
SY35-0010-3

File No. S370-30

Systems 	 OS/VS2, Access Method Services
Logic

Rele.ae3.7

Includes Selectable Units:

Supervisor Performance #2 VS2.03.807
Data Management VS2.03.808
MSS Enhancements 5752-824

Includes Selectable Units:

Supervisor Performance #2 VS2.03.807
Data Management VS2.03.808
MSS Enhancements 5752-824

Fourth Edition (J~uary t 977)

This edition replaces the previous edition (numbered SY35-OO10-2) and makes that edition
obsolete.

This edition applies to Release 3.7 of OS/VS2 and to any subsequent releases of that
system unless otherwise indicated in new editions or technical newsletters.

Significant system changes are summarized under "Summary of Amendments" following
the list of illustrations. In addition, miscellaneous editorial and technical changes have
been made throughout the publication. Because the technical changes in this edition are
extensive and difficult to localize they are not marked by vertical lines in the left margin;
the entire edition should be carefully reviewed.

Information in this publication is subject to significant change. Ani' such changes will be
published in new editions or technical newsletters. Before using the publication, consult the
latest IBM System/370 Bibliography, GC20-0001, and the technical newsletters that amend
the bibliography, to learn which editions and technical newsletters are applicable and
current.

Requests for copies of IBM publications should be made to the IBM branch office that
serves you.

Forms for readers' comments are provided at the back of this publication. If the forms
have been removed, comments may be addressed to IBM Corporation, P.O. Box 50020,
Programming Publishing, San Jose, California 95150. All comments and suggestions
become the property of IBM.

© Copyright International Business Machines Corporation 1973, 1975, 1976,1977

J

PREFACE

This book describes the internal logic of OS/VS2 Access Method Services
routines and provides diagnostic information.9 This information is directed to
support personnel and development programmers who require an in-depth
knowledge of the program's design, organization, and data areas. It is not
required for effective use of Access Method Services.

You should be familiar with general programming techniques, OS/VS2
VSAM concepts and use, TSO concepts and use, and System/370 before
reading this book. If you are unfamiliar with these concepts, get and read:

• 	 OS/VS2 Access Method Services, GC26-3841, which describes the
general syutax of the Access Method Services language, the commands of
this processor, and how they are used.

• 	 OS/VS Virtual Storage Access Mqthod (VSAM) Programmer's Guide,
GC26-3838, which describes the use of VSAM.

• 	 OS/VS2 TSO Terminal User's Guide, GC28-0645, which describes how
to use TSO commands.

Other books that may be helpful to you are:

• 	 OS/VS Mass Storage System (MSS) Services Logic, SY35-0016, which
describes the Function Support Routines of Access Method Services for
the Mass Storage System.

• 	 OS/VS2 System Programming Library: Debugging Handbook, Volume 1,
GC28-0708, and OS/VS2 System Programming Library: Debugging
Handbook. Volume 2. GC28-0709, which describes how to analyze a
main storage dump from OS/VS2.

• 	 OS/VS2 System Programming Library: Service Aids, GC28-0674, which
describes several service aids and programs available under the operating
system.

• 	 OS/VS2 Catalog Management Logic, SY26-3826, which describes the
internal workings of VSAM catalog management and the format of the
OS/VS2 system catalog.

• 	 IBM System/360 Operating System Catalog Management Program Logic
Manual, GY28-6606, which describes the format of OS catalogs.

• 	 OS/VS2 Virtual Storage Access Method (VSAM) Logic, SY26-3825,
which describes the internal workings of VSAM.

• 	 OS/VS2 Data Areas, SYB8-0606, which shows the content of most of
the operating system control blocks and tables for OS/VS2.

• 	 Guide to PL/S-Generated Listings, GC28-6786, which helps interpret the
microfiche listings. The microfiche listings contain both the PL/S and
assembly source code. Note: Guide to PL/S-Generated Listings describes
PL/S-I, but Access Method Services is written in PL/S-2.

• 	 OS/VS2 TSO Command Language Reference, GC28-0646, which
describes TSO commands in detail.

• 	 OS/VS2 TSO Terminal Monitor Program and Service Routines Logic,
SY28-0650, which describes the logic of the TSO terminal monitor
program and service routines.

Preface 3

• 	 OS/VS2 TSO Guide to Writing a Terminal Monitor Program or a
Command Processor, GC28-0648, which describes TSO interfaces used
by the Access Method Services Reader/Interpreter.

• 	 OS/VS2 System Programming Library: System Generation, GC26-3792,
which describes the use of Access Method Services during system
generation.

• 	 OS/VS2 Sy~tem Programming Library: Job Management, GC26-0627,
which describes dynamic allocation.

This book is divided into six chapters:

• 	 "Introduction" describes the design philosophy of this processor, and
defines terms used later in the book.

• 	 "Method of Operation" describes how the program works. Emphasis is on
the flow of data and the technology that is used rather than on the
organization of modules.

• 	 "Program Organization" shows how the processor is packaged into load
modules. Relationships between the Access Method Services processor and
the operating system are given.

• 	 "Microfiche Directory" relates the information in this book to the listings
found on microfiche.

• 	 "Data Areas" describes the control blocks and other data areas that are
internal to this processor.

• 	 "Diagnostic A~s" shows how to analyze a dump of the processor and how
to find specific modules and data areas.

This manual contains information for the following Selectable Units (SUs):

• 	 OS/VS2 MVS Supervisor Performance #2 (VS2.03.807)

• 	 OS/VS2 MVS Data Management (VS2.03.808)

• 	 OS/VS2 MVS MSS Enhancements (5752-824)

In this manual, any references made to an IBM program product are not
intended to state or imply that only IBM's program may be used; any
functionally equivalent program may be used instead. This manual has
references to the following IBM program products:

RACF-Resource Access Control Facility Program Number S740-XXH

4 OS/VS2 Access Method Services Logic

CONTENTS

Preface ... 3

Illustrations.......... ... 11

Figures ... 11

Diagrams .. 12

Summary of Amendments ... 17

OS/VS2 MVS Data Management (VS1.03.808) .. 17

OS/VS2 MVS Supervisor Performance #2 (VS1.03.807) 17

OS/VS2 MVS Mass Storage System (MSS) Release 3 (SU 5751-824) 17

Release 3.7 ... 17

Release 3.. 19

Introduction ... : .. 21

Requirements ... 21

The Access Method Services Processor ... 22

Naming Conventions ... 27

Character Code Dependencies .. 28

Method of Operation .. 29

Program Organization '" .. 375

Overall Organization .. 375

System Macros and Services Used by Access Method Services 376

Internal Services Provided for Processor Modules 382

Processor Invocation ... 388

Processor Condition Codes ... 390

User I/O Routines .. 391

Overall Control Flow ... 393

Microfiche Directory .. 397

Data Areas .. 425

Allocation Argument List-ALLAGL .. 426

Buffer Pool Control Block-BUFS ... 428

Catalog Interface Argument List-CIRAGL.. 429

Check UCB Argument List-CKAGL ... 430

Command Descriptor ... 431

Verb-Data Area ... 432

Positional Parameter Appendage .. 432

Default Parameter Appendage .. 433

Needed Parameters Appendage .. 433

Incompatible Parameters Appendage ... 433

Parameter Data Area ... 434

No Constant Appendage .. 435

Constant Appendage .. 435

Default Data Appendage .. 436

ID Appendage ... 436

Keyword Appendage .. 436

Conflicting Parameters Appendage .. 436

Necessary Parameters Appendage .. 437

Prompt Appendage ... 437

Subparameter Appendage ... 437

Command Name Table-IDCRILT .. 438

CRA Parameter List .. 439

Contents 5

Access Method Services Catalog Communication Table (ACC)

Description .. 439

CRA Access Translate Table (CIT) Description 439

CRA Volume Timestamp Table (VIT) Description............................... 439

Dump List .. , 440

Individual Field Entry ... 440

Array Header Entry .. 441

Dump List Terminator Entry .. 441

Dynamic Data List-DARGLIST ... 442

ERCNVTAB Error Conversion Table .. 444

ESTAE Argument List-STAEP ARM ... 445

Exclusive Control Argument List-EXCLAGL ... 447

Select Request ... 447

Change Request .. 447

EXCP GET Argument List-EXGARG .. 448

EXCP OPEN Argument List-EXOARG.. 449

EXCP PUT Argument List-EXPARG ... 451

PUT Data Block-EXPDATAB ... 452

Field Management Parameter List-FMPL .. 453

Field Management Parameter List Description 453

Field Management Field List (FMFL) Description 453

Format List-FMTLIST.. 454

Spacing.. 454

Insert Data .. 455

Default Text .. 456

Block Format .. 456

Replication .. 457

Static Text ... 457

Function Data Table-FDT .. 458

Number Data Area ... 458

String Data Area ... 460

Data Set Name or Data Area .. 460

FDTs for Specific Commands ... 461

ALTER FDT... 461

BLDINDEX FDT ... 466

CHKLIST FDT ... 467

CNVTCAT FDT... 468

DEFINE FDT ... 469

DEFINE ALIAS ... 469

DEFINE ALTERNATEINDEX .. 469

DEFINE CLUSTER... 473

DEFINE GENERATIONDATAGROUP.. 476

DEFINE MASTERCATALOG ... 476

DEFINE NONVSAM ... 477

DEFINE PAGESPACE ... 478

DEFINE PATH .. 478

DEFINE SPACE .. 479

DEFINE USERCATALOG ... 479

DEFINE FDT Description .. 481

DELETE FDT .. 511

EXPORT FDT .. 513

EXPORTRA FDT... 514

IMPORT FDT... 516

IMPORTRA FDT ... 518

LISTCAT FDT.. 519

6 OS/VS2 Access Method Services Logic

LISTCRA FDT ... 521

PARM FDT ... 522

PRINT FDT .. 524

REPRO FDT ... 526

RESETCA T (VS2.03.808) ... 528

VERIFY FDT ... 529

Global Data Table-GDT ... 530

Input Parameter Table-IPT ... 534

I/O Adapter Historical Area-IODATA .. 535

Input/Output Communications Structure-IOCSTR 536

Input/Output Communications Structure Extension-IOCSEX 539

Input/Output Control Block for EXCP-IOXCTLBK.............................. 541

Inter-Module Trace Table .. 543

Intra-Module Trace Table ... 544

Load List Block LLBLK (VS2.03.807) ... 545

Locate Data Set Return Information Area-LCTINFO 546

Modal Verb and Keyword Symbol Table-IDCRIKT................................ 547

Mount/Demount Argument List-MDAGL .. 548

Open Argument List-OPNAGL.. 549

Open Close Address Array-OCARRAY .. 551

Positioning Argument List-OPRARG .. 552

Post UCB Argument List-PUAGL ... 553

Print Control Argument List-PCARG.. 554

Print Control Table-PCT .. 555

RACF URACHECK Argument List-RACFAGL(SU 5752-824) 557

Reader/Interpreter Communication Area-COMMAREA 558

Reader/Interpreter Historical Area-HDAREA .. 559

REPAIRV Argument List-EXWRARG ... 560

Recatalog Argument List-RCTAGL. .. 561

Storage Table-AUTOTBL .. 562

Selecting a ddname Argument List-SELAGL... 563

SVC 82 Argument List-SV82LIST... 564

Creating a DEB .. 564

Posting a UCB .. 564

Clearing a UCB .. 564

Freeing a DEB .. 565

System Adapter Historical Area-SAHIST... 566

TEST Option Data Area .. 567

Text Structure .. 569

Text Entry ... 570

UGPOOL Area ... , 571

UGSPACE Area .. 572

UIOINFO Option Byte and Return Area .. 573

UIOINFO Option Byte Description .. 573

UIOINFO Return Area Description .. 573

UNCATALOG Argument List-UCTAGL ... 574

Unit Table .. 575

UREST Arguments .. 576

PCRST-Change Subtitle Lines ... 577

PCRLWS-Change Line Width ... 577

PCRPDS-Change Page Depth ... 577

PCRFTS-Change Footing Lines .. 577

PCRDSCS-Change Default Spacing Character 577

PCRPCS-Change Translate Table ... 577

PCRINP-Change Initial Page Number ... 577

Contents 7

USCRATCH Volume List ... 578

Volume VTOC Service Argument List-VSIAGL 579

Security Checking ... 579

Scratching the VTOC ... 581

Retrieving the VTOC Fields .. 582

Updating VTOC Fields ... 583

Recataloging a NonVSAM Data Set.. ... 584

Volume Label Service Argument List-VS2AGL 585

Initializing Mass Storage Volumes .. 585

Retrieving Volume Label Fields ... 585

Updating Volume Label Fields ... 586

Volume Data Set Service Argument List-VS3AGL.................................. 588

Diagnostic Aids ... 589

Trace Tables .. 589

Inter-Module Trace Table ... 589

Intra-Module Trace Table ... 590

Dump Points .. 590

Dumping Selected Areas of Virtual Storage .. 591

Test Option .. 591

TEST Keyword .. 591

How to Use the Test Option ... 593

Trace and Dump Points to Module Cross Reference 594

Module to Dump Points Cross Reference : 631

The TSO TEST Command .. 648

How to Use the TSO TEST Command ... 648

ABORT Codes .. 649

Reading a Dump '" ... 651

How to Find the Module and Registers .. 652

How to Find the GDT ... 652

How to Find Save Areas ... 654

How to Find the Trace Tables .. 654

How to Find the FDT ... 654

How to Find Automatic Storage Areas ... 655

How to Find Dynamic Storage Areas .. 655

Contents of UGPOOL Areas .. 657

Sample Dump .. 663

Debugging a Catalog Problem ... 667

Obtaining a Dump for a Catalog Problem ... 668

How to Find Catalog Management Argument Lists 669

Sequence of Catalog Calls Made by FSR ... 670

Debugging a Formatting Problem .. 677

Example I .. 677

Example II ... 679

Example III ... 684

Obtaining a Dump for a Text Processor Problem 689

How to Find Text Processor Argument Lists .. 689

Debugging an I/O Problem ... 691

Obtaining a Dump for an I/O Problem... 691

How to Find I/O Argument Lists ... 692

Open Argument Lists .. 692

UGET and UPUT Argument Lists ... 694

VSAM Control Block Manipulation Argument Lists

(deleted for VS2.03.808) .. 697

Processor Messages .. 698

8 OS/VS2 Access Method Services Logic

Appendix A: Portable Data Sets Created by the

EXPORT Command ... 743

Control Records ... 744

Control Record Containing Time Stamp Information 744

Control Records Containing Dictionary Information 745

Data Records ... 747

Data Records Containing Catalog Work Area•.......... 747

Data Records Containing Data Records from the Data Component.. 747

Appendix B: Portable Data Sets Created by the

EXPORTRA Command .. 749

Data Records Containing Data Records from

Associated Objects for User Catalog

Control Records ... 750

Control Record Containing the Logical Record Length 750

Control Record Containing Time Stamp Information 750

Control Record Containing Dictionary Information 752

Data Records ... 754

Data Records Containing Catalog Work Area .. 754

the Data Component .. 754

Pointers, NonVSAM, and GDGs ... 755

Index .. 757

Contents 9

ILLUSTRATIONS

Figures
Figure 1. The Structure of the Access Method Services Processor 22

Figure 7. Argument List for Processor Invocation with a

Figure 8. Argument List for Processor Invoked Interactively

Figure to. Flow of Control Through Processor Invoked from

Figure 11. Flow of Control Through Processor Invoked

Figure 21. Catalog Argument Lists in Storage Area of

Figure 31. VSAM Control Block Manipulation for

Figure 32. Layout of Control Records and Data Records in

Figure 37. Relationship of Dictionary and Catalog Work Area

Figure 38. Special Record at Beginning of Data Records

Figure 39. Layout of Control Records and Data Records in

Figure 2. Initialization of Access Method Services 23

Figure 3. Reading and Parsing a Command ... 24

Figure 4. Performing a Function .. 26

Figure 5. System and I/O Macros Used by Access Method Services 377

Figure 6. Internal Services Provided for Processor Modules 382

Batched Job ... 389

with TSO ... 390

Figure 9. Arguments Passed to User I/O Routine 392

a Batched Job .. 394

Interactively with TSO .. 395

Figure 12. Flow of Control Through Services .. 396

Figure 13. FDT (Function Data Table) .. 459

Figure 14. Example of Test Option Output.. .. 594

Figure 15. How to Find the GDT... 653

Figure 16. Format of AUTOTBL. .. 656

Figure 17. Example of an Automatic Storage Area ; 656

Figure 18. UGPOOL Area Chain .. 657

Figure 19. Sample Dump .. 664

Figure 20. How to Find the CTGPL .. 669

DEFINE FSR.. 671

Figure 22. Formatting Example I , .. 680

Figure 23. Formatting Example II .. 681

Figure 24. Formatting Example III ... 688

Figure 25. Text Processor Format Structure Queue 690

Figure 26. Text Processor Print Buffer ... 691

Figure 27. 10CSTR Chain.. 693

Figure 28. I/O Control Blocks Before OPEN.. 694

Figure 29. Input to UPUT Macro.. 695

Figure 30. Output from UGET Macro ... 696

Argument Lists (Deleted for VS2.03.808) 697

the Portable Data Set .. 744

Figure 33. General Format of Control Records ... 744

Figure 34. Control Record Containing Time Stamp Information 745

Figure 35. Control Record Containing Dictionary Information 746

Figure 36. Data Record Containing Catalog Work Area 747

Information ... 748

from the Data Component .. 748

the Recovery Portable Data Set .. 750

Figure 40. General Format of Control Records ... 750

Illustrations II

Diagrams

Figure 41. Control Record Containing the Logical Record Length 751

FigUre 42. Control Record Containing Time Stamp Information 751

Figure 43. Control Record Containing Dictionary Information 752

Figure 44. Data Record Containing Catalog Work Area 754

Figure 45. Relationship of Dictionary and Catalog Work Area

Information ... 755

Figure 46. Special Record at Beginning of Data Records

from the Data Component .. 755

Access Method Services Visual Table of Contents 31

Access Method Services Overview .. 32

Initialization Visual Table of Contents .. 33

Diagram 1.0 ACCESS METHOD SERVICES

Initialization Overview .. 34

Diagram 1.1 System Adapter Initialization ... 36

Diagram 1.2 Interactive TSO Initialization ... 38

Diagram 1.3 I/O Adapter Initialization - UIOINIT Macro 40

Reader/Interpreter Visual Table of Contents : 43

Diagram 2.0 Reader/Interpreter Overview ... 44

Diagram 2.1 Reader/Interpreter for Batched Jobs 46

Diagram 2.1.1 Reader /Interpreter for Batched Jobs Initialization 48

Diagram 2.1.2 Reader /Interpreter for Batched

Get Next Command ... 50

Diagram 2.1.2.1 IF-THEN Modal Command ... 52

Diagram 2.1.2.2 ELSE Modal Command ... 54

Diagram 2.1.2.3 SET Modal Command .. 56

Diagram 2.1.2.4 DO Modal Command ... 58

Diagram 2.1.2.5 END Modal Command ... 60

Diagram 2.1.3 Reader /Interpreter Prepare to Scan Command 62

Diagram 2.1.4 Reader /Interpreter Scan Command 64

Diagram 2.1.4.1 Reader/Interpreter Syntax Check Parameter 66

Diagram 2.1.4.2 Reader/Interpreter Build FDT 68

Diagram 2.1.5 Reader/Interpreter for Batched Jobs Termination 70

Diagram 2.2 Reader /Interpreter for Interactive TSO 72

Diagram 2.2.1 Reader/Interpreter for Interactive TSO - Checking.

Parameters .. 74

Function Support Routine (FSR) Visual Table of Contents 77

Diagram 3.1 ALTER FSR ... 78

Diagram 3.2 CNVTCAT FSR ... 82

Diagram 3.3 DEFINE FSR ... 84

Diagram 3.3.1 DEFINE ALIAS ... 90

Diagram 3.3.2 DEFINE FSR - CLUSTER .. 94

Diagram 3.3.3 DEFINE FSR - GENERATION DATA GROUP 96

Diagram 3.3.4 DEFINE FSR

MASTERCATALOG/USERCATALOG 98

Diagram 3.3.5 DEFINE FSR - NONVSAM .. 102

Diagram 3.3.6 DEFINE FSR - PAGESPACE 104

Diagram 3.3.7 DEFINE FSR - SPACE ... 106

Diagram 3.3.8 DEFINE FSR - DEFINE ALTERNATE INDEX 108

Diagram 3.3.9 DEFINE FSR - DEFINE PATH 112

Diagram 3.4 DELETE FSR .. 114

EXPORT FSR .. 116
Diagram 3.5
Diagram 3.5.1 EXPORT FSR - Cluster or Alternate Index 118

12 OS/VS2 Access Method Services Logic

Diagram 3.6 IMPORT FSR... 122

Diagram 3.6.1 IMPORT FSR - Cluster or Alternate Index 124

<..
 Diagram 3.7 LISTCAT FSR ... 128

Diagram 3.13.2 BLDINDEX FSR - Obtain Resources and Sort

Diagram 3.13.3 BLDINDEX FSR - Sort-Merge and Build

Diagram 3.16.1 IMPORTRA FSR - CLUSTER

Diagram 3.17.2 RESETCAT FSR-Copy catalog to Work File

Diagram 3.17.3 RESETCAT FSR-Merge CRAs to

Diagram 3.17.4 RESETCAT FSR-Reasign

Diagram 3.17.5 RESETCAT FSR-Check

Diagram 3.17.6 RESETCAR FSR-Update the

Diagram 3.7.1 LISTCAT FSR - Gets Information 132

Diagram 3.8 PARM FSR .. 134

Diagram 3.9 PRINT FSR .. 136

Diagram 3.10 REPRO FSR... 138

Diagram 3.10.1 REPRO FSR - Catalog Reload 140

Diagram 3.11 VERIFY FSR ... 142

Diagram 3.12 CHKLIST FSR ... 144

Diagram 3.12.1 CHKLIST FSR - Prints Information 146

Diagram 3.13 BLDINDEX FSR ... 148

Diagram 3.13.1 BLDINDEX FSR - Get Information and Verify 152

Initialization .. 156

Alternate Index ... 158

Diagram 3.14 LISTCRA FSR ... 162

Diagram 3.14.1 LISTCRA FSR - Process CRA 164

Diagram 3.15 EXPORTRA FSR .. 166

Diagram 3.15.1 EXPORTRA FSR - Field Management. 168

Diagram 3.15.2 EXPORTRA FSR - Drive .. 170

Diagram 3.15.2.1 EXPORTRA FSR - Export VSAM Data Set 172

Diagram 3.15.2.2 EXPORTRA FSR - Export NonVSAM 174

Diagram 3.16 IMPORTRA FSR ... 176

or ALTERNATE INDEX .. 178

Diagram 3.16.2 IMPORTRA FSR - USERCATALOG 180

Diagram 3.16.3 IMPORTRA FSR - NONVSAM 182

Diagram 3.16.4 IMPORTRA FSR - GDG BASE.................................. 184

Diagram 3.17 RESETCAT FSR (VS2.03.808) 186

Diagram 3.17.1 RESETCAT FSR-Initialization (VS2.03.808) 188

(VS2.03.808) .. 190

Work File (VS2.03.808) ... 192

CI numbers (VS2.03.808) .. 194

Associations (VS2.03.808) ... 196

Catalog (VS2.03.808) .. 198

Diagram 3.17.7 RESETCAT FSR-Update the CRA (VS2.03.808) ... 200

Termination Visual Table of Contents .. 203

Diagram 4.1 Executive Controlled Termination 204

Diagram 4.2 Processor Termination .. 206

Diagram 4.2.1 I/O Adapter Termination - UIOTERM Macro............ 208

System Adapter Visual Table of Contents .. 211

Diagram 5.0 System Adapter Overview .. 212

Diagram 5.1.1 UCATLG Macro .. 216

Diagram 5.1.2 UCIR Macro ... 218

Diagram 5.1.3 System Adapter - URECAT Macro 220

Diagram 5.1.4 ULOCATE Macro.. 222

Diagram 5.1.5 UUNCATLG Macro .. 224

Diagram 5.2.1 UABORT Macro .. 226

lllustrations 13

Diagram 5.2.2 USNAP Macro .. 228

Diagram 5.2.4 System Adapter - Recovery during

Diagram 5.9.4 System Adapter - URACHECK Macro

Diagram 6.9.1 I/O Adapter - UEXCP Macro - REPAIRV

Diagram 5.2.3 System Adapter - UST AE Macro 230

Abnormal Termination ... 232

Diagram 5.3.1 UCALL Macro ... 234

Diagram 5.3.2 ULOAD Macro .. 236

Diagram 5.3.3 ULINK Macro .. 238

Diagram 5.3.4 UDELETE macro (VS2.03.807) 240

Diagram 5.4.1 UGSPACE Macro .. 242

Diagram 5.4.2 UFSPACE Macro ... 244

Diagram 5.4.3 UGPOOL Macro .. 246

Diagram 5.4.4 UFPOOL Macro... 248

Diagram 5.4.5 PROLOG Macro .. 250

Diagram 5.4.6 UEPIL Macro ... 252

Diagram 5.5.1 UTIME Macro .. 254

Diagram 5.6.1 ULISTLN Macro .. 256

Diagram 5.6.2 USAVERC Macro .. 258

Diagram 5.7.1 UPROMPT Macro .. 260

Diagram 5.7.2 UID Macro ... 262

Diagram 5.7.3 UQUAL Macro .. 264

Diagram 5.8.1 UALLOC Macro .. 266

Diagram 5.8.2 UDEALLOC Macro ... 268

Diagram 5.9.1 System Adapter - UDEQ Macro 270

Diagram 5.9.2 System Adapter - UENQ Macro 272

Diagram 5.9.3 System Adapter - URESERVE Macro 274

(SU 5752-824) ... 276

Diagram 5.10.1 System Adapter - UMSSUNIT Macro 278

Diagram 5.10.2 System Adapter - USCRATCH Macro 282

Diagram 5.10.3 System Adapter - USSC Macro 284

Diagram 5.10.4 System Adapter - USYSINFO Macro 286

Diagram 5.10.5 System Adapter - UWTO Macro 288

I/O Adapter Visual Table of Contents ... 291

Diagram 6.0 I/O Adapter Overview : ... 292

Diagram 6.1 Adapter - UOPEN Macro Overview 294

Diagram 6.1.1 Adapter - UOPEN Macro - Build IOCSTR 296

Diagram 6.1.2 UOPEN Macro Build Control Blocks 300

Diagram 6.1.3 UOPEN Macro Check Open .. 304

Diagram 6.2 I/O Adapter - UCLOSE Macro 308

Diagram 6.3 I/O Adapter - UPOSIT Macro 310

Diagram 6.4 I/O Adapter - UGET Macro .. 312

Diagram 6.5 I/O Adapter-UPUTMacro .. 316

Diagram 6.5.1 I/O Adapter - SYSPRINT on A TSO TerminaL......... 320

Diagram 6.6 I/O Adapter -COPY Macro ... 322

Diagram 6.7 I/O Adapter - UVERIFY Macro 324

Diagram 6.8 I/O Adapter - USTOW Macro 326

Diagram 6.9 I/O Adapter - UEXCP Macro 328

Processing ... 330

Diagram 6.10 I/O Adapter - UIOINFO Macro 332

Text Processor Visual Table of Contents .. 335

Diagram 7.0 Text Processor Overview .. 336

Diagram 7.1 UESTS Macro ... 338

Diagram 7.2 UESTA Macro .. 340

Diagranl 7.3 UREST Macro .. 342

14 OS/VS2 Access Method Services Logic

Diagram 7.4 URESET Macro ... 344

Diagram 7.5 UPRINT ... 346

Diagram 7.5.1 UPRINT Macro - Convert ... 348

Diagram 7.5.2 UPRINT Macro - PRINT ... 350

Diagram 7.6. UERROR macro ... 352

Debugging Aids Visual Table of Contents .. 355

Diagram 8.0 Debugging Aids Overview .. 356

Diagram 8.1 UTRACE Macro .. 358

Diagram 8.2 UDUMP Macro .. 360

Diagram 8.2.1 UDUMP Macro Dump Fields 362

Volume Services Table of Contents .. 365

Diagram 9.0 Volume Services Overview ... 366

Diagram 9.1 Volume Services-Volume VTOC Serviee 368

Diagram 9.2 Volume Label Service ... 370

Diagram 9.3 Volume Data Set Service .. 372

Illustrations 15

SUMMARY OF AMENDMENTS

OS/VS2 MVS Data Management (VS2.03.808)
• 	 A new Access Methods Services command, RESETCAT, is provided for

catalog recovery. RESETCAT synchronizes a catalog to the level of the
volumes it owns.

• 	 Control block manipulation macros for generating, modifying, testing, and
displaying the ACB; RPL, and EXLST control blocks are no longer used
during OPEN/CLOSE processing. (Their use in GET/PUT and POINT
operations was removed in the previous release.) Access Method Services
now processes these VSAM control blocks directly.

OS/VS2 MVS Supervisor Performance #2 (VS2.03.807)
• 	 Support of Auxiliary Storage Manager (ASM) redesign. SWAP space data

sets can now be defined and preformatted. Also, a new integrity attribute
has been added to both SWAP and PAGE spaces.

• 	 Prose messages for dynamic allocation errors. The system DAIRFAIL
routine is invoked to provide prose error messages for errors received from
dynamic allocation.

• 	 Support of Resource Access Control Facility (RACF). Changes are included
to support protection of VSAM data sets through RACF.

• 	 TSO Service Routine Linkage. Interface to TSO service routines has been
changed; the CALL TSSR macro replaces the use of LINK and LOAD
macros.

OS/VS2 MVS MSS Enhancements (5752-824)

Release 3.7

• 	 The System Adapter has been updated to support MSS Release 3. A new
Umacro, URACHECK, has been added.

Miscellaneous maintenance corrections and clarifications have been made
throughout the manual. In addition, support has been included for:

• 	 Revised LISTCAT format. LISTCA T output is now printed in a new
tabular format, making a significant improvement in readability.

• 	 ALTER Error Checking. Additional error checking is performed by
ALTER to detect incompatibilities between the object to be altered and
the attributes specified in the command.

• 	 Mass Storage System Release 2. Two new Umacros, ULOCATE and
UNNCATALOG, have been added to the System Adapter. A new
function, data set services, has been added to the Volume Services routine.
Other miscellaneous changes have been made to the System and I/O
Adapters to support new MSS enhancements.

• 	 Mass Storage System REPAIRV Utility. New functions have been added to
the UEXCP macro to support the REPAIRV utility: OPENR opens data

Summary of Amendments 17

Enhanced VSAM

Alternate Indexes

Relative-Record Data Sets

Spanned Records

Catalog Recovery

Reusable Data Sets

sets, VTOCs, VTOC headers, and staging packs; READCNT, SPACCR,
and READKD assist with retrieving data; and WRITEREC and FWRITE
assist with writing data.

Following is a summary of major changes to Access Method Services for the
release of enhanced VSAM and includes support for:

• Alternate Indexes

• Relative Record Data Sets

• Spanned Records

• Catalog Recovery

• Reusable Data Sets

• Miscellaneous Enhancements

Each of these affects one or all of the sections in the manual: method of
operation, microfiche directory, data areas (mostly for new or changed
Function Data Tables-FDTs), and diagnostic aids (in particular, trace and
dump points, error codes, and message-to-module cross reference).

Alternate indexes have been added for key-sequenced and entry-sequenced
data sets to provide alternate paths through which to gain access to data.
They change the method of operation diagrams for DEFINE CLUSTER,
ALTER, DELETE, EXPORT, IMPORT and LISTCAT and add diagrams for
the new commands, DEFINE ALTERNATEINDEX, DEFINE PATH, and
BLDINDEX.

The relative-record data set brings to three the number of VSAM data sets. It
changes the method of operation diagram for DEFINE CLUSTER, PRINT,
REPRO and I/O Adapter.

A record in a key-sequenced or entry-sequenced data set is no longer limited
by control-interval size, but can span control intervals. Spanned records
change the method of operation diagram for DEFINE CLUSTER.

The user can specify when he defines a catalog that a catalog recovery area
(CRA) is to be built for it. A CRA contains information that can be used to
recover a damaged catalog. Catalog recovery changes the method of
operation diagrams for DEFINE MASTERCATALOG and DEFINE
USERCATALOG.1t adds diagrams for the new commands, LISTCRA,
EXPORTRA, and IMPORTRA.

Data sets defined as reusable can be reused without deleting and redefining
them. They change the method of operation diagram for DEFINE
CLUSTER.

18 OS/VS2 Access Method Services Logic

http:USERCATALOG.1t

MisceUaneous Enhancements

Release 3

.
Relatively minor changes have been incorporated into several Access Method
Services functions. DEFINE includes default key and record size values and
supports an exception exit. REPRO permits copy operations into nonempty
key-sequenced data sets. IMPORT supports import operations into empty
data sets. EXPORT allows a variable blocksize for portable data sets.

Access Method Services has been extended to support:

• 	 The IBM 3850 Mass Storage System. Existing function support routines
have been changed to process staging parameters. Several Umacros have
been added to the adapters.

• 	 The CHKLIST utility program for listing tape data sets that were open at a
checkpoint. A function support routine has been added to process the
CHKLIST command.

• 	 Catalog unload/reload. The REPRO function support routine has been
changed for catalog unload/reload.

• 	 LISTCA T output modifications. The LISTCA T function support routine
has been changed to process new parameters for LISTCAT and to print
selected information for the TSO user.

These extensions have caused modifications throughout all sections of the
book.

New function support routines for the Mass Storage System Access Method
Services commands for space management in the Mass Storage System are
described in OS/VS Mass Storage System (MSS) Services Logic.

Summary of Amendments 19

J

INTRODUCTION

Requirements

OS/VS2 Access Method Services are utility-like functions required to
establish and manage VSAM (Virtual Storage Access Method) data sets.
Access Method Services allows you to define, print, delete, or copy VSAM
data sets, convert ISAM or SAM data sets into VSAM data sets, build
alternate indexes, recover data and catalog entries in the event of a catalog
failure, alter or list the entries in a VSAM catalog, create portable (or backup)
copies, and convert entries in a OS/VS catalog to entries in a VSAM catalog.
Features of its logic are:

• 	 The processor is organized into executable and non-executable modules.
An executable module contains instructions that can be performed by the
computer. A non-executable module contains nothing that can be
performed by the computer. In Access Method Services all descriptive
information-such as, command descriptors-and static text- such as,
messages-are centralized in non-executable modules. (In Access Method
Services, there is generally a one to one correspondence between modules
and csects. Consequently, this publication generally discusses modules. A
major exception is IDCAMS. For more information on IDCAMS, see
"Program Organization.")

• 	 All external interfaces to Access Method Services are isolated in a small set
of modules. Changing these modules allows this processor to run with
another operating system or with access methods other than those
supported by this release of Access Method Services.

• 	 Each module serves just one purpose and is coded to most efficiently
accomplish that purpose.

This book does not discuss VSAM or TSO, their concepts or their data areas.
For a discussion of VSAM, see the publication OS/VS Virtual Storage Access
Method (VSAM) Programmer's Guide For a discussion of TSO, see the
publication OS/VS2 TSO Terminal User's Guide.

This book does not discuss the FSRs (Function Support Routines) for the
IBM 3850 Mass Storage System. For a description of those FSRs, see the
publication OS/VS Mass Storage System (MSS) Services Logic.

The Access Method Services processor accepts commands and sometimes
input data sets or catalogs. It produces output data sets and/or printed
reports. Details of the commands and the use of Access Method Services are
found in OS/VS Access Method Services.

This processor requires OS/VS2 as its operating system. The processor
executes as a problem program. Virtual Storage requirements for the
processor are found in OS/VS2 Enhanced System Information.

Introduction 21

Operating System

The Access Method Services Processor
Figure 1 describes the structure of the processor. Figures 2 through 4 describe
in general how the processor functions. In Figures 1 through 4 paragraph
numbers match numbers in the illustrations to coordinate the paragraphs and
parts of the illustrations.

Figure 1 shows the executable elements of the Access,Method Services
processor as they form a structure within the operating 'system., As shown
here, six of the elements form a "substructure" that supports the remaining
elements, which form a "superstructure."

t''''

Following the flow of logic reveals more of the processor than the structure of
executable modules. Figure 2 and the two which follow show the sequence in
which modules execute, important internal tables, and how non-executable
modules are used.

The System Adapter is the external entry and exit point for Access Method
Services. At entry time, the GDT (Global Data Table) is built by the System
Adapter. The GDT is always passed asa parameter when any internal module
is called, and through the GDT can be found the entry point for any service
supplied by the substructure. The GDT contains the addresses for the various
services provided by the System Adapter, the I/O Adapter, and the Text

Function Support Routines
(FSRs)

Reader/ System
Interpreter Adapter

• The superstructure consists of the FSRs (Function Support Routines). There is one FSR for each command verb of

Access Method Services. Any system interface or I/O function that is required by one of the FSRs is supplied through the

•

substructure. The superstructure is thus insulated from the operating system by the substructure.

The substructure consists of the Executive, the Reader/Interpreter, the System Adapter, the I/O Adapter, the Text
and the Debugging Aids, The Executive routes control between the other components of Access Method
Services-specifically, between the Reader/Interpreter and the FSRs. The Reader/Interpreter translates the commands
for Access Method Services into an internal form called the FDT (Function Data Table). The System Adapter similarly
provides 0/1 system interfaces for the processor. The I/O Adapter issues all I/O operations at the behest of any other
routine in Access Method Services. The Text Processor prepares 0/1 printed materials, whether simple messages or
listings, that are required to fulfill a command. The Volume Services provide all the services for processing volume labels
and VTOCs for the Mass Storage System. (However, they are not designed for exclusive use by the Mass Storage System.)

•

The Debugging Aids write diagnostic information when requested.

The operating system supports the Access Method Services processor, just as the substructure supports the superstructure
(the FSRs). However, the FSRs execute in total independence of the actual operating system in which Access Method
Services is running. All requests for system services or I/O are made to the substructure, which received the request and
issues the appropriate request to the operating system. Thus additional access methods can be easily supported by Access
Method Services, by merely augmenting the I/O Adapter appropriately. Access Method Services can be run in a different
host operating system by changing the System Adapter and the I/O Adapter to match the new host.

Figure 1. The Structure of the Access Method Services Processor

22 OS/VS2 Access Method Services Logic

(Job Control
Statement)

Enter Processor
(Subroutine Call)

System Adapter

I/O Adapter

Executive

Text Processor

See Figure 3

Historical
Data Areas

Figure 2. Initialization of Access Method Services

Processor. The GOT also points to historical data areas that are built and
maintained by various processor substructure modules.

Control passes from the initialization effected by the System Adapter to the
Executive. Figure 3 shows this transfer of control, and details the parsing
operation of the processor.

Introduction 23

""----,
Enter Processor (Job Control I, Statement)

""----,
I Enter Processor <;:;:;:;:;:;~ I , 	 (Subroutine Call) ~ I
-----"" System Adapter 1- - System Adapter~

I I L - .
L

Input 1
Commands ..r - I/O AdapterI

I _.I
Executive

I r
I
1- -.,.1 Text Processor

1 I 1- ----_.
L...J F

D
T

J

+-----------+ - - -	 o
I 1 I

I I

I I

I/O Adapter1 I Command Text
Descriptor Structure

Program
Library Messages

I

1 1
II

I/O Adapter
, I

I 1

System Adapter
I

Text Processor

Figure 3 (Part 1 of 2). Reading and Parsing a Command

24 OS!VS2 Access Method Services Logic

••
The Executive calls the Reader/Interpreter, which reads a command from the input stream. The I/O Adapter performs
the actual read at the behest of the Reader/Interpreter; the address for the "get" service is found in the GDT.

To parse the command, the Reader/Interpreter compares it against a special table called a Command Descriptor. This
Command Descriptor forms a non-executable load module, and is loaded from the program library by a service of the
System Adapter. There is a Command Descriptor for each possible verb to be recognized by Access Method Services.
This Command Descriptor specifies each possible keyword, its permitted range of values, and any other information that
is needed to parse and interpret the command.

•

As a command is parsed, certain messages may be issued. To format these messages, the Text Processor is invoked (again
through to GDT). The Text Processor determines the format of printed material and the text of fixed messages by using
Text Structures. These Text Structures are also non-executable load modules (loaded by the System Adapter when
needed), and they describe page layout, static portions of the text, headings, footings and other details of the printed page.
Once a line of message is formatted, the I/O Adapter writes the line to the print file.

As a command is parsed, the Reader/Interpreter builds an PDT (Function Data Table) from the values that it finds. The
FDT is an encoded representation of the user's command. The FDT is passed back to the executive as the results of the
parse. The Executive in turn passes the FDT to the appropriate FSR for processing.

Control returns to the Executive, along with the FDT and the name of the FSR needed to process this command. Figure 4
depicts the FSR in action.

Figure 3 (Part 2 of 2). Reading and Parsing a Command

Introduction 25

F
D
T

o

Processor!

Volumel
Services

,.. -,
-------- J _ " G 1

1/ " ~ D (Job Control , Enter Processor ~:.:.;:::~ System Adapter 1 T to ~I I
\ (Subroutine Call) I··:·:·:····:·· I 1 Statement) , / 1 1- ~

.... -------.... l J .,
1

.....1 I/O Adapterr
1 1Reader/

ExecutiveInterpreter 1
1 I ' ~I Text Processor Ir

1- ____ _ I

L

r:-----+---+-------t:==1 Library
I r -.-+--+- - -System - -

I Ad (Text
1 1 apter Structures)

II
I

I I

Figure 4 (Part 1 of 2). Performing a Function

26 OS/VS2 Access Method Services Logic

• •

L

The command at this point in time is described in the FDT. The FDT is an internal encoding of the original command, in
a rigorous format with the values for all possible parameters in a prescribed order.

•
Any data sets or user catalogs required for this particular function are accessed through the I/O Adapter. The address of
this service is found in the GDT.

•
Any printed output is prepared by the Text Processor, whose addresses are also found in the GDT. Static text and page
layout instructions are found in the Text Structures, which are loaded by the System Adapter.

•

Finally, all output is produced by an()ther of the services of the I/O Adapter.

Control returns to the Executive. If more commands remain, the Reader/Interpreter repeats its procedure, followed by
the appropriate FSR. Control is routed back and forth between the Reader/Interpreter and the FSRs by the Executive in
this fashion until all commands have been processed.

Figure 4 (Part 2 of 2). Performing a Function

Naming Conventions
The Access Method Services processor is named IDCAMS. The names of all
modules that form this processor are seven or eight characters long, and begin
with the characters IDC. The remaining characters of the name relate to its
use. Executable load modules and Command Descriptors have
seven-character names, while Text Structures have eight-character names.

The modules of the proceisor are grouped by their functional relationship.
Each of these relationships is indicated by a two-character pmemonic
idenl,fier, which appears as characters 4 and 5 of the module name. These
identifiers are listed in the following table:

AL ALTER FSR MP IMPORT FSR
AM Interactive TSO Interface PM PARM FSR
BI BLDINDEX FSR PR PRINT FSR
CC CNVTCAT FSR RC EXPORTRA FSR
Ct> . Command Descriptor RI Reader/Interpreter
CK CHKLlST FSR RM IMPORTRA FSR
DB Debugging Facility RP REPRO FSR
DE DEFINE FSR RS RESETCAT FSR (VS2.03.808)
DL DELETE FSR SA System Adapter
EX Executive TP Text Processor
10 I/O Adapter TS Text Structure
LC LISTCAT FSR VS Volume Services
LR L1STCRA FSR VY VERIFY FSR

XP EXPORT FSR

The remaining characters of a module name indicate the function of that
module. Two numeric digits are used for the name of a load module and the
entry point of a single-entry module. Two alphabetic characters indicate an
entry point in a multiple-entry module. Thus the name "IDCPROl" is the
name of the first load module for the PRINT FSR, and "IDCPROl" is the
only entry point to that module. "IDCSA02" is the second load module for
the System Adapter, and "IDCSAGS" is the entry point in that module for
the "get space" service.

Note: The only exception to the naming convention for entry points is the
module IDCSAOI. It's entry points are IDCSAOI and IDCSATO.

The last two characters of a Command Descriptor are the mnemonic identifier
for the FSR for that Command Descriptor. Similarly, Text Structure names
end with the FSR mnemonic identifier and a single digit (to allow for multiple
Text Structures per FSR). For example the three modules for PRINT are:

IDCPROI PRINT FSR load module
IDCCDPR PRINT Command Descriptor
IDCTSPRO First Text Structure for PRINT

Introduction 27

Names for processor-wide data structures and fields are six charact.ers lpng.
The first three characters identify the structure. The last three characters
indicate the function of the field. (In this publication, the data areas are often
referred to by the first three characters.) Values for a field (for example, a bit
in a flag field) have names that are eight characters long. The last two
characters of a value indicate the meaning of that value. For example,
"IOCDSO" is a field of the I/O Communications Structure that defines the
data set organization. One of its bits is named "IOCDSOAM," which means
that this bit signifies a VSAM organization.

Local names used internally by only one subcomponent follow no
processor-wide conventions.

Character Code Dependencies

Most of the character dependencies of this processor are isolated in the
Command Descriptor modules and the Text Structure modules. For example,
all input text is translated by referring to the Command Descriptor modules,
and all output text is controlled by the Text Structure modules and a
parameter defining the output graphics.

Most of the executable modules of the processor have no character
dependencies. However, some modules of the Reader/Interpreter and the
Text Processor have character dependencies. Such character dependencies are
identified in the prologue of each module.

The character set used at execution time must be equivalent to that used
during assembly of the character:-dependent modules. The IBM-supplied
version of these modules assume.s EBCDIC character representations. If a
different character representation is to be used during execution, then the
character-dependent modules must be re-assembled.

28 OS/VS2 Access Method Services Logic

METHOD OF OPERATION

This chapter contains method of operation diagrams for each element within
the substructure and superstructure of Access Method Services. Following
each diagram is an extended description of the processing steps and the name
of the modules and procedures used to perform each step within the diagram.
Using these names, you can go either to the chapter "Microfiche Directory"
or to the microfiche itself for more information.

The following legend explains the symbols used throughout this chapter.

Data flow

Aow of control, entry and exit points

Data flow when existing data has been altered',1111""a>

On page connector

-D Off page connector

... Pointer to more information

Method of Operation 29

r r r

Access Method Services Visual Table of Contents

General

Overview

I

I I I I
1.0 2.0 3.0

Reader/Initialization FSRs Termination
Interpreter

I I I I
I

I

5.0 6.0 7.0 8.0I I I 1 I
System I/O Text Debugging Volume
Adapter Adapter Processor Aids Services

=:
(D

;.
o
c-
o-.
o
~ a
0·
::l

Vol

.....
IV Access Method Services Overview o
CZl

<
CZl
IV

> Register I
(')

(')

n>
~

n> Parameter List;.
3: l:"'Ok'"
8
CZl
n>
:1
!'i"
n>
til

b Commands0<>

EJ
!'i"

Input Data Sets and
VSAM Catalogs

'-''-' '-'

(" r 	 r

.

Initialization Visual Table of Contents

,.. -

::::
<'I>;.
o a.

~
o
"0

<'I>..,
~
o
'"
"" ""

1.0

Initialization

Overview

1.1 	 l.2 1.3

Interactive I/O Adapter

I 	 I

System Adapter

TSO 	 InitializationInitialization
Initialization UIOINIT Macro

-

V> Diagram 1.0 Access Method Services Initialization Overview
"'" o From Access Method til Services Invoker .<:
[(j PROCESSING
>(')
(') Register I 	 GOT
<t>
~ 1. Initializes System Adapter. ~
~
<t>;. 	 See Diagram -u
8- t Options
)€l

~ t DDName

i'i"
 System Adapter <t>
<IJ ~ Page Number 	 2. Initializes invoker dependent Historical Data Area

fields.
(JQ
b lIlO List
;:;.

See Diagram

or:
 -B

Register I

Inter·Module Trace Table

I
Intra-Module Trace Table

I 	 I
y 	 Protected Step

Control Block
- IODATA

3. Iniuahzes.. I/O Adapter'-B1.3

See Diagram

peT

4. Initializes text lines.

5. Initializes page controls.

,-,. ~ 	 l,

r r 	 r

Extended Description for Diagram 1.0

Module: IDCSAOl, IDCAMOl, IDCAM02

Procedure: IDCSAOl, IDCAMOl, IDCAM02

1. 	 Access Method Services can be invoked with a
batched job-either through JCL or a program--()r
invoked interactively with TSO. A batched job
invokes the System Adapter at entry point IDCSAOI.
When a TSO terminal user uses an Access Method
Services command, IDCAMOI or IDCAM02 receive
control. IDCAMOI and IDCAM02 contain identical
code. IDCAMOI or IDCAM02 invokes the System
Adapter at entry point IDCSATO. The System
Adapter sets up the GDT, trace tables, and the System
Adapter Historical Data Area. The System Adapter
obtains storage for modules that are continuously
used, such as the System Adapter and the I/O
Adapter. Diagram 1.1 shows System Adapter
initialization in detail.

Module: IDCSAO I

Procedure: IDCSAOI

2. 	 The System Adapter initializes invoker dependent
fields.

• 	 If Access Method Services was invoked with a
batched job, the System Adapter puts the address
of the Reader/Interpreter name 'IDCRIOI' in
GDTRIP of the GDT.

• 	 If Access Method Services is invoked interactively
with TSO, the System Adapter puts the address of
the Reader/Interpreter name 'IDCRI04' in
GDTRIP of the GDT. The System Adapter
initializes the GDT for processing with interactive
TSO. See Diagram 1.2 for more information on
interactive TSO initialization.

Module: IDCEX02

Procedure: IDCEX02

3. 	 IDCEX02 issues the UIOINIT macro to cause the I/O
Adapter to initialize. The I/O Adapter initializes its
Historical Data Area. IDCIOIT saves the addresses of

~
o 	 alternative DD name list if supplied by the invoker.
;.
o Diagram 1.3 shows I/O Adapter initialization in

0- detail.

S,

Module: IDCEX02 o
"'0 o Procedure: IDCEX02 ..,
a 4. 	 IDCEX02 issues a UESTS macro instruction to set up o·
:::I 	 the Print Control Table, PCT. The address for the

Text Processor Historical Data Area is in the
V\ '"

GDTTPH field of the GDT. Since GDTTPH contains
zero, the text processor builds the primary PCT.

Module: IDCEXOI, IDCEX02

Procedure: CALLRI, IDCEX02, SCANPARM

5. 	If the invoker supplied a starting page number in the
parameters, IDCEX02 issues a UREST macro
instruction to set the page number. IDCEXOI uses the
name of the Reader/Interpreter addressed from
GDTRIP in the GDT to load the Reader/Interpreter.
Control is given to the Reader/Interpreter to process
the input as well as any parameters supplied on the
EXEC statement that invoked Access Method
Services.

~ Diagram 1.1 System Adapter Initialization
o
Vl

< -... ----- ------.~-l1

[
 t. Obtains storage.

GOT ~
t1>;.
8- Register I
)€l
:1

I
2. Initializes the GOT.

~r
<Il

b
OQ n·

3. Initializes storage table.

4. Initializes trace tables.

5. InitializQ Historical Data Area.

Save Area6. Establishes save area.

\, \, ~

r r 	 r

Extended Description for Diagram 1.1

Module: IDCSAO I

Procedure: IDCSAOI

1. 	 IDCSAOI issues a GETMAIN instruction to obtain
space for the following tables:

• 	 Global Data Table, GDT
• 	 Inter-Module Trace Table
• 	 Intra-Module Trace Table
• 	 System Adapter Historical Data Area
• 	 Storage Table, AUTOTBL

Module: IDCSAOI

Procedure: IDCSAOI

2. 	 IDCSAOI puts the characters 'GDTt>' in the first four
bytes of the GDT. It puts the address of the invoker's
parameter list, which is in register I, in the GDTPRM
field of the GDT. IDCSAOI puts the address of the
System Adapter Historical Data Area in GDTSAH. It
also puts the address of the Inter-Module Trace Table
in GDTTRI and the address of the Intra-Module
Trace Table in GDTTR2. IDCSAOI puts the address
of the System Adapter save area in GDTABH.
Additionally, it puts addresses for the
processor-defined macro instructions, called Umacros,
in the GDT. All remaining fields of the GDT contain
zeros.

Module: IDCSAO I

Proce4ure: IDCSAOI

3. 	 Rather than obtaining new storage each time
IDCSA02, IDCSA03, IDCSA06, IDCSA07, IDCSA08,
IDCSA09, IFCSAIO, IDCTP01, IDCI001, or
IDCI005 is called, the System Adapter issues one
GETMAIN macro for each module and saves the
storage address in the Storage Table, AUTOTBL.
When one of the modules is called, it calls the
PROLOG routine that returns the address of the
storage obtained for the module during System
Adapter initialization. The storage address for
IDCSA03, however, is kept in the G~SPR field of

s::
t1> the GDT because IDCSA03 contains the PROLOG
;. routine code and needs to get its storage without using
8- the PROLOG routine. For VS2.03.807: IDCSA01
o initializes the Load List Block (LLBLK) and puts a - pointer to the LLBLK in the System Adaptero

"1J Historical Area.
t1> g
0'
:l

<.>

Module: IDCSAOI

Procedure: IDCSAOI

4. 	 IDCSAOI initializes the Inter-Module Trace and
Intra-Module Trace Tables to blanks. It places the
characters 't>INTERt>t>' and '1>INTRAt>t>' before the
respective tables. It also puts the characters 'SA01' in
the Inter-Module Trace Table and in the save area
provided by the Access Method Services invoker.

Module: IDCSAOI

Procedure: IDCSAOI

5. 	 IDCSA01 sets the first UGPOOL storage area pointer
in the System Adapter Historical Data Area to zero. It
sets the last UGPOOL storage area pointer to the
address of the first UGPOOL area pointer.

Module: IDCSAO I

Proce4ure: IDCSAOI

6. 	 The System Adapter saves the current values of its
registers in a save area pointed to by the GDTABH
field in the GDT. The UABORT routine uses the
register values to establish addressability before
processing. Control goes to Diagram 1.0, step 2.

-.I

00
..... Diagram 1.2 Interactive TSO Initialization
o
til
........
 From Diagram 1.0 <
~
:>
g
(1)

~
GDT;s::

GDTPRM~
=o
c..
til
(1) GDTCMB
~ 1. Initializes GDT. ri' GDTUPT(1)

'" GDTPSBr
o

!J<l
n' (GDTECT

0

0
2. Makes SYSPRINT data go to the

0
TSO terminal.

-
1

_fDDSYSPRINT

tIDCI004

~.~---

",. c., \.r

r r 	 r

Extended Description for Diagram 1.2

Module: IDCSAOI

PrCM:edure: IDCSAOI

1. 	 IDCSAOI puts the address of the TSO Command
Buffer in GDTCMB, the address of the TSO
Environment Control Table in GDTECT, the address
of the TSO Protected Step Control Block in GDTPSB,
and the address of the TSO User's Profile Table in
GDTUPT.

Module: IDCSAOI

PrCM:edure: IDCSAOI

2. 	 In order to force all output written to the SYSPRINT
data set to be displayed on the TSO terminal,
IDCSAOI sets up IDCI004 as a user I/O routine.
IDCSAOI issues a LOAD macro to load IDCI004.
IDCSAOI puts the address of a parameter list in
GDTPRM. The parameter list is provided by the
System Adapter and causes all output to SYSPRINT to
be given to IDCI004. Refer to Diagram 6.5.1 for more
information on IDCI004. IDCI004 writes to the TSO
terminal. Control returns to Diagram 1.0, step 3.

~
!1>
;.
8.
a
o
"R ao·
::I

....
~

~
o
CIl
........

<
CIl
N

>
t'l
t'l

~

"
~

;.
o
0..

CIl

:1"
(i"

" '" r o
OQ
(i"

Diagram 1.3 I/O Adapter Initialization

Register I

ct
ItGDT

)
Alternate

DD Name List ;

User Data

Routine List

UIOINIT Macro

From Diagram 1.0

4.,'-' '-'

r r r

Extended Description for Diagram 1.3

Module: IDCIOOI

Procedure: IDCIOIT

t. The I/O Adapter issues a UGPOOL to obtain storage
for its Historical Data Area-IODATA, and a VSAM
message area. IDCIOIT puts the 10DATA address in
the GDTIOH field in the GDT. The VSAM message
area immediately follows 10DATA. VSAM uses the
message area to format any error messages it gives to
the I/O adapter. If storage is not obtained from either
UGPOOL, the I/O Adapter issues a UABORT to
terminate the processor.

Module: IDCIOOI

Procedure: IDCIOIT

2. The I/O Adapter initializes 10DATA.IDCIOIT puts
the address of the VSAM message area in the
10DMSG field of 10DATA. If the Access Method
Services invoker supplied DD names for the system
data sets-such as SYSIN and SYSPRINT-IDCIOIT
puts the address of those DD names in the 10DADD
field of 10DATA. If the invoker supplied a list of his
own I/O programs to the address, IDCIOIT puts that
address in 109XTN. IDCIOIT puts the address of the
Access Method Services End-of-Data routine in
10DEOD. It puts the address for a synad routine for
non-VSAM input data sets in 10DOSS and the address
for a synad routine for non-VSAM output data sets in
10DSO. It also puts the address of the End-of-Data
routine for VSAM data sets in 10DAEI.

Module: IDCIOOI

Procedure: IDCIOIT

3. IDCIOIT initializes the 10DSrD to the characters

s:
(D

:r
o
0

'1000'. The I/O Adapter uses this identifier to keep
track of data sets. The first data set the I/O Adapter
opens gets the identification '1001 '. The second data
set gets the identification '1002', and so on. The
identification appears at the beginning of the storage
area for each data set. IDCIOIT puts a return code of
zero in register 15 and gives control to Diagram 1.0,
step 4.

2
o
~ ..,
~ o·
::l

"'"

J

(" 	 (" r

Reader/Interpreter Visual Table of Contents
2.0

Reader/
Interpreter
Overview

I
2.1 - I

Reader/ Reader/
Interpreter for Interpreter for
Batched Jobs Interactive TSO

I 2.2.1 -
Checking

Parameters

r 2.1.1 2.1.2 2.1.3 I 2.1.4 1 2.1.5
PrepareGet Next 	 Scan

Initialization To Scan 	 Termination
Command 	 CommandCommand

I
1 2.1.4.1 12.1.4.2

Syntax
Check Build FDT

Parameter

b.1.2.1 2.1.2.2 I 2.1.2.3 1 2.1.2.4 12.1.2.5

IF-THEN 	 ELSE SET DO END
Modal Modal Modal Modal Modal

3: Command Command Command Command Command
;.'" 	 ~-----
o
Q.

2
o
'0

a '"
o·
=
.j;o.
V.l

t Diagram 2.0 Reader/Interpreter Overview
o
CIl

<
CIl
N

:>
(")

(")

('l) Register I CIl

CIl

s: C('l)

;.
o
0 it GDT
CIl
('l)

~
n°
('l)

It FDT UGPOOL Id
CIl t MAXCCb

0<> t LASTCCn°

L::J

l., ~~

r r 	 r

Extended Description for Diagram 2.0

Module: IDCRIOI, IDCRI02, IDCRI03, IDCRI04

Procedure: IDCRIOI, IDCRI02, IDCRI03, IDCRI04

1. 	 Access Method Services accomplishes the task of
reading and interpreting commands with two
Reader/Interpreters. The invocation of Access
Method Services determines which Reader/Interpreter
is used. If Access Method Services is invoked with a
batched job, processing continues with step 2. If
Access Method Services is invoked interactively with
TSO, processing continues with step 3.

Module: IDCRIOI, IDCRI02, IDCRI03

ProcedlB'e: IDCRIOI, IDCRI02, IDCRI03

2. 	 The Reader/Interpreter for batched jobs gets a
command from SYSIN or the P ARM field of the
EXEC JCL statement and builds a Function Data
Table, FDT. Diagram 2.1 shows the
Reader/Interpreter for batched jobs in detail. Control
goes to step 4.

Module: IDCRI04

Proced.-e: IDCRI04

3. 	 The Reader/Interpreter for interactive TSO gets the
command from the terminal and builds a FDT.
Diagram 2.2 shows the Reader/Interpreter for
interactive TSO in detail.

Module: IDCRIOI, IDCRI04

Proced.-e: IDCRIOI, IDCRI04

4. 	 When either Reader/Interpreter finishes building the
FDT for a command, the Reader/Interpreter gives
control to Executive Controlled Termination,
Diagram 4.0. The Executive routes the FDT to the
proper Function Support Routine, FSR, to enact the
command.

n:r
~

8.
g,
o
-g
e1. o·
~

~
V\

8; 	 Diagram 2.1 Reader/Interpreter for Hatched Jobs Overview
o
I:Il 	 From Executive Controlled

-<
~

-- -- - --- ------ -	 OUTPUT

§
Register t 	 1. '" ~ 	 If entering from first command, GDT

3: continue to Step 2; if entering
It after first command, go to Step 3.[~ 	 "-.,
2. Initializes.
:;!
W +GDT See Diagram

,?

1'i" 	 -B <=It
til

+ FDT UGPOOL Id • Input(GDTRIH
• Statements~ • MAXCC

(")

+ LASTCC 	 HDAREA

~DCRILT D., 	 _ FDT~
\..IIDCRIKT

IDCRILT
IDCRIKT ,

....
3. Gco n~' romm.....-e ..

See Diagram 2.1.2 LASTCC• ~ 	 I
MAXCC

~

..... 	 4. Prepares to scan command. ~ 	 =>- e I Register t 5

Gommand See Diagram 	 I---8

Descriptor Register t

..... C J
S. Scans command.

v
See Diagram 	 + GDT

+ FDT Address --B
• FDT UGPOOL Id

+.MAXCC
6. 	Terminates. :>e + LASTCC

See Diagram • FSR Name-B>
 I

\.,~
~

r· 	 r r

Extended Description for Diagram 2.1

Module: IDCRIO I

Procedure: RIINIT

t. 	This Reader/Interpreter receives control if Access
Method Services is invoked with a batched job. Access
Method Services Initialization, Diagram 1.0, gives
control to the Reader/Interpreter, R/I, after the
processor is initialized. If this is the first time the R/I
receives control, processing continues with step 2.
After the first command is processed, Executive
Controlled Termination, Diagram 4.0, gives control to
the R/1. If this is not the first time the R/I receives
control, processing continues with step 3.

2. 	 RIINIT initializes the Reader/Interpreter Historical
Data Area, HDAREA. RIINIT loads the command
name table, IDCRIL T, and the modal command name
table, IDCRIKT. RIINIT opens the input data set,
SYSIN, and RIINIT prepares the parameters from the
EXEC statement for scanning if they exist. Diagram
2.1.1 shows the initialization procedure in detail.

Module: IDCRIOI

Procedure: GETNEXT, MODALSET, MODALIF,
MODLELSE

3. 	 GETNEXT reads and processes modal commands
until a functional command is encountered. The
execution of the functional command depends on the
results from the modal commands. However, every
command is completely checked for syntax errors,
whether or not it is executed. Diagram 2.1.2 shows
obtaining a command in detail.

Module: IDCRI02

Procedure: IDCRI02

4. 	 IDCRI02 loads the command descriptor for the
functional command to be scanned. IDCRI02
initializes the Function Data Table, FDT. Diagram
2.1.3 shows the preparation for command scanning in
detail.

Module: IDCRIOI =: a
::r Procedure: SCANCMD, KWDPARM, POSPARM,
o INREPEAT, BUILDFDT, CONVERT, GETSPACE,
0
o DSIDCHK-o S. SCANCMD and BUILDFDT check the functional
-g
a command for correctness. If the command is

incorrect, ERROR I or ERROR2 writes an error
o· message. BUILDFDT and INREPEAT complete the
:::l

:!J

FDT for correct commands. Diagram 2.1.4 shows the
command scanning in detail.

Module: IDCRI03

Procedure: IDCRI03

6. 	 IDCRI03 deletes the work tables and temporary
storage. If the command is to be executed, control is
given to Executive Controlled Termination that gives
control to the Function Support Routine, FSR, that
executes the command. If the command is not to be
executed due to syntax errors or due to the results of a
modal expression, control returns to step 3 to get the
next command. If the error is severe, control returns
to Executive Controlled Termination, Diagram 4.0,
with an indication that the processor cannot continue.
Diagram 2.1.5 shows termination processing in detail.

IV

~ Diagram 2.1.1 Readerjlnterpreter Initialization for Batched Jobs Initialization
o
~ _ From Diagram 2.1

(Jl
<

:>
C"l
C"l o Register 1
'" '"
~ o
;. ('-EXEC Parameters
o
Q. t GDT
(Jl

.,o
<:(i. t FDT UGPOOL Id
o (t MAXCC'"

(JQ
b t LASTCC
(i.

~
IDCRILT
IDCRIKT

\~ ~ SYSIN
Data Set

~ GDT

, GDTPRM

C
Length 1 Options

,-,. '" '-'

r r 	 r

Extended Description for Diagram 2.1.1

Module: IDCRIO I

Procedure: RIINIT

1. 	 RIINIT obtains storage for HDAREA and sets the left
margin field to 2 and the right margin field to 72. A
user changes the margins using a PARM command.
RIINIT initializes the rest of HDAREA to zero. If
RIINIT cannot obtain storage, control is given to
Reader/Interpreter termination. Diagram 2.1.5 with an
indication that causes the processor to end.

Module: IDCRIOI

Procedure: RIINIT

2. 	 RIINIT loads the command name table, IDCRILT,
and places the address of IDCRILT in the
LOADTPTR field in HDAREA. IDCRILT contains
the name of each verb and corresponding command
descriptor.

Module: IDCRIOI

Procedure: RIINIT

3. 	 RIINIT loads~the modal name table, IDCRIKT, and
places the address of IDCRIKT in the KWDTPTR
field in HDAREA. IDCRIKT contains modal
command keyword and verb name symbols, plus the
length of each symbol.

Module: IDCRIOI

Procedure: RIINIT

4. 	 RIINIT opens the input data set which has a default
DD name of SYSIN. If SYSIN cannot be opened,
control is given to the Reader/Interpreter termination,
Diagram 2.1.5, with an indication that causes the
processor to end.

Module: IDCRIOI

Procedure: RIINIT

5. 	 The Reader/Interpreter, R/I, checks for parameters
supplied before SYSIN is read. The invoker may::

<> supply parameters by putting them in the EXEC JCL
S- statement. Parameters may also be supplied through
0- the data the user provides to the processor at the time
S, the user's program invokes Access Method Services. If

o

o parameters are supplied, the GDTPRM field of the
-g GOT contains the address of a full word that contains
"' ~ the address of the parameters. The first two bytes of o· the parameters is the total length of the parameters. If
::l

no parameters are supplied, the length field is zero.
~

Module: IDCRIOI

Procedure: RIINIT

6. 	 The parameters are printed on SYSPRINT and are
treated as the parameters for a PARM command. The
symbol for PARM in IDCRIKT is supplied as the verb
name, and the options are scanned by the R/I as
though a PARM command had been encountered in
SYSIN. After the pseudo PARM command is executed
by the PARM FSR, Executive Controlled Termination
gives R/I control to read the first command. Control
goes to Diagram 2.1.2 to get the first command.

- --- ------ --

::s Diagram 2.1.2 Reader Iinterpreter for Batched Jobs Get Next Command
o
til

~
N

~
- -

ell > Input Records

ell .tracts next command.

[
~

W D
~ t:;.
~
ell

b
ceo
n

MAXCC

I I
ocesses modal command. "> LASTCC...

I I
See Diagrams-D HDAREA

2.. 1.2.1
to
2.1.2.5 MODLFLGS

~

HDAREA-'epares to interpret functional ~...
mmands. I IMODLFLGS

4..,~ ~

r r r

Extended Description for Diagram 2.1.2

Module: IDCRIOI

Procedure: GETNEXT, NXTFIELD, NEXTCHAR

1. GETRECRD reads SYSIN to get an input record and
writes each input record on SYSPRINT. GETNEXT
locates the verb on the input record and checks it
against the symbols for the modal verbs IF, ELSE,
SET, DO, and END in IDCRIKT. If a match is found,
the verb is a correct modal verb, and processing
continues to step 2. If a match is not found, the verb is
assumed to be a functional verb, and processing goes
to step 3.

PRINT, Diagram 3.9
REPRO, Diagram 3.10
VERIFY, Diagram 3.11
CHKLlST, Diagram 3.12
BLDINDEX, Diagram 3. \3
LlSTCRA, Diagram 3.14
EXPORTRA, Diagram 3.15
IMPORTRA, Diagram 3.16
RESETCAT, Diagram 3.17 (VS2.03.808)

Control goes to Diagram 2.1.3 to scan the command.

Module: IDCRIOI

Procedure: GETNEXT, MODALlF, MODLELSE,
MODALSET

2. GETNEXT sets condition codes and the MODLFLGS
field in HDAREA depending on the modal command.
Control returns to step 1 to get the next command.
The modal commands are shown in detail in the
following diagrams:

IF-THEN, Diagram 2.1.2.1
ELSE, Diagram 2.1.2.2
SET, Diagram 2.1.2.3
DO, Diagram 2.1.2.4
END, Diagram 2.1.2.5

Module: IDCRIOI

Procedure: GETNEXT

3. GETNEXT checks the MODLFLGS field in
HDAREA to determine if the function command
should be executed. If the functional command is not
to be executed, GETNEXTsets a flag. Every
command is completely checked for syntax errors,
whether or not it is to be executed. If the functional
command finishes an IF - THEN command,
GETNEXT subtracts 1 from the number of nested IF
THEN commands and sets MODLFLGS for the
finished IF - THEN command to zero. The functional

::
(])

;.
8
£.
o
1i..,
a o·
:::I

V>

commands are shown in detail in the following
diagrams:

ALTER, Diagram 3.1
CNVTCAT, Diagram 3.2
DEFINE, Diagram 3.3
DELETE, Diagram 3.4
EXPORT, Diagram 3.5
IMPORT, Diagram 3.6
LlSTCAT, Diagram 3.7
PARM, Diagram 3.8

-- - - -

~ Diagram 2.1.2.1 IF-THEN Modal Command
o
~
<
~
>- INPUT

~ HDAREA

s::
n
g;. NESTLVL
o
c- MODLFLGS
CIl

'" ~". IDCRIKTn
til

!;
(JQ".

LASTCC

I
MAXCC

I

I From Diagram 2.1.2

~ PROCESSING OUTPUT

./

"
-r- rV

...>I
I

~

\., ~ ~

r r 	 r

Extended Description for Diagnun 2.1.2.1

Module: IDCRIO 1

Procedure: MODALIF

t. 	The value in the NESTLVL field of HDAREA is used
as an index to the MODLFLGS field for the current IF
- THEN command and the THEN and ELSE clauses
that belong to the IF - THEN. MODALIF adds 1 to
the number of nested IF commands in NESTLVL.
There is one set of modal flags in HDAREA for each
level of IF - THEN commands. The new level of
MODLFLGS is initialized to zero. To see if too many
IF - THEN commands are nested, MODALIF
compares the number of nested IF - THEN commands
to the number permitted, 10.

When a syntax error is detected, MODALIF sets
LASTCC to 16, and control is given to
Reader/Interpreter termination, Diagram 2.1.5, to
cause the Executive to terminate the processor.

Module: IDCRIOI

Procedure: MODALIF, PACKCVB, NXTFIELD,
NEXTCHAR

2. 	 MODALIF compares the characters following the IF
with the symbols for LASTCC and MAXCC in
IDCRIKT. MODALIF compares the operator with all
possible operators (L T, GT, EQ, NE, GE, LE, =, ~=,
>, <, >=, <=). PACKCVB converts the decimal
value following the operator to binary. If any errors
are detectt:d, the syntax error procedure in step 1 is
followed.

Module: IDCRIOI

Procedure: MODALIF

3. 	 MODALIF sets the THENFLAG to 1 to indicate that
the THEN clause of the IF - THEN command is being
processed. MODALIF compares the value of
LASTCC or MAXCC with the number in the IF
THEN command and evaluates it for true or false
depending upon the operator. If the result is false,
MODALIF sets the SKIPFLAG in HDAREA to I,

3: indicating that commands in the THEN clause of the
t1> IF - THEN command are to be skipped-that is, the ;.
o Reader/Interpreter is to check only the syntax of the
0-

commands in the THEN clause.s..
o
"0

a t1>

o·
:s
V>...,

Module: IDCRIOI

Procedure: MODALIF

4. 	 MODALIF compares the characters following the
relational expression with the symbol for THEN in
IDCRIKT. An error occurs if THEN does not follow
IF, and the syntax error procedure in step 1 is
followed. If a terminator follows the THEN keyword,
there is a null THEN clause in the current IF - THEN
command. Control returns to Diagram 2.1.2 to obtain
the next command.

V\
.I>- Diagram 2.1.2.2 ELSE Modal Command
o
CIl
"<
CIl
N

-> 	 - -

(")(")

<>
HDAREAtil

til 1. Validates ELSE command. 	 HDAREA~ s:
<> 	 ">;. MODLFLGS 	 2. Detennines if commands following
8- ELSE are to be executed. 	 MODLFLGS

NESTLVLW ""):1 	 3. Checks for completion of IF-THEN ~ ri' command.<>
til

b
(JQ

ri'

-_.

'-' ~ 	 '-'

r r· r

Extended Description for Diagram 2.1.2.2

Module: IDCRIOI

Procedure: MODLELSE

1. MODLELSE sets the ELSEFLAG in HDAREA for
the current IF - THEN command to I, indicating that
the ELSE clause of the IF - THEN command is being
processed. The THENFLAG is turned off. An error is
caused by an ELSE without a prior IF - THEN, and
the syntax error procedure in Diagram 2.1.2. I, step I
is followed.

Module: IDCRIOI

Procedure: MODLELSE

2. SKIPFLAG indicates whether the commands in the
ELSE clause of the IF - THEN command should be
executed or only checked for syntax errors. If
SKIPFLAG is zero, the THEN clause of the IF
THEN command was executed, the ELSE clause
should not be executed, and MODLELSE sets
SKIPFLAG to 1. If SKIPFLAG is I, the THEN clause
of the IF - THEN command was not executed, the
ELSE clause should be executed, and MODLELSE
sets SKIPFLAG to zero. However, if the entire IF
THEN - ELSE command is nested within another
THEN or ELSE clause that is not being executed,
neither the THEN clause nor the ELSE clause of the
nested IF - THEN - ELSE command is executed.

Module: IDCRIOI

Procedure: MODLELSE, NXTFIELD, NEXTCHAR

3. If a terminator immediately follows ELSE, there are
no commands in the ELSE clause of the current IF
THEN command. MODLELSE subtracts I from
NESTLVL since the IF command is completed.
Control is given to Diagram 2.1.2 to obtain the next
command, whether or not a terminator follows the
ELSE.

s::
~
::T
o
0

a.
o
~ ..,
~ o·
:::I

V>
V>

~ Diagram 2.1.2.3 SET Modal Command
o
~
"<
~
N

:>
()

()

(I)
'J>
'J>

IDCRIKT ...s::
(I)

.)....:;.
8
~
(I)

~
('i"
(I)

'"
b

(JQ
('i" MAXCC

I I

HDAREA

MODLFLGS
NESTLVL

\., 4..,
~

r 	 r· r

Extended Description for Diagram 2.1.2.3

Module: mCRIOI

Procedure: MODALSET, PACKCVB, NXTFIELD,

NEXTCHAR

t. 	MODALSET compares the characters following SET

with the symbols for LASTCC and MAXCC in

IDCRIKT. MODALSET compares the operator with

the symbols EQ and =. PACKCVB converts the

decimal value following the operator to binary. If a

syntax error is encountered, the processing in Diagram

2.1.2.1, step 1 is followed.

Module: mCRIOl

Procedure: MODALSET

2. 	 MODALSET obtains MAXCC or LASTCC and

changes its value to the value specified in the SET

command. If the command is SET LASTCC,

MODALSET compares MAXCC and LASTCC, and

the larger value is put into MAXCC. If the SET

command is only being checked for syntax errors,

neither MAXCC nor LASTCC is changed.

Module: mCRIOI

Procedure: MODALSET

3. 	 MODALSET determines that the current IF command
is finished by checking that the SET command follows
an ELSE keyword and that the SET command is not
within a DO group. If both of these conditions are
met, MODALSETsubtracts 1 from NESTLVL in
HDAREA, and returns control to Diagram 2.1.2 to ,
obtain the next command.

~
o
;.
o
0

s..
o
?/
~ o·
:l

v.
-l

~ Diagram 2.1.2.4 DO Modal Command
o
CIl
.......

<
CIl
N

->g
o 	 "
!:l
~ HDAREA o 	 .,,> 1. 	 Determines if DO is part of an[....

IF·THEN command.NESTLVL
l(l

NULLDO:1riO MODLFLGS 	 HDAREAr:
r 	 2. Processes DO command within ">vo

IJQ 	 IF·THEN command. .
riO 	 NESTLVL

NULLDO a. 	 Immediately following THEN or
ELSE. MODLFLGS,

b. 	 Not immediately following THEN
or ELSE.

-

'-' '-' 	 '-'

r r r

Extended Description for Diagram 2.1.2.4

Module: IDCRIOI

Proced.e: GETNEXT, NXTFlELD, NEXTCHAR

1. If a DO command is not part of an IF - THEN
command, control returns to Diagram 2.1.2 to obtain
the next command. If a DO command is part of an IF
THEN command, processing continues to step 2.

Module: IDCRIOI

Procechlre: MODALIF, MOD ELSE, NXTFlELD,
NEXTCHAR,GETNEXT

2. a. If a DO command is part of an IF - THEN
command and immediately follows a THEN or
ELSE keyword, MODALIF or MODLELSE sets
DOFLAG to 1. Control returns to Diagram 2.1.2
for the first command of the DO group.

b. If a DO command is part of an IF - THEN
command, but it does not immediately follow a
THEN or ELSE keyword, the DO command is
unnecessary. GETNEXT increases the NULLDO
field in HDAREA by I, and control returns to
Diagram 2.1.2 for the first command of the
unnecessary DO group.

s::
~
::r

8
s..
o
~ ...
a o·
~

V>
~

- --- - - --- - ------- -- --- -

IV

g Diagram 2.1.2.5 END Modal Command
o
til
-<
til

t'l
» -	 --.
R
~

s:: HDAREA
t1>;. 	 ") 1. Detennines if END is part of an ...

IF-THEN command. 8- MODLFLGS
til
t1> NULLDO HDAREA::! 	 ...2. Processes END command within ~r 	 ...=>
til 	 IF-THEN command: MODLFLGS

~ 	 NULLDO(i' a. 	 When paired with an unneccessary
DO command.

b. 	 When paired with a necessary DO
command.

'-' '-' 	 '-'

r r 	 r

Extended Description for Diagram 2.1.2.S

Motiule: IDCRIOI

Procedure: GETNEXT

I. 	GETNEXT checks the NESTL VL field in HDAREA;
if NESTL VL contains a zero, no IF - THEN
command is being processed, and control returns to
Diagram 2.1.2 to obtain the next command. If
NESTL VL contains a value other than zero,
processing continues with step 2.

Module: IDCRIOI

Procedure: GETNEXT

2. 	 An END encountered during the processing of an IF
THEN command must be paired with a DO
command. If a DO command has not been found in
the current IF - THEN command, the END is
processed as a syntax error as in Diagram 2.2.1, step I.

a. 	 If the END command is paired with an
unnecessary DO command, GETNEXT subtracts 1
from the count in the NULLDO field in HDAREA.
Control returns to Diagram 2.2 to obtain the next
command.

b. 	 If an END is paired with a necessary DO
command, GETNEXT sets the DOFLAG for the
current IF - THEN command to zero. An IF
THEN command is completed if the END is paired
with a necessary DO that followed an ELSE.
GETNEXT subtracts 1 from the count of nested IF
- THEN commands in NESTL VL. Control returns
to Diagram 2.1.2 to obtain the next command.

~
~
o
~

0

S,
o -g
a o·
;,

a-

~ Diagram 201.3 Reader/Interpreter Prepare To Scan Command
o en--...
<
~ INPUT
:>
n IDCRILT
n

'"
~

'" s::
~ ;.
o
0..

en
~ Command Verb Name
~ riO

'"
~

r
ti6riO

Command
Descriptor

L .

I EXOO

From Diagram 201.2 or 2.1.1

PROCESSING

~ 1. Validates verb.

2. Gets commanQ descriptor. rr==!>

.Joo.. 3. Builds PARMINFO table.

J-..... 4. Gets FSR name.

5. Initializes FDT... ~

... ~

~ ...

-.L..__~

...

OUTPUT

PARMINFO Table

Command Descriptor

COMMAREA

FSR Load
Module Name

r----------,, ,
~---------~
I EXOO

~I Verb Name

~ ~ 4w

r r 	 r

Extended Description for Diagram 2.1.3

Module: IDCRI02, IDCRIOI

Procedure: IDCRI02, ERROR2

t. 	Reader/Interpreter Initialization, Diagram 2.1.1, gives
control to this section only if parameters were present
before SYSIN was read. Otherwise, control comes
from Diagram 2.1.2. IDCRI02 compares the verb
name with the valid functional verb names in
IDCRIL T. If a match is found, IDCRI02 obtains the
name of the verb's command descriptor from the
table. If a match is not found, the verb is invalid, and
ERROR2 prints a message on SYSPRINT. The
remainder of the command is ignored, and control is
given to Reader/Interpreter termination, Diagram
2.1.5.

Module: IDCRI02

Procedure: IDCRI02

2. 	 IDCRI02 uses the command descriptor name to load
the command descriptor. A command descriptor is a
load module describing all the parameters the
command may have. Access Method Services defines
a parameter as:

• 	 Positional data-positional parameters cannot
have subparameters.

• 	 Keyword with or without data-keyword
parameters may have subparameters.

Data is a constant or list of constants.

Some examples of parameters are:

enlryname ... in DELETE is a positional parameter.

• 	 VOLUMES (111111) is one parameter with a
keyword VOLUMES and data of '111111'.

• 	 VOLUMES (111111, 222222) is one parameter
with keyword VOLUMES and data of '111111' and
'222222'. (t 11111, 222222) is a list of constants.
Each constant is the same thing-that is, a volume
serial number.

• KEYS (5, 40) is 3 parameters--KEYS, length with
<> value 5, and position with value 40. KEYS is a
~

;.
keyword while length and position are each 8 positional parameters. (length, position) is not a list a of constants because the second item, position, is

o different from the first, length. length and position
'& are subparameters of KEYS.a o· KEYRANGES «5, 40), (50,60), (70, 80» is 3
::> parameters--KEYRANGES, lowkey, and highkey.
0"
w

The subparameters of KEYRANGES, lowkey and
highkey are repeated. In Access Method Services,
each repetition of a parameter must be enclosed in
parentheses. Since /owkey and highkey are
positional parameters, they must always be in the
same relative position. They are repeated as a pair
to maintain their position.

Module: IDCRI02, IDCRIOI

Procedure: IDCRI02

3. 	 The command descriptor contains an identification
number for each parameter the command is permitted
to have. Since the sections of the command descriptor
that describe the parameters are in no set order,
IDCRI02 builds the PARMINFO Table to access
information in the order of the parameter
identification number. The PARMINFO Table
consists of several sections. In the Descriptor Pointer
section, the first pointer in the array points to the
Command Descriptor section that describes parameter
with identification number I. The second pointer
points to the Command Descriptor section that
describes parameter with identification number 2, and
so on. The PARMFLAG section contains one entry
for each parameter identification possible in the
command. PARMFLAG is used to keep track of
which parameters have been found. When a
parameter is found, SETFLAG sets the indicator for
the parameter in PARMFLAG.

In Access Method Services, a sub parameter is a
parameter that modifies another parameter. For
example, in DEFINE SPACE (VOL .. J, VOL is a
subparameter of SPACE. In this document, the
parameter that the subparameter modifies is called its
superparameter. In this example, SPACE is the
superparameter of VOL. A superparameter, then, is a
parameter that is modified by other parameters. For
each subparameter, IDCRI02 puts the number of its
superparameter in the PARMINFO Table in the
Superparameter ID section that the
Reader/Interpreter, R/I, uses to determine the
relationship among parameters.

Module: IDCRI02

Procedure: IDCRI02

4. 	 IDCRI02 obtains the FSR load module name from the
command descriptor and places the name in the
FSRLNAME field in COMMAREA. The Executive
uses the FSR load module name to load the FSR that
executes the command.

Module: IDCRI02

Procedure: IDCRI02

S. 	 IDCRI02 obtains storage for the Function Data Table,
FDT. The verb uses eight bytes of storage, and each
parameter uses four additional bytes. IDCRI02 obtains
more storage for the FDT if any parameter is
repeated. The amount of storage for repeated
parameters is calculated from the command
descriptor. Because IDCRI02 uses a UGPOOL macro
instruction to obtain storage, the identifier EXOO
precedes the FDT. IDCRI02 initializes the FDT to
zero and places the verb name in the first eight bytes.
The FDT contains the information from the command
that an FSR needs to execute the command. The FDT
is the interface between the R/I and the FSRs and
consists of a primary array of addresses, one
secondary array of addresses for each repeated
parameter, and encoded data from the command.
Control goes to Diagram 2.1.4.

~ Diagram 2.1.4 Reader/Interpreter Scan Command
o
til
"
til
<
N PROCESSING OUTPUT

i;"
(l
o h para meter untl'1 ..end of
~ ·1 Interprets eac do f nested repetitIOn, • d or en 0cornman 2:: then goes to Step .
;.o

8
til Command
o

~ a. Obtains pa rameter.

n' I I
~
r o

O<l
n' ~

Cornmand Descriptor I b. Checks for err~rs'--8I
See Dlagra I

PARMINFO
Table

c. Puts parameter data items

" See Diagram 2.1.FDT. .---8'
2. Supplies defaults and checks for I

errors. r=

4w ~ c..,

r r 	 r

Extended Description for Diagram 2. t.4
Module: IDCRIOI

Procedure: BUILDFDT, CONVERT, DSIDCHK,
NAMESCAN, SCANCMD, KWDPARM, POSPARM,
INREPEAT, GETDATA, GETSIMPL, GETQUOTD,
ERROR I, ERROR2, NXTFIELD, NEXTCHAR,
GETRECRD

1. 	 If the Reader/Interpreter, R/I, is processing a
specified parameter, processing continues with step
I.a. If the R/I is processing the end of a command or
the end of a repeated parameter, proq:ssing continues
with step 2. A parameter set is a parameter repeated
as a group. Each repeated parameter set is treated
separately from the command and from other
repeated parameter sets. PARMFLAG for the
parameters in a repetition are reset to zero for each
group of repeated parameters in order to start the
processing again for the new repeated group of
parameters.

a. 	 SCANCMD extracts a parameter from the input
record in storage. If the entire parameter is not in
storage, GETRECRD reads SYSIN until all the
parameter is in storage.

b. 	 SCANCMD checks the parameter for syntax errors
based upon the information for the parameter in
the command descriptor. If errors are found,
ERRORI or ERROR2 writes a message to
SYSPRINT and sets LASTCC to 12. The rest of
the command is skipped, and control is passed to
R/I termination.

c. 	 As SCANCMD scans the command, BUILDFDT
encodes the command into the FDT in order to
describe the command to the FSR that will execute
it. The data items are checked for additional errors
(errors are processed as described in step l.b).
Parameter scanning continues one parameter at a
time until the end of a repeated parameter list is
reached or until the command terminator is found.
For positional parameters and data belonging to
keywords, BUILDFDT checks to ensure that a

3: string does not exceed the allowed length, that a
n> number is not out of range, and that there are notso too many elements in a list.
Q.

o Module: IDCRIOI -o
"0 Procedure: DEFAULTS, SETDFLT, NEEDNOTS

a n>
2. The PARMINFO Table is used to access the

0' description of each parameter. If a repeated group of
::::J parameters or a command is incomplete, default
'"

values are supplied to the FDT. The defaults, which
are in the command descriptor, are always supplied
whenever an input parameter is omitted, unless the
defaults conflict with the input parameters.
DEFAULTS and SETDFLT check to ensure that the
combination of defaults supplied for the command is
meaningful, that is, no parameters that are
syntactically correct but logically incorrect.
P ARMFLAG and the command descriptor are used to
make inter-parameter checks for missing keywords
and mutually exclusive keywords. If command
scanning is not complete, control returns to step I to
obtain the next parameter.

VI

g: Diagram 2.1.4.1 Reader/Interpreter for Job Batched Jobs Syntax Check Parameter
o
~
"<
~
N

> -- -- - - ~ - --- --~--~ .- -...
~ 1 Parameter Number

Command -"..,~ t. Gets parameter number. I I ~ I I
t> <'...go Command Descriptor

D
PARMINFO Table 8- ...J'."')2. Indicates parameter is found. I IW

:1 FDTTBL
('i.

D
t>
CIl

r 3. Checks constant for errors. ')

o
OQ
('i.

4. Prepares to scan subparameters.

~ ~
 '-'

r r 	 r

Extended Description for Diagram 2.1.4.1

Module: IDCRIOI

Procedure: SCANCMO, KWOPARM

1. 	 The identification number is found differently for
positional and keyword parameters. For a positional
parameter, SCANCMO obtains the number of the
parameter from the subparameter 10 number list in
the current superparameter's descriptor. For a
keyword parameter, KWOPARM compares the
keyword to every possible keyword permitted in the
current level of parameter processing. When a match
is found, KWOPARM saves the 10 number of the
keyword.

Module: IDCRIOI

Procedure: SETFLAG

2. 	 SETFLAG uses the 10 number of the parameter as an
index to the FDT. SETFLAG puts the address of the
FDT field in the same FDT field-the FDT field
points to itself-to indicate that the parameter has
been found. If the parameter has data, the FDT field
will be changed later to the address of the data. Also,
SETFLAG sets the PARMFLAG value to I for this
parameter to indicate the parameter has bel;ll found in
the command.

Module: IDCRIOI

Procedure: GETDATA, CONVERT, PACKCVB,
DSIDCHK, ERROR2

3. 	 If the parameter is a constant in the case of positional
parameters, or if a constant is associated with the
parameter in the case of a keyword parameter,
GETOATA checks the constant for syntax errors. If
an error is encountered, ERROR2 issues a message on
SYSPRINT and sets LASTCC to 12. In Access
Method Services, a constant is one of the following:

• 	 dsname/password
• 	 dsname(membername)/password
• 	 dname/password
• 'character string'

~ • character string
(1) • X'hexadecimal digits' 5

• 	 decimal digits 8.
• 	 B'binary digits' g,

o A list of constants is several constants in the same
~ format following each other. A constant or a list ofg constants may belong to one parameter. o·
::I

0"

Module: IOCRIOI

Procedure: SCANCMD

4. 	If the keyword parameter has subparameters
associated with it, SCANCMO processes the
subparameters next. For example, if the following
command is specified:

VERB A(x) B(C(p q) D(r s E(x))) F G(x)

A, B, C, D, E, F, and G are keyword parameters. p, q,
r, and s are positional parameters. x represents data.

The comman~ has the following structure for
scanning:

Verh

I I 1 --r-----I
A B F G

r----l
c D

,---I1 - I~
p 	 E

The structure is in levels of parameter dependency.
The verb is on level zero. Parameters A, B, F, and G
are on level one. When the Reader/Interpreter, R/I,
scans level one and finds parameter B, the scanning
begins one level lower with parameters C and D on
level two. When parameter C is found, the scan again
moves one level lower to scan the C subparameters. At
the end of the C subparameters, the scan returns to
level two to scan the next parameter on level two. At
the end of the 0 subparameters, there are no more
parameters on level two, and the scan returns to level
one for parameter F. In other words, the parameters
are processed in the same order that they appear on
the input statement. R/I keeps the level number of the
parameter being scanned in PARML VL. R/I keeps the
ID number of the superparameter for the level being
scanned in SUPERID. R/I keeps the ID number of the
parameter being scanned in PARMID. Control returns
to Diagram 2.1.4, step I.c.

-..l

- - -

I

~ Diagram 2.1.4.2 Reader/Interpreter Build FDT
o
til
"<
~

Command

:s::
~
::r

8.
~
~
l'i"
C1l

'"
b'

OQ FDT
('i'

Jverb

.... List of addresses ;r

3 . .:>

""
Descriptor 1...=>

") 2.

i :~
..

- --- - ---_..

Determines type of parameter:

Non-repeated parameter, Step 2 . •
Rrpeated parameter, Step 3 . •

Puts address in FDT primary

vector for non-repeated parameter.

Puts address in FDT array for
repeated parameter.

FDT

FDlTBL")
Verb I

/
I

Data or Count and Data

\. Array of Addresses
I

v "

I

Count and Data I(~"'"'
I

I

'-' ~ '

r r 	 r

Extended Description for Diagram 2.1.4.2

Module: IDCRI01

Procedure: PACKCVB, CONVERT, GETSPACE,
MORSPACE

1. 	 The parameter type determines how it is encoded into
the FDT. If the parameter cannot be repeated,
processing continues with step 2; if the parameter can
be repeated. processing continues with step 3. Refer to
Diagram 2.1.3 for a definition of parameter.

2. 	 A non-repeated parameter is one of the following:

• 	 A keyword with no data and no repeated
subparameters

• 	 A keyword with no data and repeated
subparameters

• 	 A positional or keyword parameter with a single
constant as data

• 	 A positional or keyword parameter with a list of
constants as data

Each category is encoded differently into the FDT as
follows in the same order as above:

• 	 The address in the FDT points to itself

• 	 The address in the FDT points to a fullword
containing the number of subparameter repetitions

• 	 The address in the FDT points to the single
constant

• 	 The address in the FDT points to a halfword
containing the number of constants and
immediately preceding the list of constants

Character string constants are not changed, but
P ACKCVB and CONVERT convert numbers and
hexadecimal strings to binary before the address is put
in the FDT. If a list of constants is found, GETSPACE
obtains space for the list when the first constant is
processed. MORESPACE obtains additional space, if
necessary. In the Reader/Interpreter, R/I, listings, the
word scaler is interchangeable with the word constant.

3: Control returns to Diagram 2.1.4 for the next
~ parameter.~
8. Module: IDCRIOI
o-. Procedure: SCANMD, INREPEAT, DEFAULTS, o NEEDNOTS

"R a 3. Each repeated parameter-postional or keyword- is
o· one of two repetition types.
:s

$

Repetition Type I
The repeated parameter is not embedded in another
repeated parameter. The objectname parameter in the
IMPORT command has Type 1 repetition.

Repetition Type 2
The repeated parameter is embedded within another
repeated parameter. The lowkey parameter in the
IMPORT command has Type 2 repetition.

The maximum number of repetitions for a parameter
is in the command descriptor for the parameter. The
R/I uses the repetition type to insert the addresses of
the data associated with the parameter in a secondary
FDT array of addresses. The address of the array is
put in the primary FDT. For each repetition type the
FDT array is different.

Repetition Type I
The array is one-dimensional and contains one
address for each possible occurrence of the parameter.

Repetition Type 2
The array is two-dimensional. There is one row for
each possible occurrence of the Type I or outer
parameter. There is one column for each possible
occurrence of the Type 2 or inner parameter.

Consider a command in the following format:

VERB A((B(C D((x y) ... »E) ...) F

The type I parameters are B, C, D, and E because the
entire parameter set (B(C D((x y) ... »E) can be
repeated, but it is not embedded in another repeated
parameter.

The Type 2 parameters are x and y because (x y) can
be repeated, and it is embedded in another repeated
parameter. A one dimensional array is built for each
Type I parameter, B, C, D, and E, but a two
dimensional array is built for each Type 2 parameter,
x and y.

The data from each repetition of a parameter is
treated as in step 2, but instead of putting the data
address in the primary FDT array, R/I puts the
address in the secondary array of addresses for the
parameter. In the R/I listings, repetition type is called
repeatedness nesting. Refer to the examples of FDT in
the "Data Areas" chapter. Control returns to Diagram
2.1.4 for the next parameter.

IV

~ Diagram 2.1.5 Reader/Interpreter for Batched Jobs Termination
o
~
<(Il INPUT

~
I'l

Il
'" HDAREA
~
;.
8. LOADTPTR
(Il

:;! '" I~ KWDTJ>fR

~r
til

(JQ
rio
b

\~DCRILT

COMMAREA

LASTCC

EOFFLAG

DESCNAME

From Diagram 2.1.4

,.

...... ..

.", 1. Deletes tables

2. Updates condition code. ::>

3. Determines if command is to be executed.

UUTPUT

Register 15,
Register I

C=-----J

ItGDT

Lt FDT Address

FDT UGPOOL Id

MAXCC

11 LASTCC

It FSRName

l,
'-' ~

r r r

Extended Description for Diagram 2.1.5

Module: IDCRI03

Procedure: IDCRI03

1. IOCRI03 deletes the command descriptor table for the
current command and temporary storage. If •
end-of-file or a severe error is encountered, IDCRI03
deletes the command name table, IDCRILT, the
modal name table, IDCRIKT, and HDAREA.

Module: IDCRI03

Procedure: IDCRI03

2. If end-of-file is encountered on SYSIN, IDCRI03 sets a
flag in COMMAREA, and IDCRIOI puts a non-zero
value in register 15, indicating that the Executive is
not to call the Reader/Interpreter, R/I, again. If
end-of-file has not been encountered and no severe
errors were found, IDCRIOI sets register 15 to zero. If
an error causes the R/I to terminate all processing,
IDCRI03 prints an error message on SYSPRINT.
IDCRI03 sets MAXCC to 16 which indicates that the
Executive is not to call the R/I again.

Module: IDCRI03, IDCRIOI

Procedure: IDCRI03, IDCRIOI

3. If the command had errors or was being scanned only
for syntax errors due to a modal expression, IDCRI03
releases the FDT and gives control to Diagram 2.1.2
to get the next command from SYSIN. If the
command is to be executed or severe errors were
encountered, IDCRIOI gives control to Executive
Controlled Termination, Diagram 4.0.

s::
n>;.
o
Q.

~
o
'0
n>..,
2i
0'
:::I

-.J

t3 Diagram 2.2 Reader/Interpreter for Interactive TSO
o
~
<:
CI'l ...' __ &:.I~t..JlI' • .r.. .. _ ,",v •• uaN

>()
()
(I)
til
til

3: 1. Initializes.(I)

;.
o GDTRIH
0
CI'l
(I)

~ (i.
(I)
til

r
o

0<> 2. Interprets parameters.
(i.

See Diagram

• Non-Repeated

• Repeated

~
3. Terminates.

TSOCommand Buffer I
Command FSR Name I

Register 15

I I
LASTCC

I I
MAXCC

I I

,-. \.,'-'

('
r 	 r

Extended Description for Diagram 2.2

Module: IDCRI04

Procedure: IDCRI04, RISETUP

1. 	 GDTRIH is zero before the first call to the
Reader/Interpreter, R/l. If GDTRIH is zero,
IDCRI04 puts the address of GDTRIH in GDTRIH; if
GDTRIH is non-zero, control goes to step 3 to
terminate the R/1. RISETUP gets the command name
from the Environment Control Table, ECT. TSO
builds the ECT before Access Method Services gets
control. Refer to OS/VS2 TSO Guide to Writing a
Terminal Monitor Program or a Command Processor
for information about the ECT. The command name
table, IDCRIL T, is loaded with a ULOAD macro.
RISETUP issues a ULOAD macro to load the
command descriptor for the command name from the
ECT. A UGPOOL obtains space for the PARMINFO
table which will contain information about each
parameter, and the RSI table which will contain
information about repeated parameters. Refer to
Diagram 2.1.3 for the definition of parameter.

The FDT contains the information from the command
that an FSR needs to execute the command. The FDT
is the interface between the R/I and the FSRs and
consists of a primary array of addresses, a secondary
array of addresses for each repeated parameter, and
encoded data from the command. RISETUP gets
space with a UGPOOL macro for the FDT primary
array of addresses and arrays of repetition counts. The
UGPOOl identification for the FDT is given to the
R/I when the R/I is given control. Because RISETUP
uses a UGPOOL macro to obtain storage, the
identifier 'EXOO' precedes the FDT. The verb uses
eight bytes, and each parameter uses four additional
bytes. More storage is obtained if any parameter is
repeated. The amount of storage for repeated
parameters is calculated from the command descriptor
or from the number of repeated parameters in the
command. RISETUP initializes the FDT to zero and
places the verb name in the first eight bytes.

Module: IDCRI04
!:
", Procedure: MAINSCAN, SUBSCAN, TRNSLATE,s:
o NOTPARMS, RESOLVE, DEFAULTS, SETDFLT,
0- NEEDPRMS,ADDPARM
~

2. 	The command's parameters are checked and encodedo
'0
", into the FDT in three groups-first, non-repeated ... parameters; second, repeated parameters of Type Ia o· repetition; and third, repeated parameters of Type 2
:::3 repetition. Refer to Diagram 2.1.4.2 for a definition of
-...j
Vol

repetition Type. Within each group, the individual
parameters are checked and encoded into the FDT in
the order they appear in the command descriptor. As
the non-repeated parameters are checked and encoded
into the FDT, information is gathered about the
repeated parameters with Type I repetition. As the
repeated parameters with Type 1 repetition are
checked and encoded into the FDT, information is
gathered about the repeated parameters with Type 2
repetition. After all parameters have been encoded
into the FDT, control goe~ to step 3.

For the non-repeated parameter group,
MAINSCAN builds a Parse Parameter List, PPL,
which points to the primary Parameter Control
list, PCL, in the command descriptor and to the
TSO command buffer. MAINSCAN then issues a
UUNK macro to give control to IKJPARS. Note:
For YS2.03.807 a CALL TSSR macro is issued
rather than UUNK. IKJP ARS parses the
non-repeated parameters and handles syntax
errors. The output of IKJPARS is a Parameter
Descriptor List, PDL, which contains the encoded
non-repeated parameters. The repeated parameters
are also in the POL, but they are not encoded-just
a long string of data. Refer to OS/VS2 TSO Guide
to Writing a Terminal Monitor Program or
Command Processor for more information on
IKJPARS and its input and output. If the return
code from IKJPARS is non-zero, MAINSCAN sets
LASTCC to 12 and gives control to step 3 for R/I
termination.

For each possible parameter in the group,
TRNSLATE finds the parameter in the command
descriptor. TRNSLATE uses the offset into the
POL in the command descriptor to find the POE
for the parameter. If the parameter exists in the
POL, BUILDFDT encodes it into the FDT from
the PDL. Refer to Diagram 2.1.4.2 for a
description of how each parameter is encoded into
the FDT. The R/I must check the command for
missing parameters, default parameters, and
incompatible parameters. If NOTPARMS finds
two incompatible parameters, RESOLVE issues a
UPROMPT macro so the TSO terminal user can
choose the parameter. DEFAULTS and SETDFLT
supply defaults for any missing parameters that
have defaults in the command descriptor.
NEEDPRMS checks for any required non-repeated
parameters that are missing. ADDPARM issues a
UPROMPT macro so the TSO terminal user can
supply the missing subparameters. After missing
parameters are supplied, IKJPARS parses them as

described above, and BUILDFDT encodes them
into the FDT. After missing non-repeated
parameters are supplied. NOTPARMS and
DEFAULTS check the new version of the
command. See Diagram 2.2.1 for more
information on parameter checking.

Both types of repeated parameters are divided into
parameter sets. A parameter set is several
parameters repeated together. In the IMPORT
command, all the subparameters of OBJECTS are
a parameter set. Each (lowkey highkey)
subparameter pair of the KEYRANGES parameter
is a parameter set. First, the parameter sets with
Type 1 repetition are checked and encoded into the
FDT. Second, the parameter sets with Type 2
repetition are checked and encoded into the FDT.
Each parameter set is treated separately from other
parameter sets. The following occurs for each
parameter set. SUBSCAN gets information about
the parameter set from the Repeated Sublist Index,
RSI. SUBSCAN uses the information to build a
PPl which points to the Parameter Control List,
PCl, and to the parameter set. The PCL describes
all possible parameters in the parameter set.
SUBSCAN issues a ULINK macro to give control
to IKJPARS. Note: For YS2.03.807 a CALLTSSR
macro is issued rather than UUNK. IKJPARS
parses the parameter set and handles syntax errors.
The output from IKJPARS is a POL which
contains the encoded parameter set. If the return
code from IKJPARS is non-zero, SUBSCAN sets
lASTCC to 12 and gives control to step 3 for R/I
termination. The parameter set is encoded into the
FDT and checked as described in the preceding
paragraph.

Module: IDCRI04

Procedure: RITERM

3. 	 If either GDTRIH or LASTCC is non-zero, RITERM
puts a non-zero number in register 15 as a signal to the
Executive to terminate Access Method Services. If
both GDTRIH and lASTCC are zero, RITERM puts
a zero in register 15 so the Executive will give the
command to a FSR. RITERM frees all temporary
storage. Control goes to Executive Controlled
Termination, Diagram 4.0.

~ Diagram 2.2.1 Reader/Interpreter for Interactive TSO: Checking Parameters
o
Vl
.......

<: 	 N
Vl

... "' - .. ._-----_. "'-	 -_ .. - -- ..

~ 	 '"
&l
'" PDL 	 PARMINFO Table
~ 	 "
1. 	Checks each parameter for:S- -V 	o Output from
0-	 ~IKJPARS ..,> Prompting Messages
~ and Responses
Vl

~
n' <-,,-
'"
~

b 	 a. Repeated subparameters.

I(JQ

n' b. 	 Invalid data.

c. 	 Too many items in a list.

Command
IKJPARSDescriptor

........
2. 	Checks the parameters together -,/
for: TSO Parse

").... FDT
a. 	 Conflicting parameters.

b. 	 Default parameters.
PARMINFO Table

D

c. Omitted. parameters.

PARMINFO Table

D

c.,~
'-'

r 	 r' r

Extended Description for Diagram 2.2.1

Module: IDCRI04

Procedure: TRNSLATE, FINDPDE, REPLIST,
TOOMANY, NEWPARM, BUILDFDT, GETSPACE

I. 	TRNSLATE checks for each possible parameter either
in the group of non-repeated parameters or in the set
of repeated parameters. For each possible parameter,
FINDPOE obtains the offset of its Parameter
Descriptor Entry, POE, from the command
descriptor. The POE is always at the same offset
within the Parameter Descriptor List, POL. Then
TRNSLATE checks the POE to see if the parameter is
coded in the command.

a. 	 If the parameter contains repeated subparameters,
REPLIST saves information about the repeated
subparameters in the Repeated Sublist Index table,
RSI. RSI contains the address, length, repetition
number, and superparameter identification number
for each repetition of the subparameters. Refer to
Diagram 2.1.3 for a definition of superparameter.
REPLIST issues a UGPOOL macro to obtain
storage for the secondary FDT array of addresses
for each repetition of the subparameters. REPLIST
also calculates the offset in the FDT for each
repetition of the subparameters. If too many
repeated subparameters appear for the parameter,
TOOMANY issues a UPROMPT macro so the
TSO terminal user can choose whether to ignore
the extra subparameters or to terminate the
command. If the parameter should have repeated
subparameters and none appear in the command,
NEWPARM issues a UPROMPT macro so the
TSO terminal user can supply the missing
subparameters. REPLIST saves information about
the new subparameters in RSI as if the
subparameters had originally appeared in the
command. However, no further checking is done
on the repeated subparameters at this time.

b. 	 BUILDFDT checks data belonging to a parameter.
If the data is incorrect, NEWPARM issues a
UPROMPT so the TSO terminal user can supply
new data. BUILDFDT points to a Parameter'"

~

:::r Control List, PCL, that describes the new data and
o
0- issues a ULINK macro to give control to the TSO
S, Parse Routine, IKJPARS. Note: For VS2.03.807

IKJPARS receives control via the CALLTSSRo
"0 macro rather than ULINK. IKJPARS checks the
'" new data for syntax errors and returns the dataa o· encoded in a Parameter Descriptor List, POL.
:::s BUILDFDT puts the correct data in the FDT.
-...t

Vl

c. 	 GETSPACE gets storage for the data and places
the address of the storage in the FDT. GETSPACE
counts the number of constants in a list. If too
many constants appear, TOOMANY issues a
UPROMPT macro so the TSO terminal user can
choose whether to ignore the extra constants or to
terminate the command.

Module: fDCRI04

_	Procedure: NOTPARMS, RESOLVE, DEFAULTS,
NEEDPRMS, ADDPARM, SETDFLT

2. 	 The parameters as a group of non-repeated

parameters or as a set of repeated parameters are

checked for incompatible parameters, default

parameters, and missing parameters.

a. 	 NOTPARMS checks the parameters against the
command descriptor. If any two parameters are
incompatible, RESOLVE issues a UPROMPT so
the TSO terminal user can choose one. RESOLVE
removes the not-chosen parameter from the FDT.

b. 	 If any missing parameter has a default,
DEFAULTS checks the command descriptor to
find the default. DEFAULTS points to a
Parameter Control List, PCL, that describes the
default and issues a ULINK macro to give control
to the TSO Parse Routine, IKJPARS. Note: For
VS2.03.807 IKJPARS receives control via the
CALLTSSR macro rather than ULINK. IKJPARS
checks the default and returns the default
parameter encoded in a Parameter Descriptor List,
POL. SETDFLT adds each defaulted parameter to
the FDT.

c. 	 After incompatible and default parameters are
checked, NEEDPRMS checks for missing
parameters. If any parameters are still missing,
ADDPARM issues a UPROMPT so the TSO
terminal user can supply the missing parameter(s).
ADDPARM points to a Parameter Control List,
PCL and issues a ULINK macro to give control to
the TSO Parse Routine, IKJPARS. Note: For
VS2.03.807 IKJPARS receives control via the
CALLTSSR macro rather than ULINK. IKJPARS
checks the new parameter for syntax errors and
returns the parameter encoded in a Parameter
Descriptor List, POL. The parameter is put in the
FDT as described in Diagram 2.1.4.2. If any new
parameters are added to the FDT, step 2 is
repeated until no new parameters are added by step
2.c.

r r 	 r

3.1 3.3 3.5 3.7 3.9 3.11 	 3.13 3.14 3.15

ALTER DEFINE EXPORT LlSTCAT PRINT VERll'Y BLDINDEX LlSTCRA EXPORTRA

3.2 3.4 3.6 3.8 3.10 3.12 3.13.1 3.14.1 3.15.1

IILDlNDEX-	 EXPORTRA
L1STCRACNVTCAT DELETE IMPORT PARM REPRO CHKLlST Get Information 	 Field
Process eRAand Verify 	 Management

3.5.1 3.7.1 3.10.1 3.12.1 3.13.2 	 3.15.2

IILDINDEX-
EXPORT- Obtain Resources EXPORTRA-L1STCAT- REPRO- CHKLlST-

Gets Catalog Prints
Information Reload Information

CLUSTER 	 and SOft Driver
Initialization

3.6.1 	 3.13.3 3.15.2.1 3.15.2.2

IILDINDEX
EXPORTRA- EXPORTRA

IMPORT-	 Sort-Merge
Export VSAM Export

CLUSTER 	 and lIuild
data set NonVSAM

Alternate Index

I 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8 3.3.9

DEFINE
DEFINE 	 DEFINE

DEFINE DEFINE MASTER- DEFINE DEFINE DEFINE 	 DEFINE
GENERATION-	 ALTERNATE

ALIAS CLUSTER CATALOG/ NONVSAM PAGESPACE SPACE 	 PATH
DATAGROUP 	 INDEXUSERCATALOG

3.17.1 3.17.2 3.17.3 3.17.4 3.17.5

MergeINITIAL- COPY Reassign Check
IZATION Catalog ("I numbers AssociationsCRAs to

Work File

3:

[
~

S
O
'g

~ O·
:I

::j

3.16 	 3.17

RESETCAT
IMPORTRA (VS2.03.808)

3.16.1

IMPORTRA-
Cluster or
Alternate Index

3.16.2

IMPORTRA-
Usercatalog

3.16.3

IMPORTRA-
NonVSAM

3.16.4

IMPORTRA
GOG lIase

3.17.6 3.17.7

Update Update
Catalog CRA

Ocl Diagram 3.1 ALTER FSR
o From Executive
til
" Controlled Termination
til
<
N INPUT PROCESSING OUTPUT

~ Register I 1. For each entry to be altered: CTGPL
~ r-- I3:: a. Gets storage for parameter list. (1)

;.
8-

,\------,
b. Renames partitioned data set member.

tGDT CTGFLs
til c. Prepares generic names.
(1) t FDT ~I
~
n° 2. Obtains information from catalog. <~~~===1
(1)

'"
r o

]r ""(J<l 0 In'
,-

LOCTABLE
VSAM

3. Verifies new values are compatible.

Catalog 4. Verifies entry type is valid for 'I

alter opera tio n.

S. Builds catalog parameter lists.
... I CTGPL

I • VSAM r--
Catalog

.....

• Message

~~

D -c Register I CTGFLs

~ I

• FDT

<': ~LASTCC6. Changes catalog entry. :>.
tGDT

7. Writes message.

,-,. l,. '-'

r' r 	 r

s::
:r
(I

o
Q.

o-.,

o
~ a o·

::::I

\C)

Extended Description for Diagram 3.1

Module: IDCALOI

Procedure: IDCALOI, MEMRENAM

1. 	 IDCALOI tests the FDT to see if the entryname needs
to be qualified. Data set names are qualified if Access
Method Services is invoked interactively with TSO. If
the entryname needs qualification, IDCALOI issues a
UQUAL macro for the name and uses the returned
data set name for the remainder of the ALTER FSR.
If the entryname is qualified by UQUAL and
NEWNAME is specified and needs qualification,
IDCALOI puts the trailing qualifier from the
entryname on the NEWNAME. This modified
NEWNAME is used for the remainder of the ALTER
FSR.

a. 	 IDCALOI gets storage for the catalog parameter
list.

b. 	 IDCALOI tests the FDT to see if the entryname
contains a membername for a partitioned data set
and NEWNAME is specified. If it is not, control
continues with step I.c. MEMRENAM checks to
be sure that the partitioned data set name from
entryname and the partitioned data set name from
NEWNAME are identical. The two names can
both be aliases, but they must match character for
character. If they do not match, control goes to
step 7. MEMRENAM builds an OPNAGL. If FILE
is not specified, MEMRENAM puts the entryname
in the OPNAGL. This causes the partitioned data
set to be dynamically allocated by the UOPEN
macro. MEMRENAM issues a UOPEN to open the
partitioned data set. If FILE is specified,
MEMRENAM compares the entryname with the
data set name returned by UOPEN. If the names
do not match, control goes to step 7.
MEMRENAM then issues a USTOW macro with
the new member name to rename a member of the
partitioned data set. A UCLOSE macro closes the
partitioned data set.

c. 	 IDCALOI tests the FDT to determine if the
entryname is a generic name-that is, it contains an
*. If it is a generic name, IDCALOI issues a I,JCIR
macro to get a list of entrynames. Each name in the
list is treated as though it had been specified as an
entryname in the ALTER command. A catalog
name returned with the data set names that match
the entryname is saved and used in calls to VSAM
catalog management.

If NEWNAME is specified, IDCALOI tests the FDT
to determine if the NEWNAME is a generic name. If
it is generic, IDCALOI builds a unique NEWNAME
for each entryname. If either the entryname or the
NEWNAME is generic, they must both be generic.
The * in this NEWNAME is replaced with whatever
characters replaced the * in the entryname. These
characters will vary for each entryname in the list. If
the resulting NEWNAME is greater than 44
characters, this entryname is not processed and control
returns to step I for the next entryname.

Module: IDCALOI

Procedure: LOCATPRC

2. 	 Due to the arrangement of some information in a
VSAM catalog, in order to change part of a field, the
entire field must be retrieved and changed. If only
NEWNAME, OWNER I NULLIFY (OWNER), TO
I FOR I NULLIFY (RETENTION), EXCEPTION
EXIT, NOUPGRADE, UPDATE I NOUPDATE, or
BUFFERSPACE is specified, control goes to step 5.
LOCATPRC builds a CTGPL and CTGFLs which
reference the PASSWALL, DSATTR, GDGATTR,
AMDSBCAT, ENTYPE, CATACB, CRAVOL,
RGATTR, and HURBADS catalog fields. Refer to the
list at the end of this description for the contents of the
catalog fields obtained with a particular CTGFL.
LOCATPRC issues a UCATLG macro to retrieve the
information from the catalog. If the return code is
zero, LOCATPRC uses the returned information to
build a table, LOCTABLE.

If the return code is 40, tbe work area for VSAM is too
small. LOCATPRC incre'ases the work area and
reissues the UCATLG. If the return code is any other
non-zero number, the ALTER command is terminated
and control goes to step 7.

Module: IDCALOI

Procedure: CHECKPRC

3. 	 Following the primary locate, IDCALOI will invoke
CHECKPRC if any of the following parameters were
specified: UPGRADE, KEYS, RECORDSIZE,
UNIQUEKEY. CHECKPRC will perform further
verification of these parameters which will, in most
cases, require additional locates (called 'secondary'
locates). Password processing for the primary and
secondary locates and for the Alter function itself is
handled as follows:

If KEYS and RECORDSIZE are not specified:

a. 	 On the primary locate, if a password is supplied, it
is referenced from the CPL. The verify master
password bit is set.

b. 	 If UPGRADE is specified, a secondary locate for
the data HURBADS is required. If a password is
supplied, it is referenced from the CPL. The verify
master password bit is turned off. The password
(which is that of the cluster level) will be verified as
being read level or higher.

c. 	 On the Alter, if a password is supplied, it is

referenced from the CPL. The verify master

password bit is turned off.

If KEYS and/or RECORDSIZE are specified:

a. 	 On the primary locate, if a password is supplied, it
is referenced from the CPL. The verify master
password bit is set.

b. 	 On the secondary locates, if a password is supplied,
it is referenced from the CPL. The verify master
password bit is turned off. The bypass verification
bit is turned on. No verification will take place and
the requested information will be returned.

c. 	 On the Alter, processing is as described in b above.

If UPGRADE was specified, CHECKPRC verifies
that the ENTYPE is a G (alternate index). If
UPGRADE was specified, CHECKPRC verifies that
the high-used RBA is zero. This latter check will
require a locate of the data HURBADS. If
UNIQUEKEY was specified when the attribute was
previously NONUNIQUEKEY, CHECKPRC verifies
that the high-used RBA of the data object is zero and
that the data object is associated with an alternate
index. If any of these error checks fail, a message is
printed and processing is t~minated.

Module: IDCALOI

Procedure: CHECKPRC

The major portion of the new CHECKPRC procedure
performs the validity checking required to alter the
KEYS and/or RECORDSIZE values of an empty data
set. This checking requires the following secondary
locates, based on the ENTYPE returned from the
primary locate:

-.I

~
o
til
........

<
til
N

~
(1)
<II
<II

~
(1)

;.
8.
til
(1)...
<
~.
<II

b
OQ o·

ENTYPE Locates 	 Fields Requested

I-C orG NAMEDS (a maximum
association of three associations)

0

2-1 association AMDSBCAT
CorG

I-D association 	 AMDSBCAT,
HURBADS, NAMEDS,
ENTYPE, DSATTR,
PASSWALL

C

2-1 association AMDSBCAT

G I-D association 	 AMDSBCAT,
HURBADS, NAMEDS,
ENTYPE, DSATTR,
PASSWALL

2-1 association AMDSBCAT

R 	 I-D association AMDSBCAT, HURBADS
of AIX or NAMEDS, ENTYPE,
cluster DSATTR, PASSWALL

2-1 association 	 AMDSBCAT
of AIXor
cluster

Module: IDCALOI

Procedure: CHECKPRC

If the ENTYPE is none of the above, CHECKPRC
returns to IDCALOI with a terminating condition
code. The LOCATE for the index AMDSBCAT will
be issued only for a KSDS. CHECKPRC also verifies
that the HURBADS is zero. If not, CHECKPRC
returns to IDCALOI with a terminating condition
code. If object being altered is a relative record data
set, CHECKPRC verifies that the average and
maximum record size specified are equal and, if not,
returns to IDCALOI with a terminating condition
code. If the ENTYPE returned in the primary locate is
C, G or R, CHECKPRC saves the control interval
number of the data component which is to be altered.

Module: IDCALOI

Procedure: CHECKPRC

After retrieval of the appropriate AMDSBCATs, the
following check is made of the new average and
maximum recordsizes and/or new key values.

a. 	 Data Object

AMDRKP + AMDKEYLN ~ AMDLRECL

or, if the object has the spanned attribute,

AMDRKP + AMDKEYLN ~ AMDCINV
D.H.R.S

b. 	 DATA object

AMDCINV ~ AMDRKP + AMDKEYLN +
D.R.H.S & AMDCIPCA * (AMDCINV
D.R.H.S) ~ AMDLRECL

c. 	 Index AMDCINV ~ max (x,y) where:

X = I.R.H.S + (2 * (AMDKEYLN + 2» + (3 *
AMDCIPCA) + D.R.H.S

Y = I.R.H.S + (8 * AMDCIPCA) + (2 * SQRT
(AMDCIPCA» + D.R.H.S.

I.R.H.S = index record header size = 24

D.R.H.S = data record header size = 7 if
non-spanned

D.R.H.S = data record ,header size = 10 if spanned

If any of these relationships do not hold, CHECKPRC
returns to IDCALOI with a terminating condition
code.

If this is an alteration of an ESDS the index validity
check is not performed. If this is an alteration of an
alternate index, the AMDRKP is a fixed value of
X'OS'. If relative key position is specified, it applies to
the position of the alternate key within the base cluster
record.

If the object being altered is a alternate index and the
KEYS parameter was specified, a further check will be
made which requires retrieving the AMDSB of the
base cluster's data component.

Module: IDCALOI

Procedure: CHECKPRC

The table below shows the locates which CHECKPRC
issues based on the ENTYPE returned from the primary
locate.

ENTYPE Locates Fields Requested

o I-C association
of G retrieved
in secondary
locate

NAMEDS (the first
association)

2-D association
ofC

AMDSBCAT (the
first association)

G I-C association NAMEDS
retrieved in
primary locate

2-D association AMDSBCAT
ofC

R 1-0 association AMDSBCAT
of base cluster
retrieved in
primary locate

Module: IDCALO I

Procedure: CHECKPRC

Using the base cluster's data AMDSB, CHECKPRC
verifies the following:

AIX AMDAXRKP + AIX AMDKEYLN ~ base
cluster AMDLRECL

or, if the base cluster has the spanned attribute,

AIX AMDAXRKP + AIX AMDKEYLN ~ base
cluster AMDCINV-D.R.H.S

where D.R.H.S = 10

If either of these conditions are not true, CHECKPRC
returns to IDCALOI with a terminating error.

Assuming no terminating errors have been found,
CHECKPRC now sets the appropriate return code to
IDCALOI indicating what situation was encountered.
The return code will eventually be passed back to the
caller, and a message written. The table below shows
the return code value which will be set:

New values New values
are equal are not equal
to previous to previous
values values

Previous 4 o
KEYS and/or
RECORDSIZE
values were
default values

Previous KEYS 4
and/or RECORDSIZE
values were not
default values

If the return code is 0, the alter takes place. If the
return code is 4, KEYS and RECORDSIZE will not be
altered but alters will take place for any other
parameters specified. A return code of 8 will be
treated as a terminating condition code. If the

~~ '"

8

(' (' 	 r

verification of the new values fails, the return code
is 12.

Control is returned to IDCALOI.

Module: IDCALOI

Procedure: PARAMCHK

4. 	 If only NEWNAME, OWNER INULLIFY(OWNER),
TO I FOR I NULLIFY(RETENTION),
EXCEPTIONEXIT, NOUPGRADE,
UPDATE I NOUPDATE, or BUFFERSPACE is
specified, control goes to step 5. Otherwise, IDCALOI
passes control to the internal procedure PARAMCHK.
PARAMCHK verifies that the parameters specified on
the ALTER command are valid for the entry type of
the object to be altered. The
STAGE I BIND I CYLINDERFAUL T,
DESTAGEWAIT I NODESTAGEWAIT,
WRITECHECK I NOWRITECHECK,
INHIBIT I NOlNHIBlT, AND SHAREOPTIONS
parameters are only allowed for data or index objects.
The ERASE I NOERASE, FREESPACE and
UNIQUEKEY INONUNIQUEKEY parameters are
only allowed for data objects. If PARAMCHK detects
an error control goes to step 7, otherwise, control goes
to step 5.

Module: IDCALOI, IDCALOI

Procedure: AL TERPRC, DALCPROC

5. 	 ALTERPRC uses the data from the ALTER command
in the FDT and LOCTABLE. ALTERPRC builds a
CTGPL, a CTGFV, and several CTGFLs in order to
change information in the catalog. Only fields that are
specified in the ALTER command are changed in the
catalog. If information in a field is not being changed,
the CTGFL for the field is not built. If
ADDVOLUMES or REMOVEVOLUMES has been
specified and the object's catalog is a recoverable
catalog, AL TERPRC calls DALCPROC to perform
volume allocation. DALCPROC dynamically allocates
all volumes in the
ADDVOLUME I REMOVEVOLUME lists and
additionally allocates the catalog recovery volume for
the object being altered. The table below lists the data~

~ areas that pass information to VSAM and the

o
::I" keywords whose data is passed.
0
o Module: IDCALOI -o Procedure: INDEXPRC
"0
(l)

6. IDCALOI issues a UCATLG macro to change the ~
0' catalog entry. If KEYS is specified for a KSOS or an
::I alternate index, INOEXPRC builds a CPL, FVT, and

AMOSB FPL; then change the catalog entry of the
associated index object. If the return code is nonzero,
IOCALO 1 builds an error conversion table and calls
UERROR. UERROR will handle the printing of the
error message.

Module: lDCALO I

Procedure: IDCALOI

7. 	 ICDALOI also writes a message with LASTCC to
SYSPRINT. If IDCALOI opened a VSAM catalog, it
closes the catalog with a UCLOSE macro. Control
goes to Executive Controlled Termination.

Data Area Keyword Data

CTGPL NEWNAME address
FILE address
ADDVOLUMES address
REMOVEVOLUMES
address

BUFSIZE CTGFL BUFFERSPACE

DESTEXDT CTGFL TOIFOR
NULLIFY RETENTION

DSATTR CTGFL ERASE I NOERASE
SHAREOPTIONS
UNINHIBIT I INHIBIT

OWNERlD CTGFL OWNER
NULLIFY OWNER

PASSWALL CTGFL MASTERPW
CONTROLPW
UPDATEPW
READPW
CODE
ATTEMPTS
AUTHORIZATION
NULLIFY for any keywords
just listed

Data Area Keyword Data

AMDSBCAT CTGFL FREESPACE
WRITECHECK I
NOWRITECHECK
STAGE IBIND I
CYLINDERFAULT
DESTAGEWAITI
NODESTAGEWAIT
KEYS
RECORDSIZE-maximum
UNIQUEKEYI
NONUNIQUEKEY

EXCPEXIT CTGFL EXCEPTIONEXIT
NULLIFY
EXCEPTIONEXIT

RGATTR CTGFL UPGRADE INOUPGRADE
UPDATE INOUPDATE

LRECLCTGFL RECORDSIZE-average

GDGATTR CTGFL EMPTY I NOEMPTY
SCRATCH I NOSCRATCH

00

- -

- -

00
tv

o
Vl
' <
Vl
tv

:>
()
()...

::
til '"
...
;.
8
Vl...
:1
ri· ...
'"
b

OQ
ri·

Diagram 3.2 CNVTCAT FSR
From Executive

. __ __

k 'Y
Register I

1. Initializes.

C
tGDT 2. 	Puts OS/VS catalog entries 10

VSAM catalog. tFDT

0

..... ,.
"- ::

VSAM oS/VS

Catalog Catalog

J

Alias•
• Data Set

• Generation Data Group

• Control Volume

3. Writes message.

-

.....

VSAM
Catalog·

~ v J

CHjPL
-~ CTGFV

... 	 CTGFL~

h-.l
V.... ~ <...

Data.

].
Message

.....
Register I

. lri
~ Ill...

tGDT

t FDT

1,
I.....

LASTCC

~~ 	 ~

("r 	 r

Extended Description for Diagram 3.2

Module: IDCCCOI

Procedure: IDCCCOI, CNVTlNIT

1. 	 IDCCCOI builds an OPNAGL. If INFlLE is specified,
IDCCCOI puts the DDname in the OPNAGL. If
INDATASET is specified, IDCCCOI puts the data set
name in the OPNAGL. This causes the UOPEN
macro to dynamically allocate the data set. IUCCCOI
issues a UOPEN macro to open the input data set. If
the input data set does not open successfully, the
command terminates, and control goes to step 3.

CNYTINIT issues a UGPOOL to obtain storage for
SYSCTLG index blocks, parameter lists for cataloging
in the VSAM catalog, data areas required by the
VSAM parameter lists, and an initial VSAM catalog
work area required by VSAM for locate requests. If
storage is not obtained, the command terminates, and
control goes to step 3.

Module: IDCCCOI

Procedure: CONVERT, AEPROC, CATALOG,
GIPEPROC, CVPEPROC, ERRPROC

2. 	 In an OS/VS catalog, a data set name is not kept as a
unit. Rather, each data set name is considered as a
series of qualifiers ended with a simple name. Each
qualifier is in a separate index level. The CNVTCAT
FSR must get each qualifier and form the complete
data set name. The CNVTCA T FSR gives the
completed data set name to VSAM, and VSAM puts
the completed data set name as a unit in the VSAM
catalog. Refer to OS/VS2 Catalog Management Logic
for more information on catalog management. If LIST
is specified, each OS/VS catalog entry is written after
it is successfully put in the VSAM catalog. OS/VS
catalog entries not put in the VSAM catalog are
always written in a message.

To form a data set name, CONVERT starts with an
entry in the Volume Index of the OS/VS catalog and
follows the chain of index levels until the simple name,
the last part of the data set name, is found.
CONVERT collects the names of the qualifiers as it~

~ searches for the simple name. Aller the data set name
;::l" is cataloged in the VSAM catalog, CONVERT gets the
0.. next simple name on the last inuex level. When all the
o

s., simple names on an index level have been found,
o CONVERT backs up to the next higher index level
-0
rt and finds any simple names or further index levels. ...,
;;. When CONVERT has backed up to the Volume o·
::l Index, CONVERT reads the next entry in the Volume
00

""'

Index and starts searching through the index levels
again.

When the search for a complete data set name stops,
the name may be an alias of another data set, a data
set name, a generation data group name, or a pointer
to another OS/VS catalog-CVOL. Each type of
name is processed as follows:

An alias is indicated by a Alias Entry. AEPROC
sets an indicator that an alias has been found. An
alias is an alternative name for the first qualifier.
CONVERT must find the complete data set name
just as it does for any data set name. See the next
paragraph for more information on completing a
data set name. When the data set name is formed,
CATALOG issues a UCATLG macro with the
alias name and the true data set name to create an
alias entry in the VSAM catalog. If the true data set
name is the name of a generation data group, the
alias is not put in the VSAM catalog. If the alias is
a duplicate, the alias is not put in the VSAM
catalog, and ERRPROC is called which invokes
UERROR to write an error message.

If a data set resides on I to 5 volumes, the simple
name is contained in a Data Set Pointer Entry. If
the data set resides on more than 5 volumes, the
simple name is found in a Volume Control Block
Pointer Entry. CONVERT builds VSAM
parameter lists with the information from the
OS/VS catalog. CATALOG issues a UCATLG
macro to define the data set as a non-VSAM entry
in the VSAM catalog. If the return code is zero,
control returns to step 2 for the next entry in the
OS/VS catalog.

If the return code indicates that the data set name
already exists in the VSAM catalog, CATALOG
tests the data set name. If the name begins with
'SYSI.', the data set is not put in the VSAM
catalog and a message is written. If the name does
not begin with 'SYSI.', CATALOG issues a
UCATLG macro to locate more information from
the VSAM catalog. If the data set in the VSAM
catalog is a VSAM data set, the OS/VS data set is
not put in the VSAM catalog and a message is
written. If the data set in the VSAM catalog is a
non-VSAM data set, it is assumed that the
duplicate names represent the same data set.
CATALOG compares the volumes assigned to the
non-VSAM data set with the volumes assigned to
the OS/VS data set. If the volumes match, the
OS/VS data set is not put in the VSAM catalog,
and a message is written. If the volumes do not

match, CATALOG issues a UCATLG macro to
change the information in the VSAM catalog about
the non-VSAM data set to match the volumes
assigned to the OS/VS data set. Control returns to
step 2 for the next name in the OS/VS catalog.

• 	 GIPEPROC builds VSAM parameter lists with the
information from the OS/VS catalog. CATALOG
issues a UCATLG macro to define the generation
data group as a generation data group base entry in
the VSAM catalog. GIPEPROC finds information
about each generation of the generation data
group. For each generation, CATALOG builds a
VSAM parameter list with information from the
OS/VS catalog. CATALOG issues a UCATLG
macro to define the generation as a non-VSAM
entry in the VSAM catalog. The same error checks
are performed as for a data set. When all the
generations have been cataloged in the VSAM
catalog, control returns to step 2 for the next name
in the OS/VS catalog.

• 	 CVPEPROC compares the volumes assigned to the
OS/VS CVOL entry with each volser ... from the
CVOLEQUATES parameter. If no match is found,
the OS/VS CVOL entry is not put in the VSAM
catalog, a message is written, and control returns to
step 2 for the next name in the OS/VS catalog. If a
match is found, CVPEPROC puts the usercatalog
name associated with the matching va/ser ... from
the CVOLEQUATES parameter and the name
from the OS/VS CVOL entry in a VSAM
parameter list. CATALOG issues a UCATLG
macro to define the OS/VS CVOL name as an
alias to the usercata/og name in the VSAM master
catalog. Control returns to step 2 for the next name
in the OS/VS catalog.

Module: IDCCCOI

Procedure: IDCCCOI

3. 	 IDCCCOI issues a UFPOOL macro to free all storage
obtained for the CNVTCAT FSR. A message with
LASTCC is written with a UPRINT macro. IDCCCOI
also writes summary messages of the number of
OS/VS catalog entries converted and the number of
VSAM catalog entries updated. Control goes to
Executive Controlled Termination, Diagram 4.0.

00 	 From Executive
+0 Diagram 3.3 DEFINE FSR
o
CIl

~< 	 -
u~rtJ I ,.." • .K'-'ft,I""~.'''''_

CIl ".

Register I

N 	 CTGPL

1. Initializes catalog parameter lists. 	 ~ CTGFVs
I[.,

3:
~ 	 ~

(> tGDT:;. 2. 	Determines object being defined:t fDT8
CIl
(> 	 ALIAS... ~ 	

•
< 	 See Diagramo·
(>

'" 0
CTGfLs• CLUSTER 	 ~

-B>-B>~
(JQ 	

~

See Dtagram 3.3.2o· t'
VSAM • GENERATlON- -e

DATAGROUP 3.3.3
See Diagram

Catalog

• MASTERCATALO~
USERCATALOG 3.3.4

See Diagram

NONVSAM
See Diagram VSAM

Catalog

PAGESPACE

• 	 -B>
•

See Diagram 	 Message-£><

SPACE

See Diagram I

• -& 	 D
• 	 ALTERNATEIND~

See Diagram 3.3.8 	 Register I I

• 	 PATH t GDT
See Diagram t fDT-B 	

~

3. 	Validity checks catalog parameter LASTCC
list. I4. 	Invokes VSAM catalog manage
ment.

5. 	Preformats PAGESPACE.
6. Deallocates volumes. Writes

message.
7. 	Deallocates storage.

\, c. 	 \,

r r 	 ('

Extended Description for Diagram 3.3

(Without VS2.03.807)

Module: mCDEOI

Procedure: mCDEDI

1. 	 IDCDEDI issues a UGPOOL macro to obtain storage
for a CTGPL, four CTGFYs, and a work area. The
CTGPL, CTGFVs, and CTGFLs are used to pass
information to VSAM catalog management. The
CTGFVs are found through the CTGPL, and the
CTGFLs are found through the CTGFYs. Refer to
OS/VS2 Catalog Management for more information
on the CTGPL, CTGFV, and CTGFL. Refer to the
"Diagnostic Aids" chapter for an illustration of the
DEFINE FSR work area. The characters CATPLIST
precede the CTGPL. A call is made to IDCDED2 to
establish addressability and obtain automatic storage
for the IDCDED2 module and the common service
routines. If a catname is supplied with a CATALOG
parameter IDCDEDI puts the address of the catname
and the password in the CTGPL.

2. 	 IDCDEOI determines the type of DEFINE by testing
for the following keywords: ALIAS, CLUSTER,
GENERATIONDATAGROUP,
MASTERCATALOG, NONVSAM, PAGESPACE,
SPACE, USERCATALOG, ALTERNATE INDEX,
PATH. The types of DEFINE are shown in detail in
the following diagrams:

ALIAS see Diagram 3.3.1
CLUSTER see Diagram 3.3.2
GENERATIONDATAGROUP see Diagram 3.3.3
MASTERCATALOG see Diagram 3.3.4
NONVSAM see Diagram 3.3.5
PAGESPACE see Diagram 3.3.6
SPACE see Diagram 3.3.7
USERCATALOG see Diagram 3.3.4
ALTERNATEINDEX see Diagram 3.3.8
PATH see Diagram 3.3.9

3. IDCDEDI performs validity checking to ensure:

KSDS, ESDS, RRDS, and AIX
~
(1) • Space parameters have been properly specified.
S- (See Diagram 3.3.2, step 4, and Diagram 3.3.8,o
0- step 4)
s.,

Volumes have been specified in both DATA and
0 INDEX FVTs."0
(1).,

• 	 If UNIQUE is specified, ensure CTGFVIND hasa o· been set and build null volume FVT. If
::l

00
v.

CTGFYIND has not been set, call DALPROC to
dynamically allocate the volume.

• 	 If an ESDS, KSDS or AIX has the REUSABLE
attribute make sure it is not unique nor have
KEYRANGES been specified. Verify that the
REUSABLE attribute is the same at DATA and
INDEX levels.

If the data AMDSB indicates an RRDS, insure that
it does not also indicate spanned.

• 	 If average and maximum recordsize have not been
specified, specify defaults: average for
non-spanned=4089, average for spanned=4D86,
maximum for non-spanned=4089, maximum for
spanned=32,600

• 	 If record size is greater than 32,761 (maximum CI
size), ensure that it has the spanned attribute.

If KEYRANGES specified, ensure that key values
do not exceed maximum key length.

MASTERCATALOG!USERCATALOG

• 	 Space parameters have been properly specified

(See Diagram 3.3.4, step 5).

SPACE

• 	 Space parameters have been properly specified.
(see Diagram 3.3.7, step 2)

Module: IDCDEOI

Procedure: IOCDEOI, DALCPROC

4. 	 IDCDEOI invokes VSAM catalog management by
issuing a UCATLG macro. If the return code from
catalog management indicates volume allocation is
required, DALCPROC calls UALLOC to dynamically
allocate the volumes; IDCDEDI issues the UCATLG
macro again. If VSAM catalog management generates
names for DATA and INDEX components, IDCDEDI
prints the names with a UPRINT macro. IDCDEDI
also prints volume allocation status. If the return code
is non-zero, IDCDED! calls UERROR to write a
message that indicates an error occurred.

Module: mCDED!

Procedure: mCDED!, DALCPROC

5. 	 If a PAGESPACE is being defined, mCDED!
pre-formats the newly defined pagespace.
Pre-formatting consists of opening and closing the
pagespace. IDCDEOI builds an OPNAGL and puts in
the name of the pagespace for the data set name. This
causes the pagespace to be dynamically allocated when
IDCDEOI issues a UOPEN macro. If the return code
from UOPEN is non-zero, IDCDEDI terminates by

giving control to step 5. If the return code is zero,
IDCDEO! issues a UCLOSE to close the pagespace
and deallocate it.

Modu!e: mCDEO!

Procedure: mCDED!, DALCPROC

6. 	 If any volumes have been mounted, an ALLAGL
exists for each request to mount a volume.
DALCPROC repetitively issues UDEALLOC macros
until all the volumes have been deallocated-until
DALCPROC has used each ALLAGL as a parameter
with a UDEALLOC macro. A message with LASTCC
is written with a UPRINT macro. IDCDED! issues a
UFPOOL to free all the storage obtained for the
DEFINE FSR. Control goes to Executive Controlled
Termination, Diagram 4.0.

Module: mCDEO!, mCDE02

Procedure: FREESTG

7. 	 lOCOED! calls mCDE02 at its FREESTG entry point
to deallocate automatic storage for IDCDED2.
IDCDEOI then invokes the UEPIL macro to free any
remaining automatic storage. Control goes to
Executive Controlled Termination, Diagram 4.D.

r r 	 r

Extended Description for Diagram 3.3 KSDS, ESDS, RRDS, and AIX 	 For a NONINDEXED data set or a PAGESPACE:

With VS2.03.807

Module: IOCDEOI, IOCDE02

Procedure: IDCDEOI, IDCDE02

t. 	 IDCDEOI issues a UGPOOL macro to obtain storage
for a CTGPL, four CTGFVs, and a work area. The
CTGPL, CTGFVs, and CTGFLs are used to pass
information to VSAM catalog management. The
CTGFVs are found through the CTGPL, and the
CTGFLs are found through the CTGFVs. Refer to
OS/VS2 Catalog Management for more information
on the CTGPL, CTGFV, and CTGFL. Refer to the
"Diagnostic Aids" chapter for an illustration of the
DEFINE FSR work area. The characters CATPLIST
precede the CTGPL. A call is made to IDCDE02 to
establish addressability and obtain automatic storage
for the IDCDE02 module and the common service
routines. If a catname is supplied with a CATALOG
parameter lOCO EO! puts the address of the catname
and the password in the CTGPL. IDCDE02 to format
the catalog parameter lists.

Module: IOCDE03

Procedure: IDCDE03

2. 	 IOCDE03 determines the type of DEFINE by testing
for the following keywords: ALIAS, CLUSTER,
GENERATlONDATAGROUP,
MASTERCATALOG, NONVSAM, PAGESPACE,
SPACE, USERCATALOG, ALTERNATE INDEX,
PATH. The types of 0 EFINE are shown in detail in
the following diagrams:

ALIAS see Diagram 3.3.1
CLUSTER see Diagram 3.3.2
GENERATIONDATAGROUP see Diagram 3.3.3
MASTERCATALOG see Diagram 3.3.4
NONVSAM see Diagram 3.3.5
PAGESPACE see Diagram 3.3.6
SPACE see Diagram 3.3.7
USERCATALOG see Diagram 3.3.4
ALTERNATEINDEX see Diagram 3.3.8

~ PATH see Diagram 3.3.9
;.'" IDCDE03 then returns control to IDCDEO!. o c..

Module: IOCDEOI sa,
o Procedure: lOCOEO I , INTGCHK, DALCPROC
"0
.., 3. IOCDEO! calls INTGCHK to perform validity '"
~ checking to insure:
o
:::l

-J

• 	 Space parameters have been properly specified.

• 	 Volumes have been specified in both DATA and
INDEX FVTs.

• 	 If UNIQUE is specified, ensure CTGFVIND has
been set and build null volume FVT. If
CTGFVIND has not been set, call DALCPROC to
dynamically allocate the volume.

If an ESDS, KSDS, or AIX has the REUSABLE
attribute make sure it is not unique nor have
KEYRANGES been specified. Verify that the
REUSABLE attribute is the same at DATA and
INDEX levels.

If the data AMDSB indicates an RRDS, ensure that
it does not also indicate spanned.

• 	 If average and maximum recordsize have not been
specified, specify defaults: average for
non-spanned=4089, average for spanned=4086,
maximum for non-spanned=4089, maximum for
spanned=32,600

If record size is greater than 32,76! (maximum CI
size), ensure that it has the spanned attribute.

• 	 If KEYRANGES specified, ensure that key values
do not exceed maximum key length.

For a VSAM cluster, two or three CTGFVs have been
built-for cluster information, data information, and
index information. If a VOLUME CTGFV has been
built, it does not contain any information. The
following table shows the possible places where a
SPACPARM CTGFL may have been built and the
action INTGCHK takes.

For an INDEXED data set:

SPACPARM CTGFL

SPACPARM CTGFL

(......, 001. ._, Ad....

Thi .. i, an crrnr: IDCDEol IcrmlOah:, Ihe OEFISE

Thi" j .. an crrur: lOCOED I Icrminatc.. the DEFINE.

Thi, i .. an .;rrnr: IDCDEOI Icrminall', the DEFINE.

OK: no a('tu)A.

OK: nn a('11I1O

Ok; no af.:llun

Thi, ... an error: IDCDEOI lerminalC'.. the DEFINE

This i" an t:'rror: IOCOEOI terminales the DEFINE.

SPACPARM CTGFL

SPACPARM CTGFL

0..., 0... :Ad....

This is an error: 10000EOI terminates the DEFINE.

OK: no actinn.

i Ok: no ac.:tion.
+---

; Thi!o. i!o. an error; IOCDEOI lerminates Ihe DEFINE.

For a Unique cluster or PAGESPACE, CTGFVIND in the
DATA and INDEX CTGFV is checked for a dname from
FILE. If FILE is not supplied, DALCPROC builds an
ALLAGL and issues a UALLOC macro to dynamically
allocate the volumes. The dname returned by UALLOC
is put in CTGFVIND.

For an alternate index two or three CTGFVs have been
built--one each for alternate index, data, and index
information. If a VOLUME CTGFV has been built, it
does not have any information in it because VSAM uses it
for a work space. The following table shows the possible
places where a SPACPARM CTGFL may have been built
and the action INTGCHK takes.

00

r (r

(With VS2.03.807)

SPACPARM CTGFL

Alternate
Index Data Index Action

X X X This is an error;
IDCDEOI terminates the
DEFINE.

X X This is an error;
IDCDEOI terminates the
DEFINE.

X X This is an error;
IDCDEOI terminates the
DEFINE.

X X OK; no action.

X OK; no action.

X OK; no action.

X This is an error;
IDCDEOI terminates the
DEFINE.

none none none This is an error;
IDCDEOI terminates the
DEFINE.

Control goes to Diagram 3.3, step 4.

USERCATALOG

For USERCATALOG four CTGFVs have been
built--one each for cluster information, data
information, index information, and volume
information. A SPACPARM CTGFL must be
specified on the CTGFV for volume information. In
addition, INTGCHK checks the other three CTGFVs
for a SPACPARM CTGFY.

SPACPARM CTGFL

s:
"g
o
0

S,

The following table shows the possible CTGFVs (in
addition to the VOLUME CTGFV) where a
SPACPARM CTGFL may have been built and the
action INTGCHK takes:

o
"0

"..., e
o
::l

00
-a

SPACPARM crGFL

CIosIer Dar. Index Action

x x x meDEO) erases the SPACPARM crOFL from the
CLUSTER CTGFV.

x x IDCDEOI erases the SPACPARM CTGFL from the
CLUSTER CTOFV.

x x This is an error; IDCDEOI terminates the DEFINE.

x OK - no action.

no.. This is an error; IDCDEOI terminates the DEFINE.

CTGFVIND on the VOLUME CTGFV is checked for
a dname from FILE. If FILE is not supplied,
DALCPROC builds an ALLAGL and issues a
UALLOC macro to dynamically allocate the volume.
The dname returned by UALLOC is put in
CTGFVIND. Control goes to Diagram 4.3, step 3. If
an error occurs, IDCDEOI writes a message, and
control goes to Diagram 3.3, step 6.

SPACE

• 	 Space parameters have been properly specified.

For DEFINE SPACE only a VOLUME CTGFV is
built. INTGCHK checks the VOLUME CTGFV to be
sure a SPACPARM CTGFL is present. If the space is
in units of records, the VOLUME CTGFV must
contain the address of a LRECL CTGFL. INTGCHK
checks for CTGFVIND the VOLUME CTGFV. If
FILE is not supplied, DALCPROC builds an
ALLAGL and issues a UALLOC macro to
dynamically allocate the volumes. The dname
returned by UALLOC is put in CTGFVIND. Control
goes to Diagram 3.3, step 4.

Module: IDCDEOI

Procedure: IDCDEOI, DALPROC

4. 	 IDCDEOI invokes VSAM catalog management by
issuing a UCATLG macro.If the return code from
catalog management indicates volume allocation is
required, DALCPROC calls UALLOC to dynamically
allocate the volumes; IDCDEOI issues the UCATLG
again. If VSAM catalog management generates names
for DATA and INDEX components, IDCDEOI prints
the names with a UPRINT macro. IDCDEOI also
prints volume allocation status. If the return code is

non-zero, IDCDEOI calls UERROR to write a

message that indicates an error occurred.

Module: IDCDEOI

Procedure: IDCDEOI

S. 	 If a PAGESPACE is being defined, IDCDEOI
pre-formats the newly defined pagespace.
Pre-formatting consists of opening and closing the
pagespace. IDCDEOI builds an OPNAGL and puts in
the name of the pagespace for the data set name. This
causes the pagespace to be dynamically allocated when
IDCDEOI issues a UOPEN macro. If the return code
from UOPEN is non-zero, IDCDEOt terminates by
giving control to step 6. If the return code is zero,
IDCDEOt issues a UCLOSE to close the pagespace
and deallocate it.

Module: IDCDEOt

Procedure: IDCDEOt, DALCPROC

6. 	 If any volumes have been mounted, an ALLAGL
exists for each request to mount a volume.
DALCPROC repetitively issues UDEALLOC macros
until all the volumes have been deallocated-until
DALCPROC has used each ALLAGL as a parameter
with a UDEALLOC macro. A message with LASTCC
is written with a UPRINT macro. IDCDEOt issues a
UFPOOL to free all the dynamic storage obtained for
the DEFINE FSR.

Module: IDCDEOt, IDCDE02

Procedure: FREESTG

7. 	 IDCDEOt calls IDCDE02 at its FREESTG entry point
to deallocate automatic storage for IDCDE02.
IDCDEOt then invokes the UEPIL macro to free any
remaining automatic storage. Control goes to
Executive Controlled Termination, Diagram 4.0.

http:macro.If

8 Diagram 3.3.1 DEFINE ALIAS

o

VJ
<:
VJ r PROCESSING
N

CTGPL~
R
gJ
.~

;.

&.

" lild ALIAS CTGFV.

VJ

" ~
~.
<II

r o
I!!!. ALIAS
(l

CTGFV

-...,l,
'-'

--

r f 	 r

Extended Description for Diagram 3.3.1

Module: IDCDEOl, IDCDE02 (without VS2.03.807)
IDCDE02, IDCDE03 (with VS2.03.807)

Procedure: NVSAMPRC, NAMEPROC

1. 	 NVSAMPRC sets the identification of 'NVSAMFVT'
in the eight bytes preceding the area that is usually
used for a CLUSTER CTGFV. NVSAMPRC puts the
address of the ALIAS CTGFV in the CTGFVT field
of the CTGPL. An 'X' is set in the CTGFVTYP field
of the CTGPL to indicate that an alias is being
defined. NAMEPROC puts the address of objectname
from NAME in the ALIAS CTGFV. NAMEPROC
also puts entryname/password from RELATE in the
ALIAS CTGFV. Control goes to step 3.

rNVSAt.n;""vT1

ALIAS
ALIAS CTGFV

3:
~

;.
8.
g,
o
~ a o·
=
'4)-

IS Diagram 3.3.2 Define FSR - Cluster
o From Diagram 3.3
i;Il

," <
i;Il INPUT PROCESSING OUTPUT
N -,. I)- MDTBL CTGPL
(')
(') r
(1) Cluster

:> I I
'" <" I..a.. CTGFV'" '" ~
(1) CTGPL .-PI,Data I

.........
;. ~ l. Builds cluster CTGFV.
o ... V CTGFLs
Q.

i;Il
(1)

~
n'
(1)

'" D I!i TIMDTBLb "'-,
(JQ

An' I I 1Data
CTGFV

l--...[Data I
.........
2. Builds data CTGFV V CTGFLs

hi..

.........,
 MDTBL

I I ~ Index< CTGFV

l.-...[Data I
3. Builds Index C'TGFV CTGFLsV
t..J

Volume
CTGFV

.J'.......
4. Checks volume InformalJon. y

~N(}.te: This step is included in
Diagram 33 Step 3 f(}r VS~.O].S071

-

~ '-' '-'

r r 	 r·

Extended Description for Diagram 3.3.2

Module: IDCDEOI, IDCDEQ2 (without VS2.03.807)
IDCDE02, IDCDE03 (with VS2.03.807)

Procedwe: DSETPROC, NAMEPROC, MODELPRC,
PROTPROC,ALLCPROC

1. 	 In the DEFINE CLUSTER command, you specify
information under three main keywords: CLUSTER,
DATA, and INDEX. The DEFINE FSR builds a
CTGFV to describe the cluster, data, and index
components of the cluster as well as building a
VOLUME CTGFV if UNIQUE is specified.
Information specified under CLUSTER goes in the
CLUSTER CTGFV; information under DATA goes in
the DATA CTGFV; and information under INDEX
goes in the INDEX CTGFV. Nothing is put in the
VOLUME CTGFV. If not enough information is
specified under DATA or INDEX to build the DATA
or INDEX CTGFV, information from CLUSTER
completes the DATA or INDEX CTGFV. If
information is duplicated under DATA or INDEX and
under CLUSTER-like
WRITECHECK-information from DATA or
INDEX overrides the information from CLUSTER in
the DATA or INDEX CTGFV. The exception is space
information from TRACKS, CYLINDERS, or
RECORDS, which is never copied from CLUSTER to
the DATA or INDEX CTGFV.

If MODELs are specified, the information in the
command overrides the information in a MODEL. A
MODEL has one catalog entry to describe its cluster,
one entry for its data, and one entry for its index, if
the MODEL is a keyed sequence data set. The
information in a MODEL's cluster catalog entry is
used to build the CLUSTER CTGFV; information in a
MODEL's data entry is used to build the DATA
CTGFV; and information in the MODEL's index
entry is used to build the INDEX CTGFV. The order
of precedence when modeling is shown below where I
takes the highest precedence:

CLUSTER CTGFV

1. 	 CLUSTER parameters ~
~ 2. 	 Cluster object of CLUSTER model ;.
o
0- DATACTGFV
o-. 1. DATA parameters
o 2. DATA model"0
., 3. CLUSTER parameters ~

e 4. Data object of CLUSTER model o·
::l

-.a
w

INDEXCTGFV

1. 	 INDEX parameters
2. 	 INDEX model
3. 	 CLUSTER parameters
4. 	 Index object of CLUSTER model

If MODEL is specified, MODELPRC issues a
UCATLG to retrieve information from the modeled
VSAM data set. The information from the cluster
catalog entry of the modeled data set is put in a table,
MDL T ABL, and the Control Interval number for the
data and index catalog entries of the modeled data set
are saved. MDL T ABL contains an address and the
length of each field of information returned from the
UCATLG. In building the CLUSTER CTGFV,
information is obtained from MDLT ABL and is then
overlaid by information specified in the CLUSTER
parameters. DSETPROC sets the identification of
'CLSTRFVT' in the eight bytes before the CLUSTER
CTGFV. NAMEPROC issues a UTIME macro to get
the creation date which is put in a DSETCRDT
CTGFL. NAMEPROC puts the address of objectname
from NAME in the CLUSTER CTGFV. NAMEPROC
builds a DSETEXDT CTGFL with the information
from TO I FOR. PROTPROC builds a PASSWALL
CTGFL with information from MASTERPW,
CONTROLPW, UPDATEPW, READPW, CODE,
ATTEMPTS, and AUTHORIZATION. PROTPROC
also builds a OWNERID CTGFL with ownerid from
OWNER. If ownerid is not specified and if Access
Method Services has been invoked interactively with
TSO, PROTPROC issues a UfD macro to get the TSO
terminal user's identification for an ownerid.
PROTPROC builds an OWNERID CTGFL with the
TSO terminal user's identification. ALLCPROC builds
a SP ACPARM CTGFL with the primary and
secondary space information from TRACKS,
CYLINDERS, or RECORDS. ALLCPROC initializes
a pointer in the CLUSTER CTGFV to a work area for
the catalog recovery volume serial number.

-CLSTRFVT I

CLUSTER Part
of CLUSTER CLUSTER CLUSTLR
Model -	 CTGFV

Module: IDCDEOI, IDCDE02 (without VS2.03.807)
IDCDE02, IDCDE03 (with VS2.03.807)

Procedure: DSETPROC, NAMEPROC, KEYPROC,
MODLEPRC, ALLCPROC, PROTPROC

2. 	 DSETPROC sets the identification of 'DAT AFVTt>'
in the eight bytes preceding the DATA CTGFV. The
DEFINE FSR builds the DATA CTGFV with the
information specified in CLUSTER parameters. This
information is then overlaid by the information
specified in the DATA parameters. Two passes are
performed. On the first pass, called the implicit pass,
if MODEL is not specified, the DATA CTGFV is built
with information specified in the CLUSTER
parameters.

If MODEL is specified under CLUSTER and MODEL
is not specified under DATA, MODELPRC uses the
saved Control Interval number for the modeled
cluster's data catalog entry. The information from the
data catalog entry of the modeled cluster is put in
MDLTABL. The DATA CTGFV is built with
information from MDLT ABL and is then overlaid by
the information specified in CLUSTER parameters.
NAMEPROC issues a UTIME macro to get the
creation date which is put in a DSETCRDT CTGFL.
NAMEPROC builds an EXCPEXIT CTGFL with
exception exit information. KEYPROC builds a
AMDSBCAT CTGFL, and ALLCPROC builds a
DSATTR CTGFL, but no information is put in them
yet.

KEYPROC puts the length and pOSition from KEYS in
the AMDSBCAT CTGFL. If no key values are
specified, KEYPROC sets up default values.
KEYPROC also sets indication in AMDSB if
SPANNED has been specified. If NUMBERED has
been specified, KEYPROC sets AMDRRDS in the
AMDSB field. KEYPROC also puts the address of
((Iowkey) (highkey) ...) from KEYRANGES in the
DATA CTGFV. ALLCPROC puts the address of
dname from FILE and the address of volser from
VOLUMES in the DATA CTGFV. ALLCPROC
builds a SPACPARM CTGFL with the primary and
secondary space information from TRACKS,
CYLINDERS, or RECORDS. ALLCPROC also builds
a BUFSIZE CTGFL with information from
BUFFERSP ACE. The following is put in the
AMDSBCAT CTGFL:

ORDERED I UNORDERED

cipercent and capercent from FREESPACE

size from CONTROLINTERVALSIZE

WRITECHECK I NOWRITECHECK

~ maximum from RECORDSIZE STAGE IBIND I CYLINDERFAULT o
Vl DESTAGEWAIT INODESTAGEWAIT
" length and position from KEYS<
N
Vl

PROTPROC puts ERASE I NOERASE,
»
(")

REUSE I NOREUSE, and crossregion crosssystem
(") from SHAREOPTIONS in the DSATTR CTGFL.
CJ> " CJ>

Protection information is obtained only from the

"
~ MODEL via MDLT ABL in order to provide different
:;. protection for CLUSTER and DATA. PROTPROCo
0. builds a P ASSW ALL CTGFL with protection
CIl information from the MODEL and builds an
" ~ OWNERID CTGFL with owner information from the
n' MODEL.
CJ> "
r On the second pass, called the explicit pass, if

(JQ

n'
o MODEL is not specified under D A T A, the

information specified in the DATA parameters
overlays the information placed in the DATA CTGFV
on the implicit pass.

If MODEL is specified under DATA, MODELPRC
issues a UCATLG to get information from the data
catalog entry of the modeled data set. The information
from the data catalog entry of the modeled data set is
put in MDLT ABL. The information in MDLTABL
overlays the information placed in the DATA CTGFV
on the implicit pass. Finally, the information in the
DATA CTGFV is overlaid with the information
specified in the DATA parameters.

NAMEPROC puts the address of objectname from
NAME in the DATA CTGFV. Using a pointer to the
name of the EXCEPTIONEXIT routine, NAMEPROC
builds and initializes the EXCPEXIT FPL and
references it in the FVT field CTGFVEXT. KEYPROC
sets the AMDSPAN flag of AMDATTR to indicate the
SPANNED INONSPANNED option. KEYPROC puts
length and position from KEYS in the AMDSBCAT
CTGFL. KEYPROC puts the address of «(Iowkey)
(highkey) ...) list fr-om KEYRANGES in the DATA
CTGFV. ALLCPROC puts the address of dname from
FILE and the address of volser from VOLUMES in the
DATA CTGFV. Note: the volume serial list is not
merged with any other volume serial list. ALLCPROC
also builds or modifies the SPACPARM CTGFL with
primary and secondary space information from
TRACKS, CYLINDERS, or RECORDS; the LRECL
CTGFL with average from RECORDSIZE; and the
BUFSIZE CTGFL with size from BUFFERSPACE.
PROTPROC builds or modifies the PASSWALL
CTGFL with information from MASTERPW,
CONTROLPW, UPDATEPW, READPW, CODE,

ATTEMPTS, and AUTHORIZATION. PROTPROC
also builds or modifies the OWNERID CTGFL with
ownerid from OWNER. If ownerid is not specified and
if Access Method Services has been invoked
interactively with TSO, PROTPROC issues aUlD
macro to get the TSO terminal user's identification for
an ownerid. PROTPROC builds an OWNERID CTGFL
with the TSO terminal user'.s identification. The
following is put in the the AMDSBCAT CTGFL:

ORDERED IUNORDERED

cipercent and capercent from FREESPACE

size from CONTROLINTERVALSIZE

WRITECHECK INOWRITECHECK

maximum from RECORDSIZE

STAGE IBIND I CYLINDERFAULT

DESTAGEWAIT INODESTAGEWAIT

length and position from KEYS

UNIQUE I SUBALLOCATION and
SPEED IRECOVERY are put in the DSATTR
CTGFL. ERASE INOERASE, REUSE INOREUSE,
and crossregion crosssystem from SHAREOPTIONS
are put in the DSATTR CTGFL.

D.\1 A P".'l. "i.. . ~ I)\l\7,i"t, ICLUS1LR MODI·L CLUSTER I
(1101 u..,,,'J II

1\1()DLL "r':I..'1! II.:J

\Jlll!!.'f DA1,-\)

1).'\]..\

CHil\

DA T.-\ P:\rI \11
DATA

DATA ~t()DI'.L I-- v

Module: IDCDEOI, IDCDE02 (without VS2.03.807)
IDCDE02, IDCDE03 (with VS2.03.807)

Procedure: DSETPROC, NAMEPROC, KEYPROC,
ALLCPROC, MODELPROC, IXOPPROC, PROTPROC
3. An INDEX CTGFV is built if any of the following

are true:

INDEXED is specified
NONINDEXED and NUMBERED is not specified
The MODEL under CLUSTER is an indexed data
set

In the listings, an indexed data set is called a KSDS for
Key Sequence Data Set. A non-indexed data set is
called an ESDS for Entry Sequence Data Set and a
numbered data set is called an RRDS for Relative
Record Data Set.

DSETPROC sets the identification of 'INDEXFVT' in
the eight bytes preceding the INDEX CTGFV. The
DEFINE FSR builds the INDEX CTGFV with tlIe
information specified in the CLUSTER parameters,
which is overlaid by the information specified in the
INDEX parameters. Two passes are performed. On
the first pass, called the implicit pass, if MODEL is
not specified, the INDEX CTGFV is built with
information specified in CLUSTER parameters.

If MODEL is specified under CLUSTER and MODEL
is not specified under INDEX, MODELPRC uses the
saved Control Interval number for the modeled
cluster's index catalog entry. The information from the
index catalog entry of the modeled cluster is put in
MDLT ABL. The INDEX CTGFV is built with
information from MDLTABL and is then overlaid by
the information specified in the CLUSTER
parameters.

NAMEPROC issues a UTIME macro to get the
creation date which is put in a DSETCRDT CTGFL.
NAMEPROC also puts the address of objectname
from NAME in the INDEX CTGFV. Using a pointer
to the name of the EXCEPTIONEXIT routine,
NAMEPROC builds and initializes the EXCPEXIT
FPL and references it in the FVT field CTGFVEXT.
KEYPROC builds a AMDSBCAT CTGFL, and
ALLCPROC builds a DSATTR CTGFL, but no
information is put in them yet. IXOPPROC puts
REPLICATE INOREPLICATE and
IMBED INOIMBED in the AMDSBCAT CTGFL.
ALLCPROC puts the address of dname from FILE
and the address of volser from VOLUMES in the
INDEX CTGFV. ALLCPROC also builds a
SPACPARM CTGFL with primary and secondary
space information from TRACKS, CYLINDERS, or
RECORDS. The following is put in the AMDSBCAT
CTGFL:

ORDERED IUNORDERED
WRITECHECK INOWRITECHECK
size from CONTROLINTERVALSIZE
STAGE I BIND I CYLINDERFAULT
DESTAGEWAIT INODESTAGEWAIT

UNIQUE I SUBALLOCATION and

REUSE INOREUSE is put in the DSATTR CTGFL.

\., \., '-'

r r 	 r

Record size is not indicated because it is always fixed
length for the index of a VSAM data set.

Protection information is obtained only from the
MODEL via MDL T ABL in order to provide different
protection at the CLUSTER and INDEX.
PROTPROC builds a P ASSW ALL CTGFL with
protection information from the MODEL as well as a
OWNERID CTGFL with owner information from the
MODEL. PROTPROC sets the appropriate bit of the
ATTRI field of the DSATTR field to indicate
REUSE INOREUSE.

On the second pass, called the explicit pass, if
MODEL is not specified under INDEX, the
information specified in the INDEX parameters
overlays the information placed in the INDEX
CTGFV on the implicit pass.

If MODEL is specified under INDEX, MODELPRC
issues a UCATLG to get information from the index
catalog entry of the modeled data set. The information
from the index entry of the modeled data set is put in
MDLT ABL. The information in MDLT ABL overlays
the information placed in the INDEX CTGFV on the
implicit pass. Finally, the information in the INDEX
CTGFV is overlaid with the information specified in
the INDEX parameters.

NAMEPROC puts the address of objectname from
NAME in the INDEX CTGFV. Using a pointer to the
name of the EXCEPTIONEXIT routine,
NAMEPROC builds and initializes the EXCPEXIT
FPL if specified under INDEX. IXOPPROC puts
REPLICATE I NOREPLICATE and
IMBED INOIMBED in the AMDSBCAT CTGFL.
ALLCPROC puts the address of dname from FILE
and the address of volser from VOLUMES in the
INDEX CTGFV. ALLCPROC also builds or modifies
the SPACPARM CTGFL with primary and secondary
space information from TRACKS, CYLINDERS, or
RECORDS. PROTPROC builds or modifies the
PASSWALL CTGFL with information from
MASTERPW, CONTROLPW, UPDATEPW,
READPW, CODE, ATTEMPTS, and
AUTHORIZATION. PROTPROC also builds or

~
til 	 modifies the OWNERID CTGFL with ownerid from
;. OWNERID. If ownerid is not specified and if Access
8- Method Services has been invoked interactively with
o.., 	 TSO, PROTPROC issues a UID macro to get the TSO
o 	 terminal user's identification for an ownerid.
'& 	 PROTPROC builds an OWNERID CTGFL with the

TSO terminal user's identification. The following is ~
c)" 	 put in the AMDSBCAT CTGFL:
:s
\l)

ORDERED IUNORDERED

WRITECHECK INOWRITECHECK

size from CONTROLINTERVALSIZE

STAGE IBIND I CYLINDERFAULT

DESTAGEWAIT INODESTAGEWAIT

The following is put in the DSATTR CTGFL:

UNIQUE ISUBALLOCATION

ERASE I NOERASE

REUSE I NOREUSE

cross region crosssystem from SHAREOPTIONS

INDEX Part of

CLUSTER

MODEL (not

CLUSTERused if MODEL
specified under
INDEX)

INDEX
CTGFV

INDEX Part of INDEX
INDEX MODEL

Note: If VS2.03.807 is installed, the following step,
(step 4), is described in Diagram 3.3, step 3.

Module: IDCDEOI

Procedure: IDCDEOl, DALCPROC

4. 	 For a VSAM data set, two or three CTGFVs have
been built- for cluster information, data information,
and index information. If a VOLUME CTGFV has
been built, it does not contain any information. The
following table shows the possible places where a
SPACPARM CTGFL, may have been built and the
action IDCDEOI takes.

For an INDEXED data set:

SPACPARM CTGFL

SPACPARM crGFL

c Da._ IIndex iAction

x x I x This is an error; IOCOEOI terminates the DEFINE.

x x This is an error: IOCOEOI terminates the DEFINE.

x x This is an error; IOCDEOI terminates the DEFINE.

x x OK; no action.

x OK; no action

I x OK; no action

x This is an error; IOCDEOI terminates the DEFINE.

nont This is an error; IOCDEO I terminates the DEFINE.

For a NONINDEXED data set:

SPACPARM CTGFL

SPACPARM crGFL

CIIIsI.. IData IActiOII

This is an error; IOCDEOI terminates the DEFINE.

OK; no action.

OK; no action.

none IThis is an error; IOCDEO) terminates the DEFINE.

For a UNIQUE data component, CTGFVIND in the
DATA CTGFV is checked for a dname from FILE. If
FILE is not supplied, DALCPROC builds an ALLAGL
and issues a UALLOC macro to dynamically allocate the
volumes. The dname returned by UALLOC is put in
CTGFVIND. This same processing is performed for a
UNIQUE index component. If either the data or index
component is UNIQUE, IDCDEOI builds a null volume
FVT. Control goes to Diagram 3.3, step 3 .

VI

'5, Diagram 3.3.3 DEFINE FSR-GENERATION DATA GROUP
o
CIJ
........
 ...,__.....__ "lI< _..- -- CIJ - .~

N T

> CTGPLrl CTGPL
rl 1. Build GDG CTGFY.n
'" '"
;.n
~

o
0 D
CIJ

(
n..,
<: GDG
o·
n ~ CTGFY
'"
b

OQ
ri'

\
Data

CTGFLs •

\, \, \,

--

r r r

Extended Description for Diagram 3.3.3

Module: IDCDEOI, IDCDE02 (without VS2.03.807)
IDCDE02, IDCDE03 (with VS2.03.807)

Procedue: NVSAMPRC, NAMEPROC, PROTPROC

1. NVSAMPRC sets the identification of 'NVSAMFVT'
. in the eight bytes preceding the arta that is usually
used for a CLUSTER CTGFV. NVSAMPRC puts the
address of the GOG CTGFV in the CTGF'VT field of
the CTGPL. NAMEPROC puts the address of
objectname from NAME in the GDG CTGFV after
testing to ensure that the name is less than 35
characters long. A 'B' is set in the CTGFVTYP field of
the CTGPL to indicate that a generation data group
base is being defined. NAMEPROC puts
EMPTY INOEMPTY, and
SCRATCH INOSCRATCH in the GDGATTR
CTGFL and limit from LIMIT in the GDGLIMIT
CTGFL. PROTPROC builds an OWNERID CTGFL.
If Access Method Services is invoked interactively
with TSO, PROTPROC issues a UID macro to get the
TSO user's identification, which is used as OWNERID
when OWNER isn't specified. NAMEPROC issues a
UTIME macro to get the creation date, which it puts
in a DSETCRDT CTGFL. Information from the
TO IFOR parameters goes in the DSETEXDT
CTGFL. Control gOes to Diagram 3.3, step 3.

GENERATlON-
DATAGROUP

3:
~

;.
&.
S
o
'g
~
c)"
::I

~

r-NVSAMFVf1

GENERATIJN
DATAGROUP
CTGfV I

~ Diagram 3.3.4 DEFINE FSR - MASTERCATALOG/USERCATALOG
o
C/)
......
<:
C/)
N INPUT PROCESSING ..:> ". MDTBL eTGPl

./ I I~ I
A Clusler ~

~CTGFV3:
Il> eTGPl

~

~Dala JS-

D
1. Builds c1usler eTG FV. ~ o ,/

P- V CTGFls
C/) '" hi..
Il>

~ I
(i' ~Il>

'"
b

(JQ
(i' Volume

eTGFV

~Dala J2. BUilds Vl)lume eTGf'\" ~ ."'/ CTGFls r...

3. Builds dala CTG F\' MDTBl
I

...."> I

Dala<''"
I I CT(;FV

~Dala I
v > CTGFL,

i'6.
I

I

MDTBl4. Builds index CTGFV.) I

... I I Indl"\<:.. 1 "TGFV

"-, .--rlDala J
./ CTGFb

S. Checks volume informatlon.

(Note: This step is included in

Diagram 3.3 St~p_3 !o~V~~03.8~7J_

-

~ ~ l,

r r 	 r

Extended Description for Diagram 3.3.4

Module: IDCDEOl, IDCDE02 (without VS2.03.8(7)
IDCDE02, IDCDE03 (with VS2.03.8(7)

Procedure: CTLGPROC, ALLCPROC, NAMEPROC,
MODELPRC, PROTPRqC

1. 	 Because the master catalog for a VS2 system is created
at system-generation time and because only one
master catalog is allowed on a system, the DEFINE
MASTERCATALOG command results in a
usercatalog being created. The
mastercatalog-usercataIog descriptions have been
merged but it should be remembered that the MODEL
information does not apply for DEFINE
MASTERCATALOG.

In the DEFINE USERCATALOG command, you
specify information under three main keywords:
USERCATALOG, DATA, and INDEX. The
DEFINE FSR builds a CTGFV to describe the cluster,
data, and index components of the user catalog as well
as building a VOLUME CTGFV. Information
specified under USERCATALOG goes in the
CLUSTER and VOLUME CTGFVs; .information
under DATA goes in the DATA CTGFV; and
information under INDEX goes in the INDEX
CTGFV. If not enough information is specified under
DATA or INDEX to build the DATA or INDEX
CTGFV, information from USERCATALOG
completes the DATA or INDEX CTGFV. If
information is duplicated under DATA or INDEX and
under USERCATALOG-Iike
WRITECHECK-information from DATA or
INDEX overrides the information from
USERCATALOG in the DATA or INDEX CTGFV.
The exception is space information from TRACKS,
CYLINDERS, or RECORDS. Space information is
never copied from the cluster.

If a MODEL is specified, the information in the
command overrides the information in the MODEL.
The MODEL has one catalog entry to describe its
cluster, one entry for its data, and one entry for its
index. The information in the MODEL's clusters: catalog entry is used to build the CLUSTER CTGFV;(I)

s- information in the MODEL's data catalog entry is
o
0- used to build the DATA CTGFV; and information in
o the MODEL's index entry is used to build the INDEX...,

CTGFV. The order of precedence when modeling iso
shown below where I has the highest precedence: ?i

~ CLUSTER CTGFV o·
;::l 1,. USERCATALOG parameters
-.a -.a

2. 	 Cluster object of model

DATACTGFV

1. 	 DATA parameters
2. 	 USERCATALOG parameters
3. 	 Data object of modet

INDEXCTGFV

1. 	 INDEX parameters
2. 	 USERCATALOG parameters
3. 	 Index object of model

CTLGPROC sets the identification of 'CLSTRFVT' in
the eight bytes before the CLUSTER CTGFV. A U is
put in the CTGTYPE field of the CTGPL to indicate
that a user catalog is being defined (in the case of a
mastercatalog CTGTYPE is set to M.) CTLGPROC
puts the address of the objectname from NAME in the
CLUSTER CTGFV. CTLGPROC checks for a
MODEL keyword. If MODEL is specified,
MODELPRC issues a UCATLG macro to retrieve
information from the modeled user catalog. The
information from the cluster catalog entry of the
modeled user catalog is put in a table, MDLT ARL,
and the Control Interval number for the data and
index entries of the modeled user catalog are saved.
MDLTABL contains an address and the length of each
field of information returned from the UCATLG. In
building the CLUSTER CTGFV, information is
obtained from MDLTABL and is then overlaid by the
information specified in the USERCATALOG
parameters. NAMEPROC builds a DSETEXDT
CTGFL with the information from TO IFOR.
PROTPROC builds a PASSWALL CTGFL with
information from MASTERPW, CONTROLPW,
UPDATEPW, READPW, CODE, ATTEMPTS, and
AUTHORIZATION. PROTPROC also builds an
OWNERID CTGFL with ownerid from OWNER.
ALLCPROC builds a SPACPARM CTGFL with the
primary and secondary space information from
TRACKS, CYLINDERS, and RECORDS.
ALLCPROC sets on the BIND bit. NAMEPROC
issues a UTIME macro to get the creation date which
is put in a DSETCRDT CTGFL. If ownerid is not
supplied and Access Method Services has been
invoked interactively with TSO, PROTPROC issues a
UID macro to get the TSO terminal user's
identification for an ownerid. PROTPROC builds an
OWNERID CTGFL with the TSO terminal user's
identification.

"'CLSTRFVT I

CLUSTER CLUSTERf-- USERCATALOGPart of Model 	 CTGFV

Module: JDCDEOI (without VS2.03.8(7)

IDCDE02, IDCDE03 (with VS2.03.8(7)

Procedure: CTLGPROC, ALLCPROC

2. 	 The DEFINE FSR builds a VOLUME CTGFV with
information specified under USERCATALOG. No
information is taken from a MODEL for the
VOLUME CTGFV. CTLGPROC sets the
identification of 'VOLUMFVT' in the eight bytes
preceding the VOLUME CTGFV. ALLCPROC builds
a SPACPARM CTGFL with the primary and
secondary space information from TRACKS,
CYLINDERS, or RECORDS. ALLCPROC puts the
address of vo/ser from VOLUMES and the address of
dname from FILE in the VOLUME CTGFV.

VOLUMFVTI

USERCATALOG VOLUME
CTGFV

Module: IDCDEOI, JDCDE02 (without VS2.03.807)
IDCDE02, IDCDE03 (with VS2.03.807)

Procedure: CTLGPPROC, NAMEPROC, KEYPROC,
ALLCPROC, MODELPRC

3. 	 CTLGPROC sets the identification of 'DATAFVTb'
in the eight bytes preceding the DATA CTGFV. The
DEFINE FSR builds the DATA CTGFV with the
information specified in USERCATALOG
parameters. This information is then overlaid by the
information specified in the DATA parameters. Two
passes are performed. On the first pass, called the
implicit pass, if MODEL is not specified, the DATA

8
CTGFV is built with information specified in the
USERCATALOG parameters.

o
IJl 	 If MODEL is specified, MODELPRC uses the saved
' Control Interval number for the modeled user <
IJl
N catalog's data entry. The information from the data
;.- entry of the modeled user catalog is put in
n
n 	 MDLTABL. The DATA CTGFV is built with
(!)
en
en 	 information from MDL T ABL and is then overlaid by

the information specified in USERCATALOG ~
(!) 	 parameters.s
o
Co NAMEPROC issues a UTIME macro to get the

IJl creation date which is put in a DSETCRDT CTGFL.

(!).., 	 KEYPROC builds an AMDSBCAT CTGFL, but no
:0,
n 	 information is put in yet. ALLCPROC puts the
(!)
en address of the vo/ser from VOLUME and the address
r of dname from FILE in the DATA CTGFY. o

O<l 	 WRITECHECK I NOWRITECHECK, BIND, and
n' DESTAGEWAIT INODESTAGEWAIT are put in

the AMDSBCAT CTGFL. ALLCPROC builds a
BUFSIZE CTGFL with information from
BUFFERSPACE. ALLCPROC also builds a DSATTR
CTGFL for data set attributes, and, in addition the
Recoverable/Not Recoverable attribute is set in
DSATTR.

On the second pass, called the explicit pass, the
information in the DATA CTGFV from the implicit
pass is overlaid by the information specified in the
DATA parameters.

ALLCPROC builds a SPACPARM CTGFL for
primary and secondary space information from
TRACKS, CYLINDERS, or RECORDS. If
WRITECHECK I NOWRITECHECK or
DESTAGEWAIT INODESTAGEWAIT is specified
under DATA, it is overridden in the AMDSBCAT
CTGFL. If BUFFERSPACE is specified under
DATA, ALLCPROC builds a BUFSIZE CTGFL or
modifies the existing one. ALLCPROC initializes the
Recoverable/Not Recoverable attribute in DSATTR.

DATA part of
MODEL USERCATALOG

DATA
L"TGFV

DATA

Module: IDCDEOl, IDCDE02 (without VS2.03.807)
IDCDE02, IDCDE03 (with VS2.03.807)

Procedure: CTLGPROC, NAMEPROC, KEYPROC,
ALLCPROC, MODELPRC

4. 	 CTLGPROC sets the identification of'INDEXFVT'
in the eight bytes preceding the INDEX CTGFV. The
DEFINE FSR builds the INDEX CTGFY with the
information specified in USER CATALOG parameters
which is overlaid by the information specified in the
INDEX parameters. Two passes are performed. On
the first pass, called the irhplicitpass, if MODEL is
not specified, the INDEX CTGFV is built with
information specified in USERCATALOG
parameters.

If MODEL is specified, MODELPRC uses the saved
Control Interval number for the modeled user
catalog's index entry. The information from the index
entry of the modeled user catalog is put in
MDLT ABL. The INDEX CTGFY is built with
information from MDLT ABL and then overlaid by
the information specified in the USERCATALOG
parameters.

NAMEPROC issues a UTIME macro to get the
creation date which is put in a DSETCRDT CTGFL.
KEYPROC builds a AMDSBCAT CTGFL, but no
information is put in yet. ALLCPROC puts the
address of the volser from VOLUME and the address
of dname from FILE in the INDEX CTGFV.

WRITECHECK I NOWRITECHECK, BIND, and
DESTAGEWAIT I NODESTAGEWAIT are put in
the AMDSBCAT CTGFL. ALLCPROC builds a
DSATTR CTGFL for data set attributes, On the
second pass, called the explicit pass, the information

in the INDEX CTGFV from the implicit pass is
overlaid by the information specified in the INDEX
parameters. ALLCPROC builds a SPACPARM
CTGFL for primary and secondary space information
from TRACKS, CYLINDERS, or RECORDS.
WRITECHECK I NOWRITECHECK and
DESTAGEWAIT I NODESTAGEWAIT are
overridden in the AMDSBCAT CTGFL.

INDEX

Part of USERCATALOG
r-
Model

I 'ND'X ~

Note: If VS2.03.807 is installed, this step, step 5, is
described in Diagram 3.3, step 3.

Module: IDCDEOI

Procedure: IDCDEOI, DALCPROC

S. 	 For USERCATALOG four CTGFVs have been
built-one each for cluster information, data
information, index information, and volume
information. A SPACPARM CTGFL must be
specified on the CTGFV for volume information. In
addition, IDCDEOI checks the other three CTGFVs
for a SPACPARM CTGFY.

SPACPARM CTGFL

The following table shows the possible CTGFVs (in
addition to the VOLUME CTGFV) where a
SPACPARM CTGFL may have been built and the
action IDCDEOI takes:

l, '-''"

r r r

Note: Ignore this page if VSl.03.807 is not installed.

SPACPARM CTGFL

~.. Dolo Actioo-.
IOCDEO) erases the SPACPARM CTGFl from the x x x
CLUSTER CTGFV.

IOCDEO) erases the SPACPARM CTOFL from the x x
CLUSTIII CTGFV.

x x This is an error; IOCDEOI terminates the DEFINE.

x OK - no action.

/10M This is an error; IOCDEOI tenninates the DEFINE.

CTGFVIND on the VOLUME crGFV is checked for
a dname from FILE. If FILE is not supplied,
DALCPROC builds an ALLAGL and issues a
UALLOC macro to dynamically allocate the volume.
The dname returned by UALLOC is put in
CTGFVIND. Control goes to Diagram 3.3, step 3. If
an error occurs, IDCDEOI writes a message, and
control goes to Diagram 3.3, step 6.

~
~ ;.
8
o....
o
'g
~
0'
;:)

o

::3 Diagram 3.3.5 DEFINE FSR - NONVSAM

o
en
"

a..A..lI'_.~'_

<en _.. - - - .•' __ - -- _..
N

>- CTGPL '" 1n CTGPL
n ." 1. Builds volume CTGFV.
'Jl " D'Jl

s: 2. Checks volume information.
;." /
o (c..
en
":=;! ~ Volume
(;.

CTGFV
'Jl "
r o

0<>(;.

~ Data

CTGFLs.

~ \,
'"

http:a..A..lI

r r 	 r

Extended Description for Diagram 3.3.S

Module: IDCDEOt, IDCDE02 (without VS2.03.807) •
IDCDE02, IDCDE03 (with VS2.03.807)

Procedure: NVSAMPRC, ALLCPROC, PROTPROC,

NAMEPROC

1. 	 NVSAMPRC sets the identification of 'NVSAMFVT'

in the eight bytes preceding the area that is usually

used for a CLUSTER CTGFV. An 'A' is set in the

CTGFVTYP field of the CTGPL to indicate that a

non-VSAM data set is being defined. NVSAMPRC

puts the address of the NONVSAM CTGFV in the

CTGFVT field of the CTGPL. NAMEPROC puts the

address of objectname from NAME in the

NONVSAM CTGFV. ALLCPROC puts the address of

volser from VOLUMES in the NONVSAM CTGFV.

ALLCPROC builds a DEVTYPE CTGFL for

information from DEVICETYPES. If

FILESEQUENCENUMBERS is specified,

ALLCPROC puts the address of numbers from

FILESEQUENCENUMBERS in the NONVSAM

CTGFV. PROTPROC builds an OWNERID CTGFL.

ALLCPROC sets the address of the recovery volume

serial work area in the CTGFVWKA field. If Access

Method Services is invoked interactively with TSO,

PROTPROC issues a UID macro to get the TSO user's

identification, which is used as OWNERID when

OWNER isn't specified. NAMEPROC issues a

UTI ME macro to get the creation date, which it puts

in a DSETCRDT CTGFL. NAMEPROC uses the

information from TO I FOR to build a DSETEXDT

CTGFL. Control goes to Diagram 3.3, step 3.

;NVSAMFYT!

I-__..~~I NONVSAMNONVSAM
CTGFV

~
."
;.
8.
o...,
o
"0
."

~ o·
;;I

o
v>

o Diagram 3.3.6 DEFINE FSR - PAGESPACE
.j>.

en
"

o -,:rom :~::::NG< INPUT OUTPUTen
tv

:>
n
g
rJl
rJl

~
(!)

s:
o
0.. o ~en
(!)

3.
n
(!)
rJl

r o
CIt>;:;0

•

4.., \., ~

r r 	 r

Extended Description for Diagram 3.3.6

Module: IDCDEOt, IOCDE02 (without VS2.03.807)
IOCDE02, IOCDE03 (with VS2.03.807)

Procedure: DSETPROC, NAMEPROC, MODELPRC,
PROTPROC

1. 	 In the DEFINE PAGESPACE the DEFINE FSR
builds CTGFVs for the cluster and a CTGFV for the
data component as well as a VOLUME CTGFV if
UNIQUE is specified. Information supplied under
PAGESPACE is put in the CLUSTER CTGFV and
the DATA CTGFV. The VOLUME CTGFY contains
zeros.

If a MODEL is specified, the information in the
command overrides the information in the MODEL.
The MODEL has one catalog entry to describe its
cluster and one entry to describe its data. The
information in the MODEL's cluster catalog entry is
used to build the CLUSTER CTGFV, and information
in the MODEL's data catalog entry is used to build the
DATACTGFV.

DSETPROC sets the identification of CLSTRFVT in
the eight bytes before the CLUSTER CTGFV. A 'P' is
set in the CTGTYPE field in the CTGPL to indicate
that a pagespace is being defined. NAMEPROC issues
a UTIME macro to get the creation date which is put
in a DSETCRDT CTGFL. NAMEPROC puts the
address of objectname from NAME in the CLUSTER
CTGFV. DSETPROC checks for a MODEL keyword.
If MODEL is specified, MODELPRC issues a
UCATLG to retrieve information from the modeled
pagespace. The information from the cluster catalog
entry and the Control Interval number for the data
entry of the modeled pagespace are saved. MDL T ABL
contains an address and the length of each field of
information returned from the UCATLG. For the
remainder of the CLUSTER CTGFV, first, the
information is obtained from MDLT ABL; then, the
data from the command overrides information from
MDLT ABL if the information is specified in the
command. NAMEPROC builds a DSETEXTDT
CTGFL with the information from TO I FOR.~

(1) 	 PROTPROC builds a PASSWALL CTGFL with;:.
o information from MASTERPW, CONTROLPW,
Q..

UPDATEPW, READPW, CODE, ATTEMPTS, ando-. AUTHORIZATION. PROTPROC also builds a
o OWNERIO CTGFL with ownerid from OWNERIO.-g

If ownerid is not specified and Access Method Services a has been invoked interactively with TSO,o·
::l 	 PROTPROC issues a UID macro to get the TSO

terminal user's identification for an ownerid.
o v.

PROTPROC builds an OWNERIO CTGFL with the
TSO terminal user's identification.

rCLSTRFY"2

LUSTER Part of CLUSTERPAGESPACEAGESPACE Model CIGFV

Module: IOCDEO!, IDCDE02 (without VS2.03.807)
IOCDE02, IOCDE03 (with VS2.03.807)

Procedure: DSETPROC, MODELPRC, NAMEPROC,
KEYPROC,ALLCPROC

2. 	 DSETPROC sets the identification of DATAFVTb in
the eight bytes preceding the DATA CTGFV. If
MODEL is specified in the command, MODELPRC
uses the saved Control Interval number for the
modeled pagespace's data catalog entry. The
information from the data entry of the modeled
pagespace is put in MDLT ABL. NAMEPROC issues a
UTIME macro to get the creation date which is put in
a DSETCRDT CTGFL. For the remainder of this
step, first, the information is obtained from
MDLT ABL; then, the data from the command
overrides the information in MDLT ABL if
information is specified in the command. KEYPROC
builds a AMDSBCAT CTGFL, and ALLCPROC
builds a DSATTR CTGFL, but no information is put
in them yet. ALLCPROC puts the address of dname
from FILE and the address of volser from VOLUMES
in the DATA CTGFV. Note: the volume serial list is
not merged with any other volume serial list.
ALLCPROC also builds the SPACPARM CTGFL
with primary and secondary space information from
TRACKS, CYLINDERS, and RECORDS.

For users without VS2.03.807:
UNIQUE I SUBALLOCATION is put in the DSATTR
CTGFL. ALLCPROC always turns on track overflow
in the DSATTR CTGFL. There is no way to specify
track overflow in the command, but it is always turned
on for a pagespace.

For Users with VS2.03.807:
UNIQUE I SUBALLOCATION is put in the DSATTR
CTGFL. If SUBALLOCATION has not been
specified, the UNIQUE bit will be turned on.
ALLCPROC turns on track overflow in the DSATTR

CTGFL, unless SWAP has been specified. Track
overflow is always turned on for a NOSWAP
pagespace.

r-DATAFVTti'

I
DATA Part of
PAGESPACE I------ PAGES PACE DATA
Model 	 CTGFV

Note: If VS2.03.807 is installed, this step, step 3, is
described in Diagram 3.3, step 3.

Module: IOCDEO!

Procedure: IOCDEO!, DALCPROC

3. 	 IDCDEO! performs validity checking as shown in the
following table:

SPACEPARM CTGFL

Cluster Data Action

X X This is an error;
IDCDEOI terminates the
DEFINE.

X O.K. - no action

X O.K. - no action

For a UNIQUE pagespace, the CTGFVIND is checked
for a dname from FILE. If FILE is not supplied,
DALCPROC builds an ALLAGL and issues a UALLOC
macro to dynamically allocate the volume. The
dname returned by UALLOC is placed in CTGFVIND.
IDCDEOI builds a null VOLUME FVT for a UNIQUE
pagespace.

~ Diagram 3.3.7 DEFINE FSR - Space
o
CIl
'<
CIl
N -- -- - - -- -- - ...:>
n CTGPLn
(l> CTGPL1. Builds volume CTG FV.
'"

D'"
~

::r
!Po 2. -Checks volume information.o
0

CIl (
(l>

~ ~~ Volumen'
(l>
fIl crGFV

r;
OQ
n'

rI
\

Data

CTGFLs
•

4., ~
 '-'

r r 	 r

Extended Description for Diagram 3.3.7

Module: IOCDEOl, IOCDE02 (without YS2.03.807)
IOCDE02, IOCDE03 (with YS2.03.807)

Procedure: DSPACPRC, ALLCPROC

1. 	 DSPACPRC sets the identification of 'VOLUMFVT'
in the eight bytes preceding the VOLUME CTGFV.
The address of the VOLUME CTGFV is put in the
CTGPL in the field named CTGFVT because the
VOLUME CTGFV is the only CTGFV for a DEFINE
SPACE. ALLCPROC puts the address of the volser
from VOLUMES and the address of dname from
FILE in the VOLUME CTGFV. ALLCPROC builds a
SPACPARM CTGFL with primary and secondary
space information from TRACKS, CYLINDERS,
RECORDS. If RECORDS is specified, ALLCPROC
builds a LRECL CTGFL with information from
RECORDSIZE.

;VOLUMFVi-~

VOLUMESPACE
CTGFV

Note: For users with VS2.03.807, this step is described
in Diagram 3.3, step 3.

Module: IOCDE01

Procedure: IOCDEOl, DALCPROC

2. 	 For DEFINE SPACE, only a VOLUME CTGFV is
built. IOCDEOl checks the VOLUME CTGFV to be
sure a SPACPARM CTGFL is present. If the space is
in units of records, the VOLUME CTGFV must.
contain the address of a LRECL CTGFL. IOCDE01
checks for a CTGFVIND in the VOLUME CTGFV. If
FILE is not supplied, DALCPROC builds an

~ ALLAGL and issues a UALLOC macro to
~
::r dynamically allocate the volumes. The dname
o
0- returned by UALLOC is put in CTGFVIND. Control

goes to Diagram 3.3, step 4.S.
o
"0

" a o·
::I

s

i Diagram 3.3.8 DEFINE FSR - DEFINE ALTERNATE INDEX

o
rn

< , rn ---
N

n.. ~
~

..~ luilds Alternate Index CTGFV . ;.
o
0

W
~
ir
'"
~
('j'

luilds data CTGFV.

luilds index CTGFV.

'h~cks volume information.

Note: This step deleted for
'S2.03.807.)

-_.- -
i --" MDTBL CTGPL

...... 1 Alternate Index I I< ~ CTGFV.~

~Data J ,......
CTGFLs '"

1]MDTBL
':l ~

~ I I ~ Data
.... CTGFV

--PI.Data I ~
.........
 CTGFLs

--" MDTBL

I I Index
< CTGFV

~Data J
~ CTGFLsv

~

Volume
CTGFV

J'-.... ...

~- '-'- ~

r r 	 r

Extended Description for Diagram 3.3.8

Module: IDCDEOI, IDCDE02, (without VS2.03.807)
IDCDE02, IDCDE03 (with VS2.03.807)

Procedure: AIXPROC, NAMEPROC, MODELPRC,
PROTPROC,ALLCPROC

1. 	 In the DEFINE AIX command, you specify
information under three main keywords: AI X, DATA,
and INDEX. The DEFINE FSR builds a CTGFV to
describe the alternate index, data, and index
components of the alternate index as well as building a
VOLUME CTGFV if UNIQUE is specified.
Information specified under ALTERNATEINDEX
goes in the ALTERNATEINDEX CTGFV;
information under DATA goes in the DATA CTGFV;
and information under INDEX goes in the INDEX
CTGFV. Nothing is put in the VOLUME CTGFV. If
not enough information is specified under DATA or
INDEX to build the DATA or INDEX CTGFV,
information from AL TERNATEINDEX completes
the DATA or INDEX CTGFV. If information is
duplicated under DATA or INDEX and under
ALTERNATEINDEX-like
WRITECHECK-information from DATA or
INDEX overrides the information from
ALTERNATEINDEX in the DATA or INDEX
CTGFV. The exception is space information from
TRACKS, CYLINDERS, or RECORDS. Space
information is never copied from
ALTERNATEINDEX.

If MODELs are specified, the information in the
command overrides the information in a MODEL. A
MODEL has one catalog entry to describe its alternate
index, one entry for its data, and one entry for its
index. The information in a MODEL's alternate index
catalog entry is used to build the
ALTERNATEINDEX CTGFV; information in a
MODELS's data entry is used to build the DATA
CTGFV; and information in the MODEL's index
entry is used to build the INDEX CTGFV. The order
of precedence when modeling is shown below where 1
takes the highest precedence: s::

<I> ALTERNATEINDEX CTGFV;.
&. 1. ALTERNATEINDEX parameters
o 2. Cluster object of ALTERNATEINDEX model-.
o DATACTGFV
il e I. Data parameters
o· 2. DATA model
:::l 3. ALTERNATEINDEX parameters

4. Data object of ALTERNATEINDEX model
~

INDEX CTGFV

1. INDEX parameters
2. INDEX model
3. ALTERNATEINDEX parameters
4. Index object of ALTERNATEINDEX model.

AIXPROC sets the identification of 'AIXFVTtiti' in
the 8 bytes before the ALTERNATEINDEX CTGFV.
AIXPROC checks for a MODEL keyword under
ALTERNATEINDEX. If MODEL is specified,
MODELPRC issues a UCATLG to retrieve
information from the modeled alternate index. The
information from the alternate index catalog entry of
the modeled data set is put in a table, MDLT ABL, and
the control interval number for the data and index
entries of the modeled data set are saved. MDLTABL
contains an address and the length of each field of
information returned from the UCATLG. In building
the ALTERNATEINDEX CTGFV, information is
obtained from MDLT ABL and is then overlaid with
information specified in the ALTERNATEINDEX
parameters. NAMEPROC issues a UTIME macro to
get the creation date which is put in an DSETCRDT
CTGFL. NAMEPROC puts the address of objectname
from NAME in the CLUSTER CTGFV. The call to
NAMEPROC for initialization of the alternate index
level sets up a pointer to the related name and its
password, if any, in the CTGFV. ALLCRPOC will set
the address of the recovery volume serial work area in
the CTGFVWKA field of the alternate index (G)
FVT. NAMEPROC builds a DSETEXDT CTGFL
with the information from TO I FOR. PROTPROC
builds a PASSWALL CTGFL with information from
MASTERPW, CONTROLPW, UPDATEPW,
READPW, CODE, ATTEMPTS, and
AUTHORIZATION. PROTPROC also builds an
OWNERID CTGFL with information from OWNER.
The call to PROTPROC in the initialization of the
AIX FVT includes an indication as to whether
UPGRADE or NOUPGRADE has been specified.
PROTPROC builds a RGATTR FPL and initializes it
depending upon the information passed by
AIXPROC. If neither of these parameters was
specified, a default of UPGRADE is set in RGATTR.
ALLCPROC builds a SPACPARM CTGFL with the
primary and secondary space information from
TRACKS, CYLINDERS, or RECORDS.

- AiX"vThb I

ALTERNATE INDEX f- Part of Model ALTERNATE INDEX
ALTERNATE
INDEX
crGFV

I

I -

Module: IDCDEOI, IDCDE02 (without VS2.03.807)
IDCDE02, IDCDE03 (with VS2.03.807)

Procedure: AIXPROC NAMEPROC KEYPROC
MODELPRC ALLCPROC PROTPROC

2. 	 AIXPROC sets the identification of DATAFVT in the
8 bytes preceding the DATA CTGFV. The DEFINE
FSR builds the DATA CTGFV with the information
specified in ALTERNATEINDEX parameters. This
information is then overlaid by the information
specified in the DATA parameters. Two passes are
performed. On the first pass, called the implicit pass,
if MODEL is not specified, the DATA CTGFV is built
with the information specified in the
ALTERNATEINDEX parameters.

If MODEL is specified under ALTERNATEINDEX
and MODEL is not specified under DATA,
MODELPRC uses the saved control interval number
for the data entry of the modeled data set to get
information from the data entry. The information
from the data entry of the modeled data set is put in
MDLTABL. The DATA CTGFV is built with
information from MDLT ABL and is then overlaid by
the information specified inALTERNATEINDEX
parameters. NAMEPROC issues a UTIME macro to
get the creation date which is put in a DSETCRDT
CTGFL. The calls to NAMEPROC in the
initialization of the DATA FVT for an alternate index
includes a pointer to the name of the
EXCEPTIONEXIT routine; NAMEPROC builds and
initializes the EXCPEXIT FPL and references it in the
FVT field CTGFVEXT. KEYPROC builds an
AMDSBCAT CTGFL, and ALLCPROC builds a
DSATTR CTGFL, but no information is put in them
yet. KEYPROC puts the length and offset from KEYS
in the AMDSBCAT CTGFL. If no key values have
been specified, KEYPROC sets up defaults.
KEYPROC also puts the address of (lowkey highkey) ...
from KEYRANGES in the DATA CTGFV. The calls
to KEYPROC in the construction of the DATA FVT
of an AIX includes an indication of
UNIQUEKEY/NONUNIQUEKEY. KEYPROC

initializes the AMDUNQ flag in the AMDSB to
o indicate the appropriate condition. KEYPROC sets
o the AMDRKP field to a fixed value of X'OS' and the
'
Vl

AMDAXRKP field to the value specified for relative
<
Vl key position. KEYPROC sets the AMDSPAN flag in
N the AMDSB since all alternate indexes have the
>(") spanned attribute. The AMDSB FPL is built by
r.
(1) KEYPROC. ALLCPROC puts the address of dname
" '" from FILE and the address of volser from VOLUMES
~
(1)

in the DATA CTGFV. ALLCPROC builds a
;. SPACPARM CTGFL with the primary and secondary
o
0- space information from TRACKS, CYLINDERS, or
Vl RECORDS. ALLCPROC also builds a BUFSIZE
(1)..,
<: CTGFL with information from BUFFERSPACE. The
n' following is put in the AMDSBCA T CTGFL:
f')

'" r ORDERED IUNORDERED
o

(JQ cipercent and capercenl from FREESPACE
n' size from CONTROLINTERVALSIZE

WRITECHECK INOWRITECHECK
maximum from RECORDSIZE
STAGE I BIND I CYLINDERFAULT
DESTAGEWAIT INODESTAGEWAIT

PROTPROC puts ERASE I NOERASE,

REUSE INOREUSE, and crosspartition crosssystem

from SHAREOPTIONS in the DSATTR CTGFL.

Protection information is obtained only from the

MODEL via MOLTABL in order to provide different

protection at the ALTERNATEINDEX and DATA.

PROTPROC builds a PASSWALL CTGFL with

protection information from the MODEL as well as a

OWNERID CTGFL with owner information from the

MODEL.

On the second pass, called the explicit pass, if

MODEL is not specified under DATA. the

information specified in the DATA parameters

overlays the information placed in the DATA CTGFV

on the implicit pass.

If MODEL is specified under DATA, MODELPRC

issues a UCATLG to get information from the data

catalog entry of the modeled alternate index. The

information from the data entry of the modeled

alternate index is put in MOLTABL. The information

in MOLTABL overlays the information placed in the

OATA CTGFV on the implicit pass. Finally, the

information in the DATA CTGFV is overlaid with the

information specified in the DATA parameters.

NAMEPROC puts the address of objectname from

NAME in the DATA CTGFV. KEYPROC puts length

and offset from KEYS in the AMDSBCAT CTGFL.

KEYPROC puts the address of (Iowkey highkey) ...

from KEYRANGES in the OATA CTGFV.
ALLCPROC puts the address of dname from FILE
and the address of volser from VOLUMES in the
DATA CTGFV. Note: the volume serial list is not
merged with any other volume serial list. ALLCPROC
also builds or modifies the SPACPARM CTGFL with
primary and secondary space information from
TRACKS, CYLINDERS, or RECORDS; the LRECL
CTGFL with average from RECORDSIZE; and the
BUFSIZE CTGFL with size from BUFFERSPACE.
PROTPROC builds or modifies the PASSWALL
CTGFL with information from MASTERPW,
CONTROLPW, UPDATEPW, READPW, CODE,
ATTEMPTS, and AUTHORIZATION.

PROTPROC also builds or modifies the OWNERIO
CTGFL with ownerid from OWNER. The following is
put in the AMDSBCAT CTGFL:

ORDERED IUNORDERED

cipercent and capercent from FREESPACE

size from CONTRO LINTERVALSIZE

WRITECHECK I NOWRITECHECK

maximum from RECORDSIZE

STAGE I BIND I CYLINDERFAULT

DESTAGEWAIT I NODESSTAGEWAIT

UNIQUE I SUBALLOCATION and
SPEED I RECOVERY are put in the DSATTER
CTGFL. ERASE I NOERASE. REUSE I NOREUSE,
and crosspartition crosssystem from SHAREOPTIONS
are put in the DSATTR CTGFL.

DATA part of

ALTERNATEINDEX

MODEL (not used I---- ALTERNATEINDEX

if MODEL specified

under DATA)

DATA part of -. DATA
DATA MODEL

Module: IOCDEOl, IOCDE02 (without VS2.03.807)
IOCDE02, IOCDE03, (with VS2.03.807)

Procedure: AIXPROc. NAMEPROC, KEYPROC,
ALLCPROC. MODELPROC, IXOPPROC, PROTPROC
3. An INDEX CTGFV is always built for

an alternate index.

AIXPROC sets the identification of INDEXFVT in
the 8 bytes preceding the INDEX CTGFV. The

DEFINE FSR builds the INDEX CTGFV with the

information specified in ALTERNATEINLJEX

parameters, which is overlaid by the information

specified in the INDEX parameters. Two passes are

performed. On the first pass, called the implicit pass,

if MODEL is not specified, the INDEX CTGFV is

built with the information specified in

ALTERNATEINDEX parameters.

If MODEL is specified under ALTERNATEINDEX

and MODEL is not specified under INDEX,

MODELPRC uses the saved control interval number

for the index entry of the modeled alternate index to

get information from the index entry. The information

from the index entry of the modeled alternate index is

put in MOLTABL. The INDEX CTGFV is built with

information from MOLTABL and then overlaid by

the information specified in the ALTERNATEINDEX

parameters. NAMEPROC issues a UTiME macro to

get the creation date which is put in a DSETCRDT

CTGFL. The calls to NAMEPROC in the

initialization of the DATA and INDEX FVTs for an

alternate index includes a pointer to the name of the

EXCEPTIONEXIT routine; NAMEPROC builds and

initializes the EXCPEXIT FPL and references it in the

FVT field CTGFVEXT. KEYPROC builds an

AMDSBCAT CTGFL, and ALLCPROC builds a

DSATTR CTGFL. but no information is put in them

yet. IXOPPROC puts REPLICATE INOREPLICATE

and IMBED INOIMBED in the AMDSBCAT

CTGFL. ALLCPROC puts the address of the dname

from FILE and the address of volser from VOLUMES

in the INDEX CTGFV. ALLCPROC also builds a

SPACPARM CTGFL with primary and secondary

space information from TRACKS, CYLINDERS, or

RECORDS. The following is put in the AMDSBCAT

CTGFL:

ORDERED I UNORDERED

WRITECHECK INOWRITECHECK

size from CONTROLINTERVALSIZE

STAGE I BIND ICYLINDERFAULT

DESTAGEWAIT I NODESTAGEWAIT

UNIQUE I SUBALLOCATION and

REUSE I NOREUSE is put in the DSATTR CTGFL.

Record size is not indicated because it is always fixed

length for the index of an alternate index.

Protection information is obtained only from the

MODEL via MDLTABL in order to provide different

protection at the ALTERNATEINDEX and INDEX.

PROTPROC builds a PASSWALL CTGFL with

protection information from the MODEL as well as a

c., f.,'-'

r 	 r r

OWNERID CTGFL with owner information from the
MODEL

On the second pass, called the explicit pass, if
MODEL is not specified under Index, the informatior
specified in the INDEX parameters overlays the
information placed in the INDEX CTGFV on the
implicit pass.

If MODEL is specified under INDEX, MODELPRC
issues a UCATLG to get information from the index
catalog entry of the modeled alternate index. The
information from the index entry of the modeled
alternate index is put in MDLT ABL. The informatior
in MOLTABL overlays the information placed in the
INDEX CTGFV on the implicit pass. Finally, the
information in the INDEX CTGFV is overlaid with
the information specified in the INDEX parameters.
NAMEPROC puts the address of objectname from
NAME in the INDEX CTGFV. IXOPPROC puts
REPLICATE I NOREPLICATE and
IMBED I NOIMBED in the AMDSBCAT CTGFL.
ALLCPROC puts the address of dname from FILE
and the address of vo/ser from VOLUMES in the
INDEX CTGFV. ALLCPROC also builds or modifies
the SPACPARM CTGFL with primary and secondary
space information from TRACKS, CYLINDERS, or
RECORDS. PROTPROC builds or modifies the
PASSWALL CTGFL with information from
MASTERPW, CONTROLPW, UPDATEPW,
READPW, CODE, ATTEMPTS, and
AUTHORIZATION. PROTPROC also builds or
modifies the OWNERID CTGFL with ownerid from
OWNER. The following is put in the AMDSBCAT
CTGFL:

ORDERED I UNORDERED
WRITECHECK I NOWRITECHECK
size from CONTROLINTERVALSIZE
STAGE IBIND ICYLINDERFAULT
DESTAGEWAIT I NODESTAGEWAIT

The following is put in the DSATTR CTGFL:

UNIQUE ISUBALLOCATION
ERASE INOERASE

~
." REUSE I NOREUSE
;.
o crosspartition crosssystem from SHAREOPTIONS
Q.

o..,
o
?!
~ o·
:::l

INDEX PaIt of
ALTERNATEINDEX
MODEL (not used ALTERNATEINDEX
if MODEL specified -
under INDEX)

INDEX Part of f---- INDEX
INDEX MODEL

Module: IDCDEOI

Procedure: IDCDEOI, DALCPROC

4. 	 Note: Users with VS2.03.807 should ignore this step. For
an alternate index two or three CTGFVs have been
built---one each for alternate index, data, and index
information. If a VOLUME CTGFV has been built, it
does not have any information in it because VSAM
uses it for a work space. The following table shows the
possible places where a SPACPARM CTGFL may
have been built and the action IDCDEOI takes.

SPACPARM crGFL

Alternate
Index Data Index Action

X X X This is an error;
IDCDEOI terminates the
DEFINE.

X X This is an error;
IDCDEOI terminates the
DEFINE.

X X This is an error;
IDCDEOI terminates the
DEFINE.

X X OK; no action.

X OK; no action.

X OK; no action.

X This is an error;
IDCDEOI terminates the
DEFINE.

none none none This is an error;
IDCDEOI terminates the
DEFINE.

For a UNIQUE data component, CTGFV is checked
for a dname from FILE. If FILE is not supplied,
DALCPROC builds an ALLAGL and issues a
UALLOC macro to dynamically allocate the volumes.
The dname returned by UALLOC is put in
CTGFVIND. This same processing is performed for a
UNIQUE index component. If either the data or index
component is UNIQUE, IDCDEOI builds a null
volume FVT. Control goes to Diagram 3.2, step 3.

N

o
U'l

<
~
>
§
en
en

~
~

;.
&.
U'l
~

~
~"
en

f
j'j"

Diagram 3.3. 9 DEFINE FSR - DEFINE PATH

crGPLD .'

\, ~
'-'

r r 	 r

Extended Description for Diagram 3.3.9

Module: IDCDEOI, IDCDE02 (without VS2.03.807)
IDCDE02, IDCDE03 (with VS2.03.807)

Procedure: PATHPROC, NAMEPROC, MODELPRC,
PROTPROC,ALLCPROC

I. 	 In the DEFINE PATH command, you specify
information under one main keyword: PATH. The
DEFINE FSR builds a CTGFY to describe the path.
Information specified under PATH goes in the PATH
CTGFY.

If MODEL is specified, the information in the
command overrides the information in a model. A
model has one catalog entry to describe its path. The
information in a model's path catalog entry is used to
build the PATH CTGFY.

PATHPROC checks for a MODEL keyword under
PATH. If MODEL is specified, MODELPRC issues a
UCATLG to retrieve information from the modeled
YSAM data set. The information from the path
catalog entry of the modeled data set is put in a table,
MDL T ABL. MDL T ABL contains an address and the
length of each field of information returned from the
UCATLG. In building the PATH FYT, information is
obtained from the MDL T ABL and is then overlaid by
information specified in the PATH parameters.
P A THPROC sets the identification of P A THFYT in
the 8 bytes before the PATH CTGFV. NAMEPROC
issues a UTIME macro to get the creation date which
is put in a DSETCRDT CTGFL. NAMEPROC puts
the address of objectname from NAME in the PATH
CTGFY. NAMEPROC is supplied with the address
necessary to reference the PATH ENTRY name and
places its address in CTGFYNAM. The password of
the PATHENTRY is referenced from CTGFYPWD.
NAMEPROC builds a DSETEXDT CTGFL with the
information from TO I FOR, PROTPROC builds a
PASSWALL CTGFL with information from
MASTERPW, CONTROLPW, UPDATEPW,
READPW, CODE, ATTEMPTS, and
AUTHORIZATION. PROTPROC also builds an
OWNERID CTGFL with information from OWNER.~

('l The call to PROTPROC in the construction of the;.
o PATH FYT includes the UPDATE INOUPDATE
0.. indication for a path. PROTPROC builds the -o

RGATTR FPL and references it in the PATH FYT

"0
o field CTGFYUPG. If neither of these parameters was
('l specified, a default of UPDATE is set in the a RGATTR. ALLCPROC sets the address of the o·
::l recovery volume serial work area in the CTGFYWKA

.....

field of the PATH FYT. The CTGFYTYP field of the
PATH FVT is set to R.

Diagram 3.4 DELETE FSR
~ From Executive
o
VI

<
VI
N " »
()
() CTGPL CTGFL~ or each entry to be deleted:
~

Deletes partition data set members. r--.s::
~ Prepares entry nam~.
So

Gets entry type. 8.
VI
~ ..,
<;:;. <

'"
~

CTGPLb Builds CTGPL.
(JQ
;:;.

D
Deletes entry. <....

~

VSAM
Catalog

..... ~

......., Message
rites message. ,/

D
Register I

~
.GDT

• FDT

~LASTCC

\,
'-' '-'

r r 	 r

Extended Description for Diagram 3.4

Module: IDCDLOI

Procedure: FINDTYPE, BUILDCPL, CATCALL,
IDCDL01, MEMDLETE, PARAMCHK, DELTPROC,
ALLOPROC, RC240PRC

I. 	IDCDLOI checks the FDT to see if the entryname
needs to be qualified. If the name needs qualification,
IDCDLOI issues a UQUAL macro and uses the
returned name for the remainder of the DELETE
FSR. The following steps are performed for each
entryname to be deleted. Control goes to step 3 to
terminate the command when all entrynames have
been deleted, or a serious error is encountered.

a. 	 IDCDLOI checks the FDT to see if the entryname
contains a membername indicating the data set is a
partitioned data set, PDS. If it is not, control goes
to step 2.b. MEMDLETE checks for errors.
MEMDLETE builds an OPNAGL to open the
partitioned data set. If FILE is not specified,
MEMDLETE puts the entryname in the OPNAGL.
This causes the UOPEN macro to dynamically
allocate the data set. MEMDLETE issues a
UOPEN macro to open the partitioned data set. To
delete the member name, MEMDLETE issues a
USTOW macro. MEMDLETE issues a UCLOSE
to close the partitioned data set. No more
processing is done on the partitioned data set.
Error or status messages are written. Control goes
to step 2.a for the next entry.

b. 	 IDCDLOI also checks the FDT to see if the
entryname is a generic data set name-that is, it
contains an *. For a generic name, IDCDLOI issues
a UCIR macro to get a list of data set names. Each
name in the list is treated as though it had been
specified as an entryname in the DELETE
command. Any catalog name returned with the
data set names that match the entryname is saved
and used in calls to VSAM catalog management.

c. 	 If the entry type is not specified with the command,
FINDTYPE builds a CTGPL and three CTGFLs in

~
0 which VSAM returns the entrv type, catalog ACB
S- address, and cluster attribute field. FINDTYPE
o
0. 	 initializes the CTGPL and CTGFLs once for the

entire DELETE command, and they are used with 2..
each entryname. FINDTYPE issues a UCATLG0

'0 	 macro to locate the entry type, catalog ACB
~ address and cluster attribute field. If the entryname2;.

-
o· is a pagespace and ERASE is specified, the
:l entryname is not deleted; control goes to step 2 for

the next entryname. If the entryname is non-VSAM
V>

and NOSCRATCH is not specified, ALLOPROC
issues a UALLOC macro to allocate the data set.
Control goes to step 2 for the next entryname. If the
return code is non-zero and not 8, FINDTYPE
writes an error message, but the rest of the
DELETE command is processed.

PARAMCHK checks for invalid or insufficient
parameters which the Reader/Interpreter cannot
check. The Reader/Interpreter cannot do all the
necessary parameter checking if the user has not
specified the entry type. PARAMCHK checks if no
TYPE is specified and the type was found by
FINDTYPE, or if the entryname is a generic name
and type is not specified. If there is an invalid
parameter, PARAMCHK writes an error message,
but the rest of the DELETE command is
processed.

d. 	 BUILDCPL builds a CTGPL to delete the entry.
BUILDCPL initializes the CTGPL once for the
entire DELETE command, and it is used over and
over for each enlryname. BUILDCPL puts the
following information in the CTGPL: the address
of the entryname, the address of the dname, type of
entry if specified on the command,
PURGE INOPURGE, ERASE I NO ERASE,
FORCE INOFORCE,
SCRATCH I NOSCRATCH, address of a password
if specified, and the address of the catalog name if
CATALOG is specified or the catalog ACB address
if FlNDTYPE got the catalog ACB address.
BUILDCPL also puts the address of a work area
needed by VSAM in the CTGPL. BUILDCPL puts
the address of the entry name and the address of
the entry password in the CTGPL.

If the entry type is non-VSAM and neither
SCRATCH or NOSCRATCH is specified,
BUILDCPL sets SCRATCH in the CTGPL. If the
type is NONVSAM and the data set is to be
scratched, ALLOPROC issues a UALLOC macro
to allocate the data set. If the entry was located
from the catalog, BUILDCPL puts the entry type
in the CTGPL. If the entry is a VSAM data space,
ALLOPROC issues a UALLOC macro to mount
the volume. If the entry type is a cluster or
alternate index with ERASE specified but FILE not
specified, ALLOPROC issues a UALLOC macro to
allocate the cluster or alternate index.

e. 	 CATCALL deletes the entryname by issuing a
UCATLG macro with the CTGPL built by
BUILDCPL. If the length field of the workarea
passed to VSAM has a number greater than 4 in

the second 2 bytes, catalog has returned a list of
deleted objects. CATCALL writes the name of
each deleted object in the entry with a UPRINT
macro.

If the VSAM catalog return code is anything other
than 40, 72, 76, or 240, control returns to
DELTPROC. Return codes of 0, 110 (VS1.03.807
only), and 160 indicate that the function completed
successfully: all other return codes indicate errors. On
a VSAM catalog return code of 160, a message is
printed indicating the deletion of data spaces on a
volume did not cause the volume entry record to be
deleted from the catalog; this occurs when the volume
contains non-empty data spaces (or is a candidate
volume for a VSAM data set) and the FORCE
parameter is not specified. For VS2.03.807, a VSAM
catalog return code of 110 causes a message to be
printed indicating that the profile of a Resource
Access Control Facility (RACF) entity could not be
deleted because it is not present (reason code 4), or
because it is not eligible for deletion (reason code 8).

On a return code of 40, MORESP calculates the size of
the workarea required by VSAM. If the present one is
large enough, MORESP clears it. Otherwise, unless
the workarea is in PL/S automatic storage, it is freed
and a new workarea is gotten. CATCALL then
re-issues the UCATLG with the delete CTGPL.

For a VSAM catalog return code of 72 or 76, catalog
management returns the name of an object to be
dynamically allocated: this is the last entry in the
workarea. ALLOPROC issues a UALLOC for this
entry, and CATCALL then re-issues the UCATLG for
the delete request.

If the VSAM catalog return code is 240 and the user
specified the CATALOG parameter, RC240PRC
determines if the entryname to be deleted is accessible
to dynamic allocation by performing Iistcatalogs to
obtain the name of the catalog in which dynamic
allocation will find it. Provided that the data set is
accessible to allocation, ALLOPROC issues a
UALLOC to dynamically allocate it, and CATCALL
then re-issues the UCATLG to perform the delete
operation.

This step is repeated until the VSAM catalog return
code is other than 40, 72, 76, or 240.

Module: IDCDLOI

Procedure: IDCDLOI

2. 	 IDCDLOI prints a message with LASTCC. Control
goes to Executive Controlled Termination, Diagram
4.0.

From Executive
Diagram 3.5 EXPORT FSR

0"

o
til
"
til
tv
<

-- I
>n Register IL..__~
f>
n

'" ~ J'" ::: ~'-
f>;. tGDTo
0

tFDTtil
f>

~ ~'L-___
(i'
f>

'" r o
(JQ
(i'

T 0

".. .--'
t......

VSAM I ""
Catalo~

J

""'I_.----l
VSAM userl
Catalog or

,,-VSAM ~ et

\., l, '-'

r r 	 r

Extended Description for Diagram 3.5 	 Module: IDCXPOI

Procedure: IDCXPOI
Module: IDCXPOI
2. 	 IDCXPOI writes a message with LASTCC. Messages Procedure: AL TRPROC, IDCXPOI, DELTPROC,

listing the exported catalog or VSAM data set areDSCTPROC,LOCPROC,CTLGPROC,OPENPROC,
written. IDCXPOI closes any open data sets with the PUTPROC,CLUSPROC,RFCPROC
UCLOSE macro. Control goes to Executive

I. 	IDCXPOI tests the FDT for DISCONNECT in the Controlled Termination, Diagram 4.0.
EXPORT command. Step I.a is done if
DISCONNECT is specified, or step I.b is done if
DISCONNECT is not specified.

a. 	 DELTPROC builds a CTGPL to delete the user

catalog entry in the VSAM catalog. DELTPROC

issues a UGPOOL for a work area in which VSAM

puts deleted names. If a password is supplied,

LOCPROC puts it in the CTGPL. CTLGPROC

deletes the user catalog entry by issuing a

UCATLG macro with the CTGPL. If the return

code is 40, the work area addressed from the

CTGPL is too small. The former work area is

released with a UFSP ACE, and the returned size of

the work area needed is used with a UGPOOL to

get another work area. If the new work area is

obtained, another UCATLG macro is issued. If the

return code from the first UCATLG is non-zero

and not 40, or if the return code from the second

UCATLG is non-zero, an error message is written

by building an error conversion table and issuing

the UERROR macro.

b. 	 CLUSPROC tests the FDT to see if the cluster or

alternate index and the portable data set names

need to be qualified. Data set names are qualified if

Access Method Services is invoked interactively

with TSO. If the data set names need qualification,

CLUSPROC issues a UQUAL macro for each

name and uses the returned data set names for the

remainder of the EXPORT FSR. LOCPROC gets

catalog information about the components of the

VSAM data set. OPENPROC opens the portable

data set for output. PUTPROC writes catalog

information and data records on the portable data

set. CLUSPROC closes the portable data set and

~ processes the disposition options,
'" TEMPORARY I PERMANENT. Refer to;.
o .. Appendix A" for a description of the portable
C- data set. Diagram 3.4. I shows exporting a cluster O.... or alternate index in detail. o -g..,
~ o·
:l

'-I

--

--

00
Diagram 3.5.1 EXPORT FSR - Ouster or Alternate Index

o
I;Il
.......

<
VJ
N 	 ...
>
(") 	 CTGPL
(") 	 ~ I. Obtains information for cluster(I) 	 "':> I--.~ CTGFLsv-	 v ~ or alternate index, data, and index. < I ,
~ ~
(I) VSAM 	 "
S-	 ~ Catalogo
0
I;Il
(I)
< 	 "\
r;' ~
(I)
'J>

r VSAMo 	 Portable Data Set !)Q 	 Data Set r;' 	 2. Opens portable data set.

Portable Data Set ~ -~ 3. 	Writes catalog information.

Obtains and writes catalog

information for paths.
 ,;>

.......
 4. Writes data records. 	 -V>

5. Closes portable data set. CTGPL
"-,6. Processes disposition options. 	 " CTGFV<1 -v-" 1--..... CTGFLs

.... 	 --.
~

"""I~
VSAM

......, Catalog
-v-.J

\
VSAM
Data Set

,-,.\,
'-'

(' (' 	 r

Extended Description for Diagram 3.S.1

Module: IDCXPOI

Procedure: LOCPROC, CTLGPROC, IDCXPOI

t. 	For the cluster or alternate index entry of the VSAM
data set, LOCPROC builds a CTGPL and CTGFLs to
retrieve information from the VSAM catalog. One
CTGFL is built for each of the following pieces of
information:

Entry type
Entry name
Data set attributes
Data set owner
Data set creation date
Data set expiration date
Password
Password prompting
Password attempts
User module name
User module area
Space information
Buffer size
Logical record length
Low key on volume
High key on volume
AMDSB control block
Cluster attributes
Type and name of data and index entry
Exception exit
Alternate index and Path attributes
Catalog ACB

CTLGPROC issues a UCATLG with the CTGPL and
CTGFLs to retrieve the information from the catalog.
If the work area is too small, CTLGPROC will enlarge
it and reissue the UCATLG. If the LOCATE fails for
a reason other than that the work area is too small, an
error message is written by building an error
conversion table and issuing the UERROR macro.
This processing occurs for all UCATLG requests
issued by CTLGPROC. IDCXPOI tests to be sure that
the type of catalog entry is a cluster or alternate index
and not a pages pace. If it is not a cluster or alternate~

~ index, an error message is written and the VSAM data:;.
o set is not exported. Information is requested on all the
D- fields even if the information is not available in the
2., cluster entry because VSAM ignores requests for fields
o
"0 that do not apply for this entry.

a ~

LOCPROC builds a CTGPL and CTGFLs for the data
0' entry of the VSAM data set. CTGFLs are built for
;:) each piece of information in the above list except the

last two, type and name of data and index entry, and
-a

catalog ACB. The control interval of the data entry is
used to find the data entry. CTLGPROC issues a
UCATLG with the CTGPL and CTGFLs to retrieve
the information from the catalog. If the work area is
too small, CTLGPROC enlarges it and reissues the
UCATLG. The returned information is saved.

The processing in the above paragraph is repeated for
the index entry if any.

Module: IDCXPOI

Procedure: OPENPROC

CLUSPROC determines if the object being exported is
an alternate index. If so, LOCPROC builds a CTGPL
and CTGFLs for the base cluster associated with the
alternate index. CTFGLs are built for entry type and
entry name. CTLGPROC issues a UCATLG to
retrieve this information. The entry name will be
written to the portable data set as the related name.

2. 	 OPENPROC builds an OPNAGL. If OUTDATASET
is specified, OPENPROC puts the data set name in the
OPNAGL. This causes the data set to be dynamically
allocated by the UOPEN macro. OPENPROC issues a
UOPEN to open the portable data set for output. If
the return code is non-zero, an error message is
written and the VSAM data set is not exported. Refer
to Appendix A for a description of the portable data
set.

Module: IDCXPOI

Procedure: CLUSPROC, PUTPROC, CONTRBL

3. 	CONTRBL constructs a dictionary for each CTGPL.
The CTGFLs contain information returned by VSAM.
If a fixed length field has no information, VSAM puts
all binary ones in the CTGFL where the information
would have been. If a variable length field has no
information, VSAM puts zeros in the two-byte length
field that precedes the field in the CTGFL where the
information would have been. If INHIBITTARGET is
specified, a flag is set in the portable data set so
IMPORT can process INHIBITTARGET. PUTPROC
writes the dictionary followed by the information from
each CTGFL-except the CTGFL for cluster
attributes. If the length of the dictionary or catalog
information is greater than the logical record length
for the portable data set, PUTPROC writes the
dictionary or catalog information in segments.
PUTPROC writes the records with a UPUT macro.
Refer to Appendix A for the format of the portable
data set.

After the catalog information pertaining to the cluster
or alternate index and associated data and index
objects has been written to the portable data set,
CLUSPROC obtains information regarding all paths
which have been defined over the object being
exported. For the first path association LOCPROC
builds a CTGPL and CTGFLs to retrieve the
information from the VSAM catalog. CTGFLs are
built for the same pieces of information as for the data
and index objects. CTLGPROC issues a UCATLG to
retrieve the information which is then written to the
portable data set. In addition, the name of the cluster
or alternate index being exported and its password are
written to the portable data set as the PATHENTRY
name and PATHENTRY password. CONTRBL is
called to actually construct the portability record.
CLUSPROC retrieves information for all the
remaining path associations and then writes it to the
portable data set using the same CTGPL and CTGFLs
which were set up for the first path association. Prior
to calling CTLGPROC for each, the work area is
cleared and the control interval number of the next
associated path is placed in the CTGPL.

Module: IDCXPOI

Procedure: RECPROC, LOCPROC, OPENPROC

4. 	 CLUSPROC issues a UALLOC macro to allocate the
VSAM data set if it was not allocated via JCL.
RECPROC opens the VSAM data set with a UOPEN
macro and issues a UCOPY to copy all the records to
the portable data set. RECPROC issues a UCLOSE to
close the VSAM data set. Following a successful open,
RECPROC compares the data set name returned by
UOPEN to that specified by the caller as the entry
name in the EXPORT command. If the compare is
unequal, LOCPROC builds a CTGPL and CTGFLs to
perfoon a LOCATE on the name returned by
UOPEN. CTGFLs are built for ENTYPF..and
NAMEDS. CTLGPROC issues a UCATLG macro. If
the ENTYPE returned is not that of a path, an error
message is written and the command is terminated. If
the ENTYPE is that of a path, a second LOCATE is
performed using the control interval number of the
pathentry object. A CTGFL is built for ENTNAME
by LOCPROC and a UCATLG macro issued by
CTLGPROC. If the name returned is not equal to the
entry name specified in the EXPORT command, a
message is written and the command terminated.

When exporting a relative record data set, the relative
record number of each record written to the portable
data set is placed by UCOPY in a 4-byte area
immediately preceding the record itself. OPENPROC

(' (' 	 ('

triggers this processing by setting the Export/Import
flag in the OPNAGL of the input data set.

Module: IDCXPOI

Procedure: CLUSPROC

S. 	 CLUSPROC issues a UCLOSE to close the portable
data set.

Module: IDCXPOI

Procedure: DELTRPOC, CLUSPROC, CTLGPROC,
ALTRPROC, MORESP

6. 	 If PERMANENT is specified, DELTPROC builds a
CTGPL. If ERASE or PURGE is specified,
CLUSPROC changes the CTGPL. CTLGPROC issues
a UCATLG to delete the VSAM data set from the
VSAM catalog. If the delete fails, an error message is
written by building an error conversion table and
issuing the UERROR macro. The names of all deleted
entries are printed. If the VSAM catalog return code is
40, MORESP is called to get a larger work area. If the
VSAM catalog return code is 110, (VS2.03.807 only), a
message is printed indicating that the profile of a
RACF-indicated entity could not be deleted because it
was not found or was not eligible for deletion.

If TEMPORARY is specified, the temporary export
field must be turned on in the catalog entry.
ALTRPROC modifies the existing CTGPLs, builds a
CTGFV, and modifies the existing CTGFLs for the
fields that need to be changed in the VSAM catalog.
The temporary export flag and, if INHIBITSOURCE
is specified, the inhibit update flag is set in the
DSATTR CTGFL. An ENTNAME CTGFL for the
entryname is also built. AL TRPROC places the
address of the dname specified in the INFILE
parameter, if any, in the CTGFV for catalog recovery
purposes. CTLGPROC issues one UCATLG for the
data entry and one UCATLG for the index entry if it
exists. The data set attributes field does not appear at
the cluster or alternate index entry. CLUSPROC issues
a UDEALLOC macro to deallocate the cluster or
alternate index if it was allocated by EXPORT.

s:: Control returns to Diagram 3.5, step 2.

;.'"
o
Q.

o...,
o
~ a o·
:l

N

IV Diagram 3.6 IMPORT FSR
IV

o
~

<
~
IV

Register I

C ~:)I 	 ...
~
~ ;. tGDT

8- ,hOT
~

~

~ ;:;.
~
Vl

0
o r

OQ;:;.
Portable Data Set

~ -

~ r-...
VSAM
Catalog

-\
"
VSAM
User Catalog

....... oJ

From Executive

-...
1. 	Tests for IMPORT of user

catalog or VSAM cluster or
alternate index.

8. 	 Imports user catalog.

b. Imports cluster or
alternate index.--t>

See Diagram 3.6.1

2. 	Writes message.

iCTGPL 	
~

~I Data W VSAMCTGFV
...",

" CTGFL ~ Catalog....... r--. oJ<I... 	 t'lIIt. '
~ --
VSAM
User Catalog

r--.
......... VSAM Catalog

....
'-

-"

VSAM
Cluster

Message......,
...

D
Register I

C
tGDT

t FDT

(LASTCC

'-' 	 '-'
'"

I

r 	 r' r

Extended Description for Diagram 3.6

Module: IDCMPOI

Procedure: OPENPROC, IDCMPOl, CLUSPROC,
CNCTPROC, CPLPROC, L VLRPROC, CTLGPROC,
RECPROC,ALTRPROC

1. 	 IDCMPOI tests the FDT for the CONNECT keyword
in the IMPORT command to determine if a VSAM
data set or a VSAM catalog is being imported. If
CONNECT is specified, a VSAM user catalog is being
imported, and step l.a is done. If CONNECT is not
specified, a VSAM data set is being imported, and step
l.b is done.

a. 	 The following is repeated for every objectname in
OBJECTS. Note: More than one user catalog can
be imported with one IMPORT command.
CPLPROC initializes a CTGPL. FVTPROC builds
a CTGFV. LVLRPROC builds a DEVTYPE
CTGFL from the DEVICETYPES in the
command. LVLRPROC builds a volume list from
VOLUMES and puts the address of the volume list
in the CTGFV. CNCTPROC puts the address of
the objectname from OBJECTS in the CTGFV. If
no objecmame is specified, an error message is
written, and the catalog is not imported. The
operation type field in the CTGFV is set to 'A' to
indicate a catalog connect. CNCTPROC issues a
UCATLG to connect the catalog. If the return code
is non-zero, an error message is written by building
an error conversion table and invoking the
UERROR macro. When all the catalogs have been
connected, control goes to step 2.

b. 	 CLUSPROC tests the FDT to see if the portable or
target name needs to be qualified. Data set names
are qualified if Access Method Services in invoked
interactively with TSO. If the data set names need
qualification, CLUSPROC issues a UQUAL macro
for each name and uses the returned data set
names for the remainder of the IMPORT FSR.
OPENPROC opens the portable data set.
CLUSPROC writes the time of export with a
UPRINT macro. CLUSPROC uses the catalog
information in the portable data set to "define" the
VSAM data set. OPENPROC opens the VSAM
data set, and RECPROC copies the data records

tTl from the portable data set to the VSAM data set. If
s::
;.

INHIBITTARGET was specified when the VSAM 2 data set was exported, ALTRPROC alters the
....,o

catalog entry for the VSAM data set. Refer to

'0
o "Appendix A" for the format of the portable data
.,tTl set .
~ o·
:::l

N
V>

Module: IDCMPOI

Procedure: IDCMPOI

2. 	IDCMPOI writes a message with LASTCC. Control
goes to Executive Controlled Termination, Diagram
4.0.

~ Diagram 3.6.1 IMPORT FSR - Ouster or Alternate Index
o 	 From Diagram 3.6
rJl

< 	 ..~

CIl INPUT 	 OUTPUT
N

) Portable Data Set
R
t!> 	 :~ 1. Opens portable data set.
~ 	

~

3:: 2. Writes time of export. 	 ~ t!> 	 ...
s:
o 	 /'..,.. Dr:>. 	 3. Builds catalog parameter lists. V'" CTGPL

r---CIl
t!>

::! 	 ~JfTGFV~CTGF~1
('i'
t!>
til

b
(JQ

('i'

....,

'"
~4. a. Defines cluster or alternate 	 VSAMv (Catalogindex.

b. Defines any associated paths.

5. 	 Copies data. VSAM
Data Set

6. Closes portable data sel.

7. Processes INHIBITTARGET. 	 CTGPL~ r-
A I
....

CTGFL"'~ "'.-

'-' '-' 	 '-'

r· r' 	 r

Extended Description for Diagram 3.6.1

Module: IDCMPOI

Procedure: OPENPROC, IDCMPOI

1. 	 OPENPROC builds an OPNAGL. If INDATASET is
specified, OPENPROC puts the data set name in the
OPNAGL. This causes the data set to be dynamically
allocated by the UOPEN macro. OPENPROC issues a
UOPEN macro to open the portable data set. The
portable data set was created by an EXPORT
command and contains catalog information and data
records for the VSAM data set that was exported.
Refer to .. Appendix A" for the format of a portable
data set. If the return code is non-zero, IDCMPOI
writes a message. If the portable data set is open;
IDCMPOI issues a UCLOSE to close the data set, and
the IMPORT command is terminated.

Module: IDCMPOI

Procedure: CLUSPROC

2. 	 CLUSPROC gets the first record of the portable data
set which contains the time the portable data set was
created by the EXPORT FSR. MSGPROC writes the
time with a UPRINT macro.

3. 	 The information for catalog parameter lists comes
from three places; the portable data set's copy of the
previous catalog entry, the IMPORT command, and
both the portable data set and the IMPORT
command.

a. 	 CLUSPROC via CPLPROC builds a CTGPL for a
define operation. CLUSPROC issues a UGET
macro to read the first catalog record in the
portable data set. The catalog record contains the
size of the data record that follows. FVTPROC
builds from 2 to 3 CTGFYs, one each for the
cluster or alternate index and its associated data
and index entries. BFPLPROC builds CTGFLs
with information from the portable data set. The
exception is the PASSWALL CTGFL which is built
by BPASPROC. If the exported VSAM data set
was UNIQUE, IUNIQPRC builds a CTGFV for
volume information. No data is put in the volume
CTGFV. If the object being imported is an
alternate index, the related name (given in the

!:: RELATE parameter) is passed via the alternate '" =r index (G) FVT. A work area for the return of the
0
a. catalog recovery volume serial number, if any. is
0 passed via the cluster or alternate index FVT. ...,
0
"0 b. If VOLUMES information is not in the portable
'" ... data set or not specified in the IMPORT command
~ o·
:::l

N
v.

for at least one object (either cluster, data, or
index), an error message is written and the
IMPORT is terminated. LVLRPROC puts the
address of the volser ... list from VOLUMES in the
CTGFY for the objectname in the OBJECTS
parameter.

Module: IDCMPOI

Procedure: CLUSPROC, CPLPROC, FVTPROC,
BFPLPROC, BPASPROC, IUNIQPRC, LVLRPROC,
RANGPROC

c. 	 If ORDERED I UNORDERED is specified for a
particular objecrname, CLUSPROC changes the
AMDSBCAT CTGFL for the objecrname. If
KEYRANGES is specified for the index object,
RANGPROC builds a list of key ranges and puts
the address of the key range list in the CTGFV. If
NEWNAME is specified for a particular object,
CLUSPROC puts the address of the new name in
the particular CTGFV. Data from the IMPORT
command overrides data from the portable data
set. If an exported data or index component was
unique, DALCPROC issues a UALLOC to allocate
the volumes for that component. For VS2.03.807
only: If SA VRAC is specified, CPLPROC will turn
on the CTGPROC indicator to indicate that
profiles are to be saved and not defined. If the
RACF indicator is on in the dictionary record read
from the portable data set, FVTPROC will set the
CTGFVRON bit to indicate that the RACF
indicator should be set.

Module: IDCMPOI

Procedure: CTLGPROC, CPLPROC, CLUSPROC,
DELTPROC,DUPNPROC

4. 	 a. CTLGPROC issues a UCATLG macro to define
the VSAM data set. If the return code is 40, the
work area for VSAM catalog management is
increased and the UCATLG is reissued. If the
return code is 8, a duplicate cluster name exists on
the VSAM catalog. CPLPROC builds a CTGPL to
locate the catalog entry to determine if the
duplicate cluster had a temporary EXPORT done
against it or if it is an empty data set. DUPNPROC
builds DSATTR, HURBADS and AMDSBCA T
CTGFLs to obtain the data set attribute
information, the high-used RBA and the AMDSB
control block of the data component. If the
temporary export flag is not on in either the data or
index or the data set is not empty, the IMPORT is
not done. If the data set is empty, a check is made
to ensure that the data set organization, key length

and relative key position in the catalog entry are
the same as those which were exported. If any of
these factors are different, a message is written and
the IMPORT is not done. If VS2.03.807 is installed
and if the data set is empty, a check is made for the
INTOEMPTY keyword. If not specified, a message
is written and the IMPORT is not done. The
maximum LRECL of the cataloged entry is then
compared to that of the data set exported. Unless it
is greater than or equal to the maximum LRECL of
the data set exported, the IMPORT is terminated.
Otherwise, control goes to step 4.b. If the
temporary export flag is on, CPLPROC builds a
CTGPL to delete the duplicate VSAM data set. If
ERASE I NOERASE or PURGE INOPURGE is
specified, CPLPROC puts the information in the
CTGPL so that VSAM will take the appropriate
action. DELTPROC issues a UCATLG macro to
delete the object. For VS2.03.807, a catalog return
code of 110 with a reason code of 4 or 8 will cause
a message to be printed indicating that the profile
of a RACF-indicated entity could not be deleted.
(It could not be found or it was not eligible for
deletion') Then CTLGPROC reissues the
UCATLG macro to define the VSAM data set. If
the return code from the UCATLG macro is zero,
control goes to step 4b. If a recovery volume serial
is returned for the define, a UPRINT macro is
issued to print it. If the VSAM catalog return code
is 140 with a reason code of 40, DALCPROC
allocates the volumes required by VSAM catalog
management. Then the UCATLG is reissued. If the
return code is any non-zero value other than those
mentioned previously, CTLPROC issues an error
message by building an error conversion table and
invoking the UERROR macro.

Module: IDCMPOI

Procedure: OPENPROC, RECPROC

b. 	 If the cluster or alternate index exported had any
associated paths defined over it, the catalog entries
for these paths were also exported. CLUSPROC
processes the catalog information for each path in
a manner similar to that described in step 3.a. The
PATHENTRY name and password, if any, are
passed for the path (R) FVT. The only
subparameters of the OBJECTS parameter allowed
for path objects are NEWNAME and FILE. If any
other subparameter is specified, a new IMPORT
message is written and that path is not defined .
CTLGPROC issues a UCATLG macro to define
each path. If the return code from UCATLG is

r r 	 r

nonzero, a message is written by building an error VSAM data set has an index component, step 7 is
conversion table and invoking the UERROR repeated to alter the index component to
macro. However" the IMPORT is not terminated. INHIBITTARGET. After INHIBITTARGET is

processed, CLUSPROC issues a UDEALLOC to5. 	 OPENPROC builds an OPNAGL and issues a deallocate the cluster. Control goes to Diagram 3.6,UOPEN to open the newly defined VSAM data set. If step 2.
a password is specified via the OUTFILE or

OUTDATASET parameter, this password is passed to

UOPEN for use inn building the ACB. Otherwise, the

exported master password, if any, is used. RECPROC

issues a UCOPY to copy the data from the portable

data set to the newly defined VSAM data set.

When importing a relative record data set, the relative

record number of each record on the portable data set

is contained in a 4-byte area immediately preceding

the record itself. UCOPY processing uses this relative

record number in writing the records to the output

data set. OPENPROC sets the Export/Import flag in

the OPNAGL of the output data set to indicate to

UCOPY that this is to be done.

Following a successful open, RECPROC compares the

name specified via the OUTFILE parameter to the

name of the object exported. If the compare is

unequal, RECPROC builds a CTGPL and CTGFLs

and issues a UCATLG macro to loacte the entry type

and associations of the name specified via OUTFILE.

If the entry type returned is that of a path, RECPROC

builds a CTGPL and CTGFL and issues a UCATLG

macro to locate the entry name of the pathentry

association (alternate index or cluster) and compares

the name returned from the Locate to the name of the

object exported. If the verification fails, a message is

written and the IMPORT is not done.

MCHlIIIe: IDCMPOI

Procedure: CLUSPROC

6. 	 CLUSPROC issues a UCLOSE to close the portable

data set. If UOPEN allocates a data set, UCLOSE

automatically de allocates the data set. IDCMPOI

CLUSPROC

MCHluIe: IDCMPOI

Procedure: AL TRPROC, CPLPROC

=r:: 7. If INHIBITTARGET was specified when the VSAM
~ data set was exported, the catalog entry must be ;.

altered. AL TRPROC builds a CTGFV and a DSATTR8
CTGFL for the data set attributes field with o.... INHIBITTARGET specified. CPLPROC builds a o

'tI CTGPL to alter the VSAM data component.
~.., CTLGPROC issues a UCATLG macro to alter the
~ VSAM data set to inhibit the VSAM data set. If theo·
::l

N
-..J

Diagram 3.7 LISTCAT FSRN
00 From Executive

o
en
"
v.><
N

Register I
~
~
~
;s:
t1> tGOT;.
o
c.. t FDT
v.>
t1>
:;!
o·
t1>
<J> 0

~
(JQ

0" r

VSAM

Catalog

~ ~, c..,

r r 	 r

Extended Description for Diagram 3.7

Module: IDCLCOl, IDCLC02

Procedure: IDCLCOI, IDCLC02

1. 	 Before processing the catalog entries, IDCLCOI links
to IDCLC02. IDCLC02 establishes addressibility and
initializes an array of 4-byte pointers to point to
several different work areas. These work areas are
common work areas used by both IDCLCOI and
IDCLC02. They are used to store pointers and
variables and reside in IDCLC02's automatic storage.
The address of the array of pointers is passed back to
IDCLCOI in register 15.

Module: IDCLCO I

Procedure: INITPROC, DATEPROC, TIMEPROC

2. 	 If OUTFILE is specified, INITPROC builds an
OPNAGL and issues a UOPEN to open the
alternative output data set. By opening the alternative
file first, any LISTCAT error messages appear on the
alternative file. If a CATALOG is specified,
INITPROC puts the address of the catname in the
CTGPL to make VSAM open the catalog. If
CATALOG is not specified in the LISTCAT
command, INITPROC puts the address of 44 blanks in
the CTGPL to make VSAM find the catalog and open
it.

If CREATION or EXPIRATION is specified,
INITPROC issues a UTIME macro to get the date as
an 8-byte microsecond value and a 4-byte
packed-decimal value. INITPROC calls DATEPROC
and TIMEPROC to calculate the creation and
expiration values for the LISTCA T FSR and catalog
management to use to determine whether a given
entry should be listed. INITPROC issues a warning
message if EXPIRATION is specified with an entry
type that either has no expiration-date field or
contains an expiration-date field that is never
initialized.

Module: IDCLCOI

~ Procedure: INITPROC
(I>

:;. 3. INITPROC issues a UGPOOL macro to obtain
o
c.. storage for the CTGPL, CTGFLs, work areas, and

DARGLIST. INITPROC puts the address of a works..
area for VSAM in the CTGPL. The returned catalogo

a
ACB from the UOPEN is put in the CTGPL. Also, if
password is specified in CATALOG, the address of

~

o· the password is put in the CTGPL. INITPROC
::> determines the number of catalog fields to be obtained
N for each catalog entry by the specification of NAME,

HISTORY, VOLUMES, ALLOCATION, or ALL.
Catalog fields are obtained by control blocks named
CTGFLs. The following table shows the CTGFLs that
are used for each type of catalog entry.

Note: a PAGESPACE consists of a cluster and data
entry.

Module: IDCLCOI, IDCLC02

Procedure: ENTPROC, RTEPROC, TIMEPROC,
CKDTPROC, ANLTPROC, ANSVPROC, LOCPROC,
CDIPROC, AUPROC, VPROC, FPLPROC, ALSPROC,
SHORTLST, VOLLIST, LISTPROC

4. 	 If ENTRIES is specified, catalog information is found
on each entryname in the command. If the entryn.me
is a generic name, ENTPROC issues a UCIR macro.
The UCIR macro returns a list of names that match
the entryname except the * has been replaced by a
single qualifier. If the entryname is unqualified and
Access Method Services is invoked interactively with
TSO, ENTPROC issues a UQUAL macro to get the
fully qualified name which is used instead of the
entryname specified in the command.

If LEVEL is specified, ENTPROC issues a UCIR
macro to get all the names that match the LEVEL
name. one qualifier replaces the * and any number of
qualifiers may be added to the end of the name

If neither ENTRIES nor LEVEL is specified,
ENTPROC tests the FDT to determine if Access
Method Services is invoked interactively with TSO. If
it is, ENTPROC issues a UID macro to get the TSO
user's identification. The TSO user's identification is
treated like a LEVEL name, and ENTPROC issues a
UCIR macro to get all the naITMlli that start with the
TSO user's identification. If no parameters besides
NAME or CATALOG were specified, ENTPROC
passes control to SHORTLST, which formats a list of
data-set names extracted from the work area filled in
by the UCIR macro and issues a UPRINT macro to
write the list to the terminal. (The list includes all
data-set names that begin with the TSO user's
identification and that were found in all catalogs
searched.) Processing continues at step 5. If no
parameters besides VOLUME or CATALOG were
specified, ENTPROC passes control to VOLLIST.
After each data-set name, extracted from the UCIR
workarea, is located, VOLLIST will format a list of
data-set names and for entries that contain volume
information, the volume serial numbers. VOLLIST
calls LISTPROC to issue a UPRINT macro to write
the list to the terminal. (The list includes all data-set
names that begin with the TSO user's identification

and that were found in all caatalogs searched).
Processing continues at Step 5. If parameters besides
NAME or VOLUME or CATALOG were specified,
processing continues as though Access Method
Services were not invoked interactivly with TSO.

Module: IDCLCOI, IDCLC02

Procedure: ENTPROC, RTEPROC, TIMEPROC,
CKDTPROC, ANLTPROC, ANSVPROC, LOCPROC,
CDIPROC, AUPROC, VPROC, FPLPROC, ALSPROC,
SHORTLST, VOLLIST, LISTPROC

If neither ENTRIES nor LEVEL is specified and
Access Method Services is not invoked interactively
with TSO, information is found for each entry in the
catalog.

a. 	 LOCPROC issues a UCATLG to locate the catalog
information for an entry. If a required password is
not supplied, VSAM returns the entry type and
entry name fields in a work area instead of through
the CTGFLs. The catalog ACB is returned the first
time information is successfully located in the
catalog. LOCPROC saves the catalog ACB and
removes the CATACB CTGFL from the list of
CTGFLs to be used to locate information on other
catalog entries. If only selected names are being
listed and CATALOG is not supplied, a bit is set so
that VSAM will search all available catalogs. If the
selected name is a generic name, the catalog name
returned from the UCIR macro is used to locate
information. If the entire catalog is being listed,
only one catalog is searched for the entire
LISTCAT command. VSAM searches the catalogs
in the foHowing order: STEPCAT, JOBCAT,
Master Catalog, and any user catalog named with
the first qualifier of the entryname. Diagram 3.7.1
shows getting catalog information in detail.

b. 	 RTEPROC test the entry type of the catalog entry.
If the type is ALTERNATE INDEX, CLUSTER,
DATA, INDEX, PATH, or PAGESPACE,
CDIPROC formats the information and writes it
with a UPRINT macro. If the type is ALIAS,
GENERATIONDATAGROUP, NONVSAM, or
USERCATALOG, AUPROC formats the
information and writes it with a UPRINT macro. If
the type is an association of an alternate index,
cluster, pagespace, generation data group, or alias,
ANLTPROC formats the information and writes it
with a UPRINT macro. If the type is SPACE,
RTEPROC checks for a date restriction
(CREATION specified). If the entry is
date-restricted, the calculated creation date is

--c

http:entryn.me

~ o 	 compared with the time stamp of the volume entry
and the DSCB to determine whether to list the o

CIl entry. If so, VPROC formats the information and
< writes it with a UPRINT macro. Otherwise
.......

CIl
N processing continues at step 4.a for the next entry.
> Note: Information written for a SPACE entry does g not come directly from the catalog because
" ~ 	 LISTCAT has a special interface with VSAM for
3:: 	 all LISTCAT requests. VSAM manipulates

information in the catalog to provide the special :;."
o 	 interface to LISTCAT. If the entry type is a cluster,
0. alternate index, pagespace, generation data group,
CIl

or alias, RTEPROC determines whether an" ~
~. 	

association-that is, a data entry, index entry, true
name entry, or generation data set-is to be listed.

'" r 	 If it is, ANSVPROC saves the name of the
o 	 association and lists the entry. FPLPROCfIQ o· reinitializes the CTGFLs.

The information about the data or index or path is
obtained by Control Interval rather than by name.
Control returns to step 4.a to locate information about
the data or index or path. If RTEPROC was entered at
the secondary entry point, RTEASSOC, to locate the
associations of an alternate index, cluster, page space,
or generation data group, RTEPROC first checks for a
NOTUSABLE option request. If NOTUSABLE was
requested and the retrieved entry is a data or index
entry, a check is made to determine if the entry has
been markedd as unusable. If the entry has been
marked as unusable, processing continues; otherwise,
processing continues at Step 4 for the next entry.
RTEPROC then checks for a date restriction
(CREATION or EXPIRATION specified). If the entry
is date-restricted, CKDTPROC compares the
calculated creation and expiration dates with the
entry's creation and expiration dates to determine
whether to list the entry. If so, control goes to the
appropriate format routine to format the information
and write it with a UPRINT macro. Otherwise
processing continues at step 4.a for the next entry ..
FPLPROC reinitializes the CTGFLs for the next
catalog entry. If the type is not valid, RTEPROC
writes a message. Control goes to step 4.a for the next
entry. Refer to OS/VS2 Access Method Services for a
sample listing of LlSTCAT output.

Module: IDCLCOI, IDCLC02

Procedure: IDCLCOI, FREESTG

5. 	 IDCLCOI writes a summary of the entries listed and
suppressed due to incorrect passwords if Access
Method Services is not invoked interactively with
TSO. Any storage obtained during the processing of

the LlSTCATALOG command is released with a
UFPOOL macro. IDCLCO! then passes control to
FREESTG (in IDCLC02) to free the automatic
storage acquired by IDCLC02. IDCLCO! then writes a
message containing LASTCC. If an alternative output
file was opened by INITPROC, IDCLCO! issues a
UCLOSE to close the file. Control goes to Executive
Controlled Termination, Diagram 4.1. See below.

If NAME is specified, INITPROC initializes CTGFLs
2 through 5; if HISTORY, 2 through 9; if VOLUMES,
2 through II; if ALLOCATION, 2 through 16; if ALL,
2 through 32 (33 if YS2.03.807). INITPROC adds the
DSDTEXDT CTGFL to the end of the NAME list if
EXPIRATION is specified; it adds the DSETCRDT
CTGFL to the end if CREATION is specified.
INITPROC adds the VOLTSTMP and SPACEHDR
CTGFLs to the end of the NAME, VOLUME, and
ALLOCATION list if CREATION is specified and
volume entries are to be listed. INITPROC adds the
DSATTR to the end of the NAME, VOLUME and
ALLOCATION list of NOTUSEABLE is specified.
INITPROC also adds the CATACB CTGFL to the
end of each list if CATALOG is not supplied in the
LISTCAT command. If more than one entry type is to
be listed, or CREATION or EXPIRATION or
NOTUSABLE is specified, INITPROC adds the
MULTITYP CTGFL to the beginning of the list of
CTGFLs. .

c.,'-' '-'

(".r r
Entry
Type NON USER ALT.

CfGFLName ALIAS CLUSTER DATA INDEX GOG VSAM SPACE CAT. INDEX PATH Data in CfGFLS

1. MULTITYP Identifies multiple catalog types to be listed.
2. ENTYPE X X X X X X X X X X Entry type.
3. ENTNAME X X X X X X X X X X Entry name.
4. CATTR X Indicator for pagespace.
5. NAMEDS X X X X X X X DI number and entry type of each association.
6. DSETEXDT X X X X X X X Data set expiration date.
7. DSETCRDT X X X X X X X Data set expiration date.
8. OWNERID X X X X X X X Data set owner.
9. RELCRA X X X X X X X X X X VSAM release and catalog recovery information.
10. CATVOL X X X X Volume information for data set.
11. VOLDVCHR X Volume device character.
12. SPACPARM X X Primary and secondary allocation.
13. HURBADS X X High used RBA.
14. HARBADS X X High allocated RBA.
15. ENTVOL X X Physical description of data set.
16. NOBYTTRK X Number of bytes per track on this volume.
17. VOLTSTMP X V olume time stamp.
18. SYSEXTDS X System allowed extents.
19. NODSPACE X Number of data space on volume.
20. NODSET X Number of data sets on volume.
21. SPACEHDR X Characteristics and statistics of data space.
22. DSDIRECT X Data Set directory for a data space.
23. DSPDSCRP X Physical description of data space.
24. P ASSW ALL X X X X X Password (security) information.
25. AMDSBCAT X X AMDSB control block.
26. DSATTR X X Data set attributes and for PAGESPACE, track

overflow.
27. BUFSIZE X X Minimum buffer size.
28. LRECL X X Logical record size.
29. GDGLIMIT X Number of generations for this GDG.
30. GDGATTR X GDG attributes.
31. RGATTR X X AIX and PATH attributes.
32. EXCPEXIT X X Exception exit module name.
For users without VS2.03.807:
33. CATACB Catalog ACB address.

For users with VS2.03.807:
33. SECFLADS X X X XX RACF security flag.

~ 34. CATACB Catalog ACB address.
(1)

;.
0
0
0....,
0
"0
(1)-.
~ o·
::I

Vol

-- --

....
N Diagram 3.7.1
o
en
"<en
N

~ CTGPL
!i
~

::
(I)

g
o
Q.

en
(I)

ff
~

'" ~1 	 ..£' VSAMri'
Catalog

.....

3. 	Checks information:

• 	 Selected names.

Entire catalog. •

LISTCAT FSR - Gets Information

CTGFLs I ...
l

") 1. Prepares to get information:

• 	 Selected names.

Entire catalog. •

........
 2. 	Gets information.

OUTPUT

I

CTGPL CTGFLs

..-">

<".....,.

4., 4., 	 4.,

r r 	 r

Extended Description for Diagram 3.7.1 	 EXPIRATION specified). If the entry is
date-restricted, CKDTPROC compares the

Module: IDCLCOI calculated creation and expiration dates with the
entry's creation and expiration dates to determineProcedure: ENTPROC, GNXTPROC
whether to list the entry. If so, processing

1. 	 If only selected names are being listed, control goes to continues; otherwise processing continues at
step I.a; if the entire catalog is being listed, control Diagram 3.7, step 3.a, for the next enfryname in the
goes to step I.b. LISTCAT command. If NOTUSABLE was

requested and the retrieved entry is a data or indexa. 	 ENTPROC puts the address of the enfryname in
entry, a check is made to determine if the entry hasthe CTGPL. If only SPACE information is to be
been marked as unusable. If the entry has been listed, ENTPROC treats the entryname as a
marked as unusable, processing continues atsix-character volume serial number and extends it
Diagram 3.7, step 3.b. Otherwise, processing to 44 characters by padding on the right with
continues at Diagram 3.7, step 3.a., for the nextbinary zeros. ENTPROC puts the address of the
entryname in the LISTCA T command.volume serial number in the CTGPL. If password is

supplied with CATALOG, ENTPROC puts the If the entry type doesn't match the type requested
address of the password in the CTGPL. If there is in the command, and the entry is for a cluster,
no password supplied with CATALOG, and there alternate index, pagespace, or generation data
is a password specified with the entryname, group, processing continues at Diagram 3.7, step
ENTPROC puts the address of the password in the 3.b.

CTGPL. If there is no enfryname to be listed,

If the entry type does not match the type requested control goes to Diagram 3.7, step 4.
in the command and the entry is not a cluster,

b. GNXTPROC sets the CTGPL to indicate that each alternate index, pagespace, or generation data
catalog entry is to be located by the catalog index group, or the entry is a cluster or an alternate index
rather than by a specific name. For the first entry, and the type specified is not data, index, or path,
GNXTPROC puts the address of 44 blanks in the ENTPROC writes a message, but does not list the
CTGPL as a starting key in the catalog search for entry. If the UCATLG return code is non-zero,
the first catalog entry. After the first entry, ENTPROC also writes a message. Control goes to
GNXTPROC adds one to the key-which is the Diagram 3.7, step 3.a for the next entryname in the
previously retrieved entry name-to make the new LISTCA T command.
key higher in the coHating sequence than the old

b. 	 GNXTPROC saves the name of the retrieved entry key.
to use as a key in locating information for the next

Module: IDCLC02 entry in the catalog. If the return from the
UCATLG macro is zero, control goes to DiagramProcedure: LOCPROC
3.7, step 3.b. If the return code from UCATLG

2. 	 LOCPROC issues a UCATLG macro with the CTGPL indicates password verification faih.l('e or lack of
and CTGFLs to locate catalog information about the workspace, GNXTPROC writes a message and
entry. If the retUlm code indicates a lack of workspace, control goes to Diagram 3.7, step 3.a for the next
LOCPROC gets more workspace and tries the entry in the catalog. GNXTPROC checks for
UCATLG once more. IDCLCOI 	LOCPROC end-of-file and unrecoverable errors. When

end-of-file or an unrecoverable error isModule: IDCLCO I
encountered, control goes to Diagram 3.7, step 4 to 3: Procedure: ENTPROC, CKDTPROC, GNXTPROC terminate the LISTCAT command.

::r
3. If only selected names are being listed, control goes to 8

o step 3.a; if the entire catalog is being listed, control
..... goes to step 3.b . o

a
a. ENTPROC compares the type of entry information

returned to the type of information requested in

~

o· the L1STCAT command. If the entry type matches
::I the type requested in the command, ENTPROC.
..., then checks for a date restriction (CREATION or...,

2

CI.l

Diagram 3.8 P ARM FSR~

+ From Executive
o
CI.l
.......

<
CI.l
N

Register I
>
Ii
('J .. 1. Processes TEST options: TEST Options

..... Data Area '" '" ct
• OFF.~ t GOT;.
• =>o

Q.. t FDT TRACE, AREAS, and FULL.

o
< (
n' o HDAREA
'" 0 2. Processes MARGINS option. ~ ./r LEFTMGN
~
n' 3. Processes GRAPHICS option. RIGHTMGN

Message4. Prints message. ;,
y

D
Register I

ct
tGDT

tFDT

~LASTCC

\., 4..,. "

r 	 r' r

Extended Description for Diagram 3.8 sets available. However, the CHAIN parameter does
not specify a particular physical type chain. IDCPMOI

Module: IDCPMOI GRPHPARM

Procedure: TESTPARM, TESTS A VE 	 Module: IDCPMOI

1. 	 If the address of the dump routine is in GDTDBG, a Procedure: IDCPMOI

TEST option is currently in effect. TESTPARM frees

4. 	 IDCPMOI prints a message containing LASTCC. tfle Debugging Aids Historical Data Area whose
Control goes to Executive Controlled Termination,address is in GDTDBH, and it sets GDTDBH to zero.
Diagram 4. I.

a. 	 If the TEST keyword is followed by OFF,

TESTPARM deletes the dump routine, IDCDBOI,

whose address is in GDTDBG, and it sets

GDTDBG to zero. Control goes to step 2.

b. 	 If the TEST keyword is followed by TRACE,

AREAS, or FULL, TESTPARM issues a

UGSPACE macro to obtain a new Test Option

Data Area. TESTS A VE puts the information from

the FDT in the new Test Option Data Area. If

GDTDBG is zero, TESTPARM issues the ULOAD

macro to load dump routine. TESTPARM puts the

address of the dump routine in GDTDBG.

Although the trace tables record execution since

Access Method Services invocation, the earliest

time a trace table or dump can be printed is in the

Executive prior to the second call to the

Reader/Interpreter. This is because the TEST

option is not on until the PARM command has

been completed.

Module: IDCPMOI

Procedure: MARGPARM

2. 	 MARGPARM checks the margins for validity. The

left margin must be less than the right margin. If the

margins are invalid, MARGPARM sets the left margin

to 2 and the right margin to 72, which are the Access

Method Services default margins. MARGPARM puts

the margin values in the first two halfwords of the

Reader/Interpreter Historical Data Area. The margins

can be changed with any PARM command, but the

margins are most likely to be specified only at Access

Method Services invocation via the PARM field of the

EXEC JCL statement. IDCPMOI MARGPARM

!:
~ Module: IDCPMOI
or
o
c.. Procedure: GRPHPARM
o-. 3. 	 GRPHPARM puts the GRAPHICS parametero (CHAIN or TABLE) in a Text Processor Print Control
~ ... Argument list. GRPHPARM issues a UREST macro
~ for the Text Processor to use the new chain or table
0'
:: 	 with Access Method Services output. The CHAIN

parameter specifies one of several graphic character
VJ
V.

<;:l Diagram 3,9 PRINT FSR
0-, From Executive
o
CIJ
"<
CIJ
N ...>
(')

Register I (')

~ 1. Prepares data sets,--v " ~ (~
" S tGDTo
0
CIJ • FDT

" :l
(i' 2. Finds starting point. ~
til "
r 0
o

(JC
(i'

3. Sets up subtitle.

Records
......

.....
Input :utput Da~/ 4. "'>Gets and pnnts records until ending
Data Set Set (Optional) " point is reached-" D

Message

5. Writes message. ..."'> D
Register I

I
~

tGDT

tFDT

. ; LASTCC

~ 4.,. \-,.

r r 	 ('"

Extended Description for Diagram 3.9

Module: IDCPROI

Procedure: IDCPROI

1. 	 IDCPROI tests the FDT to see if the input data set
name needs to be qualified. Data set names are
qualified if Access Method Services is invoked
interactively with TSO. If the data set name needs
qualification, IDCPROlissues a UQUAL macro and
uses the returned data set name for the remainder of
the PRINT FSR. IDCPROI builds an OPNAGL for the
input data set. If the PRINT command specifies a
FROM KEY or TOKEY parameter, IDCPROI opens
the data set for key sequence record retrieval. If
FROMADDRESS or TOADDRESS is specified,
IDCPROI opens the data set for sequential record
retrieval. If the PRINT command specifies
FROMNUMBER or TONUMBER, IDCPROI opens
the data set for keyed processing. IDCPROI puts any
ENVIRONMENT parameters in the OPNAGL. The
input data set can be a VSAM catalog. If
INDAT ASET is specified, IDCPROI puts the data set
name in the OPNAGL. This causes the data set to be
dynamically allocated by the UOPEN macro.
IDCPROI issues a UOPEN macro to open the input
data set. If an output data set is specified with the
OUTDDVAL keyword, IDCPROI builds an OPNAGL
and issues a UOPEN for the output data set. If the
return code from a UOPEN macro is non-zero,
IDCPROI writes a message and terminates the PRINT
command.

Module: IDCPROI

Procedure: DELIMSET

2 	 DELIMSET performs additional validity checking to
verify that From/To parameters are consistent with
data set organization. If the parameter is invalid, an
error message is written. Checks are made for invalid
use of

Module: IDCPROI

Procedure: TEXTPSET
::

FROMADDRESS ITOADDRESS with RRDS andB
:;. FROMNUM ITONUM with KSDS
8.

If FROMNUMBER is specified, DELIMSET issues a
UPOSIT macro to position to the startftIg relative

g,
o
"0 record number. If SKIP is specified for a VSAM
..,B

relative record data set, DELIMSET issues a UPOSIT
~ to position to the next relative record number beyond 0'
;:l the skip count. A VSAM relative record data set is- printed in relative record number order.
~
-l

If FROMKEY is specified, DELIMSET issues a
UPOSIT macro to position to the starting key. If
FROMADDRESS is specified, DELIMSET issues a
UPOSIT macro to position to the starting address. If
SKIP is specified, DELIMSET issues as many UGET
macros as there are records to skip. The way the data
set is opened determines how the records are skipped.
Any data set opened as an ESDS causes records to be
printed in chronological order. A keyed data set
opened as a KSDS causes records to be printed in
key-sequence order. If no starting point is specified,
the starting point is the first record in the input data
set.

3. 	 If print has not been invoked interactively via TSO,
TEXTPSET formats a subtitle line with static text and
the input data set name· from the IOCSTR.
TEXTPSET issues a UPRINT macro to get the static
text and insert it into the buffer in which the subtitle
line is being built. No printing is done with this
UPRINT macro. TEXTPSET issues a UESTA macro
to give the subtitle to the Text Processor.

Module: IDCPROI

Procedure: IDCPROI

4. 	The following steps are repeated until the ending point
in the input data set is found. If TOKEY is specified,
IDCPROI calculates the key location in the record
from information in the IOCSTR. Retrieving records
stops when the key in the input record is higher than
the value in TOKEY. If TOADDRESS is specified,
printing stops when the Relative Byte Address
returned by the UGET macro equals the value
supplied by TOADDRESS. If COUNTYAL is
specified, printing stops when the number of records
printed equals the number supplied by COUNTVAL.
If TONUMBER is specified, retrieving and printing
stops when the relative record number of the input
record is higher than the TONUMBER value. If
COUNT is specified for a VSAM relative record data
set, printing stops when the number of valid relative
record slots printed plus the number of invalid slots
bypassed exceeds the value supplied by COUNT. If no
ending point is specified, printing stops when the last
record of the input data set is printed. If no ending
point is specified, printing stops when the last record
of the input data set is printed.

a. 	 IDCPROI issues a UGET to obtain a logical record.
If the return code from the UGET macro is
non-zero, IDCPROI checks the return code for a
recoverable error. The recoverable errors are
duplicate keys, records out of sequence, invalid

length records, and I/O errors in the data of a
VSAM data set. After a non-recoverable error or 4
recoverable errors, printing stops.

b. 	 IDCPROI issues a UPRINT to print the logical
record just obtained. A minimum of 3 lines is
printed for each logical record from the input data
set. The first line printed contains the record
identification: key, address, sequence number
(nonVSAM except ISAM) or relative record
number. The relative record number is printed for
a relative record data set and indicates the slot
number. Unused slots will be indicated by missing
numbers. The second line is blank. The third and
following lines contain the logical record from the
input data set. The format of the logical records
depends on whether HEX, CHARACTER, or
DUMP was specified in the command. If an output
data set is specified with the OUTDDVAL
keyword, IDCPROI prints the records on that
output data set. If the return code from the
UPRINT macro is 12 or greater, IDCPROI will
terminate processing: there is no checking for
recoverable errors.

5. 	 IDCPROI writes a message with LASTCC to
SYSPRINT. IDCPROI issues a UCLOSE macro to
close the input data set and any output data set other
than SYSPRINT. If UOPEN dynamically allocated a
data set, UCLOSE deallocates it. SYSPRINT is not
closed. Control returns to Executive Controlled
Termination, Diagram 4.0.

~ Diagram 3.10 REPRO FSR
o From Executive Controlled
I:Il
I:Il
<

N r PROCESSING OUTPUT
:>
n
n
(b
en
en

3: CTGPL
(b 'repares data sets. ... CTGFLET- ...o /'0.
I:Il
(b 'rocesses catalogs.
::1 <..
n' Initializes to copy a catalog.
(b

'" Reloads a catalog. ~f See Diagram-8n' IData

~inds staning point.

">... f ;Output
...... Data

~ Set
f.--"

:opies data set: .;>
Input
DataSet

~
L. With ending point.

I. Without ending point. Message

....

vrites messages. "-..,
...

Register 1

C
t GOT

t FDT

CLASTCC

I

'-' '-' ~

r r 	 r

Extended Description for Diagram 3.10

Module: IDCRPOI

Procedure: IDCRPOI

1. 	 IDCRPOI tests the FDT to see if the input and output
data set names should be qualified. Data set names are
qualified if Access Method Services is invoked
interactively with TSO. If the data set names need
qualification, IDCRPOI issues a VQVAL macro for
each data set name and uses the returned data set
name for the remainder of the REPRO FSR.
IDCRPOI builds an OPNAGL for the input data set. If
FROMKEY or TOKEY is specified, IDCRPOI opens
the input data set for key sequence processing. If
FROMADDRESS or TOADDRESS is specified,
OPNAGL opens the input data set for sequential
record retrieval. If FROMNVMBER or TONVMBER
is specified, IDCRPOI opens the input data set for key
sequence processing. IDCRPOI also builds an
OPNAGL for the output data set, and it puts any
ENVIRONMENT parameters in the OPNAGL. If
REVSE or REPLACE is specified, IDCRPOI sets the
OPNAGL for the output data set to reflect these
parameters. VOPEN will open the output data set
with the reset option. If INDATASET or
OVTDATASET is specified, IDCRPOI puts the data
set name in the OPNAGL. This causes the data set to
be dynamically allocated by the VOPEN macro. It
also issues one VOPEN macro that opens both the
input and output data sets. If the return code from the
VOPEN macro is non-zero, IDCRPOI writes a
message on SYSPRINT and terminates the REPRO
command. Following the open of both data sets,
IDCRPOI checks for a nonrelative-record input data
set together with a nonempty relative record output
data set. If this error condition is detected, a message
is written on SYSPRINT and the REPRO command is
terminated. IDCRPOI IDCRPOI

Module: IDCRPOI

Procedure: IDCRPOI, VERIFYC, RECOVCAT

2. 	 Both the input and the output data sets must be VSAM
catalogs in order for the input data set to be copied as
a catalog. IDCRPOI tests the input and output data

3: sets by issuing a VCATLG macros to locate" ~ information about each data set. A data set is a
8- catalog if the Control Interval Number is X'OOOOO2'
sa.. and the entry type is 'C' or if the entry type is 'V'.
o Both the control-interval and type 'C' conditions are
'0 needed because the object may describe itself in its "..., own catalog-Control Interval number~ o· X'OOOOO2'entry type is 'C'--or may be a user catalog
;::l

....
'>CJ

in the master catalog-entry type 'V'. If the output
data set is a catalog, CATRELSW is turned on to
initialize for catalog reload. If the input data set is also
a catalog, CATRELSW is turned off and CATCOPSW
is turned on to initialize for copy catalog. IDCRPOI
indicates in the IOCSTR that catalogs are to be
copied. If data-set delimiters were specified for either
the input or the output data set for catalog reload or
copy catalog, a message is printed and termination
processing continues with step 5.

If neither the input nor the output data set is a catalog,
processing continues with step 3.

If catalog copy is initiated, each catalog is checked for
the recoverable attribute. An error message is issued if
either the source or the target catalogs are recoverable
and the REPRO command is terminated. otherwise,
processing continues with step 3.

If catalog reload is initiated, processing continues on
diagram 3.10.1.

Module: IDCRPOI

Procedure: DELIMSET

3. 	 DELIMSET performs additional validity checking to
verify that FROM/TO parameters are consistent with
input data set organization. If the parameter is invalid,
an error message is written. Checks are made for
invalid use of FROMADDRESS ITOADDRESS with
relative-record data set and FROMNVM ITONVM
with key-sequenced data set. If FROMKEY is
specified, DELIMSET issues a VPOSIT macro to
position to the starting key. If FROMADDRESS is
specified, DELIMSET issues a VPOSIT macro to
position to the starting address. If FROMNVMBER is
specified, DELIMSET issues a VPOSIT macro to
position to the starting relative record number. If
SKIP is specified for a VSAM relative-record data set,
DELIMSET issues a VPOSIT macro to position to the
next relative-record number beyond the skip count. If
SKIP is specified for a key-sequenced or
entry-sequenced data set, DELIMSET issues as many
VGET macros as there are records to skip. The way
the data set is opened determines how the records are
skipped. Any input data set opened as an ESDS causes
records to be read in chronological order. A keyed
data set opened as a KSDS causes records to be read
in key-sequence order. H no starting point is specified,
the starting point is the first record in the input data
set.

When copying from a non-relative-record data set into
an empty relative-record data set, records are copied
into consecutive relative-record locations. When
copying from one relative-record data set to another,
records are placed in the same slot in the output data
set as they were in the input data set.

Module: IDCRPOI

Procedure: IDCRPOI

4. 	 a. If an ending point other than the end of the input
data set is specified by the TOKEY,
TOADDRESS, or COVNT keywords, the
following steps are repeated until the ending point
is found. If TOKEY is specified, IDCRPOI
calculates the key location in the record from
information in the IOCSTR. Retrieving records
stops when the key in the input record is higher
than the value in TOKEY. If TOADDRESS is
specified, copying stops when the Relative Byte
Address returned by the VGET macro equals the
value supplied by TOAD DRESS. If COVNTVAL
is specified, copying stops when the number of
records copied equals the number supplied by
COVNTVAL. If TONVMBER is specified,
copying stops when the relative-record number of
the input record is higher than the TONVMBER
value. If COVNT is specified for a VSAM
relative-record data set, copying stops when the
number of valid relative-record slots copied plus
the number of invalid slots bypassed exceeds the
value supplied by COVNT.

• 	 IDCRPOI issues a VGET macro to obtain a
logical record from the input data set. If the
return code from the VGET is non-zero, It also
checks the return code for a recoverable error.
The recoverable errors are duplicate keys,
records out of sequence, invalid length records,
and I/O errors in the data of a VSAM data set.
After a non-recoverable error or four
recoverable errors, copying stops.

• 	 IDCRPOI issues a VPVT to write the logical
record to the output data set. If the return code
from the VPVT macro is non-zero, IDCRPOI
checks the return code for a recoverable error.
After a non-recoverable error or four
recoverable errors, copying stops.

b. 	 If no ending point is specified in the REPRO
command, IDCRPOI issues a VCOPY macro to
copy the input data set to the last record. IDCRPOI
IDCRPOI

Module: IDCRPOI

Procedure: IDCRPOI

5. 	 IDCRPOI writes a message with LASTCC to
SYSPRINT. It also closes the input and output data
sets with one VCLOSE macro. If VOPEN dynamically
allocated a data set, VCLOSE de allocates it. Control
returns to Executive Controlled Termination
Diagram 4.0. 	 '

---- - - ---- --- - -- --

~ Diagram 3.10.1 REPRO FSR - Catalog Reload
o 	 _ From Diagram 3.10
Vl
"<
Vl
N

~ --.. 	 -

::l
til

'" ::
n>;.
o
0

Vl 1. Issues starting message.

n>
~
(i.
n>
til

r o
(i.

C/CI 	 ,::: :::::
Input
Data 2. Compares the target catalog and
Set """TJ [~

source data set.
.... (Source)....

) 	 3. Reads and copies the source -")" ~ 	

-'--	 records into the target catalog. VSAM 	 VSAM --~Catalog Catalog

.....(Target) ~ (Target).....r---v"

4. 	 Updates the target catalog's
control record (CCR).

5. 	 Returns to Diagram 3.10,
step 5.

4., 	 l,'-'

r r 	 ('

Extended Description for Diagram 3.10.1

Module: IDCRPOI

Procedure: IDCRPOt

1. 	 The message says that catalog reload had begun.

Module: IDCRPOt

Procedure: CATRELOD

2. 	 Additional checks are made at this time by using data
from the first to records of the input and output data
sets. If the data set names do not match, a message is
issued, processing is set for termination, and further
checks are made. Termination also occurs if the input
data set record format does not match a VSAM
catalog record format, if there is insufficient space in
the output data set, and if the volume serial numbers
or the device types do not match. Messages are issued
for the corresponding errors. IDCRPOI CATRELOD

Module: IDCRPOt

Procedure: CATRELOD, SORSREAD, T ARGREAD,
GETPAIR, DUMPIT, TRUENAME, CATRANS,
CONVRTCI, CATCOMP

3. 	 When all the checks are satisfied, the unloaded catalog
is copied into the output data set. Each record is read
from the input data set and translated. It is then
compared to the target catalog.

• 	 If a record existed on both backup and target
catalogs, the translated backup updates the target.

• 	 If a record existed only on the backup, then this
record is inserted into the target catalog.

• 	 If a record existed only on the target catalog, then
it is processed in one of two ways.

a. 	 If the target record is a true name record, then it
is deleted.

b. 	 If the target record is a low key range record,
then it is made a catalog free record and placed
on the free chain.

• In both cases where the keys are not equal,~
(1) differences in true name entries between the;. backup and target catalogs are checked. 8
o a. If a target true name record exists without a,

corresponding backup or vice versa, then ao
"0 message is printed indicating this, provided that
...,(1)

not more than 100 messages have been issued .
~ A warning return code of 4 is attached to theo·
:::l message.
~

b. 	 At the tOlth discrepancy, a message is issued
saying that comparison is terminated. The only
discrepancies to be printed afterwards will be
for volume entries.

Module: IDCRPOt

Procedure: CATRELOD

4. 	 After both backup and target records have been
processed sequentially by key to the end-of-file, one
more record needs to be updated.

• 	 The catalog free chain pointers are counted and
updated. The RBA fields are cleared so they will be
correct for the next open of the catalog and the
updated record is written back.

The number of records copied is the number of
backup records read if catalog reload has taken place;
otherwise, it is the number of output records written.

--

t;
o
t.Il
' <
t.Il
N

~
~
'" '"
3:
~

!:T o
0
t.Il
~
<:
(i'

£'
'"
(l)

(i'

Diagram 3,11 VERIFY FSR
From Executive

Register I

~

, tGDT

~FDT

0

VSAM ~ VSAM
Catalog Data Set

....

\, \, \,

r (r

Extended Description for Diagram 3.11

Module: IDCVYOI

Procedure: OPENPROC, IDCYYOI

1. 	 IDCYYOI tests the FDT to see if the YSAM data set
name should be qualified. Data set names are qualified
if Access Method Services is invoked interactively with
TSO. If the data set name needs qualification,
IDCVYOI issues a UQUAL macro and uses the
returned data set name for the remainder of the
VERIFY FSR. If FILE is specified, OPENPROC puts
the address of the DD name in the OPNAGL. If
DATASET is specified, OPENPROC puts the data set
name in the OPNAGL. This causes the data set to be
dynamically allocated by the UOPEN macro.
OPENPROC builds an OPNAGL to open the YSAM
data set for control interval update processing. A
UOPEN macro is issued to open the data set. If the
open was not successful, LASTCC is set to 12, and
control goes to step 3.

Module: IDCVYOI

Procedure: IDCYYOI, TERMPROC

2. 	 IDCVYOI issues a UYERIFY macro to verify the data
set. TERMPROC issues a UCLOSE macro to close the
data set. If the close was not successful, LASTCC is 4.

Module: IDCVYOI

Procedure: IDCYYOI

3. 	 IDCYYOI prints a message containing LASTCC.
Control goes to Executive Controlled Termination,
Diagram 4.0.

~
(1)

:;.
8.
o-o
~ a
0'
'"
e

t Diagram 3.12 CHKLIST FSR
From Executiveo

Vl Controlled Termination
"'<
N
Vl INPUT PROCESSING 	 OUlPUT

~
~
til
til Register 1
~ I. Opens data sets and prepareso
S- report headers. .!'o ~
0.

Vl t GDT
..,o t FDT Checkid Table <:
~.
til 2. Builds checkid table.
b ~
Otl D~. 0

3. 	Reads selected checkpoint
entry.

Checkpoint Data Set

SYSID

Data-Set Listing
data sets.

4. Prints information for tape

See Diagram-E)

5. 	 Lists selected checkids not
found in checkpoint data set.

Register I

6. Closes da ta sets.

7. Returns.

LASTCC

,
t GDT

t FDT

~

\.,4w
'-'

r r 	 r

Extended Description for Diagram 3.12

Module: IDCCKOI

Procedure: HSKGPROC

t. 	If OUTFILE was specified, HSKGPROC builds the
OPNAGL for the alternate output file and issues a
UOPEN macro to open it. HSKGPROC builds the
OPNAGL for the INFILE checkpoint data set and
issues a UOPEN macro to open it. The report subtitles
are retrieved from IDCTSCKO with a UPRINT macro,
the checkpoint data set's name in the IOCSTR is put
into the subtitle, and a UEST A macro is issued to
prepare the page control table. during the merge
phase.

Module: IDCCKOI

Procedure: BUILDT AB

2. 	 If CHECKID was specified, BUILDT AB computes the
number of bytes of storage required for the checkid
table. The table consists of a 2-byte count field
(IDCOUNT) and 17-byte table entries. The first byte
of a table eqtry (IDFOUND) indicates whether the
checkid indicated in the remaining 16 bytes was found
in the checkpoint data set. The number of bytes
required for the table is 2 (for IDCOUNT), plus 17
times CHKIDCNT (the number of checkids) from the
FDT. Space is acquired with a UGPOOL macro, and
the check ids are extracted from the FDT and placed in
the checkid table. IDCOUNT is set equal to
CHKIDCNT.

Each entry in the table is matched with each of the
other entries. When a duplicate entry is found and
IDFOUND for that entry indicates that the checkid
was found, the duplicate is printed with a UPRINT
macro.

If CHECKID wasn't specified, a UGPOOL macro is
issued for IDCOUNT only, and IDCOUNT is set to
-J.

Module: IDCCKOI

Procedure: CHRPROC, GETCHR3::
;.'" 3. CHRPROC invokes GETCHR to get the next CHR

record from the checkpoint data set. GETCHR reads8
the checkpoint data set until it finds a 400-byte record

-. with the CHR ID '$$/%@/$CHR%@/$//%'.
o

o CHRPROC determines whether the user specified this
'" CHR record for processing.
1j

a o· If IDCOUNT is greater than zero, CHRPROC invokes
:::l GETCHR to search the checkid table for a match.
.j;>. GETCHR searches until it finds a match or encounters
'"

end-of-file in the checkpoint data set. End-of-file
signals the end of CHKLlST processing. When a
match is found, IDFOUND is set to indicate it and
IDCOUNT is decremented by one. The found checkid
is printed with a UPRINT macro.

If IDCOUNT is less than zero, every CHR is to be
processed, and each checkid is printed with a UPRINT
macro.

Module: IDCCKOI

Procedure: DSDRPROC, DSDRVOLS, GETNEXT,
DSDRLlST

4. 	 IDCCKOI invokes DSDRPROC to process the DSDR
records for the checkpoint entry whose CHR was just
processed (in step 3). GETNEXT reads logical DSDR
records and DSDRPROC examines them until
DSDRPROC finds a type 1 DSDR record for a tape
data set. The dsname, ddname, unit type, and JFCB
information are extracted and listed. If a JFCBX is
indicated to be present (JFCBEXAD not equal to 0),
DSDRVOLS is invoked to process the type 2 DSDR
records. When all type 1 DSDR records and related
type 2 DSDR records for tape data sets have been
processed, DSDRPROC returns to IDCCKOI.

Steps 3 and 4 are repeated until all selected check ids
have been processed or end-of-file has been reached in
the checkpoint data set.

Module: IDCCKOI

Procedure: IDCCKOI

S. 	 If CHECKID was specified, the checkid table is
searched for entries whose IDFOUND bytes still
indicate the checkid wasn't found. A UPRINT macro
is issued to print each of these checkids in a
"SELECTED CHECKID NOT FOUND" message.

Module: IDCCKOI

Procedure: IDCCKOI

6. 	 Opened data sets are closed with a UCLOSE macro,
and acquired space is freed with a UFPOOL macro.

Module: IDCCKOI

Procedure: IDCCKOI

7. 	 The highest condition code in LASTCC is returned to
the Executive by way of a UEPIL macro.

- - --- -- - --- -

~ Diagram 3.12.1 CHKLIST FSR -	 Prints Information
t;t..

o __ From Diagram 3. I 2
c;n
.......

<c;n
N

:> 'Y
" " "' '" SYSID'"
~ ~ Initializ~s.;."' I I I. -">o 	 ...
Co

DSDRILNG
~
~ Checkpoint Data Set Io· 	 I
"' 	 2. Finds DSDR I for '" 	 VL-

-,..-	 f-....tap~ data sets: 	b 	 =>
(JQo·

J. 	 (;~ts a logi,a I
rc,ord.~ h. 	 Test s for t J pt'

DSDRI. VOlSFQ

I I
'VOLS

3. Prints information 	,
 I Ifrom DSDR I rt'cord,: 	 ./

a. 	 Prints gennal
info r ma t io n.

h. 	 Prints volumc
serial numhers.

Data-Set Listing

.... 	 Prints information V 	 "-.,f-....from DSDR 2 records. 	--=> 	 ~
.>

-
5. 	 Returns.

4. 	 ~ '-'

r r 	 r

Extended Description for Diagram 3.12.1 and YOLSEQ is set to zero. If VOLSEQ is greater

than 5, it is reduced by 5. A UPRINT macro is
Module: IDCCKOI issued to print the buffer of five (or fewer) volume

serial numbers.Procedure: DSDRPROC

Module: IDCCKOI
t. 	 If the VS 1 bit is on in the SYSID, DSDR1LNG is set

to 191 (length of VS I type 1 DSDR record); otherwise, Procedwe: DSDRPROC, DSDRYOLS, GETNEXT,
DSDRILNG is set to 195 (length of VS2 type I DSDR DSDRLIST
record). The logical record pointer (LOGRECP) is set

4. 	 If NYOLS is greater than 5 and JFCBEXAD isn'tto zero.
equal to 0 (which indicates that a type 2 DSDR record

Module: IDCCKOI containing the JFCBX is expected), the next logical
record is read. If it isn't a type 2 DSDR record,Procedure: GETNEXT, DSDRPROC
DSDRVOLS issues an error message. A maximum of

2. 	 a. Upon entry to GETNEXT, if LOGRECP isn't 15 volume serial numbers are extracted from the type
equal to the address of the input buffer, 2 DSDR record, five at a time. For each group of five,
GETNEXT reads the next block from the DSDRLIST examines VOLSEQ as described in step
checkpoint data set. If the block is 400 bytes long 3.b and issues a UPRINT macro to print the buffer.
and is a DDNT, type 1 DSDR, or type 2 DSDR When DSDRVOLS has processed all type 2 DSDR
record, LOGRECP is set to the address of the input records, steps 2 through 4 are repeated until all DSDR
buffer. If the 400-byte record is a CHR record, records for tape data sets have been processed for the
end-of-entry condition is set, and the next read for current checkpoint entry.
a CHR record is inhibited.

5. Returns to Diagram 3.12.
Upon entry to GETNEXT, if LOGRECP is equal
to the address of the input buffer, the processing
described above is bypassed, and LOGRECP is
incremented by SIZE (length of the previously read

logical record).

b. 	 If the record returned by GETNEXT is a DDNT

record, LOGRECP is set to zero, and step a is

repeated. If the record is a type 2 DSDR record,

SIZE is set equal to the length of a type 2 DSDR

record, and step a is repeated. For any other record

except a type I DSDR record, end-of-entry

condition is set. If the record is a type 1 DSDR

record, SIZE is set to DSDR I LNG. Type 1 DSDR

records for data sets other than tape (UCBTBYT3

not equal to X'SO') are bypassed, and step a is

repeated.

Module: IDCCKOI

Procedure: DSDRPROC, DSDRLlST

3. 	 a. The dsname, ddname, unit type, volume sequence ~
~ number (VOLSEQ). and nunlbcl of volumes
= (NVOLS) are extracted from the type 1 DSDRo
0- record and placed in the print buffer. A UPRINT
2, macro is issued to print the buffer.
o

b. 	 The volume serial numbers in the type I DSDR"...,
!::. " record (maximum of five) are placed in the print
o· buffer. If VOLSEQ is less than or equal to 5, but
~ not equal to 0, DSDRLlST puts an asterisk in the

print buffer next to the last volume serial number,
:!:i

--

~ i>iagram 3.13 BLDINDEX FSR
From Executive o

CIl 	 Controlled Termination

< 	 OUTPUTCIl lNPUT 	 PROCESSING

Register I

~
~

N

c-----'
3:
n l GDT;.
o l BLDINDEX FDT
c..
CIl
n Return area
:1 for LASTCC
(i'

n

'" r ~~ o

!JQ
(i' VSAM

Catalog

----""

F==

Base
Cluster

EJVSAMData
Space for
External
Sort
(optional)

~
Job Control
Statements

Sort Work Files (optional)

~ 1. 	 Opens base cluster; determines if
external sort job control is present.

2. 	Opens alternate index.

3. 	Performs verification and ohtains
necessary information.

See Diagram --8
4. 	 initializes for >art phase.

a. 	 Obtains virtual storage.
h. 	 Defines and opens sort work

files (optional).

See Diagram --8
5. 	 Reads hase duskr and pt'rforms sort.

See Diagram --8
6. 	 Builds alternate index.

7. 	 Closes alternate index and sort work
files; determines if additional alternate
indexes are to be built.

8. 	 Closes base cluster.

a. 	 Deletes sort work files.
b. 	 Frees virtual storage.

9. 	Writes message.

CTGPL
r-

I'-..
~

CTGPL
r- -1'0......

-,/

hi........

---..----'1~
II

Alternatev1 Index

CTGFLs

~
VSAM

Catalog

CTGFVs

t-..
CTGFLs

~ ~ 	 c.."

r r 	 r

Extended Description for Diagram 3.13 Unit Required 	 On return from LOCPROC, the following information

has been obtained to be used in subsequent processing: Access AMP='AMORG'requiredModule: IDCB 101
Method Type of base cluster returned from UOPEN of

Procedure: OPNPROC, JCPROC (KSDS or ESDS) base cluster; also in If the caller has specified the WORKFILES
dataAMDSB.1. 	 IDCBIOI calls OPENPROC to build an OPNAGL and parameter, JCPROC issues a UIOINFO specifying the

issue a UOPEN to open the base cluster for input. If first dname of that parameter. Otherwise, the Position and length in base cluster data
INFILE was specified, OPENPROC indicates the UIOINFO specifies a default dname of IDCUTI. The of prime key (if base AMDSB control block.

INFILE dname in the OPNAGL. If INDATASET was UIOINFO requests a return of the data set name and cluster is a KSDS)

specified, OPENPROC determines if a TSO volume serial number(s). If the return code from
 Length of alternate in alternate indexenvironment exists and if the data set name is 	 UIOINFO is zero, JCPROC issues another UIOINFO index record data AMDSB.unqualified. If so, OPENPROC issues the UQUAL requesting the same information for the second dname
macro to qualify the data set name. The data set name specified via WORKFILES or the default dname of Length of in alternate index
is indicated in the OPNAGL. The data set will be IDCUT2 if WORKFILES has not been specified. If alternate key data AMDSB control
dynamically allocated as part of UOPEN processing. both UIOINFOs are successful, JCPROC saves the block.
OPENPROC indicates input processing in the 	 pointers to the information obtained. Position of in alternate indexOPNAGL. UOPEN processing determines if the base

Module: IDCBIOI 	 alternate key in AMDSB control block.cluster is a KSDS or an ESDS and sets a flag in the
base cluster record IOCSTR returned to OPENPROC following the open. Procedure: MAINPROC, OPENPROC

This flag will be used by BLlJINDEX to determine if Unique or in alternate index
2. Steps 2 through 7 are performed for each alternatealternate index records are to contain prime key 	 nonunique key AMDSB control block.index specified in the OUTFILE or OUTDATASETpointers or RBA pointers. UOPEN also sets the RPL 	 indicatorparameter.to keyed sequential processing for a KSDS or

Number of records in base cluster addressed sequential processing for an ESDS. If the 	 IDCBIOI calls MAINPROC to control the building of in the base cluster AMDSB control block.return code from UOPEN is nonzero, OPENPROC the alternate index. MAINPROC calls OPENPROC to

returns to IDCBIOI with LASTCC set to 12 and the build an OPNAGL and issue a UOPEN for the Module: IDCBIOI, MAINPROC

BLDINDEX command is terminated. alternate index. OPENPROC sets a flag in the
 Procedure: INITPROCOPNAGL to indicate that only the alternate index isOPENPROC checks the high-used RBA of the base

to be opened. If OUTFILE was specified, 4. MAINPROC calls INITPROC to obtain resources forcluster returned in the IOCSTR. If the high-used RBA
OPENPROC indicates the OUTFILE dname in the building the alternate index. Resources consist ofis zero, OPENPROC issues a message returns to
OPNAGL. If OUTDATASET was specified, virtual storage for buffers and work areas, virtual IDCBIOI with LASTCC set to 12 and the BLDINDEX
OPENPROC determines if a TSO environment exists storage for the sort and defined and opened sort workcommand is terminated.
and if the data set name is unqualified. If so, files if it is determined that such are required. See

IDCBIOI calls JCPROC to determine if job control for OPENPROC issues the UQUAL macro to qualify the Diagram 3.13.2.
an external sort has been provided. BLDINDEX will data set name. The data set name is indicated in the Module: IDCBIOI always perform an internal sort if enough virtual core OPNAGL. The data set will be dynamically allocated
has been provided by the caller. Otherwise, if the as part of UOPEN processing. The OPNAGL specifies Procedure: MAINPROC, CNTLPROC
caller has provided appropriate job control, keyed sequential output processing and specifies open 5. 	 MAINPROC calls CNTLPROC to read the baseBLDINDEX will perform an external sort using two 	 with reset. If the alternate index is nonempty and was cluster and control the sort-merge process. See VSAM entry sequenced data sets. Job control consists 	 defined with the reusable attribute, VSAM OPEN will Diagram 3.13.3.of DD cards with the following specifications: 	 reset it to an empty condition. If the return code is

nonzero OPENPROC sets LASTCC to 8 and returns Module: IDCBIO I
DD Name As provided via the WORKFILES
to MAINPROC where control is passed to Step 7.parameter, or defaulted to 	 Procedure: CNTLPROC, BLDPROC, MERGPROC

~ IDCUTI and IDCUT2 Module: IDCBIOI <> 	 6. If an internal sort was performed, CNTLPROC passes:T
o Data Set Name Required; can be systemgenerated Procedure: MAINPROC, LOCPROC each sort record to BLDPROC to build and write the
0- erated o 	 alternate index records. Otherwise, CNTLPROC calls3. In order to accomplish validity checking and obtain-. 	 MERGPROC to perform the merge passes and buildVolume Required; must specify volume(s) 	 required information, MAINPROC calls LOCPROCo 	 the alternate index. See Diagram 3.13.3 for"0 Serial Numbers containing VSAM data space<> 	 to issue VSAM catalog locates. See Diagram 3.13.1. ... 	 BLDPROC and MERGPROC processing.accessible via a currently available ::l. o· 	 catalog.
:l

Disposition DISP=OLD required
~

r r r

Module: IDCBIOI

Procedure: FINPROC

7. IDCBIO) calls FINPROC to perform cleanup from the
alternate index just built. FlNPROC tests for an
alternate index and sort work files and issues a
UCLOSE for any of those data sets which are open. If
BLDINDEX processing encounters any errors,
FlNPROC issues an appropriate error message.
Catalog error messages are issued by building an error
conversion table and invoking the UERROR macro.
FlNPROC also issues a UFPOOL to free the sort core,
buffers and work areas used in building this alternate
index. A message indicating the success or failure of
the alternate index build is written. The setting of
LASTCC determines the message to be written. If
LASTCC from the current build is higher than the
maximum value from previous builds, it is saved.
LASTCC is cleared for subsequent builds. If the caller
of the BLDINDEX has specified multiple alternate
indexes, control returns to Step 2.

Mod.: IDCBIOI

Procedure: TERMPROC, DEL TPROC

8. IDCBIO) calls TERMPROC to perform final cleanup.
TERMPROC issues a UCLOSE to close the base
cluster. If sort work files exist, DEL TPROC is called
to build a CTGPL to delete them.

A UCATLG macro is issued by DEL TPROC to delete
each sort work file. TERMPROC issues a UFPOOL to
free all remaining core obtained via UGPOOL.

Mod.: IDCBlOt

ProcetIwe: TERMPR

9. TERMPROC writes a termination message with the
maximum LASTCC encountered. Control returns to
Executive controlled termination via (DCBIOl.

~ n
;.
8.
o-o

"R
~
0'
::I

....

v. Diagram 3.13.1 BLDINDEX FSR - Get Information and Verify
N

o
til--...
<
til
N

:>
g

CTGPL'" tains information regarding the '" '" ,e cluster.3::
CTGFLs;.'" tains information regarding the o

0- ~rnate index.
til

'" rifies the alternate index-base cluster::1
ri· Itionship.

'" '" r o
OQ
ri·

~ l,
'"

r 	 r r

Extended Description for Diagram 3.13.1

Module: IDCBIOI

Procedure: LOCPROC, CATPROC

1. 	 The caller of BLDINDEX may specify the alternate
index and base cluster names or a path to either. The
diagram below shows the relationship of the various
objects involved:

R 	 R

I
D 	 D(if KSDS)

5

R = Path

C = Cluster

G = Alternate Index

D= Data

I = Index

The number in each box indicates which of the locates
described below retrieves information for that object.
The purpose of this series of locates is:

a. 	 to retrieve the data AMDSB control block of the
alternate index and base cluster, and

b. 	 to verify that the alternate index specified by the
caller does indeed relate to the base cluster
specified.

If the caller specified a path over the alternate index
via OUTFILE or OUTDATASET, an additional

=:: locate will be required to reach the G object will be
'" ~ required (Locate 4).
8 The building of the CTGPL and CTGPLs and the
o.., 	 issuance of the UCA TLG is actually done by
o CATPROC. LOCPROC makes successive calls to
'R.., CATPROC to perform these functions. On each entry
~ to CATPROC, the CTGPL and CTGFLs are rebuilto·
:l 	 for the specific locate being processed. LOCPROC

calls CA TPROC for locates I and 2 only on the first
v.

v>

alternate index being built since these locates are
against the base cluster. Appropriate information is
saved.

Module: IDCBIOI

Procedure: LOCPROC, CATPROC

Locate J

Locate I retrieves the associations of the name
specified via INFILE or INDATASET. CATPROC
builds a CTGPL for a locate operation. CTGFLs are
built for:

ENTYPE - Entry Type

NAMEDS - Type and control interval number of the
first three associations

CATACB - Catalog ACB

The entry name used in this locate is the data set
name specified by the caller in the DD card pointed
to by the INFILE parameter or the name specified in
the INDATASET parameter. If the return code from
catalog is nonzero, LOCPROC sets a locate error
condition, sets LASTCC to 12 and returns control to
MAINPROC. MAINPROC returns to IDCBIOI
where control is passed to Step 7 (Diagram 3.3).

Note: This same type of error processing follows all
subsequent locates except that LASTCC is set to 8
for locates 3, 4, and 5.

If the Entry Type returned by catalog management is
an R (path), LOCPROC tests that the first
association is a C (base cluster). If the Entry Type is
not an R, it must be a C. Otherwise LOCPROC
issues a message, sets LASTCC to 12 and returns
control to MAINPROC.

Locate 1

CATPROC builds a CTGPL and CTGFLs to
retrieve the base cluster data AMDSB.

CTGPL: Entry "name" is the control interval
number of the base cluster's data object (D) returned
in Locate l.

CTGFL: ENTYPE - Entry Type

CTGFL: NAMEDS - Type and control interval
number of the first three objects associated with the
data object

CTGFL: AMDSBCAT - AMDSB control block

The catalog ACB returned from Locate I is used in
this and all subsequent locates.

r r 	 r

LOCPROC saves the first control interval number Control returns to Diagram 3.3 where control will be
returned for NAMEDS which is the control interval passed to Step 4 or Step 7 depending on the setting
number of the base cluster object. LOCPROC also of LASTCC.
moves the AMDSB control block to its own work
area.

Module: IDCBIOt

Procedure: LOCPROC, CATPROC

2. 	 Locate 3

Locate 3 is essentially the same as Locate t (minus

the catalog ACB address) except that the name

specified via OUTFILE or OUTDATASET is used.

If the entry type returned by catalog management is

an R (path), LOCPROC tests that the first

association is a G (alternate index). If the entry type

is not an R, it must be a G. Otherwise, LOCPROC

issues a message, sets LASTCC to 8 and returns

control to MAINPROC.

Locate 4

If the Entry Type from Locate 3 was an R.

CATPROC builds a CTGPL and CTGFL to retrieve

the alternate index associations.

CTGPL: Entry"name" used is the control interval

number of the alternate index (G) associated with the

path (R) returned in Locate 3.

ENTYPE: Entry type

CTGFL: NAMEDS--Type and control interval

number of the first three objects associated with the

alternate index. The entry type returned by catalog

management must be a G. Otherwise, LOCPROC

issues a message, sets LASTCC to 8, and returns

control to MAINPROC.

Module: IDCBIOt

Procedure: LOCPROC, CATPROC

3. 	 LOCPROC must now verify that the alternate index

specified by the caller is in fact related to the base

cluster specified. LOCPROC compares the control

interval number of the base cluster saved from Locate

~ 2 of the control interval number of the third
;." association returned from Locate 3 or 4. This should
o be, for an alternate index, the control interval number
0-

of the related base cluster. If the CI numbers are not
S. equal LOCPROC issues a message, sets LASTCC to 8 o
"U and returns control to MAINPROC. .." Locale 5 a
0·
~ Locate 5 is the same as Locate 2 for the alternate

index data AMDSB control block.
v.
v.

V> Diagram 3.13.2 BLDINDEX FSR - Obtain Resources and Sort Initialization
0"

o
c.Il
'<: .,...
c.IlOCESSINGI1-" U I. "V.I..I. VA

N I ...
>n CTGPL
n .. 1. Determines requirements for sort.
(D " r"-IL CTGFVs~

:::: / 2. Obtains virtual storage. -.?
(1) Job control
So 3. Defines au4,Qpenssort work files If

statements
(optional). .8

(1)
c.Il

Sort Work Files (optional)
~ ...
n'
(D
CIl

b
()Q

n' CTGFLs
1

,
""'II;

.......
VSAM data
sets for sort "'"

....work files

(optional)

-

'- '- '

r r 	 r

Extended Description for Diagram 3.13.2

Module: IDCBIOI

Procedure: INITPROC

t. 	 INITPROC issues a UGPOOL macro to obtain virtual
core for buffers and work areas, consisting of I 2K
buffer (to be used for output if an external sort is
performed), the area required for the CPL/FVT/FPL
complex to define the sort work files and the alternate
index record output buffer. The first two areas are
obtained at this time, even though they may not be
used, so that if it is necessary to perform an external
sort it will not fail due to lack of virtual storage. If the
UGPOOL fails, INITPROC sets LASTCC to 8, issues
a message and returns control to IDCBIOI, Step 7 (via
MAINPROC).

INITPROC calculates the requirements for both an
internal sort and an external sort. If an external sort is
performed, the records being sorted are blocked into a
block 2048 bytes in length, using a logical record
length of 2041 bytes. Blocking and deblocking of sort
records within the 204I-byte logical record is
accomplished by BLDINDEX.

The formulas used to determine sort work size are.

Sort Record Size = Alternate Index Key
Length + Prime Key Length
(KSDS) or 4 (ESDS) .

Number of

Records = 2041

per Block Sort Record Size

Total number of 	= (Number of Records in Base Cluster)

2K Blocks (Number of Records per Block

During the first phase of either an internal or external
sort, the records being sorted are packed contiguously
into a record sort area (RSA). The RSA size is always
in increments of 2K so that it can be later used as an
input buffer area during the merge phase of an
external sort. The initial size of the RSA is calculated
ass:

~ Number of Records in Base Cluster * Sort Record Size
::r
o
c. and rounded up to the nearest multiple of 2K. This
o-., size is then adjusted as follows:

'0
o a. 	 If the RSA size is less than 4K, it is set at 4K. The

number of records in the base cluster is obtained" e 	 from a statistic maintained in the base cluster
0'
;:I 	 AMDSB control block. If this statistic is in error

(which can happen if a system failure occurs during
v.....,

a close), it may be necessary to go into an external
sort. In this case, space for two input buffers is
required.

b. 	 If the EXTERNALSORT parameter has been
specified by the caller of BLDINDEX, the RSA
size is set at 32K-the minimum amount of storage
which will be used for an external sort during the
merge phase.

Module: IDCBIOI

Procedure: INITPROC

2. 	 In addition to virtual storage for the RSA, virtual
storage for the table (called the "heap") which drives
the first phase of the sort is required. This is a table of
4-byte pointers. The amount required is calculated as
follows:

RSA Capacity = 	 RSA Size

Sort Record Size

Heap Size 	 RSA Capacity * 4

INITPROC issues a UGPOOL for the RSA size plus
the heap size. If the UGPOOL fails, the initially
calculated RSA size could not be obtained and it will
be necessary to perform an external sort. The
maximum amount of core used for an external sort is
lOOK, the minimum 32K. If the maximum amount
cannot be obtained, an attempt is made to obtain an
intermediate RSA of 60K. INITPROC sets the RSA
size to the next lower plateau-lOOK, 6OK, 32K-and
loops back to the start of Step 2. If the UGPOOL fails
at the lowest plateau (32K), INITPROC sets LASTCC
to 8, issues a messages and returns control to
IDCBIOI, Step 7 (via MAINPROC).

Module: IDCBIOI

Procedure: INITPROC, DEFPROC, DELTPROC,
OPENPROC

3. 	 If virtual storage was successfully obtained but the
amount obtained for the RSA was less than the
originally calculated required amount, INITPROC
calls DEFPROC to define and open two sort work files
to be used during the merge phase of an external sort.

DEFPROC checks to determine that the caller of
BLDINDEX did provide external sort job control. If
job control was not provided, DEFPROC sets
LASTCC to 8, issues a message, and returns to its
caller.

DEFPROC determines if large enough sort work files
exist from a previous sort and, if so, bypasses the
define process.

If external sort work files exist but are not large
enough, DEFPROC calls DEL TPROC to build a
CTGPL to delete each sort work file (specifying the
PURGE option).

If sort work files are to be defined, DEFPROC builds a
CTGPL, a cluster CTGFV, a data CTGFV and the
required CTGFLs to define the first external sort work
file. DEFPROC issues a UTIME macro in order to
provide the creation date in the define operation. The
cluster FYT references the data set name and the data
FYT references the volume serial numbers obtained
via UIOINFO from the sort work job control
statements. Space allocation is in records: primary, the
number of 2K blocks calculated by INITPROC;
secondary, 10% of primary. The data set attributes
specified are: ESDS, nowritecheck, unordered, speed,
suballocation, noerase, reuse, default shareoptions,
control interval size of 2048, logical record length of
2041.

DEFPROC issues a UCATLG macro to define the
first work file, makes the necessary changes to the
FVTs and issues a UCATLG for the second work file.
DEFPROC next calls OPENPROC to build OPNAGL
and open the two data sets just defined. The
OPNAGLs specify sequential output using control
interval processing with user buffers. If the define or
open for either of the sort work files fails, DEFPROC
sets a define error condition, LASTCC to 8, and
returns control to INITPROC. If both sort work files
are successfully defined and opened, DEFPROC
returns to INITPROC with a flag indicating that an
external sort is to be performed. INITPROC returns
control to Diagram 3.13 where control will be passed
to Step 5 or Step 7 depending on the setting of
LASTCC.

v. Diagram 3.13.3. BLDINDEX FSR - Sort-Merge and Build Alternate Index
00

o
C/l
"<
C/l
N

> T('")

(1)
('") r - ;> 1. Initializes for sort phase.
'" '"s: ~
(1) Base

:;. Cluster -'

o 2. Reads base cluster, places records .. VSAM Datac.. in record sort area, internallysorts,

Sets for SortC/l wri tes ini tial strings if record sort(1)... ~ork File.:..-
< area cannot con tain all records
~. (optional). (optional).
'" r ~

~

o 3. Performs merge passes (optional).
0<>
(i' VSAM Data a. Initializes for each pass.

Sets for Sort AlternateWork Files b. Merges strings.
index - 4. Builds alternate index. > --'

'-' '-' '-'

(' (' 	 ('

Extended Description for Diagram 3.13.3

Module: IDCBIOJ

Procedure: CNTLPROC

1. 	 CNTLPROC initializes factors which will be used
during the sort-merge including pointers to the record
sort area (RSA), and the table of pointers which is
used during the sort. CNTLPROC also initializes the
output buffer with an RDF and C]DF in the event an
external sort is performed (the sort work files are
processed iIi control interval mode with user buffers).

Module: IDCBIOJ

Procedure: CNTLPROC, SORTPROC, BLDPROC,
SPILPROC, DEFPROC

2.]n a loop CNTLPROC reads each base cluster record
and passes it to SORTPROC. SORTPROC performs
the function of building the sort records from the base
cluster record, placing each record in the RSA and
updating the table of pointers (called the'heap') to the
records in the RSA. The heap is sorted when the RSA
has reached capacity and/or when the last base cluster
record has been processed.

Each sort record is formed by concatenating the prime
key of the base cluster (KSDS) or its RBA (ESDS) to
the alternate key.

Prime Key (KSDS)
Alternate Key or

RBA (ESDS)

If the base cluster record is not long enough to contain
the alternate key, SORTPROC issues a warning
message and sets the current condition code to 4.

The heap sort consists of two phases. The first phase
builds the heap into a tree of nodes having a
parent-child relationship. Each parent node has two
child nodes and the parent represents a key higher
than either of the two children. At the end of the firsts: phase the node at the top of the tree represents the'" S-	 highest key. The second phase removes the top node,o

0.. places it at the bottom, reduces the heap by 1 and
8, adjusts the parent-child relationships of the remaining
o nodes. This loop continues until the top of the heap
"0 represents the lowest key. '" a 	 If enough virtual core was available to contain all theo·
::l 	 sort records, the sorting takes place after the last base

cluster record has been read, after which CNTLPROC
V>
\0

passes each record to BLDPROC to build and write
the alternate index records (see Step 4). Otherwise,
sorting takes place each time the RSA is filled. After
the heap is sorted, if the sort was caused by the RSA
reaching capacity before end-of-file on the base
cluster, SORTPROC calls SPILPROC to write out the
records in the RSA in a string of 2K blocks to the
external sort work file.

SPILPROC determines if sort work files have already
been defined and opened by INITPROC and, if not
calls DEFPROC to perform that function. Normally,
SPILPROC will find sort work files already defined
and opened. However, if the statistic contained in the
base cluster AMDSB control block as to the number of
records in the base cluster was erroneously low and
the calculated virtual storage for the sort was
obtained, INITPROC will not have initialized sort
work files. SPILPROC blocks the sort records into the
2K output buffer and issues a UPUT macro to write it.
This is performed in a loop until all sort records in the
RSA have been written out.

CNTLPROC calls SORTPROC under the following
conditions:

• 	 After each base cluster record has been read. The
address of the record is contained in the IOCSTR
of the base cluster.

• 	 At end-of-file on the base cluster.

Module: IDCBIOI

Procedure: CNTLPROC, MERGPROC, BLDPROC

3. 	 After all base cluster records have been read, if the
RSA was not large enough to contain all sort records,
merge passes must be performed using the two

. external sort work files. SP]LPROC has written out
the first strings during the sort phase. During this
phase the external sort work file is in create mode.
The data set was opened with MACRF=CNV, UBF,
OUT, SEQ. PUTs are issued with OPTCD=CNV,
SEQ, NUP. Control intervals are written in physical
sequence. At the end of the sort phase, CNTLPROC
issues a UCLOSE macro to close the output sort work
file followed by UOPEN to reopen it. This is necessary
to get out of create mode. The second open specifies
MACRF=CNV, UBF, D1R, UPD. Subsequently all
PUTs will be issued with OPTCD=CNV, D1R, UPD.

CNTLPROC then calls MERGPROC to control the
merge passes. MERGPROC performs the function of
merging strings of sort records originally built by
SPILPROC using the two external sort work files. The
order of merge is normally t6 or less using an area of

(" r 	 r

32K (the original RSA) for input buffers. In one case,
the order of merge will be 2. That is, when the statistic
of the number of records in the base cluster AMDSB
was so erroneously low that an RSA of 4K was
obtained.

In general, the merge is accomplished in the following
manner (assuming a 16-way merge)

Reading the first 2K block of the first n strings to
be merged, where n is 16 if there are 16 or more
input strings or where n is the total number of
input strings if less than 16.

Using the first record of each string, build an array
in the form of a tree. The tree is made of nodes
with a single node at the top. Each parent node has
two child nodes and the tree is built so that the
record represented by the parent node is lower in
value than either child. As the tree-add loop starts,
the size of the tree is increased by 1 thus leaving an
empty slot at the bottom. The parent of the empty
slot is established and if the new record is higher
than the parent, it goes into the empty slot at the
bottom. However, if the new record is lower, the
parent is moved down leaving an empty slot. The
parent of the new empty slot is established and the
process continues until the new record is found to
be higher than the parent at which time it goes into
the empty child slot. If the parent is moved from
the top of the tree, the new record goes there and
the process stops.

• 	 Output the lowest record on the tree. This output
will be to BLDPROC (see Step 4) if this is the last
or only merge pass or to the output string if this is
not the last merge pass.

• 	 Update the tree filling the slot left empty from the
step above.

Get the next record from the same string as the
previous lowest record. Output it if it is lower than
the current lowest, otherwise add it to the tree.

Continue this process until all records in all input
strings currently being processed have been output.

3:

(b • Loop until all input strings for this merge pass have
;.

been output. 8
o..., If more merge passes are required, make the

previous output file the next input file and viceo
"0
(b versa and repeat the merge passes until the number ..., of input strings is equal to or less than the order ofa'. o· merge.
::l

'"

Module: IDCBIOI

Procedure: BLDPROC

4, 	 BLDPROC is called either from CNTLPROC (if an
internal sort was performed) or MERGPROC (on the
last merge pass of an external sort). In either case,
BLDPROC is passed sorted records one at a time.

On the first entry to BLDPROC, the IOCSTR for the
alternate index is initialized as well as the static
portion of the alternate index record. On all
subsequent entries, the alternate key of the sort record
passed to BLDPROC is compared to the key of the
alternate index record being built. If these keys are
unequal, the alternate index record is to be written
out. BLDPROC determines if the record was too short
to contain all the prime key or RBA pointers and, if
so, issues a warning message containing the number of
excess pointers and sets the current condition code to
4. The record is written with a UPUT macro and the
buffer reset for the next record. Before moving the
prime key or RBA from the sort record to the
alternate index record, BLDPROC checks if the
alternate index was defined with the UNIQUEKEY
attribute. If so and if the new prime key or RBA is not
the first for this alternate index record, BLDPROC
issues a warning message and sets the current
condition code to 4. Only the first prime key or RBA is
placed in the alternate index record. BLDPROC also
checks that the record is long enough to contain the
new prime key or RBA and, if not, increments an
excess pointer counter. If all checks prove successful,
the new prime key or RBA is moved to the alternate
index record.

After CNTLPROC passes the last sort record to
BLDPROC (internal sort) or receives control back
from MERGPROC (external sort), CNTLPROC calls
BLDPROC one more time to write out the last
alternate index record. Control is then returned to
IDCBI01 via MAINPROC-Diagram 3.13, Step 7.

'" Diagram 3.14 LlSTCRA FSR
N

<
o
\Il From Executive

Controlled Termination
fC INPlIT

2.
a.

. PROCESSING OlITPlIT

~ General initialization and open then
catalog if compare option specified. Catalog/CRA'" '"

Com pare List 3:
n
;. tGDT

For each volume in the command:8. tFDT
~ Opens the CRA.
<! Db. Compares. groups. sorts and printsti·
n the objects in the CRA. '" o
b

OQ See Diagram-9ti·
t"

c. Compares and prints any objects VSAM
Catalog not yet printed.

d. Closes the CRA and prints summary........ - count table.

Volume's J~
CRA U

FDT
3. Closes the catalog and writes

Encoded completion message.
Users

LlSTCRA

Command

Parameters
 D

tGDT

tFDT

LASTCC

~ '-'"

r r 	 r

Extended Description for Diagram 3.14 c. If either sort fails for lack of memory (from b.
above), the objects are compared and/or printed in

Module: IDCLROI the order they appear in the CRA by PRTFIFO.
Records already processed by the above procedures Procedure: AATOPLR, INITLZE, CATOPEN, ERROR
are skipped. If the object is a VSAM object,

t. 	Routine addresses, the UOPEN argument list and the PRTVSAM is called and if it is a not, PRTOTHR is
UIOINFO option byte are initialized in the work area. called.
The alternate print file is UOPENED if possible. If the

d. 	GETPRT is used to get the CRA copy of any otherCOMPARE option was specified, a UOPEN is issued
records, and the catalog record, if compare. These for the catalog specified on the control cards. If the
are printed and compared by PRTCMP. When all OPEN is successful, a UVERIFY is issued and the
objects have been processed, the CRA is closed bycatalog name is obtained using Access Method
CLENCRA and a summary is printed by SUM IT. Services field management (IDCRC04) and compared

to the catalog named specified on the control cards. If Module: IDCLROI

there is a match, the volume serial is obtained via

Procedure: AATOPLR, CLEANUPIDCRC04 and the catalog is locked out from other
users of the system. If the COMPARE option was not 3. The UCLOSE macro is issued to close the catalog data
specified or the OPEN of the catalog failed, the no set and the UDEQ is issued to release the system
compare indicator is set. lockout from the catalog. The completion code

message is printed and the UFPOOL macro is issuedModule: IDCLROI, IDCLR02, IDCRC04
to free storage. Control is returned to the caller.

Procedure: AATOPLR, CRAOPEN, PRTVOL,
INTSORT, MEMSORT, DOVSAM, PRTVSAM,
DOOTHER, PRTOTHR, PRTFIFO, GETPRT,
PRTCMP, CLENCRA, SUMIT

2. 	 For each of the CRAs specified by a job control card,

the following is repeated:

a. 	 The UOPEN parameter list is set up with the

dname and the master catalog password and the

UOPEN and UVERIFY are issued for the CRA. If

they are successful and there is a match on the

owning catalog name, the volume serial is obtained

from the CRA via IDCRC04 and a UREST is

issued to print a subtitle for this CRA. The entire

CRA is read to build the CI translate table (CTT)

in space gotten by UGPOOL. If the

SEQUENTIALDUMP option was specified, all of

the printing of the records is done by 'calls to

GETPRT as the CTT is built and steps b. c. and the

first part of d. below are skipped.

b. 	 The CRA volume record and its extensions are

optionally compared to the corresponding catalog

3: entry and printed by PRTVOL. The VSAM objects
;-'" are then sorted into alphabetical order, optionally
o compared to corresponding catalog entries andc..
o.., printed by INTSORT, MEMSORT, DOVSAM,

and PRTVSAM. Next, the nonVSAM objects are o sorted, compared, and printed by INTSORT,?i
MEMSORT, DOOTHR, and PRTOTHR. Seea Diagram 3.14.1. o·

~

/:f\

""

- -- -- - -- - --

~ Diagram 3.14.1 LISTCRA FSR - Process CRA

~
........

<
til
N

>- T Catalog/CRA
~ Compare ListCTI ") 1. Prints and optionally compares volume ;>
~ .. ~ I

records.
3:

til a. Reads eRA and catalog volume
So

records and extensions. 8.
til
til b. Prints volume record and time stamps. D D

:!
~. CTT

f
2. Processes VSAM entries:

'" ~ a. Alphabetizes VSAM entries

('i. VSAM b. Prints and optionally compares
Catalog each entry and associated records

~ and extensions. D
3. Processes nonVSAM entries:

a. Alphabetizes nonVSAMs.

b. Prints and optionally compares
each entry and associated records
~ and extensions.

-

'-' '-' '-'

r r 	 r

Extended Description for Diagram 3.14.1

Module: lDCLROI, lDCLR02, lDCRC04

Procedure: PRTVOL, SUMIT, GETPRT, VERTEXT,
INTVEXT, TCICTCR, BLDVEXT, PRTMCWD,
UPRINT, UIOINFO, PRITIME

1. 	 a, PRTVOL uses GETPRT to read the CRA volume
record and IDCRC04 to extract the identifying
fields and, if compare, the equivalent information
is gotten from the catalog in the same manner. If
compare is specified, information is compared and,
if not equal, the record is printed and the severest
miscompared field is identified by PRTMCWD. If
compare is not specified, all records are printed.
Horizontal extension records are processed and
vertical extension records are checked by
VERTEXT and handled in the same way.

b. 	 The time stamps from the eRA volume record and
on the CRA volume and, if compare, in the catalog
records are printed by PRITIME.

Module: lDCLROI, IDCLR02, IDCRC04

Procedure: INTSORT, MEMSORT, DOVSAM,
PRTVSAM, GETPRT, VERTEXT, INTVEXT,
TCICTCR, BLDVEXT, ADDASOC, INTASOC,
PRTMCWD, UPRINT, PRTAAXV, PRTOJVL,
CKEYRNG, SUMIT

2. 	 a. The sort of the VSAM entries is initialized by
INTSORT which scans the CIT counting the
number of VSAM entries, gets storage via
UGPOOL for a sort table, initializes dummy first
and last entries and then loops through the CIT
entries calling IDCRC04 to extract the entry names
to be sorted. The MEMSORT procedure orders the
entries by adding forward and backward chain
pointers to alphabetize.

b. 	 If compare was specified, the following procedure
is passed through twice, the first time comparing
only. When a miscompare is detected the
procedure is restarted printing everything. From
the entries in the sort table an association table is::: ... built containing the control intervals of all;. associated entries. Passing through this table all

C- associated records are printed. For base cluster's
O AIX associations, only the entries' volumes are

o

....,
o printed (to assist in recovery). The horizontal
~ extension records are printed as are the vertical
~ extension records. Throughout, the names of
o· significant items are noted if they miscompared
~

and these are printed.
0
u.

Module: IDCLROI, IDCLR02, IDCRC04

Procedure: INTSORT, MEMSORT, DOOTHR,
PRTOTHR, GETPRT, VERTEXT, INTVEXT,
TCICTCR, BLDVEXT, SUMIT, PRTMCWD, UPRINT,
PRTOJAL, INTASOC

3. 	 a. The logic and procedures used here are the same as
are used in 2a with the exception that nonVSAM
entries in the CIT are sorted.

b. 	 The logic and procedures used here are the same as
used in Step 2b except that nonVSAM entries are
handled. In addition, PRTOJAL is used to process
aliases and logic is included to group generation
data groups.

For all of the above, GETPRT expands further as
follows:

GETPRT, UGET, lDCRC04, BUFSHUF, PRTCMP,
UPRINT, PRTOJVL, CKEYRNG, PRTDMP,
PRTDMPC.

GETPRT uses UGET to read the CRA record and the
catalog record, if compare. IDCRC04 is used to
extract all necessary fields from the record. These are
printed and optionally compared by PRTCMP and
PRTDMP (if the dump format was specified) and
PRTDMPC (if compare was also specified).
PRTOJVL is used to print the object's volumes.

-

IV

0\ Diagram 3.15 EXPORTRA FSR
0\

From Executive o
til

<:
til

Register 1)

~ (l~

~
~ t GDT

[t FDT

)(l

3- (
/')

~ 0 I
r o

OQ o· ~

VSAM

Catalog

r
r

("
Data
Sets and ~

CRA
 ~
~

c., c., ~

r r 	 r

Extended Description for Diagram 3.1S

Module: IDCRCOI

Procedure: INIT, SUBSP, BUILDCRV, BUILDNAM,
MESSAGE

I. 	a. SUBSP is called which issues a UGPOOL to obtain
storage for the blocks associated with the name
chain. This storage is allocated into small blocks to
be used later. Storage is then obtained for the
buffer pool VGO space, the CRY, the ACC and the
VTT.

b. 	Each CRA volume is read for the following
information: UIOINFO is used to obtain the
volume serial numbers and device types which are
placed in the CRY. BUILDNAM is called to build
the name chain. This procedure calls SUBSP to get
a block of storage to be anchored to the CRY. The
name pointer is placed in the block as it is read
from the CRA.

Module: IDCRCOI, IDCRC02, IDCRC03, IDCRC04

Procedure: OPENCRA, OPEN, TIMESTMP,
SCANCRA, NAMETABL, DIRECT, EXTRACT,
ERRCK, MESSAGE, COMPNAME, CKCATNm,
CKNAMES, DUPNAMCK, SYNCH, OBJVOLCK,
CRAOPEN, EXPORTDR, OPENCRA, MESSAGE,
ERROR

2. 	a. OPENCRA initializes the buffer pool pointer
required by field managment (lDCRC04\ It then
calls OPEN which opens the CRA for direct
processing and checks it for the correct owning
catalog. OPENCRA then issues the UIOINFO
macro to get the CRA volume timestamp and place
them into the VTT. It then calls SCANCRA to
build the catalog CI numbers and places them in
the CTT and calls NAMETABL which places the
record type and name pointer in the name block. If
entries were specified, the name block is marked if
a match is found with the input. OPENCRA then
calls DIRECT which calls EXTRACT which
interfaces with IDCRC04 to obtain the directory
information from tthe CRA record. ERRCK callss::

(l) MESSAGE if an error occurred in this procedure.;.
0 For IDCRC04 see Diagram 3.15.1.
Q..

0 b. CKNAMES is called to gather the passwords for
the VSAM data sets using EXTRACT, collect the

0 association CI numbers for the VSAM data setsil.., using EXTRACT, determine the largest LRECL a for the data sets using EXTRACT, and flaggingo·
:::> any object names if they are invalid for this system.
;; DUPNAMCK is called to loop through all the
-..I

names in the chain checking for duplicates. If one
is found, it is marked so that it will not be
exported. A message is written indicating the
duplicate name. SYNCH is called which checks
each entry on the name chain for a CI number,
checks the VSAM data sets for a data entry and if
there is a data volume index, OBJVOLCK is called
which matches the volume serials in the VGOs and
VTT, matching the CI and timestamp. If at any
time there was an error, ERROR is called to write
a message and determine if the process can
continue.

c. 	 EXPORTDR is called which closes the CRA as a
data set and opens it as a catalog, then calls
MESSAGE to write the "exporting CRA"
message. It checks the name chain for the CRA for
null entries and nonmatches and marks them not
exportable. It initializes the export table and calls
IDCRC02 to export the entries. See Diagram
3.15.2 for a description of IDCRC02. When the
Export Driver returns, then the completion or error
message is printed and processing continues with
the next CRA.

~ Diagram 3.15.1 EXPORTRA FSR - Field Management
o
CIl
........

< 	 INPUT
CIl
N

Register I 	 ,....,.,> I - -- - J 	 v" 1.~
CIl
CIl FMPL 2.
~
;. (
8-	 3.1rRr-------tCIl
(I)

~,,'
&l
r

OQ,,'
o

-.
FMFLs

'"

'-.

FMWA

FM
Output

Area

From Diagram 3.15

PROCESSING

Initializes module.

Converts alphabetic field names to

internal codes.

For each RELREPNO:

a. 	 Handles any test fields to see
if information is as expn:ted.

b. 	 Places the field in th~ output area.

OUTPUT

Register 1

::J
FMPL

~f---------I
:>

,
FMFLs

'
FMWA

FM
Output
Area

Register 15

IRet~n cc --.~::J

,-,.
'-' 	 '

("r 	 r
Extended Description for Diagram 3.1S.1 and its subprocedures described above are used to

find the fields requested and, after found, PSHIN
Module: lDCRC04 moves the data to the output area.

Procedure: lDCRC04

I. 	IDCRC04 is a service routine used by EXPORTRA

and L1STCRA to compare and extract data from

catalog and CRA records. Upon entry from either

lDCRCOl or lDCLROl it sets up addressability to the

work area and initializes the current CI number in the

work area for the callers get routine (either IDCRC03

or lDCLR02).

Module: lDCRC04

Procedure: PSCNC, PTRNS

2. 	 PSCNC is called which loops through each field

management field list and calls PTRNS which

compresses the name into a 4-character ID and places

it into the FMFf along with its corresponding

dictionary information and supplied group code. The

tables are chained according to like group code.

Module: lDCRC04 lDCLR02 lDCRC03

Procedure: PSCNF, PTSTS, PGV AL, PGREC.. PCKLC,

PEXPT, PLNRV, PTCMP, PLOC2, PGREP, PSHIN

3. 	 PSCNF is called to process these field tables. It first

processes the test field and then the one it is looking

for so it may place the data in the output area.

a. 	 The field lists are tested by looping through all the

CI numbers (PGVAL), interfacing with the callers

get record routine, either IDCRC03 or IDCLR02 to

obtain addressability to the block containing a CI

number (PGREC). It then locates the catalog fields

within a given record by insuring the requested

field actually exists in the group occurrence data

(PCKLC) then sets up the address and length of

extension pointers as requested via the

RELREPNO specified on entry (PEXPT) and

extracts the data from the found field and indicates

its length (PLNRV). After the data is found, it is

compared by PTCMP with the input data and a

match or mismatch is indicated.

~
(1) b. 	 PLOC2 is the highest-level procedure for placing g. the data in the output area. This procedure is called2 by PSCNF if the FMFf is not a test FMFf. It calls
...,o PGREP to find the highest non-deleted
o RELREPNO with the desired group code and saves
"0 the address and length of the field which is checked("1)

~ by PGREC. PSHIN checks for enough space in the o·
=> output area and, if there, moves the field to the

output area or moves Fs if non-existent. PGVAL
$

-..I Diagram 3.15.2. EXPORTRA FSR - Driver
o
o
[I)
.......

<
[I)
N

Register 1 ~ g
'" '" C:s::
('1>

;. 1 GDT
o
Q. 1 IPT
[I)

('1>

~ o· (
('1>

'" 1 0 Ib
OQo·

""'I
./

Data
Sets and
eRA I'"

\,
'-' '-'

r r 	 r

Extended Description for Diagram 3.15.2

Module: IDCRC02

Procedure: OPENPROC, CLUSPROC, SA VEPROC,
RECPROC, PUTPROC, NVSMPROC, GDGPROC,
ASOCPROC,ALSPROC

t. 	 IDCRC02 tests the input parameter list for export of a
VSAM or nonVSAM object. OPENPROC opens the
portable data set for output. If the object to be
exported is a VSAM object then step La is done; if it
is a nonVSAM object and it is not associated to a
GOG, then step I.b is done. If the object is a GOG,
then step I.c is done.

a. 	 CLUSPROC gets catalog information for the
cluster, data, index and paths from the CRA.
SAVEPROC holds the control records containing
the catalog information until catalog processing is
completed, then writes them to the portable data
set. OPENPROC opens the cluster data for input.
RECPROC copies the data to the portable data set.
PUTPROC writes a software end-of-file to the
portable data set.

b. 	 NVSMPROC gets catalog information for the
nonVSAM object from the CRA. ALSPROC gets
catalog information for any aliases connected with
the nonVSAM object. SAVEPROC holds the
control records containing catalog information
until catalog processing is completed, then writes
them to the portable data set. PUTPROC writes a
software end-of-file to the portable data set.

c. 	 GDGPROC gets catalog information for the GOG
object from the CRA. ASOCPROC gets catalog
information for any nonVSAM associations to the
GOG base. ALSPROC gets catalog information
for any alias associations to the nonVSAM object.
SAVEPROC holds the control records containing
catalog information until catalog processing is
completed, then writes them to the portable data
set. PUTPROC writes a software end-of-file to the
portable data set.

Module: IDCRC02 ~
tD
:;. 2. IDCRC02 tests return codes from CLUSPROC,

NVSMPROC, and GDGPROC. [f any alias or path is~
o not exportable, a warning message is issued. The- portable data set is then closed if it is the last request o

or if a severe error occurred.~ a o·
:::l

-..I

-..J Diagram 3.15.2.1 EXPORTRA FSR - Export VSAM Data Set
N

o 	 From Diagram 3.15.2
(I]
.......

< INPUT 	 PROCESSING(I]
N

:>
t'l

~
CIJ
CIJ

~
n>;.
8
~
~ ~
n'
n>
CIJ 	 VSAM

b 	 Data

(JQ ""'" Set

Portable
n'

QS'EJ
~

Data
Set

'--- eRA-,

]
-v -	 """

-

1. 	 Obtains information for cluster,

data, index, and paths from eRA.

2. 	 Opens the input data set.

3. 	 Writes catalog information.

4. 	 Writes data records. closes input
data set.

5. 	 Writes software end-of-file.

]

-v"

~;TGFLS~11

Portable

aU~EJ~
."..

OUTPUT

crGPL ...-

4., '-''-'

r r 	 r

Extended Description for Diagram 3.1S.2.1

Module: IDCRC02

Procedure: CTLGPROC, CLUSPROC LOCPROC

t. 	 For the cluster entry of the YSAM data set,
LOCPROC builds a CTGPL and CTGFLs to retrieve
information from the CRA. A CTGFL is built for the
following catalog fields:

ENTYPE, ENTNAME, DSATTR, OWNERID,
DSETCRDT, DSETEXDT, BUFSIZE, LRECL,
SPACPARM, PASSWORD, PASSPRMT,
USVRMDUL, USERAREC, LOKEYY, HIKEYY,
YOLSER, AMDSBCAT, EXCPEXIT, RGATTR,
SECFLAGS (VS2.03.807 only), NAMEDS and
CAT ACB. CTLGPROC issues a UCATLG with the
CTGPL and CTGFLs to retrieve the information from
the CRA. CLUSPROC validity checks the catalog
entry type and named fields. LOCPROC builds a
CTGPL and CTGFLs for the data and index
components of the YSAM cluster. CTLGPROC issues
a UCATLG to obtain the same catalog information as
obtained for the cluster except for the NAMEDS and
CAT ACB fields. Path associations, if present, are
processed with the same type of CTGPL and CTGFLs
as used for data and index.

Module: IDCRC02

Procedure: OPENPROC

2. 	 OPENPROC opens the VSAM data set for input and
verifies the open.

Mod_: IRCRC02

Proced..-e: PUTPROC

3. 	 Control records containing catalog information for the
cluster, data, index, and paths are written to the
portable data set after catalog processing for the
object to be exported has been completed.

Module: IDCRC02

Procedure: RECPROC

~ 4. RECPROC copies the data to the portable data set
tD and closes the input data set.;.
o
0- Module: IDCRC02
S, Procedure: CLUSPROC o

"'0
tD S. CLUSPROC writes a software end-of-file on the ... portable data set.a o·
:::I

.... -..l

Diagram 3.15.2.2 EXPORTRA FSR -.J
.j:o

o
VJ
-......
<
N
VJ 	 INPUT
>n
n
~

:::
s:
~ VSAM
:;. Catalog
o c..

~ Portable:;;
n'
(1)

'" r o

VJ

Q"SEJ
(JC>

n'

Export NonVSAM

From Diagram 3.15.2

1. 	 Obtains catalog information for a
nonVSAM or GDG base, or user
catalog object.

2. 	 Obtains catalog information for any
associations.

3. 	 Writes catalog information to the
portable data set.

CTGFLs

Portable

Q~SD

4. 	 ~ '-'

r r 	 r

Extended Description for Diagram 3.15.2.2

Module: IDCRC02

Procedure: LOCPROC, CTLGPROC

I. 	 For a nonYSAM or user catalog object, LOCPROC
builds a CTGPL and multiple CTGFLs to retrieve
catalog information. A CTGFL is built for each of the
following fields:

ENTYPE, ENTNAME, YOLSER, DEVTYP,
NAMEDS, CATACB, FILESEQ, OWNERID,
DSETCRDT,DSETEXTD

For a GDG object, LOCPROC builds a CTGPL and
multiple CTGFLs to retrieve catalog information. A
CTGFL is built for each of the following: ENTYPE,
ENTNAME, GDGLIMIT, GDGATTR, OWNERID,
DSETCRDT, DSETEXTD, NAMEDS, CATACB.

CTLGPROC issues a UCATLG with the CTGPL and
CTGFLs to retrieve the information from the CRA,
and to validity check the ENTYPE and NAMEDS
fields.

Module: IDCRC02

Procedure: LOCPROC, CTLGPROC

2. 	 LOCPROC builds a CTGPL and multiple CTGFLs for
any alias associations. A CTGFL is built for ENTYPE
and ENTNAME catalog fields. CTLGPROC issues a
UCATLG to obtain the catalog information.

Module: IDCRC02

Procedure: NYSMPROC, ALSPROC, GDGPROC,
ASOCPROC

3. 	 NYSMPROC and ALSPROC write control records
containing the catalog information to the portable
data set after catalog processing is completed.

Module: IDCRC02

Procedure: GDGPROC, NYSMPROC

4. 	 GDGPROC and NYSMPROC write a software
end-of-file to the portable data set.

3':
n;.
8
Q.,
o
-g
a o·
:I

-.J

V>

--

--

-...j Diagram 3.16 IMPORTRA FSR
a-

From Executive o
en

< en
N

n Register I
n
(I)

C p
~

-.l~
'Y

1. Opens portable data set.'"'" ,..,.;s: CTGPL ~II Data(I) VSAMCTGFVS- ... ¢
o tGOT V' CTGFL Catalog
P- ./ ~

hOT "en
(I) «' i'

~

:1 ',n'
(I)

'" VSAM -
0S I

a<I User Catalog
n'Portable Data Set

t--... :::
r
t--... ~ 2. Imports object. "") VSAM

./ Catalog
.....- a. VSAM cluster or

..... alternate index.
 '

-- --e r--. -" See Diagram ------8f"" VSAM
Cluster,

VSAM b. User catalog. Alternate
Catalog Index, User See Diagram 3.16.2

...... Catalog,,- NonVSAM,
c. NonVSAM. orGDG--e

~

-B
BaseSee Diagram 3.16.3

VSAM

User Catalog
 d. GDG Base. Register I See Diagram 3.16.4

C
tGOT

t FDT

LASTCC

~'-' '-'

I

r r r

Extended Description for Diagram 3.16

Module: IDCRMOt

Procedure: OPENPROC

I. If INFILE is specified, IDCRMOt issues a UIOINFO
to obtain the data set name coded onthe DD job
control statement associated with the INFILE
parameter. OPENPROC builds an OPNAGL and
issues a UOPEN to open the portable data set.
OPENPROC then issues a UGET to get the first
record of the portable data set, which contains the
record size of the data set. If the record size is larger
than the record size used to open the portable data set,
it is closed and reopened.

Module: IDCRMO I

Procedure: CLUSPROC, UCATPROC, NVSMPROC,
GDGPROC

2. For each item on the portable data set, IDCRMOI
reads a timestamp record and prints a message
indicating the time and data of the EXPORTRA
operation. On the basis of the timestamp record, one
of CLUSPROC, UCATPROC, NVSMPROC, or
GDGPROC is called to actually import the object. If
the read for a timestamp record should fail, IDCRMOI
assumes that an end-of-file has been found on the
portable data set and passes control to Executive
Controlled Termination.

3:
'" ;.
o
c..
g,
o
~ ..,
e;.
o·
:::!

-.I
-.I

~ Diagram 3.16.1 IMPORTRA FSR - CLUSTER or ALTERNATE INDEX

o
til
.......

<
til
N r PROCESSING OUTPUT

Message
{rites time of export.
~uilds catalog parameter lists.

[
D
~ "-,

!l ..
::r
8- "'-.., CTGPL CTGFVs./til n .1 t'--- CTGFLs~ ..,aO ...~
b ~

!JQ
n'

<
.......

:fines cluster or alternate index "-.,
VSAM v

:fines paths.
..-

(Catalog

~~
ters name of data set. ;> VSAM
'pies data. Alters the name back. Data Set

CTGPL

hCTG~ hCTGFlI I

'-' ~ '-'

r r 	 r

Extended Description for Diagram 3.16.1

Module: IDCRMOI

Procedure: CLUSPROC, CPLPROC, GETPROC,
FVTPROC, BFPLPROC, BPASPROC, IUNIQPRC

I. 	CLUSPROC via CPLPROC builds a CTGPL for a
define operation. CLUSPROC issues a UGET macro
to read the catalog control records and calls
GETPROC to read the catalog data records. Control
records are read for the cluster or alternate index and
their data and index, if any, components. CLUSPROC
then calls FYTPROC to build two or three FVTs.
FYTPROC in turn calls BFPLPROC to build FPLs for
the catalog information on the portable data set.
BPASPROC builds an FPL for security information. If
the data or index component was originally defined as
unique, IUNIQPRC builds a null volume FVT. The
OBJECTS list is scanned for volume information
about the object to be defined; if found, such
information overrides that found on the portable data
set. The volumes of the data set are dynamically
allocated if necessary. If OUTFILE was not provided
by the user, the data set just defined is dynamically
allocated.

Module: IDCRMOI

Procedure: CTLGPROC, DELTPROC

2. 	 CTLGPROC issues a UCATLG macro to invoke
VSAM catalog management. If VSAM issues a return
code of 8, DELTPROC issues a UCATLG to delete
the object from the catalog. Should this operation fail
or should the original define fail with a return code
other than 88, an error conversion table is built for a
delete function. CTLGPROC calls the UERROR
macro to print the prose error message and passes
control back to IDCRMOI for the next object. an error
conversion table is built for a delete function.

Module: IDCRMOI

Procedure: AL TRPROC

3. 	 If OUTFILE was specified, AL TRPROC renames the
s: VSAM object to be loaded to the dummy name
<> returned by the UIOINFO. A ULllLN macro is issued
:T
o to open the VSAM object, and UCOPY is used to copy
Q.

data records from the portable data set to the VSAM
!2.. object. UCLOSE closes the VSAM object, and o ALTRPROC alters the name of the object just loaded
~ back to that under which it was defined, if necessary.
~ Processing returns to Diagram 3.16, step 2, for theo·
:l next item on the portable data set.

--.j

-.0

--

- -- -- -

IV

~ Diagram 3.16.2 IMPORTRA FSR - USERCATALOG·

o
til
"<

~ ~til -
'YPortable Data Set

~ ..
n

~ CTGPL lJ
~

~ CTGFV VSAM~
Data

r:!>;. 1. Imports user catalog. /,CTGFL Catalog...
8- <Itil
B
:;;! '
o·
B

'" VSAM
r User Catalog
~ VSAMo· Catalog

\.
Message2. Imports aliases.

..
./

VSAM

User Catalog
 D

Register 1

C
ItGDT

tFDT

CLASTCC

1

.. ;

\.,'-' ~

r r r

Extended Description for Diagram 3.16.2

Mod.: IDCRMOt

Procedure: CPLPROC, UCATPROC, GETPROC,
LVLRPROC,NFVTPROC,CTLGPROC,CPLPROC,
DELTPROC

1. CPLPROC builds a CPL to be used to connect the user
catalog pointer. UCATPROC then issues a UGET to
get the catalog control record and calls GETPROC to
obtain the catalog data record. L VLRPROC builds a
DEVTYPE FPL and a volume serial list on the basis of
information supplied on the portable data set or
furnished through the OBJECTS parameter.
NFVTPROC builds an FVT for the define.
CTLGPROC issues a UCATLG macro to connect the
user catalog. If the VSAM catalog return code is 8,
then CPLPROC builds a CPL to do a disconnect
operation, and DEL TPROC actually invokes catalog
to perform this operation. Should this succeed, a
second attempt is made to connect the user catalog.

Module: IDCRMOI

Procedure: ALiSPROC, CPLPROC, NFVTPROC,
CTLGPROC

2. For each alias item on the portable data set,
CPLPROC builds a CPL and NFVTPROC builds an
FVT. Then CTLGPROC issues a UCATLG to define
the alias object.

~
t1>;.
8
o-.
o
i ao·
:::I

00

- -

00 Diagram 3.16.3 IMPORTRA FSR
N

o
CIl
' <
CIl
N Portable Da ta Set
:>
g
~ -- v).
'" ,'" s:

- NONVSAM

".

~
CTGPLJ Data 1-1CTGFV VSAM

~~ :r 1. Imports nonVSAM data set. ~ V' CTGFL ~ Catalog

0
o

<
... r-.

CIl
~

:;!
(=i' , ~
~ "'~'" r

NonVSA
Data Set Jo VSAM

(It)
(=i' Catalog

\.
Message~ -" 2. Imports aliases. .,/

NonVSAM
Data Set

...... oJ
 D
Register I

~
tGDT I
t FDT I

(LASTCC

~ '-'
 "

r r 	 r

Extended Description for Diagram 3.16.3

Module: IDCRMOt

Procedure: CPLPROC, NVSMPROC, GETPROC,
LVLRPROC,NFVTPROC,CTLGPROC,DELTPROC

1. 	 CPLPROC builds a CPL to be used to define the
nonVSAM data set. NVSMPROC then issues a UGET
to get the catalog control record and calls GETPROC
to obtain the catalog data record. L VLRPROC builds
a DEVTYPE FPL and a volume serial list on the basis
of information supplied on the portable data set or
furnished through the OBJECTS parameter.
NFVTPROC builds an FVT for the define.
CTLGPROC issues a UCATLG macro to define the
nonVSAM data set. If the VSAM catalog return code
is 8, then CPLPROC builds a CPL to do a delete
operation, and DELTPROC actually invokes catalog
to perform this operation. Should this succeed, a
second attempt is made to define the nonVSAM data
set.

Module: IDCRMOt

Procedure: ALISPROC, CPLPROC, NFVTPROC,
CTLGPROC

2. 	 For each alias item on the portable data set,
CPLPROC builds a CPL and NFVTPROC builds an
FVT. Then CTLGPROC issues a UCATLG to define
the alias object.

~
(l)

;.
8.
o-.
o
~
~ o·
:::!

~
00

Diagram 3.16.4 IMPORTRA - GOG BASE ~
From ~iagram 3.16o

til
<
~

Message
g> 1. Imports a GOG base.
~
VI
VI

~
~ ;. 2. Imports the non-VSAM associations of D&. the G DG base and their aliases.

Resiste. 1 til
~

~
~.
VI -tGOT~ n· tFDT

, LASTCC

1 I

'-' '-' '-'

r r 	 r

Extended Description for Diagram 3.16.4

Module: IDCRMOI

Procedure: GDGPROC, CPLPROC, GETPROC,
CTLGPROC,DELTPROC,BFPLPROC

1. 	 CPLPROC builds a CPL to be used to define the GDG
base. GCGPROC then issues a UGET to get the
catalog control record and calls GETPROC to obtain
the catalog data record. NFVTPROC builds an FVT ..
for the define operation, and calls BFPLPROC to
build FPLs for the fields exported by EXPORTRA.
CTLGPROC issues a UCATLG to macro to define the
GDG base. If the VSAM catalog return code is 8, then
CPLPROC builds a CPL to do a delete operation, and
DEL TPROC invokes catalog ko perform this
operation. Should this succeed, a second attempt is
made to define the GDG base.

Module: IDCRMOI

Procedure: NVSMPROC, ALiSPROC

2. 	 For each nonVSAM object associated with the GDG
base, NVSMPROC is called. NVSMPROC imports the
nonVSAM association, and calls ALiSPROC to
import any aliases of the nonVSAM.

s:
;.n

&.
o...,
o
"0 n
~ s·
::I

00
VI

- --- - ------

~ Diagram 3.17 RESETCATFSR
o
I;Il -.....
<
I;Il
N

Register 1 ~ g
'" (l'"
~
n> t GDTs:o
Q.. t FDT
I;Il

f
n>...
<
(i'

n>
 ~
'" I 0
b

(JQ

(i' 	 ,
""'

VSAM

Catalog

10". ~

.... , ~

1'--	 CRA ~ Volumes
~

....f'"'

\." 	 Work
File

..J

"-
~

VSAM
Catalog
to be reset

F E f

- -----~

1. 	 ~es initialization for RESETCAT processing,
;>...

See Diagram -B
Steps 2, 3, and 4 are executed repeatedly until
enough control intervals exist in the catalog for the
catalog to be reset:

2. 	 Copies catalog to work file.

See Diagram B
3. 	 Merges the CRAs to the work file.

See Diagram B
4. 	 Ensures there are enough control intervals for

reassignment. Extends catalog if enough con
trol intervals are not available. Returns control
to Step 2 if catalog is extended.

5. 	 Reassigns control intervals as necessary.

See Diagram -8
6. 	 Checks associafions, control intervals, and

space.

See Diagram -B
7. 	 Updates catalog.

See Diagram-&

8: 	 Updates CRA(s) if necessary.

See Diagram-B

9. 	 Releases resources.

....f'"

Reset
Catalog

.........

,/ oJ

r,
f'"' CRA Volumes

reset if
necessary ... "

Register I

e
t GDT

t FDT

(

., t LASTCC

'" '-' 	 '"

r ~ 	 r

Extended Description for Diagram 3.17

(VS2.03.808 only)

Module: IDCRSOI, IDCRS06

Procedures: INIT, DSOPEN, CATINIT, WFDEF,
CRAMNT

1. 	 INIT is the first procedure called by RESETCAT. It
uses the UGPOOL macro to obtain work areas
common to all of RESETCAT, and initializes them.
The catalog to be reset is opened, verified, and validity
checked. Next, exclusive control over the catalog is
obtained via the URESERVE macro. The work file is
defined and opened. An entry in the RES VOL table is
created for each CRA volume identified by the
CRAFILES parameter or the CRAVOLS parameter.
All volumes specified for reset via CRAVOLS are
allocated dynamically. Finally, INIT builds the CIXLT
table. The CIXL T table is used to translate a catalog
control interval number into a work file relative record
number.

The following three steps, Steps 2, 3, and 4. form an
interactive loop. These three steps are executed
repeatedly until the catalog to be reset has enough control
intervals.

Module: IDCRSOI, IDCRS05, IDCRS06

Procedures: COPYCAT, BLDVLST, SCNRLST,
DSCLOSE

2. 	 COPYCAT performs the initial load of the work file
from the catalog to be reset. The CIXL T table built by
INIT maps every catalog DATA control interval
number (CIN) to a relative record number (RRN) slot
in the work file. It also indicates whether the control is
for the low key range (LKR) or high key range (HKR)
portions of the catalog. LKR records from the catalog
are written to the work file as normal RRDS records.
HKR records are also written to the work file;
however, for each HKR record written, a flag is set
indicating that control interval will later be reassigned.
Dummy records (formatted control intervals with no
data in them) are written to the work file to represent s: that portion of the catalog which extends from the first 2

:::r unformatted free control interval to the LKR high
o
P- allocated control interval. A table (VOLSERTB) is
o built from all volume records read from the catalog.-.
o Free records and records which belong to a CRA
"0 specified for reset are maintained on an "available"
" chain and an "available" count is kept for thesea o· records. When processing is completed, the work file
:::l is closed.
00
-.l

Module: IDCRSOI, IDCRS05, IDCRS06

Procedures: MERGECRA, DSOPEN, SCNRLST,
CKERR,PROCCRA,VOLCHK,DSCLOSE

3. 	 MERGECRA merges each reset CRA into the work
file. Each CRA is opened. The cluster record is read,
and the catalog name is verified. The PROCCRA
procedure is called to merge the CRA records into the
work file, and the VOLCHK procedure is called to
perform the volume consistency check.

Module: IDCRSOI, IDCRS05, IDCRS06, IDCRS07

Procedures: ENSURECI, DSCLOSE, CATEOV, CKERR,
DSOPEN, CATINIT

4. 	 ENSURECI ensures that there are enough free control
intervals for reassignment. If the number of control
intervals to be reassigned is less than or equal to the
number of control intervals available, a flag,
RSENUFCI, is set, indicating that enough control
intervals are available for reassignment. However, if
the control intervals to be reassigned are greater than
the number available, ENSURECI forces the
extension of the catalog by performing the following:

The catalog is closed by calling DSCLOSE. Next,
all storage obtained during COPYCAT processing
is freed by issuing UFPOOL. The highest
fOl"matted work file relative record number is saved
in RSWFHURR, and CATEOV is called to extend
the catalog by writing free records into the catalog
until the catalog has been extended and sufficient
control intervals are available for the reset
operation. If CATEOV returns with an error
condition, CKERR is called to terminate
RESETCAT processing.

After the catalog is successfully extended, DSOPEN is
called to re-open and verify the catalog. CATINIT is
called to re-establish the catalog's geometry by
building the CI to RRN translate table (CIXL T).

Module: IDCRSOI, IDCRS05

Procedures: REASSIGN, ADDUPCR

5. 	 The REASSIGN procedure performs control interval
(CIN) reassignment. The invalid and duplicate records
on the reassign chain are assigned to valid CINs from
the available chain. Each record on the reassign chain
is read and an "available" record from the available
chain is found. The reassign record is copied to the
"available" record buffer; the CIN is changed to
reflect the CIN of the "available" record. If there is a
pointer to a duplicate record (DUPPTR), it is copied
from the reassign record's processing field. The

"available" record is then updated to reflect the
reassigned record. The record whose DUPPTR points
to the reassigned record's relative record number is
found by following the duplicate record chain. The
DUPPTR of this record is changed to reflect the
"available" record's CIN. This record is then updated.

Module: IDCRS02, IDCRS03

Procedures: ASSOC, PROCTYPE, VERDSDIR,
PROCVOL

6. 	 The ASSOC procedure controls the checking of all
control interval numbers (CIN) in all records being
reset. This includes CINs in associations and data set
directories. ASSOC also controls the checking for any
space conflicts of VSAM data sets.

Module: IDCRSOI, IDCRS05, IDCRS07

Procedures: UPDCAT, CKERR, ADDUPCR,
ENTNMCK, SCNRLST, RENAMEP, UPDCCR,
CRAUPCHN,DELTN,ADDTN

7. 	 UPDCAT updates the catalog from the work file. At
this point, any records in the work file which do not
match the catalog must be written to the catalog. Each
valid work file record is read and, if the "update
catalog" flag is on, the record is written to the catalog
low key range (LKR). True names are deleted from
and added to the catalog high key range (HKR) as
necessary. If the "update CRA" flag is on, the control
interval of the work file record is placed on the CRA
update chain. Then the free record chain is rebuilt.

Module: IDCRSOI, IDCRS05, IDCRS06

Procedures: UPDCRA, SCNRLST, DSOPEN,
DSCLOSE, CKERR

8. 	 UPDCRA updates CRAs from the work file. Each
entry in RESVOL (a table containing an entry for each
volume whose CRA is required in the reset operation)
is obtained. If there are any updates to be made in that
CRA, it is opened, updated, and closed. If any free
records are placed in the CRA, the CCR record is
updated. If the RESVOL entry indicates that the CRA
volume was allocated, it is deallocated.

Module: IDCRSOI, IDCRS05

Procedures: WRAPUP, CLEANUP, CKERR

9. 	 If RESETCAT processing is successfully completed,
WRAPUP is the last procedure called. WRAPUP
ensures that all resources obtained by RESETCAT are
freed, it prints the message that processing is
complete, and then returns control to the system.

Diagram 3.17 .IRESETCAT FSR - InitializationQC>
QC>

From Diagram 3.17o (VS2.03.808 only)
!;Il
< INPUT PROCESSING!;Il
N

> Register 1n
n

~
3:
~

So tGDT
8. t FDT
)t
~
ii'
~
til

r 0
ti6
ii'

.....r
VSAM
Catalog

VSAM
Catalog
to be reset

1. Gets space for and initializes work areas.

2. Opens the catalog.

3. Defines and opens the work file.

4. 	 Builds volume entries from CRAFlLES
or CRAVOLS volumes. Allocates CRAVOLS
vo urnes.,I 	 ~========~~V

.J
.1

RESETCAT

Work

Areas

~...

u Catalog
to be
reset
opened

u Work
File
Defined

~ 	
CRA
Volumes
Allocated

RESVOL
TABLE

\.,'-' 	 '-'

r 	 r r

Extended Description for Diagram 3.17.1

(VS2.03.808 only)

Mod1IIe: IDCRSOI

Procedure: INIT

1. 	 INIT issues the UGPOOL macro to obtain storage for
the following work areas:

• 	 Record Management control blocks
(GRAB, BUFFER)

• 	 Control Blocks for Catalog Management LOCATE
macro (CPLs and FPLs)

The FDT is checked to see if IGNORE is specified; if
so, a flag (RSIGNORE) is set in RSWORK.

After obtaining the above storage, INIT formats the
RESETCA T record management control blocks.
Control blocks (CPL and FPL) of Catalog
Management are also formatted along with certain
portions of the main work area.

Module: IDCRSOI, IDCRS05, IDCRS06

Procedures: INIT, DSOPEN, CKERR

2. 	 DSOPEN is called to open the catalog to be reset.
Validity checks are made on the catalog to ensure that
it is recoverable and is not the master catalog. CKERR
is called if these checks fail.

Exclusive use of the catalog is ensured by issuing two
umacros: USYSINFO and URESERVE. USYSINFO
gets the catalog UCB address and URESERVE obtains
exclusive use of the ENQ name of the catalog
(SYSIGGV2!catname). If it is determined that the
catalog is being used by someone else (by checking the
count in the CAXACT field), CKERR is called to
terminate RESETCAT processing.

DSOPEN is called to perform a VERIFY operation on
the catalog; the high used RBA of the catalog is
adjusted if necessary. UGPOOL is issued to obtain
storage for the CIXL T table.

Module: IDCRSOI, IDCRS05, IDCRS06 3!:
til;. Procedures: INIT, RECMGMT, WFDEF, DSOPEN,
o c.. CKERR
S., 3. 	 RECMGMT is called (with the GETRCD option) to
o get control interval zero (CI=O) from the catalog. The
~ high allocation data CI is computed (HARBADS/512)
a and saved in RSCAHACI.
....

o·
::l The primary and secondary extents of the work file

are computed as follows: OQ..,

Primary = no. of records currently allocated in the
catalog.

Secondary = (MAXCI*2 - primary) + 125

126

where MAXCI = Largest CI number possible for a
catalog.

The WFDEF procedure is called to define the work
file. If it is found that the work file is defined in the
catalog being reset, CKERR is called.

DSOPEN is now called to open the work file.

Module: IDCRSOI, IDCRS05, IDCRS06

Procedures: INIT, CKERR, CATINIT, CRAMNT

4. 	The RESVOL table is constructed consisting of an
entry for each CRA volume supplied by the invoker of
RESETCAT with the CRAFILES parameter or
CRAVOLS parameter. Each entry consists of fields
for volume serial number, device type, and ddname. A
pointer, RSVOLALL, points to the first entry in the
table and each entry is chained to the next. A flag
indicates the last 'ALL' entry which is followed by the
'NONE' entries.

The FDT is checked to see if CRAVOLS or
CRAFILES is specified. If CRAVOLS is specified,
CRAMNT is called to allocate the volumes. The
"CRA allocated" audit flag is set and the ddname of
the volume is inserted in the RESVOL table.

If CRAFILES is specified, the volume serial number of
the CRA is obtained via the UIOINFO macro. The
volume serial number of the CRA is inserted in the
RESVOL entry. If the catalog volume serial number is
specified, its RESVOL entry is positioned as the first
entry in the list.

If no CRA is specified, CKERR is called to flag an
error condition.

CATINIT is now called to build the CIXL T table. The
CIXL T maps the catalog control intervals to the work
file relative record numbers. There is an entry in
CIXL T for each catalog extent.

.., Diagram 3.17.2 RESETCAT FSR - Copy catalog to work file
o
o
Vl
'<
Vl
t-.J

>n
n
(1)
rJ>
rJ> :ks catalog extents.

3::
(1) esses high key range extents.S
o
0- esses low key range extents - -
Vl
(1) .la tted records,
~ Fileri'
(1) esses unformatted records,rJ> ~
o
r

initiaiioading of work file.
C/O es the work file.
ri'

c..,
'-' '-'

r (r

Extended Description for Diagram 3.17.2 • 	 If the RRN is not greater, then UPDRCD is called
to update the record in the work file.

(VS2.03.808 only)
4. 	 If the CI of the record is equal to or greater than the

MOtiule: IDCRSOI next free unformatted CI in the catalog, then the
"update catalog" flag is set in the work file processing Procedure: COPYCAT field and a dummy free record is formatted. The

1. 	 The COPYCAT procedure obtains each entry from dummy record is placed on the available chain and the
CIXL T and examines it to see if the first control available count is incremented. If the CI of the record
interval number in the entry is greater than the catalog is equal to or greater than the End of Volume
low key range (LKR) high allocated control interval. If unformatted free CI, then the "invalid" flag is set in
so, it indicates COPYCAT processing is complete and the work file processing field. A dummy record is
control returns to the main procedure, IDCRSOI. formatted. The unformatted dummy record is written

to the work file as follows: .
Another test is made to see if all 127 entries have been
processed; if so, control returns to main line IDCRSOI • If the RRN is greater than the high formatted
processing. RRN, then ADDRCD is called to add the record to

the work file.
2. 	 If the CIXL T entry represents a high key range (HKR)

extent, a flag is set indicating that this is an "invalid" • If the RRN is not greater, UPDRCD is called to
record in the work file. A dummy record is formatted update the record in the work file.
and written to the work file as follows: MOtiule: IDCRSOI, IDCRS06
• 	 If the relative record number (RRN) is greater than Procedures: COPYCAT, DSCLOSE

the high formatted relative record number in the

work file, RECMGMT(ADDRCD) is called to add S. The "wotk file created" flag is tested; if it is off,

the record to the work file. DSCLOSE is called to close the work file.

• 	 If the RRN is not greater, RECMGMT(UPDRCD)

is called to update the record in the work file.

3. 	 If the CIXL T entry represents a LKR extent, the

record is processed as a formatted record. If the CI of

the record is less than the next free unformatted

catalog CI, then GETRCD of the RECMGMT

procedure is called to read the record from the

catalog. The catalog record is moved to the work file

buffer. If the record happens to be a free record (not

currently used in the catalog), it is placed on the

available chain. The count of available records is

incremented. If it is not a free record and if it is a

volume record, then a VOLSERTB entry consisting of

volume serial number and CI number is formatted.

BLDVLST is called to add this entry to the

VOLSERTB table. In order to check to see if the

record is also on a CRA specified for reset, SCNRLST

~ is called. If it is a CRA record, a flag is set indicating
;." that the record is to be deleted. The record is placed
o
0.. on the available chain and the available count is
o incremented. LKR records are written to the work file ...,
o as follows:
"0

• 	 If the RRN is greater that the high formatted RRN, " ~ ADDRCD is called to add the record to the work o·
::I file.

'J:)

--

;c Diagram 3.17.3 RESETCAT FSR - Merge CRS(s) to the work file.
N

o
til
"<
til
N

~
~
til
til

~ '~ ;. C
8
til
~

CRA:1r:;. Volumes .- ""
~
til J

b
OQr:;.

File~

J

RESETCAT
Work areas

r

4.." ~'-'

(
r 	 r

Extended Description for Diagram 3.17.3 	 Module: IDCRSOI, IDCRS06

Procedures: MERGECRA, DSCLOSE(VS2.03.808 only)
4. 	 If the "CRA open" flag is set, DSCLOSE is called to

Module: IDCRSOI, IDCRS06 close the CRA. If the close fails, flags are set to
Procedures: MERGECRA, DSOPEN terminate processing and to bypass the volume

consistency check.
1. 	 The "work file open" flag is tested to see if the work

file is already open; if off, DSOPEN is called to open Module: IDCRSOI, IDCRS03

the work file.
 Procedures: MERGECRA, VOLCHK
Steps 2 through 5 form an iterative loop. These four 5. 	If the flag to bypass the volume consistency check is
steps are executed repeatedly for each entry in the not on, VOLCHK is called to perform the volume
RESVOL table. consistency check.

2. 	 The SCNRLST procedure is called to obtain an entry VOLCHK ensures that there is a one-to-one from the RESVOL table indicating the volume serial correspondence between each VSAM data space on a
number of a CRA specified for the reset operation. If volume (format I DSCB in the VTOC) and each space SCNRLST finds that all entries are processed and if header in the volume record for that volume. If a
the "termination" flag is on, CKERR is called to print format I DSCB does not have a corresponding space
an error message and terminate processing. If header, the format I DSCB is scratched. If a space SCNRLST successfully returns a CRA volume serial header refers to a non-existent format I DSCB, the
number, DSOPEN is called to open this CRA. If open space header is deleted. If the extents in a space
fails, flags are set to terminate processing and to header are not identical to the extents in the
bypass the volume consistency check. If the open is corresponding format I DSCB, the extents in the
successful, RECMGMT (with GETRCD option) is space header are corrected.
called to read the eRA cluster record (CI=2). If the

CRA entry name is not for the catalog being reset,

then CKERR is called to print an error message. Flags

are set to terminate processing and to bypass the

volume consistency check.

Module: IDCRSOI

Procedures: MERGECRA, PROCCRA

3. 	 PROCCRA is called to merge CRA records into the

work file.

Beginning with the volume record, each CRA record is

read and merged. The CIN of the volume record is

updated/added to VOLSERTB, so that Volume

records may be located later. The work file record

corresponding to the catalog control interval (CATCI)

of each CRA record (except CRA free records) is read.

If the work file record is free or available, the CRA

~ 	 record replaces it. If the work file record has already
'" 	 been replaced or if the work file record does not :T
o 	 belong to a reset CRA, the CRA record is written to
Q. 	

the overflow area and maintained on the duplicate o
chain for that CATCI. Records written to the overflow -o or "invalid" areas of the work file are placed on the

~ .., "reassign chain" and a "reassign count" is kept for
a these records. Each time a free or available work file o·
:::l 	 record is replaced, the "available" count is

decremented.
~

Diagram 3.17.4 RESETCAT FSR - Reassign CI numbersf
o (YSU)3.808 only) _ From E f
(/)

"<
(/) - --- -----
N

>o o
t1>
~ Ids a work file record to be reassigned.
3:
t1>
:;. ds an available record.
o VSAMCo Catalo,g
(/) dates available record and writes to
t1> to be reset......

rk file.:::! n·
t1> CINs in work file reassigned.(IJ ,cesses duplicate chain.
r o

(JQ

n·

'-' ~ '-'

r 	 r r

Extended Description for Diagram 3.17.4
(VS2.03.808 only)

Module: IDCRSOI, IDCRS06

Procedures: REASSIGN, REC:;MGMT

1. 	 Before it reassigns any records, the REASSIGN
procedure determines whether any records need to be
reassigned. If the reassign count is zero, it means no
records need to be reassigned. Control is returns to
mainline IDCRSOI processing. Control is also
returned if all records on the reassign chain have been
read.

RECMGMT (with GETRCD option) is called to read
the next record on the reassign chain. The reassign
chain pointer is saved.

Module: IDCRSOI, IDCRS06

Procedures: REASSIGN, RECMGMT

2. 	 The next record on the available chain is read via
GETRCD. The available chain pointer is saved. If the
"replaced from CRA" flag is set, then this record
cannot be used, so the next record on the available
chain is read until an available record is found.

Module: IDCRSOI, IDCRSOS, IDCRS06

Procedures: REASSIGN, ADDUPCR, RECMGMT

3. 	 The reassign record is moved to the available record
buffer. The reassign DUPPTR is copied to the
available DUPPTR. Two flags, "replaced from CRA"
and "update catalog", are set. ADDUPCR procedure
is called to perform CRA update processing. A flag
indicating that the record is reassigned is set.

RECMGMT (with the UPDRCD option) is called to
write the updated available record to the work file.

Module: IDCRSOI, IDCRS06

Procedures: REASSIGN, RECMGMT

4. 	The relative record number (RRN) of the reassigned
record is saved. RECMGMT (GETRCD) is called to

::::: read the record pointed to by the catalog control
;. interval of the reassigned record or the DUPPTR.

8. If the DUPPTR does not point to the RRN of the
:a.. reassigned record, then the next record on the
o duplicate record chain is read. When the record is
ill found, the DUPPTR is updated to point to the CI of
;;l the available record. RECMGMT (UPDRCD) is
g. called to write the record back to the work file.
;:I

\I:)
V>

- - -- - -

'>Q Diagram 3.17.S RESETCAT FSR - Check Associations
a-.
o
(I)

< 	 - --- -----

~
~
a 	 Icesses all LKR records in the work file:

Reads a work file record. ~
s- Calls PROcrYPE for CRA records and o
Q. 	 entry types C, B, A, U, or X.
i(l

Verifies data set directories for D and :!
n' [entry types.

'"
'cesses all reset volumes. For eachi.

"
:t volume:

n
Reads the volume record from the work
file.

Calls PROCVOL to process the volume
record.

-"" File~

\., 	 \., ~

(' ('r

Extended Description for Diagram 3.17.5

(VS2.03.808 only)

Module: IDCRS02, IDCRS06

Procedures: ASSOC, RECMGMT, PROCTYPE,

VERDSDIR

1.a.Each work file record is read sequentially up to the

high allocated catalog control interval. Each record is

checked to see if the "associations checked" flag is on.

If it is, control goes to step 2.

b.1f the flag is not on and if the record is from a CRA
being reset, then, for each C, B, A, U, or X record, the
PROCTYPE procedure is called to process control
interval numbers.

For a given catalog entry type, PROCTYPE controls
the process of scanning a catalog record for control
interval numbers. It determines which other records
which along with the given record are a part of a set of
records. It verifies all control interval numbers in the
entire set of records. Control interval numbers are also
corrected if necessary.

c.VERDSDIR is called to check data set directories if
the entry type is D or I. The VERDSDIR procedure
verifies the data set directory entries for VSAM data
sets which are not on reset volumes. It specifically
looks for multivolume VSAM data sets where the
primary volume is not a reset volume but a secondary
volume is a a reset volume. VERDSDIR changes work
file records to correct error conditions; namely, it
marks a volume group occurrence (VGO) unusable
when no data set directory exists for that data set.

Module: IDCRS02, IDCRS06

Procedures: ASSOC, RECMGMT

2.a.For each reset volume, the volume record is read from

the work file via RECMGMT(GETRCD).

Module: IDCRS02, IDCRS06

Procedures: ASSOC, RECMGMT, PROCVOL

PROCTYPE, VERDSDIR

rj. ,.1 r'd II"
~
(1)

2.b.The PROCVOL procedures is called to process the s
o c.. volume record.
o..., PROCVOL controls the checking of space conflicts for
o each volume record. PROCVOL calls PROCTYPE to
-g find and verify each control number in a volume
a record and its extensions. PROCVOL verifies and, if
o· necessary, corrects the volume space bit map.
:::l

-.a
-..J

~ Diagram 3.17.6 RESETCAT FSR - Update the Catalog
o
Vl
' <
Vl
N

n>
~
~

:::

0(I)

So
Co

File~
~
(i0

~

~
(JQ ~ (i0 C

VSAM
Catalog
to be reset

I
•

RESETCAT

Work

Areas
 ...

~

4., l.,'"

r' (r

Extended Description for Diagram 3.17.6
(VS2.03.808 only)

Module: IDCRSOI, IDCRS05, IDCRS06

Procedures: UPDCAT, CKERR, RECMGMT

1. 	 UPDCAT ensures that all CRAs required for updating
are available by checking the "update CRA
unavailable" flag (RSBADVOL). If the check shows
that a CRA is not available, the CKERR routine is
called to print a message and terminate RESETCAT
processing.

Each catalog extent in the work file is processed by
checking each entry in CIXL T. If the extent represents
a HKR, it is ignored. Only LKR extents are
considered. For each LKR extent, RECMGMT
(GETRCD) is called to read a work file LKR record.

Module: IDCRSOI, IDCRS06

Procedures: UPDCAT, RECMGMT

2. 	 For each work file record read, the "update catalog"
flag (RSWUPCAT) is tested and if the flag indicates
the catalog should be updated, the corresponding
catalog record is read via the GETRCD routine.

Module: IDCRSOI, IDCRS06

Procedures: UPDCAT, ADDUPCR, RECMGMT

3. 	 After each catalog record is read, the "association
checked" flag (RSW ASSCK) is tested. If it is not on,
the ADDUPCR routine is called to prepare for update
CRA processing. The ENTNMCK procedure is called
to determine if the catalog record has a true name; if
there is a true name, a flag is set and the true name is
saved. Next, ENTNMCK is called again to see if the
work file record has a true name. If it does, a flag is
set.

If the record is free or the "association checked" flag
is off, a deleted free work file record is formatted in
the catalog buffer and placed on the free chain;
otherwise, the work file record is moved to the catalog

a
~ LKR buffer. If the control interval number of the
::r record is greater than or equal to the first unformatted
2- free control interval, RECMGMT (ADDRCD) is
..,o called to add the record to the LKR. If the CIN is less

than the first unformatted free CIN, the UPDRCDo
"0 option of RECMGMT is called to update the catalog

a '" record.
o·
::J The free chain is rebuilt.

\C

\C

Module: IDCRSOI, IDCRS05, IDCRS06

Procedures: UPDCAT, RECMGMT, DELTN, ADDTN

4. 	 If the catalog record has a true name and the work file
record does not (or has a true name different from the
catalog), then the true name is deleted from the
catalog HKR by calling DELTN, provided the CIN is
correct.

If the work file record has a true name and the catalog
record does not (or has a true name different from the
work file), ADDTN is called to write a true name
record. If ADDTN indicates a duplicate record exists,
the work file record is placed on the true name chain
for a future rename operation (see Step 6). The "write
work file" (RSUCTWWF) flag is set.

Module: IDCRSOI, IDCRS05, IDCRS06

Procedures: UPDAT, SCNRLST, RECMGMT,
CRAUPCHN

S. 	 UPDCAT checks to see if the "update CRA" flag
(RSUPCRA) is on. If it is, the SCNRLST routine is
called to scan the RESVOL table for the CRA volume
serial number. Next, the work file record is placed on
the CRA update chain for this CRA volume by the
CRAUPCHN procedure. Thee "write work file" flag
is set.

If the "write work file" flag (RSUCTWWF) is on,
UPDRCD is called to update the work file record with
the true name chain pointer and/or the CRA update
pointer.

Module: IDCRSOI, IDCRS06, IDCRS07

Procedures: UPDCAT, RECMGMT, RENAMEP,
ADDTN

6. 	 After all the catalog LKR extents have been processed,
the true name chain is checked. If the chain is not
empty, the GETRCD routine of RECMGMT is called
to read a work file record on the true name chain. The
ADDTN routine is called to add the true name to the
catalog HKR. If a duplicate name is detected, then the
RENAMEP procedure is called to assign a new name
to the true naine~

Module: IDCRSOI, IDCRS06

Procedures: UPDCAT, RECMGMT, UPDCCR

7. 	 The GETRCD routine of RECMGMT is called to read
the CCR (control interval number 3). The following
items in the CCR are updated by UPDCCR:

• 	 First unformatted free record

• 	 Count of deleted free records

• 	 Control interval number of first deleted free record

• 	 High RBA maintained in the CCR

After the above items are changed, RECMGMT (with
UPDRCD option) is called to write the updated CCR
back to the catalog.

8 Diagram 3.17.7 RESETCAT FSR - Update the CRA
o
CIl
........

< - .
CIl ...N

I>
('l

.......

('l -.l 1. Updates the CRA if necessary . '" .1 £CIl
CIl ...

"""I~3: a. Opens the CRA.
;.'" RESETCAT b. Reads a work file record. C'

.0 Work areas
c.. and Control c. Writes a CRA record.

~CIl
Blocks ... d. Closes the CRA. ~'" :1

ri· .. -
CIl '"
r CRA Volumes updated if necessary.
o

011
ri·

File~

\.,'-' '-'

r r r

Extended Description for Diagram 3.17.7
(VS2.03.808 only)

Module: IDCRSOI, IDCRS05,IDCRS06

Proce4.-es: UPDCRA, SCNRLST, RECMGMT, CKERR

l.a.The SCNRLST routine is called to obtain a CRA
volume serial number entry from the RESVOL table.
A check is made to see if this CRA needs to be
updated by checking if the CRA update chain is
empty. If the chain is not empty, DSOPEN is called to
open and verify the CRA. If the open is successful, the
"CRA open" flag is set; if not, the "termination" flag
is set.

b.Each record in the CRA update chain is read from the
work file RECMGMT (GETRCD). The control
interval number of the next record in the chain is
saved. If the record just read happens to be a free
record, the CRA CCR record needs to be updated. If
the CCR has not been read already, RECMGMT
(GETRCD) is called to read it. The deleted free record
count in the CCR is incremented, and the record is
placed on the CRA free chain.

e.The record read from the work file is moved to the
CRA buffer. Control interval information is inserted
and RECMGMT (UPDRCD) is called to write an
updated record in the CRA.

After all records in the CRA update chain have been
processed for a specific CRA, RECMGMT
(UPDRCD) is called to write the updated CCR record
back to the CRA.

d.DSCLOSE is called to close the CRA. If the close
fails, the "termination" flag is checked. If it is set,
CKERR is called to print an error message and
terminate RESETCAT processing. If the termination
flag is not set, control returns to the caller.

s::
'" s:o
Q.

o-.
o
"0
.., '"
!:? o·
;:I

N
o

r r r

Termination Visual Table ofContents

4.1

Executive

Controlled

Termination

4.2

Processor
Termination

4.2.

I/O Adapter
Termination
UIOTERM

Macro

s:
('I)

S
o
Q.

o....
o

a
('I) "
o·
::l

tv
o
~

~ Diagram 4.1 Executive Controlled Termination

o
rJ]
.......

rJ]
<
N

>(')
(')

'" '" MAXCC'" MAXCC::::
;.'" I I .1. Updates MAXCC. .. I I
o c.. If entrance is from Reader/
rJ]

",,' Interpreter, processing continues Register I... '" <: with Step 2; if entrance is from
~. Register I an FSR, processing continues with
'" Step 3. rb

QC ct 2. Determines if FSR is to be .> t GOT
(i' v

called. t FOT
• GOT

0
• FOT
• FOT Id

• MAXCC

• LASTCC

• FSR Name

Register I

C
..

"

3. Releases FDT. t GOT
v

(QOlTPH4. Sets defaults in Print Control ,/
• GOT Tables.

PCT I
• FOT
• FSR Code

..... S. Determines if processor is to be
A

v§ -----G>-ma"" ~
See Diagram 4.2

4., l, '-'

r r 	 r

Extended Description for Diagram 4.1

Modllle: IDCEXOI

Procedure: MAIN

I. 	 IDCEXOI compares the LASTCC code returned by
the FSR or the Reader/Interpreter with MAXCC and
puts the greater number in MAXCC. If control is from
the Reader/Interpreter, MAXCC has already been
properly set. If entrance is from the
Reader/Interpreter, processing continues with step 2;
if entrance is from an FSR, processing continues with
step 3.

Module: IDCEXOI

Procedure: MAIN

2. 	 If MAXCC is less than 16, IDCEXOI gives control to
an FSR. The Reader/Interpreter passes the FSR name
to IDCEXOI. If MAXCC is greater than or equal to
16, processing continues with step 5.

Module: IDCEXOI

Procedwe: CALLFSR

3. 	 IDCEXOI releases storage for the FDT using a
UFPOOL macro. The pool identification is EXOO, and
the FDT is the only data in the pool.

Modllle: IDCEXOI

Proced_e: CALLFSR

4. 	 IDCEXOI sets the Print Control Table to Access
Method Services default values by issuing a URESET
macro instruction.

Modllle: IDCEXOI

Proce4I11'e: MAIN

S. 	 The processor has terminated if one of the following
conditions is met:

• 	 The Reader/Interpreter has detected end-of-file on
SYSIN. In this case, the Reader/Interpreter puts a
non-zero value in register 15.

~ • An error has occurred so that processing cannot
" continue, and MAXCC contains a value greater :;.
o
0. than or equal to 16.
o If one of these conditions is met, control is given to -o Processor Termination, Diagram 4.2. If neither of the -g two conditions is met, control is given to the ... a Reader/Interpreter, Diagram 2.0, to obtain the next o· command.;:s

~

!5 	 Diagram 4.2 Processor Termination
0"'<

o
en From Executive
" Controlled Termination < 	 •
en
IV INPUT PROCESSING OUTPUT
» 	 ...
n
n
c;, 	 Maximum Processor "c;,

MAXCC:s:
--y 1. Writes maximum processor ~

;."
C GDT 	 completion code. :>
0-	
en
(1)...,
-< D
n'
c;, "
b' /1GDTTPH

(JQ

n' GDTDBH GOT
2. Terminates TEST options.Debugging Aids

Historical Data Area ~

(eM

Invoker's
Parameter List
I

,"PCT 1 PCT2 	 3. Terminates Text Processor.

Jrl I I
" ./

I 	 q"'N"m",
SYSIN SYSPRINT

Control Blocks Control Blocks v

4. 	Terminates I/O AdaPt~ -r;,
See Diagram 4.2.1

tSPRINj
Register 155. Terminates System Adapter. D D 	 => I
Register 15

6. Returns to Invoker. ~ I

\,'-' 	 '-'

r r' 	 r

Extended Description for Diagram 4.2

Module: IDCEX03

Procedure: IDCEX03

I. 	IDCEX03 prints a message of the maximum processor
condition code, MAXCC by using a UPRINT macro.

Module: IDCEX03

Procedure: IDCEX03

2. 	If TEST options were specified on a P ARM command
or on the EXEC statement that invoked Access
Method Services, IDCPMOI has loaded the Debug
Module, IDCDBOI. IDCEX03 sets GDTDBG, the
address of the Debug Module, to zero after deleting
the Debug Module by issuing the UDELETE macro.
The address of the Debugging-Aids Historical Data
Area is in GDTDBH. IDCEX03 frees the
Debugging-Aids Historical Data Area used by the
UDUMP macro. It also sets GDTDBH to zero after
the area is freed.

Module: IDCEX03

Procedure: IDCEX03, SCANPARM

3. 	 IDCEX03 terminates the Test Processor by issuing a
URESET macro. If the invoker of Access Method
Services wants the last page number returned,
IDCEX03 passes the address of the invoker's page
number field to the URESET macro.

Module: IDCEX03

Procedure: IDCEX03

4. 	 IDCEX03 terminates the I/O Adapter by issuing a
UIOTERM macro. Diagram 4.2.1 shows I/O Adapter
termination in detail.

Module: IDCSAOI

Procedure: IDCSAOI

5. 	 (For VSl.03.807, IDCSAOI searches the Load List
Block (LLBLK) and issues a DELETE macro for each
module identified in the LLBLK.)

~
<> IDCSA02, IDCSA03, IDCSA06, IDCSA07, IDCSA08, ;.

IDCSA09, IDCSAIO, IDCTPOI, IDCIOOl, and8
o IDCIO05. The Storage Table, AUTOTBL, contains ... the storage addresses for all of these modules except o IDCSA03. The GOT contains the storage address for
~ a IDCSA03. IDCSAOI also frees the Inter-Module Trace

Table, the Intra-Module Trace Table, the System o·
:::l Adapter Historical Data Area, and the GOT. When
N the System Adapter receives control, register IS
S

contains MAXCC. IDCEXOI copied MAXCC into
register 15 for the Access Method Services invoker.

Module: IDCSAOI, IDCAMOI, IDCAM02

Procedure: IDCSAOI, IDCAMOI, IDCAM02

6. 	 The System Adapter returns to the Access Method
Services invoker with a return code in register 15.

• 	 If Access Method Services is invoked with a
batched job, control returns directly to the invoker.
If Access Method Services is invoked with JCL,
control returns to the operating system. If Access
Method Services is invoked with a problem
program, control returns to the problem program.

• 	 If Access Method Services is invoked interactively
with TSO, control returns to IDCAMOI or
IDCAM02. IDCAMOI and IDCAM02 contain
identical code. IDCAMOI or IDCAM02 tests the
return code in register 15. If the return code is
greater than 8, IDCAMOI or IDCAM02 issues a
STACK and a TCLEARQ macro to delete any
commands that are waiting to be processed.
IDCAMOI or IDCAM02 returns control to TSO
Terminal Monitor Program.

00
~ Diagram 4.2.1 I/O Adapter Termination - UIOTERM Macro

o
CIl From Processor Termination

<
CIl
N INPUT I' ,ING OUTPUT
;J>
(l
(l

til '" til

Register I s:
'" 1. Searches IOCSTR chain for s:- OCARRAY
8. open data sets. :> I - J
W <

A.~DT ~
Closed Data Sets ~

~.
2. Tests for externally controlled

til data set.
Open Data Sets

o
~ 3. Closes data sets.
n' ~Ou

• Processes error codes.

• Frees data set storage.

r

Ou • Removes IOCSTR.
Register 15

4. Frees I/o Adapter storage. -.,..------>1 IIODATA

I

\IOCSTR
i

~ '-''

r r 	 r

Extended Description for Diagram 4.2.1

Module: IDCIOOt

Procedure: IDCIOOt

l. 	IDCIOOI sets up a loop to close all open data sets, and
sets the "close all" option in OCARRAY that permits
SYSIN and SYSPRINT to be closed.

Module: IDCI002

Procedure: CLOSERTN

2. 	 CLOSERTN examines the IOCSTR chain for the
address of IOCSTRs to close. For a non-VSAM data
set, CLOSERTN sets the address of a SYNAD routine
in the DCB to zero and puts the address of a CLOSE
exit routine in the DCB. If the data set is not open,
IOCFLGOP = t, CLOSERTN determines if it is user
controlled. If so, CLOSERTN passes arguments to the
user routine. If the data set is SYSPRINT on a TSO
terminal, IDCI004 does not close the data set, but
gives a zero return code because the data set doesn't
need to be closed. This check is made for up to the
first four IOCSTRs in the IOCSTR chain. Normally,
only the SYSIN and SYSPRINT IOCSTRs are in the
chain at termination.

Module: IDCI002, IDCI004

ProcedlR"e: CLOSERTN

3. 	 CLOSERTN issues a CLOSE macro with the address
of up to four DCBs or ACBs. If an ABEND occurs
during the closing of a non-VSAM data set, the
operating system close routine gives control to a
CLOSE exit routine that will cause the I/O Adapter to
abend. The UABORT macro is issued after control
returns from the CLOSE macro. Closing continues
with the next data set. The following steps are
performed for each data set:

• 	 For VSAM data sets, CLOSERTN issues a
SHOWCB macro to return the ACB error code. If
the ACB error code is not zero, BLDOCMSG
writes a message. However, since SYSPRINT is the
first data set closed, BLDOCMSG issues a 3::

!! UABORT macro. No test is made for non-VSAM
:r data sets.o
0

• 	 For VSAM data sets, CLOSERTN checks theS,
IOCSEX to see if there are any VSAM controlo blocks to free. When any length of the ACB, RPL, ~
or EXLST is non-zero, ENVFREE issues a ~ FREEMAIN macro to release the control block.o·

:I For open non-VSAM data sets, ENVFREE issues a
N FREEMAIN to free any buffers obtained by the
~

operating system open routines. If the data set has
been dynamically allocated, ENVFREE builds an
ALLAGL with a disposition of KEEP. ENVFREE
then issues a UDEALLOC macro to deallocate the
data set.

• 	 CLOSERTN saves the address of the closed data
sets' IOCSTRs and the address of the next IOCSTR
in the chain. CLOSERTN issues a UFPOOL macro
to free storage obtained for the closed data set.
CLOSERTN searches the IOCSTR chain until the
IOCSTR that points to the IOCSTR of the closed
data set is found. CLOSERTN replaces the address
of the closed data set's IOCSTR with the address of
the next IOCSTR in the chain.

Module: IDCIOOI

Procedure: IDCIOCL

4. 	 Processing returns to step I until all data sets have
been closed. When all data sets are closed, the
IOCSTR chain no longer exists. CLOSERTN issues a
UFPOOL macro to free storage obtained by the I/O
Adapter. The only storage remaining to be freed is
10DATA and the message area for VSAM data sets.
IDCIOCL puts a return code in register 15. Control
then returns to the module that issued the UIOTERM
macro.

r r' r

System Adapter Visual Table of Contents

'No Diagram if VS2.03.807 is not installed.

:::
'" S
O
0

S,
o
~ a
(5'
::
N

N Diagram 5.0 System Adapter Overview
N

o
CIl
" < 	 INPUT
CIl
N

~ Register I
~
~

3:
o;.
o
P-
CIl o
:1;:;.
o
'"
b

OQ;:;.

From Module
Issuing Umacro

PROCESSING

1. Issues macro to perform request:

a. 	 Catalog managem~nt.
See Diagrams 5.1.1

5.1.5

b. Error handling. -----@)
See Diagrams 5.2.1

5.2.4

c. Processor control-----@)
See Diagrams 5.3.1

5.3.4

d. 	 Storage managem~nt.
See Diagrams 5.4.1

5.4.6

e.· Time of day. ~
See Diagram ~

f. 	 Parameter interrogation.

See Diagrams

g. 	 TSO interface. ~
See Diagrams ~

h. 	 Allocation. ~
See Diagrams ~

i. 	 Resource management.
See Diagrams ----4

j. 	 1/0 device interface.
See Diagrams ---"""'I

2. Sets return code.

OUTPUT

Register I

System Macro
Argument List

Register 15

:J

~ 4., 	 4.,

r r 	 r'

Extended Description for Diagram 5.0 For debugging information, a USNAP is issued to 5.3.1 through 5.3.4 show the UCALL, ULOAD,
print the region and return control to the Access ULINK and UDELETE macros in detail.

Module: IDCSAOI, IDCSA02, IDCSA03, IDCSA05, Method Services module that issued the USNAP. Module: IDCSAOI IDCSA06, IDCSA07, IDCSA08, IDCSA09, IDCSAIO 	 Diagrams 5.2.1 and 5.2.2 show the UABORT and

USNAP macros in detail. Procedure: IDCSAOI
Prooedure: IDCSAOI, IDCSA02, IDCSA03, IDCSA05,

IDCSA06, IDCSA07, IDCSA08, IDCSA09, IDCSAIO A UST AE is issued to establish or cancel an d. Storage management is performed with three types
ESTAE environment. Diagram 5.2.3 shows the macros:1. The System Adapter and the I/O Adapter insulate the
USTAE macro in detail. Diagram 5.2.4 shows rest of the processor from the operating system. 	 t. UGSPACE and UFSPACE, shown in Diagrams
recovery processing during abnormal termination.Whenever the processor wants a service that requires 5.4.1 and 5.4.2

31n operating system dependent macro, like
 c. Inter-processor module control is accomplished with 2. UGPOOL and UFPOOL, shown in DiagramsGETMAIN or GETVIS, the processor calls the UCALL and ULOAD. UCALL loads a module and 5.4.3 and 5.4.4System Adapter with a U macro. Different versions of gives control to it. It is used to transfer control
the System Adapter and I/O Adapter supply code for 	 3. PROLOG and UEPIL, shown in Diagrams 5.4.5from one module to another within Access Method different operating systems. Except for the System 	 and 5.4.6

Services. ULOAD just loads a module. It isAdapter and the I/O Adapter, the Access Method
The first type is used to obtain large amounts ofServices modules are oblivious to the operating mainly used for non-executable modules like
storage. The caller must remember the address ofsystem. The System Adapter and the I/O Adapter are static text structures.
the storage, and must issue a UFSPACE to releasetuned for VS or DOS before they are shipped to the
the storage.customer-that is, before SYSGEN time. The Without YS2.03.807: UDELETE was used to

processor listings are either for VS or for DOS, but not delete modules originally loaded by ULOAD. The second type is used for small amounts of
both at once. System macros in the listings indicate the Now UDELETE does not delete modules; the storage. The caller does not need to remember the
operating system the listing represents. operating system deletes modules when necessary. address of each piece because all the pieces can be

Types of services provided by the System Adapter: When a UDELETE macro is uissed, the system released with one UFPOOL at the end of the
adapter just returns to the module issuing the program.

a. Whenever information is to be added or deleted UDELETE. There is no diagram for UDELETE. The third type is used to bypass PL/S-generatedfrom the VSAM catalog, a UCATLG macro is
Control between the processor and a module not GETMAIN and FREEMAIN macros. In a issued. The VSAM CATLG macro cannot be used
a part of the processor is accomplished with a 	 reentrant environment, PL/S generates a because, although the VSAM CATLG macro has

GETMAIN macro for all data areas defined in thethe same parameters in VS and DOS, the general ULINK macro. ULINK loads the module and
program, but a GETMAIN doesn't work on DOS.code is different. The VSAM CATLG macro must gives control to the module at a specific entry
Each Access Method Services routine includes codebe in a program that is assembled under the correct point. Diagrams 5.3.1 through 5.3.3 show the
at the beginning of the routine to replace theoperating system. Whenever information is to be UCALL, ULOAD and ULINK macros in detail. GETMAIN. This is the PROLOG code. Control isretrieved from a VSAM catalog, a UCATLG or a
transferred to the System Adapter that issues theUCIR macro is issued. The UCATLG macro With YS2.03.807: Control between the processor and
appropriate operating system macro to obtainretrieves information about a particular VSAM a module not a part of the processor is accomplished
storage. Instead of issuing a PL/S return statementcatalog entry. The UCIR macro retrieves data set with a ULINK macro. ULINK loads the module that uses FREEMAIN, all routines issue a UEPILnames from a VSAM catalog that match data set and gives control to the module at a specific entry macro. The UEPIL macro gives control to thename qualifiers. Whenever a data set is to be point. A list of modules loaded by ULOAD, UCALL, System Adapter. The System Adapter frees storagerecataloged in an OS/VS CVOL or a VSAM and ULINK will be maintained in a table called the and gives control to the routine that called thecatalog, a URECAT macro is issued. The

Load List Block (LLBLK). Each request for a 	 routine issuing the UEPIL. The PL/S-generatedULOCATE macro is issued to retrieve information
module via ULOAD, UCALL, and ULINK causes code to free storage and to return control is neverabout a nonVSAM data set from a VSAM catalog

~ 	 a use count for the module to be increased by one. executed. If VS2.03.807 is installed, the return code
(1)

or an OS/VS CVOL. Whenever a data set is to be
from GETMAIN is checked. If the return codes: uncataloged and scratched from a VSAM catalog When aUQEI,ETE macro is issued, the use

o 	 from GETMAIN indicates virtual storage is notor OS/VS CVOL, a UUNCATLG macro is issued. count is decremented by one. See Storage Management C-	 available, the Load List Block (LLBLK) is searched o Diagrams 5.1.1, 5.1.2, 5.1.3, 5.1.4, and 5.1.5 show below for information of how the macros UGPOOL., and all modules with a use count of zero arethe UCATLG, UCIR, URECAT, ULOCATE, and UGSPACE, and PROLOG utilize the use count in o 	 deleted. The GETMAIN is then retried.UUNCATLG macros in detail. -g 	 LLBLK when acquiring virtual storage. Diagram
.... e. The time of day is obtained with a UTIME macro,e b. Error handling is accomplished with UABORT, o· 	 shown in Diagram 5.5.1. Several data formats for
;:, USNAP, and UST AE. For errors, when processing

the time and date are allowed.
N cannot continue, a UABORT is issued to print a
.... dump and return control to the operating system .

r r r

f. Parameter interrogation is performed by the
UUSTLN and the USAVERC macros, shown in
Diagrams 5.6.1 and 5.6.2.

g. The processor communicates with the TSO
terminal user with the UPROMPT macro. The
UPROMPT macro gives a message to the TSO
terminal user and receives a reply. The UID macro
gets the TSO terminal user's identification from the
User Profile Table. The UQUAL macro completes
a data set name-that is, it fully qualifies the
name-by linking to a TSO module. Diagrams
5.7.1 through 5.7.3 show the UPROMPT, UID and
UQUAL macros in detail.

h. Data set allocation and volume mounting are
performed by the UALLOC and UDEALLOC
macros. UALLOC dynamically allocates a data set
or dynamically mounts a volume. Dynamic
allocation or mounting means allocating without
having a DD statement. UDEALLOC deallocates a
data set or dismounts a volume that was allocated
with the UALLOC macro. Diagrams 5.8.1 and
5.8.2 show the UALLOC and UDEALLOC macros
in detail.

i. Resource management is performed by the UENQ,
UDEQ, and URESERVE macros. The UENQ
MACRO acquires control of a resource. The
URESERVE macro acquires control of an I/O
unit. The UDEQ macro releases control of a
resource or I/O unit acquired by UENQ or
URESERVE. Diagrams 5.9.1 through 5.9.3 show
the UDEQ, UENQ, and URESERVE macros in
detail.

j. I/O device interface is performed by the
USCRATCH, USYSINFO, UWTO, UMSSUNIT,
and USSC macros. The USCRATCH macro
deletes a data set stored on one or more
direct-access volumes. The USYSINFO macro
returns information from the system control
blocks, such as job and step names or specific
information about an I/O unit. The UWTO macro

!l: is used to write messages to the console operator.
(I)

;.
o
0..

2,
o
"R a o· 2.

The UMSSUNIT macro mounts or demounts a
mass storage volume. The USSC macro performs
Mass Storage Control functions. Diagrams 5.10.1
through f.1O.5 show the UMSSUNIT,
USCRATCH, USSC, USYSINFO, and UWTO
macros in detail.

At the end of most Umacros, a return code is put in
:::l register 15, and control returns to the module that
N

V>

issued the Umacro. The exceptions are UABORT,
UCALL, UEPIL, and UUNK.

N Diagram 5.1.1 UCATLG Macro
'" From Module o
en
"< en
N ...>(')
(') Register I I --")(I) ~ I. Issues CATLG macro instruction.....'"'"
~
(I) VSAM~ :r Catalogo tGOT
0-
en Register 15(I) J'o..... ... 2. Returns.

~ ~
rf
<

til

~ (c_.
I I

ri· Parameter List

,,-.

VSAM

Catalog

~

'- -

\., ~, ~

r r 	 r

Extended Description for Diagram 5.1.1

Module: IDCSA02

Proeedure: IDCSA02

1. 	 IDCSA02 passes the catalog parameter list to VSAM
with a CATLG macro.

Module: IDCSA02

Proeedure: IDCSA02

2. 	 IDCSA02 puts the return code from VSAM in register
15, and returns control to the module that issued the
UCATLG macro.

~

" 50 o c..
a
o
~ ..,
2?
o·
:::l

N

-..J

00

tv Diagram 5.1.2 UCIR Macro

o
CIJ
""<
CIJ 	 tv

..... ... _...~)-	 ~ ---- --"
.". ~

til Register I
til, 	
1. Builds catalog parameter list. ~ I 	v
;.'" C CTGPLo
Q. ltGDT I 	 UData ICIJ

I I'" ~ r. Workarea".'" til

f;"
(JQ 	 2. Gets qualified data set names.

(CIRAW 	 <.- I
o·

....

CTGPL

'\

_h _h ~ Workarea
Register I

T T 3. Tests data set names. <;: 	 Qualified Data I
Set Names 1C

1tGDT I .. 1 I
(_ CIRAGL

_...CIRWKP ~--c ...r

Workarea

Qualified Data.l
1 Set Names r

Register 15
....4. Returns. 	 .;: I I

-

'"
 ~~

r r 	 r

Extended Description for Diagram 5.1.2

Module: IDCSA02

Procedure: IDCSA02

I. 	UCIR builds a CTGPL and sets flags indicating the
data set name is supplied, a super locate request, a
generic locate request, VSAM data set, and return
catalog names. UCIR moves the length of the header
qualifier and the header qualifier to a work area.
UCIR puts the address of the work area in the
CTGPL. If the module that issued the UCIR supplies a
catalog name or password in the CIRAGL, UCIR puts
the address of the catalog name or password in the
CTGPL. The VSAM catalog routines need a work
area for the names returned from the catalog. UCIR
gets the work area by issuing a UGPOOL macro with
the UGPOOL identification in CIRAGL. UCIR
initially gets a work area large enough for 180
returned names. After the UGPOOL macro, UCIR
puts the address of the work area in the CTGPL.

Module: IDCSA02

Procedure: IDCSA02

2. 	 UCIR issues a UCATLG macro to get the qualified
data set names. If the return code is zero, control
continues with step 3. If the return code is non-zero
and indicates something other than the work area is
too small, control continues with step 4. If the return
code indicates that the work area is too small, UCIR
issues a UFPOOL to free the current work area. Then,
UCIR issues a UGPOOL for a work area either twice
the size of the last work area or the size VSAM catalog
management returns. If UGPOOL does get the storage
requested, UCIR puts the address in the CTGPL, and
control returns to the beginning of step 2. If UGPOOL
cannot get storage, control goes to step 4.

Module: IDCSA02

Procedure: IDCSA02

3. 	 The address of the work area containing the qualified
data set names is put in CIRWKP in CIRAGL. The
number of data set names is put in the first word of the
work area. UCIR performs tests on each qualified data
set name to determine if the data set name matches
the criteria in CIRAGL. Suppose the VSAM catalog s:

!E. contains the following names:
:::r
o
C- I. D26U.A.B.C
O 2. D27V.A.B.C...,

3. 	 D27V.AMS.AMSIOOI.MAC.PGMo
'0 4. D27V.AMS.AMSIOOI.MOD.PGM
(1)

5. 	 D27V.AMS.AMSI002.MOD.PGM~ o·
:::l

N

'"

6. 	 D27V.AMS.DEV
7. 	 D27V.AMS.MAC
8. 	 D27V.TEST.DEV

If CIRAGL specifies the "one" qualifier:

Case A: If no trailing qualifiers and the leading
qualifier is D27V.AMS., then names 6 and 7 are
returned by UCIR.

Case B: If the trailing qualifier is .DEV and the
leading qualifier is D27V., then names 6 and 8 are
returned by UCIR.

If CIRAGL specifies the "all" qualifier:

Case A: If no trailing qualifier and the leading
qualifier is D27V.AMS., then names 3,4,5,6, and 7 are
returned by UCIR.

Case B: If the trailing qualifier is .MOD and the
leading qualifier is D27V.AMS., then names 4 and 5
are returned by UCIR.

Only the names that match the criteria are returned in
the work area addressed in CIRWKP. Catalog names
are always returned because the catalog name can be
used to tell which catalog a data set name comes from.

Module: IDCSA02

Proced...e: IDCSA02

4. 	 UCIR puts a return code in register 15 and returns
control to the module that issued the UCIR macro.
The module that issued the UCIR must free the work
area addressed by CIRWKP.

~ Diagram 5.1.3 System Adapter - URECAT Macro
o
o _ From Module Issuing
CIl
'<
CIl ..N

>()
()
n>
til Register I til

~

n> I 1. Locates existing entry. ;. I 1\ -V
8- RCTALG
CIl
n>
~
(i.
n> 2. Tests entry for recataloging. til

b
O<l
(i0

3. Recatalogs entry.

v'§ t:J

Register 15
4. Returns. "

--v" I I

----'

c.," "

(
r 	 r

Extended Description for Diagram 5.1.3

Module: mCSA07

Procedure: mCSARC GETENT

1. 	 IDCSARC issues a LOCATE macro to locate the data
set's entry in an OS/VS or VSAM catalog. If no entry
is found with the specified name, no recataloging is
performed.

Mod1IIIe: IDCSA07

Procedure: TESTENT

2. 	 TESTENT determines whether the data set can and
needs to be recataloged. If the data set resides on 20 or
fewer volumes, TESTENT searches the catalog
workarea returned by the LOCATE macro for a
match of the current device and volume serial number.
If no match is found, the data set has already been
recataloged or the entry is for a different data set, so
no recataloging is performed.

If the data set resides on more than 20 volumes,
TESTENT searches the catalog workarea for a match
of the new device and volume serial number. If a
match is found, the data set has already been
recataloged. If no match is found, the data set needs to
be recataloged- TESTENT issues an informational
message.

Module: mCSA07

Procedure: UPDATENT

3. 	 UPDATENT updates the device type and/or volume
serial number in the catalog workarea. UPDATENT
issues a CATALOG macro to recatalog the data set in
an OS/VS or VSAM catalog.

Module: mCSA07

Procedure: IDCSARC

4. 	 If an error occurred, a message is written with a
UPRINT IDCSARC returns to the caller with a return
code in register 15.

:!:
."
g
o
c-
o....,
o
1l a o·
::l

N
N

--- - --- --

~ Diagram 5.1.4 U LOCATE Macro
o - From Module Issuing
til
< -_.- - -	 - -----_. ~
til 	

--~

TN 	
> Register 1 ()

til 	 1. Initializes LCTHEAD field to"
()

...til
'LCTINFOtl' in LCTINFO area.s: ~

"SC 	 tGDT 2. L()cates the data sct entry in
o
0-	 the VSAM cataloi!, (VSAMLOC

tDSNAMEtil isslles an error 'llCssai!e if not ..," 	 tVOLSER<: nonVSA~),
(i'

til 	 lDEVTYPE"
r to

C(J<)

C
(i'

3. Checks return code from
VSAM LOC. If return code
is 8 (data set could not be

tLCTINFO
located), control goes to 5.

LCTINfO

4. 	 Compares VOLSER and
DFVTYPE from catalog
with that passed by caller.
IsslIes an error Illcssa!!e if they
do not l'omparc cqllal.

/'

"- ..-/ 5. Returns to caller with
return code,

Catalog

-

LCTINFO ~
'LCTINFOb'

r-"'; 	 LCTMULVC

LCTACBP

LCTCREAT

LCTEXPIR

LCTOWNER

LCTHAGS

~
Error
Messages

...... -
• I

Register 15

I 	 I

'-' '-' 	 '-'

r r 	 r

Extended Description for Diagram 5.1.4

Module: IDCSA07

Procedure: IDCSALC •

1. 	 The pointer to the parameter list is passed in register 1
at entry to IDCSALC. The fifth word of the parameter
list points to the address of the LCTINFO area
address. The LCTHEAD field is initialized to
'LCTINFO'.

Module: IDCSA07

Procedwe: VSAMLOC

2. 	 The VSAMLOC procedure is called to issue a
UCATLG macro to locate the data set entry in the
VSAM catalog. OS/VS CVOL will also be searched by
this VSAM locate request if the data set is not found in
the VSAM catalog. VSAMLOC processes return codes
as follows:

0- Successfully located the data set entry in the
catalog. If ENTYPE is not a nonVSAM entry, the
VSAMLOC sets a return code of 4 and prints an error
message that the data set name was not nonVSAM.
8 - Data set entry was not located. VSAMLOC
returns a return code of 8 to IDCSALC.
A return code other than 0 or 8 causes VSAMLOC to
print an error J!lessage via UERROR. VSAMLOC
places the following information retrieved from the
catalog into the LCTINFO area:

• 	 Number of volumes
• 	 Creation date
• 	 Expiration date
• 	 Owner name
• 	 Pointer to catalog ACB
• 	 LCTVSCAT flag is set

MoIIaIe: IDCSA07

Proced_e: IDCSALC

3. 	The return code from VSAMLOC is checked. If the
code is 8 (data set could not be located), control goes
to step 5, otherwise control goes to step 4.

Module: IDCSA07

Procedwe: IDCSALC

~ 4. 	 If the data set entry is located, the volume serial
(>

;. 	 number and the device type returned from the catalog
are compared with the information passed by the~

o 	 caller. If they do not compare equal, an error message is issued and a return code is set indicating volser oro devtype did not compare. "R a o·
'" N
N

Module: IDCSA07

Procedure: IDCSALC

5. 	 IDCSALC returns control to the caller with the
appropriate return code in register 15:

o = Successful
4 = Error on locate request. Either the volume serial
number or device type of the caller did not match
those in the catalog, or this was not a nonVSAM data
set.
8 = Data set could not be located.

~ Diagram 5.1.5 UUNCATLG Macro
From Module Issuing """ o

CIl
< 	 ------
CIl TN

:> Register 1 	 UCTAGL
n
n

C 	
... 1. 	 Initializes the UCTHEAD field 'UCTAGLbb'" 	 '" '" 	 with 'UCTAGLbb'.

!:::
;." tGDT
o
c..
CIl
..., 2. Checks UCTVSCA T bit in" < 'UC:AGL UCTAG L, (this bit will always ('i'

be set in VS2) and calls" '" r 	 VSAMUCT to uncatalog and
o 	 /

(JQ 	 scratch the data set.
('i' I'-

: :> Catalog
(Data Set

UcrvSCAT Uncataloged)..--'3. 	 Returns to caller
with return code.

r ~
............ /

~ VTOC
(Data Set

"- Scratched) ...,;'

Error
~ Messages

Register 15

I I

\.,'-' '"

(
r 	 r

Extended Description for Diagram 5.1.5

Module: IDCSA07

Procedure: IDCSAUC

1. 	 The UCTHEAD field in the UCT AGL is initialized to
'UCTAGLbb'.

Module: IDCSA07

Procedure: VSAMUCT

2. 	 The UCTVSCAT bit in the UCT AGL is checked to
see if a VSAM Delete can be used to uncatalog and
scratch the data set. Since this bit will always be set,
the VSAMUCT procedure is called. VSAMUCT
initializes the VSAM Catalog parameter list,
IEZCTGPL, and issues the UCATLG macro to
uncatalog and scratch the data set. If the return code
from UCATLG is not 0 (successful) or 8 (data set not
found), VSAMUCT issues the UERROR macro
identifying the catalog error that occurred.
Additionally, it issues UPRINT to print error messages
to indicate that the data set was not scratched and/or
uncataloged. A return code of 0 or 8 causes
VSAMUCT to next issue the USCRATCH macro to
scratch the data set from the VTOC. Note: The
USCRATCH macro is issued even though the data set
is not found.

Module: IDCSA07

Procedure: IDCSAUC

3. 	 IDCSAUC returns control to the caller with a return
code in register 15, as follows:

o= No errors occurred.

4 = An error occurred in UCATLG or USCRATCH.

::::
(11

;.
&.
o..,
o
~ ...
~ s·
::s
N
N
VI

N
N Diagram 5.2.1 UABORT Macro
c-	 From Module
o
Vl

~ , --	 - -- - ~-	 ~

~

~
n> Message
~ 	

D
'rites message to programmer. 	 ~

3: 	 n>
:r
&.
Vl 	 .(II

~
~. 	

Full Region
Dump....

D
'" sues user ABEND iff rAE/EST AE is in effect. ,'i"

ints full region dump.
Register 15

oses all open da ta sets.> I 16 I

I
:turns to invoker of Access Method
rvices.

I

,-. '" 	 '-'

r r 	 r

Extended Description for Diagram 5.2.1

Module: mCSAOI

Procedure: IDCSAOI

1. 	 The UABORT routine uses the registers saved in the
save area pointed to by GDTABH to establish
addressability. This is done so the UABORT routine
can access storage areas obtained by the System
Adapter and remain reentrant. UABORT issues a
WTO macro with a routing code of II to issue a
message to the programmer. If Access Method
Services is invoked interactively with TSO, UABORT
issues a PUTLINE macro to write the UABORT
message on the terminal. The message contains the
code given to UABORT in register 15.

Module: mCSAOI

Procedure: mCSAOI

2. 	 IDCSAO I checks the address of the EST AE parameter
list (SAHST A) to determine whether an ESTAE
environment has been established. If so, IDCSAOI
issues a user ABEND macro with the user completion
code equal to the code given to UABORT in register
15.

Module: mCSAOI

Procedure: IDCSAO!

3. 	 IDCSAO! issues the SNAP macro and takes a full
region dump with an identification of '00'. Only
dumps from the UABORT routine have an
identification of '00'.

Module: mCSAO!

Procedure: mCSAO!

4. 	 GOTIOH provides the address of the IOOATA. The
address of the IOCSTR chain is IODIOC. The
UABORT routine goes through the chain of IOCSTRs
and tests each one to determine if it is open. The
DCB-for non-VSAM data sets--or the ACB-for
VSAM data sets-is checked to determine if the data
set is open or closed. If the data set is open, IDCSAOI
issues a CLOSE macro to close the data set. The
processing continues until the end of the chain is
reached.

When the end of the chain is reached, IOCSAOI ;-'"
~

o checks for any open EXCP data sets found during the
0- scan of the I/O Adapter EXCP control block chain

S,
 (JODIOX). For each open EXCP data set, mCSAOI
o issues a UEXCP macro to close the dat set. The
1i a o·
:::I

N
N

processing continues until all open EXCP data sets
have been closed.

Module: mCSAOI

Procedure: mCSAOI

5. 	 IOCSAOI returns control to the invoker of Access
Method Services with a code of 16 in register 15 to
indicate that a catastrophic error has occurred.

-..I

~ Diagram 5.2.2 USNAP Macro
oc
o - From Module
til
.......

<
til ..N

- - -

Register I I .. Full Region Dump r -".....,
,/ 1. Issues SNAP macro instruction. ./

~ IdentificationI
Return Code

~
S- 'tGDT I
(D

o
0.. I I I
W 2. Tests return code. <'-, ~ ::1
~. Identification I

£'
n' 3. Returns.

--

~ ~. '-'

r r 	 r

Extended Description for Diagram 5.2.2

Module: IDCSA02

Procedure: IDCSA02

1. 	 IDCSA02 issues a SNAP macro with the identification
provided as the second parameter.

Modllle: IDCSA02

Procedare: IDCSA02

1. 	 If the return code from the SNAP macro is non-zero,
IDCSA02 issues a UABORT macro.

MCMIIIIe: IDCSA02

Proce....e: IDCSA02

3. 	 IDCSA02 returns control to the module that issued the
USNAP macro.

3:
!! =r
8.
o....
o
"0

a ~

o·
::I

tv
tv
~

N.... Diagram 5.2.3 System Adapter
o
o
til
-<
til 	 INPUT
N

)

a n

Request Keyword
~

OIl c=---- -Io
S
o
r:I. GDT
til
o..,
< J
j:r
OIl ~ SAHIST

£"
n'

STAEPARM

UST AE Macro
From Module Issuing
USTAE Macro

PROCESSING

1. 	 Performs service:

a. 	 Establishes recovery
environment.

b. 	 Cancels recovery
environment.

2. 	Returns.

OUlPUT

SAHIST

STAEPARM

Register 15-	 .. _- -I

~ ~ 	 ~

r r 	 r

Extended Description for Diagram 5.2.3

Module: mCSA 10

Procedure: mCSAST, SETSSTAE, CANSTAE

1. 	 IDCSAST checks the request keyword to determine
the type of service to perform:

a. 	 'SET' indicates a request to establish an ESTAE
environment. If the address of the ESTAE
parameter is available, SETST AE uses the
established parameter list. Otherwise, it initializes
a new ESTAE parameter list and puts its address in
the SAHIST data area. SETSTAE issues an
EST AE macro.

b. 	 'CANCEL' indicates a request to cancel an ESTAE
environment. CANSTAE issues an ESTAE macro
to cancel the ESTAE environment.

Module: mCSA 10

Procedure: mCSAST

2. 	 If any errors occurred, a message is written with the
UPRINT macro. IDCSAST returns to the caller with a
return code in register 15.

~
(l)

;.
8.
o...,
o
~ a
0'
::l

N

N
.." Diagram 5.2.4 System Adapter
N

o
Vl

<
Vl
N 	 INPUT>g
!:i

Register 1 s:
~

S
o
Q. ~ SDWA
W
~
ti·
~
til

b I
(JQ

ti·

("'''',~ 2

~STAEPARM

Recovery During Abnormal Termination

From Operating System
During Abnormal Termination

1. 	Checks for retry.

2. 	If not retry, performs
recovery.

3. 	Returns.

OUTPUT

Register 15

'tRetrYRouti~

UCB
,- -- J
STAEPARM

Register 0 [- ------ - J

4. 	 4. '-'

r r 	 r

Extended Description for Diagram 5.2.4

Module: mCSA1 0

Procedure: ST AEEXIT

1. 	 ST AEEXIT checks register 0 to determine whether the
work area (SDWA) is available. If not, STAEEXIT
doesn't return control to any retry routine; If the work
area is available, STAEEXIT checks STAEPARM to
determine whether a retry routine has been established
by the UEXCP macro and checks the ABEND code in
the SDWA to determine whether abnormal
termination was caused by an invalid password
entered by the operator. ST AEEXIT puts the address
of the UEXCP retry routine in the SDWA.

Module: mCSA \0

Procedllfe: RECOVERY

2. 	 RECOVERY performs the recovery operations,
depending on the information in STAEPARM:

If a mass storage volume has been mounted but its
UCB has not been posted, RECOVERY demounts the
volume by issuing an IDBMNTDE macro.

If a mass storage volume has been demounted but its
UCB has not been cleared, RECOVERY constructs
SV82LIST and issues SVC 82 to clear the UCB. SVC
82 removes the volume serial number from the UCB
and marks the UCB "not ready."

If the UCB of a real volume has been cleared but the
volume is still mounted, RECOVERY issues an
IDBMNTDE macro to demount any mass storage
volume with the same serial number that is mounted
and issues SVC 82 to clear the UCB of the demounted
volume. RECOVERY then issues SVC 82 to post the
real UCB. SVC 82 restores the volume serial number
and marks the UCB "ready." 9 If a volume serial
number has been enqueued but that mass storage
volume is no longer mounted, RECOVERY issues a
DEQ macro. The major name is SYSZVOLS, and the
minor name is the volume serial number.

Module: mCSA1 0

3. 	 RECOVERY returns to the caller with a return code in
register 0.4 indicates a retry, and zero indicates to
continue with ABEND.

;.'"
~

o
c:>.
o..,
o
~ a
0'
;:)

N...,...,

~ Diagram 5.3.1
"'" o
C/l
' <
C/l
N

:>
(")

<>
(")

Register I '" '"
~
<>
g
o
0.

It GOT

UCALL Macro

C/l
<>
::i
n'
<> ! 6ddresses of data to be;. ~
'" r lj)'assed to called moduleyo

0<1
n' I

Fame of Module to Calli

AUTOTBL

From Module

....
....

:> 1. Without VS2.03.807: ...
Issues LOAD macro.

With VS2.03.807:
Searches Load List Block

a. 	 If match found, increases
use count.

h. 	 If no match found. issues
BLDL macro followed by
LOAD macro.

). 2. Frees storage

3. 	Rearranges arguments in c;,l.lling
module.

4. 	Gives control to loaded module.
1

~ Loaded Module
)....

I

... Register I
).

~
ItGOT

1_ ~ddresses of data fro~ ~

lCalling module T

Register 15
">... L

,

" " 	 "

r (r

Extended Description for Diagram 5.3.1 	 for the next time IDCSA02 is given control. The status

is reduced by one.
(Without YS2.03.807)

Module: IDCSA02

Module: IDCSA02
 Procedure: IDCSA02

Procedure: IDCSA02
 3. 	 IDCSA02 copies the address of the GDT from the first
1. IDCSA02 loads the program named by the UCALL parameter in the calling program to the second

macro with a LOAD macro. parameter in the calling program. IDCSA02 puts the
address of the second parameter in the calling

(With YS2.03.807) program-not the address of the GOT-in register 1.
Module: IDCSA02 Register 1 now points to a contiguous list of

parameters for the called program.
Procedure: IDCSA02, FlNDNAME

Module: IDCSA02

1. 	 IDCSA02 is entered at the UCALL entry point, and

the FINDNAME procedure is called to search the Procedure: IDCSA02

Load List Block (LLBLK) for a match of the name of
 4. 	 IDCSA02 puts the address of the calling program into
the module to be loaded. If a match is found, the use register 15. IDCSA02 restores all registers, except 1
count for that module is increased by one. The entry and 15, from the calling program's save area.
point of the module to be loaded is obtained from the IDCSA02 gives control to the called program.
LLBLK entry and processing continues at step 2.

If a match is not found, a BLDL macro is issued using

the module name, followed by a LOAD macro using

the BLDL list. The module name, entry point, and size

are placed in the next available slot (if one is

available) in LLBLK, and the module use count is set

to one. The slot is removed from the available slot

queue and the next available slot pointer is updated. If

a slot is not available, FINDNAME issues a

UGSPACE for a new LLBLK, initializes it, and places

it on the LLBLK chain before the new module entry is

built. Control goes to step 2.

If the return code from BLDL/is non-zero,

FINDNAME issues a UABORT 56 and terminates the

job. If the return code from UGSPACE is non-zero,

FlNDNAME issues a UABORT 28 and terminates the

job.

Module: IDCSA02

Procedure: IDCSA02

2. 	 IDCSA02 checks the AUTOTBL for the number of

outstanding storage requests for IDCSA02. The

number is in the STATUS section for IDCSA02. If the

number is greater than one, storage other than the

storage address in the AUTOTBL has been obtained

~ for IDCSA02. The amount of storage is in the
(I) PL!S-generated variable @SIZDATD, and the;.

address is in register 11. IDCSA02 issues a 8 FREEMAIN , and the number in STATUS isg, decreased by one. If the number in STATUS is one, a o FREEMAIN is not issued because the storage is saved
~ ..,
a
0'
::;)

N....
""

t:l Diagram 5.3.2 ULOAD Macro er
o From Module til
 Issuing ULOAD Macro <:
~

PROCESSING 	 OUTPUTINPUT
n>

Loaded Module
B 1. Without VS2.03.807:
:: Issues LOAD macro.
" S
o tOOT 	 With VS2.03.807:P
til Searches Load List Block
" :1
(i' Address of a. If match found, increases
CII " Fullword use count.

~ ,;, b. If no match found, issues
tOOTBLDL macro followed by

LOAD macro.

Name of

Module to Load

Address of
Loaded Module 2. 	Puts loaded program address in

parameter list.

Name of
Module to Load

3. Returns.

~. 	 ~'

r 	 r' r

Extended Description for Diagram 5.3.2

Without VS2.03.807

Module: IDCSA02

Procedure: IDCSA02

I. 	IDCSA02 issues a LOAD macro using the name of the

program given to the ULOAD macro.

(With VS2.03.807)

Module: IDCSA02

Procedure: IDCSA02, FINDNAME

I. 	IDCSA02 is entered at the ULOAD entry point, and

the FINDNAME procedure is called to search the

Load List Block (LLBLK) for a match of the name of

the module to be loaded. If a match is found, the use

count for that module is increased by one. The entry

point of the module to be loaded is obtained from the

LLBLK entry and processing continues at step 2.

If a match is not found, a BLDL macro is issued using

the module name, followed by a LOAD macro using

the BLDL list. The module name, entry point, and size

are placed in the next available slot (if one is

available) in LLBLK, and the module use count is set

to one. The slot is removed from the available slot

queue and the next av.ailable slot pointer is updated. If

a slot is not available, FlNDNAME issues a

UGSPACE for a new LLBLK, initializes it, and places

it on the LLBLK chain before the new module entry is

built. Control goes to step 2.

If the return code from BLDL is non-zero,

FlNDNAME issues a UABORT 56 and terminates the

job. If the return code from UGSPACE is non-zero,

FINDNAME issues a UABORT 28 and terminates the

job.

Module: IDCSA02

Procedure: IDCSA02

2. 	 IDCSA02 puts the address of the loaded program in

the calling program at the address specified with the

third parameter.

Module: IDCSA02
".,-. ~ .

Procedure: IDCSA02 ::
(D

s- 3. IDCSA02 returns control to the module that issued the
o ULOAD macro. 0

~
o
~ a o·
;:s

N...,
-..J

00

N
v> Diagram 5.3.3 ULINK Macro

o
Vl

<
Vl
N INPUT>(l
(l

<>
CJ>

CJ>

s:
<>
S
o
0
Vl
<>..,
<:
r;'
<>
CJ>

r o
()(l

r;'

Argument
for
Called
Program

-c :r

Entry Point Name

From Module Issuing
UUNK Macro

PROCESSING

1. 	Without YS2.03.807:
Issues LOAD macro.

With YS2.03.807:

Searches Load List Block

a, 	 If match found, increases
use count.

b. 	 If no match found, issues
BLDL macro followed by
LOAD macro,

2. Frees storage,

3. Transfers control to new module.

New Module

Argument for
Called Program

f T

Register 15

ItEntry Point

~ ~ 	 \.v

r r 	 r

Extended Description (or Diagram 5.3.3

(With VS2.03.807)

Module: IDCSA02

Procedure: IDCSA02

1. 	 ULiNK uses the entry point name of the new module
to issue a LOAD macro. ULiNK saves the address of
the new module.

(With VS2.03.807)

Module: IDCSA02

Procedure: IDCSA02, FINDNAME

1. 	 IDCSA02 is entered at the ULiNK entry point, and
the FlNDNAME procedure is called to search the
Load List Block (LLBLK) for a march of the name of
the module to be loaded. If a match is found, the use
count for that module is increased by one. The entry
point of the module to be loaded is obtained from the
LLBLK entry and processing continues at step 2.

If a match is not found, a BLDL macro is issued using
the module name, followed by a LOAD macro using
the BLDL list. The module name, entry point, and size
are placed in the next available slot (if one is
available) in LLBLK, and the module use count is set
to one. The slot is removed from the available slot
queue and the next available slot pointer is updated. If
a slot is not available, FlNDNAME issues a
UGSPACE for a new LLBLK, initializes it, and places
it on the LLBLK chain before the new module entry is
built. Control goes to step 2.

If the return code from BLDL is non-zero,
FlNDNAME issues a UABORT 56 and terminates the
job. If the return code from UGSPACE is non-zero,
FINDNAME issues a UABORT 28 and terrninates the
job.

Module: IDCSA02

Procedure: IDCSA02

2. 	 The ULiNK macro checks AUTOTBL for the number
of times module IDCSA02 has been called. If it has
been called more than once, ULiNK issues a
FREEMAIN to free the storage assigned to the last
call of IDCSA02. ULINK also decreases the count of=:

;.tt calls to IDCSA02 kept in AUTOTBL.

8
a
o
~ a
0'
:::I

...,
\C)

Module: IDCSA02

Procedure: IDCSA02

3. 	 If the module that issued the ULiNK provided an
argument list for the calling program, ULINK puts the
address of the argument list in register 1. ULiNK does
not turn on the high order bit of the last argument in
the list. That is the responsibility of the module that
issued the ULINK. ULINK restores register 13 so it
contains the address of the save area in the module
that issued the ULINK. This forces the new module to
use the save area provided by the module issuing the
ULINK. ULINK puts the return address of the module
issuing the ULiNK in register 14. When the new
module returns control, control does not return to
ULlNK, but returns to the module issuing the ULINK.
ULINK puts the entry point address of the new
module in register 15 and gives control to the new
module.

IV

N Diagram 5.3.4 UDELETE Macro
~
o (VS2.03.807 only)
til
<
til
N 	 INPUT

~
" ~
~
tTl

So tGDTCo

W..,

< Address of
i'r Fullword
'" r Fullwordo

(JQ
('i0

Name of
Module

From Diagram 500

PROCESSING OUTPUT

1. 	Searches for module name in
Load List Block (LLBLK).

2. Decrements use count by I.

3. Returns to caller.

' " 	 "

r r 	 r

Extended Description for Diagram 5.3.4
(VS2.03.807 only)

Module: IDCSA02

Procedure: IDCSA02

t. 	 IDCSA02 is entered at the UDELETE entry point.
UDELETE searches the LLBLK for the name of the
module to be deleted.

2. 	 If the module name is found, the use count for the
module is decremented by I.

3. 	 Control returns to the call of UDELETE.

s:
~
:::r
o a.
sa,
o
"0

'" ~ o·
::
tv
.j:>.

tv Diagram S.4.1 UGSPACE Macro t;
o
Vl
"<
Vl INPUT
tv

:> Register I n
f6
'" '" :s:
~

ET- GDT
o
0
Vl
~ Address of Fullword:1
~.

'" r
o

0<1 Storage Initialization (i.

Indicator

Subpool Area ID

From Module
Issuing UGSPACE Macro

PROCESSING

1. Obtains storage.

2. Sets up UGSPACE area.

3. Puts address in calling program.

4. Initializes area, if necessary.

s. Returns.

OUTPUT

UGSPACE Area
Number of Bytes + 8

b I *

T T
Storage

* Subpool Area ID

Register I

t GDT

Storage Initialization
Indicator

Storage Address

B.ytes Needed

Subpool Area ID

Register IS

J

c., , '-'

r r 	 r

Extended Description for Diagram 5.4.1

Module: IDCSA02

Procedure: [OCSA02 (Without VS2.03.807)
IDCSA02, RELEORE (With VS2.03.807)

I. 	10CSA02 first checks for a request for a specific
subpool area [D. If one is specified, [DCSA02 puts the
subpool area [0 in the GETMA[N parameter list;
otherwise-IDCSA02 sets the ID to zero (which is the
default subpool area [0). [DCSA02 then issues a
G ETMA[N for the number of bytes requested plus 8
for the UGSPACE area that precedes each storage
area. If the return code from the GETMAIN is
non-zero, the address of the storage area is set to zero,
and control is given to step 5. However, if VS2.03.807
is installed, the following additional processing takes
place before the address of the storage area is set to
zero and control given to step 5:

The UGSPACE procedure calls the RELECORE
procedure. RELECORE searches the active slots in
the Load List Block (LLBLK) and issues a DELETE
macro for all modules whose use count is zero.
UGSPACE then reissues the GETMA[N macro. Now
if the return code is still non-zero, the address of the
storage area is set to zero, and control is given to step
5.

If the return code from GETMAIN is zero, control is
given to step 2.

Module: IDCSA02

Procedure: IDCSA02

2. 	 IOCSA02 puts the number of bytes in the storage area
plus 8 in the first word of the UGSPACE area.
IOCSA02 sets the first three bytes of the second word
to blanks to distinguish a UGSPACE area from a
UGPOOL area. If a subpool area ID was specified,
I DCSA02 puts the ID in the fourth byte of the second
word; otherwise IDCSA02 sets the fourth byte to zero.

Module: IDCSA02

Procedure: IDCSA02

3. 	 I DCSA02 puts the address or the storage area-not
the UGSPACE area-in the calling program at the
address specified by the third parameter. 3::

" Module: IDCSA02 s
o
0- Procedure: IDCSA02
S,

4. If SETZERO or SETBLANK was specified as the o
", fourth parameter. IDCSA02 sets the storage area to
" zeros or blanks, respectively. If SETZERO or..,
~
0'
:::l

N
~
VJ

SETBLANK was not specified or NOSET was
specified, the storage area is not changed.

Module: IDCSA02

Procedure: IDCSA02

S. 	 IDCSA02 puts a return code in register 15 and returns
control to the modiJle that issued the UGSPACE
macro.

N Diagram 5.4.2 UFSPACE Macro t
0 From ModuletIJ
........
 .ISSUing UFSPACE Macro <
tIJ
N INPUT PROCESSING OUTPUT
;I>
n
n... Register I 1. Checks for UGSPACE or UGPOOL'" '" s:: area. If UGSPACE. continues to Step
...;. 2; if UGPOOL. goes to Step 3.
0
Co tOOT 2. Calculates address. tIJ
(i . < 3. Calculates address and removes area...
CIl Address of Storage to ree from chain.
r
0

OQ ,ri· 4. Frees storage. I
UOSPACE or UOPOOL Area

::l S. Returns.
I Storage to Free
T

4w \, \,

r r 	 r

Extended Description for Diagram 5.4.2

Modale: IDCSA02

Procedure: IDCSA02

I. 	The address of the area to free is used by IDCSA02 to
determine if the area was obtained with a UGSPACE
or a UGPOOL. If the first three bytes of the fullword
at the address minus 4 contains blanks, the area was
obtained with a UGSPACE.

Modale: IDCSA02

Procedure: IDCSA02

2. 	 If the storage area was obtained with UGSPACE, a
UGSPACE area precedes the area. The first word in
the UGSPACE area contains the length of the area to
free; the fourth byte of the second word contains the
subpool area ID. The address of the area to free is
calculated by subtracting 8 from the area address.

Module: IDCSA02

Procedure: IDCSA02

3. 	 If the storage area was obtained with a UGPOOL, a
UGPOOL area precedes the storage. The length of the
area to free is at the third word of the UGPOOL area.
The address of the area to free is calculated by
subtracting 16 from the area address. The forward and
backward chains are updated to remove this area from
the chain. If this is the last area in the chain, the
address of the last area in the chain in GPLAST in the
System Adapter Historical Data area is updated by
IDCSA02.

Module: IDCSA02

Procedure: IDCSA02

4. A FREE MAIN macro is issued to release the storage
plus its UGSPACE or UGPOOL area.

Module: IDCSA02

Procedure: IDCSA02

5. 	 IDCSA02 returns control to the module that issued the
UFSPACE macro.

"
~

:;.
8
o-.
o
~
~ o·
:I

~
I.A

N
.j:>.
a-.

o en

<en
N

>()
()
<1l
en
en

s::
<1l

S
o
0

en
<1l..,
<
('i'
f>
en

r
o

OQ
('i'

Diagram 5.4.3 UGPOOL Macro

INPUT

t GDT

Address of
Fullword

Initialization
Indicator

Bytes Needed

J From Module
Issuing UGPOOL Macro

PROCESSING

1. 	Obtains storage.

2. 	Sets up UGPOOL area.

3. 	Puts address of storage in calling
program.

4. 	 Initializes area, if necessary.

5. 	Returns.

OUTPUT
UGPOOL Area

t Next Area

t Last Area

Number of Bytes

Identification

tPG Storage

Length of PG Storage

th Stora"e
Area- T

tGDT

Initialization
Indicator

Storage
Identification

Bytes Needed

Register 15

'-' '-' 	 '-'

(
r 	 r

Extended Description for Diagram 5.4.3

Module: IDCSA02, (Without VS2.03.807)
IDCSA02, RELECORE (With VS2.03.807)

Procedure: IDCSA02

1. 	 IDCSA02 checks for a UGPOOL request for storage
on a page boundary (storage identification equal to
'xxPG').

a, 	 If page-boundary storage was not requested,
IDCSA02 issues a GETMAIN for the number of
bytes requested, plus 16 for the UGPOOL area, If
the return code from the GETMAIN is non-zero,
the storage address in the calling program is set to
zero, and control is given to step 5. However, if
VS2.03.807 is installed, the following additional
processing takes place before the address of the
storage area is set to zero and control given to step
5:

If the return code from the GETMAIN is zero, control
is given to step 2.

b. 	 If page-boundary storage was requested, IDCSA02
issues a GETMAIN, for storage on a page
boundary, for the number of bytes requested. If the
return code from the GETMAIN is nonzero, the
storage address in the calling program is set to zero
and processing continues at step 5. However, if
VS2.03.807 is installed, the following additional
processing takes place before the address of the
storage area is set to zero and control given to step
5:

The UGSPACE procedure calls the RELECORE
procedure. RELECORE searches the active slots in
the Load List Block (LLBLK) and issues a
DELETE macro for all modules whose use count is
zero. UGSPACE then reissues the GETMAIN
macro. Now if the return code is still non-zero, the
address of the storage area is set to zero, and
control is given to step 5.

c. 	 If the return code from the GETMAIN is zero,~
(I) IDCSA02 issues a second GETMAIN for a 24-byte ;.

UGPOOL area. If the return code from the8
o GETMAlN is nonzero, the storage address in the, calling program is set to zero, a FREEMAIN is
o issued to free the page-boundary storage gotten in
?l... step Lb, and processing continues at step 5 .
a
0'
::0

N

~

Module: IDCSA02

Procedure: IDCSA02

2. 	 The new storage area is chained to the other storage
areas obtained with UGPOOL. The head of the chain
is in GPFIRST and the tail is in GPLAST in the
System Adapter Historical Data Area. The new
storage area is chained by IDCSA02 to the tall ot the
list. IDCSA02 sets the forward chain pointer to zero.
The backward chain pointer contains the address of
the next-to-last area. The identification from the
calling module is put in the fourth word of the
UGPOOL area. GPLAST is set to the address of the
new storage area.

If page-boundary storage was not requested, IDCSA02
sets the number of bytes in the storage area to the
number of bytes requested, plus 16 for the UGPOOL
area.

If page-boundary storage was requested, IDCSA02
sets the number of bytes in the storage area to 24 (size
of the UGPOOL area only). IDCSA02 puts the
address of the page-boundary storage in the fifth word
of the UGPOOL area and puts its length in the sixth
word.

Module: IDCSA02

Procedure: IDCSA02

3. 	 IDCSA02 puts the address of the storage area in the
calling program at the address specified by the third
parameter. The address is either the address, plus 16,
of the storage obtained in step I.a, or the address of
the storage obtained in step I.b.

Module: IDCSA02

Procedure: IDCSA02

4. 	 If SETZERO or SETBLANK was specified as the fifth
parameter, IDCSA02 sets the storage area to zeros or
blanks, respectively. If neither SETZERO or
SETBLANK is specified, the storage is not changed.

Module: IDCSA02

Procedure: IDCSA02

5. 	 IDCSA02 puts a return code in register 15 and returns
control to the module that issued the UGPOOL
macro.

00
~ Diagram 5.4.4 UFPOOL Macro

o From Module
Ul Issuing UFPOOL Macro""<
Ul
N INPUT PROCESSING OUTPUT
:>
" (\) " 1. Finds areas to free,'" '"
~
(\) 2. Removes matching areas from chain;.
o
Q.. GDT and frees storage,
Ul
(\) 3. Returns to Step 2 until end of list.~ (optional)
(i'
(\) 4. Returns,'" r ALLas
(i'

4., " "

r (r

Extended Description for Diagram S.4.4

Module: IDCSA02

Procedure: IDCSA02

t. 	 IDCSA02 examines the list of UGPOOL areas
addressed from GPFIRST to find a match between the
storage identifier supplied by the calling program and
the identifier in the UGPOOL area. If the calling
program specifies ALL as the third parameter, just the
first two bytes of the identifiers are compared so that
every storage area that matches is freed. If ALL is not
specified, IDCSA02 compares four bytes of the
identifiers to find the one storage area to be released.

Module: IDCSA02

Procedure: IDCSA02

2. 	 If a match is found, IDCSA02 removes the UGPOOL
area from the chain. If the storage to be released was
not requested to be on a page boundary, IDCSA02
issues a FREE MAIN macro to release the 16-byte
UGPOOL area and its storage area. If it was
requested to be on a page boundary ('xxPG' storage
identification), IDCSA02 issues a FREEMAIN macro
to release the page-boundary storage using the address
and length contained in the fifth and sixth words of
the 24-byte UGPOOL area. IDCSA02 then issues a
FREEMAIN macro to release the 24-byte UGPOOL
area.

Module: IDCSA02

Procedure: IDCSA02

3. 	 If the end of the chain has not been reached, IDCSA02
compares the next UGPOOL area. The entire list is
searched for matching identifiers, regardless of
whether ALL is specified or not. IDCSA02 returns
control to step 2 until the end of the chain is reached.

Module: IDCSA02

Procedure: IDCSA02

4. 	 IDCSA02 returns control to the module that issued the
UFPOOL macro.s::

'" ;.
o c..
o...,
o
"0 ..,'"
~ o·
::l

N

~

N Diagram S.4.S PROLOG Macro
o
V> From Module

Calling PROLOG Entry Point o
en
< en INPUT PROCESSING OUTPUT
N

>() Register I
() 1. Gets address of GDT.-../" '" '" s: 2. Gets address of storage for ~ " PROLOG.S
o System Adapter
0

en 3. Saves registers in work area. Work Area

".., ~@SiZDATD
....

<;:;.

" Bytes Needed rr=> 4. Checks module identification in ~D'" r for Data Areas AUTOTBL.
o

OQ;:;. \.,'MoDID
• a. If a match is not found, goes

to Step 5.

Register 13

b. If a match is found, tests
Number of count in AUTOTBL; if count is;lModule A"s Save Area Bytes

1, goes to Step 5; if count is~ :n Previous Module
0, goes to Step 6. Module

tIdentification
5. Obtains storage. -L.~ Storage Area ..

Inter-Module6. Updates Inter-Module Trace 1 Trace Table
L Table.AUTOTBL ...-

7. Returns. I L"."'d<.,;r;oo,;mD
1

Previous Module's
Work Area

Module A's
Identification

4..". 4.." '-'

r r 	 r

Extended Description for Diagram 5.4.5

Module: mCSA03

Procetlure: mCSA03

t. 	The address of the GDT is the first parameter in the
call to every Access Method Services module except
the call to PROLOG. As an example, let's assume
module A gives control to module B. First, module B
stores registers in the save area in module A. Second,
module B obtains storage for the data in module B.
PL/S generates a GETMAIN macro instruction to
obtain the storage. But GETMAIN doesn't work on
DOS. So, instead of doing a GETMA]N, module B
calls PROLOG to get storage for module B's data
areas. When module B gets control, register I contains
the address of a parameter list. 8y convention within
Access Method Services, the first parameter in the
parameter list is always the address of the GDT. When
PROLOG gets control, register 13 contains the
address of the save area in module A. IDCSA03 uses
this address to get the address of the GDT.

Modu]e: mCSA03

Procedure:]DCSA03

2. 	 The address of the storage area PROLOG uses for its
data areas is in GDTSPR. mCSA03 uses this address
to establish addressability to the data areas in
PROLOG.

Module: mCSA03

Procedure: IDCSA03

3. 	 Module 8's registers are saved in PROLOG because
module 8 doesn't have a save area yet. IDCSA03
chains together the save area in module A and the
save area used for module B's registers in PROLOG.

Module: mCSA03

Procedure:]DCSA03

4.]DCSA03 compares the module identifications in
AUTOTBL with the four-character module
identification module 8 passes as the first parameter::::

(t 	 to PROLOG. If mCSA03 does not find a match, s:
o control goes to step S. If a match is found, and module
0- B is mCSA02, mCSA06, mCSA07, mCSA08,
S, mCSA09, mCSAlO,mCIOOI, mCIOOS, or
o mCTPOI,]DCSAOI may have already obtained
~ storage for it. AUTOTBL contains the address of
~ storage already obtained for these modules.]DCSA03 o·
:::I 	 examines the number of times module 8 has been

v.
N 	 called. If the number is zero, module B is not using the

storage whose address is in AUTOTBL. IDCSA03

does not do a GETMA]N and]DCSA03 gives the
storage from AUTOTBL to module 8 for its data
areas.]DCSA03 adds one to the number of times the
module is called. If the count is greater than zero, the
storage in AUTOTBL is already in use so]DCSA03
must do a GETMA]N. One is added to the number of
times the module is called.

Module: mCSA03

Procedure:]DCSA03

S. 	 If module B did not get storage from AUTOTBL,
IDCSA03 issues a GETMAIN for the number of bytes
needed. PL/S-2 always puts the number of bytes in a
constant called @SIZDATD which is the second
parameter to PROLOG. mCSA03 issues a
GETMAIN for the number of bytes in @SIZDATD
plus 8 for header information. If the return code from
GETMAIN is non-zero, mCSA03 issues a UABORT
macro. However, if VS2.03.807 is installed, the
following occurs before the UABORT is issued:

]DCSA03 searches the active slots in the Load List
Block (LLBLK).]t issues a DELETE macro for all
modules whose use count is zero. The slots for these
modules are placed back on the available slot queue.
The GETMAIN macro is then retried. If the return
c:>de is still non-zero, IDCSA03 issues the UABORT
macro.

]DCSA03 puts the total length of the storage area in
the first word of the header. IDCSA03 puts Module
B's identification from MODID in the second word of
the header.

Module: mCSA03

Procedure: mCSA03

6. 	 IDCSA03 adds module 8's identification from
MOD]D to the end of the]nter-Module Trace table.
The first, oldest entry in the table is removed.

Module: mCSA03

Procedure:]DCSA03

7. 	 IDCSA03 puts module B's module identification in the
first word of module A's save area. IDCSA03 restores
the registers, with the exception of register one, from
the work area in PROLOG to be as they were when
module B gave control to PROLOG. Register one
contains the address of the storage module B uses for
its data area. IDCSA03 returns control to module B.

-- -- --

~ Diagram 5.4.6 UEPIL Macro
o From Module
~
<
~
>(')

fi Relister I I
til
til I ...>
~
o (
;;.
o ItODT0
en ..
~
o

~("'i~.1 r->riO
o
til

r I Return Code I~ riO

I Module Identification I

Register 13

~ I

Length

Module Identification

Storage· Area 1: :r
AUTOTBL

I I

\" l, ~

r (r

Extended Description for Diagram 5.4.6 	 Module: IDCSA03

Procedure: IDCSA03
Module: IDCSA03
4. 	 IDCSA03 puts the address of module A's save area inProcedure: IDCSA03

register 13. IDCSA03 removes the oldest module
1. 	 Let's assume module A gives control to module B. identification entry in the Inter-Module Trace table.

Module B completes its processing and is ready to IDCSA03 adds module A's module identification to
return control to module A. When module B is the end of the Inter-Module Trace table. IDCSA03
compiled on YS, PL/S generates a FREEMAIN for obtains module A's module identification from the
exit code. Rather than having one version of all first word of the save area where module A saved
modules for YS and another for DOS, each registers when it was given control.
module-with a very few exceptions-issues a UEPIL

Module: IDCSA03 macro to return control. See the chapter "Diagnostic

Aids" for an illustration of save areas. The UEPIL Procedure: IDCSA03

bypasses the PL/S-generated FREEMAIN and allows

5. 	 IDCSA03 restores all registers, except register 15, t~e same module to operate on more than one
from module A's save area. Register IS contains theoperating system. When module B is ready to return
return code from module B, if module B provides it, orcontrol to module A, module B issues a UEPIL.
zero. IDCSA03 returns control to module A. UEPIL gets the address of the storage it is to use for

data areas from GDTSPR. IDCSA03 saves the address

of module B's storage area in register 13. IDCSA03

saves the address of module A's save area, which is

obtained from module B's save area, and IDCSA03

sets the forward chain in module A's save area to zero.

Module: IDCSA03

Procedure: IDCSA03

2. 	 IDCSA03 compares module B's module identification

against the module identification in AUTOTBL. If a

match is not found, control is given to step 3. If

IDCSA03 finds a match, the number of times the

module has been called is compared to one. If the

number is one, IDCSA03 will not issue a FREEMAIN

but reduces, by one, the number of times the module

has been called. If the number is greater than one,

IDCSA03 has acquired storage other than storage

from the AUTOTBL, and this storage must be

released. IDCSA03 subtracts one from the number of

times the module has been called.

Mod_: IDCSA03

Procedure: IDCSA03

:s:: 3. IDCSA03 subtracts eight from the address of module .'"
."

So B's storage area to get the address of the header
information. IDCSA03 issues a FREEMAIN with the

length of the storage area as specified in the first word

~
S

of the header. O
-g
a
0'
:l

N
v....,

~ Diagram 5.5.1 UTIME Macro
o From Module
(I) Issuing UTIME Macro "'<
(I)

tv INPUT PROCESSING OUTPUT

:;..
(") '
(") Register I
" '" C'"
3:
" S
o tGDT
Co
(I)

":;J (optional)
(i'

(optional)" '"
b

(JQ

(i' Data Format Indicator

Date

Variable

Time

Variable

~~ '-'

r (r

Extended Description for Diagram 5.5.1

Module: IDCSA02

Procedure: IDCSA02

1. 	 IDCSA02 calculates the number of arguments passed
to UTI ME. IDCSA02 passes the input parameter list
and a variable containing the number of arguments to
IDCSAOS.

Module: IDCSAOS

Procedure: IDCSAOS

2. 	 If the caller incorrectly specifies the data format
indicator, IDCSAOS issues a UABORT macro.

Module: IDCSAOS

Procedure: IDCSA05

3. 	 If the caller specifies FORMAT, IDCSAOS specifies a
TIME macro with a DEC option. If HSECOND is
specified, IDCSAOS issues a TIME macro with the
BIN option. If CLOCK is specified, IDCSAOS issues a
STCK instruction. If the caller does not indicate the
data format, IDCSAOS issues a TIME macro with a
MICoption.

Module: IDCSAOS

Procedure: IDCSAOS

4. 	 IDCSAOS adjusts the number-of-days-per-month table
for leap years. If the year returned by the TIME macro
is divisible by four, IDCSAOS sets the number of days
in February to 29.

Module: IDCSA05

Procedure: IDCSAOS

S. 	 If the caller specifies FORMAT, IDCSAOS formats the
time as HH:MM:SS, where HH is hours, MM is
minutes, and SS is seconds. The data is in decimal
digits. If the date was requested and format specified,
IDCSAOS formats the date as MM/DD/YY, where
MM is the month, DD is the day, and YY is the year.
The date is in decimal digits.

s::
~ If HSECOND is specified, IDCSAOS returns the time ;.
o from the 24-hour clock in hundredths of seconds. If
0- CLOCK is specified, IDCSAOS returns the time from
o.., the time-of-day clock in microseconds.1f the date is
o requested and no data format is indicated, or
"0 .., HSECOND or CLOCK is specified, IDCSA05 returns ~

a the date in packed-decimal format, OOYYDDDF, o·
:l

where YY is the year, DDD is the day, and F is the
N sign digit.
\.h

\.h

Module: IDCSAOS, IDCSA02

Procedure: IDCSAOS, IDCSA02

6. 	 IDCSAOS moves the time and date to the calling
program at the addresses specified by parameters two
and three. IDCSAOS returns control to IDCSA02,
which returns control to the module that issued the
UTIME macro.

http:microseconds.1f

~ Diagram 5.6.1 ULISTLN Macro
'" o From Module
CIl Issuing ULlSTLN Macro
<
CIl
N INPUT PROCESSING OUTPUT
>(")
(") Register I o
'Jl
'Jl 1. Determines number of arguments. L1STPTR
s:
o Argument List
S- Argument List o
c-
CIl
o
~ r;.

T T'Jl

b
o

L TOQr;. L1STLN

INu~ber of Arguments

\..,'-' '-'

(
r 	 r

Extended Description for Diagram 5.6.1

1. 	 Unlike most Umacros, ULISTLN generates inline
code that performs the function rather than a branch
to another module. The code stores the address of the
parameter list in register I in a fullword named
LISTPTR. The code searches the argument list
looking for the end of the list. The last argument in the
list has a high order bit of one. The number of
arguments in the list is put in a byte named LISTLN.
If the end of the argument list is not found after 255
arguments, the search stops and LISTLN contains 255.
Control continues with the next instruction in the
program.

~
t1>

So
8.
o.....
o
t1> " a
0'
::s
N
v.
-J

N
v. Diagram 5.6.2 USAVERC Macro
ex>

From Module o
til
.......

<:
til
N

l 'Y IRegister 15 TESTRCi 1. Copies contents of Register 15.... ~ '"
~ I I '" I I
B;.
&.
til
B

::! I

~.

'"
b

(JQ o·

I

-

\., ~ ~

(
r 	 r

Extended Description for Diagram 5.6.2

1. 	 Unlike most Umacros, USAVERC generates inline
code that performs the function rather than generating
a branch to another module. The code copies the
contents of register 15 which must be named
RTNREG to a halfword named TESTRC. Control
continues with the next instruction in the program.

s:
'"g
o
0..

o-
o
"... '" e
0·
:::l

N
v.
'-Cl

N DiatP"am 5.7.1 UPROMPT Macro g
From Module Issuing o UPROMPT Macrotil

<
til 	 INPUT

t. Prepares

PROCESSING 	 OUTPUT
N

~ Register 1
(')

"~ to write.
s::
" [

til

" :1riO

" '"
f
n'

For Address
of Reply

2. 	 Writes message on TSO terminal
and receives reply.

IReply ~ b
Length
of Reply

I I

Register 15

3. Returns. 	 C- ---I

~ c.., 	 ~

r r 	 r

Extended Description for Diagram 5.7.1

Module: IDCSA02

Procedure: IDCSA02

I. 	 UPROMPT tests GDTECT to be sure Access Method
Services is invoked interactively with TSO. If it is not,
UPROMPT writes a message and control goes to step
3. UPROMPT checks the length of the message. If the
message is longer than 72 characters or less than one
character, a UABORT macro is issued. UPROMPT
sets up a work area. The first two bytes contain the
length of the message plus 4 for the first word. The
second two bytes contain zero. The message follows
the first four bytes.

Module: IDCSA02

Procedure: IDCSA02

2. 	 UPROMPT issues a PUTGET macro to write the
message on the TSO terminal and receive a reply.
Refer to OS/VS2 TSO Guide to Writing a Terminal
Monitor Program or a Command Processor. If the
return code from PUTGET is zero, UPROMPT puts
the length of the reply and the text of the reply in the
area provided by the module that issued the
UPROMPT macro. If the return code from PUTGET
indicates a no-prompt situation is in effect, no message
is issued and a return code of 8 is put in register 15.
For all other non-zero PUTGET return codes,
UPROMPT writes a message.

Module: IDCSA02

Procedure: IDCSA02

3. 	 UPROMPT puts a return code in register 15 and
returns control to the module that issued the
UPROMPT macro.

~
ro;.
8.
o
o
"0 ro..,

e?
o·
:::l

N a-.

N Diagram 5.7.2 UID Macro R;
o
r;n
.......

< INPUT
til
N

>o
~
(/]

1.
'" 3:
(D

;.
o
Q.

W
~
O·
(D
til

S
0<>
O· For Lenglh

From Module Issuing UID Macro

PROCESSING OUTPUT

Register I

Gets TSO user's identification.

TSO user's Id

Register 15

2. Returns. - -=-:::J

~ ~. '-'

(
r 	 r

Extended Description for Diagram 5.7.2

Module: IDCSA02

Procedure: IDCSA02

t. 	UID tests GDTECT to be sure Access Method
Services is invoked interactively with TSO. If it is not,
UID sets the TSO user's identification to blanks, the
length of the TSO user's identification to zero, and
puts a 4 in register 15. If Access Method Services is
invoked interactively with TSO, UID moves the TSO
user's identification from the TSO User Profile Table
to the area provided by the module that issued the
UID macro. UID puts the number of non-blank
characters in the TSO user's identification in the field
provided by the module that issued the UID macro.
GDTUPT contains the address of the TSO User
Profile Table.

Module: IDCSA02

Procedure: IDCSA02

2. 	 UID puts a return code in register 15 and returns
control to the module that issued the UID macro.

::::
11>;.
&.
a
o
~
~ o·
::I

..... '"
IV

Diagram 5.7.3 UQUAL Macro Nz:
o
CIJ
.......

<
CIJ
N

)
n n co
VI

VI

~

~

~

8
CIJ co
~
n' co
VI

!;'
OQ
n'

INPUT

,,- Unqualified Data
'-Sct Name----'

1.

3.

From Module Issuing
UQUAL Macro

PROCESSING

Prepares to qualify data set
name.

2. Qualifies data set name.

Returns.

OUTPUT

Parameter

o
IKJEHDEF

[Qualified Data \ 't-,
SetName~~

LLe~gth of Non
Blank Part---~

Register 15

\,'-' "

(
r 	 r

Extended Description for Diagram 5.7.3

Module: IDCSA02

Procedure: IDCSA02

t. 	 UQUAL tests GDTECT to be sure Access Method
Services is invoked interactively with TSO. If it is not,
NOSUPP writes a message and control goes to step 3.
If it is, processing continues as follows. UQUAL builds
a TSO Default Parameter Block, DFPB. The DFPB
contains the address of the Protected Step Control
Block from GDTPCB, the address of the data set
name to be qualified, the address of the catalog data
set name, and the address of a password. UQUAL also
builds a TSO Default Parameter List, DFPL,
containing the address of the TSO User Profile Table
from GDTUPT, the adddress of the Environment
Control Table from GDTECT, the address of an
Event Control Block, and the address of the TSO
Default Parameter Block just built. See OS/VSl TSO
Terminal Monitor Program and Service Routines
Logic logic for more information on the DFPB and
DFPL.

Module: IDCSA02

Procedure: .IDCSA02

2. 	 UQUAL issues a UUNK macro to load and give
control to TSO module IKJEHDEF at entry point
lKJDFL T. However, if VS2.03.807 is installed,
UQUAL issues the CALL TSSR macro rather than
UUNK. IKJEHDEF qualifies the data set name. See
OS/VSl TSO Terminal Monitor Program and
Service Routines Logic for more information on
IKJEHDEF. If the return code from IKJEHDEF is
zero, UQUAL puts the length of the qualified data set
name and the qualified data set name in the area
provided by the module that issued the UQUAL
macro. If the return code is non-zero, UQUAL writes
a message.

Module: IDCSA02

Procedure: IDCSA02
?: 3. 	 UQUAL puts a return code in register 15 and returns
~ =r control to the module that issued the UQUAL macro.
8.
~
o
~
~ o·
:J

a
u.
IV

~ Diagram 5.8.1 UALLOC Macro
o From Module Issuing
~ _ UALLOC Macro
<:
Vl
N

:> - -- - ------ - - - -- -
(')

(')
 ".

" ~ Register I ~ 1. If the request is to allocate a data set
:: I go to Step 3, for a volume mount
!!.
:r continue with Step 2.
&.

C
TtGDT

Vl I ..::1" I 2. Prepares to mount volumes.n' ..
~ CALLAGL Text Units ~
n'

_... _....

T T ..
3. Prepares to allocate data sets.
..

<,.
ALLAGL

4. Invokes dynamic allocation. r----,,;) /' p..oDName~
./ Request Block Text Unit

~

A. Pointer L ::r
<.~ List

T
.... TI DSORG I "

Register 15
S. Returns.

Joo

./ I I

'" '-' '-'

r (r

Extended Description for Diagram 5.8.1

Module: IDCSA02

Procedure: IDCSA02

1. 	 UALLOC checks the ALLAGL to determine if the
UALLOC request is to allocate a data set or to mount
volumes. If the request is to allocate a data set, control
goes to step 3. If the request is to mount volumes,
control continues with step 2.

Module: IDCSA02

Procedure: IDCSA02

2. 	 If PRIVATE volume mounting is requested, UALLOC
builds the private volume Text Unit. A unit name from
ALLAGL is paired with a volume serial number. If the
unit name is the last in the list of unit names, all
remaining volume serial numbers are associated with
it. If a volume count and a unit count are requested,
they too are associated with the last unit name.
UALLOC builds a Text Unit with the unit name and
volume serial number(s) and optionally builds the Text
Units for the volume and unit counts. Control goes to
step 4.

Module: IDCSA02

Procedure: IDDCSA02

3. 	 UALLOC builds Text Units with the data set name,
data set password, and the data set status and
disposition. If a specific device type is requested,
UALLOC builds the Text Unit for the unit name.

Module: IDCSA02

Procedure: IDCSA02

4. 	 UALLOC builds a Text Unit Pointer list containing
t:le addresses of the Text Units. UALLOC creates a
Request Block containing the address of the Text Unit
Pointer list and issues SVC 99 to invoke dynamic
allocation. Refer to OS/VS2 System Programming
Library: Job Management for more information on
dynamic allocation. If the return code is zero,
UALLOC saves the returned data set name. If thes:
UALLOC request is for volume mounting and there;.'"

o are more unit names in ALLAGL, control goes to step
0. 2 to prepare to mount the next volume. If the
-,o UALLOC request is for volume mounting and there

'1j
o are no more unit names in ALLAGL, UALLOC builds
.., Text Units with the DDname for each unit. UALLOC'" e builds a Text Unit Pointer List and a Request Block, o·
::0 then it issues SVC 99 to get one DDname that
tv describes the concatenated list of volumes. The
g; returned DDname is put in ALLAGL. If the request is

for data set allocation, UALLOC puts the data set
organization and the returned DDname in ALLAGL.

Module: IDCSA02

Procedure: DYNERR, IDCSA02

5. 	 If the return code from SVC 99 is non-zero, DYNERR
writes a message. UALLOC puts a return code in
register 15 and returns control to the module that
issued the UALLOC macro.

N
a-- Diagram 5.8.2 UDEALLOC Macro
00

From Module Issuing o
rJJ
.......

<
rJJ
N IP'TUI rK\A..~I!'IIb ---- -...
>
(l

..,
(l Register I
(I) 1
til
til I ~ 1. Prepares to deallocate or ... Text Units ;s: ...
(I) dismount.C D;.
0- Io 'tGDT
rJJ
(I)

I I .., <
ri' <'

.....
til
(I)

2. Invokes dynamic allocation.
b \ALLAGL~ Text Unit ri' <'... Request Block

Pointer
r----.... List

_h -~

1 T
Register 15

3. Returns.
..
... ~ I I

~~ ~

(
r 	 r

Extended Description for Diagram S.8.2

Module: IDCSA02

Procedure: IDCSA02

I. 	UDEALLOC builds Text Units with information from
the ALLAGL. The Text Units contain the data set
name or DDname, and the data set disposition from
ALLAGL, if specified. The disposition from
ALLAGL overrides the current disposition of the data
set. If the unallocate option was specified in the
ALLAGL, the unallocate option text unit is built. This
will unallocate permanently allocated data sets.

Module: IDCSA02

Procedure: IDCSA02, DYNERR

2. 	 UDEALLOC builds a Text Unit Pointer list containing
addresses of the Text Units, and a Request Block
containing the address of the Text Unit Pointer List.
UDEALLOC issues SVC 99 to invoke dynamic
allocation. Refer to OS/VS2 System Programming
Library: Job Management for more information on
dynamic allocation. If the return code from SVC 99 is
zero, UALLOC checks the information code in the
Request Block. If the information code is non-zero, or
if the return code from SVC 99 is non-zero, DYNERR
writes an error message.

Module: IDCSA02

Procedure: IDCSA02

3. 	 UDEALLOC puts a return code in register IS and
returns control to the module that issued the
UDEALLOC macro.

~

:r
n

8
a.
o
"R..,
e;.
o·
::l

N

$

-.I
N Diagram 5.9.1 System Adapter - UDEQ Macro
o

From Module Issuing o
(JJ

'
<
(JJ
N

;;.
n
n
(l)

Register I '" '" s:: "-.,
(l) f ../;.
() ~
0
(JJ t GDT
(l)

:2
;:;" I
(l)

'" r I~o
OQ
;:;" length Iminor-name

major-name

Resource

Controlled

-0&

I/O Unit

~ .::::
Controlled

"""---- ~

" "
 ~.

r r 	 ("

Extended Description for Diagram 5.9.1

Module: IDCSA08

Procedure: IDCSA08

I. 	IDCSA08 builds the DEQ parameter list and places
the minor-name length and the addresses of the
parameter list, of the major name, and of the minor
name in register variables.

Module: IDCSA08

Procedure: IDCSA08

2. 	 IDCSA08 issues a DEQ macro to release control of
the resource or I/O unit.

Module: IDCSA08

Procedure: IDCSA08

J. 	IDCSA08 returns control to the module that issued the
UDEQmacro.

3:
",

;.
8
s,
o
'& e
0·
:::I

!l

-.l
N Diagram 5.9.2 System Adapter - UENQ Macro
N

From Module Issuing o
til UENQ Macro
........
< INPUT PROCESSING OUlPUT ~
>(')

~
~
s:: 1. Builds ENQ parameter list.
~ ;.
o
0..
til
~ ..,
< Resource
('i'
~
til

r 2. Issues ENQ macro, o
(JQ Controlled
c>"

Register IS
3. Returns, :=J

" '"
~

r 	 r' r

Extended Description for Diagram S.9.2

Module: IDCSA08

Procedure: IDCSA08

1. 	 IDCSA08 builds the appropriate ENQ parameter list,
depending on the second (SHR or EXCL) and third
(NOWAIT or WAIT) arguments supplied by the
caller. It places the minor-name length and the
addresses of the parameter list, of the major name,
and of the minor name in register variables.

Module: IDCSA08

Procedure: IDCSA08

2. 	 IDCSA08 issues an ENQ macro to get control of the
resource requested. If the return code in register 15 is
zero or if the return code at the address in register 15
is zero or 8, the caller's return code is set to zero.
Otherwise the caller's return code is set to 4.

Module: IDCSA08

Procedure: IDCSA08

3. 	 IDCSA08 puts the return code in register 15 and
returns control to the module that issued the UENQ
macro.

... ~
;:.
8
~
o
"0

a ...
o·
::>
N

v.>
-.l

N
-.I
.j:>.

o
Diagram 5,9.3 System Adapter URESERVE Macro

From Module Issuing
til
"<
til - - -
N

:>
n g
ell
ell Register I
~
" S

I
~

I ~ -v'"
o
0
til tGDT

" :!
R'
ell

b
!JQ

n' 0Address of a Fullword

I (

~
length I minor-name

major-name I ~ t UeB I
\~ Condition of request

I
~ Control of resource

I

I." 4.,W ~

r· r 	 r

Extended Description for Diagram 5.9.3

Module: IDCSA08

Pr0ce4ure: IDCSA08

t. 	IDCSA08 builds the appropriate RESERVE
parameter list, depending on the second (SHR or
EXCL) and third (NOWArT or WAIT) arguments
supplied by the caller. It places the minor-name length
and the addresses of the parameter list, of the major
name, of the minor name, and of the VCB pointer in
register variables.

Module: IDCSA08

Procedure: IDCSA08

2. 	 IDCSA08 issues a RESERVE macro to reserve the
resource requested. If the return code in register 15 is
zero or if the return code at the address in register 15
is zero or 8, the caller's return code is set to zero.
Otherwise the caller's return code is set to 4.

Module: IDCSA08

Procedure: IDCSA08

3. 	 IDCSA08 puts the return code in register 15 and
returns control to the module that issued the
VRESERVE macro.

s:
~
:r
o
0

S,
o
"0
(l)
~ o·
:::l

N

-.J

V>

~ Diagram 5.9.4 System Adapter - URACHECK Macro
a-. From Module Issuing
o (SU 5752-824 only)
CIl

<
CIl
N

Register I ~
n

~
3:
n;.
&.
CIl
t> t GDT
:;!
(i'
t>

'" r
c2
(i'

4.'" "

(
r 	 r

Extended Description for Diagram 5.9.4

(SU 5752-824 only)

Module: IDCSAOS

Procedure: IDCSAOS

I. 	IDCSAOS first checks for invalid incoming arguments.
Unless there are exactly two arguments, IDCSA08
issues a UABCRT macro with a code of 40.

Module: IDCSAOS

Procedure: IDCSAOS

2. 	 IDCSAOS builds the appropriate RACHECK
parameter list using the information in the second
argument. [t places the addresses of c1assname, and
volume serial and the address of either a data set name
or a profile of the data set in the RACHECK
parameter list. It also sets the appropriate flags in
accordance with the caller's request. If any of the flags
or addresses passed by the caller are invalid, IDCSA08
issues an error message indicating an invalid
URACHECK Parameter List, sets the caller's return
code to 12, and continues at STEP 7.

Module: IDCSAOS

Procedure: IDCSAOS

2. 	 IDCSAOS issues the RACHECK macro to obtain
authorization. If the return code is zero, RACF has
given the caller authorization to continue. The caller's
return code is set to zero. If the return code is not
zero, IDCSAOS issues an appropriate message
depending on the return code from the RACHECK
macro:

RC=4--No RACF profile on that data set

RC=S-Invalid RACF authorization.

IDCSAOS sets the caller's return code to 4 or 8
respectively.

Module: IDCSAOS

Procedure: IDCSAOS ::: 	 <
(l) 4. If the caller requested a profile from RACF, IDCSA08 So

will supply the profile and an address of the profile for 8 either a return code of 0 or S. If the caller did not
~ request the profile, IDCSA08 continues at Step 7.
o
"0
(l)

~ o·
:l

IV
-.I
-.I

Module: IDCSAOS

Procedure: IDCSA08

5. 	 IDCSAOS issues a UGSPACE macro to obtain storage
for the profile. If the return code from UGSPACE is
not zero, IDCSA08 issues an error message indicating
that storage could not be obtained. It sets the caller's
return code to 8, and continues at Step 7. If the return
code from UGSPACE is 0, IDCSA08 then copies the
profile provided by RACF. The caller is required to
free this space when he no longer needs it.

Module: IDCSA08

Procedure: IDCSA08

6. 	 IDCSA08 issues a FREEMAIN macro to release the
storage obtained for the profile by RACF.

Module: IDCSA08

Procedure: IDCSA08

7. 	 IDCSA08 puts the return code in register 15 and
returns control to the module that issued the
URACHECK macro.

N Diagram 5.10.1 System Adapter -..I
00

o
CIl
<
CIl 	 INPUT
N

;I> Request Keyword n Retrieves the UCB address.n 	 :J'" ~

;.'"
~

8. 2. Performs the service requested:CIl STAEPARM
'" ::1;:;.
til '" MDAGL Mount or demount
b

!J<>;:;. 3. Establishes recovery environment.

UMSSUNIT Macro
From Module Issuing
UMSSUNIT Macro

PROCESSING

I.

Caller's Area

CKAGL

~
EXCLAGL

4. Performs service.

3. Mounts.

b. Demounts.

5. Cancels recovery environment.

Clear, post, check, selectx,
changex, or selectdd.

6. Performs service.

a. 	Clears

b. Posts.

c. Checks.

d. 	Selects exclusive unit and its
associated DD name.

e. Changes allocation to exclusive.SELAGL
f. Selects already mounted unit~

and its associated ddname.
Caller's Areas

7. Returns.

OUlPUT

UCB

STAEPARM

r=
MDAGL

PUAGL

Caller's Area

EXCLAGL

SELAGL

Caller's Areas

Register 15

'-' '-' 	 '-'

r (r

Extended Description for Diagram 5.10.1

Module: IDCSA06

Procedure: IDCSA06

I. 	IDCSA06 issues a USYSINFO macro if the caller did
not provide the UCB address. IDCSA06 puts the UCB
address in the caller's area.

Module: IDCSA06

Procedure: IDCSA06

2. 	 IDCSA06 checks the request keyword to determine
the type of service to perform: 'MOUNT' indicates a
mount request; 'DEMOUNT' indicates a demount
request; 'POSTUCB' indicates a UCB post request;
'CHECK' indicates a UCB check request.

Module: IDCSA06

Procedure: MDSETUP

3. 	 MDSETUP issues a UST AE macro to set up a
recovery environment.

Module: IDCSA06

Procedure: MOUNTCTL, MOUNTVOL, ENQDEQ,
ISSUEMNT, RDLABEL, DEMNTVOL, ISSUEDMT

4. 	 The requested service is performed.

a. 	 MOUNTCTL checks the UCB to see whether a
volume is already mounted. If the requested
volume is mounted, processing continues at step 7.
If a different volume is mounted, that volume is
demounted (see step b).

If requested, the volume serial number is cleared
from the specified UCB of a real volume (see step
6.a). Then MOUNTCTL sets recovery information
in STAEPARM to indicate a UCB is cleared but
the volume is still mounted.

ENQDEQ issues an ENQ macro to enqueue on the
volume serial number of the volume to be
mounted. The major name is SYSZVOLS; the
minor name is the volume serial number.

~ 	 ISSUEMNT issues a MOUNT request to MSC
(D

;. 	 (Mass Storage Control) by way of the USSC
macro. ISSUEMNT issues an ACQUIRE request to8

o 	 MSC by way of the USSC macro to ensure the....,
mount is complete.o

(D " 	 Unless the volume hasn't been initialized, a 	 RDLABEL issues a UEXCP macro to open the o· VTOC and read the label to retrieve the TTR to
::l

N 	 the VTOC.
\0

The UCB for the mounted volume is posted (see
step 6.b).

If any of these actions fails, the volume is
demounted (see step b), the UCB cleared (in step
b) is posted (see step 6.b), and the volume is
dequeued with a DEQ macro. Processing continues
at step 5.

b. 	 DEMNTVOL checks the UCB to ensure that the
volume to be demounted is mounted. If it isn't,
processing continues at step 5. If the wait option is
indicated, ISSUEDMT issues a DEMOUNT
request to MSC by way of the USSC macro with
the delayed response option.

The UCB for the demounted volume is cleared
even if the demount failed (see step 6.a).

If requested, ENQDEQ dequeues the volume serial
number with a DEQ macro. If requested, the
volume serial number is put back into the specified
UCB of a real volume (see step 6.b). The volume
serial number was removed during the prior mount
request.

Module: IDCSA06

Procedure: MDSETUP

S. 	 MDSETUP issues a UST AE macro to cancel the
recovery environment unless the volume serial number
was removed from a UCB while the volume was still
mounted. Processing continues at step 7.

Module: IDCSA06

Procedure: FINDEXCL, SETEXCL, UCBPOST,
UCBCHECK, GETEXL, SCANTIOT

6. 	 The requested service is performed.

a. 	 UCBPOST sets up SV82LIST and issues SVC 82 to
clear the specified UCB. SVC 82 removes the
volume serial number and VTOC TIR from the
UCB and marks the UCB "not ready." The volume
serial number and VTOC TTR are returned to the
caller's area.

b. 	 UCBPOST sets up SV82LIST and issues SVC 82 to
post the volume serial number and VTOC TTR in
the UCB and marks the UCB "ready."

c. 	 UCBCHECK checks the UCB to determine the
status of the unit. It is tested for 3330 direct access,
virtual or real device type, or nonsharable status, as
requested by the caller in CKAGL. The type of the
unit is returned in the caller's area if requested.

-..l

r r 	 r

d. 	 FINDEXCL issues the UENQ macro to enqueue found and that the volume is mounted. A UDEQ
on the task I/O table (TIOT) with a major name of macro is issued to dequeue the TIOT.
SYSZTIOT. SCANTIOT scans the TIOT DO Module: IDCSA06
entries to find a UCB allocated to this job step for

the device on which the volume specified by the Procedure: IDCSA06

caller is mounted. SCANTIOT determines whether
 7. 	 If any errors occurred, a message is written with a a nonsharable unit can be used for the volume if UPRINT macro. IDCSA06 returns to the caller with a
the volume is not mounted but is allocated return code in register 15.exclusively to this job step. If the volume specified

by the caller is mounted and the UCB is marked

nonshareable, SCANTIOT returns the UCB

address and DO name to the caller. If the volume is

not mounted, F1NDEXCL issues an UENQ macro

with major name of SYSZVOLS to test whether

the volume is allocated exclusively to the job step.

If it is FINDEXCL returns the UCB address and

DO name of a nonshareable unit found by

SCANTIOT. F1NDEXCL then issues the UDEQ

macro to dequeue on the TIOT.

e. 	 GETEXCL checks whether the UCB indicates the

volume is permanently resident or reserved and, if

it is, indicates and error. GETEXCL checks

whether the unit is already nonshareable and if it is

returns to the caller. SETEXCL issues an UENQ

macro to the initiator's TCB with major name

SYSZVOLS to change the enqueue on the volume

mounted on the unit to exclusive. If the UENQ is

successful, SETEXCL issues the MODESET macro

to enter key 0 and marks the UCB to indicate the

unit is nonshareable. SETEXCL then issues the

MODESET macro to return to problem-program

state.

r. 	 SELECTD issues the UENQ macro to enqueue on

the Task I/O Table (TIOT) with a major name of

SYSZTIOT. SELECTD next checks to see if a

DSAB chain exists; if one does not, the flag

VOLFOUND, is set off. If a DSAB chain does

exist, the SELESCAN procedure is called to scan

the TIOT to find the caller's volume serial number

in a UCB. If found, the VOLFOUND flag is set on

and the UCB address and the ddname are placed in

the addressed areas provided by the caller in the

3:
(1) SELAGL. SELESCAN then returns control to
;. SELECTD.
o
Q" SELECTD checks VOLFOUND and, if the flag is
...,o

off, a return code of 4 is set indicating the unit was
o not mounted. Also, the fields addressed by the
~ SELAGL fields, SELUCBP and SELDDNP are
~ cleared. If VOLFOUND is on, the return code iso· set to zero, indicating a UCB and ddname were::>
N
00

00
N Diagram 5.10.2 System Adapter
N

o
CIl
'<
~

~
fi
~ Register I
s:
(1)

go
8
CIl
(1)

:1riO
(1)
<J>

b
(JQ
rio Expiration date indicator

t Volume list

Data set name

Volume list

~

USCRATCH Macro
From Module Issuing

I. Check incoming arguments

2. Gets storage for scratch
volume list.

3. Builds scratch vol .d ume lIst
an scratch parameter list.

.... Issues SCRATCH macro.

S. Frees storage for scratch
volume list.

6. Returns.

~

Register IS

I I

~ " '"

r (r

Extended Description for Diagram 5. t 0.2

Module: IDCSA08

Procedure: IDCSA08

1. 	 IDCSA08 first checks for invalid incoming arguments.
If there aren't exactly three or four arguments, or if
the fourth argument isn't OVERRIDE, IDCSA08
issues a UABORT macro with code=40.

Module: IDCSA08

Procedure: IDCSA08

2. 	 If there is more than one volume on the
scratch-volume list, IDCSA08 issues a UGSPACE
macro to obtain storage for the scratch-volume list. If
the return code from UGSPACE is not zero, IDCSA08
issues an error message indicating that storage could
not be obtained, sets the caller's return code to 8, and
continues at step 6. If there is just one volume on the
scratch-volume list, IDCSA08 uses a storage area in its
own automatic storage for the scratch-volume list.

Module: IDCSA08

Procedure: IDCSA08

3. 	 IDCSA08 builds the scratch-volume list using the
information in the third argument. IDCSA08 then
builds the scratch parameter list using the appropriate
form of the CAMLST macro expansion. It places the
address of the scratch-volume list and the address of
the data-set name in the scratch parameter list.

Module: IDCSA08

Procedure: IDCSA08

4. 	 IDCSA08 issues a SCRATCH macro to delete the data
set. If the return code is zero, or the scratch status
code returned a code of one from the SCRATCH
macro, the caller's return code is set to zero and
processing continues at step 5. A scratch status code of
one means the data set is not on the indicated volume.
IDCSA08 issues a message indicating that the data set
was not scratched if the return code is not zero or if
the scratch status code is not one. IDCSA08 issues a s::

(t) second-level message, depending on the return code :;. and scratch status code returned from the SCRATCHo
0 macro:
:a.

RC=4--no volumes containing any part of the datao
set were mounted. ~ a RC=8:

o·
::l Code=2-password verification failed for the
N indicated data set.
v>

Code=3-the data set's date has not expired.

Code=4--a permanent I/O error occurred.

Code=5 or 6--the indicated volume could not be
mounted.

Code=7-the specified data set was in use.

Code=8 (VS2.03.807 only)-user does not have the
proper RACF authorization to scratch the data set.

RC=12-the scratch-volume list was
invalid-IDCSA08 issues a UABORT macro with
code=40.

IDCSA08 sets the caller's return code to 4.

Module: IDCSA08

Procedure: IDCSA08

S. 	 If storage was obtained for the scratch-volume list,
IDCSA08 releases the storage by issuing a UFSPACE
macro.

Module: IDCSA08

Procedure: IDCSA08

6. 	 IDCSA08 puts the return code in register 15 and
returns control to the module that issued the
LSCRATCH macro.

00

00
N Diagram 5.10.3 System Adapter
.j:>.

o
CIl
<
CIl INPUT
N

;.
(')

~

~
 Request Keyword

~
~ ;. C =-:J
o MSSC Request Block
Q. ,
Vl
~

~
ri'

'"
~

r
~
n'

I t ECB Message Area

ECB Code

J
Reason Code

<.

USSC Macro
From Module Issuing
USSC Macro

PROCESSING
•

1.

2.

3.

4.

Ini tializes areas.

Performs Mass Storage Control
(MSC) function.

Waits.

Returns.

OUWUT

MSSC Request Block ,

ECB Message Area

I MSC Message I
ECB Code

:J
Reason Code

Register 15

=:J

4., 4., 4.,

r r 	 r

Extended Description for Diagram 5.10.3

Module: IDCSA09

Procedure: IDCSASS CHECKARG

I. 	 IDCSA09 initializes to zero the input areas: reason
code, ECB code, and pointer to the ECB message
area. CHECKARG checks whether the number of
arguments is correct for the request type. If the ECB
code argument is present, IDCSASS issues a
UGSPACE macro to obtain storage for the ECB and
for the MSC (Mass Storage Control) message area.

Module: IDCSA09

Procedure: ISSUEMAC

2. 	 ISSUEMAC issues an MSSC (Mass Storage System
Communicator) macro (SVC 126) to do the following
according to the request keywords:

'ACQUIRE' acquires extents on a staging drive.

'MOUNT' mounts a mass storage volume.

'DEMOUNT' demounts a mass storage volume.

'DEFINE' defines a mass storage volume.

'MOVE' moves a data cartridge or a mass storage

volume.

'TRACEQ' traces MSC activity.

'COPYTABL' copies the MSC tables.

'COPYCRTG' copies a data cartridge.

'COPYVOL' copies a mass storage volume.

'VVIC' modifies the Mass Storage Volume Inventory

data set.

'TUNE' changes the MSC tuning values.

For the 'ACQUIRE,' the caller must have initialized

the request code and MSSC request block length in the

MSSC request block.

ISSUEMAC specifies an ECB address in the MSSC

request block if the ECB code argument was specified.

Module: IDCSA09

Procedure: CHKCODE

3. 	 CHKCODE issues a WAIT macro if an ECB address
was specified in the MSSC request block and either the 3::

f1> return code from SVC 126 was 0 or the reason code s
o indicates the MSC function was successful but the
Q. Mass Storage Volume Inventory data set was not a updated. If the ECB completion code indicates that
o the function was successful, CHKCODE sets the
~ pointer to the ECB message area in the caller's area. If a the ECB completion code indicates a failure,
o·
:I

CHKCODE puts the ECB completion code in the
N caller's MSC message area.
00
VI

If the return code from SVC 126 is 4, and the reason
code indicates an MSC error, CHKCODE puts the
reason code from register 0 into the caller's reason
code area. If the reason code indicates an MSVC
(Mass Storage Volume Control) error, CHKCODE
issues a message that says the function was performed
but the Mass Storage Volume Inventory data set was
not updated, and the reason code is not put into the
caller's reason code area.

Module: IDCSA09

Procedure: IDCSASS

4. 	 IDCSASS issues a UFSP ACE macro to free the
storage obtained for the ECB and the message area if
the area was not used or the caller didn't request it to
be returned, and sets the pointer to the caller's ECB
message area to zero. If invalid arguments were passed
as input, IDCSASS issues a UABORT macro witll
code=40. Otherwise, IDCSASS returns to the caller
with a return code in register 15.

00
N Diagram 5.10.4 System Adapter - USYSINFO Macro

o '" From Module Issuing
'Jl USYSINFO Macro
' <
'Jl 	 INPUT PROCESSING
N

>
~

Register I '" '"
~ 	 In> 	 1. Checks incoming arguments.
;.
o ~
c.. , GDT
'Jl
n>

~ n·
n> ~ Address of a Fullword
'" r I 	 I
o 	 2. Checks for NAMES or UNIT request:
""(i' 	 I~,L DD-name I If UNIT "0

~ • t Type of info request

I If NAMES:
NAMES return info are a

\ 	 3. Sets up job and step names.

-----I..~0~UNIT return info area

4. Sets up unit information.

*NAMES of UNIT return info area

5. Returns.

OUTPUT

Register 1
[---.---- -]-

t GDT

/
1/ Address of a Fullword

{

I~
~ DD-name

./. * t
'Type of info request

~ NAMES return info aT a

jobname\
stepname

UNIT return info area

t UCB
I~J:t~N/uNITI~hareableStatus

,---VTOC ITR
-

Register 15 r- -----]
*NAMES of UNIT return info area

~'-'
'"

r' (r'

Extended Description for Diagram 5.10.4

Module: IDCSA08

Procedwe: IDCSA08

1. 	 IDCSA08 first checks for invalid incoming arguments.
If there aren't exactly three arguments, with NAMES
the second argument, or if there aren't exactly four
arguments, with UNIT the second argument,
IDCSA08 issues a UABORT macro with code=40.

Module: IDCSA08

Proced...e: IDCSA08

2. 	 IDCSA08 uses the second argument to determine what
information to return to the module that issued
USYSINFO. For a NAMES request, IDCSA08 returns
the job and step names; for UNIT, IDCSA08 returns
specific unit information about the unit identified by
way of the DO name supplied as the fourth argument.

Modllle: IDCSA08

Procedwe: IDCSAOS

3. 	 IDCSA08 issues an EXTRACT macro to obtain the
address of the task I/O table (TIOT). IDCSA08 takes
the job and step names from the TIOT and places
them in the information area supplied by the caller.

Module: IDCSA08

Procedure: IDCSA08

4. 	 IOCSA08 searches the TIOT DO entries to find a DO
name that matches the DO name supplied as the
fourth argument. If IDCSA08 doesn't find the DO
name, it issues an error message and sets the caller's
return code to 4. If IDCSA08 finds the DO name, it
places the unit control block (UCB) address for that
DO entry in the information area supplied by the
caller. The UCB address is then used to obtain the
binary channel and unit addresses, the indicators
about task and system sharing status, and the VTOC
TTR pointer. IDCSA08 places this information in the
information area supplied by the caller.

~ Module: IDCSA08
(1)

s: Procedwe: IDCSA08 o
C-
o 5. IDCSA08 puts the return code in register 15 and

returns control to the module that issued the -o
"0 USYSINFO macro.

e (1)

o·
::s
N

~

00
~ Diagram S.lO.S System Adapter - UWTO Macro From Module Issuing

o
r.n
"
;;i INPUT
N

;.
(")
(")

~ Register 1

~J;,.;.;.::;;;;.;.-.;...----... :'>l 1. Checks incoming arguments.
;;
o

,
Q.. t GDTr.n
'" ~
(i.

It Address of a Fullword
en '"
r
o 2. Builds WTO parameter test.

(JQ

;:;

(Description-Code

Rou ting-Code Message
3. Issues WTO macro.

t Message Text

Message Length

Message Text 4. Returns.

4.., ~ 4..,

r' r 	 r

Extended Description for Diagram 5.10.5

Module: IDCSA08

Procedure: IDCSA08

1. 	 IDCSA08 first checks for invalid incoming arguments.
If there aren't exactly three or five arguments,
IDCSA08 issues a UABORT macro with code=40.

Module: IDCSA08

Procedure: IDCSA08

2. 	 IDCSA08 builds the Write to Operator parameter list.
IDCSA08 places the message text and its length in the
parameter list. If the routing and descriptor codes are
supplied, IDCSA08 places them at the end of the
message text and sets the multiple console support
(MCS) flags.

Module: IDCSA08

Procedure: IDCSA08

3. IDCSA08 issues a WTO macro.

Module: IDCSA08

Procedwe: IDCSA08

4. 	 IDCSA08 returns control to the module that issued the
UWTO macro.

3:
;.'"
o
c.
o-.
o
~
~ o·
:l

N

~

r r r

I/O Adapter Visual Table of Contents

~
(1)

;.
o
Q.

o
o
~ a
0"
::I

N

\Q

~ Diagram 6.0 I/O Adapter Overview
N

o 	 From Module
CIl
" Issuing Macro <
CIl
N

PROCESSING 	 OUTPUT:> n n
IOCSTR or IOXCTLBKto 1. Performs function indicated by macro: 	 ~ ,'" '" 3:

to ~ ~. .' ,~~ -;;.
o
Q.. GOT a. UOPEN
CIl ~ee Diagram
~
(I>

(i' Argument List 	 Data Sets, Catalogs, -E>
VTOCs,~ 	 b. UCLOSE
Volume

See Diagram b 	 Labels
(JQ T T 	 -E>(i'

Data Sets, catalogs, C. UPOSIT

VTOCs, See Diagram

Volume -E>Labels

d. 	 UGET
See Diagram -8

e. 	 UPUT
See Diagram -E>

f. UCOPY

jeCOrdS ~p See Diagram
 -E>

g. 	 UVERIFY
See Diagram ---E>

h. 	 USTOW
See Diagram -B

i. 	 UEXCP
See Diagram -E>

j. 	 UJOINFO
See Diagram -B

Register 15

2. Returns.

4., 	 4..,
"

r r 	 r

Extended Description for Diagram 6.0

Module: IDCIOO1, IDCI002, IDCI003, IDCI004,
IDCIOOS

Proceclures: IDCIOOI, IDCI002, IDCI003, IDCI004,
IDCIO05

1. 	 The I/O operation depends upon the macro:

a. 	 The UOPEN macro opens from one to four data
sets. If DCB parameters are n~ supplied for the
SYSPRINT data set, the default is RECFM=VBA,
LRECL=125, and BLKSIZE=629. All ISAM data
sets are opened for input and QISAM access
method. Diagram 6.1 shows the UOPEN macro in
detail.

b. The UCLOSE macro closes from one to four data
sets that were opened by the I/O Adapter. SYSIN
and SYSPRINT are not closed with this macro, but
at processor termination with the UIOTERM
macro. This is to consolidate termination work.
Diagram 6.2 shows the UCLOSE macro in detail.

c. 	 The UPOSIT positions to a record in a data set on
a direct access device. The type of positioning
depends upon the data set:

For VSAM data sets, positioning may be by key,
relative block address, (RBA) or relative record
number.

For ISAM data sets, positioning is by key only.

For BSAM or BPAM data sets, positioning is by
relative track and record number, TTRz.

Diagram 6.3 shows the UPOSIT macro in detail.

d. 	The UGET macro gets a record from a data set
opened with a UOPEN macro. If the data set is
being processed with keys, the key is returned with
the record. For a keyed VSAM data set opened for
address processing, the key is in the data, but the
address of the key is not returned. For a VSAM
data set using blocked processing, a control interval
is returned. If a relative-record data set (RRDS) is

~
tD being processed, a relative record number is
;. returned. Only if a data set is opened for update
8. processing may the record be modified in the
o buffer. If a data set is opened for update - processing, a UPUT must be issued after each o

a
-g UGET even if it is the last UGET before the data

set is closed. Update processing is provided by the
o· I/O Adapter when processing a PUT (Replace)
~ request by the REPRO FSR. Diagram 6.4 shows
~ the UGET macro in detail.

e. 	 The UPUT macro writes records to a data set that
was opened with the UOPEN macro. Multiple
records can be written with one UPUT. If the data
set is VSAM opened for block processing, the
record must be a control interval. A UPUT must be
issued for each UGET on a data set opened for
update. Diagram 6.5 shows the UPUT macro in
detail. If the data set is SYSPRINT on a TSO
terminal, UPUT gives control to Diagram 6.5.1.

f. 	 The UCOPY macro copies one data set to another
data set if both data sets have been opened with the
UOPEN macro. The input data set may be
positioned to a starting point with the UPOSIT
macro before the copy takes place. The UCOPY
copies all records from the input data set starting at
the beginning record and continuing until
end-of-file or a terminating error. If the output data
set has records before the UCOPY, the following
applies:

If the data set is VSAM with keyed sequential
record format, the input records are merged with
the existing records.

If the data set is VSAM with entry sequential
record format, the input records are added after
the existing records.

If the data set is non-VSAM, the disposition
parameter (DISP) on the DD statement controls
the placement of the new records. ISAM data sets
cannot be used for output with UCOPY.

The UCOPY macro also copies a VSAM catalog to
an empty VSAM catalog if both catalogs have been
opened with the UOPEN macro. The entire input
catalog is copied.

Diagram 6.6 shows the UCOPY macro in detail.

g. 	 The UVERIFY ensures that the address for the
end-of-file for the VSAM data set in the VSAM
catalog is the same as the end-of-file address on the
I/O device. If the two addresses are not identical,
the VSAM catalog changes to match the I/O
device. The data set must be VSAM opened for.
control interval output processing. A return code
from the UOPEN macro indicates that the data set
may need verification.

The UVERIFY routine checks to see if the data set
can be verified before issuing the VSAM VERIFY
macro. The FSR should ignore the return code
from UOPEN and issue the UVERIFY in all cases
except where a zero IOCSTR address is returned
from UOPEN. At UOPEN, VSAM just checks the

VSAM catalog for information about the data set;
it does not check the physical data set. If the
UOPEN returns a code saying that there is no data
in the data set, the physical data set mayor may
not have data. Diagram 6.7 shows the UVERIFY
macro in detail.

h. 	 The USTOW macro deletes or renames a member
of a partitioned data set that was opened with a
UOPEN macro. The partitioned data set must be
opened for output and BPAM processing. Diagram
6.8 shows the USTOW macro in detail.

i. 	 The UEXCP macro provides for EXCP processing
of volume labels and data sets. Diagram 6.9 shows
the UEXCP macro in detail.

j. 	The UIOINFO macro returns information from a
JFCB about a data set identified by dname. The
macro analyzes an option byte passed by the caller
to determine what kind of information is required.
The types of information which may be requested
are:

Data-set name
Volume serial list
Device type
Timestamp

The caller may provide UIOINFO with a work area
into which the requested information should be
placed or he may provide an UGPOOL ID. In the
latter case UIOINFO obtains the required amount
of storage. (The caller is responsible for freeing this
storage.)

The data requested is formatted into the return
area and control is returned to the caller. Diagram
6.10 shows the UIOINFO macro in detail.

Module: IDCIOOI

Proceclwe: IDCIOO1

2. 	 A return code is put in register 15. If the return code is
non-zero, a message is written. Control returns to the
module that issued the Umacro.

~ Diagram 6.1 I/O Adapter - UOPEN Macro - Overview
~

o 	 From Module
Vl
.......

<
Vl
N

~
~ OCARRAY
~ 1. Builds IOCSTR for each 'IOCS's:: OPNAGL.
~ IOCSTR;.

GDT 	
See Diagram

8- -8 	 \
Vl
~

:;! 2. Builds control block for each ,,' data set. ~
~
CIl See Diagram 	 IOCSEX

,,' 	
--8>b

OQ

~ Data SCI Namc

'\.:ACB or DCB

OPNAGlData Sets or 	 3. Opens data selS,
Catalogs

OPNIOC

4. 	Checks each data sel for Data Sets or
successful OPEN, 	 Catalogs

See Diagram --5)

Register 15

5. 	Returns. I

"
~ 	 \.,

r· r 	 r

Extended Description for Diagram 6.1 set is non-VSAM, IRTOPEX exit routine is used to

complete the DCB. No exit routine is used in VSAM
Module: IDCIOOI IDCI002 because all VSAM data sets have been cataloged with

the DEFINE command, and VSAM gets all theProcedures: IDCIOOP, OPENRTN, DSDATA
information from the VSAM catalog. If the OPEN

1. 	 Steps 1 and 2 are repeated for each open argument routine detects an ABEND condition while opening a
list, OPNAGL, that the calling module $ives to the non-V SAM data set, system OPEN passes control to
UOPEN macro via register I. IDCIOOP builds an ABEXRTN, an exit routine, which sets IOCINFAE,
internal array, OCARRAY, to describe the open to be the abend flag in IOCSEX. OPENRTN attempts an
performed. OPENRTN increments the identifier in open on all the data sets even if one doesn't open.
IODSID by 1 to form a unique identifier for the data

Module: IDCI002set. OPENRTN uses the identifier in a UGPOOL
macro to obtain storage for an IOCSTR and IOCSEX Procedure: OPENRTN, CKNONOP, BUILDRPL
for the data set and data set name save area.

4. 	 (Note: If VS2.03.808 is installed, TESTCB andOPENRTN puts the 10CSTR into the chain of
SHOWCB macros are not issued in this step. Specific IOCSTRs addressed from IODATA in the I/O
fields in the ACB are processed directly.) OPENRTNAdapter Historical Data Area, IODATA. DSDATA
or CKNONOP tests each data set for a successful gets information about a non-VSAM data set with
open. If the data set is VSAM, OPENRTN issues a either the data set name or the DD name. If there is a
TESTCB macro to test the results of the OPEN. If thedata set name, the data set is dynamically allocated. If
data set is non-VSAM, CKNONOP checks the openthe OPNAGL indicates that the open is for a catalog
flags in the DCB (DCBOFLGS). If the data set openedrecovery area (CRA), the DSDATA routine generates
successfully, OPENRTN or CKNONOP setsa data set name for the CRA, namely,
IOCMSGOP in the IOCSTR and IOCFLGOP in theCATALOG.RECOVERY.AREA.VOL.xxxxxx where
IOCSEX. For a VSAM data set, a second TESTCB isxxxxxx is the volume serial number of the CRA's first
issued to determine if the opened object is a path. Ifextent. See Diagram 6.1.1.
so, keyed processing is assumed; otherwise, if address

Module: IDCI002 or control interval processing was not specified in the
OPNAGL, OPENRTN issues the TESTCB toProcedure: BUILDACB, BUILDDBK
determine if the data set has an index. An additional

2. 	 If the data set organization is VSAM, BUILDACB TESTCB is performed to determine if the data set is a
issues a GENCB macro to build an EXLST and an Relative Record data set (RRDS). For all VSAM data
ACB control block. (Note: VS2.03.808 is installed, sets, OPENRTN issues a SHOWCB macro to obtain
the BUILDACB procedure does" not issue a GENCB the data set attributes and BUILDRPL builds a RPL to "
macro to build an EXLST and an ACB control process the VSAM data set. See Diagram 6.1.3. (Note:
block. It builds them directly.) BmLDACB puts If VS2.03.808 is installed, TESTCB and SHOWCB

macros are not issued in this step. Specific fields in the" the address and length of the control blocks in the
ACB are processed directly.) IOCSEX. If the data set organization is non-VSAM.

BUILDDBK issues a UGPOOL with the data set Module: IDCIO02 IDCIOOI

identifier from IODSID for storage for the DCB.
 Procedures: DSDATA, BUILDACB, BUILDABK,
BUILDDBK moves a model DCB to the storage IRTOPEX, CKNONOP, BUILDRPL, OPENRTN,
area and BUILDDBK puts the address of the DCB IDCIOOP

in IOCSEX in IOCCBA, and initializes the DCB
~ S. 	 If any errors m;~urred, OPENRTN, DSDATA,with information for the data set. See Diagram 6.1.2. 5

~ Module: IDCI002 non-zero return code in register 15. IDCIOOP returns
2.. control to the module that issued the UOPEN macro.

" 	 BUILDACB, BUILDRPL, or CKNONOP sets a

Procedures: OPENRTN, IRTOPEX, ABEXRTN
o

3. 	 OPENRTN issues one OPEN macro specifying up to~
four DCBs and/or ACBs. If a modified JFCB is~ o· required, OPENRTN issues an OPEN macro,

:l TYPE=J, that specifies up to four DCBs. If the data
tv

'" VI

~ Diagram 6.101 I/O Adapter - DOPEN Macro - Build 10CSTR a-
o
{Il

"
{Il
<
N

>n
n IODATA
(0
til
til

(0
~ IODADD

o
Co
{Il

;.

((IODX~(0

~ riO
(0 User Controlled '"

DD Names
b
~ riO

Alternate

DD Names

JFCB

4., 4., 4.,

r r 	 r

Extended Description for Diagram 6.1.1

Module: IDCI002

Procedure: OPENRTN

t. OPENRTN tests the data set for SYSIN or
SYSPRINT.

SYSIN is tested in two ways:

• 	 SYSIN is the DO name in the OPNAGL.

• 	 OPNTYPSI flag in OPNAGL is on.

SYSPRINT is tested in two ways:

• 	 SYSPRINT is the DO name in the OPNAGL.

• 	 OPTYPSO flag in OPNAGL is on.

If the data set is SYSIN, OPENRTN checks 10DICS
for an address of an 10CSTR already built for SYSIN.
If an IOCSTR is built, SYSIN is already open (or a
open was attempted), and OPENRTN returns the
address of the IOCSTR for SYSIN in a fullword whose
address is in OPNIOC in OPNAGL. No further
processing is done on SYSIN. If the data set is
SYSPRINT, OPENRTN checks IODOCS for an
address of an IOCSTR already built for SYSPRINT. If
an IOCSTR is built, SYSPRINT is already open, and
OPENRTN returns the address of the IOCSTR for
SYSPRINT in a fullword whose address is in OPNIOC
in OPNAGL. No further processing is done on
SYSPRINT. Processing continues with step 2 if the
data set is not open or no open has been attempted.

Module: IDCI002

Procedwe: 0 PENRTN

2. 	 OPENRTN increments by I the data set identifier in
IODSID to form a unique identifier for the data set.
OPENRTN issues a UGPOOL with the data set
identifier to obtain storage for the IOCSTR plus 4
bytes for the characters 'IOCS', the IOCSEX, and the
data set name. If storage is not available, PRINTMSG
writes a message. OPENRTN chains the new 10CSTR
to the last 10CSTR in the chain. If the data set is

~ 	 SYSIN or SYSPRINT, OPENRTN saves the address
~

;. 	 of the IOCSTR in the I/O Adapter Historical Data
R 	 Area, 10DATA. OPENRTN checks the requested
s., 	 processing of the data set specified in OPNOPT in

OPNAGL for input, update or output, and copies into o
the IOCSTR. Input is the default. The OPNAGL is~ .., 	 used to pass information to the I/O Adapter in

~ requesting a data set be opened. Information from the
:l OPNAGL is placed in the IOCSTR and IOCSEX

which are then used by the I/O Adapter to control

o·

~
-...j

processing of the data set once it is opened. The cross
reference at the end of this Extended Description
shows how OPNAGL information is transposed into
the 10CSTR and IOCSEX.

Module: IDC1002, IDCI004

Procedures: OPENRTN, IDCI004

3. 	 If the invoker of Access Method Services supplied a
list of DO names that he wants to control, the address
of the list is in IODXTN. If a list exists, OPENRTN
compares each entry in the list with the DO name
addressed by OPNDDN. If a match is found,
OPENRTN puts the address of the user routine in
10CXAD. OPENRTN builds a parameter list for the
user routine and puts the address of the parameter list
in IOCXPM. OPENRTN gives control to the user
routine to do the open. For lack of any information
from the user routine about the data set, OPENRTN
sets the IOCSTR to indicate the data set is non-VSAM
with variable length records and logical record length
of 32,760. This does not restrict the type of data sets
that can be user controlled. It is just to make the data
set appear as something to the FSR that uses it. If the
user data set is SYSPRINT on a TSO terminal,
IDCI004 gives a return code of zero because a TSO
terminal doesn't need to be opened. If a data set is not
user controlled, control continues with step 4.

Module: IDCI002

Procedure: DSDATA

4. 	 If the invoker of Access Method Services specified a
list of alternative DD names, IDCTOIT placed the list
address in IODADD at I/O initialization time. The
I/O Adapter has a list of DD names for which the
invoker can supply alternatives. DSDATA compares
the DD name from OPNAGL against the list of names
in the I/O Adapter. If a match is found, DSDATA
checks the alternative DO name list to see if an
alternative DO name has been provided. If a DD
name is found, UOPEN uses it instead of the DO
name from OPNAGL.

Module: IDCI002

Procedure: DSDATA

5. 	 The OPNAGL can specify either the data set name or
the DD name.

• 	 If the data set name is specified, DSDATA builds
an ALLAGL and issues an UALLOC macro to
dynamically allocate the data set. UALLOC
returns a DO name for the data set and DSDATA
puts the address of DO name in the IOCSTR. If the

data set organization is not specified in the
OPNAGL, DSDATA puts the data set
organization returned by UALLOC in the
10CSTR.

If OPNOPTBK or OPNOPTKS is not specified,
IOCMACCR is set to 'I'.

• 	 If the DD name is provided in the OPNAGL,
DSDATA issues a DEVTYPE macro with the DO
name in order to obtain device information and to
ensure that there is a DO statement with the
specified DO name. DSDATA checks the unit type
returned by the DEVTYPE macro for unit record
and direct access and sets flags in IOCSEX. No
indication is set in IOCSEX for magnetic tape.
DSDATA issues a RDJFCB macro to obtain more
information about the data set. DSDATA uses a
QSAM DCB with the RDJFCB macro. If a
modified JFCB is required, DSDATA moves the
data-set name and the list of volume serial numbers
from the OPNAGL to the JFCB and sets a flag in
the JFCB to prevent the JFCB from being written.
DSDATA generates a data-set name for the CRA.
The name generated is: 'CATALOG.RECOVERY.
AREA.VOL.xxxxxx ',where xxxxxx is the
volume serial number for the first CRA extent.
DSDATA checks the JFCB to determine if the data
set is identified by DO * or SYSOUT=A. If the
data set organization is not specified in the
OPNAGL, DSDATA puts the data set
organization returned by the JFCB in the 10CSTR.
The data set name returned by RDJFCB is saved.

Module: IDCIOOI IDCI002

Procedures: IDC(OOP, OPENRTN, DSDATA

6. 	 An ISAM data set can only be opened for input with
the QISAM access method. If anything else is specified
in the OPNAGL, the (SAM data set is not opened.

r r r

OPNAGL IOCSTR/IOCSEX Cross Reference Table

OPNAGL IOCSTR/IOCSEX Description

OPNOPTIN IOCMACIN = 'I' Input processing
OPNOPTOT IOCMACOT = 'I' Output processing
OPNOPTUP IOCMACUP = 'I' Update processing
OPNOPTBK IOCMACBK = 'I ' Control Interval processing
OPNOPTKS IOCMACCR = '0' Keyed processing
OPNOPTCR IOCMACCR = '\' Addressed processing
OPNOPTDR IOCMACDR = '\' Direct processing
OPNOPTSK IOCMACSK = '\' Skip sequential processing
OPNMODRS Not required Open reusable data set

with reset
OPNMODAX Not required Open alternate index of

path only
OPNMODUB IOCMODUB = '1' User buffers
OPNMODRP IOCMODRP = '\' Replace processing
OPNTYPXM IOCMODXM = 'I' Export/Import
OPNTYPCI IOCINFCT = 'I' Open catalog
OPNTYPRA IOCRCVRA = '\' Open catalog recovery area
OPNTYPRV IOCRCVXM = '\' Recovery bit for VSAM

:::
;.'"
8
a
o
'g

a o·
::I

~

8 Diagram 6.1.2 UOPEN Macro Build Control Blocks

From Diagram 6. I
o

til
.......

< INPUT 	 PROCESSING OUTPUT

[
~

OPNAGL 	 IOCSEXt. 	For VSAM data sets. continue to
Step 2: for non·VSAM data sets. go to
Step 5. IOCCBA~

[
n

~
~ IOCSTR 	 ::::Jv 2. Obtains storage for control '""-..,~r
rIl 	 blocks (VS2.03.808 only). ""V"

Builds EXLST. ~
n'

~:\('R3. 	Builds ACB V"" ~

4. Return, ACB addre"

I<)CSIX
IOCSTR r--.., 5. Checks for non-VSAM catalog.

-v1
loeeH:\

6. 	Ched;, data SCI IlrganiLallOn. :J 1,.......___.........

7. 	 Ohtalns 'tnr.ige for DCB

Data Set Idc'lIif'cr

8. 	 ImllailLt:' DCB)1 rf---v

~ 	 '-'
'-'

r r 	 r

Extended Description for Diagram 6.1.2

(Without VS2.03.808)

Module: lDCI002

Procedure: BUILDACB

I. 	For a YSAM data set, continue with step 2; for a
non-YSAM data set~ go to step 5.

2. 	 If a modified JFCB is to be used for opening a YSAM
catalog, BUILDACB obtains storage and copies the
JFCB previously read and modified by DSDATA.
BUILDACB issues a GENCB macro to build an
EXLST control block. Only the EODAD exit will be
taken if GETYSAM encounters an end-of-file.
LERAD and SYNAD exits are specified, but inactive.
BUILDACB puts the IJddress and length of the
EXLST control block In IOCEXA and IOCEXL,
respectively.

Module: lDCI002

Procedure: BUILDACB

3. 	 BUILDACB issues a GENCB macro to build an ACB
control block. ACB parameters set as a result of
information contained in the IOCSTR/IOCSEX or
OPNAGL.

Bit Referenced ACBMACRF=

IOCMACIN = 'J' IN
IOCMACOT = 'I' OUT
IOCMACUP = 'J' OUT
IOCMACBK = 'I' CNY
IOCMACCR = '0' KEY
IOCMACCR = 'I' ADR
IOCMACDR = 'I' DIR
IOCMACSK = 'I' SKP
IOCMODUB .. 'I' UBF
OPNMODAX .. 'I' AIX
OPNMODRS .. 'I' RST

If either OPNOPTDR or OPNOPTSK is not set,
~ MACRF=SEQ is specified.!l
:r
o
p. 	 If IOCRCYRA='I', BUILDACB specifies the
o 	 CRA=UCRA option for opening a catalog recovery

area. If the data set is to be opened as a catalog, -o
"0 BUILDACB specifies the CATALOG OPEN option.
'" If a password is supplied, BUILDACB gives it to the
~ GENCB macro. BUILDACB puts each password in an0' array of passwords to save the passwords until OPEN=' ... 	 time and puts a pointer to the password in the ACB. If

a modified JFCB is required, BUILDACB gives the
address of the JFCB to the GENCB macro. If
IOCRCYRA='J', the third parameter passed to
UOPEN is not an address of an OPNAGL; rather it is
an address passed by EXPORTRA. The contents of
this address must be inserted into the ACBUAPTR
field of the ACB. If the type of processing is specified
in the OPNAGL, BUILDACB uses it. BUILDACB
requests address processing if the data set
organization- indexed or non-indexed-is not
known. The YSAM open routine will fill in the correct
organization. If the organization is not specified,
address is set as the default because the GENCB
macro defaults to keyed, and YSAM gives an error if
the data set is not keyed.

Module: lDCI002

Procedure: BUILDACB

4. 	 BUILDACB puts the address and length of the ACB in
IOCCBA and IOCCBL, respectively. If OPNMODRC
in the OPNAGL is I, BUILDACB puts the address of
the ACB in IOCCBP in the IOCSTR.

Module: lDCI002

Procedure: BUILDDBK

5. 	 If the non-YSAM data set is being opened as a catalog,
BUILDDBK does not build control blocks for the data
set; the data set is not opened.

Module: lDCI002

Procedure: BUILDDBK

6. 	 If the data set organization is ISAM, BUILDDBK uses
an QISAM DCB. If the data set organization is
BPAM, BUILDDBK uses a BSAM DCB and changes
the data set organization to partitioned. If the data set
is not BPAM and is being opened for blocked
processing, BUILDDBK uses a BSAM DCB. If the
data set is none of the above, BUILDDBK uses a
QSAM DCB.

Module: lDCI002

Procedure: BUILDDBK

7. 	 If a modified JFCB is required, BUILDDBK adds the
address of the JFCB to the exit list; obtains a work
area; copies the old exit list, the JFCB exit list, and the
JFCB into the work area; and resets the DCBEXLST
address to point to the work area. BUILDDBK issues
a UGPOOL macro with the data set identifier for
storage for the DCB. BUILDDBK puts the address
and length of the DCB in IOCCBA and IOCCBL,

respectively. If OPNMODRC is one, BUILDDBK puts
the address of the DCB in IOCCBP.

Module: lDCI002

Procedure: BUILDDBK

8. 	 BUILDDBK moves the DCB into the storage obtained
by the UGPOOL macro. BUILDDBK moves the DD
name and address of an exit list containing the address
of the OPEN abend routine and the OPEN exit
routine address in the DCB. For an output data set,
BUILDDBK puts the address of an output SYNAD
Routine in the DCB. If the data set is a BSAM data set
and is being opened for update, BUILDDBK obtains a
work area for the DECB and puts the address of the
work area in IOCDEe. For an input data set,
BUILDDBK puts the address of an End-of-Data
routine and the address of an input SYNAD Routine
in the DCB. If the data set is input and not ISAM,
BUILDDBK changes the error option in the DCB
from abend to skip. BUILDDBK puts any record
format and logical record length specified in the
OPNAGL in the DCB. If a blocksize is specified in the
OPNAGL, BUILDDBK saves it in the IOCSTR.
Subsequently, in the open exit routine, this value will
be placed in the DCB if blocksize has not been
provided by other means.

8

r r 	 r

Extended Description for Diagram 6.1.2 	 If the type of processing is specified in the OPNAGL, Module: IDCI002

BUILDACB uses it. BUILDACB requests address
 Procedure: BUILDDBK (With VS2.03.808) 	 processing if the data set organization- indexed or
non-indexed-is not known. The VSAM open routine 7. If a modified JFCB is required, BUILDDBK adds theModule: IDCI002 will fill in the correct organization. If the organization address of the JFCB to the exit list; obtains a work

Procedure: BUILDACB is not specified, address is set as the default because area; copies the old exit list, the JFCB exit list, and the
VSAM defaults to indexed, and gives an error if the JFCB into the work area; and resets the DCBEXLST1. For a VSAM data set, continue with step 2; for a
data set is not indexed. 	 address to point to the work area. BUILDDBK issuesnon-VSAM data set, go to step 5. a UGPOOL macro with the data set identifier forIf the data set is to be opened as a catalog, 2. If a modified JFCB is to be used for opening a VSAM 	 storage for the DCB. BUILDDBK puts the addressBUILDACB specifies the CATALOG OPEN option.catalog, BUILDACB obtains storage and copies the 	 and length of the DCB in IOCCBA and IOCCBL,If a password is supplied, BUILDACB puts l'·ach JFCB previously read and modified by DSDATA. 	 respectively. If OPNMODRC is one, BUILDDBK putspassword in an array of passwords to save the BUILDACB issues a UGPOOL to obtain storage for 	 the address of the DCB in IOCCBP. passwords until OPEN time and puts a pointer to thethe three VSAM control blocks: EXLST, ACB, and password in the ACB. If a modified JFCB is required, Module: IDCI002RPL. If OPNSTRNO is zero, BUILDACB obtains BUILDACB puts the address of the JFCB in the ACB storage for one RPL; otherwise the value of 	 Procedure: BUILDDBK control block. OPNSTRNO determines the number of RPLs

8. BUILDDBK moves the DCB into the storage obtainedrequired. If the return code from UGPOOL is If IOCRCVRA='I', BUILDACB specifies the
by the UGPOOL macro. BUILDDBK moves the DDnon-zero, BUILDACB sets an error condition code CRA=UCRA option for opening a catalog recovery name and address of an exit list containing the address and terminates UOPEN processing. 	 area. If I OCRCVRA='\ " the third parameter passed of the OPEN abend routine and the OPEN exitto UOPEN is not an address of an OPNAGL; rather it BUILDACB first builds an EXLST control block by 	 routine address in the DCB. For an output data set,is an address passed by EXPORTRA. The contents of issuing the EXLST macro. Only the EODAD exit will 	 BUILDDBK puts the address of an output SYNADthis address must be inserted into the ACBUAPTR

be taken if GETVSAM encounters an end-of-file. 	 Routine in the DCB. If the data set is a BSAM data setfield of the ACB. If the value of OPNSTRNO is
LERAD and SYNAD exits are specified, but inactive. 	 and is being opened for update, BUILDDBK obtains agreater than \, BUILDACB moves the value of
BUILDACB puts the pointer to the EODAD exit 	 work area for the DECB and puts the address of theOPNSTRNO to the ACB.
routine into the exit list. BUILDACB puts the address work area in IOCDEC. For an input data set,
and length of the EXLST control block in IOCEXA Module: IDCI002 BUILDDBK puts the address of an End-of-Data
and IOCEXL, respectively. routine and the address of an input SYNAD RoutineProcedure: BUILDACB

in the DCB. If the data set is input and not ISAM,Module: IDCI002 4. BUILDACB puts the address and length of the ACB in BUILDDBK changes the error option in the DCB
Procedure: BUILDACB 	 IOCCBA and IOCCBL, respectively. If OPNMODRC from abend to skip. BUILDDBK puts any record

in the OPNAGL is I, BUILDACB puts the address of format and puts a pointer to the passwrod in the ACB3. BUILDACB builds an ACB control block by issuing the ACB in IOCCBP in the IOCSTR. 	 logical record length specified in the OPNAGL in thethe ACB macro. The ACB macro generates the
DCB. If a blocksize is specified in the OPNAGL,following attributes for the MACRF field: IN, SEQ, Module: IDCI002
BUILDDBK saves it in the IOCSTR. Subsequently, in ADDR. These attributes are overridden with Procedure: BUILDDBK 	 the open exit routine, this value will be placed in the information contained in the IOCSTR/IOCSEX or DCB if blocksize has not been provided by otherOPNAGL. 	 S. If the non-VSAM data set is being opened as a catalog,
means.BUILDDBK does not build control blocks for the data

set; the data set is not opened. Bit Referenced ACBMACRF=

Module: IDCI002
IOCMACOT = 'I' OUT

IOCMACUP = 'I' OUT Procedure: BUILDDBK

3::
." IOCMACBK = 'I' CNV 6. If the data set organization is ISAM, BUILDDBK uses s- IOCMACCR = '0' KEY o 	 an QISAM DCB. If the data set organization is
Q. IOCMACDR = 'I' D1R BPAM, BUILDDBK uses a BSAM DCB and changesIOCMACSK = 'I' SKPS the data set organization to partitioned. If the data setIOCMODUB = '\' UBFo is not BPAM and is being opened for blocked'g OPNMODAX = •I' AIX processing, BUILDDBK uses a BSAM DCB. If theOPNMODRS = 'I' RST data set is none of the above, BUILDDBK uses a o·
:I 	 QSAMDCB. ... e

i

i Diagram 6.1.3 UOPEN Macro Check OPEN

<
o
(Il

(Il
N

i
gJ

3:
~

;. ACBo
Q. ,/
(Il ""
~

~
~r
til

b
QQ
Ii·

DCB "-,
-v'

~ ~
'-'

{' 	 { r'

Extended Description for Diagram 6.1.3

(Without VS2.03.808)

Module: IDCI002

Procedure: OPENRTN

1. 	 The OPEN is checked differently for a VSAM or
non-VSAM data set. For a VSAM data set, control
goes to step 2; for a non-VSAM data set, control goes
to step 6.

2. 	 For VSAM data sets, OPENRTN issues a TESTCB to
find out if the open was successful. If the open was
successful, OPENRTN sets flags in the IOCSTR and
IOCSEX to indicate that the data set can be used and
that it must be closed when finished.

Module: IDCI002

Procedure: OPENRTN

3. 	 OPENRTN issues a second TESTCB to determine if
the opened object is a path. If a path has......-:d,
keyed processing is assumed. If REPLACE processing
has been specified for a path, PRINTMSG writes an
error message. If the opened object is not a path and if
the IOCSTR does not specify control interval or
address processing, the type of processing is
determined by a TESTCB macro. The TESTCB macro
tests the index portion of the data set. If there is an
index portion, keyed processing will be used. If there is
no index portion, the TESTCB error routine receives
control from TESTCB and sets the type of processing
to address processing. If the TESTCB indicates the
data set has no index, OPENRTN issues a TESTCB
specifying ATRB=RRDS. If the test is successful,
OPENRTN sets IOCMACCR='O' (keyed) and
IOCMACRR='I'. Thus, fora

KSDS IOCMACCR = 0, IOCMACRR = 0
ESDS IOCMACCR = I, 10CMACRR = 0
RRDS IOCMACCR = 0, IOCMACRR = 1

Module: IDCI002

Procedure: OPENRTN PRINTMSG
3:
;." 4. OPENRTN issues a SHOWCB macro to obtain the

ACB error code, logical record length or control8
interval, key length, and relative key position. Only S the required fields are shown. If the data set did not o open, PRINTMSG writes a message. If the data set did]
open successfully, OPENRTN moves the ACB

~ information to the IOCSTR. o·
;l ...
o
I.A

Module: IDCI002

Procedure: BUILDRPL

5. 	 For any VSAM data set that is open, BUILDRPL
builds a request parameter list (RPL). Input work
areas are required if the data set is opened for input or
update processing. BUILDRPL issues a UGPOOL
macro with the data set identification to obtain storage
for the maximum length record or one control interval
for control interval processing. If IOCMODUB='I',
the BUILDRPL procedure of IDCI002 will not issue a
UGPOOL to obtain storage for an I/O area for input
or update processing. In subsequent UGET requests
the FSR will indicate its own buffers in IOCWORK.

If IOCMODXM='I' and IOCMACRR='I', indicating
EXPORT/IMPORT and RRDS, BUILDRPL will get
an extra four bytes for the work area (IOCWKA) if
the data set is input (IOCMACIN='J'). The extra four
bytes will be utilized in later UCOPY processing for
exporting a relative. record data set. The work area
address specified in the GENCB macro for the RPL is
the input work area plus 4 (IOCWKA+4). BUILDRPL
issues a GENCB macro to generate the RPL.
BUILDRPL gives to the GENCB macro the address of
the ACB, options, work area address, maximum
length of a data record, message area address, and
message area length. If IOCMACRR=' I', the OPTCD
will indicate 'KEY'. If the RRDS is to be processed for
output, IOCMACOT='I' or IOCMACUP='I',
OPTCD will indicate 'SKP'. This will cause output
RRDS to be processed in skip sequential mode.

Module: IDCI002

Procedure: BUILDRPL

Information indicated in 10CSTR/IOCSEX which is
reflected in the RPL OPTCD field:

IOCSTR/IOCSEX RPL OPTeD =
10CMACUP='1' UPD

10CMACUP='O' NUP

10CMACDR='I' DIR

IOCMACSK='I' SKP

IOCMACCR='O' KEY

IOCMACCR='I' ADR

10CMACBK='1' CNV

If either 10CMACDR or IOCMACSK is not set,
OPTCD=SEQ is specified.

If no space is available for the work area or the RPL,
BUILDRPL sets an error return code, PRINTMSG
writes a message, and OPENRTN turns off the open
flag in the IOCSTR. Every VSAM data set processed

by the I/O Adapter uses the same message area where
VSAM formats a SYNAD message if an I/O error is
detected.

Module: IDCI002

Procedure: CKNONOP

6. 	 For non-VSAM data sets, CKNONOP checks the
DCB open flags to determine if the OPEN was
successful. CKNONOP puts the address of an exit list
containing the address of the EOV abend routine in
the DCB. If the OPEN was successful, CKNONOP
sets flags in the IOCSTR and IOCSEX to indicate that
the data set can be used and that it must be closed
when finished. If the data set was not opened
successfully, CKNONOP checks IOCINFAE to find
out if the open abended. PRINTMSG writes a
message.

Module: IDCI002

Procedures: OPENRTN, BUILDRPL, PRINTMSG,
CKNONOP, BLDOCMSG

7. 	 A work area the size of a logical record plus the key is
needed for an ISAM data set with unblocked fixed
length records and relative key position of zero. A
work area the size of a physical block is needed for a
BSAM or BPAM data set open for input. C{(NONOP
issues a UGPOOL macro with the data set identifier to
obtain storage for the work area. CKNONOP puts the
address of the work area in IOCDAD. The key and
data will be moved from the buffer to the work area
when a UGET macro is issued.

r r 	 r

Extended Description for Diagram 6.1.3

(With VS2.03.808)

Module: IDCI002

Procedure: OPENRTN

I. 	The OPEN is checked differently for a VSAM or
non-VSAM data set. For a VSAM data set, control
goes to step 2; for a non-VSAM data set, control goes
to step 6.

2. 	 For VSAM data sets, OPENRTN checks the
ACBOPEN flag to find out if the open was successful.
If the open was successful, OPENRTN sets flags in the
10CSTR and IOCSEX to indicate that the data set can
be used and that it must be closed when finished.

Module: IDCI002

Procedure: OPENRTN

3. 	 OPENRTN makes another check to determine if the
opened object is a path. If a path has been opened,
keyed processing is assumed. If REPLACE processing
has been specified for a path, PRINTMSG writes an
error message. If the opened object is not a path and if
the 10CSTR does not specify control interval or
address processing, the type of processing is
determined by checking the index portion of the data
set. If there is an index portion, keyed processing will
be used. If there is no index portion, the type of
processing is set to address processing. If the data set
has no index, OPENRTN next checks the ACB to see
if the data set is RRDS; if so, OPENRTN sets
10CMACCR='0' (keyed) and 10CMACRR='J'.
Thus, for a

KSDS 10CMACCR = 0, 10CMACRR = 0
ESDS 10CMACCR = I, IOCMACRR = 0
RRDS IOCMACCR = 0, IOCMACRR = I

Module: IDCI002

Procedure: OPENRTN PRINTMSG

4. 	 OPENRTN obtains the ACB error code, logical record
~ 	 length or control interval, key length, and relative key

position. Only the required fields are obtained. If the:ro

data set did not open, PRINTMSG writes a message. 8
If the data set did open successfully, OPENRTN

~ moves the ACB information to the 10CSTR. o
~ g
o·
::l ...,
S

Module: IDCI002

Procedure: BUILDRPL

5. 	 For any VSAM data set that is open, BUILDRPL
builds a request parameter list (RPL). Input work
areas are required if the data set is opened for input or
update processing. BUILDRPL issues a UGPOOL
macro with the data set identification to obtain storage
for the maximum length record or one control interval
for control interval processing. If 10CMODUB='I',
the BUILDRPL procedure of IDCI002 will not issue a
UGPOOL to obtain storage for an I/O area for input
or update processing. In subsequent UGET requests
the FSR will indicate its own buffers in 10CWORK.

If 10CMODXM=' \ ' and 10CMACRR=' \', indicating
EXPORT/IMPORT and RRDS, BUILDRPL will get
an extra four bytes for the work area (IOCWKA) if
the data set is input (IOCMACIN='\ '). The extra four
bytes will be utilized in later UCOPY processing for
exporting a relative record data set. The work area
address specified for the RPL is the input work area
plus 4 (IOCWKA+4). If no space is available for the
work area BUILDRPL sets an error return code,
PRINTMSG writes a message, and OPENRTN turns
off the open flag in the 10CSTR.

BUILDRPL generates an RPL via the RPL macro and
initializes it with the address of the ACB, options,
work area address, maximum length of a data record,
message area address, and message area length. If
10CMACRR='I', the OPTCD will indicate 'KEY'. If
the RRDS is to be processed for output,
10CMACOT='\' or 10CMACUP='\', OPTCD will
indicate 'SKP'. This will cause output RRDS to be
processed in skip sequential mode.

Module: IDCI02

Procedure: BUILDRPL

The RPL macro generates KEY, SEQ, NUP for the
OPTCD field. These attributes are overridden with
information indicated in 10CSTR/IOCSEX which is
as follows:

IOCSTR/IOCSEX RPL OPTCD =

10CMACUP='I' UPD

10CMACDR='\' DIR

10CMACSK=' \ , SKP

IOCMACCR='\' ADR

IOCMACBK=' I' CNV

The length of the RPL times ACBSTRNO is stored in
the 10CLRP field of the 10CSTR extension

(IOCSEX). If ACBSTRNO is greater than I, the first
RPL is copied to each additional RPL area.

Module: IDCI002

Procedure: CKNONOP

6. 	 For non-VSAM data sets, CKNONOP checks the
DCB open flags to determine if the OPEN was
successful. CKNONOP puts the address of an exit list
containing the address of the EOV abend routine in
the DCB. If the OPEN was successful, CKNONOP
sets flags in the 10CSTR and IOCSEX to indicate that
the data set can be used and that it must be closed
when finished. If the data set was not opened
successfully, CKNONOP checks 10CINFAE to find
out if the open abended. PRINTMSG writes a
message.

Module: IDCI002

Procedures: OPENRTN, BUILDRPL, PRINTMSG,
CKNONOP, BLDOCMSG

7. 	 A work area the size of a logical record plus the key is
needed for an ISAM data set with unblocked fixed
length records and relative key position of zero. A
work area the size of a physical block is needed for a
BSAM or BPAM data set open for input. CKNONOP
issues a UGPOOL macro with the data set identifier to
obtain storage for the work area. CKNONOP puts the
address of the work area in 10CDAD. The key and
data will be moved from the buffer to the work area
when a UG ET macro is issued.

00
~ Diagram 6.2 I/O Adapter UCLOSE Macro

From M"dule Issuing o
til UCLOSE Maun
til
<
N

PROCESSING>n
~ UCARRAYfIl t. Obtains IOCSTRs to dosefIl

J == 	 2. Build., Itst to dose.
;.'"
o
P
til

Address "f'" ~ 1 tll ~ IOCSTR,§'
fIl

S 3. Closes data se"OQ
n'

4. 	Checks the CLOSE (VSAM data
sets only).

5. 	 Without VS2.03.808:
Dl'allol'atl'S data sl't.

Open Data Sets 6. 	 Without VS2.03.808:

I:rl'l's 'tora~l' for l'ach data 'l't.

With VS2.03.808:

!'n'l's huflns for l'ach nonYS:\\1

data Sl't.

7. 	 Without YS2.03.808:
Kl'IIIOVl" l()eS'lK trollt chaill lor
l'ach data sL'I.

With YS2,03.808: Register 15
I:rl'l's COlli 1'01 hlod;s and work arl'a
stora~l' lor l'ach data Sl't. Kl'ItlOH'S J
IO(,STK lrom dtain for l'aL'l1 data
Sl't,

8. Keturns.

~ ~ '-'

r r 	 r

Module: IDCI002Extended Description for Diagram 6.2 Module: IDCI002

Procedure: CLOSERTN
Procedure: CLOSERTNModule: IDCIOOI, IDCI002
7. 	 CLOSERTN saves the address of the IOCSTR that4. For VSAM data sets, CLOSERTN issues a SHOWCB ProcedlD'e: IDCIOCL BUILDDBK was closed and the address of the next IOCSTR in the macro to return the ACB error code. If the ACB error

chain. CLOSERTN issues a UFPOOL to free all I. 	 IDCIOCL puts the addresses of IOCSTRs in code is non-zero, PRINTMSG writes a message. No
storage obtained for the data set that is closed. OCARRAY. Even if the address is zero, it is put in tests are made for non-VSAM data sets except to write

OCARRAY. The address will be zero if a UOPEN was a message and set an error code if the DCB caused a CLOSERTN passes the IOCSID field to UFPOOL,

issued against a data set, but the IOCSTR could not be CLOSE abend. (Note: VS2.03.808 is installed, the which identifies all storage obtained for the data set.

built. BUILDDBK sets the type of operation to 'close' CLOSERTN searches the IOCSTR chain until the
SHOWCB macro is not issued. CLOSERTN checks the
in OCATYP in OCARRA Y. 	 IOCSTR is found that points to the closed IOCSTR.

ACB error code directly.) CLOSERTN replaces the address of the closed
Module: IDCI002 IOCSTR with the address of the next IOCSTR in the

Module: IDCI002 chain.Procedure: CLOSERTN

Procedure: ENVFREE
2. 	 Only a maximum of four data sets are closed with any

one UCLOSE macro. CLOSERTN examines 5. If the data set has been dynamically allocated, Module: IDCIQOI

OCARRA Y for the addresses of IOCSTRs to close. If ENVFREE builds an ALLAGL with a di'sposition of
 Procedure: IDCIOCL
the address of an IOCSTR is not zero and CLOSE KEEP. ENVFREE then issues a UDEALLOC macro
ALL is not requested, CLOSERTN checks the data set to deallocate the data set. 8. IDCIOCL puts a return code in register IS and returns
for SYSIN or SYSPRINT. If the data set is SYSIN or control to the module that issued the UCLOSE.

Module: IDCI002SYSPRINT, CLOSERTN does not close the data sets

because they are needed until processor termination. Procedure: ENVFREE

For any other non-zero IOCSTR, CLOSERTN saves

6. Without VS2.03.808: For VSAM data sets, ENVFREEthe address. And, if the DCB or ACB is opened,
checks the IOCSEX to see if there are any VSAM CLOSERTN saves the address of the control block in
control blocks to free. ENVFREE compares the length preparation for closing. For a non-VSAM data set,
fields for the ACB, RPL, and EXLST against zero. CLOSERTN sets the address of a SYNAD routine to
When any length is non-zero, ENVFREE issues a zero in the DCB, and CLOSERTN puts the address of
FREEMAIN against the control block. For a close exit list, containing the CLOSE abend routine
non-VSAM data sets that were open, ENVFREEaddress, in the DCB. If the data set is not open,
issues a FREEPOOL macro to free buffers obtained by IOCFLGOP= I, CLOSERTN makes a check to
the OPEN routines.determine if it is user controlled. If it is user

controlled, CLOSERTN passes arguments to the user
 With VS2.03.808: For non-VSAM data sets that were
routine. CLOSERTN continues the above checking open, ENVFREE issues a FREEPOOL macro to free
until: buffers obtained by the OPEN routines. For VSAM
• 	 IDCIOOI specifies CLOSE ALL in OCARRAY data sets, the storage for the ACB, RPL, and exit list

and CLOSERTN has found four IOCSTR control blocks is freed in Step 7 along with the

addresses. This happens during I/O termination. IOCSTR and all other storage having the same

IOCSID.

• 	 IDCIOOI does not specify CLOSE ALL in

OCARRAY, and CLOSERTN has checked all

IOCSTR addresses in OCARRA Y.

:: Module: IDCIOO2

[
1'1>

Procedure: CLOSERTN, ABEXRTN

3. 	 CLOSERTN issues a CLOSE macro with the address S
of up to four DCBs or ACBs. If an abend occurs o
during the closing of an non-VSAM data set, a close ~
exit routine gets control and sets flag IOCINFAE, a indicating that an abend has occurred. The systemo·

::I CLOSE continues processing with the next data set to close .
~

...,
Diagram 6.3 1/0 Adapter UPOSIT Macro (5

o
tI.I

<
tI.I
N INPUT
>(")

(")

" '" '"
;."
~

Q.
o

DT
tI.I

" ~ o·
" '"
b

OQo·

Direct Access
Data Set

EJ

From Module
Issuing UPOSIT

PROCESSING

1. Checks data sel.

2. Positions data set.

• VSAM

• QISAM

• BSAM. BPAM

3. Returns.

OUTPUT

Error Message

Direct Access
Data Set

EJ

Register 15

mI -

4., 4., '-'

r r 	 r

Extended Description for Diagram 6.3

Module: IDCI003

Procedure: ICOI003, PRINTMSG

t. 	 If the 10CSTR address is zero or the data set is not
open (IOCMSGOP=O), IDCI003 issues a UABORT
macro. A user controlled data set cannot be
positioned. If the data set is open for processing
(IOCMSGOP= I), and the data set is user controlled
(IOCFLFEX= I), IDCI003 sets a return code of zero,
and control goes to step 3. If the data set is open for
QSAM, PRINTMSG writes an error message and
control goes to step 3. Whenever any error messages
are written, IDCI003 turns off the open for processing
indicator, 10CMSGOP, so that no more I/O
operations except close are permitted against the data
set.

Module: IDCI003

Procedures: PTAMDS, PRINTMSG, PTISDS

2. 	 IDCI003 positions the data set depending upon the
access method for the data set:

(Note: If VS2.03.808 is installed- PT AMDS does not
issue MODCB or SHOWCB macros. Fields in the RPL
are processed directly.)

• 	 For a VSAM data set, PTAMDS issues a MODCB
macro to place the POINT argument in the RPL.
VSAM uses the POINT argument in the RPL to
position to the requested record. If the data set is
open for adddress processing, PT AMDS puts the
address of the Relative Byte Address (RBA) in
10CRBA into MODCB. If the data set is RRDS
(IOCMACRR='I '), the MODCB ARG parameter
is set to contain the address of the relative record
number which is contained in 10CREL. If control
interval processing is specified (IOCMACBK=' I '),
the MODCB ARG parameter is set to contain the
address of the RBA which is contained in
10CRBA. Otherwise, PTAMDS puts the address of
the key in 10CKYA into MODCB. If the key

3: length of the requested record is greater than the
";. key length for the data set, PRINTMSG writes an
8- error message, and PTAMDS does not position to

the requested record. PT AMDS expands every key a
to 256 bytes by adding binary zeros on the right.o

'g 	 PTAMDS issues another MODCB to inactivate the
End-of-Data routine in the EXLST control block. ~ This is done to prevent the End-of-Data routine

:I from getting control if the record positioned to is
o·
.... beyond the end of the data set. If the End-of-Data

routine receives control, an abend would occur.
PT AMDS issues the POINT macro to position to
the record with the key or the next higher key.
PTAMDS issues a MODCB macro to reactivate the
End-of-Data exit routine. If the return code from
the POINT macro is 12, an I/O error has occurred,
and a message is formatted in the message area by
VSAM. PRINTMSG prints the error message. If
the return code from the POINT macro is 8, a logic
error has occurred, and PTAMDS issues a
SHOWCB macro. If the results from the SHOWCB
macro indicate that no record was found or there
was repositioning beyond the end-of-file, PTAMDS
sets a return code. For all other logic errors,
PRINTMSG writes a message containing the
VSAM RPL error code. For VS2.03.808, the "suppress
messages" flag, IOCMSGSM, is checked. If it is set,
PRINTMSG does not write the message.

• 	 For a non-VSAM data set open for QISAM,
PTISDS does not position the record if the length
supplied is greater than the key length for the data
set. For valid key lengths, PTISDS does the
positioning. PTISDS sets the SYNAD address in
the DCB to the address of a routine to handle "no
record found" situations. PTISDS expands the key
to 256 bytes by padding on the right with binary
zeros. If a SETL has been issued against the DCB,
PTISDS issues a ESETL macro. PTISDS issues a
SETL macro to position to the record with the key
or next higher key. If the positioning is beyond the
end of the data set, the SYNAD routine receives
control from SETL, sets a return code, and puts the
address of the input SYNAD routine in the DCB. If
no errors were encountered, PTISDS puts the
address of the input SYNAD routine in the DCB.

• 	 For a non-VSAM data set open for BSAM or
BPAM, PTISDS issues a POINT macro to position
to the TTRz addressed by 10CTTR. If z is zero,
the exact TTR is positioned to; if z is one, the next
physical block after the TTR is positioned to. No
error checking is done after the POINT macro
because errors cannot be detected until the next
READ or WRITE on the data set.

Module: IDCIOOI

Procedure: IDCIOPO

3. 	 IDCIOPO puts a return code in register 15 and returns
control to the module that issued the UPOSIT.

.... Diagram 6.4 I/O Adapter - UGET Macro -N

From Module
{I) Issuing UGET
o
........

<
{I)

N INPUT PROCESSING OUTPUT

>n
@
'" 1. If entrance is from any module'"
3:: except UCOPY, continue to Step 2; if a
~ entrance is from UCOPY, go to Step
o
Q.. 3,
{I)
It

~
~. Register I

2. Checks data set.
r
o
O·

(JQ

'~----.tGDT

~

3. Transfers control for usertlOCSTR
~ controlled data sets,

IOCSTR

IOCDADData Set 4. Gets record from data set:
/ Length of Record

r=J 8 n • VSAM

QSAM, QISAM • ~Record
BSAM, BPAM •

Register 15
5. Returns,

'-' " "

r r 	 r

Extended Description for Diagram 6.4

Module: IDCIOOI

Procedure: IDCIOGT

I. 	 If entrance is from any module except UCOPY,
control goes to step 2. If entrance is from UCOPY,
control goes to step 3.

2. 	 If the address of the 10CSTR is zero or the data set is
not open for processing, (IOCMSGOP=O), IDCIOGT
issues a UABORT macro to terminate processing. If
end-of-file has been encountered, (I OCFLGEF= I), on
an input data set, IDCIOGT returns control to the
module issuing the UGET. This check allows more
than one module to issue UGETs on the same data set,
and both modules will get end-of-file indications by a
return code.

Module: IDCIOOI

Procedure: GETEXT

3. 	 If the data set is user controlled, GETEXT passes an
argument list to the user routine so the user routine
can perform the I/O operation. GETEXT tests the
return code from the user routine. If the return code is
zero, GETEXT moves the address and length of the

.data record just read to the 10CSTR, and GETEXT
increments the count of successful UGETs. If the
return code is end-of-fiIe, GETEXT sets the end-of-file
flag in the 10CSTR and GETEXT sets the return code
to end-of-file. If the return code is 12 indicating that
no more I/O operations can be performed against the
data set, GETEXT turns off the open-for-processing
flag, 10CMSGOP. For any other return code except 0
and end-of-file, GETEXTsets a return code of 4.
IDCIOGT returns control to the module issuing the
UGET.

Module: IDCIOOI

Procedures: GETYSAM, CHANGE (VS2.03.808 only),
YSAMERR, PRINTMSG, GETNONYS, IRSISYN

~ 4. IDCIOGT reads the data depending upon the access
So" method for the data set:
8. • For a YSAM data set, If 10CMACCP='I',
S indicating a change in processing modes, the
o appropriate change is made in the RPL. The
7l..., following 10CSTR settings specified by the issuer
a of UGET are reflected in the RPL:
0'
;::l

w

w

IOCSTR RPLOPTCD=

10CCHPSQ SEQ
10CCHPDR DlR

If VS2.03.808 is installed, the following additional
IOCSTR settings are reflected in the RPL:

10CHPSK SKP
10CCHPKS KEY
10CCHPCR ADR
10CCHPBK CNY
10CCHPKG KGE
10CCHPKE KEQ
10CCHPUP UPD
10CCHPNU NUP

GETVSAM (or CHANGE if VS2.03.808) will set all
change processing flags to '0', and the 10CSTR will
be changed to reflect the new processing option.

If the data set is RRDS, (IOCMACRR='l " RPLARG is
set to the address of IOCREL so that VSAM will return
the relative record number to UGET.

If user buffer is specified (IOCMODUB=' I '), the
caller has placed the address of the input work area
in 10CWORK. This address will be placed in the
RPL work area field.

For OPTCD=CNY or ADR with DlR or SKP, the
caller has placed an RBA in 10CRBA. The address
of IOCRBA will be placed in the RPLARG field. In
this situation, the RBA will not be moved to
10CRBA following the GET.

For OPTCD=KEY with DlR or SKP, the caller has
placed the address of the key in IOCKY A and its
length in 10CKYL. RPLARG is set equal to
IOCKYA and RPLKEYLN is set equal to 10CKYL.

GETYSAM issues a GET macro in the move mode
and specifies the address of the RPL built when the
data set was opened. If end-of-file is encountered,
the YSAM EODAD exit routine sets the end-of-file
flag in the 10CSTR and sets the return code to
indicate end-of-file. GETYSAM tests the return code
from GET. If the return code indicates a logic error,
a logic error code is in the RPL. If the return code
indicates an I/O error, YSAM has formatted a
message in the message area and put a code in the
RPL. If the return code is zero, the YSAM GET
routine has read the record or control interval.
GETYSAM moves the record address, record length,
and RBA (if GET SEQ) to the IOCSTR. The record
length is increased by four if a relative record data
set is being exported. This 4-byte area is used by
UCOPY to store the relative record number. If the

data set is being processed by key, GETYSAM
places the address of the key in the record just read
in the IOCSTR. If the return code from the GET is
non-zero, YSAMERR obtains the error code from
the RPL, and PRINTMSG writes a message.
However, if VS2.03.808 is installed, the "suppress
messages" flag, 10CMSGSM, set by the UGET caller
is checked. If it is on, the call to YSAMERR to print
logical error messages is bypassed.

• 	 For a non-YSAM data set open for block
processing, GETNONYS issues a READ macro
and moves the length of the record read to the
IOCSTR. For a non-YSAM data set open for
QSAM or QISAM, GETNONYS reads the data as
a logical record. GETNONYS issues a GET in the
locate mode specifying the DCB address. GET
spanned record processing is the same as
unspanned because UOPEN sets BUFfEK=A in
the DCB, and GET puts all the pieces of the record
together before returning to the I/O Adapter. If an
I/O error occurs during the GET, the non-YSAM
input SYNAD routine issues a SYNADAF and a
SYNADRLS macro to release the SYNADAF
message after the message has been moved to a
save area. IRSISYN turns off the
open-for-processing flag (IOCMSGOP so that no
more processing can be done against the data set. If
end-of-file is encountered, the I/O Adapter
end-of-file routine turns on the end-of-file flag in
the 10CSTR and sets a return code. After the
GET, if no exit routines were called, the GET was
successful, and the GETNONYS puts the address
of the data portion of the record (logical record
address plus four for the variable length records) in
the 10CSTR. GETNONYS puts the length of the
data portion of the record in the 10CSTR. If the
input 10CSEX indicates a catalog recovery area for
import (IMPORTRA), the GETNONYS routine
strips off the 4-byte header record prepended to it
when the record was exported via EXPORTRA
(see UPUT Diagram 6.5). For ISAM data with key
position other than zero, the key is included in the
data portion of the record. For ISAM data sets
with fixed unblocked records and a relative key
position of zero, GETNONVS moves the key and
data to a work area so they will be contiguous.
GETNONVS puts the address of the key in the
IOCSTR for all ISAM data sets.

• 	 For a non-YSAM data set open for BSAM or
BPAM, the record is read as a physical block. If the
data set is open for update, the DECB is copied

r 	 r• 	 r
into the work area whose address is in IOCDEC.
GETNONVS issues a READ macro with the ·S'
option to read the physical block. GETNONVS
then issues a CHECK macro to test the READ. If
an I/O error occurred, IRSISYN issues SYNADAF
and SYNADRLS macros to format an error
message and turns off the open-for-processing flag,
IOCMSGOP. If end-of-file occurred, IROSEOD
turns on the end-of-file flag, IOCFLFEF. If the
Operating System End-of-Volume routines detect
an error during End-of-Volume, IRIEVAB turns
IOCMSGOP, formats a message, and gives a code
to the End-of-Volume routines that causes the
End-of-Volume routines to ignore the error and
return to the I/O Adapter. If the READ is
successful, GETNONVS updates the physical block
length in IOCDLN. For fixed length, unblocked
record format, GETNONVS moves the length of
the block just read from the DCB to IOCDLN. For
variable or spanned record formats, GETNONVS
gets the block length from the Block Descriptor
Word preceding the physical block. For undefined
and fixed blocked record formats, GETNONVS
obtains 10CDLN by subtracting the residual count
in the lOB from the blocksize in the DCB. If the
physical block has keys, the key immediately
precedes the data, and GETNONVS sets IOCDLN
to the length of the physical block plus the key.

Module: IDCIOOI

Procedure: IDCIOGT

S. 	 IDCIOGT puts a return code in register 15 and returns
control to the module that issued the UGET.

3:
('0

;;.
o
0
o
o
'0
('0..,
a o·
;::>

v.>

v.

w Diagram 6.5 I/O Adapter - UPUT Macro
13\ From Module o Issuing UPUT Macro CIl
" <
CIl

PROCESSING OUTPUTtv INPUT;;
()
(1)

'" '" 1. If entrance is from any module except
~
(1) Register I UCOPY, continue to Step 2: if entrance is;.

from UCOPY, go to Step 3. o
Q.

CIl
(1)

:! GDT 2. Checks data set and initializes.
n'
~ 3. Transfers control for user

controlled data set. For.&"
n' Type Identification SYSPRINT on a TSO termin~ Data Set

See Diagram ~

4. Writes the record to:

IOCDAD • VSAM

• QSAM

• BSAM, BPAM IOCSTR
Number of Records

Register 15
5. Returns .

•
~~
'-'

r r 	 r

Extended Description for Diagram 6.S

Module: IDCIOOI

Procedure: IDCIOPT

1. 	 If entrance is from any module except UCOPY,
processing continues with step 2. If entrance is from
UCOPY, processing continues with step 3.

. 2. 	 IDCIOPT uses the type identification to determine
whether or not the record is a message. An omitted
identification or an identification of zero indicates a
data record. A non-zero value indicates a message is to
be written. If the address for the 10CSTR is zero, or
the open-for-processing flag, 10CMSGOP, is off,
IDCIOPT issues a UABORT macro. If IOCPNM is
zero, only one record is written with this UPUT, and
the length of the record is assumed to be in IOCDLN.
If 10CPNM is non-zero, one or more records are
written with the UPUT. IOCDLN contains the total
length of all the records, and each record is preceded
by a two byte length field for that record. IDCIOPT
sets IOCPNM to one if it was initially zero. For
multiple inputs, IDCIOPT puts the length of the first
record in 10CDLN, and IDCIOPT puts the address of
the data for the first record in IOCDAD.

Module: IDCIOOI

Proeedure: PUTEXT

3. 	 If the data set is user controlled, PUTEXT constructs
an argument list. PUTEXT gives control to the user
routine addressed in 10CXAD. If the data set is
SYSPRINT on a TSO terminal, see Diagram 6.5.1 for
more details. If the return code from the user routine
is zero, PUTEXT increments the number of successful
UPUTs in IOCRRN. If the return code is 12,
PUTEXT turns off the open-for-processing flag,
10CMSGOP, so that no processing can be done
against this data set. PUTEXT returns control to step
2 for the next record.

Module: IDCI 001

Procedures: IDCIOPT, PUTYSAM, YSAMERR, •
:!: CHANGE (VS2.03.808 only), PRINTMSG, PUTNONYS,
CD

So IRSOSYN, PUTREP
8. 4. 	 IDCIOPT writes the record depending upon the access
o-. method for the data set:
o
"0 • For a YSAM data set if VS2.03.808 is installed,
CD

PUTYSAM checks to see if 10CMACER is set by ~ the caller of UPUT; if so, PUTYSAM issues the
:3 ERASE macro with a pointer to the RPL. If this
o·
...., case, a UGET for update must previously have been

issued by te caller. If 10CMACEN is set by the
UPUT caller, PUTYSAM issues the ENDREQ
macro with a pointer to the RPL.

Again, with VS2.03.808 only, if any 10CSTR flag
indicating a change in processing modes has been set
by the caller, the CHANGE procedure makes the
appropriate change in the RPL. The following
IOCSTR settings specified by the issuer of UPUT are
reflected in the RPL:

IOCSTR RPLOPTCD=

IOCCHPSQ SEQ

IOCCHPDR DIR

10CCHPSK SKP

IOCCHPCR ADR

IOCCHPBK CNY

IOCCHPKG KGE

10CCHPKE KEQ

10CCHPUP UPD

10CCHPNU NUP

CHANGE will set all change processing flags to
'0', and the 10CSTR will be changed to reflect the
new processing option.

PUTYSAM puts the record length and address in
the RPL. IF 10CMACRR='I'. indicating a PUT to
an RRDS, the RPLARG field in the RPL is set to
the address of IOCREL. If OPTCD=CNY.DIR,
RPLARG field is set to the address of IOCRBA.

If user buffers are specified, (IOCMODUB= 0, the
output area address in the RPL is obtained from
IOCWORK rather than IOCDAD.

PUTYSAM issues a PUT macro to write the
record. The record may be a logical record or a
control interval. If the return code from the PUT is
zero, PUTYSAM increments the number of
successful UPUTs in IOCRRN. If the return code is
non-zero, VSAMERR gets the error code from the
RPL. If the error code indicates a logic error,
YSAMERR determines if it is a duplicate record or
a record-out-of-sequence, PRINTMSG writes the
appropriate message. Otherwise, the error is
assumed to be an I/O error, and YSAM has
formatted an error message in the message area.
PRINTMSG writes the message. If the error code
for an I/O error is greater than 4, YSAMERR
turns off the open-for-processing flag,
IOCMSGOP. However, if YS2.03.808 is installed,
the 'suppress messages' flag, IOCMSGSM, set the
UPUT caller is checked. If it is on, the call to

YSAMERR to print logical error messages is
bypassed.

PUTYSAM will provide replace processing under
the following conditions:

A return code from PUT indicating a
logical error (08)

RPL feedback code indicating duplicate
record.

Replace processing specified by caller
(IOCMODRP= I)

In the PUTREP routine, which handles replace
processing, IOCWKA is checked to determine if
an input work area exists. If not, a UGPOOL is
issued to obtain an input work area. The RPL is
modified to permit update processing. A GET
for update is issued followed by a PUT. The
10CSTR for the PUT will reference the address
of the original PUT record in IOCDAD. After
the PUT, the RPL is reset for no update
processing. PUTYSAM returns control to step 2
for the next record.

For a non-YSAM data set open for QSAM, the
record is written as a logical record. For a
non-YSAM data set open for block processing,
PUTNONYS issues a WRITE macro. For the
SYSPRINT data set, PUTNONYS compares
the record length to the maximum and truncates
the record if it is longer than the maximum. If
the record format is fixed and the record length
is not exactly the logical record length,
PRINTMSG writes an error message, and the
record is ignored. For variable length records,
PUTNONVS sets the length of the record and
record descriptor word in the DCB. If the
output 10CSEX indicates export of a catalog
recovery area (IOCRCYM='\'), a4-byte header
must be prefixed to each record of the portable
data set. The header consists of 4 bytes of
binary zeros. However, if the data-length
(IOCDLN) and the data pointer (IOCDAD) in
the 10CSTR are both zero, then the 4-byte
"header" is written as a software end-of-file and
consist of X'()()()()8000'. PUTNONYS issues a
PUT macro in the LOCATE mode to write the
record. If an I/O error is detected during the
PUT macro, IRSOSYN issues SYNADAF and
SYNADRLS macros to get a message formatted
by QSAM. If the error option field in the DCB
does not indicate that errors are to be accepted,
IRSOSYN turns off the open-for-processing -l

r r r\

=:
[

g,
o
'R
~.
::s
....
'"

flag, 10CMSGOP. PUTNONVS increments the
number of successful UPUTs if an error
message ID has not been set by an error exit
routine. PUTNONVS moves the record into the
area returned by the PUT macro, and, if
necessary, PUTNONVS builds a record
descriptor word RDW. PUTNONVS returns
control to step 2 for the next record.

For a non-VSAM data set open for BSAM or
BPAM, the record is written as a physical block.
If the data set is open for update, the READ
DECB, which was saved in the work area whose
address is in 10CDEC, is used for the WRITE.
If the length of the physical block is longer than
the maximum bl~k length, the block is not
written; an error message is written on
SYSPRINT, and control goes to step 5.
PUTNONVS puts the length of the key, if any,
and the length of the physical block in the DCB. •
The key must be the first part of the physical
block. If the record format is fixed or variable,
PUTNONVS issues a WRITE macro with the
'S' option to write the physical block. If the
record format is undefined, PUTNONVS issues
a WRITE macro without the 'S' option to write
the physical block. PUTNONVS issues a
CHECK macro to test the WRITE. If the
Operating System End-of-Volume routines
detect an error condition during
End-of-Volume, IROEVAB turns off the
10CMSGOP, formats a message, and gives a
code to the End-of-Volume routines that causes
the End-of-Volume routines to ignore the error
and return to the I/O Adapter. If the CHECK
macro detects an I/O error, IRSOSYN issues
SYNADAF and SYNADRLS macros to format
a message. If the DCB error option field
indicates errors are not to be accepted,
IRSOSYN turns off the open-for-processing
flag. PUTNONVS returns to step 2 for the next
physical block.

Module: IDCIOOI

ProcechIre: IDCIOPT

5. When all the records have been written, IDCIOPT
puts a return code in register 15 and returns control to
the module that issued the UPUT.

~ Diagram 6.S.1
~

<
o
~

~
N

~ n g
'" '"
;.3:

8..
~

~
o·
Il>

'" r
~ o·

~JP
Rags

I/O Adapter SYSPRINT on A TSO Termmal

From Diagram 6.S

PROCESSING

1. Checks record.

Record

2. 	Spaces.

(Deleted for VS2.03.807)

3. Writes record.

Register 15

4. Returns. 	 c- -0--:1

~. ~ 	 '

r r 	 r

Extended Description for Diagram 6.5.1 	 from the PUTLINE macro is 16, PUTLINE cannot get
enough storage; IDCI004 issues a UABORT macro

Module: IDCI004 with a UABORT code of 28. If the return code is not
Procedure: IDCI004 16, IDCI004 sets its return code to zero.

1. 	 IDCI004 checks the record type in the last two bytes Module: IDCI004

of the flags field. Refer to the "Program
 Procedure: IDCI004
Organization" chapter for more information on
arguments passed to a user I/O routine. If the record 4. IDCI004 puts its return code in register 15 and returns
type is less than zero, the line is not printed on the control to Diagram 6.5.

terminal, IDCI004 sets the return code to zero, and

control goes to step 3. If the record type is zero or

greater, IDCI004 checks the ASA control character in

the first byte of the record to write. If the ASA control

character indicates "skip to a new page," the record is

not written on the terminal, IDCI004 sets the return

code to zero, and control goes to step 4. If the ASA

control character does not indicate "skip to a new

page," the record will be written on the TSO terminal.

Module: IDCIOO4

Procedure: IDCI004

(Without VS2.03.807)

2. 	 IDCIOO4 checks the ASA control character for the

number of lines to space. Single spacing is the default

if the ASA control character does not indicate double

or triple spacing. IDCI004 issues a PUTLINE macro

to write a blank line for each line to be skipped. Refer

to OS!VS2 TSO Guide to Writing a Terminal

Monitor Program or a Command Processor for more

information about the PUTLINE macro and writing to

a TSO terminal.

Module: IDCI004

Procedure: IDCI004

3. 	 IDCIOO4 again checks the record type. If the record

type is zero, the line is written as a data line. IDCI004

uses the data form of the PUTLINE Parameter List

when the PUTLINE macro is issued. If the record type

is greater than zero, the line is written as a message

line. IDCI004 uses the message form of the PUTLINE

Parameter List when the PUTLINE macro is issued. If3:

~ the message is multilevel, IDCI004 adds the;.
MUL TLVL option to the message form of the8.

o PUTLINE macro. (Note: If VS2.03.807 is installed,- IDCI004 places a 't' at the end of the primary o segment and, if the message is multi-segment,
"R IDCIOO4 assembles the segments into a single line by
~ removing the headers from the second and subsequento·
;:l 	 segments.) IDCI004 issues a PUTLINE macro to

write the line on the TSO terminal. If the return code
N-U.l

ij Diagram 6.6 1/0 Adapter UCOPY Macro
o From Module
~
<
~
>n
R
gj 1. If copY IS. for VSA .

continue with Ste M catalog,
~ for a data set p 2. If copy is
;. Step 3. ' contlnue with
&. GOT
~
~

s"
f o· 2. Copies VSAM catalog.

IOCSTR f or Output
D

D'
aJog

Output VSAM
Catalog

U3. Gets record f rom . set.mput d ata
Return Code

OutputI I
Data Set 4. Tests return code.

5. Puts record on outp t u data set.
Return Cod UI e

Input Data Set I IOCSTR for
VSAM Catalog or Output Data Set

6. Tests return code.

Number of
Set or Records Copied Returns to Step 3 .\E:l,pu'D'" encountered unU an error .or end-of -fil . ISe IS reached.

Register 15
8. Returns.E:1
7.

I I

\., \,
'-'

r 	 r' r

Extended Description for Diagram 6.6 Module:~DCIOOI 	 IDCIOCO turns off IOCMSGOP, and control goes to
step 6.Procedure: IDCIOCOModule: IDCIOOI

Module: IDCIOOI 5. IDCIOCO moves the length and address of the record Procedure: IDCIOOI
just read from the input IOCSTR to the output Procedure: IDCIOCO

1. 	 If IOCMACCC in the input IOCSTR is on, UCOPY is IOCSTR. If the input and output IOCSTR both 8. 	 IDCIOCO puts a return code in register 15 and returnsto copy a VSAM catalog; control continues with step indicate RRDS, IOCREL is moved from the input control to the module that issued the UCOPY.2. If IOCMACCC is off, UCOPY is to copy a data set; IOCSTR to the output IOCSTR before issuing the
control continues with step 3. UPUT. This will result in exact recreation of the

correlation between the relative record number in the
Module: IDCIOOI
input and output RRDS.

Procedure: COPYCAT

If the input IOCSTR indicates IOCMACRR='I' and

2. 	 COPYCAT issues a LOAD macro to load the VSAM the input IOCSEX indicates IOCMODXM='I', this is

copy catalog module, IDACAT21. COPYCAT gives an EXPORT of an RRDS. It is required that the

control to IDACAT21 to copy the input VSAM relative record number be carried in the portable data

catalog to the output VSAM catalog. When set. The relative record returned in IOCREL when the

IDACAT21 returns, COPYCAT checks the return record is retrieved is placed in the 4-byte field

code from IDACAT21. If the return code is zero, immediately preceding the record. The RRDS record

COPYCAT sets the UCOPY return code to zero. If the plus the 4-byte field is then written to the portable data

return code is non-zero, COPYCAT sets the UCOPY set.

return code to four, and writes an error message with

If the output IOCSTR indicates IOCMACRR='I' andthe error code in register O. Control goes to step 8.
the output IOCSEX indicates IOCMODXM='I', this

Module: IDCIOOI is an IMPORT of an RRDS. Records retrieved from

the portable data set have the relative record number
Procedure: IDCIOCO
prepended to the RRDS record. This relative record

3. 	 IDCIOCO obtains a record fromthe input data set by number is moved to the output IOCREL. The address
calling the procedures used for a UGET macro. The of the beginning of the RRDS record is set to its

UGET procedure returns control to this point in the logical beginning (the address of the retrieved record

UCOPY routine. Arguments to the UGET procedures +4) and the length of the record to be written is

are set up as though a UGET had been issued. reduced by 4 bytes. IDCIOCO writes the record by

calling the same procedures used for the UPUTModule: IDCIOOI
macro. IDCIOCO sets up the arguments to the

Procedure: IDCIOCO, PRINTMSG procedures as though a UPUT had been issued. The

UPUT procedure returns control to this point in the
4. 	 IDCIOCO tests the return code from the UGET
UCOPY routine. procedures. If the return code is zero, the UGET

procedure read the record successfully. If the output Module: IDCIOOI

IOCSTR indicates RRDS (IOCMACRR= I) and the

Procedure: IDCIOCOinput IOCSTR indicates nonRRDS (IOCMACRR=O),

an incremental counter is maintained. This counter is 6. IDCIOCO tests the return code from the UPUT

incremented by one each time a record is successfully procedures. If the return code is zero, the UPUT

retrieved from the nonRRDS. This count is placed in procedure wrote the record successfully. If the return

the output IOCREL prior to UPUTing the record. If code indicates an error, IDCIOCO increments the 3:

(l) the return code indicates end-of-file, the copying stops. number of errors for the UCOPY. g- If the return code indicates an error, IDCIOCO
Module: IDCIOOI Q. increments the number of errors for UCOPY. If the o.... UGET routine has set a message, PRINTMSG writes Procedure: IDCIOCO, PRINTMSG o it. Processing continues with the next input record if
7. Control returns to step 3 if the number of errors is less~ the number of errors is less than four, and the '

than four; the open-for-processing flag, IOCMSGOP,a open-far-processing flag, IOCMSGOP, is on. If the s· 	 is on. PRINTMSG writes a message if the message has number of errors is four or IDCMSGOP is off,= 	 been formatted. If the number of errors is four,..., IDCIOCO turns off IOCMSGOP, and control goes to
N..., step 6 .

-- -- -----

... Diagram 6.7 I/O Adapter UVERIFY Macro
~

From Module o
~
<: INPUT _'W PROCESSING OUTPUT~ ...

Register I ~ 1. Checks data set.
gJ I
3: ~
~ tGDT 2. Updates end-of-file indicator in ~
0- I VSAM catalog.

VSAMW
~ Catalog

j".~r
'" ~IOCSTR Register 153. Returns.

QQ
b
n' I I

~
VSAM VSAM

Catalog Data Set

.... ...

'-'" "

(" (" r

Extended Description for Diagram 6.7

Module: IDCIOOI

Procedure: IDCIOVY

t. The second argument is assumed to be a valid
10CSTR address. The UVERIFY does not continue if:

The data set is not VSAM.
No RPL has been built for a VSAM data set.
The VSAM data set is not open.

No error message is written for the last two conditions
because messages have been written at open.

Module: IDCIOOI

Procedure: IDCIOVY

2. IDCIOVY issues a VERIFY macro.

Module: IPCIOO1

Procedure: IDCIOVY, VSAMERR, BLDOCMSG,
PRINTMSG

3. If the return code is not zero, VSAMER obtains the
error code from the RPL. If the error is a logic error,
PRINTMSG writes a message. If the error is an I/O
error, VSAM has formatted a message in the message

. area and put a return code in the RPL. If the error
code is not 4, which indicates that the error occurred
in the data, VSAMERR turns off the
open-for-processing flag, IOCMSGOP. IDCIOVY P.uts
a return code in register 15 and returns control to the
module that issued the UVERIFY.

3:
B

5
&.
S
o
'g
e
15"
:::l
....
N
<A

~ Diagram 6.8 I/O Adapter USTOW Macro
o From Module Issuing
til USTOW Macro "
til
<
N INPUT
>
a <>

1. Checks data set.
en

a
~

:r
8. t'--- --2. Issues STOW macro.til
(1) . Partitioned
< Data Set
~.

'- --r o
~.
<>

Register 15
3. Returns.

L J

~ ::::
Partitioned
Data Set

~
 '-'"

r 	 r' r

Extended Description for Diagram 6.8

Module: IDCI003

Procedure: STOWRTN

1. 	 STOWRTN checks the 10CSTR for the ,artitioned
data set. If the address for the I<t:STR is zero or if
the open-for-processing flag, 10CMSGOP in the
10CSTR, is not on, STOWRTN issues a UABORT
macro to terminate Access Method Services.

Module: IDCI003

Procedure: STOWRTN

2. 	 If the USTOW type is a '0', a member of the
partitioned directory is to be deleted. The address of
the member name and the OCB for the partitioned
data set are obtained from the 10CSTR. STOWRTN
issues a STOW macro with the delete option.

If the USTOW type is an 'R', a member of the
partitioned directory is to be renamed. The address of
the current member name, the new member name,
and the DCB for the partitioned data set are obtained
from the 10CSTR. STOWRTN issues a STOW macro
with the rename option.

STOWRTN checks the return code from the STOW
macro. If the return code is zero, processing continues
with step 3. If the return code is non-zero, a message is
written. If the return code is 4, the name to be added
to the partitioned data set directory already exists in
the directory. If the return code is 8, the member name
to be renamed could not be found. If the return code is
12, a permanent I/O error occurred, a return code of
20 indicates the DCB is not open, and a return code of
24 indicates insufficient storage to process the STOW.

Module: IDCI003

Procedure: STOWRTN

3. STOWRTN puts the return code from the STOW
macro in register 15 and returns control to the module
that issued the USTOW.

3:
t1>;.
o
0

s..
o

"1:1

a t1>

o·
::s
1M
N
-..J

- -- - - --

00

VI

~ Diagram 6.9

~
........
<
CIl
N

~ g
~

Request Keyword== ~
g- I Io.

B EXOARG
::1 n·

I I
B
<Jl

b
(JQ

n·
EXGARG

t IOXCTLBK

I/O Adapter - UEXCP Macro

From Module Issuing

~ -
-

...
IOXCTLBK I

I

1. Performs the service.

I

""'-. a. Opens a da ta set. v'

Volume

b. Reads or writes data.-"> EJ
I

EXPARG]
v

c. Performs REPAIRV processing.t IOXCTLBK ~
S" Di"mm ----IY

EXWRARG

t IOXCTLBK

d. Closes a data set.

IOXCTLBK

Volume

U
.egister 15

~2. Returns. ~ I I

-

~ ~'-'

r r 	 r

Extended Description for Diagram 6.9

Module: mCI005

Procedure: mCI005, OPENPROC, OPNNEW,
OPNTAB, OPNLAB, OPNPASS, OPNVTOC,
PUTGET, BLDBLK, READJFCB, BLDCCWPl,
BLDCCWP2, BLDCCWG, ISSUEXCP, CLOSEPRC,
CLOSESTD, CLOSENEW, SYNAD, CHECKOPN,
RETRY,OCABEND

1. 	 IDCI005 checks the request keyword to determine the
type of service to perform:

'OPEN' indicates a request to open a data set.

'OPENR' indicates a request to open a data set,
VTOC, VTOC header, or staging pack for REPAIRV
processing.

'PUT' indicates a request to write data.

'GET' indicates a request to read data.

'CLOSE' indicates a request to close a data set.

'READCNT' indicates a request to read the count
field of all data records on a track.

'READKD' indicates a reques to read the key and
data fields of all data records on a track.

'SPACCR' indicates a request to bypass the defective
count of a data record, so that the rest of the record
can be read.

'WRITEREC' indicates a request to rewrite the key
and data fields of a data record.

'FWRITE' indicates a request to write the count, key,
and data fields of one or more new data records.

a. 	 The EXOARG contains the type of open to be
performed: .

Open 	 to write an un initialized volume-OPNNEW
issues SVC 82 to create a DEB to allow writing on the
entire volume. Because a VTOC does not exist for a
new volume, the standard OPEN cannot be used.

~ Open to read the MSC tables-OPNTAB issues an
;. OPEN macro to open the data set for output.
8- OPNTAB puts the DEB extents in the caller's area.

o

o
Open 	 to read and write the volume label-OPNLAB-o modifies the JFCB (Job File Control Block) and issues

'g an OPEN macro, TYPE=J, to open the VTOC fora o· output. OPNLAB issues a MODESET macro to enter
supervisor state, modifies the extents in the DEB to

.... allow access to cylinder 0, then issues a MODESET
::l

N
\C macro to return to problem-program state.

Open to verify passwords-OPNPASS sets the
address of IDCI005's retry routine in STAEPARM
and, if a recovery environment has not been
established, issues a UST AE macro to establish it. The
retry routine gets control if the operator doesn't supply
the correct password. If SU 5752-824 is installed, the
retry routine gets control if the operator doesn't supply
the correct password or if RACF authorization is
invalid. OPNPASS modifies the volume serial number
in the JFCB, if requested, and issues an OPEN macro,
TYPE=J, for input or output, as requested. OPNPASS
then issues a UST AE macro to cancel the recovery
environment unless it had already been established.

Open to read VTOC DSCBs-OPNVTOC issues the
USTAE macro to establish a ST AE/ESTAE recovery
environment in order to recover from an OPEN
ABEND. OPNVTOC initializes the open parameter
list, the DCB, and the JFCB. (The JFCB is modified as
follows: the data set name field is set to X'04's and the
caller's volume serial number is inserted in the volume
serial number field in the JFCB). OPNVTOC then
issues OPEN TYPE=J to open the VTOC. If a return
code of zero is returned, the CHECKOPN procedure
is called to make further checks, and the DCBOFLWR
bit is set to prevent the CLOSE SVC from writing an
EOF when the VTOC is closed. OPNVTOC then
reissues the USTAE macro with CANCEL option to
cancel the recovery environment.

For each type of open, the address of the 10XCTLBK
is returned in the caller's area.

b. 	 BLDCCWPI builds CCWs to write "COUNT
KEY DATA" for a write request on a new
volume. Otherwise, BLDCCWP2 builds CCWs
to write "KEY DATA,"

BLDCCWG builds CCWs to read "KEY DATA
" for a read request.

ISSUEXCP issues an EXCP macro to handle
the required [/0 and issues a WAIT macro for
the I/O to complete.

c. 	 For a DCB opened for a new volume,
CLOSENEW builds the SV82LISt and issues
SVC 82 to free the DEB; otherwise,
CLOSESTD issues a CLOSE macro.
CLOSEPRC issues a UFSPACE macro to free
the IOXCTLBK.

Module: mCI005

Procedure: mCI005

2. 	 If an error occurred, a message is written with a
UPRINT macro. IDCI005 returns to the caller with a
return code in register 15.

::::: Diagram 6.9.1 I/O Adapter - UEXCP Macro for REPAIRV Processing
o
o
CIl

< INPUT
CIl
N

~
GDT~

~

::: 1--
~...
::r

To
Po
CIl

:!
~

~.

'" EXWRARGr
~
ri·

1

T

From Diagram 6.9

PROCESSING

1. Performs the requested REPAIRV
processing:

READCNT - reads the count field
of each data record on a track.

OPENR - opens a data set, VTOC,
VTOC header, or a staging pack.

READKD - reads the count, key,
ana data fields of each data record
on a track.

SPACCR - bypasses a defective
count field so that the key and
data fields of a record can be read.

WRITEREC - rewrites the key
and data fields of a record.

FWRITE - writes one or more
new records on a track.

OUTPUT

EXWRARG

Register 15

-]

~ .. , ..4..,. '-'
 "

r r 	 ("

Extended Description for Diagram 6.9.1

Module: mclOos
Procedure: OPENR, READCNT, READKD, SPACCR,
WRITEREC, FWRITE, SETCCW, SETKDCCW,
ADJCCW, Op'NVTH

Open for REPAIRV processing- OPENR can be used to
open a data set or a VTOC for REPAIRV processing, and
to make an entire pack look like a VTOC for REPAIRV
staging error processing. OPENR calls BLDBK to
initialize 10XCTLBLK and read the JFCB. For
non-VTOC header processing, an OPEN, TYPE=J,
macro is issued to open the data set or VTOC for EXCP
processing. OPENR calls CHECKOPN to ensure the
open was successful. If a staging pack is to be opened,
OPENR modifies the DEB to restrict access to the
requested extent.

For VTOC header or VSAM data set processing,
OPNVTH is called to do a pseudo OPEN (SVC 82)
against the impaired VTOC header, and the DEB extent
is modified to limit access to the first track of the VTOC.

When a data set, VTOC, VTOC header, or staging area is
opened for REPAIRV processing, the REPAIRV utility
accesses the data set using the following keywords.
IDCIOOS checks the request keyword to determine the
type of service to perform:

READCNT: READCNT reads the count field of each
record on the track specified with cylinder EXCC and
track EXHH. The count fields are read into the buffer
contained in RIOAREA (pointed to by EXWIOAR). The
number of count fields read (excluding the count field of
record RO) is saved in EXCCWCNT. If READCNT is
being called for hte first time, READCNT calls SETCCW
to build a CCW channel program that reads the count
fields. Next, READCNT puts the caller- specified seek
address and CCW channel 'program address in the lOB.
READCNT then calls ISSUEXCP to execute the channel
program and check for successful completion. Before
returning to the caller, READCNT determines the record
number of the last count field read and saves it in
EXCCWCNT.3:

;. 	 READKD): READKD reads the count, key, and data
fields of each record on the track specified with cylinder 8
EXCC and track EXHH. If the count field of a record issa.
defective, only the key and data fields are read. Theo
length of the key and data fields is obtained from the~ ..., count fields read into RIOAREA buffer with READCNT

~ (if a count field is defective, the key and data length cano·
::l 	 be obtained from the previous Space Count CCW.)
Y>
Y> 	 READKD reads the count field, key field (if it exists),

and the data field into the buffer in the RIOAREA
(pointed to by EXWIOAR). If READKD is being called
for the first time, READKD calls SETKDCCW to build a
CCW channel program that reads the count, key, and
data fields of each record on a track. If READKD is not
being called for the first time, READKD calls ADJCCW
to modify the previously built CCW channel program so
that it will begin reading at the point where the previous
READKD request stopped. Next, READKD puts the
caller-specified seek address and CCW channel program
address in the lOB. READKD then calls ISSUEEXP to
execute the channel program and check for successful
completion. READKD determines the number of CCWs
actually executed and saves it in EXCCWCNT
(ADICCW uses this value when READKD is next
issued,) Before returning to the caller, READKD
determines the location of each data field and saves this
in LOCTAB (pointed to be EXLOCPTR).

SPACeR: SPACCR adjusts a CCW channel program built
for READCNT to bypass a defective count field so that
the record's key and data fields can be read. If the request
is to bypass record RO, SPACCR changes the channel
program to search for record RO (SEARCH ID EQUAL)
instead of to read it. If the request is to bypass a record
other than record RO, SPACCR changes the channel
program so that the SPACE COUNT command replaces
the READ COUNT command for the record whose count
field is defective. EXCCWCNT contains the record
number whose count field is defective.

WRITEREC: WRITEREC writes the data from the buffer
in WIOAREA (pointed to by EXWIOAR). The record
whose key and data fields are to be rewritten is specified
with cylinder EXCC, track EXHH, and record number
EXRECNUM. EXRWFUN indicates the type of write
operation to be performed: Write KD, to write the key
and data fields of a record contained entirely on the
track, or WRITE SPECIAL, to write the key and data
fields of a record contained on the track and on one or
more subsequent tracks. WRITEREC builds a CCW
channel program to locate and rewrite the record, then to
read the record with no data transfer. Next, WRITEREC
puts the caller-specified seek address and CCW channel
program address in the lOB. WRITEREC then calls
ISSUEXCP to execute the channel program and check for
successful completion.

!<WRITE: FWRITE writes one or more records on a
track, beginning with the caller-specified record and
continuing for the caller-specified number of records,
WIOAREA contains the number of records. WIOAREA
contains the number of records to be written, as well as
the data to be written for each record. The location of the

first record to be written is specified with cylinder EXCC,
track EXHH, and record number EXRECNUM. Each
record is written using a WRITE CKD command to write
the record's count, key, and data fields, unless
EXRWFUN indicates the last record written should be a
WRITE SPECIAL. If the requested starting record is
record RO, a WRITE DATA command is used to write
record RO's data field. FWRITE builds a CCW channel
program to locate the point at which writing is to begin,
to write each record, then to locate the starting point
point again and read (with no data transfer) the records
just written. Next, FWRITE puts the caller-specified seek
address and CCW channel program address in the lOB.
FWRITE then calls ISSUEEXCP to execute the channel
program and check for successful completion.

-- -- - -

--

- -- -- -

.... Diagram 6.10 [/0 Adapter
N

o
I:n
........

<:
~

Register I ~
~ I
~ t GDTg-
Q. t Option Byte

~ t Return Area or 0
::!
n' t dname
f! t UGPOOL Storage III
b

OQ
n'

I

U1OINFO Macro

------,.)

~ITL.

..,;

From Module Issuing

...
Register I

I. Obtains requested information.

J

2. Obtains storage for return area, t Return Area
if not supplied.

.. Return Area
3. Formats requested information.)

Register 15...
~4. Returns. I... I

\, \, ~

r r 	 r

Extended Description for Diagram 6.10

Modale: IDClOO3

Prueedwe: DSINFO

1. 	 UIOINFO analyzes the option byte passed by the

caller and determines what kind of information is

required. (Bit 0 indicates device type; bit I indicates

volume serial number(s); bit 2 indicates data-set name;

bit 3 indicates suppress error message, bit 4 indicates

format-4 time stamp.) To get a list of volume serial
 •numbers or data-set name, UIOINFO must obtain

job-control information. UIOINFO issues a RDJFCB

macro using a QSAM DCB. If the return code from

RDJFCB is nonzero, processing continues at step 4.

If device type is requested, UIOINFO issues a

DEVTYPE macro with the dname provided by the

caller.

If time stamp information is requested, UIOINFO

issues the OBTAIN macro to read the format-4 DSCB.

Old and new time stamps information is extracted

from the DSCB.

MCNI.: IDClOO3

Proce4.e: DSINFO

1. 	All of the information that UIOINFO obtained in step

I is placed in IDClOO3's automatic storage work area.

During this process, UIOINFO calculates the actual

length of the data to be passed back to the caller. The

caller can either pass a return area to UIOINFO or

pass a UGPOOL storage ID. If the caller has passed a

return area, UIOINFO checks the first two bytes

(which indicate the length of the return area) to see

whether the return area is large enough. If not,

UIOINFO puts the size required in the third and

fourth bytes, and processing continues at step 4.

If the caller has passed a UGPOOL storage ID,

UIOINFO issues a UGPOOL macro with that ID for

the required storage. The caller is responsible for

freeing this storage.

M04IIIIe: IDCI003

[
3:

Procedure: DSINFO

3. 	 UIOINFO formats the requested information in the g, return area.
o
'g M04IuIe: IDCI003

a Procedure: DSINFO
is'
o 4. UIOINFO sets a return code in register 15 and returns ...,..., to the caller: ...,

•

--

r r 	 r

Text Processor Visual Table of Contents

7.11

Text 	Pro~essor
Overview

7.1 7."!. U 	 7.~ 7.5 7.6I I 	 I I I

UESTS UESTA UREST URESFT UPRINT l'LRROR

Macro Ma~ro Ma~ro Mano Ma~ro \I~h:r(l

T

I 1
7.~.1 	

UPRINT UPRINT
Macro - Ma~ro

CONVERT PRINT

~
;.
8.
g,
o
'g
~ g.
:I
'"

.... 	 From Module Diagram 7.0 Text Processor Overview
0\

o
Vl INPUT PROCESSING 	 OUTPUT

....<Vl Register I N l. For page control continue to Step 2;
for line control. go to Step 3.

, Argument List
2. 	Manipulates PCT based upon macro

PCT

specified:
til==
~
o 	 UESTS
c. ·
Vl 	 See Diagram

[

:;!

tl

-[V Dtil Register 15

~r 	 I I
[II 	 · UESTARegister I

See Diagram
b ..I
OQ -B
t:;" ~ Argument List

·
UREST

See Diagram -B

PCT
1\ 	

-B
~ · URESET

See Diagram

Printed Line, 3. Formats, converts, and prints lines:
Dynamic Static Text

Text Module
 I

UPRINT•
See Diagram

Register 15-0 	
I
D

I

Register I

4. Formats error messages.
drgument List Printed Lines .,

• UERROR
See Diagram

GRCNVTAB -E> 	 D
I 	 Register 15

I I
I I 'I

4.., ~. 	 f.,

r r 	 r

Extended Description for Diagram 7.0

Module: IDCTPOI

Procedure: IDCTPOI

1. 	 For page control continue with step 2; for line control
go to step 3, for error-message formatting go to step 4.

2. 	 The page control macros use the argument list to
change the Print Control Table, PCT. The page
control macros are:

VESTS, which establishes the PCT with data from a
static text module.

VESTA, which establishes the PCT with data from
storage.

VREST, which changes the PCT after a VESTS or
VESTA macro has been issued.

VRESET, which sets Access Method Services defaults
in the PCT.

Each page printed by Access Method Servia:s has
three sections:

I. 0 to 3 subtitles

2. Header lines and Data lines

3. 0 to 3 footing lines

The title section contains the main title line and from
zero to three subtitle lines. All lines in the title section
are printed at the top of each page. The main title line
is the first line on each page followed by subtitle lines.
The header and data section contains any header and
data lines. The header lines are kept in static text
modules and are printed on page overflow conditions.
The footing section contains from zero to three lines
printed at the bottom of each page. At least one
vertical space precedes them. More vertical spaces can
appear depending upon the control characters in the
first footing line. A new page results from any of the
page control macros, a page eject on a line, or a
request to print a line that would cause more lines on a
page than specified. If there is not enough space on a

~ page for all the header lines and one data line, none('I)

s are printed. A page is ejected, and title and header
&. lines are printed on the next page. Footing lines are
o always printed on each page. Vertical spacing is done...,

before the a line is printed.o
('I)
"0
.., The page control macros give the facility to change the
a following items in the PCT. o·
;:l

w
w

Item Default Limits

Main title line

Page number location 107 I to line width
minus field
length

Time-of-day location 75 I to line width
minus 8 for field
length

Date location 91 I to line width
minus 8 for field
length

Subtitle line no subtitles o to 3 lines

Footing line no footing o to 3 lines

Line width 120 133 maximum

Page depth 54 999 maximum

Default vertical I vertical 1,2, or 3 vertical
Space character space spaces

Translate table Standard
for print chain tables Module: IDCTPOI

Procedure: IDCTPOI

3. 	 The VPRINT macro formats data within a line,
converts data to a printable form, and prints the line
or lines. Refer to the "Diagnostic Aids" chapter for
formatting examples. IDCTPOI uses the PCT to
format the line and the page. The line to be printed is
described by two kinds of input: static text and
dynamic text. Static text-unchanging data and
format structures-resides in a module called a static
text module. Dynamic text is any changing data and
format structures that reside in storage. Format
structures, FMTLIST, describe how the line is to be
formatted. The types of formatting are:

Vertical spacing
Inserting data into a line
Extracting fields from a block of data in storage
Extracting data from a static text module
Defining default data
Repeating any of the above actions

The types of conversion are:

Binary to hexadecimal
Binary to hexadecimal with apostrophe
Binary to dump
Binary to decimal
Packed decimal to unpacked decimal
EBCDIC, no translation

The types of vertical spacing are:

Absolute spacing- The line is printed at a given line
number on the page. If data has been printed at that
line number, the page is ejected, and the line is printed
at the first data line number on the next page. If the
line number is within the title section or header lines,
the line is printed at the line number immediately
following the header lines. If the line number is within
the footing section, the page is ejected, and the line is
printed immediately following the header lines on the
next page.

Relative spacing- The line is printed at a number of
vertical spaces counted from the last printed line. If
there is not enough room on the page to print the line,
the page is ejected, and the line is printed after the
title section and header lines on the following page.

Eject- The line is printed after the title section and
header lines on the following page.

4. 	 The VERROR macro verbalizes numeric catalog
return codes and instigates multi-level message
requests to the UPRINT macro. Formatting and
printing of the multi-level message is handled by the
VPRINT macro.

-..I

00

..... Diagram 7.1 UESTS Macro

o
til
<
til
N

>(')

(')

(1)

'" '"
3:
(1)

8"
Q.

til
(1)

:1
('i'
(1)

'"
b

(JQ
('i'

From Module

,. PROCESSING OUTPUT

. entrance is from first VESTS
lacro, continue to Step 2; if
Itrance is after first UESTS
lacro, go to Step 3. Stack Buffer

erforms initial processing.
I >.

Printed Linesrints existing lines.

D
emakes secondary PCT. G

'ets input from static text
.odule.

P04WT

litializes values in work table. ~
~

.PCTI GpCT2
<. P'"

uts data in PCTs.

Joo. Register 15
.eturns. II I

'-' '-' "

r r 	 r

Extended Description for Diagram 7.1 	 Module: lOCTP04 Module: IDCTP04

Procedure: INITPCT Procedure: PCTSETUP
Module: lOCTPOI lOCTP04
4: If a secondary PCT exists-that is, PCTSPP in the 7. PCTSETUP forces a page overflow so the next line Procedures: ESTSCONT INITPCT STACKPUT

primary PCT is not zero-INITPCT releases the will start on a new page. If no secondary PCT exists,
I. If entrance is from the first UESTS macro, processing secondary PCT with a UFPOOL macro. INITPCT PCTSETUP initializes the primary PCT with the

continues with step 2, If entrance is after the first copies some data from the secondary PCT to the minimum values needed to control a page, which are:
UESTS macro has been issued, processing continues primary PCT before the secondary PCT is freed.

• A translate table for a print chainwith step 3. INITPCT issues a UGPOOL macro for a secondary A page number incrementPCT. INITPCT sets the identification, PCTIDN, in2. ESTSCONT tests the GDTTPM to determine if this is • A line number where the first line is printedthe secondary PCT to 'PCT2', and sets the PCTSPPthe first UESTS macro issued. If GDTTPH in the • A line number where the last line is printedfield to zero.GDT is not zero, a PCT already exists, and control is
For initializing either the primary PCT or thegiven to step 3. The first time a UESTS macro is Module: IDCTP05 secondary PCT, PCTSETUP verifies the input dataissued, the GDTTPH is zero which means that no

Procedure: IDCTP05 	 and puts it into the appropriate PCT.PCT exists. When no PCT exists, INITPCT obtains

and initializes a PCT. INITPCT issues a UGSPACE 5. If a static text module is used once, it is likely that it Module: IDCTP04

macro for the primary PCT. UGSPACE puts the will be used again on the next call to the Text
 Procedure: ESTSCONTaddress of the primary PCT in GDTTPH. (The GDT Processor. Rather than loading and deleting a static
refers to the PCT as the Text Processor Historical text module each time it is used, the static text module 8. ESTSCONT deletes the storage for the static text
Data Area.) The Text Processor (TP) uses two Print is kept in storage until a different static text module is entry with a UFSPACE macro. ESTSCONT puts a
Control Tables-a primary PCT and a secondary needed. The address of the static text module in return code in register \5, and control returns to the
PCT. Each PCT has the same fields. The primary PCT storage is kept in PCTSTM in the PCT. The static text module that issued the UESTS macro.
contains default values. INITPCT creates it during identification passed by the calling program to the
processor initialization, and deletes it at processor Text Processor as input is used to reference the

termination. It exists throughout Access Method appropriate module. IDCTP05 concatenates the first

Services processing. The secondary PCT contains three bytes of the static text identification with

current values which are different from the default
 'IDCTS' to form the module name. IDCTP05

values in the primary PCT. INITPCT creates it and compares the module name to the name of the static

deletes it many times during Access Method Services
 text module in storage in PCTSTM. If the names don't

processing. The address of the secondary PCT is in the match, IDCTP05 deletes the static text module in

primary PCT. When the Text Processor uses a PCT, if storage with a UDELETE macro, and lOCTP05 loads

the secondary PCT exists, it is used instead of the the requested static text module with a ULOAD

primary PCT. macro. IDCTP05 puts the name of the loaded module

in PCTSTM and the address of the module in the field
Rather than writing each line as it is completed, the
PCTSME in the PCT. If a secondary PCT exists, it is Text Processor saves ti'1le by putting completed lines
used; otherwise, the primary PCT is used. in an area of storage called the stack buffer. When the

stack buffer is full, STACKPUT writes it. ESTSCONT
 IDCTP05 uses the low-order byte of the static text

issues a UGSPACE macro for storage for the stack identification as an index to obtain the correct static

buffer and puts the address of the stack buffer in the text entry. IDCTP05 copies the entry from the static

fields PCTBUF and PCTBNL in the primary PCT. text module into storage that IDCTP05 obtains with a

ESTSCONT opens the System output data set with a UGSPACE macro. This is done so the static text entry

UOPEN macro. Control is given to step 4. is available if the static text module is deleted.

~
~ Module: lOCTP04 Module: lOCTP04s:
o Procedure: ST ACKFLC-	 Procedure: P04SETUP
o.... 3. Because controls governing the writing (like page 6. P04SETUP puts data from the static text entry into a

"0
o depth and line width) are changing, the lines work table. P04SETUP uses the work table to make
~ formatted under the current control values must be ... the input from UESTS, UESTA, and UREST into the
~. written before the control values change. STACKFL same format.
o writes the stack buffer with a UPUT macro.
:::l

'" \Q '"

*
 Diagram 7,2 UESTA Macro
o
~ _ From Module

<

[
~

til
til

;s::

[
n>

~
:;!
(i'
n>

£'
til

(i'

peT 2

l, 4w'-'

r r 	 r

Extended Description for Diagram 7.2

Module: IDCTP04

Procedures: EST ACONT INITPCT

l. 	A primary PCT must exist. If it does not, EST ACONT
issues a UABORT macro. Because controls governing
the writing (like page depth and line width) are
changing, the lines formatted under the current
control values must be written before the control
values change. INITPCT writes the stack buffer with a
UPUTmacro.

Modale: IDCTP04

Procedure: INITPCT

2. 	 If a secondary PCT exists-that is PCTSPP in the
primary PCT is not zero-INITPCT releases the
secondary PCT with a UFPOOL macro. INITPCT
issues a UGPOOL macro for a new secondary PCT.
INITPCT sets the identification, PCTIDN, in the
secondary PCT to 'PCT2', and INITPCT sets the
PCTSPP field to zero. UGPOOL puts the address of
the new secondary PCT in the field PCTSPP in the
primary PCT. INITPCT copies all the data in the
primary PCT into the secondary PCT. INITPCT
copies some data from the secondary PCT to the
primary PCT before the secondary PCT is deleted.

Mo4IIIe: IDCTP04

Proce4ure: P04SETUP

3. 	 P04SETUP puts data from the input into a work table.
PCTSETUP uses the work table to make the input
from UESTS, UEST A, and UREST into the same
format.

Module: IDCTP04

~~:PCTSETUP

4. 	 PCTSETUP forces a page overflow so the next line
will start on a new page. If no secondary PCT exists,
PCTSETUP first initializes the primary PCT with the
minimum values ne;eded to control a page, which are:

3: • A translate table for a print chainn
;. • A page number increment
8. • A first page number

• 	 A line number where the first line is printedS
• A Une number where the last line is printedo

~ For initializing either the primary PCT or the
~ secondary PCT, PCTSETUP verifies the data in the
::s work table and puts it into the appropriate PCT. ::s
....
~

Module: IDCTP04

Procedure: EST ACONT

5. 	 ESTACONT puts a return code into register 15, and
control returns to the module that issued the UEST A
macro.

---- ---- ---

~

o
I:Il

<
I:Il
N

~
(")
(>

til

til

3:
(>

S
o
Cl.

I:Il
(>

<t:;.
(>

til

b
OCIt:;.

Diagram 7.3 UREST Macro

INPUT

lRegister 1

E----'

Argument List --L

Pointers T

GOT

GGOTTPH

PCT 2 !2...!

PCTSPP LJ

From Module
Issuing UREST Macro

PRUCESSING

1. 	Prints existing lines.

2. 	Initializes values in the work
area.

3. 	Puts data in peT.

4. 	Returns.

OUTPUT

.... Printed Lines

'" D
P04WT

'"
<

PCT I PCT 2 ";>

Ipcpspp lJ

... Register 15
..,/ 	 :J

'-' 	 '-' "

r r 	 r

Extended Description for Diagram 7.3

Module: IDCTP04

Procedure: RETCONT, STACKFL

t. 	A primary PCT must exist. If it does not, RESTCONT
issues a UABORT macro. Because controls governing
the writing (like page depth and line width) are
changing, the lines formatted under the current
control values must be written before the control
values change. ST ACKFL writes the stack buffer with
a UPUT macro.

Module: IDCTP04

Procedure: P04SETUP

2. 	 P04SETUP puts data from the input into a work table,
P04WT. PCTSETUP uses the work table to make the
input from UESTS, UEST A, and UREST into the
same format.

Module: IDCTP04

Procedure: RESTCONT PCTSETUP

3. 	 The UREST macro allows the user to change any
combination of the following:

• 	 Subtitle lines
• 	 Footing lines
• 	 Line width
• 	 Page depth
• 	 Default space character
• 	 Translate table
• 	 Starting page number

A value of zero in any of the parameter lists causes the
item to be reset to the Access Method Services default.
RESTCONT evaluates the input parameter list. If the
secondary PCT exists, PCTSETUP modifies it.
Otherwise, PCTSETUP modifies the primary PCT.

Module: IDCTP04

Procedure: RESTCONT

4. RESTCONT puts a return code into register IS, and
=:: control returns to the module that issued the UREST
~ macro.

[
o...,
o
-g...
~ o·
::I
....
tJ

..... Diagram 7.4 URESET Macro t From Module
o Issuing URESET Macro
~
<
CIl
N INPUT PROCESSING OUTPUT

~ Register I Printed Lines
R ..r--........

D~ I. Prints existing lines. /'~
=: F-----'
a
::T tOOT
8. t IOCSTR
W Register I
:! "'2. Returns last page number. fi"
'"

v" c~----'\ 1Page Number 3. Frees secondary peT and subpool. tOOTf \...OOTo· t IOCSTR

OOTTPH (L..-'_~

Page Number 1
Register 15

- I
PCTSPP r-.rCT 2 4. Returns. ~

~

\., 4.,
~

r r 	 r

Extended Description for Diagram 7.4

Module: IDCTP04

Procedure: RESETCON ST ACKFL

1. 	 A primary PCT must exist. If it does not, RESETCON
issues a UABORT macro. If a secondary PCT exists,
RESETCON forces a page overflow so the next line
will begin on a new page. Because controls governing
the writing (like page depth and line width) are
changing, the lines formatted under the current
control values must be written before the control
values change. ST ACKFL writes the stack buffer with
a UPUT macro.

Module: IDCTP04

Proced...e: RESTCON

2. 	 If the Invoker of Access Method Services requested
that the last page number be passed, RESET CON
converts the current page number to binary and places
it in the invoker's parameter list.

Module: IDCTP04

Proced..e: RESETCON

3. 	 Before the secondary PCT is deleted, RESETCON
copies some data into the primary PCT. One
UFPOOL macro releases the secondary PCT, subtitle
lines, footing lines, and any static text entries
addressed from the secondary PCT in PCTSQP
because everything was obtained with subpool
identification 'TPOI '. RESETCON sets the address of
the secondary PCT to zero in the primary PCT in
PCTSPP. This resets all page control values to the
values contained in the primary PCT.

Module: IDCTP04

Procedure: RESETCON

4. 	 RESETCON puts a return code into register IS, and
control returns to the module that issued the URESET
macro.

a
~

::T

8
s,
o
~ ...
ao·
::l

<.H
+>
VI

~ Diagram 7.5 UPRINT
~
o
Vl
"-<
~
>
(')

(')

B
gj

[
::

Vl

B

3.
R
'"
b

(JQ
j:;.

From Module

entrance is from module issuing
PRINT, continue to Step 2; if
trance is from PRINT or
JNVERT, go to Step 3.

Jeates format list.

.. Format List
·ocesses format list. ./

CONVERT ~

See Diagram 7.5. I

PRINT ~
See Diagram 7.5.2

Space

Static text

Insert text

Default

Block

Replication

End of format list

Register 15
-"-."eturns. ..I I I

4." 4." '-'

r r 	 r

Extended Description for Diagram 7.S

Module: IDCTPO I, IDCTP05

Procedure: IDCTPPR, IDCTP05

I. 	If entrance is from a module issuing a UPRINT
macro, continue with step 2; if entrance is from
PRINT, Diagram 7.S.2, or CONVERT, Diagram
7.S.I, go to step 3.

2. 	 The format list, FMTLIST, and Print Control Table,
(PCT), must be found. If a secondary PCT exists,
IDCTPPR uses it; otherwise, IDCTPPR uses the
primary PCT. The format list, FMTLlST, can be in
one of three locations:

• 	 In the FSR
• 	 In a list of static text entries chained from the PCT

In a static text module

If the format list is in the FSR, DARGSTID in the
Dynamic Argument List, DARGLIST, is zero. The
calling program gives the address of the FMTLlST to
UPRINT as the fourth argument.

IDCTPPR compares the static text identification in
DARGSTID against the static text identification of
each entry addressed from the Print Control Table in
field PCTSQP. If a match is found, IDCTPPR uses
that FMTLIST in the static text entry as input to
UPRINT. If a match is not found, IDCTPPR must
obtain the FMTLIST from a static text module.

IDCTPOS concatenates the name of the static text
module in DARGSMOD with the characters 'IDCTS'
and compares it with the name of the static text
module in storage. The name of the static text module
currently in storage is kept in PCTSTM in the PCT. If
the names do not match, IDCTPOS deletes the module
named in PCTSTM with a UDELETE macro, and
IDCTPOSloads the module named in DARGSMOD
with a ULOAD macro. IDCTPOS puts the name and
address of the newly loaded module in the PCT.
IDCTP05 finds the particular static text entry by using
DARGSENT as an index to the static text module.
IDCTPOS copies everything in the static text entry 3:
after the length field and puts the static text " s- identification and the address of the next entry in the o

c.. list at the beginning of each entry on the list. IDCTPOS
a then chains the copy into the list of static text entries
o addressed from PCTSQP so it will be readily available
~ when it is used again. See "Debugging a Formattinge Problem" in the chapter "Diagnostic Aids" for a o· discussion of static text entries.
:l

'" ti

Module: IDCTPOI

Procedure: IDCTPPR, SPACE, STATIC, INSERT,
BLOCK, REDO,

3. 	 IDCTPPR takes action on the format list substructures
in FMTLIST depending upon the structure type.
IDCTPPR processes substructures in the order of their
appearance in the FMTLIST. If the high order bit in
FMTFLGS is on, this substructure is the last in the
FMTLIST. The line buffer is a work area where each
line is formatted. If there is formatted data in the line
buffer, IDCTPPR calls LINEPRT to write the line. See
Diagram 7.S.2. See "Debugging a Formatting
Problem" for examples of FMTLIST in "Diagnostic
Aids" chapter.

Types of substructures:

• 	 Space- If this is the first substructure in the
FMTLIST, SPACE saves the spacing-type
character from the FMTLlST for LINEPRT, and
control returns to step 3 for the next substructure.
If the space substructure is not the first
substructure in the FMTLlST, SPACE transfers
control to PRINT. After control returns from
PRINT, the new spacing-type character is saved for
the next line. For more information on PRINT, see
Diagram 7.S.2. Control returns to step 2 for the
next substructure.

• 	 Static text- STA TI C passes the address of the
input data, length of input data, type of conversion,
position in the output line, and length of output
field to ICONVERT. See Diagram 7.S.1.

• 	 Insert data- INSERT compares the insert
reference number in FMTRFNO against every
DARGINS field in the Dynamic Data List. If the
same number is found in DARGINS, INSERT
gives the following information to CONVERT: the
length in DARGINL, the address in DARGDTM,
the type of conversion from FMTCNVF, the
output field length from FMTOLEN, and the
position for the field in the output line from
FMTOCOL. See Diagram 7.S.1. If the same
number is not found in any DARGINS, INSERT
ignores the insert-data substructure, and control
returns to step 3 for the next substructure. If the
next substructure is a default-text substructure,
INSERT processes the default structure.

• 	 Default text-If a default-text substructure does
not immediately follow an insert substructure that
does not have a matching reference number in
DARGINS, INSERT ignores the default-text

substructure, and control returns to step 3 for the
next substructure. INSERT uses the default-text
substructure instead of a matching DARGINS to
describe input for an insert-data substructure.
INSERT takes the values for input and output from
the default-text substructure only. Nothing is taken
from the insert substructure. Control is given to
CONVERT. See Diagram 7.S.1.

• 	 Block format- BLOCK obtains input information
from DARGDBP and DARGILP. BLOCK adds
the offset count in FMTIOFF to the address in
DARGDBP to get the address of the input data. If
the input length in FMTILEN is zero or 32,767,
BLOCK uses the input length in DARGILP. If the
length in FMTOLEN is zero or 32,767, the output
length is the length of the converted input data. All
this data is given to CONVERT. See Diagram
7.5.1.

• 	 Replication- REDO compares the reference
number in FMTRFNO against every DARGREP
field. If the same number is not found, REDO
ignores the replication substructure and control
returns to step 3 for the next substructure. If the
same number is found in DARGREP, REDO uses
the count in DARGPCT for loop control to set up
the number of times the following substructures are
repeated. REDO obtains the number of
substructures to repeat from FMTRBC. At the end
of each time through the substructures, REDO calls
PRINT to print a line because the output positions
for each field are unchanging. See Diagram 7.S.2.
REDO saves the value in FMTRIO and adds it to
each address of block data in the substructures
being repeated.

Module: IDCTPOI

Procedure: IDCTPPR

4. 	 IDCTPPR puts a return code in register IS and returns
control to the module that issued the UPRINT macro.

-- -- - -

~ Diagram 7.S.1 UPRINT Macro - Convert
o
til
"<
til
N

~ 	 ...
~ Format List 	 1. Converts data according to type of

,:" '~
til 	 conversion.
;.
8.
~
~ • Binary to hexadecimal.
~r Dynamic

Argument List • Binary to hexadecimal with

apostrophe.i.

rIl

• 	 Binary to dump.

• 	 Binary to decimal.

• 	 Packed decimal to unpacked
decimal.

• 	 EBCDIC (no translation).

Line Buffer 	 Line Buffer 2. 	Puts field in line buffer in correct
output column.

3. 	Pri.~ Ii., burr". ;, 'uu~
See Diagram 7.5.2 	 I

4. 	Returns.

---_ ..

4., '-' 	 '-'

r r 	 r

Extended Description for Diagram 7.5.1

Module: IDCTPOI

Procedure: CONVERT, BHCONV, BHDCONV,
BDCONV, PUPCONV, EBCDIC

1. 	 CONVERT checks the conversion type from
FMTCNVT and converts the field accordingly. Types
of conversion:

Binary to hexadecimaJ-. BHCONV converts bytes of
binary data to their equivalent printable hexadecimal.
printable hexadecimal. BHCONV prints two
characters for each byte. The maximum input length is
32,767. If the length of the converted data is greater
than the length of the output field, BHCONV
truncates the data on the right. If the length of the
converted data is less than the length of the output
field, BHCONV does not change the remaining fields
to the right. If the converted data extends beyond one
line, BHCONV continues the data on the next line.

BInary to hexadedmaI with apostrophe- BHCONV
converts bytes of binary data to their equivalent
BHCONV prints two characters for each byte. The
output is preceded by X' and followed by a single
quote. The maximum input length is ((line width
starting position)/2) - 3. If the length of the converted
data is greater than the length of the output field,
BHCONV truncates the data on the right. If the length
of the converted data is less than the length of the
output field, BHCONV does not change remaining
fields to the right of the trailing apostrophe. If the
converted data extends beyond one line, BHCONV
truncates the data on the right.

Binary to dump- BHDCONV converts bytes of binary
data to their equivalent printable hexadecimal.
BHDCONV prints two characters for each byte. This
type of conversion forces the output to begin on a new
line. IDCTPPR is called to put the current line in the
stack buffer prior to calling CONVERT again. See
Diagram 7.5. BHDCONV formats the output line like
a standard ABEND dump with: relative addresses on
the left of the page, eight segments in the center, and a3:

~ 32-byte EBCDIC translation with non-printable
Er characters replaced by periods on the right of the&. page. The output starts in column one and g, BHDCONV uses 32 bytes of input per line. The

"0
o maximum input length is 32,767.

e ~

Binary to decimal- BDCONV converts bytes of binary
o· data to their equivalent packed decimal, then calls
;:l PUPCONV for further conversion to unpacked
~ decimal. Sign suppression, leading zero suppression,
~

and left alignment can be used. The input length is one
to four bytes, and the maximum output length is 16
bytes including the sign. If the length of the converted
number is greater than the length of the output field,
BDCONV truncates the number on the left. If the
converted number extends beyond one line,
PUPCONV truncates the number on the right.

Padted decimal to unpadted decimaJ- PUPCONV
converts bytes of packed decimal data to their
equivalent printable unpacked decimal. Sign
suppression, leading zero suppression, and left
alignment can be used. Eight bytes is the maximum
input length, and 16 bytes including sign is the
maximum output length. If the length of the converted
number is greater than the length of the output field,
PUPCONV truncates the number on the left. If the
converted number extends beyond one line,
PUPCONV truncates the number on the right ..

EBCDIC, DO translation-- EBCDIC assumes the input is
in printable EBCDIC and no conversion is done. If
right alignment is specified, the EBCDIC character
string is aligned to the right in the print field. The
print column specified is added to the print field
length to determine the last printable position.
Unwanted blanks following a non-blank character can
be eliminated by specifying blank suppression on the
following field. If blank suppression is specified on an
EBCDIC field, EBCDIC moves that field left into the
prior EBCDIC field so there is only one blank between
the two fields. Blank suppression can be specified only
on fields that immediately follow EBCDIC fields. The
maximum input length is 32,767. If the output extends
beyond one line, EBCDIC prints additional lines.

Module: IDCTPOI

Procedwe: CONVERT, BHCONV, BHDCONV,
BDCONV, PUPCONV, EBCDIC

2. 	 The conversion routines put the converted data in the
line buffer in the correct column. FMTOCOL in the
FMTLlST specifies the output column. If blank
suppression is on (FMTCNVF = X'OOIO'), the output
column is in PCTAPC in the PCT, and FMTOCOL is
an offset from the output column in PCTAPC. In this
case, the conversion routines find the output column
by adding the value in PCTAPC to the value in
FMTOCOL. The output column for each field is
calculated separately from other fields. Output fields
may overlap due to specification of output columns in
FMTOCOL.

Module: IDCTPOI

Procedwe: CONVERT, BHCONV, BHDCONV,
PUPCONV, EBCDIC

3. 	When the line buffer is full or a new line is to start, the
conversion routines call LlNEPRT to print the line.
See Diagram 7.5.2.

Module: IDCTPO I

Procedwe: CONVERT, BHCONV, BHDCONV,
PUPCONV, EBCDIC

4. 	When all the data specified by the FMTLlST
substructure is converted, control returns to the caller
in Diagram 7.5. See Diagram 7.5.

I;>
V> Diagram 7.5.2 UPRINT Macro - PRINT
o

From UPRINTo
!;Il
" <
!;Il
N

~ PCT I n
ro
'" '" 3:
ro
;. PCTSPP
8.
!;Il
ro
::!
~.

'" r o
!JQ
(i'

.... ,. _.
..PCT2

I 	
:>
~

Jo,~
... ""

Line Buffer

Joo.;:
.....

Stack Buffer

---".;:

'-- - - ---

.... PROCESSING 	 ... 	 -

1. 	Returns data to caller if requested.

PCT I PCT 2

II
PCTSPP

PCTAHP

2. 	Determines if line will fit on current ... ~
page. Z

L I
...

3. 	Processes header and message. :=>...
Printed Lines

4. 	Translates line . D
5. 	Prints stack buffer if full.

6. 	Gears line buffer and returns.

~ 4., 	 \.,

r r 	 r

Extended Description for Diagram 7.S.2 another header, UESTS, UESTA, or URESET
macro.

Module: IDCTPOI
b. Without VS2.03.807: If it is a message, LINEPRT

Procedure: LINEPRT LINERET writes the stack buffer with a UPUT macro.

1. 	 LINEPRT tests the return-area pointer in the With VS2.03.807: If it is a message line, SEGMENT
argument list. If it is not zero, LINERET puts the segments any messages over 72 characters in length
formatted line in the return area without checking for into multiple message lines of 72 characters or less,
or setting page-related indicators such as carriage then writes the stack buffer with a UPUT macro.
control or headings. LINERET returns only as many

Module: IDCTPOI characters as allowed by the return-area length.

Procedure: LINEPRT
Module: IDCTPOI
4. 	 LINEPRT translates the formatted line using the Procedure: LINEPRT, ST ACKPUT

translate table supplied for the print chain and
2. 	 LINEPRT tests the print data set supplied with the addressed from PCTTRP. In Access Method Services

UPRINT macro to determine if it is a change from the translate tables, all non-printable bit combinations are
current print file. If the print data sets are changing, changed to periods.

ST ACKPUT writes the stack buffer with a UPUT

Module: IDCTPO), macro. Then LINEPRT puts the page number and
next line number for the new print data set in Procedure: LINEPRT STACKPUT
PCTCPN and PCTNLI, respectively. LINEPRT puts

5. 	 LINEPRT puts the translated line preceded by a the page number and next line number for the old
two-byte length field in the stack buffer. When theprint data set in PCTSPN and PCTSNL for the
stack buffer is full, ST ACKPUT issues a UPUTstandard print data set or in PCTAPN and PCTANL
against the entire buffer. Lines in the stack buffer are for an alternative print data set. LINEPRT compares
in variable format with as many trailing blanks the current line number from PCTNLI with the
removed as possible. The minimum line size is 10pagesize in PCTPPD to determine if the current line
bytes. If the line is a message, STACKPUT issues a with its spacing will fit on the current page. If the line
UPUT against the message alone. This is done because will not fit, LINEPRT ejects a page, and LINEPRT
all messages go to the standard SYSPRINT data set.prints all title lines on the new page. If the vertical
STACKPUT passes an identification number with the spacing is more than three lines, LINEPRT writes
UPUT macro. The identification number for all datablank lines until it is within three lines of the desired
lines is zero and for messages is the message number. line number and the spacing character can handle
If Access Method Services is invoked interactively spacing.
with TSO and the message is not to be printed on the

Module: IDCTPO I TSO terminal, STACKPUT passes the two's
complement of the message as the identification Procedure: LINEPRT (Without VS2.03.807)
number. Therefore, ST ACKPUT must issue a separate LINEPRT, SEGMENT (With VS2.03.807)
UPUT for each message. If an alternative data set is

3. 	 LINEPRT tests the flags in the static text entry to being processed, there is no way to keep messages for
determine if this static text entry describes a header the standard data set until ready to print, because
line or a message. there is only one stack buffer. With TSO, all data is

printed immediately instead of being placed in the a. 	 If it is a header line, LINEPRT puts the address of;s::
~ 	 stack buffer. the translated header line in PCT AHP so it can be
[written again when a page overflows as well as Module: IDCTPOI

when they are first given to the Text Processor.
Procedure: LINEPRTa Unless all header lines, spaces, and one data line

o will fit on a page, a page overflow occurs, and LINEPRT fills the line buffer with blanks and control'0 	 6.
~ LINEPRT ejects a page. The number is in HSDP in returns to the caller, FORMAT or CONVERT.a the static text entry. A UGPOOL is done for o·
::I storage for the kept header line. Once a header is
.... given to UPRINT, it can only by removed by
V>

- --- - - --------

!.;.l Diagram 7.6. UERROR MACROV.
N

o
CIl
' <:
CIl 	 ..N

:>
n
n
<J> Register I (1) 	 1. Determine type of error to be converted. <J>

~ 	 I . • Catalog Error (1)

;. ..o Crgument ListQ. • Dynamic Allocation Error
CIl (VS2.03.807 only)
(1) • GDT I
~
~. -. ERCNVTAB I
<J>

b
OQ;:;.

Static Text

Module

.) 2. Without VS2.03.807: ...
Retrieve verbal text description
of catalog return code. EJ 	

.

With VS2.03.807:
a. 	 Retrieve verbal tex t

description of catalog return
code.

b. 	Call DAlRFAIL to obtain
message text for dynamic
allocation error code.

3. Initialize DARGLlST to print primary and
secondary message pair.

Printed Lines

.........
4. UPRINT. 	 ;'
~ CJ

Register 15

S. Return to invoker. 	 ')... I I

\, 	 ~.'-'

r r 	 r

3:
;."
R
a
o
~ .,
~ o·
::I

~
v.
~

Extended Description for Diagram 7.6

(With VS2.03.807)

Module: IDCTP06

Procedure: IDCTP06

t. 	The Error Conversion Table (ERCNVT AB) indicates
the type of error to be converted. The only allowable
errors are catalog errors and dynamic allocation
errors. IDCTP06 first checks the catalog management
error type bit, ERCATLG; if it is on, control is passed
to the CATERCNV procedure to process catalog error
messages. If ERCATLG is not on, IDCTP06 checks
the dynamic allocation error bit, ERDYNAL; if it is
on, control is passed to the DAERCNV procedure to
process dynamic allocation error messages.

Module: IDCTP06

Procedure: CATERCNV, DAERCNV

2. 	 a. The CATERCNV procedure retrieves the verbal
text description from the UERROR static text
module (IDCTSTP6). CATERCNV uses the
numeric catalog error code to index the
appropriate verbal text entry in the static text
module. The UPRINT macro is used to return the
verbal text.

b. 	 DAERCNV builds a DAIRFAIL parameter list and
invokes the system routine DAIRFAIL (IKJEFF18)
via the ULiNK macro. DAIRFAIL will analyze the
dynamic allocation return code and will return to
DAERCNV the text of a primary message or the
text of a primary and a secondary message in
buffer spaces provided by DAERCNV. A test of
the field DFBUFL2 will indicate if a secondary
message has been returned by DAIRFAIL. A
length of zero in DFBUFL2 indicates no secondary
message.

Module: IDCTP06

Procedure: CATERCNV, DAERCNV

3. 	 The DARGLIST is initialized to print the primary and
secondary message pair for a catalog error. Dynamic
allocation errors will cause DARGLIST to be
initialized for a primary message or a primary and a
secondary message, depending on the message texts
returned from DAIRFAIL. In a batch environment,
both messages are issued to the SYSPRINT data set; in
a TSO environment, the secondary message is issued
to the TSO second level informational message chain.
(The I/O Adapter handles these environmental
considerations.)

Module: IDCTP06

Procedure: IDCTP06

4. 	 Print the message pair via the Text Processor UPRINT
macro.

Module: IDCTP06

Procedure: IDCTP06

S. 	 Control is returned to the issuer of the UERROR
macro.

Extended Description for Diagram 7.6

Without VS2.03.807

Module: IDCTP06

Procedure: IDCTP06

1. 	 The Error Conversion Table (ERCNVTAB) indicates
the type of error to be converted. The only allowable
error is a catalog error.

Module: IDCTP06

Procedure: CATERCNV

2. 	 Retrieve the verbal text description from the
UERROR static text module (IDCTSTP6).
CATERCNV uses the numeric catalog error code to
index the appropriate verbal text entry in the static
text module. The UPRINT macro is used to return the
verbal text.

Module: IDCTP06

Procedure: CATERCNV

3. 	The DARGLIST is initialized to print the primary and
secondary message pair. In a batch environment, both
messages are issued to the SYSPRINT data set; in a
TSO environment, the secondary message is issued to
the TSO second level informational message chain.
(The I/O Adapter handles these environmental
considerations.)

Module: IDCTP06

Procedure: IDCTP06

4. 	 Print the message pair via the Text Processor UPRINT
macro.

Module: IDCTP06

Procedure: I DCTP06

S. 	 Control is returned to the issuer of the UERROR
macro.

•

r r r

Debugging Aids Visual Table of Contents

8.0

Debugging Aids
Overview

I
I 8.1

UTRACE Macro

::
~ o
0

S,
o
~ a o·
= ...,
v.
v.

_.

UDUMP Macro

8.2.1

Dump Fields

t:::j
(1)

0'

~
Jg'
~
~
~
[
~

..,

I»
0'
~
o-.
n
§
g
~

.... Diagram 8.0 Debugging Aids Overview V>
0'1

o
til

~
til
tv

i;>
Intra-Module§ Trace Table

[
=:

til

:!
ro

~.

£'
'"

Register I
(i'

I
, Argument List

From Procedure

'"

1. 	 Updates Intra-Module Trace
:rable.

See Diagram -V
-=> 2. 	Dumps information based on options

specified:

See Diagram -[V

TRACE•

AREAS•

• 	 FULL

Intra-Module .. Trace Table
,.

... 	 Trace Tables ::>

D
or

.. Trace Tables and
Selected Areas

~.. 	

D

Trace Tables and ... Full Region Dump

.........

D

~ ~ 	 '-'.

(' (' 	 ('

Extended Description for Diagram 8.0

Module: IDCDBOI

Procedure: IDCDBOI

1. 	 When a module issues a UTRACE macro instruction,
the PL/S compiler generates in-line code that updates
the Intra-Module Trace Table. Diagram 4.1 shows the
UTRACE macro instruction in detail. Processing
continues with the statement following the UTRACE
macro.

2. 	 The output of the UDUMP macro instruction depends
upon the TEST keyword options specified either in the
PARM command or from the EXEC statement.

• 	 If TRACE is specified, UDUMP prints the Inter
and Intra-Module Trace Tables each time a
UDUMP macro is executed.

• 	 If AREAS is specified, UDUMP prints the Inter
and Intra-Module Trace Tables ana items given to
the UDUMP macro only for the areas specified.

• 	 If FULL is specified, UDUMP prints Inter- and
Intra-Module Trace Tables and a full region dump
only for the dump identifiers specified.

Diagram 4.2 shows the UDUMP macro instruction in
detail. Control returns to the module issuing the
UDUMP macro.

::
a
::r o
p.

S,
o
~
~ o·
::l

.....
v.
-..l

i

~ Diagram 8.1 UTRACE Macro
o - From Module
(IJ
........

<(IJ -- .- - N

~
GOT~

[...
GOTTR2

to
(r-v"(IJ

~
n' Intra-Module

... Trace Table

rg I
b

(JQ

n'

New Identification
II I I

\, ~
 "

r r r

Extended Description for Diagram 8.1

1. The in-line code generated by the UTRACE macro
gets the address of the Intra-Module Trace Table from
the GDTTR2 field in the GDT. The in-line code shifts
the Intra-Module Trace Table left so that the oldest
identifier at the beginning of the table is lost.

2. The module provides the UTRACE macro with the
new identifier to add to the Trace Table. The
generated inline code puts the new identifier at the end
of the Trace Table. The new identifier is 4 bytes long;
the first two characters are characters 4 and 5 of the
module name; the last two characters are assigned by
the module. The identifier may either be four
characters in quotes or the address of four characters.
Control continues with the next instruction.

f
[
S
o
'g

~ o·
::I
VI
ID

..... Diagram 8.2 UDUMP Macro ~
o From Procedure en Issuing UDUMP

en<
N

INPUT PROCESSING OUTPUT>(')
(') Register 1
!l ...r-.
til v" 1. Checks for PARM command
~ with TEST options .
;-." ~- GDT
o a= ...
P- 2. Initializes.~ ... ~
."
en I r:flTflIU.,

~
."
n' ((~List I~~~~~ til

L~.HJ~K~

£'
n' Trace Tables

I I

I~ 3. Dumps trace tables. ...
I'

Full Dump Identifier I I D
Fields from

GDT Selected Areas §
GDTDBG

GDTDBH II 4 Dumps lIst. 0 ffiel~8.2.1 ..
'" D• See Diagram

' I II Full Region
Inter-Module

Trace Table

I I I I

S. Dumps region. ... D
r-...., GDT6. Terminates.

11

VIntra-Module I I I I

Trace Table
GDTDBG

GDTTRI

GDTTR2

~ 4. ~

r 	 r r

Extended Description for Diagram 8.2 • IDCDBOI compares the full dump identifier
provided by the module issuing the UDUMP macro

Module: IDCPMOI with the full dump identifiers in FDUMPID. If a
match is found, it prints the Trace Tables.Procedure: IDCPMO I

Module: IDCDBOI, IDCDB02
1. 	 The P ARM command with the TEST keyword must

be specified in order for any dumping to take place, or Procedure: IDCDBOI IDCDB02

the TEST keyword must be specified in the P ARM

4. 	 If three arguments are given to thl" ~DUMP macro,field of the EXEC statement. The PARM FSR,
the third is a list of areas to be aumped. IDCDB02IDCPMOI, has loaded the dump routine, IDCDBOI,
converts and prints each item in the list. If the callingand has put the address of the dump routine in the
module identifier from the Inter-Module Trace TableGDT, if dumping is to take place when the UDUMP
matches a name in AREANAME, IDCDBOI invokes macro is issued. If GDTDBG is non-zero, control goes
IDCDB02 to process the list. Otherwise, the list is to Step 2. If GDTDBG is zero, the dump routine is not
ignored. Diagram 8.2.1 shows dumping fields in detail. loaded; no dumping takes place; and control remains

in the module issuing the UDUMP macro. Module: IDCDBOI

Module: IDCDBOI 	 Procedure: IDCDBOI

Procedure: IDCDBOI 5. 	 IDCDBOI compares the full dump identifier provided
by the module issuing the UDUMP macro with full 2. 	 IDCDBOI obtains the calling module identifier from
dump identifiers in FDUMPID. If no match is found,the last entry in the Inter-Module Trace Table. It
processing continues with step 6. IDCDBOI adds I toissues a UTRACE macro to put the caller's module
REALBEG and checks the number with FDUMPBEGidentification in the Intra-Module Trace Table. Both
to determine if the current pass is within the dumpingthe Inter-Module and the Intra-Module Trace l'ables
range. If it is, IDCDBOI compares REALCNT withare saved so that the Trace Tables will not be updated
FDUMPCNT to determine if all the dumps requested during the dumping operation, and the information in
have been given. If they have not, IDCDBOI adds I to the Trace Tables at the time the UDUMP was issued is
SNAPID and issues a USNAP macro to dump thepreserved. IDCDBOI turns off the TEST options by
region. UPRINT writes a message stating the fullsaving the address of the dump routine and setting
dump identifier (SNAPID). GDTDBG to zero. This prevents any dumps during

the processing of the current dump operation. Module: IDCDBOI

IDCDBOI also issues a ULISTLN macro to get the

ProcedlB"e: IDCDBOOInumber of arguments passed via the UDUMP macro.
If there are three arguments, IDCDBO I has received a 6. IDCDBOI puts the address of the Trace Tables in
list of items to dump. GDTTRI and GDTTR2 and resets the TEST options

by placing the address of the dump routine in Module: IDCDBOI
GDTDBG. Control returns to the module that issued

Procedure: IDCDBOI the UDUMP macro.

3. 	 IDCDBOI uses the Test Option Data Area, whose

address is in GDTDBH, to determine whether or not

to print the Trace Tables. The Trace Tables are

printed if anyone of the following conditions is

~ present:
~
::r • TESTRACE contains a non-zero value, indicating 8 that the Trace Tables are to be printed each time o

UDUMP is executed.-o
"0 • IDCDBOI compares the calling module identifier

a ~

from the Inter-Module Trace Table with the
o· module identifiers in the AREANAME. If a match
:I is found, it prints the Trace Tables,
Q\

-- -- -

III

:;: Diagram 8.2.1
N

o
til
........

<
~

~
(')
(11

3: Dump List
(11

So
&.

UDUMP Macro Dump Field

."

~ 1. GelS type of dump list entry: ..
a. Array Header

~
~

b. Individual Field ~r
'" Hexadecimal

• Bit String£'r:;.

•
Character•

• Fixed Binary

c. Dump List Terminator

Printed
Data Lines -"...,2. Prints data lines. ...

. D

~

'" " "

r r 	 r

Extended Description for Diagram 8.2.1

Module: IDCDB02

Pr~edure: ARRA YHDR, IDCDB02, NAMEFLD,
ITEMDUMP, HCONVERT, BCONVERT,
CCONVERT. FCONVERT

1. 	 IDCDB02 processes each entry in the Dump List until
the end of the list is reached.

a. 	 If the type in the Dump List is 'A', the entry is an
Array Header. If there is any formatted dump data
in the line, ARRA YHDR issues a UPRINT to print
the line. Each array begins on a new line, and an
Array Header cannot occur within the elements of
another array. If an Array Header does occur
within the elements of another array. UPRINT
prints an error message. the Array Header is
ignored, and the following field entries are
processed as though the Array Header had not
been in the Dump List. A UPRINT macro prints
the name of the array from the Dump List.
ARRA YHDR obtains the looping array control
from the Dump List. The number of bytes in each
input element of the array is used to address the
elements of the array.

b. 	 If the type in the Dump List is H. B, C, or F,
NAMEFLD formats the name of each field in the
line. If the field is part of an array, NAMEFLD
adds a subscript of the element number to the field
name. NAMEFLD also checks the input data type
and converts and formats the data as follows:

• 	 Type H - HCONVERT converts hexadecimal
data to printable form and prints two characters
per byte of input; each four bytes of input is
converted and followed by a blank.

• 	 Type B - BCONVERT converts bit string data
to printable form and prints eight characters
followed by a blank per byte of input. The
printed output is enclosed in quotes.

• Type C - CCONVERT converts character input
:: to printable form and prints one character per
t'O... byte of input. The printed output is an
::r unbroken string of characters enclosed in8. quotes.a
o • Type F - FCONVERT converts fixed binary
"g data to printable decimal. Leading zeros are

suppressed. If the input is 2 or 4 bytes long,
o· FCONVERT prints a sign; no sign is printed if
::s the input is 1 or 3 bytes long
Q\

c. 	 If the first byte of the Dump List entry is X'FF',
IDCDB02 terminates processing of the list. Control
returns to the main dump routine, IDCDBOI.

Module: IDCDB02

Procedure: ITEMDUMP

2. 	 IDCDB02 logically divides the page into four columns.
A maximum of four different fields may be printed on
a line. Each printed field is preceded by its name from
the Dump List entry and an equal sign. As soon as one
line of data is formatted, a UPRINT macro prints the
line.

i

r (r

Volume Services Visual Table of Contents

9.0

Volume
Services
Overview

I 9.1

I
1 9.2 I· -.

Volume
VTOC
Service

VolUme
Label

Service
-

Volume
Data Set
Service <:

0

i
00
~

3. g
rIJ

~
[
~

~
~

•

g,
(')
0::s....
~ ::s....
rIJ

"
~

[
a
o
'g

~ o·
:l

<M
a
u.

.... Diagram 9.0 ~
o
Vl
<
Vl
N

~
CIl
CIl Register I

[
g
o.
Vl
~

~
~.
CIl

£'
ri'

Request Keyword
[-- ---]

Volume

~

Catalog

U

Volume Services Overview

INPUT

From Module Requesting
Volume Services
• PROCESSING

1. Performs the service:

a. 	 Volume VTOC Service.

See Diagram-D

h. 	 Volullle La he! Service

Sec Diagram-D

c. 	 Volume Data Set Service

See DiagramV

2. Returns.

OUTPUT

Argument List

Volume

~

Catalog

U

Register 15
1-

«..,~ '-'

r r r

Extended Description for Diagram 9.0

Module: IDCYSOI, IDCYS02, IDCYS03

Procedure: IDCYSOI, IDCYS02, IDCYS03

1. The service to be performed depends on the module
that is called:

a. IDCYSOI performs volume YTOC service.
Diagram 9.1 shows volume YTOC service in detail.

b. IDCYS02 performs volume label service. Diagram
9.2 shows volume label service in detail.

c. IDCYS03 performs volume data set service.
Diagram 9.3 shows volume data set service in
detail.

Module: IDCYSOI, IDCYS02, IDCYS03

Procedure: IDCYSO 1 IDCYS02, IDCYS03

2. If an error occurred, a message is printed. A return
code is set in register 15 and control is returned to the
caller.

~
;.
8
o-o
'g
;
s· = ...
~

:s: Diagram 9.1 Volume Services
QO

o
CIl

<
~

-- .-

~
Register 1 ::

~

to 	

I;.
&. I

VSlAGLCIl
to
~ n·
to
CIJ

b
OQ
n"

Request Keyword

I 	 I

~
Catalog

U

Volume VTOC Service

From Module Requesting

-
T

'" I. Opens the VTOC.
V'"

2. Performs the service:

a. 	 Checks security.

b. 	 Scratches the VTOC.

c. 	 Reads the VTOC.

d. 	 Writes the VTOC.

e. 	 Recatalogs a nonVSAM
data set.

3. 	 Returns.

VSIAGL

t IOCSTR

~ D,I' F.om VTOC

~
Catalog

U
Recataloged
Data Sets

Register 15

"'>
v I 	 I

I

4.,~ "

r 	 r r
Extended Description for Diagram 9.1

(With SU 5752-824)

Module: IDCVSOI

Procedure: IDCVSOI VTOCOPEN

1_ 	 VTOCOPEN issues a UOPEN macro to open the
VTOC (if it's not already open) for BSAM update
processing and issues a URESER VE macro to reserve
the unit. VTOCOPEN puts the address of the IOCSTR
in VSIAGL.

Module: IDCVSOI

Procedure: FMT4CHK, FMT4READ, CATCHK,
CATOPEN, FMTlCHK, VSAMCHK, NVSAMCHK,
EXPIRCHK, FMT4SCR, FMTIREAD, VTOCGET,
VTOCPUT,RECATLOG

2. 	 IDCVSOI checks the request keyword to determine the
type of service to perform:

'SECCHECK' indicates a request to check security.
'SCRVTOC' indicates a request to scratch the VTOC.
'GETVTOC' indicates a request to read the VTOC.
'PUTVTOC' indicates a request to write the VTOC.
'RECATLG' indicates a request to recatalog a
nonVSAM data set.

a. 	 FMT4READ issues a UGET macro to read the
Format 4 DSCB. FMT4CHK checks it to
determine whether a VSAM catalog owns the
volume. FMT4CHK indicates ownership status in
VS I AGL. If VS IAGL indicates that VSAM
ownership isn't allowed, FMT4CHK verifies that
the volume is owned by VSAM.

CATCHK verifies the VSAM catalog RACF
authorization password. If the catalog dname or
name was provided in VSIAGL, CATOPEN issues
UALLOC and UOPEN macros to open the VSAM
catalog for a CONVERTV command. CATCHK
constructs a CTGPL and a CTGFL to locate the
volume entry and verify RACF alter access or the
master password of the catalog. CATCHK
indicates in VSIAGL whether the volume entry ~

(Il says that the user catalog is on the volume. :r
o
0- FMTIREAO issues a UGET macro to read each

Format I OSCB to verify data-set security andS.
processes the VSAM data spaces and nonVSAMo

-g data sets as follows:

a VSAM data spaces-if VSIAGL requests it and if
0' the catalog access was not authorized, then=' VSAMCHK issues a UEXCP macro to open each~
0
.&J

VSAM data space for input. To verify RACF or
password authorization, VSAMCHK uses the
dname for the volume to open each data space and
uses the data-space name to override the data-set
name. If catalog access was authorized, this
checking is bypassed.

NonVSAM data sets-if VS IAGL indicates that no
nonVSAM data sets are allowed, FMTICHK
verifies that there are no nonVSAM data sets. If
VSIAGL requests a check for read access,
NVSAMCHK issues a UEXCP macro to open each
RACF protected or each read-password-protected
data set for input. If VSIAGL requests a check for
write access, NVSAMCHK or EXPIRCHK issues a
UEXCP macro to open each RACF protected,
write-password-protected, or unexpired data set for
output. If the data set being opened is
password-protected, NVSAMCHK finds a DD
statement for the data set from the list of password
DD statements passed in VS I AGL and uses that
DO statement to open the data set. If the data set is
unexpired, but is neither RACF protected nor
password-protected EXPIRCHK uses the DD
statement for the volume to open the data set,
overriding the data-set name.

b. 	 For a Format 4 or Format I DSCB, FMT4READ
or FMTIREAD issues a UGET macro to read the
OSCB. If the volume was owned by VSAM, the
Format 4 and Format I OSCBS are modified to
show the volume is no longer owned by VSAM.
FMTI SCR turns off security indicators in the
Format I DSCBs to bypass VSAM security
routines when the DSCB is scratched.

For each Format I DSCB, FMTISCR issues a
USCRATCH macro to remove the OSCB from the
VTOC.

c. 	 FMT4READ issues a UGET macro to read the
Format 4 DSCB. If requested, VTOCGET retrieves
information about alternate tracks or VSAM
ownership.

d. 	FMT4READ issues a UGET macro to read the
Format 4 OSCB. If requested, VTOCPUT updates
the alternate-track information in the DSCB. If
requested, VTOCPUT issues a UTIME macro and
updates the VSAM time stamp in the DSCB.

VTOCPUT issues a UPUT macro to write the
updated Format 4 DSCB.

e. 	 For each nonVSAM data set: FMT IREAD issues a
UGET macro to read the Format I DSCB.

RECATALOG issues a URECAT macro to
recatlog the data set with the new device type and
volume serial number specified in VS IAGL. If
requested, RECATLOG issues a UPRINT macro
to list recataloged data sets.

Module: IDCVSOI

Procedure: IDCVSOI

3. 	 If an error occurred, a message is written with the
UPRINT macro. IDCVSOI returns to the caller with a
return code in register 15.

r
Extended Description for Diagram 9.1
(Without SU 5752-824)

Module: IDCVSOI

Procedure: IDCVSOI VTOCOPEN

1. 	 VTOCOPEN issues a UOPEN macro to open the
VTOC (if it's not already open) for BSAM update
processing and issues a URESER VE macro to reserve
the unit. VTOCOPEN puts the address of the IOCSTR
in VSIAGL.

Module: IDCVSOI

Procedure: FMT4CHK, FMT4READ, CATCHK,
CATOPEN, FMTlCHK, VSAMCHK, NVSAMCHK,
EXPIRCHK, FMT4SCR, FMTlREAD, VTOCGET,
VTOCPUT,RECATLOG

2. 	 IDCVSOI checks the request keyword to determine the
type of service to perform:

'SECCHECK' indicates a request to check security.
'SCRVTOC' indicates a request to scratch the VTOC.
'GETVTOC' indicates a request to read the VTOC.
'PUTVTOC' indicates a request to write the VTOC.
'RECATLG' indicates a request to recatalog a
nonVSAM data set.

a. 	 FMT4READ issues a UGET macro to read the
Format 4 DSCB. FMT4CHK checks it to
determine whether a VSAM catalog owns the
volume. FMT4CHK indicates ownership status in
VSIAGL. If VSIAGL indicates that VSAM
ownership isn't allowed, FMT4CHK verifies that
the volume is owned by VSAM.

CA TCHK verifies the VSAM catalog password. If
the catalog dname or name was provided in
VSIAGL, CATOPEN issues UALLOC and
UOPEN macros to open the VSAM catalog for a
CONVERTV command. CATCHK constructs a
CTGPL and a CTGFL to locate the volume entry
and verify the master password of the catalog.
CATCHK indicates in VSIAGL whether the
volume entry says that the user catalog is on the

~ volume.
(>

s
o FMTlREAD issues a UGET macro to read each
Q.. Format 1 DSCB to verify data-set security and
sa, processes the VSAM data spaces and non VSAM
o data sets as follows:
'g... VSAM data spaces-if VSIAGL requests it and ifa the catalog password was specified incorrectly, o·
::: then VSAMCHK checks VSAM master password,
W and, if the password wasn't specified correctly,
0'>
v:> issues a UEXCP macro to open each VSAM data
tv

r

space for input. VSAMCHK uses the dname for the
volume to open each data space and uses the
data-space name to override the data-set name. If
the password was specified correctly, this checking
is bypassed.

NonVSAM data sets-if VSIAGL indicates that no
nonVSAM data sets are allowed, FMTICHK
verifies that there are no nonVSAM data sets. If
VSIAGL requests a check for read access,
NVSAMCHK issues a UEXCP macro to open each
read-password-protected data set for input. If
VS IAGL requests a check for write access,
NVSAMCHK or EXPIRCHK issues a UEXCP
macro to open each write-password-protected or
unexpired data set for output. If the data set being
opened is password-protected, NVSAMCHK finds
a DD statement for the data set from the list of
password DD statements passed in VSIAGL and
uses that DD statement to open the data set. If the
data set is only unexpired, but not
password-protected, EXPIRCHK uses the DD
statement for the volume to open the data set,
overriding the data-set name.

b. 	For a Format 4 or Format I DSCB, FMT4READ
or FMTIREAD issues a UGET macro to read the
DSCB. If the volume was owned by VSAM, the
Format 4 and Format I DSCBS are modified to
show the volume is no longer owned by VSAM.
FMTlSCR turns off security indicators in the
Format 1 DSCBs to bypass VSAM security
routines when the DSCB is scratched.

For each Format I DSCB, FMTISCR issues a
USCRATCH macro to remove the DSCB from the
VTOC.

c. 	 FMT4READ issues a UGET macro to read the
Format 4 DSCB. If requested, VTOCGET retrieves
information about alternate tracks or VSAM
ownership.

d. 	 FMT4READ issues a UGET macro to read the
Format 4 DSCB. If requested, VTOCPUT updates
the alternate-track information in the DSCB. If
requested, VTOCPUT issues a UTIME macro and
updates the VSAM time stamp in the DSCB.

VTOCPUT issues a UPUT macro to write the
updated Format 4 DSCB.

e. 	 For each nonVSAM data set: FMTIREAD issues a
UGET macro to read the Format I DSCB.
RECAT ALOG issues a URECAT macro to
recatlog the data set with the new device type and

r

volume serial number specified in VS I AGL. If
requested. RECATLOG issues a UPRINT macro
to list recataloged data sets.

Module: IDCVSOI

Procedure: IDCVSOI

3. 	If an error occurred, a message is written with the
UPRINT macro. IDCVSOI returns to the caller with a
return code in register 15.

-- - - -- - -- - -- -- --

-...I
Vl Diagram 9.2 Volume Services - Volume Label Service
o
o
til From Module Rl'qucsting
til
<

[
tv

 'Y

3:: Register I VS:!A<;L

;. Performs till' sl'rvke:
n

&. I 1 ;:> I. ..L
til VS2AGL
n a. Initializcs a volulllc. ~3. a
 h. Reads the VTOC.

1tData From Lahel£' c Writes the VTOC. ,
ii'

Rcquest Keyworo

I I Volume

Volume UU

Rcgister 15
2. Return,. ""'l-v' I I

-

\., \,'-'

r 	 r r

Extended Description for Diagram 9.2

Modale: IDCVS02

Procedure: IDCVS02, INITVOLM, GETLAB, PUTLAB

1. 	 IDCVS02 checks the request keyword to determine the
type of service to perform:

'INITVOL' indicates a request to initialize a volume.

'GETLABEL' indicates a request to read the Volume

Label.

'PUTLABEL' indicates a request to write the Volume

Label.

a. 	 INITVOLM issues a UEXCP macro to create a
DEB for the volume. It puts the address of the
IOXCTLBK in VS2AGL. It writes the VTOC,
starting on cylinder 0, track 1: it writes one Format
4 DSCB, one Format 5 DSCB, and 37 Format 0
DSCBs on the first track, and fills the rest of the
tracks in the VTOC with Format 0 DSCBs. It
writes the volume label record and IPL 1 and 2 on
cylinder 0, track O.

b. 	 GETLAB issues a UEXCP macro to open the
VTOC to gain access to the label. It issues a
URESERVE macro to reserve the unit. GETLAB
issues a UEXCP macro to read the label and places
the volume serial number and/or owner name in
an area pointed to by VS2AGL. It issues a UEXCP
macro to close the VTOC.

c. 	 PUTLAB issues a UEXCP macro to open the
VTOC to gain access to the label. It issues a
URESERVE macro to reserve the unit. PUTLAB
issues a UEXCP macro to read the label, updates
the volume serial number and/or owner name with
information from the caller, and issues a UEXCP
macro to write the Volume Label. It issues a
UEXCP macro to close the VTOC.

Module: IDCVS02

Procedure: IDCVS02

2. 	 If any errors occurred, a message is written with a
UPRINT macro. IDCVS02 returns to the caller with a :::

co return code in register 15.So
8.
S
o
~ ao·
:I

1M....-

-..I
t;.I Diagram 9,3 Volume Services - Volume Data Set Service
N

o F M
rn
"<rn
N

~
n
(0

~ Register I
~
(0

;. I
o e- VS3AGL
rn
(0

~
~'

'" r o
O<l
n'

Request Kc'yword

Volulllc

~
Catalog

EJ

f...,~ 4

r' (r

Extended Description for Diagram 9.3

Module: IDCVS03

Procedure: IDCVS03

1. 	 The request code by the caller is interrogated. If it is
not 'SELECTDS', the UABORT macro is issued with
code 40 (invalid parameters).

Module: mCVS03

Procedure: INITIAL, OPENVTOC, GETBLK

2. 	 Initialization for the module is performed by calling
the INITIAL procedure. INITIAL calls the
OPENVTOC procedure to open the VTOC.
OPENVTOC obtains the UCB address of the device
via the USYSINFO macro and then enqueues the
VTOC by issuing the URESERVE macro. INITIAL
next calls the GETBLK routine to determine and
acquire the amount of storage required for the selected
data set array. GETBLK also gets space for the track
I/O buffer.

Module: JDCVS03

Procedure: SELECTOR, GETFMTI, CRITERIA,
USAGE, STATUS

3. 	The SELECTOR procedure is called to search the data
set names in the volume's VTOC and to select those
which meet the caller's criteria. SELECTOR calls the
GETFMTI procedure to retrieve a volume format 1
DSCB from the VTOC. A return code of 12 indicates
the entire VTOC has been processed. Control goes to
step 4 if a return code of 12 is encountered. The
CRITERIA routine is called to insert information into
the data set element array if the data set meets the
criteria.

The USAGE routine is called to furnish the data set
element array with information about the organization
and size of the data set.

The STATUS routine is called to furnish the data set
element array with information about data set names
needed for STATUS reports.

3:
~ Module: IDCVS03
::r
8. Procedure: CLEANUP

S, 4. The CLEANUP procedure is called to release
o resources no longer required by IDCVS03. The UDEQ
'g macro is issued to release the previous URESERVE ona the VTOC.

g. The UEXCP macro with CLOSE option is issued to
~ close the VTOC. UEXCP will not be issued if the
~

pointer to 10XCTLBK is zero, indicating the VTOC
was not successfully opened.

Space obtained for the track I/O buffer is freed by
issuing the UFSPACE macro. UFSPACE is not issued
if the pointer to the buffer is zero, indicating no
storage was obtained.

Module: IDCtS03

Procedure: IDCVS03

5. 	 Control is returned to the caller with a return code as
follows:

o= Successful

4 = Error

8 = Non-terminating error

PROGRAM ORGANIZATION

This chapter describes the organization of the Access Method Services
processor: the physical packaging of routines into load modules.

The final authorities for any program are the compiler and assembly listings
for that program. This chapter complements those listings, and assumes that
they are at hand. You should have them available for any in-depth analysis.
This chapter directs you to a specific module of the processor; the listings for
that module provide further detail. The next chapter, "Microfiche Directory,"
can help you relate the listings to this book.

Overall Organization
The processor consists of executable modules, organized into eight general
areas, and non-executable modules (Command Descriptors and Text
Structures). As described in the "Introduction," seven of these areas form a
substructure that provides services and control for the remaining area. This
substructure is made up of the Executive, the System Adapter, the I/O
Adapter, the Text Processor, Volume Services, the Reader/Interpreter, and
Debugging Aids. The eighth area consists of the Function Support Routines
(FSRs), of which there are currently eleven for VSAM, one for
checkpoint/restart, and 19 for the Mass Storage System-one for each
functional command supported by the processor. The processor---except
modules IDCAMOI and IDCAM02-resides in system data set
SYS I.LINKLID. Two modules, IDCAMO 1 and IDCAM02, reside in the TSO
command library data set, SYSl.CMDLIB. Access Method Services command
names (such as DELETE), which can be used interactively via TSO, have
been linkedited as ALIASES of IDCAMOI or IDCAM02. When a TSO
terminal user uses an Access Method Services command, IDCAMO 1 or
IDCAM02 gives control to Access Method Services at entry point IDCSATO.
The CHKLIST, PARM, MODAL commands, and Mass Storage System
commands cannot be invoked by way of TSO.

Several modules are link-edited together into one load module (named
IDCAMS with aliases of IDCSATO), which is loaded when the processor is
invoked. This load module is the root segment and consists of:

IDCEXOI Executive main module
IDCEX02 Executive initialization, called by IDCEXOI
IDCEX03 Executive termination, called by IDCEXOI
IDCIOOI I/O Adapter main module
IDCIO02 I/O Adapter Open/Close, called by IDCIOOI
IDCI003 I/O Adapter positioning, called by IDCIOOI
IDCIO05 I/O Adapter EXCP I/O processing module
IDCSAOI System Adapter initialization/termination module
IDCSA02 System Adapter services module
IDCSA03 System Adapter prologue/epilogue module
IDCSA05 System Adapter time module, called by IDCSA02
IDCSA06 System Adapter Mount/Demount/PostUCB/Check module
IDCSA07 System Adapter recatalog module
IDCSA08 System Adapter system services module
IDCSA09 System Adapter MSSC call maCrO
IDCSAIO System Adapter EST AE environment module

Program Organization 375

IDCTPOI Text Processor print module, called by any module
IDCTP04 Text Processor Print Control Table control, called by

any module.
IDCTP05 Text Processor Text Structure loading, called by IDCTPOI

or IDCTP04
IDCTP06 Text Processor Error conversion module

The following modules are loaded by the system when their services are
required.

IDCDBOI Dump routine, called by any module
IDCDB02 Symbolic dump, called by IDCDBOI
IDCI004 I/O Adapter's write module for the SYSPRINT data set in an

interactive TSO environment, called by IDCIOOI
IDCVSOI Volume Services VTOC routine, called by the FSRs
IDCVS02 Volume Services label routine, called by the FSRs
IDCVS03 Volume Data Set routine called by the FSRs

The Reader/Interpreter and the FSRs are alternately called and deleted by
the Executive (IDCEXOl) to perform their duties. There are two
Reader /Interpreters. The invokation of Access Method Services determines
which Reader/Interpreter is called. If Access Method Services is invoked
from a batched job, the Reader/Interpreter for batched jobs is entered at
IDCRIOl, which in tum calls IDCRI02 and IDCRI03. If Access Method
Services is invoked interactively with TSO, the Reader/Interpreter for
interactive TSO is entered at IDCRI04. The FSRs are named as follows:

VSAM CHECKPOINT/RESTART

IDCALOI ALTER IDCCKOI CHKLIST
IDCBIOI BLDINDEX
IDCCCOI CNVTCAT
IDCDEOI DEFINE
IDCDLOI DELETE
IDCXPOI EXPORT ~
IDCMPOI IMPORT
IDCLCOI LISTCAT
IDCRLOI LISTCRA
IDCPMOI PARM
IDCPROI PRINT
IDCRCOI EXPORTRA
IDCRMOI IMPORTRA
IDCRPOI REPRO
IDCRSOI RESETCAT (VS2.03.808 only)
IDCVYOI VERIFY

The Mass Storage System FSRs are described in OS/VS Mass Storage
System (MSS) Services Logic.

System Macros and Services Used by Access Method Services

All requests for services from the operating system are issued by either the
System Adapter or the I/O Adapter. Figure 5 lists all system and I/O macros
issued by the processor, along with the issuing module's name and the label at
the point of issue. These labels all begin with "L," contain a mnemonic for
the macro, and end with a single digit. Thus they are easy to locate with the
cross-reference table of the listing.

The adapters provide the operating-system services listed in Figure 5 to the
rest of the processor.

Non-operating-system services are also provided by the adapters and by the
Text Processor. Requests for services are represented in the listings by a call

376 OS/VS2 Access Method Services Logic

to the appropriate service-module entry point. Requests for Volume Services
are generated with the UCALL macro.

The Global Data Table (GOT) contains a branch vector to the various entry
points in the adapters which provide these services. A routine obtains a
service by loading the appropriate entry point address into a register and
performing a BALR. Standard linkage is used: register 1 points to a list of
argument addresses, register 13 points to a save area, register 14 contains the
return address, and register 15 contains the entry point address. The
exception is the call to SAABT: register 1 is not used, register 13 contains the
address of a save area in the System Adapter, register 14 contains the address
of SAABT and register 15 contains an abort code.

Macro Module

ABEND IDCSAOI

BLDL IDCSA02
(VSl.03.807)

CALLTSSR IDCRI04
(VSl.03.807) IDCSAOl

CAMLST IDCRS07
(VS2.03.808)

CATLG IDCSA02

IDCSA07

CLOSE IDCIOO2

IDCIOO5

IDCSAOl

IDCSA02

CHECK IDCIOOl

DELETE IDCSAOl
(VSl.03.807) IDCSA02

IDCSA03

DEQ IDCSA06

IDCSA08

IDCSAlO

DEVTYPE IDCIOO2

IDCIOO3

ENDREQ IDCRPOI

ENQ IDCSA06

-

IDCSA08

ERASE IDCRPOl

ESETL IDCI003

ESTAE IDCSAlO

EXCP IDCIOO5

EXTRACT IDCSA08

Label

LABENDI

LBLDLI

- - •
-
CLISTR

CLISTS

LCATLGl

LCATLGl

LCLOSEl

LCLOSEl

LCLOSEl

LCLOSE2

LCLOS~

LCHECKl
LCHECK2

LDEL3

LDEL2

LDELl

DEQl

LDEQ2

LDEQl

DEQl

LDEVTt

LDEVTl
-

-

LENQl

LENQ2

LENQ3

LENQ4

LENQ5

LENQl

-
._ LESETLI

-

LSTAE2
-

LEXCPJ

LEXTRl
Figure 5 (Part 1 of 5). System and I/O Macros Used by Access Method Services

Program Organization 377

--

----- --- -----

•

Macro Module

FREEMAIN IDCIOO2

r----------.-~--

ID~!.QQ~_ ..

IDCSAOI

I.......... ----
IDCSA02

I

--------------.--

IIDCSA03

~--- ------

IDCSA08

uS75r ' ...)

Label

LFREMI

LFREM2

LFREM3

-------.---

LFREMI
--~-,--- -

LFREM3

ILFREM4
LFREM5
LFREM6
LFREMI4
LFREMI5
LFREMI6
LFREMI7
LFREMI8

~!"~~M!?_._..
LFREM7

LFREM8

LFREM9

LFREMIO

LFREMll

I:FREM12
LFREM13

LFREM I

LFREM2
.-_ .. -

LFREM I

~R_E_F.J>QQ!- lQ<:;IQO]___ l-F'R..~-gP_1._

GENCB IDCI002 LGENI
(Deleted for LGEN2

~.IIOIILrDcIOOI·· ~E--
IDCRS07 t.
(VS2.03.808)

GET~~I~-- :i~:~.~~-

IIDCS~
f----------- r---.
ICBACREL IDCSA09

ICBCOTB IDCSA09

r----~ -

ICBCOVC IDCSA09

.. ~~:~:~-.
LGETM3X
(VS2.03.807)
LGETM4
LGETM4X
(VS2.03.807)
LGETM5
LGETM5X
(VS2.03.807L

LGETMl
LGETMlX
(VS2.03.807)

LACQI
-

LCOTBI

LTBLRl

LCOVCl

LCOVC2

Figure 5 (Part 2 of 5). System and I/O Macros Used by Access Method Services

378 OS/VS2 Access Method Services Logic

-- --- ------- --

Label
LDEFVI

LMCRTI __

LMNTDEI
LMNTDE2
LMNTDE3_

~ _____-+~==~~_+L=I~C~BMNTI _

~--==-:"=-==-=--t=~--=='-'---_i-=L=-=-N,-=U=L=-:L1 __

LRMSCI
LRMSCTI
LSAI
LRLABI

f------ - _____f--::L=C=U"-'A=-:.I_ -- -

.!QITRACE IDCSA09 LTRACEI

ICBTUNE IDCSA09 LTUNEI
1---__1--______ LTUNE2

ICBVVIC r!PCSA09_ ,bVVIQ ____

$.I3DEFY__ ,lI?_9A09____ LDEEYI ___

LINK ,lDCAMOI LLINKI

1--______ IDCAM02 LLINK2 ___

LOAD IDCIOOI LLOADI

IDCSA02 LLDA I
LLDA2

_______ chLD.b.L_

1----__ IDCIOOS LRVLOAD_

LOCATE IDCSA07 __ LI,.Qc:.ATL_

MODCB IDCI003 LMODI
(Deleted for LMOD02
~.s.os)_ ____ _ ____ 	 ~ODOL--
MODESET IDCIOOS 	 LMODEI

LMODE2
LRVMODEI
LRVMODE2
LRVMODE3
LRVMODE4------------ r------- -------

IDCRS07 	 CATSUPR
(VS2.03.808) 	 CATPROB

FRCSUPR
FRCPROB
RENMSUPI
RENMPRBI
SCRSUPR

__________ ~C~PROB

IDCSA06 LMODEI
LMODE2

Figure S (Part 3 of 5). System and I/O Macros Used by Access Method Services

Program Organization 379

Macro 	 Module Label

OBTAIN 	 IDCI003 LOBTI -- ------- ----	 ---------- --_.---'----

OPEN 	 IDCI002 LOPENJ
----- ------- j 	

LOPENI
.. ~-----

IDCI005 	 LOPENI

LOPEN2

LOPEN3

LOPEN4

LOPEN5

LOPEN6

ILRVOPNI
LRVOPN2

-- ---	 ... -- -

IDCSAOI 	 LOPENI

IDCSA02 	 LOPEN2

POINT 	 rI~~I003 . LPOINTI
I LPOINTZ

PUT···lIDC~~;1 .. ·f:~~~-·

flDCR~07 LPUT3

!(YS2~()U08) I

:~~~I:TE 	 II :~~;;: ·~~:~~~Il
ILPUTL2

j~:~~~!

f.i~~;fjJ:~~!~~ -I~~~~~1
~~;;~B 	 I~~I002 1LRDJFI

IDCI003 .11 LRDJFI.

IDCIOOS LRDJFI
~E~D··-··1I';CI~~·;· 1LREAD 1

~~~~~E1I~c~~0; ~~;MCML 
(VS2.03.808)

------ - -----,- -_. "- ....... -_._

RESERVE 	 IDCSA08 LRSVRI 

RETURN 	 IDCI005 LRETURNI 
.. 

IDCRS07 SCRCML 

- _....... ("S2.03~1l) . ... 

S<::~AICH .... I.r~c::§~08. LSCRTI 

~ETL 	 IDCI003 LSETLI 
........_.. . ....._ ...._. 


SETRP I IDCSA \0 LSETRPI 
Figure 5 (Part 4 of 5). System and I/O Macros Used by Access Method Services 

380 OS/VS2 Access Method Services Logic 



-----------

--

---

Macro Mod. Label 

SHOWCB IDCI002 LSHOWI 
(Deleted for LSHOW2 
VSl.03.8GI) IDCIOO3 LSHOWI 

-

SNAP IDCSAOI LSNAPI 

IDCSA02 	 LSNAP2 

STACK ~CAMO~_ 	LSTACKI 
--~--~ 

IDCAM02 	 LSTACK2 
-

STOW IDCIOO3 	 LSTOWI 
LSTOW2r--

SVC 82 IDCIOOS 	 L82SVCl 
L82SVC2 
LRV82SVC 

---~--------.- ---~~-----

IDCSA06 	 L82SVCI 
L82SVC2 ---------- -----_.--- 

~DCSAIO L82SVCIr----- 
SVC99 IDCSA02 	 L99SVCI 

L99SVC2 
L99SVC3 
L99SVC4 

t-----~-- c---- -

SYNADAF IDCIOOI 	 LSYNFI 
LSYNF2 
LSYNF3 
LSYNF4 
LSYNFS 
LSYNF6 
LSYNF7 

IDCIOOS 	 LSYNFI 

SYNADRLS IDCIOOI 	 LSYNFI 
LSYNR2 - . ------ ----------	 ---------,--- --

f--- ------c!QQQQL-	 bSYNRl _____ _ 

TCLEARQ IQ_£AMOI __ 	 LT~LRQ1___ 

t------ ----- ---

TESTCB IDCI002 LTESTCBl 
(Deleted for LTESTCB2 
VSl.03.l0l) LTESTCB3 
L________________ LIE~!~~~_ 
TIME IDCSAOS 	 LTIMEI 

LTIME2 
LTIME3 

V~~IFY ___ IDQQc!L _ c!:Y-~fY~ 

WAIT 	 IDCIOOS__ ,h'YAITI __ _ 

IDCSA09 	 LWAITI ----- -- -- -- ----- - . -	 ---------------- --~-----

IDCIOOI 	 LWRITEI 

WTO IDCSAOI 	 LWTOI 

IDCSA08 LWT02 
Figure S (Part S of S). System and I/O Macros Used by Access Method Services 

Program Organization 381 



Intemal Services Provided for Processor Modules 

Figure 6 contains a list of the services provided by the adapters and the Text 
Processor, the appropriate module name in each case, and the entry point 
name. Calls to the services are generated by macros defined by Access 
Method Services. The macros are collectively called Umacros. The listings 
contain only the calling sequence and not the Umacro. This publication 
discusses the Umacros in order to combine the calling sequence with the 
service performed as a function. The rightmost column lists the arguments 
that may be included with each of these Umacros. These arguments represent 
the addresses of the named items. When the argument is preceded by the 
symbol t, then it is the address of a fullword pointer to the named item. 
Brackets ([]) indicate an optional argument. 

Service Module Entry Point Description 	 IArguments 

PROLOG IIDCSA03· IDCSAPR Initialize a routine on entry; get storage. 	 module identification 
size of~torage for lllodu1t: 

UABORT IDCSAOI ISAABT Handle unrecoverable error condition while +:~:ORT ,od,(.. reg;"" 15)
I . l'!Qcessing. 

UALLOC IDCSA02 lIl:>cSAA~ Allocate a data set or mount a volume. 
IALLAGL 

UCALL IDCSA02 IDCSACL Load an executable module, if necessary, and pass ··tGD~·--·· 
control to it. I entry point name 

, [list of arguments for 
called module] 

1UCATLG IDCSA02 IDCSACA I Catalog request. GDT 
tcatalog parameter list 

UCIR IDCSA02 
tIDCSAC~ tObtain fully~ualiiied data set names f·r~m ~VSAM 1GDT - - 

catalog. CIRAGL 

UCLOSE I)OCIOOl _IIDCI~CL ic~ose one or ~ore data sets. _ _ 	 g~~AGL [..J 

UCOpy IDCIOO! IDCIOCO Copy a data set. 	 GDT 
t input IOCSTR 

1 --IID~S~DL 1:--e~l~ocate a data se~ ~r dismou-nt a volume. ~~;ut IOCSTRIIUDEALLOC IIDCSA02 
ALLAGL 

UDELETE IIDc~,'\~; 
, 

I t::;~~ll:f;:=:::;:~:J~:~::;:~~'o""" ;:::1<0='
UDEQ IIDCS~08 

I I 	 Imajor resource name 

1I -IID-C--D·-B-··O·-l-- -	 mGDinTor resource naII1e-1
UDUMP Print diagnostic output and storage dump. 

dump identifier 
_ ____ [ t ~ymbolic dump list] .I;:~~~::UENQ IDCSANQT~~q~ire-C~~r~~~f :re~~~~~.- I~~i" 'EXCL' 

I 'NOWAIT' I 'WAIT' 
major resource name 
minor resource name 

UEPIL GDT 
module identifier 

Figure 6 (Part I of 7). Internal Services Provided for Processor Modules 

382 OS/VS2 Access. Method Services Logic 



Service I Module IEntry Point Description 	 Arguments 

U~RROR ... - !IDCT;~~ II~CT;;;· Without VS2.03.807: Verbalize Catalog Error GDT 

Messages ERCNVTAB 
With VS2.03.807: Verbalize Catalog and Dynamic 

._ ....1 ___ --- +----- ~.Iocation Error Messages 

'I·UEST A iIDCTP04 IDCTPEA Establish a PCT, Print Control Table, from GDT 
information in storage. alternate IOCSTR or zero 

I for SYSPRINT 
I 

PCARG 

UESTS 

UEXCP 

EXOARGr·· ...-. ..-. --. 

Close data set. 	 GDT 
'CLOSE' 
tIOXCTLBKr-· - 

Read a record. GDT 
'GET' 

__________.______. _~GAJ~-Q---------------f··----..---- -.
IWrite a record. 	 GDT 

'PUT' 

EXPARG-- ...- ...---..--.--.-.-- .-- ---·--··----r· ----..- 

REPAIRV: Open a data set, VTOC, VTOC header, GDT 

or staging volume. 'OPENR' 

EXOARG .--.... --- .--..------- -.-..-----------. 

1 REPAIR: Read count, key, and data of all records GOT 

Ion a track. 'REAOKO' 
1____..___. ___.. ______ _ EXWRARG_______ 

REPAIRV: Read the count field of all records on a GOT 

track. 'READCNT' 

____.________._____. _ . ___ rJ;:?,_WRARQ __ .__.. __...__ 

REPAIRV: Bypass a defective count field. 	 GOT 
'SPACCR' 
EXWRARG 

.. - -. -- ......-- ------.--- - _ .. ---- -	 -- ---

REPAIRV: Write a record's key and data field. 	 GOT 
'WRITEREC' 

EXWRARG._-- ..- -_. _ ...- .. -..- ..-- ..-	 ._---_.- ----_._--_.. 

REPAIRV: Write multiple records on a track. 	 GOTI 
'FWRITE' 

I I EXWRARG 

Figure 6 (Part 2 of 7). Internal Services Provided for Processor Modules 

Program Organization 383 



- -

----

Service Module Entry Point IDescription Arguments 
I--------f-----+-----+------------------------t------ 

UFPOOL IDCSA02 IDCSAFP Release a named pool of storage. GDT 
pool identification 
['ALL']-- --- ---- f--- - -f---- -	 - -- - ---- ------ ---- - -- - - -- -- -- ---------- ----------- 

UFSPACE IDCSA02 IDCSAFS 	 Release unnamed storage or specific subpool of GDT 

storage. address of storage to free 
---- ------ -f-------- -- ----- -------------------- ------- ---------- ------- -------------------- 

UGET IDCIOO! IDCIOGT Read a record. GDT 
tIOCSTR- c-- ------ ---- t-- - - - -- -- -- ----- - --- --- --- -----~----------------------

UGPOOL IDCSA02 IDCSAGP Al10cate a named pool of storage and optionally GDT 

initialize it. size of storage to obtain 

I returned storage address 
, pool identification 

['SETZERO"'SETBLANK']
-----------1------+------t-------------- --------------l-''-' ------ - --------------------

UGSPACE IDCSA02 IDCSAGS Al10cate unnamed storage or specific subpool of GDT 
storage, and optionally initialize it. 	 size of storage to obtain 

returned storage address 
['SETZERO"'SETBLANK" 

'NOSET', subpool id] __________ 
~----- f----------------- 

UID IDCSA02 IDCSAID Obtain a terminal user's identification. GDT 
returned TSO user's 
identification 

returned number of non-blank 
characters in TSO user's 
identification 

UIOINFO IDCIOO! IDCIOSI Obtain data-set information. 	 GDT 
option byte 

twork area 
dname 

[U9pogI,- I~J1---- ---- - --- - ~--------

UIOINIT IDCIOO! IDCIOIT Initialize the I/O Adapter. GDT 
[ t DDnames list or zero] 

____ ___ ___ _ ________ ________ _______ ____ [tt:xterl!~l r(llltint:list()r_z.e!~lr --- -- -
UIOTERM IDCIOO! IDCIOTM 	 Close all data sets that Were opened with UOPEN GDT 

and free all storage still used by the I/O Adapter. 
f--------- - -- -- -- 
ULINK IDCSA02 IDCSALK Link to a module. GDT 

module name to link to 

lar1!\lJ!le.l1ts_f.Ql"c_all~.'!_!1I.2d_uJ~l-- --- -- --- --- f----- ------- --------------- -------- -- ----

ULISTLN Inline code None Copies the contents of register 1 into a ful1word 
named LISTPTR and puts the number of arguments 

__________ ~ddressed b}' register 1 LIl_a bytenal1!e<lJ:.!S!1~~____ u__ m _ _______ _____ ___ __ _ 

ULOAD IDCSA02 IDCSALD Load a module, ifnecessary; but do not pass control GDT 
to it. module name 

returned loaded module address 

Figure 6 (Part 3 of 7). Internal Services Provided for Processor Modules 

384 OS/VS2 Access Method Services Logic 



___ _________ 

------

L 
Service Module Entry Point Description 	 IArgwnents 

ULOCATE lDCSA07 lDCSALC Locate a nonVSAM data set 	 GDT 

entry in the catalog. t Data set name 

tVolume serial number 

t Device type 

- - - -- ----  -  fLCTINFO - 
UMSSUNIT lDCSA06 lDCSA06 J\.!ount a mass storage volume. - ----  - -  ------- 

GDT 
'MOUNT' 

f-----------  MDAGL 
--IGDT 

Demount a mass storage volume. 

I'DEMOUNT' 

- ----l~DAGL________ _ 

Post a UCB. 	 IGDT 
I'POST' 
IpUAGL 

t~~u;-~ ___ =_-i~~~~' _____-
IIf the volume is already allocated exclusively to the IGDT 


Ijob step, select a DD statement and UCB that can 'SELECTX' 


Ibe used to_~~~n~n_d proce~s_the~olume. __ _ IEXCLAGL _____ _ 


I Change the allocation of a unit and volume GDT 

1mounted on that unit to exclusive. 'CHANGEX' 

EXCLAGL 
-IGDT- 

Select an already mounted unit and its associated 
ddname. I'SELECTD'b ISELAGL 

- I~CIOO~ lDCIO-~-lopenone-:;mo;edatasets.-- -- - ---lGDT-----UOPEN 

OPNAGL [ ... J --------1 ------- ---------- I 
UPOSIT !DCI001 IDCIOPO IPosition to a logical record or physical block. I GDT 

___c-!!-0CSTR__________ 

UPRIN~-lD GDT--C-T-P-O-1--+-I-D-C-T-P-P;-! Format ~nd ~SUaIlY write one or more lines. 

alternate IOCSTR or zero
I 

for SYSPRINT 

tDARGLIST 

f---------~---._+----+------------------ ___ [tFMTLISTJ~______ __ 

UPROMPT IDCSA02 IDCSAPT Obtain information from terminal user. GDT 

t text for terminal 

Inumber bytes in of text for 

I terminal 
t area for terminal user's reply 

Inumber of bytes in terminal 

-----f------j------ - -- -- --- ----------------i user'sIeply - -------- 

UPUT IDCI001 IDCIOPT Write a record or physical block. 	 IGDT 

I tIOCSTR J 
____________________J ___________________________HlDcodeJ __ 

Figure 6 (Part 4 of 7). Internal Services Provided for Processor Modules 

Program Organization 385 



----

-------

---- -- -----

--

Service 1M... iEntry Point DescrIption 	 IArguments ..J 
UQUAL IDCSA02 IDCSAQL Obtain a fully-qualified data set name in an 	 GDT 

interactive TSO environment. 'unqualified data set name 
number of non-blank characters 
in unqualified data set name 
[ 'catalog name or zero] 
[ , catalog password or zero]r---

URACHECK IDCSA08 IDCSARK Request Resource Access Control Facility (RACF) GDT 
(VS1.0I.814) authorization. RACFAGL 

~---

URECAT IDCSA07 IDCSARC Recatalo~ anonVSAM data set. 
iGDT 
RCTAGLc- --- 

URESERVE IDCSA08 IDCSARV Acquire control of an I/O unit. GDT 
'SHR' I'EXCL' 
'NOWAIT'I'WAIT' 

tUCB 
major resource name 
minor resource name 

URESET IDCTP04 IDCTPRE Re-initialize PCT, Print Control Table, for the next GDT 
function. alternate IOCSTR or zero 

for SYSPRINT 
invoker's page number field 

UREST IDCTP04 IDCTPRS Modify an existing PCT, Print Control Table 	 GDT 
alternate IOCSTR or zero 
for SYSPRINT 
argl 

.j 
arg2 

><';1', 

r------+---~---1-----+-------~------ -- - 

USAVERC lnline code None Copies the low order half of register 15 into a 

1--____4-____-+______~h=a=lf2w~o~rd~namedTESTRC. 

USCRATCH IDCSA08 IDCSASC Delete a data set stored on one or more volumes. 	 GDT 
data-set name 
'volume list 

1---____+___---11--___+--_______---------- ['OVEgRID~ ______ 

USNAP IDCSA02 IDCSASN Call for a SNAP dump. GDT 
SNAP dump identification 

I--____--+____+--___-+____________________~ _r--number_ -~-- --- 

USSC IOCSA09 IOCSASS Issue MSSC macros and optionally wait for a GDT 
response. 'ACQUIRE' I 'MOUNT' I 

'DEMOUNT' I'DEFlNE'I 
'MOVE'I'RELINQ' 

'TRACEQ'I'COPYTABL'I 
'COPYCRTG'I'COPYVOL'I 
'VVIC'I'TUNE_'_____ 

r-------~--~-----r_------+-------------------

USTAE IDCSAIO IDCSAST Establish or cancel an ESTAE environment. GOT 


~ _~~~ _____________________ ~E.'!:l'c.::,'\N-=C=E=L'__'_-,---__---' 


Figure 6 (part 5 of 7), Internal Services Provided for Processor Modules 

386 OS/VS2 Access Method Services Logic 



--

L 
Service Module Entry Point Description 	 Arguments 

USTOW IDCIOOI IDCIOST Delete or rename a member of a partitioned data GDT 

set. tIOCSTR 
'D'I'R' 

USYSINFO IDCSA08 IDCSASI Return job and step name or unit information. 	 GDT 
'NAMES'I'UNIT' 

t return area 
[dname] 

UTIME IDCSA02 IDCSATI Get date and time of day. 	 GDT 
field for returned time 
[field for returned date] 
['FORM'I'HSEC'I 
'KLOK' 

UTRACE Inline code None 	 Adds the current identification to the Inter-Module 
Trace Table. 

UUNCATLG IDCSA07 IDCSAUC Uncatalog and scratch a nonVSAM data set. 	 GDT 
UCTAGL 

UVERIFY IDCIOOI IDCIOVR Issue VSAM VERIFY macro. GDT 

_. tIOCSTR 

UWTO IDCSA08 IDCSAWO Write message to the console operator. 	 GDT 
message length 
t message text 
[routine code] 
[descriotion code] 

Volume Services 
VTOC 

Service Module Entry Point Desaiption 	 Arguments 

GETVTOC IDCVSOI IDCVSOI Retrieve alternate track and VSAM ownership fields GDT 
from the VTOC. 'GETVTOC' 

VSIAGL 

PUTVTOC IDCVSOl IDCVSOI . Update the VSAM time stamp and alternate track GDT 
fields on the VTOC. 'PUTVTOC' 

VSIAGL 

RECATLG IDCVSOI IDCVSOI Recatalog each nonVSAM data set found on the GDT 
VTOC 'RECATLG' 

VSIAGL
f--

SCRVTOC IDCVSOI IDCVSOI Scratch all data sets from the VTOC and set VSAM GDT 
ownership field to zero. 'SCRVTOC' 

VSIAGL 

SECCHECK IDCVSOI IDCVSOI Perform security checking for both VSAM and GDT 
nonVSAM data sets 'SECCHECK' 

VSIAGL 

Figure 6 (Part 6 of 7). Internal Services Provided for Processor Modules 

Program Organization 387 

L 



Volume Services 

label 

Service Module IEntry Point Description 	 Arguments 

GE;L;;EL-,IO~v~flDCV';;:;:~: :~:::;.:M~;~;~~lum' re,;.l num~; G~:TI.ABEL'- _.. -- - 

;~I~V~;:- IDCV~-Pcv;'" T:::F':ovolum,-;:It;n; 1h:~T;;~ .~~~~l:~ ~!t:L'-- -
VS2AGL-- ---.-. ------ ----- ----I--------I-----~--- .------.- - ---- -- --- -- ---- . --- ----

PUTLABEL IDCVS02 IDCVS02 Update the owner name and/or volume serial GDT 

number in the volume label. 'PUTLABEL' 

VS2AGL 
- - -- -- -- --- --- -_. r-- 

SELECTDS IDCVS03 IDCVS03 Searches 3330 or 3330V for the data sets that will GDT 

meet criteria as specified by the user. 'SELECTDS' 

VS3AGL 

Figure 6 (Part 7 of 7). Internal Services Provided for Processor Modules 

Processor Invocation 

There are 2 ways to invoke the Access Method Services processor: 

• 	 A Batched Job--When you use a batched job to invoke the processor, you 
can give control to the processor either with JCL (// EXEC 
PGM=IDCAMS) or with a subroutine call to the processor from a 
program. The processor normally resides in the system data set 
SYS I.LINKLm. The register contents and the processor's argument list 
are the same no matter how you give the processor control. The register 
contents and argument list are set by either the operating system if you 
give the processor control with JCL or the calling program if you give the 
processor control with a subroutine call. 

The register contents comply with standard linkage conventions; that is, 
register 1 contains the address of the argument list, register 13 contains the 
address of a save area, register 14 the address of the return location, and 
register 15 contains the address of the entry point IDCAMS in module 
IDCSAOI of the System Adapter. On exit from the Access Method 
Services processor, register 15 contains the value of MAXCC (see the 
section "Processor Condition Codes" below). 

The argument list for a batched job is shown in Figure 7, can be a 
maximum of four fullword addresses pointing to strings of data. The last 
address in the list contains a '1' in the sign field. The first three possible 
strings of data begin with a two-byte length field. A null element in the list 
is indicated by either an address of zero or a length of zero . 

• 	 Interactively with TSO-When you use interactive TSO to invoke the 
processor, you can give control to the processor each time you type any 
Access Method Service command-"except P ARM and modal commands. 
PARM and modal commands-IF-THEN, ELSE, DO, END, and 
SET-are not allowed with interactive TSO. The TSO Terminal Monitor 
Program (TMP) gives control to IDCAMO 1 or IDCAM02 which reside in 
the TSO command library data 8et, SYSl.CMDLIB. IDCAMOI and 
IDCAM02 have aliases of all the verbs and verb abbreviations permitted 

388 OS/VS2 Access Method Services Logic 



OPTIONS LIST 

0 PTI...._L_E_'N...,.G_I_.H_-L__.., 8ARGUMENT LIST 

OPTIONS LIST: Required. Provides a +OPTIONS 

+DNAMES 

+10LIST 

PAGE ~UMBER 

PAGE NUMBER LIST: Optional. Provides 
a way to specify the starting page number 
for system output. 

LENGTH: The number of bytes in the 
PAGE NUMBER field. 

PAGE NUMBER: I -4 byte character string which may 
specify the starting page number of system output listing. 
This value is reset to the current page number upon 
completion of the present invocation of the Access 
Method Services processor. 

INPUT/OUTPUT LIST 

INPUT/OUTPUT LIST: Optional. Provides the means of 
n identifying those data sets for which the invoker wishes to 

manage all I/O operations. 

n: A fullword which specifies the number of groups of 
three fields that follows. Each group consists of a DNAME +10ROUnNE I 	 address, an IOROUTINE address and a USER DATA address. 

DNAME: Address of a character string which identifies a 

• 
t USER DATAl data set which will result in the invocation of the associated 

10ROUnNE for all I/O operations (including OPEN and 
CLOSE) against the data set. The character string identifies 
the data set as either a lO-byte or 46-byte character string 

• 
 as follows: 


'r"" 

• 
A I O-byte character string: the first two characters are 'DD'. 
the next 8 characters arc the DNAME field value left-justified 
(padded with blanks if necessary) which may appear in the 
FILE, INFILE or OUTFI LE parameters of any Access 
Methods Services command. The SYSIN and SYSPRINT 
ddnames may also appear if the invoker wishes to manage 
these data sets. 

+DNAMEn 

10ROUTINEn+ A 46-byte character string: the first two characters are 
'DS' the next 44 characters are the data set name, leftt USER DATAn 	 justified (padded with blanks if necessary), which may appear 
in the 1i'!DATASET, OUTDATASET, or DATASET para
meters of any Access Method Services command. 

10RounNE: Address of the program which is to be 
invoked to process I/O operations upon the data set asso
ciated with DNAME. This routine, instead of the processor, 
will be invoked for all operations against the data set. See 
the section "User I/O Routines" in this appendix for linkage 
and interface conventions between the 10ROUTINE and 
Access Method Services. 

way to specify processing options. If 
you do not wish to specify any options, 
you must set the LENGTH field to 
binary zer,)s. 

LENGTH: Halfword which specifies the 
number of bytes in the OPTIONS field. 

OPTIONS: Character string which con· 
tains the processing options of the Access 
Method Services PARM command. The 
options may be specified in the PARM 
field of the EXEC statement or they may 
be set up by the problem program. The 
options must comply to the parameter 
syntax of the Access Method Services 
PARM command. 

DNAME LIST 
DNAMES LIST: Op

LENGTH tional. Provides a way to 
specify alternative names 

00000000 
for the SYSIN and 
SYSPRINT data sets. 

00000000 LENGTH: Halfword which 
specifies the number of 

00000000 
bytes in the remainder 
of the list. 

00000000 DNAMES: Unseparated 
eight-character ddnames. 
left justified and padded 

SYSINl'ID with blanks. To change 
the name of S YSIN or 
SYSPRINT supply an 

SYSPRINT alternate name in the 
same position. If an 
alternate name is not 
supplied, the standard 
name is assumed. If the 
name is not supplied 
with the list, the eigh t
byte entry must contain 
binary zeros. Names in 
any position other than 
those for SYSIN and 
SYSPRINT are 
ignored. 

USER DATA: Address of a data area user may use for any purpose. 

Figure 7 _ Argument List for Processor Invocation with a Batched Job 

Program Organization 389 



with interactive TSO. IDCAMOI and IDCAM02 contain identical code. 
The TMP gives IDCAMOI or IDCAM02 an argument list as shown in 
Figure 9. For more information on the TMP, refer to OS/VS2 TSO 
Terminal Monitor Program and Service Routines Logic. IDCAMOI or 
IDCAM02 uses a LINK macro to give control to the processor at entry 
point IDCSATO. The processor-except modules IDCAMOI and 
IDCAM02-normally resides in the system data set SYS I.LINKLIB. 

The register contents comply with standard linkage conventions; that is 
register 1 contains the address of the argument list, register 13 contains the 
address of a save area, register 14 the address of the return location in 
IDCAMOI or IDCAM02, and register 15 contains the address of entry 
point IDCSATO in module IDCSAOI of the System Adapter. On return to 
the TMP, register 15 contains the value of MAXCC (see the section 
"Processor Condition Codes" below). 

The argument list is the same as the argument list the TMP gave 
IDCAMOI or IDCAM02-shown in Figure 8. 

Processor Condition Codes 

The processor's condition code is LASTCC, which can be interrogated in the 
command stream with modal commands. The possible values and their 
meanings are in the following table. The table illustrates the value of 
LASTCC. 

Code Meaning 

o The function was executed as directed and expected. Informational messages may 
have been issued. 

4 Some annoyance in executing the complete function was met, but it was possible 
to continue. The results might not be exactly what the user wants, but no 
permanent harm appears to have been done by continuing. A warning message 
was issued. 

8 A function could not perform all that was asked of it. The function was 
completed, but specific details were bypassed. 

12 The entire function could not be performed. 

16 Severe error or problem encountered. Remainder of command stream is flushed 
and processor returns condition code 16 to the operating system. 

The LASTCC condition code is reflected in its related message numbers. The 
first numeric character of the message number equals the condition code 

IREG 1 Argument List 

t TSO Command Buffer 

t User's Profile Table 

+Protected STEP Control Block 

+Environment Control Table 

Figure 8. Argument List for Processor Invoked Interactively with TSO 

390 OS/VS2 Access Method Services Logic 



User I/O Routines 

divided by 4. MAXCC, which can also be interrogated in the command 
stream, is the highest value of LASTCC thus far encountered. 

If the user has supplied his own II0 routine~ the I/O Adapter invokes the 
user routine. Again, standard linkage is used. Figure 9 shows the arguments 
passed to the user routine. Each field begins on a fullword boundary. 

When writing a user I/O routine, the user must be aware of three things. 
First, the processor handles the user data set as if it were anonVSAM data 
set that contains variable length unblocked records (maximum 
length-32,760 bytes) with a physical sequential organization. The processor 
does not test for a JCL statement for the data set. Therefore, the name can be 
anything. Second, the processor formats data in various ways. The user must 
know what the format is so that the user's routine can be coded to handle the 
correct type of input and format the correct type of output. (See "Diagnostic 
Aids" for more information). Third, each user supplied I/O routine must 
handle any error messages and provide to the processor a return code in 
register 15. The processor uses the return code to determine what it is to do 
next. 

The permissible codes are: 

• 	 0 - Operation successful. 

• 	 4 - End of data for a GET operation. 

• 	 8 - Error occurred during a GETIPUT operation but continue 
processing. 

• 	 12 - (1) Do not allow any further calls (except for CLOSE) to this 
routine. 

Program Organization 391 



User data pointer obtained from the +USER DATA input/output list of the processor 
invocation parameter list. (See Figure 7.) 

tIorLAGS 

t IOINrO 

OPEN or CLOSE 

DNAME or 
DATASETNAME 

DNAME: 8-byte field, 
left-justified (padded 
with blanks if necessary) ,containing the ddnamc. 

DATASETNAME:44
byte field (padded with 
blanks if necessary) 
containing the data set 
name. 

FLAGS 

Fullword of Flags: 
Value or 
Bit PatternFor a GET this information 

is returned to the processor Byte I o 
by the user's I/O routine in (Operation) 4 
the 8-byte arca pas~ed to thc 8 
routine. 12 

ror a PUT the processor Byte 2 I ••• 
gives this information to the • I .• 
user's I/O routine. • • I • 

Record (GET): Address of 

retrieved record. 


• • • I ••••Record Length (GET): Full
word length of retrieved 

record. 


Record (PUT): Address of 

record to be written. 


Bytes 3, 4 
 o 
Record Length (PUT): I-'ull (Record type 
word length of record to be for PUT only) 
written. 

n 

Figure 9. Arguments Passed to and from User I/O Routine 

tRecord 

Record Length 

Meaning 

OPEN 
CLOSE 
GET 
PUT 

OPEN for input 
OPEN for output 
Indicates IOINFO 
contains the address 
of a ddname on OPEN. 

Indicates 10lNrO 
contains the address of 
a da ta set name on 
OPEN. 

Normal data record 
is to be written. 

Message serial number 
converted to binary 
if IDC message is to 
be written. 

392 OS/VS2 Access Method Services Logic 



L 

Overall Control Flow 

Figures 10 and 11 illustrate the overall control flow through the processor. If 
the processor is invoked with a batched job, Figure 10 shows the control flow. 
If the processor is invoked interactively with TSO, Figure 11 shows the 
control flow. Entry and exit are through IDCSAOI. IDCEXOI is the main 
controller; it alternates control between the Reader/Interpreter and the FSRs 
to process each command. When all commands are processed or a severe 
error has occured, IDCEXOI gives control to IDCEX03. After IDCEX03 
completes, IDCEXOI returns to IDCSAOI. 

All modules in Figures 10 and 11 call the modules in Figure 12 for services 
(like writing a record). The addresses of the entry points to the service 
modules are kept in the GDT. All modules in Figure 12 also call each other 
for services. 

Program Organization 393 



From Bat~hed Jon 

IDCSAOI 
Initiator/ 

Terminator 

IDCEXOI 
Main ,Line 

IDCFX()~ 

F\c,uti\c 
Initiator 

II)(RIO~ 

IDCRIOI 
Reader/ 

Setup 
Dc ...l.:rirtor 

IIKRIO.1 

Reader/ 


Interpreter 
Terminator 

I-undlun Support Ruutine 

Figure 10. Flow of Control Through Processor Invoked From a Batched Job 

VSA\IL...;';;"~;;;""'__.....I 

IDCEX03 
Executive 

Terminator 

~ass Storage System 

394 OS/VS2 Access Method Services Logic 



TSO 
Interface 

lDCSAOI 

Initiator! 
Terminator 

IDCEX02 

Exc\:ut ivc 

Initiator 

lDCRIO-l 
Reader! 
Inkrpret"r 
for TSO 

Function 

Support 
Routine 

lDCEX()3 

Executive 
Terminator 

Figure t 1. Flow of Control Through Processor Invoked Interactively with TSO 

Microfiche Directory 395 



I [)cIOOS 

I::XCP 


Open/Close/ 

Get/Put 


IOCl002
I/O Main 

Open/Close 

IDCI003 

Position 

IDCI004 

Write to 

TSO 
Terminal 

IDCTP04 

Update 
Print 

Control 

Table 

Format 

and 

Write 

Lines 

IOCTI'06 
Verhalize 
Keturn ClIdes 

IOCTP05 

S~'I\.'111 

AJilph:r 
Mdll1 

I()C~.·\f1< IDCDB02 

lillie Symholic 
Dump 

IDCDBOI 

Dump 
MainIDCSAOJ 

Prologue 

Epilogue 


OCSA06 
"fount/Demount! 
Post UCB/Chcck 

Selec!.\ ehangcx 


Sclcctdd 


meSAD7 
Recatalog 


Locate 

Uncatalog 


IIlCSAflH 
K,.·~our\.·".' 

\bnJj!l'lIll'nt 

I/O DI.'vlt..'l' 

IntnfJl"t: 

IIlCSAO<) 
l'SSC 

IIX'SA 10 
ISIAI· 

I IlCVSfI I 
\/Uillllh..' 

VTO(, SI,.'r\'lll' 

IIlCVSII2 
VOlli/lh.' 


I.;lh....'\ Sl'r\'il'l.' 


Illc\'S03 

Volume 

Data Set 

Service 

Figure 12. Flow of Control Through Services 

396 OS!VS2 Access Method Services Logic 



MICROFICHE DIRECTORY 


This chapter contains a directory to the microfiche listings for all modules of 
the processor. This directory describes the contents of each module by 
function and label, allowing you to quickly find any desired code. 

The processor is written in PL/S II, a high-level, IBM proprietary system 
language. Listings that are produced for microfiche consist of the PL/S II 
source code, a cross-reference and attribute table, and the assembly code. See 
the IBM publication Guide to PL/S II for a more detailed explanation of 
PL/S II and its listings. 

Each module is designed with "GOTO-Iess" code; that is, there are no 
explicit GOTOs or branches. All conditional phrases are contained within 
IF-THEN-ELSE clauses and DO-WHILE clauses of PL/S II. AU loops are 
controlled by DO statements. Extensive use of closed subroutines 
(procedures) is made. 

The microfiche for each module begins with the PL/S II portion, which 
contains all commentary and is the most readable form of the program. All 
data areas are defined at the beginning of the listing. IF-THEN-ELSE clauses 
and DO-loops are indented to denote levels of logic. The cross-reference and 
attribute table shows each use of each data area. The assembly listing is keyed 
back to the PL/S II source statement numbers. 

The listings are extensively commented. Each module begins with a prologue 
commentary that lists all stan'dard information for that module. Each internal 
procedure has a small prologue to further describe its function. 

Note: The listings use CPL, FVT, and FPL instead of CTGPL, CTGFV, and 
CTGFL, respectively. See OS/VS2 Virtual Storage Access Method (V SAM) 
Logic for a description of these data areas. The listings also refer to TSO data 
areas such as: PCL, POE, POL, CPPL. See OS/VS2 TSO Guide to Writing 
a Terminal Monitor Program or a Command Processor for a description of 
TSO data areas. 

In the following tables, the module name appears in the first (leftmost) 
column. The second column contains an entry:"'point label, the label of an 
internal procedure (subroutine), or the label of data used externally-that is, 
by another module. The third column differentiates between entry points 
(EP), procedures (PR), and data used externally (DE). 

CSECT/Load 
Module Name Label Use Descriptions 

IDCALOt ALTER FSR; modifies an existing catalog entry. 
Translates the encoded command parameters 
into the necessary catalog parameter lists and 
calls IDCSACA for a catalog request (UCATLG 
macro). 

IDCALOI EP Only entry point to this module. 
ALTERPRC PR Builds the VSAM catalog management interface 

for the alter rfluest. 
CHECKPRC PR Verifies that new values are compatible. 
DALCPROC PR Manages dynamic allocation. 
INDEXPRC PR Builds the VSAM catalog management interface 

to alter the index component if keys has been 
specified. 

Microfiche Directory 397 



CSECT/Load 
Module Name Label Use 

IDCALOI LOCATPRC PR 
(continued) 

MEMRENAM PR 
PARAMCHK PR 

IDCAMS EP 

IDCAMOI 

IDCAMOI EP 

IDCAM02 

IDCAM02 EP 

IDCBIOI 

IDCBIOI EP 
OPENPROC PR 

JCPROC PR 

MAINPROC PR 

FINPROC PR 

TERMPROC PR 

LOCPROC PR 

Descriptions 

Locates catalog fields which must be altered in 
context. LOCATRPC only locates fields which ,.) 
contain multiple attributes. Since the user may 
wish to change only one of several attributes, the 
original field serves as the basis for alternation. 
Renames members of a partitioned data set. 
Verifies that parameters specified on the 
command are valid for the type of object to be 
altered. 

Root segment for Access Method Services; 
consists of IDCEXOI, IDCEX02, IDCEX03, 
IDCIOOI, IDCI002, IDCI003, IDCIOO5, 
IDCSAOI, IDCSA03, IDCSA04, IDCSA05, 
IDCSA06, IDCSA07, IDCSA08, JDCSA09, 
IDCSAIO, IDCTPOI, IDCTP04, IDCTP05, and 
IDCTP06. See this chapter for a description of 
these modules. 

Interfaces with interactive TSO. If Access 
Method Services is invoked interactively with 
TSO, TSO gives control to this module or 
IDCAM02. IDCAMOI gives control to the 
System Adapter at entry point IDCSA TO. 
Modules IDCAMOI and IDCAM02 contain 
identical code. See the chapter "Program 
Organization" for more information. 
Only entry point to this module. This module has 
the name of every functional command-except 
PARM and CNVTCAT-as an alias. IDCAMOI 
resides in the TSO command library, 
SYSI.CMDLIB. 

Interfaces with interactive TSO. If Access ..J 
Method Services is invoked interactively with 

TSO, TSO gives control to this module or 

IDCAMOI. IDCAM02 gives control to the 

System Adapter at entry point IDCSATO. 

Modules IDCAM02 and IDCAMOI contain 

identical code. See the chapter "Program 

Organization" for more information. 

Only entry point to this module. This module has 

the name of the CNVTCAT command as an ' 

alias. IDCAM02 resides in the TSO command 

library, SYSI.CMDLIB. 


BLDINDEX FSR; build one or more alternate 

indexes over a defined, nonempty base cluster. 

Only entry point to this module. 

Opens the data sets required by the BLDINDEX 

FSR - base cluster, alternate index and, 

optionally, sort work files - by issuing UOPEN. 

Issues the UIOINFO macro to determine if caller 

supplied sort work job control; obtains data set 

name and volume serial. 

Controls the build process for one alternate 

index by calling OPENPROC, LOCPROC, 

INITPROC, CNTLPROC. 

Closes alternate index, sort work files, and issues 

alternate index final status message. 

Closes base cluster, frees resources, and prints 

termination message. 

Controls sequence of catalog locates to obtain 

information regarding base cluster and alternate 

index; verifies relationship. 


398 OS/VS2 Access Method Services Logic 



L 
CSEcr/Load 
Module Name Label Use Descriptions 

CATPROC PR 	 Constructs CPL and PLs for catalog locate and 
calls VSAM catalog management via UCATLG. 

DEFPROC PR 	 Constructs CPL, FVTs and FPLs and calls 
VSAM catalog management to define sort work 
files; opens defined files. 

DELTPROC PR 	 Constructs CPL and calls VSAM catalog 
management to delete sort work files. 

INITPROC PR 	 Determines resources required for building 
alternate index and obtains core for work areas 
and sorting. 

CNTLPROC PR 	 Controls actual build by reading base cluster and 
calling SORTPROC and MERGPROC or 
BLDPROC to perform sort-merge and write 
alternate index records. 

SORTPROC PR Constructs records; performs the entire internal 
sort or the initial sort phase of an external sort. 

SPILPROC PR Writes out initial strings to first sort work file in 
an external sort. 

BLDPROC PR Builds and writes the alternate index records 
from the sequenced sort records. 

MERGPROC PR Performs the merge passes of an external sort. 

mCCCO! 	 CNVTCAT FSR; converts OS/VS catalog 
entries to VSAM catalog entries. 

mCCCO! EP 	 Only entry point for this module. Opens and 
closes catalogs. 

AEPROC PR Processes SYSCTLG alias entries (AE). 
ALTRLSTS PR Builds a CTGPL, CTGFV, and CTGFLs for 

altering a VSAM catalog entry. 
CATALOG PR 	 Invokes VSAM catalog management to define, 

locate, and alter the converted SYSCTLG 
entries. 

CONTINUE PR 	 Obtains a SYSCTLG continuation index block at 
the same index level as the last block. 

CONVERT PR Determines type of entry in SYSCTLG data set. 
CVPEPROC PR Processes SYSCTLG control volume pointer 

entries (CVPE). 
CVTINIT PR Initializes scan of SYSCTLG, obtains storage, 

and prepares SYSPRINT subtitle line. 
DEFNLSTS PR Builds a CTGPL, CTGFV, and CTGFLs for 

defining a VSAM catalog entry. 
DSPEPROC PR Processes SYSCTLG data set pointer entries 

(DSPE). 
ERRPROC PR Builds error conversion table and invokes 

UERROR for all VSAM catalog (SVC26) errors. 
GIPEPROC PR Processes SYSCTLG generation index pointer 

entries (GIPE). 
ILEPROC PR Processes SYSCTLG index link entries OLE). 
LOCTLSTS PR Builds a CTGPL and CTGFLs for locating a 

VSAM catalog entry. 
POPUP PR Goes to a higher level SYSCTLG index block 

than the last index block. 
PUSHDOWN PR Obtains and verifies a lower level SYSCTLG 

index block. 
VCBPPROC PR 	 Processes SYSCTLG volume control block 

pointer entries (VCBPE) and volume control 
blocks (VBC). 

VOLINDEX PR 	 Obtains and verifies SYSCTLG volume index. 

mCCDAL 	 Command Descriptor for ALTER command. 

mCCDBI 	 Command Descriptor for BLDINDEX verb. 

IDCCDCC 	 Command Descriptor for CNVTCAT command. 

Microfiche Directory 399 



CSECT/Load 
Module Name 

IDCCDCK 

IDCCDDE 

IDCCDDL 

IDCCDLC 

IDCCDLR 

IDCCDMP 

IDCCDPM 

IDCCDPR 

IDCCDRC 

IDCCDRM 

IDCCDRP 

IDCCDRS 
(VS2.03.808 only) 

IDCCDVY 

IDCCDXP 

IDCCKOI 

IDCDBOI 

IDCDB02 

Label 

IDCCKOt 
HSKGPROC 
BUILDTAB 
CHRPROC 

GETCHR 
DSDRPROC 

DSDRVOLS 

GETNEXT 

DSDRLIST 

IDCDBOI 

IDCDB02 
ARRAYHDR 

BCONVERT 

CCONVERT 

FCONVERT 

HCONVERT 

ITEMDUMP 
NAMEFLD 

Use 	 DeKriptions 

Command Descriptor for CHKLIST command. .J
Command Descriptor for DEFINE command. 

Command Descriptor for DELETE command. 

Command Descriptor for LISTCAT command. 

Command Descriptor for LISTCRA verb. 

Command Descriptor for IMPORT command. 

Command Descriptor for P ARM command. 

Command Descriptor for PRINT command. 

Command Descriptor for EXPORTRA verb. 

Command Descriptor for the IMPORTRA verb. 

Command Descriptor for REPRO command. 

Command Descriptor for RESETCAT 
command. 

Command Descriptor for VERIFY command. 

Command Descriptor for EXPORT command. 

CHKLIST FSR: lists identifying information for 

tape data sets open at the time of a checkpoint. 


EP 	 Only entry point to this module. 
PR 	 Opens files and sets up subheadings. 
PR 	 Builds table of selected checkpoint IDs. 
PR 	 Locates the CHR records for entries to be 

processed. 
PR 	 Reads the next CHR record. 
PR 	 Extracts and prints the tape data-set information 

from DSDR records. .J 
PR Extracts and prints volume serial numbers from 

type 2 DSDR records. 
PR Locates the next sequential logical DSDR record 

in the checkpoint data set. 
PR Prints volume sequence numbers and indicates 

volume mounted at checkpoint. 

Provides a dump (UDUMP macro). 

EP 	 Only entry point to this module. 

Provides a symbolic dump. 

EP Only entry point to this module. 
PR Processes any array header elements (TYPE= 

'A') in the dump list. 
PR Converts the value of the current dump item to 

binary representation. 
PR Converts the value of the current dump item to 

character representation. 
PR Converts the value of the current dump item to 

fixed-integer representation. 
PR Converts the value of the current dump item to 

hexadecimal representation. 
PR 	 Processes any individual dump list elements. 
PR 	 Inserts the symbolic name of the dump element 

into the proper position of the output line. 

~ 


400 OS/VS2 Access Method Services Logic 



CSECT/Load 
Module Name Label 

mCDEOI 
(without VS2.03.807) 

mCDEOI 
AIXPROC 

CTLGPROC 

DALCPROC 
DSETPROC 

DSPACPRC 

MODELPRC 

NVSAMPRC 

PATHPROC 

mCDE02 

(without VS2.03.807) 


mCDE02 

ALLCPROC 

FREESTG 

IXOPPROC 
KEYPROC 

NAMEPROC 

PROTPROC 

mCDE01 
(with VS2.03.807) 

mCDE01 
DALCPROC 
INTGCHK 

Use 	 Descriptions 

DEFINE FSR; creates an entry in a VSAM 
catalog. 

EP 	 Only entry point to this module. 
PR 	 Oversees the construction of the CTGPL, 

CTGFV, and CTGFL for defining a VSAM 
alternate index. 

PR 	 Oversees the construction of the CTGPL, 
CTGFV, and CTGFL for defining a VSAM 
master or user catalog. 

PR Allocates and deallocates volumes. 
PR Oversees the construction of VSAM data sets 

and PAGESPACE data sets. 
PR Oversees the construction of the VSAM catalog 

interface for defining VSAM data spaces. 
PR 	 Handles the retrieval of model objects to be used 

in defining components of VSAM user catalogs 
and clusters. 

PR Oversees the construction of the VSAM catalog 
interface for defining a non-VSAM data set, 
ALIAS, or generation data group into a VSAM 
catalog. 

PR Oversees the construction of the VSAM catalog. 
Interface for defining a VSAM path object. 

Contains the DEFINE FSR third level 
routines which process parameters specified on 
the command. 

EP 	 Initializes registers and obtains storage. 

EP Initializes several allocation parameters in the 
CTGFL and CTGFV. 

EP Manages storage deallocation for IDCDE02 
CSECT. 

EP 	 Initializes index options. 
EP 	 Initializes the record management control block 

and the key range "pseudo-field" in the CTGFL. 
EP Initializes the data set creation and expiration 

dates in the CTGFL and the object name in the 
CTGFV. NAMEPROC handles the RELATE 
parameter and exception exit. For generation 
data groups NAMEPROC initializes the 
SCRATCH INOSCRATCH, 
EMPTY INOEMPTY, and LIMIT parameters. 

EP Initializes the security and owner identification 
fields and the SHAREOPTIONS and 
ERASE INOERASE flags in the CTGFL. 

DEFINE FSR; creates an entry in a 
VSAM catalog. 

EP 	 Only entry point to this module. 
PR 	 Allocates and deallocates volumes. 
PR 	 Validity checks completed parameter list before 

catalog invocation. 

Microfiche Directory 401 



CSECT/Load 
Module Name Label 

IDCDE02 
(with VS1.03.807) 

IDCDE02 

ALLCPROC 

FREESTG 

IXOPPROC 
KEYPROC 

MODELEPC 

NAMEPROC 

PROTPROC 

IDCDE03 
(with VS1.03.807) 

IDCDE03 
AIXPROC 

CTLGPROC 

DSETPROC 

DSPACPRC 

NVSAMPRC 

PATHPROC 

IDCDLO! 

IDCDLO! 
ALLOPROC 

BUlLDCPL 

CATCALL 

FINDTYPE 

MEMDLETE 

MORESP 

Use 	 Descriptions 

Contains third level routines which process 

parameters specified on the command. ~ 


EP 	 Establishes addressability and allocates 
automatic storage for third level routines. 

EP 	 Initializes several allocation parameters in the 
CTGFL and CTGFV. 

EP 	 Manages storage deallocation for IDCDE02 
CSECT. 

EP 	 Initializes index options. 
EP 	 Initializes the record management control block 

and the key range "pseudo-field" in the CTGFL. 
EP 	 Handles the retrieval of model objects to be used 

in defining components of VSAM user catalogs 
and clusters. 

EP 	 Initializes the data set creation and expiration 
dates in the CTGFL and the object name in the 
CTGFV. NAMEPROC handles the RELATE 
parameter and exceptionexit. For generation 
data groups NAMEPROC initializes the 
SCRATCH INOSCRATCH, 
EMPTY INOEMPTY, and LIMIT parameters. 

EP 	 Initializes the security and" owner identification 
fields and the SHAREOPTIONS and 
ERASE INOERASE flags in the CTGFL. 
Determines the type of object being 
defined and calls the appropriate internal 
procedure. 

EP 	 Only entry point to this module. 
PR 	 Oversees the construction of the CTGPL, 

CTGFV, and CTGFL for defining a VSAM 
alternate index 

PR 	 Oversees the construction of the CTGFL, ~ 
CTGFV, and CTGFL for defining a VSAM 
master or user catalog. 

PR Oversees the construction of VSAM data sets 
and PAGESPACE data sets. 

PR Oversees the construction of the VSAM catalog 
interface for defining VSAM data spaces. 

PR 	 Oversees the construction of the VSAM catalog 
interface for defining a non-V SAM data set, 
ALIAS, or generation data group into a VSAM 
catalog. 

PR 	 Oversees the construction of the VSAM catalog 
interface for defining a VSAM path object. 

DELETE FSR; deletes a catalog entry from the 

VSAM catalog. 


EP Only entry point to this module. 
PR Dynamically allocates and unallocates data sets 

and volumes. 
PR Constructs the CTGPL from parameters and 

specifies in the DELETE command and indicates 
in the FDT. 

PR Calls VSAM catalog management to delete a 
catalog entry. 

PR Locates the entry to be deleted in order to 
determine its type when type is not specified in 
comma,nd. 

PR Deletes partitioned data set members from the 
partitioned data set directpry. 

PR Obtains a larger work area for catalog 
management. ~ 

402 OS/VS2 Access Method Services Logic 



CSECT/Load 
Module Name Label Use Descriptions 

L 	 PARAMCHK PR Checks for invalid type specification and other 
command errors. 

RC240PRC PR 	 Does validity checking when the user specifies 
the CATALOG parameter and unites the FILE 
parameter. 

IDCEXO! 	 Main-line for Executive; routes control through 
processor. 

IDCEXOI EP 	 Only entry point to this module; entered from 
IDCSAOI. 

CALLFSR PR Calls the FSR named by the Reader/Interpreter. 
CALLRI PR Calls the Reader/Interpreter. 
MAIN PR Alternates control between the 

Reader/Interpreter and the FSR for each 
command. 

IDCEX02 	 Initializes the processor. 

IDCEX02 EP Only entry point to this module. 
SCANPARM PR Scans processor invocation parameter list. 

IDCEX03 	 Terminates processing. 

IDCEX03 EP Only entry point to this module. 
SCANPARM PR Scans invoker's parameter list to return next 

available page number. 

IDCIOO! 	 Supplies all I/O services to the processor. At 
each of the following entry points, IDCIOO! 
converts the service request to the appropriate 
system macros. 

IDCIOCL EP 	 Close ! to 4 data sets by calling IDCI002 
(UCLOSE macro). 

IDCIOCO EP Copies a data set (UCOPY macro). 
IDCIOGT EP Reads a record (UGET macro). 
IDCIOIT EP First call to I/O Adapter; initializes the adapter 

for subsequent calls. 
IDCIOOP EP Opens! to 4 data sets by calling IDCI002 

(UOPEN macro). 
IDCIOPO EP 	 Positions to a specified record or physical block 

in a data set by calling IDCI003 (UPOSIT 
macro). 

IDCIOPT EP Writes a record (UPUT macro). 
IDCIOSI EP Retrieves data-set information by calling 

IDCI003 (UIOINFO macro). 
IDCIOST EP Stows a member name in a partitioned data set 

directory (USTOW macro). 
IDCIOTM EP Last call to the I/O Adapter; closes any data sets 

still open (UIOTERM macro). 
IDCIOVY EP Verifies a VSAM data set (UVERIFY macro). 
BLDAMSG PR Prepares an error message. 
CHANGE PR Handle change of processing 
(VS2.03.808) mode for RPL. 
COPYCAT PR Copies a VSAM catalog. 
GETEXT PR Calls a user routine to get a data record. 
GETNONVS PR Reads a non-VSAM data set. 
GETVSAM PR Gets a logical record from a VSAM data set. 
IDCIOS! DE Amount of storage IDCIOO! needs. Used by 

IDCSAOI. 
IRAMEOD PR End-of-data-set exit routine for VSAM data sets. 
IRIEVAB PR End-of-volume abend exit routine for non-VSAM 

L 
input data sets. 

IROEVAB PR End-of-volume abend exit routine for non-V SAM 
output data sets. 

Microfiche Directory 403 



CSECf/Load 
Module Name Label Use Descriptions 

IDCIOOI IROSEOD PR End-of-data-set exit routine for non-VSAM data 
(continued) sets. 

IRSISYN PR Exit routine for input errors on a QSAM data 
set. 

IRSOSYN PR Exit routine for output errors on a QSAM data 
set. 

PRINTMSG PR Prints a message. 
PUTEXT PR Calls a user routine for output. 
PUTNONVS PR Writes to a non-VSAM data set. 
PUTREP PR Handles PUT (Replace) processing. 
PUTVSAM PR Puts a logical record to a VSAM data set. 
VSAMERR PR Builds VSAM error message argument list. 

IDCIOO2 Open/Close routine. This routine opens or closes 
1 to 4 data sets with one call. 

IDCIOO2 EP Only entry point to this module. 
ABEXTRN PR .. Abend" during open or close. 
BLDOCMSG PR Prepares an error message. 
BUILDACB PR Builds ACB and EXLST for a VSAM data set to 

be opened. 
BUILDDBK PR Builds a DCB for a non-VSAM data set to be 

opened. 
BUILDRPL PR Builds RPL for a VSAM data set and gets 

workareas for input buffers. 
CKNONOP PR Checks that a non-VSAM data set W<lS opened 

successfully. 
CLOSERTN PR Closes data sets that were opened by the I/O 

Adapter. 
DSDATA PR Checks for alternate DD name and issues the 

DEVTYPE and RDJFCB macros. 
ENVFREE PR Free storage used for a data set; system areas, 

buffers, control blocks, etc. ~ 
IRTOPEX PR Ensures that valid SYSIN and SYSOUT DCB 

parameters exist and sets DCB values in 
IOCSTR. 

OPENRTN PR Opens data sets. 
PRINTMSG PR Calls Text Processor to print error message. 

IDCIOO3 Positions to a logical record or physical block. 
Alters a partitioned data set directory. 

IDCIOO3 EP Only entry point to this module. 
BLDAMSG PR Prepares error message. 
IRISSYN PR Processes I/O errors encountered during ISAM 

SETL. 
PRNTMSG PR Prints message. 
PTAMDS PR Points to VSAM logical record. 
PTISDS PR Positions to ISAM logical record by using a 

SETLmacro. 
STOWRTN PR Stows a member name in a partitioned data set 

directory. 
DSINFO PR Retrieves data-set information. 

IDCIOO4 Prints the SYSPRINT data set on a TSO 
terminal. This module is used when Access 
Method Services is invoked interactively with 
TSO. 

IDCIOO4 EP Only entry point to this module. 

~ 


404 OS/VS2 Access Method Services Logic 



CSECT/Load 
Module Name Label Use Descriptions 

mCIOOS 	 Performs the steps necessary to open, close, 
read, and write volumes using the EXCP access 
method. 

mCIOOS EP 	 Primary entry point to this module. Receives 
control from caller and calls OPENPROC, 
CLOSEPRC, and PUTGET subroutines and 
returns to caller. 

OPENPROC PR 	 Determines the type of open required and calls 
the following subordinate routine: BLDBLK, 
OPNNEW, OPNPASS, OPNTAB, or OPNLAB. 

OPENR PR 	 Opens a data set, VTOC, VTOC header, or 
staging volume for REPAIRV processing. 

PUTGET PR 	 Calls BLDCCWG, BLDCCWPI, BLDCCWP2, 
or ISSUEXCP and frees CCW storage. 

CLOSEPRC PR 	 Determines the type of close required and calls 
the following subordinate routines: CLOSESTD, 
CLOSENEW, and FREEBLK. 

OPNPASS PR 	 Issues UST AE macro to get up or remove 
ESTAE environment, issues OPEN, TYPE=J, 
and calls CHECKOPN. 

OPNTAB PR 	 Issues OPEN macro and cans CHECKOPN. 
OPNLAB PR 	 Issues Open, TYPE=J, MODESET (supervisor 

state), calls CHECKOPN, and issues MODESET 
(problem-program state). 

OPNNEW PR Issues SVC 82. 

BLDBLK PR Issues UGSPACE, initializes IOXCTLBK, and 


calls READJFCB. 
BLDCCWPI PR Builds CCWs to write "COUNT KEY DATA." 
BLDCCWP2 PR Builds CCWs to write "KEY DATA." 
BLDCCWGI PR Builds CCWs to read "KEY DATA." 
ISSUEXCP PR Issues EXCP and WAIT macros and test for 

errors. 
ADJCCW PR Modifiers a CCW string to begin reading at a 

different location on the track. 
FWRITE PR 	 Writes the count, key, and data portions of 

multiple record on a track beginning at a 
specified record. 

OPNVTH PR 	 Opens a defective VTOC header or a VSAM 
data set using a pseudo open (SVC82). 

READCNT PR Reads the count field of a specified record. 
READKD PR Reads the key and data fields of a specified 

record. 
SETCCW PR Builds a CCW string to read the count fields on a 

track. 
SETKDCCW PR 	 Builds a CCW string to read the count field, the 

key field (if it exists), and the data field of all 
records on a track. 

SPACCR PR Bypass the read count CCW for a specified 
record. 

WRITEREC PR Rewrites the key field and data field of a 
specified record on a track. 

CLOSESTD PR Issues CLOSE and UPRINT macro to print error 
messages. 

CLOSENEW PR Issues SVC 82. 
CHECKOPN PR Determines whether OPEN ABEND exit was 

entered or DCBCFLAGS indicates DCB not 
opened and issues UPRINT macro to print error 
messages. 

SYNAD PR Issues SYNADAF and SYNADRLS macros and 
issues UPRINT macro to print error messages. 

OCABEND EP Sets IOXABEND flag in IOXCTLBK. Entered 
by OPEN/CLOSE DCB exit. 

Microfiche Directory 405 

L 



CSECT/Load 
Module Name Label 

IDeIOOS READJFCB 
(continued) 

RETRY 

IDCLCOI 

IDCLCOI 
ENTPROC 

GNXTPROC 

INITPROC 

RTEPROC 

DATEPROC 

TIMEPROC 

CKDTPROC 

IDCLC02 

IDCLC02 

ALSPROC 

ANLTPROC 

ANSVPROC 

AUPROC 

CDiPROC 

ERRPROC 

Use 	 Descriptions 

PR 	 Issues RDJFCB macro and necessary error 
message. J 

EP 	 Reestablish addressability, issues invalid 
password message, and returns to label 
AFTEROPN with a return code of 4. Entered by 
systems during ABEND. 

LISTCAT FSR; produces a listing of all or part 

of a VSAM catalog. This module initializes and 

manages the routing of VSAM catalog entries. 


EP 	 Only entry point to this module. 
PR 	 Manages the request for specific entries or 

generic lists of entries from the catalog. If Access 
Method Services is invoked interactively with 
TSO, ENTPROC makes a generic list of entries 
with the TSO user's identification at the 
beginning of each entry. 

PR 	 Manages the request for all or a specified subset 
of the catalog entry types in alphameric 
sequence. 

PR 	 Interrogates the FDT and initializes the catalog 
and DADSM parameter lists and workareas. 

PR 	 Routes control to the appropriate formatting 
procedure. Then routes control for formatting 
the associated data sets in a cluster, alternate 
index, pagespace or GOG grouping. 

PR 	 Calculates the creation and expiration LISTCA T 
options to be used to test the catalog entry's 
creation and expiration dates. 

PR 	 Converts the time of day, either from a UTIME 
macro or from the catalog volume time stamp, to 
a packed-decimal format. 

PR 	 Tests the creation and expiration LISTCAT 
options against the catalog entry's creation and 
expiration dates. 

This module locates, formats, and lists the 

VSAM catalog entries. 


EP 	 This entry point is used to establish 
addressability, acquire automatic storage and 
initialize the common data area pointers. 

PR 	 Gets the aliases chained off the entry by control 
interval number. Calls LISTPROC to list the 
aliases. 

PR Gets the associated entry names using the 
control interval number and calls LISTPROC to 
list the entry names. 

EP Gets the list of associated entry types and control 
interval numbers from the VSAM catalog 
management workarea. 

EP 	 Repetitively builds the Text Processor Dynamic 
Data Argument List for formatting and listing 
the VSAM catalog fields for non-VSAM data 
sets, user catalogs, generation data groups, and 
aliases. Repeatdly calls LISTPROC to print the 
data. 

EP 	 Formats the VSAM catalog data for alternate 
index, cluster, pagespace, data, index and path 
entries. Builds the Text Processor argument list 
and calls LISTPROC to print the data. 

EP 	 Completes the Dynamic Data Argument List 
with either an Access Method Services or catalog ~ return code, when required. Issues the UPRINT 

406 OS/VS2 Access Method Services Logic 



CSECT/Load 
Module Name Label Use Descriptions 

macro to list the informational or error 
messages. Issues UERROR macro to list VSAM 
catalog (SVC26) error messages. Zeros out the 
Dynamic Data Argument List when finished. 

FPLPROC EP 	 Re-initializes the string of CTGFLs prior to each 
catalog locate request by using the original 
CTGFL. 

FREESTG EP 	 Issues a UEPIL umacro to free the automatic 
storage acquired by IDCLC02. 

LlSTPROC EP 	 Issues the UPRINT macro and zeros out the 
Dynamic Data Area Argument List when 
finished. 

LOCPROC EP 	 Issues VSAM catalog locate request and obtains 
additional catalog work space if required. After 
the first successful locate, sets the catalog ACB 
information in the CTGPL and establishes the 
LlSTCAT subtitle with the catalog name. 

VPROC EP 	 Repetitively builds the Text Processor Dynamic 
Data Argument List for formatting and listing 
the VSAM catalog fields for a volume record 
entry. Repeatedly calls LlSTPROC to printthe 
data.. 

SHORTLST EP 	 Produces an abbreviated list of catalog entry 
names from the UCIR work area for the TSO 
user who uses the LlSTCAT default parameters. 

VOLLlST EP 	 Produces an abbreviated list of catalog entry 
names and volume serial numbers from the 
UCIR work area for the TSO user who uses 
LlSTCAT with the volume parameter. 

L 
IDCLROI AATOPLR EP Only entry point to this module-Top control 

segment. 

ADDASOC PR Add an association to association table. 
BUFSHUF PR Moves record from last general buffer to "home" 

buffer requested, for this record type. 
BLDVEXT PR Builds the vertical extension table. 
CATOPEN PR Opens the catalog data set and ENQs on it. 
CKEYRNG PR Checks the data object for key range. If yes 

prints high key. 
CLEANUP PR Closes the catalog, DEQs from it, and prints 

condition codes. 
CLENCRA PR Closes the CRA and frees storage associated. 
CRAOPEN PR Opens the CRA and calls the procedure to build 

the CTT. 
CTTBLD PR 	 Reads CRA control record, gets storage for CTT, 

scans CRA and builds CTT. Controls 
SEQUENTIAL DUMP. 

DOOTHR PR 	 Goes through SORTTBL forward chain 
containing nonVSAM names and calls 
PRTOTHR to print the objects. 

DOVSAM PR 	 Goes through SORTTBL forward chain for 
VSAM names and calls PRTVSAM to print 
them. 

ERROR PR 	 Using entry SUbscript for error table. prints the 
error message, continues or aborts according to 
last condition code. 

GETPRT PR 	 Gets copy of CRA record, calls IDCRC04 to 
obtain fields requested, and, if COMPARE, gets 
the catalog record. 

L 

INITLZE PR Initializes switches, adapter parameter list, 


IDCRC04 parameter list, opens the alternate 

output file, and gets table space. 


INTASOC PR 	 Initializes an association table for a base object. 

Micr0fiche Directory 407 



CSECT/Load 
Module Name Label 

IDCLROI INTSORT 
(continued) 

INTVEXT 

MEMSORT 

PRTAAXV 
PRTCMP 

PRTDMP 

PRTDMPC 

PRTFIFO 

PRTMCWD 

PRTOJAL 
PRTOJVL 

PRTOTHR 

PRTTIME 

PRTVOL 

PRTVSAM 

SUMIT 
TCICTCR 
VERTEXT 

IDCLR02 

IDCMPOI 

IDCMPOI 
ALTRPROC 

BFPLPROC 

BPASPROC 

CLUSPROC 

CNCTPROC 
CPLPROC 

408 OS/VS2 Access Method Services Logic 

Use Descriptions 

PR Gets storage for sort table, builds the entries in it 
from the CTT for the object type specified. 

PR Initializes VEXTTBL by calling IDCRCQ4 
requesting extension pointers and places them in 
the table. 

PR Adds forward and backward pointers in sort 
table. 

PR Prints associated AIXs volumes. 
PR Prints and/or compares information in CRA for 

one entry. 
PR Prints unformatted CRA record. If compare, 

calls PRTDMPC to print corresponding catalog 
information and underscore miscompares. 

PR Prints unformatted catalog rec.ord corresponding 
to CRA record being printed. The miscompares 
are underscored. 

PR Print CRA without sorting using the same 
procedures as if sorting. 

PR Prints miscompare message indicating most 
severe fields in error. 

PR Print alias(s) associated with an object. 
PR Print volumes and high keys associated with an 

object. 
PR Print and/or compare all nonVSAM objects and 

their extensions. 
PR Print time stamps of volumes after converting 

them to MM/DD/YY HH/MM/SS. 
PR Print and/or compare volume record and its 

extensions. 
PR Print and/or compare VSAM structures and 

associated records. 
PR Sum or print number of objects processed. 
PR Translate control interval from catalog to CRA. 
PR Initializes VERTEXT, loops through the 

extensions and prints them. 

EP Formats the buffer pool and reads CRA and 
catalog records. 

IMPORT FSR; re-constructs a VSAM cluster or 
VSAM user catalog from a portable data set 
created by IDCXPOI. If the portable data set is a 
cluster or alternate index, IMPORT FSR issues a 
UCATLG macro to add the necessary entries to 
the VSAM catalog, and issues a UCOPY macro 
to copy the portable data set to the VSAM 
cluster. If the portable data set is a VSAM 
catalog, IMPORT FSR connects the VSAM 
catalog by issuing a UCATLG macro. 

EP Only entry point to this module. 
PR Constructs a CTGPL and CTGFV for the catalog 

alter interface. 
PR Constructs a CTGFL from dictionary and 

workarea information. 
PR Constructs PASSWALL CTGFL and moves 

information into P ASSW ALL. 
PR Reads catalog and data records from the portable 

data set. Uses catalog information plus 
information from the command to perform a 
catalog define for the cluster. Copies data into 
the cluster. 

PR Connects one or more user catalogs. 
PR Constructs a CTGPL to be used for a catalog ~ 

define, alter, delete, or locate. 



CSECf/Load 
Module Name Label Use 

CTLGPROC PR 

DALCPROC PR 
DUPNPROC PR 

FVTPROC PR 

GETPROC PR 

IUNIQPRC PR 

LVLRPROC PR 

MSGPROC PR 
MVDAPROC PR 

OPENPROC PR 

RANGPROC PR 
RECPROC PR 

IDCPMOt 

IDCPMOt EP 
GRPHPARM PR 

MARGPARM PR 

TESTPARM PR 

TESTSAVE PR 

Descriptions 

Invokes VSAM catalog management with a 
CTGPL. 
Allocates and de allocates volumes. 
This procedure is called when a duplicate entry 
name is found in the catalog when trying to 
define the cluster being imported. DUPNPROC 
performs a locate to see if the catalog entry has 
the temporary export flag on. If the temporary 
export flag is on, DUPNPROC deletes the 
existing cluster so the imported cluster can be 
defined. 
Constructs CTGFVs and CTGFLs from 
information in the dictionary. 
Gets a data record and moves it into a buffer. 
Reconstructs the original record if it has been 
segmented. 
Checks the DSATTR field in the CTGFV to see 
if the cluster being defined is a unique cluster. If 
so, IUNIQPRC supplies a null space (volume) 
CTGFV to define the cluster. 
Constructs a CTGFL for DEVTYPE lists and a 
list of volume serial numbers. 
Issues a UPRINT to print messages. 
Moves data from one storage location to 
another. 
Opens the VSAM cluster for input or opens the 
portable data set for output. 
Processes all information about key ranges. 
Copies the data from the portable data set to the 
VSAM cluster being imported. RECPROC issues 
a UCOPY macro to copy the portable data set to 
the cluster, and issues a UCLOSE macro to close 
the cluster. 

PARM FSR; establishes or changes the processor 
parameters. Processor parameters (TEST, 
MARGINS, and GRAPHICS) can be established 
through the P ARM field of the EXEC card. 

TEST appears in the area addressed in 
GDTDBH. MARGINS appears as the first two 
halfwords in the area addressed in GDTRIH. 
GRAPHICS is recorded in the PCT. 

Only entry point to this module. 
Establishes the translate table specified in the 
GRAPHICS option. 
Processes the MARGINS parameter. The left 
and right margin values are placed into the 
Reader/Interpreter Historical Data Area to be 
used by the Reader/Interpreter when processing 
the next command. 
Resets the previous TEST option, if necessary. 
Processes new TEST parameters. Obtains and 
initializes the Test Option Data Area. 
Moves TEST parameters from the FDT to the 
Test Option Data Area to be used by the Access 
Method Services dump routine. 

Microfiche Directory 409 



CSECf/Load 
Module Name Label 

IDCPROI 

IDCPROI 
DELIMSET 

TEXTPSET 

IDCRCOI 

BUILDCRV 

BUILDNAM 

CHKCATNM 

CKNAMES 

COMPNAME 

DIRECT 
DUPNAMCK 

ERRCK 
"'f. 

EXPORTDR 

EXTRACT 

INIT 

MESSAGE 
NAMETABL 

OBJVOLCK 

OPEN 

OPENCRA 

SCANCRA 

SUBSP 

Use 	 Descriptions 

PRINT FSR; prints the contents of a data set in 

EBCDIC, hexadecimal, or dump format. PRINT 

FSR establishes page layout by issuing a UEST A 

macro, and prints lines of data by issuing a 

UPRINT macro. 


EP Only entry point to this module. 
PR Establishes the boundaries for printing a subset 

of the input data set. 
PR Communicates the page layout and record layout 

for the listing to the Text Processor. 

EP 	 This is the highest level of control and the only 
entrypoint to this module. The function loops 
through the CRAs opening them, writes them 
and their associated objects to the portability 
data set and closes them. 

PR Obtains space for CRY, ACC, and VTT, obtains 
volume and device type information on CRAs, 
and constructs the name chain for all entries in 
the CRAs. 

PR Builds the name chain extension block of 
storage. 

PR 	 Reads a CRA record and checks the owning 
catalog, then issues an ENQ on the owning 
catalog. 

PR Gathers passwords for VSAM data sets, collects 
the association CI numbers and determines the 
largest logical record length. 

PR Compresses the blanks from the right of the 
object name and places it in the space obtained 
in the procedure SUBSP. 

PR 	 Gets space and reads in the directory. ~ 
PR Scans the name chain for duplicate names and 

prints message if one is found. 
PR If an error is considered severe, the catalog is 

closed and the error message is printed. 
PR 	 Prints start of export of CRA message, calls 

IDCRC02 to export and prints completion 
message. 

PR Sets up the FMPL and calls IDCRC04 to extract 
data fields from CRA records. 

PR CaIls SUBSP to obtain storage and then 
initializes the buffer pool. 

PR 	 Handles the printing of all messages. 
PR Checks the name on the CRA record and if it is a 

cluster, AIX, nonVSAM or catalog connector, it 
builds the name into the name chain. 

PR Checks the time stamp and CIon the volumes 
with that of the CRA for each object. 

PR 	 Builds the OPNAGL and issues the open for the 
CRA. It then checks the owning catalog name for 
the major owning catalog. 

PR 	 Calls procedures to open the CRA, get its time 
stamp, build the name table and the directory 
entry. 

PR 	 Reads the catalog record, gets storage for CTT 
and loops all CRA records putting CI numbers in 
the CTT and calls NAMET ABL to build the 
name table. 

PR 	 Handles the obtaining and allocation of small 
pieces of storage associated with the name table 
from one large block. ...J 

410 OS/VS2 Access Method Services Logic 



L 

CSECT/Load 
Module Nune Label Use 	 Descriptions 

SYNCH PR 	 Checks the entire name chain for entries 
specified in the input. It also checks for valid 
associations, CIs. and volumes. 

TERM PR Dequeues from owning catalog, closes the 
portability data set, and releases storage. 

TIMESTMP PR Reads the volume time stamp using UIOINFO 
and places it in the volume timestamp table. 

IDCRC02 	 Creates a portable data set of VSAM clusters, 
catalog information for nonVSAM, and 
associated aliases for both. 

IDCRC02 EP Only entry point to this module. 
ALSPROC PR Obtains catalog information for alias 

associations of nonVSAM data sets. 
ASOCPROC PR Obtains catalog information for generation data 

sets associated with generation data groups. 
CLUSPROC PR Obtains catalog information and data for VSAM 

clusters. 
CONTROL PR Builds control records containing catalog 

information. 
CTLGPROC PR Invokes catalog management with a CTGPL for 

Locate. 
LOCPROC PR Builds a CTGPL and multiple CTGFLs for 

catalog locates. 
MVDAPROC PR Moves data in storage from one location to 

another and clears work area storage. 
NVSMPROC PR Gets catalog information for nonVSAM data 

sets. 
OPENPROC PR Opens the VSAM cluster for input and the 

portable data set for output. 
PRNTPROC PR Prints messages for association errors. 
PUTPROC PR Writes a control record containing catalog 

information to the portable data set. 
RECPROC PR Copies the data for a VSAM cluster to the 

portable data set. 
SAVEPROC PR 	 Saves control records containing catalog 

information until processing for that object's 
catalog information is complete and then writes 
all records to the portable data set. 

IDCRC03 EP 	 Handles format of buffer pool and reading of 
catalog or CRA records. 

IDCRC04 EP 	 This is the only entry point to this module. 

PCKLC PR Insures the requested catalog field exists in a 
group occurrence being processed. 

PEXPT PR Sets up address and length of extension pointers 
as per argument passed. 

PGREC PR Obtains addressability to the desired CI block. 
PGREP PR Finds highest non-deleted RELREPNO with 

desired group code. 
PGVAL PR Find the field and extract the requested data. 
PLNRV PR Locate non-replicated values. 
PLOCZ PR Locate field and dictionary information. 
PLVAL PR Locate fixed.or variable length field in physical 

record and group occurrence. 
PSCNC PR Loops through all FMFLs to convert names to 

internal notation. 
PSCNF PR Moves requested data to area specified by caller. 
PSHIN PR Inserts the data found into requested field. 
PTCMP PR Compares sub-fields between input data and 

"found" data. 
PTRNS PR Format and build compressed name table, insure 

group codes if special name obtained from caller. 

Microfiche Directory 411 

http:fixed.or


CSECT/Load 
Module Name Label 

IDCRCOI PTSTS 
(continued) 

IDCRIKT 

IDCRILT 

IDCRIOI 

IDCRIOI 
BUILDFDT 

BYPASTRM 
CONVERT 

DEFAULTS 
DSIDCHK 

DSPLCALC 

ERROR 1 

ERROR2 

ERRSETUP 

GETOATA 

GETNEXT 

GETQUOTD 

GETRECRO 
GETSIMPL 
GETSPACE 

Use 	 Descriptions 

PR 	 Tests for existence of field and if there, places 
dictionary information into work area. 

Modal command verb and keyword table used by 
the Reader/Interpreter. 

Command Name Table for Command 
Descriptors used by the Reader/Interpreter. 

Reader/Interpreter used when Access Method 
Services is invoked with a batched job. Its 
functions are: 

1. 	 On first entry only, loads a table of Command 
Descriptor load module names and a table of 
modal command verbs; initializes the 
Reader/Interpreter Historical Data Area; and 
obtains P ARM options if options exist in the 
PARM field of the JCL statement. 

2. 	 Scans the command for a verb. 

3. 	 Handles modal commands (IF, ELSE, DO, 
END, and SET) to determine which 
command to process next. 

4. 	 Having found a functional command verb, 
invokes IDCRI02 to find and load the 
appropriate Command Descriptor module 
and to initialize the FDT. 

S. 	 Scans parameters by using the Command 
Descriptor to check syntax and semantics and 
to build the FDT. 

6. 	 Invokes IDCRI03 for clean-up activity 
following each function command. Returns to 
IDCEXOI if the functional command is to be 
executed-that is, if it contains no errors 
detected by the Reader/Interpreter. 

EP 	 Only entry point to this module. 
PR Places constants into FDT and converts the 

constants, if necessary. 
PR Prepares to obtain next verb name. 
PR Converts EBCDIC to binary, decimal, or 

hexadecimal. 
PR 	 Selects possible defaults for parameters. 
PR Checks data set name item for adherence to 

naming conventions. 
PR Calculates offset into an array of pointers or 

counts. 
PR Processes an error whose message doesn't 

change. 
PR Processes an error that requires variable data to 

be inserted into the message. 
PR Makes special preparations to print semantic 

error message. 
PR Prepares to get constant or list of constants from 

the command. 
PR 	 Gets the next functional command verb name 

and a pointer to its parameters. Interprets modal 
commands. 

PR 	 Gets a constant without enclosing apostrophes 
from the command. 

PR Reads the next input record and prints it. 
PR Gets an unquoted constant from the command. 
PR Allocates space for the FOT. 

...) 


...) 


412 OS/VS2 Access Method Services Logic 



CSECT/Load 
Module Name Label 

INREPEAT 

KWDPARM 

MODALIF 
MODALSET 
MODLELSE 
MORSPACE 

NAMESCAN 
NEEDNOTS 

NEXTCHAR 
NXTFIELD 
PACKCVB 

POSPARM 
RINIT 
SETDFLT 
SCANCMD 

SCANENDS 

SCANSEP 

,SETFLAG 

SKIPCMD 

IDCRI02 

IDCRI02 

IDCRI03 

IDCRI03 

IDCRI04 

IDCRI04 
ADDPARM 

BUILDFDT 

DEFAULTS 
FAILSPAC 
FINDPDE 

GETSPACE 

Use 	 Descriptions 

PR 	 Repetition of a subparameter list has ended; 
prepares for another subparameter list 
repetition. 

PR 	 Processes a keyword parameter after finding it in 
the Command Descriptor. 

PR 	 Processes IF modal command. 
PR 	 Processes SET modal command. 
PR 	 Processes ELSE modal command. 
PR Allocates additional space for a list of constants 

in the FDT. 
PR Checks naming restrictions. 
PR Checks parameters to ensure that certain 

semantic requirements have not been violated. 
Checks for mutually exclusive parameters, and 
required parameters. 

PR 	 Gets the next character from the command. 
PR 	 Gets the next field from the command. 
PR 	 Converts EBCDIC string to fullword binary 

number. 
PR 	 Processes a positional parameter. 
PR 	 Initializes the Reader/Interpreter. 
PR 	 Adds default parameter to the FDT. 
PR Controls scanning commands and building the 

FDT. 
PR Finds left and right margins of the command in 

the input record just read. 
PR Scans past the next syntactic separator (comma, 

blanks, and/or comments). 
PR Indicates that a particular parameter was found 

in the command or was implied by defaults. 
PR Bypasses remainder of current command. 

Searches the table of Command-Descriptor 
modules for the name of the module that 
corresponds'to the current command, and then 
loads that module. Initializes the FDT. 

EP 	 Only entry point to this module. 

Reader/Interpreter functional command 
termination. Frees working space and deletes 
unneeded modules. 

EP 	 Only entry point to this module. 

Reader/Interpreter used when Access Method 
Services is invoked interactively with TSO. Its 
functions are: 

1. 	 Loads the Command Descriptor for the 
command. 

2. 	 Invokes the TSO parse service routine to 
syntax check the parameters. 

3. 	 Converts the output from the TSO parse 
service routine and builds the FDT. 

EP Only entry point to this module. 
PR Asks TSO terminal user to supply required 

parameters not originally supplied. 
PR Checks for errors in data and puts data in the 

FDT. 
PR 	 Chooses parameters that can have defaults. 
PR 	 Handles the "no available storage" error. 
PR Finds the Parameter Descriptor Entry (POE) for 

a parameter. 
PR Obtains storage for the FDT. 

Microfiche Directory 413 



CSECT/Load 
Module Name Label 

IDCRlO4 MAINSCAN 
(continued) MSGKWD 

NEEDPRMS 
NEWPARM 
NOTPARMS 
REPLIST 

RESOLVE 

RISETUP 

RITERM 

SETDFLT 
SUBSCAN 
TOOMANY 

TRNSLATE 

!DCRMOI 

ALISPROC 
ALTRPROC 

BFPLPROC 

BPASPROC 
CLUSPROC 

CPLPROC 

CTLGPROC 

DALCPROC 
DELTPROC 

FVTPROC 

GETPROC 

GDGPROC 
IUNIQPRC 

LVLRPROC 
MVDAPROC 

NFVTPROC 

NVSMPROC 

OPENPROC 

RANGPROC 

RECPROC 

Use 


PR 

PR 


PR 
PR 
PR 
PR 

PR 

PR 

PR 

PR 
PR 
PR 

PR 

EP 

PR 
PR 

PR 

PR 
PR 

PR 

PR 

PR 
PR 

. PR 

PR 

PR 
PR 

PR 
PR 

PR 

PR 

PR 

PR 

PR 

Descriptions 

Directs processing of non-repeated parameters. 
Obtains the keyword most closely associated ~ 
with a parameter. The keyword is used in an 
error message. 
Checks for required parameters that are missing. 
Asks for correct data from a TSO terminal user. 
Checks for conflicting parameters. 
Saves information about repeated subparameters 
and initializes FDT secondary arrays. 
Asks TSO terminal user if the 
Reader/Interpreter can ignore some parameters. 
Obtains a Command Descriptor load module and 
initializes the FDT and other tables. 
Releases storage and terminates the 
Reader/Interpreter. 
Puts defaults in FDT. 
Directs processing of repeated parameters. 
Asks TSO terminal user if the 
Reader/Interpreter may ignore excessive data. 
Translates output from TSO parse routine into 
the FDT. 

Only entry point to this module. 

Reads data records and defines alias entries. 

Constructs the CPL and FYT to be used to alter 

the names of the objects. 

Constructs the skeleton FPL or constructs the 

FPL from the dictionary and work area 

information passed by EXPORTRA on the 

portable volume. 

Constructs passwall FPL. 

Reads catalog and data records from the 

portability volume and defines the object copy. ~ 

Constructs the catalog parameter list to be used 

for UCATLG operations. 

Invokes VSAM catalog management to perform 

operation indicated in CPL. 

Dynamically allocates and unallocates volumes. 

Performs all delete operations using catalog 

management. 

Constructs FVT and FPLs from information in 

dictionary passed as an argument. 

Gets a data record via UGET, reconstructs it and 

places it in the buffer. 

Defines GDG base entries. 

Checks to see if data set being defined is a unique 

data set. Builds a null volume FVT if required. 

Constructs the volume list and DEVTYPE FPL. 

Moves data from one location in storage to 

another as specified by input arguments. 

Constructs the FYT and FPLs for nonVSAM 

objects. 

Reads catalog and data records from the 

portability data set and performs the define of 

nonVSAM entries. 

Performs all opens of VSAM objects for output 

or the portability data set for input. 

Processes key range information building the 

RANGES list. 

Copy data from portability data set to VSAM 

cluster. 


414 OS/VS2 Access Method Services Logic 



CSECf/Load 
Module Name Label 

UCATPROC 

IDCRPOt 

IDCRPOt 
DELIMSET 

CATRELOD 

SORSREAD 

TARGREAD 

GETPAIR 

DUMPIT 

TRUENAME 

CATRANS 

CNVRTCI 

RECOVCAT 

IDCRSOI 
(VS2.03.808) 

IDCRSOI 
AERROR 

CATINIT 

CLEANUP 
COPYCAT 
INIT 
MERGECRA 
PROCCRA 
REASSIGN 
UPDCAT 
UPDCRA 
WRAPUP 

Use Descriptions 

PR Reads catalog and data records from portable 
volume and performs a define of user catalog 
pointers. 

REPRO FSR; copy a SAM, ISAM, or VSAM 
data set to a SAM or VSAM data set; unload or 
reload catalogs. Data set types are determined at 
open time, when IDCIOOP is called (UOPEN 
macro). 

When records are skipped at the beginning, a 
series of UGETs is issued until the required 
record is reached. 

When records are skipped at the end, a series of 
UGETs and PUTs is issued. 

When the copy is to the end of the data set, then 
a single call is made to IDCIOCP (UCOPY 
macro), which copies the data set from the first 
record to be copied through the end of the data 
set. The UPOSIT macro is employed to position 
to a FROMKEY or FROMADDRESS starting 
point. 

EP Only entry point to this module. 
PR Establishes the boundaries for copying a subset 

of the input data set. 
PR Checks for sufficient space, matching names for 

target and backup catalogs, and for agreement 
with volume serial number and device types. 

PR Reads a--record from the backup catalog during a 
catalog reload. 

PR Reads a record from the target catalog d_uring a 
catalog reload. 

PR Reads a record from both the backup and target 
catalogs for the initial checking performed 
before a catalog reload begins. 

PR Activated by the PARM test function in order to 
trace all I/O for catalog reload. 

PR Maps the RBA boundaries of the backup 
truename ranges. 

PR Locate and translate control interval numbers 
from source catalog to target catalog. 

PR Converts control interval numbers from source 
catalog values to target catalog values. 

PR Checks catalog recoverable attribute during copy 
catalog. 
RESETCAT FSR; synchronize a catalog 
with the CRA(s) of its owned volumes. 

EP Only entry point to this module. 
PR Exit if not enough storage is available to 

establish automatic storage for RESETCAT 
modules. 

PR Initialize RESETCATs description of the 
catalog. 

PR Ensure all resources are freed. 
PR Copy the catalog to the workfile. 
PR Perform the main initializations of RESETCAT. 
PR Merge and reset CRA into the workfile. 
PR Process the records of the current CRA. 
PR Perform control interval reassignment. 
PR Update the catalog from the workfile. 
PR Update the CRAs from the workfile. 
PR Handle c1eap-up operations after successful 

R~SETCAT processing. 

Microfiche Directory 415 



CSECT/Load 
Module Name Label Use Descriptions 

IDCRS02 
(VS1.03.808) 

Performs various checking 
functions. ~ 

ASSOC 
CINALTER 

PR 
PR 

Does association checking. 
Alter control interval numbers in catalog 
records. 

LOCDIT 

PROCCI 

PR 

PR 

Locates a specific control interval number in a 
catalog record. 
Ensure that a control interval number is in the 

PROCTYPE PR 

list of control interval numbers for records being 
processed. 
Scan a catalog record for control interval 
numbers. 

SCANCI PR Scan record for control intervals. 
SETCI 

VERA 

PR 

PR 

Update the workfile to reflect new control 
interval numbers for reassigned CINs. 
Verify aliases for nonVSAM and GDG 
associations. 

VERC 
VERDSDIR 
VERCI 
VERG 
VERR 
VERU 
VERX 

PR 
PR 
PR 
PR 
PR 
PR 
PR 

Verify associations for clusters. 
Verify initial space claims. 
Verify associations on a set of records. 
Verify associations for alternate indexes. 
Verify associations for PATHs. 
Verify associations for user catalogs. 
Verify the alias chain. 

IDCRS03 
(VS1.03.808) 

Contains procedures for controlling 
space. 

CATRCDSU 

CHKBITS 
CHKDSDIR 

CHKUNQ 
GETFIT 
GETNEXTE 

PR 

PR 
PR 

PR 
PR 
PR 

Establish base record offsets for catalog low key 
range records. 
Compare bits in the bit map. 
Check a data set directory entry against a data or 
index component. 
Check extents for unique data spaces. 
Get a free entry in tables for ASSOC procedure. 
Translate an index into a table into a virtual 

~ 
address. 

GETTAB 
MARKUNUS 

PR 
PR 

Get and initialize a table for ASSOC procedure. 
Mark a volume group occurrence (VGO) 
unusable. 

PROCVOL· 
SETBMAP 

VERB 
VLNRESET 

VLRESET 

VOLCHK 

PR 
PR 

PR 
PR 

PR 

PR 

Resolve space conflicts. 
Check space conflicts for data or index type 
catalog entries. 
Verify associations for GDG base records. 
Verify space requested from objects being reset 
against non-reset volumes. 
Verify space requested from objects being reset 
against reset volumes. 
Volume consistency routine. 

IDCRS04 
(VSl.03.808) 

Performs field management 
processing. 

DELGO 
FIND 

MODGO 

PR 
PR 

PR 

Delete a group occurrence. 
Locate requested information from a set of 
catalog records. 
Modify a group occurrence. 

IDCRS05 
(VS1.03.808) 

Association processing. 

ADDTN 
ADDUPCR 
BLDRLST 
BLDVLST 
CKERR 

PR 
PR 
PR 
PR 
PR 

Add a true name to the catalog. 
Prepare for update CRA processing. 
Add an entry to the reset volume table. 
Add an entry to the volume serial table. 
Print an error message. 

416 OS/VS2 Access Method Services Logic 



CSECT/Load 
Module Name Label Use Descriptions 

CRAUPCHN PR 	 Add a work file record to a specific ..update 
CRA" chain. 

DELTN PR Delete a true name from the catalog. 
ENTNMCK PR Determine if a catalog record has a valid entry 

name. 
GENNAME PR Generate a true name. 
GETVIA PR Get a record by control interval number via a 

specific CRA. 
SCNRLST PR Obtain the next CRA volser entry. 
SCNVLST PR Scan the list of volumes. 

IDCRS06 Handles I/O functions; defines 
(VS2.03.808) and deletes the workfile. 

CRAMNT PR Request CRA allocation. 

CRADMNT PR Request CRA de allocation. 

DSCLOSE PR Close a VSAM data set. 

DSOPEN PR Open a VSAM data set. 

RECMGMT PR Perform I/O requests. 

WFDEF PR Define the workfile for RESETCA T processing. 

WFDEL PR Delete the workfile. 


IDCRS07 This module contains system dependent 
(VS2.03.S0S) code designed specifically for RESETCAT 

functions. 

CATEOV PR Extend the catalog. 

CNVTCCHH PR Convert CCHH to TTnn. 

ENSURECI PR Ensure that there are enough control intervals 


for reassignment. 
EOVPANCI PR Format catalog free records until the catalog is 

extended. 
EOVPCCCR PR Update and write the CCR. 
EOVPCHAC PR Get the high allocated control interval numbers 

for the Low Key Range (LKR) and High Key 
Range (HKR) ofthe catalog. 

EOVPRBAP PR Build a table of high RBA field pointers for 
record management control blocks. 

EOVPRCCR PR 	 Read the catalog control record (CCR) and 
update the high allocated control intervals in the 
record management control blocks. 

EOVPWFLR PR Write a deleted free record to the catalog. 

EOVPXIO PR Perform I/O for the catalog. 

RENAMEP PR Rename duplicate true name entries. 

UPDCCR PR Update the catalog control recd (CCR). 


IDCSAO} 	 Entry and exit module for the Access Method 
Services processor. Interfaces between the 
operating system and the processor. Creates the 
GOT and calls IDCEXOI. 

IDCSATO EP Entry point to this module if Access Method 
Services is invoked interactively with TSO. 

IDCSAOI EP Entry point to this module if Access Method 
Services is invoked with a batched job. 

GETCORE PR Issues GETMAIN to allocate storage. 

IDCSA02 	 Supplies all operating system services to the 
processor, except prologue and epilogue. At each 
of the following entry points, IDCSA02 converts 
the service request to the appropriate system 
macros. 

IDCSAAL EP Allocates a data set or mounts a volume 
(UALLOC macro). 

IDCSACA EP Issues the VSAM CATLG macro (UCATLG 
macro). 

Microfiche Directory 417 

L 



CSECT/Load 
Module Name Label 

IDCSA02 IDCSACL 
(continued) 

IDCSACR 

IDCSADE 
IDCSADL 

IDCSAFP 

IDCSAFS 

IDCSAGP 

IDCSAGS 

IDCSAID 

IDCSALD 

IDCSALK 

IDCSAPT 

IDCSAQL 

IDCSASN 
IDCSATI 

COREINIT 

DYNERR 
FINDNAME 

:" (YS2.03.807) 
·,t"; NOSUPP 
, ~ 

RELECORE 
(YS2.03.807) 
IDCSAS2 

IDCSA03 

IDCSAEP 
I!, )1;'( 

IDCSAPR 
• I! 1 

GETCORE 
IDCSAS3 

IDCSAOS 

IDCSAOS 

Use 

EP 

EP 

EP 
EP 

EP 

EP 

EP 

EP 

EP 

EP 

EP 

EP 

EP 

EP 

EP 


PR 

PR 
PR 

PR 

PR 

DE 

EP 

EP 

PR 
DE 

EP 

Descriptions 


Loads an executable module and branches to it 

(UCALL macro). 

Obtains a fully-qualified data set name from a 

VSAM catalog (UCIR) macro. 

Returns to caller (UDELETE macro). 

Deallocates a data set or dismounts a volume 

(UDEALLOC macro). 

Frees pool, releases pooled storage (UFPOOL 

macro). 

Frees space, releases pooled or non-pooled 

storage (UFSPACE macro). 

Gets pool, a request for pooled storage 

(UGPOOL macro). 

Gets space, a request for non-pooled storage 

(UGSPACE macro). 

Obtains a terinal user's identification (UID 

macro). 

Loads a module but does not branch to it 

(ULOAD macro). 

Loads and gives control to a non-Access Method 

Service module (UUNK macro). 

Obtains information from a TSO terminal user 

(UPROMPT macro). 

Obtains a fully-qualified data set name if Access 

Method Services is invoked interactively with 

TSO (UQUAL macro). 

Provides a dump (USNAP macro). 

Gets date and time of day by calling IDCSAOS 

(UTIME macro). 

Initializes an area of storage to binary zeros or 

blanks. 

Prints a dynamic allocation error message. 

Finds or loads module requested and returns 

entry point. 

Prints an error message if a function is not 

supported if Access Method Services is invoked 

with a batched job. 

Searches Load List Block and deletes modules 

not in use. 

Amount of storage IDCSA02 needs. Used by 

IDCSAOI. 


Prologue and epilogue for all routines. This 

module is called at entry to and exit from all 

other modules. 


Epilogue entry' point, releases storage (UEPIL 

macro). 

Prologue entry point, acquires storage (PROL 

macro). 

Gets requested amount of storage. 

Amount of storage IDCSA03 needs. Used by 

IDCSAOl. 


Gets date and time of day (invoked by 

IDCSA02). 


Only entry point to this module. 


418 OS/VS2 Access Method Services Logic 



CSECT/Load 
Mod*N_ Label 

IDCSA06 

IDCSA06 
·MDSETUP 

MOUNTCTL 

MOUNTVOL 

DEMNTVOL 

UCBPOST 

UCBCHECK 

ISSUEMNT 

ISSUEMNT 
ENQDEQ 

SSCMSG 

IDCSA07 

IDCSARC 
GETENT 

TESTENT 

UPDATENT 

IDCSAOS 

IDCSADQ 
IDCSANQ 
IDCSARK 

(SU 5752-824) 
IDCSARV 

IDCSASC 

IDCSASI 

Use Desc:rIpdons 

Performs the following functions; MOUNT, 
which performs necessary setup so the MSC can 
mount a virtual volume. DEMOUNT, which 
performs necessary setup so the MSC can 
demount a virtual volume. POST, which issues 
SVC 82 to update or clear the UCB with the 
volume serial number and TIR to the VTOC. 
CHECK, which checks to determine whether the 
UCB is a 3330V or 3330-1 or is allocated for 
exclusive use. 

EP Only entry point to this module. 
PR Setup routine for a MOUNT or DEMOUNT 

function. Issues EST AE macro through the 
IDCSAIO module. 

PR Controlling Mount routine. Determines whether 
the volume is mounted or must be mounted. 
Demounts volume if necessary to mount 
specified volume. 

PR Second mount controlling routine. Performs 
setup to call subordinate routines to mount the 
3330V volume. 

PR Controlling demount routine. Performs setup to 
call subordinate routines to demount the 3330V 
volume. 

PR Builds the required parameter list and issues SVC 
82 to post or clear the UCB with volume label 
and TIR to the VTOC. 

PR Checks a specified UCB to determine whether it 
is 3330 direct-access, virtual, or real device. Also 
checks for exclusive control. 

PR Issues the USSC macro to mount a volume and if 
successful issues USSC again to acquire cylinder 
oof the volume. 

PR Issues the USSC macro to demount a volume. 
PR Issues the ENQ or DEQ macro for calls from 

MOUNTVOL or DEMNTVOL, respectively. 
PR Prints all USSC macro error messages. 

This module recatalogs a nonVSAM data set. 

EP Only entry point to this module. Calls GETENT. 
PR Initializes the CAMLST parameter list and issues 

the LOCATE macro pointing to the CAMLST to 
locate a catalog entry. 

PR Tests whether there is a need to recatalog the 
data set and whether recataloging is supported. 

PR Updates the catalog entry with a new device type 
and/or volume serial number. 

Supplies system-related services to the processor. 
At each of the following entry points, IDCSA08 
converts a request to the appropriate system 
macro. 

EP Releases a resource (UDEQ macro). 
EP Acquires control of a resource (UENQ macro). 
EP Acquires RACK protection 

(URACHECK macro). 
EP Acquires control of an I/O unit (URESRVE 

macro). 
EP Deletes direct-access data sets (USCRATCH 

macro). 
EP Returns system control-block information 

(USYSINFO macro). 

Microfiche Directory 419 



CSECf/Load 
Module Name Label Use 

IDCSA08 IDCSAWO EP 
(continued) 

IDCSA09 

IDCSASS EP 

CHECKARG PR 

ISSUEMAC PR 

CHECKCODE PR 

IDCSAIO 

IDCSAIO EP 

SETSTAE PR 

CANSTAE PR 

STAEEXIT PR 

RECOVERY PR 

IDCTPOI 

IDCTPPR EP 
BDCONV PR 

BHCONV PR 

BHDCONV PR 

BLOCK PR 
CONVERT PR 

Descriptions 

Writes messages to console operator (UWTO 
macro). ~ 
Issues an MSSC macro, and optionally waits on a 
response. The caller supplies a keyword 
indicating the macro to the issued, a pointer to 
the MSSC request block, and a word in which the 
MSSC reason code can be returned. 

Only entry point to this module. Directs program 
execution. Obtains space for an ECB and 
message if required, frees the area if an error 
occurred or the caller did not supply a pointer 
variable to return the ECB message area address. 
Determines the macro to be issued. Checks that 
the argument list is valid for that macro. 
Issues the execute form of the requested MSSC 
macro. Saves the return code and reason code. 
Waits on an ECB, if necessary, for the MSSC 
macro to complete. Returns error codes to caller. 
If MSC function was successful but an error 
occurred updating the mass storage volume 
inventory, prints a message. 

Performs ABEND recovery. When called, this 
module establishes an ESTAE environment of 
cancels one. When called by Recovery 
Termination Management (RTM) performs 
either cleanup before the ABEND or attempts a 
retry. 

Controlling routine. Receives control from the 
caller through the UST AE macro. Determines 
the type of request and invokes the proper 
routine. 
Issues EST AE macro to establish an EST AE 
environment, builds STAEPARM, puts 
STAEPARM address into SAHIST and prints 
error messages. 
Issues EST AE macro to cancel the EST AE 
environment, removes the ST AEP ARM address 
from SAHIST. 
Sets up addressability, determines whether it can 
retry, sets up retry, or calls rec'overy to cleanup 
before the ABEND. 
Performs cleanup before ABEND. Items cleaned 
up are: 

1. 	 A volume incompletely mounted or 
demounted. 

2. 	 A UCB cleared of volser and of the TTR of 
theVTOC. 

Text Processor: formats output. This module 

includes all conversion routines and controls the 

printing of each line. 


Prints one or more lines (UPRINT macro). 

Converts binary data to unpacked decimal 

characters. 

Converts binary data to hexadecimal characters 

with or without enclosing apostrophes. 

Converts binary data to hexadecimal-dump 

format. 

Prepares to print a block of data. 

Converts data and puts it in a line. 


420 OS/VS2 Access Method Services Logic 



CSECT/Load 
Module Name Label 

EBCDIC 
ERROR 
IDCTPSI 

INSERT 

LINEPRT 

LINERET 
PUPCONV 

REDO 
SEGMENT 
(VS2.03.807) 
STACKPUT 

SPACE 
STATIC 

IDCTP04 

IDCTPEA 

IDCTPES 

IDCTPRE 

IDCTPRS 
ESTACONT 

ESTSCONT 

INITPCT 
PCTSETUP 
P04SETUP 
RESETCON 

RESTCONT 

STACKFL 

IDCTPOS 

IDCTPOS 

IDCTP06 

IDCTPER 
CATERCNV 

DAERCNV 
(VS2.03.807) 

IDCTSALO 

IDCTSBIO 

IDCTSCCO 

IDCTSCKO 

Use Descriptions 

PR Moves EBCDIC characters to a line. 
PR Processes error condition. 
DE Amount of storage IDCTP01 needs. Used by 

IDCSA01. 
PR Inserts data into pre-defined format, or uses 

static .text when inserted data is missing and 
default data is needed. 

PR Controls title lines, headings, spacing, and 
translates data lines. 

PR Returns formatted lines to the caller. 
PR 

PR 
PR 

Converts packed-decimal data to 
unpacked-decimal characters. 
Initiates data replication. 
Segments messages into 72-character 
lines. 

PR Stacks data lines. Does a UPUT on the line when 

PR 
PR 

the stack is full, a message is to be printed, or the 
print data set is changed. 
Spaces a line. 
Prepares static text for a line. 

Initializes and modifies PCT; sets up all page 
controls, defines headings and footings, and 
defines format of page. Each of the following 
entry points represents a service provided by the 
Text Processor. 

EP 

EP 

Establishes a PCT with data from storage 
(UESTA macro). 
Establishes a PCT with data from a static text 

EP 

EP 
PR 

PR 

PR 

module (UESTS macro). 
Re-initializes Text Processor for the next request 
(URESET macro). 
Modifies an existing PCT (UREST macro). 
Gets space for PCT and initializes it with data 
from storage (UESTA macro). 
Gets space for PCT and initializes it with data 
from a static text module (UESTS macro). 
Gets and initializes PCT. 

PR Verifies and initializes the PCT. 
PR 
PR 

PR 

PR 

Prepares a work table for PCT initialization. 
Re-initializes Text Processor for next request, 
returns page number, and clears the PCT. 
Initializes working table for modifiying existing 
PCT (UREST macro). 
Prints lines in stack buffer. 

Reads Text Structures for either IDCTPOI or 
IDCTP04. 

EP Only entry point to this module. 

Converts catalog error messages to verbal text. 

EP 
PR 

Only entry point to this module. 
Translates numeric code and sets up multilevel 
message. 

PR Invokes DAIRFAIL routine and sets up 
multi-line messages for dynamic errors. 

Text Structure for ALTER messages. 

Text Structure for BLDINDEX message. 

Text Structure for CNVTCAT messages. 

Text Structure for CHKLIST messages 

Microfiche Directory 421 



CSECT/Load 
Module Name Label Use Descriptions 

IDCTSDEO Text Structure for DEFINE messages. 

IDCTSDLO Text Structure for DELETE messages. 

IDCTSEXO Text Structure for Executive messages. 

IDCTSIOO Text Structure for I/O Adapter messages. 

IDCTSLCO Text Structure for LISTCAT listing. 

IDCTSLCI Text Structure for LISTCAT messages. 

IDCTSLRO Text Structure for LISTCRA listing. 

IDCTSLRI Text Structure for LISTRA messages. 

IDCTSMPO Text Structure for IMPORT messages. 

IDCTSPRO Text Structure for PRINT listings. 

IDCTSRCO Text Structure for EXPORTRA messages. 

IDCTSRIO Text Structure for batch Reader/Interpreter 
messages from IDCRIOI, IDCRI02, and 
IDCRI03. 

IDCTSRII Text Structure for Reader/Interpreter messages 
from IDCRI04. 

IDCTSRSO Text Structure for RESETCAT messages. 
(VS2.03.808) 

IDCTSSAO Text Structure for System Adapter 
(SU 5752-824) messages. 

IDCTSTPO 	 Text Structure for Text Processor print chain 
definitions. 

IDCTSTPI 	 Text Structure for Text Processor messages. 

IDCTSTP6 	 Text Structure for text processor UERROR 
messages. 

IDCTSUVO 	 Text Structure for common messages (universal 
messages) form any module. 

IDCTSXPO 	 Text Structure for EXPORT messages. 

IDCVSOI 	 Performs the following functions: Security check, 
Scratch VTOC, Recatalog nonVSAM data sets 
on the VTOC, Retrieve information from the 
VTOC, and Update Retrieve information from 
the VTOC, and Update information on the 
VTOC. 

IDCVSOI EP 	 Only entry point to this module. Controlling 
routine, receives control from UCALL macro. 
Determines type of service and calls the routine. 

SECCHECK PR 	 Calls procedures to open the VTOC. Checks the 
Format-4 DSCB and Format-I DSCB for 
security. 

VTOCOPEN PR 	 Opens the VTOC for BSAM update processing 
and reserves the unit if requested. 

FMT4CHK PR 	 Checks the Format-4 DSCB for security. Cans 
procedures to read Format-4 DSCB and to verify 
the VSAM catalog password. 

FMTICHK PR 	 Checks the Format-I DSCB for security. Calls 
procedures to read Format-I DSCB and open 
data sets. 

FMT4READ PR Reads and tests for a Format-4 DSCB. 
FMTIREAD PR Reads and tests for a Format-I DSCB. 
VSAMCHK PR Opens a VSAM data set. ..J
NVSAMCHK PR 	 Opens a nonVSAM data set. 

422 OS/VS2 Access Method Services Logic 



CSECT/Load 
Module Name Label Use 

EXPIRCHK PR 
CATCHK PR 

CATOPEN PR 
SCRATCH PR 

FMT4SCR PR 

FMTISCR PR 

VTOCGET PR 

VTOCPUT PR 

RECATALOG PR 

IDCVS02 

IDCVS02 EP 

INITVOLM PR 

FMTTRKO PR 

FMTTRKI PR 

GETLAB PR 

PUTLAB PR 

ICDVS03 

IDCVS03 EP 

INITIAL PR 

SELECTOR PR 

CLEANUP PR 
CRITERIA PR 

Descriptions 


Opens an unexpired data set. 

Determines whether the volume is owned by a 

VSAM Catalog. 

Opens a VSAM catalog and verifies passwords. 

Scratches the VTOC. Calls procedures to open 

the VTOC, clear the Format-4 DSCB, and 

scratch the Format-l DSCBs. 

Clears the VSAM ownership flag in the Format-4 

DSCB. Calls a procedure to read the Format-4 

DSCB. 

Scratches all Format-l DSCBs. Calls a procedure 

to read the Format-l DSCB. 

Retrieves information from the VTOC. Calls 

procedures to open the VTOC and read the 

Format-4 DSCB. 

Updates information in the VTOC. Calls 

procedures to open the CVTOC and read the 

Format-4 DSCB. 

Recatalogs all nonVSAM data sets. Calls 

procedures to open the VTOC and read 

Format-l DSCBs. 


Performs the I/O processing necessary to 

initialize a new 3330V volume with IPL records, 

volume-label records, and a variable-size empty 

VTOC. Also retrieves from and places 

information into the volume-label record 

(cylinder 0, track 0, record 3). 


Only entry point to this module. Controlling 

routine; receives control from the UCALL 

macro. Determines the type of service and calls 

the proper rouine. 

Issues the UEXCP macros of OPEN and PUT to 

initialize new 3330V volumes and calls the 

subordinate routines FMTTRK) and FMTTRKI. 

Prepares the three records that are written to 

cylinder 0, track O. 

This routine prepares the 39 records (DSCBs) 

that are written to cylinder 0, track I. 

Opens the VTOC, reads the label, returns the 

information requested, and closes the VTOC. 

Opens the VTOC, reads the label, updates the 

label, returns the information requested, and 

closes the VTOC. 


Performs the search of a volume VTOC for 

eligible data sets, based on the user's selection 

criteria passed in the VS3AGL parameter list. 

Only entry point to this module. Controlling 

routine; receives control via the UCALL macro. 

It determines which type of service is being 

requested and invokes the proper routine. 

Controlling routine for initialization. Calls 

procedures to open the VTOC and get storage. 

Searches the data set names in the volume's 

VTOC and selects those which meet the caller's 

criteria. 

Closes the volume VTOC and frees storage. 

Inserts certain information into the data set 

element array for data sets which meet the 

caller's criteria. 


Microfiche Directory 423 



CSECT/Load 
Module Name Label 

IDCVYOI 

IDCVYOI 
OPENPROC 
TERMPROC 

IDCXPOI 

IDCXPOI 
ALTRPROC 

CLUSPROC 

CONTRBL 

CTLGPROC 

DELTPROC 

DSCTPROC 
LOCPROC 

~~1 , 

MORESP 
MVDAPROC 
OPENPROC 

PUTPROC 

RECPROC 

Use Descriptions 

VERIFY FSR; checks a VSAM data set against 
its catalog entries and corrects any discrepancies 
by calling IDCIOVR (UVERIFY macro). 

EP Only entry point to this module. 
PR Opens the VSAM data set. 
PR Closes the VSAM data set. 

EXPORT FSR; creates a portable copy of a 
VSAM cluster, alternate index or catalog. If the 
input data set is a VSAM cluster or alternate 
index, EXPORT FSR copies the cluster. If the 
input data set is a VSAM catalog, EXPORT FSR 
disconnects the catalog. 

EP Only entry point to this module. 
PR Constructs the CTGPL and CTGFV for a catalog 

alter so that the data set attributes catalog field 
(DSATTR) can be modified. 

PR Gets catalog information and data for a cluster 
or alternate index. Processes the disposition 
options. If PERMANENT is specified in the 
command, the cluster is deleted. If 
TEMPORARY is specified in the command, the 
temporary export flag is turned on by issuing a 
catalog alter. 

PR Writes catalog information to the portable data 
set. 

PR Invokes VSAM catalog management with a 
CTGPL. 

PR Constructs a CTGPL to delete a cluster or 
alternate index or to disconnect a user catalog. 
Calls catalog to delete a cluster or alternate 
index. 

PR Disconnects a user catalog. 
PR Builds a CTGPL and multiple CTGFLs for 

catalog locate. CTGFLs are used to locate 
catalog information to be exported. 

PR Obtains a larger catalog workarea. 
PR Moves data into buffers. 
PR Opens a VSAM cluster for input or opens the 

portable data set for output. 
PR Writes a record with catalog information to the 

portable data set. 
PR Copies the data from the VSAM cluster to the 

portable data set, record by record. 

424 OS/VS2 Access Method Services Logic 



DATA AREAS 

The data areas in this chapter are described in four columns, which are 

interpreted as follows: 


Offset: The numeric address of the field relative to the beginning of the area. 

The first number is the offset in decimal, followed (in parentheses) by the 

hexadecimal equivalent. 


Bytes and Bit Pattern: The size (number of bytes) of the field and its 
alignment relative to the fullword boundary. A v indicates variable length. 

Examples: 

4 A four-byte field beginning on a word boundary . 

. . 3 A three-byte field beginning on a half word boundary and running into the 
next word. 

This column also shows the bit patterns of a byte when they are significant 
(as in a flag byte). When the column is used to show the state of the bits (0 or 
1) in a flag byte, it is shown as follows: 

The eight bit positions (0-7) in a byte. For ease of scanning, the high-order 
(leftmost) four bits are separated from the low-order four bits. 

x... .... A reference to bit O. 

1... .... Bit 0 is on. 

0... .... Bit 0 is off . 

.... ..xx A reference to bits 6 and 7. 

Bit settings that are significant are shown and described. Bit settings that are 
not shown are considered to be reserved and set to zero. 

Field Name: A name that identifies the field and appears in the assembly 
listings. A sub-field or value name is indented from the field's name. An * 
indicates the field is not named. 

Description: Content, Meaning, Use: A description of the use of the field. 

Data Areas 425 



ALLAGL 
ADocation Argument list 

The Allocation Argument List is passed whenever a UALLOC or 
UDEALLOC macro is issued. It contains information needed to dynamically 
allocate or deallocate data sets or to mount or dismount volumes. 

Createdlty ModIIle4 lIy Used lIy 	 Size 

All routines IDCSA02 IDCSA02 	 31 

Bytes_ 
Offset BltPUtem FleldN_ ~on:()ontent,~eaning,lJse 

0(0) 4 ALLDSN 	 For data set allocation or deallocation 
this contains the address of a 44 byte 
data set name, left-justified and 
padded with blanks. This field is not 
used for volume mounting or 
dismounting. 

4(4) 8 ALLDDN 	 After successful data set allocation or 
volume mounting, this field contains 
the DDname for the data set or 
volume. The DDname is left-justified 
and padded with blanks. If several 
volumes were mounted, the DDname 
is the first of several concatenated DO 
statements For data set deallocation 
and volume dismounting and, if 
ALLDSN is zero, this field contains 
the DDname describing the data set or 
volume. The DDname is left-justified 
and padded with blanks. It may be the 
first of concatenated DO statements. 

12 (C) 4 ALLULP 	 For volume mounting this field 
contains the address of a table. 

The table co"tains: 

2 • 	 Number of entries in the following 
array. 

Each e"try co"sists of: 

2 • 	 Number of non-blank characters in the 
following field. 

8 • 	 Unit name or device type left-justified 
and padded with blanks. 

16 (to) 4 ALLVLP 	 For volume mounting this field 
contains the address of a table. 

The table co"talns: 

2 • 	 Number of entries in the following 
array: 

Each e"try consists of: 

2 • 	 Number of non-blank characters in the 
following field. 

6 • 	 Volume serial number left justified 
and padded with blanks. Volume 
serials in this array are matched one to 
one with the units in the array in 
ALLULP. The last unit is matched 
with all the unmatched volume serials. 

426 OS!VS2 Access Method Services Logic 

..J 




Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

l. 	 This field is used only for volume 
mounting. 

20 (14) 4 ALLPWD 	 For allocation of password protected 
data sets, this field contains the 
address of a 8 byte password, 
left-justified and padded with blanks. 
If ALLPWD contains zero, no 
password is supplied. 

24 (18) ALLSTS 	 For data set allocation this field means 
the following data set status: 

.... 1. .. ALLSTSSR Status of SHR. 

..... 1.. ALLSTSNW Status of NEW. 

...... 1. ALLSTSMD Status of MOD. 

....... 1 ALLSTSOD Status of OLD. 


25 (19) ALLDSP 	 For data set allocation this field · 1 
indicates the current data set 
disposition. For data set deallocation 
this field indicates a disposition that 
overrides any other disposition. 

.... 1. .. ALLDSPKP Disposition of KEEP. 

..... 1.. ALLDSPDE Disposition of DELETE. 

...... 1. ALLDSPCG Disposition of CATLG. 

....... 1 ALLDSPUN Disposition of UNCATLG. 
0 No overriding disposition. 

26 (lA) .. 2 ALLORG 	 For data set allocation the UALLOC 
puts the data set organization in this 
field: 

· . 1 

1. ...... ALLORGIS Indexed sequential. 

.1 ...... ALLORGPS Physical sequenti~1. 


.. 1. .... ALLORGDA Direct access . 


... 1 .... ALLORGCX Telecommunications line group. 


.... I. .. ALLORGCQ Direct-access message queue. 


..... 1.. ALLORGMQ Data control block for message 

transfer. 

...... 1. ALLORGPO Partitioned organization. 

....... I ALLORGUN Unmoveable data set. 

27 (lB) · .. 1 ALLORG (cont.) 
1. ...... ALLORGGS Graphic data control block. 

.... 1. .. ALLORGVS VSAM . 
0 Dynamic allocation cannot determine 

the data set organiza~ion. 

28 (lC) ALLOPT 	 Indicates the type of request either 
data set allocation or volume 
mounting, and al1ocation option for 
private mounting and deallocate 
option to unallocate. 

1....... ALLOPTVL Request for volume mounting. 
. 1...... ALLOPTDS Request for data set allocation . 

.. 1. .... ALLOPTPV Request for private volume . 

... I .... ALLOPTUN Request for unallocate option during 
deallocation. 

29 (lD) · I ALLVLCNT 	 Volume count. 

30 (IE) · . I ALLUNCNT 	 Unit count. 

Data Areas 427 



BUFS 
Buffer Pool Control Block 

The Buffer Pool Control Block is used by EXPORTRA to controlI/O 
buffers. It is passed from IDCRCOl through field management (IDCRC04) 
to IDCRC03. 

Created by 

IDCRCOI 

Offset 

0(0) 

4(4) 

8 (8) 

12 (C) 

16 (10) 

20 (14) 

24 (I8) 

26 (JA) 

Modified by 

IDCRC03 

Bytes and 
Bit Pattern 

4 

4 

4 

4 

4 

4 

2 

.2 

1... .... 

.xxx xxxx 

xxxx xxxx 

Used by 

IDCRC03 

Field Name 

BUFPOOL 

BUFPL 

BUFIOCS 

BUFGDT 

BUFCTT 

BUFWKARA 

BUFSIZE 

BUFSWS 

BUFORMAT 

* 
* 

ISize 

J28 


Description: Content, Meaning, Use 


Address of first buffer. 


Address of chain of buffers. 


Address of the IOCSTR. 


Address of the GDT. 


Address of the CTT. 


Address of the work area. 


Size of buffer pool. 


Indicator Flags. 


1 =Buffer pool formatted 


O=Buffer pool not formatted. 


Reserved. 


Reserved. 


428 OS!VS2 Access Method Services Logic 



L 

CIRAGL 
Catalog Interface Argument List 

The Catalog Interface Argument List is required each time a UCIR macro is 
issued. The CIRAGL contains information about the qualifiers for which data 
set names are returned. 

Created by Modified by 

All routines IDCSA02 

Bytes and 
Offset Bit Pattem 

0(0) 

1....... 

.1...... 

1(1) 3 

4 (4) 2 

6 (6) 2 

8 (8) 4 

12 (0 4 

16 (10) 4 

20 (14) 4 

24 (18) 4 

28 (tC) 4 

Used by 

IDCSA02 

Field Name 

CIRTYP 

'" 
CIRHLN 

CIRTLN 

CIRHDR 

CIRTLR 

CIRWKP 

CIRCAT 

CIRPWD 

CIRPID 

Size 

32 

Description: Content, Meaning, Use 

Type of UCIR request: 

"One" qualifier function. This 
function returns data set names whose 
qualifiers match the qualifiers 
provided in CIRAGL and have only 
one qualifier between the header and 
trailer qualifiers supplied in CIRAGL. 
"All" qualifier function. This function 
returns all data set names whose 
qualifiers match the qualifiers 
provided in CIRAGL. 

Reserved. 

Contains the length of the header 
qualifiers. 

Contains the length of the trailer 
qualifiers. If no trailer qualifiers are 
supplied, this field must contain zero. 

Address of the header qualifier. The 
header qualifier must end with a 
period. 

Address of trailer qualifier. The trailer 
qualifier must start with a period. 

Address of a fullword where the UCIR 
macro puts the address of the 
workarea containing the qualified data 
set names. 

If data set names are to be found only 
in one catalog, this field contains the 
address of a 44 byte catalog name. If 
data set names are to be found in more 
than one catalog, this field contains 
zero. 

If the catalog addressed in CIRCAT is 
password protected, this field may 
contain the address of a 8 byte 
password. If no password is supplied 
for a password protected catalog, the 
operator will be prompted for it. 

Contains a 4 byte UGPOOL identifier 
that is used to obtain storage for the 
returned workarea. The caller must 
free this workarea. 

Data Areas 429 



CKAGL 
Check UCB Argument List 

The CKAGL is passed when a UMSSUNIT is issued for a CHECK request. It 
defines a request to interrogate a specified UCB for information. 

Created by Modified by Used by 	 Size 

Calling routine IDCSA06 IDCSA06 	 29 

Bytes and 
Offset Bit Pattem Field Name Description: Content, Meaning, Use 

0(0) 8 CKHEAD 	 Set with 'CHECK' by IDCSA06. Set 
with 'CHECKERR' if an invalid 
option is set in CKFLAGS. 

8(8) 4 CKUCBPTR 	 Address of an area containing the 
UCB address or zeros if the UCB 
address is unknown. If the UCB 
address is zeros, on return the UCB 
address will be put in the area. 

l2(C) 8 CKDDNAME 	 DDNAME of the volume. 

20(14) 4 CKDATYPE 	 Address of the four-byte area to be 
posted with the characters 'VIRT' or 
'REAL' if the field CKRETTYP is set. 
The area is set only when the UCB is a 
3330. 

24(18) 4 CKLABELP 	 Address of the six-byte volume serial 
number if CKDY ALOC is set. 

28(1 C) CKFLAGS 	 Hags indicating the type of test. J 
1....... CKTESTVT Indicates that the request is for a 3330 

virtual UCB. This field and 
CKRETTYP are mutually exclusive. 

.1. ..... CKRETTYP 	 Indicates that the test is for a 3330 
Model I (real) or 3330V (virtual) UCB 
and to return the type to the area 
addressed by CKDATYPE. 

.. 1. .... CKDMTABL 	 Indicates that the test is for a real or 
virtual 3330 UCB that is demountable, 
using the CKDDNAME to locate the 
UCB pointer. 

430 OS!VS2 Access Method Services Logic 



Command Descriptor 

There is a Command Descriptor for each verb supported by this processor. 
The Command Descriptor is a load module that contains directions for 
parsing the command, performing semantic checking, and building an PDT 
from the commands. The name of the load module for each verb is found in a 
directory, which is itself a load module named IDCRILT. 

The name of each load module and the corresponding verb, as supplied by 
IBM, is as follows: 

VSAM Checkpoint/Restart 

IDCCDAL ALTER IDCCDCK CHKLIST 

IDCCDBI BLDINDEX 

IDCCDCC CNVTCAT 

IDCCDDE DEFINE 

IDCCDDL DELETE 

IDCCDLC LISTCAT 

IDCCDLR LISTCRA 

IDCCDMP IMPORT 

IDCCDPM PARM 

IDCCDPR PRINT 

IDCCDRC EXPORTRA 

IDCCDRM IMPORTRA 

IDCCDRP REPRO 

IDCCDRS RESETCAT (VS2.03.808) 

IDCCDVY VERIFY 

IDCCDXP EXPORT 


Each Command Descriptor consists of several variable-length data areas. The 
data areas are divided into two groups. The first group is used to build the 
Function Data Table, FDT. If Access Method Services is invoked with a 
batched job, IDCRIOI also uses the first group to parse commands. The 
second group is used to parse a command if Access Method Services is 
invoked interactively with TSO. 

The first group is described in the following table and consists of two main 
data areas. The first data area, Verb Data Area, names the FSR load module 
to use for this command. Appendages to the Verb Data Area define positional 
parameters, default parameters, groups of needed parameters, and groups of 
incompatible parameters. The second data area, Parameter Data Area, 
describes parameters the command may have. If several parameters have the 
same syntax attributes, one Parameter Data Area can describe the 
parameters. Appendages to each Parameter Data Area define constants and 
data for the parameter(s). The Command Descriptor assigns an identification 
number, ID, to each parameter. the command may have. Both 
Reader/Interpreters use the ID numbers to reference the Parameter Data 
Area that describes a parameter. 

The second group of data areas in a Command Descriptor consists of 
Parameter Control Lists, PCL. The PCLs are arranged in the Command 
Descriptor as follows: First is the PCL that describes all the non-repeated 
parameters. Second is one PCL for each set of repeated parameters. Third is 
one PCL for each set of parameters that may be prompted for. IDCRI04 
passes the PCLs to TSO so TSO can parse the command. TSO returns a 
Parameter Descriptor List, PDL. Each parsed parameter is described by its 
own section of the PDL called the Parameter Descriptor Entry, PDE. For a 
description of the PCL, PDL, and PDE refer to OS/VS2 TSO Guide to 
Writing a Terminal Monitor Program or a Command Processor. 

Data Areas 431 



Verb Data A.rea 

Positioll8l Parameter Appendage 

Created by Modified by 	 Used by Size 

IBM-Supplied None 	 IDCRIOI Variable 
IDCRI04 

A Command Descriptor always begins with the Verb Data Area. This data 
area names the FSR for this command, gives the total number of parameters 
and provides offsets to other data areas in the Command Descrjptor. 

Bytes and 
Offset Bit Pattern FleldName Description: Content, Meaning, Use 

0(0) 4 DESCID Descriptor identification, contains the 
last four letters of the Command 
Descriptor module name. For 
example, 'CDAL' for the Alter 
Command Descriptor, IDCCDAL. 

4 (4) 2 PCLDSPLI Number of bytes from the beginning of 
the Verb Data Area to the first 
Parameter Control List. 

6 (6) .. 2 VDATALEN Number of halfwords in Verb Data 
Area (used to compute the address of 
the first Parameter Data Area). 

6 (6) 2 PARMCNT Number of Parameter Data Areas in 
this Command Descriptor. 

10 (A) .. 2 MAXID Largest parameter ID number that is 
used in this Command Descriptor. 

12 (C) 8 LOADNAME Load module name of FSR that 
processes this command. 

20 (14) POSDSPL Number of halfwords from the 
beginning of the Verb Data Area to 
Positional Parameter appendage of the 
Verb Data Area. 

21 (15) · 1 DGRPDSPL Number of halfwords from the 
beginning of the Verb Data Area to 
Default Parameter appendage of the 
Verb Data Area. 

22 (16) · . I VNGRPDSP Number of halfwords from the 
beginning of the Verb Data Area to 
Needed Parameters appendage of the 
Verb Data Area. 

23 (17) · .. I NTGRPDSP Number of halfwords from the 
beginning of the Verb Data Area to 
Incompatible Parameters appendage 
of the Verb Data Area. 

This appendage contains the parameter ID number of each positional 
parameter that is not a subparameter of other parameters. This appendage 
may follow the Verb Data Area or any Verb Data Area appendage. 

Bytes and 
Offset Bit Pattern FleldName Description: Content, Meaning, Use 

0(0) 2 VPOSCNT 	 Number, n, of ID numbers that follow: 

2 (2) 2xn VPOSIDn 	 List of ID numbers for positional 
parameters. 

432 OS/VS2 Access Method Services Logic 



L 
Default Parameter Appendage 

This appendage contains the para~eter ID number of each default parameter. 
The parameter IDs are grouped into arrays. The first parameter in each array 
is the default if none of the parameters in that array is supplied in the 
command. This appendage may follow the Verb Data area or any Verb Data 
Area appendage. 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 2 OGRPTOT Number of arrays that follow. 

Each array contains: 

2 OGRPCNT Number, n, of 10 numbers that follow: 

2xn OGRPIDn List of 10 numbers. 

Needed Parameters Appendage 

This appendage contains the parameter ID number of any necessary 
parameter that is not a subparameter of another parameter. The parameter 
IDs are grouped into arrays. At least one of the parameters in each array must 
be supplied through the command. This appendage may follow the Verb Data 
Area or any Verb Data Area appendage. 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 2 VNGRPTOT Number of arrays that follow: 

Each array contains: 

2 VNGRPCNT Number, n, of 10 numbers that follow: 

2xn VNGRPIDn List of 10 numbers. 

Incompatible Parameters Appendage 

This appendage contains the parameter ID numbers for each parameter in 
groups of incompatible parameters. The parameter IDs are grouped into 
arrays. Only one parameter in each array may be supplied through the 
command. 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 2 NTGRPTOT Number of arrays that follow: 

Each array contains: 

2 NTGRPCNT Number, n, of 10 numbers that follow: 

2xn NTGRPIDn List of 10 numbers. 

Data Areas 433 



Parame~r Data ANa 

The Parameter Data Area follows the Verb Data Area, and descibes the 
syntax and subparameters of a parameter. Usually there is one Parameter .j
Data Area for each parameter. However, one Parameter Data Area can 
describe several parameters if the parameters have the same syntax and data. 

Bytes and 
Offset Bit Pattem field Nune 

0(0) PDEFLEN 

1(1) 3 OCCURNUM 

4 (4) IDDSPL 

S (S) KWDDSPL 

6 (6) NOTDSPL 

7(7) NGRPDSPL 

8 (8) PDEDSPL 

9 (9) KWDGRPID 

10 (A) • 
11 (8) FLAGS 

1....... SCLRDATA 

.1. ..... LEVELl 

.. 1. .... REPEATED 

... 1 .... SCALAR 

.... 1 ... LIST· 

..... 1.. DEFAULT 

...... 1. SU8LIST 

.... ... x • 

Description: Content, Meaning, Use 


Number of halfwords in this 

Parameter Data Area including 

appendages. 


Number of times this parameter can be 

repeated in the command. 


Number of halfwords from the 

beginning of this Parameter Data area 

to the ID Appendage. 


Number of halfwords from the 

beginning of this Parameter Data area 

to the Keyword Appendage. 


Number of halfwords from the 

beginning of this Parameter Data area 

to the Conflicting Parameters 

Appendage. 


Number of halfwords from the 

beginning of this Parameter Data area 

to the Necessary Parameters 

Appendage. 


Number of halfwords from the 

beginning of this Parameter Data area 

to the Prompt Appendage. ..) 

Identification number of a TSO 

keyword needed when this parameter 

is part of a group of mutually exclusive 

parameters. 


Reserved . 


Flags: 


Indicates the user supplies data with 

this parameter. 

Indicates this parameter is not a 

subparameter. 

Indicates the user may repeat the 

subparameters of this parameter. 

Indicates the user supplies a single 

constant with this parameter. 

Indicates the user may supply several 

"like" constants with this parameter. 

Indicates this parameter has a default 

value. 

Indicates this parameter has 

subparameters. 

Reserved . 


434 OS/VS2 Access Method Services Logic 



No Constant Appendage 

Constant Appendage 

This appendage follows the above section if the parameter has subparameters. 
In other words, if SUBLIST-I, this appendage immediately follows the 
FLAGS field described above. 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

12 (C) 2 PCLDSPL2 Number of bytes from the beginning of 
this Command Descriptor to a PCL 
describing this parameter's 
subparameters. 

14 (E) SUBDSPL Number of halfwords from the 
beginning of this Parameter Data Area 
to the Subparameter Appendage. 

15 (F) REPMAX Maximum times this parameter's 
subparameters may be repeated in the 
command. 

This appendage follows the basic Parameter Data area if the parameter has 
constants. In other words, if SCLRDATA-I this appendage immediately 
follows the FLAGS field described above. 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

12 (C) 4 HIVALUE 	 The greatest value a number constant 
may have. 

16 (10) 4 LOWVALUE 	 The least value a number constant may 
have. 

20 (14) MAXLNGTH 	 The maximum length of the constant 
after any conversion. 

21 (15) LISTMAX 	 Maximum number of times this 
constant may be repeated in a list of 
subparameters. 

22 (16) 	 Reserved.'" 
23 (17) CFLAG 	 Rags: 

1....... NUMBER Indicates the constant is a number. 
.1 ...... ANYSTRNG Indicates the constant is a character 

string. 
.. 1. .... DSNAM Indicates the constant is a data set 

name. 
... 1 .... GENERIC Indicates the constant is a generic data 

set name. 
.... 1. .. VOLID Indicates a volume serial number may 

replace a data set name. 
..... 1 .. USERID 	 Indicates a prefix of the TSO user's 

indentification must be added to the 
data set name if Access Method 
Services is invoked interactively with 
TSO . 

.... .. 1. PWORDOPT 	 Indicates the character string or data 
set name may be followed by a 
password. 

.......x '" 	 Reserved. 


Data Areas 435 



Default Data Appendage 

This appendage follows the Constant Appendage if the parameter data has a 
default constant. In other words, if DEFAULT-l, this appendage 
immediately follows the CFLAGS field described above. 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

24 (18) DEFLTLEN Length of following field. 

25 (19) v DEFLTVAL Default constant as it would appear in 
the command. 

ID Appendage 

This appendage contains the offset from the beginning of the primary 
Parameter Data List, PDL, to the Parameter Data Entry, PDE, for each 
parameter this Parameter Data Area describes. This appendage may follow 
any other Parameter Data appendage. 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 2 IDCOUNT 	 Number of sets of two fields that 
follow. There is a set of fields for each 
parameter. 

Each set contains: 

2 IDNUM 	 Parameter ID number. 

2 PDEOFSTl 	 Offset from the beginning of the 
primary PDL to the PDE for this 
parameter. 

Keyword Appendage 

This appendage contains every keyword for each parameter this Parameter 
Data Area describes. This appendage may follow any other Parameter Data 
appendage. 

Bytes and 
Offset Bit Pllttern Field Name Description: Content, Meaning, Use 

0(0) KWDCOUNT 	 Number of sets of fields that follow. 
There is a set of two fields for each 
keyword. 

Each set contains: 

0(0) KWDLEN 	 Length of the following keyword. 

1(1) v KWDITEM 	 Keyword. 

Conflicting Parameters Appendage 

This appendage contains the parameter ID of each parameter that may not 
appear with the parameters this Parameter Data Area describes. This 
appendage may follow any Parameter Data appendage. 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 2 NOTCOUNT 	 Number n of parameter IDs that 
follow. 

2 (2) 2xn NOTIDn 	 List of IDs of conflicting parameters. 

436 OS!VS2 Access Method Services Logic 



Necessary Parameters Appendage 

Prompt Appendage 

Subparameter Appendage 

This appendage contains the parameter IDs of parameters that must appear 
with the parameters this Parameter Data Area describes. The parameters are 
grouped into arrays. One parameter in each array must appear. This 
appendage may follow any other Parameter Data appendage. 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 2 NGRPTOT 	 Number of arrays that follow: 

Each a"ay contains: 

0(0) 2 NGRPCNT Number, n, of ID numbers that follow. 

2xn NGRPIDn List of parameter ID numbers for 
necessary parameters. 

This appendage contains an offset from the beginning of the prompt PDL to 
the PDE for prompting information needed by parameters this Parameter 
Data Area describes. This appendage may follow any other Parameter Data 
appendage. 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 2 PDECNT 	 Number of sets of fields that follow. 
There is a set of 3 fields for each PDL 
offset for each parameter. 

Each set contains: 

2 PDEPRMID 	 Contains the parameter ID of the 
parameter in the prompt PDL. 

2 PDEPCLID 	 Contains the parameter ID of the 
parameter whose subparameters have 
been prompted for. 

2 PDEOFST2 	 Number of bytes from the beginning of 
the prompt PDL to the PDE for this 
parameter. 

This appendage contains aU the subparameter IDs. This appendage may 
follow any other Parameter Data appendage. 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 2 SUBCOUNT 	 Number of sets of fields that follow. 
There is a set of two fields for each 
subparameter. 

Each set contains: 

2 PARMTYPE 	 Identifies this subparameter as 
positional, 'P', or keyword, 'K'. 

2 SUBID 	 Subparameter ID. 

Data Areas 437 



IDCRILT 
Command Name Table 

IDCRIL T contains a table of all verbs and verb abbreviations and their 
Command Descriptor load module names. 

Created by Modmedby 	 ,Used by 

IBM-Supplied None 	 ]IDCRI02 

IIDCRI04 

Bytesaad 
Offset Bit Pattern Field Name 

0(0) 2 LNAMECNT 

2 (2) 16xn TAB LEn 

Each entry contains the following: 

8 TBLVERB 

8 TBLLNAME 

Size 

290 

Description: Content, MelDing. Use 

Number, n, of table entries. 

n table entries. 

Verb or verb abbreviation. 

Corresponding Command Descriptor 
load module name for this verb. 

438 OS!VS2 Access Method Services Logic 



eRA Access Parameter List 

The CRA Access Parameter List provides VSAM catalog management with 
information necessary to access the CRA as a catalog. It is pointed to by the 
ACB when the UCRA bit in the ACB is on for the OPEN of a CRA by 
EXPORTRA. The CRA Access Parameter List consists of three control 
blocks. The ACB points directly to the ACC (Access Method Services/ Catalog 
Communication Table) which in turn points to the CIT (CRA Access 
Translate Table) and the VIT (CRA Volume Timestamp Table). 

Created by Modified by Used by 

IDCRCOI None VSAM Catalog 
Management 

Access Method Services/Catalog Communication Table (ACC) Description 

Offset 

0(0) 

4 (4) 

5 (5) 

8 (8) 

CRA Access Translate Table (CTT) Description 

Offset 

0(0) 

4 (4) 

Bytes and 
Bit Pattern 

4 

.3 

4 

Bytes and 
Bit Pattern 

4 

4xn 

.3 

CRA Volume TlDlestamp Table (VTT) Description 

Bytes and 
Offset Bit Pattern 

0(0) 4 

4 (4) 14xn 

6 

...... 8 

Field Name 

ACCTRANT 

* 
ACCDSNCI 

ACCVOLTT 

Field Name 

CTTENTNO 

CTTENTRY 

CTTENTYP 

CTTCATCI 

Field Name 

VTTENTNO 

VTTENTRY 

VTTVOLSR 

VTTTMSTP 

Size 

Variable 

Description: Content, Meaning, Use 

Address of the CRA Access Translate 
Table (CTT). 

Reserved. 

Control Interval number used when 
LOCATEs are performed via true 
names. 

Address of the Volume Timestamp 
Table. 

Description: Content, Meaning, Use 


Number of entries in the table. 


Variable number (n) of 4-byte entries. 


Type of CRA record. 


Catalog control interval number of the 

CRA control interval for this entry. 


Description: Content, Meaning, Use 


Number of entries in the table. 


Variable number (n) of 14-byte entries. 


Volume serial number for the 

timestamp of this entry. 


The timestamp that is in the format 4 

DSCB on this volume. 


Data Areas 439 



Dump Ust 


Individual Field Entry 

The Dump List tells the UDUMP macro which areas to dump. The Dump List 
consists of entries that describe the individual fields. If one or more fields are 
to be repeated, they can be described as an array where each group of fields is 
an element in the array. In such cases, the array is preceded by a Dump List 
entry called an array header. The array header causes the fields to be 
repeated. The end of the Dump List is indicated by an entry called the dump 
list terminator. 

Individual entries are printed as name=data. Each field in an array is printed 
as name(n)=data. The array name is printed before the array elements. All 
arrays start on a new line. 

Created by Modified by Used by SIze 

All routines All routines IDCDB02 Variable 

Bytesamd 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 8 DMPITMNM Name to be printed with the field. The 
name is aligned left and padded with 
blanks. 

8 (8) 4 DMPITMPT Address of field to be dumped. 

12 (C) 2 DMPITMLN Number of bytes to dump. For 
hexadecimal, bit, or character strings 
the number is from 1 to 256. For fixed 
binary, the number is from 1 to 4. 

14 (E) .. 1 DMPITMTP One character indicating the type of 
data in field: 

H - Hexadecimal printed as \'Wo 
characters per byte. 

B - Bit string printed as eight 
characters per byte. 

C - Character printed as one character 
per byte. 

F - Fixed binary printed as a signed 
number for halfwords or fullwords or 
as an unsigned number for one or 
three bytes. Leading zeros are 
suppressed. 

15 (F) ... 1 • Reserved. 

440 OS!VS2 Access Method Services Logic 



Array Header Entry 

ByteslDd 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 8 DMPARYNM 	 Name to be printed at the start of the 
array. The name is aligned left and 
padded with blanks. 

8 (8) 2 DMPARYSZ 	 Number of bytes in each input element 
of the array. The number can be from 
1 to 32,767.· 

10 (A) .. 2 DMPARYIC 	 Number of following individual items 
that are in the array. The number can 
be from 1 to 32,767. 

12 (C) 2 DMPARYEX 	 Number of times to repeat the 
individual fields. The number can be 
from 1 to 99. 

14 (E) .. 1 DMPARTYTP 	 Array header type--contains 'A'. 

15 (P) ... 1 * 	 Reserved. 

Dump List Terminator Entry 

ByteslDd 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) * 	 End of dump list indicator--contains 
X'PP'. 

Data Areas 441 



DARGLIST 
Dynamic Data List 

The dynamic data argument list describes variable data to be printed. It is 
always an argument for a print request (UPRINT macro). 

Created by Modified by Used by 	 SIze 

Calling routine None IDCTPOI 	 Variable 

Bytesud 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 4 DARGDBP 	 Contains the address of block of data 
referred to by format list or zero. 

4 (4) 4 DARGRETP 	 Zero if printing is to occur; non-zero if 
no printing is to occur. If non-zero, 
contains the address of the area in 
which the formatted print lines are to 
be returned from the Text Processor 
and not printed. Spacing control 
characters aren't returned. The data is 
truncated to the length (DARGRETL) 
of the provided area if necessary. Data 
will be returned to the specified 
location. 

8 (8) 4 DARGSTID 	 Zero if a format lis! is also passed as a 
parameter. If non-zero, contains the 
Text Structure identification (STID) 
for static text element to be used as the 
format list. 

Each DARGSTID contains: ~ 
3 DARGSMOD 	 Last three characters of the 

text-structure module name. 

... 1 DARGSENT 	 Static text entry. 

12 (C) 2 DARGILP 	 Length of block whose address is in 
DARGDBP. 

14(E) .. 2 DARGCNT 	 Number of insert and replication 
elements contained in DARGARY. 

16 (10) 2 DARGRETL 	 Length of the return-data area-that 
is, DARGRETP. 

18 (12) .. 1 DARGIND 	 Offset to add to the print column in 
the format list (FMTOCOL). 

19 (13) ... 1 * 	 Reserved. 

20 (14) 8xn DARGARYn 	 Group array in one of two formats. 
The following fields are repeated n 
times, where n = DARGCNT. 

For insert data each array contains: 

2 DARGINS 	 Insert reference number. 

.. 2 DARGINL 	 Input data length of the field pointed 
to by DARGDTM. 

4 DARGDTM 	 Dynamic data pointer, address of field 
to use for this insert. 

442 OS/VS2 Access Method Services Logic 



Bytes'" 
Offset BIt Pattern field Name DesaIptIon: Content, Meaning, Use 

For replication data each array contains: 

2 DARGREP Replication reference number. 

2 DARGPCT Replication count, number of times to 
replicate a series of format 
substructures (FMTLIST). This field is 
not used for replication structures. 

Data Areas 443 

L 



ERCNVTAB 
Error Conversion Table 

The Error Conversion Table is passed whenever a UERROR macro is issued. 
It contains the information necessary to convert numeric error codes into 
pro~e messages. 

Created by Modified by IUsed by 	 Size 
-------- --- ............ f-. 	 '--... -- -- -----1-·All routines None IDCTP06 	 32 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) ERTYPE 	 Type of error code to be converted. 

I. ...... ERCATLG 	 VSAM catalog management error. 

.1. ..... EROSCAT 	 OS/VS Catalog error-used in 
OS/VSI only. 

.. 1. .... EROYNAL 	 Dynamic Allocation error 

(VS2.03.807) 


1(1) .1 EROPER 	 VSAM catalog operation being 
performed when error occurred. Only 
one operation type allowed per 
UERROR invocation. 

1....... ERCATLC CMS Locate. 

.1. ..... ERCATDE CMS Define. 

.. 1 ..... ERCATDL CMS Delete. 

... 1 ••.. ERCATAL CMS Alter. 


2(2) .. 1 EROSOPER 	 OS/VS Catalog operation being 
performed-used in VSI only. ~ 3(3) ... 1 * 	 Reserved. 

4(4) 4 	 Reserved. 

8(8) 4 	 Reserved. 

12(C) 4 ERDSNM 	 Address of data set name or volume 
serial number associated with the 
Catalog Management request. The 
data set name is contained in a 44 byte 
field padded with blanks; the volume 
serial number is contained in a 44 byte 
field padded with binary zeros. 

16(10) 4 ERCATRC 	 Catalog Management return code. 

16(10) 4 ERDYNRC 	 Dynamic allocation return code. 
(VS2.03.807) 

20(14) 4 ERCPLPT 	 Address of Catalog Parameter List 
(CTGPL) issued that resulted in error 
condition. 

20(14) 4 ERDARBPT 	 Address of SVC 99 request 
block issued which resulted in a 
dynamic allocation error condition. 
(VS2.03.807) 

24(18) 4 	 Reserved. 

28(1 C) 4 	 Reserved. 

~ 


444 OS!VS2 Access Method Services Logic 



STAEPARM 
ESTAE Argument List 

The ST AEPARM is passed to the EST AE exit routine in IDeSA1 0 when an 
ABEND occurs. It defines whether retry is to be attempted and what 
recovery must be performed. 

Created by 	 Modified by Used by Size 

IDCSAIO 	 IDCIOOS IDCIOOS 
IDCSAlO IDCSAIO 
IDCSA06 

Bytes and 
Offset Bit Pattern FleldName Descrlpdon: Content, Meaning, Use 

0(0) 8 STAHEAD 	 Set with 'STAEPARM' by IDCSAIO, 
when an ESTAE environment is 
established. 

8(8) 4 STAVUCB 	 Address of the UCB where the mass 
storage volume is mounted or was 
demounted. If STAVMNT or 
STAVDMNT flag is set, this field must 
be initialized. 

12(C) 6 STAVVOL 	 Volume serial number of the mass 
storage volume if STAVMNT or 
STAVENQ is set. 

18(12) .. 2 • 	 Reserved. 

20(14) 4 STARUCB Address of the UeB for the real 3330 
unit which is cleared if ST ACLEAR 

~ flag is set. 

24(18) 6 STARVOL 	 Volume serial number cleared from 
the UCB if STACLEAR is set. 

30(1E) .. 2 • 	 Reserved. 

32(20) 4 STARTTR 	 TTR of the VTOC cleared from the 
UCB if STACLEAR is set. 

36(24) 4 STARTSAV 	 Address of the save area for the retry 
routine's registers. 

40(28) 4 STAEXSAV 	 Address of the registers at the time the 
ESTAE environment was established. 
Used by ESTAE routine to restore 
registers. 

44(2C) 4 STARTADD 	 Address of the retry routine entry 
point. 

48(30) 4 STATCB 	 Contains the initiator's TCB. Used to 
dequeue a volume. 

Data Areas 445 



Bytes and 
Offset BitPattem Field Name Description: Content, Meaning, Use 

52(34) 	 STARCVY Recovery flags: ~ 1....... STAVMNT Indicates that a mass storage volume is 
mounted. 

.1. ..... STAVDMNT 	 Indicates that a mass storage volume 
was demounted from a unit, but the 
UCB has not been marked "NOT 
READY" yet. 

.. 1. .... STAVENQ 	 Indicates that an enqueue was done on 
a volume serial number in ST AWOL. 
This bit is set off when a dequeue is 
done. 

... 1 .... STAVPOST 	 Indicates that the mass storage 
volume's serial number and VTOC 
TTR were posted in the UCB 
following the mount. 

.... 	1. .. STAVCLEAR Indicates that the VTOC TTR and 
volume serial number were removed 
from a real 3330 UCB, but the volume 
is still mounted. 

53(35) .1 STARETRY Retry flags: 

1....... STAI005 Indicates that the retry routine for 
IDCI005 is to be invoked at ABEND. 

.1...... STAOFF Indicates that the ESTAE environment 
was cancelled as a result of an 
ABEND. 

446 OS!VS2 Access Method Services Logic: 



EXCLAGL 
Exclusive Control Argument List 

Select Request 

Change Request 

The EXCLAGL is passed when a UMSSUNIT macro is issued with a select 
or change request. It defines a request to either (1) select a DD statement and 
UCB that can be used for the volume if the volume is already allocated 
exclusively to the job step or (2) change the allocation of a unit and volume 
to exclusive. 

Created by MocIlfIed by Used by 	 Size 

Calling routine IDCSA06 IDCSA06 	 23 

Bytes and 
Offset Bit Pattern FleldName Description: Content, Meaning, Use 

0(0) 8 EXCLHEAD Set by IDCSA06 with 'SELECTXt)'. 

8 (8) 4 EXCLUCBP Address of a 4-byte area in which 
IDCSA06 returns the address of the 
UCB that can be used to mount the 
volume. 

12 (C) 4 EXCLDDP Address of an 8-byte area in which 
IDCSA06 returns the DD name that 
can be used to open the VTOC on the 
volume. 

16 (10) 6 EXCLVOL Volume serial number of the volume 
that is being processed by the caller. 

22 (16) EXCLFLAG Ignored. 

Bytes and 
Offset BIt Pattern Fleld Name Description: Content, Meaning, Use 

0(0) 8 EXCLHEAD 	 Set by IDCSA06 with 'CHANGEXt)'. 

8 (8} 4 EXCLUCBP 	 Address of an area that contains the 
UCB address, or zeros if the UCB 
address is unknown. If EXCLUCBP 
contains zeros, IDCSA06 puts the 
UCB address in the area upon return. 

12 (C) 4 EXCLDDP 	 Address of the DD name for the 
volume being processed. 

16 (10) 6 EXCLVOL 	 The volume serial number of the 
volume whose allocation is to be 
changed to exclusive, or zeros. If the 
EXCLMNT bit is set, this field must 
be specified. 

22 (16) EXCLFLAG 	 Option bits: 

1. ...... EXCLMNT Indicates the allocation of the volume 
is to be changed to exclusive only if the 
volume is mounted on the unit. When 
this bit is zero, the allocation of any 
volume mounted on the unit is 
changed to exclusive. 

Da ta Areas 447 



EXGARG 
EXCP GET Argument List 

The EXGARG is passed when UEXCP is issued with a GET request. It 
defines a request to read a data set. 

Created by Modified by Used by 	 Size 

Calling routine mCI005 mCI005 	 32 

Bytesaud 
orfset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 8 EXGHEAD 	 Set with 'GETbM'>bb' by mCI005. 

8(0) 4 EXGCTLBK 	 Address of the IOXCTLBK created 
during the open. 

12(C) 4 EXGCCHHI 	 Address of an area that contains the 
physical CCHHR (search) of the first 
records to be read. This field is 
required only when the EXOT AB 
open option is selected. 

16(10) 4 EXGCCHH2 	 Address of an area that contains the 
CCHHR (seek) in the count field of 
the first record to be read. 

20(14) 4 EXGRECNO 	 The number of records to be read. The 
value cannot exceed the number of 
records on one track. 

24(1 B) 4 EXGDATAP 	 Address of the area into which the 
records are read. Each record is read 
and stored contiguously. 

28(1C) EXGKEYLN 	 Key length of the records being read. "J 
29(1 D) .1 * 	 Reserved. 

30(1E) .. 2 EXGDATAL 	 Data length of the records being read. 

448 OS/VS2 Access Method Services Logic 



EXOARG 
EXCP OPEN Argument List 

The EXOARG is passed when a UEXCP is issued with an open request. It 
defines a request to open a data set. 

Created by ModHiedby 

Calling routine mCIOOS 

Bytes and 
Offset Bit Pattern 

0(0) 8 

8(8) 4 

12(C) 4 

16(10) 4 

20(14) 4 

24(18) 4 

28(1 C) 4 

32(20) 

1....... 

.1...... 

.. 1. .... 

... 1 .... 
• 

.... 1... 

..... 1.. 

......xx 

33(21) . 1 

1. ...... 

... 1 .... 

.... 1. .. 

Used by 

mCIOOS 

Field Name 

EXOHEAD 

EXODDN 

EXODSN 

EXOVSN 

EXOUCB 

EXOEXT 

EXOCTLBK 

EXOPT 

EXOTAB 

EXOLAB 

EXOPASS 

EXONEW 

EXOVTOC 

EXOREP 

* 
EXFLG 

EXOREAD 

EXORVS 

EXOSPK 

Size 

34 

Description: Content, Meaning, Use 

Set with 'OPENbM;b' by mCIOOS. 

Address of eight-byte DD name. 

Address of 44-byte data-set name. 

Address of eight-byte volume serial 
number. 

Address of the UCB. 

Address of ten-byte extent return area. 
Upon return, the area contains the 
beginning and ending CCHHR of the 
first extent. 

Address of four-byte area for return of 
IOXCTLBK address built by I/O 
adapter. 

EXCP open options: 

Open for MSC tables. This option is 
mutually exclusive of the other open 
options. 
Open for the VTOC to read or write 
the volume label. This option is 
mutually exclusive of the other open 
options. 
Open to check for password protected 
data sets. This option is mutually 
exclusive of other open options. 
Open to initialize the volume with IPL 
records, label record, and VTOC. This 
option is mutually exclusive of the 
other open options. 
Open to read the VTOC DSCBs. This 
option is mutually exclusive of other 
open options. 
OPENR is-specified: open is being done 
for a REPAIRV function. This option 
is mutually exclusive of the other open 
options. 

Reserved. 

Open flags . 

Read-only access. 

The user wants to open a VSAM data 
set for REPAIRV processing. This bit 
is an option of OPENR . 

Open is for an entire staging pack. The 
user wants to be able to read an entire 
staging pack taken offline from the 
3850. This is an option of OPENR. 

Data Areas 449 



Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

..... 1.. EXORDS The user wants to open a data set for a 
repair function. This is an option of 
OPENR. ;J 

...... 1. EXORVT 	 The user wants to open a data set for a 
repair function. This is an option of 
OPENR. 

....... 1 EXOVTH 	 The user wants to open a VTOC 
header for a repair function. This is an 
option of OPENR. 

.xx..... 	 Reserved.* 

• 

450 OS/VS2 Access Metbod Services Logic 



EXPARG 
EXCP PUT Argument List 

The EXP ARG is passed when UEXCP is issued with a PUT request. It 
defines a request to write a data set. 

Created by IModified by Used by !Size 

Calling routine IlmCIOOS mCIOOS 20 
1 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 8 EXPHEAD Set with 'PUTbbbbb' by mCIOOS. 

8(8) 4 EXPCTLBK Address of the IOXCTLBK built 
during the open. 

12(C) 4 EXPDATA Address of the data-to-write block. 
EXPDATAB structure is used to 
initialize this block. 

16(10) 4 EXPCCHHR Address of an area that contains the 
CCHHR where the data will be 
written. 

• 


Data Areas 451 



EXPDATAB 
PUT Data Block 

The EXPDATAB is passed when UEXCP is issued with a PUT request. It 
defines a request to write a data set. The EXPARG points to EXPDATAB. 

Created by Modified by 

Calling routine IDCIOOS 

Bytes and 
Offset Bit Pattem 

0(0) 4 

4(4) 8xn 

Each entry contains: 

4 

. 1 

.. 2 

Used by 

IDCIOOS 

Field Name 

EXPRECNO 

EXPARRAYn 

EXPDATAP 

EXKEYLN 

* 
EXPDATAL 

SIze 

Variable 

Description: Content, Meaning, Use 

Number of records to be written. 

Data-to-write array. There is an array 

entry for each record to be written. 


Address of the record to be written. 


Key length of the record being written. 

Required for each record. 


Reserved . 


Data length of the record being 

written. Required for each record . 


• 


452 OS!VS2 Access Method Services Logic 



FMPL 
Field Management Parameter List 

The Field Management Parameter List is passed whenever module IDCRC04 
is called within EXPORTRA and LISTCRA. It contains information and 
pointers which enable IDCRC04 to extract data from records within the 
catalog or CRA: 

Created by Modified by Used by SIze 

IDCRCOI IDCRC04 IDCRC04 Variable 
IDCLROI 

Field Management Parameter List Description 

Bytes aDd 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) FMPLFLNO Number of FMFL pointers. 

1 (1) .3 FMPLBCIN Control interval number of the base 
record. 

4 (4) 4 FMPLGRTN Address of the GET routine. 

8 (8) 4 FMPLWKAR Address of the field management work 
area. 

12 (C) 4 FMPLUPTR Value passed to user GET routine at 
Input/Output processing time. 

16 (10) FMPLRTCD Return code from a call to IDCRC04. 

17(11) . 1 * Reserved . 

18 (12) .. 2 FMPLENTH Length of the output area provided by 
caller. 

20 (14) 4 FMPLOAR Address of the output area. 

24 (18) 4xn FMPLFMFL Array of variable number (n) of 4-byte 
FMFL pointers. 

Field Management Field List (FMFL) Description 

Bytes aDd 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) FMFLDLNO Number of length/data pairs passed by 
caller. 

1(1) .1 FMFLTSTC Compare test condition code. 

2 (1) .. 1 FMFLGRPC Field group code supplied by caller. 

3(1) ... 1 FMFLINDS FMFL indicator flags. 
xxxx xxx. * Reserved. 
....... 1 FMFLSUCC Bit indicating success of test. O=test is 

successful. 1 =test is unsuccessful. 

4 (4) 4 FMFLWKAR Work area for field management. 

8 (8) 4 FMFLDNAM Pointer to 8-byte field name. 

12 (C) 4 FMFLTCHN Address of next test FMFL. 

16 (10) 8xn FMFLDATA Variable number (n) Length/Data 
pointer pairs. 

4. FMFLENTH 4-byte length of supplied data. 

.4 FMFLADDR 4-byte address supplied data. 

Data Areas 453 



FMTLIST 

Format Ust 


Spacing 

The format list defines the format of printed output. This list consists of 
several substructures, each identified by its flag byte. Format lists exist in the 
Text Structures, where they are referenced by STID numbers (Static Text 
Identifiers). Optionally, they may be passed as an argument of the UPRINT 
macro, in which case the DARGLIST argument does not furnish a STID. 

Created by Modified by II Used by Size 

Calling routine None imCTPOI Variable 

Offset 
Bytes and 
Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) FMTFLGS Flags: 

1. ...... 
.1. ..... 
.. 1. .... 
... 1 .... 
.... I ... 
..... 1.. 
...... 1. 
.... ... 1 

FMTEOLF 
FMTSCF 
FMTlDF 
FMTBDF 
FMTREPF 
FMTSTF 
FMTDFF 
FMTHDF 

End of structure. 
Space control. 
Insert data . 
Block data. 
Replication . 
Static text. 
Default data. 
Header line . 

Interpretation of each substructure of the format list depends on the value of 
FMTFLGS. Each of the possible substructures is shown below. 

The spacing substructure of the format list specifies the line spacing or 
carriage control to use while printing. The default spacing is used only when a 
line is not immediately preceded by a spacing substructure. A spacing 
substructure imbedded in an entry causes the previously formatted data to be 
printed and signals the start of a new line. 

Bytes and 
Offset Bit Pattern Field Name Description: Cootent, Meaning, Use 

0(0) FMTFLGS 	 Flag byte: X' 40' or X' 41'. 

1(1) . I 	 Reserved . * 
2(2) .. 2 FMTSPF 	 Space factor: if FMTSPT is equal to 

'A', this is the absolute line number to 
use for printing this line. If FMTSPT is 
equal to 'R', this is the number of 
spaces to take before printing. Page 
overflow results in printing on the first 
line of the next page. 

4 (4) FMTSPT 	 Spacing type: 'A' signifies absolute line 
number in FMTSPF, and 'R' signifies 
relative line number. 'E' signifies page 
eject. 

5 (5) . I 	 Reserved . * 

454 OS/VS2 Access Method Services Logic 



Insert Data 

The insert-data substructure refers to data defined in the dynamic data 
argument structure, and identified by reference number. This represents 
variable data to be inserted into the printed line. 

Offset 

0(0) 

1 (1) 

2 (2) 

4 (4) 

6 (6) 

8 (8) 

10 (A) 

11 (B) 

Bytes and 

Bit Pattern 


. 1 

.. 2 

2 

.. 2 

2 

.. 1 

1....... 

.1 ...... 

.. 1. .... 

... 1 .... 

.... 1 ... 

... 1 

1....... 

. 1 ...... 

.. 1. .... 

... 1 .... 

.... 1 ... 

Field Name 	 Description: Content, Meaning, Use 

FMTFLGS 	 Flag byte: X'20' or X'AO'. (X'AO' also 
denotes end-of-structure.) 

Reserved . * 
FMTRFNO 	 Insert reference number: identification 

number for dynamic data insert that 
defines the input data to be used for 
formatting. 

Reserved.* 
FMTOCOL 	 Print line column for beginning of this 

field, or if FMTBS is equal to one, the 
offset from the column indicated by 
field PCTAPC. 

FMTOLEN 	 Output field length. If FMTOLEN is 
equal to zero or 32,767, then the full, 
converted input length is used. 

FMTCNVF 	 Flags to define conversion and 
formatting to be done: 

FMTBH Byte to printable, hexadecimal 
representation. 

FMTBHA Byte to hexadecimal, preceded by X' 
and followed by a single quote. 

FMTBHD STAndard dump format. FMTOCOL 
and FMTOLEN are ignored. 

FMTBD Binary to unpacked decimal 
characters. 

FMTPU Packed to unpacked decimal 
characters. 

FMTCNVF (cont.) Conversion flags (continued). 

FMTZS 	 SUPpress leading zeros by replacing 
with blanks . 

FMTAL 	 Aligned left; the high-order non-zero 
digit is put in first print column as 
specified by FMTOCOL. 

FMTSS 	 Suppress signs. 
FMTBS 	 Suppress all trailing blanks but one of 

the preceding field; add the offset in 
FMTOCOL to the value in PCTAPC 
for the print column. 

FMTAR 	 Align EBCDIC character strings to the 
right. The print column is added to the 
print field length to determine the last 
printable position. 

Data Areas 455 



Default Text 

Block Format 

; ~ 

The default-text substructure is only used when it immediately follows an 
insert-data substructure. When examining the insert structure, the value in 
DARGINS is compared to the value in FMTRFNO. If no match is found, the 
next format structure is examined to determine whether it is a default 
structure. If the flag FMTDFF is on in this next structure, the structure is 
used. In all other cases, it is skipped over. 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) FMTFLGS Flag byte: X'02' or X'S2'. (X'S2' also 
denotes end-of-structure.) 

1 (I) . 1 * Reserved . 

2 (2) .. 2 FMTILEN Length of the default text. 

4 (4) 2 FMTIOFF Offset from the beginning of the 
format structures to the default text 
(which follows the format structures). 

6 (6) .2 FMTOCOL Print line column, same as for insert 
substructure. 

S (S) 2 FMTOLEN Output field length, same as for insert 
substructure. 

10 (A) .. 2 FMTCNVF Conversion flags, same as for insert 
substructure. 

The block format substructure of the format list defines a block of variable 
data from which fields are extracted for printing. 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) FMTFLGS 	 Flag byte: X'IO' or X'90'. (X'90' also 
denotes end-of -structure.) 

1(1) . 1 	 Reserved . * 
2 (2) .. 2 FMTILEN 	 Length of the input field. If FMTILEN 

is zero orif FMTILEN is greater than 
DARGILP minus FMTIOFF then the 
input length in DARGILP is used. 

4 (4) 2 FMTIOFF 	 Offset from the beginning of the input 
data block at which this field begins. 
The beginning of the data block is in 
DARGDBP. 

6 (6) .. 2 FMTOCOL 	 Print line column, same as for insert 
substructure. 

S (S) 2 FMTOLEN 	 Output field length, same as for insert 
substructure. 

10 (A) .. 2 FMTCNVF 	 Conversion flags, same as for insert 
substructure. 

456 OS!VS2 Access Method Services Logic 



L 

Replication 

Static Text 

The replication substructure defines substructures of the format list that are to 
be repeated. The replication substructure always precedes the first 
substructure to be repeated. 

Bytesand 
Offset Bit Pattem FleldName Description: Content, Meaning, Use 

0(0) FMTFLGS Flag byte: X'OS'. (May not have 
end-of-list flag on.) 

1(1) . I • Reserved . 

2 (2) .. 2 FMTRFNO Reference number to identify the 
dynamic argument that contains the 
replication count. 

4 (4) 2 FMTRBC Number of substructures that follow 
that are to be replicated. 

6 (6) .. 2 FMTRIO Offset to add to all offsets contained in 
block-format substructures being 
replicated to access the input fields. 

The static text substructure defines data from the Text Structures to be placed 
in the printed line. 

8ytesand 
Offset BIt Pattem F1eldName Description: Content, Meaning, Use 

0(0) FMTFLGS Flag byte: X'04' or X'84'. (X'S4' also 
denotes end-of-structure.) 

I (I) . I • Reserved • 

2 (2) .. 2 FMTSTL Length of static text field. 

4 (4) 2 FMTSTO Offset to static text which follows 
format structures. 

6 (6) .. 2 FMTOCOL Print line column, same as for insert 
substructure. 

S (S) 2 FMTOLEN Output field length, same as for insert 
substructure. 

10 (A) .. 2 FMTCNVF Conversion flags, same as for insert 
substructure. 

Data Areas 457 



FDT 
Function Data Table 

Number Data Area 

The Function Data Table is an encoded representation of a command. The 
Reader/Interpreter constructs the FDT from information found in the 
command. All defaults are resolved; no conflicts are allowed among the 
values of an FDT. 

The FDT is not one structure, but rather several small structures that are 
pointed to by a primary vector of addresses, called the FDTTBL. For a 
parameter that appears in a repeated subparameter list, a secondary vector of 
addresses results. Figure 13 illustrates this vector and the various small 
structures to which it points. 

The FDT primary vector, FDTTBL, is variable in length. It consists of the 
command's verb as an 8-byte EBCDIC string, followed by a variable number 
of fullword pointers. The number of pointers depends on the specific 
command. There is one pointer per parameter defined in the Command 
Descriptor. If a pointer is reserved or is not used because the respective 
parameter has not been specified, the pointer contains zero. 

The FDTTBL points to data areas in one of three formats depending upon 
the input provided by the parameter. If there is more than one data field, an 
array of data fields is generated. The array is preceeded by a count of the 
array elements. The count is in a fullword for an array of Number Data Areas 
and in a halfword for an array of any other data areas. The array consists of 
one element for each data field supplied as input to the parameter. Every 
element in the array has the same format--one of the three formats shown 
below. In the following formats the last 3 characters of the field name are as 
shown. The first characters may vary and are indicated by •. 

c_re_a_te_d_b_Y___-LIM_Od_ifi_le_d_b_Y__+-U_se__d by Size_1 

IDCRIOI INone FSR ;Yariable 
IDCRI04 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 4 *YAL Contains the input number in 
fixed-point binary. 

458 OS!VS2 Access Method Services Logic 



FDTfBL contains one address for each 
parameter in the command. Each parameter 
consists of zero, one, or more data fields. 

8-byte verb name 

4-byte 
addresses 

1 

for repeated 
parameter 

single data field 

[f a parameter Parameter consisting of one data field 
consists of no data 
fields (such as 
WRITECHECK), the 
address in FDTfBL 

points to itself. 
Parameter consisting of several data fields 

count of ~ data fields ~rray of ~ata fields 
'------""'-~ 

If a parameter has 
repeated 
subparameters If a parameter can be repeated, FDTfBl
(such as OBJECTS), contains a pointer to a special list of addresses. 
FDTfBl contains [n the list is one address for each possible 
the number of parameter repetition. 
subparameters. 

Repeated parameter· consisting of one data field 

single data field 

single data field 

addresses 
for repeated 
parameter 

1 T 

Figure 13. FDT (Function Data Table) 

Data Areas 459 



String Data Area 

Data Set Name or Data Area 

For a character string or hexadecimal string with or without a password the 
format is: 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) *PLN Number of characters in the following 
password. This field does not exist if a 
password is not allowed with the 
string. 

1 (1) 8 *PAS Password, if supplied, left-justified and 
padded with blanks. This field does 
not exist if a password is not allowed 
with the string. 

9 (9) *LEN Number of characters in the following 
field. 

10 (A) *YAL Character string left-justified and 
padded with blanks. The string does 
not contain deli minters. Double 
apostrophes are converted to single 
apostrophes and hexadecimal input is 
converted to EBCDIC. 

For a data set name or generic data set name all with or without a password 
and member name, the format is: 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) *PLN 	 Number of characters in the following 
password. 

1 (1) 8 *PAS 	 Password, if supplied, left-justified and 
padded with blanks. 

9 (9) *POS 	 Position of any * in the data set name. 

10 (A) *FLG 	 Flag byte: 

1...... . *FUQ This flag is used only if Access Method 
Services is invoked interactively with 
TSO. A '1' means the data set name is 
to be qualified according to TSO 
naming conventions. Refer to OS/VS2 
TSO Guide to Writing a Terminal 
Monitor Program or a Command 
Processor. '0' means the data set name 
is to be used without 
qualification-that is, without any 
additions. 

11 (B) *MLN 	 Number of characters in the following 
member name. 

12 (C) 8 *MEM 	 Member name, if supplied, 
left-justified and padded with blanks. 

20 (14) *LEN 	 Number of characters in the following 
field. 

21 (15) v *YAL 	 Data set name or generic data set 
name in EBCDIC. 

460 OS/VS2 Access Method Services Logic 



-----

----

--

FDTs for Specific Commands 

ALTER FDT 


The FDT for each command is shown in two different ways in the following 
sections. First, there is a table relating the pointers to the parameters in the 
command. Any omitted fields in this table contain zero. Second there is the 
FDT description as it is used by the FSR for the command. 

Offset 

0(0) 

8 (8) 

16 (10) 

24 (18) 

32 (20) 

40 (28) 

48 (30) 

56 (38) 

64 (40) 

72 (48) 

80 (50) 

88 (58) 

96 (60) 

104 (68) 

112 (70) 

120 (78) 

128 (80) 

136 (88) 

144 (90) 

152 (98) 

160 (AO) 

168 (A8) 

176 (BO) 

184 (B8) 

192 (CO) 

200 (C8) 

208 (DO) 

216 (D8) 

224 (EO) 

232 (E8) 

240 (FO) 

248 (F8) 

256 (100) 

264 (108) 

272 (110) 

280 (118) 

288 (120) 

296 (128) 

Content 

A L T E R b 

tentryname/ password ____----,I--'-t-=C::...:A:...::T::...:A:=L=_=0c.:::G=--___------1 

tealna,me/password I
1 

tdname 

f-'t~N-,",E=-:W:.:...N::...:::...:A:::.:M=E=--______--I--'-t-=-FILE 

o tMASTERPW ______--1 

tCONTROLPW I tUPDATEPW'-'--______-i 

tREADPW ItCODE 

tATTEMP~T::...:S~.______~t~A~U~T~H=-=O~R=IZ=A~T::...:I=-=O~N~---~ 

t entrypoint I t string 

o tTO 


tFOR tOWNER 


tERASE tNOERA~SE~_______~ 

~AREOPTIONS 
1 o 

~ULLIFY t MASTERPW 

tCONTROLP~W'_'_______~t~U~P~D~A~T::...:E=P~W'-'--------~ 

~ADPW__________+_----"'-O- _________ 

tFREESPACE t cipereent 

rt~e~a~~e~~~~~t________Tt_W_R_ITECHECK 

t NOWRITECHECK t BUFFERSPACE 


t ADDVOLUMES : t REMOVEVOLUMES 


o ! tINHIBIT 


t UNINHIBIT tOWNER 
r------
tCODE tRETENTION 

t AUTHORIZATION t MODULE 

tSTRING t erossrel!ion 

~.~~~re~m~______-,_tE~M~P~TY_________~ 

tNOEMPTY __~tS~C~R~A~T~C::...:H~_________~ 

tNOSCRATCH 0 

t EXCEPTIONEXIT tKEYS 

t length toffset 

t RECORDSIZE taverage 

tmaximum tUNIQUEKEY 

t NONUNIQUEKEY t UPGRADE 

rt~N~O~U~P~G=R=A~D=E~______Tt~U::...:P~D::...::...::AT::...:E~_________~ 

tNOUPD~A~T=E________~i~t=EX~C=E~PT~I::...:O~N~E=X=I:...::T_____~ 

tSTAGE t BIND 


tCYLINDERFAULT tNODESTAGEWAIT 


tDESTAGEWAIT 


Data Areas 461 



Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 8 FDTVERB 	 Verb aligned left and padded with 
blanks-ALTERtJtJtJ. J 

8 (8) 4 NTRY 	 Address of information supplied 
through the entryname/password 
parameter. 

12 (C) 4 CAT 	 Address of this pointer itself if the 
CATALOG parameter is supplied. 

16 (10) 4 CATLG 	 Address of information supplied 
through the catname/password 
subparameter of the CATALOG 
parameter. 

20 (14) 4 CATDN 	 Address of information supplied 
through the dname subparameter of 
the CATALOG parameter. 

24 (18) 4 NEWNM 	 Address of information supplied 
through the NEWNAME parameter. 

28 (lC) 4 INDD 	 Address of information supplied 
through the FILE parameter. 

32 (20) 4 * 	 Reserved--contains zero. 

36 (24) 4 MASTR 	 Address of information supplied 
through the MASTERPW parameter. 

40 (28) 4 CNTVL 	 Address of information supplied 
through the CONTROLPW 
parameter. 

44 (2C) 4 UPDAT 	 Address of information supplied 
through the UPDATEPW parameter. :J48 (30) 4 READ 	 Address of information supplied 
through the READPW parameter. 

52 (34) 4 CODNM 	 Address of information supplied 
through the CODE parameter. 

56 (38) 4 ATTP 	 Address of information supplied 
through the ATTEMPTS parameter. 

60 (3C) 4 AUTH 	 Address of this pointer itself if the 
AUTHORIZATION parameter is 
supplied. 

64 (40) 4 USVR 	 Address of information supplied 
through the entrypoint supparameter 
of the AUTHORIZATION parameter. 

68 (44) 4 USAR 	 Address of information supplied 
through the string subparameter of the 
AUTHORIZATION parameter. 

72 (48) 4 * 	 Reserved--contains zero. 

76 (4C) 4 TO 	 Address of information supplied 
through the TO parameter. 

80 (50) 4 FOR 	 Address of information supplied 
through the FOR parameter. 

84 (54) 4 OWNER 	 Address of information supplied 
through the OWNER parameter. 

88 (58) 4 ERASE 	 Address of this pointer itself if the 
ERASE parameter is supplied. 

92 (5C) 4 NERAS 	 Address of this pointer itself if the .~ 
NOERASE parameter is supplied. 

462 OS/VS2 Access Method Services Logic 



ByteslDd 
Offset Bit Pattem Field Name Description: Content, Meaning, Use 

96 (60) 4 SHARE 	 Address of this pointer itself if the 
SHAREOPTIONS parameter is 
supplied. 

100 (64) 4 * 	 Reserved-contains zero. 

104 (68) 4 NULLF 	 Address of this pointer itself if the 
NULLIFY parameter is supplied. 

108 (6C) 4 NMSTR 	 Address of this pointer itself if the 
MASTERPW subparameter of the 
NULLIFY parameter is supplied. 

112 (70) 4 NCNTV 	 Address of this pointer itself if the 
CONTROLPW subparameter of the 
NULLIFY parameter is supplied. 

116 (74) 4 NUPDT 	 Address of this pointer itself if the 
UPDATEPW subparameter of the 
NULLIFY parameter is supplied. 

120 (78) 4 NREAD 	 Address of this pointer itself if the 
READPW subparameter of the 
NULLIFY parameter is supplied. 

124 (7C) 4 * 	 Reserved-contains zero. 

128 (80) 4 FSPAC 	 Address of this pointer itself if the 
FREESPACE parameter is supplied. 

132 (84) 4 FSPCI 	 Address of information supplied 
through the cipercent subparameter of 
the FREESPACE parameter. 

136 (88) 4 FSPCA 	 Address of information supplied 
through the capercent subparameter of 
the FREESPACE parameter. 

140 (8C) 4 WRTCK 	 Address of this pointer itself if the 
WRITECHECK parameter is 
supplied. 

144 (90) 4 NWTCK 	 Address of this pointer itself if the 
NOWRITECHECK parameter is 
supplied. 

148 (94) 4 BUFSZ 	 Address of information supplied 
through the BUFFERSPACE 
parameter. 

152 (98) 4 ADDVL 	 Address of information supplied 
through the ADDVOLUMES 
parameter. 

156 (9C) 4 REMVL 	 Address of information supplied 
through the REMOVEVOLUMES 
parameter. 

160 (AO) 4 * 	 Reserved-contains zero. 

164 (A4) 4 INHIB 	 Address of this pointer itself if the 
INHIBIT parameter is supplied. 

168 (A8) 4 UNHIB 	 Address of this pointer itself if the 
UNINHIBIT parameter is supplied. 

172 (AC) 4 NOWNR 	 Address of this pointer itself if the 
OWNER subparameter of the 
NULLIFY parameter is supplied. 

176 (BO) 4 NCDNM 	 Address of this pointer itself if the 
CODE subparameter of the NULLIFY 
parameter is supplied. 

Data Areas 463 



Bytes and 
Offset Bit Pattern Field Name 	 Description: Content, Meaning, Use 

180 (B4) 4 NRETN 	 Address of this pointer itself if the ..)
RETENTION subparameter of the 
NULLIFY parameter is supplied. 

184 (B8) 4 NAUTH 	 Address of this pointer itself if the 
AUTHORIZATION subparameter of 
the NULLIFY parameter is supplied. 

188 (BC) 4 NMDNM 	 Address of this pointer itself if the 
MODULE subparameter of the 
AUTHORIZATION parameter is 
supplied. 

192 (CO) 4 NSTRG 	 Address of this pointer itself if the 
STRING subparameter of the 
AUTHORIZATION parameter is 
supplied. 

196 (C4) 4 SHARI 	 Address of information supplied 
through the crossregion sub parameter 
of the SHAREOPTIONS parameter. 

200 (C8) 4 SHAR2 	 Address of information supplied 
through the crosssystem subparameter 
of the SHAREOPTIONS parameter. 

204 (CC) 4 GDGEM 	 Address of this pointer itself if the 
EMPTY parameter is supplied. 

208 (DO) 4 GOGNE 	 Address of this pointer itself if the 
NOEMPTY parameter is supplied. 

212 (04) 4 GOGSC 	 Address of this pointer itself if the 
SCRATCH parameter is supplied. 

216 (08) 4 GDGNS Address of this pointer itself if the ~ 
;; NOSCRATCH parameter is supplied. 

220(OC) 4 * 	 Reserved-contains zeros. 

224 (EO) 4 EEXT 	 Address of information supplied 
through the mname subparameter of 
the EXCEPTIONEXIT parameter. 

228 (E4) 4 KEY 	 Address of this pointer itself if the 
KEYS parameter has been supplied. 

232 (E8) 4 KEYLN 	 Address of information supplied 
through the length sub parameter of 
the KEYS parameter. 

236 (EC) 4 KEYPS 	 Address of information supplied 
through the offset sub parameter of 
the KEYS parameter. 

240 (FO) 4 RECSZ 	 Address of this pointer itself if the 
RECORDSIZE parameter has been 
supplied. 

244 (F4) 4 AREC 	 Address of information supplied 
through the average sub parameter of 
the RECOROSIZE parameter. 

248 (F8) 4 MREC 	 Address of information supplied 
through the maximum subparameter 
of the RECORD SIZE parameter. 

252 (FC) 4 UNQK 	 Address of this pointer itself if the 
UNIQUEKEY parameter has been 
supplied. ;J 

464 OS/VS2 Access Method Services Logic 



Bytes and 

l-

Offset 

256 (100) 

260 (104) 

264 (108) 

268 (lOC) 

272 (110) 

276 (114) 

280(118) 

284(11C) 

288(120) 

292(124) 

296(128) 

Bit Pattem 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

Field Name 

NUNQK 

UPG 

NUPG 

UPD 

NUPD 

NEEXT 

STAGE 

BIND 

CYLF 

NSTGW 

STGW 

Description: Content, Meaning, Use 

Address of this pointer itself if the 
NONUNIQUEKEY parameter has 
been supplied. 

Address of this pointer itself if the 
UPGRADE parameter has been 
supplied. 

Address of this pointer itself if the 
NOUPGRADE parameter has been 
supplied. 

Address of this pointer itself if the 
UPDATE parameter has been 
supplied. 

Address of this pointer itself if the 
NOUPDATE parameter has been 
supplied. 

Address of this pointer itself if the 
EXCEPTIONEXIT subparameter of 
the NULLIFY parameter has been 
supplied. 

Address of this pointer itself if the 
STAGE parameter is supplied. 

Address of this pointer itself if the 
BIND parameter is supplied. 

Address of this pointer itself if the 
CYLINDERFAULT parameter is 
supplied. 

Address of this pointer itself if the 
NODESTAGEWAlT parameter is 
supplied. 

Address of this pointer itself if the 
DESTAGEW AIT parameter is 
supplied. subparameter of the 
NULLIFY parameter has been 
supplied. 

Data Areas 465 



BLDINDEX FDT 


466 OS/VS2 Access Method Services Logic 

Offset 

0(0) 

8 (8) 

16 (10) 

24 (18) 

32 (20) 

40 (28) 

Offset 

0(0) 

8 (8) 

12 (C) 

16 (10) 

20 (14) 

24 (18) 

28 (1C) 

32 (20) 

36 (24) 

40 (28) 

44 (2C) 

B L D I 

tINFILE 

tOUTFILE 

tCATALOG 

tdnamel 

t EXTERNALSORT 

Bytes and 
Bit Pattem F1eld Name 

8 FDTVERB 

4 IFILE 

4 IDS 

4 OFILE 

4 ODS 

4 CAT 

4 WFILE 

4 WFLEI 

4 WFLE2 

4 ESORT 

4 ISORT 

Content 

N D 

0 

0 

E X 

tWORKFILES 

tdname2 

t INTERNALSORT 

Desc:riptiOll: Content, Meaning, Use 

Verb-BLDINDEX 

Address of informationsupplied 
through the INFILE parameter. 

Address of the information supplied 
through the INDATASET parameter. 

Address of information supplied 
through the OUTFILE parameter. 

Address of the information supplied 
through the OUTDATASET 
parameter. 

Address of information supplied 
through the catname/password 
subparameter of the CATALOG 
parameter. 

Address of this pointer itself if the 
WORKFILES parameter has been 
supplied. 

Address of information supplied 
through the dnamel subparameter of 
the WORKFILES parameter. 

Address of information supplied 
through the dname2 subparameter of 
the WORKFILES parameter. 

Address of this pointer itself if the 
EXTERNALSORT parameter has 
been supplied. 

Address of this pointer itself if the 
INTERNALSORT parameter has 
been supplied. 



CHKLISTFDT 
Offset Content 

0(0) C H K L I S T 

8 (8) INFILE OUTFILE 

16 (10) 

Offset 

CHECKID 

Bytesaud 
Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 8 FDTVERB Verb aligned left and padded with 
blanks-'CHKLlSTb'. 

8(8) 4 IFILE Address of information supplied through 
the INFILE parameter. 

12(C) 4 OFILE Address of information supplied through 
the OUTFILE parameter. 

16(10) 4 CHKID Address of information supplied through 
the CHECKID parameter. 

Data Areas 467 



CNVTCAT FDT 


468 OS!VS2 Access Method Services Logic 

Offset 

0(0) 

8 (8) 

16 (10) 

24 (18) 

32 (20) 

40 (28) 

48 (30) 

Offset 

0(0) 

8 (8) 

12 (C) 

16 (10) 

20 (14) 

24 (18) 

28 (I C) 

32 (20) 

36 (24) 

40 (28) 

44 (2C) 

48 (30) 

C N V T 

tINFILE 

tCATALOG 

tdname 

tcatname 

t catname/password 

tNOLIST 

Bytes and 
Bit Pattern Field Name 

8 FDTVERB 

4 IFILE 

4 IDS 

4 CAT 

4 CATNM 

4 CATON 

4 CVEQU 

4 CVECNPTR 

4 CVEVSPTR 

4 MRCAT 

4 LIST 

4 NLIST 

Content 

C A T b 


tINOATASET 


tcatname/ password 


tCVOLEQUATES 


t volser 


tLIST 


Description: Content. Meaning, Use 

Verb aligned left and padded with 
blanks-CNVTCATb. 

Address of information supplied 
through the INFILE parameter. 

Address of information supplied 
through the INOATASET parameter. 

Address of this pointer itself if the 
CATALOG parameter is supplied. 

Address of information supplied 

through the catname/password 

subparameter of the CATALOG 

parameter. 


Address of information supplied 
through the dname subparameter of 
the CATALOG parameter. 

Address of a count of subparameters 
supplied through the 
CVOLEQUATES parameter. 

Address of information supplied 
through the catname subparameter of 
the CVOLEQUATES parameter. 

Address of information supplied 
through the volser subparameter of the 
CVOLEQUATES subparameter. 

Address of information supplied 
through the MASTERCAT ALOG 
parameter. 

Address of this pointer itself if the 
LIST parameter is supplied or 
defaulted. 

Address of this pointer itself if the 
NOLIST parameter is supplied. 



----

DEFINEFDT 


DEFINE ALIAS 

DEFINE ALTERNATEINDEX 

There are eight illustrations relating the pointers of the FDT to the FSR 
parameters in the following order: alias, cluster, generation data group, master 
catalog, non-VSAM data sets, page spaces, spaces for VSAM data sets, and 
user catalog. 

Offset Content 

0(0) D E F I N E t> t> 

8 (8) tCATALOG tcatname/ password 

16 (10) tdname 0 

48 (30) 0 I tALIAS 

80 (50) 0 tNAME 

768 (300) 0 tRELATE 

1352 (548) 0 

Offset Content 

0(0) D E F I N E t> t> 

8 (8) tCATALOG tcatnamefpasswprf"- __________ 

16 (10) tdname 0 
~-

32 (20) 0 tDATA 

40 (28) tlNDEX 
--

0 

56 (38) 0 tALTERNATEINDEX -

88 (58) 0 tNAME 

96 (60) tNAME 0 -

128 (80) tMODEL t entryname/ password 

136 (88) t catname/password tdname 

144 (90) lMQDEL tentryname/password -

152 (98) t catname/ password tdname 

160 (AO) 0 I 0 

168 (A8) tMASTERPW tMASTERPW 

176 (80) 0 0 

184 (88) ~ROLPW I t CONTROLPW 

192 (CO) 0 -

200 (C8) tUPDATEPW I tUPDAT:PW 

208 (DO) 0 0 

216 (08) tREADPW tREADPW 

224 (EO) 0 0 

232 (E8) tCODE tCODE 

240 (FO) 0 0 

248 (F8) tATTEMPTS tATTEMPTS 

256 (100) 0 0 

272 (110) t AUTHORIZATION t entrypo;nt 

Data Areas 469 



---

--

-----

--

-----

--

Offset 

280 (118) 

288 (120) 

296 (128) 

304 (130) 

312 (138) 

320 (140) 

328 (148) 

336 (150) 

344 (158) 

352 (l6O) 

360 (168) 

368 (170) 

376 (178) 

384 (180) 

392 (188) 

400 (190) 

408 (198) 

416 (1AO) 

424 (1A8) 

432 (1BO) 

440 (1B8) 

448 (1CO) 

456 (lC8) 

472 (lD8) 

480 (1 EO) 

488 (lE8) 

496 (1FO) 

512 (200) 

520 (208) 

528 (210) 

536 (218) 

544 (220) 

552 (228) 

560 (230) 

576 (240) 

584 (248) 

600 (258) 

608 (260) 

616 (268) 

624 (270) 

632 (278) 

640 (280) 

D E F I 

htring 

t entry point 

0 

0 

0 

tOWNER 


0 


0 


t crossregion 


t SHAREOPTIONS 


, crosssystem 

0 


tNOERASE 


0 


tKEYS 


t position 


0 


'NOREPLICATE 


0 


tNOIMBED 


0 


'FILE 


0 


'VOLUMES 


0 


0 


tlowkey 

0 


'ORDERED 


tORDERED 


0 


t SUBALLOCATION 


'UNIQUE 


0f-- 

0 

0 

0 

'CYLINDERS 

'primary 

'TRACKS 


tRECORDS 


tsecondary 

Content 

N E t> t> 

t AUTHORIZATION 

t string 

0 


0 


0 


tOWNER 


0 


t SHAREOPTIONS 


t crosssystem 


t crossregion 


0 

tERASE 


0 


0 


t length 


0 


tREPLICATE 


0 


'IMBED 


0 


0 


'FILE 


0 
 -

'VOLUMES 


0 


'KEYRANGES 


'highkey 

0 


'UNORDERED 


tUNORDERED 


, SUBALLOCATION 


0 

'UNIQUE 


0 


0 


0 


'TRACKS 


tRECORDS 


tsecondary 

'CYLINDERS 

'primary 

0 

470 OS!VS2 Access Method Services Logic 



L 

Offset Content 

0 E F I N E b b 

664 (298) tRECORDSIZE taverage 

672 (2AO) tmaximum 0 

680 (2A8) 0 0 

688 (2BO) 0 t WRITECHECK 

696 (2B8) t NOWRITECHECK t WRITECHECK 

704 (2CO) t NOWRITECHECK 0 

712 (2C8) 0 tSPEED 

720 (2DO) tRECOVERY 0 

728 (2D8) 0 0 

736 (2EO) tFREESPACE t cipercent 

744 (2E8) tcapercent 0 

752 (2FO) 0 t BUFFERSP ACE 

760 (2F8) 0 t CONTROLINTERVALSIZE 

768 (300) t CONTROLINTERVALSIZE 0 

1024 (400) 0 0 

1032 (408) 0 0 

1048 (418) 0 0 

1056 (420) t EXCEPTIONEXIT t EXCEPTIONEXIT 

1064 (428) tNUMBERED tREUSE 

1072 (430) tREUSE tREUSE 

1080 (438) tNOREUSE tNOREUSE 

1088 (440) tNOREUSE tSPANNED 

1096 (448) tSPANNED tNONSPANNED 

1104 (450) t NONSPANNED 0 

1208 (4B8) 0 0 

1216 (4CO) 0 0 

1248 (4EO) 0 0 

1256 (4E8) 0 0 

1288 (508) 0 0• 
1296 (510) 0 0 

1320 (528) 0 tprimary 

1328 (530) tsecondary tprimary 

1336 (538) tsecondary t~rimDlJ' 

1344 (540) tsecondary tprimary 

1352 (548) tsecondary 

1360 (550) tMODEL t entryname/ password 

1368 (558) t catname/ password tdname 

1376 (560) tMASTERPW tCONTROLPW 

1384 (568) tUPDATEPW tREADPW 

1392 (570) tCODE tATTEMPTS 

1400 (578) t AUTHORIZATION t entrypoint 

1408 (580) t string tTO 

Data Areas 471 



Offset 

1416 (588) 

1424 (590) 

1432 (598) 

1440 (5AO) 

1448 (5A8) 

1456 (5BO) 

1464 (5U8) 
.' 

1472 (5CO) 

- 1480 (5C8) 

1488 (500) 

1496 (508) 

1504 (5EO) 

1512 (5E8) 

1520 (5FO) 

1528 (5F8) 

1536(600) 

1544 (608) 

1552 (610) 

1560 (618) 

1568 (620) 

1576 (628) 

1584 (630) 

1592 (638) 

1600 (640) 

1608 (648) 

1616 (650) 

1624 (658) 

1728 (6CO) 

1736 (6C8) 

1744 (6DO) 

1752 (6D8) 

1760 (6EO) 

1768(6E8) 

1784 (6F8) 

1792 (700) 

1808 (710) 

1816 (718) 

D E F I 

tFOR 

t SHAREOPTIONS 

t crosssystem 

tNOERASE 

t lenf{th 

tREPLICATE 

tIMBED 

tFiLE 

tKEYRANGES 

t hif{hkey 

tUNORDERED 

tUNIQUE 

tprimary 

tCYLINDERS 

tsecondary 

tprimary 

t RECORDSIZE 

tmaximum 

t NOWRITECHECK 

tRECOVERY 

tcipercent 

t BUFFERSPACE 

tRELATE 

tREUSE 

tUNIQUEKEY 

tUNIQUEKEY 

tUPGRADE 

0 

tSTAGE 

0 

tBIND 

0 

t CYLINDERFAUL T 

0 

t NODEST AGEWAIT 

0 

t DEST AGEW AIT 

Content 

N E 1; 1; 

tOWNER 

tcrosspartition 

tERASE 


tKEYS 


toffset 

tNOREPLICATE 


tNOIMBED 


tVOLUMES 


tlowkey 

tORDERED 


t SUBALLOCATION 


tTRACKS 


tsecondary 


tprimary 


tRECORDS 

tsecondary 


taverage 


t WRITECHECK 


tSPEED 


tFREESPACE 


tcapercent 

t CONTROLINTERVALSIZE 

t EXCEPTIONEXIT 

tNOREUSE 

t NONUNIQUEKEY 

t NONUNIQUEKEY 

tNOUPGRADE 

tSTAGE 

tSTAGE 

tBIND • 
tBIND 


t CYLINDERFAULT 


t CYLINDERFAULT 


t NODEST AGEWAIT 


t NODESTAGEWAIT 


t DEST AGEWAIT 


tDESTAGEWAIT 


472 OS!VS2 Access Method Services Logic 



--

--

--

--

DEFINE CLUSTER 


Offset 

0(0) 

8 (8) 

16 (10) 

24 (18) 

32 (20) 

40 (28) 

72 (48) 

88 (58) 

96 (60) 

104 (68) 

112 (70) 

120 (78) 

128 (80) 

136 (88) 

144 (90) 

152 (98) 

160 (AO) 

168 (A8) 

176 (BO) 

184 (B8) 

192 (CO) 

200 (C8) 

208 (DO) 

216 (D8) 

224 (EO) 

232 (E8) 

240 (FO) 

248 (F8) 

256 (100) 

272 (110) 

280 (118) 
! 

288 (120) 

296 (128) 

304 (130) 

312(138) 

320 (140) 

328 (148) 

336 (150) 

344 (158) 

Content 

D E F I N E b b 

~TALOG I tcamame/password 

tdname I 0 


0 ! tCLUSTER 


0 ImATA 


tINDEX 0 


tNAME 0 


0 tNAME 


tNAME tlNDEXED 


t NONINDEXED 0 


~DEL t entryname/password 

tcamame/password tdname 

tMODEL t entryname/ pass word 

t camame/password i tdname 

tMODEL t entryname/password 

t camame/password tdname 

0 tMASTERPW 


tMASTERPW tMASTERPW 


0 tCONTROLPW 


tCONTROLPW tCONTROLPW 


0 tUPDATEPW 


tUPDATEPW tUPDATEPW 
 -

0 tREADPW 


tREADPW tREADPW 


0 tCODE 


tCODE I tCODE 


0 tATTEMPTS 


tATTEMPTS tATTEMPTS 


0 t AUTHORIZATION 


t AUTHORIZATION t entry point 


t string t AUTHORIZATION 


t entrypoint I t string 


0 ItTO 


0 tFOR 


0 tOWNER 
-

tOWNER tOWNER 


t SHAREOPTIONS t crossregion 


t crosssystem t SHAREOP.IONS 


t crossregion t crosssystem 


DataAreas 473 



Offset 

352 (160) 

360 (168) 

368 (170) 

376 (178) 

384 (180) 

392 (188) 

400 (l9O) 

408 (198) 

416 (lAO) 

424 (lA8) 

432 (lBO) 

440 (lB8) 

448 (lCO) 

456 (lC8) 

472 (lD8) 

480 (lEO) 

488 (lE8) 

496 (lFO) 

512 (200) 

520 (208) 

528 (210) 

536 (218) 

544 (220) 

552 (228) 

560 (230) 

576 (240) 

584 (248) 

600 (258) 

608 (260) 

616 (268) 

624 (270) 

632 (278) 

640 (280) 

648 (288) 

656 (290) 

664 (298) 

672 (2AO) 

680 (2A8) 

688 (2BO) 

696 (2B8) 

D E F I 

t SHAREOPTIONS 

t crosssystem 

tNOERASE 

tNOERASE 

t length 

tKEYS 

t position 

tNOREPLICATE 

t NOREPLICATE 

tNOIMBED 

tNOIMBED 

tFILE 

tFILE 

0 

tVOLUMES 

tKEYRANGES 

thighkey 

tlowkey 

tORDERED 

tORDERED 

tORDERED 

t SUBALLOCATION 

t SUBALLOCATION 

tUNIQUE 

0 

tCYLINDERS 

0 

0 

tCYLINDERS 

tprimary 

tTRACKS 

tRECORDS 

tsecondary 

t RECORDSIZE 

taverage 

t RECORDSIZE 

tmaximum 

t WRITECHECK 

t NOWRITECHECK 

t NOWRITECHECK 

Content 

N E t> t> 

tcrossregion 

tERASE 


I tERASE 


tKEYS 


tposition 


t length 


tREPLICATE 


tREPLICATE 


tIMBED 


tIMBED 

!
I 0 
I 

0 


tFILE 


tVOLUMES 


tVOLUMES 


i tlowkey 

tKEYRANGES 

thighkey 

tUNORDERED 


tUNORDERED 

~-

tUNORDERED 


t SUBALLOCATION 


tUNIQUE 


tUNIQUE 


tTRACKS 


0 


tRECORDS 


tTRACKS 

~-

tRECORDS 

tsecondary 

tCYLINDERS 

tprimary 

0 


0 


tmaximum 

taverage 

0 

0 


t WRITECHECK 


t WRITECHECK 


474 OS/Y.S 2 Access Method Services Logic 



Offset Content 

D E F I N E b b 

704 (2CO) tNOWRITECHECK tSPEED 

712 (2C8) tRECOVERY tSPEED 

720 (2DO) tRECOVERY tFREESPACE 

728 (2D8) tcipercent tcapercent 

736 (2EO) tFREESPACE tcipercent 

744 (2E8) tcapercent 0 

752 (2FO) ~FFERSPACE t BUFFERSPACE 

760 (2F8) t CONTROLINTERVALSIZE t CONTROLINTERVALSIZE 

768 (300) t CONTROLINTERV ALSIZE 0 

1024 (400) 0 • t entry point 

1032 (408) t string 0 

1048 (418) 0 t EXCEPTIONEXIT 

1056 (420) t EXCEPTIONEXIT t EXCEPTIONEXIT 

1064 (428) tNUMBERED tREUSE 

1072 (430) tREUSE tREUSE 

1080 (438) tNOREUSE tNOREUSE 

1088 (440) tNOREUSE tSPANNED 

1096 (448) tSPANNED t NONSPANNED 

1104 (450) tNONSPANNED 0 

1208 (4B8) 0 tl'rimarl 

1216 (4CO) tsecondary 0 

1248 (4EO) 0 tprimary 

1256 (4E8) tsecondary 0 

1288 (508) 0 tprimary 

1296 (510) tseconda~ 0 

1320 (528) 0 tfJ!imar~ 

1328 (530) tsecondary tprimary 

1336 (538) tsecondary tprimaT'f. 

1344 (540) tsecondary tl!.rimaT'f. 

1352 (548) tsecondary I 

1728 (6CO) tSTAGE 0 

1736 (6C8) tSTAGE tSTAGE 

1744 (6DO) tBIND 0 

1752 (6D8) tBIND tBIND 

1760 (6EO) t CYLINDERFAULT 0 

1768 (6E8) t CYLINDERFAUL T tCYLINDERFAULT 

1784 (6F8) t NODESTAGEWAIT 0 

1784 (6F8) t NODESTAGEWAIT 0 

1792 (700) t NODESTAGEWAIT t NODESTAGEWAIT 

1808 (710) t DESTAGEWAIT 0 

1816 (718) t DESTAGEWAIT t DESTAGEWAIT 

DataAreas 475 

L 



DEFINE GENERATIONDATAGROUP 


Offset Content 

0(0) D E F I N E I; I; 

8 (8) tCATALOG tcatname/ password 

16 (10) tdname 0 

56 (38) t GENERATIONDATAGROUP 0 

88 (58) tNAME 0 

776 (308) tEMPTY tNOEMPTY 

784 (310) tLIMIT tSCRATCH 

792(318) tNOSCRATCH I 0 

1352 (548) 0 I 0 

1824 (720) 0 tTO 

1832 (728) 0 I tFOR 

1840 (730) 0 tOWNER 

DEFINE MASTERCATALOG 

Offset Content 

0(0) D E F I N E I; I; 

8 (8) tCATALOG tcatname/password 

16 (10) tdname t MASTERCAT ALOG 

32 (20) 0 tDATA 

40 (28) tINDEX 0 

64 (40) 0 tNAME 

88 (58) 0 tNAME 

96 (60) tNAME 0 

160 (AO) tMASTERPW 0 

176 (BO) tCONTROLPW 0 

192 (CO) tUPDATEPW 0 
~-

208 (DO) tREADPW 0 

224 (EO) tCODE 0 

240 (FO) tATTEMPTS 0 

256 (100) t AUTHORIZATION 0 

264 (108) t entrypo;nt t string 

296 (128) tTO 0 

304 (130) tFOR 0 

312 (138) tOWNER 0 

432 (1BO) 0 tFILE 
I456 (1C8) tVOLUMES 0 

560 (230) tTRACKS 0 

568 (238) 0 tCYLINDERS 

584 (248) tRECORDS 0 

600 (258) 0 tTRACKS 

608 (260) tCYLINDERS tRECORDS 

476 OS!VS2 Access Method Services Logic 



Offset Content 

D E F I N E t; t; 

616 (268) tprimary tsecondary 

624 (270) tTRACKS tCYLINDERS 

632 (278) tRECORDS tprimary 

640 (280) tsecondary 0 

672 (2AO) 0 t WRITECHECK 

680 (2A8) 0 t NOWRITECHECK 

688 (2BO) 0 t WRITECHECK 

696 (2B8) t NOWRITECHECK t WRITECHECK 

704 (2CO) t NOWRITECHECK 0 

744 (2E8) 
-

0 t BUFFERSP ACE 

752 (2FO) 
-

0 t BUFFERSP ACE 

1104 (450) 
- 0 tRECOVERABLE 

1112 (458) 0 tRECOVERABLE 

1120 (460) tNOTRECOVERABLE 0 

1128 (468) tNOTRECOVERABLE 0 

1200 (4BO) 0 tprimary 

1208 (4B8) tsecondary 
--

0 

1240 (408) 0 - tprimary 

1248 (4EO) tsecondary 0 

1280 (500) 
I---

0 tprimary 

1288 (508) ~condary 0 

1320 (528) 
f

0 tprimary 

1328 (530) tsecondary tprimary 

1336 (538) tsecondary tprimary 

1344 (540) tsecondary tprimary 

1352 (548) tsecondary 

1776 (6FO) tNODESTAGEWAIT 0 

1800 (708) t DESTAGEWAIT 0 

DEFINE NONVSAM 

Offset Content 

0(0) D E F I N E t; t; 

8 (8) tCATALOG tcatname/password 

16 (10) tdname -- 0 

48 (30) tNONVSAM 0 

80 (50) tNAME 0 

464 (100) 0 tVOLUMES 

504 (lF8) t DEVICETYPES t FILESEQUENCENUMBER 
-~-"'--

1352 (548) - 0 

1824 (720) ~- 0 

1832 (728) tFOR 0 

1840 (730) tOWNER 0 

Data Areas 477 



____________ _ 

--

-----

- --------------

----------

DEFINE PAGESPACE 

Offset 

0(0) 

8 (8) 

16 (J 0) 

32 (20) 

72 (48) 

888 (378) 

896 (380) 

904 (88) 

912 (390) 

920 (98) 

9280AO) 

936 (3A8) 

944 (3BO) 

960(3B8) 

9680C8) 

9760DO) 

9840D8) 

9920EO) 

10OOOE8) 

1232 (4DO) 

1240 (4D8) 

1264 (4FO) 

1272 (4F8) 

1312 (520) 

1320 (528) 

1352 (548) 

DEFINE PATH 

Offset 

0(0) 

8 (8) 

16 (J 0) 

64 (40) 

1640 (668) 

1648(570) 

1656 (578) 

1664 (680) 

1672 (688) 

1680 (690) 

1688 (698) 

1696 (6AO) 

1704 (6A8) 

1712 (6BO) 

1720 (6B8) 

478 OS(VS2 Access Method Services Logic 

Content 

D E F N E 

tCATALOG ___--+-t_c_a_m_ame/password 


tdname o
1----

rU~ACi~~PA<::§_ ,---__ --=0'--'--_______ 

tNAME 

tMODEL t entryname/password_ 


f--- __ 0=---___ 

~camame/pa=s~sw~o~~~--- tdname 

tMASTERPW tCONTROLPW~______~ 

tUPDATEPW tREADPW[------- '-------------------1 

tCODE tATTi:MPTS 

t AUTHORIZATION t entrypoint 

_tstrinJL______________________ lTQ ________ 
t FOR _______ ~NE~___ 

o 	 tERASE 

tNOERASE ___ --'-~ILE__________ ______ _ 

tVOLUMES tSUBALLOCATION 

tY~~QUE tTRACK=S~__________ _ 

__tCYLINDERS __ tRECORDS 

t SWAP (~2::.:..0~-=3=.80=-=--=-7),--_____ t NOSW~P (VS2.03.=80-=-7'-C)__________ 

____~____________Jprimar)'___ 

_t secon!i~!J' ____________________O _ _________ 

_______(L______________JJJl"ir/1Ory________________ _ 

t secon!!!l!:)L_________________ _________ 0 ___________ 

o 	 t primary_________________ 

t!~condar)' 	 ____________+-__--'0'--_______---' 

o 

Content 

D E F I N E b b 

tCATALOG tcamame/password 

tdname 0 

tPATH 0 

0 tNAME 

tMODEL t entryname/ password 

t camame/ password tdname 

tMASTERPW tCONTROLPW 

tUPDATEPW tREADPW 

tCODE tATTEMPTS 

t AUTHORIZATION t entrypoint 

t string tTO 

tFOR tOWNER 

tFILE tUPDATE 

tNOUPDATE tPATHENTRY 



--

DEFINE SPACE 


DEFINE USERCATALOG 


Offset 

0(0) 

8 (8) 

16 (IO) 

40 (28) 

440 (IB8) 

464 (IBE) 

568 (238) 

576 (240) 

592 (250) 

640 (280) 

648 (288) 

1008 (3FO) 

1216 (4CO) 

1224 (4C8) 

1272 (4F8) 

1280 (500) 

1296 (510) 

1304 (518) 

1352 (548) 

Offset 

0(0) 

8 (8) 

16 (IO) 

24 (I8) 

32 (20) 

40 (28) 

104 (68) 

600 (258) 

608 (260) 

616(268) 

624 (270) 

632 (278) 

640 (280) 

688 (2BO) 

696 (2B8) 

704 (2CO) 

752 (2FO) 

792(318) 

800 (320) 

Content 

D E F I N E t; t; 


'CATALOG katname/ password 


'dname 0 


0 'SPACE 

0 'FILE 


'VOLUMES 0 


nRACKS 0 


0 'CYLINDERS 

tRECORDS 0 


0 'CANDIDATE 


0 , RECORDSIZE 


'average 'maximum 

0 'primary 

, secondary 0 

0 'primary 

'secondary 0 

0 'rprimary 

.' secondary 0 

0 

Content 

D E F I N E t; t; 


tCATALOG fcatname!password 


tdname 0 


'USERCATALOG 0 


0 tDATA 

'INDEX 0 


0 'MODEL 


0 'TRACKS
f------

'CYLINDERS 'RECORDS • 
tprimary 'secondary 

'TRACKS 'CYLINDERS 


tRECORDS tprimary 


tsecondary 0 


0 t WRITECHECK 


t NOWRITECHECK t WRITECHECK 


t NOWRITECHECK 0 


0 t BUFFERSP ACE 


0 tNAME 


tMASTERPW 'CONTROLPW 


Data Areas 479 



---

--

--

--

Offset 

808 (328) 

816 (330) 

824 (338) 

832 (340) 

840 (348) 

848 (350) 

856 (358) 

864 (360) 

872 (368) 

880 (370) 

1016 (3F8) 

1024 (400) 

1112 (458) 

1120 (460) 

1128 (468) 

1256 (4E8) 

1264 (4FO) 

1304 (518) 

1312 (520) 

1320 (528) 

1328 (530) 

1336 (538) 

1344 (540) 

1352 (548) 

1716 (6FO) 

1792 (700) 

1800 (708) 

1816 (718) 

Content 

D E F I N E b b 

tUPDATEPW tREADPW 


tCODE tATTEMPTS 


t AUTHORIZATION tentrypoint 


t string no 
 -

tFOR tOWNER 


tFILE tVOLUMES 


tTRACKS tCYLINDERS 


tRECORDS 


0 ItWRITE~HECK
f-

t NOWRITECHECK t BUFFERSPACE 
-~ 

t entry point t catname/password 

tdname 0 

J..RECOVERABLE tRECOVERABLE 

0 I t NOTRE~OVERABLE 

tNOTRECOVERABLE 

tsecondary 

0 t Tlmarl. 

tsecondary 0 
-- 

0 

It~~ry 0 

0 I t!rimarl. 

tsecondary Itri~ -

tsecondary tprimary -
tsecondary tprimary 


tsecondary 


0 t NODESTAGEWAIT 


t NODESTAGEWAIT tNODESTAGEWAIT 


0 t DESTAGEWAIT 

-

tDESTAGEWAIT t DESTAGEWAIT 

480 OS!VS2 Access Method Services Logic 



L 
DEFINE FDT Description 

Offset 

0(0) 

8 (8) 

12 (C) 

16 (10) 

20 (14) 

24 (18) 

28 (lC) 

32 (20) 

36 (24) 

40 (28) 

44 (2C) 

48 (30) 

52 (34) 

56 (38) 

60 (3C) 

64 (40) 

Bytes and 
Bit Pattern 

8 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

FIeld Name 


FDTVERB 


CAT 

CATLG 

CATDN 

MCAT 

UCAT 

CLST 

PGSP 

DATAA 

INDEX 

SPACE 

ALIEN 

ALIAS 

GENDG 

AIX 

PATH 

Description: Content, Meaning, Use 

Verb aligned left and padded with 
blanks--DEFINEbb. 

Address of this pointer itself if the 
CATALOG parameter has been 
supplied. 

Address of information supplied 
through the camame/password 
subparameter of the CATALOG 
parameter. 

Address of information supplied 
through the dname subparameter of 
the CATALOG parameter. 

Address of this pointer itself if the 
MASTERCATALOG parameter has 
been supplied-that is, if you are 
defining a master catalog. 

Address of this pointer itself if the 
USERCATALOG parameter is 
supplied-that is, if you are defining a 
USERCATALOG. 

Address of this pointer itself if the 
CLUSTER parameter is 
supplied-that is if you are defining a 
CLUSTER. 

Address of this pointer itself if the 
PAGESPACE parameter is 
supplied-that is, if you are defining a 
PAGESPACE. 

Address of this pointer itself if the 
DATA parameter is supplied. 

Address of this pointer itself if the. 
INDEX parameter is supplied. 

Address of this pointer itself if the 
SPACE parameter is supplied-that is, 
if you are defining a VSAM data 
space. 

Address of this pointer itself if the 
NONVSAM parameter is 
supplied-that is, if you are defining a 
non-VSAM data set. 

Address of this pointer itself if the 
ALIAS parameter is supplied-that is, 
if you are defining an alias. 

Address of this pointer itself if the 
GENERATIONDATA- GROUP 
parameter is supplied-that is, if you 
are defining a generation data group. 

Address of this pointer itself is the 
ALTERNATEINDEX parameter is 
supplied-that is, if you are defining 
an alternate index. 

Address of this pointer itself if the 
PATH parameter is supplied-that is, 
if you are defining a path. 

Data Areas 481 



Def"me FDT Description 

Offset 

68 (44) 

72 (48) 

76 (4C) 

80 (50) 

84 (54) 

88 (58) 

92 (5C) 

96 (60) 

100 (64) 

104 (68) 

108 (6C) 

112 (70) 

116 (74) 

120 (78) 

124 (7C) 

128 (80) 

Bytes and 

Bit Pattern 


4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

Held Name 


METRY 


CETRY 

PETRY 

AETRY 

XETRY 

GETRY 

DETRY. 

IETRY 

CINDX 

CNIDX 

UMODL 

CMODL 

CENAM 

CMDCT 

CMDNM 

DMODL 

Description: Content, Meaning, Use 

Address of information supplied 
through the NAME parameter if 
NAME is supplied under 
MASTERCATALOG. 

Address of information supplied 
through the NAME parameter if 
NAME is supplied under CLUSTER. 

Address of infonIUltion supplied 
through the NAME parameter if 
NAME is supplied under 
PAGESPACE. 

Address of information supplied 
through the NAME parameter if 
NAME is supplied under NONVSAM. 

Address of information supplied 
through the NAME parameter if 
NAME is supplied under ALIAS. 

Address of information supplied 
through the NAME parameter if 
NAME is supplied under 
GENERATIONDATA- GROUP. 

Address of information supplied 
through the NAME parameter if 
NAME is supplied under DATA. 

Address of information supplied 
through the NAME parameter if 
NAME is supplied under INDEX. ~ 
Address of this pointer itself if 
INDEXED is supplied under· 
CLUSTER. 

Address of this pointer itself if 
NONINDEXED is supplied under 
CLUST~R. 

Address of this pointer itself if 
MODEL is supplied under 
USERCATALOG. 

Address of this pointer itself if the 
MODEL parameter is supplied under 
CLUSTER. 

Address of information supplied 
through the entryname/password 
subparameter of MODEL if MODEL 
is supplied under CLUSTER. 

Address of information supplied 
through the catname/password 
subparameter of MODEL if MODEL 
is supplied under CLUSTER. 

Address of information supplied 
through the dname subparameter of 
MODEL if MODEL is supplied under 
CLUSTER. 

Address of this pointer itself if the 
MODEL parameter is supplied under 
DATA. 

482 OS(VS2 Access Method Services Logic 



Define FDT Description 

Bytes and 

L 	
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

132 (84) 4 DENAM 	 Address of information supplied 
through the entryname/password 
subparameter of MODEL if MODEL 
is supplied under D AT A. 

136 (88) 4 DMDCT 	 Address of information supplied 
through the catname/password 
subparameter of MODEL if MODEL 
is supplied under DATA. 

140 (8C) 4 DMDNM 	 Address of information supplied 
through the dname subparameter of 
MODEL if MODEL is supplied under 
DATA. 

144 (90) 4 IMODL 	 Address of this pointer itself if 
MODEL is supplied under INDEX. 

148 (94) 4 IENAM 	 Address of information supplied 
through the entryname/password 
subparameter of MODEL if MODEL 
is supplied under INDEX. 

152 (98) 4 IMDCT 	 Address of information supplied 
through the catname/password 
subparameter of MODEL if MODEL 
is supplied under INDEX. 

156 (9C) 4 IMDNM 	 Address of information supplied 
through the dname subparameter of 
MODEL if MODEL is supplied under 
INDEX. 

L 	 160 (AO) 4 MMSTR Address of information supplied 
through the MASTERPW parameter if 
MASTERPW is supplied under 
MASTERCAT ALOG. 

164 (A4) 4 CMSTR 	 Address of information supplied 
through the MASTERPW parameter if 
MASTERPW is supplied under 
CLUSTER. 

168 (A8) 4 DMSTR 	 Address of information supplied 
through the MASTERPW parameter if 
MASTERPW is supplied under 
DATA. 

172 (AC) 4 IMSTR 	 Address of information supplied 
through the MASTERPW parameter if 
MASTERPW is supplied under 
INDEX. 

176 (BO) 4 MCINT 	 Address of information supplied 
through the CONTROLPW parameter 
if CONTROLPW is supplied under 
MASTERCAT ALOG. 

180 (B4) 4 CCINT 	 Address of information supplied 
through the CONTROLPW parameter 
if CONTROLPW is supplied under 
CLUSTER. 

184 (B8) 4 DCINT 	 Address of information supplied 
through the CONTROLPW parameter 
if CONTROLPW is supplied under 
DATA. 

Data Areas 483 



Define FDT Description 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

j188 (BC) 4 ICINT 	 Address of information supplied 
through the CONTROLPW parameter 
if CONTROLPW is supplied under 
INDEX. 

192 (CO) 4 MUPDT 	 Address of information supplied 
through the UPDATEPW if 
UPDATEPW is supplied under 
MASTER CATALOG. 

196 (C4) 4 CUPDT 	 Address of information supplied 
through the UPDATEPW if 
UPDATEPW is supplied under 
CLUSTER. 

200 (C8) 4 DUPDT 	 Address of information supplied 
through the UPDATEPW if 
UPDATEPW is supplied under 
DATA. 

204 (CC) 4 IUPDT 	 Address of information supplied 
through the UPDATEPW if 
UPDATEPW is supplied under 
INDEX. 

208 (DO) 4 MREAD 	 Address of information supplied 
through the READPW parameter if 
READPW is supplied under 
MASTERCAT ALOG. 

212 (D4) 4 CREAD 	 Address of information supplied 
through the READPW parameter if 
READPW is supplied under 
CLUSTER. ..) 

216 (D8) 4 DREAD 	 Address of information supplied 
through the READPW parameter if 
READPW is supplied under DATA. 

220 (DC) 4 IREAD 	 Address of information supplied 
through the READPW parameter if 
READPW is supplied under INDEX. 

224 (EO) 4 MCODE 	 Address of information supplied 
through the CODE parameter if 
CODE is supplied under 
MASTERCATALOG. 

228 (E4) 4 CCODE 	 Address of information supplied 
through the CODE parameter if 
CODE is supplied under CLUSTER. 

232 (E8) 4 DCODE 	 Address of information supplied 
through the CODE parameter if 
CODE is supplied under DATA. 

236 (EC) 4 ICODE 	 Address of information supplied 
through the CODE parameter if 
CODE is supplied under INDEX. 

240 (FO) 4 MATTP 	 Address of information supplied 
through the ATTEMPTS parameter if 
ATTEMPTS is supplied under 
MASTERCAT ALOG. 

244 (F4) 4 CATTP 	 Address of information supplied 
through the ATTEMPTS parameter if 
ATTEMPTS is supplied under .j
CLUSTER. 

484 OS/VS2 Access Method Services Logic 



L 
Define FDT Description 

Bytes and 
Offset Bit Pattern Field Name 	 Description: Content, Meaning, Use 

248 (F8) 4 DATIP 	 Address of information supplied 
through the ATTEMPTS parameter if 
ATTEMPTS is supplied under DATA. 

252 (FC) 4 IATIP 	 Address of information supplied 
through the ATTEMPTS parameter if 
ATTEMPTS is supplied under 
INDEX. 

256 (100) 4 MAUTH 	 Address of this pointer itself if the 
AUTHORIZATION parameter is 
supplied under MASTERCAT ALOG. 

260 (104) 4 CAUTH 	 Address of this pointer itself if the 
AUTHORIZATION parameter is 
supplied under CLUSTER. 

264 (108) 4 MEPNM 	 Address of information supplied 
through the entrypoint subparameter 
of AUTHORIZATION if 
AUTHORIZATION is supplied under 
MASTERCATALOG. 

268 (10C) 4 MSTRG 	 Address of information supplied 
through the string subparameter of 
AUTHORIZATION if 
AUTHORIZATION is supplied under 
MASTER CATALOG. 

272 (110) 4 DAUTH 	 Address of this pointer itself if the 
AUTHORIZATION parameter is 
supplied under DATA. 

276 (114) 4 DEPNM 	 Address of information supplied 
through the entrypoint sub parameter 
of AUTHORIZATION if 
AUTHORIZATION is supplied under 
DATA. 

280 (118) 4 DSTRG 	 Address of information supplied 
through the string subparameter of 
AUTHORIZATION if 
AUTHORIZATION is supplied under 
DATA. 

284 (1IC) 4 IAUTH 	 Address of this pointer itself if the 
AUTHORIZATION parameter is 
supplied under INDEX. 

288 (120) 4 IEPNM 	 Address of information supplied 
through the entrypoint subparameter 
of AUTHORIZATION if the 
AUTHORIZATION parameter is 
supplied under INDEX. 

292 (124) 4 ISTRG 	 Address of information supplied 
through the string subparameter of 
AUTHORIZATION if the 
AUTHORIZATION parameter is 
supplied under INDEX. 

296 (128) 4 MTO 	 Address of information supplied 
through the TO parameter if TO is 
supplied under MASTERCAT ALOG. 

300 (12C) 4 CTO 	 Address of information supplied 
through the TO parameter if TO is 
supplied under CLUSTER. 

Data Areas 485 



Define FDT Description 

Offset 

304 (130) 

308 (134) 

312(138) 

316 (13C) 

320 (140) 

324 (144) 

328 (148) 

332 (14C) 

336 (150) 

340 (154) 

344 (158) 

348 (l5C) 

352 (160) 

356 (164) 

Bytes and 

Bit Pattern 


4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

Field Name 

MFOR 

CFOR 

MOWNR 

COWNR 

DOWNR 

IOWNR 

CSHAR 

CSHRI 

CSHR2 

DSHAR 

DSHRI 

DSHR2 

ISHAR 

ISHRI 

Description: Content, Meaning, Use 

~ 
Address of information supplied 
through the FOR parameter if FOR is 
supplied under MASTER CAT ALOG. 

Address of information supplied 
through the FOR parameter if FOR is 
supplied under CLUSTER. 

Address of information supplied 
through the OWNER parameter if 
OWNER is supplied under 
MASTERCAT ALOG. 

Address of information supplied 
through the OWNER parameter if 
OWNER is supplied under CLUSTER. 

Address of information supplied 
through the OWNER parameter if 
OWNER is supplied under DATA. 

Address of information supplied 
through the OWNER parameter if 
OWNER is supplied under INDEX. 

Address of this pointer itself if the 
SHAREOPTIONS parameter is 
supplied under CLUSTER. 

Address of information supplied 
through the crossregion subparameter 
of SHAREOPTIONS if 
SHAREOPTIONS is supplied under 
CLUSTER. ..J 
Address of information supplied 
through the crosssystem subparameter 
of SHAREOPTIONS if 
SHAREOPTIONS is supplied under 
CLUSTER. 

Address of this pointer itself if the 
SHAREOPTIONS parameter is 
supplied under DATA. 

Address of information supplied 
through the crossregion subparameter 
of SHAREOPTIONS if 
SHAREOPTIONS is supplied under 
DATA. 

Address of information supplied 
through the crossregion subparameter 
of SHAREOPTIONS if 
SHAREOPTIONS is supplied under 
DATA. 

Address of this pointer itself if the 
SHARE OPTIONS parameter is 
supplied under INDEX. 

Address of information supplied 
through the crossregion subparameter 
of SHAREOPTIONS if 
SHAREOPTIONS is supplied under 
INDEX. 

486 OS!VS2 Access Method Services Logic 



Define FDT Description 

Bytes and 
Offset Bit Pattem 

360 (168) 4 

364 (l6C) 4 

368 (170) 4 

372 (174) 4 

376 (178) 4 

380 mC) 4 

384 (180) 4 

388 (184) 4 

392 (188) 4 

396 (18C) 4 

400 (190) 4 

404 (194) 4 

408 (198) 4 

412 (19C) 4 

416 (lAO) 4 

420 (1A4) 4 

Field Name 

ISHR2 

CERAS 

CNERS 

DERAS 

DNERS 

CKEY 

CKYLN 

CKYPS 

DKEY 

DKYLN 

DKYPS 

CREPL 

CNREP 

IREPL 

INREP 

CIMBD 

Description: Content, Meaning, Use 

Address of information supplied 
through the crosssystem subparameter 
of SHAREOPTIONS if 
SHAREOPTIONS is supplied under 
INDEX. 

Address of this pointer itself if the 
ERASE parameter is supplied under 
CLUSTER. 

Address of this pointer itself if the 
NOERASE parameter is supplied 
under CLUSTER. 

Address of this pointer itself if the 
ERASE parameter is supplied under 
DATA. 

Address of this pointer itself if the 
NOERASE parameter is supplied 
under DATA. 

Address of this pointer itself if the 
KEYS parameter is supplied under 
CLUSTER. 

Address of information supplied 
through the length subparameter of 
KEYS if KEYS is supplied under 
CLUSTER. 

Address of information supplied 
through the position subparameter of 
KEYS if KEYS is supplied under 
CLUSTER. 

Address of this pointer itself if the 
KEYS parameter is supplied under 
DATA. 

Address of information supplied 
through the length subparameter of 
KEYS if KEYS is supplied under 
DATA. 

Address of information supplied 
through the position subparameter of 
KEYS if KEYS is supplied under 
DATA. 

Address of this pointer itself if the 
REPLICATE parameter is supplied 
under CLUSTER. 

Address of this pointer itself if the 
NOREPLICATE parameter is 
supplied under CLUSTER. 

Address of this pointer itself if the 
REPLICATE parameter is supplied 
under INDEX. 

Address of this pointer itself if the 
NOREPLICATE parameter is 
supplied under INDEX. 

Address of this pointer itself if the 
IMBED parameter is supplied under 
CLUSTER. 

Data Areas 487 



Def"me FDT Description 

Offset 

424 (lA8) 

428 (lAC) 

432 (lBO) 

436 (lB4) 

440 (lB8) 

444 (lBC) 

448 (ICO) 

452 (lC4) 

456 (lC8) 

460 (ICC) 

464 (I DO) 

468 (ID4) 

472 (lD8) 

476 (IDC) 

480 (lEO) 

484 (lE4) 

Bytes and 

Bit Pattern 


4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

Field Name 

CNIBD 

IIMBD 

INIBD 

MINDD 

CINDD 

SINDD 

DINDD 

IINDD 

MVSER 

CVSER 

SVSER 

AVSER 

DVSER 

IVSER 

CRANG 

CRGLOPTR 

Description: Content, Meaning, Use ..) 
Address of this pointer itself if the 

NOIMBED parameter is supplied 

under CLUSTER. 


Address of this pointer itself if the 

IMBED parameter is supplied under 

INDEX. 


Address of this pointer itself if the 

NOIMBED parameter is supplied 

under INDEX. 


Address of information supplied 

through the FILE parameter if FILE is 

supplied under MASTERCATALOG. 


Address of information supplied 

through the FILE parameter if FILE is 

supplied under CLUSTER. 


Address of information supplied 

through the FILE parameter if FILE is 

supplied under SPACE. 


Address of information supplied 

through the FILE parameter if FILE is 

supplied under DATA. 


Address of information supplied 

through the FILE parameter if FILE is 

supplied under INDEX. 


Address of information supplied ..)

through the VOLUMES parameter if 

VOLUMES is supplied under 

MASTERCAT ALOG. 


Address of information supplied 

through the VOLUMES parameter if 

VOLUMES is supplied under 

CLUSTER. 


Address of information supplied 

through the VOLUMES parameter if 

VOLUMES is supplied under SPACE. 


Address of information supplied 

through the VOLUMES parameter if 

VOLUMES is supplied under 

NONVSAM. 


Address of information supplied 

through the VOLUMES parameter if 

VOLUMES is supplied under DATA. 


Address of information supplied 

through the VOLUMES parameter if 

VOLUMES is supplied under INDEX. 


Address of aeount of subparameters 

supplied through the KEYRANGES 

parameter if KEYRANGES is supplied 

under CLUSTER. 


Address of information supplied 

through the lowkey subparameter of 

KEYRANGES if KEYRANGES is 
 ..J
supplied under CLUSTER. 

488 OS!VS2 Access Method Services Logic 



L 

Defme FDT Description 

L· Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

488 (lE8) 4 CRGHIPTR 	 Address of information supplied 
through the highkey subparameter of 
KEYRANGES if KEYRANGES is 
supplied under CLUSTER. 

492 (lEC) 4 DRANG 	 Address of a count of sub parameters 
supplied through the KEYRANGES 
parameter if KEYRANGES is supplied 
under DATA. 

496 (lFO) 4 DRGLOPTR 	 Address of information supplied 
through the lowkey subparameter of 
KEYRANGES if KEYRANGES is 
supplied under DATA. 

500 (lF4) 4 DRGHIPTR 	 Address of information supplied 
through the highkey subparameter of 
KEYRANGES if KEYRANGES is 
supplied under DATA. 

504 (lF8) 4 ADEVT 	 Address of information supplied 
through the DEVICETYPES 
parameter if DEVICETYPES is 
supplied under NONVSAM. 

508 (lFC) 4 AFSNO 	 Address of information supplied 
through the 
FILESEQUENCENUMBER 
parameter if 
FILESEQUENCENUMBER is 
supplied under NONVSAM. 

512 (200) 4 CORDR 	 Address of this pointer itself if the 
ORDERED parameter is supplied 
under CLUSTER. 

516(204) 4 CUORD 	 Address of this pointer itself if the 
UNORDERED parameter is supplied 
under CLUSTER. 

520 (208) 4 DORDR 	 Address of this pointer itself if the 
ORDERED parameter is supplied 
under DATA. 

524 (20C) 4 DUORD 	 Address of this pointer itself if the 
UNORDERED parameter is supplied 
under DATA. 

528 (210) 4 IORDR 	 Address of this pointer itself if the 
ORDERED parameter is supplied 
under INDEX. 

532 (214) 4 IUORD 	 Address of this pointer itself if the 
UNORDERED parameter is supplied 
under INDEX. 

536 (218) 4 CSUBA 	 Address of this pointer itself if the 
SUBALLOCATION parameter is 
supplied under CLUSTER. 

540 (21C) 4 DSUBA 	 Address of this pointer itself if the 
SUBALLOCATION parameter is 
supplied under DATA. 

544 (220) 4 ISUBA 	 Address of this pointer itself if the 
SUBALLOCATION parameter is 
supplied under INDEX. 

Data Areas 489 



Def"me FDT Description 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use ~ 
548 (224) 4 CUNIQ 	 Address of this pointer itself if the 

UNIQUE parameter is supplied under 
CLUSTER. 

552 (228) 4 DUNIQ 	 Address of this pointer itself if the 
UNIQUE parameter is supplied under 
DATA. 

556 (22C) 4 IUNIQ 	 Address of this pointer itself if the 
UNIQUE parameter is supplied under 
INDEX. 

560 (230) 4 MTRKS 	 Address of this pointer itself if the 
TRACKS parameter is supplied under 
MASTERCAT ALOG. 

564 (234) 4 CTRKS 	 Address of this pointer itself if the 
TRACKS parameter is supplied under 
CLUSTER. 

568 (238) 4 STRKS 	 Address of this pointer itself if the 
TRACKS parameter is supplied under 
SPACE. 

572 (23C) 4 MCYLD 	 Address of this pointer itself if the 
CYLINDERS parameter is supplied 
under MASTERCAT ALOG. 

576 (240) 4 CCYLD 	 Address of this pointer itself if the 
CYLINDERS parameter is supplied 
under CLUSTER. 

580 (244) 4 SCYLD 	 Address of this pointer itself if the 
CYLINDERS parameter is supplied 
under SPACE. 

584 (248) 4 MRCDS 	 Address of this pointer itself if the 
RECORDS parameter is supplied 
under MASTER CAT ALOG. 

588 (24C) 4 CRCDS 	 Address of this pointer itself if the 
RECORDS parameter is supplied 
under CLUSTER. 

592 (250) 4 SRCDS 	 Address of this pointer itself if the 
RECORDS parameter is supplied 
under SPACE. 

596 (254) 8 * 	 Reserved--contains zeros. 

604 (25C) 4 DTRKS 	 Address of this pointer itself if the 
TRACKS parameter is supplied under 
DATA. 

608 (260) 4 DCYLD 	 Address of this pointer itself if the 
CYLINDERS parameter is supplied 
under DATA. 

612(264) 4 DRCDS 	 Address of this pointer itself if the 
RECORDS parameter is supplied 
under DATA. 

616(268) 4 DTKPR 	 Address of information supplied 
through the primary subparameter of 
TRACKS if TRACKS is supplied 
under DATA. 

620 (26C) 4 DTKSC 	 Address of information supplied 
through the secondary subparameter 

490 OS!VS2 Access Method Services Logic 



Define FDT Description 

Offset 

624 (270) 

628 (274) 

632 (278) 

636 (27C) 

640 (280) 

644 (284) 

648 (288) 

652 (28C) 

656 (290) 

660 (294) 

664 (298) 

668 (29C) 

672 (2AO) 

676 (2A4) 

680 (2A8) 

Bytes and 
Bit Pattem 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

FteldName 

ITRKS 

ICYLD 

IRCDS 

ITKPR 

ITKSC 

SCAND 

CRSIZ 

SRSIZ 

CARSZ 

CMRSZ 

DRSIZ 

DARSZ 

DMRSZ 

MWCK 

CWCK 

Description: Content, Meaning, Use 

of TRACKS if TRACKS is supplied 
under DATA. 

Address of this pointer itself if the 
TRACKS parameter is supplied under 
INDEX. 

Address of this pointer itself if the 
CYLINDERS'parameter is supplied 
under INDEX. 

Address of this pointer itself if the 
RECORDS parameter is supplied 
under INDEX. 

Address of information supplied 
through the primary subparameter of 
TRACKS if TRACKS is supplied 
under INDEX. 

Address of information supplied 
through the secondary subparameter 
of TRACKS if TRACKS is supplied 
under INDEX. 

Address of this pointer itself if the 
CANDIDATE parameter is supplied 
under SPACE. 

Address of this pointer itself if the 
RECORDSIZE parameter is supplied 
under CLUSTER. 

Address of this pointer itself if the 
RECORDSIZE parameter is supplied 
under SPACE. 

Address of information supplied 
through the average subparameter of 
RECORDSIZE if RECORDSIZE is 
supplied under CLUSTER. 

Address of information supplied 
through the maximum sub parameter 
of RECORDSIZE if RECORDSIZE is 
supplied under CLUSTER. 

Address of this pointer itself if the 
RECORDSIZE parameter is supplied 
under DATA. 

Address of information supplied 
through the average subparameter of 
RECORDSIZE if RECORDSIZE is 
supplied under DATA. 

Address of information supplied 
through the maximum subparameter 
of RECORDSIZE if RECORDSIZE is 
supplied under DATA. 

Address of this pointer itself if the 
WRITE CHECK parameter is supplied 
under MASTERCAT ALOG. 

Address of this pointer itself if the 
WRITECHECK parameter is supplied 
under CLUSTER. 

Data Areas 491 

L 



Define FDT Description 

Offset 

684 (2AC) 

688 (2BO) 

692 (2B4) 

696 (2B8) 

700 (2BC) 

704 (2CO) 

708 (2C4) 

712 (2C8) 

716 (2CC) 

720 (2DO) 

724 (2D4) 

728 (2D8) 

732 (2DC) 

736 (2EO) 

740 (2E4) 

744 (2E8) 

748 (2EC) 

Bytes am:I 

Bit Pattern 


4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

Field Name 

MNWCK 

CNWCK 

DWCK 

DNWCK 

IWCK 

INWCK 

CSPED 

CRECV 

DSPED 

DRECV 

CFSPC 

CCIFS 

CCAFS 

DFSPC 

DCIFS 

DCAFS 

MBFSZ 

Description: Content, Meaning, Use j
Address of this pointer itself if the 
NOWRITECHECK parameter is 
supplied under MASTER CAT ALOG. 

Address of this pointer itself if the 
NOWRITECHECK parameter is 
supplied under CLUSTER. 

Address of this pointer itself if the 
WRITECHECK parameter is supplied 
under DATA. 

Address of this pointer itself if the 
NOWRITECHECK parameter is 
supplied under DATA. 

Address of this pointer itself if the 
WRITECHECK parameter is supplied 
under INDEX. 

Address of this pointer itself if the 
NOWRITECHECK parameter is 
supplied under INDEX. 

Address of this pointer itself if the 
SPEED parameter is supplied under 
CLUSTER. 

Address of this pointer itself if the 
RECOVERY parameter is supplied 
under CLUSTER. 

Address of this pointer itself if the 
SPEED parameter is supplied under 
DATA. 

Address of this pointer itself if the 
RECOVERY parameter is supplied 
under DATA. 

Address of this pointer itself if the 
FREESPACE parameter is supplied 
under CLUSTER. 

Address of information supplied 
through the cipercent subparameter of 
FREESPACE if FREESP ACE is 
supplied under CLUSTER. 

Address of information supplied 
through the capercent subparameter of 
FREESPACE if FREESPACE is 
supplied under CLUSTER. 

Address of this pointer itself if the 
FREESPACE parameter is supplied 
under DATA. 

Address of information supplied 
through the cipercent subparameter of 
FREESPACE if FREESPACE is 
supplied under DATA. 

Address of information supplied 
through the capercent subparameter of 
FREESPACE if FREESP ACE is 
supplied under DATA. 

Address of information supplied ..J 
through the BUFFERSPACE 

492 OS!VS2 Access Method Services Logic 



Derme FDT Descrlptlou 

Bytesand 
orfset Bit Pattern 

752 (2FO) 4 

756 (2F4) 4 

760 (2F8) 4 

764 (2FC) 4 

768 (300) 4 

772 (304) 4 

776 (308) 4 

780 (30C) 4 

784 (310) 4 

788 (314) 4 

792 (318) 4 

4 .796 (3IC) 

Field Name 

CBFSZ 

DBFSZ 

CCINV 

DCINV 

ICINV 

ALREL 

GENEM 

GENNE 

GENLM 

GENSC 

GENNS 

UETRY 

Description: Content, Meaning, Use 

parameter if BUFFERSPACE is 
supplied under MASTERCATALOG. 

Address of information supplied 
through the BUFFERSPACE 
parameter if BUFFERSPACE is 
supplied under CLUSTER. 

Address of information supplied 
through the BUFFERSP ACE 
parameter if BUFFERSPACE is 
supplied under DATA. 

Address of information supplied 
through the 
CONTROLINTERVALSIZE 
parameter if 
CONTROLINTERVALSIZE is 
supplied under CLUSTER. 

Address of information supplied 
through the 
CONTROLINTERVALSIZE 
parameter if 
CONTROLINTERVALSIZE is 
supplied under DATA. 

Address of information supplied 
through the 
CONTROLINTERVALSIZE 
parameter if 
CONTROLINTERVALSIZE is 
supplied under INDEX. 

Address of information supplied 
through the RELATE parameter if 
RELATE is supplied under ALIAS. 

Address of this pointer itself if the 
EMPTY parameter is supplied under 
GENERATIONDATA GROUP. 

Address of this pointer itself if the 
NOEMPTY parameter is supplied 
under GENERATIONDATA 
GROUP. 

Address of information supplied 
through the LIMIT parameter if 
LIMIT is supplied under 
GENERATIONDATA. GROUP. 

Address of this pointer itself if the 
SCRATCH parameter is supplied 
under GENERATIONDATA 
GROUP. 

Address of this pointer itself if the 
NOSCRATCH parameter is supplied 
under 
GENERAT10NDATAGROUP. 

Address of information supplied 
through the NAME parameter if 
NAME is supplied under 
USERCATALOG. 

Data Areas 493 



Define FDT Description 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use ,.J 
800 (320) 4 UMSTR 	 Address of information supplied 

through the MASTERPW parameter if 
MASTERPW is supplied under 
USERCATALOG. 

804 (324) 4 UCINT 	 Address of information supplied 
through the CONTROLPW parameter 
if CONTROLPW is supplied under 
USERCATALOG. 

808 (328) 4 UUPDT 	 Address of information supplied 
through the UPDATEPW parameter if 
UPDATEPW is supplied under 
USERCATALOG. 

812 (32C) 4 UREAD 	 Address of information supplied 
through the READPW parameter if 
READPW is supplied under 
USERCATALOG. 

816 (330) 4 UCODE 	 Address of information supplied 
through the CODE parameter if 
CODE is supplied under 
USERCATALOG. 

820 (334) 4 UATTP 	 Address of information supplied 
through the ATTEMPTS parameter if 
ATTEMPTS is supplied under 
USERCATALOG. 

824 (338) 4 UAUTH 	 Address of this pointer itself if the 
AUTHORIZATION parameter is 
supplied under USERCATALOG. ~ 

828 (33C) 4 UEPNM 	 Address of information supplied 
through the entrypoint subparameter 
of AUTHORIZATION if 
AUTHORIZATION is supplied under 
USERCATALOG. 

832 (340) 4 USTRG 	 Address of information supplied 
through the string subparameter of 
AUTHORIZATION if 
AUTHORIZATION is supplied under 
USERCATALOG. 

836 (344) 4 UTO 	 Address of information supplied 
through the TO parameter if TO is 
supplied under USERCATALOG. 

840 (348) 4 UFOR 	 Address of information supplied 
through the FOR parameter if FOR is 
supplied under USERCATALOG. 

844 (34C) 4 UOWNR 	 Address of information supplied 
through the OWNER parameter if 
OWNER is supplied under 
USERCATALOG. 

848 (350) 4 UINDD 	 Address of information supplied 
through the FILE parameter if FILE is 
supplied under USERCATALOG. 

852 (354) 4 UVSER 	 Address of information supplied 
through the VOLUMES parameter if 
VOLUMES is supplied under 
USERCATALOG. ~ 

494 OS!VS2 Access Method Services Logic 



Define FDT Description 

Bytes and 
Offset Bit Pattern 

856 (358) 4 

860 (3SC) 4 

864 (360) 4 

868 (364) 8 

876 (36C) 4 

880 (370) 4 

884 (374) 4 

888 (378) 4 

892 (37C) 4 

896 (380) 4 

900 (384) 4 

904 (388) 4 

908 (38C) 4 

912 (390) 4 

916(394) 4 

Field Name 

UTRKS 

UCYLD 

URCDS 

* 
UWCK 

UNWCK 

UBFSZ 

PMODL 

PENAM 

PMDCT 

PMDNM 

PMSTR 

PCINT 

PUPDT 

PREAD 

Description: Content, Meaning, Use 

Address of this pointer itself if the 
TRACKS parameter is supplied under 
USERCATALOG. 

Address of this pointer itself if the 
CYLINDERS parameter is supplied 
under USERCATALOG. 

Address of this pointer itself if the 
RECORDS parameter is supplied 
under USERCATALOG. 

Reserved--contains zeros. 

Address of this pointer itself if the 
WRITECHECK parameter is supplied 
under USERCAT ALOG. 

Address of this pointer itself if the 
NOWRITECHECK parameter is 
supplied under USERCATALOG. 

Address of information supplied 
through the BUFFERSPACE 
parameter if BUFFERSPACE is 
supplied under USERCATALOG. 

Address of this pointer itself if the 
MODEL parameter is supplied under 
PAGESPACE. 

Address of information supplied 
through the entryname/password 
subparameter of MODEL if MODEL 
is supplied under PAGESPACE. 

Address of information supplied 
through the catname/password 
subparameter of MODEL if MODEL 
is supplied under PAGESPACE. 

Address of information supplied 
through the dname subparameter of 
MODEL if MODEL is supplied under 
PAGESPACE. 

Address of information supplied 
through the MASTERPW parameter if 
MASTERPW is supplied under 
PAGESPACE. 

Address of information supplied 
through the CONTROLPW parameter 
if CONTROLPW is supplied under 
PAGESPACE. 

Address of information supplied 
through the UPDATEPW parameter if 
UPDATEPW is supplied under 
PAGESPACE. 

Address of information supplied 
through the READPW parameter if 
READPW is supplied under 
PAGESPACE. 

Data Areas 495 



Define FDT Description 

Bytes IIIId 
orfset Bit Pattem FIeld Name 

920 (398) 4 PCODE 

924 (39C) 4 PATTP 

928 (3AO) 4 PAUTH 

932 (3A4) 4 PEPNM 

936 (3A8) 4 PSTRG 

940 (3AC) 4 PTO 

944 (3BO) 4 PFOR 

948 (3B4) 4 POWNR 

'. 

952 (3B8) 12 * 
964(3C4) 4 PERAS 

968(3C8) 4 PNERS 

972 (3CC) 4 PINDD 

976 (300) 4 PVSER 

980 (304) 4 PSUBA 

984 (308) 4 PUNIQ 

988 (3OC) 4 PTRKS 

496 OS!VS2 Access Method Services Logic 

Description: Content, Meaning, Use 

•Address of information supplied 
through the CODE parameter if 
CODE is supplied under 
PAGESPACE. 

Address of information supplied 
through the ATTEMPTS parameter if 
ATTEMPTS is supplied under 
PAGESPACE. 

Address of this pointer itself if the 
AUTHORIZATION parameter is 
supplied under P AGESPACE. 

Address of information supplied 
through the entrypoint subparameter 
of AUTHORIZATION if 
AUTHORIZATION is supplied under 
PAGESPACE. 

Address of information supplied 
through the string subparameter of 
AUTHORIZATION if 
AUTHORIZATION is supplied under 
PAGESPACE. 

Address of information supplied 
through the TO parameter if TO is 
supplied under PAGESPACE. 

Address of information supplied 
through the FOR parameter if FOR is ..J
supplied under P AGESPACE. 

Address of information supplied 
through the OWNER parameter if 
OWNER is supplied under 
PAGESPACE. 

Reserved--contains zeros. 

Address of this pointer itself if ERASE 
parameter has been supplied under 
PAGESPACE. 

Address of this pointer itself if the 
NOERASE parameter has been 
supplied under PAGESPACE. 

Address of information supplied 
through the FILE parameter if FILE is 
supplied under PAGESPACE. 

Address of information supplied 
through the VOLUMES parameter if 
VOLUMES is supplied under 
PAGESPACE. 

Address of this pointer itself if the 
SUBALLOCATION parameter is 
supplied under PAGESPACE. 

Address of this pointer itself if the 
UNIQUE parameter is supplied under 
PAGESPACE. 

Address of this pointer itself if the 
TRACKS parameter is supplied under 
PAGESPACE. 



C 

Define FDT Description 

Bytes and 
Offset Bit Pattern field Name 

992 (3EO) 4 PCYLD 

996 (3E4) 4 PRCDS 

1000 (3E8) 8 * 

1000 (3E8) 4 PSWAP 

1004 (3EC) 4 PNSWP 

1008 (3FO) 4 SARSZ 

1012 (3F4) 4 SMRSZ 

1016 (3F8) 4 UENAM 

1020 (3FC) 4 UMDCT 

1024 (400) 4 UMDNM 

1028 (404) 4 CEPNM 

1032 (408) 4 CSTRG 

1036(4OC) 16 * 
1052(41 C) 4 CEEXT 

1056(420) 4 DEEXT 

1060(424) 4 IEEXT 

Description: Content, Meaning, Use 

Address of this pointer itself if the 
CYLINDERS parameter is supplied 
under PAGESPACE. 

Address of this pointer itself if the 
RECORDS parameter is supplied 
under PAGESPACE. 

Reserved--contains zeros. 
(without VS2.03.807) 

Address of this pointer itself if the SWAP 
parameter is supplied under CLUSTER. 
(VS2.03.807) 

Address of this pointer itself if the NOSWAP 
parameter is supplied under PAGESPACE. 
(VS2.03.807) 
Address of information supplied 
through the average subparameter of 
RECORDSIZE if RECORDSIZE is 
supplied under SPACE. 

Address of information supplied 
through the maximum subparameter 
of RECORDSIZE if RECORDSIZE is 
supplied under SPACE. 

Address of information supplied 
through the entrypoint subparameter 
of MODEL if MODEL is supplied 
under USERCAT ALOG. 

Address of information supplied 
through the catname/password 
subparameter of MODEL if MODEL 
is supplied under USERCAT ALOG. 

Address of information supplied 
through the dname subparameter of 
MODEL if MODEL is supplied under 
USERCATALOG. 

Address of information supplied 
through the entrypoint subparameter 
of AUTHORIZATION if 
AUTHORIZATION is supplied under 
CLUSTER. 

Address of information supplied 
through the string subparameter of 
AUTHORIZATION if 
AUTHORIZATION is supplied under 
CLUSTER. 

Reserved--contains zeros. 

Address of information supplied 
through the EXCEPTIONEXIT 
parameter if EXCEPTIONEXIT is 
supplied under CLUSTER. 

Address of information supplied 
through the EXCEPTIONEXIT 
parameter if EXCEPTIONEXIT is 
supplied under DATA. 

Address of information supplied 
through the EXCEPTIONEXIT 
parameter if EXCEPTIONEXIT is 
supplied under INDEX. 

Data Areas 497 



Define FDT Description 

Offset 
1068(42C) 

1072(430) 

1076(434) 

1080(438) 

1084(43C) 

1088(440) 

1092(444) 

1096(448) 

11()()(44C) 

1104(450) 

1108(454) 

1112(458) 

1116(45C) 

1120(460) 

1124(464) 

1128(468) 

1132(46C) 

1136(470) 

1204 (4B4) 

1208 (4B8) 

Bytes and 
Bit Pattern 
4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

68 

4 

4 

Field Name 
CNUMD 

CRUS 

DRUS 

IRUS 

CNRUS 

DNRUS 

INRUS 

CSPND 

DSPND 

CNSPD 

DNSPD 

MRVBL 

URVBL 

DRVBL 

MNRVL 

UNRVL 

DNRVL 

* 
MTKPR 

MTKSC 

Description: Content, Meaning, Use 
Address of this pointer itself if .J 
NUMBERED is supplied under 

CLUSTER. 

Address of this pointer itself if REUSE 

is supplied under CLUSTER. 


Address of this pointer itself if REUSE 

is supplied under DATA. 


Address of this pointer itself if REUSE 

is supplied under INDEX. 


Address of this pointer itself if 

NOREUSE is supplied under 

CLUSTER. 


Address of this pointer itself if 

NOREUSE is supplied under DATA. 


Address of this pointer itself if 

NOREUSE is supplied under INDEX. 


Address of this pointer itself if 

SPANNED is supplied under 

CLUSTER. 


Address of this pointer itself if 

SPANNED is supplied under DATA. 


Address of this pointer itself if 

NONSPANNED is supplied under 

CLUSTER. 


Address of this pointer itself if 

NONSPANNED is supplied under 

DATA. 
 ..J 
Address of this pointer itself if 
RECOVERABLE is supplied under 
MASTERCATALOG. 

Address of this pointer itself if 
RECOVERABLE is supplied under 
USERCATALOG. 

Address of this pointer itself if 
RECOVERABLE is supplied under 
DATA. 

Address of this pointer itself if 
NOTRECOVERABLE is supplied 
under MASTERCATALOG. 

Address of this pointer itself if 
NOTRECOVERABLE is supplied 
under USERCAT ALOG. 

Address of this pointer itself if 
NOTRECOVERABLE is supplied 
under DATA. 

Reserved--contains zeros. 

Address of information supplied 
through the primary subparameter of 
TRACKS if TRACKS is supplied 
under MASTERCATALOG. 

Address of information supplied 
through the secondary subparameter ..Jof TRACKS if TRACKS is supplied 
under MASTERCAT ALOG. 

498 OS/VS2 Access Method Services Logic 



Define FDT Description 

ByteslDd 
Offset Bit Pattern 

1212 (4BC) 4 

1216 (4CO) 4 

1220 (4C4) 4 

1224 (4C8) 4 

1228 (4CC) 4 

1232 (4DO) 4 

1236 (4D4) 4 

1240 (4D8) 4 

1244 (4DC) 4 

1248 (4EO) 4 

1252 (4E4) 4 

1256 (4E8) 4 

1260 (4EC) 4 

1264 (4FO) 4 

Field Name 

CTKPR 

CTKSC 

STKPR 

STKSC 

UTKPR 

UTKSC 

PTKPR 

PTKSC 

MCLPR 

MCLSC 

CCLPR 

CCLSC 

UCLPR 

UCLSC 

Description: Content, Meaning, Use 

Address of information supplied 
through the primary subparameter of 
TRACKS if TRACKS is supplied 
under CLUSTER. 

Address of information supplied 
through the secondary subparameter 
of TRACKS if TRACKS is supplied 
under CLUSTER. 

Address of information supplied 
through the primary subparameter of 
TRACKS if TRACKS is supplied 
under SPACE. 

Address of information supplied 
through the secondary subparameter 
of TRACKS if TRACKS is supplied 
under SPACE. 

Address of information supplied 
through the primary subparameter of 
TRACKS if TRACKS is supplied 
under USERCAT ALOG. 

Address of information supplied 
through the secondary subparameter 
of TRACKS if TRACKS is supplied 
under USERCATALOG. 

Address of information supplied 
through the primary subparameter of 
TRACKS if TRACKS is supplied 
under PAGESPACE. 

Address of information supplied 
through the secondary subparameter 
of TRACKS if TRACKS is supplied 
under P AGESP ACE. 

Address of information supplied 
through the primary subparameter of 
CYLINDERS if CYLINDERS is 
supplied under MASTERCATALOG. 

Address of information supplied 
through the secondary subparameter 
of CYLINDERS if CYLINDERS is 
supplied under MASTERCATALOG. 

Address of information supplied 
through the primary subparameter of 
CYLINDERS if CYLINDERS is 
supplied under CLUSTER. 

Address of information supplied 
through the secondary subparameter 
of CYLINDERS if CYLINDERS is 
supplied under CLUSTER. 

Address of information supplied 
through the primary subparameter of 
CYLINDERS if CYLINDERS is 
supplied under USERCAT ALOG. 

Address of information supplied 
through the secondary subparameter 

Data Areas 499 



Def"me FDT Description 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use ;) 

of CYLINDERS if CYLINDERS is 
supplied under USERCATALOG. 

1268 (4F4) 4 PCLPR 	 Address of information supplied 
through the primary subparameter of 
CYLINDERS if CYLINDERS is 
supplied under PAGESPACE. 

1272 (4F8) 4 PCLSC 	 Address of information supplied 
through the secondary subparameter 
of CYLINDERS if CYLINDERS is 
supplied under PAGESPACE. 

1276 (4FC) 4 SCLPR 	 Address of information supplied 
through the primary subparameter of 
CYLINDERS if CYLINDERS is 
supplied under SPACE. 

1280 (500) 4 SCLSC 	 Address of information supplied 
through the secondary subparameter 
of CYLINDERS if CYLINDERS is 
supplied under SPACE. 

1284 (504) 4 MRCPR 	 Address of information supplied 
through the primary subparameter of 
RECORDS if RECORDS is supplied 
under MASTERCATALOG. 

1288 (508) 4 MRCSC 	 Address of information supplied 
through the secondary subparameter 
of RECORDS if RECORDS is 
supplied under MASTERCAT ALOG. ;)

1292 (50C) 4 CRCPR 	 Address of information supplied 
through the primary subparameter of 
RECORDS if RECORDS is supplied 
under CLUSTER. 

1296 (510) 4 CRCSC 	 Address of information supplied 
through the secondary subparameter 
of RECORDS if RECORDS is 
supplied under CLUSTER. 

1300 (514) 4 SRCPR 	 Address of information supplied 
through the primary subparameter of 
RECORDS if RECORDS is supplied 
under SPACE. 

1304 (518) 4 SRCSC 	 Address of information supplied 
through the secondary subparameter 
of RECORDS if RECORDS is 
supplied under SPACE. 

1308 (5IC) 4 URCPR 	 Address of information supplied 
through the primary subparameter of 
RECORDS if RECORDS is supplied 
under USERCATALOG. 

1312 (520) 4 URCSC 	 Address of information supplied 
through the secondary subparameter 
of RECORDS if RECORDS is 
supplied under USERCATALOG. 

1316 (524) 4 PCRPR 	 Address of information supplied 
through the primary subparameter of 
RECORDS if RECORDS is supplied ;)
under PAGESPACE. 

500 OS!VS2 Access Method Services Logic 



Define FDT Description 

Bytes and 
orfset Bit Pattern 

1320 (528) 4 

1324 (52C) 4 

1328 (530) 4 

1332 (534) 4 

1336 (538) 4 

1340 (53C) 4 

1344 (540) 4 

1348 (544) 4 

1352 (548) 4 

1356 (54C) 4 

1360 (550) 4 

1364 (554) 4 

1368 (558) 4 

1372 (SSC) 4 

Field Name 

PRCSC 

DCLPR 

DCLSC 

DRCPR 

DRCSC 

ICLPR 

ICLSC 

IRCPR 

IRCSC 

GETRY 

GMODL 

GENAM 

GMDCT 

GMDNM 

DescrlptlOD: Content, Meaning, Use 

Address of information supplied 
through the secondary subparameter 
of RECORDS if RECORDS is 
supplied under PAGESPACE. 

Address of information supplied 
through the primary subparameter of 
CYLINDERS if CYLINDERS is 
supplied under DATA. 

Address of information supplied 
through the secondary subparameter 
of CYLINDERS if CYUNDERS is 
supplied under DATA. 

Address of information supplied 
through the primary subparameter of 
RECORDS if RECORDS is supplied 
under DATA. 

Address of information supplied 
through the secondary subparameter 
of RECORDS if RECORDS is 
supplied under DATA. 

Address of information supplied 
through the primary subparameter of 
CYLINDERS if CYLINDERS is 
supplied under INDEX. 

Address of information supplied 
through the secondary subparameter 
of CYLINDERS if CYLINDERS is 
supplied under INDEX. 

Address of information supplied 
through the primary subparameter of 
RECORDS if CYLINDERS is 
supplied under INDEX. 

Address of information supplied 
through the secondary subparameter 
of RECORDS if CYLINDERS is 
supplied under INDEX. 

Address of information supplied 
through the NAME parameter if 
NAME is supplied under 
ALTERNATEINDEX. 

Address of this pointer itself if 
MODEL is supplied under 
AL TERNATEINDEX. 

Address of information supplied 
through the entryname/password 
subparameter of MODEL if MODEL 
is supplied under 
ALTERNATEINDEX. 

Address of information supplied 
through the CATNAME/password 
subparameter of MODEL if MODEL 
is supplied under 
AL TERNATEINDEX. 

Address of information supplied 
through the dname subparameter of 

Data Areas 501 



Define FDT Description 

Bytes ami 
Offset Bit Pattern Field Name 	 Description: Content, Meaning, Use ~ 

MODEL if MODEL is supplied under 
ALTERNATEINDEX. 

1376 (560) 4 GMSTR 	 Address of information supplied 
through the MASTERPW parameter if 
MASTERPW is supplied under 
ALTERNATEINDEX. 

1380 (564) 4 GCINT 	 Address of information supplied 
through the CONTROLPW parameter 
if CONTROLPW is supplied under 
ALTERNATEINDEX. 

1384 (568) 4 GUPDT 	 Address of information supplied 
through the UPDATEPW parameter if 
UPDATEPW is supplied under 
ALTERNATEINDEX. 

1388 (56C) 4 GREAD 	 Address of information supplied 
through the READPW parameter if 
READPW is supplied under 
ALTERNATEINDEX. 

1392 (570) 4 GCODE 	 Address of information supplied 
through the CODE parameter if 
CODE is supplied under 
ALTERNATEINDEX. 

1396 (574) 4 GATTP 	 Address of information supplied 
through the ATTEMPTS parameter if 
ATTEMPTS is supplied under 
ALTERNATEINDEX. 

1400 (578) 4 GAUTH 	 Address of this pointer itself if the 
AUTHORIZATION parameter is 
supplied under ALTERNATEINDEX. 

1404 (57C) 4 GEPNM 	 Address of information supplied 
through the entrypoint subparameter 
of AUTHORIZATION if the 
AUTHORIZATION parameter is 
supplied under ALTERNATEINDEX. 

1408 (580) 4 GSTRG 	 Address of information supplied 
through the string subparameter of 
AUTHORIZATION if 
AUTHORIZATION is supplied under 
ALTERNATEINDEX. 

1412 (584) 4 GTO 	 Address of information supplied 
through the TO parameter if TO is 
supplied under ALTERNATEINDEX. 

1416 (588) 4 GFOR 	 Address of information supplied 
through the FOR parameter if FOR is 
supplied under ALTERNATEINDEX. 

1420 (58C) 4 GOWNR 	 Address of information supplied 

through the OWNER parameter if 

OWNER is supplied under 

ALTERNATEINDEX. 


1424 (590) 4 GSHAR 	 Address of this pointer itself if the 
SHAREOPTIONS parameter is 
supplied under ALTERNATEINDEX. 

502 OS!VS2 Access Method Services Logic 



Define FDT Description 

Bytes and 
Offset Bit Pattern 

1428 (S94) 4 

1432 (S98) 4 

1436 (S9C) 4 

1440 (SAO) 4 

1444 (SA4) 4 

1448 (SA8) 4 

14S2 (SAC) 4 

14S6 (SBO) 4 

1460 (SB4) 4 

1464 (SB8) 4 

1468 (SBC) 4 

1472 (SCO) 4 

1476 (SC4) 4 

1480 (SC8) 4 

1484 (SCC) 4 

Field Name 

GSHRI 

GSHR2 

GERAS 

GNERS 

GKEY 

GKYLN 

GKYPS 

GREPL 

GNREP 

GIMBD 

GNIBD 

GINDD 

GVSER 

GRANG 

GRGLO 

Description: Content, Meaning, Use 

Address of information supplied 
through the crosspartition 
subparameter of SHAREOPTIONS if 
SHAREOPTIONS is supplied under 
AL TERNATEINDEX. 

Address of information supplied 
through the crosssystem subparameter 
of SHAREOPTIONS if 
SHAREOPTIONS is supplied under 
ALTERNATEINDEX. 

Address of this pointer itself if the 
ERASE parameter is supplied under 
ALTERNATEINDEX. 

Address of this pointer itself if the 
NOERASE parameter is supplied 
under ALTERNATEINDEX. 

Address of this pointer itself if the 
KEYS parameter is supplied under 
ALTERNATEINDEX. 

Address of information supplied 
through the length subparameter of 
KEYS if KEYS is supplied under 
ALTERNATEINDEX. 

Address of information supplied 
through the offset subparameter of 
KEYS if KEYS is supplied under 
ALTERNATEINDEX. 

Address of this pointer itself if the 
REPLICATE parameter is supplied 
under AL TERNATEINDEX. 

Address of this pointer itself if the 
NOREPLICATE parameter is 
supplied under AL TERNATEINDEX. 

Address of this pointer itself if the 
IMBED parameter is supplied under 
ALTERNATEINDEX. 

Address of this pointer itself if the 
NOIMBED parameter is supplied 
under ALTERNATEINDEX. 

Address of information supplied 
through the FILE parameter if FILE is 
supplied under ALTERNATEINDEX. 

Address of information supplied 
through the VOLUMES parameter if 
VOLUMES is supplied under 
ALTERNATEINDEX. 

Address of a count of subparameters 
supplied through the KEYRANGES 
parameter if KEYRANGES is supplied 
under ALTERNATEINDEX. 

Address of information supplied 
through the lowkey subparameter of 
KEYRANGES if KEYRANGES is 
supplied under AL TERNATEINDEX. 

Data Areas 503 



Derme FDT Description 

Offset 

1488 (5DO) 

1492 (5D4) 

1496 (5D8) 

1500 (5DC) 

1504 (5EO) 

1508 (5E4) 

1512 (5E8) 

1516 (5EC) 

1520 (5FO) 

1524 (5F4) 

1528 (5F8) 

1532 (5FC) 

1536 (600) 

1540 (604) 

1544 (608) 

Bytes and 

Bit Pattern 


4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

Field Name 


GRGHI 


GORDR 

GUORD 

GSUBA 

GUNIQ 

GTRKS 

GTKPR 

GTKSC 

GCYLD 

GCLPR 

GCLSC 

GRCDS 

GRCPR 

GRCSC 

GRSIZ 

Description: Content, Meaning, Use 

Address of information supplied j
through the highkey subparameter of 
KEYRANGES if KEYRANGES is 
supplied under ALTERNATEINDEX. 

Address of this pointer itself if the 
ORDERED parameter is supplied 
under ALTERNATEINDEX. 

Address of this pointer itself if the 

UNORDERED parameter is supplied 

under ALTERNATEINDEX. 


Address of this pointer itself if the 

SUBALLOCATION parameter is 

supplied under ALTERNATEINDEX. 


Address of this pointer itself if the 

UNIQUE parameter is supplied under 

ALTERNATEINDEX. 


Address of this pointer itself if the 

TRACKS parameter is supplied under 

ALTERNATEINDEX. 


Address of information supplied 
through the primary subparameter of 
TRACKS if TRACKS is supplied 
under ALTERNATEINDEX. 

Address of information supplied 
through the secondary subparameter 
of TRACKS if TRACKS is supplied 
under ALTERNATEINDEX. 

Address of this pointer itself if the 
CYLINDERS parameter is supplied 
under ALTERNATEINDEX. 

Address of information supplied 

through the primary subparameter of 

CYLINDERS if CYLINDERS is 

supplied under ALTERNATEINDEX. 


Address of information supplied 

through the secondary subparameter 

of CYLINDERS if CYLINDERS is 

supplied under ALTERNATEINDEX. 


Address of this pointer itself if the 
RECORDS parameter is supplied 
under ALTERNATEINDEX . 

. Address of information supplied 
through the primary subparameter of 
RECORDS if RECORDS is supplied 
under ALTERNATEINDEX. 

Address of information supplied 

through the secondary subparameter 

of R~CORDS if RECORDS is 

supplied under ALTERNATEINDEX. 


Address of this pointer itself if the 
RECORDSIZE parameter is supplied 
under ALTERNATEINDEX. 

.J 

504 OS!VS2 Access Method Services Logic 



Define FDT Description 

8ytesand 
Offset 8itPattem 

1548 (6OC) 4 

1552 (610) 4 

1556 (614) 4 

1560 (618) 4 

1564 (61C) 4 

1568 (620) 4 

1572 (624) 4 

1576 (628) 4 

1580 (62C) 4 

1584 (630) 4 

1588 (634) 4 

1592 (638) 4 

Field Name 

GARSZ 

GMRSZ 

GWCK 

GNWCK 

GSPED 

GRECV 

GFSPC 

GCIFS 

GCAFS 

GBFSZ 

GCINV 

GREL 

Description: Content, Meaning, Use 

Address of information supplied 
through the average subparameter of 
RECORDSIZE if RECORDSIZE is 
supplied under ALTERNATEINDEX. 

Address of information supplied 
through the maximum subparameter 
of RECORDSIZE if RECORD SIZE is 
supplied under ALTERNATEINDEX. 

Address of this pointer itself if the 
WRITECHECK parameter is supplied 
under ALTERNATEINDEX. 

Address of this pointer itself if the 
NOWRITECHECK parameter is 
supplied under ALTERNATEINDEX. 

Address of this pointer itself if the 
SPEED parameter is supplied under 
ALTERNATEINDEX. 

Address of this pointer itself if the 
RECOVERY parameter is supplied 
under ALTERNATEINDEX. 

Address of this pointer itself if the 
FREESPACE parameter is supplied 
under ALTERNATEINDEX. 

Address of information supplied 
through the cipercent subparameter of 
FREESPACE if FREESP ACE is 
supplied under ALTERNATEINDEX. 

Address of information supplied 
through the capercenl subparameter of 
FREESPACE if FREESP ACE is 
supplied under ALTERNATEINDEX. 

Address of information supplied 
through the 8UFFERSPACE 
parameter if BUFFERSP ACE is 
supplied under ALTERNATEINDEX. 

Address of information supplied 
through the 
CONTROLlNTERVALSIZE 
parameter if 
CONTROLlNTERVALSIZE is 
supplied under ALTERNATEINDEX. 

Address of information supplied 
through the RELATE parameter if 
RELATE is supplied under 
ALTERNATEINDEX. 

Data Areas 505 



Define FDT Description 

Offset 

1596 (63C) 

1600 (640) 

1604 (644) 

1608 (648) 

1612 (64C) 

1616 (650) 

1620 (654) 

1624 (658) 

1628 (65C) 

1632 (660) 

1644 (66C) 

1648 (670) 

1652 (674) 

1656 (678) 

1660 (67C) 

Bytesmd 

BIt Pattern 


4 

4 

4 

4 

4 

4 

4 

4 

4 

12 

4 

4 

4 

4 

4 

Field Name 

GEEXT 

GRUS 

GNRUS 

GUNQK 

GNUQK 

DUNQK 

DNUQK 

GUPG 

GNUPG 

* 
RETRY 

RMODL 

RENAM 

RMDCT 

RMDNM 

Description: Content, Meaning, Use 

.jAddress of information supplied 
through the EXCEPTIONEXIT 
parameter if EXCEPTIONEXIT is 
supplied under ALTERNATEINDEX. 

Address of information supplied 
through the REUSE parameter if 
REUSE is supplied under 
ALTERNATEINDEX. 

Address of information supplied 
through the NOREUSE parameter if 
NOREUSE is supplied under 
ALTERNATEINDEX. 

Address of information supplied 
through the UNIQUEKEY parameter 
if UNIQUEKEY is supplied under 
ALTERNATEINDEX. 

Address of information supplied 
through the NONUNIQUEKEY 
parameter if NONUNIQUEKEY is 
supplied under ALTERNATEINDEX. 

Address of information supplied 
through the UUNIQUEKEY 
parameter if UNIQUEKEY is supplied 
under DATA. 

Address of information supplied 
through the NONUNIQUEKEY 
parameter if NONUNIQUEKEY is 
supplied under DATA. 

Address of information supplied 
through the UPGRADE parameterif 
UPGRADE is supplied under 
ALTERNATEINDEX. 

Address of information supplied 
through the NOUPGRADE parameter 
if NOUPGRADE is supplied under 
ALTERNATEINDEX. 

Reserved--contains zeros. 

Address of information supplied 
through the NAME parameter if 
NAME is supplied under PATH. 

Address of this pointer itself if the 
MODEL parameter is supplied under 
PATH. 

Address of information supplied 
through the entryname/password 
subparameter of MODEL if MODEL 
is supplied under PATH. 

Address of information supplied 
through the catname/password 
subparameter of MODEL if MODEL 
is supplied under PATH. 

Address of information supplied 
through the dname subparameter of 
MODEL if MODEL is supplied under 
PATH. ~ 

506 OS!VS2 Access Method Services Logic 



L 

Define FDT Description 

Bytes and 
Offset Bit Pattern Field Name 

1664 (680) 4 RMSTR 

1668 (684) 4 RCINT 

1672 (688) 4 RUPDT 

1676 (68C) 4 RREAD 

1680 (690) 4 RCODE 

1684 (694) 4 RATTP 

1688 (698) 4 RAUTH 

1692 (69C) 4 REPNM 

1696 (6AO) 4 RSTRG 

1700 (6A4) 4 RTO 

1704 (6A8) 4 RFOR 

1708 (6AC) 4 ROWNR 

1712 (6BO) 4 RINDD 

1716 (6B4) 4 RUPD 

1720 (6B8) 4 RNUPD 

1724 (6BC) 4 RPENT 

Description: Content, Meaning, Use 

Address of information supplied 
through the MASTERPW parameter if 
MASTERPW is supplied under PATH. 

Address of information supplied 
through the CONTROLPW parameter 
if CONTROLPW is supplied under 
PATH. 

Address of information supplied 
through the UPDATEPW parameter if 
UPDATEPW is supplied under PATH. 

Address of information supplied 
through the READPW parameter if 
READPW is supplied under PATH. 

Address of information supplied 
through the CODE parameter if 
CODE is supplied under PATH. 

Address of information supplied 
through the ATTEMPTS parameter if 
ATTEMPTS is supplied under PATH. 

Address of information supplied 
through the AUTHORIZATION 
parameter if AUTHORIZATION is 
supplied under PATH. 

Address of information supplied 
through the entrypoint subparameter 
of AUTHORIZATION if 
AUTHORIZATION is supplied under 
PATH. 

Address of information supplied 
through the string subparameter of 
AUTHORIZATION if 
AUTHORIZATION is supplied under 
PATH. 

Address of information supplied 
through the TO parameter if TO is 
supplied under PATH. 

Address of information supplied 
through the FOR parameter if FOR is 
supplied under PATH. 

Address of information supplied 
through the OWNER parameter if 
OWNER is supplied under PATH. 

Address of information supplied 
through the FILE parameter if FILE is 
supplied under PATH. 

Address of information supplied 
through the UPDATE parameter if 
UPDATE is supplied under PATH. 

Address of information supplied 
through the NOUPDATE parameter if 
NOUPDATE is supplied under PATH. 

Address of information supplied 
through the PATHENTRYparameter 

Data Areas 507 



Define FDT Description 

Bytes and 

Offset Bit Pattern F1eld Name 


1728 (6CO) 4 CSTAG 

1732 (6C8) 4 GSTAG 

1736 (6C8) 4 DSTAG 

1740 (6CC) 4 ISTAG 

1744 (6DO) 4 CBIND 

1748 (6D4) 4 GBIND 

1752 (6D8) 4 DBIND 

1756(6DC) 4 IBIND 

:.~ 

1760(6EO) 4 CCYLF 
{; 

1764(6E4) 4 GCYLF 

1768(6E8) 4 DCYLF 

1772(6EC) 4 ICYLF 

1776(6FO) 4 MNSTW 

1780(6F4) 4 UNSTW 

1784(6F8) 4 CNSTW 

Description: Content, Meaning, Use 
..)

if PATHENTRY is supplied under 
PATH. 

Address of information supplied 
through the STAGE parameter if 
STAGE is supplied under CLUSTER. 

Address of information supplied 
through the STAGE parameter if 
STAGE is supplied under 
ALTERNATEINDEX. 

Address of information supplied 
through the STAGE parameter if 
STAGE is supplied under DATA. 

Address of information supplied 
through the STAGE parameter if 
STAGE is supplied under INDEX. 

Address of information supplied 
through the BIND parameter if BIND 
is supplied under CLUSTER. 

Address of information supplied 
through the BIND parameter if BIND 
is supplied under 
ALTERNATEINDEX. 

Address of information supplied 
through the BIND parameter if BIND 
is supplied under DATA. 

Address of information supplied 
through the BIND parameter if BIND 
is supplied under INDEX. 

Address of information supplied 
through the CYLINDERFAULT 
parameter if CYLINDERFAUL T is 
supplied under CLUSTER. 

Address of information supplied 
through the CYLINDERFAUL T 
parameter if CYLINDERFAULT is 
supplied under AL TERNATEINDEX. 

Address of information supplied 
through the CYLINDERFAULT 
parameter if CYLINDERFAULT is 
supplied under DATA. 

Address of information supplied 
through the CYLINDERFAUL T 
parameter if CYLINDERFAULT is 
supplied under INDEX. 

Address of information supplied 
through the NODESTAGEWAIT 
parameter if NODESTAGEWAIT is 
supplied under MASTERCAT ALOG. 

Address of information supplied 
through the NODESTAGEWAIT 
parameter if NODESTAGEWAIT is 
supplied under USERCATALOG. 

Address of information supplied ;Jthrough the NODESTAGEWAIT 

508 OS!VS2 Access Method Services Logic 



Define FDT Description 

Bytalllld 
Offset Bit Pattem 

1788(6FC) 4 

1792(700) 4 

1796(704) 4 

1800(708) 4 

1804(7OC) 4 

1808(710) 4 

1812(714) 4 

1816(718) 4 

1820(71C) 4 

1824(720) 4 

1828(724) 4 

1832(728) 4 

1836(72C) 4 

field Name 

GNSTW 

DNSTW 

INSTW 

MSTGW 

USTGW 

CSTGW 

GSTGW 

DSTGW 

ISTGW 

ATO 

BTO 

AFOR 

BFOR 

Description: Content, Mellllng, Use 

parameter if NODESTAGEWAIT is 
supplied under CLUSTER. 

Address of information supplied 
through the NODESTAGEWAIT 
parameter if NODESTAGEWAIT is 
supplied under ALTERNATEINDEX. 

Address of information supplied 
through the NODESTAGEWAIT 
parameter if NODESTAGEWAIT is 
supplied under DATA. 

Address of information supplied 
through the NODESTAGEWAIT 
parameter if NODESTAGEWAIT is 
supplied under INDEX. 

Address of information supplied 
through the DESTAGEWAIT 
parameter if DEST AGEWAIT is 
supplied under MASTERCATALOG. 

Address of information supplied 
through the DEST AGEWAIT 
parameter if DESTAGEW AIT is 
supplied under USERCAT ALOG. 

Address of information supplied 
through the DEST AGEWAIT 
parameter if DESTAGEWAIT is 
supplied under CLUSTER. 

Address of information supplied 
through the DESTAGEWAIT 
parameter if DESTAGEWAIT is 
supplied under ALTERNATEINDEX. 

Address of information supplied 
through the DESTAGEWAIT 
parameter if DESTAGEWAIT is 
supplied under DATA. 

Address of information supplied 
through the DEST AGEWAIT 
parameter if DEST AGEWAlT is 
supplied under INDEX. 

Address of information supplied 
through the TO parameter if TO is 
supplied under NONVSAM. 

Address of information supplied 
through the TO parameter if TO is 
supplied under GENERATION
DATAGROUP. 

Address of information supplied 
through the FOR parameter if FOR is 
supplied under NONVSAM. 

Address of information supplied 
through the FOR parameter if FOR is 
supplied under GENERATION
DATAGROUP. 

Data Areas 509 



Def"me FDT Description 

Bytes and 

Offset Bit Pattern Field Name 


1840(730) 4 AOWNR 

1844(734) 4 BOWNR 

Description: Content, Meaning, Use 

Address of information supplied 
through the OWNER parameter if 
OWNER is supplied under 
NONVSAM. 

Address of information supplied 
through the OWNER parameter if 
OWNER is supplied under 
GENERATION- DATA GROUP. 

510 OS!VS2 Access Method Services Logic 



DELETEFDT 

Offset 

0(0) D E L E 

8 (8) tentryname/password 

16 (10) t camame/password 

24 (18) tFILE 

32 (20) tNOPURGE 

40 (28) tNOERASE 

48 (30) tCLUSTER 

56 (38) t USERCATALOG 

64 (40) tNONVSAM 

72 (48) tNOSCRATCH 

80 (50) t GENERATIONDATAGROUP 

88 (58) 

96 (60) 

Offset 

0(0) 

8 (8) 

12 (C) 

16 (10) 

20.(14) 

24 (18) 

28 (1C) 

32 (20) 

36 (24) 

40 (28) 

44 (2C) 

48 (30) 

52 (34) 

56 (38) 

tAIX 

tFRC 

Bytes and 
Bit Pattern 

8 

4 

4 


4 


4 

4 


4 


4 


4 


4 


4 

4 


4 


4 


Field Name 

FDTVERB 

NTRY 

CATLG 

CAT 

CATDD 

INDD 

PURGE 

NOPUR 

ERASE 

NOERA 

* 
CLUST 

SPACE 

UCAT 

Content 

T E b b 

tCATALOG 

tdname 

tPURGE 

tERASE 

0 


tSPACE 


t MASTERCAT ALOG 


tSCRATCH 


tPAGESPACE 


tALIAS 


tPATH 


tNFRC 


Description: Content, Meaning, Use 

Verb aligned left and padded with 
blanks-DELETEbb. 

Address of information supplied 
through the entryname/password 
parameter. 

Address of this pointer itself if the 
CATALOG parameter is supplied. 

Address of information supplied 
through the catname/password 
subparameter of the CATALOG 
parameter. 

Address of information supplied 
through the dname subparameter of 
the CATALOG parameter. 

Address of information supplied 
through the FILE parameter. 

Address of this pointer itself if the 
PURGE parameter is supplied or 
defaulted. 

Address of this pointer itself if the 
NOPURGE parameter is supplied. 

Address of this pointer itself if the 
ERASE parameter is supplied. 

Address of this pointer itself if the 
NOERASE parameter is supplied. 

Reserved--contains zero. 

Address of this pointer itself if the 
CLUSTER parameter is supplied. 

Address of this pointer itself if the 
SPACE parameter is supplied. 

Address of this pointer itself if the 
USER CAT ALOG parameter is 
supplied. 

Data Areas 511 



Bytes and 
Offset Bit Pattern Field Name Description: Content. Meaning, Use 

60 (3C) 4 MCAT 	 Address of this pointer itself if the 
MASTERCATALOG parameter is 
supplied. 

64 (40) 4 ALIEN 	 Address of this pointer itself if the 
NONVSAM parameter is supplied. 

68 (44) 4 SCR 	 Address of this pointer itself if the 
SCRATCH parameter is supplied. 

72 (48) 4 NSCR 	 Address of this pointer itself if the 
NOSCRATCH parameter is supplied. 

76 (4C) 4 PGSPC 	 Address of this pointer itself if the 
PAGESPACE parameter is supplied. 

80 (50) 4 GDG 	 Address of this pointer itself if the 
GENERATIONDATA- GROUP 
parameter is supplied. 

84 (54) 4 ALIAS 	 Address of this pointer itself if the 
ALIAS parameter is supplied. 

88 (58) 4 AIX 	 Address of this pointer itself if the 
ALTERNATE INDEX parameter has 
been supplied. 

92 (5C) 4 PATH 	 Address of this pointer itself if the 
PATH parameter has been supplied. 

96 (60) 4 FRC 	 Address of this pointer itself if the 
FORCE parameter has been supplied. 

100 (64) 4 NFRC 	 Address of this pointer itself if the 
NOFORCE parameter has been 
supplied. 

~ 

512 OS!VS2 Access Method Services Logic 



EXPORTFDT 

Offset 

0(0) 

8 (8) 

16 (to) 

24 (18) 

32 (20) 

40 (28) 

48 (30) 

56 (38) 

64 (40) 

72 (48) 

80 (50) 

88(58) 

Offset 

0(0) 

8 (8) 

I~ (C) 

16 (10) 

20 (14) 

24 (18) 

28 (lC) 

32 (20) 

36 (24) 

40 (28) 

44 (2C) 

48 (30) 

52 (34) 

56 (38) 

60 (3C) 

64 (40) 

E X P 0 

tentryname/password 

tOUTFILE 

0 

tPERMANENT 

t INHIBITTARGET 

tNOERASE 

tNOPURGE 

t NOINHIBITSOURCE 

0 


0 


0 


Bytes and 
Bit Pattern Field Name 

8 FDTVERB 

4 ENT 

4 INDO 

4 OUT 

4 OUTDO 

4 ENVIR 


4 TEMP 


4 PERM 

4 INHBS 

4 INHBT 

4 ERASE 

4 NOERS 

4 PURGE 

4 NPRG 

4 DISCT 

4 NINHS 

Content 

R T b b 


tINFILE 


tdname 

tTEMPORARY 


t INHIBITSOURCE 


tERASE 


tPURGE 


t DISCONNECT 


t NOINHIBITTARGET 


t OUTDATASET 


0 

Description: Content, Meaning, Use 

Verb aligned left and padded with 
blanks-EXPORTbb. 

Address of information supplied 

through the entryname/password 

parameter. 


Address of information supplied 

through the INFILE parameter. 


Address of this pointer itself if the 
OUTFILE parameter is supplied. 

Address of information supplied 
through the dname subparameter of 
the OUTFILE parameter. 

Reserved in OS/VS----contains zero. 

Address of this pointer itself if the 
TEMPORARY parameter is supplied. 

Address of this pointer itself if the 
PERMANENT parameter is supplied. 

Address of this pointer itself if the 
INHIBITSOURCE parameter is 
supplied. 

Address of this pointer itself if the 
INHIBITTARGET parameter is 
supplied. 

Address of this pointer itself if the 
ERASE parameter is supplied. 

Address of this pointer itself if the 
NOERASE parameter is supplied. 

Address of this pointer itself if the 
PURGE parameter is supplied. 

Address of this pointer itself if the 
NOPURGE parameter is supplied. 

Address of this pointer itself if the 
DISCONNECT parameter is supplied. 

Address of this pointer itself if the 
NOINHIBITSOURCE parameter is 
supplied. 

Data Areas 513 



EXPORTRA FDT 


Offset 

68 (44) 

72 (48) 

76 (4C) 

80 (SO) 

84 (54) 

88 (58) 

Offset 

0(0) 

8 (8) 

16 (10) 


24 (18) 


32 (20) 

40 '28) 

48 (30) 

56 (38) 

64 (40) 

Offset 

0(0) 

8 (8) 

12 (C) 

16 (to) 

20 (14) 

24 (18) 

28 (1C) 

32 (20) 

36 (24) 

Bytes utcI 
Bit Pattern 

4 

4 


4 


4 


4 


4 


E X 

tFORCE 

tOUTFILE 

tdname 

tNONE 

tINFILE 

0 

tdname 

tdname 

Bytes utcI 
Bit Pattern 

8 

4 

4 

4 

4 

4 

4 

4 

4 

Field Name 

NINHT 

... 

OUTDS 

... 

PDEV 

BLKSZ 

P 0 

Field Name 

FDTVERB 

PRC 

NFRC 

OUT 

CRACNT 

CRADDPTR 

ALLNTPTR 

NONEPTR 

ENTREPTR 

Description: Content, Meaning, Use 


Address of this pointer itself if the 

NOINHIBITTARGET parameter is 

supplied. 


Reserved---(;ontains zero. 


Address of information supplied 

through the OUTDATASET 

parameter. 


Reserved---(;ontains zero . 


Reserved in OS/VS-contains zero. 


Reserved in OS/VS. 


Content 

R T R A 


tNOFORCE 


tCRA count 

tALL 

tENTRIES 

tMA~TERPW 

0 

tentryname 

0 

Description: Content, Meaning, Use 

Verb-EXPORTRA 

Address of this pointer itself if the 
FORCE parameter has been supplied. 

Address of this pointer itself if the 
NOFORCE parameter has been 
supplied. 

Address of this pointer itself if the 
OUTFILE parameter has been 
supplied. 

Count of the number of catalog 
recovery areas (CRAs) that were 
provided in the EXPORTRA 
command. 

Address of an array of pointers. Each 
pointer points at the dname for the 
CRA it relates to in the order that they 
appear in the EXPORTRA command. 

Address of an array of pointers. Each 
pointer points to itself if ALL was 
specified for the related CRA. 

Address of an array of pointers. Each 
pointer points to itself if NONE was 
specified for the related CRA or was 
defaulted for the CRA. 

Address of an array of counts. Each 
count indicates the number of entries 

~ 


514 OS/VS2 Access Method Services Logic 



L 

Bytesaud 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

if ENTRIES was specified for the 
related CRA. Zero indicates that 
ENTRIES was not specified. 

40 (28) 4 IFILEPTR 	 Address of an array of pointers. Each 
pointer points to the dname 
subparameter of the INFILE 
subparameter, i.e., the dname to be 
used for a CRA if ALL was specified 
for that CRA. 

44 (2C) 4 MRPW 	 Address of information supplied 
through the password subparameter of 
the MASTERPW parameter. 

48 (30) 4 ENVIR 	 Reserved in OS/VS-contains zeros. 

52 (34) 4 PDEV 	 Reserved in OS/VS-contains zero. 

56 (38) 4 OUTDD 	 Address of information supplied 
through the dname subp,arameter of 
the OUTFILE parameter. 

60 (3C) 4 ENTNMPTR 	 Address of an array of pointers. Each 
pointer points to the entryname 
subparameter of the ENTRIES 
subparameter, i.e., all of the entry 
names in each CRA specified. 

64 (40) 4 ENTDNPTR 	 Address of an array of pointers. Each 
pointer points to the dname 
subparameter of the ENTRIES 
subparameter to be used to export the 
associated entry name in 
ENTNMPTR. 

68 (44) 4 BLKSZ 	 Reserved in OS/VS-contains zero. 

'0) 

Data Areas 515 



--

IMPORTFDT 

Offset 

0(0) 

8 (8) 

16 (10) 

24 (18) 

32 (20) 

40 (28) 

48 (30) 

56 (38) 

64 (40) 

72 (48) 

80 (50) 

96 (60) 

104 (68) 

136 (88) 

144 (9C) 

Offset 

0(0) 

8 (8) 

12 (C) 

16 (10) 

20 (14) 

24 (18) 

28 (1C) 

32 (20) 

36 (24) 

40 (28) 

44 (2C) 

Content 

R T b b 


WUTFILE 


I tobjectname 


tFILE 


tKEYRANGES 


IWRDERED 

I tlowkey 
"-

tCONNECT 

0 -

tNOPURGE 

tNOERASE --"---- 

tINDATASET -

0 


It IMPTY (VS2.03.807) 


t NSRAC (VS2.03.807) 


Description: Content, Meaning, Use 

Verb aligned left and padded with 
blanks-IMPORTbb. 

Address of this pointer itself if the 
INFILE parameter is supplied. 

Address of information supplied 
through the OUTFILE parameter. 

Address of a count of subparameters 
supplied through the OBJECTS 
parameter. 

Address of information supplied 
through the objectname subparameter 
of the OBJECTS parameter. 

Address of information supplied 

through the NEWNAME 

subparameter of the OBJECTS 

parameter. 


Address of information supplied 
through the FILE subparameter of the 
OBJECTS parameter. 

Address of information supplied 
through the VOLUMES subparameter 
of the OBJECTS parameter. 

Address of a count of lowkey highkey 
pairs supplied through the 
KEYRANGES subparameter of the 
OBJECTS parameter. 

Address of information supplied 

through the DEVICETYPES 

subparameter of the OBJECTS 

parameter. 


Address of information supplied 
through the ORDERED subparameter 
of the OBJECTS parameter. 

516 OS/VS2 Access Method Services Logic 

I M P 0 

tINFILE 

tOBJECTS 

tNEWNAME 

tVOLUMES 

t DEVICETYPES 

tUNORDERED 

thighkey 

tdname 

tPURGE 

tERASE 

0 

t OUTDATASET 

tCATALOG 

t SRAC (VS2.03.807) 

Bytes and 
Bit Pattern Field Name 

8 FDTVERB 

4 IN 

4 OUTDD 

4 OBJTS 

4 OBJNMPTR 

4 NEWNMPTR 

4 OBJFLPTR 

4 LISTVPTR 

4 RANGEPTR 

4 DEVTPTR 

4 ORDPTR 



Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

48 (30) 4 UNORDPTR 	 Address of information supplied 
through the UNORDERED 
subparameter of the OBJECTS 
parameter. 

52 (34) 4 LOWKYPTR 	 Address of information supplied 
through the lowkey subparameter of 
the KEYRANGES parameter. 

56 (38) 4 HIKEYPTR 	 Address of information supplied 
through the highkey sub parameter of 
the KEYRANGES parameter. 

60 (3C) 4 CON 	 Address of this pointer itself if the 
CONNECT parameter is supplied. 

64 (40) 4 INDD 	 Address of information supplied 
through the dname subparameter of 
the INFILE parameter. 

68 (44) 4 ENV 	 Reserved in OS/VS-contains zero. 

72 (48) 4 PRG 	 Address of this pointer itself if the 
PURGE parameter is supplied. 

76 (4C) 4 NPRG 	 Address of this pointer itself if the 
NOPURGE parameter is supplied. 

80 (50) 4 ERAS 	 Address of this pointer itself if the 
ERASE parameter is supplied. 

84 (54) 4 NERAS 	 Address of this pointer itself if the 
NOERASE parameter is supplied. 

88 (58) 4 BLKSZ 	 Reserved in OS/VS-contains zero. 

92 (5C) 4 PDEV 	 Reserved in OS/VS-contains zero. 

96 (60) 4 RCSZE 	 Reserved in OS/VS-contains zero. 

100 (64) 4 INDS 	 Address of information supplied 
through the INDAT ASET parameter. 

104 (68) 4 OUTDS 	 Address of information supplied 
through the OUTDATASET 
parameter. 

108 (6C) 28 * 	 Reserved-contains zeros. 

136 (88) 4 CAT 	 Address of inforamtion supplied 
through the CATALOG parameter. 

140 (8C) 4 IMPTY Address of this pointer itself if the 
(VS2.03.807) INTOEMPrY parameter is supplied. 

144 (90) 4 SRAC Address of this pointer itself if the 
(VS2.03.807) SAVRAC parameter is specified. 
148 (94) 4 NSRAC Address of this pointer itself if the 
(VS2.03.807) NOSAVRAC parameter is specified. 

Data Areas 517 



---

-----

------

---- -

IMPORTRA FDT 


518 OSNS2 Access Method Services Logic 

Offset 

0(0) 

8 (8) 

16 (10) 

24 (18) 

32 (20) 

40 (28) 

48 (30) 

56 (38) 

64 (40) 

72 (48) 

80 (50) 

88 (58) 

96 (60) 

104 (68) 

112 (70) 

120 (78) 

128 (80) 

136 (88) 

144 (9C) 

Offset 

0(0) 

8 (8) 

12 (C) 

16 (10) 

20 (14) 

24 (18) 

32 (20) 

36 (24) 

40 (28) 

44 (2C) 

64 (40) 

68 (44) 

72 (48) 

88 (58) 

I M P 0 

tINFILE 

tOBJECTS 

0 


tVOLUMES 


t DEVICETYPE 

t- 

0 

0 

tdname 

0 

0 

0 

0 

0 

0 
-

0 r-
0 


tCATALOG 


t NSRAC (VS2.03.8~?l 

Bytes and 
Bit Pattern Field Name 

8 FDTVERB 

4 IN 

4 OUTDD 

4 OBJTS 

4 OBJNMPTR 

8 * 
4 LISTVPTR 

4 * 
4 DEVTPTR 

20 * 
4 INDD 

4 ENV 


16 
 * 
4 BLKSZ 

Content 

R T R A 

tOUTFILE 

I tobject name 

0 

0 
- j--- ---- 

0 

0 

0 

0 
! 

0 

I 0 - - 

0-=+=tINDATASET 


0 


0 


-i 
-- 

0 
~ 

0 


t SRAC (VS2.03.807) 

I I 
Description: Content, Meaning, Use 


Verb-IMPORTRA. 


Address of this pointer itself if the 

IN FILE parameter has been supplied. 


Address of information supplied 

through the OUTFILE parameter. 


Address of the count of objects 

supplied through the OBJECTS 

parameter. 


Address of information supplied 

through the name subparameter of the 

OBJECTS parameter. 


Reserved--contains zeros. 


Address of information supplied 

through the VOLUMES subparameter 

of the OBJECTS parameter. 


Reserved--contains zeros. 


Address of information supplied 

through the DEVICETYPE 

subparameter of the OBJECTS 

parameter. 


Reserved--contain zeros. 


Address of information supplied 

through the dname subparameter of 

the INFILE parameter. 


Reserved in OS/VS. Contains zeros. 


Reserved--contains zeros. 


Reserved in OS/VS. Contains zeros. 




USTCATFDT 


Offset 

92(5C) 

96 (60) 

100 (64) 
11)4 (68) 

136 (88) 

140 (8C) 
(VS2.03.807) 

144 (90) 
(VS2.03.807) 

Offset 

0(0) 

8 (8) 

16 (10) 

24 (18) 

32 (20) 

40 (28) 

48 (30) 

56 (38) 

64 (40) 

72 (48) 

80 (50) 

88 (58) 

96 (60) 

\04 (68) 

112 (70) 

Offset 

0(0) 

8 (8) 

12 (C) 

16 (10) 

20 (14) 

24 (18) 

28 (Ie) 

32 (20) 

36 (24) 

40 (28) 

Bytes and 
Bit Pattern Field Name Description: Content, Meaning, Use 

4 PDEV Reserved in OS/VS. Contains zeros. 

4 Reserved---contains zeros. * 
4 INDS Address of the input data set name. 
32 Reserved---contains zeros. * 
4 CAT 	 Address of information supplied 

through the CATALOG parameter. 

4 SRAC 	 Address of this location itself if the 
SAVRAC parameter is specified. 

4 NSRAC 	 Address of this location itself if the 
NOSAVRAC parameter is specified. 

Content 

L s T C A T 

tCATALOG 
-

tOUTFILE 

~RIES o 
--____-+I.:..ctD=---A,":T.:c=----- ---------jAiCLUS'II::R 

i!l'IDEX I tSPACE 

tNONVSAM t USERCATALOG --------i
I

tcatname/password tdname 

o tNAME 

tALL ~OLUME 
tALLOCATION -- :pAALGIAESSP-A-C-E----------c----i~II 
tGENERATIONDATAGROUP II
t LEVEL 	 tALTERNATEINDEX 

tPATH 	 . t NOTUSABLE1--- --	 

tCREATION I tEXPIRATION 

tHISTORY 

Bytes and 
Bit Pattern Field Name Description: Content, Meaning, Use 

8 FDTVERB 	 Verb aligned left and padded with 
blanks-LISTCATb. 

4 CAT 	 Address of this pointer itself if the 
CATALOG parameter is supplied. 

4 OUTDD 	 Address of information supplied 
through the OUTFILE parameter. 

4 ENT 	 Address of information supplied 
through the ENTRIES parameter. 

4 	 Reserved---contains zero. * 
4 CLUST 	 Address of this pointer itself if the 

CLUSTER parameter is supplied. 

4 DATUM 	 Address of this pointer itself if the 
DATA parameter is supplied. 

4 INDEX 	 Address of this pointer itself if the 
INDEX parameter is supplied. 

4 SPACE 	 Address of this pointer itself if the 
SPACE parameter is supplied. 

4 ALIEN 	 Address of this pointer itself if the 
NONVSAM parameter is supplied. 

Data Areas 519 



Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

44 (2C) 4 UCAT 	 Address of this pointer itself if the 
USER CAT ALOG parameter is 
supplied. 

48 (30) 4 CATNM 	 Address of information supplied 
through the catname/password 
subparameter of the CATALOG 
parameter. 

52 (34) 4 CATDD 	 Address of information supplied 
through the dname subparameter of 
the CATALOG parameter. 

56 (38) 4 * 	 Reserved--contains zero. 

60 (3C) 4 NAME 	 Address of this pointer itself if the 
NAME parameter is supplied. 

64 (40) 4 FALL 	 Address of this pointer itself if the 
ALL parameter is supplied. 

68 (44) 4 VOL 	 Address of this pointer itself if the 
VOLUME parameter is supplied. 

72 (48) 4 ALLOC 	 Address of this pointer itself if the 
ALLOCATION parameter is supplied. 

76 (4C) 4 ALIAS 	 Address of this pointer itself if the 
ALIAS parameter is supplied. 

80 (50) 4 GDG 	 Address of this pointer itself if the 
GENERATIONDATA- GROUP 
parameter is supplied. 

84 (54) 4 PGSPC 	 Address of this pointer itself if the 
P AGESP ACE parameter is supplied. 

88 (58) 4 LVL 	 Address of information supplied ~ 
through the LEVEL parameter. 

92 (5C) 4 AIX 	 Address of this pointer itself if the 
ALTERNATEINDEX parameter has 
been supplied. 

96 (60) 4 PATH 	 Address of this pointer itself if the 
PATH parameter has been supplied. 

100 (64) 4 NUSE 	 Address of this pointer itself if the 
NOTUSABLE parameter has been 
supplied. 

104(68) 4 CREAT 	 Address of information supplied 
through the CREATION parameter. 

108(6C) 4 EXPIR 	 Address of information supplied 
through the EXPIRATION parameter. 

112(70) 4 HIST 	 Address of this pointer itself if the 
HISTORY parameter is supplied. 

520 OS/VS2 Access Method Services Logic 



USTCRAFDT 

Offset Content 

0(0) L I S T C R A t'> 

8 (8) tINFILE' tCOMPARE 

16 (10) tNOCOMPARE tDUMP 

24 (18) tNAME tCATALOG 

32 (20) tcatname/password tdname 

40 (28) tMASTERPW t SEQUENTIALDUMP 

Offset 
Bytes and 
Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 8 FDTVERB Verb aligned left and padded with 
blanks-LiSTCRAt'>. 

8 (8) 4 IFILE Address of information supplied 
through the dname subparameter of 
the INFILE parameter. 

12 (C) 4 CMPR Address of this pointer itself if the 
COMPARE parameter has been 
supplied. 

16 (10) 4 NCMPR Address of this pointer itself if the 
NOCOMPARE parameter has been 
supplied. 

20 (14) 4 DUMP Address of this pointer itself if the 
DUMP parameter has been supplied. 

24 (18) 4 NAME Address of this pointer itself if the 
NAME parameter has been supplied. 

28 (1C) 4 CAT Address of this pointer itself if the 
CATALOG parameter has been 
supplied. 

32 (20) 4 CATNM Address of information supplied 
through the catname/password 
subparameter of the CATALOG 
parameter. 

36 (24) 4 CATDN Address of information supplied 
through the dname subparameter of 
the CATALOG parameter. 

40 (28) 4 MRPW Address of information supplied 
through the password subparameter of 
the MASTERPW parameter. 

44 (32) 4 SDUMP Address of this pointer itself if the 
SEQUENTIALDUMP parameter has 
been supplied. 

Data Areas 521 



PARMFDT 
Offset 	 Content 

0(0) P A R M tJ tJ tJ tJ 

8 (8) tTEST tOFF 
16 (to) tTRACE , tAREAS 

24 (I 8) tFULL tdumpid 

32 (20) tcount2~tl 
40 (28) tGRAPHICS tCHAIN 

48 (30) tTABLE tMARGINS 

56 (38) t leftmargin t rightmargin 

64 (40) tAN tHN 

72 (48) tPN tQN 

80 (50) tRN tSN 
f--- 

88 (58) tTN 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 8 FDTVERB 	 Verb aligned left and padded with 
blanks-PARMtJtJtJtJ. 

8 (8) 4 TEST 	 Address of this pointer itself if the 
TEST parameter is supplied. 

12 (C) 4 TOFF 	 Address of this pointer itself if the 
OFF parameter is supplied. 

16 (to) 4 TRACE 	 Address of this pointer itself if the 
TRACE parameter is supplied. 

20 (14) 4 AREA 	 Address of information supplied ~ 
through the AREAS parameter. 

24 (18) 4 FULL 	 Address of a count of subparameters 
supplied through the FULL parameter. 

28 (IC) 4 FIDPTR 	 Address of information supplied 
through the dumpid subparameter of 
the FULL parameter. 

32 (20) 4 BEGINPTR 	 Address of information supplied 
through the countl subparameter of 
the FULL parameter. 

36 (24) 4 COUNTPTR 	 Address of information supplied 
through the count2 subparameter of 
the FULL parameter. 

40 (28) 4 GRAPH 	 Address of this pointer itself if the 
GRAPHICS parameter is supplied. 

44 (2C) 4 CHAIN 	 Address of information supplied 
through the CHAIN parameter. 

48 (30) 4 TABLE 	 Address of information supplied 
through .the TABLE parameter. 

52 (34) 4 MARG 	 Address of this pointer itself if the 
MARGINS parameter is supplied. 

56 (38) 4 LMARG 	 Address of information supplied 
through the leftmargin subparameter 
of the MARGINS parameter. 

60 (3C) 4 RMARG 	 Address of information supplied 
through the rightmargin subparameter 
of the MARGINS parameter. 

522 OSNS2 Access Method Services Logic 



L 
Bytes and 

Offset Bit Pattem Field Name Description: Content, MelDing, Use 

64 (40) 4 CHNAN 	 Address of this pointer itself if the AN 
subparameter of the CHAIN 
parameter is supplied. 

68 (44) 4 CHNHN 	 Address of this pointer itself if the HN 
subparameter of the CHAIN 
parameter is supplied. 

72 (48) 4 CHNPN 	 Address of this pointer itself if the PN 
subparameter of the CHAIN 
parameter is supplied. 

76 (4C) 4 CHNQN 	 Address of this pointer itself if the QN 
subparameter of the CHAIN 
parameter is supplied. 

80 (50) 4 CHNRN 	 Address of this pointer itself if the RN 
subparameter of the CHAIN 
parameter is supplied. 

84 (54) 4 CHNSN 	 Address of this pointer itself if the SN 
subparameter of the CHAIN 
parameter is supplied. 

88 (58) 4 CHNTN 	 Address of this pointer itself if the TN 
subparameter of the CHAIN 
parameter is supplied. 

Data Areas 523 



--

PRINTFDT 


524 OS/VS2 Access Method Services Logic 

Offset 

0(0) 

8 (8) 

16 (10) 

24 (18) 

32 (20) 

40 (28) 

48 (30) 

56 (38) 

64 (40) 

72 (48) 

80 (50) 

88 (58) 

96 (60) 

104 (68) 

112 (70) 

120 (78) 

128 (80) 

Offset 

0(0) 

8 (8) 

12 (C) 

16 (10) 

20 (14) 

24 (18) 

28 (lC) 

32 (20) 

36 (24) 

40 (28) 

44 (2C) 

48 (30) 

52 (34) 

P R I N 

tINFILE 

tFROMKEY 

tSKIP 

tTOADDRESS 

tdname/password 

0 

tCHARACTER 

0 

t RECORDFORMAT 

t RECORDSIZE 

t HINDEXDEVICE 

tFIXUNB 

tVARUNB 

tSPNUNB 

tUNDEF 

tTONUMBER 

Bytes and 
Bit Pattern Field Name 

8 FDTVERB 

4 INDN 

4 OUTDD 

4 FMKYC 

4 FMRBA 

4 SKIP 

4 TOKYC 

4 TORBA 

4 COUNT 

4 INPDD 

4 INDS 

4 * 
4 FHEX 

Content 

T b b b 

0 


t FROMADDRESS 


tTOKEY 


tCOUNT 


tINDATASET 


tHEX 


tDUMP 


t ENVIRONMENT 


tBLOCKSIZE 


0 


t PRIMEDATADEVICE 


tFIXBLK 


tVARBLK 


tSPNBLK 


t FROMNUMBER 


Description: Content, Meaning, Use 

Verb aligned left and padded with 
blanks-PRINTbbb. 

Address of this pointer itself if the 
INFILE parameter is supplied. 

Address of information supplied· 
through the OUTFILE parameter. 

Address of information supplied 
through the FROMKEY parameter. 

Address of information supplied 

through the FROMADDRESS 

parameter. 


Address of information supplied 

through the SKIP parameter. 


Address of information supplied 

through the TOKEY parameter. 


Address of information supplied 
through the TOADDRESS parameter. 

Address of information supplied 

through the COUNT parameter. 


Address of information supplied 

through the dname/password 

subparameter of the INFILE 

parameter. 


Address of information supplied 
through the INDATASET parameter. 

Reserved--contains zero. 

Address of this pointer itself if the 
HEX parameter is supplied. 



Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

56 (38) 4 FCHAR Address of this pointer itself if the 
CHARACTER parameter is supplied. 

60 (3C) 4 FDUMP Address of this pointer itself if the 
DUMP parameter is supplied. 

64 (40) 4 • Reserved--contains zero . 

68 (44) 4 IENV Reserved in OS/VS-contains zero. 

72 (48) 4 IRFMT Reserved in OS/VS-contains zero. 

76 (4C) 4 IBKSZ Reserved in OS/V~ontains zero. 

80 (50) 4 IRCSZ Reserved in OS/VS-contains zero. 

84 (54) 4 • Reserved--contains zero. 

88 (58) 4 IHDEV Reserved in OS/VS--contains zero. 

92 (5C) 4 IPDEV Reserved in OS/VS--contains zero. 

96 (60) 4 IFUNB Reserved in OS/VS-contains zero. 

100 (64) 4 IFBLK Reserved in OS/VS-contains zero. 

104 (68) 4 IVUNB Reserved in OS/VS-contains zero. 

108 (6C) 4 IVBLK Reserved in OS/VS-contains zero. 

112 (70) 4 ISUNB Reserved in OS/VS-contains zero. 

116 (74) 4 ISBLK Reserved in OS/VS-contains zero. 

120 (78) 4 IUNDF Reserved in OS/VS-contains zero. 

124 (7C) 4 FMNUM 	 Address of information supplied 
through the FROMNUMBER 
parameter. 

128 (80) 4 TONUM 	 Address of information supplied 
through the TONUMBER parameter. 

Data Areas 525 



REPROFDT 
Offset Content 

0(0) R E P R 0 b b b 

8 (8) tINFILE tOUTFILE 

16 (10) tFROMKEY t FROMADDRESS 

24 (18) tSKIP tTOKEY 

32 (20) tTOADDRESS tCOUNT 

40 (28) tdname/password t dname/password 

48 (30) tINDATASET tOUTDATASET 

56 (38) t FROMNUMBER tTONUMBER 

64 (40) 0 t ENVIRONMENT 

72 (48) t RECORDFORMAT tBLOCKSIZE 

80 (50) t RECORD SIZE 0 

88 (58) t HINDEXDEVICE t PRIMEDAT ADEVICE 

96 (60) tFIXUNB tFIXBLK 

104 (68) tVARUNB tVARBLK 

112 (70) tSPNUNB tSPNBLK 

120 (78) tUNDEF 0 

128 (80) 0 t ENVIRONMENT 

136 (88) t RECORD FORMAT tBLOCKSIZE 

144 (90) t RECORDSIZE 0 

152 (98) t HINDEXDEVICE t PRIMEDATADEVICE 

160 (AO) tFIXUNB tFIXBLK 

168 (A8) tVARUNB tVARBLK 

176 (BO) tSPNUNB tSPNBLK 

184 (B8) tUNDEF 0 

192 (CO) 0 tDummy 

200 (C8) tREPLACE tNOREPLACE 

208 (DO) tREUSE tNOREUSE 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 8 FDTVERB Verb aligned left and padded with 
blanks-REPRObbb. 

8 (8) 4 INDN Address of this pointer itself if the 
INFILE parameter is supplied. 

12 (C) 4 OUTDN Address of this pointer itself if the 
OUTFILE parameter is supplied. 

16 (10) 4 FMKYC Address of information supplied 
through the FROMKEY parameter. 

20 (14) 4 FMRBA Address of information supplied 
through the FROMADDRESS 
parameter. 

24 (18) 4 SKIP Address of information supplied 
through the SKIP parameter. 

28 (1C) 4 TOKYC Address of information supplied 
through the TOKEY parameter. 

32 (20) 4 TORBA Address of information supplied 
through the TOADDRESS parameter. 

526 OS!VS2 Access Method Services Logic 



ByteslDd 

Offset Bit Pattem Field Name Description: Content, Meaning, Use 


36 (24) 4 COUNT 	 Address of information supplied 

through the COUNT parameter. 


40 (28) 4 INPDD 	 Address of information supplied 

through the dname/password 

subparameter of the INFILE 

parameter. 


44 (2C) 4 OUTDD 	 Address of information supplied 

through the dname/password 

subparameter of the OUTFILE 

parameter. 


48 (30) 4 INDS 	 Address of information supplied 
through the INDATASET parameter. 

52 (34) 4 OUTDS 	 Address of information supplied 

through the OUTDATASET 

parameter. 


56 (38) 12 * Reserved--contains zeros. 

68 (44) 4 IENV Address of this pointer itself if the 
ENVIRONMENT subparameter of 
the INFILE parameter is supplied. 

72 (48) 4 IRFMT Reserved in OS/VS--contains zero. 

76 (4C) 4 IBKSZ Reserved in OS/VS--contains zero. 

80 (50) 4 IRCSZ Reserved in OS/VS--contains zero. 

84 (54) 4 * Reserved--contains zero. 

88 (58) 4 IHDEV Reserved in OS/VS--contains zero. 

92 (5C) 4 IPDEV Reserved in OS/VS--contains zero. 

96 (60) 4 lFUNB Reserved in OS/VS--contains zero. 

100 (64) 4 IFBLK Reserved in OS/VS--contains zero. 

, 104 (68) 4 IVUNB Reserved in OS/VS--contains zero. 

108 (6C) 4 IVBLK Reserved in OS/VS--contains zero. 

112 (70) 4 ISUNB Reserved in OS/VS--contains zero. 

116 (74) 4 ISBLK Reserved in OS/VS--contains zero. 

120 (78) 4 IUNDF Reserved in OS/VS--contains zero. 

124 (7C) 8 * Reserved--contains zeros. 

132 (84) 4 OENV Reserved in OS/VS--contains zero. 

136 (88) 4 ORFMT Reserved in OS/VS--contains zero. 

140 (8C) 4 OBKSZ Reserved in OS/VS--contains zero. 

144 (90) 4 ORCSZ Reserved in OS/VS--contains zero. 

148 (94) 4 * Reserved--contains zero. 

152 (98) 4 OHDEV Reserved in OS/VS--contains zero. 

156 (9C) 4 OPDEV Reserved in OS/VS--contains zero. 

160 (AO) 4 OFUNB Reserved in OS/VS--contains zero. 

164 (A4) 4 OFBLK Reserved in OS/VS--contains zero. 

168 (A8) 4 OVUNB Reserved in OS/VS--contains zero. 

172 (AC) 4 OVBLK Reserved in OS/VS--contains zero. 

176 (BO) 4 OSUNB Reserved in OS/VS--contains zero. 

180 (B4) 4 OSBLK Reserved in OS/VS--contains zero. 

Data Areas 527 



----- ------ ----

-- -

- -- ------ - ---

--

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

184 (B8) 4 OUNDF 	 Reserved in OS/VS-contains zero. 

188 (BC) 8 * 	 Reserved--contains zeros. 

196 (C4) 4 IDUMY 	 Address of this pointer itself if the 
DUMMY subparameter of the 
ENVIRONMENT parameter is 
supplied for the input data set. 

200(C8) 4 REP 	 Address of this pointer itself if the 
REPLACE parameter has been 
supplied. 

204(CC) 4 NREP 	 Address of this pointer itself if the 
NDREPLACE parameter has been 
supplied. 

208(DO) 4 RUS 	 Address of this pointer itself if the 
REUSE parameter has been supplied. 

212(D4) 4 NRUS 	 Address of this pointer itself if the 
NOREUSE parameter has been 
supplied. 

RESETCAT FDT 
(YS2.03.808 only) 

Offset 	 Content 

0(0) R E S E T C A T 

8 (8) J..Q\TALOG ~tn~J!le/password 

16 (10) tdname tMASTERPW 
-~---------	 -_.--.-- ----- 

24 (18) tWORKFILE 	 I tWORKCAT
f---- -- -----_.- - - -- ------

32 (20) tlGNORE 
-

. tNOIGNORE 
- 

40 (28) t CRAFILES count I tdname 
--- 

48 (30) tALL tNONE 

56 (38) t CRA VOLUMES count t volser 

64 (40) tdevtype t dname/password 

Bytes and 
Offset Bit Pattern field Name Description: Content, Meaning, Use 

0(0) 8 FDTVERB 	 Verb-RESETCAT 

8 (8) 4 CAT 	 Address of this parameter itself if the 
CATALOG parameter has been 
supplied. 

12 (C) 4 CATNM 	 Address of the information supplied 
through the catna,me/password 
subparameter of the CATALOG 
parameter. 

16 (to) 4 CATDN 	 Address of information supplied 
through the dname subparameter of 
the CATALOG parameter. 

20 (14) 4 MRPW 	 Address of information supplied 
through the password subparameter of 
the MASTERPW parameter. 

24 (t8) 4 WFDN 	 Address of this parameter itself if the 
WORKFILE parameter is supplied. 

528 OS/VS2 Access Method Services Logic 



Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

28 (lC) 4 WCAT 	 Address of the information supplied 
through the catname/password 
subparameter of the WORKCAT 
parameter. 

32 (20) 4 IGN 	 Address of this parameter itself if the 
IGNORE parameter is supplied. 

36 (24) 4 NIGN 	 Address of this parameter itself if the 
NOIGNORE parameter is supplied. 

40 (28) 4 CFILE 	 Count of the number of CRAs that 
specified through the CRAFILES 
parameter. 

44 (2C) 4 CRADNPTR 	 Address of an array of pointers. Each 
pointer points at a dname for the CRA 
it relates to in the order that they 
appear in the CRAFILES parameter. 

48 (30) 4 ALLPPTR 	 Address of an array of pointers. Each 
pointer points to itself if ALL was 
specified for the related CRA in the 
CRAFILES parameter. 

52 (34) 4 NONEPTR 	 Address of an array of pointers. Each 
pointer points to itself if NONE was 
specified for the related CRA in the 
CRAFILES parameter. 

56 (38) 4 CVOL 	 Address of this parameter itself if the 
CRAVOLUMES parameter is 
supplied. 

60 (3C) 4 CRAVLPTR 	 Address of an array of pointers. Each 
pointer points to the information 
supplied by the volser subparameter of 
the CRAVOLUMES parameter. 

64 (40) 4 CRADVPTR 	 Address of an array of pointers. Each 
pointer points to the information 
supplied by the ,devtype subparameter 
of the CRAVOLUMES parameter. 

68 (44) 4 WFILE 	 Address of the information supplied 
by the dname/password subparameter 
of the WORKFILE parameter. 

VERIFYFDT 
Offset 	 Content 

0(0) 	 E R F Y 

8 (8) ItFIL: tDATASET 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning. Use 

0(0) 8 FDTVERB 	 Verb aligned left and padded with 
blanks-VERIFYMi. 

8 (8) 4 IN 	 Address of information supplied 
through the FILE parameter. 

12 (C) 4 INDAT 	 Address of information supplied 

through the DATASET parameter. 

Data Areas 529 



GDT 
Global Data Table 

The GOT is the directory for the services and data areas of the processor. It 
contains a branch vector for the services provided by the System Adapter, the 
I/O Adapter, and the Text Processor. It also points to the invoker's 
parameter list, trace tables, and historical tables. The GOT is always the first 
parameter passed to any routine. The GOT is contained in the storage 
associated with module IDCSAOI. 

Created by IModified by Used by Size 

IDCSAOI I All service All routines 276 
routines 

Bytes and 
Offset BitPattem Field Name Description: Content, Meaning, Use 

0(0) 4 GDTHDR Global Data Table header; contains 
'GDTh'. 

4 (4) 4 GDTPRM Address of parameter list from invoker 
of the processor. 

8 (8) 4 GDTTRI Address of Inter-Module Trace Table. 

12 (C) 4 GDTTR2 Address of Intra-Module Trace Table. 

16 (10) 4 GDTDBH Address of Debugging-Aids historical 
area. 

20 (14) 4 GDTSTH Reserved---contains zero. 

24 (18) 4 GDTRIH Address of Reader/Interpreter 
historical area. 

28 (lC) 4 GDTTPH Address of Text Processor historical 
area. 

32 (20) 4 GDTSAH Address of System Adapter historical 
area. 

36 (24) 4 GDTlOH Address of I/O Adapter historical 
area. 

40 (28) 4 GDTDBG Address of entry point for dump 
routine, IDCDBOl, (UDUMP macro). 

44 (2C) 4 GDTSTC Reserved---contains zero. 

48 (30) 4 GDTPRT Address of entry point to print, 
IDCIOPR, (UPRINT macro). 

52 (34) 4 GDTESS Address of entry point to establish 
PCT from Text Structure, IDCTPES, 
(UESTS macro). 

56 (38) 4 GDTESA Address of entry point to establish 
PCT from storage, IDCTPEA, 
(UEST A macro). 

60 (3C) 4 GDTRST Address of entry point to modify PCT, 
IDCTPRS, (UREST macro). 

64 (40) 4 GDTRES Address of entry point to reset PCT, 
IDCTPRE, (URESET macro). 

68 (44) 4 GDTCAL Address of entry point to call, 
IDCSACL, (UCALL macro). 

72 (48) 4 GDTGSP Address of entry point to get space, 
IDCSAGS, (UGSPACE macro). 

530 OS/VS2 Access Method Services Logic 



Offset 

76 (4C) 

80 (50) 

84 (54) 

88 (58) 

92 (5C) 

96 (60) 

100 (64) 

104 (68) 

108 (6C) 

112 (70) 

116 (74) 

120 (78) 

124 (7C) 

128 (80) 

132 (84) 

136 (88) 

140 (8C) 

144 (90) 

148 (94) 

152 (98) 

156 (9C) 

160 (AO) 

164 (A4) 

168 (A8) 

Bytes and 

Bit Pattem 


4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

Field Name 


GDTFSP 


GDTGPL 


GDTFPL 


GDTLOD 


GDTDEL 


GDTPRL 

GDTEPL 

GDTTIM 

GDTIIO 

GDTTIO 

GDTRIP 

GDTTOH 

GDTOPN 

GDTCLS 

GDTGET 

GDTPUT 

GDTPOS 

GDTCPY 

GDTCAT 

GDTABT 

GDTABH 

• 
GDTSNP 

GDTSPR 

Description: Content, Meaning, Use 

Address of entry point to free storage, 
IDCSAFS, (UFSPACE macro). 

Address of entry point to get storage, 
IDCSAGP, (UGPOOL macro). 

Address of entry point to free storage, 
IDCSAFP, (UFPOOL macro). 

Address of entry point to load module, 
IDCSALD, (ULOAD macro). 

Address of entry point to delete 
module, IDCSADE, (UDELETE 
macro). 

Address of entry point for prologue, 
IDCSAPR. 

Address of entry point for epilogue, 
IDCSAEP, (UEPIL macro). 

Address of entry point for time, 
IDCSATI, (UTIME macro). 

Address of entry point for I/O 
initialization, IDCIOIT, (UIOINIT 
macro). 

Address of entry point for I/O 
termination, IDCIOTM, (UIOTERM 
macro). 

Address of Reader/Interpreter 
name-either 'IDCRI01' or 
'IDCRI04'. 

Reserved---contains zero. 

Address of entry point to open data 
sets, IDCIOOP, (UOPEN macro). 

Address of entry point to close data 
sets, IDCIOCL, (UCLOSE macro). 

Address of entry point to get a logical 
record, IDCIOGT, (UGET macro). 

Address of entry point to put a logical 
record, IDCIOPT, (UPUT macro). 

Address of entry point to position to a 
logical record, IDCIOPO, (UPOSIT 
macro). 

Address of entry point to copy logical 
records, IDCIOCO, (UCOPY macro). 

Address of entry point for 
manipulating VSAM catalog, 
IDCSACA, (UCATLG macro). 

Address to abort, SAABT in 
IDCSA02, (UABORT macro). 

Address of UABORT register save 
area. 

Reserved---contains zero. 

Address of entry point to snap dump, 
IDCSASN, (USNAP macro). 

Address of IDCSA03'!i storage. 

Data Areas 531 

L 



Bytes and 
Offset Bit Pattern Field Name 	 Description: Content, Meaning, Use 

172 (AC) 4 GDTVFY 	 Address of entry point to VERIFY .Jdata set, IDCIOVY, (UVERIFY 
macro). 

176 (BO) 4 GDTCMB 	 Address of TSO command buffer 
obtained from TSO. 

180 (B4) 4 GDTUPT 	 Address of TSO user profile table 
obtained from TSO. 

184 (B8) 4 GDTPSB 	 Address of TSO protected step block 
obtained from TSO. 

188 (BC) 4 GDTECT 	 Address of TSO environment table 
obtained from TSO. 

192 (CO) 4 GDTUID 	 Address of entry point to obtain TSO 
user's identification, IDCSAID, (UID 
macro). 

196 (C4) 4 GDTPMT 	 Address of entry point to obtain 
information from TSO user 
IDCSAPT, (UPROMPT macro). 

200 (C8) 4 GDTCIR 	 Address of entry point to get 
fully-qualified data set names 
IDCSACR, (UCIR macro). 

204 (CC) 4 GDTLNK 	 Address of entry point to link to 
module IDCSALK, (UUNK macro). 

208 (DO) 4 GDTALC 	 Address of entry point to allocate a 
data set or mount a volume, 
IDCSAAL, (UALLOC macro). 

212 (D4) 4 GDTDLC 	 Address of entry point to deallocate a j
data set or dismount a volume, 
IDCSADL, (UDEALLOC macro). 

216 (D8) 4 GDTQAL 	 Address of t:ntry point to construct a 
fully-qualified data set name in TSO, 
IDCSAQL, (UQUAL macro). 

220 (DC) 4 GDTSTW 	 Address of entry point to stow a 
member name of a partitioned data 
set, IDCIOST, (USTOW macro). 

224(EO) 4 GDTSSC 	 Address of entry point to perform 
Mass Storage Control (MSC) 
functions, IDCSA06 (USSC macro). 

228(E4) 4 GDTENQ 	 Address of entry point to acquire 
control of a resource, IDCSANQ 
(UENQ macro). 

232(E8) 4 GDTRSV 	 Address of entry point to acquire 
control of an I/O unit, IDCSARV 
(URESERVE macro). 

236(EC) 4 GDTDEQ 	 Address of entry point to release a 
resource IDCSADQ (UDEQ macro). 

240(FO) 4 GDTSFO 	 Address of entry point to obtain 
system control-block information, 
IDCSASI (USYSINFO macro). 

244(F4) 4 GDTWTO 	 Address of entry point to write a 
message to the console operator, 
IDCSAWO (UWTO macro). 

248(F8) 4 GDTSCR 	 Address of entry point to delete a j
direct-access data set, IDCSASC 
(USCRATCH macro). 

532 OS/VS2 Access Method Services Logic 



Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

2S2(FC) 4 GDTUNT Address of entry point to mount, 
demount, post, or check a volume, 
lDCSA06 (UMSSUNIT macro). 

2S6(100) 4 GDTRCT Address of entry point to recatalog a 
nonVSAM data set, lDCSARC 
(URECAT macro). 

260(104) 4 GDTIFO Address of entry point to obtain 
data-set information, lDCIOSI 
(UIOINFO macro). 

264(108) 4 GDTEXP Address of entry point to open, close, 
read, or write a volume with EXCP, 
lDCIOOS (UEXCP macro). 

268(10C) 4 GDTSTA Address of entry point to perform 
ABEND recovery, lDCSAlO (USTAE 
macro). 

272(110) 4 GDTERR Address of entry point to convert 
numeric return codes, (UERROR 
macros). 

276(114) 4 GDTUNC Address of entry point to uncatalog 
and scratch a data set, IDCSAUC 
(UUNCATLG macro). 

280(118) 4 GDTLOC Address of entry point to locate a 
VSAM data set, IDCSALC (ULOCATE 
macro). 

284(11C) 4 GDTRCK Address of entry point to obtain RACF 
authorization, IDCSA08 (URACHECK 
macro). 

Data Areas 533 



IPT 
Input Parameter Table 

The Input Parameter Table is a parameter list passed by IDCRCOI to 
IDCRC02 within EXPORTRA. It is an array of five pointers. Each object 
pointed to is described after the IPT pointers. 

Created by Modified by Used by Size 
.

IDCRCOI IDCRC02 IDCRC02 20 

Bytes and 
Offset Bit Pattern Field Name Description: Content, MeanIng, Use 

0(0) 4 Address of control block describing 
the object to be exported. 

4(4) 4 Address of control block describing 
the output (portable) data set. 

8(8) 4 Address of the input data set name. 

12(C) 4 Address of the output data set name. 

16(10) 4 Address of the environment 
parameter. 

Description of control block describing object to be exported. 

0(0) OBJTYP Type of object. 

1(\) .3 OBJVAL The catalog control interval number of 
the entry. 

4(4) 4 RESINP Reserved 

8(8) OBJPLN Password length. 

9(9) 8 OBJPAS Password 

Description of control block describing output (portable) data set. 

0(0) 4 OUTLEN Maximum record length of data 
component. 

4(4) 4 SAVOIOCS Pointer to output IOCS. 

8(8) 4 USBKSZ User supplied output blocksize. 

12(C) 4 RESOUTP Reserved. 

16(10) OUTFLGS Status of output data set. 
1....... OPNFLG This flag is on if output data set is 

open. 
.1. ..... ENDFLG This flag is on if this is the last request. 
.. 1. .... EMPTYDS This flag is on if the object contains no 

data records. 

The third pointer in the IPT points to an 8-byte input dname. 

The fourth pointer in the IPT points to an 8-byte output dname. 

The fifth pointer in the IPT points to an 8-byte field describing the prime data device 
(PDEV subparameters). 

534 OS!VS2 Access Method Services Logic 



IODATA 
110 Adapter Historical Area 

The I/O Adapter historical area is pointed to by GDTIOH. It is built on the 
first call to the I/O Adapter (UIOINIT Umacro), and contains information 
that is common to all modules of the I/O Adapter. 

Created by Modified by 	 Used by Size 

IDCIOOI IDCIOOI 	 IDCIOOI 68 

IDCI002 


Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 	 4 10DIOC First 10CSTR in chain. 

4 (4) 	 4 IODMSG Address of an area for VSAM 
messages. 

8 (8) 4 IODADD Address of the alternate DD list. 

12 (C) 4 10DXTN Address of the external I/O routine 
list. 

16 (10) 	 4 10DSID Identifier containing: 

2 10DMID Module identifier. 

.. 2 IODINC Pool identifier. 

20 (14) 4 10DIEV Address of input End-of-Volume exit 
routine. 

24 (18) 4 IODOEV Address of output End-of-Volume exit 
routine. 

28 (1C) 4 * Reserved--contains zero. 

32 (20) 4 10DEOD Address of end-of-data routine for 
non-VSAM data sets. 

36 (24) 4 10DOSS Non-VSAM input SYNAD routine 
address. 

40 (28) 4 10DOSO Non-VSAM output SYNAD routine 
address. 

44 (2C) 4 10DICS Address of Access Method Services 
input IOCSTR. 

48 (30) 4 10DOCS Address of the Access Method 
Services output 10CSTR. 

52 (34) 4 IODIOX Address of the EXCP control-block 
chain. 

56 (38) 4 * Reserved--contains zero. 

60 (3C) 4 IODAEI Address of VSAM EO DAD routine. 

64 (40) 4 * Reserved--contains zero. 

Data Areas 535 

L 



IOCSTR 
Input/Output Communications Structure 

An 10CSTR exists for each open data set, or for any on which an open has 
been attempted. It contains all information about the data set that may be 
required by the processor. An 10CSTR is built at open time, and a pointer to 
the 10CSTR is returned to the requester of the open, in the OPNIOC field of 
the OPNAGL. A UGPOOL area immediately precedes the 10CSTR. The 
UGPOOL area contains the identifier assigned to the data set by the I/O 
Adapter. All other requests for I/O service include this 10CSTR as one of the 
parameters for the request. 

Created by Modified by Used by 	 Size 

IDCI002 All routines All routines 	68 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

-4 (-4) 4 * 	 Always contains 'IOCS'. 

0(0) 4 IOCDAD 	 Address of data area. 

4 (4) 4 IOCDLN 	 Length of data record. 

8 (8) 4 IOCTRN 	 Transmission length: LRECL for 
logical processing or control interval 
for block processing. 

12 (C) IOCKYL 	 Key length in bytes. 

13 (D) .3 IOCRKP 	 Relative key position, value assumes 
VSAM or ISAM meaning. 

16 (10) IOCDSO 	 Data set organization: ~ 
1. ...... IOCDSOAM VSAM data set. 

.1. ..... IOCDSOPS Non-VSAM sequential data set 


(QSAM or BSAM). 
.. 1. .... IOCDSOIS Indexed sequential (lSAM) data set. 
... 1 .... IOCDSOPO Partitioned (BP AM) data set. 

17 (t 1) . I IOCRFM 	 Non-VSAM record format: 

I ....... IOCRFMFX Fixed-length records. 

.1 ...... IOCRFMVR Variable-length records, not spanned. 

.. 1. .... IOCRFMUN Undefined-length records. 

... 1 .... IOCRFMSF Spanned records. 

.... I ... IOCRFMBK Blocked records . 


18 (12) .. I IOCMAC 	 Macro form used: 

I ....... IOCMACIN Input processing. 

.1 ...... IOCMACOT Output processing. 

.. 1. .... IOCMACUP Update processing . 

... 0 .... IOCMACCR Keyed sequence (VSAM). 

... 1 .... Entry sequence (VSAM) . 

.... 0 ... IOCMACBK Logical records (QSAM or QISAM). 

.... 1. .. Blocks or control intervals (BSAM, 


BPAM, or VSAM). 

.....0 .. IOCMACDR Sequential data set . 

..... 1 .. Direct data set. 

.... .. 1. IOCMACCC Copy catalog . 


19(13) ... 1 IOCMAC2 

I ....... IOCMACSK Skip sequential processing. 

. 1 ...... IOCMACAS Asynchronous processing . 

.. 1. .... IOCMACRR Relative record processing. 

... 1 .... IOCMACCP Change processing. 


536 OS!VS2 Access Method Services Logic 



Bytes and 
Offset Bit Pattern Field Name 	 Description: Content, Meaning, Use 

.... I... IOCMACEN 	 PUT-ENDREQ processing 
(YS2.03.808) 

.... . 1.. IOCMACPA 	 Reprocessing flag . 

...... 1. IOCMACER 	 PUT-ERASE processing (YS2.03.808) . 

....... 1 IOCMACNT 	 NOTE processing (YS2.03.808) 


20(14) IOCCHP 	 Change processing mode: 

I....... IOCCHPSQ Change to sequential. 

.1. ..... IOCCHPDR Change to direct. 

.. I. .... IOCCHPSK Change to skip sequential. 

... 1 .... IOCCHPKS Change to keyed . 

.... I... IOCCHPCR Change to addressed . 

..... 1 .. IOCCHPBK Change to control interval. 

...... 1. IOCCHPUP Change to update (YS2.03.808). 

....... 1 IOCCHPNU Change to no update (YS2.03.808) 


21 (t 5) . 1 IOCMSG 	 Message flags: 

I. ...... IOCCHPKE Change to key equal (YS2.03.808). 
.1 ...... IOCCHPKG Change to key greater than or equal 

(YS2.03.808). 
.. 1..... IOCMSGOP Data set is open for processing . 
... 1 .... IOCMSGOE VSAM open error. 
.... 1 ... IOCMSGCE VSAM close error. 
.... . 1.. IOCMSGAE VSAM error other than open or close. 
...... 1. IOCMSGSM Suppress logical error messages 

(YS2.03.808) 

22(16) .. 6 IOCVOLSR 	 Volume serial number of the opened 
data set. 

28(1 C) 4 IOCHURBA 	 High used RBA. 

32 (20) 4 IOCDSN 	 Address of data set name. The data set 
name usually follows the IOCSTR 
extension. 

36 (24) 4 IOCCBP 	 Address of ACB or DCB if 
OPNMODRC is set. 

40 (28) 4 * 	 Either IOCRBA, IOCTTR, or 
IOCVRC: 

4 IOCRBA 	 VSAM record relative byte address 
RBA). 

4 IOCTTR 	 Track and record number (TTR) for 
UPOSIT macro. 

4 IOCVRC 	 VSAM error codes. 

44 (2C) 4 * 	 Either IOCMEM or IOCKY A: 

4 IOCMEM 	 Address of member name for BP AM 
data set. 

4 IOCKYA 	 Address of key. 

48 (30) 4 * 	 Either IOCNWM or IOCPTL with 
IOCPNM: 

4 IOCNWM 	 Address of new member name for 
BPAM data set. 

2 IOCPTL 	 Length of key supplied for position 
request. 

.,2 IOCPNM Number of stacked puts . 

52 (34) 4 IOCRRN Relative record number. 

Data Areas 537 

L 



Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

56(38) 4 IOCWORK Address of input work area. ~ 6O(3C) 4 IOCREL Relative record number. 

64 (40) 4 IOCEXT IOCSTR extension address. 

538 OS!VS2 Access Method Services Logic 



IOCSEX 
Input/Output Communications Structure Extension 

The IOCSTR Extension is built immediately after the IOCSTR. However, for 
flexibility and to make the IOCSTR easily extensible, field IOCEXT points to 
the IOCSEX. 

Created by ,Modified by Used by !Size 

IDCI002 lI~CIOOI IDCIOOI 145 
Bytes and 

Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 4 IOCCBA Address of ACB or DCB. 

4 (4) 4 * Either IOCRPL or IOCDEC: 

4 IOCRPL Address of VSAM RPL. 

4 IOCDEC Address of update DECB. 

8 (8) 2 IOCCBL Length of ACB or DCB. 

10 (A) .. 2 IOCLRP Length of RPL. 

12 (C) 4 IOCWKA Address of input workarea. 

At decimal displacements 16 and 20, one of the two following sets of fields appears: 

Set one: 

16 (10) 4 IOCXAD User routine address. 

20 (14) 4 IOCXPM User routine parameter address. 

Set two: 

16 (10) 4 IOCEXA VSAM exit list address. 

20 (14) 2 IOCEXL VSAM exit list length. 

22 (16) .. 2 * Reserved--contains zero. 

The data area then continues as follows. 

24 (18) 4 IOCNIO Address of next IOCSTR in chain. 

28 (lC) 4 IOCSID Storage pool identifier. 

32 (20) IOCFLG Extension flags: 

I. ...... IOCFLGEX User controlled data set. 

.1 ...... IOCFLGDF Data set defined by JCL. 

.. 1 ..... IOCFLGEF End-of-file on user data set. 

... 1 .... IOCFLGIO DD * or SYSOUT data set. 

.... I... IOCFLGOP Data set is open. 

.....x .. IOCFLGOE Reserved--contains zero. 

...... 1. IOCFLGSP Access Method Services print data set. 


33 (21) . 1 IOCDEV Device type flags: 

I ....... IOCDEVDA Direct access. 
.1 ...... IOCDEVMT Magnetic tape. 
.. 1 ..... IOCDEVUR U nit record. 

34 (22) .. I IOCINF Information flags: 

1....... IOCINFPT Point has been issued. 

.1. ..... IOCINFAE ABEND exit taken. 

.. x ..... IOCINFND ReServed--contains zero. 

... x .... IOCINFQX Reserved--contains zero . 

.... 1... IOCINFAC ANSI control character. 

.....x .. IOCINFDO Reserved in OS/VS--contains zero. 

...... 1. IOCINFCT Opened as a catalog. 

.... ... x IOCINFRI Reserved--contains zero . 


Data Areas 539 



Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

35 (23) ... I IOCMOD Additional information flags: 

I....... IOCMODPD Process dummy (deleted) records. 
.1......• IOCMODRR Return the RPL address. 
.. 1. ..... IOCMODDY Dynamically allocated data set. 
... 1 .... IOCMODRG DSORG specified. 
.... I... IOCMODUB User buffering . 
..... 1.. IOCMODXM Export/I mport. 
...... 1. IOCMODRP Replace Processing. 
....... 1 IOCMODEX Exclusive Control. 

36 (24) 4 IOCDLM Reserved in OS/VS--contains zero. 
(without VS2.03.8(8) 

IDOCDDN Pointer to DDname (with VS2.03.8(8) 

40 (28) 2 IOCDNM Reserved in OS/VS--contains zero. 

42 (2A) .. 2 * Reserved-contains zero. 

44 (2C) IOCRCV Recovery Flags. 

I....... IOCRCVXM VSAM recovery flag. 
.1. ..... IOCRCVRA OpenCRA. 

540 OS!VS2 Access Method Services Logic 



IOXCTLBK 
Input/Output Control Block for EXCP 

The IOXCTLBK is built when a data set is opened with UEXCP. It is used 
throughout all processing until the data set is closed with UEXCP. 

Created by Modmedby Used by Size 

IDCIOOS IDCIOOS IDCIOOS Variable 

Offset 
Bytes and 
Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 4 10XCHAIN Contains either 0 or the address of the 
previous 10XCTLBK. 

4(4) 8 10XID Identifies the control block in a dump 
with the characters 'IOXCTLBK'. 

l2(C) 4 10XWRITE Contains the number of new records 
written. 

16(10) 4 10XREADS Contains the number of records read. 

20(14) 2 IOXACODE Contains the ABEND code for 
OPEN/CLOSE. 

22(16) ..2 IOXRCODE Contains the return code for 
OPEN/CLOSE. 

24(18) IOXTYPE Contains the type of EXCP open 
request: X'tO' for volume label, X'20' 
for MSC tables, X'30' for password 
checking, and X'40' for new volume. 

2S(19) .1 10XFLGS Flags: 

1....... 
.1...... 
.. 1. .... 
... 1 .... 

10XOPN 
10XABEND 
10XCLOSE 
10XSYNAD 

DCB opened. 
Password abend exit entered . 
DCB closed. 
SYNADerror occurred . 

26(1A) .. 2 * Reserved-contains zeros . 

28(1 C) 8 IOXDDN Eight-byte DD name. 

36(24) 4 IOXDCBID Identifies the DCB in a dump with the 
characters'DCB!;'. 

40(28) v IOXDCB Contains the DCB for the data set. 

4 IOXECBID Identifies the control block in a dump 
with the characters 'ECBtl'. 

8 10XECB Contains the code posted by the I/O 
supervisor and the address used by the 
I/O Supervisor. 

4 10XIOBID Identifies the control block in a dump 
with the characters 'lOB!;'. 

v IOXIOB Contains the I/O control block used 
by EXCP. 

4 IOXJFCBI Identifies the job file control block 
(JFCB) in a dump with the characters 
'JFCB'. 

200 10XJFCB Contains the job file control block 
(JFCB). 

Data Areas 541 

L 



Bytes ud 
Ofrset Bit Pattern Field Name Description: Content, Meaning, Use 

40(28) 4 IOXEXID Identifies the control block in a dump 
(Cont.) with the characters 'XLST'. ..) 

Reserved---contains zeros. * 
.3 IOXJFCBP 	 Address of the altered job file control 

block (JFCB). 

4 	 Reserved---contains zeros. * 
4 IOXUCBP Address of the UCB. 

4 IOXCCWID Identifies the control block in a dump 
with the characters 'CCWt>'. 

1000 IOXCCWS Array containing the CCWs. 

400 IOXCOUNT Array containing record count fields 
for records to be written. 

542 OS/VS2 Access Method Services Logic 



Inter-Module Trace Table 

The Inter-Module Trace Table contains information on the flow of control 
between modules. The table is pointed to by GDTTRl. The oldest identifier 
is at the beginning of the table. The latest identifier is at the end of the table. 
Each time a UPROL or UEPIL macro is issued the oldest identifier is 
removed and the new identifier is added at the end. A UPROL adds the 
identifier of the current module. A UEPIL adds the identifier of the module 
to which control is being returned. The UDUMP macro prints the table on 
SYSPRINT. 

Created by 	 Modified by IUsed by Size 

mCSAO} 	 UEPIL ImCDBO} tOO 
UPROL macros 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

-6 (-6) 	 Table identification 'INTERb'.6 * 
0(0) tOO * 	 Inter-Module Trace Table with 20 

entries. 

Each entry contains the following: 

4 * 	 Identifier provided by module issuing 
UEPIL or UPROL macros. The 
identifier is the last four characters of 
the module name. 

Blank 'b'.* 

Data Areas 543 



Intra-Module Trace Table 


The Intra-Module Trace Table contains information on the flow of control 
within modules. The table is pointed to by GDTTR2. The oldest identifier is 
at the beginning of the table. The latest identifier is at the end of the table. 
Each time a UTRACE is issued the oldest identifier is removed and the new 
identifier is added at the end. The UDUMP macro prints the table on 
SYSPRINT. 

Created by Modified by Used by Size 

IDCSAOI UTRACE macro IDCDBOI 100 

Bytes IIId 
Offset BIt Pattera FIeld Name Description: Content, Meaning, Use 

-6 (-6) 6 • Table identification 'INTRAb', 

0(0) 100 • Intra-Module Trace Table with 20 
entries, 

Each entry contains the following: 

4 • Identifier provided by module issuing 
UTRACE, The first two characters are 
the mnemonic identifier which are 
characters 4 and 5 of the module 
name. For example, EX refers to the 
Executive, 

• Blank 'b', 

544 QS{VS2 Access Method Services Logic 



LLBLK 
Load List Block 
(VS2.03.807 only) 

The Load List Block contains an entry for each module loaded by UCALL, 
ULOAD, and UUNK. It is used to control the loading and deleting of 
modules used by Access Method Services. 

Created by Modified by Used by Size 
------------------ ----- ------------- --- ----f--------- --- -- -- ------- ----

mCSAOI mCSA02 mCSA02 392 
mCSA02 mCSA03 mCSA03 

Bytes and 
Offset Bit Pattern . Field Name Description: Content, Meaning, Use 

0(0) 4 LLFSTSLT Address of first available slot; zero if 
no slots available. 

4 (4) 4 LLNXTBLK Pointer to next Load List Block. 

8 (8) 16 LLSLOT Load List Slot (24 per block). 

Each available inactive slot contains the following: 

8 (8) 4 LLNXTSLT Pointer to next available slot; zero if 
last slot in block. 

12 (C) 4 LLNOMOD Contains binary zeros. 

Each active slot contains the following: 

8 (8) 8 LLNAME Name of loaded module in EBCDIC. 

16 (10) 4 LLADDR Entry point or address of loaded 
module. 

20 (14) LLUSECTR Module use count; if zero, module is 
not in use. 

21 (15) 3 LLMODSZ Size of module. 

Data Areas 545 



LCTINFO 
Locate Data Set Return Information Area 

LCTINFO is an area a caller passes when a ULOCA TE macro is issued. 
Information about a nonVSAM data set is returned to the caller in this area. 

Created by IModified by IUsed by SIze 

Calling routine lmCSA07 lmCSA07 33 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 8 LCTHEAD Initialized with 'LCTINFO' by 
ULOCATE. 

8 (8) 4 LCTMULVC Number of volumes for this data set 
entry in the catalog. 

12 (C) 4 LCTACBP Pointer to the ACB. 

16 (10) 4 LCTCREAT VSAM creation date 

20 (14) 4 LCTEXPIR VSAM expiration date 

24 (18) 8 OCT OWNER Catalog entry owner name. 

32 (20) LCTFLAGS Return flags. 
1. ...... LCTVSCAT VSAM catalog entry. 

546 OS!VS2 Access Method Services Logic 



IDCRIKT 
Modal Verb and Keyword Symbol Table 

Load module IDCRIKT contains the Modal Verb and Keyword Symbol 
Table, which acts as the "Command Descriptor" for the modal commands. 

Created by ModHied by Used by Size 
-

IBM-Supplied None mCRlOl 90 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) PARMSMLN Length of P ARM character string. 

1(1) . 9 PARMSYM P ARM character string . 

10 (A) · . 1 SETSMLN Length of SET character string. 

11 (13) ... 9 SETSYM SET character string. 

20 (14) IFSMLN Length of IF character string. 

21 (15) . 9 IFSYM IF character string . 

30 (IE) · . 1 THENSMLN Length of THEN character string. 

31 (IF) ... 9 THENSYM THEN character string . 

40 (28) ELSESMLN Length of ELSE character string. 

41 (29) .9 ELSESYM ELSE character string. 

50 (32) · . 1 DOSMLN Length of DO character string. 

51 (33) ... 9 DOSYM DO character string. 

60 (3C) ENDSMLN Length of END character string. 

61 (30) .9 ENDSYM END character string. 

70 (46) · . 1 LSTCCLN Length of LASTCCcharacter string. 

71 (47) ... 9 LSTCCSYM LASTCC character string. 

80 (50) MAXCCLN Length of MAXCC character string. 

81 (51) .9 MAXCCSYM MAXCC character string. 

Data Areas 547 



MDAGL 
Mount/Demount Argument List 

The MDAGL is passed when a UMSSUNIT macro is issued with a mount or 
demount request. It defines a request to mount or demount a mass storage 
volume. 

Created by IModlfled by Used by 	 Size 

Calling routine iIDCSA06 IDCSA06 	 31 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 8 MDHEAD 	 Set by IDCSA06 with 'MOUNTt;t;t;' 
for a mount request or 'DEMOUNTt;' 
for a demount request. 

8(8) 4 MDUCBPTR 	 Address of an area containing the 
UCB address or zeros if the UCB 
address is unknown. If the UCB 
address is zeros, the UCB address will 
be put in the area upon return. 

12(C) 8 MDDONAME 	 DO name of the volume. 

20(14) 4 MDPUAGL 	 Address of an initialized PUAGL 
argument list if bits MDPOST or 
MDCLEAR are set. 

24(18) 6 MOLABEL 	 Volume serial number recorded in the 
MSC tables. 

30(1 E) .. 1 MOFLAGS 	 Mount/demount options: 

1....... MDNEWVOL Indicates that the volume to be ~ 
mounted does not have a volume label 
or a VTOC. This field is ignored on a 
demount request. 

.1. ..... MDCLEAR 	 Indicates that the caller wants to clear 
the volume serial from a UCB prior to 
the mount function. This field is 
ignored on a demount request. 

.. 1. .... MDPOST 	 Indicates that the caller wants to post 
the volume serial number in a UCB 
after the demount function. This field 
is ignored on a mount request. 

... 1 .... MOWAIT 	 Indicates that the caller wants a 
demount with delayed response to be 
issued. This field is ignored on a 
mount request. 

...• 1... MDENQ Indicates that an enqueue was done by 
IDCSA06 as part of a mount request. 

..... 1.. MDDEQ Indicates that the volume should be 
dequeued when demounted . 

• 

548 OS/VS2 Access Method Services Logic 



OPNAGL 
Open Argument List 

The OPNAGL defines a request to open a data set. The address of the 
OPNAGL is passed as a parameter to the I/O Adapter from any routine that 
requires the open function. 

Created by Modified by 

Routine that IDCI002 
requests an open 

Bytes and 
Offset Bit Pattern 

0(0) 

1....... 
· I ...... 
.. I ..... 
... 1 .... 
.... 1. .. 
.... . 1 .. 
.... .. 1. 
.... ... 1 

1(1) · 1 

1. ...... 
.1...... 
.. 1. .... 
... 1 .... 
.... 1. .. 

2 (2) · . 1 

I ....... 


.1. ..... 

.. 1..... 

... 1 .... 

.... 1. .. 

..... I.. 

...... 1. 

••••••. 1 

3 (3) · .. 1 

I. ...... 

. 1 ...... 

.. 1..... 

... 1 .... 

.... I. .. 

..... 1.. 

.... .. 1. 

....... I 


4 (4) 4 

Used by 

IDCI002 

Field Name 

OPNOPT 

OPNOPTIN 
OPNOPTOT 
OPNOPTUP 
OPNOPTBK 
OPNOPTKS 
OPNOPTCR 
OPNOPTDR 
OPNOPTSK 

OPNRFM 

OPNRFMFX 
OPNRFMVR 
OPNRFMUN 
OPNRFMSF 
OPNRFMBK 

OPNTYP 

OPNTYPSI 

OPNTYPSO 

OPNTYPCI 
OPNTYPXM 
OPNTYPRA 
OPNTYPEX 

OPNTYPRV 

OPNTYPSY 

OPNMOD 

OPNMODPD 

OPNMODAC 
OPNMODRC 
OPNMODRR 
OPNMODAX 
OPNMODRS 
OPNMODUB 
OPNMODRP 

OPNIOC 

Size 

48 

Description: Content, Meaning, Use 

Open options (determine data set 

usage): 


Input data set. 

Output data set. 

Update mode of processing . 

Block processing. 

Keyed processing. 

Addressed processing . 

Direct processing . 

Skip sequential processing . 


Non-VSAM output record format. 

Required in DOS/VS; optional 

OS!yS: 


Fixed. 

Variable. 

Undefined. 

Spanned. 

Blocked . 


Data set type: 


System input (SYSIN) is to be opened. 

OPNIOC is the only other required 

field. 

System output (SYSPRINT) is to be 

opened. OPNIOC is the only other 

required field. 

Catalog to be opened. 

Export/import data set to be opened. 

Catalog Recovery Area. 

Data set is to be opened for exclusive 

control. 


VSAM recovery processing. 


Bypass security checking (VS2.03.807) 


Open modifiers: 


Process ISAM dummy (deleted) 

records. 

ANSI control character. 

Return control block address . 

Return RPL address. 

Open alternate index . 

Open with reset. 

User buffering . 

Replace processing. 


Address of pointer of IOCSTR. This 

field is always present. After a 

successful open, the pointer contains 


Data Areas. 549 



Bytes and 
Offset Bit Pattem Field Name Description: Content, Meaning, Use 

the address of the 10CSTR built by the 
I/O Adapter. ..J 

8 (8) 4 OPNDDN 	 Address of eight-byte DD name (not 
present when SYSIN or SYSPRINT is 
being opened but required at all other 
times). 

12 (C) 4 OPNPWA 	 Address of an optional eight-byte 
password, used only with VSAM data 
sets. 

16 (10) 4 OPNDSN 	 Address of 44-byte data set name. 

20 (14) 4 	 Reserved--contains zero. '" 
24 (18) 4 OPNDEVDT 	 Address of data device type. 

28 (lC) 4 OPNDEVIX 	 Address of index device type. 

32 (20) 4 OPNREC 	 Logical record length, optional. 

36 (24) 4 OPNBLK 	 Block size, optional. 

40 (28) OPNKYL 	 Key length. 

41 (29) . 1 OPNDSO 	 Data set organization: 

I....... OPNDSOAM VSAM. 

.1 ...... OPNDSOPS non-VSAM. 

.. 1. .... OPNDSOIS Indexed sequential (ISAM). 

... 1 .... OPNDSOPO Partitioned (BPAM). 


42 (2A) .. 1 OPNOPT2 	 Second option byte. 

I. ...... OPNOPTAS Asynchronous processing. 
.. 1..... OPNOPTJM Modify JFCB. 

43 (2B) ... \ 	 Reserved--contains zeros. (without '" 
YS2.03.808) 

OPNSTRNO Number of strings. (with YS2.03.808) 

44 (2C) 4 OPNVOL 	 Pointer to volume serial number. 

550 OSNS2 Access Method Services Logic 



OCARRAY 
Open Close Addres~ Anay 

The Open Close Address Array is used to pass the address of the OPNAGL 
or IOCS for up to four data sets at once from IDCIOOI to IDCI002. It is 
used within the I/O Adapter. 

Created by Modified by Used by ISize 

IDCIOOI None IDCI002 20 
1 

Bytes and 
Offset Bit Pattern FleIdName Description: Content, Meaning, Use 

0(0) OCATYP Type of operation: 1 means open, 2 
means close. 

1 (1) . 1 OCAOPT Options: 

1....... OCAOPTCA Close all open data sets. 

2 (2) .. 1 OCANUM Number of data sets to open . 

3 (3) ... 1 * Reserved--contains zero. 

4 (4) 4 OCADDRI Address of first OPNAGL for open or 
address of first IOCSTR for close. 

8 (8) 4 OCADDR2 Address of second OPNAGL for open 
or address of second IOCSTR for 
close. 

12 (C) 4 OCADDRJ Address of third OPNAGL for open or 
address of third IOCSTR for close. 

16 (10) 4 OCADDR4 Address of fourth OPNAGL for open 
or address of fourth IOCSTR for close. 

Data Areas 551 

L 



OPRARG 
Positioning Argument List 

OPARG contains the address of the IOCSTR for a data set that is to be 
positioned or for a partitioned data set whose directory is to be altered. It is 
used within the I/O Adapter. 

Created by Modified by Used by 	 ISize 

IDCIOO} None IDCI003 112 
Bytes and 

Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) OPRTYP 	 Type of operation: 1 indicates 
positioning; 2 indicates alter a 
partitioned data set directory; 3 
indicates return information 
(UIOINFO). 

1(1) · } OPRPNO 	 Number of arguments passed to 
UIOINFO. 

2 (2) · . } 	 OPROPT Option byte. 

...3 (3) · .. } 	 Reserved-contains zeros. 

4 (4) 4 OPRICS 	 Address of input IOCSTR (the data set 
to be positioned). 

8 (8) 4 OPROCS Address of output IOCSTR (the data 
set to be positioned). 

552 OS!VS2 Access Method Services Logic 



PUAGL 
Post UeB Argument List 

The PUAGL is passed when a UMSSUNIT macro is issued with a post 
request. It defines a request to post a specific UeB. 

Created by Modified by Used by Size 

Calling routine IDCSA06 IDCSA06 20 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 8 PUHEAD Set with 'POSTUCBt, by IDCSA06. 

8(8) 4 PUUCBPTR Address of the UCB TO BE posted. 

12(C) 4 PUTTRPTR Address of the four-byte TTR to the 
VTOC to be posted in the UCB. 

16(10) 4 PULABELP Address of the six-byte volume serial 
number to be posted in the UCB. 

Data Areas 553 

L 



PCARG 
Print Control Argument List 

The Print Control Argument List is used to build a PCT (Print Control 
Table). This list is an argument of the UESTS macro or the UESTA macro, 
used to establish a PCT. The list is in a static text module or in storage. 

Created by Modified by Used by Size 

Calling routine None IDCTP04 33 

Offset 
Bytes and 
Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 4 PCMTLP If PCARG is in a static text module, 
this is an offset from the beginning of 
the PCARG to a main title line" 
fully-formatted. If PCARG is in 
storage, this is the address of a main 
title line, fully-formatted. 

4 (4) 4 PCSTLP If PCARG is in a static text module, 
this is an offset from the beginning of 
the PCARG to one, two, or three 
contiguous, fully-formatted lines for 
the subtitle. If PCARG is in storage, 
this is the address of subtitle lines. The 
first byte of each line contains the 
spacing character (0, 1,2, or 3), and 
the number of lines is found in 
PCSTLC. 

8 (8) 4 PCFLP 	 If PCARG is in a static text module, 
this is an offset from the beginning of ~ 
the PCARG to one, two, or three 
contiguous, fully-formatted footing 
lines. If PCARG is in storage, this is 
the address of footing lines. The first 
byte of each line contains the spacing 
character (0,1,2, or 3), and the 
number of lines is found in PCFLC. 

12 (C) 4 PCPCP 	 If PCARG is in a static text module, 
this is an offset from the beginning of 
the PCARG to a 256-byte print chain 
translate table. If PCARG is in 
storage, this is the address of a 
256-byte print chain translate table. 

16 (to) 2 PCPNL 	 Print column number where the page 
number field begins. 

18 (12) .. 2 PCPTL 	 Time field location . 

20 (14) 2 PCPDL 	 Date field location. 

22 (16) .. 2 PCMTLC 	 Number of lines at PCMTLP. 

24 (18) 2 PCSTLC 	 Number of lines at PCSTLP. 

26 (tA) .. 2 PCFLC 	 Number of lines at PCFLP. 

28 (tC) 2 PCLW 	 Print line width. 

30 (1E) .. 2 PCPD 	 Page depth . 

32 (20) PCDSC 	 Default space character, used when 
space character is not given; invalid, or 
on overflow. Valid values are 1,2, or ..J 
3. 

554 OS!VS2 Access Method Services Logic 



PCT 
Print Control Table 

The Print Control Table contains the current page specifications for printing: 
page width and depth, pointers to heading and footing lines, etc. One PCT, 
called the primary PCT, contains the default values established at processor 
initialization time. An optional PCT, called the secondary PCT, contains page 
specifications that are unique to a particular FSR, and is cleared between 
commands. Both PCTs have the same format. 

Created by Modified by I Used by 

IDCTP04 IDCTP05 IIDCTPOI 
IDCTPOI 

Bytes and 
Offset Bit Pattern Field Name 

0(0) 4 PCTION 

4 (4) 4 PCTFLG 

1. ...... PCTHIF 

.1...... PCTH2F 

..1. .... PCTHAF 

... 1 .... PCTLLM 

.... 1. .. PCTAPF 

8 (8) 4 PCTSPP 

12 (C) 4 PCTIOC 

16 (10) 2 PCTCPN 

18 (12) .. 2 PCTNLI 

20 (14) 4 PCTIOS 

24 (18) 2 PCTSPN 

26 (lA) .. 2 PCTSNL 

28 (IC) 4 PCTIOP 

32 (20) 2 PCTAPN 

34 (22) .. 2 PCTANL 

36 (24) 8 PCTSTM 

Size 

112 

Description: Content, Meaning, Use 

Identification field: the primary PCT 
contains "pcn" in this field; the 
secondary PCT contains "PCT2". 

Action flags: 

A new header is being entered. This 
bit is set by IDCTP05 and reset by 
IOCTPOI as soon as the first header 
line is printed. 
More than one header line is to be 
saved. This bit is set when the first line 
is printed by IOCTPOI and reset when 
the last line has been printed. The 
count in PCTHLC controls this bit. 
A header has been set up . 
Last line was a message. 
Alternative print file flag. 

Address of secondary PCT. This field 
is ignored in the secondary PCT. 

Address of IOCSTR to be used with 
UPUT macro. 

Current page number on active data 
set. 

Next absolute line number on the 
current page of active data set. 

Address of IOCSTR for SYSPRINT. 

Current page number on standard data 
set. 

Next absolute line number on the 
current page of standard data set. 

Address of IOCSTR for alternative 
print data set. 

Current page number on alternative 
data set. 

Next absolute line number on the 
current page of alternative data set. 

Name of the Static Text module 
presently in virtual storage. 

Data Areas SSS 



Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

44 (2C) 4 PCTSME Entry point for Static Text module 
presently in virtual storage. 

48 (30) 4 PCTSQP Address of queue of format structures 
that are retained until the completion 
of the function or the issuance of a 
URESET. 

52 (34) 4 PCTAHP Address of the last header line that 
was used, needed on an overflow. 

56 (38) 4 PCTMLP Address of main title lines, already 
fully formatted. 

60 (3C) 4 PCTSLP Address of subtitle lines, already fully 
fOt'matted. 

64 (40) 4 PCTTRP Address of translate table. 

68 (44) 4 PCTPLW Print line width for the output device. 

72 (48) 2 PCTMLC Number of main title lines. 

74 (4A) .. 2 PCTSLC Number of subtitle lines. 

76 (4C) 4 PCTFLP Address of footing lines, already fully 
formatted. 

80 (50) 2 PCTFLC Number of footing lines. 

82 (52) .. 1 PCTHLC Number of heading lines. 

83 (53) ... 1 PCTHSC Total number of lines consumed by the 
currently active header and the first 
data line. 

84 (54) 2 PCTPNL Page number location in the main title 
line. 

86 (56) .. 2 PCTPMN Signals that this is a message. Before 
writing a message it contains -1. 
During writing a message it contains 
the message number. 

88 (58) 2 PCTAPC "Floating" print column number, used 
with blank suppression. 

90 (5A) .. 2 PCTPPD Total number of lines and spaces that 
may be printed on one page. 

92 (5C) 2 PCTDSC Default space count, used for overflow 
or in place of an invalid spacing 
request. 

94 (5E) 2 PCTPNI Page number increment, added to 
PCTCPN at each page eject. 

96 (60) 2 PCTFDL Absolute line number for the first data 
line on each page. 

98 (62) .. 2 PCTLDL Absolute line number of the last data 
line. 

100 (64) 2 PCTFLN Absolute line number for the first 
footing line. 

102 (66) .. 2 PCTLNM Lines in print stack. 

104 (68) 4 PCTBUF Buffer address. 

108 (6C) 4 PCTBNL Address in buffer for next line. 

556 OSNS2 Access Method Services Logic 



RACFAGL 

RACF URACHECK Argument List (VS2.03.824 only) 


The RACFAGL defines the URACHECK parameter list and is passed by the 
caller who issues the URACHECK Umacro to tell IDCSA08 what dataset to 
RACHECK. 

Created by Modified by Used by SIze 

Calling Routine None IDCSA08 20 

Bytes aDd 
Offset Bit Pattel1l Field Name DescrIption: Content, Meaning, Use 

0(0) RACFFIGI Flag byte one. 

... 1 .... RACFDSTV Data set type: 0 = NonVSAM data set 
1 = VSAM data set. 

..... 1 .. RACFLOGF No logging on RACF failures. 

...... I. RACFLOGN No logging at all . 

.... ... 1 RACFCSA Return profile in storage request. 

1 (I) RACFFIG2 Flag byte two. 

1...... RACFTALT Requested alter attribute. 

.... 1 ... RACFTCTI Requested control attribute. 

..... 1 .. RACFTUPD Requested update attribute. 

...... I. RACFTRD Requested read attribute. 

2 (2) RACFFIGJ Flag byte three. 

.. I. .... RACFPRF Profile address giver. 

3 (3) RACFFIG4 Flag Byte four. Reserved - Contains 
zeros. 

4 (4) 4 RACFENT Address of data set name. 

8 (8) 4 RACFPROF Address of resource profile in storage. 
Present when RACFPRF is on. 

12 (C) 4 RACFCIN Address of CLASS name. 

16 (10) 4 RACFVOLS Address of volume serial number. 

Data Areas 557 

L 



COMMAREA 
Reader /Interpreter Communication Area 

The COMMAREA is only used within the Reader/Interpreter for batched 
jobs to pass information between Reader/Interpreter modules. 

Created by 	 Modffiedby Used by Size 

IDCRIOI 	 IDCRIOI IDCRIOI 55 

IDCRI02 IDCRI02 

IDCRI03 IDCRI03 


Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 4 RECRDPTR 	 Address of the beginning of the record 
currently being scanned. 

4 (4) 4 FDTADDR 	 Address of the primary pointer vector 
for the FDT. 

8 (8) 4 DESCPTR 	 Address of the Command Descriptor 
currently being used. 

12 (C) 4 WORKPTR 	 Address of local workarea. 

16 (10) 2 RISTATUS 	 Internal error code for the 
Reader/Interpreter; set to non-zero if 
an error is discovered. 

18 (12) 2 SCANINDX 	 Offset into the current record of the 
last character that was extracted. 

20 (14) 2 SCNLIMIT 	 Location of the final character in the 
current record that may be scanned. ..J

22 (16) 2 LASTCC 	 Last processor condition code. 

24 (18) 2 MAXCC 	 Maximum processor condition code. 

26 (lA) 8 FSRLNAME 	 FSR load module name to be invoked 
if this command is executed. 

34 (22) 4 POOLID 	 Storage area identification code for all 
space used for the FDT. 

38 (26) 8 VERBNAME 	 Verb from the current input command. 

46 (2E) 8 DESCNAME 	 Module name for the current 
Command Descriptor. 

54 (36) * 	 Miscellaneous flags: 

I....... GOODCMD Current command is valid; have 
Executive invoke the FSR. 

.1. ..... EOFOK End of input stream may legitimately 
occur. 

.. 1. .... OPTSFLAG' 	 Current command came from 
parameter options specified by the 
invoker of Access Method Services. 

... 1 .... 	 SCANONLY Current command is being scanned 
only for syntax errors. 

.... I. .. SKIPPAST Current command has just been 
bypassed . 

• 
.) 

558 OSjVS2 Access Method Services Logic 



HDAREA 
Reader/Interpreter Historical Area 

The Reader/Interpreter Historical Area is created and initialized on the first 
call to the Reader/Interpreter for batched jobs. It contains information that 
must be saved across commands, such as input source margins and table 
locations. 

Created by 

IDCRIOI 

Offset 

0(0) 

2 (2) 

4 (4) 

8 (8) 

12 (C) 

16 (10) 

17 (II) 

IModified by 

IDCRIOI 
IDCRI02 
IDCPMOI 

Bytes and 
Bit Pattern 

2 

.. 2 

4 

4 

4 

.2xn 

Each set contains the following: 

. I 

I....... 

.1. ..... 

.. 1 .••.• 

... 1 .... 

Used by 

IDCRIOI 
IDCRI02 

i 

Field Name 

LEFfMGN 

RIGHTMGN 

LOADTPTR 

KWTBLPTR 

ADDRIOCS 

NESTLVL 

MODLFLGS n 

NULLDO 

* 
DOFLAG 

THENFLAG 

ELSEFLAG 

SKIPFLAG 

Size 

46 

Description: Content, Meaning, Use 

Leftmost column to use in the input 

statement. Default to column 2. 


Rightmost column to use in the input 

statement. Default to column 72. 


Address of the Command Name table, 

IDCRILT. 


Address of modal command verb 

table, IDCRIKT. 


Address of IOCSTR for input data set. 


IF-THEN nesting level where current 

command appears. 


Modal flags. A set of modal flags is 

used for each level of IF-THEN 

nesting. n is the number in 

NESTLVL. 


Number of unneeded "DO" 

commands for which no matching 

"END" commands have been 

encountered at the current NESTL VL. 


Flags: 


Current command is part of a "DO" 

group. 

Current commands are associated with 

a true "IF" condition. 

Current commands are associated with 

a false "IF" condition. 

Current commands are to be only 

checked for proper syntax. 


Data Areas 559 



EXWRARG 
REPAIRV Argument List 

The EXWRARG is passed when UEXCP is issued with a REPAIRV request. 
It defines a request to repair a 3850 data set. 

Created by Modified by Used by Size 

Calling routine mCI005 mCI005 40 

Bytes and 
Offset Bit Pattern field Name Description: Content, Meaning, Use 

0(0) 8 EXRWRES Reserved. 

8(8) 4 EXRWCTBL Address of the open I/O control blocks 
(IOCTLBLK) that were created in the 
OPEN call. 

12(C) 4 EXRWIOAR Address of an I/O area: for READCNT 
and READKD, the read I/O area 
(RIOAREA) for WRITEREC and 
FWRITE, the write space area 
(WI0AREA) 

16(10) 4 EXRWDARE Address of the data read (set when the 
REPAIRV function's routine exits.) 

10(14) 4 EXLOCPTR Address of the location table, set when 
the routine exists 

24(18) 2 EXCCWCNT The number of count fields read by 
READCNT when the routine exits, or 

The number of data fields read by 
READKD when the routine exits, or 

The record number of the record to be 
operated on by SP ACCR. 

This field is not used by WRITEREC or 
FWRITE. 

26(1A) 5 EXRWCHR Address of the record to be operated on: 

26(IA) 2 EXCC Cylinder address 

28(1C) 2 EXHH Track address 

30(lE) EXRECNUM Record number 

31 (IF) Reserved. 

32(20) EXRWFUN For WRITEREC only-the type write 
operation: 

2-WRITE SPECIAL 

3-WRITE KEY DATA 

32(21) 3 Reserved. 

36(24) 4 EXRWKDLN For SPACE only-address of an area that 
contains the key length and data length of 
the record whose count field is to be 
bypassed. If EXRWKDLN is zero, 
SPACCR gets the length information 
from the count field previously read in by 
READCNT, and saves the length in the 
location table entry for the requested 
record. 

,j 

560 OS!VS2 Access Method Services Logic 



RCTAGL 
Recatalog Argument List 

The RCTAGL is passed when a URECAT macro is issued. It defines a 
request to recatalog a nonVSAM data set. 

Created by 

Calling routine 

Offset 

0(0) 

8(8) 

lO(A) 

t4(E) 

18(12) 

24(18) 

30(1E) 

ModHied by 

IDCSA07 

Bytes aDd 
Bit Pattem 

8 

2 

t ....... 

.1 ...... 

. .4 

.. 4 

.. 6 

6 

..44 

Used by 

n)CSA07 

Field Name 

RCTHEAD 

RCTOPT 

RCTDEV 

RCTVOL 

RCTODEV 

RCTNDEV 

RCTOVOL 

RCTNVOL 

RCTDSET 

[Size 

76 

Description: Content, MelDing, Use 

Set with 'RCTAGLtltI' by IDCSA07. 

Recatalog options: 

Indicates that the device type is to be 
changed. RCTNDEV contains the new 
device type. 
Indicates that the volume serial 
number is to be changed. RCTNVOL 
contains the new volume serial 
number. 

Contains the current device type for 
the data set. 

Contains the new device type for the 
data set. This field is ignored if 
RCTDEV is not set. 

Contains the current volume serial 
number for the data set. 

Contains the new volume serial 
number for the data set. This field is 
ignored if RCTVOL is not set. 

Contains the data-set name of the data 
set to be recataloged. 

- Data Areas 561 



AUTOTBL 
Storage Table 

The Storage table contains the address for storage areas for modules 
IDCIOOl, IDCI005, IDCSA02, IDCSA06, IDCSA07, IDCSA08, IDCSA09, 
IDCSAIO, and IDCTPOl. The modules almost always use the same storage 
instead of getting and freeing storage each time the module gets control. 

Created by 	 Modified by Used by Size 

IDCSAOI 	 IDCSA02 IDCSA02 .oS 
IDCSA03 IDCSA03 

Bytes IUId 
Offset Bit Patten Field Name Description: Content, MelDing, Use 

0(0) lOS AUTOARAY 	 There are 9 sets of the following 4 
fields. One set for each module 
IDCI001, IDCIOOS, IDCSA02, 
IDCSA06, IDCSA07, IDCSAOS, 
IDCSA09, IDCSAI0, and IDCTPOI. 

Each set contains the following: 

4 AREAID 	 4 byte CSECT identification for the 
module using this set of 12 bytes. The 
field contains '1001', '1005', 'SA02', 
'SA06', 'SA07', 'SAOS', 'SA09', 
'SAIO', or 'TPOI '. 

2 STATUS 	 Indicator of the number of storage 
areas being used for this module. The 
field contains: 

0 - no storage being used. 

- only the storage area addressed 
in PTRI is being used. 

>1- the number is a count of storage 
areas in use for this module. 
There are more storage areas 
than are addressed in PTR1. 

.. 2 ASIZE 	 Number of bytes the module uses . 

4 PTRI 	 Address of the first storage area for 
this module. 

562 OSNS2 Access Method Services Logic 



SELAGL 
Selecting a DDname Argument Ust 

The SELAGL is passed when a UMSSUNIT macro is issued with a 
SELECTDD request. It defines a request to select a DD statement and UCB 
that can be used for the volume if the volume is already mounted. 

Created by Modified by Used by Size 

Calling routine IDCSA06 IDCSA06 23 

Bytesllld 
Offset Bit Pattern FIeld Name Description: Content, Meaning, Use 

0(0) 8 SELHEAD Set by IDCSA06 with ·SELECTDD'. 

8 (8) 4 SELUCBP Address of the 4-byte area, provided 
by the caller, in which IDCSA06 
returns the address of the UCB 
associated with the specified volume. 

12 (C) 4 SELDDNP Address of an 8-byte area provided by 
the caller in which IDCSA06 will 
return the name of the DD statement 
that was used in mounting the volume. 

16 (10) 6 SELVOL Volume serial number of the volume 
used in the DD selection search. This 
volume serial number is passed by the 
caller. 

I 22 (16) SELFLAGS Option flags 

Data Areas 563 



SV82LIST 
SVC 82 Argument List 

The SVC82LIST is passed when SVC 82 is issued. It contains information 
needed to create a DEB, post a DCB, clear a DCB, or free a DEB. 

Creating a DEB 

Posting a DCB 

Oearing a DCB 

Created by 

Calling routine 

Offset 

0(0) 

1(l) 

4(4) 

Offset 

0(0) 

1(1) 

4(4) 

8(8) 

Offset 

0(0) 

1(1) 

4(4) 

8(8) 

12(C) 

Modified by 

None 

Bytes and 
Bit Pattern 

. 3 

4 

Bytes and 
Bit Pattern 

.3 

4 

4 

Bytes and 
Bit Pattern 

.3 

4 

4 

4 

IUsed by 

IGCOOO8B 
IGC0408B 

Field Name 

SV82CODE 

SV82UCBP 

SV82DCBP 

Field Name 

SV82CODE 

SV82UCBP 

SV82VOLP 

SV82TTRP 

Field Name 

SV82CODE 

SV82UCBP 

SV82WRKP 

Size 

16 

Description: Content, Meaning, Use 

Contains the service request code for 
the type of service requested. A X'20' 
for a request to create a DEB. 

Address of the UCB . 

DCB address used with the create 
DEB request. 

Description: Content, Meaning, Use 

Contains the service request code for 
the type of service requested. A X'23' 
for a request to post a UCB. 

Address of the UCB. 

Address of the volume serial number 
to be placed in the UCB on a post 
UCB request. 

Address of the VTOC TTRO posted to 
the UCB on a post UCB request. 

Description: Content, Meaning, Use 

Contains the service request code for 
the type of service requested. A X'22' 
for a request to clear a UCB. 

Address of the UCB. 

Reserved---contains zeros. * 
Reserved---contains zeros. * 

Address of a IO-byte area into which 
the current volume serial and current 
VTOC TTRO are returned on the clear 
UCB request. 

564 OS/VS2 Access Method Services Logic 



Freeing a DEB 

Bytes IIIId 
Offset Bit Pattem Fleld Name DescriptIon: Content, Meaning, Use 

0(0) SV82CODE 	 Contains the service request code for 
the type of service requested. A X'21 ' 
for a request to free a DEB. 

1(1) • 3 SV82UCBP Address of the UCB . 

4(4) 4 • Reserved--contains zeros. 

8(8) 4 • Reserved--contains zeros . 

12(C) 4 SV82DEBP DEB address on a free DEB request. 

Data Areas 565 

L 



SADIST 
System Adapter Historical Area 

The System Adapter's historical area is pointed to by the field GDTSAH. It 
contains information that is shared between System Adapter modules. 

Created by 

IDCSAOI 

Offset 

0(0) 

4 (4) 

8 (8) 

12 (C) 

16(10) 

Modified by 

IDCSA02 
IDCSA03 
IDCSAIO 

Bytes and 
Bit Pattern 

4 

4 

4 

4 

4 

Used by 

IDCI005 
IDCSA02 
IDCSA03 
IDCSA06 
IDCSA10 

Field Name 

GPFIRST 

GPLAST 

AUTOPTR 

SAHSTA 

LLBLKPTR 

Size 

16 (without 
VS2.03.807) 
20 (with 
VS2.03.807) 

Description: Content, Meaning, Use 


First UGPOOL storage area pointer. 


Last UGPOOL storage area pointer. 


Address of AUTOTBL. 


Address of ESTAE argument list 

(STAEPARM). 


Pointer to first Load List Block. 

(VS2.03.807) 


566 OS!VS2 Access Method Services Logic 



TEST Option Data Area 


The TEST Option Data Area is used to gather debugging information 
requested by a P ARM command with TRACE, AREAS, or FULL options. 
The TEST Options Data Area is three tables. The first table, TESTDATA, is 
present if any PARM command with TRACE, AREAS, or FULL has been 
executed. The address of TESTDAT A is in GDTDBH. 

The second table, AREADATA, exists if a PARM command with an AREAS 
option has been executed. If AREADATA exists, it immediately follows 
TESTDATA. 

The third table, FULLDAT A, exists if a P ARM command with a FULL 
option has been executed. If FULLDATA exists, it immediately follows 
AREADATA, or if AREADATA does not exist, FULLDATA immediately 
follows TESTDATA. 

Created by Modified by ! Used by 	 Size 

IDCPMOI IDCPMOt 	 VariableIIDCPMOt 

IDCDBOI IDCDBOI 
 J 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

TESTAREA: 

0(0) 4 AREAPTR 	 Address of areas identifier table, 
AREADATA. Zero indicates the table 
does not exist. 

4 (4) 4 FULLPTR 	 Address of full dump table 
FULLDATA. Zero indicates the table 
does not exist. 

8 (8) 2 .. SNAPID 	 Number of last full region dump. 

to (A) .. 2 TESTRACE 	 A non-zero value means print the trace 
tables each time a UDUMP macro is 
issued. A zero value means print the 
trace tables only for modules specified 
in AREAS and FULL options. 

AREADATA: 

0(0) 4 AREAINDX 	 Number, j, of entries in areas 
identification array. One entry exists 
for each area identifier specified in the 
PARM command. 

4 (4) 2xj AREADUMPj 	 Areas identifier array containing j 
entries. 

Each entry contains the following: 

2 AREANAME 	 Two character module identifier where 
information is gathered. If there is an 
odd number of area names, two bytes 
are added to the end of the array. 

FULLDATA: 

0(0) 4 FULLINDX 	 Number, k, of entries in Full Region 
Dump Array. One entry exists for each 
full dump. 

4 (4) 12xk FULLDUMPk 	 Full Region Dump Array containing k 
entries. 

Data Areas 567 



Bytesaad 
Offset Bit Patte.. FIeld Name Description: Content, Meaning, Use 

Each entry contains the following: ~ 4 FDUMPID 	 Four character module identifier 
where dump is taken. 

2 .. FDUMPBEG 	 Number of the pass through the dump 
point when dumping is to 
begin-between 1 and 32,767. 

.. 2 FDUMPCNT 	 Number of dumps to take-between I 
and 32,767. 

2 .. REALBEG 	 Current number of passes through this 
dump point. 

.. 2 REALCNT 	 Number of dumps already taken at this 
dump point. 

568 OS/VS2 Access Method Services Logic 



Text Structure 

Text Structures are load modules that contain text (messages and static text 
items) and format information to use while preparing printed output. This 
information can be default page dimensions or layout, message text, headings 
for listings, and similar directions that are used by the Text Processor. There 
are 22 Text Structure modules, as named in the following table along with the 
function associated with each. Some FSRs use Text Structures from other 
FSRs. 

IDCTSALO ALTER 

IDCTSBIO BUILDINDEX 

IDCTSCCO CNVTCAT 

IDCTSCKO CHKLIST 

IDCTSDEO DEFINE 

IDCTSDLO DELETE 

IDCTSEXO Executive 

IDCTSIOO I/O Adapter 

IDCTSLCO LISTCAT 

IDCTSLCI LlSTCAT (messages) 

IDCTSLRO LlSTCRA 

IDCTSLRI LlSTCRA (messages) 

IDCTSMPO IMPORT/IMPORTRA 

IDCTSPRO PRINT/REPRO 

IDCTSRCO EXPORTRA 

IDCTSRIO Reader/Interpreter for batched jobs 

IDCTSRII Reader/Interpreter for interactive jobs 

IDCTSRSO RESETCAT (VS2.03.808 only) 

IDCTSTPO Text Processor (print chains) 

IDCTSTPI Text Processor (messages) 

IDCTSTP6 Text Processor (UERROR messages) 

IDCTSUVO Universal (any module) 

IDCTSXPO EXPORT 


A Text Structure consists of an index and text entries. The index is simply a 
list of halfword displacements from the beginning of the Text Structure to the 
beginning of the text entry being indexed. The Text Structure identification 
number is used as the index number. A halfword count of the number of 
entries precedes the index. 

Note: An index entry of -1 indicates that the corresponding text entry is 
nonexistent. 

All text entries contain heading fields and one of the following: 

• 	 A format list as described under FMTLIST immediately followed by any 
static text such as messages referenced by the format list. 

• 	 A print control argument list as described under PCARG immediately 
followed by any static text such as title lines and translate tables referen..:ed 
by the print control argument list. 

• 	 Character code tables which support the GRAPHICS parameter of the 
PARM command. 

Data Areas 569 

L 



Created by Modified by 	 Used by Size 

IBM-Supplied None 	 IDCTPOI Variable 

IDCTPOS 


Bytes and 
Offset BIt Pattem FIeld Name Description: Content, Meaning, Use 

0(0) 2 INDEX Number, n, of entries in this index. 

2 (2) 2xn INDEXn Offset to the appropriate text entry. 

Text Entry 

The following description shows only the header fields of each text entry. For 
the remainder of the description, see FMTLIST or PCARG. The text entry 
begins at offset 2 x n + 2 from the beginning of the Text Structure module. 

Bytes and 
Offset Bit Pattern FIeld Name Description: ConteDt, Meaning, Use 

0(0) 2 TXT 	 Length in bytes of the text entry that 
follows (not including these header 
fields). 

2 (2) FLG 	 Flag byte: 

1....... Message entry. 

.1...... Header entry . 

.. 1. .... Secondary message entry . 

... 1 •... Do not transmit this entry to a TSO 


terminal. 
.... 1..• Secondary message entry . 

3 (3) • 	 Reserved. 

The following two fields only exist if this is a text entry for a header line: 

4 (4) 2 HDLI The number of printable header lines. 

6 (6) 2 HDSP The number of page lines occupied by 
header lines, intervening blank lines, 
and the first line of printed data. 

570 OS/VS2 Access Method Services Logic 



UGPOOLArea 

When the UGPOOL Umacro is used, an area of storage is allocated to the 
user and this UGPOOL area is linked into a chain with other areas allocated 
by UGPOOL. Each such area is preceded by the first 16 bytes, as shown 
here. 

For a page boundary request, the user's allocated area is not preceded by a 
UGPOOL area. A 24-byte UGPOOL area is linked into the chain and it 
points to the user's page boundary area. 

Created by Modified by Used by Size 

IDCSA02 None IDCSA02 24 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 4 GPFORWRD Address of next UGPOOL area. 

4 (4) 4 GPBACK Address of last UGPOOL area. 

8 (8) 4 GPLEN Number of bytes requested plus 16. 
(For a page boundary request GPLEN 
... 24.) 

12 (C) 4 GPID Area identification code. 

16 (10) 4 GPADRPG Address of area on a page boundary. 

20 (14) 4 GPLENPG Length of area on a page boundary. 

Data Areas 571 



UGSPACE Area 

When the UGSPACE Umacro is used, an area of storage is allocated for the 
user of the Umacro. Each such area is preceded by eight bytes of control 
information, as shown here. 

Created by Modified by Used by !Size 

IDCSA02 None IDCSA02 8 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 4 GSLEN 	 Number of bytes requested plus 8. 

4 (4) 4 GSID 	 -"fit,' in first three bytes for 
UGSP ACE area. The last byte is the 
subpool-ID. 

572 OS/VS2 Access Method Services Logic 



UIOINFO Option Byte and Return Area 

The UIOINFO option byte tells IDCI002 the information desired by the 
caller who issues a UIOINFO macro. 

Created by Modified by Used by Size 

UlOINFO Option Byte Description 
Calling routine None IDCIOO2 1 

Offset 
Bytes and 
Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) IOINFOPT Option byte: 

1....... 
. 1. ..... 

.. I ..... 

... 1 .... 

.... 1. .. 

.... . 1 .. 

IOINFDVT 
IOINFVOL 

IOINFDSN 
IOINFSUP 
IOINFTMS 

IOINFLUB 

Return 8-byte device type . 
Return up to five6-byte volume serial 
numbers. 
Return 44-byte data-set name. 
Suppress error message . 
Return time stamp from the Format 4 
DSCB . 
not used in VS2. 

UIOINFO Return Area Description 

Offset 
Bytes and 
Bit Pattern Field Name Description: Content. Meaning, Use 

O(() ) ~ Header.. 

Bytes: 

0-1 

2-3 

Length of entire area (including 
header>. 
Length of all data returned 
(including header>. 

Data returned for each type of information requested is placed consecutively 
in the work area. The format for the different types of information is shown 
below: 

Bytes and 
Bit Pattern Field Name Description: Content, Meaning, Use 

48 	 Data set name. 

Bytes: 

0-1 Identlfier-X'OOO I'. 
2-3 Length of data returned. 
4-47 Data set name. 

n 	 Volume serial number list 
(variable). 

Bytes: 

0-1 Identifier-X·OOO2'. 
2-3 Length of data returned. 
4-9 First volume serial 
number. 

n+ l-n+6 Last volume serial 
number. 

Data Areas 573 



Bytes and 
Bit Pattern Field Name Description: Content, Meaning, Use 

12 	 Device type. 

Bytes: 

0-1 Identifier-X'OO03 '. 
2-3 Length of data returned. 
4-7 Device type code. 
8-11 Maximum block size for device 

20 	 Time stamp. 

Bytes: 

0-1 Identifier-X'OOO4' 
2-3 Length of data returned. 
4-11 New time stamp 
12-19 Old time stamp. 

UCTAGL 
UNCATALOG Argument List 

The UCTAGL is passed when a UUNCATLG macro is issued. It defines a 
request to uncatalog and scratch anonVSAM data set. 

Created by Modified by Used by lSize 

169Calling routine IDCSA07 IDCSA07 
I 

Bytes and 
Offset Bit Pattem Field Name Description: Content, Meaning, Use ~ 
0(0) 8 UCTHEAD 	 Initialized with 'UCTAGL' by 

UUNCATLG. 

8 (8) 44 UCTDSN 	 Data set name of non VSAM data set 
to be uncataloged and scratched. 

52 (34) 4 UCTACBP 	 Pointer to catalog ACB. 

56 (38) 4 UCTVOLP 	 Pointer to list of volume serial 
numbers. 

60 (3C) 8 UCTDD 	 ddname of volume on which data set 
resides. 

68 (44) 1 UCTFLAGS 	 UUNCATLG option flags 
1....... UCTVSCAT 	 Data set can be uncataloged with a 

VSAM catalog request. (This bit is 
always set.) 

574 OS/VS2 Access Method Services Logic 



Unit Table 

The unit table is passed by a module that issues a USYSINFO UmacfO. 
IDCSA08 returns in it the information for a unit from the system control 
blocks. 

Cr,:,h~IJ~by ~.. __ lModif"Ie~ by 

Calling routine IIDCSA08 

Bytes and 
Offset Bit Pattern 

0(0) 4 

4 (4) 2 

6 (6) .. 1 

1. ..... . 
.1. .... . 

7 (7) .. .4 

IUsed by 

I Calling 
routine 

I 

Field Name 

UNITUCB 

UNITADR 

UNITCHA 
UNITUA 

UNITSTAT 

UNITISHR 
UNITXSHR 

UNITVTOC 

Size 

11 

Description: Content, Meaning, Use 

Address of the UCB. 


Channel and unit address: 


Channel address. 

Unit address. 


Status of the unit: 


Sharable within the system. 

Sharable across systems. 


Address of the VTOC-TIRO. 


Data Areas 575 

L 



UREST Arguments 

Any combination of the following structures can be passed to UREST as 
arguments. The UREST macro changes default items in the Print Control 
Table. The structures determine which items UREST will change. 

Created by 

All routines 

PCRST-Change Subtitle Lines 

Offset 

0(0) 

2 (2) 

4 (4) 

PCRLWS-Change Line Width 

Offset 

0(0) 

2 (2) 

PCRPDS-Change Page Depth 

Offset 

0(0) 

2 (2) 

PCRFfS-Change Footing Lines 

Offset 

0(0) 

2 (2) 

4 (4) 

Modified by 

None 

Bytes and 
Bit Pattern 

2 

.. 2 

4 

Bytes and 
Bit Pattern 

2 

.. 2 

Bytes and 
Bit Pattern 

2 

.. 2 

Bytes and 
Bit Pattern 

2 

.. 2 

4 

Used by 

IDCTPOI 

Field Name 

PCRSST 

PCRSTLC 

PCRSTLP 

Field Name 

PCRLWT 

PCRLW 

Field Name 

PCRPDT 

PCRPD 

Field Name 

PCRFf 

PCRFLC 

PCRFLP 

ISize 

I Variable 

Description: Content, Meaning, Use 

Structure identifier; contains 'ST'. 

Number of subtitle lines provided. The 
maximum is three. 

Address of from one to three 
contiguous, fully formatted subtitle 
lines. The number of bytes in each line 
is the line width plus one for the 
spacing character. The spacing 
character is first in each line and must 
be 1,2, or 3. 

Description: Content, Meaning, Use 

Structure identifier; contains 'LW'. :J 
New line width in decimal. 

Description: Content, Meaning, Use 

Structure identifier; contains 'PO'. 

New page depth in decimal . 

Description: Content, Meaning, Use 

Structure identifier; contains 'Ff'. 

Number of footing lines provided. The 
maximum is three. 

Address of from one to three 
contiguous, fully formatted footing 
lines. The number of bytes in each line 
is the line width plus one for the 
spacing character. The spacing 
character is first in each line and must 
be 0, 1, 2, or 3. 

~ 


576 OS/VS2 Access Method Services Logic 



PCRDSCS-Change Default Spacing Character 

Offset 

0(0) 

2 (2) 

PCRPCS-Change Translate Table 

Offset 

0(0) 

2 (2) 

4 (4) 

PCRINP-Change Initial Page Number 

Offset 

0(0) 

2 (2) 

4 (4) 

Bytes and 

Bit Patte,.. 


2 

.. 1 

Bytes and 
Bit Pattern 

2 

.. 2 

4 

Bytes and 
Bit Pattern 

2 

.. 2 

4 

Field Name 

PCRDSCT 

PCRDSC 

Field Name 

PCRPCT 

PCRPCC 

PCRPCP 

Field Name 

PCRPNT 

* 
PCRPNP 

Description: Content, Meaning, Use 

Structure identifier; contains ·SC'. 

New default space character. Must be 
the character I, 2, or 3. 

Description: Content, Meaning, Use 

Structure identifier; contains ·PC'. 

If the request is for a print chain 
provided by Access Method Services, 
this field contains the characters for 
the print chain identification as in the 
GRAPHICS parameter of the PARM 
command. Otherwise, it contains zero. 

Address of a load module name. The 
load module consists solely of a 
256-byte translate table. If the request 
is for a standard print chain, this field 
contains zero. 

Description: Content, Meaning, Use 

Structure identifier; contains ·PN'. 

Reserved . 

Address of page number field. The 
first two bytes of the page number 
field contain the number (from I to 4 
in binary) of following bytes that 
contain the page number. The page 
number is one to four bytes in 
EBCDIC. 

Data Areas 577 



USCRATCH Volume List 

The USCRA TCH volume list is passed by the caller who issues a 
USCRATCH Umacro to tell IDCSA08 what data sets to delete. 

Created by , Modified by 

Calling routine INone 

Bytes and 
Offset Bit Pattern 

0(0) 2 

Each entry contains: 

10xn 

4 
6 

IUsed by 

IIDCSA08 

Field Name 

UVOLCNT 

UVOLENTn 

UVOLDEV 
UVOLVOL 

Size 

Variable 

Description: Content, Meaning, Use 

The number of arrays that follow 

(each array identifies a volume on 

which the data set resides). 


Volume identifier. The following fields 

are repeated n times, where n = 

UVOLCNT. 


Device type. 

Volume serial number. 


578 OS/VS2 Access Method Services Logic 



VSIAGL 
Volume VTOe Semce Argument List 

Security Checking 

The VSIAQL is passed whenever module IDCVSOI is called. It contains 
information needed for one of the following functions: Security Checking, 
Scratching the VTOC, Retrieving VTOC Fields, Updating VTOC Fields, and 
Recataloging a NonVSAM Data Set. 

The parameter list is described separately for each function. 

Created by ModHied by Used by Size 

Calling routine IDCVSOI IDCVSOI 74 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 8 VSIHEAD Set with 'SECCHECK' by IDCVSOI. 

8(8) 4 VSUCBP If a RESERVE is requested, this field 
must contain the address of a 4-byte 
area containing either zeros or the 
UCB address. The VSFILEP field 
must contain the address of the DD 
statement that IDCVSOI uses to obtain 
the UCB address. IDCVSOI fills in the 
field if the request is successful. If a 
RESERVE is not requested this field is 
ignored. 

12(C) 4 VSVOLP Address of a 6-byte volume serial 
number of the volume to be processed. 
The serial number must be the one 
known to the MSC. 

16(10) 4 VSFILEP Address of the 8-byte name of the DD 
statement to be used to open the 
VTOC. 

20(14) 4 VSIOP Upon return, this field contains the 
address of the IOCSTR for the VTOC 
data set. 

24(18) 4 VSNUMATP Ignored. 

28(1 C) 4 VSNXTATP Ignored. 

32(20) 4 VSCATP Address of a 44-byte field containing 
the name of the VSAM catalog that 
owns the volume. If VSACBP is 
specified, this field is ignored. If the 
catalog name is unknown and 
VSMASTER is set, this field contains 
zeros. 

36(24) 4 VSACBP Address of the catalog ACB. If this 
field is specified the VSCATDDP field 
is ignored. If the ACB is unknown and 
VSMASTER is set this field must 
contain zeros. 

Data Areas 579 



Bytes md 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

40(28) 4 VSCATDDP 	 Address of the 8-byte name of the DD 
statement used to open the VSAM ~ 
catalog. If VSOPCAT is specified, this 
field contains the address of a catalog 
DD field. That field contains the 
catalog DD name or blanks if the 
catalog DD name is unknown. 

44(2C) 4 VSPSWDP 	 Address of the 8-byte VSAM catalog 
password. If VSMASTER is set and 
the password is not supplied this field 
is set to zero. 

48(30) 4 VSPFILEP 	 Address of the list of file names used 
when prompting for passwords. If 
VSREAD or VSWRITE are set and no 
file names are specified this field 
contains zeros. 

52(34) 4 VSSERP 	 Ignored. 

56(38) 4 VSDEVP 	 Ignored. 

60(3C) 4 VSSECOPT 	 Security Checking options: 

1....... VSNOVSAM Indicates that the volume cannot be 
owned by a VSAM volume., 

.1...... VSMASTER 	 Indicates that the master password of 
the owning VSAM catalog will be 
verified, and if it fails, all VSAM data 
set master passwords will be verified. 

.. 1. .... VSNONONV 	 Indicates that the volume must not 
contain any nonVSAM data Sets. 

... 1 .... VSREAD 	 Indicates that the read password of 
each non VSAM password protected 
data set will be verified. 

.... 1... VSWRITE 	 Indicates that the write password of 
each nonVSAM password protected 
data set will be verified. 

..... 1.. VSUCTEST 	 Indicates that the VSUCAT flag be set 
upon return indicating whether the 
volume contains a VSAM user catalog. 
This flag is interrogated only if 
VSMASTER is set. 

...... 1. VSOPCAT 	 Indicates that the VSAM catalog will 
be opened. If this flag is set, 
VSCATDDP must contain the address 
of a field containing either blanks or 
the name of the catalog DD. If 
IDCVSOI opened the catalog, the 
catalog DD name is returned in the 
field set to blanks. 

....... 1 VSUCMAST Indicates that the master password of 
the owning VSAM user catalog must 
be verified. 

64(40) 4 VSODEVP 	 Ignored. 

68(44) VSSECOPT 	 Ignored. 

69(45) .1 VSVTOPT 	 Ignored. 

70(46) .. 1 VSCATOPT 	 Ignored. 

..J 

580 OS/VS2 Access Method Services Logic 



Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

71(47) ... 1 VSRETURN 	 This field is set upon return only if 
Security Checking was successful: 

I....... VSVSAM This bit is set to I if the volume is 
owned by a VSAM catalog. It is set to 
oif the volume is not owned by a 
VSAM catalog. 

.1. ..... VSUCAT If VSUCTEST is set, this bit is set to 0 
if the VSAM user catalog is not on the 
volume. It is set to 1 if it is on the 
volume. 

72(48) VSMSG 	 Message options: 

I....... VSFROMV Indicates that the words "FROM 
VOLUME" are put into any error 
message indicating the FROM volume 
is in error. 

.1...... VSTOV Indicates that the words "TO 
VOLUME" are put into any error 
message indicating the TO volume is 
in error. 

73(49) .1 VSRESOPT 	 Reserve options: 

1....... VSRES 	 Indicates that the volume is to be 
reserved prior to reading or updating 
theVTOC. 

.1...... VSREAL 	 Indicates that the RESERVE be done 
on a real volume. If this bit is off, the 
volume is virtual. 

Scratching the VTOe 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 8 VSHEAD 	 Set with 'SCRVTOCt>' by IDCVSOI. 

8(8) 4 VSUCBP 	 Same as Security Checking. 

12(c) 4 VSVOLP 	 Same as Security Checking. 

16(10) 4 VSFILEP 	 Same as Security Checking. 

20(14) 4 VSIOP 	 Address of the IOCSTR for the VTOC 
data set. This field must be specified if 
the VTOC IS ALREADY OPEN. If 
the VTOC is not open it contains 
zeros. Upon return it contains zeros if 
it is not opened and the IOCSTR 
address if it is opened. 

24(18) 4 VSNUMATP 	 Ignored. 

28(1 C) 4 VSNXTATP 	 Ignored. 

32(20) 4 VSCATP 	 Ignored. 

36(24) 4 VSACBP 	 Ignored. 

40(28) 4 VSCATDDP 	 Ignored. 

44(2C) 4 VSPSWDP 	 Ignored. 

48(30) 4 VSPFILEP 	 Ignored. 

52(34) 4 VSSERP 	 Ignored. 

56(38) 4 VSDEVP 	 This field must contain the address of 
a 4-byte area containing the device 
type of the volume whose VTOC is to 
be scratched. 

Data Areas 581 



Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

60(3C) 4 VSOSERP Ignored. 

64(40) 4 VSODEVP Ignored. 

68(44) VSSECOPT Ignored. 

69(45) .1 VSVTOPT Ignored. 

70(46) .. 1 VSCATOPT Ignored. 

71(47) ... 1 VSRETURN Ignored. 

72(48) VSMSG Same as Security Checking. 

73(49) .1 VSRESOPT Same as Security Checking. 

Retrieving VTOC Fields 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 8 VSHEAD Set with 'GETVTOCb' by IDCVS01. 

8(8) 4 VSUCBP Same as Security Checking. 

12(C) 4 VSVOLP Same as Security Checking. 

16(I0) 4 VSFILEP Same as Security Checking. 

20(14) 4 VSIOP Same as Scratching the VTOC. 

24(18) 4 VSNUMATP If VSALTTRK is set, this field 
contains the address of a 2-byte fixed 
field, where the number of alternate 
tracks is returned by IDCVS01. 

28(1 C) 4 VSNXTATP 	 If VSALTTRK is set, this field 
contains the address of a 4-byte fixed 
field, where the CCHH of the next 
alternate track is returned by 
IDCVS01. 

32(20) 4 VSCATP Ignored. 

36(24) 4 VSACBP Ignored. 

40(28) 4 VSCATDDP Ignored. 

44(2C) 4 VSPSWDP Ignored. 

48(30) 4 VSPFILEP Ignored. 

52(34) 4 VSSERP Ignored. 

56(38) 4 VSDEVP Ignored. 

60(3C) 4 VSOSERP Ignored. 

64(40) 4 VSODEVP Ignored. 

68(44) VSSECOPT Ignored. 

69(45) .1 VSVTOPT VTOC field options: 

1....... VSTIME 	 Ignored. 

.1...... VSALTTRK 	 Indicates that the number of alternate 
tracks and the address of the next 
alternate track should be retrieved. 
VSNUMATP and VSNXT ATP must 
contain the address of the return area. 

.. 1. .... VSVSFLAG 	 Indicates that the VSAM ownership be 
returned. The VSVSAM bit in field 
VSRETURN is set by IDCVS01. 

70(46) .. 1 VSCATOPT 	 Ignored. ~ 

582 OS/VS2 Access Method Services Logic 



Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

71(47) ... 1 VSRETURN 	 This field is modified if the function 
was successful and VSVSFLAG was 
set: 

1....... VSVSAM This bit is set to 1 if the volume is 
owned by a VSAM catalog. It is set to 
oif the volume is not owned by a 
VSAM catalog. 

. 1. ..... VSUCAT Ignored . 

72(48) VSMSG 	 Same as Security Checking. 

73(49) .1 VSRESOPT 	 Same as Security Checking. 

Updating VTOC Fields 

Bytes and 
Offset BitPattem Field Name Description: Content, Meaning, Use 

0(0) 8 VSHEAD 	 Set with 'PUTVTOCl)' by IDCVSOI. 

8(8) 4 VSUCBP 	 Same as Security Checking. 

12(C) 4 VSVOLP 	 Same as Scratching the VTOC. 

16(10) 4 VSFILEP 	 Same as Security Checking. 

20(14) 4 VSIOP 	 Same as Scratching the VTOC. 

24(18) 4 VSNUMATP 	 If VSALTTRK is set, this field 
contains the address of a 2-byte fixed 
field which contains the CCHH of the 
next alternate track. 

28(1C) 4 VSNXTATP 	 If VSALTTRK is set, this field must 
contain the address of a 4-byte fixed 
field which contains the CCHH of the 
next alternate track. 

32(20) 4 VSCATP Ignored. 

36(24) 4 VSACBP Ignored. 

40(28) 4 VSCATDDP Ignored. 

44(2C) 4 VSPSWDP Ignored. 

48(30) 4 VSPFILEP Ignored. 

52(34) 4 VSSERP Ignored. 

56(38) 4 VSDEVP Ignored. 

60(3C) 4 VSOSERP Ignored. 

64(40) 4 VSODEVP Ignored. 

68(44) VSSECOPT Ignored. 

69(45) .1 VSVTOPT VTOC field options: 

1....... VSTIME Indicates that the VSAM time stamp is 
updated with the current time of day. 

.1. ..... VSALTTRK 	 Indicates that the number of alternate 
tracks and the address of the next 
alternate track should be updated. 
VSNUMATP and VSNXATP contain 
the address of the information. 

.. 1. .... VSVSFLAG 	 Ignored. 

70(46) .. 1 VSCATOPT Ignored. 

71(47) ... 1 VSRETURN Ignored . 

Data Areas 583 



Bytesaad 
Offset BitPattem Field Name Description: Content, Meaning, Use 

72(48) VSMSG Same as Security Checking. 


73(49) .1 VSRESOPT Same as Security Checking. ~ 

Recataloging a NonVSAM Data Set 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 8 VSHEAD Set with 'RECATLG\)' by IDCVSOI. 

8(8) 4 VSUCBP Same as Security Checking. 

12(C) 4 VSVOLP 	 Same as Security Checking 

16(10) 4 VSFILEP 	 Same as Security Checking. 

20(14) 4 VSIOP 	 Same as Scratching the VTOC. 

24(18) 4 VSNUMATP 	 Ignored. 

28(1C) 4 VSNXTATP 	 Ignored. 

32(20) 4 VSCATP 	 Ignored 

36(24) 4 VSACBP 	 Ignored. 

40(28) 4 VSCATDDP 	 Ignored. 

44(2C) 4 VSPSWDP 	 Ignored. 

48(30 4 VSPFILEP 	 Ignored. 

52(34) 4 VSSERP 	 If the VSSERIAL bit is set, this field 
must contain the address of a 6-byte 
character field that contains the new 
volume serial number. 

56(38) 4 VSDEVP 	 If VSDEVICE is set, this field must 
contain the address of the new 4-byte ~ 
device code obtained from the 
UCBTYP field. 

60(3C) 4 VSOSERP 	 Contains the address of the current 
6-byte volume serial number. 

64(40) 4 VSODEVP 	 Contains the address of the current 
4-byte device code obtained from the 
UCBTYP field. 

68(44) VSSECOPT 	 Ignored. 

69(45) .1 VSVTOPT 	 Ignored. 

70(46) .. 1 VSCATOPT 	 Recatalog options: 

1....... VSDEVICE Indicates that the device type is 
changed. If this bit is set VSDEVP 
must contain the address of the new 
device type. 

.1. ..... VSSERIAL 	 Indicates that the serial number is 
changed. If this bit is set VSSERP 
must contain the address of the new 
serial number. 

.. 1. .... VSLlST 	 Indicates that the names of alI data 
sets successfulIy recataloged be listed. 

71(47) ... 1 VSRETURN 	 Ignored. 

72(48) VSMSG 	 Same as Security Checking. 

73(49) .1 VSRESOPT 	 Same as Security Checking. 

...J 

S84 OS/VS2 Access Method Services Logic 



VS2AGL 
Volume Label Service Argument List 

Initializing Mass Storage Volumes 

Retrieving Volume Label Fields 

The VS2AGL argument list is passed whenever IDCVS02 is called. It 
contains information needed for one of the following functions: 

• 	 The INITVOL function defines a request to have a mass storage volume 
intialized for use by the operating system. 

• 	 The GETLABEL function defines a request to retrieve one or more of the 
following fields from the volume label: owner or volume serial number. 

• 	 The PUTLABEL function defines a request to update one of the following 
fields in the volume label: owner or volume serial number. 

The parameter list is described separately for each function. 

Created by Modified by Used by 

Calling routine IDCVS02 IDCVS02 

Bytes ami 
Offset Bit Pattem Field Name 

0(0) 8 VS2HEAD 

8(8) 4 VSUCBPTR 

12(C) 4 VSVTOCSZ 

16(10) 4 VSOWNPTR 

20(14) 4 VSVOLPTR 

24(18) 4 VSIOBKPT 

28(1C) VSLABOPT 

29(1 D) .6 VSVOLUME 

35(23) ... 1 VS2MSG 

36(24) VS2RESOP 

37(25) .8 VSDDNAME 

Bytes and 
Offset BitPattem Field Name 

0(0) 8 VS2HEAD 

8(8) 4 VSUCBPTR 

!Size 

145 

Description: Content, Meaning, Use 

Set with 'INITVOLl)' by IDCVS02. 


Address of the UCB. 


Number of tracks for the e VTOC. 


Address of the owner name to be 

placed in the volume label. 


Address of the volume serial number 

to be placed in the volume label. 


Address of the area in which the I/O 

control block address is returned. If 
I/O control block address is nonzero 
when control is returned, the UEXCP 
(CLOSE) macro must be issued to 
close the DCB. The I/O control block 
address must be initialized to zero 
before a request. 

Ignored. 


Ignored. 


Ignored. 


Ignored. 


DD name for the volume. 


Description: Content, Meaning, Use 


Set with 'GETLABEL' by IDCVS02. 


Address of a 4-byte area containing 
the UCB address, or zeros if the UCB 
address is unknown. If the UCB 
address is zero, the UCB address will 
be put in the 4-byte area upon return. 

Data Areas 585 

C 



Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

12(C) 4 VSVTOCSZ 	 Ignored. .~
16(10) 4 VSOWNPTR 	 Address of the area for the owner 

name to be returned if VSOWNER is 
set. 

20(14) 4 VSVOLPTR 	 Address of an area for the volume 
serial number to be returned if 
VSVOLSER is set. 

24(18) 4 VSIOBKPT 	 Ignored. 

28(1 C) VSLABOPT 	 Label options: 

1...... VSOWNER Indicates that the owner name is to be 
returned. 

.1. ..... VSVOLSER 	 Indicates that the serial number is to 
be returned. 

29(1 D) .6 VSVOLUME 	 Volume serial number used when 
opening the VTOC for label 
processing. It must be the serial 
number known to the MSC. 

35(23) ... 1 VS2MSG 	 Ignored. 

36(24) VS2RESOP 	 Reserve options: 

1....... VS2RES Indicates that the volume is to be 
reserved prior to reading or updating 
the label. 

.1...... VS2REAL 	 Indicates that the RESERVE is done 
on a real volume. If this bit is off, the 
volume is virtual. 

37(25) .8 VSDDNAME DD name for the volume. .J 
Updating Volume Label Fields 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 8 VS2HEAD Set with 'PUTLABEL' by IDCVS02. 

8(8) 4 VSUCBPTR Same as Retrieving Volume Label 
Fields. 

12(C) 4 VSVTOCSZ Ignored. 

16(10) 4 VSOWNPTR Address of owner name to be put in 
the volume if VSOWNER is set. 

20(14) 4 VSVOLPTR Address of the volume serial number 
to be placed in the volume label if 
VSVOLSER is set. 

24(18) 4 VSIOBKPT Ignored. 

38(1C) VSLABOPT Label options: 

1....... VSOWNER Indicates that the owner is to be 
updated. 

.1. ..... VSVOLSER 	 Indicates that the serial number is 
updated. 

29(10) .6 VSVOLUME 	 Same as Retrieving Volume Label 
Fields. 

35(23) ... 1 VS2MSG 	 Message options: 

1. ...... VS2TOV Indicates that error messages contain 
the words "TO VOLUME". 

586 OS/VS2 Access Method Services Logic 



Bytes and 
Offset Bit Pattern Reid Name Description: Content, Meaning, Use 

36(24) VS2RESOP Same as Retrieving Volume Label 
Fields. 

37(25) . 8 VSDDNAME DD name for the volume . 

Data Areas 587 



VS3AGL 
Volume Data Set Service Argument List 

The VS3AGL is passed whenever IDCVS02 is called. It contains information 
to perform a SELECTDS function. This function searches the VTOC for 
specific data sets. The data set names selected in accordance with the caller's 
criteria are returned in a buffer. 

Created by Modified by 

Calling routine IDCSV03 

Bytes and 
Offset Bit Pattern 

0(0) 8 

8(8) 4 

12(C) 4 

16(10) 4 

20(14) 2 

22(16) 2 

24(18) 4 

28(1C) 4 

32(20) 4 

36(24) 4 

40(28) 4 

44(2C) 6 

50(32) 8 

58(3A) 1 
1....... 

.1...... 

.. 1. .... 

... 1 .... 

.... 1. .. 

Used by 

IDCSV03 

Field Name 

VS3HEAD 

VS3LISTP 

VS3EXDSP 

VS3LEVP 

VS3LEVLN 

VS3AST 

VS3EXPIR 

VS3CREAT 

VS3UCBP 

VS3DEV 

VS3POOL 

VS3VOL 

VS3DD 

VS3FLAGS 
VS3STAT 

VS3USAGE 

VS3SCR 

VS3UNCAT 
VS3SYSNM 

Size 

59 

Description: Content, Meaning, Use 

Set with 'SELECTDS' by IDCVS03. 

Pointer to the data set name array. 

Pointer to an array of data sets to be 
excluded from the selection search. 

Pointer to data set name qualifier. 

Length of qualifier. 

Displacement to asterisk within the 
qualifier pointed to in VS3LEVP .. 

Pointer to expiration date. 

Pointer to creation date. 

Pointer to the UCB. 

Device type of volume. 

Storage pool ID for data set list 
(VSDBLOCK). 

Volume serial number. 

ddname for opening the VTOC. 

Flags. 
Return only VSDST AT portion of 
VSDBLOCK. This bit is mutually 
exclusive with VS3USAGE and 
VS3SCR. 
Return only VSDUSAGE portion of 
VSDBLOCK. This bit is mutually 
exclusive with VS3STAT and 
VS3SCR. 
Return only VSDSCR portion of 
VSDBLOCK. This bit is mutually 
exclusive with VS3ST AT and 
VS3USAGE. 
Return only data sets not cataloged. 
Return only data sets with system 
generated names. 

588 OS/VS2 Access Method Services Logic 



DIAGNOSTIC AIDS 


Trace Tables 

lllter-MOtbIIe Trace Table 

This chapter explains the diagnostic aids provided for Access Method 
Services, 

explains how to find key areas in a dump, and offers suggestions for isolating 
different types of problems. Before attempting to diagnose a problem with the 
aids in this chapter, you should be familiar with OS/VS2 System 
Programming Library: Debugging Handbook. This and other publications 
that may be helpful are listed in the preface to this book. 

Several large figures referred to throughout this chapter are located at the end 
of the chapter. 

Four major diagnostic aids are provided by the processor: 

• 	 Trace tables, which provide a trace of the flow of control between modules 
and within modules. 

• 	 Dump points, which provide the facility to dump selected areas of virtual 
storage and take a full region dump. 

• 	 The Test option, which you can set to print out the trace tables or to obtain 
dumps at selected points if Access Method Services is invoked with a 
batched job. 

• 	 ABORT codes and full region dumps, which are produced when the 
processor detects an unrecoverable condition. 

The processor maintains two trace tables during each execution: the 
Inter-Module Trace Table, which records the flow of control between 
modules, and the Intra-Module Trace Table, which records the flow of 
control within modules. 

You can find the trace tables in any full region dump, you can print them 
using the Test option, or you can display them on a TSO terminal. The section 
"Reading a Dump" explains how to find the tables in a dump; the section 
"The Test Option" explains how to print them; the section "The TSO TEST 
Command" explains how to display them on a TSO terminal. 

The Inter-Module Trace Table begins with the characters INTER and 
contains the IDs of the last twenty modules that had control. The module IDs 
are the last four characters of the module name. For example, if the trace 
looks like this: 

INTER ... SA01 EX01 RI01 RI02 

then you know that IDCRI02 had control at the time of the dump. 

The Inter-Module Trace Table is updated by the System Adapter not only as 
each module is entered, but also upon return from a module. Thus, if RIOI 
calls TPOI which calls 1001 and then returns back to RI01, the trace table 
looks like this: 

INTER ... RI01 TP01 1001 TP01 RI01 

Diagnostic Aids 589 



Intra-Module Trace Table 

Dump Points 


The Intra-Module Trace Table begins with the characters INTRA and 
contains the last twenty trace points encountered within modules. Each 
module has trace points placed at key locations, for example, at the start of 
procedures and around calls to other modules. 

The IDs of the trace points consist of four characters: the first two characters 
are the mnemonic identifier of the module being traced, and the last two 
characters identify a specific point within the module. (The mnemonic 
identifiers are listed in the section "Naming Conventions" in the chapter 
"Introduction. " 

The section "Trace and Dump Points to Module Cross Reference" in this 
chapter contains a list of all the trace points, identifies the module and 
procedure in which the trace point occurs, and explains the situation at the 
trace point. For example, if the Intra-Module Trace Table looks like this: 

INTRA ... SAGS lOOP SACL SAGP 

then, using this list, you would know that the last trace point encountered was 
at the start of the routine in module IDCSA02 that processes a UGPOOL 
macro request. 

During the time the Test option is on, the dumping routine (IDCDBOl) places 
dump points in the Intra-Module Trace Table; thus, the trace table contains 
all the dump points encountered as well as the trace points. All the dump 
points you may find in the Intra-Module Trace Table, in addition to the trace 
points, are explained in the section "Trace and Dump Points to Module Cross 
Reference" in this chapter. 

Trace points within a module can be found by examining the microfiche 
listings for occurrences of the UTRACE macro; the UTRACE macro sets the 
trace IDs into the trace table. The expansion of the UTRACE macro for trace 
ID DLLC looks like this: 

OLDERID2 = NEWERID2; 
NEWID2 = 'DLLC'; 

Each module has built-in dump points that invoke diagnostic dumping 
routines if the Test option is in effect. The dump points, set up by the 
UDUMP macro, have been placed at key locations in each module (for 
example, around calls to other processor and non-processor modules). Each 
dump point specifies the information that can be dumped at that point. Some 
dump points allow symbolic dumping of selected areas of virtual storage (for 
example, parameter lists or return codes); all dump points allow dumping of 
the full region and printing of the trace tables. 

Dump points can be found by examining microfiche listings for occurrences of 
the UDUMP macro. The expansion of the UDUMP macro for the dump point 
DL VL looks like this: 

IF GDTDBG = NULLPTR 
THEN; 
ELSE 

CALL IDCB010(GDTTBL,'DLVL'); 

Only the trace tables and the full region can be dumped at this point because 
only two parameters, the GDTTBL and the dump ID, are passed to the 
dumping routine. 

590 OS/VS2 Access Method Services Logic 



The section "Module to Dump Points Cross Reference" in this chapter 
contains a list of all the dump points within each module, indicates what 
information can be dumped and explains the situation at the dump point. The 
section "Test Option" in this chapter explains how to take a full region dump. 

Dumping Selected Areas of Virtual Storage 

Test Option 

TEST Keyword 

Certain Access Method Services modules have the dumping of selected areas 
of virtual storage built in. Dumping of these selected areas occurs at a dump 
point as described above. The areas dumped vary with each dump point and 
are identified with descriptive codes. The list in the section "Module to Dump 
Points Cross Reference" in this chapter indicates which modules contain 
dumps of selected areas and the footnotes to that list describe the areas 
dumped. 

Dump points at which selected areas are printed can be found by examining 
the microfiche listings for occurrences of the UDUMP macro. The expansion 
is as described above for a full region dump except that the address of a 
parameter list describing the areas to be dumped is passed to the dumping 
routing as a third parameter. 

Dumping of selected areas can occur with or without a full region dump in 
addition, as described in the section "Test Option" in this chapter. 

If you invoked Access Method Services in a batched job, you can use the Test 
option to activate the printing of diagnostic output at selected points within 
Access Method Services. The Test option is controlled by the TEST keyword 
as explained in the following section "TEST Keyword". 

The Test option provides you with the ability to print: 

• 	 The Inter-Module and Intra-Module Trace Tables. The format and 
interpretation of these tables are described in the section "Trace Tables" in 
this chapter. 

• 	 Selected areas of virtual storage. The facility for dumping selected areas of 
virtual storage is described in the section "Dump Points" in this chapter. 

• 	 Full region dump. The facility for taking a full region dump is described in 
the section "Dump Points" in this chapter. 

Each variation of the Test option provides an additional level of information. 
'The possible variations are: (1) print the trace tables only; (2) print the trace 
tables and selected areas of virtual storage; (3) print the trace tables and 
selected areas of virtual storage and take a full region dump. 

You can enter the TEST keyword either in the PARM field of the EXEC card 
that invokes the processor, or on a P ARM command. By using the PARM 
command, you can turn the Test option on and off or change the Test option 
for different function commands. 

Diagnostic Aids 591 



The format of the TEST keyword and its subparameters is: 

PARM TEST<UTRACE] 
[AREAS( ID-list ) ... )] 
[FULL« dumplist ) ... )] I 
[ OFF]}) 

where the subparameters are defined as follows: 

TRACE specifies that the inter-module and intra-module trace tables are to 
be printed at every dump point encountered. 

AREAS names the modules for which selected areas are to be printed, in 
addition to the trace tables. The trace tables are printed at each dump point 
encountered within the named modules; if a dump point specifies selected 
areas to be dumped, these areas are printed also. ID-list is a string of 
two-character mnemonic identifiers separated by commands and/or blanks. 
The mnemonic identifiers are listed in the section "Naming Conventions" in 
the chapter "Introduction". The mnemonic identifier, however, for the dump 
points within System Adapter dump points is ZZ. The maximum number of 
identifiers is 10. For example, AREAS(EX,PR) specifies that selective 
dumping is to occur in the Executive modules and the PRINT FSR. 

FULL names the dump points at which full region dumps are to be produced, 
in addition to the selected areas and the trace tables. The trace tables and 
selected areas are produced each time the dump point is encountered; a full 
region dump is produced as specified in dump list . dump list consists of a string 
of triplets enclosed in parentheses. The maximum number of triplets is 10. 
Each triplet is of the form: 

( ident [ begin [ count ]]) 

where the arguments of the triplet are defined as follows: 

ident is a four-character dump point. The dump points are identified in 
UDUMP macros and are listed in the module to Dump Points Cross 
Reference list. 

begin specifies the iteration through the named dump point at which you 
wish the full region dump to be produced. For example, a begin value of 2 
specifies that a full region dump is not to be produced until the second 
encounter of the dump point. The default value is 1, and the maximum is 
32,767. 

count specifies the number of times the full region dump is to be produced, 
once the value of begin has been satisfied. The default value is 1, and the 
maximum is 32,767. 

For example, FULL«EXIF,4,2),(ALOl) specifies that one full region dump 
is to be produced the fourth time that point EXIF is encountered, another full 
region dump is to be produced the fifth time the point is encountered, and one 
full region dump is to be produced the first time that point ALO1 is 
encountered. Trace tables and any selected areas are to be printed each time 
dump points EXIF and ALOI is encountered. If the FULL keyword is used, 
then an AMSDUMP DD statement must be provided. for example: 

//AMSDUMP DD SYSOUT=A 

OFF turns off the Test option. No further dumping of trace tables, selected 
areas, or region will occur until another P ARM command specifies one of the 
other subparameters. This subparameter must occur alone; it may not be 
coded with any other subparameter of the TEST keyword. 

592 OS/VS2 Access Method Services Logic 



How to Use the Test Option 

Each time a P ARM command is specified, the TEST parameters override the 
TEST parameters in effect from the previous P ARM command. 

Figure 14 shows a section of the output from the command: 

PARM TEST ( FULL (LCTP,2,l) ) 

The trace tables and the selected area, DARGLIST, are printed each time the 
dump point LCTP is encountered. A full region dump is produced the second 
time that dump point LCTP is encountered. 

If a problem occurs and you have no idea which modules are involved, run the 
job again with the TRACE keyword. From the Inter-Module Trace Table you 
should be able to tell the modules involved. The TRACE keyword, however, 
produces a large amount of output. 

If you suspect which modules are involved, you can rerun the job with the 
AREAS keyword and specify the identifiers of several suspected modules. 
You will obtain trace output for only the specified modules. 

Once you know the procedure within a module that has caused the problem, 
select the dump points at which you would like a full dump (using the Module 
to Dump Points Cross Reference list or by examining the microfiche for dump 
points), and rerun the job with the FULL keyword. The AREAS and FULL 
keywords can be used in combination to obtain trace tables and selected areas 
throughout several modules, but a full region dump only at selected points. 

Diagnostic Aids 593 

L 



06IC'311~10CAMS SV5HM S~RVICES 

InC~OOll 'U~CTlCN cnM'leTEC, Hlr.HEST CCNelTICH ccoe WAS n 

L1STcn ENlRV 	 I ONOI.ClOOI041/Cl"R I all 

10CC'."1 nu'" 	 ROUTINE INvrKeo AT 'lCT" 

INTeR-MODULE TUCE, e'ol SA02 lCOI 5A~Z lCOI SAC. lcel 5AC2 lCOI SACZ lCOI 5A02 lC~1 SA02 lCOI S'02 lCCI S'02 lCCI ep~1 
YNTAA-140DUlE TRAC~: A13'1' A"'I~ SICl AtT" SAFP AyqC; SICr: eXlF elF~ cACl lcrN 5AGP 5AGP SAGP SAf,P SAGP ~AGP 5AGJ: SA(P LeT!: 

OUGlIST • cocC'onco 0023803G 03C!FCC! cccce~eo C I ~CCCCC Selected fields: Text Proc..sor 
Argument List 

Yr')C('Iq24Y OUIIII" ACUTYf\e t"Vt:'IC.~D AT 'lCT'" 

INTER-"nOUle T"C~' C801 T'OI 0"01 T'OI Oqol TOCI lCOI oeOI lCC'1 ~AC2 e-~I 5A02 CPO I SA('Z lCOI 0.01 lCOI ceol lCCI cen 
INTAA-MODUlE TRACe: ~AlC SAGP TPI§N TPCt: TP21 TP21 TPr,A TPCA TPC. TP2N T02N T01N lCEN LeAL SACA ZlCI l7(A LCAL lC". l(TP 

Selected field.: Text Processor 
Argument Ust 

.AGE ~OOI 

10CCqZ~1 OU •• ~Ol .oocueer. AT DUo' 'CI~l 'leTP' 

A 

STEP In • CCI 

PSW AT e:NTAV TO SNIP 01102000 CC201!AIII 

SEGMENT TAelE ColGIN 'EGI~HR 0201"00 

C\2C6~ .~ 0021'170 'IE OOOOOOOC CEP eCZ4ee •• TlCI ~OZ4n?0 C.. OOOCOOOO 1.N oceooooo 
• 5S 
'SA 

ooonn. 
0124'6fO 

'./Flr. 
TC' 

ICCIOOr. • 
000122'. 

'lG 
TOE 

OOOOOI'~ 
coclzlee 

IIS 
'1' 

OOCOOOO(l 
Eoccce~e 

J Le 
NIe 

OO~O~OOO 
OOOCOOOO 

JSl 
CTC 

OCC1Z068 
OCCOCCOC 

l TC 
STAf 

~cooonco 

00Z40148 
IOE 
leT 

O(,OOOOCO 
C024'CI8 

Eee 
UHo 

cccocecc 
cocceoce 

Xlce 
NeS' 

ccoooeoo 
OOCCOOOO 

l'/Fl 050C('000 
Me I e S 0000(1000 

AESV 
JSC' 

OCCOOO~c 
ecc IEC14 

RESV 
HTZ 

00000(101) 
COOIZI48 

Resv 
'CP 

00000000 
CCCI2 ". 

R!SV 
G'E 

ccccecco 
002!FHC 

• >11 
APP 

c~cccoeo 
CeZ10?1~ 

-ITS OMceeoc r.. ~cccoooe 

eXlZ no cooooooo Sl/0CM cocoocr~ 

ACTIVE .~S 

.Re 24'008 	 NM 10CA"~ Sl/STA8 H~~OOCC u~e/fP 002(Z41)C .S. C71CZOOO COZC3"8 Q OOOOO~ ."lNO OCClZ068 
ce. NCTE/lCAe ~czrcooe .COlNTH EEcceA.c 

SVDJl 2~F2'7C 	 .. ~ SVC-6C56 H/STA., ~C1400f2 eSE/EO ocz'ecoc '" C1CC~OC~ ceZ<CCEe C CO(Zl? .Tll'" coz"o'e 
'G 0-1 00~00030 OOZ4eOoo 00Z4- •• e C02301(r 0(,0C'06PC "('('IZZ4. ~OZ4'Z(~ 0024C010 
oc ~-15 00Z4e~~e 00Z4nco ~C~('2~~~ C024e:1l((' CC2Q~R3? C('l24E8CC CC2~2P'34 CC('CCOOC' 

Figure 14. Example of Test Option Output 

Trace and Dump Points to Module Cross Reference 

The following list contains all trace and dump points, identifies the containing 
module and procedure and explains the situation at the trace or dump point. 
When the test option is set. both the trace and dump points are placed in the 
Intra-Module Trace Table. The trace tables are printed with all variations of 
the Test option as explained in the section "TEST Keyword." 

Trace and Dump Points to Module or CSECf Cross Reference 

Trace or Dump Module or 
Point CSECf Procedure Type Situation at Dump or Trace Point 

AAOO IDCSA09 ISSUEMAC dump 	 After issuing SVC 126. 

AAOl IDCSA09 CHKCODE dump 	 After delayed response for Mass 
Storage Control order. 

ALMR IDCALOI MEMRENAM trace 	 Start of procedure that renames 
members of partitioned data sets. 

ALOI IDCALOI IDCALOI dump 	 Before calling the catalog to alter 
an object. 

trace Start of ALTER FSR. 

AL02 IDCALOI IDCALOI dump 	 End of ALTER FSR. 

AL03 IDCALOI LOCATPRC dump 	 After calling the catalog to locate 
an object. 

594 OS/VS2 Access Method Services Logic 



L 
Trace and Dump Points to Module or CSECf Cross Reference 

Trace or Dump Module or 
Point CSECf Procedure Type 	 Situation at Dump or Trace Point 

AL04 IDCALOI IDCALOI dump 	 Before issuing ALTER request for 
index object if KEYS specified. 

AL31 IDCALOI LOCATPRC trace 	 Start of procedure that locates the 
entry to be altered. 

AL41 IDCALOI ALTERPRC trace 	 Start of procedure that alters the 
catalog entry. 

AL51 IDCALOI CHECKPRC trace 	 Entry to CHECKPRC. 

dump 	 After locating data component of 
the alternate index for which 
UPGRADE has been specified. 

AL52 IDCALOI CHECKPRC dump 	 After locating associated cluster 
or alternate index of the data 
object specified on ALTER 
command. 

AL53 IDCALOI CHECKPRC dump 	 After locating associated index 
component. 

AL54 IDCALOI CHECKPRC dump 	 After locating the data component 
of the path's base cluster. 

AL55 IDCALOI CHECKPRC dump 	 After locating the cluster 
component of the alternate 
index's base cluster. 

AL56 IDCALOI CHECKPRC dump 	 After locating the data component 
of the alternate index's base 
cluster. 

AL61 IDCALOt INDEXPRC trace 	 On entry to INDEXPRC. 

AL7t IDCALOI DALCPROC trace 	 Start of procedure that allocates 
and deallocates volumes. 

AL8t IDCALOI PARAMCHK trace 	 On entry to parameter checking 
procedure. 

ALMR IDCALOI MEMRENAM trace 	 Start of procedure that renames 
PDS members. 

BIBI IDCBIOI BLDPROC trace 	 First entry to procedure that 
builds and writes the alternate 
index records. 

BICI IDCBIOI CNTLPROC trace 	 Start of procedure that controls 
reading base cluster, sorting and 
writing alternate index. 

BIC2 IDCBIOI CNTLPROC dump 	 After completion of sort if an 
internal sort; after completion of 
sort phase and before merge 
passes if an external sort. 

BIDL IDCBIOI DELTPROC trace 	 Start of procedure that deletes 
sort work files. 

dump 	 After return from UCATLG to 
delete each sort work file. 

BIDI IDCBIOI DEFPROC trace 	 Start of procedure that defines 
sort work files. 

BID2 IDCBIOI DEFPROC dump 	 After return from UCATLG to 
define each sort work file. 

Diagnostic Aids 595 



Trace and Dump Points to Module or CSECT Cross Reference 

Trace or Dump 
Point 

BIFI 

Bill 

BII2 

BIJI 

BH2 

BILl 

BIL2 

BIMI 

BIM2 

BIM3 

BIM4 

BIPI 

BIP2 

BISP 

BISR 

BIOI 

BI02 

BI03 

BI04 

CCAC 

CCAL 

596 OS/VS2 Access Method Services Logic 

Module or 
CSECT 

IDCBIOI 

IDCBIOI 

IDCBIOI 

IDCBIOI 

IDCBIOI 

IDCBIOI 

IDCBIOI 

IDCBIOI 

IDCBIOI 

IDCBIOI 

IDCBIOI 

IDCBIOI 

IDCBIOI 

IDCBIOI 

IDCBIOI 

IDCBIOI 

IDCBIOI 

IDCBIOI 

lDeBIOI 

IDCCCOI 

IDCCCOI 

Procedure 

FINPROC 

INITPROC 

INITPROC 

JCPROC 

JCPROC 

LOCPROC 

CATPROC 

MERGPROC 

MERGPROC 

MERGPROC 

MERGPROC 

OPENPROC 

OPENPROC 

SPILPROC 

SORTPROC 

IDCBIOI 

MAINPROC 

MAINPROC 

MAINPROC 

ALTRLSTS 

ALTRLSTS 

Type 

trace 

trace 

dump 

trace 

dump 

trace 

dump 

trace 

trace 

dump 

dump 

trace 

dump 

trace 

dump 

trace 

trace 

dump 

dump 

dump 

trace 

Situation at Dump or Trace Point :J
Start of procedure that closes 
alternate index and prints status 
message. 

Start of procedure that obtains 
resources for building alternate 
index. 

After obtaining or failing to 
obtain sort core. 

Start of procedure that issues 
UIOINFO to obtain sort work file 
job control data. 

After return from each call to 
UIOINFO. 

Start of procedure that controls 
catalog locates to obtain 
information about the base cluster 
and alternate index. 

After return from UCATLG for 
each locate request. 

Start of procedure that performs 
the merge passes of an external 
sort. 

Start of each merge pass of an 
external sort. 

After the tree of nodes has been 
initialized for each merge pass of ~ 
an external sort. 

After processing one set of strings 
during the merge pass of an 
external sort. 

Start of procedure that opens data 
sets. 

After return from UOPEN to 
open a data set. 

Start of procedure that writes out 
a sorted string in the sort phase of 
an external sort. 

Before sorting the records in the 
record sort area. 

Start of BLDINDEX FSR. 

Start of procedure that controls 
building of one alternate index. 

After return from procedure 
which locates information about 
the base cluster and alternate 
index. 

After the alternate index has been 
built; before close. 

After building parameter lists to 
alter a VSAM catalog. 

Before building parameter lists to 
alter a VSAM catalog. 



Trace and Dump Points to Module or CSECT Cross Reference 

Trace or Dump Module or 
Point CSECT 

CCAP mCCCOl 

CCAT mCCCOl 

CCAV mCCCOl 

CCCE mCCCOl 

CCCI mCCCOI 

CCCN mCCCOl 

CCCP mCCCOl 

CCCT mCCCOl 

CCCV mCCCOl 

CCDC mcccOl 

CCDL mCCCOl 

CCDP mCCCOl 

CCDV mCCCOl 

CCER ,mCCCOl 

CCGP mCCCOl 

CCIC mCCCOI 

CCIE mCCCOl 

CCIP mCCCOI 

CCLC mCCCO! 

CCLL mCCCO! 

Procedure 

AEPROC 

CATALOG 

ALTRLSTS 

CONTINUE 

CNVTlNIT 

CONTINUE 

CVPEPROC 

CATALOG 

CONVERT 

DEFNLSTS 

DEFNLSTS 

DSPEPROC 

DEFNLSTS 

ERRPROC 

GIPEPROC 

CNVINIT 

PUSHDOWN 

ILEPROC 

LOCTLSTS 

LOCTLSTS 

Type 

trace 

trace 

dump 

trace 

trace 

dump 

trace 

trace 

trace 

dump 

trace 

trace 

dump 

trace 

trace 

dump 

dump 

trace 

dump 

trace 

Situation at Dump or Trace Point 

Ready to process an 'AE' catalog 
entry from an OS/VS catalog. 

Ready to build VSAM parameter 
lists and alter the nonVSAM entry 
in the VSAM catalog. 

After building parameter lists to 
alter a VSAM catalog. 

Ready to get a block at the same 
index level as the last block from 
an OS/VS catalog. 

Ready to initialize for scanning 
OS/VS catalog. 

After obtained block at the same 
index level as the last block from 
an OS/VS catalog. 

Ready to process a 'CVPE' 
catalog entry from an OS/VS 
catalog. 

Ready to build VSAM argument 
lists and define converted OS/VS 
catalog entry in the VSAM 
catalog. 

Ready to convert OS/VS catalog 
entries to VSAM catalog, entries. 

After building VSAM argument 
lists for define. 

Ready to build VSAM argument 
lists for define. 

Ready to process a 'DSPE' 
catalog entry from an OS/VS 
catalog. 

After building VSAM argument 
lists for define. 

Start of procedure that invokes 
UERROR when a catalog error 
(SVC26) is encountered. 

Ready to process a 'GIPE' catalog 
entry from an OS/VS catalog. 

After initializing for scanning of 
OS/VS catalog. 

No 'ICE' entry found on a lower 
level scanning in the OS/VS 
catalog, 

Ready to process a 'ILE' catalog 
entry from an OS/VS catalog, 

After building parameter lists to 
locate information in the VSAM 
catalog. 

Before building parameter lists to 
locate information in the VSAM 
catalog. 

Diagnostic Aids 597 



Trace and Dump Points to Module or CSECT Cross Reference 

Trace or Dump Module or 
Point CSECT Procedure Type 	 Situation at Dump or Trace Point ~ 
CCLT IDCCCOl CATALOG trace 	 Ready to build VSAM argument 

lists to locate information in the 
VSAM catalog about a duplicate 
entry. 

CCLV IDCCCOI CATALOG dump 	 After VSAM returns volume 
information on duplicate entry. 

CCPD IDCCCOl PUSHDOWN dump 	 After obtaining block at the same 
index level as the last block from 
the OS/VS catalog. 

CCPH IDCCCOt PUSHDOWN trace 	 Ready to obtain a block at a lower 
index level than the last block 
from the OS/VS catalog. 

CCPP IDCCCOl POPUP trace 	 Ready to return to higher level 
index block in OS/VS catalog. 

CCPU IDCCCOI POPUP dump 	 Ready to continue scan of higher 
level index block in OS/VS 
catalog. 

CCSE IDCCCOI CONVERT dump 	 Invalid entry type in the OS/VS 
catalog. 

CCSL IDCCCOl CONVERT dump 	 Finished converting OS/VS 
catalog entries to VSAM catalog 
entires. 

CCVE IDCCCOt VOLINDEX dump 	 No 'VICE' entry in the OS/VS 
catalog. 

CCVI IDCCCOl VOLINDEX dump 	 First block of volume index is 
obtained from the OS/VS catalog. 

CCVP IDCCCOI VCBPPROC trace 	 Ready to process a 'VCBPE' and 
'VCB' entry from the OS/VS 
catalog. 

CCVX IDCCCOI VOLINDEX trace 	 Ready to get first volume index 
block from the OS/VS catalog. 

CKBD IDCCKOI BUILDTAB trace 	 Start of procedure that builds the 
checkid table. 

CKCK IDCCKOI IDCCKOl trace 	 Start of CHKLIST FSR. 

CKCP IDCCKOl CHRPROC trace 	 Start of procedure that processes 
CHR records. 

CKDI IDCCKOl DSDRLIST trace 	 Start of procedure that prints the 
volume serial numbers. 

CKDP IDCCKOt DSDRPROC trace 	 Start of procedure that processes 
DSDR records. 

CKDV IDCCKOl DSDRVOLS trace 	 Start of procedure that processes 
type 2 DSDR records. 

CKGC IDCCKOl GETCHR trace 	 Start of procedure that reads 
CHR records. 

CKGN IDCCKOI GETNEXT trace 	 Start of procedure that locates the 
next logical DSDR record. 

CKHS IDCCKOI HSKGPROC trace 	 Start of housekeeping procedure. 

CKIO IDCCKOI IDCCKOI dump Before calling CHR procedure. 

·CK20 IDCCKOI IDCCKOl dump Upon return from CHR .j
procedure. 

598 OS/VS2 Access Method Services Logic 



Trace and Dump Points to Module or CSECT Cross Reference 

Trace or Dump Module or 
Point CSECT 

CK30 IDCCKOI 

CK40 	 IDCCKOI 

CK50 	 IDCCKOI 

CP14 	 IDCRPOI 

DB2A 	 IDCDB02 

DB2B 	 IDCDB02 

DB2C 	 IDCDB02 

DB2F 	 IDCDB02 

DB2H 	 IDCDB02 

DB21 	 IDCDB02 

DB2N 	 IDCDB02 

DEOI 	 IDCDEOI 

DE02 	 IDCDEOI 

DE03 	 IDCDEOI 
(without 
VS2.03.807) 
IDCDE02 
(with 
VS2.03.807) 

DE04 	 IDCDEOI 
(without 
VS2.03.807) 
IDCDE02 
(with 
VS2.03.807) 

DElI 	 IDCDEOI 

DE20 	 IDCDE03 
(with 
VS2.03.807) 

DE21 	 IDCDEOI 
(without 
VS2.03.807) 
IDCDE03 
(with 
VS2.03.807) 

Procedure 

DSDRPROC 

DSDRPROC 

DSDRVOLS 

VERIFYC 

ARRAYHDR 

BCONVERT 

CCONVERT 

FCONVERT 

HCONVERT 

ITEMDUMP 

NAMEFLD 

IDCDEOI 

IDCDEOI 

MODELPRC 

MODELPRC 

IDCDEOI 

IDCDE03 

CTLGPROC 

Type 

dump 

dump 

dump 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

dump 

dump 

dump 

dump 

trace 

trace 

trace 

Situation at Dump or Trace Point 

After reading a type 1 DSDR 
record. 

Before processing a type I DSDR 
record for a tape data set. 

Before processing a type 2 DSDR 
record. 

When either the source or target 
catalog cannot be verified during 
a reload. 

Start of procedure that processes 
an array header dump element. 

Start of procedure the converts a 
dump item to binary 
representation. 

Start of procedure that converts a 
dump item to character 
representation. 

Start of procedure that converts a 
dump item to fixed 
representation. 

Start of procedure that converts a 
dump item to hex representation. 

Start of procedure that processes 
an individual dump list element. 

Start of procedure that processes 
the dump element symbolic name. 

Before calling the catalog to 
define an object. 

End of DEFINE FSR, before 
completion message is issued. 

After calling the catalog to locate 
a model object. 

End of procedure that built the 
model table. 

Start of DEFINE FSR. 

Entry to IDCDE03. 

Start of procedure that defines a 
master or user catalog. 

Diagnostic Aids 599 



Trace and Dump Points to Module or CSECf Cross Reference 

Trace or Dump 	 Module or 
Point 	 CSECf Procedure Type Situation at Dump or Trace Point ~ 
DE22 	 IDCDEOI DSETPROC trace Start of procedure that defines a 

(without 
VS2.03.807) 
IDCDE03 
(with 
VS2.03.807) 

DE23 	 IDCDEOI DSPACPRC trace Start of procedure that defines a 
(without data space. 
VS2.03.807) 
IDCDE03 
(with 
VS2.03.807) 

DE24 	 IDCDEOI NVSAMPRC trace Start of procedure that defines a 
(without nonVSAM data set. 
VS2.03.807) 
IDCDE03 
(with 
VS2.03.807) 

DE25 	 IDCDEOI AIXPROC trace Start of procedure that defines an 
(without alternate index. 
VS2.03.807) 
IDCDE03 
(with 
VS2.03.807) 

DE26 	 IDCDEO} PATHPROC trace Start of procedure that defines 
(without a path 
VS2.03.807) 
IDCDE03 
(with 
VS2.03.807) 

DE27 IDCDEO} DALCPROC trace 	 Start of procedure that allocates 
and de allocates volumes. 

DE30 	 IDCDE02 IDCDE02 trace Entry to IDCDE02. 

DE31 IDCDE02 NAMEPROC trace 	 Start of procedure that builds 
CTGFLs with name, date, and 
exception exit information. 

DE32 IDCDE02 ALLCPROC trace 	 Start of procedure that builds 
CTGFLs for allocation 
information. 

DE33 IDCDE02 KEYPROC trace 	 Start of procedure that builds 
CTGFLs for key range and 
AMDSBCAT information. 

DE34 IDCDE02 PROTPROC trace 	 Start of procedure that builds 
CTGFLs for protection and 
RGATTR information. 

DE35 IDCDE02 IXOPPROC trace 	 Start of procedure that initializes 
index fields in the AMDSBCAT. 

I 

DE36 	 IDCDEOI MODELPRC trace Start of procedure that locates the 
(without model object entry. 
VS2.03.807) 
IDCDE02 
(with 
VS2.03.807) 

DE37 	 IDCDE02 FREESTG dump End of IDCDE02 CSECT 

600 OS!VS2 Access Method Services Logic 



Trace and Dump Points to Module or CSECT Cross Reference 

Trace or Dump Module or 
Point CSECT 

DLBC IDCDLOI 

DLBG IDCDLOI 

DLCT IDCDLOI 

DLLC IDCDLOI 

DLMS IDCDLOI 

DLPC IDCDLOI 

DLLB IDCDLOI 

DLLA IDCDLOI 

DLDB IDCDLOI 

DLDA IDCDLOI 

DLMD IDCDLOI 

DLAL IDCDLOI 

DLAC IDCDLOI 

EXFS lDCEXOl 

EXIF IDCEXOI 

EXIM IDCEXOI 

EXIR IDCEXOI 

EXMN IDCEXOI 

EXRI lDCEXOI 

EX2S IDCEX02 

EX3S lDCEX03 

IOAB IDCIOOS 

IOAC IDCIOO2 

Procedure 

BUILDCPL 

IDCDLOI 

CATCALL 

FINDTYPE 

MORESP 

PARAMCHK 

FINDTYPE 

FINDTYPE 

CATCALL 

CATCALL 

MEMDLETE 

ALLOPROC 

RC240PRC 

CALLFSR 

CALLFSR 

MAIN 

CALLRI 

IDCEXOI 

CALLRI 

SCANPARM 

SCANPARM 

OCABEND 

BUILDACB 

Type 

trace 

dump 

trace 

trace 

trace 

trace 

dump 

dump 

dump 

dump 

trace 

trace 

trace 

dump 

trace 

trace 

trace 

dump 

dump 

trace 

trace 

dump 

trace 

dump 

Situation at Dump or Trace Point 

Start of procedure that builds the 
CTGPL for the delete request. 

Start of DELETE FSR. 

Start of procedure that calls the 
catalog with a delete request. 

Start of procedure that locates the 
type of the entry to be deleted. 

Entry to MORESP. 

Start of procedure that checks for 
invalid parameters. 

Before calling the catalog to 
locate the entry type. 

After calling the catalog to locate 
the entry type. 

Before calling the catalog to 
delete an entry. 

After calling the catalog to delete 
an entry. 

Start of procedure that deletes 
PDS members. 

Start of procedure that 
dynamically allocates a data set or 
volumes. 

Start of procedure that processes 
a VSAM catalog return code of 
240 when the CAT parameter is 
coded. 

Before each call to an FSR. 

Before each call to an FSR. 

Before calling the 
Reader/Interpreter for the first 
time. 

Before each call to the 
Reader/Interpreter. 

All Reader/Interpreter and FSR 
processing is complete. 

Before each call to the 
Reader/Interpreter. 

Before processing the caller's 
parameter list. 

Before processing the caller's 
parameter list. 

Start of OPEN/CLOSE ABEND 
routine that sets flag in 
IOXCTLBK. 

Start of procedure that sets 
IOXABEND flag in IOXCTLBK. 

After ACB and EXLST have been 
built, at end of procedure. 

Diagnostic Aids 601 



Trace and Dump Points to Module or CSECf Cross Reference 

Trace or Dump 
Point 

IOAJ 

10BB 

lOCK 

10CL 

IOCL 

IOCN 

10CP 

10CS 

10CT 

10CW 

lOCI 

10DS 
(VS1.03.808) 

10EG 

IOEP 

10EX 

10FB 

10FW 

10GR 

10GT 

10GI 

Module or 
CSECf 

IDCIOO5 

IDCIOO5 

IDCIOO5 

IDCIOOl 

IDCIOO5 

IDCIOO5 

IDCIOOl 

IDCIOO5 

IDCIOO5 

IDCIOO5 

IDCIOO5 

IDCIOO2 

IDCIOOl 

IDCIOOI 

IDCIOO5 

IDCIOO5 

IDCIOO5 

IDClOOI 

IDCIOOl 

IDCIOO2 

Procedure 

ADJCCW 

BLDBLK 

CKOPN 

IDCIOCL 

CLOSEPRC 

CLOSENEW 

IDCIOCO 

CLOSESTD 

READCNT 

SETCCW 

READCNT 

DSDATA 

GETEXT 

PUTEXT 

IDCIOO5 

FWRITE 

FWRITE 

PUTREP 

IDCIOGT 

BUILDACB 

Type 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

dump 

dump 

trace 

dump 

trace 

dump 

trace 

trace 

dump 

trace 

trace 

Situation at Dump or Trace Point ..J 
Start of procedure that builds the 
ACB and EXLST. 

Start of procedure that adjusts a 
CCW channel program. 

Start of procedure that issues 
UGSPACE, calls READJFCB, 
and writes IOXCTLBK. 

Start of procedure that tests 
OPEN ABEND and issues 
UPRINT macros. 

Start of routine that closes data 
set. 

Start of procedure that closes data 
sets. 

Start of procedure that issues SVC 
82 to free the DEB. 

Start of routine that copies a data 
set. 

Start of procedure that issues 
CLOSE. 

Start of procedure that reads the 
count field of each record on a 
track. 

Start of procedure that builds the 
CCW channel program to read 
the count field of each record. 

Beginning of routine that 
determines the number of record 
read. 

After obtaining data set 
information from the JFCB. 

End of procedure that gets a 
record from the user routine. 

Start of procedure that gets a 
record from the user routine. 

After control returns from an 
external user routine. 

Before record is passed to an 
external user routine. 

End of IDCIO05 module. 

Before calling UEXCP to do I/O. 

Beginning of procedure that 
writes multiple records on a track. 

After the GET for update. 

Beginning of routine that gets a 
data record from a data set. 

Before the GENCB macro is 
(Deleted for VS1.03.808) issued for the EXLST. ~ 

602 OS/VS2 Access Method Services Logic 



Trace and Dump Points to Module or CSECf Cross Reference 

Trace or Dump Module or 
Point CSECT Procedure Type SItuation at Dump or Trace Point 

IOGI IDCIOO5 BLDCCWGI trace Start of procedure that builds 
(Deleted for VS2.0J.808) CCWs to read key and data. 

IOG2 IDCIOO2 BUILDACB trace Before the GENCB macro is 
(Deleted for VS2.0J.808) issued for the ACB. 

10m IDCIOO2 BUILDRPL trace Before the GENCB macro is 
(Deleted for VS2.0J.808) issued for the RPL. 

IOIF IDCI003 DSINFO trace 	 Entry to UIOINFO processing. 

lOIN IDCIOO5 ICIOOO5 dump 	 Start of IDCIOOS module that 
performs steps necessary to open, 
close, read, or write volumes. 

IOIT IDCIOOI IDCIOIT trace 	 Start of initialization routine. 

IOKD mCIOO5 READKD trace 	 Start of procedure that reads the 
count, key, and data fields of each 
record on a track. 

IOKS mclOos SETKDCCW trace 	 Start of procedure that builds the 
CCW channel program to read 
the count, key, and data fields of 
each record on a track. 

IOK2 IDCI005 READKD trace 	 Start of procedure that calculates 
the number of records to read. 

IOK3 IDCIOO5 SETKDCCW trace 	 Start of procedure that builds read 
count-key-data CCWs. 

IOK4 IDCIOO5 SETKDCCW trace 	 Start of procedure bypasses bad 
count fields. (.. 

IOMI IDCI003 PTAMDS trace 	 Before MODCB macro is issued 
(Deleted for VS2.0J.808) 	 to put the POINT argument in the RPL. 

10M2 IDCIOO3 PTAMDS trace Before MODCB macro is 
(Deleted for VS2.0J.808) issued to make the end-of-data 

routine inactive. 

10M3 IDCIOO3 PTAMDS trace Before the MODCB macro is 
(Deleted for VS2.0J.808) issued to make the end-of-data 

routine active. 

100C IDCIOO5 OCABEND trace 	 Start of Open/Close ABEND 
routine. 

100E mclOos OPENPROC trace 	 Start of procedure that determines 
type of open. 

IOOG IDCIOOI GETNONVS trace 	 Start of procedure to get a 
nonVSAM logical record. 

IOOL IDCI005 OPNLAB trace 	 Start of procedure that opens 
VTOC to read or write volume 
label. 

lOON IDCI005 OPNNEW trace 	 Start of procedure that issues SVC 
82 to create a DEB. 

lOOP IDCIOOI IDCIOOP trace 	 Start of routine that opens data 
sets. 

lOOP IDCIOO5 OPNPASS trace 	 Start of procedure that opens data 
set to verify passwords or 
expiration dates. 

IOOR IDCIOO5 OPENR trace 	 Start of procedure that opens data 
sets, VTOCs, and staging packs 
for REPAIRV. 

Diagnostic Aids 603 



Trace and Dump Points to Module or CSECT Cross Reference 

Trace or Dump 
Point 

lOOT 

lOOT 

IOOV 

IOOW 

IOPG 

IOPL 

IOPO 

IOPO 

IOPR 

IOPT 

lOPI 

Ion 

IORJ 

IORP 

IORT 

lORI 

IOR2 

IOR3 

IOR4 

IOR5 

IOR6 

Module or 
CSECT 

IDCIOO3 

IDCIOO5 

IDCIOO5 

IDCIOOI 

IDCIOO5 

IDCIOOI 

IDCIOOI 

IDCIOO3 

IDCIOOI 

IDCIOOt 

IDCIOO5 

IDCIOO5 

IDCIOO5 

IDCIOO2 

IDCIOO5 

IDCIOO5 

IDCIOO5 

IDCIOO5 

IDCIOO5 

IDCIOO5 

IDCIOO5 

Procedure 

PTISDS 

OPNTAB 

OPNVTOC 

PUTNONVS 

PUTGET 

PUTREP 

IDCIOPO 

IDCIOO3 

PUTREP 

IDCIOPT 

BLDCCWPI 

BLDCCWP2 

READJFCB 

BUILDRPL 

RETRY 

OPENR 

READCNT 

READKD 

SPACCR 

SETCCW 

SETKDCCW 

Type 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

dump 

dump 

trace 

trace 

trace 

trace 

dump 

trace 

dump 

dump 

dump 

dump 

dump 

dump 

Situation at Dump or Trace Point 

Before SETL macro is issued. 

Start of procedure that opens data 
set to copy the MSC tables. 

Start of procedure that opens the 
VTOC. 

Start of procedure to write a 
nonVSAM logical record. 

Start of procedure that frees CCW 
storage. 

Entry to PUT (Replace) routine. 

Start of routine that positions to a 
data record in an opened VSAM 
or ISAM data set. 

After positioning is complete, 
before returning control to 
IDCIOPO. 

After the PUT for update. 

Start of routine that writes data 
records to an opened data set. 

Start of procedure that builds 
CCWs to write count, key, and 
data. 

Start of procedure that builds 
CCWs to write key and data. ..J
Start of procedure that issues 
RDJFCB and prints error 
messages. 

After RPL is built, at end of 
procedure. 

Start of procedure that issues a 
message that password is invalid. 

Start of procedure that opens data 
sets, VTOCs, and staging packs 
for REPAIRV. 

Start of procedure that reads the 
count field of each record on a 
track. 

Start of procedure that reads the 
count, key, and data fields of each 
record on a track. 

Start of procedure that spaces 
over a defective count field on a 
track. 

Start of procedure that builds the 
CCW channel program to read 
the count field of each record on a 
track. 

Start of procedure that builds the 
CCW channel program to read 
the count, key, and data fields of .~ 
each record on a track. 

604 OS/VS2 Access Method Services Logic 



Trace and Dump Points to Module or CSECT Cross Reference 

Trace or Dump Module or 
Point CSECT Procedure Type 	 Situation at Dump or Trace Point 

IOR7 lDCIOO5 ADJCCW dump 	 Start of procedure that adjusts a 
CCW channel program. 

10SN lDClOO5 SYNAD trace 	 Start of procedure that issues 
SYNADAF, UPRINT, and 
SYNADRLS macros. 

10SO lDCI003 PTISDS trace 	 End of routine that positions to an 
ISAM or BSAM record. 

10SP lDClOO5 SPACCR trace 	 Start of procedure that spaces 
over a defective count field on\ 
track. 

10SR lDCIOO3 STOWRTN trace 	 Before STOW macro is issued. 

lOST lDCIOOI lDCIOST trace 	 Entry to the STOW routine. 

lOST lDCIOO3 PTAMDS trace After SHOWCB macro is issued 
. (Deleted for VS2.03.S0S) to retrieve the RPL error code. 

10SY lDClOOS SYNAD dump 	 Start of SYNAD routine that 
issues SYNADAF, SYNADRLS, 
and UPRINT macros. 

10SI lDCIOO2 OPENRTN trace 	 Before SHOWCB macro is issued 
(Deleted for VS2.03.80S) 	 for the ACB. 

10SI lDCIOO3 PTAMDS trace 	 Before SHOWeB macro is issued 
(Deleted for VS2.03.80S) 	 to retrieve the RPL error code. 

IOS2 lDCIOOl GETNONVS trace 	 Start of SYNAD routine for 
nonVSAM read error. 

IOS2 lDCIOO2 CLOSERTN trace 	 Before SHOWCB macro is issued 
(Deleted for VS2.03.80S) 	 to retrieve the ACB error code. 

IOS4 lDCIOOl PUTNONVS trace 	 Start of SYNAD routine for 
nonVSAM put error. 

10TM lDCIOOl lDCIOTM trace 	 Start of termination routine that 
closes all data sets and frees 
space. 

10TO lDCIOO2 OPENRTN trace Before TESTCB to see if data set 
(Deleted for VS2.03.80S) is a path opened for replace processing. 

lOTI lDCI002 OPENRTN trace 	 Before TESTCB macro is issued 
(Deleted for VS2.03.S08) 	 to test if the ACB is open. 

IOT2 lDClOO2 OPENRTN trace Before the TESTCB macro is 
(Deleted for VS2.03.80S) issued to determine if the data set 

has an index . 
• 10T3 lDClOO2 OPENRTN trace 	 Before TESTCB macro is issued 

(Deleted for VS2.03.80S) 	 to determine if data set is RRDS. 

10UO lDClOOl lDCIOSI trace 	 Entry to UIOINFO entry 
processing. 

lOVE lDClOOl GETVSAM trace 	 Start of end-of-file exit routine for 
a VSAM file. 

10VG lDCIOOl GETVSAM dump 	 End of procedure that gets a 
record or control interval from a 
VSAM data set. 

trace 	 Start of procedure that gets a 
record or control interval from a 
VSAM data set. 

Diagnostic Aids 605 



Trace and Dump Points to Module or CSECT Cross Reference 

Trace or Dump 
Point 

Module or 
CSECT Procedure Type Situation at Dump or Trace Point 

[OVH IDCI005 OPNVTH trace Start of procedure that performs a 
pseudo open on a VTOC header or a 
VSAM data set. 

[OVP IDC[OOl PUTVSAM dump End of procedure that writes a 
VSAM record. 

trace Start of procedure that writes a 
VSAM record. 

• 
[OVR 
(VS2.03.808) 

IDC[OOl VSAMERR dump After detection of a VSAM I/O 
error. 

[OVT IDCI003 PTAMDS trace Start of procedure that positions 
to a VSAM record or control 
interval. 

[OVY IDC[OOl IDCIOVY dump After VER[FY macro is issued. 

trace After VERIFY macro is issued. 

[OWB IDC[005 WRITEREC trace Before calling UEXCP to perform 
I/O. 

10WR IDCI005 WRITEREC trace Beginning of procedure which 
writes a record on a track. 

10WI IDCI003 STOWRTN trace After STOW macro is issued. 

10XC IDCI005 ISSUEXCP trace Start of procedure that issues 
EXCP and WAIT macros and 
tests for errors. 

1000 IDCI003 DS[NFO dump After OBTAIN macro is issued. 

1000 IDCI003 DSINFO dump After RDJFCB macro is issued. 

1001 IDCI003 DSINFO dump After DEVTYPE macro is issued. 

[002 IDCI003 DSINFO dump After formatting work area. 

1005 IDCI005 IDCI005 trace Start of IDCI005 module. 

10tC IDCI002 CLOSERTN dump Before CLOSE macro is issued. 

1010 IDCI002 OPENRTN dump Before OPEN macro is issued. 

1020 IDCI002 OPENRTN dump After OPEN macro is issued. 

1021 
(VS2.03.808) 

IDCI002 OPENRTN dump At completion of all UOPEN 
processing. 

102C 
(VS2.03.808) 

IDCI002 CLOSERTN dump At completion of all UCLOSE 
processing. 

1030 IDCIOO2 OPENRTN dump After OPEN TYPE=J macro is 
issued. 

LCAL IDCLC02 LOCPROC dump After calling the catalog to locate 
an entry. 

LCAP IDCLC02 AUPROC dump Start of procedure that lists 
information about alias, 
nonVSAM, user catalog, or 
generation data group. 

LCAS IDCLC02 ASLPROC trace Start of procedure that locates 
and prints alias names. 

LCAU IDCLC02 AUPROC trace Start of procedure that formats 
catalog fields for a nonVSAM, 
alias, BDG, or user catalog entry. 

606 OS/VS2 Access Method Services Logic 



Trace and Dump Points to Module or CSECf Cross Reference 

Trace or Dump Module or 
Point CSECf Procedure Type Situation at Dump or Trace Point 

LCCD IDCLC02 CDIPROC dump Start of procedure that lists 
information about cluster, AIX, 
pagespace, data, index, or path. 

LCBL IDCLC02 LOCPROC dump Before calling the catalog to 
locate an entry. 

LCCK IDCLCOI CKDTPROC trace Start of procedure that tests the 
creation and expiration LISTCAT 
options against the catalog entry's 
creation and expiration date 
fields. 

LCCL IDCLC02 CDIPROC trace Start of procedure that formats 
catalog fields for a cluster, AIX, 
data, index, or path entry. 

LCDT IDCLCOI DATEPROC trace Start of procedure that calculates 
the creation and expiration 
LISTCA T options to be used in 
the testing of the catalog entry's 
creation and expiration date 
fields. 

LCEN IDCLCOI ENTPROC trace Before retrieving each entry in a 
list of entries. 

LCER IDCLC02 ERRPROC trace Start of procedure that issues 
messages. 

LCFP IDCLC02 FPLPROC trace Start of procedure that 
reinitializes CTGFLs for each 
locate request. 

LCLA IDCLC02 ANLTPROC trace Start of procedure that lists 
catalog entry associations. 

LCLO IDCLC02 LOCPROC dump Ready to do a catalog locate for 
information. 

LCIN IDCLCOI INITPROC trace Start of procedure that initializes 
the catalog parameter list and 
work areas. 

LCLT IDCLC02 LISTPROC trace Start of procedure that prints 
catalog data. 

LCMG· IDCLC02 ERRPROC dump Before UPRINT macro is issued 
to print a message. 

LCNX IDCLCOI GNXTPROC trace Before retrieving each entry when 
processing a full catalog. 

LCOJ IDCLCOI ENTPROC dump After preparing to locate 
information about a name. 

LCRA IDCLCOI RTEPROC dump Processing catalog information 
for associations of a cluster, AIX, 
pagespace, or generation data 
group. 

LCRP IDCLCOI RTEPROC dump Start of procedure that determines 
which procedure will list the 
catalog entry. 

LCRT IDCLCOI RTEPROC trace Start of procedure that directs the 
retrieved entry to the proper 
formatting procedure. 

Diagnostic Aids 607 

L 



Trace IIIId Dump Points to Module or CSECT Cross Reference 

Trace or Dump Module or 
Point 


LCR2 


LCSA 


LCSH 


LCTM 

LCTP 

LCVL 

LCVO 

LCWA 

LC02 

LC98 

LC99 

LRAA 

LRAD 

LRBL 

LRBU 

LRCA 

LRCK 

LRCR 

LRCT 

LRCI 

LRC2 

LRDO 

CSECT 

IDCLCOt 

IDCLC02 

IDCLC02 

IDCLCOt 

IDCLC02 

IDCLC02 

IDCLC02 

IDCLC02 

IDCLC02 

IDCLC02 

IDCLCOt 

IDCLROt 

IDCLROt 

IDCLROI 

IDCLROI 

IDCLROI 

IDCLROt 

IDCLROI 

IDCLROI 

IDCLRot 

IDCLROI 

IDCLROI 

Procedure 

RTEPROC 

ANSVPROC 

SHORTLST 

TIMEPROC 

LISTPROC 

VPROC 

VOLLIST 

LOCPROC 

IDCLC02 

FREESTG 

IDCLCOt 

AATOPLR 

ADDASOC 

BLDVEXT 

BUFSHUF 

CATOPEN 

CKEYRNG 

CRAOPEN 

CTTBLD 

CLEANUP 

CLENCRA 

DOOTHR 

Type 

trace 

trace 

trace 

trace 

dump 

trace 

trace 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

Situation at Dump or Trace Point 

Start of section of procedure that -.J 
processes associations of a cluster, 
orAIX 

Start of procedure that retrieves 
the list of types and CI numbers. 

Start of procedure that formats an 
abbreviated list of catalog entry 
'names from the UCIR workarea. 

Start of procedure that converts 
the time of day to a packed 
decimal format. 

Before UPRINT macro is issued 
to print catalog data. 

Start of procedure that formats 
catalog fields of a space entry. 

Start of procedure that formats an 
abbreviated list of catalog 
entrynames and volume serials 
from the UCIR workarea. 

After calling the catalog to locate 
an entry. 

When IDCLC02 is called the first 
time to establish addressability. 

End of LIST CAT FSR, before 
freeing storage in IDCLC02. 

End of LISTCAT FSR, before ..Jfreeing storage in IDCLCOl. 

Entry point for IDCLROt 

Start of procedure that adds an 
association to the association 
table. 

Start of procedure that builds 
virtual extension table. 

Start of procedure that moves a 
record to its "home" buffer. 

Start of procedure that prepares 
to open the catalog. 

Start of procedure that checks for 
keyrange. 

Start of procedure that opens the 
CRA. 

Start of procedure that builds CI 
translate table. 

Start of procedure that cleans up 
before exit. 

Start of procedure that closes the 
CRA and prints completion 
message. 

Start of procedure that controls 
printing nonVSAM information. ~ 

608 OS/VS2 Access Method Services Logic 



Trace and Dump Points to Module or CSECf Cross Reference 

Trace or Dump Module or 
Point CSECf 

LRDV IDCLROI 

LRER IDCLROI 

LRGE IDCLROI 

LRIA IDCLROI 

LRIN IDCLROI 

LRIS IDCLROI 

LRIV IDCLROI 

LRME IDCLROI 

LRPA IDCLROI 

LRPC IDCLROI 

LRPD IDCLROI 

LRPE IDCLROI 

LRPF IDCLROI 

LRPJ IDCLROI 

LRPK IDCLROI 

LRPM IDCLROI 

LRPO IDCLROI 

LRPT IDCLROI 

LRPV IDCLROI 

LRPW IDCLROI 

LRSM IDCLROI 

LRTC IDCLROI 

LRVE IDCLROI 

LRZY IDCLROI 

Procedure 

DOVSAM 

ERROR 

GETPRT 

INTASOC 

INITLZE 

INTSORT 

INTVEXT 

MEMSORT 

PRTAAXV 

PRTCMP 

PRTDMP 

PRTDMPC 

PRTFIFO 

PRTOJAL 

PRTOJVL 

PRTMCWD 

PRTOTHR 

PRTTIME 

PRTVSAM 

PRTVOL 

SUMIT 

TCICTCR 

VERTEXT 

ERROR 

Type 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

Situation at Dump or Trace Point 

Start of procedure that controls 
printing VSAM information. 

Start of procedure that handles 
errors. 

Start of procedure that gets and 
print records. 

Start of procedure that initializes 
association tables. 

Start of procedure that initializes 
the FSR. 

Start of procedure that initializes 
the sort table. 

Start of procedure that initializes 
the virtual extension table. 

Start of procedure that sorts the 
entries in sort table. 

Start of procedure that prints 
associated AIXs and volumes. 

Start of procedure that prints and 
compares information. 

Start of procedure that prints 
dump if specified. 

Start of procedure that prints 
dump of catalog record and 
underscores miscompares. 

Start of procedure that prints 
CRA in order of CI number. 

Start of procedure that prints 
object aliases. 

Start of procedure that prints an 
object's volumes. 

Start of procedure that prints 
miscompare words. 

Start of procedure that prints 
nonVSAM objects. 

Start of procedure that prints 
timestamps. 

Start of procedure that prints 
VSAM structures. 

Start of procedure that prints 
volume records. 

Start of procedure that prints 
number of entries processed. 

Start of procedure that translates 
the catalog CI to the CRA. 

Start of procedure that handles 
vertical extension records. 

After error message has been 
printed. 

Diagnostic Aids 609 



Trace and Dump Points to Module or CSECT Cross Reference 

Trace or Dump 
Point 

LRZZ 

LR02 

MPBF 

MPBG 

MPCP 

MPCT 

MPDA 

MPDC 

MPDD 

MPDL 

MPDN 

MPFN 

MPFV 

MPLV 

MPMG 

MPOP 

MPPS 

MPPT 

MPSP 

MPUC 

MPUQ 

Module or 
CSECT 

IDCLROI 

IDCLR02 

IDCMPOI 

IDCMPOI 

IDCMPOI 

IDCMPOI 

IDCMPOI 

IDCMPOI 

IDCMPOI 

IDCMPOI 

IDCMPOI 

IDCMPOI 

IDCMPOI 

IDCMPOI 

IDCMPOI 

IDCMPOI 

IDCMPOI 

IDCMPOI 

IDCMPOI 

IDCMP01 

IDCMPOI 

Procedure 

ERROR 

IDCLR02 

FPLPROC 

IDCMPOI 

CLUSPROC 

CLUSPROC 

DALCPROC 

DELTPROC 

DELTPROC 

DELTPROC 

DUPNPROC 

IDCMP01 

FVTPROC 

LVLRPROC 

MSGPROC 

OPENPROC 

BPASPROC 

CLUSPROC 

CTLGPROC 

CNCTPROC 

IUNIQPRC 

Type 

dump 

dump 

trace 

trace 

trace 

trace 

trace 

dump 

dump 

trace 

trace 

dump 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

Situation at Dump or Trace Point 

After error that forced an 
ABORT of this execution. 

Entry point for module that gets a • 
record for Recovery Field 
management routine. 

Start of procedure that constructs 
aCTGFL. 

Start of IMPORT FSR. 

Start of procedure that imports a 
cluster or alternate index. 

Before processing information 
from the portable data set to 
define a cluster or alternate index. 

Start of procedure that 
dynamically allocates volumes. 

After the first UCATLG. 

After the second UCATLG. 

Entry to DEL TPROC. 

Start of procedure to process a 
duplicate entry found in the 
catalog. 

End of IMPORT FSR, prior to 
closing data sets. 

Start of procedure that constructs .ja CTGFV and CTGFLs. 

Start of procedure that constructs 
CTGFLs for device and volume 
information. 

Start of procedure that issues 
messages. 

Start of procedure that opens 
either the portable data set or the 
newly defined data set. 

Start of procedure that constructs 
the PASSWALL CTGFL for 
protection information. 

After imported cluster or 
alternate index has been 
successfully defined and the 
contents of the portable data set 
copied into the new cluster or 
alternate index. 

Start of procedure that calls the 
catalog to locate, alter, or define 
an entry. 

Start of procedure that connects a 
user catalog. 

After a data or index has been 
found to be unique. 

610 OS/VS2 Access Method Services Logic 



Trace and Dump Points to Module or CSECf Cross Reference 

Trace or Dump 
Point 

Module or 
CSECT Procedure Type Situation at Dump or Trace Point 

MPZZ IDCMPOl CTLGPROC dump Before and after calling the 
catalog to locate, alter, or define 
an entry. 

PMGP IDCPMOI GRPHPARM trace Start of procedure that processes 
the graphics option. 

PMMG IDCPMOl MARGPARM trace Start of procedure that processes 
the margins option. 

PMTP IDCPMOI TESTPARM trace Start of procedure that initializes 
the TEST option. 

PMTS IDCPMOl TESTS AVE trace Start of procedure that initializes 
the Test Option Data Area. 

PROl IDCPROl IDCPROI dump End of PRINT FSR. 

PRll IDCPROl IDCPROl trace Start of PRINT FSR. 

PRI8 IDCPROI IDCPROI trace Before termination processing. 

PR21 IDCPROl TEXTPSET trace Start of procedure that sets up the 
text processor interface. 

PR3l IDCPROl DELIMSET trace Start of procedure that establishes 
the beginning and ending 
delimiters of the data set to be 
printed. 

RCAC IDCSA07 GETENT dump After calls to the catalog to locate 
an entry. 

~. 

RCAC 

RCBG 

IDCSA07 

IDCSA07 

UPDATENT 

IDCSARC 

dump 

dump 

After calls to the catalog to 
recatalog an entry. 

At entry point to IDCSARC 
procedure. 

RCEX IDCSA07 IDCSARC trace Start of IDCSARC procedure that 
calls GETENT. 

RCGE IDCSA07 GETENT trace Start of GETENT procedure that 
initializes the CAMLST 
parameter list. 

RCND IDCSA07 IDCSARC dump At return to caller. 

RCTE IDCSA07 TESTENT trace Start of TESTENT procedure that 
tests whether there is a need to 
recatalog. 

RCUE IDCSA07 UPDATENT trace Start of UPDATENT procedure 
that updates the catalog entry. 

RCOl IDCRC02 IDCRC02 trace Start of main procedure. 

RC02 IDCRC02 IDCRC02 dump Start of main procedure. 

RC03 IDCRC02 IDCRC02 trace Return in main procedure from 
procedures which processed 
catalog information for objects. 
Start of termination processing. 

RC04 IDCRC02 IDCRC02 dump Return in main procedure from 
procedures which processed 
catalog information for objects. 
Start of termination processing. 

RCOS IDCRC02 CLUSPROC trace Start of procedure which 
processes VSAM objects. 

Diagnostic Aids 611 



Trace and Dump Points to Module or CSECT Cross Reference 

Trace or Dump 
Point 

RC06 

RC07 

RC09 

RCtt 

RCt3 

RCt5 

RCt6 

RCt7 

RCt9 

RC2t 

RC23 

RC25 

RC27 

RC28 

RC29 

RC3t 

RC33 

RC35 

RC36 

Module or 
CSECT 

IDCRC02 

IDCRC02 

IDCRC02 

IDCRC02 

IDCRC02 

IDCRC02 

IDCRC02 

IDCRC02 

IDCRC02 

IDCRC02 

IDCRC02 

IDCRC02 

IDCRC02 

IDCRC02 

IDCRC02 

IDCRC02 

IDCRC02 

IDCRC02 

IDCRC02 

Procedure 

CLUSPROC 

CLUSPROC 

CLUSPROC 

CLUSPROC 

LOCPROC 

CTLGPROC 

CTLGPROC 

OPENPROC 

PUTPROC 

RECPROC 

MVDAPROC 

CONTRBL 

NVSMPROC 

NVSMPROC 

NVSMPROC 

SAVEPROC 

ALSPROC 

GDGPROC 

GDGPROC 

Type 

dump 

trace 

trace 

trace 

trace 

trace 

dump 

trace 

trace 

trace 

trace 

trace 

trace 

dump 

trace 

trace 

trace 

trace 

dump 

Situation at Dump or Trace Point 

Start of procedure which 
processes VSAM objects. 

Before routine which calls 
LOCPROC for data and index 
processing. 

Start build of timestamp 
information for portability data 
set. 

Start of processing for path 
associations for VSAM objects. 

Start of procedure which builds 
CPL and FPL's for catalog locate 
functions. 

Start of procedure which issues 
catalog locates. 

Start of procedure which issues 
catalog locates. 

Start of procedure to open input 
and output data sets. 

Start of procedure which writes 
control records to the output data 
set. 

Start of procedure which copies 
the data from the input data set to 
the output data set. 

Start of procedure which moves 
control record information in core 
and clears work areas in core. 

Start of procedure which builds 
control record information. 

Start of procedure which 
processes nonVSAM objects. 

Start of procedure which 
processes nonVSAM objects not 
associated to GDG's. 

Before timestamp processing for 
nonVSAM objects not associated 
toGDG's. 

Start of procedure which saves 
control record information and 
writes control information to the 
output data set. 

Start of procedure which 
processes catalog information for 
alias associations for nonVSAM 
objects. 

Start of procedure which 
processes catalog information for 
GDG's. 

Start of procedure which 
processes catalog information for 
GDG's. 

612 OS/VS2 Access Method Services Logic 



Trace and Dump Points to Module or CSECf Cross Reference 

Trace or Dump Module or 
Point CSECT 

RC37 IDCRC02 

RC39 IDCRC02 

RC40 IDCRC02 

RC42 IDCRC02 

RC79 IDCRCOI 

RC80 IDCRCOI 

RC8t IDCRCOt 

RC82 IDCRCOt 

RC83 IDCRCOI 

RC84 IDCRCOt 

RC85 IDCRCOt 

RC86 IDCRCOt 

RC87 IDCRCOt 

RC88 IDCRCOt 

RC89 IDCRCOI 

RC90 IDCRCOt 

RC9t IDCRCOI 

RC92 IDCRCOt 

RC93 IDCRCOt 

RC94 IDCRCOI 

RC95 IDCRCOI 

RC96 IDCRCOI 

Procedure 

GOGPROC 

ASOCPROC 

ASOCPROC 

PRNTPROC 

TERM 

INIT 

BUILOCRV 

EXPORTOR 

SYNCH 

OBJVOLCK 

OUPNAMCK 

BUILONAM 

COMPNAME 

SUBSP 

MESSAGE 

EXTRACT 

OPENCRA 

OPEN 

CKCATNM 

TIMESTMP 

SCANCRA 

ERRCK 

Type 

trace 

trace 

dump 

trace 

both 

both 

both 

both 

both 

both 

both 

both 

both 

both 

both 

both 

both 

both 

both 

both 

both 

both 

Situation at Dump or Trace Point 

Before build of timestamp 
information for GOG's. 

Start of procedure which 
processes catalog information for 
nonVSAM objects associated with 
GOG's. 

Start of procedure which 
processes catalog information for 
nonVSAM objects associated with 
GOG's. 

Start of procedure which prints 
error messages for associations. 

Before special processing to 
terminate request (closing output 
data set). 

Before initializing to begin 
processing. 

Before building the CRY. 

Before looping down name chain 
to callIDCRC02 to export data 
sets. 

Before scanning the name chain 
for a CRA to check it. 

Before checking synchronization 
of an entry across multiple 
volumes. 

Before checking the name chain 
for duplicates. 

Before constructing a block for 
the name chain. 

Before compressing a name for 
the name list. 

Before allocating space for the 
name chain. 

Before printing any message from 
IDCRCOl. 

Before using internal Field 
Management to get information 
fromCRA. 

Before opening or closing or CRA 
and doing all other work (e.g. 
Build CIT). 

Before the opening of the CRA. 

Before checking owning catalog 
name of CRA being opened. 

Before obtaining format 4 
timestamp for CRA being opened. 

Before scanning CRA to build the 
CIT table. 

After opening a CRA. 

Diagnostic Aids 613 



Trace and Dump Points to Module or CSECT Cross Reference 

Trace or Dump 
Point 

RC97 

RC98 

RC99 

RIBT 

RICV 

RIDC 

RIDF 

RIEX 

RIEl 

RIE2 

RIGN 

RIGQ 

RIGR 

RHD 

RHR 

RIMC 

RIME 

RIM I 

RIMS 

RINN 

RINS 

RIPC 

Module or 
CSECT 

IDCRCOI 

IDCRCOI 

IDCRCOI 

IDCRIOI 

IDCRIOl 

IDCRIOI 

IDCRIOl 

IDCRIOI 

IDCRIOI 

IDCRIOI 

IDCRIOI 

IDCRIOI 

IDCRIOl 

IDCRIOl 

IDCRIOI 

IDCRIOI 

IDCRIOI 

IDCRIOI 

IDCRIOI 

IDCRIOI 

IDCRIOI 

IDCRIOI 

Procedure 

NAMETABL 

DIRECT 

CKNAMES 

BYPASTRM 

CONVERT 

DSPLCALC 

DEFAULTS 

IDCRIOI 

ERRORl 

ERROR2 

GETNEXT 

GETQUOTD 

GETRECRD 

DSIDCHK 

INREPEAT 

MORSPACE 

MODLELSE 

MODALIF 

MODALSET 

NEEDNOTS 

NAMESCAN 

PACKCVB 

Type 

both 

both 

both 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

trace 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

Situation at Dump or Trace Point 


Before marking or adding a name 

to the name chain. 


Before obtaining the directory for 

a volume. 


Before gathering information on 

name in name list from CRA. 


Start of procedure that bypasses 

the remainder of the current 

modal or null command. 


Start of procedure that converts a 

constant from EBCDIC to binary 

or hexadecimal. 


Start of procedure that calculates 

the position within a secondary 

FDT vector in which to place an 

FDT pointer. 


Start of procedure that adds 

default parameters to the FDT. 


Start of Reader/Interpreter 

module. 


Start of procedure that issues a 

message without inserted text. 


Start of procedure that issues a 

message with inserted text. 


Start of procedure that scans the 

input command. .~ 

Start of procedure that scans a 

quoted constant. 


Start of procedure that obtains the 

next input record. 


Check restrictions on a data set 

name and place in FDT. 


Start of procedure that scans a 

repeated parameter set. 


Start of procedure that allocates 

more FDT space for a list of 

constants. 


Start of procedure that scans an 

ELSE modal command. 


Start of procedure that scans an 

IF modal command. 


Start of procedure that scans a 

SET modal command. 


Start of procedure that checks the 

input command for conflicting or 

missing parameters. 


Start of procedure that checks 

data set names. 


Start of procedure that converts a 

decimal constant into a binary ~fullword. 

614 OS/VS2 Access Method Services Logic 



Trace and Dump Points to Module or CSECT Cross Reference 

Trace or Dump Module or 
Point CSECT 

RIPP IDCRIOI 

RISC IDCRIOI 

RISD IDCRI02 

RISE IDCRIOI 

RISF IDCRIOI 

RISK IDCRIOI 

RIST IDCRIOI 

RITM IDCRI03 

RIOI IDCRIOI 

RI02 IDCRIOI 

RI03 IDCRIOI 

RI04 IDCRIOI 

R105 IDCRIOI 

RI09 IDCRIOI 

RIIO IDCRI04 

RIll IDCRIOI 

RII2 IDCRIOI 

RII2 IDCRI04 

R114 IDCRI04 

RII6 IDCRI02 

RII6 IDCRI04 

RI17 IDCRI02 

RI18 IDCRI04 

RI20 IDCRI04 

RI22 IDCRI04 

RI24 IDCRIOI 

Procedure 

POSPARM 

SCANCMD 

IDCRI02 

SCANENDS 

SETFLAG 

SKIPCMD 

SETDFLT 

IDCRI03 

SCANCMD 

SCANCMD 

SCANCMD 

GETNEXT 

GETNEXT 

KWDPARM 

RISETUP 

GETDATA 

GETDATA 

MAINSCAN 

SUBSCAN 

IDCRI02 

TRNSLATE 

IDCRI02 

FlNDPDE 

REPLIST 

BUILDFDT 

CONVERT 

Type 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

Situation at Dump or Trace Point 


Start of procedure that scans a 

positional parameter. 


Start of procedure that scans the 

input command parameters. 


Start of module that prepares to 

scan a command parameter set. 


Start of procedure that checks the 

input record for a continuation 

delimiter and determines the 

scanning limits of the record. 


Start of procedure that notes the 

occurrence of a parameter in the 

FDT. 


Start of procedure that bypasses 

the remainder of a function 

command. 


Start of procedure that puts 

parameter defaults in the FDT. 


Start of module that performs 

command termination functions. 


Start of scanning for a parameter. 


Scanning a first-level parameter. 


Scanning a subparameter. 


Modal command other than 

ELSE within an IF. 


Found a functional command. 


Found a keyword subparameter. 


Start of procedure that prepares 

to process a command. 


Start of extracting a scalar value. 


Extract a character string. 


Start of procedure that processes 

non-repeated parameters. 


Start of procedure that processes 

repeated parameters. 


Prior to loading the command 

descriptor. 


Start of procedure that translates 

the PDL into the FDT. 


Beginning of the code sequence to 

build the PARMINFO table. 


Start of procedure that finds the 

PDE offset into the PDL for the 

current parameter. 


Start of procedure that saves 

repeated parameter information. 


Start of procedure that builds 

FDT data substructure. 


Start converting a binary number. 


Diagnostic Aids 615 



Trace and DUlllp Points to Module or CSECT Cross Reference 

Trace or Dump 
Point 

RI24 

RI26 

RI27 

RI28 

RI30 

RI30 

RI32 

RI34 

RI35 

RI36 

RI36 

RI38 

RI40 

RI42 

RI44 

RI44 

RI45 

RI46 

RI49 

RI50 

RI51 

RI56 

R157 

RI59 

RI60 

Module or 
CSECT 

IDCRI04 

IDCRI04 

IDCRIOI 

IDCRI04 

IDCRIOI 

IDCRI04 

IDCRI04 

IDCRI04 

IDCRIOI 

IDCRIOI 

IDCRI04 

IDCRI04 

IDCRI04 

IDCRI04 

IDCRIOI 

IDCRI04 

IDCRIOI 

IDCRI04 

IDCRIOI 

IDCRIOI 

IDCRIOI 

IDCRIOI 

IDCRIOI 

IDCRIOI 

IDCRIOI 

Procedure 

GETSPACE 

NEWPARM 

CONVERT 

TOOMANY 

CONVERT 

NOTPARMS 

RESOLVE 

DEFAULTS 

INREPEAT 

IN REPEAT 

SETDFLT 

NEEDPRMS 

ADDPARM 

MSGKWD 

SETDFLT 

FAILSPAC 

SETDFLT 

RITERM 

NXTFIELD 

NXTFIELD 

NXTFIELD 

NEXTCHAR 

NEXTCHAR 

NEXTCHAR 

SCANENDS 

Type 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

Situation at Dump or Trace Point 

Start of procedure that gets space 
for the FDT data structures. 

Start of procedure that gets a new 
value for the parameter. 

Start converting a hexadecimal 
number. 

Start of procedure that handles 
error of excessive subpammeters 
or data. 

Change converted digits into a 
binary fullword. 

Start of procedure that checks for 
conflicting parameters. 

Start of procedure that resolves 
conflicting parameters. 

Start of procedure that selects 
parameter defaults. 

Loop to reset parameter 
occurrence flags for possible 
parameters in the sublist. 

End of last repeated sublist. 

Start of procedure that puts 
parameter defaults in the FDT. 

Start of procedure that checks for 
missing parameters. 

Start of procedure that prompts 
for missing parameters. 

Start of procedure that finds a 
keyword to put in an error 
message. 

Found that default is allowable; 
ready to put in FDT. 

Start of procedure that prints "no 
space" error message. 

Move a defaulted unquoted 
constant to FDT. 

Start of procedure that terminates 
the Reader/Interpreter for TSO. 

Extract a field from input (verb, 
keyword, or scalar). 

Extract a keyword field. 

Extract a quoted scalar. 

End-of-file already found in input. 

Extract first character of a new 
command. 

End-of-file found while looking 
for next character. 

Skip leading blanks and 
comments if preceding record 
indicated continuation. 

~ 


616 OS/VS2 Access Method Services Logic 



Trace and Dump Points to Module or CSECr Cross Reference 

Trace or Dump Module or 
Point CSECT Procedure Type 	 Situation at Dump or Trace Point .~ 
RI61 IDCRIOI SCANENDS trace Bypass a leading comment. 


RI62 IDCRIOI SCANENDS trace Bypass leading blanks. 


RI66 IDCRIOI DSPLCALC trace Calculate displacement into the 

FDT for a parameter in a 
first -level repeated parameter list. 

RI99 IDCRI03 IDCRI03 trace End of IDCRI03. 

RMAL IDCRMOI ALISPROC trace Entry to ALISPROC. 

RMAT IDCRMOI ALTRPROC trace Entry to AL TRPROC. 

RMBF IDCRMOI BFPLPROC trace Entry to BFPLPROC. 

RMBG IDCRMOI IDCRMOl trace Entry to IDCRMOI. 

RMCE IDCRMOI CLUSPROC trace Exit from CLUSPROC. 

RMCL IDCRMOI CPLPROC dump After the CPL has been built. 

RMCP IDCRMOI CLUSPROC trace Entry to CLUSPROC. 

RMCT IDCRMOI CLUSPROC trace 	 Begin reading of cluster or 
alternate index information from 
the portable data set. 

RMDA IDCRMOI DALCPROC trace Entry to DALCPROC. 

RMDC IDCRMOI DELTPROC dump After the first UCT ALG in 
DELTPROC. 

RMDD IDCRMOI DELTPROC dump After the second UCATLG in 
DELTPROC. 

RMDL IDCRMOI DELTPROC trace Entry to DEL TPROC. 

RMDG IDCRMOI GDGPROC trace A duplicate GDG entry has been 
found. 

RMDN IDCRMOI NVSMPROC trace Duplicate nonVSAM entry found. 

RMDU IDCRMOI UCATPROC trace Duplicate user catalog found. 

RMDV IDCRMOl CLUSPROC trace A duplicate VSAM entry has been 
found. 

RMEL IDCRMOl IDCRMOI trace End of the loop for importing 
objects. 

RMFN IDCRMOI IDCRMOI dump Termination of IDCRMOl. 

RMFV IDCRMOI FVTPROC trace E!ltry to FVTPROC. 

RMGD IDCRMOI GDGPROC trace Entry to GDGPROC. 

RMLV IDCRMOI LVLRPROC trace Entry to L VLPROC. 

RMOP IDCRMOI OPENPROC trace Entry to OPENPROC. 

RMNF IDCRMOI NFVTPROC trace Entry to NFVTPROC. 

RMNV IDCRMOI NVSMPROC trace Entry to NVSMPROC. 

RMPL IDCRMOl CPLPROC trace Entry to CPLPROC. 

RMPS IDCRMOI BPASPROC trace Entry to BPASPROC. 

RMPT IDCRMOl CLUSPROC trace Beginning of path definition 
sequence. 

RMRG IDCRMOI RANGPRC trace Entry to RANGPROC. 

RMSP IDCRMOI CTLGPROC trace Entry to CTLGPROC. 

RMUC IDCRMOI UCATPROC trace Entry to UCATPROC. 

Diagnostic Aids 617 

L 



Trace and Dump Points to Module or CSECf Cross Reference 

Trace or Dump Module or 
Point CSECf Procedure Type Situation at Dump or Trace Point 

RMUQ IDCRMOI IUNIQPRC trace A unique data or index ..J 
component has been detected. 

RMZZ IDCRMOI CTLGPROC dump 	 Before and after the UCATLG in 
CTLGPROC. 

RPCI IDCRPOI CNVRTCI dump 	 On exit from procedure that 
translates control interval 
numbers on the backup catalog. 

RPDl IDCRPOI CATRELOD dump 	 At the end of all reload error 
checking before any updates have 
been done to the target catalog. 

RPIO IDCRPOI DUMPIT dump 	 After reador write to backup or 
target catalog. 

RPRV IDCRPOI RECOVCAT dump 	 After initialization of locate 
parameter list to determine 
catalog recoverable attribute 

RPTU IDCRPOI TRUENAME dump 	 On exit from procedure, having 
built truename range table. 

RPTI IDCRPOI CATRELOD trace 	 Start of procedure that performs 
catalog reload. 

RPT2 IDCRPOI TRUENAME trace 	 Start of procedure that the RBA 
boundaries of the backup 
truename ranges. 

RPT3 IDCRPOI CATRANS trace 	 On entry to procedure that locates 
control interval numbers to be 
translated. 

RPT4 IDCRPOI CNVRTCI trace 	 On entry to procedure that 
converts control interval numbers 
from the backup catalog. 

RPT5 IDCRPOI CATCOMP trace 	 On entry to procedure that 
compares true name records. 

RPT6 IDCRPOI VERIFYC trace 	 On entry to procedure that issues 
VERIFY against a catalog. 

RPOI IDCRPOI IDCRPOI dump 	 End of REPRO FSR. 

RPI2 IDCRPOI IDCRPOI trace 	 After all data sets have not been 
opened successfully. 

RPl3 IDCRPOI IDCRPOI trace 	 Start of loop that copies the data 
set by issuing UGET and UPUT 
macros. 

RPl8 IDCRPOI IDCRPOI trace 	 After all records have been copied 
to output data set. 

RP21 IDCRPOI DELIMSET trace 	 Start of procedure that sets up the 
beginning and ending delimiters 
of the input data set. 

Note: Trace and Dump points 'RSAD' through 'RSOI' are for VS2.01.808 only. 

RSAD IDCRS05 ADDUPCR trace 	 Upon entry to routine which 
updates the CRA for a particular 
period. 

RSAE IDCRSOI AERROR trace 	 On entry to routine that exists if 
enough storage is not available to 
establish automatic storage 
required for RESETCAT ~ 
modules. 

618 OS/VS2 Access Method Services Logic 



L 

Trace and Dump Points to Module or CSECT Cross Reference 

Trace or Dump Module or 
Point CSECT Procedure Type Sitllation at Dump or Trace Point 

RSAS IDCRS02 ASSOC trace 	 On entry to routine that initiates 
association checking. 

RSAT IDCRS05 ADDTN trace 	 On entry to routine that adds a 
true name to the catalog. 

RSAI IDCRS02 ASSOC dump 	 At end of procedure that initiates 
association checking. 

RSA2 IDCRS05 ADDUPCR dump 	 At end of procedure that prepares 
for update CRA processing. 

RSBR IDCRS05 BLDRLST trace 	 On entry to routine that adds an 
entry to the reset volume table. 

RSBV IDCRS05 BLDVLST trace 	 On entry to routine that adds an 
entry to the volume serial table. 

RSBt IDCRS05 BLDVLST dump 	 Endof procedure that adds an 
entry to the volume serial table. 

RSB2 IDCRS05 BLDRLST dump 	 At end of procedure that adds an 
entry to the reset volume table. 

RSCA IDCRS02 CINALTER trace 	 On entry to routine that alters 
control interval numbers in 
catalog records. 

RSCC IDCRS07 CNVTCCHH trace 	 On entry to routine that converts 
CCHH to TTnn. 

RSCD IDCRS06 CRADMNT trace 	 On entry to routine that requests 
deallocation of a CRA volume. 

RSCE IDCRS07 CATEOV trace 	 On entry to routine that extends 
the catalog. 

RSCH IDCRS03 CHKDSDIR trace 	 On entry to routine that checks a 
data set directory entry against a 
DATA or INDEX component. 

RSCI IDCRSOI CATINIT trace 	 On entry to routine that initializes 
RESETCAT's description of the 
catalog. 

RSCK IDCRS05 CKERR trace 	 On entry to routine that prints a 
message if one is associated with 
the error message given. 

RSCL IDCRSOI CLEANUP trace 	 On entry to routine that ensures 
all RESETCAT resources are 
freed. 

RSCM IDCRS06 CRAMNT trace 	 On entry to routine that requests 
CRA deallocation. 

RSCO IDCRSOI COPYCAT trace 	 On entry to procedure that copies 
the catalog to the workfile. 

RSCR IDCRS05 CRAUPCHN trace 	 On entry to routine that adds a 
workfile record to a specific 
"update CRA" chain. 

RSCU IDCRS03 CATRCDSU trace 	 On entry tooroutine that 
establishes base record offsets for 
catalog low key range records. 

RSCI IDCRSOt CATINIT dump 	 End of procedure that builds CIN 
to RRN table. 

RSC2 IDCRSOI COPYCAT dump End of procedure that copies the 
catalog to the workfile. 

Note: Trace and Dump points on this page are for VS2.03.BOB only. 

Diagnostic Aids 619 

L 



Trace and Dump Points to Module or CSEcr Cross Reference 

Trace or Dump 
Point 

RSC3 

RSC4 

RSC5 

RSC6 

RSC7 

RSDC 

RSDE 

RSDO 

RSDT 

RSDI 

RSD2 

RSD3 

RSEN 

RSES 

RSEI 

RSE2 

RSFI 

RSFR 

RSFI 

RSGE 

RSGF 

RSGN 

RSGT 

Module or 
CSECT 

IDCRSOI 

IDCRS05 

IDCRS06 

IDCRS06 

IDCRS07 

IDCRS06 

IDCRS04 

IDCRS06 

IDCRS05 

IDCRS06 

IDCRS06 

IDCRS04 

IDCRSOS 

IDCRSOI 

IDCRS05 

IDCRSOI 

IDCRS04 

IDCRS07 

IDCRS04 

IDCRSOS 

IDCRS03 

IDCRS03 

IDCRS03 

Procedure 

CLEANUP 

CKERR 

CRAMNT 

CRADMNT 

CATEOV 

DSCLOSE 

DELGO 

DSOPEN 

DELTN 

DSOPEN 

DSCLOSE 

DELGO 

ENTNMCK 

ENSURECI 

ENTNMCK 

ENSURECI 

FIND 

FRCRCCR 

FIND 

GENNAME 

GETFIT 

GETNEXTE 

GETTAB 

Type 

dump 

dump 

dump 

dump 

dump 

trace 

trace 

trace 

trace 

dump 

dump 

dump 

trace 

trace 

dump 

dump 

trace 

trace 

dump 

trace 

trace 

trace 

trace 

Situation at Dump or Trace Point 


Before freeing the resources used 

by RESETCAT. 


Before RESETCAT FSR is 

terminated due to an error. 


End of procedure that requests 

CRA allocation. 


End of procedure that requests 

CRA de allocation. 


At conclusion of routine that 

extends the catalog. 


On entry to procedure that closes 

a VSAM data set. 


On entry to routine that deletes a 

group occurrence. 


On entry to procedure that opens 

VSAM data sets. 


On entry to procedure that deletes 

a true name from the catalog. 


End of procedure that opens a 

VSAM data set. 


End of procedure that closes a 

VSAM data set. 


End of procedure that deletes a 

group occurrence. 


On elltry to routine that ..) 

determines if a catalog record has 

a valid entry name. 


On entry to routine that ensures 

there are enough free CIs for 

reassignment. 


End of procedure that determines 

if a record has a true name. 


A start of procedure prior to 

ensuring enough free CIs. 


On entry to routine that locates 

requested information from a set 

of catalog records. 


On entry to routine that forces 

reading of the CCR by Catalog 

Management. 


End of routine that finds one or 

all group occurrences. 


On entry to routine that generates 

a true name. 


On entry to routine that gets a 

free entry in tables for ASSOC. 


On entry to routine that translates 

an index into a table into a virtual 

address. 


On entry to routine that gets and 
 ..J 
initializes a table for ASSOC. 

Note: Trace and dump points on this page are for VS2.03.808 only. 

620 OS/VS2 Access Method Services Logic 



L 

Trace and Dump Points to Module or CSECf Cross Reference 

Trace or Dump Module or 
Point CSECf Procedure Type SItuation at Dump or Trace Point 

RSGV IDCRS03 GETVIA trace 	 On entry to routine that gets a 
record by control interval number 
via a specific CRA. 

RSGI IDCRS03 GETVIA dump 	 End of procedure that locates 
records in the workfile. 

RSIN IDCRSOI IN IT trace 	 On entry to routine which 
performs the main initializations 
for RESETCAT. 

RSII IDCRSOI IN IT dump 	 End of procedure that initializes 
data areas and obtains resources. , 

RSME IDCRSOI MERGCRA trace 	 On entry to routine that merges 
each reset CRA into the workfile. 

RSMO IDCRS04 MODGO trace 	 On entry to procedure that 
modifies a group occurrence. 

RSMU IDCRS03 MARKUNUS trace 	 On entry to routine that marks a 
Volume Group Occurrence 
(VGO) unusable. 

RSMI IDCRSOI MERGCRA dump 	 End of procedure that merges and 
resets CRA into the workfile. 

RSM2 IDCRS04 MODGO dump 	 End of procedure that modifies a 
group occurrence. 

RSPC IDCRS02 PROCTYPE trace 	 On entry to routine that scans a 
catalog record for CINs. 

RSPI IDCRS02 PROCCI trace 	 On entry to routine that ensures a 
CIN is in the list of CINs for 
records being processed. 

RSPR IDCRSOI PROCCRA trace 	 On entry to routine that processes 
the records of the current CRA. 

RSPV IDCRS03 PROCVOL trace 	 On entry to routine that resolves 
space conflicts. 

RSPI IDCRSOI PROCCRA dump 	 End of procedure that merges the 
records of a reset CRA into the 
workfile. 

RSP2 IDCRS03 PROCVOL dump 	 Before freeing resources used by 
PROCVOL routine. 

RSP3 IDCRS02 PROCTYPE dump 	 After processing a set of records 
for associations. 

RSP4 IDCRS02 PROCCI dump 	 End of procedure that ensures 
that a CIN is in the list of CINs. 

RSRC IDCRS06 RECMGMT trace 	 On entry to routine that performs 
all I/O operations for 
RESETCAT. 

RSRE IDCRSOI REASSIGN trace 	 On entry to routine that performs 
control interval reassignment. 

RSRN IDCRS07 RENAMEP trace 	 On entry to routine that renames 
duplicate true name entries. 

RSRI IDCRSOI REASSIGN dump 	 End of procedure that assigns new 
CINs to records on the reassign 
chain. 

RSR2 IDCRS06 RECMGMT dump End of procedure that performs 
all I/O requests. 

Note: Trace and dump points on this page are for VS2.03.808 only. 

Diagnostic Aids 621 

L 



Trace and Dump Points to Module or CSECf Cross Reference 

Trace or Dump 
Point 

RSR4 

RSSB 

RSSC 

RSSE 

RSSR 

RSST 

RSSV 

RSS2 

RSS3 

RSSS 

RSS6 

RSUA 

RSUC 

RSUP 

RSUR 

RSUI 

RSU2 

RSVB 

RSVC 

RSVE 

RSVG 

Module or 
CSECf 

IDCRS07 

IDCRS03 

IDCRS02 

IDCRS02 

IDCRSOS 

IDCRS03 

IDCRSOS 

IDCRS02 

IDCRS03 

IDCRSOS 

IDCRSOS 

IDCRS03 

IDCRSOt 

IDCRSOt 

IDCRS07 

IDCRSOt 

IDCRSOt 

ICDRS03 

IDCRS02 

IDCRS02 

IDCRS02 

Procedure 

RENAMEP 

SETBMAP 

SCANCI 

SETCI 

SCNRLST 

SETBITS 

SCNVLST 

SETCI 

SETBITS 

SCNVLST 

SCNRLST 

UNALLOC 

UPDCRA 

UPDCAT 

UPDCCR 

UPDCAT 

UPDCRA 

VERB 

VERC 

VERDSDIR 

VERG 

Type 

dump 

trace 

trace 

trace 

trace 

trace 

trace 

dump 

dump 

dump 

dump 

trace 

trace 

trace 

trace 

dump 

dump 

trace 

trace 

trace 

trace 

Situation at Dump or Trace Point 

Before freeing resources used by 
the RENAMEP procedure. 

On entry to routine that checks 
space conflicts for D or I type 
catalog entries. 

On entry to routine that scans 
records for control intervals. 

On entry to routine that updates 
the workfile to reflect new CINs 
for reassigned CINs. 

On entry to routine that obtains 
the next CRA volser entry for 
reset. 

On entry to routine that maps 
extents to a bit map. 

On entry to routine that scans 
through the list of volumes. 

End of procedure that updates the 
workfile records from the 
associations tables. 

At end of procedure that sets up a 
single bit map. 

End of procedure that locates an 
entry in the volume serial table. 

End of procedure that locates an 
entry in the reset volume table. 

On entry to routine which 
unallocates suballocated space 
from temporary space maps. 

On entry to routine which updates 
the CRAs from the workfile. 

On entry to routine which updates 
the catalog from the workfile. 

On entry to procedure which 
updates the CCR for the catalog. 

End of procedure that updates the 
catalog from the workfile. 

End of procedure that updates the 
CRAs from the workfile. 

On entry to routine which verifies 
associations for GDG base 
records. 

On entry to routine which verifies 
associations for clusters. 

On entry to routine which verifies 
the data set directory entries for 
VSAM data sets not on reset 
volumes. 

On entry to routine which verifies 
associations for AIXs. ~ 


Note: Trace and dump points on this page are for VS2.03.808 only. 

622 OS/VS2 Access Method Services Logic 



Trace and Dump Points to Module or CSECf Cross Reference 

Trace or Dump Module or 
Point CSECT Procedure Type 	 Situation at Dump or Trace Point ~ RSVN IDCRS03 VLNRESET trace On entry to routine which verifies 

space requested from objects 
being reset against non-reset 
volumes. 

RSVO IDCRSOI VOLCHK trace 	 On entry to volume consistency 
routine (VOLCHK). 

RSVP IDCRS02 VERR trace 	 Upon entry to routine which 
verifies associations for PATHs. 

RSVR IDCRS02 VERCI trace 	 On entry to routine which checks 
validity of each CIN found in a set 
of records. 

RSVS IDCRS03 VLRESET trace 	 On entry to routine which verifies 
space requested against reset 
volumes. 

RSVU IDCRS02 VERU trace 	 On entry to routine which verifies 
associations for user catalogs. 

RSVX IDCRS02 VERX trace 	 On entry to routine which verifies 
alias associations. 

RSVI IDCRS03 VOLCHK dump 	 End of procedure that checks 
Fo[mat I DSCBs against space 
headers. 

RSV2 IDCRS02 VERDSDIR dump 	 After verifying initial space 
claims. 

RSV3 IDCRS02 VERCI dump 	 After verifying associations on a 
set of records. 

RSV4 IDCRS03 VERB dump 	 Before freeing resources used by 
procedure which verifies GDG 
data sets. 

RSWF IDCRS06 WFDEF trace 	 Upon entry to routine which 
defines an RRDS as a workfile for 
RESETCAT processing. 

RSWL IDCRS06 WFDEL trace 	 On entry to routine which deletes 
the workfile. 

RSWR IDCRSOI WRAPUP trace 	 On entry to routine which handles 
clean-up operations after 
successful RESETCAT 
processing. 

RSW2 IDCRS06 WFDEF dump 	 Before the UCATLG work area is 
freed. 

RSW3 IDCRS06 WFDEL dump 	 End of procedure that deletes the 
workfile. 

RSOO IDCRSOI IDCRSOI dump 	 End of RESETCA T FSR. 

RSOI IDCRSOI IDCRSOI trace 	 Upon entry to main RESETCAT 
module. 

SAAL IDCSA02 IDCSA02 trace 	 Start of UALLOC macro 
processing. 

SABB IDCSA02 FINDNAME dump After a new Load List 
(YS2.03.807) Block has been built. 

SACA IDCSA02 IDCSA02 trace 	 Start of routine that processes 
UCATLG macro. 

Note: Trace and dump points through RSOI are for YS2.03.808 only. 

Diagnostic Aids 623 

L 



Trace and Dump Points to Module or CSECf Cross Reference 

Trace or Dump 
Point 

SACA 

SACC 

SACK 

SACL 

SACR 

SADE 

SADL 

SADM 

SADQ 

SAD] 
(VS2.03.807) 

SAD2 
(VS2.03.807) 

SAD3 
(VSl.03.807) 

SAD4 
(VS2.03.807) 

SAED 

SAEX 

SAFE 

SAFP 

SAFS 

SAGE 

SAGP 

SAGS 

SAID 

SAID 

624 OS!VS2 Access Method Services Logic 

Module or 
CSECf 

IDCSA09 

IDCSA09 

IDCSA06 

IDCSA02 

IDCSA02 

IDCSA02 

IDCSA02 

IDCSA06 

IDCSA08 

IDCSAO] 

IDCSAOI 

IDCSA02 

IDCSA02 

IDCSA06 

IDCSA06 

IDCSA06 

IDCSA02 

IDCSA02 

IDCSA06 

IDCSA02 

IDCSA02 

IDCSA02 

IDCSA06 

Procedure 

CHECKARG 

CHKCODE 

UCBCHECK 

IDCSA02 

IDCSA02 

IDCSA02 

IDCSA02 

DEMNTVOL 

IDCSA08 

IDCSAO] 

IDCSAO] 

RELECORE 

RELECORE 

ENQDEQ 

IDCSA06 

FlNDEXCL 

IDCSA02 

IDCSA02 

GETEXCL 

IDCSA02 

IDCSA02 

IDCSA02 

ISSUEDMT 

Type 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

dump 

trace 

dump 

trace 

dump 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

Situation at Dump or Trace Point 

Start of CHECKARG procedure 
that determines the macro to be 
issued and checks for errors. 

Start of CHKCODE procedure 
that returns error codes to the 
caller. 

Start of routine that checks for 
UCB. 

Start of routine that processes 
UCALL macro. 

Start of UCIR macro processing. 

Start of routine that processes 
UDELETE macro. 

Start of UDEALLOC macro 
processing. 

Start of procedure that calls 
ISSUEDMT and UCBPOST. 

Start of routine that processes 
UDEQmacro. 

During termination processing 
before all loaded modules are 
deleted. 

During termination processing 
after all loaded modules have 
been deleted. 

Before loaded modules with zero 
use count are deleted. 

After deletion of loaded modules 
with zero use count. 

Start of procedure that enqueues 
and dequeues. 

End of IDCSA06 module. 

Start of procedure that determines 
whether the volume is already 
allocated exclusively to the job 
step. 

Start of routine that processes 
UFPOOL macro. 

Start of routine that processes 
UFSP ACE macro. 

Start of procedure that determines 
whether the allocation of a unit 
and volume can be changed to 
exclusive. 

Start of routine that processes 
UGPOOL macro. 

Start of routine that processes 
UGSPACE macro. 

Start of UID macro processing. 

Start of routine that calls USSC 
macro to demount volume. 

...J 


;) 




Trace and Dump Points to Module or CSECf Cross Reference 

Trace or Dump Module or 
Point CSECf 

SAIM IDCSA06 

SAIN IDCSA06 

SALC IDCSA07 

SALD IDCSA02 

SALE IDCSA07 

SALK IDCSA02 

SALT IDCSA07 

SAM A IDCSA09 

SAMC IDCSA06 

SAMT IDCSA06 

SANQ IDCSA08 

SAPR IDCSA06 

SAPT IDCSA02 

SAQL IDCSA02 

SARD IDCSA06 

SARV IDCSA08 

SARI IDCSA08 
(SU 5752-824) 

SAR2 IDCSA08 
(SU 5752-824) 

SASC IDCSA08 

SASC IDCSA06 

SASD IDCSA06 

SASE IDCSA06 

Procedure 

IDCSA06 

IDCSALC 

IDCSA02 

IDCSALC 

IDCSA02 

IDCSALC 

ISSUEMAC 

MOUNTCTL 

MOUNTVOL 

IDCSA08 

MDSETUP 

IDCSA02 

IDCSA02 

RDLABEL 

IDCSA08 

IDCSA08 

IDCSA08 

IDCSA08 

SELESCAN 

SELECTD 

SETEXCL 

Type 

trace 

dump 

dump 

trace 

dump 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

dump 

dump 

trace 

trace 

trace 

trace 

Situation at Dump or Trace Point 

Start of routine that issues USSC 
macro to mount volume. 

Start of IDCSA06 module that 
performs MOUNT, DEMOUNT, 
POST, and CHECK. 

At entry to load module. 

Start of routine that processes 
ULOAD macro. 

At exit from load module. 

Start of procedure that processes 
UUNK macro. 

At entry to load module. 

Start of ISSUEMAC procedure 
that issues the execute form of the 
requested macro. 

Start of control procedure that 
processes mount requests. 

Start of procedure that calls 
ISSUEMNT, RDLABEL, and 
UCBPOST. 

Start of routine that processes 
UENQmacro. 

Start of procedure that sets up for 
a mount or demount request. 

Start of procedure that processes 
UPROMPT macro. 

Start of UQUAL macro 
processing. 

Start of routine that issues the 
UEXCP macro to read volume 
label. 

Start of routine that processes 
URESERVE macro. 

After the RACHECK parameter 
list has been built; before the 
RACHECK macro is issued. 

Upon return from the 
RACHECK macro. 

Start of routine that processes 
USCRA TCH macro. 

At entry to SELESCAN 
procedure which scans the TIOT. 

At entry to SELECTD procedure 
which searches to see if the 
caller's volume is mounted. 

Start of procedure that changes 
the enqueue on a volume from 
shared to exclusive and marks the 
UCB non-shareable. 

Diagnostic Aids 625 



Trace and Dump Points to Module or CSECT Cross Reference 

Trace or Dump Module or 
Point CSECT Procedure Type Situation at Dump or Trace Point 

SASI IDCSA08 IDCSA08 trace 	 Start of routine that processes 
USY'SINFO macro. 

SASN IDCSA02 IDCSA02 trace 	 Start of routine that processes 
USNAP macro. 

SASS IDCSA09 IDCSA09 dump 	 Start of USSC macro. 

trace Start of USSC macro. 

SAST IDCSA06 SCANTIOT trace 	 Start of procedure that scans the 
TIOT to find a UCB and DD 
statement that can be used to 
process the volume. Start of 
USSC macro. 

SATI IDCSA02 IDCSA02 . trace 	 Start of routine that processes 
UTIME macro. 

SAUC IDCSA07 IDCSAUC dump 	 Start of UUNCATLG macro. 

trace Start of UUNCATLG macro. 

SAUE IDCSA07 IDCSAUC dump 	 Exit from UUNCATLG macro. 

SAUP IDCSA06 UCBPOST trace 	 Start of procedure that builds 
parameter list and issues SVC 82 
to post or clear a UCB. 

SAVL IDCSA07 VSAMLOC trace 	 At entry to VSAMLOC 
procedure. 

SAVU IDCSA07 VSAMUCT trace 	 At entry to procedure that issues 
VSAM DELETE. 

SAWO IDCSA08 ' IDCSA08 trace 	 Start of routine that processes 
UWTOmacro. 

SAOS IDCSAOS IDCSAOS trace 	 Before the TIME macro is issued. 

SA06 IDCSA06 IDCSA06 trace 	 Start IDCSA06 module. 

STBG IDCSAlO IDCSAST dump 	 At start of module that establishes 
or cancels an EST AE 
environment. 

STCS IDCSAtO CANSTAE trace 	 At entry to CANST AE procedure 
that issues an EST AE macro to 
cancel the EST AE environment. 

STEN IDCSAlO IDCSAST dump 	 At end of module. 

STEX IDCSAtO STAEEXIT trace 	 At entry to EST AEEXIT 
procedure that determines 
whether it can retry. 

STRY IDCSAtO RECOVERY trace 	 At entry to RECOVERY 
procedure that cleans up before 
ABEND. 

STSS IDCSAIO SETSTAE trace 	 At entry to SETST AE procedure 
that issues an EST AE macro to 
establish an EST AE environment. 

STST IDCSAtO IDCSAST trace 	 At entry to UST AE macro that 
establishes or cancels an EST AE 
environment. 

TPCC IDCTPO] IDCTPOt trace 	 Before the call to the CONVERT 
routine is issued. 

TPEA IDCTP06 IDCTP06 dump 	 Start of procedure that processes ~UERROR macro. 

626 OS/VS2 Access Method Services Logic 



Trace and Dump Points to Module or CSECf Cross Reference 

Trace or Dump Module or 
Point CSECf 

TPEB IDCTP06 

TPER IDCTPOI 

TPEt IDCTP06 

TPE2 IDCTP06 

TPE4 IDCTP06 
(VS2.03.807) 

TPE5 IDCTP06 
(VS2.03.807) 

TPIN IDCTPOI 

TPMS IDCTPOI 
(vS2.03.807) 

TPSI IDCTPOI 

TP21 IDCTPOI 

TP2N IDCTPOI 

TP3I IDCTPOt 

TP3N IDCTPOI 

TP4A IDCTP04 

TP4R IDCTP04 

TP4S IDCTP04 

TP5E IDCTP05 

TP5I IDCTP05 

TP5N IDCTP05 

TPXX IDCTPOt 

TPXl IDCTPOt 

VSBG IDCVSOI 

VSBG IDCVS02 

VSCC IDCVSOI 

VSCG IDCVS03 

Procedure 

IDCTP06 

ERROR 

IDCTP06 

CATERCNV 

DAERCNV 

DAERCNV 

IDCTPPR 

LINEPRT 

IDCTPPR 

CONVERT 

CONVERl 

LINEPRT 

LINEPRT 

ESTACONT 

RESTCONT 

ESTSCONT 

IDCTP05 

IDCTP05 

IDCTP05 

STACKPUT 

LINEPRT 

IDCBSOI 

IDCVS02 

CATCHK 

CATLG 

Type 

dump 

dump 

trace 

trace 

trace 

trace 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

trace 

dump 

dump 

dump 

dump 

dump 

dump 

trace 

trace 

SItuation at Dump or Trace Point 


Before converted message is 

printed via the UPRINT macro. 


Start of procedure that prints a 

text processor error message. 


Start of procedure that processes 

UERROR macro. 


Entry point to routine that 

converts catalog error messages to 

prose. 


On entry to dynamic allocation 

error conversion routine. 


Before call to DAIRFAIL service 

routine. 


At end of phase; the format 

structure for a UPRINT macro 

has been processed. 


On return from segment routine. 


After initialization of text 

processor parameters. 


Start of procedure that converts 

data to a printable form. 


End of procedure that converts 

data to a printable form. 


Start of procedure that formats 

pages and prints titles, headings, 

footings, and other lines 

requested. 


End of procedure that prints lines. 


End of procedure that processes 

the UEST A macro. 


End of procedure that processes 

UREST macro. 


End of procedure that processes 


Start of procedure to get a static 

text module. 


UESTS macro. 


Start of phase that loads the static 

text phase. 


End of phase that loads the static 

text phase. 


Before call to UPUT. 


After return from procedure that 

puts print lines into output buffer. 


Start of IDCVSOI module. 


Start of IDCVS02 module. 


Start of CATCHK procedure that 

initializes the catalog parameter 

list. 


Start of CATLG procedure. 


Diagnostic Aids 627 



Trace and Dump Points to Module or CSECf Cross Reference 

Trace or Dump Module or 
Point 


VSCO 


VSCR 


VSCT 


VSCU 


VSEC 


VSEL 


VSEX 


VSFO 


VSFI 


VSFI 


VSGB 


VSGL 


VSIN 


VSIT 


VSMN 


VSNC 


VSND 


VSOP 


VSOT 


VSPI 


VSQL 


CSECT 

IDCVSOI 

IDCVS03 

IDCVS03 

IDCVS03 

IDCVSOI 

IDCVS03 

IDCVS03 

IDCVS02 

IDCVS02 

IDCVS03 

IDCVS03 

IDCVS02 

IDCVS02 

IDCVS03 

IDCVS02 

IDCVSOI 

IDCVSOI 

IDCVS03 

IDCVS02 

IDCVS02 

IDCVS03 

Procedure 

CATOPEN 

CREATION 

CRITERIA 

CLEANUP 

EXPIRCHK 

EXCLUDE 

EXPIRATN 

FMTTRKO 

FMTTRKI 

GETFMTI 

GETBLK 

GETLAB 

INITVOLM 

INITIAL 

IDCVS02 

NVSAMCHK 

IDCVSOI 

OPENVTOC 

IDCVS02 

PUTLAB 

QUAL 

Type 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

dump 

trace 

dump 

trace 

trace 

Situation at Dump or Trace Point ~ Start of CATOPEN procedure 
that issues a UOPEN macro to 
open the catalog. 

Start of CREATION procedure 
that checks data set creation date. 

Start of CRITERIA procedure 
that checks if data set meets 
caller's criteria. 

At entry to CLEANUP procedure 
that releases resources. 

Start of EXPIRCHK procedure 
that opens an unexpired 
nonVSAM data set. 

At entry to EXCLUDE procedure 
which excludes data sets which 
caller does not want included in 
data set array list. 

At entry to procedure that checks 
expiration date. 

Start of FMTTRK routine that 
prepares the three records written 
to cylinder 0, track O. 

Start of FMTTRK routine that 
prepares the 39 DSCBs written to 
cylinder 0, track I. 

Start of procedure that reads a ..Jformat I DSCB from the VTOC 
(GETFMTt). 

Start of GETBLK procedure 
which computes and obtains 
storage for IDCVS03. 

Start of procedure that reads 
VTOC label. 

Start of procedure that issues 
EXCP and calls FMTTRKI and 
FMTTRKO. 

Start of initialization procedure 
(INITIAL). 

Start of IDCVS02 module. 

Start of NVSAMCHK procedure 
that issues a UEXCP macro to 
open nonVSAM data sets. 

End of IDCVSOI module. 

At entry to routine that opens the 
VTOC. 

End of IDCVS02 module. 

Start of procedure that writes 
VTOC label. 

Start of routine which processes 
data set names with qualifiers 
(QUAL). ~ 

628 OS/VS2 Access Method Services Logic 



Trace and Dump Points to Module or CSECf Cross Reference 

Trace or Dump Module or 
Point CSECf 

VSRC IDCVSOI 

VSSC IDCVSOI 

VSSE IDCVSOI 

VSSN IDCVS03 

VSSR IDCVS03 

VSST IDCVS03 

VSTK IDCVS03 

VSUS IDCVS03 

VSVC IDCVSOI 

VSVG IDCVSOI 

VSVP IDCVSOI 

VSVT IDCVSOl 

VSOI IDCVSOI 

VS03 IDCVS03 

VSIC IDCVSOI 

VSIR IDCVSOI 

VSlS IDCVSOI 

VS3X IDCVS03 

VS4C IDCVSOl 

VS4R IDCVSOI 

VS4S IDCVSOI 

Procedure 

RECATLOG 

SCRATCH 

SECHECK 

SYSNAMES 

SELECTOR 

STATUS 

TRKREAD 

USAGE 

VSAMCHK 

VTOCGET 

VTOCPUT 

VTOCOPEN 

IDCVSOI 

IDCVS03 

FMTlCHK 

FMTlREAD 

FMTISCR 

IDCVS03 

FMT4CHK 

FMT4READ 

FMT4SCR 

Type 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

dump 

trace 

trace 

trace 

dump 

trace 

trace 

trace 

Situation at Dump or Trace Point 

Start of RECATLOG procedure 
that recatalogs nonVSAM data 
sets. 

Start of SCRATCH procedure 
that calls VTOCOPEN and 
FMT4SCR procedures. 

Start of SECHECK procedure 
that ensures that a volume is 
empty or has the correct 
password. 

Start of SYSNAMES procedure 
which checks for system names. 

Start of SELECTOR procedure 
that selects eligible data sets from 
theVTOC. 

Start of STATUS routine which 
provides status information for 
the data sets selected. 

Start of routine that reads a track 
into the track I/O buffer. 

Start of USAGE routine that 
determines the organization and 
size of a data set. 

Start of VSAMCHK procedure 
that issues a UEXCP macro to 
open VSAM data sets. 

Start of VTOCGET procedure 
that calls the VTOCOPEN and 
FMTR4READ procedures. 

Start of VTOCPUT procedure 
that calls the VTOCOPEN and 
FMT4READ procedures. 

Start of VTOCPUT procedure 
that opens the VTOC. 

Start of IDCVSOl procedure that 
performs VTOC services. 

At entry to load module. 

Start of FMTl CHK procedure 
that checks for Format 1 DSCB. 

Start of FMTIREAD procedure 
that reads the Format 1 DSCB. 

Start of FMTISCR procedure that 
scratches the Format 1 DSCB. 

At exit from load module. 

Start of FMT4CHK procedure 
that checks the Format 4 DSCB 
format for VSAM catalog 
ownership. 

Start of FMT4READ procedure 
that reads the Format 4 DSCB. 

Start of FMT4SCR procedure that 
scratches the Format 4 DSCB. 

Diagnostic Aids 629 



Trace and Dump Points to Module or CSECf Cross Reference 

Trace or Dump Module or 
Point 

VYBG 

VYCL 

VYND 

VYOP 

VYST 

XPAO 

XPAP 

XPBG 

XPCP 

XPCR 

XPCW 

XPDP 

XPED 

XPFN 

XPLP 

XPMS 

XPOP 

XPPM 

XPPP 

XPRP 

XPSP 

XPTM 

XPUC 

CSECf 

IDCVYOl 

IDCVYOI 

IDCVYOI 

IDCVYOI 

IDCVYOI 

IDCXPOI 

IDCSPOI 

IDCXPOI 

IDCXPOI 

IDCXPOI 

IDCXPOI 

IDCXPOI 

IDCXPOI 

IDCXPOI 

IDCXPOI 

IDCXPOI 

IDCXPOI 

IDCXPOI 

IDCXPOI 

IDCXPOI 

IDCXPOI 

IDCXPOI 

IDCXPOI 

Procedure 

IDCVYOl 

TERMPROC 

IDCVYOl 

OPENPROC 

IDCVYOI 

CLUSPROC 

ALTRPROC 

IDCXPOI 

CLUSPROC 

CONTRBL 

CONTRBL 

DELTPROC 

IDCXPOI 

IDCXPOI 

LOCPROC 

MORESP 

OPENPROC 

CLUSPROC 

PUTPROC 

RECPROC 

CTLGPROC 

CLUSPROC 

DSCTPROC 

Type 

dump 

trace 

dump 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

dump 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

trace 

Situation at Dump or Trace Point ~ Start of VERIFY FSR. 

Start of procedure that closes the 
data set that was verified. 

End of VERIFY FSR. 

Start of procedure that opens the 
VSAM data set to be verified. 

Start of VERIFY FSR. 

Before retrieving from the catalog 
the entries associated with the 
cluster or alternate index being 
exported. 

Start of procedure that modifies 
the CTGPL to set the temporary 
export flag on. 

Start of EXPORT FSR. 

Before retrieving the catalog entry 
for the object to be exported. 

Before constructing control 
records for the portable data set. 

Before writing control records to 
the portable data set. 

Start of procedure that sets up the 
CTGPL to delete a cluster or 
disconnect a user catalog. 

End of EXPORT FSR. 

End of EXPORT FSR, before 
data sets are closed and space 
freed. 

Start of procedure that builds the 
CTGPL and CTGFLs for a locate 
request. 

Entry to MORESP. 

Start of procedure that opens 
either the portable data set or the 
cluster or alternate index to be 
exported. 

Before processing the permanent 
or temporary export option. 

Start of procedure that writes a 
record to the portable data set. 

Entry to RECPROC. 

Start of procedure that calls the 
catalog for a locate, alter, or 
delete request. 

Before calling the procedure to 
alter the CTGPL to set the 
temporary export flag. 

Start of procedure that 
disconnects a user catalog. 

630 OS/VS2 Access Method Services Logic 



Trace and Dump Points to Module or CSECT Cross Reference 

Trace or Ownp Module or 
Point CSECT Procedure Type Situation at Dump or Trace Point 

XPWC IDCXPOI CLUSPROC trace Before writing the catalog 
information to the portable data 
set. 

XPZY IDCXPOI DELTPROC dump Just after the UCATLG macro. 

XPZZ IDCXPOI CTLGPROC dump After calling the catalog to locate, 
alter, or delete an entry. 

XPOI IDCXPOI IDCXPOI dump Start of EXPORT FSR. 

ZZAL IDCSA02 IDCSA02 dump Before and after each time 
UALLOC invokes dynamic 
allocation. 

ZZCA IDCSA02 IDCSA02 dump Before and after CATLG macro is 
issued to invoke catalog 
management routines. 

ZZCR IDCSA02 IDCSA02 dump Start of procedure that processes 
UCIR macro and just before the 
UCIR macm returns to the 
module that issued the UCIR. 

ZZDL IDCSA02 IDCSA02 dump Before and after the UDEALLOC 
macro invokes dynamic 
allocation. 

ZZSC IDCSA09 ISSUEMAC dump Before issuing SVCl26. 

Module to Dump Points Cross Reference 

The following list contains the dump points within each module and 
procedure, indicates what information can be dumped at each point (either a 
full dump or selected areas), and explains the situation at the dump point. As 
explained in the section "TEST Keyword" in this chapter, full region dumps 
are taken at all dump points in this list. Selected areas can be printed with 
either the AREAS or FULL variation of the Test option. Details of the 
selected areas are given in the footnotes following the list. 

Module or CSECT to Dump Points Cross Reference 

Module or 
CSECT Procedure Ownp Point Type Situation at Dump Point 

IDCALOI CHECKPRC AL51 dump 	 After locating data component of 
the alternate index for which 
UPGRADE has been specified. 

AL52 dump 	 After locating associated cluster 
or the alternate index of the data 
object specified on ALTER 
command. 

AL53 dump 	 After locating associated index 
component. 

AL54 dump 	 After locating the data component 
of the path's base cI uster. 

AL55 dump 	 After locating the cluster 
component of the alternate 
index's base cluster. 

AL56 dump 	 After locating the data component 
of the alternate index's base 
cluster. 

Diagnostic Aids 631 

L 



Module or CSECf to Dump Points Cross Reference 

Modille or 
CSECf Procedure Dump Point Type Situation at Dump Point 

mCALOl 
(continued) 

IDCALOI ALOI dump Before calling the catalog to alter 
an object. 

AL02 dump End of ALTER FSR. 

AL04 dump Before issuing ALTER request for 
index objects if KEYS specified. 

LOCATPRC AL03 dump After calling the catalog to locate 
an object. 

IDCBlot CATPROC BIL2 dump After return from UCATLG for 
each locate request. 

CNTRLPRC BIC2 dump After completion of sort if an 
internal sort. After completion of 
sort phase and before merge 
passes if an external sort. 

DEFPROC BID2 dump After return from UCATLG to 
define each sort work each sort 
work file. 

DELTPROC BIDL dump After return from UCATLG to 
delete each sort work file. 

INITPROC BII2 dump After obtaining or failing to 
obtain sort storage. 

JCPROC BIJ2 dump After return from each call to 
UIOINFO. 

MAINPROC BI03 dump After return from procedure 
which locates information about 
the base cluster and alternate 
index. 

BI04 dump After the alternate index has been 
built, before CLOSE. 

MERGPROC BIM3 dump After the tree has been initialized 
for each merge pass of an external 
sort. 

BIM4 dump After processing one set of strings 
during the merge pass of an 
external sort. 

OPENPROC BIP2 dump After return from UOPEN to 
open a data set. 

SORTPROC BISR dump Before sorting the records in the 
record sort area. 

IDCCCOI ALTRLSTS CCAC selected After building parameter lists 
areas 1 to alter a VSAM catalog. 

CCAV selected After building parameter lists 
areas 2 to alter a VSAM catalog. 

CATALOG CCLV selected After request to locate 
areas 3 volume information on a 

duplicate entry. 

CNVTINIT CCIC dump· After initializing for scanning of 
OS/VS catalog. 

CONTINUE CCCN selected After obtaining block at the 
areas 4 same index level as the last block 

from an OS/VS catalog. 

632 OS/VS2 Access Method Services Logic 



L 

Module or CSECf to Dump Points Cross Reference 

Module or 
CSECf Procedure Dump Point Type 	 Situation at Dump Point 

CONVERT CCSE dump 	 Invalid entry type in the OS/VS 
catalog. 

CCSL dump 	 Finished converting OS/VS 
catalog entries to VSAM catalog 
entries. 

DEFNLSTS CCDC 	 selected After building a VSAM 
areas 5 parameter list for a define. 

CCDV 	 selected After building a VSAM parameter 
areas 6 list for a define. 

LOCTLSTS CCLC selected After building parameter lists 
areas 7 to locate information in the 

VSAM catalog. 

POPUP CCPU dump 	 Ready to continue scan of higher 
level index block. 

PUSHDOWN CCIE dump 	 No Index Control Entry found on 
a lower level scan in the OS/VS 
catalog. 

CCPD selected After obtaining a block at 
areas 8 the same index level as the last 

block from the OS/VS catalog. 

VOLINDEX CCVE dump 	 No Volume Index Control Entry 
in the OS/VS catalog. 

CCVI selected First block of volume index 
areas 9 is obtained from the OS/VS 

catalog. 

IDCCKOI DSDRPROC CK30 dump 	 After reading a type t DSDR 
record. 

CK40 dump 	 Belore processing a type I DSDR 
record for a tape data set. 

DSDRVOLS CK50 dump 	 Before processing a type 2 DSDR 
record. 

IDCCKOI CKIO dump 	 Before calling CHR procedure. 

CK20 dump 	 Upon return from CHR 
procedure. 

IDCDEOI IDCDEOt DEOt dump 	 Before calling the catalog to 
define an object. 

DE02 dump 	 End of DEFINE FSR, before 
completion message is issued. 

IDCDE02 MODELPRC DE03 dump After calling the catalog to locate 
(VS2.03.807) a model object. 

DE04 dump 	 End of procedure that built the 
model table. 

IDCDE02 FREESTG DE37 dump 	 End of IDCDE02 CSECT. 

IDCDLOI CATCALL DLDB dump 	 Before calling the catalog to 
delete an entry. 

CATCALL DLDA dump 	 After calling the catalog to delete 
an entry. 

FINDTYPE DLLB dump 	 Before calling the catalog to 
locate the entry type. 

Diagnostic Aids 633 



Module or CSECT to Dump Points Cross Reference 

'Module or 
CSECT Procedure Dump Point Type Situation at Dump Point 

IDCDLOl FINDTYPE DLLA dump After calling the catalog to locate 
(continued) the entry type. 

IDCDLOI DLBG dump Start of DELETE FSR. 

DLND dump 	 End of DELETE FSR, before 
data sets are closed and the 
completion message is issued. 

IDCEXOI CALLFSR EXFS dump Before each call to an FSR. 

CALLRI EXRI dump Before each call to the 
Reader/Interpreter. 

IDCEXOI EXMN dump All Reader/Interpreter FSR 
processing is complete. 

IDCIOOI GETEXT IOEG dump End of procedure that gets a 
record from the user routine. 

GETVSAM IOVG dump End of procedure that gets a 
record or control interval from a 
VSAM data set. 

IDCIOVY IOVY dump After VERIFY macro is issued. 

PUTEXT IOEP dump After control returns from an 
external user routine. 

PUTNONVS I02P dump After writing a spanned record. 

PUTREP IOPR dump After the PUT for update. 

IOGR dump After the GET for update. 

PUTVSAM IOVP dump End of procedure that writes a 
VSAM record. J 

VSAMERR 10VR duml After detection of a 

(VS2.03.808) VSAM I/O error. 


IDCI002 BUILDACB IOAC dump 	 After ACB and EXLST have been 
built, at end of procedure. 

BUILDRPL 10RP dump 	 After RPL is built, at end of 
procedure. 

CLOSERTN IOIC dump 	 Before CLOSE macro is issued. 

I02C dump At end of all UCLOSE 
(VS2.03.808) processing. 

DSDATA IODS dump After obtaining data set 
(VS2.03.808) information from the JFCB. 

OPENRTN 	 1010 dump Before OPEN macro is issued. 

1020 dump After OPEN macro is issued. 

1021 dump After all UOPEN 
(VS2.03.808) 	 processing. 

634 OS/VS2 Access Method Services Logic 



L 
Mod. or CSECf to Dump Points Cross Reference 

Module or 
CSECr ProcedlB'e Dump Point Type 	 Situation at Dump Point 

IDCI003 DSINFO 1000 dump 	 After RDlFCB macro is issued. 

1001 dump After return from DEVTYPE. 

1002 dump After formatting the work area. 

IDCI003 10PO dump 	 After positioning is complete, 
before returning control to 
IDCIOPO. 

STOWRTN 10Wl dump 	 Before STOW macro is issued. 

IOW2 dump After STOW macro is issued. 

IDCIOOS ADlCCW IOR7 dump 	 Start of procedure that adjusts a 
CCW channel program. 

IDCIOOS lOIN dump 	 Start of IDCIOOS module. 

10EX dump End of IDCIOOS module. routine. 

OCABEND 10AB dump 	 Start of OPEN/CLOSE ABEND 
routine. 

OPENR 10Rl dump 	 Start of procedure that opens data 
sets, VTOCs, and staging packs 
for REPAIRV. 

READCNT IOR2 dump 	 Start of procedure that reads the 
count field of each record on a 
track. 

l. 

READKD IOR3 dump Start of procedure that reads the 


count, key, and data fields of each 

record on a track. 


SETCCW 10RS dump 	 Start of procedure that builds the 
CCW channel program to read 
the count, key, and data fields of 
each record on a track. 

SETKDCCW IOR6 dump 	 Start of procedure that builds 
the CCW channel program to read 
the count, key, and data fields of 
each record on a track. 

SPACCR IOR4 dump 	 Start of procedure that spaces 
over a defective count field on a 
track. 

SYNAD 10SY dump 	 Start of SYNAD routine. 

IDCLCOI ENTPROC LCOl 	 selected After preparing to locate 
areas 12 information about a name. 

IDCLCOI LC99 dump 	 End of LISTCAT FSR, before 
freeing storage in IDCLCOI. 

RTEPROC LCRA selected 	 Processing catalog information 
areas 19 	 for associations of a cluster, 

pagespace, or generation data 
group, or AIX. 

LCRP selected Start of procedure that 
areas 20 determines which procedure will 

list the catalog entry. 

l. 
IDCLC02 AUPROC LCAP selected Start of procedure that lists 

areas 10 information about alias, 
nonVSAM, user catalog, or 
generation data group. 

Diagnostic Aids 635 



Module or CSECT to Dump Points Cross Reference 

Module or 
CSECT Procedure Dump Point Type Situation at Dump Point 

IDCLC02 CDIPROC LCCD selected 	 Start of procedure that lists 
( continued) areas 11 	 information about cluster, 

pagespace, data, or index, AIX 
and PATH. 

ERRPROC LCMG 	 selected Before UPRINT macro is 
areas 13 issued to print a message. 

FREESTG LC98 dump 	 End of LISTCAT FSR, before 
freeing IDCLC02's automatic 
storage. 

LDCLC02 LC02 dump 	 When IDCLC02 is called the first 
time to establish addressability. 

LISTPROC LCTP 	 selected Before UPRINT macro is 
areas 14 issued to print catalog data. 

LOCPROC LCAL 	 selected After calling the catalog to 
areas 15 locate an entry. 

LCBL 	 selected Before calling the catalog 
areas 16 to locate an entry. 

LCLO 	 selected Ready to do a catalog 
areas 17 locate for information. 

LCWA 	 selected After calling the catalog 
areas 18 to locate an entry. 

IDCLROI AATOPLR LRAA dump Entry point for IDCLROI. 

ADDASOC LRAD dump 	 Start of procedure that adds an 
association to the association 
table. J 

BLDVEXT LRBL dump 	 Start of procedure that builds 
vertical extension tables. 

BUFSHUF LRBU dump 	 Start of procedure that moves a 
record to its buffer. 

CATOPEN LCRA dump 	 Start of procedure that prepares 
to open the catalog. 

CKEYRNG LRCK dump 	 Start of procedure that checks for 
keyrange. 

CLEANUP LRCI dump 	 Start of procedure that cleans up 
before exit. 

CLENCRA LRC2 dump 	 Start of procedure that closes the 
CRA and prints miscompare 
message. 

CRAOPEN LRCR dump 	 Start of procedure that opens the 
CRA. 

CTTBLD LRCT dump 	 Start of procedure that builds CI 
translate table. 

DOOTHR LRDO dump 	 Start of procedure that looks for 
nonVSAM information. 

DOVSAM LRDV dump 	 Start of procedure that looks for 
VSAM information. 

ERROR LRER dump 	 Start of procedure that handles 
errors. 

GETPRT LRGE dump 	 Start of procedure that gets and 
prints records. ~ 

636 OS/VS2 Access Method Services Logic 



Module or CSECT to Dump Points Cross Reference 

Module or 
CSECT Procedure 

INITLZE 

INTASOC 

INTSORT 

INTVEXT 

MEMSORT 

PRTAAXV 

PRTCMP 

PRTDMP 

PRTDMPC 

PRTFIFO 

PRTMCWD 

PRTOJAL 

PRTOJVL 

PROTHR 

PRITIME 

PRTVOL 

PRTVSAM 

SUM IT 

TCICTCR 

VERTEXT 

IDCLR02 IDCLR02 

Dump Point 

LRIN 

LRIA 

LRIS 

LRIV 

LRME 

LRPA 

LRPC 

LRPD 

LRPE 

LRPF 

LRPM 

LRPJ 

LRPK 

LRPO 

LRPT 

LRPW 

LRPV 

LRSM 

LRTC 

LRVE 

LR02 

Type 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

SItuation at Dump Point 

Start of procedure that initializes 
the FSR. 

Start of procedure that initializes 
association tables. 

Start of procedure that initializes 
the sort table. 

Start of procedure that initializes 
the vertical extension table. 

Start of procedure that sorts the 
entries in sort table. 

Start of procedure that prints 
associated AIXs and volumes. 

Start of procedure that prints 
compare information. 

Start of procedure that prints 
dump if specified. 

Start of procedure that prints 
dump of catalog record and 
underscores miscompares. 

Start of procedure that prints 
CRA in order of CI number. 

Start of procedure that prints 
miscompare words. 

Start of procedure that prints 
object aliases. 

Start of procedure that prints an 
object's volumes. 

Start of procedure that prints 
nonVSAM objects. 

Start of procedure that prints 
timestamps. 

Start of procedure that prints 
volume records. 

Start of procedurt; that prints 
VSAM structures. 

Start of procedure that prints 
number of entries processed. 

Start of procedure that translates 
the catalog CI to the CRA. 

Start of procedure that handles 
vertical extension records. 

Entry point for module that gets a 
record for Recovery Field 
management routine. 

Diagnostic Aids 637 



Module or CSECT to Dump Points Cross Reference 

Module or 
CSECT Procedure Dump Point Type Situation at Dump Point 

IDCMPOI CTLGPROC MPZZ dump 	 Before and after calling the J
catalog to locate, alter, or define 
an entry. 

DELTPROC MPDC dump After the first UCATLG. 

MPDD dump After the second UCATLG. 

IDCMPOI MPFN dump End of IMPORT FSR, prior to 
closing data sets. 

IDCPROI IDCPRO) PRO) dump End of PRINT FSR. 

IDCRCO) CKNAMES RC99 dump Before gathering information on 
name in name list from CRA. 

DIRECT RC98 dump Before obtaining a directory for a 
volume. 

NAMETABL RC97 dump Before marking or adding a name 
to the name chain. 

ERRCK RC96 dump After opening a CRA. 

SCANCRA RC95 dump 	 Before scanning CRA to build the 
CTT table. 

TIMESTMP RC94 dump 	 Before obtaining format 4 
timestamp for CRA being opened. 

CKCATNM RC93 dump 	 Before checking owning catalog 
name of CRA being opened. 

OPEN RC92 dump 	 Before the opening of the CRA. 

OPENCRA RC91 dump 	 Before opening or closing a CRA 
and doing all other work (e.g. 
Build CTT). ..J 

EXTRACT RC90 dump 	 Before using internal Field 
Management to get information 
from CRA. 

MESSAGE RC89 dump 	 Before printing any message from 
IDCRCOI. 

SUBSP RC88 dump 	 Before allocating space for the 
name chain. 

COMPNAME RC87 dump 	 Before compressing a name for 
the name list. 

BUILDNAM RC86 dump 	 Before constructing a block for 
the name chain. 

DUPNAMCK RC85 dump 	 Before checking the name chain 
for duplicates. 

OBJVOLCK RC84 dump 	 Before checking Sync. of entry 
across multiple volumes. 

SYNCH RC83 dump 	 Before scanning the name chain 
for a CRA to check it. 

EXPORTDR RC82 dump 	 Before looping down name chain 
to call IDCRC02 to export data 
sets. 

BUILDCRV RC8) dump 	 Before building the CRY. 

IDCRCO) INIT RC80 dump 	 Before initializing to begin 
processing. .,) 

638 OS/VS2 Access Method Services Logic 



Module or CSECT to Dump Points Cross Reference 

Module or 
CSECT Procedure Dump Point Type Situation at Dump Point 

TERM RC79 dump 	 Before special processing to 
terminate request (closing output 
data set. 

IDCRC02 ASOCPROC RC40 dump 	 Start of procedure which 
processes nonVSAM objects 
associated with GOG's 

CLUSPROC RC06 dump 	 Start of procedure which 
processes VSAM objects. 

CTLGPROC RCl6 dump 	 Start of procedure which issues 
catalog locates. 

GDGPROC RC36 dump 	 Start of procedure which 
processes GOG objects. 

IDCRC02 RC02 dump 	 Start of main procedure. 

IDCRC02 RC04 dump 	 Before termination processing. 

NVSMPROC RC28 dump 	 Start of procedure which 
processes nonVSAM objects not 
associated with GOG's. 

IDCRIOI BYPASTRM RIBT dump 	 Start of procedure that bypasses 
the remainder of the current 
modal or null command. 

CONVERT RICV dump 	 Start of procedure that converts a 
constant from EBCDIC to binary 
or hexadecimal. 

L 

DEFAULTS RIDF dump Start of procedure that adds-, 


default parameters to the FDT. 


DSPLCALC RIDC dump Start of procedure that calculates 
the position within a secondary 
FDT vector in which to place an 
FDT pointer. 

ERROR I RIEl dump 	 Start of procedure that issues a 
message without inserted text. 

ERROR2 RIE2 dump 	 Start of procedure that issues a 
message with inserted text. 

GETNEXT RIGN dump 	 Start of procedure that scans the 
input command. 

GETQUOTD RIGQ dump 	 Start of procedure that scans a 
quoted constant. 

GETRECRD RIGR dump 	 Start of procedure that obtains the 
next input record. 

IDCRIOI RIEX dump 	 Start of Reader/Interpreter 
module. 

INREPEAT RIIR dump 	 Start of procedure that scans a 
repeated parameter set. 

MODALIF RIMI dump 	 Start of procedure that scans an 
IF modal command. 

MODALSET RIMS dump 	 Start of procedure that scans a 
SET modal command. 

L 
MODLELSE RIME dump Start of procedure that scans an 

ELSE modal command. 

IDCRIOI MORSPACE RIMC dump 	 Start of procedure that scans an 
FDT space for a list of constants. 

Diagnostic Aids 639 



Module or CSECf to Dump Points Cross Reference 

Modlile or 
CSECf 

IDCRIOI 
(continued) 

IOCRI02 

IOCRI03 

IOCRMOI 

IOCRPO I 

IOCRSOI 
(VSl.03.808) 

640 OS/VS2 Access Method Services Logic 

Procedure 

NAMESCAN 

NEEDNOTS 

PACKCVB 

POSPARM 

SCANCMD 

SCANENDS 

SETDFLT 

SETFLAG 

SKIPCMD 

IOCRI02 

IOCRI03 

CPLPROC 

CTLGPROC 

DELTPROC 

IOCRMOI 

IOCRPOI 

CATRELOD 

CNVRTCI 

DUMPIT 

RECOVCAT 

TRUENAME 

CATINIT 

Dump Point 

RINS 

RINN 

RIPC 

RIPP 

RISC 

RISE 

RIST 

RISF 

RISK 

RISD 

RITM 

RMCL 

RMZZ 

RMDC 

RMDD 

RMFN 

RPOI 

RPDl 

RPCI 

RPIO 

RPRV 

RPTU 

RSCI 

Type 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

selected 
areas 21 

selected 
areas 22 

selected 
areas 23 

selected 
areas 24 

dump 

Situation at Dump Point 

Start of procedure that checks 
data set names. 

Start of procedure that checks the 
input command for conflicting or 
missing parameters. 

Start of procedure that converts a 
decimal constant into a binary 
full word. 

Start of procedure that scans a 
positional parameter. 

Start of procedure that scans the 
input command parameters. 

Start of procedure that checks the 
input record for a continuation 
delimiter and determines the 
scanning limits of the record. 

Start of procedure that puts 
defaults in the FDT. 

Start of procedure that notes the 
occurrence of a parameter in the 
FDT. 

Start of procedure that bypasses 
the remainder of a function 
command. 

Start of module that prepares to 
scan a command parameter set. 

Start of module that performs 
command termination functions. 

After the CPL has been built. 

Before and after the UCATLG in 
CTLGPROC. 

After the first UCATLG in 
DELTPROC. 

After the second UCATLG in 
DELTPROC. 

Termination of IDCRMOI. 

End of REPRO FSR. 

At the end of all reload error 
checking before any updates have 
been done to the target catalog. 

On exit from procedure that 
translates control interval 
numbers on the backup catalog. 

After read or write to backup or 
target catalog. 

After setting up locate for 
recoverable catalog attributes. 

On exit from procedure having 
built truename range table. 

End of procedure that builds CIN 
to RRN table. 



Module or CSECT to Dump Points Cross Reference 

Module or 
CSECT 

IDCRSOI 
(continued) 

• 	 IDCRS02 
(YS2.03.808) 

• 
IDCRS03 
(YS2.03.808) 

IDCRS04 
(YS2.03.808) 

\... 


Procedure Dump Point Type 	 Situation at Dump Point 

COPYCAT RSC2 dump 	 End of procedure that copies the 
catalog to the workfile. 

CLEANUP RSC3 dump 	 Before freeing the resources used 
by RESETCAT. 

ENSURECI RSE2 dump 	 At st.art of procedure prior to 
ensuring enough free control 
intervals. 

INIT RSII dump 	 End of procedure that initializes 
data area and obtains resources. 

MERGECRA RSMI dump 	 End of procedure that merges and 
resets CRA into the. workfile. 

PROCCRA RSPI dump 	 End of procedure that merges the 
records of a reset CRA into the 
workfile. 

REASSIGN RSRI dump 	 End of procedure that assigns new 
control interval numbers to 
records on the reassign chain. 

UPDCAT RSUI dump 	 End of procedure that updates the 
catalog from the workfile. 

IDCRSOI RSOO dump 	 End of RESETCA T FSR. 

ASSOC RSAI dump 	 End of procedure that initiates 
association checking. 

PROCTYPE RSP3 dump 	 After processing a set of records 
for associations. 

PROCCI RSP4 dump 	 End of procedure that ensures 
that a control interval number is 
in the list of control interval 
numbers. 

SETCI RSS2 dump 	 End of procedure that updates the 
workfile records from the 
associations tables. 

YERDSDIR RSY2 dump 	 After verifying initial space 
claims. 

YERCI RSY3 dump 	 After verifying associations on a 
set of records. 

GETVIA RSGI dump 	 End of procedure that locates 
records in the workfile. 

PROCYOL RSP2 dump 	 Before freeing resources used by 
PROCVOL routine. 

SETBITS RSS3 dump 	 At end of procedure that sets up a 
single bit map. 

YOLCHK RSYI dump 	 End of procedure that checks 
Format I DSCBs against space 
headers. 

VERB RSY4 dump 	 Before freeing resources used by 
procedure which verifies GDG 
data sets. 

DELGO RSD3 dump 	 End of procedure that deletes 
a group occurrence. 

FIND RSFI dump 	 End of routine that finds one or 
all group occurrences. 

Diagnostic Aids 641 



Module or CSECf to Dump Points Cross Reference 

Module or 
CSECf 

IDCRS04 
(continued) 

IDCRS05 
(VSl.03.808) 

IDCRS06 
(VS2.03.808) 

IDCRS07 
(VS2.03.808) 

IDCSAOI 
(VS2.03.807) 

IDCSA02 
(VS2.03.807) 

Procedure 

MODGO 

ADDUPCR 

BLDVLST 

BLDRLST 

CKERR 

ENTNMCK 

SCNVLST 

SCNRLST 

CRAMNT 

CRADMNT 

DAOPEN 

DSCLOSE 

RECMGMT 

WFDEF 

WFDEL 

CATEOV 

RENAMEP 

UPDCCR 

IDCSAOI 

FIND NAME 

Dump Point 

RSM2 

RSA2 

RSBI 

RSB2 

RSC4 

RSEI 

RSS5 

RSS6 

RSC5 

RSC6 

RSDI 

RSD2 

RSR2 

RSW2 

RSW3 

RSC7 

RSR4 

RSU2 

SAD2 

SABB 

Type 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

Situation at Dump Point ,.J
End of procedure that modifies a 
group occurrence. 

End of procedure that 
prepares for update CRA 
processing. 

End of procedure that adds an 
entry to the volume serial table. 

End of procedure that adds an 
entry to the reset volume table. 

Before RESETCAT terminates 
due to an error. 

End of procedure that determines 
if a record has a true name. 

End of procedure that locates an 
entry in the volume serial table. 

End of procedure that locates an 
entry in the reset volume table. 

End of procedure that requests 
CRA allocation. 

End of procedure that requests 
CRA deallocation. 

End of procedure that opens a 
VSAM file. 

End of procedure that closes a 
VSAMfile. J 
End of procedure that performs 
all I/O requests. 

Before the UCATLG work area is 
freed. 

End of procedure that deletes the 
workfile. 

At conclusion of routine that 
extends the catalog. 

•
Before freeing resources used by 
the RENAMEP procedure. 

End of procedure th~t updates the 
CRAs from the workfile. 

During termination processing; 
after all loaded modules have 
been deleted. have been deleted. 

After a new Load List Block 
has been built. 

642 OS/VS2 Access Method Services Logic 



Module or CSECf to Dump Points Cross Reference 

Module or 
CSECf Procedure Dump Point Type Situation at Dump Point 

IDCSA02 IDCSA02 ZZAL dump Before and after each time the 
UALLOC macro invokes dynamic 
allocation. 

ZZCA dump Before and after CATLG macro is 
issued to invoke catalog 
management routines. 

ZZCR dump Start of procedure that processes 
UCIR macro and just before the 
UCIR macro returns to the 
module that issued the UCIR. 

ZZDL dump Before and after the UDEALLOC 
macro invokes dynamic 
allocation. 

RELECORE SAD4 dump After deletion of loaded modules 
(VS2.03.807) with zero use count. 

IDCSA06 IDCSA06 SAEX dump End of IDCSA06 module. 

SAIN dump Start of IDCSA06 module. 

IDCSA07 IDCSARC RCBG dump Start of IDCSARC procedure. 

RCND dump End of IDCSARC procedure. 

UPDATENT RCAC selected After calls to the catalog. 
areas 2S 

IDCSALC SALC dump Start of IDCSALC procedure. 

SALE dump End of IDCSALC procedure. 

IDCSAUC SAUC dump Start of IDCSAUC procedure. 

SAUE dump End of IDCSAUC procedure. 

IDCSA08 IDCSA08 SARI dump After the RACHECK parameter 
(SU 5752-824) JisL has been built; before the 

RACHECK macro is issued. 

SAR2 dump Upon return from theRACHECK 
macro. 

IDCSA09 CHKCODE AAOI dump After delayed response for Mass 
Storage control order. 

IDCSA09 SASS dump Start of USSC macro. 

ISSUEMAC AAOO dump After issuing SVC 126. 

ZZSC dump Before issuing SVC 126. 

IDCSAlO IDCSAST STBG dump At start of module that 
established or cancels an EST AE 
environment. 

STEN dump At end of module. 

IDCTPOI CONVERT TP2I dump Start of procedure that converts 
data to a printable form. 

TP2N dump End of procedure that converts 
data to a printable form. 

ERROR TPER dumR, Start of procedure that prints a 
text processor error message. 

IDCTPPR TPSI dump After initialization of text 
processor parameters. 

Diagnostic Aids 643 



Module or CSECT to Dump Points Cross Reference 

Module or 
CSECT 

IDCTPOI 
(continued) 

IDCTP04 

IDCTP05 

IDCTP06 

IDCVSOI 

IDCVS02 

IDCVS03 

IDCVYOI 

IDCXPOI 

Procedure 

LINEPRT 
(VS2.03.807) 

LINEPRT 

STACKPUT 

ESTACONT 

ESTSCONT 

RESTCONT 

IDCTP05 

IDCTP06 

IDCVSOI 

IDCVS02 

IDCVS03 

IDCVYOI 

IDCXPOI 

CTLGPROC 

DELTPROC 

Dump Point 

TPIN 

TPMS 

TPXl 

TP3I 

TP3N 

TPXX 

TP4A 

TP4S 

TP4R 

TP5I 

TP5N 

TPEA 

TPEB 

VSBG 

VSND 

VSBG 

VSOT 

VS8G 

VS3X 

VYBG 

VYND 

XPFN 

XPOI 

XPZZ 

XPZY 

Type 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

Situation at Dump Point 

At end of phase; the format J 
structure for a UPRINT macro 
has been processed. 

On return from segment routine. 

After return from procedure that 
puts print lines into output buffer. 

Start of procedure that formats 
pages and prints titles, headings, 
footings, and other lines 
requested. 

End of procedure that prints lines. 


Before call to UPUT. 


End of procedure that processes 

the UEST A macro. 


End of procedure that processes 

the UESTS macro. 


End of procedure that processes 

the UREST macro. 


Start of phase that loads the static 

text phase. 


Start of phase that loads the static 

text phase. 


Start of procedure that processes 

UERROR macro. 


Before converted message is 

printed via the UPRINT macro. 


Start of IDCVSOI module. 


End of IDCVSOI module. 


Start of IDCVS02 module. 


End of IDCVS02 module. 


Entry to load module. 


Exit from load module. 


Start of VERIFY FSR. 


End of VERIFY FSR. 


End of EXPORT FSR, before 

data sets are closed and space 

freed. 


Start of EXPORT FSR. 


After calling the catalog to locate, 

alter, or delete an entry. 


Just after the UCATLG macro. 


644 OS/VS2 Access Method Services Logic 



L 
Selected Areas Notes: The following list describes the selected areas printed at 
the specified dump points. On the printed output, the area title precedes each 
area dumped. 

Dump Point 	 Area Title Area Description 

1. 	 CCAC CPLPTR VSAM catalog parameter list address 

CPL VSAM catalog parameter list 

FVTPTR VSAM catalog field vector table address 

FVT VSAM field vector table 

DEVTPTR VSAM field parameter list address (device type FPL) 

DEVTFPL VSAM field parameter list (device type FPL) 

FSEQPTR VSAM field parameter list address (file sequence FPL) 

FSEQFPL VSAM field parameter list (file sequence FPL) 

2. 	 CCAV DEVTPTR Address of device code list 

DEVTLIST Device code list (referenced by FPL) 

VOLPTR Address of volume serial number list 

VOLLIST Volume serial number list (referenced by FVT) 

FILEPTR Address of file sequence list 

FILELIST File sequence number list (referenced by FPL) 

3. 	 CCLV ENTYPPTR Address of catalog entry type returned by VSAM catalog 

ENTYPLST Catalog entry type returned by VSAM catalog 

CATVLPTR Address of catalog volume information returned by 
VSAM catalog 

CATVLLST Catalog volume information returned by VSAM catalog 

4. 	 CCCN BLKLEVEL OS/VS catalog level index 

BLOCKPTR OS/VS catalog index block pointer 

BLOCK OS/VS catalog index block 

5. CCDC 	 Same as CCAC 

6. CCDV 	 Same as CCAV 

7. 	 CCLC CPLPTR VSAM catalog parameter list address 

CPL VSAM catalog parameter list 

ENTYPPTR VSAM field parameter list address (entry type FPL) 

ENTYPFPL VSAM field parameter list (entry type FPL) 

CATVLPTR VSAM field parameter list address (volume information 
FPL) 

CATVLFPL VSAM field parameter list (volume information FPL) 

8. CCPD 	 Same as CCCN 

9. CCVI 	 Same as CCCN 

10. 	 LCAP FLAGS Internal flags and switches used in IDCLCOI (refer to 
the microfiche listing data area, FLAGS, for mapping) 

ASSOC# 	 Number of associations of the catalog entry being 
processed 

HOLDETYP 	 Type of catalog entry being processed 

II. LCCD 	 Same as LCAP 

12. LCOJ 	 CATNAME Catalog name 

Diagnostic Aids 	 645 



Dump Point 

12. LCOl 
(continued) 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

LCMG 


LCTP 


LCAL 


LCBL 


LCLO 


LCWA 

LCRA 

LCRP 

RPCI 

RPIO 

Area Title 

OBlCNT 

OBJTYP 

OBlNM 

CACBFLG 

CTGOPTN2 

FLAGS 

TYPECNT 

TYPELIST 

ERRDARG 

DARGLIST 

CATRC 

CTGENT 

CTGPSWD 

CTGPL 

CTGFLarray 
FPL(1) 

FPL(nn) 

MULTIFPL 

Same as LCAL 

FLAGS 

CTGWKAPT 

CTGWKA array 
WKA(t) 

WKAEND 

Same as LCAP 

Same as LCAP 

OLDCI# 

NEWCI# 

DLOUTREC 

FUPOTREC 

Area Description 

Number of entries being processed 

Note: Multiple entries can be processed when a generic 
name is supplied. ~ 
Entry type currently being processed 

Name of entry being processed 

Flag indicating that VSAM should return the catalog 
ACB pointer 

Second option byte indicator in CTGPL 

Internal flags and switches (refer to microfiche listing 
data area, FLAGS, for mapping) 

Number of entry types specified by the user 

Types of entry types specified by the user 

Text processor argument list (DARGLIST) used for 
printing messages 

Text processor argument list (DARGLIST) used for 
printing the catalog data 

VSAM catalog return code 

VSAM locate key (either the entry name or the CI 
number) 

User-supplied password 

VSAM catalog parameter list 

VSAM field parameter list 

Note: The number of FPLs (nn) varies with the amount 

of catalog information requested (i.e., NAME, 

HISTORY, VOL, etc.). 

HISTORY, VOL, etc.). 


VSAM field parameter list if a special function FPL is 

required 


Internal flags and switches (refer to microfiche listing 

data area, FLAGS, for mapping) 


Work area address of VSAM returned catalog fields 


VSAM returned catalog fields. 

Note: This work area is dumped as an array of 256-byte 

blocks and the last block less than 256 bytes is indicated 

asWKAEND. 


CI number of backup catalog record to be converted 


Converted CI number in the target catalog (Le., 

OLDCI# converted to NEWCI#) 


A record in the high key range of the target catalog 

which was deleted because it did not exist in the backup 

catalog 


A record in the low key range of the target catalog which 

was converted to a free record because it did not exist in 

the backup catalog 


~ 


646 OS/VS2 Access Method Services Logic 



Dump Point Area Title 

INSOTREC 

UPOUTREC 

RDCCREC 

UPCCREC 

RDINPREC 

RDOUTREC 

2ND-HALF 

23. RPRV DSATRPL 

DSATRFPL 

24. RPTU SORSTABL 

TARGTABL 

25. RCAC WKAREA 

Area Description 

A record inserted into the target catalog becau~e it 
existed in the backup catalog but not in the target 
catalog 

A record used to update the target catalog because the 
same record existed in both the backup and the target 
catalogs 

Catalog control record of the target catalog before it was 
updated 

Catalog control record of the target catalog after it was 
updated with results of the reload operation 

A record from the backup catalog before any action is 
taken 

A record from the target catalog before any action is 
taken 

The second half of the record printed just above 

If both input and output are catalogs, the CPL used to 
locate the catalog DSAlTR field to determine if it has 
the recoverable attribute 

Note: The first printed is for the output catalog; the 
second is for the input catalog. 

The FPL chained off the CPL described for DSATRPL 

A table which maps the extents of the high key range of 
the backup catalog 

Note: Each entry maps one extent and contains: 

Word I-High RBA of the extent 

Word 2-Number of CIs in the extent 

The table is used to convert a CI number in the backup 
catalog to the appropriate CI number for the target 
catalog (see 'RPCI' above). 

Same as SORST ABL for the target catalog 

Catalog work area 

Diagnostic Aids 647 



The TSO TEST Command 
If you invoked Access Method Services interactively with TSO, you can use 
the TSO TEST command to diagnose a problem. Refer to OS/VS2 TSO 
Command Language Reference for a complete description of the TSO TEST 
command. In order to execute Access Method Services with the TEST 
command, enter the following after logging on at your terminal: 

TEST 'SYS1.CMDLIB 

(Access Method Services command name)'CP 

TSO responds with: 

ENTER COMMAND FOR CP 

Now, enter: 

Access Method Services command with its parameters 

TSO responds with: 

TEST 

Now, Access Method Services is running under the TSO TEST command, and 
you can enter any TEST subcommand. 

How to Use the TSO TEST Command 

You must use the microfiche listings with the TSO TEST command. 

If a problem occurs and you have no idea which modules are involved, run the 
command under TSO TEST and stop execution at the beginning of each 
module. Each Access Method Services module begins with a PROL macro 
which calls module IDCSA03 at entry point IDCSAPR. Using the microfiche 
listings for IDCSA03, find the offset from the beginning of IDCSA03 to 
IDCSAPR. Enter: 

AT IDCSA03.IDCSA03.+offsett-to-IDCSAPRD 

When execution stops at the beginning of each module, you can display the 
trace tables with the LIST subcommand. From the Inter-Module Trace Table 
you should be able to tell the modules involved. 

If you suspect which modules are involved, rerun the Access Method Services 
command under TSO TEST and stop execution at the beginning of each 
module involved by using an AT subcommand. Each time execution stops you 
can examine the trace tables and storage to further isolate the problem. 

Once you know the areas within a module that have caused the problem, 
select a dump or trace point where you want to stop execution. Using the 
microfiche listing for the module, find the offset from the beginning of the 
module to the dump or trace point. Enter an AT subcommand for each point 
where you want to stop execution. 

Even though you don't have a dump, refer to the section on "Reading a 
Dump" to find data areas in storage. 

648 OS/VS2 Access Method Services Logic 



ABORT Codes 
Whenever an unrecoverable error is detected by the processor, the routine 
that detects the error issues a UABORT macro. The System Adapter then 
issues a Write-To-Programmer message (IDC4999I) with an ABORT code 
indicating the error and produces a snap dump if the / / AMSDUMP DD card 
is specified. If you invoked Access Method Services with a batched job, you 
supply the / / AMSDUMP DD card in the JCL used to invoke Access Method 
Services. If you invoked Access Method Services interactively with TSO, you 
must supply the / / AMSDUMP DD card in the procedure you specified in the 
PROC parameter of the LOGON command. Refer to OS/VS2 TSO 
Command Language Reference for more information on the LOGON 
command. A snap dump produced through a UABORT macro has an 
ID = 000. 

Module IDCSAOl, procedure PRNTERR, detects the ABORT condition. 
One of the following ABORT codes is issued along with message IDC49991. 

ABORT Codes 

ABORT Module or 
Code CSECT Procedure Situation that Caused ABORT 

24(18) IDCTPOI IDCTPOI The pointer to the Print Control Table in the 
GOT is not set. 

IDCTP04 RESETCON The pointer to the Print Control Table in the 
GOT is not set. 

28(tC) IDCIOOI IDCIOIT Storage was not available for the I/O Adapter 
historical area and message area. 

IDCIOO2 BLOOCMSG A message that sufficient storage was not 
available could not be issued because the 
SYSPRINT data set is not open. 

IDCI004 IDCIOO4 PUTLINE returned a return code greater than 4. 

IDCSAOI GETCORE Storage was not available for the automatic 
storage required for IDCSA02, IDCSA03, 
IDCSA06, IDCSA07, IDCSA08, IDCSA09, 
IDCSAIO, IDCIOOl, IDCIOOS, or IDCTPOt. 

IDCSA02 IDCSA02 Storage was not available for a dynamic volume 
serial list or a dynamic 00 name list. 

IDCSA03 GETCORE Storage was not available for a GETMAIN 
request. 

IDCTPOI LINEPRT Storage unavailable for page header line. 

IDCTPOI ERROR Storage unavailable for saving conversion/print 
argument list. 

IDCTP05 IDCTPOS Storage unavailable for loading static text 
formatting structure. 

IDCTP04 ESTSCONT Storage unavailable for line stack buffer. 

IDCTP04 PCTSETUP Storage unavailable for print chain translate 
table. 

IDCTP04 PCTSETUP Storage unavailable for main title line. 

IDCTP04 PCTSETUP Storage unavailable for subtitle line. 

IDCTP04 PCTSETUP Storage unavailable for page footing lines. 

IDCTP04 INITPCT Storage unavailable for Print Control Table. 

Diagnostic Aids 649 



ABORT Codes 

ABORT Module or 
Code CSECT 

32(20) IDCIOOI 

IDCI003 

36(24) IDCI002 

IDCTPOI 

40(28) IDCIOOI 

IDCSA02 

IDCSA05 

IDCSA08 

44(2C) IDCSA02 

56(38) IDCSA02 
(VSl.03.807) 

Procedure 

IDCIOGT 

IDCIOPT 

IDCI003 

BLDOCMSG 

STACKPUT 

IDCIOCL 

IDCIOOP 

IDCIOPT 

IDCIOSI 

IDCSA02 

IDCSA05 

IDCSA08 

IDCSA02 

IDCSA02 

Situation that Caused ABORT 

The pointer to the IOCSTR is zero, or the open 
flag in the IOCSTR is not set, indicating that the 
data set to be accessed has not been opened 
successfully. 

The pointer to the IOCSTR is zero, or the open 
flag in the IOCSTR is not set, indicating that the 
data set to be accessed has not been opened 
successfully. 

The pointer to the IOCSTR is zero, or the open 
flag in the IOCSTR is not set, indicating that the 
data set to be accessed has not been opened 
successfully. 

The SYSPRINT data set could not be opened, or 
the SYSPRINT data set has already been closed 
and a message cannot be issued. 

Unable to transmit data to output file. 

The length of the UCLOSE argument list is 
invalid. The length must be greater than I and 
less than 6. 

The length of the UOPEN argument list is 
invalid. The length must be greater than I and 
less than 6. 

The length of the UPUT argument list is invalid. 
The length must be greater than I and less than 
4. 

The length of the UIOINFO argument list is 
invalid. The length must be greater than 3 and 
less than 6. 

The argument list of a UGSAPCE, UGPOOL, 
UFPOOL, UALLOC, or UCIR macro is invalid. 

The argument list for the UTIME macro is 
invalid. 

The argument list of a USYSINFO, 
URACHECK(SU 5752·824), USCRATCH, or 
UWTO macro is invalid. 

The SNAP macro was not successful. Either the 
DCB for the dump data set was not Open or was 
invalid, or not enough storage was available for 
the dump. 

The BLDL macro failed to find a required 
Access Method Services module. 

650 OS/VS2 Access Method Services Logic 



ABORT Codes 

ABORT Module or 
Code CSECT Procedure SltuatiOD that Caused ABORT 

6O(3C) IDCIO02 BUILDACB 	 The return code from the VSAM GENCB macro 
(Deleted for VSl.03.808) 	 for the EXLST or ACB was not zero, and the 

reason code in register zero indicates a problem 
other than storage not available. 

BUILDRPL 	 The return code from the VSAM GENCB macro 
for the RPL was not zero, and the reason code in 
register zero indicates a problem other than 
storage not available. 

CLOSERTN 	 The return code from the VSAM SHOWCB 
macro for the ACB error code was not zero. 

OPENRTN 	 The return code from either the VSAM 
SHOWCB macro for the ACB attributes or the 
VSAM TESTCB macro for the index attribute 
or ACB open flag was not zero. 

IDCI003 PT AMDS 	 The return code from either the VSAM 
SHOWCB macro for the RPL error code or the 
VSAM MODCB macro for the RPL or the 
EXLIST was not zero. 

72(48) IDCRS05 CKERR An internal RESETCAT error occurred. 
(VSl.03.808) This situation should not occur in a debugged 

program. 

You can find UABORT macros by examining the microfiche listings. The 
expansion of a UABORT macro for an ABORT code of 28 looks like this: 

RESPECIFY(REG13,REG14,REG15) RSTD; 

REG15 28; 

REG14 = GDTABT; 

REG 13 = GDTABH; 

GEN(BR REG14); 

RESPECIFY(REG13,REG14,REG15)UNRSTD; 


Reading a Dump 
This section describes how to find modules and data areas belonging to the 
processor in a full region dump, either a snap dump or an ABEND dump. If 
you are debugging under the TSO TEST command, you can use this section 
with the microfiche listings to find data in storage. . 

Snap dumps are produced by the processor on two different occasions. If the 
Test option is on and the FULL keyword is specified, the pr~cessor produces 
as many snap dumps as requested, at the points requested. The IDs of these 
dumps start with ID = 001. If an ABORT condition occurs, the processor 
produces a snap dump with an ID = 000. 

All executable modules and certain data areas belonging to the processor are 
preceded by an EBCDIC character string to identify the module or data area. 
Modules are preceded by the full module name, for example, IDCTPOI b. 
(The date of compilation, in character form, follows the module name.) Data 
areas are preceded by a four-byte identifier, either specific to the data area, or 
for the storage area in which it is built. For example, the GDT is preceded by 
the characters GDTb. The PDT is built in storage owned by the Executive, 
and it is found in the storage areas preceded by the characters EXOO. 

Diagnostic Aids 651 



How to Find the Module and Registers 

'1 , 

How to Find the GDT 

The best way to determine which module caused the dump and to find the 
registers of that module varies according to the type of dump you have. 

In an ABEND dump, standard methods explained in OS/VS2 System 
Programming Library: Debugging Handbook should be used. 

In a snap dump caused by an ABORT condition, the last entry in the 
Inter-Module Trace Table identifies the module that issued the UABORT 
macro. Message IDC4999I identifies the ABORT code set in the UABORT 
macro. Once you know the ABORT code and the module that issued the 
UABORT macro, you can use the previous list of ABORT codes to determine 
the internal procedure that issued the UABORT macro and the situation that 
caused the procedure to issue the macro. The last entry in the Intra-Module 
Trace Table may be a trace point within the module that issued the UABORT 
macro. 

The registers at the time that the UABORT macro was issued are not saved 
by the processor and cannot be found in a dump. 

If you have a snap dump produced at a dump point, the trace tables printed 
along with the dump tell you at what point the dump occurred. The next to 
the last ID in the Inter-Module Trace Table identifies the module that issued 
the UDUMP macro; the last ID in the Intra-Module Trace Table identifies the 
exact dump point at which the dump was produced. You can use the trace 
tables printed along with the dump to trace the flow of control before the 
dump point. These trace tables are better to use for this purpose than the 
trace tables in the dump because the printed trace tables do not contain all the 
trace points encountered while producing the dump. The trace tables in the 
dump have been filled with dump-related trace points. 

You can find the registers at the time the UDUMP macro was issued in the 
save area where IDCDBOI saved the caller's registers. The first word of this 
save area contains the characters DBOI. 

Figure 19, Part 1, illustrates how to find the module that caused the dump and 
its registers in a snap dump produced through the Test option. In this 
example, module IDCSA02 called for a dump at the dump point 'ZZCA'. 
Module IDCDBOI saved the registers of module IDCSA02 in the latter's save 
area. 

The Global Data Table (GDT) is preceded by the identifier GDTb (see 
Figure 19, Part 4) so you may be able to find it by scanning down the right 
side of the dump. A more systematic way of finding the GDT depends upon 
the type of dump you have. Figure 15 shows the two methods of finding the 
GDT and is referred to in the following paragraphs. 

In a snap dump produced as the result of an ABORT condition, you must use 
Method 1 shown in Figure 15. The GDT is contained in the System Adapter's 
(IDCSAOl) automatic storage area. Register 11 of the registers at entry to 
SNAP points to the automatic storage area of IDCSAOl. The GDT is located 
at offset GDTTBL in the storage area; you must examine the microfiche 
listing for IDCSAOI to find the offset from the start of the automatic storage 
area at @DATD to location GDTIBL. Add the offset of location GDTIBL 
to the contents of register 11 to obtain the address of the GDT. 

652 OS/VS2 Access Method Services Logic 



Me&hod 1. 

Register II 
Register II of 
registers at entry L.....______..1 

to SNAP or ABEND 

Location 

GDTTBL 


:r 

Method 2. 

Register I of ,Register I . v--- -IParameter List 

registers passed ...______......., _ 

from IDCSAOI I-l~GD_T__----t 

to IDCEXOI. 

L t 
Figure 15. How to Find the GDT 

In an ABEND dump, if the ABEND occurred after the call to IDCSAOI but 
before IDCSAOI calls IDCEXOl, then you must again use Method 1. Add 
the contents of register 11 of the registers at entry to ABEND to the offset of 
GDTIBL, to find the address of the GDT. 

If the ABEND occurred after IDCSAO 1 called IDCEXO 1, use Method 2 
shown in Figure 15. The address of the GDT was passed as a parameter from 
IDCSAOI to IDCEXOl. You must find the save area where IDCEXOI saved 
the registers belonging to IDCSAOl. Register 1 in this save area contains the 
address of a parameter list. The first word in the parameter list contains the 
address of the GDT. 

In a snap dump produced as a result of the Test option, you can most easily 
find the GDT using Method 2. Find the save area where IDCEXOI saved the 
registers belonging to IDCSAOl. Register 1 in this save area contains the 
address of a parameter list. The first word in the parameter list contains the 
address of the GDT. 

The GDT is the "anchor" for all areas of the processor. In the GDT are found 
pointers to the trace tables, to the historical areas, and to the entry points of 
the System Adapter, the I/O Adapter, and the Test Processor. 

Figure 19 shows the GDT as it appears in a dump. Part 1 of Figure 19 shows 
the registers belonging to IDCSAOI and saved by IDCEX01. Register 1 
points to the parameter list. Part 4 of Figure 19 shows the parameter list and 
theGDT. 

Diagnostic Aids 653 



How to Find Save Areas 

The first word of the standard save area for processor modules contains the 
ID of the module that saved its caller's registers in that save area. (The 
module ID is the last four characters of the module name.) For example, if the 
first word of the save area contains DEOl, then you would know that 
IDCDEOI saved its caller's registers in this area. The remainder of the save 
area is set up following standard register saving conventions. 

The save area chain normally appears in the formatted area of a dump. In 
addition, the start of the Access Method Services save area chain can be 
found in GDTABH in the Global Data Table (GDT). You must examine the 
microfiche listing of IDCSAOI to find the offset of location GDTABH. 

Figure 19 shows the save areas at the start of a dump. 

How to Find the Trace Tables 

The trace tables can easily be found once you have found the GDT. The third 
word of the GDT (including the GDT identifier) points to the Inter-Module 
Trace Table; the fourth word of the GDT points to the Intra-Module Trace 
Table. 

Several areas in a dump may look as if they contain the trace tables; however, 
these areas may simply be areas used in constructing the trace tables. 

Figure 19, Part 4, shows how the trace tables appear in a dump. Note that the 
last (twentieth) trace point in the Intra-Module Trace Table is SASN; 1001 is 
not part of the trace table. 

Note: If, in the Inter-Module Trace Table, the sequence SA02 SA02 occurs, 
the second SA02 is really the ID for module IDCI002. 

How to Find the FDT 

You can find the Function Data Table (FDT) for an FSR after the FSR has 
received control by finding the save area in which the FSR saved the registers 
belonging to IDCEXOl. The first word of this save area contains the module 
ID of the FSR, for example, PROI for the PRINT FSR. The preceding save 
area in the save area trace contains EXO1 in the first word. Register 1 in the 
save area where the FSR saved registers contains the address of a parameter 
list. The second word of that parameter list contains the address of the FDT. 

All FDTs are built by the Reader/Interpreter in a UGPOOL storage area 
obtained by the Executive; the UGPOOL area has an ID of EXOO. The first 
two words of the FDT contain the name of the command. 

Figure 19 shows how an FDT looks in a dump. Part 1 of Figure 19 shows the 
registers belonging to IDCEXOI and saved by IDCDLOl. Register 1 points to 
the parameter list. Part 3 of Figure 19 shows the parameter list and the FDT. 

654 OS/VS2 Access Method Services Logic 



How to Find AlltollUltic Storage Areas 

The automatic storage area for a module is that storage area obtained for the 
module whenever the module is entered; dynamic storage areas, on the other 
hand, are those storage areas obtained by the module as it is executing. All 
automatic storage areas, as well as dynamic storage areas, are obtained by the 
System Adapter. 

The automatic storage area for most processor modules is preceded by an 
eight-byte header. The first four bytes contain the number of bytes in the 
automatic storage area (including the eight-byte header), and the last four 
bytes contain the module ID. However, for commonly called modules, 
namely, IDCI001, IDCSA02, IDCSA03, and IDCTP01, no header precedes 
the storage area, unless the module has been called recursively. On recursive 
calls (that is, the module has been called again within the original call), the 
storage area that is obtained is preceded by an eight-byte header. 

The best way to find the automatic storage area for a module depends upon 
the module. 

The address of the automatic storage area for module IDCSA03 is kept in the 
GDT. 

The addresses of the automatic storage areas for modules IDCIOOl, 
IDCI005, IDCSA02, IDCSA06, IDCSA07, IDCSA08, IDCSA09,IDCSAlO, 
and IDCTPOI are kept by the System Adapter in the AUTOTBL. Figure 16 
shows the format of the AUTOTBL and how to find it. However, if any of 
these modules have been called recursively, indicated by a use count in the 
AUTOTBL greater than one, another automatic storage area has been 
obtained. You must find the second and third storage areas using the module's 
data register or save area register as explained in the next paragraphs. 

Figure 19, Part 4, shows how the System Adapter Historical Area and 
AUTOTBL appear in a dump. 

To find the automatic storage area for any module, you can examine the 
microfiche listings to find which register has been used by the compiler as the 
data register. This register, usually register 11, points to the automatic storage 
area. 

For all processor modules, the first item in the automatic storage area is the 
save area. Thus, you can also use register 13, which contains the address of 
the save area, to find the automatic storage area belonging to that module. 

Figure 17 shows the automatic storage area for module IDCEXOI. Module 
IDCEXOI has called IDCDL01; therefore, module IDCDL01 has saved the 
registers belonging to IDCEX01 in the save area. 

Figure 19, Part 2, shows an automatic storage area as seen in a dump. 

How to Find D)1IUImic Storage Areas 
The dynamic storage area is that area obtained by the module as it is 
necessary; the automatic storage area, on the other hand, is that storage area 
obtained for the module whenever the module is entered. All dynamic storage 
areas,as well as all automatic storage areas, are obtained by the System 
Adapter. A module obtains storage areas dynalnically by issuing either a 
UGSPACE or a UGPOOL macro. 

To find a storage area obtained via a UGSPACE macro, you must examine 
the microfiche listings to see where the module has saved the address of that 

Diagnostic Aids 655 



System Adapter 
GDT Historical Area 

f ~I 

32 (20 >jGDTSAH K 00 AUTOPTR 

:::;:: :):: 

,-- AUTOTBl 

Use An entry exists for IDCIOOI, 
10 Count Size Address IDCIOOS, IDCSA02, IDCSA06, 

IDCSA07, IDCSA08, 
IDCSA09, IDCSA I 0, and 
IDCTPOI. 

Field 	 Contents 

10 	 Module 10, '1001', '1005', 'SA02', 'SA06', 'SA07', 

'SA08', 'SA09', 'SAlO' or 'TPOI' 


Use Count 	 Number of automatic storage areas obtained for the 
module: 

o - no storage area being used 
I - the storage area whose address is in this table is the 

only storage area being used 
>I - another storage area has been obtained for the 

module 

Size 	 Number of bytes in automatic storage area 

Address 	 Address of automatic storage area 

Figure 16. Fonnat of AUTOTBL 

Data Register of IDCEXOI 

EXOI 

Previous Save Area 

Reg 13 of IDCEXOI Next Save Area • 
Automatic Storage 
Area of IDCEXOI 

1 	 T 
·When IDCDlOI returns to IDCEXOI. 
this field will contain zeros. 

Figure 17. Example of an Automatic Storage Area 

particular storage area. To find a storage area obtained via a UGPOOL 
macro, you can again examine the microfiche listings or you can follow the 
UGPOOL storage chain maintained by the System Adapter. 

Figure 18 shows how to find the chain of UGPOOL areas from the System 
Adapter's historical area. 

656 OS/VS2 Access Method Services Logic 



GOT 

o (0) GPFJRST 

4 (4) GPLAST 

First 
UGPOOL Area 

O(O)~____________~ 

Third (last> 
UGPOOL Area 

12 (0 GPID 

0(0) 0 

This field contains UGPOOL 12 (0 GPID 
area identification. 

Figure 18. UGPOOL Area Chain 

Contents 0/ UGPOOL Areas 

The following list contains the UGPOOL IDs used by different modules when 
they obtain storage. The list also contains the name of the internal procedure 
that issues the UGPOOL macro, and the contents stored in the UGPOOL 
area. 

Figure 19 shows the UGPOOL chain as it appears in a dump. Part 4 of Figure 
19 shows the start of the chain in the GDT. Part 3 shows the chain. 

UGPOOL 
Module ID Procedure Contents of UGPOOL Area 

IDCALOI ALOO ALTERPRC 	 One of the following; P ASSW ALL field or 
volume list. 

IDCALOI 	 CTGPL, CTGFV, and CTGFLs. Catalog entry 
names returned from a generic locate. 
UGPOOL area is obtained by 
IDCSA02(UCIR). 

INDEXPRC 	 CTGPL, CTGFV, CTGFL and IDAAMDSB 
field. 

LOCATPRC 	 Catalog work area for locate requests. 

DALCPROC 	 Volume list and ALLAGL parameter list. 

IDCBIOI BIOI JCPROC 	 Area obtained by UIOINFO to contain sort 
work file data set name and volume serial list; 
passed back to JCPROC. 

BIPG INITPROC 	 One 2048 byte buffer, followed by area for 
define CTGPL, CTGFVs, and CTGFLs 
followed by alternate index record output 
buffer; area starts on page boundary. 

BIPG INITPROC Record sort area followed by table which 
controls the sort. 

Diagnostic Aids 657 

L 



UGPOOL 
Module ID Procedure Contents of UGPOOL Area 

IDCCCO) CCOO CATALOG 	 A new VSAM catalog work area if VSAM 
return code indicates insufficient space. 

CNVTINIT 	 All of the following: OS/VS SYSCTLG index 
blocks for 22 index levels, VSAM parameter 
lists, data addressed by the VSAM parameter 
lists, VSAM catalog work area. 

IDCCKO) CKOO BUILDTAB 	 Area where table of checkpoint IDs is built. 

IDCDEOI DEOO DALCPROC 	 List of volumes to be mounted and ALLAGL 
parameter list. 

IDCDEOI 	 CTGPL, and CTGFVs. 

IDCDE02 DEOO ALLCPROC 	 One of the following: volume list, file sequence 
list, device type list, or CTGFLs (DSA TIR, 
LRECL, BUFSIZE, SPACPARM, DEVTYP, 
FILESEQ). 

KEYPROC 	 One or both of the following: AMDSBCAT 
CTGFL and IDAAMDSB field, or key range 
list. 

MODELPRC 	 One of the following: CTGPL and CTGFLs 
used to locate a model object, or catalog locate 
work area. 

NAMEPROC 	 Creation, expiration date and exception exit 
CTGFLs and GDG attributes. 

PROTPROC 	 PASSWALL CTGFL, OWNERID CTGFL, 
P ASSW ALL field, User Authorization Record, 
RGATIR CTGFL and RGATIR field. 

IDCDLOI DLOO DCDLO) 	 Catalog entry names returned from a generic 
locate. UGPOOL area IS obtained by ;)
IDCSA02(UCIR). 

DLO) MORESP 	 Larger VSAM catalog management services 
work area if necessary. 

IDCIOO) 1000 IDCIOIT 	 I/O Adapter historical area and VSAM 
message area. 

10m PUTREP 	 Work area where VSAM moves records during 
GET. The UGPOOL ID is the same as the ID 
for the associated 10CSTR. 

IDCI002 IOnn BUILDACB ACB, RPL, EXLST for a VSAM data set. 
(VSl.03.808) The UGPOOL ID is the same ID as the 

associated 10CSTR. 

658 OS/VS2 Access Method Services Logic 



Module 
UGPOOL 
ID Procedure Contents of UGPOOL Area 

IDCI002 10nn BUILDDBK JFCB and exit list if OPENJ processing; DCB; 
DECB if BSAM update processing. The 
UGPOOL ID is the same as the ID for the 
associated 10CSTR. 

BUILDRPL Work area where VSAM moves records during 
GET. The UGPOOL 10 is the same as the 10 
for the associated 10CSTR. 

CKNONOP Work area used to assemble an ISAM data set 
with fixed records and non-imbedded keys. 
The UGPOOL ID is the same as the ID for the 
associated 10CSTR. 

OPENRTN 10CS prefix, 10CSTR, 10CSEX, and data set 
name. Each data set that is opened is assigned 
a unique UGPOOL 10, starting with 1001; the 
next data set that is opened is assigned an ID of 
1002. All areas associated with a data set have 
the save UGPOOL IDs. 

IDCI003 DSINFO Area in which data set name, volume serial 
numbers, device type, and/or Format-4 time 
stamp is returned to the caller if an area is not 
supplied by the caller. The UGPOOL 10 is 
supplied by the caller. 

IDCLCOI LCOO INITPROC Main CTGPL used for all locate requests 
except when locating the entry names of 
associated entries. This area also contains a 
save area for the CTGPL. 

LCOI INITPROC All CTGFLs, followed by the CTGFL save 
area. 

LC02 INITPROC Catalog work area referenced by the main 
CTGPL. 

LC03 INITPROC CTGPL used to locate entry names of 
associated entries. This area also contains a 
save area for the CTGPL. 

LC04 INITPROC Catalog work area referenced by the CTGPL 
used to locate entry names of associated 
entries. 

LC05 INITPROC String of control interval numbers and types of 
associated entries for cluster, AIX, GDG and 
pagespace. 

LC06 INITPROC Text processor argument list. 

LC07 INITPROC Abbreviations used in catalog listing, loaded 
from static text module. 

LClO ENTPROC Catalog entry names returned from a generic 
locate. UGPOOL area is obtained by 
IDCSA02(UCIR). 

LCll INITPROC String of control interval numbers and types of 
associated entries for data, index, path and 
nonVSAM. 

IDCLC02 LC08 LOCPROC Larger catalog work area. UGPOOL LC02 is 
released. 

LC09 CDIPROC Larger area for string of control interval 
numbers and types of associated entries. 
UGPOOL LC05 or LCII is released. 

Diagnostic Aids 659 



UGPOOL 
Module ID Procedure Contents of UGPOOL Area 

IDCMPOI MPOI 	 BFPLPROC CTGFL. ..JBPASPROC PASSWALL CTGFL. 


CLUSPROC Buffer to read data records from the portable 

data set. 

CTLGPROC Larger catalog work area. 

DALCPROC List of volumes.to be mounted. 

DELTPROC Larger VSAM catalog management services 
work area if necessary. 

LVLRPROC One of the following: volume list for define, or 
DEVTYPE CTGFL. 

RANGPROC Range list. 

FVTPROC FVT and pointers to FPLs. 

IDCRC02 RC02 	 IDCRC02 Output buffer for header record. 

CLUSPROC Output buffer for control record. 

LOCPROC Buffer for FPL's and catalog work area. 

CTLGPROC Buffer for larger catalog work area.. 

NVSMPROC Output buffer for control record. 

SAVEPROC Buffer for catalog control records. 

GDGPROC Output buffer for control record. 

ASOCPROC Output buffer for control record. 

IDCRIOI EXOO 	 GETSPACE FDT---data substructures. 

MORSPACE FDT---data list substructures. 

SCANCMD FDT-secondary pointer vectors. J 
RInn IN REPEAT 	 FDT-temporary space fur secondary pointer 

vectors. nn is the ID of the parameter 
associated with the secondary pointer vector. 

IDCRI02 EXOO IDCRI02 	 One of the following: Reader/Interpreter 
tables, or FDT. 

RInn IDCRI02 	 FDT-temporary space for secondary pointer 
vectors. nn is the ID of the parameter 
associated with the secondary pointer vector. 

IDCRI04 EXOO 	 GETSPACE FDT data substructures. 

REPLIST FDT secondary address vectors. 

RISETUP FDT primary address vector and secondary 
count vectors. 

SETDFLT Default parameter work area. 

SUBSCAN Work area for input command. 

RI04 REPLIST Additional space for tables used only by the 
Reader/Interpreter. 

RISETUP Tables used only by the Reader/Interpreter. 

660 OS/VS2 Access Method Services Logic 

http:volumes.to


UGPOOL 
Module ID 

IDCRMOI RMOI 

IDCRSOI RSOI 
(VS2.03.808) 

RSOI 

RS03 

IDCRS03 RSIO 
(VS2.03.808) 

RSll 

RS12 

IDCRS04 RS04 
(VS2.03.808) 

RS04 

IDCRSOS RSOI 
(VSl.03.808) 

RS02 

IDCRS06 RS03 
(VS2.03.808) 

IDCRS07 RS03 
(VS2.03.808) 

RS03 

IDCTPOI TP03 

IDCTP04 TPOI 

IDCTP05 TPOI 

Procedure 

ALISPROC 

BFPLPROC 

BPASPROC 

CLUSPROC 

CPLPROC 

CTLGPROC 

DALCPROC 

DELTPROC 

FVTPROC 

GDGPROC 

LVLRPROC 

NFVTPROC 

NVSMPROC 

RANGPROC 

UCATPROC 

IDCRSOI 

INIT 

INIT 

GETTAB 

PROCVOL 

VERB 

NINIT 

NXPND 

BLDRLST 

BLDVLST 

WFDEF 

RENMSETV 

SCRATCHP 

LINEPRT 

INITPROC 

PCTSETUP 

IDCTP05 

Contents of UGPOOL Area 


Catalog data record buffer. 


Obtain one or two FPLs. 


Contain PASSWALL field information. 


Buffer area for data record containing catalog 
locate area. Also volume list. 

Catalog parameter list. 


Larger catalog work area. 


List of volumes to be mounted. 


Larger catalog work area. 


FVT and pointers to FPLs. 


Storage for data record. 


Volume serial list. DEVTYP FPL and 

associated device type lists. List of 
FILESEQUENCE numbers and associated 
FPL. 

FVT and total number of FPLs. 

Buffer for data record. 


Storage for range list. 


Storage for data record. 


Automatic storage for modules 

IDCRSOI-IDCRS07. 


Work area used for umacro parameter lists, 

record access blocks, and control interval 

translate table. 


Area obtained by UIOINFO for catalog data 

set information. 


Tables obtained as needed for association 

checking. 


Work areas used for bit maps. 


Work area used for GDG association checking. 


Work area used for FIND processing. 


Extension to FIND work area. 


RESVOL table. 


VOLSERTB table. 


Work area used for UCATLG parameter list to 
define work file, area obtained by UIOINFO 
for work file data set information. 

CAMLST for RENAME. 

Volume list for SCRATCH. 


Header line. 


Secondary Print Control Table. 


One of the following: Print Control Table, 

subtitle lines, or footing lines. 


Entry from a static text format structure. 


Diagnostic Aids 661 

• 

L 



UGPOOL 
Module ID Procedure 

IDCXPOI XPOI AL TRPROC 

CLUSPROC 

CTLGPROC 

DELTPROC 

LOCPROC 

Contents of UGPOOL Area 

CTGFV and CTGFLs for catalog alter request. 


Output buffer for control records. 


Larger catalog work area. 


CTGPL for catalog delete request. 


One of the following: CTGPL and CTGFLs for 

catalog locate request, or catalog work area for 
locate request. 

662 OS/VS2 Access Method Services Logic 



Sample Dump 

The dump displayed in Figure 19 was obtained through the Test option at the 
ZZCA dump point. The P ARM command was specified as follows: 

PARM TEST( FULL( ZZCA,3,1 ) ) 

Various fields within the dump are marked; these fields are discussed more 
fully in this chapter. 

Diagnostic Aids 663 



T'''~: Z3:Zt,:o;q 

10(00011 fUNCTION (O,,"lIlFHt. ",'I';~F'lT (CNI:ITlr~ (((E .~5 C 

INTEII-.InOUl1" Tlla(F: ~aoz II'~~ C"'OI IIIC~ 5acz IIIC~ ~a02 IIIC~ IIICI ~.')l I:IICI POI ~~C2 ClCI'C"CI OlCt CIICI ClCI ~'~2 ['C'I 

lNTPa-MnOULE Tlla(E: II100C 111'l~ IIICI III(F lin')' III~~ <;an IITT,," <;HII 1I1<lC; saCE ['If pfS ~ACl ClP,., OlPr: Cll"; CUll 'l'(' llC~ 


I~Tfll-flInDUlF T~HE: r:IIOI 11103 sao] 1I1C'~ 'i6C2 IIIC~ IIlct PCI rllCI FJCI 5acz nOI C~CI OlC'1 tPOI ClC' 'CI 

IIIITlla-flIOO"lE T'ACE: IIIS~ 11101 1I11)~ 1I'~1 II'III~ caCl lilT'" ~aFP IIlqCl Sfn ~"II~ E.~S 'lHl ClIIG (LIIG Oll I Module thet I-c' 


celled for dump I 
I~TFII-IU'f'UlF TQAC": C~CI ~"Ol 'lalJ? ClOI t"OI !:l1J1 (II" I ClC I 5acz (11(' I 'lao (IICI !a(2 Olet (Pet (lCI CPCI [lCI ¥, Cf(,1 
I~TI:tA-flInOUlF Tlla(F: <;a~p III'~q SA OF ["IIF E1F'l sa(l ~aca 11ca 7lCA !:'lVl OlPC ~l8C Ol(T ClV'l 'leca llea,-----...,tI 
'~TEII-"nCUlF "lIac1": 'i61J2 ClOI 1)1'101 OlCI OIiCI CLt'~1 5aC2 CIlICI ~A(2 CIICI 'la(2 OlOI [IICI [lC'1 CPOI ClC'1 Sf(,Z ["CI S'CZ CIlt:'1 
lII,iTlla-flI01')UlF TllaCE: IIIC;<I <;al;F. E'I~ nFC ~a(l nile r:LPC CllC !:lVl Cfef ZHa 7lCA (LVl I)lllr: Clee r.lCT ClV~ 5'(' llCl PCf 

1000011 'lisa" caTAtC!; IIfTUIlII,i-UCF 15 ".:t 
I 0(1" Cjo; I I •• E~HIV "'~C·1.(tO(lIOt,1 NCT r.HEH( 

Dump point et 
which dump 

we. produced 

i"'IJ(' I ~ IoC II 
f "ccceC;1I 
CC;H~f(' 

'" rr2C ?t,OC,. I'IC(l12Zt,II 
·tt CC~Io~ 1'1;11 

'C., 
'12 

fCCCCl')tr 
oe 2t,f"'lP 
4020')('0 

4"Zr 21 a~ 
coerupc 
('02U leC 

,.. I')C?C7CIIiI 

" rce 12 ;C4P 
·tl 1'J(2t,f I1C' 

0( 

"'12 

(ocooro" 
C1?t,fCj'l'fl 
1002(1 it, Ie 

t,O?('n~E 

C'::C'l(fP( 
eCZIoF ?r(' 

,.. f'l(l2 ~r tot,':., 
.,CtIZ21011 

'11 (lC241;(lP 

PO 

"R I;: 

COC':'COCr. 
OOZU".:lll 
Io':1ZC 2~ et, 

1~ 2 ~(~ I P 
C(,;10 1P ~ P 
Ct:?1oF Z(C 

'" ('~]C2pn " OC?t,et,ac 
'11 OC'?Io')'fI>O 

·c., 
IIIl 

COCt::ror~ 
C021o f ".:lP 
10(':1 ~(t,"'" 

Icca "c .0< 

" Zt,C ';11 ~ 

SI 71oC20~ 

GC"COCf( 

FNTEII EI; VI' 

Wr:1 EZCl~Cf2 
·t ('e't,Cfor., CCNeCfC 

wCI {'CCCOOOO 
'1 occecocc 

OC"'rflCOI'J 

0C'2"';tor P 

CHl 

"" DC 2t,E"CO., 0(' ?t,"! ~ C a .. OCZC~4CII 

"" 0f'l2t,(,o;p,,"., OCOCONC.. O('CCI)Crr 

IIC C'C Zt,f 2(C 

l ~ a ('CHOZOC 

" r.~7~[1(('.' ftC;1.f ;rc 

t" ')CCCOCC" 
C(Ccrccc.' ':'CC('''ccr 

t1'J2(' ~2fC 
cr ilolPc P 

II Ie 11)2': ,P:II 

.,' fCZ~rpH 
CI) jlt, 111 ~ II 

OI( COU2CC 

rr:ccccrc 

" I"cceccc(' 
R I ( e,:,crccce 

EPa OC2'?f'I'cr 
II'" (,C?IoPIo80 
1111 COt,fPCC 

,.. 002CHl(.. C'r'4~44C 
'II OC21oC "'P" 

,.. OCCCCC('''' 
('CCC(,COC 

'11 O('''C(lCOC 

lie 
III; 

."" II 1 i 

'C.. 
'11 

~g~~~~;~ Regi.t.raof Modu" th.t c.'ted 
CC;C~II~')' ,L.____f;.;Of;;....;;d,;:;um=p___-' 

O')C')~C('= 

CO?IoC:~H 

tOl~CH" 

CCCeeCe r 
CCC~CC'CC 
cocceccc 

'"'ia "r 2t,~~IIP 
II? I')('ICOOCCC 

CCCOO"'C~ 

l ~a f:Cccro,:c 
ccrccccc 
CCCCCCCC 

C':'CCCC'C'" 
III, r;I'CCCCCC 
c: I C ceCCCC'ce 

~ c: f 1"'0t:0l'COO 
II'" (' COCC cro 
1111 ococeecc 

II':' 
II" 
QI; 

coeo')oC'o 
COCO,){,C'" 
COCC~CCC 

sa 

raTa 

ZIo(,o;II"I 

SFT C 

Wi"; I c:?rt~O~2 

111 C("40f('lC 
CCCCCet r 

H<'&' ('r?t,fllre 
II? OC?Io~"C'" 

QII ~C2C~lor" 

l <a ')(:ZI,OiCC 
('''?~C1rc 

oe CCZH,CC 

IIET IC2~CIII~ 

~I, ,.,,,;t,lllca 
FtC (r2H7eC 

E~l OC'OPC 
0'" (lC'101l1,4C 
'II CC2t,C'~IIII 

:;jC 
Ot 
0';; 

=(lCI)C('C': 
C02t,~clII 

to,~C1rr 

Figure 19 (Part 1 of 4). Sample Dump 

"" OCOI)OOO(, t" ,,':~u pc.' t:'I"2fllrH! .. 
" C(?lon ac 'IC 

" In ~ IC I ')' ~ .C ~ I 

Icca",c. 

(l0?t, ~r a( 

Addr••• of perem.t.r Ii.t; 
.econd word in Ii.t contein. 

eddr••• of FDT 
n, 

Add,..•• of peremeter li.t; 
.econd word in li.t point. to 
word cont~i~:;'~leddre•• of 

I-<ca IJC?t,lPPI'J 
II ~ C(lCC'ftCCC 

l<a COt,C~PP 
II~ C':C'CCCCC 

, 
IC 

" 
lC 

lip 
lit, 

2toO?('I'" WOl CCcr.('o~c 
II I "O"lCOOOO 
III ccecoccc 

664 OS/VS2 Access Method Services Logic 



4114!!4!!4"! 4P4P4"4(1 4P4111411411 4P4P4,411 •••••••••••••••••••••••••••••••••• 
2lo1HO lo"lo"loA4i11 loPlo"4J1141i1 ''''4''4114'' 4C4D4E4~ ................................lo1illo"lo"4 P 404"41\401' 4114"4"4P "iCIo!'Io!'4" 
,}lo111o(I 41'41'4"40" 41'41'40"')1' ')C~!)o;Eo;~ 60n4114p 'I'4P41:'41:' 4P"'Plop~p tC~Cf:f6F loploPIoploP .................................• 
'}lo 136'" loP4P4!!4p 4t1I1.PH.1" 1C 1C1E1~ 4A4114'!4P l,P4114E'411 4P'P""4P 40,114"4"4" .................................. 
~lo1' IiIC 4P4"4"!4" 4P4 P4!';loA 41!4"41148 4A41141'\4P 4E"1:'4P4111 4!!",,,4! .. ,, "P4p,,1>lo'" .................................. 
7lo 1 'ao 4P4Ploplop ""loP"1'loP 4P4P"1I41' 4"CH2C' (lo(')(f(1 CI:'C.:;"""P ""4"4""" ""q(n~ •••••••••••••••p(CeFGl-l ••••••• Jil. 
24013(0 [4D~DbD1 [1Io[QIo"4P lo"4P4f1!"" lo"Io"EU? ~4~<;;efFl EE'E<;'"4P 4"'4Plo1>.lo" ~0~1~2~l • "''''f Fe 11 ........ STUywlIY 1 ••••••012:0' 
2lonEe ~4~eC6~1 ~1!~Q4Plo" 41'4,,4""P CIC'I'IO,)OC 4p4"IoP41' 41'41'140"4" ""41'\'''41' 4!.'4"""4" ·4'561p ~ ••••••••••••••••••••••••••• 
2lo1lortO 4AloP4""4P 4f';lo1llo1!lo8 4111,-484PIo" 41l4!l'"'''' .................................•41!41>4"41> 41>41'\41'\4,,! 4P4P"Plo" ""Io~"PIoI' 

240 1402(1 4P41'41'41' 41'41>41'4" 4FIo"IoP41' 101'4"411141' "'/)4"411,,, 4P4"4"4" "Al,"a(4Q. "r4"'EIoF ................................. 
7401404(1 '5(1401'411140111 48101l!''!)''i1! ':(\t:14P4P 4"4P""~P .................................•
41>""""4" 'i(')I)'i~4P 4PIo",,"4(1 ~rlol'''P6F 

24014060 loP4f41'lo" 4'\4"4"4" 4A4p1a,," 1( lf~""'~ 4"fHcE~ ~"F~pt:n ~"j:I':;41"P 41:'''P''''4P .................................. 
7lo1lo8{' 4"QI<l2Q' Q4<;o;Q6'P G8<1<;4111o" 4A4A4A4" 4"4"a2a~ a4"cat:al a~a<:4"'A .................................. 
241"1.(, 101l41'4114'' 41'4"411411 4!!4'!1o""P loP4P4""C 4P(1C2(~ (4(~ur1 (P(<;lo"4 11 "P""'~4[' •••••••••••••••••• a!CCEFGI-' ••••••" 
71014fO "f\rl~2rl (loC,)CbD7 0111"<;101110" 41'4114""10" '1IIIoIllEH~ E4E<E~f1 f"E<;4P"" ""4"""'10" • • JI( l""C ~c: II •••••••• STUYW I" 1 •••••• ' 
241,,£:C ~ocI~2'" P,~'iF"~7 q~~C;Io,!Io11 4"4"4"4" C1CCCOC'e 4['41'4"4[' ':'''1011,,114'' "P41'4P"P .( 12'10,,:,,1"C •••••••••••••••••••••• _ 
241'i0C' 4"411,,1',41' 10"4"41\41>. 41>,4"""10" 4"'41l41:'4" 4ploelop41'1 IoP4PloP4P .................................•41'10114Alo8 41:'10",,"41' 
241"i2C "1'4"4"4P 401'41'10""" "II4PIo"4" 10"4"4"10" '1'4"""1011 4('4Alo,,':''' tPlo" 41'"" 4P4plo!4!' ................................ 
2101",,,t: "C"!')loE4~ ')0loPlof'llo" 1o!"""41'4"" lo'!Iol''ia')p 'i('iC'iFo;F t:0t:14"'P 4F.4!'4"lo" lo['4 P4P68 •................................• 
24,«'6" 6C6C6Ff:J 4114P4P4fi! 41111o,,4A41' 4P4"141" 'iC1CHH 4pelP2e~ f4f~PHl PPI!C;4PBP •................................• 
24'~It" flC8C8EAF 4"cqq?Cn q4G";Q",Q1 QII~Q"IIQP a(,"UiA~ "4,,-Cu·al •................................•
C;(cr<;fe;~ afll:AQ4p,,~ 

241«"~ '('[AE411 POIIH2'" "4"~"t:Pl "1I"Q""!.'f ~(pr"fp~ 4PC1C2C:O (4C'(6(1 rlil(Cj4PitI! •••••••••••••••••••••• '(lCCEFG'-' •• • 
241'iCC' 4P4P4"4'" 411[102C~ 1')4"':"It:rl O"CC;4 Q 4" l,"lop4"lo" IoP4.~2F~ E4E'5f':Fl EPEC;41114. • ••••• JI( lllf4CPQII •••••••• STUYw IY 1 ••• 
241o;£C' 41114P4"4P FOFIF2Fl c4co;c6Fl FIIIF~lop"I> ':'PIoP4""'P (IOCCOC(' 'P"A"P4. 4!!4!!'4!:'4!:' ••••• (' 1 ?'4')f: 11'e; ••••••••••••••••••• 
241600 41111011411411 4"4P4!!!1o" 10"41'101',""1 4"401',1011./," IoA"A"'P4p' "'''41'4P",P 1o"4A.4i11!4111 4P4!!4!:'4'! .................................. 
241"2" 101141'4"4" IoP41'4P"" l,P4"lo"4" t(,'.411-411 4B4e4!"'e4P,,1I411411 ,,1'1401'110"10" •...............................• 

210164C 101!4''10114'' 41141)4EIoIII 0:;(110 "40 I! 40 A 4"4"4P~" C(":C4Plo1l ~~t14!4. 4P4B484P •................................. 

241f.6r IoP411-41J6P 4PIo"""4" 41'10"1011110" ~"'II'p~p 4p,1I4P4. 4P4P4P4" •................................•
101'1o''IoIllIo!'' I,p7C7F4P 
741"IlC 10114114111411 4"10"108"" •................................•411141114""" ""101'110"101> 'P ,II ",II 4f'l '''loP4P4B 4114B4A4~ "~10114"4P 

2416'C 41141'41114!! 4fi!loe4R4p 4P4P4P4 P "1110"40"4" 4""'''4PIo'' 4of4p4e4f 4PClf2" (4(~(tC7 •••••••••••••••••••••••••• tp(C Ff(. 
2416r:0 CIII(Q4114p 41!4!!!4P4111 4I11rln2"'~ (10("'1':0',('1 ~"CCI,"411; '1'1oP4"4111 4.4A~2E3 CIoC~EjlC:l ... 1 ••••••• Jl<l"",rpcO •••••••• <;TUYWI. 
241"£0 FPEc41114P 4"4f!4P4P FCc!C7~~ ~4f"iF6Cl fll~a4111o" "'4t14"4111 CICCCOCC 4"4P-4P4. .Y1 •••••• CI2~4'5 ... 1PC ••••••••••••••• 
241100 41114P4A4P 4Ploplo.48 4R"plo<\"P "plo<\4111"Fj 101',,,,1'14""'1' 'Ptoll4114P 4P4'.484' 4!4114P4e •................................. 
24112C 411110"41'4111 4P4AIo""" "'''411",,,,,, "4.411"" t.4.4A411 "C4e4e4"! •...............................•
4A4P4"4. ,,11411<1,"4" 
741741" 4J114!464. 4111"1114114" 4('4(4~,,1I 0,(141'1101'4" Io"H4(1.1,!! .I,(lIoP4P":P er":C411lop 6Ch14!!108 •................................• 
1477bC 4111o"4!4(1 4.4P.411~" f;flo"lo"!4" 4 11 4 11 411,41' ,,,,III,,,,,,, 1,"1o"4P1P 1(lC1E4! 41141114P411 -................................• 
2411(1(' 4"4"4"4" "'''''''''''''''' 'lu,e4~4~ 484P411lop •................................'I,P4e4!.I,p 

4P'P4PIoil ,ptoP4,4P 4PIo(l4P". ",.C ICH? •••••••••••••••••••••••••••••• &1'1(. 
"_""10.4. .. 1114011",1111011 

241'7",= I 1114 "41' 
11017((, IDCDL01'_ .ut~m.tic _tor.g. Ir?C~ r:4e e e"'Cl ~PC~"'''''''' 1o""Pf2E~ '(E~C"'I ••••••• JllllIlII£'pCO •••••••• S T. 
2417EO .r•• ; a.v••r••._.t beginning 1~;lC' tlo~e~"'~l JPfQ"p"P "lle~C'1 .U\l1o JV 1 •••••• C I 2"4'5" lPC; ••••••••••• 

241"'60 COCOC4'5e q"'~fU 1 .... (LO I' 
210 lA,," CYc~2 OO;l"C(H "''';>4FI'(/) 7/);>'(CJ" J:l(l:<(l2 11 2t" eCOC('f"C (r::~41P( ((CeOerC • ~ 41'] 7 •••••••••••••••••••••••••••• ' 

;II, l Aat' OOC-COO"/) 0'1247<><;1> 0(t;>4Alot" 0/)2loC<;11ll OOO("I)OH 0024 ~ ~ 1"" oo"n ac 00210F 2r 0 ' .••••••••••••• "i ••••••• 1 •.•••.. 2.' 
74111f" OC1':'1",,( Ior;:lC"~r I')C24F2iO C(,24"41~ ~C,"'(~~2 cer"c~lI( e('(In'p ocoeccc~ •...•• r ... 2 ••••••••••••••••••••• • 
24711oE(" {'('?Cl~02 1lO2/)P"" (!C24~~HO CI'I747110"(') '024"'~r", Ct:'2Hfr;' eCZ,,~?rO O(ZCI~GZ ••••••••••• 2 ............ l •• ? •••• • 

?41QOC' "G2C21 H PC2"2 a .. OO"C'JC(lC COCt:O')t;C ct:!eC'c"rc C(,orocc( (OC('lCCC':' rroccc.,e .................................. 
210 1Q20 OOO(O{'''~ eOeOQf)fI(I "02 ~('iP4 ccceeaee ececccee C(;:,1&« (rCOe((( OC"'COCOC • •••••••••• f ••••••••••••••••••••• • 
741Q,,( 0(,;>"7"0;,, OC?Io"'lo&'I "";>Io C<;1A coe"c/),:( 01);l4~"C' "Ci4F~40 CC;4711"4 "C2""~IIC • •••••••••• e •••••• ~ , •••••••••••••• 

241 0 61" 1002~(4o;r 0('2101&~r. I'JC;l4111, e lo C""CCOOO COCI"OI'lCG oeccccoc ~r Z lC 'ir" C(""('(leec • ." ••••••••••••••••••••••• C( ••••• 

210 l<!l PO floocoe"(l 0"2101 a<;;1J (1((\0001:'0 O('(""OOOC Co');;41"ce Cc;4"':'!C C({4"Q" C(I')00C6C ............................ 'i •••••• 
7,,1a&(, (lC24n7C C014fc~" ':\0210111,'i'' 0/);>411111110 4C;;~C4~r O:C2"7"<,, (OZ41ur r:.0?101'''i'' •.. ~ .. . . . . . . .. ... .r ............. • 
241Q(0 ('('ect:'':('c cccoerlJO OOCC'I)O(',O ~f';>"("'F; e"CCCCC( CCeCO(Ce cr 74 Hec NooreOC ••••••••••••••• f 2 ••••••••••••••••• 
2101aE'' rco('.,ooO or7411'\<;<\ 00;>4"440 ('I1J?4 C<;1" ':(,,1'(0("'( e('?"·'?C ((i"nAO CC?"7P<,,, ••••••••••••••• c ••••••• l ••••••••• • 
7414C(" CC?':'ll'l'e .:.cnr"u CCf"t::C'O(,1J "'";:Io"~(( ':Cz",fn(, cercoeoc CC{.:.1IIZ" ('((l(CCC( •.•••• r: •••••••••••••••••••••••••• 

~ 4C f ('( 4? 
7411 2C' -0;>(;>"111,4 e .... coe,.."r 0(1(11" 7"" "(\("0"1) 1 CC;CI~C? p .. eC24~2(:;) ("C?41PpO ........................... ? ••••• 
247104(' 41:'2' ?~"4 ce((~")cr ':0;1o~ ?(O 0:(,'10 ac.c, e('c"("ocl'I ('O(lCOC(lO • ....... L •••••••••• 2 •••• I.J ........ • 
7 4 146C I"C(H ('OC'c Or'lC"OC'CC cccC'ecce '"ecCCeO( (C('::044 '1o(?~CFI •••••••••••••••••.••••••••••• r""I· 
;>'11. F(' 0(1(11 (rr"c')cc COet::Or(,C cc(oc~rc (,C"~(,CCC •................................."~lC ":'''CCO:'"CC 
241',1\ <'Ol'l( ')01'0 r'1C"'OI)OC ('crcccC( cc",ce(CC C')(CeC'N': ('OCOOO(lO •................................. 
?Io 14tC ('IOC"C',=OO C. C f'\024~2fC "r:;(';~"D r:C?lo1"Ce rq'F,rc H;::u"CI' crCC':CCC ••••••••••• ? ......... ? ......... . 
241HO I'IC·{'('~O.,O cn2 .,.,'" 1II02"'(A4~ c,"rleoCf: ~ccC~Io(' orl(lr1 4('r.<I(C;Fl .................... 11 ,~~ < afl 11,1" 

2'" lA.O(l r44(,E2rl (hr14"rc: "QFC:~"loC ~"I"f< CTGPl . f4 t:CHl Uf]4Cf7 q"'''I?IoC ... t,uc OicC ~!C~ f.l~ f'~~ ~'(t ' 
241 11 '}'" c",c'r ;>el ,,1](4C~(' ,"14")'41'" rpc'Io')'" ~ ;1" I( ~, I "C f e; fC (J r I"C ~ lI;F C; 'n"r: r:L"r, I"ILLr rLlll <lfa 17(' 11" 
241R4~ C~(14~(4 C'F'!C14C r.4r~!:J1(~ Iot;("rl(~ , ( (~(CCCCC ClCeCCe" (,C1rOICC ."a (l"'l rtllr rL"r .. c ........... .. 
1101111,,(, (l0'1i"1~'" 00000('1"" (lo"c~('r I 1'J1'I'107''ar 'I"?( ICO OC';:>I0""'F rcc"cccc C'C24111"1I 
?41111 PC lIlCC" 'oc (CCCcerr Or?-4"'4!'" 00~"1II';1I ((((eCCe coccC'cer ccrcccce "c C ... '" .............................• 
;:>101A'~ C'OOr:OOOO Hl"l)(ac a (lOIIAI'I('r., CI')CO"/)CC ceccrcrc CCC(OCC( e«( , •.. 0 "1 ••••••.•••••••••••••••••• 
?" '''( C CCC(eeoC' ('(\((\o(\rc 1)0" ,. ('1)t:t:'~')0'" '=OCOCCCC ~ccrr(e( er( 

L ,~~~ ?47"Er-241' 
2" -,r ?C o(l('leoo')c co(oe r.:ec "CI)CC"CC: ~C~14er< EH ................... 1(1 ~ICI "pCI' 
2"1r 40 '<0 
2" 1{,.,r: ~~~~:i~~ ~~~:~::; .'":-7:-:-==:-:-:--~.I~ ~ l! ,:t:, ~:r: ,;: I~ I~! 4: I~ ~O!,:: 
?'" lr ~C =-===-=~ 'c' loC(<;'<;~c ~e;4«;r\ r"«4(C' .. ~ ~,rt III'" <&~P RlcC <aCf ~'1~ • 
2101,,(1 r'l.lf.,r'" "C'OO(lccr (('(I'OCC":' ·f.~< ........... ~Jr ............. . 
210 1r (C .................
.. " .. "" """ 4 I> 10" 10 I> ~" 
;:>" 7'" EC 10 AI, "'10 111,10 II 4'1,,1>. .. 114" "plo_"III"~ 4"""101110" 1o""'''4PloP. LA loP 4P.40\ 4114 II" 1''' II ................................... 

7107!,)/)f' 10 PIo~1o Filo '" 411" PloP 4" 4 1'1, "10 """ "'('411101'11011 "P4111. p .. p 'P 4P"P4P "(':'(" f" f 

241"120 '50101'101'\4" 4"""4~"i" o:rer'l'i~c~ fC~Jlo"4" (p'lIlo"t~ to("'["E"'~ 


;:>47r.",O "''''''''4!,;4'' 1o"1."4P,," "p,,1>1,'711 l"rH7~ 


240 71'),.,C 4""S4""A .. 1II41!411loA ':'~""1o"411 4"4""F~~ ................................... 

710 lOll" ""4"4""" 4114"10""" 4"4P4"411 41110"101'.,,, ,1'1 ( I r i(:O ('C < C ~r 7 r ~(<: loP "I> ................... t p f (f F (' ~ 1••••••• 

7107"'0 IoADIf)2"P f14r.<'r~~1 I')III)Q41141'1 4A4elo~"p IoP411~2~~ flof<~"'''l fPfc:,,1>101' loA""~P4" •• JI( t""''lDQ1:1 •••••••• < TIC ...... V 1 ...... .. 

741nr(\ cccI~2~~ FIoF"i't~1 '1'1'<;4"'41' "" .. " .. 111.1,11 "r: I ? ~Ior:;" ll1e; •••••• 


'41F "C t;~cooc('o ~CCCOCCC .. ccceo::cc CC24HC;1I 
21o'F.0 f!'t"'404"i0 '0""0(10') OOOO(,O('IJ C"2ar r <;c QCC'''0C(' r:1\/)r(',=cc COC"OC"" ;>a";"'CCO@ ................................... 

141C(~ COC'~OC()r. OOCI]COCIJ Ot:'OO"OflJ ('''4(''MC ... r?Io"r~1' ~;e(Cc('(' eC;>C~"illo ccccrccc .................................. 

241~FO C'111(Cl r C~CCCOC(' coocoocr OOr"IJ")C: rC(7(HC ~l~c:rlCP r('CCe(ce (e;>(-4"'C , •••••••••••••••• J (r: ( I C.~ ......... 

241CO~ OOO"OCOtj ,,!02Qr.~.,C (\C2Q"C c " OCCI:CO(I ~('~41~"" e(24n411 CCllPfU 0(,;>101F<l0 ......."' ......................... . 

247~;>0 0073.C7& OI)71IlCIIIA "020<:4(11 00?404~r C{l;: .. ~r7p CCeCele( ,c;>crCt" IoC2~III(,C2 •••••••••••• 1- •••••••••••••••••••• 


?107QC I)co':o')r.e IF('occeo (lOIJt;I')I4r COCOO"'CC 100eceC'co r::coeoc",C C(C(I(lnC" C('T~"F1C .................................. 

241F~0 00;>41£64 00C12n6111 oon"n~ ('Jccrroee ;:OCC2((C ce('"ocC( crC,:,(ell1 <:'r(lC"~"a 


247~ 101)1'1 001t:~l('1 COC"OOCC (,O"'1<4~ ~C,"'"F"C C(COCCCC (,c,ce4"~ •............................... '" 

241~ I('e(' "C'CClJorC cecrr:"'t:c (~cr::ce(C eCCi'OCt'C Cccrcerc CC(l"~(('( .................................. 

'}101c 100(' "I('I)IJOO-''' (''1t: r e!')CC (COCCreO rccc<'c('C (f"COC'CCC CC74 l fU .................................. 
?101c E(I C C 10(,OCI"(,r O"('COC(" 10C(lOCC'(' lIoCCOCC(' ':('(COC"''' CCCCC~CP IoC4C",Io, 
21ollCI)0 1)01CFlCQ nq1!(erQ 6C''l4rH'' ~4'">r~4C ~'rcrl(' "l'IoCC" (7~Oq,,0 r':~l'C"1 ' • • 01" T' II • "{" (I.; l" 1 0 t ( f. (PC I ~ _(' 1 • 
2",.('1;>0 4C~?rl'O F;>40(4t" ~OF1"O(4 f)H)q",( r,(HC'! 4C('o";:C( "141'0"41'" cC'I"Cf? , q,., etC I ("t:'1 ftCI CPr:! rl(ll ~. 

7""'(,4C (1~(C?lo1) (,,(?C~'l 4':'~2rlco c?",f'C'C;> cCql.Cf2 rl~r~{4( C4(H:'"~1 "e,."r;,c .. a"'? r"Cl q(? r"Cl <'e2 rl'l ("C" 
;:>"!lOM' ~14('r4r~ FO~l"('(" ({~ccI"O ( .. r~'ljcl .:.(,e?rl'( ~l"Cr.:.r2 ~C~14eC(' 1C4cr<:rc '1 flel C"OI (lOI ~I,)l r"(,1 .. I"· 
Z4K1I1C ~31"<:rl"C DIo(fCIo~" "1r':4(\C' rC:(lr,C'" 1 alo(" f ;: (I (t r 14~" C (C <"" c: 40 ,,;:r 1r lor ~ 'Hla."rCl:l~ lDF~. ~,~~ "ICC. ~!rf' 

2""01.0 "0,.CC1C\ ('6"I')C<,C1 r6~2"('F' rF'C'''t:' r"""c;:r7 .:.('r~"H2 (7~,"r~r-' r'r'4cr" • F ~ I ~ c ... < < 4f l (L A ( r L" ( r: II r C. 
24110(0 C:!EcrV-C E{(IC~(I loC"f~~o;(~ '14C~C:FC: r~rlIoCf'" C~'<C'''C c~r>r')(~ .. cc~[>r? "l ~l < a r a 1H e 11r, CL ... L [lllr CL~" 

2101l''~O (,!1o('r:4r\~ (U1"0'" r:'II<O;c,,,~ <"I~~Cl lor'<l~C:r' rl";;(lOCC ccco('ecc (CC(,f'C")C .f "'tf 1 :l \1< < 6" 6 1 1r 4 .......... . 
710-1(10 OCC':'CCOt eC"ccc"t:'e ~(' ... OC'OC( r:"r:cc'"r;e rr:UCC(e Ccccccr.r C('C"CCCC "('ococee 

lll\j~O:: 24'!12"·?4~7EO ~, .. ~ a~ ~"r\l< 

;:>1o.ItO/) oe"cc~(,c C('C~COOI) 41.r~<:'I"" 10'<:("" ~Ht'C<'" "C"Clor~7 ~'Io"FeC~ ""t'CI<!lc,r .......... ce .. 1"( < 6(' '-'.(' c •••• 

;>4"2(" ~OC'rO~(C 'jIilOO(IH o:;q~IOOI"O ",A~·e'JH C7'lr:~!<C rClr')<I' CC2lo"a~~ 0('21o-UC ••••••• a .. I ...................... . 

210 "III IoC 11I~I~Ct'JC I')CI4"0"e ...... r"I"r c r'e'~"~' ~C''''IoC;I' "r~IIIC(,C •................ " ................ . 
"C(4o;"'CI ~~C:('''CIo'' 

Figure 19 (Part 2 of 4). Sample Dump 

Diagnostic Aids 665 

http:l"Cr.:.r2
http:4Ploplo.48
http:4"'4Plo1>.lo


FA(f Celol!' 
24ueo 4110ACQF OjAFlIlA"'lC( OOjC2ACCFl AOEC411C Acpce;"e4 PCO"Io11C A(81)41Ft'I "OlCC;PlIO ••••••••• !trI •••••••••••••••••• C••••• 
24"fIIOO P04i11'ieFO 8t)QlIOj1!C" 80QCOHE 4H('"r:QF 41FeCC21o ~PIiIOACloe ~8EOFC<;e "er)C8ee;C • ••••••••••••• C••• C•••••"•••••••••• 
241oA:?C 01FF41AO P6r4OjOPC InCC0111l eHlolll,C4 C2C280CA AC(r.~l'FC FC4(e;O;Cl ~C['I04110 •••••• C•••• I' •• C.CIl •••••• C••••C ••• • 
24"1140 "CCH201 e':'OFl4HO ACCF'iP80 ll'llcce;2C2 focp~eec e?eCI211!l' 1011ca[FF ':eIilOfl!CC • .G ••••• C•••••••••••••••••••••••• • 
24"860 o;I!'FO"t:?!! t;OFOIllCOO 1':'201AO('C "01f114HO ar::O?"pec 8'!'cc~elC l'!'lI fl CC2C3 PCOOIC14 ·.O ••• C•• • •••••• O•••••••••• I( ••••• • 
241oA(lC 02CIPMC Al')C;C!4'5E" AI';21)418C AHc':oec nCC4'HC H2CC118 EIof[P4eC 'iPI!('P!CC .1( ••••••••••••••••••••• 11' •••••••••• 
2UllAO 02(\28008 ArcoqAEC AOEC01F", 4HCAl')'il') <;rECP1Fr ~l'eCfIIC4F ~ceef!3)iII 41FNDIICl .I( •••••••••••• C••••••••••••••• C••• 
24 ..ecc o;(lF"r:"A'lI"'lC 41Foe)cc ')OFI']A~4C Qzq0e140 "I!FCiIIO?O Io11CII??F C~EFo;HC 112FCC'1~E •• C••• C••• C•••••C••••••••••••••• 
24ABEO ')111001)004 1'111'14111 Ont~OOAeA C;PECnooC CC("20rC4 "('1060008 •.................................')'IOOAOCI) 01FEOCCI 

24ACOO ClCcc;oecp 01)110012 eCIFOOi2 CC1~eCH ((i CCC2 f1 CC2COC2C
eCOCOOI0 OOICO"lE •................................. 
24AC20 00~ICC"!2 00"!4021') 02('011.0('0 2(:1('10813- FF~FFFFII FFFFFFF,& FFFFFFFC ~eOO'lCOC ••••••••• I( •••••••••• e•••••••••••• • 
24AC40 (,CCCOC6C ('I;IOOOOACI OOOCOl"O 00001FFe COaCe111 (21;711:24 cccoccec Oeo;C[IoCIo •••••••••••••••• 8 •••• 1( ••••••••• CC. 
74AC60 CClCHOE4 !5'iFOC9C-' rJE2rQr.,., F1I:6CQOt: F2FCCo;r.6 £!FICO;Of PF2C~06 E2Fl[e;~~ • ICOllvCt CCS trlC IOC tOI tCT2tCSI tC. 
24A((I(I FIC"!CC:I)t: E?F2CQ06 CIc!ce;o~ CHICQC~ CH2CC;C6 CH!CQC~ C<;C1~eCC CC{'lCCCCC .IC tCS2 tOr. tC(:.1 I(GHCG?t("Qp ...... • 
24ACAO OOONQO OQ063(\6f'J rQ06(10C'0 Cq06FOF2 CCOCCCr.C ecccocce coecaccl) ocoeoooo • •• lEIIC •• tC •• tCC2 •••••••••••••••• • 
24Acr:e OC('COCOC ('oeoooc(' OOOMec" (looooooe occcoceo CCCCOCOC cccoeccc ccoeoeoc .................................• 

l tN~S 24ACI:(\-24AE20 SA"E A5 AerYE 
24AF4(' 0'i24a8104 e;l24aHC E2EPE2Cq [l'iloC40loC E2EeE2C7 co;r.e;c~~? CI(!C!U, C~0"04C2 •••••••• CSYSlh" cv5J:IIHrilAllFClu·E. 
24A~6C1 030'if)7F2 E-F20"'lCQ f)'i404CIoO 4')404"40 40404C£2 EPf20'll04 UCIo40E2 ~I!E2f'l?CCl .lNI(SYSl t'll 5vH~CC ~vH I. 
2UFe" C21004CF2 EIIE2CClI';~ 4e4e4CE2 EPE2cnc; C"C~E?E2 HE2C1E4 (-:;OCef'2 El"E1E4F'! .11 ~Y~t~ 5YSPQt~'T~Y~Pl!~C~~y~ll. 
21oAE'AC F14C4"E2 EI!E2E4f) F2404"F2 E'AF2E4f) F?4I'jlo(,CC Ccococce ccreccco ~COCCCCO .1 5YSUT;I 5v5l!13 •••••••••••••• 
24AECC ceococllc COCCCCCC COMOO(\1 OM040CC eCOCOOCI OCOOOOOI CI'!COOCCO ~C404C4C ••••••••••••••••••••••••••••C • 
21oAHO 404C404C 02(C'4800 OOOOOOCI O('COC"OI oooooecc ':COCCCOC CCCOOOOI OOOOOCOI ............................. 
21oAF OC oeOCOCOI ocooooei oOOOOeCI OOOCOC",C COCOCCCI CCOClICOC •.................................
coccooon O('COOOOO 

21oA F 20 1;I0"c('eOI C(lCOOO('l OMO(lO(f''1 ~0404040 CCCOOOCO ••••••••••••• r:'
4040404{'1 02004P82 OonC(,OOI ............• 

21oAF40 OOCCOOI){' Ct'!COOOOI OOCOOO('o ooeoooOI oacoooci ccecoooc CCCCCCCI CCOCOCOI •................................• 

21oAF 60 OO['lOCCO I OOCOOOC I COCOOOC I CCCCOCCO •................................•
C(,C"O['lCI OOCOO')O I "COCCCOC OCOOOOCO 
24H-C t'I{'ICOOOOC coeooooo OOOOOOCc I)OCCOOOC COCCC'.:CC CCCCOCOC COC~OOOO CCOCCMC .................................. 

llNES 24AFaO-24HCO sa~F as aflr.\lE 
24AFE'(' CCOCOCOC Cr:CCCOC': OCOOOO('1 OOOOCI)Cl CCOOCCCI occeocol COCCOCCI OCOMOC I .................................• 
24A(\6(\ oooo(loro 1)024"0-0 COCOCC47 E?07FOFI ('SE1FCCA CCCOOOOC. .. .......... TPCIE.t:I ..... . 
2411('1EC OCCCC22e 0400CCn oClecocl oonoooo "OCOCCt:4 CCOCOCI~ CCf4CCCC cc;o,,:~?re; ... I! ......................... t~TF. 
2480AC C 1600406 C4f40)['i 40F)OClC 1 0(51AF6 ']0248068 00248CFI! C"OOOOlo", EJ01FOFI .A.Nr-OUlE TRaCE.~ ....... 8 .... TPCI. 
248('(" (OiEHCeC; Ot'l24P018 OCOOOO('O 04t'1(100P CellleCCI CCI?OecC C;OCOCCf4 CeOC"Cl': .E.C •••••••••••••••••••••••••••••• 
248"Er C0640000 CqO'5 F'lI('5 OQ6/)0406 C4f4030 4CE'!'(ClCI OC~1Hl C('24PC80 {'I024A4ClO ..... I!trITEQ •• rOUlE lUCEd ........ . 
248100 OCOel"C62 E3CHI)FI C'5F1Fon t'I(241!0CC l'COCCC!1 4CC'lCCC2 CCIoOCIoCO OC2"'(lCIE ••••• TFOIE.C •••••••••••• 51 ••••••• 
24P.120 1)0010C2e O"COq("Ir)O (0041)0(,':'1 MHOOOlo COOOC<;(4 OFCFe;F2 F4CQ4040 (4E4"Ioo1 ................... tcCOC!24t CU~'" 

24814('1 4CO~r)tF4 E)Cq(OjC~ Io0CC;0'5f'i OH2COjC4 4C(IE)Io0 7CloCIoC4C lor100CeO CCC(H)C(,C • QfJl1T'f.lE I~YCI(H .T • 
248160 0024PI"" CClrt021l OOHnoro FcrQC4C~ FOFC;F2F4 Co;IoC4C(4 EloC4C71oC r.e;ntE4E! .............CIC(C .. 24t CU"''' QCUT. 
21081PO [qO~C'i40 CQ('5E"i06 02C'':C4100 Clf)401C EQfQC?Cl 1(4ece;oOj rC'OEUI ('lIo?IoCO C .HE I!trIYCI(EO " .llO. t-.:~ ~aCl ,. 
24elAO C9E!I)Io4C E2C1I:6,,7 400e;rC;FCl ~C;IoC'E2CI C4C')4CC'5 E1Fl(HC C')E1C"'E2 Io(:E2Clr3 ~AFP RtC;C: SACE EWlF f)~5 ~ac..IT· 

3rzr14o C4CJr::3C'? loCCloC!E') C!IoCE,CI C I ·l OlM CllIG CllC Cl\ll 5'0 llO • 

e Cf FDTforDELETE I~llca ........................... .
1 entry~1::r';;sword 1~~~~~~~ ~~~~~g~~ IUGPOOL .re. IDCI CI comm.nd I· ................................ . 


inform.tion from comm.nd sa~E as aervF 0' ....? 
2481oCO ']occce':c C~E1FeFC CloCo;(?COj E?C~4CloC ............ E.oCcnETf • 
241142('1 ooY.(' COOOO"O" ~gg~~~~g g~~~~~~g cococeee 0021oA4?Io ccco~orc (lCOCOO('(' ................................. . 
7101l44C oeoeoc('c COCOCO('C occeoo('c OOCOOOOC cccccocr cr:ocococ cccocccc crccococ ................................. . 
7484"0 COCC,..,'OO C'5PFCFO ..... £IOC 

24 111oP(I ••• 11 •••••• • 4' ICC. 
••••• Cl .. {:1 •• ·f.lCl.ClOCIClol;:::~g ~~~~~~~~ ~~~ :~:~:g:~ ~~~~~~~~ 

~ P •••word on DELETE comm.nd; I Entry n.me on DELETE I
I pa••word p••••d to C.t.log I comm.nd; entry n.m. pe••ed 

to C.t.log 


c:~q CC~Io 

21oCAOO ('OOOOt:'l'"1 4e''JIoC4(' FIce;rloC~ (1(4 F 24C IoCE2EPE2 nC":CloCo( E2C'5CQF'i CQ(3C'iE2 ••••• I Icca.~ CY~T'. ~'''vlr~~. 
240J'l20 Io04(,,40101l loCO 10041l4C 4C4040loC 4{'1lo"41)40 Io0loCloC4C 4CIoCIoClo(' IoC'Io04~4C 4C4CIoC4C 
2101:''4(' 404C4C4C 404C4Clo~ 4C4CloCF ~ CQrloC'iH 4CF2PH F2F4HP; FC;'C40100 Io0loe4C4e "I." ;; ~.;;lo. roc 
24086/'1 40FeFo',61 FC'Fo;61F1 Fllo')40lo0 4('1lo('07(1 C7C~IoCloC loCFlIoC40 4{'14e40100 4CloOloCloO • 06.C":.13 P~Cf 1 
240P eo Io0('lCOOOC OC'COQl']C" "I('170C;4f1t:'1 OCCOOOCO 1000eCCCc LC2lol:eC;C CC21o~a('0 acOC('OOC • ••••••••••••••••••••C••••••••• • 
2100filAC CCOCO(O~ ec iC;r:c ~') 'i2(,CCC(,C Cr:('COOCC r:CCCCOCC' ?PloCCC8 CC'CCl']oro CCOOCCOO •................................• 
2401lC(' ('00('(1001) OO?C('I('IO(' 002401 ... 0 Q2~OC"CC "('I20~!11o CCC/,;OC"C C21'i0010 "COO('lCt:!O ........... 11 ..................... . 

24C'1EC ceeeoooo COCOMO('l C90CHC F IFQClCP Ccccccce COilo~ 144 CCCCCCCC OC?C;OE~C ......... I r:Gr I <:AIo- ••••••••••••••••• 
21009t:\0 0r<2<;('('jO ceCO('lOOl 01"240C;4e (I('21of'lQ40 002M'lIe" OC21o(ao(' CC2101l16P OC2101'168 ••••••••••• 51 •• 11 •• C•••••••••••••• 
2100Q20 /'IOC'COCOC CO?4taOO 00?4FUO Ioe20~IIC;C 1, .. ~cac_e COC411~I' CCCCCCCC HCcpeCC •••••••••• • :t • •••••••••••••••••••• 
21of'lC!Io('l ('000" 14C OOC~CO(lC 40('1)00('0 OO('OOOCO ecc('Ioo(lO 1l021o@ltC CC24CPC;( r:'C/'I12C6P 
240Q60 (,021ol'16l! CCC"~OCtr~I"C20ro OOCCC')CC ~(,COCC2F CCCC02t:( Ccceccco OCOCCC('C 

..........................•................................0 ••••• •
' 


24DQPO "046QC;('IC O('COOOOO- ('0'40ClOC "02100J'lIlIll Q(tCOMCO CCCCOOCO CCCCCCCC CCOCOOOC ••••••••••• 11 ••• ( •••••••••••••••••• 

2100Qa(, (,OOCCCOC CCCCCCCC OOOO("CO(' t)CCCOI)OC cccccccc oeo':'ococ CeCCCC(r CCOr:('IC{'IC .................................. 
2100Q(C OC('ICC COOOCCCO CC240PClC CCCCCOCO IC(,CI"IOCO • •••••••••••••••••••••• C •••••••••• 
2100<:FO 1}80rC UGPOOL 10 .nd d.t••et C02 Ce1C' Cc;CHCCl • .................. t ••••••••• IC •• • 
21ooAOC ('IOCCC identifier OOC IoCOO 1l(,?Iof'lqC8 •••••••••••••••••••••••••••••• {:IC· 
?Io042(' flOOCC . 127 4U2 CE'C~C21o; '. " ........... ~ .................. 
240840 COOMOOO 0024~IIAIII OC(,,)OOC I (1(' EO; COMM2E 20 1 cecoceco CCOCO('O I ••••••• 0 •••••••• \1 ................. . 
2100A60 ('t'l24oe;FC CC;r:"'COCI C<:(~C~F2 CC24FP6t CC00002a CCOCOC7e; ••• 51" •••••••• IC •• I C r ~ .••.•.•.•.••• 
240A 1'0 OOOCOMO OOt)('II)IlC'C <::C'COCCCC CCOC('ICOC COCCCCCC CCCC('C('C ................................ 
2100aA(, C'02100aAIo rccecocc occcccec ccccocco ............................... t.·
Ilc~ocooe 00?4 F t1C 
240ac" C~f'l~('IOOI fH"OClOOOO PCteCCC CC210 CIoC .IC•••••••••••••• SC •••••• 
24CAEt' 4C4C404C 40404040 4 r. 101) 401o04040 4CloC4CloO IoC404 cec ....• 
2401100 0('1""0078 40404040 C1r3fl~1 oec~cl)r.r:: COCOCCCO OC21oC 000 PCT I .•...•.•.•••••.•....• 
24 CI'I 2('1 CCocoroo COCOOOOI) 000Qn3f1 r:QCIoOf'll flC~fHC CC21013 cec ' ••••••••••• 11 I CC" S f IC' •••••• ~ ••••• ' 
74 CI'I 4('1 ('I0241'l"Ofil CCCOOOCO 00'4"'C(C' 1)t:'Il"l)nl)1P !';OOCOCCO C'COOOOOC C C C"6I'COOC ' •• 0 ............................. • 
2100MO e(l n~cIo? CCI) I COC I IlC04"C"'lf 00000002 r:ei48CCC CC21oI'CFt CC210 A60 0021oFlof'lC • ••••••••••••••••••••••• t •••••• '.· 
2100"I'C COOC'lOF4 cQol'loco('l (10741:'814 Ql)2401'lCC () CC ceccoc"c CCCo'::CCC2 CCOCOOOC •••• 41 C••••••• ••••••••••• Ir ••••••• 
?IoC8a(' OCCCOCOC crcccccc 00 4 e Cr::2No;o! tl( eC2Co[ a 74 OCCC"C(,C • ••••••••••••••• !' •••••• t ••••••••• • 
240P.C(' ('0('10001)0' Addre•• of Print CCC COCCCCCIl ........•. -........................
OCOO')('< COCIOCOCO 
240RFC CCC'COr:"OO OI':'OOI)C< Buffer CCr: c('(ccrcc ..................................
ccrcoccc 


llNEO:; 241)CCO aprV~ 


240(' ... 0 t'lOCCCCC(I 1l0r::OOOO r:'OCOC21oF CCEHCF 1 CIoClFCFl CC210F PC ••••••••••••••••••••• E'C lele 1 .• 1.' 
007.4(Oar ot:O(,OC(lC COCC('IlCI':' MOOOtl'lC •••••••••• 0 ••••••••••••••••••• '••;:~~:~ g~~~;;:; ~~~~~;;;-~~~~~~:~. ~~~~~~;~ CC'iloE~ac CC21oF2C( CC21oC08 IoC2C2C84 • • " ••• ~ ••••••• "? ••••••• , • • ••• • ••• 
I'02(121CP CCCCOCOC COCCCCCC CC21onOAO • •• 2 ••••••••••••••••••••••••••••• •~:~~~~ ~~~~~~~g ~~~~~~~? ,~~gg~~~~-,,,g~g~~~~ CCCt'OCH CC24FFAO ' .................. ~ .......,.....•re24~'5111 Crz4F310 

240"CC 1l024~2('0 0024008 4C202('184 OOCOCOCC' ('cccooce ccceocer E'C2e211'a ('COO"COO ••• ? •••••••••••••••••••••••••••• 
21000?0 OCCC 1C(l0 OOC(lOOCO CO(,~06E'C !'Joe 12iloP e(,"10~ ~11' CCoeCCfo,C ·.......................... ~ ..... ' 
24004('1 002' Addre.s of FDT JOCO 00240r: 1111 Io0202C.&4 ooocoeo(' OCCOI']CC" cel)C'C'GI)O ' •• 1 ••••••••••••••••••••••••••••• 
2400"'C IIC2" "OC'': Ct"21occac ')OCOCCCC CCCCCCOC COCCCtl'r CCCI7?Io!' ' ... ~ ............................. ' 
71of'JOIli0 (l024F'i1" C .,C O('l'4Fl10 Ot'l21oEFAO COCOOCCCO ,)O"IoC(1P Io<?C2(alo OC24F1CC ' •• "' ••••••• '? ................. ?. 
240f'lAC 0024F7CC CC24114111 fIIC?4f'lP2 COi4('PC CC';IorE~2 I'C24CfP1 CCCOCCCC OCOC'('ICC'C • •• 2 ••••••••••••••••••••••••••••• ' 
2400[(' (,0(,000f'l0 ClOGOC'CCI) t"I)OOI)O(l{'l 0C'(l00')0(' COC('CI']CC ('COCCC!)C CCCCCCCC CCOC('It'('C .................................. 

l If.lf<: ~4of'lFC-"'CE7C sa~E ac apr-vI' 
21ooFIoO 00('100000 C(I(ClQOM 00241141111 ('CC"OI']C( rccocccC CCCCcroe (CFI~IIoC (CCC;~1~2 ........................ ~ 111 II I I;' 
2101')£60 4('0<:r:QFIo FQlo{'l£2Cl (7r,1100nC! "O~I~'4C [OCQFIo~<: loeC<:CC:FC' ClloCC<;(<: ~C~?IoC~C! • Qllol; ~ar;p 1:"112 IlIIo~ 'TCl QIO? Q. 
2401'80 CQF!FOloC CClCQE~Cf'l locnC;('ClFC FI'CCQC<: rloCtlo("C" (C~"?F"IoC [ccC!(,,:r~ ..OF~CIC~ "'5C QICF QICI QlrF IIJ?1 III'" ~a(. 

240Eac n~lol':'cqrC; nCIoloOf2 rlCt!'l1CoC Ce(CF<;F<; loCf2flt:"Io r":4C!'CCC; (IoncIoCJ CC~IIoCOO 'l "P" 5a~c: "IC:C: cen • ICC":lC' 1 .' 
24CcC" rClrf-~('~7 O"'IoE'iIlit') (,0~4n",0 1II0'OloIll0~ 0"20lo"C:., GCOCOOCC CC'?lofE'r:I' CCOOCC(,? .1e'':2 •• v ••••••••••••••••••• ve: ••••• 
2100~~1l C'/'I?4DIICII CCO('l(,OC2 ('I021o('lHC CCI':'''Cl)l10 ('CCOOCH CC24(A11o CC2CoF2f0 loC2CHc;r ••••••••••••••••••••••••••• ? •••• 
?Io0~0(' Ce210rHC CO?t)lol'QI' 002loF2r0 00~Io~66P ~Cllo~tt:( H2IoCf~C CC;;H~I'~ ~C?Io ... rc~ • •••••••••• ? •• t ................, ••••• • 
240~2C ('01)('01'0 COCCCO('I" 1II("4~6ar 0(1"'0"1 4 "021oCI''if ')(OI)O~OC c"cococe OOOC(,C'C'C • .......... t ••••••••••••••••••••• • 
21oCFIoO (\OOe"C'o(' COCOOO'lC' 0000(10('0 "OCOencc cocc('ccc CCCCOCCC (Ccrccco ccococC'r 

Figure 19 (Part 3 of 4). Sample Dump 

666 OS/VS2 Access Method Services Logic 

http:06.C":.13
http:QfJl1T'f.lE


PtGF ncs'? 

24FICO 1"02(OPAP (("C0020A 062£"068 0,)24F140 • •••••••••••••• 1 ••••••••••••••••• 

24FlEO ('024 F?I!! 00C'12('161i1 OOCOt'l('(\C OOOOO"'lC ••• Z•••••••••••••••••••5 ••••••• '! •• 

24F20(' OC24fFAC e(,,24F45C rC24Fl1C ItC2r:241C •••••••4 ••• 1 •••••• 4 •••4 ••• 2 ••• ' •• 

24F220 0001",,18 COOOOOOI t)020"i1~fI: ooooooce ••••••••••••••••••• 3 ••• 1 AIIISC •• I •• 

24F24C 'CI)OC2A 40260(14 0('('0000(' 

24F26(' GDT 'C4410"i oonlCICO t:C2CCOOC 

24F2 EO ~ 02£ .. n1('\ OOO1£F(I:,) OC2EF~C4 


24F2&0 F , C e(l(oaooo 002F.I=F2(' (lOCI Ef}2C 

24F2(('I (1(4P4C (024F1~8 0024F~18 ('iC24PE4 

24-2EO (,024F46C 0024("88 0(1)00000 OClcoonO(l _ •• 4 ••••••••••••• 


24F':a.t:lC 0(2COC2A CC'2C2AF6 00202f!CP 002C2"CE •••••••• t •••••••• 

24F320 n02~'6"6 0"2"36"C I)C202A2n 002t'3"6(' .....................-"'::I"...,~~... 

24F'34C OC2n~12 QO:»0,!1I1E 0020"""4 OC2,),!IPP •... .................. .... ..1.
24F360 (1000"000 cn2(1282C OC24F.F70 OC2C3"tlC ••••••••••••••••• INTEQ C 01 S'C. 
24F3 PO F24(CltO~ _CF I 4('\C It C2FOFI"( rlt03 cl)c 1 -2 ClCI (l1li('1 [l('1 tttCI ClOt !'C2 • 
24F3AO C4C2FOFI "OE,(11=0 FI40Ctl06 FOFI40E" -oe"l TP'rl tC(1 nCI Icn 'PCI re. 
24F3C(' FCF14C~ 1...------....., * nCI 'PCl C'CI SH2111101 1~1. 

24 c ':a.EC' OtiC 1404 * TF2t TP2' le" ICC" ICC" IC~. 

24F4(10 E:!IoCCC;O '---':'"""-:lr-'I:""" *1 1(,1':''' lP(e 1P21 lP2Jii TPCC 1P21 • 

24F420 nr.lF2D'! np2~ TPce TP21 lP2~ HCC 11'21 lP. 

24F104(j F20'!40E? *2N SASN ICCI •••••••• StC2 •••••••• * 

24F460 E'101FOF 1 *1PO 1 •••••• '1 •••••••••••4 •••••••••* 

24F4f10 •................................•
~gg~gg~~ ~mggg~ ~:~Fo.:..>C:....::O;.::s.;;.;;.!=_--i:»4FIoAO •••••••••••••••••• IIISCEll' ••••••••• 
24 F4C(I 0(2""C CCCOc~co 0000 ...,.............................• 

24F4EO oooocooo oocoooo~ ooeo -................................• 

24F50'" ccoccc~c co.COOCOI OCO~ L..';"';""';""';"":""":"....J '------.....I"c~ •••••••••.•••.•••••••• ••••••••• * 

24 Flli 2(1 404~4040 41)4"4040 4(4C404') 404C!O~2" CCCCCC~C ~FHI!CC;F •••• 8 •••••••••••••• 

24Flli4C OCCC~OOC cr~~oooe OCCOOC~O OOOCO.O( 2coccccr cccoccrc ••••••••••••••••••• 4 •••••••••••••• 

24F56('\ OCOtCFtlC O{lCI)OOO(l *•••••••• 

24F"i6C' ~4\H.,!IIP' C(2,r:~or;l! C(CCCell!' F3D1FCt:l • ••••• '5 •••••1PCI. 

24F"iAO nctCC;F",7 0024~10" 00ClOEF70 eJOf)n'fFU 1)0(00001 lFFFOCOC C0211C:·1C OC24F6CP ••• 0 ••••••••••••••••••••••• 5 ••• 6 •• 

2"FI)6(' ocrCOC1( C~r.600(? O(('O('l('('r roC'ec~c(' eoco~ccc (CC(CCCC (CC2eora 0l24-He ••••• IC •••••••••••••••••••••••••• 

24FI)(,0 rO(lC4000 0024P?EA ~"'04I)fl8 QOCOO,)co er~4411CO C(2'C~~'" 122~Ollije CC2fiO.EC ••••••• 'f ••••••••••••••~ •••••••C•• 

24F"iFC C02C4'506 C80QOC'50 CC(,OO":'l£'O O{'l241!'6C:fI (oeceCCI 0(24'16"'1 CO(O('(''11) 4(0('00('1 .... ~...........................• 

21oF600 I')OC'COI'!'OO O"COOOOI 0014Fljct8 C0240C:F( O('COCO-;C CCCtOCC2 rCC6C~F2 OC2411t-411 ••••••••••• '5 ••••(' •••• I( •• I(C5 •••• • 

241=670 OCO(OOI)(,! 0000(1)1)0 1)000')000 "C •• -0 2C ""2U61ft CCOCO("OC (CCOCCCC ecccocl){I •••••••••••••••••• t- •••••••••••••• 

24F640 OOOC("CI)O ("I"COOOOZ 0024Ff;4C OOZ4C:l)a8 COCC~~CC co.eocor crccooro C COOOcOO ••••••••••• ~ ••• '! •••••••••••••••••• 

24F66" 000(10000 (10(1)0(,('10 Ctlnf:Clorl Hr.Cl"1CC eoccr~cc CCCCOCOO E>C<CCCC CC210coe ·~ ••••••• I( •••••••••••••• ~I •••••• • 

241=6 E( 4("4C4~40 4C404(,40 4C4C4040 4040404,= 404(1'040 "04(4040 4C4("C4~ 4C4C4C4C . . 

24 F 6ao 1004C'404C 4C4C404C oer0003!! 404(41)4~ 0('CZCC411 CC24c·cr C(24('161" eC24FtlC ••••••N •••N •• • fo •• 


onoooooc OOCOOOOC rccecccc cceeocoo 

24Fft!:O E2CIFQFl CCOOO('CO t'4"24C:PO 000I~4qll (02024C( FcooaoU' CC24t:'''!I OCOI2C6' .!.a.,l •••••• 1••••••••• C••••• 'f •••••• 

21oF700 00ZEHo«,8 E500CCq~ 000122411 0024FI)lP t;OC('CCtr. eC24F'!'C CC24EcAO OC:»4FHO • ••••y •••••••••• ••••••• '! •••••••t.· 

~1oF12r OC24 F1A" 4('201)00' 0014~130 OOO~COH Clr4E'-C4 C5C'IF,!C~ 4('4e4C4c 404('4C4( ••• 1 •••••• 1 ••••••"!CEllE 

24 F"P 4r 404('404C 40404040 140C{'IOfZ E2 FPE2" (4F.4[4[1 0[0(04(C (CCCCOOO 111"OC(42 • • ••• ~'f!UCt.:",: ••••••••••••• 

24C1o«,n E2Ef1EZOl CClCClCI)f'3 00r008(0 O(lceocot:' uceecllz CIC'f:t(Io E'["[1'"(' cecco.oo .S'f4j,P. INT •••••••••••• a"stu"p ••••• 

'4F?80 reoeoooc 14000044 C:2C:'!C:1CCI C54041]40 cocoecoc COOCI)Cr.'r. (CCCCCce "CZ4F4I@ ••••••••• !"!I'" •••••••••••••• 4 •• 


24F(l.CC OO(lCOOOC OOOOnOr') oeeroccr coccccec •...............................• 

24F1 At! 1)t:'I'JCI')CCC (,C21\21C~ C'!i"F,!~C C(24FFI@ PC24F'1PF CrGroeoc •••••••••• :! ••••••• 1 •••••• 
24F?C,1'J (10200PAS 0"01)0101 000120l- CI C' .... 2c prlbP O"24~·18 C(211C:4lP CC24C:UC CC,4F1CC ••••••••••••••••••• ~ •••4 •••1 ••1.· 
ZH1FC C0211F'!EC OC24F'I1(\ OC24C:l~1It 002EIIO~C ceZ4t:4IA 4C2t:'00CZ ••• '! ••• 3 ••• 2 ••••••• 4. ••• • 

••• 6 ••••••• @•••~.ICC.'.T •••••• k •• 

Figure 19 (Part 4 of 4). Sample Dump 

Debugging a Catalog Problem 
There may be a problem within Catalog Management routines or within 
Access Method Services routines that invoke Catalog Management if one of 
the following situations occurs: an AaEND occurs within Catalog 
Management routines, the return code from the catalog indicates a non-user 
error, or the printed output from the catalog is incorrect. To determine 
whether the problem exists in Access Method Services or in Catalog 
Management, you must examine the argument lists passed between the 
processor and Catalog Management. 

This section explains how to obtain a dump that contains the Catalog 
Management argument lists and how to find the argument lists within the 
dump. 

To determine whether the argument lists passed between the processor and 
Catalog Management are correct, see the chapter "Method of Operation" and 
the logic manual OS/VS2 Independent Component: Virtual Storage Access 
Method (VSAM) Logic, which is listed in the preface. The chapter "Method 
of Operation" explains what argument lists are passed to Catalog 
Management by each FSR; OS/VS2 Independent Component: Virtual 
Storage Access Method (VSAM) Logic explains the contents of the argument 

Diagnostic Aids 667 

http:24F(l.CC
http:cecco.oo
http:CC2fiO.EC


lists and also explains the arguments that are returned by Catalog 
Management. 

Obtaining a Dump for a Catalog Problem 

If you do not have an ABEND dump within Catalog Management, you can 
use the Test option to obtain a dump within Access Method Services before 
and after the call to Catalog Management. 

The "Module or CSECT to Dump Points Cross Reference" list contains all 
the dump points within the processor; you can specify these dump points on 
the FULL option of the TEST keyword to obtain a full region dump. Each 
FSR that issues a UCATLG macro to call Catalog Management has dump 
points before and after each macro. In addition, the System Adapter module 
that issues the Catalog Management SVC, SVC 26, has a dump point before 
and after the SVC. 

Some FSRs have unique dump points around different types of calls to 
Catalog Management. For example, IDCDLOl has dump points DLVL 
arounrl the call to locate the entry type and dump points DL VS around the 
call to delete the entry. Some FSRs have the same dump point around all calls 
to Catalog Management, for example, IDCMPOI. Some FSRs have dump 
points at which you can obtain selected fields in addition to a full region 
dump, for example, dump points LCBL and LCAL in IDCLCOl. 

The System Adapter dump point ZZCA can always be used, for any FSR, to 
obtain dumps before and after a call to Catalog Management. 

To determine at which iterations of a dump point you wish a full region dump, 
you must determine how many calls to Catalog Management have been made 
by the FSR before the call that caused the problem. You can either refer to 
"Sequence of Calls Made by FSR" or rerun the job with the AREAS option. 

"Sequence of Calls Made by FSR" summarizes the sequence of calls each 
FSR makes to Catalog Management. Using this summary, assume that the 
LISTCAT FSR, IDCLCOl, while listing all the information for an index 
cluster entry, listed the cluster name under the index entry incorrectly, you 
would know that the call to the catalog that retrieved that name was the 
seventh call the LISTCAT FSR made to Catalog Management. 

Instead of using this summary, you can rerun the job with the AREAS option 
of the TEST keyword to determine which iteration of a dump point you need 
to use. 

For example, if you wish to use dump point ZZCA to obtain a dump, rerun 
the job with the following Test option: 

PARM TEST( AREAS ( ZZ ) ) 

From the trace output you can see how many times dump point ZZCA was 
encountered before the problem occurred. 

668 OS!VS2 Access Method Services Logic 



How to Find CllIa/og Management Argument Lists 
The Catalog Parameter List (CTGPL) is the one argument list always passed 
between Access Method Services and Catalog Management. The CTGPL 
may point to a catalog work area, a CTGFV, or one or more CTGFLs. Thus, 
once you find the CTGPL, you can find aU the Catalog Management 
argument lists. 

The best way to find the CTGPL in a dump depends upon the type of dump 
you have: an ABEND dump withi~ Catalog Management, a snap dump taken 
at a dump point within an FSR, or a snap dump taken at the ZZCA dump 
point in the System Adapter. 

In an ABEND dump within Catalog Management, register 1 of the registers 
saved when SVC 26 was entered contains the address of the CTGPL. 

In a snap dump taken at a dump point within an FSR, the address of the 
CTGPL is stored at location CTGPLPTR in the FSR's automatic storage 
area. You must examine the microfiche listings to determine the offset of 
location CTGPLPTR in the automatic storage area. 

In a snap dump taken at dump point ZZCA within the System Adapter, the 
address of the CTGPL is again stored at location CTGPLPTR in the FSR's 
automatic storage area. However, the address of the CTGPL is also passed as 
an argument from the FSR to IDCSA02 when the UCATLG macro is issued. 

Figure 20 shows how to find the address of the CTGPL using register 1 at 
entry to IDCSA02. Register 1 contains the address of a parameter list. The 
second word of the parameter list points to a full word that contains the 
address of the CTGPL. 

In addition to the CTGPL, Catalog Management returns to the processor a 
code in register 15 that indicates the result of the catalog request. The best 
way to find the return code in a dump again depends upon the type of dump 

Reg 1 
IDCSA02 by a FSR and 
saved by IDCSA02. 

GOT 

Register 1 as passed to 

T 
Figure 20. How to Find the CTGPL 

Diagnostic Aids 669 

L 



you have: a snap dump taken at a dump point within an FSR, or a snap dump 
taken at dump point ZZCA. 

In a snap dump taken at a dump point within an FSR, you must examine the 
microfiche listings to determine where the FSR has stored the return code. 
However, any non-zero return code is always printed by the FSR in a 
subsequent message. 

In a snap dump taken at a dump point within the System Adapter, the catalog 
return code is stored at location TESTRC in IDCSA02's automatic storage 
area. You must examine the microfiche listings to determine the offset of 
TESTRC in the automatic storage area. 

Some FSRs have headings before the storage areas that contain the Catalog 
Management argument lists. These headings may help you find the Catalog 
Management argument lists in a dump. Figure 21 shows the DEFINE FSR's 
storage area that contains the argument lists set up for a define request. 

Sequence of Catalog Calls Made by FSR 

The following table summarizes the sequence of calls each FSR makes to 
Catalog Management. 

Sequence of Catalog Calls Made by FSRs 

FSR Sequence of Calls to Catalog Management 

IDCALOI I. 	 A call to locate catalog fields if one of the following fields is being 
nullified or altered: MASTERPW, CONTROLPW, UPDATEPW, 
READPW, CODE, ATTEMPTS, AUTHORIZATION, 
ERASE I NOERASE, SHAREOPTIONS, FREESPACE, 
WRITE CHECK I NOWRITECHECK, 
UNINHIBIT I INHIBIT,UPGRADE, UNIQUEKEY, 
NONUNIQUEKEY, KEYS, or RECORDSIZE, 
SCRATCH I NOSCRATCH, EMPTY I NOEMPTY, 
ADDVOLUMES I REMOVEVOLUMES, 
STAGE I BIND I CYLINDERFAULT, DESTAGEWAITI NO. 

If UPGRADE was supplied: 

1. 	 A call to locate the associated data component of the alternate index 
to verify that it is empty. 

2. A call to alter the alternate index entry. 

If RECORD SIZE was supplied for the data object: 

I. 	 A call to locate the cluster or alternate index associated with the 
data object. 

2. 	 A call to locate the index associated with the cluster or alternate 
index related to the data object. 

3. 	 A call to alter the data entry. 

If RECORD SIZE was supplied for the cluster or alternate index object: 

1. 	 A call to locate the associated data object. 

2. 	 A call to locate the associated index object. 

3. 	 A call to alter the data entry. 

670 OS/VS2 Access Method Services Logic 



--

I ) UGPOOL Area Header 
JD E 0 0 

CATPLIST 

:::= 

CLSTRFVT 

;::~ 

VOLUMFVT 

....... 


.... ~ 

INDEXFVT 

;::~ 

DATAFVTtJ 

-..... 

DEFINWKA 

T 

CTGFV for cluster information. For 
} nonVSAM data sets, the heading 

is NVSAMFVT. 

} crOFV 10. volum, ;nlo.mot;on. 

,... I.,.. 

:::':: 

::::: 

,.. I.,... 
~ 

:::~ 

If any of the above CTGFVs are not set up for a define request, 
the heading and CTGFV area contains zeros. 

Figure 21. Catalog Argument Lists in Storage Area of DEFINE FSR 

Diagnostic Aids 671 



Sequence of Catalog CaDs Made by FSRs 

FSR Sequella! of Calls to Catalog Management 

IDCALOI If RECORD SIZE was supplied for the path object: 

(cont'd) 1. 	 A call to locate the data object of the related alternate index or 
cluster. 

2. 	 A call to locate the index object of the related alternate index 
cluster, or cluster. 

3. 	 A call to alter the data entry. 

If KEYS was supplied for the data object: 

I. 	 A call to locate the cluster or alternate index associated with the 
data object. 

2. 	 A call to locate the index associated with the cluster or alternate 
index related to the data object. 

3. 	 A call to locate the alternate index's base cluster, if the data object is 
associated with an alternate index. 

4. 	 A call to locate the data object of the base cluster. 

S. 	 A call to alter the data entry. 

6. 	 A call to alter the related index object key values. 

If KEYS was supplied for the cluster object: 

I. 	 A call to locate the associated data object. 

2. 	 A call to locate the associated index object. 

3. 	 A call to alter the data entry. 

4. 	 A call to alter the related index object key values. 

If KEYS was supplied for the alternate index object: 

1. 	 A call to locate the associated data object. 

2. 	 A call to locate the associated index object. 

3. 	 A call to locate the base cluster object. 

4. 	 A call to locate the base cluster's data object. 

S. 	 A call to alter the data entry. 

6. 	 A call to alter the related index object key values. 

If KEYS was supplied for the path object: 

I. 	 A call to locate the data object of the related alternate index or 
cluster. 

2. 	 A call to locate the index object of the related alternate index or 
cluster. 

3. 	 A call to locate the base cluster's data object, if the path is related to 
an alternate index. 

4. 	 A call to alter the related entry's data object. 

S. 	 A call to alter the related index object's key values. 

672 	 OS/VS2 Access Method Services Logic 



Sequence of Catalog CaDs Made by FSRs 

FSR 

IDCBIO! 

IDCCCO! 

IDCDE01 
(without 
VS2.03.807) 

IDCDEO! 
(with 
VS2.03.807) 

IDCDE02 
(with 
VS2.03.807) 

IDCDLO! 

Sequence of Calls to Catalog Management 

I. 	 A call to locate the catalog ACB, entry type and associations of the 
name specified for the base cluster-may be the base cluster itself or 
a path over the base cluster. 

2. 	 A call to locate the AMDSB of the base cluster's data component. 

3. 	 A call to locate the entry type and associations of the name specified 
for the alternate index-may be the alternate index itself or a path 
over the alternate index. 

4. 	 If locate 3 returned a path over the alternate index, a call to locate 
the entry type and associations of the alternate index. 

5. 	 A call to locate the AMDSB of the alternate index's data 
component. 

If an external sort is performed: 

I. 	 Two calls to define each sort work file. 

2. 	 Two calls to delete each sort work file. 

For each OS!VS catalog entry that is to be moved to the VSAM catalog a 
call to: 

I. 	 Define the data set or alias. 

2. 	 Locate information if the name of the OS!VS data set already exists 
in the VSAM catalog, and the OS!VS data set name does not begin 
with'SYSI.'. 

3. 	 Alter the VSAM catalog entry, if necessary, to point to the OS!VS 
data set if the duplicate name in the VSAM catalog is not a VSAM 
data set, and the conditions under 2. are satisfied. 

I. 	 Locate each object that is modeled, as follows: three calls if the 
MODEL keyword is specified in the cluster parameter list for a 
KSDS cluster or in the user catalog parameter list; two calls if the 
MODEL keyword is specified in the cluster parameter list for an 
ESDS cluster or in both the data and index parameter lists; one call 
if the MODEL keyword is specified in a data parameter list or an 
index parameter list only. 

2. 	 Define the entire entry. 

I. 	 Define the entire entry. 

2. 	 Locate each object that is modeled, as follows: three calls if the 
MODEL keyword is specified in the cluster parameter list for a 
KSDS cluster or in the user catalog parameter list; two calls if the 
MODEL keyword is specified in the cluster parameter list for an 
ESDS cluster or in both the data and index parameter lists; one call 
if the MODEL keyword is specified in a data parameter list or an 
index parameter list only. 

For each entry: 

1. 	 Locate the entry type, if the type was not specified on the 
command. 

2. 	 Delete the entire entry. 

3. 	 An iterative series of calls to delete any remaining parts of a 
structure as necessary. 

Diagnostic Aids 673 



Sequence of Catalog Cals Made by FSRs 

FSR 

IDCLCOI 

Sequence of Calls to Catalog Management 

For each alias entry: 

I. 	 Locate the alias entry. 

2. 	 Locate the true entry. 

For each cluster entry: 

I. 	 A call to locate the cluster entry. 

2. 	 A call to locate the name of the data entry associated with the 
cluster entry. 

3. 	 A call to locate the name of the index entry associated with the 
cluster entry, only for KSDS clusters. 

4. 	 Repetitive calls to locate the names of the alternate indexes and 
paths associated with the cluster entry (if any exist). 

5. 	 A call to locate the data entry. 

6. 	 A call to locate the name of the cluster entry associated with the 
data entry. 

7. 	 A call to locate the index entry, only for KSDS clusters. 

8. 	 A call to locate the name of the cluster entry associated with the 
index entry. 

9. 	 Repetitive calls to locate the path entries (if any exist). 

10. 	 Repetitive calls to locate the cluster, data, and index (for 
key-sequenced files) associated with the path entries. 

For each data entry: 

I. 	 Locate the data entry. 

2. 	 Locate the name of the cluster or alternate index entry associated 
with the data entry. 

For each generation data group entry: 

I. 	 Locate the generation data group entry. 

2. 	 Locate the nonVSAM generation index data set names. 

3. 	 Locate each generation index data set. 

4. 	 Locate the generation data group names associated with the 
nonVSAM entry. 

For each index entry: 

I. 	 Locate the index entry. 

2. 	 Locate the name of the cluster or alternate index entry associated 
with the index entry. 

674 	 OS/Vs.2 Access Method Services Logic 



Sequence of Catalog Calls Made by FSRs 

FSR 

IDCLCOI 
(Cont.) 

Sequence of Calls to Catalog Management 

For each alternate index entry: 

1. 	 A call to locate the alternate index entry. 

2. 	 A call to locate the name of the data entry associated with the 
alternate index entry. 

3. 	 A call to locate the name of the index entry associated with the 
alternate index entry. 

4. 	 A call to locate the name of the cluster entry associated with the 
alternate index entry. 

5. 	 Repetitive calls to locate the names of the paths associated with the 
alternate index entry (if any exist). • 

6. 	 A call to locate the data entry.. 

7. 	 A call to locate the name of the alternate index entry associated 
with the data entry. 

8. 	 A call to locate the index entry. 

9. 	 A call to locate the name of the alternate index entry associated 
with the index entry. 

10. 	 Repetitive calls to locate the path entries (if any exist). 

11. 	 Repetitive calls to locate the alternate index, data and index (of 
alternate index), and data and index (of cluster) associated with the 
path entries. 

For each path entry: 

1. 	 A call to locate the path entry. 

2. 	 For a path over a cluster, a call to locate the name of the cluster, 
and data and index (of cluster) associated with the path entry. 

3. 	 For a path over an alternate index, a call to locate the name of the 
alternate index, data and index·(of alternate index), and data and 
index (of cluster) associated with the path entry. 

For each non-VSAM entry: 

1. 	 Locate the non-VSAM entry. 

2. 	 Locate the name of any associations for each generation data group 
or alias. 

For each user catalog entry: 

1. 	 Locate the user catalog entry. 

2. 	 Locate the name of any associations for each alias. 

For each space entry: 

1. 	 Locate the space entry. 

2. 	 Locate each data set name in a space entry. for example. three calls 
if three data sets are defined in the data space. 

Diagnostic Aids 675 



Sequence of Catalog CaDs Made by FSRs 

FSR Sequence of CaDs to Catalog Management 

IDCMPOI 

• 

IDCRCOI 

IDCRMOI 

IDCRPOI 

t. 	 Define the cluster or alternate index. ~ 
2. 	 Locate the cluster or alternate index entry if the previous define 

failed because of a duplicate entry in the catalog. 

3. 	 Locate the data entry, only for a duplicate cluster entry. 

4. 	 Locate the index entry, only for a duplicate KSDS cluster or 
alternate index entry and if the temporary export flag is not set in 
the data entry. 

5. 	 Delete the entry, if there is a duplicate nonempty entry. 

6. 	 An iterative series of calls to delete any remaining parts of the 
structure . 

7. 	 Define the cluster again, if there was a duplicate entry. 

8. 	 Delete the defined entry, if an error occurred copying data into the 
defined entry. 

9. 	 An iterative series of calls to delete any remaining parts of the 
structure. 

10. 	 Alter the data entry, if the INHIBITTARGET keyword was 
specified at export time. 

II. 	 Alter the index entry, if the INHIBITTARGET keyword was 
specified at export time for a KSDS cluster. 

For VSAM clusters: 

t. 	 A call to locate the cluster entry. 

2. 	 A can to locate the data entry. 

3. 	 A call to locate the index entry for a KSDS or AIX. 

4. 	 Repetitive call to locate path entries, if they exist for a VSAM Jcluster. 

ForGDGs: 

t. 	 A call to locate the GDG entry. 

2. 	 A call to locate any nonVSAM association to the GDG. 

3. 	 Repetitive calls to locate alias entries for the nonVSAM association. 

For nonVSAM entries: 

1. 	 A call to locate the nonVSAM entry. 

2. 	 Repetitive calls to locate alias entries if present. 

I. 	 A call to define the object. 

2. 	 A call to delete the object if a duplicate name is indicated following 
the first call to catalog. 

3. 	 A series of calls to catalog to delete the remainder of the structure. 

4. 	 A call to define the object if a duplicate name was found. 

5. 	 A call to alter the name of the object if it is a VSAM entry and 
OUTFILE was specified to the dummy name specified on the 
OUTFILE ddcard. 

6. 	 A call to alter the name of the object back to its original name if the 
previous call was executed. 

7. 	 A call to delete the object defined if import fails after the define. 

8. 	 A series of calls to catalog to delete the remainder of the structure. 

1. 	 Locate the INFILE data-set type. 

2. 	 Locate the OUTFILE data-set type. 

676 	OS/VS2 Access Method Services Logic 



Sequence of Catalog CaDs Made by FSRs 

FSR 

IDCRSOI 
(VS2.03.808) 

IDCRS06 
(VS2.03.808) 

IDCXPOI 

Sequence of Calls to Catalog Management 

I. 	 A call to locate the catalog data set name. 

2. 	 A call to locate the catalog volume serial number and time stamp. 

3. 	 A call to locate the catalog ACB and data attributes. 

4. 	 A call to locate the ACB of the catalog in which the work file is 
defined. 

J. 	 A call to define the work file. 

2. 	 A calI to delete the work file. 

J. 	 Locate the cluster or alternate index entry. 

2. 	 Locate the data entry. 

3. 	 Locate the index entry for a KSDS cluster or an alternate index. 

4. 	 A call to locate the related base cluster name if the object being 
exported is an alternate index. 

5. 	 A series of iterative calls to locate catalog information about the 
path objects associated with the object. 

6. 	 A ca11 to alter the data entry, if TEMPORARY, INHIBITSOURCE, 
or INHIBITTARGET was specified on the command. 

7. 	 A ca11 to alter the index entry, if TEMPORARY, 
INHIBITSOURCE, or INHIBITTARGET was specified on the 
command, and the object is a KSDS cluster or an alternate index. 

8. 	 A call to delete the entry if PERMANENT was specified on the 
command. 

9. 	 A series of iterative ca11s to the delete any remaining parts of the 
structure. 

Debugging a Fonnatting Problem 
If data is misformatted, the problem may be in the parameters given to the 
UPRINT macro. The UPRINT parameters are: (1) the address of the GDT; 
(2) the address of an alternate IOCSTR or zero; (3) the address of and a 
DARGLIST data area in storage; and (4) the address of a FMTLIST data 
area, if it is in storage. If the FMTLIST is in a static text module, the fourth 
parameter is zero and the DARGLIST contains information to find the 
FMTLIST. The DARGLIST and the FMTLIST control the formatting of the 
data. The DARGLIST in general contains information about the input data. 
within the FMTLIST. The FMTLIST controls the order of formatting by the 
placement of the substructures. Refer to the "Data Areas" chapter for a 
detailed description of the GDT, IOCSTR, DARGLIST, and FMTLIST. 

Problems are most likely to occur between the DARGLIST and the 
FMTLIST. The examples show how the Text Processor uses the DARGLIST 
and FMTLIST to format the data. With each example is a flowchart with 
blocks keyed to the FMTLIST substructure. 

Example I 

A module wants to space one line then print data starting in column 10 as 
shown in Figure 22. The data is in the module's storage rather than in a static 
text module. 

Diagnostic Aids 677 



The output is: 

70 characters of data starting in column 10 

In the module's storage is: 

• the data to be printed 

• aDARGLIST 

• aFMTLIST 

The data is: 

Offset Name Contents 

o 	 any, INFO for 70 characters of 
example EBCDIC data 

The DARGLIST is: 


Offset Name Contents 


o 	 DARGDBP tlNFO 

4 	 DARGRETP o 

8 	 DARGSTID o 

12 	 DARGILP 70 

14 	 DARGCNT o 

16 	 DARGRETL 0 

18 	 DARGIND 0 

Comments 

Comments 

Address of the block of data to be 
printed. 

The line is to be printed rather than 
just formatted and returned to the 
module without printing. 

No static text module is used-the 
FMTLlST and data are in the 
module's storage. 

Number of characters to print. 

No insert or replication 
substructures occur in the 
FMTLlST. 

Since no data is returned, the length 
of the return area whose address is 
in DARGRETP. 

Indicates printing is to start in the 
column indicated in FMTLlST. No 
DARGARY is defined because no 
insert or replication substructures 
are used in the FMTLlST. 

678 OS/VS2 Access Method Services Logic 



Example II 

The FMTLIST is: 

Name Contents Commentsorrset 

• 0 FMTFLGS X'40' Identifies these 6 bytes as a spacing 
subs.tructure. 

I none 0 	 Unused. 

2 FMTSPF I 	 Space one line. 

4 FMTSPT CR' 	 Space the number of lines in 
FMTSPF relative to the last line 
printed. 

•

5 none 0 	 Unused. 


6 FMTFLGS X'90' 	 Identifies these 12 bytes as a block 
substructure and the end of the 
FMTLIST. 

7 none 0 	 Unused. 

8 FMTILEN 700rO 	 If 70 is specified, it is used as the 
length of the data. If 0 is specified, 
the length of the converted data is 
used as the length to print. Since no 
conversion is being done in this 
example, the result is the same if 70 
or 0 is specified. 

10 FMTIOFF o 	 Get the data starting with the first 
byte. 

Name Contents CommentsOIrset 

12 FMTOCOL 10 	 Place the data in output column to. 

14 FMTOLEN 70 Number of bytes to print. 0 would 
! !~ give the same result since no 

conversion is being done . 
..1[1; • 

!I ,. 16 FMTCNfF o 	 No conversion is being done on the 
data addressed by DARGDBP. 

Discussion: The spacing substructure causes one line to be spaced. 

The next substructure is identified as a block data substructure. The address 
of the block of data is in DARGDBP. No conversion is to be done on the 
data. The Text Processor moves the 70 bytes of data to the 10th byte in the 
next line. 

A module wants to space 2 lines, print a header, space 2 more lines, and print 
all of a block of data no matter how many lines the block of data takes with 
single spacing between subsequent lines (see Figure 23). The header is in 
static text module IDCTSALO at entry X'03'. The block of data is in the 
module. Also, if there is no record number for the header, the module wants 
to print the word UNKNOWN. 

Diagnostic Aids 679 



Space I 
line 

Format 
block 
data 

Figure 22. Formatting Example I 

680 OS/VS2 Access Method Services Logic 



Space 2 lines 

Put text 
'RECORDbNUMBER' 
in line 

Put in YES 
X'02' 

Put text 
'UNKNOWN' 
in line 

Space 2 
lines 

Format all o data in 
block 

End 

Figure 23. Formatting Example II 

Diagnostic Aids 681 



The output is: 

(1 blank line) 

RECORD NUMBER 002 

(1 blank line) 

xxxxxxx converted data for as many lines as necessary 


The module has in its storage: 

• the data for the record number in the header, in this example X'02' 

• the block of data to convert and print 

• aDARGLIST 


Already existing in a static text module is: 


• aFMTLIST 


• text for the header, in this example the characters 'RECORDbNUMBER' 

The data is: 
Name ContentsOffset 

o any, RECNUM 
for example 

any, DUMPIT 
for example 

The DARGLIST is: 
NameOffset 

o DARGDBP 

4 DARGRETP 

8 DARGSTID 

12 DARGILP 

14 DARGCNT 

16 DARGRETL 

18 DARGIND 

19 none 

20 DARGARY 

20 DARGINS 

22 DARGINL 

24 DARGDTM 

one byte with the value 
X'02' 

2000 bytes of binary 
data 

Contents 

tDUMPIT 

o 

C'ALO' ,X'03' 

2000 

o 

o 

o 
none 

4 

tRECNUM 

Comments 

The binary data will be converted to 
printable hexadecimal. 

Comments 

Address of the block of data to 
convert. 

The lines are to be printed rather 
than just formatted and returned to 
the module without printing. 

Static text identification to locate 
the FMTLIST -the FMTLIST 
IDCTSALO at entry 3. 

The length of DUMPIT. 

One insert data appears in 
DARGARY. 

The length of the converted data is 
used as the number of bytes to print. 

Printing starts in the column 
indicated in FMTLIST. 

Unused. 

DARGARY is the name of the rest 
of DARGLIST. 

This number is matched with a 
insert substructure in FMTLIST. 

The number X'02' occupies one 
byte. 

Address of the number X'02' in the 
module. 

682 OS/VS2 Access Method Services Logic 



At entry X'03' in static text module IDCTSALO is: 

NIIDe Contents CommentsOffset 

0 TXT 71 	 Length of the FMTLIST and the 
data that follows the FMTLIST. 

• 
2 FLG 0 This static text entry is for data not a 

message or header . 

4 FMTFLGS X'4O' 	 Identifies these 6 bytes as a spacing 
substructure. 

5 none 0 Unused. 


6 FMTSPF 2 Space 2 lines. 


8 FMTSPT C'R' Space the lines relative to the last 

printed line. 


9 none 0 Unused. 


810 FMTFLGS X'04' Identifies these 10 bytes as a static 

text substructure-the data is 

immediately after the FMTLIST. 

11 none 0 Unused. 

12 FMTSTL 13 Number of bytes in 
C'RECORD1)NUMBER' . 

14 FMTSTO 54 Number of bytes the data 
C'RECORD1)NUMBER' is from the 
first substructure in FMTLIST. 

16 FMTOCOL The data C'RECORD1)NUMBER' 
is to be printed in column 1. 

18 FMTOLEN 0 oindicates the output length is the 
same as the input length for this 
data. 

820 FMTFLG X'20' Identifies these 12 bytes as an insert 
substructure. 

21 none 0 Unused. 

22 FMTRFNO 4 This number is matched with the 
number in DARGINS in order to get 
the address of the data X'02'. 

24 none 0 Unused. 

26 FMTOCOL 15 The data X'02' is printed in column 
15. 

28 FMTOLEN 3 	 The converted data is to take up 3 
columns. 

30 FMTCNVF X'I000' 	 The data X'02' is to be converted 
from byte to zoned decimal. 

$32 FMTFLGS X'02' 	 Identifies these 8 bytes as a default 
text substructure. 

33 none 0 	 Unused. 

34 FMTILEN 7 	 Number of bytes in the data 
C'UNKNOWN'. 

36 FMTIOFF 67 	 Number of bytes the data 
C'UNKNOWN' is from the first 
substructure in FMTLIST. 

38 	 FMTOCOL 15 The data C'UNKNOWN' is printed 
in column 15. 

• 40 FMTFLGS X'4O' 	 Identifies these 6 bytes as a spacing 
substructure. 

Diagnostic Aids 683 

L 



Example III 

Name Contents CommentsOffset 

41 none o Unused. 


42 FMTSPF 2 Space 2 lines. 


44 FMTSPT C'R' The 2 lines are spaced relative to the 

last printed line. 

45 none o Unused. 

0 46 FMTFLGS X'90' Identifies these 12 bytes as a block 
data substructure and the last 
substructure in FMTLIST. 

47 none o Unused. 

48 FMTILEN o Zero means use the length of the 
block data in DARGILP. 

50 FMTIOFF o Start at the first byte of the block 
data. 

52 FMTOCOL Start the block of data in output 
column I. 

54 FMTOLEN o Zero means print the block data 
until the input is exhausted no 
matter how many lines it takes. 

56 FMTCNVF X'8000' Convert the block of data from 
binary to printable hexadecimal. 

58 any C'RECORD 

bNUMBER' Data for the second substructure. 

71 any C'UNKNOWN' Data for the default text 
substructure. 

Discussion: The first spacing substructure causes 2 lines to be spaced. 

The static text 'RECORDbNUMBER' is put in the next line. 

The insert number in the insert substructure is matched with the insert 
number in DARGLIST. The number X'02' from the module is converted to 
zoned decimal and placed in column 15. 

The next spacing substructure causes 2 more lines to be spaced. 

The block data substructure causes the data addressed by DARGDBP to be 
converted to printable hexadecimal until all the bytes in DARGILP have been 
converted and printed. If the module wants to print the same lines again but 
with a different record number and different block data, only DARGDBP, 
and DARGDTM need to be changed. If there had not been a reference 
number 4 in DARGLIST, the data 'UNKNOWN' will be printed instead of 
the record number '002'. This allows more freedom for the module to vary 
the output just by changing insert reference numbers in the DARGLIST. 

A module wants to space 3 lines then print repeating fields on different lines 
so the output would appear as (see Figure 24): 

(2 blank lines) 
field A field B X'field Cl' field 01 field El 

X'field C2' field 02 field E2 

The module has in storage: 

• all the data to be printed 

• aDARGLIST 

684 OS/VS2 Access Method Services Logic 



• aFMTLIST 

The data is: 

Offset Name Contents Comments 

0 A four bytes of EBCDIC 
data 

4 B four bytes of packed 
decimal data 

8 CI two bytes of binary data 

to 01 two bytes of binary data 

12 El one byte of EBCDIC 
data 

13 C2 two bytes of binary data 

15 02 two bytes of binary data 

17 E2 one byte of EBCDIC 
data 

The DARGLIST is: 

Offset Name Contents Comments 

0 OARGDBP tA 

4 DARGRETP 0 The lines are to be printed rather 
than just formatted and returned to 
the module. 

8 OARGSTID 0 No static text module is used. 

12 OARGILP 18 Number of bytes from field A 
through field E2. 

14 OARGCNT There is one repetition substructure 
in the FMTLIST. 

16 OARGRETL 0 The length of the converted data is 
used as the number of bytes to print. 

18 DARGIND 0 Printing starts in the column 
indicated in FMTLIST. 

19 none 0 Unused. 

20 DARGREP 7 Number that is matched with a 
repetition substructure in FMTLIST. 

22 DARGPCT 2 The group of fields identified by 
repetition substructure 7 in 
FMTLIST is to be printed twice. 

The FMTLIST is: 

Offset Name Contents Comments 

80 FMTFLGS X'40' Identifies these 6 bytes as a spacing 
substructure. 

1 none 0 Unused. 

2 FMTSPF 3 Space 3 lines. 

4 FMTSPT CR' Space the lines relative to the last 
printed line. 

5 none 0 Unused. 

Diagnostic Aids 685 



NIUIIe COIIteIItI CommentsOffset 

86 FMTFLGS X'10' 	 Identifies these 12 bytes as a block 
data substructure. ..J 

7 none 0 Unused. 


8 FMTILEN 4 Number of bytes in field A. 


10 FMTIOFF 0 Field A begins zero bytes from the 

block of data whose address is in 
DARGDBP. 

12 FMTOCOL Print field A starting in column 1. 

14 FMTOLEN 4 Number of bytes the converted field 
A occupies in the printed line. 

16 FMTCNVF 0 No conversion is done on field A. 

818 FMTFLGS X'10' Identifies these 12 bytes as a block 
data substructure. 

19 none 0 Unused. 

20 FMTILEN 4 Number of bytes of storage field B 
occupies. 

22 FMTIOFF 4 	 Field B starts 4 bytes from the block 

of data whose address is in 

DARGDBP. 


24 FMTOCOL 10 Print field B starting in column 10. 

26 FMTOLEN 10 Number of bytes the converted field 
B occupies in the printed line. 

28 FMTCNVF X'0880' Convert field B from packed 
decimal to unpacked decimal with 
zero suppression. 

8 30 FMTFLGS X'08' Identifies these 8 bytes as a 
replication substructure. J 

31 none 0 	 Unused. 

32 FMTRENO 7 	 Matched with a number in 

DARGLIST to find the number ~f 

iterations. 


34 FMTRBC 3 	 The data identified in the next 3 

substructures is to be repeated. 


36 FMTRIO 5 	 The number of bytes from field C 1 

to field C2 in storage. This number 

is added to the address of the first 

field each time the field is repeated . 


• 	 38 FMTFLGS X'10' Identifies these 12 bytes as a block 
data substructure for fields Cl and 
C2. 

39 none 0 Unused. 


40 FMTILEN 2 Number of bytes fields Cl and C2 

each occupy in storage. 


42 FMTIOFF 8 Number of bytes from field A to 

field Cl. 


44 FMTOCOL 22 Print fields C 1 and C2 starting in 

column 22. 


46 FMTOLEN 7 	 Number of bytes the converted 

fields Cl and C2 each occupy in the 

printed line. 


48 	 FMTCNVF X'4000' Convert fields Cl and C2 from 

binary to printable hexadecimal 

enclosed in X'data' . 
 ..J 

686 OS!VS2 Access Method Services Logic 



Name Contents CommentsOfrset 

850 FMTFLGS X'IO' 	 Identifies these 12 bytes as a block 
data substructure for fields 01 and 
02. 

51 none 0 	 Unused. 

52 FMTILEN 2 	 Number of bytes fields 01 and 02 
each occupy in storage. 

54 FMTIOFF 10 	 Number of bytes from field A to 
field 01. 

56 FMTOCOL 31 	 Print fields Oland 02 starting in 
column 31. 

58 FMTOLEN 6 	 Number of bytes the converted 
fields Oland 02 each occupy in the 
printed line. 

60 FMTCNVF X'I000' 	 Convert fields 01 and 02 from 
binary to printable decimal. 

62 FMTFLGS X'90' 	 Identifies these 12 bytes as a block 
data substructure for fields Eland 
E2 and the last substructure in the 
FMTLISt 

63 none o 	 Unused. 

64 FMTILEN 	 Number of bytes fields Eland E2 
each occupy in storage. 

66 FMTIOFF 12 	 Number of bytes from field A to 
field EI. 

68 FMTOCOL 39 	 Print fields Eland E2 each starting 
in column 39. 

70 FMTOLEN 	 Number of bytes the converted 
fields Eland E2 each occupy in the 
printed line. 

72 FMTCNVF X'OOOO' 	 No conversion is done on fields E 1 
and E2. 

Discussion: The first spacing substructure causes 3 lines to be spaced. 

The block data substructures for fields A and B describe the location of A 
and B within the block addressed in DARGDBP. Field A is not converted. 
Field B is converted from packed decimal to zoned decimal and leading zeros 
are replaced with blanks. 

The replication substructure number is matched with an identification number 
in DARGREP. When a match is found, the DARGPCT immediately after 
DARGREP tells how many times to repeat the substructures. If the module 
wants to use the same FMTLIST and print another group of fields C, D, and 
E, only DARGPCT needs to be changed. The replication substructure tells 
how many substructures to repeat and an offset that is used to find the group 
of fields being repeated. On the first repetition the offset is not used, on the 
second it is added once; on the third repetition it is added twice. 

The next substructure describe C 1 and C2. On the first repetition the value in 
FMTIOFF is added to the value in DARGDBP to find field Cl. To find field 
C2, FMTIOFF and FMTRIO in the repetition substructure are added to 
DARGDBP. Each time a group of substructures is repeated a new line is 
printed because the output columns for each substructure do not change. For 
example, in order to print both Cl and C2 in column 22, a new line must be 
printed. Both C 1 and C2 are converted to printable hexadecimal preceded by 
X' and followed by a single quote. 

Diagnostic Aids 687 

L 



Start 

e Space 3 lines 

CD Format field A 

Format field B 
in same line 
as A 

NO 

End 

Figure 24. Formatting Example III 

Fields 01 and 02 are described by the next substructure. 01 and D2 are 
converted to printable decimal. 

The substructure for fields E1 and E2 is also the end of FMTLIST. E1 and 
E2 are not converted. 

After E1 is formatted, the three substructures following the repetition 
substructure are repeated. A new line is started because FMTOCOL keeps 
the output the columns the same each time a field is printed. Fields C2, 02, 
and E2 are put in the next line. The FMTLIST is finished after E2 is printed. 

On the first repetition, CI, BI, and EI 

are formatted in the same line as A and B. 

On the second repetition, C2, 02 and E2 

are formatted in the next line. 

This is because the same block data 

substructure-therefore the same output 

column-is used for each repetition 

of a field. 


G 

Format Format Format 
CI or C2 01 or 02 EI or E2 

688 OS/VS2 Access Method Services Logic 



Obtain,ng a Dump for a Text Processor Problem 

If you do not have an ABEND dump within the Text Processor routines or an 
ABORT snap dump within the Text Processor, you can use the Test option to 
obtain a dump. You may want to obtain a dump within the routine that 
invoked the Text Processor or within the Text Processor itself. 

The Module or CSECT to Dump Points Cross Reference list contains all the 
dump points within the processor; you can specify these dump points on the 
FULL option of the TEST keyword to obtain a full region dump. 

The Text Processor has dump points before and after it converts data to 
printable form. You should use these dump points if there is an error in 
converting the data. 

How to Find Text Processor Argument Lists 

If you suspect a problem within the Text Processor, the two structures you 
should locate in a dump are the Print Control Table (PCT) and the Dynamic 
Data Argument List (DARGLIST). The PCT and the DARGLIST are 
described in the chapter "Data Areas." The eighth word of the GDT contains 
the address of the PCT. The address of the DARGLIST is the third parameter 
passed to IDCTPOl for a UPRINT request. 

Two other structures that you may find helpful to locate in a dump are the 
queue of format structures and the print buffer. 

Note: in the listings the print buffer is called the stack buffer. 

Figure 25 shows the queue of format structures maintained by the Text 
Processor. There is an entry in the queue for each text structure entry used 
for the current function. Each entry in the queue contains the four-byte static 
text identifier specified in the DARGLIST. The first three bytes contain the 
last three characters of the text-structure module name; the fourth byte 
contains the entry number of the format structure within the module. 

Figure 26 shows the print buffer maintained by the Text Processor. It 
contains the records, other than messages, that have not been printed. The 
records to be printed are kept in the print buffer until the buffer becomes full 
or a message must be printed. The primary and secondary PCTs contain the 
address of the first record in the buffer and the address of the next empty 
space in the buffer. If both addresses are equal, the buffer is empty. 

Diagnostic Aids 689 



- --

PCT) 

8 (8) PCTSPP Secondary PCT 

PCT2 

Chain of static text entries 
after 3 UPRINTs referring to 

48(30) PCTSQP different static text entries. 

UGPOOLIO ~ 
j-  -~----~----~------~--~----~ 
1 T PO) 
1- __ 

UGPOOL \D,- -
: T PO) 
1- __ 

UGPOOL \D 

1 
1 T PO) 
1- _ 

Figure 25. Text Processor Format Structure Queue 

Format List 

Static Text Entry 

~______~-,____~________~_F_o_r_m_a_t_L_i_st__~~ 
Static Text Entry 

Static Text ~ 
______~~__O_______H_e_a_d_e_r_'"__F_o_r_m_a_t_L_i_st__~Identifier .. 

690 OS/VS2 Access Method Services Logic 



108 (6C) PCTBNL 

Records in buffer after 5 
UPRINT macros have been 
issued. No messages are 

GDT 

1 Primary PCT =r/~ C T I ~........--- Secondary PCT 

P C T 2if 8 181t--P-C-T-S-P-P----y-l ...I-_ _ _____-----4 

I': ;. 1~8) t-PC_T_B_U_F____-t 

kept in buffer. 

Each record has the following format: • 

~/~I__~I~,~I--------Da_ta--~~~

\ 

SpacingLength .of 
ControlEntire Record 
Character(2 Bytes) 
(I Byte) 

Figure 26. Text Processor Print Buffer 

Debugging an I/O Problem 
There may be an I/O problem within system I/O routines or within Access 
Method Services if an ABORT condition occurs in the I/O Adapter or if an 
ABEND occurs within the system I/O routines. To determine whether the 
problem exists in the routines that invoke the I/O Adapter, in the I/O 
Adapter itself, or in the system I/O routines, you must examine the argument 
lists passed between the I/O Adapter and the invoking routines, and the I/O 
Adapter and the system I/O routines. 

This section explains how to obtain a dump that contains the I/O argument 
lists and how to find the argument lists in a dump. 

Obtaining a Dump for an I/O Problem 

If you do not have an ABEND Qump within system I/O routines or an 
ABORT snap dump within the I/O Adapter, you can use the Test option to 
obtain a dump. You may want to obtain a dump within the routine that 
invoked the I/O Adapter or within the I/O Adapter itself. 

The "Module or CSECT to Dump Points Cross Reference" list contains all 
the dump points within the processor; you can specify these dump points on 
the FULL option of the TEST keyword to obtain a full region dump. 

The I/O Adapter has dump points before and after it issues the OPEN SVC 
(dump points 1010 and 1020) and before it issues the CLOSE SVC (dump 

Diagnostic Aids 691 



point 10IC). You should use these dump points if there is an error opening or 
closing data sets. For VS2.03.808, the I/O Adapter has a dump point (IOVR) 
after issuing a VSAM I/O request which returns a nonzero return code. You 
should use this dump point if you wish to obtain a dump in a VSAM I/O 
error situation. 

How to Find I/O Argument Lists 

The Input/Output Communications Structure (IOCSTR), which is 
constructed for each data set that has been opened, contains pointers to most 
of the control blocks used by the system I/O routines. The 10CSTR is also 
the argument list that is passed between the I/O Adapter and the routines 
that invoke the I/O Adapter, except for the initial open request. Thus, once 
you find the 10CSTR, you can find most of the other arguments passed 
between the I/O Adapter and other routines. The chapter "Data Areas" 
explains the format of the 10CSTR. 

Figure 27 shows the chain of 10CSTRs constructed for all opened data sets; 
however, the data sets may not have been opened successfully. The I/O 
Adapter historical area contains a pointer to the start of the chain. 

You can find the address of the 10CSTR for a particular I/O request by 
finding the parameter list passed to IDCIOOl by the invoking routine. 
Register 1 of the registers saved by IDCIOOl contains the address of a 
parameter list. The second word of the parameter list contains the address of 
the 10CSTR. The third, fourth, and fifth words may contain addresses of 
additional 10CSTRs. 

Open Argument Lists 

Figure 28 shows how the I/O control blocks are connected before the OPEN 
SVC is issued. The 10CSTR addresses can be f01,!nd from the 10CSTR chain 
as shown in Figure 27. The 10CSBLT table, which contains pointers to the 
10CSTRs for the data sets being opened, can be found at location 10CSBLT 
in IDCIOOl's automatic storage area. The OPENLIST table, which contains 
pointers to the DCBs and ACBs for the data sets being opened, can be found 
at location OPENLIST in IDCIOOI's automatic storage area. In a system 
dump within the OPEN SVC, register 1 of the registers saved at entry to the 
SVC contains the address of the OPENLIST table. 

692 OS/VS2 Access Method Services Logic 



20 (18) 10CDSN 

10CEXT 

File ID 

10CS 

10CDSN 

10CEXT 

24 (18) IOCNIO 

File ID 

-

10CSTR chain after two UOPEN 
macros have been issued. 

Figure 27. 10CSTR Chain 

- - , 	 UGPOOL 10 - the last two numbers 
identify the data set. 

Second 
10CSTR
r-----' 

IOnn 

10CS 

o 

UGPOOL I D - the last two 
numbers identify the 
data set 

o means this is 
the last 10CSTR. 

I/O Adapter 
GOT Historical Area 

0(0) 10DIOC 

36 (24) GOTIOH 

T 

Diagnostic Aids 693 



Two data sets are to be opened. one 
VSAM and one non-VSAM data set. 

Figure 28. I/O Control Blocks Before OPEN 

UGET and UPUT Argument Usts 

This section contains some examples of input and output from the UGET and 
UPUT macros. These examples may be helpful in determining whether the 
IOCSTR and records for a UPUT request have been passed correctly to the 
I/O Adapter, and whether the IOCSTR and records for a UGET request 
have been returned correctly by the I/O Adapter. 

Figure 29 shows the IOCSTRs and records passed to the 110 Adapter via a 
UPUT macro. The I/O Adapter adds Record Descriptor Words (ROWs) for 
QSAM output before passing the records to QSAM. 

694 OS/VS2 Access Method Services Logic 



VSAM or QSAM Data Set - Single Record with No Keys 

....... 

I Data \ 

(... 	 J., 
0 o indicates there are Length 


no records stacked. 


VSAM 	or QSAM Data Set - Multiple Records with No Keys 

LI L2 L3 
, . ,........ 


LLI' Data iL21 Data lUI Data I 
.... " ., 

3 	 3 indicates there are Length 

three records stacked. 


VSAM Data Set - Single Record with Keys 

........ 

II Data I Key Data I .. .. J 

0 	 o indicates there are Length 

no records stacked. 


VSAM Data Set - Multiple Records with Keys 

LI L2 U 
~..... ----... 	 ~ 

I L I IData 'Keyl Data I L2 I Data' Keyl Data I ul Data' Key I Data I .. 	 . J 

3 	 3 indicates there are Length 

three rcconh stackl!u. 


0(0) 

4 (4) 

36 (24) 

0(0) 

4 (4) 

36(24) 

0(0) 

4 (4) 

36 (24) 

0(0) 

4 (4) 

36(24) 

0(0) 

4 (4) 

36 (24) 

0(0) 

4 (4) 

12(0 

36 (24) 

0(0) 

4 (4) 

36 (24) 

Example I. 

IOCSTR 

IOCDAD 

Length 

Example 2. 

IOCSTR 

IOCDAD 

Length 

Example 3. 

IOCSTR 

IOCDAD 

Length 

Example 4. 

IOCSTR 

IOCDAD 

Length 

Example S. 

IOCSTR 
IOCDAD 

Length 

I 

Example 6. 

IOCDAD 

Length 

IOCKYL 

I 

Example 7. 

IOCDAD 

Length 

I 

BSAM or BPAM Data Set 

i--  ...... 
I 
" 

0 

BSAM or BPAM Data Set 

I--- -... 

KeyI 
... 

0 

BSAM or BPAM Data Set 

r---.... ----... ~ 
lLiL 	Physical Block IL2i Physical Bluck _J 

.," 	
J 

2 2 jndi,cates there are 
Length

two blocks stacked. 

Single Block with No Keys 

Physical Block ,',' , 
" 

Length 

Single Block with Keys 

_J: 
Physical Block Keys arc not allowed with multiple records. PI 

" 
J 

Length 

Multiple Block with No Keys 

LI L'. 

Figure 29. Input to UPUT Macro 

Diagnostic Aids 695 



Figure 30 shows the IOCSTRs and data returned by the I/O Adapter after a 
UGET macro is processed. 

0(0) 

4 (4) 

28 (IC) 

0(0) 

4 (4) 

0(0) 

4 (4) 

32 (20) 

0(0) 

4 (4) 

0(0) 

4 (4) 

Example I. 

IOCSTR 

IOCDAD 

Length 

IOCRBA 

Example 2. 

IOCSTR 

IOCDAD 

Length 

IOCRBA 

Example 3. 

IOCSTR 

IOCDAD 

Length 

IOCKYA 

Example 4. 

IOCSTR 

IOCDAD 

Length 

Example 5. 

IOCSTR 

IOCDAD 

Length 

VSAM Data Set with Address Processing 

........ ) 


I Logical Record " 
(.. .. 

This field contains the Length
relative byte address 
of 10gical record. 

VSAM Data Set with Control Interval Processing 

- ............ ) 


Control Interval \~
I 
\ .. .. 

This field contains the Length
relative byte address 
of the control llltervai. 

VSAM Data Set with Keyed Processing 

\ 

I \j-- I Data Key I Data The key may be , in any position. ./ 
Length~ 

QSAM Data Set 

...... \ 

All spanned records Logical Record \;I 
\ are reconstructed . .. .. 

Length 

QISAM Data Set 

-.. \ 

Key I Data \, The key may be 
l in any position. VI, .. " 

32 (20) IOCKYA Length 

Figure 30. Output from UGET Macro 

696 OS/VS2 Access Method Services Logic 



VSAM Control Block Manipulation Argument Lists 
(Deleted for VS2.03.808) 

If the return code from a VSAM control block manipulation macro indicates a 
severe error, the I/O Adapter issues a UABORT macro and you will get a 
snap dump. (VSAM control block manipulation macros are: GENCB, 
MODCB, SHOWCB, and TESTCB.) The argument lists constructed by the 
I/O Adapter for these VSAM macros are stored at location AMAREA in the 
automatic storage area of the I/O Adapter module that issued the macro. 

Figure 31 shows how the argument lists are connected. Register 1 at the time 
the macro is issued points to the parameter list at location AMAREA. See 
OS/VS Virtual Storage Access Method (VSAM) Options for Advanced 
Applications for the contents of the argument lists. 

Register 1 when 
macro is issued Location "AMAREA" in 

Automatic Storage Area 
of I/O Adapter 

T 


Argument lists set up for VSAM macros: 
GENCD, MODCD, SHOWCD, TESTCD 

Figure 31. VSAM Control Block Manipulation Macro Argument Lists 
(Deleted for VS2.03.808) 

Diagnostic Aids 697 



Processor Messages 
The following lists all the messages printed by the processor. For each 
message, the following information is listed: the last three characters of the 
text structure module that contains the message followed by the number of 
the message within the module; the module that causes the message to be 
printed; the procedure within that module that detects the situation that 
causes the message to be printed; and the situation that causes the message to 
be printed. For message IDC4999I there is no text structure module because 
the message is written when a UABORT macro is issued. The table lists the 
UABORT CODE instead of the text structure module for message IDC4999I. 

Messages to Module Cross Reference 

Message snD Module Procedure 	 Situation That Caused Message 

IDC394I SA6-14 IDCSA06 DEMNTVOL 	 IDCSA06 failed to demount the 
requested volume. (This is an 
informational message for the 
operator.) 

IDCSAlO RECOVERY 	 An attempt to demount a volume 
in ST AE/ESTAE Exit routine 
failed. (This is an informational 
message for the operator.) 

IDCOOOll 	 UVO-l IDCAL01 IDCALOI Function was completed 
UV0-9 without a severe error. 

IDCCCOI IDCCCOI 	 Function was completed without a 
severe error. All or part of the 
OS/VS catalog entries were 
converted to VSAM catalog 
entries. 

IDCBIOI TERMPROC 	 Function was completed without 
an error or without a severe error 
in processing the base cluster. 

IDCDEOI IDCDEOI 	 Function was completed without a 
severe error. 

IDCDLOI IDCDLOI 	 Function was completed without a 
severe error. 

IDCLCOI IDCLCOI 	 Function was completed without a 
severe error. All or part of the 
desired catalog listing was 
generated. 

IDCLROI CLEANUP 	 Function was completed without a 
severe error. 

698 OS/VS2 Access Method Services Logic 



Messages to M04We Cross Reference 

Messap SflD MCHhde Procedure 	 Situation That Caused Message 

IDCMPOI IDCMPOI 	 Function was completed without a 
severe error. 

IDCPMOI IDCPMOI 	 Function was completed without a 
severe error. 

IDCPROI IDCPROI 	 Function was completed without 
error, or (1) an end-of-file was 
reached in the input data set 
before the ending delimiter 
specified by the user, or (2) a 
recoverable I/O error occurred 
while retrieving or printing a 
record, or (3) an error occurred 
closing data sets. 

IDCRCOI EXITIHE 	 Function was completed without a 
severe error. 

IDCRMOI IDCRMOI 	 Function was completed without a 
severe error. 

IDCRPOI IDCRPOI 	 Function was completed without 
error, or (1) an end-of-file was 
reached in the input data set 
before the ending delimiter 
specified by the user, or (2) a 
recoverable I/O error occurred 
while copying a record, or (3) an 
error occurred closing data sets. 

L, 

IDCRSOI WRAPUP Function was completed without a 

(VS1.03.808) severe error. 


IDCVYOI IDCVYOI Function was completed without a 
severe error. 

IDCXPOI IDCXPOI Function was completed without a 
severe error. 

IDC00021 UV~2 IDCEX03 IDCEX03 	 Access Method Services' 
completed processing. 

IDCOOOSI UV~S IDCPROI IDCPROI 	 Printing of records is completed. 

IDCRPOI IDCRPOI 	 Copying of records is completed. 

Diagnostic Aids 699 



Messages to Module Cross Reference 

Message STID Module 

IDCOOl4I UVO-l5 IDCCCOI 

IDCVYOI 

IDCLCOI 

IDCBIOI 

IDCDLOI 

IDCXPOI 

IDCMPOI 

IDCRS05 
(VS2.03.808) 

IDCRMot 

IDCALOI 

IDCDEOI 

IDC0204I RIO-5 IDCRI03 

IDC0206I RI0-7 IDCRIOI 

IDC0222I RI0-23 IDCRIOI 

IDC0233I RI0-34 IDCRIOI 

IDC0234I RI0-35 IDCRIOI 

IDC036 II SA7-9 IDCSA07 

IDC0362I SA7-IO IDCSA07 

Procedure 

IDCCCOI 

IDCVYOI 

IDCLCOI 

TERMPROC 

IDCDLOI 

IDCXPOI 

IDCMPOI 

CKERR 

IDCRMOI 

IDCALOI 

IDCDEOI 

IDCRI03 

SCANSEP 

NXTFIELD 

SCANCMD 

INREPEAT 

SCANCMD 

IDCSALC 

VSAMUCT 

Situation That Caused Message 

In a TSO environment, a nonzero ;J
return code condition was 
encountered. 

In a TSO environment, a nonzero 
return code condition was 
encountered. 

In a TSO environment, a nonzero 
return code condition was 
encountered. 

In a TSO environment, a nonzero 
return code condition was 
encountered. 

In a TSO environment, a nonzero 
return code condition was 
encountered. 

In a TSO environment, a nonzero 
return code condition was 
encountered. 

In a TSO environment, a nonzero 
return code condition was 
encountered. 

In a TSO environment, a nonzero 
return code condition was 
encountered. 

In a TSO environment, a nonzero 
return code condition was 
encountered. .j
In a TSO environment, a nonzero 
return code condition was 
encountered. 

In a TSO environment, a nonzero 
return code condition was 
encountered. 

The preceding command was 
scanned for syntax-checking 
purposes only. 

An extra comma was found 
between parameters. 

A semicolon was found within a 
quoted constant. 

Too many closing parentheses 
were found at the end of a 
command or subparameter list. 

Too few parentheses were found 
at the end of a command. 

Too few parentheses were found 
at the end of a command. 

The VSAM LOCATE request was 
unsuccessful. Refer to the message 
issued immediately prior to this 
one for the reason. 

An error occurred during a 
VSAM DELETE request. Refer to .Ja message issued prior to this one 
for the reason why the DELETE 

700 OS/VS2 Access Method Services Logic 



Messages to Module Cross Reference 

Message STiD Module Procedure Situation That Caused Message 

failed. As a result of the error, the 
data set named in this message 
was not scratched. 

IOC03631 SA7-11 IDCSA07 VSAMUCT An error occurred during a 
VSAM DELETE request. Refer to 
a message issued prior to this one 
for the reason why the DELETE 
failed. As a result of the error, the 
data set named in this message 
was not uncataloged. 

IDC03961 SA7-1 IDCSA07 GETENT The data set named was not 
recataloged. 

UPDATENT A previous message has the 
reason. 

TESTENT A previous message has the 
reason. 

IDC03971 SA7-2 IOCSA07 UPDATENT The data set identified was 
located but could not be 
recataloged. The return code from 
recataloging was 8. This situation 
should occur only when the 
volume was originally located in a 
VSAM catalog-the LOCATE 
macro supports a VSAM catalog, 
but the CATLG macro to 
recatalog does not. Since all data 
sets in the VSAM catalog that 
owns the volume have been 
recataloged, the data set must 
have been located in a VSAM 
catalog that did not own the 
volume. 

IDC03981 SA7-5 IDCSA07 TESTENT The data set identified resides on 
more than 20 volumes and 
apparently has not been 
recataloged. 

SCANCMD Too few parentheses were found 
at the end of a command. 

IDC05081 DE0-9 IDCDEOI IDCDEOI Define of the data set is 
completed. 

IDCMPOI CLUSPROC Define of the data set being 
imported is completed. 

IDCRMOI CLUSPROC Define of the data set is 
completed. 

IDC0509I DEO-IO IOCDEOI IOCDEOI Define of the data set is 
completed. 

IOCMPOI CLUSPROC Define of the data set being 
imported is completed. 

IDCRMOI CLUSPROC Define of the data set is 
completed. 

IDC0510I DEO-ll IOCDEOI IOCDEOI pefine of the VSAM catalog is 
completed. 

IDC05111 DEO-12 IOCDEOI IDCDEOI Define of the data space is 
completed. 

Diagnostic Aids 701 

L 



Messages to Module Cross Reference 

Message 

lOCOS 121 

IDCOS2OI 

IDCOS261 

IDCOS31I 

lOCOS321 

IDCOS34I 

IDCOS351 

IDC0548I 

IDC0549I 

IDC0550I 

IDC05511 

IDC0555I 

STID 

DEO-I3 

DE0-2I 

ALO-I 

AL0-7 

AL0-8 

AL0-10 

ALO-ll 

DLO-JO 

DLO-II 

DLO-I 

DL0-8 

DLO-5 

Module 

IDCDEOI 

IDCDEOI 

IDCMPOI 

IDCRMOI 

IDCALOI 

IDCALOI 

IDCALOI 

IDCALOI 

IDCALOI 

IDCDLOI 

IDCDLOI 

IDCDLOI 

IDCMPOI 

IDCRMOI 

IDCXPOI 

IDCDLOI 

IDCXPOI 

IDCDLOI 

Procedure 

IDCDEOI 

IDCDEOI 

CLUSPROC 

CLUSPROC 

IDCALOI 

IDCALOI 

IDCALOI 

MEMRENAM 

MEMRENAM 

MEMDELET 

MEMDELET 

CATCALL 

DELTPROC 

DELTPROC 

DELTPROC 

DELTPROC 

DELTPROC 

DELTPROC 

DELTPROC 

CATCALL 

Situation That Caused Message 

Define of the data set is 
completed. ..J 
The message identifies the 

recovery volume serial number. 


The message identifies the 

recovery volume serial number. 


The message identifies the 

recovery volume serial number. 


Alter of the volume is completed. 


All altered entry names are listed. 


All entry names not altered are 

listed. 


A member name not renamed is 

listed. 


The listed member name has been 

renamed. 


The listed member name has not 

been deleted. 


The listed member name has been 

deleted. 


The catalog returned the name 

and type of a successfully deleted 

entry in the catalog work area. 


The object with the same name as 

the object being imported was 

deleted successfully from the-

catalog. 


The object being imported was 

deleted successfully from the 

catalog after an error occurred 

copying data into the object. 


The object with the same name as 

the object being imported was 

deleted successfully from the 

catalog. 


The object being imported was 

deleted successfully from the 

catlog after an error occurred 

copying data into the object. 


The object being exported was 

deleted successfully from the 

catalog. 


A catalog object was not deleted 

because of a catalog locate error, 

a command parameter error, or a 

catalog delete error. 


The object being exported could 

not be deleted from the catalog. 

The catalog return code indicates 

the reason. 


The volume entry was not deleted 

although empty space on the ~ 


702 OS/VS2 Access Method Services Logic 



Messages to Module Cross Reference 

Message STID 

IDC0571I PRO-l9 

IDC05941 XP0-5 

IDC0603 I MPO-1l 

IDC06041 MPO-I2 

IDC061l1 MPO-2 

IDC06221 MPO-22 

IDC06261 MPO-26 

IDC06341 CC0-7 

IDC06351 CC0-9 

IDC06361 CCO-I3 

IDC06371 CCO-ll 

IDC06521 BIO-13 

IDC066S1 LRI-16 

IDC06691 RCO-I4 

IDC0670I RCO-IS 

Module 

IDCRP01 

IDCXPOl 

IDCMPOl 

IDCMPOl 

IDCRMOl 

IDCMPOl 

IDCRMOI 

IDCRMOI 

IDCCCOI 

IDCCC01 

IDCCCOl 

IDCCCOI 

IDCBI01 

IDCLROI 

IDCRCOI 

IDCRCOI 

Procedure 

IDCRPOl 

CLUSPROC 

CLUSPROC 

CLUSPROC 

IDCRM01 

CLUSPROC 

UCATPROC 

CLUSPROC 
UCATPROC 
NVSMPROC 
GDGPROC 

CONVERT 

CATALOG 

CONVERT 

CONVERT 

FINPROC 

CLENCRA 

IDCRCOI 

EXPORTDR 

Situation That Caused Message 

volume was deleted successfully. 
The catalog return code was 160. 

Reloading of a catalog was 
initiated. 

The portable data set was created 
successfully. 

The user catalog was connected 
successfully. 

The first record of the portable 
data set contained the timestamp 
written at the time of export. 

The first record of each group of 
associated items on the portable 
data set contained the time and 
date of export. 

The name of the object being 
imported already exists in the 
catalog. If NEWNAME is 
specified, an entry with that name 
already exists. 

A user catalog has been 
disconnected successfully. 

IMPORTRA 
succeeded for the 
object named in the 
message. 

CONVERT prints the number of 
OS/VS catalog entries that were 
converted to VSAM catalog 
entries. 

The OS/VS catalog entry was not 
converted to a VSAM catalog 
entry. 

CONVERT prints the number of 
non-V SAM entries in the VSAM 
catalog whose volume 
information was updated. 

CONVERT prints the name of a 
VSAM catalog entry that was not 
updated to match an OS/VS 
catalog entry. 

The alternate was built with no 
errors. 

Informational message stating the 
number of entries that did not 
compare. 

Informational message stating the 
CRA from which the entries are 
processed. 

Informational message stating 
that data set is on portability data 
set. 

Diagnostic Aids 703 



Messages to Module Cress Reference 

Message 


IDC0672I 


IDC0674I 

IDC0676I 


IDC0861I 


IDC0862I 


IDC0863I 


IDC08741 


IDC0877I 


IDC0888I 


IDC0922I 


IDC0923I 


IDC0924I 


IDC092SI 


IDC0970I 


IDC I 0691 


IDC12S2I 


STID 

RCO-17 

RC0-20 

RCO-S 


CK0-6 


CK0-7 


CK0-8 


LRl-S 


LRI-8 


RC0-23 


EXO-S 


EX0-6 

EX0-7 

EX0-8 

VS0-22 

CMO-S7 

RIl-16 

Module 

IDCRCOI 

IDCRCOI 

IDCRCOI 


IDCCKOI 


IDCCKOI 


IDCCKOI 


IDCLROI 


IDCLROI 


IDCRCOI 


IDCDB02 


IDCDB02 

IDCDBOI 

IDCDBOI 

IDCVSOl 

IDCSA09 

IDCRI04 

Procedure 

CKCATNM 

EXPORTDR 

SYNCH 

DUPNAMCK 

CKNAMES 

TERM 

IDCCKOI 

BUILDTAB 

CHRPROC 

INTSORT 

CLENCRA 

EXPORTDR 

ITEMDUMP 

ARRAYHDR 

IDCDBOI 

IDCDBOI 

VTOCPUT 

CHKCODE 

RISETUP 

Situation That Caused Message 

Informational message stating the 
catalog name for which CRA's are 
being processed. 

Secondary message containing the 
object name for which the export 
driver was called. 

Object named was invalid in the 
CRA in comparison with the data 
set. 

Object name appeared twice in 
the CRA. 

Object named was not of a type 
DOS supports. 

Informational message statirig 
that the portability data set was 
created successfully. 

No type 1 DSDR records for a 
tape data set were found. 

The checkid identified was 
selected by the user more than 
once. 

A duplicate entry was found for a 
selected checkid. 

Space could not be obtained for 
the sort table. The objects are 
printed first in, first out. 

Informational message stating the 
number of objects that did not 
compare. 

Informational message stating 
that the exported entry contained 
no data. 

An invalid dump item was 
specified in the dump argument 
list. 

Invalid array header parameters 
were specified in the dump 
argument list. 

The dump routine was invoked 
through a UDUMP macro. 

A dump was requested through a 
UDUMP macro. 

The number of tracks and the 
cylinder and head address could 
not be restored in the VTOC. 

High-order bit in reason code 
returned by SVC 126 was on, 
indicating an error updating 
inventory. 

MAXID indicates no parameters 
are defined for this command, but 
ECTNOPD indicates that 
parameters were coded. 

704 OS/VS2 Access Method Services Logic 



Messages to Module Cross Reference 

Message STIO Module Procedure Situation That Caused Message 

IDCt5021 DE0-5 IDCDEOt MODELPRC Security information was 
(without suppressed when a model object 
VS1.03.807) was retrieved from the catalog. 
IDCDE02 
(with 
VS1.03.807) 

IDCt5431 ALO-I8 IDCALOI CHECKPRC New KEY /RECORDSIZE values 
equal to old default values. 

IDCt5441 ALO-I9 IDCALOI CHECKPRC New KEY /RECORDSIZE values 
equal to old non-default values. 

IDCt5611 LCt-2 IDCLC02 ANSVPROC The UGPOOL request for a larger 
catalog work area failed. More 
space was required to process the 
associations. 

LOCPROC The UGPOOL request for a larger 
catalog work area failed. A 
catalog entry required more 
space. 

IDCt5621 LCt-3 IDCLCOl ENTPROC Only space entries were 
requested; however, an entry in 
the entry list is greater than six 
characters. 

IDCt5641 LCI-5 IDCLCOI RTEPROC An entry retrieved from the 
catalog is not a type that can be 
listed. 

IDCI5651 LCt-6 IDCLCOl ENTPROC An entry retrieved from the 
catalog and specified in the user's 
entry list is not one of the types 
requested by the user. 

Diagnostic Aids 705 



M.....es to Module Cross Reference 

Messaae S'f1D Module Procedure 	 Situation lbat Caused Message 

IDCt566I LCt-8 IDCLCOI ENTPROC 	 Either (t) the correct password 
was not supplied for a cluster or 
AIX entry and so the data and 
index and path association 
information could not be 
processed, or (2) the correct 
password was not supplied for an 
entry and the user requested more 
information than merely entry 
names, or (3) another type of 
catalog locate error occurred. 

GNXTPROC 	 Either the correct password was 
not supplied for an entry and the 
user requested more information 
than merely entry names, or 
another type of catalog locate 
error occurred. 

RTEPROC 	 Either (t) the correct password 
was not supplied for a cluster or 
AIX entry, and, even though the 
user requested only entry names, 
the names of the data and index 
or path association were not 
returned by the catalog, or (2) the 
correct password was not supplied 
for a data or index or path entry 
associated with a cluster or AIX 
entry, and field information other 
than entry names was not 
returned by the catalog, or (3) a 
non-supported entry type was J
returned from the catalog. 

IDC t 5671 LCt-9 IDCLCOt RTEPROC 	 Retrieval of a data or index or 
path entry associated with a 
cluster or AIX entry was 
attempted, using the control 
interval number of the associated 
entry contained in the cluster or 
AIX entry. However, the entry 
could not be found in the catalog. 

IDCLC02 CDIPROC 	 Retrieval of a data or index or 
path entry associated with a 
cluster of AIX entry was 
attempted, using the control 
interval number of the associated 
entry contained in the cluster or 
AIX entry. However, the entry 
could not be found in the catalog. 

VPROC 	 Retrieval of the data set names 
associated with a data space was 
attempted using the control 
interval number of the associated 
entry contained in the data space. 
However, the entry could not be 
found in the catalog. 

..J 

706 OS/VS2 Access Method Services Logic 



Messages to Module Cross Reference 

Message STID Module Procedure 	 Situation That CalLWd Message 

IDC I 5691 LCI-12 IDCLCOI INITPROC 	 The EXPIRATION LlSTCAT 
option was specified with entry 
type(s) that contain either no 
expiration date field or an 
expiration date field that is never 
initialized. 

lOCI 5741 PR0-22 IDCRPOI CATCOMP 	 More than 100 true name entries 
failed a comparison test during 
catalog reload. Processing 
continues but comparison does 
not. 

IDCI5751 PR0-23 IDCRPOI CATCOMP 	 A true name record existed on a 
backup or target catalog without a 
corresponding record on the 
backup or target catalog. 

IDCI595I XPO-6 IDCXPOI CLUSPROC 	 Passwords were suppressed when 
the object to be exported was 
retrieved from the catalog. 

IDCI63 II CC0-4 IDCCCOI CATALOG 	 VSAM catalog management gave 
a return code of 8 after trying to 
define the OS/VS catalog entry. 
The duplicate data set name 
started with 'SYS I.'. 

IDC1632I CC0-2 IDCCCOI CVPEPROC 	 The CVOLEQUATES parameter 
was missing or the volume serial 
number in the Control Volume 
Pointer Entry did not match a 
volume serial number in the 
CVOLEQUATES parameter. 

~ IDC1638I CCO-I4 IDCCCOI GIPEPROC 	 A Generation Index Pointer Entry 
has been found and the "alias 
processing" flag is on. 

IDCl6441 BI0-5 IDCBI01 SORTPROC 	 The base cluster record 
BIO-I 7 	 identified in the message was too 

short to contain the entire 
alternate key. 

IDCI6451 BI0-6 IDCBIOI BLDPROC 	 Multiple occurrences of the 
BIO-I8 	 same alternate key have been 

encountered in building an 
alternate index defined with the 
UNIQUEKEYattribute. 

IDCI6461 BI0-7 IDCBIO! BLDPROC 	 The alternate index record 
identified in the message was too 
short to contain all the base 
cluster pointers. 

IDCI6531 BIO-I4 IDCBIOI FINPROC 	 The alternate index was built but 
non terminating errors were 
encountered. 

IDC1661I RC0-6 IDCRCO! EXPORTDR 	 Informational message stating 
that the data set exported was 
out-of-synch. 

IDC I 6621 RC0-7 IDCRCOI EXPORTDR 	 Informational message stating 
that the data set was not exported 
and was out-of-synch. 

Diagnostic Aids 707 

L 



Messages to Module Cross Reference 

Message 


IDC16631 


IDC16641 

IDC16671 

IDC16781 

IDC16791 

IDC18601 

IDC18641 

IDC18651 

IDC 1 8661 

IDC18671 

IDC 1 8701 

IDC1871I 

IDC18751 

STID 


RC0-8 


RC0-9 


RCO-12 


RC0-2 


RC0-4 


CK0-5 


CK0-9 


CKO-IO 


CKO-ll 


CKO-l2 


LRI-l 

LRI-2 

LRl-15 

Module 

IDCRC02 

IDCRC02 

IDCRCOI 

IDCRCOI 

IDCRCOI 

IDCCKOI 

IDCCKOI 

IDCCKOI 

IDCCKOI 

IDCCKOI 

IDCLROI 

IDCLR02 

IDCLROI 

IDCLR02 

IDCLROI 

Procedure 

CLUSPROC 

NVSMPROC 

OBJVOLCK 

EXPORTDR 

IDCCKOI 

IDCCKOI 

DSDRVOLS 

GETNEXT 

DSDRPROC 

GETPRT 

IDCLR02 

GETPRT 

IDCLR02 

TCICTCR 

Situation That Caused Message 

Catalog field could not be located 
for a path to a VSAM cluster or 
an alias association to a 
nonVSAM data set or a 
nonVSAM association to a GDG. 

Invalid or no association to a 
GDG for a nonVSAM data set. 

Volumes are out of synch because 
data set is not on both volumes. 

An error occurred while 
processing an association for an 
object being exported. 

The timestamps or CI of a 
multivolume data set were not 
equal. 

The checkid selected by the user 
wasn't found in the checkpoint 
data set. 

No CHR records were found in 
the checkpoint data set. 

A type 2 DSDR record was 
expected but not found. 

End-of-data occurred in the 
checkpoint data set while DSDR 
records were being processed. 

Volume sequence number for a 
tape data set exceeded the volume 
of volumes. ;) 
An I/O error occurred while 
reading the CRA. 

An I/O error occurred while 
reading the CRA. 

An I/O error occurred while 
reading the catalog. 

An I/O error occurred while 
reading the catalog. 

The CI from the catalog record 
could not be found in the CTT 
table therefore it could not be 
translated. 

708 OS/VS2 Access Method Services Logic 



Messages to Module Cross Reference 

Message STID Module 

IDC18781 LRl-9 IDCLROI 

Procedure 

CATOPEN 

CKEYRNG 

CRAOPEN 

CTTBLD 

GETPRT 

INTASOC 

INTSORT 

INTVEXT 

PRTCMP 

PRTDMP 

PRTOJVL 

PRTVOL 

IDC 1 8801 

IDC1881I 

IDC18851 

LRI-ll 

LRI-12 

LRl-17 

IDCLROI 

IDCLROI 

IDCLROI 

PRTVOL 

INITLZE 

PRTMCWD 

Situation That Caused Message 

IDCRC04 encountered an error 
while searching for the catalog 
name in the cluster record of the 
catalog. 

IDCRC04 encountered an error 
while searching for the high key 
value in a given CRA record. 

IDCRC04 encountered an error 
while searching for either the 
owning catalog name or the 
volume serial in the CRA record. 

IDCRC04 encountered an error 
while searching for the entry type 
of the catalog CI in the CRA 
record. 

IDCRC04 encountered an error 
while searching for the entry type 
or the entry name in the CRA 
record. 

IDCRC04 encountered an error 
while searching for the associated 
entry type or entry name fields in 
the CRA records. 

IDCRC04 encountered an error 
while searching for the name in a 
given CRA record. 

IDCRC04 encountered an error 
while searching for the extension 
pointer in a given CRA record. 

IDCRC04 encountered an error 
while searching for the used 
length field in a given CRA 
record. 

IDCRC04 encountered an error 
while searching for the used 
length field in a given CRA 
record. 

IDCRC04 encountered an error 
while searching for the volume 
information or high key value in a 
given CRA record. 

IDCRC04 encountered an error 
while searching for the volume 
timestamp information in a given 
catalog or CRA record. 

Timestamp for the format-4 
record could not be read for the 
CRAvolume. 

Alternate output data set OPEN 
failed. 

IDCRC04 encountered an error 
while searching for mismatched 
fields in a given CRA record. The 
CRA record had previously been 
read and had indicated that 
mismatches existed. 

Diagnostic Ai<Js 709 



Messages to Module Cross Reference 

Message 

IDC1887I 

IDC1890I 
(VSl.03.807) 

IDC18911 
(VS2.03.807) 

IDC1927I 

IDC1968I 

ICD1969I 

IDC2011I 

IDC20351 

IDC2 1 001 

IDC2tOlI 

IDC2360I 

STID 

RC0-22 

DLO-12 

DLO-13 

EXO-12 

VSO-ll 

VSO-19 

VS0-20 

VSO-12 

UVO-12 

TP6-3 

SA7-3 

SA7-4 

SA7-8 

Module 

IDCRCOI 

IDCDLOI 

IDCDLOI 

IDCPMOI 

IDCVSOI 

IDCVSOI 

IDCVSOI 

IDCVSOI 

IDCSA08 

IDCSA09 

IDCDLOI 

IDCVS03 

IDCTP06 

IDCSA07 

IDCSA07 

IDCSA07 

Procedure 

SCANCRA 

TIMESTAMP 

CATCALL 

CATCALL 

MARGPARM 

VTOCPUT 

VTOCPUT 

VTOCPUT 

VTOCPUT 

IDCSA08 

IDCSA09 

MORESP 

GETBLK 

IDCTP06 

GETENT 

UPDATENT 

IDCSALC 

Situation lbat Caused Message 

I/O error encountered on a CRA .~
record. 

Volume timestamp could not be 

obtained. 


Catalog management indicated 

that the RACF profile of the data 

set being deleted could not itself 

be deleted because it is ineligible 

for deletion. 


When deleting a RACF indicated 

data set, the RACF profile could 

not be found. 


Margin values specified are 

invalid. 


An error occurred during reading 

or updating of the VSAM time 

stamp. 


An error occurred during reading 

or updating of the VSAM time 

stamp. 


An error occurred during reading 

or updating of the VTOC VSAM 

timestamp. 


An error occurred during reading 

or updating of the VTOC and 

prevented the alternate track 

information from being restored 

after the copy of data. 


A function was requested that 

required data sets to be scratched, 

but not enough virtual storage was 

available to build the parameter 

list for the SCRATCH macro. 


There was insufficient storage for 

the ECB and the message area 

that are required for SVC 126. 


Insufficient main storage was 

available for a work area for 

VSAM catalog management. 


Insufficient storage for volume 

VTOC processing. 


Invalid ERCNVT AB passed to 

UERROR. 


The return code for an OS locate 

request was neither 0 nor 8. 


The return code from an OS 

recatalog request was neither 0 

nor 8. 


The ULOCA TE function, after 

locating a data set name in the 

catalog, determined that either 

the data set resides on a different 

device type than the catalog 

indicates or a duplicate data set 

name exists. 


710 OS/VS2 Access Method Services Logic 



Messages to Module Cross Reference 

Message SfiD 

IDC23641 SA7-12 

IDC2370I 105-1 

IDC23711 105-2 

IDC23721 105-3 

IDC23731 105-6 

IDC2374I 105-7 

IDC23751 105-8 

105-9 

IDC23761 105-7 

IDC23811 SA6-1 

IDC23821 SA6-2 

IDC23861 SA6-6 

IDC23871 SA6-7 

IDC23881 SA6-8 

IDC23891 SA6-9 

IDC23901 SA6-10 

IDC23911 SA6-11 

Module 

IDCSA07 

IDCIOO5 

IDCIOO5 

IDCIOO5 

IDCIOO5 

IDCIOO5 

IDCIOO5 

IDCIOO5 

IDCIOO5 

IDCSA06 

IDCSA06 

IDCSA06 

IDCSA06 

IDCSA06 

IDCSA06 

IDCSA06 

IDCSAlO 

Procedure 

VSAMLOC 

READJFCB 

BLDBLK 

CKOPN 

RETRY 

CLOSESTD 

SYNAD 

SYNAD 

CLOSESTD 

UCBPOST 

UCBCHECK 

MOUNTCTL 

MOUNTCTL 

DEMNTVOL 

DEMNTVOL 

ENQDEQ 

SETSTAE 

Situation That Caused Message 

The ULOCATE function, after 
locating a data set name in the 
catalog, determined it was not a 
nonVSAM data set. The situation 
was probably caused by a 
duplicate data set name. 

The READJFCB routine was 
unable to read the JFCB entry. 

The storage required to perform 
I/O processing was unavailable. 

The OPEN SVC encountered an 
error that prevented the opening 
of the DCB and further I/O 
processing. 

Invalid password. 

The CLOSE SVC encountered an 
error that prevented the closing of 
the DCB and further I/O 
processing. 

A SYNAD error occurred during 
EXCP I/O processing; the 
message indicates the data set or 
volume label. 

A SYNAD error occurred during 
EXCP I/O processing; the 
message indicates the data set or 
volume label. 

CLOSE SVC encountered an 
error which resulted in the 
CLOSE ABEND exit being 
entered. 

The UCB could not be updated 
because updating would cause 
duplicate label in the system. 

The volume was not mounted for 
exclusive use because it was 
mounted when dynamic 
allocation was invoked. 

The previous volume could not be 
demounted; therefore, the 
assigned unit could not be used to 
mount needed volumes. 

The specified volume could not be 
mounted. 

The specified volume could not be 
demounted. 

The specified volume was 
demounted but data could not be 
destaged. 

The volume serial number is 
shared; therefore, the specified 
volume could not be enqueued for 
exclusive use. 

The EST AE macro returned a 
nonzero return code that 

Diagnostic Aids 711 



Messages to Module Cross Reference 

Message STID Module Procedure 	 Situation lbat Caused Message 

prevented recovery protection in .~ 
case of an abnormal termination. 

IDC2399I SA7-7 IDCSA07 IDCSALC 	 The ULOCATE function, after 
locating a data set name in the 
catalog, determined that either 
the data set resides on a different 
volume than the catalog indicates 
or a duplicate data set name 
exists. 

IDC2533I AL0-9 IDCALOI MEMRENAM 	 A member name is specified with 
a generic name. 

IDC2552I DL0-2 IDCDLOI PARAMCHK 	 The type of the entry to be deleted 
was retrieved from the catalog, 
but the type is not one the user is 
allowed to delete. 

IDC2553I DL0-3 IDCDLOI PARAMCHK 	 The type of the entry to be deleted 
was retrieved from the catalog, 
but the type conflicts with the 
erase option. 

IDC2557I DL0-7 IDCDLOI PARAMCHK 	 The scratch option was specified 
for an object of an invalid type. 

IDC2559I DL0-9 IDCDLOI MEMDLETE 	 A generic name was specified 
when attempting to delete a 
partitioned data set member. 

IDC2563I LCI-4 IDCLCOI INITPROC 	 Either the allocation request 
conflicts with the type 
specification of cluster, PGSPC, 
AIX, PATH, ALIAS, or GDG, 
space, nonVSAM,.or user catalog, 
or the volume request conflicts 
with the type specification of 
cluster, PGSPC, AI X, PATH, 
ALIAS, or GDG. 

IDCLOO2 AUPROC 	 The allocation request conflicts 
with a nonVSAM, ALIAS, or 
GDG or user catalog entry 
specified in the entry list or 
volume request conflicts with an 
alias entry specified in the entry 
list. 

VPROC 	 The allocation request conflicts 
with a space (volume) entry 
specified in the entry list. 

IDC2616I MPO-l6 IDCMPOI CLUSPROC 	 A path import operation failed. 

IDCRMOI CLUSPROC 	 A path import operation failed. 

IDC26 1 81 MPO-l8 IDCMPOI CLUSPROC 	 An invalid OBJECTS 
subparameter was found. 

IDC26211 MP0-21 IDCRMOI 	 CLUSPROC The object named could not 
NVSAMPROC be imported. 
GDGPROC 
UCATPROC 
ALISPROC 

IDC2630I CC0-3 IDCCCOI CATALOG 	 VSAM catalog management gave 
a return code of 8 after trying to 
define the OS/VS catalog entry. 
A locate on the VSAM catalog 

712 OS/VS2 Access Method Services Logic 

http:nonVSAM,.or


Messages to Module Cross Reference 

Message STID Module Procedure 	 Situation That Caused Message 

indicated that the duplicate data 
set is a VSAM data set. 

IDC26401 BIO-l IDCBIOI LOCPROC 	 The file identified via OUTFILE 
or OUTDATASET is not an 
alternate index. 

IDC26421 BI0-3 IDCBIOI LOCPROC 	 The alternate index identified in 
the message is not related to the 
base cluster identified via INFILE 
or INDATASET. 

IDC26471 BI0-8 IDCBIOI INITPROC 	 Storage was not available to 
obtain buffers and work areas. 

IDC26481 BI0-9 IDCBIOI JCPROC DD statements for sort 
FINPROC work files are either missing or in 

error. 

IDC26491 BIO-IO IDCBIOI DEFPROC 	 A sort work area was obtained 
smaller than that required and job 
control for sort work files was 
missing or in error. 

IDC2650I BIO-I I IDCBIOI DEFPROC 	 An internal sort could not be 
completed and job control for sort 
work files was missing or in error. 

IDC26511 BIO-12 IDCBIOI DEFPROC 	 Define of sort work files failed. 

IDC26541 BIO-I5 IDCBIOI FINPROC 	 The alternate index was not built 
due to severe errors. 

L 
IDC26551 BIO-I 6 IDCBIOI CATPROC Catalog information was not 

returned for a locate request. 

IDC26561 BIO-I9 IDCBIOI CATPROC 	 A VSAM catalog locate failed 
with a nonzero return code. 

IDC2660I RC0-3 IDCRCOI CKNAMES 	 The object named is not a VSAM 
cluster or valid nonVSAM data 
set. 

IDCRC02 CLUSPROC 	 The object named is not a VSAM 
cluster. 

GDGPROC 	 The object names is not a GDG 
or has invalid associations to a 
GDG. 

NVSMPROC 	 The object named was not a 
nonVSAM data set or a user 
catalog. 

IDC26661 RCO-II IDCRCOI SYNCH 	 The selected entry was not found 
in the selected CRA. 

IDC26681 RCO-13 IDCRCOI OBJVOLCK 	 A required volume was not 
supplied in the CRA keyword. 

IDC26711 RCO-l6 IDCRCOI CKCATNM 	 The CRA has a different name 
than the others being processed. 

IDC26731 RCO-I9 IDCRCOI BUILDCRV 	 Required information about the 
volume could not be obtained. 

IDC26751 RC0-21 IDCRCOI CKNAMES 	 The same name was found in 
more than one CRA. 

L IDC26771 RCO-I IDCRCOI EXPORTDR The data set was not exported 
because of the error indicated in 
previous messages. 

Diagnostic Aids 713 



Messages to Module Cross Reference 

Message 

IDC28721 

IDC28731 

IDC28761 

IDC28791 

IDC28821 

IDC28841 

IDC28861 

IDC29081 

'" 

111 

IDC29091 

;,,', • t'< IDC2910I 

IDC29121 

STID Module 

LRt-3 IDCLROt 

LRt-4 IDCLROt 

LRI-6 IDCLROI 

LRt-1O IDCLROt 

LRI-\3 IDCLROt 

LRI-7 IDCLROI 

RCO-I8 IDCRCOt 

100-36 IDCIOO3 

IDCSA08 

100-37 IDCSA08 
(without 
(SU 5752-824) 
SAO-t 
(with 
(SU 5752·824) 

100-38 IDCSA08 
(without 
(SU 5752-824) 
SA0-2 
(with 

(SU 5752-824) 

100-40 IDCSA08 
(without 
(SU 5752-824) 
SA0-4 
(with 
(SU 5752-824) 

Procedure 

CRAOPEN 

CATOPEN 

CRAOPEN 

CRAOPEN 

CATOPEN 

CTIBLD 

CATOPEN 

ERRCK 

DSINFO 

IDCSA08 

IDCSA08 

IDCSA08 

IDCSA08 

Situation That Caused Message 

The catalog specified in the input j 
for compare was not the owning 
catalog found in the CRA. 

Catalog could not be opened, 
therefore the compare option was 
ignored. 

The CRA opened belongs to a 
catalog other that the one 
specified in the compare. 

A verify was issued after opening 
a CRA and it failed. 

IDCRC04 could not find the 
catalog name from the cluster 
record or the volume serial of the 
catalog so it could not lock out all 
other usage of the CRA while it is 
being listed. 

LlSTCRA encountered an error 
reading the catalog control 
record. 

A verify was issued after opening 
a catalog and it failed. 

CRA can not be opened because 
of some errors encountered. 

No data set or volume is allocated 
under that indicated DD name, or 
no DD statement corresponding 
to the given DD name could be 
found. 

No volume is allocated under the 
indicated DD name, or no DD 
statement corresponding to the 
given DD name could be found. 

An error occurred while an 
attempt was being made to 
scratch the indicated data set. 

None of the volumes specified for 
the data set is mounted. 

The data set to be scratched is 
password-protected, and the 
operator didn't supply the proper 
password. 

714 OS/VS2 Access Method Services Logic 



Messages to Module Cross Reference 

Message 	 STID Modale Procedure SItuatIon That Caused Message 

IDC29 I 31 	 IO~1 IDCSA08 IDCSA08 The OVERRIDE option wasn't 
(without specified, and the data set's 
(SU 5752-824) retention period hasn't expired. 
SA0-5 
(with 
(SU 5752-824) 

IDC2914I IO~2 IDCSAOS IDCSAOS The VTOC couldn't be read 
(without because of an I/O error. 
(SU 5752-824) 
SA0-6 
(with 
(SU 5752-824) 

IDC29 I 51 IO~3 IDCSA08 IDCSA08 A required unit was not available 
(without for mounting. 
(SU 5752-824) 
SA0-7 
(with 
(SU 5752-824) 

IDC2916I 	 IO~S IDCSAOS IDCSA08 The data set to be scratched was 
(without in use. 
(SU 5752-824) 
SAO-S 
(with 
(SU 5752-824) 

IDC2917I SA0-9 IDCSA08 IDCSAOS No RACF profile could be found 
(SU 5752-824) for the specified data set. 

IDC2918I SAO-to IDCSA08 IDCSAOS The user does not have the 
(SU 5752-824) proper RACF authorization for 

the specified data set. 

IDC2919I SAO-II IDCSA08 IDCSA08 The parameter list passed to 
(SU 5752-824) URACHECK macro is invalid. 

IDC2930I 	 SAO-I 2 IDCSA08 IDCSAOS The data set to be scratched 
(SU 5752-824 	 is RACF-protected and the 

caller doesn't have the 
proper authorization. 

IDC2950I TPI-I IDCTPOI IDCTPOI 	 Either (I) no format list or static 
text identification was passed as 
input, or (2) no valid bits in 
FMTFLGS were turned on, or (3) 
the input or output length 
specified was less than 1. 

IDC295 I I TPI-2 IDCTPOI IDCTPOI 	 The output column specified is 
not within the print line. 

IDC2952I TPI-3 IDCTPOI BDCONV 	 For binary to decimal 
conversions, the input data length 
was more than 4 or the converted 
length was more than 16. 

PUPCONV 	 For packed to unpacked 
conversions, the converted length 
was more than 15, or the input 
data length was more than S. 

IDC2953I 	 TPI-4 IDCTPOI REDO A REDO structure is nested. 

IDC2954I TPI-6 IDCTP05 IDCTP05 	 The requested static text entry 
was not in the specified module. 

Diagnostic Aids 71 5 

L 



Messages to Module Cross Reference 

Message 


IDC29551 


IDC29601 


IDC29611 


IDC29621 


IDC29631 


IDC29641 


IDC29651 


IDC29661 


IDC29671 


IDC29711 


IDC29721 


STID 


TPI-7 


VS0-2 


VS0-3 


VSO-I5 


VSO-l6 


VS0-4 


VS0-5 


VSO-17 


VSO-I8 


VS0-6 


VS0-7 


VS0-8 


VSO-to 


VS0-21 


VS0-23 


Module 

IDCTPOI 

IDCVSOl 

IDCVSOI 

IDCVSOI 

IDCVSOI 

IDCVSOl 

IDCVSOl 

IDCVSOl 

IDCVSOI 

IDCVSOI 

IDCVSOI 

IDCVSOI 

IDCVSOI 

IDCVSOI 

IDCVS03 

Procedure 


PUPCONV 


NVSAMCHK 

FMTICHK 

FMTICHK 

FMTtCHK 

CATCHK 

FMT4REAO 

FMT4REAO 

FMT4REAO 

SCRATCH 

SCRATCH 

RECATLOG 

RECATLOG 

OPENVTOC 

USAGE 

Situation That Caused Message 

An invalid packed decimal field 
was passed by the caller. J 
A password-protected data set 

was found on the VTOC but no 

00 name with that data set name 

was specified in the 

P ASSWOROFILE keyword. 


The caller indicated that no 

nonVSAM data sets could reside 

on the volume. However, a 

Format-l OSCB was found for a 

non VSAM data set. 


The caller indicated that no 
nonVSAM data sets could reside 
on the volume. However, a 

.Format-l OSCB was found for a 
nonVSAM data set. 

The caller indicated that no 
non VSAM data sets could reside 
on the volume. However, a 
Format-l OSCB was found for a 
nonVSAM data set. 

The volume entry could not be 
found in the VSAM catalog. 

The volume services module 
positioned to the first record in 
the VTOC, but it was not a 
Format-4 OSCB. 

The volume services module 
positioned to the first record in 
the VTOC, but it wasn't a 
Format-4 OSCB. 

The volume services module 
positioned to the first record in 
the VTOC, but it wasn't a 
Format-40SCB. 

An error occurred that prevented 

the scratching of data sets. The 

volume is still flagged as a VSAM 

volume. 


An error occurred reading or 
updating the VTOC that 
prevented the scratching of any 
more data sets. 

An I/O error occurred that 
prevented any recataloging of 
nonVSAM data sets. 

An I/O error occurred that 
terminated the recataloging of 
data sets. 

A reserve for a volume with the 
HAVE option was unsuccessful. 

A nonzero return code was 
received from LSPACE. 

716 OS/VS2 Access Method Services Logic 



Messages to Module Cross Reference 

Message STlD Module Procedure 

IDC3003I UV0-3 IDCALOI IDCALOI 

IDCBIOI TERMPROC 

IDCCCOI IDCCCOl 

IDCDE01 IDCDEOl 

MODELPRC 

IDCLCOl IDCLCOI 

IDCMPOl IDCMPOI 

IDCPROl IDCPROl 

TEXTPSET 

DELIMSET 

IDCRCOl EXITTHE 

IDCRMOl IDCRMOl 

IDCRPOl IDCRPOI 

DELIMSET 

Situation That Caused Message 

The VSAM catalog could not be 
opened, or another severe error 
occurred. 

Either (I) a severe error was 
encountered in processing the 
base cluster, or (2) the 
EXTERNALSORT parameter 
was specified but the job control 
for sort files was missing or in 
error. 

A severe error occurred. 
Conversion of the OS catalog was 
not attempted or terminated if 
begun. 

The VSAM catalog to contain the 
defined object could not be 
opened, or another severe error 
occurred. 

The VSAM catalog containing the 
model object could not be 
opened. 

A severe error occurred. Listing 
of the catalog was not attempted 
or terminated if begun. 

A severe error occurred. 

Either (I) an error occurred 
opening the input or alternate 
output data sets, or (2) a 
unrecoverable error occurred 
while retrieving or printing a 
record, or (3) more than three 
I/O errors occurred while 
retrieving records. 

The static text subtitle line could 
not be retrieved. 

An incompatible use of delimiters 
was found during a data set print 
operation. 

Function was not completed 
because a severe error was 
encountered. 

A severe error occurred. 

Either (I) an error occurred 
opening the input or output data 
sets, or (2) a unrecoverable error 
occurred while copying the data 
set, (3) more than three I/O 
errors occurred while copying the 
data set, (4) an error occurred 
while attempting a catalog reload, 
or (5) a nonrelative record input 
data set did not have a non-empty 
relative record output data set. 

An incompatible use of delimiters 
was found during a data set copy 
operation. 

Diagnostic Aids 717 



Messages to Module Cross Referenee 

Message STID 	 Module Procedure 

IDCRS05 CKERR 
(VS2.03.808) 

IDCVYOI 	 IDCVYOI 

IDCXPOl IDCXPOI 

IDC3004I UV0-4 IDCALOl ALTERPRC 

DALCPROC 

IDCALOI 

INDEXPRC 

LOCATPRC 

IDCCCOl CNVTINIT 

IDCDEOI 	 IDCDEOl 

DALCPROC 

IDCDE02 	 ALLCPROC 

KEYPROC 

MODELPRC 

NAMEPROC 

PROTPROC 

IDCIOOI 	 PUTREP 

IDCIOO2 	 BUILDACB 

BUILDDBK 

BUILDRPL 

Situation lbat Caused Message 

A severe error occurred which 
prevented further processing. 

The VSAM data set to be verified 
could not be opened, or the verify 
was not successful. 

A severe error occurred. 

Storage was not available for one 
of the following: the volume list 
or the P ASSW ALL field. 

Storage was not available for 
volume list. 

Storage was not available for the 
CTGPL, CTGFV, and CTGFLs. 

Storage was not available for the 
index parameter list if KEYS was 
specified. 

Storage was not available for the 
catalog work area. 

Storage was not available for: 22 
levels of OS/VS catalog index 
blocks, VSAM parameter list, 
data addressed by the VSAM 
parameter list, or a VSAM catalog 
work area. 

Storage was not available for the 
CTGPL and CTGFVs. 

Storage was not available for J 
volume list. 

Storage was not available for one 
of the following: CTGFLs, the 
volume list, the file sequence list, 
or the device type list. 

Storage was not available for one 
of the following: the AMDSBCAT 
CTGFL and the AMDSBCAT 
field, or the key range list. 

Storage was not available for the 
catalog parameter list or the 
catalog work area. 

Storage was not available for the 
CTGFLs. 

Storage was not available for the 
CTGFLs needed to set up the 
protection attributes. 

Storage was not available for the 
input work area. 

Storage was not available for the 
ACB or the EXLST. 

Storage was not available for the 
required I/O areas. 

Storage was not available for the ..J
input work area or the RPL. 

718 OS/VS2 Access Method Services Logic 



Messages to Module Cross Reference 

Message STID Module Procedure 

CKNONOP 

IDCLCOI 

DSDATA 

OPENRTN 

INITPROC 

IDCLROI ADDASOC 

BLDVEXT 

CTTBLD 

INITLZE 

IDCMPOI 

INTASOC 

FPLPROC 

BPASPROC 

CLUSPROC 

CPLPROC 

CTLPROC 

DELTPROC 

FVTPROC 

LVLPROC 

Situation That Caused Message 

No storage is available for the 
input work area required to 
process spanned, nonVSAM 
records. 

No space available to read the 
Label Cylinder. 

Storage was not available for the 
IDCSTR. 

Storage was not available for one 
of the following: catalog 
parameter lists, catalog work 
areas, or the static text used in the 
catalog listing. 

Storage was not available for the 
association table extension. 

Storage was not available for the 
VEXTTBL extension. 

Storage was not available for the 
CI translate table. 

Storage was not available for 
the initial ASSOCTBL and 
VEXTTBL. 

Storage was not available for the 
association table extension. 

Storage was not available for 
CTGFLs. 

Storage was not available for the 
P ASSW ALL field. 

Storage was not available for the 
catalog work area. 

Storage was not available for the 
CTGPL. 

Storage was not available for the 
catalog work area. 

Storage was not available for the 
catalog work area. 

Storage was not available for the 
CTGFV. 

Storage was not available for one 
of the following: the catalog work 
area, CTGFLs, or volume serial 
lists. 

Diagnostic Aids 719 

L 



Messages to Module Cross Reference 

Message STlD Module 

IDC3004I. IDCPMOI 
(continued) 

IDCRCOI 

Procedure 

TESTPARM 

IDCRCOI 

IDCRC02 CLUSPROC 

CTLGPROC 

GDGPROC 

LOCPROC 

NVSMPROC 

SAVEPROC 

IDCRIOI GETSPACE 

IDCRI02 

INREPEAT 

Situation That Caused Message 

Storage was not available for the 
Test Option Data Area. 

Storage was not available for one 
of the tables required by 
EXPORTRA. 

Storage was not available for the 
control record output buffer. 

Storage was not available for the 
catalog work area. 

Storage was not available for the 
control record output buffer. 

Storage was not available for the 
CPL, FPL and the catalog work 
area. 

Storage was not available for the 
control record output buffer. 

Storage was not available for the 
input record save area. 

Storage was not available for The 
FDT. 

Storage was not available for one 
of the following: work space or 
the FDT. 

Storage was not available for the 
FDT. 

J 

720 OS/VS2 Access Method Services Logic 



Messages to Module Cross Reference 

Message STin Module Procedure 

IDC30041 RIINIT 
(continued) 

SCANCMD 

IDCRMOI ALISPROC 

BFPLPROC 

BPASPROC 

CLUSPROC 

CPLPROC 

CTLGPROC 

DELTPROC 

FVTPROC 

GDGPROC 

LVLRPROC 

NFVTPROC 

NVSMPROC 

RANGPROC 

UCATPROC 

IDCRSOI IDCRSOI 
(VS2.03.808) 

INIT 

IDCRS03 GETTAB 
(VSl.03.808) 

PROCVOL 

VERB 

IDCRS04 NINUT 
(VS2.03.80S) 

NXPND 

Situation That Caused Message 

Storage was not available for 
the Historical Data Area. 

Storage was not available for the 
FDT. 

Storage was not available for the 
catalog data record buffer. 

Storage was not available for the 
FPLs. 

Storage was not available for the 
PASSWALL information. 

Storage was not available for the 
buffer area or volume list. 

Storage was not available for the 
catalog parameter list. 

Storage was not available for the 
catalog work area. 

Storage was not available for the 
catalog work area. 

Storage was not available for the 
FVTor FPLs. 

Storage was not available for the 
catalog data record. 

Storage was not available for the 
volume serial list, the device types 
list, or the file sequence number 
list. 

Storage was not available for the 
FVTor FPLs. 

Storage was not available for the 
catalog data record. 

Storage was not available for the 
range list. 

Storage was not available for the 
catalog data record. 

Storage was not available for 
automatic storage for 
modules IDCRSOI-IDCRS07. 

Storage was not available for any 
one of the following: record access 
blocks, umacro parameter lists, control 
interval translate table, and UIOINFO 
return area. 

Storage was not available for 
tables needed for association checking. 

Storage was not available for 
work areas for bit maps. 

Storage was not available for GDG 
association checking. 

Storage was not available for 
FIND processing. 

Storage was not available for the 
extension to the FIND work area. 

Diagnostic Aids 721 

L 



Messages to Module Cross Reference 

Message 

IDC3004I 
(Continued) 

STID Module 

IDCRS05 
(VS2.03.808) 

IDCRS06 
(VS2.03.808) 

IDCRS07 
(VS2.03.808) 

IDCXPOI 

IDC30061 UV0-6 IDCPROI 

IDCRPOI 

IDC3007I (See Note IDCALOI 
at end 
of list) 

IDCBIOI 

IDCDEOI 

IDCDEOI 
(without 
VS2.03.807) 
IDCDE02 
(with 
VS2.03.807) 

IDCDLOI 

Procedure 

BLDRLST 

BLDVLST 

WFDEF 

R~NMSETV 

SCRATCHP 

ALTRPROC 

CLUSPROC 

CTLGPROC 

DELTPROC 

LOCPROC 

MORESP 

DELIMSET 

DELIMSET 

IDCALOI 

CHECKPRC 

LOCATPRC 

FINPROC 

IDCDEOI 

MODELPRC 

CATCALL 

Situation 1bat Caused Message 

Storage was not available for the ..JRES VOL table. 

Storage was not available for the 
VOLSERTB table. 

Storage was not available for the 
work area used for the 
UCATLG parameter list to 
define the work file. 

Storage was not available for the 
CAMLST area for RENAME 
operations. 

Storage was not available for the 
volume list for the SCRATCH 
macro. 
Storage was not available for the 
CTGFV. 

Storage was not available for the 
control record output buffer. 

Storage was not available for the 
second catalog work area 
obtained when the first work area 
was too small. 

Storage was not available for the 
CTGPL or the catalog work area. 

Storage was not available for the 
CTGPL or the catalog work area. 

Storage was not available for the 
catalog work area. 

Beginning positioning failed. 

Beginning positioning failed. 

The catalog return code was 
nonzero for an alter request. 

The catalog return code was 
nonzero for a locate request. 

The catalog return code was 
nonzero for a locate request. 

The catalog return code was 
nonzero for a locate request 
against the base cluster or 
alternate index, or for a define 
request for external sort work 
files. 

The catalog return code was 
nonzero for a define request. 

The catalog return code was 
nonzero for a request to locate a 
model object. 

The catalog return code was 
nonzero for a delete request. This 
message is not issued for a return ..J 

722 OS/VS2 Access Method Services Logic 



Messages to Module Cross Reference 

Message STID Module Procedure 	 Situation That Caused Message 

code of 160, however, because 160 ~ 
indicates a normal condition. 

FINDTYPE 	 The catalog return code was 
nonzero for a locate request. 

IDCLC02 LOCPROC 	 The catalog return code was 
nonzero for a locate request. 

IDCMPOI CTLGPROC 	 The catalog return code was 
nonzero. 

DELTRPOC 	 The catalog return code was 
nonzero. 

IDCRC02 CTLGPROC 	 The catalog return code was 
nonzero for a locate request. 

IDCRMOI CTLGPROC 	 The catalog return code was 
nonzero for a define or alter 
request. 

DELTPROC 	 The catalog return code was 
nonzero for a delete request. 

IDCRSOI INIT The catalog return code was 
(VS2.03.808) nonzero for a locate request. 

IDCRS06 WFDEF The catalog return code was 
(VS2.03.808) nonzero for a define request. 

WFDEL 	 The catalog return code was 
nonzero for a delete request. 

IDCXPOI CTLGPROC 	 The catalog return code was 
nonzero for a delete, alter, or 
locate request. 

DELTPROC 	 The catalog return code was 
nonzero for a delete request. 

IDC3008I UV0-8 IDCSA02 IDCSA02 	 A UPROMPT or UQUAL macro 
was issued but Access Method 
Services was not invoked 
interactively with TSO. 

IDC3009I 	 (See Note IDCALOI IDCALOI The catalog return code was 
at end nonzero for an alter request. 
of list) 

CHECKPRC 	 The catalog return code was 
nonzero for a locate request. 

LOCATPRC 	 The catalog return code was 
nonzero for a locate request. 

IDCBIOI FINPROC 	 The catalog return code was 
nonzero for a locate request 
against the base cluster or 
alternate index, or for a define 
request for external sort work 
files. 

IDCCCOI CATALOG 	 The VSAM catalog management 
return code was nonzero for a 
define, locate, or alter request. 

IDCDEOI IDCDEOI 	 The catalog return code was 
nonzero for a define request. 

Diagnostic Aids 723 

L 



Messages to Module Cross Reference 

Message STID Module 

IDC30091 
(Continued) 

IDCDEOl 
(without 
VSl.03.807) 
IDCDE02 
(with 
VS2.03.807) 

IDCDLOI 

IDCLC02 

IDCMPOI 

IDCRC02 

IDCRMOI 

IDCRSOI 
(VS2.03.808) 

IDCRS06 
(VS2.03.808) 

IDCSA02 

IDCXPOI 

Procedure 

MODELPRC 

CATCALL 

FINDTYPE 

LOCPROC 

CTLGPROC 

DELTPROC 

CTLGPROC 

CTLGPROC 

DELTPROC 

INIT 

WFDEF 

WFDEL 

IDCSA02 

CTLGPROC 

DELTPROC 

Situation That Caused Message 

The catalog return code was 
nonzero for a request to locate a 
model object. 

~ 


The catalog return was nonzero 
for a delete request. This message 
is not issued for a return code of 
160, however, because 160 
indicates a normal condition. 

The catalog return code was 
nonzero for a locate request. 

The catalog return code was 
nonzero for a locate request. 

The catalog return code was 
,nonzero. 

The catalog return code was 
nonzero for a delete request. 

The catalog return code was 
nonzero for a locate request. 

The catalog return code was 
nonzero for a define or alter 
request. 

The catalog return code was 
nonzero for a delete request. 

The catalog return code was 
nonzero for a locate request. 

The catalog return code was 
nonzero for a define request. 

The catalog return code was 
nonzero for a delete request. 

During a UCIR macro, the VSAM 
catalog return code was nonzero 
for a generic locate. 

The catalog return code was 
nonzero for a delete, alter, or 
locate request. 

The catalog return code was 
nonzero for a delete request. 

724 OS!VS2 Access Method Services Logic 



Messages to Module Cross Reference 

Message STID 

IDC3010I UVO-ll 

IDC3012I TP6-9 

IDC3013I TP6-1O 

IDC3014I TP6-11 

IDC30161 TP6-12 

IDC30171 TP6-13 

IDC3018I TP6-14 

IDC3019I TP6-15 

IDC3020I TP6-16 

IDC30211 TP6-17 

IDC3022I TP6-18 

IDC3023I TP6-19 

IDC30241 TP6-21 

IDC30251 TP6-22 

IDC30261 TP6-23 

IDC3027I TP6-24 

IDC3028I TP6-25 

IDC3029I TP6-26 

IDC3030I TP6-27 

IDC30311 TP6-28 

Module 

IDCXPOI 

IDCMPOI 

IDCLC02 

IDCSA02 

IDCTP06 

IDCTP06 

IDCTP06 

IDCTP06 

IDCTP06 

IDCTP06 

IDCTP06 

IDCTP06 

IDCTP06 

IDCTP06 

IDCTP06 

IDCTP06 

IDCTP06 

IDCTP06 

IDCTP06 

IDCTP06 

IDCTP06 

IDCTP06 

IDCTP06 

Procedure 


RECPROC 


RECPROC 

ERRPROC 

IDCSA02 

CATERCNV 

CATERCN:V 

CATERCNV 

CATERCNV 

CATERCNV 

CATERCNV 

CATERCNV 

CATERCNV 

CATERCNV 

CATERCNV 

CATERCNV 

CATERCNV 

CATERCNV 

CATERCNV 

CATERCNV 

CATERCNV 

CATERCNV 

CATERCNV 

CATERCNV 

Situation That Caused Message 

The file identified in the INFILE 
parameter does not match that 
given in the EXPORT command 
or any paths over it. 

The file identified in the 
OUTFILE parameter does not 
match the name given in the 
IMPORT command or any paths 
over it. 

The locate function found that the 
name given for listing isn't in the 
specific catalog. 

The locate function found that the 
name given for a generic locate 
isn't in the specified catalog. 

Verbalization of catalog return 
code 8, Locate. 

Verbalization of catalog return 
code 8, Define. 

Error during catalog operation. 

Verbalization of catalog return 
code 4. 

Verbalization of catalog return 
code 20. 

Verbalization of catalog return 
code 56. 

Verbalization of catalog return 
code 60. 

Verbalization of catalog return 
code 68. 

Verbalization of catalog return 
code 72. 

Verbalization of catalog return 
code 80. 

Verbalization of catalog return 
code 84. 

Verbalization of catalog return 
code 148. 

Verbalization of catalog return 
code 156. 

Verbalization of catalog return 
code 172. 

Verbalization of catalog return 
code 176. 

Verbalization of catalog return 
code 184. 

Verbalization of catalog return 
code 192. 

Verbalization of catalog return 
code 196,200. 

Verbalization of catalog return 
code 204. 

Diagnostic Aids 725 



Messages to Module Cross Reference 

Message STID 

IDC30321 TP6-29 

IDC30331 TP6-30 

IDC3067I CMO-41 

CMO-42 

CMO-43 

IDC3070I CMO-36 

CMO-37 

CMO-38 

CMO-39 

CMO-S2 

CMO-S3 

IDC3 1 901 AL0-24 

IDC3200I RIO-l 

Module 

IDCTP06 

IDCTP06 

IDCVSOI 

IDCVSOl 

IDCVSOI 

IDCVS02 

IDCVS02 

IDCVS02 

IDCVS02 

IDCVS02 

IDCVS02 

IDCALOI 

IDCRIOI 

Procedure 

CATERCNV 

CATERCNV 

FMT4CHK 

FMT4CHK 

FMT4CHK 

PUT LAB 

PUT LAB 

PUTLAB 

PUTLAB 

PUTLAB 

PUTLAB 

PARAMCHK 

SCANCMD 

Situation That Caused Message 

Verbalization of catalog return ..Jcode 208. 

Verbalization of catalog return 
code 248. 

The caller indicated that the 
volume could not be owned by a 
VSAM catalog; however, the 
VSAM ownership bit was set. 

The caller indicated that the 
volume couldn't be owned by a 
VSAM catalog; however, the 
VSAM ownership bit was set. 

The caller indicated that the 
volume couldn't be owned by a 
VSAM catalog; however, the 
VSAM ownership bit was set. 

The volume serial number could 
not be updated on the volume 
label. 

The volume serial number 
couldn't be updated on the 
volume label. 

The owner name on the volume 
label could not be updated. 

The owner name on the volume 
label couldn't be updated. 

Neither the volume serial number 
nor the owner name could be 
updated. 

Neither the volume serial number 
nor the owner name could be 
updated. 

One of the parameters specified 
on the command is invalid for the 
entry type. 

The number of positional 
parameters found (PPARMCNT) 
exceeds the number defined in the 
descriptor for the current 
subparameter list (SUBCOUNT). 

726 OS/VS2 Access Method Services Logic 



Messages to Module Cross Reference 

Message STID Module 

IDC3201I RI0-2 IDCRIOt 

Procedure 

BUILDFDT 

CONVERT 

NXTFIELD 

PACKCVB 

IDC3202I 

IDC3203I 

IDC320SI 

RI0-3 

RI0-4 

RI0-6 

IDCRIOI 

IDCRIOI 

IDCRIOI 

ERRORt 

ERROR2 

DSIDCHK 

SCANCMD 

IDC32071 RI0-8 IDCRIOt ERROR I 

ERROR2 

IDC3208I RI0-9 IDCRIOI KWDPARM 

IDC32091 

IDC32 101 

RIO-to 

RIO-II 

IDCRIOI 

IDCRIOI 

KWDPARM 

POSPARM 

INREPEAT 

Situation That Caused Message 

The input constant length 
(UNITINDX) exceeds the 
maximum length defined by the 
descriptor. 

The input constant length 
(UNITINDX) exceeds the 
maximum length defined by the 
descriptor. 

The input constant length 
(UNITINDX) exceeds the 
maximum length that the 
Reader/Interpreter can handle 
(UNITMAX). 

The input constant length 
(UNITINDX) exceeds the 
maximum length defined by the 
descriptor. 

The remainder of a command was 
bypassed due to an error in it. 

The remainder of a command was 
bypassed due to an error in it. 

A data set name does not have the 
correct syntax. 

The closing parentheses of a 
subparameter list was found 
before any parameters were found 
in the list or an opening 
parentheses was found before any 
keyword was found. 

A severe error occurred. The 
condition code is set to 16, and 
the Reader/Interpreter will 
terminate processing. 

A severe error occurred. The 
condition code is set to 16, and 
the Reader/Interpreter will 
terminate processing. 

A keyword parameter, defined as 
having a subfield, does not have a 
left parentheses following the 
keyword. 

A keyword's sub field does not 
have a closing parenthesis 
following it. 

A list of constants is not delimited 
on the right by a closing 
parenthesis. 

The next repetition of a repeated 
sub parameter list does not begin 
with a left parenthesis. 

Diagnostic Aids 727 



Messages to Module Cross Reference 

Message STID Module Procedure 

IDC3211I RIO-l2 IDCRIOI KWDPARM 

NXTFlELD 

IDC32l2I RIO-I3 IDCRIOI POSPARM 

IDC32131 RIO-I4 IDCRIOI SETFLAG 

IDC32l4I RIO-IS IDCRIOI GETDATA 

IDC3216I RIO-17 IDCRIOI ERRORl 

ERROR2 

IDC3217I RIO-I8 IDCRIOI GETQUOTD 

GETSIMPL 

IDC3218I RIO-l9 IDCRIOI INREPEAT 

IDC3219I RI0-20 IDCRIOI IDCRI02 

IDC3220I RI0-2l IDCRIOI CONVERT 

PACKCVB 

IDC322 I I RI0-22 IDCRIOI CONVERT 

PACKCVB 

IDC3223I RI0-24 IDCRIOI BUILDFDT 

Situation That Caused Message 

The descriptor does not define the 
input keyword as part of the 
current parameter list. 

An input keyword exceeds the 
maximum allowable length for a 
keyword. 

A positional parameter that is not 
defined as a list begins with a left 
parenthesis. 

An internal table (PARMFLAG) 
indicates that the keyword just 
found was found previously in this 
command. 

A numeric constant begins with a 
B or X, but an apostrophe does 
not follow directly after this 
character. 

The remainder of a command, 
being scanned for syntax-checking 
purposes only, was bypassed due 
to an error in it. 

The remainder of a command, 
being scanned for syntax-checking 
purposes only, was bypassed due 
to an error in it. 

A password-delimiting slash 
appears following a constant that 
does not allow a password. JA password-delimiting slash 
appears following a constant that 
does not allow a password. 

The number of sublist repetitions 
(REPCOUNT) for the current 
repeated sublist exceeds the 
maximum repetitions allowed 
(REPMAX) for this parameter 
according to the descriptor. 

The input verb name does not 
match any name in IDCRIL T. 

A numeric constant contains a 
invalid digit. 

A numeric constant contains an 
invalid digit. 

A numeric constant has a value 
outside the value range specified 
in the descriptor for this 
parameter. 

A numeric constant is too large to 
fit into a binary full word. 

The number of constants found in 
a list (SCLRCNT) exceeds the 
number allowed (LISTMAX). 

728 OS/VS2 Access Method Services Logic 



Messages to Module Cross Reference 

Message 

IDC3225I 

IDC3226I 

IDC3240I 

IDC32411 

IDC3242I 

IDC32431 

IDC3244I 

IDC32461 

IDC3247I 

IDC32481 

IDC3249I 

IDC3250I 

• 
IDC325 II 

IDC32531 

IDC3300I 

IDC330II 

IDC3302I 

IDC3303I 

STID 

RI0-26 

RI0-27 

RI!-! 

RIl-2 

RIl-3 

RIl-4 

RIl-5,11 

RII-8 

RIl-6 

RIl-7 

RII-9 

RIl-IO 

RII-!5 

RII-I7 

100-1 

1005-4 

100-2 

100-3 

100-4 

Module 

IDCRIO! 

IDCRIOI 

IDCRI04 

IDCRI04 

IDCRI04 

IDCRI04 

IDCRI04 

IDCRI04 

IDCRI04 

IDCRI04 

IDCRI04 

IDCRI04 

IDCRI04 

IDCRI04 

IDCI002 

IDCI005 

IDCI002 

IDCIOO! 

IDCI003 

IDCR506 
(VS2.03.808) 

IDCI002 

Procedure 

NEEDNOTS 

NEEDNOTS 

BUILDFDT 

BUILDFDT 

BUILDFDT 

GETSPACE 

REPLIST 

NOTPARMS 

RESOLVE 

NEEDPRMS 

GETSPACE 

BUILDFDT 

TOOMANY 

IDCRI04 

ADDPARM 

BLDOCMSG 

CHECKOPN 

BLDOCMSG 

BLDAMSG 

BLDAMSG 

RECMGMT 

BUILDDBK 

Situation That Caused Message 

A parameter always required for 
this command is missing, or 
parameter required when another 
parameter is coded is missing. 

An input parameter conflicts with 
some other input parameter. 

PDENVMBR is larger than 
HIV ALUE or smaller than 
LOWVALUE. 

The length of a data set name or a 
DD name is wrong. 

The length of a constant is wrong. 

There are too many constants in a 
list. 

There are more sub parameter sets 
in a list than the command 
descriptor allows. 

Two conflicting parameters are 
coded. 

The TSO terminal user needs to 
choose between conflicting 
parameters. 

Parameters required by the 
command descriptor are missing. 

There are too many numbers in a 
list. 

The TSO terminal user needs to 
reply with a correct constant. 

The TSO terminal user needs to 
choose whether or not to ignore 
excessive constants or 
subparameters. 

Parameter in error is a repeated 
subparameter. 

A UPROMPT to obtain a missing 
keyword has failed. 

An error occurred during open of 
a data set. 

An error occurred during the 
Open of a data set or the VTOC. 

An error occurred during close of 
a data set. 

An error occurred while accessing 
a data set. 

An error occurred while accessing 
a data set. 

A logical error occurred during 
an I/O operation to the work file. 

The data set to be opened for 
update processing is not a VSAM 
data set. 

Diagnostic Aids 729 

L 



Messages to Module Cross Reference 

Message 

IDC33041 

IDC33051 

IDC33061 

IDC33071 

IDC33081 

IDC33091 

IDC33 101 

IDC3311I 
:'; ~; 

IDC33 121 
:Ii-. 

IDC33131 

;,;; IDC33 141 

IDC3315I 

IDC33161 

IDC33171 

STlD 

100-5 

100-6 

100-7 

100-8 

100-10 
100-35 

100-12 

100-13 

100-14 

100-15 

100-16 

105-5 

100-17 

100-44 

100-19 

100-20 

Module 

IDCI002 

IDCI002 

IDCI002 

IDCI002 

IDCIOOI 

IDCIOOI 

IDCI003 

IDCI003 

IDCI002 

IDCIOOI 

IDCI005 

IDCIOOI 

IDCI002 

IDCI002 

IDCIOOI 

IDCI002 

IDCI003 

Procedwe 

DSDATA 

DSDATA 

BUILDDBK 

DSDATA 

BUILDDBK 

VSAMERR 

PUTNONVS 

PUTVSAM 

PTAMDS 

PTISDS 

IDCI003 

CKNONOP 

GETNONVS 

PUTNONVS 

SYNAD 

VSAMERR 

BUILDDBK 

BUILDDBK 

VSAMERR 

DSDATA 

PTAMDS 

Situation lbat Caused Message 

A Job Control statement sp~cified 
for file to OPEN was not found. 

An attempt was made to open an 
ISAM data set for output. 

Cannot open an ISAM file for 
address processing. 

The data set to be opened for 
physical sequential processing is 
an ISAM data set. 

The data set to be opened for 
keyed processing is not a VSAM 
or ISAM data set. 

A record with the same key 
or relative record number as the 
input record already exists in the 
output data set. 

The length for a record to be 
written is invalid. 

For a relative record data set, the 
length of the record to be written 
is not equal to the record size of 
the data set. 

The key provided is longer than 
the key length of the data set. 

The key provided is longer than 
the key length of the data set. 

The data set to be positioned is 
not a VSAM or ISAM data set. 

The DCB OPEN flag-was not set 
by the system OPEN routines for 
magnetic tape or for a sequential •disk file. 

An I/O error occurred while 
reading anonVSAM data set. 

An I/O error occurred while 
writing a nonVSAM data set. 

There was a SYNAD error in 
EXCP I/O processing. 

The record to be written has a 
lower key than the last record in 
the data set. 

The record length exceeds 32767. 

The data set to be opened is not a 
VSAM catalog. 

Physical error detected in a 
VSAM file. 

I/O attempting to read the Label 
Cylinder. 

Physical error detected by VSAM 
POINT routines. 

~ 


730 OS/VS2 Access Method Services Logic 



Messages to Module Cross Reference 

Message STlD Module Procedure 	 SItuation That Caused Message 

IDC33181 100-21 IDCIOO2 BUILDDBK 	 (t) Invalid environment or~ 	 DLBL/TLBL parameters 
specified, (2) the blocksize is less 
than one, (3) the blocksize is 
invalid for a fixed length record 
format file, or (4) the blocksize is 
invalid for a variable length 
record format file. 

CKNONOP 	 The blocksize specified for an 
ISAM file is less than the file's 
true blocksize. 

OS DATA 	 Invalid parameters specified on 
the DLBL/TLBL statement. 

IDC332tI 100-24 IDCIOO2 CKNONOP 	 An open ABEND error was 
detected. 

ENVFREE 	 A close ABEND error was 
detected. 

IDC33221 100-25 IDCIOOI IDCIOVY 	 The data set to be verified is not a 
VSAM data set. 

IDC33251 100-45 IDCIOOt IRSISYN 	 The blocksize specified for the 
portable data set is different than 
that of the portable data set. 

IDC33261 100-46 IDClOO2 OPENRTN 	 The REPLACE option has been 
specified for output through a 
path. 

IDC33271 [00-47 IDC[OOt VSAMERR 	 Duplicate record in the upgrade 
set. 

IDC3330I 100-18 IDCIOO3 STOWRTN 	 Name doesn't exist in the 
partitioned data set directory. 

IDC333tI [00-22 IDC[OO3 STOWRTN 	 Name already exists in the 
partitioned data set directory. 

IDC3332[ [00-26 IDCI002 BUILDACB 	 Storage was not available for one 
of the following: The ACB, the 
EXLST or area for a modified 
JFCB. 

BUILDDBK 	 Storage was not available for one 
of the following: the DCB, an 
update DECB, an area for a 
modified JFCB and DCB exist 
list. 

BUILDRPL 	 Storage was not available for one 
of the following: the input work 
area or the RPL. 

CKNONOP 	 No storage was available for an 
input work area. 

OPENRTN 	 Storage was not available for the 
10CSTR. 

IDCIOO3 STOWRTN 	 No storage available for USTOW 
macro. 

IDCSA02 IDCSA02 	 VSAM generic locate requires 
more storage than the UCIR 
macro can obtain. 

Diagnostic Aids 731 



Messages to Module Cross Reference 

Message 

IDC33331 

IDC33341 

IDC3350I 

IDC335 11 

IDC3380I 

II':'! 

IDC33831 

IDC33841 

IDC33851 

IDC33921 

IDC35001 

IDC35011 

STID 

100-32 

100-33 

100-11 

100-9 

SA6-t3 

SA6-3 

SA6-4 

SA6-5 

SA6-t2 

DE0-3 

DE0-4 

Module 

IDCIOOt 

IDCIOOt 

IDCI002 

IDCI003 

IDCIOOl 

IDCIOOl 

IDCI002 

IDCI003 

IDCRS06 
(VS1.03.808) 

IDCSA06 

IDCSA06 

IDCSA06 

IDCSA06 

IDCSA06 

IDCDE03 

IDCDEOt 
(without 
VS1.03.807) 
IDCDE02 
(with 
VS1.03.807) 

Procedure 

COPYCAT 

COPYCAT 

DSDATA 

PTAMDS 

VSAMERR 

VSAMERR 

CLOSERTN 

OPENRTN 

PTAMDS 

RECMGMT 

UCBCHECK 

UCBCHECK 

UCBCHECK 

GETEXCL 

FINDEXCL 

IDCDE03 

MODELPRC 

Situation That Caused Message 

Output VSAM catalog is not 
empty. J 
Invalid control interval number in 
VSAM catalog. 

Cannot open ISAM data set for 
output. 

An I/O error occurred during a 
VSAM point operation. 

An I/O error occurred in the 
VSAM access method. 

An error was detected by a VSAM 
macro. The error was not a 
duplicate record or a record out of 
sequence. 

The ACB was not closed 
successfully. 

The ACB was not opened 
successfully. 

A logical error occurred during a 
VSAM point operation. 

A logical error occurred during 
an I/O operation to the work file. 

The unit for the specified ddname 
is not assigned for exclusive 
control. Therefore, Open could 
not mount or demount volumes 
on this unit. Either the volume 
was already mounted for the job 
when this job was allocated, or 
the correct JCL parameters were 
not specified on the DO 
statement. 

The UCB does not specify a 
virtual unit. 

The UCB is not for a 3330 
direct-access device. 

The UCB indicates that the unit is 
allocated to a permanently 
resident or reserved volume. 

The test enqueue indicates the 
volume is allocated exclusively to 
the job step, but no unit is 
available for mounting the 
volume. All nonshareable units 
have open VSAM catalogs. 

The object parameter list supplied 
by the user is incorrect. 

The entry type of a model object 
is not the same as that of the 
object being defined, or the entry 
type of a model object conflicts 
with the specification of 
INDEXED, NONINDEXED or 
NUMBERED. ~ 

732 OS/VS2 Access Method Services Logic 



L 

Messages to Mod. Cross Reference 

Message STlD Mod_ Procedure 	 Situation That Caused Message 

IOC35031 OEO-l IOCOE02 ALLCPROC 	 The number of elements in the 
volume list does not match the 
number of elements in the file 
sequence list. 

IOC3504I OE0-2 IOCOE02 KEYPROC 	 The length of the key range list 
retrieved from a model exceeded 
the space allotted for the list by 
IDCOEOl. 

IOC3505I OE0-6 IOCOEO} 	 IDCOEO} Space allocation was incorrectly 
(without specified for a VSAM catalog, 
VS2.03.807) data set, alternate index, or 
INTGCHK data space. 
(with 
VSl.03.807) 

IOC3506I OE0-7 IOCOEOl 	 IDCOEOl Volumes were not correctly 
(without specified for a VSAM data set or 
VSl.03.807) alternate index. 
INTGCHK 
(with 
VSl.03.807) 

IOC3507I OE0-8 IOCOEO} 	 IOCOEO} The record size was required but 
(without not specified for a VSAM 
VS2.03.807 data space. 
INTGCHK 
(with 
VS2.03.807) 

IOC3513I OE0-14 IDCOEO} IDCOEOl 	 Oynamic allocation error. 

IOC3514I OE0-15 IOCOE02 KEYPROC 	 The key ranges specified by the 
user overlap. 

IOCMPOl RANGPROC 	 The key ranges specified by the 
user overlap. 

IDC3515I OE0-16 IOCOE02 ALLCPROC 	 The average record size exceeds 
the maximum record size. 

IOC35l61 OEO-l7 IOCOEOl 	 IOCOE01 Key length and position were not 
(without specified for a key sequenced 
VSl.03.807 data set. 
INTGCHK 
(with 
VS2.03.807) 

IOC3517I DE0-18 IOCOE02 	 ALLCPROC Unequal record sizes were 
(without specified for a relative record 
VSl.03.807 data set. 
INTGCHK 
(with 
VSl.03.807) 

IOC3518I OEO-l9 IOCOE01 	 IOCOEO} REUSE cannot be specified with 
(without UNIQUE or KEY RANGES. 
VS2.03.807 
INTGCHK 
(with 
VS2.03.807) 

Diagnostic Aids 733 



Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDC35 191 DE0-20 IDCDEOI IDCDEOI 
{without 
VS2.03.807 
INTGCHK 
(with 
VS2.03.807) 

A REUSE conflict exists between 
data and index. 

IDC3521I DE0-22 IDCDEOI IDCDEOI 
(without 
VS2.03.807) 
INTGCHK 
(with 
VS2.03.807) 

A RECORDSIZE greater than 
32761 was specified for a 
non spanned data set. 

IDC35221 DE0-23 IDCDEOI IDCDEOI 
(without 
VS2.03.807 
INTGCHK 
(with 
VS2.03.807) 

SPANNED cannot be specified 
for a relative record data set. 

IDC3523I DE0-24 IDCDE02 NAMEPROC Name specified for generation 
data group exceeds 35 characters. 

IDC3524I DE0-25 IDCDEOI IDCDEOI Key range values are 
(without longer than key length. 
VS2.03.807 
INTGCHK 
VS2.03.807 
(with VS2.03.807) 

IDCDE02 KEYPROC Key ranges are not in ascending 
order. 

IDC3525I AL0-23 IDCALOI CHECKPRC The password supplied is 
insufficient to alter key values. 

IDC3527I AL0-3 IDCALOI LOCATPRC 
CHECKPRC 

The entry retrieved from the 
catalog was an invalid type for 
alter requests, or required fields 
could not be located. 

IDC3528I AL0-4 IDCALOI LOCATPRC Passwords were suppressed when 
the object ot be altered was 
retrieved from the catalog. 

IDC3529I AL0-5 IDCALOI IDCALOI The data set name was longer 
than 44 characters after the * was 
replaced with a level name from a 
generic locate. 

IDC3530I AL0-6 IDCALOI MEMRENAM The entryname and the 
NEWNAME parameters both 
contain membername but each 
membername refers to a different 
partitioned data set. 

IDC35361 AL0-2 IDCALOI IDCALOI Either the entryname or the 
NEWNAME specified a generic 
name. Both must specify a generic 
name if one does. 

IDC3537I ALO-12 IDCALOI CHECKPRC UNIQUEKEY or UPGRADE was 
specified for a nonalternate index. 

IDC35381 ALO-13 IDCALOI CHECKPRC UNIQUEKEY or UPGRADE was 
specified for a nonempty alternate 
index. 

734 OS/VS2 Access Method Services Logic 



Messages to Module Cross Reference 

Message SnD 

IDC3539I ALO-I4 

IDC3540I ALO-I5 

IDC35411 ALO-I6 

IDC3542I ALO-I7 

IDC3545I AL0-20 

IDC3546I AL0-21 

IDC3547I AL0-22 

IDC3568I LCI-II 

IDC3570I PRO-I8 

IDC3572I PR0-20 

IDC3573I PR0-21 

IDC35811 PRO-I6 

IDC3582I PRO-l 4 

IDC3583I PRO-I7 

IDC3584I PR0-24 

IDC3592I XPO-3 

Module 

IDCALOI 

IDCALOI 

IDCALOI 

IDCALOI 

IDCALOI 

IDCALOI 

IDCALOI 

IDCLCOI 

IDCRPOI 

IDCRPOI 

IDCRPOI 

IDCRPOI 

IDCRPOI 

IDCRPOI 

IDCPROI 

IDCRPOI 

IDCXPOI 

Procedure 

CHECKPRC 

CHECKPRC 

CHECKPRC 

CHECKPRC 

CHECKPRC 

CHECKPRC 

CHECKPRC 

ENTPROC 

IDCRPOI 

CATRELOD 

CATRELOD 

IDCRPOI 

IDCRPOI 

DELIMSET 

DELIMSET 

REOVCAT 

CLUSPROC 

Situation That Caused Message 

KEYS or RECORD SIZE was 
specified for a nonempty object. 

A conflict between the control 
interval and KEYS or 
RECORDSIZE values exists. 

A conflict exists between the 
alternate index key values and the 
base cluster record size. 

Unequal record sizes were 
specified for a relative record data 
set. 

Invalid values were specified for 
KEYS or RECORDSIZE. 

Invalid value specified for KEYS. 

KEYS or RECORDSIZE is 
invalid with entry type. 

Level name starts or ends with an 
'*' 

Delimiters were specified for a 
catalog reload. 

Target catalog is too small to 
contain the backup catalog during 
catalog reload. 

Either the catalog name, the 
volume serial number, or the 
device type did not match during 
a catalog reload. 

IDCRPOI found beginning and/or 
ending delimiters when a VSAM 
catalog is to be copied. 

The organization of the input data 
set is incompatible with that of 
the output data set. 

Invalid delimiters were specified 
for a data set copy operation. 

Invalid delimiters were specified 
for a data set copy operation. 

An attempt was made to copy 
from or into a catalog with the 
recoverable attribute. 

The object retrieved from the 
catalog for export is not a cluster 
or an alternate index. 

Diagnostic Aids 735 



Messages to Module Cross Reference 

Message SnD Module 

IDC3593I XP0-4 IDCXPOI 

IDCRCOI 

IDCRC02 

IDC3596I XP0-7 IDCXPOI 

IDC3602I MPO-9 IDCMPOt 

IDCRMOI 

IDC3606I MPO-l IDCMPOI 

IDCRMOI 

ProcedW'e 

CLUSPROC 

SYNCH 

ASOCPROC 

CLUSPROC 

CONTRBL 

GDGPROC 

NVSMPROC 

CLUSPROC 

IDCMPOt 

IDCRMOI 

CLUSPROC 

IDCRMOI 

ALISPROC 

CLUSPROC 

NVSMPROC 

OPENPROC 

UCATPROC 

Situation lbat Caused Message 

The catalog did not return the 
entry type, data component name, 
or LRECL when the object to be 
exported was located. 

No data association could be 
found. 

The catalog did not return the 
entry type when the object to be 
recovered was located. 

Either (I) the catalog did not 
return the entry type, data 
component name, or LRECL 
when the object to be recovered 
was located, or (2) the entry type 
was not a cluster or alternate 
index. 

The catalog did not return the 
entry type, data component name 
or LRECL when the object to be 
recovered was located. 

The catalog did not return the 
entry type when the object to be 
recovered was located. 

The catalog did not return the 
entry type when the object to be 
recovered was located. 

The data set to be exported has 
been marked as not usable. 

Import of the data set failed after 
a successful define. 

Import of the data set failed after 
a successful define. 

The portable data set's first record 
was not valid, or the record 
immediately prior to the data 
component's records was not 
valid. 

Opens of the portable data set 
failed. 

A catalog control record for an 
alias entry was not read. 

There was no volume list from the 
input area. 

A catalog control record from the 
portable data set was not read. 

Header flags were not set properly 
in the first record. 

A catalog control record for a 
user catalog was not read. 

736 OS/VS2 Access Method Services Logic 



Messages to Module Cross Reference 

Message STID Module Procedure 	 Situation That Caused Message 

IDC3607I MPO-l3 IDCMPOI DUPNPROC 	 The temporary flag is not set in 
the catalog entry with the same 
name as the object being 
imported. If NEWNAME is 
specified, the temporary flag is 
not set in the entry with the new 
name. 

IDC3608I MPO-IO IDCMPOI CNCTPROC 	 The VSAM catalog could not 
connect the user catalog. 

IDC3609I MP0-5 IDCMPOI CLUSPROC 	 The VOLUMES parameter was 
not specified. 

IDCRMOI CLUSPROC 	 No volume information was 
available. 

IDC3610I MP0-6 IDCMPOI CNCTPROC 	 The device list was not specified 
for connect of a user catalog. 

IDC3612I MP0-8 IDCMPOI DUPNPROC 	 The catalog entry with the same 
name as the object being 
imported is not a cluster or 
alternate index. 

IDC3613I MPO-l4 IDCMPOI CLUSPROC 	 The open of the portable data set 
was not successful. 

IDCRMOI IDCRMOI 	 The open of the portable data set 
was not successful. 

IDC3614I MP0-7 IDCMPOI CLUSPROC 	 The object names specified by the 
user do not match the object 
names found in the portable data 
set. 

IDC3615I MPO-l5 IDCMPOI RECPROC 	 The data set name on the 
-:; ~ 

OUTFILE JCL statement does 
not agree with the name found in 
the portable data set or, if 
NEWNAME is specified, the new 
name for the data set, or the name 
specified is not the name of path 
over the object to be imported. 

IDC3617I MPO-l7 IDCMPOI DUPNPROC 	 The attributes of a predefined 
data set conflict with those of the 
data set to be imported. 

IDC3619I MPO-l9 IDCRMOI ALTRPROC 	 The catalog return code was 
nonzero. 

IDC3624I MP0-24 IDCRMOI IDCRMOI 	 The UIOINFO issued to obtain 
the output data set name failed. 

IDC3625I MPO-25 IDCMPOt CLUSPROC IDCMPOI found an empty data set 
(VS2.03.807) with the same name but the INTOEMPrY 

keyword was not specified. 

IDC3633I CC0-5,6 IDCCCOI CONVERT 	 A valid catalog entry was not 
found while reading the OS/VS 
catalog. 

PUSHDOWN 	 An Index Control Entry was not 
found while reading the OS/VS 
catalog. 

VOLINDEX 	 A Volume Index Control Entry 
was not found while reading the 
OS/VS catalog. 

Diagnostic Aids 737 

L 



Messages to Module Cross Reference 

Message STID Module Procedure 	 Situation lbat Caused Message 

IDC3641I BI0-2 IDCBIOI LOCPROC 	 The file identified in INFILE or 
INDATASET is not a base 
cluster. 

IDC3643I BI0-4 IDCBIOI OPENPROC 	 The base cluster is empty. 

IDC3883I LRl-14 IDCLROI ERROR 	 More than 50 errors occurred 
while trying to complete the 
LISTCRA. 

IDC3900I RIl-12 IDCSA02 IDCSA02 	 The PUTGET macro failed in one 
of the following ways: no buffer 
space available, invalid 
parameters, TSO profile 
command did not allow 
prompting. 

IDC39011 RIl-13 IDCSA02 IDCSA02 	 The TSO service routine did not 
qualify a data set name because 
no qualifiers were found, invalid 
parameters, or failure to locate 
the data set name. 

IDC3902I RIl-14 IDCSA02 IDCSA02 	 The TSO default service routine 
did not qualify a data set name 
because no qualifiers were found, 
invalid parameters, or failure to 
locate the data set name. 

IDC3903I 100-27 IDCSA02 IDCSA02 Dynamic allocation failed because 
(Deleted for VS2.03.807) storage not available or data set 

name not found. 

IDC3904I 100-28 IDCSA02 IDCSA02 Data set deallocation failed 
(Deleted for VSl.03.807) because of a problem with Joverriding dispositions. 

IDC39051 100-29 IDCSA02 IDCSA02 	 Data set allocation or deaIlocation 
(Deleted for VS2.03.807) 	 failed because storage not 

available, data set name not 
found, or problem with overriding 
dispositions. 

IDC39061 100-30 IDCSA02 IDCSA02 Volume dynamic allocation failed 
(Deleted for VSl.03.807) because storage not available or 

invalid unit number. 

IDC39071 100-31 IDCSA02 IDCSA02 	 Dynamic concatenation of 
(Deleted for VS2.03.807) 	 volumes failed because storage 

not available or invalid parameter 
list. 

IDC42271 RI0-28 IDCRIOI GETNEXT 	 An ELSE command appears 
without a matching IF-THEN 
command (THENFLAG is not on 
with DO FLAG off). 

IDC42281 RI0-29 IDCRIOI GETNEXT 	 An END command appears 
without a matching DO command 
(DOFLAG is off). 

IDC4229I RI0-30 IDCRIOI MODAIIF 	 An IF command relational 
expression does not follow the 
required format. 

IDC4230I RI0-31 IDCRIOI MODALSET 	 A SET command assignment 
expression does not follow the 
required format. .J 

738 OS/VS2 Access Method Services Logic 



Messages to Module Cross Reference 

Message STID Module 

IDC4232I RI0-33 IDCRIOI 

IDC4236I RI0-37 IDCRIOI 

Procedure 

MODALIF 

IDCRI03 

IDC42371 RI0-38 IDCRIOI MODALIF 

IDC4999I 

IDCO I0021 RS0-3 

IDCSAOl 

IDCRSOI 

PRNTERR 

INIT 

IDCOlOllI RSO-l2 IDCRSOI PROCCRA 

IDC010371 RS0-47 IDCRSOI UPDCAT 

, . 

IDCll0031 

IDCll0151 

IDCI1022I 

IDCI10231 

RS0-4 IDCRS06 

RSO-l6 IDCRS06 

RS0-22,48 IDCRS02 

RS0-23,24 IDCRS02 

RECMGMT 

RECMGMT 

PROCTYPE 

VERA 
VERC 
VERG 
VERR 

IDCI10291 RS0-31 IDCRS03 VLNRESET 
VLRESET 

IDCII031I RS0-33 IDCRS03 CHKUNQ 

Situation That Caused Message 

A THEN keyword does not 
appear in an IF command. 

End-of-file occurred, but EOFOK 
flag is off, indicating that 
end-of-file occurred in the middle 
of a command. 

The current IF command nesting 
level (NESTL VL) exceeds the 
maximum level allowed 
(IFNSTMAX). 

UABORT error message printed. 
See ABORT codes. 

Informational message indicating 
the catalog to be reset and the 
time stamp on the volume. 

Informational message indicating 
the CRA to be reset and the time 
stamp on the volume. 

Informational message indicating 
that RESETCAT processing has 
been completed for the indicated 
catalog. 

IGNORE was specified and an 
I/O error was encountered. 

IGNORE was specified and an 
I/O error was encountered. 

An object contains a dependency 
on a record that does not exist. 

An entry is chained to a record of 
a type different than anticipated 
or the object noted consists of an 
incomplete set of records. If the 
control interval number of the 
expected association is not given, 
then no association for that object 
exists in the base record; an 
association for that type is 
required for the entry name 
noted. 

The suballocated data space has 
been corrected to reflect what is 
on the volume. This correction 
occurs if entries are deleted by 
RESETCAT or space stated as 
suballocated is not suballocated 
(that is, the space map is incorrect 
on entry to RESETCAT). 

The unique data or index 
component has less space 
described than the data space. 
Informational message to indicate 
that space exists which is not in 
use. 

Note: These messages IDCOI002I through IDC31038I are for VS2.03.808 only. 

Diagnostic Aids 739 



Messages to Module Cross Reference 

Message 

IDClI0331 

IDClI0361 

IDCtt040I 

IDCII0411 

IDCl10421 

IDC 11 0431 

IDClt0441 

IDC210091 


IDC2I02OI 


IDC210241 


.IDC210251 


IDC21 0261 


IDC210271 


IDC21030I 


STID 


RS0-35 


RS0-46 


RS0-38 

RS0-39 

RSO-40 

RS0-41 

RS0-42 

RSO-IO 


RS0-21 


RS0-25 


RS0-26 


RS0-27 

RS0-28 

RS0-29 

RS0-32 

Module 

IDCRS03 

IDCRS03 

IDCRS03 

IDCRS03 

IDCRS03 

IDCRS03 

IDCRS03 

IDCRSOI 

IDCRS03 


IDCRS06 


IDCRS02 


IDCRS03 


IDCRS02 

IDCRS03 

IDCRS03 

IDCRS03 

Procedure 

CHKUNQ 
VLNRESET 

CHKDSDIR 

VOLCHK 

VOLCHK 

VOLCHK 

VOLCHK 

VOLCHK 

INIT 
MARKUNUS 

CRAMNT 

VERX 

VERB 

SETCI 

VLRESET 

VLRESET 

MARKUNUS 

Situation That Caused Message 

A unique data set on a volume j
not being reset has no 
corresponding Data or INDEX 
component. 

The data set named may have 
invalid space information. The 
extents occupied by the named 
data set are not in conflict with 
any other VSAM data set or with 
the system; however, a 
self-checking field failed to check. 

The VSAM Format t DSCB did 
not have a corresponding space 
header in the volume record. 
Therefore, the catalog does not 
account for the space allocated to 
the data set. 

The extents in the space header 
for the data space noted were not 
identical to the extents in the 
corresponding Format t DSCB. 

The space header for the data 
space referred to a nonexistent 
Format I DSCB. 

The timestamp for the volume 
record did not match the 
timestamp in the VTOC. 

The attempt to scratch the file for 
the reason stated in message J 
IDCII0401 failed. 

A multivolume file existed on a 
volume prior to reset. 

A volume needed for the reset was 
not specified in a CRAFILES 
parameter. 

The alias chain for a 
USERCATALOG or NONVSAM 
entry is invalid. 

The records associating the GDG 
data set with the GDG base are in 
error. 

A previous message indicated an 
error which resulted in this entry 
being deleted from the catalog. 

The CRA extents or catalog 
extents 
have no matching extents in the 
data space. 

The entry noted claims space on a 
volume. That space is not 
allocated to that entry. 

Note: Messages on this page are for VS2.03.808 only. 

.J 
740 OS/VS2 Access Method Services Logic 



L 

Messages to Module Cross Reference 

Message STID Module Procedure 	 Situation That Caused Message 

IDC210321 RS0-34 IDCRS02 VERCI 	 An object of the type specified 
IDCRS03 VERB 	 was defined over the entry named 

as entryname. However, the 
records describing the object 
could not be found. Therefore, an 
object of the type specified was 
deleted from the given entryname's 
description. No name for the 
deleted object is given because the 
record with its name cannot be 
found. 

VLRESET 	 what space is available for 
suballocation on a volume, is not 
the correct length in the catalog. 

IDC21045I RS0-43 IDCRS07 RENAMEP 	 An attempt was made to reset an 
object which bears the same name 
as some other object in the 
catalog. 

IDC2 I 0461 RSO-44 IDCRS07 RENAMEP 	 An attempt was made to reset a 
unique object into a catalog which 
contains an object of the same 
name. 

IDC2 I 0471 RSO-45 IDCRS07 RENAMEP 	 An attempt was made to reset a 
unique object into a catalog which 
contains an object of the same 
name. 

IDC31000I RSO-I IDCRS02 INIT 	 The catalog specified for reset is 
not a recoverable catalog. 

IDC31 DOli RSO-2 IDCRSOI INIT 	 The master catalog was specified 
for reset. 

IDC31 D041 RS0-5 IDCRS06 WFDEF 	 DEFINE failed for the workfile. 

IDC3! D05I RS0-6 IDCRS02 INIT 	 The workfile was defined in the 
catalog to be reset. 

IDC3! D061 RS0-7 IDCRS07 CATEOV 	 A physical I/O error when 
accessing the catalog was 
encountered. 

IDC31D071 RSO-S IDCRS07 CATEOV 	 A logical I/O error was 
encountered while extending the 
catalog. 

IDC3! DOSI RS0-9 IDCRSOI INIT 	 An error was encountered when 
trying to access the data set 
specified in the CATALOG 
parameter. 

IDC31OlOI RSO-l! IDCRSOI MERGECRA 	 The CRA was specified for reset. 
but it belongs to a catalog other 
than the catalog to be reset. 

IDC31O!21 RSO-l3 IDCRS06 RECMGMT 	 The workfile relative record 
number limit has been exceeded. 

IDC31013I RSO-I4 IDCRSOI MERGECRA 	 A preceding message indicates 
that either Open failed for the 
CRA, Close failed for the CRA, 
or the CRA does not belong to the 
catalog to be reset. 

IDC31O!41 RSO-15 IDCRS06 WFDEL 	 DELETE failed for the work file. 

Note: Messages on this page are for YS2.03.808 only. 

Diagnostic Aids 741 

-.~ 

-' 



Messages to Module Cross Reference 

Message STID Module Procedure 

IDC31016I RSO-l7 IDCRSOI INIT 

IDC31017I RSO-l8 IDCRSOI INIT 

IDC31018I RSO-l9 IDCRSOI UPDCAT 

IDC31019I RS0-20 IDCRSOI INIT 

IDC3103SI RS0-37 	 IDCRSOI UPDCAT 
IDCRS03 VLNRESET 

IDC31038I RS0-49 IDCRSOI UPDCRA 

Note: Messages on this page are for VS2.03.808 only. 

Situation That Caused Message 

The CRAFILES parameter 
specified no CRA with the ALL 
option; therefore, no volume was 
specified for reset. 

Some other task is open to the 
catalog requested to be reset. 

RESETCAT required a volume 
that could not be allocated. 

The CRAFILES parameter 
specified the same volume serial 
number via dnames. 

In a CRA, either the volume 
record for the volser indicated 
does not exist or one of its 
secondary records does not exist. 

Either Open or Close failed for 
the CRA. 

742 OS/VS2 Access Method Services Logic 



APPENDIX A: PORTABLE DATA SETS CREATED 
BYTHEEXPORTCO~ 

When a VSAM cluster or alternate index is exported via the Access Method 
Services EXPORT command, catalog information needed to define the 
VSAM data set plus all the records from the data component are written to a 
non VSAM set called the portable data set. The following list shows the 
attributes of the portable data set. 

Attribute of Portable Data Sets 

Attribute Value 

LRECL The larger of: 
(a) Maximum VSAM data set record size +4 
(b) For portable data sets created on systems without VS2.03.807: 264 (for 

key sequenced and entry sequenced data sets) or 268 (for relative 
record data sets). 

For portable data sets created on systems with VS2.03.807: 272 (for 
nonRRDSs) or 276 (for RRDSs). 

BLKSIZE As specified by the user. The default is 2048. 

RECFM VBS 

DSORG PS 

DEVTYPE Tape or disk 

The portable data set contains two major types of records: control records 
and -data records. Control records contain one of two types of information: a 
time stamp or a dictionary. Data records also contain one of two types of 
information: a catalog work area or a data record from the data component of 
the cluster or alternate index exported. Figure 32 shows the general layout of 
control records and data records in the portable data set. The types of records 
and the types of information within those records are explained in this 
appendix. 

Appendix A: Portable Data Sets Created by the Export Command 743 



Catalog Work Areas May appear here. 

Data Records from Data Set 
......---

Control Control Data Control - Data Control Data 
Record Record R d R decor ecor Record Record Record 

I~~"----"-~I~I~ 

Catalog 
Work Area 

1 Other Dictionary Information and 

Figure 32. Layout of Control Records and Data Records in the Portable Data Set 

Control Records 
Control records all have the sa~e general format as shown in Figure 33. The 
first four bytes of each control record contain header information. The next 
four bytes contain associated data. The remainder of the record contains the 
time stamp or dictionary information. 

Control Record Containing Time Stamp In/onnation 

The first record on every portable data set is a control record that contains 
time stamp information, as well as other fields. The format of this record is 
shown in Figure 33. 

The first two bytes of the header contain the length of this control record. 
The next two bytes indicate that this control record contains time stamp 
information. There is no associated data, and those four bytes are reserved. 

o 4 8 

Variable Data-Time Stamp or l J
Associated Data Dictionary 

) 
( 

Figure 33. General Format of Control Records 

744 OS/VS2 Access Method Services Logic 



0 2 3 4 8 	 27 

OOIC 	 X'FF' Reserved Time Stamp and Other Information 

-' ...... 
v "' ...... v v '" 

Header Associated Data Variable Data 

Figure 34. Control Record Containing Time Stamp Information 

The format of the time stamp information is: 

Displacement1 	 Description 

8 (8) 	 Number of cluster or alternate index components and paths being 
exported. 

9 (9) 	 Flags: 

Bit Meaning When Set 
o I indicates a unique data set 

o indicates a non-unique data set 
I indicates an inhibited target 
o indicates a non-inhibited target 

2 I indicates path associations are present. 
oindicates no paths are present. 

3 Ifbit2isl: 

I indicates that the base object has both data and index 
components. 
oindicates that the base object has only a data component. 

\0 (A) 	 Access Method Services release number in EBCDIC 

II (B) 	 Reserved 

12 (C) 	 Time of EXPORT in EBCDIC, in the form hh.mm.ss, where hh is the 
number of hours, mm the number of minutes, and ss the number of 
seconds. 

20 (14) 	 Date of EXPORT in EBCDIC, in the form mm/dd/yy, where mm is the 
month in digits, dd the day, and yy the year. 

1 The displacement is from the beginning of the control record. 

Control Records Containing Dictionary Information 

A control record containing dictionary information is written for the cluster or 
alternate index being exported and for each component within that cluster or 
alternate index. In addition, one control record is written for each path 
association of the object being exported. These records in essence describe 
the data record containing the catalog work area which follows. The format of 
control records containing dictionary information is shown in Figure 35. 

The first two bytes of the header contain the length of this control record. 
The next two bytes indicate that this record contains dictionary information 
and the type of component that the associated catalog work area information 
describes. The type of component is indicated by 'C' for cluster, 'D' for data, 
'I' for index, 'G' for alternate index, or 'R' for path. 

The associated data portion of the control record contains the length of the 
associated catalog work area (two bytes) and the number of records into 
which the associated catalog work area is broken (2 bytes). 

The variable data portion of the control record contains the dictionary 
information. This portion of the control record begins with a four-byte field 

Appendix A: Portable Data Sets Created by the Export Command 745 

http:hh.mm.ss


4 8o 2 3 6 

Number of 
Records forLength of Catalog Dictionary and Other Information 

Work Area Catalog0004 X'FF' Type 

Work Area 

~,............-vY--"""""~~ ~'''''''''--~v"""",,-,~ ~'''''''''''~v~''''''''~~ 


Header Associated Data Variable Data 


Figure 35. Control Record Containing Dictionary Information 

that contains the number of entries in the dictionary. The entries themselves 
follow. Each entry consists of a pair of four-byte fields. The first four bytes 
contain the length of the associated catalog field in the catalog work area. 
(Remember, the catalog work area information is in a data record 
immediately following one of these control records.) The second four bytes 
contain the displacement of that field within the associated data record. If an 
associated catalog field contains no information, both four-byte fields in the 
dictionary entry contain zeros. The dictionary entries always point to the 
associated fields in the order shown in the following list. 

Order of Assodated Catalog FJelds 

Associated Field In 
Order Catalog Work area Description 

ENTYPE Component type. 

2 ENTNAME Component name. 

3 DSATTR Data set attributes. 


4 OWNERID Data set owner. 


5 DSETCRDT Data set creation date. 


6 DSETEXDT Data set expiration date. 


7 BUFSIZE Minimum buffer size. 


8 LRECL Logical record size. 


9 SPACEPARM Primary and secondary space. 


10 PASSWORD Four eight-character passwords. 


II PASSPRMT Password prompting code name. 


12 PASSATMP Maximum number of attempts for password. 


13 USVRMDUL User security verification module. 


14 USERAREC User authorization record. 


IS LOKEYV Low key on volume. 


16 HIKEYV High key on volume. 


17 VOLSER Volume serial numbers. 


18 AMDSBCAT AMDSB, from which the next nine fields are taken. 


19 AMDATTR Attributes. 


20 AMDRKP Relative key position. 


21 AMDKEYLN Key length. 


22 AMDCINV Control interval size. 


23 AMDLRECL Maximum record size. 


24 AMDPCTCA Percent of free control intervals in control area. 


746 OS/VS2 Access Method Services Logic 



Order of Associated Catalog Fields (continued) 


Associated Field in 

Order Catalog Work Area Description 

25 AMDPCTCI Percent of free bytes in control intervals. 

26 AMDATTR3 Attributes. 

27 AMDAXRKP Position of alternate key in base cluster record. 

28 EXCPEXIT Exception exit. 

29 RGATTR Alternate index or path attributes. 

30 RELATE I Alternate index related name or pathentry name. 
PATH ENTRY 

31 PASSREL Master password of pathentry component. 

32 SECFLAGS RACF security field (VS2.03.807). 

Data Records 
Data records contain one of two types of information: the catalog work area 
or data records from the data component. 

Data Records Conta;n;;,g Catalog Work Area 

Following each control record that contains dictionary information there is a 
data record that contains the catalog work area for a given component. The 
format of these records is shown in Figure 36. 

The first two bytes of each record contain the total possible length of the 
catalog work area. The next two bytes contain the length of the work area 
used for this component. Following these first four bytes are the fields from 
the catalog work area. The order of these fields is basically as described in the 
preceding topic. If there is no information for one of the fields, the field is 
completely omitted. 

Figure 37 shows the relationship of the dictionary and catalog work area 
information. 

Data Records Containing Data Records From the Data 
Component 

Following all of the control records and data records that contain dictionary 
information is a special record which marks the beginning of the data records 
from the data component. This special record is eight bytes in length. The 
record always has the format shown in Figure 37. 

Following this special record are all of the data records from the data 
component being exported. 

o 2 4 

Total 
Possible Length for this Component Information from Catalog Work AreaL---Length~____~________~(\IIJ 

Figure 36. Data Record Containing Catalog Work Area 

Appendix A: Portable Data Sets Created by the Export Command 747 



Control Record Containing Dictionary Information 

r-----,-----,-------,----,---r-----,r--~--,-------.----.---~---.llr---r----,U 
Number I 


OOD4 X'FF' Type Length of X'25' X'OI' I X'04' X'2C' I X'05' X'OO' X'OO' X'03' I X'3B' 

Records I I I 


Data Record Containing Catalog Work Area Information 

Total Possible Length Length for this 
Component 

4 

Figure 37. Relationship of Dictionary and Catalog Work Area Information 

o 	 2 3 


X'OOO8' 01 Reserved 


Figure 38. Special Record at Beginning of Data Records from the Data Component 

748 OS/VS2 Access Method Services Logic 



APPENDIX B: PORTABLE DATA SETS CREATED 
BY THE EXPORTRA COMMAND 

When the EXPORTRA command of Access Method Services executes, it 
produces a portable data set which contains catalog information obtained, 
from a CRA (Catalog Recovery Area) and data records for VSAM clusters 
and alternate indexes, and also catalog information for user catalog pointers. 
In addition, portable data sets created by EXPORTRA (referred to as 
recovery portable data sets in this appendix) on OS/VS systems may contain 
catalog information for nonVSAM, alias, and generation data group (GDG) 
base objects. The following list shows the attributes of the portable data set. 

Attribute Value 

LRECL The larger of: 
(a) Maximum VSAM data set record size + 8 
(b) For portable data sets created on systems without VS2.03.807: 268 

(if the portable data set does not contain any VSAM relative record 
data sets) or 272 (if the portable data set contains any VSAM 
relative record data sets). 

For portable data sets created on systems with VS2.03.807: 276 (if 
the portable data set does not contain any VSAM relative record 
data sets) or 280 (if the portable data set contains any VSAM 
relative record data sets). 

BLKSIZE As specified by the user (the default is 2048) 

RECFM VBS 

DSORG PS 

DEVTYPE (Tape or disk) 

Each record of the recovery portable data set has a special 4-byte header 
added that precedes the record itself. Information for unrelated objects on the 
recovery portable data set is separated by one or more software ends of file. 
These ends of file are special records that consist only of the 4-byte header. 
Only Figure 39 indicates that this particular type of header precedes each 
data record; the other figures do not show it. 

The recovery portable data set contains two major types of records: control 
records and data records. Control records contain one of two types of 
information: a time stamp or a dictionary. Data records also contain one of 
two types of information: a catalog work area or a data record from the data 
component of the cluster exported. Figure 39 shows the general layout of 
control records and data records in the recovery portable data set. The types 
of records and the types of information within those records are explained in 
this appendix. 

Appendix B: Portable Data Sets Created by the EXPORTRA Command 749 



Software 
••• End (s) 

of File 
Data Records from Data Set 

LRECL 	 Control Control Data Control Data Control Data 
Record Record Record Record Record Record Record 

~~~---''''''''-''''~ 

I~

the Portable
Data Set

Figure 39. Layout of Control Records and Data Records in the Recovery Portable Data Set

Control Records
Control records all have the same general format as shown in Figure 40. The
first four bytes of each control record contain header information. The next
four bytes contain associated data. The remainder of the record contains the
time stamp, dictionary information, or logical record length.

Control Record Contllining the Logical Record Length

The first record of every recovery portable data set is a control record
containing the logical record length of the portable data set itself. The fprmat
of this record is shown in Figure 41.

Control Record Containing Time Stamp In/ormation

The first record for each item on the recovery portable data set is a control
record that contains time stamp information, as well as other fields. The
format of this record is shown in Figure 42.

o 4 	 8

Associated Data or Variable Data-Time Stamp or
Header \ll ~ Logical Record Length 	 Dictiona'ry ~

~--------------------~----------------------~--------~----------~

Figure 40. General Format of Control Records

750 OS/VS2 Access Method Services Logic

L

8 o 2 3 4

0008 LRECL

Figure 41. Control Record Containing the Logical Record Length

The first two bytes of the header contain the length of this control record.
The next two bytes indicate that this control record contains time stamp
information. There is no associated data, and those four bytes are reserved.

The format of the time stamp information is:

Dlsplacementl 	 DescriptJOII

8(8) 	 The maximum number of components associated with this item.

9(9) 	 Flags:

Bit 	 Meaning When Set

o 	 1 indicates a unique data set
oindicates a nonunique data set
1 indicates an inhibited target
oindicates a noninhibited target

2 1 indicates path associations are present.
oindicates no paths are present.

3 	 If bit 2 is 1:
1 indicates that the base object has both data and index
components.
oindicates that the base object has only a data component.

4 1 always 1 for a recovery portable data set.
5 1 indicates a nonVSAM object.

oindicates an object other than a nonVSAM.
6 1 indicates a GDG base object.

;1 	 . oindicates an object other than a GDG base.
7 1 indicates a user catalog pointer.

oindicates a nonuser catalog pointer.

lO(A) 	 Access Method Services release number in EBCDIC

l1(B) 	 Reserved

12(C) 	 Time of export in EBCDIC, in the form hh.mm.ss, where hh is the
number of hours, mm the number of minutes, and ss the number of
seconds.

20(14) 	 Date of export in EBCDIC, in the form mm/dd/yy, where mm is the
month in digits, dd the day, and yy the year.

1 The displacement is from the beginning of the control record.

0

....

2 3 4 8 27

X'FF'

V'

Header

X'FF'

",

Reserved

V'

Associated Data

",

Time Stamp and Other Information

v

Variable Data

.,

Figure 42, Control Record Containing Time Stamp Information

Appendix B: Portable Data Sets Created by the EXPORTRA Command 751

http:hh.mm.ss

Control Records Contllining Dictionary Info17lUltion

A control record containing dictionary information is written for each object
being exported and for each component associated with that object. These
records in essence describe the data record containing the catalog work area
which follows. The general format of control records containing dictionary
information is shown in Figure 43.

The first two bytes of the header contain the length of this control record.
The next two bytes indicate that this record contains dictionary information
and the type of component that the associated catalog work area information
describes. The type of component is indicated by 'C' for cluster, 'D' for data,
'I' for index, 'G' for alternate index, 'R' for path, 'A' for nonVSAM, 'B' for
GDG base, 'X' for alias, or 'U' for user catalog pointer.

The associated data portion of the control record contains the length of the
associated catalog work area (2 bytes) and the number of records into which
the associated catalog work area is broken (2 bytes).

The variable data portion of the control record contains the dictionary
information. This portion of the control record begins with a four-byte field
that contains the number of entries in the dictionary. The entries themselves
follow. Each entry consists of a pair of four-byte fields. The first four bytes
contain the length of the associated catalog field in the catalog work area.
(Remember, the catalog work area information is in a data record
immediately following one of these control records.) The second four bytes
contain the displacement of that field within the associated data record. If an
associated catalog field contains no information, both four-byte fields in the
dictionary entry contain zeros.

The number of dictionary entries and their order depends upon the type of
object being described. Dictionary formats are described for each possible
kind of item in the following list.

Order of Associated Catalog Fields

Order Associated Field In
VSAM Components Catalog Work Area Description

ENTYPE Component type.

2 ENTNAME Component name.

3 DSATIR Data set attributes.

4 OWNERID Data set owner.

5 DSETCRDT Data set creation date.

6 DSETEXDT Data set expiration date.

7 BUFSIZE Minimum buffer size.

o 2 3 4 6 8
)
l

JNumber of
Length of Catalog Records for

OOD4 X'FF' Type Dictionary and Other Information
Work Area Catalog

Work Area
)
\

~~---------vV--------~A~------~~------~~~~--------~v--------~~
Header Associated Data Variable Data

Figure 43. Control Record Containing Dictionary Information

752 OS/VS2 Access Method Services Logic

L

Order of Associated Catalog Fields

Order Associated Field in
VSAM Components Catalog Work Area Description

8 LRECL Logical record size.

9 SPACEPARM Primary and secondary space.

10 PASSWORD Four eight-character passwords.

11 PASSPRMT Password prompting code name.

12 PASSATMP Maximum number of attempts for password.

13 USVRMDUL User security verification module.

14 USERAREC User authorization record.

15 LOKEYV Low key on volume.

16 HIKEYV High key on volume.

17 VOLSER Volume serial numbers.

18 AMDSBCAT AMDSB from which the next 9 fields are taken.

19 AMDATTR Attributes.

20 AMDRKP Relative key position.

21 AMDKEYLN Key length.

22 AMDCINV Control interval size.

23 AMDLRECL Maximum record size.

24 AMDPCTCA Percent of free control intervals in control area.

25 AMDPCTCI Percent of free bytes in control intervals.

26 AMDATTR3 Attributes

27 AMDAXRKP Position of alternate index key in base cluster
record.

28 EXCPEXIT Exception exit.

29 RGATTR Alternate index or path attributes.

30 RELATE I Alternate index related name or
PATHENTRY path entry name.

31 PASSREL Master password of path entry component.

32 SECFLAGS RACF Security fields (VS2.03.807)

NonVSAM

ENTYPE Entry type.

2 ENTNAME Entry name.

3 VOLSER Volume serial numbers.

4 DEVTYP Device types.

5 FlLESEQ File sequence numbers.

6 OWNERID Data set owner.

7 DSETCRDT Data set creation date.

8 DSETEXDT Data set expiration date.

User Catalog Pointers

ENTYPE Entry type.

2 ENTNAME Entry name.

3 VOLSER Volume serial numbers.

4 DEVTYP Device types.

Appendix B: Portable Data Sets Created by the EXPORTRA Command 753

L

Data Records
Data records contain one of two types of information: the catalog work area
or data ree'ords frofil the data component of a VSAM cluster.

Data Reco'" Co_ta;";,., Catalog Work Area

Following each control record that contains dictionary information there is a
data record that contains the catalog work area for a given component. The
format of these records is shown in Figure 44.

The first two bytes of each record contain the total possible length of the
catalog work area. The next two bytes contain the length of the work area
used for this component. Following these first four bytes are the fields from
the catalog work area. The order of these fields is basically as described in the
preceding topic. If there is no information for one of the fields, the field is
completely omitted.

Figure 45 shows the relationship of the dictionary and catalog work area
information.

Datil Record.t COIItII;";,,g Datil Records from tie Datil
CompOlleJIt

For a VSAM cluster or alternate index, following all of the control records
and data records that contain dictionary information is a special record which
marks the beginning of the data records from the data component. This
special record is eight bytes in length. The record always has the format
shown in Figure 46.

o 2 4

~----~------------~----------------------------~lr-
Total

Possible Length for this Component Information from Catalog Work Area
 J
Length

L----....L--------'--------I'

Figure 44. Data Record Containing Catalog Work Area

754 OS/VS2 Access Method Services Logic

Control Record Containing Diclionary Infonnation

Number
0004 X'FF' Type Length of X'25' X'OI' X'Q4' X'2C' X'05' X'DO' X'DO' X'03' X'3B'

Records

Data Record Containing CatalOll WorkArea Infonnation //,~
((

Length for this
Total Possible Length

Component
\ \

Figure 4S. Relationship of Dictionary and Catalog Work Area Information

o 2 3

X'OO08' 01 	 Reserved

Figure 46. Special Record at Beginning of Data Records from the Data Component

Following this special record are all of the data records from the data
component being exported.

AuocUIt. Obj«a for U.r Catillog Pointers, NOli VSAMs, aM
GDGI

The aliases of a user catalog pointer or a nonVSAM are exported as
'F 	 associated objects. Similarly, the nonVSAMs that belong to a GDG base are

exported as associated objects of the GDG; these nonVSAMs may, in turn,
have aliases. An item and its associated objects are preceded by one time
stamp control record and followed by one software end of file.

Appendix B: Portable Data Sets Created by the EXPORTRA Command 755

INDEX

For additional information about any subject listed in this
index, refer to the publications that are listed under the same
subject in the OS/VS2 Master Index, GC28-0693.

A
ABORT codes 549,698
Access Method Services

functions 21

introduction 21

logic features 21

method operation

visual tltble of contents 31

overview 32

requirements 21

structure 32

adapters

input/output 291

system 195

ALLAGL 426

Allocation Argument List (ALLAGL) 426

ALTER

FDT 461

IDCALOI 397

method of operation 78

AREAS subparameter of P ARM command 592

attributes of portable data sets 743

automatic storage areas, finding 655

AUTOTBL 562

finding the 655

B
BLDINDEX

FDT 466

IDCBIOI 398

method of operation 148-158

Buffer Pool Control Block (BUFS) 428

c
Catalog Interface Argument List (CIRAGL) 429

catalog management

argument lists, finding 669

debugging 667

obtaining a dump 668

sequence of calls made by FSRs 670

VSAM control block manipulation argument lists 697

catalog problem, debugging a 667

catalog reload 140

character code dependencies 28

Check UCB Argument List (CKAGL) 430

CHKLIST

FDT 466

IDCCKOI 400

method of operation 144

CIRAGL 429

CKAGL 430

CNVTCAT

FDT 468

IDCCCOt 399

method of operation 82

Command Descriptor

for ALTER (IDCCDAL) 399

for BLDINDEX (IDCCDBI) 399

for CHKLIST (IDCCDCK) 400

for CNVTCAT (IDCCDCC) 399

for DEFINE (IDCCDDE) 400

for DELETE (IDCCDDL) 400

for EXPORT (IDCCDXP) 400

for EXPORTRA (IDCCDRC) 400

for IMPORT (IDCCDMP) 400

for IMPORTRA (IDCCDRM) 400

for LISTCAT (IDCCDLC) 400

for LISTCRA (IDCCDLR) 400

for PARM (IDCCDPM) 400

for PRINT (IDCCDPR) 400

for REPRO (IDCCDRP) 400

for RESETCAT (IDCCDRS VS2.03.808 only) 400

for VERIFY (IDCCDVY) 400

format 431

Command Name Table (IDCRILT) 438

COMMAREA 556

control block manipulation argument lists 697

control flow 393

invoked interactively with TSO 395

invoked with a batched job 394

through processor services 396

control records 744

containing dictionary information 745

order of fields 746

containing time stamp information 744

general format 744

CRA Access Parameter List 439

D
DARGLIST 442

data areas 425

Allocation Argument List (ALLAGL) 426

Catalog Interface Argument List (CIRAGL) 429

Check UCB Argument List (CKAGL) 430

Command Descriptor 431

Parameter data area 434

Verb data area 432

Command Name Table (IDCRILT) 438

CRA Access Parameter List 439

Dump List 440

Dynamic Data List (DARGLIST) 442

Error Conversion Table (ERCNVTAB) 444

ESTAE Argument List (STAEPARM) 445

Exclusive Control Argument List (EXCLAGL) 447

EXCP Get Argument List (EXGARG) 448

EXCP OPEN Argument List (EXOARG) 449

EXCP PUT Argument List (EXPARG) 451

Format List (FMTLIST) 454

Function Data Table (FDT) 458

ALTER 461

BLDINDEX 466

CHKLIST 467

CNVTCAT 468

DEFINE 469,481

ALIAS 469

ALTERNATEINDEX 469

CLUSTER 473

Index 757

Function Data Table (FDT) (continued)

GENERATIONDATAGROUP 476

MASTERCATALOG 476

NONVSAM 477

PAGESPACE 478

PATH 478

SPACE 479

USERCATALOG 479

DELETE 511

EXPORT 513

EXPORTRA 514

IMPORT 516

IMPORTRA 518

LISTCAT 519

LISTCRA 521

PARM 522

PRINT 524

REPRO 526

RESETCAT (VS2.03.808 only) 528

VERIFY 529

Global Data Table (GOT) 530

I/O Adapter Historical Area ([ODATA) 535

Input/Output Communications Structure (lOCSTR) 536

Input/Output Communications Structure Extension

(IOCSEX) 539

Input/Output Control Block (IOXCTLBK) 541

Inter-Module Trace Table 543

Intra-Module Trace Table 544

Load List Block (LLBLK) (VS2.03.807) 545

Locate Data Set Return Information Area

(LCTINFO) 546

Modal Verb and Keyword Symbol Table ODCRIKT) 547

Mount/Demount Argument List (MDAGL) 548

Open Argument List (OPNAGL) 549

Open Close Address Array (OCARRAY) 551

Positioning Argument List (OPRARG) 552

Post UCB Argument List (PUAGL) 553

Print Control Argument List (PCARG) 554

Print Control Table (PCT) 555

PUT Data Block (EXPDATAB) 452

RACL URACHECK Argument List (RACFAGL)

(SU5752-824) 557

Reader/Interpreter Communication Area

(COMMAREA) 558

Reader/Interpreter Historical Area (HDAREA) 559

Recatalog Argument List (RCTAGL) 561

REPAIRV Argument List (EXWRARG) 560

Selecting a DDname Argument List 563

Storage Table (AUTOTBL) 562

SVC 82 Argument List (SV82LIST) 564

System Adapter Historical Area (SAHIST) 566

Test Option Data Area 567

Text Structure 569

UGPOOL Area 571

UGSPACE Area 572

UIOINFO Option Byte 573

Unit Table 575

UREST arguments 576

USCRATCH Volume List 578

Volume Data Set Service Argument List 588

Volume Label Service Argument List (VS2AGL) 585

Volume VTOC Service Argument List (VSIAGL) 579

data records 747

containing catalog workarea 747

containing data records 747

relationship to control record 747

debugging (see Diagnostic Aids)
Debugging Aids

introduction 22

method of operation 355

overview 356

UDUMP 360

dump fields 362

UTRACE 358

visual table of contents 355

modules

IDCDBOI 400

IDCDB02 400

DEFINE

FDT 469,481

IDCDEOI 400

method of operation (without VS2.03.807) 84

method of operation (with VS2.03.807) 86

ALIAS 90

ALTERNATEINDEX 108

CLUSTER 92

GENERATIONDATAGROUP 96

MASTERCATALOG 98

NONVSAM 102

overview (without VS2.03.807) 84

overview (with VS2.03.807) 86

PAGESPACE 104

PATH 112

SPACE 106

USERCATALOG 98

DELETE

FDT 511

IDCDLOI 401

method of operation 114

Diagnostic Aids 589

ABORT codes 649,698

debugging a catalog problem 667

how to find catalog management argument lists 669

how to obtain a dump 668

sequence of catalog calls made by FSRs 670

debugging a formatting problem 678

example I 678

example II 679

example III 684

how to find Text Processor argument lists 691

how to obtain a dump 690

debugging an I/O problem 691

how to find I/O argument lists 692

how to obtain a dump 692

OPEN argument lists 694

UGET and UPUT argument lists 694

VSAM control block manipulation argument lists 697

dump, finding:

automatic storage areas 655

catalog management argument lists 669

dynamic storage areas 655

PDT 654

GOT 652

I/O argument lists 692

modules 652

registers 652

save areas 654

Text Processor argument lists 691

trace tables 654

dump points 594,631

dump, sample 663

message to module cross-reference 698

J

758 OS/VS2 Access Method Services Logic

module to dump point cross-reference 631

TEST option 591

trace and dump points to module cross-reference 594

trace tables 589

how to find 654

TSO TEST command 648

DO modal command 58

Dump List 440

,jump points 631

dump reading 651

finding

automatic storage areas 655

catalog management argument lists 669

dynamic storage areas 655

FDT 654

GDT 652

I/O argument lists 692

modules 652

registers 652

save areas 654

trace tables 654

points 594,631
sample dump 663

Dynamic Data List (DARGLIST) 442

dynamic storage areas, finding 655

E
ELSE modal command 54

END modal command 60

ESTAE Argument List (ST AEPARM) 445

EXCLAGL 447

Exclusive Control Argument LIST (EXCLAGL) 447

EXCP Get Argument List (EXGARG) 448

EXCP OPEN Argument List (EXOARG) 449

EXCP PUT Argument List (EXPARG) 451

executable load modules

IDCALOI 397

IDCAMS 398

IDCAMOI 398

IDCAM02 398

IDCBIOI 398

IDCCCOI 399

IDCCKOI 400

IDCDBOI 400

IDCDB02 400

IDCDEOI 401

IDCDE02 401

IDCDLOI 402

IDCEXOI 403

IDCEX02 403

IDCEX03 403

IDCrOOI 403

IDCI002 404

IDCr003 404

IDCI004 404

IDCro05 405

IDCLCOI 406

IDCLROI 406

IDCLR02 409

IDCMPOI 409

IDCPMOI 409

IDCPROI 410

IDCRCOI 410

IDCRC02 410

IDCRC03 411

IDCRC04 411

IDCRIOI 412

IDCRI02 413

IDCRI03 413

IDCRI04 414

IDCRMOI 414

IDCRPOI 415

IDCRSOI (VS2.03.808 only) 415

IDCRS02 (VS2:03.808 only) 416

IDCRS03 (VS2.03.808 only) 416

IDCRS04 (VS2.03.808 only) 416

IDCRS05 (VS2.03.808 only) 416

IDCRS06 (VS2.03.808 only) 417

IDCRS07 (VS2.03.808 only) 417

IDCSAOI 417

IDCSA02 417

IDCSA03 418

IDCSA05 419

IDCSA06 419

IDCSA07 419

IDCSA08 420

IDCSA09 420

IDCSAIO 421

IDCTPOI 421

IDCTP04 422

IDCTP05 422

IDCTP06 422

IDCVSOI 423

IDCVS02 423

IDCVYOI 424

IDCXPOI 424

Executive

introduction 22

modules

IDCEXOI 401

IDCEX02 403

IDCEX03 403

EXGARG 448

EXOARG 449

EXPARG 451

EXPDATAB 452

EXPORT

FDT 513

IDCXPOI 424

method of operation 116

CLUSTER 118

EXPORTRA

FDT 514

IDCRCOI 410

IDCRC02 410

IDCRC03 41 J

IDCRC04 41 J

method of operation 166-175

external entry point 390

external exit point 390

EXWRARG 560

F
FDT 458

finding the 654

introduction 25

Field Management Parameter List (FMPL) 453

finding

automatic storage areas 654

catalog management argument lists 669

dynamic storage areas 655

FDT (Function Data Table) 654

Index 759

finding (continued)

GOT (Global Data Table) 652

I/O argument lists 691

modules 652

registers 652

save areas 654

Text Processor argument lists 691

trace tables 654

flow of control 393

FMPL 453

FMTLIST 454,679

Format List (FMTLIST) 454,679

formatting text (see also Text Processor)

example I 678

example II 679

example III 684

FSRs (see also Function Support Routines)

introduction 22

method of operation 77

FULL subparameter of PARM 592

Function Data Table (FDT) 458

finding the 654

introduction 25

Function Support Routines (FSRs)

ALTER

FDT 461

IOCALOJ 398

method of operation 78

BLDINDEX

FDT 466

IOCBIOI 398

method of operation 148-161

CHKLIST

FDT 466

IOCCKOI 400

method of operation 144

CNVTCAT

FDT 468

IDCCCOI 399

method of operation 82

DEFINE

FDT 469,481

IOCDEOI 400

method of operation (without YSl.03.807) 84

method of operation (with YS2.03.807) 86

ALIAS 90

ALTERNATEINDEX 108

CLUSTER 92

GENERATIONDATAGROUP 96

MASTERCATALOG 98

NONVSAM 102

overview (without YS2.03.807) 84

overview (with YS2.03.807) 86

PAGES PACE 104

PATH 114

SPACE 106

USERCATALOG 100

DELETE

FDT 51 J

IOCDLOI 401

method of operation 114

EXPORT

FDT 513

IOCXPOI 424

EXPORTRA
FDT 514

IOCRCOI 410

IOCRC02 410

IDCRC03 411

IDCRC04 411

method of operation 166-175

IMPORT
FDT 516

IDCMPOJ 410

method of operation 122

CLUSTER 124

IMPORTRA

FDT 518

IDCRMOJ 403

method of operation 176-185

introduction 22

method of operation 77

LISTCAT

FDT 519

IDCLCOI 406

method of operation 124

gets information 132

LISTCRA

FDT 521

IDCLROI 406

IDCLR02 409

method of operation 162-165

PARM
FDT 522

IDCPMOI 409

method of operation 134

TEST option 591

PRINT
FDT 524

IDCPROI 410
 Jmethod of operation 136 ,.

REPRO
FDT 526

IDCRPOI 415

method of operation 138

catalog reload 140

RESETCA T (YS2.03.808 only)

FDT 528

IDCRSOI 415

IDCRS02 416

IDCRS03 416

IDCRS04 416

IDCRS05 416

IDCRS06 417

IDCRS07 417

method of operation 186

VERIFY
FDT 529

IDCVYOI 422

method of operation 142

G
GOT 530

finding the 652

introduction 23

Global Data Table (GOT) 530

finding the 652

introduction 23
method of operation 116

CLUSTER 118
 ,;J

760 OS/VS2 Access Method Services Logic

I

H
HDAREA 559

hierarchy of modules 375

I/O Adapter

debugging 691

introduction 22

method of operation 291

initialization (UIOINIT) 40

overview 292

termination (UIOTERM) 208
UCLOSE 308

UCOPY 322

UEXCP 328

UGET 312

UIOINFO 330

UOPEN 294

build IOCSTR 296

build control blocks 300

check open 301

UPOSIT 310

UPUT 316

SYSPRINT on a TSO terminal 320

USTOW 326

UVERIFY 324

visual table of contents 291

modules

IDCIOOI 403

IDCI002 404

IDCI003 404

IDCI004 404

IDCI005 405

I/O Adapter Historical Area (IODATA) 535

I/O argument lists, finding 692

I/O macros 376

IDCALOI 398

IDCAMS 398

IDCAM01 398

IDCAM02 398

IDCBIOI 398

IDCCCOI 399

IDCCDAL 399,431
IDCCDBI 399,431
IDCCDCC 399,431
IDCCDCK 399,431
IDCCDDE 399,431
IDCCDDL 399,431
IDCCDLC 399,431
IDCCDLR 399,431
IDCCDMP 399,431
IDCCDPM 399,431
IDCCDPR 399,431
IDCCDRC 399,431
IDCCDRM 399,431
IDCCDRP 399,431
IDCCDVY 399,431
IDCCDXP 399,431
IDCCKOI 400

IDCDBOI 400

IDCDB02 400

IDCDE01 400

IDCDL01 401

IDCEXOI 402

IDCEX02 403

IDCTSALO 424,569

IDCTSBIO 424,569

IDCTSCCO 424,569

IDCTSCKO 424,569

IDCTSDEO 424,569

IDCTSDLO 424,569

IDCTSEXO 422,569

IDCTSIOO 422,569

IDCTSLCO 422,569

IDCTSLC1 422,569

IDCTSLRO 422,569

IDCTSLR1 422,569

IDCTSMPO 422,569

IDCTSPRO 422,569

IDCTSRCO 422,569

IDCTSRIO 422,569

IDCTSRIt 422,569

IDCTSTPO 422,569

IDCTSTP1 422,569

IDCTSTP6 422,569

IDCEX03 403

IDCIOOI 403

IDCI002 404

IDCI003 404

IDCI004 404

IDCI005 405

IDCLCOI 406

IDCLC02 406

IDCLROI 406

IDCLR02 409

IDCMPOI 409

IDCPMOI 409

IDCPROI 410

IDCRCOI 410

IDCRC02 411

IDCRC03 411

IDCRC04 412

IDCRIKT 412,547

IDCRIL T 412,438

IDCRI01 412

IDCRI02 413

IDCRI03 413

IDCRI04 414

IDCRM01 414

IDCRP01 415

IDCRSOt(VS2.03.808 only) 415

IDCRS02(VS2.03.808 only) 416

IDCRS03(VS2.03.808 only) 416

IDCRS04(VS2.03.808 only) 416

IDCRS05(VS2.03.808 only) 416

IDCRS06(VS2/03.808 only) 417

IDCRS07(VS2.03.808 only) 417

IDCSA01 417

IDCSA02 417

IDCSA03 418

IDCSA05 418

IDCSA06 419

IDCSA07 419

IDCSA08 420

IDCSA09 420

IDCSAIO 421

IDCTPOI 421

IDCTP04 421

IDCTP05 422

IDCTP06 422

Index 761

IDCTSUVO 422,569

IDCTSXPO 422;569

IDCVSOI 423

IDCVS02 422

IDCVYOI 423

IDCXPOI 424

IF-THEN modal command 52

IMPORT

FDT 516

IDCMPOI 409

method of operation 122

CLUSTER 124

IMPORTRA

FDT 518

IDCRMOI 403

method of operation 176-185

Initialization

interactive TSO initialization 38

I/O adapter 40

overview 36

System Adapter 34

visual table of contents 33

Input/Output Communications Structure (IOCSTR) 536

Input/Output Communications Structure Extension

(IOCSEX) 539

Input/Output Control Block (IOXCTLBK) 541

Inter-Module Trace Table 543,589

Input Parameter Table (IPL) 534

internal services (besides Umacros)

Volume Label Service

GETLABEL 388

INITVOL 388

PUTLABEL 388

Volume VTOC Service

GETVTOC 387

PUTVTOC 387

RECATLG 387

SCRVTOC 387

SECCHECK 387

Internal Services Provided for Processor Modules 382

Intra-Module Trace Table 543,590

invoking user I/O routine 391

arguments passed 392

IOCSEX 539

IOCSTR 536

IODATA 535

IOXCTLBK 541

J
job control language 388

L
Label Service, Volume 370,388

LASTCC 390

LISTCAT

FDT 519

IDCLCOI 406

method of operation 128

gets information 142

LISTCR.<\.

FDT 521

IDCLROI 406

IDCLR02 409

method of operation 162-165

listing tape data sets open at checkpoint (CHKLIST

FSR) 144

Load List Block (VS2.03.807) 545

Locate Data Set Return Information Area 546

M
MAXCC 390

macros used, system and I/O

ABEND 377

BLDL (VS2.03.807) 377

CALLTSSR (VS2.03.807) 377

CAMLST (VS2.03.807) 377

CATLG 377

CHECK 377

DELETE (VS2.03.807) 377

CLOSE 377

DEQ 377

DEVTYPE 377

ENDREQ 377

ENQ 377

ERASE 377

ESETL 377

ESTAE 377

EXCP 377

EXTRACT 377

FREEMAIN 378

FREEPOOL 378

GENCB 378

GET 378

GETMAIN 378

ICBACREL 378

ICBCOTB 378

ICBCOVC 378

ICBMCRT 378

ICBMNTDE 378

ICBTRACE 378

ICBTUNE 378

ICBVVIC 378

ICBDEFV 378

LINK 378

LOAD 380

LOCATE 380

MODCB 380

MODESET 380

OBTAIN 380

OPEN 380

POINT 380

PUT 380

PUTGET 380

PUTLINE 380

RACHECK (SU 5752-824) 380

ROlFCB 380

READ 380

RENAME (VS2.03.808) 380

RESERVE 380

RETURN 380

SCRATCH 380

SETL 380

SETRP 380

SHOWCB 380

SNAP 381

762 OS/VS2 Access Method Services Logic

STACK 381

STOW 381

SVC 82 381

SVC 99 381

SYNADAF 381

SYNADRLS 38 I

TCLEARQ 381

TESTCB 381

TIME 381

VERIFY 381

WAIT 381

WRITE 381

WTO 381

Mass Storage System, IBM 3850 21

MDAGL 548

message to module cross-reference 698

method of operation 29

Access Method Services 31

Debugging Aids 355

Function Support Routines (FSRs) 77

Initialization 33

I/O Adapter 291

Reader/Interpreter 43

System Adapter 211

Termination 203

Text Processor 335

modal commands

DO 58

ELSE 54

END 60

IF-THEN 52

SET 56

Modal Verb and Keyword Symbol Table (IDCRIKT) 547

module to dump points cross reference 63 I

modules, finding 652

T'lessage to module cross-reference 698

Mo nt/Demount Argument List (MDAGL) 548

N
naming conventions

e :ample 27

for Command Descriptors 27

for data areas 28

for executable load modules 27

for multiple entry-point modules 27

for single entry-point modules 27

for Text Structures 28

mnemonic identifiers 27

non-executable load modules
command descriptor 431

IDCCDAL 399,431

IDCCDBI 399,431

IDCCDCC 399,431

IDCCDCK 400,431

IDCCDDE 400,431

IDCCDDL 400,431

IDCCDLC 400,431

IDCCDLR 400,431

IDCCDMP 400,431

IDCCDPM 400,431

IDCCDPR 400,431

IDCCDRC 400,431

IDCCDRM 400,431

IDCCDRP 400,431

IDCCDRS (VS2.03.808) 400,431

IDCCDVY 400,431

IDCCDXP 400,431

IDCRIKT 411,547

IDCRILT 411,438

text structure 569

IDCTSALO 42 I ,569

IDCTSBIO 421,569

IDCTSCCO 421,569

IDCTSCKO 421,569

IDCTSDEO 422,569

IDCTSDLO 422,569

IDCTSEXO 422,569

IDCTSIOO 422,569

IDCTSLCO 422,569

IDCTSLC1 422,569

IDCTSLRO 422,569

IDCTSLR 1 422,569

IDCTSMPO 422,569

IDCTSPRO 422,569

IDCTSRCO 422,569

IDCTSRIO 422,569

IDCTSRI I 422,569

IDCTSRSO (VS2.03.808) 422,569

IDCTSSAO (SU5752-824) 422,569

IDCTSTPO 422,569

IDCTSTPI 422,569

IDCTSTP6 422,569

IDCTSUVO 422,569

IDCTSXPO 422,569

o
OCARRAY 551

OFF subparameter of PARM command 592

Open Argument List (OPNAGL) 549

Open Close Address Array (OCARRA Y) 551

OPNAGL 549

OPRARG 552

p
PARM

FDT 522

IDCPM01 409

method of operation 134

TEST option 591

parsing the command (see also Reader/Interpreter) 24

PCARG 554

PCT 555

portable data set (see also EXPORT, IMPORT,

EXPORTRA, and IMPORTRA)
created by EXPORT command 743

attributes of 743

major types of records 744

control 744

data 747

layout of 743

special record 748

types of control information 744

dictionary 745

time stamp 744

types of data information 747

catalog workarea 747

data record 747

Index 763

portable data set (see also EXPORT, IMPORT,

EXPORTRA, and IMPORTRA) (continued)

created by the EXPORTRA command 749

attributes of 749

major types of records 750

control 750

data 754

layout of 750

types of control information 750

dictionary 752

logical record length 750

time stamp 750

types of data information 754

associated objects for special types of catalog

records 755

catalog workarea 754

data record 754

Positioning Argument List (OPRARG) 552

Post UCB Argument List (PUAGL) 553

PRINT

FDT 524

IDCPROI 410

method of operation 136

Print Control Argument List (PCARG) 554

Print Control Table (PCT) 555

processor condition codes 390

LASTCC 390

MAXCC 390

processor invocation 388

arguments passed from:

a batched job 389

interactive TSO 390

program organization

introduction 375

overall organization 375

root segment 375

PROLOG 248,392

PUAGL 553

PUT Data Block (EXPDATAB) 452

R
RACF URACHECK Argument List (RACFAGL)

(SUS752-824) 557

RCTAGL 561

Reader/Interpreter

introduction 22

method of operation 43

for Batched Jobs Overview 46

build FDT 68

DO modal command 58

ELSE modal command 54

END modal command 60

get next command 50

IF-THEN modal command 52

initialization 48

prepare to scan command 62

scan command 64

SET modal command 56

syntax check parameter 66

termination 70

for Interactive TSO overview 72

checking parameters 74

overview 44

visual table of contents 43

modules

IDCRIOI 411

IDCRI02 412

IDCRI03 413

IDCRI04 413

Reader/Interpreter Communication Area

(COMMAREA) 558

Reader/Interpreter Historical Area (HDAREA) 559

reading a dump 651

Recatalog Argument List (RCT AGL) 560

recovery during abnormal termination (UST AE) 232

registers, finding 652

reload, catalog 140

REPAIRV Argument List (EXWRARG) 560

REPRO

FDT 526

IDCRPOI 415

method of operation 138

catalog reload 140

RESETCA T (VS2.03.808 only)

FDT 528

IDCRSOI 415

IDCRS02 416

IDCRS03 416

IDCRS04 416

IDCRS05 416

IDCRS06 417

IDCRS07 417

method of operation 186

requirements

storage 21

system 21

return codes 390

s
SAHIST 566

save areas, finding 654

Selecting a DDname Argument List (SELAGL) 563

SET modal command 56

STAEPARM 445

storage requirements 21

Storage Table (AUTOTBL) 562

finding the 655

substructure 22

Debugging Aids 22

Executive 22,24

I/O Adapter 22,24

Reader/Interpreter 22

System Adapter 22,24,26

Text Processor 22

superstructure 22

FSRs 22

SVC 82 Argument List (SV82LIST) 564

SV82LIST 564

System Adapter

introduction 22

method of operation 211

initialization 36

overview 212

PROLOG 2!8

UABORT 226

UALLOC 264

UCALL 234

UCATLG 216

UCIR 218

UDEALLOC 266

764 OS/VS2 Access Method Services Logic

System Adapter (continued)

UDELETE (YS2.03.807) 240

UDEQ 270

UENQ 272

UEPIL 250

UFPOOL 248

UFSPACE 244

UGPOOL 246

UGSPACE 242

UID 260

ULINK 238

ULISTLN 254

ULOAD 236

ULOCATE 222

UMSSUNIT 278

UPROMPT 258

UQUAL 262

URACHECK (SU5752-824) 276

URECAT 220

URESERVE 274

USAVERC 256

USCRATCH 282

USNAP 228

USSC 284

USTAE 230

USYSINFO 286

UTIME 252

UUNCATLG 224

UWTO 288

visual table of contents 211

modules

IDCSA01 417

IDCSA02 417

IDCSA03 418

IDCSA05 418

IDCSA06 418

IDCSA07 419

IDCSA08 420

IDCSA09 420

IDCSAIO 420

recovery during abnormal termination 232

System Adapter Historical Area (SAHIST) 566

system macros 376

system requirements 21

T
Termination

executive-controlled 204

I/O adapter 208

processor 206

recovery during abnormal termination 232

visual table of contents 203

TEST command (with TSO) 648

how to use 648

TEST keyword of PARM command 591

TEST option 591

Test Option Data Area 567

Text Processor

debugging a formatting problem 678

introduction 22

method of operation 335

overview 336

UERROR 352

UESTA 340

UESTS 338

UPRINT

convert 348

format 346

print 350

URESET 344

UREST 342

visual table of contents 335

modules

IDCTPOI 421

IDCTP04 421

IDCTP05 422

Text Structure 523
for ALTER messages (IDCTSALO) 422,569
for BLDINDEX messages (IDCTSBIO) 422,569
for CHKLIST messages (IDCTSCKO) 422,569
for CNVTj::AT messages (IDCTSCCO) 422,569
for DEFINE messages (IDCTSDEO) 422,569
for DELETE messages (IDCTSDLO) 422,569
for Executive messages (IDCTSEXO) 422,569
for EXPORT messages (IDCTSXPO) 422,569
for EXPORTRA messages (IDCTSRCO) 422,569
for I/O Adapter messages (IDCTSIOO) 422,569
for LISTCAT listing (IDCTSLCO) 422,569
for LISTCAT messages (IDCTSLCI) 422,569
for LISTCRA listing (IDCTSLRO) 422,569
for LISTCRA messages (IDCTSLR 1) 422,569
for IMPORT messages (IDCTSMPO) 422,569
for PRINT listings (IDCTSPRO) 422,569
for Reader/Interpreter messages during a batch job

(IDCTSRIO) 422,569
for Reader/Interpreter messages during interactive TSO

(IDCTSRII) 422,569

for Text Processor (IDCTSTPO) 422,569

for Text Processor messages (TDCTSTPt) 422,569

for UERROR messages (IDCTSTP6) 422,569

for universal messages (IDCTSUVO) 422,569

format 570

THEN (see IF-THEN)

trace and dump points to module cross-reference 594

trace tables

finding the 654

Inter-Module 543,589

Intra-Module 544,590

TSO

argument list for processor invocation 390

flow of control through processor 394

interactive TSO initialization 38

overall organization 375

processor invocation 388

Reader/Interpreter for Interactive TSO 72

SYSPRINT on a TSO terminal 320

TEST command 548

u
UABORT 226,382
UALLOC 264,382
UCALL 234,382
UCATLG 216,382
UCIR 218,382
UCLOSE 308,382
UCOPY 322,382
UCTAGL, UUNCATLG Argument List 574
UDEALLOC 268,382
UDELETE (YS2.03.807) 240,382
UDEQ 270,382

Index 765

UDUMP 360,382
UENQ 272,382
UEPIL 250,382
UERROR 352,382
UEST A 340,383
UESTS 338,383
UEXCP 329,383
UEXCP (for REPAIRV) 331,383
UFPOOL 246,383
UFSPACE 242,383
UGET 322,383
UGPOOL 244,383
UGPOOL Area 571

contents 657
UGSPACE 240,383
UGSPACE Area 572
UID 260,383
UIOINFO 332,383
UIOINFO Option Byte 573
UIOINIT 260,383
UIOTERM 208,385
UUNK 238,385
ULISTLN 254,385
ULOAD 236,385
ULOCATE 222
Umacros

PROLOG 248,382
UABORT 226,382
UALLOC 264,382
UCALL 234,382
UCATLG 216,382
UCIR 218,382
UCLOSE 308,382
UCOPY 322,382
UDEALLOC 268,382
UDELETE (VS2.03.S07) 240,382
UDEQ 270,382
UDUMP 360,382
UENQ 272,382
UEPIL 250,382
UERROR 352,382
UEST A 340,383
UESTS 338,383
UEXCP 328,383
UEXCP (for REPAIRV) 331,383
UFPOOL 246,383
UFSPACE 242,383
UGET 312,383
UGPOOL 244,383
UGSPACE 240,383
UID 260,383
UIOINFO 332,383
UIOINIT 260,383
UIOTERM 208,385
UUNK 238,385
UUSTLN 254,385
ULOAD 236,385
ULOCATE 222
UMSSUNIT 278,385
UOPEN (with VS2.03.S0S) 302,385
UOPEN (without VS2.03.S0S) 304,385
UPOSIT 310,385
UPRINT 346-350,385
UPROMPT 258,279
UPUT 316,386

UQUAL 262,386
URACHECK (SUS7S2-824) 276,386
URECAT 220,386
URESERVE 274,386
URESET 344,386
UREST 242,386
USA VERC 256,386
USCRATCH 282,386
USNAP 228,386
USSC 284,386
UST AE 230,386
USTOW 326,387
USYSINFO 286,387
UTIME 252,387
UTRACE 358,387
UUNCATLG 224
UVERIFY 324,387
UWTO 288,387
UMSSUNIT 278,385

Unit Table 575
UOPEN (with VS2.03.808) 302,385
UOPEN (without VS2.03.S0S) 304,385
UPOSIT 310,385
UPRINT 346-350,385
UPROMPT 258,279
UPUT 316,386
UQUAL 262,386
URACHECK (SUS7S2·S24) 276,386
URECAT 220,386
URESERVE 274,386
URESET 344,386
UREST 242,386
UREST arguments 576
USA VERC 256,386
USCRATCH 282,386
USCRATCH Volume List 578
USER I/O Routines 391
USNAP 228,386
USSC 284,386
USTAE 230,386
USTOW 326,387
USYSINFO 286,387
UTIME 252,387
UTRACE 358,387
UUNCATLG 224
UUNCATLG Argument List 574
UVERIFY 324,387
UWTO 288,387

v
VERIFY

FDT 529
IDCVYOI 422
method of operation 142

visual table of contents
Access Method Services 31
Debugging Aids 355
Function Support Routines (FSRs) 77
Initialization 33
I/O adapter 291
Reader/Interpreter 43
System Adapter 21 1
Termination 203
Text Processor 335
Volume Services 365

766 OS/VS2 Access Method Services Logic

Volume Data Set Service Argument List (VS3AGL) 588
Volume Label Service Argument List (VS2AGL) 585
Volume Services

internal services 585
method of operation 365

Label Service 370

overview 366

VTOC Service 368

Data Set Services 372

visual table of contents 365
Volume VTOC Service Argument List (VSIAGL) 579
VSIAGL 580
VS2AGL 585
VS3AGL 588
VTOC Service, Volume 368,396

1,2,3
3850 Mass Storage System, IBM 21

Index 767

SY3S-0010-3

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation 'i·:" II

821 United Nations Plaza, New York, New York 10017
(lnternationall

0 en

<en
I\.)

» n
n
Cl> en
en

s:
Cl>.... J
:::T
0 a.
~ ...,
<
('j'
Cl> en

r
0

(Q

('j'

'T1

CD
z
?
en
eN
-..J

0

W
.9
en
-<
eN
C'I
6
0
0 w

Reader's
Comment
Form

OS/VS2 Access Method
Services Logic
SY35·0010·2

Your comments about this publication will help us to improve it for you.
Comment in the space below, giving specific page and paragraph references
whenever possible. All comments become the property of IBM.

Please do not use this fonn to ask technical questions about IBM
systems and programs or to request copies of publications. Rather,
direct such questions or requests to your local IBM representative.

If you would like a reply, please provide your name and address
(including ZIP code).

Fold on two linel,ltaple, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

SY35-0010-3

.foldand StaJ1li:!

First Class Permit
Number 6090
San Jose, California

Business Reply Mail
No postage necessary if mailed in the U.S.A.

Postage will be paid by:

IBM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

Fold and Staple .. ,~,'."

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(I nternationaH

0
en

<

Jen
r-J

l>
n
n
<1)

II> '"
<1)... ~
::r
0
Q.

W

n'
<
<1)
II>

r
0

(Q

n'

11

m
z
!'
en
eN
-...I
0
W
9
en
-<
eN
U1
6
0...
0
w

Reader's
Comment
Form

OS/VS2 Access Method
Services Logic
SY35-0010-2

Your comments about this publication will help us to improve it for you.
Comment in the space below, giving specific page and paragraph references
whenever possible. All comments become the property of IBM.

Please do not use this fonn to ask technical questions about IBM
systems and programs or to request copies of publications. Rather.
direct such questions or requests to your local IBM representative.

If you would like a reply, please provide your name and address
(including ZIP code).

Fold on two lines. staple,lJId mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your,
cooperation. . .

SY35-0010-3

.Fold.!lnd St!J2!.e
.., .. :

Business Reply Mail
No postage necessary if mailed in the U.S.A.

Postage will be paid by:

IBM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

Fold and ~taple

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
IU.S.A. only'

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
II nternationall

F irs! Class Permit
Number 6090
San Jose, California

"T1

iii
Z
o
en
~
o
W
.9
en
-<
!Jl
6
o
o
W

