 

.§ 
II) 
Ii 
<:.... 
C/l.... 
g 
I-' 
14:) 
I-' 



Diagram 4.12 (Sleps 1-7) 
\0 Program Felch 
I-' 

I\) 
From the Program Fetch interface 
in the LINK routine (4.4) to load 

Input 
INPUT (from LINK routine) 

a module from auxiliary storage 

••~IIEWMSEPT 

Obtain virtual storage for theRegister 5 
module. 


Address of PDS DE 


~egister 7 

Address of DeB 

Register 9 2 Build an extent list. 

Address of eDE 

Register 10 3 Read and initialize the note
From the o,..erlay 


Subpool number for module 
 list (overlay programs only).
Supervisor (4.11) 
to load requested 

Register 13 overlay segments 

Address of Program Fetch 
work area 

••~IIEWBOSV 

INPUT (fJTN"l overlay supervisor) 4 Initialize the Program Fetch work 
area for module loading. 

Register 3 

Address of Program Fetch 
work area T T5 Prepare channel program for reading TTR for overlay segment n 

Register 7 
module records.C Address~f DeB 

Register 8 6 Initiate I/O operation. Read ~ See OUTPUTC Address of note list module records into virtual storage. ~opposite 
Step 8 

ECBs, buffer tables, control 
Register 9 information 

Overlay segment number J 
7 Switch to next channel program. 

Load module or 

overlay segment 


(ConHnued at Step 8)Note list 

eDE 

L,~
~ 



r 	 ( 
 r 

Diagram 4.12 (Steps 1-7) Progra~ Fetch (Module IEWFETCti) 
r------------------------------------------------------------T-------~--------l 

, ,ROUTINE , , 
, NOTES , NAI!E , LABEL , 

r------------------------------------------------------------+--------+--------~
The Program Fetch routine, which is a single module in the 'Program IIEWMSEPT 
nucleus, loads modules for supervisor routines. It trans- IFetch 
fers 	modules into virtual storage from libraries (organized 
as partitioned data sets) on direct access storage devices. 
Program Fetch reads a module into a continuous block of 

virtual stordge, and relocates address constan~s in the 

module. It can process several load requests concurrently. 


The subroutines of contents supervisor that search for 
requested modules and the overlay sllFervisor use PrograK 
Fetch to load modules. 

The searching subroutines of contents supervision enter 
Program Fetch after a LINK, LOAD, XCTL, or ATTACB macro 
instruction has been issued, and a usable copy of the 
requested module is not available in virtual stcrage. For 
this 	type of entry, Program Fetch transfers the entire 
module from auxiliary storage tc virtual storage. 

The overlay supervisor enters Program Fetch after a SEGWT, 

SEGID, or CALL w.acro instruction, or after a instruction 

has been issued for an overlay segrrent that is not in vir­

tual storage. For this type of entry, Program Fetch loads 
only 	the requested overlay segffient. 

In loading a 	 nonresident module or an overlay s€grrent, the 
major phases 	of Program Fetch processing are: ,, 

work area, builds an extent list, and (if the wodule , 
is in an overlay structure) fetches the module's ncte I 

• 	 Initialization. Program Fetch initializes a fetch 

list. Program Fetch gets virtual storage for the load, 
module. ,, 

• 	 Loading. Program Fetch calls channel Frogra~s that 
transfer text zecords, RLD records, and control rec­ ,, 
ords into virtual storage. ,,,• 	 Relocation. Using the RLD records, Program Fetch 
changes the values of the address constants in theCIl 

C1l 	 loaded program froD'1 auxiliary storage addresses to ,, 
o 	 virtual storage addresses. ,,rt 
~. • 	 Terminaticn. Progra~ Fetch checks the completion of ,o I/O operations, calculates the relocated module entry-,t; 	

point address in virtual storage, initializes the I 
.c:: 	 overlay segment table (if the module is in overlay , 

structure), sets up a return coue, and returns control I 
to the caller. ,, 

r------------------------------------------------------------T-------~--------, 
, ,ROUTINE , , 
, NOTES , NAME , LABEL , 

~------------------------------------------------------------+--------+--------~ , 3 	 If the module being loaded is in overlay, Program Fetch ,Program
I initiates channel programs that read the note list into IFetch 
I storage (storage obtained during extent list proces­
, sing). 	 The linkage editor placed the note list in the 
, 	 overlay module. The note list contains the relative 
, 	 disk address (TTR) for reading each overlay segment of 
, 	 the module. The TTR of the note list is obtained from 

the PDS DE, converted to an absolute disk address, and 
used in the EXCPVR channel request to read the ncte list 
into virtual storage. After the note list has been 
read, Program Fetch builds a note list prefix that it 
uses when called tc load an overlay segment. 

4 Program Fetch initializes a ~ork area whose address is 
furnished by the caller. It places in the work area 
information that it will use to load the requested 
module. This information consists of: 

• 	 An input/output blcck (lOB). The lOB provides infor­

mation that is needed by the I/O supervisor. 


• 	 Two event control blocks (ECBS). One ECB is posted ty 

the I/O supervisor when a channel-end condition 

occurs. The other is posted by a PCl appendage rou­

tine when a prograrr.-controlled interruption occurs in 
a 	 channel program. The posting of either ECB Ferldts 
the Program Fetch to be restarted after an I/O wait 
interval. 

• 	 Three channel programs. The channel programs are 
siEilar. They are used to overlap the reading of one 
or more module records with the relocation of address 
constants Fointed to by a Freviously loaded RLC 
record. 

• 	 Three RLD buffers. Each buffer is 260 bytes long and 

is capable of holding an RLD record, a control record, 

or a composite control and RLD record. 


• 	 A buffer table. This tatle contains a 12-tyte entry 

for each RLD buffer. Each entry contains: 


• 	 A pointer to the next entry. 

• 	 The address cf an RLD tuffer. 

• 	 The address of a channel program • 

• 	 A text table. This tatle is used in CCW translaticn, 
and contains: 

Th~ address of the text CCW currently active in 
the channel program. 

• 	 The virtual location at which the above CCW is 

reading text data. 


In addition, program Fetch requests storage for 

another work area if the DCB (data control block) 

does not reference either SYS1.LINKLIB, SYS1.SVCIIE, 

or JOBLIB.


L____________________________________________________________i ________i ________ 

(') Steps 1-5 are the initialization process performed byo Program Fetch. During initialization, Program Fetch 
~ calls GETMAIN to get the virtual storage it needs for 
C1l module loaaing. 

t; 

rt 2 The extent list contains the virtual storage address of
en and the length of each section of a module eligible for 

loading. program Fetch issues a GETMAIN macro instruc­CIl
c: tion to obtain storage for an extent list (and a note 
tn list if the module is in overlay). GETMAIN returns the 
C1l extent list address and places it in the CDE.L____________________________________________________________ 
~ 
~. 

en 
o 
~. 

t; 

I-' 
1.0 
W 

________~________ 



... r------------------------------------------------------------T--------T--------, r------------------------------------------------------------T-------~--------l 

10 I IROUTINE I I I 	 I ROUTINE I I 
~ I NOTES INAME ILABEL I I NOTES 	 INAME ILABEL I 

~------------------------------------------------------------+--------+--------~ ~------------------------------------------------------------+--------+--------~ 
Program Fetch builds a DCB in the work area; thE IProgram Other ar~as referenoed during the I/O request are in thelProgram I I 
only valid field in this DCE is a Fointer to the IFetch fetch work area (fixed for the duration of the loading IFetch I I 
DEB. Eefore cepying the DEB into the work area, I operation) or are resident in the system nucleus. Once I I I 
Program Fetch calls the DEECHK routine te check the I the fix list 1S created, the I/O supervisor regains con-I I I 
validity of the ~EE. The DCB and DEB are used for I troll regi3ter 10 contains the address of the fix list, I I I 
all I/O requests. I and register 11 contains the number of entries in the I I I 

list. I 

5 preparing for Execution of a Channel Prograa Prograrr. 


I 
I 	 I 

Fetoh passes to the I/O supervisor an absolute disk 	 I Before starting the channel Frcgram, the I/O sUFervisor I 
Iaddress at which the first I/O operation is to begin. enters the Fetch Start I/O Appendage routine. On the I 

It does this by: first entry to the Start I/O AFFendage for a loading I 
operation, all channel programs are translated. On sub­

• 	 Obtaining the relative track and record addreGs sequent entries for the sarre load operation, the only 
(TTR) of the first text record from the data set CCWs requiring translation are those that read the 
directory entry, or obtaining the TTR of the ne£ded module text records. The other CCWs all address the 
segment from the note list. nonpageable fetch work area, so they are valid unless 

the page containing the work area has been swaFped into 
• 	 Converting the relative address to an absolute a new real page. WhEn a new page is encountered, the 

address, via a branch to a ·convert- routin€ that is Start I/O Appendage translates all channel Frograms 
reside~t in the nucleus. again. 

• 	 Placing the absolute disk seek address in the Pro­ The text CCWs are treated separately and are translated 
gram Fetch input/output block (lOB), for later use on each entry to the aFpendage. They are translated 
by the I/O supervisor. from infcrmation in the tExt table. For text CCWs that 

cause page boundaries to be crossed, an IDAL is crEateO. 
The absolute disk seek address used for subsequent I/O All real addresses are obtained using the LRA instruc­

requests is obtained frorr. count data which is read whilel tion. Control is then returned to the I/O sUFervisor. 

loading the text records. 
 I 

The I/O supervisor issues a Start I/O instruction, fol­I 
The extent of the ~odule's virtual storage area (text 	 lowed by a Stand-Alone Seek corr~and_ The Stand-AloneI
buffer) to be fixed is calculated for each I/O request. 	 Seek command waves the access arm of the direct accessI 
This frcvides real storage for the text CCWs that are 	 device to the seEk address contained in the lOB. TheI 
introduced in the channel Frograrr switching [rocess. 	 I/O sur-ervisor, via a 'Iransfer in Channel corrJl1and, thenI 
The buffer begins at the point when Program Fetch is passes control to a fetch cnannel prograrr, whose address I 

currently loading text reoords, and is 18K bytes long, I the Prcgram FEtch routine placed in its IOB. The fetch I 

unless the end of the module is encountered first. I channel program causes the first text record to te read I 


I into virtual storage. The I/O supervisor returns con- I 

6 Program Fetch starts a channel program by issuing an trol to program Fetch to wait for ~osting of an £vent I 


I 

. I 
EXCPVR macro instruction to cbtain supervisor linkage tal cor.trol tlock by tbE I/O supervisor or an appendagE rou-I 
the I/O supervisor. The lOB address is provided as an I tine. Such posting indicates that one or twc records I 
operand of the macro instruction. I have been read ana that further processing can occur in I 

Progran, Fetch. II 	 l ____________________________________________________________ ________ ________~ ~The I/O supervisor then passes control to the Fage fix I 

apFendage (PGFX). The PGFX appendage creates a fix listl 

in the fetch work arpa. This list contains doubleword I 

entries; each entry gives the low and high virtual I 

addresses of storage tc be fixed for the I/O request. I 

In this manner, page faults are avoided when the I/O I 

supervisor or appendages address the fixed storage. I 

Included in the list are: I 


I 
• 	 DCB fOL the module's data set. I 

I 
I • The text buffer defined before issuing EXCPVR. I I
L____________________________________________________________ ________ ________J~ ~ 

L 	 ~ L 





,... 
Diagram 4.12 (Steps 8-15) \0 

0\ 	 Program Fetch 

Processing Output 

Scan buffer tab Ie for R LD records.8 

Check validity of adeon locations.9 

10 	 Replace relative adeon address with 
virtual storage address~ 

Test for completion of loading. 711 

12 Allow channel program to finish. 

13 Initialize SEGTAB for overlay program. 

Calculate module's relocated entry-
point address. 

14 

Return15 Set return code in register 15. code Meaning 

Successful load Return to I I X'OO' 
Caller 

X'OD' Invalid record type 

X'OE' Invalid address 

X'OF' Permanent I/O error 

L L 	 ~, 




r t 	 r 

Diagram ij.12 (Steps 8-15) Program Fetch (Module l!WFETCH) 

r------------------------------------------------------------T-------~--------,r------------------------------------------------------------T--------T--------,
I IROD'IINE I I I IROmINE I I 
I NOTES INA~E ILAEEL I I NOTES INA~E ILAEEL I 
f------------------------------------------------------------+--------+--------~ f------------------------------------------------------------+--------+--------~ 

8 	 Switching of Channel Programs: Each channel program Iprogram I I I The Channel-End A~~endage routine is entered by the I/O IProgram 
reads a text record followed by an RLD or control IFetch I I I supervisor when the channel ~rograrr, has terrrinated. Thei Fetch 
record, or it reads only the RLD or control recorda I I I I appendage retux-ns control to the I/O supervisor to ~Gst 
When a text record is not followed by a control record, I I I I the I/O ECB when channel end is due to the fact that: 
the next channel program switches to single-record mode. I I I 
'l'he single-record mode continues until a control record I I I • The entire module or segnent has been loaded. 
is encountered causing a switch to two-record mode. I I I 

I • A buffer-full condition is indicated. 
A CCW in each channel ~rograli causes a ~rogram­ I 
controlled interruption (PCl). The PCl causes the I/O I • A permanent I/C ezror has occurred .. 
supervisor to pass contrcl to the PCI a~~endage routine. I 
The a~~endage examines the current RLD buffer to deter­ I When none of the above conditions is present, channel 
mine the channel program switching required, and I end occurred because the TIC instruction was stored by 
operates as fol1o~s: the PCI Appendage after the channel had fetched the NOP 

CCW. In this case, the Channel-End Appendage routine 
• 	 If the next RLD cuffer is filled, the next channel returns control to the I/O supervisor to restart the 

program cannot be used, so chaining is su~~ressed channel program. 
and a "buffers full" condition is indicated. The 
current channel rrograrr is nct altered. 11 Program Fetch is restarted after the PCI Appendage rou­

tine or the I/O supervisor has ~osted an ECE. The relo­
• 	 If the current RLD buffer contains an RLI: record, cation subroutine of program Fetch then examines the 

the NOP CCW in the current channel program is buffer table to determine whether an RLD recerd (con­
altered to TIC the CCW, which reads a control recordl taining relocatatle address constants) is in an RLD 
or RLD record into the Program Fetch work area. The I buffer. The subroutine searches for a buffer tatle 
TIC address is translated using the IRA instruction. I entry whose "busy· indicator is set. The indication 

means that the associated buffer contains an RID record.I 
• 	 If the current RLD buffer contains contrel informa- I When such a tuffer is found, the relocation subroutine 

tion, the text CCW in the next channel program is I relocates each address constant specified in the record. 
initialized. Before chaining is attem~ted, however,1 (When RLD records in all "busy" cuffers have been pro­
the extent of the read is examined to determine I cessed, Program Fetch either restarts a channel ~rograrr 
whether it exceeds the text buffer fixed for the I if the "buffer full" flag is on, or issues a WAIT macro 
current I/O request. If the fixed limits are I instruction to await the loading of another record. 
exceeded, the current channel frograrr, is not alteredl 
and a "buffer full" condition is set. If the text I The relocation subroutine adjusts the value cf an 
buffer is not exceeded, the current channel ~rogram I address constant by co~bining (adding or subtracting) a 
NOP is altered to TIC to the next channel program tol relocation factor with the value of the constant. EachI 
read a text record, and a control or RLD record I 	 RLD record contains the linkage-editor-assigned addressI 


I
after the text CCW and TIC address have been I of the constant and a flag that indicates additicn or 
translated. I subtraction of the relocation factor.I 

CIl I I 
m • If the current RiD buffer contains an RL[ record I 	 If the linkage-editor-assign€d address of the constantI 

with the end-of-module indicator, the "end" flag is I I yields a location outside the storage area assigned to ~ set. If the buffer contains a control record with I I the load module, no storing takes place. Control is
1-'. the end-of-module indicator, the next channel pro­ I I then passed to the Termination routine.g gram is prepared to read a text record cnly and the I I 

"" 
wend- flag is set. I If the control record before the next text record con­

tains an "end· indicator, the PCI Appendage routine sets 
In all the above cases, the fetch ECB is posted to pre-

I 
I I 

I 
an "end- flag to inforro the terrr:ination subrcutine. 

pare the program Fetch routine for restart by the dis- I After relocation has teen performed, a test of the Wend" 

(') patcher, and control is returned to the I/O supervisor. I ________ J I 
I 

flag causes the subroutine to be entered. 

113 

L____________________________________________________________ ________~ ~ 

I 
The Termination routine perforrrs its processing cr~ I 

I waits, depending on whether all I/O operations have been 
completed. when all I/O operations have been conpleted,~ I 

I the subroutine places a completion code in the return 

en 
rt 	 I register. 

I 

.g 
CIl I The relocated entry-~oint address is calculated and 

I placed in a register fer use by the caller. If the 
I module loaded was the root segrr,ent of an overlay ~ro­m I gram, the address cf the DCB and the note list are


t; I placed in the segment table for the overlay sUfervisor. I I
cd L_____________________________________________________-------~--------~--------~ 
1-'. 
en 
1-'. 
g 
.... 
\Q 

"'" 





SECTION S 

Paging Supervision 

HOW PAGING IS SUPERVISED•••••••••••••••••••••••••••••••••••••••••••• 
Organization of the Paging Supervisor ••••••••••••••••••••••••••••••• 
Entries to the paging Supervisor•••••••••••••••••••••••••••••••••••• 
Paging Supervisor Algorithms._ ...................................... . 


The Page Replacement Algorithm•••••••••••••••••••••••••••••••••• 
The Task Disablement Algorithm•••••••••••••••••••••••••••••••••• 

page Managetnent••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Control Blocks and Tables ••••••••••••••••••••••••••••••••••••••• 
External Storage Management••••••••••••••••••••••••••••••••••••• 
Real Storage Management .•••.••.•..•••••••••••••.••••••••••.••••. 

Request Management•••••••••••••••••••••••••••••••••••••••••••••••••• 
Method of Operation Diagrams for paging supervision ••••••••••••••••• 

201 
201 
201 
201 
201 
202 
203 
203 
203 
203 
204 
206 

Section 5: Paging Supervision 199 





HOW PAGING IS SUPERVISED 


The VS2 system enables prograns to occu­
py.an address range greater than the 
address range of real storage. This 
address space is called virtual storage and 
is divided into 4K blocks called pages. 
These pages may reside in a portion of 
auxiliary storage called external page 
storage, in page frames in real storage, in 
neither, or in both. The paging supervisor 
manages the exchange of virtual pages 
between real and external page storage. 

Whenever a program references a virtual 
address contained in a page that is not in 
real storage, the CPU generates an inter­
ruption which causes control to be given to 
the paging supervisor. The paging supervi­
sor moves a copy of the needed page into a 
4K page frame in real storage. When the 
page is in real storage, the referenced 
virtual address is translated into the real 
storage address of the data. The entire 
paging operation and translation process 
are transparent to the programmer, allowing 
him to use the virtual address space as 
though it were real storage. 

ORGANIZATION OF THE PAGING SUPERVISOR 

The paging supervisor is composed of 
four subcomponents: 

• 	 Real Storage Administration, which 
maintains a record of the status of all 
pages in real storage and processes any 
request involving the allocation, 
release, or change in status of a real 
storage page. 

• 	 Page Administration, which processes
all requests for movement of pages from 
real storage to external page storage 
and vice-versa. 

• 	 Interface control, which controls the 
flow of a request through the paging 
supervisor. provides interfaces to the 
paging supervisor service routines, and 
controls most of the external inter­
faces into the paging supervisor. 

• 	 Auxiliary Storage Administration. which 
manages the external page portion of 
aJxiliary storage. 

See "Section 10: Program Organization" 
for a list of modules in each subcomponent 
and the routines within each module. 

ENTRIES TO THE PAGING SUPERVISOR 

The paging supervisor receives control 
in one of five ways: 

1. 	 When a missing page interruption 
occurs, the paging supervisor receives 
control through the Program First ­
Level Interruption Handler. (A mis­
sing page interruption, also called a 
page fault, indicates that a page con­
taining a referenced virtual address 
is not in real storage.) 

2. 	 When pages must be moved between 
external page storage and real 
storage, the paging supervisor 
receives control from the dispatcher 
through normal dispatching procedures. 
(A special task, called the paging 
task, runs as the highest priority 
task in the system, and handles 
delayed [queued] paging requests. 
Because the paging task is the highest 
priority task, the system is able to 
save CPU time by bypassing the Task 
Switch routine when the paging task 
must be dispatched.) 

3. 	 Upon occurrence of a channel end 
interruption (CE) or an I/O error on a 
previously started paging operation, 
the paging supervisor receives control 
through an I/O supervisor appendage. 

4. 	 When an SVC instruction requesting a 
paging supervisor service is executed, 
the paging supervisor receives control 
from the SVC FLIH. 

5. 	 The paging supervisor also receives 

control when a branch entry is made 

into a paging supervisor service 

routine. 


See Diagrams 5.1 through 5.5 for the 
fUnctional flow through the paging supervi­
sor after each type of entry. 

PAGING SUPERVISOR ALGORITHMS 

The paging supervisor attempts to make 
the most efficient use of real storage by 
keeping only needed pages in real storage 
and by moving pages no longer needed to 
auxiliary storage devices. It also tries 
to conserve CPU time by paging only when 
necessary and by limiting the amount of 
time that can be spent on paging opera­
tions. To do these things, the paging 
supervisor uses two algorithms: the page 

Section 5: Paging Supervision 201 



replacement algorithm and the task disable­
ment algorithm. 

The Page Replacement Algorithm 

To facilitate moving pages into real 
storage, the paging supervisor maintains a 
list of page frames that are not being 
used. This list is called the available 
page queue. 

Whenever the number of available page 
frames (the available page count, or APC) 
falls below a predetermined value, the pag­
ing supervisor replenishes the available 
page queue by stealing a page frame from a 
program. The PFTE (page frame table entry) 
representing the stolen page is moved from 
one of the queues representing page frames 
in use to the available page queue. If the 
page occupying the page frame has been 
changed, the page is moved to external page 
storage, replacing the previous external 
storage copy before the page frame is made 
available. The stealing of pages continues 
until the APC has been incremented to the 
predetermined value. 

The paging supervisor uses the page 
replacement algorithm to decide which page 
frames are to be stolen. This algorithm 
reduces the number of page-outs by attempt­
ing to select the least-used pages and by 
minimizing the stealing of changed pages. 
See Figure 5-1 for an example of the opera­
tion of the page replacement algorithm. 

Page frames are selected for realloca­
tion according to the settings of the 
reference and change bits. These bits are 
part of the storage keys for the page frame 
and are modified by the CPU each time a 
page is referenced or changed. By examin­
ing these bits, the paging supervisor 
determines which pages are least needed 
(assuming the page that has not been 
referenced for the longest time is the 
least needed), and makes the page frame it 
occupies available for reallocation. The 
algorithm is biased to select unchanged 
pages whenever possible because the page 
frames that they occupy can be made avail ­
able immediately: there is no need to wait 
for the page to be written to external page 
storage. 

Six queues of PFTEs (which represent 
page frames) are used: an available page 
queue, a hold page queue, and four active 
page queues. The available page queue con­
tains the PFTEs for the page frames that 
are available for immedate allocation. The 
hold page queue contains PFTEs for page 
frames that were recently allocated and are 
therefore unlikely candidates for replace­
ment. The four active page queues repre­
sent all page frames that are now in use by 
programs but can be made available for 

reallocation. (PFTEs can also reside on a 
seventh queue, the SQAlLSQA reserve queue, 
which 	is not used for page replacement.) .JThere is one active page queue for each 
~ossible configuration of the reference and 
change bits. Reference and change bit set­
tings are denoted as R,C so that 0,0 indi­
cates that the virtual page has neither 
teen referenced nor changed. The meanings 
of the four possible bit configurations are: 

R,C 	 ~eaning 
0,0 	 The virtual page has not been 


referenced since the last inspec­

tion, and has not been changed. 


0,1 	 The virtual page has not been 

referenced since the last inspec­

tion, but was changed at some pre­

vious time. 


1,0 	 The virtual page has been 

referenced since the last inspec­

tion, but has not been changed. 


1,1 	 The virtual page has been 

referenced since the last inspec­

tion, and has been changed. 


Each queue is maintained in a first-in, 
first-out order, thus preserving a record 
of the comparative longevity for each page. 

The reference and change bits are set 
automatically by the CPU. Since pages are 
constantly being referenced and changed, J 
the bit settings may not be the same when 
interrogated as when the PFTE was first 
placed on a particular queue. As the pag­
ing supervisor serially searches the 
queues, it steals those page frames whose 
status has remained unchanged. Those page 
frames whose status has changed (that is, 
their reference and change bits are not the 
same as those of the active page queue they 
are ~resently on) are moved to the appro­
priate queue. However, before placing the 
PFTE on its new queue, the paging supervi­
sor resets the reference bit to zero. It 
is this resetting of the reference bit to 
zero that makes unreferenced but changed 
pages (0,1) possible. The change bit is 
never reset during PFTE movement. 

The processing of this algorithm is per­
formed by the Page Replacement routine 
(Diagram 5.15). 

The Task Disablement Algorithm 

The number of paging operations, and 
consequently the amount of time s~ent pag­
ing, depend on the number of programs 
active in the system and the number of pag­
ing requests they generate. If teo much 
time is spent paging, system performance 
can be seriously degraded. To prevent this 

202 



condition, known as thrashing, a task dis­
abling algorithm is periodically 
implemented. 

At predetermined intervals, the paging 
supervisor compares the number of Read I/O 
operations generated by paging requirements 
against predetermined high and low paging 
thresholds and number of reclamations 
(reuse of the contents of an available 
page) against high and low reclaim thre­
sholds. If too much paging and reclaiming 
has been done during the last interval, one 
of the lower-priority active tasks is dis­
abled. If more paging and reclaiming 
should be allowed during the next interval, 
a previously disabled task is reactivated. 

The processing of this algorithm is' per­
formed by the Task Disablement routine 
(Diagram 5.19). 

PAGE MANAGEMENT 

control Blocks and Tables 

To efficiently manipulate pages and to 
maintain records of the status of page 
frames, the paging supervisor maintains 
three tables and uses the reference and 
change bits. 

A page frame is represented by a PFTE 
(page frame table entry). The information 
in the PFTE and the settings of the 
reference and change bits reflect the sta­
tusof a page frame. As described above 
(under -The Page Replacement Algorithm-), 
the PFTEs are the items that are moved 
among the available page queue, the hold 
page queue, and the active page queues. 

Since a virtual address may exist in 
both real and external page storage, two 
tables must be kept to associate virtual 
addresses with their locations in the two 
places. The PGT (page table) is composed 
of 16 contiguous 2-byte PTEs (page table 
entries). Each entry contains the address 
and the availability indicators for the 
real storage page frame with which a parti­
cular virtual address is associated. See 
Figure 1-1 for an illustration of the use 
of a page table. One PGT exists for each 
segment of assigned virtual storage and can 
be accessed through the segment table entry 
for that segment. 

Associated with each PGT (except those 
for the resident nucleus, SQA, and V=R seg­
ments) is an XPT (external page table) com­
posed of 16 contiguous a-byte XPTEs 
(external page table entries). Each XPTE 
contains the location of the external 
storage page assigned to a virtual address 
and the status information germain to that 
virtual address space. 

External Storage Management 

Since pages for a program need not be 
contiguous on external page storage 
devices, the paging supervisor attempts to 
use paging devices efficiently by assigning 
pages so as to minimize rotational and seek 
delay. Unless a specific external address 
is specified in the page-out request 
(directed page-out), the Auxiliary Storage 
Manager (Diagram 5.63) chooses page slots 
on the primary paging device that has the 
most pages available. A target slot is 
then chosen in the last cylinder used (for 
movable-head devices) or the next slot that 
will pass the read/write head (for fixed­
head devices). 

To further minimize paging delays, an 
attempt is made to use rapid-access device 
as primary paging devices first and to put 
pages on slower (designated as secondary) 
devices only when necessary. Migration of 
pages from primary to secondary devices 
(performed by the Migration routine, Dia­
gram 5.62) occurs only when the number of 
available pages on primary devices becomes 
too small to keep paging efficient. 

Real Storage Management 

Real storage is divided into two major 
parts: that which is permanently allocated 
for supervisor use (nondynamic storage) and 
that which is eligible for paging (dynamic 
storage). Dynamic storage is further 
divided by a V=R line. Storage below this 
line is eligible for use by (but may not be 
exclusively used by) nonpagable (V=R, or 
virtual equals real) tasks. When storage 
below the V=R line is used for a V=R task, 
there is a correspondence between the vir­
tual and real addresses. 

V=R Allocation: A V=R region must be loaded 
into contiguous real storage. The paging 
supervisor attempts to keep a section of 
storage below the V=R line -nonpolluted­
(not long-fixed and, if poSSible, not used 
for SQA or LSQA) so that it is available 
for V=R regions. Whenever a real storage 
page must be long-fixed or allocated to SQA 
or LSQA, the paging supervisor attempts to 
find an available page above the V=R line 
first. If, however, a page is needed and 
only pages below the V=R line are avail­
able, a V=R page is allocated. 

If, while a page below the V=R line is 
in use by one task, that in-use page is 
needed by a V=R task, the paging supervisor 
attempts to move the contents of that page 
to an available page above the V=R line. 
If that is not pOSSible, the V=R allocation 
request is deferred until that page can be 
made available. 

Section 5: Paging Supervision 203 



---

APC=2 

This series of diagrams shows the movement of PFTEs among paging supervisor 
queues to illustrate the operation of the page replacement algorithm. Starting 
with the case where all page frames are available for allocation, the diagrams 
follow a typical page replacement sequence. 

1 	Initially, all PFTEs ore on the available queue, the available 
page count (APe) is 12, and all the active queues are empty. 
In this example, the low threshold value is three and the re­
placement count is three. 

LOW THRESHOLD 
0 o PFTE 6 


2 As page frames ore allocated, their PFTEs are placed on the 
hold queue. This step shows that ten page frames have been 
allocated. The allocation of page frames one through ten 
leaves only two PFTEs on the avoi lable queue. The next time 
the paging supervisor receives control, it must replenish the 
available queue to brtng the available page count up to its 
high threshold value of five. 

3 When the paging supervisor regains control, it places the entire 
hold queue on the 0 1 0 (unreferenced, unchanged) queue. By 
this time, some page frames have been referenced and some 
changed (as shown by the settings of the referenced and 
changed bits in the PFTEs). 

REFERENCE BITS ____--1 

CHANGE BITS ------" 

Active Queues 

Available 
Queue Hold Queue 0,0 Queue 0,1 Queue 1,0 Queue 

0 o PFTE 1 


0 o PFTE 2 


/:
o PFTE 3 


o PFTE 4 


~ PFTE 5 


0 o PFTE 7 


00 PFTE 8 


o 0 PFTE 9 


0 o PFTE 10 


0 o PFTE 11 


o 0 PFTE 12 


APC=12 


Available 
Hold Queue 0,0 Queue 0,1 Queue 1,0 Queue 

00 PFTE 1 


o 0 PFTE 2 


o 0 PFTE 3 


o 0 PFTE 4 


o 0 PFTE 5 


o 0 PFTE 6 


o 0 PFTE 7 


00 PFTE 8 


o 0 PFTE 9 


00 PFTE 10 


APC=2 ....... _----' 


Available 

Queue Hold Queue 0,0 Queue 


1 0 PFTE 1 


o 0 PFTE 2 


1 1 PFTE 3 


1 o PFTE 4 


o 0 PFTE 5 


1 1 PFTE6 


o 0 PFTE 7 


00 PFTE 8 


1 1 PFTE 9 


1 0 PFTE 10 


~ 

1,1 Queue 

1,1 Queue 

0,1 Queue 1,0 Queue 1,1 Queue 

L-----' 
~ 

• Figure 5-1 (part 1 of 2). Movement of Page Frame Table Entries (PFTEs) 

204 



----------

Active Queues 

Available 
Queue Hold Queue o 0 Queue 0,1 Queue

4 Next, the paging supervisor serially searches (which were unreferenced and unchanged) 
00 PFTE 11the 0,0 queue for unreferenced and un­ directly on the avai lable queue, and sets OOPFTEB D

changed page frames that it can stea I for the their reference bits to zero. The addition o 0 PFTE 12 1 1 PFTE 9available queue. As it examines each PFTE of three PFTEs (PFTEs 2, 5, and 7) to the 
I--t-+--------iin turn, the paging supervisor places those avai lable queue has completed the replace­ o 0 PFTE 2 1 0 PFTE 10PFTEs for referenced or changed page frames ment count (three). The search for page 


on the appropriate active queue and sets frames is ended when the paging supervisor 

their reference bits to zero. It places PFTE places PFTE 7 on the available queue and o 0 PFTE 5 

1 and PFTE 4 on the 1,0 (referenced, un­ the paging supervisor gives up control. 

changed) queue, places PFTEs 2,5, and 7 
 00 PFTE 7 

~~ 

Available 
Queue Hold Queue 0,0 Queue 0,1 Queue 1,1 Queue

5 This step shows the PFTE queues after poge stolen. The reallocation of the page frames 
frames represented by PFTEs 11,12, and 2 represented by PFT Es 11, 12, and 2 has 00 PFTE 11 o 0 PFTE B 
have been reallocated and placed on the reduced the available page count to below 

00 PFTE 12 1 1 PFTE 9
hold queue. Note also that the reference the low threshold value (three). 

and change bit settings have been changed Consequently, the available queue must be 
 o 0 PFTE 2 1 o PFTE 10
for PFT Es 1 and 4 on the 0,1 queue and for replenished by stealing page frames from 

APC=2
PFT E 3 on the 1,1 queue. Page frames 1 those represented by the PFT Es on the active ~ ~ 
and 3 were referenced and page frame 4 was queues. The problem program to which the 

both referenced and changed after the pages were allocated is given an opportunity 

paging supervisor gave up control following to use those pages before the page frames as candidates for stealing. The paging 

step 4. The effect of the resetting of these that they occupy are made available for supervisor must steal three page frames to 

bits is that the paging supervisor will move stealing. By placing PFTEs 11, 12, and 2 satisfy the replacement count. It begins by 

these PFTEs down the active queues and on the hold queue, the paging supervisor serially searching the 0,0 (unreferenced, 

thereby reduce the chance that they will be removes them from immediate consideration unchanged) queue. 


Available Queue Hold Queue 0,0 Queue 0,1 Queue 1,OQueue 1,1 Queue 

6 The paging supervisor moves PFTE 8 to the continues by searching the 0,1 queue, but 
o OiPFTE 5 00 PFTE 11 	 1 0 PFTE 1 11 PFTE 3available queue because it is unreferenced in this example that queue is empty. Since 


and unchanged. It moves PFT Es 9 and 10 to the paging supervisor steals from the 0,0 
 o 0 PFTE 7 o 0 PFTE 12 	 1 1 PFTE 4 0 1 PFTE 6other active queues. The replacement and 0,1 queues only, these queues must be 

count has not yet been completed, so the replenished before PFTEs can be token from 
 o OiPFTEB 00 PFTE 2 	 00 PFTE 10 1 PFTE 9paging supervisor must continue searching them to be placed on the available queue. DCJ
for page frames to steal to replenish the ~ 
available queue. The paging supervisor 	 ~ 

APC=3 

Available 
Queue Hold Queue 0,0 Queue 0,1 Queue 1,0 Queue 1,1 Queue

7 	The paging supervisor moves the entries from the 1,0 queue to 
the 0,0 queue, moves the entries from the 1, 1 queue to the 00 PFTE 5 D 1 o PFTE 1 11 PFTE 3 o 0 PFTE 11 
0, 1 queue, and moves the entries from the hold queue to the 
1,0 queue. Then it searches the new 0,0 queue. 00 PFTE 7 1 1 PFTE 4 o 1 PFTE 6 1 1 PFTE 12 [J00 	PFTE B o 0 PFTE 10 o 1 PFTE 9 1 o PFTE 2 

"'-------' ~ 
APC=3-----------	

~ 
~ 

Available 
Queue Hold Queue 0,0 Queue 0 1 Queue 1 0 Queue 1,1 Queue

8 PFTEs 1 and 4, whose bit settings changed when the paging 
supervisor gave up control ofter step 4, are moved to the 1,0 o 0 PFTE 5 	 1 1 PFTE 3 o 0 PFTE 11 

and 1,1 queues respectively. PFTE 10, being unreferenced 

and unchanged, is placed on the available queue. Next, the 
 o 0 PFTE 7 	 0 1 PFTE 6 11 PFTE 12 

paging supervisor serially searches the 0, 1 queue. 
o 0 PFTE B 	 0 1 PFTE 9 1 0 PFTE 2[JC]
00 PFTE 10 	 00 PFTE 1~ V
~ 	 '---.....-' 
APC=4 

Available 
Queue Hold Queue 0,0 Queue 0,1 Queue

9 Page frame 3 was referenced after step 4, so visor moves PFTE 6 to the available queue 
the paging supervisor moves its PFTE to the after moving the contents of the page frame o 0 PFTE 5 

1,1 queue. Since all the PFTEs on this it represents to external page storage. The o 0 PFTE 7queue have been changed, the virtual page replacement count has been completed and 

occupying any of the page frames represent­ the search is ended. 

ed by these PFTEs must be moved to external 
 o 0 PFTE B 

page storage before the PFTE can be placed 

on the available queue. The paging super- o 0 PFTE 10 


00 PFTE 6 

L-............. 

APC=5 

eFigure 5-1 (part 2 of 2). Movement of Page Frame Table Entries (PFTEs) 

Section 5: Paging Supervision 205 



Fixing Pages: It is impossible to tell 
when any page in the dynamic area will have 
to be paged out. Since, under certain con­
ditions such as I/O buffering, it is neces­
sary to keep a page in real storage until 
it is no longer needed, the ability to fix 
a page is provided. The fixing of a page 
makes that page ineligible for paging until 
that page is explicitly freed. 

Fixing too many pages can seriously 
degrade real storage use and fixing pages 
below the V=R line can prevent a high 
priority V=R task from obtaining needed 
storage. Therefore, the number and loca­
tion of fixed pages in the system is care­
fully controlled by the supervisor. The 
fixing and freeing of pages are functions 
of the Page Service Interface FIX/LOAD and 
FREE routines (Diagrams 5.21 and 5.22). 

REQUEST MANAGEMENT 

Since not all requests for paging ser­
vices can be handled immediately, a control 
block must be used to represent requests 
for paging of, or status modifications to, 
pages and the storage with which they are 
associated. This block (the page control 
block, or PCB) is queued to one of ten PCB 
queues. Eight of the queues has an asso­
ciated processor that handles the type of 
request represented by PCBs on that queue. 
(The other two queues have no processors 
and contain completed PCBs or PCBs for 
which I/O is in progress.) The queues are 
scanned in priority order by the Queue 
Scanner (Diagram 5.53) and when one is 
found with requests for paging supervisor 
operations on it, its processor is given 
control. 

PCBs are placed on PCB queues only when 
the paging service they require cannot be 
immediately performed. When the paging 

task (the section of the paging supervisor 
that handles queued requests) is dis­
patched, these queues are searched and 
their requests fullfilled. For example, if 
a task requests that a virtual page be J 
copied into real storage from external page 
storage (via a page fault), the PCB for 
this request might be queued and moved as 
follows: 

1. 	 A PCB is obtained from the free PCB 

queue or, if none is free, a new PCB 

is ruilt. The PCB is then initialized 

to contain perinent information about 

the request type and to contain poin­

ters to table entries associated with 

the page requested. 


2. 	 A real storage page is allocated. If 

one is not immediately available, the 

PCB is placed on the real storage 

allocation queue to await processing. 


3. 	 When allocation of a real storage page 

is complete, the PCB is moved to the 

page I/O initiation queue to await 

scheduling of the I/O operation 

required for the page-in. 


4. 	 When I/O operation has been scheduled, 

the PCB is moved to the I/O active 

queue to await completion of the I/O 

operation. 


5. 	 When the I/O operation has completed, 

the PCB is moved to the free PCB queue 

to be used for another later request. 
 J 

This processing is transparent to the user 
so that it appears to him that he has just 
referenced an address in real storage. 

See Diagram 5.2 for a list of all PCB 
queues, their processors, and the flow of 
control after the Queue Scanner is 
dispatched. 

J 

206 



VI 

r r r 


Index to Diagrams by Module 
Name for Paging Supervision 

Module Diagram 
Name Number(s) 

IEAPALOC 5.6,5.7 

IEAPAUX 5.63 

IEAPCS 5.48--5.52 

IEAPCLR 5.30--5.33 

IEAPFP 5.27 

IEAPIOP 5.28, 5.29 

IEAPIOS 5.44, 5.45 

IEAPIX 5.46 

IEAPMIGR 5.62 

IEAPPCIA 5.55,5.56 

IEAPQS 5.53 

IEAPRPLS 5.15--5.19 

IEAPSER 5.54 

IEAPSI 5.20--5.26 

IEAPSQA 5.8,5.9 

IEAPSSVC 5.61 

IEAPSWAP 5.36--5.43 

en 
(1) IEAPTCD 5.34, 5.35 

l+ IEAPTERM 5.57--5.60.... 
g IEAPTRV 5.47 

IEAPVEQR 5.10--5.14 

~ 
IQ.... 
::s 

IQ 

en 
.§ 
(1) 

~ .... 
en .... 
o::s 

I\J 
o 
-.J 

• Diagram 5.0 (Page 1 of 3) 
Paging Supervisor 
Visual Table of Contents 

Paging 
Supervisor 

I 
Missing Page 
Interruption 
Processing 

5.1 

I 

I 
Queued (Delayed) 
Request Processing 
-- Paging Task 

5.2 

I 

Page I/O 
Interruption 
Processing 

5.3 

I 
Page SVC 
Interruption 
Processing 

I 
5.4 

I 
Branch Entry 
Page Processing 

5.5 

I 

I 
Real Storage 
Allocation 
Routine 

5.6 

I 
Real Storage 
Reclamation 
Subroutine 

5.7 

I 
SQA/LSQA 
Allocation 
Routine 

5.8 

I 
Reserve Replenish 
Queue Processor 

5.9 

I 
V==R Allocation 
Routine 

5.10 

I 
V=R Release 
Routine 

5.11 

I 
V=R Region 
Free Routine 

5.12 

I 
V=R Flush 
Routine 

5.13 

I 
Move Page 
Routine 

5.14 

I 
Page 
Replacement 
Routine 

5.15 

I 
Allocation 
Scheduling and 
Root Ex i t Process i n9 

5.16 

I 
PFTE Enqueue 
Routine 

5.17 

Real Storage 
Administration 

I 
PH E Dequeue 
Routine 

5.18 

I 
Task Disablement 
Algorithm and 
Threshold Checking 

5.19 

I 
Page Service 
Interface Routine 

5.20 

I 
FIX/LOAD 
Subroutine 

5.21 

I 
FREE Subroutine 

5.22 

I 
Fast FIX Routine 

5.23 

I 
FIX/LOAD 
Asynchronous 
Completion Routine 

5.24 

Delay Post 
Queue Handler 

5.25 

I 
FOE Mellle 
Routine 

5.26 

To Diagram 5.0 I Page 2 

http:5.10--5.14
http:5.57--5.60
http:5.36--5.43
http:5.20--5.26
http:5.15--5.19
http:5.55,5.56
http:5.30--5.33
http:5.48--5.52


'" o 
CD 

From Diagram 5.0, Page 1 

• Diagram 5.0 (Page 2 of 3) 
Paging Supervisor 
Visual Table of Contents 

I 
Find Page 
Routine 

5.27 

I 
Page I/O Post 
and T ask Post 
Queue Processor 

5.28 

I 
Page I/O Post­
Page-out, 
Page-in, and 
Notification 
Subroutines 

5.29 

I 
Release Routine 
(User SVC) 

5.30 

I 
Release Routine 
(Supervisor 
Branch) 

5.31 

I 
Release Routine 
(Branch) 

5.32 

I 
Release-
Subroutines for 
Searching PCBs 
and Freeing 
Real Storage 

5.33 

I 
Create Page 
Table Routine 

5.34 

I 
Destroy Page 
Table Routine 

5.35 

I 
Swap Control 
Routine 

5.36 

Page 
Administration 

I 
Swap-in Set-vp 
Subroutine 

5.37 

I 
Swap-in 
Completion 
Routines for 
Stages 1, 3, 
and 4 

5.38 

I 
Swap-in 
Completion 
Subroutine 

5.39 

I 
Swap-out 
Control 
Subroutine 

5.40 

I 
$wap-out 
Completion 
Routine 

5.41 1 

I 
$wap-out-

CMPLOUT 
Subroutine 

5.42 
-­

I 
Swap-out-
External Address 
Assignment 
.Subroutines 

5.43 

I 
Page I/O 
Supervisor 

5.44 

I 
Page I/O Supervisor 
Subroutines for 
Building and 
Queueing Channel 
Programs 

5.45 

To Diagram 5.0, Page 3 

l,'-' '-' 




r r r 

From Diagram 5.0, Page 2 

• Diagram 5.0 (Page 3 of 3) 
Paging Supervisor 
Visual Table of Contents 

I 
Program-Check 
Interruption 
Extension 

I 
Real to Virtual 
Address Translation 
Routine 

I 
Move PCB Routine 

I 
Build PCB Routine 

5.46 5.47 5.48 5.49 

I I I I 
Relate PCB 
Routine 

Release Queue 
Suppression 
Routine 

Move/Build/Relate 
PCB - Subroutines 
for Queuing and 
Dequeuing PCBs 

Queue Scanner 
(Paging Task) 

5.50 5.51 5.52 5.53 

Interface 
Control 

I 
Paging Supervisor 
Error Recorder 

5.54 

1 
Paging Supervisor 
Appendages 

5.55 

I 
Paging Supervisor 
Appendages -
Subroutines for 
Freeing Resources 
and Handling Errors 

5.56 

I 
Termination 
Interface and 
Page Hook 
Routines 

5.57 

I I I I 
CJ) 
(1) 
n 
rt.... 
o 
:3 

FIX Quiesce and 
Purge Routines 

5.58 

FIX Restore 
Routine 

5.59 

Subroutine for 
Purging PCBs 

5.60 

Swap SVC 
Interface Routine 

5.61 

VI 

Ii9 
'.Q.... 
~ 
CIl 
c:: 

'al 

Auxiliary {
Storage 
Administration 

I 
Migration 
Routine 

5.62 

I 
Auxiliary 
Storage Manager 

5.63 

~ .... 
en .... 
o 
t:I 

1V 
o 
It) 



- -

IV 
I-' 
o 

• Diagram 5.1 
Missing Page Interruption Processing 

A page is referenced that is 
not in real storage. The 

INTERRUPTED 
TASKI I 


hardware generates program 

interruption code X I 111
,,


~ 
PROGRAM-CHECK FIRST-LEVEL 

INTERRUPTION HANDLER 

Determine whether a SPIE has 
been specified for code X'l11. 

If so 

If not 

2.5 

DISPATCHER 

Give control to the proper 

task: 
.	To the paging task (See 

Diagram 5.2) if further 
processing is needed to 
fulfill this request. 

To the next ready task• 
otherwise. 

3.17 

, 

PAGING TASK 
or 

NEXT READY TASK 

User-Specified 
r SPI E Exit Routine 

IEAPIX 

Obtain a PCB for this request. 

Check the validity of the request. 

If on error is found 

Allocate a real storage page 
frame. 

Place the PCB on the appropriate 
PCB queue if further processing 
is required. 

Indicate a task switch, if 
necessary • 

5.46 

Build PCB Routine 

Build a new PCB. 

5.49 

. 
Find Page Routine 

Locate the -PTE 
and XPTE for the 
page. 

5.27 

Paging Supervisor 
Error Recorder 

Place the system 
in a disabled wait 
state, 

5.54 

Real Storage 
Allocation Routine 

Assign the page 
most efficiently. 

5.6 

Move PCB Routine 

Move the PCB to 
the ind icated 
PCB queue. 

5.48 

l" l 	 l" 




r r r 

• Diagram 5.2 

Queued (Delayed) Request Processing­
Paging Task 

A task switch to the paging tcsk 
is indicated because PC& have 
been added to the work queues. 

PCB QUEUE 
NUMBER (by 
priority) QUEUE NAME PROCESSOR REASON FOR PLACING PCB ON THIS QUEUE 

~ 

Real Storage 
Allocation 
Queue 

IEAPAlOC 
(Diagram 5.6) 

A real storage page was needed to satisfy a request, but 
none was available. 

DISPATCHER 

Give control to the 
paging task to handle 
the PCB queues. 3.17 

• 

Auxiliary 
Storage 
Allocation 
Queue 

Page I/O 
(Initiation) 
Queue 

IEAPAUXS 
(Diagram 5.63) 

IEAPIOS 
(Diagram 5.44) 

An external storage (auxiliary) page must be assigned for 
a page-out request. 

The I/O operations required for page-outs or page-ins must 
be initiated. 

IEAPQS 
4 Migration 

Queue 
IEAPMIGR 
(Diagram 5.62) 

Pages must be moved from primary to secondary paging 
devices to make paging more efficient. 

Search the PCB queues in priority 
order unt i lone that can be 
processed (that has work on it 
and resources available for it) is 
found. Pass control to the 
appropriate queue processor (see 
table at right). 

When there are no more queues 
that can be processed, place 
this task in a wait state and 

Appropriate Queue 
Processor 

Fulfill requests 
represented by 
PC& on th is queue. 

Swap 
Queue 

Reserve 
Replenish 
Queue 

IEAPSWAP 
(Diagram 5.36) 

IEAPSQA 
(Diagram 5.8) 

A swap operation was requested via SVC 115 and the Swap 
Interface routine (IEAPSSYC) has placed PCBs for the 
request on this queue. 

A real storage page must be freed to replace a page 
reserved for emergency SQA use because a page reserved 
for SQA or lSQA has been used or the count of available 
pages reached zero and replacement could not be 
scheduled. 
Note: There is always a PCB on the queuei the above 
situations cause the queue to be unlocked. 

return control to the dispatcher. 

5.53 

7 Delayed 
Posting 
Queue 

IEAPSI3 
(Di agram 5.25) 

A request for a poge service that could not be immediately 
performed has now been completed, but the system was 
handling a disabled page fault at completion time. 

~ 

Task Post 
Queue 

IEAPTQP 
(Diagram 5.28) 

A page was reclaimed in the process of a page-out, or an 
I/O event for a request represented by a PCB has 
completed. Post processing is needed but will not be 
initiated by an I/O interruption. 

en 
ro 
C'l 
rt 
~. 

o 
::l 

DISPATCHER 

Give conh"ol to the 
highest priority 
ready task. 3.17 

*9 

*10 

I/O Active 
Queue 

Free 
Queue 

A paging I/O operation has been initiated to satisfy the 
request represented by this PCB. 

A request has been completely satisfied and this PCB is 
no longer needed. These PCBs are available for use in 
handl ing other requests. 

U1 

I'd 
~ 

* These queues are not checked by the queue scanner, but PCBs are routed to them by some of the 
queue processors. 

"l 
~. 

::l 
o.Q 

en 
.g 
ro 
Ii 
<: 
~. 

C/l 
~. 

g 
I'V 
I-' 
I-' 



I\.) • Diagram 5.3 (Page 1 of 3)..... 
I\.) Page I/O Interruption Processing 

I/O Interruption 

~ 
~ 

I/O FIRST-LEVEL 

INTERRUPTION HANDLER (I/O FLlH)
, 

I/O SUPERVISOR 

When a paging supervisor 
channel program caused 
the interruption, go to 

the appropriate 

processor: 


Channel End Channel End Appendage 

IEAPCEAP 

3 Free resources no longer 
needed. Set the post-¥lork bit. 

4 If an I/O error 7 

5 Keep the channel active if 
possible. Page I/O SupervisorReturn the ROE to 

its logical channel IEAPIOS 
queue but do not 

I Attempt to append
~ post the issuer. Restart was successful 

channel programs 
(CPOE,) to the lOB. Free the RQ E but 

do not post the 5.44 
__ I/o complete. No restart 

5.55 

(or) 


(Continued) 

I/O FLiH 

Lv L·'-' 



r r r 

• Diagram 5.3 (Page 2 of 3) 

Page 110 Interruption Processing 

I/O SUPERVISOR (CONT'D) 

Error IEAPABNA 

Error Recovery Programs Attempt retry. 
6 For a nonpermanent error, free unneeded 

resources. Set post-work bit. 

Attempt error 
recovery. 

If unsuccessful 
(permanent error) 
If successful 

Or 
Channel End 
Appendage 

7 For a permanent error: 
For READs - Mark the PCB for I/o error 

50 that IEAPIOP will cause 
that task to abnormally 
terminate. 

For WRITEs - Route the PCB to the auxiliary 
storage allocation queue to 
attempt a page-out to a 
different location. 

Route failing page-out PCBs to the auxiliary 
storage allocation queue and page-in PCBs 
to the task post queue. Move PCB Rout i ne 

• 
5.55 

S 

lEAPCBM 

Place the PCBs on the appropriate 
queues. 

5.48 

I/O FLiH 

If a paging I/O operation 
has been completed. 

2.1 

Page I/O Post Routine 

IEAPIOP 

1 If the I/O operation has been cancelled: 
Make page frames available 

for V == R pages 

. 
V R Release Routine 

IEAPVRS 

Allocate newly available 
V == R intercepted pages to 
deferred region allocation 
requests. 

5.11 

CJl 
m g. 
1-" 
o 
::l 

For non-V == R pages PFTE Enqueue Routine 

IEAPRLS2 

Add nonintercepted PFTEs to 
the available page queue. 

5.17 

U1 

Free external page storage Auxil iary Storage Manager 

~ 
10 
1-" 
::l 

10 

CJl 
.g 
m 
I"! 
<: 
1-" 
CIl 
1-" o 
::l 

(Continued at Step 2) 

I 
5.28, 5.29 

4 

IEAPAUX2 

Release indicated external 
page storage. 

5.63-

I'V .... 
W 



~ • Diagram 5.3 (Page 3 of 3)~ 
~ Page I/O Interruption Processing 

Page I/O Post Routine (Cont'd) 

2 If there is an I/o error, or a page -out 
operation has completed: 

Make pages available for 
V = R intercepted pages V - R Release Routine 

IEAPVRS 
Allocate newly available 
V = R intercepted poges 
to deferred region 
allocation requests. 

5.11 

For nonintercepted pages PFTE Enqueue Routine 

IEAPRLS2 

Add non intercepted PFT Es 
to the available page

4 queue. 
5.17 

3 If a page-in operation has completed: PFTE Enqueue Routine 
Allocate the pages 

IEAPRLS2 
Add the PFTEs to the hoi d 
page queue. 

5.17 

For V = R intercepted pages V R Flush Routine 

-
IEAPVRFL 
Finish V = R allocation of 
intercepted pages.

4 Signal completion to the I/O initiator: 5.13
When no associated root PCB exists 
and: 

An error is indicated Paging Supervisor Error Recorder 

IEAPSER2 

Log the error 
5.54 

No other action is 
waited on Dispatcher 

I/O FLiH IEAODS02 . 
Perform task switching."No-post" indicated 3.17 

An associated root PCB exists and: 

No other PCB is associated Root Exit Routines 

~ 
Other PCBs associated, continue 5.16,5.24,5.39r ­-

Allow the page I/O queue to be processed Release Queue Suppression Routine 5 
IEAPCRQS 
Release the page I/O queue. 

5.51 

DISPATCHER 

6 Remove PCBs from the I/O active queue. Move PC B Rout i ne 

lEAPCBM 
Move PCBs to the free queue or 
to the migration queue. 

5.28, 5.29 5.49 

l,. ~ L, 


http:5.16,5.24,5.39


r r r 

A PGRLSE, PGFIX, PGLOAD, 
PGFREE, or SWAP macro instruction 
generates SVC 112, 113, or 115. 

• Diagram 5.4 (Page 1 of 3) 
Page SVC Interruption Processing 

SVC FIRST -LEVEL INTERRUPTION 

HANDLER (SVC FLlH) 

For SVC 112 (releose reouest by 
user or supervisor task) Release Routine (lEAPCLR) IEAOVLOO 

2.2 IGC112 

Check validity of input (user request). 
Ensure real storage 

protection. 

Release the specified pages: 
Locote table entries. Find Page Routine 

IEAPFP 

-
Find the PGTE and XPTE 
for the page. 

5.27 

If there is a real storage page 
allocated 

PFTE Dequeue Routine 

IEAPRLSS 

Remove the PFTE for this 
page from its present 

queue. 
5.18 

Allocate intercepted pages 
to V =R storoge. V - RRel~ase Routine 

C/) 
m 
~ .... 
o 
::l 

\.11 

It1 
~ 

IQ.... 
::l 

IQ 

C/) 

t@ 
(1) 
Ii 
<:.... 
en .... 
g 

or 

Make the page available. 

Release associated external page 
storage, if there is any allocoted. 

• 
ype 

Routine 

5.30 - 5.33 

, 

• 

IEAPVRS 

Allocate a page to a 
deferred V = R 
allocation request. 

5.11 

PFTE Enqueue Routine 

IEAPRLS2 
Add the PFT E to the 
available page queue. 

5.17 

Auxiliary Storage Manager 

IEAPAUXS 

Release specified externol 
page storage. 

5.63 

I'V 
i-> 
\.11 



IV 
I-' • Diagram 5.4 (Page 2 of 3) 
a- Page SVC Interruption Processing 

we,,",. Page Service Interface Routine (lEAPSI) 

IGC1l3 

Determine the type of request. 

SVC FliH RELEASE Release Routine 

For SVC 113 (supervisor or IEAPCLR2 
authorized program request) Release reqvested reol 

2.2 storage and external 
page storage. 

5.31 

Type 1 Exit Routine 
FIX/LOAD 

Sccn the input parameter list for 
validity and fix those pages already Translate Real to Virtual 
in real storage. Routine 

IEAPTRV 

Get virtual address of the 
input rea I address. 

Initiate page-ins for pages not in 
5.47 

real storage: 
Get a PC B for the I/O request. Build PCB RoutiAe 

IEAPCBB 

Obtain PCBs for the root PCB 

....­ and for pages to be paged in . 

5.49 

Locote table entries. Find Page Routine 

IEAPFP 

Locate the PGTE and XPTE 
for this virtual page. 

5.27 

Get a real storage page frame. Real Storage Allocation 
Routine 1 

IEAPLOC 

Assign a page frame, 
into which information 
can be paged in. 

5.61 

Initiate I/O, if necessary. Move PCB Routine I 

IEAPCBM 

Place the PCB on the I 
appropriate queue. 

5.48 I 

Type' Exit Routine 

(Continued) 
5.20, 5.21 

--­

l, L L 




--

r r 	 r 

• Diagram 5.4 (Page 3 of 3) 

Page SVC Interruption Processing 

Page Service Interface Routine (Cent'd) 

FREE 

Delete suspended fixes. 


Decrement fix counts on indicated pages. 


Free pages no longer fixed: 


(in real storage) PFTE Enqueue Routine 

IEAPRLS2 

Add the PFTE to the hold 
page queue. 

5.17 

(not in real storose) 	 Find Page Routine 

IEAPFP 

Locete PGTE end XPTE 

Intercept the root PCB. 	 for the incoming page. 

5.27 

Allocate intercepted pages to 
V ::: R storage. V R Flush Routine 

IEAPVRPL 

Allocate pages to deferred 
V ::: R reg ion requests. 

5.13 

Finish deferred releases. 	 Release Routine 

IEAPCLR2 

Release freed page. 
SVC Interruption 5.31 

Initiate fixes suspended because of en Type 1 Exit Routine threshold restrictions.ro 
g. 

5.20,5.22 
~. 

SVC FliHo::s I •IFor SVC 115 (SWAP) 	 SWAP SVC Interfoce Routine (lEAPSSVC) U1 
2.2 

Build PCB Routine
IGCll5 

'"d IEAPCBB
1\1 Initialize and queue necessary PCBs ,

\Q 
to initiate swap processing. 	 Get requested PCBs. 

~. 

::s 5.49\Q 

.a 
en 

Move PCB Routine 

IEAPCEM~ 
<: 
~. 	

Put PCB on the swap queue 

and the root PCB on the
CJl 

~. 	 swap root queue. 
o 	 5.48
::s 

Type 1 Exit Routine 
5.61"-l 

]-> 

'" ]-> 

http:5.20,5.22




r r r' 

Diagram 5.5 
Branch Entry Page Processing 

BRANCH ENTRY PAGE PROCESSING 

CIl 
m 
~ .... 
o::s 
U1 

'tj 
III 

I.Q.... 
::s 

I.Q 

.§ 
CIl 

CD 

~ .... 
en .... 
o::s 

IV... 

-.J 

CALLER 

GETMAIN 

FREEMAIN 

GETPART 

FREEPART 

I/O Supervisor 

I/O FLIH 

Progrem FLiH 

Recover 
Management 
Support (RMS) 

error Recovery 
Procedures (ERPs) 

ABEND 
ASIR 
EOT 

ABTERM 

TSO Quiesce 

TSO Restore 

REASON 

A request for SQA or LSQA space requires a new SQA 
page. 

At least one whole virtual page has been freed. 

A new region is to be allocated. 

A region is to be freed. 

A new nonpageable rv = R) region is to be allocoted. 

A paging service is needed to complete an I/O 
operation. 

Requests represented by a PCB have been completed by 
an I/O operation. 

A translation specification error (program interruption 
code X-'12') has occurred. If the faulting tosk is in 
supervisor state I a major error is indicated. If the 
faulting task is in problem program state! a minor error 
is indicated. 

An error has been encountered in real storage. 

An intermittent or solid error has been encountered. 

An intermittent error has been encountered. 

An intermittent error has been encountered and the 
page is marked for V = R interception. 

An ERP that is retrying a failing paging I/O operation 
needs to access storage for which it has only the real 
address • 

Paging for a TCB, RB, or both must be purged due to 
either abnormal or normal termination. 

A task tried to schedule the paging supervisor for 
abnormal termination due to an Invalid request I or a 
program check occurred in the paging supervisor 
causing entry to ABTERM. 

A TSO region is being quiesced. 

A TSO region is being restored. 

ROUTINE 
CALLED 

ENTRY POINT 
AND DIAGRAM 
NUMBER 

FUNCTION 

SQA/LSQA IEAPSQAI, Allocote en SQA pege. 
Allocation Diagram 5.8 

Page Release IEAPCLR2, Release the real and external page storage associated with the freed virtua! page. 
Diagram 5.31 

Create Page IEAPTCD, Create a page table and external page table for the region. Validate segment table entries. 
Teble Diagram 5.34 

Destroy IEAPTCD Free the page table and external page toble for the region. Invalidate segment table entries. 
Page Teble Diagram 5.35 

V =R IEAPVRAL, Attempt to allocote a region below the V = R line. 
Allocation Diagram 5.10 

Page Service I EAPSIBR FIX, FREE, LOAD, or RELEASE the page es requested. 
Interface Diagrem 5.20 

Pege I/O IEAPIOP, Clean up resources no longer needed for this PCB, and notify the supervisor of its completion. 
Post Diegram 5.28 

Paging IEAPSER, Major error -- inform the operator and place the system in a disabled wait state. 
Supervisor Diagram 5.54 
Error Minor error -- inform the operator and schedule the task for abnormal termination. 
Recorder 

Translate IEAPTRV, Find the virtual address corresponding to the input real address so that RMS can access the real storage while 
Real to Virtual Diagram 5.47 dynamic address translation is in effect. 

Find Page I EAPFP, Find the page table entry and external page table entry associated with this virtual address. 
Diagram 5.27 

PFTE Dequeue IEAPRLS3, Remove the PFTE representing the bad page from its active page queue. 
Diagram 5.18 

PFTE Enqueue IEAPRLS2, Place the PFTE representing the page in error on the available page queue. 
Diagram 5.17 

V =R IEAPVRS, Allocate the newly available page to a deferred V =R region allocation request. 
Release Diagram 5.11 

Translate IEAPTRV, Find the virtual address corresponding to the input real address. 
Real to Virtual Diagram 5.47 

Termination IEAPTERM, Purge resources by TeB and RB for abnormal termination. 
Interface Diagram 5.57 

Purge resources by TeB only for normal termination. 

IEAPFIXP, Free nonintercepted fixed pages ond purge 011 FOEs for this TCB. 
Diagram 5.58 

PAGEHOOK, Call IEAPSER to inform the operator and place the system in a disabled wait state. 
Diagram 5.57 

IEAPFIXQ, Quiesce all activity relating to fixes in this region. 
Diagra~ 5.58 

IEAPFIXR, Restore all activity relating to fixes in this region. 
Diagram 5.59 

-- ­



------

00 

N 	 Diagram 5.6 (Steps 1-5) .... 	 Real Storage Allocation Routine 
(Allocating a Page Frame) From: Program FLiH to handle a program interruption 

for a page fault or a disabled page fault. 
FIX to allocate or reclaim a fixed page or do 

long-fix processing. 

Queue Scanner to process PCBs on the allocote 
queue. 

Input 	 Output-I ... 
• IEAPALOC 

Register 1 If the PCB is to be skipped 


Address of PCB 

Dr----­ 1 	 PCB 

PCBNQN=PCBTSKPQI 
I 	

• ....,~ 1tIi.,~""""",,,1tIi." ....~i..""""""""' 9 

I r -- 2 If the call is for long-fix processing • 10 PCBIOI=I 
PCB II 	

0=~{ PCBXPT=O
PCBSKIP II 3 	 If a page can be reclaimed or related: 

PCBNQN=PCBFREE
PCBLFR _J PVT 

,_ 	 ~ 
PCBDPF ~ 	 RECLAIM..." , 	 I..

1 L ____ _ 
PCBXPT 	 ~~ Locate a reusable page. 

PCBPTE 	 :'--=1 
5.7I 

PCBRBN 	 --I 
I and entry is from the Queue Scanne~ PVT 

PCBVBN --1 ISC:NSF=I ;n PVTAWCQ]and entry is !!2! from the Queue Scanner 

PCBDFCLR --1 • 8 


I 	
•7 

4 	 If a page is available .. PCB• 5 	 ii" ,.~{
PCBPEX k ........................"""""",.. ~............, ...., ........"''III IPCBNQN=PC8ALL?Z] 

PCBFXC 

A. 	 If a page is not available and it is 
not a 	disabled page fault 

SQA/lSQA AllocaHan• 	 9 
B. 	 For a disabled page fault IEAPSQA2 

Attempt to find a 
usable page. 

5.8 

C. 	 If execution of the SQA/lSQA 
Allocation routine was successful • 5", 

D. 	 If unsuccessful and: 

• This is a branch entry. 	 Caller 
Register 15

1tIi....., ....,~ Return code = 8 
• This is an entry fram the ~........................"" ...."'...."'" ~...."'...., ...."'" 


Queue Scanner.PVT •9 
PFTE Dequeue 


ErST (for PFTE ;ndex)i+--- --- --l 
 PCB 
Allocate the found page IEAPRLS35 PCBRBN 

Remove the PFTE from PCBVBN 
the available queue. 

IXPTPROT 

XPTE 

--I14------ ­ 5.18 PGTE 

PGTRSA ~ PCB ,·,·,......·".."..,',·,......,·'..........r........................· 

'a." .....

5A JSTC8SU8 	 PFTE 

l PFTONAVQ=OI:::;~ I} 	 -------------- .- Update PFTWHOSE. 

TCB +---- --I 	 ~ PFTPC8SI=i 

TCBSTI 	 1tIi.,,~ PFTWHOSE~"...-: lltli." ............" ............... 

TCBSTC 'PFTVBN=PC8VBN 

(Continued at Step 6) 

~. ~ 	 ~ 



_____________________________________________________

r 	 r 

Diagram 5.6 (steps 1-5) Real Storage Allocation Routine (Module IEAPALOC)
r------------------------------------------------------------T--------T--------, 
I IROUTINE I I 

I NOTES INAME I LABEL I 

~------------------------------------------------------------+--------+--------~1 	 PCBIOI is set to 1 before PCBSKlP is examined. If 


PCBSKIP=l, route the PCB to the task post queue and 

check the next PCB. 


2 	 An attempt must be made to keep long-fix pages above 

the V=R line. 


3 • 	 If the request was not satisfied, continue norrr-al 

processing_ 


• 	 If the request was satisfied by RECLAIM, access the 
next PCB. 

4 	 If a page is available, continue normal processing. 

If a page is not available: 


A 	Suppress the real storage allocation queue to pre­
vent reentry until at least One page is available. 

B 	For a disabled page fault, attempt allocation from 
the SQA. If a page is found, continue nermal prc­
cessing. If ne Fage can be found, route the PCB tc 
the real storage allocation queue. 

C For a PCE not on the real storage allocation queue, 
route it to that queue. 

D For a PCB on the real storage allocation queue 
attempt to satisfy the remaining requests if any 

I with reclaimed pages.L____________________________________________________________ 

en 
It) 
() 
rt.... 
o 
:; 

U'1 

Q? 
<!I.... 
~ 
en 
~ 

1'0 
It> 

~ .... 
en .... 
o 
:; 

~ 
\Q 

IIEAPALOCIQSENTRY I 

I I I 

I I I 


I I 

I I 

I I 

I I 

I I 

I I 

I I 

IRCLGOOD1I 
I I 

I I 

IRECLFAlLI 
I I 

I I 

ISQAFAILll 
I I 

ITRYSQA I 

I I 

I I 

I I 

I I 

I I 

I I 

I I 


I I I 

~________L________J 

r 

r------------------------------------------------------------T--------r--------l 
I IROUTINE I I 

I NOTES INAME ILABEL I 

.------------------------------------------------------------+--------+--------~ 
I I I I 

I 5 The storage key for the allocated page frame is set to I IAPCNZ I 

I the storage key found in the XPTE. Deferred release is I I I 

I indicated if necessary (PFTDFCLR=l if PCBDFCLR=l). If I I I 

I the page was found by the SQA/LSQA Allocation routine, I I I 

I the call to PFTE Dequeue routine is skipped. I I I 

I 	 I I I

Iii. Register 1 contains a positive PCB address if the I I I 

I entry is from the Queue Scanner. I I I 

I I I I 

I 
 • 	 Register 1 contains a negative PCB address and: 
I 

I • PCBPEX is on for a page fault or normal fix request. 

I 

I • PCBDPF is on for a disabled page fault. 

I 

I • PCBLFR is on for a long-fix request. (A request to 
I fix one or more pages for a relatively lcng time.) 

I
I f1 
 JSTCBSUB sets PFTWHOSE as follows: 	 JSTCBSUBI 
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

lI 


I 

A 	If "no-post" is indicated (PCBNOP=l>, the TCB I 


addressed by this PCB or its Root PCB cannot be I 

accessed. Therefore, PFTWHOSE is set to O. I 


B 	If PCBTCF=l, the TeB address is in PCBRTP of the PCB. I 

If PCBTCF;O, the TCB address is in the PCBRTCB I 

field of the root PCB pointed to by PCBRTP. 
 I 


C If TCBSTI=O, PFTWHOSE is set to o. I 

D If the page frame being allocated falls within the I 


region associated with the current TCB, PFTWHOSE I 

is 	set to TCBJSTCB. Otherwise, it is set to o. I I I 
_______~________~________ J 

IV 



- -- - -

• Diagram 5.6 (Steps 6-118') '" o Real Storage Allocation Routine '" (Allocating a Page Frame) 
Input Processing 	 Output 

PFTE Enqueue PCB 
If t},is is a first-time 

XPTE ,..-- 6 	 --. IPCBNON=PCBFREEXPTXAVi+------- _-oJ allocation of the page 	 IEAPRLS2 

Add the PFTE to the PFTE 

hold queue. IPFTPCBSI=O 


5.17 .. Page Frome 

10------0 

1-	

"." ....._...._.................................. ..-....-............I

l"",,~ 	 IR.ference and Change Bits=O 
• 	 FIXACT 

PCB 
PCBLFR .J________------r-'-- 7 '''0 _oo,,~ ''".~., 	 ••,- ". 

~ 

r~' ­accounting. 	 PCBNON-PCBINIT
PCBFXC El ~ IPCBIOI=l
PCBPEX 

C ~ + 
POTE

POIT }+_____l __r- ..,"""""'+® 	 I8 For non-Queue Scanner entries: 	 IPDTLGN=XPTGROUP
POITACT If a channel program for the page-in can 

POITMIOB be appended to an active lOB, attempt 

POITIOBP to append it. 
 PFTE 

>I PFTFXCT PFTFXCT +PCBFXC 

I PFTLNGFX=l 

PAGE I/O Supervisor Register 159 Access next PCB. I 1 II... IEAPIOS3 p.""+t Return Code =;: 0,4,8,12 I~ 	 5.44 

~L"""""",+® 
If all PCBs have been processed 	

.. ~ 
Caller 

~ 
long-Fix Processing 	 ~ 

PGTE IPGTPVM ~----- 10 Detennine whether a page frame is 


PGTRSA -- --_ assigned in real storage or, if not,
--, 	 ~ 
whether one can be ree laimed or 

I related. RECLAIM 

I 	
I 
~locate c usable page 

I 5.7
I 	 ~ 

If none 	 •15I If related and: ~ I Queue Scanner entry I 7 :...11
I 
I Not Queue Scanner entry 8I 	 cr"~ 

PVT I 	 II' PCBr PCBXPT=O 
PVTVEOR 1+--- --- --I- ­

11 ~''''M "'ri>.,,>. ~.". 	 { PCBNON:=PCBFREEI above the V = R line. If not, 12 
PCBRBN=PGTRSA 

PCB 	 I 
A. If it is, or if it is short-fixed and JSTCBSUB 	 $>. PCBOFCLR=O 

PCBFXC 1:=-- - - - - ---I not marked for interception, fix ~"~ 
PCBDFCLR ------ --I it where it is. Update PFfflHOSE. ~ PFTE 

I PFTOFCLR=l 

PFTE PFTLNGFX=l II 	 fa I I 

PFTFXCT 1:= - - ---- ---I 	 L.........................................j..l..........._....1

_..JPFTVRINT - -- - ­

B~ If it is an entry from the Queue FIXACT 


Scanner 	 Perform fix 

accounting. 
3 

~ 
----- -

(Continued at Step llC) 
-	 ­

L 	 \v L 




r r 	 r 

Diagram 5.6 (Steps 6-11B) Real Storage Allocation Routine (Module IEAPALOC) 
r------------------------------------------------------------T-------~--------l 
I IROUTINE I I 

I NOTES INA~E ILABEL I 

~------------------------------------------------------------+--------+--------1
I 6 If the page has never been pagedout (XPTXAV=O, that is IIEAPALOCIPAGECOM I 

I it is not on external page storage), the PGTE is vali- I I I 

I dated and the page is cleared to destroy any secured I I I 

I data in that page frame. If the page exists On external I I I 


page storage, a page-in is necessary. I I I 

I I 


7 	 If the Queue Scanner w~s the caller and the fix count INOTDFCLR 
in the PCB is greater than zero, fix accounting RUst be I 

performed. If PCBLFR~1, PFTLNGFX is set to 1. I 


I 

If the page has previously been paged out, and the ITESTACT 
device is active (PDITACT=1), and:

8 

I 

I 


• 	 The call is for a paging exception, £! I 

I 


• The call is for FIX and it is not a Queue Scanner I 

entry, the routine attempts to append the channel I 

program to one already running on the device. 	 I 


I 

If the page has not previously been paged out, the call IAPPENDONI 
was for other than a paging exception, or the device I I 

was not active, or upon return from IEAPIOS3, return is I I 


1 I I
made to the caller. 
1 	 I I 

I 9 Return code meanings are: ICBECKAPC 

1 I 

1 o - Page is immediately available. I 

1 4 - 1/0 must be performed. I 

I 8 - Unsuccessful. I 

1 12 - Related 1/0 must be performed. I 

I 	 I 

110 	 ILFIXREQ 
1 	 I 

111 After the page is fixed, processing continues as though IpGVALID 

1 the reguest was satisfied with a reclaimed page. I 

1 If deferred release is indicated (PCBDFCLR~1), the flag I 

1 is reset to zero and PFTDFCLR is set to 1. Long-fix is I 

1 indicated (PFTLNGFX=1) if the caller was the Queue I 

1 Scanner. I 

I I I 

I~ The number of fixes represented by this PCB is recorded IFIXACT 1 

1L_____________________in the PFTE. ~______________________________________~1_______~1________JI 


en 
til 

~ roo 
o 
::t 

VI 


"d 
1\1 
\Qroo 
::t 
\Q 

en 
.§ 
~ 
<:.... 
C/) 
roo 
g 
tv 
tv .... 



I\J 
I\J 
I\J 

Input Processing 

11 C. For other thon a Queue Scanner entry 

D. If it is short-fixed and marked for interception 

.. 
II 

3 

12 B 

PFTE

IPFTVRlNTJ+ 

PVT 

fTvrVROOl]4­

--I- ­
I 
I __ ...J 

12 Attempt to find a poge above the V = R line. 

A. If a usable pose cannot be found and the PCB 
is not marked for interception, fix the page 
where it is. 

B. If a usable page cannot be found and the PCB 
;s marked for ;nterception, Hnd the roct PCB. 

• If the root PCB is not marked for 
interception 

• If the root PCB is intercepted 

11A 

~""" 

SOA/LSQA Allocation 

IEAPSQA2 

Find a usable page. 
5.8 

.. 11 A 

...""" ..., ............ 

.. 11A 

13 Move the dota from the page below the V = R line 
to th e new page. 

PFTE 

[PFTVRINT 1+- ..... - --- ­ 14 Make the old page frame available for allocation. 

"""­

~"" ..." ......" .................., ... 

A. If interception is not indicated 

11A 

B. If V = R interception is indicated 

11A 

15 Attempt SQA/LSOA allocation 

If successful 

If unsuccessful 
•6 

~,...""""'............" ...... .. 4 

Diagram 5.6 (Steps 11 C-15) 

Real Storage Allocation Routine 

(Allocating a Page Frame) 


Output 

PFTE 

:...................., ..., ..." ...~" +I PFTVRINT=O 


POST Routine .. 
IGCOO2+6 

Inform the waiting 
 I 

initiator. 


3.8 ' 

MODESET Routine 

Change modes (relocate 

or nonrelocote). 


3.211 

PFTE Dequeue 

IEAPRLS3 I PFTE 
Remove the old PFTE from I 
the referenced/ change I PFTWHOSE=O I 
queues. 

5.18 "Old" PGH 

t.,."" ..."" ..., ..., ~ 
PFTE Enqueue 

IEAPRLS2 

Move the old PFTE to 

the available queue. 


5.17 

V =R Release .. 
IEAPVRS 

Allocate the page to 

a V =R region. 


5.11 

SOA/LSOA Allocation 

IEAPSQA2 

Find a usable page. 


5.8 

PFTE 

:.............., ...,"",... ~~ ~ PFTLNGFX=1 I 


~ l ~ 




r r r 

Diagram S.6 (Steps 11c-1S) Real Storage Allocation Routine (Module IEAPALOC) 
r------------------------------------------------------------T--------~-------, 
, 'ROUTINE , , 
, NOTES , NAME , LABEL , 
~------------------------------------------------------------+--------+--------~
N2 If the page is marked for interception, the waiting ,IEAPALOC, , 
, initiator is posted with a code of 16 to indicate that , 1 1 
, the region represented by this root PCB cannot be com-, 1 , 
1 pleted. 1 , 1 
, , , 1 
113 The page below the V=R line ("old") is invalidated, and , 1 , 
1 the one above the line ("new·) is validated. , , , 
1 1 1 1 
114 , 1NOTON 1 
, , 1 , 
115 If unsuccessful, no pages are available and this PCB 1 ILFIXREQ 1 
, must be handled again at the next entry to this routine., 1 1 
1 If successful, normal allocation continues as if this 1 1 1 
, was a request for other than a long-fix, except that, 1 , 
, long-fix is indicated (PFTLNGFX=l) if the caller was 1 1 1 
, the Queue scanner. 1 1 ,
L____________________________________________________________L________~________J 

en 
til 

~ 
fo'. 
g 
VI 

'd 
III 

\.0 
fo'. 
::s 
\.0 

en 
.§ 

CI) 
11 
<:
fo'. 
(/) 
fo'. 
g 
N 
N 
W 



- - - - -

t.,) 
t.,) 	 • Diagram 5.7 (Steps 1-3) 
~ Real Storage Reclamation Subroutine 

Entered by Real Storage AJlocotion (Reclaiming a Page Frame) 
to find a reusable page frome 

Input 	 Output-
RECLAIM 

Register 15 
PGTE 

1 	 Determine whether tf-lere is a page in real ?'........................................................ ~............................................... Return ~~;-=4
~ 	 a.,~
PGTRSAI I storage and whether this request is for a 

Paging Supervisor 
valid virtual storage block. If not 

Error Recorder 

PCB IEAPSER 

PCBPTE Log the e fror. 
I 
PCBVBN 5.54I 	+­

PFTE 

PFTE PFTONAVQ=O 

PFTVBN 2 	 Reclaim a page on the available queue if ... PFTHOLDQ=I 
possible. PFTE DequeuePFTBADPG 


IEAPRLS3

PFTVRALC Remove the PFTE froml....................+0 	 PCB 

PFTONAVQ .. ..J 	 the available queue. IPCBNQN=PCBFREE 
PFTHOLDQ 5.18 ....,}+-	

0PFTPCBSI .i ;.:PG:::.;T~E_____-,

IPGTPVM=O 

2A PFTE Enqueue 

IEAPRLS2 

(9 

PVT
Place the PFTE on the 
hold queue. [TVrNPREC=PVTNPREC+I 

5.17 

Register 15 
JSTCBSUB 

[Return code~ 

Update PFTWHOSE. 

5.6 ... 
Caller 

p- Register 15 

0-3 If a PCB does not exist ~........................................................~ ~............................................~ "'~~rn code=4 

Paging Supervisor 
Error Recorder 

IEAPSER 

Log the error. 


5.54 

(Continued at Step 4) 

L l 	 L 




r r
r\ 


en 
ro 
(') 
rt.... 
g 
VI 

~ 
IQ.... 
~ 
en 
c= 
'tI 
(!) 

~ .... 
en.... 
o
::s 

I\) 
I\) 
VI 

eDiagram 5.1 (Steps 1-3) Real storage Reclamation Subrcutine (Module IEAPALOC) 
r------------------------------------------------------------T-------~--------, 
, 'ROUTINE , I 
I NOTES INAME ILAEEL I 
~------------------------------------------------------------+--------+--------i 
I 1 If the real storage address (PGTRSA) eguals zero, the ,RECLAIM I 

, virtual address is not associated with a page frame. I I 

, If the virtual block numbers (virtual addresses asso- I I 

I ciated with pages in real storage or in the Frocess cf I I 

I being paged out) in the PFTE and PCB do not point to I , 

I the same block, the page has been rr,arked nonallocatable , I 

I by RMS, or the page is allocated to a V=R region, the I I 

I reguest is considered nonreclairrable. After issuing a I I 

, console message with the appropriate code (0100,0101, I 

I 0102), IEAPSER puts the systerr in a disabled wait I 

I state. ,

I , 
I 2 If the available bit is on in the PFTE, the page frame IRECLOK 
, contained the data, but the page frame has been , 
, released and made available. I 
I , 
I 3 It is first determined whether the page table entry has ,PSER1 
I already been validated. After issuing a console mes- I 
, sage with the appropriate code (0100,0101,0102), I 
, IEAPSER puts the system in a disabled wait state. I IL____________________________________________________________ ________ ________J~ ~ 



-----

...,..., • Diagram 5.7 (Steps 4-5) 
0'1 Real Storage Reclamation Subroutine 

(Reclaiming a Page Frame) 

Input Processing Output 

r- 4 Relate the request to an ongoing page-in, 
XPTE 

I XPTPCBO 

PCB 

I PCBIOI 

XPTE 

XPTXAV 

XPTLPA 

XPTXADDR 

I}+ 

I 

4- ­
4- ­

I 

___JI 

----, 
I 
I 
I 
I 
I 
I 
I 
I 

~ 

if possible. Relate PCB 

jI! IEAPCBR ~,~ Associate the PCB to 
an On"""901n9 request. 

5.50 .. ~ 
Caller 

r 
®,~ 

5 Reclaim a page scheduled for a page-out. ..."""~ iL""'.....,"" ...~ 
I 

Paging Supervisor 
If an invalid condition is found 

Error Recorder I
Jill! 

IEAPSERl,~ I 
Log the error. I 

5.54 ~ 

If the external page can be 

destroyed 


~" ....."" ... ~"""""""'" 
"2A 

~....." 

I
j!! 

I
(&

C ~ 

Reg;,'e, 15 

Retum code;:::::12
{ 
I 

~ PCB 
'I-P-C-B-N-Q-N-=P-C-BF-R-EE--"1 

PC B for Page -out 

PCBSKIP=I 

PCBVBN=O 

PCB for A !location Request 

I PCBXPT=O 

PCBNQN=PCBFREE 

PFTE 

~ PFTPCBSI=O 


PFTONAVQ=O 


PFTHOLDQ=I 

PTE 

QGTPVM=O 

Register 15 

CRet~~n code=O 

~'~rPC~B~________-. 

PCBRIP=I I 
PCBRBN=O J 
PCBDADDF=I 

PCSDADD=XPTXADDR 

~""'''rX_PT_E_____--"1 

I XPTLPA=O 

XPTPCBO=O 

~ l ~ 




r r r 

-Ciagram 5.7 (Steps 4-5) Real Storage Reclamation Subroutine (Module IEAPALOC) 
r------~-----------------------------------------------------T-------~--------,
I IROUTINE I I 
I NOTES INAME ILABEL I 
~------------------------------------------------------------+--------+--------~
I 4 If the page is on its way into real storage on cehalf oflRECLAIM IQLOOP I 
I another task, the current PCB is related to the active I I I 
I PCB so that both PCBs will be posted when the page is I I I 
I in real storage. I I I 
I I I I 
I 5 If the page to be reclaimed is scheduled for a page out I ILPAON I 
I and if XPTXAV=l, XPTXAV and XPTXADCR are set to zeros. I I I 
I I I I 
I IEAPSER puts the systero in a disabled wait state. I I IL_____________________________________________________ _______~ J_______~ ________ 

en 
(1) 

~ 
t-'. 
o 
:; 

U1 

'"d 
~ 

\Q 
t-'. 
:; 
IQ 

.g en 

(1) 
11 
<
t-'. 
C/l.... 
o 
:; 

N 
N 
-.J 



IV 
IV 
CD 

Entered from Real Storage 
Allocation to obtain a page 
for a long-fix or, if nonnal 
allocation failed, for a 

Register 1 Register 4 

ISee note ISee note ~­
Register 1 

o ISee Note~­

Input to AQSEARCH 

PFTE 

PFTONAVQ 

PFTFXCT 

PFTVRINT 

PFTLSQA 

PFTLNGFX 

PFTPCBSI 

PFTBADPG 

PFTVBN 

TCB 
TCBSTI 

TCBSCT 

TCBSWA 

PVT 

PVTVmrc=J 

CVT

C CVTSHRVM 

PFTE 

l[-PFTONAVQ l4- ­
PFTEI PFTLNGFX 

PVT 

J 

• Diagram 5.8 
SQA/LSQA Allocation Routine 
(Allocating a Page Frame 

Entered from GETMAIN for the SQA or an LSQA) 

to allocate on SQA or Output 


Output from AQSEARCH 

l 
Register 1 

IPFTE index 

Set entry switch and save area appropriately. I 	 ~ Other Output 

2 	 Allocate an available page above the V=R ~ I P;.:G::,T~E::."..c--:-____-, 
line if possible. Llp_G_T_P_V_M_=_l_____-' 

__________________.J ~"~ ..."""""""'~ ...~ ;.:PF'-'T..:.E______~ 
I ~ I PFTHOLDQ=O 

~ Find Page 
I If successful .. 7 jI! IEAPFPl 

IPFTONAVQ=O ~ I 	 3 Allocate an unchanged I nonfixed page ~ Lo.cate the PGTE for 

I avave the V=R line from the active page ...""""""""'~ thIS page.

I queue. 


14-+- _.J If unsuccessful ..4 	 E9 IEAPSER ::P:F:T========~ 
3 A Place system in a I PFTLNGFX=O 

If Find Page is successful ..7 disabled wait state. 
5.54 

If Find Page fails PVTSQACR=PVTSQACR+l 

4 	 Allocate on unchanged I nonfixed page 1~."'~==:~M~oV~e~pag~e==J SCNSF=i On PVTALOCQ) 
above the V=R line from the hold page IEAPMVPG 
queue. Move data above 

f] the V=R line. 5 14 
If successful .........." 	 . 


5 	 Allocate on unchanged, nonfixed poge . ,",R~eg~i~st~e~r~15~____-, 
below the V=R line. _ IReturn code=4 

,-- If this page is on the available page queue" 7 ~P:F:TE========~ 

If this page is on the hold page or active PFTHOlDO=O 


page queues"'3 PFTONAVQ=O


r-T 6 Detenoine entry type. For an SQA or ~""""""""""'~ '" Ready the paging supervisor PFlWHOSE 
LSQA call, allocote a reserved page. and the reserve replenish 

7 aueue. PFTLSQA=l 
PFTVBN ..."""""""""",-..,: 	 PFTTSO=l 

or if reserved page allocation fails 	 PGTEFor a disabled page fault or long-fix call, ,~~~;;~~~~~~~~~~~~~~=~t~e~S~~~~~~J 
r- 'r-7 Allocate the found page. PGTRSAI 
I 	 PGTPVM=O~~ •.:~ 	 Dequeue the PFTEI 	 PVT 


I 
 from its queue. 

PVTSQACT=PVTSQACT+l

5.18 
PVTBIGM=OI 

.J If GETMAIN is the caller 	 Find Page Register 0 - I IAddress ~~t~IEAPFP2I ..... Find the PGTE for Register 15
I If Find Page is successful or if 1 this page. IRetu m code=O I , 

GETMAIN is not the coller_J I 	 5.27 
Storage Key 

I ISetta-TCB's key JIf Find Page fai Is 	 IEAPSER• 
~al Storage Page I Place system in a 


-.J ~ disabled wait state. IZeros 


Caller 	 5.54 

l, L 	 L 


I 



r r 	 r 

• Diagram 5.8 SQA/LSQA Allocation Routine (Module IEAPSQA) 
r------------------------------------------------------------T-------~--------, 
I IROU'IINE I I 

I NOTES I NAME I LABEL I 

~------------------------------------------------------------+--------t--------i 
11Th "IEAPSQl " t 1" b"t" t t t d d IIEAPSQAlI IEAPSQAlI I e 7n con ro 1. 1.S se a en ryan turne I IEAPSQA21 Il!APSQA21 

I off at all eXl.ts. I I I 

I 2 I IAPREPSRH I 

I I I I 

I 3 IANEXT I 

I I I 

I 4 IATSTBOLD I 

I I I 

I 5 If the "alternate" switch was not set by AQSEARCB (nc I I 

I page exists below the V=R line either), control goes to I I 

I Step 6. No ~ata is saved from the input PFTE. 	 I I 

I 	 I I 

I 6 The SQA reserve replenish queue is empty if PVTFSQAR=O. I I 

I I I 

I Prepare the reserve replenish queue and suppress the IATSTENTR I 

I real storage allocation queue (SCNSF=l in PVTALOCQ). I I 

I 	 I I 


7 	 If the request is for LSQA, PFTWHOSE is set to the IAPGONAVLI 

requester's TCB address; otherwise it is set to zero. I I 

PFTTSO is set to 1 only if GETMAIN is the caller and I APFTINIT 

the TCB address is a TSO TCB. 
 I 


I 

Register settings upon entry: 	 I
o 	 I I 


From GETMAIN: Register 1 - Negative virtual address IIEAPSQAll 

for SQA I I 


Positive virtual address I 

From Real Register 1 - Negative virtual address IIEAPSQA21 


I 

for LSQA I I 


Register 4 - Address of requester's TCBI I 


storage for disatled page fault I I 

Allocation: positive virtual addressl I 


for long-fix I I 

I I
E) 	 The Queue Search slltroutine searches the queues cf PF~EsIAQSEARCB 

for a page frame which is not LSQA (unless allocated to 
a TSO task), changed, fixed, scheduled for use (has a 
PCB assigned), "or restricted from selection. A page 
is restricted if: 

• It is marked for interception. 
CIl • It is in LPA virtual storage. 
(1) 	 • It is in the input TCB's regicn. 
o 	 • It is in an SWA segment.
rt • It is in the V=R region •.... 
g 	 If one is found, the PFTE index is put in register 1 andl 

control is returned to the main routine with a return 
VI 	 code of O. If one could not be found, ccntrcl is 

returned with a code of 4. If one was found that meets 
all but the last requirerr,ent (the page is in the V=R

"d region), its address is saved, an -alternate R switch isIII I set, and control is returned with a code of 4. II.Q 	 L____________________________________________________________ _______ ________~ ~.... 
::s 

I.Q 

en .g 
(1) 
11 

cd.... 
CJ).... 
o::s 
...., ...., 
IQ 



'" 
IN 
o 

Input 

Register 1 

Address of first PCB on 
queue 

PVT 

PVTAPC 
PYTSQACR 

PYTRPLSW 

PYT ALOCQ (SCNSF) 

PYTLTH 

PYTVEQR 

Entered by the Queue 
Scanner to replenish the 
reserve queue for SQA 
cnd LSQA pages 

}­

Processing 

IEAPRSRL 

1 	 Add a page to the available page queue. 

2 	 Release the real storage allocation queue 
and suppress the reserve replenish queue 
if necessary. 

L,~ 

3 Add a page to the reserve replenish queue. 

ie
l,+® 

For a page below the V=R line 

For a page above the V=R line 

1 

Page Replacement ....... 

IEAPRLS 

5.15 

Release Queue Suppression--.. 
IEAPCRQS 
Allow real storage 
allocation. 

5.51 

.. Queue 

Scanner 


PFTE Dequeue,.. 
IEAPRLS3 
Remove page from the 
avai lable page queue 

5.18 

Move Page ,.. 
IEAPMVPG 
Get a page above 
the V=R line. 

5.14 

PFTE Enqueue--,. 

IEAPRLS2 
Add the page to the 
reserve replenish queue. 

5.17 

Diagram 5.9 
Reserve Replenish Queue Processor 

Output 

PYT

0"'9l SCNSF=1 (in PYTSRRQ) 

PFTE 

PFTONAVQ=O 

PFTLSQA=I 

PFTSQAlR=PFTSQALR-I 

PFTlNGFX=1 

PFTVBN=O 

C!> 

l" l 	 ~ 




VI 

r r 	 r 

Diagram 5.9 Reserve Replenish Queue Processor (Module IEAPSQA) 
r------------------------------------------------------------y-------~--------,
I IROUTINE I I 
I NarES INAME ILABEL I 
~------------------------------------------------------------t--------+--------~
I 1 This is attempted when no pages exist on the available IIEAPRSRLIAREPLNSH 
I page queue or the number of available pages is less than I 
I the low threshold, and replacement is allowed I 

(PVTRPLSW"X' FF') • 	 I 
I

2 	 This is done when allocation is suppressed and IABYFA55 
the reserve replenish queue is full. I 

I3 	 This is attempted when the reserve replenish queue is IAAPCCHK 
not full and there are pages available. IEAPMVPG is I 
only called when the page is below the V~R line. I 

I 
Note: see Flowchart 5-1 following notes for this dia- I 
gram for processing logic. I 

____________________________________________________________ ________ ________J~ ~ 

en 
CD 
(') 
rt.... 
o::s 

;;9 
\.Q .... 
::s 
\.Q 

en 
s:: 
'i 
~ .... 
en .... 
o
::s 

'" W 
I-> 



• Chart 5-1. Reserve Replenish Queue Processor 

J 
C:~PRS:)----+c: 

FROM: 

QUEUE SCANNER 


J 

232 





IV Diagram 5.10 
W V=R Allocation Routine,f: 

(Allocating Page FramesEntered by GETPART when 

initiator requests allocation for a V=R Region) 

of a V=R region ProcessingInput Output 

Register 1 Root PCB 
•••tI,EAPVRAL 


Address of parameter list 

Create and initialize 0 root PCB to '> ~ PCB~~NT ~i,;otor's TCB 

control deferred region allocation. Ls 8 
.. Parameter List Build PCB 12 00 00, o 

Address of reg ion to IEAPCBB 16 00 Region address 
be allocated I or 0 .... Obtain a PCB. 20 00 Region size2 Determine the status of the first (next) 
Region size (in bytes) page frame 24 00 PCBRVRCH 

4~------~------~ r- 5.49 

Permanently unavailable 

12 


Ad, ITess of initiator's TCB • 4.6 &"''i! ll~~ O~nitio:r's ECBTemporarily unavailable 

16 


Address of initiator's ECB ISize of scan oreD Available, continue. {Register 15
i! I Retu m code=16 

201 (in bytes) 3 Allocate the page to this region PFTE Dequeue ., 
IEAPRLS3 Parameter list

l,,~ Remove the PFTE from I Region address=O 
Address of scan area 

the available page queue. {PFTEPVT 
Determine whether more pages ore needed. 

5.18 PFTONAVQ=QPVTBASE _______~.~ 2 ~.,. PFTVRALC=1 
If soPVTSQACT 

~"""""""'~ ~~ .~PF~T_V~BN~______~ 
PVTLFXTF ... If not I update system fix counts1
PVTBFXTF 

4 Terminate this attempted allocation. • 7 PVTFree V=R P es II!II! { PVTLFXC~PVTLFXC+ h1 ag ~ pages allocoted
PVTLFXC 

1 Free page frames already ...."""""'~I. PVTFXC~PVTFXC+
PVTFXC allocated to this region. ages allocated ~ 

5 Determine whether the scan option was I:t P ~ 
I specified. ~______-"r:;:J~ PVTVRINT=I i 

PFTE 
I If not, or if so but there are not enough a"""""""'~ ~""""""~ Register 15 IPFTONAVQ 

pages remaining in the area to be scanned~ ~ ~,~ Return code=16 I ill!! 
PFTLSQA __ I1__ J to safisfy the request • SA Root PCB II!l 
PFTLNGFX r+ If so, reinitialize the root PCB. • 2 PCBRCNT=O I 
PFTBADPG I 6 Defer the request until the page frame is mad~~"""""""'~ ~"""'" 12 New starting address I 


available. If more pages ore needed I 2 iii!!! 16 Region size from i!!

I If not, update system fix counts and continue ...."""""""'~ ~"""lI! ~ parameter list ~ 

L 7 Determine the region size and check for II! I Root PCB I 

threshold violations. If not violated Free V=R Pages I :A."'~ ~'+I PCBRCNT=PCBRCNT+I I i! 
~ k""",~ ~"""""""'~ ~,~

Root PCB A I~~ 
1 PCBRCNT -- }-- - ------ 8 Determine whether immediate allocation 8 0"",~ Register 15::::~=~~~~~~~~_l 1

can be made. Ifso Region Validation \y" O;.:Ro::o:::.t..:P..::C::B'-____~ 
L ~ 4 1..:.0 -1Validate PGTEs and ~""""""'~ ____________ 

~'~ Move PCB i 1-.~PC=B:.:.F.:..;R:.:EE~_____l 
IEAPCBM i! 8 0 

SA Move the root PCB II! 32L.:-------...1 

to the free queue. II! {PGTE 

PVT 5.48 I ~:.:.PG=Tc:.P.:..;VM.:..;=Q~-------l 
1 PVTROOT . \4- - 9 When the request has been deferred, ...."""""""'~ L.:.P.:G:..:T.:.P:..:AM:;.:..=.:.I____...1r.

attempt further allocation procedures. V=R Flush ill! Allocated Region 

IEAPVRFL ~ C "IL.:..:A:::"..:z::.e:.:ro:..s_______...I 
Try to finish V=R ii!! a er 

region allocation. i!! ;::Re::!g!..:is::.te::r:..l::5~____..., 


_I~~~~~~~~~~·~5~.~13~~iAI_:.IiiI;~"""""'~1 ~~ Return code=O or 12 
Caller 

l, l L, 



r r 	 r 
oDiagram 5.10 V=R Allocation Routine (Module IEAPVEQR) (Module IEAPVEQR)

r------------------------------------------------------------T--------T--------, r------------------------------------------------------------T-------~--------l 

I IROU~INE I I I I ROUTINE I I 
I NOTES INAME I LABEL I I NarES INAME I LABEL I
t------------------------------------------------------------t--------t--------i ~------------------------------------------------------------t--------t--------i

1 	 PVTPCVRA is turned on at entry and off at exit. IIEAPVRALIIEAPVRALI I 8 Immediate allocation can be made if all needed page I IRETIO 
Deferred allocation will be necessary if all needed I I I I frames were aViHlable (PCBRCNT=O). I I 
pages are not immediately available. I I I I II 

I I I 9 The root PCB is placed on the V=R root PCB Queue and thel IRET40 
2 The page frame is permanently unavailable if it is: ISTATUSCK I I V=R Flush routine is called to try to find ~ore usatle I 

o Allocated to SQA/LSQA (PFTLSQA=ll (unless TSO). I I I pages. Upon return, a test is made to determine whether I 
• Long-fixed (PFTLNGFX=l). 	 I I I the root PCB is still on the queue. If it is not, the I 
• Marked damaged after a machine check (PF~BADFG=l). I I request has been satisfied and the return code is set tol 

I I zero. If it is still on the queue, the return ccde is I 
The page is temporarily unavailable if it is currently I I set to 12 to indicate that the request has been I 
in use for other than the above reasons. I I deferred. I 

I I 	 I
3 	 Page replacement is tlocked during the call to the FFTE IPROCPFTE If the region address in the parameter list is zero,o 	 I 

Dequeue routine (PVTBIGM=l while PETE Dequeue has I I the Scan option has been selected and the address of I 
controll. I I the area to scan is used as the region address. I 

I I I 
An 	 internal counter of page frames needed is decremented I The Free V=R Pages calculates the first PFTE in the IFree V=Rmand tested. If it equals zero, no more pages are needed. I region (region address/256 + PFTEo address) and handles IPages 

I each PFTE in the region beginning with that cne as 
4 The length of the area exarr,ined = the beginning address IRET30 follows: 


of the region - (the beginning address of the unavail ­ I 

able page + 4096). I If the page is marked damaged by RMS (PFTBADPG=l), 


I nothing is done to it. 

5 
 If the scan area size ttinus the unusable area size is IRET30 


greater than or equal to the requested size, the I If the page is not yet allccated to the region 

request can still be fulfilled. I (PFTVRALC=O), PFTVRINT is set to zero. 


I I6 	 The intercept bit is turned on (PVTVRINT=l). Thcse IVRINT I o If the page is not damaged and is allocated, the PFTE 

routines that make pages available test PVTVRINT prior I I Enqueue routine (IEAPRLS2) is called to add the PFTE 

to placing the PFTE on the available page queue. If I I to the available rage queue, PFTONAVQ is set to 1, andl 

PVTVRINT=l, they call IEAPVRS (Diagram 5.8-2) to PFTVRALC is zeroed. I
I I 
allocate the page frame for a deferred request. For I I I 
each fixed page, an internal counter is incremented to I I When all pages in the regien have been handled, return I 

Ihe used in threshold checking. 	 I is made to the caller. I 
I Ie] I7 The PFTE address is calculated as follows: CALCPFTE After the number of ~ages in the region is calculated, IRegion 

Region address the Find Page routine (IEAPFP) is called to find the IValida-
PFTE address 256 +PFTEo address. PGTE for the first (next) page. If the Find Page Ition 

routine cannot find it, a call is made to IEAPSER to log 
PFTEO address is the address of the PFTE for the page the error (code 0302) and the next PFTE is processed. 
frame whose real address is zero. 

If the Find page routine succeeds and the call is for 
en The number of page frames to be allocated is equal tc allocation, the PGTE is validated by setting PGTPVM to 
/I) the region size divided by 4096. This is also the num­ 0, PGTPAM to 1, and the protecticn key to O. The next 

ber of PFTES that are examined to allocate this regicn. 	 PFTE is accessed and the call to the Find Page routine~ is repeated. When all pages have been validated, the.... 
The new long-fix count that would result frorr this entire region is cleared to zeros, and control isg number of pages becoming allocated to V=R is calculated returned to the caller. 
as follows: 

U1 "count" = PVTBASE-PVTSQACT-PVTLXFTF-pages in request. If the Find page routine succeeds and the call is for 
region freeing, the PGTE is invalidated by setting 

If • count " is less than PVTLFXC, the threshold will PGTPVM to 1 and PGTPAM to O. The next PFTE is accessed,t,; 	 I 
be violated. 	 I and the call to the Find page routine is rereated. WhenlIII 

\,Q I all pages have been invalidated, control is returned to I .... The new fix count that would result from this nurrber of I the caller. I 
~ ~L______________________________________________________ ______ _______ ________::s pages becoming allccated to V=R is calculated as follows: 

\,Q I 
·count" = PVTBASE-PV~SQACT-PVTBFXTF-pages in request Ien + count of fixed page in this region. I.g 	 I 

CD If ·count" is less than PVTFXC, the threshold will be I 
11 violated. IL____________________________________________________________ ________ ________J<.... 	 ~ ~ 

en .... 
o::s 

W "" U1 



'" W 
0\ 

Diagram 5.11 
V = R Release Routine 

*IEAPVRS is entered by IEAPALOC, IEAPRLS, (Allocating an Intercepted Page 
'EAPIO P, or IEAPCLR when a page frome is to a V = R Region) 
mOde available and the V=R intercept bit 
(PFTVRI NT) is on to allocate the poge to 
a deferred region allocation request Processing 

... 
IEAPVRS .. 

~ 1 Calculate the page frame address and locate 
the root PCB to which this page belongs. 

2 If the root PCB cannot be found, record the 
error and make the page avai leble. IEAPSER 

Input 
ill!! 

L."~ 
I~ 

Issue the appropriate 
message to the operator. 

5.54 

Register 1 

1Address of PFTE 1 
PFTE Enqueue 

IEAPRLS2 
Add the PFTE to the 

Output 

PVT

1PVTVROOT 

Root PCB 

1..-"­
available page queue. 

5.17 

PFTE 

PFTONAVQ=I 

PFTVRINT=O J.~ ""~ 
Address of region Coller PFTVRALC=I 

P' 
Size of region 

PCBRWRK3 3 If the root PCB is found, allocate the page. ;>< 
PFTVBN-Poge frame 
address 

PCBRCNT 

PCBRINT 

PCBRWRK5 

PCBRTCB 

f4­ ---

Lb 
4 

5 

Detennine whether the region is now complete. 

If not, or if so but the root PCB has been 
marked intercepted 

If the region is now complete, post the 
initiator and finish the deferred allocation. 

... 
Coller 

POST 

Root PCB 

I PCBRCNT=PCBRCNT -I 1 

~ IGCOO2+6 o Root PCB 

~"~ 
I --"0. 

...... Region Validation 

Inform the initiator 
that allocation is 
c~mplete. 

3.8 

4 

8 

0 

PCBFREE I ~" ""~ 
Validate PGTE; set 0 

protection keys; clear ..... region. 
5.10 32 

Move PCB 

IEAPCBM 
Move the root PCB 

""""­ to the free queue. 

5.48 .. 
Coller 

r 

~ ~ ~ 



r r 	 r 

Diagram 5.11 V=R Release Routine (Module lEAPVEQR) 
r------------------------------------------------------------y-------~--------, 

I IROUTINE I I 

I NOTES INAME ILABEL I 

~------------------------------------------------------------+--------+--------i1 	 The Root PCB (on the queue headed by PVTVROOT) is IIEAPVRS IVAREL10 


located by comparing the page frame address to the I I 

region and region end address. (Page frame address I I 

= ((PFTE index)*256)+PFTE address.) If the page I I 

frame address is greater than or equal to the region I I 

address and less than the region end address (region I I 

address + region size), the root PCB has been located. I I 


I 

IEAPSER is called with a 0301 error code. 	 IPVTVSER2 


I 

PFTONAVQ is set to 1 and PFTVRINT is set to 0 to indi­ I 

cate that the page is no longer being used and that no I 

outstanding requests exist for it. I 


I 

The count of pages needed to comFlete the region IVRREL10 

(PCBRCNT) is decremented. I 


I 


3 


If PCBRCNT=O, the region is now complete. Ho~ever, IVRREL50 

if interception is indicated (PCERINT=l), the ECB I 

has already been posted (code 16). I 


I 


4 


I 5 	 I I 

~ ~L____________________________________________________________ ________ ________ 

CIl 
ttl 
() 

rt.... 
o 
tj 

U'1 

~ 
I.Q 

.s 
.... 

CIl 
£:: 

"0 
(1) 

~ .... 
(/l .... 
o 
tj 

IV 

(.oJ 

-..I 




tv 	 Diagram 5.12 
W 
<XI 	 V=R Region Free Routine 

Entered by FREEPART when 	 (Freeing a V=R Region) 
the scheduler frees a V=R 
region Processing 

Input 
IEAPVRFR 


Register 1 


Address of parameter list --,--- 1 Determine whether the region has been 

completely allocated and validated.
I 

I 
I 2 	 If allocation has completed, free this 

region's resources 
Address of region 

Free V=R Pages 
Size of region 

IEAPVRFR 

Address of initiator's TCB 


I 
Free page frames I 
allocated to thisI 
region. 


PCB __ ...JI 
 5.10 


I PCBRTCB ~ 
 Output
Region Validation

PVT 

Invalidate PGTEsIPVTROOT ~ Root PCBfor th is reg ion. 0 
5.10 0 

3 If ollocation has not completed, free the ...............................................""'.............................................~ 
storage assigned so far and the PCB. 

0Free V=R Pages 
32 

IEAPVRFR 

Free' page frames 
allocated to this 
region. 

5.10 

Move PCB 

IEAPCBM 

Move the PCM to PVT 
the free queue. 

PVTLFXC=PVTlFXC­
pages freed 

5.48 

4 Update system fix counts. :........" ............, ..............., ..................................................~ PVTFXC=PVTFXC­
pages freed 

Caller 

L ~ 	 ~ 




rr 	 r 
eDiagram 5.12 V=R Region Free Routine (Module IEAPVEQR) 

r------------------------------------------------------------T--------T--------, 
I IROUTINE I I 

I NOTES INAME ILABEL I 

~------------------------------------------------------------+--------+--------~1 	 PVTPCVRF is turned on at entry and off at exit. The IIEAPVRFRIVRFREE101 


V=R Root Queue (headed by PVTVROOT) is searched for a I I I 

root PCB whose TCB pOinter (PCERTCE) matches the TCB I I I 

address in the parameter list. If no match is found, I I I 

the region has previously been comfleted and validated. I I I 


I I I

2 	 Tbe region address and size (fro~ the farameter list) I IVRFREE801 


are placed in an an internal PCB and passed to the Free I I I 

V=R pages routine. 
 I I I 


I I I
4 	 The number of pages freed (region size divided by 4096) I I I 

is subtracted from the fix counts. I I I 


~l ____________________________________________________________ ________~________J 

en 
(1) 

:+ ,.... 
o 
;:! 

U1 

I'd 

III 


10 
,.... 
~ 

t5 
en 

CD 
11 

<,.... 
en ,.... 
o 
;:! 

I\J 
W 
\Q 



I'..l Diagram 5.13 
~ V=R' Flush Routineo 

(Attempting to Get Needed 
intercepted page, or cancel • 	 V=R Page Frames) 
cegion allocation Processing 

"'Finish V=R allocation of V==R 

-t .. 	 Output 
IEAPVRFL PVTPVT 

PVTVROOT r-- 1 	 Determine whether this (next) root PCB " PVTANYFR=O I 
is marked for interception. If so, accessI 	 lJ___ ....J the next root PC B and repeat. If there 

~- are no more root PCBs Caller 
Root PCBs 
(on V=R Queue) .. 

.J'.
PCBRWRK3 ---,,/ 2 	 Calculote the first PFTE and page count 


for this region.
PCBRINT 

PC BRW RK I ["""- 2A 	Determine whether this page frame has 

already been allocated. If so, access 


PCBRCNT 	 I the next PFTE and repeat the test. If 


PCBRWRKS I no more PFTEs 
 Root PCB ~- -----, I 	 •1 

PCBRTCB 
Determine whether this page has been1--1- 3 	 ,.""""""""~,",""""""""""itt-+J PCBRINT=l I 

:.II 
made permanently unavailable. If so 	 POSTPFTE (for each region) I I ____.!.._J ICGOO2+6 

PFTVRALC ~ - ­
I Inform initiator of 

PFTLSQA I 	 allocation failure ___ .....J (code 16). 
PFTLNGFX +­ l' 3.8...
PFTBADPG r-- 4 	 Determine whether the data in this page 


can be moved. If not I access the next

PFTFIXCT 

I 
I PFTE. -.2A 


PFTPCBSI ___ ---I 

~- If nOfle .-.1 


PFTQNDX 
 .....5 Attempt to move data out of th is V=R page. Move Page PFTNQN ........ 

IEAPMVP2 


Move the data to a 
page above the Vo=oR 
line • 

..L 
5.14... .. 

If Move Page is unsuccessful 	 Caller PVT 

r PVTANYFR=l I 
6 Allocate the page frame to the region. 	 PFTE Dequeue 

IEAPRLS3 

Remove the original 
PFTE from the 
available page queue. 

..... 	 5.18 

V R Release 

Allocate the 
interrupted page •...... 

S.l! r-..... 	 --" 
PFTE 

PFTONAVQ=l I 
Access the next PFTE. 	 2A•If none • 1 

~" L 	 L 




r r 	 r 

Diagram 5.13 V;R Flush Routine (Module IEAPVEQR) 
r------------------------------------------------------------T-------~--------l 

I IROUTINE I I 

I NOTES INAME ILABEL I 

~------------------------------------------------------------+--------+--------i 

• 	 Entered by: I IEAPVRFLI I 

I I I 


• 	 IEAPVRAL when immediate V=R region allocation cannot I I I 

be 	completed. I I I 


I I I 

• 	 Free subroutine when a V=R intercepted page becomes I I I 


free. IEAPIOP when a page-in corrpletes for a V;R I I I 

intercepted page. I I I 


I I I 

The root PCBs tested are on the V;R queue pointed to by I IVRFLSH201 

PVTVROOT and chained by the PCBRWRK3 fields. I I I 


I I I 

2 	 The first PFTE address is calculated by accessing the I IVRFLSH301 

region address (PCBRWRK3), generating a 16 bit PFTE I I 

index, and adding to that the apparent page frame tatle I I 

origin. I I 


I I 

3 	 The page is permanently unavailatle if it is: IVRFLSH401 

I I 

Allocated to SQA or LSQA (PFTLSQA;l) (unless allo- I I 

cated to a TSO task). I I 

Long-fixed (PFTLNGFX;l). I I 

Marked damaged by RMS (PFTBADPGF1). I I 


I I 

If any pages are perrranently unavailable, the roct PCH I I 

is marked for interception. I I 


I I 

The page cannot te moved if it is: 	 I VRFLSH45 I 
4 


I I 

• 	 Fixed (PFTFIXCT#O). I I 


I I 

Involved in any Faging supervisor activity I I I 


(PFTPCBSI;l or PFTQNDX;PFTNQN). I I I 

I I I 


5 I
If the Move Page routine fails, there are no more pages IVRFLSH701 

available queue and none could be freed so allocation I I I 

allocation cannot corr'plete for this or any ether region. I I I 


I I I 

6 
 Replacement is prohibited before allocation and allowed I I VRFLSH70 I 


again afterward (PVTBIGM is set to 1 before and ° I I I 

after.>. I I I
L____________________________________________________________ ________ ________ J~ ~ 

en 
!D 
o 
rt.... 
o 
i:'l 

VI 


I'd 
III 


I.Q .... 
~ 
en 
c:: 

"d 
!D 

~ .... 
en .... 
o 
i:'l 

I\.) 

.... "" 



_._. Coller 

.5.18 

Find Page 

IEAPFP2 

Locate the PGTE for 
the IIfrom" page. 

MODESET 

Change modes {relocate 
or non-relocate} 3.21 

PFTE Enqueue 

PGTPAM 

Page to which data is moved 

Storage key- "from IS II 

storage key 

liTo II page frame 

Data that was on 
"from" page frome 

Input PFTE 

New PFTE 

IIlnput'sll data 

PFTVRINT=O 

I\) • Diagram 5.14 
~ Move Page RoutineI\) 

Some as IEAPMVPG but the Entered by various paging 

page must not be V=R routines to find a nonfixed 

intercepted and can be available page above the 

above or below the V=R V=R line into whicl1 data 

line 	

Processing 

IEAPMVPG 

IEAPMVP2 

"""" 

SCANQ 

Search the specified OutputSet appropriate switches.Input 	 r- 1 queue.


I 2 Try to find a replacement PFTE for the (Diagram below) 


I 
 input PFTE on the available page queue. 
Register 1 

Register 1 0 I 
If unsuccessful and the input PFTE's data Positive index of 

PFTE index ~-	 must be saved input PFTE 
_J 	 .. ..., ......"~ A.'''''''''''''''''''~1I••~•••••••••••••••••I1~ Caller 

If successful ~ 4 	 PTE (for the page from 
which data is moved) 

If unsuccessful but the input PFTE's data 
does not have to be saved, continue. SCANQ PGTPVM=l 

Search the spec ified PGTRSA=PFTE for "to" 
queue 

3 Search the active page and hold page 
properly adjusted 

(Diagram below) 
queves for a replacement PFTE. 

,.~ 
If one cannot be found 

4 Dequeue the PFTEs to be exchanged. 

PFTE of "fram l1 page 


5 Move data and keys to appropriate page,I PFTVBN I+- ­
if necessary.~ 

PFTE of input page 

6 Exchange data in the PFTEs and move them IPFTONDX r­
PFTNQN 	 to the apprap~ 

Register 1 
Append the PFTE to 
the indicated queue. f:Ne~d~ 

Input 5.17 

Register 1 
From Move 
Page (above) 

SCANQ 

7 Determine whether any more 	

__•• Caller 
[PfTE-queu;- n~~~-}cf- ­

Output
PVT 

[ PvTVEQR 1+., 
PFTEs must beI _.~. CallerPFTEs on queue L tested. If not 

~ Register 15
--, 

PFTVRINT --1 I 	 If so, determine the tests to be made. r....., ...""""""~ 
.."""" ...' ...""" ....~L.I_R_et_u_m_C_od_e_=l___..J 

PFTFQPTR -1 I L 8 	 For entry at IEAPMVPG, determine whether 

this PFTE is above the V=R line. 


PFTBADPG I I For entry at IEAPMVP2, determine whetherI '- ­
PFTPCBSI the PFTE is marked for interception. 

Registe~ 1 and 15 
PFTFXCT I L 	 If the tests foil, get the next PFTE. ~ 7 ~ Usable PFTE index'--- ­

1 	

!!!~~'••••••••~.I9 Determine whether this page can be used. ..,"",......,""",.....,'01 Retum cade=O 
If so 'f not, get the next PFTE. I 7 

~ L 	 L. 




____________________________________________________________ 

r 	 r 

Diagram 5.14. Move Page Routine (Module IEAPVEQR) 
r------------------------------------------------------------T-------~--------, 

I IROUTINE I I 
I NOTES INA~E I LABEL I 
~----------------------------------------------------------+--------+--------~11 If register 1 contains a positive PFTE index, the data IIEAPMVPGI I 

and storage keys of the input page frame must ce pre- I I I 
served in any move. I I I 

I I I 
If register 1 contains a negative PFTE index, the data I I I 
and keys of the input page frame do not have to I I 
be saved. I I 

An internal entry switch is set to 0 for entry at 
I 
IIEAPMVPGI 

I 
IEAP~PG; to 1 for entry at lEAPMVP2. IEAP~P2 

An internal "I" switch is set to 1 if Register 1 
is positive; to 0 if Register 1 is negative. 

2 	 If a PFTE is not 

• 	 The -I- switch 

• 	 The "I" switch 
page frame need 
page frame (the 
must be saved. 
indicate this. 

found on the available page queue and: 

1, a ·one-way· move cannot te made. 

= 0, the data and keys in the input 
not be saved, but those in the "new" 
one into which data will be Jr,oved) 
An internal "M" switch is set to 

If 	a PFTE is found on the available page queue, and the 
WI- switch equals zero, the aM- switch is set to o. 

SCANQ is called to scan each active page queue and then 
the hold page queue until a usable PFTE is found. 

3 

4 	 Page replacement is prevented by setting PVTEIGM before 
calling the PFTE Dequeue routine. The PFTE Dequeue rou-I 
tine is then called twice; first for the input PFTE, I 
then for the new PFTE. IL____________________________________________________________~ 

til 
CD 

~ .... 
o::s 
111 

'tl 
III 
\!).... 
::s 
\!) 

til 
.g 

CD 
1'1 
.:=.... 
CII .... 
o::s 

I\) 

~ 
W 

ISWTEST 

ICONT 

ISCANACT 
I 
IDEV 
I 
I 
I I _______~________J 

r 
r------------------------------------------------------------T-------~--------, 

I I ROUTINE I I 
I NOTES INAME ILABEL I 
~------------------------------------------------------------+--------+--------~5 	 If the "I" switch is on, the data from the input page 

is moved into the new page frame. 

If the "M" switch is on, the data from the new page 
is moved into the input page frame. 

If 	neither s~itch is on, no data is moved. 

Upon return from the Find Page routine, a PTLB instruc­
tion is issued to purge the hardware DLATS after invali ­
dating the PTE for the page from which data was Jroved. 

MODESET is called before the move to place the 
routine in nonrelocation mode and after the move 
to return it to relocation mode. 

If the input PFTE was not on a queue originally 
(PFTQNDX=PFTNQN), the first call to the PFTE Enqueue 
routine is skipped. Otherwise, PFTE Enqueue is called 
twice; once to add the new PETE to the queue of the 
input PFTE and once to add the input PFTE to the new 
PFTE's queue. 

6 

Replacement is allowed (PVTBIGM=O) before exit is taken. 

A register loaded with PFTQPTR is tested for zero 
to determine whether any PFTES are left to be tested. 
The entry switch (set in IEAP~PG or lEAP~P2) is 
tested to determine the entry point. 

7 

8 	 The entry switch (set in IEAPMVPG or IEAP~P2) is 

tested to determine the entry point. 


The pag~ is usable if it is:9 

• 	 Not marked as daJr.aged by RMS (PFTBADPG=O). 

• 	 Not assigned a PCB (PFTPCBSI=O). 

L • Not fixed (PFTFXCT=O). 

I I IORMCOM 
I 
I 
I 
I 
I 
I 
I 
I 

INONE 
I 
I 
I 
I 
I 
I 
I 
I 

SCANQ ISCAN 
I 
I 
I 
I 
ITSET and I 
ITESTINT 
I 
I BAD 
I 
I 
I 
I 
I 

LI________LI________JI 



IV 

PFTE 

~ 
• Diagram 5.15 (Steps 1-3) 

~ Page Replacement Routine 
Entered whenever an uncorrected 

shortage of page frames is 

discovered. I
Input rrOCeSSing 	 Output 

~IEAPRPLS 
Prevent replacement from being initiated 
until the current replacement has been PVT 
completed.--.., 	 :....................................................................................................".I....-.! PVTRPlSW';;~ 


I 

11-­ 2 	 Search the 0,0 or 0, 1 PFT-in~se queue 
(using the page replacement algorithim)- I I+- , I I 	 for PFTEs that represent page frames that 
can be replaced. DI I I 

I I I If a page frome is se lected for 

I I I replacement 	 PAGEOUT 

Make the selected 
page frame available. 

I I I 
I I : 	 5.16 

I I I 
If more page frames are needed, continue

PFTFXCT -t.J I~ 	 the search with the next PFTE t 2 
PFTFOPTR ~ - -4-..J 

I If no more page frames are needed • 	 4I 

I If the poge frame is not selected, move j-M:;;o::.;vc.::e:::d-'-P"-.F"-.TE=:-:-___, 


the PFTE to the appropriate queue and 	 ,I PFTO NDX=newI 
reset the reference bit. I 	 ~ queue numberI 

I 	 PFTFOPTRDEQPFTE
I 

Remove the PFTE fromI its present queue.
I 

I 
 .....I 	 ENOPFTE 
I 

Add the PFTE to Ihe I 2 I appropriate queue.
I 
I If the end of the queue is reached, 

I continue. 

L 3 	 If the completed queue is the 0,0 queue, 
continue the search with 0,1 queue. I 2 
If the completed queue is the 0,1 queue and 
the queues have been searched twice and 20 IEAPSERI log the error.seconds have elapsed since the last call. 	 • 

~-	 IS 5.54 

(Continued ot Slep 4) 

l., L 	 L 


http:j-M:;;o::.;vc.::e:::d-'-P"-.F"-.TE


r r 	 r 

eDiagram 5.15 (Steps 1-3) Page Replacement Routine (Module IEAPRPLS) 
r------------------------------------------------------------T-------~--------, r------------------------------------------------------------------------------,
I IROUTINE I I I PAGE REPLACE~ENT ALGORITHM TABLE I 

I NOTES INAME ILABEL I 
 ~---------T-------T-------------T------------T---------------------------------i 

~------------~----------------------------------------------t--------t--------i I Queue I I I I I 

I 1 This replacement attemrt is not finished until all I/O IIEAPRPLSIGORPLACEI I being I Fix I Reference I Change Bit I I 


it initiates is completed. I I I I Scanned I count I Bit setting I setting I Action I 

I I ~--------·+-------t-------------t------------t---------------------------------i


An internal counter of pages needed is set to PVTREPCT I I 0,0 I non-O I I I Page nct eligible for replace- I 

and a counter of scan iterations (PVTOO) is set to zero. I I ment; continue search with next I 

The 0,0 PFTE queue is set as the first queue to be I I PETE. I 

scanned. I I I 


I I 0,0 0 0 0 Replace the page frame asso- I 

2 The queue is located by taking the physical PFTE queue I RPLACE15 ciated with this PFTE. I 


number from PVTQOO or PVTQ01 and using that number as 
 I 	 I 

an index into the PFTE queue headers in the PVT. See I 0,0 0 0 1 *~ove this PFTE to the 0,1 queue I 

the page replacement algorithm (on the follo.ing page) I and ccntinue search with the I 

for an explanation of the scan logic. I next FFTE. I 


I 	 I 

Upon return from PAGEOUT, the counter of pages needed I 0,0 0 1 0 *Move this PFTE to the 1,0 queue I 

is decremented by one. If it now equals zero, no more I and ccntinue search with the I 

pages are needed. I next PFTE. I 


I 	 I

3 	 The internal counter of scan iterations is tested. If I IENOFQ10 0,0 o 1 1 *~ove this PFTE to the 1,1 queue I 


it is equal to 3, two iterations have been made through I I and ccntinue search with the I 

the PFTE queues. This is an error condition indicating I I nExt PFTE. I 

either that replacement was invoked needlessly or that I I 
 I 

fixed, SQA, LSQA, V=R, or any corrbination of these types I I 0,1 non-O 	 Page not eligible for replace­
 I 

of pages have overcommitted real storage and left an I I rr.ent; continue search with next I 

insufficient number of pages for paging. The error codel I PFTE. 
 1 

passed to IEAPSER is 0600. 	 I I 
 1 


I I I 0,1 o o 1 Replace the page frarre asso­ 1 

I (J See table following the notes for this diagram for an I I ciated with this PFTE. 1 

I explanation of the page replacerr.ent algorithrr. I I 

l ____________________________________________________________ i _______-i________J 	 I 


0,1 o 1 1 *Mcve this PFTE to the 1,1 queuel 

and continue search with the 1 


1 1 I I next PFTE. 1 

~---------~-------~-------------~------------~---------------------------------i 
1* The Reference Bit is set to zero each time the PFTE representing the rage I 

1 frame is moved. 1 

1 ______________________________________________________________________________J 

en 
~ 
rt.... 
o 
::l 

IJ1 

C9 
I!l.... 
.8 

en 
c:: 
'0 
(1) 

~ .... 
CIl .... 
o 
::l 

~ 
~ 
IJ1 



IV 
~ 
C1\ 

Diagram 5.15 (Steps 4-5) 
Page Replacement Routine 

Input Processing Output 

PVT 

PVTANYFR 

PVTAPC 

PVTLTH 

} 

4­

,­
I 

_.J 

1--4 If poge-outs were initiated 

If no poge-outs were initiated and no pages 
are available, indicate that the Page I/O Post 
routine must allow reserve-replenish processing. ,...""""""""~ 

Celler,.. 

~..............................~ 
PVT 

~,~ PVTRRTP=l I 
If no page-outs were initiated, some pages ore 
available I and pages ore needed for V=R 
allocation. 

.. 
V R Flush 

If the available page count is now less than the 
low threshold, reinitiate replacement. 

I •2 

Allow reinitiation of replacement when ~......"'......,..., ......, ........... 
necessary 

lEAPVRFL 
Allocote pages to 
a V=R reg ion. 

5.13 

~............,..." ......'''' 
.. 

Celler 
r 

PVT 

~,~ PVTRPLSW"'ll 

Les' 1,0 PFTE

I PFTFQ PTR 

I 

I 
5 Swap the 1,0 queue with the 0,0 queue and the 

1,1 queue with the 0,1 queue. Append the 
hold page queue to the 1,0 queue. Begin the 
search again with the 0,0 queue. •2 

PFTEs being moved 

I PFTO NDX~PVTQ 10 

I PFTHOLDQ"'ll 

I 
I 

~ l L, 




r r 	 r 

Diagram 5.15 (Steps 4-5) Page Replacement Routine (Module IEAPRPLS) 
r------------------------------------------------------------y--------y--------, 
I IROUTINE I I 
I NOTES INAME ILABEL I 
~------------------------------------------------------------+--------t--------~4 	 IIEAPRPLSIENDPROC I 

I I I
5 The scan iteration counter is incremented before the I IENDOFQ201 

swap. I I I 
I I I 

The queues are swapped by exchanging the physical queue I I I 
numbers in PVTQOO with PVTQ10 and PVTQOl with PVTQll. I I I 
The hold page queue is appended by setting the forward I I I 
pointer of the last PETE on the 1,0 queue to the first I I I 
PFTE on the hold page queue, turning off PFTHOLDQ in thel I I 
appended PETEs, and setting their PETQNDX fields to I I I 
the value in PVTQ10. I I Il ____________________________________________________________L________L________J 

en 
to 
(') 
rt.... 
o::s 
V1 

~ 
It:l.... 
~ 
en 
c:: 
'0 
to 

~ .... 
en.... 
o::s 

I\.) 
.j:: 
..,j 



N 
.c:: Diagram 5.16 
00 Page Replacement­

Allocation Scheduling and 
From IEAPRLS to Root Exit Processing 
schedule reallocation 

Input of a selected page 

I ... 
Processing Output 

-----~ 
PAGEOUT Subroutine 

1 Remove the PFTE from its queue. 

~• ---.,. PFTE Dequeue 

Degueue the 
i nd icoted PFT E. 

~ Find Page r 
IEAPCP2 

PFTE 

PFTVBN 

r---­
I 

J 

2 Locate and invalidate the PGTE. 
jI!
h.""~ 

Find the PGTE and 
XPTE for th is VBN. 

5.2i 
PGTE 

~'~LP_G_TP_V_M~_I______~ 
PFTVRINT --, V-R Release 

PFlWHOSE 1 I 
I r-­

I I I 
3 

I I I 
I '--I----f-

I 
-I-~ 
I 
I 

-I 
IL ____ 

4 

Determine whether the page has been 
changed. 

If not, and it is marked for V=R 
interception 

If not I and it is not intercepted 

jjI! 

1.."""+0 
Initiate a page-out for a changed page. 

IEAPVRS 
Allocate the page 
to V=R storage. 

5.11 ... 
Caller 

"'''"~"·r Caller 
IEAPRLS2 
Make the page 
available. 

5.17 ~""""'...I 

PFTE 

~{ PFTQNDX~PFTONAVQ 
L PFTONAVQ~I 

~~ . LP_FT_P_C_BS_I_~I________~ 

TCT 

~""""""'TCTPGOUT=TCTPGOUT+II 

Root PCB 
Perform SMF accounting 

Get 0 root PCB, if one does not exist, ~"""""""",~.l...... Build PCB PCBRGOTO~Address of 

and a regu lor PCB for the page-out. IEAPCBB 
Root Exit routine 

Get the requested PCBRCNT~PCBRCNT +1 
PCB 

5.49 PCB 

From Page 

when page 

replacemen 
completed 

I Post routine 
s far the 
ot PCB have 

Initialize the PCBs and schedule it 
for page-out. 

II!
l.....""~ 

.. 
Move PCB 

IEAPCBM 
Add the PCB to the 
auxiliary storage 
allocation queue. 

~ 
PCBRBN=PFTE ir.dex 

PCBVBN~PFTVBN 

PCBPTE 

PCBXPT 

I 5.4, 
PCBRTP=Address of root 

Root Exit Routine Caller PCB 
r' !" 

Move P-CBFree the root PCB. PCBNQ N=PCBAUX---- 5 
IEAPCBM 
Add the PC B to Root PCB1""-+0 
the free queue. 

{1--- 6 Determine whether the low available page 5.48 

I 
~ I~CBNQN=PCBFREEcount threshold has been violated. If so, 

PVT attempt replacement. Page Replacement 

PVTAPC IEAPRPLS...J 
5.15PVTLTH ...} I 

VTRPLSW Caller 
~ PVTANYFR ----- 7 Detennine whether V=R needs pages. If so V-R Flush 

IEAPVRFL 
Allocate pages to 

8 
 V=R storage. 

5.13f:t PVT 

If not .. ~"""'~PVTR;;LsW:O ~ 
~"""""""""""""""'~ 

L l L 




r r 	 r 

• Diagram 5.16 page Replaceroent -- Allocation Scheduling and Root Exit Precessing 

(Module IEAPRPIS) 
r------------------------------------------------------------T--------T--------, 
I I ROUTINE I I 
, NOTES ,NAME 'LAEEL , 
~------------------------------------------------------------+--------+--------~

1 	 IPAGEOUT IPAGEOUT , 
The PGTE is invalidated since the page frame is being 	 , 
made unavailable. If the return code from FINDPAGE is 

2 , ,net zero, PAGEOUT passes control to IEAPSER, with code ,601, to issue a message indicating that the error is ,recoverable. Then processing continues at step 3, ,treating the page as not changed. , 
3 	 If the page is unchanged, an exact copy of it exists on 'POUT30 

external page storage (that is, a page-out is not , 
needed). If the page is given to V=R Release, it is 	 , 
not counted toward the replacement count. 	 I 

I 
SMF accounting routines record the page-out operation 	 ,POUTOO 
in 	the effected task's statistics table (TCT) if one 

4 , 
exists. If PFTWHOSE=O or TCETCT=O, there is no TCT. , ,

5 Since all orerations represented by this root PCB have IReot ,ROOTEXITI 
been completed, the root PCE is no longer needed. IExit I I 

IRoutine , I , , ,
6 	 , IRTEXIT01, 

, I , 
I 7 , 'RTEXIT021
L______________________________________________________ ______ L________L ________J 

CJ) 
(l) 
() 
rt 
1-'­
o 
::; 

\.11 

;g 
I.Q 
1-'­

~ 
CJ) 

ttl= 
(l) 

~ 
1-'­
en 
1-" 
o 
::; 

ID "" 
IV 



IV 
VI 	 Diagram 5.17 
o 	 PFTE Enqueue Routine 

Entered by paging 
supervisor routines 
to add a PFTE to a 
queue 

Processing
Input 

Register 1 

IEAPRLS2
[±pm ;ndex-If] 

PFTE .... -- Calc:ulate the PFTE address and target 	 Output 
queue.II PFTONDX 1+-- ---I 	 Input 

I PFTE PFTE 
'--- 2 	 If the target queue is Q.2!. the available 

page queue I add the PFTE to the target 
queue in the specified place. ENQPFTE 

SCNTE Put the PFTE on the I ...J_ 	 L_ _~ PFTE 
proper queue.§;n PVTALOC9J+- --, 

I 	 ~"''''''''''''''''''''~I~'~ 
SCNTE 

I 
Caller 

I 
I 

SCNSF ;n PVTSRRQ 1+- ---I 

I 	

II•••••••••••••••• 
3 If the target queue is the available I 	 ~P.:.V.:.T_____-,

I 
I 	 page queue and, ""''''''''''''''''''''''-'''''''''''''''''''''''''''' ~'''~ PVTAPC=PVTAPC+l 
I 
'--- The real storage allocation queue and 

the reserve replenish queue are I 
Release Queuesuppressed 	 l 
Suppression 

IEAPCRQS 

Release the real 
storage allocation 
queue.

The real storage allocation queue is not 5.51 
suppressed, or the allocation queue is 
suppressed but the reserve replenish 
queue is not _ t • 

ENQPFTE 

Put the PFTE on 
the proper queue. 

Caller 

L 	 l L 



r ( 	 r 

Diagram 5.17 PFTE Enqueue Routine (Module IEAPRPLS)
r------------------------------------------------------------T--------y--------,
I IROUTINE I I 

I NOTES INAME ILABEL I 

~-------~----------------------------------------------------+--------+--------fI] If register 1 is positive, the PFTE is to be added tc IIEAPRLS21 I 


the bottom of the queue; if negative, the PFTE is added I I I 

to the top. I I I 


I I I 

1 	 The input PFTE index is complemented, if necessary, and I IIEAPRL521 


converted to the PFTE address. The target queue is I I I 

located by using PFTQNDX as an index into the PFT queue I I I 

headers in the PVT. 
 I I I 


I I I

2 If PFTQNDX'PFTAVQN, the target is not the available pagel INQ20 I 


queue. I I I 

I I I


3 	 The available page count (PVTAPC) is incremented ty 1 I INQ10 I 

to indicate that another page is immediately available I I I 

for system use. I I I


L____________________________________________________________L-______~________ J 

CIl 
In o 
rt.... 
g 
U1 

~ 
lQ.... 
~ 
CIl 
c:: 

"C 
Cb 

~ .... 
C/l.... 
g 

U1 '" 
~ 



IV Diagram 5.18 
U'I 
IV PFTE Dequeue Routine 

Entered by paging supervisor routine 
to remove a PH E from a queue 

OutputInput 

Register 1 IEAPRLS3 PFTE ~ PFTE 

PFTE index If the PFTE is not currently on a queue Caller1+- -l-- U "0 
Input 
PFTEI 

:-_-.,j
I 

r 2 Remove the indicated PFTE from its queue. DEQPFTE 
___J 

IEAPRLS--, 
I 

5.18 

PVT I 

PVTAPC I 
r__L_
PVTLTH 3 If the PFTE was removed from the available 

PVT 
page queue, determine whether replacement

PVTRPLSW 
is required. PVTAPC=PVTAPC-1 

PVTBIGM 
If so, and replacement is allowed at this 
time _ I Page Replacement 

IEAPRLS 

Perform the page 
replacement 
algorithm. 

5.15 

Caller 

If so, but replacement is not allowed Release Queue
schedule it for later. 

Suppression 

IEAPCRQS 

Re I ease the rese rYe 

replenish queue. 

5.51 

If not, or if the PFTE was not removed 

from the available page queue 
 Caller 

L, l L 




r ( 	 r 

Diagram 5.18 PFTE Dequeue Routine (Module IEAPRPLS) 
r------------------------------------------------------------T-------~--------l 

, 'ROUTINE' , 
, NOTES ,NAME 'LABEL , 
~------------------------------------------------------------t--------t--------1 
, 1 The input PFTE index is converted to the PFTE address. ,IEAPRLS3,IEAPRLS3, 
, The target queue is located ty using PFTQNDX as an , , , 

index into the PFT queue headers in the PVT. , , ,, 
3 	 The available page count (PVTAPC> is decremented ty 1 , 

and compared to the low threshold (PVTLTH). The Page , 
Replacement routine is called immediately if: ,,,• PVTLTH>PVTAPC and , 

• PVTRLPSW=O (replacement is not in progress) and 	 ,, 
• PVTBIGM=O (replacement is allowed). 	 ,, 

If PVTBIGM=l, replacement is not allowed and the , 
available page count is tested again. If PVTAPC=O, , 
replacement is scheduled for later by releasing the SQA , 
reserve replenish queue. otherwise, the call to the , 
Release Queue Suppression routine (IEAPCRQS) is skipped., , ,

L____________________________________________________________ ________ ________J~ ~ 

en 
(1) 
o 
rt.... 
o
:s 
U1 

~ 
t.Q.... 
~ 

~ 
'tI 
(1) 

~ .... 
CJ) .... 
o:s 

I\.) 

U1 
W 



~ 

"" 
U'I Diagram 5.19 

Task Disablement Algorithm 
and Threshold Checking 

Entered by Timer SLiH when 

the paging raE "pops" to 

perform the task disablement •


Input algarithm calculations Processing 	 Output 

PVT 0 IEAPDSBL 


PVTRECSV ~ 

1 
 Determine whether any pertinent counts 

PVTNPREC (reclaim, read, swap-in) have been reset 

PVTADRSV during the last paging task disablement 


PVTJJ interval. If so, 	 0 
PVTNPIN 

Timer Second-Level PVTRECSV=PVTNPREC 
PVTSINSV 	 1A Set up counts for testi n9 next interval. 

Interruption Handler ... 	 PVTADRSV~PVTNPIN 
PVTSPIN f'- :> PVTSI NSV=PVTSPI N 
PVTIMEAD .... 

2 Compare the interval reclaim count with 

II 	 TOE 
PVTHRLlM 	 the interval reclaim high threshold and 

the adiusted interval read count with its I TOEVAL=PVTIMEAD IPVTHARLIM threshold. 
PVTSHUT 	 If both are equal to or exceed their~-:-- ---r====l-	 .. 

DispatcherthresholdsPVTLRLlM ~' -., I-++-, 	 IEAODSI
PVTLALIM 


I I I 1 If the shutdown is successful and Shut down a task. 

PVTTHRC4 
 a TeB is known~- -i I 1 	 3.17 

1 1 1 I 	 II! 
Register 1 	 .. 

SCANPFTQ 	 PVT•I I I 1 	 ~~IAddress of TO E I I 1 Turn off reference ~ PVTSHUT-PVTSHUT+l I 
PFT 1 I I I. bits for th is iob-step & 

PVTTHRTD=1
TeB's pages.IPFTWHOSE 1+- _L...J I I 

1 1 1 	 m 
If the shutdown is unsuccessful orI I 1 	 r:'1
the reB is not known .. A1 I I 

IL 3 If no tasks are shutdown 1A --IIJ. Dispatcher 

1 L_ IEAODSI4 Compare the interval counts with their • Start up a shutI low thresholds. 
down task • 

If they both do ~ violate them •1A 	 ,.1 	 3.17 

I 
I If both are lower than or equal to 


the threshold values, restart a task. 

PVT 

1 B! " PVTSHUT~ I 	 PVTTHRTD=OL ____ 
5 If no other tasks are shut down and an PVTTHRC4=O 

Entered by DISPINIT initiator region allocation request was ~ or CKTHRESH (both in 	 .
suspended because of thrashing DISPINITGETPART) to check for PVT 

paging threshold (in GETPART) IPVTTH RC4-1
violations Otherwise • 1A ... Inform GETPART of ~, 

PVT L resource availability. I ~ I 
...... Register 15 

IEAPCHTH _____ L 	 6.14 i!! I Retu rn code=4IPVTFLAG3 6 Determine whether any paging supervisor 	 I~-	 Ithresholds hove been violated. 

If so 	 Register 15 ~""""""""~ ~""""""",'IIi 
If not 	 _ ..._ ..._ .....................".]........".'........_ ....................._~...~ ""m ,~~ 
 I 

, Caller 

~. l 	 ~ 




r r 	 r 

• Diagram 5.19 Task Disal:leJ[ent Algorithm and Threshold Cbecking (Module IEAPRPLS)

r------------------------------------------------------------T--------T--------,
I IROUTINE I I 

I NOTES INAME I LABEL I 

f------------------------------------------------------------+--------+--------~1 	 If the interval reclai" count, the interval read count, I IEAPDSBLI IEAPDSBL 


or the interval swap-in count is negative, that system I I 

count was reset during the last interval. I I 


I I 

2 A 0 is passed to the disfatcher in register 1 to I IADJ 


indicate shutdown. I 

I 


If the return code from the dispatcher is 4, no shut­ I 
down was possible. If the return code is 0, a task was I 

shut down and either its TeB address or a zero is in 
register O. If a TCE address exists, the TCE is 
accessed and SCANPFTQ is called. If the TCE address is 
0, some subsystem (for example TSO) took some acticn. 

SCANPFTQ is called successively to scan the active ~age 
queues (PFTAC1QN, PF1AC2QN, PFTAC3QN, PFTAC4QN) and the 
hold page queue (PFTHQN). 

4 	 A 4 is passed to the disfatcher in register 1 to 
indicate startup. 

If the dispatcher is successful, PVTSHUT is decrement­ I 
ed. If it is unsuccessful, PV1SHUT is set tc zero. I 


I

I ZEROSD 

I 


5 


6 If PVTFLAG3~, a threshold has been violated. 	 IIEAPCHTHIIEAPCHTHI 

I I I


[J 	See the table following these notes for a descriFtion I I I 

of the fields in the PVT used in the Task Disable 
 I I I 

Algorithm. 	 I I I 


I I I
1m SCANPFTQ compares the input TCE address with the ISCANPFTQISCANPFTQI 

I PFl'WHOSE field of each PFT on the queue. For each I I I 

I match found, the reference bits in the page represented I I I 

I by that PFTE are turned off ty means of an RRB instruct-I I I 

I ion. I I I
l ____________________________________________________________ ________~________ J~ 

CJ) 
CD 

~ 
1-" 
g 
VI 


I'd 
I» 

I.Q 
1-"
::s 

I.Q 

CJ) 

.g 
~ 
<
1-" 
CJl 
1-" 
o
::s 

I\.l 

VI 

VI 




I\J 
U'I 
0\ 

From paging supervisor routines 
to FIX, LOAD, FREE, or RELEASE 
pages 

From SVC FLiH to 
handle SVC 113 
requests Processing 

IGC1l3 

....I~IJ IEAPSIBR 
- • \ IEAPSIQR 

Input r- 1 Set up necessary switches registe", and 
work areas. I 

I 
Registers I 
~-=.JD~- _..J 

2 Determine the requested function: r­
VSL 

I FIX or LOAD 

VSLFIX I
_JVSLFREE 

VSLOAD 

VSLRLS 

FREE 

RELEASE 

None 

• Diagram 5.20 
Page Service Interface Routine 

Output 

CVT 

~""""""'''' "'1""+1 CVTPSIC=1~"""""""'" 
LlSTINIT 

IIII! Perform internal ;-:PV..:..T__---,
initialization. a,'t-i PVTPCPSI=i

fJ 

FIX/LOAD 

Attemp to FIX or 

LOAD requested 

pages. 

5.21 

FREE 

Attempt to rREE 

requested pages. 


5.22 

Release 

IEAPCLR2 

Release real and 
external storage for 
indicated pages. 

5.31 

FREE Exit 

~I I 5.22 Step 12 

III! Register 15 

@,-"+I Return code=4 ~""'~ 

l" l L 




r r 	 r 

Diagram 5.20 Page Service Interface Routine IIwdule IEAPSIl 
r------------------------------------------------------------T--------T--------, 
I IROUUNE I I 
I NOTES INAME ILAEEL I 
~------------------------------------------------------------+--------+--------~

1 	 For entry at IEAPSIBR and IEAPSIQR, the contents of IIGCl13 I I 
registers 0 and 4 are exchanged. IIEAPSIBRI I 
Entry switches are set at all entry points. IIEAPSIQRICOMENTRY 

2 	 If the Release routine is called, its return code is 

passed to the caller. 


iI 	Registers at entry to IGCl13 are: IGC113 

Register 0 - ECB address (0 for FREE requests) 

Register 1 - List entry (VSL) or pointer to parameter 


list 

Register 2 - Second half of VSL or (for list form) 


irrelevant 
Register - Requester's TCB address 

Registers at entry to IEAPSIBR and IEAPSIQR are: IIEAPSIBRI 
I I 

Register 0 - Requester's TCB address land I 
Register 1 - VSL address (list form) or first word of IIEAPSIQRI 

VSL I I 
Register 2 - Irrelevant !list form) or seccnd half of I I 

VSL I I 
I I 

~ 	LISTINIT initializes internal fields associated with ILISUNITI 

the parameter list and makes register requests a~p€ar I I 

like list requests for compatal:ility. 	 I IL____________________________________________________________ ________ ________J~ ~ 

en 
It) 

~ 
~. 

o
::s 
(J1 

'tf 
III 

<!l 
~. 

::s 
<!l 

en 
.§ 
It) 
t; 
< 
~. 

en 
~. 

g 

(J1 '" 
-..I 



VI 
to..! 

CO 

From DLQSRCH (FREE) to 
restart a deferred FIX request 

From the Page Service 
Interface to handle FIX 
or LOA D requests Processing 

Initial Scan 

FIX/LOAD 

FIXX 

If the RELEASE option has been selected. 

If the Release routine is unsuccessful 

Input 
2 locate the first (next) virtual address of a 

VSL page to be fixed or I coded. 

VSLCONT 


VSLNULL 


VSLSTART 
 r---­
VSLENDP1 

If all pages have been handled 

Release 

IEAPCLR2 

Release real and enternol 
storage for indicated 
pages. 

5.31 

_ 19 

'",""",........,"',....,""""""""',....'" 


NEXTVMA 

Find next sequential 
virtual address in 
parameter list. 

o 
• 4 

Diagram 5.21 (Steps 1-2) 
FIX/LOAD Subroutine 

Output 

Register 15 

+i Return code=4] 

(Continued at Step 3) 

L l L 




r r 	 r 

Diagram 5.21 (steps 1-2) FIX/LOAD Subroutine (Module IEAPSI)
r------------------------------------------------------------T--------T--------l 
I IROUTINE I I 

I NOTES INAME ILAEEL I 

~------------------------------------------------------------+--------+--------~1 	 IFIX/LOADIFIXLOAD I 


I I I 

For entry at FIXX, an environment for FIX/I~AD that is IFIXX IFIXX I 

compatihle with other entries must be established. An I I I 

internal "ROOTPTR" is set to the root PCB address, I I I 

register 1 is set to its contents at original entry 
 I I I 

(from PCBWK2), register 4 is set to the original TCE I I I 

address (from PCBRTCE), and, for an SVC entry, register 
I I I 

o is set to foint to the ECE (from PCBRWK1). I I I 


I I I 

2 	 I INEXTVALPI 


I I I
II NEXTVMA finds the next entry that is neither a null INEXTVMA I I 

entry nor for continuation and locates the virtual I I I 

address associated with it. If one is found, the I I I 

return code is zero. If the end of the list has I I I 

been reached, the return code is 4. I I I
L____________________________________________________________ ________ ________J~ ~ 

en 
(l) 
n 
rt.... 
o 
i:::I 

VI 


;g 
IQ.... 
~ 
enc: 
"0 
(l) 

~ .... 
en.... 
o 
::I 

I\J 
VI 

\C 




IV 
0­
o 

Diagram 5.21 (Steps 3-5) 
FIX/LOAD Subroutine 

Processing 

3 Determine whether the entry is valid and, 
for FIX requests, fix the page if it is 
currently in real storage. 

A Too many pages in a LOAD request _---I.~19 

Output 

Register 15 

Input 

PFTE 

I PFTLSQA 1 

r-­
I 

_...1 

C 

D 

Too many pages in a FIX request 

Virtual address of the page below 
the V=R line 

h"""""""'~I~""""""""'~I' 
~",!:""""'~ ~"""""""""~ , 

~ Retum code""4 

Register 15 

5>t Retu m code==36.2 
The page is not in real storage and: 

The virtual address is invalid .2 
~""""""""""""""""" ..."I -i 

The virtual address is valid ... 

....­

Translate Real to Virtual 

IEAPTRV 

Find the virtual address 
of the PTE. 

5.47 

I
I
I 

The page has not been allocated by 
GETMAIN 

II! 
_---I.~2 L I 
~""""""",~~""""""",,4~hen all valid, indicate allocation • 

IS necessary. _ 2 

VSL 

~~ VSLERR-l 

The page is in real storage and; 

The request is LOAD or long-fix, 
or the page is SQA or lSQA 
allocated 

The page can be fixed 

~r2--F-IX-A-C-C-T---'
..J r1 Perform and record 

fixing operations.2. EJ 
Initial Scan End 

4 Determine whether further processing is 
needed: 

If an inval id address was encountered 
during the initial scan 

a 
5 

VSL 

VSLONG 14-­ ..., 

If the request was wholly satisfied _ 
during the initial scan 16 

~"""""""''1~''''''''''''''''''''If a page must be allocated or a long-fix _ 
completed 6 

Register 15 

~~ Ret~m code=O 

5 
Initial Scan Error 

Determine the request type: 

LOAD 

FIX (from FREE) 

FIX 

(Continued at Step 6) 

J • 21 
~20 

~"'!"""""'~I~""""""""'" 
....~.,====~FR~E~EX~==~ I 

~ Bock out the FIX ~ 
request. I 

,~~~~~~~5;.2;2~S~te~p~2 ii!!! 

I ~"""""""':l ~"""'~_ , • 21 

~PVT 
''P'' PVTFXCT=PVTFXCT+ 

PCOUNT 

PVTLFXCT=PVTLFXCT+ 
LPCOUNT 

~ l ~ 




VI 

r r 	 r 

• Diagram 5.21 (Steps 3-5) FIX/LOAD Subroutine (Module IEAPSIl 

r------------------------------------------------------------T--------T--------, 
I IROU"IlNE I I 
I NOTES INA~E ILAEEL I 
~------------------------------------------------------------t--------t--------i 
I 3 
I 
I 

A} 
, 
B 

An internal "fix/load counter" is incremented after 
each return from NEX~V~A. If the counter exceeds 
255, too many pages are in this request. 

IFIX/LOADI
I I 
I I 

I 
I 
I 

I I I I 
I C If the virtual address is less than PVTVEQR, the I INOEXCESS 
I page is below the V=R line. I 
I
I D The virtual address is used as the arguITent of an 

I 
I 

LRA 
and 

instruction. If the page is not in real storage I 
the virtual address is invalid, an error flag I 

is set in the VSL (VSLERR=l) and a "tad address" I 
internal flag is set to prevent the second scan froml 
being made. I 

I 
If the LRA shows the virtual address to te valid butl 
PGTPVM=l, the address returned by the LRA instruc­
tion (the real address of the PTE associated with 
the virtual address) is passed to IEAPTRV. If 
PGTPAM=O in the PTE whose address is returned, the 
page has not been allocated by GETMAIN. VSLERR 
and the internal "tad address· switch are set. 

If all criteria are met, an internal "second-scan" 
switch is set to indicate that at least cne ~age-in 
must be initiated to satisfy the request. 

E 	 Long-fix processing is done during the second scan. 
The PFTE address is calculated as follows: 

Bi ts 8-19 of the real address from LRA x 16 
+PVTPFTP 

If PFTLSQA=l in the indicated PFTE, no fixing need 
be done .. 

4 

For a long-fix request, PFTINGFX is set to 1, and the ~ 	internal "long-fix" counter (LPCOUNT) is updated if the 
page was not previously long-fixed. If the newly long­
fixed PFTE is on a queue, it is dequeued by calling 
lEAPRLS3. 

en 
(b 	 For any request, the FOE count (for an SVC entry) via 

FOEON is updated, the internal "fix counter" (PCCUNT):+ 

I 

I 
I 
I 
I 
I 
I 
I ENDLIST1 
I 
I FIXACCT 
I 
I 
I 
I 
I 
I 
I 

is incremented if the page was net previously fixed, andl.... PFTFXCT is incremented (for a tranch entry or if a ne.. Io I FOE was built). 	 I::l 	 L____________________________________________________________ ________ ________~ ~ 

I'd 
I\J 

<0 .... 
::l 
\Q 

en 
.g 
(b 
1'"1 
<l.... 
CJ) .... 
o 
::l 

0'1 
to-' '" 



IV Diagram 5.21 (Steps 6-10) 
0'1 FIX/LOAD Subroutine IV 

Input 	 Processing 

Second Scan 

Locate the first (next) virtual page to be 
fixed or loaded NEXTVMA 

6 

Find next sequential 
virtual address in 

PVT parameter list. 

[MV§R~ 	 .. 0 
If all pages have been handled •15 

7 	 Determine whether this page needs further 
process i n9: 

If, 	 Output
The virtual address of the page is 
below the V=R line. •6-I 	

PFTE 
The page is in real storage and isI not a long-fix request. PFTFXCT=PFTFXCT+I I 

•6 	

~~•6 	 oI 	 The page is in real storage, is a 

long-fix request, but is SQA or
I LSQA ollocated. 

I 	 PCB 
If the page is in real storage, is a 

I long-fix request I and has previously PCBVBN 
been long-fixed 

~ 

FOE Merge... 	 PCBRTP"'Oddress of TCBI 
FOEON PCBTCF=l 

a~I 	 Perform FOE accounting. 
-v" PCBPTY-TCBDSPI i+0

il 	 o 
Register 4 6 5.26 	 PCBLFR=l (long-fix 

request)IAddress of TCB-I4-- 8 Obtain and initialize a PCB for this --~--	 Build PCBallocation request. ... PCBPEX=l (not long-fix 
TCB I Get storage for a PCB. 	 request)

_.....J 	 I 
--, 5.49I+® .....­

Find Page -... 
Locate the PTE and 
XPTE for th is page. 

5.27 

If the Find Page routine fails •14 
9 Attempt to allocate a real storage page. 	 ... Real Storage Allocation 

IEAPALOC 

Initiate real storage 
allocation. 

5.6 

available and: 

This is a FIX request FlXACCT 

If virtual page was immediately 

Perform and record 
fixing operations. 

This is a LOAD request +6. m 	
TCT 

L... __ 
10 Perform SMF accounting r if necessary 	 ~~ TCTPGIN=TCTPGIN+l..,"""""""',... 	 I~""""""""~"~ 

(Continued at Step 11) 

L L 	 L 




______ 

( 	 rr 
Diagram 5.21 (steps 6-10) FIX/LOAt Subroutine (Module lEAPSI) 
r------------------------------------------------------------T-------~--------l
1 	 IROUTINE 1 1 

1 NOTES 	 1NAME 1LABEL 1 

~------------------------------------------------------------+--------+--------i6 	 Internal pOinters are reinitialized and an internal 1FIX/LOAD 1NONINCOR 


pointer to a gotten PCB (PCBPTR) is set to zero tefore 1 1 

the first call to NEXTVMA. I 1 


1 

If the return code from FOEON is _. PFTFXCT is incre­

mented before the next call to NEXTVMA. If the return 1 

code ~ 4. FOE accounting completed the transaction. 1 


7 	 1 


1 

If PCBPTR~O, a PCB is "left over" from a previous iter­ ITESTPCB 

ation. The call to BUILDPCB is skiFped and the Fointed­ 1 

to PCB is used. 1 


1 


8 


9 	 If the reutrn code from the Real Storage Allocation rou-I GOTOALOC 

tine is zero, a page fra~e is irrg~diately availatle and 1 

the virtual page was either reclaimed or no page-in was 1 

needed. 
 1 


1 

If the return code fro~ the Real Storage Allocation rou-I 

tine is 4 or 8, a Fage-in will be required. 1 


1 1

1 If the return code from the Real Storage Allocation rou-I 

1 tine is 12, the request has been related to an ongoing 1 

1 request. 1 

1 1

110 If TCBTCT¢O, the TCTPGIN field of the indicated TCT is 1 ITESTTCT 

1 incremented to indicate that this task generated a page-l I 

1 in. If the return ccde from the Real Storage Allocation 1 1 

1 routine is 12, S~F accounting is not performed. 1 I
l ____________________________________________________________ _______~ __~ 

en 
CD 

~ .... 
a 
::l 

VI 


ttl 
1\1 

\Q.... 
::l 
\Q 

en .a 
CD 
t; 
<:.... 
CIl.... 
g 
I\.) 
0­
W 



'" Diagram 5.21 (Steps 11-12) 
~ FIX/LOAD Subroutine '" 

Input Processing 	 Output 

r ­reB PCBRBN I} 
_.l 

PVT + 
PVTPFT ~ I 

Found PCB 

PCBVBN 

PCBRTP 

PCBFXC }+

PCBLFR 

",+SVC Root PCB~'...." ........~ 

11 	 If the Allocate routine indicated that I/O PCBRWK1=addre" of ECB 

should be initiated (0 page frame was I PCBR'vVK2=oddress of 
assigned but a page-in is needed): parameter 1 ist .. 	 I

I
llA 	 Fix the assigned page (for a FIX FIXACCT PCBRRAO 

request) 
 Perform and record 	 PCBRGOTO=address of 

fixing operations • 	 FIXLOAD2....... 	 I 

5.21-2 	 PCBRCNT=OI PCBRTC8=addre" of 

11 B Get and initialize a root PCB GETROOT input TCB 
jf necessary IObtain storage for 

root PCB and fill ~;..................,.(...." ............~ ~+ Branch Root PCB~ in common fields. PCBRWK1-0 

EJ PCBR'vVK2=address of 
Move the PCB to the indicated parameter list 
queue if necessary Move PCB PCBRRAO 

IEAPCBM PCBRGOTO=address of 
Add the PCB to the FIXLOAD2 
indicated queue. PCBRCNT=O 

5.4B PCBRRB=address ofI' input TCB
• 6 

12 	If the Allocate routine indicated that a 
page was not assigned and: ,.,

--_____...118 
Th is is a LOAD request 

0-6 

This is a FIX request and: 


No other PCB exists for this virtual ~"" ........,............................" ...., ....,.,...., ........~ 

page t create a dummy PFT E. ------~.~11AI I 
A PCB exists for this virtual address 

not on the real storage allocation ______...14 I I~ 


PCB (current) 
queue 

PCBRTP= address ofr 
A PCB for this virtual address ~........,................,...." ...."" ....,....~...., ........"1 	 root PCB 

created as part of this request exists 

on the reol storage allocation queue , FOE Merge 
 I I lFOEON I 

[KBRcNT-PCBRCNT+l J
Perfonn FOE ~ 
accounting. ~ 

I ' 	 5.26 I I PCB (current) 

-	 • 6 ~""''''''''''~I.~'~~PC~~BF~X~C=~======= 
A PCB for this virtual address that is 

not part of this request exists on the 

real storage allocation queue, 
 PCB (found) 

ensure long-fix if necessary, and " 
relate the current PCB to the found 

one. , PCB 


IEAPCBR 
Associate indicated 
PCBs. 

5.50 

(Continued at Step 13) 

l, \. 	 L~ 



r 


CIl 
(1) 

~ .... 
o::s 
VI 

I'd 
III 

\Q.... 
::s 

\Q 

CIl .g 
(1) 
11 
<:.... 
en .... 
o::s 

01 '" 
VI 

r 	 r 

Diagram 5.21 (Steps 11-12) FIX/LOAD SUbroutine (~odule IEAPSI) 
r------------------------------------------------------------T-------~--------, 

I 	 I ROUTINE I I 
I NOTES 	 INAME I LABEL I 
~------------------------------------------------------------t--------t--------i111 This processing is done if the return code froIT, the Reali FIX/LOAD I CALLFIXA 

Storage Allocation routine was q or 12. I 
I 

The PFTE address is calculated ty adding PCBRBN to I 

PVTPFTP and is. passed to FIXACCT. I 


I 

An internal ROOTPTR is tested and, if zero, GETROOT is IGETROOT 

called. If ROOTPTR*O, the root PCB it points to is 
 I 
used. I 

I 
GETROOT obtains storage for a rcot PCB (via Build PCB) 	 I~ and initializes it. The type of root PCB obtained I 

depends on the entry tYFe. I 


I 

The return code from Real Storage Allocation is tested I 
for 12 (PCB r~lated). If it is 12, either Real Storage I 

Allocation set it or it _as set by this routine after 
 I 
the call to the RELATE PCB routine, and the call to the I 
Move PCB routine is bYFassed. 	 I 


I 

The internal PCBPTR is zeroed to indicate that the PCB I 
just used cannot bE re-used before the next call to I 

NEXTVMA. 
 I 

I 
112 	 This processing is done if the return code from the Reali 
I Storage Allccation rcutine was 8. I 
I I 
I If XPTPCBQ=O, no other PCB exists for the virtual I NEXTTSTl 
I address specified in this request. The fix count in thel 
I current PCB (PCBFXC) is set to one and FIXACCT is called I 
I 	 with a pOinter to a dUll'my PFTE whose PFTFXCT field=O, 

and whose PFTVBN is set to the appropriate virtual 
address. 

If XPTPCBQ*O, the Real Storage Allocation qUEue is scan­
ned for a PCB whose PCBVBN field matches PCBVBN in the 
current PCB. If a match is not found, the ezror exit is 
taken. 

If PCBRTP=ROOTPTR in the found PCB, this PCB is part of 
this request and FOE accounting is performed. If the 
return code from FOEON is q, PCBFXC is incremented. 

If there was no root PCB for this request (RCOTPTR=O), 
or t.he root PCB pointers did not match, the current PCB 
is related to the found PCB via the Relate PCB routine • 
If the request is for a long-fix and the found PCB is 
for a fix but not a long-fix (PCBFXC*O and PCBLFR=O), 
PCBLFR is turned on and LPCOUNT is incremented before 
the call to the Relate PCB routine. 

L____________________________________________________________ 

I 
I 
I 
I 

i ________i ________ 



"-> Diagram 5.21 (Steps 13-17) 
a-
a­

FIX/LOAD Subroutine 

Input Processing 

Found PCB ,....- 13 If the found PCB is for a FIX FOEEDQ 
PCBFXC 1+ --' FOEONL~ Perform FOE accounting. . ...- 5.26 

If the found PCB Is not for a FIX, ensure 
that FIX processing will be done; build 
a dummy PFT E • ..,""""""""",....• 

Second Scan Error 

14 Free a "Ieft-over" PCB if necessary. 
II"! 

l.~-
~ 

Set up for bocking out the request. 

"",""""""""',..... 
Second Scan End 

free a Itleft-over" PCB if necessary.15 
ill! 
k~ 

Root PCB 
~I PCBRCNT ~-- - -- Free a completed root PCB if necessary • ... ROOTFREE 

II"! Route the root PCB 
to the free queue.L.~ 

... D 
Finish Non-Error Processing 

Determine type of request:16 ,..""""""""",,, 

L 
LOAD 

FIX request from FREEPVT ... 
If any FIX limits were exceeded FREEX17I ~~2~~~L Ir 

Back out FIX request. 

5.22 

iji!.
j!! 

k"'"""""""",,, 
(Continued at Step 18) 

Output 

11 B... 

~ PCBFXC....""~" .......,'" 
PCB 

.. 11A ... 

--"'" 
Move PCB 

IEAPCBM 

Add the PCB to the 

free queue. 
 5.48 PCB (Root) 

5 ~ PCBNQN-PCBFREE(9 
....,""""',.......,'" ~Register 15 

I Return code=4 

Move PCB 

IEAPCBM 

Add the PCB to the 

free queue. 5.48 

Register 15 

@~~ Appropriate ,etum code I 
PVT 

PVTFXC=PVTF XC + ..,""""",.... ~ I PCOUNT .. PVTLFXC=PVTLFXC+
19 LPCOUNT ... 
20 

1 

-"'-21 
Register 15 

....,""""',......."" ....~ Return code=36 

~..L l 



(
r r 

Diagram 5.21 (SteFs 13-17) FIX/LOAD Subroutine (Module IEAPSI) 
r------------------------------------------------------------T--------~-------l 
I IROUTINE I I 
I NOTES INAME ILABEL I 
~------------------------------------------------------------+--------+--------~113 If the return code from FOEON is 4, PCBFXC is incremen- IFIX/LOAD I I 
I ted by 1. I I I 
I I I I 
I If the fix count (PCBFXC) in the found PCB (the cne to I I I 
I which the current request was related) is zero (PCB not I I I 
I for fix), it is set to 1 and a dummy PFTE (see Note 12) I I I 
I is set up before the call to FlXACCT. I I I 
I I I I
114 If the internal PCEP~R-O, the PCB it points to is routed IERROREX1 
I to the free queue (PCBNQN=PCEFREE). I 
I I 
I An internal ·synthetic end" switch and pointers to the I 
I current and last VSLS processed are set up so that only I 
I the portion of the request that was processed thus far I 
I wi 11 be backed out by FREEX. I 
I I
115 A possible leftover PCB is handled as in Note 14. ILISTEND 
I I 
I If the internal ROOTPTR=O, none of the requested pages I 
I require further paging action. If ROOTPTR-O, the indi- I 
I cated root PCB does not represent any pending requests I 
I (PCBRCNT=O), and the caller of FIX/LOAD was not FREE, I 
I the root PCB is disposed of. I 
I I
116 The return code is set to 8 if a root PCB remains, or I 
I to 0 if the operation is complete. I 
I I 
I PCOUNT (newly fixed pages) and LPCOUNT (newly long-fixed I I FINISH 
I pages) are added to PV~FXC and PVTLFXC respectively to I I 
I keep count of fixed pages in the system before the I I 
I request type is determined. I I 
I I I
117 For a long-fix request, if LPCOUN~>PVTLFXL, the long-fix I I 
I limi t has been exceeded. I I 
I I I 
I If PCOUNT>PVTSFXL (SVC request) or PVTBFXL (Branch I I 
I request), the fix limit has been exceeded. I I 
I I III) ROOTFREE returns the root PCB to the free queue (via IROOTFREE I 
I MOVEPCB) as follows: I I 
I I I 
I • For an SVC root - Zero the root and set PCBNQN= I I 


CIl I PCBFREE. I I 

(1) I • For a Branch root - Zero the root, chain the three I I 
o I blocks together by PCBFQP and PCBBQR, and set PCBNQNI I 

rt I of the first block equal to PCBFREE. I I
.... L____________________________________________________________i ________ ________ J 

a 
~ 

~ 

VI 

;;9 
~ .... 
~ 
CIl 
~ 

~ 
~ .... 
CJ) .... 
o 
~ 

"-l 
(1\ 

-..I 



----

tv Diagram 5.21 (Step 18) 
co '" FIX/LOAD Subroutine 

Input Processing 

Determine whether any thresholds werePYT ... ---- 18 
exceeded: 


PVTFXMCM 

If not f and the real address option PVTTBASE 
was chosQn • PASSBACK..

PYTSQACT Find the real address 

PYTLFXTF of the assigned pages. 

PVTSFXTF ~ ~ Output 
PVTBFXTF 

If not, and the real address option 

PVTLFXC was not chosen, or if threshold 
checking was bypassed 19 

PYTFXC Register 15 L.......................................................... ........ ........... I a
~ ~,~ Appropriate return code 

Root PCBIf so, and the SUSPEND option was ~ 
SUSPENDchosen PCBRWK3-PCOUNT 

~ Delay the FIX request. PCBRINT=1II~1....90 m >< PCBRQED=1 

PCBRWK4=forward• FREEX pointer.'" 
Bock out the request • .... , .. 5.22 

•19 

If so, and the SUSPEND option was 
not chosen, reject the request FREEX.. 

~ Back out the request. 
~ 

5.22l ......~ 

• 2n.'" 
(Continued at Step 19) 

l L· L 

I 



r 


en 
ro 
n 
rt .... 
o 
::l 

IJ1 

P1' 
I.Q .... 
S 
en 
t:: 
'rl ro 
~ .... 
CII .... 
o 
::I 

IV 
C1\ 
\0 

( r 

Diagram 5.21 (Step 18) FIX/LOAD Subroutine (Module IEAPSI) 
r------------------------------------------------------------T-------~-------~ 

I IROUTINE 1 I 
I NOTES I NAME 1LABEL 1 
~------------------------------------------------------------+--------+--------~
118 For a long-fix request: IFIX/LOADICHECKLIM 
1 If PVTFXMCM=I, threshold checking should be bYfassed 1 
I because this is a DSS activate request. 1 
I If PVTLFXC>PVTTBASE-(PVTSQACT+PVTLFXTF), the threshold 
1 has been exceeded. 

For an SVC request, if PVTFXC>PVTTBASE-(PVTSQACT+ 

PVTSFXTF), the threshold has been exceeded. 


For a Branch request, PVTBFXTF is used instead of 

PVTSFXTF in the above equation. 


PASS BACK is called only if the request has thus far 

completed normally (return code =0). 


PASSBACK satisfies the real address oftion by using the IPASSBACK~ virtual address of the indicated page (bytes 1-3 of a I 

normat VSL) as the argument of an LRA instruction and 1 

placing the resulting real address in bytes 5-7 of the 1 
VSL. 1 

1mSUSPEND queues a FIX request that cannot be honored 1SUSPEND 
because of a threshold violation as follows: 1 

I 1 
1 • Obtain a root PCB (via GETROOT) if one does not 1 
I already exist and rrark it (or the freviously exis- 1 

ting root) for interception and as queued (PCBRINT=l1 
and PCBRQED=1 respectively). 

1 
1 

1 • For an SVC entry, add it to the SVC FIX delay queue 
(PVTSFXDQ) in the proper place.I 

I 
I • For a branch entry, add the Root to the Branch 
I Entry FIX delay queue (PVTBFXDQ) in the fro fer 
1 flace. 
I 
1 • Root PCBs are queued by_ number of pages needed, 

1 from lowest to highest. 1 1 1

L____________________________________________________________ ________ ________ J~ ~ 



---

-...I '" • Diagram 5.21 (Steps 19-21) 
o FIX/LOAD Subroutine 

Input Processing Output 

CVTFIX/LOAD Exit """"""""",.,.I...,~... 
I CVTPSlC=OFor a branch or pseudo-branch entryInternol only: 19 

Switches, pointers and 

return code indicator For an SVC entry, inform the SVC issuer 
 PVT.. 

of action token if necessary CAllPOST I PVTPCPSI=O I 6 
Initiate posting of the 

... 
Register 15 requester. 

Return code 
~ 

f3~ 

Type-l Exit 
Routine 
(IEAOXEOO) 

FIXX Exit 

If the FIX operation is unfinished for (] 

branch entry, defer a second exit. 


20 
Caller , 

~I SCHEDRT P~~BNQN=PCBDPSTQ 
tr.: PC SRTP=add ress of• ml" .... ~" 

~ 

~""'"1root PCB 
t--------i 

Celler PCBIOI~] .. 
For on SVC entry, inform tJ,e SVC issuer .. 
of action taken. CAllPOST 

Initiate posting of the 
requester. 

f3 
Finish Latent Error 

..
21 Clean up 0 root PCB if necessary ROOTFREE Root PCB 

Route the root PCBIf the root PCB cannot be freed ,,~ ~~ PCBRINT=]
to the free queue. ~'" 

0 

If entry et FIXX (from FREE) Caller

• 
Otherwise 19~ 

~. \. \., 




VI 

( rr 
Diagram 5.21 (Steps 19-21) FIX/LOAD Subroutine (Module IEAPSI) 
r------------------------------------------------------------T--------y--------,
1 1ROUTINE 1 1 

1 NOTES 1NAME 1LABEL 1 

~------------------------------------------------------------+--------+--------1
119 CALLPOST is called only when return codes 0, 4, 36, or IFIX/LOADIFLEXIT 1 

1 44 (when the SUSPEND option is not specified) are 1 1 1 

1 indica ted. 1 1 1 

1 1 1 1

120 If the indicated return code is 8, exit is made immed- 1 IFIXXEXITI 

1 iately to the caller (FREE). 1 1 1 

1 1 1 1

1 For a Branch entry, if the indicated return code is 4, 1 1 1 

1 it is changed to 28. 'I'he return code is placed in 1 1 1 

1 PCBRWK4 before SCHEDRT is called. 1 1 1 

1 1 1 1

1 For an SVC entry, if the indicated return code is 28, itt 1 1 

1 is changed to 4 before CALLPOST is called. 1 1 1 

1 1 1 1

121 If there is a Root PCB and it has no more associated 1 1TESTROOT 

1 requests, (PCBRCNT=O), it is freed. Otherwise, it is 1 1 

1 marked for interception (PCBRINT=l). 1 1 

1 1 1

16 For explanation of the return codes and completion codes 1 1 

1 for POST, see table following notes for this diagram. 1 1 

1 1 1 

1mCALLPOST sets up parameters for and passes control to 1CALLPOST 1 

1 POST at entry point lEAOPT01. 1 1 

1 1 1

I~ SCHEDRT is called to schedule a root PCB on the delayed ISCHEDRT 1 

1 Posting queue when a second exit is needed but must be 1 1 

1 deferred. It obtains a PCB (via Build PCB), initializes 1 1 

1 it, and adds it to the delayed posting queue (via move 1 1 

1 PCB). 1 1
L____________________________________________________________ ________ ________J~ ~ 

en 
CD 
o 
rt.... 
o 
t:I 

~ 
o.Q.... 
.E 
en 
~ 

"CJ 
CD 

~ .... 
CIl .... 
o 
t:I 

I\J 
..,j 
~ 



I\J FIX/LOAD RETURN and COMPLETION CODES 

-.J r------------------------------------------------------------------------------, r.,-----------------------------------------------------------------------------,

I\J I FIX SVC Entry I I FIX Branch Entry I 

~------------------------------------------------------------------------------~ ~------------------------------------------------------------------------------1 

Return Return 

Code Meaning Action to te Taken Code Meaning Action to be Taken


--0- --0­Operation complete None; wait on ECB if desired. Operation complete None 
4 Error detected, no Error handling; wait on ECB if desired. 4 Request not performed None 

pages fixed invalid address 
8 Operation proceeding Issue WAIT macro instruction on same EeB as 8 Operation initiated Exit, but leave routinE reenteratle. 

used in the PGFIX macro. but not yet com­
36 Request too largE Error handling; wait on ECE if desired. plete 

28 Request not performed Error handling_ This return code is given 
With SUSPEND option specified: invalid address on second entry to the requester (·second 

exitW) from the FIXLOAD 2. 
40 FIX request queued If no interlock exposure exists and if long 32 Operation complete None. This return code is given On second 

due to shortage wait acceptatle, issue WAIT macro instruc­ entry to the requester (Wsecond exitW) 
of long-term tion. Otherwise, cancel FIX with PGFREE from FIXLOAD 2. I 
fixahle real rracro instruction specifying ECB option. 36 Request too large Error handling I 
storage (long wait) 40 Request queued due If no interlock exposure exists and if long I 

44 FIX request queued If no interlock ex~osur€ exists, issue WAIT to shortage of wait acceptatle, exit but leave routine I 
due to shortage macro instruction. Otherwise, cancel the long-term fix- reenterable. Otherwise, cancel FIX. I 
of fixable real FIX as atove. able real storage I 
storage (short­ (long wait) I 
term wait) 44 Request queued due If no interlock exposure exists, exit but I 

to shortage cf leave routine reenterable. Otherwise, I 
Without SUSPEND option specified: fixable real cancel FIX. I 

I storage (short- I 
44 FIX request re­ Reissue request at a later time. Wait On I term wait) I 

jected due to ECB if desired. If no interlock exposure r------------------------------------------------------------------------------~ 
shortage of exists, reissue PGFIX macro instruction I LOAD Branch Entry I 
fixatle real with SUSPEND specified. ~------------------------------------- ---------------------------------------1 
storage I 

Return I 
Code Meaning Action to be Taken I--0­Compo OFeration corr~lete None I 

code Meaning Acticn to be Taken 4 Request not per- Error handling I-0­ Operation complete Nout::' formed, invalid I 
4 :Error detected, Error handling address I 

no pages fixed 8 Operation initiatea Exit, but leave routine reenterable I 
36 FIX request too Error handling but not yet com­ 1 

large, no pages plete I 
fixed 28 Request not per­ Error handling. This return code is given I 

44 FIX requested re­ Reissue request at a later time. If no formed, invalid on second entry to the requester (·second I 
jected due to interlock exposure exists, reissue PGFIX address exitW) from FIXIOAD 2. I 
shortage of rracro with SUSPEND specified. 32 Operation complete None. This return code is given on second I 
fixable storage entry to the requester (·second exit·) II 

48 Operation purged Reinitialize the ECB ana reissue the PGFIX from FIXLOAD 2.I IL______________________________________________________________________________J 
macro instruction. 'Ihis code occurs when I 
an asynchronous system event has caused I 
the issuing task to be quiesced. I 

~------------------------------------------------------------------------------1
I LOAD SVC Entry I 
~------------------------------------------------------------------------------~ 
I I
I Return I 

I Code Meaning Action to te Taken I 

I 0 Operation complete None I 

I 4 Error detected Error handling I 

I 8 Operation proceeding Issue WAIT macro instruction for the ECB I 

I that was used for the PGLOAD macro. I 

I I 

I I

I Compo I 

I Code Meaning Action to be Taken I 

I 0 Operation complete None I 

I 4 Error Detected Error handling I

L_______________________________________________________--_____________________J 

L· l L 






I\.) 	 • Diagram 5.22 (Steps 1-6) -.J 
FREE Subroutine"" From the Poge Service 

Interface routine to
Input handle FREE request. Output 

FREE 
Initial Phase 

1 Determine whether the PURG E option wasr---- ­
selected. 

ROOTFREEI 
If so, and a root PCB for this request isI found, remove it from its delayed posting , Route the root PCBRoot PCB I queue and, if necessary, free it. to the free queue. 


PCBRWKI 
 I I 12 	 5.21 Root PCBIPCBRWK2 I 
From FIX!LOAD If so, and a pending second exit is found, 


! 
 .--	 .................................., ...................." ...." ...."'...."'............, ............................, ....~ PCBRINT=l ~ 

to back out aPCBRCNT 	 mark it for interception. 
FIX request 	 __..' .3

If not, or there is no request to purgePCB 

FREEX
PCBRTP 

PCBFQP 	 2 Set appropriate switches and pointers. ~ NEXTVMA 
Main Phase 

Find next sequential3 Locate the first (next) virtual address of a virtual address in 
page to be freed. parameter list. 

5.21 

If all pages hove been handled 	 .10 
--1--- 4 	 Determine whether the page should be 


freed:
--1-, If it is below the V=R line, or allocated r 	 to SQA or LSQA, or in real storage butPFTE 	 I I 
__ J I not fixed, or not in reol storage with 

PFTLSQA the "only in reol storage" switch set 
IPFTFXCT If the page is not in reol storage 

PFTLNGFX ----I
I 

Free a Page in Real Storage FOEDQ 

PFTDFCLR L_ 5 Decrement the FO E count if necessary. ' Perfonn FOE 

accounting. 


PFTQNDX 5.26
+- --l If FOEDQ completed the FREE 

PFTVRINT - .3I For a multiple FREE, remove all fixes. 
PFTBADPG I For a normal FREE, remove ~ fix. ...................................................................." ""........, ...................., ............, ..............................." PFTFXCT 

I If the page is not completely free (there "' " ' ....~n~rt ........' .... ........ .................... ... PFTLNGFX=O

I are more fixes on it) 
I 	 ------...~3 ill! ill! PFTQNDX=PFTHQN 

Remove long-fix if necessary. ..............,....,............,............................~ 	 I PFTHOLDQ=1
L__ _ 
6 Process deferred RELEASE requests. 	 Release iii!! 

IEAPCLR3 ill! 
Release indicated reo! ~ 

Add the PFTE to the hold page queue if 

necessory. ill!! ~ 
"I PF:F~HOLDQ=O 

~........"'~ • PFTE Enqueue I PFTDNAVQ=O 
If the page cannot be used, dequeue I IEAPRLS2 ( { 
and (if possible) invalidate it. 5.17 PTE 

PGTRSA=Ol...""~ PGTPVM=O 
If the page is marked for interception 
allocate the page to a V=R region. 	 V-R Flush aI 

IEAVRFL• 	 I 5.131 
Indicate the page has been freed. ~ a3 PVT 

(Continued at Step 7) ii!a..,...................................................., ....," ........, ...., ................, ...." ...., ................, ....~ PVTFXC=PVTFXC-l 


l 	 ~ L 



2 

(
r 	 r 

r------------------------------------------------------------T--------T--------,
1 IROUTINE 1 1 

1 NOTES INA~E 1LABEL 1 

~------------------------------------------------------------t--------t--------i4 If the virtual address of the page to be freed is below 1 


the V=R line (PVTVEQR), the scan continues. 1 

1 


If not, the virtual address is used as the argument of 1 

an LRA instruction. If the condition code indicates 1 

that the page is in real storage, its PFTE is calcu­ 1 

lated. If PFTLSQA=l, the page is SQA or LSAQ alloca­ 1 

ted. If PFTFXCT=O, the page is not fixed. In 
 1 

either case, the scan continues. 	 1 


1 

!) If the return code from FOEDQ=O, the scan continues. 1 


(Note: Since PFTFXCT is not decremented, the page is 1 

still fixed.) 1 


1 

If PVTFRCF=l, this is a multiple FREE request and 1 


PFTFXCT is zeroed. If PVTFRCF=O, PFTFXCT is decreJren-1 

ted by one. If PFTFXCT does not now equal 0, the scan 1 

continues. 1 


1 

If the page is now truly FREE (PFTFXCT=O), and the long-I 

If this is a Branch entry, list-ty~e, and the suspend 

If no match is found for a Branch entry, the Delayed 

post Queue (PCBDPSTQ) is searched cOffiparing the 


FREEX is the interface between FIX/LOAD and FREE when a FREEX 
request must be backed out due to an error detected in 
FIX/LOAD. It is, essentially, FREE controlled by the 
following set of internal switches set by FIX, 

In-real-storage-only -- Only the initial scan of 

fix flag is on (PFTLNGFX=l), it is turned off and 
PVTLFXC is decremented. 

If PFTDFCLR=l, a deferred RELEASE must be precessed.6 

If the PFTE is not on a queue (PFTQNDX=O) and the page 

is in real storage, the PFTE is routed to the hold 
page queue. 

After the PFTE is enqueued (or if it was already on 
a queue, or if the page was not in real storage), 
PFTBADPG is tested. If the page is marked unusatle 
by ~S (PFTBADPG=l) (see Diagram 5.18): 

• 	 The PFTE is dequeued (via lEAPL3). 
• 	 Find Page is called to locate the PTE and, if 

Find Page is successful, the page is invalidated 
(PGTPVM is set to 1), and a PTLB is issued to 
clear the DLATS (see Diagram 5.27). 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 


1LOADREAL 

1 

1 

1 

1 

1 

1 

1 

1 

1 

ITSQA 

TCLEAR 

FIX/LOAD has 
storage. 

Synthetic-end 

en 
m 
f+ .... 
o 
::l 

c.n 

I'd 

I)J 

\Q.... 
::l 
\Q 

en 
.g 
~ 
<.... 
.... 
o 
::l 

o,J '" c.n 

completed. Only FREE pages in real 

-- Error found in the middle of the 

liEAPRLS31 

IlEAPFP2 1 

1 1 

1 1 

1 1 


If PFTBADPG=O, or after dequeuing the PFTE and invalida-IIEAPVRFLI 

ting the page, if the page is marked for V=R inter- 1 1 

ception (PFTVRINT=ll, V=R Flush is called to complete 1 1 

(or cancel if PFTBADPG=l) a delayed V=R region allo- 1 1 

cation request (see DiagraJr 5.13). 1 1
L____________________________________________________________4 _______ ________J~ 

CII 



IV 	 Diagram 5.22 (Steps 7-9) 
-.J FREE Subroutine'" Input Processing 	 Output 

Free a Page Not in Real Storage 

Find table entries for this page.r-- ­ 7 	 Find Page 

I locate the PTE and 
I XPTE for this virtual 
I page. 

XPTE 
..J 

I 	 5.27 

r+I XPTPCBQ It::: 	 If the Find Page routine is unsuccessful----, oc 

I If a PCB does not exist for this page. 3 
I 8 If a suspended FIX must be purged,---I 	

• 
find the PCB for this virtual address. 
If it canlt be found II 

I 
If the PCB has no root PCB, find its---1 related PCB and repeat the test. If

I no related PCB--il 	 • 9 
For a branch or SVC entry: 

II Root PCB 	 } I I 
If the root PCB is not for this request,I PCBRWKI search for a related PCB as above. 

I PCBRWK2 +- Root PCB 
I I 

- --l I If a root PCB for this request is found,

I PCBRINT prevent its completion
I I 	 ,~""""""""""'1111 ~""""'~ PCBRINT=1 I~""""'" 

PCBl 	 For a pseudo-branch entry I if the rootPCBRTCB 

PCB is: 


I 	 I I • 9 
I 	 I I 

Marked for interception Q!I PCB 	 I I 
Not for th is RB 9!


I i I Has no ECB,
PCBTCP 
CALLPOST __--I I search for a related PCB as above.I PCBRTP r Initiate POST ofI 	 Otherwise, inform the requester. 

I 	
}+ 

I 
PCBRLP I 	 reguester. 

Search for related PCB as above.PCBVBN D
I 

PCBFXC 	 ~- 9 If the PCB for this request is not on theII 	 real storage allocation queue (that is,---1PCBDFCLR processing has begun to bring the pageI 
into real storage), calculate the PFTEPCBLFR 	 II 

} 
address.I

I I 	 • 5 
If the PCB cannot be found on the real L _______ _ _-.J 	 storage allocation queue or is not for 
a FIX request • 3 
If the PCB is found on the real storage 

FOE Merge
allocation queue: 

FOEDOr
Decrement the FO E count if necessary Perform POE 

5.26 
If the FOEOQ subroutine completed the 

,«""'''0 ~l"'''''''''''''''''''''''''''''''''''I 
FREE 	 3L_ 
For a multiple FREE, remove all fixes. ..""""'~ ~~""",-d 

For 0 normol FREE, 	 ii!"""""'''' ~"""""remove Qlli! fix. 	 ... 
If the PCB is not completely free I I p Releose 

..."""""~ IEAPCLR2 
Process deferred RELEASE requests. 	 Release indicated real 

and external storage.~,~ 	 5.31 
Remove long-fix if necessary. • 3 

(Continued at Step 10) 

~. { 	 L 

I 
I 
I 
I 
I 
I 

~" 



(
r 	 r 

Diagram 5.22 (Steps 7-9) FREE Subroutine (Module IEAPSI) 
r------------------------------------------------------------T-------~--------, 

I I ROUTINE I I 
I NOTES INAME ILABEL I 
~------------------------------------------------------------+--------+--------~7 	 IEAPFP2 is called to obtain the PTE and XPTE addresses I FREE 

(PCBPTE and PCBXPT respectively). 

If IEAPFP2 is successful (return code = 0), the XPTPCBC 
field of the indicated XPTE is examined. If it equals 
0, there is nc PCB for this page. 

8 	 A FIX must be purged if: 

It is a branch entry and the SUSPEND bit is on in the 
VSL. 

It is an SVC entry that was originally for a FREE 
(register 0 / 0). 

It is a pseudo branch entry originally for a FREE 
(that is, entry to FREE was net at FREEX). 

The scan table entry is computed as follows: PURGE 
PVTSCAN + 12(XPTPCBQ - 1) 

That PCB queue is searched for a PCB whose PCBVBN field 
matches the virtual address of the page to be freed. 
If 	none is found, the scan of the VSL continues. 
IF 	PCBTCF of the found PCB = 1, the PCB has no root 
PCB. If PCBRLP = 0, there is no related PCB. 

For any branch entry, PCERWK2 of the root PCE pointed 
to 	by PCBRTP is compared to register 1. If they are 
not equal, the root PCB is net for this request. For 
an svc entry, the same is true except that register 0 
and PCBRWK1 are used in the corrfarison. If a match is 
found, tne I.-oot PCB is marked for interception (for 
branch of SVC entries only). 

For a pseudo branch entry, if PCBRINT = 1, or if the 
input TCB address does not match PCBRTCB, or if 
PCBRWK1 = 0, the search for a related PCB is performed. 
otherwise, register 10 is set to a X'3D' post code, 
register 11 to the ECB address from PCBRWK1, register 
12 to the TCB address from PCBRTCB, and control is 
passed to CALLPOST. 

9 If a PCBVBN that matches the virtual address of the ITESTQN 

Cfl 
 page to be freed cannot be found, or PCBFXC = 0 in the I 
(1) 	 found PCB, the VSL scan continues. I 
(') I 
rt­	 otherwise, processing continues as in Steps 5 and 6 It-'. except that fields in the PCE corresponding to those Io in the PFTE are used, and PFTE queuing is skipped. ItI 

I 
VI 	 CALLPOST sets up paramEters for and passes control to ICALI.POSTIo 

POST at entry pOint IEAOPT01. POST returns control to I I 
the caller of CALLPOST. I IL____________________________________________________________ ________ ________J 

Q1I 	
~ ~ 

\.Q 
t-'. 

~ 
Cfl 
c:: 
'0 
CD 

~ 
t-'. 
en 
t-'. 
o 
tI 

IV 
-...I 
-...I 



- - - - ---

IV • Diagram 5.22 (Steps 10-12) 
..,j Processing 	 FREE Subroutine CD 

Scan of VSL complete.10 --. 
If entry at FREEX 	 Caller 

.--. 
If RELEASE option chosen Release 

IEAPCLR3 

Release indicated realInput and external storage. 

5.32 

PVT 

Restart Phase 


PVTTBASE 


PVTSQACT 11 	 Attempt to reinitiate fixes suspended 

because of threshold restrictions. 


PVTBFXTF 

PVTSFXTF Outputr-	 rQ"~1• CVT 

[CVTPSIC=O J 
FREE Exit Routine 

PVT 

12 Determine type of entry: ......................................................,' .., ...., ....",........................, ~""''''''''t~ I PVTPCPSI=O 

Register 15 

SVC [Ret~~-d~Type-l Exit ROL 
(I EAOXEOO)

P' 

CallerBranch 

-~ 

~ l 	 ~. 




_______ 

(' r 	 r 
Diagram 5.22 (Steps 10-12) FREE Subroutine 
r-------------------------------------------------------~----~-----~--------,1 	 IROUTINE 1 1 
1 NOTES 	 1NAME 1LAEEL 1 
~-----------------------------------------------------------+--------+--------1110 	 For entry at FREEX, internal switches are reset before 
1 return. 
1
11 	 DLQSRCH is called with the branch entry FIX delay quEUe 

address and the branch entry cutoff threshold (PVTTBASE 
- PVTSQACT - PVTBFXTF) as parameters. If the return 
code from DLQSRCB is zero, the SVC entry FIX delay 
queue must also be searched. Its address and the SVC 
entry cutoff threshold (PVTTBASE - PVTSQACT - PVTSFXTF) 
are passed to DLQSRCH. 

Upon return, or if the first return code froll", DLQSRCH 
was 	 4, processing continues. 

12
1m DLQSRCH initiates delayed FIX processing as follows: 

A 	 If the fixed page count (PVTFXC) is not less than 
the input cutoff threshold, no reinitiation is 
possible. Control is returned with a return code 
of q. 

B 	 If the indicated delay queue is empty, the next 
queue (if one) must be searched. Control is 
returned with return code = O. 

C 	 If too many pages are needed to fulfill the to~ 
(smallest) request on the queue (PCBRWR3 > input 
threshold - PVTFXC), no reinitiation is ~ossible. 
Return code = q. 

D 	 If the root PCB re~resents an eligible request, 
it is dequeued. If it is lI"arked for terll"ination 
(PCBRAB = 1), no attempt is made to restart the 
request. Instead, if its count of associated 
requests is zero (PCBRCNT = 0), it is freed via 
ROOTFREE. The search then continues at abo. 

E 	 If the root PCB can be used, its address is ~assed 
to FIXX to perform FIX processing. Upon return, 
the search continues at "a".L____________________________________________________________en 

<l> 
() 
rt.... 
o::s 
U1 

i& 
\!l.... 
.E 
en 
c:: 

"0 
<l> 

~ .... 
rn.... 
o::s 

..J 
ID 

1FREE 
1 
1
1 
1 
1 
1 
1 
1 
1 

DI.QSRCH 

1 
~ 

IENCLIST 
1 
1
1RESTART 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
ICOf(EXO 
1
1 
1 
ISRCHLOOP 
1 
1 
1 
1 
1TSTDLQ 
1 
1 
1 
TSTPCBC 

1 1_L________J 

IV 



00 
N Diagram 5.23 
o Fast FIX Routine 

fix a F'orn 1/0 ~~pervisor to 
of pa;::clfled groupI rrOCeSSing 

Input 
___IIEAPGSFF Output 

If the fir.t (next) page .IS not in real 
PFTLSQA I storage .... 4 PFTE 

PFTVRALC 
 r-- ­ 2 Fix the page if necessary and get the II""""""'''''''''''I''~ PFTFXCT=PFTAXCT+1 I

next page.
PVT I , • 1 

IPVTFPFN 

PVT 


I 

lJ Ir--+---- 3 When 011 poges hove been fixed, check ~ ,PVTBFXL old violations. If none _. Caller PVTF;I I II!.: counterPVTTBASE I I h.."""'~ ~"""~I L-____---' 
PVTSQACT _..J I 

Register 15 
I 

PVTBFXTF Return code=O I 
PVTFXC I 

I PFTE 

I PFTFXCT=PFTFXCT -I 
IL __ 

4 Free pages fixed for this request. """"",""""'" Register 15 .. 
Calle, Retu rn code-=4If none, or when all freed 

~ L L 




r r 	 r' 

Diagram 5.23 Fast FIX Routine (Module lEAPS I) 
r------------------------------------------------------------T-------~--------, 

I I ROUTINE I I 
I NOTES INAME ILABEL I 
r------------------------------------------------------------+--------+--------~1 	 Internal counters of the numcer of pages fixed ("fix IIEAPGSFFIFFBIGLP I 

counter") and the number of newly fixed pages ("new fix I I I 
counter") are initialized to zero. I I I 

I I 
The test for an in-real-storage page is done with an I I 
LRA instruction. I I 

I I
2 	 The real address (obtained from the LRA instruction) FFINLOOP 

is shifted to obtain the PFTE index which is then 
compared to PVTFPFN. If the PFTE index is less than 
PFTFPFN, the page is in the nucleus. If it is not, it 
is determined whether the page is allocated to the 
SQA, LSQA, or V=R. If any of the tests is positive, 
the page does not have to be fixed. 

The page is fixed (PFTFXCT = PFTFXCT + 1) and the 
Rinternal fix counter- is incremented. If PFTFXCT now 

equals 1, the wnew fix counter- is also incremented. 


3 	 A limit or threshold has been violated if: 

"New fix counter" is greater than the branch entry 

fix limit (PVTEXFL). 


I 
The new system fix count (PVTFXC + "new fix counter") I 

is greater than the branch threshold (PVTTEASE ­ I 
PVTSQACT - PVTBFXTF). 	 I 

I 
4 	 The same tests as in Step 2 are made to determine I IFFBACKUPI 

whether the page has been fixed. If so, it is freed I I I 
(PFTFXCT = PFTFXCT - 1) and the "fix counter" is II I 
decremented. The continues until the -fix counter- I I I 

L____=~~~~~_~==~~____________________________________________L-I _______~I________JI 

Cfl 

CD 


~ 
~. 

o
::s 
U1 

'tI 
III 

\Q 
~. 

::s 
\Q 

Cfl 
.g 
(1) 
11 
c:: 
~. 

C/l 
~. 

g 
N 
QI) .... 



"" 00 

"" 

r 

Input 
Register 1CAddress of root PCB 

--"" Root PCB 
PCBRINT 

PCBRQED 

PCBRFAIL 

PCBRWK5 

PCBRTCB 

PCBRWKI 

PCBRWK2., PCBRWK4 

PCBRRAO 

I 

~ 

f+ 

~. 

PVT 

PVTIOERR -
SCNSF in PVTSRRO ]4­ -

CVT 

I CVTSYLK ~-

L.. ---------- ­

Diagram 5.24 
FIX/LOAD 
Asynchronous Completion Routine 

Entered when all requests 

in a root PCB have 

completed osynchronously Processing 
 Output 

.-~--~~-------------------------,
••I~I FIXLOAD2 


r---- 1 If the root PCB is intercepted and: 


I It is not queued 
 ROOTFREE 

I 
 Route the root PCB1A--~ to the free queue. 

5.21 

----, It is queued .1•••••••••••••~CallerI 
I 2 If there was an I/O error 	 IEAPSER1-----­

--l I 	 IEAPSER2 
I I Inform the operator 

I of the error. 


I 5.54
II For a pseudo-branch entry 3 	 Root PCB 

I 	 + +I I B .........................................: ~..........................................................~ ~....~ PCBRFAIL=D 

I I For any other entry "'~1 A '-------' 

I I 	

__ 
1-+ ___ _ 

3A Determine the type of root PCB: 
I If an SVC root and: 

I 


the operation completed successfully 
I and the real address option was __ .....J 

selected PASSBACK 

Find the real addresses. ----, 
of the ass igned pages.I 

5.21I 

I 
 the operation foiled or the real 


I address option was not chosen CALL POST 


I 	 CALLPOS2 
Initiate posting for the ___ 1.I ___ _ 1A ....I--I requested ECB. 

3 B.If a branch or pseudo-branch root and 	 5.21 
PVTthe supervisor lock is set, or reserve 

replenish processing is needed, ~............................................................................, ............................................................... ~+I SCNSF=1 in PVTDPSTO 

delay the second exit. _ I ~ _S~HEDRT I Root PCB 
:>chedule second exit I PCBRWK4 - ­
on delayed 

Registers• I posting queue. 5.21\ 
1 0- 14 restored fro~ -l 

root PCB! 	 I Caller4 Determine whether the operation has 
15-Return code=28,32completed successfully and set up for ~...........................................................................;................................................................. 

second exit ~ P+I IPASSBACK 
If so, and the real address CVTSEIC=1 

Find the real addressesoption was chosen CVTSLI D=address of TCBof the assigned pages. 

5.21 	 CVTSERA=address of 
FIXLOAD3From Second Exit 	 If not I or if so and the real address 


option was not chosen Requester's Second Exit 


(Return) CVT 

CVTSEIC=Or-...........................................................................,................................................................ 	 -1
••I~I FIXLOAD3 ~"""I CVTSLlD=D 
5 Reestablish addressability. _ .....~1A 

L 	 L
'­



r r 	 r 

eDiagram 5.24 FIX/LOAD Asynchronous Completion Routine (Module lEAPSI)

r------------------------------------------------------------T--------y--------,
I IROUTINE I I 
I NOTES INAME ILABEL I 
~------------------------------------------------------------t--------t--------~1 	 IFIXIOAD2 

2 	 The parameters passed to IEAPSER are: 

Register 0 Error code (frore PVTIOERR) 
Register 1 Requester's TCB address (from PCBRTCB) 

If the high-order byte of PCBRWK5 X'SO', the root FCB 
is 	for a pseudo branch entry. 

3 	 If there is a nonzero value in PCBRWK1 (that is, if 

PCBRWK1 points to an ECB), the root PCB is for an SVC 

entry. 


If the supervisor lock is on (CVTSYLK = 0), completicn FIXLOAD2 
processing must be deferred until a pending disabled 
page fault is satisfied. 

If the reserve replenish queue is not suppressed, the 

pages reserved for SQA allocation must be replenished 

before completion processing can continue. 


4 	 The "page supervisor in control" bits (PVTPG~CK) are 

saved and all are set to zero before the seccnd exit. 

They are restored upon return. Control is passed to 

the second exit address via EALR 14,14. Return is to 

FIXLOAD3 whose address is in CVTSERA. 


5 	 IFIXIOAD31 
~ ~L- _____________________________________________________ ______ ________ ________J 

en 
(1) 

~ .... 
o 
::1 

(J1 

"d 
III 

IQ.... 
::1 
IQ 

.g en 

(1) 
1"1 
<.... 
en .... 
o 
::1 

I\,) 
CD 
(.oJ 



IV 
(Xl 

~ 

Input 

PCBRTP l 
PCBRGOTO r 
PCBFQP 

Diagram 5.25 
Delay Post Queue Handler 

From the dispatcher Processing 
IEAPSI3 

Schedu I e the peg i n9 task for any second Release Queue 

exits represented by PCBs on the delayed Suppression 
posting queue. 

IEAPCRQS 

Allow processing of the 
delayed posting queue. 

5.51 
From the Queue 
Scanner to 

initiate deferred 

second exits 


OutputCaller
IEAPSI2 

r- ­
I 
I 
I 
I 
I ,-­
I I 

__.JI I 
I 
I 
I 
I ____J 

2 	 If the supervisor lock is on f suppress the 
PVT 

delayed posHng queue. ~"""""""'" ~""""""""" ...~ SCNSF=l ;n PVTDPSTQ I 
Caller 

PCB 

3 	 Route the nest PCB to the f,ee queue ond ~""""""""~"""""""""'.,.~ PCBNQN=PCBFREE 
initiate completion processing for the _"".I1I....Ir--:---....,.- ­
appropriate root PCB. ........, Root Exit Routine 


F1XLOAD2 


Schedule second exit. 


5.24 

Coile, 

L l 	 L 




r 


CIl 
(1) 

:+ 
o 
~. 

::s 
CJ1 

I'd 

III 


IQ 

~. 

::s 
IQ 

CIl 
.g 
~ 
<: 
~. 

CII 
~. 

g 

CD 

CJ1 

'" 

r r 

• Diagram 5.25 Delay Post Queue Handler (Module lEAPS I) 

r------------------------------------------------------------T--------T--------, 
I IROUTINE I I 

I NOTES INAME ILABEL I 

~------------------------------------------------------------+--------+--------1 

L____________________________________________________________i 

• When a second exit cannot be innediately taken after IIEAPSI3 I I 
the asynchronous comFletion of a FIX or LOAD operation I 
for any reason (for examFle, the supervisor lock is set I 
for a disatled page fault, or a suspended FIX is I 
completed by a restart fron, FREE), the second exit is I 
deferred and a PCB representing it is placed on the I 
delayed post queue (by FIXIOAD2, the Rcot Exit I 
routine). IEAPSI3 is invoked 
the supervisor lock is reset, 

ty 
to 

the dispatcher, 
initiate second 

when 
exit 

I 
I 

processing. I 
I 

When the paging task is dispatched, the Queue Scanner I 
will invoke IEAPSI2 (below) to process the requests on I 
this queue. Interruptions are disabled after entry. I 

I 
2 If the supervisor lock has teen reset (CVTSYIK = 1), 

disabled page fault is pending and the second exit 
a IEAPSI2 

requests must remain deferred. 

I 
3 The root 

point of 
PCB is pOinted to by PCBRTP and the entry 
the Root Exit routine (FIXLOAD2) is in 

I PCBRGOTO. 
I 
I 
I 

If more than one PCB is on 
Queue Scanner will reenter 

the delayed post queue, 
IEAPSI2. 

the 

I 
I Interruptions are enabled before exit. I I IJ________~________ 



I 
I 
I 
I 
I 
I 

FIX 

•••I~I FOEMRG 

!IV Diagram 5.26 
0) 

FOE Merge Routine 0'1 
From Termination to merge

Input FOEs from two TCSs Processing Output 

Registers ._.1~11EAPSI5 
0 TeB to merge with J ,...--- 1 If the fiBt (next) FOE should not be 
I 	 IFirst FOE to be merged I merged, get next FO E and repeat. 


____ -I 

+­ If none • •••••••••••••• Caller-.FOE 

2 	 Attempt to add the FOE to the indicated
FOE1NT 	 r- ­r FOE Merge 


I FOEFLINK I 

TCB's FOE list. 

FOEMRG
IFOEVBN ____ ...I Step 3 FOE 

If unsuccessf~l, mark the FOE for 
FOEFXCT ~ 

interception. 	 FOEINT=1~""""""""',.""""'...'" FOEV1NDX +-­ I Successful 	 FOEFXCT..,""""""""""""""" 
Process next FO E.

I 	 -+1I 
I From 

FOEON/FOEDQ 

FOEON 

FQEDQ 

I 	 3 If the entry to lEAPSI was a branch entry ••••••••••••••• CallerL... ____ '"""'\ Register 15 

\TCB I.."""""""""-t...""""'.....,~ Return code=4 

I TCBFOEA 14-- . 4 Find a FOE for this virtual address on 
the TCB's FOE list. 

1r one is found -+6 
If none and this a FOEDQ request 	 Caller 

Register 15 

'","""""""",....,"""'"
5 	 Obtain a new FOE and add it to this Register 15 

TCB's FOE list. FOERMBR 
Return code=4

1.,~ IGet storage for an FOED1 0"" 
 FOE (Previous) 


I FOEFLINK ~~iiIiIiIiiIii__~! CallerL _________________ _ FOE (New) • 

6 If the entry was at FOEON or FOEDQ I FOEFLINK-next F6EJ 
and the FOE should not be processed 

Caller Register 15 

,""""""""",,,7 	 Update the count of fixes in this FOE 
appropriately. Register 15 

If the FOE has no more fixes, free it."""""""""'" ~""""'+I 

I I 

Return cade=4 

FOERMBR 

Free storage for an FOE. 

0 I I I Caller Register 15If there are more fixes 

~+I Return code=O ~....."""""""'" 

L· 	 L L 



(
r 	 r 

Diagram 5.26 FOE Merge Routine (Module lEAPSI) 
r------------------------------------------------------------T-------~--------l 

I IROUTINE I I 

I NOTES INAME ILABEL I 

~------------------------------------------------------------+--------+--------~1 FOEs are chained by the FOEFLINK field. 	 IIEAPSI5 IMERGEl I 


I I 

The virtual address (fron, FOEVBN) and the fix count I I 

(from FOEFXCT) are passed to FOEMRG. I I 


I I 

3 FOEs only exist for SVC entries to lEAPSI. 	 IFOEDQ I FOECMl 


I (all I 

I entry I 

Ipoints) I 

I I 


4 	 The in~ut virtual address is compared to FOEVINDX. I I FOECM2 

If they are equal, the FCE has been found. If FOEVINDX I I 

is greater than the input virtual address, the search 
 I I 

stops, since FOES are chained in ascending order by I I 

FOEVINDX. I I 


I I 

5 	 The address of the next FOE on the chain is placed in I IFOEON2 


the new FOE'S FOEFLINK field, and the address of the I
I 

new FOE is ~laced in the previous FOE's FOEFLINK. The I 

fix count (FOEFXCT) of the new FOE is set to 1 for I 

entry at FOEON or to the input fix count for entry at 
 I 

FOEMRG. I 


I 

6 If the FOE is marked for interceftion (FOEINT ll, IFOECM3 


processing on it should not continue. I 

I 


7 	 For entry at FOEON, FOEFXCT = FOEFXCT + 1); for entry I FOECM3A 
at FOEDQ, -1. For entry at FOEMRG, the input fix count I 

is 	added to FOEFXCT. I 


I 

If FOEFXCT now equals zero, the FOE is dequeued (by I 

modifying afpropriate FOEFLINK fields) and freed. I
' I
O FOERMBR obtains (via GETMAIN RMBRANCH) or frees (via IFCERMBR I 

FREEMAIN RMBRANCH) storage for an FOE. I I


L____________________________________________________________ ________i________~ 

CIl 
I'D 
o 
rt .... 
g 
U1 

~ 
<.Q.... 
~ 
CIlc: 
ttl 
I'D 

~ .... 
C/l.... 
o 
::3 

IV 

<Xl 

...,j 




'" 	 Diagram 5.2700 
00 Find Page Routine 

Entered by any supervisor 
routine to obtain the address 
of PTE and XPTE associated: 

Input Processing 	 Output 
with a virtual page with a PCB 

Register 1 (PCB entry) 


PCB address IEAPFP (PCB entry)
I 	 ~ ePCB 
IEAPFP2 (Register entry)

PCBVBN1 I r' 
or 


Register 1 (Register entry) ------------ 1 Set appropriate entry switch; derive the 

Virtual address I .... input segment; and locate the segment


1 table entry. 

Register 152 If a poge table does not exist for this 
.CVT Return code==4segment 	 ........, ...
...-!,........, ..., ..." ......, ..."~ IL...+I I 

CVTSEGB1 I 	 .. 
Segment Table Entry Caller 

SGTPAMI l,

1 SGTPTO 3 Determine the virtual address of the page 


table. 
 Translate Real to Virtual 

IEAPTRV 
Calculate the indicated 

PCB (PCB entry) 1---- ---, virtual address. 
PCBVBN 5.47Ire-I 	 I 

or 	 Register 15
Register 1 (Register entry) 	 I 

I If unsuccessful ...+1 Return code-8I Virtual address I I ~"''''''''''1 ~"''''''''''''''''''''''-! jt.. I 
L ______ .. 

4 	 Calculate the virtual addresses of the Caller 
PTE and XPTE. P' 

PCB
Place the addresses in the indicated places: 

I PCBPTE 1
5 

For a PCB entry 
II.! 	 '1 PCBXPT II Register 15 

p."'~ ~,........., ........." ......,~ ~,-.I Return code=O I

II Register 0 

jill I Address of PFTE I 
For Q register entry 

Register 1 

.. I Address of XPTE 1 
Caller,. 

~ ( 	 L 




r r r 

Diagram 5.27 Find Page Routine (Module IEAPFP)
r------------------------------------------------------------T--------T--------,
I IROUTINE I I 

I NOTES INAME I LABEL I 

~-----------------------------------------------------------+--------+--------~ 

I I 

I 1 The input segment number equals: I I I 

The high-order byte of PCBVBN for a PCB entry. 
I 
IIEAPFP 

I
.1 

I 
I 

Byte 1 of register 1 for a Register entry. I IEAPFP2 I I 
I I I 

The segment table entry is located as follows: IIEAPFP IFINDPG101 
CVTSEGB + 4 • input segment number. 

CVTSEGB is the segrr,ent table origin. 
land 
I IEAPFP2 

I 
I 

I 
I 

4 is the length of an STE. I I I 

2 If SGTPAM;l, no page table exists for this S'IE. 
I 
I 

I 
I 

I 
I 

I I I 
3 The real storage address of the page table origin (PTO) IFINDPG201 

is in SGTPTO. I I 

4 The virtual address of the PTE ; virtual address (PTO) 
I I 
IFINDPG301 

+ L*P. I I 
L is the length of a PTE (2 bytes). I I 
P is the page number (bits 8-11 of the PCBVBN or bits I I 

16-19 of register 1). I I 
I I 

The virtual address of the XPTE ; 
+ 32 + L*P 

virtual address (PTO) I 
I 

I 
I 

L is the length of an XPTE (8 bytes). I I 
P is the page number. IL____________________________________________________________ ________ ________J~ ~ 

til 
(!) 
o 
rt.... 
o
::s 
V1 

P9 
\Q .... 
~ 
til 
~ 

~ 
~ .... 
en .... 
o
::s 

to.) 
(1) 
\Q 



I\) 	 • Diagram 5.28 
o 	 Page I/O Post and '" 

Entered by the Queue Scanner Entered by I/O FllH when at least one PCB has Task Post Queue Processor 
to process PCBs on the tosk been completed through an I/o operation 

Output-
IEAPIOP (Page I/O Post)~ 
I EAPTQ P (Task Post Queue Processor).. 	 PVT1 Indicate type of entry and access 

appropriate queue. 	 ~......, ........................, ~...~ PVfPCIOP"i J
~"'''''''''''''''''''''''''''''''''''''''''''111 
r---- 2 Clean up PCBls resources if the request Input 

has been canceled. 	 PGOTPROC o 
Make the allocated 
page frame available. Auxiliary Storage PCBRegister 1 5.29 	 Manager 

PCBNQNIAddress of task post queue I ~ 	 • 1...­
IEAPAUX2 
Free external PCBCQN6Register 3 	 storage allocated. r-- 3 Release the PCB's page frame if there 	 Other queue, pointers5.63 .-.. PGOTPROCIAddress of PYT I was an I/O error or if a page-out 	 and numbers 

operation was completed. 	 Make the page frame 
available. Remainder of PCB6 .... 	 ~" 

5.29 
4 Make necessary queue modifications ifr-

PCB 	 XPTEa page-in operation is complete. 	 PGINPROCI
PCBSKIP Indicate page frame [XPTPCBQ~

I allocated.
PCBRIP 	 6I 5.29 


PCBRBN + - 5 When the I/o is not complete and:
I 
Entry was at IEAPIOP, get the next

PCBDADDF I PCB PVf 
PCBDADD If noneI 	 •2 

• 7 	 I PVTPWP=OI Entry was at IEAPTQP, continue.PC BYHTC 
I 

PCBIOCMP +- r--- r- 6 Signal completion to the initiator of the NOTIFY 	 0''' A.'" 
Register 10 I 

I/O 	 Inform the originator 
PCBIOI 1-- I------J I 	 ~MISS entry paint

of I/O completion. 
5.29I 	 l~PCBFQP 

I Get next PCB. 


______..JI If none, continue. 

PCBMIG 	 • 2 

PVTPCBRLP 

PCBNQN }+ ,- 7 If SQA/LSQA replenishment is needed IA.............",..." ........................"'II1 ..., ......, ....................."11~ "~L_PV_TR_R_TP=O
... ______~ 
I 	 Release QueuePCBXPT 

Supp~essionI 
I 	 IEAPCRQS 

Release the reserve/ 

PVT I replenis~ queue.


I 5.51
PVTRRTP I I_____...J 8 Allow page I/O to be initiated, if
SCNSF(in PVfINITQ) 	 Release Queue- su ppressed. 	 Suppression 

IEAPCRQS 
Release the page 
I/O queue. 

5.51 

9 When entry at IEAPIOP 	 Move PCB 

IEAPCBM 
Place the PCB on the"',...............-.® 
 I/O active queue. 

5.49 ...•When entry at IEAPTQP 	 Caller 

l, 	 l,.. L 



(
r r 

• Diagram 5.28 Pag~ I/O Post and Task Post Queue Processor (Module IEAPIOP) 

r------------------------------------------------------------T--------y--------,
I IROUTINE I I 

I NOTES INANE ILABEL I 

~------------------------------------------------------------+--------+--------t 

o 

1 PVTPCIOP is turned on at entry and off at exit. A IIEAPTQP IIEAPTQP 
switch is set to indicate entry at IEAPTQP. land I 

IEAPIOP I lEAPlOP 

2 This processing is attempted whenever the PCESKIP flag 
I 
I COMMON 

is 
go 

on. If the "release-in-post" flag (PCBRIP) is off, 
immediately to Step 6. PGOTPROC is called only if 

I 
I 

PCBRBN=O, and IEAPAux2 is called only if PCBCADDF=l. I 
I 

3 I CANCEL 

4 
I 
ITESTYPE 

5 
I 
INOERR 

6 If the PCB has related PCBS, this "notification" logic 
I 
GONOTIFll 

is performed for each PCB on the related chain. I 

7 PVTRRTP is set by the Reserve Replenish Queue Processor 
I 
I 

when it has more work to do but there are PCEs on the I 
task post queue or 
could be replaced. 

by Page Replacement when no pages 
If PVTRRTP=l, it signals the Task 

I 
I 

Post Queue Processor to release the reserve replenish I 
queue. I 

8 
I 

ENDPROCXI 

9 INOTSURP 
I 
I 

o The next queue number (PCBNQN) is set to the free quEUe 
unless the PCB is marked for migration, in which case 

I 
LVXPT 

I 
I 
I 

PCBNQN is set to the migration queue. I 
If the PCB has related PCBs and: I 

I 
• Entry wa.s at IEAPTQP, PCBCQN in the related PCBs is I 

set to the task post queue. I 

• Entry was at IEAPIOP, PCBCQN in the related PCEs is 
I 
I 

set to the I/O actiVE queue. I 
I 

If the PCB has no related PCBs Or when all related PCBs 
have been handled, and if the original PCB was fcr 

I 
I 

en 
CD 

~ .... 

migraticn, the original PCB is reinitialized by setting 
all fields .other than qUEue rointers and queue numbers 
(PCBFQP, PCBBQP, PCBNQN, PCBCQN) to zero. In addition, 
if PCBXPT~O in the original PCB, XPTPCBQ of the XPTE 

L pointed to by PCBXPT is set to zerO. I I 

I 
I 
I 
I 
I ________J____________________________________________________________~________~ 

::s 
U1 

'tj 
III 
\0 .... 
::s 
\0 

en 
.§ 
~ 
....< 
en .... 
g 
tv 
\D 
to-' 



N • Diagram 5.29 
Page 1/0 Post-Page-out, Page-in,

N'" and Notification Subroutines 
ProcessingInput Output 

PGOTPROC ~"'~"""""""""'~ :ill I ~""i-----
,--- 1 If a page is marked for V=R interception V=R Release 
IPCB 

IEAPVRS L PFTEI PCBRBN ---I Allocate page to~ ~ :....", PFTPCBSI=O III V=R region. 
PFTE I 5.11 lev. PFTONAVQ=1 __ ...1
I PFTVRINT ~ 2 Make the page frame available. PFTE NQ PFTQNDX=PFTAVQN 

IEAPRLS2l.,-.@ Move the PFTE to the 
available page queue. 

5.17 

PGINPROC 

r-­ 3 Route the PCB to the proper queue: 


PCB 
Migration with no related PCBPCB I ."""-. PCBNQ N=PCBAUX 

PCBMIG --1 Migration with related PCBs 
PCBIOI=O~r ..J Not migrationPCBRLP 
PCBIOCMP=O

4 Determine whether this page is fixed. 
I 

I- ­
Normal fix

PFTE I PFTE NQ 

PFTFXCT IEAPRLS2 
No fix 

__ ...J Move the PFTE to-i k+@ PCB 

I,PCBNQN=PCBMIGQ
PFTLNGFX the hold page queue. or PCB FREELong fix, continue processing_ 5.17 

V=R FLUSH5 If a page is marked for V=R interception 
PGTE 

I IEAPVRFL IPGTPVM=O IAllocate the page PVT I @~
to V=R region. PFTE

I PVTVRINT 
__ -1 

5.13 I~ IPFTPCBSI=O 

Register 4 

NOTIFY
ri Address of PCB I • Caller lReference ond change.----- 6 If this PCB is marked for migration 

bits=O
I PCB I r--­ 7 For a PCB not associated with a root PCB: 

PCBMIG ~ If lIno post" indicated I • Caller ~ I r­
IEAPSER PFTE__ J I r- If I/O error and PCB not skippedPCBTCF ~-

IEAPSER2 IPFTHOLDQ=1Decrement wait countPCBYHTL --, I I Caller Schedule abnormal~ 
termination. 

I~ IPFTQNDX=PFTHQN5.54PCBRTP ~ -t--iJ l,+@ 
PCBSKIP ~.- .....J If more actions are waited onI r T ask Switch ___-1 I If not a disabled page fault or IEAODS02~ if NEW ~ Master Scheduler 
PCBNOP IReady the faulting task. 

RB I 3_17 __ .JI RBWCF ~ 
RB 

Disabled page fault and NEW< Master 
Scheduler Set NEW=O. 0~ RBWCF=RBWCF-l I 

PCB 

8 For a PCB associated with a root PCB and: Caller PCBROOT
PCBRTPC -. No other PCBs associated with this root peR Root Exit Routine 0~ PCBRCNT=PCBRCNT-l 

Root PCB I Address in root PCB'5 39"''+0 IPCBRFAIL=1 I..J 
Other PCBs associated with this root PCB Caller 

PCBRGOTO 

• 
- I • Caller 

l, ( L 



r r r 

• Diagram 5.29 page I/O Post - Page-out, Page-in, and Notification Subroutines 

(Module IEAPIOP) 
r------------------------------------------------------------T--------T--------~ 

I IROUTINE I I 
I NOTES INAME ILAEEL I 
~------------------------------------------------------------+--------+--------~

1 

2 If the page-out was for a swap-out, the PFTE is added 
to the available queue, since it cannot te reclaimed. 

A PCB for migration with no related PCEs is routed to3 
the auxiliary storage allocation queue and marked for 
page-out (PCBIOI=O) for continuation of the aigration 
Frocess for this page. 

A PCB for migration with related PCEs is routed to the 
migration queue so that migration can continue ~ith a 
different page. 

5 V=R Flush is called to move the page above the V=R Line 
(if not long-fixed) or to notify V=R of a long-fix. 

6 

If the page represents a satisfied page fault 
(PCEYIlTC=O and PCBNOP=O) and the faulting task is wait ­
ing for this event only (REWCF-l=O), then Task Switch 
is called, unless for a disabled page fault task and 
NEW < Master Scheduler. 

7 

I 8 If the original PCE indicates I/O error (PCEYIlTC=l), 

IPGOTPROCI PGOTPROCI 
I I I 
I I I 
I I I 
I I I 
PGINPROCIPGINPROC 

I 
I 
I 
I 
I 
I 
I 
I 
ICHECKVR 
I 
I 

I NOTIFY INOTIFY 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

I then NOTIFY indicates this in the root PCE (FCERFAIL=l). I I
l ____________________________________________________________ i ________i ________J 

CIl 
It) 
C'l 
IT 
~. 

o 
::l 
(J1 

Ii? 
lQ 
~. 

~ 
CIl 
c:: 
'tl 
It) 
i"'I 
-= ~. 

en .... 
o 
::l 

"-> 
\0 
(.oJ 



IV Diagram 5.30 
ID Release Routine (User SVC) 
~ (Releasing Real and External Page Storage) 

Entered by SVC FLI H to 
handle a RELEASE macro 

Input instruction (SVC 112) Output 

IGC112 

Register 0 


r-- Establish tlTESTADDR" 

Beginning address of I Type-lthe virtual area to be 1A If a whole page cannot be released Exit RoutineIreleased Register 15 

__ ...JI L"""""",,~
Register 1 ~"""""""~1~~ Return code=O I 

Ending address of r-- ­ 2 Check the vol idity of input, if necessary IEAOVLOO I 
the virtual area to be 
released plus 1 byte I 


I 

I 


II ...
SVC Old PSW If involid :.."""""""~I

]4-- ......J 
Type-l 
Exit Routine 

Protection key 

Register 4 

Acldress of TCB 

Release 

IEAPClR33 Release the page begining at "TESTADDR" 

Free the indicated 
page. 

5.32 

Updote "TESTADDR" -+1A 

L L L 




r r' r 

Diagram 5.30 Release Routine (User SVC) (Module IEAPCLR) 
r------------------------------------------------------------T-------~--------, 

I IROUTINE I I 

I NOTES INAME ILABEL I 

~------------------------------------------------------------+--------+--------~1 The paging-supervisor-in-control flag (CVTPGSIC) is IIGCl12 I I 

turned on at entry and off at exit. I I I 

2 TESTADDR is an internal pointer. Initially, it is set 
to the value in register 0 rounded uf to the next 
higher page toundary. Each time a page is released it 
is incremented by 4096. 

I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

I 
I 

If the input in register 1 minus TESTADDR 
4096, a whole page cannot be released. 

is less than 
I 
I 
I 

I 
I 
I 

I I 
3 If the caller does not have a protection key of 0, the 

validity of the address must be checked to enSure that 
I 
I 

I 
I 

the caller is authorized to release this page. I I 
I I 

On entry to IEAPCLR3, register 1 = TESTADDR and I I 
register 3 = PVT address. I IL______________________________________________________ ______~_______L________ 

en 
(1) 

:+ 
1-'. 
g 
U1 

'tI 
III 

\.Q 
1-'. 
::s 

\.Q 

.a en 

(1) 
11 
<:
1-'. 
en 
1-'. 
g 

!'oJ 
\0 
U1 



IV 
\l) 

a-

Input 

Register 1 

Address of fi;;;-VSl 

VSL 

VSLCONT 

VSLNULL 

VSLSTART 

VSLAST 

VSLENDPI 

• Diagram 5.31 
Release Routine (Supervisor Branch) 
(Releasing Real and External 'Page Storage) 

Entered by IEAPSI to handle 

e RELEASE option on a Page 

Service request or by FREEMAIN 


to release 0 freed page Processing 
~I-----------=~----------------------------------------------~ 

IEAPCLR2 

,..-- If the first (next) VSL entry should not be Output---r- ­
processed, get the next entry and repeat.

I If none Caller Register 15 I 
I t..""""""",~ ~""'~ +I Return code=O 

__ -1 r- 2 Establish "TESTADDR". 

I 2 A Determine whether a whole page canr- I 

I be released. 
____ .J 

If not, access the next VSL entry • 

If none •••••••••••••~~.~coller 
.....

Release the page beginning at "TESTADDR". RELEASE ........ 

IEAPCRL3 

......___ I Free the ind'....-! poge. Icated 

5.32 

Update "TESTADDR". - ..... 2A 

~ l L 




________ 

r r r' 

• Diagram 5.31 Release Routine (Supervisor Branch) (Module IEAPCLR)

r------------------------------------------------------------T--------y--------,
I IRCUTINE I I 

I NOTES INAME ILABEL I 

~------------------------------------------------------------f--------+--------~ 

L____________________________________________________________ ________J 

I 1 
I 
I 

PVTPCCLR is turned on at entry and off at exit. If 
VSLCONT=l, this VSL is not to be processed and the VSL 
pointed to by VSLSTART is accessed next. 

IIEAPCLR2 
I 
I 

I 
I 
I 

I 
I If VSLNULL;l, this VSL is skipped and the next entry is 

I 
I 

I 
I 

I accessed. I I 
I I I 
I If VSLAST=l, this is the last VSL. I I 
I 
I 2 
I 

TESTADDR is handled as in IGCl12, Note 2, except that 
it is initially set to the value in VSLSTART of the VSL 

I 
I 
I 

I 
I 
I 

I 
I 

being processed and is subtracted from VSLENDP1 
determine if a whole page can be released. 

to I 
I 

I 
I 

I 
I 3 On entry to lEAPCLR3, register 1 ; TESTADDR and 

I 
register I 

I 
I 

I 3 ; PVT address. I I I 
~ ~ 

CJl 
(1) 
o 
IT
"".o 
~ 

VI 

I'd 
III 

\.Q 

"". 
~ 
CJl 
c:: 
'g 
~ 
"".CJ) 

"".o 
~ 

to.) 
\Q 

-.I 



'" Diagram 5"32 (Steps 1-6) 
(X) Release Routine (Branch) '" (Releasing Real and External Page Storage) 

Entered by IEAPSI to handle a FREE operation 
for a release deferred page or from other •

Input Release ent,;es ta ,elease a page Processing Output• r---------------------------------------~ 
Register 1II••••I~IIEAPCLR3 

Virtual address of :::: Determine whether the page can be released. 

page to be released 


r------ If it is in the nucleus or V=R area _••••••••••••~••••Calle' 

CVT 
 I ____ ...I Find Page I CVTREAL ~-

IEAPFP2 


Locate the PTE and 


GOVRFLUB r----- ­ If it cannot be released 
 XPTE for this page. 

5"27[SQABOUND 1+- ----1------ 2 If a PFTE is assigned to this page ..... 4 
.- ___ J 

PTE If not, and it is an SQA pageI "'....1Calle, ___ ...I I 

!PGTPVM _____ ..--1I 3 Determine whether a PCB exists for this 
3-

I 

r ­
PGTPAM - page. 

If one exists not on the real storagexnE I 
allocation queue

I~~~ ~---------.J 
I I 

"'4
If one exists on the real storage 
allocation queue FINDPCB 

locate the PCB on 
the queue. 

5.33 
If it is not found or does not exist at 
all PTE

+I PGTRSAoO 
PCB ~ 
I PCBFXC ~------------ If it is found and is not to be fixed 

PCB~ 
PTE ~.. If it is found and is to be fixed ••••••••••••••••• caller @....t~ PCBDFCLRoO I 
[PGTPAM ~- -----L 

If it is not assigned by GETMAIN,PGTRSA _ --l --- ­ defer release ..............................................."t......................................................~~ PCBDFCLR=l I 
PVT I ~ ~P::::FT::::E-ass-ig-ne"":""d,-f,-ee-,.""""":aI"":""st-a,-og-e 

[WiPFTP 1+- PFTE 
Derive the PFTE address and determine41-------- ............................................'" ................................., ...................~ PFTDFCLRoO
PFTE whether the page was previously marked for I _. __ --1 deferred release. If so, and if it has been

PFTDFCLR 
assigned by GETMAIN since the RELEASE ~•••••••••••• Caller 

PFTFXCT -1----1­
5 Determine whether the page is fixed.PFTPCBSI --, --- ­ PFTE 

If so, and it has been assigned by GETMAINnE I r t ......"'T.., PFTDFCLR=l 1 
If so, and it has not been assigned byI PGTPAM ~ 4------J­
GETMAIN, defer the release. ..........................'" .......................................-i PTE
I r,-_-__-_-.--, 

If not, invalidate the PTE.IL _______ _ 

6 If a paging operation is in progress for 


this page 
 FINDPCB 

Locate the PCB on 
its queue. 

5.33 

If the PCB we. faund 

(Continued at Step 7) 

~ (. l 




r r 	 r 

Diagram 5.32 (Steps 1-6) Release Routine (Branch) (Module IEAPCLR) 
r------------------------------------------------------------T-------~--------, 

I IROUTINE I I 
I NOTES INAME ILABEL I 
~------------------------------------------------------------t--------t--------~

1 	 If CVTREAL is greater than the inFut address, the page IIEAPCLR3 

is in the nucleus or V=R area and cannot be released. I 

If the FIND PAGE return code is net zero, the segment is I 

unassigned or an internal error was found. The page I 

cannot be released. If the inFut address is greater I 

than or equal to SQABCUND, the page is in the SQA area I 

and cannot be released. If the Fage is invalid I 

(PGTPVM=ll, it cannot be released. 	 I 

I
3 	 If the PCB is found on the real storage allocation queue 


and it is for a FIX request for a Fage that is not 

assigned by GETMAIN the deferred clear flag in the PCB 

is set (PCBDFCLR=ll. When IEAPALCC obtains a PF'rE for 

this page it will set the deferred clear flag in the 

PFTE. When the fix is rereoved by FREE, FREE will call 

IEAPCLR3 to release the page. 


4 	 The PFTE is located as follows: 

PFTE index (from PGTRSA) + PVTPFTP (the PFT origin) 
PFTE address. 

If the deferred clear flag is on (PFTDFCLR=1), IEAPCLR3 

was Frobably called by FREE to release a page that could 

not be released before because it was fixed. If, how­

ever, GE'rMAIN reassigned the page between the time the 

release was requested and the tine FREE removed the fix 

(if PGTPAM=1) , the release is ignored. 

5 	 If the page is fixed and is not assigned by GETMAIN, 

the release must be deferred until the fix is undone by 

FREE. The FREE processor in IEAPSI will call IEAPCLR3 

again to release the page. The storage key is set to 

zero and fetch protection is indicated so that the user 

cannot have valid access to the page while the release 

is pending (unless another GETMAIN is issued).
L____________________________________________________________ ________L________J~ 

en 
/I) 

~ .... 
o::s 
U1 

'tI 
III 

\Q .... 
::s 

\Q 

en 
.a 
/I) 
H 
<.... 
en .... 
o::s 

I\) 

\D 
\D 



w 	 Diagram 5.32 (Steps 7-15) o 	 Release Routine (Branch) o 
(Releasing Real and External Page Storage) 

Input Processing 	 Output 

I PTE
7 If no PCB was found or on PCB exists (no 

paging operation in progress), free the ~""""""""~ ;la."""""""""''+Ii-'-'P-G-T-RS-A-"-O------, 

real storage page. FREE REAL r""""....,~I-.-,P=-'G:-::T,-:-PA'-M--=-"D------l 

Make the page frame iii!! 
PFTE available. ~ PFTE 

PFTLSQA ___________5._33~ ~L I- ---- 8 Determine whether the input page is an [ PFTLSQA"D 
PFTWHOSE r SQA or LSQA page. I PFTTSO"D 

If either PVT:.r."'"""""",,~ :.r."""'_"""'1~ 
PVTSQACT"PVTSQACT -]:::allerIf SQA 

'" If LSQA or neither ~..................t .... ~.~~ I _'rPFT~E__~~______-. 


~""""""""""l ~""""""",.,..-.j PFTWHOSE=O 
Page I/O in progress, disassociate Paging I/O 

9 	 Indicate I/O should be skipped and that 
PCB 

the resources allocated to it must be 
freed. 

10 	 Disassociate the virtual address from the 

Pag;ng I/O.


PCB 


PCBIOI 1+ ----+11 If this is a page-in operation and: 


the PCB is not in the real storage 


olloco';on queue ~""""""""',. ·~"""'1 
the PCB is on the real storage i! 
allocation queue 14 I 

12 For a poge-out operation, free the 	 FREEREAL i! 
associated real storage. 	 Free'the PFTE 

representing the iii!! 
,A indicated real storage i!!b0 	 I 

XPTE 
page. 	 iii! PFTEI 	 L

XPTXAV 
Determine whether external page storage L-___________5:...~33~ ~"""~ ~~~,-:-P~F-TW-H-O-S-E-"D--------~XPTLPA 4 t - -r-+13 
has been assigned. 

PFTVBN"DXPTXADDR ~ : If so, indicate to POST that it must ~~"~L~PF~TP~C~BS~I=O~____~ 
I free it. 	 PCBc:===============!======:::;­
I If not I or if so but it is an LPA page ••••••••• [PCBBN~ J 

PCBI 	 0PCBDADDF=] 

I 	

~""""""""'~ ~"'lI 
I oage 	 PCBDADIFXPTADDRRelease AuxiHary s':....J t j!!
L 	

I 
14 Determine whether external page storage 	 ~ 

ha, been oss;gned. 	 ~"t:"""'''''''.1 ~ 
If not, or if so but this is an 	 I XPTXADDR"D I......:~<!l 

XPTLPA"OLPA page 	 ~"""""'~ 
~15 	Free 'he ,'ocoge occup;ed by 'he ;npu' ie.,."""""""",,'1 ~"~ 

page. ... a IAuxiliary Storage Manager 

~ IEAPAUX2 
Free the indicated 
external page storage.~"~ 

5.63 

· ...---...a Coller 

l. l 	 L 




-- --- ..,.,. 


r rr 
Diagram 5.32 (Steps 7-15) Release Routine (Branch) (Module IEAPCLR) 
r------------------------------------------------------------T--------y--------,
1 1ROUTINE 1 1 
1 NOTES INAME 1LABEL 1 
~------------------------------------------------------------+--------+--------1
1 7 The real storage address (PGTRSA) is set to zero to IIEAPCLR3 
1 prevent future page reclamation. 1 
1 1
1 8 Since SQA pages are not paged and so have no XPTES 1 
1 assigned to them, the normal route cannot be taken. 1 
1 Therefore, no further action on them need be taken. 1 
1 1
1 9 Setting PCBRIP=l informs lEAPlOP (Page 1/0 Post) that it 
1 must free either real or auxiliary storage fer the Fage. 

/11 For a page-in, the Release routine frees auxiliary 
1 storage and Post frees main storage according to PCBRBN. 
1 
112 For a page-out, the Release routine frees main storage 

and post. 
1 
1 

113 Frees auxiliary storage if any was assigned. 
1 
114 The only time the XPTLPA flag should be on is when 
1 IEAPCLR3 is entered ty FREEI!AIN after a TSO user has 
1 logged off. 

I0 PCBDADDF and PCBRBN are tested by lEAPlOP to determine 
1 which type of storage it must attempt to free. If 
1 PCBDADDF=l, the page 1/0 routine Post will free auxil ­
1 iary storage using the encoded address in PCBDADD. If 
1 PCBRBN*O, post will free real storage using the address 
1 in PCBRBN. 1 1 1 

~ ~l ______________________________________________________ ______ ________ ________J 

CIl 
(b 
o 
rt 
~. 

o::s 
U'1 

D)' 
\Q 
~. 

~ 
CIl 
~ 

"0 
(b 

~ 
~. 

CJl 
~. 

o::s 

w 
o .... 



w 
o 
IV 

Input 

PVT
I PVTSCAN 

XPTE 

XPTPCBO 

Register 1 

Input virtual address 

PCB 

PCBVBN 

SCNTE 

SCNFST 

PFTE 

PFTONDX 

PFTNON 

PFTBADPG 

PFTVRINT 

From 5.32 
Steps 3 and 6 Processing 

FINDPCB 

1+ - -i- ­
I 
-- ­1+- -- .J 	 I 
I 

}+- ----,	I 
I 

1+- ----i 
I 

_...Jj4­

From 5.32 
Steps 7 and 12 

Calculate the scan tcble entry for the 
indicated PCB queue. 

2 	 If a PCB for the input page does not 
exist on this queue 

TOthelWise 

Processing 

JEAPSER 

Record the minor 
software error. 

5.54 

• Caller 

.........................................................~ 

PFT E Dequeue 

Diagram 5.33 
Release-Subroutines for 
Searching PCBs and 
Freeing Real Storage 

Output 

Register lS 

Return 2 =Found=PCB address 
Code 3 =not fou nd=O 

PFTE 

FREEREAL 

h PFTE if it is queued.3 	 Dequeue t e b0 
~ ----, 

----,~ 	 I
I I
I I
I 
I 

L __ 
4 If this page is not usable 

IL __ _ 
5 	 If this page is marked for V=R interception 

available.6 	 ~'••••-~ 

JEAPRLS3 PFTHOLDO=O 
Remove the PFTE 
from its queue. PFTONDX=PFTAVON 

5.1B PFTONAVO=l 

I • Caller 

V=R Release 

IEAPVRS 
All ocate the PFT E 
to a V=R reg ion. 

5.11 

I I Caller 

PFTE Enqueue 

JEAPRLS2 
Add the PFTE to the 
available page queue. 

5.17 

I • Caller 

L 	 L, L 




rr 	 r 
Diagram 5.33 	Release - Subroutines for Searching PCBs and Freeing Real 

Storage (Module IEAPCLR)
r------------------------------------------------------------T--------y--------,
I IROUTINE I I 

I NOTES INAME ILABEL I 

~------------------------------------------------------------+--------+--------~

1 The scan table entry is located as follows: 	 IFINDPCB 

I 


PVTSCAN + (XPTPCBQ-1) *12. 	 I 

I 


2 	 The PCB is searched for by comparing bytes 1 and 2 of I 

the input virtual address with PCBVBN. If they are 
 I 

equal, the PCB has been found. 	 I 


I 

If 	the queue is empty (SCNFST=O) or the search fails, I 

an error condition exists (PFTPCBSI or XPTPCBQ is I 

incorrectly set). 	 I 


I

3 The PFTE is On a queue if PFTQNDX~PFTNQN. 	 IFREEREALI 

I I 

The page is not usable if the "RMS-detected-solid­ I I 

storage-failure" flag is on (PFTBADPG=l). I I 


I I

5 	 If PFTVRINT=l (set by IEAPVEQR), the page is needed for I I 


a V=R region. I I 

I I


6 	 IEAPRLS2 adds the PFTE so that it will be relfoved first I I 

since the released page cannot be reclaimed. I I
L____________________________________________________________ _______ ________~ ~ 

CIl 
(\) 
o 
r+­.... 
o 
I:S 

V1 

~ 
lQ.... 
.s 
CIl 
~ 

't:l 
(\) 

~ .... 
.... 
o 
I:S 

c..J 
o 
c..J 

C/I 



w 	 Diagram 5.34 
o 	 'Create Page Table Routine 

From GETPART and GETLSQA"" to build a PTE and XPTE 

Output 
r-

IEAPTCD PTEs 

0 

8Calculate subpool number. 
16 

24 

32 , XPT = 0 

2 	 Obtain virtual storage for PTEs and XPTEs 
for the segment. 

152LI____________________~ 

Zero the area and set up to distinquish 


between PTE and XPTE space. .."""""'....""""""'~ 


3 	 Place oppropdate addresses of SGTs and I 
validate STEs. ~"""""'i..."""""'.,.."r 

4 	 If there ore more segments to process I 2 

If not 

Caller 

II GETMAIN 

J.~" ,:LI 
SGTPTL I· "j SGTPO 1I" 

L l 	 L· 




rr 	 r 
Diagram 5.34 Create page Table Routine (Module IEAPTCC) 
r------------------------------------------------------------T--------T--------, 
I IROUTINE I I 
I NOTES INA~E I LABEL I 
~------------------------------------------------------------+--------+--------~

1 	 If the "page-table-in-SQA" option is chosen (bit 0 on 
in register 1), subpool 245 is used. Otherwise, 
subpool 255 is used. 

2 	 The ~arameters passed to GETMAIN are: 

Register 0 - Byte 0 - subpool number 

Bytes 1-3 - 160 (dec.) 


Register 1 - any negative value 


Upon return from GETMAIN, the entire 160-byte area is 
zeroed and PGTPVM is set to 1 in each of the first 16 
halfwords in the area. 

3 	 The real address of this area is placed in both the 

system and user SGTs as follows: 


• 	 The STE displacement segrnent-number-being­
processed times 4. 

• 	 This dis~lacement is added to CVTSEGA and CVTSEGB 
to get the STE addresses. 

The real address of the ~age table (obtained via 
an LRA instruction using the address returned by 
GETMAIN as input) is placed in SGTSTE of both STEs. 

• 	 SGTPAM is set to 0 (validated) in the system STE. 

• 	 If the validate-UST option is chosen (register 0, 
byte 0, bit 1 = 1), SGTPAM is set to 0 in the 
user STE. Other~ise, it is set to 1.L--__________________________________________________________ 

ICreate IIEAPTCD I 
IPage I I 
ITable I I 

I I 
ICREATEOOI 
I I 
I I 
I I 
I I 
I I 
ICREATE101 
I I 
I I 
I I 
CREATE301 

I 
I 
I 

~________L________J 

CIl 
en 
C'l 
rt" .... 
o 
~ 

U'I 

'tI 
PJ 

<.0 .... 
~ 

<.0 

.§ 
CIl 

en 
<.... 
CJl .... 
o 
~ 

w 
o 
U'I 

11 



w 	 Diagram 5.35 o 
0\ 	 Destroy Page Table Routine 

F,om FREEPART and FREElSQA 
to free a PTE and XPTE Processi 


Input 
 IEAPTCD Output 
Calculate subpool number.Register 0 

First segment ~ 2 	 Perform FREE and RELEASE functions for -.l _ L~ 
number all segmenh. 	 ....... I rv 1,1\..... , llU!:l·------''------1
..."",,,,,,,,,,,,,,,,,,,,"""i 

Register 1 

Clean up storage. 

segments 5.20 
Number of 

[Will 14-- 3 Reset dispatcher constants, if necessary. I 	 : ~)f-D-S-P-S-C-T=o-------j 

CVT 

4 Locate the current STE and mark it 
unavailable for paging. 

IEAPTRV 

Obtain virtual address. 

5.47 

5 	 Free the designated area of virtual 
storage. 

RMBRANCH 

6 	 Access next segment. "'4 	
6.1 

If none 	 Caller 

SGTSTE 

L 	 L L 



(
r r 

Diagram 5.35 Destroy Page Table Routine (Module IEAPTCD) 
r------------------------------------------------------------y--------y--------,
I IROUTINE I I 
I NOTES INAME ILABEL I 
~------------------------------------------------------------+--------+--------~1 If the "page-table-in-SQA" o~tion is chosen (bit 0 on IDestroy IIEAPTCD 

in register 1), subpool 245 is used. Otherwise, IPage I 
subpool 255 is used. ITable I 

2 Tbefollowing parameters are passed to IEAPSIBR: 

Register 1 -

Register 2 -

Byte 0 - X'28' (indicates FREE and 
RELEASE) 

Bytes 1-3 - starting address (in~ut 
segment number concatenated with 
16 O-bits on the right) 

Byte 0 - 0 
Bytes 1-3 - ending address (input 

segment number + input segment 
count) 

I 
IDESTROO 
I 
I 

PVTFLAG1 is set with PVTFRCF 
will be zeroed. (On return, 

(X'02') so that FIX 
it is set to 0.) 

counts 

~ If the starting segment number (register 0) = DSPSTI, 
DSPSTI and DSPSTC (pointed to by PVTSPSTI and PVTSPSTC 
respectively) are set to O. 

4 The real address of the PGT is extracted from the STE 
(CVTSEGB + 4 • segrrent-number-being-processed) and 
passed to IEAPTRV in register 1. SGTPAM is set to 1 
(invalidated) in both the systerr and user STEs. 

DESTR10 

5 The parameters passed to FREEMAIN are: 

Register 0 - Byte 0 - subpool number 
Bytes 1-3 - 160 (dec.) 

Register 1 - Byte 0 - 0 
Bytes 1-3 - virtual address of PGT 

On return, SGTPA~ is set to 1 in both STEs.
L____________________________________________________________~_______~________ 

en 
(\) 

:+ .... 
g 
U1 

~ 
\Q .... 
:::! 

\Q 

en .g 
(\) 
1'1 
<.... 
en .... 
g 
w 
o 
-.I 



w Diagram 5.36 
o Swap Control Routine 
CD 

From the Queue Scanner to 

perform a request scheduled 
by the Swap SVC Intenace 
routine (I EAPSSVC) 

Input Processing Output 

IEAPSWAP 

PVT 

Perform swap accounting PVTNSv/Af'oPVTNSWAP+l 

I ­
 2 Determine type of request: 


I Swap-in request SWAPIN 

I 
I 

Swap in 
requ i red pages.3.

I 5.37 

SPCT I 
Swap-out request SWAPOUT 

SPCTSISO --.J 
Swap out 
requested pages. 

5.40 
PCB 

~ PCBNQN=PCBFREE ­3 Route the processed PCB to the free queue. ~""""""""'" 

1••••••••••••••••I1~ QueueScanner 

l., L L 



r r r 

Diagram 5.36 Swap Control Routine (Module IEAPSWAP) 
r------------------------------------------------------------.-------~--------, 

I IROUTINE I I 

I NOTES I NAME I LABEL I 

.------------------------------------------------------------+--------+--------i 
I 1 Interruptions are disabled before processing begins. ISWAP IIEAPSWAPI 

I I I I

I 2 Interruptions are enabled after swap-out returns. I I I
L____________________________________________________________i ________ ________J~ 

en 
t1l 

~ .... 
g 
U'I 


I'd 

III 

o.Q .... 
::l 

o.Q 

en 
.§ 
~ 
<.... 
en .... 
g 
!.AI 
o 
\j) 



w 
~ 
o 

Input 

I 
~. { 

~ 
~ 

II 
~I 
~ 

• Diagram 5.37 
Swap-in Set-up Subroutine 

From the Swap Control routine 

to set up for processing a swap-in 

request'" 


Output 
PVT 

SPCT 

~""""""""""""'''''''''''''''''''''''''~~''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''~f-S_PC_T_F_X_H=_'__________,:::~:S:T }~"Ito':lL"i~~~"~:,'",....,::,'.::~~. ,,-,.,.
PYTBFXTF ~ 	 and check for threshold violations. If 

SPCTACT=Ithere is a violation, inform the user, ond 

~~ 	 ~~~~~-~~~ 

r" 

request. 


Root PCB POST 


PCBRTCB IEAOPTOI
I Post the specified IECB. 

S~T I 	 - 3.8 
SPCTECB 	 i! 

II 	
Move PCBS~TEMTO ~"'~ I 

IEAPCBMSPCT1ST 
Add the root PCB to the 


SPCTNBRT free queue.
II .... 
5.48

SPCTNBRL ~'''IIIIII~'''~''-! 
STE 	 i! I ~ Caller 

PVT 
1SGTPAM """"IIIIIl ~'~ I 

~ 

:>\PVrSQACT+SPCTNBRL~ I ~ If no violationI ['~ 2 If necessary, invalidate the LSQA segment 
'~""11111 to be used and locate the LSQA PFT. r" Translate Real to Virtual ;.::Roo",,-t:.,;PC"'B'--_____-, 

IEAPTRV PCBRCNT=SPCTNBRL 

. 	 Calculate the PFT's PCBRGOTO=IEAPINI3 	 Obtain one PCB for each page to be....... virtual exfdress. 
paged in for this part of the swap-in. 5.47 

PCB (on Swap Queue) l r""""IIIIIj4 	Initialize the Stage I Root PCB, PFTEs, .' 
~ r~'''Ito': XPTEs, and PCBs for the poges to be _ 	 ..... Su·'d PCB IPCBS \.. DIPCBRTP "",,"Ito': ~1I!i swapped in, and set the SPCT posting_ .... I PTEs r

iii! flogs., IEAPCBB 5.49 XPTEs J 
ii!! 	 L-__~_~h 
ii!! 5 If this is on LSQA-only swap-in indicate ~""","Ito': ~""""""11111 SPCT 

Input 	 • • I 
Stage 3 Set-up _ 9 	 f-S_PC_T_4_CM_P=_'_____-I 

S~T 6 	 Set priority to bios Stoge lover Stoge 3 ~"""","Ito': .SPCTPTY=SPCTPTY -1 
poge-ins, if possible. ...,"""',... ...."'~ f"::\..,SPCTNBRL 	 -..- ~","Ito': FRoo~t~PC~B~_____-,}.,~"""'''' 7 Calculate Stage 3 poge-in count. If zero ..... 9 	 IPCBRWKI=Stage I root PCBSPCTNBRT 


8 Obtain and initialize the Stage 3 root PCB. Build PCB I 

PCBRCNT=Stage 3 count

~"~ .-..1 IEAPCBB 5.491 PCBRGOTO=I EAPI N3-'~ . 
PCBRTCB=PCBRTCB of Stoge 1

Initiolize the remaining PCBs. ..""""'...""""""~ root PCB.------,~9 Initicte required page-ins. Move PCB i! 
IEAPCBM ~ I P;-:C:.::Bs'--_____---:= 
Add the PCBs to the 1.,.91 81 
allocate queue •..... 

L ___~~~,.t 
5.48 

Coller 

\., L, 	 L, 




r 	 r 
• Diagram 5.37 Swap-in Set-up Subroutine (Module IEAPSWAP)

r------------------------------------------------------------T--------T--------,
I IROUTINE I I 
I NOTES I NAME I LABEL I 
.------------------------------------------------------------+--------+--------~

* 	 Swap-in processing is performed in multiple stages by ISWAP IN 
the following routines: I 

SWAPIN - Stage 1 and 3 set-up. 

IEAPINI - Stage 1 completion and Stage 4 set-up. 

IEAPIN3 - Stage 3 completion. 

IEAPIN4 - Stage 4 completion. 

ROOTEXIT - Swap-in completion. 


LSQA page-ins are scheduled first (Stage 1) and cther 

page-ins specified ty SPCT entries (Stage 3) next. 

When 	 Stage 1 page-ins are conpleted, page-ins repre­
sented by entries in the SPCA (other than stage 1 or 3 
entries) scheduled (Stage 4). An effective, uninter­

rupted Swap-in occurs whenever Stage 4 scheduling 

occurs while Stage 3 I/O is still in progress or when 
the number 	of pages to be swapped in is 16 or less (no 
Stage 4 needed). 

A 'region ready for restore' indication is given when 
all SPCT pages have teen read in (Stages 1 and 3 com­
plete), but before all Stage 4 page-ins have completed. 
Thus, Swap-in need nct be conpleted for the whole 
region before the user can continue processing. 

The branch entry FIX threshold = 

PVTTBASE-PVTSQACT-PVTBXFTF-SPCTNBRL (the number of 


LSQA pages required ty this swap-in request). 


If 	PVTFXC is greater than this threshold, a violation 
will occur 	if this request is honcred. In this case, 
the threshold violation flag is set (SPCTFXB=l and 
SPCTACT=I) 	 and the user is posted. POST is passed the 
following parameters: 

Register 10 - post code = O. 

Register 11 - ECB address (from SPCTECB) 

Register 12 - TCB address (from PCBRTCB). 


Upon 	return, the rcot PCB is disposed of. 

If the threshold will not be exceeded, the SQA/lSQA 
C/) count is adjusted to reflect the number of LSQA pages
(1) being brought in for this request. 

~ .... The virtual address of the LSQA PFT is found by using2 
o the LSQA segment number (SPCTENTO) as an index tc the 	 I::s 	 system STE for the LSQA segment. I 

I
V1 If the segment is valid (SGTPAM=O), the user either I 

logged off or was abnormally terninated. In this I 
case, LSQA STEs are invalidated and a PTLB instructionttl 	 I 

I» is issued (to prevent the hardware from giving un­ I 
\Q wanted information). I.... I::s The real address of the PFT is extracted from the STE I\Q and IEAPTRV is called to return its virtual equivalent. I 
C/) I 


If this is an LSQA-only swap-in (SPCT1ST=1), SPC'INERL 


(1) 
.a 3 	

indicates the nu~ber of PCBs needed. If SPCT1ST=O, 
I 
I 

SPCTNBRT is used. I I IL____________________________________________________________~________~________ JIi 
~ .... 
til.... 
o::s 

I.tJ...... 

r 
r------------------------------------------------------------T-------~--------, 

I IROUTINE I I 
I NOTES INAME I LABEL I 
.------------------------------------------------------------+--------t--------~ 
I 4 	 The Root PCB is pointed to by PCBRTP in the PCB on 

the swap queue for this request. 

S 	 If this is an LSQA-only swap request, stages 3 and 4 

are marked complete (SPCT3CMP=1 and SPCT4CMP=I). 


6 	 The priority of Stage 1 pages is reduced by 1, 

if possible. 


7 	 The Stage 3 page-in count = SPCTNBRT-SPCTNBRL. 

9 	 When the stages complete, Page I/O Post will give 

control to the Root Exit routine pointed to by the 

PCBRGOTO field of the completing root (IEAPINl fcr 

the Stage 1 root and IEAPIN3 for the Stage 3 root). 


o PCBS and table entries are set up as follows: 

• 	 First, the LSQA PFTEs are zeroed except that 
PGTPVM=] in each. 

• 	 The XPT for this PGT is zeroed. 

• 	 The page number (frou, SPCTVM) is multiplied by 2 
and added to the PGT address to find the PTE. The 
XPTE address = the PTE address + 32 + S*SPCTVM. 

• 	 PGTPAM is set to 1 to indicate page assigned. 

• 	 SPCTXPT (the XPT address) is ~oved to the XPTE. 

• 	 XPTXAV is set to 1 to indicate page assigned. 

• 	 If this is a warm-start page (SPCTFWST=l), 
XPTLPA is set to 1 to indicate that the page 
cannot be destroyed. 

• 	 The PCB is set as follows: 

• 	 PCBNQN=PCBALLOC to route the PCB to the real 
storage allocation queue. 

• 	 PCBIOI=1 to indicate page-in. 

• 	 PCBRTP=the Root PCB address. 

• 	 PCBFXC=l to prevent the page from being paged out 
(by replacement) ~hen the page is brought in. 

1 
I • PCBPTX=SPCTPTX. 
I 
I • PCBXPT=XPTE address calculated above. 
I 
I • PCBPTE=PTE address calculated above. 
I 
I • PCBVBN=SPCTVM. 
I 
I The next PCB is accessed via PCBFQP. The next SPCT 

entry is found and this loop repeats for each PCBI 
and entry.I 

I 
I • When the last entry is ccmpleted, the s~ap pcst 

I flags (SPCTFL2, SPCTLERR, SPCTERR, SPCTFXB, 

I SPCTOERR, SPCTTBER) are zeroed.

L____________________________________________________________ 

I I 
~________L________J 



W 	 r------------------------------------------------------------T--------T--------, 
I-' 	 I IROUTINE I I 

/0.) 
 I 	 NOTES INAME ILABEL I 

~------------------------------------------------------------+--------+--------~ 
~ The remaining PCBs are set ufO from the remaining I I I 


(that is, non-LSQAl SPCT entries as follows: I I I 

I I I 


• 	 PCBNQN=PCBALLOC I I I 

I I I 


• 	 PCBIOI=l I I I 

I 


• 	 PCBRTP=Stage 3 root address 

• 	 PCBFXC=l 

• 	 PCBPTY=adjusted SPCTPTY 

• 	 PCBXPT=address of a dummy 8-byte constant 
with only XPTXAV=l set 

• 	 PCBDADDF=l I 

I 


• 	 PCEPTE=address of SPCTPTE of current SPC'!' entry I 

I 


• 	 PCBVBN=SPCTVM I 

I 


• 	 PCBDADD=SPCTXPT I 

I 


SPCTPTE is set ufO to afOfOear as an invalid, assigned I 

PTE. 	 I I
L____________________________________________________________ _______~________ J~ 

L 	 ~ L 



-------------- ---------



_______ 

w 	 Diagram 5.38 (Steps 1-7) ~ 
.r= 	 Swap-in Completion Routines 

for Stages 1, 3, and 4 
From Post I/O Post routine •


Input as Stage I Root Exit routine Processing Output 

Stage 1 Completion 

IEAPINI
Stage I Root PCB 

PCBRFAILI ~--- ----------- 1 Indicate Stage 1 completion and, if an SPCT 
I/O error occurred, mark SPCT in error 
and indicate no Stage 4. SPCTlCMP~1

SPCA 

SPCAPTCT 	 - .."""""'~11"""""""'" ~"'-1 
SPCTLERR~1

SPCA2PTA ROOTEXIT---I
SPCASWA 	 SPCT4CMP=1Complete swap-in 	 ~''-1r"~Ir--	 .­
SPCAPTS 	 proce5sing.I 	 5.39,...- .... SPCMCT 	 I 

SGTs 
SPCA4CT }--- - --T	I ------- 2 Validote necessary STEs in both user and ~ 

1 system SGTs. ~"'-1 SGTPAM D""""""''-111""""""""l' SGTPTO=PFTE addressr--- 3 If an L$QA-only swap-in, or if no Stage
SPCT I 	 ~"""""'-1 ~"""'~4 pages must be swapped in, find the 


SPCTENTO ~--- ---' I, number of completed page-ins. • 7 

SPCT1ST 
 _oJ----	 Stage 4 Set-up}--­SPCTNBRL 

SPCTLTCB 	 4 Obtain one PCB for each needed swap-in. BuHd PCB 

l IEAPCBB---,TCB 

TCBTCT 
Ir--	 I 5.49 

Root PCB 
I Stage 4 use. 

5 Reinitialize the Stage 1 root PCB for 

PCBRCNT-SPCA4CT~" .......................... ..-'....'..........'...." .,

I Initialize PCBs for Stage 4 page-ins. 	 ~I 

PCBRGOTO~I EAPI N4I iI 	 PCBRTCB=SPCTLTCB 

,I 	 I 
PCBsI 	 l"""",,~ ~"""""" ~"'-1 ~I 

I 6 Initiate required page-ins. Move PCB

L _____________ PVT
I IEAPCBMFind the swap-in count. PVTSPIN~PVTSPIN+ 

Add the PC B to the 
---,-- ----­

swap-in count I 	 allocate queue. 
5.48IL TCT 

Perform SMF accounting jf necessary. TCTPGI N=TCTPG IN+ 

• 	
swap-in count 

7 	 ~"""""'-111"""""""" 
TCTSIN~TCTSIN+ 

~". ""'.ROOTEXIT 
swap-in count 

Complete swap-in 
TCTRENS~TCTRENS+Iprocessing. 

5.39 

(Continued at Step 8) 

l 	 L ~ 




(' r 	 (' 

Diagram 5.38 	 (Steps 1-7) Swap-in completion Routines for Stages 1, 3, and 4 

(Module lEAPSWAP) 
r------------------------------------------------------------T-------~--------, 

, 	 'ROUTINE , , 
, 	 NOTES 'NAME I LABEL ,
r------------------------------------------------------------+--------+--------i'1 If PCBRFAIL=l, an I/O error occurred. 	 ,IEAPIN1 ,, 	 , ,
'2 The LSQA STEs in both the system and user SG'Is are , ,
I located by using the segment number in byte 0 of , I 
I SPCTENTO as an index into each SGT. I I 
I , I 
, SPCA entries are looped through as follows: " , 	 , , 
, • SPCAPTS*4 is used as an index into the SGTs. , , 
I 	 , I 

• 	 The virtual address of the PFT is translated to a,I , real address (via an LRA instruction) and stcred 
in SGTPTO. 

I 
3 	 For an LSQA-cn1y request (SPCT1ST=1), SPCTNBRL is 


used for SMF accounting. 


If no Stage 4 pages are to be swapped in (SPCT4CT=O), 

Stage 4 is marked cOlIp1ete and the active swap-in 

count (SPCAACT) is used for SMF accounting. 


4 	 SPCT4CT contains the number of PCBs needed. 

5 	 The root address is passed by page I/O Post. 

7 	 If TCBTCT=O, no SMF accounting is performed. 

II . The system STE is validated (SGTPAM=O). 

• 	 If this is the SWA segment, the user STE is vali ­

dated. Otherwise, it is invalidated. 


EJ PCBs and table entries are set up as follows: 

• 	 SPCANTPT is used to index the appropriate SPCAPTA. 

• 	 The virtual address of the PGT for this entry 

CIl 
Cb 

1+ .... 
g 
VI 

"d 
III 

\Q .... 
::s 
\Q 

CIl 

.a 
~ 
<.... 
en .... 
g 
W 
t-' 
VI 

• 

• 

• 

• 
I 
I • 
I 
I • 
Il________ 

(SPCAPGTA) is picked up. 

SPCAPGTA*2+SPCANTVM = the PTE address for this 

SPCA entry. 


The XPTE address the PTE address + SPCANTXP. 


PCBPTE is set to the calculated PTE address and 

PCBXPT to the calculated XPTE address • 


PCBNQN is set to PCBALLOC. 


PCBVBN is set to SPCANTVM. 


PCEIOI is set to 1. 


PCBPTY is set to the adjusted priority (SPCTPTY). 

(SPCTPTY is adjusted by 1 to bias Stage 3 over
. 
~::~~_~_~:~===~:~___________________________________~________~________J 



w Diagram 5.38 (Steps 8-10) .... Swap-in Completion Routines C\ 
From Page I/O for Stages 1, 3, and 4 
Post routine as 
Stage 3 Root 
Exit routine 

Input Output 

IEAPIN3 Stage 3 Completion 
Stage 3 Root PCB 

SPCTPCBRFAIL ]4- 8 Indicate Stage 3 completion and I if an I/O 

error occurred, non-LSQA error. ...,"""""""'" ~"""""" 
9 Free the Stage 3 root PCB. Move PCB 

IEAPCBM 

Add the PC B '0 'he 
free queue. 

5,48
From Page I/O ROOTEXIT 
Post routine as 
Stage 4 Root Complete swap-in 
Exit routine processing. 

5.39 

Stage 4 Completion
Stage 4 Root PCB 

LPCBRFAIL ]+- 10 Indicate Stage 4 completion and, if an I/O 

error occurred, non-LSQA error. ...,""""""""""""""'" 

ROOTEXIT 

Complete swap-in 
processing. 

5.39 

~ L l/ 




r 	 r r 

Diagram 5.38 	 (Steps 8-10) Swap-in Completion Routines for Stages I, 3, and 4 


(Module IEAPSWAP) 

r------------------------------------------------------------T-------~--------l 

I IROUTINE I I 

I NOTES INAME ILABEL I 

~------------------------------------------------------------+--------+--------~ 
I 8 Registers are saved for ROOTEXIT. IIEAPIN3 1 1 

1 1 I 1

1 If PCBRFAIL=I, an I/O error occurred for a stage 3 1 1 1 

1 page-in. I 1 I 

I 1 1 I

110 Registers are saved for ROOTEXIT. IIEAPIN4 1 I 

1 I 1 1 

I If PCBRFAIL=I, an I/O error was encountered during 1 1 1 

I Stage 4 page-in processing. 1 I 1

L____________________________________________________________ ______ ________ J~ ~ 

Ul 
(1) 

~ .... 
g 
Con 

'tI 
III 


I.Q.... 
::l 

I.Q 

Ul 

.a 
ID 
1'1 
<.... 
m .... 
o 
::l 

IoU ..... 
..,J 



w .... 
CD 

Input 

Stage 1 Root PCBCK'~" 
SPCT 

SPCTlCMP 

SPCT3CMP 

SPCTSC3 

SPCTNBRT 

SPCTNBRL 

SPCTENTO 

SPCTLERR 

SPCTFLS 

SPCTVM 

SPCTLIr· 
SPCTPTE

I 

I 

I SPCA 

SPCAPTA 

I SPCANTPT 

I SPCANTVM 

I 
I PTE

r-l PGTRSA 

I 	PFTE 

I PFTBAOPG 

I PFTVRINT 

I 
I 
L 

From IEAPIN 1,3, or 4 

to complete swap-in 

processing 


-

ROOTEXIT 

1 If the I/O for Stages 1 and 3 is not complete 

...J 	 • 4
....... 


2 If the reg ion is ready for restore 

If the region is not ready (Stage 1 and 3 
root PCBs have not been processed), 
indicate TSO action required. """"""""'-1 

1 Stage 1 and 3 Processing 

+-­
3 Set up the PFTEs assigned to SPCT entries 

during the swap-in process:

1 A. If an I/o error occurred, for each SPCT entry 
swapped in successfully l....... 

""""""""'-1l- • Locate the PFTE and free the page 
frame. 

• 	 Route V=R intercepted page frames 
to a V=R region. 

• 	 Make non-V=R intercepted pages 
available.I } ..."""""""" .... 

+-LJ 

• 	 When all entries have been 
processed. 

.."""""""",.;:I 	 •30 
B. 	 If the logon image function is requested, 

mark all pages as not LPA assigned. """""""""'-1 
(Continued at Step 3C) 

• Diagram 5.39 (Steps 1-38) 
Swap-in Completion Subroutine 

Output 

... 
Caller 

SPCT 

~""""~ SPCTACT=1~""""" ... 

PFTE 

PFTWHOSE=O 

PFTFXCT=O 

~"""'j>~""""" ... PFTLSQA=O 
Translate Real 

to Virtual 
 PFTTSO=O 

IEAPTRV ~'-1 PFTONAVQ=1 

I 
~ 

Find the virtual 

address of the PFTE. 


5.47 I 
V R Release I 

lEAPVRS I 
Allocate the page 

to a V=R region. ~ 


5.11 I 
~""""""''-1 

PFTE Enqueue 

IEAPRLS2 

Add the PFTE to PVT 

the available queue. 
 t't"~ PVTSQACT-SPCTNBRL I 

5.17 ..~ ~""""" 
All XPTEs for swapped­
in pages 

...,""""''''' ~'''''''+I XPTLPA=O 

L l 	 L, 




(
r 	 r 

Diagram 5.39 (Steps 1-3Bl Swap-in Completion Subroutine (~odule IEAPSWAPl 
r------------------------------------------------------------T-------~--------, 

I 	 I ROUTINE I I 
I 	NOTES INAME ILABEL I 
~------------------------------------------------------------t--------t--------~1 	 PCBRWK2 of the Stage 1 root faints to the SPCT for IROOTEXIT 

this request. 

2 	 If SPCTSC3=l, the region is ready for Restore. 

3 	 For an LSQA-only request, SPCTNBRL is used as a loop 
counter. Otherwise, SPCTNBRT is used. 

3A 	 If SPCTLERR=l, an I/O error occurred. 

• 	 If SPCTFLS=l, this is an LSQA entry. The PFTE is 
found by using SPCTVM. If this is not an LSQA 
entry, the PFTE is found by using PGTRSA of the 
dummy PTE. 

• 	 PFTFXCT, PFTLSQA, PFTTSO, and PFTWHOSE are zeroed. 

• 	 If the page has teen marked not usable by RMS 
(PFTBADPG=ll, nothing more is done to the page. 

• 	 If the page is marked for V=R interception 
(PFTVRINT=ll, it is given to V=R Release to te 
allocated to a pending V=R region request. 

Otherwise, the page is made available via PFTE 
Enqueue and PFTONAVQ is set to 1. I 

I 
• 	 When the last entry has been Frocessed, PVTSQACT I 

is 	decremented by SPCTNBRL and SPCT1ST is set to 1. I 
I 

3B 	 If SPCTLI=l, XPTLPA is reset for all pages swapped I 
in as part of this request by indexing through the I 
16 PTEs per segment as defined in all SPCAPTAs for I 
the region. This allows the external back-up group I 
of Logon Image pages to te freed at 'STOP TSO' time. I 

~l ____________________________________________________________i ________ ________ 

00 
I'D 

~ 
1-'­
o 
::1 

\J1 

ttl 
IIJ 

\Q 
1-'­
::1 

\Q 

00 .g 
I'D 
I"i 
< 
1-'­
Ul 
1-'­g 
\.0.) 
~ 
\D 



0 

W 	 • Diagram S.39 (Steps 3C-SJN 
Swap-in Completion Subroutine 

Input Processing 	 Output 

C. For each SPCA entry:r-	 PTE 

I • Locate and put appropriate data in f'Jti. I PTE=SPCTPTE 

I the PTE and PFTE for this entry. "'"""""" ~'" 
I ..""~ Storage Keys 

I • Route the PFTE to the hold queue. PFTE Enqueue I Keys=XPTPROT 

I IEAPRlS2~ 
PFTE_...J k~ 	Add the PFTE to the 

hold queue. PFTWHOSE=SPCTlTCB 
SPCA - 5.17 PFTFXCT=OSPCAPTA 

PFTlSOA=lSPCANTPT 

PFTTSO=lSPCANTVM 
'- ­

PFTONDX=PFTHON0,,,~"'i> PFTHOlDO=l 

SPCT D. When all entries have been processed, 

SPCT4CMP inform the user of the action taken. POST 

IEAOPTO 1SPCTACT 
Post the specified ECB • 

SPCT1ST ..L 
3.8}-n 	

SPCT 
SPCTLTCB 

Indicate region is ready for restore. 
I 	 ...",...-.,: ~"'.................., ..~""""'~ SPCTSC3=1 


I 
Stage 4 Processing I ..L_ 4 If Stage 4 has not completed 	 Caller 

r 

Otherwise, indicate TSO action required. :..",,-.,:iI'-,..., ... , .........,',.. 

Dequeue the Stage 4 root PCB and, if there 
was a Stage 1 I/O error free it. ~ 

l...." ..~"""""'~Root PCB 

5 	 ..., ........ :-......., ...,''III'! 

;;.,"'0"----------, 

Move PCB 

IEAPCBM 

-
PCBNON=PCBFREE 

Add the PCB to the o
free queue. 

5.48 

---... 

I Caller 

r 
(Continued at Step 6) -

r ~ r 

SPCTSC3=O 

SPCTACT=l 

4... L 	 l,d 




r r 	 r 

Diagram 5.39 (Steps 3C-5) Swap-in Completion Subroutine (Module IEAPSWAP) 
r------------------------------------------------------------T--------T--------, 
I IROUTINE I I 
I NOTES INAME ILABEL I 
~------------------------------------------------------------+--------+--------~ 

3C • 	 The PTE address for the current entry is found I ROOTEXIT 
by indexing to SPCAPTA via SPCANTPT and adding 
the page number (from SPCANTVM) tiwes 2. 

• 	 If the page is not for LSQA (SPCTFLS~O), 
SPCTPTE (the d=y PTE) is moved into the 
real PTE. 

• 	 PGTRSA is used to calculate the PFTE address 
for the page. PFTFXCT is then set to 0 and 
PFTWHOSE is set to SPCTLTCB. 

• 	 If the page is for LSQA, PFTLSQA and PFTTSO 
are set to 1. If the page is not for LSQA, 
the storage keys are set from XPTPROT. 

3D The following parameters are passed to POST: 

Register 10 - post code ~ O. 

Register 11 - ECB address (from SPCTECB). 

Register 12 - TCB address (from PCBRTCB). 


Upon return from POST, SPCTSC3 is set to 1 to 
I indicate that the Stage 1 and 3 roots have been 
I processed .. 

14 If SPCT4CMP~l, the swap-in is marked complete (SPCTSC4 IROOTST4 
;1). If SPCTACT;O, SPCTSC3 is zeroed and SPCTACT is I

I I Il____~==_=~_:~_______________________________________________~________~________ 

Cfl 
CD 
() 
rt.... 
o::s 
U1 

il9 
IQ.... 
~ 
Cfl 
~ 
'0 
CD 

~ .... 
en .... 
o::s 

W 
N 
I-' 



- ---

w 
t.) 
t.) 

Diagram 5.39 (Steps 6-7) 
Swap-in Completion Subroutine 

Input Processing Output 
SPCA 

SPCA4CT ~- 6 If there was a Stage 4, post the swap-in as complete. POST 

IEAOPTOI 

Post the specified ECB. 

PVT 

PVTSTUFM 14- ­

SPCT }I SPCTLTCB I +­

TCB 

[TcBMlGR J 

-r 
I 
I 
I 

_J 

-7 If the region must be migrated: 

Initialize the root PCB to migrate this user. 

Route the root PCB to the migration queue. 

Otherwise, free the root PCB. 

..""""""'~ 

...,""""""" 

~ 
!""""i>0 

3.8 
PVT 

~"""""" 

..,""""',.. 
~rm"~M~ 

Root PCB~ 

Move PCB 
PCBRTP=SPCTLTCB 

IEAPCBM 
PCBNQN=PCBMIGR 

Add the root PCB to 
the indicated queue. 

5.48 Root PCB 

0-""~ 
0 

PCBNQN=PCBFREE 

.. 

.. Caller 

-

l,. l, ~, 




r ( r 

Diagram 5.39 (steps 6-7) Swap-in Co~pletion Subroutine (Module IEAPSWAP) 
r------------------------------------------------------------T-------~--------~
I IROUTINE I I 
I NOTES INAME ILABEL I 
r------------------------------------------------------------+--------+--------i
I 6 If the stage 4 count (SPCA4CT) is not 0, a second IROOTEXIT I I 
I posting to indicate swap-in complete is required. I I I 
I Parameters are as above. I I I 
I I I I
I 7 The region must be migrated if the migrate select I I I 
I flag is on (PVTSTUFM=l) and the region is not I I I 
I migrated (TCBMIGR=O). I I IL____________________________________________________________ ________i ________J~ 

en 
to 

~ .... 
g 
VI 

I'd 
01 

IQ.... 
::l 
IQ 

.g en 

(b 
11 
<.... 
en .... 
o 
::l 

tAl 
"-l 
tAl 



-- ---- --------------------

IV 
W 

"" 	 From Swap Control routine to 
handle processing of aInput 	 Processingswap-out request .. 

SWAPOUT 
Root PCB 

PCBRWK~---- --- ----- 1 Quiesce all activity for this task. 

----- 2 If this is a logon image swap, initialize 
the SPCA for the region. 

TCBLSQA 

TCBXTENT 3 Build an SPCA entry for each page of 

TCBSTI +­ the request either in real storage or 
part of the swap working set. 

TCBSTC 

TCBSWA 

SWAH

r-i SWAHPTO 

SWAB 

SWABSEGX J -----­ 4 Obtain a PCB for each page to be 
swapped out. 

SPCA 

SPCAOAT 1+"-­
5 Determine the tentative device 

address. 

6 Obtain external page storage for pages 
to be swapped out. 

(C~ntinued at Step 7) 

• Diagram 5.40 (Steps 1-6) 
Swap-out Control Subroutine 

Output 

Termination Interface 

IEAPTERM 
Purge activity by 
region. 

5.57 

INiTSPCA 

Set up SPCA entries ..., ..,"""""',.. 
for each segment. 

[J 

Campi Ie Swap 

Pages 

CMPLOUT 

Decide which pages 
are eligible to be 
swapped out. 

5.42 

Build PCB 

IEAPCBB 

5.49 

...." .....,. SPCA 

1 
st!Entry 

2nd 
Entry 

3rd {
to 
nth 
Entry 

SPCAFLI=O 

SPCAPGTA=LSQA PGT 
address 

SPCAPTS=LSQA 
segment number 

SPCAPGTA=SWA PGT 
address 

SPCAPTS=SWA 
segment number 

SPCAPGTA=PGT address 
for next segment 

SPCAPTS-=segment number 
of next segment 

SPCAEPTA=f;rst SPCA 
entry address 

DEVICES 

Assign device and 
9 roup address. 

5.43 

SORT 

Determine actual 
pages to be 
swapped ou t • 

5.43 

Auxiliary Storage 
Manager 

IEAPAUXS 
Assign actual device 
addresses. 

5.63 

L 	 \v lv 



________ 

(
r r 

Diagram 5.40 (Steps 1-6) Swap-out Control Subroutine (Module IEAPSWAP) 
.------------------------------------------------------------T-------~--------, 

( (ROUTINE ( ( 
( NOTES (NAME (LABEL ( 
~-----------------------------------------------------------+--------+--------t
(
(
( 
( 

1 Tbe parameters passed to IEAPTERM are: 

Register 0 - TCB address (from PCBRWK1). 
Register 1 - 8. 

(SWAPOUT ( 
I (
(( 
( ( 

( 
(
( 
( 

( ( ( ( 
4 The swap-out count 

PCBs needed. 
(SPCAOAT) indicates the number or ( 

( 
( 

6 A PTLB instruction is issued before the call to the 
Auxiliary Storage Manager. Registers are set up to 

I 

make it appear as if the call is from the Queue 
Scanner as follows: 

Register 1 - address of the first PCB. 
Register 3 - PVT address. 

o INITSPCA initializes the SPCA PGT address entries by 
calculating segment numbers and PGT addresses for each 

INITSPCAI 
I 

segment in the region to be swa~~ed out. Find Page 
(IEAPFP2) is called to give the virtual addresses 
of the PGTs. If SWAHPTR=O, there is no SWA region and 
the speoial seoond entry (see output above) is not 

( 
I 
I 
( ____:=~_~:~_________________________________________________LI________LI J 

en 
11> 
o 
t"t ..... 
o 
:;1 

U'1 

"d 
III 
\!) ..... 
:;1 
\!) 

.g en 

11> 
Ii 
<..... 
Ul ..... 
g 
W 

U'1 
IV 



- - - ----------------

IN 
I\) Diagram 5.40 (Steps 7-12) 
(1\ Swap-out Control Subroutine 

Input Processing 	 Output
Fi~~~----------------~ 

PCB 	 7 Initialize PCBs for direct page~uts. FILTER ~"'II ~.................., ...,,"'II 
~""""""'PCBs 
[PCBXPT 	 ;...,=P=-C-BD-A-D-D=-X-P-TXA-D-D-R~Move the assigned 

XPTE, into the PCBs. 
PCBDADDF=l

fl 
PCBXPT=O 

8 	 If a swap-out for a logon image, indicate LPASET 
pages in lPA. Set LPA indicator 

..........., ......, ......,"'IIIII! 
------------------ where necessory. 	
~l~''''''XPTES with valid addresses 

in this region SPCAPGTA Bl ~ 
[XPTLPA=l 

9 Set up SPCT for 0 future swop-in. 	 SETSPCT 

~• ~""~L_S_PC_T________~ 

I SPCT 

--, 	 -I D~ ~,...""","'IIIIIol 
I 	 I SPCTWKST=SPCAACT JI 
I TCT 
I TCTPGOUT=TCTPGOUTI +SPCAOCTL.._ 10 Perform SMF and dispatcher-related 

TCTOUT=TCTSOUTstatistics accounting. ~..................""" ......"" .. .., ...,"',......, ..~,....~ 

+SPCAOCT 

TCTRGNS=TCTRENS+l 

DSPSTI -0] 
DSPSTC 

r ­ 11 Invalidate the segments of the tosk to be 
_-I swapped out. ~"""~AII STEs for this~"'''''''''''''''''''''''''''''II ~"'''''''''''''''''''III region 

SGTPAM=l12 Initiate necessary page-outs. 	 Move PCB 

IEAPCBM 
Add the PCBs to the 
I/O initiation queue. 

5.48 

Caller 

'" 

SPCA 

SPCAPTA 

SPCAPTCT 

SPCA 

SPCAACT 

SPCAOCT 

SPCAPTCT 

SPCAPTSX4 

~ L 	 l, 




(" r 	 r 
Diagram 5.40 (Steps 7-12) Swap-out Control Subroutine (Module IEAPSWAP) 
r------------------------------------------------------------T--------y--------~ 

I IROUTINE I I 
I NOTES INAME ILABEL I 
~------------------------------------------------------------f--------t--------f
I 7 ISWAPOUT I 
I I I
110 If TCBSTI=DSPSTI, DSPSTI and DSPSTC are zeroed. I I 
I I I 
I The swap-out count (PVTSPOUT) is incren,ented by the I I 
I number of pages to be swaFped out for this request I I 
I (SPCAOCT) • I I 
I I I 
I If TCBTCT=O, no SMF accounting is perfcrned. I I 
I I I
111 SPACPTCT indicates how many STEs must be invalidated. I I 
I SPCAPTS*4 is used as the index into the system and I I 
I user SGTs. Entries are Frocessed in reverse order so I I 
I that LSQA entries are invalidated last. I I 
I I I
112 A PTLB instruction is issued before the call to ~ove I I 
I PCB. PCBNQN has been set to PCBINIT by the Auxiliary I I 
I Storage Manager. I I 
I I I 
I EJ FILTER moves the XPTEs actually assigned by the I I 
I Auxiliary Storage ~anager into the PCBs for the swaF- I I 
lout. The XPTE represented by each PCB is picked up I 
I from PCBXPT. The external page address (XPTXADDR) is I 
I moved to PCBDADD, PCBDADDF is set to 1, PCBXPT is I 
I zeroed. I 

I 
I ESl LPASET sets the -do-not-destroy" flag (XPTLPA) in I 

I 
LPASET 

I every XPTE with a valid address in the region to be I 
I swapped out. The XPTE is found by adding 32 to the I 
I address of the PTE (located through SPCAPGTA). If I 
I XPTXAV=l in the entry, XPTLPA is set to 1. I 

I
I [J SETSPCT loops through all SPCA entries setting neces-

I
IS]!TSPCT

I sary flags and counts in the SPCT to be used when the 
I region is swapped in. 
I
I 1 SPCAAPT is loaded into an entry count register.

I 2 The LSQA SPCT and SPCT entry counts are zeroed 

I (SPCTNBRL and SPCTNBRT respectively).

I For each SPCT entry: 

I 3 SPCTVM is set to SPCANTVM. 

I 4 SPCANTSP is set to 1. 


CIl I 5 The XPTE address is calculated ((SPCAPGTA+2)*SPCANTVM 
m I +SPCANTXP). XPTXADDR is moved to SPCTXPT. 

I 6 If the PTE number (SPCANTPT) = 0:~ I • SPCTFLS is set to 1 to indicate an LSQA Fage • 
I • SPCTNBRL is incremented by 1.g I • SPCTFWST is set to 1 (if XPTLPA=1).
I 7 SPCTNBRT is incremented by 1 and the "entry count 

VI 	 I register- (from above) is decremented by 1. 
I 8 If the -entry count register- ~ 0 or SPCTNBRT ~ 16, 
I reFeat from -3- for the next SPCA and SPCT entries. 

.... 

ItI 
1\1 I 9 When all entries have been handled, PVTSQACT is 

IQ I decremented by SPCTNBRL. .... I 10 The residual SPCA count (all pages above 16) is::s I stored in SPCA4CT (Stage 4 page-in count) and
IQ I SPCAF4A is set to point to the first stage 4 entry. I I IL-___________________________________________________________ ________ ________J 

CIl 	
~ ~ 

.e 
m 
11 
<: .... 
C/l.... 
o::s 

W 
IV 
o-l 



IV 
W Diagram 5.41 
to Swap-out Completion Routine 

From Page I/O Post routine 
to perform swap-out root 
exit processing 

Input OutputI~ 
~ SPOUT 


Register 1 
 l,~;[Address of root PCB I 1 Indicate swap-out status (I/O error--if ~ 
any, swop-out complete I TSO action l""""'''' 

SPCTOERR~lneeded) • ~d
""""""'~ SPCTOUT~lRoot PCB 

Address of 2 Inform the requester of swap-out completion. POST SPCTACT~l 

PCBRWK2-SPCT 
IEAOPTOl 

PCBRFAIL Post the specified ECB. 
"""­

3.8 

SPCT 
~ ~Root PCB3 Dequeue and free the ,wap-out root PCB. ."""""""'"[SPCTECB ~""""""'" 0 

Move PCB PCBNQ N~PCBFREE 
IEAPCBM 

0
Add the root PCB to 
the free queue. - 5.48 

~ 

Caller 

I 

l/ L l.~ 




r 


en 
C1) 
C'l 
rt.... 
o 
:; 

U1 

Q)l 
<.Q .... 
.B 
en 
'0 
C1) 

~ .... 
CIl .... 
o 
:; 

w 

'" '" 

r ('. 
Diagram 5.41 swap-oat Completion Routine (Module IEAPSWAP) 
r------------------------------------------------------------T-------~--------, 

I IROUTINE I I 
I NOTES INAME ILAEEL I 
~------------------------------------------------------------+--------+--------~ 
I 1 If PCBRFAIL=1, SPCTOERR is set to 1. ISROUT I I 
I I I I 
I 2 The ECB address from SPCTECB is passed to POST. I I IL____________________________________________________________i ________i ________~ 

c 



__ _ 

w 
w 
o 

From Swap-out Control routine 
to fill in SPCA entries 

'Input 	 Processing 

·~CMPLOUT 
SPCT 

SPCTAUX j4- ­

-l 

1 1 
_1_ --l ~ }+ 

1 

1 I 

PVTTSBU I 
1 

I 
I 
1 

I 
1 

-1--­
--I 

I 
I 
I r- ­

-1- --' 
..L 

Initialize counters and pointers for loops 
and 5PCA counts. 

Outer Loop (through SPCA entries) 

2 	 For the PGT pointed to by the first (next) 
SPCA entry, set up for search ing PT Es. 

When all SPCA entries have been handled, 
check for threshold violation. If one 

Inner Loop (through PTEs) 

Diagram 5,42 (Steps 1-5) 

Swap-out-CMPLOUT Subroutine 

(Deciding Which Pages 

Are to Be Swapped Out) 


Output 

SPCAACT=O 

SPCAOCT=O
~"""""""'~ ~""li 

~ 
L",~ • PVTTSOU=PVTTSOU­

SPCTAUX 

~"""""""~"""""~ ; 	 I 
I 	 I
I 	 ft''''-:I~~
I 

SPCT

I SPCTAUX=O 

PVT 

PVTTSOU=PVTTSOU+ 
SPCTAUX 

SPCTISPCTTHER=l 

.............~Caller 


L.""""""",~ ~"""""~1 ~. r _ _____--, 

3 If this page has not been assigned by GETMAIN, 
find the next PTe and repeat. 

SPCT 

""""""""""~ ~""""'~ 

~~ 

PGTPVM=l 

When all 16 PTEs have been searched 	 SPCTAUX=SPCTAUX+l-----_~.~2 r'~ 
4 	 If there is an external page assigned """""""""~I~"""-,iI! 

~ 

PGTRSA=O
5 	 If the page is not valid 

If the page is not part of the swap working set, PGTPAM=l 
find the next PTE. • 	 3 

(Continued at Step 5) 

lr· L, 	 lr, 




r r r 

Diagram 5.ij2 (Steps 1-5) swap-out - CMPLOUT subroutine (~odule IEAPSWAP) 
r------------------------------------------------------------y-------~--------,
I IROUTINE I I 
I NarES IN~E ILABEL
r------------------------------------------------------------t--------t--------i

I 

I 1 
I 

SPCA counts are zeroed and the count of external pages 
used by TSO (PVTTSOU) is decremented by the number 

IC~PI0UT I 
I I 

I previously used by this region. I I 
I 
I 2 A PTE pOinter is initialized from SPCAPGTA and 32 is 

I 
I 

I 
I 

added to it for the XPTE pOinter. I I 

The new SPCT external storage count (SPCTAUX) is 
added to PVTTSOU to determine how may external pages 

I I 

TSO is now using. The amount available to TSO is 
calculated (PVTTOTAX-PVTBATCM-PVTTSBU). If PVTTSOU 
is greater than the result, 
violated. 

the threshold has been 

4 If an external page has been assigned 
SPCTAUX is incremented. 

(XPTXAV=l), 

I 5 If PGTPVM=l, the page is invalid. 
I If XPTTAJ{E."l, no further action is taken. 
I (XPTTAKE is set ty IEAPTER!!.) IL____________________________________________________________~________ ________J~ 

en 
m 
n 
rt" 
~. 

o 
::l 

U'I 

"d 
I» 

It) 
~. 

::l 
It) 

en 
.a 
m 
~ 
~. 

en 
~. 

o 
::l 

w 
w .... 



W 
w 	 • Diagram 5.42 (Steps 5-6) 
tv 	 Swap-out - eM PLOUT Subroutine 

(Deciding Which Pages 
Are to Be Swapped Out) 

Processing 	 Output 

XPTE5 If the page is port of the swap 
~(Con It) working set, fi!1 in the SPCA ................................... ~............~ iXPTTAKE=O 


entry for an "in-only" page, 

find the next PTE. • 3 SPCA
I 

SPCANTG~1I SPCANTVM (Byte 0) ~.-.&......., N virtual block number 

6 If the page ~ val id: SPCANTVM (Byte 1) = 
page number

Dequeue its associated PFTE. PFT E Dequeue I 
SPCANTFL=O ~ 

i 	 IIIEAPRLS2 
ft..........~ ~ 5.18 SPCANTXP=XPTE numbee I 

SPCANTPT=PTE numbee I 
SPCAACT~SPCAACT' 1 ~ 

~ 
If on LSQA page or it is referenced or PFTE 

changed, f;11 the SPCA entey. ~..............................-..: [PFTHOLDQ=Q
{ 	

I""......~ ,. 0' 	 IPFTTSO=O 

PFTLSQA-iIFind the next PTE. 	 • 3 I,.~ 
~..............."1 ~.SPCA 


irS-PC-A-O--C-T~-S-PC-A--O-C-T+-1-' ~ ~ I~ 
~..............., ~................................................~ 


If not an LSQA page, or unreferenced 
and unchanged 

V R Release 

• Route V=R intercepted page 
IEAPVRS

frames to a V::..cR reg ion. 
Allocate the page 
to a V=R reg ion 

5.11 

• 3 	
PFTE

• Make non-V=R intercepted 
pages available. ..................................., ~.............................. ~~ PFTONAVQ J 


PFTE Enqueue 

IEAPRLS2 
Add the PFTE to 
the available 
queue 

5.17• 3 

lv< (. 	 L 




r· r r 

• Diagram 5.42 (steps 5-6) Swap-out - CMPLOUT Subroutine (Mcdule IEAPSWAP) 

r------------------------------------------------------------T--------T--------, 
I IROUTINE I I 
I NOTES INA!'E I LABEL I 
r------------------------------------------------------------+--------+--------~ 

L_____________________________________________________ ________J 

I 5 ICMPLOUT I 
I 
I 6 
I 

For pages that 
LSQA pages: 

are unreferenced and unchanged and not 
I 
I 
I 

I
I 
I 

I 
I 
I 
I 

If the page is marked for V=R 
it is given to V=R Release to 
V=R region request. 

interception (PFTVRINT=l) 
be allocated to a pending 

I
I 
I 
I 

I 
I 
I 
I 

I 
I 
I 
I 

Otherwise, the page is made available via PFTE Enqueue 
and PFTONAVQ is set to one. The PFTE is enqueued so 
that it will be taken first, since it cannot be 

I 
I 
I 
I 

I
I 
I 
I 

I reclaimed. I I 
_______ ________~~ 

en 
C1) 

~ .... 
o::s 
U'1 

I'd 
III 


IQ
.... 
::s 
IQ 

.a en 

C1) 

Ii 

<:.... 
en .... 
o::s 

w 
w 
w 



w 
w Diagram 5.43 (Steps 1-3) 

Swap-out - External Address 
""" Assignment Subroutines 

From Swap-out Control routine (5.40) 
to assign devices and slots for poge-outs 

OutputInput 

DEVICES 
SPCT 

If the first (next) device specified by TSO is[!KrotRSJ r- ­ .'~SOD Entries 
a fixed-head device: t"" __JI 

iI! Byte 0 Device number 

PDT • Fill the SOD entry appropriately. 1)+ 	 ~"""""""'.....""~ 
PDTNO 	 1• 	 When all (4) specified devices hove t 
PDTDEVT2 	 been handled 1 

1
PDTGC --, 

••••••••••••••~Caller 
PDTAPC I 6 PDTE 

I 1--­ 2 If the device specified by TSO is a movable-head device: address 

I • Calculate the best cyl inder and starting group number. I SPCA }r.j S PCAOCT I I 
_--1 	 ~"SOD EntriesI ~ 	 • Fill the SOD entry oppropriotely. ~"""""""'...."""'" 

I CCV Byte 0 Device numberI I IL______ _ 
3 If no devices were specified, chose a default: 	 Group and cylinder 

• 	 Find the secondary device with the largest number of 1 
available pages over the number of pages to be 
swapped out. 

PDTE 

• 	 If none, find the primary device with the most pages address 
available. 

• 	 Fnl the SOD entry appropriately. """"""""''''''''''''''''~SOD Entry 
,--------, 

Same os one of t~e above,I t Caller 
depending on type of 
default device 

(Continued at Step 4) 

\. 	 (. L 



r 


CIl 
m 
n 
rt .... 
o 
::1 

U1 

I1j 
III 

\Q .... 
::1 

\Q 

CIl .g 
~ 
<.... 
til .... 
g 
w 
w 
U1 

( 	 r 

eDiagram 5.43 	(Stefs 1-3) Swaf-out - External Address Assignment Subroutines 

(Module IEAPSWAP)
r------------------------------------------------------------T--------T--------, 
, ,ROU'IINE , , 
, NOTES 'NAME 'LAPEL , 
~------------------------------------------------------------+--------+--------~ , * DEVICE initializes tbe SOD (a 32-tyte internal work 'DEVICES , , 
, area) with up to 4 entries for a farallel swaf or , , , 
, 1 entry if the swaf device is defaulted. "I, 	 , , ,
'1 SPCDIRS contains indexes for 1-4 devices or a 0, " 
, indicating default. , I, 	 , , 
, 2 Cylinders are scanned (through counts in tbe CCV) for , I 
, the cylinder closest to tbe current head location 'I 
, (using PDTLGNI, with an available fage count greater " 
, than the lesser of either the swap-out page count " 
, (SPCAOAT) or slots per cylinder - 5. If none is found, , , 
, the closest cylinder with the highest availatle page " 
, count is selected. 	 , ,, 	 , , 
, The end relative grouF number of this cylinder = " 
,L____________________________________________________________cylinder numter times grouFs per cylinder. ________ "________J~ 



(.oJ 	 Diagram 5.43 (Steps 4-5) 
(.oJ 

0\ Swap-out- External Address 
From Swap-out Control Assignment Subroutines 
routine (5.40) to fi II in 
PCBs for page-outs 

Input Processing 	 Output 

~SORT 
SPCA 

SPCAOCT I ­ 4 
1 

SPCAEPTA I
1 

SPCANTNG I 
SPCANTPT I 

SPCANTVM _I I 

SPCAPGTA 
 Ii 

SPCANTXP I I 
..J 

XPTE 	 5
[XPTA\I~ 

,- ­ ~ ­

I 
_...J r ­ - ­

---l 

r""~ 

Raot PCB 

PGTRSA"'D 
If the first (next) PCB represents a page to be 

Iswapped out: '­ PGTPVM=I 

PGTPAM=I 
• 	 If it is not an LSQA page ~""""""""""",J 
• Initialize the PCB for the swap-out. 	 PCBRTP=root address..,"""""""',....,"""""'" 

PCBDADDF~ I 

PCBRBN=PGTRSA (;aved) 

PCBDADD=SOD en"y• 	 Move the SOD infocmation inta the PCB ....""""""""'....""""""~ 

• 	 Increment the slot number. If it is now 

greater than the number of slots per group, 


obtain the next (or first) SOD entry. 	 I 4 

• When all PCBs have been handled 	 PCBRGOTO=SROUT..""""""""~ """"""'~ 
PCBRCNT=SPCAOCT 

•••••••••••••• Caller 

If the SPCA entry is for a page not to be 

• If the page is not usable 

apped out:sw

~""""""""""""""''''.4 
V=R Release 

• If the page is V=R intercepted IEAPVRS 
Allocate the page to 

4 • 1a V=R region. 5.111 

PFTE Enqueue 

• 	 Make the page available. IEAPRLS2 
Add the PFTE to the 
Clvailable queue. 

4 	 5.17 

:"""""""""''l :.,.""""",,{~ 

SPCAOCT=SPCAOCT -I 


SPCANTNG=I 


PFTE 
,.coP-'F-"T-Q-N-D-X-=-P-FT-A-V-Q-N----, 

PFTONAVQ=I 

l.. 	 L
'­



r ( 	 r' 

Diagram 5.Q3 	 (Steps q-5) S~ap-out - External Address Assignment Subroutines 

(Module IEAPSWAP) 
r------------------------------------------------------------T-------~--------, 

I IROUTINE I I 
I NOTES INAME ILABEL I 
~------------------------------------------------------------t--------t--------i
I 4 The page is to be swapped out if it is not narked ISORT 
I "in-only" (that is, 1f SPCANTNG=O) and: 
I 
I • It is an LSQA page (SPCANTPT=O) or 
I 
I • It is a changed page (change bit on) or 
I 
I • It dces not have a copy on external storage 
I (XPTAXAV=O) or 
I 
I • It presently exists on a movable-head device 
I (PDTDEVT2=1).
L____________________________________________________________~________i________ 

CIl 
m 
~ 
"".o::s 
UI 

't1 
III 

\Q 

"".::s 
\Q 

CIl 
.§ 
m 
11 
<
"".CIl 

"".g 
(.oJ 
(.oJ 
..,J 



w 
W 
<Xl 

Input 

Register 1 

First PCB on page I/O 
initiation queue 

PCB 

PCBsKIP 

PCBFQP 

PCBDADDF 

PCBDADD 

PCBXPT 

PVT 

PVTPDT 

PDT 

PDTIOB 

PDT LAST 

PDITE 
r 

PDITsQCT 

PDITMIOB 

PDITlOBP 

PCITACT 

PDITHsQA 

PDITXCP 

• Diagram 5.44 (Steps 1-6) 
Page I/O Supervisor 

Entered by the Queue Scanner 
when PCBs are found on the POJe 
I/O initiation queue and the queue 
is not suppressed 

Processing 	 Output 
PCB Processing 

IEAPIOs 

t Each PCB with its Skip
locate the next PCB to process. 	 QsEARCH 

Flog on r---r--------------------- F;nd 0 PCBthot I 	 PCBNQN=PCBTsKPO 

I If none 	 ...4 con be processed. ~i~"''''''''''''''''''''''''''''''''''~ ~...~ - -I 	 0 PCBIOCMP=I 
I 

.J 


-,.--- 2 
 Build a channel program for this PCB. 	 CHPGBLD 

--I If there ore no available CPOEs, suppress... ... Bund 0 CPOE. I L f Page I/O Initiation Sccn 
the page I/o initiation queue. 4 - I 5.45. 	 Table Entry_...J 

~ 	 r-----~------~1!...................................................................'1 ~.................................~ ~......+I'--s_C_N_s_F=_I
________...J
3 	 Add the channel program to a slot 


queue. 
 OsQ.1 IADD" 
Put the CP<') E on the 
appropriote slot queue. 

1 • 	 5.451 ~ Move PCB4 Move processed PCBs to the appropriate 

queue. IEAPCBM 


Put PCBs on the 

t 1appropriate queue. 


Paging Device Processing 
 5.48 

I 
r--- 5 Determine whether all of this device's 


slot queues are empty. 


T---- If 50, access the next device and repeat~ 
this step. If there are no more devices. ••••••••••••••••••• Caller

I 
J 

PDITE - - --I 6 Issue an EXCP, if necessary. 

"'5 	
~p=o 

Get the next device. 

If none ..~•••••••••••••••• Coller 

(Continued at Step 7) 

l*> L 	 L. 


I 



(
r 	 r 

• Diagram 5.44 (Steps 1-6) Page 1/0 Supervisor (Module IEAPIOS) 
r------------------------------------------------------------T-------~--------,
I IROUTINE I I 

I NOTES INAME ILABEL I 

~------------------------------------------------------------t--------+--------~1 	 IIEAPIOS I I 


I I I

2 	 The XPTE and PCB addresses are passed to CHPGBLD. If I IBUILD I 


the PCB is marked for directed page-out (PCBDADDF=l), I I I 

the XPTE address that is passed is actually the address I I I 

of PCBDADD. I I I 


I I 

This step completes PCB processing. The paging devices IMOVIT I 

are handled next. I I 


I I 


4 


5 	 IPDITLOOPI 
I I 


6 The EXCPS are issued by using the EXCPVR macro ITESTEXCP I 

instruction. PDITXCP is set by STARTUP. I I 


. I I
II The QSEARCH subroutine searches the page 1/0 initiation IQSEARCB I I 

queue for the first (next) PCB with the ·skip· flag cff I I I 

(PCBSKIP=O). It returns the address of this PCB in I I I 

register 1. If no PCBS are usable, a zero is returned. I I I 

Each PCB with the ·skip· flag on is marked 1/0 complete I I I 

and is routed to the task post queue. I________i ________ JI
____________________________________________________________i I 


en 
m 
C'l 
IT 
~. 

o 
::l 

U1 

I'd 
QJ 

\Q 
~. 

::l 
\Q 

.a 
en 

~ 
< 
~. 

CJl 
~. 

o 
::l 

w 
W 
ID 



w • Diagram 5.44 (Steps 7-12) 
o 	 Processing Page 1/0 Supervisor"" 	 Input 

Single Exposure 
PDITEs 

1--­ --- 7 Attempt to stort the device if it is not 
active. STARTUP

PDITACT 
I 	 Prepare to start an ____JPDITHSQA 

inactive lOB by 
chaining a CPO E to it. 

PDT 5.45 

PDTLAST 
 t I 

If STARTUP failed, get the next device. • 5 
... 

If there are no more devices 	 Caller,.. 
8 	 If STARTUP was successful or if the device was active originally I 

append other channel programs to the lOB. APPEND IT 

, 
Chain the CPO Es 
to the lOB. 

5.45 
Entered by Channel 

110. 

Register 2 	 IEAPIOS2
End Appendage ,.. 	 • 6 

Address of 

interrupting lOB 1-- ­ --- 9 When the entry is from the Channel End Appendage, 


attempt to stort the inactive device. STARTUP

PDITE 	 ___ -.J 

Activate thePDITINDX 
indicated lOB. 

Base PDITE 5.45 

PDITACT ... 
CallerIf STARTUP fai Is ,.. 

10 	If STARTUP was successful attempt to add more 
channel programs to the lOB. APPENDIT 

Add more CPO Es to 
the indicated lOB. 

... 5.45 ..Entered by IEAPALOC 

when a PCB represents 
 IEAPIOS3 Callera page-in from an ,... ,..
active device 

,----- 11 Attempt to build a new channel program. CHPGBlD 

Register 1 I 	 Initialize a CPOE. 

Address of P~ I 	 5.45 
___ -.Jr 	 ..PCB 

Caller 
PCBDADDF 	 If CHPGBLD is unsuccessful ,.
PCBDADD 

12 Add the channel program to the slot queue. 	 ADDTOSQ
PCBXPT 


Put the CPQ E on the 

slot queue. 

5.45 

APPENDIT 
Add more CPO Es to 
the indicated lOB. 

5.45 

... 
Caller ,.. 

~, 	 L~ L 



(
r 	 r 

• Diagram 5.44 (Steps 7-12) Page I/O Supervisor (Module IEAFIOS) 

r------------------------------------------------------------T--------T--------, 
I IROU'IINE I I 

I NOTES INAME ILAEEL I 

r------------------------------------------------------------+--------+--------i7 	 IIEAPIOS IMLTXP2 

I I

9 The PDITE address is the input lOB address. IIEAPIOS21 

I I 

To minimize rotational delay, the slot queue chosen for I I 

STARTUP is the next sequential slot queue of the next I I 

sequential slot queue of the last active channel I I 

program's. slot queue~ I I 


I I

11 	 The PCB passed needs I/O initiation and the device that IIEAPIOS31 


it requires is active. I I 

I I 


If the device is active on the same cylinder as this I I 

request, the page I/O Su~ervisor calls APPENrIT. I I 


I I 

The XPTE is located as in IEAPIOS, Note 2. I I
L____________________________________________________________~________~________ J 

en 
ro 
o 
rI" 
1-'­
g 
VI 


~ 
IQ
1-'­

.s 
en 
c:: 
'tl ro 
~ 
1-" 
CII 
1-" 
a::s 

W 
01:: .... 



IV 

w 	 Diagram 5.45 (Steps 1·7) 

"" 	 Page I/O Supervisor­
Subroutines for Building and 
Queuing Channel Programs 

From Page I/O Supervisor 
to build a new channel 
programInput 	 Processing 

Registers XPTE 	 CHPGBLD Output 
Address of PCB XPTDEV -1'---- locate the POrE and determine whether.a.ny••••••••••• 

channel programs can be built. If not Caller 
Address of XPTE --I--l rRe-'9c..i'_te_r_I_5______..., 

PVT XPTGROUP : I Il""""",~ ~~ Return code=4 

PVTPDT } I I- - 2 Indicate that this CPQE is being used and 

4- - - - - - - -"1 I route the PCB to the I/O active queue. c=========~=====::::> ~ PVTCHPGQ I I 
CPOE 3 Calculate the slot queue address and 

I determine the target cylinder for the 
~ 

CPOUNAV } + _______ -I paging operation. 

CPOLAST 

r t_4~~I:n:it:ia~l:iz:e~t:he~C:PO:E~·_____~~~~~~~~~~~i-~~:~ CPOCCHH~torget cyl inder 
PDTE I 	 CPOSSNOP,,<>p code 

PDTIOB _ ---- _ --	 CPOADSS=SQSECNOI 
CPOR'vVAD=real addressPVTPDTGC } r------- _...J 

PVTNPIN~PVTNPIN+I 	 CPO RWOP~op code
PDTTG CC;;;-;:,===== 
PDTBA 	 PVT NPOUT~PVTNPOUT+I CPONPTCA=O 

I 	 Registers CPONPTCD~no-opBose PDITE .~.I 
PDITlSQA 	 Address of CPO E CPOTCBR~PCBPTYI 

PCB }
PDITSSDV J PCBRBN 	 Address of PDTE PCI fl09=O 

Address of base PDITEPCBIOI ~SQ Entry 
Address of slot queue entrySQHHDEL PCBPTYt==:=.. 

SQSECNO 	 Return codeo::Q 

From Page I/O Supervisor 

Input to add a CPQE to a slot queue Processing Output
I .. 

ADDTOSQ
Registers ,.. 	 SQ entry 

Address of CPOE ------ 5 	 Determine whether the slot queue is empty. SQ1CHPGA 
If so, add the CPO E immediately. >. 

Address of slot queue 	 , SQLCHPGA~ 
Address of base PDITE 	 SQCHPGNO=SQCHPGNO+l 

Determine where the CPOE is to be placed 
SQE on the s lot queue and add it there. CPOE 

ISQCHPGNO~ CPOSQFPT 

PDITE r---- 7 Indicate which ,lot queue i, to be P"""""'" """'~ 

------- 6 	 • 0 J 
CPOSQBPT 

I searched first (whichever has the 	 .~ ri!! 
PDITMHDV I mo,t on it). ,. calle[,.; 

PDITSQCT _..I ~. PDITHSQA=this ,lot1"'"(Continued at Step 8) 	 queue number 

PDITSQCT=SQCH PG NO 

c.v l 	 L 


http:whether.a.ny


(
r 	 r 

-Diagram 5.45 (steps 1-7) page I/O Supervisor - Sutroutines for Building and 


Queuing Channel Programs (Module IEAPIOS)

r------------------------------------------------------------T--------T--------, r------------------------------------------~----------------T--------T--------,
I I RCUTINE I I I I ROUTINE I I 

I NarES INAME ILABEL I I NOTES INAME I LABEL I 

~------------------------------------------------------------t--------t--------~ r------------------------------------------------------------t--------+--------~1 The PDTE address = [(XPTDEV-1)*32]+PVTPDT. ICHPGBLD ICPAVTEST 6 For movable-head devices (PDITMHDV=l), the placement of I ISRCBLOOP 

I the new CPQE on the slot queue is determined: 
The CPQEs are searched, starting from the last CPQE I 


I
used, for the first available one (CPQUNAV=O). The 1. By cylinder order (low to high). 

CPQE address is incremented by 64 to find the next 
 I 

CPQE. I 2. By priority (high to low within cylinder 


I groups). 

2 The correct slot queue address PDIT1SQA+[(XPTSIOT-1) I CPJIVAIL 


*16]. I 3. By read over write (within cylinder groups of 

I the same priority). 


3 The target CCHH is calculated as follows: IMULTCCD 

XPTGROUP I 4. FIFO (when the other 3 are equal). 


CCtELTA = PDTGC If the reaainder 0, CCDELTA 
 I 

CCDELTA-1. I For fixed-head devices (PDITMHDV=O), only 2-4 are 


HHDELTA = XPTGROUP-[(CCDELTA*PDTGC)+l]*PDTTG. I considered. 

CCDELTA is combined with HHDELTA and the fcur HHDELTA I 


I
bits in SQRECNO are added to the combination. To add the CPQE to the slot queue, the first (SQ1CHPGA) 

The final CCHHRDELTA + PDTEA = the target CCHBR. I or last (SQLCHPGA) pOinter is changed to the new CPQE 


I address if necessary. The forward (CPQSQFPT) and back­

4 When the device characteristics include rotational IALLDEV ward (CPQSQBPT) of both this CPQE and its previous and 


sensing (PDITSSDV=l), the set sector operation code I next CPQEs are changed appropriately. The CPQE count 

I
and sector must be placed in the CPQE. 	 (SQCHPGNO) is incremented by 1. 
I 


If the PCB is for a page-in (PCBIOI=l), the read data I 7 If the count of CPQES on this slot queue (SQCHPGNO) is IUPCOUNT 

operation code is placed in CPQRWOP and the count of I greater than the previously high count (PDITSQCT), the I 

page-ins (PVTNPIN) is incremented (for SMF purposes). I "high slot queue address" (PCITHSQA) is set to this I 


I 	 I
If the PCB is for a page-out (PCBIOI=O), the write data slot queue address and the high count is updated to 

operation code is placed in CPQRWOP and the Fage-out I reflect the new high (PDITSQC~=SQCHPGNO). If SQCHPGNO I 

count (PVTNPOUT) is incremented. is smaller than PDITSQCT, no changes are made. I I I 


I 
~ 

I L____________________________________________________________ ________4 ________J 

If the slot queue is empty (SQCHPGNO=O), none of the 	 IADD:IOSQ IWASEMPTYI5 

criteria for CPQE placement have to be considered. 	 I I I 


I I I 

The first and last CPQE pointers (SQ1CHPGA and SQLCHFGA I I I 

respectively) are set to the inFut CPQE address. ThE I I I 

forward and backward CPQE pointers (CPQSQFPT and I I I 

CPQSQBPT respectively) are set to zero. The CPQE count I I I 


I is incremented (SQCHPGNO = SQCHPGNO+1). I I I
L____________________________________________________________~________L________J 

en 
(!) 

~ .... 
g 
IJ1 

I'd 
PI 

\Q.... 
i:j 
\Q 

.a en 

(!) 
11 


-=.... 
C/) .... 
g 
w 
~ 
W 



w • Diagram 5.45 (Steps 8-13)+= 
Page I/O Supervisor­
Subroutines for Building and 
Queuing Channel Programs 

+= 

From Page I/O Supervisor
Input to append a channel 


Registers program to an active lOB Processing Output

rl Address of base PDITE .. 


lOB address of this 
 APPENDIT2 
exposure ..,. 

• PDITE 
r 

PDITLACP II 
PDITCPCT r------- 8 Calculate the last used slot queue number 

PDITlSQA and search the next sequential one for a 
I 

usable CPQ E. If one is foundPDITSCNT f-----I • 12 
PDITMHDV I~ 9 Search the secondary slot queue of the last 
PDITOAPF I slot queue searched for a usable CPQE. If 
PDITSSDV I • 12one is found - --IIPDITPON J.-­ 10 If not found, continue search using the

I(PQE (last octive) I secondary slot queue of the last slot queue 

I CPOSINDX 1+--f--_.....J I searched until found. • 12 
I 11 If all slot queues ore empty Register 15 
I SQCTUPDT I Return code
I I 

CPOE I 
Update the "highest POITE 

I CPOCCHH count II pointer in the ~ :ot................~ 
I PDITE. il I POITHSQAI] ­SQE POITSQCTI I

I SQRECNO I I .. 
CallerI 

I r 

I 
I 
I 12 Dequeue the CPOE from its slot queue. DECHPG 
I POITERemove the C PQ E.I rj POITLACP I5.45, Step 17I 

CPOEsI 
If this CPO E cannot be used and the slot CPQSSNOPI 
queues are now empty •11 CPOSPCHA~CPQCCHHI 

, 

I If this CPQ E cannot be used and there CPOTCBPR~SQRECNO 

are more on the slot queues, continue CPOSEEKA(BB)=O Just-IL___, searching the same slot queue. added 
CPOCPPTR=Previous CPOE 
CPQE address 

13 Add the CPG)E to the active chain. 
CPORWFLG (See note) 

(PO N PTCA~new 
Previous•9 

CPQE address 
(POE 

CPONPTCD~TlC ap code 
(Continued at Step 14) 

'" 
 (. L, 




(
r 	 r 

o 	Diagram 5.45 (Steps 8-13) Page 1/0 SUFervisor - Subroutines for Building and 

Queuing Channel Programs (Module IEAPICS) 
r------------------------------------------------------------T-------~--------l 
I IROUTINE I I 

I NOTES INAME ILABEL I 

~------------------------------------------------------------t--------+--------~ 
I 8 The last-used slot queue address = (CPQSINDX*16)+ I APPENDIT I START I 

I PDIT1SQA. I I I 

I 	 I 

I If the device is movacle head (PDITMHDV=l), the cylinder I 

I numbers of the last active channel program and the 	CPQE I 

I being tested must ce equal in order for the CPQE to be I 

• usable. 	 I 

I 	 I 


If LACP CC is 	higher, keep searching this slot queue. I 

If LACP cc is 	lower, stop searching this slot queue. I 


I 

10 For moveable-head files, CPQES are selected only if ITPRIM 


they are for the same cylinder. I 

I 


The new CPQE is always added to the end of the active 	 IAPPENDITIDUAPPEND12 

queue .. 	 I I 


I I 

13 	 I IRCO 


I I 
o
SQCTUPDT coropares the count of CPQES on each slot queue ISQC'WPDT I 

(SQCHPGNO) for this device with the high count I I 

(PDITSQCT). If a slot queue is found with a higher I I 

CPQE count, PDITSQCT is set equal to that count and I I 

PDITBSQA is set to that slot queue number. If either I I 

PDITHSQA was zero before the search, or PDITSQCT is I I 

zero at the end of the search, a return code of 7 is I I 

returned to the caller to indicate that all slot queues 	 I I 

for this device are empty. Otherwise, a return code of 	 I I 

a is given to 	indicate that rrore CPQES exist. I I
l _____________________________________________________ _______~_______ ________~ 

Cfl 

CD 
o 
rt" ..... 
o::s 
U1 

at 
I.Q ..... 
S 
Cfl 
~ 
'tl 
CD 

~ ..... 
en ..... 
o::s 

w 
~ 
U1 



I t Caller 

SOCHPGNO=SOCHPGNO-l 

SOLCHPGA 

SOlCHPGA 

Dequeued C FO E 

CFOS1NDX=SOINDX 

CFOUNAV=O 

Previous CPQE 

CPOSOFPT 

Next CFOE 

CFOSOBPT 

w 	 • Diagram 5.45 (Steps 14-20) ::­ Page I/O Supervisor­0\ 
Subroutines for Building and 

to start an inactive device Queuing Channel Programs 
From Page I/O Supervisor 

Input 
,------ l .... Register 15 

PCB 	

I 
I ~cgisters 	 STARTUP 

~"'1"''-1 ~...~ Return code ICFOSFPT Address of bose PDITE 

Inactive exposure's 14 Determine whether the device is a fixed-head 	 I ~ PDTE 
lOB address 	 or movable-head device and find the proper 

CPOCCHH 

CFOPCBAD I I 	 IPDTLGN 1mCPOE.Address of slot queue ~ I 	 CFOE15 Dequeue the channel program from its slot DECHPGlOB 	 I i!! CFOSEEKA(BB)=OPCBDADDF 
queue. 	 Remove the CPOEr+ 	 I I PCBDADD 	 (CCHH)=CFOCCHH

from the slot
I PCBXPT 	 queue. ~ I (Record)=SORECNO 

PCBGROUP 	 SOSCSOA I ill CFOCPPTR=O 

SOlCHPGA ~ ~ lOB 
I 	 (Diagrammed below) 

I PVT 
If the (POE cannot be used but more exist 	 _ 14SORECNO 	 rIOBSTRT=fi"t CCW inIPVTPDTI 	 iii!! (POE address 

PDITE 	 If the (POE cannot be used and the slot 

• 
~..._ rIOBSEEK=CPOSEEKAI B 	 queues for this device are all empty:...............................................
PDITSOCT 

PDITEI PDITMHDV 	 • 
IPDITLACP=new CPOE address 

I 	 X~EI r.X~PT~G~RO-U-P----~ 16 Chain the channel program to the lOB and 	 LPDITXCP=l 
indicate that an EXCP is needed (if JPDITACT=l


L XPTDEV necessary) • Coller 


------- ----1-- I 


From APPENDIT or STARTUP 

to remove a CPQE from a 

slot queueInput Processing 	 Output 

Registers 

CPO E to be dequeued 

CPOEls Slot Queue 

Address of base PDITE 

PDITE 

PDITHSOA 

SOINDX 

CFOSOFPT 	

DECHPG 

17 	Dequeue the CPQE and "indicate the change 
in the slot queue. 

r- 18 If the PCB should not be skipped ............................................~ 


I 
I 19 	Make the dequeued CPOE available and 

route the PCB.I 

I 


20 Update slot queue count information. 	 SO CTUPDTI 
__ ---l 	 Update slat queue 

counts in the 
PDITE. 

o 	 5.45 

II!!L...........................................~ 


L L 	 L 




(r 	 r 
Diagram 5.45 (Steps 14-20) Page I/O supervisor - Subrcutines for Building and 

Queuing Channel Programs (Module IEAPIOS) 
r------------------------------------------------------------T-------~--------l 

1 	 IROUTINE 1 1 
1 NOTES 	 1NAME 1LABEL I 
~------------------------------------------------------------+--------+--------~
114 For a movable-head device, the CPQE with the closest 
1 CC to the last cylinder used (IOBCC) is used. All slot 
I queues are searched in secondary sequence and the CPQE 
I with the smallest absolute difference between its CC 
I and IOBCC is used. The search ends immediately if a 
1 match is found. 
1 
1 For a fixed-head device, the first non-empty slot 
I queue's first CPQE is used. The slot queues are 
1 searched in secondary sequence. 
1
115 A return code of 7 (which means no CPQE could be used 
1 and the slot queues are emFty) is returned tc the 
1 caller. 
I 
116 An EXCP is needed if the caller is the Queue Scanner. 
1 A return code of 0 (a CPQE was chained) is returned to 
1 the caller. 
I 
117 The first and last Fcinters of the SQE are updated if 
1 necessary and the forward and backward Fointers of the 
1 previous and next CPQES respectively are changed if 
1 necessary to reflect this CPQE's removal. If this 
1 slot queue has the highest CPQE count (PDITHSQA=this 

SQE), the high count (PDITSQCT) is decremented.1 
I 
118 If PCBSKIP=O, this CPQE may be aFpended. 
I 
119 
120 A 0 return code from SQCTUPDT (all slot queues emFty) 

STARTUP 	 IS010 
1 
1 
1 
1 
I 

I 

1 
I 
1 
1 
IS030 

DECHPG DECHPG 

SKlPON 

is changed to a 4; a 7 return code (CPQES remain on slotl 
queues) is left alone. 1 

f] For a movable-head device (PDITMHDV=l), extra records 
I 
I 

must be kept for better future auxiliary storage 1 
assignment. For a directed Fage-out (PCBDADDF=l), the 1 
XPIE is located by PcaDADD. The FIlTE address = 1 
[(XPIDEV-l)*321+PVTPDT. PDTI~N is then set to 1 
XPTGROUP. If PCBDADDF=O, the PIlTE is located by PCaDEV 1 
(rather than XPTDEV) in the above equation. PDTl~N is I en then set to PCBGROUP. 	 Il ____________________________________________________________~________L ________til 

~ 
",. 
o 
=' 
U'I 

~ 
\Q 
",. 

=' \Q 

en 
.§ 
til 
1'1 
<: 
",. 
en 
",. 

g 
w 
~ 
-..J 



w • Diagram 5.46 
~ Program Check Interruption ExtensionIX) 

Entered by Program FliH to 


handle processing or relocation • 

exceptions (jnteeruption code 17) Processing 
 Output

Input ... 
IEAPIX 


CYT P' 


CYTPYTP 1 	 Obtain a skeletal PCB. Build PCB 

IEAPCBB 

Get an empty PCB. 


Main Storage 
 5.49 
Locations 144-147 	 ~ 

Relocation oddressf1 	 2 Determine whether an error exists. Find Page 

/ 
/ 

r 	

I f1IEAPFP PCBYBN=ABCO 

r--'" locate the PTE and PCBXPT=O 

I .... PCBNQN=PCBFREEXPTE for this PCB.~ 5.27I If the Find Page routine fails or if the PCBDPF=] 
I paging exception should not have PCBPEX=]
I occured (page valid) IEAPSER 	 PCBTCF=1I 

Place the system in 	 PCBRTP=OLDI ___ ...J 	 a disabled wait state.PTE 	 PCBPTY 
5.54PGTPYM ~-	 PCBRBP=TCBRBP------ 3 If the virtual page has not been assignedPGTPAMI 	 by GETMAIN, dispose of the PCB. Move PCB 

~ IEAPCBM 
~ Place the PCB on 

the free queue.~"'-.® 	 5.48and 


CYT 
 Return 

it 	
CodeCYTSYLID Coller 

CYTSYLK r-T---- 4 Allocate a real storage page for the 
,..

I 
missing vital page.CYTTCBP 	 Real Storage Allocation---t I 	 ~ • IEAPALOC 

Allocate a page.I 

C 
I 

L,.",-.® 	 5.6---..IEATCB 

NEW .- -j--r- -- 5 	 When a page was reclaimed, or if this is 

a first-time reference, dispose of the PCB. Move PCB
""1 


0'" jI! IEAPCBM
I jI! Place the PCB onI ~,,""ReturnTCB 	 the free queue.I Code 

TCBDSP 
 5.48I~ _J 
TCBRBP k_ 	 ... 

I -,TCBTCT Caller6 When a page-in is required and new work I 
is generated for the paging task, place theI PCB on the appropriate queue. Move PCB rI IEAPCBM IEATCB

I L _ ___. Add the PCB to the I NEWO{) (Task Switch)
IL ____' indicated queue. 

7 When no new work has been generated (the 	 5.48 
RB
I RBWCF=RBWCF+1

PCB was related to an already active PCB), 

or upon return from the Move PCB routine, ~,~ TCT
.. 	 ~l'~indicate a task switch if necessary, set the 	 ... ITCTPGIN=TCTPGI!#D 

""~"""""""""',...requester to page wait status, and perform 
CallerSMF accounting jf possible. 

P' 	
Register 15 I 	

II 
~,,~r~~R-et~u~rn-c-o-de----~I~ 

~ L 	 ~ 




r r 	 r 

oDiagram 5.q6 Program Check Interruption Extension (Module IEAPIX) 
r------------------------------------------------------------y-------~--------, r------------------------------------------------------------T-------~--------, 

, ,ROUTINE , , 1 ,ROUTINE , 1 
, NOTES ,NAME , LABEL , 1 NOTES 1NAME 1LABEL 1 
~------------------------------------------------------------t--------t--------i ~------------------------------------------------------------t--------t--------~

1 ,IEAPIX ,GOPIX , 7 If NEW=OLD, task switch is indicated (NEW is set to, ILABELOO , , zero). I I LAEELIO 
2 If the return code from the Find page routine is q, the, , 

virtual segment in question does not exist. If it is 8" , If TCBTCT=O, SMF accounting cannot be perforKed. 
an internal error has been detected. In either case" , Control is returned with a return code of 0 (see Note 
control is passed to IEAPSER with an error code of 700. , , 3) •, 
If the page is valid (PGTPVM=O), a logical error , IEAPIX turns on the paging-supervisor-in-control flagoexists and control is passed to IEAPSER with a ccde of , (CVTPGSIC) and the 'PIX in control bit" in the PVT at 
701. 	 entry. Both are turned off before all exits.I, 

3 	 If the virtual page is unassigned (PGTPAM=O), the XPTE ,CONTIO The relocation address is the virtual storage address, flpointer is zeroed and the PCE is routed to the free that was found to te unavailable during dynamic address 
queue (PCBNQN=PCEFREE). Exit is made to the caller , translation. Its format is [ 00 1 AE 1 CD 1 EF 1 
with a return code of 8 (see Ncte 3). , The virtual block numter is ABCO. , 

4 If the system lock (CVTSYIK) is on and its pcinter , CONT20 Return Code Meaning 

(CVTSYLID) equals OLD, the PCB is marked as represent­ ,CONT30 ~ o The current task cannot be dis­

ing a disabled page fault (PCBDCF=l) and the pricrity , patched; either the paging task will 

(PCBPTY) is set to X'FF'. Otherwise, PCBPTY=TCBDSP. , I be in control or a task switch is
, , 	 necessary, and the current task is 
For the 'reclaimed/content insensitive' case (IEAPALOC lLABEL30 , in page wait. 

return code is zero), the PCE is disposed of (PCENQN , , 

was set to PCBFREE by IEAPAIOC). Control is returned I , q The current task is dispatchatle; a 

to the caller with a return code of q (see Ncte 3). , I real storage page has been assigned 


I I 	 and the task is ready. 
6 	 When new work is generated (IEAPALOC return code equals ,LABEL20 , 


either q or 8), the PCB representing the work is moved 1 .1 8 No page has been assigned because a 

to the queue indicated by PCBNQN (set by IEAPALOC)., 1 1 logical addressing or protection 


5 

L-___________________________________________________________ ________ ________ J~ ~ 

exception has been detected.
L____________________________________________________________ ________ ________ J~ ~ 

'til 
(l) 
o 
rt.... 
o::s 
VI 

Ii)' 
<Q .... 
.B 
til 
~ 

"0 
(l) 

~ .... 
en .... 
o::s 

w 
~ 
\Q 



W 
IJ' Diagram 5.47 
o Real to Virtual Address 

From ERPs, RMS, and Paging Supervisor Translation Routine 
routines to convert hordware-supplied 
reol addresses back to virtual addresses 
so their areas can be addressed while 

dynamic address translation is in effect Processing Output 

Input I 
IEAPTRV 

Register 1 Register 1... 
I I Real address f4-- -,--- 1 Calculate the PH slot number and determine I Virtual address -Real address I 

I whether the input address describes part of the 
nucleus. If it doesI Register 15 

I Retu rn code==OI I I 
PVT I 


PVTFPFN ._...J 

Register 15PVTLPFN If the input address is above the bounds of real------ 2 

storage Retu rn code~4PVTF PTP ~"'-.;: I'-l ~"""'... ~'"9l 
I 

Register 151----- 3 Locate the PFTE and determine whether it is on 
I the available page queue. If so Retu m code=4 

PFTE I ...,"'-.;:",""",-.01 ~'"+I I 
PFTONAVQ _..J 

PFTVBN ~: .----- 4 Calculate and verify the virtual address (ensure 
Register 15that the page is in real storage). If it is not 

valid Return code=4..."".,.~"""'-';: ~,~ I 
Register 1 

Virtual addressI I 
If it is valid Register 15 .. Retu rn code==OI I

5 Return to the caller Caller ,..
I 

L, l L 




r ( r' 

Diagram 5.41 Real to virtual P.ddress Translation Routine (Module IEAPTRV) 
r------------------------------------------------------------T--------T--------~ 

I IROUTINE I I 
I NOTES INAME I LABEL I 
r------------------------------------------------------------t--------t--------i 
I 1 The PFT slot number is derived by multiplying the high IIEAPTRV IGOTRV I 
I order 12 bits of the input address by 16. If the FFT I I I 
I slot number is ·less than PVTFPFN, the storage it I I I 
I describes is in the nucleus. I I I 
I I I I 
I 2 If the PFT slot nurober is greater than PVTLPFN, the I I I 
I storage it refers to is above the bounds of real I 
I storage. I 
I 

3 
I 

The PFTE is located by adding the PFT slot numter tc I 
the PFT origin (PFTFPTP). If PFTONAVQ=O, the address isl 
translated. 

4 The virtual address is calculated as follows: 

The high-order 12 bits of PFTVBN are 
bits 8-19 of the output address. 

placed in 

The low-order 12 bits of the input address are placed 
in the low-order 12 bits of the output address. 

The result is checked with a Load Real Address 
L___ . I_~~:~~~:~~~:____________________________________________~ 

CJl 
(1) 
(') 
rI'.... 
o::s 
(JI 

~ 
I.Q.... 
-B 
CJl 
~ 
'0 
(1) 

~ .... 
CJl .... 
o::s 

w 
(JI .... 

I I 
I I 
I I 
I I 
I I 

IFINISH 
I 

I 

I 

I 

I 

I 

I 

I 


________LI________J 




w 
U1 
I\) 

Input 
Reg;ste, I (Add) 

00 Add,e55 of PCB 

Register 1 (Move) 

Queue I I...I r"number 

PCB 

PCBFOP 

PCBBQP 

PCBNQN 

PCBCQN 

PVT 

PVTSCAN 

Scan Table Entry 

SCNFST 

Entered by various routines 
to add PCBs to a queue or to 
move them from one queue 
to onothe,' Processing 

• r,------''''-----------------------------., 

IEAPCBM 

1 	 Save registers on the appropriate save area. 

2 	 When called to odd a PCB cho;n to a queue, P""""""""''W ~"""'1! 
place the specified PCBs on the indicated queue. aI ONOI 

Add the PCB to 
the queue. 

I 	
I 

I 	 I 
I 	 ... I
L_ 	 I 


"""", 	
5.52 

1 • c."., I 
II ~3 When called to move PCBs from a specified queue 	 i!! 

/. to onothe, queue, scan the specified queue and ~""""""""''-1 ~""",t,'W--- ----' "/ 	 move each PCB that should be moved to the i'! 
indicated queue. . , I OFFQ/ 

Remove the PCB 
from its current queue. 

------' 
5.52 

ONQ 

Add the PC B to the 
next queue. 

5.52 

................~caller 


Diagram 5.48 
Move PCB Routine 

Output 

Register 15 

."tIJI1 Return code=O 

l,# l 	 (.. 




(
r 	 r 

Diagram 5.48 Move PCB Routine (Module lEAPCB) 
r------------------------------------------------------------T--------T--------, 
I IROUTINE I I 
I NOTES INAI!E I LABEL I 
~-----------------------------------------------------------+--------+--------~ 
I. Called by Program InterruFt Extension, Page Services IIEAPCBM 
I Interface, Swap, and certain queue processors to aod 
I PCBs to a PCB queue. 
I 
I called by QueuE Scanner, Page I/O Post, and the Page 
I I/O supervisor, appendages, etc., to move peEs fron, ene 
I queue to another. 
I 
I 1 Since MOVe PCB may be entered enabled or disabled, it 
I must have two separate save areas. Upon entry, a 
I switch is tested and if off, it is turned on and 
I registers are saved in the disabled save area. An 
I indicator is kept to show from which save area 
I registers are to be restored. The switch is turned off 

when registers are restored from the enabled save area. 

2 	 Pointers to the first and last PCB on the chain are 

passed to ONQ. 


3 	 The PCB queue header for the indicated queue is calcu­

lated as follows: 


PVTSCAN + I2*(in~ut queue number-I). 

PVTSCAN is the beginning of the scan table. 

12 is the length of a scan table entry. 


If the PCB'S next queue number (PCBNQNl is equal to the 
current queue number (PCBCQN), it is not moved. If I 
they are not equal, the PCB is moved to the qUEUE I 
indicated by PCBNQN. OFFQ and ONQ are called for each I 
PCB moved. I IL____________________________________________________________ _______ ________~ ~ 

Ul 
(I) 
(l 
('t 
1-" 
o 
::l 

U1 

'tI 
AI 

<.Q 
1-" 
::l 

<.Q 

Ul 

.a 
(I) 
1"1 
<: 
1-" 
CJl 
1-" 
o 
::l 

Vol 
U1 
Vol 



Vol 
U1 
~ 

Called by any Paging 

Supervisor routine to 

get PCB-size storage 

blocks Processing 


III·.~~IIEAPCBBInput 
Save registers on the appropriate save area. 


Register 1 


1N (Number of PCBs needed) 2 	 When the request can be satisfied from the free~"""""""'~ 

queue, take the needed number of PCBs from ~ 
 ....,"""""'" 

PVT 14-~ ___/,11 PVTSCAN ~ 
Scan Table Entry 	 / I 
1 SCNLST 1+ __....I I 
PCB (each one searched) I 

1 PCBBOP 14- - - -1 
PVT 

PVTBGMS 1+-1- --- ­

that queue. 

3 	 If more PCBs than were available on the free 
queue are needed, get storage for the required 
number of PCBs initialize them, and place 
them on the free queue. 

If GETMAIN cannot be _~ 

called ""~~ 

• I OFFO 

Remove the PCBs 
from the free queue. 

; 	 5.52 

.."""""""""1 .... 
GETMAIN 

RMBRANCH 
Allocate requested 
storage from SQA. 

6.1 

I 
ONO 

I
I 

I
t I 
I
~ Coller 

""""~ 


Diagram 5.49 
Build PCB Routine 

Output 

Register 1 

Address of first PCB 
gotten from free queue. 

Register 15


I Return .~~~~ 


PCBs 

All fields zero except: 

PCBFQP }
PCBBOP in new 
PCBCQN PCBs 

Regisrer 15 

0";,,""'~ Return code~4Place the new PCBs 
on the free queue. 

2 • 	 5.521 

__.1 Coller 

L,'­L 



r ( r 

Diagram 5.49 Build PCB Routine (Module IEAPCB) 
r------------------------------------------------------------T-------~--------l 
I IROIlTINE I I 

I NOTES INAME ILABEL I 

~------------------------------------------------------------+--------+--------~1 Since Build PCB may te entered enabled or disabled, 

it must have two separate save areas. Opon entry, a 
switch is tested and if off, it is turned on and 

IIEAPCBB 
I 
I 

I 
I 
I 

I 
I 

registers are saved in the disabled save area. An I I 
indicator is kept to show from which save area 
registers are to be restored. The switch is turned 
off when registers are restored from the enacled 
save area. 

I 
I 
I 
I 

I 
I 
I 
I 

2 The PCB queue header ror the indicated queue is 
I 
I 

I 
I 

calculated as follows: I I 
I I 

PVTSCAN + 12*(input queue number-1). 

PVTSCAN is the beginning of the scan table. 
12 is the length of a scan table entry. 

The free queue is scanned starting from the 
and following the cack pointers (PCBBQP). 

last PCB 

Pointers to the Nth PCB and the last PCB on the free 
queue are passed to OFFQ. 

3 If the GETMAIN recursion switch is on (PVTBG~S=l), 
GETMAIN cannot be called to get the storage required 
and control is returned to the caller. Otherwise, 
GETMAIN is requested to allocate enough storage for 
N-(number of PCBS on the free queue) PCBS. 

L 

Pointers to the teginning and end of the newly 
ized PCB chain are passed to ONQ. _______________________________________________________

initial ­
i_____~________ ________ 

C/) 
til 

~ .... 
o::s 
VI 

~ 
1.Cl .... 
::s 

1.Cl 

C/) 

.g 
('1) 
11 
<:.... 
en .... 
g 
IN 
VI 
VI 



I.IJ • Diagram 5.50 
U1 
(1\ Relate PCB Routine 

Entered by IEAPALOC to 

logically associate one 

PCB with another Processing 


Output 
IEAPCBR 

PCB1 or last PCBInput Note: The PCB pointed to by register 2 (PCB2) 
related to PCBlis to be associated with the PCB pointed 

toby register 1 (PCB]). PCBRLP=address of PCB2 

OFFO PCB2---,--- 1 Dequeue PCB2, if it is currently on a queue. 

Remove PCB2 from PCBRLP=OI 
its queue.I PCBNON=PCBFREE __ ...1 5.52 

PCBXPT=O 

I- ­
 2 Set pointers to attach PCB2 to PCBl or the last 

Register 15 

PCB reloted to PCBI. ~""""""" ......, ..., ..." ..." 
I Return code=O 

---I 

I 

I 
__ ....J 

Caller 

L L
'­



r ( r 

Diagram 5.50 Relate PCB Routine (Module IEAPCB)
r------------------------------------------------------------T--------T--------,
I IROUTINE I I 

I NOTE~ INAME I LABEL I 

~------------------------------------------------------------+--------+--------~II PCBl is a PCB for which an 

is currently in progress. 
PCB1's related queue. 

explicit paging operation 
PCB2 is to te added tc 

IIEAPCBR 
I 
I 

PCBXPT is saved and zeroed before calling OFFQ and 
I 
I 

is restored upon return. I 

2 If PCB1's related queue pointer (PCBRLP) is zero, 
I 
I 

it is set to the address of PCB2. Otherwise, PCB1's 
related chain is traced until the last PCB is found 

I 
I 

L___

(PCBRLP=O) 
of PCB2. ___________

and its pointer is set to 
___________________________

the address 
_________________

I 
I________L________J__~ 

CIl 
ro 
C'l 
rt.... 
o 
::! 

V1 

~ 
~ .... 
.E 
CIl 
~ 
'tl ro 
~ .... 
Ul .... 
o 
!j 

w 
V1 
..,J 



VI 
w Diagram 5.51 
(I) Release Queue Suppression Routine 

Called by any Paging Supervisor 
routine that detects that a previously 
depleted resource has become 
available for a queue processor. Processing 

Input 
IEAPCRQS Output 
1 Save registers in the appropriate save area.Register 1 

Scan Table EntryI -;;-l Queue ~- 2 Calculate the address of and turn off the 
U I number r- SCNSFoQ 

"suppress" flag in the queue header. ....""'~I~"""~ 
Scan Table Entry 

-~SCNQF 1+- - ,-r:::::::::::s 
I~ 3 Activate the paging task's TCB if necessary .."""~ ~"""~ IEATCBP 

CVT NEW=address ofI 
paging tosk's TCBI __ .J 

Paging Task's Top RB 

I RBWCFoQ 

Caller Register 15 

Return code=O 

L L L 



____________________________________________________________ ________ 

(
r r 

Diagram 5.51 Release Queue Suppression Routine (Module IEAPCB) 
r------------------------------------------------------------T-------~--------l 

I IROUTINE I I 

I NOTES INAME I LABEL I 

r------------------------------------------------------------+---~----+--------~1 Since Relate PCB may be entered enabled or disabled, 

it must have two separate save areas. Upon entry, a 
switch is tested and if off, it is turned on and 
registers are saved in the disabled save area. An 
indicator is kept to show from which save area 
registers are to be restored. The switch is turned off 
when registers are restored from the enabled save area. 

I IEAPCRQS I 
I I 
I I 
I I 
I I 
I I 
I I 

I 
I 
I 
I 
I 
I 
I 

2 The PCB queue header for the indicated queue is 
calculated as follows: 

I 
I 
I 

PVTSCAN + 12* (input queue nunber-1). 
I 
I 

PV'ISCAN is the beginning of the scan table. 
I 
I 

12 is the length of a scan table entry. I 
I 

3 If the "NEW· TCB pointer does not equal the paging 
task's TeB pointer (CVTPGSUP), "NEW" is set to 

I 
I 

CVTPGSUP. If, in addition, SCNQF in this queue's 
header =1 (there are TCB's on the queue), the 
RB wait count (RBWCV) is zeroed. I 

~ 

I 
~ 

I 
I 
IJ________ 

CIl 
tI) 
() 
IT .... 
o 
=s 
VI 

P9 
IQ.... 
~ 
CIl 
~ 

'tI 
tI) 

~ .... 
CII .... 
o 
=s 

Vol 
VI 
I,Q 



____ 

\,jJ 

C1I Diagram 5.52 
o Move/Build/Relate PCB­

Subroutines for Queuing and 
Dequeuing PCBs 

From Move PCB or Build PCB toInput 
P Outputput a PCB list on a specified rr U\;t:~~lIr9 

Register 1 queue 

First PCB on chainr-i I Each PC Bon list 
ONQRegister 2 PCBCQN=PCBNQN of J 

Last PCB on chain " fi rst PCB on list
1 Prepare to move the PCB Iist and indicate its 

PCBs new queue in the XPTEs it is associated with, XPTE for each PCBr I 
r---..J if any. I XPTPCBQ-PCBCQ N or 0 I

II I 
0I 


PCBNQN I

t-"1- ...JPCBXPT 

Scan TobIe Entry
PCBPEX ~- 1-...1_ --- --- 2 Insert the PCB list at the proper location on ISCNQF-1the indicated queue. IScan Table Entry 

PCB List 

I 
SCNQF 


SCNQPE 
 I 
IEAKBP Set so PCBs 

PCBBQP} are enqueuedNEWI I.~- ----, PCBFQP in the proper 
CVT place 

I CVTPGSUP 
II I 

Paging Task's TeB I 


I TCBRB=top RB address I
I IEATCBPIL 
3 Activate the paging tosk if necessary. ..............'" ~..................~~. INEW=CVTPGSUP I 


Paging toskts top RB 
Coller IRBWCF-O I 

1= .." .... ~II,..,,,'" prs, Build PCB, or 
remove a PCB list 

0' lted ueue Processingocesslng
I "- Output

OFFQ 
RegisterRegister 11 

" Dequeued PCB list 
AddressAddress ofof fi~tfi~t PCBPCB ----- 4 Calculate the address of the scan table entry 

RegisterRegister 22 and remove the specified PCBs from the 
queue indicated. ;>I PCBBQP of f;r;t PCB=OAddressAddress ofof loslos tt PCPC BB 

I PCBFQP of last PCB=O TIJJ 
ScanSccn TableTable EntryEntry Scan Table Entry

I ~m ~------ /j SCNQF=OSCNFST ~- ----- 5 Indicate that the queue is empty, if necessary. J 
PCB UstKBlhl 

Each PCB on list 

PCBCQNPCBCQN I PCBCQN=O I 
Indicate that the PCBs on the list have been 

PCBXPTPCBXPT 
------ 6 XPTE 

removed from a queue. I XPTPCBQ=OI 

.. I I 
Caller 

I 

~ ( L 




(
r 	 r 

eDiagram 5.52 	Move/Build/Relate PCE - SUbroutines for Queuing and Degueuing 

PCBS (Module IEAPCB) 
r------------------------------------------------------------T--------T--------, 
I IROUTINE I I 
I NOTES INAME ILAEEL I 
~----------------------------------------------------------+--------t--------~ 
t [I 	If the current gueue numter (PCBCQN) points to the free 10NQ 


queue and PCBXPT~O, XP~PCBQ is set to zero tc indicate 

that no 'in-process' PCB exists for this page. 

Otherwise, CPTPCBQ is set to PCBCQN. 


2 	 The next queue number (PCBNQN) of the first FCE is 

tested and: 


If 	it is zero, return is made to the caller. 
If it points to the free queue, the PCB list is 


inserted at the top of the free queue. 

If it points to the page I/O initiation queue and: 


Page exception is indicated (PCBPEX=l), the PCE list 

is inserted at the top of the page I/O queue. 


Page exception is not indicated (PCBPEX=O), the PCE 

list is inserted at the bottom of the page I/O 

queue. 

If it points to any other queue, the PCB list is 

inserted at the bottom of the indicated queue. 


3 	 The paging task is activated ("NEW" is set equal to 
CVTPGSUP and RBWCF is zeroed) if: 


The queue added to is not suppressed (SCNSF"O), and 

The queue added to is dispatchable (SCNQPE"O), and 

"NEW' "CVTPGSUP, and 

It is not already active. 


4 	 The queue header is located as in IEAPCBM, Note 3. 10FFQ 
I 

5 	 The queue is empty if the first PCB pointer (SCNFST) I 
equals zero. I 


I 

6 I
If PCBNQN"PCBFREE and PCBXPT points to an XPTE, 


XPTPCBQ is zeroed. ________~I________~I________JI

L____________________________________________________ 

en 
CD 
(') 
~ 
fJ· 
o 
l:! 

U1 

;;? 
<Q 
fJ· 

~ 
en 
d 

'C 
CD 

~ 
fJ· 

fJ· 
o 
l:! 

w 
a­
I-' 

III 



w 
e­
N 

Input 

SCNTE 

SCNFST 

SCNQPE 

Input 

PVTSCAN 

Address of fj"t SCNTE 

SCNTEs 

SCNQF 

SCNSF 

PVT 

I PVTSCND 

Entered by dispatcher when the 
poging task TCB is mode ready 
through normal dispatching 

• IEAPQS 

1 Find a non-empty, processable queue 

2 When an eligible scan toble entry is foundt . 
-

3 When no eligible scan toble entry is found 

If an eligible entry is found 

If none is found, place the paging task 
in a wait state. 

Processing 

Q-SCAN 

Diagram 5.53 

Queue Scanner (Paging Task) 


Appropriate Queue 
Processor 

Fulfill requests on the 
indicated queue. 

5.2 

Move PCB 

Move PCBs to next queue 

for which processing is 

required • 


5.48 

Output 
Paging Task's Top RB 

RBWCF"l 

RBOPS\rV=initial values 

~""""""'~ ... 
Dispatcher Im 

lEAT C B P=O
(lEAODS3) 

Output 

Register 

Address of--S-C--ND 
~""""""''l1.... Register 15 

Retu rn code=OI .................~Coller 

--I 

r ­ 5 Calculate and access next entry. • 4_..1 
I 

If none ••••••••••••••Colle'I Register 15 

/4- -.J l.""""""",~ ~""""""''''''~ Return code=--! 

Q-SCAN 

Search the 
scan table. 

Step 4 
~ 

I' 

1 

Q-SCAN 

Search the 
scan toble. 

Step 4 

•2 

~"""""""'~ 

-"""T--- 4 If this scan table entry represents a non-empty, 

I non-suppressed queue .."""""""'~ 
I 

" 
L L 




_______ 

(
r r 

Diagram 5.53 QUeue Scanner (Paging Task) (Module IEAPQS)
r------------------------------------------------------------T--------y--------,
I IROUTINE I I 

I NOTES INAME ILABEL I 

~------------------------------------------------------------+--------+--------i 

L____________________________________________________________ ________J 

I 1 IEAPQS IQBEGNSCNI 
I 
I 2 
I 
I 
I 
I 

IEAPQS directs the flow of control to the paging
supervision processor associated with the processable 
queues containing pending requests. The queue is 
flagged "in-process" (SCNQIPF=1) before the call to the 
processor and is marked "not-in-process" (SCNQIPF=O) 

I I 
IQPROCESSI 
I I 
I I 
I I 
I I 

I upon return. I I 
I 
I 3 
I 

The routine is disabled during this call to QSCAN. 
Since no more work exists for the paging supervisor, 

I I 
IQLASTTRY I 
I I 

I it puts itself in a wait state. I I 
I 
I 4 
I 

The "Q" flag must be on and the 
off (SCNQF=1 and SCNQS=O). 

·suppress" flag must be IQSCAN 
I 

I 
IQSCAN 
I 

I 
I 
I 

I
I 5 The next entry is located 12 bytes past the last entry. 

I
I 

I I
IQTESTNEW I 

I 
I Note: The SCNTE of the first PCB queue is scanned 

I
I 

I
I 

I 
I 

I first at each entry to QSCAN. I I I 
~ ~ 

CIl 
(\) 
C'l 
rt.... 
o 
::l 

UI 

py 
\!l.... 
~ 
CIl 
~ 
'tl 
(\) 

~ .... 
CIl .... 
o 
::l 

(.oJ 
(J\ 
(.oJ 



--

W Diagram 5.54 
0\ Paging Supervisor Error Recorder~ 

Called to perform PSER Call by a supervisor routine when it 
functions but issue a detects an error caused by or impacting 
specified message. the paging supervisor 

Input 

Register 0 Register 1 oISee note See note 

CVT 

~ CVTRMS 

RVT 

RVTBUFAD RMS buffec 

RVTSHUT 

TCB 

fri lTCBTIOT 

,......,)t.....!.!2l 
I,..J\ -[ 	 TlOCNJOB=jobnome 

TIOCSTP=step name 

PVT 

PVTBGMS 

CVT 

I CVTCUCB 
MCS Pcefix Acea (UCM) 

UCMCMID 

UCMWTOO Fiest WOE 

UCMWOEND Lost WOE 

r 
UCM 

UCMOECB 

Output 

IEAPSER 

For a MAJOR error: 

Put a message in the RMS buffer. If the ...................................,"''',..., ..., ......" ...,',......"r-r "1--	
IT 

job and step names are needed 	 JOBNAME
I 

Put the job and step
-' 
r;:==:!==================~ names in the buffer.

EJ 
For a MINOR error: ...........t~Machine-Check 


2 

1+-1-----t 3 

414-[ I - - - ­
I II :::: 

--I 
~ 

.J 

• 
If a specific reB other than the paging 
taskls reB to be terminated 

If the GETMAIN oc FREEMAIN cecuesion 

switch is on 

Build a write queue element, place it 
on the communications task's work queue, 
and post the communications task. 

~ 
~ 
':j _~ 
~......~ 

I 
JOBNAME 

, Handler 

ABTERM 

IEAOABOI 
Schedule the reB for 
abnormal termination. 

8.12 

, Collec 

GETMAIN 

RMB~Nrn 
Get storage for the 
WOE. 

6.1 

Put the job and step ~:::!:============~~====;::~ job and step names jf 
name in the WQE. 

EJ 
'-----------' 

POST 

IEAOPTO 1 
Post the communications 
task ready. 

3.8 

....___..., Collec 

RMS Message Buffer 

'>t See note B 
RVT 

~"'''''''~RVTWSFLG+I, bit 0=1 

RMS Message Buffer 

">I. . . iob and step names. .1 

cWOE 

WO EMCSF, bit 0= 1 

WOEAVAIL, bas land 30 1 

WOEROUT, bits 0 and 90 1~ WOEDESCD, bit 3=1 

WQETXT=message text (with 

f-ce_q_ue_s_te_d_)____ 

WOERTCT=UCMCMID 
WOENBR=messoge length 

WQELKP+l=chain pointer 

UCM 

UCMCMID=UCMCMID+I 

UCMWONR=UCMWONR+I 

UCMWOEND-new WOE 
address 

UCMWTOOonew WO E 
address 

l, (. 	 L, 




(
r 	 r 

Diagram 5.54 paging Supervisor Error Recorder (Module IEAPSER) 
r--------------------------------------------------'----------T-------~--------, r-----------------------------------------------------------~-------~--------, 

I I ROUTINE I I I 	 IROUTINE I I 
I NOTES INAME I LABEL I I NOTES 	 INAME I LABEL I 
r------------------------------------------------------------+--------+--------~ ~------------------------------------------------------------+--------+--------~ 
I 1 If the MAJOR option is chosen. exit is taken to the RMS IIEAPSSR IMCHEXIT I mIf a message was not supplied (entry at IEAPSER), the I I I 
I Message Writer/Wait State Effector (MCB) to land I I buffer content at exit is: I I I 
I write a message to the operator console and Flace the I IEAPSER2 I I I I 
I system in a disabled wait state. 	 I I Wait State I I I 

code X'0028' 49 *IEA041At FG. SUP. ERRCR ttNNNNtt t 
2 This is done only if the ABTERM option was specified. I I I 

I I I 

I 	 I I I 

SYSTEMtTERMINATED 

3 If the GETMAIN/FREEMAIN recursion switch is on IGMCHK 
 I I 

(PVTBGMS=1), GET~~IN cannot be called to get the 	 If a message was supplied (entry at IEAPSER2), theI I I 
I I Istorage for the WQE so control is returned to the buffer content at exit is: 


caller. No message is printed in this case. 
 I I I 
I I IWait State Message Supplied message text (with 


4 The WQE represents a WTO operation to the code x' 0028' Length jobna:me and stepname if indicated)
I 	 I I 
communications task. 	 024I I I 

I I I
When entry 	is at IEAPSER, register contents are: IIEAPSER The JOENAMF subroutine is passed the address into which IJOBNA~E Io Register 0: 	

I IEl the character string 'jjjjjjjj.ssssssss' is to teI I 	 I I 
Byte 0 Ignored I I F1aced. 'jjjjjjjj' is the jobname and 'ssssssss' is the I I 
Byte 1 - Bits 0-5 - Must be zero I I stepname I I 

Bit 6 - ABTERM option flag I I 
ON= Terminate the designated I 	 The WQE is set to indicate the following: I IEAPSER GMRETURN 

I 
I II 	

I 

task I I WQEMCSF (MCS flags): Bit 0 - Routing or descriptor land I 
OFF= Do not terminate any task I I codes exist. I IEAPSER2 

I IBit 1 	 MAJOR/MINOR option flag WQEAVAIL: Bit 1 - Buffer in use. 
ON= MINOR error I Bit 3 - Buffer obtained dynaIDically. I 
OFF= MAJOR error WQEROUT (Routing Codes): Bit 0 - Master Console.I 	 I

Bytes 2-3 - Error number (indicates caller and Bit 9 - SysteJ(> Error 
error) I Maintenance. 

Register 1: o - If the ABTERM option flag is cn, use I WQEDESCD (Descriptor Codes): Bit 3 - System Status. 
the TCB address in ·OLD· (IEATCBP+4) WQERTCT: Routed WQE count. 

I 

I 
to schedule abnormal teruination. 	 I WQENBR: Message length. 

ITCB address - If the ABTER~~ option flag 	 WQETXT: If no message was supplied and ABTER'" was 
is on, use this TeB not called: 
address to schedule I I 
abnorffal termination. I tIEA048It PG.SUP.ERROR ttNNNNtttRECCVERYtATTEMPTED 

I 

I 
I 	 I 

When entry is at IEAPSER2, the register contents are: IIEAPSER21 I If no message was supplied and ABTERM was called: ICANEDMSGI 
Register 0: I I I 	 I I 

Byte 0 - same as Byte 1 above I I I tlEA049It PG.SUP.ERROR ttNNNNtttJOBSTEP=jjjjjjjj. I I 
Bytes 1-3 - Address of the message to be written. I I I ssssssss tTERMINATING I I 

Register 1: If the ABTERM option is selected or if I I I 	 I I 
the message contains a jocname/stepname I I I If a message was sUFplied it is placed in this IUSERMSG I 

CIl field: I I I field with the jobnane and steFname if indicated. I I I
l ____________________________________________________________ ________i________ JCD 	 =0, "OLD" TeE is to be used; or I 

=TCB address of TCB to be used. Il+ 
I 	

~ 

The message pointed to in register 0 must l::e of 

that format: 


~. 	 I 
o 	 I 
::s 	 I 

D L C TEXT I 
VI -2 -1 -0 1 I 

D: 	 The displacement into the message at which the I 

jobname and stepname of the task whose TCB I
"d address is 	indicated by register 1 is tc teIII 	 I 

t.Q placed. If D=O, the jotname and stepname will I 
~. not be inserted. I::s L: The message length (including C). Up to 50 It.Q bytes is allowed if the ~~OR option is I 


specified; 255 l::ytes are allowed for the MINOR I
CIl 
option..a C: The first character of the message. * if the 

I 
I 

CD message requires operator action; blank I
Ii 	 otherwise. I<: TEXT: The actual message text beginning with 
~. 	 I 

IEANNNX whEre NNN is a unique messageen 	 I 
~. I 	 number and X indicates the message tYFe. I 

l ____________________________________________________________ ________~________ Jg 	 ~ 

W 
0'1 
VI 



--

\.oJ 	 • Diagram 5.55 (1\ 

(1\ Paging Supervisor Appendages 


(Channel End, Abnormal End) 

hom I/O 

supervisor Processing 


•••••~IIEAPCEAP 
Determine whether on error condition exists.1--- ­

CBRET1A II so 

Free resources no longer 
needed and mark PCBs. 

Input 	 16 5.56 

Registers ERCOMMON 

Address 01 lOB 
 Process permanent 

Address of DEB 
 I/O errors, 


Address 01 DCB 2 
 5.56 

Address of UCB 

......1C II not 	 CBRET 

Second entry point 
Free unneeded resources. 

...... 5.56 Output 
CPQE 

CPO E (next one on queue)I CPQNPTCD I+- 4---­ 2 	 If any additional CPOEs are chained to 
this lOB ~~ CPQCPPTR=O II 	 """"""""'~I~"""""""''T'~I 	 ~ I 	 I• 	 3D 

PDITEI 	 iI! 
PDITE If not, continue 	 ""~ PDITACT=O I~""""""""~ ~""""""""'~ PDITSOCT I 

I 
~ 


PCITINDX 
 3 Determine whether any (POEs are on ther- I- ­
slot queues for this device. ________-+__.... BR 14+4I 	 I3Allnot

IlOB I 
10BIOERR 3 B If so Page I/O Supervisor 


10BCSW .... J 
3c II no CPQE wCS appended ilEAPIOS2 I 


10BECBCC ~ From I/O 3 D If a (POE was appended Append CPOEs to the I
l supervisor
10BSTART ~""""""""'J active device. I lOB5.44I ~ IOBST="TlC=to ll address 

IEAPABNA 	 ii&.~•
I 10BSEEKA=next CPQSEEKA
~BRI4+4I 	 ~ IL ____ IOBFLI=X'42' 

4 For an out-of-extent or permanent I/O • • BR 14+8 IOBFL2=OIj! 	 ,error, locate the proper CPOE. I 1B 
IOBFL3=OlOB ~""""""""~ 
10BSNS=OI 10BSTART 1+- - - --- -~ 5 	 When the error is not permanent and: CPQE 

The error CCW belongs to the paging 10BCSW=OFree unneeded resources 
supervisor and mark PCBs. 	 10BSTART=lirst CCW in 

5.44 	 error CPO E address 

10BSEEK=error CPQE 
seek address . 

0'~ ~, 
The error CCW belongs to the i.................I/O ~ 7 	 • '10 .~".o,

supervisor 

l,. L'­



r ( 	 'r 

• 	Diagram 5.55 Paging supervisor Appendages (Channel End, Abnormal End) 


(Module IEAPPCIA) 

r------------------------------------------------------------T--------y--------,r------------------------------------------------------------T-------~-------_, 

I IROUTINE I I I I ROU'IINE I I 

I NOTES INAME ILABEL I I NOTES INAME ILAEEL I 

~------------------------------------------------------------+--------+--------~ ~------------------------------------------------------------+--------+--------~

• 	 The Channel End Ap~endage gets control when one of the IIEAPCEAPllEAPCEAP I •• The Abncrmal End Appendage is entered whenever one of IIEAPAENUIIEAPABNUI 

following I/O interruption terminates a ~aging I/O I I I the following conditions arises: I I I 

operation without any other abnormal conditions: I I I I I I 


I I out-of-extent errors (probably an error in lEAP lOS I I I 

• 	 Channel end. I I or one of its control tlocks). I I I 


I I I I I 

• 	 Unit exception (with or without channel end). I I • SIO errors. I I I 


I I I I I 

• 	 Channel end with wrong-length exception. I • The CSW stored for an I/O interruption indicates I 


I an error other than one for which the Channel End I 

ICE01 Appendage gets control. I 

ITOERCOM I 

I 	 4 I
There are two 	classes of I/O errors -- nonpermanent AB020 

2 The CPQE and PDITE are located as above. ICE03 and permanent. In most cases it is the Error Recovery I 

I Programs (ERPs) that classify an error as permanent. I 


More work will exist (CPQNPTCD=TIC operation code) when ICE02 When an error is first detected, the Abnormal End I 

I 	 I
a CPQE has teen appended but the Channel End Interru~­	 Appendage will get oontrol before the ERPs. Thus, the 

tion was presented before the channel was aware cf the 	 error will not be marked as ~eraanent. If the 
new CPQE. I Abnormal End Appendage returns to lOS at the address in I 


I register 14, the ERPS will gain control. For errors I

3 The return to 4 past register 14 will cause lOS to free ICERET01 from which recovery is impossible, the ERPs ~ill mark I 


I I 


I 	 I 


the RQE but bypass posting the ccm~letion of the I/O 	 the error as permanent iumediately. In this case, 
event. 	 the Abnormal End Appendage will be reenteredI 	 I 


I immediately with the error marked as peraanent. In I 

The return to 8 past register 14 will cause lOS to ICE04 cases where the I/O operation may succeed if tried I 

return the RQE to its logical channel queue and . I again, the ERPs will retry the failing I/O oFeraticn I 


I bypass posting. 	 I I I until it succeeds (in whioh case the Abnormal End
L____________________________________________________________~________ ________J 	 I

~ 

Appendage will not be reentered) or until it has I 

failed a specified number of times (in which case the I 

Abnormal End Appendage is reentered with the error I 

marked as permanent. I 


I 

For an out-of-extent or permanent errOr in a 	 I
5 

non-paging supervisor CCW, use the CPQE from 10ESTART. 	 I 


I 

For a permanent error in a paging supervisor CCW, I 

use the CPQE in which the error occurred. I I I 


l ____________________________________________________________~~-------~--------J 

CIl 
(1) 
o 
rt.... 
o::s 
VI 


~ 
\,Q .... 
~ 
CIl 
s:: 

"0 
(1) 

~ .... 
C/l.... 
o::s 

w 
-..I 
'" 



00 

CPOE 

IN 
0\ 

Input 

Input 

CPOE 

ICPORWOP 

PCB 

PCBSKIP 

PCBRI P 

PCBDADDF 

PCBXPT 

PCBCON 

SCNTE 

,. SCNOIPF 

From appendages to free 
completed CPOEs and mark 
PCBs as necessa')' .. 

From Channel End and Abnormal 
End Appendages to handle 
permanent I/O errors 

ERCOMMON PCB 

1+-­

r­
---1 
-I I 

II '-- ­I 
1----­
I 
I 
I 
I 
I 

_.J... ___ _1+-- I 

• Diagram 5.56 
Paging Supervisor Appendages­
Subroutines for Freeing Resources 
and Handling Errors 

•
Processing 	 Output 
~~~~~--------------------; 

CBRET 	 CPQ E (each one handled) 

Determine whether this is the first (POE on ~ CPQCPPTR=O. 

the chain. If not, handle the previous (POE. t : f---C-PO-U-N-A-V~-Q------I 


If so 	 II Caller II 
PCB 


2 locate the ossociated PCB, mark it complete, 
 PCBIOCMP~l 
and route it. 	 ~ 

PCBNON~PCBTSKPO~""'''''''''''''''''''''''''-1I3 	 Make this CPOE available. 

Il"" 	 , 'I'::::;:~"~""""""""""I ______________~v L' 

Processing 	 Output 

4 	 Determine whether the failing operation was ~-.I PCBDADDF~l 
a read (page-in) or a write (page-out). t""""""''-1 

Fora read ...... 8 	 PVTI 
PVTTOTAX~PVTTOTAX-l 

Write Processing I PVTS VCM=PVTSVCM-I 

If this PCB should be skipped, prevent I5 
IEAPIOP from freeing a defective external i!! 

storage page, if necessary 
 XPTXAV=Q..,""'" ~""~ 

PCB~=8~~===~ +I PCBNON=PCBAUX
~'" 

6 	 If no XPTE is present ...... 8 	 CPOE 

7 Route the PCB to the auxil iary storage 	 '­ CPOUNAV~ 
allocation queue and move it, if necessary '­

i."",,,, ~""""""'~ 
ill! 

Move PCB 

IEAPCBMRead Process ing PCBIOCMP~l 

Move the PCB to the 
PCBYHTC~l

8 	 Ensure that IEAPIOP will process the failing indicated queue. 
PCBNON~PCBTSKPOPCB and make the CPOE ovailable. 5.4B 
PVTI'WB=Iill! 

'­L.~ Caller 

\v ( 	 L 




(
r 	 r 

Diagram 5.56 Paging Supervisor Appendages - Subroutines for Freeing Resources 

and Handling Errors (Mdoule IEAPPCIA) 
r------------------------------------------------------------T--------T--------, 
I IROtJ'IINE I I 

I NOTES INAME I LABEL I 

~------------------------------------------------------------+--------+--------~ 
I 1 When entered at this entry pOint, CBRET begins process- ICPRET IMOR 

I ing with the previous CPQE. I I PAC 

I I I 

I 2 When entered at this entry pcint, CBRET begins process- I I DOTHIS 

I ing with the current CPQE. I I 

I I I 

I If the PCB is on the I/O active queue I IINDPOS 

I (PCBCQN"PCBNQN), the PCB is routed to the task post I I 

I queue. I I 

I 	 I I 

I 3 The post-work bit (PVTPWB) is turned on to trigger the I I 

I posting mechanisrr for the coltpleted PCBs. I I 

I I I 

I 4 IERCOMMONIERCOMMON 

I I I

I 5 	 If PCBSKIP=l, PCBRIP=l, and PCBDADDF=l, IEAPIOP will I ICERROO 


free the external page storage associated with this PCB I I 

when the I/O is marked complete. setting PCBDADDF=O I I 

prevents this. The counts in the PVT are decremented I I 

to indicate one less page available for use in the page I I 

data set. I I 


I

6 	 PCBSKIP=O and no XPTE exists is pcssible for swap-out I 


pages. 
 I 

I 


7 	 Routing the PCB to the auxiliary storage allocation ICHRROS 
queue causes another external stcrage page tc be I 

assigned to this PCB and retry to be attempted for the I 

page-out operation. I 


I 

If 	the page PCB is on the I/O initiation queue, lEAP lOS ICERRO 2 

will 	call Move PCB. I 


I

8 	 If the PCB is on the Page I/O initiation queue, or if ICERROl 


it is not and IEAPIOS is not processing (SCNQIPF=O), I ICERR03 

the PCB is routed to the task post queue only by setting I ICERROq 

PCBNQN. The I/O FLIH will call IEAPIOP when the post I ICERROS 

work bit (PVTPWB) is on. If IEAPIOS is processing, I ICERRO 2 

Move PCH is called to place the PCB on the task post I I 

queue. I I


l ____________________________________________________________ ________ ________J~ ~ 

en 
(1) 

g. .... 
o 
:::s 

U1 

"d 
~ 

III
.... 
:::s 
III 


en 
.g 
(1) 
t1 
<:.... 
Ul .... 
o 
:::s 

IN 
a­
le 



- ------ - -

w 	 Diagram 5.57 ..,j 
o 	 Termination Interface and 

From ABEND, ASIR, EOT, or Swap Page Hook Routines 
routine to purge paging activity for 
a terminating RB, TCB, or both 

Input 	 OutputLtProcess ing 
IEAPTERM 


Register 0 
 .--- 1 Fora purge by TCBorregion, prevent PVT 

I Address of RB or TCB migration if necessary.~ 	 ~ PVTMGFLG=O~ 	 ...,""""""""'" ~"""""~ I PVTSTUFM=ORegister 1 	 Purge PCBI 2 Prevent scheduled paging operations


I Entry code Dr.- 1 from completion. PCBPURGE 
 PVTMIGAB~l. 

Purge the specified 

PVT I queue. 

IPVTMGFLG 	 5.60 
J 

PVTSTUFM 
If on RB purge Caller 

PVTMIGRB 
Purge PCB 

}----	 .. 

PVTSFXDQ ~-- --, 3 	 Remove delayed second exits for paging 
service requests. PCBPURGEPVTBFXDQ 4-- ­ '-""1 Purge the delayed 

PVTFTP \4-- - -, post queue.I 
5.60

PVTFPFN 1+--- --I I 
PVTLPFN ~-- -l I 	 Purge PCB

4 If a region purge 1 prevent allocationI of external page storage. 	 PCBPURGEI 	 .. 
Purge the auxiliaryI 
storage allocationI 
queue.

I 5.60 
I 
I II CollerI 	 .. 

~ 

I 
I PURGEFIXI 

Root PC Bs on th is queue 	 L_ 5 For a TeB purge, prevent delayed fixes. Pu 'ge Svc andIPCBRTCB 	 branch fix delay 
queues.

PCBRWK3 
1- --- -I- --- -------------- ~ "'""""".,.~ 

I 	 f1_.L _ 	 PFTE 
TCB 0- --- 6 If a job-step TCB, remove page frame 

I lIowne~hipll. PFlWHOSE=O

I TCBJSTCB I+- --I From lTERM """"""""""'~ "'""""".,~ 
I 	 to in cept Caller 

paging supervisor --,.
PFTE I 

tenni tion


I PFlWHOSE 
 r.-- J 

I 	 .. 
PAGEHOOK 


Register 1 
 r ... 
Paging Supervisior I Entry code 1+---- . _-- 7 Indicate appropriate error code • 

" 
Error Recorder 

IEAPSER 
Place the system in 
a disabled wait state. 

5.54 

~ ~ 
 ~ 



(r 	 r 
Diagram 5.57 Termination Interface and Page Book Routines (Module IEAPTERM)
r------------------------------------------------------------T--------T--------' 
I IROUTINE I I 

I NOTES INAME I LABEL I 

~------------------------------------------------------------+--------+--------~1 	 If PVTMGFLG=l and PV7STUFM:1 and: 

• The purge is by TCB, they are set to o. 

• The purge is by region, no action is taken. 

If PVTMGFLG=l and PVTSTUFM=O, and the input TeB matches 
the TeB to be migrated (PVTMIGRH=Register 0), the 
ABEND migrate flag is set (PVTMIGAB=l). 

2 	 PURGEPCB is called once for each of the 3 PCB queues 
scanned (I/O active queue, real storage allocation 
queue, and I/O initiation queue). 

5 	 PURGEFIX is called Once for each queue purged. 

6 	 If TCBJSTCH=register 0, this is a job-step TCB. 
PFTWBOSE is set to 0 in every PFTE in which PFTWBOSE 
equals register O. 

7 	 If register 1 : 0, the paging task was scheduled for 

termination for an external reason. Error code 2101 

is passed to IEAPSER. 2100 is passed if register 1 

: 4 (a program check occurred in the paging task). 


o Entry codes are: 
o - purge by TCB. 
4 - purge by RB. 
8 - purge by region. 

fl PURGEFIX marks root PCBs, associated with the FIX re­
quests made by the task being terminated, for -ABEND 
interception.­

If the root PCB is for this TCB (PCBRTCB=input TCB 
address), its PCBRAB flag is set to 1. The next rcot 
PCB on the queue is accessed (via PCBRWK3) and the test 
is repeated. When the end of the queue is reached 
(PCBRWK3=0), return is made to the caller.L____________________________________________________________ 

til 
tD 

~ 
t-'. 
o
::s 
U'I 

I'd 
I» 

\Q
t-'. 
::s 
\Q 

til .g 
tD 

c::
"".Ul

"".o
::s 

w 
...a... 

I IEAPTERMI PURGETeBI 
I I I 

I I I 

I I I 

I I I 


I I 

I I 

I I 

I I 

I I 

IPURGERB I 

I I 

I I 

I I 

I I 

I I 

ITEST1 I 

I 

I 

I 


IPAGEBOOK I 

I I 

I I 

I I 

I I 

IIEAPTERMI 
I I 

I I 

I I 

I I 

I PURGEFIX I 

I I 

I I 

I I 

I I 

I I 

I I 

I I 

I I I 

~________~________J 

11 



W Diagram 5.58 
-.I FIX Quiesce and Purge Routines IV 

From TSO Quiesce routine to 
free all non-intercepted fixed 
pages and to purge PCBs for a 
specified TeB chain 

Input Processing 	 Output 

•••~IIEAPFIXQ 
Register 0 

Address of first TeB to Remove delayed (queued) fix requests. 	 FIXQPURG,- ­be quiesced 
I Root PCBs quiesced 

Register 1 Purge SVC and branchI FIX delayed requests. ~""""",...~ PCBRAB=1Address of last TeB to Ibe quiesced il 
I 
I Purge PCBs

2 Prevent scheduled paging operations
I from completing. PCBPURGE 

__J Purge specified 
PCB queue. 

Root PCBs on Queue 5.60 

-	 PCBRTCB 
r'-- ­ 3 Quiesce FOEs associated with input TCSs: 

PCBRAB 
I 

PCBRWKI 	 From ABEND, EOT,
I and ASIR to free and 


PCBRWK3 
 purge fix requests for I 
a terminating task 

___ TCB I 
TCBlSQA I 


I 

•••~IIEAPFIXP 

Input TCBs I TCB 

_J
ITCBTCB ~-­ ,- ­ A. If there are no more FOEs to purge ~""""""""" .....""""""'".~ TCBFOE~ 

I 
r- ­ B. If this FOE is not intercepted, •••••••••••••••IIII~Call.,

"""1 	 FOEissue a FREE f~he page itI represents.I I 	 ~"""""""""''''''''''''''''''~ FOEINT=1_--1 
I Page Service 

Interface RoutineI 
__ J 	 IEAPSIQR 

Perform FREE 

-, 
 processing. 


5.20 

4 	 If for quiesce end not purge, obtain the 
next FOE. ...............t3A ~-­

I 
FREEMAIN RoutineL __ 

5 	 For purge, free the FOE's storage. RMBRANCH 

6.1 

6 Obtain the next FOE. ................t3A 


(.
~ 	 L 




r ( 	 (' 

Diagram 5.58 FIX QUiesce and Purge Routines (Module IEAPTERM)
r------------------------------------------------------------y--------y--------l
I IROUTINE I I 
I NOTES INAME ILABEL I 
~------------------------------------------------------------t--------+--------~
I 1 FIXQPURG is called once for each queue purged. IIEAPFIXQI I 
I I I I 
I 2 PURGEPCB is called once for each of the four PCB queues I I I 
I purged (page I/O activE queue, I/O initiation queue, I I I 
I real storage allocation queue, and delayed post PCB I I I 
I queue). Quiesce is indicated for all the calls. I I I 
I I I I 
I 3 This loop (FOEPURGE internal subroutine) is completed IIEAPFIXPICALLFOE I 
I once for each input TCE. IFOEPURGE I I 

I I 
3A 	 If entry is at IEAPFIXP, registers are restored IFOEDONE I 

before return. If entry is for quiesce (at I I 
FOEPURGE) return is immediate. I I 

I I 
3B 	 If FOEINT=l, the FOE is either purged or quiesced ITESTINIT 

already and no FREE is issued for it. I 
Parameters passed to FREE (IEAPSIQR) are: I 

I 
Register 0 - TCB address I 
Register 1 - first half of VSL entry I 
Register 2 - second half of VSL entry 	 I 

I 
5 Parameters passed to FREEI'.AIN are: 	 IPURGE 

I 
Register o - X'FFOOOOOS' I 
Register 1 - FOE address I 
Register 3 - CVT address I 
Register 4 - TCB address I 
Register 5 - a I 

o FIXQPURG quiesces activity on one of the FIX delay 
I 
IFIXQPURGI 

I 

queues. I I 
I I 

TCBLSQA of the TCB pointed tc ty the first (next) I I 
root PCB (via PCBRTCB) is con,pared to TCBLSQA of I I 
the input TCB. If they are not equal, or if they I I 
are equal but the root PCB is marked for ternination I I 
interception (PCBRAB=1), the next root PCB is accessed I I 
(via PCBRWK3), and the comparison is repeated. 	 I I 

I 
When a match is found, if the SVC FIX delay queue is I 
being quiesced, the issuer of the FIX is posted. I 

en POST is called with the following parameters: I 
(1) In 	 Register 10 - post code = X'30' IrI" Register 11 - ECB address (from PCBRWK1) It-" Register 12 - TCB address (from PCBRTCB) Ig I 

Upon return, or if POST was not called (that is, if I 

U'1 the branch FIX delay queue is being quiesced), PCBRAB I 


is set to 1 and the search continues with the next I 

I root PCB. I

L____________________________________________________________ ________~________J ~ 	

~ 

\Cl 
t-" 

.B 
en 
~ 
'0 
(1) 

~ 
t-" 
en 
t-" 
o::s 

W 
-..I 
W 



-.I 

IEAPFIXR 

Obtain storage for and initialize an "anchor" 
work area for this entry. 

W 	 Diagram 5.59 (Steps 1-5) 
FIX Restore Routine := 

From TSO Restore routine 
to reinstate quiesced FIX 
requests 

Input 

Register 0 

IGETMAIN Routine IrAddress of fiBt reB I t RMBRANCH 
Register 1 

6.1IAddress of last TeB I 
r-- ­ 2 Detennine whether any FIX requests must be

Register 2 restored for the first (next) TCB. IIAddre';- ofEcB J I 
If not I repeat for the next rCB. 

I 
1 	

+6If no more TCSs1 

TCBFOE 
r--J 

" 	 GETMAIN Routine r--- 3 Obtain and initialize a work area (including 
I VSL entries) for this TCB. RMBRANCH 

----I 
I 6.1 
1 

FOEFLINK 

FOEINT 

I 
I 	 Page Service ___.J 

FOEVINDX 4 	 Restore previously quiesced FIX requests for Interface Routine 
this TCB. IEAPSIQR 

PerfolTr'l FIX 
processing. 

5.20 

5 Detennine the status fo the FIX attempt: 

A. 	 If the FIX completed nomally +2 
B. 	 If the FIX (s in progress (0 second 

exit is expected), increment the 
anchor wait count. +2 

C. 	 If this is a second exit return and 
the FIX completed normally I decrement 
the anchor wait count. 

D. 	 If the FIX was not successful, indicate 
an error. 

E. 	 If this is a second exit return and the 
FIX was not successful, indicate an error 
and decrement the anchor wait count. 

(Continued at Step 6) 

~ ( 	 ~. 




r ( 	 r 

Diagram 5.59 (Steps 1-5) FIX Restore Routine (Module lEAP'IERM) 
r------------------------------------------------------------T-------~--------, 

I IROUTINE I I 
I NOTES INAME ILABEL I 
~----------------------------------------------------------+--------+--------~1 	 The "anchor" contains information pertinent to this IIEAPFIXRISETNEG I 

request. The work areas (including VSLs) for each TCB I I I 
are chained to the anchor. Initially, registers are I I I 
saved in it and the error flags, wait count (count of I I I 
pending second exits), and post code fields are zeroed. I I I 

I I I 
2 	 Each FOE chained to this TCB is searched. An internal I ISTARTFOEI 

FOECOllNT is set to 0 and incremented for each inter­ I I I 
cepted FOE (FOE with FOEINT=1) on the chain. If at I I I 
the end of the search FOECOUNT=O, the next TCB is I I I 
accessed. I I I 

I I 
3 	 The work area is obtained from subpool 255 and its I BUILDVSLI 

length is (S*FOECOUNT)+S. In it, the TCB address is I I 
saved, the return code field is set to X'FF', I I 
and all flags are zeroed. I I 

I I 
For each intercep:ed FOE on this chain, a VSI entry IFOEMORE I 
is built in the work area as follows: I I 

I I 
VSLSTART address is set to FOEVINDX. I I 
VSLENDl is set to VSLSTART + 1. I I 
The flag byte is zeroed. 	 I I 

I 
4 	 The parameters passed to IEAPSIQR are: IGOTOFIX 

I 
Register 0 - TCB address. I 
Register 1 - Bit 0 - 1 (to indicate list entry) I 

Bytesl-3 - First VSL entry address. I 
I 

5 	 The return code from IEAPSIQR is placed in the wcrk BTABLE 
area and the anchor ~ost code is set as follows: 

If the return code The post code is I 
from IEAPSIOR is set to I 
0,32 X'OO' I 
4,28 X'OLl' I 
S none I 
12,16,20,24,40 X'OC ' I 
36,44 X'lO' I 

I 
(For an explanation of the FIX return codes, see I en Diagrarr. 5.21, Note 19.) I

(1) Io A "no-FREE" flag in the work area, and the error flag Irt­.... 	 in the anchor are set if any return code other than I 
. . d 	 Io 	 0, 8, or 32 16 reC€1Ve • ________________~______~________L____________________________________________

t:I 
VI 

~ 
IQ.... 
~ 
en 
ro 
~ 

(1) 

~ .... 
en .... 
o 
t:I 

w 
~ 
VI 



W 	 Diagram 5.59 (Steps 6-8) 
'-01 FIX Restore Routine a. 

Processing 	 Output 

BR 14 ... 
6 	 If there are second exits pending Caller ,.. 

If no second exits are pending and 
no errors occurred • SA 

Page Se IV ice 
Interface Routine 

7 If errors were encountered, FREE (back 
~ IEAPSIQRout) restored FIX requests. 

Perform FREE 
process i n9 • 

8B 5.20 FOEs for restored 
F I X reques ts 

S 	A. '"""",.,.;""' ~ FOEINT=OAllow restored FIX requests to be processed. ~"""'~ .... 	 .... 

B. 	 free storcge for work areas (if any), inform 
the caller of action taken, and free the 
anchor work area. FREEMAI N Routine 

RMBRANCH 

6.1 

POST Routine 

IEAOPT01 

Post the specified 
ECB. 

3.8 

FREEMAIN Routine 

RMBRANCH 

6.1 

Caller 

(
~ ~ 



VI 

(
r 	 r 

Diagram 5.59 (steps 6-8) F·IX Restore Routine (Module IEAPTERM) 
r-----------------------------------------------------------~-------~--------, 

I IROUTINE I I 

I NOTES INAME ILAEEL I 

~------------------------------------------------------------+--------+--------~ 
I 6 If the anchor wait count ~. 0, second exits are pending. IIEAPFIXRIWCEQO I 

I I I I 

I 7 	 The "no-FREE" flag is set in the work areas ~here I IEACKMORE 

I 	 errors were encountered because FIX backs out its own I 

I failing requests. The FIX Restore routine must back I 

lout (issue a FREE) for requests that comFleted I 

I successfully. I 

I 	 I 

I 	 IEAPSIQR is called once for each completed restore. I 


The parameters passed to it are: I 

I 


VSL byte 0 - X'02' I 

Register 0 - TeB address I 

Register 1 - bit 0 - 1 I 


bytes 1-3 - first VSL entry address. I 

I 


8 	 FREEMAIN is called once for each work area. If FIX I IFREEWA 

requests are beinq backed out, FREEMAIN is called I I 

after each return from lEAPSIQR and then again for I I 

each work area not backed out (after the last return I I 

from IEAPSIQR). I I 


I I 

Parameters Fassed to POS'I are: 	 I IPOSTIT 


I I 

Register 10 - post code I I 

Register 11 - ECB address I I 

Register 12 - TCE address. I I I 


____________________________________________________________ ________ ________J~ ~ 

C1l 
CD 

~ 
~. 

g 

'tl 
I» 
\Q 
~. 

::s 
\Q 

C1l 
.g 
Ib 
Ii 
<l 
~. 

UI 
~. 

g 
W 
-.J 
-.J 



00 

W Diagram 5.60 (Steps 1-5) 
-.J 

Subroutine for Purging PCBs 
From IEAPTERM (5.57) ond 
IEAPFIXO (5.58) to remove 
PCBs from a queue for a task 

Input Processing Output 

PURGEPCB 

SCNTE 

SCNFST ]4----- 1--­ If the queue is empty •••••••••••11~ Caller 

I 2 Determine type of request:r- ­..J 
I 
I TCB 

I 

.4
Register 1 

Request type: _...1 Region • 51+----
I 

00 TCB 

-1 Quiesce 
 Quiesce .8 
04 RB RB Request 
08 Region 3 IfthisPCB-;,-,-- ­

for a page-in and 
Register 2 

I 
for the input RB andI PCB
not marked to prevent posting,

""1 prevent posting and decrement the RB .."""""~ IPCBNOP=l 
IAddress of RB or reB t.--- ­

I wait count. ~""'...." 
PCB 

I _ I 'COlier RB 

PCBCON ""'1 Otherwise ~CF=RBWCF-Il• 11 
PCBIOI --l 

I TCB Request 
PCBRBP ""1 r- ­ 4 If the PCB is for the input TCB, prevent ..,""""'" ~~ 

posting and root completion (if the root...1 IPCBNOP 
PCB is used). • 11J I IPCBTCF ---I II! PCBOtherwise • 11PCBRTP --.l PCBNOP=l

I Region Request ~"" ...." PCBVBN 
Root PCB 

Root PCB 
--T1- 5 If the virtual page for thts PCB is 

neither in the WI A segment (if one I PCBRINT=l ___IIIIj.~11A
exists) nor the TeBls region limits 

PCBRTCB t.-- - - J 
I 

I 
I 

I (Continued at Step 6) 

I 
I 

TCB I 
r-- TCBSWA I 


I 

TCBSTI I 
TCBSTC _...1 

SWAH 

SWAHPTR 

SWAB 


"I SWABSEGX 


l, (. L 




r r 	 r 

Diagram 5.60 (Steps 1-5) Subroutine for Purging PCBs (~odule IEAPTER~) 

r-----------------------------------------------------------~-------~--------,
I IRCUTINE I I 

I NOTES IN~E ILABEL I 

~------------------------------------------------------------t--------t--------i 

I 1 IPURGEPCB! I 

I I I I 

I 2 ! ITESTTYPE I 

I I I 

I 3 Since an RB can have only one outstanding paging re- I IRBPURGE 

I guest, the search is stopped as soon as it is found. I I 


I I 

The PCB is for a page-in if PCBIOI=l or if the PCB is I I 

on the real storage allocation queue. I I 


I I 

4 	 If PCBTCF=O, the PCBRTP filed points to a ,oct PCB I ITESTTCB 

and the TCB is found via PCBRTCB. If this route is I I 

taken, PCBRINT is set to 1. 	 I I 


I I

5 	 If SWAHPTR=O, no SWA segment exists. The SWA limit is I IREGION 


in SWABSEGX. The TCB limit begins with the first I I 

segment number in TCBSTI and continues for TCBSTC I I 

segments. I I
L____________________________________________________________~________~________J 

en 
ro 
~ .... 
o::s 
U'I 

;g 
IQ.... 
::s 
IQ 

.g en 

ro 
<: .... 
CIl .... 
o::s 

W 
...J 
\0 

11 



Diagram 5.60 (Steps 6-7) w 
co Subroutine for Purging PCBs 
o 

Input Processing 	 Output 

r ­
I 

PCB _-I 
PCBIOI 

r-- PCBXPT 

PCBPIE 

PCBCQN 

XPTE 


.. XPTXAV 


XPTLPA 


XPTXADDR 

-

PCB 

IpCBR~---

6 	 If a PCB for this region is found: 

A. 	 For a page-in: 

• 	 Indicate page is part of swap-in working 
set (if valid). 

• 	 Indicate reol address no longer usable. 

B. 	 For a poge-out: 

• 	 If the XPTE is valid and the contents of 
the page cannot be destroyed 

• 	 If the XPTE is valid and the contents of 
the page can be destroyed, set up to free 

external page storage. 

• 	 In either valid case 

• 	 Validate the PTE for all page-outs. 

C. 	 For either a page-in or poge-out, prevent 
further processing of this PCB. 

7 	 Prevent reclamation or posting for this PCB and 
all PCBs related to it. 

XPTE 

~"""""""~ XPTTAKE=l
I I..........~l~................~i~........~PCB 


fPcBRIP=l 

PCBDADDF=O 

.. PFTE 

......................" ........~ PFTPCBSI=D 

..............,....................~ 


(Continued at Step 8) 1.11~ i l ........~, 


~ ~,~"~".,...,J! 
~"~ ~'~~ 

..............J...................
..........~I~....~ ,. ~ i
~ 
""~ ~l ~1
""'........~r~JLI' 


~--------------------~-~ 
~ 
~ 
~ 
I 
~................,~ ....r..
..... 

PCB 

PCBRBN=D 

PCBRIP=l 

PCBDADDF=i 

PCBDADD=XPTXADDR 

XPTE 

XPTXADDR~O 

XPTXAV=D 

PTE

IPGTPVM=Q 

XPTE

IXPTPCBQ~O 
PCB 

PCBXPToD 

PCBSKIP=l 

PCBXPToD 

PCBVBN=D 

PCBNOP=D 

l" L 	 L­

I 



r r r 

Diagram 5.60 (Steps 6-7) Subroutine for Purging PCBs (~odul€ IEAPTER~) 

r------------------------------------------------------------T--------y--------, 
I IROUTINE I I 

I NOTES I NAME I LABEL I 

~------------------------------------------------------------+--------+--------~ 

L_______________________________________________________ J 

I 6 
I 

The PCB is for a page-in if PCBIOI=l or 
on the real storage allocaticn queue. 

if the PCB is IPURGEPCBIINOUTTS 
I I 

I 
I 

I 
I 7 

I 
I 

I 
IPCBVBNO 

I 
I 

_____ ________l________~ 

en 
ID 

~ .... 
o::s 
U1 

~ 
\Q.... 
::s 
\Q 

.g en 

ID 

Ii 

<:.... 
en .... 
g 
IN 
co 
~ 









































In addition to their use in distinguish­
ing among the kinds of virtual storage, 
subpools give the user a means of sharing 
or isolating storage within his region. A 
user task and its subtasks operate within 
the same region, and since the hardware 
storage protection keys are assigned to the 
entire region, they cannot be used to isol­
ate areas of storage to particular sub­
tasks. Subpools 0-127 allow the user to 
isolate storage from another task executing 
with the same storage protection key, or 
from later entries into the same program. 
Unshared subpools 0-127 are freed when the 
user task terminates. 

The user may also use subpools 0-127 to 
share common areas of storage between tasks 
of the same job step. Shared subpools are 
freed when the owning task terminates, not 
when a sharing, but not owning subtask 
termina tes. 

SYSTEM QUEUE 	 AREA AFTER INITIALIZATION 

The SQA (system queue area) contains 
system control blocks required from one IPL 
to another. The size of the SQA is always 
a 64K segment multiple. The number of 64K 
segments set aside for the SQA is a system 
generation option and can be changed during 
system initialization. After initializa­
tion, SQA virtual address space cannot 
expand; however, the number of page frames 
assigned to the SQA does increase and 
decrease while the system is running. 

Because system control blocks are used 
so frequently, each SQA page is fixed in 
real storage when it is allocated. If the 
pages were not fixed and if (in the worst 
case), each control block in a queue were 
on a separate page, a search of that queue 
would cause excessive paging. Each 
reference to a control block could cause a 
page fault and a page-in operation to bring 
that page into real storage. To avoid 
this, each SQA page is fixed in real 
storage when it is allocated. 

Before the system is generated, users of 
the VS2 system must specify the amount of 
space needed for the SQA and, optionally, 
the size of the quickcell area within the 
SQA. During execution of the nucleus 
initialization program, a DQE (descriptor 
queue element) containing a record of the 
number of bytes assigned to the SQA is 
built within the area. In addition to the 
DQE, an FQE (free queue element) is built 
that contains the number of bytes of avail ­
able space (initially, all space is avail ­
able) in the SQA. Optionally, the initia­
lization program also builds a QCDBLK (qui­
ckcell descriptor block) describing SQA 
quickcells (see -Allocating and Freeing 
Quickcells ft in this section). Location 

GOVRFLB in the nucleus (pointed to by the 
secondary CVT) contains a pointer to the 
descriptor queue element, and the descrip­
tor queue element contains a pointer to the 
free queue element. Figure 6-2 shows the 
control blocks used for virtual storage 
supervision as they are immediately after 
system initialization. 

NIP (the nucleus initialization program) 
initializes other control blocks in the SQA 
to describe the contents of the dynamic 
area. The dynamic area consists of the 
pageable dynamic area and the nonpageable 
dynamic area. The dynamiC area is defined 
when NIP initializes the partition queue 
element for the dynamic area for pageatle 
tasks (V=V PQE) and the partition queue 
element for the dynamic area for nonpage-

GOVRFLB 

Describes the space assigned to the SQA. 

Describes the free space in the SQA. 

Describes space in 
the SQA qu ickcell 
area (optional). 

Describes the 
quickcel' 
requ irements for the 
SQA or an LSQA 
(optional) • 

L.o.;;..~~~,"" 

Describes all free 
blocks in the 
pogeable dynamic 
area. 

Describes all free 
blocks in the 
nonpageabl e 
dynamic area. 

Figure 6-2. 	 VSS control blocks after sys­
tem initialization. 

Section 6: Virtual Storage Supervision 401 



able tasks (V=R PQE). NIP anchors these 
PQEs to the PQEPTR field in the GOVRFLB 
control block in the nucleus via a dummy 
PQE. 

The V=V PQE is the anchor for the free 
block queue that describes blocks of avail ­
able space within the pageable dynamic 
area. After initialization, the pageable 
dynamic area is described by only one FBQE 
(free block queue element) since the entire 
area is available. When the system 
requests any of the following services, 
appropriate control block queues are modi­
fied to remove space from, or return space 
to, the free pageable dynamic area: 

GET LSQA (subpool 249) 

FREE LSQA (subpool 249) 

GETPART V=V (subpool 247) 

FREEPART V=V 	 (subpool 247) 

GETSWA (subpool 236) 

FREESWA (subpool 236) 

(Figure 6-6 illustrates virtual storage 
after space has been allocated for a page­
able task.) 

The V=R PQE is the anchor of the control 
block queue that describes blocks of avail ­
able space within the nonpageacle dynamic 
area. After initialization, the entire 
nonpageable area is available for alloca­
tion and is described by only one FBQE. 
When a system routine requests GETPART V=R 
or FREEPART V=R, appropriate control block 
queues are modified to allocate space from, 
or return space to, the free nonpageable 
dynamic area. (Figure 6-7 illustrates vir­
tual storage after an LSQA and a region 
have been allocated for a nonpageable task.) 

ALLOCATING SPACE IN THE SYSTEM QUEUE AREA 

The system queue area is used by the 
supervisor to satisfy requests for space in 
subpools 241, 243, 244, and 245. Requests 
for space in subpools 233, 234, 235, 253, 
254, and 255 are also satisfied from the 
SQA if there is not enough space available 
in the LSQA or when a task is being abnorm­
ally terminated and its LSQA space is 
exhausted. (See "Allocating Space in a 
Local System Queue Area" below.) 

Subpool 243 is used for task-related SQA 
space that is freed automatically when the 
task terminates. subpool 244 is used for 
job-step related SQA space that is freed 
automatically when the job step terminates. 
Subpool 245 is used for explicitly assigned 
SQA space and must be explicitly freed. 

(See "Allocating and Freeing Quickcells" in 
this section.) subpool 241, which is 
inclUded in VS2 for cowpatibility with VS1, 
is treated as subpool 245. (For a complete Jlist of VS2 subpools, see Figure 6-1.) 

If all of the virtual space for the SQA 
is exhausted, or if a fixed page is not 
available for an SQA request, the system is 
placed in an enabled wait state. 

ALLOCATING SPACE IN A LOCAL SYSTEM QUEUE 
AREA 

An LSQA (local system queue area) con­
sists of one or more segments of virtual 
storage. One LSQA is created for each 
initiator and lasts for the life of the 
task. The system uses each LSQA to contain 
various control clocks. VSS uses each LSQA 
to store queues of control blocks that con­
tain the information necessary to keep 
track of the free space and allocated space 
within a user's region. Figure 6-3 shows 
the format of the LSQA segments after they 
have been initialized by the Get LSQA Seg­
ment routine. 

Segments for an LSQA are assigned from 
the highest addressed segments available in 
the pageable dynamic area (see Figure 6-6 
and Diagram 6.11). Within an LSQA, space 
is allocated from the highest addresses to 
the lowest. 

Storing in the LSQA is restricted to 
control program routines that operate under 
a protection key O. Non-key-O users can 
only read LSQA storage. 

High I ISPQE' ooE2 (Reserved)3 
FixedQuickcell Area' } Page 


QCDBLK5 I TCB6 I SYRB' I FQE" 

Segment 

Free Space 

Low 

Field Explanations: 

, Subpool queue element (SPQE) for LSQA 

2 Descriptor queue element (00 E describes the entire LSQA segment) 

3 Reserved for future use 

4 Quickcell area (see "Quickcell Allocation") 

5 Quickcell descriptor block 

6 Skeleton TC B 

, Supervisor request block (SYRB) 

" Free queue element (FQ E) 

Figure 6-3. 	 An LSQA segment after 
initialization. 

402 



To obtain space in an LSQA, requesters 
must specify subpools 233, 234, 235, 253, 
254, or 255 in their GETMAIN macro 
instructions. 

Normal LSQA requests for one page or 
less are not satisfied across page boun­
daries. LSQA segments are allocated from 
the pageable dynamic area. Pages within 
the segments must be obtained and fixed 
before a GETMAIN request for LSQA can be 
satisfied. If a page of real storage is 
not available, the requesting task is 
abnormally terminated and all requests for 
LSQA space by the ABEND routine are statis­
fied from the SQA. This is done to avoid 
an ABEND recursion (a second entry to the 
ABEND routine). 

Normal Requests for LSQA Storage 

Normal LSQA requests for a page or less 
that are not quickcell candidates are sati­
sifed by searching the FQE (free queue ele­
ment) queue in the LSQA to find a block of 
storage closest in size and large enough to 
satisfy the request. When an LSQA request 
is satisfied, a new FQE must be created to 
replace the FQE for the space just allo­
cated (unless the request was for exactly 
the size of the free area described by an 
FQE, in which case that FQE is simply 
removed from the FQE queue and not 
replaced. ) 

Storage blocks in subpool 233, 234, 253 
and 254 have an AQE (allocated queue ele­
ment) appended to them. Subpool 233 and 
253 AQEs are chained from the requesting 
task's AQE queue. Subpoool 234 and 254 
AQEs are chained from the requesting task's 
job-step task AQE queue. The AQE contains 
the length of the allocated area (which 
includes the AQE itself). 

No record is kept of the allocated space 
by the system for subpools 235 or 255. 

Subpool 233, 243, and 253 Allocation 

When subpoool 233, 243, or 253 is speci­
fied in a GETMAIN macro instruction, the 
GETMAIN routines add eight bytes to the 
size requested, and the location of the 
beginning of the available space is deter­
mined. A GETMAIN routine builds an AQE in 
the first eight bytes of the requested 
area. It then chains the AQE to an AQE 
queue whose origin is in the TCB (TCBAQE 
field) of the task for which the space was 
requested. When that task is terminated, 
the termination routines issue a FREEMAIN 
macro instruction to free all space in the 
subpool that had not been already freed. 

subpool 234, 244, and 254 Allocation 

When subpool 234, 244, or 254 is speci­
fied in a GETMAIN «acro instruction, a GET­
~AIN routine builds an allocated queue ele­
ment as it does for subpoools 233, 243, and 
253, but chains the AQE to an AQE queue 
whose origin is in the TCB of the job step 
for which the space was requested. When 
that job step is completed, the termination 
routines issue a FREEMAIN macro instruction 
to free all space in the subpool that had 
not been already freed. 

subpool 235, 241, 245 and 255 Allocation 

When subpool 235, 241, 245, or 255 is 
specified in a GETMAIN macro instruction, 
no allocated queue element is built. It is 
the responsibility of the requester to 
ensure that the space is freed with a FREE­
MAIN macro instruction. 

ALLOCATING AND FREEING PAGES IN A SYSTEM 
WORK AREA 

SWA (system work area) segments are 
created, one per request, in the highest 
addressed segments available in the page­
able dynamic area. The segments are 
created by the GETSWA routine when proces­
sing SVC 4 GETMAIN requests for subpool 236 
(see Diagram 6.20). 

The system requests SWA pages by issuing 
an SVC 10 GETMAIN for subpool 231. This 
causes the GETPAGE virtual storage supervi­
sion routine to allocate page-size blocks 
to the system from an existing SWA segment 
(see Diagram 6.21). 

Allocation of space within the SWA is 
controlled by a SWAB (system work area 
block) which contains a bit map represent­
ing the 16 pages of the SWA segment. There 
is one SWAB for each SWA segment. The 
SWABs are chained on the SWAB (system work 
area header) from the most recently allo­
cated SWAB to the oldest. The GETPAGE 
function allocates pages from the SWAB by 
searching the chain of SWABs (see Figure 
6-4). If there are no pages left for allo­
cation, the scheduler is notified by return 
code. 

The system frees pages in the SWA when 
they are no longer needed by issuing an SVC 
10 FREEMAIN for subpool 231. The FREEPAGE 
routine notifies the system whenever a seg­
ment of SWA has become completely free (see 
Diagram 6.39). The system frees SWA seg­
ments by issuing an SVC 10 FREEMAIN for 
subpool236 (see Diagram 6.38). 

Section 6: Virtual Storage Supervision 403 



Virtual Storage 

SWAB 

local System Queue Area 

Pageable Dynamic Area 

THigh address 

Most recently 
all ocated system 64K 
work area 

segment 1 
~--------' . Low address 

Figure 6-4. 	 Control blocks used to alloc­
ate storage in the system work 
area. 

ALLOCATING AND FREEING QUICKCELLS 

(See Diagrams 6.12, 6.13, and 6.37) 

Quickcells are small blocks of storage 
in the SQA (subpool 245) and the LSQAs 
(subpool 255) that can be allocated quickly 
and that are expected to be used over and 
over again for short periods of time. 

A quickcell can range in size from 8 to 
256 bytes, but must be a multiple of 8 
bytes. The number and sizes of the quick­
cells are defined at system generation and 
can be changed during nucleus 
initialization. 

The quickcell area in the SQA and in 
each LSQA is described by a QCDBLK (quick­
cell descriptor block) which contains a 
QCDE (quickcell descriptor entry) for each 
quickcell. The QCDBLB for SQA quickcells 
is built in the SQA during nucleus initia­
lization. The QCDBLK for an LSQA quickcell 
area is built in the LSQA when the LSQA is 
allocated (see Diagram 6.12). 

Quickcel1s can be al10cated and released 
faster than normal SQA and LSQA storage. 
When GETMAIN and FREEMAIN routines process 
a request for a block of storage from sub­
pool 245 or 255 that is explicit1y 
requested from quickcells, the routines 
bypass the normal search and updating of 
the storage control blocks and use a spe­
cial branch entry (QCBRANCH) to satisfy the 
request. 

TO allocate a quickcell, instead of 
searching the FQE queue, QCBRANCH indexes 
directly into the bit map in the appropri­

ate QCDBLK to determine whether a quickcell 
is available to satisfy the request. If it 
finds a quickcell, it marks it allocated 
and passes its address to the caller. If a 
quickcell for the length requested is not J
available, the request is processed like a 
normal request for storage in the SQA or 
LSQA. 

To free a quickcell, QCBRANCH simply 
finds the quickcell entry that matches the 
address to be freed and warks the entry 
available for allocation. 

Each GETMAIN quickcell request must 
result in one FREEMAIN request for the 
whole amount and not two or three FREEMAIN 
requests, each for part of the space. For 
example, a request for 80 bytes must result 
in a FREEMAIN of 80 bytes and not a FREE­
~AIN of 40 and another of 40. 

SUPERVISING EXTERNAL PAGE STORAGE 

(See Diagrams 6.23, 6.24, and 6.40) 

NIP (the nucleus initialization program) 
calculates the total amount of external 
page storage needed for the system and the 
number of external pages available for 
allocation. It places the count of all 
external pages available for allocation in 
the "total uncommitted" field and the "sys­
tem uncommitted" field of the PVT (page 
vector table). The "total uncommitted" 
field contains a constant value while the 
"system uncommitted" field varies as 
external pages are allocated and freed. 

NIP initializes the "batch committed" 
and "TSO committed" fields in the PVT to 
zero and sets the maximum TSO and maximum 
batch processing threshold counts as speci­
fied by the operator (see the OS/VS IPL and 
NIP Logic wanual). 

As tatch jobs for V=V regions are 
initiated, the GETPART routine allocates 
the regions. GETPART assigns a virtual 
storage region fo:.:. the job and enSures that 
there is an external page to back up each 
virtual page (that is, if the virtual 
region size for the batch job is 128K, 
there must be 32 pages of external page 
storage available). The GETPART routine 
decrements the "system uncommitted" count 
and increments the "batch committed" count 
ty the numter of pages assigned to the 
region (see Diagran,s 6.23 and 6.40), 

For TSO tasks, the external page storage 
counters are incremented by a percentage of 
the amount of virtual storage assigned. A 
logon buffer is used to predict whether 
SUfficient external pages are available to 
allow a new TSO user to enter the system. J 

404 



If not enough external pages are available, 
no new TSO jobs are initialized. 

Batch jobs, once initiated, should not 
run out of external pages since they are 
guaranteed 100 per cent back-up of virtual 
storage with external page storage. Howev­
er, only a fraction of the TSO user's vir­
tual storage requirement is backed up by 
external page storage. Consequently, a 
count is maintained of the pages used by 
TSO users. If time sharing jobs exceed the 
amount of external page storage that can be 
used, they are terminated. 

GETPART reserves an area in external 
page storage to guarantee that a TSO task 
can be swapped out to external page 
storage. This TSO buffer is large enough 
to accommodate any TSO task in real storage 
that may be forced to log off, thus ensur-' 
ing that the swap-out operation will not 
require use of external page storage that 
is committed to batch jobs (see Diagrams 
6.24 and 6.40). 

ALLOCATING SPACE FOR A REGION 

(See Diagrams 6.14 through 6.19) 

When an initiator issues a GETMAIN macro 
instruction for subpool 242 or 241, storage 
is obtained from the area represented by 
either the V=R PQE or V=V PQE respectively. 
A new PQE and an FBQE are created in the 
LSQA for the new region. The address of 
the PQE is inserted in the job step's TCB. 

The routine that obtains regions upon 
request is the GETPART routine. The GETPART 
routine is invoked by either a register­
form GETMAIN (SVC 10) request (always an 
unconditional Single-region request) or a 
list-form GETMAIN (SVC 4) ECB-mode request. 
The ECB-mode GETPART request applies to the 
conditional form of single-region and 
split-region list requests. An ECB is con­
tained in the requester's JSCB (job step 
control block). This type of request 
enables a job to be canceled when it cannot 
be initialized because sufficient storage 
space is not available. The ECB-mode GET­
PART request must be used when requesting 
space for nonpageable region or for a spe­
cific (checkpoint/restart) pageable region. 

Space for regions is obtained from the 
dynamic area of virtual storage. (See 
figures 6-5 and 6-6.) The PQEPTR field at 
offset 8 in location GOVRFLB contains the 
address of a two-word DPQE (dummy partition 
queue element) less eight bytes. The first 
word of the DPQE contains the address of 
the V=R PQE (partition queue element). The 
second word of the DPQE contains the 
address of the V=V PQE (see Figure 6-2). 

Virtual Storage 
High 

System Queue Area 

{} Local System Queue Area (User 1) ~ 

Pageable 
Free Pageable Dynamic Area Dynamic 

Area 

Pageable (V=V) Region (User 1)fr 	 fr 

Nucleus 
Low 

Note: 
!). n These arrows indicate the direction (high to low or low to high) in 
U V which storage addresses are allocated for the respective areas. 

Figure 6-5. 	 Virtual storage after alloca­
tion of an LSQA and region for 
one pageable (V=V) task. 

Virtual Storage 
High 

System Queue Area 

Local System Queue Area (User 1)~ 	 ~ 
{} Local System Queue Area (User 2) {} Pageable 

Dynamic 
Area 

fr Pageable (V=V) Region (User 1) fr 
Nonpageable 

fr Nonpageable* (V=R) Region (User 2) fr 1.1 

Dynamic 
Area 

Low 
Nucleus 

Notes: 
These arrows show the di.ection (high to low or low to high) in which fr{} addresses are al located for the respective areas. 

*Nonpageable regions are assigned from the lowest-addressed 
contiguous space available in the nonpageable dynamic area that 
meets the specified size required for the region. Nonpageable 
regions are started on page (4K) boundaries and the region size 
specified is rounded upward to a page multiple. 

Figure 6-6. 	 Virtual storage after alloca­
tion of LSQAs and regions for 
one pageable task and one non­
pageatle task. 

The first and second words of the PQE 
point to the first and last FBQEs (free 
block queue elements) associated with the 
area of storage described by the PQE. 

Section 6: Virtual Storage Supervision 405 



FBQES contain a count of the number of free 
bytes available in that block of storage. 
FBQEs are chained forward and backward in 
address order so that virtual storage 
supervision routines can scan them from 
either high-to-low address or low-to-high 
address. 

Before allocating a region, a VSS rou­
tine (CKTHRESH) checks whether the paging 
supervisor has sufficient resources avail ­
able to service the size region requested. 
If not, control is returned to the caller 
with the request unsatisfied. 

To assign a nonspecific region, the GET­
PART routine searches for the lowest block 
of free storage in the dynamic area large 
enough to satisfy the request. For a spe­
cific region request, it searches for the 
block that includes the region requested. 

For each region, the GETPART routine 
builds an FBQE, a DPQE, and a PQE in the 
requester's local system queue area. It 
places in the FBQE a count of the conti ­
guous free bytes that can be allocated in 
the region. It puts the address of the 
FBQE in the PQE and the address of the PQE 
in both fields of the DPQE (see Figure b-8). 

The GETPART routine also places the size 
of the region and the region address in the 
PQE and places the address of the dummy PQE 
minus eight bytes in the TCBPQE field of 
the requester's job-step TCB. The GETPART 
routine also establishes subpool 252 when a 
nonspecific region is obtained, to reserve 
a minimum of 4K minus 8 bytes, so that pro­
grams in supervisor state and protection 
key 0 can obtain storage in the region. 

Region Reference-Validity Map 

All user virtual storage regions have 
the same storage protection key. Storage 
protection between regions is provided by 
segment invalidation. Channel references, 
however, are not protected by segment inva­
lidation; therefore, any channel reference 
requested by a non-key-O program must be 
checked to ensure that the reference is 
valid. For this purpose, a table is built 
by the GETPART routine to define those vir­
tual addresses that may be referenced by a 
non-key-O program in a virtual storage 
region. This table is called the region 
reference-validity map. 

The region reference-validity map is 
constructed at the end of the dum~ PQE 
when the GETPART routine allocates a 
region. The map consists of eight-byte 
elements, each containing the starting and 
ending address of a portion of storage that 
may be referenced by a task in the asso­
ciated region. The addresses are placed in 
the map in ascending order. The storage 

described by the elements in the map are 
the nucleus, region, LSQA, and the area 
from the beginning of the LPA directory to 
the last addressable byte of virtual J 
storage (the high address of the SQA). 
These storage areas are the only ones that 
may be referenced by the task. 

Figure 6-7 illustrates the region 
reference-validity map. 

ALLOCATING SPACE WITHIN A REGION 

Any GETMAIN macro instruction in which 
subpools 0-127, 239, 240, 250, 251, or 252 
are specified indicates that space within 
an existing region is desired. 

Supervision of storage within a region 
as accomplished by using control block 
queues that originate from two fields in 
the TCB (task control block). TCBMSS 
fOints to the SPQE (subpool queue element) 
queue, which describes allocated areas of 
storage within a region. TCBPQE points to 
the DPQE (dummy partition queue element) 
which points to the PQE (partition queue 
element) queue which, with the FBQEs (free 
block queue elements), describes unallo­
cated areas of storage within a region. 

TCB 

-8 

0 Dummy POE 

8 00 Address 1 Address2 

16 00 Address3 Address4 

24 00 AddressS Address6 
Reg ion Refe re nce-
Validity Map 

32 80 Add ress 7 Address8 
) 0 ne entry is 

40 reserved for TSO 
use. 

Note: 	 The addresses in the region reference-validity map are arranged 
sequentially from the lowest address to the highest and they all start on 
segment boundaries. 

Figure 6-7. 	 Format of the region 
reference-validity map. 

406 



Management of Unallocated Storage Within a 
Region 

There is one PQE per region. It is 
created when space for the region is allo­
cated. Each PQE contains pointers to both 
ends of a two~way chain of FBQES (free 
block queue elements) which describe 4K 
blocks (pages) of available storage space 
within a region. There may be any number 
of FBQEs for one region. Each FBQE con­
tains three pointers, one to the free area 
that FBQE describes, one to the next-higher 
FBQE on the chain, and one to the next­
lower FBQE. Each FBQE also includes a 
field that contains the number of bytes of 
free storage it represents. This count 
field is always a multiple of 4K. 

Immediately after a region has been 
created, there is only one FBQE represent­
ing all the available space. All subse­
quent GETMAlN requests for subpool numbers 
issued within this region are satisfied 
from the space allocated for the region. 
The space is taken from that described by 
the FBQE for the region and is assigned the 
subpool number identified in the GETMAIN 
macro instruction. 

Figure 6-8 illustrates the control block 
queues used to manage unallocated storage 
in a region. 

Supervision of Allocated space Within a 
Region 

When a GETMAIN macro instruction is 
executed, the VSS routines search the list 
of SPQEs (subpool queue elements) whose 
or1g1n is in the TCB field TCBMSS (see 
Figure 6-9). Each SPQE anchors the control 
blocks that describe the space associated 
with an existing subpool number. If an 
SPQE is not found for the subpool 
requested, a new SPQE is created (see Dia­
gram 6.5). 

Each SPQE contains an identifying number 
(see Figure 6-3), control information that 
indicates whether the subpool is owned 
exclusively by this task or is being shared 
with another, and two pointers. These 
pointers create two chains. One chain is 
composed of other SPQEs representing other 
subpools. The other chain is a series of 
DQEs (descriptor queue elements) which 
describe blocks of storage within the sub­
pool. Each DQE describes one or more con­
tiguous 4K blocks of storage. 

When a processing program issues a GET­
MAIN request, a series of 4K blocks large 
enough to satisfy the request are allocated 
to the subpool for which the request was 
made. From the amount of 4K blocks of 
storage so obtained, the number of bytes 
asked for in the GETMAIN instruction is 

reB 

Free Area 

Free Area 

Free Area 4K 

Multiple 

~J 
Figure 6-8. Control blocks used to manage 

unallocated storage within a 
region. 

SUbtracted. The remaining space (if any) 
is still available to be allocated to sati­
sfy another GETMAIN request for the same 
subpool by the same task, or by a task that 
is sharing the same subpool. A FQE (free 
queue element) is used to describe the 
unallocated (and still available) storage 
within the space defined by a DQE. (See 
Figure 6-9 for an illustration of these 
queues. ) 

Processing the Initial Reguest for Subpool 
Space 

Each time a request for space is 
received, the chain of SPQEs is scanned by 
the GET~~IN routines to determine whether 
the requested subpool exists. When the 
initial request for a particular subpool is 
received, the GETMAIN routines build a SPQE 
(subpool queue element) in the local system 
queue area. The SPQE contains the subpool 
number and, if other subpools exist, a 
pointer to another SPQE. (See Diagram 
6.5.) 

The GETMAIN routines also build a DQE 
(descriptor queue element) in the local 
system queue area, and place the address of 
the DQE in the subpool queue element. The 

section 6: Virtual Storage Supervision 407 



TCB 

SPOE 
SPQEs head chains of 
DQEs describing 
allocated space within a 
subpool. 

DOE 
OOEs describe allocated 
blocks of continuous 
storage that is assigned 
to a subpool in multiples 
of 4K. 

FQEs describe free space 
within a region. 

FQE 

"T­
4K Multiple 

1 
'----'----------------' Low Address 

Figure 6-9. 	 Control blocks used to super­
vise allocated storage within 
a region. 

DQE contains a count of the number of bytes 
of storage allocated to a block in the sub­
pool (space within regions is assigned to 
subpools in multiples of 4K-byte blocks). 

If any free space exists within the 4K­
byte blocks defined by a DQE, a GETMAIN 
routine builds an FQE (free queue element) 
within the LSQA and places in it a count of 
the number of bytes available and the 
address of the highest byte +1 of the free 
space. All such FQEs for one contiguous 
area are chained together. The address of 
the first such FQE is placed into the asso­
ciated DQE. 

processing subsequent Reguests for subpool 
Space 

When a GETMAIN request is issued for an 
already existing subpool (identified by an 
SPQE), a check is made to see if a DQE 
exists. (If a FREEMAIN had been issued for 
the entire subpool, an SPQE would remain, 
but there would be no DQE.) If there is no 
DQE, a new one is built as described in the 
preceding topic "processing the Initial 
Request for Subpool Space". If there is a 

DQE, the FQE queue associated with the sub­
pool is searched (see Diagram 6.7) and the 
request is satisfied from the free space 
within the subpool, if possible. If the 
request cannot be satisfied in this way, 
additional space is allocated (in multiples 
of 4K-byte blocks) to the subpool. The 
space is obtained from the free area 
described by FBQEs. The amount of storage 
obtained is represented by a DQE and one 
(or more) FQEs within the specified sub­
pool. The number of bytes allocated is 
subtracted from the FBQE for the area from 
which storage was obtained, and the FBQE 
pointer is relocated if necessary. All 
DQEs representing space in the same subpool 
are chained together. 

For nonpageable tasks, the storage pro­
tection key of the requesting task is 
assigned to the allocated storage and the 
storage is fetch-protected as each 4K-byte 
block is assigned. Then, when each tlock 
is freed, its storage protection key is 
reset to zero. 

For pageable regions, the protection key 
and fetch protection are set in the extern­
al page table as each 4K-byte block is 
assigned, and the block is marked assigned 
to GET~AIN. Then, when the block is paged 
into real storage, the page is assigned the 
storage protection key and fetch protection 
by the paging supervisor. When a page is 
freed, it is released from both real and 
external page storage and an indication 
that the page no longer exists is set in 
the page table. 

After space is assigned, storage usage 
information is recorded (see -Recording 
Storage Useage Information" below). Final­
ly, the GETMAIN routines place the address 
of the assigned space into register 1 if an 
SVC 10 instruction caused entry, or place 
the address into the location specified by 
the requester if an SVC 4 instruction 
caus ed entry. 

Processing if the Requested Space is not 
Available 

If there is not enough free space in the 
region to satisfy a request, the CDPURGE 
routine attempts to purge one or mere 
unused modules in the requester's region 
(see Diagram 6.9). The space freed by this 
purge may be sufficient to satisfy the cur­
rent request. 

If the purge flag (TCBJPQF) is set in 
the TCBJPQ field of the job-step TCB, the 
CDPURGE routine examines all CDEs (contents 
directory entries) in the job pack queue. 
Each CDE that has the "release" flag 
(CDREL) set in its attributes field repre­
sents a module in the region that is no 
longer needed (that is, there are no out­

408 



standing requests for the module by any 
routine in the job step.) For each such 
module, the CDPURGE routine branches to the 
CDDESTRY routine (in CDEXIT) to dequeue the 
CDE and free the associated module and its 
extent list. 

After all CDEs in the region's job pack 
queue have been examined and all unused 
modules purged, and if the module purge has 
freed enough space to satisfy the request, 
the GETMAIN routines allocate the needed 
space to the requester's task, then return 
control to the requester. 

RECORDING STORAGE USAGE INFORMATION 

(See Diagram 6.10.) 

The SMF Storage routine checks to deter­
mine whether an initiator has indicated 
that SMF recording should be performed, and 
then checks the TCB for the address of the 
TCT (timing control table). If there is no 
TCT, SMF storage information is not being 
recorded for this task. If there is a TCT, 
the SMF Storage routine performs the fol­
lowing functions for subpools 0-127 and 
250-252: 

• 	 It determines whether the newly allo­
cated storage exceeds either the "low­
water mark" (LWM) or the -high-water 
mark" (HWM) for the region. The LWM is 
the address of the highest storage 
address allocated from the bottom of 
the region, and the HWM is the address 
of the lowest storage address allocated 
from the top of the region. If either 
is exceeded, the SMF Storage routine 
stores a new value in the TeT. 

• 	 It calculates the difference, in terms 
of 4K-byte blocks, between the LWM and 
HWM. A record of the miniRure value for 
this difference is kept in the TCT. If 
the new allocation or release creates a 
new minimum, the SMF Storage routine 
records the new minimum difference in 
the TCT. 

FREEMAIN ROUTINES 

(See Diagram 6.27.) 

The FREEMAIN routines service the FREE­
MAIN macro instruction, which is used to 
free space when it is no longer needed. 
Space aSSigned to a region, space within a 
region, space in a system work area, space 
in a local system queue area, or space in 
the system queue area may be freed. Basic­
ally, the FREEMAIN routines combine space 
being freed with existing free space or, if 
the adjacent space is not free, build new 

control blocks and add them to the appro­
priate queues of free blocks. 

Freeing the Entire Space Assigned to a 
Region 

The FREEPART function is invoked by a 

register-type FREEMAIN request (SVC10) or 

by a branch to RMBRANCH to release space 

from subpool 242 (V=R) or subpool 247 

(V=V). 


To free a region, the TCBPQE field of 
the TCB that represents the task for which 
the region is being used is checked to 
determine the address of the partition 
queue element for the reqion. The dummy 
PQE and region reference-validity map are 
cleared first. Then the space occupied by 
the PQE is released (see "Freeing Space in 
an LSQA or the SQA" below). Next, if the 
region to be freed is adjacent to an exist ­
ing free area, it is combined with that 
area. This is done by adding the number of 
bytes in the region being freed to the size 
field of the free block queue element for 
the existing free area and, if necessary, 
changing the FBQE to point to the beginning 
cf the newly enlarged free area. 

If a region being freed is not adjacent 
to a free area, the FREEMAIN routines build 
an FBQE for the area and add it to the 
chain of FBQEs that represents all space 
available for allocation as regions. 

The FREEPART routine also frees the 
eight bytes in subpool 252 obtained by the 
GETPART routine. 

Freeing Space Within a Region 

(See Diagram 6.29.) 

TO free space within a region, the SPQE 
(subpool queue element) representing the 
subpool from which space is to be freed is 
located. The address of the SPQE queue is 
in the TCBMSS field of the task control 
block for the task to which the space is 
assigned. The DQE (descriptor queue ele­
ment) that represents the area in which the 
space is to be freed is located. Next, the 
two FQEs (free queue elements) between 
which the space exists are located and a 
new FQE is constructed to represent the 
newly freed space. This FQE is either 
added to the chain of FQEs or, if the space 
lies adjacent to another free area, is com­
bined with the FQE of the adjacent free 
area (see Diagram 6.35). 

A test is then made to determine whether 
the reSUlting free area contains any free 
4K-byte blocks that begin on a page boun­
dary. If it does, and the block is adja­
cent to an existing free 4K-byte block, the 
number of bytes to be freed is added to the 

Section 6: Virtual Storage Supervision 409 



count field in the FBQE representing the 
existing free space and the space is 
cleared. (See Diagram 6.34. > 

For a nonpageable task, the protection 
keys of the released blocks are set to 
zero, with fetch protection on. Fer page­
able tasks, the page table entries for the 
released blocks are marked not assigned and 
the storage key in the external page table 
entries are set to zero. 

If the block being freed is not adjacent 
to a free 4K-byte block, a new FBQE is con­
structed and paging supervisor references 
to the pages are deleted. The number-of­
bytes count in the appropriate DQE is then 
decremented to reflect the storage being 
removed from the sub~ool. When this count 
reaches zero, the DQE is eliminated. A new 
DQE is created and the old one is updated 
when space in the middle of that described 
by the old DQE is freed. 

The SMF Storage routine (FMSMFCRE> is 
used to maintain storage usage information 
in the TCT (timing control table>. (See 
-Recording Storage Usage InforKation- ear­
lier in this section.> 

Freeing Space in an LSQA or the SQA 

(See Diagram 6.31.> 

When processing requests to allocate 
storage in the SQA or an LSQA, fixed real 

storage is ottained before the request is 
satisfied. A request of 4K or less is not 
satisfied across page boundaries. When a 
preciously allocated SQA or LSQA page is 
freed, the real page assigned to it is 
released. 

To free space in the SQA or an LSQA, a 
FREEMAIN routine first locates the DQE 
(descriptor queue element> that represents 
the space. It next checks to determine 
~ether space within subpcols 233, 234, 243, 
244, 253, or 254 is to be freed. If so, 
eight bytes are added to the size of the 
area to be freed (to include the AQE that 
is contained in the area), and eight bytes 
are suttracted from the address of the 
space. 

For subpool 233, 234, 243, 244, 253, and 
254, the address of the AQE is obtained 
from the TCBAQE field of the associated 
TCE. If the entire area defined by the AQE 
is to be freed, the AQE is simply removed 
from the AQE queue. If the lower boundary 
is being freed and the upper boundary is 
not, or if space in-between is being freed, 
a ne~ AQE is created for the remaining 
storage. Otherwise, the byte count of the 
original AQE is reduced by the amount of 
storage being freed. Any resulting conti ­
guous free areas are combined by combining 
FQEs. 

J 


410 



r r r 

• Diagram 6.0 

Virtual Storage Supervision 
Visual Table of Contents 

til 
(I) 

~ 
"".o 
~ 

(J\ 

<:
"". 
~ 
c:: 
III .... 
til 
rT 
o 
11 
III 
\Q 

6.14 

Allocating an 
SNA Segment 

Monitoring 
TSO Storage 

6.24 

Error Proce~sing 
GETMAIN/ 
FREEMAIN 

6.26 

Index to Diagrams by 
Module Name for Virtual 

Storage Supervision 

Module Diagram 
Name Number(s) 

Freeing Space 
Assigned to an 
LSQA 

locating an 
FQE to Free 
Space 

Freeing 4K 
Blocks 

6.36 

6.11,6.12,
(I) IEAPLSQA 

6.32 
til Freeing an Freeing an 

.g 6.1--6.10, SWA Segment :MI A Page 
6.13, 

(I) IEAVGMOO 6.20--6.22, 6.38 6.39Ii 6.25--6.31, 
6.34--6.39 I"".< 

!Il Monitoring the
6.14--6.19,"". Release ofo IEAVPTRO 6.23,6.24, I External Pages ~ 6.33,6.40 , 6.40 

.... "" .... 

http:6.33,6.40
http:6.23,6.24
http:6.14--6.19
http:6.34--6.39
http:6.25--6.31
http:6.20--6.22
http:6.1--6.10
http:6.11,6.12


~ 	 Diagram 6.1 
~ Overview of GETMAIN and FREEMAIN 
~ 

From the SVC First-level 

Input Interruption Handler to process Processing 
SVC 4 or SVC "equests. .. 

IGC004} • 	 Outputo 
 IGC005 Enobled Pnef.. 


Register 1 
Single element 

Address of parameter list ~- - - - - - - - - -+- - - - - - ------ 1 Check validity of parameter list. IEAOVLO 1 I Add ress allocated I 
From the SVC --level 
Interruption H er, ABEND, list request 

Register 14 
3.19[ R~-tu rn address or a branching tine to process 

an SVC 10 req (Input fl) ~ 
E1 ~ IGC010 

Register 0 	 r=>
ABBRANCH Vodable SVC 4
RMBRANCH[S~~umber, length 	 length=() ;f FREEMAI N Branch en or SVC 4 
QCBRANCH 	 6.13, Step 1 I Address allocated I

for a whole subpool (Input 0
Reg;,ter 1 { 	 I Length J+ = FREEMAINI Address I 	 0= Subpool FREEMAIN Register 15 

- = GETMAIN GMBRANCH 
Register 4 I Return code=X'OO' I 

2 If FREEMAIN +4 
[Address ~f TeB =X'04' if request was 

GMCOMMON not satisfied 
Register 14 3 • Locote storage. 

Return address ~ • Allocate storage. 
• 	 Update virtual storage control 

blocks. 

From CDDEST fr a branching (See Diagram 6.2 for details)
routine to pro on SVC 5 
request Requeste-r 

Output from Step 4 
CLBRANCH 
FMBRANCH 
FMCOMMON Designated storage freed 

for reallocation 
4 • Locate storage. 

• 	 Re!ease storage. Register 15 
• 	 Update virtual storage control 

blocks. I Return code::=XfOOf I 
(See Diagram 6.27 for details) 

Requester 

l, L 	 ~. 




r r r 

a Diagram 6.1. Overview of GETMAIN and FREEMAIN (Mcdule IEAVGMOO) 

INPUT 

Register 1 

r-1 Address of parameter list 

Parameter list 

Single element 

Length requested 

Address for address of storage 
allocated 

Code I Subpaol I 
number 

Register 4 

I Address of TCB 

Register 5 

I Add ress of RB 

I 

I 

List request 

Address of length list I 
.,.....~ 

Lengthl~ 

CIl 
Cll 

~ .... 
o 
=s 
0\ 

Address of address list 

Code I Subpool I 
number ~ 

L Add~ 
<.... ~ 
~ c: 
1\1 .... 

Variable SVC 4 

Address of limits 
I Minimum length 

CIl 
rt o 
Ii 
1\1 
IQ 
Cll 

CIl .g 
Cll 
Ii 
<:.... 
en .... 
g 

Address of results 

Code I Subpool I 
number 

Variable SVC 5 

Address of length 

Code I $ubpaol I 
number 

-

Maximum length 

Address of area allocated 

Leng th a II ocated 

Address to be freed 

Length 

~ .... 
W 



2 

~ 
~ 
~ 

Input 

o 
Register 1 

Add~f pa~~-t~ 

Register 14 

Return address 

E1 
Register 10 
~.---

Register 11 

Address to put storcge 
pointer(s) 

Register 12 

Subp;;ln~-be~-peJ 

From IGC004 or 
GMBRANCfl for Processing
SVC 4 

••••I~I GMCOMMON 

If this is a list request 

From IGCOlO, 
ABBRANCH, or 
RMBRANCH for 
SVC 10 and 
GUST for the first 

Check subpool number for validity and 
special processing. From OCALLOC when 

request cannot be 
satisfied with a quickcell. .. 
From GUST for second 
and subsequent list 
elements. 

....I~I GCOMM4 

3 Creote subpool queue element;f needed. 

4 Round length to an e;ght-byte mUlt;Ple...From GNOTSAT 
to 

••••	I~I GMREPEAT 

5 If request is for SQA or lSQA: •• Search FQ Es. 

• Build an AQE if requested. 

• Update FOE. 

.. 

(Continued at Step 6) 

GLiST 

--"' Process SVC 4 list ... 
request. 

_I CSPCHK 

6~1 

_I 1 !GSPQESPC 

6.5 

_I CRNDLNTH 

_I G"~O" .,I 

--"" GFOEUPDT... 
Reduce size of free 

black. 
6.8 

Diagram 6.2 (Steps 1-5) 
Overview of Allocating Storage 

Output 

r! I:> 
SPQE 

AOE 

l.. L 	 ~. 




r 	 r r 

Diagram 6.2 (Steps 1-5) Overview ef Allocatillg St.crage (foIcdul e IEl'VGMOO)

r---------------------------------·---------------------------T--------T--------,
I IROUlINE I I 

I NOTES INAfoiE ILAEEL I 


~------------------------------------------------------------+--------+--------~o The rararoeter list is shown in the notes for Diagram I I 

6.1. These 3re the infut Faraneters for the fcllowing I I 

pnLry Feints: GMCOM~ON, GCOMM4, GMREPEAT, and GCO:-1MS. I I 


These are the input parameters for GMCC~~l.F:l 	
I 

I 
I 

I 

I 
I 


The GLIST routine is effectively a part of the GET!'JlIN I GfoICCIWCN I GfoICCMM1 
Common routine. The first tine GLIST is called, it I IGLIS'T 

enters thE GETt"lAIN Cemrr·on routine at GM.COMM1. When the I I 

Common routine successfully satisfies a list request, itl I 

giv"s central to GLISTl (SEe Stefl 9). All successive I I 

~ntries to the Comrrcn routine froIT GLISTl ar~ rrade at I I 

GCOMM4 to elimiIlate the suhpcol check. WhEn all entriesl I 

have been processed, the Ccruron rcutine is enterEd at I I 

GCCM~5 to rcturu to thE cctll.tr. I I 


I I 

2 	 IGI'CCI'I'ONI GI'COMM4 


I GSPCHK I 

I I


3 	 CSPCHK re1- 1JrnE; the adjrE'~~ of th~ SPQE if cnE €xitits. I GSPQESFCI 
It there is none, th;:; Gl:,'IMAIN Common rout.ine branchf>~ I I 

to GSPQESPC to cre..ite CD..,,;. I I 


I I 

I 5 'T'h GEr~J',IN Comrl10f, routill~ uT3.nch-2S to Gl'LCAQ£ t~ IGELDAQ.E I 

I 	 I I
bu 11 aD allocatee qU:::::U2 E1E'mf.nt fOL slJbpool 243, 244, 


25 , alld 2S4 L Eql),,::st~.
I
L_ 	 _ __________________________________..1..I ________.l.I ________ JI 


en 
CD 
n 
ri­.... 
o::s 
a­

<:.... 
Ii 
ri­

~ .... 
en 
ri­
o 
Ii 
DI 

\Q 
(1) 

en 
c:: 

"0 
(1) 

~ .... 
en .... 
o
::s 

"'".... 
c.n 

http:E1E'mf.nt
http:cctll.tr


~ Diagram 6.2 (Steps 6-10) 
t-> Overview of Allocating Storage 

'" 	 Input Processing 

Reghte, 10 
6 If page boundary request I obtain storage G4KSRCH 

~ -]4- -+-,-- from FBQE area. 	 Get storage on a 
rI I 	 page boundary.

Register 12 
6.22 


Subpool number and 

I I 

.-J L_ 7 	 If request is for more than the largest 
possible FOE size:

type 

G4KSRCH 


Register 14 
• 	 Obtain storage from FBQ E area. Obtain 4K or more 

storage.I Return address ~ 
6.22 

GNOTSATB 

address of largest area available. 
• 	 If space could not be found, save the 

Retry at GMREPEAT. 

6.25 

8 	 If request is less than or equal to the 
largest possible FQE size: GFRECORE ... 

Search FQ Es for• 	 Search FQ E queue. r free space. 

6.7 

• 	 If space not found "7 

• 	 Allocate space described by the 
FOE found. GFOEUPDT r 

Reduce size of 
free block • ... 

6.8 

From G T when 

last en as been GL1STl 

process 
 9 If this is a list request 	 Process next element 
From G )TSAT of list request. 
6.25, .6. 

I 
GCOMM7 

GCOMM5 


Output
Return • 	 Caller 

" I Register 15 

Return code=X'OO· 
Successful allocation 

II 	 I 
I 

~J L 	 L 






~ ... 
co 

From GMCOMMON or FMCOMMON 

to locate and check a subpool queue Processing

element. 


• ••I~ICSPCHK 
Input r ­ If problem program subpool, search SPQE queue for the subpool number 

and pass its address to the requester.I 
Register 4 1- ­ 2 Check the validity of the subpool f change its number if necessary, and 

route processing control per subpool number as follows: I 
I SUBPOOL 


Register 12 NUMBER 
 ACTIONI 

I Subpool numbe;:-j4- - - - - ---1 


232 If branch entry save registers. Exit. 

TCB 233 Change to 253, indicate AQE needed, process like 255. 

234 Change to 254, indicate AQE needed, use job-step TeB, 
process like 255. 

235 Chonge to 255 and process I ike 255. 

236 Exit. 

237 Exit. 

238 Error condition (ll); $ubpool not assigned. 

239 Error condition (11); $ubpool not assigned. 

240 Process like 250. 

241 Change to subpool 245 and process like 245. 


242 If branch entry save registers. Exit. 


243 Indicate AQE needed, process like 245. 


!I 

GOVRFLB 244 Indicate AQE needed, pick up iob-step TeB, process like 245. 


245 Pick up SQA SPQE, and return. 


246 Error condition (11); subpool not assigned. 

SPQE SPQE 

247 If branch entry, save registers. 

248 Error condition (11); subpool not assigned. 

249 If free branch entry, save register.;. Exit. 

250 Change to su bpool 0, process like a problem program request. 

251 Pick up job-step TCB and process like a problem program 

252 request. 

253 Indi cate AQ E needed, then process like 255. 

254 Indicate AQE needed, use job-step TeB, then process 
I;ke 255. 

255 Pick up LSQA SPQE if it exists. Otherwise, use 
SQA SPOE. Return to caller. 

EXIT 

~ 

+@ 
~ 
~ 
~ 

~E) 

~A) 

~ 
~ 
~ 
~ 
~ 
~ 

~ 

Colling Routine 

~ 

IEAPGSWA 

6.20,6.21,6.38,6.39_. 

~ 

GERROR 

Prepare ABEND or 
ABlE RM exit. 

6.26 

IEAVPRTO 

Monitor external 
page storage. 

6.24,6.40 

IEAVPRTO 

Allocate or free a 
region. 

6.14,6.33 

Allocate or free 
LSQA segments. 

6.11,6.32 

Diagram 6.3 
Processing Subpools 

Output 

5PO E for requested 
subpool returned 

or 
An indication that 
the SPQE was not 
found 

l, L l, 


http:6.11,6.32
http:6.14,6.33
http:6.24,6.40
http:6.20,6.21,6.38,6.39


_____________________________________________________ _______ ________ ________ 

r 


en 
(1) 
C'l 
rI".... 
o 
::s 
Cl'I 

....< 
t'1 
rI" 

~ .... 
en 
rI" 
o 
t'1 
III 

..Q 
(1) 

en 
d 
ttl 
(1) 

~ .... 
en .... 
o::s 

,j:: .... 
\Q 

r r 

Diagram 6.3 Processing Subpcols (~odule IEAVGMOO) 
r------------------------------------------------------------T--------T--------, 
I IROU'IINE I I 
I NOTES INl\!(E IlAEEL I 
~------------------------------------------------------------+--------+--------i 
I 
I 
I 

1 If the requester is key 0 
subpool number is changed 
be obtained. 

or 
so 

in supervisor state, the ICSPCHK 
that l'rotectE!d storage willi 

I 

I 
I 
I 

I 
I 
I 

I
I 2 
I 
I 
I 
l 

Checks are made fo~ two additicnal error conditions; a 
subpool ntLliber betweEn 128 ar.d 233, and a. request for a 
subfcol nUlI'ter greater than 233 for a nonsupervisor 
statE program in key O. 

I
I 
I 
I 
I 
~ 

I
I 
I 
I 
I 
~ 

I
I 
I 
I 
I 
J 



IV 
~ Diagram 6.4 
o 	 Allocating Storage for Control Blocks 

Branch entry to allocote 
storage for control blocks 

Input 	 Processing 

GETMA1NB
Register I 

Length and subpool num~- 1 Obtain SPOE. 

Diagram 6.25 GMBRETRY GFRECORE 
Step I 

2 Allocate storage of requded size. = Search FOEs. 

Register 14 6.7 
retV-~-~-- address j4---r - -, 

GNOTSATA 
SPOE for SOA 

---.a..
GOVRFLB 3 If storage could not be obtained. 	 Retry the 

request. 

6.25 

GFOEUPDT 

4 Update FQE for assigned area. Output 
6.8SPO E for LSOA 

Register 1 


L ________.L.S Zero out storoge. -Address of OSSigne~ 


To Caller 

~ L· 	 L 




_______ ________ ________ 

r ( r-

Diagram 6.q Allocating storage for Control Blocks (Module IEAVGMOOl 
r------------------------------------------------------------T--------T--------~ 

I I ROUTINE I I 

I NOTES INAME ILABEL I 

~------------------------------------------------------------+--------+--------~ 

L_____________________________________________________ J 

I This is an internal subroutine used by the 
I supervision routines to aetain storage for 

virtual storage 
control clocks 

IGET~~INBI 

I I 
I 
I 

I in subpool 255 or 2QS. I I I 
I 
I 2 

I I 
IGFRECORE I 

I 
I 

I 
I 3 

I I 
IGMBRETRYI 

I 
I 

I 
I 4 

I I 
IGPFEUPDTI 

I 
I 

~ ~ 

en 
(1) 

~ .... 
0 
::l 

0'1.. 
c:::.... 
H 
rt 
c:: 
CJ .... 

g en 

H 
CJ 

\.Q 
(1) 

en 
.g 
(1) 

t; 

<: .... 
en .... 
0 
t:I 

*'~ 
tv 
~ 



"" Diagram 6.S 
IV 
IV Creating an SPQE 

From GMCOMMON (6.2, Step 3) 
to creote a supbool queue element 

Input Processing 

••~I~I GSPGlESPC I GErMAINB 

Output1 Obtain space for the SPQE. • ',_..=:J 
Register 12 

I~oo-I---~r -]4-­ ------, 
I 

2 Add SPQ E to beginning of queue.I
TCB I 

I 
I 
I---, 

I I 
I 

L ___ _ 
3 Place subpool number in the SPaLl : >I

I 
IL _____ _

SPGlE SPQE 4 If this is the only SPQE, indicate ,-------, ~ 
lost on queue. 

Register 7 
6.2, Step 4 

[~ofyPQf] 

L ~<
'­





N 
~ 	 Diagram 6.6 
~ Searching FBQEs 

Fcom G4KSRCH (6.22) 
Input 	 to get 4K blocks of region 


space. 

~> 

D~ 
FBOSRCHA 

Register 6 

length requested Determine the POE address. 

F,:;: ;';:';;lSQA 0' ­
Register 12 	

r;1 

IEAVPRTO to FBQSRCH 
Subpool numberC 	 I obtain storage for 

I an LSQA. segment Output 
I or a region. 2 Search FBQE queue for a block 
I F,om IEAPGSWA large enough to satisfy ther 

to get SWA request.
I segment. 

J 3 	 If found, subtract request size 
from FBa E size. 
If not found, return the address 
of the largest area available. .1 FM~

4 	 If FBQE found is same size os 
the request I free the FBG E. Register 9 ~.==~, 6.271 

~~-~s of allocated -~ 

Register 6 

f) Register 1 	 I Size of allocated area 

High or low search indicator 
Register 15 

To Caller 
Size of largest area 

(if request not sofisfied) 

Register 6 

Length requested ~ 

To POE 

l, l 	 l, 




r ( r 

Diagram 6.6 Searching FEQEs (Mod',le IEAVGMOO) 
r------------------------------------------------------------T--------T--------, 
I IROUTINE I I 
I NOTES INAME ILABEL I 
~------------------------------------------------------------t--------t--------~ 
I [J When entered at FBQSRCHA fran G4KSRCH tc attain 4K IFBQSRCHAI I 
I rnultiFles cf region sFace, the search of the FBQES is I I I 
I made through the backward Fointers. I I I 
I I I I 
I EI When entered at FBQSRCH, register 1 indicates the I FllQSRrH I I 
I direction of the FEQE search. A value of 4 indicates I I I 
I the request is to be satisfied by starting the search I I I 
I with the high addresses. A value of 0 indicates the lowl I I 
I addresses are to be searched first. I I I
L_____________________________________________________ _______ ________~________ J~ 

C/l
(!) 

~ ..... 
o 
::l 

a.. 

<: ..... 
:+ 
t:: 
1\1 
I-' 

C/l
rt o 
Ii 
1\1 
"l 
(!) 

C/l 

.a 
(!) 
Ii 
<..... 
en ..... 
o 
::l 

UI '" 
~ 



IV 
:: 	 Diagram 6.7 

Searching FOEs 
C\ 

From GMCOMMON or GETMAINB 

to search FOE queue. 


Input 	 Processing 

GFRECORE 

Output 
--r---- 1 Search FOE queue and compare-r 

each FOE length to the lengthI I requested. If exact size is found, 
If FOE is Found If FOE Is Not FoundI 	 end search.1 __1___ ­ Register 1 Register 1 GMCOMMON--IL __ _ 

Allocate 	 Address of previous FOE [ Address of last DO E-t--- 2 If it is a region subpool request 

storage 


IL ______ _ 1 6.21 IPoging Supervisor 


I-- 3 	 If the request is on SOA or LSO.A • IEAPSOA1 
request, ensure that each page IS 1 Register 2 Register 15 

backed up by a reol page. 	 5.8SPQE I 	 Address of FOE [ Largest area 

I 
4 If the request length is less thonI r- ­

or equal to page size, ensure thatI I the reguest is not satisfied across 

I I a page boundary. 
GNOTSATC1 I 
Request not5 If real page cannot be obtained1 I satisfied 

First DQE DOE 1 I 6.25 

I I 
I I 
1 I 

To Coller 

1] 

1] 

I I 

,::'.J 


r - .- - Lost FOE 

First FOE .. ,-------. ,... FOE 

.T 

L 	 L L 



_____________________________________________________ _______ ________ ________ 

(
r r 

Diagram 6.7 Searching FQEs (Module IEAVGMOOl 
r------------------------------------------------------------T-------~--------, 

I IROUTINE I I 

I NOTES INA~E ILABEL I 

~-----------------------------------------------------------+--------+--------~ 
I 1 The GFRECORE routine searches thE FOE queues for the IGFRECOREI 
I requested subpool to find the FQE that best fits the I I 
I length requested. I I 
I 
I 2 For region subpools, ttle FQE of the requested size or 

I 
I 

I 
I 

I the largest available FCE (in the case of a variable I I 
I requestl is passed back to the requester (G~CO~MCNl I I 
I along with a pointer to the last DQE. I I 
I 
I 3 A series of calls is wade to the paging supervisor to 

I 
IIEAPSQA 

I 
I 

I obtain real pages to back up each page tbat will be I I 
I allocated tc satisfy the LSQA cr SQA request. I I 
I 
I 4 LSQA and SQA requests for 4K or 1 ess are not satisfied 

I I 
IGFRECCRE I 

I across pagE' boundaries. I I 
I 
I 5 If real pages cannet be cbtained for all the requested 

I I 
ITRNCNPVTI 

I LSQA or SQA pages, t~cse ~dgES that were obtained are IIEAPSIERI 
I
L 

cleared and the request is net satisfied. I 
~ 

I 
~ J 

CIl 
CD 
n 
rt".... 
o 
::s 
a.. 

<:.... 
Ii 
rt" 

~ 
I-' 

CIl 
rt" 
o 
Ii 
III 

i,Q 
CD 

CIl 

~ 
~ .... 
CIl .... 
o::s 

..,j '" 
~ 



.j:: 	 Diagram 6.S 
tv 
0:> 	 Updating FOEs to Allocate Space 

F,om GMCOMMON oc GETMAINB 
to update on FQ E. 

Input 

FMAINBr- ­ Determine new FOE size. 

I 

I r ­ 2 If size is zero, remove the FOE Output 

I I 6.27
and, if it is a region FOE, free it 

I I 

I I 	 FOE removed from queue 

I I 

I 
 I
Register 11 	 I 
 I Region FOE 

length of request ~ -~ I 

I I 

I I 
 3 Otherwise, update the FOE.I I 


-t--J 

I 

I 


_...1 


4 Move SOA FOE 0' LSOA FOE,r- ­
I 

I 


_..J 

Previous FOE 

5 	 If an AQE exists, adjust the 

starting address and length to 

be returned. Register 9 


Address of allocoted-~ 

Register 11 


To Coller 
 Length of request 

L~ 	 l 



r r 	 r 

r::iagram 6.8 Updating FQES to Alloca1:e Space (Module IEAVG!(QC) 
r------------------------------------------------------------T--------T--------, 
I IROUTI~E I I 

I NOTES INAME ILABEL I 

~------------------------------------------------------------+--------+--------~

1 	 The new FQE size is ,?qual to the oLiginal FQE size rrinus IG.FQEUPDTI 

the length of the request. I I 


I I 

If 	the FQE'f'YFE field in thE' FQE is equal to x'ao', the IF~AINB I 

FQE is freed. 

2 

I I 

I I 


3 If the FQE is for a region, cnly the area and length IGFQEUPDTI 

fields !rust te modified. I I 


I I 

4 	 If the FQE is for an LSQA or SQA, it must be moved to I I 


the nElM free area at the original location rr-inus the I I 

requested length, and the previous FQE must te updated I I 

to point to the new location. 	 I I 


I I 

5 	 If an AQE was built, eight is added to the starting I I 


address of the allocated area and Eight is subtracted I I 

from the length returned to the caller. 	 I I


l ____________________________________________________________ ________ ________~ ~ 

en 
(1) 

~ .... 
o 
::l 
0\ 

<: .... 
~ 
III 
.... 
en 
rt 
o 
Ii 
III 


I.Q 
(1) 

en 
,g 
(1) 
Ii 
<.... 
(II .... 
o 
::l 

.j:> 

\Q '" 



~ Diagram 6.9 w Purging Modules o 
From G NOTSA T (when out of storage) 
or from IEAVPRTO (dudng FREEPART 
processing) to free purgable modules 
in the JPA 

Input Processing 

CDPURGE 

To Calling Routine's If purge flag is not set, return. 
Address + 4 

I 
I r ­ 2 Find CDEs that are no longer Output 
I needed. 

I I 

r-­ l 

CDEs removed from queue CDEXIT __ J I 
3 Dequeue these CDEs and free DequeueI 

the associated modules and CDEs.I 
extent listsaI 3.14 

I If modules were purged, 
return is to the callingI routine IS return address. 

I 

I 

To Caller If modules were not purged,
I return is to the colling 

routine's return address + 4. 

-----I 
I 

I 

I 

I 

I 

I 

I 
__ J 

l,. ~l L~4 




r r 	 r 

Diagram 6.9 Purging Modules (!'odule .lEAVGMOO) 
r------------------------------------------------------------T--------T--------, 
1 1IlOUTINE 1 1 

1 NOTES INAME 1LABEL 1 

~------------------------------------------------------------t--------t--------~1 	 The purge flag is in the TCBJPQ fi'lld cf the 'ICE. When ICDPURGE 1 1 


set to x'ao' it indicates t.hdt. the modules can be IGNO'1SAT 1 1 

purqcd. I.lEAVPRTOI 1 


1 1 1

2 	 tach CLt that has the ·relea~e· flag set. in its attri- ICLPURGE 1 1 


but~s fipld rerresents a ~odull~ that no longer is neededl I I 

in 	the region. '1hat is, there are no outstanding 1 1 1 

requests for the moiulp oy ~ny routine in the jot ste[.. 	 1 1 1 


1 1 1

3 	 For each module that is no lenger neejed, the CDPURGE ICCEXIT 1CDDESTFY 1 


rout_ine branches ~_c CI:r.ES'I'R'l in CDEXIT to dequeue the IG/,<O'1SI\,' 1 1 

COE alld tr .. e the as!'lc;ciated rredule and ex-":ent list. IIEAVPRTOI 1 

If 	l.eturn is roade to Gt~C'l'~::1\T with modulf's purqed, the I I I 

r-,-,quest is retried. 	 1 1 1 


~L_________________________________________________.___________ ________...J.________J 

en 
(1) 

~ 
o"". 
:::! 

0\ 

<
"".I-( 
rt 
c:: 
PJ 
~ 

en 
~ 
I-( 
PJ 

\Q 
(1) 

en 
.§ 
(1) 
I-( 
<l 
"".CJl 

"".o 
:::! 

~ 
w 
~ 



~ Diagram 6.10 
w 
I\) 

Updating the TCT 
From G4KSRCH or FMCOMMON 

to record 
 information Processing 

•
......I~I GMSMFCRE

• FMSMFCRE 

Input 
If recording not active, return 

I 
Register 6 I 

--j 2 If there is no timing control table. 

I 
I Output 
I r-- 3 Determine whether the allocated or freed 

I 
storage causes a change in the "Iow-water TCT 
mark ll or "high-woter mark" for the region. """"'~"'~ 

I 

I 

I 

I 

I 

I 
 4 Determine whether the minimum differenceI I I-

is changed; store the new volue. ~""'I\.""""'t'+I TCTMINC J 
I 

I 


_J 

•••••••••~Coller 

TCT 

---~ 
I 

I 
__ ...J 

____ ......J 

~ L ~ 




____________________________________________________________ ________ ________ 

r r r 

Diagram 6.10 Updating the TCT (Module IEAVGMOOl 
r------------------------------------------------------------T--------T--------, 
I IROU'IIN'; I I 
I NOTES INA~E I LABEL I 
~------------------------------------------------------------+--------+--------~ 
I 2 If there is no TCT, SMF storage information is not IG14S1'FCREI I 
I being recorded for this rrograrr. I FI'SI'FCREI I 
I 
I 
I 

3 
I 

The "lo..-wa ter mar"" is the address of t.he highest I 
storage address allocatEo from the bottom of the regicn. I 

I 
I 
I 

I 
I 
I 

I The "high-water mar"" is the address of thE lowest I I I 
I 
I 

stcra<je address allocat Ed 
If E..i t.her is changed, the 

from the top of thE region. 
new value is recorded in the 

I 
I 

I 
I 

I 
I 

I TC'I. I I I 
I 
I 4 
L 

The differencE is calculated 1n mult.iples of 2K. 
I I 
IGI'SI'FCREI 
~ ~ 

I 
I 

J 

en 
til 

::l­
t-'­
o 
::l 

'" 
<: 
t-'­

~ 
.... 
en 
rt 
o 
Ii 
III 

<.Q 
til 

.a 
en 

til 
Ii 
<: 
t-'­
CJl 
t-'­
o 
::l 

~ 
w 
w 



J:: 
W 
J:: 

From RMBRANCH or IGCOIO 
to allocate and initialize master 
scheduler lSQA or lSQA for a 

Input 	 task Processing 
~ 

Register 0 	 IEAPLsOA--.. 
Number of segments l4-- --- 1 Allocate the highest-addressed segments 

available in virtual storage. 
Register 1 

Negative value 

1--- 2 If segments are not available 

3 Create page tables for the segments. 

GOVRFLB 

4 Allocate and fix page frames for each 
virtual LSQA page to contain control 
blocks.---, 

If allocation of page frames was not 
successful 

5 

6 Create and initialize SPOE, DQE, 
and SWAH. 

I 
-1-- 7 Assign a quickcell area, if requested. 

1 
CVT 	 I 


I 

-1-- -8 Initial ize skeleton TCB or master scheduler 

1 	 TCB. 
Reserve SVRB if from ATTACH. 1L__ 
Build an FQE for the LSQA segments.9 

Diagram 6.11 
Allocating LSQA Segments 

FBOsRCH 

Allocate segment. 

6.6 

Ott (vVhen segments areU pU not available) 

BR 14 
Calling Routine 

(or) 
Type-l Exit Routine 
(lEAOXEOO) (3.15) 

Register 15 

IReturn code=X'04' I 

BALR 
Paging Supervisor 

IEAPTCD 

5.34 

BALR 
Pa9in~ Supervisor 

IEAPsOAI 

5.8 

6.32,step2 

Output 
sPQE 

1sPQEPTR 

[}'~"OIsPDOEAD 

1 

I1 
DOE 

IEAPOCI 

----./ DO FO EPT R 

DOEPTR 

DOEBLKAD 

Initialize quickcell 
area 

6.12 

DOELNTH 

SWAH 

:::::::':>fSWAHFRsT 1 
sWAHLAsT 1 

lL TCB 

(If request 
is from ATTACH) 
sVRB 

BR 14 .. Calling Routine 
(or) 

Type-1 Exit Routine 
(I EAOXEOO) (3.15) 

-v 1TCBLsOAP 

1TCBLsOA 

TCBRBP 

1TCBOLSOA 1 
1TCBSWA 1 

- FOE 

1FQEPTR 

1FQELNTH 
1 
1 

Register 15

IReturn codeo=X'OO' I 

" 
L 	 L 




r r 	 r 

Diagram 6.11 Allocating LSQII Segments (Module IEAPLSQA) 
r------------------------------------------------------------T--------T--------, 
I IRCUTINE I I 
I NOTES INAME I LABEL I 
~------------------------------------------------------------t--------t--------~

1 

2 

3 

4 

6 

en 
CD 

~ .... 
o 
:::s 
0\ 

<.... 
~ 
£:: 
III .... 
en 
rt o 
11 
III 

\Q 
CD 

en 
.§ 

CD 
11 
<:.... 
Ul .... 
o 
:::s 

..., 
W 
U1 

8 

l ____ 

control is returned to the Type-1 Exit routine if the 
brancll entry swi tcn (OBFRSW) is cff. 

The Create/Destroy page Table routine of the paging 
supervisor is uSEd to create the page tables and to 
initialize segment table entries fcr the allccatpd 
segments~ 

The SQA/LSQA allocation subroutine of the paging 
supervisor fixes page frames in real storage to tock up 
each allocated virtual LSQA page. 

The control blocks are initialized as follows: 

Control Field Dec. 
Block Name DisJO. Bytes 
SPQE SPQEPTR 1 3 

SPQEID 4 1 
SPDQEPTR 5 1 

I:QE DQFQhPTR o 4 

DQEPTR* 4 4 
DQEBLKbD 8 4 

DQELNTH 12 4 
SWIIH SWAHFRS'I o 4 

SWAllLAS'I 4 4 

Initialized 
to 
Zero 
X'l!'F' 
LSQII I:QE address 
LSQII FQE address 
for LSQII 

QCDBIK address 
LSQII address for 
first segment 

Size of LSQA 
Zero 
Zero 

I IEAPLSQA I GETLSQA I 
IFBQSRCR I I 
I I I 
I I I 
I I I 
I I I 
IIEAPTCD I I 
I I I 
I I I 
I I I 
I I I 
I IEAPLSQA I INITLSQA 
IEAPSQA11 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

*When initializing the CQEP'IR field, the routine first 
checks the value in QC'IABLE (in GOVRFLB). If it is zero I 
(indicating that no ISQA quickcells have been I 
requestEd), thE routinE sets the DQEPTR field to zero. I 
Otherwise, the routine calculates the address at which I 
the QCCBLK is to bE built and stores it in DQEPTR. 	 I 

I 
No TeB is assignEd if the request is a master scheduler I 
LSQA reqUEst; the fields are sirr~ly filled in. If the I 
request is not for the master scheduler, an SVFB is I 
~=:~~~~~~_______________________________________________~I_______~________J 



::: Diagram 6.12 
IN 
a.. 	 Initializing LSQA Quickcel\ Areas 

From supervisor initialization program 

to initialize SQA quickcells from 

IEAPLSQA to initialize LSQA quickcells 

Input Output 

IEAPaCI 
aCDBLK 

Move quickcell sizes and counts 	 aCLIMITS 
--~ 

from data block to descriptor aCAREASZ 
entries. 

aCORIGIN 

2 Initialize status bits in each quickcell aCSIZE 
descriptor entry. 

aCSTATUS First 
} aCDE3 	 Set quickcell limits, size, and origin aCNO 

Helds in the aCDBLK. aCOFFSET 

aCSIZE 

aCSTATUS Second 
} 	 aCDE , 	 aCNO 

To Caller 
aCOFFSETII 	

o}GOVRFLB ~laCDATA 
EMiR, "" 3Mt" ,,1 

COUNT 

aCNO 	 Last 
aCDE 

aCSIZE 


aCNO 


aCSIZE 


aCNO 

aCSIZE 

aCNO 

aCSIZE 

0000 

L~ L 	 L 




(
r r 

Diagram 6.12 Initializing LS~A (uickcells Areas (Module IEAPLSQA) 
r-------------------------------------------------------------T-------~--------,
I IROU'IINE I I 

I NOTES I NM.E I LAEEL I 

~---_.-----------._-.. _. -----..- .. - ._- ------------ -..----------------+--------+ --------1 
I D The 

________________________________________ ____________________ ________~________ 

ti r:::it war;:: <?~ th-,O '1,J ickcell data d::ea, pointed to lIEAPQCI I 
I by th,,' vCTABIl:. r- ~ t::'ld of GOVRcL(l, ccntalns the count of I I 
I tlH:' byt C~; rv'erlcd. fnr t_hc" Suic~;;;c:ell area.. Follo .... ing I I 
I this, thl' data aLP~ consists of a series vf halfwor(j I I 
I entries I each de~,c.ritir'(J a quickcell area and the nUITber I I 
I of c~lls r~6ervej for t:1dt size, wit,h tne last entry I I 
I beinq C1 JUflH:y having ZFro in the first byte. The caller I I 
I must place the 2ddre2s at which the quickcell descrir:tEr I I 
I block (QCD::JLK) is t.o teE' tuilt in the DQEPl'R field cf the I I 
IL DQI-: anG lJuss the ,).'Jdress of the LQE in register 1. I 

~ ~ 

I 

CJl 
ro 
g. 
IJ· 
o 
=:s 

0'1 

<: 
IJ· 

~ 
c:: 
III 
..... 
CJl 
('t 
o 
11 
III 

ro '" 

CJl .g 
ro 
11 
<: 
IJ· 
Ul 
IJ· o 
=:s 

# 
W 
-.I 



01:: 
W 	 Diagram 6.13 
CD Allocating a Quickcell 

From QCBRANCH to allocate 
or release a auickcell 

Input 

Register 0 

Subpool number and 
length 	 -,-- ­

o 	 I

Register 1 
 I 


Negative to get a /---- ­
quickcell 

Register 3 


[Address of CVT 


Register 14 


IReturn address ~ .-- ­
LSQA I I 


I I 

r-
I 

I 

I 

I 

I 

I 


..J I I 

I 

I
_-I 	I 


I 
__ ...J 

___ ....J 

Lost {U

QCDE 

If there is no quickcel1 descriptor block, •••••• 

treat I ike a normal SQA -o·~ LSQA request. 


2 	 Compare length requested with limits of 
quickcells. 

If outside of limits, handle like a normal 

SQA or lSQA request. 


3 	 If request is to free a quickcell. 

4 	 Determine the address of the QCDE for 
the requested length • 

5 	 If the quickcell is available, allocate it 
and return its address to the caller. 

6 	 Determine address of next quickcell of 
requested size. 

7 	 If there ore no more quickcells of the 

requested size, handle like a normal SQA I••••••••~ 
or LSQA request. 

Otherwise, check next quickcell. 

GCOMM4 

Nonnal GETMAIN 

6.2 

Output 

QCDE 

6.37 Step 1 


Caller 
Register 1 


[Add-;~;s of allocated q~-i~k-cillJ 


GCOMM4 

Nonnal GETMAIN 

6.2 

_5 

~, l 	 L 




r r 	 r 

Diagram 6.13 Allocating a Quickcell (Module lEAVG"'OO) 
r------------------------------------------------------------T-------~--------, 

I 	 IROUTINE I I 
I NOTES 	 INA~E I LABEL I 
~-----------------------------------------------------------+--------+--------~[I 	The SQA and LSQA quickcell areas are each described by al 

quickcell descriptor block (QCLBIK). The QCLBLK for SQAI 
quickcells is built in the SQA during supervisor initia-I 
lization. The QCDBLK for LSQA quickcells is built when I 
the LSQA is allocated (see Diagram 6.12). I 

I 
The routine obtains the address of the QCDBIK from the IQCAILOC 
DQEPTR field of the ISQA or SQA DQE for subpcols 255 andl 
245 respectively. If the task has no LSQA, subpool 255 I 
requests are diverted to the SQA by changing the subpooll 
number to 245 and the QCDBIK address to zero. such I 
requests are treated like normal SQA requests not like I 
quickcell requests. I 

I
2 	 The length passed in register 1 is compared to the I 

QCLIMITS field which indicates the largest quickcell I 
length in the set. I 

I 
3 	 The address of the QCDE for the requested length is I 

determined as follows: I 
I 

Address of QCDE Address of first QCDE + (length-B) /2 I 
I

4 	 The QCSTATUS field indicates whether the quickcell is I 
available for allocation. The address of the first I 
quickcell is determined as follows: I 

I 
First quickcell address QCORIGIN+QCOFFSET I 

I 
The address of the next quickcell for the requested 
length is calculated by adding the request length to thel 
previous quickcell address. I 

I 

5 	 I 

til 6 Each time a quickcell of the specified length is checked I 
II) for availability, a counter is decremented which, when I 
o 	 zero, indicates they have all been cbecked. I IL____________________________________________________________ ________~________J 
rt 

~ 

..... 
o 
:;I 

a.. 

<: ..... 
11 
rt 

re 
I-' 

til 
rt o 
~ 

\.Q 
CD 

til 
d 
'0 

CD 

~ ..... 
C/) ..... 
o 
:;I 

~ 
W 
\D 



.c: 	 • Diagram 6.14 (Steps 1-5) 

.c: 
o 	 Allocating a Region 

From IEAVGMOO 

to allocate region


Input space _ Processing 

I 

• 	 IEAVPRTO - This routine can be invoked by issuance of 
either an SVC 4 (list) or SVC 10 {register} form of the 
GETMAIN macro instruction for subpool 242 or 247. Output To 6. 19 

--.,, 	 I 

r--- ­ 1 If a previous GETPART specific request I 
Reg;;,er I Of SVC 4) is waiting to be processed ,)IReturn code X'04 1! 

I I IIAddress of 

I 	 I6.19, 	 In parameter list -II I 
I I 	

~ 

Step 5 Output To CALLERL ______ 
Register 4 2 Calculate region size. 	 I i 

I 
IAddress of reB 

If size is invalid "':>IReturn code X'OS') 
Register 5 I I r 	 1 ... 

1 	 CallerI+- - I 
I 3 	

IISubpool number --i ..I I I 
Register 14 IL _______ I _ 4 Determine whether there are enough systemI 

resources available for this region request. 	 CKTHRESHIReturn address 	 ......I 1
I 1 	 Check resources. 

IWAITSW I+------J
I 

I 
I 

I 


If not, 	 6.19, Step 11...... 
I01 Address of region size list } 	 Determine the type of request:5I

41 Address of reglon address list GETMAIN 
.~ I Parameter • 	 Specific request 6.15, Step I 

Request Subpool (Reserved) List 
code number 

• 	 Nonspecific request for V=V region 6.17, Step I 

12 0 Region address request (or 0) 6.18, Step I • Nonspecific request for V=R region 

16 0 

End-of-list (Continued at Step 6) 

20(ode or 0 


region size request 

End-of-list 
region size request

code241L-____~______________~ 

GOVRFLB 

_-.I 

V=R PQE V=V POE 

~ L 	 ~ 




____________________________________________________________ ________ 

r r r 

Diagram 6.14 (Steps 1-5) Allocating a Region (Module IEAVFRTO)
r------------------------------------------------------------T--------y--------,
I I ROUTINE I I 

I NOTES INAME I LABEL I 

~------------------------------------------------------------t--------t--------~

1 If WAITSW has a va 1 ue cf X' OF' and the address cf thE I IEAVPRTO I 
requesting TeB is net thE same as the TeB waiting for I I 
region space (TCBSAVE). this request will not te Frc- I I 
cessed irflrediately. I I 

2 The total length cf thE request is calculated as 
I 
I 

I 
I 

follows: I I 

Request Total Lenqth 
Sing le region Requested length 
Split region nonspecific Sum of lengths 
Split regicn specific ~ Invalid; cede x·OS· 

3 The requested size is rounded uj;:ward to a segree:.nt 
multiple for nonpagea£ie region requests, or to a page 
multiple for pageable region requests. 'Ihen the 
adjusted size is comf:ared to the PQE size (V;R or V=V)_ 
If the requested size is larger, control is returned to 
the calling routine. 

4 The CKTERE5E subroutine tranches to the paging ICK'IHRESHI 
supervisor at entry point IEAPCHTH, fassing tc it IlEAPCH'IHI 
the size of the requEsted region. If the pagi~g su~€r­ I I 
visor has insufficient resources (thrashing), CKTHFE£H I I 
returns with a return cede of 4 in register 15. Other­ I I 
wise, CKTHRESH returns with a cede of ZEro in register I I 
15. I I 

5L Specific requests su~rort ChEckpoint/Restart. 
I 
Ii 

I 
Ii IJ________ 

CIl 
m g. 
fo'. 
o
::s 
0\ 

<
fo'. 

~ 
III .... 
CIl 
rt o 
11 
III 

\,Q 
m 
CIl .g 
m 
11 
<: 
fo'. 
en 
fo'. 

g 
~ 
~ .... 



.c:: 

.c:: 
IV 

From Diagram 6.15, Step 9 or 
6.18, Step 6 for nonpogeable 
region allocation 
From Diagram 6.17, Step 5 
for pageable region allocation 

•
Processing 

Diagram 6.14 (Steps 6-10) 
Allocating a Region 

Output 

I FBQE 

Input 6 Obtain space for control blocks. 

BALR 
GETMAINB 

FWDPTR 

BCKPTR 

Register 4 

.,
L... ___ 

7 

B 

Initialize the control blocks for the 
region. 

if nonspecific request, establish subpool 
252. 

"""'­-
.."""""~ 

Allocate storage 
in LSQA. 

6.4 
t"
I
I 

"""""""'"~'i 
RMBRANCH.. I 

...~ 

SIZE 

FBQAREA 

POE ..41------1 
POEFFBQE 

PQEBFBQE 

POETCB 
6.1 I... 

Register 14 

If request is for a V=R region 	 6.16Return address 	 914-- ., 	 .. I 
LI ___ 	 I 

10 	 If the request was a GETPART specific 
request that had been waiting for 
space, make all initiations dispotchable • _I DISPINIT 1 

-• 
I 	 .. 

I 
~ 

POESIZE 

POEREGN 

Register 15 

Return code=X'OO' 

L l 	 L 




r r 	 r 

Diagram 6.14 (Steps 6-10) Alloc<'ting a Region (Module IEl'VPRTO) 
r------------------------------------------------------------T--------T--------, 
I IROUTINE I I 

I NOTES INAME I LABEL I 

r------------------------------------------------------------+--------t--------~

6 	 GET PART branches to the GETMAINB subroutine threE tilTE~ IGFTI'AH;P 

to attain (1) 16 bytES for an FEQE (2) 48 bytes for a I 

DPQE and region reference-validity map. and (3) 32 bytesl 

£OL" a PQE. I 


I 

7 	 GETFART stores the address of the DPQE - 8 in the Tel' IGETPART 

and then initializEs other control block fields as I 

follows: I 


I 

Control Field Dec. Hex .. Initialized I 

Block Naf(1€ Dis[. Disp. Bytes to I 

~ FWDPTR o o 4 FQE address I 


BCKFTR 4 4 4 PQE address 
 I 

SIZE 8 8 4 Region sizE I 

REGADDR 12 C 4 Regicn "tart I 


address I 

PQ.e; PQEFFBQE o o 4 FEQE address I 


PQEEFBQE 4 4 4 FBQE address I 

PQETCB 16 10 4 TCE address I 

PQESIZE 20 14 4 Pegion size I 

PQEilEG~l 24 18 4 Regicn start I 


address I 

DPQE FQENXT o o 4 FQE address I 


PQEPREV 4 4 FQE address I 

I 


Region referer.ce-validit}, mal' 	 I 

L____________________________________________________________ .1.________ J.. ________J 

CIJ 
m 
n 
rt 
1-" o 
::s 
C1\ 

<
1-" 
11 

rt 
~ .... 
CIJ 
rt 
o 
11 

Pol 

.0 

ro 
CIJ 
~ 
'0 ro 
~ 
1-" 
en 
1-" 
o::s 

.t= 

.t= 
IN 



~ Diagram 6.15 (Steps 1-4) ~ 
~ Allocating a Specific Region 

From Diagram 6.14, Step 5, 

to allocate a specific region 


Input Processing 

Register 0 

D I Region size ~ If region is not within the boundaries Output 
of the POE.--­

Register 2 I Register 15 

Region address ~ Return code=X'08'""1 
V=Vor I r-- 2 If there is no free space
V=R POE I I 


I 
 I 3 Search FBQE queue for a block that 
.1 I includes the region requested.I 

II • If the space is not available, • I I __ .1 6.19I 
I GETAUXi4 If V=V request I check external page
I storage. 

I 
I • I, 6.23' 

----I 
I I I• If external pages are not available 6.19 
I 

I 

I (Continued at Step 5) 


FSOE I 

___ ...1 

\., L L 




r r r 

Diagram 6.15 (Steps 1-4) Allocating a Specific Region (~odule IEAVPRTO) 
r------------------------------------------------------------T-------~--------, 

I I ROUTINE I I 

I NOTES INAME ILABEL I 

~------------------------------------------------------------+--------+--------~ 
I (J The address of the V=V or V=R PQE, the rounded rEgion I I I 

I size, and the specific address of the region are I I I 

I determined prior to entering the GETPART sfecific COdE. I I I 

I I I I 

I If any of the following conditicns exist, thE region is IGETPART I I 

I not within the loundaries of the dynamic area: I I I 

I region start address < dyna"ic area start addrEss I I I 

I region start address > dynaraic area End address I I I 

I region end address > dynarric area end address I I I 

L____________________________________________________________ i ________i ________ J 

CIl 
til 

~ .... 
o 
!:l 

Cl\ 

c::: .... 
:+ 
~ 
III 

I-' 

~ o 
11 

III 

"l 

(1) 

.§ 
CIl 

(1) 
11 

<.... 
III 
.... 
g 
~ 
~ 
U1 



~ 
~ 
a-

Input 

FBQE 

Q=J 
Start lJFree4- - --- ­Area 
address 

Free end address" 

Start TIRegion+- - - - ­
address 

Region end address. 

r- ­
I 

I 

I 

I 

f 

--I 
I 

I 

I 	r­
I I 

I I 

I 	 1
-1....1 


---I 

I 

I 


I 

I 

I


1----1 
I 

1-­
I 

I 

I 

I 

I 

L__ 

Diagram 6.15 (Steps 5-9) 
Allocating a Specific Region 

Processing 
Output 

5 	 If region start address = free area 

start address, and region end 

address < free area end address: 


• 	 Modify FBQE to describe the free oreap.""'~1~"""""""'W;~~

that is contiguous with the high- ill ~ a'w 

address end of the region. a9 I 


6 	 If the region start address> free area 

start address and region end address < 

free area end address: 


• 	 Modify FBClE to describe the free area 

that is contiguous with the low-oddress I ~"""""",~,~..r
"'I(jIend of the region. ....,""'..... 	 I - ~ 

• Obtain space for an FBQE. 

6.4 
• 	 Initialize new FBQE to describe area 


that is contiguous with the high­

address end of the region l 9 


7 	 If reg ion start address> free area 

start address, and region end address = 

free area end address: 


• 	 Modify FBQ E to describe the free 

space that is contiguous with the 

low end of the region. 
 9 


8 If the region coincides with the free space: 

• 	 Remave the FBQ E fram the queue. 

• 	 Free the FBQE space from SQA. 

6.1 

9 For V=V requesh __.I.I~ 6.17, Step 4 


___I •• 6.17,Step6For V=R requests 

l,.L, 	 '­



r ( r 

Diagram 6.16 
Allocating a Specific V=R Region 

From 6.14, Step 8 to allocate 
a spedfie V=R reg;on Processi. _'" 

Output~~==~~--------------~ 

Input POE 

Indicate allocation of a nonpageable (V""R) I L 
reg;on. ..""''...''''''''''''''''''~ ~ VMMFLGS I 

Size of region ~- ___"'_'.~6.14, Step 10 

Register 0 

----, 2 If not a specific request 

I
Register 1 
 1-- ­ 3 Allocate and fix contiguous pages in real 


Address of Parameter storage.
List --1 

I IEAPVRAL 

I Allocate nonpageable 

--I region. 

I 5.10 

I 
I 4 If unsuccessful 6.33, Step 4 

I Otherwise 

_-.I 


6.14, Step 10 

en 
m 
~ .... 
o
::s 

'" 
<:.... 
:+
; 
~ 

~ o 
I'i 
III 
\Q 
m 
en 
.g 
m 
I'i 
<:.... 
en .... 
g 

"" 
-..J "" 



00 

~ 	 Diagram 6.17 
~ Allocating a Nonspecific V=V Region 

a nonspecific V=V region 
From 6.14, Step 5 to allocate 

Input 

Register 4 	 Allocate external page storage to back 

up batch tasks. GETAUX
iiir1 Address of reB ---, 


I 

I 	 • 6.231 

V=V POE 
_____________...__ 6.19, Step 1 ~.I 

If unsuccessfulI 
I--i-- 2 	 F;nd block of free storage for the reg;on iii FBQSRCH 

size requested.0---
I 

I 
I 


~TCB I 
I 6.6 


3 	 If search was unsuccessful, release theI 	 ___IIIIIIj.~1 GETAUXexternal page storage. 

~- ---I 
I OutputI 
I " 6.4J 

I _____________.._ •• 6.19, Step 1 TCB 
I 

~ 

L_ 4 	 Assign storage to the task. 

5 	 Create page tables and external page 

tables in LSQA for the region. 


••••••••••••••••••••~6.14, Step 6 

5.34 

~ l 	 ~ 




_______________________ __________ ________ ________ 

r 


en 
CD o 
rt
"'­o 
::l 

a­

<:
"'­I; 
rt 
~ .... 
en 
rt 
o 
I; 

III 

\Q 
CD 

enc: 
'tI 
CD 

~ 
"'­en
"'­o 
::l 

s:: 
I~ 

( r 
Diagram 6.17 Allocating a Nonspecific V=V Region (Module lEAVPR'IO)
r------------------------------------------------------------T--------T--------,
I Il<CUTINE I I 

I NarES INAME I LABEL I 

~------------------------------------------------------------t--------+--------~ 
I 1 If the request is toe large, GE'IIIUX ruts a rEturn COdE I GETAU){ I 
I of X'OS' in register 15. I I 
I 
I 
I 

2 An indicatien is 
from the lotN end 

passEd 
of the 

to notify FElQSRCH 
free area. 

to search 
I 
IFECSRCH 
I 

I 
I 
I 

I 
I 3 

I 
IGETAUX 

I 
I 

I 
I 4 GETPART initializes fields in the TCE: 

I 
IGETPART 

I I 
I 
I 
I 

TCBSTI - Segment table ind<;x ef the first SHl/f.'"nt 

TCBSCT - Nuroter of segments assigned to the Legicn 
TCBRV - ,set to zerc to indicate a: f:ago:;able task 

I 
I 
I 

I
I 5 
I 
I 
I 

I 
The Create Page Table subroutine cf the faging 5upEr- II.£Af-lTC:J 
viscr creates the rage tables and external ~ag~ tatlE~ I 
anJ update? the system and user seqment tatl(, pnt_Lies tOI 
FOlnt to the new page tatles. The Create Page Table I 

I 
I 
Il 

subrou<_ine calls GETlw:AIi:~ to build the t.atles. 
re~ults ill further proL·;ssiny a~ described in 
6.4 "l>.llocating ,storage for Contrcl Blecks." .___________________________

ThL, c-'3111 
~i~grarr I 

I 
~ ~ J 



Diagram 6.18 
U1 "" Allocating a Nonspecific V=R Regiono 

From 6.14, Step 5 to allocate 
a nonspecific V=V region Processing 

Input 
r ­
 Search FBQE queue for block of free 


virtual storage large enough for the 

Register 4 region size requested.I Output to CallerI Addressof~__ _ 1 ,--1-- 2 If block of the exact size is not found, but 
a larger one is available 

Register 14 I I I I I Caller 
Register 15

_+-...JI I Return code=X' 10' ~~address ~--
I I 

3 If there is no available block;::: the request a 6.19, Step 1 
V~R POE 	 I I 

.-------~

L I 	 Paging Supervisor 
4 	 Allocate page frames for the virtual region 

found. IEAPVRALI ___..J 	 5.10 

Output to 6.145 	 If an SQA, LSQA, or fixed page is 
located within the region, resume searr-!1. ~ 1 

RCSAVE 

6 Otherwise, save return code. ...""'...."""""""'.....~ Return code 

6.14, Step 6 

~ 	 l L 



r ( r 

Diagram 6.18 Allocating a Nonspecific V=R H€gion (Module IEAVPRTO) 
r------------------------------------------------------------T--------T--------, 
I IROUTINE I I 

I NOTES INA!(E ILABEL I 

.------------------------------------------------------------+--------+--------~ 

J 

I 5 
I 

The V=R Region Allocation sucroutine of the paging 
supervisor indicates this r.ondition by a return code of 

IIEAPVRALI 
IIEAVPRTOI 

I 
I 

I X·10·. I I I 
I 
I 6 
I 

Other return codes are; 
successfully allocated, 

X'OO' if the region has teen 
and x'oe' if the required ~agE 

I 
I 
I 

I 
I 
I 

I 
I 
I 

I frames are not currently available, but are expected to I I I 
I become available soon. I I I 
L____________________________________________________________ ________ ________~ ~ 

00 
(1) 
o n­.... 
o::s 
a. 

....< 
Ii n­
O 

III 

~ 

00 n­
O 
Ii 
III 

\Q 
(1) 

00 o 
1'0 
(1) 

~ .... 
en .... 
o
::s 

~ 
U1 

I-> 




Diagram 6.19 
U'I Unsuccessful Virtual Region Allocation 
N 
"" 

From GETPART processing whenever 
a reg ion can not be allocated because 
of insufficient virtual storage 

Input 

1 If request is nonspecific, set "retorn code.! 	 >I Return code=X'04'Register 4 


IAdd;;~~ -----, I • 5 

Register 14 I -I- 2 	 Search TCB queue for LSQA or SWA 


segments within the boundaries of the
IReturn~-.ddress f4-- - - -I- l I 

requested reg ion. GETPART registerI I 


I L 
 3 If found, save TCB address and set 
cvr 	 return code.I 


I 


I 4 Set up rCB to be posted. I , Coller 

I 

I 

I 


-1 
I 


--I 

I 

I 

I 

I 5 If SVC 4, set TCB to be posted 


--'--1 	

•••••••••••••• caller 

I 

-.J 6 If SVC 10, 


• Set ",quester's rCB nondispotchable ...""""" ...., ...."" ........, 


• Indicate task switch.L ___ ,~____________ _ 
BR 14 


....~~........""'~ 

'-' 	 '­ L 



r 


CIl 
m 
~ .... 
o 
::l 

0'> 

<: .... 
~ 
c:: 
III 
~ 

CIl 
rt o 
H 
III 
IQ 
m 
CIl 
.g 
m 
H 

....< 
CO .... 
o 
::l 

~ 
VI 
Vol 

( r 
Diagram 6.19 Unsuccessful Virtual Region Allocation (Module IEAVPRTO)
r------------------------------------------------------------T--------y--------,
I IRCUTINE I I 
I NOTES INAME I LABEL I 
~------------------------------------------------------------f--------f--------~ 
I 2 For GETPART specific requests, the routine exarrines the IIEAVPRTOI I 
I TCB chain (whose anchor is the CVTHEAD field of the CVT) I I I 
I to determine whether any LSQA cr SWA segrr.ents arE a110- I I I 
I cated within the boundaries of the requested region. I I I 

~ ~l ____________________________________________________________ ________ ________J 



VI 
~ Diagram 6.20 

Allocating a SWA Segment 
From CSPCHK after an SVC 4 

~ 

to allocate a SWA segment 

Input 	 Processing 

IEAPGSWA 
is defferedOut

Register 1 

IAdd-ress of ECB parameter list I 	 If a GETPART specific request has been 
••••••••••••••••• Exit Routine 

(IGCOO3) (3.14) TCBdeferred 

2 	 Obtain external page storage for the 
SWA segment. 

Register 15 

Retum code=X '04' 

3 If external page storage is not available,I•••••••••••••••••~ (lGC003) (3.14) Exit Routine--, defer the request.

I 
I 

,-I-- 4 A"~~ •• M."~ .~_" _",M,. _, ""'''''-] 
I I 
I I 5 	 If segment could not be allocated, 


release the external page storage, and 


I 
I 

I
I 

GOVRFLB 	 defer the request. 

-"""1 I 
I I 	 6.40 

I 

I 
 Output when request is satisfied 

_J 
6 Create a page table for the segment. Parameter list 

IEAPTCD Address of segment 

D 	
5.34 

7 Obtain storage for an SWAB. 	 GETMAINB 

Get control block. 

6.4 

L _.I- 8 Initialize the SWAB. 

Exit Routine 
Register 1 

(IGCOO3) (3.14) 
Address of parameter list 

Register 15 

IRetur~ cod~=xroor 

V=V pOE 

L 	 L
'­



(
r r 

Diagram 6.20 Allocating a SWA Segrrent (Module IEAVGMOOl 
r------------------------------------------------------------T--------T--------l 
I IROUTINE I I 
I NOTES INAME I LABEL I 
~------------------------------------------------------------+--------+--------~

When the syste~ issues an unconditional SVC 4 list instruc-I I I 
tion in ECB mode for a nonspecific single regicn to get a I I I 
syste~ work area, the GETMAIN routine CSPCHK gives control I I I 
to IEAPGSWA to process the request. I I I 

I I I 
The routine determines whether a GET PART specific IGETSW/\ ISETWAIT I 
request is waiting to be hcnored by testing the WAITSW I I I 
field in IEAVPRTO for a value cf X'OF'. If a request isl I I 
waiting, the GETSWA request is deferred so a segroent of I I I 
virtual storage will not be assigned that could rrake it I I I 
impossible to ever satisfy the specific request. I I I 

____________________________________________________________~________~________J 

CIl 
(1) 
o 
rt.... 
g 
CJ'I 

<:.... 
1"'1 
rt 

re 
~ 

CIl 
rt o 
~ 
III 
CD 

CIl 
C 
'0 
(1) 

~ .... 
en .... 
o 
tI 

-= C.II 
C.II 



-= Diagram 6.21U'I 
0\ Allocating a SWA Page 

From CSPCHK after an SVC 10 
to allocate a page from an SWA 
segment. 

Input Output 

Register 1 

Negative value r---- Search for a segment with a free • 
pege.

I 
Register 15I 

aI 

Return cod~----=-XI O4-JI 2 If none found. - ---j r- ­
I I 

_, ~aging

I I 3 Get addresses of page table entry ~ Supe"dsor 
Register 14 and external page table entry. I __l_~

Return address -].I- - - - - - - - ­
: L 4 Assign requested page. 

I 
I 
I 
I 

--~ 3.15 

I 
I 
I 
I 

SWAH I 
---I 

I 
I 
I 
I 
I Register 1 

I Address of page 
I 

_...1 
Register 15 

R~u~~od~--=-X~I--J 

" 
L L 






VI 
~ 

CO 
From GMCOMMON to obtain 
4K blocks on a page boundary 

I 

.. 
r--- ­Input 
I 
I 

Register 1 I 
Address of lost DO E I 

Register 4 I 
IAddress of TCB 
I 

Register 10 	 r- ­I 
Size requested re-- -.J I 

I
Register 12 

II Sub~~mbe---; J I 
TCB I 

I
-+-, 


I 	 L 

DOE 	 I 
_J 

Processing 

G4KSRCH 
FBQSRCHA 


1 Obtain requested storage. Obtain 4K blocks 


6.6 

2 	 If storoge is not ovai lable. 

G.COM~M 1I 
6.2-I 


3 	 Get storage for new DOE and odd it to 

the queue. 
 WM"M' 1 

~. 
-I 6.4 

4 	 If V=V task: 

• 	 Locate page toble 
• 	 Mark page toble entries 


'GETMAIN-ossigned ' • 


If user subpool: 
Pag i n9 Su perv isor

• 	 Set protection keys in .. 
external page tab Ie. 	 IEAPFP 

5.27 

~~""""""""~""""""" 
5 	 If V::::R request is: 

• 	 For user subpool; set storage keys 

and fetch protection on. 


• 	 For subpool 252; leave key 0 and 

fetch protection off • GMSMFCRE 


--. 
6 	 Record SMF information. 

6.10 

... 
7 Build FQE if necessary. GETMAINB 


Get storage for 

control block 

6.4 

~ 	 II 
GMCOMMON.. 


6.2 

Diagram 6.22 
Allocating 4K or More 

Output from Step 2 

Register 15 

;>J length of largest 
available area I 

Output from Step 7 

DOE 

DQFQEPTR I- ­
« , 

DOEBLKAD 

DOELNTH 

PTE 

..~+[] 
XPTE 

I FQE 
I 

~1:1. !J 
FQELNTH 

FQAREA 

iIil";.:; .r.''"~ 
Register 2 

Address of allocated I 
area 

I 

" 
~ 	 ~ 




(
r 	 r 

Diagram 6.22 lIlloc,.ting 4K or More (Module IElIVG~OO) 

r------------------------------------------------------------T--------T--------, 
I 	 I RQU'IINE I I 

I NOTES 	 INlI~E I LlIBEL I 

~------------------------------------------------------------+--------+--------~ 

This routine is entered when a region request cannot be I G4KSRCH I 

satisfied by GFRECORE, when a regien reguest is greater I I 

than the maxin,uIII FQE size, or to satisfy a request for I I 

storage on a page boundary. This routine also sets the I I 

protection keys for the UK blocks it obtains. I I 


I I

2 	 The value passed tc GMCOMMON is the largest available I I 


size returned to G4KSRCH by FBQSRCHA unless GFRECORE wasl I 

<entered previously. GFaECORE determines the largest I I 

size available in the FQE queue. If GFRECORE was I I 

entered, G4KSRCH comfares the values returned by I I 

GFRECORE and FBQSRCHA and passes the larger value to I I 

GMCOMMON. I I 


I I 

4 	 If the page table entry is in real storage, G4KSRCH IIElIPFP2 I 


sets the storage keys to the key of the TeB and sets IG4KSRCH I 

fetch protection on. I I 


I I 

7 I I
If storage on a page boundary was requested, the 

allocated area is taken from the low end of the bleck. I I I
L____________________________________________________________ ________ ________ J~ ~ 

CIl 
/I) 
() 
rI" .... 
o::s 
0'1 

<:.... 
I'i 
rI" 

~ 
...... 

CIl 
rI" o 
I'i 
Q,I 

o.Q 
ro 
CIl 
c= 

"0 
/I) 

~ .... 
CIl .... 
o::s 

.j:' 

U1 
IJ;) 



• • 

.c:: 
0\ 
o 

Input 

Register 6 


length requested 


Register 14 


Return address 


PVT 

Diagram 6.23 
Monitoring Batch Processing Storage 

From GETSWA or GET PART 
to determine whether there is 
enough external storage for 

batch iobs. 

Processing 

"'~IIGETAUX 	 Output 

If the request size exceeds the 

maximum number of pages Register 15 


--r----- 1 
I 
 avoilable for batch jobs.I Qturn c~_=_~'081 

I 

I r---- 2 If request size exceeds the 

I I system uncommitted count. 


I
I 

I I r-- 3 If the request size exceeds the
I I 
 Register 15
I number of pages that can beI I 
__ oJ 	 I allocated. Return code - X'04'

I ,
I 
 4 If the request cannot be ____J 	 I '" D To Caller 


I 
 satisfied now. 

I 

-----1 Updote external page storage 


System Uncommitted 
counters •I I 5 


- ----~ 

Bofch Committed I 


I 

_____ ...JI 
 Register 15 


Return code::: X'OO' 

To Caller 

L (. 	 L 




(
r r 

Diagram 6.23 Monitoring Batch Processing Storag~ (t-:c.dule IEAVFRTO) 
r------------------------ ----------- -- - -.------------- - - - -----T--- - ----T - - - - ----, 

I I RCUTINE I I 

I NanS INI,ME ILABEL I 

~ -- ------ - -------------- ------------------------------------- ----t---- - ---t--------~ 
I 1 IGETPAR'l IGETAUX I 

I I I

I 3 'The: request 1 '2ngth i~ ccnrarEll tc Lh':'"! orig1nal tct21 I I 

I uncoffimitted (TU) narrter of p.~?c:) minus tbe curr.'::-nt I I 

I nurnDEr (If l'·ac;(O~ cClmmi ttca to catch jobs (BC). rrinus the I I 

I nurr.be.t of rages rese:rvt?d to allow a TSO task t.o be I I 

I forced trow the ;;yst.efO ('ISC). rri nus the currEnt. nurrb":r I I 

I of pages in USE for TSO (TSO 1. I t 

I ;J I I 

I I I 

I TU - e.C - TSO - !·SC I I 

I B U I I 

I I I

14 ';hE: ~un; cf t_>-!C rtque::,t" lEn~:lth ,'1.nd the tatch comroitted I I 

I v.-;lu i~i cOIJl~Jared tc lhc rr·(:txin-uIT bdtch ccrrmitted valUE. I I 

I If r.he sum is qr€dter, thf' request cannot be honorf:d I I 

I now. I I
l _____________________ .________________________________________ .J.. ______.__.l._. _________ J 

en 
11) 

~ .... 
o 
t:S 
(t\ 

<:.... 
~ 
11/
I-' 

en 
S' 
11 

11/ 
~ 
11) 

.a en 

~ c:.... 
en .... 
o 
::t 

~ 
(t\ 
I-' 



~ 
a­ Diagram 6.24 
t-> Monitoring TSO Storage 

From IEAVPRTO to determine 

whether there is enough 

external page storage for 

a TSO task. 


Input 
Register 1 

Negative value ._.I~I TSOAUX 
Register 5 

Subpool number ';2~ 
Compare requested size to 

Register 6 maximum number of pages 
length requested available.l+- -----T---­

I r-­ 2 Compare requested size to system I uncommitted size.II 
I I r- 3 Compare requested size to the 

___J I number of pages that can beI allocated.II I 
4 If there is not enough external _ Type-l Exit-.J I page storage, exit. (lEAOXEOO) (3.15)

I 
---.--------~

I 

----------1
I 

I _________ ....J PYT 

I 
5 Update external page s ....

-----------'I counters. ~""""""";""""""~""""'~ 

Register 15 

Ret-~od;-:XW-J 

.................~TYpe-l Exit
• (IEAOXEOO (3.15) 

L \. L~ 




I 

r 


en 
m 
o 
rt .... 
g 
a.. 

<:.... 
11 
rt 
re 
I-' 

en 
rt g 
1\1 
IQ 
(I) 

til 
t: 
'0 
(I) 

~ .... 
en .... 
o 
tl 

~ 
a.. 
tAl 

( 	 r 

Diagram 6.24 Monitoring TSO Storage (Module IEAVPRTO) 
r------------------------------------------------------------T-------~--------l 

[ [RCUTINE [ [ 
[ NOTES [NAME [LABEL [ 
~------------------------------------------------------------t--------t--------~[ 3 	 The requested si ze is con.pare.i tc the original total [GETPART TSOAUX [ 
I 	 uncommitted (TV) numter of ~ages ~inus the curr~nt I 
[ number of pages corr,mitted to batch processing (BC) [ [ 
[ minus the number of ~ages reserved to allow a TSO task [ [ 
[ to be forced from the system (ISO ) minus thE current [ [ 
[ 	 B [ [ 
[ 	 number of pages in use for TSO (ISO ). [ [ 
[ U [ [ 
[ [[ 
[ IU - 3C - TSO - TSO 	 [[ 
[ B U [[ 
[ [[
[ 4 	 The routine exits to t:he Type 1 Exit routine with a [ [ 

return code cf X'OS' it: [[ 
[ [ 

request size > maximum nlli~ber of pages (MAX ) [ [ 
T [ [ 

request size > system uncommitted pages (SU) [ [ 
request size > TU - Be - I SO - ISO 	 [ [ 

B u [ [ 
[ [

5 	 The system uncoll'll'itted count i3 decremEnted and the ISO [ [ 
corr.n;ittcd count is incremented hy the number of cytes [ [ 
requested. [ [ [ 

____________________________________________________________ ________ ________ J~ ~ 



.." Diagram 6.25 

'" qut-of-Storage Processing.." 
From GMCOMMON when 

there is no more virtual 

SQA or LSQA 'pace. 


-
I ... 

GNOTSATA .. 
From GFRE 'RE when 

a real pog r SQA or 

LSQA can Ie obtained 


GNOTSATC .. 
GMBRETRY1 If the request is from GETMAINB for LSQA 

space, change to SQA request and retry. 
Retry the request. 

6.4 

2 If request ;s from GETMAINB for SQA 
space or an unconditional SQA request I .. 

From GMC MON when set up wait state. Wait State PS'N 

•4 	

I
there is no e region .. 
space Otherwise 

I --. 
GNOTSATB 

CDPURGE 

-'"Input 3 Purge unused modules. 	 Purge modules if 

possible.


From GE )R to retry 

the requ 


I .. 	
6.9 

NRETRY 

--- 4 Retry the request if: 

• Variable request and there is 
GMREPEATenough space for the minimum 

length; or Output
Repeat the request.----I 

• LSQA request from ABTERM or 	 Register 15 I 
6.2 	

Ia system task; or ::>I X'04' 

• Modules were purged. 

FUSTADV 
Free storage for previous list entries5 
if list request. Output

Free list entry storage. 
If there is no more virtual 
storage. 

ABENDATA6 Return if request is conditional .. 

I Largest size available 
GCOMM7 r-:::::::> 	 II 

Return to caller .. 

I MSGlEN~X'08' I 
6.2 

7 Abnormally terminate the task. 

j ... 
GERROR 

Error 1 =Virtual 
Error 8 := Real 

GOVRFLB 

~----'~ 

l, (. 	 l, 




r ( r 

Diagram 6.25 out-of-Storage Processing (Module IEAVGMOO) 
r------------------------------------------------------------T--------T--------, 
I IROUTINE I I 

I NOTES I NAME ILAEEL I 

~------------------------------------------------------------+--------+--------~
I 4 
I 

If the request is an LSQA request during abnormal ter­
mination, or if the request is from a system task, the 

IGNOTSAT 
I 

I 
I 

I 
I 

I 
I 

SPQE for the SQA (GOVRFLB) is used to retry the re­
quest. If the request is for SQA or LSQA, it may te 

I 
I 

I 
I 

I 
I 

I 
I 

necessary to repeat it more than once tecause the larg­
est available space may cross a Fage boundary and can-

I 
I 

I 
I 

I 
I 

IL__ not _____ therefore be comFletely allocated. _____________________________________________________ I ~________ I I 
~________J 

C/l 
(1) 

~ 
1-'. 
o 
::l 

t:I'I 

<: 
1-'. 
t; 
r1" 
~ 
III 

I-' 


C/l
r1" o 
t; 
III 

10 
(1) 

C/l.g 
(1) 
t; 
<
1-'. 
en 
1-'. 
o 
::l 

.r= 
t:I'I 
U1 



~ 	 • Diagram 6.26 0\ 

0\ Error Processing for GETMAIN/FREEMAIN 


From GETMAIN 
and FREEMAI N 
routines 

Input 	 Processing 

...tIGERROR 

Generate ABEN D error code.r---- ­ il 

Register 5 I 


Addre--;s of CVT J I r----- 2 Exit to caller if ABEND wos the caller. 


I 
 I
I 

Error Code I I 


_...1 I
1 1- 13 - ~ 

I 3 Exit to ABTERM if error code is 1. 


TCB I 

I 

I 4 Search for available entry in INFOllST.
_--1 r-- ­ Exit if not found. 

I 

-----1--- 5 Store TeB address and ABEND code.

I 

I 
 6 	 Ensure length and address are adjusted for 

AQ E -type request.-----,I 

I 

I r- ­
 7 	 Store length and subpool number, variable 

ABENDATA, and reason code.
1NFOLIsT 	 I 
 I 
_____ ....JI 
 I 


____..11IIj.~6.25, Step 4 
I 8 Retry if force SQA request. 


ABENDATA 	 I 
_______-.J 
'------'~-	 9 If force SQA request is satisfied, set up __.I••~ABTERM 

return to GETMAIN and exit. 

il 

l..f 	 (. L 

http:11IIj.~6.25


_______ ________ 

r' ( r 

eDiagram 6.26 Error Processing for GETMAIN/FREEMAIN (~odul€ IEAVG~OO)

r------------------------------------------------------------T--------T--------, 
I IMmmEI I 

I NOTES INAME ILAEEL I 

.------------------------------------------------------------+--------+--------~ 

en l _____________________________________________________ ________L J 

3 The AENDATA area is cleared. There are no messages IGERROR 
written for code 1 because it is self-ex~lanatory. 

5 If this was a branch entry, INFFLGO is set and the cal­
ler's return address is placed in the information list 
(INFBADDR). If the TCEJSCBB field is nonzerc, the 
JSCBTJID field is moved into the information list at 
INFTJID. 

6 For AQE-type requests, eight is subtracted from the 
length and a check is made to see if the address has 
been adjusted. (There are times when the length and 
address adjustments are not synchronized.) If it has 
been, eight is added to the address to compensate for 
the AQE. 

7 For FREEMAIN requests, 
placed in INFVAR2. 

the FREEMAIN address is also 

8 NRETRY 

o issued the request to te abnormally terminated. 
Error exits to the ABTERM routine cause the task that 

Register 1 contains the error code. 
Register 3 contains the address cf the CVT. 
Register 4 contains the address of the TCB. 
Register 14 contains the address of IEAOXEOO. 

InQut to GERROR Output frou GERROR 
ERROR CODE- 1 x'0104' 

X' 010A' 
ERROR CODE= 2 X'020A' 

en 
ID 

ERROR CODE= 3 X'030S' 
X, 030A' 

o ERROR CODE= 4 X'040A' 
rt.... 
o
::s 

ERROR CODE= S 

ERROR CODE= 6 

X'OS04' 
X'OSOS' 
X'0604' 
X'060S' 

0\ ERROR CODE= 8 X'0804' 
X, 080A' 

ERROR CODE= 9 X'090S' 

<.... 
11 
rt 

ERROR CODE= 10 

ERROR CODE= 11 

X' 090A' 
X' OAOS' 
X'OAOA' 
X'OB04' 
X' OBOS' ~ ... ERROR CODE= 13 
X'OBOA' 
X'ODOS' 
X'ODOA' 

J 
I
~ 

rt 
o 
11 
III 
IQ 
CD 

~ 
"d 
ID 

~ .... 
en .... 
o::s 

~ ..,0\ 



----

.c: 
0­
CX) 

Input 

Register 0 

Ilengt~b~ 

Register 1 

Address-~ be ireedJ 
Register 4 

I Add-ress of TeB 

Register 10 

I Le n9th to be freed--}4­
Register 11 

[~b~ 
Register 12 

I Subpool number 

From IGC005, CLBRANCH, 
or FMBRANCH to process ProcessingSVC 5 

"IIII"I~IFMCOMMON 
Determine type of request: 

• List 

• Element 

From IGCOJO, ABBRANCH, 
, or RMBRANCH, to process • Variable
I SVC 10 

I 
I ••••I~I FMCOMMI 

I 
____ ....J.---- ­ 2 Branch if subpool FREEMAIN request • 

~-

Register 14 

Otherwise, coli the FREEMAIN 
Common routine.

[~;e-;;- ,l+--,--------I 
I 

I I 
I Internol branch entry to I 

free control blocks LI 

I 


•••I~IFMAINBI 

I 3 Free control blocks. 


I 

I 

IL _________ _ 


Diagram 6.27 
Overview of Releasing Storage 

FLiSTADV 

Process FREEMAIN 

list request. 


FELEMENT 

Process FREEMAIN 

......... 1 element request. 


FVARCHK 


Process FREEMA1N 

variable request. 


SPFRMAIN 

Free subpool. 

6.28 

FMCOM 

FREEMAIN 
Common Routine 

6.29 

BR 


14 	 I I Coller 

Output 

., FMCOM 	 Requested storcge freed 
for reallocation 

• BR 14 6.291 

•••I1••••••••••••~ca"er 

l.,. 	 (. L 



r r 	 r 

Diagram 6.27 Overview of Releasing Storage (Module IEAVGMOO)
r------------------------------------------------------------T--------T--------,
I I ROUTINE I I 
I NOTES I NAI'E I LABEL I 
t------------------------------------------------------------+--------+--------~

1 	 FLISTADV - This routine [rOCESSes FREEMAIN list IFMCOMMON I 

requests. F"or the first entry in the list, it calls I FIISTADVI 

FMCO~. For all Su~s€quent entries in the list, it callslFtLEMENT 

FCOMI to bypass the subpool check processing. When the IFVARCHK 

last entry in the list has been processed, it branches I 

to FRE'IRNl in F~,COl'll1. I 


I 
FELEI'ENT - This routine ricks up the elerrent length 	 I 
entry, sets uf registers as thcugh the request were an I 
SVC 10 request, and call~ F~CO~l'lA. 	 I 


I 

FVl\RCHK - This routine simply picks up the length frcm I 

the seccnc1 address entry, sets up registers as though I 

the request were an SVC 10 request, and calls F~CO~~lA. I
l ____________________________________________________________ ________ ________ J~ ~ 

en 
/I) 

~ .... 
o 
1;1 

0\ 

<.... 
~ 
c:: 
I» 
~ 

en 
g 
1-1 
I» 

\.Q 
/I) 

en 
.g 
~ 
c::.... 
en.... 
o 
1;1 

~ 
0\ 
ID 



l= 	 Diagram 6.28 -.J 
o 	 Freeing a Subpool 

From FMCOMM 1 
to free a subpoo 1 . 

Input 	 Processing .. SPFRMAIN 
GERROR 

Invalid ----- 1 Check validity of request. 

6.40 

~ 
----~ 

,I ,,~"' I----- 2 Find the subpool. 

• 6.3 

---~------- ------,
I 
I 	 FMCOMMI ...I 

If subpool was not found.I 	 3 .. 	 .. 
6.27, Step 2 

----- 4 If subpool 253, free each AQE. SP253FR 

6.31, Step 6 

5 	 Free all FQEs within each DQE ,I '_'N'I
of the subpool. 

6.27• 

,I ,~" I
6 	 Free each DQE and storage 

associated with it. 
6.30 

f1 • 

FMCOMMI 

.. 
6.27, Step 2 

GOVRFLB 

Output 

Register 5 , ,I
Error code 

MSGLEN 

Reason code and 
Data lengthI I 


ABNDATA , ,Address of TCB 

Storage for the subpool 
requested is freed for 
reallocation 

L 	 l? L 




(
r r 

Diagram 6.28 Freeing a sutfcol (Module lEAVGMOO) 
r------------------------------------------------------------T--------T--------l 
I IROUTINE I I 
I Nor EO I N liNE ILlIB.t;L I 
~------------------------------------------------------------+--------+--------i 
I 1 If the length is not zero, a r~ason code of X'OS' and ISPFRMAINI I 
I data length of X'OC' are set in MSGLEN and GERROR is IGERROR I I 
I entered with an error code of 3. If this is a request I I I 
I to free sutpool 243, 2U4, 245, or 255, a reason code of I I I 
I X' OS' aL·e set in MSGIEN, and GERROR is entered with an I I I 
I error code of 4. I I I 
I 
I 2 If the subpool is 0 and the requester is not in key 0, 

I 
I 

I 
I 

I 
I 

I Frocessing is the sarre as for error code 4 in SteF 1. I I I
l ____________________________________________________________~________~________ J 

C/) 
/1) 
o 
rt.... 
o::s 
CI\ 

<l.... 
H 
rt g 
.... 
C/) 
rt o 
\i1 
<Q 
/1) 

C/) 
c:= 
'tj 
/1) 

~ .... 
en.... 
g 

"'"..... 
i-> 



-.I 
~ Diagram 6.29 
"-l Freeing Storage Within a Region 

From FELEMENT or FVARCHK 

to free space in a region. 

From FLISTADV 10 process the 

first entry in a list request 


Input 	 Processing 

Register 0 
.....IIFMCOM 

I-le-~h~f;;ed- J 
r------- 1 Obto;n the SPO E fo, the ,ubpool in wh ich 	 CSPCHKI 

Register 1 	 space is to be freed. • •••••4.~.--------jI 
Address to be freed 	 F;nd SPQE. I 

From FLiSTAOV to process 
6.3

Register 4 I second and subsequent list 


.J entries

Address of reB ~ 

Register 10 __~IIFCOM1 

L;ngth -~ b~~ =re- ----, 
 6.31 

2 If request is for SQA or LSQA. 

Register 11 
 r-:----	 I , 

CRNDLNTHI L ____ _Addre~~edJ 3 Round the request length. 
Round request length.

Register 12 I 

_J
Subpool number ~ 


r---- 4 Find DOE for the area to be freed. 


Register 14 	 OELOCATEI 	 Output
Retu rn address 5 Find the FO E for the nearest free space.

I Find FOE • 
.....J FOE6.34...-­

6 Updot. the FOE (S.e Diag,om 6.35 for 
....."" .....,~ FOE queue reflec+>details) ...,"""""""""'" "'''---J storage freed. 

From FLiSTADV w~en lost 

entry in list has been 
 7 	 Release 4K blocks from the free area if 

there are any. (See Diagram 6,30 forprocessed 

details) 


....I~I FRETRN1 

8 Return. •••••••••••••••••• Colle' 

L \. 	 L 




(
r r 

Diagram 6.29 Freeing Stcrage ~ithin a Region (Module IEAVGMOO) 
r------------------------------------------------------------T-------~--------, 

I IROUTINE I I 
I NOTES INAME I LABEL I 
~------------------------------------------------------------+--------+--------~ 
I 3 The CRNDLNTH subroutine rounds the request length to an ICRNDLNTBI I 
I eight-byte multirle. I I I 
I I I I 
I 7 IFCO~ ISPREL Il ____________________________________________________________ ________ ________J~ ~ 

en 
(1) 
o 
rt 
fo'. 
o 
t:l 

0\ 

<:
fo'. 
11 
rt 

~ 
I-' 

en 
rt o 
11 
III 
III 
(1) 

en 
c:= 
'tl 
(I) 

~ 
fo'. 
en 
fo'. 
o es 

l:: 
-..J 
W 



.c: Diagram 6.30 
-..J Freeing More Than 4K.c: 

From SPFRMAIN to 
free a DO E and 
associated storageInput Output 

Register 0 SPREL MRELEASE 

Leng th to be freed 


Return 4K blocks to FBQE queue, 

Register 1 
6.36 	 PGTE 

Address··t~ 
2 Mark all V=V pages "not assigned" and 

Register 4 set protection key in EPT to zero,. ......................................" ~.................................~" 

Address of reB ----" I ~ 
Find page table. XPTE 

Register 12 5.27 IjI! 
5ubpool number 3 Set protection key to zero and set fetch ~ 

protection on in V=R pages.
Register 14 ~ 

Return address 

4 Release pages to system. 

5 Record storage usage information. IEASMFGF 

6.10 

6 Update the DOE: 

• 	 Remove the DQ E and FO E if the 
entire area is now free. ~ FMAINB 6.271 

DOE 
• 	 Updote roE and FOE if upper DQE updated 

boundary has been freed or lower 
boundary freed ..........................................................................................
" U 

DOE 
• 	 Create a DOE and update old DQE DOE added 

if section in the middle of the DQE to queue 
area is free. 

GETMAINB FQE 
Obtain space for FQE added 
control blocks. to queueThis portion of the FREEMAIN 6.4

Common routine handles region 

requests when the storage released, 
 7 Return. 

combined with contiguous and 

previously free areas of storage, 


is greater than 4K. 

BR 14 	 Caller 

L L 	 L 






-----

.j:: Diagram 6.31 

..,J 
Freeing Storage in the SOA or an LSOAa.. 

From 6.29, Step 2 to 

free storage in SQA 


Input 	 or LSQA 

Register 0 
Free a quickcell, if the requested address QCFREE 

Length to be freed is within the quickcell area. 
Free quickcell. 

Register 1 
6.37 

-----l 
BR 14 	 I l Coller 

I 
------1 2 Obtain the SPQE for the space to be 

freed. ,I 
Subpoo! number 

I 
Register 14 	 3 Round the request length. ___".~I CRNDLNTHl ,I Return address • 1- l

From SPFRMAIN 'L 
SPQE for SQA to free AQE 4 Adjust the address if there is on AQE. 


GOVRFLB ........DQ.::c:.E__....... 


5 Find the DOE for the area to be freed.r ­
I 

I 


I ~ I 
SP253FRr----- ..J Output

I 
I r-- ­ 6 Find the AQE, if there is one, and: AOE removed from 
I queue, • Remove the AQE if the entire area ~-is being freed.+ I 	 110.,"""'""""" 

• Build a new AQE if the lower ,I boundary is being freed and the , New AO E added 
upper boundary is not! or if the 
mtddle is being freed., 

• Otherwise, update the AQE. 	 ,~
I 	 ..,"""""""'" ... , 	 AQE upoated 

7 Find the FOE for the nearest free space. ----.~r QELOCATEI 
_-1 	

Iih,.,,,, ~L--_--..J 
• 	 6.3J Specified storage is freed 

for reallocation 
8 Update the FQE. (See Diagrom 6.33 for Register 15 

details.) 
Return code=O 

9 Clear pages that are now free. 	 lEAPCLR2 

Clear page. 

5.31 

BR 14 	 Coller 

L 	 L, L 




r r r 

Diagram 6.31 Freeing storage in the SQA or an LSQA (~odule IEAVG~OO) 

r------------------------------------------------------------T--------T--------, 
I I ROll'IINE I I 

I NOTES INAn I LABEL I 

~------------------------------------------------------------+--------+--------i

1 If there is a quickcell descriptor block and the address IFCOM I I 
of the space to be freed is in the quickcell area, the I QCFREE I I 
QCFREE subrcutine is used to free the quickcell. I I I 

I I I 
2 A GET~JAIN request for LSQA may have been satisfied fraIl IFCO~l I I 

the SQA. If the address to be freed is within the SQA, I I I 
the SPQE for SQA (GOVRFLB) is used. I I I 

3 If the address to te fH,e':: is not on a doubleword 
I 
I 

I I 
ICRNCLNTH 

boundary, if the request was an SVC 5, a return code of I I 
o and varial::le length of X'OC' are placed in MSGLEN or I I 
if it ~as not an SVC 5 request, a reason code of 0 and I I 
variable length of X'OS' are placed in MSGLEN. Then the I I 
task is abnormally terminated by going to GERReR with a I I 
code of 9. Otherwise, the CRNDLNTH routine rounds the I I 
request length to an eight-byte nultiFle and adds eight I I 
bytes to the length if there is an AQE. I I 

I 
4 Subpcols 243, 244, 253, and 254 are for storage FCOM 

uescribed by allocated queue elements (AQEs). When 
storage is freed froff one of these subFools, the start 
address must be tacked up eight bytes to free the A~E. 

6 The ACE is Fainted to t.y the TCBAQE field of the TCB. 
If there is no AQE chain for subFccl 243, 244, 253, or 
254 requests, thE requEsting task is abnormally ter­
minated (GERROR code 13). When the AQE is attained it 
is up'lated: If tht: whole area described by the AQE is 
being freed, the AQE is renoveu from the queue. If the 
upper toundary of the AQE is not being freed, eight is 
suttracted from the length of the area to be freed to 
allow space for a new AQE. The new AQE is built and 
added to the queue. If tile lower boundary of the area 

Cf.) 
(!) 

~ 

described by the original AQE is not being freed, the 
length of the AQE is changed. If the lcwer toundary of 
the AQE is J:eing freed, the AQE is reICoved frail' the 
queue. If the lower boundary is net being freEd and thel 

~. 

o 
::l 

upper boundary is J:eing frepd, eight is substracted frorol 
the length and added to the address of the area to te I 
freed. I 

0\ 
I 9l ___ The Clear Page call is skipped if NIP _______________________________________is in process. ________________

I 
I __~________~________J 

< 
~. 

~ 
c:: 
~ 
~ 

Cf.) 
rt 
o 
I'i 
~ 

\Q 
(!) 

Cf.) 

.a 
~ 
cj 
~. 

~. 

o 
::l 

~ 
..,J 
..,J 

C/l 



l= 
-..I 
co 

Input 

Register 1 

4=val idity check 
8=no val idity check 

Register 4 

Register 14 

TCB 

Fearn RMBRANCH oe IGC010 
to release LSQA segments 

--,- ­
I 
I 
I 
I 
I 

---I 
I 
I 
I 
I 
I 

--I 
I 
I 
I 
I 
I 

---i 
I 
I 
I 
I 
I 
I 
I __ ...J 

Processing 

FREELSQA 

If segments ore not ready to be freed, and 
BR 14 I ~ Colleerequest is conditional. 

MRELEASEBALR 
2 Free the segments. Re I ease segments. 

6.36 
3 	 Release real storage associated with the 


last virtual LSQA pages. 


Destroy Page Table 4 	 Delete the page tables for the segments BALR 
just released. 	 IEAPTCD 

Free page tables 
in SQA. 

5.35 

BR 14 	 Callee 

Diagram 6.32 
Freeing Space for an LSQA 

Output from Step 1 

Register 15 


Return cOd-~~X'041 J 


Output from Step 4 

Register 15 

Return code=X'OO' I 
=X'04' if unsuccessful 

real page allocation 

(. 	 L,~ 



r 


en 
m 
l4­"',g 
(71 

<:"', 
~ 
~ 
AI .... 
en 
s-
H 
AI 

\Q 
/1) 

en 
.§ 
~ 
c:"',
fI)"',o::s 

~ 
-..J 
Ie 

( r 
Diagram 6.32 Freeing Space for an LSQA (Module IEAPISCA) 
r------------------------------------------------------------T-------~--------, 

I IRCUTINF I I 
I NarES INAME ILABEL I 
~------------------------------------------------------------+--------+--------~ 
I 1 If there is more than one FQE, or if the FQE for the IIEAPLSCAIFREELSQAI 
I LSQA describes a space smaller than the size of the seg-I I I 
I ments when they were fir~t allocated, the segments can- I I I 
I not be freed. If register 1 equals eight, these checks I I I 
I are skipped. I I I
L____________________________________________________________ ________~________ J~ 



~ 
co 
o 

From IEAVPRTO to 
free a region 

Processing 

• FREEPART 

1 Purge unused modules in the region. 	 CDPURGE 

Purge unused modules. 

6.9 

2 	 Make initiators that are waiting for a 
region dispatchable. DISPINIT 

Make initiators 
dispatchable. 

3 If any space in the region is still ...allocated, other than subpool 252 space, ABTERM 
exit. (lEAOABOl) (8.1l) 

• 'I 	
... 

4 If a pageable region is being released,

Input release external page storage. 


FREEAUX 1 

6.40 

5 	 Return the region to the queue of free blocks 
for the dynamic area. MRELEASE 

Release region. 

Register 14 6.36 

}4- - 6 Free the control blocks that describe the Return address 
region. RMBRANCH 

Release control blocks 
(FMCOMMl). 

6.28 
BR 14 ...7 If real region allocation request was 

Callerunsuccessful 

" 
If a nonpogeable region is being released, 

free its page frames. Paging Supervisor 


8 

IEAPVRAL 

5.10 

Caller.. 
9 	 If a pageable region is being released, 

delete the page tables and external page 
tables in the lSQA. Paging Supervisor 

IEAPTCD 
5.35 

10 Return to caller. 

- BR 14 

Diagram 6.33 
Freeing Space for a Region 

Output to ABTERM 

Register 1 

IReturn code=X'20A'1 

Output hom Step 7 

Register 15 


IReturn code=X'lO] 


Output hom Step 10 
I 

Register 15 

~e~X'OOJ 

L \. 	 L 






IV 

~ 	 Diagram 6.34 
CD Locating an FOE to Free Space 

From FMCOM Diagram 6.29, 
Step 5 to locate the FOE Processing 

Input •••~I OELOCATE Output from Step 1 

If there is no FOE, return. 

Register 0 


I 0 ~ 

Register 7 

Ad~er boundary f4-- --, 2 Determine upper and lower boundaries of 
I r-- area described by FOE. 

Register 10 I I 
3 Search FQ E queue for one whose lower 	 Output from Step 4 

Length to be freed r---t- ­
boundary is ~ the upper boundary of the 

I I area to be freed. 
Register 11 	 Register 0 I I1+ -	 Address of upper FQEAddress to be freed --I I boundary 

DOE 	 I I 
I GERROR I Register 3 I I 4 	 If there is overlap, abnormally terminate 

the requesting task. Address of lowerI I 	 -~..~. 6.26. FO E boundary l I 
Register 7 

I I 
FMCOM 	 I Address of upper boundaryFOE FOE I I 

I I Register 11 
6.29, Step 6 _...I I 

Address to be freed J
-----I 
____ ......J 

Address of previous FOE J 

(. 	 L. L 



r r r 

Diagram 6.34 Loca~ing an FQE to Fr~e s~ace (Module lEAVG~OO) 
r------------------------------------------------------------~-------~-------, 

I IROUTINE I I 

I NOTES I NAME ILAEEL I 

.------------------------------------------------------------+--------+--------i

2 For 
For 

a region FCE, the u~~er toundary is the FQEIIREII. IQELOCIITEI 
an LSQA or SCA FeE, eigh~ is added tc thE address tol I 

I 
I 

include the FQE. I I I 

3 'I'he lower boundary is calculated by subtracting the FQE 
I 
I 

I 
I 

I 
I 

length from the upper boundary. I I I 

4 The area to be freed overla~s a free area if the FQE 
I 
I 

I 
I 

I 

lower boundary is less than the upper boundary to be 
freed and the FQE up~er boundary is greater than the 

I 
I 

beginning address of the area to be freed. I 
I 

Upper boundary (FQE) _ 
Comparison 2 

I 
I 
I 

~ver- { 

p 
• 

;' / 

Upper boundary (area to be freed) ~ 

Lower boundary (FQE) ~..o--------~---
Comparison 1 

I 
I 
I 
I 

Lower boundary (area to be freed) ...0-------..1 
I 
I 

I I 
------------------------------------------------------------~--------~--------

til 
/I) 

~ 
1-" 
o 
::I 

C7I 

<: 
1-" 

~ 
~ 
QI ..... 
til 

S" 
H 
QI 
.Q 
/I) 

.§ 
til 

/I) 
H 
~ 
1-" 
In 
1-" o 
::I 

~ 
CD 
W 



~ Diagram 6.35 
CX) 

~ 
Updating an FOE to Free Space 

From 6.29, Step 6 or 

6.31, Step 8 to updote 


Input on FQE Processing 
I 1 ..~ rl--~~----~----------------------------------------------------~ 


Register 0 
 Update FQE a 
FQE

5-thbei-;;fre~d-J 

Register 1 UBA = LBF 

Address be ing freed 

and combine FQEs if they ore now contiguous. 

Region 
FQE 

FQE 2 Create a new FQE if . 
UBA ~ LBF and GETMAINB 

Get space for POE. 

LSA "UBF 6.4 

Lower boundary (lBF) =­ and add it to the queue. 
UBF - FQELNTH 

D 3 Change FQE address if FQE 

LBA =UBF 

Uppe< boundary (UBF) 

•••••••••••• colle' 
6.29, Step 7 or .. 
6.31, Step 9 D"~ 

Uppe, boundary (UBA) = 


LBA + Length 


l/ L L 



____________________________________________________________ ________ ________ 

r r' r 

Diaqrdffi 6.35 Updating an FQE to Free stcrage Space (Mcdl.11e IEAVGMOO) 
r------------------------------------------------------------T--------T--------, 
I IROUTINE I I 
I NOTES I NAME I L}I,EEL I 
~------------------------------------------------------------+--------+--------~ 
I 1 If the "fper boundary of the area teing fre€d (VEAl IFCOM I I 
I eqaa 1 s the lOwer boundary of the FQE (LEFl. the length I I I 

of the }CE is increased ty the length of the area being I I I 
freed. I I I 

2 
I 

If the upper boundary of the area to be freed is net I 
equal to the lower bcundary of the area de3crihed by thel 
FQE and the upper boundary of the FQE is not equal tc I 
the lower boundary of the area being freed, a ne~ FCE 1 
must be created. (Fer c. rt?gicn request to free the I 
entire area descril:ed ty the DQE, a new FQE is not I 
crertted since it would bE" freed in lat€er processing of I 
this r"quest.) I 

I 
I 
I 

I 
I 
I 

l 

3 If the 'lpoer boundary of the FQE equals the lower boun­
dary of the area being freed, the FQE is moved if it is 
an SeA cr LSQA FQE or its address is changed if it is a 
region ,'"E. The l£2ngth of the FQE and the length t"ing 
freed arE; conbined to tecor.;e the n~:w length. 

I
I 
I 
I 
I 
I 
~ ~ J 

CJl 
(l) 

g. .... 
o::s 
0\ 

cd.... 
~ 
~ 
Ql 

I-' 


CJl 
rt o 
1"1 
Ql 

\Q 
CD 

CJl 

.a 
(1) 

~ .... 
en .... 
g 

"" 
U1 
00 



~ 
co 
~ 

Input 
Register 6 

I length of request 

Register 7 

-j Add,." of PO E 

Register 9 

I Address to be freed 

Register 14 

I Return address 

POE 

,-- ­r FBQE FBQE 

-U 

F,om FMCOMMON to 

release in a region 
 Output 

III•••I~I MRELEASA 
~- -,

I hom IEAPLSQA Indicate FBQEs are in LSQA. 3

I to free an lSQA segment
: II MRELEASE 


I hom FMCOMMON 
 2 Indicate F8QEs are in SQA. 

to release space in a region
~- -1L _________ 

3 Build a dummy FBQE.

I 
4 Add dummy FBQE to FBQE queue. ~"""''''-:t!..''''''''''''',.;:t~''''''''''...-:

,---- 5 Combine dummy FBQE with previous 


I FBQE;f they ,ho,. a boundoJ"y. ..'~""",.;: .""""""'1"""""',.;:

I 


____ ..JI 6 If combining was performed, free I .......... I
n. ­

--- the previous FBQE. 

• t To Calle, 

7 Get storage for a new FBOE. 

8 Use dummy FBQE to build a new [========~=~"-.I
F8QE and add it to the queue. I v1 

•••• ToCaller 

Diagram 6.36 
Freeing 4K Blocks 

(
L· L 




r r r 

Diagraffi 6.36 Fre€ing 4K Blocks (Module lEAVGMOOl 
r------------------------------------------------------------T--------T--------, 
I IROUTINE I I 

I NOTES INAME I LABEL I 

~------------------------------------------------------------+--------+--------~
I 3 
I 

A dummy FBQE (RBLOCKl is built in a work area and 
initialized ~ith the in~ut parameters in registers 6 

I 
andl 

IMRELEASE I 
I I 

I 9. I I I 
I 
I 4 The address of the dumny 

I 
FBOE is compared to the addressl 

I 
I 

I 
I 

I
L___

in the FBQE 
_____________

to determine where 
__________._________

it belongs in the queUE_ 
________________________

I 
_ ~____

I I 
____L________ J 

til 
(1) 
o 
rI" 
~. 

g 

'" 
<: 
~. 

1"1 
rI" 

~ 
I-' 

til 
rI" 

~ 
<Q 
(1) 

til 

~ 
~ 
~. 

en 
o 
~. 

::s 

.c:: 
ClO 
-..I 



l:: 
00 
00 

Input 

Register 0 

S~bpool number, leng~-------

Register!
I Address of quickcell j.------- ­

GOVRFLB 

Last 
QCDE {1 J 

-·-----------1 
I 

I 


___________ JI 


From FMCOMMON 
or QCA LLOC to 
free a quickcell. 

---.., r-- ­
I I 

I I 

I r--r-- ­

____~---J : 

I I 

I I 

I I 

I I 

I I 

I I 


l
I 	 I 


I
L ______ -l__ _ 
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 


Diagram 6.37 
Freeing a Quickcell 

Processing 
QCFREE 

Determine first qvickcell address. 

2 	 Compore quickcell address with QCDE 

the address passed. 


3 If the addresses am equal, mark """"""""""''''''~'''''''''''~ the quickcell free .. 

4 	 Calculate the next quickcel! 

address. 


5 If next quickcell size requested .... 2 • [GERRORJ
Otherwise 6.26 

~ ~, 	 L 




r r r 

Diagram 6.37 Freeing a Quickcell (Module IEAVGMOO) 
r------------------------------------------------------------T-------~--------l 

I IROUTINE I I 

I NOTES INAME I LABEL I 

r------------------------------------------------------------+--------+--------~ 
I 1 The routine determines the address of the quickcell IQCFREE I I 
I by adding QCORIGIN and QCOFFSET. I I I 
I· 
I 2 

I 
IQCFREE 

I I 
IQRELEASE I 

I 
I 3 

I 
IQCFREE 

I I 
IQCHECKOK I 

I 
I 4 The next quickcell address equals the previous address 

I 
I 

I 
I 

I 
I 

I plus the length of the quickcell. I I I 
I 
I 5 Each time a quickcell of the specified length is 

I 
I 

I 
IQCNONE 

I 
I 

I checked, a counter is decremented. When the counter I I I 
IL__ equals ________ zero, ______ all of them have been checked. ___________________________________________ I _~_______ I I _L________J 

CJl 
(!) 
o 
rI'.... 
o 
::1 

C1\ 

....< 
11 
rI' 

~ 
~ 

CJl 
rI' 
o 
~ 
IQ 
(!) 

CJl 
d 

"C 
(!) 

~ .... 
en .... 
g 
.c:: 
Q) 

ID 



~ Diagram 6.38 
\0 Freeing a SWA Segment o 

From CSPCHK to 
free a S'NA segment 

Input 

Register 1 


Address of -~~g~- Find the SWAB for the segment to be freed.---T-­
,J_ 2 If not found, or if not ell pages are free, •••••••••••••••••• Type-l Exit Routine 

exit. (lEAOXEOO) (3.15)- -+---l 
Register 14 : I 
 3 Remove the SWAB from the queue.

Return addre~~---]4- ­ --+ I 
 ___IIIj.~1 RMBRANCH4 Free the SWAB from LSQA. 

I I 

I I 

• 1- --6.271
I I 

I I 


5 Retum the segment to the queue of free: I 

blocks. _, MRELEASE-+---1 

I I 

I I • 6.361 

I I 


6 Delete the page table.I I 

I I
-+--1 
I I 7 Release external page storage for the 


I I 
 segment. Output from Step B 
I I 

I I 

I I
L+ __ TCB8 Post completion. 

___ J I 

I 
____-.J 

Type-l Exit Routine 
(I EAOXEOO) (3.15) 

FREESWA 

(.0 L ~. 




(
r 	 r 


Register 0 

[" Subpool ~~mber 237J 
Register 1 

[AddreS;Trage -1 
Register 4 

_ SWAB 

en 
(1) 
0 
rI'.... 
0::s 
..(1'1 

....< 
11 
rI' 

~ .... 
en 
rI' 
0 
11 
I» 

\Q 
(1) 

en 
d 

I'[j 
(1) 

~ .... 
en .... 
0::s 

~ 
\D 
~ 

From CSPCHK to free 
page in a SWA Processing 

I ... 
FREEPAGE 

Find the SNAB for the page to be freed.,-- ---- 1 
I 

If not found, or if page is already free, ..I ---- 2 	 Type-l Exit Routine 
exit. (IEAOXEOO) (3.15)I 

I 	 f1 
I

-1 3 	 Release real and external page storage 
for the page. Paging Supervisor I 

IEAPSIBR
+-~ 	 5.20....I 
I ----- 4 Detennine if all pages in the segment ore 

now free.I 
-1 

I 
I 
I 	 .. 

Type-l Exit Routine --I (lEAOXEOO) (3.15)
I 

I I 

I I 

I I 

I 
 I

_J I 
I ___J 

Diagram 6.39 
Freeing a SWA Page 

Output 

Register 15 

;.t Return code-X'04' I 

Register 151Return code-X'OS' if I
segment is now free 
=X'OO' if successful 



"" Diagram 6.40 
\0 
I\) Monitoring the Release 

From FREESWA of External Pages 
or FREE PART 

Input 

Register 6 


I ~ 1 Adjust external page sotrage 
length requested 

counters • 
Register 14 


Return address 
I ~ 

From 

TSOAUX
Register 6 

Length requested 2 Update external page storage 
counters •Register 0 


I length requested 


3 	 If no specific requests are waiting, 
set all waiting tosks dispatchable. 

I: I Di'tnntrh 

4· Post any pegeable (V~V) task 
waiting for external page 
storage. 

• ••• Type-l Exit Routine 
(IEAOXEOO) (3.15) 

(.,. ~, 	 (.,. 




(
r 	 r 

Diagram 6.40 MonitorJ.!1g the Release of External Pages (~odule IEAVPR'l'O) 
r------------------------------------------------------------T--------T--------l 
I I ROUTINE I I 

I NOTES INAI'E I LABEL I 

r------------------------------------------------------------+--------+--------~ 

The GETAUX subroutine is used to keep track of external 	 I I 

page storage that backs u~ ~geable regions for batch jots. I I 

The TSOAUX subroutine is used to keep track of External 	 I I 

page storage for TSO tasks. 	 I I 


I I 

The system uncommitted caunt is increased and the tatch IGETAUX I 

committed count is decreased ty the number of bytes 
 I I 

requested. I i 


I I 

2 	 The system uncommitted count is increased and the 'I'SO ITSOAUX I 


cow~itted count is decreased by the number of bytes 
 I I 

requested. 	 I I 


____________________________________________________________~________L________J 

en 
CD 

~ 
1-" 
o::s 
(1\ 

<: 
1-" 
1"\ 
rt 
r:::: 
OJ 

I-' 


en 
rt 
o 
1"\ 

III 


I,Q 

CD 


en 
.§ 
(1) 
1"\ 

-= 1-" 
rJI 
1-" g 
.f= 
~ 
w 





SECTION 7 

Timer Supervision 

HOW TIMER OPERATIONS ARE SUPERVISED••••••••••••••••••••••••••••••••• 497 
TIME Routine .•••••.••••••.•••••.•••••.••..•.•••••••.•••••••.••.•••.• 497 
STIMER Routine.•..••.•..••..•........••..•.••.••.•...••.•..••.•••.•. 498 
'!'TIMER Routine•••••••••••••••••••••••••••••••••••••••••••••••••••••• 498 
Timer Second-Level Interruption Handler ••••••••••••••••••••••••••••• 498 
Timer Queue s •••••••••••••••••••••••••••••••••••••••••••••••••••••••• 498 
Method of Operation Diagrams for Timer Supervision•••••••••••••••••• 500 

Section 7: Timer supervision 495 



J 




HOW TI~ER OPERATIONS ARE SUPERVISED 

The timer superv1s1on routines support 
the SystemV370 time-of-day clock, clock 
comparator, and CPU timer. The routines 
use these to obtain the date and time of 
day, schedule activity after a specified 
interval, and schedule activity for a spe­
cific time of day. 

The TOO (time-of-day) clock is a 64-bit 
incrementing binary counter. It is used to 
measure elapsed time in microseconds and is 
incremented by adding a one in bit-position 
51 every microsecond. The clock, which 
runs continuously, contains the total numb­
er of microseconds that have elapsed since 
January 1, 1900, 00:00 hours, Greenwich 
mean time. Timer supervision uses the 
time-of-day clock to calculate the time of 
day and to maintain the current date. 

The clock comparator feature causes an 
external interruption when the time-of-day 
clock reaches or passes the value specified 
in the clock comparator and the CPU is 
enabled for clock comparator interruptions. 
The interruption code is X'1004-. Timer 
supervision uses the comparator to service 
requests to schedule activity after a spe­
cified interval of real or wait time, or to 
schedule activity for a specific time of 
day. 

The CPU timer is a 64-bit decrementing 
counter. One is subtracted from bit­
position 51 every microsecond while the CPU 
is executing instructions or is in a wait 
state. An external interruption occurs 
when the value placed in the CPU timer 
reaches or becomes less than zero and the 
CPU is enabled for CPU timer interruptions. 
The interruption code is X'1005'. Timer 
supervision uses the CPU timer for timing 
task intervals. 

Timer supervision performs the opera­
tions requested by TIME, STIMER, and TTlMER 
macro instructions, and processes timer 
interruptions. 

For TIME macro instructions, the TIME 
routine returns the date and time of day to 
the requester. 

For STIMER macro instructions, the STIM­
ER routine sets a programmed timer (the 
clock comparator or the CPU timer) to a 
requested time interval so that it expires 
after the specified time interval or at a 
specified time of day. When the requested 
interval expires, the CPU generates a CPU 
timer or clock comparator interruption 
which the Timer Second-Level Interruption 

Handler processes. If the requester speci­
fies the TASK timing option, the time 
interval is decremented only when the 
requester's task is active. If the requ­
ester specifies the WAIT timing option, the 
requester's task is placed in the wait con­
dition until the interval expires. If the 
register specifies the REAL timing option, 
the interval is decremented continuously. 

For TTIMER requests, the TTIMER routine 
returns the amount of time remaining in an 
interval previously set by an STIMER macro 
instruction. The routine can also cancel 
the remaining time interval if so 
requested. 

Timer supervision maintains two queues 
of TQEs (timer queue elements): one for 
TASK timing requests and the other for REAL 
and WAIT timing requests. The TQES are 
constructed by the STIMER routine, and each 
element represents a request for a type of 
timed interval. Each new TQE is placed on 
the appropriate queue in the order in which 
the requested interval expires. When an 
interval expires, a timer interruption 
occurs. The Timer Second-Level Interrup­
tion Handler removes the top element from 
the appropriate tiwer queue and determines 
what action to take. 

Timer supervision also maintains a timer 
data area (IEATPC). This area contains: 
(1) predefined TQES that represent per­
manent control program requests for timer 
services, and (2) information used during 
timer supervision processing. 

The four major routines and two queues 
in timer supervision are described briefly 
in the following paragraphs. 

TIME ROUTINE 

(Diagram 7.2) 

The TIME routine supplies the current 
date and time of day. Initially, the 
operator uses the SET command to provide 
the control program with the date and the 
time of day at the computing location 
(local time of day). Timer supervision 
routines change the date at midnight and 
keep track of elapsed time. The TIME rou­
tine obtains the current local date, con­
verts the value in the time-of-day clock to 
local time, and returns both values to the 
user. 

Section 7: Timer Supervision 497 

L 



STIMER ROUTINE 

(Diagram 7.3) 

The STlMER routine processes requests 
for interval timing based on task execution 
time or real time. The routine schedules 
the placement of a timing interval into 
either the clock comaprator or CPU timer, 
according to the timer service requested in 
the STIMER macro instruction. For each 
STlMER macro instruction, this routine 
builds or uses an existing TQE into which 
it places a summary of the information con­
tained in the STIMER macro, including the 
information that will be needed when the 
interval expires. This routine then places 
the element on either the CPU timer queue 
(for the TASK timing option) or the clock 
comparator queue (for the REAL or WAIT tim­
ing option). 

TTIMER ROUTINE 

(Diagram 7. 4) 

The TTlMER routine supplies the time 
remaining in a previously requested interv­
al, cancels previous timing requests, or 
both. To determine remaining time, the 
TTlMER routine subtracts elapsed time from 
the time at which the interval will expire. 
To cancel a previous request, it removes 
the corresponding element from either of 
the two timer queues. 

TIMER SECOND-LEVEL INTERRUPTION HANDLER 

(Diagram 7.5) 

The Time Second-Level Interruption 
Handler (Timer SLIH), processes timer 
interruptions. It removes the TQE, whose 
interval has completed, from a timer queue 
and flags the interval complete. It per­
forms any actions required upon expiration 

of the interval and obtains new intervals 
to be placed in the clock comparator. In 
addition, the Timer SLIH schedules or per­
forms the following services: SMF timing, 
CVTDATE update, time-limit expiration, TSO 
timing, and paging supervision timing. 

TIMER QUEUES 

As mentioned previously, the timer 
supervision routines maintain two queues of 
timer queue elements: one for TASK timing 
requests and the other for REAL and WAIT 
timing requests. 

Whenever a task requests a timer ser­
vice, the STIMER routine builds a TQE. If 
the request is for TASK timing, the dis­
patcher requests that a timer supervision 
routine (Timer Enqueue) place the new TQE, 
and other related TQEs, on the CPU timer 
queue when the requesting task is dis­
patched. The timing interval requested by 
the dispatched task is placed in the CPU 
timer and decremented. If the task becomes 
nondispatchable, the remaining interval is 
saved. When the interval expires, the CPU 
timer causes an interruption. (See Figure 
7-1. ) 

When a task requests REAL or WAIT tim­
ing, the STIMER routine converts the 
requested interval to the value that the 
time-of-day clock will contain when the 
requested interval expires. The TQE is 
placed on the clock comparator queue 
according to its time of expiration. The 
first TQE to expire is first on the queue, 
the second is second, and so on. The 
interval for the first TQE on the queue is 
converted to the value that the TOD clock 
will contain when the requested interval 
expires. This value is placed in the clock 
comparator, which causes an interruption 
when the value in the TOD clock equals or 
exceeds the value in the clock comparator. 
(See Figure 7-2.) 

498 



G) Timer supervision routines maintain a painter to the head of the CPU timer 
queue in the timer dota area (IEATPC). 

CD When a task is dispatched, the dispatcher passes to the Timer Enqueue routine 
the addresses of all TQEs related to the task about to be dispatched. The 
TImer Enqueue routine places the TQE(s) an the CPU timer queue. If it 
places a TQE at the head of the CPU timer queue, it places that TQE's re­
quested interval in the CPU timer. If a TQE is not placed at the head of 
the queue, the Timer Enqueue routine adjusts that TQE's requested interval 
to account for the intervals contained in any TQEs ahead of it on the queue. 
A given task can request only one TASK timing interval at a time. However, 
the control program requests timing of a user task in order to provide services 
for the entire system. These TQEs are "related" to the user TQE. The 
dispatcher times tasks for automatic priority grouping and time-slicing, the 
initiator ior job-step timing, and so on. 

CD The dummy TQE is an internal TQE predefined in the timer dota area. It 
is constructed to time the maximum allowable interval. When no other 
TQEs are on the queue, the value in the TQEVAL field of this TQE is placed 
in the CPU timer to prevent unexpected CPU timer interruptions. 

Figure 7-1. Operation of the task timing queue 

CD Timer supervision routines maintain a pointer to the head of the clock comparator 
queue in the timer data area (I EAT PC) • 

o The STiMER rautine calculates the value that the time-of-day clock will contain 
when the user's requested interval expires. This value is placed in the TQEVAL 
field of the requester's TQE. The TQEs are placed on the clock comparator queue 
according to their time of expiration. The TQE whose interval expires first is first 
on the queue, and so on. The expiration time (TQ EVAL) of the first TQ E on the 
queue is placed in the clock comparator. 

® The paging supervision TQE (PGSUPTQE) is an internal TQE predefined in the 

timer data area. When the interval it represents expires, paging supervision 

gathers paging statistics. 


CD The TSO Driver TQE (lEATSELM) is an internal TQE predefined in the timer data 
area. It is used by the TSO Driver for time-slicing. 

® The lO-minute SMF TQE (TENMELM) is an internal TQE predefined in the timer 
data area. This lO-minute element is used to cause an interruption every ten 
minutes far SMF wait-time collection. When the interval expires, the Timer 
SLIH odds the wait time accumulated to the total wait time kept in the system 
management control area. 

o The Midnight TQE (MIDNTQE) is an internal TQE predefined in the timer data 
area. This TQ E is used to determine when midnight occurs so the date in the CVT 
can be updated. The TQE is also used by the TIME routine to calculate the time 
of day. 

CPU Timer Queue 

TOE 

Dum TQE 

(for TASK timing). 

Timer Data Area 
(I EAT PC)CDI-------, 

I 
I I 
L_~I~E!.~_J 

G) Clock ComEarator Queue 

TQE 

l~~~~*~i 
TQEVAL r ­

~'~fl!ifl~ Clock 
Comparator 

TOE 

0 Paging Supervision TQE 

CD TSO Driver TQ E 

0 lO-Minute SMF TQ 

0 Midnight TQE 

Figure 7-2. Operation of the clock comparator queue (tor REAL and WAIT timing). 


Section 7: Timer Supervision 499 




VI 
o 	 • Diagram 7.0 
o 	 Timer Supervision 

Visual Table of Contents 

Overview ofIndex to Diagrams by Module 
Timer SupervisionName for Timer Supervision 

Module Diagram 7.1 
Name Number(s) 

IEAVRTOI 7.2 I 
IEAVSTOO 7.3, 7.4 I 	 I I 
IEAVTlOO 7.5--7.7 TIME Routine STIMER Routine TTIMER Routine 	 Timer S;cond­

level Interruption 
Handler 

7.2 	 7.3 7.4 7.5 

I I 
I 

Timer Enqueue Timer Dequeue 
Routine Routine 

7.6 	 7.7 
'--- - ­

L L 	 L 




Interruption Handler 

r r 	 r 

TIME Macro Instruction STIMER Macro Instruction TTIMER Macro Instruction 
Issued (SVC 11) Issued (SVC 47) Issued (SVC 46) 

SVC Interruption 

TIME Routine STiMER Routine 	 TTIMER Routine 
• 	 Determine time of • Determine the time interval at • Calculate the time 

day and date. which the issuer has requested remaining in the 
a timer interruption to occur. requested interval 

• 	 Convert time of day Timer Enqueue Routine and return that 
to format requested. • Queue the request on either the information to the 

CPU timer queue or the clock Place the TaE (timer queue issuer in the 
• 	 Return time and date comparator queue. element) on the correct specified format. 

to issuer. timer queue. 
• 	 If the issuer • 	 If the issuer requested, issue a 7.67.2 

requested, cancelWAIT SVC to place the issuer's Timer Dequeue Routine 
the interval and 
remove the issuer IS 

task in we i t status. 
Remove the TOE (timer 

request from the queue element) from the 
timer queue. correct timer queue. 

Return to Issuer 
7.7 

Return to Issuer or 
Dispatcher (if 
WAIT was issued) 

Return to Issuer 

til 
In o 
rt.... 
o::s 
~ 

~ .... 
B 
~ 

.a til 

~ 
<:.... 
[Jl.... 
g 
(JI 
o 
i-> 

Diagram 7.1 
Overview of Timer Supervision 

Clock Comparator 
or CPU Timer 
Interruption 

External First-level 

Interruption Handler 


Timer Second-level 
Interruption Handler 

• 	 For CPU timer interruptions, remove 

the TOE (timer queue element) from 


Timer Dequeue Routine 
the task timing queue. For clock 

comparator interruptions, remove 
 Remove the TOE from the 
the TOE from the clock correct timer queue. 
comparator queue. 

• 	 If requested, schedule a user­

specified exit routine to receive 

control. 


• 	 For WA IT req uests, post the TQ E 

ECB for the issuer of the request. 


• 	 Mark the interval complete. 

• 	 Perform any requested or scheduled 
system services (SMF, (VTDA TE 

update, time limit expiration, TSO 

timing, etc.). 


7.5 

Return to External First-level 

Interruption Handler 


7.7 



VI 
o 	 Diagram 7.2 

TIME Routine'" il From SVC SLiH or 
Time Sharing Interface 

Input Program (TSIP) Processing Output 

From SVC SLiH 
IGCOII 

m 
Register 0 	 ~ 

Register 1 

Address of a-byte area for 1 Extract local dote from CVTDATE. Locol dote 
MIC requests ~ I I 

Register 1 	 r:::=::) 2 Calculate the time of doy in microseconds. 

Register 0 

1 TU ~ 26.04166 
o -- for TU (timer units: 

0------03 Convert the time of day to the format requested 	 I Imicroseconds) 

in the TIME macro instruction: 


Register 15 
1 -- for BIN (binary) 

For MIC requests with an invalid "area" 00000004I I 
2 -- for DEC (packed specified 


decimal) 


3 -- for MIC (binary) 
For valid MIC requests Register 0 

I 	 0------0I IFor TU, BIN, and DEC requests 

Register 15 
From TSIP 

0------0I I 
Register 1 

..... 8-Byte User-Specified 
Bit 0 ~ 1 to designate TSIP 	 Caller Areabranch entry 

Time of doy in 
microsecondsRegister 14 I I 

I Return address I 
Register 0 

Time of day in 
format specified 

I I I 

L 	 ~ L 



('r 	 r 
Diagram 7.2 TIME Routine (Module IEAVRT01) 
r------------------------------------------------------------T--------T--------, 
I IROUUNE I I 

I NOTES INA~E ILAEEL I 

~------------------------------------------------------------+--------+--------~IJ 	The TIME routine services TIME macro instructions. It ITIME 


retrieves the local date, calculates the local time of I 

day, and returns both to the requester specified in the I 

macro instruction. _ The routine is a type-2, partially- I 

enabled SVC routine. It is entered from the SVC Second-I 

Level Interruption Handler (SVC SLIH) after an SVC 11 I 

(TIME SVC) is issued, or from the Time Sharing Interface I 

Program (TSIP) by a branch entry) -- to obtain the tirre I 

of day in timer units. I 


I
eJ 	 Register 0 contains the address of an 8-byte area in I 

which the time of day is placed if the MICVL option is I 

specified by the requester. Register 1 specifies the I 

format in which the tiwe of day is to be returned to the I 

requester. 
 I 


I 

If the TIME routine is entered prior to syste~ initial- I ITDATE 

ization, the date has not yet been set (CVTDATE=O or I I 

MNIGBT=O). Register 0 is set to zero, register 1 is set 

to X'F', and the TIME routine returns. 

2 	 The time-of-day (TOO) clock contains a count of the 

total number of microseconds that have elapsed since 

January 1, 1900, Greenwich mean time (GMT). When a 

request for the tilLe of day is rr,ade, this elapsed time 

must be converted to the number of microseconds that 

have elapsed in the day at the local ccmputing center 

(local time). 

To convert the TOO clock value to local time, the TI~E 


routine maintains a field (MNIGBT) in the midnight TQE, 

which contains the value that the TOO clock ~ill ccntain 

when midnight occurs (local tirre). This field is I 

initially set when the operator issues the SET cormand. I 


I 

The 	following method is used to calculate the local time I 


en 
(I) 
o 
rt 
~. 

o 
i:I 

of day: 

"lNIGHT field 

- TOO clock 

MICSEC value 

Then: 

86.4 X 109 


I 

I 


(number of microseccnds TOO clock will I 

contain at local midnight) I 


(number of microseccnds elapsed since I 

January 1, 1900, GMT) I 


I 

(number of microseconds left in the day I 


at the computing location) 	 I 

I 

I 

I 


(number of lLicroseconds in 24 hours) I
-..J - MICSEC value 	 I 

I 


Local time of day at the computing location in micro- I 

t-'3 I seconds. I I 

~. 

~ ~L____________________________________________________________ ________ ________ J 

m 
Ii 

en 
t: 

"0 
(1) 

~ 
~. 

en 
~. 

o 
i:I 

U1 
o 
Vol 



V1 	 Diagram 7.3 o STIMER Routine 
"" 	 o Feam SVC SLiH 

IIltJUL 

fJ 	 I..t
p 

IGC047Register 0 

High-order byte -- Option flags 

Low-order 3 bytes -- Address of a 
user-specified exit routine, or 0 

Register 1 

Address of the user-specified 

timer interval 


Register 3 

IAddress of CVT I 
Register 4 

IAddress of TCB I 
Register 5 

IAddress of RB I 
Register 14 

IReturn address I 

1 	 Convert the interval to microseconds 
or TOO clock units. 

2 	 If a timer interval already exists for 
the tosk and the interval is incomplete, 
reuse the TOE. 

3 	 If a timer interval has completed, 
reuse the TO E. 

4 	 If a TOE cannot be reused, acquire 
storage for a TOE and initialize it. 

5 	 Place the interval (calculated in 
Step 1) ;n the TOE. 

6 	 Place the TOE on the correct timer 
queue. 

7 	 If WAIT is specified, issue a WAIT 
macro instruction.-
I ... 

Timer Dequeue Routine 

IEAOTDOO 
Remove TOE from timer 

queue. 


7.7 

GETMAIN Routines 

IGCOO4 

6.1 

Timer Enqueue Routine 

IEAOTEOO 
Place TOE on CPU timer Outputqueue for TASK timing or 
clock comparator queue 
for REAL or WAIT timing. 

User's ECB 
7.6 

:tIt.."""'~ """""""""",...""""""" 

l, l" 	 \. 




____________________________________________________________ ________ ________ 

_ _______ 

r' 	 r 

Diagram 7.3 STIMER Routine (Module IEAVSTOO) 
r------------------------------------------------------------T-------~--------, 
, ,RCUTINE , , 
, NOTES ,NAME 'LABEL , 
~------------------------------------------------------------+--------+--------~o The STIllER routine processes S'rIMER macro instructions. ISTI!o'ER I 

The routine sets a programmed timer to expire either: I I 
(1) after a specified tiIEe interval, or (2) at a sf'Eci- I , 
fied time of day. The task requesting the timed inter- I , 
val is placed in wait state during the interval if the I I 
task so specifies. The STIllER routine also rrepares to I 
pass control to a uSer-Sf€cified exit routinE u~cn I 
eXFiration of the interval if requested to do so. I 

I 
Restrictions: 	 I 


I 

• 	 If an STI~~R macro instruction is issued by a user- I 


specified exit routine, the macro instruction will be 1 

executed. However, the wacro instruction «ust not I 

specify the same exit routine. If it does, an in- I 

finite loop may occur. ,
, 

• 	 The specified tiwe interval should be less than 24 , I 
Ihours. If greater, the interval is reduced to 24 

hours. , 
• 	 After an interval ex~ires, the task is placed in the I,ready state and competes for control of the cpu. A 

user-specified exit routine will not receive centrol I 
until the task becomes the highest priority ready task, 
and is dispatched. I 

I 
• 	 A task can have only one outstanding STIllER service I 


request. A second S~IMER macro instruction issued fori 

l the same task overrides the first. 

en 

II> 
g.
"".o 
~ 

...J 

~"",
S 
II> 
Ii 

en 
.§ 
II> 

Ii 

<:

"".en"",g 
VI 
o 
VI 

I' 
~ ~ 

I 
I 
, 
, 
I 

J 

r 
r------------------------------------------------------------T--------T--------,
I ,RCUTINE : I 
I t\OTES INAME I LABEL I 
~------------------------------------------------------------+--------+--------~ 
~ Re'list.cr U 

Option F laS:3 
.000 
.001 
.010 
.011 
.111 

.000 

.001 

.011 

Pegister 
Option 

DINTVL.MICVI, LTOD 

BINTVL, TUINTVl. 

2 If the task has an 

STIMER !o'acro ISTI!o'ER I , 
Instruction 0Ftion Ii' 

waiting RB is located. If the wait count (REWCF) in the 
HE. is not zero, it is decreIr_ented c.f one befcr€ froces­
~ing continues. 

I 
, 3 
! 
, 4 
, 

I 7 Iss'Jing th",' wAIT Ifla.cro instruction places the u.::.:er· s 

I SVUB in thE: w<3.it stat_e. When the intervill has expiLEo, 

, the Tirr0T ~LIH rasts t~e TQEECB field.
L________._______________________________________._____ _ _ _ __ ____ 

I I 
I I 
I I 
I , 
I I 

I 
I 
I 
, 
I 
I 
I 
I
I 
I 
I 
I 
I 
I 

I TCBT I 
, I 
I I 
I I 
, I 
I'TlRB1"ST , 
I , 
ITGETCORE' 
I , 
I I 
I I 
I I

.1. ________ J 

TUINTVL indicates the, 
BIL'iTVL format I 
MICVL of specified I 
DINTVL time interval, 
LTOD I 
TAS}; 
.1AIT 

I 
I 

REAL I 
I 
I 

Register contents I 
rhe address of an a-byte I 
area containing tbe timE I 
va.11~e 	 , 

, 
The addr"ss of a 4-tyte , 
area containing the time I 
value I 

I 
outstanding tirrer WI,IT reguest the I 

http:Re'list.cr


U! 	 Diagram 7.4 o TTIMER Routine0\ 

o SVC 

Input 
__ IGC046 

I 
Register 0 

~ Register 0 1 If the task has no outstanding timer 
requests I O------{)IAddress of a-byte area 	 Caller I 

-,..
if MIC is specified 

FREEMAIN Routines 

Register 1 2 If the interval has completed, free the IGC005 
storage for the TQ E and mark the IBits 0-29 -- 0 I 
interval complete in the reB. 6.1 

Register 0 Bits 30-31 -- Option floss 

>I O------{) I
Option Flags 

TCB 
Bit 30 =0 TU specified 
Bit 30 = 1 MIC specified ....., ..., .........~
Bit 31 = 1 CANCEL 	 ..., ..., ..."""""'..." ...'III """11 ...~tM{CBii;fh ':::J 

specified Caller 
r 

3 Calculate the time remaining in the 

Register 3 interval. 


IAddress of CVT 	 Register 0 I 
4 IF TU was specified 	 IR..maini~g interval in IRegister 4 timer Units

IAddress of TCB I 
Register 5 	 Register 0 5 If MIC was specified

I Address of R B I 	 I o------{) I6 If CANCEL was specified: 
Register 14 	 8-Byte Area 

I Return address I 	 For a WAIT time interval, decrement I R~maining interval in I 
the RB wait count by 1. microseconds 

Timer Dequeue Routine 

For a WAIT, REAL or TASK time 	 IEAQTDOO 
interval, cancel the interval and free 	 Remove the TOE from the .....the storage for the TOE. 	 timer queue. 

7.7 

FREEMAIN Routines 

IGCOO5 
6.1 

-
I 

• 


~.~ 	 L 



r 	 r r 

Diagram 7.4 TTIMER Routine (Module lEAVSTOO)
r------------------------------------------------------------7--------T--------,
I IROU'I'INE I I 

I NOTES INAME I LABEL I 

~------------------------------------------------------------+--------+--------~[J 	The TTIMER routine processes TTlMER macro instructions. ITTIMER 


The routine calculates the ti~e remaining in a timer I 

interval and optionally cancels that interval. The timel 

remaining is returned to the requester as specified in I 

the macro instruction. If the WAIT parameter was speci-I 

fied in the STlMER macro instruction that estatlished I 

the interval, the interval is also canceled. This rou- I 

tine is a type-2, partially-enabled SVC routine. It is I 

entered from the SVC SLIB after an SVC 46 (TTIMER SVC) I 

is issued. I 


I 

~ 	If the TUINTVL option is specified, the time remalnlng I 


in the interval is to te returned in register 0 in timer 
units (the least significant bit = 26.04166 rricro­
seconds) • 

If the MICVL parameter is specified, the time remaining 

in the interval is to be returned in the area whose 

address is specified in register o. Bit 51 equals 1 

microsecond. 

3 For TASK time intervals: 

• 	 If the TQE is first on the CPU timer queue, the 
remaining interval equals the value in the CPU 
timer. 

If the TQE is not first on the queue, the remaining 

interval equals TQEVAL minus INTERVAL plus the value I 

in the CPU timer. INTERVAL is a field in the timer I 

data area. The field contains the amount of time I 

that will have elapsed (when the CPU timer reaches I 

zero) since the first TQE for the current task was I 

put on the CPU timer queue. I 


I 

For WAIT and REAL tiIT.e intervals: I 


I 

• 	 The value in the TOD clock is placed in the IEACI0CKI 


field. This value is suttracted from the TQEVAL I 

field of the requester's TQE to determine the I 

remalnlng interval. I


L____________________________________________________________ ______~ 

CIl 
ro 
(') 
cT"".o::s 
-..I 


1-3

"".!:I 
ro 
H 

CIl
c: 
"0 
ro 
~ 
"".en
"".o::s 

U1 
o 
-..I 


I 

I 

I 

I 

I 


ITSET2A 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

ITSET2 
I 

I 

I 

I 

I I 

~________ J 



00 

U1 	 • Diagram 7.5 (Steps 1-6) o 	
Timer Second-Level Interruption Handler 

Processing 

Input 
... '"ill''' 

Interruption code in 	 Obtain the address of the first TOE 1 
location XI 86' : 	 from either the clock comparator queue 

or the CPU timer queue (depending on 
the couse of the interruption).1004 for clock 

comparator 

interruptions 
2 If the TQE ;5 the TDUMYTQE, ,"set 

the CPU timer to the TDUMYTQE To External 
FLiH1005 for CPU interval. 

timer 
interruptions Timer Dequeue Routine 

Dequeue the expired TOE. 	 IEAQTDOO3 
Remove the TOE from theRegister 2 
timer queue. 

I Return address 7.6 
TSO Driver 

4 	 If the TOE belongs to the TSO Driver 
and TSO is active, notify the driver TSEVENT TSLICE 

I 
= 

that the T50 time slice has expired. 

To External 
FLiH 

5 	 If the TOE belongs to a TSO task that 
T50 Driver

has been swapped out and T50 is 
active, notify the TSO Driver. Swaps in the task. 

(TSEVENT = USRRDY) 

To External 
FLiH 

6 	 If the TOE is a WAIT TOE, post the POST Routine 
TOEECB and mark the TOE complete. 

IGC056 

.... 	 3.B 

To External 
FLIH 

(Conti nued at Step 7) 

'-' -'-' 	 '-' L 



r r r 

Diagram 7.S (Steps 1-6) Timer Second-Level Interrupticn Handler (Module lEAVTIOO) 
r------------------------------------------------------------T--------T--------, 
, 'ROU'IINE , , 
, NOTES 'NAME ,LABEL , 
~------------------------------------------------------------+--------+--------~ 
, 2 The durr,ILY TQE is predefined in the timer data area ,Timer, 
, (IEATPC). It contains a value greater than the rraxirrum ,SIIH , 
, allowed user interval. The dUmILY TQE is scheduled when , , 
I no other TQES are on the queue in order to frevent unex-I I 
, pected CPU timer interruptions. " , , , 
, 3 , ,TICQTQE 
, I , 
'4 If the TQE I:elongs to the ~rso Driver but TSO is not I , 
, active. the Timer SLIH exits to the External FLIIl. I I, , , 
, 5 The TSO Restore routine will complete processing of the , , 
, TQE after the TSO task is swapped in. 'I , , , 
I 6 , ITIWAIT
l ____________________________________________________________ ________ ________~ ~ 

en 
(1) 

~ .... 
g 
~ 

t-3 
~. 
(1) 
1'1 

.a 
en 

(1) 
1'1 
<I.... 
en .... 
o::s 

VI 
o 
\D 



U1 	 Diagram 7.5 (Steps 7-8) .... Processing 	 TImer Second-Level Interruption Handler o 

7 Supervisory TQEs 

Output
A. 	If the raE is the SMF lO-minute 


TOE: 


• 	 Add SMF information from 
the poge vector toble to the 
SMCA. 

• 	 Extract the amount of wait 
time from SYSWAVE and add 
it to the accumulated wait 
time. 

CVT 
B. 	 If the TOE i, the midnight TOE: 

• 	 Update the date. 

• 	 If TSO is active, notify the 

T50 driver that midnight has 

occurred. 


C. 	If the TaE is the paging supervisor 

TOE, pass control to the paging 

superv isor • 


Timer Enqueue 

D. Reschedule the TaE IEAOTEOO 5. 
Place the rQE on the 
clock comparator queue. 

7.6 

To External 

8 If no exit routine is to be scheduled, 
FLiH 

set the interval complete. To External 
FLiH 

(Continued at Step 9) 

IEAPDSBL 

The Task Disable routine 
in the Page Replacement 
module (lEAPRPLS) 
determines whether page 
thrashing is occurring 

~ ~ 	 l 



r r r 

Diagram 7.5 (Steps 7-8) Timer Second-Level Interruption Handler (Module IEAVTIOO) 
r------------------------------------------------------------y-------~--------, 

I IROUTINE I I 
I NOTES IN1IME ILABEL I 
~------------------------------------------------------------+--------+--------i7 A. ITimer I TISMFMIDI 

SLIB I I 

C. The paging superv1s1on TQE is used to determine how 
I 
I 

I 
I 

much paging occurs within a certain time period. I I 
The Task Disable routine will set a task nondis­ I I 
patchable if too much paging (thrashing) is teing I I 
done. I I 

I I 
D. The value in the TOD clock is added to the TQEVAL I I 

field of the TQE and placed in TQEVAL. ITSNQUEUE 
I 

8 This is a user's TQE NOTUSER 

II The Timer SLIB adds the following page vector table 
(PVT) fields to the SMF control area (SMeA): 

PVT Field SMF Field Field contents 
PYTNPOUT SMCAPGOT Number of page-cuts 
PVTNPIN SMCAPGIN Number of page-ins 
PVTSPOOT SMCASPCT Number of SWAP page-outs 
PVTSPIN SMCASPIN Number of SWAP page-ins 
PVTNSWAP SMCAPGliS Number of regions swapped 

in and out 
PVTNPMIG SMCAPGM Pages migrated 
PVTliPEEC SMCAPGEL Number of pages reclaimed 
PVTNRM SMCAPGNM Regions migrated 

The Timer SLIB also places the time of day that the 
L--__________________________________________________________lO-minute TQE expired in the field SMCATEXP. L-----__-L-_______ 

CIl 
(l) 
o 
rt.... 
g 
-.I 

1-,1.... 
~ 
1'1 

~ 
to 
(l) 

~ .... 
(/l .... 
o
::s 

VI 
~ 
~ 



VI 	 Diagram 7.5 (Step 9) 
I-' Processing 	 Timer Second-Level Interruption Handler IV 

Schedule asynchronous exit routines for 
SMF, iob-step timing, wait time 
expiration, and T50 and user requests 

9 

Output
(for REAL and TASK timing requests 
only). 

A. 	 To schedule an asynchronous exit for Input to Stage 2 Exit 
TSO and user requests, convert the Effector 
TOE to on IRB/IOE ond coil the 
Stage 2 Exit Effector. To schedule Register 1 
an asynchronous exit to a Time Limit 
Expiration routine (lEATLEXT) for I Complemented addre" I 
an initiator, create an IRB/IQE and Stage 2 Exit Effector of the IOE 
call the Stage 2 Exit Effector. 

IEAOEFOO... 
Register 14 

Place the IQ E on the 
asynchronous exit queue. I Return address I 

3.12 

Input to ABTERM routine 

B. 	 If an initiator's REAL time interval 
has expired and the installation did Register 0 

not provide a Time Limit Expiration 

I 
Address of the TCB toroutine, a wait time limit set by the 
be terminatedWAIT routine has expired. I 

Abnormally terminate the task with 
a completion code of X'5221. 	 A8TERM Routine 

Register 1 

IEAOABOO... 	 I X'805~2000' I
Schedule termination of 
the task. Dump request indicator 

and the completion 
code. 

8.12 

10.. Ta External 
FLiH 

l, L 	 L 




__________________________ _________________________________ 

r r 	 r 

Diagram 7.5 (Ster: 9) Tiner Cecond-Level Interruption Handler (Module IEAVTIOO) 
r------------------------------------------------------------T--------T--------, 
I IROUTINE I I 

I NOTES INAME ILABEL I 

~------------------------------------------------------------+--------+--------~

9 A, 

B. 	 Register 0 contains the address of the TCE to be 
terminated. This TCE is the subtask of thE TCE to 
which the TQE <,oints. Ufon return from ABTERM, the 
Timer SLIH moves the TQESAV field to the TQEVAL 
field tc restore the timE interval in effect when 
the job stef entered the wait state (for decugging 
purfoses). The TQE type is t~",,,n changed from REAL 
to TASK. 

~ 

til 

:+ 
m 

"',o 
::1 

o,J 

t-3"',
!3 
~ 
til 

.§ 
~ 
<I"',
UI"',o 
::1 

VI 

I-" 
IN 

ITimer ITNJST I 

ISLIH ICHECKSMFI 

I I I 

I I I 

I I I 

I I I 

I I I 

I I I 

I I I 

I I I 

I ________iI ________ JI 
~ 



VI 
t-> 	 Diagram 7.6 

"" Timer Enqueue Routine 
From STiMER, Task Switch, 
TSO I master scheduler, and 

Timer SLiH to place a TOE 

on c timer queue to start 

timing an interval 


Processing 
Input 

Register 1 IEAQT EOO 

[TQE~~;;-J 
If the TQE is already on the queue or 
is complete _ ........~Caller 

Register 2 

rye;:r~~) 2 	 For REAL or WAIT time requests, place 

the TQ E on the clock comparator queue. 


The P9N must be in 

supervisor I disabled 3 For TASK timing requests, place the 

state. TOE on the CPU timer queue. If the 


requested interval is greater thon the 
value in the CPU timer, and the first 
TaE is not the dummy TOE, odiust the 
requested interval to account for any 
time already elapsed in the interval 
currently being timed. (See Diagram 7.7, 
Note 4) 

4 	 If the TQE is not at the head of the­
queue --t-~.~ Caller 

5 	 If th~ TQE is at the head of the queue, 
place the requested interval in either 
the CPU timer (for TASK timing) or the 
clock comparator (for REAL or WAIT 
timing). 

Caller 

l,.L 	 l 





••••• 

UI ... 

~ 

Input 

Register 1 

rra E address 

The PM must be in 
supervisor r disabled 
state. 

Register 2 

The PSW must be in 
supervisor, disabled 
state. 

Diagram 7.7 
Timer Dequeue Routine 

From dispatcher and WAIT 
routine to remove the TOE 
from the CPU timer queue 
and save the remaining interval 
in the TOEVAL field of the TOE 
(for TASK timing requests) Processing 

••••••~IIEAQTDOl 

If the TOE is at the head of the CPU timer 

timer queue, set the TQEVAL field 

equal to the value in the CPU timer. 

If not, adjust the value in TQEVAL 

to account for any time already 

elapsed in the interval that was 

be ing timed.


Conce I Entry Point 

I~IIEAOTDOO 

2 	 Remove the TOE from the queue and 
readjust the pointers of the 

remaining TOEs. 


3 	 If the dummy TO E now heads the 

CPU timer queue, set the CPU 


___"'_IIIIj.~Callertimer to the dummy TOE's interval. 

4 	 If the TOE at the head of the CPU 

timer queue was removed, reset the 

CPU timer. 


From ABEND, Timer SLlH, 5 	 If the TOE at the heod of the clockand TT I M ER to remove a 
comparator queue was removed, resetTO E from a timer queue 
the clock comparator to the intervalcnd to cancel the existing 
(the TOEVAL field) in the TOE now interval ___---1_...Callerot the head of the queue . 

.....~IIEAOTD02 

6 	Calculate and save the remaining 
interval for each TaE on the queue. 


From dispatcher to remove 

all TASK timing TOEs from 

the CPU timer queue when 
 7 	 Schedule the dummy TOE. 
switching tasks and to save 

the remaining interval 

value 


...., Caller 

L L 	 L 




____________________________________________________________ 

r r r 

Diagram 7.7 Timer Dequeue Routine (Module lEAVTIOO)
r------------------------------------------------------------T--------T--------,
I I ROUTINE I I 

I NOTES INAfo'E I LABEL I 

~------------------------------------------------------------f--------f--------i

1 The TQEVAL field is set to: ITimer 
IDequeue 

old TQEVAL - INTERVAL + thE value in the CPU timer I 
or I 

o if the remaining time is negative I 
I 

where: I 
I 

"old 'rQEVAL" contains the requested interval I 
I 

INTERVAL is a field in the timer data arEa that con­ I 
tains the requested interval in the TQE now rerrcved I 
frore the head of the queue. I 

I 
4 The requEsted interval in thE TQE must be adjusted to 

account for any tiroe already elafsed in the interval 
I 
I 

that was being timEd. The CPU timer is set to: I 
I 

TQEVAL - INTERVAL + the value in the CPU tiWEr I 
I 

whc-re: I 
I 

TQEVAL is the requested interval. I 

INTEHVAL is a field in the timer data area tha t con-
I 
I 

tains tne interval requested in the TQE now Ierroved I 
l frem tn~ head of the queue. Ii ________iI I ________J 

en 
/1) 

~ 
fJ· g 
-..I 

1-3 
~. 

~ 

.a 
en 

~ c: 
fJ· 
en 
fJ· g 
IJ1 .... 
-..I 





SECTION 8 

Termination 

HOW TASKS ARE TERMINATED•••••••••••••••••••••••••••••••••••••••••••• 521 

Normal Termination -- EOT (End of Task) ••••••••••••••••••••••••••••• 521 

Scheduling Abnormal Termination -- ABTERM ••••••••••••••••••••••••••• 522 

Abnormal Termination -- ABEND••••••••••••••••••••••••••••••••••••••• 522 

Dumping Specified Areas of Virtual Storage -- SVCDUMP ••••••••••••••• 523 

Dumping Selected Areas of Virtual Storage -- ABDUMP ••••••••••••••••• 523 

STA Services and ASIR (ABEND/STA Interface Routine) ••••••••••••••••• 524 

Method of operation Diagrams for Termination•••••••••••••••••••••••• 525 


Section 8: Termination 519 



J 




HOW TASKS ARE TERMINATED 


The termination routines cancel requests 
for supervisor operations and free the 
resources and control blocks associated 
with a terminating task. The requests and 
resources include: 

• 	 Enqueued resource requests 

• 	 Unexpired timer requests 

• 	 Incomplete operator communications 

• 	 Exclusively used programs in virtual 
storage 

• 	 Exclusively used data sets 

• 	 Unshared subpools of virtual storage 

The control blocks that are removed from 
their queues and freed include one or more: 

• 	 Task control blocks (TCBs) 

• 	 Request blocks (RBs) 

• 	 Interruption queue elements (IQEs) 

• 	 Supervisor queue elements (SQEs) 

• 	 Queue elements (QELs) 

• 	 subpool queue elements (SPQEs) 

• 	 Queue control blocks (QCBS) 

• 	 contents directory entries (CDEs) 

• 	 Timer queue elements (TQEs) 

• 	 Terminal attention exit elements 

(TAXEs) 


• 	 The program interruption element (PIE) 
for the task, if one exists 

• 	 Data extent blocks (DEBs) 

There are two types of termination pro­
cedures: normal and abnormal. Normal ter­
mination occurs when a task is complete;
the last program to be executed for the 
task has completed processing. Abnormal 
termination occurs when some kind of unre­
coverable error, such as an I/O error or 
program check, has taken place. The task 
must be terminated to prevent waste of sys­
tem resources. 

Normal and abnormal termination produce 
different results. Normal termination 
frees resources only for the completed task 

since it has no subtasks. Abnormal ter­
mination allows two options: task and step 
termination. In task termination, only the 
resources of the failing task and its sut­
tasks are freed. In step termination, the 
resources used for the entire job step are 
freed, and, depending on the JCL. the job 
scheduler ignores later steps of the same 
job. 

The general flow of the termination rou­
tines is shown in Diagram 8.1. 

NORMAL TERMINATION -- EOT (END OF TASK) 

(See Diagram 8.2) 

When the last program to be executed for 
a task ends, it returns control to the Exit 
routine (SVC 3). The Exit routine branches 
to EOT (end-of-task) routine to free 
resources belonging to the terminating 
task, to schedule an ETXR (end-of-task exit 
routine) if one is specified, to post an 
end-of-task ECB (event control block) if 
one was specified when the task was 
created, and, if necessary, to ensure a 
task switch. 

In its initial processing, EOT checks to 
see if the terminating task is in a -must 
complete- state, or if there are incom'plete 
subtasks of the terminating task. If eith­
er atnormal condition exists, EOT forces 
abno~l termination by calling the ABTERM 
routine. 

EOT dequeues enqueued resources, sets 
the completion code. and releases resources 
used by the terminating task. To accomp­
lish these things, the routine does the 
following: 

• 	 Releases the PIE (program interruption 
element) if one exists. 

• 	 Purges unexpired TQEs (timer queue

elements) • 


• 	 Purges TAXEs (terminal attention exit 
elements). 

• 	 Purges operator communication queues. 

• 	 Closes data sets. 

• 	 Purges asynchronous exits (IQEs). if 
owned by the terminating task, 

Section 8: Termination 521 



• 	 Frees the task's last-executed program 
(or schedules it for a waiting 
requestor) • 

• 	 Purges paging activity and migration. 

• 	 Releases loaded programs and the LLE 
(load list element) associated with 
each program. 

• 	 Purges fixed pages. 

• 	 Frees storage acquired for the task, 
and SPQES (subpool queue elements) 
owned by the task. 

• 	 Dequeues the task's TCB (task control 
block) from the TCB priority queue. 

If an ETXR was specified by the attach­
ing task, EDT schedules it. If an ECB was 
specified by the attaching task, EOT sche­
dules it for posting. When either an ETXR 
or ECB was specified, EOT also ensures that 
a task switch will be made and returns con­
trol to the Exit routine. If neither an 
ETXR nor an ECB was specified, EOT dequeues 
and frees the TCB and the last RB, frees 
the LSQA, if owned by the terminating task, 
ensures a task switch, and passes control 
to the dispatcher. 

SCHEDULING ABNORMAL TERMINATION -- ABTERM 

(See Diagram 8.10) 

The ABTERM routine schedules abnormal 
termination for system routines that detect 
an error but cannot themselves issue an 
ABEND macro instruction. (See OS/VS Super­
visor Services and Macro Instructions for a 
description of the ABEND macro instruc­
tion.) ABTERM also schedules abnormal ter­
mination for system routines that wish to 
terminate a task other than the one they 
are part of. 

ABTERM performs the following major 
functions: 

• 	 Refreshes the CVT address. 

• 	 Saves the address of the next execut­
able instruction and the general regis­
ters; they are displayed by ABDUMP dur­
ing ABEND processing. 

• 	 Stores the completion code and dump
option for ABEND. 

• 	 Builds a TIRB (task interruption requ­
est block) to cause remaining proces­
sing to be done under the TCB specified 
for termination. 

• 	 Schedules abnormal termination of the 
specified task by initializing an SQE 

with the address of an SVC 13 (ABEND) 
instruction in the CVT. 

ABNORMAL TERMINATION -- ABEND 

(See Diagram 8.13) 

Abnormal termination occurs because of 
an unrecoverable error, such as an I/O 
error or program check. It may also be 
initiated by a system or user program that 
detects an abnormal condition that could 
cause program damage or incorrect results. 
The task whose program or I/O operation has 
malfunctioned is abnormally terminated 
because continued executing would waste 
system resources. Abnormal termination 
frees the resources for use by other tasks. 

The ABEND routine, which performs 
abnormal termination. may be requested 
directly or indirectly. The request is 
direct when a system or user program issues 
an ABEND macro instruction to terminate the 
current task. The request is indirect when 
a system routine, after detecting an 
abnormal condition, branches to the ABTERM 
routine. The ABTERM routine schedules the 
execution of an SVC 13 instruction for the 
task to te terminated. The SVC 13 instruc­
tion, which is executed the next time the 
task to be terminated is dispatched, causes 
supervisor-assisted linkage to the ABEND 
routine. 

Abnormal termination allows two options:
task and step termination. These are norm­
ally user options, specified by an operand 
of the ABEND macro instruction. 

In task termination, only the resources 
of the current (failing) task and its sub­
tasks are released. This option permits a 
program belonging to a higher-level task in 
the job step to either continue or termin­
ate the other tasks of the job step. The 
current task (the task being terminated) is 
treated as the top terminating task (the 
highest-level task in the chain of ter­
minating tasks); the current task and all 
its subtasks are abnormally terminated. 

In step termination, all tasks in the 
job step are terminated. The job-step task 
is treated as the top terminating task; the 
chain of terminating tasks originates with 
this task. Task termination of the job­
step task, the highest-level task in the 
job step, produces the same result as a 
step termination. 

If the failing task has issued a STAE 
macro instruction or was attached with the 
STAI option. the ABEND routine passes con­
trol to the ABEND/STA Interface routine 
(ASIR). The STAE/STAI exit routine speci­
fied by the requester is then given control J 

522 



by the requester is then given control 
ASIR. See OS/VS Supervisor Services and 
Macro Instructions for a description of the 
STAE macro instruction. 

The following ciritical system tasks 
have STAR (System Task ABEND Recovery) rou­
tines which receive control from ASIR if 
the critical system task fails: 

• 	 Communications task 

• 	 Master scheduler task 

• 	 System error task 

• 	 IORMS (I/O Recovery ManageKent support) 
task 

The STAR routines attempt recovery by spe­
cifying that the system task on whose 
behalf they are processing be retried. 
Both the ABEND and ASIR routines must reco­
gnize the failure of a critical system task 
and must pass control immediately to the 
appropriate STAR routine. 

If the dump option has been selected 
(either by the user program or the ABTERM 
routine), the ABEND routine invokes the 
ABDUMP routine. The ABDUMP routine dis­
plays the programs, control blocks, and 
dynamically acquired storage of the ter­
minating task, its descendants, and its 
immediate antecedents, including the job­
step task. 

An error condition may occur during 
ABEND processing that results in a new 
request for abnormal termination of the 
task that is already being terminated. The 
ABEND routine must be reentered to try to 
complete termination procedures. Reenter­
ing the ABEND routine for the same task is 
called a recursion. In some instances the 
ABEND routine expects the possibility of an 
ABEND failure, and these instances repre­
sent valid recursions; the ABEND routine 
processes the second request using any spe­
cial handling necessary. Invalid recur­
sions are ABEND failures that were not 
anticipated. They are considered to be 
ciritical errors; the reliability of the 
system is assumed to be in jeopardy when 
one occurs. A critical error causes the 
current task to be set nondispatchable; the 
job-step task is then scheduled for abnorm­
al termination. 

DUMPING SPECIFIED AREAS OF VIRTUAL STORAGE 
-- SVCDUMP 

(See Diagram 8.25) 

The SVCDUMP routine is invoked by an SVC 
51 which is issued in a SNAP or SDUMP macro 
instruction. (See OS/VS Supervisor Ser­

vices and Macro Instructions for a descrip­
tion of the SNAP macro instruction.) 
SVCDUMP can te called only by a program 
with protection key O. If a caller's key 
is not 0, or if the caller requests, 
SVCDUMP passes control to ABDUMP. 

SVCDUMP provides an unformatted dump of 
any area of virtual storage. If the caller 
specifies a TCE, the dump is for that task, 
rather than for the task requesting the 
dump. The dump is written to tape or disk, 
and can te printed using the system utility 
AMDPRDMP. (See OS/VS Service Aids for a 
description of AMDPRDMP.) 

The caller may specify the areas of vir­
tual storage he wishes dumped by providing 
SVCDUMP with a list of virtual storage 
addresses or by specifying any or all of 
the following areas (if the caller speci­
fies no areas to be dumped, SVCDUMP dis­
plays all of the following): 

• 	 The nucleus. 

• 	 SQA (system queue area). 

• 	 The region and its LSQA (local system 
queue area). 

• 	 IPA (link pack area) modules associated 
with the task. 

DUMPING SELECTED AREAS OF VIRTUAL STORAGE 
-- ABDUMP 

(See Diagram 8.25) 

The ABDUMP routine is invoked by a SNAP 
macro instruction. The SNAP macro instruc­
tion, whose expansion contains an SVC 51, 
causes the SVC Second-Level Interruption 
Handler (SVC SLIH) to call the SVCDUMP rou­
tine. The SVCDUMP routine checks the 
ABDU~P parameter list to determine whether 
a SNAP macro instruction has been issued. 
If so, the SVCDUMP routine passes control 
to the AEDUMP routine. 

The SNAP macro instruction can be issued 
by the ABEND routine during abnormal ter­
reination, or by a user program at any time. 
ThUS, ABDUMP processing can provide either 
a formatted abnormal dump or a formatted 
dynamic dump. The .ABEND routine can speci­
fy either a SYSUDUMP or a SYSAEEND dump. A 
SYSUDUMP dump consists of major control 
blocks belonging to the terminating task, 
its suttasks, and its immediate antece­
dents. Programs and dynamically acquired 
storage belonging to the terminating task 
are also displayed. A SYSABEND dump pro­
vides the same information as a SYSUDUMP 
dump with the following additions: the nuc­
leus, LSQA (local system queue area), SQA 

Section 8: Termination 523 



(system queue area), load modules, sub­
pool blocks, and the optional GTF (genera­
lized trace facility) trace. 

If a dynamic dump is requested (the SNAP 
macro is issued by a user program), the 
storage areas to be dumped are specified by 
the operands of the SNAP macro. (See OS/VS 
supervisor Services and Macro Instructions 
for information on how to obtain a dump.) 

The use of the ABDUMP routine is 
restricted to tasks that do not have job­
step tasks within their subtask structure 
at entry to ABDUMP processing. If a task 
has a subtask that is a job-step task, con­
trol is returned immediately to the caller. 

STA SERVICES AND ASIR (ABEND/STA INTERFACE 
ROUTINE) 

(See Diagram 8.42) 

The STA Services and ASIR routines allow 
a user's abnormal-end exit routine to ana­
lyze errors before abnormal termination 
proceeds, and if possible, to schedule a 
retry of a failing routine. 

The STA Services routine is invoked by 
an SVC 60 issued in a STAE macro instruc-

Index to Diagrams by Module Name for Termination 

Module Diagram Module Diagram 
Name Number(s} Name Number(s} 

IEAVABOO 8.10--8.12 IEAVAD31 8.39 

IEAVADOO 8.26 IEAVAD51 8.40 

IEAVADOI 8.27 IEAVAD71 8.41 

IEAVAD02 8.28 IEAVETOO 8.2--8.9 

IEAVAD03 8.29 IEAVSTAO 8.43 

IEAVAD05 8.30 

IEAVAD06 8.31 
IEAVTMOO 8.14--8.17, 

8.24 

IEAVAD07 8.32 IEAVTMOI 8.18,8.19 

IEAVAD08 8.33 IEAVTM02 8.20, 8.21 

IEAVADOA 8.34 IEAVTM03 8.22, 8.23 

IEAVADOB 8.35 IEAVTM04 8.20 

IEAVADOC 8.36 IEAVTMOB 8.44--8.46 

IEAVADOD 8.37 IEAVTMOC 8.46, 8.47 

IEAVADll 8.38 

tion or ty the ATTACH service routine when 

the ATTACH macro has been issued with the 

·STAI= • operand. The routine creates, 

cancels, or overlays an SCB (STA control \ 

tlock) on a task's queue of SCEs, to serve ~ 


as a means of co~munication between the STA 

services, ABEND, and ASIR routines. 


There are three kinds of SCBs: 


• 	 A STAE SCE (there can be several on an 

SCB queue) specifies an exit routine to 

receive control when its associated 

task terminates abnormally. 


• 	 A STAI SCB (there can be several on an 

SCB queue) specifies an exit routine 

(specified by the attaching task) to 

receive control when the attached task 

terminates abnormally. 


• 	 A STAR SCB (there can be only one STAR 

on the SCB queue) specifies an exit 

routine to receive control when a cirt ­

ical system task fails, but it receives 

control only after STAE and STAI exit 

routines have been tried. All per­

manent system tasks except the paging 

supervisor have STAR SCBs. 


524 



00 

r r 	 r 

Diagram 8.0 
Termination 
Visual Table of Contents 

Overview of 
Termination 

8.1 

1 

I 
ABNORMAL TERMINATION OBTAINING DUMPS 	 PROCESSING USER 

EXIT ROUTINES 

Overview of the Overview of the Overview of the 

ABTERM Routines SVCDUMP and TA Services and 


ABDUMP Routines ~SIR Routines 


8.10 	 8.25 8.:£ 

I 	 r-- ­
STA Services 
RoutineSVCDUMP ABDUMP Mainline 

Routine r-- Processing 
8.43

ABTERM 
8.26 8.27

Prologue 

ASIR 
8.11 	 Phase 1 

I I 	 I 
8.44 

ABDUMP -- ABDUMP -- ABDUMP -- ABDUMP -- ABDUMP -­
Formatting the Formatting Displaying the Displaying the Formatting 
Header and PSW Control Blocks II Save Area Nucleus Trace Data ASIR 

Phase 2Mainline ABTERM 	 8.28 8.30 8.32 8.34 8.36 
Processing 

___8_.45 

8.12 ABDUMP -- ABDUMP -- ABDUMP -- ABDUMP -- ABDUMP -­
Formatting Fonnatting aCBs Interface Routine Displaying Displaying ASIR 
Control Blocks I Registers Subpools Phase 3 

8.29 8.31 8.33 8.35 8.37 

8.46 

Overview of the PRINT ROUTINES 
ABEN D Routine ASIR 

Phase 4 

8.13 

8.47 
ABDUMP ABDUMP ABDUMP I IABDUMP 
OUTPUT, FORMAT and FORMAT20 and FORMET Routine 
OUTPUTS, and FORMAT22FORMATOI 
PRJ NT Routines Routine Routines 

8.38 8.39 8.40 I 8.41 

ABEND Initial 	 ABEND Final
Mainline ABEND ABEND Open ABEND ABDUMP ABEND Close 	 ABEND Must­ ABEN D Critical ABENDHousekeeping 	 Housekeeping
Processing Phase Phase Phase 	 Complete Phase Error Phose Recursion PhasePhase 	 Phase 

8.16 8.17 8.18 8.19 8.20 8.21 8.22 8.23 8.24 

CIl 

~ 
rt .... 
g 

t-;l 
(b 
I; 

~. 
tj 

~ .... 
o 
tj 

NORMAL TERMINATION 

Overview of the 
EOT Routines 

8.2 
EOT Mainline 
Processing 

Erase TeB 
Subroutine 

8.4 

Dequeue TeB 
Subroutine 

8.5 

Purge TAXEs 
Subroutine 

8.6 

Purge Timer 
Subroutine 

8.7 

Release Loaded 
Programs 
Subroutine 

8.8 

Release Storage 
Subroutine 

8.9 

ABEND 
Initialization 
Phase 

8.14 

8.3 

-

-

-

-

I-- ­

I-- ­

ABEND 
Interface with 
ASIR 

8.15 

C.JI 
I'-> 
C.JI 



U1 	 Diagram 8.1 
tv 
a-	 Overview of Termination 

TYPICAL NORMAL TERMINATION 	 TYPICAL ABNORMAL TERMINATION 

. . _.. - -_ .. _.sveDUMP 	 STA SActive Task ---	 Active Task ....................... 

• 	 Issues an SDUMP or SNAP macro • Issues a STAE macro instruction • Dumps storage specified by a • Specifies the user exit 

instruction (SVC 51). key-O user. (SVe 60). routine. 

• 	 Completes execution. • Branches to ABDUMP to process • Task fails. 
8.42

a SNAP request. 
• 	 Issues a BR 14 instruction. ,8.25 

ABTERM, 	
I 

.I • Schedules ABEND (SVe 13). 
Dispatcher 8.10 
• 	 Issues an SVC 3 instruction 

(on the Icst RB). ,J 
I 	 sve FLiH 

• 	 Records the event. 
Exit 	

I• 	 Issues a BR 14 instruction. 

site SLiH, I • Creates a SVRB. I 
EOT 	

I• 	 Branches to ABTERM if must-

complete or incomplete subtasks 


ABEND/STA Interface ABENDexist. I • 	 Allows the user to attempt . • Gives control to the user exitI recovery • • 	 Frees resources. routine. 
ABDUMP 

• 	 Ensures a task switch. • Dumps data. • 	 Gives control to the user retry • 	 Dumps control blocks and I 	 routine.storage.• 	 Issues a BR instruction. • Frees resources. ~I 
8.2 	 8.25 • Returns control to ABEND if

I a user retry routine is not• 	 Ensures a task switch. 

specified., 	 1 

• Issues a BR instruction. 
Dispatcher I 8.13 8.42 

• 	 Gives control to the active I 
task. 


Dispatcher _ 


• 	 Gives control to the active, 	 I 
I 

I 

I 

, 
, 

I task.Active Task 

• 	 Executes programs. 

Active Task 

• 	 Executes prog rams. 

L, L 	 l, 




('r r 
Diagram 8.2 
Overview of EOT Routines 

Exit Routine 

(Enters EaT when it encounters an end-of-task condition)-

EOT Routine 

EOT Mainl ine Processing 

8.3 

• Set the completion code. 

• Dequeue serially reuseable resources. 

• Release resources no longer needed. 

• Schedule on ETXR if requested. 

• Post the ECB that was specified when the task was 
attached. 

IEADQIQE ~ IEADQTCB I EAQPGTM IEAQSPET 

Dequeue IOE Subroutine Dequeue TeB Subroutine Purge Timer Subroutine Release Storage Subroutine 

8.3 8.5 8.7 8.9 

• Remove unschedu led IQ Es from 
the asynchronous exit queue. 

• Remove the Te B from the tosk 
queue, TJ ax queue I and the 
time-slice queue. 

• Purge unexpired TOEs. 
• Free any storage acquired 

for the task. 

IEAQERA ~ IEAKJXP ~ IEAQABL 

Erase TCB Subroutine Purge TAXEs Subroutine Release Loaded Programs 

en 
(1) 

8.4 8.6 
Subroutine 

8.8 

:+.... • Ensure a tosk switch and free • Free TAXEs and associated • Release lLEs and associated 

g TeB and RB storage. storage. programs. 

co 

1-'3 

~ .... 
::s 
1\1 
rt.... 
g 

I\.) 
..,j 

VI 



U1 
to.J 
co 

From the Exit routine (3.14) to free 
resources, schedule an ETXR if 
requested, and po' 'sted . 

Input 	 r--- ­- r-- ­

Register 3 

Address of CVT .- ­
Register 4 

[Adclres;-;;~I 

Register 5 

I Address of top RB 

TCB 

r 
..J- I I 

II 
_ !-_---l I 

I 
____ -I I 

I 
I ____ ...1. ­

- ----, 
I 
L_- 1-, 

I 
I 

- I 
I 
I 
I 
I 
I 
IL ____ 

Processing
-

EOT 

1 

2 

3 

4 
-

5 

l 
If the task is in must-complete status 

Dequeue any serially reuseable resources 
never dequeued (except must-complete 
resources). 

If there are any subtosks not detached 

r 

Set the completion code. 

Release resources no longer needed: 
A. Release the PIE. 

• 

B. 	 Purge unexpired TQEs and TAXEs. 

c. 	Purge operator communication 
queues. 

D. 	Allow asynchronous page-in, fix, 
or migration requests to quiesce. 

~ 

E. 	 Close all open data sets. 

(Continued at Step 5F) 

Diagram 8.3 (Steps 1-SE) 
EOT Mainline Processing 

Output 

Register 1 

"')I Completion code X'E03' I .. 
ABTERM (8.12) 

" 
ENQ Manual Purge 

I IEAOEQOl 

.. 
ABTERM (8.11) 

Register 1 r 
"')t Completion code X'A03' I 

TCB 

~ 	TCBCMP I 
'*,$"';"'; 

.. TCB 

FREEMAIN 
~III RMBRANCH .,;>I TCBPIE-O I

6.1 

Purge Timer 1 
r IEAQPGTM 

8.71 

.t 
I Purge TAXEs I 
IIEAKJXP 8.~ 

WTOR Purge 

IEECVPRG 

. 	 Termination" 
Interface 

IEAPTERM 
5.57 

Register 1 
ETCLOSE ..:>t Completion code X'C03' I 


any data set ABEND (8.14) 


I""""."--r 

l." c 	 l# 




r r 	 r 
Diagram 8.3 (Stefs 1-5E) EO! Mainline Processing (Module IEAVETOO)
r------------------------------------------------------------T--------T--------,
I I RCUTINE I I 

I NOTES INAME I LABEL I 

~------------------------------------------------------------t--------t--------~

1 	 TCBFLGS, set with TCBFJMC, or TCEFSMC weans that this IECT 

task is in must-complete status. I 


I

2 	 TCEQEL, when set, means the tem_inating task is enqueued I 


on resources. (see ·Secticn 3: Task Su~eIvision· for I 

information on the ENQ ~~anual Purge routine.) I 


3 	 TCBLTC is the suttask pointer. It should contain O. 

The task that attached the terminating task checks 
the completion code to deterrrine the subtask's status, 
but only if the terminating task was attached ~ith the 

4 


ECB 	 or ETXR operand.I 

I 

15 A. ETCLOSE issues a GETMAlN request fer a CLOSE 

I 
 farameter list and issues a CLOSE macro instructicn 
I 	 for each data set on the TCBDEE queue. TCEPlE 

contains the address of thE PIE, or 0 if there is 
no PIE. It is set by the SPIE routine. 

B. 	 A TQE represents a request for a timer interval that 
has not expired. 

C. 	 l'CBFA, when set, means the task has abnormally ter­
minated, in which case the WTOR purge is bypassed 
now and perfonr,ed later by AEEND. The WTOR PurgE 
routine reqUEsts the operator to cancel outstanding 
replies to messages frow this task. 

For 	further inforwation abcut the WTOR purge rou­
tine, see OS/VS Jot Management Logic. 

E. 	 TCBDEB contains the address of the first DEB (data 

extent block). !he DEB queue contains pOinters to 

all DCBs for a task. I
l ____________________________________________________________ ________~ 

Ul 

~ 
rt'.... 
o
::s 
co 

CD 

~ .... 
::s 
~ .... 
o
::s 

U1 

\Q "" 

I I 

I I 

I

I 

I 

I 

I 

IERENQ 
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 	 I 

I I 


I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 


I I 

~________ J 

1-3 



V1 

W 

o 

Input 

TCB 

i TCBFOEA r-

TCB 

~-r---

Processing 

(Continued)5 
F. 	Remove unscheduled IOEs from 

the asynchronous exit queue. 

G. 	Perform end-of-task processing 
for graphic devices. 

H. 	 Free the last executed program 
or schedule the program's 
execution for a waiting requester. 

I. 	 Purge paging activity. 

J. 	Release the LLE and its associated 
programs • 

K. 	 Purge the FIX list. 

L. Free storage acquired for the task. 

M. Remove the TeB from the 
appropriate queues. 

6 	 Schedule an ETXR if requested. 

7 	 Post the EeB if requested. 

8 	 If there was no ETXR or EeB 

9 	 Ensure a task switch. -

Dequeue IOE ..... 
- I£ADQIQE 

~ 

~ 

Release Loaded 
Programs 

~ IEAQABL 
8.8 

...­

Release Storage-.. 
IEAQSPET... 

8.9 

-.. Dequeue reB 
..L IEADQTCB 

8.51 

-

~ 

Erase reB 
IEAQERA 
DeC!ueu~ and free 
RB and TCB. 

.... 

8.4 

lII."""""""-": 

Diagram 8.3 (Steps 5F-9) 

EOT Mainline Processing 


~ 

Graphics EOT 

IFFGRTTR 

CDEXIT 

I 
3.14 

Terminotion Interface 

IEAPTERM 

5.57 

FIX Purge 


IEAPFIXP 

5.58 

Stage 2 EXIT Effector 


IEAOEFOO 

3.12 

POST 

IEAOPT02 

IGCOO2+6 


3.8 

Output 

Real Storage 

~"~'i'T~B,= 

~ ~ 	 ~ 




r r 	 r 

Diagram 8.3 (Steps 5F-9) EOT Mainline Processing (Module IEAVETOO)
r------------------------------------------------------------T--------T--------, 
I IROUTINE I I 
I NOTES INAME IIAEEL I 
~------------------------------------------------------------+--------+--------~

5 F. 	 The Dequeue IQE sutroutine removes any II;ES linter- I I I 
ruption queue elements) belonging to the terminating I I I 
task that have not yet been scheduled. After reg- I I I 
isters have been saved the asynchronous exit queue I I I 
is located (FLCAEQJ) and the first IQE is obtained. IIEAI:QIQEIETDQ 
If there are no IQEs, execution continues at I I 
label DONE1. If the IQE is for the terminating I I 
task, it is dequeued; otherwise, the next lQE is IIEADQIQEI~TDQ 
obtained. After each IQE has been dequeued, a I I 
test is made to determine whether the last lQE has I I 
teen dequeued (FLCAEQK). If not, the next IQE is IIEADQIQEIETI:Q 
obtained; if yes, a check is made to ensure that thelIEADQIQEIDONEl 
pointer to the last IQE is correct. Registers are I 
restored and control returns to EOT ~ainline I 
processing. I 

I 
G. 	 If graphic devices are not included in the system, IEOT 


the Graphics EOT routine immediately returns to 

EOT. 


For further information about the Graphics EOT 

routine, see OS/VS Graphics Access Method logic. 


L. On 	 return from the Release Storage subroutine, 
register 3 is reset to the address of the CVT in 

case the address was destroyed. 


6 	 TCBFIGS, when set with TCBF'ETXR, means an ETXR is 
requested. 

7 	 POST can be entered in two places: 

A. 	 If the ECP is for a jot-step task, entry 

point IGC002+6 is used. 


B. 	 If the ECB is not for a job-step task, entry 

point lEAOPT02 is used to cause validity 

checking. 


9 	 Zeroing the new TCB pOinter (IEATCBP) indicates to the 

dispatcher that it must search down the task queue to 

find the next higher-priority ready task. (The Exit 

routine frees the RB and branches to the dispatcher.)


L____________________________________________________________ ________i ________J~ 

en 
(1) 
C'l 
rt.... 
o 
:::1 

00 

1-3 
(1) 
I"( 

~. 
:::1 
1\1 
rt .... 
o 
:::1 

VI 
W .... 



c.n Diagram 8.4 
W Erase TCB Subroutine 
I\J 

From EOT (8.3) or ABEND (8.20) to ensure 
a task switch, end to dequeue and free TCB Processing Output 
and RBs 

IEAQERA ... 
.................,~
r---- 1 Ensure a task switch. 	 "'" ....." .........., ..........-.,:
Input - I 

I 
I 
I TeB of attaching task 
I 

Real Storage 2 Dequeue the TeB by updating the 

.- f---I 
I subtcsk queue for the iob step. .." .....,-.,: "",....., ..........'\',....... "'..........~~ 

.- f-""i 	 I
I 
 TCB (preceding task) 


TCB 
I 
I 	

I__ .. ,__I 	 1,,-.,: a".- c-.J r-- 3 If ently was from ABEND and a save 
area exists, free it from subpool 250. 	 FREEMAINI ___J 	 -... -- RMBRANCH 

(ABBRANCH if entry 
is from ABEND) .-1---, 6.1 

I ~ Dispatcher (3.17) or 1I 	 --,. ABEND (8.20) 

- I 
Free the TCB and RBs. 	 FREEMAIN4 	 -...I 

RMBRANCHI 
6.1IL ____ 

5 	 Free the lSQA if the terminating task 
owns the lSQA. FREEMAIN.. 

RMBRANCH 
Free subpool 249 • 

..L 

6.1 

-I 
'" 

L L 	 L 


1 



_______ _ 

r r' r 

Diagram 8.4 Erase TCB Subroutine (Module IEAVETOO) 
r------------------------------------------------------------T--------T--------, 
I IROUTINE I I 
I NOTES INAME I LABEL I 
r------------------------------------------------------------t--------t--------~ 

L____________________________________________________________i _______-L 

I 
I 
I 
I 
I 

1 IEATCBP+4 contains the address of the current (old) TCE·IIEAQERA 
TCBBACK contains the address of the next higher-Friorityl 
TCB. If the new (IEATCBP) and old (IEATCBP+4) pOinters I 
are equal, no higher-priority task is ready. The new I 
TCB pOinter is set to 0 as indicated and the old TCB I 
pointer is set equal to TCEEACK. If the new and old I 
pointers are not equal, a task switch is already indi- I 
cated; only the old TCE pOinter is set equal to TCEEACK·I 
IEATCBO is set in the flag byte of the old TCE pointer I 
to prevent the dispatcher from saving the floating-Fointl 
registers. I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

2 
I 

TCBLTC points to the last attached subtask. If the ter-I 
minating task is the last attached subtask, TCELTC in I 
the attaching task must be set to equal the terminating I 
task's preceding same-level subtask (TCBNTC in the ter-

I 
I 
I 
I 

I 
I 
I 
I 

minating task's TCE). If the terminating task is not 
the last attached subtask, only the subtask chain rrust 
be changed: the TCBNTC field of the following subtask 
must be changed to equal the TCBNTC field of the ter­
minating task. 

4 If the terminating task does not own the LSQA, the TCB 
is freed from the attaching task's subpool 253. If the 
terminating task does own the LSQA, the TCB is freed 
explicitly since it is eITbedded in the LSQA. It is 
freed in step 6 when the LSQA is freed. 

5 TCBLSQA, when set, signifies that this task owns the 
LSQA, which should be freed. If entry is frcm AEENr:, 
return is made to ABEND. Otherwise, the dispatcher 
receives control. 

CIl 
tD 

~ .... 
g 
co 

~ 
b' 
IIJ 
rI' .... 
o::s 

U1 

W 

W 

1-3 



---

U1 Diagram 8.5 (Steps 1-8) 
W Dequeue TeB Subroutine 
~ 

From EOT (8.3) or ABEND (8.21) to remove 

the terminating task IS TeB from the task queue, 
 Processing
TJBX queue, and time-slice queue 

.. 
IEAOOTCB Output 
1 If the specified task is not a TSO taskr--!.. "10 

Input I 2 Obtain the address of TJB and T JBX. 	 GETTJB Register 2 

I (Subroutine of Exit) ")l Address of TCB I 

Register 3 I ­

Register 7 

[Address of CVT I I 


I I Address of T JBX I 

Register '4 
 I 

[Address of TJB I TJBX 


I

TCB I 3 Decrease the count of users. ")I T JBXNTCB-l I 

...J--- I 
If the task is not logon 	 :>I TJBXLAST=TCBBACK Ir-- 4 


--- ----I 
 1.+10 
I 	 TJB TSCVT 

TJBX 
I 
I I TJBLOGON I iTSCLOGON iI 

TJB I ~- 5 If the task must have a new region, 

I I indicate logon; ')l TJBDISC I 
_-I ITJBXLST ­ otherwise, indicate disconnect. ~ I••E. I r- 6 If TSO is not active or if TJID=O "10

TJB 	 I I ..

I 7 Lag off. TSIP 
__ -.J I --- I IKJEAOI 

___ --1I -....­
..

8 Post the ECB of TSC. 	 POST 

IEAOPTOI 
3.8 

(Continued at ·Step 9) 

~ L 	 L 




r r 	 r' 

Diagram 8.5 (Ste~s 1-8) Dequeue TCB Sucroutine (Module IEAVETOO) 
r------------------------------------------------------------T-------~--------, 

I IROUTINE I I 

I NOTES INAME ILABEL I 

~------------------------------------------------------------+--------+--------i

1 	 'rcBTSTSK, when set, rr.eans that this is a TSO TCE. I IEADQTCBI TSOEOT I 

I I


4 	 TJBXFST contains the address of the logon TCE. This I I 

field is corrfared with TJBXLST (the last TSO TCB); if 
 I I 

the two are equal, only the logon TCB remains -- this I I 

is the logon task. I I 


I I 

TJBXLST needs to ce ufdated only if it points to the I I 

terminating task's TeE. I I 


I I 

5 	 TJBNEWID, when set, rr,e·5.ns -assign a new regicn tc this ILOGONXITI 

task .• I I 

I I 


6 ICNTRELOGI 

I I I 


7 For further information about the TSIP routine, see I I I 

OS/VS2 TSO Control Program Logic. I I I 


I I I 

8 
 The address of the POST routine is obtained from the CVTI I I 


(CVTOPTOll . I I I
L____________________________________________________________~________~________ J 

CIl 

III 


~ .... 
g 
CD 

8 


~ .... 
::I 
I!J 
rt.... 
o 
::l 

U1 
W 
U1 

http:rr,e�5.ns


U1 
W 

'" 	 Input 

TCB 

---..,
I

L_ 

-. 
I 

I r-- ­

CVT I I 


I I
I
I I

j4-_J .-- ­

I 

I I 

I I 

I 
 I 

I 
 I
J 

I 

I 

I 


I 

1 


I 

-I I 
r _.J 

Register 4 


Address of TCB 14-.J r--­
TCB I 


I 

I 


....J 


r ­
__J 

Diagram 8.5 (Steps 9-13) 
Dequeue TCB Subroutine 

Processing 	 Output 

9 	 Zero the subtask pointer of the 

Region Control Task. 


10 	If the specified task is not a member 

of a time-slice group 


11 	 Search the TSCE chain for a 

dispatching priority match with the 

TCB. 


12 	Compare TSF IRST, TSLAST, and 

TSNEXT with the TeB address: 


• If none match es .13 

• If all match, set TSCE to show TSCE TCB 

"group is without members", and 
reset the time-slice flag in the 
TCS. 	 ............" 


• If only TSF IRST matches ...............,............" 


Next lower 
priority reB

• If only TSLAST matches ..............................." 


Next higher 
priority TCB 

1 -1 
13 Update the task queue. :......" ..................." Next higher and lower 


priority TeBs 

••••••••••Caller 

~ L 	 ~ 




r ( r 

Diagram 8.5 (Steps 9-13) Dequeue l<CE Surroutin€ (l'odul" lEAVF1:00) 
r------------------------------------------------------------~--------T--------, 

1 1ROUTINE 1 I 

I NOTES INA"E 1LABEL I 

~------------------------------------------------------------+--------+--------i
I 9 1IEADQ1'CI' I RESTORE I 

1 I I I

110 TCBrTS, when sd, IreiinS that this task is time-sliced.: ITMSL'!SK 1 

I I I 1 

111 I I FINCTSCE 

1 I 1

112 TSFIRST dnd 1:SLAST Foint to the first and la~t TCEs of 1 ICHKFGT 

1 a tiIl'e- slice group. i I 

1 I I 

1 TCBTCB is the address of the next lower-Friority TeE. I I 

1 ! I 

1 TCBBACK is th" address of the next higher-Frioriicy 1:CB, I I 

1 I I 

113 The 1:CBTCB field of the next higher-priority TCB is set I 1ENDTMSL 

I to the TCBTCE field of the terminating TCB. The TCBEACKI I 

I field of the next lo~er-Friority TCB is set to the 1 I 

1 TCBBACK field of the terminating TCB, If the terminat- 1 I 

I ing task is the lowest APG (autOIratic rriority grour) I 1 

1 task, IEATCBP+4 is set equal to TCBBl\CK a!ld the high- 1 ~ 


1 orJer byte of IEATCBP+4 is set to X'SO', I 1 

l ______,__________________________ _ ._ ___________________________..1_________ ..1________ J 

en 
~ 
rt.... 
o::s 
co 

1-3 

CD 

~ .... 
::s 
III 

rt .... 
g 
Vl 
W 
-..I 



VI Diagram 8.6 
W Purge TAXEs Subroutine 
CD 

From EaT Purge Timer subroutine (8.7) p . 
to dequeue and free TAXEs rocesslng Output 

I .. 
IEAKJXP 

-Input 
.. 

1 Get TJ 8 and TJ BX add resses • GETTJB Register 2 

(Subroutine of Exit) :::>I Address of TJB I 
Register 4 Register 7 
I Addr.ss of TCB 	 I Address of TJBX I 
TJBX TJBX 

r-- 2 If th is is a user exit and if the IQ E 
I is for the current TCB, zero the JOE 

TJBXAIOE=O -1-- """i pointer. 	 TJBXAIOE=O"""'-1 ~''''''''''''''''-1 ~ i 
- I 

IOETCB=TCB address _...J 
TJB 

TJBX 	 3 Ensure no attention exits. ~"""""'-1",..., .........",........., .........,. ~..i TJBATTN=O i
.. 
4 	 If there are no TAXEs CallerI TJBXTAXE=O ? -I--...r--	 r 
5 	 For every TAXE on the queue associated 

TAXEwith the terminating task: 

A. 	Mark unavailable and decrease 
the count of unscheduled TAXEs. 4TAXEFREQ-l-	 """'-1 ~""''''''''''''''''-1 i 

TJB 

-=TAXE IRB 

B. 	 Indicate that TAXEs should be freed 
by Exit. "'''''''-1 ~...""" ..." ........." :......i RBFDYN=1 i 


C. 	 Free problem program save areas 
and dequeue TAXEs. FREEMAIN 

RMBRANCH 
(ABBRANCH if entry 
is from ABEN 0) TJBX 

III! 6.1 

l..""" :...',...,"",......, ..., ... ~..i TJBXTAXE i 
6 Start any stopped tasks. STATUS I 

IGC07902 TAXE 

3.18 

~ 
Caller 

L l 	 l., 




r r 	 r 

Diagram 8.6 Purge TAXES Subroutine (Module lEAVETOOl 
.------------------------------------------------------------T--------T--------, 
I 	 IROUTINE I I 

I NOTES 	 INA~E I LABEL I 

~------------------------------------------------------------+--------+--------~ 
I 1 I IEAKJXP ITAXEPRG 

I I I


2 	 TJBXAIQE pOints to the rQE. It contains a 0 if this is I I 

a user exit. I I 


I I

3 	 TJBATTN contains the TJB attention count. I INOSCHED 


I I

5 A. 	 The TAXETCB in each associated TAXE contains the I ITAXEFND 


address of the current TCB. I I 

I I 


B. 	 I ISKPDECR 
I I 


C. 	 I INOACTV 

I I


6 	 There are nc suttasks to start if EOT has called this I I 

routine. If ABEND is the caller, however, there may be I I 

subtasks that still rr,ust te dispatched. I I 


L____________________________________________________________ ________ ________J~ ~ 

en 
(1) 

~ 
~. 

g 
00 

I-':l 

a 
~. 
III 

rt
.... 
o 
::l 

VI 

W 
\0 



VI Diagram 8.7 ~ 
o 	 Purge Timer Subroutine 

From EOT (8.3) or ABEND (8.20) to • 
dequeue end free unexpired TOEs Processing 

.. 
IEAOPGTM• 

Input " 
1 Purge TAXEs for TSO tasks. 	 Purge TAXE I 

IEAKJXP 

Register 3 Register 4 
 8.61 
-Addre,,~ Add,;;;; of TO] 


r--- 2 If there is no TO E Caller 

I 	 Output

TCB I 

I 
 Register 1 

TCBTME=O? --' r- 3 If the raE is queued, dequeue it to lIIo.yj Address of TOE Icancel the timer request. I 	 ~"""""" ... ~""""""" ... 
Cancel Timer

TOE 
I 	 I
I 

IEAOTDOOI TOE . _ __ .J 	 7.7TQEFlGS !+­
4 	 Free the program save area and 

TQ E storage. TO ESADDR=O 1 

FREEMAIN 

RMBRANCH 
(ABBRANCH if entry 
is from ABEND) TCB6.1 

5 	 Indicate that TQEs have been purged. )j TCBTME=O I 

-I 

L l 	 L 




r 	 r' r 

Diagram 8.7 Purge TimEr sutroutine (Nodule IEAVETOO) 
r------------------------------------------------------------T--------T--------, 
I I RCUTINE I I 

I NOTES INlIi-m ILABEL I 

~------------------------------------------------------------t--------t--------~ 

I 1 I lEA':;PGTl-11 ET~13SE I 

I 	 I I I 

I 2 TCBTME~O means that there is nc TQE. 	 I ISKPTlIXPGI 


I I I

3 	 If bit 0 of TQEFIGS is set, the TQE is not cn the tilTEr I I I 


queue. I I I 

I I 


The address of IEAQTtOO is ottained from the CVT I I 

(CVTQTDOO) • I I 


I I 

TQESADDR is zeroed to indicate that the save area is IETMFREE I 

freed. The prograro save area is in subpool 250. T~ES I I 

are in subpool 253. I I 


I I 


4 


5 	 I IETQEFR I
L____________________________________________________________ ________~________ J~ 

en 
~ 
~. 
g 
00 

10'3 
tD 

~. 
m 
rt 
",. 
o 
I:S 

VI 

.p 
~ 



Diagram 8.8 VI.,.. Release Loaded Programs Subroutine 

IV 
 From EOT (8.3) or ABEND (8.21) to ,elease • 

looded modules thot have not been ,eleosed Processing 
with a DELETE macro instruction ....-----...;;.-------------...., 

••••I~IIEAQABL 
r-----­Input I 

I 


Register 3 r-- ­I 

E~~d;s~ 	 I I 


I I r-

Register 4 
 I 	 I 

[Add,~s~TCs] I I 

TCB I I 


....I 
 I 

I 

I 

I 

I 

I 

I 
__J 

I 

I 

I 

I 

I 


CDE I 

I 


---I 

I 


_...J 

1 	 If the,e are no LLEs 

2 Update the use/responsibility count • 

3 Free the module. 

4 	 Free the LLE. 

5 	 Repeat Steps 2,3, and 4 until all 
LLEs and modules that can be freed 
are freed. 

Output 

I 	I Caller CDE 


...,"",....,""",:,.,""',..t'• .:. 

CDHKEEP 

3.14 

FREEMAIN 

RMBRANCH 
(ABBRANCH if en'cy • I is from ABEND) 

6.1 

••••••••••••••• Colle' 

l, 	 \rl," 



r ( r 

Diagram 8.8 RelEase Loaded Programs Subroutine (~odule IEAVETOOl 
r------------------------------------------------------------T--------T--------,
I IROUUNE I I 
I NOTES I NAn ILAEET I 
~------------------------------------------------------------+--------+--------~

1 If TCBLLS~O, there arE no LLES. IIEAQAEL IETLDP 

2 LLECOUN~numter of load requEsts for a modul". 
I 
I 

I 
I ETC'l'Ar;J 

COUSE and CI:ROLL, viewed as a single fiEld, contain the 
total number of requests for a ncdule. 

NIP sets the use count of any fixed link pack area 
Irodule to 1 so that whEn EOT dccJ::€ases the use count, 
it never reaches o. 

Each LLE points to an associated C[E. 

3 CDHKEEP is a subroutine of the Exit r01,;tin€. 

Note: ~odules on the jot ~ack area queue are released 
I
I 

L___ by the Release Storage subroutine,___________________________________ Diagram_________ 8.9. _____________ I ~________ I I 
~________J 

CIl 
(1) 
o 
('t
f-'. 
o 
::; 

co 

t-3 
(1) 

~ 
f-'. 
::; 

~ 
f-'. 
o 
::; 

VI 

W "" 



- - - - -

VI Diagram 8.9 
~ 
~ Release Storage Subroutine 

From EOT (8.3) or ABEND (8.21) to 
releCH:e storage obtained during 
program execution 

Input -
• IEAQSPET 


Register 3 Register 4 


Re~addrMSJ 	 IAddress of TCB I r ­ 1 Free remaining modules, CDEs, and 
extent lists in the job pack area. DESTX

I 
I (Subroutine of Exit)I 

TCB 	 _J 

A. Problem program save areas 
(unless an ECB or ETXR is 
req uested). FREEMAIN 

r---- ------ 2 Free these subpools and work areas: 

i L .J Job Pack Area Queue 

Output 
RMBRANCH 
(ABBRANCH if entry 
is from ABEND) TCB 

6.1 

>I TCBFSA9) I 
B. 	 Owned I unshared subpools and 

SPOEs. FREEMAIN 

RMBRANCH 
(ABBRANCH if entry 
is from ABEND) 

6.1 

C. 	 lSQA ond SQA. FREEMAIN 

IEAPlSQA· 
6.11 

-I 	 ... 

l, l 	 l, 




r 


en 
(1) 

~ .... 
g 
co 

~ .... 
re 
rI".... 
g 
U'1 
.j:: 

U'1 

r 	 r 

Diagram 8.9 Release Storage Subroutine (Module IEAVETOO) 
r------------------------------------------------------------T--------y--------, 
, I ROUTINE I I 
I NOTES ,NAME ILABEL , 
~------------------------------------------------------------+--------+--------~ 
I 1 The job pack area queue must contain at least one CDE. 'IEAQSPET'ETMSLP 
, If it does nat, Step 1 is bypassed. 'I 
, I I

2 A. TCBFSA=O means that there is no problem program I IETFRST 

save area. If an ECB or ETXR was specified, tne' , 

save area is not freed. It must be retained for' , 

eXdmination by the attaching task and is freed I I 

later ty the DETACH routine. I' 


I 
E. Only Sutpool storage that is owned by the termina­ IETFSPQE,ting tas~ is freed. SPQES are dequeued tefore the 

storage occupied ty the SPQE is freed. 	 I 
I 

C. 	 Subpool 253 contains the TIRB, the parameter list IETFAQE 
for CLOSE, and any TAXEs and TQES of the terrrinating I I 
task. , I, , 
If TCBAQE=O, there are no AQES (allocated queue I I 
elements); this step is bYFassed. 	 I I 

I I 
Subpools 254 and 244 are autorratically freed ty FREE- I , 

, MAIN if the terminating task is the job-step task., , I 
~ ~l ____________________________________________________________ ________ ________J 

1-3 



VI 

8.12 

Diagram 8.10 
.a:: Overview of the ABTERM Routines
0\ 

IEAOA800 

ABTERM (schedules ABEND) 

IEAOPLOO/IEAOAB01 
• Refresh the CVT address. 

ABTERM Prologue 

8.11 	 • Exit to error handler for paging 
errors. 

• Exit to error handlers for I/O I 
I/O supervisor, and paging • Save the completion code. 
errors, 

• Indicate that GErMAIN 
• Set the ABEND completion code 	 requests beyond the bounds ofI Program First-Level Interruption I 	 .. Coller, Type-l Exit Routine, (for type-1 SVCs). 	 the lSQA be satisfied by the

Handler I 	 SQA. or Dispatcher 

• Save the program old PSW and 
general 	registers to be dumped. • Build a TlRB to couse remaining 

execution to occur using the TeB 
• Request a dump. 	 specified for termination. 

• Prevent asynchronous exits. 

• Ensure a task switch. 

L l 	 L 






U1 Diagram 8.11~ 
GO ABTERM Prologue 

From Program FLiH (2.5) to 
perform housekeeping before p . 
entry to ABTIE rocesslng 

--------------------~ •.......I~~ 


I/O $uperv isor _ _ ~I Program
Interruption 
Handler 
(lECCPLOO) 

......... ABTERM• II (IEAOABOO) (8.12) 

Register 3 I I 1 Refresh the CVT oddress. I Address of CVT 
>IT Current reB 

~-- 2 Obtain the TCB address •. 

For program interruptions during I/O 

processing and for interruptions to 


I SVCs 0, 15, 92, and 114 

CVT =z-IOS 


,- 3 

Data Area I 

IECPESW --I 


I
i ,"'~W, ~---- -- ­ 4 For paging errors
Real Storage -- -+ 


1--- If the interruption occurred in a 

: type-1 SVC or with SVC FLIH
---1 

Save registers and the program oldI 
PSW, ILe, and interruption code (if TCB 

I 
I the interruption did not occur in the 

Wait task). 

SVC FLIH Data Area I ~ _..J~- Register 1Set the proper retum address and 
ABEN D error code. I I Error code 

TCB 

Program 
 I TCBRBP 
Interruption 

Save Area 


~t441 o---- RB 

CVT 

or-
I 

I 

I 


~a: -. Register 0 ~...J .­ Set up parameter registers for ABTERM 
and request a' dump. Address of TCB 

Register 1 Register 4 

IError code I IAddress of TeBI 

l, l. L. 




(
r 	 r 

Diagram 8.11 ABTERM Prologue (Module IEAVABOOl 
r------------------------------------------------------------T--------T--------, 
1 IROUTINE 1 1 
1 NOTES INA~E 1LAPEL 1 
~------------------------------------------------------------+--------+--------~ 
1 1 	 The CVT address at location 16 is refreshed tecause IIEAOPLOOIPROLOGUE 
I 	 lower real storage is eSfecially vulneratle to teing 
1 	 overlaid. 

\2 CVTSEIC is the second Exit indicator. If set, the ~CB 
address is obtained from CVTSLID. Otherwise, thE 

1 current TCE address (IEATCBP+4l is obtained. 
1 

1 

13 	 IECPESW, when set, means that an interrurtion occurred lOS EXIT 
during I/O processing. 

IEATYPEl is checked to deteru.ine whether the inter­
ruption occurred in d type-l SVC. 

FLCSVCN contains the SVC number. 

FLCSCSAV is the register save area. 

For further information about the lOS Program 
Interruption Handler, see OS/VS I/O SURerviscr l~!~. 

4 	 PAGEXIT 

5 	 PCTYPEl 

6 	 Registers from the program check save area are moved IABSTATl 
into the TCB. 1 

1 
If 	the interruption did not occur in the Wait task, the 1 
program check old PSW, the IIC (interruption length 1 
code), and the int€rru~tion code are saved in the cur­ 1 
rent RB~ This information appears later in the ABEND 1 
dump. 	 1 

1 
If the interruption occurred in the wait task, the old 1 
PSW cannot ce saved tecaus€ it would overlay the Wait 1 
psw. The ILC and interruption code, if saved, wculd 1 
overlay the floating-Faint register save area. 1 

1 
7 	 If CVTSEIC is set, the return address is set equal to 1 

CVTSERA. If the type-l switch (IEATYPEll is set, the 1 
return address is set equal to the Type-l Exit routine. 1 
Otherwise, the return address is set with the address ofl 1 
the disratcher. 1 	 1

L____________________________________________________________ ________ ________~ ~ 

til 
(1) 

l+ .... 
g 
co 

8 

~ 
!:j' 
1\1 
rt .... 
o::s 

UI 
~ 
\0 



UI 
UI 
o 

OFrom user and system interruption handleB 
, and SVC routines to schedule a specified 

task for ABEND 

-
~ IEAOABOO 


Register 0 Register 1 
ITCB oddress of task I Dump TCompl.tion 1 Refresh the CVT oddre... 
to be terminated option code 

CVT r-- 2 If the specified tosk is the paging 
supervisor I substitute the task that __ -1I required paging. -..CVTPGSUP 14­

3 If the specified task is not on the task f1 
TCB queue RETCALL I 

TCBFC ----- 4 If the specified task has already been I~ 
terminated --..­

TCBIWAIT --,~ 
I 

For TSO tosks in a terminal wait state.... --- 5 ...._...JTCBOWAIT ~ 
TCBSTABE ~ --,

IL __ 
If STA is in progress TCBABTRM 14- --, 6 • 8 

L ___ 
If the specified tosk has been scheduled f1 

TCBOTC 14- -, 7 
for termination RETCALL I 

I l ..I 

TCBJSTCB 
 ~ -1 

1 I
L ____ '" TCBFA ~ 8 If the specified task is the job-step tosk 

I and the initiator called ABTERM: 

I A. If the task is not alreody in the
I process of abnormal termination 
I 
I 

IL ____ 

• 9B 

(Continued at Step BS) 

Diagram 8.12 (Steps 1-8A) 
Mainline ABTERM Processing 

Register 3 >X 16,Real Storage ' IAddress of CVT I IAddress of CVT I 

Register 0 Poge Hook 

PAGEHOOK IAddress of the TCB I 
~ of the task to be 

5.57 Iterminated 

Caller 

STATUS 

IGC07902 

Reset -TSO 

nondispotchability. 


3.IS 


Coller 

STATUS 

IGC07902 
Reset selected primary 
nondispatchabil ity 
flogs. 

3.18 

~ l ~ 




r r 	 r 

Diagram 8.12 (Steps 1-8A) Mainline AETERM Processing (Module IEAVABOO) 
r------------------------------------------------------------T--------T--------, 
I IROUTINE I I 

I NOTES INAME ILAEEL I 

~------------------------------------------------------------+--------+--------iIl These routines enter ABTERM at IEAOABOO: External SLIH; IIEAOAEOOI I 


Machine check Handler; user ty~e-1 svcs; user and system I ITCBTEST I 

type-2, 3, and 4 SVCs; system routines. I I I 


E1 The internal subroutine, RETCALL, returns to the caller 
I 
VALICTCB 

I 


if the return code address points neither to the Ty[e-1 

Exit routine or the dispatcher. If the return address 

~oints to either the Type-1 Exit routine or the dis­

~atcher, RI<TCALL checks the ty~e-1 switch IIEAPTYPEl> 

in the SVC FLIH. If the switch is set, RETCALL [aSSES 

control to the Type-1 Exit routine. If it is not set. 

RETCALL passes control to the dis~atcher. 


2 	 CVTPGSUP contains the address of the paging supervisor. 
This address is compared with the specified TCE address. 

3 	 ISTAYEREC 

4 	 The operator's CANCEL command could request ABTERM 
~rocessing for a task that has completed normal EOT 
processing. TCBFC, when set, If.eans the task is ccmplete. 

5 	 TCBIWAIT, when set, means the task is nondispatchatle 
due to an in~ut wait condition. TCBOWAIT, when set, 
means the task is nondis~atchable due to an cut~ut wait 
condition. 

6 	 TCBSTABE is the STA recursion flag. If it is set, 

TCBABTRM is not tested -- this task must be scheduled 

for ABEND. I 


I 

7 TCEABTRM is the ABTERM recursion flag set in Step 9. 	 I 


I 

TCBOTC contains the address of the originating TCE. Itl I ACESS1 

matches the address contained in IEATCBP+4 (current I I 

TCE) if the initiator is the caller. TCBJSTCB contains I I 

the address of the job-ste~ TCB. I I 


I I 


8 


After resetting the selected primary nondispatchability I I 

flags, the stop count is zeroed. STATUS is then called I I 

again to reset the selected secondary nondispatchatilityl I 

flags. I I 


I I 

A. 	 TCBFA, when set, means this task is ceing abnor- I I JSTAEENDI 


mally terminated. I I I
L______________________________________________________ ______ ________~________~ ~ 

en 
(1) 
o 
11. 
o::s 
(Xl 

t-3 
(1) 
H a.... 
::s 
~ .... 
o::s 

VI 

VI 

~ 



U1 
U1 
IV 

Input Processing 

Diagram 8.12 (Steps 88-90) 
Mainline ABTERM Processin!l 

Output 

Register 1 8 (Continued) TCB 

B. If the task is already in the process 

I~~;;:n I }- , 
I I 

of abnormal termination: f1 I TCBFT=O J
r-- ­

• If a dump was specified 	 RETCALL III I I TCBFA=O 

TCB I I ~caller c";lll;«"z~liII 
I 

IL...lI __ _ I I TCBFOINP=O I I 

• If no dump was specified 	 ,
_I__ .J , I TCBABCUR=O 

• 	 8B I 
-.----,L __ 

9 	 If the specified task is not the iob-step I TCBCREQ-I I 
task: 

--,L- __ _ 	 f1
A. 	If the task is set "nondispatchable 

because in ABEND wait" RETCALL I--,
I 	 ~caller TCB I 

IL __ 	 I 
B. 	 If the dump option and completion 

code are 01 ready set • . • )l TCBRCMf>=campletion 
-I code I 

TCB 

Otherwise /I TCBCMP=dump option and II completion code 

iI!jI!
iil........................................... ~.........................................."Ii i..~ TCBSTCC=I 
 I 

C. 	 Indicate thot GETMAIN requests TCB 
that cannot be satisfied by the 
lSQA should be satisfied by the 
SQA. 	 ;>t TCBABGM I I 

D. 	 Build and initialize a TIRB to cause 
remaining execution to be done 
under the TeB specified for 
termination Stage 1 Exit Effector I TIRB 

I 	 ;>t I 
3.11 I 

I 
(Continued ot Step 9E) 

\., l 	 L 




r r 	 r 

Diagram 8.12 (Steps 8B-9D) Mainline ABTERM Processing (Module IEAVAEOO) 
r------------------------------------------------------------T--------T--------, 
I IROUTINE I I 
I NOTES INA~E I LABEL I 
~------------------------------------------------------------+--------+--------~

8 B. The task may already be in acnormal termination IIEAOAEOOI 
if the operator issued a CANCEL corr~and cr the job- I 
steF timer expired. If no dump was specified (for I 
example, a CA~CEL cowmand without the durrF oFtion I 
was issued), all flags that indicate ABEND proces- I 
sing are cleared to give the aFpearance cf a first- I 
time request for termination~ The stacking flag in I 
the 	job-step TCB is reset if TCBFOINP 1S set. I 

I
9 TCBJSTCB contains the address of the job-steF TCE. I 

I 
A. 	 TCBABWF is set by ABEND, and means the task is in I 

a wait state. AEEND should not be scheduled because I 
a related higher-level task is already being abncrm­
ally terminated. Resources for this task are 
released as part of the termination ~rocessin9 fer 
the higher-level task. 

B. 	 TCBSTCC=O means the completion code and dump flag 
have not yet been saved. The completion cede is 
displayed in the dumF as a Fart of the TCB; it is 
made available to the attaching task via the AEEND 
routine, and it is dis flayed in a GTF trace, if GTF 
is active. 

C. 	 Il ____________________________________________________________ ________~ 

C/) 
(1) 

~ .... 
g 
(Xl 

..;J 
(1) 

~ .... 
::s 
1\1 
rT.... 
g 

I 
I 
I 
I 
I 
I 
I 
I 
I ACESS1 
I 
IABWAIT 
I 

SCHECULEI 
I 
I 
I 
I 
I 
I 

IABTR~GM I 
~________ J 

VI 
VI 
tAl 



VI 
VI 
#= 

Processing 

Diagram 8.12 (Steps 9E-9L) 
Mainline ABTERM Processing 

Output 

9 (Continued) 

E. Get storage for en sa E. GETMAIN 

RMBRANCH 
6.1 

SOE 

F. Initialize SQE pointers. 

G. Indicate that the TIRB should 
be freed when the Exit routine 
is given control. ~"""""'''''''''-.01 "'......" ...,""",-.01 

TlRB 

4:BFDYN!C 

Input 

CVT 

H. Set IIABTERM scheduled" and 
IIprevent asynchronous exits" 
flags. """"""""''''-.01 """"""""',-.01 

TCB 

~- I. If the specified task owns the 
supervisor lock, increase the lock 
count end indicate that ABEND 
was scheduled while the supervisor 
lock was set for this task. 

J. Schedule the SOE. 

""""""",-.01 ""'......""" ..."~ 
Stage 2 Exit Effector 

IEAOEFOO 
3.12 

TCB 

K. Ensure a task switch. 

l. Return to the caller. 

m 
RETCALL 

Task Switch 

IEAODS02 
3.16 

Coller 

l" l l" 




(
r 	 r 

Diagram 8.12 (Steps 9E-9L) ~ainline AeTERM processing (Module IEAOABOO)
r------------------------------------------------------------T--------T--------,
I IROUTINE I I 

I NOTES INA~E ILABEL I 

r------------------------------------------------------------+--------+--------~9 H. TCEAeTRM is checked ty this routine on recursion. IIEAOAEOOI 


(See Step 7.) TCBFX is set to prevent the schedul- I I 

ing of a user's exit routine for the task by the I I 

Stage 3 Exit Effector during dispatcher frocessing. I I 


I I 

I. 	 The task for which a lock is set was protatly I ITSTLOCK 


manipulating critical system queues. ABEND writes al I 

message to the operator to warn that system frotlemsl I 

may follow. I I 


I I 

J. 	 I ISQEINIT 

I I 

K. 	 The Task Switch routine determines whether a higher-I I 


priority ready task should be given control when thel I 

dispatcher is next entered. The Dispatcher routec I I 

control to the SVC 13 instruction fointed to in the I I 

SQF built in Stef 9F. I I 


~L____________________________________________________________ ________~________ J 

en 
(I) 
() 
rt"",
o 
t:S 

co 

t-'3 
(I) 

a"",
t:S 

~ "",g 
U'I 
U'I 
U'I 



--

V1 
V1 
CI\ 

SVC 13 Instroction 

SVC Second-level Interruption 
Handler 

IGCOOOlC STAE 
IGC1001C 
BYSTAE 

Initialization Phase 
8.14 ~ 

• 	 Prohibit asynchronous exits. 
• 	 Satisfy GETMAIN requests from the 


SQA if the LSOA ;s full. 

• 	 Set tasks dispatchable if necessary. 
• 	 Activate the supervisor trace if 


required. 

• 	 Process the ABTERM TIRB if needed. 
• 	 Turn off the ABDUMP 


nondispatchability flags if necessary. 


,
MAINLINE 

Mainline ABEND 

• Issue a WTP message for each message table entry. 
IGC200lC 
• 	 Stack current ABEND requests if necessary. 
• 	 Purge partially loaded programs. 
• 	 Pennit asynchronous exits. 
• 	 Route control for dump processing. •
• 	 Route control if no dump is requested. 

IGC020lC 

Close Phase ." 
• 	 Erase completed tasks. 
• Restart GTF if necessary. 

ENTRY2 

• 	 Purge unexpired TOEs and TAXEs. 
• 	 Permit asynchronous exits. 
• 	 Purge the PI E. 
• Close data sets. 

IGC0401C 

• 	 Close data sets. 
• Purge the DEB. 


IGC220lC 

• 	 Restart stacked tasks. 
• 	 Purge queued resources. 
• 	 Purge IOE. and SOEs. 

8.20 

• 	 Cancel outstanding TCAM and TSO interpartition 
POST requests. 

IGCI40lC 
• 	 Recursion entry point -- return to ABEND. 

-

Interface with ASIR 
8.15 ~ 

• 	 Route centro I for recursions. 
• 	 Invoke GTF to perform recovery. 
• 	 Issue a WTO message if the task failed 

while owning the supervisor lock. 
• 	 Pass control to the ABEND/STA 

Interface routine (Diagram 8.44) if the 
exit routine should be scJ,eduled. 

Initiol Housekeeping Phase 

8.16 

• 	 Suppress SQEs and IQEs; deactivate the TlRB. 
• 	 Route control for recursions. 
• 	 Free the PIE. 
• 	 Establish the top task in the chain of terminating tasks. 
• 	 Route control for tasks failing in must-complete status. 
• 	 Route control for critical system tasks. 
• 	 Set tasks nondispatchable. 
• 	 Provide support far multiple job-step failures. 
• 	 Delete message table entries. 
• 	 Purge outstanding WTOR requests. 
• 	 Purge paging activity. 
• 	 Purge outstanding I/O. 
• 	 Route control when the top task has a subtask that is 

nondispatchable. 
• 	 Route control when the top task does not have a subtask, 

or the subtask is dispatchable. 

IGC010lC DMPHASE 

Open Phase ABDUMP Phase.. 	 ..8.17 8.18 

• 	 Maintain a record of 
programs loaded and 
pages fixed. 

• 	 Open the dump data set. 
• Restart stacked tasks. 

I 

I 


8.19 

• 	 Route control if no dump should be provided. 
• 	 Suspend GTF if necessary. 
• 	 Allocate (ENO) the dump data set. 
• 	 Dump the resources of the current task, its 

descendants, and its antecedents (ABDUMP routine, 
Diagram 8.27). 

• 	 Deallocate (DEQ) the dump data set. 
• Restart stacked tasks. 
IGCll0lC 
• 	 Recursion entry point -- return to ABEND. 

HOUSKEEP 

Final Housekeeping Phase 
8.21 

• 	 Purge fixed pages. 
• 	 Purge RBs and associated resources. 
• 	 Purge the load list. 
• 	 Free storage. 
• 	 Remove the TC B from the task priority queue. 
• Exit to the End-of-Tosk routine (Diagram 8.3) 

IGC120lC 
• 	 Recursion entry point - return to ABEND. 

Diagram 8.13 
Overview of the ABEND Routine 

..-.. ..~-~ 

Recursion Phase 

~ 8.24 

• 	 Route control for invalid recursions. 
• 	 Purge outstanding paging activity. 
• 	 Purge outstanding I/O. 
• 	 Purge partially loaded programs. 
• 	 Permit asynchronous exits. 
• 	 Return control to the point subsequent to the action 

causing the recursion. 

L.IGC030lC 
Must-Complete Phase 

• 	 Purge outstanding paging activity. 
• 	 Purge outstanding I/O. 
• 	 Purge outstanding WTOR requests. 
• 	 Attempt to provide a dump (SVCDUMP routine, 

Diagram 8.26). 
• 	 Issue a WTO for the task that failed. 
• 	 Route control for critical resources. 
• 	 Schedule tasks queued on must-complete resources for 

ABEND (ABTERM rout;ne, magram 8.11). 
• 	 Route control if the current task still operates in must­

compl~te status. 

• 	 Reenter ABEND at: 

IGC lOOlC - noncritical task. 

IGCOO01C - cr;tical task. 


.... Critical Error Phase .. 8.23 

IGC1301C 
• 	 Purge message table entries. 
• 	 Purge paging activity. 
• 	 Purge outstanding I/O. 
• 	 Purge asynchronous exits. 
• 	 Purge outstanding WTOR requesH. 
• 	 Purge queued resources. 
• 	 Restart GTF if required. 
• 	 Set tasks nondispatchable. 
• 	 Issue WTO concerning the halting of task processing. 
• Exit to the Dispatcher (Diagram 3.17). 

IGC2301C 

• 	 Attempt to provide a dump (SVCDUMP routine, 


Diagram 8.26). 

• 	 Schedule the iob step for ABEND (ABTERM routine, 


Diagram 8.1l). 

• Exit to the Dispatcher (Diagram 3.17). 
IGC330lC 
• 	 Recursion entry point -- re,turn to ABEND. 

-


...... ..
.. 

.. 


l,. l 	 L 

8.22 





......-..J 

,"" 

SVRB 

GPRS 

Diagram 8.14 (Steps 1-9) 
ABEND Initialization Phase 

From the SVC SLiH (2.3) to 
set flags for further processing 

VI 

VI 

CIO 

Input 

Current TCB

I TCBEXSVC 

Selected TCB 

I TCBNDSVC 

I
CVT 

CVTGTRCE 

Current TCB 

TCBABTRM 

4- - - ­
I 

4- - - ­
I 

4---- -,L.... __I 

r- ­

_..J4- - - ­
I 

IGCOOOIC 

Output 

Current TCBPrevent the scheduling of asynchronous 
exits for the current (fail in9) task. ~""'''''''''''''''''''''''',........." ......, ..."" .......rTCBFX=1 


Current TCB2 	 Permint GET MAIN requests for the 
lSQA to be satic;fied using the SQA. ~'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''~ TCBABGM=1 

3 	If the tosk did not foil dudng SVCDUMP 
processing • 	 6 

4 	Turn off the SVCDUMP-in-progress 
flog; set tasks dispatchable if set 
nondispotchable by SVC DUM P • STATUS 

~..................;.~IGC07~2


I 	 3.18 

h...." ......""" ...-..J ~""" ..." 

5 	Activote the supervisor troce if required • .....,"",...,"",............, ......" ......... 


6 	Determine whether ABEND was 
invoked directly (via SVC 13L or 
indirectly (via ABTERM). Reset the 
ABTERM flog. 

7 	Save the completion code; copy the 
dummy TIRB register save area. 

8 	 If there is a reol TIRe. on the RB queue 

9 	 Place the dummy TlRB on the top of 
the RB queue; set PSW for reentry 
into ABEND. 

(Continued at Step 10) 

Direct.___.'~11 

l............., ..............., ..., ..., ......,""',......,"" 


___•• 10 

SVC 3 Exit 

••••••••••••• Routine 
(3.14) 

~ ~ 	 l,' 




r,r, 	 r 
Diagram 8.14 (Steps 1-9) ABEND Initialization Phase (~odule IEAVTMOO) 
r------------------------------------------------------------~--------~--------, 

I 	 IROUTINE I I 

I NOTES 	 INA~E I LABEL I 

~----------------------------------------------------~-------+--------+--------~

1 	 Asynchronous exits are ~rohitited to avoid interrupt- Ilnitial-I I 

ions. The recursion code is saved and the TCBABCUR lization I I 

field is zeroed out. IPhase I I 


I I I 

2 	 Because GETMAIN requests can be satisfied using the SQA I I I 


<system queue area), recursions due to insufficient ISQAI I I 

(local system queue area) storage are prevented. I I I 


I I I

4 If tasks sharing the same LSQA as the task being dumFsd I ISVCDLOOPI 


are nondispatchable due to SVCCUMP processing (TCBNDSVC I I I 

• 0), they are set dis~atchatle at this time. All tasks I 	 ISVCDNXT I 

represented 	on the task queue are Frocessed. I I I 


I I I 

5 	 The SVCDUMP flag (CVTSDTRC) is turned off to indicate I I I 


that the failure occurred during SVCDUMP processing. If I I I 

the supervisor trace is requested to be started I I 

(CVTGTRCE = 0), the TRACMASK field is turned on. 	 I I 


I I 

6 	 INOSVCDMPI 


I I 

7 	 The comfletion code saved ty ABTERM is stored in the IABTRM I 


ABEND SVRB ESA. The dummy TIRE (task interruFticn I I 

request block) register save area is copied into the I I 

ABEND SVRB register save area. I I 


I I 

8 	 I TIRBLOOP I 


I I 

9 
 The PSW is set to the address cf SETADMP (Step 12); 	 I NORLTIRBI 

control returns to this point after the Exit routine I I 

has completed processing. AEENL registers are saved in I I 

the TIRB register save area tefore exiting. I I I


L____________________________________________________________ i ________i ________J 

en 
In o 
rt.... 
g 
CO 

1-3 

In 

~. 
::s 
III 

rt 
.... 
o::s 

UI 
UI 
ID 



------

\J'1 

o '" 
Processing 

10 	 copy the real TlRB into the dummy 
TlRB; set the real TlRB inactive. 

Input 

_u..... , 4-- --, 
, 'L__ 

Save the completion code.11 

Current TCB +-- --,
TCBADMP I L._________ 12 	 If tasks in the job step have not been 

set nondispatchable by ABDUMP 

Current TCB +-- -...., 
TCBJSTCB I L__ 13 Turn ott ADBUMP nondispatchability 

flags. 

Diagram 8.14 (Steps 10-13) 

ABEND Initialization Phase 


L: 
Stage 2 Exit Effeetor 

!EAOEFOO 
Queue all sa~-__..;.;=:l~Ithe top SQE Es except 

, to AEQS. 
3.12 

Output-: 12 

Current TeB ABEND SVRB 

RECCOMPC""""""""~""""""""~ 

.. 
ABEND Interface 
with ASIR (8.15) 

Current TeB 

TCBADMM""""""""';""""""""~ 
STATUS ,.".-'-----'-'--'-' 

IGC07902 

3.18 

•••••••••••••• ABEND Interface 
with ASIR (8.15) 

~ 	 <W'
'­



r ( r 

Diagram 8.1q (Steps 10-13) ABEND Initialization Phase (~odule IEAVTMOO) 
r------------------------------------------------------------y--------y--------,
1 IROUTINE 1 1 

1 NarES 1NAME 1LABEL 1 

~------------------------------------------------------------t--------t--------i
110 After removing the dumITY TIRB from the RB queue, the IInitial-IREALTIRB 

1 real TIRB is copied into the dummy TIRE. The ABTERM lization 1 

1 TIRB is then queued onto the RB queue at the location IPhase 1 

1 occupied by the real TIRB, which is set inactive. The 1 ISQELOOP 

1 Stage 2 Exit Effector then queues SQES (supervisor queue 1 

1 elements) to the AEQS (SQE asynchronous exit queue) 1 

1 queue. 1 

1 1

111 If this entry to ABEND is a recursion (TCBFA = I), the 1NOABTRM 

1 completion code is saved in the ABEND SVRB. Otherwise, 1RECURS 

1 if the completion code is to be saved (TCBSTCC = 0), it 1 

1 is stored in the TCB. The TCBSTCC flag is set to 1 

1 indicate that the completion code in the TCB is not to 1 

1 be overlaid. The completion code is provided in 1 

1 diagnostic messages should a recursion occur. 1 

1 1

112 If the failure occurred in ABDUMP processing and tasks ISETA£MP 

1 in the job step have not been set nondispatchatle 1 

1 (TCBADMP = 0), execution continues with the ABEND Inter-I 1 

1 face with ASIR (Diagram 8.15). 1 1 

1 1 1

113 The nondispatchability flag TCBADMP is turned off in thel 1 

1 current and job-step TCBs to avoid further entries to 1 1 

1 STATUS in the event of recursion. 1 1
L____________________________________________________________~ ______________~ J 

en 
(1) 
o 
rt 
~. 

g 
00 

8 


~ 
!:I 
~. 

::s 
III 

rt 

~. 

o::s 

VI 

0\ 
.... 



-- __ _ 

IV 

U1 • Diagram 8.15 (Steps 1-10) 
0\ ABEND Interface with ASIR 

From the ABEND Initialization Phase (8.14) 

to determine whether the exit routine is to 

receive control 

Input Processing 	 Output 
*Note: The ABEND routine has been divided 
into phases according to function. This entry_~llsTAE* 
point is not a true entry point; it is the first Current TCB 
label in this phase. t-"""'t"~ TCB33E"1 J 

-----, 	 ICurrent TCB ~ ­
L ___ 

Set the TCB33E flag if the complelion ...,"""',...-!TCBCMPI I 	 ~"""'~ code is 33E. 

Current TeB ..- - ---,L 

TCBsTCUR I 2 If a STA recu~ion is valid 
 -_".11 

Current TCB +-- 3 	 If this entry to ABEND is a recursion I...............~ 
ABEND Initial 
Housekeeping (8.16)I ITCBFA 

Current TCB +-- 4 	 If the failing task is a critical system 
taskI I 	 •11TCBTID 

5 Invoke GTF to perform recovery 
procedu res. 	 HOOK 

EID = IEAABND 
Current TCB +-- 6 	 If a STAE or STAI environment does 


not exist, or if this is a jobstep
I ITCBsTABB 	 ABEND resulting from invalid 

recursion during subtask ABEND. 


ABEND Initial 

operator CANCEL command or a timer 
Current TCB +- - 7 If the task failure was not due to an 

Housekeeping (8.16)I I 	 • 9 TCBFsTi expiration 

Ves 
Current TCB +--- ---..,L 	

• 11 
___ 	 INaTCBOLTEP I 	 8 Determine whether the foiling task is iii••••••••••••• ABEND Initial the OLTEP losk. Housekeeping (8.16) 

Current TCB +-­ ----,L..... ___ 
I TCBFsTi I 9 	 If the scheduling of the user IS exit I••••••••, ••••• ABEND Initial

routine should be suppressed Housekeeping (8.16)TCBCMPC 

TCBNTJs 


r--- 10 If a STAE recursion condition exists 
 -_",13
___ ...1 

Current TeB +--­
I ITCBsTABE 

(Cont i nued at Step 11) 

L 	 L l, 




r ( 	 r 

Diagram 8.15 (Steps 1-10) ABEND Interface with ASIR (~odule IEAVT~OO) 

r------------------------------------------------------------T-------~--------, 

I I ROU'IINE I I 
I NOTES INA~E ILABEL I 
~------------------------------------------------------------t--------t--------~

1 	 A completion code of 33E indicates that a DETACH macro IABEND I 
instruction, specifying the STAE=YES operand, has been IInter- I 
issued by the originating task. However, the specified Iface I 
subtask has not completed execution. The TCB33E flag Iwith I 
is used by ASIR (ABEND/STA Interface Routine). IASIR I 

I I2 	 The three user exits are STAE, STAI, and STAR. I I TSTSTAR 

If the failing (terminating) task is a critical system 
task, task ID (TCBTID) is greater than 199, ABEND 
assumes that a STAR exit exists. The STAR exit is for 

4 

critical system tasks only; it receives control only 
after any valid STAE/S7AI exits have been scheduled. 
The critical system tasks that have a STAR exit are the 
master scheduler task, the systeu error task, the 
communications task, and the IORMS (I/O Recovery 
Management Support) task. 

GTF (generalized trace facility) performs necessary 
recovery procedures if a GTF task is failing. (See 
OS/VS Service Aids for inforuation on GTF.) 

5 

If a STA control block does not exist (TCBSTABB = 0), 
control passes to the Initial Housekeeping Phase 
(Diagram 8.16). 

6 

See OS/VS OLTEP for information on the OLTEP task.8 

The scheduling of the user exit routine is suppressed 
if any of the following conditions exist: 

9 

• 	 The DETACH macro instruction was issued for an in­ NOCANCEL 
complete subtask (TCECMPC = X'13E'). 

All tasks in the job step are in a 30-minute wait 
(TCBCMPC = X'S22'). 

• 	 The limit on the SYSOUT DD card has been exceeded 
(TCBCMPC = X'722'). 

• 	 The failing task, although a job-step task, is nct thel 
highest task in the chain of terminating tasks I 
(TCBNTJS = 1). I 

I
10 	 I I TSTRECURI L____________________________________________________________ _______ ________ J~ ~ 

en 
11) 
n 
r+­.... 
o 
::l 
co 

1-3 
11) 
1'1 
B.... 
::l 
III 
r+­.... 
o 
::l 

VI 
a­
w 



VI Diagram 8.15 (Steps 11-14) 
::: ABEND Interface with ASIR 
a­

Input Processing Output 

Current TCB ... - - - -­ --T----, 
HOOK 

EID = IEAABON .. 
ITCBGTOFM I L __ 11 If GTF has been temporarily suspended 

Restart GTF. 


If the task failed while owning the1-- 12 
__ ...J supervisor lock SLKM 

Current TeB 4- - - - - -­ Current TeB 
Issue WTO ~",...~ TCBSPVLK=QITCBSPVLK I ... concerning failure. ~"""""""'" 

SLKM processing is 
unnecessary or after 
it is completed 

ASIR Phose 1 (8.44) 

CurrentTCB ...--- ----I--~ __ 13 If the failing task is a critical systemITCBTID I task • 11 

Current TeB --,ITCBSTABB ~SCB +- L __ No14 Determine whether the top STA control
SCBSTAI ABEN D Initi 01I 

block is for a STAI exit. 

" Housekeepir 9 (8.16) 
Yes 

•11 

l, L L 




00 

(
r r 

Diagram 8.15 (Steps 11-14) ABENI; Interface with ASIR (Module IEAVTMOO) 
r------------------------------------------------------------T--------T--------, 
I IROUTINE I I 

I NOTES INAI!E ILABEL I 

r------------------------------------------------------------+--------+--------~
111 IABEND I STAEXIT 

I IInter-

I Iface 

I Iwith 

I IASIR 

I 

12 The supervisor lock is an indicator used to inhitit STASLKM 

entry to disabled code wbile a disabled page fault is 
being resolved. It is set by the Program Check First-
Level Interruption Handler when a disabled page fault is 
encountered. It is turned off by the dispatcher when 
the owner of the lock has been selected as the task to 
be dispatched. The assumption is that the owner of the 
lock would not be dispatchable unless the disabled page 
fault had teen handled by the paging task. However, it 
is possible that ABTERM has rrade the Owner dispatcbatle 
to schedule the task fcr abnormal termination. When 
ABTERM sets the owner of the lcck dispatchable, a count 
of the number of tasks that have failed while owning the 
supervisor lock is increased in the CVT (CVTSPVIK). Thel 
TCBSPVLK flag is set to indicate to ABEND that a message I 

is to be issued to the operator. The SLKM subroutine I INCSPVLK 

turns off the supervisor lock flag (TCBSPVLK), decreases I I 


I the lock count (CVTSPVLK), and issues the message. (Seel I 

I os/VS Jot ~anagement Logic for information on the WTO I I 

I routine.) After SLKM processing has completed, the I I 

I TCEABGM flag is turned off and control passes to ASIR. I I 

I I I 

113 I ISTAI 

I I I

114 If the STA control block is not for a STAI e~it (SCBSTAI I I 

I * 1), ccntrel passes to the Initial Housekeeping Phase. I I 

I otherwise, preparations are made to exit to the ABENI;/ I I 

I STA Interface Routine (ASIR). I I

l ____________________________________________________________ ________ ________~ ~ 

en 
(I) 

~ .... 
g 

~ 

~ 
el.... 
::s 
P! 
rt.... 
g 
\.II 
(J\ 

\.II 



VI 
0\ 

Diagram 8.16 (Steps 1-9) 
0\ ABEND Initial Housekeeping Phase 

From the ABEND/STA Interfoce rouHne (8.44), 

the Must-Complete PhJase (8.22), or the 

ABEND Interface with ASIR (8.15) to purge 


Output-
IGC1001C (alios entry point used *Note: The ABEND routine has been 

by ASIR) divided into phases according to function. 
BYSTAE* (entry point used by This entry point is not a true entry point; 

ABEN D routines) it is the first label in this phase. 

Input ABEND SVRB 

1 Initialize flogs. IRBABEND=I.."""""""""'~.."""""~ 
Fixed in lower ~__ _ 2 Mark SaEs and IOEs belonging to 


the te nn i nat i ng task to be pu rged i 


IOE deactivate the TIRB. 
 ATRB 

SOE 
 Dequeue and deactivate 

the TlRBi suppress IOEs 
and SQEs. 

RB 
[-RBFACTV 


Current TCB + - - - ­
TCBFA I 3 
 If this entry is due to a recursion 	 ABEND Recursion 

Phose (8.24) 

Set the ABEN D-in-progress flag.4 	 ..,""""',...~'''''''''''''''''''' 
Free the PIE associated with thePIE 4- 5 	 FREEMAIN 
Current tasks, 

ABBRANCH 
Free PIE storage in 
subpool 250. 

I I 

6 Determ;ne the top task in the 
6.1 

chain of terminating tasks. ..,""""',...."""""''''''''''~ 
..,""""""""",... ~""""" ..Obtain a recursion save area; use7 	 GETMAIN

the SQA if necessary. 

RMBRANCH 

Allocate storage from 

supbool 253. 


Current TCB +--- - - - 8 If the current task failed while in 6.1
I 	 SLKM 
possession of the supervisor lock 

Issue WTO concerning 
TCBSPVLK 

~ failure. ~""""" .. 
+---- 9 Determine the completion status of Must-complete 


the failing task. 
 ABEND Must-Complete 
Phose (8.22) 

Not must-complete 

•10 

L 	 L L 



r 	 r 

Diagram 	8.16 (Steps 1-9) ABEND Initial Housekeeping Phase (~odule IEAVTMOO) 
r------------------------------------------------------------T--------T--------, 
I IROUTINE I I 
I NOTES INA~E I LABEL I 
r------------------------------------------------------------+--------+--------~

1 	 The following flags are initialized for the current 
(failing) task: 

• 	 TCBFX -- prevent asynchronous exits. 

• 	 RBABEND -- identify the ABEND SVRB in case of a 
recursion. 

• 	 TCBABGM -- set default for GETMAIN requests from 
SQA if the LSQA cannot satisfy the request. 

2 	 The internal subroutine ATRB first marks all IQEs 
(interruption queue elements) in the AEQJ <IQE 
asynchronous exit queue) to be l'urged. When the AEQJ 
queue has been exhausted, all SQEs (supervisor queue 

IInitial 

IHouse­

Ikeel'ing 

IPhase 

I 
I 
I 
I 

the I 
I 
I 
I 
ATRB 	 IATRBMIQEI 

IATRBSQES I 
I I 

elements) on the AEQS (SQE asynchronous exit queue) are I I 
marked to be purged. IQEs and SQEs are not purged at I I 
this time because they represent status that might be I I 
valuable if a SYSABEND dump is provided. These queue I I 
elements are dequeued and the associated storage freed I I 
after any attempts to l'rovide a dump have been made. I I 
Upon completion of SQE processing, the TIRB (task (ATRBTRTNI 
interruption request block) is tested to see if it is IATRBEND I 
active. If the TIRB is not active (RBFACTV # I), I I 
control returns to the caller. Otherwise, any SQEs (ATRBSPGE 
chained to the TIRB are marked to ce purged, dequeued ( 
from the TIRB SQE queue, and sent to the Stage 2 Exit I 
Effector to be requeued on the AEQS. When all SQEs have I ( 
been processed, the TIRB is dequeued from the TCB RB IATRE ATRBRDQ 
queue. The TIRB is deactivated to avert an interlock. I 
The TIRE is a serially reusacleresource which might I 
currently be in use; the entry to ABEND has rrade normal I 
coml'leticn of its use impossible. I 

I
5 If a PIE exists for the current task, it is freed so IInitial 

that a user SPIE exit routine does not gain control if alHouse­
program check is enccuntered during ABEND. A special Ikeeping 
branch entry (ABBRANCH) into FREEMAIN is used to IPhase 
prevent a recursion, which could result because the PIE I 
is allocated from user storage. I ______________________________________________________ ______i________ ________ 

en 
(I) 

l+ ..... 
g 
CD 

t-3 

~ 
~. 
III 
rt ..... 
g 
UI 
0­
~ 

r 
r------------------------------------------------------------T--------r--------, 
( IROUTINE I I 
I NOTES INAME ILABEL I 
r------------------------------------------------------------+--------+--------~6 	 The top terminating task is the highest-level task in (Initial (TSTSTEP 

the chain of terminating tasks. If an ABEND macro IHouse- ISTEPOPT 
instruction was specified with the STEP opticn Ikeeping I 
(TCBCSTEP=l), the tol' terminating task in the chain IPhase 
is defined by the job-step task (TCBJSTCB); all tasks I 
in the job step are terminated. The completion code is ( 
moved from the current 'ICB into the job-step TCB. If I 
the STEP option has not been sl'ecified, the tol' termin- I 
ating task is defined by the current (failing) task; I 
all incomplete descendants of this task are terminated. ( 
The completion code remains in the current TCB. ( 

7 	 The top terminating task is used to allocate storage 

since storage is requested fro" subpool 253. If the 

current task is used, and a STEP option has teen 

specified, the save area would be freed ~re[[-aturely 
when storage belonging to each task is purged. The tol' 
terminating task is processed last and its storage can­
not be freed early. 

8 	 If the supervisor lock is owned by the failing task, thel 
registers are saved in the recursion save area and the 
recursicn flag (TCEABCUR ~ X'01') is set during SLKM 
processing. The recursion flag is cleared ufon return 
from SLKM. 

If the task failed while operating in either system­

must-complete (TCBFSMC ~ 1), or step-must-conplete 

(TCBFJMC ~ 1) status, processing continues ~ith the 


9 

Must-Complete Phase. A task is in must-comFlete status 
because 	it ownS critical resources. Other tasks in the 
system or job step are set nondispatchable while the 
must-complete task completes processing and frees the 
critical resources. IL____________________________________________________________~______ 

I 

I 

I 

I 

I 

I 

I 
( 
I 
I GETRECSA I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
ISUPLKCHKI 
I I 
I I 
I MCMPTEST 
I 

I 

IMCTEST 
I 

I 

I 

I 

I 

( 
I__L________ 

~ 




--- - - -- ---

U'1 Diagram 8.16 (Steps 10-16) a­
ce ABEND Initial Housekeeping Phase 

Input Processing 
--'L..__ _CurrentTCB +-------- ~10 If the current task is a critical system ABEND Critical


TCB~ID I task Error Phase (8.23)
--,. 

11 Set all tasks in the chain of--, 
terminating tasks (except the currentIL ___ 
task and tasks in must-complete SELECT 
status) nondispatchable. 

Select each task Output
in the chain. 

STATUSill! I 
Selected TCBIGC07902I TCBABWF=13.1B~~~I 

TCBFA=l~"""""""""" ... ~"""""'"~~ 
r--- 12 Perform a tosk switch if necessary to CVT Task Switch __.J ensure that the task specified by theL CvnCBP-]---to New TCB J4- IEAODS02new TCB pointer is dispatchable.

New TCB ;+, Old TCB Make next lower-


I TCBABWF I priority task the new 

task. 


... -- - -- - ­ 13 Select the top terminating task in 3.16 
the chain of terminating tasks for SELECT 
the current ABEND. 

Select tosks defined 
by the top task. 

All selected 

SelectedTCB +--------r--L- __ • 24 
 Selected reB ABEND SVRB14 Perform proce~::iing for multiple job-

TCBJSTCB i step failures. TCBNTJS=1 RBOPSW...,""""""""',... ~ I I ITCBFC ~"""""'"~ 
STATUS Current TeB 

TCBRSPND IGC07902 ~~ TCBLJSND=1 
TCBDARPN 

3.18 
~ 

Dispatcher (3.17) 

Job-step TCB ... T -- .., Selected TCB 
TCBCREQ I 1___ 

~~ TCBADINP=O15 ",>, ;~<O~ ,-, "'~'"'' ~i~....................'......... 
+l I 


••'.'..........'.'............................. 


Selected TCB 

.,.,~ N TCBFT=O 
16 Turn off the top TCB flog in the ,.... .....................................................l ................................. 
 f+[ I 

(Continued at Step 17) 

Selected reB 

Selected TCB 
I 

LJ L'­



(" (" 	 r 

Diagram 8.16 (Steps 10-16) ABEND Initial Housekeeping Phase 	 (Module IEAVTMOO) 
r------------------------------------------------------------T-------~--------, r------------------------------------------------------------T-------~--------, 

1 1ROUTINE 1 1 1 IROUTINE 1 1 
1 NOTES 1NAME 1LABEL 1 1 NOTES 1NAME 1LABEL 1 
~------------------------------------------------------------t--------t--------i ~------------------------------------------------------------t--------+--------~
110 The TCB for a critical systen task cannot be erased. IInitial ISYSTASK 1 113 The top terminating task found earlier is used to find IInitial 1 SETUPSLC 1 
1 IHouse- 1 1 1 all tasks in the chain of terminating tasks; the tasks 1House- 1 1 
1 1keEping 1 1 1 are located in a top-down fashion. If the selected tasklkeeping 1 1 
1 1Phase 1 1 1 has completed processing (TCBFC =1), or is ncndispatch- IPhase ITSTCOMPL 
1 1 1 1 1 able, it is ignored and the next task is selected. 
11 The top ter~inating task is used to find all tasks in 1 ISELOOP1 1 1 

the chain. The initial input to the SELECT suJ::rcutine 1 1 1 114 If the selected task is a jot-step task other than the 
is the complement (negative) address of the TCB repre- 1 1 1 top terminating task, processing is required to handle1 
senting the top terminating task. The SELECT sutroutinelSELECT ISELFIRSTI multiple job-step failures. The lowest-level jot-stEP 
makes the input address positive and returns to the 1 1 1 task is terminated first. The SELECT subroutine is 
caller. (The address of the top terminating task's TCH 1 ISELREr 1 called to find all job-step tasks lower than the top 
is assumed to be in the ABEND SVRB ESA.) Subsequent 1 1 1 job-ste;: task. This processing is only perforrred if the 
entries to the SELECT subroutine require, as input, the 1 1 1 task is neither complete nor ncndispatchable: 
address of the last TCB selected. The follo'Oing order 1 1 1 
is used to find each TCB after the first one: I 1 1 1. An interface is established with ABTERM 

1 1 (IEAOABOO, Diagram 8.12) to terminate the 

1 

1. 	If the task represented by the input TCB has ISELTEST11 selected task (using SVC 13) with a comfletion 
a subtask (TCBLTC), the output is the address ISELSUB 1 code of X'10C' and no dump. 
of the subtask's TCB. 1 1 

1 1 2. 	The TCBNTJS flag is set in the selected TCB to 
2. 	 If the input TCB address is that of the TCB ISELLOOP 1 indicate that a higher-level job-step task is 


representing the top terminating task, all 1 1 awaiting the abnormal termination of the 

tasks in the chain of terminating tasks have 1 1 selected task. 

been selected, and the output is an address of O. ISELLAST 1 


1 1 
 3. 	 The current ABEND SVRB is set to J;oint to 
3. 	 If the task represented by the input TCE has a ISELTEST21 location TSTSTDSP (Step 24). 


same-level task (TCBNTC), the output is the ISELSIS 1 

1 
1 

address of the sa~e-level task's TCB. 	 1 1 1 4. The current task is set temporarily nondis­
1 1 1 patchable (using STATUS). 	 1 

4. 	 The input consists of the originating task ISELMOM 1 1 	 1 
1 (TCBOTC) of the task represented by the input 1 1 1 5. The registers are saved in the current TeB 1 DISPATCH 1 
1 TeB. Execution then continues with the test 1 1 1 register save area. 1 1 
1 for the top terminating task's TCB (point 2). 1 1 1 1 1 
1 1 1 1 6. A task switch is ensured cy setting the new TeE ITASKSW 1 
1 All eligible tasks are set nondispatchable to prevent 1 1 1 pointer to 0 if it is the same as the old TeB 1 1 
1 the task from using a resource that may be taken by 1 1 pointer. 1 11 

ABEND. 1 1 
1 1 1 1 1 7. Exit is made to the dispatcher (Diagram 3.17), ICISPEXITI 

1 

1 	 1 1 1 

112 The new TCB pointer contains the address of the highest-IInitial INEWTEST 1 which passes control to the selected task. The 1 1 
1 priority TCB; the task represented by this TCB is dis- 1House­ INEWLOOP 1 1 selected task centrals the abnormal tern'.ination 1 1 
1 patched next. Because previous processing may have set Ikeeping 1 1 1 of itself and its subtasks. 1 1 
1 a task specified as new nondispatchable, ABEND must 1Phase 1 1 1 1 1 

ensure that the new task is dispatchable. The Task 1 If the job-step task is terminating and a durrp has nct IINITFLGSI1 	 1 1 115 
1 Switch routine is called to transfcrm the next lower- 1 1 1 1 been requetited (TCBCREQ , I), the ABDUMP-in-prcgress 1 1 
1 priority task into the new task. 1 1 1 flag (TCBADINP) is turned off. This processing is 1 11L____________________________________________________________ ________ ________J~ ~ 

1 necessary because a request for the abnormal terroinationl 1 1 
1 of a task is stacked if it has a subtask that is provid-I 1 1 

CIl 1 ing an abnorroal te~ination dump. The TCBADINP flag 1 1 1 
1 setting allows the operator to issue a CANCEl corrmand 1 1 1~ for a job-step task while its suJ::task is in ABCUI'P 1 1 11rt 	 1 processing 1 1 1.... 
1 1 1 1g 116 The top TCE flag is turned off because the current TCB 1ERASETOP 1 
1 may have suJ::tasks that are currently abnormally 1 1 

00 1 terminating. 1 1 1l ____________________________________________________________ ________~________ J~ 

1-3 
C1> 
t; 

~. 
~ 
rt.... 
o 
l:j 

U1 
C1\ 
ID 



-.I 
\.n 	 Diagram 8.16 (Steps 17-24) 
o 	 ABEND Initial Housekeeping Phase 

Input 	 Processing 
Selected TCB .- - - - - - - 17 If the selected task has completed 


TCBFC I • 13
processing 

18 If the selected task is the job-step 
task 	 •23 

Job..,tep TCB +- - --- - - ­ 19 	If a previously terminating task has 

not requested stacking 
I TCBSTACK I 	 21• 

20 If the selected task is in OPEN or 
CLOSE processing 

Selected TCB ~- - -- - - ­

TCBFOINP 	 22I 	 • 
Selected TCB ~-- - - -- 21 	 If the selected task is not in ABDUMP 


processing
I 	 t 23TCBADINP Output 

Register 8 + 22 Turn off the ABEND nondispatchability 

flag in the selected task. STATUS
I 	 IAddress of selected TeB Selected TCB 

IGC07902 ~I+I TCBABWF=O 

23 Perform processing for the selected 3.18""",,'"' ~ 
i 

+ 	 Selected TCB 
task if there is no need for special i' 	 • ~ 

TCBABTRM=O 

TCBABCUR=O 
processing. k"" ...,"" ...........................~ ~......" ...............'" 
~'''I/ ' 

MSPURG 
TCBFX=i 

Delete entries in the TCBATT-i 
SVC message table. 

WTOR Purge 

IEECVPRG 
Purge outstanding 

ATRB messages. 

Deactivate the TIRB; 
suppress IQEs and SQEs. 

Termination Interface 

I'EAPTERM 
Purge paging activity 
and second exits. 

5.57 

Purge I/O+r---' 	 I 
1.IGC016AP 

I Purge outstanding I/O. 

JUU'~' ,~U 
iiI 

I 	 I I 

• 13 
I Subtask dispatchableI 

or no subtask IL __ _ 	 .. 
Mainline ABEND24 Determine whether the top task h-Os 
(8.17)a subtask that is set permanently 

nondispatchable. Subtask nondispatchable 
ABEND Critical 
E"or Phase (8.23) 

~. l, 	 l, 




r r 	 r 

Diagram 8.16 (Steps 17-24) ABEND Initial Housekeeping Phase (~odule IEAVT~OO) 

r------------------------------------------------------------T-------~--------,r------------------------------------------------------------T--------T--------,
1 1ROUTINE 1 1 1 1ROUTINE 1 1 
1 NOTES 1NA~E 1LABEL 1 1 NOTES INAME 1LABEL 1 
~-----------------------------------------------------------+--------+-------1 ~------------------------------------------------------------t--------+--------~ 
118 If the selected task is a jot-step task, the TCBSTACK, 1Ini tial 1 OCINPTST 1 123 The following functions are performed for the selected IInitial 1 1 
1 TCBFOINP, and TCBADINP flags are not examined. TCEACINPI House- 1 1 1 task: 1House- 1 1 
1 is always set in the job-step TCE if set in a subtask Ikeeping 1 1 1 1keering 1 1 
1 TCB; the TCBSTACK flag is set to indicate that a higher-IPhase 1 1 1 1. The ABTERM flag to prevent multiple ABEND 1Phase ISETFLGS 1 
1 level task cannot terminate until a lower-level task 1 1 1 1 conditions is turned off (TCBABTRI' = 0). 1 1 1 
1 completes termination processing. Therefore, it is 1 1 1 1 
1 	 necessary to purge the resources specified in Step 23 1 1 1 2. The valid recursion flag is cleared (TCBABCUR1 
1 	 even though one of these flags may be set. 1 1 1 0).I 
1 1 1 1 	 1 


1
119 	 If stacking has been requested, the current ABEND 1 1 1 3. The scheduling of asynchronous exits is pre­

request is stacked until the OPEN or CLOSE processing 1 1 1 vented (beth TCBFX and TCBATT set to 1).
1
completes. After determining that stacking is required, ISTACTCB ISTACTEST 

the STACTCB subroutine performs the following 4. The MSPURG subroutine is called for each task 

processing: other than the current task. This subroutine 


erases entries in the type-l SVC message table 
1. 	 Modifies the AEEND SVRB old PSW so that it STACKIT associated with the selected task. 

points to the section in the STACTCB 
subroutine that tests for stacking (latel 5. The WTOR purge routine is called to purge out­ PGWTOR 
STACTEST). standing messages associated with the selected 

task. (See OS/VS2 Job Management Logic for 
2. 	 Issues the STATUS SVC instruction to set information on the WTOR Purge routine.) 

the current task temporarily nondispatchable 
(TCBOCAND = 1). 6. The ATRB subroutine is called to suppress IQEs 

and SQEs, and deactivate the TIRB associated 
3. 	 Ensures a task switch by setting the new TeB ISTACDISP with the selected task. 


pOint to 0 if it is equal to the old TCB 1 

pOinter. 1 1. The paging Termination Interface routine is 


1 	 called to purge all paging activity and second 
4. 	 Saves registers in the current TeE and exits ISTACOUT exits for the selected task. Second exits 

to the Dispatcher (diagram 3.17). 1 represent asynchronous precessing that is 1 
1 performed as a result of the completion of 1 

The current ABEND request must be deferred ~hen a dunp 1 paging activity required because ef a FIX er 1 
data set is being opened. Only cne OPEN macro instruc- 1 1 LOAD request. 1 
tion is issued for the dump datil set, which remains open I I 1 
for the duration of the job ster. If a CLOSE request 1 1 8. The resident Purge I/O routine is called to 1 
has been issued, the current ABEND request must te 1 1 purge outstanding I/O for the selected task. 1 
stacked to avoid sus~ending CLOSE ~rocessing. The dUWF I I (See OS/VS I/O Supervisor Logic for information 1 
data set is closed cnly when the job-step task 1 1 on the purge I/O routine.) 1 
terminates. 1 1 1 

1 1 1 After the processing has co~pleted, the SELECT sub­ ISELOOP 
121 IInitial IADINPTSTI routine is reentered to select the next task. The sarr-e 1 
1 1House- 1 1 processing (Steps 14-23) is performed for the next task. 1 
1 1keeping 1 1 1 
1 IPhase 1 1 124 After all tasks have been selected, the top terminating 1 TSTSTDSP1 
1 1 1 1 1 task is tested. A subtask of the top terminating task 1 1 
122 If a subtask is in OFEN, CLOSE, or ABDUMP precessing, 1 1ABWFOFF 1 1 may have been set nondispatchacle in the following sit- 1 1 
1 the nondispatchabi Ii ty flag is turned off and the next 1 1 1 1 uation: Recovery Manage~ent SUrfort (RMS) set a task I 1 
1 task is selected. No further processing can be per- 1 1 1 	 1 permanently nondispatchatle due to a machine ~ror. 1 1 1en 	 l ____________________________________________________________ ________ __ _____ J~ ~ ~ 

/l) 1 formed On the selected task until OPEN, CLO:;E, or ABDUI'PI 1 1 
o 1 processing has completed. 	 1________ 1________ J1 
rt 

L____________________________________________________________ ~ ~ 

1-'. 
o 
l:j 

CO 

8 
/l) 

~ 
1-" 
l:j 
11/ 
rt 
1-" 
g 
U'I 
-..I 
I-' 



VI Diagram 8.17 
-.J Mainline ABEND Processing

"" 
From the Initiol Housekeeping Phose (8.16) 

to prepare for on abnormal dump 


~nput 	 • r~_ro_c_e_s_s_in~g~____________________________-, Output 
*Note: The ABEND routine has been 
divided into phases according to function.•••I~I MAINLINE> This entry point is not a true entry point; 
it is the fiBt label in this phase. 

SVRBESA ....I~_____ 	 Top TCB
Set the top flag in the reB ofI 	 IAddress of top TCB' 	 the top task. ~"""""""""""""""""~ TCBFT~I J 

C\IT 

" 
CVTQMSG ~INFOLIST +-1--- 2 Issue a message to the programmer for 
I 1 	 --- ­ each entry in the type-l SVC messoge ..... I MSGPHASE 

table for the current task. 
IGC210IC 

I I Issue WTP for each 
toble entry . 

Alias entry point Failure in WTP 
for MS,?PHASE • MSPURG 
processing 

..... 	 Purge all 
IGC200lC 	 table entries •....,.. 

I 
L ____ 

3 	 Stack the current ABEND request if .. I S'TACTCBI 
required. 

Job-step TC B • 'I JI TCBJPO p+ JPAQ L ____ 

CDE • rlr---- 4 Purge partially loaded programs. PARRLSE 


Invoke PRBHOSKP 
and PGPGM. 

Current reB5 Allow asynchronous exits for the current 

~,~ TCBFX=O 
task. 	 ..""""""""",,"""""" 

'"'L... ____ -+ 6 	 If the dump is neither allowed nOt" has 
been requested ABEND Close 

Phase (8.20)--,. ...,
L 	 ____ 

ABEND Open7 	 If the doto set wa~ opened previously 
Phose (8.18)--,. 

No DD entry or--- - - -+8 Examine the data definitions specified; invel id entry ---...use the associated data set as the dump ABEND Close 
data set. Phase (8.20) 

Valid DD entry 
ABEND Open 
Phase (8. 18) 

CDCHAIN 

CDNIC 

CDRRBPA 

Job-step TC B 

I TCBPDUMP 

Job-step rCB 

I TCBFDSOP 

l, 	 l,
~ 




____________________________________________________________ 

(' 	 r 

Diagram 8.17 Mainline ABEND Processing (Module IEAVTMOO) 
r------------------------------------------------------------T--------T--------, 
I IROUTINE I I 
I NOTES INAME I LABEL I 
r------------------------------------------------------------f--------+--------i2 The message table contains entries, supplied by a type-1lMainlinel 

SVC routine, indicating a failure in the SVC routine. 
The MSGPHASE subroutine performs the following 
processing for each entry that is for the current task: 

1. 	 Sets a valid recursion flag (TCBABCUR X'15'). 

2. 	 Obtains storage for a rressage buffer (from 

subpool 253) if necessary. 


3. 	 Converts the completion code in the message 

table into EBCDIC and noves it into the 

message buffer. 


4. 	 Moves the message into the buffer and ensures 
that the message ID is correct. 

5. 	 converts the reason code (if specified) into 

EBCDIC and moves it into the buffer. 


6. 	 Moves the job name and step name into the 

buffer. 


7. 	 Converts the branch entry return address (if 
applicable) into EBCDIC and moves it into the 
buffer. 

8. 	 Converts the flag field and variable data into 
EBCDIC and moves them into the buffer. 

9. 	 Computes the message length and 
macro instruction. 

10. 	 Clears the valid recursion flag 
message table entry. 

After all entries have teen processed, 
reentered at IGC2001C. 

issues the w're 

and zeros thE 

ABEND is 

IAEEND I 
IProcess-1 
ling I 
I I 
I I 
I I 
I I 
I I 
I I 
MSGPHASEIMSGFORM 

I 
I 
I 
I 
I 
I 
I 
I 
I 
IMSGJOBN 
I 
I 
I 
I 
I 
I 
IMSGFLG 
I 
I 
IMSGLNGTH 
I 
I 
I 
I 
I 
IMSGALL 
I 
I 

If the WTO processing fails, a restart routine is enter-IMainlinel 
ed at label RECT1WTP; the MSPURG subroutine is called IABEND I 
to purge all entries in the rressage table for the IProcess-I 
current task. Processing then ccntinues with Step 3. ling I 
NOTE: The MSGPHASE subroutine is located in module I 
IEAVTMOl. I 

I
3 If stacking is required, certain processing already I 

en initiated by a subtask (such as OPEN, CLOSE, or ABDUMP I 
(!) processing) must be completed before filling the current I 

UOD~~_.~ 
f-'. 

4 All partially loaded programs must be purged because ofg possible interlocks. An interlock might occur if later 
ABOD processing requested that a program be loaded 

co which contents supervision queues indicate was already 
being loaded. Contents supervision would queue the 
ABEND request and await the COItFletion of the loading 
rrocess. However, the program would never be loaded ~ because ABEND has already purged the I/O required to 

~ load the progran. After examining the CDEs (contents 
directory entries) associated with the job Fack area 

~. ~eue, PARRLSE perforrrs the following functions for 
programs that are not in storage:L____________________________________________________________III 

rt­
f-'. 
o 
::l 

U1 
-.J 
W 

I 

I 

I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
IIGC2001C 
I 
I 
I 
I 
IRLSEPGM 
I 
I 
I 
I 
I 
I 
I 

I P ARRLSE IPARRLOOP I 
I I I 
I I I 
I I I 
~ ________ J_______~ 

r 
r------------------------------------------------------------T--------T--------, 
I I ROUTINE I I 
I NOTES INAME I LABEL I 
~------------------------------------------------------------+--------f--------i 

1. Invokes the PGPGM subrcutine if the CDE 
indicates that there is nct a related RB 
(CDRRBPA = 0). ~he PGPGM sucroutine first 
determines whether an extent list has been 
formed; if so, PGPGM freES storage occupied 
by the program and extent lists from subFccl 
251 or 252. The CDE is then dequeued from the 
job pack area queue. If the CDE Foints to a 
RB, the RBCDE field is set to O. The CDE is 
then freed fron subpool 255. This processing 
is continued until all CDEs have been freed. 

2. Invokes the PRBHOSKP subroutine to restart 
tasks that are awaiting the completion of the 
loading process. PRBBOSKP is invoked if 
either of the following conditions exist: 
(a) the RB associated with the CDE is queued 
to the current task's TCB, or (bl the CDE is 
not associated with the current task, but the 
task with which it is associated is in an 
ABEND wait state and in the process of being 
abnormally terminated. !It is assumed that 
the I/O operations for the associated task 
have been purged so that any tasks awaiting 
the loading of the program must be restarted.) 
The PRBHOSKP subroutine Frocesses all RES en 
the wait queue. It first sets the wait 
count (RBWCF) to 0 and points the RB old PSW 
to entry point CDCONTRI (contents supervision). 
The RB is then de queued from the wait queue 
and the RBCDE and RBPGMQ fields are set to O. 
The CDE use count (CD USE) is decre..ented, and 
the TCB associated with the RB is located and 
a task switch is performEd if necessary. The 
next RB is then processed. When all REs have 
been processed, control is returned to 
PARRLSE, which invokes PGPGM. 

5 Asynchronous exits are allowed because systerr services 
require their use. 

7 The dump data set may have been opened earlier as a 
result of a previous entry into ABEND by a suttask in 

I the same job stef as the current (failing) task. 
I 
I 8 ABEND scans the TIOT (task I/O table) and uses the last 
I 
I 

SYSABEND or SYSUDUMP DD entry as the data set definit ­
tion for the dump data set. (In a TSO environment, the 

I the user cannot be certain of what tYFe of dumF he 
I receives because dynamic allocation uses the TIOT 
I entries in a randoE fashion). If a DD entry is not 
I 
I 
Il 

found, or a dummy CD entry or invalid length is 
specified, control passes to the Close Phase (Diagrarr. 
8.20), 

IPARRLSE 
I 
I 
I 
IPGPGM 
I 
I 
I 
I 
I 
I 
I 
IPARRLSE 
I 
I 
I 
I 
I 
I 
I 

IPARRPGM I 
I I 
I I 
I I 
IFREEPGM I 
IPGPGMFXLI 
IPGPGMDQ I 
IPGPGMFRCI 
IPGPFCDE I 
I I 
IPGPGMET I 
I I 
I PARRHSKP I 
I I 
IPARRTCBL 

I 
I 
I 
I 
I 
I 
IPREBOSKP PRBBLOOPI 
I I 
I I 
I I 
I I 
I PREHTCBLI 
I I 
I I 
I I 
I I 
IPARRLSE PARRPGPM 
I 
IMainlinel 
IAEEND I 
IProcess-I 
ing I 

I 
I 
I 

I 

I
I 
I 
ITIOTDD 
I 
I 
I 
I 
I 
I I 

~________i ________J 



c.n Diagram 8.18 
-.I ABEND Open Phase 
~ 

From Mainline ABEND (8.17) to open the dump 

data set in preparation for ABDUMP processing 


-
.. IGCOlOlC 


Jab-step TCB ~------ L _____
I TCBFDSOP I 

-. 
1 If the dump data set is open • 10 

I 

Current TeB Job-step TeB 

2 Set OPEN/CLOSE and stocking flags. +l TCBFOINP=l I I TCBSTACK=l...,"""""",... ~"""""~ I 
Preossembled 
DCB TlOT DCB 

I I I TlOEDDNM 3 Construct a DCB for the dump data set. ;>I DCBDDNAM I, No storage 

...... • 84 Maintain a record of programs loaded,
Current TCB Current TCB Register 9 and pages fixed during OPENIiLTCBFQE processi n9 .. ~ TCBFOE=O I I~ddre.. of load I
I TCBLLS I """'-"'''''''''''~"""""'... list 

5 Open the dump data set. OPEN (SVC 19) I 

I 
DCB .4------- Job-step TeB DEB 

I 
--"'--- 6 Determine whether the dump data set Yes 

DCBOFOPN I ~ TCBFDSOP=l I I DEBABEND=l Iwas successfully opened. ..."""'''''''~ ~"""""""I No 
• 9 

Current TCB DEB .. ---,L ___I TCBDEB 7 Restore pointers saved before openingI I 
the doto set. 

Current TCB
Top TCB +------ ---,L ___ ~ TCBFOINP=OI TCBFT 8 Turn off the OPEN-in-progress and II r"""""'''''-l"""""~"''-l

recursion flags; restart tasks that were iii! RESETHI • .. STATUS 
stacked. Job-step TC B 

Restart tasks. fill .... IGC0790? 
TCBSTACK=O I 

3.18 ~''''' ..""""~ I TCBOCAND=O I 
_... ABEN D ABDUMP 

Phase (8. 19) 

9 Restore pointers. • 8 
Job-step TCB .. ---, 


I TCBDEB r DEB L-__ 10 Exit to the ABDUMP Phase. ABEND ABDUMP
I DEBABEND r ,.. Phase (8. 19) 

, 

l, L, L 



______ __ 

r 	 r 

Diagram 8.18 ABEND Open Phase (Module IEAVT~Oll 
r------------------------------------------------------------T--------T--------, 
I IROUTINE I I 

I NOTES INAME ILABEL I 

~------------------------------------------------------------+--------t--------~

1 	 lOren 

IPhase 

I 


2 	 The OPEN/CLOSE flag is set to ensure that I/O associat­ I 
ed with OPEN processing does not get purged as a result I 

of the failure of the originating task. Subsequent 

entries to ABEND are stacked until OPEN procEssing has 

completed. 


3 	 Before constructing a DCB, the following processing is 
performed if the current task is not the job-ster task. 
A GETMAIN macro instruction is issued, irr~ediately 
followed by a FREEMAIN macro instruction. This ensures 

that there is an SPQE (subpool queue element) fof 

subpool 250. The jot-step TCB~SSB field is updated. 

A GETMAIN request is issued for 88 bytes of storage in 

subpool 250. If there is none available, the DCE 

pointer is set to indicate there will be no durer. 

Execution continues with Step 8. If storage has been 
allocated, a preassembled DCE and the arrrorriate DD 
name are moved into the allocated area. An internal 
switch is set to indicate the type of data set ­
SYSABEND or SYSUDUMP. The system must be enabled 

during this move. 


4 	 Because the dump data set renains open for the duration 
of the job step, the associated control blocks must be 
queued to the job-step task so they are not rurged when 
a subtask terminates. Any modules loaded by OPEN must 
remain open for the duration of the job ster. A record 
of all pages fixed by OPEN (FIX ownership elements) is 
also saved. 

NOTE: This processing is unnecessary if the current 
task is the job-ster task. 

I
5 	 Before opening the data set, a valid recursicn flag I 

(TCBABCUR = X'll') is set and registers are saved in I 

the recursion save area. The valid recursion flag is I 

cleared up on completion of OPEN processing. (SEe OS/VSI 
OPEN/CLOSE/EOV Logic for infornation on the Cpen 
routine.) 

6 	 This test is made while the system is enabled. If the 
data set was opened, flags are set to indicate that fact 
and to identify the dump data set. ABEND also sets a 
flag (TCBFABOP) in the job-step TCB to indicate if the 

CIl dump is a SYSABEND or SYSUDUMP dump. This flag is used 
CD to determine the format of additional ABEND dumps.o 
rt 

g 
.... 7 The following processing is rerformed if the current 

task is not the jot-step task: 

1. 	 The TCBMSSB field is restored in the current 
CO task's TCB. 

2. 	 Subroutine REQILE is called to ensure that new 
frog rams are queued to the job-step task's 

CD load list. 
~ 

Ii 
3. 	 The dump data set is dequeued from the current~. 

I TCB and queued onto the job-step TCB.::s l ____________________________________________________________ 
\lJ 
rt.... 
o::s 

U'I 
..,J 
U'I 

I 

I 

I 

I 


I 

~________~________ 

IOPHASE I 

I I 

I I 

I I 

I I 

I I 

I I 

I I 

I I 

I I 

I 

I 

I 

I 

I 

I GETDCB 

NODMPSW 

I JSOPEN 
I 

I 


I 

I 

I 

I 

I 

I 


J 

r 
r------------------------------------------------------------T-------~--------, 

I I RCUTINE I I 

I NOTES INAME ILABEL I 

~------------------------------------------------------------+--------+--------~ 

4. 	 The FIX Ownership Elewent (FOE) Merge routine 
(Diagram 5.26) of the raging supervisor is 
called to merge pages fixed during OPEN 
processing with rages currently fixed ty the 
job-step task. 

5. 	 The paging supervisor FIX Purge routine 
(Diagram 5.58) is called to free FOES queued to 
the current task. 

6. 	 The original FOE pointer (TCBFOE) is restored 
to the current TCE. 

After turning off the nondispatchability flag TCEOC~ND 


(using STATUS), RESETSI examines the TCBFT flag in the IRESETBI 

top terminating task's TCB to determine whether a I 

higher-level task failed and was stacked by ABEND I 

(TCBFT=O). RESETHI sets the current task nondispatchatlel 

(STATUS sets the TCBABWF flag on), ensures a task switch 


8 


if necessary, and passes control the the disratcher to 
effect a restart at the point where processing was 
suspended. If the TCBFT flag is set, a higher-level 
task was not stacked. However, if a higher-priority 
task in the same job step as the current task had teen 
stacked, a task switch CQuid have been indicated as a 
result of the interface to the STATUS routine. The 
ABEND SVRB is set to roint to the code in the RESETSI 
subroutine (label RSETST) which tests for a task 
switch. Control then passes to the dispatcher, which 
passes control to the higher-priority task. 

The valid recursion flag is cleared (TCBABCUR=O). IOpen 
If the data set was not opened, pointers must be Phase

9 

restored before informing the programmer of the error. 
When the current task is the job-step task, these 
pointers are not restored. The functions consist of 
the 	following: 

1. 	 FOES queued to the current task are freed by 

the paging supervisor FIX Purge routine. 


2. 	 The FOE pointer (TCBFOE) is restored tc the 
current TeE. 

3. 	 New and old frcgrams are queued to the current 
task's load list by REQLLE. 

A buffer is obtained and a message is constructed 
informing the programmer of the failure to open the 
data set. A valid recursion flag (TCBABCUR = X'13') is 
set during WTO processing. After the message has been 
written, the valid recursion flag is cleared 
(TCBABCUR=O), the buffer is freed and the DCE pointer isl 

cleared to indicate that no dUJr.p is to be provided. Anyl 

tasks that were stacked are now restarted (Step 8). I 


I 

.If the LEB cannot be located, control enters the ABDU~P I 


I 

10 


Phase at label SETPD~P (Diagrarr 8.19, Step 10). Other­ I 

I 
 wise, the ABDUMP Phase is entered at DMPHASE with the I 

I address of the dump data set DCB provided. I 

l ____________________________________________________________ _______~ 

IOPRESTRTI 
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 


• I 
I 


I RSETOUT I 

I I 

I I 

I I 

I FIXLLS I 

I I 

I I 

I I 

I I 

I I 

I I 

I I 

I I 

I 

I 

I 

I 

I 

I 

I 

IOPENMSG 
I 

I 

IBYOPMSG 
I NODMPSW 
I 

I 

I 

I 

I DSOPEN 
I 

I 

I 

~ 



---- - -

\J'I Diagram 8.19 (Steps 1-5) 
..,j ABEND ABDUMP Phase 
0\ 

From the ABEN D Open Phase (8.18) 

to provide a dump 


-


~ DMPHASE' 
 * Note: The ABEND routine has been divided

Input into phases according to function. This entry 


point is not a true entry point; it is the first 


RegisterS 4 ___ ----1--- label in this phase_. 


IAddress of DCB I 1 If the dump is not to be provided ABEND Close 
Phase (8.20) Output 

CVT Current reB, 

TCBGTOFM 2 Suspend GTF if necessary. HOOK 


EID=IEAABOF 


Job..tep TCB


ITCBFABOP 3 
Allocate the dump data set to the 
current tosk. ENQ 

IGC056 

3.9 
4 Allow allocation for the dump data 

,Job-Step TCB 4-- - - - --.- ­ Job..tep TCB 

requests if necessary. 
set from the lSQA only; stack ABEND I TCBADINP=l...,"""""'" ~""'''''''''''''' 

STACTCB 

• II I 
TlOT ----, SNAP Macro 

I TlOEbDNM 
 5 Display the current task's resources. ABDUMP 

8.27 

ABDUMP failure 
WTO 

Inform programmer 
that SNAP failed. 

ABDUMP failure 

• 9 

(Con~inued at Step 6) 

L L L 




r r 	 r 

Diagram 8.19 (Steps 1-5) ABENC ABDOMP Phase (Module IEAVTMOll 
r------------------------------------------------------------T-------~--------l 

I IROUTINE I I 

I NOTES INAME I LABEL I 

~-----------------------------------------------------------+--------+--------~2 Under the following circumstances, GTF is suspended to IAEDOMP 

minimize changes to the trace: 	 IPhase 

• GTF is active (CVTGTFS 

• The "in-core" trace was 
ing option (CVTFORM~1). 

• The current task has not 
(TCBGTOFI~ = 1). 

1). 

specified with the fCrJratt­

already suspended tracing 

• The user requested a 
indicates SYSABEND). 

SYSABEND dump (TCBFABOP 

3 I EYGTF 

4 The current ABEND request is stacked if it is awaiting 
the completion of sowe event. Allocation for the dump 
data set is only possible from the LSQA because the dump 
data set requires a large amount of storage and the SQA 
is a critical system resourCE. The ABDUMP-in-progress 
flag (TCBADINP) is set prior to invoking the ABDUMP 
routine. 

5 The ABCOMP parameter list is constructed with the 
appropriate options specified: 

• 	 SYSABEND -- entire dump 

• 	 SYSUDUMP -- problerr-prograrr save areas and 
control blocks associated with the problem 

• 	 GTF -- only if a SYSABEND DD was specified, 
is active. 

prior to issuing the SNAP rracro instruction, 

system 
program. 

and GTF 

ISNAPCURRI 
interruFtions are disabled by MODESET, and the valid I I 
recursion flag is set (TCEABCOR=X'12'). This flag is I I 
cleared upon completion of ABDUMP processing. If I I 
ABDUMP processing fails (return code is greater than 0), I J:MPMSG I 
a message is constructed informing the prograrnrrer that I I 
the dump failed. The valid recursion flag is cleared I I 
and then set (TCBABCUR = X'1Q') during WTO processing. I I 
Upon return from WTO, the valid recursion flag is I AFTAI:WTPI 
cleared (TCEABCOR=O), and the message buffer storage I I 
acquired earlier is freed (by RMBRANCH). The ABDUMP-in­ I I 
progress flag (TCBADINP) is turned off in the current I I 

en and job-step TCBs. Tasks that were stacked are I I 
(!) 	 restarted (using RESETHI), asynchronous exits are F€r­ I I 

mitted, and registers are restored before entering lEYrMPCSPI~ cleanup processing (Step 9). (See OS/VS2 Jot Management I 
Logic for information on the WTO routine.) I I I 

.... 	 I I 
g 	 L____________________________________________________________ ________L________J~ 

co 

t-3 

~ .... 
::s 
III 
rt.... 
g 
\II 
..,J 
..,J 



VI Diagram 8.19 (Steps 6-11) 
ABEND ABDUMP Phase

CO""" 
Processing 	 Output 

Job..tep TCB 

6 Indicate that the current task's resources """""""'......,"""""'W I TCBADINP=O 
have been displayed; restart tasks that , 
were stacked. 	 _ RESETHI 

Input • 
Top TCB 'l"btask TCB .. 7 Select remaining subtasks and display 
I TCBlTC I TCBFS I their resources. TSLO 


1 I	5e lect subtasks of 
the current task. 

Job-step taskAntecedent:rCB +---------- 8 Display the resources of the direct selected 
antecedents of the current task.I 	 I • 9 

9 Perfonn cleanup processing. 

~"""""""""""""'" 
DEQ 

IGC048 
From tile ABEN D Open 

Dequeue the dump 
Phase (8.18) when a dump 

data set.ts not given 
3.10 

10 Prevent the dump of a taskls ~••••••••••• ABEND Close 
resources. • Phase (8.20) Job..tep TCB 

.-.I TC BPDUMP= IFrom the ABEND Recursion 110.,""""""'''': ~"" ...""""" 
Phase (8.24) to route control 
on a recursion 

• ••••••••••••• ABEND Close 
Phase (8.20) 

....I~IIGCII01C 

Current TCB 	 +------ ­ 11 Return to the failing point as indicated


I by the recursion flag. ABEND
TCBABCUR 

L,l. 	 L 



r r 	 r 

Diagram 8.19 (Steps 6-11) ABEND ABDUMP Phase (Module IEAVT~Ol) 

r------------------------------------------------------------T--------T--------,r------------------------------------------------------------T-------~--------, 

I I RCUTINE I I I 	 IROUTINE 1 1 
I NOTES 1NAME 1LABEL I I NOTES 	 INAME ILABEL I 
~------------------------------------------------------------t--------t--------i ~----------------------------------------------------------+--------+--------i
1 6 	 IABDUMP 1AEDPST 1 8 Only the direct antecedents of the current task which IAEDUMP IMATRIDMP 
1 	 IPhase I I are in the same job step are duml'ed. The preparations IPhase 1 
1 	 I 1 I for calling ABDUMP, and the processing after ABDUMP has 1 1 
1 7 The TS1·0 subroutine selects the lowest-level task in the I I I returned control are similar to that described fer a 1 I 
I chain of terminating tasks first. On the initial entry 1 1 I subtask (see Step 7). The resources displayed are the 1 1 
I into TSLO, the input consists of the complement I I I same as for a subtask; the I~ for an antecedent is 002. I 1 
1 (negativel of the tol' terminating task's TCB address. I I I However, the TCBFS flag, indicating that a subtask has 1 I 
1 If the top terminating task has a subtask (TCBLTC), the IT5LO 1TSLOLOOP 1 been dumped, is not set. If ABDUMP fails, processing 1 1 

address of the lowest-level subtask's TCB is the outl'ut 1 1 I continues as in Step S. The antecedents are selected 1 1 
for the first entry; otherwise, the input TCB address 1 1 I and processed until the job-step task is enccuntered; 1 1 
is also the output. For subsequent entries into TSLC, 1 1 I cleanup then begins (Step 9). 	 1 1 
the 	input consists of the address of the last TCE I 1 I I 
selected; the selection of the lcwest-level task 1 I I 9 The following cleanuF processing is performed: 	 1DMPCLEANI 
proceeds as follows: 1 I I 	 1 1 

1 I I 1. 	 1 1The GETMAIN default flag (TCBABGM) is set to 
1. 	 If the task represented by the input TCB address I IT5L05TST allow allocation from the SQA. 1 I 

has a same-level task (TCBNTC), the lowest-level 1 1TSLOS1S 1 1 
subtask of that task is selected. If the same-level I 1 2. A DEQ macro instruction is issued for the dUITF 1 I 
task has no subtasks, then the same-level task is I ITSLOEND 1 data set. 1 1 
selected and constitutes the output for this entry 1 1 I I 1 
into TSLO. 1 1 1 3. The valid recursion flag (TCBABCUR) is set to 1 1 

I I 1 o. 	 1 1 
2. 	 If the task represented by the input TCB address I 1 1 1 I 

does not have a same-level task, the originating I 1TSLOMOM 1 4. The Close Phase is entered. ICLOPHASE 
task (TCBOTe) of the input task is selected as 1 1 1 1 
outl'ut from TSLO. I 1 MO SETPDMP 

1 	 1 
If the subtask has not been dumped previously, IABDUMP 11 IGC1101C is the recursion entry Feint for module 
the 	following processing is Ferfcrmed: IPhase IEAVTMOl. From this Feint, based on the exact TCBABCUR 

flag setting, control passes tc a Foint subsequent toI 
1. 	 The current ABEND request is stacked by the I the location at which the failure occurred. 

STACTCB 	 SUbroutine, if necessary. I 

I 
 Recursion Flag Entry Point 

2. 	 The ABDUMP-in-l'rogress flag (TCBADINP) is set I X'11' FIXLLS 
in 	the current and job-steF TCBs. 1 X'12' DMP~SG 


1 
 X'l3' BYOPMSG 
3. 	 Registers are saved in the recursion save area and X'14' AFTADWTP 

the valid recursion flag is set (TCBABCUR X'1S' RECI1WTP 
X'12'). ------------------------------------------------------------~--------~--------

4. 	 ABDUMP is invoked by the SNAP macro instruction. 

A subtask dump is identified by an ID of 001. 


After ABDUMP processing has been completed, the follow­

ing functions are performed: 


1. 	 The valid recursion flag is cleared (TCEABCUR=O). 
en m 2. TCBFS is set to 1, indicating that the subtask 
(') has 	been dumped.
rt.... 

3. 	 The ABDUMP-in-Frogress flag is turned off.g 
4. Tasks that were stacked are restarted by the 

00 RESETHI subroutine. 

S. The next subtask is selected to be dUIDred. 

1-3 1 
After all subtasks have been dumped, the rescurces own- 1 

11 ed by the current task's immediate antecedents are I 
displayed (Step 8). Should ABOOMP processing fail, the I 

m 

~. message described in Step S is censtructed and sent to I 
Ij the 	programmer. 1 1 
~ 

~ ~l ____________________________________________________________ ________ ________ J 

.... 
g 
U1 
-..J 
ID 



U1 
co 
o 	 From Mainline ABEND (8.17) and the ABEND 

ABDUMP Phase (8.19) to erase completed tosks 
and close data sets 

Input 
---.... ­
--,. IGC020lC 

Selected TCB ....-- ­

TCBFC I ---- 1 Erase completed tasks. 	 TSLO 

I 
Se' ect tasks in 
the chain. 

Erase TCB 

IEAOERA 

8.4Selected TCB ....--'-,.----, 

TCBGTOFM I 	 ---- 2 Permit GETMAIN requests to be .., ......, ...." ...., ..........~~.................., ..''III 

satisfied using the SQA; restart GTF 
if suspended. 	 HOOK 

EID=IEAABON 

Register 4 + ....... ---- ---- 3 If the selected task is the current task t 7 

I Address of current TCB I 
STATUS 

4 Make selected tasks dispatchable. 
IGC07902 

ill! 	 3.18 

l..........................., .., ...., ... !Io......., .." ............ 

5 Process the ABEND SVRB. 

Entry purge 

6 Exit to the dispatcher. 	
... 

L 
 Dispatcher (3.17) 


ENTRY 2...,. 

7 Purge unexpired TQ Es and TAXEs. 	 Purge Timer 

I EAQPGTM 

8 Allow scheduling of asynchronous 
~exits. 	 "'...., ......, .., ...." .........., ................, .." 8.7 

.. 

Current TCB ....-- ­

TCBPIE I ---- 9 Purge the PIE if it exists. 	 FREEMAIN 

ABBRANCH 
Free storage in 
subpool 250. 

6.1 

(Continued at Step 10) 

Diagram 8.20 (Steps 1-9) 
ABEND Close Phase 

Output 

Selected TCB 

~"""""""'~ TCBABGM=1 

Current TCB 

~.., ...., ..~ TCBFX=1 

l" 	 L L 



_______ ________ 

r r r 

Diagram 8.20 (Steps 1-9) ABEND Close Phase (Module IEAVTM02) 
r------------------------------------------------------------T--------T--------, 
I IROUTINE I I 

I NOTES INA~E ILABEL I 

~------------------------------------------------------------+--------+--------~ 

L_____________________________________________________ ________J 

1 The TSLO subroutine is called to select lower-level IClose IGETLOTCBI 
tasks in the chain of terminating tasks. For all tasks IPhase I I 
that have ccmpleted execution, the Erase TCB sub­
routine of the End-of-Task (EaT) routine is called 

I 
I 

I 
I 

I 
I 

to erase the TCE. I I I 

2 This processing is performed only for incomplete tasks. 
I 
I 

I I 
INOTCOMPL 

I I 
3 I IGTFON1 

I I 
4 The selected task is set dispatcbable so that clOSing 

each data set can be perforll'.ed under control of thE 
of I 

I 
I 
I 

task that issued the OPEN reqUEst. I I 
I I 

5 The ABEND SVRB 
The resume PSW 

is moved to the selected 
is set to point to entry 

task's RB queue. I 
point ENTRY2 I 

I 
I 

(see Step 1). Registers are moved from the TCB to the I I 
ABEND SVRB. I 

6 
I 
I 

Before exiting to the dispatcher, the STATUS SVC 
issued to set the current task nondispatchacle. 
switch is performed (by the Task Switch routine) 

is 
A task 
to 

I 
I 
I 
I 

DISPAT 

I ensure that the new TCB fointer is set to 0 if it was I 
I equal to the old TCB pointer. The dispatcher causes thel 
I selected task to receive control at entry point ENTRY2. I 
I 
I 7 The EOT Purge Timer sucroutine is called to perform the 

I 
I ENTRi2 

I necessary purges. TAXE purges afply only to TSO tasks. I 
I 
I 8 Later close processing may require the use 

I 
of asynchron-I 

I ous exits. I I I 
~ ~ 

en 
III 

:+ .... 
g 
co 

"'3 

~ .... 
:; 
III 
rT .... 
o 
:; 

U'I 
co ..... 



VI 	 Diagram 8.20 (Sleps 10-19) 
CO 
IV ABEND Close Phase 

Input 	 Processing 

-----,~_ITB .--- ­
TCB~B I ---- 10 Close any open data sets. 
 CLOSE (SVC 20) 

No open data sets 

I 21 

--- 11 • 20If the data set was closed 

Entry poi forcefully 
* Note: The process ing for Steps 12 - 19close the , data set 

is located in module IEAVTM04. i "­
IGC0401C· 

IGGIFF02 
12 Close the open data set. 

Preassembled ---- 13 Obtain storage for a message buffer; Message +---­
move the preassembled message into 	 GETMAIN 

~ 	 the buffer.,­
'RMBRANCH 

Obtain storage from 
subpoal 253. 

6.1 

VaJ;dity Check 

DEB +----- --- 14 If the DCB is not in real storage IEAOVL02I DEBDCBAD I Check validity of 
DCB address. 

3.19 

DeB +---- --- 15 	Detennine whether the DEB address DeB address invalid 

in the DeB is the real DEB address. • 16
I DCBODEBA I 

---- 16 Purge the DEB from the jab-step DEB 	 DEBCHK
Register 1 +-- - __1___--' table. 

Address of DEB 

17 Dequeue the DEB from the TCB DEB 	 FREEMAIN 
queue, and free DEB storage. 

RMBRANCH 
SVRB +--__ Free DEB storage 

in ,ubpoal 254. I RECCOMPC I --- 18 	Initial ize the message buffer. 6.1 

19 	Inform the programmer that CLOSE WTO 
processing failed. 

(Continued at Step 20) 

l, c 	 L 




r r 	 r 

Ciagram B.20 (SteFs 10-19) ABEND Close Phase (Modules IEAVTM02 and IEAVTM04) 
r------------------------------------------------------------T-------~--------l 

I IROUTINE I I 
I NOTES INAME ILABEL I 
~------------------------------------------------------------+--------+--------f110 The STACTCB subroutine is invoked to a stack AEEND IClose ITESTDEBSI 
I request if required. The OPEN/CLOSE and stacking flags IPhase I I 
I (TCBFOINP and TCBS'rACK) should be set so that CLOSE Fro-I I I 
I cessing is not interruFted. A valid recursion flag I I I 
I (TCEABCUR = X' 41') is set during CLOSE processing. (See I I I 
I OS/VS OPEN/CLOSE/EOV Logic for information cn the Clcse I I I 
I routine,) I I I 
I 	 I I I
111 I ISRCHDEBSI 
I I I I
112 At this Foint. IEAVT~04 executes code generated ty the I FORCLOSEI 
I IGGIFF02 macro instruction. This code checks for a GAM I I 
I (graphics acceSS method) DEB. zeros GAM information froml I 
I UCBs (unit control blocks) associated with GAM DEBS. andl I 
I issues a FREEMAIN macro instruction to free any TEES I I 
I associated with GAM DEBs. For additional information onl I 
I the IGGIFF02 macro instruction. see OS/VS Graphics I I 
I Access Method Logic. I I 
I 	 I I
113 I CLOSEMSGI 
I I I
114 Both the ddname and the DEB address in the DCB must te I DCBLOOP I 
I in real storage. If the Validity Check routine finds I I 
I the DCB address to be valid. the DCB address is I I 
I referenced to cause a missing page interruFtion (Fage I I 
I fault). (The system is enabled while referencing the I I 
I DCB,) The DCB is then tested again to deterrrine whetherl I 
I it has been brought into real storage, I I 
I 	 I I
15 	 If the DEB address in the DCB is equal to the DEB I ICHKDCB I 

address. the ddname is obtained from the TIOl and moved I I I 
into the message buffer. Otherwise, the ddname is I I I 
obtained from the DCB. I I DCEtDNAMI 

I I 
16 See OS/VS OPEN/CLOSE/EOV Logic for inforrraticn on thE IFREEDEB I 

DEBCHK routine. I I 
I I 

18 The following elements are moved into the message MODDNAMEI 
buffer: I 

I 
• 	 JS or ST (job step or task failure). I 

I 
• 	 DEE address (converted into printable characters). I 

I 
• 	 Completion code from the SVRB (if not 0), I 

The completion oode is then zeroed out. I 
I 

• Message length (J[,essage text ccrr,pressed ty the 	 Ien 
(l) 	 Compact subroutine). I 
o 	 I
cT 	 119 Before issuing the WlO instruction, a valid recursion I 
~, 	 I flag (TCBABCUR = X'42') is set and registers are saved I g 	 I in the recursion save area, After the message has been I I 

I issued. the recursion flag is cleared and thE rress"gE I AFTCLWTPI 
CO 	 I buffer is freed. I I IL_____________________________________________________ _______~________~________J 

1-3 

;
(l) 

~, 

ts 
~ 
o 
~, 

ts 

VI 
CO 
W 



til Diagram 8.20 (Steps 20-26) 
co ABEND Close Phase 
.I:: 

Input Output-
IGC220lC Job-step TCB 

fi""""""""",...., ........... ;-."""""'''' ITCBSTACK=() 

20 Restart tasks that were stacked. RESETHIII II• 
More DEBs 

Current TCB +-­ -L- • 7 
21 If the current task faHed while I TCBSPVLK I owning the supervisor lock. SLKM 

Issue WTO ~ 
indicating failure. 

... ~""'''''''''''''' 

Job-step TCB 

~....",........, ...." ...., .. I TCBSTACK=1 

22 Set OPEN/CLOSE-in-process and i!!~"""""""""''''''~ 

stacking flogs; purge queued r.I ENQ Manual Purge 
resources. 

IEAOEOO1 

+--- 23 Purge 10 Es and SO Es on the 

asynchronous exit q\leues. PRGO 


IQE 

• III
SOE 

SVC 102 

--, Cancel TCAM. ~.. +---­
I 

I"24 Cancel outstanding TCAM and TSO 
interpartition POST requests. 

OTiP 

Cancel TSO. 

CurrentTCB +---- -~ 25 Determine whether the top No 

TCBFT I terminating task has been processed. 1 


From •YesRecu ABEND Final 
(8.2. Housekeeping Phasj (8.21) 
cont, 
recu 

~ IGC140lC 

Current TCB +- - - ­
2.6 Return to the foiling point os --'"I TCBABCUR I indicated by the recursion flag. ABEND 

J
~ '--------- - -- - - - - - - - ­

L l., \v 




r r 	 r 

Diagram 8.20 (SteFs 20-26) AB~NO Close Phase (Modules IEAVT~02 and IEAVTMOQ) 
r------------------------------------------------------------T-------~--------, r------------------------------------------------------------T--------T--------l 
1 1ROUTINE 1 1 1 	 1ROUTINE 1 1 
1 NOTES 1NAME 1LABEL 1 1 NOTES 	 INA~E 1 LABEL I 
~------------------------------------------------------------+--------+--------i ~------------------------------------------------------------+--------+--------~
120 If the current task does not require susFension, IClose ICLORESTRI Should an error occur during IEDQOTOl processing, or if IClose 1 1 
1 control Fasses to entry point ENTRY2 to process the IPhase 1 1 the ~ICP task is not present, AIlEND tests if 'ICA~ is 1Phase 1 1 
1 next DEB on the TCBOEB queue. This processing (Steps 1 1 1 active (CVTAQAVT). If so, ABEND saves registers in the 1 1TCAMACTV 
1 7-20) is performed until all DEBs on the current task 1 1 1 recursion save area, sets the valid recursion flag I I 
I queue have been processed, at which point the su~ervisor I I (TCBABCUR=X'23') , and issues an SVC 102 instruction to 1 I 
1 lock flag is tested (Step 21). 1 1 cancel TCAM interpartition Post requests. 1 1 
1 	 1 1 I 1
121 A valid recursion flag ('rCBABCUR = X'22') is set during 1SPVLKCHK 1 If TeAM is neither present nor active, the valid 1 1TSOPOST 
1 SLKM processing, and cleared upon return frOIf SlKM. IENQPURG 1 recursion flag is cleared (TCBABCUR=O) before ABEND can-I 1 

1 1 1 cels TSO interpartition post requests. 1 1
22 	 Because purge processing cannot be interrupted. any IENQPURGE 1 1 

current ABEND request stacked. The ENQ Manual IENQPG See OS/VS TCAM Logic for infornatien on SVC 102. 1 1 
Purge routine is called to purge resources. (See 1 See OS/VS2 TSO Contrcl Program Logic for information on 1 1 
·Secticn 3: Task Supervision- for information on the I the QTIP routine. 1 1 
ENQ Manual Purge routine.) A valid recursion flag 1 1 1 
(TCBABCUR = X' 21 .) is set to intercept the ai:norrral 1 125 If the current task is the top terminating task, clcse 1 1TSONO 
termination of EXCP when issued to release a shared I 1 processing is complete and the Final Housekeeping Phase 1 1 
DASD device, possibly resulting in an I/O error. ITESTTOP can be entered. Otherwise, close processing is re­1 	 1 1 

entered to process the lower-level tasks that have not 
After ENQ processing has been cOIfFleted, OPEN/CLOSE, 1 1 already been processed. 1 1 
stacking, and valid recursion flags are cleared. I 

1 1 	 1 I 

1 	 1 1 
The RESETHI subroutine is called to restart tasks. 1 26 IGC1401C is the recursion entry ~oint for module 1 1 

1 IEAVTMOq. From this Foint, tased on the exact 1 1 
123 The PRGQ subroutine first dequeues all IQES IPRGQ IPRGQITSTI TCBABCUR flag setting, control Fasses to a Feint 1 I 
1 (interruption queue elements) associated with the 1 IPRGQIDQ 1 subsequent to the location at which the failure 1 1 
1 current task from thE AEQJ (IQE asynchronous exit 1 1 1 occurred. 1 1 
1 queue). The high-order byte in the last IQE is set to 1 1 1 1 1 
1 X'FF' to indicate the end of the queue. After all IQEs 1 1 1 Recursio~lag Reentry Point 1 1 1 
1 have been dequeued, all SQEs (supervisor queue elements) 1 1PRGQSTST 1 X'Q1' B b~dL~h is first made to find the I ICLOSFAILI 
1 associated with the current task are dequeued from the 1 1 1 DEB. If found, the macro instruction 1 1NODEB 1 
1 AEQS (SQE asychronous exit queue). The high-order 1 1 1 is Executed to close the data set. 1 1NODDNAME 1 
1 byte in the last SQE is set to X'FF', and control is 1 IPRGQEND 1 If the DEB is not found, a message 1 1 1 
1 returned. 1 1 1 buffer is obtained from subFccl 253, 1 1 1 
1 1 1 1 and the message is issued to the 1 1 1 
124 If a TeAM task is Fresent (CVTAQAVB) and it is IClose 1TCAMPOST proqrammer. 1 1 1 
1 	 1 I Ithe MCP (Message Control Prograrr), the following 1Phase 1 
1 frocessing occurs: 1 1 X'42' AFTCLWTP 1________~________ J1____________________________________________________________ 1 

1 1 	
~ 

1. 	 An SVRB is obtained (using GETMAIN). 1 1 

1 1 


2. 	 The SVRE is queued to the top of the RB queue. 1 1 
1 1 

3. 	 The SVRB is formatted and AEEND's RBABEND=O save 1 1 
area is copied. 	 1 1 


1 1 

4. 	 The resume PSW in the second RE is set to label 1 1 


TSOPOST. 
 1 1 
CIl 1 1
ID Sa 	 Registers are saved in the recursion save area; the I I 

valid recursion flag is set (TCBABCUR=X'23'). 1 1~ .... 	 1 1 
6. 	 The input to the TeAM routine is set identical to 1 1g that produced by the SLIB. 1 1 

1 1co 7. 	 An XCTL instruction is issued to Fass control to thel 1 
TCAM routine 110,,0'101, which returns control to 1 1 


1 label TSOPOST if processing is successful. 1 1
l ____________________________________________________________ ________~________ 

t-3 
~ 

5 .... 
=III 
rT.... 
g 
CJ1 
CO 
CJ1 



VI Diagram 8.21 (Steps 1-7) 
Q) ABEND Final Housekeeping Phase 0\ From the ABEND Close Phase (8.20) to 

purge resources 

Input 	 Processing 
* Note: The ABEND routine has been divided HOUSKEEP' 

into phases according to function. This entry 
point is not a true entry point; it is the first 
label in this phase.Register -4 .... -' -, 

Address of cu rrent TCB I L 1 Select the lowest-level task in the TSLO
chain of terminating tasks. 

• 	 II'2 	 Pu rge pages that have been fixed 
by the selected task. FIX Purge 

IEAPFIXP 

+------ -, 	 S.S8 

r------, L- Purge RBs and associated resources. REMOVERB3 
Purge RBs, CDEs and 
programs. 

Selected TCB .+LLE +-r--' 
Purge programs loaded for the selectedTCBLLS ~ I I L 4 	 Re"lease Locded Programs
task. 

IEAQABL 

B.8 

5 	 Free storage allocated to the selected 
to,k; purge unfilled STAE!STAI request>. Release Storage I 

ilEAQSPET 

Register 4 +--r -, 	 8.9 

I 	Address of current TCB I l_ 6 If the selected task is the current task FREEMAIN 

IGCOOS 

Free SeB storage • 
6.1• 9 

7 	 Remove the selected task 1s TeB from the 
dispCltcherls priority queue. Dequeue TCB 

IEADQTCB 

8.S 

(Continued at Step 8) 

( 	 L, L 



r 	 r r 

Diagram 8.21 (steps 1-7) ABEND Final Housekeeping Phase (Module IEAVTM02) 
r------------------------------------------------------------T-------~--------, 

I IROUTINE I I 
I NOTES INAME I LABEL I 
~------------------------------------------------------------+--------+--------i

1 The lower-level tasks are purged first to eliminate IFinal I TCBSELOPI 
conflicts arising as a result of shared resources. IHouse- I I 

Ikeeping I I 
Phase I I 

I I 
The REMOVERB subroutine is called to purge resources RBADDROKI 
associated with the task's RB queue. The input to 

3 
I 

REMOVERB consists of the address of the RB that is I 
queued tc the ABENC SVRE if the selected task is the I 
current task. Other~ise, the top RB On the TCE RB I 
queue is provided as input. REMOVERB performs the I 
following functions: I 

I 
• Makes a serially reusable resource~ which is ccn­	 I 

trolled by the RB, availacle for other tasks. 

• Purges all resource requests not fulfilled at this 
time. 

• Purges control blocks and work areas asscciated 
with a module that the RB has requested and which 
has not been loaded. 

Frees storage occupied by the RB, unless the RE is 
static (RBDYN), or is the last RB queued to the 
current TeB. If the RB is static, the storage 
cannot ce freed cecause it was not dynamically 
allocated to the task. If the RB is the last RB for 
the current task, the storage is needed ~hen the 
interface to the End-of-Task (EOT) routine is 
established. 

(See Chart 8-1 for detailed information on the REMOVERB 
subroutine. ) 

4 	 The Release Loaded Programs subroutine purges the 
necessary loaded programs and control clocks. 

The Release Storage sucroutine frees the storage 
allocated to the selected task in its own sucpool. In 
addition, storage in the LSQA and SQA is freed from 
subpool 253. All STA control blocks are freed fro~ ISCBPURGEI 
subpool 253. I I 

I I 

5 

6 	 IBYSCB I 
I I 

Upon return from the Dequeue TCB SUbroutine, the TCBFC7CIl processing.flag is set to indicate that the task has corrpleted I TCBERASEI (1) 
o L____________________________________________________________1________1________J 
rI" 
~. 

g 
co 

1-'3 
(1) 

R 
::s 
PJ 
rI" 
~. 

o::s 

UI 
CO 
~ 



VI Diagram 8.21 (Steps 8-14) 

CO ABEND Final Housekeepina Phase 
CO 

Processing 

8 Purge the selected task's TCB. 	 Erase TCB 

Input IEAQERA 

8.4 ._--- 9 If the current task is a job-step task 
Current TCB .... - - - -.-- ­

that is not the highest-level task in 
TCBNTJS the chain of terminating tasks • 11 1 

SVC 3 

10 Enter the End~f-Task routine. 	 8.3 

11 Remove the current task from the 
dispatcher's priority queue. Dequeue TCB Output

IEADQTCB 

8.5 

Originating reB12 Set completion and dispatchability 
flags. 	 STATUS ..... TCBLJSND=O J 

IGC07902 

3.18 
Current TCB 

TCBFC 1R.""""""',~ 	 I 
ABEND SVRB ~ RB+ -.--- ---- 13 	 Purge and RB and TCB of the current 


task. 
 Erase TCBRBLINK _ I !Tom the NO Recursion 
Phase (8. to route IEAQERA 
control 01 .ecursion 8.4 

IGC120lC .. 
Dispatcher (~.17) 

Current TCB • ---- ---- 14 Return to the failing point as indicated

I by the recursion flog. 	 ABENt)
TCBABCUR 

L 	 L L 



00 

r r r 

Diagram 8.21 (Steps 8-14) ABEND Final Housekeeping Phase (Module IEAVTM02) 
r------------------------------------------------------------T-------~--------l 

I IROUTINE I I 

I NarES INAME ILABEL I 

~------------------------------------------------------------+--------+--------i 
I 8 The Erase TCB subroutine dequeues the selected TCB and IFinal EOTERASEI 

I frees the storage cccupied by the TCB. The next task islBouse- I 

I then selected and processed (Step 1). Ikeeping I 

I P~- I 

I I 

I 9 If the current task is a job-step task that is not the I 

I highest-level task, a test must be made to deterrrine I 

I whether multiple job-step failures have occurred. I 

I I

110 ABEND places the ccm.letion code in register 15 and I 

I exits to the End-of-Task routine. EOT posts the ori- I 

I ginating task's ECB and/or schedules the originating I 

I task's ETXR routine. If neither action was specified I 

I when the task was created, EOT erases the currEnt task. I 

I I

111 The Dequeue TCB subroutine removes the current task. ITCBERASE 
I I

112 The nondispatchability flag (TCBLJSND) was set earlier I 

I by ABEND when it was determined that a multiple job-step I 

I failure had cccurred. At that time it was necessary to I I 

I stack the higher-level job step until the lower-level I I 

I job step had been terminated. A task switch is perforrn-I I 

I ed if necessary. I I 

I I I

113 If the ABEND SVRB points to the TCB, the Erase TCB I I FINAL 

I subroutine purges the last RB and the TCB of the current I I 

I task. EOT exits to the Dispatcher, which passes ccntroll I 

I to the originating task. The originating task then I I 

I reenters ABEND processing at the point at which it was I I 

I suspended. Otherwise, the RB queued to the ABEND SVRB I I 

I is dequeued from the selected task's RB queue. If the 

I RB is not an IRE or TIRB, but is a dynamic RE, FREEMAIN 

I is called to free the RB previcusly queued tc the ABEND 

I SVRB. The next RB (RELINK is then tested. 

I 

114 IGC1201C is the recursion entry point for module 
I IEAVTM02. From this point, based on the exact TCBABCUR 
I flag setting, control passes to a point subsequent to 
I the location at which the failure occurred. 
I

I Recursion Flag Reentry Point 
I X'21' ENQPG 

I X' 22' ENQPURG 

I X' 23' TSOPOST 


~L____________________________________________________________ ________~________ 

en 
(1) 
<"I 
rt.... 
g 

1-'3 

a.... 
::s 
IlJ 
rt.... 
g 
U1 

\0 
00 



Chart 8-1 (page 1 of 2). REMOVERB Subroutine 

INPUT: ADDR OF 
FIRST RB TO BE 

PURGED FOR 
SELECT TeB 

590 



Chart 8-1 (page 2 of 2). REMOVERB subroutine 

Section 8: Termination 591 




V1 
\I) 
I\,) 

From the ABEND Initial.Housekeeping Phase 
(8.16) to process tasks that failed while in 
must-complete status 

-
~ IGC030lC 

1 	 Purge critical resources and attempt 
to provide a dump. 

Input 

Inform the programmer of the name2Current TCB ... of the task that failed in must-
complete status. 

---, 
3 	 Group QEls representing a single 

ENQ request. 

Register 9 
-- ._--­

Address of minor QCB 

4 	 Determine whether the resources 
owned by the current task are 
critical. 

5 If the current task c09trols any 
must-complete resources. 

6 	 If the current task still operates 
in must-complete status. 

7 	 Prepare for abnormal termination 
Current TCB 4-- -- --- ­

I 	 of the job step.I
TCBTlD 

Reenter ABEND at entry point8 
IGClO01C for noncritical tasks, or 
IGCOOO1C for critical system task. 

Diagram 8.22 
ABEND Must-Complete Phase 

CRITPURG 

Purge pag ing, I/O, 

WTORs; invoke 

SVCDUMP. 


BLDMSG I 
Construct message text. 

I 
WTO 

I 
MCOEL I 

Locate must-
complete QELs.L 

•. No OEls 
WTO 

Inform programmer that 
there are no queued 
resources • .. 


ABEND Critical 
Erra, Phose (8.23) Output

ENOMSG 

Flag OEL and 
~ query operator.

I Noncritical 

~"""""""""" ..,"""""'" 
ABTERM 

IEAOABOO 
Schedule tasks queued 
on th is resource for 
ABEND. 

8.12 

WTO 

Inform programmer that 
task still operates in 
must-<:omplete status. 

ABEN D Critical 
Error Phose (8.23) Current rCB 

" ....' ....~CBFA;'O.."""""""""'~ ~"""""" ...
Noncritical 

ABEN D Initial 

Housekeepi n9 Phose (8.16) 


Critical 	 I ABEND Initialization 
Phase (8.14) 

~ 	 l, \. 



r r 	 r 

Diagram 8.22 ABEND Must-Ccrr'j:lete Phase (Module IEAVTI'03) 
r------------------------------------------------------------T-------~--------, r------------------------------------------------------------T--------y--------,
I IROUTINE I I I IROUTINE I I 
I NOTES INAME ILABEL I I NOTES INAME ILABEL I 
~------------------------------------------------------------f--------+--------~ ~------------------------------------------------------------f--------+--------~1 The CRITPURG subroutine calls the follcwing routines to I I I 4 For each must-complete reSource owned by the current I I I 

j:urge resources for the current task: I I I task, the ENQMSG sutroutine is called to flag the QEL asl I ISSUEMSGI 
I I I processed (QELABEND), and determine whether the resourcel I I 

1. Termination Interface (Diagram 5.57) -- purge 	 I I I is critical (using \olTOR). The ENQMSG subroutine sets I I I 
paging 	activity. I I I the valid recursion flag (TCEABCUR = X'36') for WTCR IENQMSG IENQMCRITI 

I I I processing, and clears it upon completion of WTOR proc- IMust- IRESETMC I 
2. 	 purge I/O -- purge I/O activity. I I I essing. If the resource is considered noncritical, the IComfletel I 

I I I nondispatchability flags are turned off so that a later IPhase I I 
3. 	 WTOR Purge -- purqe WTOR requests. I I I entry into the ENQ Manual Purge routine causes the r€- I I I 

I I I source to be released. A critical resource is flagged asl ITSTRESRV 
Before calling SVCDUI'P to take a system dumj:, a valid ICRITPURGICRITDUMPI permanently unavailable, and any tasks with outstanding I I 
recursion flag (TCBABCUR = X' 34') is set. If the I I I requests for that resource are scheduled for abnormal I I 
SVCDUMP routine is unouccessful (return code * 0), a I I I termination using ABTERM. Any tasks requesting uncon- I I 
valid recursion flag is again set (TCBABCUR = X'35'), I ICRITMSG I ditional use of the resource are abnormally terminated I I 
and a message buffer is allocated from subpocl 253. I I I by the ENQ Manual Purge routine. The must-ccmflete €n- I I 
After the message text has been built by the internal I I I vironroent can be eliminated only if all resources asso- I I 
subroutine BLDMSG, a WTO instruction is issued indicat- I I I ciated with the request that established the environn.ent I 
ing that the SVCDUI'P routine failed to provide a dump. I ICREAFWTO I are released. Regardless of whether the resource is I 
The buffer storage is then freed, recursion flags are I ICRITEND I critical, the MCQEL subroutine is invoked to select the I 
cleared, and execution continUES. I I I next must-complete QEL with the same ENQ 10. If a step I 

I I I resource is queued with the SMC = STEP Ofticn, the I TSTSTEP 
2 The message buffer is ol:tained from sutpool 253 by the IMust- I I resource is automatically released and the associated I 

RI'BRANCB routine, the roessage text is built ty the ICompletel I job step is abnormally terrr,inated. A STEP rescurce I 
BLDMSG subroutine. A valid recursion flag (TCBAECUR = Phase I EYENQOPMI does not rej:resent a threat to system integrity. A I 
x'311) is set across WTO processing; it is cleared uran I I message is issued to the prograrrrrer to int~rn hirr that I 
completion of processing. I I the resource was released. A valid recursion flag I 

I I (TCBABCUR = X'32') is set during WTO processing and I 
3 	 Because the current task may have issued more than one I I cleared upon return. IAFTMCWTPI 

ENQ request, it is necessary to isclate all resources I I I I
allocated as a result of each separate request~ Ho~­ I I 5 After all must-comflete resources have been defined as ITESTDONE 
ever, since there can be only a single resource I I critical or noncritical, the current task is exarrined I 
allocated on a RESERVE request, it is not necessary to I I to determine _hether it still controls any must-complete I 
try to group RESERVE requests. The MCQEL sutrcutine is I ISOLAQEL resources. If yes, any other tasks (except TSO "out-of-I ITERMTCB 
called to locate must-complete QELs for the current I core" users) queued to use the must-complete resource I I 
task. After a must-complete QEL is located, the ENQ ISAVEIt are acheduled for abnormal terrrination. The rescurce isl I 
request ID is saved to identify the request. The MCQEL I flagged as unavailable and the critical Error Phase is I I 
subroutine is invoked again to find additional must­ I entered to set the current task's job step perrr.anently I I 
complete QELs that have the same ENQ ID and for which a I nondisfatchable. I I 
STATUS SVC instruction has been issued. The STATUS SVC ITESTSVC I I
instruction is issued to establish the must-complete I 6 The current task could still be operating in a must­ I I
environment, the QELSTAT flag is set in one cf the QELs I complete state if the task issued its own STATUS SVC in-I I 
to indicate that all resources requested have been allo­ I struction .. I I
cated and the must-com~lete environment has teen estat­ I 	 I I
lished as a result of that request. If a message is I 8 	 I IMCSYSXIT I

L-___________________________________________________________ ________ ________J~ ~issued to the prograttmer, a valid recursion flag I ERRMSG 

(TCBABCUR = x'33') is set during WTO processing, it is IAFERRMSGI 

cleard upon completicn of processing. (See Chart 8.2 I I 


en for detailed inforroation on the MCQEL subroutine.) I I I
L____________________________________________________________ ________L________J 

(I) 	
~ 

~ 
~. 

g 
CIO 

1-3 

~ 
~. 

::s 
PI 
rt 
~. 

g 
VI 
\j) 
(.oJ 



Chart 8-2. MCQEL Subroutine 

j 

IF0QC~E~~g~ = 

BEGINS WITH 

FIRST MAJOR QCB 


j 

IF INPuT ENQ IO 

l~ N?~Z~R?NP8~L
E~O ID BEFORE 
QEC SELECTED 

J 

594 





VI Diagram 8.23 (Steps 1-8) 
ID ABEND Critical Error Phase 
0\ 

From ABEND to process a must-complete or 
critical system task 

Input 	 Processing 
IGC1301C 

CVT ,selected TCB 1 	 If the selected task is not in the same 

job step as the terminating task
I CVTHEAD I TCBJSTCB 	 • 6 

Current TCB


I TCBJSTCB 

Purge resources. 2 	 Output 

Current TCB 

TCBSPVLK ~ 
Selected TCB ..... --- 3 	 If the failing task owned the 

I 	 supervisor lock SLKM ..., ....~ TCBSPVLK=O~""""" ... 
Issue WTO relating 
failure.

Set the selected task permanently 
nondispatchable if it is not the 

4 
Selected TCB 

current task. 	 STATUS ...,...."+-1 TCBABWF=l 
IGC07902 

3.18 

Selected TCB .- - - --- ­

TCBGTOFM 
 I 5 Restart GlF if required. HOOK 

EIF=IEAABON 
Allow GTF to perform cleanup 
processing if a GTF task is failing 

6 
_..JRegister 8 	 ... and there are no more tasks on the More tasks 
I Address of· selected TeB I TeB priority queue. 
 • 1 

Inform the operator that task processing 
was halted. 	 WTO 

7 

I 
8 Set the current task permanently 

nondispatchable. STATUS 

lGC07902 

3.18r 

(Continued at Step 9) 

# 

L 	 Lr L 



r 	 r r 

Diagram 8.23 (Steps 1-8) ABEND Critical Error Phase (~odule IEAVT~03) 
r------------------------------------------------------------T--------T--------,
I 	 IROUTINE I I 
I NOTES 	 INAME I LABEL I 
~-----------------------------------------------------------+--------+--------~

1 	 All tasks on the task priority queue are checked to ICriticallQUIJSPTRI 
determine whether they are in the same job step as the IError I I 
terminating task. IPhase I 

I I
2 The following resources are purged for each task I I 

selected: I \ 
I \ 

1. 	 Entries in the type-l SVC rr.essage table I I 
(MSPURG subroutine). I I 

I I 
2. Paging activity (Termination Interface routine). \ \ QUIPAGE 

I I 
3. Outstanding I/O activity (Purge I/O routine). I I QUIPGIO 

ij. Asynchronous exit queues (PRGQ subroutine). QUIPRGQ 

5. 	 outstanding WTOR requests (WTOR Purge routine). QUIWTOR 

6. 	 Queued resources (ENQ/DEQ routine). QUIENQPG 

The valid recursion flag (TCBABCUR = X'El') is set 
during the processing of the last five routines. Shculd 
the processing of any routine result in a recursion, 
ABEND is reentered at the following points: 

Routine failina Reentry pOint 
Termination Interface QUIPGIO 
Purge I/O QUIPRGQ 
PRGQ subroutine QUIWTOR 
WTOR Purge QUIENQPG 
ENQ/DEQ QUISLKM 

3 	 A valid recursion flag (TCBABCUR = X'El') is set during IQUISLKM 
WTO 	 processing. If a failure occurs, ABEND is reentered I 
at QUITSCUR (Step ij). 	 I 

I 
I QUITSCUR\ 4 
I I 

5 	 A valid recursion flag (TCBABCUR = X'El') is set during \QUIGTFONI 
HOOK processing_ If a failure occurs, ABEND is re­ \ \ 
entered at QUINXTCB (Step 6). \ I 

\ I 
6 A valid recursion flag (TCBABCUR = X'El') is set during \ QUINXTCBI 

HOOK processing_ If a failure occurs, ABEND is reenter­ \ I 
ed at QUIMSG (Step 7). I I 

I I
7 The storage for the message buffer is allocated froIT IQUIMSG \ 

CIl subpool 253. Valid recursion flags (TCBABCUR = X'El') I \ 
(1) 	 are set during GET~AIN/FREE~~IN and WTO [rocessing. I I g. 	 After issuing the message, the buffer is freed. If a IQUIMSGF I 

failure occurs, ABEND is reentered at QUIMSGF. I I I.... 	 L____________________________________________________________ ________ ________ J 

g 
~ ~ 


ex> 


1-3 


~ .... 
::l 
QJ 
rt .... 
o 
::l 

VI 
ID 
ooJ 



--

I.n 	 Diagram 8.23 (Steps 9-16) 
IJ:) 
(Xl 	 ABEND Critical Error Phase 

Processing 

Exit to the dispatcher. Dispatcher (3.17) 
Entry 
inva 

9 

• IGC2301C 	 Output 

SVRB ESA10 	 Set the current SVRB completion
Input 	 code in the ESA. ..,"""""""",.... ..""""".,.~"~~-.J RECCOMPC=O I 

r=:.:..c::::....:.~---,,+---- 11 If the current task is in must-

complete status 1
I 

12 	 Attempt to provide a dump. SVCDUMP 

lEAVADOQ 

8.26 
13 	 If the current task is the job-

step task 1I 

Job ..tep TCB14 	 Tum off flags and schedule the 
job step for abnormal termination. ..""""".,.~".~. TCBFA=O~""""""""'" TCBABCUR=O 

ABTERM• 
TCBABWF=O 

IEAOABOO 
TCBADINP=O

Schedule ABEND, 
no dump, CC=DOD TCBFOINP=O 

TC8STACK=O8.12 

Current TeB 
STATUS 

N TCBABWF=1 
1 GC07902 

~....~ 
3.18 

From the 

Recursio I 15 Exit to the dispatcher. 
 Dispatcher (3.17) to route 

recunion 


~ IGC3301C 

CurrentTCB +---­	 ...16 	Retum to the fail ing point as ABENDTCBABCUR I 	 indicated by the recursion flag. 

l, Lv 	 L 




r 	 r 
Diagram 8.23 (Steps 9-16) ABEND Critical Error Phase (Module 	IEAVTM03)
r------------------------------------------------------------T--------T--------, 
I IROUTINE I I 

I NOTES I NAME ILAEEL I 

~------------------------------------------------------------+--------+--------~9 If a task switch is necessary, it is performed by the ICritical IQUIESOUT I 


r 


til 
(I) 
o 
rt.... 
o::s 
(I) 

8 

(I) 

11 

EI
.... 
::s 
CI 
rt .... 
o::s 

\J1 
\C 
\C 

Task Switch routine. Control then passes to the dis- IError 
patcher to dispatch a new task. IPhase 

10 	The SVRB cannot be purged because other routines might 

need to refer to it. 


11 	Processing for the job step associated with the current 

task is halted if the task is in most-complete status. 

It is not necessary to provide a dump because it was 

atte~pted in the Must-Complete Phase. 


12 A valid recursion flag (TCBABCUR = X'E1') is set during 

I SVCDUMP processing. If the durrp failed, a ~essage is 

I constructed and sent to the programmer indicating the 

I failure. A valid recursion flag (TCBABCUR=X'El') is setl 

I during WTO processing. The message buffer is freed uponl 

I issuing the WTO. If SVCDUMP processing results in a I 

I 
 recursion, ABEND is reentered at INVAFDMP. If liTO I 

I processing fails, ABENC is reentered at INVAFWTC. I 

I I 

I 13 	 I 


I 

15 	Before exiting to the dispatcher, a task switch is I 


ensured. The dispatcher then effects the abnormal term­
ination of the job step. 

16 	IGC3301C is the recursion entry point for module 

IEAVTM03. From this point, based on the exact TCBAECUR 

flag setting, control passes to a point subsequent to 

the location at which the failure occurred. 

X

Recursion Flag Reentry Point 

X1 31' BYENQOPM 

X'32' AFTMCWTP 


I 3)' AFEFFMSG 

X'34' CRI'lMSG 

X'3S 1 CREAFWTO 


L 
X'36' ENQMCRIT 

____________________________________________________________~________~ 

I I 

I I 


I 

I 

I 

I 

I 

I 

I 

I 

I 

I 


INVDUMP I 

I 


INVAFI:MPI 

INVAFliTOI 


I 

I 

I 

I 


INVTSJSTI 
I 

I 


INVDISP I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 


________JI 




--

C1\ 	 • Diagram 8.24 
o ABEND Recursion Phase o 

From the Initial Housekeeping Phase (8.16) 

to process the recur-don and reenter ABEND 

if possible 


-
*Note: The ABEND routine has been divided into phasesABRECUR' 

according to function. This entry point is not a true entry 
point; it is the first label in this phase. 

1 	 Move information into the current 
ABEND SVRB. MVESA 

Input 	 Move data from previous 
ABEN D SVRB into 
current SVRB. 

..14-- 2Saved recursion code If the recursion is invalid 	 8.23 

3 	 If valid recursion occurred during 
invalid recursion processing. I 9 

Register 4 + __ 4 Purge outstanding paging activity
I Address of current TCB I for the current task. Termination Interface 


IEAPTERM 
Purge paging activity 
and second exits. 

5.57 

Register 4 .. - --, 


Address of current TeB I 5 Purge outstanding I/O. 	 Purge I/O l 
IGC016AP 


SVRB ESA 


Parameter list 	 6 Purge partially loaded programs. PARRLSE............ 

Invokes PGPGM_J

Register 4 .. -	 and PRBHOSKP. 

I Address of current TCB I 

7 Purge outstanding WTOR requests. WTOR Purge 


IEECVPRG 

8 	 Free new SVRBsi purge the type-l 
SVC message table. RECRBPRG Output 

~ I 
Current TCB9 	 Allow scheduling of asynchronous 

exits. TCBFXooQ 
...,""""""""'"~""""""~",,-.j 

Current TCB ... - - 10 	Return to ABEND at the point 

subsequent to the action causing 

~


I TCBABCUR I 	 ABEND
the recursion. 

L L 	 L 




r 	 r 

• Diagram 8.24 ABEND Recursion Phase (Module IEAVTMOO) 

r------------------------------------------------------------T--------T--------, 
I I ROUTINE I I 
I NOTES INAME ILABEL I 
~------------------------------------------------------------+--------+--------~ 
I 2 If an error condition occurS during ABEND precessing IRecur-
I which leads to a new request for abnormal termination Ision 
I of the task already being terminated, ABEND is re- IPhase 
I entered. This reentry (recursion) is scheduled so that I 
I ABEND can attempt to complete termination prccedures. I 
I If ABEND anticipates this reentry, and has steps to deall 
I with it, the recursion is considered valid (see Tatle I 
I of Valid ABEND Recursions). If the recursion is un- I 
I expected, it is considered invalid (the saved recursion I 

code = 0): the critical Error Phase is entered. I 

3 

8 No RBs are purged until the eleventh or subsequent 
recursion, then all SVRBs existing between the current 
ABEND SVRB and the previous ABEND SVRB are dequeued and 
their storage freed. This is done to minimize the 

amount of queue space required r.y ABEND. 


Asynchronous exits were allowed prior to the recursion9 
and 	prevented because of the recursion. The TCBABCUR 
field is reset with the saved recursion code. 

10 	 Depending on the TCBABCUR flag setting, ABEND is 

initially reentered at the following recursicn entry 

points: 


X

TCBABCUR Module Recursion Entry Point 
X'Ol' IEAVTMOO MCTES'! 
X'll' - X'15' IEAVTMOl IGCllOlC 
X' 21' - X'2S' IEAVTM02 IGC1201C 

1 31' - X'36', 
X'Ell IEAVTM03 IGC3301C 


X'41' - X'42' I EAVTMO4 IGC1401C 


Based on the exact TCBABCUR flag setting, control passes 
from this recursion entry Foint to a point subsequent 
to the location at which the failure occurred. 

TABLE OF VALID ABEND RECURSIONS 

TCBABCUR Routine that failed 
X'Ol' Initial Housekeeping 

Phase 

CI) X'11 ' Open Phase 
CD 
o 
rt" X'12' ABDUMP Phase.... 
g X'13' Open Phase 

co 

X'14' ABDUMP Phase>'3 
CD 

~ .... L 

Processing that failed 
~TO 	~rocessing to inform 
the operator of the fai ­
lure of the task while it 
owned the sUFervisor lock. 

OPEN processing for the 
dump data set. 

ABDUMP processing. 

WTO processing to inform 
the programmer of a fail ­
ure during OPEN processing 
for the data set. 

WTO processing to inform 
the programmer of the fai ­
lure to ~rovide an atncrm­
al termination dump • ____________________________________________________________ ________~________ 

::l 

rt" .... 
g 
0­
o .... 

~ 

I I 
I I 
I I 
I I 
I I 
I I 
\ I 

I 
I I 
IINVRECUR I 
I I 
IVALIDREC I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

NOPURGES 

r 
r------------------------------------------------------------T-------~--------l 

I IROUTINE I I 
I NOTES INAME I LABEL I 
~------------------------------------------------------------+--------+--------~ 

X'15' Mainline ABEND 

X'21' Close Phase 

X'22' Close Phase 

X'23' Close Phase 

X'24' Close Phase 

X'25' Close Phase 

X1 31' Must-Complete Phase 

X'32' Must-Complete Phase 

X'33' Must-Complete Phase 

X'34' Must-Complete Phase 

X'35' Must-Complete Phase 

X'36' Must-Complete Phase 

X'41' Close Phase 

X'42' Close Phase 

L--__________________________________________________________ ________ ________J~ ~ 

WTP processing to inform IRecur-
the programmer of all Ision 
entries in the type-i SVC IPhase 
message table (MSGPHASE 
subroutine) • 

I/O 	error received in the 
release of a shared DASD 
device. 

WTO processing to inform 
the operator of the fail ­
ure of the task while it 
owned the sUFervisor lock. 

TCAM processing. 

SVC 	 Dump failed. 

WTO indicating SVC Dum!; 
Failure failed. 

WTO 	 processing to inform 
the progral[.mer that the 
task failed while in sys­
tel[, or steF must-ccm!;lete 
status. 

WTO processing to inform 
the progran~er that a I 
must-complete resource was I 
released since it was I 
defined as a step resource I 
instead of a systen I 
resource. I 

I 
WTO processing to inform I 
the progranmer that even I 
though a task is in must- I 
complete status, there arel 
no more must-complete I 
resources allocated to thel 
task. I 

I 
SVCDUMP processing I 
(CRITPURG subroutine). I 

I 
WTO processing to inform I 
the programmer of the fai-I 
lure of a SVCDUMP to pro- I 
vide a dump. I 

I 
WTO/WTOR processing to I 
determine whether a must- I 
complete resource is crit-I 
ical (ENQMSG subroutine). I 

I 
CLOSE processing for user I 
data sets. I 

I 
WTO processing to inform I 
the programmer of the fai-I 
lure to close data sets. I III 



IV 

0­
o r-----------------------------------------------------------~-------~--------, 

I IROUTINE I I 
I NOTES INAME ILABEL I 
~------------------------------------------------------------+--------+--------~ 

X'El' Critical Error Phase 	 Processing connected IRecur-

with one of the Ision 

following routines I Phase 

failed: 


• 	 Termination Inter­
face routine -­
purge of paging 
activity. 

• 	 Purge I/O routine 
-- purge of I/O. 

• 	 PRGQ subroutine - ­
purge of asynchron­
ous exit queues. 

• 	 WTOR Purge routine 
-- purge of WTOR 
requests. 

• 	 ENQ/DEQ routine 
purge of queued 
resources. 

• 	 WTO routine -­
attempting to inform I 
the operator of a I 
task failure while I 
owning the super- I 
visor lock. I 

• 	 WTO routine -- I 
attempting to inform I 
the programmer that I 
a task was halted. I 

• 	 HOOK processing for I 
GTF. I I I ____________________________________________________________~________~________J 

l, l, 	 l, 




r r 	 r 

Diagram 8.25 
Overview of the SVCDUMP 
and ABDUMP Routines 

GEAVAD81---- --------;;A~D~ - - - -- - -----;-E~;;;-;;... --------IIEAVADOO 
SVC 51 ;,sued by P-. 	 ISVCDUMP RouHne 	 PRINT Routine a SNAP or SDUMP 

8.26 I 	 8.38macro instruction 
• Go immedictely to ABDUMP if the caller is not key 0, I • 	 Provide an interface to the OUTPUT• of if ABDUMP is requested. 	 I routine from subsystem modules. 
• 	 Deactivate the supervisor trace. I 
• 	 Set specified tasks nondispatchable. 
• 	 Enable the system. I 
• 	 Build and sort a list of the storage addresses to be dumped. I 
• 	 Construct a header for the dump and write it out. I 
• 	 Dump specified storage area, I
• 	 Disable the system. 
• 	 Reset tasks that were set nondispotchable. I 

"Caller
• Reactivate the supervisor trace. 	 I 

I IEAVAD41 

IEAVADOI 	 I FORMATOI RauHne 
I 8.39ABDUMP Mainline Processing 

8.27 	 I • Unpack and translate data in the 
print line, without providing anIThe user may specify which data areas are to be printed in the 
indentation factor.

• 	 1!u;ld a PIE and PICA. dump. Each user-specified option is associated with a I 
• 	 Check vaHdhy of the DCB. functional routine that performs the necessary processing. 
• 	 Check the job-step level. Fields in the ABDUMP work area (ABDAREA) indicate which 
• 	 Obtain storage for the dump. functional routine should gain control; the Mainline routine 
• 	 Suspend GTF if necessary. then passes control to the functional routine by a BALR 
• 	 Queue the dump data set if instruction. The functional routines gain control in the 


necessary • order specified by the numbers; processing consists of 

• 	 Check validity of the TCB. formatting (if necessary) and printing the data areas indicated. 
• 	 Initialize the supervisor All routines are given control with the following registers set: 


trace table if required. 

1 -- Address of ABDAREA• 	 Initial ize 1/0. 

13 -- Address of the save area 


functions. 

• 	 Execute user-specified dump 

14 -- Return address 
15 -- Entry-point address • 	 Return to the caller. 

All functional routines return to the ABDUMP Mainline routine. 

I 
APFSUPDA on , 	 APFSUPDA on'Uncond;t;onal " 1 IEAVAD02 	 2!IEAVAD03 31EAVAD05 

Formatting the Header and PSVV 	 Formatting Control Blocks I Formatting Control Blocks II 
8.28 	 8.29 8.30 

CIl • Job name I step name, time I date, user I D, page number. 	 • IQE, and SQE,.• TeBs./I) 
• 	 Completion code. • RBs. • SPQEs, DOEs, and FOEs.o 

rt • PSN, ILC , and interruption code. • LLE,. • POE, and FBOE,. 
~. • CDEs and extent lists. 
o • DEBs.
::l 	 • TIOT and associated DO entries. 

00 	 II 	 APFREGS, APFSNAP, 
APFSUPDA on 	 APFNUC onl APFJPA, APFLPAon ~ 

/I) 6 IEAVAD08 	 7 IEAVADOA 81EAVADOB 

Interface Routine 	 Displaying the Nucleus Displaying Registe~e. 8.33 8.34 8.35 

::l Provide an interface with the following routines: • Nucleus heading • Register contents. 
• Nucleus, excl usive of the• TCAM Formatting. 	 • Storage described by the snapshot list.~ • 	 TSO Formatting. supervisor trace table. • Active JPA and LPA modules. ~. 
• LSQA 

::l • SQA 
o 

• Active SVC modules. 

0­
o 
IN 

~ 

OUTPUT RouHne 

8.38 

• 	 Print lines of the dump on an output 
device. 

IEAVAD31 

FORtvtAT Routine... 8.39 

• Unpack and translate data in the 
.print line I providing an indentation 

factor. 

_t 
Caller

IEAVAD21 

OUTPUT5 RouHne 
8.38 

• 	 Print lines remaining in the buffer 
after ABDUMP processing has 
completed. 

APFQCB on' 

4IEAVAD06 


Formatting OCBs 

8.31 

• 	 Major QCBs. 
• 	 Minor aCBs. 

• 	 QEL.. 

APFTRACE on ,
9 IEAVADOC 

5 

Formatting Trace Data 
8.36 

• 	 Trace table entries. 
• 	 Load GTF Formatting module IGCOF05A. 

~ 
FORMET Routine 

8.41 

• 	 Print blocks of storage . , 
Caller 

IEAVAD51 

FORMAT20 Routine 

~ 	 8.40 

• 	 Translate data in the print line • 

IEAVAD61 

FORMAT22 RouHne 
8.38 

• 	 Unpack and translate data in the 
print line. 

APFSAVE on , 

IEAVAD07 


Displaying the Save Area 
8.32 

• 	 Heading for the save area trace. 
• 	 Contents of the problem-program save area associated 

with each IRB. 
• 	 Valid save areas. 
• 	 The two most recent save areas associated with the most 

recent PRB. 

APFSPALL on , 
10 IEAVADOD 

Displaying Subpools 

• 	 Allocated portions of subpool 252. 
• 	 User subpools. 

8.37 



a.. 
o 
~ 

Diagram 8.26 (Steps 1-6) 
SVCDUMP Routine 

From SVC SLiH (2.3) (after an SVC 
51 has been issued by a SNAP or 
SDUMP macro) to build a dump 
datoset 

Register 1 	 Register 3 
L.IEAVADOO
IAddress of 1 IAddress of CVT I
parameter list 


If caller·s key is not 0, or if SNAP 
r-U I r--2'- 1 

is requestedRegister 4 	 Register 5 

I Address of TCB I IAddress of SVRB I I 
2 	 If SVCDUMP is in progress I 1-­r---------- --; IParameter List I RB 	 I 


I 

_-I 3 Deactivate the supervisor trace and 

indicate SVCDUMP in progress. I FI~ 3 r-J IRBOP~ r- I 
I 

I 
I

CVT 

0 	 __ ...J 
I 

r­ 4 	 For console dumps, set all tasks below 
the master scheduler nondispatchable.

Parameter List EQ- I 

I 
For all other dumps, set nondispatchable1FI~ IIFI~ 2 Parameter List I only those tasks sharing the same LSQA 

DC8 oddress I as the specified task. 

---1FI~ 3 Header address c-	 ­
Storage list address 

SVRBTCB odd..., 5 Enable the system to avoid disabled 

missing page interruptions. 


FI~: Bit: Means: I RBLINK 
 -Flag 1 0 	 Dump all (SQA, ~ 

~A, LPA, 

RGN, LSQA, 

NUC). 
 UB 


1 Omit SQA. 
 RBCDE 
2 	 Omit NUC. 6 	 If there is no valid dump data set 
3 	 Omit RGN & r~ LSQA. I 

4 Omit LPA. I 


(Continued at Step 7)
5 	 Omit~A. lfDE 	 I 

FI~ 2 0 	 DCB not pro­
vided by the CDNAME ----I I 

caller; use 
 I
SYSl.DUMP. 


1 U,e the reB TCB 
 I 
address in this I 
list instead of 

register 4. I 


2 I
Set all tasks 

nondispatchable ~ 

for console Parameter List 
 I 
dump. I 


FI~ 3 0 I: SVCDUMP ____ ...1 

I Flag 2 0: ABDUMP 

I DCB address I 

ABDUMP (8.27),. 

.. 
Caller via SVC 3 

STATUS 

I GC07902 
3.18 

.. 
MODESET 

IEAMODBR 
3.21 

I 	.. 
Caller via SVC 3 I ~ 

Output 

Register 15 

":>I Return code 0:: X'IOI 

CVT 

CVTTRACE NOP instruction 

CVTSDTRC=I 

CVTDMPLK=I 

TCB 
t~;l;~1f~l;V ~ ...... 

TCBDAR=I 

1Y:' ..s"""',\i?~t;r'., .:.. " 

Register 15 

Return codes: 
DCB not open or invalid == X'04' 
Device not supported == X'OC' 
Dump data set full -- no dump 

taken = X'14' 
Permanent I/O error, or device 

not available = X' 1(' 
Permanent I/O error, or too 

many addresses specified 
(partial dump) = X'20' 

Unit exception on dump to 
tape = X'24' 

4.. L 	 4.. 


I 



r r 	 r 

Diagram 8.26 (Steps 1-6) SVCDUMP Routine (Module IEAVADOO) 
r------------------------------------------------------------T--------T--------, 
I IROUTINE I I 

I NOTES INAME • ILABEL I 

~------------------------------------------------------------+--------+--------~[I Before referencing the parameter list, it is checked 	to ISVCDUMP IDMPLRA I 


determine whether it is in real storage. If it is net, 	 I I I 

to avoid paging errors, MODESET is called to enatle the I I I 

system. The parameter list is referenced to haVE it I I I 

paged in; MODESET is called again to disable the systew. I I I 


I I I 

RBOPSW contains the calle'r's key. Only key 0 callers I IDMPSNAPP 

can use SVCDUMP; all others rrust use ABDUMP. I 


I 

CVTDMPLK, when set, weans that SVCDUMP is in progress. 	 I 


I 

2 

3 CVTSDTRC is set to indicate that SVCDUMP has deactivated 

the trace. CVTTRACE ccntains a branch instruction; to 

deactivate the trace, a NOP instruction is inserted. 

TCBDAR, when set, means that SVCDUMP is in progress for 

this TCB. 

4 	 If Flag 2 indicates a console dump, CDNAME is checked. 

It must contain "IEE60110" to prove that the caller is DMPTLSQAI 

the Console Dump routine. I 


I 

5 	 IDMPCKDC I 


I I

6 The dump data set is invalid under these conditions: DMPDCBLK 

• 	 It cannot be found. 

• 	 It is not located on a tape device nor a su~rorted 


direct access device (SVCDUMP does not support 

devices 2302, 2303, 2311, cr 2321). 


• 	 The device is offline . I 

I 


• 	 The data set is net open. I 

I 


• 	 The data set is full. I
l ____________________________________________________________ ________ ________~ ~ 

en 
(1) 

~ .... 
g 
00 

1-3 


~ .... 
::l 

III 

rt
.... 
g 
a.. 
o 
U'I 



Diagram 8.26 (Steps 7-12) CII 
o 	 SVCDUMP Routine 
CII 

Input Processing 	 Output 

Parameter List r- ­ 7 	 Determine the kind of dump requested SVCDUMP internol 
and put the addresses for areas sort tableI requested to be dumped in the sort_-1 	 I 

Flag I tabl•• 	 ~ 
I 

Address of storage list 

Register 15 
I 

If no valid dump type is specified >I Return code X'IS', 
I .. 

Caller via SVC 3 ... 	 SVCDUMP Internal
User's storage list Sort Table 

8 Sort the addresses of areas to be dumped 
in ascending order, eliminating overlaps. ------------~ Ir 

9 Construct a header record and write it I 
. out. I I 

CVT I10 Construct a dump record, and write it 1 
out. Repeot until all storage areas ---l, CVTGTRCE --,r-	 I 

specified in the sort table are dumped. 	 MODESET..... 
I 	 IEAMODBR I 

(Disable after writingI 
each record.)I 3.21

I 
(Storage areas not in real storage must

I be paged ;n.) Find Page 

I IEAPFP2
I 5.27 
I 
I 	 IMODESET 

Original branchI 	 r 

IEAMODBR instructionI (Enable for paging.) 

I 	 3.21 

I 11 Reset tosks set nondispatchable in Step 4. 	 STATUS..... CVT TCBI 	 I 
I 

1 GC07902 
3.18 CVTTRACE t TCBDAR=O,I 	 i 

L_ 12 	Reactivate the supervisor trace and turn 
off SVCDUMP indicators. CVTDMPLK=O 

Register 15 CVTSDTRC=O IReturn code = X'OC' I ... 
Caller via SVC 3 ,.. 

l, l, 	 L 




r r 	 r 

Diagram 8.26 (Steps 1-12) SVCDUMP Routine (Module IEAVADOO) 
r------------------------------------------------------------T--------T--------,
1 IROUTINE 1 1 

1 NOTES INA~E 1LABEL 1 

~-----------------------------------------------------------+--------+--------~

1 7 At least one of these conditions must specify the dwwp ISVCCUMP ICMPINIT 1 

1 type: 1 ICMPCKPL 1 

1 1 1 1 


• "Dump-alI-storage" request (see the fararoeter list 	 1 1 1 

inset) 	 1 1 1 


1 1 1 

• Storage list address is not 0, but it points to a 	 1 1 1 


list 	of addresses to be dumped 1 1 1 

1 1 1 


• 	 Tca is specified in the ~ararreter list 1 1 1 

1 1 1 


8 Once the STATUS routine has been entered to set tasks 1 ICMPSORT 1 

nondispatchahle, any error exit rr·ust first reset tasks 1 1 1 

dispatchable for normal completion. 1 1 1 


1 1 1 

9 	 1 IDMPSETHDI 

1 1 1 

110 1 ICMPACINCI 

1 1 1 1

111 	 1 ICMPERET 1 

1 	 1 1 1

112 If CVTGTRCE=1, GTF has set the supervisor trace 1 1 1 

1 nondispatchable. In this case, CVTTRACE is not reset. 1 1 1

L____________________________________________________________ ________ ________ J~ ~ 

en 
tD o 
rt'.... 
g 
CO 

t-3 

; 
tD 

.... 
~ .... 
o::s 

0\ 
o .... 



0'1 	 Diagram 8.27 (Steps 1-7) o 
CO 	 ABDUMP Mainline Processing 

Entry from the SVCDUMP routine (8.26) 
to prepare for a dump 

Input -	 o- -. 
Registerl ~-- --, 

IEAVADOIIAddress of parameter list I L_I 
Register 3 	 1Obtain storage and build a PIE and Register 15 

PICA in subpool 253, No Storage [Add~;~f CVT ~ 	 IReturn code=X'OS' I 
Caller via SVC 3

Register 4 

(""Address of caller's -TCB ~ 


Register 5 . 


IAddress of ABDUMP SVRB I 2 Enable the system for interruptions. 	 MODESET 

IGClD7 
3.21 

Caller's Parameter List ~-- ---, 	 Register 15
IYESSVCDP 3 If this request is for SVCDUMP 	 Caller via SVC 3 IReturn code=X'OS' I ,. 

Register 15 
DCB Return codes: 

DCBBLKSI 4 Check validity of the DCB specified 	 Data set no open=X'04' I
Invalid

in the caller's parameter list. 	 DCB not provided=X'04' IDCBOFOPN Caller via SVC 3 Invalid DCB address=X'04' 
DCBDSGPS Invalid parameter=X'OC' 
DCBRECFM 

Register 15 
DCBLRECL Subtask is a job-step 5 Check the job ..top lovol, 	 I,Return code-X'OB' IDCBMACRF 	 task 

Caller via SVC 3 

6-0btain storage for the dump. 	 Register 15 
~(See Diagram 8.27, Step 13 on No Storage I Return code=X'08' IStorage Allocation.) Caller via SVC 3 

7 Suspend the GTF trace if necessary I 
and queue the data set if required. HOOK 

EID=IEAABOF 

ABDAREA 
ENQ parameter list 
Major name (qname) = 

SYSIEAOI 
Minor name (rname) = 

DCB address 

(Continued at Step 8) 

Current TCB 

ITCBGTOFM J 

~ L 	 ~ 




r 


CIl 
(1) 

~ 
1-" 
g 
00 

fo3 

~ 
1-"::s 
III 
rt 
1-" g 
0\ 
o 
10 

r 	 r 

Diagram 8.27 (SteFs 1-7) ABDU~P Mainline Processing (Module IEAVADOll 
r------------------------------------------------------------T--------T--------, 
I IROUTINE I I 
I NOTES INAME ILABEL I 
r------------------------------------------------------------+--------+--------~

1 	 If storage is allocated, a PIE, which Faints to a FICA, IIEAVAD011 I 
is built. The PICA acce~ts only ~rotection Frogram I I I 
interruptions (code 4). INI'IXl is specified as the I I I 
ABDUMP exit routine: this routine gains control if an I I I 
invalid missing page interrruption (a page that is unas-I I 
signed is referred to) occurs. The RBUPR flag in thE RBI I 
is set to 1 to indicate that a PIE exists. I I 

4 	 The DCB is valid if the following values are specified: 

• DCBOFOPN 	 1 (eCB open). 
• DCBDSGPS 	 1 (physical sequential organizaticn). 
• 	 CCBRECFM X'54' (variable tlocked format with 


ASCII control characters). 

• CCELRECL 	 125 (logical record length). 
• DCBBLKSI 	 882 or 1632 (block size). 
• DCBMACRF 	 X'0020' (data set open for BSAM Writes). 

If 	an invalid missing Fage interruption occurs during 
the validity check of the DCE, the exit routine INITXl 

is called to restore registers 14-2 from the PIE. For 

an invalid missing page interruFtion, or any other inva­

lid DCB condition, all storage acquired is freed before 

passing control to the caller. 

5 Because processing is lirr,ited to tasks that do net have 

job-step tasks as their descendants, a test is made 

(while the system is disabled) to ensure that the cur­

, 
rent task does net havE a suttask that is also a job­
step task. If no such subtasks exist, asynchroncus 
exits (TCBFX~l) and invalid missing page interruption 

I processing (RBUPR=O) are prohibited. Processing con­
I tinues with the allocation of storage for thE dump. 
I 
I 7 If ABEND is not the caller, and the user-requested
I trace data is displayed, tests are made to deterrrine 
I whether GTF is activE in the system (CVTGTFS), and 

I whether "in-core" tracing (CVTFORM) has teen s~ecified. 


I If so, tracing is suspended now if not done earlier. 
I If ABEND is not the caller, an ENQ parameter list is 
I built, and an exclusive ENQ macro instruction is issued IDOENQ 
I for the data set. I I 

~ ~l ____________________________________________________________ _______ ________ 



-----

0'1 Diagram 8.27 (Steps 8-12) 
f-' ABDUMP Mainline Processing o 

Input 	 Processing 
ABDAREA .... ---- 8 Check validity of the TCB that 

I has been provided. VALCHECK
APFTCB 

Search for Te B of 	 OutputABDCTCB 
tosk to be dumped.

ABDPTCBP 

Register 15 
Invalid 

Return coci~~1
Caller 3 

ABDAREAABDAREA r-- -9 Initialize the supervisor trace No tro( hie
_.....J table if requested • 	 ~..., .....~ ABDCPFIX~1APFTRA-crJ ~ ~..." ...~"""""'''''''''''''''''''''Iil or no s' 

10 	Initialize I/O. (See Diagram 
8.27, Step 18 on I/O 
Initialization.) 

ABDAREA +-- - - 11 	 Execute user-specified dump functions. Register 15 

(See Diagrams 8.28 - 8.37 for details.) Nonnol 'on Returnc()d~I 	 . Caller 

ABDAREA 

-12 Free storage and return to The coller. FREEMAIN 


IGCOIO 
6.1I 

Register 15 
Incamp lete durr 

Return code=X'08' I
Caller via SVC 3I . 

P 

Attempts to print message: J
"DUMP TRUNCATED FOR 
INSUFFICIENT STORAGE" 

~ 

l, l, 	 ~ 




r 	 ( 

Diagram 8.27 (Steps 8-12) ABDUMP ~~inline Processing (Module IEAVAD01)
r------------------------------------------------------------T--------T--------, 
, I ROUTINE , , 
, NOTES INAME ILABEL I 
~------------------------------------------------------------+--------+--------i, 8 Under the following circumstances, the dump is ccnsid- 'IEAVAD01INOENQ I 
I ered to be that of the current task: further checking' 
I 
I 

of the TCB is bypassed: I 
, 

I • User did not specify to durrp another task. I 
1 • User-specified dump is not of the current task, but I 
, the TCB address (ABDPTCBP) is set to 0 or to the I 
, 
, 

address of the current task's TCB (ABDCTCB). I 
I 

1 The address cf the TCB for the task to be dumped 1 
, (ABDTCB) is set to the address of the current task's I 
1 TCB (ABCCTCB), and execution continues with the initial ­
, 
I 

ization of the supervisor trace table (Step 9). If the 
current task is not teing dumped, a check is made to 

I ensure that the task to be durrped is in the same jot 
I step as the task which requested the dump. Before 
, checking the TCB address supplied by the user, all 
, tasks in the job step except the current task are set 
, nondispatchable. If the VALCHECK subroutine indicates 
, a valid TCB, the AEDTCB field is set to the address of 
1 the user-supplied TCE (ABDPTCBP). Execution continues 
I 
I 
1 

with Step 9. If the TCB address is invalid, a 
macro instruction is issued to restart GTF (if 
ed earlier). The jot step is set dispatchable 

HOOK 
sus~end-
(using 

I 
I 

STATUS), and the dump data set is dequeued if necessary. 
After freeing storage, return is made to the caller. 

I 
I 9 , If a supervisor 

attempt is rrade 
trace table durrp has been requested, an 
to acquire storage (from subpool 252) in 

which to move the table. If storage is allocated, the 
beginning (AEDFP) and ending (ABDLP) addresses of the 
buffer are saved in ABDAREA. The current trace tatle 
entry is found by adding the displacement from the 
beginning of the table to the initial address of the 
buffer. This address is placed in ABDCP1. The trace 
table 
found 

is moved, and the current trace tatle entry is 
as previously. This new address is stored in 

ABDCP. The addresses of the two entries are used later 
by the Formatting Trace Data routine (IEAVADOC). The 
entries existing between ABDCPl and ABDCP are ignored 
because they occurred during the time the trace table 
was being moved. If nc trace is available, cr there is 
insufficient storage, IEAVADOC print,s the message: 
"TRACE NOT AVAILABLE." 

Note: The trace table durr,p is provided cnly in a SNAP 
l ____~~~:~___________________________________________________~_______ 

en 
~ 
rT.... 
o 
~ 

CD 

1-3 
ro 

~. 
~ 

~ .... 
o 
~ 

a.. 
I-" 
I-" 

I , 
, , 
I I 
I I 
, , 
, 
, 
, 
IDU~PCUR 

1EXITI 
IFREEPIE 
I, 
IVAIIDTCB , , , 

~________ 

(' 


r------------------------------------------------------------T-------~--------, 

, IROUTINE , 1 
I NOTES INAME ILABEL I 
~------------------------------------------------------------+--------+--------i
111 The functional areas are given control in thE order IIEAVADOl' 
, described in Diagram 8.25. , I 
, 	 , 1 
12 	 If a failure occurred I:efore IEAVADOC was invoked, , I 


ABDUMP Mainline must perform two checks: 1 I 

I , 

• 	 If GTF was suspended earlier (ABDGTFLG), it rrust I:e 1 ITRACELN 
restarted ty issuing the HOOK macro instruction. I , 

• 	 Otherwise, if a trace table buffer was cttained I , 
(ABCCPFIX), 	 it is freed. I , 

I 1 
If a failure occurred in IEAVACOC processing, the return I I 
code indicates whether cleanup processing is required 
or was performed by lEAVADOC. 

If the dl~p has been comfleted without errcr, the REND 
OF DUMp· message is rrinted and the contents of the 
blocking buffers are written cut. The jeb ste~ is set 
dispatchable, if necessary, and a DEQ macro instruction 
is issued if the ENQ macro instruction was issued 
earlier. The following storage areas are freed: 
blocking buffers, save areas, ABtAREA, and PIE/PICA 
storage. 

Note: The I:uffers are printed I:y the OUTPUT (IEAVADl1) 
, and OUTPUTS (IEAVAC21l routines. 
l ____________________________________________________________ 

I I 
'I 

I 
I EXIT2A 
,EXIT1 
I, 
1 I 
,FREEAREAI 
I FREEPIE I 
1 I 
I 1 

I I , 
'I I 
~ ~________ _______J 



IV 

0- Diagram 8.27 (Steps 13-23) 
I-" ABDUMP Mainline Processing 

Expansion of Step 6b -- Storage ProcessingAllocation From Diaaram 8.27 
Step 5 

13 Allocate storage (from subpool 253) 

'" for ABDAREA and a register save area GETMAIN Output 
for ABDUMP Mainline processing. 

IGC004 
SVRB ESA 

Address of ABDAREA 
6.1 

14 	 Initialize all flags and switch cells I I 
by cleoring ABDAREA to O. Register 13 Input 

I Address of save area I 
A~DUMP Parameter List 	 15 Move the ABDUMP parameter list ABDAREAII from user storage into ABDAREA;
I 	 ABDTCBinitial ize ABDAREA. 

ABDCTCB 

ABDCRB 

Acquire storage for a DECB and a ABDPARMS 
16 register save area from subpool 250. GETMAIN 

IGCOO4 
6.1 

ABDAREA 

~ ABDDECB 

ABDSAVE17 	 Place the address of the Mainexit 
routine in the PICA, and set the ABDUMP SVRB 

Expansion of Step lOb -- I/O RBU PR field. 	 :.................................................................. ~..................................... f"I.-.J RBUPR=l I 

Initialization From Diagram , I 78.27, Step 9 

ABDAREA
18 Initialize the DECB to point to the 

ABDDCBDCB specified by the coller. 	 »I 

DCB +------ ---,L______

I DCBDEvT 19 If the device is not a printer I I 21 

20 	Set DCBSYNAD to point to 0 BR 14 
instruction located in ABDUMP 
Moinline codea 

21 	 If storoge cannot be obtained by 
issuing 0 variable conditional 
GETMAIN request I 12 

I 

ABDAREA 

22 Initialize output buffers. »I ABDPTRS 1 

ABDPTRS2 

ABDPTRS3 

ABDAREA 

23 Initiolize ABDAREA control fields. ABDPHY 

ABDCC 

• 11 ABDLI N E 

ABDLCTR 

ABDPCTR 

~ ~ 	 l· 




r r r 

Diagram B.27 (Steps 13-23) ABDUMP Mainline Processing (Module IEAVAD01) 
r------------------------------------------------------------T-------~--------, r-----------------------------~------------------------------T--------T--------,
I I ROUTINE I I I IROUTINE I I 

I NOTES INAME ILABEL I I NOTES INAME I LABEL I 

~------------------------------------------------------------t--------t--------i ~------------------------------------------------------------+--------+--------i
I Storage Alloca tion I I I I/O Initialization I I I 

113 lIEAVAD01 118 IIEAVADOllDONETRCE 

I I 

115 The ABCUMP parameter list is moved into the ABDU~P work 119 The duwp can be printed (one line at a time) on a 

I area (ABDAREA) to enable the list to be exarrined witb­ I printer, or written (as a block of storage) on tape or 

I out encountering missing page interruptions. I a direct access device. If the device type field 

I 
 The fol~owing fields are initialized: I (DCBDEVT) contains X'48'r the device is a printer. 

I I 

I ABDTCB = address of TCB durrped 120 By pOinting to a BR 14 instruction, print errors are 

I 
 ABCCTCB = address of current TCB I ignored and the dUIr'p continues, with outI'ut unblocked. 

ABOCRB = address of ABDUMP SVRE 

I ABDPARMS = ABDUMP parameter list 121 The GET~AIN roacro instruction is issued for a w.iniwua 

I I of 256 bytes or a maximum indicated by the DCBBIKSI 

116 I 


I I 


The save area is later used ty the OUTPU~ (IEAVAD11) field. 
subroutine. If the storage cannct be allocated, all 


I storage obtained earlier must te freed. 122 The output buffer pointers are initialized tc the 

I I following values: 

117 The exit routine INITXl is replaced with the Mainexit I 

I I 


I I 


routine. The RBUPR field is set to 1 to indicate that ABCPTRS1 initial buffer address 

I the Mainexit routine gains control when an invalid mis­ I ABDPTRS2 next available buffer address 

I sing page interrupticn occurs. The Mainexit routine I ABDPTRS3 end of tuffer + 1 

I I
issues an SVC 13 instruction to pass control to ABENC 

I (with a X'OC4' completion code) if an exit rcutine was 123 The IIBCAREII control fields are initialized to the ISETRECLGI 

I I I I
not specified. If an exit routine to handle invalid following values: 

I missinq paqe interruftions was sfecified (in field 
 I I I

Il ABDUPRXT), this routine is given control. ________ ABDPHY (record length) = ____________________________________________________________ ________ I 129 I I
~ ~ 

I IIEDCC (ASCII contrcl character) blank I I 

I I I
ABDLINE (print line) blank 

IIBDLCTR (line count) = 1 

LI ABDPCTR (page count) = 1 I_______~I J 

I I I 

____________________________________________________________~ ________ I 


til 
m 
n 
rT 
1-'. 
g 
00 

1-3 


~ 
1-'. 
::s 
IIJ 
rT 
1-'. 

g 
a.. 
~ 
W 



0"1 	 Diagram 8.28 
~ 
~ 	 ABDUMP-

From ABDUMP Mainline processing (8.27, Formatting the Header and PSW 
Step 11) to print the header and PSW 

Output 
The fonnat of a VS2 dump

_IEAVAD02 is shown in the OStYS2 
Debugging Guide, GC28­

Obtain storage for a register save area 0632.1 	 GETMAINfrom subpool 253. 
IGCOO4 

6.1 

No storageTlOT 	 .. 
ABDUMP Mainl ine ITlOCNJOB I (B.m Step 112 Format the job name and step name 
rTIOCSTEP r from entries in tbe TIOT. 


TIME 

3 Format the time and date. IGC011 

ABDAREA Determine time and 
date.rAPFID l 

4 Format the user 10 (if supplied) into 
7.2IABDPID r the output line. 

5 Format the page number. 

6 Display the header line (line 1). 0 
TCB ABDAREA 

ITCBCMPC I APFABEND 7 	 Format and display the completion 

code. 


ABDAREA RB 
....... 8 Fonnat and display the PSW, ILC,I APFPSW I RBOPSW and the interruption code (line 3).

IAPFABEND I RBINLTH Ir FREEMAIN 
9 Free the register save area and return 

RBINTCOD 	 IGCOO5control to ABDUMP Mainline processing. 

6.1 

ABDUMP Mainline 
(8.27) Step 11 

L 	 l,. (." 




r r 	 r 

Diagram 8,28 ABDUMP -- Formatting the Header and PSW (Module IEAVAD02) 
r------------------------------------------------------------T-------~--------, 

I IROUTINE I I 
I NOTES INAME ILAEEL I 
~------------------------------------------------------------+--------+--------~

1 	 If the GETMAIN request fails, control returns to ABDUMP IIEAVAD02 

Mainline processing with a return code of X'Oq'. I 


I
3 	 The TIME macro instruction is issued to obtain the I 

correct time and date. 	 I 

5 	 The page number (found in field PAGEMSG) is initialized 
I 
I 


to C'OOOl'. I 


7 	 If ABEND is the caller (APFABEND;O), the completion code 
I 


is formatted and disflayed. If the system completion 

code is not 0, it is used; otherwise the user code is 
displayed. No completion code is displayed if the dump 
is 	not an abnormal (ABEND) dump. 

8 	 The APFPSW field, if set, indicates that the PSW, IIC 
(interruption length code), and interruption code are 
formatted and displayed from the RB of the task in con­
trol at the time of the SNAP or ABEND (APFAEEND). 

9 A return code is passed in register 15: 	 FREERET 

X'OQ' - successful completion 

X'04' - insufficient storage for the dump, or a fail­


ure in an ABDUMP print routine 


iI 	The following ABDUMP print rcutines are called: 

o FORMAT (IEAVAD31) 
Unpacks and translates data in the print line, 
providing an indentation factor. 
Called to execute Steps 3, 1, and 8. 

o OUTPUT (IEAVAD11) 
Prints lines of the dump on an output device. 
Called to execute Steps 6, 1, and 8. 

Should either ABDUMP frint routine fail (return code. 
X'OO'), control passEs to cleanup processing (Step 9). 

Note: The afpropriate label precedes each field. For 
example: 

JOD jobname S~EP stefnarre 
~L____________________________________________________________ ________~________J 

en 
~ 
~ 
g 
co 

1-3 
CD 

~ "",::s 
~ 
"",
o::s 

0­
I-' 

VI 




0\ ... 
0\ 

Input 

ABDAREA 

I ABDTCB 

I ABDCTCB 

TCB 

I TCBFC 

TCB 

I TCBRBP 

TCB 

I TCBllS 

RB 

I RBCDE 

RBFTP 

llE 

I 

llECDPTA 

I 
TCB 

TCBDEB 

I 

TCB 

TCBTlOI 

from ABDUMP Mainline processing (B.27, 
Step 11) to print control blocks 

-
-.. IEAVAD03 

1. Obtain storage for a register save-area 
from subpool 253. 

~--- ....I L-_____ ------ 2 Format and display the TeB. 

I 

~----,I 1-_____ ------ 3· If the task has completed execution 

Locate the RB; fannat and display 
according to type (TIRB, IRB, SVRB,~RB 

RBFTP PRB).SF 4 

RBLlNKB 

~llE 
llECHN 5 Fonnat and display LLEs. 

CDE Fonnat and display CDEs and extent 
lists.--i{ CDXlMJPA IP 6 

I 

I ­

~DEB 
DEBlNGTH 7 Format and display DEBs. 

I DEBDEBB 
I DEBAPPAD I 

TIOElNGH 8 Fonnot and display the TlOT ondt...r-+ T1OT 

associated DO entries.TlOEDDNM 


TlOPROC 


TlOCNJOB 
 9 Free the register save area and return 

TIOCSTEP control to ABDUMP Mainline processing. 

No storage 

,. 

• 5 

FINDRB 

Locote next RB to 

be displayed. 

If entry from Step 3 

• 7 

FINDRB 

Locate next RB to 
be displayed. 

CDXlPT 

Display CDEs and I 
extent lists. 

... 

I" 

GETMAIN 

I GC004 

6.1 

ABDUMP Mainline 
(8.27) Step 11 

0 

FREEMAIN 

IGCOO5 
6.1I 

ABDUMP Mainline 
(8.27) Step 11 

Diagram 8.29 
ABDUMP-
Formatting Control Blocks I 

Output 

The fonnat of the VS2 dump 
is shown in the OSjVS2 
Debugging Gu ide, GC28­
0632. 

L l L, 




r 	 r r. 

Diagram 8.29 ABDUMP -- Formatting Centrel Blocks I (Medule IEAVAD03) 

r------------------------------------------------------------T--------T--------,r--------------------------------------------~---------------T--------T--------, 
I IMUnU I I I IROUtINE I I 

I NOTES I NAME I LABEL I I NOTES INA~E ILAEEL I 

.------------------------------------------------------------+--------+--------~ ~------------------------------------------------------------+--------+--------~


1 A return code of X'Oq' is passed if storage is not IIEAVAD031 8 The fixed portion of the TIOT is formatted and display- IIEAVAD031TIOTOUT I 

available. I I ed first. The DD entries (beginning with the first I I I 


I 
 byte after the fixed portion) are then formatted and I I I 


2 
 The Tea is formatted and disflayed in three sections: 	 ITCBOUT displayed. This processing continues until the null I I I 

I entry is found. I I I 


o 	 start of the TCB to the start of the TCE register I I I 

save area. I 9 A return code is passed in register 15: IFREERET I 


• 	 TeB register save area -- this section is displayed I I I 

only if the TCE to te displayed (ABDTCB) is not the I X'QQ' - successful completion. I I 

current TCB (AEDCTCE). I X'Q4' - insufficient storage fer the dump, or a fail ­ I 


o End of the TCB register save area to the end of the I 	 ure in an ABDUMP print routine. I 

TCB. I 	 I 


I The following ABDUMP print routines are called: 	 I 

4 	 Ii] I
The FINDRB subroutine is entered to find the Frevious IRBOUT 


RB on the task queue. the RB at the beginning of the I o FORMAT (IEAVAD31) I 

queue, the oldest RB, is displayed first. The last RB I Unpacks and translates data in the print line, I 

placed on the task queue, the youngest, is displayed I providing an indentation factor. I 

last. I Called to execute Stefs 2, 4, 5, dnJ 6. I 


I 	 I
• FORMAT22 (IEAVAD61) 

5 
 The LLEs are displayed three to a line in the order in ILLEOUT Unpacks and translates data in the [rint line. 


which they appear cn the task queue. I Called to execute Steps 4, 6, and 8. 

I 
 o FORMET (IEAVAD71) 


6 
 The FINDRB subroutine is invoked to locate CDEs ICDEOUT Prints tlock of storage. 

associated with RBs. The CDES are formatted and dis­ IGETRB Called to execute Step 7. 

played in the same order as the RBs. After the RB ILLECDE o OUTPUT (IEAVADll) 

queue has been exhausted, any retraining CDEs asscciated I Prints lines of the durr~ cn the out rut device. 

with lLES are formatted and displayed. Upon completion, I Called to execute Steps 2, 4, 5, 6, 7, and 8. I 

the extent lists associated with CDEs are formatted and I I 

displayed in the same order as the CDEs. I Should any of the ABCUMP pri0t routines fail (return I 


I code * X'QO'), control passes to cleanup processing I

7 The DEBs are formatted and displayed in the crder in DEBOUT (Step 9). I 


which they appear on the task queue. The DEB I/C AVT I 

(appendage vector table) is displayed in a separate 	 Note: The appropriate label precedes each field. I I I
l ____________________________________________________________ ________ ________ J 
block if it does nct appear in front of the DEB. 

~ ~ 

Because the system is enabled for interrupticns during 

formatting and dis Flay processing, an exit is estab­
lished in the FORMET routine (IEAVAD71) to handle rris­
sing pages due to DEBs freed during I/O operations. 

Because the DEB pOinter can be changed during IIC, a 

count is kept of the numter of CEEs that havE heen dis­
played. The DEB queue is searched while the systerr is 

disabled. If the exit is taken, a message is printed 

stating that storage is invalid; the dum~ is not 

truncated. I


~____________________________________________________________ ________i ________ J 

CI) 

CD 

~ 
f-'. 

g 
00 

8 


~ 
~. 
III 

rt­
f-'. 
o 
::l 

0­.... 
"'" 



00 

C\ 
I-' 

ABDAREA 

I ABDTCB 

SQE 

SQETCBA 

SQEVLNG 

I 
TCB 

TCBFC 

ABDAREA 

I ABDCTCB 

TCB 

TCBMSS 

TCBFLAG 

TCBTSTSK 

TCBOTC 

TCBJSTCB 

DOE 

DOEPTR 

DOFOEPTR 

ABDAREA 

I ABDCTCB 

TCB 

I TCBPQE 

POE 
PQEFFSOE 

l PQEFPOE 

From ABDUMP Mainline processing (8.27, 
Step 11) to print supervisor data 

-
IEAVAD05..,.. 

I 
Fixed Low Core 

1 Obtain storage from subpool 253 for a FLCAEQJ 
register save area. 

FLCAEOS 

IOE 


IOELNK 
 2 Format and display IOEs and SQEs. 

IOETCB 

IOEPURGE .--,
L _____ 

f------- 1-3 If the tosk has completed execution I.-,
L _____ 

Set TeB nondispatchabflity flags.------ f-4I 
~ISPQE 

SPOEPTR 

SPQEID 
Fonnet and display SPQEs, roEs, and 

r- SPDOEAD 	 -v 5 
FOEs. 


SPSHARE 
 r--- 6 	 Turn off the TeB nondispatchabil ity flog 
if the current task is being dumped.I 

I 
.FOE I


FOEPTRA 

IFOERGNFl 
I r;:::::::> 7 	 Format and display PQ Es and F SO Es. 

8 Free the register save area and return+--------- _-.-1 
control to ABDUMP Mainline processing.

I 

~DPQEJ:l PQEFPQE I 
FBOE 


FWDPTR
I I 
] 

GETMAIN 

IGCOO4 

6.1 

No storage 

ABDUMP Mainline :8.27) 
Step 11 

• 7 0 

I TCBADMP~1 ..."""'~!I"""""""" 
TCBNDUMP~1 

STATUS 

IGC079 
~ 

3.18 

TCB issuing SNAP 

t'" 
I TCBADMP~O...,"""""'"~"""'" 

TCBNDUMP~O 
STATUS 

IGC079 J 
3.18 

FREEMAIN 

IGCOO5 .... 
6.1 

.. 

ABDUMP Mainlin4 (8.27).. Step 11 

I 

Diagram 8.30 
ABDUMP-
Formatting Control Blocks II 

Output 
The format of the VS2 dump is 
shown in the OS/VS2 
Debugging GUiCie;G"C28-0632 . 

TCB issuing SNAP 

~ l 	 l; 




r r 	 r 

Diagram 8.30 ABDUMP -- Formatting control Blocks II (~odule IEAVADOS) 
r------------------------------------------------------------T--------T--------, r------------------------------------------------------------T--------T--------1 
I IROUTINE I I I IROUTINE I I 

I NarES INAME ILABEL I I NOTES INAME I LABEL I 

f------------------------------------------------------------t--------+--------~ f------------------------------------------------------------+--------t--------~ 
I 1 A return code of X'04' is passed if storage is nct IlEAVADOSI I I 6 I IEAVADOSI DISPACHK 

I available. I I I I I I 

I I I I I 7 The dummy PQE is first formatted and displayed. Then I IPQEOUT 

I 2 The IQEs and SQEs are formatted and displayed in the I I I the PQE and the associated FEQE are processed. If the I INEXTPQE 

I same manner; the lQES are processed first. After the I I I F8QE address is identical to the PQE, the end of the I IGETFBQE 

I IQE queue has been exhausted (the high-order byte in I I I FBQE queue has been reached and the next PQE is search- I I 

I the last IQE contains an X'FF'), the loop is initial- I ISQEOUT I ed. I I 

I ized for the SQE search. I I I I I 

I I I I 8 A return code is passed in register 15: I IFREERET 

I Under the following conditions, the lQE/SQE is formatt- I IlQESQELPI 


ed and displayed: 	 I I I X'OO' - successful completion. 

I 	 X'04' - insufficient storage for the dum~, or a 

o 	The purge flag (IQEPURGE/SQEPURGE) is on -- the I failure in an ABDUMP print routine. 

element is not freed until it has been displayed. I 


• 	 The TeB address associated with the elewent I [J The follOWing ABDUMP print routines are called: 

(IQETCB/SQETCBA) is identical to the TeB address of I 

the task being displayed (ABDTCB). I o FORMAT22 (IEAVAD61) 


I Unpacks and translates data in the print line. 
If either of these conditicns does not exist the I Called to execute Step 5. 
IQE/SQE is ignored, and the search continues for the I o FORMAT (IEAVAD31) 
next lQE/SQE. I Unpacks and translates data in the print line, 

I 	 providing an indentation factor. 
Note: The search occurs in the disabled state with the IIQEDISLP Called to execute steps 2 and 7. 

system enabled. The formatting and displaying occurs I • OUTPUT (IEAVAD11) 

with the system enabled. I Prints line of the dump on an output device. 


I Called to execute Steps 2, 5, and 7. 

3 
 IVMMOUT 

I Should any of the ABDUMP print routines fail (return 
4 	 If the current task is being durq::ed, all tasks in the I code * '00'), control passes to cleanup processing 


job step (except the current task) are set ncndispatch­ I I (Step 8). 

able. This is done to ensure the reliability of the I I 

virtual storage supervision (VSS) control blccks. I I Note: The appropriate label precedes each field. I


L____________________________________________________________4-______ ________~

I 

The virtual storage superv1s10n control blocks are I 

formatted and displayed in the order: SPQE, DQE, F~E. I I 

If the subpool is shared, the shared and owner SFQES I I NEXTSPQEI 

and their associated DQES and FQES are formatted and I I I 

displayed if one of the follcwing conditions exists: I I I 


5 


I I I 

o The task being dumped is not a key 0 nor a TSO task. I IFMSPQE I 

o The owner SPQE is under a task within the job step I IOUTSLOOPI 


I of the task being dumped. I I I

L____________________________________________________________~________i________ J 

CIl 
CD n 
rt.... 
g 
CD 

1-3 


~ .... 
:; 

III 

rt
.... 
g 
C1\ .... 
\0 



TCBADMP=O 

TCBNDUMP=O 

C\ 	 Diagram 8.31 
tv 	 ABDUMP­o 

Formatting aCBs 

From ABDUMP Mainline processing 
(8.27~ Step 11) to display resource 
control blocks 

l~lJt 	 Output 
The format of the VS2 dump is -..... IEAVAD06 	 shown in the OS/VS2 ----,. 
Debugging G~C28-0632,1 	 Obtain storage from subpool 

253 for a register seve area. GETMAIN
--, 

IGCOO4 

6.1 
--, No storage .. ABDUMP Mainli (8.27)I .. Step 11 

I 
I ,-- 2 Set the job step of the current 

task nondispatchable. 	 .....,,I 	 ..,""""'" ifir..""""""~",,.. 

L -- 3 	 Search control block queues to STATUS iII!-"'" 
find the first major aCB. IIGC079 

TCB ~ 
3.18TCBFLAG 

TCBTSTSK 

TCBJSTCA 

TCBOTC 

-L---'-4 Format and display the major OCB. 	 0 

----5 Format and display the minor aCB. 

ABDAREA Minor QCB -~ 


ABOOcBMNJ [QMN~ Mere minor OCBs I 

Format and display the QEl. 

More major OCBs 
6 	 5 

• 4 
Set the job step dispatchable.7 	 :.,."""",..~""I ....."""""~ 

I 
~ STATUS 

IGC079 ~ 
3.18 

Free the reg j sfer save area 8 
and return control to ABDUMP 
Mainline processing. FREEMAIN 

IGC010 

6.1 

A8DUMP Mainlin. (8.27) 
Step 11 

_ .. _-----	 - --_.. _­ I 

l 	 \..l'-' 



r' r 	 r 

Diagram 8.31 ABDUMP -- Formatting QCBs (Module IEAVAD06) 
r------------------------------------------------------------T-------~--------~ r------------------------------------------------------------T-------~--------, 

I I ROUTINE I I I IROUTINE I I 

I NOTES INAME ILABEL I I NOTES INAME I LABEL I 

r------------------------------------------------------------+--------+--------i ~------------------------------------------------------------+--------+--------i1 	 A return code of X'04' is passed if storage is nct IIEAVAD061 6 All QELs associated with the minor QCB are formatted I I EAVAD 0 6 I 


availal:;le. I I and displayed according to their ~osition in the queue. I I MOREQEL 

I When the last QEL has teen processed, ABDQCBMN is set I I 


2 If the current task is being dumped (ABDTCB), the job I to 0 and the next minor QCB is selected. I I 

step is set nondispatchable. I I 


I 7 ICOMEXIT 

3 I
The QEl (queue element) is fcund by searching the rrajor IMOREQEL 


and minor QCB (queue control tlock) chains. Once the I 8 A return code is passed in register 15: I 

QEL has been fcund, it is tested for the following I I 

conditions: I X'OO' - successful ccm~letion I 


X'Qq' - insufficient storage for the dump, or aI 	 I 

failure in an ABDU~P Frint routine.I 


I 
I Il The following ABDUMP print routines are called: 

I 

I 	 o FORMAT (IEAVAD31) 
I Unpacks and translates data in the print line, 

If these conditions Exist, the control blocks I providing an indentaticn factor. 
with this QEL can be disFlayed and formatted. I Called to execute Steps 4, 5, and 6. 
do not, the next QEL is selected. I o FORMAT01 (IEAVAD41) 

I Un~acks and translates data in the print line, 
Note: The search of the QCB queue must be performed I without providing an indentation factor. 
disabled. Displaying the control block occurs in I called to execute Steps 4 and 5. 
enabled state. I o OUTPUT (IEAVAD11) 

I Prints lines of the dump on an output device. 

4 I DISPLAY Called to execute Ste~s 4, 5, and 6. 


I 

I Should any of the ABDUMP print routines fail (return 
I code ~ X'OO'), control passes to cleanup processing 
I (Step 7). 
I 

I Note: The appropriate label precedes each field.L____________________________________________________________~________~________ J 
I 

IMOREQCE 

up. 	 I 

I 


If the minor QCB has not l:;een displayed (ABDQCBMN; 0), I FORMMIN 

it is formatted and disFlayed. The maximum length for I 

a minor QCB name is 52 bytes; a name that exceeds this I 

limit is truncated. After the winer QCB bas been I 

frocessed, all QELs associated with it are formatted I 

and displayed. When the last rrinor QCB has teen I 

Frocessed, ABDQCBMJ is set to 0 and the next major QCB I 

is selected. I IMOREMIN 


5 


L____________________________________________________________ _______ ________J~ ~ 

ttl ro 
C'l 
rt.... 
o 
::l 

CD 

8 
ro 
~ .... 
l:l 
OJ 
rt.... 
o 
::l 

IV 
'" 
I-' 



0\ Diagram 8.32 
tv ABDUMP­
tv Displaying. the Save Area 

From ABDUMP Mainline processing 

(8.27, Step 11) 10 display the 

save area. 


Input Output 

The fonmat af the VS2 dump is 
shawn in the OS/VS2 

IEAVAD07 

TCB ....------- --..., 	 Debugging GUiCie;'G'C2S-0632. 

II TCBFC I 1 Obtain storage from subpool 253 far a 

register save area. GETMAIN
I 


I 
 IGCOO4 

6.1 
TCB 	 .... I 

I 

~RB --, II TCBRBP . RBFTP I I 	 ,iNoistairaigie•••••••••••IIf••'t~ ABDUMP Mainline (S.27) 
• 	 • Step 11

RBTCBNXT 	 I I 
L_
I 2 If the task being dumped has


RBFr,AV I completed execution. 6 
I 

~ 

I 	 o'-- ­ 3 	 Display contents of the problem­
program save area associated .with • _I SAPRINT3
each IRB 

TCB ~ Save area -+ --,L ___

I TCBFSAB PRESAVE 4 	 Verify the save areas pointed to by Valid SAPRINTl 

the TCB; display if valid.
NEXTSAVE • IDisplay s~ve areas 

and headings. 

TCB ~RB -+ --,L...___

I TCBRBP . RBFH 5 	 Format and display the two most recent 

save areas associated with the most No PRB
RBRCBNXT 
recent PRB on the task active queue. r 6 

6 	 Free the register save area and return 
control 10 ABDUMP Mainline 
processing. FREEMAIN 

IGC010 

6.1 

, ••••••••••••••••• ABDUMP Mainline (S.27) 
• 	 Step 11 

l.. l., 	 l., 




00 

r 	 r 

Ciagra~ 8.32 ABDUMP -- Cisplaying the Save Area (~odule IEAVAC07) 
r------------------------------------------------------------T-------~--------, 
I I ROUTINE I I 

I NOTES INAME I LABEL I 

~------------------------------------------------------------+--------+--------~ 
I 1 A return code of X'04' is passed if storage is nct 

I available. 

I 

I 2 	 If the task has cOIq;leted execution, there are no save 


areas to be displayed. The label for the trace is ois­
~layed however. 


3 	 If an invalid missing fage interruption occurs, the 
display is terminated and the search continues fer the 
next IRB. However, if the next RB on the queue 
(RBTCBNXT) is the oldest, processing continues with Stef 
4. 

Each problem program save area, beginning with the 
first (TCBFSAB), is tested by the subroutine VALID. 
Under the following conditions, the save area is con­
sidered valid: 

4 


• 	 The entire save area is addressable (this check is 
made by the Validity Check routine IEAOVIOO). 

• 	 The save area's for~ard fointer (NEXTSAVE) is not 
equal to the back fointer (PREVSAVE). 
The back pointer is equal to the previous save area 
address. 

If ccndition 1 is not fulfilled, the display is termin­
ated. If condition 2 or 3 is net fulfilled, the save 
area is dis~layed (using SAPRINT2) without headings. 

5 	 After the most recent RB has been selected, it is test ­
ed to determine whether it is a PRE (RBFTP = 0). If 
not, the next RB is selected and, when the end of the 
queue has been reached, exit processing is entered. 
Although a PRB exists, the save areas are not displayen 
under the following conditions: 

• 	 The dump is not of the current task (ABDCTCE). 
• 	 Save areas are net addressacle. 

Instead, return is made to the caller with a return 
I code of X'OO'.l ____________________________________________________________i 


f€ o 
~, 
g 

I-'l 
(I) 

~. 
t:S 

~ ,... 
o 
t:S 

a­
I'-> 
W 

I 


IEAVAD071 

I 

I 

I 

I 

I 

I 

ITESTIRB 
I 

INEXTRB 
I 

I 

I 

I FORTRC 
I FORLOOP 
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

IBADBACK 
I 

IPRECODE 
I RBLOOP 
I 

I 

I 

I 

I 

I 

IPRBLOOP 
I 

I 

I 
________i ________ 

r k 

r------------------------------------------------------------T--------T--------,
I I ROUTINE I I 

I NOTES INAME I LABEL I 

~------------------------------------------------------------+--------+--------~6 	 If entry to this processing is a result of task com- IIEAVAD071AWAY 


pletion (Step 2) or a missing PRB (Step 5), a code of 

X'OQ' is returned to AEDUMP ~ainline processing. The 

return code is also X'OO' if processing has completed 

successfully. It is X'04' if there was insufficient 

storage for the dUIT,p, or a failure occurred in an ABDUMP 

print routine. 


[J 	The following ABDUMP print rcutines are called: 

• 	 FOR~~T (lEAVAD31) 

Unfacks and translates data in the frint line, 

providing an indentation factor. 

Called to execute Steps 3, 4, and 5. 


o 	 FORMATOl (IEAVAD41) 

Unpacks and translates data in the print line, 

without providing an indentation factor. 

Called to execute Steps 3, 4, and 5. 


OUTPUT 	 (IEAVADll) 

Prints lines of· the dump on an output device. 

called to execute SteFs 3, 4, and 5. 


Should any of the ABDUMP frint routines fail (return 

code * X'OQ'), control passes to the cleanup processing 

(Step 6). 


Note: 	 The appropriate label precedes each field. I I ________J
L____________________________________________________________ _______~ ~ 



Diagram 8.33 
II.,) '" 	 ABDUMP Interface Routine ::: 

From ABDUMP Mainline processing 
(8.27, Step 11) to display supervisor 
dota by providing an interface to 
system routines 

OutputInput 

IEAVAD08 

Obtain storage from subpool 253 for 
a register save area. 

JSCB 

-I IW ~IV'''''!:I'''' 
JSCBTJID 	 Step 11 

2 	 Initialize the ABDPL (subcomponent CVT , ~rA~~~__-, 
parameter list). I C~AQA~ ~ I A~TCB IL 	__ 

3 	 Transfer control to the TeAM Formatting 
routine if possible. • INTRFACE 

Pass control to 
IEAVADOE 

C~ 4 Transfer control to the ISO Formatting
[CYITSR[)y] routine if possible. t I INTRFACE 


Pass control to 
IKJVAD09 

5 	 Free the register save area and 
return control to ABDUMP 
Mainline processing. 

IGC005 

ABDUMP MainBne (8.27) 
Step 11 

IGC004 

6. 

ABDUMP Mainline (8.27) 

l 	 L L 



r r r 

Diagram 8.33 ABDUMP Interface Routine (Module IEAVAD08) 
r------------------------------------------------------------T--------T--------, r------------------------------------------------------------T--------T--------, 
I IROUTINE I I I IROU'IINE I I 

I NOTES INAME ILABEL I I NOTES INA~E I LABEL I 

~------------------------------------------------------------+--------+--------~ ~------------------------------------------------------------+--------+--------~


1 A return code of X'04' is passed if storage is nct IIEAVAD081 I 3 The TCAM Formatting routine gains control (using the IIEAVADOsl I 

available. I I I internal subroutine IN~RFACE) if a TCAM AVT (address I I I 


I I vector table) exists, and if the TCB being displayed is I I I 

2 The sUbcomponent parameter list is initialized because I I the TCB for the TCAM Message Control PrograIr. The I I I 


at least one formatting routine will get control. The I I subroutine INTRFACE is given the entry-point name and I IINTRFACEI 

parameter list is initialized to the following values: I I an error message ID. The error rressage ID is necessary I I I 


I in case the formatting routine cannot allocate storage I I I 

ADPLTCB = Address of TCB of task being dumped. I for work and save areas. INTRFACE then loads the I I I 

ADPLTJID = Terminal job identifier (JSCBTJID), if I requested module, passes control to it, and deletes it I I I 


there is a job-step control block. I upon completion of processing. If INTRFACE receives a I 

ADPLBUF = Address cf print buffer. I return code other than 0, it prints an error message andl 

ADPLRNT = Address of PRINT routine (IEAVAD81). I returns control to the caller. Otherwise it returns I 

ADPLUPRX = Address of the exit routine ABCUPRXT. I di rectly tc the caller. I 


The processing of either the TCAM or TSC I I 

system formatting routine may cause an I A description of the TCAM Formatting routine is avail- I 

invalid missing page interruption. If so, I able in OS/VS TCAM Logic. I 

the system routine can avoid atnor~al ter­
 I I 

mination of the task, and suspension of I 4 The TSO Formatting routine gains ccntrol if the follcw- I 

the durrp, by placing the address of an ing are true: I 

exit routine in ABDUPRXT. If an invalid 
 I 

missing page interru~tion occurs, control • The task being dumped is a TSO task (TCBTSTSK ll. I 

returns to the system routine at the spe­ • Time sharing is actiVE (CV~~SRDY = 1). I 

cified exit routine address. The Exit • A JSCB exists (contents cf register 5 ~ 0). I 

routine restores registers 14-2 from the I I 

PIE and continues with excepticn handling. I The subroutine INTRFACE (see Step 3) provides the I IINTRFACE 

If an invalid missing page interruption I necessary linkage. I I 

does net occur, the system routine must I I I 

set the exit routine address to O. If an I A description of the TSO Formatting routine is available I I 

invalid missing ~age interruption cccurs, I in OS/VS2 TSO Control Prcqrarr Logic. I I 

and the exit routine address is 0, the I I I 

task is abnormally terminated with a ccm- I 5 A return code is passed in register 15: I IFREER IT 

pletion code of X'OC4'. I 
 I I 


I X'OO' - successful ccm~leticn. I I 

I ADPLRES2 = 4 words used ty system formatting routines. I I I I X'04' - insufficient storage fcr the dump. I I I 


~ ~l ____________________________________________________________ ________ ________ J l ____________________________________________________________ ________ ________ J~ ~ 

(Jl 
(1) 

~ .... 
g 
Q) 

1-3 


~ .... 
::1 
III 

rt­.... 
g 

'" IV 

U1 



a.. 	 Diagram 8.34 
to.) 
a.. 	 ABDUMP-

DisDlaying the Nucleus 

From ABDUMP Mainline processing 

(8.27, Step 11) to display the 

control program nucleus 


Input 	 Output 
IEAVADOA 	 GETMAIN The format of the VS2 dump is ~ 

shown in the OS!VS2 Fixed in lower 1 Obtain storage from subpool 253 	 lGC004 Debugging Guide, GC28-0632. real storage +- - - - - ­ for a register save area. 
6.1I mOINT I 

No storage .. ABDUMP Mainlin (8.27)
Trace Table 

Step 11 

1 Determine whether the supervisor 
trace facility is active. 

2 
I 

I 


CVT 
3 Display the nucleus exclusive of the
I CVTNUCB 

L 
supervisor trace table. 0 


--, 	 Job-step TCBABDAREA 
ABDSQSDM TCBADMP=1L 4 Display the LSQA. 	 ...,"~"""""""""" ...iIo-""""""'"ABDTCB TCBNDUMP=1

STATUS 

ABDCTCB 
 IGC079 ii!...,~
UPRFMET I L+ SPQE 

3.18 
ABDUPRFN 1 rl .SPDQEPTR 

.J "I~LS~QA~_--,uQE I-LI__~I I 

ABDAREAABDAREA SQA displayed 

ABDSQSDM I 5 msplay the SQA. ...'....:l~'~ABDSQSDM=I-l~''''''''''''''''''''''''....:iIo-""""""'" 
Job-step TCB 

6 Set the job step dispatchable. 	 ~ ...."IiIl TCBADMP=O"""""""""""'''IiIl ...,""""'" f1~"IiIl TCBNDUMP=OSTATUS 

IGC079 ~ ...~ 
Display active SVC modules for 	 3.187 
the task.---.J 	 FINDRB 

Locate SVRBs. 

TCB ... 	 Free the register save area and8 
return control to ABDUMPr-1 ITCBRBP Mainline processing. 	 FREEMA1N 

IGCOO5RB 

RBLINKB 6.1 
RBFTP 

ABDUMP Mainlino (8.27)
RBCDEI Step 11

I 

l 	 L L 



r ( 	 r 

Diagram 8.34 ABDUMP -- Bisplaying the Nucleus (Module IEAVADOA) 

r------------------------------------------------------------T--------T--------,r------------------------------------------------------------T-------~--------, 

1 1ROUTINE 1 1 1 IROUTINE I 1 

1 NOTES 1NAME 1LABEL 1 1 NOTES INAME I LABEL 1 

~------------------------------------------------------------t--------t--------~ ~------------------------------------------------------------t--------t--------i

1 A return code of X'04' is passed if storage is net IIEAVADOA The FINDRB subroutine is called twice; the first time IIEAVADOAINEXTRB 

available. to scan the RB queue for SVREs and the second time tc I 


search for an SVRB with a name equal to the name found I 

2 	 The nucleus is displayed in two sections if part of the in the initial search. If FINCRB has been called to I 


nucleus is above the trace table. The trace table is locate SVRBs, the contents supervision routine IEAQCCSR I 

often the last block in the nucleus. is called to locate the CDE for the module on the link 1 


pack area queue. If the CBE is not found, IEAVVMSR is 1 

3 	 If the supervisor trace is active, the nucleus is first called to obtain the LPDE (link pack directory entry) 1 


displayed up to the start of the trace table (TRACESRT). for the SVC name. If the LPBE is found, the name of thel 

The end of the trace table is then found (TRACEND+32). module (found in LPDENAME) is returned to the caller 1 

If there is more nucleus to dis~lay, a continuation wes­ along with the SVRB address. FINDRB is again called to 1 

sage is printed and the second part of the nucleus is search for an SVRB of a module with the same name as 1 

displayed. that in LPDENAME. The address of the two SVRBs are com-I 


pared, 	and, if equal, the module is displayed. If a 1 

4 	 If the current task is heing durrped, the job steF is LSQA match is not found, the module was displayed earlier I 


set nondispatchable to prevent changes in the LSCA when When the previous SVRB was processed. After the display I 

the dump is being taken. If there is no SPQE of the module has been completed, the search is renewed 

(subpool queue element) for the LSQA, execution for a new SVRB. When all modules have been displayed, 

continues with Step 5. The length and address are 1 clean-up processing is entered. 

found from the DQE and FORMET (IEAVAD71) is called tc 1 1 

print the LSQA. If an invalid missing page interruptionl 1LSQALOOPI The following types of SVRBs are processed by the 

occurs during IEAVAD71 processing, a skip is made to thel 1 1 FINDRB subroutine: 

next page where the display continues. 1 1 1 I 


• SVRB 	 for a type 3-SVC or the first load of a type-41 1 1 	 1
5 	 If the SQA has not been displayed (ABDSQSDM = 0), it is 1 ISQA I SVC. 1 


Frocessed in a manner similar to the LSQA. Invalid I[is-I I I • SVRB for a non-first load of a type-4 paged SVC. 1 

sing page interruptions are again expected when IEAVAD11I 1 I • SVRB for a non-first load cf a fixed SVC. I 

is called. 1 1 1 I
8 A return code is passed in register 15: FREERET
1 1 1 

6 If the current task is being durr'Fed, the job ster is 1 1SVCMODS 1 

reset dispatchable. X'OO' - successful cOIDFletion 


1 I 1 
 X'04 1 - insufficient storage for the dump, or a fail­
1 1 1 


If the task being dumped is not the current task, pro­7 	 1 1 ure in an ABDUMP print routine.
1 

cessing hegins with the RB chained to the TCE of the 
 1 1 
task being dumped. The SVRB following the ABDUMP SVRB 	

1 II The following ABDUMP print routines are called:
1 I I 
is obtained; if ABENC called AEDUMP (APFABEND = 0), the 
1 1 I 
ABEND SVRB is bypassed. 	 I 1 I • OUTPUT (IEAVAD11) 

~L____________________________________________________________ ________~________J 
prints 	lines of the dump on an output device. 
Called 	to execute steFs 1, 3, 4, 5, and 7. 

• 	 FORMET (IEAVAD71) 
Prints blocks of storage. 
Called to execute steps 3, 4, 5, and 7. 

Should either ABDUMP print routine fail (return code , 
0), the job step is set dispatchable prior tc passing 
control to cleanup processing (Step 8). 

Note: 	 The appropriate label precedes each field.CIl 	 L____________________________________________________________4 ________4 ________J 

~ 
~ 
o 
::s 
CO 

~ 
I'D 

~. 
::s 
~ 
~. 

o 
::s 

a.. 
IV 

-..I 




(1\ 	 Diagram 8.35 
I\.) ABDUMP­co Displaying Registers 

From ABDUMP Mainline processing 

(8.27, Step 11) to display registers, 

storage, and active modules 


Input 	 Output-
• 	 IEAVADOB The format of the VS2 dump is

TCB ABDAREA -l shawn in the OS/VS2 I TCBGRS APFREGS 1 Obtain storage from subpool 253 for Debugging Guide, GC2S-0632.I 	 GETMAIN 
ABDCTCB I a register save area. 

IGC004IAPFABENDABDUMP SVRB .. I 6.1 
ABDCRB1 1 I 	 No storoge 

I ... 	 ABDUMP Mainline (S.: 7) 
Step 11I 

ABDAREA 
 L 2 Display register contents. 

APFSNAP 0 
ABDUPRXT 


3 Display storage described by the Va lidity Check 

ABDSNAPP 
 snapshot list. IEAOVLOO 

• 	 User Snapshot Check validity of 
pst each page. 

3.19 
Invalid missing 

4 	 If displaying of active JPA and LPA page interruption 
modules has not been requested. OUTPUT 

IEAVADI1, 	
• 8 I Print me5S0ge: 

"STORAGE NOT 
DUMPED DUE TO 

TCB +- - - - - - - - - - 5 If the task being dumped has 
BAD LIST AD DRESS"

completed execution.I TCBFC 1 	 • 7 
S.3S 

6 Display active JPA and LPA modulesTCB r • .--RB___~ 
associated with the RB queue. 	 DUMPMOD 

1 TCBRBP ~ I RBLI NKB 
Display module 

RBFTP extents. 


CDE +-1 RBCDEI 


CDNIC 
 ·-7 Display active JPA and LPA modules DUMPMOD 

CDJPA on the load list. 


Display module 

CDMIN r" Extent list extents. 


CDXLMJPA 8 Free the register save area and 

1 return control to ABDUMP FREEMAIN 

Mainline processing. 
IGCOO5 

6.1 

I 

I 


ABDUMP Mainline (S. 7)
CDE ... - _..J .. Extent List Step 11 


CDXLMJPA J " 

'---1__--' 

CDJPA I-

CDMIN 

CDNIC 

L l 	 L 




(hr 	 ( 

Diagram S. 35 ABDU/o1P -- DisFlaying Registers (~odule IEAVADOS) 
r------------------------------------------------------------T--------T--------,r------------------------------------------------------------T-------~--------, 

, ,ROUTINE , , , ,ROUTINE , , 
, NOTES ,NAME ,LABEL , , NOTES 'NA~E I LABEL I 
~------------------------------------------------------------t--------t--------i ~------------------------------------------------------------t--------t--------~'1 A return code of X'04' is passed if storage is not ,IEAVADOB , 7 For each LLE (load list elEment) on the active task ,IEAVADOB,LLELOOP 
, availalole. " queue, all associated modules are displayed if the , , 

following conditions exist: " ,'2 	The register contents are displayed if requested," , , , 
(APFREGS = 1). If the task being dumped is the current, , • The If,odule is "in-care- (CDNIC = 0) .. , , 
task, the floating-pcint registers are displayed: they , , The CDE is not queued to an RB; if it is, the FE , , 
are stored in the current TCE during the forrratting and , , must not be on the active queue of the task being , , 
displaying. The general registers are found in the, , dumped. I I 
ABDUMP SVRB (SNAP called AEDUMP) or the ABEND SVFB, , , , 
(ABEND called ABDUMP). If the current task is not being, , The internal subroutine DU~P~OD is again called to , I 
dumped, the floating-point and general registers are , , process the extents for the module. , , 
found in the TCB of the task being dumped. , , I ,, , 8 A return code is passed in register 15: , IFREERET 

3 The snapshot list is displayed if supplied and request- , , I 
ed by the user (APFSNAP = ll. If an invalid missing, ,UPIT, X'OO' - successful completion .. ,,page interruption occurs while fetching an address or, ,FAILURE, X'04' - insufficient storage fer the dump, or a fail ­
length from the list, an error message is displayed and, ,VALICLST, ure in an ABDUMP print routine. 

execution continues with SteF 3. The Validity Check, , , 

routine (IEADVLOO) is called to verify each page con-, , , o The following ABDUMP print routines are called: 

taining data to be displayed. If a page is invalid, the, ,NEXTONE 

list entry is ignored and the next entry is processed., ,GOOD • FORMAT22 (IEAVAD61) 

Otherwise, the storage described by the snapshot list, , Unpacks and translates data in the frint line. 

entry is displayed. , , called to execute steps 2, 6, and 7. I 


• OUTPUT (IEAVAD11) I,4 PASSUPR 	 Prints lines of the dump on an output device .. 

Called to execute Stefs 2, 3, 6, and 7. 


6 	 If the task has not completed execution, all modules RBLOOP1 • FORMET (IEAVAD71) 
I 
I 

associated with RBs on the active queue are dis~layed prints blocks of stcrage. I 
if the following conditions exist: called to execute Steps 3, 6, and 7. I 

I 
• The RB is a PRE (RBFTP = 0). Should any of the ABCUMP print routines fail <return 	 I 
• A CDE exists (RBCDE1 * 0). code ~ X'OO'), control ~asses to cleanup processing 	 I 
• 	 The module is "in-core" (CDNIC 0). (SteF 8). I 

I 
The RE queue is searched beginning with the oldest RB. 	 Note: The approFriate label precedes each field. I I IL____________________________________________________________ ________L________J~

After the RB queue has been exhausted, the lcad list is 

processed (step 7). The internal subroutine DUMPMOD is ,DUMPMOD 

passed the address of a CDE. After verifying that the 'COLT 

module's queue is to be displayed, DUMPMOD locates , 

extent lists for the module and calls FORMET (IEAVAD71) , 

to print these extents. , ,
L____________________________________________________________ ________ ________~ ~ 

en 
CD 

~ .... 
g 
CD 

t-:l 

~ .... 
::l 
III 
rt .... 
o 
::l 

".. 
tv 
ID 



'" Diagram 8.36 w ABDUMP­o 
Formating Trace Data 

From ABDUMP Mainline processing 
(8.27, Step 11) to display trace table 
infonnotion 

Input 	 Output 
GETMAINL...a. 

­

IEAVADOC 
IGCOO4 	 The format of the trace table is..". 

1 Obtain storage from subpaal 253 for a shown in the OS/V52 
register save area. 	 6.1I I Debugging Guide, GC28-0632. 

No storage -I ABDUMP Mainline (8 27) 
Step 11---- 2 If GTF is active and performing 


an "in-core" trace 
 • 6 0 
OUTPUT 

IEAVAD11ABDAREA 4-- ­ --- 311 GTF fa;\ed 
Print message: I ABDGTFLG I "GTF TRACE FAILURE 
- NO TRACE TABLE" 

• 7 	
8.38 

OUTPUT 

ABDAREA 4---'-- ­ ---- 4 	If a buffer has not been obtained IEAVAD11 
for the supervisor trace table Print message: I ABDTRBIT I 

"NO CORE FOR 
TRACE TABLE" 

ABDAREA +-- --- 5 Format and display trace table • 7 
8.38 

i ABDFP i entries. • 7 

ABDLP 

ABDCPl --- 6 Lood the GTF Processing madule. 	 GTF Formatting module 

ABDCP IGCOF05A 
Format and display 
the GTF trace._---1ABDAREA 4-- ­

7 Free the register save area andI ABDSSPAR I return control to ABDUMP 
Mainline processing. FREEMAIN 

IGCOO5 
6.1 

ABDUMP Mainline (E 27) 
Step 11 

L L 	 L· 




r ( 	 r 

Diagram 8.36 ABDUMP -- Formatting Trace Data (Module IEAVADOC) 
r------------------------------------------------------------T-------~--------, 

I I ROUTINE I I 
I NOTES INAME ILABEL I 
~------------------------------------------------------------+--------+--------~

1 A return code of X'04' is passed if storage is nat IIEAVADOCI 
available. I I 

I 
3 	 1f ABDGTFLG is on, ABDUMP issued a HOOK macro instruct­ I 

ion to suspend GTF. The sllsfension of the trace indi­ I 
cates there was a failure in GTF. After printing the OUTLINE 
error message, the return code is saved and control 
passes to cleanup processing (Step 7). 

4 	 Upon return from OUTPUT, the return code is saved and 
control passes to cleanup processing (Step 7). 

5 	 The trace table entries are formatted and displayed 
beginning with the oldest entry (the one following the 
new current entry ABDCP). All entries existing between 
the old current (AEDCP1) and the new current (ABDCP), 
are invalid because they occurred during the time the 
trace table was moved (IEAVADOl execution). If GTF I 
suspended the supervisor trace, a flag (SUSPEND) is set I 
in the current trace entry. Before each entry is for­ ICHKEND 
matted, this flag is tested. If it is set, CUTPUT is I 
called to print a rr,essage indicating that there may be I 
trace entries that are not displayed in the table. I 
After all entries have been displayed, the trace table I 
buffer is freed. I FREEEUF 

I 
Note: The trace table is provided only in a SNAP dunp. I 

6 	 The interface with IGCOFOSA is established using 
I 
I 

ABDSSPAR as the parameter list. On return from I 
IGCOFOSA, if the return code is not 0, a return code of I 
X'lO' is passed to ABDUMP Mainline processing. 	 I 

I
7 	 A return code is passed in register 15: FREERET 

X'OO' - successful completion. 

X'Oq' - an ABDUMP Frint routine failed while execut­


ing. 
X'OC' - storage was not obtained for the register 

save area. ABDUMP Mainline Frocessing must 
free the trace table buffer if it ~as obtain­
ed earlier. 

1° 
The following ABDU~P print routines are callEd: 


o FORMAT (IEAVAD31) 
Unpacks and translates data in the print line, 

CIl providing an indentaticn factor. 
(1) Called to execute Step 5.o o OUTPUT (IEAVADll)rt.... 	 Prints lines of the dump on an output device . 

Called to execute steps 3, 4, and 5.o 
::l 

Should either ABDUMP print rcutine fail (rEturn code ~ 
IX) 	 X'OO'), control fasses to cleanup processing (Step 7). 

Note: The appropriate label precedes each field.
l ____________________________________________________________ ________L ________ 

1-,3 	
~ 

(1) 

~ .... 
::l 
III 
rt .... 
o 
::l 

(7\ 

W 

'"" 



IV 

0- Diagram 8.37 
W ABDUMP­

Displaying Subpools 

From ASDUMP Mainline processing 

(8.27, Step 11) to display allocated 

storage 


Input 	 Output
- -

IEAVADOD The fannat of the VS2 dump 
is shawn in the OS/VS2 

ABDAREA +------- ---, 1 Obtain storage from subpool 253 for Debugging Guide, GC2B-0632. 
ABDCTCB a register save area. GETMAIN 

IGC004ABDTCB 

6.1 

2 	 Set tasks in the job step No storage 
ABDUMP Mainline (8.27) TCBnondispatchable if the 
Step 11current task is being 

dumped. ~,'....:.:.,.""""""""',....: :.,.""""",,, 
STATUS 

TCB 
~SPQE ----, 	 IGC079+­TCBMSSB 


SPQEPTR 
 3.18 ~" ...""""~ 3 wcate SPQEs for subpool 252 on the
I SpQEID iob-step task's TeB. 
 LOCATESPQE 	 I 
DQE --,I SPDQEAD +- Sccn DQEs forI allocated segmentsDQESEPTR 1-4 Display allocated portions of 	 0I subpoo I 252. 	 of storage

, 	
.I -
• CDESCAN 

Eliminate space 
allocated for

TCB 
SPQE 	 modules; display4­ -lTCBMSSB r 	 remainder. 

SPQEID 

TCBFLAG 


SPSHARE -1-5 Display user sUbpools. LOCATE 

TCBTSTSK 


~ SPDQEAD II 
ITCBOTC 

TCBJSTCA DQE. 	 I • 
CDESCANI [ TCBJPQ 


CDE ABDAREA 
 -i ISet the iob step dispatchable ifI ABDTCB 6I .• 

necessary . :.,.""""""""','....: ...,""""",..~,~ 

STATUS 
ABDAREA 4-------­

IGC079 

ABDTCB 
 ~,'....: 

ABDCTCB 7 	 Free the register save area and 
3.1B 

return control to ABDUMP 
Mainline processing. FREEMAIN 

IGCOlO 

6.1 

ABDUMP Mainline (B.27) 
Step 11 

l, L 	 L 




________ 

r 	 ( 

Diagram 8.37 ABDUMP -- ~isplaying Sul::pools (Module IEAVACOD) 
r------------------------------------------------------------T-------~--------, 

I I ROUTINE I I 
I NOTES INAME ILABEL I 
~------------------------------------------------------------i--------+--------i 
I 1 A return code of X'04' is passed if storage is nct 
I availal::le. 
I 
I 2 	 The job step must te SEt nondispatchable to ensure that 
I 	 storage contents are accurate. If the current task is 
I 	 not being dumped, thE jot step is already nondispatch­

able. 

3 	 If the SPQE is not for subpool 252, the next SPQE is 
obtained. When the last SPQE has l::een searched 
(SPQEPTR = 0) and subpool 252 does not exist, execution 
continues with SteF 5. 

4 	 The LOCATE subroutine is called with the address of the 
first DQE for a subpcol that is to be displayed. For 
each DQE on the qUEUE, allocated segments are isolated 
one at a time. The CDESCAN subrcutine is then called 
to 9rocess these segments ty eliminating all space 
allocated for modules and displaying the remaindt!:. 

5 Displaying is perforu:ed for all the sul:f:cols descrited 
by SPQES on the task queue of the task being dumped 
under the following conditions: 

• 	 The subpool is a user subpcol (0-127). 

IIEAVADODI 
I 

I 

I 

I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
ISP252RT 
I 
I 
I 
I 
I 

LOCATE I MAKECK 
ILOCATE IGOSCAN 
ICDESCAN IREPSCAN 
ICDESCAN ITRYPRINTI 
I I I 
I I I 
IIEAVADODIMAIN I 
I 
I 
I 
I 

• The task being dumped owns the subpool (SPSHARE = 0) I 
• 	 The dumped task is not the owner and (1) ha~ a kEy 

other than 0 (TCEFLAG t 0), and (2) is not a TSO 
task (TCBTSTSK t 1). 

• 	 The task is not the owner and either has a key of 
o or is a TSO task. The task owning the sutpool is 

I in the sa'cp jot; ste[- (TCEJSTCA) as the dumped task. 
l ____________________________________________________________ 

en 
ID 

~ 
1-" g 
co 

1-3 

~ 
1-'. 
~ 
III 
rt 
1-" 
o 
~ 

a.. 
w 
w 

I 
I 
I 
I 
I 
I 
~ 

I I 
I I 
I I 
IMAINLOCPI 
I I 
INOTOWNERI 
I I 
I I 
I I 
ICKNXTSPQI 
I I 
~________ J 

r 
r------------------------------------------------------------T--------~--------, 

I IROUTIHt: I I 
I NOTES INA~E ILAEEL I 
~------------------------------------------------------------+--------+--------i 

After a valid SPQE has been fOund, the DQE for this IIEAVADODI GETDQE I 
subpool is found and the LOCATE routine is called. The I I FROMSHARI 
processing FerformEd l::y the LOCATE and CDESCAN routines I I I 
is 	explained in Step 4. 

Upon successful return fraIT the LOCATE routine, 
next SPQE fer a user sutpool is frocessed. 

6 
A return code is passed in register 15:7 

X'OO' - successful comFletion 
X'04' - insufficient storage for the dump, or 

ure in an ABDU~P print routine. 

il The following ABDUMP print routines are called: 

• 	 FORM£cT (Lt.AVAD71) 
Prints tlocks of storage. 
Called to execute Ste[s 4 and 5. 

• 	 OUTPUT (IEAVADll) 

I I I 
I 

the I'AINLOOPI 
I 
I 

EXITA I 
I 

FREE I 
I 
I 

a fail­ I 
I I 
I 
I 
I 
I 
I 
I 
I 

prints lines of the durrr cn an outfut deviCE. I 
Called to print any messages that migilt be I 
needed. I 

I 
Should either of the AEDUMP frint routines fail (return 
code * X'OO'), control passes to cleanup processing 

I 
I 

(Step 6). I 
I 

I 	 Note: The appropriate label [recedes each field. I I 
~L_____________________________________________________ _______4-_______ ________J 



0'1 
W 	 Diagram 8.38 
01:> ABDUMP OUTPUT, OUTPUTS, 

From the caller to write lines of and PRINT Routines 
the dump on an output device 

•••~IIEAVADll 	

OutputInput 

I 
Register 1 

Address of +r--, : Buffer Slot
L __ _

ABDAREA I ABDLOG 	 M1Jve record into the output buffer.1:>1Record 

No moreABDPTRSl 
buffer space 

ABDPTRS2 

r-- 2 Increase the page count if theABDPTRS3., 
I 	

~3 

ABDAREA maximum number of lines per page 

ABDLCTR L ____ 
 -----' has been reached. ..,"""",.....,"""""""" 

SVNCH 


ABDAREA .... ----- - - - - - -~ 3 Write the contents of the buffer 
 IGC012 
to the output device.ABDDECB I Give control to 

From the caller to write BSAM WRITE and 
any lines remaining in CHECK routines 
the buffer after ABDUMP 

~ 1 	 4.6 
processing has been 

ABDAREA +- - - - ­
I ABDPTRSi I 


ABDPTRS2 4 	 Determine whether there is any 

remaining data in the output 
 Ves • 3ABDPTRS3 buffer. 

No 	 Caller 

5 	 Disable the invalid missing page 
interruption exit routine. ..."""""".""""""""".1 

completed 

•••~IIEAVAD21 

••alIIEAVAD81 

~ l 	 ~ 




r r 	 r 

Diagram 8.38 ABDUMP OUTPUT, OUTPUTS, and PRINT Routines (Module IEAVAD11) 
r------------------------------------------------------------T-------~--------, 

, ,ROUTINE , , 
, NOTES ,NAME ,LABEL , 
~------------------------------------------------------------t--------+--------~

1 	 The output record, starting fron AEDLOG, is noved to 'OUTPUT 'RECLOOP, 
the output cuffer for a length of 125 cytes (a 4-byte, , , 
record descriptor word and 121 bytes of data). The line, , , 
count is increased cy 1. If there is insufficient s~ace' , , 
(125 bytes) in the huffer for ancther record, prepara- , , , 
tions are made to write~_the contents of the cuffer (Step, , , 
3). , , ,, , , 

2 	 The maximum number of lines Fer page is 56. When thio , , PAGEFULL, 
number has teen reached, the page count is increased , , , 
and a carriage control character is set to eject to a , , , 
new page. 	 , , ,, , , 

3 	 The SYNCri macro instruction is used to enter the , 'EUFFULL ,, , ,internal subroutine 'wRITCHEK, which issues WRITE and 
CHECK macro instructions. The SYNCH macro instruction , , , 
is used to ensure that the WRITCHEK sutroutine is , , , 
entered with the user ~rotection key. , , , , , , 

4 	 'OUTPUT5 , ,, , , 
5 	 Before disatling the exit routine, register 1 is loaded ,PRINT, , 

with the address of ABCAREA, which is located in the , , , 
second word of the ESA. , , , , , , 
This routine is called ty the subsystem routines TCA~' , , 
and GTF to provide the correct interface to the OUTFUT , , , 
routine (IEAVAD11). Exits to handle invalid missing, , , 
page interruptions are prohibited to prevent careless' , , 

, use of the field cy the SUbsystem modules. '" 
~ ~l ____________________________________________________________ ________ ________J 

C/) 

~ 
rT 
~. 

g 
00 

8 
I'D 

~. 
tj 
QI 
rT 
~. 

o 
tj 

C1'I 
\AI 
VI 



0\ 
W Diagram 8.39 
0\ &.BDUMP FORMAT and FORMAT01 Routines 

From the caller to unpack and 
translate data, providing an 
indentation factor for the 
print line 

Input 
.. 	 " . 

ABOAREA + --, IEAVAD31 

ABDAREAABOBPTR L --- 1 Calculate the print position for the 
ABDLlNE=ABOLINE + ;ndentationABOlLiNE first field of the print line. 	 ::J I 
factor 

ABOLINE 

ABOAREA +- - - - ­

"I 

ABOLLINE I 	 ---- 2 If the end of the layout line has 
Callerbeen reached 

y 

ABDAREA 
ABOAREA +----- ­ ---- 3 If an invalid missing page 1 ABOUPRXT=address of FORMATXrUP~FMAT=l I 	 interruption is anticipated 

routine~ 	 I 
ABDAREA ---- t- 4· Unpack data and translate to 1 ABDFMTWK -- Contains

printab Ie characters. 
printable data"I I 

ABDAREA
ABOAREA +-- - - ­

ABOFMTWK I ---- 5 f!iw:Jve data into the print line. .:>I ABDLINE -I 
From th Iler to

ABDBLKN3 Iunpack translate 
data wi . providing • 2 

ABOLINE 
an inde in factor .. 

IEAVA041 

6 	 Pass control to the FORMAT 
routine, bypassing indentation 
processing. • 2 

l,. l 	 l, 




(
r 	 r 

Diagram 8.39 ABDUMP FORMAT and FORMAT01 Routines (Module IEAVAD31) 
r------------------------------------------------------------T-------~--------, 

I IROUTINE I I 

I NOTES INAME ILABEL I 

~------------------------------------------------------------t--------+--------~

1 The layout line (ABDLLINE) contains the label of the IFORMAT IOLDVAL 
field immediately followed by the value of the field. 
The indentation factor (the first byte of the layout 
line) determines how many spaces from the beginning of 

I 
I 
I 

the print line (ABDLINE) a particular field starts. Thel 
~rint ~osition for the first field of the print line is I 
obtained by adding the indentation factor sfecified in I 
the layout line to the beginning of the print line. The I 
layout line pointer is then increased fast the indenta- I 
tion factor. The address of the oontrol block to be I 
formatted is found in ABDBPTR. I 

2 If the end of the layout line has not been reached (the 
I 
I ICOMMON 

delimiter character X'FF' has not been encountered), thel I 

CJl 
/1) 
o 
cT .... 
g 
(I) 

1-3 

Q.... 
::s 
III 
cT .... 
o
::s 

0\ 
IN 
..,J 

label is obtained and moved into the print line. If 
control is returned to the caller, a code of X'OO' is 
passed. 

If 	the data to be formatted results in an invalid mis­3 
sing page interruption, the address of the e~it routine 
to 	handle these interruptions (FORMATX) is flaced in 
ABDAREA. Should an invalid missing page 
interruption occur, FORMATX is called to restore 
registers 14-2 from the PIE. Return is then made to 
the caller with a return code of X'OS'. 

The data to be formatted is «oved into a work area4 
(ABDFMTWK) where it is unpacked and translated into 
EBCDIC characters. 

After the data has been moved, the layout and print5 
line counters are increased for the next entry. The 
number of blanks tetween fields in the print line is 
assumed to be 3 unless s~ecified otherwise ty the user. 

6 	 In bypassing indentation processing, the first ~rint 


fosition is assumed to be correct.
L____________________________________________________________ 

I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
IFORMATX IFORMATX 
I I 
I I 
I I 
IFORMAT INOUPR 
I I 
I I 
I I 
I IEUMPLINEI 
I I I 
I I SPECSPAC I 
I I I 
I I I 
I FORMAT011NEWVAL I 
I I I 
~ ~________ ________J 



0­ Diagram 8.40 
W 
IX) 

ABDUMP FORMAT20 and FORMAT22 Routines 

From the caller to translate data 

Register 1 
,.ABDAREAlAddress of 

ABDAREA l ABDSTAD I 
I ABDBPTR J 

ABDAREA +---- ---""L __

I UPRFMT20 I 
Register 2 • t---,
I Address of data oreo ~--r--I 

I 	 I 
III 	 L __ 

I 

IL _____ 


From the coller 
to unpack and 
translate data 

L.
ABDAREA 

I ABDlLlNE 

Register 4 .. ---1...._____
IAddress of layout line I 
ABDAREA 

I ABDlLlNE 

ABDAREA .----- ­ --'----- ­IUPRFMT20 I 
Register 2 

I Address of dota area 

ABDAREA 

I ABDFMTWK 

~ 


IEAVAD51 

1 	 Obtoin the address of the data 
area to be trans Ioted. 

r-2 	 If on invalid missing page 
interruption is anticipated 

3 	 /IIove doto into the print line. 

4 	 Sccn characters in the data area. 

5 	 Translate the data area into 

printable characters. 


IEAVAD6 I 

6 	 Obtain the address of the layout 
line . 

7 	 If the last line entry has been 
processed. 

8 	 Obtain the address and size of the 
data area to be unpac'ked. 

9 	 If an invalid missing page 

interruption is anticipated 


10 	Move data into the work area; 

unpack and translate. 


11 	 Move dota into the print line. 

• 7 

--" 
Caller 

I 

1 


• 7 I 


Register 2 

?I Address of data area J 
ABDAREA 

I ABDUPRXT=oddress of'I FORM20X routine J 
ABDAREA 


;>I ABDLINE I 


Register 4 

;>I 	 Address of layout line 

ABDAREA 


ABDLINE ABDLINE + oFfset
~ 	 J 
ABDAREA 


. I ABDUPRXT=oddress of
?J 	 JFORM20X routine 

ABDAREA 

1 
ABDFMTWK -- Contain. unpacked J 
and translated data 

ABDAREA 

-"'>t ABDLINE I 

l, L 	 L, 


I 



r ( 	 r 

Diagram 8.40 ABDUMP FORMAT20 and FORMAT22 Routines (~odul€ 	IEAVAD51) 
r------------------------------------------------------------T--------T--------,
1 	 IROUTINE 1 1 
1 NOTES 	 1NAI-:E 1LABEL 1 
~------------------------------------------------------------+--------+--------~ 
1 1 FORMAT20 provides an EBCDIC translation of a line (32 IFORMAT20 BASEl 
1 bytes) of virtual storage. The data area begins at thE 1 
1 address specified in ABDSTAD. The data is rounded to a 1 
1 32-byte boundary and extends for 32 bytes. Tbe location 1 
1 counter (ABDBPTR) is thE virtual address of the data 1 
1 being dumped. The value of the location counter is 1 
I eXFanded to six hexadecimal characters, positioned at I 
1 the beginning of the print line (AEDLINE). Following 1 
1 the location counter are eight fullwords thdt are 1 
1 unpacked into two groufs of four wcrds each. This is 1 
1 the data at the address specified by the location 1 
1 counter. 1 
1 1 
1 2 If an invalid missing fage interruftion occurs, thE 1FORM20X 1FORM20X 
1 FORM20X routine is enterEd to perfon. the following 1 1 
1 processing: 1 1 
1 1 1 
1 • Restore registers 14-2 froIT the PIE. 1 I 
1 • Blank the Frint line (ABDLINE). 1 1 
1 • Return control to the caller with a return cede cf 1 1 
1 X, 08'. 1 1 
1 1 1
1 3 After moving the data, invalid missing page inter- IFCR~AT20INOUPR20 
1 ruptions are disabled. 1 1 
1 1 1
1 4 An asterisk precedes and follows the transLated data. 1 I LOOP 
I If the character is neither alphanumeric nor a blank, I I 

it is replaced by a character that translates into all 
period. All 32 characters are processEd in this way. I 1GOLOOP 

1 1
5 	 After translating thE characters, FORMAT22 IIEAVAD61l 1 1 

is called with the layout line (register 4) set to thE 1 1 
standard layout line for unpacking the location counter. 1 1 

1 1 
6 	 IFOR~AT22IBASE2 

1 I 
7 	 If the layout line entry delimiter (X'~'F') has been 1 IREPEAT 

encountered, pointers are saved and control is returned 1 IEXIT 
to the caller. I I 

1 1 
8 The displacement is added to the print line to obtain 1 1 

the correct location in which tc flace the data. 1 1 
1 1

110 	 1 1NOUPR22 
1 1 1
111 After moving the data to the print line, the layout linel I 
I counter is increased to the next entry and processing I I 

en 	 1 continues with Step 1. 1 1 1 

l+ 
~ ~l ____________________________________________________________ ________ ________ JCD 

.... 
g 
0) 

8 

~ 
S· 
I» 
rt .... 
g 
a. 
w 
ID 



-- ----

0-	 Diagram 8.41 
¥:: ABDUMP FORMET Routine o 

From the caller to print 

b locks of storage 


Input -
~ IEAVAD71--,. 

1 	 Obtain storage for a register sove 
area from subpoo! 253. GETMAIN--, 

I IGCOO4 
I 
I 	 6.1 
I 
I No storage 
I Caller 	 ABDAREAI 
L Adjust length of storage blocks. ABDSTAD--- 2 

Invalid missing 'ABDSIZE---, page interruption 
I during processing ABDIND 
L ---- 3 Process complete lines of data. t 5 0 ABDIDENT=O 

ABDINCPL 

Invalid missing 
ABDAREA .- ----- ---, page interruption 


I ABDINCPLI L ---- 4 Process incomplete lines of data. 
 • 6 

line printed+------ ---, 
...----, .... - ---- 5 	 Process complete lines that were • 7 

interrupted by an invalid missing IAll lines printed 
page interruption. • 7

I Valid poge found 

ABDAREA +-----­ --, 	 • 3 

IABDUPRPM·I L ---- 6 	 Process incomplete lines that were 

interrupted by on invalid missing 

page interruption. 


7 	 Free the register save area and 
retum to the caller. FREEMAIN 

IGCOO5 

6.1 

Coller 

_. 

~~ 	 ~ 



________ 

r 	 r 

Diagram 8.Ql ABDUMP FORME~ Routine (Module IEAVAD71) 
r------------------------------------------------------------T--------T--------, 
I IROUTINE I I 

I NOTES INAME ILABEL I 

~------------------------------------------------------------t--------+--------1 
I 1 A return code of X'Oq' is passed to the caller. FOR~ET 


I 

I 2 The FORMET routine displays clocks of storage which are 

I a multiple of fullwords. ~he starting address provided 

I by the user (ABDSTAD) is rounded down to a fullwcrd 

I boundary; the number of bytes to be printed (ABDSIZE) 

I is rounded up to a fullwcrd boundary. The indentaticn 

I factor and identical line counter (ABDIDENT) are set to 

I O. Because lines are frinted on 32-byte boundaries, 
I the starting address is rounded down to a multiple of 

I 32 bytes. If an indentation factor is required, it is 

I saved in ABDIND. The nuroter of lines to be printed is 

I then calculated. ABCINCPL contains the nurr.l:er of l:ytes 

I in the last, incomplete line. 

I 

I 3 The starting address is rounded down to a 32-byte 

I boundary. FORMAT20 is called tc unpack the locaticn 


counter address into printable hexadecimal, and trans­
late the 32 bytes of data into EBCDIC. If invalid I 

missing page interruptions are expected (UPRFMET=l), andl 

one is encountered during FORMAT20 processing, central 
J;asses to Step 5. 

If an invalid missing J;age interruption has not cccur­
red, FOR~lAT22 is invoked to unpack the data line. For 
the first complete line the indentation factcr is calcu­
lated and the line is adjusted accordingly. Invalid 
missing ~age interruftions are Frocessed as descrited 
above. 

If FORMAT22 J;rocessing did not result in an invalid 
missing page interruption, the CUTPUT routine is 
invoked to J;rint the data line. 
Upon return from OUTPUT, tests are made to deterrrine 
whether the next line to be printed is identical to the 
previously printed line. If yes, an identical line 
message is frinted as follows: 

LINE xxxxxx SA~E AS ABOVE -- cne identical line 
LINE8 xxxxxx - yyyyyy SAME AS ABOVE -- more than one 
identical line 

If the line is not identical, it is processed as 
described earlier. 
After all ccmplete lines have teen processed, any in-

I complete line is printed (Step 4).
l ____________________________________________________________ 

en 
II) 
o 
rt
1-'. 
g 
00 

1-,"1 
II) 
I; 
EI
1-'. 
t:I 
III 

rt

1-'. 
g 
a.. 
# 
~ 

I 

I 

I 

I 

I 


I 

~ 

ENDrD I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 


I FORMETOll 
I I 

I I 

ICO~PLINEI 
I I 

I I 

ITOVAD51 I 

I I 

I I 

I I 

I I 

IFORMET03I 

I I 

I I 

I I 

I I 

I I 

I I 

I I 

I I 

I I 

I FORMET041 

I I 

I I 

I I 

I I 

I I 

I I 

I I 

I I 

IFORMET081 

I I 

~________ J 

r 
r------------------------------------------------------------T-------~--------l 

I IROUTINE I I 

I NC'l'ES INAME ILABEL I 

~------------------------------------------------------------t--------+--------1
I 4 When a partial data line exists (less than 32 l:ytes), IFORMET 

I FORMAT20 is called to unpack the location counter I 

I address and translate the data line into EBCDIC. I 

I FORMAT22 is called to unpack the data line. When the I 

I incomplete line has been forrratted, it is printed (usingl 

I the OUTPUT routine) and control returns to the caller. I 

I 	 I 

I 5 If an invalid missing J;age interruption occurred during I 

I UPR FORMAT20 or FORMAT22 processing, several options arel 

I possible: I 


Control is immediately returned to the caller (Ste~ 


7). 

The line that caused the invalid miSSing J;age 

interruption is skiJ;ped: the next valid defined 

page is found and J;rocessing ccntinues frorr SteJ; 3. 

If all 	lines have been printed. exit processing 
(Step 7) is entered. 

• A roessage is printed descricing the invalid lines: 
LOCATIONS xxxxxx - yyyyyy NOT DEFINED 

Processing for the next valid defined page con­
tinues 	as described above. 

If a message is requested, it alsc reads as follows:6 

LOCATIONS xxxxxx - yyyyyy NOT DEFINED 

7 A return code of X'OO' is provided for the caller. 

o 
The following ABDUMP print routines are called: 


• 	 FORMAT20 (IEAVAD51) 

Translates data in the frint line. 

Called to execute steps 3 and 4. 


• OUTPUT (IEAVAD11) 
prints lines of the dump on an output device. 
Called to execute SteJ;s 3 and 4: also SteJ;s 5 


and 6 when a message is requested. 
• FORMAT22 (IEAVAD61) 

Unpacks and translates data in the print line. 
Called to execute steJ;s 3 and 4: also SteJ;s 5 


and 6 when a message is requested. I

L____________________________________________________________ ________~ 

IINCPLINEI 

IFORMET09 I 

I FORMETIO I 

I I 

I I 

I I 

I I 

I I 

I I 

I I 

I I 

I I 

I I 

ISKIPONLYI 

IEXITBACK I 

I I 

I I 

I I 

IFINISH I 

I I 

I I 

I I 

I I 

ILASTUPR I 

I I 

I I 

INORMEXIT 
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

~________J 



--

Ct\ Diagram 8.42 
~ Overview of the STA Services 
IV and ASIR Routines 

STA Services Routine ASIR schedules a user's 
Builds SCBs (STA Control Blocks): exit and retry routines: 

SVC SLiH (after an SVC 60) 

IGCOOO6O 

IGC1001C


STA Services Routine 
ABEND 

8.43 
8.14 

• 	 Create or overlay a STAE, STAI, 
o Check for an exi,Hng 10 Continue processingor STAR SCB (STA control block) ses. abnormal termination. 

or cancel a STAE or STAI see 

specifying a user's exit routine 

to be given control if the user's 

task is abnormally terminated. 


IGCOB01C 

ASIR Phase 1 

8.44 

o 	 Schedule a STAE, STAI, or STAR 
user ex it routine. 

PHASE2 I 
ASIR Phase 2 

8.45 

• Route internal control for retry/ 
User Exit Routine no retry requesh from the user 

exit routine.

-I 
PHASE3 H 	 PHASE4 

ASIR Phase 3 	 ASIR Phase 4 

8.46 	 8.47 

• 	 Purge RBs and schedule a user • Close DeBs within the bounds 
retry routine. of the extent list of RBs being 

purged for retry. 

User Retry Routine -J 

L, L 	 L 






--

a. Diagram 8.43 (Steps 1-3) -= -= 

Input 

Register 0 

Request type 

X'OO'=CREATE SCB 
X'04'=CANCEL SCB 
X'08'=OVERLAY SCB 

Register 3 

Ad~;cv:rl 

Register -4 

[Add~~1 

Register 5 

[Add,." af SVRB 

STA Services Routine 
ham SVC SLiH (2.3) (aft., an SVC 60 
has been issued by the ST AE macro) to 
create, cancel, or overlay a STA control 
black 

- - --.- -- ­

IGCOO060 
Register' 

Register 15 

1 If a S1A recursion exists :::>I R.turn cod. - X'OS' I 

.. 

Coller via I .. 
 SVC 3 


I
STAE Macro 
Parameter list 

QPOINTAdd,... af 
user exit Find first non-STAI 

2 Far CANCEL and OVERLAY requests: SCB. 
Register 15 

if there ore no non-STAI SCBs on the 
Se8 queue ;at Return code X'08' I 

I 

Caller via 
Flags in first byte: SVC 3 

3 For CANCEL requests: '" 
I 
, 

Bit: Value: Meons: 
a o STAE request 
a I STAI request 
1 o STAR request 

QPOINT 
I 

Find valid STAE SCB. Register 15 TCB 
A. If there is na STAE SCB Return codes: ,

belonging to the requester'sJ Na STAE SCB = X'08' 
RB SC B nat owned by 

requester's RB = X' 10' .. 
Caller via 

SCB TCBSVC 3 
Ir"""""""",~~"~"""",,, .....! SCBCHAIN1 mBSTA!j 

II 
B. Cancel STAE by dequeuing it ~ 

from the requester's SCB queueI 
and Freeing the storage it iIII 
occupied. 

FREEMAIN 

IGCOIO 

Free subpool 255. 

6.1 . 
RegIster 15 

':>I Return code X'OO' I 

(Conti nued at Step 4) 
- ­ - ----- ­ - - - ­

_I 

.. 
Caller via .. SVC 3 

- --­ -- --- -­ ---- ­ - - ­

l.. l L 



(
r 	 r 

Diagram 8.43 (steps 1-3) STA services Routine (Module IEAVSTAO) 
r------------------------------------------------------------T--------T--------, 
I 	 IROUTINE I I 

I NOTES 	 INA~E I LABEL I 

~------------------------------------------------------------+--------+--------~

1 	 If the user's exit routine issues a STAE macro IS~[A I IGC00060 I 

instruction, TCBSTABE is set, indicating a S~A IServicesl I 

recursion. If a recursion were allowed, it ~ould I I I 

destroy the integrity of the SCB queue. 	 I I I 


I I 

2 	 TCBSTABB is the SCB queue pointer. If it is 0, there I I 


are no seBS .. I I 

I I


3A SCBOWNRA contains the address of the RB under which the I FINDSTAE I 

STAE macro instruction was issued. Only STAE seEs can I I 

be canceled. There is no facility to cancel STAR or I I 

STAI SCBs. I I 


I I 

B An SCB is dequeued by setting the preceding SCE pointer I IQCANCEL I 


(SCBCHAIN or TCBSTABE) with the value of the canceled I I I 

SCB's SCBCHAIN painter. I I I


L____________________________________________________________~________i________ J 

en 
CD 

~ .... 
g 
IX) 

1-3 


~ .... 
i:j 
1\1 
rt­.... 
o 
i:j 

(1\ 

.I:: 

VI 




__ 

0\ Diagram 8.43 (Step 4) 
-= STA Services Routine 
0\ 

Processing 	 Output 

4 	 Check validity af CREATE and OVERLAY 
requests: Validity Check 

Input A. Check the validity of the parameter 	 Register 15IEAOVL02 
list and page in the parameter list Determine address validity•if necessary. 	 Return codes:

and where located. 
Address in real storage = X'QO'

3.19 Address not in real storage == X'041 

I Address invalid == X'OS' or X'DC' 

PREFIX 

RB· 

Page in parameter list 


B. For STAI requests, verify that the 
requester is ATTACH. 

TCB 

,...-- C. For STAR requests, verify that the 
r- _...J requester is a critical system task I
!TCBTlD 
and that no SC& exist (for CREATE 
requests) or that only one STAR sea 
exists (for OVERLAY requests). 

Register 15 

D. Check validity of parameter list 	 Return codes:I} _......, ­ addresses. IEAVSTAO Invalid request to cancel or 
overloy a nonexistent

Are addresses within 
SCB ~ X'OS'

the bounds of the 
Invalid parameter list address 

region? 
~ X'OC' 

Invalid exit or data listIf errors are found in validity checking 
address =XIDC I.. 

Caller via 	 STAI not issued by ATTACH .. SVC 3 ~ X'OC' 
(Continued at Step 5) STAI or STAR requested with exit 

address equal to 0 =XIOC' 
Invalid request to overlay an SeB 

belonging to another RB =X'lOl 

\.4' LJ 	 l.v, 




r r r 

Diagram 8.Q3 (Step q) STA Services Routine (Module IEAVSTAO) 
r------------------------------------------------------------T------~-------, 

I IROUTINE I I 
I NOTES INAME ILABEL I 
~------------------------------------------------------------+--------+--------i
4A The parameter list is paged in (if it is not in real ISTA IFIXPARMS 

storage) to avoid disabled missing page interruptions. IServices 
The PREFIX subroutine enables the system (using MODESET) 
before referring to the page and forcing a missing Fage 
interruption. 

B RBINTCOD contains the ATTACH SVC number if the ATTACH 
routine is the requester. 

C TCBTID must be greater than 199 to represent a critical 
system task. 

The STAR SCB must ce the first SCB on the queue. 
D I IPCREATEL__________________________________________________________--L-_ _____-L________ 

f€ 
n 
rt.... 
g 
CX) 

1-3 
II> 

~. 
::s 
OJ 
rt.... 
o::s 

(J\ 
~ 
..,J 



CXI 

a.. 	 Diagram 8.43 (Steps 5-6) ~ 
STA Services Routine 

Processing 

5 Get storage for CREATE sea requests and 
queue the SCB: 

Obtain storage in 

subpool255. 6.1 

A. 	 Queue STAE scas cfter the lest 
STAI SCS, or first on the queue if 
there are no STAI SCBs. ~ 

QPOINT 
Output 

Find first non-STAI 
SCB. 

seB Queue: 

B. 	 Queue STAR cnd STAI scas os the 
first on the queue. 

TCB 

6 	 Initialize the new SeB and set the return 
code. c::::===================!================:~=====~ SCBFLGSI 1= SCB type 

r I 

111.l1li111 

= key, mode I and 
XCTL type 

• ~•••••••••••••••~calierViaSVC 3 =	RB address for 
STAE; 0 for STAR; 
TeB address 
for STAI 

== 	 exit routine 
address 

= parameter 

I ist address 

Register 15 

Return code =X'OO' 

L, Ll" 




( ( 	 r' 

Diagram 8.43 (Steps 5-6) STA Services Routine (Module IEAVSTAO) 
r-----------------------------------------------------------~-------~--------,
I IROUTINE I I 

I NOTES INAME ILABEL I 

~------------------------------------------------------------+--------+--------~5 Overlay processing utilizes existing seB storage. 	 ISTA IQOVERLAY 


IServices I

SA 	 The QPOINT subroutine locates the last STAI seB on an I IFINDSTAI 


seB queue, and the first non-STAI SCB on a queue. If I I 

there is no non-STAI seB, QPOINT returns the address of I I 

the last STAI seB in both output parameters. If there I I 

are no STAI SCBs, QPOINT returns the address of the I I 

first seB in both output parameters. Otherwise, the I I 

address of the first STAE seB or the address of the STAR I I 

seB is returned in the second output. I I 


I I 

B 	 I IQUESCB 


I I

6 	 I IPOVERLAY I
L____________________________________________________________ ________L ________ J~ 

til 
(I) 

~ .... 
g 
CX) 

..;J 

~ .... 
= 
rt.... 
g 
0­

~ "" 

III 



0\ 
U1 
o From ABEND (B. 15) to schedule a 

STAE, STAI, or STAR user exit routine Processing 

Diagram 8.44 (Sleps 1-8) 
ASIR Phase 1 

Output 

IGCOBOIC ESA 

Input 

TCB 

TCBPIE..a 

-
r-­
I 

~- r--' 

1 

2 

Initialize ASIR resources. 

Prevent SPIE exits. 

.... 

FREEMAIN 

ABBRANCH 
Free PIE. 

6.1 

.1 0000 ... 

~ ••• 0000 

RB 

~ RBASIR=1 

I 

I 
TCBSTCUR-TCBABGM=1 

~-r-, 
I 

~- _....J 
I 
I 
L_ 3 If an ASIR recursion exists 

.... . VALRECUR 

TCB 

)I TCBPIE=O J 

SCB 

-~--~ 
1 
I 

ISCBOWNRA ~ 
SCB I 

I 
-,...--, I 

I 
I 

i SCBASYNC=1 r­
SCB I 

I 
-'-, I 

I
I L 
I

iiW-
I- I 
I 
I 
I 
I 
I 
I L_ 
I
L __ 

4 

5 
6 

7 

8 

I 

Set the Phose 1 indicator. 

Establish a new STA environment. 

If no sea can be found for the 
user exit routine 

• 
Allow asynchronous exits if requested. 

If SCB ;, STAR, purge poge-in by the 
TCB, and holt I/O. .... 

Check for vol;d ASIR 
recursion. 

GETMAIN 

GMBRANCH 
Get a register save 
area. 

6.1 

FINDSCB 

Find sea containing 
RB or TeB for th is tosk. 

RETABEND 

~ ABEND 
~ Diagram 8.16 

Termination Interface 

PURGEIO IEAPTERM. 
Purge page-in . ..... 

5.57 

ESA 

J I1 
TCB 

)l TCBNSTAE=O I 

TCB 

>I TCBFX=O I 

... Determine type of I/O 
requested by user. -" ... SVCPURGE 

IGC016AP 
Holt I/O. 

(Continued at Step 9) 

" 
 L ~... 



( ( 	 (' 

Diagram 8.44 (Steps 1-8) ASIR Phase 1 (Module IEAVT~OB) 
r------------------------------------------------------------T--------T--------, 
, ,ROU'IINE , , 
, NOTES ,NAME ,LAEEL , 
~------------------------------------------------------------+--------+--------~

1 	 ASIR is entered via an XCfL macro instruction from ,PHASE1 ,PREPHASE, 
ABEND. , , , , , , 

2 	 The PIE is freed to ~revent SPIE exits for ~rogram , ,PIETEST , 
interruftions in the processing to follow: ABEND should, , , 
be invoked for program interru~tions. , I , 

I I , 
3 	 TCBSTCUR contains the ASIR recursion flag. The follcw- , ,TSTRECUR' 

ing represent valid ASIR recursions. I IGETSAREA 
I 

• 	 Failure during an attempt to purge I/O ~ith the I 
QUIESCE option. ,, 

• 	 Failure while atterrpting tc initialize the S'IAE I 
work area prior to exit or retry. 	 ,, 

• 	 Failure ~hile attempting to update the ICB restore I 
chain when closing data sets. 	 , 

I 
• 	 Failure while attempting to u~date SDWA information , 

in the event that all lOBs are dequeued from the lOBI 
restore chain, or a failure during lOB ~rocessing. I, 

• 	 Failure during the closing of data sets associated I 
with an RF or RBs teing ~urged. I, 

• 	 Failure during the purge of enqueued resources prior 
to 	scheduling the STAR retry. 

• 	 Failure during the purge of unexpired tirrer elerrents 
frior to scheduling the STAR retry. 

• 	 TCEAEGM=l Ilieans that storage can be aetained from 
the WQA if the LSQA cannot satisfy a GETMAIN 
request. 

PHASE14 
5 	 Neither the recursion flag or the "33E ABEND" flag are 

reset in TCBNSTAE. This infora.a~ion must be saved for 
retry. 

6 	 SCBOWNRA points to the RB of the STAB SCB, or the 
at-.t-.aching task's TCB for STAI SCBs. 

If SCBASYNC=l, the user has requested that asynchron­ IGOODSCB 
ous exits te allowed. ABEND sets TCBFX to 1 to prevent , 

en 	 asynchronous exits; 'l'CBFX is reset to o. , 
7 

:+ 

(1) , 


8 SCBFLGS1, set with SCBSTAR, indicates a STAR SCB; set ICALLPURGI 

with SCBNOIOP, it indicates that I/O processing should 

te bypassed; set with SCBHALT, it indicates that I/O I ,
g should be halt~d. PURGEIO sets an I/O code in the ESA , I 
equivalent to the I/O codes in the parameter registers I Ico 	 passed to the user's exit routine. (See thE notes for I I 
Step 11.) For further inforrration about the SVCPURGE I , 
routine, see OS/VS I/O Supervisor Logic. "I 

.... 	 I I 

~ ~ ~l _____________________________________________________________ ________ ________ 
1-3 

a 
~. 
III 
rt.... 
g 
0­
VI .... 



a­	 Diagram 8.44 (Steps 9-12) c.n 
I\J 	 ASIR Phase 1 

Processing 

Input 	 Output
9 Inftialize the SrJrNA. 	 INITSDWA GETMAIN J 

SCB 	 SrNlAGMBRANCH II 
Obtain and initialize 6.1 
a work area. J 

I I 
TCB 

10 	Specify that the user exit routine 
should run with key 0 or in the 
supervisor state, if requested. IIIL~ TCBSYNCH=1 I.."~""""""....: IIIL"""""'''' 

fl 
Register 0 (if TCBSYNCH=O) 

11 Build parameters for the user exit 
I Iroutine. :J

I 11/0 II I codes 

Register 0 (if TCBSYNCH=1) 

Address of SCB11/0codes I I 
Register 1 

Address of work area or 
ABEND completion codeI 	 I 

Register 2 

~ 
User's exit parameter list I 
if there is no work area, 
or 0 

Register 13 

Supervisor save area 
address if there is a 
work area, or 0 I 	 I 

Register 14 

Addres$ of supervisor 
linkage instructionI 	 I 

Register 15 

12 Pass control to the user exit routine. SYNCH I 	 Address of user exit 
routine 

• 
I IIGC012 4.61 

1 

User exit routine 
via SVC 12 

" 
 L~ 	 ~.... 



(
r r 

Diagram 8.44 (Steps 9-12) ASIR Phase 1 (Module IEAVTMOB) 
r------------------------------------------------------------T--------r--------l 
I IROUTINE I I 

I NOTES INAME ILABEL I 

~------------------------------------------------------------+--------+--------1 
I 9 • If the user is in supervisor mode, the RB address of IPHASE1 I I 

I the abnormally tern,inating program is entered into thel I I 

I SDWA. The problem program PSW field in this wcrk area I I 

I is zeroed. I I 

I I I 

I If the user is in proclem program mode, the name of I I 

I the abnormally terminating program (or 0, if net I I 

I found) is entered into the SDWA. I I 

I I I

110 ISAVEINFOI 

I I I

111 I/O codes set in register a (taken from the ESA code ISETPARMS I 

I set by PURGIO in Step 8): I I 

I I I 

I X'OO' - Active I/O at time of ABEND was quiesced and canl I I 

I be restored. I 

I X'04' - Active I/O at time of ABEND was halted and can I 

I not be restored. I 

I X'08' - No active I/O at time of ABEND. I 

I X'OC' - No work area was aetained. I 

I X'10' - No I/O processing was Ferformed. I 

I I

112 The SYNCH routine gives control to the user exit ISYNCH 
I routine using SYNCH (SVC 102). The user exit routine I 

I must branch on register 14 (which points to an SVC 3 I 

I instruction) to return control to ASIR for a retry, or I 

I to complete ABEND processing. I 

l ____________________________________________________________ _______ ________ J~ ~ 

en 
~ 
rt.... 
g 
(Xl 

t-3 
(1) 

~. 
::J 
III 

rt 
.... 
g 
0­

(..oJ 
VI 



0'1 Diagram 8.45 
UI ASIR Phase 2 .c:: 

From user exit routine via SVC 3 
(EXIT) (3.14) to route control 
within ASIR to retry the failing Processing Output 
program or not I as requested 

•••••~I~I P~AS~~t the Phose 2 indicator. 

Input 2 Prevent asynchronous exits. ~............................................" 

3 Free the register sove area. 	 TCB 

Register 15 

IReturn code ~----­ --. ~ TCBFX=1 
X'QQ' - no retry requested L.._ 4 Pass control to the appropriate 
X'04' - retry with purge of 

I 

routine: 
RB chain 

X·OB I - retry without purge Code X'OO': • If the seB is Q STAR, 

of RB chain the user was unable to 
recover. 

X'lO' - no further processing 
X'DC' - STAI retry requested 

ABEND (8.14) SCB 
for STAI exits 
requested • Reset "in-use" flog 

for STAE SCe.. ~............................................" 
• Schedule the next 

exit routine. 'ASIR Phase 1 (8.44) I 
Code X'04': • Retry. • •••••••••I~ASIR Phase 3 (8.46) TCB 

r,""_=-=_""..-:::.-::._-=-.'"
Code X'08': • If the SCB is a STAE p.............................................." 


in supervisor mode 
retry • ASI R Phase 3 (8.46) 

• Schedu I e 	the next 
exit routine. ••••••••••~ASIR Phase 1 (8.44) rES_A___-,L 

Code X'lOl: _ 	Indicate "prevent 
STAI processing. II 

I : .............................................."i'
~ 
• Schedule 	the STAR 

exit routine. •••••••••••ASIR Phase 1 (8.44) L-___--' 

Code X'OC', • Schedule the STAI 
exit routine. •••••••••••••ASIR Phase 1 (8.44) 

All codes except XIQQI: If the SCB 

is a STAR, retIY. •••••••••••• ASIR Phase 3 (8.46) 


(Invalid codes are treated as code 

X'OO') 


L l 	 l, 




( 	 rr 
Diagram 8.45 ASIR Phase 2 (Module IEAVTMOB)
r------------------------------------------------------------y--------T--------,
I IROUTINE I I 

I NOTES INAME ILABEL I 

~------------------------------------------------------------t--------t--------~

1 	 IPBASE2 IPBASE2 I 

I I I


4 	 If the task abnormally terreinated with a 33E conditicn IPBASE2 ICALLROUTI 

code, a retry is not Ferformed; control is returned to I I I 

Phase 1. If control is routed to Phase 1, the work areal I I 

is freed if one was ottained. The work area is retained I I I 

if control is passing to Phase 3. I I I 


I I I 

Testing for: 	 I I I 


I I I 

code X'QO' IROUTPROC IROUTPROC I 

code X'04' I IPRG I 

code X'OS' I I NOPRG I 

code x'OC' I IPRG I 

code X'lO' I I QSTAIENDI 


I I I 

TCBNPURG, when set, means that a valid nc-purge request I I I 

was received. I I I
L____________________________________________________________ ________i ________J~ 

en 
(I) 

~ .... 
g 
co 


1-3 


a 
~. 
III 

rt 
.... 
g 
a. 

VI 

VI 




C1\ 	 Diagram 8.46 (Steps 1-6) 
(J1 ASIR Phase 3 
C1\ 

F rom AS I R Phase 2 (8 .45) to 
schedule a user's retry routine Processing Output 

.....~~IPHASE3 
1 Set the Phose 3 indicator. 

2 	 Reinitio!ize the work area, if one 
was obtained in Phase'. INITSDWA 

SDWAInput 

TCB 

IGCOCOlC 


3 If no purge is indicated 	 NOPURGE GETMAIN 

IMld a retry PR~ block}. ~! 	 :>RBQueue,@_____=6.= 
, (program reque, ~: -;=====----l

1 '! ASIR SVRB 

I • 10 N_ eo"4 	 Find the RB to retry. ~ FINDRB I 
TCB' 

5 	 Close any DeBs related to RBs that 
will be purged in Step 6. Reset the CiC-­
Phase 3 indicator on retum from 
PHASE4 ~ PHASE4 

,,-'_ !I~ 	 ,-ES_A__~ 

6 	 Purge all RBs between the ASIR SVRB I ~ 
and the retry RB. Termination Interface --.a.. I PURGERB 

IEAPTERM 


Purge page-in requests. 
 RBs being purged 
5.57 .' ' 

(Continued at Step 7) 

~, l 	 L 




(r 	 r 
Ciagram 8.46 <Steps 1-6) ASIR Phase 3 (Modules IEAVTMOB and IEAVTMOC) 
r------------------------------------------------------------T-------~--------, 
I IROUTINE I I 

I NOTES INlIME ILABEL I 

~------------------------------------------------------------t--------+--------~ 
I 	 1 The Phase 3 indicator is set as a debugging aid and to IPHASE3 

I indicate that INITSDWA should reinitialize the work I 

I area. 	 I 


I 
I 

2 INITSDWA branches to MODESET to enable the system. It I 
I 


I performs processing similar to that done for Phase 1 I 

I (initialization). Differences are that the user para11'- I 

I eter list is checked for validity (if it exits; and the I 


user is not in supervisor state). If found to be in- I 

valid (it may have been modified by the exit routine) I 

the SDWA is freed and an indicatcr is set 11'eaning that I 

the parameter list address is invalid and nO retry is I 

allowed. Otherwise, the address of the first IOE on thel 

restore chain (or if no I/O is restorable) is placed I 

into word 2. Word 26 of the work area is set to point I 

to word 2 (0 if no I/O is restorable). The name and I 

entry point of the abnormally terrr,inating r:rogram, are I 

placed in the work area as in Phase 1. Before returning I 

to mainline Phase 3, INITSWA issues the MODESET SVC to I 

disable the system. I 


I 

3 	 IGCOC01C (the second load module of ASIR) is entered vial 


an XCTL macro instruction. TCENPURG=l means to retry I 

without purging RBs; TCBNPURG is set in Phase 2. I 


4 	 FINDRB selects the retry RB: 

• 	 For STAR, RB pointing to the TCB 

• 	 For STAE, RB pointed to by SCBOWNRA 

• 	 For STAI, PRB whose RBLINK field points to the most 
recent A5IR Phase 1 SVRB. If such a PRB does not 
exist, the newest PRB older than the oldest non-FRB 
on 	the RB queue is used. 

5 	 TCBDEB contains the address of the first DEB, or 0, if 
there are no DEBs. 

For Phase 3 processing, to ensure that correct register6 

contents are passed to the retry routine across the SVC 
3 	 Exit interface, PURGERB must consider the current 
ASIR SVRB as one of the RBs being purged. I 


I 

I 

I 

I 

IREINIT 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

ITSTPRG 

I 

I 

I 

ICALLFIND I 

I I 

I I 

I I 

I I 

I I 

I I 

I I 

I I 

I I 

I I 

leLOPHASEI 
I I 

I I 

IREPURG I 

I I 

I I 

I I


J____________________________________________________________ ________~________~ 

I'Jl 
(1) 
n 
rI'
"", g 
Q) 

(1) 

~, 
= ~ 
"", 
g 
a­
U!.., 

t-3 



VI 
(7\ 	 Diagram 8.46 (Steps 7-141 

ASIR Phase 3 CO 

Processing 	 Output 

7 	 Indicate RBs purged. 

8 	 Initialize the retry RB pointer. 

9 Concel pending messages. 	 WTOR Purge 

IEECVPRG 

Purge WTOR queue. 

10 For STAR retries 	 ENQ Manual Purge 

IEAOEQOl 

11 	 Set retry wait count and wait flags 

to 0; allow asynchronous 

interruptions. 
 ..""""""""~ ~""""""...:! 

12 Remove SCe. not eligible for retry. CLEANUP 

Set eligible SCe. not 
"in use u• ~,Input 	 ~"""""'...:! 

CVT 

13 	Cancel problem determination 

messages.
e-	 ..""""""""~ ~""""""...:! 

Set parameters to be used by the 
retry routine. Register 0 Register 1 

Work area address IWork area code I 
or ABEND code 

X'OO' - Area exists 
X'O(l - No area obtained Register 14 

User's retry routine 
via SVC 3 Supervisor linkage 

instruction address 
Address of Ii"t I/O 
block on the restore Register 15 
chain (if no work area) 

Address of user retry 
routine 

\. 	 L L 



(
r 	 r 

Diagram 8.Q6 (Steps 7-1Q) ASIR Phase 3 (Module IEAVTMOC) 
r------------------------------------------------------------T-------~--------, 

I IROUTINE I I 

I NOTES INAME ILABEL I 

~------------------------------------------------------------t--------+--------~ 
I 9 See OS/VS2 Job Management Logic for further IPHASE3 IWTORPRG I 

I information about the WTOR Purge routine. I ISTARPRG I 

I I ITI~ERPRGI 


I I I I

111 The TCBABGM flag is turned off to allow allocation only I I ASYNCBON 

1 from the LSQA. I 

1 1

12 	 In CLEANUP processing, if the retry is from a STAE exit I 


routine, the STAE sca is dequeued from the SCB chain and 

the SCB storage is freed. If the retry is from a STAI 

exit, the in-use bit is reset in the STAI SCB. If the 

retry is from the oldest STAI exit, the in-use tit is 

reset in any STAI SCEs on the SCB queue for ~hich the 

in-use bit has been previously set and not already 

reset. If it is a STAR retry, STAI in-use bits are 

reset as above in addition to resetting the STAR SCE 

in-use bit. 


Messages to te canceled were stored by type-l SVC IMSGLOOP13 

I routines. I 

1 I 

I CVTQMSG points to a list of nessage entries. I 

1 I 

114 'Ihe work area now contains the address of the first I/O I RETXIT 

I block and the address of the IOH restore chain if there I 

I is an lOB restore chain in both cases. I I
L____________________________________________________________ _______ ________J~ ~ 

en 
m 
~ "",g 
(Xl 

~ 
~' 
OJ 
rt"",o = 
C1\ 
U1 
IC 

8 



'" Diagram 8.47 
'" o ASIR Phase 4 

From ASIR Phase 3 (B.46) to close DCBs 
related to RBs that Phase 3 will purge Processing Output 

IIII__.I~I PHASE4 ESA 

Input 
Set the Phase 4 indicator. 

TCBTCB 

2 	 For STAR SCe., set the ABEND-in­
progress flag. 

, • 3B 

3 	 Any DeBs within the bounds of the 
extent list must be closed: BOUNDTST 

Pass address of DeB 
from DEB and extent 
list. 

A. Dequeue all lOBs with addresses 
matching DeBs to be closed. IOBPROC MODESET 

IEAMODBR 

(Enable) 

3.21 

B. Close DCe.. 

If CLOSE processing fails FORCLOSE 

Force closing of DeBs 
by dequeuing DEBs. 

MODESET4 	 Disable the system. 

IEAMODBR 

(Disable) 

3.21 

"1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I"~ASIRPh~e3(B.46) 


L l 	 L, 


http:1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I"~ASIRPh~e3(B.46


(
r 	 r 

Diagram 8.47 ASIR Phase 4 (~odule IEAVTMOC) 
r------------------------------------------------------------T-------~--------, 

1 1ROUTINE 1 1 

1 NOTES 1NAME 1LABEL 1 

~------------------------------------------------------------+--------+--------~

1 The Phase 4 indicator is set as a debugging aid. 	 IPHASE4 IPHASE4 I 

1 1 I


2 Setting TCBFA causes the CLOSE routine to bypass its 1 IALLCLOSE 

normal wait for an ECB to be posted. 1 1 


1 1

3 	 For STAR SCBS, all DCBs are closed, not just those 1 I BOUND 


within the bounds of the extent list. DCBs are closed 1 

for RBs between the ASIR SVRE and the retry RB. In lOB-I 

PROC the IOBDCB field of each lOB on the restore chain 1 

is com~ared to the address of the DCB that is to be 1 

closed. If a match is found, that lOB is dequeued from 1 

the restore chain so that a retry routine will net laterl 
attempt to restore the lOB for a DCB which has been 1 

closed. (The CLOSE routine manipulates other lOB chains 1 

for the DCB that is being closed.) Each time a match isl 

found on the first lOB on the restore chain, the start 1 

address of the restore chain is updated. When a match 1 

is found on the only lOB remaining on the restore chain, 1 

the -no-I/O-restorable- indicator is set in the extended I 

save area of ASIR's SVRB and the same field in the SLWA I 

is updated (if an SDWA exists). (Information about the I 

IOE restore chain is passed to the user retry routine I 

via the work area or parameter registers.) I 


1 

A IOBPROC enables the system to avoid missing page 1 ICALLIOBPI 

interruptions. I 1 1 

1 1 I 


B 	For further information about the CLOSE routine, see 1 ICLOSEDCBI 

OS/VS OPEN/CLOSE/EOV Logic. 1 IDEBFRR I


L______________________________________________________ ______ ________L ________J~ 

en 
CD 
C'l 
r!­.... 
g 
co 

8 

CD 

~ .... 
:; 

III 

r!­.... 
o 
:; 

0\ 
0\ 
I-' 





SECTION 9 

Glossary 

WHAT VS2 TERMS AND ABBREVIATIONS MEAN ••......•.......•••....••.••.. 665 

Reference Words used in the Entries ..•••••....•••••••.•.••••••••.•• 665 

Acknowledgement to the American Nationll Standards Institute •.•.••. 665 

GLOSSARY ..•.••••.•.•.•.••..•..••••.••.•••••..•.•••.•.•.•.••.•....•• 666 

D 

Section 9: Glossary 663 



J 




This glossary defines VS2 terms and 
abbreviations as they are used in this 
manual. This glossary does not include all 
terms previously established by the IBM 
System/360 operating system. If you do not 
find the term you are looking for in this 
glossary, refer to the index in this book 
or to the IBM Data Processing Glossary, 
GC20-1699. 

REFERENCE WORDS 	 USED IN THE ENTRIES 

The following reference words are used 
in this glossary: 

Reference 
Words Meaning 
Contrast with Refers to an opposed or 

substantively different 
term. 

Preferred term 	 Indicates that a term is 
is 	 still in use but that a 

preferred term exists and 
is defined. 

Less preferably 	 Indicates a synonymous 
called 	 term is still in use but 

is less prevalent than the 
preferred term. 

See 	 Refers to multiple-word 
terms that have the same 
last word. The other 
terms mayor may not be 
related to the entry in 
which the reference 
appears. 

See also 	 Refers to related terms 
that have a similar, but 
not synonymous, meaning. 

WHAT VS2 TER~S AND ABBREVIATIONS MEAN 

Synonymous with 	 Lists equally acceptable 
terms. 

ACKNOWLEDGMENT TO THE AMERICAN NATIONAL 
STANDARDS INSTITUTE 

IBM is grateful to the American National 
Standards Institute (ANSI) for permission 
to reprint its definitions from the Ameri­
can National Standard Vbcabulary for Infor­
mation Processing (Copyright 1970 by Ameri­
can National Standards Institute, Incor­
porated), which was prepared by Subcommit­
tee X3.5 on Terminology and Glossary of 
American National standards Committee X3. 

ANSI definitions are indicated in these 
ways: 

• 	 An asterisk preceding the first item 
number indicates that all definitions 
for that term are ANSI definitions. In 
this case, the asterisk appears like 
this: 

term: * (1) Beginning of first 
definition••• 

• 	 An asterisk between an item number and 
the beginning of a definition indicates 
that only the definition so marked is 
an ANSI definition. In this case, the 
asterisk appears like this: 

term: (1) * Beginning of the ANSI 
definition••• 

Section 9: Glossary 665 



GLOSSARY 


ABDAREA: ABDUMP wor k area. 

ABDPL: ABDUMP subcomponent parameter list. 

ABDUMP: A dump taken during abnormal ter­
mination of a task. Also the name of a 
routine that produces the dump. 

ABDUMP suboomponent parameter list (ABDPL): 
An area used for communication with the 
TCAM, TSO, and SWA dump-formatting 
routines. 

ABDUMP work area (ABDAREA): A work area 
that contains pointers, buffers, flags, and 
counters used ~ the ABDUMP routines. 

ABEND: Abnormal end of task. Also the 
abbreviated name of a routine that performs 
the abnormal ending of a task and that 
task's incomplete subtasks. 

abnormal end of task: Termination of a 
task prior to normal completion because of 
an error condition. Abbreviated ABEND. 

abnormal termination: Same as abnormal end 
of task. 

active page: A page in real storage that 
can be addressed. 

active page queue: One of four queues of 
pages that are in real storage that are 
currently assigned to tasks. Pages on 
these queues are eligible for placement on 
the available page queue. A separate 
active page queue is maintained for all 
active pages that have a particular confi­
guration of the reference and change bits 
(0,0; 0,1; 1,0; l,l). See also available 
page queue, hold page gueue. 

address translation: The process of chang­
ing the address of an item of data or an 
instruction from its virtual address to its 
real storage address. See also dynamic 
address translation. 

alias: (I). An alternate label. For 
example, a label and one or more aliases 
may be used to refer to the same data ele­
ment or point in a computer program. (2) 
An alternate entry point established within 
a module during linkage editor processing; 
an alias name is available to the control 
program before the module is loaded. Con­
trast with embedded entry point. 

allocate: To assign a resource for use in 
performing a specific task. 

allocated queue element (AQE): A VSS con­
trol block containing the size of a block 
of allocated storage in subpool 233, 234, 
243, 244, 253, or 254. 

antecedent task: Synonymous with 
related higher-level task. 

APF: Authorized program facility. 

APG: Automatic priority group. 

APGCE: Automatic priority group control 
element. 

AQE: Allocated queue element. 

ASIR: ABEND/STA Interface routine. 

asynchronous: Without regular time rela­
tionship; unexpected or unpredictable with 
respect to the execution of a program's 
instructions. Contrast with synchronous. 

asynchronous exit queue: A queue contain­
ing queue elements that represent requests 
for exit routines (including data manage­
ment exit routines) and requests for asyn­
chronous control program services that must 
be executed under a user TCB because a dis­
abled routine may cause a page fault. 
Building the asynchronous exit queue is a 
scheduling phase performed by the Stage 2 
Exit Effector. 

attaching task: Synonymous with originat­
ing task. 

authorized program facility (APF): A gen­
eral term for supervisor coding that limits 
the use of critical functions and resources 
to authorized users. Testing for authori­
zation is done by TESTAUTH, a type-l SVC 
routine. TESTAUTH compares an authoriza­
tion code, which the linkage editor assigns 
to every module, against a function code 
whenever a task attempts to use a 
restricted resource or function. 

automatic priority group (APG): A group of 
tasks at a single priority level that are 
dispatched according to a special algorithm 
that attempts to provide optimum use of CPU 
and I/O resources by these tasks. See also 
dynamic dispatching. 

automatic priority group control element 
(APGCE): A control element used to control 
the dispatching of tasks in an automatic 
priority group. 

666 



auxiliary storage: Data storage other than 
real storage (and including external page 
storage). 

auxiliary storage allocation gueue: In 
paging supervision, a queue on which a PCB 
is placed to await the assignment of an 
external storage slot so that the page can 
be paged out. 

auxiliary storage management: A general 
name used for routines in the paging super­
visor that control external page storage. 

available frame count: A count of page 
frames that are ready for reassignment. 

available page gueue: A queue of the pages 
whose real storage is currently available 
for allocation to any task. See also 
active page gueue, hold page queue. 

basic control (Be) mode: A mode in which 
the features of a system/360 computing sys­
tem and additional System/370 features, 
such as new machine instructions, are 
operational on a System/370 computing sys­
tem. See also extended control (EC) mode. 

BC mode: Basic control mode. 

BLDL table: A table of track addresses for 
a user-specified list of modules on the 
link library (SYS1.LINKLIB). The purpose 
of the table is to reduce the time required 
to find the listed modules on SYS1.LINKLIB. 
In VS2, the user can specify that this 
table is to be either paged or fixed; when 
the table is on fixed pages in lower real 
storage, it is called a fixed BLDL table. 

blocking: Combining two or more logical 
records into one physical record. 

branch-entry fix-delay queue: In paging
superv1s10n, a queue on which fix requests 
(received through branch entries to the 
FIX/LOAD routine) are placed when they can­
not be processed because the amount of fix­
able real storage has fallen below a speci­
fied minimum. 

BSAM: Basic sequential access method. 

CCW translation: Preferred term is channel 
program translation. 

CDE: Contents directory entry. 

change bit: A bit associated with a page 
in real storage; the change bit is turned 
on by hardware whenever the associated page 
in real storage is modified. In VS2, there 
is a change bit in each of two storage keys 
associated with each frame; if either bit 
is on, the entire page is considered to 
have been modified. 

channel program queue: A queue is the nuc­
leus containing channel programs used by 
the paging supervisor for paging 
operat ions. 

channel program queue element (CPQE): A 
control element in the nucleus that con­
tains a channel program used by the paging 
supervisor. 

channel program translation: In a channel 
program, replacement by the software of 
virtual addresses with real addresses. 
Less preferably called CCW translation. 

clock comparator feature: A System/370 CPU 
feature used to cause an external interrup­
tion when the time-of-day clock reaches or 
passes a specified value and the CPU is 
enabled for clock comparator interruptions. 
A value is placed in the clock comparator, 
and when the time-of-day clock reaches that 
value, the interruption occurs. 

clock comparator queue: The queue of timer 
queue elements (TQEs) representing requests 
for REAL and WAIT timing. Each TQE con­
tains an interval; the interval contained 
in the TQE at the head of this queue is 
placed in the clock comparator. 

communications vector table (CVT): A major 
table in the system nucleus that contains 
addresses and other data needed and used by 
various supervisor routines. 

contents directory: A group of queues that 
indicate the routines that are present in 
virtual storage. Includes the link pack 
area queue, job pack area queue, and time 
sharing link pack area queue. 

contents directory entry (CDE): A control 
entry that represents a module in the job 
pack area. The entry describes the module 
and contains a pointer to its entry point.
If an embedded entry point was established 
in the module by an IDENTIFY macro instruc­
tion, there are two CDES for the module. 
One, the major CDE, contains the main 
entry-point address; the other, the minor 
CDE, contains the entry-point address for 
the embedded entry point. 

control registers: A set of registers used 
for operating system control of relocation, 
priority interruption, program event reco­
rding, error recovery, and masking opera­
tions. Contrast with general-purpose 
registers. 

CPQE: Channel program queue element. 

CPU timer: A System/370 timing device used 
for TASK timing. It is a 6q-bit decrement­
ing binary counter. On the basis of a pro­
gram request. a binary time interval is 
placed in the counter. A one is subtracted 

Section 9: Glossary 667 

L 



from bit position 51 of the counter every 
microsecond. An external interruption 
occurs when the value placed in the CPU 
timer reaches or becomes less than zero if 
the CPU is enabled for CPU timer 
interruptions. 

CPU timer queue: The queue of timer queue 
elements (TQEs) representing requests for 
TASK timing. Each TQE contains an interv­
al, and the interval contained in the TQE 
at the head of this queue is placed in the 
CPU timer. 

CVT: Communications vector table. 

default device: A paging device from which 
a page slot is to be assigned for a page­
out operation when a particular device has 
not been specified in the page-out request. 

deferred allocation: A condition in which 
the allocation of pages for a region must 
be delayed because all needed pages are not 
immediately available. 

delayed posting gueue: In paging supervi­
sion, a queue on which a PCB is placed when 
a paging operation has been completed but 
the completion cannot be posted immediately 
because the system is handling a disabled 
page fault. 

demand paqing: Transfer of a page from 
external page storage to real storage at 
the time it is needed for execution. 

dequeue: (1) To remove a program from a 
list of programs awaiting use of a system 
service or resource. (2) To remove a con­
trol block or data entry from a queue of 
control blocks or data entries. (3) Con­
trast with enqueue. 

I 
descendant task: Synonymous with related 
subtask. 

descriptor gueue element (PQE): A VSS con­
trol block that describes a storage block 
of 4K or more bytes within a subpool. 

device number: A part of an external page 
address that refers to a particular paging 
device; together with a group number and a 
slot number, it identifies the location of 
a page in external page storage. 

directed page-out: A page-out operation in 
which the page slot is to be assigned from 
a paging device specified in the page-out 
request (rather than from a default 
device). 

disabled: Pertaining to a state of the CPU 
that prevents the occurrence of certain 
types of interruptions. 

668 

disabled code: A section of code that can­
not be interrupted by specific types of 
interruptions. J 
disabled page fault: A ~age fault that 
occurs when I/O and external interruptions 
are disallowed by the CPU. 

dispatch: To place into execution. See 
also task switching. 

dispatching priority: A number assigned to 
each task, used to determine the order in 
which that task will use the CPU in rela­
tion to other tasks in the system. See 
also limit priority. 

dormant state: A state in which the active 
pages of a job have been paged out. 

~: Descriptor queue element. 

DSS: Dynamic support system. 

dump: * (1) To copy the contents of all or 
part of a storage, usually from an internal 
storage into an external storage. (2) A 
process as in (1). (3) The data resulting 
from the process as in (1). 

dynamic address translation (DAT): (1) The 
process of changing a virtual storage 
address to a real storage address during 
execution of an instruction. See also 
address translation. (2) A hardware fea­
ture that performs the translation. 

dynamic allocation: Assignment of system 
resources to a program at the time the pro­
gram is executed rather than at the time it 
is loaded into storage. 

dynamic area: The portion of virtual 
storage that is divided into regions that 
are assigned to job steps and system tasks. 
See also pageable dynamic area, ~ 
paqeable dynamic area. Contrast with ~ 
dynamic area. 

dynamic dispatching: A facility that 
assigns priorities to tasks within an auto­
matic priority group to provide optimum use 
of CPU and I/O resources. 

dynamic dump: A dump that is performed 
during the execution of a computer program. 

dynamic support system ,(OSS): An interac­
tive debugging facility that allows 
authorized maintenance personnel to monitor 
and analyze events· and alter data. Infor­
mation for DSS is included for planning 
purposes only. 

ECB: Event control block. 

EC mode: Extended control mode. 



embedded entry point: An alternate entry 
point established within a module by means 
of the IDENTIFY macro instruction after a 
module has been loaded into virtual 
storage. contrast with alias. 

enabled: pertaining to a state of the cpu 
that allows the occurrence of certain types 
of interruptions. Synonymous with 
interruptable. 

enabled code: Code that can be interrupted 
by the cpu. 

enabled page fault: A page fault that 
occurs when I/O and external interruptions 
are allowed by the cpu. 

enqueue: (1) To add a program to a list of 
programs awaiting use of a system service 
or resource. (2) To add a control block or 
data entry to a queue of control blocks or 
data entries. (3) contrast with dequeue. 

event control block: A control block used 
to represent the status of an event. 

extended control (EC) mode: A mode in 
which all the features of System/370 com­
puting system, including dynamic address 
translation, are operational. See also 
basic control (BC) mode. 

extent list (XTLST): A control element 
that shows the address and length of each 
module in virtual storage. 

external page: A page located on external 
page storage. 

external page address: An address that 
identifies the location of a page in a page 
data set. In VS2, the address consists of 
a relative device number, a relative group 
number, and a relative slot number. 

external page storage: The portion of 
auxiliary storage that is used to contain 
pages. 

external page table (XPT): An extension of 
a page table that identifies the location 
on external page storage of each page in 
that page table. 

external page table entry (XPTE): An 
entry, in an external page table, that 
associates a virtual storage page with the 
actual page on an auxiliary storage device. 

FBQE: Free block queue element. 

fix ownership element (FOE): A control 
element that represents a page that has 
been fixed by the task to whose TCB the FOE 
is chained. 

fixed: In OS/VS, not capable of being 
paged out. See also long-fixed, normal­
fixed, short-fixed, and'page fixing. 

fixed BLDL table: A BLDL table that the 
user has specified to be fixed in the lower 
portion of real storage. 

fixing: See page fixing. 

fixed link pack area: An extension of the 
link pack area that occupies fixed pages in 
the lower portion of real storage. A rou­
tine in the fixed LPA is used in preference 
to a copy of the same routine in the page­
able LPA. The routines in the fixed LPA 
are densely packed without regard for page 
toundaries. 

fixed page: A page in real storage that is 
not to te paged out. 

FLIH: First-level interruption handler. 

FOE: Fix ownership element. 

FQE: Free queue element. 

frame: Same as page frame. 

frame number: In VS2, the part of a real 
storage address needed to refer to a frame. 
See also page number. 

frame table: Same as page frame table. 

frame tatle entry (FTE): An entry in the 
page frame table that describes how a frame 
is being us ed. 

free block gueue element (FBQE): A VSS 
control tlock that describes 4K blocks of 
storage not yet assigned to a subpool. 

free queue: In paging supervision, a queue 
on which a PCB is placed when a request for 
a paging service has been completely satis­
fied and this PCB is no longer needed. The 
PCBs on this queue are available for use in 
handling other requests for paging 
services. 

free queue element (FQE): A VSS control 
block that describes the unallocated 
storage within the space defined by a 
descriptor queue element (DQE). 

FTE: Frame table entry. 

general-purpose registers: A set of regis­
ters available to any program running in a 
cpu. Contrast with control registers. 

generalized trace facility (GTF): A trac­
ing program that monitors and records sys­
tem events. It may be turned on and off by 
the operator and manipulated by the ter­
mination routines. 

Section 9: Glossary 669 



GOVRFLB: The primary VSS control block. 
It defines SQA and LSQA quickcell require­
ments and contains data needed for initial 
supervision of virtual storage. 

group: See slot group. 

group number: In VS2, a part of an extern­
al page address that refers to a slot 
group; together with a device number and a 
slot number, it identifies the location of 
a page in external page storage. 

GTF: Generalized trace facility. 

hold page queue: A queue to which pages in 
real storage are initially assigned through 
operations such as page-in or page reclama­
tion. See also active page queue, avail­
able page queue. 

INFOLIST: Type-1 SVC message table. 

initial proqram loader (IPL): A program 
that loads the control sections of the con­
trol program into real storage. 

initial program loading: A corrbined 
hardware/software operation that clears 
real storage and loads the control sections 
of the control program into real storage. 
The hardware portion of the operation 
starts a read operation from a designated 
input device: the IPL program then uses a 
bootstrap program to load itself into real 
storage. Abbreviated IPL. 

initiating task: The job management task 
that controls the selection of a job and 
the preparation of the steps of the job for 
execution. Less preferably called initia­
tor task. 

interception: In paging supervision, the 
process of seizing a page frame that was 
being used for a non-V=R purpose and is 
needed to complete a requested V=R region. 
The PFTE (page frame table entry) for the 
frame was previously marked so that the 
frame would be seized when it was released 
from its non-V=R use. See also V=R inter­
cepted page. 

interregion posting: The process by which 
the POST routine indicates to a swapped~out 
TSO routine that an awaited event is com­
plete. The POST routine passes control to 
TSO's TSIP (Time Sharing Interface Program) 
to swap in the user. Execution of the POST 
routine is then requested by the Region 
Control Task of TSO. 

interruption queue element (IQE): A con­
trol element used by the Stage 2 and Stage 
3 Exit Effectors to schedule the execution 
of an end-of-task exit routine (ETXR). 

interruption reguest block (IRB): A con­
trol block that represents a routine that 
must be executed because of the occurrence 
of an asynchronous interruption or event. 

interval: A predetermined time period. 

interval read count: A count of the number 
of page-in operations that are requested
during a specified interval. The count is 
calculated by the task disablement 
algorithm in paging supervision. 

interval reclaim count: A count of the 
number of pages that, during a specified 
interval, have been reclaimed from the 
available page queue or have been reclaimed 
during preliminary page-out processing. 
The count is calculated by the task dis­
ablement algorithm in paging supervision. 

interval swap-in count: A count of the 
number of page-in requests that were 
required by swap-in operations during a 
specified interval. The count is calcu­
lated by the task disablement algorithm in 
paging supervision. 

invalid page: A page that cannot be 
directly addressed by the dynamic address 
translation feature of the cpu. 

I/O active queue: In paging supervision, a 
queue on which a PCB is placed whenever a 
page-out or page-in operation has been 
started to satisfy a request represented by 
the PCB. 

IPL: Initial program loader. 

IRB: Interruption request block. 

IQE: Interruption queue element. 

JCT: Job control table. 

JFCB: Job file control block. 

job: A collection of related problem pro­
grams, identified in the input stream by a 
JOB statement followed by one or more 
execute (EXEC) and data definition (DD) 
statements. 

job pack area (JPA): The two subpools (251 
and 252) in a given region of virtual 
storage into which executable programs are 
loaded. 

job pack area queue (JPAQ): A queue con­
taining the contents directory entries 
(CDEs) for problem programs running in the 
job pack area subpools of a region. 

job step: (1). The execution of a comput­
er program explicitly identified by a job
control statement. A job may specify that 
several job steps be executed. (2) A unit 

670 



of work a'ssociated with one processing pro­
gram or one cataloged procedure and related 
data. A job consists of one or wore job 
steps. 

job-step task: (1) A task that is 
initiated by an initiator/terminator in 
accordance with specifications in an 
execute (EXEC) statement. (2) A subtask of 
a job-step task whose job-step pointer 
points to itself. 

limit priority: A priority specification 
associated with each task, representing the 
highest dispatching priority that the task 
can assign to itself or to any of its sub­
tasks. See also dispatching priority. 

link pack area (LPA): An area of virtual 
storage that contains selected reenterable 
and serially reusable routines that are 
loaded at NIP time and can be used concur­
rently or serially by all tasks in the sys­
tem. In VS2, a link pack area can ccnsist 
of a pageable LPA only, or of a pageable 
LPA and a fixed LPA. See also pageable 
link pack area and fixed link pack area. 

link pack area directory: A directory that 
contains an entry (LPDE) for each entry 
point in all modules in the link pack area. 

link pack area library (SYS1.LINKLIB): A 
partitioned data set that contains the 
modules specified to be in the link pack 
area. 

link pack area gueue: A queue that con­
tains a contents directory entry (CDE) for 
each link pack area module currently in 
use, for each module in the link pack up­
date area, and for each module in the fixed 
link pack area. In searching for a 
reqUested module, the system searches this 
queue before it searches the link Fack area 
directory. 

link pack update area: An area in virtual 
storage that contains modules that are 
additions to or replacements for link pack 
area modules for the current IPL. 

LLE: Load list element. 

load list: The chain of load list elements 
that represent the modules that have been 
loaded into a task's job pack area. 

load list element (LLE): A control element 
created for each module loaded into a 
region's job pack area by the LOAD routine. 
The LLEs for each task in a job step are 
chained together to form the load list for 
that task. Each LLE points to a contents 
directory entry for the loaded module. 

local system gueue area (LSQA): One or 
more segments associated with each virtual 

storage region that contains job-related 
system control blocks. 

lock/unlock facility: A supervisor facility 
that controls the execution of instruction 
strings when a disabled page fault occurs. 

long-fixed: Pertaining to a request to fix 
cne or more pages for a relatively long 
time. 

LPA: Link pack area. 

IPDE: Link Fack directory entry. 

LSQA: local system queue area. 

low threshold: In paging supervision, the 
niniw.um number of page frames that can be 
available before the system takes action to 
acquire additional unoccuFied frames. 

message buffer: A structured buffer area 
used for building and writing system 
messages. 

migration: SEe page migration. 

migration PCB: A PCB representing a page 
to be migrated. 

migration queue: In paging supervision, a 
queue on which a PCB is placed whenever a 
Fage must be moved from a primary to a 
secondary paging device to make paging more 
efficient. 

nissing page interruption: See page fault. 

must-complete status: See step must­
complete status and system must-complete 
status. 

NIP: Nucleus initialization program. 

nondirected page-out: A page-out operation 
in which the page slot is to be assigned 
from a default device (rather than from a 
particular device specified in the page-out 
request). 

nondynamic area: The area of virtual 
storage aSSigned to the resident portion of 
the control program (the nucleus and the 
link pack area). Contrast with dynamic 
area. 

nonpageatle dynamic area: An area of vir­
tual storage whose virtual addresses are 
identical to real addresses~ it is used for 
programs or parts of programs that are not 
to be Faged during execution. Less prefer­
rably called V=R dynamic area. 

nonpageable region: A subdivision of the 
nonpageable dynamic area that is allocated 
to a job step or system task that is not to 
be paged during execution. In a nonpage-

Section 9: Glossary 611 

http:niniw.um


able region, each virtual address is ident­
ical to its real address. Less preferably 
called V=R region. 

normal-fixed: Pertaining to a request to 
fix one or more pages for an average period 
of time. 

nucleus initialization program (NIP): The 
program that initializes the resident con­
trol program. It allows the system opera­
tor to request last-minute changes to cer­
tain options specified during system 
generation. Abbreviated NIP. 

originating task: The task that is attach­
ing or did attach a particular subtask. 
Synonymous with attaching task. 

overlay segment: A user-determined portion 
of a program that has been divided so that 
the portions can be consecutively loaded 
into virtual storage and executed. Con­
trast with segment. 

overlay segment table (SEGTAB): A table 
used by the overlay supervisor to record 
the use of overlay segments. Contrast with 
segment table (SGT) used in dynamic address 
translation. 

~: (1) A fixed-length block of instruc­
tions, data, or both, that can be trans­
ferred between real storage and external 
page storage. In VS2, a page consists of 
4K bytes. (2) To transfer instructions, 
data, or both between real storage and 
external page storage. 

page control block (PCB): A control block 
that indicates the status of a paging requ­
est, and is used to control the movement of 
a paging request among the various modules 
of the paging supervisor. 

paqe data set: A data set in external page 
storage, in which pages are stored. 

page fault: A program interruption that 
occurs when a page that is marked "not in 
real storage" is referred to by an active 
page. Synonymous with page translation 
exception. 

Fage fixing: Marking a page as nonpageable 
so that it remains in real storage. 

page frame: A block of real storage that 
can contain a page. Synonymous with frame. 

page frame table (PFT): A table that con­
tains an entry for each frame. Each frame 
table entry describes how the frame is 
being used. 

paqe frame table entry (PFTE): A control 
element that reflects the status of a page

I frame. 

Eage-in: The process of transferring a 
page from external page storage to real 
storage. 

Eage I/O initiation gueue: In paging 
supervision, a queue on which a PCB is 
placed to await the starting of an 1/0 
operation required for the page-out or 
Fage-in request represented by the PCB. 

Eage migration: The transfer of pages from 
a primary paging device to a secondary pag­
ing device to make more space available on 
the primary paging device. 

page number: The part of a virtual storage 
address needed to refer to a page. See 
also frame number. 

Eage-out: The process of transferring a 
page from real storage to external page 
storage. 

Eage reclamation: The process of making 
addressable the contents of a page in real 
storage that has been marked invalid. Page 
reclamation can occur after a page fault or 
after a request to fix or load a page. 

Eage table (PGT): A table that indicates 
whether a page is in real storage and 
correlates virtual addresses with real 
storage addresses. 

Eage table entry (PTE): An element in the 
page table that represents a page in real 
storage. 

Eage translation exception: A program 
interruption that occurs when a virtual 
address cannot be translated by the hard­
ware because the invalid bit in the page 
table entry for that address is set. 
Synonymous with page fault, program inter­
ruption code 17. See also segment transla­
tion exception, translation specification 
exceEtion. 

page vector table (PVT): The central con­
trol block for the paging supervisor. 

Eage wait: A condition in which the active 
request block for a task is placed in a 
wait state while a requested page is 
located in real storage or is brought into 
real storage. 

Fageable dynamic area: An area of virtual 
storage whose addresses are not necessarily 
identical to real addresses; it is used for 
programs that can be paged during execu­
tion. Less preferably called V=V dynamic 
area. J 

672 



pageable region: A subdivision of the 
pageable dynamic area that is allocated to 
a job step or system task that can be paged 
during execution. Less preferably called 
V=V region. 

paging: The process of transferring pages 
between real storage and external page 
storage. 

paging device: A direct access storage
device on which pages (and possibly other 
data) are stored. 

paging device information table entry
(PDITE): A control entry used by the pag­
ing supervisor to identify the characteris­
tics and status of a paging device. There 
is one PDITE for each paging device. 

paging device table entry (PDTE): A con­
trol entry used by the paging supervisor to 
locate specific pages on a paging device. 

paging rate: The average number of page­
ins and page-outs per unit of time. 

paging supervisor: A part of the ~upervi­
sor that allocates and releases real 
storage space (page frames) for pages, and 
initiates page-in and page-out operations. 

partition queue element (PQE): A VSS con­
trol block that heads a chain of control 
blocks that describe unallocated storage 
space for an entire region, an LSQA, or the 
SQA. 

PCB: Page control block. 

PCI: Program-check interruption. 

PDITE: Paging device information table 
entry. 

PDTE: Paging device table entry. 

PER: Program event recording. 

PFT: page frame table. 

PFTE: Page frame table entry. 

PICA: Program interruption control area. 

PIE: Program interruption element. 

PGT: page table. 

PQE:' Partition queue element. 

PRB: Program request block. 

primary paging device: An auxiliary 
storage device that is used in preference 
to secondary paging devices for paging 
operations. Portions of a primary paging 

device can be used for purposes other than 
paging operations. 

priority: A dispatching priority and a 
limit priority for each task resides in the 
task's TCE. The dispatching priority 
determines the appropriate position of the 
TCB in the TCE queue; the limit priority is 
used by the CHAP routine to determine the 
Iraximum increase possible for the dispatch­
ing priority. See also'dispatching priori­
~ and limit priority. 

problem state: A state during which the 
CPU cannot execute input/output and other 
privileged instructions. Contrast with 
supervisor state. 

program event recording (PER): A hardware 
feature used to assist in debugging pro­
grams by detecting program events. 

program interruption code.16: 
ment translation exception. 

Same as seg­

Frogram interruption code.17: 
translation exception. 

Same as ~ 

Frogram interruption codelS: Same as 
translation specification exception. 

program interruption control area (PICA): 
A control block used to control the execut­
ing of a user exit routine that was speci­
fied in a SPIE macro instruction. 

program interruption element (PIE): A con­
trol element created when a SPIE macro 
instruction is used to specify that an exit 
routine is to process a particular type of 
program-check interruption. 

program request block (PRB): A request 
block that represents a nonsupervisory 
module or routine that is to be executed on 
behalf of a task. 

PTE: Page table entry. 

purge: To remove program elements or con­
trol information from a system. 

PVT: Page vector table. 

QCB: Queue control block. 

QCDBLK: Quickcell descriptor block. 

QEL: Queue element. 

queue control block (QCB): A control block 
that represents a set of resources (major 
QCE) or a single resource (minor QCB). 

queue element (QEL): A queue element used 
to represent one request for a particular 
system resource. Queue elements are used 

Section 9: Glossary 673 

L 



in handling the serial use of a system 
resource by different programs. 

qUickcell: A small unit of storage (rang­
ing from 8 to 240 bytes) in the system 
queue area or a local system queue area 
that is allocated upon request for a short­
lived control block. Allocation of a quic­
kcell is faster than normal GETMAIN alloca­
tion, and use of quickcells reduces storage 
fragmentation. 

quickcell area: A portion of the system 
queue area or a local system queue area 
that contains quickcells. 

guickcell descriptor block (QCDBLK): A VSS 
control block that describes a quickcell 
area in the SQA or an LSQA. 

quiescinq: (1) The process of bringing a 
device, an activity, or a system to a halt 
by rejection of new requests for work. (2) 
The process of bringing a multiprogramming 
system to a halt by rejection of new jobs. 

RB: Request block. 

real address: The address of a location in 
real storage. 

real storaqe: The storage of a System/370 
computing system from which the central 
processing unit can directly obtain 
instructions and data, and to which it can 
directly return results. 

real storage allocation queue: In paging 
supervision, a queue on which a PCB is 
placed whenever a page frame is needed to 
satisfy a page-in request but no frame is 
currently available. 

REAL timinq option: An option in the STIM­
ER macro instruction. The option specifies 
that the requested time interval is to be 
decremented continuously, whether or not 
the task is executing. Contrast with TASK 
timing option. See also WAIT timing 
option. 

recursion: Reentry into a routine as a 
result of a failure in the routine'S pro­
cessing. The routine is entered at a point 
subsequent to the point of failure. 

recursive: Pertaining to a process in 
which each step makes use of the results of 
earlier steps. 

reference bit: A bit associated with a 
page in real storage; the reference bit is 
turned on by hardware whenever the asso­
ciated page in real storage is referred to 
(read or stored into). In VS2, there is a 
reference bit in each of two storage keys 
associated with each page frame. 

region: See virtual storage reqion. 

related hiqher-Ievel task: On the subtask ~ 
queue for a job step, any task that was 
attached at a higher level and is connected 
through the task chain to a particular task 
being discussed. Synonymous with antece­
dent task. 

related PCB: A PCB whose request for a 
particular page can be associated with an 
already existing PCB that is accessing that 
same page. 

related subtask: On the subtask queue for 
a jot step, any task that was attached at a 
lower level and is connected through the 
task chain to a particular task being dis­
cussed. Synonymous with descendant task. 

relocation feature: Preferred term is 
dynamic address translation. 

relocation hardware: Preferred term is 
dynamic address translation. 

reply queue element (RQE): A control ele­
ment used to schedule asynchronous exit 
routines for data management. 

request block (RE): A control block that 
represents a module or routine to be 
executed on behalf of a task. See also 
interruption request block, program request 
block, system interruption request tlock, .~ 
supervisor reguest block, and task inter­
ruption request block. 

reserve replenish queue: In paging super­
vision, a queue that is readied whenever a 
page must be freed to replace a page that 
was reserved for emergency SQA or LSQA use 
and has now been allocated to one of those 
areas. The queue may also be activated 
because the available page count was zero 
and the page replacement algorithm could 
not be invoked immediately. 

root page control block (root PCB): A con­
trol block then is used to control the 
posting for a set of required operations on 
a defined group of pages when the posting 
cannot take place until all of the opera­
tions have been completed for all of the 
pages. 

root PCB: Root page control block. 

RQE: Reply queue element. 

same-level tasks: Two or more subtasks 
that were attached by the same originating 
task. 

scan table: The section of ~he PVT (page 
vector table) that contains the headers for J.' 
the PCB queues. 

674 



\.., 

SCB: STA control block. 

I SCT: Step control table. 

SDWA: STA diagnostic work area. 

second exit: A mechanism of alerting a 
routine that its request that a page be 
fixed and/or loaded has completed 
asynchronously. 

secondary paging device: An auxiliary 
storage device that is not used for paging 
operations until the available space on 
primary paging devices falls below a speci­
fied minimum. Portions of a secondary pag­
ing device can be used for purposes other 
than paging operations. 

segment: A continuous 64K area of virtual 
storage that is allocated to a job step or 
system task. Contrast with overlay 
segment. 

segment table (SGT): A table used in 
dynamic address translation to control user 
access to virtual storage segments. Each 
entry indicates the length, location, and 
availability of a corresponding page table. 

segment table entry (STE): An entry in the 
segment table that indicates the length, 
location, and availability of a correspond­
ing page table. 

segment translation exception: A program 
interruption that occurs when a virtual 
address cannot be translated by the hard­
ware because the invalid bit in the segment 
table entry for that address is set. 
Synonymous with program interruption code 
16. See also page translation exception, 
translation specification exception. 

SGT: Segment table. 

short-fixed: Pertaining to a request to 
fix one or more pages for a relatively 
short time. 

SlOT: Step input/output table. 

SIRB: System interruption request block. 

SLIH: Second-level interruption handler. 

slot: A continuous area on a paging device 
in which a page can be stored. 

slot group: A set of slots on one or more 
tracks within a cylinder on a paging 
device. 

slot number: A part of an external page 
address that refers to a slot; together 
with a device number and a group number, it 
identifies the location of a page in 
external page storage. 

slot queue: A list of elements in the sys­
tem nucleus that define the page slots . 
available on one paging device. A slot 
queue is built for each paging device. 

SMF: System management facilities. 

snapshot dump: A selective dynamic dump 
performed at various points in a program. 

SOD: Swap-out device work table. 

space record A record that separates pages 
in a page data set. 

SPCA: Swap communications area. 

SPCT: Swap control table. 

SPQE: subpool queue element. 

SQA: System queue area. 

SQE: Supervisor queue element. 

STA control block (SCB): A control block 
that contains information to be used by the 
ASIR routine for scheduling a user's STA 
exit routine during abnormal termination of 
a task. 

STA diagnostic work area (SDWA): A work 
area that contains information about an 
abnormally terminating task. The ASIR rou­
tine uses the SDWA to schedule user-written 
diagnostic and retry routines. 

stack: A list so constructed and main­
tained that the list element available for 
retrieval is the one that was most recently 
stored in the list. (Also called a last ­
in, first-out (LIFO) list, or pushdown 
list. ) 

STAR: System Task ABEND Recovery routine. 

STE: Segment table entry. 

step must-complete status: The status 
established by the control program that 
signifies that a deSignated task is to be 
the only dispatchable task within a job 
step. (Note that the initiator is also 
lrade nondispatchable.) 

sutpool: All of the storage blocks allo­
cated under a subpool number for a particu­
lar task. 

subpool gueue element (SPQE): A VSS con­
trol block that describes allocated areas 
of storage aSSigned to a subpool. 

subsystem: A secondary or subordinate sys­
tem, usually capable of operating indepen­
dently of or asynchronously with a control­
ling system. 

Section 9: Glossary 675 

L 



subtask: A task that is initiJted 
(attached) and terminated (det~~hed) by a 
higher-level task. 

subtask queue for a job step: The chain of 
tasks that are associated with a particular 
job step, showing the order in which the 
tasks were initiated (attached). See also 
TeB queues. 

supervisor call (SVC) instruction: An 
instruction that interrupts the program 
being executed and passes control to the 
supervisor so that it can perform a specif­
ic service indicated by the instruction. 

supervisor initialization: A general term 
referring to the execution of the initial 
program loader and the nucleus initializa­
tion program in loading and preparing the 
control program for operation. 

supervisor lock: An indicator used to pre­
vent entry to disabled code while a dis­
abled page fault is being resolved. The 
paging supervisor is not restricted by this 
lock. 

supervisor queue element (SQE): A control 
element used to schedule an asynchronous 
supervisor service. 

supervisor request block (SVRB): A request 
block that represents a type-2, type-3, or 
type-4 SVC routine that must be executed on 
behalf of a task. 

supervisor state: A state during which the 
central processing unit can execute input/ 
output and other privileged instructions. 
Contrast with problem state. 

SVC fix delay queue: In paging supervi­
sion, a queue on which fix requests 
(received through SVC entries to the FIX/ 
LOAD routine) are placed when they cannot 
be processed because the amount of fixable 
real storage has fallen below a specified 
minimum. 

SVC routine: A control prograIT. routine 
that performs or begins a control program 
service specified by a supervisor call 
instruction. 

SVC table (SVCTABLE): A table that 
describes all SVC routines included in the 
system at system generation. 

SVRB: Supervisor request block. 

SWA: System work area. 

SWAB: System work area block. 

SWAB: System work area header. 

swap communications area (SPCA): A control 
block that contains information necessary 
to effect a swap-out operation and complete 
a swap-in operation. 

swap control table (SPCT): A control block 
that defines and reflects the status of a 
swap-in or swap-out operation. 

swap-out device work table (SOD): A 32­
byte internal work area used by paging 
supervision routines during swap-out 
processing 

swap queue: In paging superv1s10n, a queue 
on which the Swap Interface routine places 
PCBs representing swap requests (SVC 115). 

swapping: In VS2 with TSO, a paging tech­
nique that writes the active pages of a job 
to external page storage and reads pages of 
another job from external page storage into 
real storage. 

synchronous: Occurring with a regular or 
predictatle time relationship. Contrast 
~ith asynchronous. 

system generation: The process of using an 
operating system to assemble and link 
together all of the parts that constitute 
another operating system. 

system interruption reguest block (SIRB): 
A single request block in the system, used 
by the system error task to represent an 
error-handling routine. 

system management facilities (SMF): An 
optional control program feature that pro­
vides the means for gathering and recording 
information that can be used to evaluate 
system usage. 

system must-complete status: The status 
established by the control program that 
signifies that a designated task is to be 
the only dispatchable task in the system 
(except for permanent system tasks which 
remain dispatchable). (The permanent sys­
tem tasks are the paging task, the recovery 
management support task, the system error 
task, the dynamic support system task, the 
communications task, and the master sche­
duler task.) 

system nucleus: That portion of the super­
visor that resides in fixed frames in the 
lowest portion of real storage. 

system queue area (SQA): An area of virtu­
al storage reserved for system-related con­
trol blocks. 

system queue oriqin list: See GOVRFLB. J 


J 


676 



system resource: Any facility of the com­
puting system that may be allocated to a 
task. 

system work area (SWA): One or more seg­
ments in virtual storage used as a work 
area for system programs. 

system work area block (SWAB): A VSS con­
trol block that represents a SWA segment. 

system work area header (SWAH): A VSS con­
trol block that begins a chain of system 
work area control blocks. 

target device: A general term for the 
device from which the page slot is to be 
assigned for a page-out operation. 

task control block (TCB): The consolida­
tion of control information related to a 
task. 

task interruption request block (TIRB): A 
request block (one per task) that is used 
to represent a control program routine that 
must be performed asynchronously when syn­
chronous execution is impossible. 

task level: A term that describes the 
position of one or more same-level tasks on 
a subtask queue in relation to other tasks 
on the queue. For the task(s) at one 
level, the originating task and all tasks 
above that task are called higher-
level tasks or antecedent tasks; all tasks 
below it are called lower-level tasks or 
descendant tasks. 

task post queue: In paging supervision, a 
queue on which a PCB is placed whenever a 
page is reclaimed in the process of a page­
out or is no longer needed during a page­
in. The PCB is placed on the queue to 
await processing that will determine wheth­
er additional paging services must be 
performed. 

task queue: A queue of all the task con­
trol blocks (TCBs) present in the system at 
any time, chained in order of dispatching
priority. See also TCB queues. 

task switching: Saving the program status 
and task context of a task, and establish­
ing the program status and task context of 
another task to effect the exchange of con­
trol to the second task. 

TASK timing option: An option in the STIM­
ER macro instruction. The option specifies 
that the time interval is to be decremented 
only when the associated task is active. 
Contrast with REAL timing option. See also 
WAIT timing option. 

~ TCB: Task control block. 

TCB queues: The two TCB queues are the 
subtask queue for the job step and the task 
queue. These queues consist of the same 
TCBs. On the subtask queue, the TCBs are 
in the order in which they were created for 
the job step. The ABEN£ routine uses this 
queue to establish the order in which a job 
step's resources are freed. On the task 
queue, all TCBs are in order of dispatching 
friority. The dispatcher scans down this 
queue to determine the TCB for the highest 
priority ready task. See also subtask 
gueue for a job step and task queue. 

thrashing: A condition in which the system 
can do little useful work because of exces­
sive paging. 

time-of-day (TOO) clock: A System/370 CPU 
feature used to measure elapsed time in 
microseconds. It is a 64-bit incrementing 
binary counter. A one is added to bit 
fosition 51 every microsecond. Timer 
supervision uses the time-of-day clock to 
calculate the time of day and maintain the 
current date. 

time slice control element (TSCE): A con­
trol element used to control the dispatch­
ing of tasks in a time slice group. 

timer queue element (TQE): The control 
block used by timer supervision to record 
the information necessary to schedule and 
process a request for a timed interval. 

timer units: A representation of a time 
interval request in which the least signi­
ficant bit is the equivalent of 26.04166 
microseconds. 

~: Task interruption request block. 

TOO clock: Time-of-day clock. 

top terminating task: A task that is being 
abnormally terminated and is the highest­
level task in a set of subtasks that must 
be terminated. The full set of subtasks 
that must be terminated is called the chain 
of terminatinq tasks. 

TQE: Timer queue element. 

trace: (1) The record of a series of 
events. (2) To record a series of events 
as they occur. 

trace table: One in a chain of tables con­
taining a history of a task's environment 
during processing. 

translation specification exception: A 
program interruption that occurs when a 
page table entry, segment table entry, or 
the control register pointing to the seg­
ment table contains information in an inva­
lid format. Synonymous with program inter-

Section 9: Glossary 677 



ruption code 18. See also page translation 
exception, segment translation exception. 

TSCE: Time slice control element. 

translation tables: Page tables and seg­
ment tables. 

type-1 SVC message table: The table con­
taining entries, supplied by a type-1 SVC 
routine, that indicates failures in the 
type-1 SVC routine. 

validity map: A control block that defines 
the storage addresses that can be referred 
to by a non-key-O program in a virtual 
storage region. 

virtual address: An address that refers to 
virtual storage and must, therefore, be 
translated into a real storage address when 
it is used. 

virtual block number: The virtual address 
(that is, the segment number and page numb­
er) associated with a page. 

virtual eguals real (V=R) storage: An area 
of virtual storage that has the same range 
of addresses as real storage and is used 
for a program or part of a program that 
cannot be paged during execution. Pre­
ferred term is nonpageable dynamic area. 

virtual equals virtual (V=V) storage: An 
area of virtual storage used for a program 
or part of a program that can te paged dUr­
ing execution. Preferred term is pageable 
dynamic area. 

virtual storage: Addressable space that 
appears to the user as real storage, from 
which instructions and data are mapped into 
real storage locations. The size of virtu­
al storage is -limited by the addressing 
scheme of the computing system and by the 
amount of auxiliary storage available, 
rather than by the actual number of real 
storage locations. 

virtual storage region: A subdivision of 
the dynamic area that is allocated to a job 
step or system task. 

virtual subarea list (VSL): A control 
block describing an area of virtual storage 
on which some paging supervisor operation \ 
is to be performed. ~ 

V=R dynamic area: Preferred term is non­
Fageatle dynamic area. 

V=R intercepted page: A page frame below 
the V-R line that is currently being used 
for a purpose other than as part of a V=R 
region and is now needed for allocation to 
a new V=R region. The page frame table 
entry (PFTE) for the frame is marked so 
that, when the frame is released from its 
current use, it will be assigned to the new 
V=R region rather than being added to the 
available page queue. 

V=R line: The high address limit of the 
nonpageable dynamic area. 

V=R region: Preferred term is nonpageable 
region. 

VSL: Virtual sutarea list. 

VSS: Virtual storage supervision. 

V=R root PCB gueue: A queue of root PCBs 
awaiting deferred allocation. 

V=V dynamic area: Preferred term is ~ 
able dynamic area. 

V=V region: Preferred term is pageatle 
region. 

WAIT timing option: An option of the 
STIMER macro instruction. The option spe­
cifies that the requested interval is to be 
decremented continuously, and that the 
associated task is to be placed in the wait 
condition until the interval is completed. 

working set: The set of a user's pages 
that must be active in order to avoid 
excessive paging. 

XPT: External page table. 

XPTE: External page table entry. 

XTLST: Extent list. 

678 



Index 


Indexes to program logic manuals are consolidated in 
the publication OS/VS Master Index of Logic, GY28-0603. 
For additional information about any subject listed on 
the following pages, refer to other publications listed 
for that subject in the master index. 

Index 


Index 679 



J 




Index 


Where more than one page reference is 
given, the major reference is first. 

ABBRANCH 412,720 
ABDAREA (ABDUMP work area) 


definition of 666 

format of 737 


ABDPL (ABDUMP component parameter list) 

definition of 666 

initialization of 624 

format of 744 


ABDUMP -- Control Blocks I routine 

diagram of 616 

entry-point name of 729 

module name for 724 


ABDUMP -- Control Blocks II formatting 

diagram of 618 

entry-point name of 729 

module name for 725 


ABDUMP FORMAT routine 

diagram of 636 

entry-point name of 729 

modUle name for 725 


ABDUMP FORMAT01 routine 

diagram of 636 

entry-paint name of 729 

modUle name for 725 


ABDUMP FORMAT20 routine 

diagram of 638 

entry-point name of 729 

module name fer 725 


ABDUMP FORMAT22 routine 

diagram of 638 

entry-point name of 729 

module name for 725 


ABDUMP FORMET routine 

diagram of 640 

entry-point name of 729 

module name for 725 


ABDUMP -- Header and PSW formatting 

diagram of 614 

entry-point name of 729 

module name for 724 


ABDUMP Interface routine 

diagram of 624 

entry-point name of 729 

module name for 725 


ABDUMP Mainline processing 

diagram of 612 

entry-point name of 729 

module name for 725 


ABDUMP -- Nucleus displaying routine 

diagram of 626 

entry-paint name of 729 

module name for 724 


ABDUMP OUTPUT routine 

diagram of 634 

entry-point name of 729 

module name for 725 


ABDUMP OUTPUTS routine 

diagram of 634 

entry-point name of 729 

module name for 725 


ABDUMP PRINT routine 

diagram of 634 

entry-paint name of 729 

module narr.e for 725 


ABDUMP -- QCB formatting 

diagram of 620 

entry-point name of 729 

module name for 725 


ABDU~P -- Register displaying 

diagram of 628 

entry-paint name of 729 

module name for 724 


ABDU~P routine 

description of 523 

overview of 603 

synopsis of 710 


ABDU~P -- Save Area displaying 

diagram of 622 

entry-paint name of 725 

module name for 725 


ABDU~P sutcomponent parameter list 

definition of 666 

initialization of 624 

format of 745 


ABDU~P -- Sutpool displaying 

diagram of 632 

entry-point name of 729 

module name for 724 


ABDU~P -- Trace formatting 

diagram of 630 

entry-point name of 729 

module name for 724 


ABDU~P work area 

definition of 666 

format of 737 


ABEND ABDUMP phase 

diagram of 576 

entry-point name of 729 

module name for 721 


ABEND Close phase 

diagram of 584 

entry-point name of 729 

module name for 721,726 


ABEND Critical Error phase 

diagram of 596 

entry-point name of 729 

module name for 727 


ABEND Final Housekeeping phase 

diagram of 586 

entry-point name of 729 

module name for 722 


ABEND Initial Housekeeping phase 

diagram of 566 

entry-point name of 729 

module name for 720 


ABEND Initialization phase 

diagram of 558 

entry-point name of 729 

module name for 726 


Index 681 




ABEND-in-progress flag 

setting of 527 


ABEND Interface with ASIR 

diagram of 562 

entry-point name of 729 

module name for 728 


ABEND Mainline processing 

diagram of 572 

entry-point name of 729 

module name for 727 


ABEND Must-complete phase 

diagram of 592 

entry-point name of 729 

module name for 726 


ABEND Open phas e 

diagram of 574 

entry-point name of 729 

module name for 726 


ABEND recursion 

check for 562,566 

definition of 601 

invalid 592,600 

reentry points for 729 


ABEND request 
stacking of 566,572,576 

ABEND routine 

description of 522 

invocation of 558 

overview of 556 

recursions 600 

synopsis of 710 


ABEND/STA Interface Phase 1 

diagram of 650 

entry-point name of 729 

module name of 726 


ABEND/STA Interface Phase 2 

diagram of 654 

entry-point name of 729 

module name of 726 


ABEND/STA Interface Phase 3 

diagram of 656 

entry-point name of 729 

module name of 726 


ABEND/STA Interface Phase 4 

diagram of 660 

entry-point name of 729 

module name of 726 


ABEND/STA Interface routine 

description of 524 

overview of 642 

synopsis of 710 


Abnormal End Appendage routine 

description of 367 

diagram of 366 

entry-point name of 729 

module name of 722 

synopsis of 710 


abnormal termination (see termination) 
ABTERM Prologue routine 


diagram of 548 

entry-point name of 730 

module name for 725 


ABTERM routine 

overview of 522,546 

synopsis of 710 


active page 666 

active page queue 666 

address translation 3,666 


address translation exce~tion 33

I addresses of control blocks 947 


AEQA, AEQJ, AEQS (see asynchronous exit 

queue) 


alias processing 

description of 666 


allocate queue 746 

allocated queue element (AQE) 


construction of 403 

format of 746 

normal release of 521 


allocating storage 

description of 397 

fer centrol blocks 420 

for external pages 388,460,462 

for LSQA segments 434 

for quickcells 436 

for regions 440 

for SI:;A 401 

for SWA segments 454 

within LSQA 420 

within quickcells 438 

within regiens 414 

within SQA 420 


allocation 

cancellation 240 

deferred 234 

fixed page 218 

long-fix 228 

reallocation 248 

SQA/LSQA page 228 

V=R region 234 


anchor work area 374 

APF (authorized program facility) 


definition of 16,666 

(see also TESTAUTH routine) 


APG (automatic priority group) 

definition of 16,666 

(see also dispatcher) 


APGCE (automatic group centrol element) 

format of 745 

purpose of 666 


Appendages (PCI, CE, Abnormal End) routine 

description of 367 

diagram of 366 

entry-point name of 732,730,729 

module name of 723,722 

synopsis of 710 


AQE (allocated queue element) 

construction of 403 

format of 746 

normal release of 521 


ASIR (see ABEND/STA Interface routine) 
asynchronous exit queue 


construction of 72 

definition of 666 

purging of 584,596 


asynchronous exits 

scheduling of 600 

suppression of 600 


ATRB subroutine 566 

ATTACH routine 


description of 71 

diagram of 70,72,74 

entry-point name of 730 

module name of 722 

synopsis of 710


I authorized program facility 16 


682 



automatic priority group control element 
(APGCE) 


format of 745 

purpose of 666 


I automatic priority grouping 16 

auxiliary storage 


assignment of pages 386 

auxiliary storage administration 


description of 388 

modules in 706 

routines in 706 


Auxiliary Storage Manager 

description of 203,389 

diagram of 388,390,392 

entry-point name of 730 

module name of 722 

synopsis of 710 


awaiting an event 

description of 86 


available page count (APC) 

decreasing of 253 

increasing of 251 


available page frame count 667 

available page queue 667 

available PFTE queue 667 


description of 203 

replenishing of 203 


availability of an enqueued resource 92 


basic control (BC) mode 667 

BC (basic control) mode 667 

BLDL routine 


entry-point name of 730 

function when used by the subroutines of 

contents supervision 178 


module name of 725 

synopsis of 710 


BLDL table (see also fixed BLDL table) 667 

BLDMSG subroutine 592 

BOUNDTST subroutine 660 

branch delay queue 274 

branch entry page processing 217 

Build PCB routine 


description of 203,355 

diagram of 354 

entry-point name of 730 

module name of 722 

synopsis of 710 


CALLPOST subroutine 258,274,282 
causing a program to wait for one or more 
events 

description of 86 

CCHH calculation of 342 

CDADVANS 72 0 

CDALLOC subroutine 


function of 720 

CDATTR field 


use of 747 

CDATTR2 field 


use of 747 

CDCONTROL 


use of 747 

CDDESTRY routine 


function of 133 

flowchart of 135 


CDE (contents directory entry) 

atnorwal release of 586 

construction of 188 

definition of 667 

dump of 616 

format of 747 

normal release of 544 

purpose of 747 

release of 521 


CDEPILOG subroutine 
fUnction of 172 


CDESCAN subroutine 632 

CDEXIT routine 


description of 133 

entry-point name of 730 

flowchart 135 

use by EaT 530 


CDHKEEP 

flowchart of 135 

fUnction of 133 


CDLLSRCH 

function of 169 


CDMOPUP subroutine 

function of 169 


CDPURGE routine 

entry-point name of 732 


CDSEARCH subroutine 

function of 169 


CDSETUP subroutine 

function of 174 


CDUSE field 

use of 747 


CDXLPT subroutine 616 

change bit 667 

Channel End Appendage routine 


description of 367 

diagram of 366 

entry-point name of 730 

module name of 722 

synopsis of 710 


channel end interruption (CE) 

definition of 750 

processing of 366 


channel program queue element (CPQE) 

format of 749 

purpose of 667,749 


channel program translation 667 

CHAP routine 


description of 77 

diagram of 76 

entry-paint name of 730 

module name of 726 

synopsis of 710 


CIRB routine (see also stage 1 Exit 
Effector) 


description of 125 

diagram of 124 

entry-point name of 732 

module name for 726 

synopsis of 714 


CKTHRESH routine 
module name of 720 


CLBRANCH 720 

CLEANUP subroutine 656 

clock comparator 667 

clock comparator queue 667 

closing data sets 


abnormal termination 580 


Index 683 




forced closing 580 

normal termination 528,530 


CMPLOUT subroutine 

description of 331 

diagram of 330,332 


communication task WTOR purge routine 566 

communication vector table (CVT) 


definition of 667 

entry-point name of 754 

format of 754 

purpose of 754 

use of 754 


Completion codes issued by the 

supervisor 953 


contents directory 

definition of 667 

illustration of 14 

registers on entry and exit 909 


contents directory entry (CDE) 

abnormal release of 586 

construction of 170,172 

definition of 667 

dump of 616 

format of 747 

normal release of 544 

purpose of 747 

release of 544 


contents supervision 

description of 13,163,710


I control blocks cross-reference table 947 

control blocks referenced/set matrix 950 

control and relocation dictionary (CTRLD) 

record 


format of 752 

purpose of 752 


CPQE (channel program queue element) 

format of 749 

purpose of 749 


CPU timer 667 

Create Page Table routine 


description of 305 

diagram of 304 

entry-point name of 730 

module name of 723 

synopsis of 711 


critical system task 

check for 562,566 

definition of 563 

processing of 562,566 


CRITPURG subroutine 592 

CRNRLNTH routine 


module name of 720 

CSPCHK routine 418 


module name of 720 

current task 


dump of 723 

purging of 721 


CVT (communication vector table) 

definition of 667 

entry-point name of 754 

format of 754 

purpose of 754 

use of 754 


CVTDATE 754 


DAT (dynamic address translation) 3,668 

data areas 735 


data control block (DCB) 

validity of 606 


data extent block (DEB) 

atnormal release of 580 

dump of 616 

I/O AVT (appendage vector table) 616 


data set 

atnormal closing of 584 

normal closing of 528,530 

user exits, closing of 660 


date, dump of 614 

rCB (data control block) 


definition of 165 

forrriat of 165 


DCB parameter for LINK, LOAD, or XCTL 

processing 


use of 165 

DEB (data extent block) 


abnormal release of 584 

dump of 616 


DECHPG SUbroutine 342 

deferring the request for an unavailable 

module 172,173 


Delay Post Queue Handler 

description of 285 

diagram of 284 

entry-point name of 730 

module name of 723 

synopsis of 711 


delayed post queue 274 

DELETE routine 


description of 187 

diagram of 186 

entry-paint name of 730 

module name of 726 

synopsis of 711 


demand paging 668 

DEQ routine 


description of 97 

diagram of 96 

entry-point name of 730 

flo..wchart of 98 

module name of 728 

synopsis of 711 


rEQPFTE subroutine 244,248,252 
dequeue routine (see DEQ routine) 
descriptor queue element (DQE) 

definition of 668 

dump of 618 

format of 770 

purging of 521 


Destroy Page Table routine 

description of 307 

diagram of 306 

entry-point name of 730 

module name of 723 

synopsis of 711 


DETACH routine 

des cription of 81 

diagram of 80,82 

entry-point name of 730 

module name of 727 

synopsis of 711 


device 

fixed head 391 

moveable-head 391 

mUltiple-exposure 338 

single-exposure 338 


684 



directory 

of entry-point names 729 

of module names 719 

of SVcs 734 


disabled page fault 668 

dispatchability 


current task 151 

job step 151 


dispatcher 

description of 151 

diagram of 150 

entry-point name of 730 

module name of 725 

synopsis of 711 


dispatching priority 

changing with the CHAP macro 76 

description of 77 

use of 77 


DISPINIT routine 
module name of 721 


DLQSRCH subroutine 278 

dormant state 668 

DQE (descriptor queue element) 


definition of 668 

dump of 618 

format of 770 

purging of 521 


DSAB, dump of 523 

dummy PQE 


construction of 401 

dump of 618 

format of 401 

purging of 521 


dummy TQE 499 

dump 


ABDUMP routine 603 

ABEND dump 576 

definition of 668 

dynamic 668 

options 523 

SDUMP request 523 

SNAP request 576 

SVCDUMP 592,596,604 

user-specified 523 


dump data set 

allocation of 572 

closing of 580 

construction of a DCB for 574 

location of 574 

opening of 572,574 


DUMPMOD subroutine 628 

dynamic address translation (DAT) 3,668 

dynamic area 


definition of 8,668 

diagram of 8 


EC (extended control) mode 

definition of 669 


ECB (event control block) 

diagram of posting 88 

format of 771 

posting of 


by EOT 528 

purpose of 771 


enabled page fault (see page translation 

exception) 

~nable/disable interru~tion 34 


ENQ routine 

description of 93 

diagram of 92 

entry-point name of 730 

flowchart of 98 

module name of 727 

synopsis of 711 


ENQ/DEQ Furge routine 

description of 730 

entry-point name of 725 

flowchart 98 

synopsis of 711 


ENQ ~anual Purge routine 

invoked by ABEND 580 

invoked by EOT 528 


ENQMSG sUbroutine 592 

ENQPFTE subroutine 244,250 

Enqueue routine (see ENQ routine) 

ENTAB (entry table) 


format of 772 

purpose of 772 


entry ~oint directory 729 

entry points 


directory of 729 

embedded, inforrring the supervisor 

of 188 


entry table (ENTAB) 

puq:ose of 772 


EOT (end-of-task) routines 

overview of 527 

synopsis of 711 


EOT (end-of-task) mainline processing 

diagram of 528,529 

entry-point name of 730 

module name of 721 

subroutines 


Dequeue IQE 

diagram of 528,529 

entry-point name of 730 

module name of 722 


Dequeue TCB 

diagram of 534,536 

entry-point name of 730 

module name of 722 


Erase TCB 

diagram of 532 

entry-point name of 730 

module name of 724 


Purge TAXEs 

diagram of 538 

entry-point name of 730 

module name of 722 


Purge Timer 

diagram of 540 

entry-point name of 730 

module name of 724 


Release Loaded Programs 

diagram of 542 

entry-point name of 730 

module name of 724 


Release Storage 

diagram of 544 

entry-paint name of 730 

module name of 724 


ESA (extended save area) 
zeroed by STA Services routine 642 


ETCLOSE subroutine 528,530 

ETXR 


Index 685 




effect when ATTACH is executed 10,12 

scheduled by EOT 528 


event control block (ECB) 

diagram of posting 88 

format of 111 

posting of 


by EOT 528 

event monitoring interruption 33 

event recording 33 

Exit Effector (see Stage 1 Exit Effector, 

stage 2 Exit Effector, and stage 3 Exit 

Effector) 


Exit routine 

description of 133 

diagram of 132 

entry-point name of 130 

flowchart of 135 

module name of 120 

synopsis of 111 


EXLNL 113 

exposure, device 

active 338,340 
inactive 338,340 
multiple 338,340 
single 338,340 

extended control (EC) mode 

definition of 669 


extent list 

construction of 110,112 

dump of 616 

format of 892 

normal release of 544 

purpose of 892 


External First-Level Interruption Handler 

description of 32 

diagram of 44 

entry-point name of 130 

synopsis of 111 


external interruptions 32 

external page address 669 

external page storage 


allocation of 404 

for batch proceSSing TSO tasks 404 


external page storage management 203 

external page table (XPT) 669 

external page table entry (XPTE) 669 


format of 892 

purpose of 892 


external storage management 203 

page migration 386 

processing by the Auxiliary storage 


Manager 388 

processing by the Migration routine 386 


EXTRACT routine 

description of 19 

diagram of 18 

entry-point name of 130 

module name of 130 

synopsis of 111 


Fast FIX routine 

description of 281 

diagram of 280 

entry-point name of 130 

module name of 123 

synopsis of 111 


FBQE (free block queue element) 

construction of 401 

definition of 401 

dump of 616 

format of 114 

purging of 523 

searching 424 


FBQSRCH routine 424 

moudle name of 121 


FBQSRCHA 424,121 

FCOM 131 

FELEMENT 131,121 

FILTER subroutine 324 

Find Page routine 


description of 289 

diagram of 288 

entry-point name of 130 

module name of 123 

synopsis of 112 


FINDRB subroutine (ABDUMP) 616,626 

FINDRB subroutine (ASIR) 658 

FINDSCB subroutine 650 

fix accounting 221 

fix count calculation of 235 

fix counter (PCOUNT) 258 

FIX delay queue 312 

Fix list 


atnormal release of 586 

normal release of 528 


Fix ownership element (FOE) 

description of 115 

purpose of 115 


FIX Purge routine 

description of 313 

diagram of 312 

entry-point name of 131 

module name of 123 

synopsis of 112 


FIX Quiesce routine 

description of 313 

diagram of 312 

entry-point name of 131 

module name of 123 

synopsis of 112 


FIX request 258 

FIX Restore routine 


description of 315 

diagram of 314,316 

entry-point name of 131 

mcdule name of 123 

synopsis of 112 


FIXACCT subroutine 258 

FIXACT subroutine 218 

fixed 669 

fixed link pack area 


definition of 669 

fixed page 669 

fixing pages 


necessity for 259 

processing by the page Service Interface 


FIX/LOAD routine 258 

FIX/LOAD Asynchronous Completion routine 


description of 283 

diagram of 282 

entry-paint name of 131 

module name of 121 

synopsis of 112 


FIX/lOAD codes 

completion 211 


686 



return 271 

fix/load counter 258 

FIX/LOAD subroutine 


description of 259 

diagram of 258,260,262,26~,266,268,270 


entry-point name of 731 

module name of 721 

synopsis of 259 


FIXQPURG subroutine 372 

FLISTADV 721 

FMAINB 721 

FMBRANCH 721 

FMCOMMON 721 

FMCOMM1 721 

FMSMFCRE routine 


entry-point name of 732 

FOE (fix ownership element) 


format of 775 

purpose of 775 


FOE Merge routine 

description of 287 

diagram of 286 

entry-point name of 731 

module name of 723 

synopsis of 712 


FOEEDQ subroutine 286 

FOERMBR subroutine 286 

FORCLOSE subroutine 350 

FQE (free queue element) 


construction of 407 

definition of 407 

dump of 618 

format of 776 

purging of 521 

searching 426,482 

updating 428,484 


frame 669 

frame number 669 

frame table 669 

frame table entry 669 

free block queue element (FBQE) 


construction of 407 

definition of 669 

dump of 523 

format of 774 

purging of 721 


free queue 669 

free queue element (FQE) 


construction of 407 

definition of 669 

dump of 618 

format of 776 

purging of 721 

searching 426,482 

updating 428,484 


FREE subroutine 

description of 275 

diagram of 274,276,278 

entry-point name of 274 

module name of 27~ 


synopsis of 274 

Free V=R Pages subroutine 234 

FREEAUX 493 

freeing pages 


necessity for 275 

processing by the Page Service Interface 


FREE routine 274,276,278 

freeing regions 


V=R 238 

freeing storage (see releasing storage) 

FREELSQA 479 

FREE~~IN routines 


description of 409,712 

error processing 466 

interface with EOT 466 

macro instruction 397 


FREEPART 481 

FREESWA 491 

FRETRN1 468 

FTWORK 777 

FVARCHK 721 


GAM forced close macro 580 

GBLDAQE routine 


module name of 722 

GCOM~4 412 

GCOMM5 412 

Generalized Trace Facility (GTF) 


activation of 562,596 

processing module, interface with 630 

recovery procedures for 562,596 

suspension of 576,608 


GERROR routine ~66 
module name of 722 


Get LSQA Segment routine 434,712 

GETAUX routine 460 


description of 460 

GETLSQA 434 

GET!!AIN 


common routine 414,416 

error processing 466 

macro instruction 397 

parameter list 413 

routines 412,712 


GETMAINB 722 

GETPAGE 457 

GETPART 441 

GETROOT subroutine 258 

GETSWA ~5~,456 


getting storage (see allocating storage) 

GETTJB, use by EOT 

GFQEUPDT routine 


description of 428 

module name of 722 


GFRECORE routine 

description of 426 

module name of 722 


GLIST 722 

GLIST1 722 

glossary 666 

GMBRANCH 722 

GMBRETRY 722 

GMCO~MON 412,722 

GMCOMM1 722 

GMSMFCRE 


module name of 722 

GNOTSAT routine 464 

GNOTSATA 464,722 

GNOTSATB 464,722 

GNOTSATC 464,722 

GOVRFLB 785 

graphics EOT routine 528 

group number 670 

GSPQESPC routine 


description of 422 


Index 687 




module name of 722 

GTF (generalized trace facility) 17 


activation of 562,596 

processing module, interface with 630 

recovery procedures for 562,596 

suspension of 576,608 


GTF Processing routine 630 

G4KSRCH routine 


diagram of 458 

module name of 722 


hold page queue 670 


ID, user dump of 614 

IEAHEAD 


meaning of 63 

lEAPGSWA routine diagrams 

of 454,456,490,491 


lEAPLSQA routine 

diagrams of 434,478 

entry-point name of 723 


IEAPQCI routine 
entry-point name of 723 


IEAQTRCE 724 

lEASCSAV 30,40 

IEATCBP 


meaning of 151 

IEATPC (timer data area) 880 

IEAVPRTO routine 


module name of 725 

lEAWMSR 


description of 177 

diagram of 176 


IDENTIFY routine 

description of 189 

diagram of 188 

entry-point name of 731 

module name of 726 

synopsis of 712 


ILC (interruption length code) 

dump of 614 


INFOLIST (type-1 SVC message table) 

format of 786 

purpose of 786 


informing the supervisor of an embedded 
entry pOint 188 


INITSPCA subroutine 324 

INITSWA subroutine 650,654 

input/output block (lOB) 


set by STAR routine 160 

input/output interruption handling 29,38 

interpartition POST requests 


cancellation of 580 

interruption code 29 

interruption code 17 


definition of 673 

processing for 673 


interruption handling (see also I/O inter­

ruptions, SVC interruptions, program 

interruptions, external interruptions, and 

machine interruptions) 29 


interruption length code 

dump of 723 


interruption queue element (IQE) 

abnormal release of 566,580,596 

construction of 72 


dump of 618 

format of 788 

normal release of 529 

purging of 521 

purpose of 788 


interruption request block (IRB) 

construction of 521 

dump of 616 

format of 838 

normal release of 521 

purpose of 838 


interruption supervision 

description of 27 

registers upon entry and exit 895 


interruptions 

disabled 31 

enatled 31 


INTRFACE subroutine 624 

invalid page 370 

I/O active queue 370 

I/O error 


Error Recovery Program (ERP) 366 

nenpermanent 366 

permanent 366 


I/O (input/output) 

for dumps 608 

purging of 566,592,596,600 


I/O FLIH (see I/O First-Level Interruption 
Handler) 

I/O First-Level Interruption Handler 

description of 29 

diagram of 38 

entry-point of 731 

s:ynopsis of 712 


I/O interruptions 29 

I/O switch (IORGSW) 


fUnction of 39 

lOB (input/output block) 


set ty STAR routine 160 

IOBPROC subroutine 660 

IORGSW 39 

IQE (interruption queue element) 


atnor~al release of 566,580,596 

construction of 72 

dump of 723 

format of 788 

normal release of 528 

purging of 521 

purpose of 788 


IQE queue (asynchronous exit queue) 

abnormal release of 580,596 

construction of 72 

definition of 521 

nermal release of IQEs 528 


IRB (interruption request block) 

censtruction of 124 

dump of 616 

fermat of 838 

normal release of 521 

purpose of 13,838 


jot name, dump of 614 

job pack area queue (JPAQ) 


definition of 670 

dump of modules 628 

normal release of modules, CDBs, and 

extent list 544 
 J 

688 



use of 165 

JOBNAME subroutine 364 

job step termination 592 

job-step tas k 


abnormal termination of 566 

definition of 671 


job-step timing 

in dispatcher routine 150 

in POST routine 88,90 

in WAIT routine 86 


JPAQ (job pack area queue) 

definition of 165,670 

dump of modules 628 

normal release of modules, CDEs, and 

extent lists 544 


use of 165 

JSTCBSUB subroutine 218 


limit priority 

description of 671 

use of 76 


LINK macro instruction (see also LINK 
routine) 

link pack area (LPA) (see also fixed link 
pack area) 


definition of 671 

dump of 823 


link pack area directory 

definition of 671 

description of 166 


link pack area queue (LPAQ) 

definition of 671 

search of 166 


link pack directory entry (LPDE) 

format of 790 

purpose of 790 


LINK routine 

description of 171 

diagram of 170,172 

entry-point name of 726 

module name of 726 


LISTINIT subroutine 256 

LLECOUNT field 


meaning of 165 

LLE (load list element) 


construction of 165 

dump of 616 

format of 789 

normal release of 528,542 

purpose of 789 


load list 

definition of 671 

purging of 186 

release of 542 


load list element (LLE) 

construction of 165 

dump of 823 

format of 789 

normal release of 528,542 

purpose of 789 

release of 542 


LOAD macro instruction (see also LOAD 
routine) 


LOAD request 358 

LOAD routine 


description of 183 

diagram of 182 


entry-point name of 182 

module name of 183 

synopsis of 712 


local system queue area (LSQA) 

allocating 434 

definition of 671 

dump of 626 

location of 402 

normal release of 532,544 

size of 402 

use of 402 


IOCATE subroutine 632 

long-fix count 


calculation of 235 

long-fix counter (LPCOUNT) 258 

long-fix processing 222 

LPA (link pack area) 


definition of 671 

dump of 823 


IPA directory 

definition of 671 


IPAQ 

definition of 671 

search of 166 


IPASET subroutine 324 

LPDE (link pack directory entry) 


format of 790 

purpose of 790 


IRA instruction 261 

LSQA (see local system queue area) 


Machine-Check Handler 29 

machine-check interruptions 29 

rrajor CDE (see contents directory entry) 

master scheduler initiator/terminator 


routine 

use in task creation 63 


MB 	 (message buffer) 

format of 792 

purpose of 792 


~C instruction (see Monitor Call 

instruction) 


~CQEI subroutine 592 

flowchart of 594 


message buffer (MB) 

format of 792 

purpose of 792 


messages 

purging of 821 

table of messages issued by the VS2 


supervisor 954 

nidnight TQE 499 

migration 


initiation of 386 

~igration routine 


description of 387 

diagram of 386 

entry-point name of 731 

module name of 723 

synopsis of 712 


minor CDE (see contents directory entry) 

rrinor QCB 834 

missing page exception (see page transla­

tion exception) 


missing page interruption (see page trans­

lation exception) 


missing page interruption processing 210 


Index 689 




MODESET routine 

description of 159 

diagram of 158 

entry-point name of 131 

module name of 122 

synopsis of 112 


module 
normal release of 228,230 

module directory 119 

Monitor Call instruction 33 

Move/Build/Relate PCB -- subroutines for 


queuing and dequeuing PCBs 

description of 361 

diagram of 360 

entry-point name of 360 

module name of 361 


Move Page routine 

description of 243 

diagram of 242 

entry-point name of 131 

module name of 123 

synopsis of 112 


Move PCB routine 

description of 353 

diagram of 352 

entry-point name of 131 

module name of 122 

synopsis of 112 


MRELEASA 128 

MRELEASE routine 


module name of 128 

MSGPHASE subroutine (ABEND) 


entry-point name of 129 

module name of 513 

processing of 512 


MSPURG subroutine 566,512 
multiple-exposure device 338 

multiple job-step failure 566 

must-complete resources 566 

must-complete status 


clearing of 592 

definition of 566 

job-step must-complete status 566 

meaning of TCB flags 529 

processing of tasks 592 

setting of 566 

system must-complete status 566 


MVESA subroutine 600 


NEXTVMA subroutine 258,214 

nondispatchability flags, ~CB 


meaning of 861 

nondynamic area 


definition of 611 

description of 6 


nonpageable dynamic area 

definition of 611 

description of 6 


nonpageable region 

definition of 611 


NOPURGE subroutine 656 

note list 


format of 113 

purpose of 113 


OLTEP task 

terminating 562 


operator communication queues 521 

OPSW 


saving of 30 

organization 


of real storage 8 

of supervisor program 101 

of virtual storage 6 


overlay request 190 

overlay segment tatle (SEGTAB) 


definition of 612 

format of 850 


overlay supervisor 

description of 191,712 

diagram of 190 

entry-point names for 731 

module names for 191 

types of processing 190 


page 

availability 241 

usatility 243 


page administration 

description of 706 

modules in 106 

routines in 706 


page control block (PCB) 

format of 795 

initialization of 795 

processing of 


allocate queue 218 

purpose of 795 


page data set 672 

page device information table entry 


(PDITE) 

format of 199 

purpose of 199 


page device table entry (PDTE) 

format of 810 

purpose of 810 


page fault 

disabled processing 218 

program check processing 218 


page fixing 612 

page frarre 


availability 235 

shortage of 244 

status 235 


page frame table 612 

page frame table entry (PFTE) 


availability tit 225 

format of 812 

purpose of 812 


Page Hook routine 

description of 311 

diagram of 370 

entry-point name of 731 

module name of 128 

synopsis of 713 


page-in 612 

page I/O initiation queue 672 

page I/O interruption processing 212 

Page I/O Post -- Page-out, Page-in, and 
Notification subroutines 

nucleus description of 293 

dump of 626 diagram of 292 
 J 

690 



entry-point name of 731 

module name of 723 

synopsis of 713 


Page I/O Post Processor 

description of 291 

diagram of 290 

entry-point name of 731 

module name of 723 

synopsis of 713 


Page I/O Supervisor 

description of 339 

diagram of 338,340 

entry-point name of 731 

module name of 723 

synopsis of 713 


Page I/O Supervisor -- Building and Queuing 

Channel Program subroutines 


description of 343 

diagram of 342,344,346 

entry-point name of 731 

module name of 723 

synopsis of 713 


page migration 672 

page number 672 

page-out 672 

page reclamation 672 

page replacement algorithm 


description of 202 

processing of 244 


page replacement algorithm table 202,245 
page Replacement -- Allocation Scheduling 


and Root Exit Processing 

description of 249 

diagram of 248 

entry-point name of 731 

module name of 723 

synopsis of 713 


Page Replacement routine 

description of 245 

diagram of 244,246 

entry-point name of 731 

module name of 723 

synopsis of 713 


Page Service Interface routine 

description of 257 

diagram of 256 

entry-point name of 731 

module name of 727 

synopsis of 713 


page-supervisor-in-control flag 295 

Page SVC interruption processing 215 

page table (PGT) 814,672 
page table entry (PGTE or PTE) 672 


format of 814 

purpose of 814 


page table origin (PTO) 289 

page task 


activation of 361 

definition of 201 

priority of 201 


page translation 

definition of 672 


page translation exception 33,50,672 

invalid 608 


page vector table (PVT) 

definition of 672 

format of 820 

purpose of 820 


page wait 672 

pageable region 


definition of 673 

paged dynamic area 


definition of 672 

description of 6 


~aging 
definition of 673 


paging activity 

abnormal release of 566,592,596,600 

normal release of 528 


paging change bit 667 

paging device 673 

paging error 364 

paging exception (see page translation 

exception) 

paging interface control 

description of 201 

modules in 706 

routines in 706 


paging rate 673 

paging reference bit 202 

paging supervision 


description of 199 

paging supervisor 


algorithms 201 

page replacement 202 

task disable 202 


entries from 

branch entry 201 

dispatcher 201 

lOS appendage 201 

program FLIH 201 

SVC FLIH 201 


function of 14 

organization of 


auxiliary storage administration 201 

interface control 201 

page administration 201 

real storage administration 201 


registers on entry and exit 895 

Paging Supervisor Appendages (Channel 


End, Abnormal End) 

description of 367 

diagram of 366 

entry-point name of 732,730,729 

module name of 367 

synopsis of 713 


paging Supervisor Appendages -- subroutines 
for Freeing Resources and Handling Errors 


description of 369 

diagram of 368 

entry-point name of 368 

module name of 369 

synopsis of 713 


paging Supervisor Error Recorder 

description of 365 

diagram of 364 

entry-point name of 732 

module name of 723 

synopsis of 713 


paging supervisor termination routine 370 

paging supervisor TQE 499 

parameter list (ENQ/DEQ routine) 


format of 92,96 
partition queue element (PQE) 


definition of 673 

dump of 823 


Index 691 




format of 818 

purging of 821 

purpose of 818 


partitioned data set directory entry (PDS 

DE) used by contents supervision cowman 

subroutines 165 


PARRLSE subroutine 572,600 
PASSBACK subroutine 258,282 
PCB (page control block) 


format of 795 

purpose of 195 


PCB queue 

delayed post 210 

header, calculation of 352 

I/O active 210 

I/O initiation 210 

real storage allocation 210 


PCBROOT (root PCB) 

format of 191 

purpose of 197 


PDITE (page device information table 

entry) 


format of 199 

purpose of 799 


PDS directory entry 
(see also partitioned data set directory 
entry) 

used by contents supervision 
subroutines 167,192 

PDTE 810 

PDTESCAN subroutine 392 

PER (see program event recording) 
PFI' 814 

PFTE 812 


address, calculation of 235 

removal of 252 


PFI'E Dequeue routine 

description of 253 

diagram of 252 

entry-point name of 132 

module name of 12~ 

synopsis of 113 


PFI'E Enqueue routine 

description of 251 

diagram of 250 

entry-paint name of 132 

module name of 723 

synopsis of 113 


PFI'-in-use queue 

location of 246 


PFI' slot number 350 

PGT 814 

PGTE 814 

PICA (program interruption control area) 


construction of 608 

format of 815 

purpose of 815 


PIE (program interruption element) 

abnormal release of 566,580 

construction of 608 

dump of 823 

format of 816 

normal release of 528 

purpose of 816 


pointers to control blocks 947 


POST routine 

description of 89 

diagram of 88,90 

entry-point name of 732 

module name of 125 

synopsis of 113 


posting an event control block 
diagram of 88,90 

PQE (partition queue elerrent) 

definition of 613 

dump of 823 

format of 818 

purging of 821 


PRB (program request block) 

definition of 613 

dump of 618 

format of 838 

normal release of 821 

purpose of 838 


PRBHOSKP subroutine 512 

PREFIX subroutine 648 

frimary paging device 673 

PRGQ subroutine 580,596 

frog ram 


abnormal release of 572,586,600 

normal release of 528 

organization diagrams 703 


frog ram check interruptions 34,52,54 
Program-Check Interruption Extension 


description of 349 

diagram of 348 

entry-point name of 732 

module name of 723 

synopsis of 113 


frog ram controlled interruption (PCI) 

definition of 361 

processing of 366 


program event recording 613 

Program Fetch Channel-End Appendage 

routine 


description of 191 

entry-point name of 732 

module name of 197 

synopsis of 713 


Program Fetch PCI Appendage routine 

description of 196 

entry-paint name of 732 

module name of 721 

synopsis of 713 


Program Fetch routine 

description of 193 

diagram of 192,196 

entry-point name of 732 

module name of 197 

synopsis of 713 


Program Fetch work area 

description of 777 

format of 777 

initialization of 193 

purpose of 777 


Program First-Level Interruption Handler 

description of 32 

diagram of 46,48,50,52,54,56 

entry-point name of 732 

synopsis of 713 


692 



program interruption code 16 673 

program interruption code 17 673 

program interruption code 18 673 

program interruption control area (PICA) 


construction of 608 

format of 815 

purpose of 815 


program interruption element (PIE) 

abnormal release of 566,580 

construction of 84 

dump of 823 

forma t of 816 

normal release of 528 

purpose of 816 


Frogram interruption handling 32 

program, purging of 821 

program request block (PRB) 


definition of 673 

dump of 616 

format of 838 

normal release of 821 

purpose of 13,838 


protection of storage 9 

psw, dump of 823 

PTE (page table entry) 


format of 814 

purpose of 814 


PURGEIO subroutine 652 

PURGERB subroutine 654 

PURGEFIX subroutine 370 

Furging (see also CDPURGE) 132 

purging PCBs subroutine 


description of 379 

diagram of 378,380,382 

entry-point name of 378 

module name of 379 

synopsis of 379 


PVT (page vector table) 

format of 820 

purpose of 820 


PVTAPC (see available page count) 

QCALLOC routine 438 

QCB (queue control block) 


construction of 92 

format of 834 

major 


dump of 620 

purging of 521 


minor 

dump of 620 

purging of 521 


normal release of 521 

QCB queues 


construction of 92 

illustration of 92 

normal removal of element from 521 

origin of 92 


QCBMAJ (major queue control block) 

format of 834 

purpose of 834 


QCBMIN (minor queue control block) 

format of 834 

purpose of 834 


QCBRANCH 728 

QCDBLK (quickcell descriptor block) 


description of 436 


format of 836 

purpose of 836 


QCDE (quickcell descriptor entry) 

description of 436 

format of 436 


QCFREE 728 

QEL (queue element) 


construction of 92 

dump of 620 

format of 837 

normal release of 521 

purging of 521 

purpose of 837 


QPOINT subroutine 644 

QSEARCH subroutine 338 

queue control block (QCB) 


construction of 92 

format of 834 

major 


dump of 620 

purging of 521 


minor 

dump of 620 

purging of 521 


normal release of 521 

queue element (QEL) 


construction of 92 

dump of 620 

format of 837 

normal release of 521 

purging of 521 

purpose of 837 


Queue Scanner (paging task) 

description of 363 

diagram of 362 

entry-point name of 732 

module name of 723 

synopsis of 714 


QUEUE Search subroutine (AQSEARCH) 228 

queued (delayed) request processing 211 

quickcell 


allocation of 438 

definition of 674 

use of 404 


quickcell descriptor block (QCDBLK) 

description of 836 

format of 836 


quickcell descriptor entry (QCDE) 

description of 436 

format of 436 


RB (see request block) 
RB old PSW (RBOPSW) 

saving of 30 

real address 674 

real storage 


after initialization 8 

definition of 674 

eligible for nonpageable tasks 

organization of 8 


real storage administration 

description of 705 

modules in 705 

routines in 705 


real storage allocation queue 674 

Real Storage Allocation routine 


description of 203 


Index 693 


8 



diagram of 218 

entry-point name of 732 

module name of 722 

synopsis of 714 


real storage management 203 

dynamic storage 


eligible for paging 203 

V=R allocation 203 


non-dynamic storage 

allocation for supervisor use 203 


Real Storage Reclamation subroutine 

description of 225 

diagram of 224,226 

entry-point name of 224 

module name of 225 

synopsis of 225 


REAL timing 674 

Real to Virtual Address Translation 

routine 


description of 351 

diagram of 350 

entry-point name of 350 

module name of 351 

synopsis of 351 


reclamation 
fixed page 218 


recovery management 29 

RECRBPRG subroutine 600 

recursions 33,674 


ABEND 

definition of 666 

entry points for 729 

processing 

for 562,566,576,580,596,600 

validity 596,600 
ASIR 


processing for 650 

valid 650 


definition of 33 

invalid 33 

STA Services routine 


processing for 644 

valid 33 


reference bit 674 

Region reference-validity map 406 

Region Validation subroutine 234 

register 


dump of contents 628 

registers upon entry or exit, tables 

of 895 


REGMAIN 412 

Relate PCB routine 


description of 357 

diagram of 356 

entry-point name of 732 

module name of 722 

synopsis of 714 


Release -- subroutines for Searching PCBs 
and Freeing Real Storage 


description of 303 

diagram of 302 

entry-point name of 732 

module name of 303 

synopsis of 714 


Release Queue Suppression routine 

description of 359 

diagram of 358 

entry-point name of 732 


module name of 723 

synopsis of 714 


Release routine (Branch) 

description of 299 

diagram of 298,300 

entry-point name of 732 

module name of 723 

synopsis of 299 


Release routine (Supervisor SVC Branch) 

description of 297 

diagram of 296 

entry-point name of 732 

module name of 723 

synopsis of 297 


Release routine (User SVC) 

description of 295 

diagram of 294 

entry-point name of 732 

module name of 727 

synopsis of 295 


releasing storage 294,468 

description of 409,468 

external pages 294,492 

LSQA segments 478 

quickcells 488 

regions 409 

SWA pages 491 

SWA segments 490 


relocation address 348 

relocation list dictionary record 


format of 752 

use of 752 


REMOVERB subroutine 586 

flowchart of 590 


replenishment 

reserve queue 230 


REQLLE subroutine 574 

request block (RB) 


atnormal release of 588 

definition of types 11 

dump of 616 

format of 838 


(see IRB, PRB, SIRB, SVRB, TIRB) 

normal release of 588 

purging of 521 

use of 13 


request rranagement 

page control block (PCB) 795 

processing by the Queue Scanner 

routine 362 


request queue element (RQE) 

definition of 674 

format of 844 

purpose of 844 

queuing of 674 


requesting one or more resources via the 

ENQ macro instruction 92 


RESERVE macro instruction 

used in DEQ routine 92 

used in ENQ routine 96 


Reserve Replenish Queue Processor 

description of 231 

diagram of 230 

entry-point name of 732 

flowchart of 232 

module name of 723 

synopsis of 714 


reset must-complete fUnction 
 J 
694 



description of 566 

RESETHI subroutine 574,576,580 

resource queues for ENQ/DEQ requests 97 

resources 


release of 

normal 528 


responsibility count (LLECOUNT) 

format of 165 

use of 165 


restarting tasks 574,576,580 
RET parameter 


effect during DEQ processing 97 

effect during ENQ processing 93 


RETABEND subroutine 650,654 

RETCALL subroutine 550 

RLD buffer 


description of 752 

RLD record 


format of 752 

RMBRANCH 413 

Root PCB (PCBROOT) 


format of 797 

purpose of 797 


routine synopsis 710 

ROOTFREE subroutine 258,282 

RQE (request queue element) 


definition of 674 

format of 844 

purpose of 844 

queuing of 674 


RQE queue (see asynchronous exit queue) 

SAPRINT1 subroutine 622 

SAPRINT2 subroutine 622 

SAPRINT3 sUbroutine 622 

save area 


dump of 622 

purging of 821 


Scantree sUbroutine 277 

scan table entry 


calculation of 277,302 

SCANPFTQ subroutine 254 

SCANQ subroutine 242 

SCB (STAE control block) 


construction of 524 

format of 845 

purpose of 845 

release storage of 586 


SCHEDRT subroutine 586,600 

SCNTE 833 

SDUMP request 523 

SDWA (STA diagnostic work area) 


format of 846 

initialization of 650 

purpose of 846 


secondary paging device 675 

second exit 


deferring of 284 

SEGLD macro instruction 


linkage to the overlay supervisor 491 

SEGLD processor routine 


description of 190 

entry-point name of 732 

module name of 727 


segment 

allocation of 403 

definition of 675 


segment table (SGT) 852 
segment table entry (SGTE or STE) 


format of 852 

purpose of 852 


segment table origin register (STOR), use 
of 4 


segment translation exception 34,46,675 

SEGTAB 


(see overlay segment table) 
SEGWT macro instruction 

linkage to the overlay supervisor 491 

SELECT subroutine 566 

serializing the use of a resource 92 

set must-complete function 


description of 

for a job step 566 

for the system 566 


Set System Mask (SSM) instruction 34,48 

SETSPCT subroutine 324 

SGT (segment table) 852 

SGTE (segment table entry) 


format of 852 

puq:ose of 852 


shared direct access device feature (SDASD) 

with the ENQ/DEQ routine 16 


flowchart of 98 

single-exposure device 338 

SIRB (system interruption request block) 


format of 838 

purpose of 13,838 


SLKM subroutine 562,566,580,596 

slot 675 

slot group 675 

slot queue (SQ) 


format of 853 

purpose of 853 


SMF (system management facility) 16 

SMF 10-minute TQE 499 

SNAP request 523 

snapshot list, dump of 626,675 

SPCA (swap communications area) 


format of 854 

purpose of 854 


SPCT (swap control table) 

format of 858 

purpose of 858 


SPFR~AIN routine 

diagram of 470 

module name of 728 


SPIE routine 

description of 85 

diagram of 84 

entry-point name of 732 

module name of 726 

synopsis of 714 


SPQE (sutpool queue element) 

construction of 407 

dump of 618 

format of 863 

normal release of 544 


SPREL 728 

SP253FR 728 

SQ (slot queue) 


format of 853 

purpose of 853 


SQA (system queue area) 

after initialization 401 

description of 401 


Index 695 




dump of 626 

normal release of 544 

size 401 

use of 401 


SQA/LSQA Allocation routine 

description of 229 

diagram of 228 

entry-point name of 732 

module name of 723 

synopsis of 714 


SQA/LSQA reserve queue 202 

SQCTUPDT subroutine 342 

SQE (supervisor queue element) 


abnormal release of 566,580,596 

construction of 874 

definition of 675 

dump of 618 

format of 864 

purpose of 864 

scheduling of 550 


SSM (Set System Mask) instruction 34,48 
STA control block 


format of 845 

processing of 644 

purpose of 845 

release storage of 586 


STA diagnostic work area (SDWA) 

format of 846 

initialization of 650 

purpose of 846 


STA recursion 

validity check by AEEND 562 


STA Services routine 

diagram of 644 

entry-point name of 732 

module name of 726 

overview of 642 

synopsis of 714 


stacking ABEND requests 566,572,576 
STACTCB subroutine 566,572,576 
STAE macro instruction 524 

Stage 1 Exit Effector (CIRE) 


description of 125 

diagram of 124 

entry-point name of 732 

module name of 726 

synopsis of 714 


stage 2 Exit Effector 

des'cription of 127 

diagram of 126 

entry-point name of 732 

module name of 725 

synopsis of 714 


Stage 3 Exit Effector 

description of 129 

diagram of 128,130 

entry-point name of 732 

module name of 721 

synopsis of 714 


STAI request 524 

STAR routine 


(see System Task ABEND Recovery Exit 

routine of the system error task) 


STATUS macro instruction 

description of 153 


STATUS routine 

description of 153 

diagram of 152.8 


entry-point name of 732 

module name of 724 

synopsis of 714 


STAX count 

decremented by EOT 527 


STE (segment table entry) 

format of 852 

purpose of 852 


stealing page frames 202 

step name, dump of 614 

STIMER routine 


description of 498 

diagram of 504 

entry-point name of 732 

module name of 726 

synopsis of 714 


STOR (segment table origin register), use 

of 4 


storage 

atnormal release of 586 

allocation of 395 

normal release of 528 

protection 9 


Storage queue origin list (GOVRFLB) 

format of 785 

purpose of 785 


subpool 

definition of 676 

dump of 632 

normal release of 544 

numbers and meaning 398 

use of 397 


subpool queue element (SPQE) 

construction of 422 

dump of 618 

format of 863 

normal release of 544 

purging of 521 


subtask 

attaching a 70 

detaching a 80 

queuing a 92 


supervisor lock 

definition of 562 

ownership of 550,562,566,580,596 


supervisor queue element (SQE) 

atnormal release of 566,580,596 

construction of 422 

definition of 676 

dump of 618 

format of 864 

purpose of 864 


supervisor request block (SVRB) 

construction of 42 

dump of 616 

format of 838 

normal release of 521 

purpose of 13,838 

scheduling of 42 


supervisor trace 

activation of 35,558,604 

deactivation of 604 


supervisor trace table 

definition of 35 

dump of entries 604 

initialization of 608 


SUSPEND subroutine 258 

SVC delay queue 274 


696 



SVC First-Level Interruption Handler 

description of 30 

diagram of 40 

entry-point name of 732 

synopsis of 715 


SVC FLIH (see SVC First-Level Interruption 
Handler) 

SVC interruption processing 30,214 
SVC modules 


dump of 626 

search for 626 


SVC table 

format of 31 

function of 31 


SVC directory 734 

SVCDUMP routine 523 


control block used 603 

diagram of 604 

entry-point name of 732 

module name of 724 

overview of 603 

synopsis of 714 


SVC Second-Level Interruption Handler 

description of 31 

diagram of 42 

entry-point name of 732 

synopsis of 715 


SVRB (supervisor request block) 

construction of 31,42 

dump of 616 

format of 838 

normal release of 521 

purpose of 838 


SWA (see system work area) 
SWAB (see system work area block) 


format of 865 

purpose of 865 


SWAH (see system work area header) 

format of 866 

purpose of 866 


swap communications area (SPCA) 

format of 854 

purpose of 854 


SWAP Control routine 

description of 309 

diagram of 308 

entry-paint name of 733 

module name of 723 

synopsis of 715 


swap control table (SPCT) 

format of 858 

purpose of 858 


Swap SVC Interface routine 

description of 385 

diagram of 384 

entry-point name of 733 

module name of 385 

synopsis of 715 


Swap-in Completion routines for Stages 1, 

3, and 4 Completion 


description of 315 

diagram of 314,316 

entry-point name of 733 

module name of 723 

synopsis of 715 


Swap-in Completion subroutine 

description of 319 

diagram of 318,320,322 


entry-point name of 733 

module name of 723 

synopsis of 715 


swap-in processing 310 

Swap-in Set-up subroutine 


description of 311 

diagram of 310 

entry-point name of 733 

module name of 311 

synopsis of 311 


Swap-out -- CMPLOUT subroutine 

description of 331 

diagram of 330,332 

entry-point name of 733 

module name of 331 

synopsis of 311 


Swap-out Completion routine 

description of 329 

diagram of 328 

entry-point name of 733 

module name of 728 

synopsis of 715 


Swap-out Control subroutine 

description of 325 

diagram of 324,326 

entry-point name of 733 

module name of 325 

synopsis of 325 


Swap-out -- External Address Assignment 

subroutines 


description of 335 

diagram of 334,336 

entry-point name of 733 

module name of 335 

synopsis of 335 


swapping 676 

SYNCH routine 


description of 181 

diagram of 180 

entry-paint name of 726 

module name of 726 

synopsis of routines 710 


system error task 

entry-point name of 733 

module name of 728 

use of 160 


system interruption request block (SIRB) 

format of 838 

purpose of 13,838 


system management facility (SMF) 16 

system queue area (SQA) 


after initialization 401 

description of 401 

dump of 626 

normal release of 544 

size 401 

use of 401 


System Task ABEND Recovery (STAR) Exit Rou­
tine of the Syste~ error task 


description of 161 

diagram of 160 

entry-point name of 733 

module name of 728 

synopsis of 160 


system work area (SWA) 

allocating pages in 456 

allocating storage for 454 


system work area block (SWAB) 


Index 697 




format of 865 

purpose of 865 


system work area header (SWAH) 

format of 866 

purpose of 866 


task control block (TCB) 

abnormal release of 580,586 

construction of 63 

definition of 677 

dump of 616 

format of 867 

new TCB address 532 

normal release of 528,532 

old TCB address 532 

purging of 521 

queuing of 63 

validity of 608 


task disable algorithm 

calculations used 202 

description of 202 

processing of 254 


Task Disablement Algorithm and Threshold 
Checking routine 


description of 255 

diagram of 254 

entry-point name of 733 

module name of 255 

synopsis of 715 


task interruption request block (TIRB) 

construction of 550 

deactivation of 558,566 

definition of 677 

dump of 616 

format of 838 

purpose of 13,838 


task I/O table 

DD entries of 572 

dump of 616 


task Post 290 

task post queue 677 

Task Post Queue Processor 


description of 291 

diagram of 290 

entry-point name of 733 

module name of 723 

synopsis of 715 


task statistics table (TCT) 248 

task supervision 


description of 61 

registers upon entry and exit 895 


task switch 

definition of 677 

use of 148 


Task Switch routine 

description of 149 

diagram of 148 

entry-point name of 733 

module name of 725 

synopsis of 715 


task timing 677 

task timing queue 677 

TAXE 


abnormal release of 580 

normal release of 528,538 


TCAM Formatting routine 

interface with ABDUMP 624 


TCAM Interpartition POST request, cancella­

tion of 580 


TCB (task control block) 

abnormal release of 580,586 

construction of 63 

definition of 677 

dump of 523,616 

format of 867 

new TCB address 532 

normal release of 528,532 

old TCB address 532 

purpose of 867 

queuing of 63 


~CT updating 432 

terminal attention exit element (TAXE) 


abnormal release of 580 

normal release of 528,538 


Termination Interface 

description of 521 

diagram of 370 

entry-point name of 733 

module name of 723 

synopsis of 715 


termination supervision 519 

abnormal 522 


performing (ABEND) 522 

scheduling (ABTERM) 522,548,550 


dumping storage 523 

ABDUMP 523 

SVCDUMP 523 


introduction 519 

normal (EaT) 521 

overview 526 

registers on entry and exit 895 

user exit routine (ASIR, STA) 524 

visual table of contents 525 


terms 665 

TESTADDR 256 

TESTAUTH routine 


description of 157 

diagram of 156 

entry-point name of 733 

module name of 725 

synopsis of 715 


thrashing 677 

time-of-day calculation 502 

time-of-day clock 677 

TIME routine 


description of 497 

diagram of 502 

entry-point name of 733 

module name of 726 

synopsis of 715 


time sharing link pack area 167 

time sharing option 16 


ATTACH routine with 70 

CHAP routine with 76 

DEQ routine with 96 

interregion POST with 88 

Stage 3 Exit Effector with 128 

STATUS routine with 152 


time slice control element (TSCE) 

pointers in 887 


time-slicing feature 17 

ATTACH routine with 70 

CHAP routine with 76 

dispatcher with 150 

termination of task 534 


698 



time stamp 614,58 

timer data area (IEATPC) 880 

TIMER Dequeue routine 


diagram of 516 

entry-point name of 733 

module name of 724 


Timer Enqueue routine 

diagram of 514 

entry-point name of 733 

module name of 724 


timer interruption handling 32 

timer queue element (TQE) 


abnormal release of 580 

format of 884 

normal release of 528,540 

purpose of 884 


timer requests 

cancellation of 540 


Timer Second-Level Interruption Handler 

description of 498 

diagram of 508,510,512 

entry-point name of 733 

module name of 725 

synopsis of 715 


timer supervision 

diagram of 501 

introduction to 495 

registers on entry and exit 895 


TIRB (task interruption request block) 

construction of 124,550 

deactivation of 558,566 

definition of 677 

dump of 608 

format of 838 

purpose of 838 


top terminating task 

definition of 677 

determination of 566 


TPC (timer data area) 

format of 880 

purpose of 880 


TQE (timer queue element) 

abnormal release of 580 

format of 884 

normal release of 528,540 

purpose of 884 


Trace function 35,58,60 
trace table 35,58,60 
translation specification exception 33,677 
translation 

of virtual addresses 3 

tables 3 


TRDISP 728 

TREX 728 

TRIO 728 

TRPI 728 

TRSIO 728 

TRSVC 728 

TSCE (time slice control element) 


pointers in 887 

TSLO subroutine 576,580,586 

TSO 


devices specified 336 

external pages used 331 

special feature 16 


TSO formatting routine 

interface with ABDUMP 624 


TSO Interpartition POST request 


cancellation of 580 
TSO task 


termination of 534,540 

'ISO TQE 499 

TSOAUX 462 

TTIMER routine 


description of 498 

diagram of 506 

entry-point name of 733 

module name of 726 

synopsis of 715 


Type-1 Exit routine 

description of 147 

diagram of 146 

entry-point name of 733 

module name of 725 

synopsis of 715 


type-1 SVC message table (INFOLIST) 

format of 786 

purging of entries 572,596,600 

purpose of 786 

WTP for entries 572 


user exit routine 
retry of 654,656 
scheduling of 562,650 

user ID 

dump of 614 


use/responsitility count 

(see also CBUSE) 

meaning 165 


V=R (see virtual equals real) 

V=R allocation 


residence 235 

V=R Allocation routine 


description of 235 

diagram of 234 

entry-point name of 733 

module name of 723 

synopsis of 716 


V=R dynamic area 678 

V=R Flush routine 


description of 241 

diagram of 240 

entry-point name of 733 

module name of 724 

synopsis of 716 


V=R line 

definition of 678 


V=R partition queue element (PQE) 

format of 401 

use of 401 


V=R region 678 

V=R Region Free routine 


description of 239 

diagram of 238 

entry-point name of 733 

module name of 724 

synopsis of 716 


V=R Release routine 

description of 237 

diagram of 236 

entry-point name of 733 

module name of 724 

synopsis of 716 


Index 699 




V=V (see virtual equals virtual) 

V=V dynamic area 678 

V=V region 678 

Validity Check routine 


description of 155 

diagram of 154 

entry-point name of 733 

module name of 725 

synopsis of 716 


VALRECUR subroutine 650 

VALTYMAP (validity map) 


format of 888 

purpose of 888 


virtual address 

definition of 678 


virtual equals real (V=R) 

dynamic area 678 

line 678 

pages 


allocation of 234 

releasing of 236 


region 678 

task 678 


virtual equals virtual (v=V) 

dynamic area 678 

region 678 

task 678 


virtual storage 

definition of 678 

nonpageable areas in 6 

organization of 6 

pageable areas in 6 

size of 397 

supervision of 395 


virtual storage region 

definition of 678 


virtual storage supervision 

description of 395 

fUnctions of 397 

interruption handling for 397 

introduction to 395 

registers on entry and exit 921 

routines 397 


virtual subarea list (VSL) 

format of 890 

purpose of 890 


Visual table of contents 

contents supervision 168 

interruption supervision 31 

paging supervision 206 

task supervision 68 

termination 525 

timer supervision 500 

virtual storage supervision 411 


VSL (virtual subarea list) 

format of 890 

purpose of 890 


VSS (see virtual storage supervision 

WAIT routine 

description of 87 

diagram of 86 

entry-point name of 733 

module name of 726 

synopsis of 716 


WAIT State codes issued by VS2 

supervisor 954 


1ftorking set 678 


XCTL routine 

description of 185 

diagram of 184 

entry-point name of 726 

module name of 726 


XPT (external page table) 

format of 891 

purpose of 891 


XPTE (external page table entry) 

format of 891 

purpose of 891 


XTLST (extent list) 

construction of 170,172 

dump of 616 

format of 892 

purging of 544 

purpose of 892 


700 





SY27·7244·1 

J 


International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(lntemetlonal) 



OS/VS2 Supervisor Logic 

(Volume 1) 

SY27-7244-1 

Your views about this publication may help improve its usefulness; this form 
will be sent to the author's department for appropriate action. Using this 
form to request system assistance or additional publications will delay response, 
however. For more direct handling ofsuch requests, please contact your 
IBM representative or the IBM Branch Office serving your locality. 

Please check or fill in the items below, adding explanations and other comments in the space prOVided. 

How did you use this publication? 

READER'S 

COMMENT 

FORM 

C As an introduction 	 0 As a reference manual 0 As a text (student) 0 As a text (instructor) 

o For another purpose (explain) ______________..:..________________________________ 

Very 
Useful 

General Organization 0 
Overall Introduction 0 
Section Introductions 0 
Program Organization Diagrams 0 
Routine Synopses 0 
Data Area Maps 0 
Registers on Entry and Exit 0 
Control Blocks Matrix 0 o 

5. 

." 
Do the method of operation diagrams and the notes contain: 

o 
ii ,. 
o 	 DIAGRAMS 
" '" c: o Too many details 
" CD 	 o Not enough details 

D Right amount of details 

Sometimes 
Useful Unnecessary Other 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

NOTES 

D Too many details 
o Not enough details 
o Right amount of details 

Check any of the following that you would omit from the method of operation diagrams: 

o Subroutine boxes o Data modification arrows 
o Entry point labels o Data movement arrows 
o Data reference arrows 

Other comments, criticisms, errors, etc. Please be specific where possible. 

What is your occupation? _________________________________________________ 

Number of latest Technical Newsletter (if any) concerning this publication: ________~___________ 

Please include your name and address in the space below if you wish a reply. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office 
or representative will be happy to forward your comments.) 



SY27-7244-1 

oYour comments, please ••• S 

This manual is part of a library that serves as a reference source for systems analysts, ti' 
0: 

programmers, and operators of IBM systems. Your comments on the other side of this » 
form will be carefully reviewed by the persons responsible for writing and publishing 0" 

IQ " 
rthis material. All conunents and suggestions become the property of IBM. 5' 
CD 

I 
I 
I 
I 

~d ~d I 
...........................................................................................................................................................................········t 


First Class 
Permit 40 
Armonk 
New York 

Business Reply Mail 
No postage stamp necessary if mailed in the U.S.A. 

0-..1 
~ 
<en 

'"en 
c:Postage will be paid by: 
'0 
!!l 
< 
~.International Business Machines Corporation 

Department 636 b 
Neighborhood Road '"i'r 
Kingston, New York 12401 <o 

i: 
3 
CD 

..................................................................................................................................................................................t 

Fold Fold 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 

J 



	part1
	part2
	part3
	part4
	part5
	part6
	part7

