Boeblingen - Poughkeepsie - Raleigh - San Jose

VSAM PRIMER and REFERENCE

AUTHOR:
ULRICH SCHWENK
WORLD TRADE SYSTEMS CENTER
SANTA TERESA
CALIFORNIA

6320-5774-1

This document was created and formatted with
SCRIPT/VS (program number 5796-PHL) undexr the CMS
component of VMs370. Foxr special handling of the
figures the SCRIPT/VS code was temporarily modified
to adjust for proper page length. The SCRIPT/VS
output was then edited and modified with a VM/370
EXEC procedure (special handling foxr imbedded fig-
ures). The output was transmitted to 0OS/VS2 MVS via
the VM/370 Networking PRP®2 - (program numbex
5799-ATA), and printed on the IBM 3800 Printing
Subsystem. The fonts used are T11, FM10, GF15 plus
a special character set to print the disk and tape
diagrams.

[e e e e — " — — —
e e e e - —— — ——

The information contained in this document has not been submitted to
any formal IBM test and is distributed on an "As Is" basis without any
warranty either express or implied. The use of this information or the
implementation of any of these techniques is a customer responsibility
and depends on the customer's ability to evaluate and integrate them
into the customer's operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no
guarantee that the same or similar results will be obtained elsauhere.
Customers attempting to adapt these techniques to their own environ-
ments do so at their oun risk.

Reference to PTF numbers that have not been released through the PUT
process does not imply general availability. The purpose of including
these reference numbers is to alert IBM CPU customers to specific
information relative to the implementation of the PTF when it bacomes
available to each customer according to the normal IBM PTF distrib-
ution rules.

The product referenced in this document may not be available in all
countries.

This edition includes Technical Newsletter 6320-5781, which added
the Copyright information at the bottom of this page.

© Copyright International Business Machines Corporation 1979.

CONTENTS

1.

2.

0 Introduction and Guidelines to this manual............... 1
1.1 Description of this manual...........c. ittt eteeeennenens. 1
1.2 How to use this manual..... e e e e ettt ettt e 2
1.2.1 DOS/VS and OS/VS USECILS . . . vttt oeeneooseonossnossesos 2
1.2.2 MVS users not using VSAM applications 2
1.3 Bibliography of manuals containing VSAM information 3
0 What ds VSAM. . . ittt ittt ittt it oeeeesseeososaonas e et 5
2.1 Basic description of VSAM e e et e e 5
2.1.1 Creating VSAM objectst iiiiieeneeeneensnnn 6
2.2 VSAM data set structure e e e e e 6
2.2.1 Control Intervalsiuuiueeeeeeeoenoeesenssnnoos 6
2.2.2 CoNtrol AZEaS ...t i i viteteeeeneosoossnssosenseenacsos 190
2.2.3 Spanned ZeCOZAS . .. vt eeeeeeeeeseeeesosesssoononoses 11
2.3 Types of data sets..... e et et ettt et 12
2.3.1 Reusable data setttt ittt eeennannns 16
2.4 KSDS Primary Index Strxucture................. et e 18
2.5 Inserting, extending and deleting of records..... e e 20
2.6 Processing of data setsttt 22
2.6.1 KSDS ProCeSSINg ..ttt e vtenennnnnocenns e e et e 22
2.6.1.1 KSDS Keyed sequential processing.........cceoeueeeeos 22
2.6.1.2 KSDS keyed skip-sequential processing 23
2.6.1.3 KSDS Keyed dixect processing...........coiinin. 23
2.6.1.4 KSDS addressed direct processing........... e e e e 2y
2.6.1.5 KSDS control interval processing..........oeveeeeon 24
2.6.1.6 KSDS overview of Keyed pProcessingceeeeeees 24
2.6.1.7 Positioning for a KSDS.......ceeve.n RN 25
2.6.2 ESDS PXOCESSINGg .t vt eveeteeneeeoossooossooenssenensss 26
2.6.2.1 ESDS addressed sequential processing..... et e e, 26
2.6.2.2 ESDS sKip-sequential processingcccuvvenenn 27
2.6.2.3 ESDS addressed direct processing.........coeueeeeeeon 27
2.6.2.4 ESDS control interval processing...........coeeeu.. 27
2.6.2.5 Positioning £0oxr an ESDSttt i it eneonneonens .27
2.6.3 RRDS processing C e e et ettt e e et i
2.6.3.1 RRDS sequential ProOCESSIiNG....u.'vverennneenennnnnnn 28
2.6.3.2 RRDS Keyed skip-sequential processing8
2.6.3.3 RRDS direct processing..........c.u et eeceeos 29
2.6.3.4 RRDS control interval processing...........ccoueuu.. 29
2.6.3.5 Positioning for an RRDSttt etneeeeennnenn 29
2.7 Alternate Index, Pathttt ienneeeennn 29
2.7.1 Rlternate indexes foxr KSDS.......ieeieeennn e e e e e e 31
2.7.2 Alternate indexes for ESDS.......... e et e e e 32
2.7.3 Examples for Alternate Indexes.........ooieeenoeeenns 32
2.7.4 Path..... et e e e et e e e et et 8
2.7.5 Access to base cluster and alternate index w/wo path. 36
2.7.5.1 Update restrictions for base cluster and AIX....... 3
2.8 VSAM data set comparison............. e e e e 39
2.9 VSAM data spaces........eeveeeeeoes ettt e et e 40
2.9.1 Choosing suballocatable oxr unique cluster 42
2.9.2 VSAM data space and cluster namescceoceeveeeecn 43
2.10 VSAM ownership concept ittt nenenn. 43
2.10.1 The VSAM 'ownership bit't ennnnn. 4y
2.10.2 The VSAM 'data set security bit' u5
2.11 VSAM space allocation..........ci ittt tieneerononsesnn 45

Table Of Contents iii

3.0 Catalog considerations........cueiiiietroconceonnnnons N ¥
3.1 Catalog philosophy..... et e e e e e e e et e e ane. U7
3.2 Catalog structuzrettt tteieeeeennoenenens 49

- 3.2.1 ‘ Catalog contents........... e et cee... 50
3.2.1%.1 Catalog entry types e e e i e e s e e e s e i e s e 51
3.2.1.2 Catalog sharingc.coiiiieeeeeeeeeneneonoeonoes 51
3.3 VSAM pPasSsSWOXAS .. .ottt nteoeossossossosorssansssssensssosess D2
3.3.1 How to specify passwords in a user~-written program... 55

4.0 Rccess Method Serxvices (Overview of functions)........... 57
4.1 BLTER & ettt ottt et et e e e e e et e e e e e e 58
y.2 BLDINDEX . . . i ittt ittt e teenencoeceonons e e e e s s s e e s e e e e 59
4.3 CHELIST (0S/VS ONLlY) . i ittt i i oo e evoeeeeeensoseesesoesenens 59
4.y DEFINE. . .t it ittt i it eneeeeoansonenennses e ettt e 60
4.5 DELE T E . & i it ittt e o e oooeoneosseesossasancossssansasenesas 61
4.6 EXPORT/IMPORT¢c0vveon s e e s et ae e e e e e s s e s e s s e e 61
4.7 EXPORTRA/IMPORTRAceeeu.. et ettt e et e 64
4.8 LIS T O AT ittt ittt et neeceeoeeeeeneeeesannsensassaocenees 66
4.9 LISTCRA s h e e s st s e e s e e s as e et ses s e e e e e 66
4.10 PRINT. ...t eennas et et et e e et e et 66
4.11 REP RO . ot ittt ittt et et tneeneeeeensensesnaesossassasenss 67
4.12 VERIFY (Access Method Sexvices)........cteieiveeeanon .. 69
4.13 VERIFY (Macro) e et e et e e e e e e e e e e e e 69
b.14 RESET C AT & it ittt ittt a oo eeeoeeceanenssoeasssssansnsneas 70

5.0 Relationship of data access to data orxrganization......... 71
5.1 Overview of access methods other than VSAM............. 71
5.2 SAM versus Sequential VSAM............. et et et e e 73
5.2.1 Logical record processing (ADR-ESDS).....c oo 73
5.2.2 Logical recoxrd processing (KEY-RRDS)................. 73
5.2.3 Keyed sequential record processing (KEY-KSDS) 73
5.2.4 Control Interval Processingooeieeeeeeenoess 74
5.3 BDAM versus Direct ESDS and RRDS.t eeeoeoens 74
5.4 ISAM versus VSAM..... e e e et e et e e e e e e e e e 75
5.4.1 ISAM Interface Program........... D A <
5.4.2 ISAM to VSAM data set conversion...........cooiieenenon 76
5.4.3 ISAM program conversion using ISAM interface......... 76
5.5 High level language VSAM support...........c.iceiuereen. 78

6.0 VSAM installation and usage of VSAM catalogs with IPL ... 79
6.1 DOS/VS. ... it et et e e e ettt 79
6.1.1 VSAM related parameters in the Supervisor (DOS/VS). 79
6.1.2 How to use a user catalog as master catalog (DOS/VS). 79
6.1.3 Load a new SDL/SVA (DOS/VS) . . ittt ittt inencasonceess 79
6.2 VS 2 MU S Lttt it ittt et et eeeeeeeaneoeeneaeeneenesenennas 82
6.2.1 HOW TO install VSAM in VS2 MVS....... e e e s e st e e e e e
6.2.2 How to use a user catalog as master catalog (MVS) ... 81
6.3 VST and VS 2 SVUS .. ittt it ittt e eeeeeeenoonaenaosoosoaceeas 83
6.3.1 HOW TO install VSAM in VS1 and V82 SVS......ottvrnunn.. 83
6.3.2 How to use a user catalog as master catalog(sSvVss/vs1). 83

7.0 HOW TO start using VSAMttt tivteeenosoonoonnonosss 85
7.1 How to code Access Method Services Commands 85
7.2 Explanation of important DEFINE parameters............. 87
7.2.1 FILE..... o s s e e s s e s e s e e e s e s s e e e e e e e e s e e e e e ee e 88
7.2.2 FREESPACE ...t v it ereeeeooonoonnnas e et e e £

iv VSAM PRIMER and REFERENCE

.

--b—é—-h--l\O\0\9\0\0\9QQQ\I\1\]\]\]\I\'I\l\1\1\]\]0\O\O\O\6\0\0'\O\O\CNONO\ONOO\O\OO\O\M-CUJNNNNNNNNN

-0 OO

.

OO INNONOEFEW

.

.

.

.

.

E ~g ~ i~~~ I~~~ ~ S~~~ VS B S)

.

.

.

.

.

.
.

NN

.

N -

.
.

.
NNNN—;

.

\l\l\l\‘l\l\l\l\l\l\l\l\]\l\l\1\]\1\1\1\1\1\1\1\1\]\'I\J\'I\l\]\‘l\l\l\]\l\'l\l\l\l\]\l\]\]\l\1\1\1\1\1\1\1\1\1\1\1\1

.

IMBED/REPLICATE (Index options)cioiveeeenneen 89
KEYRANGES ..t v ittt e tneeneoneeneas i et e e e 91
8 o 93
RECORDS I ZE . . i it i it ittt oo e o oooessesssensesonssssoeeaess 94
SHAREOPTIONS and data set sharing 95

1 Cross-partitions/region sharing..................... 95
.2 Cross-system sharing (0S/VS only) e e e e 96
SPEED/RECOVERY (Loading options)...........cccieeeenn 97
SUBALLOCATION/UNIQUE it ittt ittt et oeeoeeossoacesss 98
DEFINE MASTERCATALOG. . . ¢ v v vt o v o vt v veooenos c e ettt 100
DEFINE USERCATALODG i i i it it e it eneneesossoosssoosennes 102
DEFINE SPACE i i it i i ittt v e et oo oeesoeeeeeoeeessnssoseas 105
KSDS (key-sequenced data set) I 1
DEFINE KSDS .ttt ittt et eeeoseasessosonseseanonssossos 106
REPRO (load a KSDS) ... ittt it ittt et esoeneeeenenas 108
PRINT KO D S . i i it ittt e ettt oo oseesoeosososcsosososenseses 109
Alternate indexes and Paths to KSDS ..ttt i iiienn 110

1 Explanation of the most important parameters....... 110
2 DEFINE AIX, DEFINE PATH ittt eteeoseosooensnos 111
3 BLDINDEX AIX On KSDS . . it ittt i ei et nooneeenonoenooeos 113
4 PRINT AT it i i i i ittt et et e s o e e eansoeeaeeeeseeeseeens 114
.5 PRINT PATH. . i it i ittt sttt e onoseeeoeoosssasesssessss 115
6 DEFINE AIX, DEFINE PATH et e et e 116
7 BLDINDEX AIX on KSDS i i i i ittt ittt ittt eneeeoensens 117
8 PRINT part of an AIK.ottt teeoneeenenens 118
.9 PRINT part of a base clustexr via PATH 119
.10 REPRO (copy data of a KSDS to a SAM-file on disk).120
.11 ALTER (free space, password)ooeeeeooaeeos 121
.12 EXPORT a KSDS and dits BIX'S. ...t ienuoenoonnnos 122
.13 IMPORT a KSDS and its AIX'S..... .t eeeeeenns 124
.14 VERIFY KOS DS . i it ittt ittt oo eooneseoesosnoesososeosaos 126
ESDS (entrxy sequenced data set)c.oiiiiieerenn. 127
DEFINE ESDS i i it it i ittt ettt et eeeeeaeeesoosnosnseneeos 127
REPRO (load AN ESDS) .. it i it inteeeesenssesenseseansnns 128

1 DEFINE AIX, DEFINE PATH ¢ttt teeeooeeonooenes 129
2 BLDINDEX AIX On ESDS . . . i i it ittt i ettt onsseoaaesnonons 130
3 PRINT ES DS . i i it ittt et ot ooeeseeososesosssesocsosssoess 131
4 PRINT AIX . it i it e it oo eoenneeeeeosenenosnsoeseeesns 132
5 PRINT PATH.ttt eemeoneonns e e e e e e e et et 133
6 DEFINE AIX, DEFINE PATHttt et eeesoeonosonsoa 134
7 BLDINDEX AIX ONn ESDS. it ittt eeeesennoesoennssoos 135
.8 o S - O 136
9 PRINT PATH............ e s e h e e s s e s e et 137
RRDS (relative record data set) e et et et e e 138
DEFINE RRDS .t it i it ittt it et o e seeeeaoesssesooseceoss 138
REPRO (load an RRDS) ... ittt it ittt it neeeeensaneeneens 139

P S 0 140
LISTCAT NAME i i ittt it ettt e et eeosonossssocesseneess 140
LISTCAT ALL and explanation of the fields 142

A Extracting all allocations from LISTCAT all 148
.2 Allocation layout on the VSAM 3330 volume 151
.3 Explanation of the LISTCAT output fields: 152
S 2 160
LISTCRA NOCOMPAREt ittt ittt e e aeeseneeoseneeeass 160
LISTCRA COMPARE i it it i i et e o s vooocoosossncecseeses 163
RESETCAT ... ittt it it eneneennon e et e e sl

Table 0f Contents v

7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.18.1
7.18.2
7.18.3
7.18.4
7.18.5
7.18.6
7.19
7.19.1
7.19.2
7.19.3
7.20
7.21

Mi

.

.

FWN -

.

.

CUOTOTOTOTE WWWWWN =

.
FEWN =

. .

.

00 00 00 00 00 00 00 0O 0000 W WPXNWPNRP®EP®®P®RRRRPR®®P®P®®O

EXPORT DISCONNECT user catalog from master catalog ...165
IMPORT CONNECT a user catalog to the master catalog...166

EXPORTRARcc0ee. et e e et e et 167
8 0 2 B 2 169
REPRO (unload - bacKkup a user catalog................. 171
REPRO (reload a user catalog from bacKkup tape) 172
DELETE0cc0e. e b e s e e e e s e s e s e e e e s e e s e e e e 173
DELETE RIX .. i i i ittt et eeeoenoosossosscoses e et e e e e e 173
DELETE a KSDS cluster (and its AIX's) 174
DELETE an ESDS cluster (and its BAIX's) 175

* DELETE an RRDS cluster et e e e e e e 176
DELETE SPACE ...t ittt ittt e enteneeconsenenssasseeeas 177
DELETE USER CATALOG........ s e e e s e e s e e s e e e e 178
Volume CleanuUpP .. v vt veeerseoooscooososnnsosssss e e 179
Volume cleanup DOS/VS (Utlllty IK@VDU)cc0... 179
Volume cleanup 0S/VS (1/2) (ALTER REMOVEVOLUMES) ...181
Volume cleanup 0S/VS (2/2) (EXPORT DISCONNECT) 182
DEFINE NONVSAM (0S/VS) . it ittt ettt ieenoeeosnsnenennsos 183
DEFINE ALIAS (MVS) . ittt it ittt e eeesoeeoasssannoos s183
scellaneous e et et e et 185
PeY OLMANCE . vttt ittt oot v o s ocoeoosasessooenssceeneesenes 185
Choosing the data CI-size v, 185
Choosing the index CI size (KSDS data sets)......... 186
Data set space allocationcciiiiio... 187
Small data setst i e e e e e 187
Multiple c¢ylinder data sets (not multivolume) 187
Multivolume data setsc0 ittt enneneenn 188
Data space allocation and extension 189
Index performance considerations.................. ... 190
VSAM buffers (non-shared resources) and strings 190
Buffers for direct access e e e e e 192
Buffers for skip sequential access...........convn.. 192
Buffers for sequential accessttt 193
Buffers for multiple strings..........ci it 194
VSAM sizes for DOS/VS and 0S/VS (CI-, CA-sizes etc.) .195
How to calculate a VSAM KSDS data set 197
Loading a KSDS with different free space............... 199
Control interval split (direct insert)................. 201
Key COMPIESSAiON . . ittt it ittt e o tanossesesssssesssensenss 203
Index CI size £ormula esetaneeseesen 206
Singles/Mass—insertion ittt 207
VSAM related parameters in the JCL.......... ... 211
DOS/VS JCL parameterttt i ittt enteenoseennnnnan 211
DOS/VS JCL to VSAM macro zelatlonshlp 212
OS/VS JCL parameter ittt ioneninneennnenn 213
0S/VS JCL DDNAME/DSNAME sharing e e e 214
0S/VS JCL to VSAM macro relationship................. 215
Subset mount e e e e e e e 216
Subset mount (DOS/V S) . . i ittt ittt e tnoeneeeteeesnnnns 216
Subset mount (0S/VS) ... ittt ittt ittt ittt eeneenn 216
VSAM Assembler Macros (short description)............. 217
VSAM control blocK mMAacCXoOS. ...ttt et ieeneeennennenon 217

1 ACB (generate an access control block) 217
2 EXLST (generate an exit list)............. 218
3 RPL (generate a request parametexr list)........... 218

vi VSAM PRIMER and REFERENCE

8.11.1.4 GENCB (generate a control block or list) 219
8.11.1.5 MODCB (medify contents of control block oxr list) .219
8.11.1.6 SHOUWCB (display contents of control blockrslist)...219
8.11 7 TESTCB (test contents of control block or list)...219
8.11.1.8 SHOWCAT (display fields in a VSAM catalog) 220
8.11.2 VSAM request MacCrosttt ii i eenseeeenennnnens 220
8.11.2.1 0 2 0 220
8.11.2.2 L O 220
8.11.2.3 = 221
8.11.2.4 ERASE . o ittt i ittt ittt eeneeeensensessosocseenenes 221
8.11.2.5 o 5 221
8.11.2.6 CHECK (0S/VS Only) ..ttt it ettt enseeeeeeeneenes 221
8.11.2.7 ENDRE D ittt ittt et eiieee e s eteenenennneeaneeaneeens 221
8.11.2.8 GETIX and PUTIX (OS/VS ONlyY) it e e e 222
8.11.2.9 L0 1 0 222
8.11.3 VSAM macros for shared resourcescceceeee.. 222
8.11.3.1 BLDVRP and DLVRP ... it i ittt ittt oo eeennneas 222
8.11.3.2 WRTBF R .ttt ittt ittt et e ee et e nneeeeessoensononenesen 222
8.11.3.3 SCHBFR and MRKBFR (OS/VS only)ceiieinneen.. 223
8.11.4 Concurrent processing (strings)..................... 223
.0 System considerations ittt ittt 225
9.1 Where is VSAM in main storagec.cceiiieennen.. 225
9.1.1 Rccess Method Services and VSAM in storage (DOS/VS) .225
9.1.2 Access Method Services and VSAM in storage (VS1/SVS).226
9.1.3 Access Method Services and VSAM in storage (MVS)..... 227
9.2 VSAM WoxXKRing sets ittt ittt e ettt esean e 228
9.2.1 Minimum working set foz a single KSDS (DOS/VS)....... 228
9.2.1. Working Set for alternate index processing(DOS/VS).229
9.2.2 Minimum working set for a single KSDS (MVS) 230
9.2.2. Working Set for alternate index processing (MVS)...231
9.2.3 Minimum working set for a single KSDS (SVS) 232
9.2.3. Working Set for alternate index processing (SVS)...233
9.2.4 Minimum working set for a single KSDS (VS1) 234
9.2.4, Working Set for alternate index processing (VS1)...235
9.2.5 VSAM virtual storage requirements (DOS/VS)........... 236
9.2.6 VSAM virtual storage requirements (MVS) 237
9.2.7 VSAM virtual storage requirements (SVS) 238
9.2.8 VSAM virtual storage requirements (VS1)239
0 Appendix A. VSAM catalog miscellaneous...........cooveo.o.. 241
A.1 VSEM catalog Keyrange s e eeeeeeeooooeeeeeeeeees 241
A.1.1 The High—-Keyrange (HKR)t it it iiieeeeooenennns 241
A.1.2 The Louw-Keyrange (LKR)ttt ieeeenooseoosesons 241
A.1.3 Catlog HKR and LKR Logic....... .ot iuneennnneeennns 242
A.1.4 The Self Describing Recordsccoiiteeeeeeen. 242
R.2 Timestamps, VIOC. ittt it eneeeoeoeeseessssesseeosess 24y
A.2.1 Volume timestamp.........coiveunnonn P 24y
R.2.2 VIOC F1 and FU4 DSCB's (Labels)t iieeeeeeeeens 245
A.3 How to calculate used space in a VSAM catalog 247
A.4 Catalog ZeCoOVREY . i i i it it it e ittt e te e eeeeosesssosssoeees 250
A.4.1 Introduction. i ittt ittt ettt eeeneeenenns 250
A.4.2 CRA Open and CloOSEo eeeoseonooeoeoosonnennnes 251
A.4.3 Recoverable or nonrecoverable catalog 252
A.4.3. Master catalog....... ...ttt ittt eennnns 252
A.4.3. User catalog. ... ieeeeeneeneeoceososenoeseesneenns 252

Table Of Contents vii

A.5 Catalog bacKkup.ottt ittt it it eeeenoeseeoeneens 253
A.5.1 REPRO (catalog unloads/reload)ciceeteeeenoeas 254
A.5.2 DUMP/RESTORE (O0S/VS Utility).. ... i ittt ineennnn 255
A.5.2.1 Dump/Restore volumes (0S/VS)ttt iieteeeeononns 255
A.6 Catalog device CONVEXSIONt veennseeeeneocssnnaos 257
A.6.1 Nonrecoverable Catalog Device Conversion (MVS)....... 257
R.6.2 Nonrecoverable Catalog Device Conversion............. 258
A.6.3 Recoverable Catalog Device CoOnNversioneeoc.. 259
A.7 Catalog Reorganization........c. ittt enneeneennenenn 261
A.7.1 Reorganizing a nonrecoverable catalog202
A.7.2 Reorganizing a recoverable catalog.........eeeeuue.en. 263
A.8 Changing the allocation of a nonrecoverable catalog.. .263
A.9 Changing the name of a VSAM catalog 265
B.O Appendix B. 0S/VS catalog considerations................. 267
B.1 Using OS/VS Service Aids and Utilities with VSAM....... 267
B.1.1 Printing a VSAM catalog with 0S/VS Utilities......... 267
B.1.1.1 Print parts of a catalog with IEHDASDR/DRWDASDR ...267
B.1.1.2 Print parts of a catalog with A/HMASPZAP........... 268
B.1.2 How to change ownership bits and volume timestamp:...269
B.1.2.1 Turn off the 'data set security bit' (0S/VS)....... 269
B.1.2.2 Turn off the 'VSAM ownership bit"' (0S/VS) 270
B.1.2.3 Modify the VSAM volume timestamp (OS/VS)........... 270
B.2 Catalog performance considerations (0S/VS)............. 271
B.3 Copy catalog - catalog (REPRO) (MVS only) 272
B.4 0S/7VS CVOL catalog versus VSAM catalog................. 272
B.4.1 VSAM Usexr Catalog Advantages (0S/VS) 273
B.4.2 VSAM User Catalog Disadvantages (0S/VS) 274
B.4.3 CVOL Advantages (0S/VS) .. i i i it ittt ittt ettt e nnnnns 277
B.4.4 CVOL Disadvantages (0S/VS) . .. i i ittt ittt et eeneenneeenn 278
c.0 ApPendixr C. ittt it ittt oo eeoeeoeaessoeesesensoeeassceosnas 279
c.1 Device type translate table0.iiiiieeeen.. 279
c.2 List of Abbreviations ittt et 279
0 05 D N 281

viii VSAM PRIMER and REFERENCE

FIGURES:

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figuzxe
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figuzre
Figuzre
Figuzre
Figure
Figure
Figure
Figure
Figure
Figure
Figuzre
Figure
Figure
Figuze
Figure
Figure
Figuzre
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

—_
N -
. .

17

20

21

26

29

3y

39

41

43

46

47

49
50

52

WO NI EWDN =

.

.

-
o

—_
w

1.
15.
16.

-

18.
19.

.

.

22.
23.
24,
25.

-

27.
28.

30.
31.
32.
33.

.

35.
36.
37.
38.

.

40.

-

42.
43.

.

4y,
45,

.

.

4s.

.

.

51.

.

Interval it ittt e i et e e
intexrval structure with control fields
Control intervals w. fixedsvariable-length records
Logical to physical records relationship
Structure of a VSAM control area
Structure of a spanned recoxrdc.c.itnnaean
Key-sequenced data set structure
Entry-sequenced data set structure
Relative record data set structure
Key-sequenced data set structure
Insexrting, deleting and extending recoxrds
Keyed sequential,skip-sequential,direct processing
Rlternate indexes with Key-sequenced base cluster
Alternate indexes with entry-sequenced base cluster
Rlternate indexes with Path
VSAM data sets comparison
VSAM data SPaCeS .. i i it ittt e eeneeeeeeoseoooeooooonos
VSAM ownership concept
VSAM space allocation
VSAM catalogs .. i ittt it ittt ettt e et et
VSAM catalog allocation
VSAM passuwords
Logical function
Logical function
Logical function
Logical function
Logical function
Logical function
Logical function
Logical function
Logical function
Logical function
Logical function
Logical function
Logical function of
VSAM definition for ISAM records
Keyranges (example 1)
Keyranges (example 2)
Keyranges (example 3)
Keyranges (example W) i ittt teeeeeeeeeeeeeas
Volume allocation layoutcciiiiueeeninennnnnn
VSAM data CI size recommendations
Control intexval split (1 of 2)
Control interxrval split (2 of 2)
Insertions: Direct insextion00
Insertions: Mass insertion (no FREESPACE)
Insertions: Mass insexrtion (with FREESPACE)
DOS/VS JCL to VSAM macro relationship
0S/VS JCL to VSAM macro relationship

Control
Control

............

....................

..................

..................

.........................

...........................

..............................

...............................

.............................
oooooooooooooooooooooooo

...........................

BLDINDEX
DEFINE USERCATALOG
DEFINE CLUSTER
DELETE ..t ittt ittt oo atoasesesoenos
EXPORT to disk or tape
IMPORT from disk oxr tape
EXPORTRA to disk oxr tape
IMPORTRA from disk or tape
REPRO (load) from disk oxr tape
REPRO (copy data)
REPRO (backup ds/catalogs)
RESETCAT . .. i it i ittt it et o oo nenes

oooooooooooooooooooooooo

..............

......

ooooooooooooooo

......

....................
...............................
...............................

...............................

...................
.....................

.....................

.........
ooooooooooooooo

................

Where is VSAM in storage (DOS/VS)t .

..................

Where is VSAM in storage (VS1/5VS)
Where is VSAM in storage (MVS)
VSAM catalog structure

oooooooooooooooooooooo

..............................

ix

X VSAM PRIMER and REFERENCE

1.0 INTRODUCTTION AND GUIDELINES TO THIS MANUAL

This manual is a guide and a reference source for the person using
VSAM.

This document has not been submitted to any formal IBM test and has
not been checked for technical accuracy. Potential users should
evaluate its usefullness in their own environment prior to any
implementation.

We want to acknowledge our debts to the many individuals who gave
us assistance in answering technical questions. In particular we
want to give credit to Roman Chiocca <from Switzerland and David
Pepper from Nottingham, England for their participation in develop-
ment of this document.

1.1 DESCRIPTION OF THIS MANUAL

The ohjectives of this manual are:

U To give the new VSAM user the information required to under-
stand, evaluate, and use VSAM properly.

. To clarify VSAM functions for current VSAM application program-
mers who will be working with VSAM. The practical, straightfor-
ward approach adopted should dispel much of the apparent
complexity sometimes associated with VSAM.

Wherever possible an example is used to reinforce a description,
and a modified version of the same example is used in any related
section to give <continuity to the explanation. Diagrams are used
liberally to aid understanding.

This manual is not operating system dependent and is intended for
Dossvs, MVS, SVS, and VS1 users, who should have some familiarity
with access methods.

Information contained in this manual includes:
. AR general description of VSAM and Access Method Services

concepts and capabilities, including catalog usage and compari-
sons with other access methods.

U Methods of calculating storage and data set space requirements.

. General system considerations.

. Descriptions and examples of using Access Method Services
facilities.

U An explanation of VSAM installation procedures.

. Programming considerations.

. Performance considerations.

Chaptexr 1. Guidelines 1

. Integrity considerations.

This manual is not intended as a replacement for the SRL manuals
and IBM courses, but as a supplement to them. It will be particu-
larly wuseful as an initial point of <reference to give a basic
understanding in specific areas, which may then be followed up by
reference to the appropriate SRL manual oxr course. For example,
though this manual gives an understanding of +the principles of
programming with VSAM, reference manuals would be needed to actual-
ly write code. Likewise, a clear understanding of how to use Access
Method Services commands to create, modify, delete, print and move
data sets is given, but the appropriate manual oxr course is neces-
sary to properly code actual commands.

This manual is a learning guide and a source of field-developed
techniques and advice. It does not eliminate the need for careful
planning and education. This publication therefore intends to
show, in an uncomplicated way, how to use VSAM simply and effec-
tively.

Knowledge of concepts of Virtual Storage Systems (like DOS/VS,

MVS,SVS,VS1) is required. Basic Kknowledge of other Access Methods
(like SAM oxr ISAM) is desirable.

1.2 HOW TO USE THIS MANUAL

1.2.1 DOSs/VS AND OS,/VS USERS

A1l chapters can be followed in the order they are presented.
Specific information is included in the Appendices. The index at
the end of the manual can be used to find a specific itenm.

Restrictions or notes to specific Operating Systems are added where
applicable.

1.2.2 MVS USERS NOT USING VSAM APPLICATIONS

Each MVS System must have a VSAM master catalog as the main system
catalog.

Even if a user does not plan to use VSAM applications, he should be
familiar with the basic VSAM structures (as the VSAM mastexr catalog
is also a VSAM data set).

The most important chapters for this group of user are the chapters
2.0, 3.0, 6.0, and appendix A.O.

It is suggested, however, to also read the other chaptexs, as most
of them also contain information important for users, using only
VSAM catalogs.

2 VSAM PRIMER and REFERENCE

1.3

BIBLTOGRAPHY OF MANUALS CONTAINING VSAM TINFORMATION

DOS/VS Rel.34:

DOS/VS Introduction to DOS/VS
DOS/VS System Management Guide
DOS/VS Data Management Guide
DOS/VS Supervisor & I/0 Macros
DOS/VS Messages

DOS/VS Access Method Serxrvices User's Guide

DOS/VS Entry Users Guide
DOS/VS VSAM LOGIC Liocs

DOS/VS Handbook Volume 1
DOS/VS Handbook Volume 2

0sS/VsS:
0S/VS VSAM Options For Advanced Applications
0S/VS VSAM Programmer's Guide

Planning for Enhanced VSAM Under 0OS/VS

VS1 to MVS Conversion Notebook

0sS/vVs1

0S/vVsi
0sS/VsS1
0sS/vVsi
os/vVsi
osS/vVsi1

Features Supplement
Planning And Use Guide
System Generation
ARccess Method Services
System Messages

(additional to the 0S/VS manuals listed above):

GC33-5370
GC33-5371
GC33-5372
GC33-5373
GC33-5379
GC33-5382
GC33-6074
SY33-8562
SY33-8571
SY33-8572

GC26-3819
GC26-3838
GC26-3842
GC28-0953

GC20-1752
GC24-5090
GC26-3791
GC26-3840
GC38-1001

0S/VS2 MVS (additional to the 0S/VS manuals listed above):

0S/VS2 System Generation Reference
0S/VS2 Access Method Serxrvices

0S/VS2 MVS CVOL

0S/VS2 Initialization and Tuning Guide
0S/VS2 Conversion Notebook

0S/VS2 Performance Notebook

0S/VS2 CVOL Processor

0S/VS2 System Messages

Chapter 1.

GC26-3792
GC26-3841
GC26-3864
GC28-0681
GC28-0689
GC28-0886
GC35-0010
GC38-1002

Guidelines 3

y

0S/VSs2

ossvVs2
0S/7Vs2
0S/VS2
oSs/Vs2
osS/VSsS2
osSs/Vs2
0sS/Vs2

0S/7Vs2

0osSsvVsS2
0Ss/VSs2
oSs/Vs2
0S/VsS2

SVs:

VSAM Planning Guide

VSAM Programmer's Guide

Planning And Use Guide

Data Management For System Programmers
Rccess Method Services

VSAM System Information

VSAM Options For Advanced Applications

SVS with ICR

Access Method Services

VSAM Options For Advanced Applications
Planning For Enhanced VSAM

VSAM Programmexr's Guide

VSAM PRIMER and REFERENCE

GC26-3799
GC26-3818
GC28-0600
GC28-0631
GC35-0009
GC35-3835
GT26-3819

GC26-3867
GC26-3870
GC26-3869
GC26-3868

2.0 WHAT TS VSAM

2.1 BASIC DESCRIPTION OF VSAM

Virtual Storage Access Method (VSAM) is a component of DOS/VS and
0S/VS data management and is supported in DOS/VS, 0sS/VS1, 0S/VS2
SVS, and 0Ss/VS2 MVS. In VM/370 the CMS/VSAM suppoxrt is based on
DOS/VS.

The VSAM Assembler Language macros used in DOSs/VS and O0OS/VS are
compatible. In addition, a VSAM data set c¢ontained on a DOS/VS

volume can bhe processed by 0S/VS programs. Similarly, a VSAM data
set c¢ontained on an O0S/VS wvolume c¢an be processed by DOS/VS
programs. This compatibility enables VSAM data sets to Dbe

processed both by DOS/VS and 0S/VS, and makes a transition from
DOS/VS to 0S/VS much easier. '

VSAM supports both sequential and direct processing and is designed
to supersede ISAM, although the two access methods can coexist in

the same Operating System. VSAM supports functions equivalent to
those of ISAM, and provides better performance (see description
starting in section 5.4 on page 75). VSAM data sets <c¢annot be

accessed by any other Access Method.

In addition, the three data organizations supported by VSAM can be
used in place of BSAM or 9SAM for sequential data sets and in place
of BDAM for directly organized data sets (see description starting
in section 5.1 on page 71). The neuw structure and features of VSAM
make it more suited to data base and online environments than other
access methods.

VSAM support consists of the following:

d Three data set organizations : Entry-Sequenced Data Sets
(ESDS), Key-Sequenced Data Sets (KSDS), and Relative—-Record
Data Sets (RRDS). The usexr can thus choose the logical data
organization that is best suited for his ox her particulax
needs. They are supported on DASD (Direct Access Storage
Device) only.

- A VSAM ESDS is a sequential data set (similar to a SAM data
set).

- A VSAM KSDS is a sequential data set with an index (similar
to an ISAM data set).

- A VSAM RRDS is a data set with preformatted slots for fixed

length records to be accessed by a record number (similar
to a DAM data set). :

* VSAM mastexr and user catalogs which contain information about
VSAM data sets, volumes, spaces, etc.

Chapter 2. What Is VSAM 5

. The multifunction utility program Access Method Services, which
provides required VSAM services, such as catalog or data set
creation, loading, merging, printing, and VSAM catalog mainte-
nance. This utility supports DASD as well as tape devices.

d Access method routines with which the wuser interfaceé to
process logical records in VSAM data sets.

. The ISAM ih%erface routines, which make the transition from
ISAM to VSAM possible with little ox no modification of ISAM
programs. ‘

2.1.1 CREATING VSAM OBJECTS

Unlike nonVSAM data sets which are wusually crxeated by wusing JCL,
VSAM objects (VSAM objects are data sets, data spaces, catalogs,
etc.) may only be created by wusing the utility Access Method
Services. ‘

One group of commands creates VSAM objects. These are the DEFINE
commands .

The term 'defining' a VSAM object means creating an entry in a VSAM
catalog without any data transfer. The <contents of the object may
be loaded with a user program or with Access Method Sexvices.

For further information and an overview of the various Access

Method Services commands, see chapter 4.0 starting on page 57.

2.2 VSAM DATA SET STRUCTURE

The logical records of VSAM data sets are stored differently from
the way in which logical records in nonVSAM data sets are stored.

2.2.1 CONTROL TINTERVALS

It is fairly obvious that transferring a single data record or a
complete data set between virtual and auxiliary storage could be an
inefficient and time-consuming way of processing records. What is
needed is to structure data records in a way to make VSAM as
efficient as possible.

To accomplish this, so-called control intervals have been designed
to contain the data recoxds. The disk space on a direct access
storage device (like IBM 3330, 3340, 3344, and 3350) has been
divided into segments of information. The size of the segments can
vary from one VSAM data set to another VSAM data set, but for a
specific data set, the size of each segment is fixed, either by
VSAM oxr by the the user (within limits acceptable to VSAM). These
segments of information are <called control intervals. Figure 1
illustrates the data zrecords (and the control information descri-
bing them) stored in a control interval.

6 VSAM PRIMER and REFERENCE

A control interval is the unit of data transferred between virtual
storage and disk storage; for example VSAM will +transfer the
control interval shown in figure 1 to virtual storage if one or
more of the data records in that c¢ontrol intexrval needs to be
updated, deleted, etc.

data recorxds us cf

cf
us

control fields
unused space

nou

Figure 1.Control Interval

The control intexrval must/g; a certain sigze (a multiple of 512
bytes unless the control interval-size is greater than 8192, then
the multiple is 2048). The maximum size of a control interval is
32,768 bytes.

If the wuser specified <control intexrval is different from the
allowed sizes (see page 195), VSAM will substitute the definel
value by a default value (the control interval size should bDe
carefully chosen, since a large default control interval will
demand corresponding large buffer space).

A control interval can span several tracks depending on control
interval size and track capacity but it cannot c¢ross control area
boundaries (the control area is described in the next section).

AR control interval always contains c¢control information fields plus
an integral number of logical records (variable or fixed-length),
and unused (free) space, or data records alone, or free space
alone. A record may cross more than one control interval only when
the data set has been defined with spanned format (described in
section 2.2.3 on page 11).

Figure 2 shows that control information fields consist of two types
of fields: one CIDF (Control Interval Definition Field), and one or
moxre RDFs (Record Definition Fields).

DR'| DR? DRn| unused space|RDFn RDFZ|RDF'|CIDF

DR = data recorxrd
Figure 2.Control intexval structure with control fields
There is one Control Interval Definition Field (CIDF) per control

interval and wusually multiple Record Definition Fields (RDF)
depending on the number of different logical records lengths.

As there is no parameter in VSAM to define the data set records as
fixed-length or variable-length records (like RECFM for DOS/VS or
0S/VS data sets), VSAM takes into consideration the length of

Chaptexr 2. What Is VSAM 7

adjacent records in a control interval when writing a record (see
also description of parameter RECORDSIZE on page 94). If two ox
more adjacent records have the same length, only two RDFs are used
for this group. See following examples for records of the same and
different length.

RDFs describe length of record and how many adjacent records are of
the same length. With fixed-length records, only +two RDFs are
used, even if more than 2 records are stored in the control inter-
val.

Control intexrval size
Records of the same length

512 bytes
80 bytes (only 2 RDFs (R a) in
figure below needed).

nnu

LR 1 LR 2 LR 3 LR 4 LR 5 LR 6 f.s. |R ajR a|CIDF

80 80 80 80 80 80 22 3 3 L

Control interval size = 512 bhytes
For records of different length 1 RDF per LR is used
(R 1 for LR 1, R 2 for LR 2, etc.)

LR 1 LR 2|LR 3 LR 4 |LR 5|{£f.s.|R 5{R 4|R 3|R 2|R 1|CIDF

130 70 50 1%0 60 43 3 3 3 3 3 Y4

Control interval size = 512 bytes

Records of different length (for each group of adjacent records
with the same length, 2 RDFs are used

(R a for LR 1-4, R for LR 5, and R® for LR 6)

LR 1 LR 2 LR 3| LR 4|LR 5|LR 6 f.s. RS R5JR a|R a|CIDF
80 80 80 80 58 55 63 3 3 3 3 Y
Legend:

LR = Logical Record

f.s. = free space

R X Record Definition Field (3 bytes)

CIDF Control Interxval Definition Field (4 bytes)
The small numbers represent the length in bytes of
datascontrol fields

Figure 3. Control intervals with fixed and variable-length records

8 VSAM PRIMER and REFERENCE

Each c¢ontrol interval is divided into one oxr more fixed-length
physical recoxrds and VSAM determines their size based on the
control interval size and the device characteristics. This physi-
cal record is dependent on the control interval size and the device
type and is purely a consideration when mapping control intervals
to the storage device. A physical zrecord is that record seen on
the disk and its size 1is equal to the control intexrval wherever
possible.

By defining the CI-size for a data set stored on a specific type of
direct access device, +the user implicitly chooses the physical
record size (for further details see page 196).

The following figure shows the relationship between user defined
control interval size and VSAM chosen physical zrecord size on
different DASD types. 1In this example it is assumed the control
interval size is 6K. As a control interval must be stored in an
integral number of physical records the next lower value is 2K. So
VSAM chooses 2K as physical record size for the 3330. Since 2K 1is
not used on 3340 (would result in only 75% track utilization) 1K 1is
choosen for 3340. Page 196 contains a chart showing the physical
record sizes and the number of records per track for each supported
DASD type.

3340

CI 1 CI 2

LR 1| LR 2| LR 3| LR 4| £s|{C| LR 5({ LR 6| LR 7| LR 8| £fs|C

P1 P2 P3 P4 P5 P6 P7 P8 P9 pi1o| P11| P12

Track 1 Track 2

3330

CI 1 CI 2

LR 1| LR 2| LR 3| LR 4} £s|C| LR 5| LR 6| LR 7| LR 8| £fs|C

P1 P2 P3 Py P5 P6
Track 1
C = Control Fields (RDFs, CIDF) CI = Control Interval
fs = free space LR = Logical Record
P = Physical Recozxd

Figure 4. Logical to physical records relationship

Chapter 2. What Is VSAM 9

"With a single GET, one or more control intervals may be transferred

between a VSAM data set and VSAM buffers in main storage (depending
on direct or sequential access). Command-chained reads/writes are
used when a control intexrval contains more than one physical disk
record. From the VSAM buffer, the desired logical record (without
control fields) is transferred +to the wuser buffer (input area).
For more information about specifying VSAM buffers, see section
8.1.5 on page 190.

A logical record in a Key-sequenced data set or in an entry-se-
quenced data set (the data set organizations are described later)
can span two or more control intervals within the same <c¢ontrol
area, in which case it is called a spanned record (see detailed
description in section 2.2.3 on page 11).

The physical location of a logical record within a data set is
given in the form of a relative byte address (RBA) rather than a
CCHHR disk recoxrd address.

The RBA of a logical record is the offset of this 1logical record
from the beginning of the data set. The first record in a data set
has an RBA of 0. The second record has an RBA equal to the length
of the <first record and so on. The RBA of a logical record or
index entry, therefore, is independent of the physical characteris-
tics of the direct access device +type on which it zresides, the
number of extents in +the data set, etc. It only depends on its
position in the sequence of records. This way of referencing data
by RBA makes the data sets independent of the DASD device type.

The RBA is always expressed as a full word binary integer.
The RBA ~includes free space and control information (figure 8 on

rage 14 shows an example how RBA values are assigned).

2.2.2 CONTROL AREAS

The control intexvals in a VSAM data set are grouped together into
fixed-length contiguous areas of direct-access storage called
Control Rreas (CAs). A control area is auxiliary storage space
that is set aside by VSAM to receive or hold the control intervals
of a particular data set.

The user does not have to specify the number of control intervals
per control area of a data set; VSAM determines this number.
Whenever the space in a data set needs to be extended because the
control area cannot hold anymore data, VSAM extends the data set
(see also description of VSAM data spaces and space allocation on
page 40, 45, 189).

The maximum size of a control area is one cylinder and the minimum
size 1is one track of a DASD. The user implicitly defines <h=z

control area size by specifying the amount of space to be alloca't«d
to a data set (for further information, see section 8.1.3.2 on page
187). Usually hetter performance is obtained when the size of one
control area is one cylinderx.

10 VSAM PRIMER and REFERENCE

Figure 5 shows a possible structure of three control areas,
the data component of a key-sequenced data set (KSDS) (the data set

oxganizations are explained in the next section), which include
four control intexrvals each.
Rll details, 'free space', etc., are explained in following

sections.

used in

cCI 1 10 20 30 35 40 £fs
cI 2 48 4o 50 52 54 fs
CA 1 <
cCI 3 62 65 66 70 75 fs
CI 4 free control interval
CI 5 77 79 80 92 93 £s
CI 6 95 97 98 100 125 fs
CA 2 <
cI 7 160 165 168 200 210 £s
CI 8 free control intexval
CI 9 246 294 330 335 440 £s
CI 10 568 575 695 700 825 £s
CAR 3 <
CI 11 905 940 1123 1200 fs
CI 12 free control intexval C
C = Control Interval Definition Field
CAR = Control Area
CI = Control Interval
fs = free space
R = Record Definition Field
Figure 5. Structure of a VSAM control area (KSDS)
2.2.3 SPANNED RECORDS

If the data records are larger +than the control interval size they
need not be broken apart or be reformated; it can be specified
(wuith the SPANNED parameter in +the Access Method Services DEFINE
command, which is described later) that they are allowed to extend
across or span control interval boundaries.

Chaptexr 2. What Is VSAM "

Such records are called gspanned zrecoxrds. Spanned records are
applicable only to KSDS and RRDS data sets.

A spanned record must always begin on a control interval boundary;
it £ills one or more control intervals within a single control
area. As shown in figure 6, the control intexval that contains the
last portion (segment) of a spanned recorxrd contains unused space if
the segment does not completely f£ill the data space available in
the control interval. This unused space can only be used to extend
the spanned recorxrd; it c¢annot contain all or part of any other
record.

If the parameter SPANNED was specified at DEFINE time (this parame-
ter cannot be changed with ALTER; described later), VSAM determines
dependent on the length of each record whether it is a spanned or a
nonspanned record. If the record length is larger than CI size
minus 7 (RDF+CIDF) the record is stored as spanned record starting
in a new CI (this is also c¢hecked when a record is extended).

If spanned records are used for KSDS, the primary Key must be
within the f£irst control intexval.

data record

v CI 1 \1 CI 2 l

data rcd paxrt 1 o data rcd p.2 X c

Cc
*

Control fields (10 bytes = 2 RDF + 1 CIDF)
Unused space

Figure 6. Structure of a spanned record

2.3 IYPES OF DATA SETS

VSAM supports three different data set organizations:
key-sequenced, entry-sequenced, and xelative-recoxd. Rll three
organizations allow both sequential and direct processing and
record addition without <rewrite of the complete data set. The
primary difference between these three organizations is the

sequence in which logical records are stored.

A key-sequenced data set (KSDS) uses logical records, either fixed
or variable in length, which are placed in the data set in ascend-
ing collating sequence by a field, called the kev.

To differentiate keys used in VSAM objects the key used in a base
c¢luster (explained on page 29) is called a primary Key or base Key.
The key used in an alternate index (explained on page 29) is called
an alternate Kkey.

12 VSAM PRIMER and REFERENCE

Records added after the KSDS is created are inserted in primary Key
sequence and existing logical records are moved when necessary. In
VSAM key-sequenced organization, a record must have a unique,
embedded, fixed-length primary key located in the same position
within each logical record. Primary Keys can be a minimum of one
byte and a maximum of 255 bytes.

To differentiate indexes used in VSAM objects the index in a KSDS
base cluster is called the primary index (usually, the term 'index'
in this manual means 'primary index'). A primary index is always
created for a KSDS.

An optional index which <c¢an be built over an ESDS or KSDS base
cluster is «called an alternate index (the alternate index is
described on page 29). The alternate index enables logical records
to be accessed sequentially or directly through a different field.
An alternate index is organized like a KSDS.

Figure 7 shows a logical picture of a KSDS with one control area
which includes four control intervals (physically the entries in an
index control interval are stored from right to left):

indexr
sequence 5411251248 £p us ctf

set ___J

— 7 12 24 25 26 54 us|R|R|C
— 55 T4 75 125 jus|R}IR|R|R]|C
logical
records
—> 168 73 248 free space RIR|R]|C
L free control interval Cc
fp = pointer to free control interval
¢t = control fields (RDFs, CIDF)
us = unused space
R = RDF (Record Definition Field)
C = CIDF (Control Interval Definition Field)

Figure 7. Key-sequenced data set structure

Chaptexr 2. What Is VSAM 13

The KSDS and its components are described in more detail starting
on page 18.

An entry-sequenced data set (ESDS), which is logically comparable

to a SAM data set, contains either fixed- oxr variable-length
records, sequenced in the order in which they were submitted for
inclusion in the data set (like SAM data sets). Therefore, records

are sequenced by their time of arrival zrather than by any field in
the logical record.

An ESDS accepts records of fixed and variable length, spanned or
nonspanned records (spanned records are described on page 11).
Records can be added at the end, and recoxrds can be updated but not
extended. Records cannot be erased.

Figure 8 shows a possible structure of an ESDS. The RBA values
are in hexadecimal (RBA values are always presented in a HU4-b,te
field).

The numbexrs in the CIs represent Keys in the records (not used when
loading the data set or as search arguments). The control interval
length is 512 bytes. The small numbexrs below the CIs represent the
records/field length in bytes.

RBA
X'00" 62 9A D6 102 170 1BB 1ERA 1FF
v v v Voo v vt v
873 5 7 17 534 119 fnus|R|{R|JR|{RJR|R|C
98 56 60 ¥y 110 75 ¥7 3 3 3 3 3 3 4
RBA
X'200' 234 268 29C 323 361 39F 3ED 3FF
v ' v v v v ' v v
3y 337} 338 339 y2 225 nus {R{R|R{R{R|C
52 52 52 138 62 62 78 3 3 3 3 3 4
RBA
X'400°" 45D 49B 4CF 50D 560 S5ED SFF
v v v ' v v - ' v
662 77 53 412 17 free R{R{RJR|{R|C
93 62 52 62 83 141 33 3 3 3 %
C = CIDF (Control Intexrval Definition Field)
nus = unusable space (remaining space)
R = RDF (Record Definition Field)
RBA = Relative Byte Address (see page 10)

Figure 8. Entry-sequenced data set structure

" VSAM PRIMER and REFERENCE

A relative record data set (RRDS) is processed by a relative record
number and consists of a number of non-spanned fixed-length slots,
each of which has a unique relative record number, an associated
RDF, and contains one logical recoxrd. The slots within an RRDS are
sequenced by ascending relative record number (from 1 to N).

A recoxrd is placed in the slot specified by a user-supplied rela-
‘tive record number (for direct or skip-sequential inserts) or, if
not specified, by a VSAM-supplied zrelative recoxrd number (for
initial load or sequential inserts). This relative zrecord number
is never included in the logical record by VSAM.

Records can be retrieved by relative zrecord number (direct,
skip-sequential) or by physical sequence). Insertion and proces-
sing techniques are explained in section 2.6 on page 22.

In an RRDS one RDF (3 bytes) per slot is used, and Bit 5 in the
first byte of each RDF determines, if a slot is 'occupied' (0) orx
'empty' (1).

An RRDS cannot have any index. No free space definition is
allowed.

Figure 9 shows a possible structure of an RRDS after loading a few
relative records. Each slot has an RDF which includes the informa-
tion indicating whether the slot is 'occupied' or 'empty' (see also
section 2.6.3 on page 28). The numbers in the fields represant
slot numbers (relative 1record numbers) c¢ontaining records. e
small numbers below the fields show the length of each field.

When adding a record and specifying a slot number which is higher
than any slot number used so far, the data set is formatted auto-
matically to the end of the control interval receiving the record.

1 2 3(E)| 4(E) 5 6(E)|n| R&| RS5] R*| R3| RZ] RT|C
80 80 8o 80 80 80 10 3 3 3 3 3 3w
7CE)] 8(E)| 9(E)|10(E) 11 12 n|R*2|RT1T|RTO| R?| R®] R7|C
80 80 80 80 80 80 10 3 3 3 3 3 3

13 14(E) | 15CE) | 16(E) | 17CE)|18(E) [n|R'8|RT7|RT6|R'S|RT¥|R'3|C

80 80 80 80 80 80 10 3 3 3 3 3 3 4

(E) = empty slot n = unusable space (remaining space’
R'-18 = RDFs (Record Definition Fields) of the corresponding slots

CIDF (Control Intexrval Definition Field)

O

Figure Relative record data set structure

Chapter 2. What Is VSAM 15

R VSAM clustexr is a logical definition £for a VSAM data set and has

one or two components.

The data component of a VSAM <c¢luster consists of all control areas
containing the control intervals which contain the data records.

The index component of a Kkey-sequenced cluster consists of the
index control intervals containing +the index <records which each
points to the highest keys of a data control interval (see also
section 2.4 on page 18).

The VSAM cluster consist of the follouing:

® KSDS cluster: - index component
- data component

. ESDS cluster: , - data component

* RRDS cluster: - data component

A VSAM data set is always represented in a VSAM catalog by a
cluster entry, a data entry and (for a KSDS only) an index entry.
All parts of a multivolume data set component must reside on the
same device type.

2.3.1 USABLE DATA SET

Enhanced VSAM allows the use of VSAM data sets as Workfiles.

R non-reusable data set may be loaded once and only once. Afterx
the data set is loaded, it can be read, written into, and the data
in it can be modified. But when the data becomes obsolete, the way

to remove it, is to use the Access Method Services command DELETE
which deletes +the data set (DELETE is described on page 61). TE
the data set is to be used again it must be redefined with +he
Access Method Services command DEFINE (described on page 61).

Instead of wusing the DELETE - DEFINE sequence the REUSE function
can be used. In order to specify a data set to be reusable, the
REUSE parameter must be specified in the DEFINE

CLUSTERIALTERNATEINDEX command (these commands are described laterx
in this manual).

A reusable data set may be a suballocated KSDS, ESDS or RRDS (see
description on page U40) that resides on one or more volumes.

To explain the function of a reusable data set, another VSAM term
must be explained. As mentioned earlier (page 10) the size of a
VSAM data set is represented by RBA values. VSAM uses a so called
high-used RBA field to determine if a data set is empty orxr not. .
After a data set is defined with a DEFINE CLUSTER c¢ommand (des-—
cribed later) the *high-used RBA' value is zero. After any loading
and closing the data set this field shows the offset of +the last

byte in the data set (see explanation of LISTCAT printout on page
156).

16 VSAM PRIMER and REFERENCE

In a reusable data set (i.e. a data set defined with the REUSE
parameter) this 'high-used RBA' field can be reset to zero and VSAM
can use this data se¥ like a newly defined data set.

The ways to 'reset' a reusable data set are as follouws:

1. Use the REUSE parameter in the Access Method Services command
REPRO when reloading the data set.

2. Specify in the ASSEMBLER user program ACB +the parameter
MACRF=RST (see macro description on page 217 and figures 47
and 48 on pages 212 and 215).

3. Use High lLevel Languages (such as PL/I or COBOL/VS) and open
the reusable data set for OUTPUT.

If a reusable data set is opened without specifying a 'reset'
function the data set with 1its data 1is used like any othex
non-reusable data set.

When a reusable data set is opened and one of the 'reset' functions
is specified, all secondary extents are unallocated and the data
set 'high-used RBA' is set to zerxro. In addition the data set is not
'erased' (i.e. overwritten with X'00') during a 'reset'.

Restrictions:

1. KEYRANGES cannot be specified (see description on page 91).

2. Alternate indexes (see page 29) cannot be defined over a
cluster with the REUSE attribute.

3. The data set cannot have more then 16 extents per volume.

4. The data set cannot be a UNIQUE cluster (described on page
40).

5. The Access Method Services command ALTER cannot be used to
change the data set attribute from REUSE to NOREUSE or vice

versa.

6. Reusable data sets on 3850 (MSS) must begin on c¢ylinucy
boundary to prevent staging in RESET mode.

Chapter 2. What Is VSAM 17

2.4 KSDS PRIMARY INDEX STRUCTURE

A KSDS consists of an index (index component) and logical records
(data component) with different data set (component) names. All
extents of the KSDS data component must <reside on the same type of
direct access devices. The index component, however, can be placed
on a device type different from that of the data component.

The index for a VSAM KSDS data set contains Kkey values and poin-
ters. It is built when the KSDS is initially loaded. A VSAM index
also contains information about available space in the index
component.

Although it is an internal VSAM function it should be mentioned
that the Kkey in an index entry is stored in a compressed foxrm.
This is «called Key _compression (for detailed description of Kkey
compression see section 8.6 on page 203). For index calculations

(see page 198) an average compressed Key length of 3 can generally
be used.

In most cases a VSAM index consists of 2-3 index levels. The
louwest level is <called the sequence set. All 1levels above, which
are automatically built by VSAM when necessary, are collectively
referred to as the index set.

In the sequence set, +there is one index record per data CA. Each
index record is designed to contain a numbexr of index entries equal
to the number of data CIs which f£it in its CA.

An index record (equivalent to one index control interval) is fixed
in length, either 512, 1024, 2048 or 4096 bytes (index CI sizes are
described on page 195)).

Each index record contains. a pointer to an index record in the next
lower index level or to a control interval in the data component.

An index entry (in the index record) consists of the highest key
associated with that CI (in compressed form), contrxol information
(for expanding the compressed key) and a displacement value to be
added to the RBA of the beginning of the CA. (dexrived <from the
index header). The sum of which addresses the correct data CI.

If a data set consists of more then one CA, more than one index
sequence set level record (CI) exists. In this case VSAM automati-
cally builds another index level (L2). Each entry in the index L2
record points to one Sequence Set recorxrd (L1) (see figure 10).

If the data set is that big +that the index L2 record cannot hold
all entries for all the Sequence Set records, another index L2
record has to be built by VSAM.

Since the highest index level c¢an only consist of one index record,
VSAM will build another index level (L3), etc.

For index performance considerations see section 8.1.4 on page 19C

18 VSAM PRIMER and REFERENCE

Figure 10 shows a logical picture of a KSDS after loading with two
CAs, containing four CIs each. Records with 80 bytes each uwere
loaded. A free space value of 20% free space in the CI and 25% in
the CA was specified (see page 88), so 1 record (minimum = (512 X
20%) = 102) per CI and one CI per CA (25% X 4) (CI/CA) is held free
when loading the data set. In each CI with a 1length of 512 bytes
and control fields with a total of 10 bytes, 4 data records uere
loaded (102 bytes were left free).

The index component consists of two levels: the Index Sequence Set
and the Index Set.

Is
(L2) 3741634 unused space |C
J [
IC <
ISS
(L1)Y>) 471180374 £fp us (o] 1472|1634 fp| £fp us |C
|]
—1! 10 30 35 |u7 fs|cC “»1 385| 407}| 408} y72|£fs|cC
—| 68 75 100}1180| f£s{cC —| 544) 5451 634| free (od
DC <

—| 205]| 2u40}] 331|{374| £fs]cC —» 1 free control intervallC

—> free space Cl—| free control interval|cC
C = control fields (RDFs, CIDF) IS = Index Set
DC = Data Component ISS = Index Sequence Set
fp = pointexr to free CI L1,L2 = Index Level 1 and 2
fs = free space (FREESPACE def.) us = unused space
IC = Index Component (IS + ISS)

Figure 10. Key-sequenced data set structure

Chapter 2. What Is VSAM 19

2.5 INSERTING, EXTENDING AND DELETING OF RECORDS

A KSDS <can be defined to reserve space for later insertions when
the data set is loaded (or sequential insertions performed). This
reserved space is called f;ee space.

The amount of free space in a CI ands/orxr CA (in %) is specified in
the FREESPACE parameter of +the DEFINE CLUSTER command (see also
page 88, and example on page 106).

When a record must be added to a control interval, records with
keys highexr than the one to be inserted are shifted to the right of
the CI within the free space limit. As long as enough free space
is available in this CI, there is no further data CI manipulation.

As described in the following sections (starting section 2.6 on
page 22) VSAM allows three types of access to insert, delete and
extend records into a KSDS:

. Direct Access
. Sequential Access
. Skip-sequential Access

The Direct Ac¢cess logic is described in the following paragraphs.

Sequential Access is used for loading data sets and for insertion
of groups of pre-sorted records and is also c¢alled 'Mass
Insertion'. Mass insertion is described in detail in section 8.8
starting on page 207.

Skip-sequential Access is described in section 2.6.1.2 on page 23.

20 VSAM PRIMER and REFERENCE

The following examples illustrate the usage of free space:

This CI is 512 bytes long. A free space value of 30% has been
specified. With a fixed record length of 80 bytes, the maximum CI
capacity is 6 records. But after loading the data set, each CI
contains only 4 records and 182 bytes of free space (VSAM calculat-
ed a minimum of 153 bytes free space).

ok

10 20 30 40 free space RZ]| R? c

. Record 25 is to be inserted. The control interval is read into
a VSAM buffer and records 30 and 40 are shifted to the right.

10 20 25 30 40 fr.sp.|*R%2| RT|* C

. Records 20 and 40 are to be deleted. The remaining records are
shifted to the left if necessary and the freed space 1is now
available for inserts, updates, etc.

10 25 30 free space ¥R2| R1|Xx ¢C

U Record 10 must be expanded to 148 bytes.

10 25 30 free space|+R3|¥RZ|*R1[* C
R'"-R3 = RDFs (Record Definition Fields)

C = CIDF (describes free space and offsat)

¥ = value changed

+ = new control block

Note: Not one of these changes require a change in the related
index sequence set, even 1if the high Xey recoxrd in a CI is
deleted.

Figure 11. Inserting, deleting and extending records

If the record to be inserted will not £it in the control interval,
a control intexrval split takes place to provide sufficient space in
the control interval to contain the recorxd. The control interxrval
split is described in detail in section 8.5 on page 201. '

Chapter 2. What Is VSAM 21

2.6 PROCESSING OF DATA SETS
2.6.1 KSDS PROCESSING

The following request types are allowed for KSDS processing:

adds/load records

insert records (between existing records)
modify existing records

retrieve records

extend/shorten existing records
deleteserase records

e ¢ e o o o

Rs described in the following sections the records in a KSDS can be
processed sequentially, sKkip-sequentially, or directly using the

primary key as search argument. This is called Keyed processinz
and it is the normal way to process a KSDS.

Another method of processing a KSDS directly or sequentially (but

not recommended) is addressed processing using an RBA as search
argument (see page 26). When a split occurs, or when records are

added, deleted or <changed in size, RBAs of some records will
change, and so addressed access is not suggested for normal use.

One other way of processing a KSDS is c¢ontrol interval processinec,
which is wused only Zforxr very specific applications. For further
information see section 5.2.4 on page 74.

2.6.1.1 KSDS KEYED SEQUENTIAL PROCESSING

Keyed sequential processing is wused to load a KSDS and to
retrieve, update, delete and add logical =records to an existing
KSDS. When Keyed sequential processing is wused, records can be
processed in ascending or in descending sequence by primary Key.
When retrieving records, Key values need not be wuser-supplied,
since VSAM automatically obtains the nekt 1logical recorxrd in
sequence. Following types of operations can be performed using

keyed-sequential processing:

. Records can be processed in ascending primary key sequence.
This is called forward processing.

. Records can be processed in descending primary Key sequence.
This is called previous record processing or backward proces-
sing.

22 VSAM PRIMER and REFERENCE

. A mass sequential _insertion technique is used by VSAM when
additions of contiguous records are sequenced and sequential
processing is used. More information is included in section
8.8 on page 207. See also section 2.6.1.6 on page 24, which
contains an overview of keyed sequential processing logic.

For Keyed-sequential processing the index sequence set 1is used to
find the next logical control intezval.

Search arguments are not required or used.

2.6.1.2 KSDS KEYED SKIP-SEQUENTIAL PROCESSING

Keyed skip-sequential processing, is a variation of direct proces-
sing. It can be used for retrieval, update, addition and deletion
operations. The logical records must be processed in ascending
sequence without pre<positioning. Only the sequence set of the
primary index is used for skip-sequential processing based on the
primary Kkey.)

When a relatively small number of transactions that are in primary
(or alternate) key sequence and clustered in sequence are to be
processed, sKip-sequential processing c¢an be used to retrieve the
records directly by Kkey. '

Skip sequential processing c¢an be used to avoid retrieving th=>
entire data set sequentially to process a relatively small pexcen-—
tage of the total number of records, oxr to avoid using direct
retrieval.of the desired records, which causes the primary index <tc¢
be searched from the +top to the bottom level for each record, but
skip-sequential does read all sequence set records between those in
question, therefore it is not’'suggested to use skip-sequential,
when a record from the beginning and one from the end of the data
set has to be processed. '

See also section 2.6.1.6 on page 24, which contains an overview of
keyed skip-sequential processing logic.

2.6.1.3 KSDS KEYED DIRECT PROCESSING

With Keyed direct processing records can be retrieved, updated,
deleted and added. R Kkey value must be presented by the user for
each logical record that is to be processed. For retrieval operxa-
tion, the supplied Key can be the full key, or a generic Key (the
leftmost part of the key) which matches exactly or is greater then
the Key of the desired record, and the record retrieved <c¢an have
the exact or next greater key. The primary index is searched from
the top to the bottom level to locate the requested logical record.
See also Section 2.6.1.6 on page 24, which contains an overview of
keyed direct processing logic.

Chapter 2. What Is VSAM 23

2.6.1.4 KSDS ADDRESSED DIRECT PROCESSING

Addressed direct processing is not suggested to wuse for a KSDS,
since RBA values of many records may change when a control interval
or control area split occurs.

2.6.1.5 KSDS CONTROL INTERVAL PROCESSING

Control intexrval processing should bé used only for very specific
or unusual applications. For further information, see section
5.2.4 on page 74.

2.6.1.6 KSDS OVERVIEW OF KEYED PROCESSING

The following demonstrates the three suggested +types of KSDS
access. Refer to figure 12 where zrecords to be processed are
marked with an asterisk 'X',

. Keyed sequential access:

For retrieval, as Kkeys (search arguments) are not regqguired
(only used for positioning) all 6 CIs have to be read and
all recoxds returned to the usexr, although CIs #3 and #5 do
not contain any requested records. The Sequence Set 1is
used to find the next logical control interval.

] Keyed sKkip sequential access:
The search arguments must be presented in ascending
sequence. Here only CIs #1, #2, #4 and #6 are read. For

each request the Sequence Set is wused to f£ind the nex*
logical control interval and to check whether it contaiwus
the requested record.

. Keyed direct access:

For each request a search argument must be presented in any
order, and one record (control intexval) from both the
Index Set and the Sequence Set, and also the <c¢ontrol
interval containing the record must be read (not if the
appropriate Sequence Set record ands/oxr +the data control
interval was/were already read into +the buffers by tle
previous operation and are still valid).

2y VSAM PRIMER and REFERENCE

IC <
v \ 4 v
\ ISS > >
v v v v A\ v
DC x| x X x| x| % X | %
1 2 3 4 5 6
DC = Data component (data control interxrvals)
IC = Index component
IS = Index Set (highest index level)
ISS = Sequence Set (lowest index level)
Figure 12. Keyed sequential, skip-sequential, and direct proces-
sing.

2.6.1.7 POSTTTIONING FOR A KSDS

U Sequential processing:

Sequential processing can be started <from the beginning or
somewhere in the middle of a data set. If processing 1is to
begin in the middle of a data set positioning is necessary
before sequential operation can be performed.

Positioning can be done in two ways:

- execute a POINT macro instruction (see page 221) supplving
a Kkey as search argument.

- in a user ASSEMBLER program issue a 'direct' request, then

change RPL (see page 218) with the MODCB macro (see page
219) from 'dirxect' to 'sequential' or 'skip-sequential'.

Chapter 2. What Is VSAM 25

U Skip-sequential processing:

If the first skip-sequential search is the first access after
opening the data set, a direct search is initiated by VSAM to
find the first record. From then on the index sequence set
level will be used to find the subsequent recozrxds. If other
operations uwere performed before (like read sequential, etc.),
either the last position of that operation will be used as a
starting point to search the Sequence Set records, or a re-po-
sitioning 1is necessary (see previous paragraph 'Sequential
processing').

. Direct processing (keyed):
No positioning is necessary since each direct request will be a
top-down search through the index and access the CI directly.

2.6.2 ESDS PROCESSING

The following rxequest types are allowed for ESDS processing:

* add/load records (only at the end)

. modify existing records (no record length change)

d retrieve records

. delete records (no erase; for 'mark delete’ see the following
section)

Rddressed sequential, addressed direct, and control interval

processing are supported for ESDS.

The former two are called addressed processing and it is the normal
way to process an ESDS.

No keved processing is allowed.

2.6.2.1 ESDS ADDRESSED SEQUENTIAL PROCESSING

For addressed sequential processing, the RBA given by the user is
only used for positioning requests (see section 2.6.2.5 on page
27). VSAM automatically stores records in sequence of arrival and
retrieves them in stored (physical) sequence.

When addressed sequential processing is used to process records in
ascending RBA sequence, existing records c¢an be retrieved, updated

(but not changed in size) and marked deleted (not erased). 'Marked
deleted' means the user can modify a bit or byte in a record field
he designated as a 'delete bitsbyte’'. The user must provide

support to prevent copying these records as VSAM does not recognize
this 'delete bits/byte’

New records are only added at the end of the data set.

26 VSAM PRIMER and REFERENCE

2.6.2.2 ESDS SKIP-SEQUENTIAL PROCESSTNG

Skip-sequential processing is not supported for ESDS.

2.6.2.3 ESDS ADDRESSED DIRECT PROCESSING

Addressed direct processing by user-supplied RBAs, can be used to
retrieve records, update their contents (but not change their size)
and flag records to be deleted (no physical deletion). New records
cannot be added.

The usexr can obtain the RBA values of the. individual records when
loading the data set by issuing a SHOWCB macro instruction (see
page 219) to obtain the 'RBA' field in the RPL (Request Parameterx
List, see page 218) just used (for more information see the "DOS/VS
Macro Reference' manual ox the '0S/VS VSAM Programmer's Guide' as
described on page 2).

2.6.2.4 ESDS CONTROL INTERVAIL PROCESSING

Control interval processing should be used only - for very specific
or unusual applications. For further information, see section
5.2.4 on page 74.

2.6.2.5 POSTITTONING FOR AN ESDS

. Sequential processing:

Sequential processing can be started <from the beginning or
somewhere in +the middle of a data set. If processing is to
begin in the middle of a data set positioning is necessary
before sequential operation can be performed.

Positioning can be done in two ways:

- execute a POINT macro instruction (see page 221) supplying
a RBA as search argument.

- in a user ASSEMBLER program issue a 'direct' request, then
change RPL (see page 218) with the MODCB macro (see page
219) from 'direct' to 'sequential'.
. Direct processing:
Direct processing can be accomplished when the coxrrect RBA for

the record is supplied by the user as search argument (see also
previous section 2.6.2.3).

Chapter 2. What Is VSAM 27

2.6.3 DS PROCESSING

The following xequest types are allowed for KSDS processing:'

addsload records

insert recoxrds (hetween existing records into an empty 'slot')
modify existing records (no record length change)

deletesexrase records

® & o ¢

For RRDSs, keyed-sequential, Keyed-skip-sequential, Keyed-direct
and control interval processing are supported. The relative record
number is used as an argument for Keyed processing. The former
three correspond to kKeyed processing which is the normal way {o
process an RRDS.

No addressed processing is allowed. .

An RRDS can be created wusing keyed sequential, skip-sequential, or
keyed direct processing.

VSAM always uses the relative record number as search argument. It
converts it +to an RBA value and determines the control interval
containing the requested recoxrd. If a recoxrd in a slot flagged as
‘empty' is requested, a 'no-record-found' condition is returned.

R user cannot use an RBA value to address a record in an RRDS.

A request to add a record in a slot beyond the current end of file
indicator causes VSAM to preformat the data set from the current
end of file up to the control interval where the new record is
supposed to reside. Loading an RRDS with Kkeyed direct processing
may result in long preformatting times if a recoxrd with a high
number is loaded first.

2.6.3.1 RRDS SEQUENTIAL PROCESSING

RRDS sequential process is treated the same way as ESDS sequential
processing (see section 2.6.2.1 on page 26) Empty slots are auto-
matically skipped by VSAM.

2.6.3.2 RRDS KEYFD SKIP-SEQUENTIAL PROCESSING

Basically skip-sequential is treated like an RRDS direct request,
but the position is maintained. The buffer handling is treated like
for sequential, i.e. the buffer is not written back after each
write operation.

Records must be in ascending sequence.

28 VSAM PRIMER and REFERENCE

2.6.3.3 RRDS DIRECT PROCESSING

An RRDS can be processed directly by supplying the relative record
number as key. VSAM calculates the RBA and accesses the appropriate
recordsslot.

RRDS direct addressed processing (supplying RBAs) is not supported.

2.6.3.4 RRDS CONTROL INTERVAL PROCESSING

Control interval processing should be used only for very specific
or unusual applications. For further information, see sectisn
5.2.4 on page 74.

2.6.3.5 POSITIONING FOR AN RRDS

. Sequential processing:
Sequential ‘processing can be started from the beginning ozx
somewhere in the middle of a data set. If processing 1is io
begin in the middle of a data set positioning is necessary
before sequential operation can be performed.

Positioning can be done in two ways:

- execute a POINT macro instruction (see page 221) supplying
a relative recoxrd number (used as Key) as search argument.

- in a user ASSEMBLER program issue a 'direct' request, then
change RPL (see page 218) with the MODCB macro (see page
219) from 'direct' to 'sequential' or 'skip-sequential'.

. Skip-sequential processing:

No prepositioning is necessary for skip-sequential processing
since it is treated like a direct request.

. Direct processing:

No prepositioning is required.

2.7 ALTERNATE INDEX, PATH

Alternate indexes enable the logical records of an ESDS or of a
KSDS (in this context called a base cluster) to be accessed sequen-
tially and directly by more than one Key field. This eliminates
the need to store the same data in different sequences on multiple
data sets for the purpose of various applications, or to re-sort
the data (see figures 13 and 14 on page 33 and 34).

Chapter 2. What Is VSAM 29

ARlternate indexes are not supported for RRDS.

Any field in the base cluster record «c¢an be used as an alternate
kev. It may also overlap with the primary Kkey (in a KSDS), or with
any other alternate key. The alternate key field must be a conti-
guous field with +the same offset in each record (in a spanned
record, this field must be located totally in the first control
interval).

Each alternate index consists of an index component and a data
component. These two .components together form an alternate index
(abbreviated AIX) for +the base <c¢luster. Its structure is 1like
KSDS. An alternate index will contain the different alternate Key
values of a certain alternate Kkey. For every alternate key field a
different alternate index is needed.

The Access Method Services program allows you to define, and then
to create alternate indexes (if BLDINDEX command is specified by
the usezx). EAn alternate index can be defined only after its
associated base clustexr has been defined, and it can be built only
after its base has heen loaded with at least one record.

The primary index component of a base c¢luster and any alternate
index can be placed on a different device type than that of the

base cluster data component. The primary index component and the
alternate index need not reside on the same type of direct access
device either. In addition, the index component of an alternate

index c¢can be on a different device than the data component of an
alternate index (there is one exception for DOS/VS (especially for
the device IBM 3330): should the data component of a UNIQUE KSDS
reside on a 3330, the index component nust reside on a 3330 as
well).

Unlike the primary Kkeys, which must be unique, identical alternate
kKeys may occur in more than one logical record. This allows the
search with a given alternate key +to read all base clustexr records
containing this alterxnate Key.

The BLDINDEX command causes a sequential scan of the specified base
cluster, during which alternate key values and primary Keys (for a
KSDS) or record RBAs (for an ESDS) are extracted and put together
to form alternate index recorxds. These records are sorted by
ascending alternate keys (no SORT program product is zrequired).
The alternate index records are then constructed and written.

There may be more than one primary Key/RBA per alternate key. The
primary kKeys/RBAs will be in ascending sequence within an alternate
index record after loading (see figures'13 and 14 on page 33 and
34). But this fact will not necessarily be true after the base
cluster has been wupdated (especially the alternate Key fields) ox
new records added, as any new primary Key/RBA will be inserted at
the end of the appropriate alternate index record.

30 VSAM PRIMER and REFERENCE

An alternate index is itself a KSDS. The data component of an
alternate index is similar in physical format to the data component
of a KSDS base cluster. The alternate Kkey record contains system
header information, and for a KSDS base cluster the alternate Key
value (not compressed), and the primary Key field (not compressed)
of the logical record in the base data set that contains the
altexrnate Key. For an ESDS base c¢luster, the alternate Key record
contains RBA values instead of primary Key values.

The index component of an alternate index <c¢ontains compressed
alternate Keys in ascending collating sequence and is physically
and logically structured like a primary index (see page 18).

Alternate index maintenance can be handled by the user or automati-
cally by VSAM. Automatic altexrnate index updating can be specified
when defining the alternate index (see section 7.6.4 on page 110).
Specifying the UPGRADE attribute for an alternate index maKkes it
part of the wupgrade set of alternate indexes for a given KSDS ox
ESDS.

An alternate index can be part of the upgrade set for a KSDS orx

ESDS even though it is not explicitly used. The maximum number of
alternate indexes that can be part of the upgrade set for a given
KSDS oxr ESDS is 125. Having alternate indexes in an upgrade set

adds processing requirements, and therefore affects performance
when inserting or deleting records, or updating alternate Keys in a
record in the base clusterx.

2.7.1 ALTERNATE TINDEXES FOR KSDS

Consider as an example a KSDS data set whose records contoin
customer number, address and the name of the salesman who takes the
orders (see figure 13 on page 33). The customer number is used as
primary Key value. If the company plans a special sale in a c¢city,
they may want to write a note to all customers living in this area.
Without having an alternate index, the whole data set must be read
and all records containing the name of the city must be extracted.
O0r, if they want a summary of all the customers served by a parti-
cular salesman, the whole data set must be read to find all records
with the salesman's name. However both of these requirements could
be easily met by using alternate indexes (section 2.7.5 on prge 36
explains how to access the base c¢luster records via the two alter-
nate indexes).

Since using an alternate index is time-consuming (create, upgrade,
etc.), it should only be considered for frequently used applica-
tions. Otherwise sequentially extracting and sorting records,
running BLDINDEX with the REUSE option may be faster (the reusabil-
ity of a data set must be specified when the data set is defined).

Chapter 2. What Is VSAM 31

2.7.2 ALTERNATE INDEXES FOR ESDS

Normally the only way to access an ESDS directly is to store the
RBA value of each record in a separate user data set. The RBA
value can be obtained by issuing a SHOWCB macro instruction (see
page 219) to obtain the 'RBA' field in the RPL (Request Parameter
List; see page 218) just used.

One or more alternate indexes <c¢an be built for an existing ESDS
when the record contains a field which can be used as alternate Key
value. An alternate index for an ESDS has the same structure as an
alternate index for a KSDS base cluster. The only difference 1is
that the alternate index records contain RBA values (4 bytes)
instead of primary kKey values (see figure 14 on page 34).

2.7.3 EXAMPLES FOR ALTERNATE INDEXES

Figures 13 and 14 contain the structure of two alternate indexes
connected to a KSDS and an ESDS respectively.

For the data sets, the following is assumed:

- The base cluster consists of 1 control area
- The control area contains 3 control intervals
- The record length in the base cluster is 320 bhytes (X'140')
- The control interval sizes (CISIZE) for base c¢luster and
alternate indexes were defined as follows:
- Index control intexrvals = 512 bytes
- Data control intervals = 1024 bytes

The JCL statements and the Access Method Services commands to
create a structure like this (DEFINE, BLDINDEX etc.) are contained
in chaptexr 7.0.

Notes to fiqure 13 and 14:

In figure 13 and 14 the control <fields (RDFs, CIDF) and the unused
space at' the end of each CI are not shoun. The records in the
alternate indexes also contain header information, and the records
are shorter than the records in the base cluster, so actually mcxe
records can be placed into a control interxval.

VSAM places logical records in CI format, ensuring that (with the
exception of spanned processing) each CI starts with the first byte
of the logical record. In this example in each base <cluster
control interval 54 bytes (1024 - 3%320 - 10 bytes control informa-
tion) remain unused.

Notes to figure 14:

The RBAs are always written as a full word binary integer (the RBA
values in the figure were shortened due to limited space).

32 VSAM PRIMER and REFERENCE

ALTERNATE
INDEX 1

(SALESMAN)

ALTERNATE
INDEX 2

(CITY)

BASE
CLUSTER

(CUSTOMER)

Figure 13.

....___'...._____.____4.___..__...___...._--_...._--_...-.....-_

-

Mik

e|Tom unused

Ben 21}Bill 36|Fred 15 23 39|Mike 12 us
Tom 10 41§ f ree
E-City|G-City] unused

A-City 10 15 39

B-City 12 36|E

-City 23 us

F-City 21|G-City u1 f ree
—————— —| 15 36 41 junused
|
A\ 4
10 A-City Tom |12 B-City Mike| 15 A-City Fred
21 F-City Ben |23 E-City Fred|36 B-City Bill
39 A-City Fredj41 G-City Tom f ree
us = unused space
I = Index component
D = Data component

Alternate indexes with KSDS base cluster

Chapter 2. Wh

at Is VSAM 33

ALTERNATE
INDEX 1

(SALESMAN)

D

ALTERNATE
INDEX 2

(CITY)

BASE —RBA
CLUSTER
(CUSTOMER)

—RBA

—>RBA

Note:

Mike|Tom unused
]
v
Ben U400|Bill 000|Fred 140 540 940|Mike 680
“»1Tom 280 800 f ree
E-City|G-City] unused
|
A 4
A-City 140 280 940|B-City 000 680|E-City 540
—>|F-City 400|G-City 800 free
X'0" X'140" X'280" X'3BF'
v v v '
36 B-City Bill}15 A-City Fred|10 A-City Tom
X'400°* X'S?O' X'680" X'7Bi’
21 F-City Ben |23 E-City Fred]|12 B-City Mike
X'800" X'9$0' X'A80°
41 G-City Tom |39 A-City Fred unused

I
D

See notes on page 32.

Index component
Data c¢omponent

Figure 14. Alternate indexes with ESDS base cluster

3y

VSAM PRIMER and REFERENCE

2.7.4 PATH

Before accessing a KSDS or ESDS (from now on both types of data set
will be simply called the base cluster) via an alternate index, a
path must be defined. A path is the means by which a base c¢luster
is accessed by way of its alternate indexes. A path is defined and
named using the Access Method Services progranm. At least one path
must be defined for each of the alternate indexes through which the
base c¢luster is to be accessed. When a given alternate index is to
be used to process a base cluster, the associated path must be
specified in an OPEN macro instrxuction. This causes both the base
cluster and the alternate index to be opened.

If a path connects a base cluster with an alternate index belonging
to the upgrade set (see page 31) of this base c¢luster, the parame-
ter UPDATE/NOUPDATE can be defined for the path +to allow/prevent
VSAM to update +the alternate index, when base cluster records are
inserted, deleted or modified (if the alternate Kkey changes). See
also description on page 110.

In the following example the data sets were defined as follouws:
ALTERNATE INDEX 1 with the name SALESMAN, ALTERNATE INDEX 2 with
CITY, and the BASE CLUSTER with CUSTOMER. Then PATH 1 was defined
with the name SALECUST, and PATH 2 with CITYCUST (the JCL and
control statements for +this example are included in section 7.6.4
starting on page 111).

ALTERNATE ALTERNATE
INDEX 1 INDEX 2
(SALESMAN) (CITY)

N 7

\

PATH 1 PATH 2
{SALECUST) (CITYCUST)
BASE
CLUSTER
(CUSTOMER)

Figure 15. Alternate Indexes with Path

Chapter 2. What Is VSAM 35

2.7.5 ACCESS TO BAS USTER AND ALTERNATE TNDEX W/WO PAT

The following simple examples show the function of paths and
alternate indexes to accessing the base cluster (use fiqures 13 and
15 as a reference). The records read by each GET can be optionalliw
placed by VSAM (RPL OPTCD=MVE) into- the user's program input aree.

All accesses are gequential with no search argument. AIX is the
abbreviation for Alternate Index.

. Access the base cluster directly:

OPEN base c¢cluster CUSTOMER

GET . 10 A-City Tom
GET _— 12 B-City Mike
. Access the base cluster via AIX1:

OPEN path SALECUST

GET — 21 F-City Ben
GET — 36 B-City Bill
. Access the base cluster via AIX2:

OPEN path CITYCUST

GET R 10 A-City Tom

GET —_— 15 A-City Fzred

. "Opening AIX1 by its data set name

OPEN alternate index SALESMAN

GET E——— Ben 21

GET —_— Bill 36

36 VSAM PRIMER and REFERENCE

. Opening AIX2 by its data set name

OPEN alternate index CITY

GET — A-City 10 15 39

GET E— B-City 12 36

The following examples show the effect of the UPGRADE/NOUPGRADE
attribute when insexting records into a KSDS cluster or into its
alternate index (use figure 13 on page 33 as reference). When
accessing the base c¢luster and the alternate index via a path, it
is assumed the path was defined with the UPDATE attribute, which
allows automatic updating of the alternate indexes if necessary.

Example 1: Insert Record '40 G-City Bill' into base clusterx
CUSTOMER.

. Access the base cluster CUSTOMER directly orxr with a path
(UPGRADE defined for AIX1 and AIX2)

OPEN base c¢l. CUSTOMER (VSAM opens also ARIX1,AIX2) (X='40"')
or OPEN path SALECUST (VSAM opens base c¢l.,AIX1,AIX2) (¥*='Bill")
or OPEN path CITYCUST (VSAM opens base ¢l.,AIX1,AIX2) (X='G-City')
('*' is the search argument used for the insert)

PUT '40 G-City Bill' +*» update of base cluster, BAIX1 and AIX2.

Base before
insert 39 A-City Fred|41 G-City Tom f ree

Base after :
insert 39 A-City Fred|U40 G-City Billju41 G-City Tom

AIX1 before
insert Ben 21{Bill 36|Fred 15 23 39|Mike 12 us

AIX1 after
insert Ben 21}Bill 36 40jFred 15 23 39|Mike 12| us

AIX2 before
afterx F-City 21|G-City u1 f ree

AIX2 afterx
insert F-City 21jG6-City 41 u0 f ree

Chapter 2. What Is VSAM 37

Example 2: Change Record '21 F-City Ben' into '21 G-City Ben'

»

Access the base cluster CUSTOMER directly (UPGRADE defined for

AIX1 and AIX2) ‘

OPEN base ¢l. CUSTOMER (VSAM opens also AIX1, AIX2) (X = '21")
('*' is the search argument used for the insert)

GET '21! (this is a GET UPDATE to change a record)

modify the record (in the user input area)

PUT '21 G-City Ben' (this is a PUT UPDATE to change the xcd).
As a result the base cluster and AIX2 is updated
(AIX1 is not updated, as Ben still points to 21).

Base before
modification 21 F-City Ben |23 E-City Fred|36 B-City Bill
or update

Base after
modification 21 G-City Ben |23 E-City Fred|36 B-City Bill
or update

AIX2 before
modification F-City 21|G6-City 41 40 f ree
or update

AIX2 after
modification G-City 41 40 21 free
or update

Note: The pointer (keys or RBAs) in an alternate index record

is always added at the end of +the record and is not sorted
between the existing pointers.

2.7.5.1 UPDATE RESTRICTTIONS FOR BASE CLUSTER AND ATX

All data fields in the base c¢luster may be changed without restric-
tion. When changing fields containing either the base Kkey or an
alternate key, the following restrictions apply:

*

38

"the base key (kRey of the base cluster index) cannot be changed,

regardless of which index is used for access.

an alternate Key cannot be changed if the GET for UPDATE was
done through the alternate index, ’

an alternate key can be changed if +the GET for UPDATE was done
through the base cluster.

VSAM PRIMER and REFERENCE

2.8 VSAM DATA SET COMPARISON
Figure 16 shouws the differences between the three VSAM data set
organizations. For further details see previous sections in
chapter 2.0.
Function/Structure KSDS ESDS RRDS
Records sequence primary Key arrival seq. rel. rec. no.
sequential or|sequential or|sequential or
Access is: direct by direct by direct by
Key or RBA RBA rel.record no
fixed fixed fixed
Record format: variable variable -
spanned spanned -
Defined free space insert - -
used to: change length|- -
New records anyuwhere at EOF at specified
(End of file)|slot if empty
Change record length:|yes no no
Delete a record: yes? no ves?
Reuse space of a
deleted record: yes? - yes?
Alternate Index ves yes no
Reusable File yves,if no AIX]|yes,if no AIX]yes
' Deletion of a KSDS record =results in physically adjusting
logical records within a data CI.
An attempf to insert a recoxd later:
* with the same Key, will be added back into the CI, at the

same place provided no other changes have occurred in the CI.

e with a
CI, wutilizing

additional RDFs, i

Z peletion of an RRDS record results

the

key within the range of
space made
deletion provided there is space

f required).

the €I will be
by
for the logical record (ard

available

in that

"SlOt'S"

the previo

added to the

us

data being

set to binary zeros and its control fields being set to reflect

it is 'not present’'
user in selecting

. Reuse of this space 1is
the relative record number of

addition of a recorxd.

Figure 16.

VSAM data sets comparison..

Chapter 2.

this slot £

What Is VSANM

determined by the

orx

39

2.9 VSAM DATA SPACES

VSAM data sets can coexist on the same disk with nonVSAM data sets.
Space defined on a volume for exclusive use of VSAM is called a
VSAM data space (for VSAM ownership concept see section 2.10 on
page 43). In 0S/VS a VSAM data space can consist of a maximum of
16 extents on a volume which need not be contiguous (no restriction
in DOS/VS). A volume <can contain multiple data spaces. The
maximum size of a data space is one volume. Several data spaces on
more than one volume may be treated logically as one data space
(e.g. for suballocated multivolume data sets).

VSAM uses two different data spaces:

. The suballocatable data space
. The unique data space

AR suballocatable data space can contain one or more data sets and a
data set can ‘occupy one or more suballocatable data spaces on one
or more volumes. A suballocatable data space is created by an
Access Method Services command DEFINE SPACE or DEFINE
MASTERCATALOG/USERCATALOG (see <chapter 7.0 later in this manual).
All suballocatable data spaces on one volume are treated as one
logical space, and it is possible to delete all empty suballocata-
ble data spaces on a volume together. Individual suballocatable
data spaces can not be deleted (see also section 2.9.2 on page 43).

R VSAM cluster in a suballocatable data space is called a gsuballo-
cated cluster or a suballocated data set.

In this manual the expression 'VSAM data spaces/set' usually means a
suballocatable data space or a suballocated data set.

R unique data space (also called non—-suballocatable data space
contains only one data set. This data set occupies only one
non-suballocatable data space on a volume (with up to 16 extents
(0S/VS only)), but multiple volumes can be used for this data set.
A unique data space is automatically built when a cluster orx
alternate index is defined with the UNIQUE attribute (see page 98).
DOS/VS users must specify a space value in the EXTENT job control
statement (not in an Access Method Services parameter), since a
unique data set occupies its own VSAM data space; the definition is
similar to a DEFINE SPACE command (see DOS/VS notes bhelow).

A VSAM clustersdata set in a non-suballocatable space 1is callecd =2
unique cluster or unique data set.

Unique data spaces cannot be shared with other VSAM data sets.

VSAM data spaces cannot be shared with nonVSAM data sets.

40 VSAM PRIMER and REFERENCE

DOS/VS notes to unique c¢clus s

A data space or a unique cluster can not be extended (no DADSM in
DOS/VS). A unique cluster can not be defined as fixst VSAM object
on a volume in a xrecoverable catalog (see page 250).

Figure 17 shous examples for volumes containing a VSAM user catalog
(USER.CAT.ONE) and data spaces.

SPACEs 1-4 are suballocatable data spaces created with DEFINE
SPACE. The data set VSAM.UNQ was c¢reated with DEFINE CLUSTER with
the parameter UNIQUE.

The VSAM user catalog USER.CAT.ONE contains information about the
VSAM data spaces and the VSAM unique data sets/data space. In 0S/VS
also the NONVSAM data sets could be cataloged and accessed via the
VSAM usexr catalog.

— USER.CAT.ONE w
N >
| seacE 2 \SPACE 3
\onvsan

SPACE 1 >

N I N RN

\
\ 4

This is a volume This is a velume This is a volume
with a VSAM cata- using the whole with 1 VSAM unique
log, 1 VSAM sub- volume as one VSAM data space, 2 VSAM
allocatable data suballocatable suballocatable
space, and 1 NON- data space. data spaces, and 1
VSAM data set. NONVSAM data set.

Figure 17. VSAM data spaces

Chaptexr 2. What Is VSAM 41

2

. 9.1

CHOOSING SUBALLOCATABLE OR UNIQUE CLUSTER

The following is a list of advantages for the two types of alloca-
tion:

Advantages of SUBALLOCATION:

1.

Since it is the default, there is no need to specify it on an
Rccess Method Sexrvices DEFINE command.

If the suballocated cluster is on a different volume from the
owning catalog, it is possible +to DELETE the cluster without
the <c¢luster's volume being mounted (if a nonrecoverable
catalog is used). This is because all the information which
needs to be changed by the DELETE is in the catalog.

The REUSE attribute, which allows the Enhanced VSAM userxr to
reload VSAM clusters without the need foxr DELETE/DEFINE, is
only supported for SUBALLOCATION clusters.

DOS/VS: when using suballocatable c¢luster, VSAM space manage-
ment allows dynamic space management otherwise not supported
in DOS/VS. No EXTENT information is needed in JCL to specify
begin and end of cluster.

0S/VS: VSAM space management tries harder than DADSM to avoid
fragmentation. When looking for a place to put a suballocat-
ed clustexr, VSAM will +try to find the smallest contiguous
amount of free space which satisfies the <c¢luster's primary
allocation requirement, even if a more suitable allocation is
possible elsewhere on the volume.

Advantages of UNIQUE:

42

There is only one VSAM cluster component per VTOC entry, with
the possibility of making VTOC names the same as <cluster
component names. The organization of handling DASD space is
the same as for nonVSAM data sets. VTOC related 'emergency'
operations, such as SCRATCH and zapping of password bits, can
be isolated to one VSAM cluster component.

On a volume with a large amount of VSAM space and a large
number of c¢lustexrs, use of UNIQUE allocation may result in
bettexr performance for DEFINE. This is because VSAM space
management expends a lot more energy in making the best
possible fit, for the DEFINE request (in DOS/VS EXTENT
information for begin and end of data set must be specified
in JCL, no VSAM space management needed). This may result in
high CPU times and many I/0 operxrations to the <catalog fox
suballocated DEFINEs.

VSAM PRIMER and REFERENCE

2.9.2 VSAM DATA SPACE AND CLUSTER NAMES

A VSAM data space defined with DEFINE MASTER/USERCATALOG or DEFINE
SPACE (see section 7.3 and following sections starting on page 100)
has no NAME parameter and can therefore not individually be delet-
ed.

A unigue cluster should be 'named with meaningful names for each
CLUSTER, DATA and INDEX (KSDS or Alternate Index) to identify the
components on a LISTVTOC or a LISTCAT list (see printout examples
later in this manual).

A suballocatable cluster should be named with meaningful names for
CLUSTER, DATA and INDEX (KSDS or Alternate Index) to identify the
components on a LISTCAT list (see printout examples later in this
manual).

The following is an example on how the components could be named
for the c¢lustexr X.PAYROL:

Cluster : X.PAYROL

Data : X.PAYROL.D

Index : X.PAYROL.I
The NAME parameter is described in detail in section 7.2.5 on page
93.
2.10 VSAM OWNERSHIP CONCEPT

The concept of VSAM volume ownership is illustrated by the follow-
ing rules:

. An indefinite number of user catalogs can be connected to the
master catalog.

. AR user catalog can be connected to more than one master catalog
(in different systems).

. User catalogs can not be cataloged in other user catalogs (if a

master catalog with user catalog connector entries is used as a
user catalog, its user catalog connector entries are not used).
A volume containing a catalog is owned by that catalog only.

R volume may only belong to one catalog.

AR catalog can own more than one volume.

A VSAM data set must be cataloged (defined) in the same catalog
which owns the data set's volumes. This restriction does not

apply to nonVSAM data sets, which can be on any volume, and
cataloged in more than one VSAM catalog and/or CVOLs (MVS
only).

. MVS CVOLs can only be cataloged in the master catalog.

. VSAM ownership <c¢an only be relinquished with DELETE SPACE or
DELETE CATALOG (also with ALTER REMOVEVOLUMES and IKQVDU
(DOS/VS) (described later)).

Chapter 2. What Is VSAM 43

2.10.1 THE VSAM 'OWNERSHIP BIT'

VSAM ownership of a volume is controlled by the VSAM ownerxrship bit.
If this bit is ON, the volume is owned by a VSAM catalog. There is
no indication which catalog owuns the ‘volume. When a catalog
attempts to allocate space on a volume (by means of DOS/VS systen
routines or 0S-DADSM routines), the following sequence is started.

The VSAM ouwunership bit is bit 0 in byte 84 (X'54') in the F4-DS72
(Label) (see section A.2.2 on page 246 note 4).

l

ownership bit
examined

El

allocate > set bit
space ON
allocate
space

no space
allocation

Figure 18. VSAM ownership concept

4y VSAM PRIMER and REFERENCE

2.10.2 THE VSAM 'DATA SET SECURITY BIT'

When a VSAM catalog, A VSAM space, or a UNIQUE VSAM data set is

allocated on a DASD volume a F1-DSCB (Label) is written into the
VTOC.

To protect +this VSAM object from being accessed by other access
methods the 'data set security bit', bit 3 in byte 93 (X'5D') 1is
set ON (see section A.2.2, page 246 notes 10 and 14). In 0OS/VS
systems the 'data set security bit' is also called and used as
'0S/VS passuword protection bit' (not to be mixed up with the VSAM
password protection).

2.11 VSAM SPACE ALLOCATION

In DOS/VS, VSAM routines are used to allocate space for catal-.s
and data spaces (JCL EXTENT values necessary), and to suballocate

space for VSAM data sets in a suballocatable space (no JCL EXTENT
values necessary).

In 0S/VS1 and 0S/V382 (SVS and MVS), VSAM catalog/DADSM routines,
instead of O0S/VS catalog and DADSM routines, are used to process
the catalog and to allocate space on VSAM catalog and data set
volumes. VSAM routines are used to allocate space in a suballocat-
able data space.

There are five major Access Method Services commands (see command
overview starting in section 4.0 on page 57) which cause an attempt
to allocate space. The table below shows these five commands and
the space management functions which occur when these 5 commands
are executed and an attempt is made to allocate space on a volume
(see also description of VTOC on page 245).

Chapter 2. What Is VSAM 45

Figure 19.

46

DEFINE

POSSIBLE DEFINE}] DEFINE| DEFINE] DEFINE
FUNCTIONS CATALOG SPACE SPACE CLUSTER|CLUSTER
CANDID. UNIQUE|SUBALL.
test ownership bit
for OFF X x1 * *1
set ownership bit ON X X1 * *x1
create a volume entry
in catalog X . *1 * *1

DOS/VS VSAM routines
(EXTENT value req.)
or 08/DADSM routines
allocate space from
disk space and write * * *2 X3
F1-DSCB (Label) with
X'10' in offset X'5D'
(VSAM protection bit)

DOS/VS VSAM routines
or OS/VSAM routines X
allocate the space

from VSAM data space

indicates that the function takes place for the command.

this function takes place only when
allocation on this volume.

this is the first V&AM

For a nonrecoverable catalog no space is allocated and no F1
DSCB is written. In 0S/VS if the catalog is recoverable, a
data space with a primary and secondary allocation of 1
cylinder is allocated by 0S/VS DADSM on the same volume as
the data space to contain the CRA and a F1-DSCB is written
for it (in DOS/VS this command is not allouwed for a recovera-
ble catalog).

Two F1 DSCBs (Labels) are written
and the second for the index component of the c¢luster (in
DOS/VS using a recoverable catalog, the volume must already
be owned by that catalog, before executing this command).

one for the data component

VSAM space allocation

VSAM PRIMER and REFERENCE

3.0 CATALOG CONSITIDERATIONS

3.1 CATALOG PHILOSOPHY

Rll VSAM data sets must be cataloged in a VSAM catalog.

Information required to process a VSAM data set, such as 1its
location and physical characteristics, is contained in the VSAM
catalog.

There must be one VSAM master catalog for a DOS/VS or 0S/VS system
which is planned to use VSAM.

In MVS the VSAM master catalog is the standard system catalog.

Note that a VSAM master cataldg cannot be stored on a 3850 mass
storage volume.

Besides tHe VSAM master catalog a theoretical wunlimited number of
VSAM user catalogs can be created (with Access Method Services) and
used. VSAM user catalogs are optional and have the same structure
as the VSAM master catalog.

VSAM user catalogs should be used to <reduce the size of the VSAM
master catalog (to reduce <catalog processing time), minimize the
effect of a damaged master catalog, and make VSAM data sets porta-
ble from one system to another (a pack containing a VSAM wuser
catalog and its VSAM data sets can easily be moved from one system
to the othexr without loading or reloading the data sets which is a
time consuming operation; only the user catalog must be connected
to the othexr VSAM master catalog with ARccess Method Services.

Each catalog is an individual or special form of Key sequenced data
set. Each VSAM user catalog has a connecting pointer entxy in the
VSAM master catalog. Each VSAM data set is cataloged either in the
VSAM master catalog oxr in one VSAM user catalog, but not both.

All VSAM data sets on the same volume must be cataloged in the sawe
VSAM catalog. Then, all VSAM data spaces (suballocatable or
unique) on the same volume belong to the same catalog (because of
this, users who share a volume must also share the <c¢atalog).
Duplicate data set names in the same VSAM catalog are not permitted
but a given data set name can appear in more than one VSAM catalog.

DOS/VS does allow nonVSAM entries in a VSAM catalog, but makes no
use of these entries (non-VSAM entries cannot be defined wunder
DOS/VS when using a recoverable catalog).

In 0S/VS nonVSAM data sets can also be cataloged in a VSAM catalog.

In MVS, a generation data group can also be cataloged in a VSAM
catalog.

Chapter 3. Catalog Considerations 47

Figure 20 shows a possible
master catalog

ing of the
catalogs.

The master catalog

VSAM

owns volume SYSRES (the

structure of VSAM environment,

(VSAM.MCAT)

catalog volume)

two VSAM

volume VOLOOL with the VSAM data set VSAM.STATUS on it.

The master

catalog also

contains user

pointing to USER.CAT.ONE and USER.CAT.TWO.

VSAM

user catalog
containing the VSAM data sets PAYROLL.F,

VSAM user catalog USER.CAT.TWO
VSAM data set NEWCUST.

VSAM.MCAT

USER.CAT.ONE 'ouns'

‘ouns'

volume

catalog connector

VOL0O0O1 and
EMPLOYEE.E,

v

USER.CAT.ONE

S

PAYROLL.F

N

Figuxre 20.

<L

EMPLOYEE.E

N

INVOICE

VSAM catalogs

us VSAM PRIMER and REFERENCE

USER.CAT.TWO

]

NEWCUST

\f—_—"/

and INVOICE.

volume VOLO003 containing the

VOoLOOY

NONVSAM

N~

VSAM.STATUS

N

consist-
usexr

and

entries

VOL0O2

P

3.2 CATALOG STRUCTURE

The following is tp=2 catalog layout of the user «catalog, which is
defined in section 7.4 on page 102. For further VTOC information
see printout and explanation of the VTOC in section A.2.2 on page
245, The CRA (catalog recovery area) is explained on page 250.

F1: Z9999994 VSAMDSPC.T.. X'6D'-"'70' = X'00010000" —J
VTOoC Fl: ettt ieeennn .o X'55'~'56' = X'0037'1 —
CYL HEAD
1 002 >
Low-Keyrange (30 Tracks)
(20 data tracks + 10 index sequence set tracks)
2 0B?
Index (3 tracks)
2 OE?
High-Keyrange (3 tracks)
2 112 L— -
CRA (1 cylindex)
Notes:

" The CRA and its pointer in the F4 DSCB are only included
for a recoverable VSAM catalog (a printout of a F4 DSCB is
shown on page 245).

X'0037' is the relative track number where the CRA starts.
The calculation can be done as follows:

X'0037' = 55 = 38 + 17 = Cyl 2 + 17 (X'"11') tracks
Z The starting and ending values for the <catalog are

extracted from LISTCAT ALL output as explained and shoun
in section 7.9.2.1 on page 148.

Figure 21. VSAM catalog allocation

Chapter 3. Catalog Considerations 49

R VSAM catalog is a special KSDS, and consists of an index and a
data component. The data component, however, consists of two
parts: Low-Keyrange and High-Keyrange (see detailed description of
normal Keyranges in section A.1.1 on page 241 and section A.1.2 on
page 241).

The <catalog Keyranges are used in a different way then normal
Keyranges (it is actually a design philosophy; see also comments on
rage 242). The splitting of +the data component into High-Keyrange
and Low—-Keyrange and placing the index between is only used in a
catalog KSDS.

When defining a catalog, the size of the entire data component and
the size of the index can be specified, but the size of the index

component wlll always be one so-called 'allocation wunit’ (one
control area) which is three or five tracks (allocation unit sizes
are described on page 249). One allocation wunit is one control
area.

The defined data component size is automatically rounded down into
an integer numbexr of allocation units. Then 10% (in DOS/VS Rel. 34
20%2) (minimum 1 allocation unit) is used for the High-Keyrange and
the rest for Low-Keyrange.

To improve the performance, the index component is placed betueen
the Low-Keyrange and the High-Keyrange, and the IMBED function (see
description on page 89) is always used for a VSAM catalog.

3.2.1 CATALOG CONTENTS

The following information is recorded in catalog records for a VSAM
data set: :

. Device type and volume serial numbers of volumes containing the
data set.

. Location of the extents of the data set and secondary alloca-
tions, if any.

. Attributes of the data set, such as control interval size,

physical record size, number of control intervals in a control
area, location of the primary Key field for a KSDS, etc.

. Statistics, such as the number of insertions, updates, retriev-
als, splits, etc.

. Password protection information.

o An indication of the connection between data sets and their

. index(es): the index and data components of a KSDS; the index
and data components of an alternate index; the alternate index
and base cluster of a path; and an alternate index and upgrade
set and its base cluster.

. Historic information, such as creation and expiration dates,
owner identification, etc.

50 VSAM PRIMER and REFERENCE

A VSAM catalog also contains information regarding the location of
data spaces and available space on volumes that contain VSAM data
sets. Therefore, a volume containing a VSAM data set need not ke
mounted in order to determine whether it <contains available spacs
(but if it is to take any of that space and the catalog is recover-
able the owned volume in question must be mounted).

3.2.1.1 CATALOG ENTRY TYPES

St

Several types of entries are‘used in a VSAM catalog to describe the
various objects the catalog describes (data sets, available space,
etc.).

The entry types are as follows (their entry types are included in
parenthesis):

. Alias (MVS only)(X)
. Alternate index
- Alternate index (G)
- Data component (D)
- Index component (I)
- Upgrade set (Y)
Catalog control record (L)
Cluster
- Data set clustex (C)
- Data component (D)
- Index component (KSDS only) (I)

. Extension record (for all records,except the volume record)(E)

. Free recoxd (F)

. Generation data group (MVS only) (B)

. NonVSAM (0S/VS only),(can be defined in DOS/VS (not recoverable
catalog)) (A)

. Path (R)

. Self-describing entries (see page 242) (no entry type)

. User catalog (used in master catalog only) (U)

. Volume (contains volume and space information) (V)

. Volume extension record (W)

A given data set may require more than one entry type for its
description, plus extension entries when the data set is extended
and/or various volumes are used. An ESDS, for example, requires a
cluster and data component entry.

3.2.1.2 CATALOG SHARING

A master or user catalog in one VS1 or VS2 operating system can be
shared with another VS1 or VS2 operating system as a master or user
catalog with one exception: a master catalog in one VS2 operating
system can be shared with another VS2 system only as a user catalog
(not as a master catalog). Catalog management routines control this
sharing.

Chapter 3. Catalog Considerations 51

No sharing of master or wuser catalogs is supported under tuwo or
more DOS/VS systems simultaneously. Nevertheless, <read-only
sharing of the <c¢atalogs is poessible. Therefore no changes of the
data sets is allowed, which may change the content of the catalog.

3.3 VSAM SSWORDS

An expanded password protection <facility is supported for VSAM.
Optionally, passuwords can be defined for clusters, clustexr compo-
nents (data component and index component), alternate indexes and
components, paths, and VSAM catalogs. VSAM passwords are Kkept iu
VSAM catalog entries only. The password can be supplied by the
programmexr via the ACB (a VSAM control block similar to the DOS/VYS
DTF or the OS/VS DCB used by other access methods; see description
on page 217).

If password protection is indicated for a VSAM data set and the ACB
does not specify a password (see page 55) or specifies it incor-
rectly, the operator may supply the correct password for the data
set to be opened. A MVS TSO user can also supply VSAM passwords.
The number of retries allowed (frem 0 to 7) can be specified with
the ATTEMPTS parameter (default is 2) in the DEFINE command.

Four levels of password protection are provided:

d LEVEL 1: MASTER PASSWORD

Full access, which allows access to a data set, its
index(es), and its catalog entry. Any operation (read, add,
update, delete) can be performed on the data set and its
catalog entry. The master password of the base KSDS must be
specified, for example, when an alternate index is to be
created for the base, and for other cases.

The master password is required for altering (ALTER) and
deleting (DELETE) VSAM data sets.

i LEVEL 2: CONTROL INTERVAL PASSWORD (for special usage)

Control interval access, which allows the user to recd and
write entire control intervals using the <c¢ontrol interxval
interface. All 1zread, write, and wupdate operations can be
performed at the logical record level as well. This facili-
ty is not provided for general use and should be reserved
for system programmer use only.

. LEVEL 3: UPDATE PASSWORD

Update access, which allous logical <records to be
retrieved, updated, deleted, or added.

52 VSAM PRIMER and REFERENCE

For the catalog the following applies:

- DOS/VS, VvsS1i, SVS: Update password is required for
defining VSAM data sets and nonVSAM data sets in VS1
and SVS). No passwords are required in VS1 and SVS for
altering (ALTER) and deleting (DELETE) a nonVSAM data
set.

- MVS: Update passuword is required for defining (DEFINE)
VSAM and nonVSAM data sets and for altering (ALTER) and
deleting (DELETE) nonVSAM data sets (including GDGs and
ALIASes).

. LEVEL 4: READ PASSWORD

Read access, which allows access to a data set for read
operations only. Read access to the catalog entries of the
data set (except password information) is permitted also.
No writing is allowed.

A password can be defined £for a given VSAM data set for
each level protection: master password, controcl interval
access password, <read- write—-add-delete password, ani
read-only password. When multiple passwords are defined fcor
a data set, the password given when the data set is opened
establishes the level of protection to be in effect fcrx
this OPEN.

Authorization to process a VSAM data set can be supplemented by a
user-written security authorization routine.

If supplied, such a routine must reside in the following library:
. DOS/VS : System CIL or Private CIL (Core Image Library).

. 0osS/Vs ¢ SYST1.LINKLIB or in a library to be 1located by the
system (e.g. in a JOBLIB).

It is entered during OPEN processing after password verification
has been performed by VSAM, unless the master access password was
specified. A user security authorization recoxrd of up to 255 bytes
maximum can also be added to the catalog entry for the data set.
This record can supply data to the user-uwritten security authoriza-
tion routine during its processing. For further information see
the appropriate Access Method Services manuals as listed on page 2.

The VSAM catalog must be password protected to support password
protection for cluster passwords.

If passwords are not specified on all 1levels, the highest level
rassuword is propagated to the higher levels (see figure 22).

Chapter 3. Catalog Considerations 53

The following chart shows some combinations of specified passwords
and the passwords assigned by VSAM:

Passuwords specified by the user Passwords assigned by VSAM
Read Update CI Master Read Update cI Master
R - - - R R R R
- U - - - U U U
- - Cc - - - c o
- - - M - - - M
R U - - R U U U
R U - M R U - M
R - - M R - - M
- U - M - U - M

Figure 22. VSAM passuwords

Passwoxrds for catalogs are strongly recommended to prevent unau-
thorized deletion of VSAM objects (e.g. clusters, data spaces =nl

catalogs).

In O0OS/VS systems the VSAM master catalog mastexr password is
required for volume cleanup (see page 181) and other severe
commands. Therefore it is very important to have at least the VSAM
master catalog password protected.

Passwords can be defined using Access Method Services commands (see
definition in sections 7.4 on page 102 and 7.6.4.11 on page 121).

Section 3.3.1 on page 55 contains information about how to specify
a password in a'user-written program.

54 VSAM PRIMER and REFERENCE

3.3.1 HOW TO SPECIFY PASSWORDS IN A USER-WRITTEN PROGRAM

As shown in figure 47 and 48 on pages 212 and 215 the ACB macro

(see also description section 8.11.1.1 on page 217) contains a
parameter:

PASSWD=address

'address' can be substituted by a symbolic field name pointing to a
field (maximum length 1+8 bytes) with the following format:

B Password

1 i - 8

o]
L}

length of the password (binary value)

If a password is not supplied when a password protected data set is

to be opened, the system opexrator is prompted to enter the pass-
word.

This prompting of +the operator is controlled by the numbexr of
attempts to enter the password defined for the data set with the

ATTEMPTS parameter (if this parameter was not specified, the
default value ATTEMPTS=2 is assumed).

Chapter 3. Catalog Considerations 55

56 VSAM PRIMER and REFERENCE

4.0

Access Method

ACCESS METH ERVIC (OVERVIEW OF FUNCTIONS)

mands):

°

ALTER

BLDINDEX

CHKLIST

CNVTCAT

DEFINE

DELETE

EXPORT

EXPORTRA

IMPORT

IMPORTRA

LISTCAT

LISTCRA

PRINT

REPRO

RESETCAT

VERIFY

Sexrvices consists of the following functions (com-

changes attributes in the VSAM catalog for previously
defined VSAM objects.

sorts and loads pointer information into a newly
defined alternate index.

lists data sets, opened when a checkpoint was taken
(0S/VS only).

converts 0S/VS catalogs into VSAM catalogs (MVS only)
(this is a very special function and is not described
in this manual).

defines VSAM objects, such as catalogs, clusters, etc.
deletes VSAM objects.

copies/exports a VSAM data set with related catalog
information to a sequential data set (using the
catalog to access the data sets).

exports data sets with related catalog information,
and nonVSAM, GDG, and Alias catalog entries (using the

catalog recovery area to access the data sets).

imports and reorganizes a VSAM data set, which was
previously exported by EXPORT.

imports and reorganizes data sets and imports VSAM
catalog entries, which were previously exported by
EXPORTRA.

lists VSAM catalog information.

lists and optionally compares +the catalog recovery
area information with the the catalog records.

prints contents of ISAM, SAM, or VSAM data sets.

loads, copies, converts, merges, reorganizes data sets
and catalogs.

synchronizes and resets a catalog (using catalog
recovery areas)

resets catalog information for a VSAM data set, which
was not c¢losed in a normal way (e.g., harduare
malfunction).

Chapter 4. Access Method Services Overview 57

The following commands are used to -control the execution of Access
Method Services commands (modal commands):

. IF and DO control . sequence of execution based on values of
condition codes issued by VSAM oxr changed by the user
through the SET command.

. PARM specifies processing options to be used during execu-
tion. :
. SET changes or resets condition codes.

4.1 ALTER

This command is wused to change attributes in previously defined
catalog entries, for example to change data set passwords, free
space specifications, etc.

See the appropriate Access Method Services manual (listed on page
2) for correct coding; an example is also shown on page 121.

In figure 23 the master password of éntry CUST is altered from WX
to YZ. UCATO1 is the user catalog name. The VSAM data set VSAMOLD
is then renamed to VSAMNEW.

UCATO1

CUST MPWD=WX

N]

UCATO1

CUST MPWD=YZ

N

VSAMOLD

OLD

VSAMNEW

NEW

Command coding:
VOLOO1 ALTER CUST _ -

MRPUW(YZ) -
ALTER VSAMOLD -
NEWNAME (VSAMNEW)

Figure 23. Logical function of ALTER

58 VSAM PRIMER and REFERENCE

4.2 BLDINDEX

This command is used to create (load) an alternate index for a base
cluster. The alternate index must already be defined, and the base
cluster must have at least one record.

BLDINDEX reads all base cluster recorxrds and extracts the primary
keys (for KSDS base clustexr) or the RBAs (for ESDS base cluster),
and the related alternate keys. This information is then sorted

and loaded into the alternate index.

See the appropriate Access Method Services manual (listed on page
2) for correct coding; an example is also shown on page 113.

In figure 24 CUST.ALT.IND is an alternate index for base cluster

CUST.
//,,,___“N\\\ Command coding:
VOLOO2 VOL0OO02 BLDINDEX INFILE (...) -
)

OUTFILEC.

.....

CUST CUST

N~]

CUST.ALT.IND

N~

CUST.ALT.IND

(data)

OLD NEW

Figure 24. lLogical function of BLDINDEX

4.3 CHKLIST (O0S/VS ONLY)

This is not a VSAM command and
sing.

is not used for normal VSAM proces-—

During processing, a program can issue the CHKPT macro to record
various information for use in restarting the program in the event
of an error. This is called taking a checkpoint.

The CHKLIST command lists the tape data sets which were open at the
time the checkpoint was taken, thus identifying the tape data sets
which need to be mounted for restart. '

Chapter 4. Access Method Sexrvices Overvieuw 59

4.4 DEFINE

This command is used to create <catalogs, and catalog entries for
alternate indexes, clusters, data spaces, paths, and nonVSAM data
sets. In MVS catalog entries for ALIASes, GDGs, and PAGESPACEs can
also be created. DEFINE creates the <c¢atalog entry for a VSAM
object and allocates space for this object.

See the appropriate Access Method Sexrvices manual (listed on page

2) for <correct coding; examples are also shown starting on page
100.

Figure 25 shouws the definition of a user catalog.
UCATO02 is the new usexr catalog.

//,_*———mﬁ\\\ Command coding:
VOLO003 VOLO0O03 DEFINE UCAT -

(NAME(UCATO2) -
UCATO02 VOL(VOL0O03) -
unallocated SPACE (CYL(20 1))-

space \\\‘“———"’// '''''
S ~

OLD NEW

Figure 25. Logical function of DEFINE USERCATALOG

In figure 26 the KSDS cluster (C), data entry (D), and index entry
(I) is added to UCATO02 (UCATO02 is +the user catalog name) and a
UNIQUE data space is built.

It is assumed the user specified the following names: CITY (clus-—
texr), CITY.D (data component), and CITY.I (index <c¢omponent) (see
naming restrictions for MVS in section 7.2.5 on page 93). The

unique space for the cluster CITY is to be allocated from the same
volume.

Command coding:

VOLO003 N___VOL003 4 DEFINE CLUSTER -

(NAME(CITY) -

UCATO2 UCATO2 VOL(VOLO003) -
D: CITY.D UNIQUE -
I: CITY.I SPACE(CYL(5 1)))-

_____/ C: CITY DATA -

(NAME(CITY.D)) -

unallocated CITY INDEX -
\._space _/ w (NAME(CITY.I)) -

OLD NEW

Figure 26. Logical function of DEFINE CLUSTER

60 VSAM PRIMER and REFERENCE

4.5 DELETE

This command is used to delete catalogs and catalog entries.

See the appropriate Access Method Services manual (listed on page
2) for correct coding; examples are also shown starting on page
174.

In figure 27 the <cluster entry with its component entries 1is
deleted from UCATO02. The allocated UNIQUE space is freed to be
used by the system.

Command coding:

VOL003 \._V0L003 4 DELETE CLUSTER -

(NAME(CITY) -
UCATO2 UCRTO2 VOL(VOLO003) -
D: CITY.D UNIQUE ...)
I: CITY.I

w L_/

space

OLD NEW

Figure 27. Logical function of DELETE

4.6 EXPORT/IMPORT

These commands are used to unloads/reload VSAM data sets for backup
and/oxr transportation.

The EXPORT command has, among others, two important options:
TEMPORARY | PERMANENT. EXPORT PERMANENT unloads the data set and
deletes the entries from the catalog. EXPORT TEMPORARY produces an
unloaded copy of the data set, and marks the catalog entry, to shouw
that a temporary copy exists. In the unloaded format, the data set
is not accessible.

Chapter 4. Access Method Services Overview 61

EXPORT uses the VSAM catalog to copy all related information such
as cluster entry, data entry, and index entry (foxr KSDS only) from
the catalog to the target data set, a SAM VBS data set (the userx
allocated via JCL).

IMPORT redefines and reloads the data set.

These commands can also be used to disconnects/reconnect a user
catalog froms/to a VSAM master catalog (if a user catalocg is discon-
nected from the master catalog by deleting its connector entry, it
cannot be accessed from that system). No unloads/reload is neces-
sary.

See the appropriate Access Method Sexrvices manual (listed on page
2) for «correct coding; examples are also shown starxrting on page
122.

In figure 28 the unloaded copy of CITY contains data and catalog
information for the data set CITY. The unloaded copy is to be
stored on disk or tape, JCL must be specified as for any other
nonVSAM data set (this is a SAM VBS data ‘set).

EXPORT

VOL0O03 —
Command coding:
UCATO2

N EXPORT CITY -

INFILE (...) -
CRA — OUTFILEC(...)

NI o)
P _Y0L005_

SAM.CITY

Figure 28. Logical function of EXPORT to disk or tape

v]

62 VSAM PRIMER and REFERENCE

In figure 29 cluster CITY is restored by using the sequential VSAM
backup created by a previous EXPORT.

IMPORT

— VOLOO3

UCATO2
\\\-__-’/,/ Command coding:
] CRA IMPORT INFILE (...) -
> OUTFILEC(...) -

/—_‘\ czry 4 ...

SAM.CITY

N~

Figure 29. Logical function of IMPORT from disk or tape

4.7 EXPORTRA/IMPORTRA

If cexrtain data sets are no longer accessible because of damage to
their catalog entries, and that c¢atalog is recoverable, these data
sets can be unloaded using the EXPORTRA command.

In figure 30 EXPORTRA uses the CRA (catalog recovery area) and not
the VSAM catalog to access the data set CITY to be xecovered. It
copies all related information such as c¢luster entry, data entry,
and index entry from the catalog recovery area to the target data
set (the target SAM data set is allocated by the user JCL, see
EXPORT). :

In figure 31 IMPORTRA is used to reload the data set CITY wnd
rebuild the corresponding catalog entries. The log;cal function is
the same as for EXPORT/IMPORT without using the catalog to find the
data set.

The EXPORTRA/IMPORTRA commands are also described in section A.6.3
on page 259.

Chaptexr 4. Access Method Services Overview 63

Figure 31.

UCATO2

]

CRA

|

7

VOLOO05

N

vy ¥

EXPORTRA

VOLOOS5

e

IMPORTRA

UCATO2

N

CRA

o

VSAM PRIMER and REFERENCE

S
Command coding:

EXPORTRA CRA (-
(dname ENTRIES-
((CITY))) -
OUTFILE (....)

Figure 30. Logical function of EXPORTRA to disk or tape

Command coding:

IMPORTRA INFILE (...)-
OUTFILEC(...)-

.....

Logical function of IMPORTRA from disk or tape

4.8 LISTCAT

This command is used to list the VSAM catalog entries or parts of

then. It is recommended to execute a LISTCAT command aftexr any
DEFINE command. Examples are shown and explained starting on page
140.

4.9 LISTCRA

This command is used to:

U List entries in the catalog recovery area (CRA)
] Indicate mismatches (if any) between the CRA and the actual
catalog

. Dump the contents of the CRA(s)

Examples are shown starting on page 160.

4.10 PRINT

This command is used to print ISAM, SAM or VSAM data sets, or parts
of these data sets. The printout can be obtained in hexadecimal,
character oxr dump format.

Examples are shown starting on page 109.

Chapter 4. Access Method Services Overview 65

4.11 REPRO .

This command transfers data between 2 data sets. If data are to be

transferred into an empty data set, it always reorganizes the
target data set. v :

When copying an RRDS to a nonRRDS, empty slots are not copied. The
slot numbers of the non-empty slots are lost.

When copying an RRDS to an RRDS, each non-empty slot in,the‘source
is copied +to the same slot in the target. Empty slots are not
copied.

The different functions are:

. Add recoxds to the end of an ESDS
. Copy a VSAM catalog (MVS only) (move a catalog to another disKk)

. Loads/copy a VSAM data set

ISAM — SAM (backupsunload an ISAM data set)

ISAM — VSAM (convert an ISAM data set to VSAM format)
SAM ——» SAM (copy, e.g. tapes)

SAM —» VSAM (load a VSAM data set)

VSAM — SAM (ba~kups/unload a VSAM data set

VSAM — VSAM (copy/merge data)
. Merge records into KSDS oxr RRDS

. Punch or print
ISAM data sets

SAM data sets
VSAM data sets

o Unload/reload a VSAM catalog (backup)

‘' See the appropriate Access Method Services manual (listed on

rage 2) for correct coding; examples are also shown starting on
page 108.

66 VSAM PRIMER and REFERENCE:

s

Figure 32.

Fiqures 32 -

34 ‘show _a few functions of REPRO:

Load a VSAM data
For the following
used. :

(

set from disk, cards,

or tape

functions,

(éard Input

VOL008

N

— PAYROLL

different REPRO commands

N

have to be

Command coding:

REPRO INFILE (...) -
OUTFILEC(...) -

.....

DOS/VS card input:

REPRO INFILE (SYSIPT) -
OUTFILE (...)
cards immediately
after the command
/&
7 X

Logical function of REPRO (load) from disk orx tape

Copysconvert data set to data set

o
QEEL{.—/

ORDER

Figure 33.

copy VOLO0O09
—

VSAMOUT1

VSAMOUT2

convert

N

Chapter 4.

Access Method Serxrvices Overvieuw

Command coding:

REPRO INFILE (...) -
OUTFILEC(C...) -

.....

REPRO INFILE (...) -
OUTFILEC(...) -

.....

Logical function of REPRO (copy data)

67

Backu _tare

The output tape data set contains no catalog information.

///’“———*“&\\ Command coding:
VOLO010
REPRO INFILE (...) -

L OUTFILE(...) -
SALES

A

Figure 34, Logical function of REPRO (backup data setss/catalogs)

4.12 VERIFY (ACCESS METHOD SERV S

This command is used to ensure a catalog reflects the correct 'high
used RBA' of a data set (the 'high used RBA' points to the last
byte used in the VSAM data set; see LISTCAT explanation on page
156). It should be used after an OPEN-exror caused by a previous
system failure or an ABEND condition while updating the data set.

VERIFY ¢annot be used for empty data sets (when the high-used RBA =
0 in the catalog cluster entry). This condition will also occur
when an ABEND ox system failure occurs during the load of the data
set with the SPEED or RECOVERY option specified (see section 7.2.8
on page 97), or while reloading a reusable data set specifying the
REUSE option (see page 16).

An example is shown on page 126.
For further explanation see also section 4.13, which describes the

VERIFY macro.

4.13 VERIFY (MACRO)

There is the VERIFY macro itself, which only update the 'high-used
RBA' in the control block structure and not in the VSAM catalog.

The Access Method Services command VERIFY opens the data set,
issues +the VERIFY macrxro to update +the control blocks. Access
Method Services then issues a CLOSE macro and it is this VSAM CLOSE
that updates the VSAM catalog.

Section 4.12 describes the Access Method Services VERIFY command
and not the VERIFY macro itselsf.

68 VSAM PRIMER and REFERENCE

.14 RESETCAT

This command synchronizes a recoverable VSAM catalog with its
volumes. For example if a VSAM volume bhecomes inaccessible and a
backup copy of the catalog volume is used to restore the volume to
a previous level, the volume may be out of synchronization with its
catalog.

RESETCAT compares the relevant catalog entries with the entries in
the CRA on that volume, and resets the catalog entries where
necessary, so that the catalog is synchronized with the volumes.

RESETCAT usage for unloads/reload and device conversion is described
on pages 254 and 259.

See the appropriate Access Method Services manual (listed on page
2) for correct coding; an example is also shown on page 164.

A

UCATO7
OLDCUST

Y
\AccouNT
\NEUSALE_

Y
LI
\.zRoDUCT A
. INVEST

—t

L

CRA CRA CRA

<«— RESETCAT

Command coding:

RESETCAT CAT UCATO7 -
CRAFILES ((VOLAO1 ALL) -
(VOLAO2 ALL) -
(VOLAO3 ALL)) -
(name of a second or master catalog) -

(workfile d-—name)

WORKCAT
WORKFILE

Figure 35. Logical function of RESETCAT

Chapter 4. Access Method Services Overview 69

70 VSAM PRIMER and REFERENCE

5

5.

0

1

RELATIONSHIP OF DATAR ACCESS TO DATA ORGANTZATION

OVERVIEW OF ACCESS METHODS OTHER THAN VSAM

BASIC DIRECT ACCESS METHOD (BDAM)

In the Basic Direct Access Method (BDAM), records within a data
set are organized on direct access volumes in any manner chosen
by the programmer. Storage and retrieval of a zrecord is by
relative address within the data set or a actual disk address.
This address c¢an be that of the desired record or a starting
point within the data set where a search for a record, based on
a key supplied by the programmexr, begins. Addresses are also
used by BDAM as a starting point when seeking available space
for new records.

The READ/WRITE macro instructions cause the initiation of an
inputsoutput operation. The completion of these operations is
tested by using synchronization macro instructions.

BASIC INDEXED SEQUENTIAL ACCESS METHOD (BISAM)

Sequential and direct processing are provided by the Indexed
Sequential Access Method (ISAM). Records are maintained on DASD
devices in control field sequence by Key. The system maintains
a multilevel index structure that allows retrieval of any
record by its key. Records c¢an be added to an existing ISAM
data set without rewriting the data set.

The Basic Indexed Sequential Access Method (BISAM) stores and
retrieves records randomly into or from an indexed sequential
data set. Selective reading is performed using the READ macro
instruction, specifying +the key of the logical record to be
retrieved. Individual records can be replaced or new records
can be added <randomly. As new records are inserxted, ISAM
rerformance decreases, until it becomes necessary to reorganize
the data set. When records are deleted, the space is not
reuseable until after the next data set reorganization.

The READ/WRITE macro instructions cause the initiation of an
inputsoutput operation. The completion of these operations 1is
tested by using synchronization macro instructions.

BASIC PARTITIONED ACCESS METHOD (BPAM) (0S/VS only)

The Basic¢ Partitioned Access Method (BPAM) is designed fox
efficient storage and retrieval of discrete sequences of data
(members) belonging to the same data set on a direct access
device. Each member of the data set has a simple name. The daua
set includes a directory that relates the member name with the
address where the sequence begins. Members can be added to a
partitioned data set as long as space is available in the
directory and in the data set.

Chapter 5. Access Methods 71

72

The READ/WRITE macro instructions cause the initiation of an
inputs/output operation. The completion of these operations is
tested by using synchronization macro instructions.

BASIC SEQUENTIAL ACCESS METHOD (BSAM)

The Basic Sequential Access Method (BSAM), sequentially organ-
izes data and stores or retrieves physical blocks of data from
tape, disk or wunit record devices. The READ/WRITE macro
instructions cause the initiation of an inputs/output operation.
The completion of these operations is tested by using synchron-
ization macro instructions. Automatic translation between
EBCDIC and ASCII codes is provided for magnetic tape labels and
record formats.

DIRECT ACCESS METHOD (DAM)
This is another name for BDAM.
INDEXED SEQUENTIAL ACCESS METHOD (ISAM)

The Indexed Sequential Access Method (ISAM) is comprised of the
Basic Indexed Sequential Access Method (BISAM) and +the Queued
Indexed Sequential Access Method (QISAM). See +the description
of these two access methods in this section.

QUEUED INDEXED SEQUENTIAL ACCESS METHOD (QISAM)

The Queued Indexed Sequential Access Method (QISAM) is used to
create an indexed sequential data set or to retrieve and update
records sequentially from such a data set. Synchronization of
the program with the completion of inputs/output transfer, and
record blockingsdeblocking are automatic. QISAM is also used to
reorganize an existing data set.

The GET/PUT macro instructions cause the initiation of an
input/output operation. These operations are synchronous.

QUEUED SEQUENTIAL ACCESS METHOD (QSAM)

In the Queued Sequential Access Method (2SAM), logical records
are retrieved or stored as requested. The access method antici-
pates the need for records based on their sequential oxrderxr, and
normally has the desired record in storage, ready for use,
before the request for retrieval is issued. When writing data,
the program normally continues as if the record had been
written immediately, although the access method <routines may
blo¢ck it with other 1logical records and defer the actual
writing until the output buffer has been filled. As with BSAM,
automatic translation between EBCDIC and ASCII codes is provid-
ed for magnetic tape labels and record formats.

The GET/PUT macro instructions <cause +the initiation of an

~inputsoutput operation. These operations are synchronous.

VSAM PRIMER and REFERENCE

. SEQUENTIAL ACCESS METHOD (SAM)

The Sequential Access Method (SAM) is comprised of the Basic
Sequential Access Method (BSAM) and the Queued Sequential
Access Method (2SAM). See the description of these two access
methods in this section.

The following are Telecommunications Access Methods and are not
discussed further in this manual.

* BASIC TELECOMMUNICATIONS ACCESS METHOD (BTAM)
. REMOTE TERMINAL ACCESS METHOD (RTAM)
.. TELECOMMUNICATIONS ACCESS METHOD (TCAM)

. VIRTUAL TELECOMMUNICATIONS ACCESS METHOD (VTAM)

5.2 SAM VERSUS SEQUENTIAL VSAM

Most direct access SAM applications can be mapped into VSAM sequen-
tial applications with reasonably good results. There are a number
of parameters that might affect performance significantly.

5.2.1 LOGICAL RECORD PROCESSING (ADR-ESDS)

This method is usually a good alternative to SAM if +the number of
recoxrds per CI is small and the number of data buffers is greater
than the minimum (foxr more information about buffer, see section
8.1.5, starting on page 190). If the number of recoxds per CI is
large, the overhead per logical record may require more CPU time
then SAM.

5.2.2 LOGICAL RECORD PROCESSING (KEY-RRDS)

One of the efficient means of doing sequential accessing is by
using an RRDS. If the records are fixed length then this is a good
choice. It is not possible +to define an alternate index over an
RRDS.

5.2.3 KEYED SEQUENTIAL RECORD PROCESSING (KEY-KSDS)

This is probably the least efficient mapping of SAM into VSAM since
at each change of CI there must be a reference to the sequence set
buffer +to 1locate the next CI. If a logical <consolidation of
programs can occur which might make use of the insertion capabili-
ties of VSAM then the extra overhead might be worth it. Normally in
a SAM application a file wupdate involves both an input and an
updated output version of the same file containing inserted records
or updated records having length changes. In this case a single
KSDS can take the place of both the input and output SAM files.

Chapter 5. RAccess Methods 73

5.2.4 CONTROL INTERVAL PROCESSING

The most efficient method of processing is control interval proces-
sing, but it is considered only for very special applications. Ths
problem program must, however, do all of the logical recoxd block-
ing and deblocking itself.

For applications that c¢an deblock a control interval easily or
where there is only one record per CI this is an excellent choice.
In programs using COBOL and PL/I versions where CNV processing is
not supported, the user can define a user block at 1least 10 bytes
less than the CI that will be defined for the file and process his
own user records. This will reduce the number of VSAM logical
records per CI to as fer as 1 depending upon the user blocKksize and
CI size chosen. :

Caution should be wused processing a KSDS or RRDS with CNV proces-
sing and generally should be avoided by the application programmer.

In VS1 and VS2 the ICI option (Improved CI Processing) (a subparam-—
eter of the MACRF parameter in the ACB macro instruction) may be
used to further reduce CPU time for data sets meeting the require-
ment of ICI Processing. The data set, however, may not be extended
or created using ICI. If ICI is wused and the program is authorized
it may also use the CFX option (a subparameter of the MACRF parame-
"ter in the ACB macro instruction) to page fix the control blocks.
The user must specify UBF (a subparameter of the MACRF parameter in
the ACB macro instruction) and page fix his user buffer if CFX is
used. ‘

5.3 BDAM VERSUS DIRECT ESDS AND RRDS

BDAM data sets with fixed length blocks c¢an be mapped into VSAM
with fixed length records giving excellent results.

Each fixed length block in BDAM becomes a logical <record in VSAM.
The dummy BDAM blocks become empty record slots, (if a VSAM RRDS is
used) and the KEY and DATA portions of +the BDAM block can be
combined into a single record entry in an ESDS or RRDS.

Because Keyed BDAM has an unblocked format and VSAM has a blocked
format there is potentially much better space utilization in VSAM.
As a result the number of <c¢ylinders and consequently the average
seek time is generally 1less for an ESDS or RRDS than for BDAM. A
read by Key in BDAM causes the channel and the device to be busy
until the block is found, resulting in high <channel and device
times when searching by Key. In VSAM RRDS retrieval the channel
and device are busy only for the duration of the data transfer.
During an extended search for a record in VSAM, sequential proces- -
sing can be used to read several CI's worth of =records with a
single EXCP.

74 VSAM PRIMER and REFERENCE

The formatting of an RRDS is a small fraction of the time required
to format a BDAM data set with dummy records. The initial random
loading of a BDAM, ESDS or RRDS data set are nearly equivalent.
VSAM uses more CPU time than BDAM, but is better on channel time.
It is assumed that zrandom loading will not occur <frequently.
Backup and recovery are done sequentially which should be much
faster with VSAM.

Direct retrieval of a VSAM record is significantly better than BDAM
retrieval in total elapsed time pexr record but uses slightly more
CPU cycles.

In general all operations wusing VSAM are better +than BDAM in

elapsed time. VSAM operations tend to use more CPU cycles than BMAA
whereas BDAM uses more channel time than VSAM processing.

5.4 ISAM VERSUS VSAM

All ISAM applications can be mapped into VSAM KSDS applications.
Either native VSAM support or VSAM +through the ISAM Interface
Program (IIP) may be used. Use of the IIP avoids program conversion
(see also next section and section 5.4.3).

Some generxal comments about the relative performance of VSAM and
ISAM should be made. They are:

- OPEN and CLOSE in VSAM are significantly longexr than in ISAM.

- Data set creation in VSAM takes longexr than ISAM depending upon
the amount of free space required, the number of buffers, and
the blocking factor.

- Direct VSAM operations are usually faster than the equivalent
ISAM operation.

- VSAM requires more virtual storage than ISAM.

- In sequential access, VSAM generally wuses more CPU time than
ISAM but in orxrdered direct, zrandom batch and sorted batch,
accessing VSAM generally requires less CPU time than ISAM.

- VSAM uses less channel time than ISAM overall.

- In random access, the 'path length' from the highest 1level
index entry down to the record is always the same in VSAM,
independent of the number of insexrtions, whereas for ISAM the
'path length' tends +to vary and become longer on the average,
the more records have been inserted into a data set.

- VSAM uses free space in a far better way then ISAM. KSDS
requires much less reorganization then ISAMNM.

Chapter 5. Access Methods 75

5.4.1 ISAM lﬁTERFACE PROGRAM

If a program does not require functions other than those provided
by the original ISAM program, the IIP is an efficient means of
using VSAM. The elapsed time and CPU time differences between IIP
and native VSAM is negligible. '

The ISAM Interface Program consists of a few modules which are
automatically available when VSAM is used. No special generating
is required. The only changes are as follous:

. The ISAM data set must be converted into a VSAM data set by
using the Access Method Services functions: DEFINE CLUSTER (for
defining the VSAM data set), and REPRO (to transfer +the data
from the ISAM data set to the VSAM data set).

. The ISAM program JCL must be changed to specify the VSAM data
set.

5.4.2 AM _TO VSAM DATA SET CONVERSION

Data and Index CI sizes should be set as discussed earliex. Th=e
overall free space can be determined from the amount of overflow .in
the ISAM data set. Determine the number of records that will fit
into all of the ISAM overflow areas of +the primary extent. The
number of records in the newly created ISAM data set plus the
number of <records that can be contained in the overflow areas is
the capacity of the primary ISAM extent. The difference between
the neuwly created ISAM file size and the capacity of the primary
extent is the amount by which the ISAM file may grow before a
secondary extent is allocated. Use this amount of growth (in
records) to compute the VSAM free space as discussed earlier.

5.4.3 ISAM PROGRAM CONVERSION USING ISAM INTERFACE

As described in the previous sections ISAM programs and ISAM data
sets can be transferred easily to VSAM.

The ISAM data must be transferred intc a VSAM data set (with REPRO
or a similar user program).

The definition parameters of the VSAM data set are based on the
charactexristics of the ISAM data set. As ISAM differentiates
between variable-length and fixed length zrecoxrds and blocked and
unblocked recoxrds, these characteristics must be taken into account
when defining the VSAM data set.

The following figure shows +the definition differences for fixed
blocked and fixed-unblocked recoxrds (the <characters A, B, C repre-
sent the key of the records):

The ISAM definitions are for DOS/VS, the 0S/VS DCB parameters are
similar.

76 VSAM PRIMER and REFERENCE

Access ISAM ISAM
Method blocked records unblocked records
DTFIS RECFM=FIXBLK, * DTFIS RECFM=FIXUNB, X
KEYLOC=x, X KEYLEN=y, X
KEYLEN=y, X RECSIZE=2z, *
RECSIZE=z2, S
I A M
(o] A B C A
‘ A A
VS A M
DEFINE CLUSTER - DEFINE CLUSTER -
KEYS(y,x-1) - KEYS(y,0) -
RECORDSIZE (z,z) - RECORDSIZE (z+y,z+y)-

Figure 36. VSAM definition for fixed-length ISAM records

Variable—-lenqgth records:

ISAM: KEYLEN=y,KEYLOC=x, X VSAM: DEFINE CLUSTER -
RECSIZE=2z, X KEYS (y,x-u) -
.......... RECORDSIZE (avg,z-H) -

oooooooooo

After copying the ISAM data into the VSAM data sét, the ISAM
program JCL must be changed to specify the VSAM data set instead of
the ISAM data set.

The ISAM program itself need not to be changed (as long as standard
operations are performed).

Chapter 5. Access Methods 77

When VSAM recognizes that ISAM macros are executed for a VSAM data
set, the ISAM Interface Routines are called automatically (without
any specification of the user) to translate the requests and also
the return codes supplied by VSAM into ISAM return codes.

It is not suggested to convert an ISAM program into a VSAM program
as the Interface routines are very fast and use only about 11K of
pageable storage.

The ISAM interface support is also provided in the High Level
Languages which use ISAM.

5.5 HIGH LEV LANGUAGE VSAM SUPPORT

COBOL/VS, PL/I, and RPGII (DOS/VS only) provide native VSAM
support. They provide Sequential and Random accessing capabilities.

For further discussions see the appropriate COBOL/VS, PL/I, or
RPGII manuals.

78 VSAM PRIMER and REFERENCE

6.0 VSAM INSTALLATION AND USAGE OF VSAM CATALOGS WITH TPL

6.1 DOS/VS

6.1.1 VSAM RELATED PARAMETERS I HE SUPERVISOR (DOS/VS)

FOPT VSAM=YES, /
GETVIS=YES, /
RELLDR=YES, /

ALLOC BG=nK,...,F1=n1kK ‘n = 170K->470k(depending
on services used) for
partitions where Access
Method Services is
supposed to run.

Or user program size
plus an amount equiva-
lent to that of the
working set indicated
in section 9.2.1 on
page 228.
VSTAB .

VSIZE=0ld VSIZE + nk, / n > 350

SVA=(0old SVA-size + nkK,...), /

BUFSIZE=0ld value + m m > 40spartition

IOTAB .

NRES=nr, / nr < 256 (numbex of VSAM
Resource Usage records).
ASSGN SYSCAT,X'cuu' Standard assignment

for master catalog.

6.1.2 HOW TO USE A USER CATALOG AS MASTER CATALOG (DOS/VS)

If the standard assignment of the the mastex <c¢atalog has +to be
changed, it has to be specified between the 'SET' and the 'DPD'
commands in the form

CAT UNIT=X'cuu'
This is the ONLY point where a master catalog can be reassigned.

An ASSGN SYSCAT is an IPL command. It is NOT a wvalid Job Control
(JCL) nor an Attention Routine (ATTN).

6.1.3 LOAD A NEW SDL/SVA (DOS/VS)

After IPL, a new SDL/SVA has to be loaded (using fox instance tlLa
procedure 'VSAMSVA'). This has to be done just once and remains
valid until the VSIZE changes ox the 'WARM COPY of SVA' is rejecti-
ed. See SYSGEN manual.

Chapter 6. VSAM Installation 79

6.2 VS2 MVS
6.2.1 HOW TO INSTALL VSAM IN VS2 MVS
As the prime system catalog is a VSAM master catalog, VSAM support

is always included in the system.

The usual way to generate a MVS system is by using another MVS
system as generating system.

To create a master catalog for the new system, there are tuwo
possibilities:

1. Use the SYSGEN DATASET macro alone to create the master catalog.

If the new master <catalog is +to be xecoverable this version
cannot be used. If this version is used and a master password
is to be assigned to the master catalog (strongly recommended)
this master password must be added with an ALTER command (see
example on page 121).

2. Use the DEFINE MASTERCATALOG command and the DATASET macro.
This version allows specification of all attributes wvalid for

the DEFINE MASTERCATALOG command, which includes the attribute
RECOVERABLE and the specification of passwords.

Create the master catalog with the DATASET macro alone?

Specify the following:
DATASET VSCATLG,VOL=(SYSRES,3330),SPACE=(CYL,(10,5)), X
NAME=SYS1.MASTERCT
Note: The master catalog need not be on the systems residence
device. The resulting catalog is nonrecovexable.
This DATASET macro results in 3 major functions:

o DEFINE MASTERCATALOG (is treated as a DEFINE USERCATALOG in the
generating system).

° After defining the catalog, an EXPORT DISCONNECT command 1is
issued to detach the catalog from the generating system.

° A member with the name SYSCATLG is c¢reated in SYS1.NUCLEUS

(this is the standard member pointing to the mastexr catalog,
see also the next section).

80 VSAM PRIMER and REFERENCE

Create the master cataloq with pre—allocation and DATASET macro:

Specify the following:

DEFINE MASTERCATALOG (NAME(SYS1.MASTERCT) -
FILE (CATVOL) -
RECOVERABLE -
VOLUME (SYSRES) -
CYL (10 5) -
MASTERPW (MASTPROT))

After executing this command (which is +treated 1like a DEFINE
USERCATALOG command) an EXPORT DISCONNECT command must be issued to
prevent the usage by the generating systenmn.

In the subsequent SYSGEN for the new system, the DATASET macro must
not specify a SPACE value as follous:

DATASET VSCATLG,VOL=(SYSRES,3330), *
NAME=SYS1.MASTERCT

The DATASET macro c¢reates a member with the name SYSCATLG in

SYS1.NUCLEUS (this is the standard member pointing to the master
catalog, see also the next section.

6.2.2 HOW TO USE A USER CATALOG AS MASTER CATALOG (MVS)

A member of SYS1.NUCLEUS must be defined to point to the alternate
catalog (the user catalog to be wused as master catalog). This
member consists of a 80 byte record as follous:

Columns Contents

1 to 6 Volume serial of volume containing the alternate catalog
7 unused

8 Device type (see following chart)

9 to 10 unused

11 to 54 Data set name of the alternate catalog left-justified

and padded with blanks
55 to 80 wunused

The device type codes (used in column 8) and JCL block sizes are as
follouws:

Device Code (hex) Card Punch BLKSIZE (in JCL)
2305-1 ' 06 12-6-9 14136
2305-2 07 12-7-9 14660
2314 08 12-8-9 7294
3330 09 12-1-8-9 13030
3330 Mod. 11 0D 12-5-8-9 13030
33407334y oA 12-2-8-9 8368
3350 0B 12-3-8-9 19069

Chaptexr 6. VSAM Installation 81

The following job can be used to place the member in SYS1.NUCLEUS:

//ADD JOB ...

//STEP EXEC PGM=IEBGENER

//8SYSIN DD DUMMY

//7SYSUT2 DD DSN=SYS1.NUCLEUS(xxxx),DISP=(MOD,KEEP),UNIT=uniui.
77 DCB=(BLKSIZE=*XXX),VOL=SER=volser

//7SYSPRINT DD SYSOUT=A
//7SYSUT1 DD ¥ |

data carxd
/X

KXKXX = name of the new member with the alternate catalog pointer
Xk%X%X = gee BLKSIZE in device type code table on previous page

Note: Do not use ITEBUPDTE to add the membexr because this altexrs the
blocksize of SYS1.NUCLEUS and makes further changes impossible.

If it is necessary to change the membexr, use IEHPROGM +to scratch
the member and then add it again.

To use the new catalog after the next IPL (cold start) the pointer
in TIEAVNP11 (in the NUCLEUS) pointing to SYSCATLG (SYSCATLG is the
standard member containing the pointer to the VSAM master catalog)
must be changed to point to the new member (see the following
example).

To change the pointexr in IEAVNP11 the following job can be used:

//ZAP JOB
//STEP EXEC PGM=AMASPZAP

//SYSLIB DD DSN=SYS1.NUCLEUS,DISP=0LD
//SYSPRINT DD SYSOUT=A
//7SYISIN DD X

NAME IEAVNP11 TIEAVNP11

VER 1905 E2E8E2C3 C1E3D3C7

REP 1905 new member name
7 X

Note: Before applying this change, use +the AMASPZAP service aid
program to dump CSECT IEAVNP11. Then wuse the dump to determine the
exact location of the data to be altered.

The new cataloqg is used after the next IPL (cold start).

82 VSAM PRIMER and REFERENCE

6.3 VYS1 AND VS2 SVS

6.3.1 HOW TO INSTALL VSAM TN VS1 AND VS2 SVS

VSAM is included in the system with the System Generation by
default.

To use VSAM a VSAM Master catalog must be created using the VSAM
utility Access Method Services (see example in section 7.3 on page
100).

This DEFINE MASTERCATALOG places a pointexr into the 0S/VS system
catalog with the name AMASTCAT (independent of the specified master
catalog name).

After having a VSAM master catalog defined, other VSAM data s=ts
and7or user catalogs may be defined.

6.3.2 HOW TO USE A USER CATALOG AS MASTER CATALOG(SVS/VS1)

As the format of a VSAM user catalog and the VSAM master catalog is
identical, any VSAM user catalog can be used as VSAM master cata-
log.

This 1is very important if the VSAM master catalog cannot be
accessed due to any reason. So a user catalog c¢an be used as a
master catalog and the damaged master catalog can then be connected
‘"to the new master catalog as a user catalog to be restored.

To use a user catalog as the VSAM master catalog, the pointer in
the 0S/VS System catalog must be changed with the following Job:

/7/CHGCAT JOB

/7/STEP1 EXEC PGM=IEHPROGM

//SYSPRINT DD SYSOUT=A

/77DD1 DD UNIT=disk,VOL=SER=mcatvolsexr,DISP=0LD
/7/7DD2 DD UNIT=disk,VOL=SER=ucatvolser,DISP=0LD
/7/7SYSIN DD X

UNCATLG DSNAME=AMASTCAT
CATLG DSNAME=AMASTCAT,VOL=3330=ucatvolser
7 X

After executing this job, the new catalog is used as master catalog
after the next IPL (cold start).

Chaptexr 6. VSAM Installation 83

8y VSAM PRIMER and REFERENCE

7.0 HOW TO START USING VSAM

After VSAM is installed in your Operating System you may begin to
use it.

Access Method Services commands must be used to define the VSAM

catalog and your VSAM data sets (in MVS the VSAM master catalog
already exists when the system is IPL-ed).

General comments on this chapter:

. To show the difference between DOS/VS and OS/VS, all the
examples are shown on the same page in two columns.

. To be able to print two columns on normal size paper, some
Access Method Services messages had to be abbreviated.

. To reduce the length of the output, most blank lines have been
deleted.

U The DOS/VS examples were executed with DOS/VS Rel.33.

7.1 HOW TO CODE ACCESS METHOD SERVICES COMMANDS

The following is a short description of how to code an Access
Method Services command. A detailed description is included in the
appropriate Access Method Services manual.

Commands and their parameters can be <coded in free format as shown
below:

COMMAND sep PARM1 sep PARM2Z2 sep PARM3 cont
PARMY term

where:
sep (separator) : 1 or more blanks, comma(,) or comments.

cont (continuation) : there are tuwo different types of
continuation:

1.2 value, subparameter oxr parameter
has to be continued.
Plus (+) indicates the continuation
of a value within a parameter. The
remainder of +the value has to start
at the left margin on next line.

2.A command has to be continued (more
parameter to follow).
Minus (=) indicates the continuation
or +the same command on the next
line(s).

Chapter 7. Access Method Services Examples 85

term (terminators) : right margin or absence of continuation,
or semicolon(;) oxr blank line.

comments format : /X any text X/ . A comment line placed
between 2 command lines must have a
continuation sign (-).

left/xright margins : the default left and right margins are
at columns 2 and 72. They c¢an be
changed with the PARM MARGINS command.

Some rules and recommendations:

86

Abbreviations of commands and Keyword parameters can be inter-
mixed with full naming.

An easy check of the continuation rules within a command verb
is possible if the continuation sign (-) is always placed in
the same column (see following examples).

Note: If no continuation sign (-) is coded and more parameters
belonging to the same command follow, the subsequent parameters
are ignored and defaulted by VSAM up to the next command (if
required parameters are missing, an error message 1is issued).
As this may lead to unexpected definition wvalues, it is
suggested to issue a LISTCAT command following each DEFINE
command .

There are two types of parameters : positional and Keyword
parameters. In a parametexr list or sublist, positional parame-
ters must always be specified first (positional parameters are
required parameters.

Example: INFILE (dname ENV (...)) correct
INFILE (ENV (...) dname) wrong

Neither commands nor Keyword parameters (in long oxr short form)
are reserved words: therefore it is dangerxous and not suggested
to use parameters or keywords as component names (e.g. dont use
UPDATE as a data set name, as +this is a parameter for Access
Method Services).

DOS/VS only : when Access Method Services 1is used for tape
operations specific 'SYSnnn', is required, i.e.:

SYS004 : for input tape(s)
SYS005 : for output tape(s)

For functions using disKks, any 'SYSnnn' can be chosen.
The default assignments are:

SYS006 : for input disk(s)
SYS007 : for output disk(s)

VSAM PRIMER and REFERENCE

7.2 EXPL TION OF TMPORTANT DEFINE PARAMETERS

VSAM uses catalogs as a central information point for all VSAM data

sets and the direct-access volumes on which they are stored. You
can define a VSAM object in a VSAM catalog only by using the Access
Method Sexrvices DEFINE command. Additionally, you c¢an use the

DEFINE command to define nonVSAM objects in a VSAM catalog (in
DOS/VS nonVSAM objects c¢an only be defined in a nonrecoverable
catalog; in MVS nonVSAM objects may also be defined wusing the JCL
parameter CATLG).

When you issue the DEFINE command to catalog an object, Access
Method Services builds one or more catalog entries to describe the
object.

The VSAM objects you can define are:

Mastexr catalog (in MVS this command creates a user catalog)
User catalog

Data space

Cluster, or VSAM data set. :

There are three types of cluster data organization:

- ESDS (Entry Sequenced Data Set)

- KSDS (Key Sequenced Data Set)

- RRDS (Relative Record Data Set)

. Rlternate index

Path

NonVSAM data set (in DOS/VS only in nonrecoverable catalog and
for compatibility purposes)

e o o o

In MVS systems additionally the following can be defined:

Alias (also in SVS possible)
. Generation Data Group (GDG)
. Page space

Many parametexrs may be specified for the various DEFINE commands.
The most important ones are described in detail (others are
described with the example):

FILE

FREESPACE
IMBED/REPLICATE
KEYRANGES

NAME

RECORDSIZE
SHAREOPTIONS
SPEED/RECOVERY
SUBALLOCATABLE/UNIQUE

¢ &6 & ¢ o o ©° o o

Chapter 7. Access Method Services Examples 87

7.2.1 FILE

The FILE parameter refers to the 'filename' of a DLBL statement
(DOS/VS), or to a '"dname' of a DD statement (0S/VS).

The FILE parameter and its associated JCL statement is always
required, when a volume has to be mounted to change the VTOC and/ox
the CRA on that volume (not MVS, see 'MVS note' below).

MVS note: FILE may be omitted and the required volume is dynamical-
ly allocated (assuming the volume has been mounted with the correct
attributes).

The following commands require a FILE parameter (not MVS, see 'MVS
note'):

DEFINE MASTERCATALOG

DEFINE USERCATALOG

DEFINE SPACE

DEFINE ALTERNATEINDEX/CLUSTER with the UNIQUE attribute
VERIFY'!

1 FILE is always needed for VERIFY (even for nonrecoverabhle
catalog) and is not used to identify the CRA volume, but to
identify the DD statement which names the data set to be
opened and verified.

Most Access Method Services commands modifying a recoverable
catalog must have a FILE parameter and its associated JCL statement
(in 0S/VS the JCL statement may be omitted (not suggested), if the
requested volume is already allocated by an other JCL statement or
when the catalog itself resides on the volume).

The FILE parameter is required for the following commands when
using a recoverable catalogq (not MVS, see '"MVS note'):

ALTER

DEFINE commands
DELETE

IMPORT?
IMPORTRA?Z

e & o ¢ o

2 FILE is only needed in a nonMVS system if the components are
unigque and reside on different device types (FILE must be
coded separately for the data and index c¢omponents); other
wise FILE is not needed.

7.2.2 FREESPACE

A KSDS can be specified to zreserve space to be held free when
loading data (see also section 2.5 on page 20).

88 VSAM PRIMER and REFERENCE

The specified amount is only held free, when sequential insertions,
such as 'loading' or "mass insertion' (see section 8.8 on page 207)
are performed. :

Two values can be specified: FREESPACE(CI-percent CA-percent).

. 'CI-percent' specifies the amount of space to he held free per
control intexrval (CI).

The way VSAM treats this <£free space definition is: specified
percentage times actual CI size (rounded down to a full byte).
So VSAM does not care about zrecord length and does not round
the value wup, if +the amount of free space is less then one
record.

Example:
Definition:

Control Intexval Size
Free space

1024 bytes
15 %4 free CI space (FREESPACE (15 0)

VSAM calculation:

1024 ¥ 15 %4 = 153,6 = 153 bytes minimum free space (exclud-
ing control fields).
. 'CA-percent' specifies the amount of c¢ontrol intexvals to be

held free per control area (CA).

If the maximum value (100%) is specified for both Ci-percent and
CA-percent, each control interval will contain one record and each
control area will contain one used control interval.

Section R.6.2 on page on 258 contains a description of FREESPACE
considerations when issuing the IMPORT c¢ommand. For a special
definition using different FREESPACE values, see also section 8.4
on page 199.

7.2.3 IMBED/REPLICATE (IﬂDEx OPTIONS)

When a Key-sequenced data set is processed sequentially, the
sequence set index level is used to indicate the oxrder in which
control interxvals are to be accessed. To improve performance during
sequential processing, the index sequence set can be separated from
the rest of the index component (index set levels) and stored with
the logical records in the data component (IMBED). When this option
is chosen, the index records for a control area are placed on the
first track of the control area that both index and logical records
can be accessed without moving the disk arm (similar to the loca-
tion of the track index within the prime area in an ISAM data set).

Chapter 7. Access Method Services Examples 89

When the index sequence set is stored within the data component
(IMBED), sequence set records are also replicated. That is, each
sequence set index zrecord is allocated one track at the beginning
of the control area. The index record is duplicated on the track as
many times as it will fit. This technique significantly minimizes
the rotational delay involved in arriving at the beginning of an
index record. If there is only one control area in a c¢ylinder,
index sequence set records will be replicated beginning with track
0. If there are two control areas in a c¢ylinderxr, initial tracKks of
the first area will contain replicated index records for the first
control area, while initial tracks of +the second area will cont=in
replicated index records for the second control area.

Index set zrecords, like index sequence set records, contain
compressed index' entries. The index entries in each level of the
index set point to index records of the next lower index level. An
index entry within the index set contains a pointer to an index
record, the highest Key in that index record, and control informa-
tion. Index set levels can also be replicated (REPLICATE). When
this option is chosen, one track is required for each index recorxd
in the entire index set. An index record is duplicated on its
assigned tracKk as many times as it will fit.

The index set may not be replicated 'when the index set and the
sequence set of the primary index are physically separate (sequence
set stored with logical records). However, when the index set and
the sequence set are stored together, both are =zrxeplicated or
neither is replicated.

The following combinations are possible:

. NOIMBED NOREPLICATE:
All index levels are stored together and are not replicated.

. NOIMBED REPLICATE:
All index levels are stored together, each index record occu-
pies an own track and is repeated on this track as often as
possible.

. IMBED NOREPLICATE:
The index sequence set level is stored with the data component.
Each index record in the index sequence set is stored with its
data control interval, occupies an oun track, and is repeated

on this track as often as possible. In most cases this is the
best choice. The highexr index levels are not repeated on a
track.

. IMBED REPLICATE:
The index sequence set level is stored with the data component.
Each index record in the index sequence set is stored with its

data control interval. &Each index sequence set record occupies
its own track, and is repeated on this track as often as
possible. :

90 VSAM PRIMER and REFERENCE

7.2.4 KEYRANGES

KEYRANGES is a DEFINE parameter and specifies that in a KSDS
specific Key ranges are to be stored on specific volumes.

As the user knows (or should know) which volume is to be used for a
specific Key 1xrange, he <c¢an mount the volume he needs with a so
called gubset mount (see also section 8.10 on page 216).

The allocation algorithms (amount of primary and secondary space)
and the rules for multivolume data sets are explained in the
section 8.1.3.3 on page 188.

When using Key ranges, data on a specific volume can be restored
from a backup tape (with full volume restore, which may lead to a
data set 'out-of-synch' condition), as usually all Kkeys of a “zv
range are stored on one volume (see following examples).

. Example 1 (3 Kkey ranges, 3 volumes)
DEFINE CLUSTER ... VOLUMES (vi1,va2,v3) -
KEYRANGES ((A,F) (G,P) (2,Z)) -

CYL (100,50)

—s r :
¥\::// ———; —

bﬁrb
o e B

NS N

Primary allocation
Secondary allocation

la <]
nun

Figure 37. Keyranges (example 1).

Chapter 7. Access Method Services Examples 91

. Example 2

T X
|
o e IR e B By B |

Figure 38.

. Example 3

=
!
oo

Figure 39.

92

DEFINE CLUSTER

KEYRANGES ((A,F)

(2 Kkey ranges,

3 volumes)

... VOLUMES (V1,V2,V3

(G,2))

CYL (100,50)

nnunnnnwg

NNNNNNN

nnunnnuny
Q> Q

Q@
1

DEFINE CLUSTER

KEYRANGES ((A,D) (E,H)

(5 key ranges,

Primary allocation
Secondary allocation

Keyranges (example 2).

3 volumes)

.. VOLUMES (V1,V2,V3
(I,M

CYL (100,50)

Y
N V!
—

N

1 1 b
|
f ~ite o=

Primary allocation
Secondary allocation

Keyranges (example 3).

VSAM PRIMER and REFERENCE

)

)
(N

»R)

/" Overflow ™\
\—_v_é——/

(S:Z)) -

Y
V3

—

. Example 4 (4 Keyranges, 2 volumes (twice specified))

DEFINE CLUSTER ... VOLUMES (Vv1,Vv2,V1,V2) -
KEYRANGES ((A,D) (E,H) (I,M) (N,Z))~
CYL (100,50)

=
!
o

= H H
!
U XXX
v
zt"‘!z
N XX N
n

Primary allocation
Secondary allocation

wn
i u

Figure 40. Keyranges (example 4).

7.2.5 NAME

The name specified for a VSAM data set may contain 1 - 44 alphanu-
meric characters, national characters (d, # and $) and two special
characters (hyphen and 12-0 overpunch).

Names containing more than eight characters must be segmented by
periods; one to eight characters may be specified between periods.

The first character of a name or name segment must be either an
alphabetic or national character.

With multiple catalogs you should take care that a data set name in
one catalog is not duplicated in another catalog.

It is possible to have the same data set name in more than one
catalog.

RAccess Method Services prevents you from cataloging two objects
with the same name in the same c¢atalog, and from altering the name
of an object +that its new name duplicates the name of another
object in the same catalog.

Duplication is not checked or prevented when a user catalog 1is
imported into a system (see IMPORT CONNECT command on page 166).

Chapter 7. Access Method Services Examples 93

No check is made to determine whethexr the imported catalog contains
a name that another catalog already in the system c¢ontains. Fozx
cluster naming conventions see also section 2.9.2 on page 43.

In MVS systems, the data set name c¢an also be used to identify the

catalog where +the data set is cataloged. A name segmented with
periods is called a qualified name. The first qualifier (the part

of the name up to the first period) is used to find the usex
catalog if no STEPCAT or JOBCAT catalog is specified (the Access
Method Services manual contains a section 'Orxrder of catalog use'
for each command, where the catalog search sequence is described).

Note (MVS only): As the data set name (qualified name) is used for
catalog allocation a qualified name and an unqualified name cannot
exist in the same catalog if the first qualifier of the qualified
name is the same as the unqualified name.

The example in section 4.4 on page 60 does not work in a MVS system
and is rejected with a message 'DUPLICATE DATA SET NAME', because
the c¢lustexr name is CITY and the data component name is 'CITY.D'
which is then a violation of the restriction described above.

To prevent these problems, it is suggested always to use qualified
names in an MVS system and always use the same first qualifier in
one catalog.

This first qualifier should be identical with the ALIAS or the
catalog name defined for the user catalog.

7.2.6 RECORDSIZE

As described on page 8 there is no special parameter to define that
fixed-length records or variable-length records are to be used.

The RECORDSIZE parameter indicates, however, if fixed-length
records are to be used or not.

The format of RECORDSIZE is:
RECORDSIZE (avg.length max.length)

If fixed-length records with a length of 80 bytes are to be used,
the definition would be RECORDSIZE (80 80).

The definition of RECORDSIZE (60 80) would, however, also enable
the user to use fixed-length recoxrds with 80 bytes, because the
'avg.length' parameter is only used by VSAM to calculate thLe
minimum control interval size for the data component <(or to checals
the size the user has defined).

The 'avg.length' parameter is also checked when an RRDS is being
defined (in this case 'avg. length' and 'max. length' must have the
same value, since fixed-length records are required for RRDS).

9y VSAM PRIMER and REFERENCE

The 'max.length' parametexr is a limiting size foxr VSAM. Records
with a larger size will force an error message, but if RECORDSIZE
(100 100) has heen specified and only records with a length of 80
bytes are used, neither error messages are written nor 1is space
wasted on disk (except for an RRDS data set whose slots are prefor-
matted depending on the 'max.length' parameter), as VSAM checks the
actual length of the record and stores this information in the RDF
(Record Definition Field).

7.2.7 SHAREOPTIONS AND DATA SET SHARING

A VSAM data set c¢an be accessed concurrently by two or more
subtasks within the same partition and +two or more job steps
(partitions) (in O0S/VS DISP=SHR must be specified for the VSAM data
set by each job step). Both types of sharing c¢an be used for a
VSAM data set at +the same +time. The +type of data set sharing
permitted for two or more partitions is <controlled by wusing the
SHAREOPTIONS parameter of the DEFINE command when the VSAM data set
is defined.

The format of the SHAREOPTIONS command is as followus:

SHAREOPTIONS (cross—-region [cross-system])

7.2.7.1 CROSS—-PARTITION/REGION SHARING

The following types of options are supported:

i SHAREOPTIONS (1):

The data set can be opened by one user for output processing
(to update or add recoxds) or the data set can be opened by
multiple users for read operations only. Full read and write
integrity is provided by this option.

. SHAREOPTIONS (2):

The data set can be opened by one user for updating or record
addition (output operations) and by multiple users for
read-only processing. Since only one user can perform write
operations, write integrity is provided by this option. Houwev-
er, read integrity must be provided by each user since users
can read a record that is in the process of being updated.

. SHAREOPTIONS (3):

The data set can be opened by any number of users for both read
and write operations. Data set integrity must be maintained by
the user. No integrity (read oxr write) is provided by VSAMNM.

Chaptexr 7. Access Method Services Examples 95

SHAREOPTIONS (4):

The data set can be opened by any number of users for both read
and write operations. For direct processing operations, VSAM
provides a new buffer for each request. Control interxval
splitting should be avoided when +this option is wused (to
prevent a possible CA split).

In DOSs/VS the '"trackhold facility' is wused to insure the
appropriate integrity.

In 0S/VS the EN2 and DE2 macros must be issued by users to
maintain data integrity.

VSAM will not allow a control area split (and no CI split of
the '"high key CI' for SHAREOPTION U sharing of a Key-sequenced
data set. VSAM indicates 'NO SPACE AVAILABLE' if an attempt is
made to add or change the size of a record and a control area
split is required to perform the operation.

0S/VS HNotes: Data set sharing by subtasks within the same
partition can be accomplished using one DD statement foxr the
VSAM data set oxr multiple DD statements. When a single DD
statement is used, multiple subtasks in the same partition can
perform read and update operations on the VSAM data set. VSAM
uses the exc¢lusive control facility to maintain integrity
during update operations. The SHR disposition parameter need
not be specified in ordexr to share a VSAM data set when one DD
statement is used. However, if DISP=SHR is specified when one
DD statement is used, both subtask sharing and cross-partition
sharing (as described above) can be used concurrently.

When multiple DD statements are used, multiple subtasks within
a partition can share a VSAM data set using the same options as
are supported for cross—partition sharing. The DISP=SHR parame-
ter must be specified on the DD statements.

Note the following restriction: When DISP=SHR and SHAREOPTION 4
is specified for cross- partition or <cross-system sharing,

VSAM provides a new buffer =for each direct processing request,
and users should be issuing ENQ/DEQ or RESERVE/RELEASE macros
to ensure data set integrity.

7.2.7.2 CROSS-SYSTEM SHARING (0S/VS ONLY)

The following options are supported in 0S/VS (they may be specified
in DOS/VS but are meaningless):

SHAREOPTIONS (x 3):

The data set can be opened by any number of usexs for both read
and write operations. Data set integrity is a usexr responsibil-

VSAM PRIMER and REFERENCE

ity as VSAM does not provide any.

. SHAREOPTIONS (x 4):

The data set can be opened by any numbexr of users for both read
and write operations. VSAM provides a new buffer for each
direct processing request and RESERVE and RELEASE macros must
be issued by users +to maintain data set integrity. All 3Jjob
steps that are accessing a VSAM data set concurrently must
specify DISP=SHR if data set integrity is to be maintained.
Control interval splitting should be avoided.

Note the following O0OS/VS restriction: When DISP=SHR and SHAR-
EOPTION 4 is specified for cross- partition or cross-system
sharing, VSAM provides a new buffer for each direct processing
request, and users should be issuing ENQ/DEQ or RESERVE/RELEASE
macros to ensure data set integrity.

VSAM will not allow a control area split (and no CI split of
the 'high Kkey CI' for SHAREOPTION 4 sharing of a Key-sequenced

data set. VSAM indicates 'NO SPACE AVAILABLE' if an attempt is
made to add or change the size of a record and a control area
split is required to perform the operxration.

7.2.8 SPEED/RECOVERY (LOADING OPTIONS)

When a VSAM data set is loaded, VSAM does or does not preformat
control areas, depending on the attribute specified when the data
set is defined, RECOVERY or SPEED, respectively.

When RECOVERY (the default) is specified, during loading VSAM
rreformats each control area immediately before loading any records
into it. Preformatting for a key-sequenced data set consists of
putting the appropriate control information in each control inter-
val and an end-of-file indication in the first control interval in
the next control area after the control area just preformatted.
All zeros in the control interval definition field indicates end of
file or end of key range for a Key-sequenced data set.

For an entry-sequenced or relative record data set, control infor-
mation and an end-of-file indication are placed in each control
interval of the control area during preformatting.

The RECOVERY option (not suggested) ensures that if an errox
occurs, that prevents further processing while a control area is
being loaded, the previously loaded control areas are not lost.
Loading can resume from the first or only end-of-file indicator.
Preformatting in RECOVERY mode is always done when records are
added to an existing VSAM data set (even if SPEED was specified).

When SPEED is specified (suggested), records are loaded (i.e.
between first OPEN and CLOSE) without preformatting each control

Chaptexr 7. Access Method Sexvices Examples 97

area before loading and the end-of-file indicator is not written
until the data set is c¢losed. When this option is chosen, loading
proceeds more rapidly, but if an erxror that prevents further
processing occurs, all the records loaded up to that point may be
lost and loading would have to resume at the beginning of the data
set. :

The following should be considered when using RECOVERY:

. Up to now when an empty data set is loaded, the 'high used RBA'
(see page 156) is only updated if +the data set has been closed
(by the usex) after at least one record written into it, or if
a second extent has to be allocated.

. Since VERIFY does not work for a data set with a 'high used RBA
' = 0', which usually indicates an empty data set, loading could
not be resumed, even when RECOVERY is specified.

. If the user-written load program had - issued a CLOSE while
loading the data set (while REPRO does not), VERIFY may be used
after a system malfunction to adjust the 'high used RBA' and
the loading may be resumed (the user has to check which recozrxd
was entered last and he has to c¢hange the load program to
resume loading with the next recoxd).

. It is suggested +to always specify SPEED which is not the
default.

7.2.9 SUBALLOCATION/UNTIQUE

As described in section 2.9 on page 40 VSAM uses two different
types of data spacess/data sets in terms of allocation.

The SUBALLOCATION parametexr specifies that a data set shares a
predefined VSAM data space with other VSAM data sets.

VSAM does all the space management and no JCL specification for the
location of the data set must be given (DOS/VS).

SUBALLOCATION is the way of allocation VSAM is designed for.

For DOS/VS suballocated data sets offer a similar DASD management
as DADSM provides for OS/VS. '

For 0S/VS the advantage (if using suballocated data sets) is that
the 16 extent restriction perxr volume does not apply and therefore
the disk space can be used more flexibly.

The UNIQUE parameter iequires a separate allocation for the data
set. ‘

DOS/VS user must specify the number of tracks and the offset in the
DLBL EXTENT statement when a UNIQUE data set is to bhe defined.

98 VSAM PRIMER and REFERENCE

One F1-DSCB (Label) (oxr tuwo £6z a KSDS) are written into the VTOC
for the UNIQUE data set.

The name in the F1 DSCB is the data component name (and for a KSDS
the index component name).

The 'cluster name specified in the DEFINE command is not used in the
VTOC. Therefore it is recommended to specify also a name fcxr the
data component (and in case of a KSDS, also a name for the index
component), since otherwise VSAM would generate its owun UuU-Byte
name which is meaningless to the user when listing the VTOC or the
catalog (LISTCAT).

UNIQUE data sets should be restricted for special applications.

DOS/VS users should also read the restrictions for UNIQUE data sets
when using recoverable catalogs (section A.4 starting on page 250).

Chapter 7. Access Method Services Examples 99

7.3 DEFINE MASTERCATALOG

As described in chaptexr 3.0 starting on page 47, the first step of
creating VSAM objects, is to define the VSAM master catalog (see
also the appropriate sections in chaptexr 6.0 starting on page 79).
In MVS systems, a VSAM master catalog cannot be defined for the
active system; each DEFINE MASTERCATALOG is treated as a DEFINE
USERCATALOG.

Since any user catalog, however, can be used as master catalog (se=
the appropriate section in chapter 6.0), this discussion is als=o
valid for MVS systems.

1. Since it is advisable that +the master c¢atalog (MCAT) should
contain only the UCAT's pointers (plus CVOL pointers and ALIAS
entries for MVS systems) it can be defined with CYL (1 1), if it
is a nonrecoverable catalog (see also section A.4 on page 250).

2. As described in section A.4.3.1 on page 252 the master catalog
need not be RECOVERABLE.

3. Even when the original space definition was large enough to hold
all future entries, a secondary allocation value should Le
specified, as it is a very time <c¢consuming process to recover
from a 'catalog full' condition.

4. The master catalog should be made password protected in order to
prevent its accidental (oxr unauthorized) deletion or update. If
the master catalog is password protected, severe delete func-
tions, such as DELETE USERCATLOG FORCE (0S/7VS only) or ALTER
REMOVEVOLUMES (a special 0S/VS function to delete all VSAM
information on a disk, see example on page 181) are prevented as
long as the master password is not specified.

DOS/VS example (input): 0S/VS example (input):

// JOB DEFINE MASTER CATALOG //PRIMER JOB WTSC,IBM,MSGLEVEL=1

/7 DLBL IJSYSCT,'PRIMER.MCAT',99/365,VSAM //PRIMO012 EXEC PGM=IDCAMS

/7 EXTENT SYSCAT,D0S30Z,,,4560,38 , //v0L1 DD VOL=SER=WTVSMC,DISP=0LD,UNIT=3330

/7 EXEC IDCAMS,SIZE=AUTO //SYSPRINT DD SYSOUT=A

, //SYSIN DD *
DEF MCAT (- DEF MCAT (-

NAME(PRIMER .MCAT) - NAME (PRIMER.MCAT) -
FILE (IJSYSCT) - FILE (VOL1) -
VOLUME (DOS30Z) - VOL (WTVSMC) -
cYL (1 1) - CYL (1 1) -

MASTERPW (MCATMRPH) MASTERPW (MCATMRPK)
))
/& /%

DOS/VS example (output): 0S/VS example (output):

IDCO510I CAT. ALLOC. STAT. FOR VOLUME DOS30Z IS 0 IDCO510I CAT. ALLOC. STAT. FOR VOLUME WTVSMC IS O
IDCO001I FUNCTION COMPL., HIGHEST COND.CODE WAS 0 IDCO0O1I FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 1IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0

100 VSAM PRIMER and REFERENCE

Ngtesf

The NAME parameter specifies the name of the master catalog.

The FILE parameter is required (not for MVS, see also section
7.2.1 on page 88).

The VOL or VOLUME parameter specifies the volume the catalog 1is
to be allocated. :

The CYL or CYLINDERS parameter specifies the amount of primary
and secondary space to be allocated <£for the VSAM data space,
which is c¢reated with this command (see also section 2.11 on
page u5, 189).

Since no DATA and INDEX parameters are specified +the mastex
catalog occupies the uwhole data space (see also begin of next
section DEFINE USERCATALOG).

The MASTERPW parameter specifies the master password (MCATMRFW.
for the master catalog (see also section 3.3 on page 5H2).

DOS/VS notes:

The 'dname' must be IJSYSCT in both the DLBL and the FILE
statements.

The EXTENT must begin on a c¢ylinder boundary. Since the
primary allocation is one <¢ylinder and the <c¢atalog is not
RECOVERABLE, an EXTENT specification of +two c¢ylinders (38
tracks on 3330) leaves one cylinder for catalog extension or
suballocatable space since the master catalog will contain only
user catalog pointers.

No ASSGN is necessary since it has been specified either in the
supervisor or at IPL-time.

The DLBL/EXTENT information will be stored in the STDLABEL
area, so they have been omitted in the following examples.

The line ' //EXEC IDCAMS SIZE=AUTO ' is followed by one or more
Rccess Method Services commands as printed in the output.

A '"/7X'" gignals end of input to Access Method Services.

0S/VS notes:

The line ' //7SYSIN DD * ' is followed by one or more Access
Method Services commands as printed in the output.

A '"/X'" or 's/' (next step) signals end of input.

Chapter 7. Access Method Serxrvices Examples 101

7.4 DEFINE USERCATALOG

ARs discussed in chapter 3.0 Startingl on page 47 user catalogs
should be used to ease transportation of VSAM data sets and catalog
recovery.

DEFINE USERCATALOG creates a suballocatable data space on a volume
not owned by any other VSAM catalog. If the catalog entries are
changed often by deleting or adding of VSAM objects, it might be
advisable to reserve for the catalog its owun data space to prevent
secondary allocation being built for form the catalogs prime
allocation.

To do so, do not specify DATA or INDEX parameters in the DEFINE

USERCATALOG command. Thus the whole space specified with the SPACE

parameter will be assigned to the user catalog (the UNIQUE attri-

bute is not allowed in this command).

In DOS/VS the size-definition in the EXTENT parameter determines,

only if the catalog resides in this space.

To define the user catalog the fdllowing assumptions were made:

. The user catalog occupies its own data space (therefore neither
DATA noxr INDEX parameters were specified).

. The update password allows definitions of VSAM objects without
knowing the master password. The master password is required
for all other functions (like deleting entries, alter passuwor!s
etc.) but the read-only ones. It is also required for the
function LISTCAT ALL (when the passwords are to be listed).

. The user catalog is recoverable, therefore a CRA (catalog
recovery area) with a size of one cylinder is allocated in
addition to the specified catalog space, either by O0S-DADSM or
by DOS/VS using space specified in the EXTENT statement.

. In our example, the UCAT has +o be large enough to contain
(long range planning):

- 15 KSDS clusters
- 6 ESDS clusters
- 2 RRDS clusters
- 5 Alternate indexes

- 5 Paths

- 2 Volumes owned by the catalog.

102 VSAM PRIMER and REFERENCE

The number of tracks required can be calculated using the worksheet
shown in the section 'Estimating +the Catalog's Space Requirements'
of the Access Method Services manual (see page 2).

Based wupon the previous assumptions, +the worksheet 1result is a
minimum of 99 entries oxr 15 +tracks for the primary allocation.
This value was rounded up in the example to 2 cylinders.

DOS/VS example (input): 0S/VS example (input):
// JOB DEFINE USER CATALOG //PRIMER JOB WTSC,IBM,MSGLEVEL=1
/7 DLBL IJSYSUC,'PRIMER.UCATL',,VSAM //PRIMO022 EXEC PGM=IDCAMS
/7 EXTENT SYS010,WTVSAM,,,19,57 //VOL1 DD VOL=SER=WTVSAM,DISP=0LD,UNIT=3330
/7 ASSGN SYS010,DISK,VOL=WTVSAM,SHR //SYSPRINT DD SYSOUT=A
// EXEC IDCAMS,SIZE=AUTO //SYSIN DD *
DEF UCAT (- DEF UCAT (-
NAME (PRIMER.UCATL) - NAME (PRIMER.UCAT1) -~
FILE (IJSYSUC) - FILE (VOLl) -
VOL (WTVSAM) - VOL (WHTVSAM) -
cYL (2 1) - CYL (3 1) -
MASTERPW (UCATMRPW) - MASTERPW (UCATMRPW) -
UPDATEPW (UCATUPDT) - UPDATEPW (UCATUPDT) -
RECOVERABLE - RECOVERABLE -
))
/& /%
DOS/VS example (output): 0S/VS example (output):

IDC0510I CAT. ALLOC. STAT. FOR VOLUME WTVSAM IS 0 IDCO510I CAT. ALLOC. STAT. FOR VOLUME WTVSAM IS 0O
IDCOQO1I FUNCTION COMPL., HIGHEST COND.CODE WAS 0 IDCOOOLI FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0O

-~

LISTCAT output of this object is shown later in section 7.9.2

Notes:

. The FILE parameter is required (not for MVS, see also section
7.2.1 on page 88), as the VTOC of +the volume to <contain the
catalog has to be modified (build F1-DSCB (Label), set VSAM
'ownexrship-bit' ON).

The notes are continued on the next page.

Chaptexr 7. Access Method Services Examples 103

DOS/VS notes:

The 'dname' may be any name, but choosing IJSYSUC allows the
DLBL/EXTENT to be <cataloged in the PARSTD area and makes this
UCAT default to the usexr catalog.

The EXTENT of 3 cylinders contains :

- The UCAT primary allocation (2 c¢ylindex)
- The CRA (1 cylinder)

In case of a catalog overflouw, any free cylindex in the subal-
locatable space(s) of this catalog (not yet defined) will be
used for secondary allocations.

0S/VS notes:

104

The value 'CYL (3 1)' specifies, that 2 cylinders are to be
used for the catalog (no DATA and INDEX parameter specified
(see description for DEFINE MASTERCATALOG)) and 1 c¢ylinder is
to be used as CRA (catalog recovery area), since the RECOVERA-
BLE parameter is specified.

Up to a total of 15 extents can be allocated if necessary (in
extents of 1 cylinderx).

VSAM PRIMER and REFERENCE

7.5

DEFINE SPACE

This command c¢reates a suballocatable data space with a primary
allocation of 100 cylinders.

DOS/VS example (input): 0S/VS example (input):
// JOB DEFIME SPACE //PRIMER JOB WTSC,IBM,MSGLEVEL=1
/7 DLBL SPACE,,,VSAM //PRIMO032 EXEC PGM=IDCAMS
/7 EXTENT SYS010,KTVSAM,,,76,1900 //SPACE DD VOL=SER=WTVSAM,DISP=0LD,UNIT=3330
7/ ASSGN SYS010,DISK,VOL=WTVSAM,SHR //SYSPRINT DD SYSOUT=A
// EXEC IDCAMS,SIZE=AUTO //SYSIN DD *
DEF SPACE (- DEF SPACE ¢ -
FILE (SPACE) - FILE (SPACE) -
VOL (WTVSAM) - VOL (WTVSAM) -
CYL (100) - CYL (100;2) -
) -) -
CAT (PRIMER.UCAT1/UCATUPDT) CAT (PRIMER.UCAT1/UCATUPDT)
/& /%
DOS/VS example (output): 0S5/VS example (output):

IDCO511I SPACE ALLOC.STAT. FOR VOLUME WTVSAM IS 0 IDCO511I SPACE ALLOC.STAT. FOR VOLUME WTVSAM IS 0
IDC0001I FUNCTION COMPL., HIGHEST COND.CODE WAS 0 IDCO0O1I FUNCTION COMPL., HIGHEST COND.CODE WAS O

IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE KWAS 0O

LISTCAT output of this object is shown later in section 7.9.2

Notes:

The FILE parameter is required (not for MVS, also see section
7.2.1 on page 88), as the VTOC of the volume to contain the
data space has to be modified (build F1-DSCB (Label)), and a
copy of the data space entry has to be written into the CRA.

The CAT parameter must be coded since the UCAT is password
protected.

DOS/VS notes:

Defining a SPACE (as well as any UNIQUE cluster) requires an
EXTENT specification where the object is to be placed.

The secondary allocation for SPACE is not used in DOS/VS. Such
a specification would , if indicated, be recorded in the
catalog for 0S/VS compatibility only.

The FILE parameter also indicates to the DOS/VS system routines
the amount fo space controlled by VSAM.

Chaptexr 7. Access Method Services Examples 105

7.6 KSDS (KEY-SEQUENCED DATA SET)

7.6.1 FI SDS

DOS/VS example (input):

/7 JOB DEFINE KSDS IN VSAM SPACE
/7 DLBL KSDS, 'CUSTOMER.K',,VSAM
// EXTENT SYS010,WTVSAM
// ASSGN SYS010,DISK,VOL=WTVSAM,SHR
/7 EXEC IDCAMS,SIZE=AUTO
DEF CLUSTER
(
NAME (CUSTOMER.K)
FILE (KSDS)
VOL (WTVSAM)
CYL (5 2)
INDEXED
IMBD
)
DATA (
NAME (CUSTOMER.K.D)
RECORDSIZE (200 200)
KEYS (5 0)
FSPC (20 10)
CISZ (1024)
)
INDEX (
NAME (CUSTOMER.K.I)
CISZ (2048)
)

CAT (PRIMER.UCAT1/UCATUPDT)

/&

[WLVA' le (out):

IDCO508I DATA ALLOC. STAT. FOR VOLUME WTVSAM IS 0
IDCO509I INDEX ALLOC.STAT. FOR VOLUME WTVSAM IS 0O

IDC0520I CATALOG RECOVERY VOLUME IS WTVSAM

IDCO001I FUNCTION COMPL., HIGHEST COND.CODE WAS O

IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0

0S/VS example (innut)=‘

//PRIMER JOB WTSC,IBM,MSGLEVEL=1
//PRIMO042 EXEC PGM=IDCAMS
//STEPCAT DD DSN=PRIMER.UCAT1,DISP=SHR
//SYSPRINT DD SYSOUT=A ,
//KSDS DD VOL=SER=WTVSAM,DISP=0LD,UNIT=3330
//SYSIN DD *
DEF CLUSTER -
(' -
NAME (CUSTOMER.K) -
FILE (KSDS) -
VOL (WTYSAM) -
CYL (5 2) -
INDEXED -
IMBD -
) -
DATA ¢ -
NAME (CUSTOMER.K.D) -
RECORDSIZE (200 200) -
KEYS (5 0) -
FSPC (20 10) ' -
CISZ (1024) -
) -
INDEX (-
NAME (CUSTOMER.K.I) -
CISZ (2048) -
5 , _
CAT (PRIMER.UCAT1/UCATURDT)
/%

0S/VS example (output):

IDCO508I DATA ALLOC. STAT. FOR VOLUME WTVSAM IS 0
IDCO509I INDEX ALLOC.STAT. FOR VOLUME WTVSAM IS 0
IDC0520I CATALOG RECOVERY VOLUME IS WTVSAM

IDC0001I FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0

LISTCAT output of this object is shown later in section 7.9.2

See notes on next page.

106 VSAM PRIMER and REFERENCE

Notes:

. INDEXED specifies that the clustexr is a KSDS.

. The sequence set will be IMBEDded within the data i.e. every
sequence set CI will be replicated +to £ill the first logical
track of the corresponding CA. NOREPLICATE is assumed per
default for the index set.

. As DATA- and INDEX-names are specified, VSAM does not have to
generate names itself.

. According to the calculation made in section 8.3 on page 197,
the minimum INDEX-CISZ is 2 K. If this parameter specification
is too small, a higher value will be used by VSAM without the
user being notified by any kind of message. It 1is thexefore
recommended to look carefully in the LISTCAT output for any

difference bhetween what has been specified and what VSAM
stated.

DOS/VS notes:

. IJSYSUC is stored in the STDLABEL area.

. The VSAM data set name in the DLBIL statement is optional for

DEFINE.

. The defined KSDS is suballocated (default), i.e. it occupies a
certain amount of space anywhere in a pre-defined VSAM space on
the volume specified in the EXTENT 'volid'. Therefore only one

set of DLBL and EXTENT (short form) is required. For a UNIQUE
KSDS cluster two pairs of DLBL/EXTENT (full form) would be
required, one for +the DATA part of the cluster, the othexr for

the INDEX.

. Since the user catalog is recoverable, the FILE parameter is
needed to address the CRA through DLBL/EXTENT and ASSGN state-
ments.

Chapter 7. Access Method Services Examples 107

7.6.2 REPRO (LOAD A KSDS)

0S/7VS exam input): 0S/VS example (input):
// JOB LOAD KSDS FROM DISK-SAM //PRIMER JOB WTSC,IBM,MSGLEVEL=1
// DLBL SGDSK, 'KSDS.LARGE.DATA"®. //PRIMO052 EXEC PGM=IDCAMS
// EXTENT SY$000,,,,7562,57 //STEPCAT DD DSN=PRIMER.UCAT1,DISP=SHR
/7 ASSGN SYS000,DISK,VOL=D0S30Z,SHR //5aDSK DD VOL=SER=WTVS1R,UNIT=3330,
/7 DLBL KSDS, 'CUSTOMER.K',,VSAM /7 DSN=LOADKSDS,DISP=(0OLD,KEEP),
/7 EXTENT SYS010,WTVSAM Vs DCB=(RECFM=FB, LRECL=200,BLKSIZE=1609
/7 ASSGN SYS010,DISK,VOL=WTVSAM,SHR //KSDS DD DSN=CUSTOMER.K,DISP=0LD
/7 EXEC IDCAMS,SIZE=AUTO //SYSPRINT DD SYSOUT=A
REPRO - //SYSIN DD *
INFILE (SQDSK - REPRO S -
ENV (RECFM (FB) - INFILE (SQDSK) -
BLKSZ (1600) - OUTFILE (KSDS)
RECSZ (200) - /%

PDEV (3330)) -
) -
OUTFILE (KSDS) -

REPLACE
/&
DOS/VS example (output): 0S/VS example (output):
IDCO005I NUMBER OF RECORDS PROCESSED WAS 3000 IDCO0O5I NUMBER OF RECORDS PROCESSED WAS 3000

IDCOOO1I FUNCTION COMPL., HIGHEST COND.CODE WAS 0 1IDCO0001I FUNCTION COMPL., HIGHEST COND.CODE WAS ©

IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 1IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS ©

LISTCAT output of this object is shown later in section 7.9.2

DOS/VS notes:

e Access Method Services needs complete specifications of any
nonVSAM data set.

. REPLACE means that in case the output KSDS contains recorxds,

those input records with matching Keys will REPLACE the records
in the KSDS (could have been omitted like in OS/VS).

108 VSAM PRIMER and REFERENCE

7.6.3 PRINT KSDS

This example shows a partial printout of the KSDS cluster.

DOS/VS example (input): 0S/VS example (input):
/7 JOB PRINT KSDS (PARTIAL) //PRIMER JOB WTSC,IBM,MSGLEVEL=1
/7 DLBL KSDS, 'CUSTOMER.K',,VSAM //PRIMD062 EXEC PGM=IDCAMS
/7 EXTENT SYS010,WTVSAM //STEPCAT DD DSN=PRIMER.UCAT1,DISP=SHR
/7 ASSGN SYS5010,DISK,VOL=WTVSAM,SHR //KSDS DD DSN=CUSTOMER.K,DISP=0LD
/7 EXEC IDCAMS,SIZE=AUTO //SYSPRINT DD SYSOUT=A
PRINT INFILE (KSDS) - //SYSIN DD *
CHAR - PRINT INFILE (KSDS) -
COUNT (5) CHAR -
/% COUNT (5)
7%
DOS/VS _example (output): 0S/VS example (output):
LISTING OF DS -CUSTOMER.K LISTING OF DS -CUSTOMER.K
KEY OF RECORD - 10 KEY OF RECORD - 10
10 PHOENIX JOHNSON 10 PHOENIX JOHNSTM
KEY OF RECORD - 20 KEY OF RECORD - 20
20 NEW YORK ROBERTS 20 NEW YORK ROBERTS
KEY OF RECORD - 30 KEY OF RECORD - 30
30 SAN JOSE NIXON 30 SAN JOSE NIXON
KEY OF RECORD - 40 KEY OF RECORD - 40
40 SAN FRANCISCO BURTON 40 SAN FRANCISCO BURTON
KEY OF RECORD - 50 ~ KEY OF RECORD - 50
50 RENO SMITH 50 RENO SMITH
IDC0005I NUMBER OF RECORDS PROCESSED WAS 5 IDCO005I NUMBER OF RECORDS PROCESSED WAS 5

IDCOOOLI FUNCTION COMPL., HIGHEST COND.CODE WAS 0 IDC0001I FUNCTION COMPL., HIGHEST COND.CODE WAS O

IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0O

Chapter 7. Access Method Services Examples 109

7.6.4

110

KEYS

RELATE

UNIQUEKEY/NONUNIQUEKEY

UPDATE/NOUPDATE

UPGRADE/NOUPGRADE

ALTERNATE INDEXES AND PATHS TO KSDS

EXPLANATION OF THE MOST IMPORTANT PARAMETERS

specifies the =size and offset of the
alternate Kkey field, which must be
included in each base c¢lustexr record
(and in case of a spanned record, in
the first segment).

The alternate XKey can overlap oxr bhe
contained entirely with another
(alternate oxr prime) Key field. It
must consist of a contiguous field.

specifies the base cluster this
alternate index belongs to. The base
cluster can be a nonreusable ESDS or
KSDS cluster.

specifies, whether an alternate Kkey
may occur only once in a base clustex
record (UNIQUE) or whether more than
one occurrences are allowed (NONUNI-

QUEKEY).

If NONUNIQUEKEY is used (see figure 13
on page 33) it has to be taken into
consideration (if the base cluster is
a KSDS), that for each occurrence the
prime Key is stored in full length in
the alternate index data reccird
adjacent to the altexnate Key, o0 thae
alternate index RECORDSIZE should &t=
specified large enough.

For an ESDS base clustexr 4 bytes RBA
are stored for each occurrence.

is a PATH parameter and specifies,
whethexr an alternate index belonging
to the upgrade set (see UPGRADE) is to
be wupdated (when necessary) or not
(furthexr details see section 2.7.4 on
page 35).

specifies whether an alternate
index is automatically updated by VSAM
when base cluster records are insert-
ed, deleted or when the alternate key
field is changed (provided the Dbase
cluster is not accessed via a path
with the NOUPDATE attribute.

VSAM PRIMER and REFERENCE

6.4.2 DEFINE ATX, DEF

7.

144
/7
124
144
24
Ve4
124
V4
174

DOS/VS example (input):

JOB DEF AIX 'SALESMAN' + PATH 'SALES.CUST®

DLBL KSDS, 'CUSTOMER.K',,VSAM
EXTENT SYS010,MTVSAM
DLBL AIXK1,'SALESMAN.K',,VSAM
EXTENT SYS010,WTVSAM
DLBL PATHKL,'SALES.CUST.K',,VSAM
EXTENT SYS010,HTVSAM
ASSGN SYS010,DISK,VOL=WTVSAM,SHR
EXEC IDCAMS,SIZE=AUTO
DEF AIX ¢
NAME (SALESMAN.K)
FILE (AIXK1)
RELATE (CUSTOMER.K)
KEYS (12 40)
VOL (WTVSAM)
cYL (1 1)
IMBD
NONUNIQUEKEY
UPGRADE
)
DATA ¢
NAME (SALESMAN.K.D)
CISZ (4096)
FSPC (20 10)
)
INDEX (
NAME (SALESMAN.K.I)
)

CAT (PRIMER.UCAT1/UCATUPDT)

DEF PATH (
NAME (SALES.CUST.K)
FILE (PATHK1)
PATHENTRY (SALESMAN.K)
UPDATE
)

CAT (PRIMER.UCAT1/UCATUPDT)

/&

0S/VS example (input):

//PRIMER JOB WTSC,IBM,MSGLEVEL=1
//PRIMO072 EXEC PGM=IDCAMS

//STEPCAT DD DSN=PRIMER.UCAT1,DISP=SHR

//7AIXK1 DD VOL=SER=WTVSAM,DISP=0LD,UNIT=3330
//SYSPRINT DD SYSOUT=A

//8YSIN DD *
DEF AIX

DATA

INDEX

DEF PATH

/%

(

NAME (SALESMAN.K)
FILE (AIXK1l)

RELATE (CUSTOMER.K)
KEYS (12 40)

VOL (WTVSAM)

CYL (1 1)

IMBD

NONUNIQUEKEY
UPGRADE

)

(

NAME (SALESMAN.K.D)
CISZ (4096)

FSPC (20 10)

)

(

NAME (SALESMAN.K.I)
)

CAT (PRIMER.UCAT1/UCATUPDT)

(

NAME (SALES.CUST.K)
FILE (AIXK1)

UPDATE

PATHENTRY (SALESMAN.K)

)

]

CAT (PRIMER.UCAT1/UCATUPDT)

Output listing is shown on

next page

d

Chapter 7.

Access Method Services Examples

111

DOS/VS example (output):

®%¥%¥% THIS IS THE OUTPUT OF DEFINE AIX %3%%%*

IDCO508I DATA ALLOC. STAT. FOR VOLUME WTVSAM IS
IDCO509I INDEX ALLOC.STAT. FOR VOLUME WTVSAM IS
IDC0520I CATALOG RECOVERY VOLUME IS WTVSAM

IDCO001I FUNCTION COMPL., HIGHEST COND.CODE WAS

*%3%% THIS IS THE QUTPUT OF DEFINE PATH %%%x%%

IDC0520I CATALOG RECOVERY VOLUME IS WTVSAM
IDCOOOLI FUNCTION COMPL., HIGHEST COND.CODE WAS

IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS

0S/VS example (output):

®xx%%% THIS IS THE QUTPUT OF DEFINE AIX %%

IDCO508I DATA ALLOC. STAT. FOR VOLUME WTVSAM IS
IDCO509I INDEX ALLOC.STAT. FOR VOLUME WTVSAM IS
IDC0520I CATALOG RECOVERY VOLUME IS WTVSAM

IDCO001I FUNCTION COMPL., HIGHEST COND.CODE WAS

*x%x% THIS IS THE OUTPUT OF DEFINE PATH %x¥%x

IDC0520I CATALOG RECOVERY VOLUME IS WTVSAM
IDCOOO1I FUNCTION COMPL., HIGHEST COND.CODE WAS

IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS

LISTCAT output of this object is shown later in section 7.9.2

Notes:
. KEY specifies the length and
recorxd. That is the length and

the offset of the Kkey in

the alternate key in the base clustexr recorxd.

. NONUNIQUEKEY means that a secondary Key
one primary record (synonyms).

] This AIX will be in the UPGRADE set of the base c¢luster
(UPGRADE is default), i.e. it will be automatically updated
whenever records in the base cluster are added/deleted or a

secondary Key field is modified,

and if the PATH accessing the

base clustexr has the UPDATE option (default).

. The DATA CISZ is difficult to

QUEKEY option. But even

determine because of the NONUNI-
if specified too

small, it

accepted since the data records of an AIX are in spanned format

(SPANNED is default).

. PATHENTRY indicates the name of the AIX this path refers to.

° The DATA RECSZ can be
average and maximum.
ing that a data

omitted
The actual size can be computed concidex-
record of any AIX must account

(default is 4086 32600)

(header) plus the length of the alternate key plus one (UNIQUE-

KEY) to 'n'

(NONUNIQUEKEY) times the

(KSDS base clustex) or times four bytes (RBA length for an ESDS

base cluster).

® The FILE parameter
7.2.1 on page 88). The
DEFINE AIX and DEFINE PATH.

is required (not for MVS,
same

DD-statement can be used

The notes are continued on the next pvage.

112 VSAM PRIMER and REFERENCE

the
position (relative to zero) of

may point to more than

would be

for
for five bytes

length of the primary Kkey

also see section

fTox

DOS/VS notes:

IJSYSUC is stored in the STDLABEL area.

The FILE parameters are required to address the CRA of the
recoverable user catalog. The same set of DLBL, EXTENT, and
ASSGN statements can be used in further jobs to access the data
sets since they have the file-ID parametexr already coded.

The 'volid' in the path's EXTENT zrefers to the first volume of
the index component of the KSDS base cluster, or £for an ESDS,
to the first volume containing the data component of the ESDS
base cluster, to allocate the volume with the CRA containiny a
copy of the catalog entries for this object.

7.6.4.3 BLDINDEX AIX ON KSDS

74
/7
124
124
124
144
/7

DOS/VS example (input): 0S/VS example (input):
JOB BUILD AIX SALESMAN-CUSTOMER.K ON KSDS //PRIMER JOB WTSC,IBM,MSGLEVEL=1

DLBL KSDS, 'CUSTOMER.K',,VSAM

EXTENT SYS010,MWTVSAM

DLBL AIXK1l,'SALESMAN.K',,VSAM

EXTENT SYS010,KTVSAM

ASSGN SYS010,DISK,VOL=WHTVSAM,SHR

EXEC IDCAMS,SIZE=AUTO

BLDINDEX INFILE (KSDS) -
OQUTFILE (AIXK1l)

/&

DOS/VS example (output):

IDC0652I SALESMAN.K BUILT

IDC0001XI FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0

Notes:

To create the AIXs, the BLDINDEX function uses a sort which
in virtual storage, but if Access
enough virtual storage (or
automatically defines two
controlled by the same oxr of
as work files for the external
sort and deletes them at the end of sort. The default 'dnames'

will normally be executed
Method Services cannot obtain
EXTERNALSORT is specified),

ESDS files in a VSAM space
different catalog, uses them

are IDCUT1 and IDCUT2Z2.

DOS/VS notes:

If external sort is used,

stored in the label area.
IDCUT2.

Chaptexr 7.

BLDINDEX

//PRIM0082 EXEC PGM=IDCAMS
//STEPCAT DD DSN=PRIMER.UCAT1,DISP=SHR
//7KSDS DD DSN=CUSTOMER.K,DISP=0LD
//7ATXK1 DD DSN=SALESMAN.K,DISP=0LD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

BLDINDEX INFILE (KSDS)

OUTFILE (AIXK1)

/%

0S/VS example (output):

IDC0652I SALESMAN.K BUILT

IDCO001I FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE KWAS ©

sets of DLBL/EXTENTs (no EXTENT,
only volume information needed) must be provided. They can be
default 'dnames' are IDCUT1 and

Access Method Services Examples

7.6.4.4 PRINT AIX

DOS/VS example (input): 0S/VS example (input):
/7 JOB PRINT AIXK1 (PARTIAL) //PRIMER JOB WTSC,IBM,MSGLEVEL=1
/7 DLBL AIXK1,'SALESMAN.K',,VSAM //PRIMO092 EXEC PGM=IDCAMS
/7 EXTENT SYS010,WTVSAM //STEPCAT DD DSN=PRIMER.UCAT1,DISP=SHR
/7 ASSGN SYS010,DISK,VOL=WTVSAM,SHR //7AIXK1 DD DSN=SALESMAN.K,DISP=0LD
// EXEC IDCAMS,SIZE=AUTO //SYSPRINT DD SYSOUT=A
PRINT INFILE (AIXK1) - //SYSIN DD *
CHAR - : PRINT INFILE(AIXK1) -
‘ COUNT (5) CHAR -
/& COUNT (5)
/%

Output of BAccess Method Services (DOS/VS and 0OS/VS are similar):
LISTING OF DS -SALESMAN.K

KEY OF RECORD - ASH

eee..ASH 70 1120 1330 1610 1990 2130 3180 3390 3670 4050 4190 5240 5450 5730 6110 6250 7//
10 9360 9570 98501007011120113301161011990121301318013390136701405014190152401545015730161101625017//
101936019570198502007021120213302161021990221302318023390236702405024190252402545025730261102625027//
10293602957029850

KEY OF RECORD - ASPINALL ‘

««++ . ASPINALL 300 930 1710 2040 2360 2990 3770 4100 4420 5050 5830 6160 6480 7110 7890 8220 8//
3011710120401236012990137701410014420150501583016160164680171101789018220185401917019950203002093021//
70241002442025050258302616026480271102789028220285402917029950

KEY OF RECORD - BAXTER

«....BAXTER 350 1210 1650 1980 2410 3270 3710 4040 4470 5330 5770 6100 6530 7390 7830 8160 &8//
101165011980124101327013710140401447015330157701610016530173901783018160185901945019890203502121021//
10240402447025330257702610026530273902783028160285902945029890

KEY OF RECORD - BOOTH

«e...BOOTH 530 920 1220 1600 1800 2020 2590 2980 3280 3660 3860 4080 4650 5040 5340 5720 5//
00 7780 7980 8200 8770 9160 9460 984010530109201122011600118001202012590129801328013660138601408014//
201614016710171001740017780179801820018770191601946019840205302092021220216002180022020225902298023//
502504025340257202592026140267102710027400277802796802820028770291602946029840

KEY OF RECORD - BURTON

++.0+.BURTON 40 740 1050 1760 2100 2800 3110 3820 4160 4860 5170 5880 6220 6920 7230 7940 8//
401074011050117601210012800131101382014160146601517015880162201692017230179401828018980192%02000020//
0022800231102382024160248602517025880262202692027230279402828028980292%030000

IDCO005I NUMBER OF RECORDS PROCESSED WAS 5

IDCOOO1I FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDCO002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0
Note: The ' output lines were truncated on the xight side due to

limited page size.

114 VSAM PRIMER and REFERENCE

7.6.4.5 PRINT PATH

DOS/VS example (input):

/7 JOB PRINT PATHK1 (PARTIAL)

// DLBL PATHK1, ‘SALES.CUST.K',,VSAM

/7 EXTENT SYS010,WTVSAM

/7 ASSGN SYS010,DISK,VOL=WTVSAM,SHR

// EXEC IDCAMS,SIZE=AUTO

PRINT INFILE (PATHK1) -

CHAR -
COUNT (5)

/&

DOS/VS example (output):

LISTING OF DS -SALES.CUST.K
KEY OF RECORD - ASH

70 WICHITA ASH
KEY OF RECORD - ASH
1120 ALBANY ASH
KEY OF RECORD - ASH
1330 SEATTLE ASH
KEY OF RECORD - ASH
1610 OAKLAND ASH
KEY OF RECORD - ASH
1990 NEW ORLEANS ASH

IDCO005I NUMBER OF RECORDS PROCESSED WAS 5

08/VS example (input):

//PRIMER JOB WTSC,IBM,MSGLEVEL=1
//PRIMO102 EXEC PGM=IDCAMS
//STEPCAT DD DSN=PRIMER.UCAT1,DISP=SHR
//PATHK1 DD DSN=SALES.CUST.K,DISP=0LD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
PRINT INFILE (PATHK1) -
CHAR -
COUNT (5)
/%

0S/VS example (output):

LISTING OF DS -SALES.CUST.K

KEY OF RECORD - ASH
70 WICHITA ASH
KEY OF RECORD - ASH
1120 ALBANY ASH
KEY OF RECORD - ASH
1330 SEATTLE ASH
KEY OF RECORD - ASH
1610 OAKLAND ASH
KEY OF RECORD - ASH
1990 NEW ORLEANS ASH

IDCO005I NUMBER OF RECORDS PROCESSED MWAS 5

IDCO001I FUNCTION COMPL., HIGHEST COND.CODE WAS 0 IDCOO01I FUNCTION COMPL., HIGHEST COND.CODE KAS 0

IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE KAS 0O

Chaptexr 7. Access Method Sexvices Examples

115

7.6.4.6

124
/7
144
44
24
144
124
/7
/7

/&

DOS/VS example (input):

JOB DEF AIX °'CITY' + PATH

DLBL KSDS, 'CUSTOMER.K',,VSAM
EXTENT SYS010,WTVSAM

DLBL AIXK2,'CITY.K',,VSAM
EXTENT SYS010,WTVSAM

DLBL PATHK2,'CITY.CUST.K',,VSAM
EXTENT SYS010,WTVSAM

ASSGN SYS010,DISK,VOL=WTVSAM,SHR
EXEC IDCAMS,SIZE=AUTO

DEF AIX

DATA

INDEX

DEF PATH

(

NAME (CITY.K)
FILE (AIXK2)
RELATE (CUSTOMER.K)
KEYS (15 25)
VOL (WTVSAM)
cYL (1 1)

IMBD
NONUNIQUEKEY
UPGRADE

)

(

NAME (CITY.K.D)
CISZ (4096)
FSPC (20 10)

)

(B

NAME (CITY.K.I)
)

CAT (PRIMER.UCAT1/UCATUPDT)

(

NAME (CITY.CUST.K)
FILE (PATHK2)
PATHENTRY (CITY.K)
UPDATE

)

CAT (PRIMER.UCAT1/UCATUPDT)

‘CITY.CUST®

DEFINE AIX, DEFINE PATH

0S/VS example (input):

//PRIMER JOB WTSC,IBM,MSGLEVEL=1
//PRINO122 EXEC PGM=IDCAMS
//STEPCAT DD DSN=PRIMER.UCAT1,DISP=SHR
//7AIXK2 DD VOL=SER=WTVSAM,DISP=0LD,UNIT=3330
//SYSPRINT DD SYSOUT=A
//SYSIN DD =
DEF AIX (-
NAME (CITY.K) -
FILE (AIXK2) -
RELATE (CUSTOMER.K) -
KEYS (15 25) -
VOL (KWTVSAM) -
CYL (1 1) -
IMBD -
NONUNIQUEKEY -
UPGRADE -
) -
DATA (-
NAME (CITY.K.D) -
CISZ (4096) -
FSPC (20 10) -
) -
INDEX (-
NAME (CITY.K.I) -
) -
CAT (PRIMER.UCAT1/UCATUPDT)
DEF PATH (-
NAME (CITY.CUST.K) -
FILE (AIXK2) -
UPDATE -
PATHENTRY (CITY.K) -
) -
CAT (PRIMER.UCAT1/UCATUPDT)
/%

Output listing is shown on next page

11

6 VSAM PRIMER and REFERENCE

DOS/VS example (output): 0S/VS example (output):

®%%%% THIS IS THE OUTPUT OF DEFINE AIX 333 *x%%* THIS IS THE OUTPUT OF DEFINE AIX ¥
IDCO508I DATA ALL?C. STAT. FOR VOLUME WTVSAM IS 0 IDCO508I DATA ALLOC. STAT. ?OR VOLUME WTVSAM IS 0
IDCO5091 INDEX ALLOC.STAT. FOR VOLUME WTVSAM IS 0 IDCO0509I INDEX ALLOC.STAT. FOR VOLUME WTVSAM IS 0
IDC0520I CATALOG RECOVERY VOLUME IS WTVSAM IDC05201 CATALOG RECOVERY VOLUME IS WTVSAM
IDCOOO1I FUNCTION COMPL., HIGHEST COND.CODE WAS 0 IDCO0001I FUNCTION COMPL., HIGHEST COND.CODE WAS 0

*%%%% THIS IS THE OUTPUT OF DEFINE PATH ¥x%xx *x%%% THIS IS THE OUTPUT OF DEFINE PATH %%%xx*

IDCO5201 CATALOG RECOVERY VOLUME IS WTVSAM IDC0520I CATALOG RECOVERY VOLUME IS WTVSAM
IDCO001I FUNCTION COMPL., HIGHEST COND.CODE WAS 0 IDCOOOLI FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 1IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0

LISTCAT output of this object is shown later in section 7.9.2

Note: see notes in section 7.6.4.2 on page 111.

7.6.4.7 BLDINDEX ATX ON KSDS

DOS/VS example (input): 0S/VS example (input):
/7 JOB BUILD AIX CITY-CUSTOMER.K ON KSDS //PRIMER JOB WTSC,IBM,MSGLEVEL=1
/7 DLBL KSDS, 'CUSTOMER.K',,VSAM //PRIMO132 EXEC PGM=IDCAMS
/7 EXTENT SYS010,WTVSAM //STEPCAT DD DSN=PRIMER.UCAT1,DISP=SHR
/7 DLBL AIXK2,'CITY.K',,VSAM //7KSDS DD DSN=CUSTOMER.K,DISP=0LD
/7 EXTENT SYS010,WTVSAM //7AIXK2 DD DSN=CITY.K,DISP=0LD
/7 ASSGN SYS010,DISK,VOL=WTVSAM,SHR //SYSPRINT DD SYSOUT=A
/7 EXEC IDCAMS,SIZE=AUTO //SYSIN DD *

BLDINDEX INFILE (KSDS) - BLDIMDEX INFILE (KSDS)
OUTFILE (AIXK2) OUTFILE (AIXK2)

/& /%

DOS/V<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>