SY27-7243-1

0OS/VS2 IPL and NIP
Systems Logic

VS2 Release 1.6

BV

Second Edition (September, 1974)

This edition is a minor revision of SY27-7243-0
incorporating TNL GN27-1406. These editions
are still current.

This publication applies to release 1.6 of 05/VS2 and to all
subsequent releases unless otherwise indicated in new edi-
tions or technical newsletters. Changes are continually made
to the specifications in this book; before using this book,
consult the most recent edition of the IBM System/360 and
System/370 Bibliography, GA22-6822, and the current SRL News-
letter for editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM
representative or the IBM branch office serving your locality.

A form for reader's comments appears at the back of this publication.
If the form has been removed, comments may be addressed to IBM Corpora-
tion, Programming Publications, Department 636, Neighborhood Road,
Kingston, New York 12401. All comments become the property of IBM.

© Copyright International Business Machines Corporation 1972

[P

brwg .. o

This publication describes the logic of
IPL (initial program loader) and NIP (nuc-
leus initialization program) for 0OS/VS2.
The information is intended for use ky per-
sonnel responsible for program maintenance.
IPL loads the nucleus designated by the
user and prepares the system for initiali-
zation. NIP initializes the nucleus and
the remainder of real storage in prepara-
tion for system execution.

ORGANIZATION OF THIS BOOK

This publication contains six sections.

"Section 1. Introduction®™ provides an
overview of the functions performed by IPL/
NIP and contains background information on
linkage between modules and sukroutines.
The section also describes real storage
areas, data sets used by IPL/NIP, format-
ting page data sets, and the quickstart/
coldstart process.

"Section 2. Method of Operation"
describes in more detail the functions per-
formed by the IPL/NIP modules. Method-of-
operation diagrams show the input, process-
ing, and output of modules and subroutines.

"Section 3. Program Organization"
describes the structure of the IPL/NIP
modules. It also contains flowcharts of
complex areas of code.

PREFACE

"Section 4. Directory" contains a dire-
ctory of entry points, showing module
names, function, and diagram number.

"Section 5. Data Areas" contains
descriptions of control blocks and data
areas used by IPI/NIP.

"Section 6. TCiagnostic Aids" contains
messages and wait state codes issued Ly the
IPI/NIP modules. It also contains a
register usage table and a module data
field cross-reference table.

PREREQUISITE READING

Readers of this publication should ke
familiar with the following 0OS/VS
publications:

0S/VS2 Sugervisor Logic, SY27-7244.
0S/VS Supervisor Services and Macro
Instructions, GC27-6979.

Surplementary Reading

Information in the following puklica-
tions may be helrful in understanding IPL
and NIP:

VS2 System Messages, GC28-1002.
0S/VS_System Codes, GC28-1003.

VS2 Orerator's Reference, GC38-0210.
VS2 System Data Areas, SY28-0606.

iii

CONTENTS

SECTION 1: INTRODUCTION « « « « o «
The Initial Program Loader
The Nucleus Initialization Program .
Linkage to Service Subroutines . . .

Page Data Set Formatting and the Quickstart/Coldstart

Data Sets Used by IPL/NIP . . « « .

Real Storage Areas During NIP Execution .

Data Areas and Control Blocks Used by

SECTION 2: METHOD OF OPERATION . . .
Using Method-of-Operation Diagrams .
The IPL Records and IEAIPLOO (Diagram
The Nucleus Initialization Program .
IEAVNIPO (Diagram 2.0) . . .
IEAVNIPM (Diagram 3.0)
IEAVNPOl1 (Ciagram 4.0)
IEAVNPO2 (Diagram 5.0)
IEAVNPO3 (Ciagram 6.0)
IEAVNPOY4 (Diagram 7.0)
IEAVNPAY4 (Diagram 8.0)
IEAVNPOS (Diagxam 9.0)
IEAVNPAS (Diagram 10.0)
IEAVNPO6 (Diagram 11.0)
IEAVNPO7 (Diagram 12.0)
IEAVNIPX .

e ® o o o o o4 o o
e & o o & o o o
° o .
e & & o o o o o
® o o & o o o o o o
. e o o o

SECTION 3: PROGRAM ORGANIZATION . . .

SECTION 4: DIRECTIORY . ¢ ¢ ¢ ¢ o o &
SECTION 5: DATA AREAS . .
IPIDATA « ¢« « o o o o .
NIPMOUNT Parameter Llst .
NIPOPEN Parameter List . .
NIPWTO Message Header
NIPWTOR Parameter List
NIP Vector Table (NVT)
Page Device Information Table .
Page Device Takle
NIP PARMAREA . « o ¢ o o o o o
Parameter Address Takle (PARMTAB
E

.
e o s o o o

Parameter Table Entry . . .
guickstart Record 1 (NIPQSRl)
Quickstart Record 2 (NIPQSR2)
Quickstart Record 3 (NIPQSR3)
Slot Queue . .« . . ¢ o o o

NIP System Parameter Entry (SP)

® o o & 0 Nr s s o o o
.

e & o o o o o

e o o o o o

SECTION 6: DIAGNOSTIC AILS . . .
Register Usage Takle . . . « « . . .

GLOSSARY =« « ¢ o o o o o o o o o o

INDEX ¢ ¢ o o o o o o o o o o o o o o

iv

NIP

e o o o o o o o

e s o o

e o o o o o o

Process

L T N]

NNNoPR R

.177

.177
.178
179
.180
.180
.181
.182
.183
.183
.183
.184
.184

.185
.189

.192
.196

- iy

2

X

o ngll

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
tial paging
Figure 15.

Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
routine
Diagram
Diagram
IEAVNIPM w
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
build OP
Diagram
Diagram
Diagram
Diagram
address
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Ciagram

O\O‘\O‘\O\HG\O\U\WU’\EJ:

WO OWOOWOWODDODOOX 0OMONION

e & 8 & 8 s 8+ & & 2 s &

NVEWNROONOAUNELNRORMOOGO:

ILLUSTRATIONS
Key to symkols in method-of-operation diagrams 9
Location of IPL records in real stcrage 12
Contents of real storage before and after IPL relocation 13
Definition of real storage ¢ ¢« ¢ ¢« « « « . 15
Organization of the initial system queue area 16
System segment and page takles. . . e I
Real storage at completion of IEAVNIPO execution 17
Dynamic address translation ¢« ¢« « ¢« « « « « . . 18
Creating system parameter area . . « « « « o « « « « « o 20
Building OPERTAB =« « ¢ o « « o o o o s o o o o o o « « » 21
Building PLIBTAB e e o o 2 o = o = e o o + o o 21
Merging OPERTAB into PLIBTAB e @ o o o o o o o o o o o o 21
Building the PARMAREA . . o« ¢ o o o e o s o « o o o o « & 21
Real storage after paging device initialization and ini-
area definition .« . ¢ ¢ ¢ ¢ ¢ 4 i 4 e e 4 e e e e e o 23
Organization of IPL/NIP modules and subroutines170
IPL/NIP processing o« « e s e e e o o 2
NIP processing under control of IEAVNIPM e« o o o o« o« o o« 3
IEAPILOO Initial Program Iocad . . .« « « « ¢ « « & « « « 32
IEAVNIPO Initial NIP Processing . . « « « « « « « o « « 36
IFAVNIPM Control ROUtine « . o« o o o o o« o « « « « « « o U2
NIPILCAD Load specified modules« . . e o o 4y
NIPSVC and NIPSVCX Provide linkage to spec1f1ed SVC
. e o e e o @ . . « o o o @ e o o o o o o o o o 46
NIPUCBFN Find UCB for specified unit e e e e o o o o o o U8
NIPTIME Determine absolute time or relative time since
entered. e o o o o e o o e e o o o a a o o« « & 50
: IEAVNPO1 Inltlallze Systermr Consoles .« ¢« « ¢ « o o « « o 52
: NP1INIT and NPI1TCOMM Estaklish operator communications . 54
: IEAVNPO2 Contrcl Routine . . . ¢ ¢ ¢ ¢ ¢ o o« o o o « « « 56
: NIPMOUNT Mount specified volume on specified device . . 58
: NIPOPEN Open specified data set « « ¢+ ¢« « « « « 60
: IEAVNPO3 Initialize page data sets . « ¢ « « ¢« « « « « o 61
: NP3OPSP Check validity of operator parameters and
BB v « « o o 2 o o o o o o o o e o o s e o e o o o o o o o 62
: NP3PBASE Allocate and initialize PARMAREA 64
: NP3PMLIB COpen SYS1.PARMLIE data set . . <« .« ¢« « « « . « 66
: NP3SYSP Build the PLIBTAB . « o« « o« « « s« o « « « « « o 68
: NP4PTAB Move parameters into FARMAREA; set PARMTAER
e @ o e o o o e a4 e o o o e s o o e a a e o o e« e« a o o o 10
NP3LCAT Concatenate members with SYS1.LINKLIB 72
IEAVNPO4 Open and format page data sets 74
NPUPDSEL Initialize paging devices . . . ¢« ¢ ¢ « « « « « 76
IEAVNPA4 Contrcl Routine . . « « ¢ o « « o =« . . 718
NPAUREAD and NPAUWRIT Read and write qu1ckstart records 80
NPA4GBUF Obtain quickstart kuffer 82
NPAUFREE Free quickstart kuffer 84
NPA4INTF and NPA4RSTB Initiate or restart processing . . 86
NPA4BCCV Determine number of available pages 88
NPAUINTC Initialize PVT . . ¢ ¢ o o« o « o o o« o s « « « 90
NPAULOAD Ioad specified module . « « o« o « o o o « o « o 92
NPAUCCST Corplete LPA coldstart process . . . e « < « 94
IEAVNPOS5 Initialize link pack area and BLDL table e o o 96
NP5Q0SLPA Initialize table entries « . . 98
NPS5CSLPA Attach IEAVNPAS « . e o o o « « o <100
NP5VTCB Load, attach, and delete IEAVNPAS e o s o o o o102
NPS5IPLIB Initialize SYS1.LPALIB . « « « « « o « « « » <104
NPS5MLPA Load specified modules into LPA106

Diagram 9.6: NPS5BLDLP Include modules in BIDL takle
Diagram 10.0: IEAVNPAS5 Control Routine ¢ ¢ ¢ ¢ o o o o &
Diagram 10.1: NPAS5MLPA Load specified modules into LPA
Diagram 10.2: NPASBLDL Allocate storage for, and move, BLDL tatle .

Diagram 10.3: NPASCLPA Coldstart process; kuild IPA
Diagram 10.4: NPASTERM Release BLDL save area . . - .« .
Diagram 10.5: NPASLGRP Load grougs of modules SpECIfled by LPA

packing list e o o o o o e s o e s o & o o o o @ - .

Diagram 11.0: IEAVNPO6 Initialize reliability and serviceability
features . . . ¢ ¢ ¢ i i i i i i i i e e e e e e o o o o o o o
Diagram 11.1: NPSDSS Initialize DSS (dynamic support system) . . .
Diagram 11.2: NP6DMP Initialize SYS1.DUMP . . . « o« & =« o« « « &
Diagram 11.3: NP6RMS Initialize RMS (recovery management support) .
Diagram 11.4: NP6TRA Initialize the trace function
Diagram 12.0: IEAVNPO7 Call routines sequentially
Diagram 12.1: NP7HDCPY Define the conscle or system log data set to
be used for message hardcopy « « . © e e e a2 e 4 o o =
Diagram 12.2: NP7PDCM Relate each graphic dev1ce to its)
LPA-resident DCM . . . e o o . © e o e e e o e e o e o o
Diagram 12.3: NP7LPAFN Find a module inthe IPA . . . « « « ¢« « « .
Diagram 12.4: NP7PAL Define page algorithm limit values
Diagram 12.5: NP7EPFP Test for the presence of the
extended-precision floating-point feature ¢« ¢« ¢ . ¢ . . .
Diagram 13.0: IEAVNIPX Organize NIP exit processing
Diagram 13.1: NPXAPG Define the task dispatcher's APG . . .« o .
Diagram 13.2: NPXTMSL Build the required numker of TSCEs (time
slice control elements) in the SQA e e o o
Diagram 13.3: NPXQCELL Define SQA and 1SQA qu1ckcell areas e o o @
Diagram 13.4: NPXMPA Define virtual address space dedicated to

master scheduler region « o o = . . . o
Diagram 13.5: NPXMPAl Establish 11m1ts on tackground and TSO use of
auxiliary storage

Diagram 13.6: NPXFJPQ Release control hlocks for NIP-loaded modules
Diagram 13.7: NPXMLSQA Allocate the 51ngle—segnent LSQA related to
master scheduler region « o e e o e o o o @
Diagram 13.8: NPXPFTAQ Define available page frames « e o .
Diagram 13.9: NPXMCSPO Define shared subpool 0 for master scheduler
and communication task . . . - e e e e o o o @
Diagram 13.10: NPXRDAT Reset DAT tables and exit to master

scheduler Initialization routine . . . ¢ ¢ ¢ ¢ ¢ ¢ o ¢« o o o « o &

Chart AA. NIPMOUNT ProcesSsing . « « « « o o o « o o o o s o o« « o

.108
.110
-112
.114
.116
.118

-120

.122
.124
.126
.130
.132
.134

-136
.138
-140
.142
.144
.146
.150

-.152
154

.156

.158
.160

.162
.164

.166

IPL (initial program loader) and NIP
(nucleus initialization program) initialize
the VS2 system by loading the supervisor
and preparing the system for execution.
Because the functions of IPL and NIP are
related, and because NIP execution irmedi-
ately follows IPL execution, IPL and NIP
are treated in this publication as one
component .

Diagrams 0.1 and 0.2 show the wain func-
tions performed by IPL and NIP.

THE INITIAL PROGRAM LOADER

IPL is brought into real storage when
the operator presses the LOAD button. (See
"Section 2: Method of Operation®™ for a
description of how IEAIPLOO is loaded.)

IPL loads the resident nucleus that was
created during system generation (either a
nucleus designated by the user or omne
assigned by the system). IPL then limits
real storage to the size specified by the
user (if defaulted, it is to the actual
size of real storage), and clears real
storage up to the effective size to 0°'s.
IEAIPLOO initializes system tables and gen-
eral registers for use during NIP
execution.

After IPL has been executed, control is
rassed to the first NIP module, IEAVNIPO,
which was loaded as part of the resident
nucleus.

THE NUCLEUS INITIALIZATION PROGRAM

NIP initializes real storage, provides
access to the various system data sets, and
provides access to virtual storage by
initializing the appropriate paging tables.
Because NIP performs its functions sequen-
tially, and because each function is per-
formed primarily by one module (often with
assistance from a service module), NIP
execution is described on a module basis.

The modules IEAVNIPM and IEAVNPO2 each
performs special sequential processing, Lut
those modules also contain subroutines that

SECTION 1: INTROLUCTION

perform common functions for one cor more
other NIP modules. IEAVNPA4 and IEAVNPAS
function solely as service routines.

The NIP modules perform the following
functions:

e Define the initial part of the NVT (NIP
vector table), define the SQA (system
queue area), define the nucleus buffer,
define NIP's dynamic area, provide
access to the SYS1.NUCLEUS data set,
and place the CPU in EC (extended con-
trol) mode with translation enabled
(IEAVNIPO).

e Ccontrol the sequence of executicn for
NIP modules and handle requests for
execution of nonresident SVC routines
(IEAVNIPM).

e Initialize system consoles (IEAVNPOl).

e Initialize the system device configura-
tion, the SVC library (SYS1.SVC1IB),
and the system log data set (SYSl.
LOGREC) (IEAVNPO2).

e Process parameters specified by the
system programmer and the operator
(IEAVNPO3).

e Initialize paging control blocks and
data areas for the paging supervisor
(IEAVNPO4 and IEAVNPA4).

o Define link pack area mrodules for
quickstart or coldstart processing
(IEAVNPO5 and IEAVNPAS).

e Initialize the reliability and servi-
ceakility (RAS) features (IEAVNPO6).

e Define the hardcopy console, pageakle
CCMs (display control modules), and the
paging algorithm limit values
(IEAVNPO7).

e Define the nonpageable dynamic area,
quickcell tables, available stcrage,
the master scheduler's region, and the
dispatcher's APG (authorized rriority
groug) takle and time-slice queues
(IEAVNIPX).

Section 1: Introduction 1

IPL Unit

Y
~

IEAIPLOO

1 Load selected nucleus.

Set to Zeros

SYS1.NUCLEUS

Diagram 0.1: IPL/NIP processing

IEAVNIPO

2 Define real storoge above
nucleus. Initialize NVT,

Initialize system
segment table and
associated page
tables.

NVT

Resident Nucleus

System Queue Area

Initial Paging Area

NIP's Dynamic Region

Nucleus Buffer

T

IEAVNIPM

3 Move NVT to dynamic area.
Sequentially load, branch to,
delete other NIP modules.
See Diagram 1.2.

Diagram 1.2
Parts 1, 2,
and 3

IEAVNIPX

4 Perform NIP exit processing .
Initialize for master scheduler.

SR

“

IEAVNIPM

NVT

Other NIP Modules

-H

N

From [EAVNIPM) IEAVNPO1
Diagram 1.1

IEASY Sxx

—
—

SQA
1 Initialize operator
consoles,
IEAVNIPM
______ 1 IEAVNPO1
} UCMs
| | antaiae i
| |
r ______________________ _1' UCBs Resident Nucleus
|
|
_______ -
To IEAVNIPM
Diagram 1,1
C From |EAVNIPM) IEAVNPO2
Diagram 1.1
SQA
2 Initialize non-console
devices and system
library .
_________________________ 1
; IEAVNIPM
|
| IEAVNPO02
[
|
____________ 4 UCBs
T A
Diagram 1.1
From IEAVNIPM
(Diogram 1.1) [EAVNPO3
SQA
3 interpret system
parameters specified
by operator and via
SYSP. Initialize
PARMLIB and LINKLIB.
IEAVNIPM
PARMAREA IEAVNPO3
> Nocleus Buffer
Residant Nucleus
To IEAVNIPM
Diagram 1.1
Diagram 0.2: NIP processing under control of IEAVNIPM
Section 1: Introduction

From [EAVNIPM IEAVNPO4
Diagram 1.1

IEAVNPA4 o
A
4 Interpret SQA, CLPA, al
CPQE, and PAGE
parameters.
© IEAVNIPM
Page Frame Table [EAVINPOA
Channe! Program IEAVNPA4
Queuve
N
> Page Device Table Nuclas Subler
IEASY Sxx
tj Write quick start Pafge Device g Amident Nuclews
records if cold : Information Table
start. and Cylinder
Count Vector
\\~‘___.,//<: To [EAVNIPM
SYS1.PAGE Diagram 1.1
IEAVNPO5
IEAVNPA5S
C From IEAVNIPM
Diagram 1.1 IEAVNPA4
5 Define pageable link pack area QA
using cold start or quick start
process; load LPA modules, build i> LPA Page
resident BLDL table and allocate
SYS1.PAGE. Interpret MLPA, :>
FIX, BLDL, and BLDLF parameters. (MLPA)
(BLDL) IEAVNIPM
IEAVNPO5
© IEAVNPA4
To IEAVNIPM IEAVNPAS
Diagram 1.1 ::V:\) 6
— (FIX)

SYS1.LPALIB (BLDLF) Rasident Nuclous
M] v
v

SYS1.SVCLIB
Mo
M

SYST.LINKLIB
N A

Diagram 0-2: NIP processing under control of IEAVNIPM (Part 2 of 3)

From IEAVNIPM
Diagram 1.1

IEAVNPO6

6 Initialize system RAS
S facilities. Poaging S
N— IEAVNIPM
IEAVNP06
\\/
ion Free Spoce
SYS1.DSSVM < L — t' ________
> Nuclew Buffer
) Permanent Troce Table
SYS1.DUMP Resident Nucleus
?
_—/
Y ST-LINKLIBL (RS Modules)
N—
To IEAVNIPM
Diagram 1.1
Fr‘om IEAVNIPM IEAVNPO7
Diagram 1.1
7 Defines hardcopy console,
pageable DCMs, page algorithm
limit values, locates SVC OPEN Poging Space
resident router and tests for IEAVN IPM
extended precision floating point
hardware . IEAVNPO7
S
' Nuclous
|
|
!
Graphic ¢ e J
Display JY - - - - -0 0=
To IEAVNIPM
Diagram 1.1
PCiagram 0-2: NIP processing under control of IEAVNIPM (Part 3 of 3)
Section 1: Introduction 5

http:IIIISw.nt

LINKAGE TO SERVICE SUBROUTINES

In addition to mainline processing, the
NIP modules IEAVNIPM, IEAVNP02, and IEAVN-
PA4 contain subroutines that perform common
functions for other NIP modules. The IEAV-
NIPM and IEAVNPO2 subroutines are executed
in response to the NIP macro instruction
IEAPMNIP. When an IEAVNIPM subroutine is
requested, the macro expands to contain the
address of the required subroutine and a
BAL instruction to that address. When the
IEAPMNIP macro instruction specifies a sub-
routine within IEAVNP0O2, the macro expan-
sion contains a BAL to the NIPLOAD subrou-
tine within IEAVNIPM to load IEAVNPO2, a
BAL to the IEAVNP02 subroutine entry point,
and an SVC 9 (DELETE) instruction.

IEAVNPA4 is initially brought into
storage when the IEAPMNIP macro instruction
is issued by IEAVNPO4 (the expansion con-
tains the BAL to NIPLOAD to load IEAVNPA4
and a BAL to the entry point). Subsequent
entries from IEAVNPO4, IEAVNP05, and IEAVN~-
PA5 are by a BALR instruction which con-
tains the entry address found in the NIP
vector table. The particular subroutine
required is indicated by bit settings in
the parameter list passed in register 1.
The last linkage from IEAVNPO5 to an IEAVN-
PA4 subroutine is also by the IEAPMNIP
macro. This expansion contains an SVC 9
(DELETE) instruction to logically remove
IEAVNPA4 from storage.

PAGE DATA SET FORMATTING AND THE
QUICKSTART/COLDSTART PROCESS

Oone of the required NIP functions is to
initialize the page data sets. Each paging
device specified during system generation
or by the operator using the PAGE parameter
is considered a page data set and is
referred to as such in the following
discussion.

For each unformatted page data set, only
the "home address"™ and record 0 contents of
any track are known, and the remainder of
the track must be formatted into records of
specified size and characteristics. NIP
formats each page data set by executing a
channel program which writes the count,
key, and data for the specified number of
records. The channel program varies
depending on the type of device containing
the data set being formatted and the PAGE
parameter specifications.

For each data set that is formatted, NIP
maintains a record, called a quickstart
record, or NIPQSR1. Each NIPQSR1 record
contains the number of tracks formatted,
the number of pages in the data set that
are available (a page is unavailable if the
track is defective or if it will be allo-

cated to NIPCSR1), and a "bit map" that
indicates which rages are available. Each
NIPQSR1 record is written to record 1 of
the first track of the page data set.

The NIPQSR1 records serve an important
function when the operator must restart the
system by performing another IPL. During
NIP processing for the restart, NIP checks
the NIPQSR1 record for each page data set
to determine whether the data set must be
reformatted. NIP performs the I/0 opera-
tions required to reformat a page data set
only when:

e The NIPQSR1 record cannot be read
(either the data set was not formatted
or the NIPQSR1 record is defective).

e As part of the system restart, the
operator has entered new specifications
for the data set, and the data set is
too small to meet the requirements.

e The cperator has entered new specifica-
tions for the data set, and a factor
other than size requires the data set
to be reformatted.

Because the pages for the LPA (link pack
area) remain static during execution, two
additional quickstart records are created
to provide additional information akout the
LPA rage data set. The additional records
are NIPQSR2 and NIPQSR3.

NIPQSR2 contains the virtual address of
the LPA directory, the highest virtual
address assigned to the LPA, and a bit map
of available pages in the data set.

NIPQSR3 contains a slot/group map of the
sequential LPA address space. There may be
one to three NIPQSR3 records for the LPA
page data set.

guickstart and Coldstart Process: During
the first IPL for a system, NIP reads the
LPA modules from the SYSl1l.LPALIB data set
and writes (loads) them into the LPA page
data set. At the same time, NIP builds the
NIPQSR2 and NIPQSR3 records and writes them
to the data set.

Normally, the LPA modules are not
reloaded during a subsequent IPL. The only
time they are reloaded is when:

e The NIPQSR1 record for the LPA page
data set cannot be read, forcing NIP to
reformat the data set and relocad the
modules because it has no assurance
that the data set has previously keen
formatted.

e The operator specifies the CLPA para-
meter, indicating that the contents of
the LPA are to be modified during the
restart.

e The PAGE parameter specifies that
anocther data set is to contain the LPA.

e The SQA system parameter is so speci-
fied that SQA infringes on the LPA vir-
tual address space, and the operator
accepts this condition.

The initialization*’ process in which the
LPA modules must be loaded into the data
set is called the coldstart process.

The process of reinitializing the system
without reloading the LPA modules (that is,
by using the LPA page data set created dur-
ing a previous initialization) is called
the quickstart process. This name refers
to the time saved by not having to reload
the LPA modules.

DATA SETS USED BY IPL/NIP

Because all data used by IPL/NIP ori-
ginates in or will reside in system data
sets, it is important to be familiar with
the following list of these data sets and
brief descriptions of their contents.

e SYS1.NUCLEUS -- Contains the resident
nucleus and all NIP
modules.

e SYS1.LOGREC ~- Used for recording I/0

and hardware errors.

¢ SYS1.LINKLIB -- Contains user and sys-
tem programs.

e SYS1.SVCLIB -- Contains the type 3 and
4 SVC routines used
“during NIP processing
and RMS routines.

Contains all of the
modules for the link
pack area.

e SYS1.LPALIB

e SYS1.PAGE -- Contains the auxiliary
space for system
paging.

e SYS1.DUMP -- Used for dumping the

contents of storage.

e SYS1.PARMLIB -- Contains the system
parameters referred to
with the SYSP parameter
from the operator con-
sole and the LINKLIB
concatenation member,
LNKLST00, and the MLPA,
FIX, and BLDL module
name lists.

e SYS1.DSSVM -- Contains the dynamic

support system virtual
storage.

REAL STORAGE AREAS DURING NIP EXECUTION

During NIP execution, real storage is
logically divided into several areas.
Because these areas are continually
referred to in the method-of-operation dia-
grams and the text in Section 2, brief
descriptions of these areas and their con-
tents are provided. The following are
descriptions of the real storage areas in
ascending order (from the lowest address to
the highest):

e Nucleus: This is the lowest area of
real storage and contains the modules,
system control blocks, and system data
areas that remain in real storage dur-
ing execution. Because they remain in
real storage, no paging is required.
The nucleus is created during system
generation, and some of its control
blocks are initialized during IPL/NIP
execution.

e Nucleus Buffer: This area occugies the
space immediately above the nucleus.
It contains additional control klocks
and data areas created by NIP. The
nucleus buffer becomes a logical and
physical extension of the nucleus. Two
fields in the NIP vector table
(NVTNUCND and NVTBUFND) point to the
next area in the nucleus buffer into
which additional data can be placed,
and the upgper limit of the nucleus
buffer, respectively.

e NIP's Dynamic Area: This area is imme-
diately above the nucleus buffer and
contains the NIP modules that are
required for execution of NIP. The
modules are loaded into the highest
availakle area within the dynamic area.

e Initial Paging Area: This area is
immediately above NIP's dynamic area
and is used for praging functions during
NIP execution.

e System Queue Area: This area is in the
highest real storage space. It con-
tains the control blocks and queue ele-
ments required for virtual storage
supervision and the segment and page
tables required for paging supervision.

DATA AREAS AND CONTROL BILOCKS USEL EY NIP

The following data areas and control
blocks are used only during NIP execution.
They are either overlaid during system
execution (for example, the NVT and the
PARMAREA) or are not used (for examgle, the
quickstart records).

Section 1: Introduction 7

NIP Vector Table (NVT)

The NVT contains pointers and flags that
are used only ky NIP. Its relationship to
NIP execution is similar to that of the CVT
to system execution. The NVT base is
created by IEAVNIPO and is moved into and
further initialized by IEAVNIPM. It is
used by all NIP modules.

Quickstart Records

There are three types of quickstart
records. The first type, NIPQSR1l, is
created and written to a page data set when
the data set is formatted. The other two
types of records, NIPQSR2 and NIPQSR3, are

created and written only for page data sets
containing link pack area modules. The
contents and use of the quickstart records
are more fully described under “"Page Data
Set Initialiization and the Quickstart/
Coldstart Process"™ in this section.

PARMAREA

The PARMAREA is created by IEAVNPO3 and
initialized with the system parameters spe-
cified by the system programmer or by the
operator. It also contains a table of
addresses (PARMTAB) that point to the sys-
tem parameters and a data area required for
reading the system parameters from the
SYS1.PARMLIB.

This section uses text and diagrams to
describe the functions performed by IPL/
NIP. The method-of-operation diagrams are
the primary vehicle for describing the IPL/
NIP functions. Notice that the diagrams
emphasize the sequence of functions rather
than the detailed step-by-step logic found
in flowcharts. For information on how to
use the diagrams, please read the next sub-
section, "Using Method-of-Operation
Diagrams."

The text in this section supplements the
diagrams. The text descrikes kriefly the
functions performed by each module and the
major subroutines within each module.
Detailed descriptions of complex processing
are given in "Section 3: Prograr
Organization."

The initial program loader is the fourth
record on cylinder 0, track 0 of the system
residence volume. The nucleus initializa-
tion program modules are members of the
SYS1.NUCLEUS data set. IPL loads the resi-
dent nucleus and the first NIP module, IEA-
VNIPO, which was previously link-edited
with the resident nucleus to form the
IEANUCOXx memker of the SYS1.NUCLEUS data
set. IEAVNIPO in turn causes the loading
of the NIP control module, IEAVNIPM, which
sequentially loads and deletes IEAVNPO1,
IEAVNPO2, IEAVNPO03, IEAVNPO4, IEAVNPOS,
IEAVNPO6, and IEAVNPO7. A subroutine
within IEAVNIPM also causes the loading and
deletion of IEAVNPO2 when subroutines
within it are required by other NIP
modules.

Other special loading and deletion
operations are:

e IEAVNPAY4 is loaded by IEAVNIPM for
IEAVNPO4 and deleted by IEAVNPOS.

e IEAVNPAS is loaded by IEAVNIPM for
IEAVNPO5 and deleted by IEAVNPOS.

e IEAVNIPX is loaded by IEAVNIPM and is
self deleted.

The IPL and NIP modules are described in

this section in the order in which they are
normally executed.

USING METHOD-OF-OPERATION DIAGRAMS

Method-of-operation diagrams are gro-
vided for all IPL/NIP modules and most of
the subroutines within these modules.
These diagrams describe the functions per-

SECTION 2: METHOD OF OPERATION

formed by the modules and show the input
and outrut associated with the functions.

Where necessary, the rrocessing steps in
a method~of-operation diagram are further
explained by "Notes on Processing." Each
note amplifies a functional statement in
the diagram and gives the label in the code
that performs the function. Each note is
related to the appropriate processing step
Lty the function number (the number adjacent
to the step in the diagram). Where no note
is given, it is presumed that the statement
in the diagram and the comments in the code
provide an adequate explanation of the
function. The reference labels included in
the "Notes on Processing" provide a means
cf finding the point in the code at which
each function is performed.

To help the reader understand and use
these diagrams, this section contains a
sample diagram, an explanation of diagram-
ring conventions (Figure 1), and text that
explains the sample diagram.

The sample diagram describes the func-
tions performed ky module IEAVNzzz. The
first five characters in all NIP module
names are "IEAVN". The characters "zzz"
represent the unique suffix in each module
name.

The wide, shaded arrow indicates entry
to a module, exits from a module, or major
paths of execution within or between
modules. Entry to the module in the sample
diagram is from IEAVNxxx, Step y.

MEANING OF ARROWS USED IN METHOD-OF-OPERATION DIAGRAMS

Primary Entry/Exit Path -- Shows the path
followed to accomplish the principle function
of the body of code described by the diagram,

Secondary Path -- Shows the path used by a
processing step to accomplish a subordinate
function.

1

Pointer -~ Shows that a field in one data area
contains the address of another field or data
area.

Data Reference -- Shows that the contents of
a data area are tested or read to determine
the course of subsequent processing .

Data Modification == Indicates data
modification (change to any field or
register).

\Y%

Figure 1. Key to symbols in method-of-

operation diagrams

Section 2: Method of Operation 9

0ot

From Diagrom X.X,
Step Y

Register nn

Processing

IEAVNzzz
I 1 Perform Function 1 processing .

|- 2 Perform Function 2 processing.
P! ng

3 Perform Function 3 processing.

4 Determine whether . . .

F B Perform Function 4 processing .

6 Set code.

]| Subroutine D

X.X
Not done

—eess——)>

Subroutine C

X.X

IEAVNyyy
Diogram XX, Step Y

Diagram X.X: IEAVNzzz
Sample Diagram

Output

NIPSWAIT
X'00'

17 UOT3IOBS

11 uot3exado 3O POYISMN

Diagram X.X IEAVNzzz

~ T
| Notes on Processing | Lakel
4

[S e —— T S—— —— — — T — —— —

C

1.

T
This note would explain in more | IEAVNZzzZ

detail the processing for function|
1. |

control is passed to a subroutine |Label2
that is not part of this module. |

control is passed to a sukroutine |Lakel3
that is part of this module. |

|
This note would amplify the deci- |Labell
sion made. |

I

|

Exit is to IEAVNyyy.

The system is put in a wait state |Lakel5
with the code X'00°'. |

Processing Steps 1 and 2 refer to fields
CVTaaaaa and NVTkkkkb. Data areas used
across the system are described fully in
VS2 Data Areas. Data areas pertinent only
to NIR are described in Section 5 of this
manual. Referring to a field usually
involves loading the contents of the field
into a register for testing or addressing.
A reference to a field does not include
modification of the field.

To perform functions 2 and 3, the module
in the sample diagram requires the services
of other routines. Module C is another
module (it may be a NIP module) used to
rperform function 2. Linkage to another NIP
module is achieved by issuing an internal
NIP macro instruction, the expansion of
which causes (1) the NIPLOAD subroutine in
IEAVNIPM to be entered to load the module,
(2) a BAL instruction to give control to
the module, (3) the required input parame-
ters to be expanded inline, and (4) a sub-
sequent SVC instruction to delete the
module. Function 3 requires the processing
of Subroutine D which is within this
module. Subroutines described in this
manner are entered by a BAL instruction and
normally return control to the next sequen-
tial instruction. Where modules and sub-
routines are described by method-of-
operation diagrams in this manual, the
number of the diagram is given in the lower
right-hand corner.

In cases where secondary or surgortive
Erocessing is required, the narrower shaded
arrows indicate the flow of processing.

The fifth processing step uses the con-
tents of register nn. The contents of
other registers are not shown as ingut
because they are not used by this module.

The normal exit from this module is to
module IEAVNggg. Where appropriate, the
number of the step in the diagram to which
exit is made is shown.

The error processing that occurs in ent-
ering a disabled wait state includes stor-
ing a wait state code and branching to the
NIPSWAIT subroutine in IEAVNIPM, which
places the system in the disabled wait
state.)

THE IPL RECORDS AND IEAIPLOO (DIAGRAM 1.0)

The initial program loader is the pro-
gram that initializes real storage and
loads the specified control program nuc-
leus. The nucleus is assembled during sys-
tem generation and resides on the SY¥Sl1.
NUCLEUS data set. The nucleus contains
system control blocks, data areas, resident
control program modules, and the first
module of the nucleus initialization pro-
gram that will be executed (IEAVNIPO).

12

High address
Record 4
IPL Text
Record 2
Record 1
71
d ! Low address

Figure 2. Location of IPL records in real
storage

IEAIPIOO0 gains control when the operator
presses the LOAD button. The operator pre-
pares for loading IEAIPLOO by mounting the
system residence volume on a direct access
device and setting the locad unit address
switches to the unit address of that
device. Pressing the LOAD button causes a
system reset, turns on the LOAD light,
turns off the MANUAL light, and initiates a
read oreration from the selected direct
access device.

When the read oreration is started (see
Figure 2), the selected input device starts
transferring data. The first IPL record is
read into real storage locations 0 through
23. The doubleword read into locaticn 8
(through 15) is a CCW (channel comrmand
word) that causes the loading of the second
record into real storage at an address
higher than the size of the third IPL reco-
rd, so that the second record will not ke
overlaid. The Transfer-in-Channel command
at location 16 (in the first record) sgeci-
fies the address of the second record. The
second record is a chain of CCWs that cause
the IPL control section (third record) to
be read into real storage beginning at
location 0.

When the channel end is received (indi-
cating that the last CCW in the second
record has been executed), the unit address
of the device is stored in bits 21-31 of
the first word in storage. Bits 16-20 are
set to 0, and bits 0-15 remain unchanged.
The doukleword in storage location 0 is
loaded as a new PSW, and normal operation
proceeds. The LOAD light then turns off.
IEAIPLOO does these things:

e Clears general and floating-point
registers.

¢ Clears real storage to the highest location greater than the size of real

addressable location (the highest storage, a program check occurs. Antici-
addressable location may be specified pating this action, IEAIPLOO sets the
by the operator as a location lower rrogram-check new PSW to the address of the
than the highest actual address in real next sequential instruction beyond the par-
storage). ticular loop processing. When this proces-
sing is complete, the program-check new PSW
e Sets all storage keys to 0. is set to the address of the IEAIPLOO sub-
routine that processes unexpected rrogram
e Relocates unexecuted coding and data checks. Unexpected program checks result
areas above the real storage area to be in a system wait state with a code of X'19'
occupied by the resident nucleus and keing placed in the address portion of the
loads the nucleus specified by the current PSW.
operator (IEANUCOx) or the system-
assigned nucleus IEANUCO1 (see Figure Operator Interface During IPL
3).
IFAIPIOO0 provides two interfaces that
e Transfers control to the first NIP allow the operator to limit the size of
module, IEAVNIPO, which is loaded as real storage (specify that the full size of
part of the resident nucleus. real storage is not to be effective), and
to specify a nucleus other than the system-
Processing Expected Program Checks assigned nucleus, IEANUCO1. To use these
interfaces, the operator sets an address
At certain points during execution, stop at location X'80' before rpressing the
IEAIPLOO expects program checks to occur. IOAD button. When this address stop is
These are caused when IEAIPLOO clears real reached (by the CPU processing the third
storage and sets the storage keys for 2K IPL record), the operator selects an
multiples of storage. IEAIPLOO uses loop alternate nucleus by storing in location
processing to perform these functions. |X'08' the EBCDIC character to be aprended

When the instructions in the loop address a to IEANUCO. This suffix is used by

e 1 r === 1
| I I |
i I | I
| I | |
I I | I
I I I |
| | | I
| I I I
| | | |
I | [I
| I I I
| | k 1
| | | Relocation Factor Table

| I 5 4
| | | Address Table |
I I F i
| | | Size Table |
| | k - i
b 4 | Translation Takle |
| Relocation Factor Table | b 4
fp-———————————————————————————— - el | Scatter Table |
| Address Takle | b——- 4
3 - 5 | Relocated IERAIPLOO frcm

| Size Table | | Label IEADATDS

S mmT oo 1 b 4
f Translation Table | | IEAVNIPO |
pmmmm e m oo 1 F -- 1
| Scatter Table | | |
t—- —_—————————— | | Nucleus |
| IPL Text | | |
L i L= —_—— J4
Real Storage before IPL Relocation Real Storage after IPL Relocation and

Loading of Nucleus and IEAVNIPO

Figure 3. Contents of real storage before and after IPL relocation

Section 2: Method of Operation 13

IEAIPLOO to determine which nucleus is to
Leloaded.

The real storage size is limited by
storing one of the foliowing hexadecimal
values in location X'09':

Value Effective Size
X*'A7"* 19 2K
X°A8"* 384K
X'Cceé" 64K
X'Cc7°’ 128K
X'cs* 256K
X'co* 512K
X'DO" 76 8K
X*'D1l* 1024K

If the operator limits real storage,
IEAIPLOO clears real storage only up to the
operator-selected limit. However, storage
keys for all 2K segments of real storage
are set, regardless of the artificial size
limit.

THE NUCLEUS INITIALIZATION PROGRAM

NIP receives control from the Initial
Program Loader to initialize system tables
and control blocks, to make data sets and
devices available for system use, and to
bring into virtual storage those modules
specified to be resident. The modules that
compose NIP have the following residency
characteristics:

IEAVNIPO Loaded by IEAIPLOO as part of the
nucleus; overlaid by subsequent
NIP execution.

1EAVNIPM Loaded into the highest portion
of NIP's dynamic area by IEAVNIPO
and deleted ky IEAVNIPX; remains
in real storage during execution
of all NIP modules except
IEAVNIPO.

IEAVNPO1 Loaded and deleted by IEAVNIPM;
remains in NIP's dynamic area
only during its execution.
IEAVNPO2 Loaded and deleted by IEAVNIPM
for use by NIP modules; remains
in real storage only during its
execution.

IEAVNPO3 Loaded and deleted by IEAVNIPM;
remains in NIP's dynamic area
only during its execution.
IEAVNPO4 Loaded and deleted by IEAVNIPM;
remains in NIP's dynamic area
only during its execution.

14

IEAVNPA4 Loaded by IEAVNIPM for IEAVNPO4
and deleted ky IEAVNPOS; remains
in NIP's dynamic area during
execution of IEAVNPO4 and
IEAVNPOS.

IEAVNPOS5 Loaded and deleted by IEAVNIPM;
remains in NIP's dynamic area
only during its execution.
IEAVNPAS Loaded by IEAVNIPM for IEAVNPOS
and deleted by IEAVNPO0S5; remains
in NIP's dynamic area during
execution of IEAVNPOS; is
executed under a TCB created as a
result of an ATTACH macro
instruction issued by IEAVNPOS.
IEAVNPO6 Loaded and deleted by IEAVNIPM;
remains in NIP's dynamic area
only during its execution.
IEAVNPO7 Loaded and deleted by IEAVNIPM;
remains in NIP's dynamic area
only during its execution.
IEAVNIPX Loaded by IEAVNIPM; remains in
NIP's dynamic area only during
its execution. Passes control to
the master scheduler®s Initiali-
zation routine (IEEVIPL).

IEAVNIPO (DIAGRAM 2.0)

The IEAVNIPO routine in NIP is link-
edited with the nucleus modules to form the
nucleus member IEANUCOx (IEANUCO0l1 if unsge-
cified) of the SYS1.NUCLEUS data set. IFA-
VNIPO is entered only from the initial pro-
gram loader (IEAIPLOO) and performs the
initialization needed to load the first NIP
module into NIP's dynamic area. Execution
suksequent to IEAVNIPO causes the nucleus
area occupied by IEAVNIPO to be overlaid Ly
system data, and the area becomes a logical
and rhysical extension cf the nucleus.

IEAVNIPO does the following things:

e Initializes the NVT (NIP vector takle)
and the CVT (communications vector
table).

e Defines the real storage areas akove
the nucleus (see Figures 4 and 5).

e Defines the initial copy of the PVT
(page vector table) and the PFT (page
frame takle).

e Defines the initial copy of the system
trace table.

¢
| System Queue Area |

Variable

|

| Initial

| Paging

| Space

|

|

|

| Dynamic Area

| for 80K
NIP's | NIP Execution
Nonpageable | |
Region |

t

|

|

|

Nucleus

e e s e s e ey e e i —— —— — e . W . B e . e .

Figure 4. Definition of real storage

e Initializes the segment takle and page
tables (see Figure 6).

e Sets the initial values in the System/
370 clocks.

e Places the CPU in extended control (EC)
mode with DAT enabled.

e Defines a temporary nucleus tuffer.
e Defines NIP's nonpageakle region.
e Reserves initial system paging space.

e Initializes SYS1.NUCLEUS control
blocks.

e Passes control to IEAVNIPM (see Figure
.

Paging Initialization

IEAVNIPO creates the system segment
table and the page tables in the high-
address portion of the system queue area of
real storage. The tables are used by the
dynamic address translation feature to con-
vert virtual addresses to real addresses.
To better understand NIP's execution, it is
useful to summarize the function of these
tables in a virtual environment.

Virtual addressing allows programs to
refer to addresses that are greater than
the size of real storage ur to a maximum
address of 1ém-1. Virtual storage is
divided into 64K segments, which are in
turn divided into 4K blocks. Each 64K seg-
ment is described by a 1l6-entry page takle,
each entry describing a 4K klock. Each 64K
segment is also associated with one of the
256 entries in the system segment table
which is pointed to by the CVTSEGD field.
The addressing scheme (see Figure 8) multi-
plies the first eight bits of a 24-bit vir-
tual address by 4 and adds the result to
the address of the system segment takle to
arrive at the segment table entry for that
virtual address. The next four bits in the
virtual address are multiplied by 2, and
the result is added to the 3-byte value in
the segment takle entry to determine the
page table entry for the virtual address.
The page table entry contains the first 12
bkits of the real storage address of the UK
klock that contains the data referred to by
the virtual address. The last 12 bits of
the virtual address are used as the displa-
cement into the 4K block to arrive at the
real storage address of the data.

IEAVNIPO creates only the page takles
that describe virtual addresses correspond-
ing to real storage addresses plus a single
SQA segment. The appropriate (segment
takle entries) are initialized for the page
tables that are created. Unused segment
takle entries are set to indicate that no
corresponding rage tables have been created
for them.

Because the virtual addresses of the
nucleus are real addresses, the page takles
that descrike the virtual area correspond-
ing to the real storage area never change
and are marked as valid. The area above
NIP's region and below the SQA is reserved
for raging. The page tables for this area
are marked as invalid, because the real
storage area associated with these page
tables contains no valid data, and any
reference to this area must be invalid.

The page table created for the virtual
storage area corresponding to the real
storage SQA is also indicated as invalid,
kecause the virtual area lcgically asso-
ciated with the SQA is in the high-address
portion of virtual storage. Note that
external page takles are not built, because
neither the nucleus nor the SQA has a copy
in virtual storage. External page tables
normally follow page tables and descrike
rage residency characteristics and location
on paging devices.

Section 2: Method of Operation 15

|<
|

- 16 bytes - >

Highest Real Storage Address

r- -= 1
| DQE |
P‘ T “
| Dummy PGE | |
t -4 |
| Nonpageakle PQE |
[r 8|
| | |
t—- -4 I
| Pageable PQE |
| r .|
| | Nonpageable FBQE |
Communication Task - + - 4
and Master Scheduler |Nonpageable FBQE (cont.) | Pageable FBQE |
Task TCBs [+ -—

-------- 1 | Pageable FBQE (cont.) | [a—Dummy MSPQE
| TCBPQE | 1 t el
b J [
| Master Scheduler PCE |
| |
t 1
| Master Scheduler FBQE |
t :
L R

Reserved for
Initial Page
and Segment ‘i.kles

T T
Master t—- - —_———— 4
Scheduler | Subpool 251 LQE |
Task TCB L T 4

——————— Subpool 251 SPQE | SCA FQE
| TCBMSS t 1 4
(W J I I
| Available System Queue Area |
R |

Figure 5. Organization of the initial system queue area

See Figure 6

r 1
I |
Displacement CVT | Control Blocks Initialized by Step () |
T T | |
--------------- 1 b 1
+188 |Real Address of | | |
| System Segment |---->| System Segment Table |
|Table | | |
L - — d L 4
r 1 r a1
+184 |Real Address of| | |
|User Segment |——==>| Space Reserved for |
| Table | | User Segment Table |
d 1 J
“““““ 1 r - 1
+180 |Virtual Address)| | Page Takle 1 (SQA) |
|of System | b 4
| Segment Takle | | Page Table 2 (locations 0-64K) |
(R L 4
r - r 1
+17C |virtual Addressj| | Page Takle 3 (locations 65K-128K) |
|of User Segment - - 4
| Table | |
L ¢ |
l l J Page Table n Jd

-~ (last real segment) -<T
L |
T - B
| Other Control Blocks Initialized by Step (:) |
L v |
r 1
| Available System Queue Area |

| L

Figure 6.
16

System segment and page

tables

size

Initial SQA Variakle

r
{| Minimum Fixed System Queue Area
(Pageable)

Reserved for Initial Paging Sgace

nK
—————— {
IEAVNIPM |
__________________ |
Dynamic Area for 80K
g nK

|
NIP Execution |
|

NIP's Region / |

Nonpageakle | Initial Page Frame Table
__________________ i
Initial Trace Table |
|
|l |
Nucleus Buffer |
i
I
[|
| Nucleus |
| |
i J
nK = (real storage size - (nucleus size + SQA size + 80K)) / 2

Figure 7. Real storage at completion of

IEAVNIPO execution

EC Mode Initialization

IEAVNIPO places the CPU in EC (extended
control) mode by loading the PSW described
below. This also allows all interruptions
from the I/0 subsystem. Previously, the
system was disabled for all interruptions,
including machine checks.

Bit Value Description

0 0 Monitor mask -- disabled

1 0 Program event recording mask --
disabled

y 0 24-bit addressing specified

1 Dynamic address translation --

enabled

6 1 I/0 mask ~- enabled

7 1 External mask -- enabled

8-11 0 Supervisor protection key

12 1 EC mode

13 1 Machine-check mask -- enabled

15 0 Supervisor state

24 0 Segment protection -- disabled

40-63 Address of next sequential
instruction

Those fields not described are set to 0.

The following multiple control registers
are initialized by IEAVNIPO:
Word Bits Description
SSM interruptions
8-9 Page size
10 Page entry size
11-12 Segment size
Clock comparator
21 CPU timer
24 Location X'80' timer
0-7 Segment table length
Segment table origin address

=mroOOoOO0OO0OOoOo
N
[=}

IEAVNIPM (DIAGRAM 3.0)

IFAVNIPM consists of mainline coding and
several subroutines. The subroutines are
entered from the mainline processing, from
other NIP modules, or asynchronously as a
result of unusual conditions that arise
during NIP execution. The mainline coding
loads, kranches to, and deletes the other
NIP wmodules (except IEAVNIPX, which does
not return control to IEAVNIPM).

The subroutines within IEAVNIPM are
requested by other modules via the IEAPMNIP
macro instruction. The expansion of this
macro instruction includes a Branch and
Link (BALR) instruction to the required
subroutine, the address of which is
cbtained from the NIP vector takle. If the
subroutine NIPIOAD is requested, the expan-
sion of the macro instruction also includes
a Branch and Link to the requested module
loaded ky NIPLOAD and, for IEAVNP02 subrou-
tine requests, a subsequent SVC 9 (DELETE)
instruction. The macro expansion does not
include an SVC 9 instruction for IEAVNPA4.
This module is deleted after execution of
the macro expansion.

NIPLCAD Subroutine (Diagram 3.1)

The NIPLOAD subroutine is entered from
various modules to load a specified NIP
nodule into real storage. It creates a
BIDL list via the BLDL macro instruction
and issues a LOAD macro instruction. If
the module is not loaded successfully, IEA-
VNIPM places the system in a disabled wait
state (X'32' or X'33').

NIPSVC and NIPSVCX Subroutines (Diagram
3.2)

The NIPSVCX and NIPSVC subroutines are
entered as a result of an XCTL request or a
request for a type-3 or type-4 SVC. All
SVC table entries for tyre-3 and tygpe-4# SVC
routines are set to the address of NIPSVC;
the entry for XCTL is set to the address of
NIPSVCX. Because the link pack area (which
will eventually contain the required
rodules) has not been initialized, the
NIPSVC and NIPSVCX subroutines must load
the module into real storage. Control is
then passed to the XCTL module or to the
SVC routine, and execution continues
normally.

NIPSENSE Subroutine

The NIPSENSE subroutine is entered fol-
lowing an I/0 error to write an intergre-
tive error message to the master console.
Information concerning the command code of
the failing CCW, CSW status bytes, volume

Section 2: Method of Operation 17

T Segment Table

Page Tables T Real Storage T
Address of a Page
(Page)
Address of a Page (Page)

Address of a Page Table

Address of a Page Table 4

4,———’ (Page)
Address of a Page

Address of a Page (Page)

CVTSEGD

v

Add to origin of

- -~

Virtual Address (24 bits)
8bits 4 bits | 12bits |

Multiply

o Segment Table segment table

SGTE]
Address of Page Table

y

Add to origin of

by 4

Multiply

page table

Page Table

PGTE

by 2

Add to page

F— Page Address

address

Real Storage

»
Ll

4K

Figure 8. Dynamic address translation

serial number (if direct access storage
device), EBCDIC unit address, and (if a
unit check) sense Lytes are extracted and
placed in the error message, which is then

sent to the operator via the NIPWTO subrou-

tine (within IEAVNIPM).

NIPUCBFN Subroutine (Diagram 3.3)

The NIPUCBFN subroutine is entered to
find a UCB related to a specific device.
After converting the input, if necessary,
to the hexadecimal unit address, NIPUCBFN
issues, an IOSGEN macro instruction to link
to the IOS UCB Lookup routine. IOS per-
forms the necessary processing and returns
the address of the associated UCB, if it
was found.

18

NIPTIME Subroutine (Diagram 3.4)

The NIPTIME subroutine is entered to
provide either the time of day in decimal
or the binary value regresenting the time
elapsed since IEAVNIPM was entered for this
initialization process.

NIPWTO and NIPWTOR Subroutines

The NIPWTO and NIPWTOR Subroutines are
entered to build and execute a channel pro-
gram to simulate WTO and WTOR macro
instructions. IEAVNIPM has a temporary
reply buffer into which the-operator's
reply to a WTOR is read. The requesting
routine may specify that control is not to
ke returned until the reply is received.

In this case, NIPWTOR passes control to
NIPWTOR2 to await the reply.

.,

J

NIPWTOR2 Subroutine

The NIPWTOR2 subroutine is entered to
move an operator's reply into the regly
ruffer specified by the calling routine.
NIPWTOR2 returns control to the requesting
routine or, if entered from NIPWTOR,
returns control to the routine that
requested the WTOR function.

NIPABEND Subroutine

The NIPABEND subroutine is entered asyn-
chronously to process conditions that would
normally cause abnormal termination of a
task. Upon initial entry from IEAVNIPO,
IEAVNIPM replaces the SVC 13 address placed
in the SVC table during system generation
with the address of the NIPABEND subrou-
tine. For the first entry to process an
abnormal condition, NIPABEND issues a mes-
sage to the operator wvia NIPWTO indicating
the tyre of error and kranches to NIPSWAIT
to place the system in a disabled wait
state. For a recursive entry, the rrevious
ABEND code is saved and the system is
placed in a disabled wait state (X'40'). A
recursive entry might be caused by a fai-
lure in NIPWTO.

NIPSQEND Subroutine

The NIPSQEND subroutine is entered from
GETMAIN when an additional real page for
the SQA is requested before the paging sub-
system is initialized. The system is
placed in a disabled wait state (X'36').

NIPSWAIT Subroutine

The NIPSWAIT subroutine is entered
whenever an error condition prevents suc-
cessful initialization of the system. NIP-
SWAIT uses NIPWTO to notify the operator of
the system wait state code and places the
system in a disabled wait state.

IEAVNPO1 (DIAGRAM 4.0)

IEAVNPO1l receives control from IEAVNIPM
to initialize system consoles and to allow
the operator to specify system parameters

required for NIP execution.

Initializing System Consoles

IEAVNPO1l uses several loops to determine
the availability of and to initialize the
system consoles. The first console
examined is always the master console spe-
cified in the UCM prefix during system
generation. The NP1TESTC subroutine is
entered to build a CCW chain for the type
of console being tested. An EXCP instruc-
tion is issued, and the result of the I/0
indicates whether the console is available.
If the console is available, it is initia-

lized as described below. After the con-
sole is initialized, or if the console is
not available, the other consoles in the
master alternate queue are examined and
initialized in a similar manner.

When the end of the master alternate
queue is reached, IEAVNPOl searches, tests,
and initializes all UCM entries keginning
with that pointed to by UCMVEA. IEAVNPO1
then determines whether a master console
has been found and initialized. If not,
the system is placed in a disabled wait
state (X'07').

The NP1INIT subroutine (see Diagram 4.1)
initializes available consoles by (1) indi-
cating that the console is active and (2),
if the active master console is not the one
specified during system generation, by
copying the authorization and routing codes
from the old master console to the new
active master console and adjusting the UCM
prefix/base.

Initiating Operator Communication

Immediately after the active master con-
sole is initialized (and before the altern-
ate consoles are initialized), the NP1INIT
sukroutine establishes communications with
the operator by issuing message IEA101A
SPECIFY SYSTEM PARAMETERS via the NIPWTOR
subroutine in IEAVNIPM. The receipt of the
reply is determined by the NP1TCOMM sukrou-
tine, which is entered from the NP1TESTC
subroutine before consoles are tested for
availakility. If a reply has been
received, it is moved by NIPWTOR2 into the
reply buffer area, a 2K area previously
cbtained from sukpool 255 of the SQA. If
additional parameters are to be entered,
the wressage IEA116A CONTINUE SYSTEM PARAME-
TERS is issued, and the rerly to this is
Frocessed as akove.

Before returning control to IEAVNIPM,
IEAVNPOl1 ensures that no rerly is outstand-
ing to a message issued from this module.

IEAVNPO2 (DIAGRAM 5.0)

This module is initially entered from
IEAVNIPM to initialize the devices in the
system configuration that have not Lkeen
initialized by IEAVNPOl. It also provides
system access to the S¥Sl1l.LOGREC, SY¥Sl.
SVCLIB, and SYS1.LINKLIB data sets. The
subroutine NIPOPEN (entry point IEAVNPB2)
is used ky mainline coding and by other NIP
modules to open specified data sets. The
sukroutine NIPMOUNT (entry point IEAVNPA2)
is used only by other NIP modules to requ-
est the operator to mount specified volumes
on srecified devices.

Section 2: Method of Operation 19

Mainline Coding

IEAVNPO2 initializes the unit test DEB
and its associated control blocks, which
are defined within IEAVNPO2. These are
used for all I/0 testing of devices. Using
the UCB address takle, each device repre-
sented by a UCB that was not examined by
IEAVNPO1l is tested for availability. For a
DASD (direct access storage device), a
channel program to read the volume label is
created by the subroutine NP2RRCD3 and
executed by the subroutine NP2EXCPU. For
non-DASD, NP2EXCPU executes an I/0 NOP CCW.
LCevices that are not ready are so marked in
their UCBs.

After testing the system device confi-
guration, SYS1.LOGREC and SYS1.SVCLIB are
opened using the subroutine NIPOPEN.
IEAVNPO2 builds the DEBs needed for the
open processing. IEAVNP02 also constructs
the DEB associated with the SYS1.LINKLIB
data set.

NIPMOUNT Subroutine (Diagram 5.1)

This subroutine is entered to request
the operator to mount a specified volume on
a device. The device may be specified by
type or by unit. NIPMOUNT ensures that the
correct volume is mounted on the device.
Messages notify the console operator of the
required action and indicate, where appro-
priate, incorrect and remedial action. A
flowchart of this subroutine is included in
Section 3.

NIPOPEN Subroutine (Diagram 5.2)

This subroutine ortionally kuilds the
basic DEB and adds DEB extents for the spe-
cified data set to be opened.

IEAVNPO3 (DIAGRAM 6.0)

This module is entered by IEAVNIPM to
initialize the system parameter table
according to the specifications given in
response to the message SPECIFY SYSTEM
PARAMETERS. Two sets of specifications are
possible; operator entered, and system pro-
grammer entered (via SYS1.PARMLIB). Figure
9 describes system parameter area creation.
The IEAVNPO3 subroutines:

e Analyze the parameters specified via
the SYSP parameter and merge them with
the parameters specified by the opera-
tor in response to SPECIFY SYSTEM
PARAMETERS.

e Open SYS1.LINKLIB and concatenate mem-
bers specified in the LNKLST00 member
of SYS1.PARMLIB with the SYS1.LINKLIB
data set.

20

SYS1. PARMLIB,

Secondary
PARMAREA

)l

System
Parameter Entry

T e

System
Parameter Entry

PLIBTAB OPERTAB

PLIBTAB

PARMAREA
Header

PARMTAB

o System
Parameters

Figure 9. Creating system parameter area

NP30OPSP_Sukroutine (Diagram 6.1)

This subroutine uses the NP3SCAN subrou-
tine to scan the parameters entered Ly the
operator in response to SPECIFY SYSTEM
PARAMETERS. The subroutine moves the
addresses of the valid parameters into an
area within IEAVNPO3 called OPERTAB. If a
parameter is invalid, the operator is
allowed to respecify or cancel it. Figure
10 illustrates building the OPERTAE.

NP3PBASE Subroutine (Diagxam 6.2)

This subroutine allocates a 2K area
(PARMAREA) within NIP's dynamic area for
later use by IEAVNPO3. This area eventual-
ly contains the valid system parameters.
The lower-address part of PARMAREA is
initialized to contain pointers to the next
PARMAREA (considered secondary and tem-
porary), to contain the next available area
within PARMAREA, and to contain the IOB,
DCB, and DEB for the SYS1.PARMLIB. The
remainder of the PARMAREA is initialized by
the NP3PTAB subroutine described below.

J

NP3PMLIB Subroutine (Diagram 6.3)

This subroutine finds and opens the
SYS1.PARMLIB data set.

NP3SYSP Subroutine (Diagram 6.4)

This subroutine allocates a seccondary 2K
buffer (chained to the primary buffer, PAR-
MAREA) and reads into it the parameters
defined by the SYSP rarameter. These para-
meters are located in the IEASYSxxXx members
of the SYS1.PARMLIB. The first member pro-
cessed is always IEASYS00, which contains
the values used for defaulted parameters.

The NP3SCAN subroutine scans the rarame-
ters in the secondary kuffer and moves the
addresses of the valid parameters into the
area within IEAVNPO3 called PLIBTAB. When
a parameter is specified more than once,
the last specification is effective. The
entries in both OPERTAB and PLIBTAB contain
one address for each parameter (excert APG,
PAL, and PAGE). Each entry reflects the
last valid specification processed for that
parameter. Figure 11 illustrates building
the PLIBTAB.

NP3PLMRG Subroutine

This subroutine merges the rarameters
pointed to by the addresses in the OPERTAB
and the PLIBTAB. When both tables ccntain
entries for the same parameter, the OPERTAB
entry replaces the PLIBTAB entry unless
OPI=NO is indicated in the PLIBTAB for that
operand. PAGE, PAL, and APG parameters are
not merged. The addresses of the valid
current system parameters are placed in
PLIBTAB, overlaying the address of overrid-
den parameters where necessary. Figure 12
illustrates the merging of specifications
into PLIRBTAB.

NP3PTAB Subroutine (Diagram 6.5)

This subroutine first remcves all secon-
dary PARMAREAs from the queue originating
with the initial PARMAREA so that addition-
al space required is pointed to by the ini-
tial PARMAREA, instead of the last-acquired
secondary PARMAREA. The area within the
PARMAREA above the header (initialized by
NP3PBASE above) has two parts: (1) the
PARMTAB which will contain the addresses of
the parameters, and (2) the area into which
the parameters will be moved.

NP3PTAB begins moving the specifications
for each parameter into the high-address
portion of the PARMAREA while updating the
corresponding addresses of the parameters
in PARMTAB. In moving the parameters into
the PARMAREA, NP3PTAB strips out superf-
luous information, such as the keyword
operands. Figure 13 illustrates building
the final PARMAREA.

Data In ! Result of Processing

NVTSPE | CPERTAB

Entries in

SPEI OPERTAB point
NIPSPEQ
NIPSPEA I <

[

|

!
SPE2

I

|

to parameters
specified by
the operator,

NIPSPEQ
NIPSPEA

parameter

Figure 10. Building OPERTABR

Data In | Result of Processing
Secondary [
PARMAREA | PLIBTAB
Entries in PLIBTAB
| point to
IEASY SO0 :> | parameters read
IEASY Sxx into secondary
EASY Sxx E> PARMAREAs from

IEASY SO0 and

I
M~ | IEASY Sxx (via
M~ | SYSP parameter).
— |
Figure 11. Building PLIBTAB
Data In | Result of Processing
OPERTAB | PLIBTAB
Entries in
:l'_“_,> PLIBTAB point
to parameters
I specified by
| IEASY Sxx or
by the
l operator,
!
Figure 12. Merging OPERTAB into PLIBTAB
Data In l Result of Processing

PLIBTAB Secondary |

PARMREA | PARMAREA
Specified
parameters are
| moved into
PARMAREA and
- pointers in
| PARMTAB point to
these parameter
- entries.
' PARMTAB
| Header

Figure 13. Building the PARMAREA

Section 2: Method of Operation 21

NP3LKLIB Subroutine

This subroutine opens the SYS1.LINKLIB
data set for later system use.

NP3LCAT Subroutine (Diagram 6.6)

This subroutine concatenates the data
set members whose names are specified in
the LNKLSTO00 member of SYS1.PARMLIB data
set with the SYS1.LINKLIB data set. A LOC-
ATE macro instruction is issued for each
member name found, and the resulting volume
identification is passed to the NIPMOUNT
subroutine in IEAVNP02. The NIPOPEN sub-
routine in IEAVNPO2 opens the data set and
concatenates it with the previously defined
portion of the SYS1.LINKLIB. The number of
concatenations is limited to 15.

IEAVNPO4 (DIAGRAM 7.0)

This module is entered only from IEAV-
NIPM to process the PAGE, CLPA, CPQE, and
SQA parameters and to initialize the con-
trol blocks used by the paging supervision
routines. IEAVNPO4 performs the following
functions:

¢ Interprets the PAGE parameters entered
either in SYS1.PARMLIB or by the opera-
tor in response to the message SPECIFY
SYSTEM PARAMETERS.

e Ensures that the paging devices are
online and available for system use.

e Ensures that the SYS1.PAGE data sets
are available.

s Expands the definition of the SQA.
e Creates the page device table, rage
device information takle, page frame

table, quickstart records, and the
channel program queue.

Processing PAGE Parameters

IEAVNPO4 uses the system parameter table
(PARMTAB) to locate the PAGE parameters
included during system generation. A 16-
entry matrix is created as a record of the
parameters. IEAVNPO4 then processes the
PAGE parameters specified by the operator
in response to SPECIFY SYSTEM PARAMETERS.
Any value specified Lty the operator will
override any corresponding specification
already in the matrix. After optionally
displaying the PAGE parameter values speci-
fied, or if no PAGE parameters have keen
specified, the operator is allcwed to
change or add any PAGE specifications.

22

Initializing for Quickstart Records

Because formatting of page data set
records requires I/0 overhead (a history of
a successfully formatted page data set is
kept within the data set), IEAVNPO4 allo-
cates an 8K kuffer in the high-address por-
tion of NIP's region. This buffer is used
to build, write, and read records (called
quickstart records) that describe the con-
tent and extent of each rage data set. A
quickstart record is built when a page data
set is initially formatted. IEAVNPO4
attempts to read a quickstart record for
each previously allocated page data set.

If the read is successful, the data set is
not reformatted. If the read is not suc-
cessful, the data set requires reformat-
ting, and a new gquickstart record is
created.

NPYPCSEL Sukroutine (Diagram 7.1)

This sukroutine scans the 16-entry
matrix of PAGE parameters to determine spe-
cifications for the paging devices. Each
specified device is tested for availabili-
ty, and the operator is allowed to respeci-
fy any device that is unacceptable or to
cancel the definition.

For each online and ready device, the
NP4IPDT sukroutine is entered to create the
PDIT (page device information table) and
the PDTE (page device table entry) for the
device. Both entries are created in the
upper end of the nucleus buffer.

Upon completion of processing for this
device, the PDIT is moved to its permanent
Eositicn in the low area of the nucleus
buffer. However, the PDTE is not moved
until all matrix entries have been pro-
cessed, because the final size of the PDIT
is nct known until that time. The NIPOPEN
subroutine in IEAVNP02 is entered tc ogen
the data set represented by the entry in
the matrix. The NP4RQSR1 subroutine is
entered to read the first quickstart record
for the data set. If this data set repre-
sents the quickstart LPA data set, and the
CLPA parameter is not specified in PARMTAB,
IEAVNPOY4 sets the NVTFLQS field to indicate
that the page data set can be defined by
the quickstart process. If this read is
not successful, page formatting is
required.

If formatting is not required, the PDIT
is moved from the temporary area to its
fFermanent position in the low area of the
nucleus buffer, and additional device-
derendent information is added. If format-
ting is required, the NPA4INTF subroutine
in IFAVNPA4 is entered to start formatting,
and the ECB for the request (in the PDIT)
is added to a list of ECBs that are tested
prior to moving the PDTEs.

When all matrix entries have been pro-
cessed, the list of ECBs is checked to
detexrmine whether all formatting has been
completed. As formatting for each data set
is completed, a quickstart record (NIPQSR1)
is built and written for the data set, and
its PDIT is moved to its permanent posi-
tion. When all PDITs have been rmoved, the
PDTEs in the temporary position in the
upper end of the nucleus buffer are
scanned, and each valid PDTE is moved to
its permanent position in the low end of
the nucleus buffer above the PLDITs.

Figure 14 shows real storage after pag-
ing device initialization and initial pag-
ing area definition.

NP4BCPQ Subroutine

This subroutine defines the paging
supervision channel program queue at the
high end of the nucleus. The size of the
CPQ (channel program gueue) depends on the
number of paging devices in the system con-
figuration. Ten CPQ elements are defined
for the first paging device; 15 CPQEs are
defined if there is more than one device.
In addition to the base number of CPQEs
defined, the operator may specify an addi-
tional number via the CPQE parameter. This
nunber is added to the base number.

High Address

r 1
| SQA |
k --{
| Initial Paging Area |
I 1
1

| IEAVNIPM |
L

k ittty {
| IEAVNPOUY |
k 1
| IEAVNPAY |
L - d
L] 1
| Quickstart I/70 Buffer |
b 1
| |
’ —
| |
b 1
I I
F {
| PFT Control Block |
L 4
r a1
| PDT, CPQ Control Blocks |
b J
3 |
| PDIT, ABM, CCV Control Blocks|
b 4
[|
| Nucleus |
| |Low Address
L J

Figure 14. Real storage after paging
device initialization and ini-

tial paging area definition

NPU4APFT and NP4BPFT Sukroutines

Space for the page frame table is allo-
cated Ly NP4APFT in the low end of the nuc-
leus buffer above the area occupied Ly the
PDT. The page frame table is built by
NP4BPFT.

NP4RQSR2 Subroutine

The LPA quickstart process is initiated
if the NVTFLQS flag has been set by the
NP4RQSR1 subroutine. The first and second
LPA quickstart records are read into the
quickstart buffer by NPA4READ in IEAVNPA4.
The second quickstart record is required by
NP4BSQA.

NP4BSQA Subroutine

This subroutine processes the operator-
specified request to increase the size of
the SQA. The value specified by the SQA
parameter is added to the basic size of the
SQA to determine the new SQA size. If the
operator specification would cause the SQA
to extend into the quickstart LPA virtual
storage, thus causing a coldstart of the
LPA, the operator is requested to either
arprove the coldstart process or to cancel
the current SQA definition.

NP4IPVT Subroutine

This sukroutine initializes the page
vector table to make the paging sugervision
control klocks available for system use.
After using the MODESET instruction to dis-
able interruptions, CVTPAGEl is set to the
address of the DCB in the first PDIT (page
device information table) created by
NP4PDSEL. The PVTPDT, PVINPDTE, and
PVTCHPGQ fields are initialized. The
PVTPSQA field is restored to its original
(upon entry to IEAVNIPM) contents.

IEAVNPA4 (DIAGRAM 8.0)

IEAVNPA4 is brought into real storage Ly
IEAVNIPM and entered from the Page Initia-
lization routine in IEAVNPO4. It is subse-
quently entered from IEAVNPO4, IEAVNPOS,
and IEAVNPAS5. IEAVNPAY4 is deleted by
IEAVNPOS5 upon completion of its execution.
IEAVNPAY4 contains subroutines that:

¢ Read and write quickstart records from
and to the SYS1.PAGE data sets (NPA4~-
READ, NPAU4WRIT).

e Allocate space in NIP's dynamic area
for the quickstart I/0 buffer
(NPA4GBUF) .

e Initiate formatting of SYS1.PAGE data
sets (NPA4INTF).

Section 2: Method of Operation 23

¢ Restart formatting of SYS1.PAGE data
sets where a previous I/0 error has
occurred (NPAURSTF).

¢ Initialize the paging takles for
initiating the coldstart procedure for
the link pack area (NPA4INTC).

e Determine whether a specified load
module will fit in the link pack area
SYS1.PAGE data set (NPA4LOAD).

e Complete the coldstart process
(NPAYCCST).

e Build cylinder count vectors for the
SYS1.PAGE data sets and calculate the
available pages (NPAU4BCCV).

¢ Release the space allocated for the
quickstart I/0 buffer (NPA4FREE).

Each of these functions is performed by
a subroutine within IEAVNPA4. The fourth
and fifth bytes of the parameter list
rassed to IEAVNPA4 contain bit settings
indicating which function is requested.

NPA4READ/NPAUWRIT Subroutines (Diagram 8.1)

NPAUFREE Subroutine (Diagram 8.3)

These subroutines read and write the
quickstart records to and from the SYS1.
PAGE data set. Because each quickstart
record points to the next higher record
(that is, record 1 points to record 2
which, in turn, points to record 3), a
request for quickstart record 2 or quick-
start record 3 requires that the record
Fointing to it (quickstart record 1 and
quickstart record 2, respectively) already
be in the appropriate quickstart record
buffer.

NPA4READ and NPA4UWRIT rely on common
coding to perform the requested I/0. They
use a predefined IOB for scheduling I/O
requests, but rely on the DCB and its asso-
ciated DEB, which are defined via the infut
DCB parameter.

If an I/0 error occurs during the execu-
tion of the channel program, the NIPSENSE
subroutine in IEAVNIPM is entered to write
an interpretive error message.

NPAUGBUF Subroutine (Diagram 8.2)

This subroutine obtains an 8K area from
subpool 252 of NIP's nonpageable region.
Subsequent NIP execution requires that this
area remain fixed in real storage. This
area is used by NPA4READ and NPAUWRIT as
buffers into which gquickstart records are
read. Quickstart records 1 and 3 are read
into the lower end of the area (buffer 1);
quickstart record 2 is read into the upper
end (buffer 2).

24

This subroutine releases the quickstart
record kuffer area obtained by NPA4GRBUF and
resets the pointers to the buffer area and
to IEAVNPA4 (in the NVT) to 0.

NPAUINTF/NPAURSTF Subroutines (Diagram 8.4)

These sukroutines initiate formatting,
or restart formatting where previous for-
ratting was terminated because of I/0
error, of a SYS1.PAGE data set.

There is one channel grogram built for
each paging device supported by VS2. The
appropriate build table is determined Ly
using the device type indicator (PLTLCT) in
the page device table as a disglacement to
the addresses of the build tables within
IEAVNPA4. The build table contains several
entries, each of which is used to build a
CCW for the channel program executed to
format the page data set.

The first two bytes in each build takle
indicate the numker of CCWs required to
format one cylinder of the device and ind-
icate the number of count fields required
by the channel program. Each of the two-
tyte entries that follow this header infor-
mation has the following format:

Bit Description
0 1 = This CCW is for the last

record on the track.

1 1 = This is the last entry in
the build table.
2-15 Length of the record to be for-

matted by this CCW.
There is one entry in the channel pro-
gram build takle for each data set record
in one group for the device.

NPAY4BCCV Subroutine (Diagxam 8.5)

This subroutine scans the auxiliary bit
map field in a paging device table entry
and totals the number of available pages.

NPA4INTC Sukroutine (Diagram 8.6)

This subroutine is entered from IEAVNPAS
to initiate the coldstart process for the
link pack area. Pertinent areas in the
page vector takle that may be modified are
saved within this module (it remains resi-
dent during NIP execution).

NPA4LOAD Subroutine (Diagram 8.7)

This subroutine determines the number of
pages of virtual storage required for the
specified module and whether there are
enough pages available in the LPA page data
set to contain the module.

NPA4CCST Subroutine (Diagram 8.8)

This subroutine reinitializes page vec-
tor table fields to their original contents
upon entry to the NPA4INTC subroutine. All
Fages currently in use by LPA modules are
forced out of real storage, and the quick-
start records are updated.

IEAVNPO5 (DIAGRAM 9.0)

This module is also entered from IEAV-
NIPM. It defines the pageable link gack
area either completely via the coldstart
process, or uses a previously initialized
LPA via the quickstart process. Quickstart
records are written to the LPA SYS1.PAGE
data set during a coldstart. Pageable LPA
modifications, fixed LPA modifications, and
the system BLDL table are optionally pro-
cessed. IEAVNPO5 is also responsible for
freeing the quickstart buffers obtained by
IEAVNPA4 and for deleting IEAVNPA4.

NP5Q0SLPA Subroutine (Diagram 9.1)

This subroutine uses data in the quick-
start records to define the LPA page tables
and external page takles. If this subrou-
tine cannot be executed successfully, the
coldstart process must ke entered.

NP5CSLPA Subroutine (Diagram 9.2)

This subroutine attaches the module IEA-
VNPA5, which contains subroutines to per-
form requested coldstart functions. The
interaction ketween IEAVNPOS5 and IEAVNPAS
is maintained by waiting and posting indi-
cations of segment processing completion
(ECBs). NP5CSIPA uses internal subroutines
and subroutines within IEAVNPO5 to open the
SYS1.LPALIB, initiate the coldstart pro-
cess, and process modifications to the
fixed link pack area and the system BLDL
table.

NPSVTCB Subroutine (Diagram 9.3)

This subroutine is entered to establish
and to terminate the relationship between
IEAVNPOS and IEAVNPA5. The subroutine NIP-
LOAD in IEAVNIPM is used to bring IEAVNPAS
into NIP's nonpageable region. After the
module is loaded, an ATTACH macro instruc-
tion is issued to create IEAVNPAS as a .job-
steptask. Subsequent entries to IEAVNPAS
are made via the NP5POST subroutine, which
posts the ECB specified by IEAVNPAS and
issues a WAIT macro instruction specifying
an ECB for IEAVNPO5. Control returns when
the ECB for IEAVNPO5 is posted by IEAVNPAS.

When entered to terminate the relation-
ship, NPS5POST reenters IEAVNPAS, which
releases the previously allocated BLDL save
area. Upon return, NPSPOST issues an SVC 9

instruction to delete IEAVNPAS5, releases
storage and control blocks allocated to
IEAVNPAS5, and causes the attached TCB to be
removed from the task queue and the suktask
queue for the jok step.

NPSILPLIB Sukroutine (Diagram 9.4)

This subroutine is entered tc ogen the
SYS1.LPALIB data set so that modules can be
loaded from it into the link pack area.
NP5LPLIB issues a LOCATE macro instructiocn
to determine whether SYS1.LPALIB is defined
in the system catalog. If the correct
entry is found, the NIPMOUNT subroutine in
IEAVNPO2 is used to ensure that the volurme
is mounted and online. Upon return, the
NIPOPEN subroutine in IEAVNP02 is used to
cpen the data set. This request is condi-
tional so that any error encountered during
the cpen processing will not cause a systen
wait. Failure to open SY¥S1.LPALIB is indi-
cated to the operator via a warning mes-
sage, and to the calling routine via a
return code of 4. Successful opening of
the SYS1.LPALIB is indicated by setting
NVTCSLIB to the address of the LPALIB DCB.

NPSMLPA Sukroutine (Diagram 9.5)

This subroutine is invoked uncondition-
ally for both gquickstart and coldstart pro-
cessing to load IPA modules into the page-
able LPA whenever the MLPA parameter in the
PARMTAB has a nonzero entry. The MLPA
Fararmeter gives the names of the SYsl.
PARMLIB members (IEALPAxx) that contain the
names of the modules to ke added. The
NPS5VTCB subroutine is entered to attach the
Fageable task IEAVNPAS5, which performs pro-
cessing common to both gquickstart and
coldstart. The sukroutine NPSMLPRM is used
to load the specified modules one at a
time. The CLCEs for the loaded modules are
removed. from the pageable TCB and placed on
the active LPA gueue by the NP5QLPAQ
sukroutine.

NPSBLDLP Subroutine (Diagram 9.6)

This sukroutine is invoked uncondition-
ally whenever the BLDL parameter in the
PARMTAB has a nonzero value. The BLDL
raranmeter gives the name of the SYsi.
PARMIIB member that contains the names of
the modules to be included in the BLDL
table. The valid wodule names in the para-
nmeter string are used to create a BLDL
table in the nucleus buffer. NPSBLDLP
issues a BLDI macro instruction when the
table has been completed. The pageable
task (IEAVNPAS5) is activated, if not alrea-
dy active, via the subroutine NP5VTCB and
entered to move the BLDL table to the area
kelow the pageable LPA. NPS5BLDLP places
the address of the pageable BLDL takle in
the nucleus-resident BLDL SVC routine
(1G6Cc018).

Section 2: Method of Operation 25

NP5BLMQ Subroutine

This subroutine builds a load module
queue for IEAVNPAS based on the LPA packing
list member of SYS1.PARMLIB.

IEAVNPAS (DIAGRAM 10.0)

This module is executed as a subtask of
IEAVNPO5 and performs its functions as a
rageable task. Interaction between
IEAVNPO5 and IEAVNPAS5 is governed by the
use of WAIT and POST macro instructions
specifying ECBs related to the modules.
That is, when IEAVNPOS5 requests a function
of IEAVNPA5, the pageakle ECB for IEAVNPAS
is posted, and IEAVNP(O5 issues a WAIT macro
instruction specifying the nonpageable ECB.
When the requested function has been com-
rleted, IEAVNPAS5 posts the nonpageable ECB
for IEAVNPOS5 and issues a WAIT macro
instruction specifying the pageable ECB.
IEAVNPAS is activated (attached) only if
initialization is required for coldstart
processing, if the MLPA option was
selected, or if the BLDL option was
selected.

Upon initial entry, a conditional GET-
MAIN macro instruction specifying 16 mill-
ion bytes is issued to allocate all of vir-
tual storage in the pageable region to IEA-
VNPA5. This allows IEAVNPAS5 to control
allocation within the pageable region by
issuing subsequent FREEMAIN macro instruc-
tions for specific storage locations. A
second GETMAIN macro instruction allocates
64 bytes from subpool 255 of the SQA for
BLDL entries initialized by IEAVNPA5. A
skeleton BLDL header, which defines the
single BLDL entry as 60 bytes, is moved
into this area. After initial processing,
control is returned to IEAVNPO5 by posting
the nonpageable ECB.

NPASMLPA Subroutine (Diagram 10.1)

This subroutine loads specified modules
into the pageable LPA. The BLDL entry
pointed to by NVTVRBLD is moved to the BLDL
entry in the SQA, which was allocated by
the NPASINIT subroutine within IEAVNPAS.
The NPASADDR subroutine is used to deter-
mine the address at which the specified
module will be loaded. The nonpageable ECB
is posted so that IEAVNP0S5 can continue
execution. Upon return of control from
IEAVNPO5, NPASMLPA uses NPAS5LOAD to load
the module into the LPA.

NPASBLDL Subroutine (Diagram 10.2)

This subroutine allocates storage in the
pageable area for the system BLDL table and
moves the BLDL table from its temporary
location in nonpageable storage. The NPA-
S5ADDR subroutine determines the address to

26

which the BLDL table should be moved and
roves the takle to the newly allccated
storage. The fields CVTSHRVM and NVTBILIDL
are reset to the address of the BLLL takle.

NPASCLPA Subroutine (Diagram 10.3)

This subroutine is entered to perforr a
coldstart process for the LPA. The NPA-
LINTC sukroutine in IEAVNPA4 is invoked to
ititialize PVT fields that will be used
during the coldstart process.

NPASCLPA calls the IEAVNPAS subroutines;
NPAS5CLIN, NPASIGRP, NPAS5LIND, NPA5S5ALIS, and
NPASEDIR to build the LPA. NPASCLPA then
calls the IEAVNPA4 subroutine NPAUCCST to
complete the coldstart process.

NPASTERM Subroutine (Diagram 10.4)

This subroutine releases the real
storage allocated during the initial execu-
tion of IEAVNPAS5. The pageable region is
not released, since this would release the
pages assigned to the pageable LPA and/or
BIDL table. The pageable regicn sgace is
released by IEAVNPO5 when the subtask (IEA-
VNPAS5) is removed from the system.

NPASCLIN Subroutine

This subroutine constructs the BELLCL
information table and determines the hash
value. The BLDL information table (INFOLA-
TA) contains flag kits and information
extracted from the LPALIB directory. It is
used to reconstruct a BLDL entry when load-
ing a module.

NPASLIND Subroutine

This sukroutine loads independent
modules (those not loaded by NPASLGRP).
When it can, which is most cases, NPASLIND
tries to load the independent modules into
pages which are not completely full. NPAS5-
IIND keeps track of these spaces with a
"wasted space"™ table and a two-page area
allocated above the BLDL information takle.
The wasted space table has the size of the
space and a pointer to a 3-word entry in
the two-page area. The 3-word entry con-
tains: the size of the space, the address
cf the space in the LPA, and a pointer to
the next -largest space entry.

NPASALIS Subroutine

This subroutine constructs LPDEs for all
module aliases.

NPASBDIR Sukbroutine

This subroutine builds a permanent link
pack area directory.

NPASLGRP Subroutine (Diagram 10.5)

This subroutine loads a group of modules
specified by the LPA packing 1list.

IEAVNPO6 (DIAGRAM 11.0)

IEAVNPO6 contains the initialization
routines for the RAS (reliability and ser-
viceability) features of VS2 and processes
the DUMP and TRACE system parameters.

IEAVNPO6 contains a control routine that
branches sequentially to four separate pro-
cessing routines. The control routine con-
tains sequential calls to the four proces-
sor routines. Each of the four processors
initializes a separate RAS feature.

The four RAS functions initialized by
IEAVNPO6 are:

1. DSS (Dynamic Support System) (for
planning purposes only)

2. SVCDUMP (SYS1.DUMP data set is opened)

3. RMS (Recovery Management Supgort),
consisting of CCH (Channel-Check
Handler) and MCH (Machine-Check
Handler)

4. TRACE (system trace table is defined
and initialized)

NP6DSS Subroutine (Diagram 11.1)

NP6DSS locates and prepares the DSS task
for initialization. It locates and opens
the SYS1.DSSVM data set and uses the rou-
tine IEAQCDSR and IEAVVMSR to obtain the
address of the LPA-resident DSS initializa-
tion routine, IQAINIOO. NP6DSS places the
address of IQAINIOO in the PSW in the PRB
pointed to by the DSS TCB. At completion
of DSS initialization, NP6DSS returns con-
trol to the IEAVNP06 control routine.

NP6DMP Subroutine (Diagram 11.2)

NP6DMP analyzes the DUMP system paramet-
er, and locates and opens the SYS1.DUMP
data set for use by the SVCDUMP routine.
NP6DMP determines whether the SYS1.DUMP
data set is to go on a tape or a direct
access device. NP6DMP opens the data set
and returns control to the IEAVNP06 control
routine.

NP6RMS Subroutine (Diagram 11.3)

NP6RMS issues the RMS macro instruction
IGFVNIP, which initializes the MCH and CCH.
At completion of RMS initialization, NP6RMS
returns control to the IEAVNP06 control
routine.

NP6EXCFE Subroutine

NP6EXCP is a generalized I/0 routine
used by NP6DMP to read record 1 and write
end-of-file in record 1 cf the SYS1.DUMP
data set. NP6EXCP initializes the IOB,
clears the ECB, and issues an EXCP instruc-
tion. A WAIT macro instruction is used to
wait for the I/0 to complete. When I/0 is
complete, NP6EXCP returns control tc
NP6DMP.

NP6TRA Subroutine (Diagram 11.4)

NP6TRA analyzes the TRACE system para-
meter and defines and initializes the sys-
tem trace takle. The nucleus initializa-
tion program defines two trace takles, a
temporary trace takle defined by IEAVNIPO
and the permanent system trace takle
defined Ly IEAVNPO6. The permanent system
trace table is defined in the last storage
allocated in the nucleus buffer by NIP.
This takes advantage of space that would
otherwise ke wasted when the resident nuc-
leus is rounded up to a 4K boundary. The
entries in the temporary trace table are
moved into the permanent trace takle during
trace takle initialization. Both the tem-
porary and permanent trace tables are con-
structed similarly and consist of a vari-
able number of 32-byte entries. The numker
cf entries in the temporary table is speci-
fied during system generaticn, while the
permanent takle size may be specified eith-
er during system generation or during nuc-
leus initialization. Each entry contains
information about an event (most often an
interruption) and is recorded Ly the system
at the time the event occurs.

Three fullwcrd rointers, which cccupy
the 12 kytes preceding the first entry,
define the dimensions of the trace takle.
The first pointer, which is located through
fixed storage location X'54' (FLCTRACE) and
a secondary CVT pointer (SCVTRACE), roints
to the current or most recently recorded
entry. The second pointer roints to the
first (lowest storage address) entry in the
table, and the third pointer points to the
highest entry in the table.

Entries are made in ascending order in
the trace takle, beginning with the lowest
address. When the highest entry area in
the takle is filled, the next entry is made
in the lowest address srace, overlaying a
Erevious entry.

NP6MCVE Subroutine

This is a common routine used to move
variakle-length areas of storage in incre-
ments of 256 kytes or less.

Section 2: Method of Operation 27

IEAVNPO7 (DIAGRAM 12.0)

IEAVNPO7 is entered from IEAVNIPM pri-
marily to process the HARDCPY and PAL sys-
tem parameters. IEAVNPO7:

1. Defines the unit that is to be used as
the hardcopy log for console messages
and/or displays.

2. Defines the location of IPA-resident
DCMs (display control modules) that
are used by the graphic cconscle sup-
port processors to kuffer display
images for individual consoles (graph-
ic consoles only).

3. Defines the limit and threshold values
for the paging supervisor algorithms.

4. Locates the SVC OPEN Router in the
LPA.

5. Tests tor the presence of the

extended-precision floating-point fea-
ture (except divide).

NP7HDCPY Subroutine (Diagram 12.1)

NP7HDCPY analyzes the HARDCPY parameter
and identifies the console or system log
data set to ke used for the hardcopy log.

NP7HDCPY alerts the operator if the HAR-
DCPY parameter was specified incorrectly,
if the hardcopy console is not available
(console was offline during IEAVNPO1l con-
sole initialization), or if the specified
device address does not represent a unit
that was defined during system generation
as a console with hardcopy capabilities.
If the NP7HDCPY routine prompts the opera-
tor to specify HARDCPY, the operator is
permitted to continue the parameter speci-
fication to a second line.

NP7PDCM Subroutine (Diagram 12.2)

NP7PDCM identifies the pageable DCM
(display control module) addresses for dis-
play consoles (2250, 2260, 3270, 3155, and
3060). The DCM addresses are defined in
the nucleus for later use by the communica-
tions task. When the last UCM entry has
beern examined, NP7PDCM returns control to
the IEAVNPO7 contrcl routine.

NP7LPAFN (Diagram 12.3)

This subroutine is called by NP7PDCM and
NP70TEST to search the LPA for a specified
module. Preference is given to a module
found in the fixed LPA or the LPA update
area (sometimes called LPA modifications).

28

NP7PAL Subroutine (Diagramr 12.4)

NP7FALI analyzes the PAL (paging
algorithm limit) system parameters speci-
fied via the SYSP parareter or Ly the
cperator and establishes paging supervision
limits and threshold values. NP7PAL,
cptionally, displays the PAL subparameter
values that result from the analysis and
allows the orerator to respecify the PAL
parameter.

NP70TEST Subroutine

NP70TEST determines whether the SVC OPEN
Router (IGFOI9RA) is in the link pack area.
If found in the LPA, its entry address is
stored at CVTDMSR. If not found in the
LPA, the operator is notified, and the sys-
tem is put in a disabled wait state
(X*3R').

NP7EPFP Subroutine (Diagram 12.5)

This subroutine tests for the presence
of the extended-precision floating-point
feature (except divide) in the hardware.
The divide capability is not normally pre-
sent in System/370 CPUs and the Model 145
may lack the other floating-point features.
Thus, it is necessary to place in the CVT
an indication of the extended-precision
floating-point capabilities of the CPU.

IEAVNIPX

IEAVNIPX is the last module to receive
control during VS2 initialization. It:

e Cefines the upper limit of the area
which may be assigned to nonpageakle
joks (NPXREAL).

e Defines the task dispatcher's APG
(automatic priority group) (NPXAPG).

e Defines the task dispatcher's timre-
sliced prioity groups (NPXTMSL).

e Cefines quickcell areas (NPXQCELL).

o Cefines the master scheduler region
(NPXMPR) .

e Establishes lirits on use of auxiliary
storage ky TSO and kackground tasks
(NPXMPA1).

e Releases NIP buffer space in the SQA
(NPXFBUF) .

e Releases control blocks for NIP-loaded
modules (NPXFJPQ).

e Defines available address space
(NFXFARER) .

e Defines the master shceduler's LSQA
(NPXMLSQA) .

e Defines availakle page frames
(NPXPFTAQ) .

e Defines shared subrool 0 for the master
scheduler and communications task
(NPXMCSPO) .

o Releases NIP's trar on ABEND
(NPXRTRAP) .

e Resets the dynamic address translation
tables and exits to the master schedul-
er initialization program (NPXRDAT).

IEAVNIPX processes the APG, TMSL, MPA,
REAL, SQACEL, LSQACEL, TSOAUX, and AUXLIST
system parameters.

IEAVNIPX Control Routine (Diagram 13.0)

The Control Routine organizes NIP exit
processing by sequentially invoking the
various exit subroutines.

NPXREAL Subroutine

NPXREAL interprets the REAL system para-
meter, defines the nonpageable dynamic
area, and ensures that the numker of non-
pageable pages being defined does nct con-
flict with the previously defined NFX= sub-
parameter of the PAL= parameter.

NPXREAL locates, via PARMTAB, the REAL
parameter input and ensures that the value
is not too large. NPXREAL determines the
new upper boundary of the nonpageable area
and stores it at CVTREAL. NPXREAL also
stores the index of the PFTE that corres-
ponds to the page containing the high non-
pageable address in the PVT at PVTVEQR.

If the REAL parameter is incorrect,
NPXREAL informs the operator by calling
NIPWTOR to send a message. The operator
may respecify or cancel. If he respecifies
it, it is processed as above; if he cancels
it, NPXREAL attempts to use a system-
assigned value, as described below.

If the REAL parameter is not specified,
the nonpageable dynamic area is set to 6UuK.
If this area cannot ke contained below the
minimum system paging/SQA space, the NIPS-
WAIT routine (in IEAVNIPM) is entered to
Flace the system in a disabled wait state
(X*'38'). A message is first issued indi-
cating that storage is not available for
the nonpageable area.

NPXAPG Subroutine (Diagram 13.1)

NPXAPG interprets the APG system para-
meter and defines or cancels the task dis-
patcher's automatic priority group.

NPXTMSL Subroutine (Diagram 13.2)

NPXTMSL interprets the TMSL system para-
meter and defines or cancels the task dis-
patcher's time-sliced priority grougs.

NPXQCELL Subroutine (Diagram 13.3)

NPFXCCEIL interprets the SQACEL and LSQA-
CEL system parameters and defines the quic-
kcell areas for SQA or LSQA, or both.

NPXMPA Subroutine (Diagram 13.4)

NPXMPA interprets the MPA system fpara-
meter, which allows address space, in 64K
segments to be added to the master schedul-
er region (128K kytes by default) and
defines the virtual address space dedicated
to the master scheduler region.

NPXMPA1l Subroutine (Diagram 13.5)

NPXMPA1l is called by NPXMPA to interpret
the TSOAUX and AUXLIST system parameters
and to establish limits on background and
TSO use of auxiliary storage.

NPXFBUF Sukroutine

NPXFBUF releases the storage occugied Ly
the NIPSPE queue in SQA. NPXFBUF calls
FREEMAIN to free each NIPSPE on the NIPSPE
queue except the one in the NVT.

NPXFBUF invokes the IEAVNIPM subroutine
NIPWTOR2 to release any dynamically
acquired SQA rerly buffers. NIP buffers in
NIP's region space are released when the
dynamic area is redefined by the NPXMPA and
NPXFAREA routines.

NPXFJPQ Sukroutine (Diagram 13.6)

NPXFJPQ purges programs loaded ky NIP
that still remain on NIP's TCB job pack
queue. The purge is logical only, since
the CDEs and LIEs representing these pro-
grams are dequeued and the storage the CDEs
and ILEs, occupy is released while the
storage the programs occupy is not released
until availakle storage is redefined by the
NPXFAREA routine.

NPXFAREA Sukroutine

NEXFAREA defines the pageable and non-
pageable address space that is availakle
for later region and LSQA allocation.

NPXFAREA redefines the nonpageakle PQE
and FBQE to include the address space iden-
tified by NPXREAL beginning at the top of
the nucleus. NPXFAREA updates the pageakle
PQE and FBQE to reflect address space
beginning at the end of the nongpageakle
dynamic area and extending to the low

Section 2: Method of Operation 29

address of the master scheduler region
identified by NPXMPA.

NPXMLSQA Subroutine (Diagram 13.7)

NPXMLSQA allocates the single-segment
LSQA related to the master scheduler
region. This is done by means of a special
interface to virtual storage supervision
that is used only by NIP. The special
interface is needed because NIP defines the
LSQA without a TCB. This action prevents
wasting space for a duplicate and unused
TCB.

NPXPFTAQ Subroutine (Diagram 13.8)

NPXPFTAQ scans the paging supervisor's
PFT (page frame table) and adds NIP's non-
pageable area to the available PFT queue.
NPXPFTAQ moves to the available queue all
page frames that are assigned to a nonpage-
able region.

30

NPXMCSPO Subroutine (Diagram 13.9)

NPXMCSPO defines the master scheduler
subpool 0 as shared with the communications
task. This allows the ccmmunications task,
which is defined without a regiomn, to
acquire storage in the master scheduler
region.

NPXRTRAP Sukroutine

NPXRTRAP restores the SVC table entry
for ABEND (SVC 13) to its original contents
upon entry to NIP.

NPXRLCAT Subroutine (Diagram 13.10)

NPXRDAT sets up the input parameters for
the master scheduler Initialization program
IEEVIPL, resets the dynamic address trans-
lation takles, and terminates supervisor
initialization by issuing a LINK macro
instruction to IEEVIPL.

J

(4%

Input

From Location X'00' PSW

Processing

Location X'08'

Location X'09*

Nucleus name suffix —_— = — — -

Real storage size
indicator

¢ —

Location X'02'

Address of IPL
device for

SYSY.NUCLEUS

L ———

IEAIPLOO

Build nucleus member name (IEANI;COX).

Determine effective (operator=specified)
size of real storage.

Clear real storage up te effective size.

Set storage keys for all 2K-multiple
blocks to 0.

Create CSECT size table, address table,
and relocation factor table .

Relocate unexecuted IEAIPLOO code above
nucleus location and clear nucleus location

from X'80'.

Read in nucleus and relocate nucleus
address constants.

Lood parameter registers and branch to
location X'16C".

Diagram 1.0: IEAPILOO
Initial Program Load

Output

Register 10

> Device oddress of IPL

volume

Register 1

> Address of translation

table

Register 3

> Address of IPLDATA

Register 4

> Address of nucleus

IEAVNIPO
Diagram 2.0, Step 1

CSECT size table

Register 6

Effective size of real

storoge

Register 7
Address of end of

resident nucleus

Register 8

> Address of nucleus
CSECT address table

Register 9

Number of nucleus

CSECTs

$Z UOT3IOBS

uor3zexado IO POYISW

143

Diagram 1.0:

IEAIPLOO

[e e — e —— . et . e, . . e, S e, e — s, e, . S . sy

Notes on Processing

C

L3
| Label

1.

| IEASTARL

The EBCDIC character at location
X'08' is a suffix appended to |
“"IEANUCO®" to form the nucleus |
member name. The system assigned |
character "1" may be replaced by |
the operator by setting an address|
stop at location X'80' before pre-|
ssing the LOAD button. When the |
address stop is reached, the
operator overlays the "1" with the
desired EBCDIC character.

|
[
II
The contents of location X'09' are|
used to determine the effective |
size of real storage. Using the |
address stop procedure described |
in Step 1, the operator may speci-|
fy that effective real storage |
size is to be less than the real |
storage size. One of the follow- |
ing hexadecimal values must be |
[
|
|
|
[
[
I
|
[
|
L

inserted in location X*'09°':

X'a7°*
X'Cceé"
X'cs*
X*'Do"

192K,
64K, X'C7'
- 256K,
768K,

X'A8"' - 348K,
- 128K,

X'C9' - 512K,
X'D1' - 1024K

The real storage area akove
IFAIPLOO is set to 0 by a Move
Character instruction in a loop.

IEAZRLP3

Note

s on Processing

———————

A Set Storage Key instruction is
used in a loop to set the storage
keys for all 2K-multiple blocks to
0.

The halfword at location X'02' is
used to determine the location of
the device that contains the nuc-
leus data set (SYS1l.NUCLEUS).

The coding in IEAIPLOO beginning
at label IEADATDS is relocated
above the area to be occupied Ly
the nucleus. Control is passed to
the relocated coding which sets to
0 the area from which it was
relocated.

The text records of IEANUCOx are
read into the low end of real
storage (see Figure 3).

—_—————— A

Location X'16C' contains an LPSW |
instruction that sgpecifies the PSW|
at location X'170'. This PSW spe-|
cifies the entry point in IEAV- |
NIPO, the first NIP module.

- —

IEAMXLOC

IEAPCKEY

IEAALCLCRS

IEARD1

IEAOUTCD

he

Diagram 1.0:

IEAPILOO (Cont'd)

fm—————————
Notes i 1 1 [Notes on Proce -
1 on Processing lLabel } | Notes cn Processing ILabel |
_________ - - L

| Error conditions that ca i [H -

| roontion or SERIPLOG Eeguiiczi gurlng= I I X*06" The CSW stored after a TIO | ERRCSW |

| Gicabled system wait state with ehe | | operation indicates that a | (CSWTST) |

| Cpooorcaat . t | program check, channel data | |

ppropriate wait state code displayed | | | heck
| in the lights on the CPU control panel]| | | gh:gnélcggggg} ;on;roi check, : l
| and stored in the address portion of | | | i trol check |
€ interface control check
: zrz?rrent PSW. The wait state codes l : | occurred. { :
: |
I <t 0t . | |
. C

| X*'01* First Test I/0 instruction 1 IEAERR1 1 : EggNgggivisn:g%e:gigggbig :(?ggﬁgggm):

| 1nd1ca§es that I/0 is not | (TEAIOTST) | | scatter format and cannot be

| operational |

| . 1 : : loaded by IEAIPLOO. | |

| x*02°* An 1/0 instruction could not | ERRSIO2 X'0E" I !

E T .

= be started; a Start I/0 |(IEASTRIO)= : tﬁz 2gi§vgugﬁggiuga;ZmEZ: o l?iggggMPR)$
instruction resulted in a CSW

| being stored for reasons other% = : igﬁnggﬁmzainngﬁefggsgcgnsgze I(SENSE) I
th . - - -

: eng? unit busy (CU kusy or CU | | | cified by the address in Lytes| |

| . : : { X*'02*' and X'03'. The nucleus | |

ca t

| X*'03* An I/0 operation could not be | ERRSIO3 | | nnot be loaded by IEAIPLOO. l :

; z:g:tgd; the CSW was not | (IEASTRIO) | | X*17°* A unit check occurred follow- | ERRSNS |

' . l 1 : ing a successfully started I/0| (SENSE) |

operati i

| X*'ou4* ?he CSW was not stored follow-| ERRTIO | | 05 ;: ;22e;§tt2§rr2age2§2 ig: I l

| ing an SIO/TIO sequence; chan-| (IEATSTIO) | | address and do ° l

| nel was not Lkusy | & previo % can l !

| . | ‘ : track that previously caused a| |

. track conditi .

: X*'05" A unit check occurred follow- |ERRUCK | | ndition checlo } :
ing a successfully started I/0| (SENSE) X*18" Availak

| operation. The unit check was| (SNSPRCD) : } RLDli ledSpace gor Mnccns | (TEABEDRL) |

| not caused by a track- | (ECFMERFX) | | the i insutticien exceeded: | (1EABIDRLY|

| condition check, a file mask | | | 1oa§eIE§ngg:ff1Clent Space tol l

| violation/end of track, or an | | |) = ;

| end of cylinder. The first | X'19"

| four bytes of sense data are | : : 22032§:g?ctigAE;zggagaghsgt ! l

| end of cylinder. The first | (ECFMERFX) | | finished loadi th i l l

| four bytes of sense data are | | | nucleus Eit;ng IEglgiggd?nt ! |

| saved at location X°*54°'; the | | | in erro; or thg storage i ol l

| address of the failing CCW | | | which it resides is fgilig I |

| string is saved at location | | e -_—— g-L l J

| X'4ct. | | T o

L - —d e J

Z S33O0N

9¢

Diagram 2.0 (1 of 3): IEAVNIPO
Initial NIP Processing

From Diagram 1.0,

Step 8
Input Processing Output
IEAVNIPO
Register 7
|Address of end of nucleus I‘— 4 — — — — —3 1 Ensure that IEAVNIPM was found in Not found System WAIT NVT
SYS1.NUCLEUS by IEAIPLOO. — X132
Register 6
NVTTRACE
|Effecﬁve real storage size F— + —— T — —+ 2 Initialize NIP vector table and
communications vector table. [
NVT | NVTNUCND
CvT
Real Storage Location X'10* I > - CVTEORMi

[Adaress of cvr 4'4—————J

Less than CVTNUCB
i 16 —
3 Ensure that 16 pﬂge.s .ur.e 0va||f1b|e for pages System WAIT T
nucleus buffer and initial paging space. X'38' £ o L W
CVTNUCLS
R A i
NVT
NVTIPGNO
4 Define real storage areas above the A R, 2
nucleus (see Figure 4). [> NVIVVPGI

CVvT1
CVINUCB
Register 10 ::VTREAL‘ V
Address of IPL device I‘— 4+ — — — — —1 5 Initialize UCB of IPL device. IOSGEN > T
Find IPL UCB
Register 3 J
Address of IPLDATA IQ— - — =1 UCB not found System WAIT
I X:31*
IPLDATA IQ— 4 — — L 1 6 Initialize SYSI.NUCLEUS DCB. IECPRLTV
CCHH to TTR
conversion

(Continued at Step 7)

L — LN~

:Z uUoT3IOBS

uot3lexado 3O poy3lsW

LE

c C - C

Diagram 2.0: IEAVNIPO T
Notes on Processing | Label

_— —4--
The temporary page frame table is |
ktuilt at the top of the nucleus |
buffer and contains PFTEs (gpage |
frame takle entries) for each page|
in the initial SQA. These PFTEs |
are initialized with the virtual |
block numbers; the first and last |
klock numbers are placed in the |
page vector table in the nucleus. |
The apparent PFT address is set to|
the real storage address where thej|
first PFTE would exist if there |
were PFTEs for real storage page |
I
|
|
[
|
|
|
[
|
|
|

r
Notes on Processing | Label

[Y-]
.

1. IEAVNIPO exists immediately above |IEAVNIPO
the nucleus if IEAVNIPM was found
in the SYS1.NUCLEUS data set.

The highest four pages in real
storage are allocated to the sys-
tem queue area. An 80K portion of
the area between the nucleus and
the SQA is allocated to NIP as a
dynamic execution area. The area
not allocated to NIP or SQA is
divided equally ketween the nuc-
leus buffer as subpool 251 in
NIP's region (adjacent to the nuc-
leus) and the initial paging space
(adjacent to the SQAa).

frames.

The nurber of trace table entries

=
o
.

is zero if the TRACE option was
not selected during system

I
|
I
|
|
|
I
|
|
|
|
|
|
[
|
I
I
I
|
l
l
|
|
I
|
|
|
]
|
]
|
l

[
t
|
|
[
|
|
|
I
|
|
|
|
I
[
|
[
|
|
‘
| 6. IPLDATA is described in Section 5.
i
|
|
|
[
[
|
|
|
|
|
I
|
|
[
|
|
|
|
|
L

L
[
t
I
l
|
[
[
|
l
|
|
[
I
|
|
l
[
I
|
|
|
{
| high end of the nucleus Luffer
|
[
|
|
|
{
|
|
l
l
I
I
|
|
|
|
(
|
|
I
L

5. NPOUCBLK generation.
11. The trace takle is defined at the
7. The four pages allocated to the NPOSQINT (teneath the page frame table).
SQA in Step 4 are initialized as
shown in Figure 5. Until the 12. The system segment table and page |NPOATINT
pageable storage space is defined takles for all of real storage are|NPOSTELP
(by IEAVNPO4), all requests for defined in the upper area of the |NPOVRUN
SQA must be satisfied form the SCA (see Figure 6). No external |
minimum four pages. A trap rou- page table entries are built |
tine and a system wait state are ktecause no areas represented by |
defined in IEAVNIPM to terminate the system segment table are |
initialization if the SQA is paged. Space is reserved between |
exhausted. the system segment table and the |
first (SQA) page table for the |
8. The entry in the SVC table for SVC| user segment table which will be |
13 is replaced with the address of| defined during IEAVNIPX execution. |
the ABEND trap routine within IEA-| All page table entries for real |
VNIPO (label NPOABEND). This rou-| storage between NIP's region and |
tine processes unexpected ABEND | the SQA are flagged as invalid, |
conditions and causes a system | and corresponding segment takle |
wait state (X'30°'). | entries are flagged as |
—————————— L —— page-table-not-defined. |
i

e e e e e — T e, . S . S T o — o G — — — —— —— o — — — — o, S— e, S e, S e, S s, s, sl . .)

8¢

Input

Register 6

Effective real storage
size

- — — 1 —

NVT

NVTMSTCB

NVTCMTCB

CvT

o ¢
sy s £ 38

CVINUCB

NVTTRACE

‘__
-+ — — —

4 ——_

NVINBFND

NVT

NVTSQANO

NVTIPGNO

Processing

.
- 7 Initialize the system queue area.

Diagram 2.0 (2 of 3): IEAVNIPO

Initial NIP Processing

Output

Communications task TCB

Address of dummy PQE

Master scheduler TCB

o

8 Modify SVC table to intercept abnormal

termination conditions.

Address of SP 251 SPQE

i 2T
Bl

Address of dummy PQE

I O Initialize page frame table and page
vector table.

Determine whether trace option was
selected.

Initialize trace table.

- 12 Define initial system segment table and
poge tables (see Figure 3.3).

13 Replace system-generated program-check
PSW with X'34' wait state PSW .

(Continued at Step 14)

Not selected

12

TRPTR

Table exceeds
nucleus buffer

System WAIT
X'38'

M 3 ERNE
TRBEG

4t fien
TREND

..(‘5

CvT

CVTTRACE
T A - =

2

SCVT

SCVTRPTR

15

Real storage location X'68'

Z uot3oasg

uotaexado 3O poylIeW

6¢

Diagram 2.0: IEAVNIPO (Cont'd)

—mmmmmmem— et

13. This causes a system wait state |

(X'34*) when a System/370 instruc-—|
tion or an instruction that
requires the dynamic address tran-
slation feature is executed on a
system that does not include this
feature.

Error Processing

Abnormal error conditions result in a
disabled system wait state with one of
the following codes being stored in
the address field of the current PSW
(bits 56-63):

X'30° An unexpected ABEND request
has occurred. The system com-
pletion code is found in bits
36-47 of the current (wait
state) PSW.

X'31° The IPL volume resides on a
unit for which no UCB was
found.

b ———— e e e ———

X'33'

X*'34°

X*'38"

IEAVNIPM was not found in the |[NPOERR32
SYS1.NUCLEUS data set. Bits |
36-47 of the current (wait |
state) PSW contain X'7D4' (the|
last 12 kits of the EBCLCIC |
name "IEAVNIPM"). |

I
An I/O error occurred during |NPOERR33
BIDL processing. Bits 36-47 |
of the current (wait state) |
PSW contain X'704' (the last |
12 bits of the EBCDIC name |
"IEAVNIPM"). |

I

|

I

An instruction that requires
the dynamic address transla-
tion feature has been executed|
on a CPU that does not includej|
this feature. |

I
There is insufficient real | NPOERR38
storage for VS/2 to be initia-|

1ized by NIP. |
L

e e e — e ——— e ——— e —— — e ———— - e e ——)

ot

Processing

14 Store model number.
15 Format control registers 0 and 1.

16 Set CPU timer and clock comparator to
prevent timer interruptions.

17 Load PSW to enter EC (extended control)
mode ,

18 Restore system-generated program-check
new PSW.

19 Load IEAVNIPM,

20 Initialize registers.

Diagram 2.0 (3 of 3): IEAVNIPO
Initial NIP Processing

Output

CVv1

> CvIMDL

«eal storage location X'68'

>

BLDL
Read PDS
LOAD
Register 1
l Address of SYS1.NUCLEUS
DCB
IEAVNIPM Register 2

Diagram 3.0, Step 1

Address of NVT

17 UOoT3IDAS

uotiexado jo poyiaw

Th

C

Diagram 2.0: IEAVNIPO (Cont'd)

| Notes on Processing | Lakel |

Zh

Diagram 3.0: IEAVNIPM
Control Routine

From Diagram 2.0,

Step 20
Input Processing Output
Reglater 2 IEAVNIPM
::d?;f\‘/;i:;w’ i~ -+ — — — — = 1 Move contents of initial NIP vector table NVT
from IEAVNIPO to IEAVNIPM and save
TOD clock value. |
2 Move contents of SYS1.NUCLEUS DEB
extent from [EAVNIPO to [EAVNIPM, [>
SVC Table
or D R =
Y - —t — "7 3 Initialize SVC table to intercept XCTL, B
ABEND, and type=3 and type=4 SVC
CVTPVTP l requests and initialize PVT intercept PVT
g N I get-SQA-page requests, [
CVTABEND I |
- 4 Sequentially load, branch to, and, upon NIPLOA
| return from, delete the following NIP IPLOAD
modules: m——
I IEAVNPO1
I IEAVNPO2
IEAVNPO3 3.1
J IEAVNPO4
|IEAVNPO5 DELETE
IEAVNPOS
IEAVNPO7
5 Load and branch to IEAVNIPX. NIPLOAD
_—“
IEAVNIPX
Diagram 13.0, Step 1

7 UOT3IDaL

.
b4

Diagram 3.0: IEAVNIPM

Notes on Processing | Label
4
________ ——— + _—
1. The initial NIP vector table in | IEAVNIPM
IEAVNIPO is moved to corresgonding]|
fields in IEAVNIPM, thus relocat- |
ing the NVT.

—

w
.

The addresses of the Intercept
routine for ABEND (NIPABEND), XCTL
(NIPSVCX), type-3 and type-u4 SVC
routines (NIPSVC), and the Get-
SQA-Page routine (NIPSQEND) are
placed in the appropriate loca-
tions in the SVC table and the
page vector table (NIPSQEND).
Entry to NIPSQEND is from virtual
storage management; other entries
are from the SVC Second-~-Level
Intexruption Handler. NIPSQEND
causes a system wait state
(X'36'). NIPABEND causes a system
wait state (X'40'). NIPSVCX and
NIPSVC are described by Diagram
3.3.

&
.

IEAVNIPM uses a series of suffixes|NPMNEXT
and an index to these suffixes in
the NVT that are appended to the
base name "IEAVNP" to determine
which NIP module is to get control
next. Each module is loaded by
the subroutine NIPLOAD, branched
to, and deleted. The last value,
07, is followed by X'FF', which
indicates that the last NIP
module, IEAVNIPX, is to be
entered. This module is loaded
and branched to similarly; but,
because control does not return,
IEAVNIPX is not deleted by
IEAVNIPM.

NPMLOAD

uot3exado Jo pPOoYISW

£h

P ——— e e —— — . — . ——— . T, T . T e T, S [e, e s . e, S o . S s S,

o e e e e — et B s —_——— —_— —_ . — . — . o e o . " e S e e . s, . o, . e

e s e s — — —— —— — ——— — — — T — — — ———— — ————— — —— — — — —— ——

hh

From Diagram 3.0,

Step 4

Input Processing
) NIPLOAD
T— T~ —(1 Create BLDL list.
Register 1 |
[Address of module nome_|— 4- — __l

2 Set attributes.

8 Load specified module.

4 nitialize wait state PSW and notify
operator of error.

BLDL

—

ﬂ

BLDL error
q

Diagram 3.1: NIPLOAD
Load Specified Module

— NIPWTO
——

Return to caller

NIPSWAIT
X'32" or X'33"

:1Z UOT}IOBS

uot3zexadp FO poy3IOW

Sh

Diagram 3.1 NIPLOAD

Notes on Processing Label |

r
|
}- _— _—
| 4. If the module was not found by

| BLDL, the NIPWTO subroutine is

| entered to issue the message IEA3-
| 01I module NOT FOUND IN dsn. If

| an I/0 error occurred during BLDL
| processing, NIPWTO issues the mes-
| sage IEA300I I/0 ERROR DURING BLDL|
| FOR module IN dsn. In koth cases, |
| the NIPSWAIT subroutine is entered|
| to place the system in a disabled |
|

L—

wait state (X'32' or X*'33"). |
- J 5 T, 4

k)
|
4
L)
| NPMLXIT
|
|
I
|
|

9t

Diagram 3.2: NIPSVC and NIPSVCX
Provide Linkage to Specified SVC Routine

From SVC SLIH
for XCTL or type-3

or type-4 SVC
request, -
Input Processing
XCTL Input NIPSVC and NIPSVCX
Register 15
¢ 4+ — — —+ 1 Obtain address of requested module

Address of entry-
point nome

(NIPSVCX) or build module name

I (N1PSVC).
|
|
|
__|

2 Determine whether module was previously Not loaded
Type-3 or type~4 loaded .,

SVC request input

3 Delete previously loaded module. ~ DELETE

Location X'8A’

-

4 Lload requested module . LOAD

NVT

. A
NVTXCTL - J" — — — — =T 5 Branch to XCTL or requested SVC routine.

#

XCTL or
SVC routine

:Z uUoT309S

Lt uorzexado 3O poylIaW

Diagram 3.2 NIPSVC & NIPSVCX (IEAVNIPM)

== SosTm—mss—s—s e == -==1
| Notes on Processing | Label |
L

[4 i B {
2. The name of a module loaded for a	NPMCDSRH
previous XCTL request is retained	
by IEAVNIPM until a subsequent	
XCTL is issued.	
[[
4.	NPMCDSR2
[[
5.	NPMSVCEX
L i]

8h

Diagram 3.3: NIPUCBFN
Find UCB for Specified Unit

From NIP processors

Input Processing Output
NIPUCBFN
Register 1
r 52521&.':‘; :::;::r i‘— “4+——— — — - 1 Jnitialize input register with hexadecimal

unit address .) 1PEECDX

Convert to hex

(To 1OSGEN)

I—l Register &

2 Find UCB. I0SGEN
Register 15 {from IOSGEN)
| Return code l‘-—'—' — 1 — ——1 3 Determine whether UCB was found and Register 1
1 set output register. = Address of UCB if
Register 7 {from IOSGEN) | found
| Address of UCB }‘— -F R = 0's if not found

To caller

17 UOT3IOBS

uotzexado Jo poyasW

6h

SRR o

Diagram 3.3: NIPUCBFN (IEAVNIPM)

r—= T -1
| Notes on Processing | Label |
b : -
1. If register 1 is negative, the	NIPUCBFN
register contains the EBCDIC unit	
name and requires conversion by	
NIPEBCDX to the hexadecimal unit	
[address. [I	
2.	NPMUCBLK
	[
3.	NPMHVUCB
L - ————— e) ¥

0s

Diagram 3.4: NIPTIME
Determine Absolute Time or Relative
Time Since IEAVNIPM was Entered

From NIPWTO
and NIP
processors

Input Processing

NIPTIME

Register 1

+ —————- - 1 Determine function requested (Step 2 or 3). OUtpUt

Register 1
NVT r— 2 Response timing from teleprocessing console

‘ w 1 F (TOD clock inoperative and binary request).
NVTFLNCK (g—q — =

J Not operative
NVTTOD -T-— 3 Determine current value of TOD clock. 6

Binary request: compute time relative to

first entry to IEAVNIPM.

Return to
caller

[

Register 1

|

Relative time

Return to

caller .
Register 1

Elapsed day time

5 Decimal request: compute time elapsed
since start of day.

[

Return to
caller

6 Indicate clock inoperative; notify operator

of error. -‘ NIPWTO

NIPSWAIT
X'35'

$1Z UOT3IOSS

16 uotr3exado 3O poyaisWw

/-Q,

Diagram 3.4: NIPTIME (IEAVNIPM)

Notes on Processing

Label

1.

3.

r— ———— e — e e —_———— e e —— e — . —— —————

A request code X'04' indicates a
binary request for time relative
to first entry to IEAVNIPM.
However, if the TOD clock has been|
previously indicated as inopera- |
tive, this is a request from NIPW-|
TO to time teleprocessing response|
in writing messages prior to a
system wait state. The entry
number is (n+1)/10000.

————

[

|

I

[
A Store Clock instruction is |
issued to determine the value of
the TOD clock. |
A decimal request is indicated by |NIPTOP
X'00' in register 1. |

|
NIPTIME uses the NIPWTO subroutine|NIPTDEC
to issue the message IEA302I TOD |
CLOCK INOPERATIVE and passes con- |
trol to NIPSWAIT to place the sys-—|
tem in a disabled wait state |
(X*35"). |

4

|
|
|
-

|
|
|
b e e e e —— e ———— e —

cs

Input

From Diagram 3.0,

Step 4 Processing

Register 3

Address of CVT -t 1

VT
VICUCB

UCMMCSPT
UCMMCENT

UCMUCB
UCMVEA
s TR

o

UCB (from NPITESTC)

SRTESTAT

UCMALTEN
UCMVEL

IEAVNPO1

- 2 Determine console
availability .

next entry if not.

Diagram 4.0: IEAVNPO1
Initialize System Consoles

Output

r 1 Find UCB for console,

=

EBCDIC unit address

3 Initialize active consule.~ NPIINIT

5 Determine whether master
console has been found.

-4 Determine whether all UCM entries
have been examined; get

N{PUCBFN
’_I 3.3
NPITESTC
Console offline
1
4 @ 4]
All not examined
1
Found
IEAVNIPM
Diagram 3.0,
Step 5
Not found
NIPSWAIT
X'07'

> ~Gemoce

(To NIPUCBFN)

Register 1

UcM

e

$Z UOT3OBS

uot3iexado Jo poylaWw

€S

o

Diagram 4.0: IEAVNPO1

T 8 I 1

Notes on Processing | Label |
+ -—

- -== - T

1. The initialization of consoles is |NP1ALT
performed in a loop, always begin-|
ning with the master console spe- |
cified at system generation, then
the alternates to the master con-
sole, and finally the other con-
soles represented in the UCM not
yet tested, beginning with UCMVEA.

r

|

b

I

|

[

|

I

|

|

|

|

| 2. The subroutine NPLTESTC executes a|NP1TESTC
| channel program to the specified
| console and indicates the results
[

|

[

|

|

|

|

|

|

|

|

|

[

|

|
(.

[
|
|
|
|
|
I
|
|
in SRTESTAT. |
|
3. The subroutine NP1INIT flags the |
console as active. If the master |
console has not been initialized, |
the routing and authorization |
codes and the UCM master pointers |
are set, and initial operator com-|
munications are established (see |
Diagram 4.1). |
5. If more than one console is online|NP1CMNT
or if the single console is graph-|
ic, HARDCPY is required (referred |

to by IEAVNPOT). i
———————————— e f S —_—

|
|
|
|
|
|
|
|
[
|
I
I
I
[
NP1INIT |
|
|
|
|
|
[
|
I
[
|
|
|
3

hs

Diagram 4.1: NP1INIT and NPITCOMM
Establish Operator Communications

From Diogram 4.0, H
Step 3 Processing Output
NP1INIT and NPITCOMM ucs
1 [Initiatize console UCB. [UCBSTAT
2 Determine whether moster console has Initialized IEAVNPO1
already been initialized. Diogram 4.0,
Step 4
Uc™m
3 Initialize master console . L > e
UCMATR
UCMRTCD
4 Obtain message reply buffer; build GETMAIN
and issue messoge IEAT0IA, UCMAUTH
UCMDISP
NIPWTOR
NVT
NVTMBUF
NVTMBEND
Reentry from IE'AVNPO‘
NPITESTC Diagram 4.0,
Step 4
5 Determine whether WTOR ECB has been Not posted
posted. NPITESTC
6 Move reply into message buffer. NIPWTOR?2
7 Determine whether more parameters are to No more parameters
be entered by operator. NPITESTC
8 Issue message IEATIGA, NIPWTOR
NPITESTC

$Z UOT3IDOS

uot3exado 3O poyYIaW

SS

Diagram 4.1: NP1INIT & NP1TCOMM (IEAVNPO1l)

Notes on Processing | Label

|
k
|
|
|
|
|
|
|
|
|
I
I
|
I
|
I
|
l
|
|
|
|
|
I
|
I
[
l
I
|
|
[
|
|
|
|
|
L

+
Establishing communications with |NP1INIT
the console operator is a two-part|
process in which the operator is |
requested to specify system para-

meters (NP1INIT) and the reply is

moved into a message Lkuffer for

later processing by IEAVNPO3.

I
|
I
|
Both halves of a composite console|NP1ACT
are initialized before proceeding |
with Step 2. |

I
If the active master console is |
not the console specified during |
system generation, the routing and|
authorization codes are moved to |
the UCM for the new active master |
console, and the UCM prefix is |
updated. |

I
A 2K reply buffer is obtained from|NP1TCOMM
subrool 255 of the SQA. |
This buffer is deleted by IEECMWTL|NP1COMM
after NIP execution.
Additional parameters are indi- NP1SCAN
cated by the characters 'CONT'
followed by a quotation mark at
the end of the parameter string.
A quotation mark following anyth-
ing but °'CONT' indicates the end
of the parameter string.

The reply to this message is pro-
cessed in the same way as the
reply to IEA101A.

S —

9s

Diagram 5.0: IEAVNPO2
Control Routine
From Diogram 3.0,

Step 4 Processing Output
|EAVNPO2
P . . DEB
————-—— |- 1 Initiclize the unit test DEB in _
Input [IEAVNPO2, [35
| DEBAPPAD
| 2 Test availability of devices. mmmmlp| NP2RRCDS DEBENDCC
| Test DASDs DEBENDHH
_' ﬁ DEBEXSCL
| DEBSTRCC
v | NP2EXCPU DEBSTRHH
m | Test non-DASD DEBUCBAD
VTilk2 - ——- ﬁ_"L :
CVTSYSAD 1< - 3 Define SYS1.LOGREC DEB base in nucleus
CVIDCBA and open SYS1.LOGREC data set. ~ NIPOPEN
CVISVDCE M= —f — — —
| 5.2
CVTLINK ol
! = - —— 4 Define SYS1.SVCLIB DEB base in nucleus
F and open SYS1.SVCLIB data set. - NIPOPEN
5.2
Define temporary SYSI.LINKLIB DEB in
NVT
6 indicate SYS1,5VCLIB and SYS1.LOGREC
data sets available for system use. [NVTFLSLB
{EAVNIPM
Diagram 3.0,
Step 4

$Z UOT3IOAS

uotiexado 3o poyIeW

LS

C

F
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
L

Direct Access Device Class
Unit Check Unit 1/0
Unit SIO/TIO (Intervention Check Error Normal I/0
Type cc=3 Required) (Other) (Other) Status
2301 Offline Offline Offliner Offline! Cnline/Ready
2305 Offline Offline Offline* Offline! Online/Ready
2314 Offline Not Ready* Offlinet* oOfflinet Cnline/Ready
2319 Of fline Not Ready* Offline* oOffline! Online/Ready
3330 offline Not Ready* Offline* Offline!l Cnline/Ready
(other) oOffline Not Ready offlinet oOffline* Cnline/Ready
*0ffline status is set if the DEVSTAT option was selected
during system generation.
1An interpretive error message identifies the device status.
Magnetic Tare Device Class
Unit Check Unit Check
SIO/TIO (Intervention (Intervention
Unit Type cc=3 Required) Required) Other
With Status "A" With Status "A"
and "B" off and/or "B" on
2400
3400
2420 offline Offline NotReady Cnline/Ready
(Other) offline offline NotReady Cnline/Ready

Unit Record, Communications, and Graphics Device Classes

SIO/TIO
Unit Type cc=3 Other
All Offline Online/Ready

b e e e ————— e d

I o

Diagram 5.0: IEAVNPO2

T ==

Notes on Processing | Label |
- +

1. IEAVNPO2 contains the DEB used for|IEAVNPO2
testing devices. It is defined to|
reflect a maximum data set size of|
X'7FFF' tracks extending from CCHH|
0 to X'FFFFFFFF." |

r
I

k

I |
| |
[|
| |
[I
| | I
2. Each UCB in the UCB address table	NP2SEARC
that has not been examined by	NP2NDASD
IEAVNPO1 is tested to determine	
the status of the associated	
device. For direct access	
devices, the subroutine NP2RRCD3	
builds a channel program to read	
the volume label. For nondirect	
access devices, a NOP CCW is spe—	
cified. The subroutine NP2EXCPU	
executes the channel program. The]	
subroutine NP2TERR is entered fol-	
lowing all non-DASD I/0 operations	
{ and from NP2RRCD3 for failing DASD	
Is/C. For a failing I/0 operation,	
the UCB is set to indicate that	
the device is offline. A UCB for	
a DASD is set to indicate that the	
device is not ready. This pro-	
cessing occurs in a loop for each	
untested ECB in the UCB address	
takle. Device availability test-	
ing is described in the adjoining	
takle.	
I	
I	
I	
I	
I	
[I	
I	
I I	
I	
I	
I I
L

3. IEAVNP02 passes the address of the|NP2DDEFS
system residence UCB (CVTSYSAD) |
and the address of the SYS1.LOGREC|
DCE (CVTDCBA) to NIPOPEN. |

4. The address of the SYS1.SVCLIB DCB
(CVTSVDCB) is passed to NIPOPEN.

5. The address of the SYS1l.LINKIIB
DCB (CVTLINK) is gassed to
NIPOPEN.

_ —_——————— e o 4

-

8S

input

Register 1

Address of parameter
list

Parometer list

Data set name

VOLSER or UCB
address

Device type

Flags

From NIP
Pprocessors

Processing

NIPMOUNT

- 1 Determine whether UCB oddress or VOLSER
was passed in parameter list.

- 2 Determine whether volume is already
mounted ,

- 3 Request operator to specify unit address
on which volume is to be mounted.

4 Find UCB for operator-specified device.

5 Request operator to mount volume on
specified device.

6 Test device availability.

UCB address

) 5

NP2VSCAN

- |

Already mounted

smmmdp{ NP2RRCD3

- |

Not ready

Diagram 5.1: NIPMOUNT

Mount Specified Volume on Specified Device

Return
to cailer

NIPWTOR

{EAVNIPM
subroutine

NIPUCBFN

IEAVNIPM
subroutine

NIPWTO

IEAVNIPM
subroutine

Return
to caller

:Z uoT3lodes

uotjzexado JO PoOy3IaW

6S

Diagram 5.1:

Notes on Processing

| IEAVNPA2

r
|

IEAVNPA2 (IEAVNPO02)

The NP2VSCAN usbroutine compares
the volume serial passed with each|
entry in the UCB address tatle. !
If a duplicate volume serial spe- |
cification is found, NP2VSCAN |
returns the address of the duplic-|
ate UCB address table entry. If

no device type is specified in the|
parameter list or if the UCB found|
by NP2VSCAN is for the specified |
device type, the volume is consi- |
dered mounted. |

The operator may be allowed,
specified by the parameter list, |
to cancel the mount request. If
the request is canceled,

I
NIPMOUNT sets register 1 to 0 and |NPA2INV

returns control to the caller. Ifj
an invalid reply is received, the |
operator is requested to respecifyj|
the unit address. |

|
| NPA2VOL

|
if so|NPA2SPEC

| NPA2EOB

___________ e

[
|
|
|
[
|
|
[
[
|
I
I
|
I
I
|
|
|
I
I
|
[
[
|
J

r

oo e e e . e e e e e e . . e . . e . . e e, . . . e, i g

=2
.

T
| Notes on Processing |

tor is requested to respecify the
unit address. If a UCB was found |
for the specified volume but an |
unaccertable device type is found |
Ey NP2VSCAN in Step 2, and the |
volume is permanently resident, |
and the request cannot be can- |
celed, the system is put in a dis-|
abled wait state by NIPSWAIT in |
IEAVNIPM (X'39'). If the volume |
is not permanently resident, the |
UCB found Ly NP2VSCAN is marked |
unavailable by NP2TERR, the UCB |
found ky NIPUCBFN is marked online|
and not ready, and the operator is|
requested to mount the volume on |
the operator-specified device. |
|
I
|
I
I
I
I
|
|
|
[
|
i

The sukroutine NP2RRCD3 builds a
channel program to read the volume
lakel. If the channel program
executed by NP2EXCPU fails but the
record was found, the NIPSENSE
subroutine in IEAVNIPM is entered
to write an interpretive error
message.

A flowchart of this subroutine is
included in Section 3.

NPAZMNT

09

From NIP Processors
Input
Register 1
Address of parameter
“Sf ’— I
|
. |
Parameter |ist i
Dcta set name i

DCB address
UCB address

. Flogs

Processing

NIPOPEN

-1 Optionally construct

DEB bose . p—

Diagram 5.2: NIPOPEN
Open Specified Data Set

Output

DEB Base

NP2BDEB

2 Add DEB extent(s) to

ﬁ_—

DEB base.

Extents

NP2BXTNT

Return to
caller

1Z UOTD3S

uoTt3iexadp IO POYIaW

19

From Diagram 3.0,
Step 4

r . [{
Diagram 6.0: IEAVNPO3
Initialize Page Data Sets
Processing Output
IEAVNPO3
Analyze and create table from system
parameters specified by operator. - NP3OPSP
Gm— OPERTAB
[
Allocate and define initial PARMAREA.- NP3PBASE
L Y
Open the SYS1.PARMLIB dataset. NESESESSS——-P NPGPMLIS
¢
Analyze and create table from system
parameters specified in IEASYSXX
member of PARMLIB. NP3SYSP
ﬁ—_ﬂ PLIBTAB
—
Merge OPERTAB and PLIBTAB into
PLIBTAB.] P3PLMRG
Initialize PARMTAB in PARMAREA, ISPy NP3PTAS
m PARMAREA
{
Open SYS1,LINKLIB. s> NPILKLIB I
Define SYS1.LINKLIB concatenations. ~ NP3LCAT
du——
IEAVNIPM
Diagram 3.0,
Step 4

9

From Diagram 6.0,

IEAVNPGO3
Diagram 6.0,
Step 2

NIPWTOR

IEAVNIPM
Subroutine

Diagram 6.1: NP3OFSP
Check Validity of Operator Parameters
and Buiid OPZRTAB

Output

OPERTAB

>

Input Step 1 Processing
NVT
NP3OPSP
NVTSPE - ——— —1 Determine input parameter list specified Default IEASYS00
by operator.
Parameters
_ Invalid
tig [—|—— _I_ -—4-2 Scan operator input for valid parameters,
|
TRANSTAB :
o +——- 3 Move addresses of valid parameters into
| OPERTAB, C
|
SYMBSTRT I
SIRT le 1
- 4 Add new SPE ta chain for new operator
reply . soumm—) 0

IEAVNPQ3
Diogrom 6.0,
Step 2

:Z UOT309S

€9 uot3jexado JO poyIaW

Diagram 6.1: NP30OPSP (IEAVNPO3)

—
| Notes on Processing

e s — . ——— i e — e, — . T e, T e, . e S s S . . et " e, S s, S G — e, S s B e, S

[
.

N
.

w
.

&
.

If the first operator-specified | NP3OPSP

parameter is "U" or "U,L" the sys-|
tem parameter list IEASYSO00 is
selected as the source for all
parameter input.

I
|
|
IEAVNPO3 uses two tables within |
IEAVNPO3 to verify the parameters. |
TRANSTAB contains an index value |
for each character which may |
validly begin a parameter specifi-|
cation. This index value is used |
as a displacement into SYMBSTRT. |
SYMBSTRT contains all of the valid|
parameters that may be specified |
by the operator. Each parameter |
entry is in character format and |
is followed by a hexadecimal con- |
stant indicating the number of |
valid characters (including the |
equal sign where necessary) in thej
parameter. The value from TRANS- |
TAB indicates the position within |
SYMBSTRT where the comparison of |
the operator-specified parameter |
with valid parameters begins. |
|
|
|
|
[
I
I
|
[
|
|
|
|
|
[
I
1

The operator is notified of
errors, and is allowed to respec-
ify invalid parameters.

The TRANSTAB index value is used
as the displacement into OPERTAB
at which the address of the para-
meter is stored.

An eight-byte SPE is added to the
chain of SPEs that contain
operator-specified parameters.
The address of the operator reply
(to respecify or cancel) is moved
into the new SPE.

NP3SCAN

NP3SCINV
NP3OPRES

NP3ENTER

NP3GETMN

t9

From Diagram 6.0,
Step 2

Diagram 6.2: NP3PBASE

Allocate and Initialize PARMAREA

Processing
NP3PBASE
Output
1 Allocate 2K buffer for PARMAREA. GETMAIN
NVT
ﬂ NVTPAREA
R
PARMAREA
2 Initiclize BLDL heoder, 10B, DCB, [
and DEB in PARMAREA,
IEAVNPO3
Diagram 6.0,
Step 3

:Z UOT3OIS

69 uotiexado 3JO POYIdAW

Diagram 6.2:

NP3PBASE (IEAVNPO03)

C

Notes on Processing

r
I
L
1]
|
|
|
I
|
[
I
L

1. The PARMAREA will contain the

operator-specified parameters

pointed to
parameters
pointed to
parameters
NP3 PLMRG.

by OPERTAB and the
specified via SYSP and
by PLIBTAB. These
will be merged by

Label
N

P3PBASE

p——————— o —]
e o . o — — — — b —)

http:point.ed

99

Diagram 6.3: NP3PMLIB
Open SYS1.PARMLIB Data Set

From Diagram 4.0, .
Step 3 Processing

NP3PMLIB

1 Find the SYS1.PARMLIB dota set, LOCATE.

Not found
aq

2 Ensure that volume is mounted, and

set UCB address . Nemount | Qutput

NVT

o R
| NVISPUCB |

3 Open SYS1.PARMLIB data set, NIPOPEN
5.2
Input
IEAVNPO3
Diogram 6.0,
VT Step 4
NROLERNEE: NVT
0 BEETL TN
CVTSYSAD —-l——————— -4 Use IPL volume as defoult, ond set ﬁ% %

UCB address . '

| I

RIS T

[

67

Methcd cf Operation

Section 2:

llllllllll B Z -=T== == . |
IIAWIEAN | t |

| |

gITNdEAN | T
- + - - --4
13qe1| putsssdoxd uo sa3oN |

| S A e —————————— . J

(E0ANAVAT) HITWdEAN :€°9 wexberq

89

From Diagram 6.0,
Step 4

Processing

NP3SYSP

1 Allocate 2K area for parameter input,

2 Read PDS (partitioned data set) for
IEASYSXX,

3 Read text record of IEASYSXX,

4 Move characters in text into secondary
PARMAREA,

5 scan parameters and move addresses of
valid parameters into PLIBTAB.

6 Set OPI indicators for all parameters
entered in this |ist.

All parameter lists processed ?
p

Yes

NIPPMPDS

NIPPMTXT

NP3SCAN

GETMAIN

Diagram 6.4: NP3SYSP
Build the PLIBTAB

Output

[

PLIBTAB

No
eeeesssss——> O

IEAVNPO3
Diagram 6.0,
Step 5

:Z uoT3oes

uot3iexado JO PoY3lIaW

69

Diagram 6.4: NP3SYSP (IEAVNP03)

a buffer to contain all of the
input parameters from IEASYSxx
members of SYS1.PARMLIB.
IEASYS00 is always read first. NP3MOVNM
Steps 2 through 6 are executed in
a loop for the specified input
strings.

The text of the input string is NP3SYTXT
read into an 80-byte buffer by a
channel program within the initial
PARMAREA.

The text is moved, one character NP3MOVST
at a time, into the secondary
buffer. An additional secondary
buffer is obtained if the present
buffer becomes filled.

The subroutine NP3SCAN moves the NP3SYSFT
addresses of the valid parameters
into the PLIBTAB within IEAVNPO3.
If duplicate specifications are
encountered, the PLIBTAB entry for
the duplicate parameter contains
the address of the last-examined
specification for that entry.

b — e o e ———— e ———— e ————

oL

Diagram 6.5: NP4APTAB
Move Parameters into PARMAREA,;
Set FARMTAB Address

From Diagram 6.0,

Step 6 Processing

NP4PTAB

Output
Input 1 Remove secondary PARMAREAs from queue
originating with initial PARMAREA .

Initial PARMAREA

PLIBTAB r—t 2 Move parameters pointed to by PLIBTAB
| addresses to initial PARMAREA, setting Parameters
——— PARMTAB addresses for each. ("1 PARMTAB
Secondary PARMAREA : WA T

e

3 Set address of PARMTAB, [> NVIPTAB
4 Release all secondary PARMAREAs . FREEMAIN

IEAVNPO3

Diagram 6.0,

Step 7

$Z UOT3IOAS

uot3exadp 30 POYIBH

TL

Diagram 6.5: NP3PTAB (IEAVNPO3)

-————

r
|
b
|
|
|
|
I
[
|
I
[
[
|
I
|
I
|
|
L

T 1

Notes on Processing | Label |
____________ 4 4

T 1

1. The secondary PARMAREAs are | NP3PTAB |
removed so that the initial PAR- | (
MAREA can be expanded as neces- | |
sary. The PARMAREAs are chained | |

so that any additional PARMAREAs | |
obtained are gqueued to the last | |
PARMAREA obtained. Removing the | |
secondary PARMAREAs leaves the | |
initial PARMAREA as the last one | |
obtained. | |

I |

2. | NP3NULL |
I |

3. | NP3T INT |
| I

4. | NP3PAFM |
________ -1 J

L

From Diagram 6.0,

Step 8 Processing

NP3LCAT

1

Read partitioned data set for LNKLSTOQ
in SYS1.PARMLIB.

Obtain 2K buffer for member names.

Read LNKLST0O0 member and move names
from input buffer to work arec.

Find volume for each name and move

VOL ID to work area.

Ensure that the volume is mounted.

Concatenate the data set with the
previously defined portion of the
SYST1.LINKLIB.

Release work area.

Inform operator that the LNKLST function
is inoperative .

NIPPMPDS

Not found

———) 3

NIPPNTXT

Diagram 6.6: NP3LCAT
Concatenate Members with SYS1.LINKLIB

GETMAIN

LOCATE

NIPMOUNT

5.1

NIPOPEN

5.2

FREEMAIN

IEAVNPO3
Diagram 6.0,
Step 8

NIPWTO

IEAVNPO3
Diagram 6.0,
Step 8

$Z UOT3DaS

uot3iexado 3JO POYISNW

€L

/-\,

Diagram 6.6: NP3LCAT (IEAVNPO3)

r T
| Notes on Processing | Label
4

-= T
The 2K buffer is assumed to be | NP3LCAT
large enough to contain all of the|
member names found in LNKLSTO0O. |
If it is too small, the member
name list is truncated following
the last name entered in the 2K
buffer.

e o e e e e . — — ——— ————— — ———p—— — — . i} . o]

N

3. The first byte of the name in the |SCANRCD
work area is a flag byte, the

next 44 bytes are the name of the
member, padded to the right with
blanks if necessary, and the last

6 bytes contain the VOL ID.

NP3LCNAM

4. Steps 4 through 6 are executed in |NP3LCLOC
a loop for each member name placed
in the work area, or until 15 mem-
bers are successfully

concatenated.
NP3LCVOL

NP3LCEND

[o T . e S . S e e T e . e = e T . T (. . s, . s, P S

|
|
|
[
[
|
|
|
|
I
|
I
|
I
|
|
|
I
|
|
[
|
|
4L

NP3LCMFL

L

Input

From Diogram 3.0,
Step 4

Processing

IEAVNPO4

| 1 Build poge porameter matrix from
PARMLIB and operator entries.

-2

Optionally display parameters,

3 Allocate quickstart buffer.

=4 Build page device table; format page
data sets; build and write NIPQSR1
records for these data sets.

5 Build channel program queue.

7 Read NIPQSR2.

8 Re-initialize SQA.

O Initialize PVT.

Diagram 7.0: IEAVNPO4
Open and Format Page Data Sets

Output

Page parameter matrix

6 Allocate and build page frame table,

NP4PDSEL

NP4BCPQ

NP4APFT

NP4BPFT

NP4RQSR2

NP4BSQA,

NP4IPVT

NPA4GBUF

IEAVNIPM
Diagram 3.0,
Step 4

:Z UOT3IOAS

gL uot3ezado JO POYIDM

C | (- C
Diagram 7.0: IEAVNPO4
r T L} T ==
| Notes on Processing | Label | Notes on Processing |Lakel |
I + 1 - - ——---——f 1
1. All entries from the IEASYSxx list	IEAVNPO4	5. The channel program queue is built	NP4BCEC	
of SYS1.PARMLIB are scanned		in the high end of the nucleus		
first. Operator-specified entries	NP4PSCAN		tuffer and contains ten or more	
are entered next, overlaying		skeleton channel programs. The		
(if permissible) previousg duplic-	NP4PINV		nunker of channel programs	
ate entries. If no entries are		(entries) is determined as fol-		
found in either list, the operator		lows: 1 paging device = 10 CPQEs;		
is requested to enter PAGE parame-		more than one paging device = 15		
ters via NIPWTOR. If a format		CPCEs; plus the number of		
error is encountered, the PAGE			orperator-specified CPQEs.	
parameters are truncated with the				
last valid parameter specifica-		6. The area for the page frame table	NP4APFT	
tion, and the operator is			is allocated above the channel	
requested to respecify the			program queue.	
remainder of the PAGE parameters				
or accept the truncated PAGE		7. 1If the NVIFLQS flag has been set	NP4URQSR2	
definition.			by NP4PDSEL, the quickstart Luffer	
			is refreshed with NIPQSR1 and	
2. If any parameters are displayed,	NP4PDOPT	NIPQSR2 for the LPA page data set.		
the operator is allowed to respe-		NIPQSR2 is required by NP4BSQA		
cify any of the PAGE parameters.			(Step 8).	
	I			
3. The quickstart buffer is used for	NP4PDEV	8. NPU4BSQA processes the SQA paramet-	NP4BSCA	
reading and writing the quickstart		er. If the redefined SQA size		
records (NIPQSR1, NIPQSR2, and		would overlap the high LPA		
NIPQSR3). A NIPQSR1 will be	i	address, and a quickstart is in		
created for each data set for-			process, the operator is given the	
i matted by NP4PDSEL (Step 4).			choice of canceling the SQA sgeci-	
			fication or terminating the quick-	
4. NP4PDSEL formats only the page	NP4PDSEL		start process (in which case the	
data sets that have not been for-			NVTFLCS flag is set to 0).	
matted during a previous entry to		e - -4		
NIP, or that have been				
respecified.				
L 4 J

9L

Input

From Diagrom 7.0,
Step 4

Page parometer matrix

Processing

NP4PDSEL

1 Bild temporary paging device table

entry and page device inf ion

NP41PDT

table at top of nucleus buffer. ﬂ

|

2 Open page data set for device.

3 Read NIPQSRI to determine whether the
page data set is formotted .

Formatted

——

4 Initialize formatting ond add formatting
ECB to WAIT list.

[¢)]

5 If NIPQSRI is for a formatted LPA page

Diagram 7.1: NPAPDSEL
Initialize Paging Devices

E——

NIPOPEN
5.2|
NPA4READ
B.1
Output
NPA4INTF
8.4 7 NVT

Y

data set, set quick flag. [

6 Move temporary PDIT to p

PDIT in low nucleus buffer. NP4BPDIT

7 When all matrix entries are processed,
wait for last ECB in list to indicate
that formatting is completed.

8 Build and write NIPQSR] for each data
set just formotted.

9 Move porary PDIT to p 't
PDIT in low nucleus buffer.

NP4BPDIT

10 Move all active PDT entries to permanent
PDT in low nucleus buffer.

NVTFLQS

NPA4WRIT

IEAVNPO4
Diagram 7.0, Step 5

http:lonnat.ed
http:infonna.iO

tz UOT3IOBS

LL uotaexado 30 poyaIsW

O

Diagram 7.1: NP4PDSEL (IEAVNPO4)

Notes on Processing Label

The first six steps are executed NPU4PDSEL
in a loop, processing each page
data set specified in the PAGE
parameter matrix created by

IEAVNPO4 (Step 1).

NPU4PDTI

[

NP4PDSEL verifies the parameter
specifications; the operator is
allowed to respecify invalid
devices. The PDIT and PDTE for
the data set are created at the
upper end of the nucleus because
the permanent PDIT will contain
only active entries, and the numb-
er of these will not Le known
until all data sets have been
processed.

———————— e

If the data set cannot ke found by|NP4POPEN
NIPOPEN, the NP4ALLOC subroutine |
attempts to allocate the page data|

set. If the data set cannot be
allocated, the operator is
requested to respecify the para-
meter or cancel the specification.

3. An NIPQSR1 record exists for each
data set that has been formatted
during a previous entry to
IPL/NIP.

NP4RQSR1

NP4BPBAL

5. The NVTFLQS flag is set if
coldstart processing was not spe-
cified (CLPA parameter) or if the
"F" parameter was not specified in
the PAGE parameter.

NP4RQSR1

NP4BBQS1
10. NP4PDEND

,——-——————_—————_—_——-—————_———————————-—-——————qr—q
N
.

|
|
|
|
|
|
!
|
|
|
|
|
|
l
|
|
|
|
|
|
|

b e s o e e S . — . A . . S, S e, B e, S S S —— — — — — —— ——— — — — — o S S, s sl . w8

8L

@

Diagram 8.0: IEAVNPA4
Control Routine

From IEAVNPO4 .
ond IEAVNPOS PTOCESSING

IEAVNPA4

InplIt 1 Disable interruptions. MODESET

Register 1

Address of parameter
list

———— 2 Determine reason for entry and process
accordingly.

NPA4READ and
NPA4WRIT

A. Read/write quickstart record.

}

Parameter |ist

Caller

Address of DCB
Request indicator e
Return code

B. Allocate quickstart buffer. NPA4GBUF

Caller

m

C. Release quickstart buffer.

§

NPA4FREE

Caller

NPA4INTF and

D. Initiate or restart formatting. NPA4RSTF

}

Caller

E. Build cylinder count vector. # NPA4BCCV
Caller
8.5
F. Initiate coldstart process. - NPA4INTC
Caller
8.6
G. Lood module fit. mmPp{ ~rPAdOAD
Caller
4.7
H. Complete coldstart process. » NPA4CCST
Caller
8.8
. NIPSWAIT
I. Invalid request. X'3F

08

Diagram 8.1: NPA4AREAD and NPA4WRIT
Read and Write Quickstart Records

From Diagram 8.0,

Input Step 2 Processing Output

NPA4READ and NPA4WRIT {e]:]

IOBSTART
NVIQSBUF =TT T 1 initialize 1/O control blocks within |[EAVNPA4 > JOBDCBPT
No record IOBCSW

Determine which quickstart record is to specified
be read or written. a——) O

|
L
w N

CVTXAPG - Initialize to appropriate /O buffer
(buffer 1 = lower 4K for record 2;

buffer 2 = upper 4K for records 1 and 3.

Parometer list

I
I
L | IS [,
-t

Convert TTR to CCHHR and build channel programj IECPCNVT

1
!
i

b

1
I
I
I

!
|
!
|
=

CVTPCNVT -

5 Execute channel program. EXCP

6 Wait for 1/O to complete. WAIT

Parameter list

7 Operation successful: set return code. C

{EAVNPA4
Diagram 8.0,
Step 3,

8 Operation not successful: issue interperpretive

1/O error message . NIPSENSE

Parameter list

G Set error return code. C

IEAVNPA4
Diagram 8.0,
Step 3

$Z UOT308S

uot3jeaado 3o poyasw

18

r .

Diagram 8.1: NPA4UREAD/NPAUWRIT (IEAVNPAY)

X*00*' No error

X'04* Insufficient space
X'08* 1I/0 error

X*0C' Insufficient DASD

r R} b |
| Notes on Processing | Label {
H - + 1
1.	NPA4RDWR
3. The lower buffer (buffer 1) is	NPA4QSR1
pointed to by NVTQSBUF and the	
upper buffer (buffer 2) is equal	NPA4QSR2
to buffer 1 plus 4096. NIPGSR2	
is read into and written from	NPAUQSR3
buffer 1; NIPQSR1 and NIPQSR3 are	
read into and written from kuffer	
2. Dbecause NIPQSR1 contains the	
TTR of NIPQSR2 and NIPQSR2 con-	
tains the TTR of NIPQSR3, a read	
or write request for NIPQSR2 or]
NIPQSR3 requires ‘that the record	
(NIPQSR1 or NIPQSR2, resgectively)	
that contains the TTR be in the	
other buffer.	
4.	NPA4UQSTO
	I
7.	NPA4EXIT
I	
8. iNPAuFAIL	
9. Erxrror return codes are: {	
	l
l I	
L i 1

Z8

Diagram 8.2: NPAAGBUF
Obtain Quickstart Buffer
From Diagram 8.0,

Step 2 Processing Output

NPA4GBUF

4 Obtain 8192 bytes from subpool 252, GETMAIN

Not allocated NVT
A EEann, 3

NVTPAGIO
NVTQSBUF

2 Enable for interruptions. MODESET

Parameter list

3 Set return code. [

IEAVNPA4
Diogram 8.0,
Step 3

4 lssue IEA216] messoge . NIPWTO
IEAVNIPM

subroutine

NIPSWAIT
Xx'38'

1z uUoT3IOeS

g8 uotr3zexado 3O POYISN

Diagram 8.2: NPA4GBUF (IEAVNPA4)

‘r'\.

r T 1
|Notes on Processing | Lakel |
b + {
| 1. | NPA4GBUF |
| I |
| 2. |NPA4PXIT |
I | I
| 3. |NPAUNXIT |
| | I
| 4. | NPA4NCOR |
L L]

h8

From Diagram 8.0,

Step 2

’

Processing

NPA4FREE

1 Free quickstart buffer.

2 Set return code.

3 Enable for interruptions.

FREEMAIN

Diagram 8.3: NPAAFREE
Free Quickstart Buffer

Output

Parameter list

MODESET

IEAVNPA4
Diogram 8.0,

Step 3

1z uof3oes

uotjexado 3o poyasW

S8

Diagram 8.3: NPA4FREE

D

r T 1
| Notes on Processing | Label |
b t 1
1.	NPAUFREE
2.	NPAUNXIT
I | |
{ 3. |NPRAUPXIT |
L —_ -1 - |

98

Diagram 8.4: NPA4INTF and NPAARSTD
Initiate or Restart Processing

From Diagram 8.0,
Step 2

Input Processing

Parameter list

1

Find paging device table entry for
specified DCB. > NPA4FPDT

-2 Detemi f
etermine type o Restart

request, —4

Build channel program.
Output

Execute channe| program. EXCP '

Parameter list

5 Set retum code. -)

IEAVNPA4
Diagram 8.0,
Step 3

tZ UOT3O9S

L8 uot3exado 3O poy3Iaw

O

Diagram 8.4: NPA4INTF/NPA4URSTF (IFAVNPA4Y)

Notes on Processing

Label

F—‘————————‘———————————————-‘r—-\

This subroutine formats page data
sets for which IEAVNPO4 did not
find a NIPQSR1 record or for which
reformatting is necessary.

T
|
4
T
l

I
|

|
| NPA4 INTF

The channel program build table is|
within IEAVNPA4 and contains |
device-dependent information con- |
cerning the format of the CCW |
string required to write the |
count, key and data to the paging |
devices. |
|
l
I
[

The channel program formats one
cylinder of the paging device.

NPAY4EXCP

The return code X'04' indicates | NPAUAXIT
that the channel program was too

long to fit in the nucleus buffer. |NPA4NXIT
A return code X'00' indicates that|

the I1/0 operation was initiated |

successfully. 1

—— . S —— —— —— — — t— . s, 2}

o —

88

Diagram 8.5: NPAABCCV
Determine Number of Available Pages
From Diogram 8.0,

Step 2 Processing
NPA4BCCV
lnPUt —=—=—11 Find poging device table entry
| associated with specified DCB. NPA4FPDT 0 t t
Parameter list | utpu
|
=1 Cylinder count vector
| |— —+4- 2 Count number of available pages in
POT 1 each cylinder.
Mg | :
PDTCCVA - J I Parameter list
B | | s s - g |
IEAVNPA4
| Diogram 8.0,
: Step 3
—_———

$Z uUOTIONS

68 uoTt3iexado JO poy3IMNW

Diagram 8.5: NPA4BCCV (IEAVNPA4)

(’f‘

r L] 1
| Notes on Processing | Label |
L 1 d
LB 13 1
2. IEAVNPA4 uses loops to examine	NPA4UBCO1
slots and page groups within the	
cylinder to determine from the	
auxiliary bit map the number of	
available pages.	
	NPAUMXIT

L J

| .

06

From Diagrom 8.
Step 2
Input -
|
|
|
—
|
v {
|
PVTLTH
PVTREPCT
PVTNPDTE

o, .
Processing

NPA4INTC

1 Save PVT fields that may be modified
(during coldstart process.

2 Initialize PVT,

Diagram 8.6: NPA4INTC
Initialize PVT

Output

IEAVNPA4

C

NPA4LTH
NPA4RPCT
NPA4NPDT

PVT

IEAVNPA4
Diogrom 8.0,
Step 3

PVTNPDTE
PVTREPCT
PVTFLAG1

:1Z UOTIOAS

16 uotr3zExad0O JO POYISW

b

Diagram 8.6: NPA4LINTC (IEAVNPA4)

D

Notes on Processing

Label

r
|
[N
v
|
|
|
|
|
|
L

1.

The field PVTNPDTE is set to one
to force all page-outs to go to

the paged set for the link pack

area. The PVIFLAGl field is set
to prevent migration during the

coldstart process.

NPAYINTC

pr— e — e
IS

Z6

Input

From Diagrom 8.0,
Step 2

A B
CVTPVT
CVISHRVM

B¢

NVT
NVICSLPG

N

PVT
PVTAPC
PVTSQACT

7 B

PVT
R v -

PVTPDT
PDT

PDTAPC

- ———————

4 —

+———

N I—

|

Processing

NPA4LOAD

- 1 Calculate number of pages needed
for this module.

L 2 Colculate number of pages not yet

paged out.
- 3 Determine whether there are Insufficient
enough available poges to space

hold module. L

Diagram 8.7: NPAALOAD
Load Specified Module

Output

4 Calculate new low threshold.

Parameter list

5 Set retum code. C

IEAVNPA4
Diagram 8.0,
Step 3

17 UOT3IOOS

uot3exadQ JO POYISM

€6

Diagram 8.7: NPA4LOAD (IEAVNPAWY)

| Notes on Processing | Label

| 1. | NPAULOAD

| |

| 3. | NPA4LMO1

l I

| 5. A return code of X'0C' indicates |NPA4AXIT

| insufficient space for the

| module. | NPAUNXIT

L - L

hé

Diagram 8.8: NPA4CCST
Complete LPA Coldstart Process

From Diagram 8.0, -
Step 2 Processing
NPA4CCST
lnDUt {1 Enable interruptions. MODESET
Output
CvT
BEL LY - PVT
==} 2 |Initialize page vector table and force]
CVTPVT - ___r page-out of all modules in link pack area. [W' »

L
Pt AT

'

|

[Jafoa -
- — - PVT

3 Re-initialize PVT; build and write
NIPQSR3 records for LPA. { > R
PVTLTH
b NPA4WRIT PVTREPCT
PVTNPDTE

q PVIFLAGI

4 Build auxiliary bit map for NIPQSR2 and

write NIPQSR2. NPA4WRIT
Parameter list
B Set return code. |
IEAVNPA4
Diagram 8.0,
Step 3

tZ UOT3OBS

uotaexado JO POY3ISW

S6

SR o

Diagram 8.8: NPAU4UCCST (IEAVNPA4)

r
Notes on Processing | Label
4

- T
2. The paging low threshold is set to|NPA4CCO1
the number of page frames
available.

r

|

b-

|

|

|

|

| The paging supervisor is entered
| by refering to a page that is not
| in real storage. Discovering that
I the low threshold has Leen reached
| (forced in Step 2), the paging
| supervisor initiates page
| replacement.

|

| 3. The PVT fields are restored to
| their original condition upon

| entry to the Initiate Coldstart
| subroutine (NPAY4INTC).

|

|

|

|

|

|

[

|

L

NPA4CCO2

NPA4CCO3

5. A return code of X'08' indicates
I/0 error while reading or writing
of a quickstart record by the NPA-|NPA4FSLT
4UREAD or NPA4WRIT subroutine. A |
return code of X'0C' indicates |
that no slot was found by the sub-|

routine NPAU4FSLT. |
L

NPAU4CCRS

o e e e — —— — T — —— — — — —— —— ———— —— —— o ——]

96

Diagram 9.0: IEAVNPO5
Initialize Link Pack Area and BLDL Table

From Diogram 3.0,

Step 4
Input Processing
NVT IEAVNPOS
NVTFLQS —+ — — — — — 1 Determine whethera quickstart has been
y requested. ~ NPSCSLPA
Call this subroutine
if coldstart 5
9.2’

NIPQSR2 L L

-— T— T——7 2 Define previously built LPA. — NP5QSLPA

NIPQSR3 [

|

- -

r— T 3 Fix specified LPA modules in the nucleus.

Parometer |ist |

-— +—— ‘|— ——< 4 Define system BLDL table in the nucleus. NP5BLDLF

L— —-L 5 Add specified modules to the pageable LPA — NPSMLPA
¢mm—— 0

NP5BLDLP

¢umm—— 0
7 Attach or Detach the IEAVNPAS subtcsk . ISR NP5VTCB

NIPQSR2 ¢,
-— +——- — - 8 Define LPA directory.] NPSLPDIR

9 Initialize type-3 and type—4 SVC table

entries. NP5SVC

NP5FIX

|

|

|

|

6 Define pageable system BLDL table.

¢ @400 |

10 Release the quickstart 1/O buffer and
delete IEAVNPA4,

NPA4 FREE

8.3

IEAVNIPM
Diagram 3.0, Step 4

tZ UOT3IODS

uotjexado JO POYISH

L6

Diagram 9.0: IEAVNPO5

(\.

Notes on Processing

Label

r
|
b
|
[
I
|
l
|
|
|
|
l
|
l
|
|
|
|
[
l
|
[8

1.

10.

The NVTFLQS flag was set Ly
IEAVNPOU4 (label NP4RQSR1) if the
LPA page data was previously for-
matted and the CLPA parameter was
not specified. NPS5CSLPA Lkuilds
the LPA page data set.

NIPQSR2 contains the start and end
virtual addresses of the LPA.
NIPQSR3 contains the slot and
group numbers for the records
within the LPA page data set.

IEAVNPO5 uses the IEAPMNIP macro
instruction to gain access to the
NPAUFREE subroutine in IEAVNPA4.
Upon return, IEAVNPOS5 issues an
Svc 9 (DELETE) instruction to
remove IEAVNPAL.

L)
|
t
|
|
|
|
|
|
I
|
|
|
I
|
|
|
|
|
|
|
|

L

IEAVNPO5S

NP5QSTRT

NP5RLBUF

s e e . — ——— ————— ———— — — — t— i o— o]

86

Input

From Diogram 9.0,

Quickstart record 2

A

CvT

CVTSEGB
CVIPVTP

Step 2 Processing
NP5QSLPA
—_—_———_——— - 1 Obtain and clear space for LPA
p
page tables,
2 Using the slot and group numbers from
quickstart record 3, initialize the poge
table and external poge table entries,
NP5LPAPT
T =3 Initialize poge device table entries
| and system segment table entries.
|
IEAVNPO5
Diagram 9.0,
Step 3

GETMAIN

NPA4READ

Diagram 9.1: NP5QSLPA

Initialize Table Entries

$Z UoT3IOBS

66 uot3iexado 3JO poylIamwW

Diagram 9.1: NP5QSLPA (IEAVNPOS)

N

|
t
|
|
I
|
I
|
I
|
I
I
I
|
I
l
|
|
|
|
|
|
I
|
|
|
I
|
I
L

L]
Notes on Processing |
1

Label

1.

Ll
Space is obtained for page tables |
and external page tables with a |
GETMAIN macro instruction specify-|
ing subpool 255 of the sQA. All |
page table entries from the begin-
ning of the page table up to the
entry for the first page for the
LPA are set invalid.

The quickstart 3 records are read
and processed in a loop. Each
record is processed by the subrou-
tine NPSLPAPT.

|
|
|
|
|
|
|
|
:
If the quickstart process cannot |
continue because an error occurred|
while reading a quickstart record |
3 (in Ster 2), execution resumes |
at step 4 (9.0) for coldstart. |
I
|
|
|
|
|
|
|
L

Auxiliary page records that con-
tain LPA pages are indicated as
unavailable. The virtual
addresses of LPA page tables are
converted to real addresses and
the segment table entries are set
to indicate maximum size.

NP5QSLPA

NP5PGTE

NPS5RDQSR

NP5LPDTE

NPSLPAST

e e s e e e e s e e S . T — — — —— —— ——— — ———— i c—]

00T

From Diagram 9.0

|nput Step 4 ’ Processing
VT NP5SCSLPA
NVTVRECB ¢ —— — — — L1 Activate pogecble task (IEAVNPAS), NP5VTCB
9.3
2 Open SYS1.LPALIB (LPA module source
library). NP5LPLIB
9.4
3 Indicate pageable task to initiate coldstart. NP5POST
4 Optionally initialize fixed LPA and
fixed system BLDL table. NP5FIX
NPSBLDLF

5 Wait until pageable task processing

is complete.

WAIT

1EAVNPOS
Diogram 9.0,
Step 5

Diagram 9.2: NP5CSLPA
Attach IEAVNPAS

$Z UOT3IOBS

uot3exado JO pOoYISW

10T

C

Diagram 9.2:

NPS5CSLPA (IEAVNPOS)

-

-

kuffer.

r - T 1 1 L4 H
| Notes on Processing | Label | | Notes on Processing | Label |
F + i $ 1
1. Because module IEAVNPAS performs	NPSCSLPA		3. See Diagram 10.3 for a description	
certain coldstart functions (and			of the coldstart processing.	
other functions common to			IEAVNPO5 is executed asynchronous-	
coldstart and quickstart),		{ ly from IEAVNPAS until Steg 5;		
IEAVNPO5 attaches IEAVNPAS as a			IEAVNPAS performs part of the	
subtask. The interaction between			coldstart process and indicates	
IEAVNPOS and IEAVNPAS is governed			that IEAVNPOS5 can continue its	
by event control blocks, one for			processing asynchronously. Howev-	
each module. When IEAVNPO5 needs			er, IEAVNPAS must complete its	
processing by IEAVNPAS, it posts			coldstart processing before sub-	
the pageable ECB (for IEAVNPAS)			routine NP5CSLPA returns control	
and issues a WAIT macro instruc-			to mainline coding.	
tion specifying its own ECB (non-				
pageable). When the required pro-	l	NP5POST calls NPS5BLMQ which		
cessing is complete, IEAVNPAS			returns control to NPS5POST which	
posts the nonpageable ECB and			calls NP5BLMQ again. This loop	
issues a WAIT macro instruction	{	continues until NPS5BLMQ indicates		
specifying its pageable ECB.			the end of the list to NP5POST.	
	I		I	
The initial interface with IEAVN-			4. The NPSFIX subroutine and its suk-	NP5FIX
PAS5 is provided by the subroutine			routine NPS5MLPRM loads the speci-	
NP5VTCB; subsequent interfaces are			fied modules into subpool 251 in	
provided by the subroutine			the nonpageakle region. Both sub-	
NP5 POST,			routine functions are optional	
			(user requested).	
2. The SYS1.LPALIB is the source of	NP5LPLIB			
the modules to be loaded into the			The NPSBLDLF subroutine and its	[NPSBLCLF
link pack area.			subroutine NPS5BLPRM create the	
L 1 4 | fixed BLDL table in the nucleus | l

! !]

(419

Input

From Diagram 9.0,

Step | Processing

Diagram 9.3: NP5VTCB
Load, Attach, and Delete IEAVNPA5

H NPSVTCB

NVT

Ve Cod
NVTRECB

1
2

Determine type of request.

Bring IEAVNPAS into the nonpageable
region.

Attach [EAVNPAS as o subtask.

Initialize the pageable region for
IEAVNPAS,

Wait for IEAVNPAS to complete its
initial processing.

Indicate pageable task termination.

Remove IEAVNPAS,

Release pageable subpool 253 storage
and any control blocks for the pogeable
region.

Remove pageable TCB from priority and
subtask queues.

Deactivate
pageable task

NIPLOAD

ATTACH

NP5VREGN

NP5CSLPA
Diagram 9.2, Step 2

NP5POST

DELETE

FREEMAIN

NP5VREGN

IEADQTCB

IEAQERA

IEAVNPO5
Diogram 9.0, Step 7

1z uoT3oLesS

€0T uotiexado JO pPoylIeW

Diagram 9.3: NPS5VTCB (IEAVNPOS5S)
T -

|

b

| 2. For a description of the interface|
| provided by NPS5VTCB between |
| IEAVNPOS5 and IEAVNPAS, see 9.2, |
| Notes on Processing, Step 1. Once|
| IEAVNPAS is activated, subsequent |
| requests to activate IEAVNPAS are |
| ignored. |
I
I

|
6. | NPSVIDET

-

e e s e e e e e e it e

HoT

From Diogram 9.0,
Step 2

Processing

NP5LPLIB

1 Ensure that SYS1.LPALIB is defined in
the system catalog.

2 Ensure that the volume is mounted.

3 Open SYS1.LPALIB.

LOCATE

NIPMOUNT

IEAVNPO2
subroutine

NIPOPEN

Diagram 9.4: NP5LPLIB
Initialize SYS1.LPALIB

Output

IEAVNPO2

subroutine 5.2

[NvVICSLIB |

IEAVNPOS5
Diagram 9.0,
Step 3

$Z UOT3DIS

uot3exadp JO POYIdW

SO0t

C

e

Diagram 9.4: NPS5LPLIB (IEAVNPO5)

T
Notes on Processing | Label
4

lf T
| 1. | NPSLPLOC
| |
| 4. The DCB address for SVC1.LPALIB is]
| put in NVTICSLIB.
L

- —

[
4
1
|
|
!
!
d

90T

Diagram 9.5: NPSMLPA
Load Specitied Modules into LPA

From Diagram 9,0, .
Stop 5 Processing
H NPSMLPA
Input Ir———— {1 Activate pageable task (IEAVNPAS), NP5VTCB
|
NVT I
) | 2 Analyze PARMLIB list and lood specified
NVIVRECE M- —4- — 1 modules into LPA, ‘ NF5MLPRM

NVTVVTCB - ——

= |

I___...__J

— =1 3 Place modules on LPA queve. - NP5QLPAQ

IEAVNPOS
Diagram 9.0,
Step 6

:Z UOT3OBS

L0T uot3exado JO POYISW

Diagram 9.5 NPSMLPA (IEAVNPOS)

Notes on Processing

abel

1. If IEAVNPAS has previously Leen
activated, this request is

.
|
-
|

|

| ignored.
L

o e e —

A

PSMLPA

T e S —

80T

From Diagram 9.0,
Step 6

NVTINUCND

i
i
l______l

Processing

NP5BLDLP

table.

{1 Scon parameter list for valid entry .

|- 2 Assign temporary area to BLDL table.

3 Construct system BLDL table.

4 issue BLDL macro instruction.

- 5 Activate pageable task (IEAVNPAS).

6 Indicate pogeable task to define BLDL

Diagram 9.6: NPSBLDLP
Include Modules in BLDL Table

Output

3

3o

NP5PLIST

NP5BLNAM

NP5VTCB

NP5POST

BLDL

IEAVNPO5

Diogram 9.0,

Step 7

0TT

From Diogram 9.0

Input

Processing

Register 1

Address of parameter
list

Parameter list

)

NVTVVECB

=

ECBCCCNT

| SRR T ——

IEAVNPAS

Allocate real storage.

Initialize save area for BLDL entry.

Post nonpageable ECB to indicate phase
complete.

Wait for IEAVNPOS to request more
work .

Determine type of request and process
accordingly.

A.

B.

Add modules to qu ckstart LPA,

Allocate pageable storage for
system BLDL table.

. LPA coldstart processing.

. Temminate pageable task.

Invalid request.

Diagram 10.0: IEAVNPAS
Control Routine

GETMAIN Output
[- ,
BLDLSAVE
NPA5POST BLOLLL
BLDLFF
H PR 7oy
WAIT
NPA5SMLPA
Diagram 10.1
NPAS5BLDL
Diagram 10.2
NPAS5SCLPA
Diagram 10.3
NPASTERM
Diagram 10.4
NIPSWAIT

1Z UOT3IOSS

uotjexado Jo poyasw

1991

Diagram 10.0: IEAVNPAS

Notes on Processing

1. BAll of the region is allocated
from subpool 252. Sixty-four
bytes are allocated from sukpool
255 for the BLDL save area.

3. The nonpageable ECB is posted to
indicate completion of the initia-

lization process in IEAVNPAS. The|

r

|

t

|

|

|

|

|

|

.'

| POSTCD field is set by the subrou-
| tine that performed the

| processing.

|

| 4. The pageable ECB is specified in
| the WAIT macro instruction.

|
|
|
|
|
|
|
|
|
L

IEAVNPO5 posts this ECB when addi-
tional work is required.

5. The type of request is indicated
by a bit pattern in the pageable
ECB. Steps 1 through 4 are
executed only on the first entry
to IEAVNPAS. Subsequent entries
are to Step 5.

L
NPASINIT

NPA5SYNC

|
|
|
|
|
|
l
|
|
|
|
|
|
|
|
|
|
|
|
I
|
l
|
-=1

(AN

From Diagram 10.0

Step 5
Input
NVT
NVTVRBLD —W -

Processing

l_"'__—_-l
]
I
]

NPASMLPA

1 Determine load address for module.

2 indicate nonpogeable task to continue. INPASFOST

3 Load module into link pack orea.

4 Set return code.

RIPASADDR

Stensge winswiikstille
;4

Diagram 10.1: NPASMLPA

Load Specified Modules into LPA

Output

Non-pogeable ECB

| T—

IEAVNPO5
Diegrom 9.0,
Step 3

:Z UOT3OBS

€TT uot3eiado Jo poylsw

Diagram 10.1: NPASMLPA (IEAVNPAS)

C

r == T -
| Notes on Processing | Lakel |
b + {
1. NPASMLPA is entered from the	NPASMLPA
NPSMLPRM subroutine in IEAVNPOS.	
4. Return is via the WAIT/POST	NPASMSER
interface. ((
	NPASMXIT
L -— 4L J

LAAS

Input

From Diagram 10.0,

Step 5 Processing

NPASBLDL

1
2

NVT

.

NVTBLDL

Determine size of BLDL table.

Determine location to be occupied by the
BLDL table.

Move BLDL table to pageable area.

Set return code.

mmmmlp| PASADDR

Storage unavailable

q

Diagram 10.2: NPA5BLDL
Allocate Storage for,
and Move, BLDL Table

Non-pageable ECB

1IEAVNPOS
Diagram 9.0,
Step 6

$Z UOT31O8S

GTT uoT3yexado Jo poylaw

Diagram 10.2: NPA5SBLDI (IEAVNPAS)

C

r T 1
| Notes on Processing iLabel |
L 4 y]
v T 1
| 1. NPASBLDL is entered from the | NPASBLDL |
| NP5S5BLDLP suborutine in IEAVNPO5. | |
| I |
4. The return code X'04' indicates	NPA5BSER
storage was unavailable. X'0cC'	
indicates end of normal	NPASBXIT
processing.	
L i —_——d

91T

Diagram 10.3: NPASCLPA
Coldstart Process; Build LPA

From Diagram 10.0, Processing

Step 5
H NPASCLPA

InpUt 1 Indicate coldstart is being initiated. NPA4INTC
NVT
8.6 -
— T, -
BDCBPB
NVTCSLIB —_ ———I——-— 2 Initialize 108 for LPALIB, L
' 3 Construct BLDL information table and
DEB | determine hash value. NPASCLIN
AT |
DEBSTRCC (g —|———1 ﬁ
= SN 4 Lood modules specified by LPA packing
list. NPA5LGRP
10.5
5 Lood independent modules. mmdp{ wpasuno
6 Construct LPDEs for all module aliases. - NPAS5ALIS
7 Build permanent link pack area directory. NPAS5BDIR
8 Complete LPA coldstart process. NPA4CCST
8.8
IEAVNPOS
Diogram 9.0,
Step 5

$Z uUOTIONS

LIT uotjezado 3O poyIeW

Diagram 10.3: NPASCLPA (IEAVNPAS)

T
Notes on Processing | Label

T

|

k-

| 1. NPASCLPA is entered at the request|NPASCLPA
| of the NPS5CSLPA subroutine in |

| IEAVNPOS. |

| I

| 2. The IOB is within IEAVNPAS and is |

| used for the I/0 operations that |

| read the SYS1.LPALIB directory |

| records. |

L

- S JEEY .

817

Diagram 10.4: NPASTERM
Release BLDL Save Area

From Diagram 10.0,
Step 3 Processing

NPAS5TERM

~— 41 Release allocated BLDL entry, save area. * FREEMAIN
Output
| Non-pageable ECB
BLDLSAV - Sl
2 Set Return code. ('—m

NP5VTCB
Diogram 9.3,
Step 7

Input

L_—-'!

:z UOT3O8S

61T uot3zexado 3O POoyISW

Diagram 10.4: NPASTERM (IEAVNPAS)

C

Notes on Processing

abel

—
|
F
| 1. The V=V space allocated by Step 1
| in IEAVNPA5-0 will ke released by
| IEAVNPOS.

|

|

|

|

|

L

2. NPASTERM relinquishes control by
setting the return code to
IEAVNPO5 as X'0C*' and by posting
the V=R ECB.

T
| L
1
T
|N
|
|
|
|
|
|
|
i

PASTERM

b o s e c— —— —— i o—

0zt

Diagram 10.5: NPASLGRP
Load Groups of Modules Specified
by LPA Packing List

From Diagram 10.3, .
Stop 4 Processing

NPA5LGRP

NPA5POST

Requasts
IEAVNPO5
Build a list.

1 Request list of modules to be loaded.

Finished

2 Determine whether list is finished. —5

3 Load specified modules. NPA5SGLOD

4 Loop back to Step 1.

5 Indicate IEAVNPO5 can continue
execution, NPAS5POST

NPAS5CLPA
Diogram 10.3,
Step 5

:Z UOT3IOIS

uot3zexado IO POYISW

12T

Diagram 10.5: NPASLGRP (IEAVNPAS5)

r - B ittt S it 1
| Notes on Processing | Lakel |
Ir T t 1
1. NPASLGRP issues a Wait while	
awaiting return from NPASPOST.	
2. Determined by return code issued	
by NPASPOST. [
L S —

[4A "

From Diagram 3.0,
Step 4

Processing

IEAVNP06

1 Initialize DSS (dynamic support system).

2 Initialize SYS1.DUMP.

3 Initialize RMS (recovery management
support).

4 initialize trace function.

|

NP6DSS

na

NP6DUMP
11.2

NP6RMS
11.3

NPSTRA
11.4

| Diagram 11.0: IEAVNPO6
Initialize Reliability and
Serviceability Features

IEAVNIPM
Diagram 3.0,
Step 4

nlt

| Diagram 11.1: NP6DSS

Initialize DSS (Dynamic Support System)

From Diogram 11.0,
Input Step 1 Processing
NP6DSS
CVIDSSV -4 ——— — —— = 1 Find and mount SYS1.DSSVM
data set, LOCATE
utput
NIPMOUNT 0 pu
5.1 IQADSY
M
SYS1.DSSV. DSVPDSVC
DEB - — 4 — — — = —— —] L 2 Open SYS1.DSSVM
= data set. NIPOPEN
SYS1.NUCLEUS
5.2 IQADSV
DEB -t === L
DSVPDSST
3 Find DSS initialization
module (IQAINIOOD). NPSLPAFN DSVPDSEN
DSVNVCDR
Register 1 = address of
IQAINI00
{ DSS PRB
___________ L 4 Put address of IQAINIOO
in DSS PRB. XRBPSW
IQADSV
DSVDSTCB —-——|-—-——=———3
j 1EAVNPOS
Diagrom 11.0,
Step 2
L] *
LY

¢+ UOT303S

uotiexado JO poyilew

a1

| piagram 11.1: NP6DSS (IEAVNPO6)

o —— — e e s s e e — e e — e — e —— ————— — e —_—— ——

o
.

w
.

&
.

$
If the data set is not found, the |
beginning and ending CCHH fields |
in the DSS vector table (IQADSV) |
are set to all F's. NP6DSS calls |
NIPWTO to write the messages LOC- |
ATE FAILED FOR SYS1.DSSVM and DSS |
INOPERATIVE to the operator. |
CVTDSSV is the CVT pointer used toj
locate the DSS vector takle. |
|
If NP6DSS cannot open the data | NP6DSER2
set, the beginning and ending CCHH|
fields in the DSS vector takle |
(IQADSV) are set to all F's. |
NP6DSS calls NIPWTO to write the |
message DSS INOPERATIVE to the |
orperator. |
|
|
I
I
|
|
I
I
|

NP6 LPAFN calls IEAQCDSR to search
the LPA active queue for IQAINIOO.
If IQAINIOQO is not found, it then
calls IEAVVMSR to search the LPA
directory for IQAINIOO. If
IQAINIOO is found, NP6LPAFN sets
register 1 to the address of
IQAINIOO from the CDE or LPDE.

l
If the module is not found, NP6DSS|NP6DSER3
calls NIPWTO to write the message |
IQAINIOO NOT FOUND IN LPA to the |
operator. NP6DSS puts the address|
of the DSS Mask Out routine |
(IQAPFXRT) in the restart new PSW.|

Register 1 contains the address of]|
IQAINIOO. DSVDSTCB is a pointer |

to the DSS TCB. |
o

|
I
I
|
|
I
I
|
|
I
|
I
|
[
I
I
I
|
|
I
|
I
|
|
I
I
I
I
I
|
I
I
[
|
I
I
|
3

9CT

Input

From Diagram 11.0,
Step 2

Processing

Diagram 11.2 (1 of 2): NP6DMP
Initialize SYS1.DUMP

NVTPTAB

‘_-.

NP&DUMP

’

Determine SY51.DUMP device type
(tape or direct access).

If tape, find UCB for unit specified,

Ensure that a non-labeled, non~file~
protected scratch tape is mounted and
ready .

QOpen SYS1.DUMP on tape.,

If direct access, find SYS1.DUMP
data set,

Mount SYS1.DUMP data set,

QOpen SYS1.DUMP data set.

{Continued at Step 8)

If direct
access

NIPUCBFN

NIPMOUNT

NIPOPEN

JEAVNPO6
Diagram 11.0,
Step 4

LOCATE

— NIPMOUNT

NIPOPEN

Z uor3loves

LZT uotr3zexado 3o poyldwW

Diagram 11.2:

NP6DMP (IEAVNPO06)

C

r
I
b
[
|
I
|
|
|
I
|
I
I
|
l
|
I
|
|
[
[
I
I
|
|
I
|
I
|
I
I
I
|
I
I
|
|
|
L

is not specified, NP6DMP checks

whether there is enough space for
the SYS1.DUMP DCB. If there is |
not, the operator is notified, and|
SYS1.DUMP is disabled as above. |

|
NP6DMP also checks the validity of |NP6INVLD
the unit address parameter. If it|
is invalid, NP6DMP notifies the |
operator via NIPWTOR and prompts |
him to respecify the parameter. |

4

I
|
set cannot be mounted, the opera- |
tor is prompted to respecify the |
DUNMP parameter. |

4

e e e e e e — e T e, S s —" T, T e, e, e, — — e, —

T 1 r T
Notes on Processing | Label | | Notes on Processing |Lakel
——=———t T -t —
1. NP6DMP locates and verifies the | NP6 DMP | | 2. On return of control from | NP6 DMPTA
DUMP parameter. | | | NIPUCBFN, the UCR is checked to |
| | | ensure that the device specified |
If the parameter is not specified |NP6DMP2 l | is a 2400-compatible tape drive |
or is not valid, NP6DMP checks | | | and is online. |
whether there is enough space in | | |
the nucleus buffer for a DCB for | | | 3. If the device is not 2400- |[NP6UNACC
SYS1.DUMP. If there is enough | i | compatible and online, or if NIP- |
space, the operator is prompted to| | | MOUNT was unable to have the |
specify the DUMP parameter or can-| | | required tape mounted, the opera- |
cel the specification. If he can-| | | tor is notified that this device |
cels, SYS1.DUMP is disabled by | | | is unacceptable and is prompted to|
setting the pointer to the DCB | | | respecify or cancel the parameter. |
(CVTDAR) to 0 and NVTNUCND to its | (| [
value on entry to NP6DMP. Control] | | 4. If the OPEN operation is unsuc- | NP6 NODME
goes to Diagram 11.1, Step 4. | | | cessful, SYS1.DUMP is disabled as |
| | | in Step 1. |
If there is not enough space for |NP6DUMP2 | | |
the DCB, the operator is notifieq, | | | 5. If the data set is not found, the |NP6IOCNG
and SYS1.DUMP is disabled as | | | operator is notified with the LOC-|
above. | | | ATE FAILED message and is prompted|
| | | to respecify the CUMP parameter. |
If DUMP=NO is specified, SYS1.DUMP|NP6DMP1 | |
is disabled as akove. If DUMP=NO | | | 6. If the volume containing the data |NP6RESPE
| [
| I
| I
| L
I
|
I
|
I
I
|
4

8¢T

Processing

8

10

1"

12

13

14

Read first record of data set. - NPSEXCP

<= |

Determine status of dump data set
(contains dump or empty).

if size of data set is adequate

If size is inadequate, scratch this
SYS1.DUMP data set.

Allocate new SYS1.DUMP of proper
size.

Open new SYS1.DUMP data

set.

Write an EOF as the first
record, NPSEXCP

- |

IEAVNPO6
Diagram 11.0,
Step 4

SCRATCH

ALLOCATE

NIPOPEN

5.2

IEAVINPOS
Diagram 11.0,
Step 4

Diagram 11.2 (2 of 2): NP6DMP
Initialize SYS1.DUMP

Z uoT3938

uot3zexado JO poyIBH

6C1

Diagram 11.2: NP6DMP (IEAVNPO06) (Cont'd)

r - T 1 r T 1
| Notes on Processing | Label | | Notes on Processing | Lakel |
b= + i - $ 1
7. If OPEN processing fails because	NP60OPNNG		11. The operator is notified with the	NP6EMTY
the data set is not found, an			message SYS1.DUMP SCRATCHED orx	
attempt is made to allocate and			UNABLE TO SCRATCH SYS1.DUMP and	NP6NOSCR
open a new data set. If OPEN pro-			prompted to respecify the DUMP	
cessing fails because of insuffi-	i	Farameter.		
cient storage, SYS1.DUMP is dis-				
abled as in Step 1. If OPEN pro-			12. If allocation fails, the orerator	NP6FAIL
cessing fails for any other			is notified and prompted to respe-	
reason, the operator is prompted			cify the DUMP parameter.	
to respecify the parameter.				
			13. If OPEN rrocessing fails because	NP6CPNBD
8. If there is an I/0 erxor, NP6DMP	NP6IOEOF		of insufficient space, SYS1.CUMP	
informs the operator and prompts			is disabled as in Ster 1. If it	
him to respecify or cancel the			fails for any other reason, the	
DUMP parameter.			operator is prompted to respecify	
			the DUMP parameter.	l
9. If the data set contains a dump,	NP6LOCAT			
the operator is prompted with the			14. If there is an I/0 error, NIPSENSE	NP6BALIC
message SYS1.DUMP CONTAINS DATA.			is called, and the operator is	
			prompted to respecify the DUMP	
If the data set is empty and the	NP6EMTY		parameter.	
size is not specified or is adequ-		- - 1 - 4		
ate, control returns to Step 4.				

I | |

| 10. If the size specified in the para-|NP6SMAL |

I I

| l

I |

I |

I |

L d

meter is greater than the size of
the data set, the operator is
notified with the message SYS1.
DUMP TOO SMALL and prompted to
respecify or cancel the parameter.

|
I
|
|
|
4

0€T

From Diegram 11.0,
Step 3

Processing

1

NP6RMS

Issue RMS initialization macro

(IGFVNIP)

IGFVNIP calls IGFVCCIN to handle
CCH initialization.

IGFVNIP calls IGFVMCFO to handle
MCH initialization. IGFVMCFO

IGFVNIP

IGFVCCIN

L

<4 2000 |

Diagram 11.3: NP6RMS
Initialize RMS (Recovery Management Support)

IEAVNPOS
Diagram 11.0,
Step 4

$Z UOT3I3S

T€T uot3zexado 3o pPoOYISW

Diagram 11.3: NP6RMS (IEAVNPO06)

C

T
Notes on Processing | Label
4

2.

r
|
b
[
|
|
|
|
|
|
|
|
L

L]
Using BLDL, IGFVNIP loads, calls, |NP6RMS
and deletes IGFVCCIN. If an error|
occurs, a message is written to |
the operator via NIPWTOR. |

|
Using BLDL, IGFVNIP loads, calls, |NP6RMS
and deletes IGFVMCFO0. If an error|
occurs, a message is written to |

the operator via NIPWTOR. |
L

e e e e s . . e, s e,) .

CET

Diagram 11.4: NP6TRA

Initialize the Trace Function
From Diagram 11.0,
Step 4

Input Processing Output

NP6TRA

-7 I 1 Define trace table ip lower portion of
nucleus buffer. I "> NVINUCND

2 Move temporary trace table to permanent

trace table .)| NPSMOVE

TRACE parometer er

8 Enable trace function. | MODESET

L

IEAVNIPM
Diagram 3.0,
Step 4

1Z uoT30B8S

uotiexado JO poyalaw

EET

Diagram 11.4: NP6TRA (IEAVNPO06)

T
Notes on Processing | Label
1. If the TRACE parameter is not spe-|NP6NOTRA

cified or is equal to 0, the trace|
function is disakled ky putting a |
BR 11 in the CVT field CVITRACE
and putting 0's in FLCTRACE and
SCVTRPTR.

|
[
|
If the parameter is invalid, the |NP6INVAL
operator is prompted with the mes-|
sage INVALID TRACE PARAMETER and |
given the option to respecify or |
cancel the parameter. If he can- |
cels, NVTNUCND is rounded to a 4K |
boundary and CVTNUCB is set equal |
to NVTNUCND. The trace function |
is then disabled as above. |
|
If space is not available in the |NP6NOSPA
nucleus buffer, NVTNUCND is set |
equal to CVTNUCB, and the trace |
function is disabled as above. |
The operator is notified with the |
message INSUFFICIENT SPACE, and |
control is returned to the caller.|
I
If there is not enough space in | NP6SMALL
the nucleus buffer, the last entry|
pointer is set to CVTINUCB-32, and |
NVTNUCND is set to CVTINUCB. The |
orerator is notified that the |
trace table size has been |
decreased. |
I
2. If the two tables are equal in | NP6COPY
size or the PTT (permanent trace |
table) is larger, the TTT (tem- |
porary trace table) is moved to |
the PTT beginning with the lowest |
address in each table (first entry|
pointer). Any remaining area is |
set to 0's. |
I
If the PTT is smaller than the | NP6 COPY
TTT, as much of the TTT (starting |
with the most recent entry) as |
will fit is moved to the PTT. |
4

[e i . e, . e, = . e o e, e e . e . e, e s G e)

heT

From Diagram 3.0,
Step 4

Processing

1 Define hardcopy console. ‘

IEAVNPO7

NP7HDCPY

Define pageable DCMs (display

12.1

control modules).

NP7PDCM

Define page algorithm limit

12.2

values.)

NP7PAL

Locate SYC OPEN Router

12.4

routine in the LPA.

NP7OTEST

Test for extended-precision

floating-point feature. ‘

NP7EPFP

12.5

1EAVNIPM
Diogram 3.0,
Step 5

Diagram 12.0: IEAVNPO7
Call Routines Sequentially

$Z UOTIOAS

GET uor3exado JO poylIsW

Diagram 12.0: IEAVNPO7

D

Notes on Processing

Label

2 and 4.

o — ——— e oy —

NP7PDCM and
NP7LPAFN to
See Diagram
description

NP70TEST call
search the LPA.
12.3 for a

of NP7LPAFN.

o —— o — o — o

L_.—_—-ﬂ-—d

9€T

Diagram 12.1: NP7THDCPY
Define the Console or System Log Data Set
to be Used for Message Hardcopy

From Diogram 12.0,

Step 1
Input Processing
PAR'\:\T,A? = s NP7HDCPY
T A
e o)
Address of HDCPY
parameter input T ————————1 - 1 Locate UCB for specified hardcopy
e device and initialize UCB and UCM. NIPUCBFN
’_‘ 3.3
2 Put routing codes and command
options in UCM., [
IEAVNPO7
Diogram 12.0,
Step 2

$Z UOTIOAS

LET uor3zexado 3O poyisy

O

Diagram 12.1: NP7HDCPY (IEAVNPO7)

o e S, e ey . . T e, T, T S g . s G b

Notes on Processing Label
1. NP7HDCPY locates and verifies the |NP7HDCPY®
HARDCPY parameter input. |
|
IEAVNPOl1 determined whether a | NP7HCINV
hardcopy console was required. |
|
If SYSLOG is specified, NP7HDCPY [|NP7HCSLG
[
|
[

identifies the system log as the
hardcopy device.

If HARDCPY is not specified and it|NP7HCREQ
is required, or if the specifica- |
tion is in error, or if the con- |
sole is unavailable, NIPWTOR is |
called to prompt the operator to |
respecify the parameter. |

I

If HARDCPY is not specified and is|NP7HCXIT
not required, comntrol goes to Dia-|
gram 12.0, Step 2. |

Y

b s o — — — — —— —— — ——— ——— — — —— — oy w——]

8€ET

RPARM

Entry—paint oddress

UCM

From Diagram 12.0,
Step 2

Processing

NP7PDCM

1 Find DCM associated with UCM for
graphic console.

2 Place entry -point address of DCM
- in resident DCM associated with
the UCM entry .

NP7LPAFN

Put DCM's entry -
point address in
RPARM

Diagram 12.2: NP7PDCM
Relate Each Graphic Device
to its LPA-resident DCM

Output

DCM

IEAVNPQ7
Diagram 12.0,
Step 3

Entry -point oddress

:Z UoT3IO9S

uot3iexado JO POYISW

6€ET

O

Diagram 12.2: NP7PDCM (IEAVNPO7)

T
Notes on Processing | Label
4

1.

$
NP7PDCM examines UCM entries in | NP7PDLST
the nucleus-resident UCM and con- |

structs the name of the associated|

DCM for each graphic consocle by

adding the EBCDIC unit name from

the UCB to the DCM.

|
I
|
If NP7LPAFN cannot find the DCM in|NP7PDNFN
the LPA, it sets the active con- |
sole flag in the UCB to 0 and |
writes an error message to the |
operator, using NIPWTOR, identify-|
ing the missing DCM name and the |
unit address of the associated |
console. NP7PDCM returns control |
to Diagram 12.0, Step 3. |

|

[

[

[

[

l

s

If the DCM is not found for the
master console (a graphic con-
sole), NIPSWAIT is called to put
the system in a wait state (code
X'3B").

e e e e e e . — . — —— . — . s P . . e . g e)

|
t
|
|
|
I
|
|
|
I
[
I
I
|
[
I
|
[
|
[
|
|
[
I
L=

ont

Diagram 12.3: NP7LPAFN
Find a Module in the LPA

From Diogram 12.2 or

NP7OTEST H
Input Processing
NP7LPAFN
RPARM
EBCDIC module name —|————— ——=—F 1 Search active LPA queve. IEAQCDSR
CVT | Contents
KR ‘ l supervision
¥ O Bl ti
CVTQCDSR=oddress of = —| — — — rouline
IEAQCDSR
ORI VR J
CVTLPDSR=oddress of r— ~—t — — — — — —1 2 Search active LPA directory. IEAVVMSR Output
IEAVVMSR { Contents
supervision
routine
RPARM
3 Indicate whether module was
found. [=Entry —point address
if found
=0's if not found
To caller

7 UOT109S

uot3exado JO POYIOW

Ht

Diagram 12.3: NP7LPAFN (IEAVNPO07)

Notes on Processing

1. If the module is found, control
goes to Step 3.

2. The IEAQCDSR Search routine is
called before the IEAVVMSR routine
to give preference to a module
found in the fixed LPA or the LPA
update area.

ht

Diagram 12.4: NP7PAL
Define Page Algorithm Limit Values
From Diogram 12.0,

Step 3 -
Input Processing Output
PARMTA| NP7PAL
— 4+ — — — — — —1 1 Locate and analyze PAL parameter
Lo o input, [
|- 2 Set paging parameters. | — > zg?u'm"i'em

IEAVNPO7
Diagram 12.0,
Step 4

C CC

Diagram 12.4: NP7PAL (IEAVNPO7)

:Z UoT3O8S

€hT uot3iexado IO PoOY3IdW

------------------ To——————=—— - - - T 1
Notes on Processing | Label | | Notes on Processing | Label |
oo e B S - 1 1
1. NP7PAL uses the system parameter | NP7PALA 2. Paging supervisor fields to ke |NP7PTBLD |
table, PARMTAB, to locate the PAL | set, together with their limit/ | |
parameter input. The first input | assumed values are: | |
source that is analyzed is the one| | |
from the IEASYSxx list of SY¥S1. | PVTTBASE =(CVTEORM - CVTNUCB) /74096 | |
PARMLIB. When the specifications | PVTLTH (LTH=) =1 - 99; | |
from this source have been ana- | assumed value = 5 | |
lyzed and put in a takle, NP7PAL | PVTREPCT (REPCT=) = 1 - 99; | |
analyzes the operator-supplied PAL| assumed value = 3 | |
input. The subparameters are | PVTBFXTF (NFX=) = 8 - 9999; | |
merged with duplicate specifica- | assumed value = .25 PVTTBASE | |
tion of a subparameter, resulting | PVTSFXTF = 1.25 PVTBFXTF | |
in a parameter override; the last-| PVTLFXTF = 1.5 PVTBFXTF | |
supplied definition (in the normal| PVTLFXL = (PVITBASE - PVTLFXTF); | |
case, the operator overriding an | maximum = 255 | |
IEASYSxx definition) for such a | PVTSFXL = (PVITBASE - PVTSFXTF); | |
value will be the only effective | maximum = 255 | |
specification. NP7PAL optionally | PVTBFXL = (PVITBASE - PVTBFXTF); | |
displays the PAL subparameter | maximum = 255 | |
values that result from its analy-| PVTLRLIM (LRC=) = 0 - 9999; | |
sis and allows the operator to | assumed value = 5 | |
respecify the PAL parameter. | PVTHRLIM (HRC=) = 0 - 9999; | |
| assumed value = 20 | |
NP7PAL verifies that the PAL para-| PVTLALIM (LRD=) = 0 - 9999; I |
meter input is in the correct for-| assumed value = 9999 | |
mat by examining each of the sub- | PVTHALIM (HRD=) = 0 - 9999; | |
parameter definitions in an EBCDIC| assumed value = 0 | |
matrix. If an error is encoun- | PVTIMEAD (MTIM=) =1 - 9; | |
tered, analysis of the PAL input | assumed value = 1 | |
from the operator or PARMLIB is | | |
terminated; any subparameters that| Assumed values are assembled into | |
are corrxectly and completely | the respective NVT fields. The | |
defined up to the point of the | assumed value for NFX= is expre- | |
error are accepted. In the case | ssed as a fractional value, in | |
of an error, the operator is | hundredths, to be multiplied times| |
informed via the INVALID PAL PARM | PVTTBASE. | |
message written by the IEAVNIPM [e —— - 1 4
NIPWTOR routine. The message |
identifies the input source as |
being either the PARMLIB or the |
operator, and the operator is per-|
mitted either to respecify the |
remainder of the PAL parameter or |
to cancel his option and thereby |
accept the truncated PAL defini- |
tion, together with any system- |
assigned values. |
4

hhT

From Diagram 12.0,
Step 5

Processing

Diagram 12.5: NP7EPFP
Test for the Presence of the

Extended-precision Floating-point Feature

NP7EPFP

1

Enter problem state,

Issue SPIE specifying that interruptions
from 0-15 are to be handled by the exit
routine NP7SPIEX.

Execute an LRER instruction to detemine
EPFP feature capability.

Set switch in CVT indicating that all
EPFP features except divide are present.

Cancel SPIE environment .,

Return system to supervisor state.

MODESET

SPIE

Output

CvT

>

SPIE

[
—(O DESET

CVTOPTA (byte
CVTXPFP)=1

TCB

ﬂ<—|—|_

TCBPIE=0

IEAVNIPM
Diagram 3.0,
Step 5

1Z UOFIdAes

uotzexado 3o poylsn

Shl

~

C

Diagram 12.5: NP7EPFP (IEAVNP07)

Register 2-13 Same as at time of
program check

Register 14 Return address |
(to control program)

Register 15 Address of NP7SPIEX|

T LB == - - T |
Notes on Processing | Label | Notes on Processing |Label |
- + b % y]
1. NP7EPFP must enter problem-program| f 4. The divide-only switch (kit | NP7TFPYES }
state, since a program check can- | | CVTXPFP in byte CVTOPTA) is set to| |
not be tolerated in supervisor | | 1. | |
state. | | | |
| | 5. This restores the rrogram mask to |NP7FPNO |
3. If no program interruption occurs, |NP7EPFP | its original value. | |
EPFP hardware is present. | | [|
| | 6. Since the PIE is not automatically|NP7FPNO |
If a program interruption occurs, | | freed, TCBPIE is set to 0 to avoid| |
the SPIE Exit routine, NP7SPIEX, | | leaving a useless and possibly | |
receives control via the control | | misleading pointer in the master | |
program. The register contents | | scheduler TCB. Actual freeing of | |
upon receiving control are: | | the PIE is done at the time the | |
| | final master scheduler region is | |
Register 0 Unpredictable | | estaklished. | |
Register 1 Address of PIE | L—— _—— 1 4

|

|

The registers 0, 1, 2, 14, and 15 |
have been saved in the PIE and |
will be restored from that loca- |
tion when the SPIE Exit routine is|
completed. Registers 3-13 will |
reflect any alterations made by |
NP7SPIEX. |

|

|

The PSW in the PIE (PIEPSW) is
examined to determine what type of|
interruption occurred. The resume|
address in PIEPSW is then set |
accordingly (note that this is a |
BC (basic control) mode PSW). For|
an interruption code other than |
X*'01"' (operation), the extended- |
precision floating-point feature |
is assumed to exist and PIEPSW is |
set to Step 4. Otherwise, the |
feature is assumed to be absent |
and PIEPSW is set to Step 5. |
1

o S e S s S oy S S S — T S S G S — T g SRS T S —— T — T g WSS Gunn S ST pmgn S — — g T Gy o=)
—— i — —— ————— ——— A— . S— —— ————— — — i —— — — — — — —— ———— — —— o—{—— a—— — o o— o]

9InT

From Diogram 3.0,
Step 5

Processing

IEAVNIPX

1 Define nonpageable area.

NPXREAL

2 Define task dispatcher's automatic priority

—_—

group.

NPXAPG

13.1

3 Define the task dispatcher’s time=liced
priority groups.

NPXTMSL

13.2

NPXQCELL

13.3

>
)
4 Define quickeell areas.]
)

B Define master scheduler region.

NPXMPA

13.4

6 Release NIP buffer space in SQA.

NPXFBUF

7 Release CDEs and LLEs for NIP-loaded

modules. sy NPXFIPQ

(Continued at Step 8)

13.6

Diagram 13.0 (1 of 2): IEAVNIPX
Organize NIP Exit Processing

Diagram 13.0: IEAVNIPX

Notes on Processing | Label
1. There is no diagram for NPXREAL.
5. NPXMPA calls NPXMPAl1l to limit

I
|
background and TSO use of auxi- |
liary storage (see Diagram 13.5).
|
|
L

<)}
.

There is no diagram for NPXBUF.

o ——— e — e e —

S S N S——

$Z UOT3O8S

uot3yexado JOo poylaw

LhT

shT

Processing

8

10

"

12

13

Define free oddress space.

Define master scheduler's LSQA.

Define available page frames.

Define shared subpoo! 0 for master

scheduler and communication task .

Reset NIP ABEND trap.

Reset dynamic address translation
tables and exit to master scheduler
initialization program.

)| NPXFAREA

G

- NPXMLSQA

13.7

) NPXPETAQ

NPXMCSPO

13.9

s N PXRTRAP

] PXRDAT

dum— ;)

Diagram 13.0(2 of 2): IEAVNIPX
Organize NIP Exit Processing

IEEVIPL

master scheduler

Z uoT31Dasg

uot3e19d0 JO POUIIW

6hT

Diagram 13.0: IEAVNIPX (Cont'd)

r
| Notes on Processing

0sT

Input

From Diagrem 13.0
Step 2

PARMTAB

APGP

IEAVNIPX

Processing

NPXAPG

—1 Enter valid elements in a dummy APG
control element in IEAVNIPX,

2 Replace PARMLIB parameters with those
respecified by operator.

Move dummy APGCE into nucleus when
all elements in the APG parameter have
been analyzed,

Diagram

Define the Task Dispatcher's APG

13.1: NPXAPG

Output

IEAVNIPX

— ™~ APGCE
NVT
—
NVTAPGCE
NUCLEUS
IEAAPGCE
cvT
CVTAPG=1

1EAVNIPX
Diagram 13.0,
Step 3

O

Diagram 13.1: NPXAPG (IEAVNIPX)

1
Notes on Processing abel |

PXAPRTY

Z 1 e

1. NPXAPG locates and examines the
APG parameter.

r

|

s

I

|'

| NPXAPNXT
| If the APG parameter is not

| defined or is invalid, NPXAPG does
| not modify the IPL values of

| CVTAPG and the nucleus-resident

| APGCE.

|
| 2. If there is an error in the NPXAPIOP
| definition of the parameter,

| NPXAPG issues the INVALID APG PARM
| message to the master console via
| the NIPWTOR routine (in IEAVNIPM)

| and allows the operator to respe-
| cify or cancel APG. If the opera-
| tor cancels APG, NPXAPG examines

| the next input source or exits (if
| the operator's input was in

| error).

|

[

|

|

|

|

|

[

|

|

L

3. NPXAPG sets the APG active flag
(CVTAPG) to 1.
NPXAPG moves the dummy APGCE after|
the scheduling priority (S.P.) is|
converted to a dispatching priori-|
ty (D.P.) by the formula:

NPXAPEND

———— e e —————— e ————— e e ——]

APG D.P. = 251 - ((15 - S.P.) «x

[
|
|
|
|
|
[
|
|
|
|
|
|
[
I
[
|
[
[
[
|
|
|
|
I
|
|
|
[
[
16). |
J

)—_—_—

:Z UOT3O3S

uot3zezado JOo poyaIsW

181

ZsT

Diagram 13.2: NPXTMSL
Build the Required Number of TSCEs
{Time Slice Control Elements) in the SQA

Sep3 " 10 Processing Output
NPXTMSL IEAVNP
Input ————14 1 Move each valid time=slice group into ok

the TSCE build area in IEAVNIPX, [

TSCE build area

PARMTAB

rr—+ 2 Acquire a TSCE area and move TSCEs to
| SQA area. GETMAIN
|
|
|

From subpool 255
i

IEAVNIPX

TSCE build area

of SQA Subpool 255

(A

TSCE area

OSE w1

IEAVNIPX
Diagram 13.0,
Step 4

$Z uoT3ldag

uot3exado 3O pPoyldW

€ST

C

Diagram 13.2: NPXTMSL (IEAVNIPX)

-

~

r -
| Label
4

- T
NPXTMSL builds the required number|NPXTMSL

of TSCEs (time slice control ele- |
ments) in the SQA and defines the
time-slice intervals in units of
16 microseconds.

NPXTMSL terminates its scan at
that point and allows the operator
to cancel or respecify the TMSL
definition. If he cancels it,
NPXTMSL returns to the caller. If|
he respecifies, he need not respe-|
cify the time-slice groups defined|
previous to that in error since
NPXTMSL retains the previous
definitions in the IEAVNIPX TSCE
build area and reuses this area
for further TMSL definitions.

|
[
|
If the TMSL parameter is invalid, |NPXTMRTY
|
|
|
|

NPXTMSL moves each into the build
area relative to its priority --
priority 0 in the first slot,
priority 1 in the second, etc.

I

|

|

I

|

I

I

|

|

|
The priority value placed in the |
TSCE is the dispatching priority |
(D.P.). This is derived from the |
scheduling priority (s.P.), 0-13, |
by the formula: |
|

|

|

|

|

I

I

|

Time-Slicing D.P. = 251 - ((15 -
S.P.) x 16)

When the last valid time-slice
group has been defined, the TSCEs
are packed together in the kuild
area to eliminate zero-value time-

slice TSCEs.
______ -4

NPXTMLPN

e o e o — —— — — ————— — —— —— — — — —— — i ——— — ——— — —— — i ————— i a—

T
Notes on Processing | Label
4

o ——— e . e e e e — =y

$
2. NPXTMSI requests an area equal in |NPXTMEND
size to the packed TSCEs in the |
IEAVNIPX build area. |
I
NPXTMSL sets a flag in the last |
TSCE to identify to the dispatcher|
the end of the chain. WNPXTMSL |
also places the low address of the|

SQA-resident TSCE chain in the CVT|

at CVTTSCE. |
1

— L

LOTION S

66T uor3zexado IO poylaW

o

Diagram 13.3: NPXQCELL (IEAVNIPX)

r—-———-— —— e e e e e e e e —_

1
| Notes on Processing | Label |
pommmm oo t —

1. If the quickcell definition is too|NPXQCNXT |
big for the work area, NPXQCELL |
terminates the scan at the point |
of error and allows the operator
to cancel or respecify the SQACEL
or LSQACEL.

If the operator cancels SQACEL, |

|
|
|
NPXQCELL sets up to process LSQA- |
CEL. If he cancels LSQACEL, it |
returns to the caller. |
|
If the operator respecifies the |
parameter, he need not respecify
quickcell definitions previous to |
the one in error since previous |
definitions are retained and the
area is reused for further quick- |
cell definitions.
|
I

[

|

| |
| |
| |
| [
[|
| |
[I
| |
| |
| |
| |
| |
| |
| |
| I |
| |
| .
| When the last valid quickcell has |NPXQCEND |
| been defined, the definitions are |

packed together in the work area	
[|

| [

| I

| |

| |

| |

| |

| |

| |

[|

[|

| |

| |

| I

[|

|

I

|

I

|

to eliminate zero-value quick-
cells. Any respecification of a
given quickcell size results in
the last such specification being
effective. NPXQCELL calculates
the total required area for quick-
cells while packing the work area.
The first unused halfword after
the packed data is set to 0.
NPXQCELL also calculates the size
of the QCDBLK (quickcell descrip-
tion block). QCDBLK contains the
requirements for each quickcell.

2. NPXQCELL requests an area big
enough to contain both the QCDBLK
and the quickcells.

NPQCLND

4. NPXQCELL requests an area equal in|NPQCLND
size to the packed data work area |
(including the extra halfword of |
0's). |

S —1 —

96T

Diagram 13.4: NPXMPA)
Define Virtual Address Space Dedicated

to Master Scheduler Region
From Diogram 13.0,

Step 5 Processing Output
NPXMPA
IEAVINIPX
InpUt I— — ——4- 1 Determine needed size of master —
scheduler region and ensure that enough _
| virtual space is avoilable for this region. | > MPASIZ E
PARMTAB | "
! MPADDR start of
| MPA parameter - —1+ - master scheduler
(: region
CVT |
I —~ 2 Initialize master scheduler region PQE and PQE
CVTSHRVM - - r FBQE to reflect the calculated size and
: | starting address . [
NVT | I
l | FBQE
NVIVVPG1 - —— |
3 Define page tables and external page tables
| for segments allocated to master scheduler s
| region. IEAPTCD
|
Master scheduler TCB - — —1 Paqe tables
Master scheduler PQE | 4 Process TSOAUX and AUXLIST parameters. NPXMPA1 External page fables
| Establish limits on
JEAVNIPX | background and TSO
| use of auxiliary storage
.5
MPASIZE | 3
- ———— ——
MPADDR 5 Disable system for all interruptions. MODESET
IEAVNIPX
Diagram 13.0,
Step 6

17 UOTIO3S

uoT3eisd0 JO POYIBW

LST

Diagram 13.4:

NPXMPA (IEAVNIPX)

NPXMPA locates the pointer to the |
MPA parameter. If the pointer has|
a value of 0, MPA has not been |
specified, and the master schedul-|
er region is defined as two seg-
ments (or 128K bytes) of virtual
storage.

|
|
f
If MPA has been specified, NPXMPA |
ensures that enough virtual space |
is available for the master sche- |
duler region. NPXMPA calculates |
the low region address ky sub-]
tracting the region size from the |
low address of the "shared virtual]
area®™ (CVTSHRVM), which contains |
the SQA and the pageable LPA. It |
determines whether this address |
overlaps the high NIP page |
(NVTVVPGl). If these address |
spaces overlap, the master sche- |
duler region cannot be defined as |
specified. If there are less than]|
128K bytes, the operator is infor-|
med that storage is unavailable, |
and NPXMPA branches to the NIPS- |
WAIT routine (in IEAVNIPM) to |
place the system in a disabled |
wait state (X'38'). If there are |
at least 128K bytes, the operator |
is informed that address space has]|
been exceeded, and is given the |
orportunity to redefine or cancel |
MPA. If he cancels, the

master scheduler region is defined|
as 128K bytes by default. |

NPXNOMPA

NPXMPDEF

NPXMPINV

e e e e e e e e e e e e e o e e e e e e e . R i . s e S i, i e, O e st e

— e e e o e e e e et s e e i e e . Y —

e e e

Notes on Processing |

If there are multiple FBQESs |
defined for this PQE, the more]
recently created FBQEs (at the |
front of the FBQE queue) are |
dequeued, and the SQA space for |
those FBQEs is released Ly FREE- |
MAIN (sukpool 255). The last FBQE|
on the qgueue, created by IEAVNIPO, |
is retained rather than cne of thej
later-created FBQEs in an attempt
to decrease SQA fragmentation.

[

|

i
Since the remainder of NIP execu- |0
tion occurs outside of any region |
boundaries, IEAVNIPX protects its |
existence ty not reenabvling the |
system and not issuing ncn-type-1 |
SVCs, which might reenable the i
system. The exception is in the |
case of a system wait state. If |
normal NIP execution continues, i
the system is not reenabled until |
control is passed to tne master |
scheduler via the LINK SVC. !

NPXMPDEF

ISABIE

http:ing<c.he

86T

From Diagram 13 .4,

Input Step 4 Processing
PVT ovT NPXMPA1
PVTITOTAX d CVTPVTP i _L Iy T 1 Adjust space values to reflect
4 | auxiliary storage backup of pageable
PVTSUCM SQA | system areas.
|
SQABOUND [—‘(———1
|
Secondary CVT |
GOVRFLB SCVTMSSQ -+ JI
IEAVNIPX |
iﬂ _J T
MPADDR L —_— 2 Compute size of dynamic I
'_ area,
CVvT :
CVTREAL ¢«—1+——
PARMTAB NVT
TSOAUX < NVIPTAB & —T——— — — — 3 Determine PVTSUCM value (PVTSUCM
. “— T —— total uncommitted auxiliary if 500 or less.
space).
PVT ||
PVTSUCM «—|-——
— L ———T4 Verify the specification. NPXVNUM
PVT

PVTTOTAX ¢ —

i

PVTDYNA

=

PARMTAB

TSOAUX
T TR
AUXLIST

PVTTOTAX

e B e N

o o O

#5a5

Diagram 13.5: NPXMPA1
Establish Limits on Background and
TSO use of Auxiliary Storage

5 Determine auxiliary space reserved far
TSO use and set the upper boundary for
—

batch allocation.

Write auxiliary storage limits
to operator.

Output
PVT
PVITOTAX
PVTSUCM
PVT
— VTN
IEAVINIPM
NIPWTO
Operator notified that
TSOAUX parameter is
ignored
PVT
PVIMAXB
{[EAVNIPM
NIPWTO

Write total available
auxiliary storage,
background available
storage, TSO available
storage, current
TSOAUX value, and
TSO reserved pages

NPXMPA
Diagram 13.4,
Step 5

:Z UOT3IOSS

uoT3zexado 3O poyIOW

6ST

C

Diagram 13.5:

NPXMPA1 (IEAVNIPX)

-T
Notes on Processing |

- —_—— 1

1.

2.

r
I
I._
I
[
|
[
I
[
[
I
|
|
I
|
|
|
I
[
I
|
|
|
| 3.
I
I
I
|
|
|
|
|
|
[
I
|
[
l
I
I
I
|
|
|
|
[
I
L

PVTTOTAX and PVTSUCM must be
decreased using the formula: |

PVTTOTAX =
(Beginning address of SQA - Begin-
ning address of Master Scheduler
Region) /u096

PVTSUCM = PVTTOTAX -

I

I

I

|
Alsc must subtract pages ketween |
the beginning address of the LPA |
directory and the beginning |
address of the SQA. |
[

Computed in 4K pages; should be a |
multiple of 6u4K. It is decreased |
by 16 pages (6uK) to reflect the |
master LSQA. PVTDYNA represents |
[

I

[

the maximum address space avail-
able for region allocation.

If PVTSUCM is not greater than 500]
pages, no auxiliary storage is |
available for TSO use. The opera-|
tor is notified that the TSOAUX |
parameter has been ignored due to |
auxiliary storage restraints. The|
TSOAUX pointer in PARMTAB is set |
to 0 to show that the parameter is|
inoperative (processing for AUX-
LIST will need to refer to this
value).

[
I
|
|
The maximum value for batch allo- |
cation (PVTMAXB) is set to PVITO- |
TAX or PVIDYNA (whichever is |
smaller), and control goes to Dia-|
gram 13.5, Step 5. |

[
A null pointer for TSOAUX in PARM-|
TAB causes the upper koundary for |
background allocation (PVTMAXB) to]
be set to the smaller of PVIDYNA |
or PVTTOTAX. Control goes to Dia-|
gram 13.5, Step 5. |

—_—— 1

| NPXMPAL

The value specified must be 0-99.
If improper, the TSOAUX entry is
set to 0, and the operator is

notified of the invalid specifica-|
tion. The operator may enter EOB, |
canceling the parameter, or he may|
respecify the parameter. If he |
cancels it, PVTMAXB is set to the |
lesser of PVTDYNA or PVTTOTAX. |
Control goes to Diagram 13.5, Step
5. [

I
This is necessary, since the cod-
ing may be entered from multigple |
paths, and TSOAUX may be present |
due to operator specification,
PARMLIB specification, respecifi- |
cation of an invalid value, or |
respecification following AUXLIST. |
AUXLIST always uses PARMTAB to
extract the current TSOAUX value.

I

|
PVTTOTAX and PVTDYNA are compared,

[
[
[
I
; . |
and the smaller is multiplied by |
TSOAUX to find TSO reserved srpace. |
The space reservation for TSO must|
include at least 500 pages for
potential katch use. If not, the |
operator is notified, and PVTMAXB |
is set to 500 pages. |
I
NPXMPA1l tries to locate the AUX- |
LIST parameter. If the parameter
|
|
|
I
|
|

is 0, its control is returned to
the caller.

The operator can accept the auxi- |
liary storage limits as displayed |
(ECB), or he may respecify TSOAUX.
When PVTTOTAX is equal to or less |
than 500 pages, an operator |
response is bypassed. (A respeci-
fication of TSOAUX automatically |
implies an AUXLIST). If TSOAUX is
respecified, and the operator |
response is in error and canceled; |
the auxiliary storage limits are
left as previously computed and |
displayed.

4

|
|
|
|
e e e e —— e e ——————————— b0

09T

Diagram 13.6: NPXFJPQ
Release Control Blocks for

NIP-loaded Modules
From Diagram 13.0,

s .
Input tep 7 Processing Output
N NPXFJPQ
Master scheduler TCB
NVIMSTCB ¢ —+ — — — — 4 L 1 Dequeuve LLEs (load list elements) from
- - the master scheduler TCB. C TCBLLE

Master scheduler TCB

TCBLLE

Master scheduler TCB

Master scheduler TCB

TCBJPQ »] —_t— —r — —4 2 Dequeve CDEs (contents directory elements)
t_ -] from the master scheduler TCB. [TCBJPQ

Contents directory element
Extent-list—reated flag -4 ——
~ IEAVNIPX
Diagram 13.0,
Step 8

Extent |ist

R O

Size of list -

:Z UoT308S

19T uoT3eiado Jo poylaW

Diagram 13.6: NPXFJPQ (IEAVNIPX)

Notes on Processing

Label

—
|
F
|
I
I
|
I
[
I
|
I
|
|
|
I
|
|
|
I
|
I
|
I
I
|
|
I
|
I
|
|
|
|
[§

1.

2.

3.

Each LLE is dequeued starting at
the TCBLLE queue origin in the
master scheduler TCB. Before the
storage containing each LLE is
released, the TCBLLE pointer is
updated with the chain pointer to
the next LLE. The processing is
completed when all LLEs on the
queue have been released, and the
TCBLLE pointer has a value of 0.

Before dequeueing each CDE,
NPXFJPQ determines whether an
extent list is associated with the
CDE by testing the extent-list-
created flag in the CDE. If an
extent list exists, its size is
extracted from the extent list,
and the storage containing the
extent list is released. The rou-
tine updates the TCBJPQ pointer
with the chain pointer to the next
CDE and releases storage contain-
ing the dequeued CDE. This pro-
cess continues until TCBJPQ has a
value of 0.

o o e P e S e e B . P s, T . S e . s, S, e, . e S . 0]

NPXFJLLE

NPXFJCDE

Storage occupied by released pro- |NPXFJXIT

grams is not released until avail-|
able storage is redefined by the |

NPXFAREA routine. |
—_— 4

e e e s e G — —— — —— ———— — — — — ——— — — — — — ———— i, w—)

29T

From Diagram 13,0,

Step 9

Master scheduler TCB

TCBLSQA

Diagram 13.7: NPXMLSQA
Allocate the Single-segment LSQA
Related to Master Scheduler Region

Processing

NPXMLSQA

——~ 2 Propagate the TCB values for the newly disabled wait state
r created LSQA and the TCB pointer to {X'3R") L \
SWAH (system work area header) mymcuhon'tmk s TCB
from the master scheduler's TCB to the :‘11
communication task's TCB, [TCBLSQA
IEAVNIPX
Diagram 13.0,
Step 10

GETLSQA

1 Allocate asingle SLQA segment.

IEAVNPM

NIPSWAIT Output

Place system in

If cannot be done

:Z UOTIOSS

€917 uot3exado 3O POY3IdW

Diagram 13.7: NPXMLSQA (IEAVNIPX)

Notes on Processing

| Label
L

=
.

The CVT NIP-in-process flag
GETLSQA routine that the special

without a TCB is in effect.
NPXMLSQA invokes the GETLSQA rou-
tine via an SVC request.

Before the wait state, NIPWTO
sends a message stating that
storage was unavailable for
initialization of MPA.

N
.

The master scheduler's TCB will
have been initialized by GETMAIN
with the LSQA definition parame-

P——————————-————————-—-r'—-‘

sharing.

T
| NPXMLSQA

(CVTNIP) is set, indicating to the|

NIP interface for creating an LSQA|

NPXSW38

|
|
|
I
|
[
|
I
|
| NPXMLSQA
|

I

ters. The NPXMLSQA routine propa-|
gates the values to permit region |

4

b e e e . . — — . . —— ————] —]

not

Diagram 13.8: NPXPFTAQ
Define Available Page Frames
From Diagram 13.0

Step 10 " Processing Output
NPXPFTAQ a
Input ——Y| .4 Place PFTEs (page frame table entries) Available PFTE queve
] ’_ previously assigned as V: R pages on the . .
| available PFTE queve. { > L)
PFT : ; =
| -
PVIFPFN [@——f—-—— 2 Add poge frames af low end of available o &
queue if available queue contains any PFTEs, [i> PVTAVLOW
PVILPFN
IEAVNIPX
Diagram 13.0,
Step 11

1Z UOTIOSS

uoT3exado Jo poylowW

591

Diagram 13.8: NPXPFTAQ (IEAVNIPX)

NPXPFTAQ locates the PFT and | NPXPFTAQ
examines all entries in reverse
order (beginning with the last).

[
|
NPXPFTAQ initializes these PFTEs |NPXPFCUR
with PFTE indexes for the pre- |
viously found available PFTE |
(PFTBQPTR) and the next such PFTE |
tc be found (PFTFQPTR). |

|
NPXPFTAQ sets the PFTE index of
the first available PFTE |
(PVTAVFST) to the index of the |
first PFTE placed on the available|
queue, if this queue is empty, and|
sets the backward queue pointer
(PFTBQPTR) to O.

NPXQPFTE

NPXPFTAQ sets the PFTE index of
the last available PFTE (PVTAVLOW)
to the index of the last PFTE
placed on the available queue and
sets the forward gqueue pointer
(PFTFQPTR) to O.

NPXPFCUR

initialized by the NPXPFTAQ rou-
tine to an initial value of 0 and
increases the available page frame
count (PVTAPC) Lky the numker of
PFTEs added to the available

I
]
|
|
|
|
|
|
1
NPXPFTAQ sets the PFTE fields not |NPXQPFTE
|
|
|
|
|
queue. i
1

———— - —_ — —_— -—=1

991

Diagram 13.9: NPXMCSPO
Define Shared Subpool 0 for Master
Scheduler and Communication Task

From Diagram 13.0,
Step 11 Processing Output
NPXMCSPO Subpaol 255
1 Allocate storage in subpool 255 of SQA
for two SPQEs (subpool queue elements). [>
NVTMSTCB=SPQE

NVTCMTCB
DQEPTR
input
TCB SPQE queue

> SPQEPTR oddress in
TCBMSS

TCBMSS ¢--—]1--—-—- T 2 Add SPQEs to the SPQE queve. C

o A

JEAVNIPX 1ce
Diogrom 13.0, yig
Step 12 TCBMSS: address of

SPQE being queued

1z UOT3IOIS

L9T uot3zexsdo JO poylsW

Diagram 13.9: NPXMCSPO (IEAVNIFX)

T
Notes on Processing | Label
______ — ——— — $———- -
1. The first SPQE area is defined for|NPXMCSPO
an owned "SPQE for subpool 0 and is|
added at the head of the SPQE |
queue for the master scheduler TCB|
(NVIMSTCB) . The second SPQE area |
is defined for a shared SPQE for |
subpool 0 and is added at the head|
of the SPQE queue for the communi-|
cation task TCB (NVTCMTCB). This |
SPQE points to the owning, or |
master scheduler, SPQE (DCEPTR). |

2. If the TCBMSS field is 0, the SPQE| NPXMCSPO
is flagged as the last SPQE on the|
SPQE queue. |
———— X

[0 T —— e, T i e, T e P . e S ay
b e e e e e ——— s S e e ol

891

Diagram 13.10: NPXRDAT
Reset DAT Tables and Exit to Master
Scheduler Initialization Routine

From Diagram 13.0,
Step 13

Input Processing Output
NVT NPXRDAT
NVTSPUCB= *-—4t————— — — -+ 1 Initialize register 4 with address of UCB -
PARMLIB UCB reloted to online SYS1.PARMLIB data set ., [™| Register 4-NVTSPUCB
CVT
CVTREAL ¢ — 1 — — _| —— ——42 Reset segrtveAnt table and pa.ge"able entries Segment table entires
g | not containing addresses within the range
CVTNUCB | required for the NPXRDAT routine. m— >l _]
I “ I | Page table entries
NVT ' | >{]
-] 3 Invalidate the page table entries for the
~NVTVVPG T ﬂ- —_ pages containing the storage required for
T] the NPXRDAT routine.
CV1
| — _ — — — — 1 4 Move the system segment table from its vt
real storage location to the real storage
location of the user segment table. [-
CVTSEGC- CVTSEGD

5 Set up registers needed for [EAVMODE and
the LINK SVC to enable the DAT features
and LINK to |EEVIPL,

Register 7=address of
> IEAMODBR

Register 8=MODESET
Register 7=address of od
|E2MODBR I" - J' 6 Enable DAT (dynamic address translation), IEAMODBR c ? -
Register 10=address
of LINK SVC
Register 8B=MODESET Register 15=address
COd? ¢ |- -7 Pass control to the master scheduler of LINK ist
Register 10=address Initialization routine (IEEVIPL). IEEVIPL
of LINK SVC routine
Register 15=address
of LINK fist

http:seg~e.nt

$Z UOT3O8S

uot3exado JOo poylowWw

6ST

C

Diagram 13.10: NPXRDAT (IEAVNIPX)

I
t
|
|
I
l
|
|
|
|
l
l
|
|
|
[
I
|
I
I
I
|
I
|
|
I
|
|
|
|
|
|
|
|
|
|
L

Notes on Processing

1.

2.

This is the single parameter |
passed to the IEEVIPL program. |

The DAT tables were created by
IEAVNIPO for all real storage
addresses.

|
|
l
|
i
The pages between the top of the |
nucleus (CVTNUCB) and the end of |
NIP's nonpageable region |
(NVTVVPGl) are invalidated. Page |
table entries that are below the |
ncnpageable line and are on the |
available PFTE queue are set to }
page-unassigned and not GETMAINed |
status (PGTPAM,PFTPVM). Page |
table entries that are above the |
nonpageable line and were pre- |
viously assigned for NIP's use are|
set to the same status; however, |
the page table itself will be |
released for any complete segment |
of available storage above the |
nonpageable line. Whenever an |
entire page table is released, the|
corresponding segment table entry |
is set to a page-table-unassigned |
status (SGTPAM). With those pages]|
required for NPXRDAT, the asso- |
ciated page tables may not be |
released during this process, and |
both the segment table entries and|
the page table entries remain |

valid and assigned. |
L

NPXRDAT

NPXRDAT

r—-—-

C

| Notes on Processing |

|
[
|
l
[
[
l
I
|
|
I
I
[
|
|
|
|
|
I
I
I
|
|
!
|
|
|
|
|
I
|
|
|

3.

4.

7.

label

This process operates with the DAT|
feature disabled. Only real
addresses are used for the
rerainder of NPXRLCAT storage
references including segment and
rage table invalidation. NPXRDAT
locates the PTEs (page table
entries) via the real address of
the system segment table (CVTSEGD)
ky simulating the address transla-
tion process to isolate the
affected PTEs. The PTEs are set
to a page-unassigned-by-GETMAIN
status. If this process results
in an entire segment invalid con-
dition, the associated segment
takle entry is set to a page-
table-unassigned status.

NPXRDAT purges the pre-
invalidation values in the trans-
lation look-aside kuffer by issu-
ing the PTIB instruction. The
kuffer is used by the hardware to
optimize the DAT grocess.

LINK SVC in
NIP to pass

IEAVMOLE exits to the
the CVT, which causes
control to the master scheduler's
IEEVIPL routine. The normal LINK
SVC processing ensures that the
IEEVIPL routine receives control
in key-0 supervisor state.

b — e ———— e —— e ———_——

DATOFF

NPXRDXRS

CVTLNKSC

SECTION 3: PROGRAM ORGANIZATION

This section shows wodules and subrou-
It also con-
tains flowcharts for the NIPMOUNT subrou-

tines that compose IPL/NIP.

Initial Program Loader

-
| IEAIPLOO
L

tine of IEAV

NPO2.

Nucleus Initialization Program

These flowcharts are
included to help explain the levels
routines used in NIPMOUNT.

of sub-

-7

fmmm e e e
I

1
IEAVNIPO |
k T--< ———=== -= -= 4
| IEAVNIPM|NIPABEND NIPSQEND NIPLOAD NIPSWAIT NIPSENSE NIPUCBFN NIPTIME NIPWTO |
[| NIPWTOR ~ NIPWTOR2 NPMHDCPY NPMEXCPC NIPSVC NIPSVCX |
L. 4 .
1 1 T I _-_'1
| IEAVNPO1 |NP1INIT NP1TESTC NP1TCOMM |
__________________________ —_—— - __{
{ IEAVNPO2 | IEAVNPA2 IEAVNPB2 |
_________________________________ . _———————— _____{
| IEAVNPO3 |[NP30PSP NP3PBASE NP3PMLIB NP3SYSP NP3PLMRG NP3PTAE NP3LKLIB NP3LCAT |
- 4+ ——— —_— - d
Ll 1
| IEAVNPOU4 | NP4PSCAN NP4PDEV ~ NP4PDSEL NP4IPDT NPURQSR1 NPUALLOC NP4BPDIT NPU4TLPA |
[|NP4BCPQ NP4BPFT NPUAPFT NPURQBR2 NPU4BSQA NP4IPVT |
L 4 . o S " . S . S = . S . S . . = " S " . S . S S S . " S S = —— o ,{
r T
| IEAVNPAU | NPAUGBUF NPAUFREE NPAUREAD NPAUWRIT NPAUINTF NPAURSTF NPAUBCCV NPAUINTC|
| |NPAYULOAD NPAUCCST [
L 4 —_— —— e e - -
v T
| IEAVNPOS |[NP5QSLPA NP5CSLPA NPSLPAPT NPSLPLIB NP5POST NP5VTCB NPSFIX NP5BLDLF |
| |[NPSMLPA NP5BLDLP NP5LPDIR NP5SVC |
L 4 ———— ——— - — -_—
[| T
| IEAVNPAS |[NPASINIT NPASCLPA NPASMLPA NPASBLCL NPASTERM NPASADDR NPASPOST NPA5SLOAD|
i INPASDIR NPA5SSDIR NPASALPD NPASLGRP NPASCLIN NPASLIND NPASALIS NPASBDIR|
__ {
| IEAVNPO6 | NP6DSS NP6RMS NP6 DMP NP6EXCP NP6TRA NP6MOVE |
L. 1
T - T - T ‘l
| IEAVNPO7 |[NP7HDCPY NP7PDCM NP7PAL NP70TEST NPTEFFP NP7LPAFN |
k -4-- ————== ——-- e m e — e ——— e i
T
| IEAVNIPX | NPXAPG NPXTMSL NPXQCELL NPXMPA NPXMPA1 NPXBUF NPXFJPQ NPXFAREA|
I

| NPXMLSQA NPXPFTAQ NPXMCSPO
1

NPXRTRAP NPXRDAT

Figure 15.

170

Organization of IPL/NIP modules and sukroutines

Chart AA. NIPMOUNT Processing (Page 1 of 3)

IEAVNPO2

\
‘ NIPMOUNT ,

NPA2UNIT
B B
BS:
CB_ADDRESSN_Y BUILD MOUNT VOLUME
GTVEN MESSAGE PERMANENT IEAVNIPM
RESIDENT
SUBROUTINE;
e NIPSWAIT (X'39°
NPA2VOL
—_— 1
NP2USCAN
SEARCH UCB
ADDRESS TABLE
FOR VOL SER
o’ I
NP2TERR
Gce v
BUPLI SET DEVICE
OFFLINE
—_—
®_.
NPAJSPEC |y NIPWIOR NPA2MNT NIPWTO
TEAUN TEAVNIPM UCE FROM
NIPUCBEN
TEANO2A SPECIFY —| IEANO2I MOUNT
ONIT DSN ON DD, VSN
NPA2EOB
e F2 ' F3
NP2RRCD3
VALID YES SET_RP
OPERATOR REGISTER (READ VOLUME
CANCEL 0 LABEL
%o
G
ES 1S _DEVICE
VALID REPLY READY
0
NPA2INV NIPWTOR NIPWTO
1 H H HS
TEAVNIPH o TEAVNIPM
—[TEANO2A INVALID UNIT FOUND UCB REQUEST VOL SER MATCH
REPLY - DEMOUNT VOLUME
RESPECIFY

YES

NPA2MXIT

DEVICE
TYPES MATCH

NPA2UNAC NIPWTO
IEAVNIPM

IEANQ2I UNI
UNACCEPTABL

MO

T
E

Section 3: Program Organization 171

Chart AA. NIPMOUNT Processing (Page 2 of 3)

IEAVNPO2
A1

NP2RRCD3

NP2RRCD3

BUILD CHANNEL
PROGRAM TO READ
VOLUME LABEL

pre— |

NP2EXCPU

EXECUTE CHANNEL
PROGRAM

NIPWTO

D
IEAVNIPM

IEANO2I
UNLABELED DASD
ON DDD

- NP2RNCD _
IECPRLTYV NP2TERR
INDICATE_NO
CONVERT VTOC SET DEVICE |€—— MESSAGE

CCHHR TO TTR OFFLINE

F1 \
2

F
PUT VOL SER AND RETURN TO
VTOC TTR IN UCB|—> CALLER

172

e

Chart AA.

IEAVNPO2
A1

52

SET UCB _TO NOT
READY STATUS

H
DEVICE D
l YES
P e ——

MOVE VTCC TTR
AND VOL SER TO
uce

NIPMOUNT Processing (Page 3 of 3)

NP2YOFF y
F

[

SET UCB_TO
OFFLINE STATUS

G

DEVICE DASD

Section 3:

Program Organization 173

SECTION 4:

DIRECTORY

This section contains a directory of IPL/NIP mcdules, arranged by entry-point namre.

[Entry Pointj ________ Funcgzon of Routz;; _______ i Module]Diagram_;;.ilibrary}
{ IEAIPLOO TUnused entr;-;;int- ___________________ T;E;;PLOOf 1.0 T_-ﬁuc 1
: IEAANIPO lUnused entry point =IEAVNIPO: 2.0 = Nuc }
, IEAVNIPM =Normal entry to control routines :IEAVNIPM, 3.0 : Nuc =
: IEAVNIPX 1Finishes nucleus initialization flEAVNIPXE 13.0 : Nuc ‘
, IEAVNIPO {Begins nucleus initialization EIEAVNIPOE 2.0 : Nuc =
: IEAVNPA2 {Mounting a specific DASD or tape :IEAVNPOZ: 5.1 , Nuc :
: IEAVNPAY }I/O requests to SYS1.PAGE data sets ,IEAVNPAM: 8.0 { Nuc ‘
: IEAVNPAS {Defines LPA modules for quickstart :IEAVNPABE 10.0 } Nuc ‘
: IEAVNPB2 50pens a specific data set :IEAVNP02, 5.2 ’ Nuc ’
; IEAVNPO1 |[Initializes syster consoles EIEAVNP01= 4.0 , Nuc I
: IEAVNPO2 |System library initialization :IEAVNPOZJ 5.0 { Nuc l
: IEAVNPO3 }Analyzes system parameters JIEAVNP03= 6.0 f Nuc }
r IEAVNPOY Ilnitializes paging control blocks ;IEAVNPOQE 7.0 ; Nuc I
: IEAVNPOS5 =Initializes shared storage ;IEAVNP05f 9.0 , Nuc }
: IEAVNP06 |Initializes reliability and serviceakility JIEAVNPOG: 11.0 , Nuc I
| | features | | | |
1 IEAVNPO7 :Processes HARDCPY and PAL parameters ‘IEAVNP07% 12.0 ‘ Nuc

I| NIPABEND =From SVC SLIH for ABEND ||IEAVNIPM|| 3.0 = Nuc :
% NIPLOAD {Loads NIP processor modules %IEAVNIPM‘ 3.1 = Nuc |
= NIPSENSE }Interprets sense data after I/0 failure EIEAVNIPM‘ 3.0 = Nuc ,
1 NIPSQEND }Abnormal entry from GETMAIN %IEAVNIPM‘ 3.0 ‘ Nuc I
} NIPSVC =Loads requested type 3 or 4 SVC routine into kIEAVNIPM% 3.2 ‘ Nuc :
| |real storage I | I |
: NIPSWAIT {Stores system completion code, places system =IEAVNIPM= 3.0 I Nuc }
| |in disakled wait state I I I |
{ NIPTIME {Determines correct time from TOD clock %IEAVNIPM‘ 3.4 l Nuc ,
: NIPUCBFN }Locates UCB associated with device ‘IEAVNIPM‘ 3.3 = Nuc ,
i NIPWTO iWrites messages to operator iIEAVNIPMi 3.0 i Nuc j

174

T T T T 1

‘ |Entry Point| Function of Routine | Module |Diagram No.|ILibrary|
4 4 4 4 4

————— T === - === T LI v)

| NIPWTOR |Writes messages to operator and receives | IEAVNIPM| 3.0 | Nuc |

I S

| NIPWTOR2 |Moves operator reply to specified buffer | IEAVNIPM| 3.0 | Nuc |

I | | | I |

« | NPA4FCEA |Channel end appendage for formatting SYSl1. | IEAVNPAY | 8.0 | Nuc |
| | PAGE data sets | | | |

I [I I | |

. | NPA4UFXCA |Abnormal end appendage for formatting SyYSi. | IEAVNPAUY | 8.0 | Nuc |
| | PAGE data sets | | | |

| | | | | |

| NPA4UNOAP |Dummy I/O appendage used as SIO, PCI, and end |IEAVNPAU| 8.0 | Nuc |

| |of extent appendage | | | |

I I | I | |

| START | Begin initial program load |IEAIPLOO | 1.0 | Nuc |

L i _ — - D S —— i —— a

Section 4: Directory 175

SECTION 5: DATA AREAS

This section contains information about, and descriptions of, the following Data

Areas:

IPLDATA

NIPMOUNT Parameter List
NIPOPEN Parameter List
NIPWTO Message Header
NVT (NIP Vector Table)

PDIT (Page Device Information Table)

Page Device Table

NIP PARMAREA

PARMTAB (Parameter Address Takle)
Parameter Table Entry

Quickstart Record 1 (NIPQSR1)
Quickstart Record 2 (NIPQSR2)
Quickstart Record 3 (NIPQSR3)
Slot Queue

SPE (NIP System Parameter Entry)

IPL unit volume serial
IPL unit VTOC CCHHR

SYS1.NUCLEUS data set start CCHH

IPLDATA
Pointed to by: Register 3 on entry to IEAVNIPO
Size: 20 bytes
Initialized by: IEAIPLOO
Bytes and
Displacement Bit Pattern Field Name Descrigption
0(0) 6
6(6) 5
11(B) 1 Nucleus member ID
12(c) 4
16 (10) 4

NIPMOUNT PARAMETER LIST

SYS1.NUCLEUS data set end CCHH

Pointed to by: Register 1 (RPARM)
Size: 21 bytes
Initialized by: Module calling NIPMOUNT (IEAVNPA2)
Bytes and
Displacement Bit Pattern Field Name Description
0(0) 12 NMNTDS The left-justified data set name in EBCDIC
0(0) 4 NMNTDSA When NMNTFLI flag is set, the address of a U44-byte
data set name
12(c) 6 NMNTVS The volume serial (EBCDIC) of the direct access
device
18(12) 2 NMNTDT The device type of the volume to be mounted or 0
if any device type is acceptable
20(14) 1 NMNTFL NIPMOUNT flags:
eees o1.. NMNTFLI The parameter list contains the address of a 44-
byte data set name
eeee ool NMNTFLC Operator may cancel the mount request via an EOB

eeee oeel NMNTFLB

176

reply
UCB address given

‘ NIPOPEN PARAMETER LIST

Pointed to by: Register 1 (RPARM)
Size: 24 bytes
Initialized by: Module calling NIPOPEN
Bytes and
- Cisplacement Bit Pattern Field Name Descrirtion
0(0) 12 NOPNDS The left-justified data set name in EBCDIC, or
0(0)) NOPNDSA Address of a U4u4-byte data set name if NOPNFLI flag
- is set
12(Q) 4 NOPNDCB Address of the related DCB
16 (10) 4 NOPNUCB Address of the UCB for the device on which the
volume is to ke mounted
20(14) 1 NOPNFL NIPOPEN flags:
P NOPNFLM Data set not found message is to be suppressed
(valid only for conditional reguests)
ceel .. NOPNFLI The parameter list contains a 44-byte data set
name
eeee 1. NOPNFLNB Construct entire DEB (DCB must point to build
area or DEB will be built at end of nucleus)
eeee 1. NOPNFLB DEB to be added to end of nucleus
B I NOPNFIC Conditional request; if NIPOPEN fails, register 1
(RPARM) will ke set to two's complement
ceee eeel NOPnFLSX Data set description to be limited to first
extent
21(15) 1 NOPNRC NIPOPEN return code:
0000 0000 Successful
0000 0100 Data set not found
0000 1000 I/0 error
NIPWTO MESSAGE HEADER
Pointed to by: Register 1 (RPARM) or, if NIPWTCR request, by NIPWTOR parameter list
Size: 4 bytes
Initialized Ly: Module calling NIPWTO
Bytes and
Displacement Bit Pattern Field Name Description
0(0) 2 NWTOLNG Message length including header
2(2) 1 NWTOFL Message flag:
l... ... NWTOFLNH Message is not to ke hardcopied
3(3) 1 Reserved
4(u) Variable NWTOMSG Message text

NIPWTOR PARAMETER LIST

Pointed to by: Register 1 (RPARM)
Size: 12 bytes
Initialized by: Module calling NIPWTOR
-
Bytes and
Displacement Bit Pattern Field Name Description
0(0) L) NWTORRPA Address of the area to contain the reply
4(4) 4 NWTORECB Address of the reply ECB
8(8) 2 NWTORRDL The length in kytes of the reply area
10(R) 1 NWTORFL NIPWTOR flags:
leee cne NWTORFLA NIPWTOR is not to wait for reply completion
(asynchronous request)
eees 1., NWTORFLB NIPWTOR2 is to provide an SQA reply buffer
11(B) 1 Reserved

Section 5: Data Areas 177

| NIP VECTOR TABLE

(NVT)

Pointed to by:

Register 2 (RNVT)

Size: 310 bytes (approx.)
Initialized by: IEAVNIPO
Bytes and
Displacement Bit Pattern Field Name Description -
0(0) 8 NVTNPSUF List of suffixes to ke appended to the base IEAVNP
to form the name of the NIP modules to be used
next -
8(8) 1 NVTNPSFX Index tc ke used in determining which suffix in
NVTINPSUF is to be appended next :
9(9) 1 NVTPXIT Suffix to ke aprended to form the name of the exit
module IEAVNIPX |
10(a) 1 NVTNPATR Attributes of executing module:
loe ol NVTNPREN Reenterable
eele o... NVTNPREU Reusakle
11(B) 1 NVTFLLB Library status indicator:
i NVTFLSLB SVCLIB and LOGREC defined
12(0) 4 NVTMSTCB Address of master scheduler TCB
16(10) 4 NVTCMTCB Address of cormunications task TCB
20 (14) 4 NVTAPGCE Address of APG table
24(18) 4 NVTVBLDL Address of BLDL table
28 (1C) 4 NVTIGCER Address of SVC error routine
32(20) 4 NVTPTCD Address of Create/Destroy Page Table routine
36(24) 4 NVTVVMDI Address of LPA hash value
40 (28) 4 NVTMSLNK Address of link parameter List
44 (2¢) 4 NVTPQCI Address of Quickcell Initialization routine
48(30) 4 NVTDSSNG Address of DSS Mask-Out routine
52(34) 12 Reserved
64 (40) 1 NVTSQANO Number of initial SQA pages
65(u41) 1 NVTNRANO Number cf available NIP pages
66 (42) 2 NVTIPGNO Number of initial buffer pages
68(44) 4 NVTABSAV Save area fcr original SVC 13 entry in SVC table
72(48) 4 NVTPQSAV Save area for original get-SQA-page entry in page
vector takle
76 (4C) 16 Reserved
92 (5C) 4 NVTNUCND Address of next available byte in nucleus buffer
96 (60) 4 NVTNBFND Address of end of nucleus buffer
100(6u) 4 NVTVVPG1 Address of first pageakle page
104 (68) 16 Reserved
120(78) 2 NVTTRACE Number of trace table entries
122(7n) 1 NVTFLSG Reserved
123(7B) 1 NVTFLCN Message handling indicators:
loee ecee NVTFLAC Active master consocle
1., ... NVTFLIOC Composite master console
eeea 1... NVTFLNHC Hardcopy discontinued
cee. ol.. NVTFLNCK TOD clock inoperative
ceee aol. NVTFLRAC WTOR reply outstanding
124 (7C) 4 Reserved
128(80) 8 NVTWTPSW System wait state PSW NIP modifies the focllowing 4
bytes of the PSW
132(84) 2 NVTIDPSW PSW ID (NIP module identifier) -
134(86) 2 NVTFLWS1 System wait state code
136(88) 4 NVTLOAD Address of NIPLCAD in IEAVNIPM
140(8C) 4 NVTSENSE Address of NIPSENSE in IEAVNIPM
144 (90) 4 NVTSWAIT Address of NIPSWAIT in IEAVNIPM -
148(94) 4 NVTTIME Address of NIPTIME in IEAVNIPM
152(98) 4 NVTUCBFN Address of NIPUCBFN in IEAVNIPM
156 (9C) 4 NVTWTO Address of NIPWTO in IEAVNIPM
160 (A0) 4 NVTWTOR Address of NIPWTOR in IEAVNIPM
164 (AY) 4 NVTWTOR 2 Address of NIPWTOR2 in IEAVNIPM
168(A8)) NVTPAGIO Address of IEAVNPAY4 ‘
172 (AC) 8 NVTNIPM Save area for IEAVNIPN base register
180(B4)) NVT NMEBLD NIPM BLLCL entry
184 (B8) 16 Reserved
200(c8) 4 NVTDCBIC Address of input console DCB

178

C

204 (cc)
208 (DO)
212 (D4)
216(D8)
220 (DC)
224 (E0)
228 (EW)
232(E8B)
234 (ER)

235 (EB)
236 (EC)
240 (FO)
244 (Fu)
248 (F8)
252(FC)
254 (FE)
256 (100)
260(104)
264 (108)
268(10C)
272(110)
276 (114)
280(118)
284 (110)
288(120)
304(130)

BrNEEEEEESE

[
PONEEEFEEFEEENDNNEFEEEPR

)
.
.

l...

NVTDCBOC
NVTLCBSN
NVTMBUF
NVTMBEND
NVTSPE

NVTTOD
NVTABCD1
NVTABWS1

NVTIPDT
NVTPAREA
NVTPTAB
NVTQSBUF

NVTSPUCB
NVTVVTCB
NVTVVECB
NVTVRECB
NVTVRBLD
NVTBLDL

NVTCSLIB
NVTCSLNM
NVTCSIOB

NVTFLPO
NVTFLLST
NVTFLQS

PAGE DEVICE INFORMATION TABLE

Address of cutput console DCB
Address of SYS1.NUCLEUS DCB
Address of next available byte in message kuffer
Address of end of NIP message buffer
Address of first SPE in queue
Reserved
Save area for TCD clock readings
Save area for first ABEND code processed
Save area for wait state code upon entry to NIPA-
BEND in IEAVNIPM
Reserved
Address of initial page device tatle
Address of first PARMAREA obtained (by IEAVNP03)
Address of PARMTAB
Address of quickstart buffer
Reserved
Address of SYS1.PARMLIB UCB
Address of IEAVNPAS5 TCB (pageable TCB)
Address of ECB for IEAVNPAS
Address of ECB for IEAVNPO5
Address of LPA BLDL entry
Address of BLDL table build area
Address of SYS1.LPALIB DCB
Address of current LPA name
Address of I0B for failing coldstart I/O requests
Reserved
Parameter option indicators:
Display PARMLIB lists
LPA may be quickstarted

Bytes and
Displacement Bit Pattern Field Name Descrigtion
0(0) 40 PDITIOB IOB for this device
40(28) 1 PDITFLG1 Flags:
loee eaee PDITSSDV This is a set sector device
e PDITMHDV Moveable head device
eel. ... PDITXCP Device needs to be restarted via EXCP
eeel e PDITPON Slot queues are being searched for a primary slot
s PDITOAPF Channel program apgended
eses ol.. PDITMIOB Multiple-exposure device
T PDITNOPS No primary or secondary slot found on slot queue
41(29) 1 PDITINDX Displacement used to determine base IOB for this
device; base IOB = address of IOB for this expo-
sure - (4 X PDITINDX)
42(2n) 2 PDITIOBP Displacement to find IOB for next exposure (cur-
rent IOB + PDITIOBP)
44(2c) 1 PDITCPCT Number of channel programs chained to this IOB
after a PCI had been set
45(2D) 3 PDITLACP Address of the last channel program on chain for
IOB
48(30) 4 PDITECB ECB for this device
52 (34) 48 PDITDEB DEB for this device
100(64) 4 PDITDCB DCB for this device
104 (68) 1 PDITSCNT Number of slot queues for this device
105(69) 3 PDIT1SQA Address of slot queue for first slot for this
device
108 (6C) 1 PDITSQCT Number of channel programs on slot queue contain-
ing the most channel programs
109 (6D) 3 PDITHSQA Address of slot queue containing the most channel

programs

Section 5: Data Areas 179

PAGE DEVICE TABLE

Device number used to index into the PDT
Last assigned slot number

Number of available pages on this device
Last assigned group number

Alternate slot increment
Number of tracks per group
Fixed-head device
Beginning CCHHR of paging data set on this device
Number of groups per cylinder
Number cf slots per group
Address of cylinder count vector
Address of kit map for this device

Device type field from UCB
Address of IOB for this device

Address of next 4K block in parameter area
Address of next available byte in PARMTAB

PARMLIB memker name

Reserved for BLDL entry

CCWs for reading text record
Search ID for next text record

Read area for PARMLIB records
Parameter address table

Bytes and
Displacement Bit Pattern Field Name Description
0(0) 1 PDTNO
1(1) 1 PDTLSN
2(2) 2 PDTAPC
4(u) 2 PDTLGN
6(6) 2 PDTSEL Slot entry length
8(8) 1 PDTALI
9(9) 1 PDTTG
10 (a) 1 PDTFL1 Flags:
1 PDTDEVT1 Primary device
elee eeee PDTDEVT?2
eele ooen PDTLAST Last PLTE
11 (B) 5 PDTBA
16 (10) 2 PDTR1 Reserved
18 (12) 2 PDTGC
20(14) i PDTSG
21(15) 3 PDTCCVA
24 (18) 1 PDTR2 Reserved
25(19) 3 PDTEMA
28 (1¢C) 1 PDTDT
29 (1D) 3 PDTIOB
NIP PARMAREA
Pointed to by: NVTPAREA
Size: Variakle
Initialized by: IEAVNPO3
Bytes and
Displacement Bit Pattern Field Name Description
0(0) 4 NIPPAQ
4qy) 4 NIPPABYT
*khkEk*hd s £k x4PARMLIB BIDL EntIry##***sssssssstts
8(8) 4 NIPPABDH BLDL header
12(C) 8 NIPPANAM
20 (14) 3 NIPPATTR Member TTR entry
23(17) 3
26 (1A) 6 Reserved
kkkkhbkkkhkkkdk k] /0 Data Arcatr*kedkrkhrkkhik
32(20) 32 NIPPATXT
64 (40) 5 NIPPASID
69 (45) 3 Reserved
72(4C) 40 NIPPAIOB PARMLIB IOB
112(70) u NIPPAIOB PARMLIB DCB
116 (74) 4 NIPPAECB PARMLIB ECB
120(78) 48 NIPPADEB PARMLIB DEB
168(A8) 80 NIPPARCD
248 (F8) 232 NIPPAPTB
480(1E0) 1568 NIPPABUF

180

Initial PARMAREA Luffer

C

PARAMETER ADDRESS TABLE (PARMTAB)

Pointed to by:

Size:

Initialized by:

Within P
232 byte
IEAVNPO3

Bytes and
Displacement Bit Pattern

ARMAREA
S

Field Name

Description

248 (F8)
256 (100)

260 (104)
262(106)

264(108)

268 (10C)
270(10E)
272(110)
276 (114)
278 (116)
280(118)
284 (11¢C)
286 (11E)
2881(120)
292(124)
294 (126)
296(128)
300(12cC)
302(12E)
304(130)
308(134)
312(138)

316 (13C)
318(13E)
320(140)
324(144)
326 (146)
328(148)
332(140)
334(14E)
336 (150)
340(154)
342(156)
344(158)
348 (15C)
350(15E)
352(160)
356 (164)
358(166)
360(168)
36u4(16C)
366 (16E)
368(170)
372(174)
374(176)
376 (178)
380(17¢C)
382(17E)
384(180)

388(184)
390(186)
392(188)
396 (18C)
398(18E)

8
4

2
2
0000

m

EEENDDODEDODNNEDNDNEDODONNEDNDND

ENONENNENNNENNDENNNNENDNNENNDEODNDENDN

NN EDDN

0000

PTABSTRT
APGP

APGO

AUXLIST

BLDL

BLDLF

CLPA

CONT

CPQE

DUMP

FIX

HARDCPY

LSQACEL

MLPA

MPA

OPI1

PAGEP

PAGEO

Dummy entry
Address of automratic priority grour parameters
specified via SYSP (PLIBTAB)
APGP flags
Source identification:
Operator (CPERTAB)
IEASYSxx via SYSP
Address of automatic priority group parameters
specified ky operator
APGO flags
Source ID
Not applicable
AUXLIST flags
Source ID
Address of PARMLIB member for BLDL
BIDL flags
Source ID
Fixed BIDIL list
BLDLF flags
Source ID
Address of create link pack area parameter string
CLPA flags
Source ID
Line continuation
Reserved
Address of channel program queue extension
parameters
CPQE flags
Source ID
Address of tape for SYS1.DUMP
DUMP flags
Source ID
Address of list of routines in fixed LPA
FIX flags
Source 1D
Address of hardcopy log parameters
HARDCPY flags
Source 1ID
Reserved

LSQA quickcell parameters

LSQACEL flags

Source ID

Address of list of routines in LPA extension
MLPA flags

Source 1ID

Master scheduler region virtual space

MPA flags

Source ID

Operator intervention

OPI flags

Source ID

Address of page data set parameters from IEASYSxx
via SYSP (PLIBTAB)

PAGEP flags

Source ID

Address of page data set parameters from OPERTAB
PAGEO flags

Source ID

Section 5: Data Areas 181

400(190) 4 PALP Address of raging algorithm limits from IEASYSxx
via SYSP (PLIBTAB)

4ou4(194) 2 PALP flags

406 (196) 2 Source 1ID

408(198) 4 PALO Address of raging algorithm limits from orerator
(OPERTAE)

412(19C) 2 PALC flags

414 (19E) 2 Source ID

416 (1A0) 4 REAL Nonpageable address limit

420 (1A4) 2 REAL flags

422(126) 2 Source 1ID

424 (1A8) 4 SQA Address of SQA virtual space

428 (1AC) 2 SQA flags

430 (1AE) 2 Source ID

432(1B0) 4 SQACEL SQA quickcell

436 (1BY) 2 SQACEL flags

438 (1B6) 2 Source ID

440(1B8) 4 SYSP Address of list of IEASYSxx member names

444 (1BC) 2 SYSP flags

446 (1BE) 2 Source 1ID

448 (1C0) 4 TMSL Address of time-slice group parameters

452(1Cy) 2 TMSL flags

454 (1C6) 2 Source ID

456 (1C8) 4 TRACE Address of trace takle entry parameters

460 (1CC) 2 TRACE flags

462 (1CE) 2 Source ID

464 (1DO) 4 TSOAUX TSOAUX rarameter list

468 (1D4) 2 TSOAUX flags

470(1D6) 2 Source ID

472(1D8) 4 PTABEND Dummy entry for end

PARAMETER TABLE ENTRY

Each Parameter Table Entry is eight bytes long and has the following format:

Bytes and
Displacement Bit Pattern Field Name Description
0(0) 4 NIPPTADR Address of parameter specifications
4(y) 1 NIPPTOPF Entry flags:
l... ... NIPPTOPI OPI option
P NIPPTLST List option
5(5) 1 NIPPTATF Attribute flags:
leee ceee NIPPTMRG Merge
6(6) 2 NIPPTSID Source ID:
X*0000° Operator
C'xx' PLIB memker suffix

182

QUICKSTART RECORD 1 (NIPQSR1)

Pointed to by: None
Size: 4096 bytes
Initialized Ly: IEAVNPOU4
Bytes and
Displacement Bit Pattern Field Name Description
0(0) 8 NIPQSRIN "PAG1" EBCDIC record identifier
8(8) 1 NIPQSR1F Device identification indicators:
l... ... Primary page device
Aol ae.. Page device with LPA quickstart records NIPQSR2
and NIPQSR3
9(9) 1 Reserved
10(Rn) 2 NIPQSRIT Number of formatted tracks
12(C) 2 NIPQSR1A Number of availakle pages (APC)
14 (E) 2 NIPQSRI1L Number of halfwords in bit map beginning at
NIPQSR1N
16 (10) 4 Reserved
20(14) 3 NIPQSR1P TTR of NIPQSR2
2317 1 Reserved
24 (18) Variable NIPQSR1M Bit mar of page availakility
0 NIPQSR1A Page record availakle
1 NIPQSR1U Page record unavailable due to I/0 error on ini-

tial page write

QUICKSTART RECORD 2 (NIPQSR2)

Pointed to by: NIPQSR1P
Size: 4096 bytes
Initialized by: IEAVNPOU4
Bytes and
Displacement Bit Pattern Field Name Description
0(0) 8 NIPQSR2N "PAG2" EBCDIC record identifier
8(8) 4 NIPQSR2L Virtual address assigned to the start of the LPA
directory
12(C) 4 NIPQSR2H Highest virtual address assigned to the LPA
16 (10) 4 NIPSWR2D Hash value for LPA directory
20 (14) 3 NIPQSR2P TTR of first NIPQSR3 record
23(17) 1 Reserved
24 (18) Variable NIPQSR2M Bit map of pages
0 NIPQSR2A Page record available
1 NIPCSR2U Page record unavailable (assigned to quickstart
LPA)
QUICKSTART RECORD 3 (NIPQSR3)
Pointed to by: NIPCSR2P or NIPQSR3P
Size: 4096 bytes (There will be 1 to 3 NIPQSR3 Records depending on the size

of the LPA to be described.)
Initialized by: IEAVNPOU4

Bytes and
Displacement Bit Pattern Field Name Description
0(0) 8 NIPQSR3N "PAG3" EBCDIC record identifier
8(8) 1 NIPQSR3D EBCDIC last record identifier:
0 Not last record
X Last NIPQSR3 record
9(9) 3 NIPQSR3P TTR of next NIPQSR3 record (if any)

12(C) Variable NIPQSR3M Slot/Group map of the sequential LPA address
space; each entry is three bytes long; the first
entry is for the lowest address LPA page

Section 5: Data Areas 183

SLOT QUEUE

Number of channel programs for this queue
Address of the slot queue for the next sequential

For a slot sector device, sector number for this

Address of the slot queue for the next secondary

Record number within a track for this slot
Address of first channel program on slot queue
Index used to calculate the address of this slot

Bytes and
Displacement Bit Pattern Field Name Description
0(0) 1 SQCHPGNO
1(1) 3 SQSEQSQA
slot on device
4(4) 1 SQSECNO
slot
5(5) 3 SQSECSQA
slot on device
8(8) 1
XXXX cees SQHHDEL HH Delta
eeee XXXX SQRECNO
9(9) 3 SQ1CHPGA
12(C) 1 SQINDX
queue
13(D) 3 SQLCHPGA

NIP SYSTEM PARAMETER ENTRY (SPE)

Pointed to by:

Size:

Initialized Ly:

Address of last channel program on slot queue

NVTSPE field in NVT or NIPSPEQ

8 bytes

Operator reply processing routines in IEAVNPO1l and IEAVNPO3

Address of the next NIPSPE on the queue (0 in last

Bytes and
Displacement Bit Pattern Field Name Description
0(0) 4 NIPSPEQ
SPE)
4(4) 4 NIPSPEA

184

Address of the operator's reply (the reply prefix,
REPLY 00 or R 00, is not included in the reply
text; end of reply test is indicated by a quota-
tion mark character)

SECTION 6: DIAGNOSTIC AIDS

This section contains a listing of the messages and wait state codes, a register usage
table, and a module/control block cross-reference table.

code

X'01'
X'02°*
X'03°
X'04?
X'05"
X'06"'

X*'07°*
X'oa*

X'oc
X'0E'
X'17°
X'is"
X'19°
X'21
X'30"
X'31
X'32°

X'33"'
X'34°
X'35'
X'36"

X'37"'

X'38"'

X*'39°
X'3A'

X'3F’'

X'40°

Issued by

Wait State_Code

Description

IEAIPLOO
IEAIPLOO
IEAIPLOO
IEAIPLOO
IEAIPLOO
IEAIPLOO

IEAVNPO1
IEAVNPO3

IEAIPLOO
IEAIPLOC
IEAIPLOC
IEAIPLOO
IEAIPLOO
IEAVNIPM
IEAVNIPO
IEAVNIPO
IEAVNIPO
IEAVNIPM
IEAVNIPO
IEAVNIPM
IEAVNIPO
IEAVNIPM
IEAVNIPM

IEAVNPO2

IEAVNIPO
IEAVNPO3
IEAVNPO4
IEAVNPAY
IEAVNPO2
IEAVNPOS

IEAVNIPM
IEAVNPAS
IEAVNIPM

|

I/0 not operational.

I/0 could not be started.

I/0 could not be started.

CSW not stored.

Unit check.

Program, channel data, channel control, channel chaining, or
interface control check.

No active master console found.

Catalog entry for the SYS1.IINKIIB coulc. not be found or suc-
cessfully retrieved.

IEANUCOX not edited in scatter format.

SYS1.NUCLEUS cr IEANUCOX not found.

Unit check.

Insufficient space to load IEANUCOX.

Unexpected program check.

I/0 error to system console.

Unexpected ABEND.

IPL device has no UCB.

IEAVNIPM not found.

A required NIP module is not found in SYS1.NUCLEUS.
I/0 error during BIDL.

DAT feature required but not included.

Time~of-day clock is inoperative.

Attempted SQA expansion prior to initialization of paging
subsystem.

DSCB for SYS1.LOGREC, SYS1.SVCLIB, SYS1.PARMLIB, or SY¥S1.
LINKLIB could not be read kecause the data set does not exist;
or an I/0 error occurred.

Insufficient real storage for initialization.

A required DASD volume cannot be successfully mounted.
Coldstart process failed: CPEN failed for SYSi.LPALIE, I/0
error, LPALIB empty, DASD pages unavailable, or storage
unavailable.

System error (indicated by kits 36-48 in wait state PSW).
Invalid request code specified via POST.

Unexpected ABEND.

Section 6: Diagnostic Aids 185

http:SYS1.I.INKI.IE

IEAVXXXX

Issuing Module,

4

|

IEA101A

Message ID| NIPM |

L

L}
|
|
[

1l|ﬁl|l=l|l.1|l:l|J1IJ1IJ1|J1IJ1|J1IJ1|J1||4|.|J_I|J1|J_I|J1II_1|J1|J1IJ1|I:IIJ1IJIIJ1|.J.I|J.I|JIIJ
| |
|
| o]
“
TlnﬂlLTllTILIILTllT|1T|LT|1T||T|LTI.LT|1T|1T|LT|11|LT|LT||T|11|LT|L|I|1TI|LI|.+.||?|11.|11|1
]
]
p—+—t—t+—4—t——+——+—+—+—4—+——+——+————4—4—F— 4 — — - — - —
] E T I I
TlLTllTlLTlLT|JT||_T|LT|1T||11||T|1T|LT|LT|LT.||“||LT||1T|11|1|.|Lr|1T|11|LT.|1T|1T.|JI|.1T|LT|I1
|
|
| |
| | | i
T|..T|.?|+|LT|.._T|.T|.“-|Lr|+.I1T|1.T|.T|LT|.1T|1_-|1T|.“||1T|11|1T|+||T|1.T|.T|+|.?|LT|.T|1
._ | “ |
XXX] | X< 1x
i “ " |
Tllv|11|1T|17||“||1T|+|1T|LT|.¢_-|+|11|LT|LT|.¢.|+|.“||17|..T|1||1T|1T|11|.?|.“-|+|1T|1T|L
| | [| [
1 | | | |
| | { | | | » | [}
N “ | | i
||LT|LT|..T|LT|.T|L_||+|.T|.A_T||_T|.“||1T|.LT|11|LT|LT|LT|1T|+|._T|..T|+|+|+|+|+|.?|.f|.?|1
| | | |
| | | |
| | | T >4 4 b
| “ “ Lo
T|1T|LT|.T|1T|.T|.“u|._T|1T|+|+|.“1|.T|.?|1T|+|17|1T|LT|.f|1T|+|+|11|1T|.T|LT|1T|1T|11|L
| |
o]] | | o] <ol
| “ _ |
T|1T||“||1T|LT|+|LT|1T|L_T|LT||T|1T||“||1T|1T|LT|LT|1T|I|“||1T|LTI.LT||“||1T|1TAIJT|LTI|1T|1T|J
|
| | | | | |
| | | [}
“X _ “ ol “ R I
| | | |
T|LT|LT.|1T|1T||“||.“||1T|1"||1T|L_T||“||..T|1T|1_T|1T|1T|LT|1T|LT|LT|LT|+|LT|LT|1T|1T|1T|LT|1
| | | | | | | |
| | | | |] | [}
| < 1 | | | | | |
A i | |
|
T|1T|+|LT||“\|1T|.¢_||1T|+|LTILT|1T|LT|1T|+|LT|1T||"||LT|1T||"||ILT|1T|LT|LT|1T|1T||1T|1T|J
o1 ._ |
“ o] “ <] “X MM XK
| | |
T|1T|1T|.ﬁ|.¢.|.?||“.|.?||“.|.AT|.A1|.¢.|1T|1T|.?|LTI.LT|._||..?IiT|1r|1r|.?|LT|LT|.?|.4.|11|LT|1
1 | |
- =) H |« = & | H) L) L L) [L - [L] < | H L L] = L) = [L - L) - H
~lo ool ool IlnlagIBIvINIO I IoldHIN]j]OW]IOIlA I N Ol IVDIVIOIHIN|®
Ol jlOoldIdINIOBIVVINIOCO|IOIO|IOIO | dAlIdld | dHlIoOlIlOlO|OIC IO IO IHIMW|IAIA
SlE Rl i IEIEIZIEI8I8I818iI8i815i815 121212 /81818121812151%3
] |
EE.H.E.EE.E.HE.EEHEMEHE.MEHEHBHEUEHE
II_I“I.II“I.II_IIIIIIII_IIIIIIIIIIII
_Ill.lll_rl.llrllmIIL.lllI-lllnlll:lll—lllrll:lll_llL.lllL.llLIIL_Ill-llll_llLr-lLrllL.lll_rlL.llL.l|L_III.IIILIILIII_

- — 4

- —f

- —

-—

- — 4

- —

+
|
i

IEA3141

r
I

L
186

1|J1|4|I._||IM||I‘_||II¢—|II__I|I“I|J_I||“||I:|II¢—||I“I|lﬂ||l4l||lﬂ||l=l|lﬂl|l:l|l“||l=lIIﬂII.IIﬂIII:lIIdIl!QIlI—‘lJ‘IIJ]|J1IJ1|JI|J
x| | | | | | | | | | | | |
[~ ! | | | | | | | | |
H | | | |] | | 1= > | <X
AR BN “ |
.IIITll.IIII“IILTIlulllulll“lllTllllLTIITILTll“lllA.IIITILTlLTIILT'lT'l.TII“IILI|1T||“I|LT|1TILI|1TIl.llll.lllllll
~ | | | | | |
o | | | | |
[20] | | b | b b | < |
= L0 | | “ | |
Tl.fl..rl.“.l.“.l.“.lLrIltliul.?llrll_..l..r|.“.|.?|.“.|1..|.“:|.?|.TILT|4.|+|+|.“.|.A..|.T|LT|.?|+.I.?l.?ll
V) | | | | | | | |
o | | | | | | |
(o] | | | > (] < | [|
2 e | “ |
Tl.?l.?l.“.|+|.“.|+|..r|.7|.?|.f|+|.?|+|4.|+|.T|.?|.?|.?|..r|4.|4.|11|.“.|+|+|.¢.|+|11|.“.|.TI.A
wn | | | | | |
< [[| | [| | [
A | | | | [} | | | | | | |
LD b BRN
|
o Tl.“.l.?l.“.l.“.l.".l.f|+I.?I.".|..r|.“.|.?|+|4.l.“.I.?l.“.l.?l..rIlrl.“.l...I.ATI.“.ILTI...TI.?I.?l.fl.?I%I..
Eted b4] | | .
< A | | < | | o] | | | < > bo
o= T T | .
rl..?l..rl.“.|..r|.“.|+|+|+|4.|.T|.“.|+|.“.|.“.I+|.f|.“.|.?|+.|.f|+|4.|+|.“.|.?|.?|11|.?|.AT|LTI.TI...
-
v | = | | | | | | | | | |
| < | | | | | | | | | |
=) [| | | | | | | | | |
35l T T O L O 0 A O O O O N O “ |
= TIII.IlI__TIITll“I|I“I|LT|I“IIL_TIIAT||“|IIITII“..-ll“lll“l'l“lIIl“lllTILTlIl“lll.lILTILTILTIl.lIlA_T'l.TIITILTILTlILTIILTIL
o | = | | | | | | | | | |
s 19 | | | [| | |
Bs) A | | | [| | < b X 1= o] < < »< b > % s ol
215 | R i |
m TII+|LT||“I||“|llqullulllﬂlllﬁu|1T|1_I|1TILTlJlILTl:qullTllTlLT|1T|I|“|lLTILTll.TIIl.TlLTll.IlLT|1T|1T|LT|LT|L
™ | | | | | | | | | |
| o | | | | | | | |
| 7] | | [] = <= o] E I] =< | |
L o1E e AT | “ |
| TllulllnlllLTll“lllquIl“lIl“lll_lllTll“l|LT|I“II|“IILT'lulIJIlLTlLTlLTIIuIlLT'LTII.TILT'ITILIILTIILTI|“IILT|||.TIIL
N | | | | | | | | | | | | |
o | | | | | | | | | |
A] > x| x L | | | | | | | |
= LT L | "
TlLTllTIlulII“IILT|l|“|llulll_TllTIl“lILT||“l||“|II|“l||“III“IILT|I_T|LTII“IILTILI'I“lllTILTILTILT'LTILTILTILTIL
| | | | | | | | | | | | | |
(=2 | | | | | | | | | | [} |
=] | | | | | | | | | |
AN _ P L] Ll
| TILTllTII“.-ll"lll"lllul|1T|LTILT|I“I||I.T|LTlLTlLTILTILTILTILT'LTII“IILTILl|+II_TII.T||“II+ILTIL_IILTlLT'L
= | | | | |
(o] | | |
[| | |
g “ | s
TlerulrllTll“ulll_TILTI|"||.LI|1TIJ-ILTIJnlLIIJulLT'LIIILT|1T|1T||“|I|“||1T|1T|1TILTII|AI|LT|1TlLtllT'LrllTIL
H | | | | | | |
Sl I lHIHIQIHIKQIHIHIHIHIHIH I QI I IS QI ICIHICQIHIHIGQIHIHIHIHITH
[wn o |~ =} (- 0 =] ! N ™ = | O ~ @ o ! N Ml | n O ~ ® o N ™ x I o L) N
o, - - |- - — | N N N (3 o | N N N Nl ™ ™ ™ Mmoo | m ™ ™ ™ = = = T | = wn n n
E R R e g gl eR g iRl glgiglEIgIEIgI2I2I2I8131212121218181%
S_m MK [} m_E_E] (o] E_m E_m <) = 3] m A IR | M[m 2] E_m M m S m m m
U | H H | H L) I“I“I L] H H I H I“I L] H L] L] HIiH | H L] L] H I H L] HH L) L] L] L] L
r||IMI”IIL.I|I—IIl-lILI|I—I||r-||Lf|Lr.||l_-lllulll_.lllLlILr.ILlllnllL.lILr.lI”III_IlLr.ILr.|Lf|l_r-|Lf||Ll||L.llLr-IL.llL.llLl'l

187

Diagnostic Aids

Section 6:

NPO5

4

-T--

| NPA4

T
4

Issuing NModule, IEAVXXXX
T
| NPO3 | NPO4

- =T

| NPO2

T

NPO1

e

T

NIPM

[
Message ID|

|

I

4
T
4
T
|
4

IEA355A
IEA3561

IEA3531
}____

IEA3541I

I._ ——

r
|
|
I
L
[}
|
\
r
I
|
|
[

l.Ila_lIIlq_lIlﬂlll__llla_lll__lllqlllij_lll“lll_l|lﬂl
| [| | | !
| | | | |
|] ! > =< L |
o |
TInﬂuI..TI.ﬁILTInTILrILTIJTILTI.TI.“u
| | | |
| | [|
“ < < ta “
| |
IInuullrILTILTILIILIILTILIILTILTII“u
| |
| |
“ < =< > > “
| |
1Inqu..TILTILTII“.ILIILTILTILTII".I.“-
]			
rIJ-I.TIJ.ILTII"uILTI.“.ILTILTI.“uI.ﬂ				
> | | > | | | |
| | | | | |
| | | | 3 | |
I T T T A S S S A S
| | | | | | | | | |
| | | | |] |] |
| | ' | | | | | |
| | | | | | | | |
| | | | | | | | | |
I.ﬂI.TI.TIJ-I.TI.ﬂI.TI.?I.TIJ-I.TI
| | | |
| | |
| | |
“ .
.nuILTI..TI.#ILTI*ILTIITILTILTI..
| | | | | |
| | |
| | |
| | | | | |
| | | | [} |
.“uInquLTI.“uILTInnuInTInnuILrII.rIL
| | | | | |
| | | | | |
| | |] | |
| | | | | |
| | |] | |
A T At S A S S S A S B
| | | | | | | | |
| | | | | | |] |
| | | | | | | | |
| | | |] | | | |
| |] | | | |
I|“|I|"|I1TI.".ILTII“uILTIJ.InTIITIi
| | | |
| | |
| | |
| 1
rILrI..TILTI..“.ILTILTILTIJ.ILTIJ.I
| |
HlilHIHIHIHIHIHIHIH§HIH
NIO A I NI MIOIlAIO I INIM
NIV Il IV IivwIiINSIN~S|© |l | o] o
ifigidididiciclicldlaclea
01K = [M S m 1K m =
HIHIHIHIHIHIH|H “ HIH I H
o

e o

]

|
4

-

|
i

I
i

|
s B B e o

|
1

4
T

4

IEA3851
T S SEat

IEA384I
IEA3861

| SN

[
b
|
I

188

REGISTER USAGE TABLE

‘;-r' This table lists the entry points for each module, the name of the routine to which
each module normally exits, and the register ccntents upon entry and exit. Beginning
with the exit from IEAVNIPO, the following registers are part of standard linkage conven-
tions and have the same contents upon entry to each module. The contents of these regis-
ters are noted in the table only where significant. The contents of other omitted regis-
ters are irrelevant.

1 (RPARM) Address of parameter list
2 (RNVT) Address of NIP vector table
* 3 (RCVT) Address of CVT
14 (REXIT) Address of next entry point to receive control

15 (RENTRY) Address of entry point within this module.

Entry Exit Registers Contents
IEAIPLOO 0-15 Irrelevant
(not used)
to X'16C"' 1 Address of the IEANUCOx translation table
3 Address of the nucleus data set/volume data
area
4 Address of the nucleus CSECT size table
(SIZTABLE)
6 Size of real storage
7 Address of the end of the resident nucleus
8 Address of the nucleus CSECT address tatle
(ADRTABLE)
9 Number of nucleus CSECTs (SIZTABLE entries +
ADRTABLE entries)
10 Device address of the IPL volume
IEAVNIPO 3 Address of the IPLDATA parameter area
(6 Real storage size
7 Address of the end of the resident nucleus
10 Device address of the IPL volume
IEAVNIPM 1 (RPARM) Address of the SYS1.NUCLEUS DCB
2 (RNVT) Address of the NVT
3 (RCVT) Address of the CVT
15 (RENTRY) Address of IEAVNIPM entry
IEAVNIPM 1 (RPARM) Address of the SYS1.NUCLEUS DCB
IEAVNIPX 15 (RENTRY) Address of IEAVNIPX entry
NIPLOAD 1 (RPARM) Address of the 8-character module name to be
loaded from SYS1.NUCLEUS
Caller 1 (RPARM) Address of entry point of loaded module
via REXIT
NIPSENSE 1 (RPARM) Address of the IOR for the failing I/0
Caller operation
via REXIT
NIPSQEND
No exit;
v disabled wait
NIPSWAIT No exit;

disabled wait

Section 6: Diagnostic Aids 189

Entry Exit Registers contents
NIPSVC o, 1, 13, 15 SVC parameter registers
(NIPSVCX) 4 Address of TCB
5 Address of RB
14 Address of SVC 3 instruction
15 XCTL entry - address of parameter list
Type-3, 0o, 1, 4, 5, Unchanged
Type-4, or 13, 14, 15
XCTL routine
NIPTIME 1 (RPARM) Request indication:
X'00' - TCD clock value
X'04' - relative time since IEAVNIPM first
entered
Caller 1 (RPARM) Current value of TOD clock or relative time
via REXIT
NIPUCBFN 1 (RPARM) EBCDIC unit name or device address
Caller 1 (RPARM) Address of UCB if found or 0 if not found
via REXIT
NIPWTO 1 (RPARM) Address of message to be written to ccnsole
Caller 1 Unchanged
via REXIT
NIPWTOR 1 (RPARM) Address of WTOR parameter list
NIPWTOR2 15 (RENTRY) Address of NIPWTOR2 entry
Caller 1 Unchanged
via REXIT
NIPWTOR2 1 (RPARM) Positive - address of NIPWTOR parameter list
Negative (two's complement) address of SQA-
buffered reply to be released
14 (REXIT) Return address of caller of NIPWTOR if wait
specified or address of caller of NIPWTOR2
Caller of 1 (RPARM) Address of the operator's rerly (irrelevant
NIPWTOR or if called to release SQA reply buffer)
NIPWTOR2
IEAVNPO1 Standard
IEAVNIPM Standard Unchanged
IEAVNPO2 Standard
IEAVNIPM Standard Unchanged
IEAVNPA2 1 (RPARM) Address of the NIPMOUNT parameter list
Caller 1 Address of the UCB for the mounted volume,
via REXIT or 0 if request canceled
IEAVNPB2 1 (RPARM) Address of the parameter list of the data
set to ke opened
Caller 1 Unchanged if open is successful, or two's
complement of address if open failed
IEAVNPO3 Standard
IEAVNIPM Standard Unchanged
IEAVNPOU4 Standard
IEAVNIPM Standard Unchanged
IEAVNPAY 1 (RPARM) Address of parameter list indicating func-
tion to be performed
Caller 1 Read requests - address of quickstart record
via REXIT Other successful requests - unchanged

Unsuccessful request - two's complement of
address

190

Entry
IEAVNPOS5

IEAVNPAS

IEAVNPO6

IEAVNPO7

IEAVNIPX

Exit

IEAVNIPM

IEAVNPOS

IEAVNIPM

IEAVNIPM

IEEVIPL

Registers
Standard

Standard
1 (RPARM)
Standard

Standard
Standard

Standard
Standard

Standard
4

Module/Control Block Cross Refernce

Contents

Unchanged
Address of parameter list containing RCVT

and RNVT values
Unchanged

Address of SYS1.PARMLIB UCB

The following table is a module/control block cross-reference table. The letter M
means the module modifies the control block (the module may also refer to the control
block). The letter R means the module refers to the control block (the module does not
modify the control block).

r - T T -7~ T T T T T T T T T 1
|Control Block |NIPO |NIPM |NPO1 |NPO2 |NPO3 |NPO4 |NPA4 |[NPOS |NPAS5 |NP06 |NPO7 |NIPX |
L 4 4 s 4 4 + _____ + _____ +_ 4 1 s 4 4
r T T T T T T T T T 1
|cvt | M | R { R | R | R | M | R | M | M | M | M | M|
L R 4 4 4 - $——---¢% s 4 1 i 4
r T T T T T T T T T 1
| DEB I M | M | M | M | | I M | | | R | | |
L 4 4 4 4 s 4 s 4 4 4 4 4 4
r T T T T T T T T T T T T 1
| NVT | M | M | M | M | M | M | M | M | M | M | M | R |
b==—= et e R e P W -1 $--
| PVT | M | M | | | I ¥ | M | M | | [M | M |
b $ t + t { e e A Sttt St t-————{
| sSCVT I M | R | | | | R | | R | | M | | R |
L 4 4 s 1 4 4 4 1 4 4 4 4 4
r T T T T T T T T T T T 1
Master												
Scheduler						I						
TCB	M							M				M
L 4 4 4 4 4 4 4 4 4 4 4 4 4												
r - X T T T T T T T T T T T T 1												
Communications											I	
Task TCB										R	I M	
L 4 4 4 i 4 4 s 4 s 4 4 XL J

Section 6: Diagnostic Aids 191

GLOSSARY

active page: A page in real storage that
can be addressed.

active page queue: A queue of pages in
real storage that are currently assigned to
tasks. Pages on this queue are eligible
for placement on the available page queue.

address translation: The process of chang-
ing the address of an item of data or an
instruction from its virtual address to its
real storage address. See also dynamic
address translation.

automatic priority qroup: 1In VS2, a group
of tasks at a single priority level that
are dispatched according to a special
algorithm that attempts to provide ortimum
use of CPU and I/0 resources by these
tasks. See also dynamic dispatching.

available page frame count: In VS2, a
count of page frames that are ready for
reassignment.

available page queue: A queue of the pages
whose real storage is currently available
for allocation to any task. See also
active page queue, hold page queue.

basic control (BC) mode: A mode in which
the features of a System/360 computing sys-
tem and additional System/370 features,
such as new machine instructions, are
operational on a System/370 computing sys-
tem. See also extended control (EC) mode.

DAT: Dynamic address translation.
demand paging: Transfer of a page from
external page storage to real storage at
the time it is needed for execution.

device number: In VS2, a part of an
external page address that refers to a par-
ticular paging device; together with a
group number and a slot number, it identi-
fies the location of a page in external
page storage.

disabled page fault: A page fault that
occurs when I/0 and external interruptions
are disallowed by the CPU.

dynamic address translation (DAT): (1) The
change of a virtual storage address to a
real storage address during execution of an
instruction. See also address translation.
(2) A hardware feature that performs the
translation.

192

dynamic_area: The portion of virtual
storage that is divided into regions or
partitions that are assigned to jok steps
and system tasks. See also pageable dynam-
ic area, nonpageable dynamic area. Con-
trast with nondynamic area.

dynamic dispatching: In VS2, a facility
that assigns priorities to tasks within an
automatic priority group to provide optimum
use of CPU and I/O resources.

EC mcde: Extended control mode.

enakled rage fault: A page fault that
cccurs when I/C and external interruptions
are allowed by the CPU.

extended control (EC) mode: A mode in
which all the features of a System/370 com-
puting system, including dynamic address
translation, are operaticnal. See also
kFasic control (BC) mode.

external page address: BAn address that
identifies the location of a page in a page
data set. In VS2, the address consists of
a relative device number, a relative group
number, and a relative slot number.

external page storage: The portion of
auxiliary storage that is used to contain
rages.

external page storage management: A set of
routines in the paging supervisor that con-
trol external rage storage.

external page takle (XPT): 1In VS2, an
extension of a page takle that identifies
the location on external page storage of
each page in that page table.

fixed: 1In 0OS/VS, not capable of being
paged out.

fixed BLLL table: A BLDL table that the
user has specified to be fixed in the lower
rortion of real storage.

fixed link pack area: 1In VS2, an extension
of the link rack area that occupies fixed
pages in the lower portion of real storage.

fixed page: A page in real storage that is
not to ke paged out.

grour number: In VS2, a part of an extern-
al page address that refers to a slot
group; together with a device numbe. and a
slot numker, it identifies the location of
a page in external page storage.

C

invalid page: A page that cannot be
directly addressed by the dynamic address
translation feature of the central process-
ing unit.

link pack area (LPA): 1In VS2, an area of
virtual storage containing selected reent-
erable and serially reusable routines that
are loaded at IPL time and can be used con-
currently by all tasks in the system.

link pack area directory: In VS2, a direc-
tory that contains an entry for each entry
point in link pack area modules.

link pack area library: 1In VS2, a parti-
tioned data set that contains the modules
specified to be in the 1link pack area.

link pack area queue: In VS2, a queue that
contains a contents directory entry for
each link pack area module currently in
use, for each module in the 1link pack up-
date area, and for each module in the fixed
link pack area.

link pack update area: 1In VS2, an area in
virtual storage containing modules that are
additions to or replacements for link pack
area modules for the current IPL.

local system queue area (ILSQA): In VS2,
one or more segments associated with each
virtual storage region that contains job-
related system control blocks.

LPA: Link pack area.

LSQA: Local system queue area.
memory: See real storage, virtual storage.

nondynamic area: The area of virtual
storage occupied by the resident portion of
the control program (the nucleus and the
link pack area). Contrast with dynamic
area.

nonpageable dynamic area: An area of vir-
tual storage whose virtual addresses are
identical to real addresses; it is used for
programs or parts of programs that are not
to be paged during execution. Synonymous
with V=R dynamic area.

nonpageable region: In VS2, a subdivision
of the nonpageable dynamic area that is
allocated to a job step or system task that
is not to be paged during execution. 1In a
nonpageable region, each virtual address is
identical to its real address. Synonymous
with V=R region.

0S/VS: A compatible extension of the
Systenv360 Operating System that supports
relocation hardware and the extended con-
trol facilities of System/370.

page: (1) A fixed-length block of instruc-
tions, data, or both, that can be trans-
ferred Lketween real storage and external
rage storage. (2) To transfer instruc-
tions, data, or both between real storage
and external page storage.

rageable dynamic _area: An area of virtual
storage whose addresses are not identical
to real addresses; it is used for programs
that can be paged during execution.
Synonymous with V=V dynamic area.

pageable region: 1In VS2, a subdivision of
the rageakle dynamic area that is allocated
to a jok step or system task that can be
paged during execution. Synonymous with
V=V region.

page control block (PCB): A control block
that indicates the status of a paging
request.

rpage data set: A data set in external page
storage, in which pages are stored.

page fault: A program interrurtion that
cccurs when a page that is marked "not in
real storage" is referred to by an active

rage. Synonymous with page translation
excertion.
page fixing: Marking a page as nongageakle

so that it remains in real storage.

page frame: A klock of real storage that
can contain a rage. Synonymous with frame.
See also storage block.

paqe_frame table: 1In VS2, a table that
contains an entry for each frame. Each
frame table entry describes how the frame
is being used.

page _migration: In VS2, the transfer of
rages frcm a primary paging device to a
secondary paging device to make more space
availakle on the primary paging device.

page-in: The process of transferring a
page from external page storage to real
storage.

page numker: The part of a virtual storage
address needed to refer to a page. See
also frame number.

page-out: The process of transferring a
page from real storage to external page
Btorage.

Eage _reclamation: The process of making
addressakle the contents of a page in real
storage that has been marked invalid. Page
reclamation can occur after a rage fault or
after a request to fix or load a page.

Glossary 193

rage table (PGT): A table that indicates
whether a page is in real storage and
correlates virtual addresses with real
storage addresses.

page translation exception: A program
interruption that occurs when a virtual
address cannot be translated by the hard-
ware because the invalid bit in the page
table entry for that address is set.
Synonymous with page fault, program inter-
ruption code 17.

page wait: A condition in which the active
request block for a task is placed in a
wait state while a requested page is
located in real storage or is krought into
real storage.

paging: The process of transferring pages
between real storage and external page
storage.

paging device: A direct access storage
device on which pages (and possibly other
data) are stored.

paging supervisor: A part of the supervi-
sor that allocates and releases real

storage space (page frames) for rages, and
initiates page-in and page-out orerations.

PFT: Page frame table.

PGT: ©Page table.

primary paging device: In VS2, an auxi-
liary storage device that is used in pre-

ference to secondary paging devices for
paging operations. Portions of a primary
raging device can be used for purposes
other than paging operatiomns.

quick cell: 1In VS2, a reserved space in
the system queue area or a local system
queue area that can be used to reduce the
time required to allocate space for a con-
trol block.

quickstart pages: Pages in a single page
data set that contain the link pack area
modules and link pack area directory that
are to be made available to the system dur-
ing a quickstart.

quickstart records: One or more records,
located at the beginning of a formatted
page data set, that contain information
that makes it possible to use the data set
over successive IPLs. The quickstart rec-
ords identify all usable pages in the data
set and, for a page data set containing
quickstart pages, identify the location of
those pages in the data set.

real address: The address of a location in

real storage.

194

real storage: The storage of a System/370
computing system from which the central
processing unit can directly obtain
instructions and data, and to which it can
directly return results.

reference kit: A bit associated with a
page in real storage; the reference kit is
turned "ON" by hardware whenever the asso-
ciated page in real storage is referred to
(read or stored into). 1In VS2, there is a
reference bit in each of two storage keys
associated with each page frame.

relocate hardware:
translation.

See dynamic address

secondary paging device: In VS2, an auxi-
liary storage device that is not used for
raging operations until the availakle space
on primary paging devices falls below a
specified minimum. Portions of a secondary
paging device can be used for purpcses
cther than paging operations.

segment: A continuous 64K area of virtual
storage, which is allocated to a job or
system task.

seqment table (SGT): A table used in
dynamic address translation to control user
access to virtual storage segments. Each
entry indicates the length, location, and
availability of a corresponding page tarle.

segment table entry (STE): An entry in the
segment table that indicates the length,
location, and availability of a corresrond-
ing rage table.

slot: 1In VS2, a continuous area on a pag-
ing device in which a page can be stored.

slot group: In VS2, a set of slots on one
or mcre tracks within a cylinder on a pag-
ing device.

slot number: 1In VS2, a part of an external
page address that refers to a slot; togeth-
er with a device numker and a grour numker,
it identifies the location of a page in
external page storage.

SQA: System queue area.
swapping: In VS2 with TSO, a paging tech-

nique that writes the active pages of a job
to external page storage and reads pages of
another job from external page storage into
real storage.

system queue area (SQA): An area of virtu-
al storage reserved for system-related con-
trol blocks.

thrashing: A condition in which the system
can do little useful work kecause of exces-
sive paging.

virtual address: An address that refers to
virtual storage and must, therefore, be
translated intc a real storage address when
it is used.

virtual equals real (V=R) storage: An area
of virtual storage that has the same range
of addresses as real storage and is used
for a program or part of a program that
cannot be paged during execution.

V=R dynamic e.area: Same as nonpageable
dynamic area.

V=R partition: Same as nonpageable
partition.

V=R region: Same as nonpageable region.

virtual storage: Addressable space that
appears to the user as real storage, from
which instructions and data are mapped into
real storage locations. The size of virtu-
al storage is limited by the addressing
scheme of the computing system and by the
amount of auxiliary storage availatle,
rather than ky the actual number of real
storage locations.

virtual storage reqion: In VS2, a subdivi-
sion of the dynamic area that is allocated
(in segment-size blocks) to a job step or a
system task.

V=V dynamic area: Same as pageable dynamic
area.

V=V region: Same as pageable region.
XPT: External page table.

XPTE: External page table entry.

Glossary 195

INDEX

APG parameter 29
Arrows used in diagrams 9
AUXLIST parameter 29

IEAVNPO3, description 20
IEAVNPO3, diagram 61
IEAVNPOU4, description 22
IEAVNPO4, diagram 74
IEAVNPOS5, description 25

Bringing IPL into real storage

CCH 27

Clearing real storage:
CLPA parameter processing

Coldstart/Quickstart process
common functions for NIP modules
Control blocks used by NIP 7

Control block/module cross reference

table 191
CPQE parameter processing
CVT initialization 14

Data area relocation by IEAIPLOO
Data areas used by NIP

IPL 1

7

Data sets used by IPL/NIP
DAT feature 15

DAT feature (EC mode) initiation
Device availability testing:
LCiagramming conventions explained
Directory, by entry point name

Dss 27

CUMP system parameter

Dynamic Address Translation feature
Dynamic Address Translation (figure)

Dynamic area, NIP's 7

EC mode initialization

27

15,17
Entry point name directory 174

Formatting page data sets

HARDCPY system parameter

IEAIPLOO, description 12
IEAIPLOO, diagram 32
IEAVNIPM, description 17
IEAVNIPM, diagram 42
IEAVNIPX, description 28
IEAVNIPX, diagram 146
IEAVNIPO, description 14
IEAVNIPO, diagram 36
IEAVNPA4, description 23
IEAVNPAL4, diagram 78
IEAVNPAS5, description 26
IEAVNPAS, diagram 110
IEAVNPO1l, description 19
IEAVNPO1l, diagram 52
IEAVNPO2, description 19
IEAVNPO2, diagram 56

196

IEAVNPO5, diagram 96

IEAVNP06, description 27

IEAVNP06, diagram 122

IEAVNPO7, description 28

IEAVNPO7, diagram 134

IEAPMNIP, NIP macro instruction 6
Initialize page data sets 6
Initializing for Quickstart records 22
Initial paging area 7

Initial Program Loader, location 9
Initial system queue area definition 16
Introduction to IPL/NIP rrocessing 1
IPIDATA 176

IPL/NIP processing (high level diagram) 2

Linkage to service subroutines 6

Link Pack area in quickstart/coldstart 6
ICAD button 12,1

Ioading of NIP modules 9

LOAD light 12

Ioad unit address switches 12

Iocation of IPL records in real storage 13
IPA in quickstart/coldstart 6

LPA page data set information 6

ISQACEL parameter 29

Nain functions of IPL and NIP 1

MANUAL light 12

Naximum virtual address 15

MCH 27

Messages 186

Methcd of operation diagrams,
introduction 9

Modules/control block cross reference
table 191

MPA parameter 29

Nultiple control registers initialized by
IEAVNIPO 17

NIPABEND, description 19
NIPLOAD, description 17

NIPLCAD, diagram 44

NIP macro instruction, IEAPMNIP 6
NIP module functions 1

NIP module loading 9

NIPMOUNT, description 20
NIPMCUNT, diagram 58

NIPMOUNT, flowchart 171

NIPMOUNT parameter list 176
NIPOPEN, description 20

NIPOPEN, diagram 60

NIP PARMAREA 180

NIPQSR1, quickstart record 6,183
NIPQSR2, quickstart record 6,183

NIPQSR3, quickstart record 6,183

NIPSENSE, description 17
NIPSQEND, description 19

NIPSVC and NIPSVCX, description
NIPSVC and NIPSVCX, diagram U6

NIPTIME, description 18
NIPTIME, diagram 50
NIPUCBFN, description 18
NIPUCBFN, diagram 48

NIP vector takle (NVT) 8,178

NIPSWAIT, description 19
NIPWTO message header 177

NPXREAL, description

NPXRTRAP,
NPXTMSL,

description
description

NPXTNMNSL, diagram 152
NP1INIT and NP1TCOMM,
NP1TCOMM and NP1INIT,

NP3LCAT,

description

NP3LCAT, diagram 72

29
30
29

diagram 54
diagram 54
22

description

NIPWTO and NIPWTOR,
NIPWTOR2, description 19
NPA4BCCV, description 24
NPA4BCCV, diagram 88
NPA4BDIR, description 26
NPA4CCST, description 25
NPA4CCST, diagram 94
NPA4FREE, description 24
NPAUFREE, diagram 84
NPA4UGBUF, description 24
NPA4GBUF, diagram 82
NPA4 INTC, description 24
NPA4INTC, diagram 90
NPALUINTF, description 24
NPA4INTF, diagram 86
NPA4LOAD, description 24
NPA4LOAD, diagram 92
NPA4READ, description 24
NPA4READ, diagram 80
NPA4RSTB, description 24
NPA4RSTB, diagram 86
NPAYWRIT, description 24
NPAYWRIT, diagram 80
NPASALIS, description 26
NPASBLDL, description 26
NPASBLDL, diagram 114
NPASCLIN, description 26
NPASCLPA, description 26
NPASCLPA, diagram 116
NPASLGRP, description 27
NPASLGRP, diagram 120
NPASLIND, description 26
NPASMLPA, description 26
NPASMLPA, diagram 112
NPASTERM, description 26
NPASTERM, diagram 118

NPXAPG, description

29

NP3IKLIB, description 22
NP30OPSP, description 20
NP3QFSP, diagram 62
NP3PBASE, description 20
NP3PBASE, diagram 64
NP3PMLIB, description 21
NP3PLMRG, description 21
NP3PTAB, description 21
NP3PTAB, diagram 70
NP3SYSP, description 21
NP3SYSP, diagram 68
NP4APFT and NP4BPFT, description 23
NP4BCPQ, description 23
NP4BSQA, description 23
NP4IPVT, description 23
NP4PDSEL, description 22
NP4PDSEL, diagram 76
NP4RQSR2, description 23
NP5BIDLP, description 25
NP5BLDLP, diagram 108
NP5CSLPA, descrigtion 25
NP5CSLPA, diagram 100
NPS5LFLIB, description 25
NPSLPLIB, diagram 104
NPSMLPA, description 25
NP5MIPA, diagram 106
NP5QSLPA, description 25
NP5QSLPA, diagram 98
NPSVTCB, description 25
NPSVTCB, diagram 102
NP6DMP, description 27
NP6DMP, diagram 126
NP6DSS, description 27
NP6DSS, diagram 124
NP6EXCP, description 27
NP6MOVE, description 27
NP6RMS, description 27
NP6RMS, diagram 130
NP6TRA, description 27
NP6TRA, diagram 132
NP7EPFP, description 28

NPXAPG, diagram 150
NPXFAREA, description 29
NPXFBUF, description 29
NPXFJPQ, description 29
NPXFJPQ, diagram 160
NPXMCSPO, description 30
NPXMCSPO, diagram 166
NPXMLSQA, description 30
NPXMLSQA, diagram 162
NPXMPA, description 29
NPXMPA, diagram 156
NPXMPA1l, description 29
NPXMPAl, diagram 158
NPXQCELL, description 29
NPXQCELL, diagram 154
NPXPFTAQ, description 30
NPXPFTAQ, diagram 164
NPXRDAT, description 30
NPXRDAT, diagram 168

NP7EPFP,

NP7HCCPY,
NP7HDCPY,
NP7LPAFN,
NP7LPAFN,
NP70TEST,

diagram 144

description 28

diagram 13
description
diagram 14
description

NP7PAL, description
NP7PAL, diagram 142
NP7PDCM, description 28

NP7PLCM,
Nucleus

diagram 138
7

Nucleus kuffer 7
Nucleus Initialization Program modules
Nucleus locading bty IEAIPLOO 13
Nucleus specification by operator 13
NVT initialization 14

NVT (NIP vector takle) 8

6

28
0

28
28

Index

14

197

Operator communication initiation 19
Operator interface during IPL 13
Operator limitation of real storage
size 13

Operator specification of nucleus 13
OPERTAB building 21

OPERTAB into PLIBTAB merging 21

Page
Page
Page

data set formatting 6

device informatijion table
device takle 180

PAGE parameter processing 22
Page table initialization 15

Paging device 6

Paging initialization 15
Paging supervision control block
initialization 22

Paging table initialization 1

PAL system parameter 28

Parameter table entry 182

Parameter address table 181

PARMAREA 8

PARMAREA building 21

PFT definition 14

PLIBTAB building 21

Processing expected program checks 13
Program checks, processing expected 13
PVT definition 14

179

Quickstart/coldstart process 6
Quickstart Record, NIPQSR1 6
Quickstart records 8

RAS initialization 27
REAL parameter 29
Real storage after page device
initialization 23
Real storage areas during NIP processing 7
Real storage at completion of IEAVNIPO 17
Real storagée before and after IPL
relocation 13
Real storage, clearing by IEAIPLOO 13
Real storage definition 15
Real storage initialization 1
Real storage size 1
Real storage size, limitation Ly
operator 13
Real storage, storage keys 14
Reformatting page data sets for restart 6
Registers, clearing by IEAIPLOO 12
Re-IPL, quickstart records in 6

198

Reliability and serviceability
initialization 27

Residency characteristics of NIP
modules 14

Resident nucleus,
RMS 27

creation and loading 1

Sample diagram 10

Segment takle initialization 15
Service subroutines, linkage to 6
Slots/group map of LPA address space 6
Slot queue 184

SQACEL rarameter 29

SQA parameter processing 22

Storage keys, real storage 14

Storage keys, setting by IEAIPLOO 13
Subroutines in method cf ogeration diagrams
SVCDUMP 27

System console initialization 19

System data set access 1

System parameter area creation 21

System rarameter entry 184

System parameter table initialization 20
System queue area 7

System restart, quickstart/coldstart 6
System segment and page tables 16
System trace takle definition 14

SYS1.DSSVM 7
SYS1.DUMP 7
SYS1.LINKLIB 7
SYS1.LOGREC 7
SYS1.LPALIB 6,
SYS1.NUCLEUS 7
SYS1.PAGE 7
SYS1.PARMLIB 7
SYS1.SVCLIB 7

7

TMSL parameter 29
TRACE system parameter 27
TSOAUX parameter 29

Using method of operation diagrams 9

Virtual addressing 15
Virtual storage access 1
Virtual storage segment and block size 15

Wait state codes 185

12

gy

ot —

~»

SY27-7243-0

TSI

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Piaza, New York, New York 10017
(International)

SA/SO

dIN/TdI

‘¥°STN UuT peluTiag

l-€¥ZL-LTAS

gy

- a

