SY27-7244-1

. 0S/VS2
Systems . Supervisor Logic

Volume 1

Release 1.6



Second Edition (September 1974)

This edition is a minor revision of SY27-7244-0
incorporating TNL SN27-1403. These publications are
still current.

This edition applies to release 1.6 of 05/VS2 and to all subsequent
releases until otherwise indicated in new editions or Technical
Newsletters. Changes are continually made to the information
herein; before using this publication in connection with the
operation of IBM systems, consult the IBM System/360 and System/370

Bibliography, GA22-6822, and the current SRL Newsletter.

Copies of this and other IBM publications can be obtained through
IBM Branch Offices.

A form for reader's comments appears at the back of this publica-
tion. Address any additional comments concerning the contents of
this publication to: 1IBM Corporation, Programming Publications,
Department 636, Neighborhood Road, Kingston, New York 12401

© Copyright International Business Machines Corporation 1972



o

This manual descrikes the logic of the
0S/VS2 Supervisor, its relationship to the
other portions of the control program, and
the interaction between supervisor modules.
The information in this manual is intended
for personnel who are responsikle for
determining sources of error within or mak-
ing modifications to the VS2 Supervisor.

Two short sections that follow this pre-
face can help you use this manual effec-
tively. "How This Manual Is Organized"
describes the organization of the manual:
where to find overview material to refresh
your memory, and where to find detailed
information to correct errors or modify the
system. "How to Read the Method-of-
Operation Diagrams®" explains the format of
the diagrams and the symbols that are used
in the diagrams.

The communications task and checkpoint/
restart logic are not documented in this
manual. The communications task is docu-
mented in the 0S/VS2 Job Management Logic
PLM, Order No. SY28-0649; checkpoint/
restart logic is documented in the 0S/VS
Checkpoint/Restart Logic PLM Order No.
SY24-5159.

Prerequisite Knowledge and Reading

If you do not know the basic concepts of
and services provided by the VS2 Supervi-
sor, you should read the following
publication:

0S/VS Supervisor Services and Macro
Instructions, GC27-6979

Other Publications to Which the Text Refers

The publications listed below are
referred to within the section shown in

PREFACE

parentheses. The publications are listed
alphabetically according to the first
descrirtive word in the title.

0S/VS Debugging Guide (Termination),
GC28-0632

0S/VS2 Dynamic Support System Logic
(Interruption Supervision), SY28-0679

0S/VS2 IPL and NIP Logic (Virtual
Storage Supervision), SY27-7243

0S/VS2 Job Management Logic
(Termination), SY28-0620

0S/VS OPEN/CLOSE/EOV Logic (Contents
Supervision) , SY26-3785

0S/VS2 Planning and Use Guide (Introduc-
tion), GC28-0600

CS/VS Recovery Management Surport Logic
(Interruption Supervision), SY27-7252

0S/VS2 Service Aids Logic (Termination),
GY28-0635

0S/VS TCAM I1ogic (Termination),
GY30-2039

0S/VS2 TSO Control Program Logic (Timer
Supervision and Termination),
SY28-0649

Notice to Reader: No IBM publication order

numbers are provided in references to puk-
lications in the body of this manual.
Please use the list above to find the order
number for publications you find mentioned
in the text.

iii



HOW THIS MANUAL IS ORGANIZED

This manual, which describes the logic
of the VS/2 supervisor, is divided into two
volumes. Volume 1 (Sections 1 through 9)
uses text, conventional illustrations, and
method-of-operation diagrams to exrlain
basic concepts and to describe how the
supervisor works. In addition, Volume 1
contains a glossary of terms and acronyms
used in this publication. Volume 2 con-
tains tables and other reference material
that is to be used in conjunction with
Volume 1 to isolate supervisor errors.

The sections in Volume 1 are:

1l: WHAT THE SUPERVISOR IS AND DOES
Briefly descrikes the functions per-
formed by the supervisor. This sec-
tion explains the general operation of
the supervisor and describes the rela-
tionship of the supervisor to the
computer.

The diagrams at the end of this sec-
tion illustrate how the supervisor
processes interruptions and where it
passes control to perform the services
required by those interruptions.

These diagrams are also a visual table
of contents for the rest of the dia-
grams in Volume 1.

2: INTERRUPTION SUPERVISION

3: TASK SUPERVISION

4: CONTENTS SUPERVISION

5: PAGING SUPERVISION

6: VIRTUAL STORAGE SUPERVISION
7: TIMER SUPERVISION

8: TERMINATION
Each of these sections (2 through 8)
describes one major area of the super-
visor: "Interruption Supervision,"®
"Task Supervisicn," "Contents Supervi-
sion,"™ and so on. Each section
explains the basic concepts and gener-
al logic of the functional area,
including descriptions of operational
characteristics such as queuing tech-
niques and the use of control blocks.

The descriptive material in each sec-
tion is followed by a set of method-
of-operation diagrams. The first dia-
gram is a table of contents for the
detailed diagramws in the set. The set
also includes overview diagrams that
illustrate the functional flow and

iv

refer you to the more detailed dia-
grams in the set. These detailed dia-
grams illustrate the input, processing
steps, and output, and they contain
symkolic names that tie the processing
steps to the program listing. Parti-
cularly complex functions are also
flowcharted. The flowcharts fcllow
the detailed diagram for that
function.

9: GLCSSARY
Defines terms and acronyms used in
this puklication.

The sections in Volume 2 are:
10: PRCGRAM ORGANIZATION

Program Organization Diagrams
Illustrates the program structure
for each function. These diagrams
cocntain module names, routine names,
and entry points.

Synopses of Routines
Iists each major routine in the
supervisor in alphabetic order and
provides a short description of the
routine.

11: DIRECTORY
Consists of three tables: the "Module
Directory," the "Entry Point Cirec-
tory," and a table of routines invoked
by SVC instructions.

12: DATA AREAS
Describes the major data areas and
control blocks used by supervisor
modules.

13: DIAGNOSTIC AIDS

Registers on Entry and Exit
Lists the register contents upon
entry to and exit from each routine.
The entries are arranged alphabetic-
ally by entry point name.

control Blocks Referenced and Set
Matrix
Cross-references control blocks to
the supervisor modules that
reference or set them.

Completion Codes, Wait State Codes,
and Messages Takles
Lists completion codes, wait state
codes, and messages and identifies
the function and the segment of code
within the function that caused the
code or message to be issued.



HOW TO READ THE METHOD-OF-OPERATION
CIAGRAMS

The method-of-operation diagrams
illustrate the functions performed by the
supervisor. There is a set of these dia-
grams for each major component. The first
diagram in each set is a visual table of
contents.

Within each set, the diagrams are
arranged in a hierarchy, starting with the
least detailed diagram (usually, an over-
view diagram) and continuing to the most
detailed. The detailed diagrams illustrate
the input, the processing steps, and the
output for each function performed.

The detailed diagrams are read left to

left is labeled and boxed, as is the output
on the right. The processing is divided
into a series of steps, numbered sequen-
tially. If further explanation of a pro-
cessing step is needed, that explanation
appears in the notes on the page facing the
diagram. The notes also contain symbolic
names so that you can get to the pertinent
code in the program listing as quickly as
possible.

Arrows are used to signify data move-
rent, data reference, data modification,
and processing flow. The arrow conventions
are shown in Figure aa.

Other conventions used in the detailed
method-of-operation diagrams are illus-
trated and explained in Figure ak and

right, top to bottom.

The input on the

Figure ac.

i

Primary Entry/Exit Path -- Shows the path
followed to accomplish the principle function
of the body of code described by the diagram.

Secondary Path -- Shows the path used by a
processing step to accomplish a subordinate
function.

Pointer —=- Shows that a field in one data area
contains the address of another field or data
area.

Data Reference -- Shows that the contents of
a data area are tested or read to determine
the course of subsequent processing.

Data Transfer -- Shows that data from one

|

ANSSASSSNN 4

,—-z’,,

location is moved or copied into another
location.

Control Information Modification -- Shows
the setting or changing of switches or pointers
that will be used to determine the course of
subsequent processing.

Interruption =- Shows the path followed when
an /O, SVC, external /timer, program, or

machine interruption occurs.

Figure aa.

Legend showing meaning of arrows

in method-of-operation diagrams.



1A

This symbol indicates
that there is a note on
the facing page that
pertains to this segment
of input or output.

Control block fields
are shaded when they
are not involved in
this diagram. Shading
is not meant to show
exact displacement.

Figure ab.

These numbers indicate
processing steps. [f
further explanation of
a step is needed, it is
provided in the notes
on the facing page.

Input

Entry points are shown

within

the processing

block and subroutine

blocks

From ABC to
update the CB

—

Register 1

Address of CB

Register 14

Return address

CB

CBFIELD

F-——1 2

Processing

Subroutine blocks
within the processing
block indicate the
subroutine is contained
within the same module
as the processing steps.

Y
IEAPOINT

1  Find new valve.

Update CB.

1f already done

is required.

Set return code.

Record the change.

If special processing

/

Internal Routine

ENPOINT

S e

External Routine

IEAPNT

---IIIIII-IIIIIIIrII’b&&Smp2
\

Diagram number and
title for this diagram.

Diagram 0.1
Sample Diagram

Output

An arrow pointing to a
number within a
processing block means
that processing
continues at the step
on this diagram
corresponding to the
number.

CBFIELD

Subroutine blocks
shown outside the
processing block

indicate routines are
not in the same module
as the processing steps.

A number in the lower

Register 15 right-hand corner of a

subroutine block

A pair of these symbols
is used in place of an
arrow when it is not
possible to draw an

arrow.

To Caller

indicates the method of
operation diagram that
describes the subroutine
in more detail.

An arrow pointing to a
number outside the
processing block means
that processing
continues on another
diagram indicated by
the number.

Sample Method-cf-Operation diagram showing the diagramming conventiocns used in this manual.



C ¢ C

Number and name of Method-of-Operation
diagram to which Notes apply.

Label within the routine at which
code for the processing step begins.

tes associated with the portion of the diagram where
fl appears.

| IEAPOINT
| ENPOINT
|

CBUPDT

There are no detailed

£ St 1.
notes for Steps 4 and 5. Notes for P

Notes for Step 2.

IEAPOINT|RCDB

Notes for Step 3.
| IEAPNT

|
IEAPOINT!RTNBR
L

Routine that performs Step 1.

The number 5 appears even though there are no
notes for Step 5, because there is an identifiable
routine name or label associated with the step.

Figure ac. Sample extended-description page for a Method-of-Operation diagram.

ITA






Guide to Section Tabs in Volume 1

SECTION 1: Introduction to the Supervisor,
and Virtual Storage Concepts ..............

SECTION 2: Interruption Supervision...................

SECTION 3: Task Supervision .........................

SECTION 4: Contents Supervision. . ....................

SECTION 5: Paging Supervision .......................

SECTION 6: Virtual Storage Supervision................

SECTION 7: Timer Supervision .................c.c.....

SECTION 8: Termination...............c.uuuiiiiuii..

SECTION 9: Glossary ..........coiii i

IndextoVolumesland 2 ................ . i,

In Volume 2: SECTION 10: Program Organization
SECTION 11: Directory
SECTION 12: Data Areas
SECTION 13: Diagnostic Aids
Index to Volumes 1 and 2

ix






SECTION 1: INTRODUCTION TO THE SUPERVISOR AND
CONCEPTS =« 2 « o« « o« o « « o « s @« a « o« o« «

WHAT THE SUPERVISOR IS AND DOES « « « « « <«
Basic Concepts of Virtual Storage Supervision
Concept of Virtual Storage . . . . . . . .
Translation of Virtual Addresses . . . . .
PAaging « « o o« o o o o o o o o o o o o o @
Organization of Virtual Storage . . . . . . .
Use Oof Real Storage « « « « « « o o« « o o o @
Storage Protection . « « « ¢ ¢ ¢ « o o o o
Interruption Handling . . . . « « ¢« « « « « .
SUPEervisor ServicCes . « « « « « o « o o o o
Task Supervision . « « ¢« ¢ ¢ ¢ ¢ o o o «
Contents Supervision . . <« . <« ¢ ¢ o o @
Paging Supervision . . < ¢ ¢ ¢ ¢ ¢ o o @
Virtual Storage Supervision . . . . . . .
Timer SUpPervision . « « « o « « « « o o @
Task Termination . « « « ¢ o« ¢ « o o o «
Special FeatuUres . « « « o o « o « o o o o
Authorized Program Facility . . . . . . .
Automatic Priority Grouping . . . . . . .
Shared Direct Access Storage Device . . .
System Management Facilities . . . . . .
Time Sharing Option . . . « <« ¢ ¢ ¢ o o &
Time S1licing . ¢« ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o
Tracing Facilities . . . « ¢« « ¢« ¢ & « &
Summary of the Supervisor's Role . . . . . .

SECTION 2: INTERRUPTION SUPERVISION . . . . .
HOW INTERRUPTIONS ARE HANDLED « « ¢ « « « o o

Input/Output Interruption Handling . . . . .
SVC Interruption Handling . . . N . .

Saving the Status of the Interrupted Program

VIRTUAL

-

Determining Whether the Disabled SVC Routine is

Enabling and Disabling Interruptions . .

Minor Functions of SVC Interruption Handling

Timer/External Interruption Handling . . . .
Program Interruption Handling . . . . . . . .

Processing for Particular Program Interruptions

Translation Specification Exceptions . .
RECUXSiONn .« ¢« ¢« ¢ o o o o o o o o o« o «
Event Recording « . « « o« o o« o « o « o «
Page Translation Exceptions . . . . . .

Segment Translation Exceptions . .

Program Interruptions from SSM (Set System

Program-Check Interruptions . . . . . . .
Tracing Events . ¢ ¢ ¢ o ¢ o ¢ o o o o « o« «

SECTION 3: TASK SUPERVISION . . .« ¢ ¢ o o o &«

HOW TASKS ARE SUPERVISED . « ¢ o o o o o o o
Permanent TaskS « « « « o o o o « o« o o @
Dynamic TaskS « « « « o « o o o « o o

Creating @ Task « « o« ¢ « o ¢ o« o o « o

The TWO TCB QUEUES .+ o « « « o o a o o @
TCB Pointers . « « ¢ o« o o o o o o «

Allocating CPU Time to Competing Tasks .

Summary of Task Supervision . . . . . . .

SECTION 4: CONTENTS SUPERVISION . . « « « . .

Mask)

-

e s s o 0

e o s

-

STORAGE

-

in Real

Instruction

e e

CONTENTS

.
L[]
[ ]
[N

.
L]
.

Lo WwWwWwWwWwWw

S . . 34

.
.
.
=2}
w

s o o o 0
.
.
(=)
&

X1



HOW MODULES (CONTENTS) ARE SUPERVISED . . .
Calling the LINK, LOAD, and XCTL Routines
Searching Virtual and Auxiliary Storage .
The Job Pack Area . « « « « «
LPA Storage Areas . « « « « o« «
Time Sharing Link Pack Area . .
Auxiliary Storage Libraries . .

SECTION 5: PAGING SUPERVISION . . . . « . « .

HOW PAGING IS SUPERVISED . « « « « &
Organization of the Paging Supervisor
Entries to the Paging Supervisor . .
Paging Supervisor Algorithms . . . .

The Page Replacement Algorithm .

The Task Disablement Algorithm
Page Management . . . . <. ¢ < o . .
Control Blocks and Tables . . .
External Storage Management . . .
Real Storage Management . . . . . .
Request Management . . . .« « « <« < « .

SECTION 6: VIRTUAL STORAGE SUPERVISION . . . . . . . .

HOW VIRTUAL STORAGE IS SUPERVISED . ¢« « « « « « o «
Subpools . . . . . . e o o e e o o o o o o o o
System Queue Area After In1t1allzat10n « e e -
Allocating Space in the System Queue Area
Allocating Space in a Local System Queue Area
Normal Requests for LSQA Storage . . . .
Subpool 233, 243, and 253 Allocation . .
Subpool 234, 244, and 254 Allocation . .
Subpool 235, 241, 245 and 255 Allocation
Allocating and Freeing Pages in a System Work
Allocating and Freeing Quickcells . . . . . .
Supervising External Page Storage . .
Allocating Space for a Region . . . . . . .
Region Reference-validity Map . . .
Allocating Space Within a Region . . .
Management of Unallocated Storage W1th1n a Region .
Supervision of Allocated Space Within a Region . .

e s s 0 s B s e e
N
e & 8 o Mo s s s s .
[

Processing the Initial Request for Subpool Space
Processing Subsequent Requests for Subpool Space
Processing if the Requested Space is not Available
Recording Storage Usage Information . . . . . . . . .
FREEMAIN Routines . . . « o ¢ ¢ ¢ ¢ ¢ o o o o o o« «
Freeing the Entire Space Assigned to a Region .
Freeing Space Within a Region . . . . . . . . .
Freeing Space in an LSQA or the SQA . . . . . .

SECTION 7: TIMER SUPERVISION . . . ¢ « ¢« o o o o o «

HOW TIMER OPERATIONS ARE SUPERVISED
TIME Routine . . . ¢« ¢« ¢ o ¢ « o &
STIMER Routine . . . « .« . « « o .
TTIMER Routine . . . . « « . « . < .
Timer Second-Level Interruption Handler
Timer QUEUES . 2 « 2« 2 2 o o a o o o« =

SECTION 8: TERMINATION . . . . « « « « « =«

HOW TASKS ARE TERMINATED . . . .
Normal Termination -- EOT (End of Task)
Scheduling Abnormal Termination —-- ABTERM
Abnormal Termination -- ABEND . . . -
Dumping Specified Areas of Virtual Storage - SVCDUMP
Dumping Selected Areas of Virtual Storage -- ABDUMP .

xii

a0 o & o 2 o e

.165
.165
.165
.165
-.166
.167
.167

.199

.201
.201
.201
.201
202
202
.203
.203
.203
.203
.204

.395

- 397
397
-401
.402
-402
.403
. 403
.403
. 403
.403
4oy
404
. 405
.406
-.u06
.407
407
- 407
.408
-408
.409
-409
-409
- 409
.410

- 495

- 497
-497
-498
.498
-498
- 498

.519

.521
.521
522
.522
523
.523



STA Services and ASIR (ABEND/STA Interface Routine)

SECTION 9: GLOSSARY OF TERMS AND ABBREVIATIONS
WHAT VS2 TERMS AND ABBREVIATIONS MEAN
Reference Words used in the Entries
Acknowledgment to the American National Standards Institute

GLOSSARY

INDEX

.524
.663
.665
.665
.665
.666

.681

xiii



ILLUSTRATIONS

Figure 1-1. Translation of a virtual address into a real address . .
Figure 1-2. Explanation of page-out operations. . . . . . . . . . .
Figure 1-3. Explanation of page-in operations. . . . « « « ¢ « « « .
Figure 1-4. Organization of virtual storage. . . . . . . ¢« ¢« ¢« ¢« o
Figure 1-5. Organization of real storage. . . . . . ¢ ¢ ¢ ¢ ¢ o o &
Figure 1-6. General flow of the supervisor . . . « ¢ « ¢« ¢ ¢ ¢ « « « 1
Figure 1-7. Flow of control after the ATTACH macro instruction is
issued. (Shows typical processing for a supervisor macro -
instruction.) . . . . i b e i it b i e e e e e o o o o o o o o o o o 12
Figure 1-8. Use of the RB queue in passing control to different

oO0ooNONE

programs. . . e o o o o o o o e o e o o o o o o o s o o o o o o o « 13
Figure 1-9. The contents directory. . .« ¢ ¢ ¢ 4 ¢ o o o o o < . 14
Fiqure 2-1. Actions taken by the SVC First-Level and Second-Level
Interruption Handlers to save program status information. . . « « « 30
Figure 3-1. Permanent TCBs that form the keginning of the task

queue. .« .« « « « o @ e o o o o e o e o e o e o o s e o o s o o o o 63

Figure 3-2. Example of a subtask queue showing how TCB pointers

link a subtask to related subtasks. . . . ¢« « ¢ ¢ ¢ ¢ ¢« ¢ o « « « « o 64
Figure 3-3. Portion of the task queue showing two sukgroups in an
automatic priority group. . . . . . . . . . e e e o o o o o o 65
Figure 3-4. Factors in the dispatching of APG tasks. e« o o o o o« « « 66
Figure 3-5. Processing if a requested resource is not in use. . . . 94
Figure 3-6. Processing if a requested resource is in use. . . . . . 94
Figure 3-7. Return codes for the ENQ routine. . . . . . . . . . . . 95
Figure 4-1. Important operands in the LINK, LOAD, and XCTL macro
IinstructionsS. .« ¢ ¢ ¢ ¢ 4 e i e 4 e e e e o e o o o o o o o o o o o 2165
Figure 4-2. Control blocks for modules in the JPA. . . . . . . . . .1l66
Figure 5-1. Movement of Page Frame Takle Entries (PFTEs) . . . . . .204
Figure 6-1. Table showing attributes and uses of subpools. . . . . .398
Figure 6-2. VSS control blocks after system initialization. . . . .401
Figure 6-3. An LSQA segment after initialization. . . . . . . . . .402
Figure 6-4. Control blocks used to allocate storage in the system

WOXK QX@@. « o o o « o o o o o o o o o o o s o a o o o o o o o o o U0y
Figure 6-5. Virtual storage after allocation of an ISQA and region

for one pageable (V=V) task. . . . e e o o o @ e o o o o o o o JHOS5
Figure 6-6. Virtual storage after allocatlon of LSQAs and regions

for one pageable task and one nonpageakle task. . . . . . < . . . . U405
Figure 6-7. Format of the region reference-validity map. . . . . . .406
Figure 6-8. Control blocks used to manage unallocated storage

within a region. . . e e o o o o o o o @ e o o o o o U407
Figure 6-9. Control blocks used to superv1se allocated storage
within a region. . . . . . . « o o o o« o JlOB

Figure 7-1. Operatlon of the task t1m1ng queue (for TASK timing). .499
Figure 7-2. Operation of the clock comparator queue (for REAL and
WAIT timing). o o ¢ ¢ ¢ o o @ o o o o o o o o o o o o o o o o o « « U499

xiv



.

DIAGRAMS

Diagram 1.1 Supervisor Overview and Visual Table of Contents for

Diagrams . e o o o o a o o o o o e o o o o o s o o o o s e o s « 19
Diagram 1.2 Type-1 SVC Processing Performed by the Superviscr . . . 22
Diagram 1.3 Types 2, 3, and 4 SVC Processing Performed Ly the
Supervisor e o o o o o o o a o o e o s o s s s s o s s o o o o o & 23
Diagram 2.0 Interruption Supervision Visual Table of Contents . . . 37
Diagram 2.1 I/O Interruption Handling . . . .« « ¢ ¢ ¢ ¢« « « « « « - 38
Diagram 2.2 Type-1 SVC Interruption Handling . . . . . . « « . « « . 40
Diagram 2.3 Handling Types 2, 3, and 4 SVC Interruptions . . . . . . 42
Diagram 2.4 External Interruption Handling . . . . . . . . « « « « . U4
Diagram 2.5 Program Interruption Handling . . . . . « <« . . « « . . U6
Diagram 2.6 SSM Interruption Processing . . « . « « « « « « « « « o U8
Diagram 2.7 Page Fault Processing . . . . ¢« ¢« « « « . . « « « « « 50
Diagram 2.8 (Steps 1-7) Program-Check Interruption Handllng e o« o« o« 52
Diagram 2.8 (Steps 8-12) Program-Check Interruption Handling . . . . 54
Diagram 2.9 PIPIX Routine . . . ¢ ¢ ¢ o o o o « « o o« o « o« o « « o« 56
Diagram 2.10 Tracing Supervisor Interruptions . . . . « « « « « « « « 58
Diagram 2.11 Tracing Start I/O Operations . . . . « « ¢« ¢ « ¢« « « « . 60
Diagram 3.0 Task Supervision Visual Table of Contents . . . . . . . 68
Diagram 3.1 Overview of Task Supervision . . . . . . ¢« ¢« ¢« ¢ « « « « 69
Diagram 3.2 (Steps 1-4) ATTACH Routine . . . « ¢ ¢« ¢ ¢ ¢ ¢ « « « « o 170
Diagram 3.2 (Steps 5-12) ATTACH Routine . . . . ¢ ¢ ¢ o o o o & « « 12
Diagram 3.2 (Steps 13-16) ATTACH Routine . . . « ¢ ¢ ¢ ¢ « o « « « « 14
Diagram 3.3 CHAP ROUtINE . . . o «c « ¢ o o o o o o o« o« o« o o« « « o« 16
Diagram 3.4 EXTRACT ROUtINe . . o ¢ o ¢ ¢ ¢ o o o o « « « o« o« o« « o 18
Diagram 3.5 (Steps 1-6) DETACH Routine . . . . . . . ¢« ¢« ¢« ¢« « « « « 80
Diagram 3.5 (Steps 7-10) DETACH Routine . . . . . ¢ « « « « « « « o 82
Diagram 3.6 SPIE ROUtINE . . « o ¢ o ¢ o o o o « o« s o « « « « « « o 84
Diagram 3.7 WAIT Routine . . ¢« ¢ ¢ ¢ ¢ ¢ o ¢ o o o o o« « o« o« « « « « 86
Diagram 3.8 (Steps 1-4) POST Routine . . . « ¢ ¢ « « « « « o« « « « - 88
Diagram 3.8 (Steps 5-10) POST Routine . . « ¢ ¢ ¢ o o o « o« « « « « 90
Diagram 3.9 ENQ ROUtINE . . ¢ ¢ o ¢ o o o o o o o« o a a s o« o « « « 92
Diagram 3.10 DEQ ROUtINE . . . o o ¢ o o o o o o o « o« a o o« o« o« o« « 96
Diagram 3.11 Stage 1 Exit Effector . . . . . ¢ ¢ ¢« ¢ ¢« ¢« ¢ ¢« &« « « 124
Diagram 3.12 Stage 2 Exit Effector . . . . . . ¢ ¢ ¢ ¢« ¢« ¢ &« o « « 2126
Diagram 3.13 (Steps 1-4) Stage 3 Exit Effector . . . . . . . . . . .128
Diagram 3.13 (Steps 5-7) Stage 3 Exit Effector . . . . . . . . . . .130
Diagram 3.14 Exit ROUtINE . « ¢ ¢ o 2 o o« o o o o« o« o o« « o o o« « « 2132
Diagram 3.15 Type-1 Exit Routine . . . . o ¢ o ¢ o o« o « « « « « « 186
Diagram 3.16 Task Switch Routine . . . . . . . . . ¢ & ¢ « & « « « o148
Diagram 3.17 Dispatcher . . . . ¢ ¢ ¢ ¢ ¢ o o o o o o« o « « « « « « <150
Diagram 3.18 STATUS ROUtIine . . « o« « o o o « 2 o o o o « o« o o o« o o152
Diagram 3.19 Validity Check Routine . . . . ¢ ¢ ¢ ¢ ¢ ¢« ¢ ¢« « « « « 154
Diagram 3.20 TESTAUTH Routine . . . . ¢ ¢ o ¢ ¢ o o« « o « o« o« = & « 2156
Diagram 3.21 MODESET Routine . . . . . .« . « e e . « « « o158
Diagram 3.22 System Task ABEND Recovery (STAR) Ex1t Routine of the
System Error Task . « « ¢ ¢ ¢ o ¢ o o o o o o « e e o o o o o o o 160
Diagram 4.0 Contents Supervision Visual Table of Contents . . . . .168
Diagram 4.1 Overview of Contents Supervision . . . . . . . . . . . .169
Diagram 4.2 (Steps 1-4) LINK Routine . . . . o ¢« o« « « « « « « « « <170
Diagram 4.2 (Steps 5-7) LINK Routine . . . . « ¢ ¢ ¢ o o o« o « o« « 2172
Diagram 4.3 Routing to Searching Routines . . . . . . . . . . . . .174
Diagram 4.4 IEAVVMSR: Searching the LPA Directory . . . . . . . . .176
Diagram 4.5 BLDL/Program Fetch Interface . . . . . . . . . .« . . . .178
Diagram 4.6 SYNCH Routine . . . ¢ o o o o o o o o o « o« o« « « o « 2180
Diagram 4.7 LOAD ROUtINE . ¢ « o o o « o o o o« o « « o « « o « « « 2182
Diagram 4.8 XCTL Routine . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o « o o« o « « 2184
Diagram 4.9 DELETE Routine . . . o ¢ ¢ ¢ o 4 o o o « o« « « « « « « 2186
Diagram 4.10 IDENTIFY ROUtine . . . o + ¢ 2 2 « o« « o « « o« « o« « « -188
Diagram 4.11 Overlay Supervisor e e e o o o o e o e o s e ¢« o « o <190
Diagram 4.12 (Steps 1-7) Program Fetch . . . ¢« ¢« ¢ ¢ ¢ ¢« o o o o« o« 2192
Diagram 4.12 (Steps 8-15) Program Fetch . . . . . . . . . . e « o <196

Xxv



Diagram 5.0 Paging Supervisor Visual Table of Contents . . . . . .

Diagram 5.1 Missing Page Interruption Processing . . . . . . .

Diagram 5.2 Queued (Delayed) Request Processing - Paging Task .« .

Diagram 5.3 Page I/0 Interruption Processing . . « « « « o « o« o« &

Diagram 5.4 Page SVC Interruption Processing . « « « « ¢ ¢ o« « « «

Diagram 5.5 Branch Entry Page ProcCesSing . « « o« o o o« o« o o« o« o &
5.6

Diagram (Steps 1-5) Real Storage Allocation Routine
(Allocating a Page Frame) . « « « o o o o o o o o o o o o o o o o @
Diagram 5.6 (Steps 6-11B) Real Storage Allocation Routine
(Allocating a Page Fram€) . « « o« o o o o o o o o o o o o o o o o o
Diagram 5.6 (Steps 11C-15) Real Storage Allocation Routine
(Allocating a Page Frame) . o « o o o o o o o o « o o o o o o o o o
Diagram 5.7 (Steps 1-3) Real Storage Reclamation Subroutine
(Reclaiming @ Page Frame€) . o o ¢ o o o o o o o o o o o o o o o o« «
Diagram 5.7 (Steps 4-5) Real Storage Reclamation Subroutine
(Reclaiming a Page Frame) . . . . . . . « o o « o o e o o o o
Diagram 5.8 SQA/LSQA Allocation Routlne (Allocatlng a Page Frame
for the SQA Or @an LSQA) .« ¢ o« o o o o o o a o a o s o o a o o o« o «
Diagram 5.9 Reserve Replenish Queue Processor . . . . « « « « « &
Diagram 5.10 V=R Allocation Routine (Allocating Page Frames for a
V=R Region) . . . o« . . e e e e e o o o o .« .
Diagram 5.11 V=R Release Routlne (Allocatlng an Intercepted Page to
Q@ VER REgion) . o o v ¢ ¢ ¢« o o o o o o o o a o o a o a o a o« o o
Diagram 5.12 V=R Region Free Routine (Freeing a V=R Region) . . . .
Diagram 5.13 V=R Flush Routine (Attempting to Get Needed V=R Page
FramesS) . ¢ o o o« o o o o o o o o o o o o o o o o o o o o o o o o =
Diagram 5.14 Move Page Routine . . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ e« ¢« o o &
Diagram 5.15 (Steps 1-3) Page Replacement Routine . . . . . . . . .
Diagram 5.15 (Steps 4-5) Page Replacement Routine . . . . . . . . .
Diagram 5.16 Page Replacement - Allocation Scheduling and Root Exit
Processing . e« o o o o o o e o @ o e e e s e e o e e o e o o
Diagram 5.17 PFTE Enqueue Routine . « « ¢ ¢ ¢ ¢ ¢ ¢ o ¢ ¢ ¢ o o o
Diagram 5.18 PFTE Dequeue Routine . . . . . . . . . e o o o o @
Diagram 5.19 Task Disaklement Algorithm and Threshold Checking o« .
Diagram 5.20 Page Service Interface Routine . . . . « ¢ ¢ « « o« « &
Diagram 5.21 (Steps 1-2) FIX/LOAD Subroutine . . . .
Diagram 5.21 (Steps 3-5) FIX/LOAD Subroutine . . . .
Diagram 5.21 (Steps 6-10) FIX/LOAD Sukroutine . . . .
Diagram 5.21 (Steps 11-12) FIX/LOAD Subroutine
Diagram 5.21 (Steps 13-17) FIX/LOAD Sukroutine
Diagram 5.21 (Step 18) FIX/LOAD Subroutine . .
Diagram 5.21 (Steps 19-21) FIX/LOAD Sukroutine
Diagram 5.22 (Steps 1-6) FREE Subroutine . . .
Diagram 5.22 (Steps 7-9) FREE Subroutine . . .
Diagram 5.22 (Steps 10-12) FREE Subroutine . .
Diagram 5.23 Fast Fix Routine . . . « o . e e e o o e
Diagram 5.24 FIX/LOAD Asynchronous Completlon Routine . .
Diagram 5.25 Delay Post Queue Handler . . . « . ¢« « « o
Diagram 5.26 FOE Merge Routine . . ¢« ¢« ¢ ¢ o o o o o o =
Diagram 5.27 Find Page Routine . . . . e e o o s o & o o @
Diagram 5.28 Page I/0 Post and Task Post Queue Processor . .« .
Diagram 5.29 Page I/0 Post - Page-out, Page-in, and Not1f1cat10n
Subroutines . . . . . . . . . o o . e o o o s o s s o o @
Diagram 5.30 Release Routine (User SVC) (Releasing Real and
External Page Storage) . . « ¢ o ¢ o ¢ o o . e o o e o o o o o o
Diagram 5.31 Release Routine (Supervisor Branch) (Releasing Real
and External Page Storage) . . . . . . o e e e e
Diagram 5.32 (Steps 1-6) Release Routlne (Eranch) (Relea51ng Real
and External Page StOrage) .« « « o o o o o o o o o o o o o o o o o
Diagram 5.32 (Steps 7-15) Release Routine (Branch) (Releasing Real
and External Page StOrage) . « ¢ « o o o o o o o o o o o o o o o o
Diagram 5.33 Release - Subroutines for Searching PCBs and Freeing
Real Storage . « ¢ o ¢ ¢ ¢ ¢ o o o o o o o o o o o o @
Diagram 5.34 Create Page Table Routine .
Diagram 5.35 Destroy Page Table Routine .
Diagram 5.36 Swap Control Routine . . . .
Diagram 5.37 Swap-in Set-up Subroutine .

xvi

.207
.210
.211
.212
. 215
.217

.218
.220
222
.224
.226

.228
.230

. 234

.236
.238

. 240
242
. 244
.246

.248
. 250
.252
. 254
. 256
.258
. 260
.262
. 264
.266
.268
.270
. 274
.276
.278
. 280
.282
. 284
.286
. 288
.290

.292
.294
.296
. 298
. 300
.302
.304
.306

.308
.310



Diagram 5.38 (Steps 1-7) Swap-in Completion Routines for Stages 1,
3, and 4 . . . . e e e o e & e s e e o e o e o e o o o o o o

Diagram 5.38 (Steps 8-10) Swap-in Completion Routines for Stages 1,

3, @and 4 . . i i i i e e e e 4 e e e e e e e e s e e e e e e e e
Diagram 5.39 (Steps 1-3B) Swap-in Completion Subroutine . . . . .
Diagram 5.39 (Steps 3C-5) Swap-in Comgleticn Subroutine . . . . .
Diagram 5.39 (Steps 6-7) Swap-in Completion Subroutine . . . . .
Diagram 5.40 (Steps 1-6) Swap-out Control Sukroutine . . . . . .
Diagram 5.40 (Steps 7-12) Swap-out Control Subroutine . . . . . .
Diagram 5.41 Swap-out Completion Routine . . . . . . .
Diagram 5.42 (Steps 1-5) Swap-out - CMPLOUT Subroutlne (Dec1d1ng
Which Pages Are To Be Swaprped Out) . . « « « « « . . .« . .
Diagram 5.42 (Steps 5-6) Swap-out - CMPLOUT Subroutlne (Dec1d1ng
Which Pages Are To Be Swapped Out) . . . ¢ ¢ ¢ o ¢ ¢ o o o o o «
Diagram 5.43 (Steps 1-3) Swap-out - External Address Assignment
Subroutines . . . e e o o o o o e e s = e e = e e e e o s = o e
Diagram 5.43 (steps 4-5) sSwap-out - External Address Assignment
Subroutines . . ¢« ¢ ¢ ¢ ¢ 4t i et e e e e e o o o o o o o o o
Diagram 5.44 (Steps 1-6) Page I/0 SUPErvViSOr . « « « o « o o o =
Diagram 5.44 (Steps 7-12) Page I/0 Supervisor . . . . . . . . .
Diagram 5.45 (Steps 1-7) Page I/0 Supervisor - Subroutines for
Building and Queuing Channel Programs . . « o « « o o o o « o o =
Diagram 5.45 (Steps 8-13) Page I/0 Supervisor - Sukroutines for
Building and Queuing Channel Programs . . « « « « « o « = . .
Diagram 5.45 (Steps 14-20) Page I/0 Sugervisor - Subroutlnes for
Building and Queuing Channel Programs . « . « « o « o o o « « o =
Diagram 5.46 Program Check Interruption Extension . . . . . . . .
Diagram 5.47 Real to Virtual Address Translaticn Routine . . . .
Diagram 5.48 Move PCB Routine . . . . « «. . . .
Diagram 5.49 Build PCB Routine . . . . . . . .
Diagram 5.50 Relate PCB Routine . . . . . . . .
Diagram 5.51 Release Queue Suppression Routine
Diagram 5.52 Moves/Build/Relate PCB - Subroutines for Queuing and

Dequeuing PCBS . « ¢ ¢ o « o « « = e 4 e o e & s o o s = e o
Diagram 5.53 Queue Scanner (Paging Task) e e o s o e o o e o o
Diagram 5.54 Paging Supervisor Error Recorder . . . .« .

Diagram 5.55 Paging Supervisor Appendages (Channel End Abnormal

End) . e e o o o o s o e o e o e s s o e o o o e e o s o o @

Diagram 5.56 Paging Supervisor Appendages - Subroutines for Freeing

Resources and Handling EXYOYS . « « o o o o o o o o o o« o o o o o
Diagram 5.57 Termination Interface and Page Hook Routines .
Diagram 5.58 FIX Quiesce and Purge Routines . . . . . .« . . . « .
Diagram 5.59 (Steps 1-5) FIX Restore Routine . . . . . . . . . .
Diagram 5.59 (Steps 6-8) FIX Restore Routine . . « « ¢« « « o« « &
Diagram 5.60 (Steps 1-5) Subroutines for Purging PCBsS . . . . . .
Diagram 5.60 (Steps 6-7) Subroutines for Purging PCBs . .
Diagram 5.60 (Steps 8-11) Subroutines for Purging PCBs .
Diagram 5.61 Swap SVC Interface Routine . . . . . . . . .

Diagram 5.62 Migration Routine . . . . . . . . .
Diagram 5.63 (Steps 1-3) Auxiliary Storage Manager (Handllng
External Page Storage) . . . . . . . . .- . o« o .
Diagram 5.63 (Steps 4-7) Aux111ary Storage Manager (Handllng
External Page Storage) . e e e o o o e .« .
Diagram 5.63 (Steps 8-11) Aux111ary Storage Manager (Handllng
External Page Storage) . . . . . . . . < . . e o e e s o

Diagram 6.0 Virtual Storage Supervision Vlsual Table of Contents

Diagram 6.1 Overview of GETMAIN and FREEMAIN . . . . «. « o« o o« o«
Diagram 6.2 (Steps 1-5) Overview of Allocating Storage . . . . .
Diagram 6.2 (Steps 6-10) Overview of Allocating Storage . . . .
Diagram 6.3 Processing Subpools . . .« ¢ ¢ & ¢ ¢ ¢ ¢ ¢ o o o o .
Diagram 6.4 Allocating Storage for Control BloCKS .« . « o« « o« o«
Diagram 6.5 Creating an SPOE . . <« ¢ « o o o s o « o o o o o o &
Diagram 6.6 Searching FBOES . « ¢ ¢ o o « o o o o o o s a o o =
Diagram 6.7 Searching FQEsS . . . «. « . . e o o o o s e e o o @
Diagram 6.8 Updating FQEs to Allocate Space c e s s o e s o o
Diagram 6.9 Purging Modules . . « +v ¢ o o o o o o 2 o o o o o =
Diagram 6.10 Updating the TCT . . ¢ ¢ ¢ ¢ & ¢« ¢ o o o « s s« « o«
Diagram 6.11 Allocating LSQA Segments . . . « « o o o o « o & .

.314

.316
.318
.320
322
.324
. 326
.328

.330
.332
. 334

.336
.338
. 340

. 342
. 344

.346
.3u48
.350
.352
.354
.356
.358

.360
.362
.364

.366

.368
.370
.372
.374
.376
.378
.380
.382
. 384
.386

.388
-390

.392
L6411
412
.41y
.416
.418
. 420
.422
L0424
.426
.428
.430
.432
.43y

xvii



Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram

xviii

6.12
6.13
6.14
6.14
6.15
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30

R .

8.18

Initjalizing LSQA Quickcell Areas . .
Allocating a Quickcell . . . . . . . . .
(Steps 1-5) Allocating a Region . . .

(Steps 6-10) Allocating a Region . . .

(Steps 1-4) Allocating a Specific Reglon
(Steps 5-9) Allocating a Specific Region
Allocating a Specific V=R Region . . .
Allocating a Nonspecific V=V Regicn .
Allocating a Nonspecific V=R Region .
Unsuccessful Virtual Regicn Allccation
Ailocating a SWA Segment . . . . . . .
Allocating a SWA Page . . o« « o o o o &
Allocating UK Oor More . . « « « o« o « « &
Monitoring Batch Processing Storage . .
Mcnitoring TSO Storage . . . ¢« « « « « .
Out-of-Storage Processing . . . . . .
Error Processing for GETMAIN/FREEMAIN
Overview of Releasing Storage . . . .
Freeing a Subpool . . . . . . ¢« « o« &
Freeing Storage Within a Region . . .
Freeing More than 4K . . . ¢« « « « « .
Freeing Storage in the SQA or an
Freeing Space for an LSQA . . . . .
Freeing Space for a Region . .
Locating an FQE to Free Srace
Updating an FQE to Free Space
Freeing 4K Blocks . . . . . .
Freeing a Quickcell . . . . .
Freeing a SWA Segment . . . .

s & o s o s s o e
. .
.
.
.

[
2]
©O
>

Freeing a SWA PAage€ .« « o« « o o « o o o o «
Monitoring the Release of External Pages .
Timer Supervision Visual Takle of Contents

Overview of Timer Supervision . . . . .
TIME Routine . . . . ¢« ¢ « o ¢ ¢ o« o o &
STIMER Routine . . ¢ ¢ ¢« o ¢ ¢ ¢ o « o« » .
TTIMER Routine . . . . . o . « o e e - B

(Steps 1-6) Timer Second—Level Interruptlon Handler
(Steps 7-8) Timer Second-Level Interruption Handler
(Step 9) Timer Second-Level Interruption Handler . .
Timer Enqueue Routine . . . . ¢ . ¢ o & ¢ & ¢ o o &
Timer Dequeue Routine . . . ¢ o« ¢ o o o o o « o o &
Termination Visual Takle of Contents . . . . . . . .
Overview of Termination . . . . . ¢ ¢ ¢ & ¢ & & ¢ .
Overview of EOT Routines . . « o & o« o ¢ o« o o o o &
(Steps 1-5E) EOT Mainline Processing . . « . « « . .
(Steps 5F-9) EOT Mainline Processing . . . « . . . .
Erase TCB Subroutine . . . . ¢ ¢ @ o« o ¢ o o « « o« &
(Steps 1-8) Dequeue TCB Subroutine . . . .
(Steps 9-13) Dequeue TCB Subroutine . . .
Purge TAXES Subroutine . . . . . . . . . .
Purge Timer Subroutine . . . . . . . . . .
Release Loaded Programs Subroutine .
Release Storage Subroutine . . . . .
Overview of the ABTERM Routines . .

ABRTERM Prologue . . e o o o o o o o

(Steps 1-8A) Mainline ABTERM Processing .
(Steps 8B-9D) Mainline ABTERM Processing .

(Steps 9E-9L) Mainline ABTERM Processing
Overview of the ABEND Routine . . . . .
(Steps 1-9) ABEND Initialization Phase .
(Steps 10-13) ABEND Initialization Phase
(Steps 1-10) ABEND Interface with ASIR .
(Steps 11-14) ABEND Interface with ASIR .
(Steps 1-9) ABEND Initial Housekeeping Phase .
(Steps 10-16) ABEND Initial Housekeeping Phase
(Steps 17-24) ABEND Initial Housekeeping Phase
Mainline ABEND ProcCesSsing . « o« « « o « o« « o
ABEND Open Phase .« o « « ¢ o ¢ o o o o o o o &

436
. 438
. 440
.442
.4uy
. 446
. 4u7
. 448
. 450
.452
- 454
.456
.u58
460
.462
.46l
. 466
.468
.470
472
474
.476
.478
.480
.482
.u8u
.486
.u488
. 490
491
. 492
.500
.501
.502
.504
.506
.508
.510
.512
. 514
.516
.525
.526
. 527
.528
.530
.532
. 534
.536
.538
. 540
.542
. 544
. 546
.548
.550
552
-554
. 556
.558
.560
.562
.564
.566
.568
.570
.572
.574



Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram

CHARTS

8.19
8.19
8.20
8.20
8.20
8.21
8.21
8.22
8.23
8.23
8.24
8.25
8.26
8.26
8.27
8.27
8.27
8.28
8.29
8.30
8.31
8.32
8.33
8.34
8.35
8.36
8.37
8.38
8.39
8.40
8.41
8.42
8.43
8.43
8.u3
8.44
8.44
8.45
8.46
8.U46
8.47

Chart 3-1.

Chart 3-
Chart 3-

2.
3.

Chart 5-1.

Chart 8

-1.
Chart 8-

2.

(Steps 1-5) ABEND ABDUMP Phase . . . . . . .
(Steps 6-11) ABEND ABDUMP Phase . . . .
(Steps 1-9) ABEND Close Phase . . . . .
(Steps 10-19) ABEND Close Phase . . . .
(Steps 20-26) ABEND Close Phase . « e e e
(Steps 1-7) ABEND Final chsekeeplng Phase
(Steps 8-14) ABEND Final Housekeeping Phase
ABEND Must-Complete Phase . . . . . . . . .
(Steps 1-8) ABEND Critical Error Phase . . .
(Steps 9-16) ABEND Critical Error Phase . .
ABEND Recursion Phase . . . « s e e o e
Overview of the SVCDUMP and ABDUMP Routlnes
(Steps 1-6) SVCDUMP Routine . . . . . . .
(Steps 7-12) SVCDUMP Routine . . . . . . .
(Steps 1-7) ABDUMP Mainline Processing . .
(Steps 8-12) ABDUMP Mainline Processing
(Steps 13-23) ABDUMP Mainline Processing
ABDUMP - Formatting the Header and PSW .
ABDUMP - Formatting Contrcl Blocks I . .
ABDUMP Formatting Control Blocks II .
ABDUMP Formatting QCBS . « « « «
ABDUMP - Displaying the Save Area .
AEBDUMP Interface Routine . . . . . .
ABDUMP - Displaying the Nucleus . .
ABDUMP - Displaying Registers . .
ABDUMP - Formatting Trace Data . . . . .
ABDUMP - Displaying Subpools . . . .
ABDUMP OUTPUT, OUTPUTS5, and PRINT Routlnes .

ABDUMP FORMAT and FORMAT01 Routines . . .
ABDUMP FORMAT20 and FORMAT22 Routines . .
ABDUMP FORMET Routine . . « ¢« ¢ o« o o o« « «

Overview of the STA Services and ASIR Routines

(Steps 1-3) STA Services Routine . . . . . .
(Step 4) STA Services Routine . . . .
(Steps 5-6) STA Services Routine .
(Steps 1-8) ASIR Phase 1 . . . .
(Steps 9-12) ASIR Phase 1 . . .

ASIR Phase 2 . . . . . « . .
(Steps 1-6) ASIR Phase 3 « e .
(Steps 7-14) ASIR Phase 3 . . .
ASIR Phase 4 . . . . . ¢« ¢« ¢ « « .

ENQ/DEQ/RESERVE . ¢ &« « 2 2 o « o« o o o o o @
Exit routine . . . ¢« . ¢ & o o .
Dispatcher . . . . ¢ ¢« ¢ ¢« & . .
Reserve Replenish Queue Processor
REMOVERB Subroutine . . . . . . .
MCQEL Subroutine . . . . . . . .

.576
.578
.580
.582
.584
.586
.588
.592
.596
.598
.600
.603
.604
.606
.608
.610
.612
. 614
.616
.618
.620
.622
-624
.626
.628
.630
.632
.634
. 636
.638
. 640
642
.644
.646
. 648
.650
.652
. 654
.656
.658
.660

.135
.152
. 232
.590
- 594

xix






SECTION 1

Introduction to the Supervisor, “

and Virtual Storage Concepts

WHAT THE SUPERVISOR IS AND DOEScccccccecccccsccscscccscscscssccscsscsscssscsssns
Basic Concepts of Virtual Storage SUpPErvisSiONeccceeccceccccecccceccecces
concept Of Virtual StOrag@..ccceccececcceccccccccescscscssccacscoscacsscscae
Translation of Virtual AQAreSSeS..cccecececcccccccccccccscscccccccccscss
PAgiNgecccecscsccsccccsescscsscscaccossccscssccaccccsscsascssccsscscscscccscsas
Organization of Virtual StOrage..ceccccecccececcccccccccsccccccscscscscccscncccs
Use Of Real StOraAge@.eececccceccccsccesccscscscsccscscsconcscsccccssscscscnccscccsss
Storage ProtectiONeccceccecceccccccecccccccccoccccsccccccsccccacscccccccnne
Interruption Bandlingeeececececececcccccccccccccceccccccacscacccccsccsccccsce
SUPEIViSOY SeIXViCeS.cecceccscesascscesscoscccscsccsascssccscscscscccsscsccssccsas 10
Task SUPEYViSiONececceeccccccecccccccacaccscaccnccccscccccacacncsss 11
contents SUPErViSiON.cccecececscsccccacacscscscscascsassscssssasnas 13
Paging SUPErviSiON.eccceeccecceccccccacsccascsccasascccsasccssssccsacsacs 1l
Virtual Storage SUpPErvisSiON.ccccceccecccscccscccccsasccccscscscsccsccas 15
Timer SUPEerViSiONeeccccececcccccccccecccascccacccncsccssscsccscccnsccs 15
Task Termination..cccccececcccccecccccccscscecscccccscacacsccccccce 16
Special FeatUreS.cceccecesccccsceccscacscsccsccacscsccsccscccsccanscscacaccccce 16
Authorized Program Facility.ececececececceccceccccccccccccccccacaceacs 16
Automatic Priority GrOUFiNng.ececcececcccecccccsscescscccscsccncccncncncs 16
Shared Direct Access Storage DevViCe.cccecececceccecceccccccccccccccs 16
System Management FacilitieS.ceccecececcccececccccccncncccccccnscnnaes 16
Time Sharing OptiON.cccceccceccescececcccscsccccscccccccacccaccccsce 16
Time SliCingececccceccccccscccsscsscscsscssscscsccscacsccscnssscscsscsccsscsscacs 17
Tracing FacilitieS..ceceececececeececcecoccccccacccccccncccncncase 17
Summary of the Supervisor's ROl€..ccecececceccccccccncnsccccccccccacacncas 17
Method of Operation Diagrams for Section l...cccececececccccccacncees 19

LoooUwwww

Section 1: Introduction to the Supervisor and Virtual Storage Concepts 1






C

C

The VS2 supervisor is one part of the
control program of the IBM 0S/VS2 Operating
System; it controls the basic computing
system and programming resources needed to
perform several data processing tasks con-
currently. The supervisor manages real
(main) storage and auxiliary storage so
that problem programs can occupy and use an
address range greater than the address
range of real storage. This address space
is called virtual storage.

Job steps, designated by the job manage-
ment routines as tasks, are carried out
under the control of the supervisor, which
allocates needed resources on the basis of
priorities. The supervisor assigns the
resources to perform tasks, keeps track of
all such assignments, and ensures that the
resources are freed upon task completion.
If one resource is required by several
tasks, the supervisor queues requests for
the resource and controls use of the
resource. By handling competing demands
for resources and by controlling the execu-
tion of programs, the supervisor ensures
more efficient use of the central proces-
sing unit, real storage, auxiliary storage,
system and user programs, and other system
resources.

Besides the supervisor, the control pro-
gram consists of the job management, input/
output supervision, data management, and
recovery management components. The entire
control program is introduced in the VS2
Planning and Use Guide.

BASIC CONCEPTS OF VIRTUAL STORAGE

SUPERVISION

A virtual storage system introduces a
nunber of new machine and programming con-
cepts. Among these are:

e The concept of virtual storage as
opposed to real storage.

e The concept of translating addresses
from virtual addresses to real
addresses.

e The concept of paging, which is the
process of moving fixed-size pages of
code and data into and out of real
storage.

These concepts are described in the follow-
ing subsections.

WHAT THE SUPERVISOR IS AND DOES

CONCEPT OF VIRTUAL STORAGE

The VS2 supervisor manages virtual
storage so that users can effectively use
virtual address space as though it were
real storage. The virtual storage address
space is divided into blocks of 4,096 kytes
(4K) called pages. These pages may reside
in external page storage (the portion of
auxiliary storage used to store pages), in
real storage, or both. The pages are
transferred into and out of real storage as
needed by the system or the users' gro-
grams. This process is called paging.

When a program refers to a virtual
address, that virtual address is translated
ky relocation hardware into its correspond-
ing real storage address. If the page con-
taining that virtual address is not in real
storage, the CPU generates a page transla-
tion exception (a missing page interrup-
tion). This interruption notifies the
supervisor to kring in the needed page from
external page storage. The process of
kringing a page into real storage is called
a page-in. The entire virtual address
translation and paging process are trans-
parent to the problem program, allowing the
Frogrammer to use the virtual address space
as though it were real storage.

When a page is no longer needed in real
storage, it is moved to external page
storage to make real storage available for
another page. This process is called a
page-out. The page is moved to external
page storage only if it has been changed;
otherwise, it is merely overlaid when a new
page is read into storage.

TRANSLATION OF VIRTUAL ADDRESSES

As the CPU executes instructions, the
system uses dynamic address translation, a
System/370 hardware feature, to translate
each virtual address into its real storage
equivalent. If the virtual address does
not have a real storage equivalent (that
is, if the page containing the address is
not in real storage), the CPU generates an
interruption notifying the supervisor that
a page must be brought from external page
storage into real storage. Translation
occurs only when virtual storage is
addressed by the CPU. The entire process
is automatic. Storage references by chan-
nels for I/0 operations are not subject to
the translation process.

Section 1: Introduction to the Supervisor and Virtual Storage Concepts 3



To facilitate address translation, vir-
tual storage is logically divided in 64K
blocks called segments. There are 256 such
segments. Each segment is divided into
sixteen UK blocks called pages. This
organization enables the dynamic address
translation feature to use a two-level
table-lookup process to determine the real
storage address.

The first-level table used for address
translation is the segment table. It con-
tains an entry for each 64K segment of vir-
tual storage. Each segment table entry
points to a page table, which is the
second-level table used for address trans-
lation. Each page table contains 16
entries, one for each 4K page in the seg-
ment. The page takle entry contains the
address of the page in real storage (the
first 12 bits of the final translated
address). Because each page must reside on
a 4K boundary, the last 12 bits of the page
address are always zero.

VIRTUAL ADDRESS

Segment Page Displacement
Number Number  Within Page
[ ent—" Ve Ve N
0 0| D E ‘ C —| 2 4 6
0 78 I151£}1920 I 31
r |
| -
Segment Table |
Origin Register @ + @

w DETERMINE SEGMENT |
TABLE ENTRY ADDRESS
Real Storage
Address of

Segment Table

Multiply the segment
number by 4 to account
for width of the segment
table:

4 x DE = 378 (hex)
Add the result to the
segment table origin
address to obtain the
segment table entry for
this virtual address .

Figure 1-1 shows the translation of a
sample virtual address. The virtual
address is divided into three parts: the
segment number, the page number, and the
in-page displacement (number of bytes the
address is displaced from the beginning of
the rage). The dynamic address translation
feature translates each virtual address as
the CPU executes instructions. To begin
the process, the translation feature
cbtains the origin of the segment table
(xxx000 in the example) from a control
register called the segment table origin
register (step 1 in Figure 1-1). This con-
trol register is initialized by the nucleus
initialization program, which builds the
segment table. The translation feature
then uses the segment number (X'DE' in the
examrle) of the virtual address to deter-
mine the entry in the segment table for the
segment in which that virtual address
resides.

The segment table entry (at location
xxx378 in the example) points to a page

CREATE REAL STORAGE
ADDRESS

DETERMINE PAGE TABLE >
ENTRY ADDRESS

Multiply the page number
by 2 to account for width
of the page table:

2 x C =18 (hex)
Add the result to the page
table origin address to
obtain the address of the
page table entry for this
virtual address.

Append the 12-bit
displacement of the
virtual address to the first

address to complete the
address translation.

|
!
|
|
|
|
|
|
|
12 bits of the real storage |
t
|
|
|
|
|
|

<xx000 Segment Table _ 00FBOO Page Table r _
Page Table Origin
xxx378 OOFB18 : ] ] Y
00FB0O — 01E | — 00 | O1E 246 |
L
0 78 31 0 111215 0 78 1920 31
Address of page table for First 12 bits are the real
this virtual address storage address of the REAL STORAGE ADDRESS
\_/ page containing the

Legend
— — —» Indicates use of portions of the virtual address.

=) |ndicates the flow of address translation.

Figure 1-1.

virtual address being
translated

Translation of a virtual address into a real address.

<



table (at location 00FB00 in the example).
The page table contains 16 entries, one for
each page in the segment. The translation
feature uses the page numkber (X'C' in the
example) of the virtual address to deter-
mine which page in the segment contains the
virtual address (step 2). This number is
used to calculate the address of the page
table entry for that page (X'00FB18' in the
example). The page table entry contains
the real storage address for that page (the
first 12 bits of the desired real storage
address). As mentioned earlier, a page,
when in real storage, must reside on a 4K
boundary. Thus, the last 12 bits of the
real storage address for a page are zeros.

The in-page displacement portion of the
virtual address (X'246' in the example) is
appended to the 12-bit address in the page
table entry to obtain the desired real
storage address (step 3). The CPU then
uses the real storage address as it
executes instructions.

If the page table entry is flagged inva-
1lid, the CPU generates a page translation
exception. The page translation exception
is a program interruption (code X'11') and
indicates that the page containing the vir-
tual address is not in real storage. This
interruption (also called a missing page
interruption) indicates that the page must
be transferred from external page storage
to real storage.

If the segment takle entry is marked
invalid, the CPU generates a segment trans-
lation exception. This exception is a pro-
gram interruption (code X'10') and indi-
cates that: (1) no page table has been
created for the segment, or (2) the virtual
address being translated is protected from
the task referencing it (see “Storage Pro-
tection" later in this section).

If, during the translation process, the
dynamic address translation feature cannot
locate the segment table, the segment table
entry, or the page table, the CPU generates
a translation specification error. The
translation specification error is a pro-
gram interruption (code X'12'). It indi-
cates that a control program or hardware
failure has prevented translation of the
virtual address. See Diagram 1.1 to see
how missing page page interruptions, seg-
ment translation errors, and translation
specification errors are processed.

PAGING

In the VS2 system, a program normally
executes with only some of its pages in

real storage. The specific pages needed at
any given time depend upon the structure
and addressing pattern of the program.

When a page is needed, it is brought into
real storage. When no longer needed, it is
released or transferred to external page
storage. As mentioned earlier, this
transfer of pages between real storage and
external storage is called paging.

As an instruction is executed, the vir-
tual addresses are translated as exrlained
in the rreceding suksection, "Translation
of Virtual Addresses®. If a virtual
address that is keing translated resides in
a page not in real storage, the CPU
generates a missing page interruption.

This interruption notifies the paging
supervisor, a set of paging routines in the
VS2 surervisor, that a page must be brought
into real storage (paged in).

When real storage is needed for a page
being paged in, the real storage is made
availakle Ly the paging supervisor. The
paging supervisor selects what it deter-
nines to be the least needed page and makes
the real storage it occuries availakle for
the rage-in. If the selected page in real
storage was modified during execution, it
is actually written out to external page
storage (paged out). (The hardware main-
tains a bit in the storage key that indi-
cates whether the contents of a page frame
have been changed.) If the page was not
rodified and an exact copy of the page
already exists on external page storage,
the rpage is not written out; it is merely
overlaid by the incoming page.

The paging sugervisor maintains three
sets of takles to keep track of all pages.
The first two sets of tables, the segment
takles and the page tables, are used for
dynamic address translation. The paging
supervisor uses a third table, the external
page table, to keep track of all pages on
external page storage. For every fgage
table entry there is a corresponding
external page table entry which contains
the external page storage address at which
that page is recorded con a paging device.

The VS2 supervisor does not maintain an
image of virtual storage. The pages of
virtual storage are actually in real
storage, on external storage, or both.
They are not stored in ccntiguous locations
or in any sequential order. They are
placed in real storage wherever a page
frame is available; they are stored on
external page storage wherever a page slot
is available. The three sets of taktles,
which are organized according to page
addresses, record the physical location of
each page.

Section 1: Introduction to the Supervisor and Virtual Storage Concepts 5



The paging supervisor maintains a list of available page

frames that are least likely to be referenced. When a Entry for
page frame is needed so that a page can be brought into
real storage, the paging supervisor uses one of these Page 1
available frames. When the number of available frames
falls below a value specified during nucleus initialization, Page 2
the paging routines select the page frames containing the P *
N age 3
least-used pages and make them available for use. The
paging routines use the page replacement algorithm to select Poge 4 .
the least-used pages, and the process is based on the 8
settings of the change and reference bits in the storage keys P *
s N oge 5
associated with each page frame.
The selection of page frames continues until the Page 6
predetermined number of available page frame is reached.
During the process, page frames that contain unreferenced Page 7
pages are selected before page frames that contain
referenced pages. Page frames that contain unchanged Page 8 *

pages are selected before page frames that contain changed
pages.

If the poge in a selected frame has been changed, a copy of the
changed page is actually moved to external page storage before the
page frame is made available. If the page in a selected page frame
has not been changed, a copy is not moved to external page storage,
and no page-out is required.

In this illustration, the poge frames occupied by Page 8 and Page
4 have been made available. The page table entries for these pages
have been marked invalid. Since Page 8 was not changed, there is
no need to move it to external page storage and the external storage
address remains the same. Page 4, however, has been changed.
Therefore, a copy of it is paged out to an available external page
storage slot. The external page table entry is updated for Page 4 and
the external storage slot formerly occupied by Page 4 (called "Old
Page 4" in this illustration) is now available for use when another
page-out is necessary. Note that pages are not necessarily transferred
to external page storage sequentially.

PAGE TABLE EXTERNAL PAGE TABLE

Real Storage Address External Storage Address

Real Storage Address External Storage Address

External Storage Address

Real Storage Address New External Storage Address

External Storage Address

Real Storage Address External Storage Address

Real Storage Address External Storage Address

Real Storage Address External Storage Address

*Marked invalid

EXTERNAL PAGE STORAGE

REAL STORAGE PAGE FRAMES
Page 2 Page 7 od,
(U::ls:nsed) Page 6
Page 1 (ci:g:;:d) Page 4

After Page-Out

Figure 1-2.

Figures 1-2 and 1-3 illustrate the pag-
ing process using a virtual storage of
eight pages and a real storage of 24K bytes
(a real storage large enough for six
rages). Real storage is logically divided
into 4K blocks called page frames, and each
page frame is on a 4K boundary. In the
example, real storage consists of six page
frames. For purposes of this illustration,
the pages are numbered. In the VS2 system,
the pages are identified by their page
addresses.

ORGANIZATION OF VIRTUAIL STORAGE

In its simplest form, virtual storage
consists of nothing kut address space --
the total 16,277,216 addressable bytes in
the system. More concretely, virtual
storage consists of pages fixed in real
storage, pages stored on the paging
devices, and various parameters and control
information in the supervisor.

It is the parameters and control infor-
mation that give form and organization to
what otherwise seems to be an amorphous
thing called virtual storage.

Explanation of page-out operatioms.

The system must reserve certain portions
of the total address space for specific
purposes (for example, space must be
reserved for the system nucleus, for the
fixed link pack area modules and BIDL
entries, and for a minimum system gqueue
area in which to build system control
blocks).

The supervisor must also know how much
address space can be used for other pur-
Foses, such as how much space can be allo-
cated to nonpageable (V=R) tasks and how
much to pageable (V=V) tasks.

And, while the system is running, the
supervisor must keep track of how much
storage is being used for the different
Furrposes, and it must ensure that the
limits on the different areas are not
exceeded.

For these reasons, the supervisor
divides the virtual address space into dis-
tinct sections. Each section is reserved
for a particular purpose, and whenever



When an executing program refers to a virtual

address that is not in real storage, the virtual Entry for
address cannot be translated to a real address, and Page 1
amissing page interruption is generated. Control
is given to the paging supervisor. The paging Page 2
supervisor first attempts to reclaim the page. If
the needed page occupies a page frame that has Page 3
been made available for a page=-in but that page
frame has not yet been re-used, the page is Page 4 *
reclaimed and a page-in is avoided. The paging
supervisor merely updates the page table entry for Page 5 *
the reclaimed page, and removes the page frame
from the available list (called the available page Page 6
queue). Page 4, for example, could be reclaimed.
Page 7

In this illustration, the executing program has

referred to a virtual address in Page 3. Since Page Page 8 *

3 was not in real storage (see Figure 1-2), a copy
of that page was paged into the page frame

PAGE TABLE EXTERNAL PAGE TABLE

Real Storage Address External Storage Address

Real Storage Address External Storage Address

New Real Storage Address External Storage Address

Real Storage Address External Storage Address

External Storage Address

Real Storage Address External Storage Address

Real Storage Address External Storage Address

External Storage Address

*Marked invalid

formerly occupied by Page 8. The page table

entry for Page 3 was updated so that it now contains
the real storage address of the page frame now
occupied by Page 3. The needed page is now in
real storage and when the interrupted program
regains control, it can continue executing.

The first time a page is referred to, a page=-in
is not required. There is no associated page on
external page storage. The paging supervisor
merely allocates an available page and optionally,
clears it.

REAL STORAGE PAGE FRAMES

EXTERNAL PAGE STORAGE

Page 2 Page 7
Page 3 Page 6

Page 2 Page 7
Page 1 Page 4 e a9e

Page 3 Page 1 Page 5

j
u(
HE
HH(E

Page 4 Page 8 Page 6

N

After Page-In

storage is requested for that purpose, the
storage is allocated from the section of
virtual address space reserved for that
purpose. The size of each section is esta-
blished during nucleus initialization and
is based on parameters received by the sys-
tem at that time.

The space for one section may exist tot-
ally in real storage (as it does for the
system nucleus), or it may be a combination
of real storage space and pages on paging
devices (as it does for a pageable task).
Thus, some sections are fixed in real
storage and other sections are paged.

Figure 1-4 illustrates the organization
of virtual storage. Keep in mind that the
illustration depicts the way in which vir-
tual storage looks when all the pages are
laid out sequentially. The VS2 supervisor
keeps no such image. To construct this
image after the system is in operation, you
would have to sort through, combine, and
order the pages in real storage and extern-
al storage using the page takles and other
control information as a guide.

The SQA (system queue area) is reserved
for non-job-oriented and non-job-step-

‘ e Figure 1-3. Explanation of page-in operations.

oriented control blocks and tables (such as
the segment takles) that are maintained by
the control program. It is reserved in
segment multiples. As long as an SQA page
is allocated for use, it is nonpageakle and
is usually fixed in the high end of real
storage. The number of SQA pages fixed in
real storage increases and decreases to
meet the needs of the system.

The pageakle LPA (pageable link pack
area) contains selected reenterable rour-
tines that can be used concurrently ky all
tasks in the system. It is pageable and
the fixed link pack area is an extension of
this area (see below).

The pageakle BLDL table contains the
list of directory entries for the SYS1.
LINKLIB data set. The pageable BLDIL table
can exist only if the user does not specify
a fixed BLDL table.

The master scheduler region is used by
the master scheduler task and the communi-
cations task.

Section 1: Introduction to the Supervisor and Virtual Storage Concepts 7



VIRTUAL STORAGE DYNAMIC AREA

High LSQA for Regi
System Queue Area : QA for Region A
LSQA for Region B
Pageable Link Pack Area LSQA for Region C
(Unassigned)
Pageable BLDL Table*
Master Scheduler Region Region B (V=V)
Master Scheduler LSQA
Dynamic Area Region A (V=V)
(for pageable regions)
(for nonpageable regions) (Unassigned)
Fixed BLDL Table*
Region C (V=R)
Fixed Link Pack Area
System Nucleus
——— V=R Limit
Low *These sections are mutually exclusive.

Figure 1-4. Organization of virtual

storage.

The master scheduler LSQA is the local
system queue area for the master scheduler.
(The local system queue area is explained
below.)

The dynamic area is used for execution
of user and system tasks. The area is
divided into two parts; the part below the
V=R LIMIT is used for nonpageable regions
and the area above the line is used for
pageable regions. Regions for nonpageable
(V=R) tasks are allocated from the lower
part, and regions for rageable (V=V) tasks
are allocated from the upper part.

An LSQA (local system queue area) is
reserved for each initiator, in the high
end of the dynamic area. It is allocated
in segment multiples. Each LSQA is used to
store job-oriented or job-step-oriented
control blocks, including the queues of
control blocks that contain the information
necessary to keep track of the free and
allocated space within the region. The
LSQA also contains the page tables and the
external page tables for the region. Pages
allocated in each LSQA are fixed in real
storage and their number increases and
decreases to meet the needs of the job or
job step.

At system initialization, the user can
set the V=R limit by specifying the size of
the dynamic area to be reserved for non-
pageable (V=R) regions. Proklem programs
that cannot be paged during execution must
occupy V=R regions. These regions are
allocated pages below the V=R limit. The
virtual addresses of these pages have real

storage equivalents. The region is fixed
in real storage at these identical real
storage addresses, thus ensuring that a
missing page interruption never occurs and
that a virtual address in that region is
identical to the real storage address after
translation. Pages for V=V regions are
allocated from the dynamic area abave the
V=R limit.

The fixed BLDL table is a BLDL takle
that the user has specified to be fixed in
real storage. It is nonpageable and the
virtual and real storage addresses are
identical. A system contains either a
fixed BLDL table or a pageable BLDL takle,
kut not koth.

The fixed LPA (fixed link pack area) is
present only if the operator specifies it
at IPL time. It is an extension of the
pageable link pack area and is searched
first (that is, kefore the pageable link
pack area). It is not pageable and its
virtual and real storage addresses are
identical.

The system nucleus contains the control
program routines that must be permanently
fixed in real storage. The nucleus is not
paged and begins at virtual address zero.
Its virtual and real addresses are
identical.

USE_OF REAL STORAGE

Figure 1-5 shows the organization of
real storage. Page frames in the fixed
area contain the system nucleus, the fixed
link pack area, and the fixed BLDL table.
The real storage addresses of the page
frames and the virtual addresses of the
pages are identical. The pages are not
paged out of real storage, the page frames
are not eligible for use by other gages,
and copies of the pages are not kept on
external page storage.

High |Page frames available for: 1
o SQA and LSQA pages (which are fixed
in real storage)
e Pageable link pack area and BLDL table
pages
e Pageable (V=V) regions

Page frames eligible for nonpageable (V=R)
regions (Can be used for pageable items
when all frames are not occupied by
nonpageable tasks)

Real storage available
for paging

VAN

Fixed BLDL Table

Fixed Link Pack Area Permanently fixed

area of real storage

System Nucleus

Low /

— — — V=R Limit

Figure 1-5. Organization of real storage.

<

W



All page frames in the rest of real
storage are eligible for paging. However,
pages allocated for the SQA (system queue
area) or an LSQA (local system gqueue area)
must reside in real storage until they are
no longer needed. Thus, page frames con-
taining SQA or LSQA pages are not eligible
for paging until those pages are freed.
Copies of SQA and LSQA pages are not kept
in external page storage (except LSQA pages
for TSO regionms).

Pages for all pageable programs can use
the page frames in the pageable area.
These pages are paged out of real storage,
the page frames are eligible for use by
other pages, and copies of the pages are
kept in external page storage. The virtual
addresses and the real storage addresses
are probably different.

The V=R limit established for virtual
storage also applies to real storage. If
the user requests a V=R region for a non-
pageable task, the pages for that region
reside in the page frames below the V=R
limit. The pages of the nonpageable pro-
gram occupy the page frames whose addresses
are the same as the virtual addresses of
the pages that they contain. The virtual
and the real addresses are identical. The
Fages are not paged out of real storage,
the page frames are not eligible for use by
other pages until the V=R region is freed,
and copies of the pages are not kept on
external page storage. When page frames
below the V=R limit are not being used for
V=R regions, they are eligible for use by
other pages. However, if a page that does
not belong to a V=R region must be long-
fixed in real storage, the supervisor
attempts to place that page in a page frame
above the V=R limit. In so doing, the
supervisor avoids page-frame allocation
that inhibits allocation of V=R regions.

STORAGE PROTECTION

Storage protection is a feature that
prevents unauthorized access to virtual
storage by all except the intended users.
The larger addressable storage of the VS2
system allows users to start more than 15
regions, and consequently, storage protec-
tion has been extended to cover the addi-
tional number of regions. The VS2 system
still uses the 16 standard protection keys.
It supplements this key protection with a
segment validation process.

Key-0 programs have access to all allo-
cated areas of virtual storage. Non-key-0
programs have read-only access to the
shared areas of the system (for example,
the system nucleus, the SQA segments, and
LSQA segments) and full access to their own
regions.

System programs (such as the supervisor
or data management routines) are assigned
protection key 0. Nonpageable programs are
assigned protection keys 2 through 15.
(Thus the user can run a maximum cf 14 non-
Fageakle programs at any one time.) All
pageable programs are assigned protection
key 1. If a pageakle or nonpageable user
program attempts to reference fetch-
protected or non-key-0 virtual storage
assigned to another nonpageable program,
the system generates a storage protection
interruption. The protection keys prevent
nonpageable rprograms from referencing the
non-key-0 areas of all pageable programs
and other nonpageable prcgrams. They also
protect all pageable programs from all non-
Fageable programs.

Since all pageable programs are assigned
protection key 1, the VS2 system uses a
segment validation process to protect these
programs from each other. Two segment
tables are used: one for all system and
nonpageakle programs and a second for all
non-key-0 pageable programs. Both segment
takles point to the same set of page
tables. Each segment of virtual storage
allocated to a program is represented by a
segment table entry in a segment takle.

All segments allocated to pageable programs
are represented by segment table entries in
the second segment takble.

Whenever a pageakle program is dis-
patched, the dispatcher marks as valid all
segment takle entries for that program's
region. All other segment table entries
for nonshared areas are marked invalid.
Whenever a pageable program attempts to
address virtual storage in a segment whose
segment table entry is marked invalid, the
system generates a segment translation
error during virtual address translation.
The system treats a segment translation
error as though it were a storage protec-
tion check. This process protects pageable
programs from each other.

Nonpageable programs cannot be totally
isolated. Since key-0 areas are not fetch-
protected and since nonpageable programs
use the system segment table, nonpageable
programs can reference key-0 areas in other
regicns, including pageable regions.

INTERRUPTION HANDLING

All supervisor activity begins with an
interruption. In an IBM Systems/370, the
interrurtion is a machine characteristic;
it is the means by which the supervisor
gets control of the CPU to provide
resources for the performance of tasks. An
interrurtion may be planned (specifically
requested in the program currently being
executed by the CPU) or unplanned (caused

Section 1: Introduction to the Supervisor and Virtual Storage Concepts 9



by an event that may be either related or
unrelated to the task currently being
performed).

There are five types of interruptions:
e Supervisor call (SVC) interruption: a

request for a particular supervisor
service.

e Timer/external interrurtion: an atten-
tion signal from the System/370 clock
comparator or CPU timer, the ccnsole
interruption key, or the direct control
feature.

e Input/output interruption: the signal
that an input/output event has
occurrred.

e Program interruption: a signal that a
program has attempted an invalid
action, has met an exception condition
during dynamic address translation, has
executed an SSM (set system mask)
instruction, or is having interruptions
monitored by the dynamic support system
(DSs) .

e Machine-check interruption: the signal
that a machine error has occurred. See
the 0S/VS Recovery Management Support
Logic manual for details.

Overall operation of the supervisor is
shown in Figure 1-6.

The program being executed in the per-
formance of task A has been interrupted,
possibly because it contained a request for
a supervisor service, possibly because an
input/output operation has been completed
for an entirely different task.

The interruption-handling portion of the
supervisor (represented by the top box in
Figure 1-6) analyzes the interruption,
based on control information passed to it
at the time of the interrurtion. Each of
the five interruption types has associated
with it two program status words (PSWs)
called "o0ld" PSW and "new®" PSW. The old
PSW contains the information needed by the
supervisor to analyze the interruption.
The new PSW contains the address of the
aprropriate interruption-handling routine.

When an interruption occurs, the CPU
stores the contents of the current PSW in
the old PSW for that type of interruption,
and loads the new PSW. By loading the new
PSW, the CPU places itself in supervisor
state and passes control to the associated
interruption-handling portion of the super-
visor. The supervisor then passes control
to those parts of the control program that
rperform the services required as a result
of the interruption. For a more detailed
introduction to interruption handling, see
Section 2 and Diagram 1.1.

10

Machine ™ Interruption Handling
loads new
PSW o Analyze the interruption.
o Determine the required control
program action.
o Route control to appropriate
Program Being part of control program.
Executed for Task A
:Any . Performing the Service
interruption

e Supervise use of real storage.

e Establish, alter, or end a task.
P— o Establish linkage to a program in
virtual storage or on auxiliary

storage .

o Allocate or free virtual storage.

o Supervise use of the clock
comparator and the CPU timer.

e Handle console communications.

Supervise input/output operations.

e Provide system environment
recording and/or attempted
recovery.

o Serialize the use of resources.

Program Being
Executed for Task B

Note: Some of these services may
require another service, and
may thus cause the supervisor
cycle to be restarted with
another interruption.

Dispatching

e Process requests for asynchronous
exits.

o Determine which ready task has
the highest priority .

o Route control to a routine that is

Load old to be executed for that task.

PSW

=== Note: The dispatcher may determine
that the interrupted task
should be resumed, or that a
different task should be
dispatched.

Figure 1-6. General flow of the supervisor.

SUPERVISOR SERVICES

The supervisor itself performs many of
the services that are requested through an
interruption (these services are rerre-
sented by the middle box in Figure 1-6).
Services that the supervisor provides may
ke grouped into these general categories:

e Task supervision. The task sugervision
routines create a task in response to a
request to attach a subtask to an
already existing task. The routines
determine in what order tasks are to be
executed. Task supervision routines

<9



C

also perform the exiting procedures that
rrepare for the return of control from a
completed program.

e contents supervision. The contents
supervision routines keep records of
all programs in virtual storage, and
schedule the execution of these pro-
grams for tasks. The Program Fetch
routine brings requested programs into
virtual storage from auxiliary storage.

e Paging supervision. The paging super-
vision routines manage real storage and
external page storage. They ensure
that pages are brought into real
storage when needed.

e Virtual storage supervision. The vir-
tual storage supervision routines
assign virtual storage needed to per-
form job steps and tasks within job
steps.

e Timer supervision. The timer supervi-
sion routines control the use of the
Systen/370 clock comparator and CPU
timer.

e Task termination. The termination rou-
tines perform normal and abnormal ter-
mination of tasks.

Most supervisor services are requested
by issuing a macro instruction. The last
machine instruction of the resulting macro
expansion is an SVC instruction. When
executed, the SVC instruction causes an SVC
interruption. Control passes to the SVC
interruption handlers which, in turn, pass
control to the routine that performs the
requested service. Diagrams 1.1 through
1.3 illustrate SVC processing.

Most SVC routines are executed in a dis-
abled state; that is, they cannot be inter-
rupted by I/0 or external events during
processing. To avoid missing page inter-
rurtions while disabled, these SVC routines
have special prologues (preliminary rou-
tines) to ensure that all pages needed dur-
ing their processing are in real storage
before disabled processing begins. These
SVC prologues use the MODESET service of
task supervision to enable interruptions.
They then reference all needed virtual
addresses. This referencing causes all the
pages in which those virtual addresses
reside to be paged into real storage by
paging supervision. The SVC prologue then
issues a MODESET SVC to disable interxrrup-
tions. The disabled SVC routine can then
process the service request without incur-
ring a missing page interxruption.

After a control program service has been
performed, the supervisor determines which
task is to be performed next. The dis-

ratcher (a task supervision routine repre-
sented by the bottom block in Figure 1-6)
returns control to a processing program or
another supervisor routine. As seen in
Figure 1-6, the program to which control
passes need not be the one that was inter-
rupted. The dispatcher may determine that
as a result of the interruption, task B,
which has a higher priority than task A,
should ke performed next.

Each major category of supervisor pro-
cessing is described more fully in the fol-
lowing subsections.

Task Supervision

Each task to ke performed by the system
is represented by a TCB (task contrcl
klock) . The TCB contains control and sta-
tus information related to the task, and
pointers to system resources assigned to
the task.

When the operating system is generated,
six key TCBs are built into the system.
These TCBs represent the paging task, the
system error task, the dynamic suggort sys-
tem task, the communications task, the
dynamic device reconfiguration task, and
the master scheduler task of job manage-
ment. All other task control blocks are
constructed ky the supervisor ATTACH rou-
tine, at the request of either the control
Frogram or a user program. The master
scheduler can attach initiator/terminator
tasks. Initiator/terminator routines
attach job-step tasks and subtasks. An
entire tree structure of related tasks may
thus be formed.

All TCBs in the system are chained
together, according to disgatching priori-
ty, to form the task queue. The paging TCB
is at the top of the queue, followed in
order Ly the system error TCB, the dynamic
support system TCB, the communications TCB,
and the master scheduler TCB. The dis-
patching priorities of other tasks are
assigned by the supervisor according to the
parameters given in the ATTACH macro
instructions. When several TCBs with the
same priority appear in the TCB queue, they
are arranged on the queue in descending
order in the sequence in which they were
created (that is, the first TCB created at
that priority is the highest, the second
TCB created is the next lower on the queue,
and so on).

Figure 1-7 shows the flow of control
that results from issuance of the ATTACH
macro instruction. This flow is tygical of
the processing that follows most supervisor
macro instructions.

Section 1: Introduction to the Supervisor and Virtual Storage Concegts 11



Program Performing SVC Interruption

Task A Handler
Branch to ATTACH
Routine
svC
Inter- )
—  rption ATTACH Routine
ATTACH Tagk b s
G
Branch to
GETMAIN Routines
—_— I GETMAIN
Routines
Program That
Performs the New
Task B — Branch to
Dispatcher
Dispatcher
Return to
QﬂEL:-1
Load PSW to Program
That Performs Highest-
Priority Ready Task1

Flow of control after the
ATTACH macro instruction is
issued. (Shows typical pro-
cessing for a supervisor macro
instruction.)

Figure 1-7.

The ATTACH routine, like other SVC rou-
tines, is entered as a result of an SVC
interruption. The SVC interruption-
handling routines analyze the interruption,
determine which service is required, and
then branch to the ATTACH routine. The
ATTACH routine obtains virtual storage for
a TCB by branching to the GETMAIN routine.
When the required storage has been allo-
cated, the ATTACH routine regains control.
It initializes certain fields in the TCB
and places it on the task queue.

After the ATTACH routine has initialized
the TCB that represents the new task, it
branches to the dispatcher. The dispatcher
examines the task queue to find the
highest-priority task that is ready to be
performed. This task may or may not be the
one that was being performed at the time
the original SVC interruption occurred.

For example, if task B has been attached as
a subtask of task A, and if B has a higher

12

dispatching priority than A, then task B
will be performed before task A is resumed.

The supervisor controls the order in
which tasks are performed. This control is
accomplished by the dispatcher, working
through the task queue. The task gqueue
serves as a record of the status of every
task in the system. The highest-priority
task represented on the task queue may not
ke the one to ke dispatched; it may be
waiting for some event (through the WAIT
nacro instruction, for example) or for a
resource that has been serialized (thrcugh
the ENQ macro instruction). To be dis-
patched, a task must be the highest-
Friority ready task on the queue (that is,
the highest-priority task that is currently
ready to begin processing).

The time-slicing feature is included in
the system, and the dispatcher contains
code to gperform time-slicing. The dis-
patcher controls time-slicing through the
TSCE (time-slice control element); there is
one TSCE, assembled at system generation,
for each time-slice group.

The user can also identify a single
priority level as an APG (autoratic priori-
ty group) at system generation or system
initialization. However, a time-slicing
grour cannot be identified as an automatic
priority group. The disratcher dispatches
tasks within the automatic priority group
according to a special algorithm that
attempts to provide optimum use of CPU and
I/0 resources by these tasks. For more
information on automatic priority groups,
see "Automatic Priority Grouping®™ under
"Srecial Features" in this section.

Task supervision also provides routines
that prepare for the return of control from
a completed program and perform the actual
return of control. cControl may return to a
mainline program or to a supervisor rou-
tine. The exiting procedures determine the
type of program that has completed its
execution, and perform different clean-up
operations according to the type of
Frogram.

The dispatcher is usually entered to
return control to a program belonging to
the highest-priority ready task. There are
some cases, however, in which the dispatch-
er is not entered to return control: for
instance, when the completed program is a
type-1 SVC routine that has not indicated
the need for a task switch.

For a more detailed introduction to task
supervision, see Section 3.



C

C

Program A TCB

- @ @ Program B

Request Block

LINK Program B
A

Program B
RETURN

®

Request Block

Program A

@ Program A issues
a LINK macro
instruction
specifying
Program B.

@ Contents supervision
routines construct a
new RB to represent
Program B's level of
control.

@When Program B
completes processing,
control passes back to
Program A.

Figure 1-8. Use of the RB queue in passing

control to different programs.

Contents Supervision

Contents supervision is accomplished
through a structure of queues that are very
closely related to the task queue. These
are the request block queues.

Request blocks (RBs) represent levels of
control within a task. Contents supervi-
sion routines construct an RB for the first
level of control in a new task (the first
program to be executed for a task): this
RB and RBs for subsequent levels are
chained on the TCB's RB queue. The
subsequent-level programs are programs that
are called by higher-level programs and
must be executed before the higher-level
programs can ke completed. Figure 1-8
illustrates the process. If program A
issues a LINK macro instruction specifying
program B, contents supervision routines
construct a new RB to represent program B's
level of control. The supervisor uses the
RB queue as a record of control levels. As
new programs are called, the supervisor can
pass control to the succeeding levels and,
as the routines complete their operation,
it can pass control back ur the line,
regardless of the number of times a task is
interrupted.

There are five types of RBs:

e IRBs (interruption request blocks),
which control routines that must be
executed in the event of asynchronous
interruptions or events. IRBs are

created in advance of an interrurtion
Ly the CIRB routine at the user's requ-
est, but are not placed on an RB queue
until an interruption or event actually
cccurs.

e PRBs (program request blocks), which
represent nonsupervisory routines that
must be executed in the performance of
a task. PRBs are created by the con-
tents supervision routines that perform
the ATTACH, LINK, SYNCH, and XCTL
functions.

e SVRBs (supervisor request blocks),
which represent supervisor routines.
SVRBs are created by the SVC
interruption-handling routines. They
are queued in the same way as PRBs.

e SIRB (system interrurtion request
block), which is used only for the sys-
tem error task. There is only one SIRB
in the system.

e TIRBs (task interrurtion request
blocks), which represent control gro-
gram services that must be performed
asynchronously. The ATTACH routine
creates one TIRB for each task.

Contents supervision routines construct
only one type of RB: the PRB.

The supervisor maintains a record of all
programs in virtual storage -- their attri-
kutes, locations, and use statuses. This
record is called the contents directory.
The contents directory is made up of four
items: (1) the IPD (link pack area direc-
tory); (2) the IPAQ (link pack area queue);
(3) the JPAQ (job pack area queue); and (4)
the load list. Figure 1-9 illustrates the
gueuing structure of the contents
directory.

The LPD is a record of every program in
the rageakle link pack area. The link pack
area contains reenterable routines sgeci-
fied by the control program or by the user.
It is loaded by the nucleus initialization
rrogram from the SYS1.LPALIB data set. The
programs in the link pack area can be used
repeatedly by any task in the system.

The entries in the LPD are LPDEs (link
rack directory entries). The LPD resides
in the link pack area and is pageakle.

The LPAQ is a record of every program in
the link pack area that is presently in
use. The entries in the LPAQ are CDEs
(contents directory entries). When a pro-
gram represented in the LPAQ is requested
for a task, it will normally be represented
in the task's RB queue by a PRB; the
address of this PRB will be inserted in the
CDE. The LPAQ resides in the system gqueue

Section 1: Introduction to the Supervisor and Virtual Storage Concepts 13



)1

VIRTUAL STORAGE area and is not paged. Whenever a link
pack program is requested for use, the LPDE
SYSTEM QUEUE AREA for that program is used to create a CDE
which is placed on the LPAQ. The CDE is . )

Link Pack Area Queue deleted from the LPAQ when the program is
CDE (contents directory no lcnger needed. The LPAQ reduces the

entry) amount of paging necessary to locate a link
Fack rprogram.

CDE

The lcad lists represent programs that
LINK PACK AREA tasks in regions have requested by issuing
LOAD macro instructions. Each requested
program was either found in the link pack
LPA Program LPA Program area or was loaded into the job pack area
(not in use) (in use) in virtual storage. The entries in the
load list are LLEs (load list elements),
. . not CDEs. Each load list element is asso-
ink Pack Directory ciated with a CDE in the JPAQ or LPAQ; the
LPDE (link pack directory programs represented in the load list are
entry) thus also represented in one of the other
LPDE || queues.

There is a JPAQ for each job ster in
LOCAL SYSTEM QUEUE AREA which the LOAD macro instruction has been
used to load programs into the job pack

Load List area. The JPAQ, like the LPAQ, is made up
of CDEs. The JPAQ is used to record the
locations of and control the use of rou-
tines in the job pack area. These routines
can ke either reenteralkle or not reenter-
able, and they are normally used more than

LLE (load list entry)

LLE
—I Job Pack Area Queue

LLE —7 CDE cnce by routines in the job step. The JPAQ
resides in the local system queue area for
CDE | the jok-step region and is not paged. ’

For a more detailed introduction to con-

CDE tents supervision, see Section 4.

Paging Supervision

= Paging supervision routines manage the
exchange of rages between real storage and
external page storage (see "Paging® under
"Basic Concepts of Virtual Storage"™ earlier
REGION in this section). The entire paging pro-
cess is transparent to the problem program.

\ To make the most efficient use of real
storage and minimize the amount of CPU time
Program for Program for used for paging, the paging supervision

Job Step Job Step routines use two algorithms: the page
replacement algorithm and the task disable-
ment algerithm. The page replacement
algorithm is used to find and release

- ~L least-used pages in real storage when page
frames must be made available for other,

nore needed, pages. The task disablement
SYSTEM NUCLEUS algorithm is used to determine whether
excessive paging is being done. If the
rate of paging is excessive, one of the
Figure 1-9. The contents directory. lower-priority active tasks is set nondis-
patchable to lessen the contention for real
storage. When the paging rate has returned
to a more normal level, the tasks are set

dispatchable again. ’

14



If a missing page interruption can be
satisfied by reclaiming the page in real
storage, it is. However, if further pro-
cessing is required kefore the needed rage
can be paged in, paging supervision rou-
tines construct a PCB (page control block).
This PCB represents the raging request and
records the status of the needed page. It
is queued to one of ten PCB queues. Eight
of the queues have associated paging pro-
cessors, each of which handles the particu-
lar paging function required by the PCBs on
that queue. When the paging routines have
completed processing, the page is in real
storage and the user continues processing.

For a more detailed introduction to pag-
ing supervision, see Section 5.

Virtual Storage Supervision

The supervisor controls tasks through
the task queue and the RB queues; it con-
trols programs through the RB queues and
the contents directory. Another major
function, controlling virtual storage, is
accomplished through a series of virtual
storage queues.

When the job management routines design-
ate a job step as a task, they request a
region of virtual storage to be used in
performing that task. The size of the
region is specified ky the user; the region
contains the job pack area for the step,
and all additional working space needed.

All requests for virtual storage are
handled by the GETMAIN routines. The
supervisor maintains virtual storage queues
to reflect storage assignments; the GETMAIN
routines simply adjust these queues to
reflect new assignments.

When there are no job steps in the sys-
tem, all of the dynamic area of virtual
storage is treated as one region. It is
represented to the supervisor Ly an FBQE
(free block queue element) and a PQE (par-
tition queue element) in the system queue
area. The PQE contains the address of the
FBQE, and the FBQE contains the address of
the beginning of the free area. When space
is requested for a job ster, the GETMAIN
routines subtract the requested area size
from the free area and build a new FBQE and
PQE for the new region. The address of the
PQE is placed in the TCB of the job-step
task.

After job-step initialization, a program
performing a task may request virtual
storage by issuing the GETMAIN macro
instruction. The GETMAIN SVC routine allo-
cates the storage only within the region
assigned to the job step or within the
local system queue area or the system queue
area. Storage is allocated in the local

system queue area and the system queue area
only if the requester is a supervisor
routine.

The supervisor maintains a serarate
chain of gqueue elements for allocation
within a region. This chain keeps track of
sukpcols within the region. A subpool is
all of the virtual storage requested under
a lakel called a subpool number. 2All of
storage in a subpool does not need to ke
requested at the same time nor does it need
to be contiguous. The chief advantages of
sukpcols are: (1) that the storage can be
shared between tasks, and (2) that all of
the storage identified by a subpool number
can ke released with one FREEMAIN macro
instruction.

The supervisor FREEMAIN routines are
used to free virtual storage when it is no
longer needed. Space assigned to a jok
step, space within a region, space within
the local system queue area, and sface
within the system queue area are all freed
ky the FREEMAIN routines. These routines
make space available by adding elements to
chains in which are recorded all free areas
in virtual storage, and ky adjusting the
queues of allocated space.

For a more detailed introduction to vir-
tual storage supervison, see Section 6.

Timer Sugervision

Timer supervision routines support the
System/370 time-of-day clock, clock com-
rarator, and CPU timer features. These
routines enable the programmer to oktain
the date and time of day, measure periods
of time, or schedule activity for a specif-
ic time of day. The routines are executed
as a result of the macro instructions TIME,
STIMER, and TIMER, and are handled just
like any other SVC routines.

Timer supervision maintains two queues
cf TQEs (timer queue elements): one for
task-timing requests and the other for
real- and wait-timing requests. The TQEs
are constructed by the STIMER routine, and
each element represents a request for a
type of timed interval. The TQE is placed
cn the arprorriate queue in the order in
which the requested interval expires. When
a time interval expires or a particular
time of day is reached, a timer interrup-
tion occurs. This interruption causes the
Timer Interruption Handler to remove the
tor element from the appropriate timer
queue and to determine what action to ke
taken. Examples of required action are:
(1) scheduling a timer exit, or (2) making
a task ready and eligible for dispatching.

For a more detailed introduction to
timer supervision, see Section 7.

Section 1: Introduction to the Supervisor and Virtual Storage Concerts 15



Task Termination

The supervisor performs the processing
needed when a task is terminated, either
normally or abnormally. The termination
processing includes releasing system
resources that were assigned to the task.

The End of Task (EOT) routine performs
normal termination processing. Abnormal
termination is performed by the ABTERM and
ABEND routines. The STA Services and ASIR
(ABEND/STA Interface) routines provide a
means for recovery from errors causing
abnormal termination. The ABDUMP and
SVCDUMP routines provide a dump of control
blocks and virtual storage related to the
terminating task.

For a more detailed introduction to ter-
mination, see Section 8.

SPECIAL FEATURES

The following subsections describe spe-
cial program features provided in the
supervisor.

Authorized Program Facility

The APF (authorized program facility)
restricts the use of sensitive system ser-
vice to authorized users. The authoriza-
tion consists of a code designated by the
installation, applied at the jok-step
level, and used with programs residing in
the SYS1.LINKLIB data set, the SYS1.SVCLIB
data set, and the link pack area. The
facility is supported rrimarily by contents
supervision and task supervision.

Both problem programs and system pro-
grams can test whether a task has authori-
zation to use a specific function by issu-
ing the TESTAUTH SVC macro instruction (SVC
119).

Automatic Priority Grouping

The automatic priority grouping
mechanism operates within the dispatcher.
The user may specify a single dispatching
priority as an APG (automatic priority
group). Tasks within the APG are dis-
patched in a way that makes best use of the
system's CPU and I/0 capabilities. The
dispatcher identifies these tasks as I/0-
oriented or CPU-oriented, according to
which facility they use more (paging I/0 is
excluded from this determination). The
dispatcher shifts the APG tasks on the task
qgueue so that the I/O-oriented tasks are
dispatched first. For more information,
see "Section 3: Task Supervision.®™

16

Shared Direct Access Storage Device

The shared DASD (shared direct access
storage device) feature enables inderen-
dently operating data processing systems to
share direct access storage devices. The
feature employs the two-channel switch and
its control commands, device reserve and
device release. The shared DASD feature is
a general name for control program func-
tions that actually reserve and release
each device. Essentially, this feature
controls the use of a serially reusable
resource, the device and the shared data.

System Management Facilities

SMF (system management facilities) is a
standard feature of the control program.
It gathers and records information used to
evaluate system, data set, and direct
access volume usage. SMF functions are
rerfcrmed by jok management, input/output
support, direct access device storage mana-
gement, and supervisor routines. The
surervisor performs the following SMF
functions:

e Naintains a record of system wait time.

e Assists in handling time limit
expirations.

e Counts and records references to user
data sets.

e Controls the output limit for SYSOUT
data sets.

e Naintains a record of virtual and real
storage usage.

e Records paging statistics.

Time Sharing Option

TSO (the time sharing option), a stan-
dard 0S/Vs2 facility, adds general-purrose
time sharing to the facilities available
with the VS2 control program, and the
supervisor supports TSO operations. This
facility enakles users at remote terminals
to execute programs concurrently and to
interact with those prcgrams during execu-
tion. The installation can dedicate its
system to time-sharing operations cr it can
run time-sharing and batch-processing
operations concurrently.

The time sharing opticn consists of a
control program (containing IBM-supplied
service routines and command processors)
and a number of IBM Program Products
(available from IBM for a license fee).
The TSC control program, an extension of
the VS2 control program, does the
following:

<



e Identifies and verifies the time shar-
ing user.

e Defines the user job.

e Assigns the user jok an amount of
execution time (as determined by
installation, and called the selected
scheduling algorithm).

e Ensures a specified percentage of
execution time for batch-processing
operations (when required).

e ILogically disconnects the user job from
the operating system before the job is
swapped out of real storage (called
"quiescing" the jok); logically recon-
nects the user job to the operating
system when the jok is swapped into
real storage (called "restoring" the
job.)

e Establishes and maintains comrmunica-
tions between the terminal user, his
programs, and the TSO control program.

e Handles attention interruptions from
the terminal user.

e Provides an optional set of SMF records
for the TSC system.

e Allows optional system control task
exits to installation-supplied
routines.

e Provides an optional record of the
information that is passed to the Time
Sharing Driver via the Time Sharing
Interface Program from such TSO system
routines as the Region Control Task,
the Time Sharing Control Task, and the
Time Sharing Dispatcher.

For a complete description of the TSO
control program, see the 0S/VS2 TSO Control
Program Logic manual.

Time Slicing

The time-slicing mechanism operates
within the dispatcher. A priority is
assigned to a group of tasks which are to
be time-sliced; time-slicing occurs only
among the tasks in the group and only when
the priority level of the group is the
highest priority level that has a ready
task. Each task in the group is dispatched
for the specified time slice. The dis-
patching of tasks within the group con-
tinues until all the tasks are waiting, or
a task of higher priority than that of the
group becomes ready.

The group of tasks to be time-sliced,
the length of the time slice, and the
priority of the time-sliced tasks are spe-

cified by the installation. Any task in
the system that is not defined within the
time-sliced group is dispatched under the
regular conditions; that is, the task is
dispatched when it is the highest-priority
ready task, and it remains active until it
either waits or until a task of higher
priority becomes ready.

Tracing Facilities

Two facilities, the trace table facility
and GFT (generalized trace facility), are
provided to assist in tracing program flow
ky mcnitoring and recording system events.

Trace Takle Facility: The trace takle
facility is an ortional feature specified
at system generation or nucleus initializa-
tion. The trace table routines place
entries, each of which is associated with a
certain type of event, in a trace table.
The size of the table is also a system
generation or NIP option; when the table is
filled, the routine overlays old entries
with new entries beginning with the oldest
entry in the table. Trace table entries
are formatted and printed out on SNAP dumps
and stand-alone dumps. For more informa-
tion, see "Section 2: Interruption
Supervision."

Generalized Trace Facility: The genera-
lized trace facility is invoked as a system
task when the operator issues the START
cormand. When GTF is started, the ofperator
selects specific events to be traced and
may select to record the trace data either
in virtual storage or on an external
device. When the internal storage ortion
is selected, the recorded data is compar-
able to that provided by the trace takle
facility. When the external device storage
option is selected, the recorded data is
more comrrehensive.

When GTF is active, the trace table
facility, if present, is disabled. When
the trace records are maintained in virtual
storage, ABDUMP provides formatted trace
data for aknormally terminated programs
when a SYSABEND DD statement has been
included. When trace records are stored on
an external device, a trace EDIT function
of IMDPRDMP can be used to provide the out-
put cf selected data.

Suprort for GTF is included in the
interruption supervision functicn of the
supervisor (see Section 2.) For a complete
description of GTF logic, see the 0S/VS
Service Aids Logic manual.

SUMMARY CF THE SUPERVISOR'S ROLE

The supervisor is a ccllection of gro-
grams for handling interruptions and pro-

. Section 1: Introduction to the Supervisor and Virtual Storage Concepts 17



viding services in resronse to them. These
interruptions are the basic method by which
the control program manages data processing
tasks. The supervisor functions are large-
ly performed Ly routines that manipulate a
network of control queues -- the task
queue, the RB queues, the contents direc-
tory, the paging gqueues, the real storage
queues, the virtual storage queues, the
ENQ/DEQ resource queues, and the timer
queues.

The processing after a timers/external,
input/output, program, or machine-check
interruption is generally straightforward.
The processing after an SVC interruption is
more complicated. Diagrams 1.1 through 1.3
illustrate supervisor interruption
processing.

18



s3daouoDd aberols Ten3ITA pue IosTATadns 3aYy3 03 UOTIONPOIFUT :[ UOTIDSS

6T

r

Machine Check Interruption

MACHINE CHECK HANDLER

Recovery Management Support

(See OS/VS Recovery

Management Support
Logic Order No. SY27-7239)

r

SVC Interruption

SVC FIRST-LEVEL INTERRUPTION HANDLER

Save register contents of the interrupted

C

Diagram 1.1 (Page 1 of 3)
Supervisor Overview and Visual Table
of Contents for Diagrams

n Type-1 SVC routines are part of the nucleus
and are disabled for 1/O and external
interruptions. These routines do not issue
SVC instructions because they cannot be
restarted after an SVC interruption. They
can restart after a missing page interruption.

E Type=-2 SVC routines are part of the nucleus
but may be enabled for 1/O and external
interruptions during part of their processing .
These routines may issue SVC instructions.

E Type-3 SVC routines are nonresident. (They
reside in the link pack area.) They may be
enabled for |/O interruptions. These routines
may issue SVC instructions.

n Type-4 SVC routines are nonresident. (They
reside in the link pack area,) They may be
enabled for 1/O and external interruptions.
These routines may issue SVC instructions.

program.

See Diagram 2.2:
See Diagram 2.0:

See "Section 2:

See Diagram 1.2 for
a description of the
type=1 SVC routines
processed by the supervisor

Type-1 SVC
Interruption Handling
Interruption Supervision
Visual Table of Contents
Interruption Supervision"

|

A Type-1SVC

Routine n

]

SVC SECOND-LEVEL INTERRUPTION HANDLER

Branch to the SVC routine that will provide the requested service.

See Diagram 2,3: Handling Types
2,3, 4,svC
Interruptions

A Type-4 SVC
Routine

A Type-2 SVC E

Routine

A Type-3 SVC B

Routine

ATTACH Other Type-2
Routine SVC Routines

ABTERM TYPE-1 EXIT
PROLOGUE Routine

See Diagram 8.11 See Diagram 3.15

Directly to
interrupted
routine

3

EXIT ROUTINE

See Diagram 3.14

DISPATCHER

See'Diagram 3.17




114

Diagram 1.1 (Page 2 of 3)
Supervisor Overview and Visual Table

Program Interruption of Contents for Diagrams

PROGRAM FIRST-LEVEL INTERRUPTION HANDLER

Determine the cause of the interrupti

ion.

See Diogram 2.5:

See Diagram 2.0:

See "Section 2: Interruption Supervision"

Program Interruption
Handling

Interruption Supervision
Visual Table of Contents

Interruption
Code:

X'0' through
XIE

Program=-Check
Interruption

Interruption
Handling

See Diagram 2.8:
Program-Check

Interruption fnterruption Interruption
Code: X'10' Code: X'11' Code: X'12'
Segment Translation Page Translation Translation
Exception Exception (missing Specification
Page Interruption) Exception

(Handled as a

program-check See Diagram 2.7:
interruption Page Fault
code X'4") Processing

Interruption
Code: X'13'

SSM Interruption,

Processing handled
by Program FLIH

See Diagram 2.6:
SSM Interruption
Processing

Interruption
Code: X'40'

Monitor Call
(MC) Interruption

Interruption
Code: X'80'

Program Event
Recording (PER)
Interruption

ABTERM PROLOGUE

Schedule abnormal
termination of the
task.

See Diagram 8.11:
ABTERM Prologue

See Diagram 8.10:
Overview of the
ABTERM Routines

See Diagram 8.0:
Termination Visual
Table of Contents

See "Section 8:
Termination"

PAGING SUPERVISOR
PROGRAM CHECK
INTERRUPTION EXTENSION

Initiate page=-in for
missing page.

See Diagram 5.46:
Program Check
Interruption
Extension

See Diagram 5.1:
Missing Page
Interruption
Processing

See Diagram 5.0:
Paging Supervision
Visual Table of
Contents

See "Section 5: Paging
Supervision"

PAGING SUPERVISION
ERROR RECORDER

If the task that produced
translation specification
exception is in key 0
(supervisor state), the
error is considered major
and the system is placed
in a disabled wait state.
Otherwise, the error is
considered minor and the
task is scheduled for
abnormal termination.

See Diagram 5,54:
Paging Supervisor
Error Recorder

See Diagram 5.5:
Branch Entry Page
Processing

See Diagram 5.0:
Paging Supervision
Visual Table of
Contents

See "Section 5: Paging
Supervision"

C

GENERALIZED TRACE
FACILITY (GTF)

Record the interruption.

(See OS/VS Service Aids

Logic, Order No. 5Y28-6635)

DISPATCHER

Select the next
task to receive
control .

See Diagram 3.17:
Dispatcher

See Diagram 3.0:
Task Supervision
Visual Table of Contents

See "Section 3:
Task Supervision"

C




s3daouo) abexols Ten3itp pue xosTAradns 9yl 03 UOTIONPOIJUT :T UOTIOSS

| X4

C

External Interruption

EXTERNAL FIRST-LEVEL
INTERRUPTION HANDLER

Determine the cause of the interruption.
See Diogram 2.4: External Interruption
Handling
See Diagram 2.0: Interruption Supervision
Visual Table of Contents
See "Section 2: Interruption Supervision"

Diagram 1.1 (Page 3 of 3)

Supervisor Overview and Visual Table

of Contents for Diagrams
1/0 Interruption

1/O FIRST-LEVEL INTERRUPTION
HANDLER

Pass control to the |/O
supervisor.

See Diagram 2.1: 1/O Interruption

Handling

See Diagram 2.0: Interruption Supervision
Visual Table of Contents
See "Section 2: Interruption Supervision"

Interruption Code: | Interruption Code: Interruption Code:

X'1007" X'1005* X'1004'

Operator Key CPU Timer Clock Comparator

Interruption Interruption Interruption
COMMUNICATIONS TASK TIMER SECOND-LEVEL
EXTERNAL INTERRUPTION INTERRUPTION HANDLER

PROCESSOR
Process clock comparator

and CPU timer interruptions.
(See O5/VS2 Job Management

Logic, Order No. 5Y28-0621) See Diagram 7.5: Timer
Second-Level Interruption
Handler

See Diagram 7.0: Timer
Supervision Visual Table of
Contents

See "Section 7: Timer
Supervision"

1/O SUPERVISOR

(See OS/VS 1/O Supervisor
Logic, Order No. 5Y24-5156)




[44

Diagram

1.2

Type-1 SVC Processing
Performed by the Supervisor

sSvcC

FIRST-LEVEL

INTERRUPTION

HANDLER

SVC NUMBER 1 3 4 5 I 10 | 43 I 79 | 107 _] 112 ] 113 I 115 J 19
NAME OF st 1 Release Routine PGFIX/PGFREE/ s sve
ROUTINE WAIT Exit Routine GETMAIN FREEMAIN REGMAIN Routine E ??QEH Set Status Routine MODESET Routine (PGRLSE, PGLOAD/PGRLSE wop . TESTAUTH Routine
Routine Routines Routines X ecter nonsupervisor) (supervisor) Intecface Routine
DESCRIPTION @ Halt the execution | e Handle exiting @ Allocate virtual ® Free allocated @ Determine whether | e Create IRBs and o Adjust a task's @ Change the system @ Make available all | e FIX: Fix virtual o Obtain page control | @ Determine whether
of @ program until procedures for all storage in the virtual storage in a GETMAIN or TIRBs. dispatchability . mask, storoge real and external storage areas in blocks (PCBs). a program is
a specified number |  programs except requested amount the length and FREEMAIN macro protection key, or page storage wholly real storage and authorized to use
of events have type=1 SVC from the subpool subpool specified. instruction was the mode in the associated with o make them @ Place one PCB on the resource or
occurred. routines. specified. issued, and pass PSW. specified area of ineligible for the swap queue for function.
control to either virtual address page-out, further processing
the GETMAIN space. by IEAPSWAP and
routines (Diagram o FREE: Make one on the queve
6.2) or the @ Return to the Type-1 previously fixed for swap root PCBs,
FREEMAIN routines Exit Routine or the areas eligible for
(Diagram 6.27). caller. page=-out .
o LOAD: Bring
specified areas of
virtual storoge
into real storage
from external
poge storoge
® RELEASE: Branch
to the Release
routine (IEAPCLR).
DETAILED Diogram 3.7 Diagram 3.14 Diagram 6.2 Diagram 6.27 Diagram 6.2 and Diagram 3.11 Diogram 3,18 Diogram 3.21 Diegram 5,30 Diagram 5.20 Diagram 5.61 Diogram 3.20
DIAGRAM Diogram 6.27
OVERVIEW Diogram 3.1 Diagram 3.1 Diogram 6.1 Diagram 6.1 Dicgram 6.1 Diagram 3.1 Diagram 3.1 Diagram 3.1 Diagram 5.4 Diagram 5.4 Diagram 5.4 Diogram 3.1
DIAGRAM
TEXT Section 3: Task Section 3: Task Section &: Virtual Section 6: Virtual Section é: Virtual Section 3: Tatk Section 3: Task Section 3: Task Section 5: Paging Section 5: Paging Section 5: Poging Section 3: Task
INTRODUCTION Supervision Supervision Storage Supervision |  Storage Supervision | Storage Supervision | Supervision Supervision Supervision Supervision Supervision Supervision Supervision




:T UOT3D8S

s3daouo) abeizo3s Ten3iTA pue 10sTAT2dNS 9aY3 03 UOTIONPOIIUT

€T

C

Diagram 1.3 (Page 1 of 4)
Types 2, 3, and 4 SVC Processing
Performed by the Supervisor

SVC SECONDS-LEVEL

INTERRUPTION

HANDLER

2 6 7 8
SVC NUMBER
(Type 2) (Type 2) (Type 2) (Type 2)
NAME OF POST Routine LINK Routine XCTL Routine LOAD Routine
ROUTINE
DESCRIPTION o Signal the occurrence of ® Pass control to a specified | e Pass control to a specified ® Bring the load module
an awaited event to the entry point. The load entry point, The load containing a specified
waiting program. module is brought into module containing the entry point into virtual
virtual storage if a usable entry point is brought into storage if a usable copy
copy is not available, virtual storage if a usable is not available.
After the execution of the copy is not available,
called program, control No return is made to the
is returned to the instruc- program issuing the XCTL
tion following the LINK macro instruction,
macro instruction,
DETAILED Diagram 3.8 Diagram 4.2 Diagram 4.8 Diagram 4.7
DIAGRAM
OVERVIEW Diagram 3.1 Diagram 4.1 Diagram 4.1 Diagram 4.1
DIAGRAM
TEXT Section 3: Task Section 4: Contents Section 4: Contents Section 4: Contents

INTRODUCTION

Supervision

Supervision

Supervision

Supervision




Lk4

Diagram 1.3 (Page 2 of 4)
Types 2, 3, and 4 SVC Processing
Performed by the Supervisor

SVC SECOND-LEVEL INTERRUPTION HANDLER
9 11 12 13 14 37 40
SVC NUMBER
(Type 2) (Type 2) (Type 2) (Type 4) (Type 2) (Type 3) (Type 2)

?&”ffﬁ DELETE Routine TIME Routine SYNCH Routine ABEND Routine SPIE Routine SEGLD or SEGWT Routine EXTRACT Routine
DESCRIPTION @ Decrease the use count for | @ Determine the time of day | e Allow a supervisor routine | o Free control blocks, @ Perform the processing e Load specified overlay o Obtain information for a

modules fetched by a LOAD [ and date and return both to synchronously exit to a storage, and other necessary to allow the user segments., task from that task's TCB

macro instruction. to the caller. user program. resources used by the to specify an exit routine or the TCB of a subtask .

terminating task (or tasks) to be scheduled after a
o Free storage occupied by a and subtasks. program interruption.

module that was requested

through a LOAD macro o Invoke ASIR if a STA user

instruction and is no longer exit routine exists.

needed.

o Invoke ABDUMP if
requested.

DETAILED Diagram 4.9 Diagram 7.2 Diagram 4.6 E\iagru:ss 82.:4 Diagram 3.6 Diagram 4.12 Diagram 3.4
DIAGRAM fhrough 8.
OVERVIEW Diagram 4.1 Diagram 7.1 Diagram 4.1 Diagram 8.13 Diagram 3.1 Diagram 4.1 Diagram 3.1
DIAGRAM
TEXT Section 4: Contents Section 7: Timer Section 4: Contents Section 8: Termination Section 3: Task Supervision [ Section 4: Contents

INTRODUCTION

Supervision

Supervision

Supervision

Supervision

Section 3: Task
Supervision




¢ C

Diagram 1.3 (Page 3 of 4)
Types 2, 3, and 4 SVC Processing

s3daouoD sbexo3ls Ten3ixtTa pue zostaxadng ay3z 03 UOTIONPOIIUT :T UOTIODS

14

Performed by the Supervisor

SVC SECOND-LEVEL INTERRUPTION HANDLER
41 42 44 46 47 48 51
SVi E
C NUMBER (Type 3) (Type 2) (Type 2) (Type 2) (Type 2) (Type 2) (Type 4)
ROE OF IDENTIFY Routine ATTACH Routine CHAP Routine TTIMER Routine STIMER Routine DEQ Routine SVCDUMP Routine
DESCRIPTION @ Inform the supervisor of a | @ Create a task control block | @ Change the dispatching e Calculate the time o Calculate and schedule a © Remove requests for @ Branch to ABDUMP to
module's embedded entry - (TCB) to represent the task. | priority for a task or remaining in a requested requested timed interval. resources from the resource |  display control blocks and
point name that was not subtask . interval , queues., storage for the specified
established by the linkage | @ Schedule linkage to task .
editor, contents supervision to o Cancel the interval.
obtain the program to be e Display the virtual storage
first executed for the new specified by the key 0
task . issver of the SVC 51 macro
instruction,
DETAILED Diagram 4,10 Diagram 3.2 Diagrom 3.3 Diagram 7.4 Diagram 7.3 Diagram 3.10 Diagram 8.26
DIAGRAM
OVERVIEW Diagram 4.1 Diagram 3.1 Diagram 3.1 Diagram 7.1 Diagram 7.1 Diagram 3.1 Diagram 8.25
DIAGRAM
TEXT Section 4: Contents Section 3: Task Section 3: Task Section 7: Timer Section 7: Timer Section 3: Task Section 8:
INTRODUCTION Supervision Supervision Supervision Supervision Supervision Supervision Termination




9z

Diagram 1.3 (Page 4 of 4)
Types 2, 3, and 4 SVC Processing
Performed by the Supervisor

SVC SECOND-LEVEL INTERRUPTION HANDLER
56 60 62
VC NUMBER i
sve (Type 2) (Type 3) (Type 2)
NAME OF
ROUTINE ENQ/RESER VE Routine STA Services DETACH Routine
DESCRIPTION ® Queue requests for o Create a STA control block | @ Remove the specified TCB
resources (data sets, containing the address of a from the task queue.
records, programs, etc.) to user-written exit routine
control access. and a parameter list, ® Free the TCB's storage
ABEND invokes the space and the associated
ABEND/STA interface problem-program register
routine to schedule the user [ save area.
exit routine upon abnormal
termination.
DETAILED Diagram 3.9 Diagrams 8.43 Diagram 3.5
DIAGRAM through 8.47
OVERVIEW Diagram 3.1 Diagram 8,42 Diagram 3.1
DIAGRAM
TEXT Section 3: Task

INTRODUCTION

Supervision

Section 8:

Termination

Section 3: Task

Supervision




SECTION 2

Interruption Supervision

HOW INTERRUPTIONS ARE HANDLED. ccccscccccccensccccccccnccccccscoccccccce 29
Input/Output Interruption Handlingeececceccecececcecceccececcccccccacccccocas 29
SVC Interruption HandlinNge.ececccececcocccceccsccoscsccccacsscscsnscsccccccncsss 30
Saving the Status of the Interrupted Programe.c..ccecceccccecccscscsess 30
Determining Whether the Disabled SVC Routine is in Real
StOYaAgE@eececececoacsccosscscscacsossasscsccscssssscscossscscsccccsocssccsssccsce 31
Enabling and Disabling InterruptiCnS.c.ccccceccccececccccccccccesanses 31
Minor Functions of SVC Interruption Handlinge..cceccecececcecccecsces 31
Timer/External Interruption Handlinge..ceecceecececccescecscccsccssccasscnces 32
Program Interruption Handling.e.cecceccecceccececcecccccsccccccsncsocsccccee 32
Processing for Particular Program InterrurtionS..cccceccecececcecccese 33
Translation Specification ExXceptiCnSe.ceccceccecccccssaccccccacscaecs 33
RECUXSiON.cctceeececcccaceccecccsccccecscscccccacscscccccccccccccceccs 33
Event ReCOXAing..c.ecceccecececccaccoscecscessncccccscnscsoncccsccccsccse 33
Page Translation EXCeptiONS.cccceccecccccccccscsccccsccscacsnccncsscss 33
Segment Translation EXCeptioOnNS...cccccececceccccccccacscnscsnncass 34
Program Interruptions from SSM (Set System Mask) Instructions.... 34
Program-Check InterruptionS.ccccecececcccccscscccascscsccccascnsecs 3l
Tracing EVeNtSc.cececceccccecccsccccscscscsccccsccsccscccccscscscscscsccsccccsssce 3D
Method of Operation Diagrams for Interruption Supervision.....cceceec.. 37

Section 2: Interruption Supervision 27






C

Any interruption, except a machine-check
interruption, causes CPU control to be
taken from the executing prograwr and given
to an interruption-handling routine of the
supervisor. There are four interruption-
handling routines in the supervisor, one
for each type of interruption excert the
machine check. (A machine check causes
control to be passed directly to the
Machine Check Handler, a standard recovery
program of the operating systen.)

The five types of interruptions are:

e Input/output interruptions, which occur
when an I/0 operation terminates, when
an I/0 error occurs, or an I/0 device
is made ready.

e SVC interruptions, which occur when an
SVC instruction is executed.

e External/timer interrurtions, which
occur when the interrupt key is pressed
on the system operator's console, or a
time interval expires.

e Program interruptions, which occur when
a program attempts an invalid operation
(for example, execution of a privileged
instruction by a program in problem
state), when a data error is detected
(for example, overflow), or when an
address translation exception, enable/
disable interruption, or event-
monitoring interrurtion occurs.

e Machine-check interruptions, which
occur when the CPU detects a hardware
malfunction.

An interruption causes the current PSW
to be saved as the o0ld PSW, and the new PSW
to be executed. The new PSW causes control
to be passed to the appropriate
interruption-handling routine.

In most cases, the interruption handler
does not do the detailed processing itself;
instead, it analyzes the interruption and
routes control to an interruption proces-
sing routine.

For input/output interruptions, the
interruption handler branches to the Input/
Output Supervisor which performs input/
output services and handles input/output
errors.

For SVC interruptions, the interruption
handler determines which SVC service is
required, causes the SVC routine to be

HOW INTERRUPTIONS ARE HANDLED

krought into real storage (if necessary),
and passes control to it.

For external/timer interruptions, the
interrurtion handler determines the cause
of the interrugption and branches either to
a timer service routine or to an external
service routine.

For program interrugtions, the interrup-
tion handler determines the cause of the
interruption and does one or more of the
following:

e Branches to the DSS Program Interrup-
tion Handler if DSS (the dynamic sup-
port system) is active (see the 0S/VS
Cynamic Support System lLogic manual for
nmore information on LSS operations).

e Branches to the paging supervisor for
rrocessing of address translation
exceptions.

e Pranches to a user error-handling
routine.

e Branches to the generalized trace faci-
lity to record the event.

e Enakles or disables interruptions.

e Terminates the task in which the inter-
ruption occurred.

The interruption handlers are disabled
for all interruptions except machine checks
so that they will not lose control kefore
they have saved critical information akout
the interrupted program. This information
consists of the register contents and the
PSW information necessary to return control
to the interrupted program after the inter-
ruption has keen processed.

This section contains descriptions of
I/0, SVC, externals/timer, and program
interruption handling. Machine-check
handling is not described in this manual.
For a description of machine-check handl-
ing, see the 0S/VS Recovery Management Sup-
port Logic manual.

INPUT/OUTPUT INTERRUPTION HANDLING

(See Diagram 2.1)
When an input/output interruption

occurs, the I/0 FLIH (Input/Output First-
Level Interruption Handler) is entered

Section 2: Interruption Supervision 29



automatically as the result of the loading
of the I/0 new PSW.

The I/0 FLIH branches to the input/
output supervisor and, if necessary, the
Page I/0 Post routine. The input/output
supervisor performs all input/output ser-
vices and error handling for I/0 interrup-
tions while the Page I/0 Post routine notes
conmpletion of paging I/O operations.

The 1/0 FLIH branches to the system
management facility's Wait-time Collection
routine if the system was in wait state at
the time of the interruption. The I/0 FLIH
also interfaces with the system Trace rou-
tine to have the interruption recorded.

The I/0 FLIH returns to either the
interrupted program or the dispatcher
depending on whether system services are
required as a result of the I/0
interruption.

SVC INTERRUPTION HANDLING

(See Diagrams 2.2 and 2.3)

When a system or user program executes a
macro instruction, the last machine
instruction of the resulting macro-
expansion is often an SVC instruction.

When executed, the SVC instruction causes
an SVC interruption. The part of the
supervisor that receives immediate control
is called the SVC FLIH (SVC First-Level
Interruption Handler).

Saving the Status of the Interrurted
Program

The current PSW, containing the address
of the next executable instruction, is
stored by the machine in location X'20' in
lower real storage. The SVC FLIH saves the
register contents and old PSW of the inter-
rurted routine to permit control to be
returned to the routine at its next execut-
able instruction. The register contents
are saved by the SVC FLIH in a special SVC
save area in lower real storage, called
IEASCSAV. Figure 2-1, parts A and B show
the saving of the PSW and the register con-
tents, respectively, by the machine and Ly
the SVC FLIH.

The register contents and old PSW remain
in lower real storage or are moved to other
save areas, derending on the type of SVC
routine to be executed. If a type-1 SVC
routine is to ke executed, the register
contents and o0ld PSW are left in lower real
storage. If one of the other types of SVC
routines is to be executed, the information
is mcved to other save areas.

The reason for this is that a type-1 SVC
routine cannot issue an SVC instruction or
a macro instruction that expands intoc an
SVC instruction. In addition, during
execution of type-1 SVC routines, interrup-
tions are disakled, ensuring that an SVC
instruction will not be issued in another
routine. Consequently, there is no danger
of a seccnd entry to SVC processing during
execution of a type-1 SVC routine and
therefore no danger of having the informa-
tion for the current interruption cverlaid.

®

Machine Action Action by the SVC First-Level

Interruption Handler

©

Action by the SVC Second-Level! Interruption Handler

svC General Registers
Interruption

Register contents
for the
interrupted
program

IEASCSAle

Current PSW

SvC Old ﬂ
PSW

SVC Register Save
Area in Lower Real
Storage

Because non-type-1 SVC routines can be interrupted, the SVC Second-Level
Interruption Handler moves the SVC old PSW and the interrupted routine's
register contents,

IEASCSAV SVC Old PSW
Interrupted
Program's RB
RBOPSW
SVRB

Register Save Area

Figure 2-1.

Actions taken by the SVC First-Level and Second-lLevel Interruption Handlers

to save program status informationm.

30



However, any of the other types of SVC
routines can be interrupted by an SVC
interruption. This requires that the sta-
tus information for the current interrup-
tion be moved to new areas to prevent it
from being lost.

To determine the type of SVC routine
that will be executed, the SVC FLIH
examines the SVC table. There are two
parts to this table, one containing entries
for user-supplied SVC routines, the other
containing entries for IBM-supplied SVC
routines. The number and type of routines
in the two parts depend on the particular
system that the user specified at system
generation. There is one entry in the SVC
table for each SVC routine in the generated
system. Each entry contains a code showing
the SVC type.

If the SVC table indicates that a type-1
routine is to be executed, the SVC FLIH
branches to the routine, and the status
information for the current interrugtion is
left in lower real storage.

But, if the SVC routine is not type-1,
and is interruptable, the SVC FLIH branches
to the SVC SLIH (SVC Second-Level Interrup-
tion Handler) to create an SVRB (supervisor
request block). The SVRB is used to hold
the interrupted routine's register contents
and return information for the SVC routine.
The SVC SLIH moves the SVC old PSW, the IIC
(instruction length code), and the inter-
ruption code to the interrupted routine's
RB. The register contents are moved to the
SVRB instead of the RB because the RB may
lack a register save area. The SVRB is
constructed by using the quickcell alloca-
tion technique described in "Section 6:
Virtual Storage Supervision.”

The SVC SLIH also sets status bits in
the SVRB. These bits indicate that the
SVRB is a dynamic request block that can be
freed by the supervisor's Exit routine and
that no attention exits can be taken while
the SVRB is active. The SVC SLIH then adds
the SVRB to the head of the RB queue
belonging to the interrupted routine's TCB.
(For an explanation of the RB queue, see
"Section 3: Task Supervision.")

Determining Whether the Disabled SVC
Routine is in Real Storage

After the SVRB has keen initialized and
added to the RB queue, the SVC SLIH deter-
mines whether the SVC routine is to receive
control disabled, and if so, whether it is
in real storage. To do this, it tests the
"type" bits in the SVC talkle entry passed
by the SVC First-Level Interruption Handl-
er. Type-2 SVC routines are located in the
nucleus and therefore are fixed in real
storage. Type-3 and type-4 SVC routines

that receive control disabled might not ke
in real storage, so the SVC SLIH issues a
Load Real Address (LRA) instruction and
tests the condition code to determine
whether the SVC routine is present.

Enakling and Disabling Interruptions

If the SVC routine is in real storage
and is to receive control with interrup-
tions disakled, the SVC SLIH branches
directly to it since the SVC SLIH itself is
already disabled.

If the SVC routine is to receive control
with interrurtions enakbled, the SVC SLIH
kranches to MODESET (a centralized facility
to set the system mask -- see "Section 3:
Task Supervisicn"). MODESET changes the
system mask to enakle interruptions as
requested, and then returns control to the
SVC SLIH. Upon return from MODESET, the
SVC SLIH restores general registers 0, 1,
13, and 15 from the SVRB register save area
so that they contain the same values as
when the SVC was issued, and then kranches
to the SVC routine.

When a type-3 or type-4 SVC routine to
be entered disabled is not in real storage,
the SVC SLIH branches to MODESET to enable
interruptions. While enabled, the SVC SLIH
references the first instruction of the SvVC
routine, causing the SVC routine to be
paged in by the paging supervisor. When
the SVC routine has been paged in, the SVC
SLIH issues a MOLESET SVC (SVC 107) to dis-
able interxrurtions. When control is
returned from MODESET, the SVC SLIH
restores registers 0, 1, 13, and 15 from
the SVRB general register save area so they
will have the same values as when the SVC
was issued, and branches to the SVC
routine.

Minor Functions of SVC Interruption
Handling

In addition to the major functions
already descriked, the SVC interruption
handlers perform five minor functions:

1. They use the TESTAUTH routine to veri-
fy that the issuer is authorized to
use an SVC routine that requires
authorization. (If the user is not
authorized, the task issuing the SVC
is scheduled for abnormal
termination.)

2. They check the validity of the SVC
number.

3. They allow the interruption to ke
recorded.

4. They make available the addresses of
three important comntrol blocks (CVT,

Section 2: Interruption Supervision 31



TCB, and RB) for use Ly other supervi-
sor routines during later processing
of the SVC interruption.

5. They pass the address of the appropri-
ate exit routine in the return regist-
er so that the SVC routine, when com-
plete, can return control by means of
a simple branch, without the need for
tests.

TIMER/EXTERNAL INTERRUPTION HANDLING

(See Diagram 2.4.)

The External FLIH (External First-Level
Interruption Handler) receives control
after an external interruption. It saves
the contents of the general registers of
the interrupted program in the current TCB.
If the system wait TCB is the current TCB,
the External FILIH passes control to the
system management facility's Wait-Time
Collection routine. This routine returns
control to the External FLIH.

The External FLIH saves the external old
PSW and the interruption code in the cur-
rent RB. It then provides for tracing by
branching to CVTTRACE and by issuing a Mon-
itor Call instruction to have the external
interruption recorded ky the generalized
trace facility.

The External FLIH determines the cause
of the interruption from the interruption
code. It then passes control to the Timer
Second-Level Interruption Handler if the
interruption was caused by the clock com-
parator or CPU timer, or to the communica-
tions task's External Interruption Handler
if it is an operator key interruption. On
return from the Timer SLIH or the communi-
cations task's External Interruption Handl-
er, the External FLIH stores the time-of-
day (TOD) clock value into a special save
area within the system management facili-
ty's EXCP Counter routine.

The TOD clock value must be stored as a
precaution for the case in which the system
wait TCB is the current TCB, and a clock
comparator or CPU timer interruption occurs
but no task switch occurs. In this case,
if the TOD clock value in the EXCP Counter
routine had not been reset by the External
FLIH, the calculated wait time would
include execution time for the external
interruption handlers.

Only clock comparator, CPU timer, and
interrupt key interruptions are processed.
All other external interruptions are
ignored.

32

The External FLIH then branches to the
dispatcher, which determines the next task
to receive control.

PROGRAN INTERRUPTION HANDLING

(See Diagrams 2.5 -- 2.9)

When a program interruption occurs, an
interruption code describing the cause of
the interruption is stored at locaticn
X'8E'. There are four types of program
interruptions; program-check interrugtionms,
address translation exceptions, enables
disable interruptions, and event monitoring
interruptions. The following are brief
descriptions of these types of program
interruptions.

e Program-check interruptions: These
interruptions (indicated by prcgram
interruption codes X'01' through X'0F')
are caused by invalid actions such as
using incorrect addresses, issuing
invalid operation codes, or issuing
rrivileged instructions. Additional
causes of program-check interrugtions
are fixed-point overflow, decimal over-
flow, exponent underflow, and loss of
significance. These interruptions can
ke masked out.

e Address translation exceptions: These
interruptions (indicated by interrup-
tion codes X'10' through X'12') are
caused by a segment translation excep-
tion, a page translation exception
(also called a missing page interrup-
tion), or a translation specification
excertion. A page translation excep-
tion (page fault) is the most frequent
cne and generally occurs when a program
tries to access a virtual storage
address in a page that has not yet been
brought into real storage.

e Enables/disable interrurtions: These
interruptions (indicated by interrup-
tion code X'13') are caused by a pro-
gram's issuing a Set System Mask (SSM)
instruction to alter the interruption
state of the system.

e Fvent monitoring interruptions: These
interruptions (indicated by interrup-
tion codes X'40' and X'80') are caused
by the PER (program event recording)
feature or by a Monitor Call (MC)
instruction.

Interruptions other than the PER inter-
ruption are mutually exclusive. Multiple
interruption conditions can occur concur-
rently since the PER interruption can occur
simultaneously with each of the other kinds
of program interruption.

<


http:Diagra.ms

The Program Interruption Handler is
given control automatically after any pro-
gram interruption. Upon entry, all inter-
ruptions, except machine checks, are dis-
abled and dynamic address translation is
inhibited to prevent translaticn specifica-
tion recursions. After saving the status
information for the interrupted program,
the Program Interruption Handler determines
the cause of the interruption by examining
the interruption code at location X'8E".

It then processes the interruption, handl-
ing translation specification exceptions
first, invalid recursions next, and then
Fage transalation exceptions and the other
causes of program interruptions other than
translation specification exceptions, the
Program Interruption Handler enables itself
to receive dynamic address translation
exceptions.

PRCCESSING FOR PARTICULAR PROGRAM
INTERRUPT IONS

The following subsections provide more
detailed information on particular types of
program interruptions and how they are
Erocessed.

Translation Specification Exceptions

(See Diagram 2.5)

A translation specification exception is
an interruption that occurs when a page
table entry, segment table entry, or the
control register pointing to the segment
table contains information in an invalid
format. Translation specification excep-
tions are indicated by program interruption
code X'12'.

For a translation specification inter-
ruption, the Program Interruption Handler
branches to the paging supervisor's error
routine (IEAPSER). If the interruption
occurred in a system module, indicated by
rrotection key 0, the Program Interruption
Handler branches to the paging supervisor
with register 0 set to indicate major
trouble. When major trouble is indicated,
the paging supervisor puts the system in a
wait state. If the trouble is minor, the
paging supervisor exrror routine calls
ABTERM to schedule termination of the spe-
cified task and returns control to the Pro-
gram Interruption Handler, which records
the interruption via the Trace routine and
the generalized trace facility. The Pro-
gram Interruption Handler then exits to the
dispatcher to allow the task to be abnorm-
ally terminated.

Recursion

(See Diagram 2.5)

Recursion is not a specific type of
interruption, it is an unanticipated reen-
trance into the Program Interruption Handl-
er that occurs when the Program Interrup-
tion Handler or one of its extensions
causes another program interruption.

A valid recursion can occur in the resi-
dent GTF (generalized trace facility)
extension of the Program Interruption
Handler and is resolved by the GTF exten-
sion, which reestaklishes the original pro-
gram interruption conditions. The GTF
extension resaves the low storage address
save area, control registers, old PSW, and
interruption code, and uses these to rees-
tablish the information required by the
Program Interruption Handler when a valid
recursion occurs.

Recursions that occur when the GTF
extension is not executing are treated as
errors, and the task that was executing is
abnormally terminated.

Event Recorxrding

(See Diagram 2.5)

Event recording occurs as a result of a
PER or MC (Monitor Call) gprogram interrug-
tion, or when the Program Interrurtion
BHandler processes any interruption for
which the tracing option is in effect.

For MC program interruptions, the GTF
resident routine is used. This routine
returns control directly to the interrupted
Frogram. No event recording is performed
for invalid recursions.

PER interruptions are serviced by the
DSS (dynamic support system) Program Intex-
ruption Handler and its related routines
(see the 0S/VS Dynamic Support System Logic
ranual).

For interruptions consisting of only MC
or PER, the supervisor's Program Interrup-
tion Handler exits to the interrupted pro-
gram via LPSW, unless a task switch has
kLeen estaklished by GTF, in which case GTF
passes control to the dispatcher.

Page Translation Exceptions

(See Diagrams 2.5 and 2.7)

A page translation exception (also
called a missing page interruption) occurs
when a virtual address cannot be translated
because the invalid bit in the page takle
entry for the address is set. Page trans-
lation exceptions (page faults) are signi-
fied by program interruption code X'11'. A
rage fault can also be caused by referenc-
ing an invalid page; this condition is

Section 2: Interruption Supervision 33



treated as a protection exception program
check (see Diagrams 2.5 and 2.8).

When a page fault occurs in the input/
output supervisor while the "IOS-in-
process®™ switch is set, the current task is
abnormally terminated via the ABTERM Prolo-
gue routine. If a page fault occurs in a
disabled routine and the system lock is on,
the task is also scheduled for abnormal
termination by the ABTERM Prologue routine.
If the interruption occurs in a disabled
routine and the system lock is not on, the
Program Interruption Handler turns it on
(until the referenced page is available) to
prohibit the execution of tasks that run
with interruptions disabled. Only tasks
that run with interruptions enabled are
dispatched until the system lock is turned
off by the disgpatcher.

When a page fault occurs in a user task
and the user has a valid SPIE exit routine,
the exit routine is dispatched. Otherwvise,
to process a page fault, the Program Inter-
ruption Handler branches to the paging
supervisor's Program-Check Interruption
Extension (IEAPIX). The extension either
reclaims the referenced page, assigns the
page for the first time, or initiates a
paging operation. The Program-Check Inter-
ruption Extension returns to the Program
Interruption Handler indicating whether the
page was reclaimed, assigned, or is to be
paged in. The Program Interrurtion Handler
exits directly to the task if the page was
reclaimed or assigned, or to the disgpatcher
to perform a task switch.

When an invalid page has been
referenced, the Program Interruption Handl-
er changes the interrugtion code to a pro-
tection exception and handles it as a norm-
al program—-check interruption.

Segment Translation Exceptions

(See Diagrams 2.5 and 2.8)

When a segment address cannot be trans-
lated by the hardware because the segment
table address is invalid, or the "segment-
invalid® bit in the segment takle entry is
set, a segment translation exception
occurs. Segment translation excertions are
signified by program interruption code
X'10'.

When a segment translation exception
occurs, the Program Interruption Handler
treats it the same as it treats a page
translation exception when an invalid page
has been referenced: the Program Interrup-
tion Handler changes the interruption code
to a protection exception and handles it as
a normal program-check interrurtion.

34

Program Interruptions from SSM (Set System

Mask) Instructions

(See Diagrams 2.5 and 2.6)

A centralized facility, MODESET, is used
to set the system mask to enable or disable
interruptions. BAny attempt to change the
system mask with an SSM instruction causes
a program interruption (interrupticn code
X'13").

To prevent a recursion that would result
from a page translation interruption, the
Program Interruption Handler issues a Load
Real Address instruction to determine if
the SSM operand is in real storage. If the
cperand is not in real storage, the inter-
ruption handler uses the paging sugervi-
sor's Program-Check Interruption Extension
(IEAPIX1) to obtain the page containing the
operand. When the SSM operand is in real
storage, the state of the superviscr lock
determines if and when the Program Inter-
ruption Handler must set the system mask as
indicated by the SSM ogerand.

If the state indicated by the SSM
instruction is the same as the state of the
requester, the interruption is treated as a
NOP and control is returned to the inter-
rupted routine by using an LPSW
instruction.

If the supervisor lock is set and the
issuer of the SSM instruction is the paging
supervisor, the Program Interruption Handl-
er sets the system mask as indicated by the
SSM operand. If the supervisor lock is set
and the issuer of the SSM instruction is
not the paging supervisor, the Program
Interruption Handler stacks the SSM
instruction, (decrements the address in the
cld PSW ky four Lytes and stores it in the
RB, saves registers in the TCB, and flags
the RB ncndispatchable until the supervisor
lock is off). It indicates a task switch
if necessary (if IEATCBP=IEATCBP+4) Ly set-
ting IEATCBP to zero. If a task switch has
been scheduled, the Program Interruption
Handler exits to the disgatcher; otherwise,
it returns control to the user via an IPSW.

Program—Check Interruptioms

(See Diagrams 2.5 and 2.8)

The Program Interruption Handler
receives control automatically after any
rrogram-check interruption. It tests the
0ld PSW to determine whether the interrur-
tion occurred in the supervisor or in user
code.

If the interruption occurred in a rou-
tine in the supervisor state, control is
passed to the ABTERM Prologue routine which

<

J

<9



schedules abnormal termination of the task
that was interrupted.

If the interruption occurred in user
code, the Program Interruption Handler
tests the TCB for a PIE (program interrup-
tion element) address. A PIE is a control
block associated with a user's error-
handling routine. If the user anticipates
a program-check interruption and wishes to
perform his own error handling, he issues a
SPIE (set program interruption element)
macro instruction. In response to the SPIE
macro instruction, the SPIE service routine
constructs a PIE and inserts its address in
the TCB.

If the supervisor finds no PIE address
in the TCB (indicating that the user did
not specify a routine to process program
interruptions), the ABTERM Prologue routine
is entered. If a PIE address is found, the
Program Interruption Handler tests to
determine whether the PIE is in real
storage. If a PIE exists and is not in
real storage, the Program Interruption
Handler uses the Program-Check Interruption
Extension of the paging supervisor to page
in the control block.

The Program Interruption Handler then
tests the "in-use" bit in the PIE. This
bit is set whenever control is given to the
user's error-handling routine. If the bit
is on, it means that the current program-
check interruption occurred while the error
routine was processing a previous program-
check interruption, and the task must be
terminated. If the "in-use® bit is zero,
the Program Interruption Handler determines
whether the PICA is in real storage and if
not, uses the paging supervisor's Program-
Check Interruption Extension to page in the
control block. Then the Program Interrur-
tion Handler determines whether the kind of
program interruption that occurred was spe-
cified in the SPIE macro instruction. If
it was, control is passed to the user's
error-handling routine. If it was not,
control is passed to the ABTERM Prologue
routine which, with the ABTERM routine,
schedules the abnormal termination of the
task.

When a user error-handling routine com-
rletes its processing, the supervisor Exit

routine is entered, and the interrurted
Frogram regains control via the disgatcher.

TRACING EVENTS

Caller

(See Diagrams 2.10 and 2.11)

The Trace function records up to 32
bytes of information, in the form cf a
Trace takle entry, each time it is called.
The information it records depends ugon
which of the six entry points is used. For
each entry point, Trace processing is tai-
lored to a specific caller as follows:

Trace Information Recorded
PSW to be dispatched; regi-
sters 0, 1, and 15 of the
task to be disgatched; TCB
to be dispatched, time
stamp.

Dispatcher

External FLIH 0ld PSW; registers 0, 1,
and 15; timer queue element
address (if a timer inter-
ruption occurred); time
stamp.

I/0 FLIH 0l1ld PSW; CSW; time stamp.

IOS Start 1/0 Condition code; device
address; CAW; CSW; TCB
associated with I/0; time
stamp.

Frogram FLIH 0ld PSW; registers 0, 1,
and 15; page or segment
exception address; current
TCB; time stamp.

SVC FLIH 0ld PSW; registers 0, 1,
and 15; current TCB; time
stamp.

The tracing option is selected at nuc-
leus initialization time. If the tracing
option is selected (that is, the numker of
Trace entries > 0) the nucleus initializa-
tion program sets CVITRACE = BR 10; other-
wise, CVTTRACE is set = BR 11 (to return
directly to the caller, byrassing the trac-
ing function).

A dump of the trace table can be
obtained via SVC DUMP or ABDUMP.

Section 2: Interruption Supervision 35






s uotTadniasjul :7 UOT3IOSS

uotrstTaIadn

LE

Interruption

(!-\

+ Diagram 2.0

Interruption Supervision
Visual Table of Contents

Tracing

Supervision Interruptions
1/O Interruption Type-1 SVC Handling External Program Tracing Supervisor Tracing Start
Handling Interruption Types 2, 3, and Interruption Interruption Interruptions 1/0 Operations
Handling 4 SVC Handling Handling
2, 2.2 Interruptions 5 3 2.4 2.5 2.10 2.1
SSM Interruption Page Fault Program~Check PIPIX Routine
Processing Processing Interruption
Handling
2.6 2.7 2.8 2.9




8€

Input

+4

+1

Control Register 1

Address of segment table -
IORGSW =

CVTPTR

]

location X'10'

1/0 old PSW

location X'38'

1/O new PSW

location X'78'

TCB
o '~‘_ _____

TCBRBP

TCBGRS

PVT

| PVTPWB I‘— =

IEATCB
Address of next TCB

—1 Address of current TCB

IEAODSO1

| Asynchronous exit flags

Processing

Output

Diagram 2.1
1/0 Interruption Handling

1/O Interruption ¢

From 1/O
supervisor

1

6

-7

10

IEAQIO00

Enter DSS (dynamic support system),
DSS is active. lssue performance ho

Set segment table origin register if not

already set.

If IORGSW is st Iy 5

if
ok .

A AN AR AN ANNANAANN AN NN N NN N AN ANNN NN NN

’\\\\\\\\\\\\ SNSRI AN e e B @
¢

i
]

DsS

Dynomic support system

GTF

Generalized trace facility

Address of syste:
NS (i

Control Register 1

segment table

RB for Interrupted Program

Otherwise, set tORGSW and save status

of interrupted program.

If TCB is the system wait time TCB

Record the interruption if tracing opt
was selected during nuclues
initialization.

Process |/O request.

DISMISS

If a paging operation caused the
interruption, branch to the paging
supervisor to post completion of the
paging 1/O operation.

Reset entry switch.

Exit to dispatcher if task switch or

ion

asynchronous exit has been scheduled.

Restore |/O old PSW, registers 0-15,
ond control register 1.

SMF Wait Time Routine

Updates the system
wait time.

Trace Routine

TRIO
2,10

1/0O Supervisor

Provides 1/O services
and error handling.

Paging Supervisor

IEAPIOP

5.28

Dispatcher

IEAODS

~>{ RBOPSW

IEASAV

> TCB general

registers

—]

To interrupted program
via LPSW

>

Control Register 1

Same as at entry

1/0 Old PSW

location X'38'
TCB

TCBGRS




s uot3dnixajuy :z UOTIIOAS

uorstaxadn

6€

Diagram 2.1 I/O Interruption Handling (Module IEAVNVO0O)

C

r T 1
|ROUTINE |
NOTES | NAME LABEL |
4 I
T 1
3 When the I/0 First-Level Interruption Handler (I/O |LEAQIO000 |
FLIH) is entered initially, it sets the I/0 criginal |
entry switch (IORGSW). This switch permits the I/C FLIH|
to distinguish between an initial entry for an 1/0 |
operation (when register contents and status information| | |
must be saved) and recursions like those resulting from | |
retries cf the 1/0 operation due to errors (when regist-| |
| er contents have already been saved). | |
| | | |
| 4 | TEAQWAIT| |
| | |
5 The I/C FLIH branches to CVTITRACE which contains either |IEAGIOO00|NIOS |
a BR 11 or a branch instruction to the Trace routine | IEAGTRCE | TRIO |
| (if the tracing option was selected). Ccntrcl is re- | |
| turned tco the I/0 FLIH. | |
| l | I
| 6 |IEACIOO00| |
| | DISMISS | |
| | | |
1 7 | IEAPIOP | |
| | | |
| 8 | IEAQIO00| OFFIOSW |
| | |
| 9 A task switch is pending if IEATCBP / IEATCRP+4. An IEAQIOO00| IODISP |
| asynchronous exit routine is pending if
| IEAODSO1+1 = X'FO'.
| |
|10 The vSW saved in the top RB (RBOPSW) of the ciurrent TCB |IEAGIO00 |
| |
| |
| |
| |
| |
L 4

(IEATCBP+4) is restored to the I/0 old PSW location,
control register 1 is set to the approrriate segrent

table, ygeneral registers are restored, an MC instruction

is issued via a HOCK macro instruction, and control is
passed to the interrup<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>