

VSAM PRIMER and REFERENCE

AUTHOR:
ULRICH SCHWENK
WORLD TRADE SYSTEMS CENTER
SANTA TERESA
CALIFORNIA

G320-S774-1

r--------------------------~----------------------------,
I I
I This document was created and formatted with I
I SCRIPT/VS (program number 5796-PHL) under the CMS I
I component of VM/370. For special handling of the I
I figures the SCRLPT/VS code was temporarily modified I
I to adjust for proper page length. The SCRIPT/VS I
I output was then edited and modified with a VM/370 I
I EXEC procedure (special handling for imbedded fig- I
I ~res). The output was transmitted to OS/VS2 MVS via I
j the VM/370 Networking PRP2 . (program number I
I 5799-ATA), and printed on the IBM 3800 Printing I
I Subsystem. The fonts used are T11, FM10, GF15 plus I
I a special character set to print the disk and tape I
I diagrams. I
II L ___ ~

The info~mation contained in this document has not been submitted to
any fo~mal IBM test and is di st"i buted on an "As Is" basi s wi thout any
wa~~anty ei the~ exp~ess o~ i mpl i ed. The use of thi s i nformat; on or the
implementation of any of these techniques ;s a customer responsibility
and depends on the customer's ability to evaluate and integrate them
into the customer's operational environment. While each item may have
been revi ewed by IBM for accuracy ina spec; f; c si tuati on~ there is no
guarantee that the same or s; mi lar resul.ts wi 11 be obtai ned elsewhel'e.
Custome~s attempting to adapt these techniques to their own environ­
ments do so at thei r own ri sk.

Refe~ence to PTF numbers that have not been released through the PUT
process does not imply general availability. The purpose of including
these ~eference numbers is to alert IBM CPU custome~s to specific
info~mation relative to the implementation of the PTF when it becomes
available to each customer acco~ding to the normal IBM PTF dist~ib­
ution rules.

The p~oduct ~eferenced in thi s document may not be ava; lable in all
countries.

This edition includes Technical Newsletter G320-5781, which added
the Copyright information at the bottom of this page.

eCopyright International Business Machines Corporation 1979.

CONTENTS

1.0 Int~oduction and Guidelines to this manual 1
1
2
2
2
3

1.1
1.2
1. 2. 1
1. 2.2
1.3

Desc~iption of this manual
How to use this manual

DOS/VS and OS/VS use~s
MVS use~s not using VSAM applications

Bibliog~aphy of manuals containing VSAM info~mation .. .

2.0 What is VSAM .. . 5
5
6
6
6

2. 1
2.1.1
2.2
2.2. 1
2.2.2
2.2.3
2.3
2.3. 1
2.4
2.5
2.6
2.6. 1
2.6.1.1
2.6.1.2
2.6.1.3
2.6.1.4
2.6.1.5
2.6.1.6
2.6.1.7
2.6.2
2.6.2.1
2 . 6 . 2 . 2
2.6.2.3
2.6.2.4
2.6.2.5
2.6.3
2.6.3.1
2.6.3.2
2.6.3.3
2.6.3.4
2.6.3.5
2.7
2.7. 1
2.7.2
2.7.3

Basic desc~iption ~f VSAM
C~eating VSAM objects

VSAM data set st~uctu~e
Cont~ol Inte~vals
Cont~ol A~eas 10
Spanned ~eco~ds

Types of data sets
Reusable data set

KSDS P~ima~y Index st~uctu~e
Inse~ting, extending and deleting of ~eco~ds
P~ocessing of data sets ~

KSDS p~ocessing
KSDS keyed sequential p~ocessing
KSDS ~eyed skip-sequential p~ocessing
KSDS keyed di~ect p~ocessing
KSDS add~essed di~ect p~ocessing
KSDS cont~ol inte~val p~ocessing
KSDS ove~view of keyed p~ocessing
Positioning for a KSDS

ESDS p~ocessing
ESDS add~essed sequential p~ocessing
ESDS skip-sequential p~ocessing
ESDS add~essed di~ect p~ocessing
ESDS cont~ol inte~val p~ocessing

1 1
12
16
18
20
22
22
22
23
23
24
24
24
25
26
26
27
27
27

Positioning fo~ an ESDS , 2.'
RRDS p~ocessing ?!?

RRDS sequential p~ocessing 28
RRDS keyed skip-sequential p~ocessing ~8

RRDS di~ect p~ocessing 29
RRDS cont~ol inte~val p~ocessing 29
Posi tioning fo~ an RRDS 29

Alte~nate Index, Path 29
Alte~nate indexes fo~ KSDS 31
Alte~nate indexes for ESDS
Examples fo~ Alte~nate Indexes

32
32

2.7.4 Path ... :;5
2.7.5 Access to base cluste~ and alte~nate index w/wo path. 36
2.7.5.1 Update ~est~ictions fo~ base cluste~ and AIX 33
2.8 VSAM data set compa~ison•....... 39
2.9 VSAM data spaces 40
2.9.1 Choosing suballocatable o~ unique cluste~ 42
2.9.2 VSAM data space and cluste~ names 43
2.10 VSAM owne~ship concept 43
2.10.1 The VSAM 'ownez"ship bit' 44
2.10.2 The VSAM 'data set secu~ity bit' 45
2. 11 VSAM space allocation................................. 45

Table Of Contents iii

3.0
3. 1

Catalog conside%ations................................... 47
Catalog philosophy..................................... 47
Catalog st%uctu%e•....... 49 3.2

3.2. 1
3.2.1.1
3.2.1.2
3.3

• Catalog contents•.......
Catalog ent%y types ~•.........
Catalog sha%ing

VSAM pas5wo:r:ds
o
........... '

50
51
51
52
55 3.3. 1

4.0
4. 1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4. 11
4. 12
4. 13
4. 14

5.0
5. 1
5.2
5.2. 1
5.~.2
5.2.3
5.2.4
5.3
5.4
5.4. 1
5.4.2
5.4.3
5.5

6.0
6 • 1
6.1.1
6.1.2
6.1.3
6.2
6 • 2 • 1
6.2.2
6.3
6.3. 1
6.3.2

7.0
7. 1
7.2
7 • 2 • 1
7.2.2

How to specify passwo%ds in a use%~w%itten prog%am ...

Access Method Se%vices (Ove%view of functions)
ALTER :
BLDINDEX .. .
CHI{'LIST (OS/VS .only)•.....................
DEFINE•.....................
DELETE .. .
EXPORT/IMPORT .. .
EXPORTRA/IMPORTRA
LISTCAT .. .
LISTCRA ... "

PRIKT
REPRO
VERIFY (Access Method Se%vices)
VERIFY (Mac%o)
RESETCAT

57
58
59
59
60
61
61
64
66
66
66
67
69
69
70

Relationship of data access to data o%ganization 71
Ove%view of access methods othe% than VSAM 71
SAM ve%sus Sequential VSAM 73

Logical %eco%d p%ocess~ng (ADR-ESDS) 73
Logical %eco%d p%ocessing (KEY-RRDS) 73
Keyed sequential %eco%d p%ocessing (KEY-KSDS) 73
Cont%ol Inte%val P%ocessing 74

BDAM ve%sus Di%ect ESDS and RRDS....................... 74
ISAM ve%sus VSAM....................................... 75

ISAM Inte%face P%og%am•....................... 76
ISAM to VSAM data set conve%sion 76
ISAM p%og%am conve%sion using ISAM inte%face 76

High level language VSAM SUPPO%t I............ 78

VSAM installation and usage of VSAM catalogs with IPL ... 79
DOS/VS. 79

VSAM %elated pa%amete%sin the Supe%viso% (DOS/VS) ... 79
How to use a use% catalog as maste% catalog (DOS/VS). 79
Load a new SDL/SVA (DOS/VS) 79

VS2 MVS ... 8)
HOW TO install VSAM in VS2 MVS ~~

How to use a use% catalog as maste% catalog (MVS) ... 81
VS1 and VS2 SVS•................ ~3

HOW TO install VSAM in VS 1 and VS2 SVS............... 83
How to use a use% catalog as maste% catalogCSVS/VS1). 83

HOW TO sta%t using VSAM 85
How to code Access Method Se%vices Commands 85
Explanation of impo%tant DEFINE pa%amete%s

FILE ,e

FREESPACE

87
88
£'8

iv VSAM PRIMER and REFERENCE

7.2.3 IMBED/REPLICATE (Index options) 89
7.2.4 KEYRANGES ... 91
7 . 2 . 5 N A ME. .. 93
7.2.6 RECORDSIZE ... 94
7.2.7 SHAREOPTIONS and data set sharing 95
7.2.7.1 Cross-partition/region sharing 95
7.2.7.2 Cross-system sharing (OS/VS only) 96
7.2.8 SPEED/RECOVERY (Loading options)..................... 97
7.2.9 SUBALLOCATION/UNIQUE 98
7.3 DEFINE MASTERCATALOG 100
7.4 DEFINE USERCATALOG 102
7.5 DEFINE SPACE ... 105
7.6 KSDS (key-sequenced data set) : 106
7.6.1 DEFINE KSDS•........................ 106
7.6.2 REPRO (load a KSDS) 108
7.6.3 PRINT KSDS ... 109
7.6.4 Alternate indexes and Paths to KSDS 110
7.6.4.1 Explanation of the most important parameters l10
7.6.4.2 DEFINE AIX, DEFINE PATH 111
7.6.4.3 BLDINDEX AIX on KSDS 113
7 . 6 . 4 . 4 PRINT A I X ... 11 4
7 . 6 . 4 . 5 PRINT PATH ... 11 5
7.6.4.6 DEFINE AIX, DEFINE PATH 116
7.6.4.7 BLDINDEX AIX on KSDS 117
7.6.4.8 PRINT part of an AIX 118
7.6.4.9 PRINT part of a base cluster via PATH 119
7.6.4.10 REPRO (copy data of a KSDS to a SAM-file on disk).120
7.6.4.11 ALTER (free space, password) 121
7.6.4.12 EXPORT a KSDS and its AIX's 122
7.6.4.13 IMPORT a KSDS and its AIX's 124
7.6.4.14 VERIFY KSDS 126
7.7 ESDS (entry sequenced data set) 127
7.7.1 DEFINE ESDS ... 127
7.7.2 REPRO (load an ESDS) 128
7.7.2.1 DEFINE AIX, DEFINE PATH 129
7.7.2.2 BLDINDEX AIX on ESDS 130
7 . 7 . 2 . 3 PRINT E S D S ... 1 3 1
7.7.2.4 PRINT AIX ... 132
7.7.2.5 PRINT PATH .. 133
7.7.2.6 DEFINE AIX, DEFINE PATH 134
7.7.2.7 BLDINDEX AIX on ESDS 135
7.7.2.8 PRINT AIX ... 136
7.7.2.9 PRINT PATH ... 137
7.8 RRDS (relative record data set) 138
7.8.1 DEFINE RRDS ... 138
7.8.2 REPRO (load an RRDS) 139
7.9 LISTCAT ... 140
7.9.1 LISTCAT NAME ... 140
7.9.2 LISTCAT ALL and explanation of the fields 142
7.9.2.1 Extracting all allocations from LISTCAT all 148
7.9.2.2 Allocation layout on the VSAM 3330 volume 151
7.9.2.3 Explanation of the LISTCAT output fields: 152
7.10 LISTCRA · 160
7.10.1 LISTCRA NOCOMPARE 160
7.10.2 LISTCRA COMPARE 16J
7. 11 RESETCAT ... '. ".!~

Table Of Contents v

7. 12
7. 13
7.14
7. 15
7. 16
7. 17
7. 18
7.18.1
7.18.2
7.18.3
7.18.4 '
7.18.5
7.18.6
7. 19
7.19.1
7.19.2
7.19.3
7.20
7.21

EXPORT DISCONNECT usez catalog fzom mastez catalog ... 165
IMPORT CONNECT a usez catalog to the mastez catalog ... 166
EXPORTRA ... 167
IMPORTRA ... 169
REPRO (unload - backup a usez catalog 171
REPRO (zeload a usez catalog fzom backup tape) 172
DELETE , 173

DELETE AIX ... 173
DELETE a KSDS clustez (and its AIX's) 174
DELETE an ESDS clustez (and its AIX's) 175
DELETE an RRDS clustez 176
DELETE SPACE 177
DELETE USER CATALOG 178

Volume cleanup ' 179
Volume cleanup DOS/VS (Utility IK2VDU) 179
Volume cleanup OS/VS (1/2) (ALTER REMOVEVOLUMES) ... 181
Volume cleanup OS/VS (2/2) (EXPORT DISCONNECT) 182

DEFINE NONVSAM (OS/VS) ~ 183
DEFINE ALIAS (MVS) 183

8.0 Miscellaneous ... 185
8. 1
8. 1 . 1
8.1.2

Pezfozmance ... 185
Choosing the data CI-size 185
Choosing the index CI size (KSDS data sets).: 186
Data set space allocation 187

Small data sets 187
Multiple cylindez data sets (not multivolume) 187
Multivolume data sets 188
Data space allocation and extension 189

Index pezfozmance considezations ~ 190
VSAM buffezs (non-shazed zesouzces) and stzings 190

Buffezs foz dizect access 192
Buffezs foz skip sequential access 192
Buffezs foz sequential access 193
Buffezs foz multiple stzings 194

8. 1 .3
8.1.3.1
8.1.3.2
8.1.3.3
8.1.3.4
8.1.4
8.1.5
8.1.5.1
8.1.5.2
8.1.5.3
8.1.5.4
8.2 VSAM sizes foz DOS/VS and OS/VS (CI-, CA-sizes etc.) .195
8.3 How to calculate a VSAM KSDS data set 197
8.4 Loading a KSDS with diffezent fzee space 199
8.5 Contzol intezval split (dizect insezt) 201
8.6 Key compression 203
8.7 Index CI size fozmula 206
8.8 Single/Mass-inseztion 207
8.9 VSAM relatedparametezs in the JCL 211
8.9. 1
8.9.2
8.9.3
8.9.3.1
8.9.4
8.10
8.10.1
8.10.2
8. 11
8.11.1
8.11.1.1
8.11.1.2
8.11.1.3

DOS/VS JCL parametez 211
DOS/VS JCL to VSAM maczo zelationship 212
OS/VS JCL pazametez 213

OS/VS JCL DDNAME/DSNAME shazing 214
OS/VS JCL to VSAM maczo relationship 215

Subset mount ... 216
Subset mount (DOS/VS) 216
Subset mount (OS/VS) 216

VSAM Assemblez Maczos (shozt descziption) 217
VSAM control block macros 217

ACB (genezate an access control block) 217
EXLST (generate an exit list) 218
RPL (genezate a request parameter list) 218

vi VSAM PRIMER and REFERENCE

8.11.1.4
8.11.1.5
8.11.1.6
8.11.1.7
8.11.1.8
8.11.2
8.11.2.1
8.11.2.2
8.11.2.3
8.11.2.4
8.11.2.5
8.11.2.6
8.11.2.7
8.11.2.8
8.11.2.9
8.11.3
8.11.3.1
8.11.3.2
8.11.3.3
8.11.4

GENCB (genezate a contzol block oz list) 219
MODCB (modify contents of contzol block oz list) .219
SHOWCB (display contents of contzol block/list) ... 219
TESTCB (test contents of contzol block oz list) ... 219
SHOWCAT (display fields ina VSAM catalog) 220

VSAM zequest maczos 220
OPEN ... 220
GET ... 220
PUT ... 221
ERASE ... 2~1
POINT ... 221
CHECK (OS/VS only) 22 1
ENDRE2 ... 221
GETIX and PUTIX (OS/VS only) 222
CLOSE ... 222

VSAM maczos foz shazed zesouzces 222
BLDVRP and DLVRP 222
WRTBFR•.................... 222
SCHBFR and MRKBFR (OS/VS only) 223

Concuzzent pzocessing (stzings) 223

9.0 System considezations 225
9. 1
9.1.1
9.1.2
9.1.3
9.2
9.2. 1
9.2.1.1
9.2.2
9.2.2.1
9.2.3
9.2.3. 1
9.2.4
9.2.4.1
9.2.5
9.2.6
9.2.7
9.2.8

Wheze is VSAM in main stozage 225
Access Method Sezvices ~nd VSAM in stozage (DOS/VS) .2'25
Access Method Sezvices and VSAM in stozage (VS1/SVS).226
Access Method Sezvices and VSAM in storage (MVS) 227

VSAM Working sets 228
Minimum wozking set foz a single KSDS (DOS/VS) 228

Working Set foz alternate index processingCDOS/VS).229
Minimum working set for a single KSDS (MVS) 230

Wozking Set for alteznate index pzocessing (MVS) ... 231
Minimum working set for a single KSDS (SVS) 232

Working Set for alternate index processing (SVS) ... 233
Minimum working set for a single KSDS (VS1) 234

Working Set for alternate index processing (VS1) ... 235
VSAM virtual stozage requirements (DOS/VS) 236
VSAM viztual storage zequirements (MVS) 237
VSAM virtual storage requirements (SVS) 238
VSAM virtual storage requirements (VS1) 239

A.O Appendix A. VSAM catalog miscellaneous 241
A. 1
A. 1 • 1
A. 1. 2
A. 1. 3
A. 1. 4
A.2
A.2.1
A.2.2
A.3
A.4
A. 4. 1
A.4.2
A.4.3
A. 4.3.1
A.4.3.2

VSAM catalog Keyranges 241
The High-Keyrange (HKR) 241
The Low-Keyzange (LKR) 241
Catlog HKR and LKR Logic 242
The Self Describing Records 242

Timestamps, VTOC 244
Volume timestamp ·.· 244
VTOC F1 and F4 DSCB's (Labels) 245

How to calculate used space in a VSAM catalog 247
Catalog recovezy 250

Introduction ... 250
CRA Open and Close 251
Recoverable or nonrecoverable catalog 252

Mastez catalog ·252
User catalog 252

Table Of Contents vii

A.5
A. 5. 1
A.5.2
A.5.2.1
A.6
A. 6 . 1
A.6.2
A.6.3
A.7
A.7. 1
A.7.2
A.8
A.9

Catalog backup ... 253
REPRO (catalog unload/reload) 254
DUMP/RESTORE (OS/VS Utility) 255

Dump/Restore volumes (OS/VS) 255
Catalog device conversion 257

Nonrecoverable Catalog Device Conversion (MVS) 257
Nonrecoverable Catalog Device Conversion 258
Recoverable Catalog Device Conversion 259

Catalog Reorganization 261
Reorganizing a nonrecoverable catalog 2CZ
Reorganizing a recoverable catalog 263

Changing the allocation of a nonrecoverable catalog ... 263
Changing the name of a VSAM catalog 265

B.O Appendix B. OS/VS catalog considerations .. ~ 267
B. 1
B. 1. 1
B.1.1.1
B.1.1.2
B. 1 . 2
B.1.2.1
B.1.2.2
B.1.2.3
B.2
B.3
B.4
B. 4 . 1
B.4.2
B.4.3
B.4.4

Using OS/VS Service Aids and Utilities with VSAM 267
Printing a VSAM catalog with OS/VS Utilities 267

Print parts of a catalog with IEHDASDR/DRWDASDR ... 267
Print parts of a catalog with A/HMASPZAP 268

How to change ownership bits and volume timestamp: ... 269
Turn off the 'data set security bit' (OS/VS) 269
Turn off the 'VSAM ownership bit' (OS/VS) 270
Modify the VSAM volume timestamp (OS/VS) 270

Catalo~ performance considerations (OS/VS) 271
Copy catalog - catalog (REPRO) (MVS only) 272
OS/VS CVOL catalog versus VSAM catalog 272

VSAM User Catalog Advantages (OS/VS) 273
VSAM User Catalog Disadvantages (OS/VS) 274
CVOL Advantages (OS/VS) 277
CVOL Disadvantages (OS/VS) 278

C.O Appendix C ... 279
C. 1
C.2

INDEX

viii

Device type translate table 279
List of Abbreviations 279

.............. , .. 281

VSAM PRIMER and REFERENCE

FIGURES:

Figure 1. Control Interval 7
Figure 2. Control interval structure with control fields 7
Figure 3. Control intervals w. fixed/variable-length records .. 8
Figure 4. Logical to physical records relationship 9
Figure 5. structure of a VSAM control area 11
Figure 6. structure of a spanned record 12
Figure 7. Key-sequenced data set structure 13
Figure 8. Entry-sequenced data set structure 14
Figure 9. Relative record data set structure 15
Figure 10. Key-sequenced data set structure 19
Figure 11. Inserting. deleting and extending records 21
Figure 12. Keyed sequential.skip-sequential.direct processing .. 25
Figure 13. Alternate indexes with key-sequenced base cluster ... 33
Figure 14. Alternate indexes with entry-sequenced base cluster . 34
Figure 15. Alternate indexes with Path 35
Figure 16. VSAM data sets comparison ~9

Figure 17. VSAM data spaces r ••••• ~1

Figure 18. VSAM ownership concept ~4

Figure 19. VSAM space allocation 46
Figure 20. VSAM catalogs 48
Figure 21. VSAM catalog allocation 49
Figure 22. VSAM passwords \ 54
Figure 23. Logical function of ALTER : 58
Figure 24. Logical function of BLDINDEX 59
Figure 25. Logical function of DEFINE USERCATALOG 60
Figure 26. Logical function of DEFINE CLUSTER 61
Figure 27. Logical function of DELETE 61
Figure 28. Logical function of EXPORT to disk or tape 63
Figure 29. Logical function of IMPORT from disk or tape 64
Figure 30. Logical function of EXPORTRA to disk or tape 65
Figure 31. Logical function of IMPORTRA from disk or tape 65
Figure 32. Logical function of REPRO (load) from disk or tape .. 68
Figure 33. Logical function of'REPRO (copy data) 68
Figure 34. Logical function of REPRO (backup ds/catalogs) 69
Figure 35. Logical function of RESETCAT 70
Figure 36. VSAM definition for ISAM records 77
Figure 37. Keyranges (example 1) 91
Figure 38. Keyranges' (example 2) 92
Figure 39. Keyranges (example 3) 92
Figure 40. Keyranges (example 4) 93
Figure 41. Volume allocation layout 151
Figure 42. VSAM data CI size recommendations 186
Figure 43. Control interval split (1 of 2) 201
Figure 43. Control interval split (2 of 2) 202
Figure 44. Insertions: Direct insertion 208
Figure 45. Insertions: Mass insertion (no FREESPACE) 209
Figure 46. Insertions: Mass insertion (with FREESPACE) 210
Figure 47. DOS/VS JCL to VSAM mapro relationship 212
Figure 48. OS/VS JCL to VSAM macro relationship 215
Figure 49. Where is VSAM in storage (DOS/VS) ~225
Figure 50. Where is VSAM in ~torage (VS1/SVS) 226
Figure 51. Where is VSAM in storage (MVS) 227
Figure 52. VSAM catalog structure 243

Figures ix

VSAM PRIMER and REFERENCE

~ INTRODUCTION AND GUIDELINES TO THIS MANUAL

This manual is a guide and a ~efe~ence sou~ce fo~ the pe~son using
VSAM.

This document has not been submitted to any fo~mal IBM test and has
not been checked fo~ technical accu~acy. Potential use~s should
evaluate its use fullness in thei~ own envi~onment p~io~ to any
implementation.

We want to acknowledge ou~ debts to the many individuals who gave
us assistance in answe~ing technical questions. In pa~ticula~ we
want to give c~edit to Roman Chiocca f~om Switze~land and David
Peppe~ f~om Nottingham, England fo~· thei~ pa~ticipation in develop­
ment of this document.

~ DESCRIPTION OF THIS MANUAL

The objectives of this manual a~e:

• To give the new VSAM use~ the info~mation ~equi~ed to unde~­
stand, evaluate, and use VSAM p~ope~ly.

• To cla~ify VSAM functions fo~ cu~~ent VSAM application p~og~am­
me~s who will be wo~king with VSAM. The p~actical, st~aightfo~­

wa~d app~oach adopted should dispel much of the appa~ent

complexity sometimes associated with VSAM.

Whe~eve~ possible an example is used to ~einfo~ce a desc~iption,

and a modified ve~sion of the same example is used in any ~elated
section to give continuity to the explanation. Diag~ams a~e used
libe~ally to aid unde~standing.

This manual is not ope~ating system dependent and is intended fo~
DOS/VS, MVS, SVS, and VSl use~s, who should have some familia~ity
with access methods.

Info~mation contained in this manual includes:

• A gene~al desc~iption of VSAM and Access Method Se~v~c~s
concepts and capabilities, including catalog usage and compa~i­
sons with othe~ access methods.

• Methods of calculating sto~age and data set space ~equi~ements.

• Gene~al system conside~ations.

• Desc~iptions and examples of using Access Method Services
facilities.

• An explanation of VSAM installation procedu~es.

• P~ogramming conside~ations.

• Pe~fo~mance conside~ations.

Chapte~ 1. Guidelines 1

• Integ~ity conside~ations.

This manual is not intended as a ~eplacement fo~ the SRL manuals
and IBM cou~ses, but as a supplement to them. It will be pa~ticu­
larly useful as an initial point of reference to give a basic
unde~standing in specific a~eas, which may then be followed up by
~efe~ence to the app~op~iate SRL manual o~ cou~se. For example,
though this manual gives an unde~standing of the p~inciples of
p~og~amming with VSAM, refe~ence manuals would be needed to actual­
ly w~ite code. Likewise, a clear understanding of how to use Access
Method Se~vices commands to c~eate, modify, delete, print and move
data sets is given, but the appropriate manual or course is neces­
sary to p~ope~ly code actual commands.

This manual is a learning guide and a source of field-developed
techniques and advice. It does not eliminate the need fo~ ca~eful
planning and education. This publication the~efo~e intends to
show, in an uncomplicated way, how to use VSAM simply and effec­
tively.

Knowledge of concepts of Virtual Sto~age

MVS,SVS,VS1) is required. Basic knowledge
(like SAM o~ ISAM) is desi~able.

~ HOW TO USE THIS MANUAL

1.2.1 DOS/VS AND OS/VS USERS

Systems (like DOS/VS,
of other Access Methods

All chapte~s can be followed in the o~de~ they a~e p~esented.

Specific info~mation is included in the Appendices. The index at
the end of the manual can be used to find a specific item.

Rest~ictions or notes to specific Ope~ating Systems a~e added whe~e
applicable.

1.2.2 MVS USERS NOT USING VSAM APPLICATIONS

Each MVS System must have a VSAM maste~ catalog as the main system
catalog.

Even if a use~ does not plan to use VSAM applications, he should be
familia~ with the basic VSAM st~uctu~es (as the VSAM master catalog
is also a VSAM data set).

The most impo~tant chapte~s fo~ this g~oup of use~ a~e the chapte~s
2.0, 3.0, 6.0, and appendix A.O.

It is suggested, howeve~, to also
of them also contain info~mation
VSAM catalogs.

2 VSAM PRIMER and REFERENCE

read the othe~ chapte~s, as most
impo~tant for use~s, using only

~ BIBLIOGRAPHY OF MANUALS CONTAINING VSAM INFORMATION

• DOS/VS Rel.34:

DOS/VS Introduction to DOS/VS
DOS/VS System Management Guide
DOS/VS Data Management Guide
DOS/VS Supervisor e. I/O Macros
DOS/VS Messages
DOS/VS Access Method Services User's Guide
DOS/VS Entry Users Guide
DOS/VS VSAM LOGIC Liocs
DOS/VS Handbook Volume 1
DOS/VS Handbook Volume 2

• OS/VS:

OS/VS VSAM Options For Advanced Applications
OS/VS VSAM Programmer's Guide
Planning for Enhanced VSAM Under OS/VS
VS1 to MVS Conversion Notebook

• OS/VS1 (additional to the OS/VS manuals listed above):

OS/VS1 Features Supplement
OS/VS1 Planning And Use Guide
OS/VS1 System Generation
OS/VS1 Access Method Services
OS/VS1 System Messages

GC33-5370
GC33-5371
GC33-5372
GC33-5373
GC33-5379
GC33-5382
GC33-6074
SY33-8562
SY33-8571
SY33-8572

GC26-3819
GC26-3838
GC26-3842
GC28-0953

GC20-1752
GC24-5090
GC26-3791
GC26-3840
GC38-1001

• OS/VS2 MVS (additional to the OS/VS manuals listed above):

OS/VS2 System Generation Reference
OS/VS2 Access Method Services
OS/VS2 MVS CVOL
OS/VS2 Initialization and Tuning Guide
OS/VS2 Conversion Notebook
OS/VS2 Performance Notebook
OS/VS2 CVOL Processor
OS/VS2 System Messages

GC26-3792
(lC26-3841
GC26-3864
GC28-0681
GC28-0689
GC28-0886
GC35-0010
GC38-1002

Chapter 1. Guidelines

• Os/vS2 SVS:

OS/VS2 VSAM Planning Guide
OS/VS2 VSAM Programmer's Guide
OS/VS2 Planning And Use Guide
OS/VS2 Data Management For System Programmers
OS/VS2 Access Method Services
OS/VS2 VSAM System Information
OS/VS2 VSAM Options For Advanced Applications

• OS/VS2 SVS with ICR

OS/VS2 Access Method Services
OS/VS2 VSAM Options For Advanced Applications
OS/VS2 Planning For Enhanced VSAM
OS/VS2 VSAM Programmer's Guide

VSAM PRIMER and REFERENCE

GC26-3799
GC26-3818
GC28-0600
GC28-0631
GC35-0009
GC35-3835
GT26-3819

GC26-3867
GC26-3870
GC26-3869
GC26-3868

.L..Q. WHAT IS VSAM

~ BASIC DESCRIPTION OF VSAM

Vi~tual Sto~age Access Method (VSAM) is a component of DOS/VS and
OS/VS data management and is suppo~ted in DOS/VS, OS/VS1, OS/VS2
SVS, and OS/VS2 MVS. In VM/370 the CMS/VSAM suppo~t is based on
DOS/VS.

The VSAM Assemble~ Language mac~os used in DOS/VS and OS/VS a~e

compatible. In addition, a VSAM data set contained on a DOS/VS
volume can be p~ocessed by OS/VS p~og~ams. Simila~ly, a VSAM data
set contained on an OS/VS volume can be p~ocessed by DOS/VS
p~og~ams. This compatibility enables VSAM data sets to be
p~ocessed both by DOS/VS and OS/VS, and makes a
DOS/VS to OS/VS much easie~.

t~ansition f~om

VSAM suppozts both sequential and di~ect pzocessing and is designed
to supezsede ISAM, although the two access methods can coexist in
the same Ope~ating System. VSAM suppo~ts functions equivalent to
those of ISAM, and pzovides bettez pezfozmance (see desc~iption

stazting in section 5.4 on page 75). VSAM data sets cannot be
accessed by any othe~ Access Method.

In addition, the th~ee data ozganizations suppo~ted by VSAM can be
used in place of BSAM or QSAM foz sequential data sets and in place
of BDAM fo~ directly ozganized data sets (see descziption sta~ting
in section 5.1 on page 71). The new st~ucture and featu~es of VSAM
make it moze suited to data base and online envizonments than othez
access methods.

VSAM suppozt consists of the following:

• Three data set ozganizations Ent~y-Sequenced Data Sets
(ESDS) , Key-Sequenced Data Sets (KSDS), and Relative-Record
Data Sets (RRDS) . The usez can thus choose the logical data
ozganization that is best suited foz his oz hez pazticular
needs. They aze suppozted on DASD (Dizect Access Stozage
Device) only.

A VSAM ESDS is a sequential data set (similar to a SAM data
set) .

A VSAM KSDS is a sequential data set with an index (similaz
to an ISAM data set).

A VSAM RRDS is a data set with p~efozmatted slots for fixed
length ~eco~ds to be accessed by a zecozd numbe~ (similar
to a DAM data set).

• VSAM master and use~ catalogs which contain infozmation about
VSAM data sets, volumes, spaces, etc.

Chaptez 2. What Is VSAM 5

• The multifunction utility program Access Method Services, which
provides required VSAM services, such as catalog or data set
creation, loading, merging, printing, and VSAM catalog mainte­
nance. This utility supports DASD as well a~ tape devices.

• Access method routines with which the user interfaces to
process logical records in VSAM data sets.

• The ISAM
ISAM to

interface routines, which make tpe transition from
VSAM possible with little or no modification of IS AM

programs.

2.1.1 CREATING VSAM OBJECTS

Unlike nonVSAM data sets which are usually created by using JCL,
VSAM objects (VSAM objects are data sets, data spaces, catalogs,
etc.) may only be created by using the utility Access Method
Services.

One group of commands creates VSAM objects.
commands.

These are the DEFINE

The term 'defining' a VSAM object means creating an entry in a VSAM
catalog without any data transfer. The contents of the object may
be loaded with a user program or with Access Method Services.

For further information and an overview of the various Access
Method Services commands, see chapter 4.0 starting on page 57.

2.2 VSAM DATA SET STRUCTURE

The logical records of VSAM data sets are stored differently from
the way in which logical records in nonVSAM data sets are stored.

2.2.1 CONTROL INTERVALS

It is fairly obvious that transferring a single data record or a
complete data set between virtual and auxiliary storage could be an
inefficient and time-consuming way of processing records. What is
needed is to structure data records in a way to make VSAM as
efficient as possible.

To accomplish th~s, so-called control intervals have been designed
to contain the data records. The disk space on a direct access
storage device (like IBM 3330, 3340, 3344, and 3350) has been
divided into segments of information. The size of the segments can
vary from one VSAM data set to another VSAM data set, but for a
specific data set, the size of each segment is fixed, either by
VSAM or by the the user (within limits acceptable to VSAM). These
segments of information are called control intervals. Figure 1
illustrates the data records (and the control information descri­
bing them) stored in a control interval.

6 VSAM PRIMER and REFERENCE

A control interval is the unit of data transferred between virtual
storage and disk storage; for example VSAM will transfer the
control interval shown in figure 1 to virtual storage if one or
more of the data records in that control interval needs to be
updated, deleted, etc.

data records

Figure 1.Control Interval

cf = control fields
us = unused space

us cf

//
The control interval must be a certain size (a multiple of 512
bytes unle~s tne control interval-size is greater than 8192, then
the multiple is 2048). The maximum size of a control interval is
32,768 bytes.

If the user specified control interval is different from the
allowed sizes (see page 195), VSAM will substitute the defined
value ~y a default value (the control interval size should be
carefully chosen, since a large default control interval will
demand corresponding large buffer space).

A control interval can span several tracks depending on control
interval size and track capacity but it cannot cross control area
boundaries (the control area is described in the next section).

A control interval always contains control information fields plus
an integral number of logical records (variable or fixed-length),
and unused (free) space, or data records alone, or free space
alo~e. A record may cross more than one control interval ~ when
the data set has been defined with spanned format (described in
section 2.2.3 on page 11).

Figure 2 shows that control information fields consist of two types
of fields: one CIDF (Control Interval Definition Field), and one or
more RDFs (Record Definition Fields).

DR11 DRZI--I DRnl unused spaceIRDFnl_-IRDFZIRDF1ICIDFI

DR = data record

Figure 2.Control interval structure with control fields

There is one Control Interval Definition Field (CIDF) per control
interval and usually multiple Record Definition Fields (RDF)
depending on the numper of different logical records lengths.

As there is llQ parameter in VSAM to define the data set records as
fixed-length or variable-le~gth records (like RECFM for DOS/VS or
OS/VS data sets), VSAM takes into consideration the length of

Chapter 2. What Is VSAM 7

adjacent records in a control interval when writing a record (see
also description of parameter RECORDSIZE on page 94). If two or
more adjacent records have the same length, only two RDFs are used
for this group. See following examples for records of the same and
different length.

RDFs describe length of record and how many adjacent records are of
the same length. With fixed-length records, only two RDFs are
used, even if more than 2 records are stored in the control inter­
val.

Control interval size = 512 bytes
Records of the same length = 80 bytes (only 2 RDFs (R a) in

figure below needed) .

LR 1 LR 2 LR 3 LR 4 LR 5 LR 6 f.s. IR aiR alCIDFI

80 80 80 80 80 80 2 2 3

Control interval size = 512 bytes
For records of different length 1 RDF per LR is used
(R 1 for LR 1, R 2 for LR 2, etc.)

LR 1 LR 21LR 3\
1 30 7 0 5 0 1 If 0 60 If 3 3 3 3 3

Control interval size = 512 bytes

3 "

3 If

Records of different length (for each group of adjacent records
with the same length, 2 RDFs are used
(R a for LR 1-4, RS for LR 5, and R6 for LR 6)

80 80 80 80

Legend:
LR = Logical Record
f.s. = £zee space

5 8 5 5 63

R x = Record Definition Field (3 bytes)

3 3 3

CIDF = Control Interval Definition Field (4 bytes)
The small numbers represent the length in bytes of
data/control fields

3 If

Figure 3. Control intervals with fixed and variable-length records

8 VSAM PRIMER and REFERENCE

Each cont~ol inte~val is divided into one o~ more fiKed-length
physical ~eco~ds and VSAM dete~mines their size based on the
control inte~val size and the device characteristics. This physi­
cal reco~d is dependent on the cont~ol interval size and the device
type and is purely a consideration when mapping cont~ol intervals
to the storage device. A physical ~ecord is that reco~d seen on
the disk and its size is equal to the cont~ol interval whe~ever
possible.

By defining the CI-size for a data set stored on a specific type of
direct access device, the user implicitly chooses the physical
record size (for further details see page 196).

The following figure shows the relationship between user defined
cont~ol interval size and VSAM chosen physical reco~d size on
different DASD types. In this example it is assumed the control
interval size is 6K. As a control interval must be stored in an
integ~al number of physical records the neKt lower value is 2K. So
VSAM chooses 2K as physical record size for the 3330. Since 2K is
not used on 3340 (would result in only 75% t~ack utilization) 1K is
choosen for 3340. Page 196 contains a chart showing the physical
record sizes and the number of records per t~ack for each supported
DASD type.

CI 1

LR

P1 P7

T~ack

3330

CI 1

LR 11 LR 21 LR 31 LR 41 fSJC LR

P1 I P2 I P3

Track 1

C = Control Fields (RDFs, CIDF)
fs = free space

p = Physical Record

51

P4

CI 2

T~ack 2

CI 2

LR 61 LR 71 LR 81 fslc.

I P5 I P6

CI = Control Interval
LR = Logical Record

Figure 4. Logical to physical records relationship

Chapter 2. What Is VSAM 9

, with a single GET, one or more control intervals may be transferred
. between a VSAM data set and VSAM buffers in main storage (depending

on direct or sequential access). Command-chained reads/writes are
used when a control interval contains more than one physical disk
record. From the VSAM bu1fer. the desired logical record (without
control fields) is transferred to the user buffer (input area).
For more information about specifying VSAM buffers. see section
8.1.5 on page 190~

A logical record in a key-sequenced data set or in an entry-se­
quenced data set (the data set organizations are described later)
can span two or more control intervals ~ithin the same control
area. in which case it is called a spanned record (see detailed
description in section 2.2.3 on page 11).

The physical location of a logical record within a data
given in the form of a relative byte address (RBA) rather
CCHHR disk record address.

set is
than a

The RBA of a logical record is the offset of this logical record
from the beginning of the data set. The first record in a data set
has an RBA of O. The second record has an RBAequal to the length
of the first record and'so on. The RBA of a logical recoid or
index entry. therefore, is independent of the physical characteris­
tics of the direct access device type on which it resides. the
number of extents in the data set. etc. It only depends on its
position in the sequence of records. This way df referencing data
by RBA makes the data sets independent of the DASD device type.

The RBA is always expressed as a full word binary integer.

The RBA includes free space and control information (figure 8 on
page 14 shows an example how RBA values are assigned).

2.2.2 CONTROL AREAS

The control intervals in a VSAM data set are grouped together into
fixed-length contiguous areas of direct-access storage called
Control Areas (CAs). A control area is auxiliary storage space
that is set aside by VSAM to receive or hold the control intervals
of a particular data set.

The user does not have to specify the number of control intprvals
per control area of a data set; VSAM determines this number.
Whenever the space in a data set needs to be extended hecaus~ the
control area cannot hold anymore data. VSAM extenas the data set
(see also description of VSAM data spaces and space allo~ation on
page 40, 45. 189).

The maximum size of a control area is one cylinder and the minimum
si2e is one track of a DASD. The user implicitly defines th~
control area size by specifying the amount of space to be allocatpd
to a data set (for further information. see section 8.1.3.2 on page
187). Usually better performance is obtained when the size of one
control area is one cylinder.

10 VSAM PRIMER and REFERENCE

Figure 5 shows a possible structure of three control areas, used in
the data component of a key-sequenced data set (KSDS) (the data set
organizations are explained in the next section), which include
four control intervals each.

All details, like 'free space', etc., are explained in following
sections.

CI 1 10 20 30 35 40 fs R R C

CI 2 48 49 50 52 54 fs R R C

CA 1
CI 3 62 65 66 70 75 fs R R C

CI 4 free control interval C

CI 5 77 79 80 92 93 fs R R C

CI 6 95 97 98 100 125 fs R R C

CA 2
CI 7 160 165 168 200 210 fs R R C

CI 8 free control interval C

CI 9 246 294 330 335 440 fs R R C

CI 10 568 575 695 700 825 fs R R C
CA 3

CI 11 905 940 1123 1200 fs R R C

CI 12 free control interval C

C = Control Interval Definition Field
CA = Control Area
CI = Control Interval
fs = free space

R = Record Definition Field

Figure 5. structure of a VSAM control area (KSDS)

2.2.3 SPANNED RECORDS

If the data records are larger than the control interval size they
need not be broken apart or be reformated; it can be specified
(with the SPANNED parameter in the Access Method Services DEFINE
command, which is described later) that they are allowed to extend
across or span control interval boundaries.

Chapter 2. What Is VSAM 11

Such records are called spanned records. Spanned records are
applicable only to KSDS and RRDS data sets.

A spanned record must always begin on a control interval boundary;
it fills one or more control intervals within a single control
area. As shown in figure 6, the control interval that contains the
last portion (segment) of a spanned record contains unused space if
the segment does not completely fill the data space available in
the control interval. This unused space can only be used to extend
the spanned record; it cannot contain all or part of any other
record.

If the parameter SPANNED was specified at DEFINE time (this parame­
ter cannot be changed with ALTER; described later), VSAM determines
dependent on the length of each record whether it is a spanned or a
nonspanned record. If the record length is larger than CI size
minus 7 (RDF+CIDF) the record is stored as spanned record starting
in a new CI (this is also checked when a record is extended).

If spanned records are used for KSDS,
within the first control interval.

data record

the primary key must be

~ \)
! CI 2 ~ CI 1

~--d-a-t-a---r-c-d---p-a-r-t---1----rlc~1 ~1-d-a-t-a---r-c-d--p--.-2~1~--*----TI-c~1

C = Control fields (10 bytes = 2 RDF + 1 CIDF)
* = Unused space

Figure 6. Structure of a spanned record

2.3 TYPES OF DATA SETS

VSAM supports three different data set organizations:
key-sequenced, entry-sequenced, and relative-record. All three
organizations allow both sequential and direct processing and
record addition without rewrite of the complete data set. The
primary difference between these three organizations is the
sequence in which logical records are stored.

A key-sequenced data set (KSDS) uses logical records, either fixed
or variable in length, which are placed in the data set in ascend­
ing collating sequence by a field, called the ~.

To differentiate keys used in VSAM objects the key used in a base
cluster (explained on page 29) is called a primary key or base key.
The key used in an alternate index (explained on page 29) is called
an alternate key.

12 VSAM PRIMER and REFERENCE

Reco~ds added afte~ the KSDS is c~eated a~e inse~ted in p~ima~y key
sequence and existing logical ~eco~ds a~e moved when necessa~y. In
VSAM key-sequenced o~gani2ation, a ~eco~d must have a unique,
embedded, fixed-length p~ima~y key located in the same position
within each logical ~eco~d. P~ima~y keys can be a minimum of one
byte and a maximum of 255 bytes.

To diffe~entiate indexes used in VSAM objects the index in a KSDS
base cluste~ is called the p~ima~y index (usually, the te~m 'index'
in this manual means 'p~ima~y index'). A p~ima~y index is always
c~eated fo~ a KSDS.

An optional index which can be built ove~ an ESDS o~ KSDS base
cluste~ is called an alte~nate index (the alte~nate index is
described on page 29). The alte~nate index enables logical ~eco~ds
to be accessed sequentially o~ directly th~ough a diffe~ent field.
An alte~nate index is o~gani2ed like a KSDS.

Figu~e 7 shows a logical picture of a KSDS with one cont~ol area
which includes fou~ control inte~vals (physically the entries in an
index cont~ol interval a~e sto~ed f~om right to left):

index
sequence
set

logical

~eco~ds

7

55

168

12

fp =
cf =
us =

R =
C =

us

24 25 26 54

74
1 751 125 luslRIRIRIRlcJ

73 248 free space IRIRIRlcl

free control interval

pointe~ to f~ee control inte~val
cont~ol fields (RDFs, CIDF)
unused space
RDF (Record Definition Field)
CIDF (Cont~ol Inte~val Definition Field)

Figu~e 7. Key-sequenced data set st~uctu~e

Chapter 2. What Is VSAM 13

The KSDS and its components a~e desc~ibed in mo~e detail sta~ting
on page 18.

An ent~y-sequenced data set (ESDS), which is logically compa~able
to a SAM data set, contains eithe~ fixed- o~ va~iable-length

~eco~ds, sequenced in the o~de~ in which they we~e submitted fo~
inclusion in the data set (like SAM data sets). The~efo~e, ~eco~ds

a~e sequenced by thei~ time of a~~ival ~athe~ than by any field in
the logical ~eco%d.

An ESDS accepts ~eco%ds of fixed and variable length, spanned or
nonspanned reco%ds (spanned reco%ds are described on page 11).
Records can be added at the end, and ~ecords can be updated but not
extended. Reco%ds cannot be erased.

Figure 8 shows a possible st%uctu%e of an ESDS. The
a%e in hexadecimal (RBA values a%e always presented in
field) .

RBA values
a 4 -b~, -tL:'>

The numbers in the CIs %ep%esent keys in the %eco%ds (not used when
loading the data set 0% as search arguments). The control interval
length is 512 bytes. The small numbe%s below the CIs ~epresent the
record/field length in bytes.

RBA
X'OO' 62 9A D6 102 170 1 BB 1 EA 1FF

i- i- i- i- t i- t i- t

I 873 I 5
1

7
I 171 534 I 119 InuslRIRIRIRIRIRlcl

98 5 6 60 It It 1 1 0 7 5 It 7 3333331t

RBA
X'200' 234 268 29C 323 361 39F 3ED 3FF

t t t + i- t t + i-

I 34 I 337 1 338 1
339 I 42 I 225 I nus IRIRIRIRIRlcl

5 2 5 2 S 2 1 3 S 6 2 62 7 8 333331t

RBA
X'400' 45D 49B 4CF SOD 560 SED 5FF

+ + + + + + + i-

I 662 I 77 I 53 I 412 I 17 I free I R I R I R 1 R I~I c]
93 62 5 2 62 83 1 If 1 3 3 3 3 3 It

C = CIDF (Control Inte%val Definition Field)
nus = unusable space (remaining space)

R = RDF (Reco%d Definition Field)
RBA = Relative Byte Add%ess (see page 10)

Figu%e 8. Entry-sequenced data set st%uctu%e

14 VSAM PRIMER and REFERENCE

A relative record data set (RRDS> is processed by a relative record
number and consists of a number of non-spanned fixed-length slots,
each of which has a unique relative record number, an associated
RDF, and contains one logical record. The slots within an RRDS are
sequenced by ascending relative record number (from 1 to N).

A record is placed in the slot specified by a user-supplied rela­
tive record number (for direct or skip-sequential inserts) or, if
not specified. by a VSAM-supplied relative record number (for
initial load or sequential inserts). This relative record number
is never included in the logical record by VSAM.

Records can be retrieved by relative record number (direct,
skip-sequential) or by physical sequence). Insertio~ and proces­
sing techniques are explained in section 2.6 on page 22.

In an RRDS one RDF (3 bytes) per slot is used. and Bit 5 in the
first byte of each RDF determines, if a slot is 'occupied' (0) or
'empty' (1).
An RRDS cannot have any index. No free space definition is
allowed.

Figure 9 shows a possible structure of an RRDS after loading a few
relative records. Each slot has an RDF which includes the informa­
tion indicating whether the slot is 'occupied' or 'empty' (see al~o
section 2.6.3 on page 28). The numbers in the fields repres~nt
slot numbers (relative record numbers> containing records. :~e
small numbers below the fields show the length of each field.

When adding a record and specifying a slot number which is higher
than any slot number used so far, the data set is formatted auto­
matically to the end of the control interval receiving the record.

1

80

80

80

(E) =
R 1 - 1 8 =

C =

2 3(E) I 4(E) I
80 80 80 80 80 10 3 3 3 3 3

80 80 80 80 80 10 3 3 3 3 3 3 4

80 80 80 80 80 1 0 3 3 3 3 3 3 .If

empty slot n = unusable space (remaining space)
RDFs (Record Definition Fields) of the corresponding slots
CIDF (Control Interval Definition Field)

Figure 9. Relative record data set structure

,Chapter 2. What Is VSAM 15

A VSAM cluster is a logical definition for a VSAM data set and has
one or two components.

The data component of a VSAM cluster consists of all control areas
containin~ the control intervals which contain tne data records.

The index ~omponent of a key-sequenced cluster consists Qf the
index control intervals containing the index records which each
points to the highest keys of a data control interval (see also
section 2.4 on page 18).

The VSAM cluster consist of the following:

• KSDS cluster: index component
data component

• ESDS cluster: data component

• RRDS cluster: data component

A VSAM data set is always represented in a VSAM catalog by a
cluster entry, a data entry and (for a KSDS only) an index entry.
All parts of a multivolume data set component must reside on the
same device type.

2.3.1 REUSABLE DATA SET

Enhanced VSAM allows the use of VSAM data sets as Workfiles.

A non-reusable data set may be loaded once and only once. After
the data set is loaded, it can be read, written into, and the data
in it can be modified. But when the data becomes obsolete, the way
to remove it, is to use the Access Method Services command DELETE
which deletes the data set (DELETE is described on page 61). !f
the data set is to be used again it must b~ redefined with ~he
Access Method Services command DEFINE (described on page 61).

Instead of usin, the DELETE - DEFINE sequence the REUSE function
can be used. In order to specify a data set to be reusable, the
REUSE parameter must be specified in the DEFINE
CLUSTERIALTERNATEINDEX command (these commands are described later
in this manual).

A reusable data set may be a suballocated KSDS, ESDS or RRDS (see
description on page 40) that resides on one or more volumes.

To explain the function of a reusable data set, another VSAM term
must be explained. As mentioned earlier (page 10) the size of a
VSAM data set is represented by RBA values. VSAM uses a so called
high-used RBA field to determine if a data set is empty or not.,
After a data set is defined with a DEFINE CLUSTER command (des­
cribed later) the 'high-used RBA' value is zero. After any loading
and closing the data set this field shows the offset of the last
byte in the data set (see explanation of LISTCAT printout on page
156) .

16 VSAM PRIMER and REFERENCE

In a reusable data set (i.e. a data set defined with the REUSE
parameter) this 'high-used RBA' field can be reset to zero and VSAM
can use this data se~ like a newly defined data set.

The ways to 'reset' a reusable data set are as follows:

1. Use the REUSE parameter in the Access Method Services command
REPRO when reloading the data set.

2. Specify in the ASSEMBLER user program ACB the
MACRF=RST (see macro description on page 217 and
and 48 on pages 212 and 215).

parameter
figures 47

3. Use High Level Languages (such as PL/I or COBOL/VS) and open
the reusable data set for OUTPUT.

If a reusable
function the

data set
data set

non-reusable data set.

is
with

opened without
its data is

specifying a
used like any

'reset'
other

When a reusable data set is opened and one of the 'reset' functions
is specified, all secondary extents are unallocated and the data
set 'high-used RBA' is set to zero. In addition the data set is not
'erased' (i.e. overwritten with X'OO') during a 'reset'.

Restrictions:

1. KEYRANGES cannot be specified (see description on page 91).

2. Alternate indexes (see page 29)
cluster with the REUSE attribute.

cannot be defined over a

3. The data set cannot have more then 16 extents per volume.

4. The data set cannot be a UNIQUE cluster (described on page
40) .

5. The Access Method Services command ALTER cannot be used to
change the data set attribute from REUSE to NOREUSE or vice
versa.

6. Reusable data sets on 3850 (MSS) must begin on cylin~0r

boundary to prevent staging in RESET mode.

Chapter 2. What Is VSAM 17

~ KSDS PRIMARY INDEX STRUCTURE

A KSDS consists of an index (index component) and logical records
(data component) with different data set (component) names. All
extents of the KSDS data component must reside on the same type of
direct access devices. The index component. however. can be placed
on a device type different from that of the data component.

The index for a VSAM KSDS data set contains key values and poin­
ters. It is built when the KSDS is initially loaded. A VSAM index
also contains information about available space in the index
component.

Although it is an internal VSAM function it should be mentioned
that the key in an index entry is stored in a compressed form.
This is called ~ compression (for detailed description of key
compression see section 8.6 on page 203). For index calculations
(see page 198) an average compressed key length of 3 can generally
be used.

In most cases a VSAM index consists of 2-3 index levels. The
lowest level is called the sequence set. All levels above. which
are automatically built by VSAM when necessary. are collectively
referred to as the index set.

In the sequence set. there is one index record per data CA. Each
index record is designed to contain a number of index entries equal
to the number of data CIs which fit in its CA.

An index record (equivalent to one index control interval) is fixed
in length, either 512, 1024, 2048 or 4096 bytes (index CI sizes are
described on page 195».

Each index record contains. a pointer to an index record in the next
lower index level or to a control interval in the data component.

An index entry (in the index record) consists of the highest key
associated with that CI (in compressed form), control information
(for expanding the compressed key) and a displacement value to be
added to the RBA of the beginning of the CA. (derived from the
index header). The sum of which addresses the correct data CI.

If a data set consists of more then one CA, more than one index
sequence set level record (CI) exists. In this case VSAM automati­
cally builds another index level (L2). Each entry in the index L2
record points to one Sequence Set record (L1) (see figure 10).

If the data set is that big that the index L2
all entries for all the Sequence Set records,
record has to be built by VSAM.

record cannot hold
another index L2

Since the highest index level can only consist of one index record,
VSAM will build another index level (L3), etc.

For index performance considerations see section 8.1.4 on page 19r

18 VSAM PRIMER and REFERENCE

Figu%e 10 shows a logical pictu%e of a KSDS afte% loading with two
CAs, containing fou% CIs each. Records with 80 bytes each were
loaded. A fr~e space value of 20% free space in the CI and 25% in
the CA was specified (see page 88), so 1 record (minimum = (512 *
20%) = 102) per CI and one CI per CA (25~ * 4) (CI/CA) is held free
when loading the data set. In each CI with a length of 512 bytes
and control fields with a total of 10 bytes, 4 data records were
loaded (102 bytes were left free).

The index component consists of two levels: the Index Sequence Set
and the Index Set.

IC

DC

IS
(L2) unused space

ISS
(L1>

C
DC
fp
fs
IC

=
=
=
=
=

us

10 30

68 75 10011801 fsici

205 1 240 1
33113741 fsici

f%ee space Ici

cont%ol fields (RDFs, CIDF)
Data Component
pointer to free CI
free space (FREESPACE def.)
Index Component (IS + ISS)

5441 5451 634 1
f%ee 1 C I

free control intervallcl

free control intervallcl

IS = Index Set
ISS = Index Sequence Set

L 1 , L2 = Index Level 1 and 2
us = unused space

Figu%e 10. Key-sequenced data set structure

Chapter 2. What Is VSAM 19

~ INSERTING. EXTENDING AND DELETING of RECORDS

A KSDS can be defined to %ese%ve space fo% late% inse%tions when
the data set is loaded (0% sequential inse%tions pe%fo%med). This
%ese%ved sp~ce is called f%ee SRace.

The amount of f%ee space in a CI and/o% CA (in Yo) is specified in
the FREESPACE pa%amete% of the DEFINE CLUSTER command (see also
page 88. and example on page 106).

When a %eco%d must be added to acont%ol inte%val. %eco%ds with
keys highe% than the one to be inse%ted Q%e shifted to the %ight of
the CI w~thin the f%ee space limit. As long as enough f%ee space
is available in this CI. the%e is no fu%the% data CI manipUlation.

As desc%ibed in the following sections (sta%ting section 2.6 on
page 22) VSAM allows th%ee types of access to inse%t, delete and
extend %eco%ds into a KSDS:

• Di%ect Access

• Sequential Access

• Skip-sequential Access

The Di%ect Access logic is desc%ibed in the following pa%ag%aphs.

Sequential Access is used fo% loading data sets and fo% inse%tion
of g%OUPS of p%e-so%ted %eco%ds and is also called 'Mass
Inse%tion'. Mass inse%tion is desc%ibed in detail in section 8.8
sta%ting on page 207.

Skip-sequential Access is desc%ibed in section 2.6.1.2 on page 23.

20 VSAM PRIMER and REFERENCE

The following eHamples illust%ate the usage of f%ee space:
This CI is 512 bytes long. A f%ee space value of 30% has been
specified. With a fiHed %eco%d length of 80 bytes, the maHimum CI
capacity is 6 %eco%ds. But afte% loading the data set, each CI
contains only 4 %eco%ds and 182 bytes of f%ee space (VSAM calculat­
ed a minimum of 153 bytes f%ee space).

10 20 30 40 f%ee space C

• Reco%d 25 is to be inse%ted. The cont%ol inte%val is %ead into
a VSAM buffe% and %eco%ds 30 and 40 a%e shifted to the %ight.

•

10 20 25 30 40

Reco%ds 20 and 40 a%e to be deleted .
shifted to the left if necessa%y and
available fo% inse%ts, updates, etc.

The %emaining %eco%ds a%e
the f%eed space is now

10 25 30 f%ee space

• Reco%d 10 must be eHpanded to 148 bytes.

10 25 30 If%ee spacel+R31*RZI*R11* C

R1_R3 = RDFs (Reco%d Definition Fields)
C = CIDF (desc%ibes f%ee space and offsat)
* = value changed
+ = new cont%ol block

Note: Not one of these changes %equi%e a change in the %elated
indeH sequence set, even if the high key %eco%d in a CI is
deleted.

Figu%e 11. Inse%ting, deleting and eHtending %eco%ds

If the %eco%d to be inse%ted will not fit in the cont%ol inte%val,
a cont%ol inte%val split takes place to p%ovide sufficient space in
the cont%ol inte%val to contain the %eco%d. The cont%ol inte%val
split is desc%ibed in detail in section 8.5 on page 201.

Chapte% 2. What Is VSAM 21

~ PROCESSING OF DATA SETS

2,',1 KSDS PROCESSING

The iollowing ;eguest types a;e allowed fOE KSDS p;ocessing:

• add/load ;eco;ds
• insett ;eco;ds (between existing ;eco;ds)
• modify existing ;eco;ds
• ;et;ieve;eco;ds
• extend/shozten existing ;ecozds
• delete/e;ase ;eco;ds

As desc;ibed in the following sections the ;ecozds in a KSDS can be
p;ocessed sequentially, skip-sequentially, oz dizectly using the
p;imazy key as seazch a;gument. This is called keyed pzoces~in::r..
and it is the nozmal way to pzocess a KSDS.

Anothe; method of p;ocessing a KSDS dizectly ot sequentially (but
not ;ecommended) is addzessed pzocessinq using an RBA as sea~ch
azgument (see page 26). When a split occu;s, 0; when zecozds aze
added, deleted 0; changed in size, RBAs of some ;ecozds ~ill

change, and so addzessed access is not suggested foz nozmal use.

On~ othez way of pzocessing a KSDS is contzol intezval pzocessinv.
which is used only foz vezy specific applications. Foi fuzthet
info;mation see section 5.2.4 on page 74.

2.6.1.1 KSDS KEYED SEQUENTIAL PROCESSING

Keyed sequential pzocessing is used to load a KSDS and to
zetzieve, update, delete and add logical zecozds to an existing
KSDS. When keyed sequential p;ocessing is used, zecozds can be
pzocessed in ascending oz in descending sequence by pzimazy key.
Wheri zetzieving zec~zds, key values need not be usez-s~pplied.

since ~SAM automatically obtains the nekt logical zecozd in
sequence. Following types of opezations c~n be pezfozm~d using
keyed-sequenti~l ,zocessing:

• Recozds can be pzocessed in ascending pzima,y key sequence.
This is called fozwa;d ptocessing.

• Recotds can be p,ocessed in descendinj p'ima,~ key sequenc~.
This is called p,evious zeco,d p,ocessinq 9' backwazd pzoces-
liru[.

22 VSAM PRIMER and REFtRENCE

• A mass sequential insertion technique is used by VSAM when
additions of contigupus records are sequ~nced and sequential
processing is used. More information is included in section
8.8 on page 207. See also section 2.6.1.6 on page 24, which
contains an overview of keyed sequential proce~sing logic.

For keyed-sequential processing the index sequence set is used to
find the next logical control interval.

Search arguments are not required or used.

2.6.1.2 KSDS KEYED SKIP-SEQUENTIAL PROCESSING

Keyed skip-sequential processing, is a variation of direct proces­
sing. It can be used for retrieval, update, addition and deletion
operations. The logical records must be processed in ascending
sequence without pre~positioning. Only the sequence set of the
primary index is used ~or skip-sequential processing based on the
primary key.

When a relatively small number of transactions that are in primary
(or alternate) key sequence and clustered in sequence are to be
processed, skip-sequ~ntial processi~g can be used to retrieve the
records directly by key.

Skip sequential processing can be us~d to avoid retrievins tlL~

entire 4-ta set sequentially to process a relatively small perCfl~­
tage of the total number of recorqs, or to avoid using direct
retrieval of the desired records, which causes the primary index ·~o

be searched from the top to the bottom level for each record, but
skip-sequential does read all sequence set records between those in
question, therefore it is not·~uggested to use skip-sequential,
when a record from the beginning and one from the end of the data
set has to be processed.

See also section 2.6.1.6 o.n page 24, which contains an overview of
keyed skip-sequential processing logic.

2.6.1.3 KSDS KEYED DIRECT PROCESSING

With keyed direct processing records can be retrieved, updated,
deleted and added. A key value must be presented by the user for
each logical record that is to be processed. For retrieval opera­
tion, the supplied key can be the full key, pr a generic key (the
leftmost part of the key) which matches exactly or is greater then
the key of the d~sired record, and the record retrieved can have
the exact or next greater key. The primary index is searched from
the top to the bottom level to locate the requested logical record.
See also Section 2.6.1.6 on page 24, which contains an overview of
keyed direct processing logic.

Chapter 2. What Is VSAM 23

2.6.1.4 KSDS ADDRESSED DIRECT PROCESSING

Add~essed di~ect p~ocessing is not suggested to use fo~ a KSDS.
since RBA values of many ~eco~ds may change when a cont~ol inte~val
o~ cont~ol a~ea split occu~s.

2.6.1.5 KSDS CONTROL INTERVAL PROCESSING

Cont~ol inte~val p~ocessing

o~ unusual applications.
5.2.4 on page 74.

should be used only fo~ ve~y specific
Fo~ fu~the~ info~mation, see section

2.6.1.6 KSDS OVERVIEW OF KEYED PROCESSING

The following demonst~ates

access. Refe~ to figu~e 12
ma~ked with an aste~isk '*'

• Keyed sequential access:

the th~ee suggested types of KSDS
whe~e ~eco~ds to be processed are

Fo~ ~et~ieval. as keys (sea~ch a~guments) a~e not ~equired
(only used fo~ positioning) all 6 CIs have to be ~ead and
all reco~ds returned to the use~, although CIs #3 and #5 do
not contain any requested reco~ds. The Sequence Set is
used to find the next logical control interval.

• Keyed skip sequential access:

The search arguments must be presented in ascending
sequence. Here only CIs #1; #2, #4 and #6 are read. Fo~

each ~equest the Sequence Set is used to find the ngxt
logical cont~ol interval and to check whether it contains
the requested record.

• Keyed di~ect access:

For each request a sea~ch argument must be presented in any
order, and one reco~d (control inte~val) from both the
Index Set and the Sequence Set, and also the control
interval containing the record must be read (not if the
appropriate Sequence Set record and/or the data control
inte~val was/we~e already ~ead into the buffers by tte
previous operation and are still valid).

24 VSAM PRIMER and REFERENCE

1

DC =
IC =
IS =

ISS =

2 3 4 5

Data component (data control intervals)
Index component
Index Set (highest index level)
Sequence Set (lowest index level)

6

Figure 12. Keyed sequential, skip-sequential, and direct proces­
sing.

2.6.1.7 POSITIONING FOR A KSDS

• Sequential processing:

Sequential processing can be started from the beginning or
somewhere in the middle of a data set. If processing is to
begin in the middle of a data set positioning is necessary
before sequential operation can be performed.

Positioning can be done in two ways:

execute a POINT macro instruction (see page 221) suppl~linJ

a key as search argument.

in a user ASSEMBLER program issue a 'direct' request, then
change RPL (see page 218) with the MODCB macro (see page
219) from 'direct' to 'sequential' or 'skip-sequential'.

Chapter 2. What Is VSAM 25

• Skip-sequential processing:

If the first skip-sequential search is the first access after
opening the data set, a direct search is initiated by VSAM to
find the f~rst record. From then on the index sequence~et

level will be used to find the subs~quent records. If other
operations were performed before (like read sequential, etc.),
either the last positi6n of that operation will be used as a
starting point to search the Sequence Set records, or a re-po­
sitioning is necessary (see previous paragraph 'Sequential
processing').

• Direct processing (keyed):

No positioning is necessary since each direct request will be a
top-down search through the index and access the CI directly.

2.6.2 ESDS PROCESSING

The following reguest types are allow~d for ESDS processing:

• add/load records (only at the end)
• modify existing records (no record length change)
• retrieve records
• delete records (no erase; for 'mark delete' see the following

section)

Addressed sequential, addressed direct,
processing are supported for ESDS.

and control interval

The former two are called addressed processing and it is the normal
way to process an ESDS.

~o keyed processing is allowed.

2.6.2.1 ESDS ADDRESSED SEQUENTIAL PROCESSING

For addressed sequential processing, the RBA given by the user is
only used for positioning requests (see section 2.6.2.5 on page
27). VSAM automatically stores records in sequence of arrival and
retrieves them in stored (physical) sequence.

When addressed sequential processing is used to process records in
ascending RBA sequence, existing records can be retrieved, updated
(but not changed in size) and marked deleted (not erased), 'Marked
deleted' means the user can modify a bit or byte in a record field
he designated as a 'delete bit/byte'. The user must provide
support to prevent copying these records as VSAM does not recognize
this 'delete bit/byte'

New records are only added at the end of the data set.

26 VSAM PRIMER and REFERENCE

2.6.2.2 ESDS SKIP-SEQUENTIAL PROCESSING

Skip-sequential p~ocessing is ~ suppo~ted fo~ ESDS.

2.6.2.3 ESDS ADDRESSED DIRECT PROCESSING

Add~essed di~ect p~ocessing by use~-supplied RBAs, can be used to
~et~ieve ~eco~ds, update thei~ contents (but not change thei~ size)
and flag ~eco~ds to be deleted (no physical deletion). New ~eco~ds
cannot be added.

The use~ can obtain the RBA values of the individual ~eco~ds when
loading the data set by issuing a SHOWCB mac~o inst~uction (see
page 219) to obtain the 'RBA' field in the RPL (Request Paramete~
List, see page 218) just used (fo~ mo~e info~mation see the "DOS/VS
Mac~o Refe~ence' manual o~ the 'OS/VS VSAM P~og~amme~'s Guide' as
desc~ibed on page 2).

2.6.2.4 ESDS CONtROL INTERVAL PROCESSING

Control inte~val p~ocessing
o~ unusual applications.
5.2.4 on page 74.

should be used only fo~ ve~y specific
Fo~ fu~the~ info~mation, see section

2.6.2.5 POSITIONING FOR AN ESDS

• Sequential p~ocessing:

Sequential p~ocessing can be sta~ted f~om the beginning o~

somewhe~e in the middle of a data set. If p~ocessing is to
begin in the middle of a data set positioning is necessa~y

befo~e sequential ope~ation can be pe~fo~med.

Positioning can be done in two ways:

execute a POINT mac~o inst~uction (see page 221) supplying
a RBA as sea~ch a~gument.

in a use~ ASSEMBLER p~og~am issue a 'di~ect' ~equest, then
change RPL (see page 218) with the MODCB mac~o (see page
219) f~om 'direct' to 'sequential'.

• Di~ect p~ocessing:

Di~ect p~ocessing can be accomplished when the co~~ect RBA fo~
the ~eco~d is supplied by the use~ as sea~ch a~gument (see also
p~evious section 2.6.2.3).

Chapte~ 2. What Is VSAM 27

2;6.3 RRPS PROCESSING

The following request types are ~llowed for KSPS proces~ing:

• add/load records
• insert records (between existing records into an empty 'slot')
• modify existing records (no record length change)
• delete/erase records

Fo~ RRPSs. keyed-sequential. keyed-skip-sequential. keyed-direct
and cont~ol intezval processing are supported. The ~elative ~ecord
number is used as an argument for keyed processing. The former
three co~respond to keyed Ptocessinq which is the no~mal way to
process an RRPS.

No addressed p~ocessinq is allowed.

An RRPS can be c~eated using keyed sequential. skip-sequential. or
keyed direct processing.

VSAM always uses the ~elative reco~d numbe~ as sea~ch argument. It
conve~ts it to an RBA value and determines the control interval
containing the reque~ted record. If a reco~d in a slot flagged as
'empty' is requested. a 'no-record-found' condition is returned.

A user cannot use an RBA value to address a record in an RRPS.

A request to add a ~eco~d in a slot beyond the current end of file
indicator causes VSAM to preformat the data set from the current
end ~f file up to the control inte~val where the new record is
supposed to reside. Loading an RRDS with keyed di~ect p~ocessing
may result in long pre formatting times if a record with a high
number is loaded first.

2.6.3.1 RRPS SEQUENTIAL PROCESSING

RRDS sequential p~ocess is treated the same way as ESPS sequential
processing (see section 2.6.2.1 on page 26) Empty slots are auto­
matically skipped by VSAM.

2.6.3.2 RRPSKEYEP SKIP-SEQUENTIAL PROCESSING

Basically skip-sequential is t~eated like an RRDS direct ~equest.
but the position is maintained. The buffe~ handling is treated like
for sequential. i.e. the buf~er is not w~itten back afte~ each
write opeiation.

Records must be in ascending sequence.

28 VSAM PRIMER and REFERENCE

2.6.3.3 RRDS DIRECT PROCESSING

An RRDS can be pzocessed dizectly by supplying the zelative zecozd
numbez as key. VSAM calculates the RBA and accesses ~he appzopziate
zecozd/slot.

RRDS dizect addzessed pzocessing (supplying RBAs) is not suppozted.

2.6.3.4 RRDS CONTROL INTERVAL PROCESSING

Contzol intezval pzocessing
oz unusual applications.
5.2.4 on page 74.

should be used only foz vezy specific
Foz fuzthez infozmation, see sect~.)~

2.6.3.5 POSITIONING FOR AN RRDS

• Sequential pzocessing:

Sequential pzocessing can be stazted fzom the beginning oz
somewheze in the middle of a data set. If p~ocessing is to
begin in the middle of a data set positioning is necessazy
before sequential operation can be pezformed.

Positioning can be done in two ways:

execute a POINT maczo instzuction (see page 221) supplying
a ~elative recozd numbez (used as key) as search argument.

in a usez ASSEMBLER program issue a 'direct' zequest, then
change RPL (see page 218) with the MODCB maczo (see page
219) from 'direct' to 'sequential' or 'skip-sequential'.

• Skip-sequential p~ocessing:

No pzepositioning is necessazy foz skip-sequential pzocessing
since it is t~eated like a dizect request.

• Direct processing:

No pre positioning is zequi~ed.

~ ALTERNATE INDEX, PATH

Alteznate indexes enable the logical records of an ESDS or of a
KSDS (in this context called a base cluste~) to be accessed sequen­
tially and directly by moze than one key field. This eliminates
the need to sto~e the same data in diffezent sequences on multiple
data sets foz the purpose of vazious applications, or to re-so~t
the data (see figuzes 13 and 14 on page 33 and 34).

Chapter 2. What Is VSAM 29

Alte~nate indexes a~e not suppo~ted fo~ RRDS.

Any field in the base cluste~ ~eco~d can be used as an alte~nate
~. It may also ove~lap with the p~ima~y key (in a KSDS), o~ with
any othe~ alte~nate key. The alte~nate key field must be a conti­
guous field with the same offset in each ~eco~d (in a spanned
~eco~d, this field must be located totally in the fi~st cont~ol

inte~val).

Each alte~nate index consists of an index comportent and a data
component. These two components togethe~ fo~m an alternate ind~li

(abb~eviated AIX) fo~ the base cluster. Its structure is like
KSDS. An alte~nate index will contain the different alternate key
values of a certain alternate key. Fo~ eve~y alternate key field a
different alte~nate index is needed.

The Acc~ss Method Services prog~am allows you to define, and then
to c~eate alternate indexes (if ijLDINDEX command is specified by
the use~). An alternate index can be defined only after its
associated base cluster has been defined, and it can be built only
afte~ its base has been loaded with at least one reco~d.

The primary index component of a base cluster and any alternate
index can be placed on a different device type than that of the
base cluste~ data component. The p~imary irtdex component and the
alte~nate index need not ~eside on the same type of di~ect access
device eithe~. In addition, the index component of an alte~nate
index can be on a different device than the data component of an
alte~nate index (the~e is one exception fo~ DOS/VS (especially fo~
the device IBM 3330): should the data component of a UNIQUE KSDS
reside on a 3330, the index component ~ust ~eside on a 3330 as
well).

Unlike the p~ima~y keys, which must be unique, identical alte~nate
keys may occu~ in mo~e than one logical ~eco~d. This allows the
sea~ch with a given alte~nate key to ~ead all base cluste~ reco~ds
containing this alternate key.

The BLDINDEX command causes a sequential scan of the specified base
cluste~, du~ing which alternate key values and primary keys (fo~ a
KSDS) o~ ~eco~d RBAs (fo~ an ESDS) a~e ext~acted and put together
to form alternate index ~eco~ds. These ~ecords are so~ted by
ascending alternate keys (no SORT p~ogram p~oduct is required).
The alte~nate index ~eco~ds a~e then const~ucted and written.

There may be more than one p~ima~y key/RBA pe~ alte~nate key. The
p~ima~y keys/RBAs will be in ascending sequence within an alte~nate
index reco~d afte~ ioading (see figu~es 13 and 14 on page 33 and
34). But this fact will not necessa~ily be true afte~ the base
cluste~ has been updated (especially the alte~nate key fields) or
new ~eco~ds added, as any new p~ima~y key/RBA will be inse~ted at
the end of the app~opriate alte~nate index reco~d.

30 VSAM PRIMER and REFERENCE

An alte~nate index is itself a KSDS. The data component of an
alte~nate index is simila~ in physical fo~mat to the data component
of a KSDS base cluste~. The alte~nate key ~eco~d contains system
heade~ info~mation, and fo~ a KSDS base cluster the alternate key
value (not compressed), and the primary key field (not compressed)
of the logical record in the base data set that contains the
alternate key. For an ESDS base cluster, the alternate key ~ecord
contains RBA values instead of primary key values.

The index component of an alternate index contains compressed
alte~nate keys in ascending collating sequence and is physically
and logically structured like a primary index (see page 18).

Alternate index maintenance can be handled by the user o~ automati­
cally by VSAM. Automatic alternate index updating can be specified
when defining the alternate index (see section 7.6.4 on page 110).
Specifying the UPGRADE attribute for an alternate index makes it
part of the upgrade set of alternate indexes fo~ a given KSDS o~

ESDS.

An alternate index can be part of the upg~ade set for a KSDS or
ESDS even though it is not explicitly used. The maximum number of
alte~nate indexes that can be pa~t of the upg~ade set for a given
KSDS or ESDS is 125. Having alternate indexes in an upgrade set
adds processing ~equi~ements, and the~efore affects pe~formance

when inse~ting or deleting ~eco~ds, o~ updating alternate keys in a
reco~d in the base cluster.

2 .7. 1 ALTERNATE INDEXES FOR KSDS

Consider as an example a KSDS data set whose reco~ds cont~in

customer number, address and the name of the salesman who takes the
o~ders (see figu~e 13 on page 33). The customer number is used as
prima~y key value. If the company plans a special sale in a city,
they may want to w~ite a note to all customers living in this area.
Without having an alternate index, the whole data set must be ~ead
and all ~ecords containing the name of the city must be ext~acted.
Or, if they want a summary of all the customers se~ved by a parti­
cular salesman, the whole data set must be read to find all reco~ds
with the salesman's name. However both of these requirements could
be easily met by using alte~nate indexes (section 2.7.5 on prge 36
explains how to access the base cluster ~ecords via the two alter­
nate indexes).

Since using an alte~nate index is time-consuming (c~eate, upg~ade,

etc.), it should only be considered for frequently used applica­
tions. Othe~wise sequentially extracting and sorting records,
running BLDINDEX with the REUSE option may be faste~ (the ~eusabil­
ity of a data set must be specified when the data set is defined).

Chapter 2. What Is VSAM 31

2.7.2 ALTERNATE INDEXES FOR ESDS

No~mally the only way to access an ESDS di~ectly is to sto~ethe
RBA value of each ~eco~d in a sepa~ate use~ data set. The RBA
value can be obtained by issuing a SHOWCB mac~o inst~uction (see
page 219) to obtain the 'RBA' field in the RPL (Request Pa~amete~
List; see page 218) just used.

One o~ mo~e alte~nate indexes can be built fo~ an existing ESDS
when the ~eco~d contains a field which can be used as alte~nate key
value. An alte~nate index fo~ an ESDS has the same st~u9tu~e as an
alte~nate index fo~ a KSDS base cluste~. The only 4iffe~ence is
that the alte~nate index ~eco~ds contain RBA values (4 bytes)
instead of p~ima~y key values (see figu~e 14 on page 34).

2.7.3 EXAMPLES FOR ALTERNATE INDEXES

Figu~es 13 and 14 contain the st~uctu~e of two alte~nate indexes
connected to a KSDS and an ESDS ~espectively.

Fo~ the data sets, the following is assumed:

The base cluste~ consists of 1 cont~ol a~ea
The cont~ol a~ea contains 3 cont~ol inte~vals
The ~eco~d length in the base cluste~ is 320 bytes (X'140')
The cont~ol inte~val sizes (CISIZE) fo~ base cluste~ and
alte~nate indexes we~e defined as follows:

Index cont~ol inte~vals = 512 bytes
Data cont~ol inte~vals = 102~ bytes

The JCL statements and the Access Method Se~vices commands to
c~eate a st~uctu~e like this (DEFINE, BLDINDEX etc.) a~e contained
in chapte~ 7.0.

Notes to fiqu~e 13 and 14:

In figu~e 13 and 14 the cont~ol fields (RDFs, CIDF) and the unused
space at' the end of each CI a~e not shown. The ~eco~ds in the
alte~nate indexes also contain heade~ info~mation, and the ~eco~~s
a~e sho~te~ than the ~eco~ds in the base cluste~, so actually mcx~
~eco~ds can be placed into a cont~ol inte~val.

VSAM places logical ~eco~ds in CI fo~mat, ensu~ing that (with the
exception of spanned p~ocessing) each CI sta~ts with the fi~st byte
of the logical ~eco~d. In this example in each base cluste~

cont~ol inte~val 54 bytes (1024 - 3*320 - 10 bytes cont~ol info~ma­
tion) ~emain unused.

Notes to fiqu~e 14:

The RBAs a~e always w~itten as a full wo~d bina~y intege~ (the RBA
values in the figu~e we~e sho~tened due to limited space).

32 VSAM PRIMER and REFERENCE

ALTERNATE
INDEX 1

(SALESMAN)

ALTERNATE
INDEX 2

(CITY)

BASE

CLUSTER

(CUSTOMER)

I

D

I
I
I
I
I
I
I
I
I
I
I
I

+ D I
I
I
I
I
I
I
I
I

" I
I
I
I
I
I

I L

D

unused

f r e e

unused

lA-city 10 15 39lB-city 12 36lE-city 23 1
us

"' F-Ci ty
21lG-city 41 I f r

---------+-

110 A-City Tom 112 B-City Mike 115

121 F-City Ben
123 E-City Fredl36

139 A-City Fredl41 G-City Tom

us = unused space
I = Index component
D = Data component

e e

A-City Fredl

B-City Billl

f r e e

Figure 13. Alternate indexes with KSDS base cluster

Chapter 2. What Is VSAM 33

ALTERNATE
INDEX 1

I

(SALESMAN)

ALTERNATE
INDEX 2

(CITY)

BASE

CLUSTER

D

I

D

(CUSTOMER)

D

Note:

Figure 14.

34 VSAM

unused

Ben 400 Bill 000 Fred 140 540 940 Mike 680

ITom 280 800 1 f r e e

unused

A-City 140 280 940 B-City 000 680 E-City 540

f r e e

RBA X' 0 ' X'140' X'280' X'3BF'
~ ~ ~ +

1 36 B-City Billl15 A-City Fredl10 A-City Tom I
RBA X'400' X'540' X'680' X'7BF'

.. .. t ..
121 F-City Ben \23 E-City Fred\12 B-City Mike)

RBA X'800' X'940' X' A80'
.. .. t

141 G-City Tom
139 A-City Fredl unused

I = Index component
D = Data component

See notes on page 32.

Alternate indexes with ESDS base cluster

PRIMER and REFERENCE

2.7.4 ~

Befoze accessing a KSDS oz ESDS (fzom now on both types of data set
will be simply called the base clustez) via an alteznate index, a
~ must be defined. A path is the means by which a base clustez
is accessed by way of its alteznate indexes. A path is defined and
named using the Access Method Sezvices pzogzam. At least one path
must be defined foz each of the alteznate indexes thzough which the
base clustez is to be accessed. When a given alteznate index is to
be used to pzocess a base clustez, the associated path must be
specified in an OPEN maczo instzuction. This causes both the base
clustez and the alteznate index to be opened.

If a path connects a base clustez with an alteznate index belonging
to the upgzade set (see page 31) of this base clustez, the pazame­
te% UPDATE/NOUPDATE can be defined foz the path to allow/pzevent
VSAM to update the alteznate index, when base cluste% recozds are
insezted, deleted or modified (if the alteznate key changes). See
also desc%iption on page 110.

In the following example the data sets were defined as follows:
ALTERNATE INDEX 1 with the name SALESMAN, ALTERNATE INDEX 2 with
CITY, and the BASE CLUSTER with CUSTOMER. Then PATH 1 was defined
with the name SALECUST, and PATH 2 with CITYCUST (the JCL and
cont%ol statements foz this example aze included in section 7.6.4
stazting on page 111).

ALTERNATE
INDEX 1

(SALESMAN)

\\
\ \

PATH 1
(SALECUST)

BASE
CLUSTER

(CUSTOMER)

Figuze 15. Alternate Indexes with Path

ALTERNATE
INDEX 2
(CITY)

II
/ ~ PATH 2
~ (CITYCUST)

Chaptez 2. What Is VSAM 35

2.7.5 ACCESS TO BASE CLUSTER AND ALTERNATE INDEX W/WO PATH

The following simple examples show the function of paths and
alternate in4exes to accessing the base cluster (use figures 13 and
15 as a ze£erence). The records read by each GET can be optionali~
placed by VSAM (RPL OPTCD=MVE) int~ the user's program input are~.

All accesses are seguential with no searqh argument. AIX is the
abbreviation for Alternate Index.

• Access the base cluster directly:

OPEN base cluster CUSTOMER

GET

GET

• Access the base cluster via AIX 1 :

OPEN path SALECUST

GET ..

GET ..

• Access the base cluster via AIXZ:

OPEN path CITYCUST

GET ..

GET ..

• 'Opening AIX1 by its data set name

OPEN alternate index SALESMAN

GET ..

GET ..

36 VSAM PRIMER and REFERENCE

110 A-City Tom

112 B-City Mike

I 21 F-City Ben

136 B-City Bill

110 A-City Tom

1 15 A-City Fred

IBen 21 I
IBill 36 1

• Opening AIX2 by its data set name

OPEN alteI:nate index CITY

GET ~ lA-city 10 15 39 1

GET ~ IB-city 12 36 1

The following examples show the effect of the UPGRADE/NOUPGRADE
attI:ibute when inseI:ting I:ecoI:ds into a KSDS clusteI: OI: into its
alteI:nate index (use figuI:e 13 on page 33 as reference). When
accessing the base clusteI: and the alternate index via a path, it
is assumed the path was defined with the UPDATE attribute, which
allows automatic updating of the alteI:nate indexes if necessary.

Example 1: Insert RecoI:d
CUSTOMER.

'40 G-City Bill' into base cluster

• Access the base clusteI: CUSTOMER diI:ectly OI: with a path
(UPGRADE defined for AIK1 and AIX2)

OPEN base cl. CUSTOMER (VSAM opens also AIX1,AIX2) (*='40')
or OPEN path S~LECUST (VSAM opens base cl.,AIX1,AIX2) (*='Bill')
or OPEN path CITYCUST (VSAM opens base cl.,AIX1,AIX2) (*='G-City')

('*' is the seaI:ch aI:gument used fOI: the insert)

PUT '40 G-City Bill' • update of base clusteI:, AIX1 and AIX2.

Base befoI:e

139 FI:ed/41 inseI:t A-City G-City Tom f I: e e

Base afteI:

139 FI: ed 140 Billl41 inseI:t A-City G-City G-City Tom

AIX1 befoI:e
IBen 211Bill 361FI:ed 391Mike 121] inseI:t 15 23 us

AIX1 afteI:
IBen 121 usl inseI:t 211Bill 36 40lFred 15 23 391Mike

AIX2 befoI:e
IF-City 21lG-City 411 afteI: f I: e e

AIX2 afteI:
IF-City 21lG-city 40 1

inseI:t 41 f r e e

Chapter 2 . What Is VSAM 37

Example 2: Change Reco~d '21 F-City Ben' into '21 G-City Ben'

• Access the base cluste~ CUSTOMER di~ectly (UPGRADE defined fo~
AIX1 and AIX2)
OPEN base cl. CUSTOMER (VSAM opens also AIX1. AIX2) (* = '21')

('*' is the sea~ch a~gtiment used fo~ the inse~t)

GET '21' (this is a GET UPDATE to change a ~eco~d)

modify the ~eco~d (in the use~ input a~ea)

PUT '21 G-City Ben' (this is a PUT UPDATE to change the~cd).
As a ~esult the base cluste~ and AIX2 is updated
(AIX1 is not updated. as Ben still points to 21).

Base befo~e
modification
o~ update

Base afte~
modification
o~ update

AIX2.befo~e

modification
o~ update

AIX2 afte~

modification
o~ update

121 F-City Ben 123

121 G-City Ben
123

IF-City 21lG-City

IG-City 41 40 2 1 I

E-City F~ed136 B-City Billl

E-City F:r ed 136 B-City Billl

41 40 1
f ~ e e oJ

f ~ e e

Note: The pointe~ (keys o~ RBAs) in an alte:rnate index :record
is always added at the end of the ~eco:rd and is not so~ted
between the existing pointe:rs.

2.7.5.1 UPDATE RESTRICTIONS FOR BASE CLUSTER AND AIX

All data fields in the base cluste~ may be changed without :rest~ic­
tion. When changing fields containing eithe~ the base key o~ an
alte~nate key. the following ~est~ictions apply:

• the base key (key of the base cluste~ index) cannot be changed. ,
:rega:rdless of which index is used fo~ access.

• an alte:rnate key cannot be changed if the GET fo~ UPDATE was
done th:rough the alte:rnate index.

• an alte:rnate key can be changed if the GET fo~ UPDATE was done
th:rough the base cluste~.

38 VSAM PRIMER and REFERENCE

2.8 VSAM DATA SET COMPARISON

Figure 16 shows the
organizations. For
chapter 2.0.

differences between the three VSAM dataset
further details see previous sections in

Function/Structure KSDS ESDS RRDS

Records sequence : primary key arrival seq. rel. rec. no.

sequential or sequential or sequential or
Access is: direct by direct by direct by

key or RBA RBA rel.record no

fixed fixed fixed
Record format: variable variable -

spanned spanned -
Defined free space insert - -
used to: change length - -

New records : anywhere at EOr at specified
(End of file) slot if empty

Change record length: yes no no

Delete a record: yes 1 no yes 2

Reuse space of a
deleted record: yes 1 - yes 2

Alternate Index : yes yes no

Reusable File : yes,if no AIX yes,if no AIX yes -.-
1 Deletion of a KSDS record results in physically adjusting

logical records within a data CI.

An attempt to insert a record later:

• with the same key, will be added back into the CI, at the
same place provided no other changes have occurred in the CI.

• with a key within the range of the CI will be added to the
CI, utilizing the space made available by the previous
dele~ion provided there is space for the logical record (and
additional RDFs, if required).

2 Deletion of an RRDS record results in that "slot's" data being
set ~o binary zeros and its control fields being set to reflect
it is 'not present'. Reuse of this space is determined by the
user in selecting the relative record number of this slot for
additipn of a record.

Figure 16. VSAM data sets comparison ..

Chapter 2. What Is VSAM 39

2.9 VSAM DATA SPACES

VSAM data sets can coexist on the same disk with nonVSAM data sets.
Space defined on a volume for exclusive use of VSAM is called a
VSAM data spac~ (for VSAM ownership concept see section 2.10 on
page 43). In OS/VS a VSAM data space can consist of a maximum of
16 extents on a volume which need not be contiguous (no restriction
in DOS/VS).A volume can contain multiple data spaces. The
maximum size of a data space is one volume. Several data spaces on
more than one volume may be treated logically as one data space
(e.g. for suballocated multivolume data sets).

VSAM uses two different data spaces:

• The suballocatable data space
• The unique data space

A sub allocatable data space can contain one or more data sets and a
data set can' occupy one or more suballocat~ble data spaces on one
or more volumes. A suballocatable data space is created by an
Access Method Services command DEFINE SPACE or DEFINE
MASTERCATALOG/USERCATALOG (see chapter 7.0 later in this manual).
All suballocatable data spaces on one volume are treated as one
logical space, and it is possible to delete all empty suballocata­
ble data spaces on a volume together. Individual suballocatable
data spaces can not be deleted (see also section 2.9.2 on page 43).

A VSAM cluster in a suballocatable data space is called a suballo­
cated cluster or a suballocated data set.

In this manual the expression 'VSAM data space/set' usually means a
suballocatable data space or a suballocated data set.

A unique data space (also called non-suballocatable data space
contains only one data set. This data set occupies only one
non-suballocatable data space on a volume (with up to 16 extents
(OS/VS only», but multiple volumes can be used for this data set.
A unique data space is automatically built when a cluster or
alternate index is defined with the UNIQUE attribute (see page 98).
DOS/VS users must specify a space value in the EXTENT job control
statement (not in an Access Method Services parameter), since a
unique data set occupies its own VSAM data space; the definition is
similar to a DEFINE SPACE command (see DOS/VS notes below).

A VSAM cluster/data set in a non-suballocatable space is calle~ ~

unique cluster or unique data set.

Unique data spaces cannot be shared with other VSAM data sets.

VSAM data spaces cannot be shared with nonVSAM data sets.

40 VSAM PRIMER and REFERENCE

DOS/VS notes to unique clusters:

A data space or a unique cluster can ~ be extended (no DADSM in
DOS/VS). A unique cluster can not be defined as first VSAM object
on a volume in a ,ecoverable catalog (see page 250).

Figure 17 shows examples for volumes containing a VSAM user catalog
(USER.CAT.ONE) and data spaces.

SPACEs 1-4 are suballocatable data spaces created with DEFINE
SPACE. The data set VSAM.UN2 was created with DEFINE CLUSTER with
the parameter UNI2UE.

The VSAM user catalog USER.CAT.ONE contains information about the
VSAM data spaces and the VSAM uni~ue ~ata sat/data space. In OS/VS
also the NONVSAM data sets could be cataloge4 and accessed via the
VSAM user catalog.

VOL001

This is a volume
with a VSAM cata­
log, 1 VSAM sub­
allocatable data
space, and 1 NON­
VSAM data set.

VOL002

SPACE 2

This is a volume
using the whale
volume as one V3AM
suballoeatable
data space.

Figure 17. VSAM data spaces

VOL003

SPACE 3

NONVSAM

SPACE 4

This is a volume
with 1 VSAM unique
data space, 2 VSAM
sub allocatable
data spaces, and 1
KONVSAM data set.

Chapter 2. What Is VSAM 41

2.9.1 CHOOSING SUBALLOCATABLE OR UNIQUE CLUSTER

The following is a list of advantages for the two types of alloca­
tion:

Advantages of SUBALLOCATION:

1. Since it is the default, there is no need to specify it on an
Access Method Services DEFINE command.

2. If the suballocated cluster is on a different volume from the
owning catalog, it is possible to DELETE the cluster without
the cluster's volume being mounted (if a nonrecoverable
catalog is used). This is because all the information which
needs to be changed by the DELETE is in the catalog.

3. The REUSE attribute, which allow~ the Enhanced VSAM user to
reload VSAM clusters without the need for DELETE/DEFINE, is
only supported for SUBALLOCATION clusters.

4. DOS/VS: when using suballocatable cluster, VSAM space manage­
ment allows dynamic space management otherwise not supported
in DOS/VS. No EXTENT information is needed in JCL to specify
begin and end of cluster.

OS/VS: VSAM space management tries harder than DADSM to avoid
fragmentation. When looking for a place to put a suballocat­
ed cluster, VSKM will try to find the smallest contiguous
amount of free space which satisfies the cluster's primary
allocation requirement, even if a more suitable allocation is
possible elsewhere on the volume.

Advantages of UNIQUE:

1. There is only one VSAM clu.ter component per VTOC entry, with
the possibility of making VTOC names the same as cluster
component names. The organization of handling DASD space is
the same as for nonVSAM data sets. VTOC related 'emergency'
operations, such as SCRATCH and zapping of password bits, can
be isolated to one VSAM cluster component.

2. On a volume with a large amount of VSAM space and a large
number of clusters, use of UNIQUE allocation may result in
better performance for DEFINE. This is because VSAM space
management expends a lot more energy in making the best
possible fit, for the DEFINE request (in DOS/VS EXTENT
information for begin and end of data set must be specified
in JCL, no VSAM space management needed). This may result in
high CPU times and many I/O operations to the catalog for
suballocated DEFINEs.

42 VSAM PRIMER and REFERENCE

2.9.2 YSAM DATA SPACE AND CLUSTER NAMES

A VSAM data space defined with DEFINE MASTER/USERCATALOG or DEFINE
SPACE (see section 7.3 and following sections starting on page 100)
has no NAME parameter and can therefore not individually be delet­
ed.

A unique cluster should be-named with meaningful names for each
CLUSTER, DATA and INDEX (KSDS or Alternate Index) to identify the
components on a LISTVTOC or a LISTCAT list (see printout examples
later in this manual).

A suballocatable cluster should be named with meaningful names for
CLUSTER, DATA and INDEX (KSDS or Alternate Index) to identify the
components on a LISTCAT list (see printout examples later in this
manual).

The following is an example on how the components could be named
for the cluster X.PAYROL:

Cluster
Data
Index

X.PAYROL
X.PAYROL.D
X.PAYROL.I

The NAME parameter is described in detail in section 7.2.5 on page
93.

~ VSAM OWNERSHIP CONCEPT

The concept of VSAM volume ownership is illustrated by the follow­
ing rules:

• An indefinite number of user catalogs can be connected to the
master catalog.

• A user catalog can be connected to more than one master catalog
(in different systems).

• User catalogs can not be cataloged in other user catalogs (if a
master catalog with user catalog connector entries is used as a
user catalog, its user catalog connector entries are not used).

• A volume containing a catalog is owned by that catalog only.
• A volume may only belong to one catalog.
• A catalog can own more than one volume.
• A VSAM data set must be cataloged (defined) in the same catalog

which owns the data set's volumes. This restriction does not
apply to nonVSAM data sets, which can be on any volume, and
cataloged in more than one VSAM catalog and/or CVOLs (MVS
only).

• MVS CVOLs can only be cataloged in the master catalog.
• VSAM ownership can only be relinquished with DELETE SPACE or

DELETE CATALOG (also with ALTER REMOVEVOLUMES and IKgVDU
(DOS/VS) (described later».

Chapter 2. What Is VSAM 43

2.10.1 THE VSAM 'OWNERSHIP BIT'

VSAM ownership of a volume is controlled by the VSAM ownership bit.
If this bit is ON, the volume is owned by a VSAM catalog. There is
no indication which catalog owns the volume. When a catalog
attempts to allocate space on a volume (by means of DOS/VS system
routines or OS-DADSM routines), the following sequence is started.

The VSAM ownership bit is bit 0 in byte 84 (X'54') in the F4-DS~~
(Label) (see section A.2.2 on page 246 note 4).

ownership bit
examined

OFF

vol\
entry\ Y

no space
allocation

allocate
space

allocate
space

Figure 18. VSAM ownership concept

44 VSAM PRIMER and REFERENCE

·1L.... __ s_e_~_N_b~i_t_----'

2.10.2 THE VSAM 'DATA SET SECURITY BIT'

When a VSAM catalog, A VSAM space, o~ a UNIQUE VSAM data set is
allocated on a DASD volume a F1-DSCB (Label) is w~itten into the
VTOC.

To p~otect this VSAM object f~om being accessed by othe~ access
methods the 'data set secu~ity bit', bit 3 in byte 93 (X'5D') is
set ON (see section A.2.2, page 2~6 notes 10 and 14). In OS/VS
systems the 'data set secu~ity bit' is also called and used as
'OS/VS passwo~d p~otection bit' (not to be mixed up with the VSAM
passwo~d p~otection).

~ VSAM SPACE ALLOCATION

In DOS/VS, VSAM ~outines a~e used to allocate space fo~ catal~~s

and data spaces (JCL EXTENT values necessa~y), and to suballocate
space fo~ VSAM data sets in a suballocatable space (no JCL EXTENT
values necessa~y).

In OS/VS1 and OS/VS2 (SVS and MVS), VSAM catalof/DADSM ~outines,
instead of OS/VS catalog and DADSM ~outines, a~e used to p~ocess
the catalog and to allocate space on VSAM catalog and data set
volumes. VSAM ~outines a~e used to allocate space in a suballocat­
able data space.

The~e a~e five majo~ Access Method Se~vices commands (see command
ove~view sta~ting in section 4.0 on page 57) which cause an attempt
to allocate space. The table below shows these five commands and
the space management functions which occu~ when these 5 commands
a~e executed and an attempt is made to allocate space on a volume
(see also desc~iption of VTOC on page 245).

Chapte~ 2. What Is VSAM 45

POSSIBLE DEFINE DEFINE DEFINE DEFINE DEFINE
FUNCTIONS CATALOG SPACE SPACE CLUSTER CLUSTER

CANDID. UNIQUE SUBALL.

test owne:r:ship bit
fo:r: OFF * *1 * *1

set owne:r:ship bit ON * *1 * *1

create a volume entry
in catalog * *1 * *1

DOS/VS VSAM routines
(EXTENT value :r:eq.)
o:r: OS/DADSM :r:outines
allocate space from
disk space and w:r:ite * * *2 *3
F1-DSCB (Label) with
X, 10 ' in offset X'SD'
(VSAM protection bit)

POS/VS VSAM routines
or OS/VSAM routines *
allocate the space
from VSAM data space

* indicates that the function takes place for the command.

1 this function takes place only when this is the first U~AM
allocation on this volume.

2 For a nonrecoverable catalog no space is allocated and no F1
PSCE is written. In OS/VS if the catalog is :r:ecove:r:able, a
data space with a primary and secondary allocation of 1
cylinder is allocated by OS/VS DADSM on the same volume as
the data space to contain the CRA and a F1-DSCB is w:r:itten
for it (in DOS/VS this command is not allowed for a recovera­
ble catalog).

3 Two F1 DSCBs (Labels) are written one fo:r: the data component
and the second for the index component of the cluster (in
DOS/VS using a :r:ecove:r:able catalog, the volume must al:r:eady
be owned by that catalog, before executing this command).

Fig~re 19. VSAM space allocation

46 VSAM PRIMER and REFERENCE

3.0 CATALOG CONSIDERATIONS

~ CATALOG PHILOSOPHY

All VSAM data sets must be cataloged in a VSAM catalog.

Information
location and
catalog.

required to process a VSAM data set,
physical characteristics, is contained

such as
in the

its
VSAM

There must be one VSAM master catalog for a DOS/VS or OS/VS system
which is planned to use VSAM.

In MVS the VSAM master catalog is the standard system catalog.

Note that a VSAM master catalog cannot be stored on a 3850 mass
storage volume.

Besides t~e VSAM master catalog a theoretical
VSAM user catalogs can be created (with Access
used. VSAM user catalogs are optional and have
as the VSAM master catalog.

unlimited number of
Method Services) and

the same structure

VSAM user catalogs should be used to reduce the size of the VSAM
master catalog (to reduce catalog processing time), minimiz~ th~

effect of a damaged master catalog, and make VSAM data sets porta­
ble from one system to another (a pack containing a VSAM user
catalog and its VSAM data sets can easily be moved from one system
to the other without loading or reloading the data sets which is a
time consuming operation; only the user catalog must be connected
to the other VSAM master catalog with Access Method Services.

Each catalog is an individual or special form of key sequenced data
set. Each VSAM user catalog has a connecting pointer entry in the
VSAM master catalog. Each VSAM data set is cataloged either in the
VSAM master catalog or in one VSAM user catalog, but not both.

All VSAM data sets on the same volume must be cataloged in the S&W@
VSAM catalog. Then, all VSAM data spaces (suballocatable or
unique) on the same volume belong to the same catalog (because of
this, users who share a volume must also share the datalog).
Duplicate data set names in the same VSAM catalog are not pezmitted
but a given data set name can appear in more than one VSAM catalog.

DOS/VS does allow nonVSAM entries in a VSAM catalog, but makes no
use of these entries (non-VSAM entries cannot be defined under
DOS/VS when Using a recoverable catalog).

In OS/VS nonVSAM data sets can also be cataloged in a VSAM catalog.
In MVS, a generation data group can also be cataloged in a VSAM
catalog.

Chapter 3. Catalog Considerations 47

Figu%e 20 shows a possible st%ucitu%e of VSAM envi~onment, consist­
ingof the VSAM maste% catalog (VSAM.MCAT) and two VSAM use%
catalogs.

The maste% catalog owns volume SYSRES (the catalog volume) and
volume VOL004 with the VSAM data set VSAM.STATUS on it.

The maste% catalog also contains use% catalog connecto% ent%ies
pointing to USER.CAT.ONE and USER.CAT.TWO.

VSAM use% catalog USER.CAT.ONE 'owns' volume VOL001 and VOL002
containing the VSAM data sets PAYROLL.F, EMPLOYEE.E, and INVOICE.

VSAM use% catalog USER.CAT.TWO 'owns' volume VOL003 containing the
VSAM data set NEWCUST.

SYSRES

VOL001 VOL002 VOL003 VOL004

NEWCUST

Figu%e 20. VSAM catalogs

48 VSAM PRIMER and REFERENCE

~ CATALOG STRUCTURE

The following is tp~ catalog layout of the usez catalog. which is
defined in section ~7.4 on page 102. Foz fuzthez VTOC infozmation
see pzintout and explanation of the VTOC in section ·A.2.2 on page
245. The CRA (catalog zecovezy azea) is explained on page 250.

F 1 : Z9999994.VSAMDSPC.T .. X'6D'-'70' = X'00010000'
IJ

F4: X'55'-'56' = X'OO37'1 I-

-+-

Low-Keyzange (30 Tzacks)

(20 data tzacks + 10 index sequence set tzacks)

2 OB2:
Index (3 tzacks)

High-Keyzange (3 tzacks)
2 112 L..J..

Notes:

CRA (1 cylindez)

1 The eRA and its pointez in the F4 DSCB aze only included
foz a zecovezable VSAM catalog (a pzintout of a F4 DSCB is
shown on page 245).

X'0037' is the zelative tzack numbez wheze the CRA starts.
The calculation can be done as follows:

X'0037' = 55 = 38 + 17 = Cyl 2 + 17 (X'11') tzacks

2: The stazting and ending values foz the catalog aze
extzacted fzom LISTCAT ALL output as explained and shown
in section 7.9.2.1 on page 148.

Figure 21. VSAM catalog allocation

Chaptez 3. Catalog Considezations 49

A VSAM catalog is a special KSDS, and consists of anindeR and a
data component. The data component, howevez. consists of two
pazts: Low-Kevzanqe and Hiqh-K@vzanqe (see~etailed ~escziptionof

nozmal Keyzanges in section A.1.1 on page 2~1 and section A.1.2on
page 2~1).

The catalog Keyzanges aze used in a diffezent way then nozmal
Keyranges (it i~ actually a design philosophy; see also comments on
page 2~2). The splitting of the data component into High-Keyzange
and Low-Keyzange and placing the index between is Qlllx used in a
catalog KSDS.

When defining a catalog, the size of the entize data ~omponent and
the size of the index can be specified. but the size of the index
component will always be one so-called 'allocation unit' (one
contzol azea)! which is thzee oz five tzacks (allocation unit sizes
aze desczibed on page 2~9). One allocation unit is one contzol
azea.

The defined data component size is automatically zounded down into
an integez numbez of allocation units. Then '10~ (in DOS/VS Rel.3~
20~) (minimum 1 allocatfonunit) is used foz the High-Keyzange and
the zest fozLow-Keyzange.

To impzove the pezfozmance. the index component is placed between
the Low-Keyzange and the High-Keyzange, and the IMBED function (see
descziption on page 89) is always used foz a VSAM catalog.

3.2.1 CATALOG CONTENTS

The following infozmation is zecozded in catalog zecozds foz a VSAM
data set:

• Device type and volume sezial numbezs of volumes containing the
data set.

• Location of the extents of the data set and second~zy alloca­
tions, if any.

• Attzibutes of the data set. such as contzol intezval size,
physical zecozd size. numbez of contzol intezvals in a contzol
azea. location of the pzimazy key field foz a KSDS. etc.

• Statistics, such as the number of inseztiorts. updates, zetziev­
als, splits, etc.

• Passwozd pzotection infozmation.
• An indication of the connection. between data sets and theiz

index(es): the index and data components of a KSDS; the index
and data components of an alteznate index; the alteznate index
and base clustez of a path; and an alteznate in~ex and upgzade
set and its base clustez.

• Histozic infozmation. such as czeation and expization dates.
ownez identification. etc.

50 VSAM PRIMER and REFERENCE

A VSAM catalog also contains info~mation regarding the location of
data spaces and available space on volumes that contain VSAM data
sets. Therefo~e, a volume containing a VSAM data set need not tp
mounted in orde~ to determine whethe~ it contains available spac~
(but if it is to take any of that space and the catalog is recover-­
able the owned volume in question must be mounted).

3.2.1.1 CATALOG ENTRY TYPES

Seve~al types of ent~iesa~e used in a VSAM catalog to describe the
various objects the catalog desc~ibes (data sets, available space,
etc.) .

The ent~y types a~e as follows (thei~ entry types a~e included in
parenthesis):

• Alias (MVS only)(X)
• Alte~nate index

Alternate index (G)
Data component (D)
Index component (I)
Upgrade set (Y)

• Catalog control ~ecord (L)

• Cluster
Data set cluster (C)
Data component (D)
Index component (KSDS only) (I)

• Extension record (fo~ all ~eco~ds,except the volume record)(E)
• F~ee ~ecord (F)
• Generation data g~oup(MVS only) (B)

• NonVSAM (OS/VS only),(can be defined in DOS/VS (not recoverable
catalog» (A)

• Path (R)
• Self-describing ent~ies (see page 242) (no ent~y type)
• User catalog (used in maste~ catalog only) (U)
• Volume (contains volume and space information) (V)
• Volume extension record (W)

A given data set may requi~e mo~e than one ent~y type for its
description, plus extension ent~ies when the data set is extended
and/or various volumes are used. An ESDS, for example, requires a
cluster and data component entry.

3.2.1.2 CATALOG SHARING

A maste~ or use~ catalog in one VSl or VS2 operating system can be
shared with another VSl or VS2 operating system as a master or user
catalog with one exception: a master catalog in one VS2 operating
system can be shared with another VS2 system only as a user catalog
(not as a master catalog). Catalog management routines control this
sharing.

Chapter 3. Catalog Considerations 51

No sharing of master er user catalogs is supported under two or
more DOS/VS systems simultaneously. Nevertheless, read-only
sharing of the catalogs is possible. Therefore no changes of the
data sets is allowed, which may change the content of the catalog.

3.3 VSAM PASSWORDS

An expanded password protection facility is supported for VSAM.
Optionally, passwords can be defined for clusters, cluster compo­
nents (data component and index component), alternate indexes ah1
components, paths, and VSAM catalogs. VSAM passwords are kept i~~

VSAM catalog entries only. The password can be supplied by th~
programmer via the ACB (a VSAM control block similar to the DOS/VS
DTF or the OS/VS DCB used by ether access methods; see description
on page 217).

If password protection is indicated for a VSAM data set and the ACB
does not specify a password (see page 55) or specifies it incor­
rectly, the operator may supply the correct password for the data
set to be opened. A MVS TSO user can also supply VSAM passwords.
The number of retries allowed (from 0 to 7) can be specified with
the ATTEMPTS parameter (default is 2) in the DEFINE command.

Four levels of password protection are provided:

• LEVEL 1: MASTER PASSWORD

Full access, which allows access to a data set, its
index(es), ~nd its catalog entry. Any operation (read, add,
update, delete) can be performed on the data set and its
catalog entry. The master password of the base KSDS must be
specified, for example, when an alternate index is to be
created for the base, and for other cases.
The master password is required for altering (ALTER) and
deleting (DELETE) VSAM data sets.

• LEVEL 2: CONTROL INTERVAL PASSWORD (for special usage)

Control interval access, which allows the user to re~d and
write entire control intervals using the control interval
interface. All read, write,'and update operations can be
performed at the logical record level as well. This facili­
ty is not provided for general use and should be reserved
for system programmer use only.

• LEVEL 3: UPDATE PASSWORD

Update access, which allows logical records
retrieved, updated, deleted, or added.

52 VSAM PRIMER and REFERENCE

to be

For the catalog the following applies:

DOS/VS, VS1, SVS: Update password is required for
defining VSAM data sets and nonVSAM data sets in VS1
and SVS). No passwords are required in VS1 and SVS for
altering (ALTER) and deleting (DELETE) a nonVSAM data
set.

~ Update password is required for defining (DEFINE)
VSAM and nonVSAM data sets and for altering (ALTER) and
deleting (DELETE) nonVSAM data sets (including GDGs and
ALIASes).

• LEVEL 4: READ PASSWORD

Read access, which allows access to a data set for read
operations only. Read access to the catalog entries of the
data set (except password information) is permitted also.
No writing is allowed.

A password can be defined for a given VSAM data set for
each level protection: master password, control interval
access password, read- write-add-delete password, chi
read-only password. When multiple passwords are defined ±O~
a data set, the password given when the data set is opene~
establishes the level of protection to be in effect fer
this OPEN.

Authorization to process a VSAM data set can be supplemented by a
user-written security authorization routine.

If supplied, such a routine must reside in the following library:

• DOS/VS

• OS/VS

System CIL or Private CIL (Core Image Library).

SYS1.LINKLIB or in a library to be located by the
system (e.g. in a JOBLIB).

It is entered during OPEN processing after password verification
has been performed by VSAM, unless the master access password was
specified. A user security authorization record of up to 255 bytes
maximum can also be added to the catalog entry for the data set.
This record can supply data to the user-written security authoriza­
tion routine during its processing. For further information see
the appropriate Access Method Services manuals as listed on page 2:
The VSAM catalog must be password protected to support password
protection for cluster passwords.

If passwords are not specified on all levels, the highest level
password is propagated to the higher levels (see figure 22).

Chapter 3. Catalog Considerations 53

The following chart shows some combinations of specified passwords
and the passwords assigned by VSAM:

Passwords specified by the user Passwords assigned by VSAM

Read Update CI Master Read Update CI Master
-~

R - - - R R R R

- U - - - U U U

- - C - - - C C

- - - M - - - M

R U - - R U U U

R U - M R U - M

R - - M R - - M

- U - M - U - M

Figure 22. VSAM passwords

Passwords for catalogs are strongly recommended to prevent unau­
thorized deletion of VSAM objects (e.g. clusters, data spaces.~n!
catalogs).

In OS/VS systems the VSAM master catalog master password is
required for volume cleanup (see page 181) and other severe
commands. Therefore it is very important to have at least the VSAM
master catalog password protected.

Passwords can be defined using Access Method Services commands (see
definition in sections 7.4 on page 102 and 7.6.4.11 on page 121).

Section 3.3.1 on page 55 contains information about how to specify
a password in a user-written program.

54 VSAM PRIMER and REFERENCE

I
\

3,3,1 HOW TO SPECIFY PASSWORDS IN A USER-WRITTEN PROGRAM

As shown in figuze 47 and 48 on pages
(see also descziption section 8.11.1.1
pazametez:

PASSWD=addzess

212 and 215 the ACB maczo
on page 217) contains a

'addzess' can be substituted by a symbolic field name pointing to a
field (maximum length 1+8 bytes) with the following fozmat:

B Passwozd

1 - 8

B = length of the passwozd (binazy value)

If a passwozd is not supplied when a passwozd pzotected data set is
to be opened. the system opezatoz is pzompted to entez the pass­
wozd.

This pzompting of the opezatoz is contzolled by the numbez of
attempts to entez the passwozd defined foz the data set with the
ATTEMPTS pazametez (if this pazametez was not specified. the
default value ATTEMPTS=2 is assumed).

Chaptez 3. Catalog Considezations 55

56 VSAM PRIMER and REFERENCE

~ ACCtSS MtTHOD SERVICtS (OVtRVIEW OF FUNCTIONS)

Access Method Sezvices consists of the following functions (com­
mands):

• ALTER changes att~ibutes in the VSAM catalog fo~ pzeviously
defined VSAM objects.

• BLDINDEX so~ts and loads pointez infozmation into a newly
defined alte~nate index.

• CHKLIST lists data sets, opened when a checkpoint was taken
(OS/VS only).

• CNVTCAT convezts OS/VS catalogs into VSAM catalogs (MVS only)
(this is a vezy special function and is not desczibed
in this manual).

• DEFINE defines VSAM objects, such as catalogs, cluste~s, etc.

• DELETE delet~s VSAM objects.

• EXPORT copies/expo~ts a VSAM data set with
infozmation to a sequential data
catalog to access the data sets).

zelated catalog
set (using the

• EXPORTRA expo~ts data sets with zelated catalog info~mation,

and nonVSAM, GDG, and Alias catalog ent~ies (using the
catalog zecovezy a~ea to access the data sets).

•

•

IMPORT impozts and zeozganizes a VSAM data set, which was
pzeviously expozted by EXPORT.

IMPORTRA impo~ts and zeozganizes
catalog ent~ies, which
EXPORTRA.

data sets and impozts
we~e p~eviously expozted

VSAM
by

• LISTCAT lists VSAM catalog infozmation.

• LISTCRA lists and optionally compazes the catalog ~ecove~y

azea info~mation with the the catalog zeco~ds.

• PRINT

• REPRO

p~ints contents of ISAM, SAM, o~ VSAM data sets.

loads, copies, convezts, mezges, ~eo~ganizes data sets
and catalogs.

• RESETCAT synchzonizes and zesets a catalog (using catalog
zecove~y azeas)

• VERIFY zesets catalog infozmation foz a VSAM data set, which
was not closed in a no~mal way (e.g., ha~dwaze

malfunction).

Chaptez ~. Access Method Sezvices Ove~view 57

The following commands ar~ use,d to. control the exec~tion of Access
Method Services commands (modal c6mmands):

• IF and DO control sequenge of executionb.~ed on values o!
condition codes issued by VSAM or changed by the user
through the SET command.

• PARM specifies processing options to be ti.sed during execu
tion.

• SET changes or resets condition cod~s.

.!:L..1 ALTER

This command is used to change att~ibute~ in preViously de~in.d
catalog entries, for e~ample to change data s~t pa~swords, free
space specifications, etc.

See the appropriate Access Method Services m~ntial (list~d ~n page
2) for correct coding; an example is also shown on page 121.

In figure 23 the mastet password of ~ntry CUST is altered from WX
to YZ. UCAT01 is the usez catalog name. The VSAM data setVSAMOLD
is then renamed to VSAMNEW.

VOL001 VOL001

UCAT01 UCAT01

CUST MPWD=WX CUST MPWD=YZ

VSAMOLD VSAMNEW

OLD NEW

Figure 23. Logical function of ALTER

58 VSAM PRIMER and REFERENCE

Command coding:

. ALTER CUST
MRPW(YZ)

ALTER vsAMOLD
NEWNAME(VSAMNtW)

4.2 BLDINDEX

This command is used to create (load) an alternate index for a base
cluster. The alternate index must already be defined, and the base
cluster must have at least one record.

BLDINDEX reads all base cluster records and extracts the primary
keys (for KSDS base cluster) or the RBAs (for ESDS base cluster),
and the related alternate keys. This information is then sorted
and loaded into the alternate index.

See the appropriate Access Method Services manual (listed on page
2) for correct coding; an example is also shown on page 113.

In figure 24 CUST.ALT.IND is an alternate index for base cluster
CUST.

Command coding:

VOL002 VOL002 BLDINDEX INFILE (...) -
OUTFILE(...) -

CUST CUST

OLD NEW

Figure 24. Logical function of BLDINDEX

4.3 CHKLIST (OS/VS ONLY)

This is not a VSAM command and is not used for normal VSAM proces­
sing.

During processing, a program can issue the CHKPT macro to record
various information for use in restarting the program in the event
of an error. This is called taking a checkpoint.

The CHKLIST command lists the tape data sets which were open at the
time the checkpoint was taken, thus identifying the tape data sets
which need to be mounted for re~tart.

Chapter 4. Access Method Services Over~iew 59

4.4 DEFINE

This command is used to cxeate catalogs, and catalog entxies fox
altexnate indexes, clustexs, data spaces, paths, and nonVSAM data
sets. In MVS catalog entxies fox ALIASes, GDGs, and PAGESPACEs can
also be cxeated. DEFINE cxeates the catalog entxy fox a VSAM
object and allocates space fox this object.

See the appxopxiate Access Method Sexvices manual (listed on page
2) fox coxxect coding; examples axe also shown staxting on page
100 .

Figuxe 25 shows the definition of a usex catalog.
UCAT02 is the new usez catalog.

VOL003

unallocated

space

OLD

VOL003

UCAT02

NEW

Command coding:

DEFINE UCAT
(NAME(UCAT02)
VOL(VOL003)
SPACE (CYL(20 1»-

Figuxe 25. Logical function of DEFINE USERCATALOG

In figuze 26 the KSDS clustez (C),
(I) is added to UCAT02 (UCAT02 is
UNIQUE data space is built.

data entzy (D), and index entzy
the usex catalog name) and a

It is assumed the usez specified the following names: CITY (clus­
tez), CITY.D (data component), and CITY.I (index component) (see
naming zestzictions foz MVS in section 7.2.5 on page 93). The
unique space foz the clustez CITY is to be allocated fzom the same
volume.

VOL003

UCAT02

space

OLD

VOL003

UCAT02
D: CITY.D
I: CITY.I
C: CITY

CITY

NEW

Command coding:

DEFINE CLUSTER
(NAME(CITY)
VOL(VOL003)
UNIQUE
SPACE(CYL(5 1»)-

DATA
(NAME(CITY.D»

INDEX
(NAME(CITY.I»

Figuze 26. Logical function of DEFINE CLUSTER

60 VSAM PRIMER and REFERENCE

4.5 DELETE

This command is used to delete catalogs and catalog entries.

See the appropriate Access Method Services manual (listed on page
2) for correct coding; eKamples are also shown starting on page
174.

In figure 27 the cluster entry with its component entries is
deleted from UCAT02. The allocated UNI2UE space is freed to be
used by the system.

Command cod:i,ng:

VOLOO3 VOLOO3 DELETE CLUSTER
(NAME(CITY)

UCAT02 UCAT02 VOL(VOLOO3)
D: CITY.D UNI2UE ...)

I: CITY.I
CITY

CITY
space

OLD NEW

Figure 27. Logical function of DELETE

~ EXPORT/IMPORT

These commands are used to unload/reload VSAM data sets for backup
and/or transportation.

The EXPORT command has, among others, two important options:
TEMPORARYlpERMANENT. EXPORT PERMANENT unloads the data set and
deletes the entries from the catalog. EXPORT 1EMPORARY produces an
unloaded copy of the data set, and marks the catalog entry, to show
that a temporary copy eKists. In the unloaded format, the data set
is not accessible.

Chapter 4. Access Method Services Overview 61

EXPORT uses the VSAM catalog to copy all related information such
as cluster entry, data entry, and index entry (for KSDS only) from
the catalog to the target data set, a SAM VBS data set (the user
allocated via JCL).

IMPORT redefines and reloads the data set.

These commands can also be used to disconnect/reconnect a user
catalog from/to a VSAM master catalog (if a user catalog is discon­
nected from the master catalog by deleting its connector entry, it
cannot be accessed from that system). No unload/reload is neces­
sary.

See the appropriate Access Method Services manual (listed on page
2) for correct coding; examples are also shown starting on page
122 .

In figure 28 the unloaded copy of CITY contains data and catalog
information for the data set CITY. The'unloaded copy is to be
stored on disk or tape, JCL must be specified as for any other
nonVSAM data. set (this is a SAM VBS data ·$et).

EXPORT

8 Command coding:
VOL003

UCAT02
EXPORT CITY

INFILE C . ..)
I CRA OUTFILE (...)
4

CITY
VOL005

Figure 28. Logical function of EXPORT to disk or tape

62 VSAM PRIMER and REFERENCE

In' figu~e 29 cluste~ CITY is xesto~ed by using the sequential VSAM
backup cxeated by a pxevious EXPORT.

IMPORT

G VOL003

UCAT02

CRA

CITY
VOL005

J Command coding:

IMPORT INFILE C ••.) -
OUTFILE (...) -

Figuxe 29. Logical function of IMPORT fxom disk ox tape

4.7 EXPORTRA/IMPORTRA

If cextain data sets axe no longex accessible because of damage to
thei~ catalog entxies, and that catalog is xecovexable, these data
sets can be unloaded using the EXPORTRA command.

In figuxe 30 EXPORTRA uses the CRA (catalog xecovexy axea) and not
the VSAM catalog to access the data set CITY to be xecovexed. It
copies all xelated infoxmation such as clustex entxy, data entxy,
and index entxy fxom the catalog xecovexy axea to the taxget data
set (the taxget SAM data set is allocated by the usex JCL, see
EXPORT) .

In figu~e 31 IMPORTRA is used to ~eload the data set CITY b~d

~ebuild the coxxesponding catalog ent~ies. The logical functior. is
the same as fox EXPORT/IMPORT without using the cat~log to find the
data set.

The EXPORTRA/IMPORTRA commands a~e also desc~ibed in section A.6.3
on page 259.

Chaptex 4. Access Method Sex vices Ovexview 63

VOL003

UCAT02

, CRA
L.,.

CITY

EXPORTRA

VOL005

Command coding:

EXPORTRA CRA (
(dname ENTRIES­
«CITY» »
OUTFILE (....)

Figu~e 30. Logical function of EXPORTRA to disk o~ tape

IMPORTRA

8 VOL003

UCAT02
Command coding:

CRA IMPORTRA INFILE (...)-
OUTFILE (...)-

CITY
VOL005

Figu~e 31. Logical function of IMPORTRA f~orn disk o~ tape

64 VSAM PRIMER and REFERENCE

4.8 LISTCAT

This command is used to list the VSAM catalog ent~ies o~ pa~ts of
them. It is ~ecommended to execute a LISTCAT command afte~ any
DEFINE command. Examples a~e shown and explained sta~ting on page
140.

4.9 LISTCRA

This command is used to:

• List ent~ies in the catalog ~ecove~y a~ea (CRA)

• Indicate mismatches
catalog

(if any) between the CRA and the actual

• Dump the contents of the CRA(s)

Examples a~e shown sta~ting on page 160.

~ PRINT

This command is used to p~int ISAM, SAM o~ VSAM data sets, o~ pa~ts

of these data sets. The p~intout can be obtained in hexadecimal,
cha~acte~ o~ dump fo~mat.

Examples a~e shown sta~ting on page 109.

Chapte~ 4. Access Method Se~vices Ove~view 65

L..11 REPRO

This command transfers data between i data sets. If data are to be
transferred into an empty data set, it always reorganizes the
target data set.

When copying an RRDS to a nonRRDS, empty slots are not copied. The
slot numbers of the non-empty slots are lost.

When copying an RRDS to an RRDS, each non-empty slot in the source
is copied to the same slot in the target. Empty slots are not
copied.

The different functions are:

• Add records to the end of an ESDS

• Copy a VSAM catalog (MVS only) (move a catalog to another disk)

• Load/copy a VSAM data set

ISAM ~ SAM (backup/unload an ISAM
ISAM ~ VSAM (convert an ISAM data
SAM ~ SAM (copy, e . g. tapes)
SAM ~ VSAM (load a VSAM data
VSAM ill SAM (ba"kup/unload a
VSAM ~ VSAM (copy/merge data)

• Merge records into KSDS or RRDS

• Punch or print

ISAM data sets
SAM data sets
VSAM data sets

set)
VSAM

• Unload/reload a VSAM catalog (backup)

data set)
set to VSAM format)

data set

See the appropriate Access Method Services manual (listed on
page 2) for correct coding; examples are also shown starting on
page 108.

66 VSAM PRIMER and REFERENCE

Fiqures 32 - 34 'show a few functions of REPRO:

Load a VSAM data set from disk, cards, or tape
For the following functions. different REPRO commands
used.

have to be

E·,)
VOL007

Command codinq:

REPRO INFILE (...)
OUTFILE (...)

DOS/VS card input:

REPRO INFILE (SYSIPT) -
OUTFILE C ...)

cards immediately
after the command

/&
/*

Figure 32. Logical function of REPRO (load) from disk or tape

Copy/convert data set to data set

Command codinq:

VOLOOS copy VOL009 REPRO INFILE (...)
OUTFILE (...)

VSAMIN1

convert REPRO INFILE (...)
OUTFILE(...)

STOCK

ORDER

Figure 33. Logical function of REPRO (copy data)

Chapter 4. Access Method Services Overview 67

Backup data to tape

The output tape data set contains no catalog information.

Command coding:
VOL010

REPRO INFILE (...)
OUTFILE(...)

SALES

Figure 34. Logical function of REPROCbackup data sets/catalogs)

hli VERIFY (ACCESS METHOD SERVICES)

~his command is used to ensure a catalog reflects the correct 'high
used RBA' of a data set (the 'high used RBA' points to the last
byte used in the VSAM data set; see LISTCAT explanation on page
156). It should be used after an OPEN~error caused by a previous
system failure or an ABEND condition while updating the data set.

VERIFY cannot be used for empty data sets (when the high~used RBA =
o in the catalog cluster entry). This condition will also occur
when an ABEND or system failure occurs during the load of the data
set with the SPEED QX RECOVERY option specified (see section 7.2.8
on page 97). or while reloading a reusable data set specifying the
REUSE option (see page 16).

An example is shown on page 126.

For further explanation see also section 4.13. which describes the
VERIFY macro.

~ VERIFY (MACRO)

There is the VERIFY macro itself. which only update the 'high-used
RBA' in the control block structure and not in the VSAMcatalog.

The Access Method Services command VERIFY opens the data set.
issues the VERIFY macro to update the control blocks. Access
Method Services then issues a CLOSE macro and it is this VSAM CLOSE
that updates the VSAM catalog.

Section 4.12 describes the Access Method Services VERIFY command
and not the VERIFY macro itself.

68 VSAM PRIMER and REFERENCE

~ RESETCAT

This command synchronizes a recoverable VSAM catalog with its
volumes. For example if a VSAM volume becomes inaccessible and a
backup copy of the catalog volume is used to restore the volume to
a previous level, the volume may be out of synchronization with its
catalog.

RESETCAT compares the relevant catalog entries with the entries in
the CRA on that volume, and resets the catalog entries where
necessary, so that the catalog is synchronized with the volumes.

RESETCAT usage for unload/reload and device conversion is described
on pages 254 and 259.

See the appropriate Access Method Services manual (listed on page
2) for'correct coding; an example is also shown on page 164.

VOLA01 VOLA02 VOLA03

UCAT07 ACCOUNT PRODUCT ~ TIME.AB INVEST

TIME.AB +1
CRA CRA CRA

- RESETCAT

Command coding:

RESETCAT CAT UCAT07
CRAFILES «VOLA01 ALL)

(VOLA02 ALL)
(VOLA03 ALL))

WORKCAT (name of a second or master catalog) -
WORKFILE (workfile d-name)

Figure 35. Logical function of RESETCAT

Chapter 4. Access Method Services Overview 69

70 VSAM PRIMER and REFERENCE

5.0 RELATIONSHIP OF DATA ACCESS TO DATA ORGANIZATION

~ OVERVIEW OF ACCESS METHODS OTHER THAN VSAM

• BASIC DIRECT ACCESS METHOD (BDAM)

In the Basic Direct Access Method (BDAM). records within a data
set are organized on direct access volumes in any manner chosen
by the programmer. Storage and retrieval of a record is by
relative address within the data set or a actual disk address.
This address can be that of the desired record or a starting
point within the data set where a search for a record. based on
a key supplied by the programmer, begins. Addresses are also
used by BDAM as a starting point when seeking available space
for new records.

The READ/WRITE macro instructions cause the initiation of an
input/output operation. The completion of these operations is
tested by using synchroni~ation macro instructions.

• BASIC INDEXED SEQUENTIAL ACCESS METHOD (BISAM)

Sequential and direct processing are provided by the Indexed
Sequential Access Method (ISAM). Records are maintained on DASD
devices in control field sequence by key. The system maintains
a multilevel index structure that allows retrieval of any
record by its key. Records can be added to an existing ISAM
data set without rewriting the data set.

The Basic Indexed Sequential Access Method (BISAM) stores and
retrieves records randomly into or from an indexed sequential
data set. Selective reading is performed using the READ macro
instruction. specifying the key of the logical record to be
retrieved. Individual records can be replaced or new records
can be added randomly. As new records are inserted, ISAM
performance decreases, until it becomes necessary to reorganize
the data set. When records aEe deleted, the space is not
reuse able until after the next data set reorganization.

The READ/WRITE macro instructions cause the initiation of an
input/output operation. The completion of these operations is
tested by using synchronization macro instructions.

• BASIC PARTITIONED ACCESS METHOD (BPAM) (OS/VS only)

The Basic Partitioned Access Method (BPAM) is designed for
efficient storage and retrieval of discrete sequences of data
(members) belonging to the same data set on a direct acccs~
device. Each member of the data set bas a simple name. The d~~~
set includes a directory that relates the member name with the
address where the sequence begins. Members can be added to a
partitioned data set as long as space is available in the
directory and in the data set.

Chapter 5. Access Methods 71

The READ/WRITE mac~o inst~uctions cause the initiation of an
input/output ope~ation. The completion of these ope~ations is
tested by using synch~onization macro instructions.

• BASIC SEQUENTIAL ACCESS METHOD (BSAM)

The Basic Sequential Access Method (BSAM), sequentially organ­
izes data and stores or ~etrieves physical blocks of data from
tape, disk or unit record devices. The READ/WRITE macro
inst~uctions cause the initiation of an input/output operation.
The completion of these ope~ations is tested by using synchron­
ization macro instructions. Automatic translation between
EBCDIC and ASCII codes is p~ovided fo~ magnetic tape labels and
reco~d formats.

• DIRECT ACCESS METHOD (DAM)

This is another name for BDAM.

• INDEXED SEQUENTIAL ACCESS METHOD (ISAM)

The Indexed Sequential Access Method (ISAM) is comprised of the
Basic Indexed Sequential Access Method (BISAM) and the Queued
Indexed Sequential Access Method (QISAM). See the description
of these two access methods in this section.

• QUEUED INDEXED SEQUENTIAL ACCESS METHOD (QISAM)

The Queue~ Indexed Sequential Access Method (QISAM) is used to
create an indexed sequential data set or to retrieve and update
~eco~ds sequentially f~om such a data set. Synchronization of
the program with the completion of input/output transfer, and
record blocking/deblocking are automatic. QISAM is also used to
reorganize an existing data set.

The GET/PUT macro instructions cause the initiation of an
input/output operation. These operations are synchronous.

• QUEUED SEQUENTIAL ACCESS METHOD (QSAM)

In the Queued Sequential Access Method (QSAM), logical records
are ~etrieved or stored as requested. The access method antici­
pates the need fo~ records based on their sequential order, and
normally has the desired record in storage, ready for use,
before the request for retrieval is issued. When writing data,
the program normally continues as if the record had been
written i~mediately, although the access method routines may
blQck it with other logical records and defer the actual
writing until the output buffe~ has been filled. As with BSAM,
automatic translation between EBCDIC and ASCII codes is provid­
ed for magnetic tape labels and record formats.

The GET/PUT macro instructions cause the initiation of an
input/output operation. These operat~ons are synchronous.

72 VSAM PRIME~ and REFERENCE

• SEQUENTIAL ACCESS METHOD (SAM)

The Sequential Access Method (SAM) is comp~ised of the Basic
Sequential Access Method (BSAM) and the Queued Sequential
Access Method (QSAM). See the desc~iption of these two access
methods in this section.

The following a~e Telecommunications Access Methods and a~e not
discussed fu~the~ in this manual.

• BASIC TELECOMMUNICATIONS ACCESS METHOD (BTAM)

• REMOTE TERMINAL ACCESS METHOD (RTAM)

• TELECOMMUNICATIONS ACCESS METHOD (TCAM)

• VIRTUAL TELECOMMUNICATIONS ACCESS METHOD (VTAM)

~ SAM VERSUS SEQUENTIAL VSAM

Most di~ect access SAM applications can be mapped into VSAM sequen­
tial applications with ~easonably good ~esults. The~e a~e a numbe~
o£ pa~amete~s that might affect pe~fo~mance significantly.

5.2.1 LOGICAL RECORD PROCESSING (ADR-ESDS)

This method is usually a good alte~native to SAM if the numbe~ of
~eco~ds pe~ CI is small and the numbe~ of data buffe~s is g~eate~
than the minimum (fo~ mo~e info~mation about buffe~, see section
S.1.5, sta~ting on page 190). If the numbe~ of ~eco~ds pe~ CI is
la~ge, the ove~head pe~ logical ~eco~d may ~equi~e mo~e CPU time
then SAM.

5.2.2 LOGICAL RECORD PROCESSING (KEY-RRDS)

One of the efficient means of doing ~equential accessing is by
using an RRDS. If the ~eco~ds a~e fixed length then this is a good
choice. It is not possible to define an alte~nate index ove~ an
RRDS.

5.2.3 KEYED SEQUENTIAL RECORD PROCESSING (KEY-KSDS)

This is p~obably the least efficient mapping of SAM into VSAM since
at each change of CI the~e must be a ~efe~ence to the sequence set
buffe~ to locate the next CI. If a logical consolidation of
p~og~ams can occu~ which might make use of the inse~tion capabili­
ties of VSAM then the ext~a ove~head might be wo~th it. No~mally in
a SAM application a file update involves both an input and an
updated output ve~sion of the same file contai~ing inse~ted ~eco~ds
o~ updated ~eco~ds having length changes. In this case a single
KSDS can take the place of both the input and output SAM files.

Chapte~ 5. Acce~s Methods 73

5.2.4 CONTROL INTERVAL PROCESSING

The most efficient method of processing is control interval proces­
sing, but it is considered only for very special applications~ ~'te

problem program must, however, do all of the logical ~ecozd block­
ing and deblocking itself.

For applications that can deblock a control interval easily or
where there is only one record per CI this is an excellent choi~e.
In programs using COBOL and PL/I versions where CNV proc~ssing is
not supported, the user can define a user block at least 10. bytes
less than the CI that will be defined for the file and process his
own user records. This will reduce the number of VSAM logical
records per CI to as fe~ as 1 depending upon the uSer blocksize and
CI size chosen.

Caution should be used processing a KSDS or RRDS with CNV proces­
sing and generally should be avoided by the application programmer.

In VS1 and VS2 the ICI option (Improved CI Processing) (a subparam­
eter of the MACRF parameter in the ACB macro instruction) may be
used to further reduce CPU time for data sets meeting the require­
ment of ICI Processing. The data set. however. may not b~ extended
or created using ICI. If ICI is used and the program is authorized
it may also use the CFX option (a subparameter of the MACRF parame­
ter in the ACB macro instruction> to page fix the controlblo~ks.
The user must specify UBF (a subparameter of the MACRF parameter in
the ACB macro instruction) and page fix his user buffer if CFX is
used.

5.3 BDAM VERSUS DIRECT ESDS AND RRDS

BDAM data sets with fixed length blocks can be mapped into VSAM
with fixed length records giving excellent results.

Each fixed length block in BDAM becomes a logical record in VSAM.
The dummy BDAM blocks become empty record slots, (if a VSAM RRDS is
used) and the KEY and DATA portions of the BDAM block can be
combined into a single record entry in an ESDS or RRDS.

Because keyed BDAM has an unblocked format andVSAM has a blocked
format there is potentially much better space utilization in VSAM.
As a result the number of cylinders and consequently the average
seek time is generally less for an ESDS or RRDS than fo% BDAM. A
read by key in BDAM causes the channel and the device to be busy
until the block is found, resulting in high channel and device
times when searching by key. In VSAM RRDS retrieval the channel
and device are busy only for the duration of the data transfer.
During an extended search for a record in VSAM, sequential proces­
sing can be used to read several CI's worth of records with a
single EXCP.

74 VSAM PRIMER and REFERENCE

The formatting of an RRDS is a small fraction of the time required
to format a BDAM data set with dummy records. The initial random
loading of a BDAM, ESDS or RRDS data set are nearly equivalent.
VSAM uses more CPU time than BDAM, but is better on channel time.
It is assumed that random loading will not occur frequently.
Backup and recovery are done sequentially which should be much
faster with VSAM.

Direct retrieval of a VSAM record is significantly better than BDAM
retrieval in total elapsed time per record but uses slightly more
CPU cycles.

In general all operations using VSAM are better than BDAM in
elapsed time. VSAM operations tend to use more CPU cycles than BPAM
whereas BDAM uses more channel time than VSAM processing.

5.4 ISAM VERSUS VSAM

All ISAM applications can be mapped into VSAM
Either native VSAM support or VSAM through
Program (lIP) may be used. Use of the lIP avoids
(see also next section and section 5.4.3).

KSDS applications.
the ISAM Interface

program conversion

Some general comments about the relative performance of VSAM and
ISAM should be made. They are:

OPEN and CLOSE in VSAM are significantly longer than in ISAM.

Data set creation in VSAM takes longer than ISAM depending upon
the amount of free space required, the number of buffers, and
the blocking factor.

Direct VSAM operations are usually faster than the equivalent
ISAM operation.

VSAM requires more virtual storage than ISAM.

In sequential access, VSAM generally uses more CPU time than
ISAM but in ordered direct, random batch and sorted batch,
accessing VSAM generally requires less CPU time than ISAM.

VSAM uses less channel time than ISAM overall.

In random access, the 'path length' from the highest level
index entry down to the record is always the same in VSAM,
independent of the number of insertions, whereas for ISAM the
'path length' tends to vary and become longer on the average,
the more records have been inserted into a data set.

VSAM uses free space in a far better way then ISAM.
requires much less reorganization then ISAM.

KSDS

Chapter 5. Access Methods 75

5.Q.1 ISAM INTERFACE PROGRAM

If a pzogzam does not zequize functions othez than those pzovided
by the oziginal ISAM pzogzam, the lIP is an efficient means of
using VSAM. The elapsed time and CPU time diffezences between lIP
and native VSAM is negligible.

The ISAM Intezface Pzogzam consists of a few
automatically available when VSAM is used. No
is zequized. The only changes aze as follows:

modules which aze
special genezating

• The ISAM data set must be convezted into a VSAM data set by
using the Access Method Sezvices functions: DEFINE CLUSTER (foz
defining the VSAM data set), and REPRO (to tzansfez the data
fzom the IS AM data set to the VSAM data set).

• The ISAM pzogzam JCL must be changed to specify the VSAM data
set.

5.4.2 ISAM TO VSAM DATA SET CONVERSION

Data and Index CI sizes should be set as discussed eazliez. T~~

ovezall fzee space can be detezmined fzom the amount of ovezflow j~
the IS AM data set. Detezmine the numbez of zecozds that will fit
into all of the ISAM ovezflow azeas of the pzimazy extent. The
numbez of zecozds in the newly czeated ISAM data set plus the
numbez of zecozds that can be contained in the ovezflow azeas is
the capacity of thepzimazy ISAM extent. The diffezence between
the newly czeated ISAM file size and the capacity of the pzimazy
extent is the amount by which the ISAM file may gzow befoze a
secondazy extent is allocated. Use this amount of gzowth (in
zecozds) to compute the VSAM free space as discussed eazlier.

5.4.3 ISAM PROGRAM CONVERSION USING ISAM INTERFACE

As desczibed in the pzevious sections ISAM pzogzams and ISAM data
sets can be tzansf~rred easily to VSAM.

The ISAM data must be tzansferzed into a VSAM data set (with REPRO
or a similaz user pzogzam).

The definition parametezs of the VSAM data set aze based on the
chazacteristics of the ISAM data set. As ISAM differentiates
between variable-length and fixed length zecords and blocked and
unblocked recozds, these charactezistics must be taken into account
when defining the VSAM data set.

The following figuze shows the definition diffezences for fixed
blocked and fixed-unblocked recozds (the characters A, B, C repre­
sent the key of the records):

The ISAM definitions are for DOS/VS, the OS/VS DCB parameters are
similar.

76 VSAM PRIMER and REFERENCE

Access ISAM ISAM
Method blocked :reco:rds unblocked :reco:rds

DTFIS RECFM=FIXBLK, * DTFIS RECFM=FIXUNB, *
KEYLOC=x, * KEYLEN=y, *
KEYLEN=y, * RECSIZE=z, *
RECSIZE=z, *

I S A M

G II A I II B I II ci I Q I I

l-l-I 1
, II A I I I A I I V S A M

DEFINE CLUSTER - DEFINE CLUSTER -
KEYS(y,x-1) - KEYS(y,O) -
RECORDSIZE (z,z) - RECORDSIZE (z+y,z+y)-
.

Figu:re 36. VSAM definition fo:r fixed-length ISAM :reco:rds

Va:riable-length :reco:rds:

ISAM: KEYLEN=y,KEYLOC=x,
RECSIZE=z.

* VSAM: DEFINE CLUSTER
* KEYS (y,x-4)

RECORDSIZE (avg,z-4)

Afte:r copying the ISAM data into the VSAM data set, the ISAM
p:rog:ram JCL must be changed to specify the VSAM data set instead of
the ISAM data set.

The ISAM p:rog:ram itself need not to be changed (as long as standa:rd
ope:rations a:re pe:rfo:rmed).

Chapte:r 5. Access Methods 77

When VSAM recogni2es that IS AM macros are executed for a VSAM data
set, the ISAM Interface Routines ate called automatically (without
ariy specification of the user) to translate the requests and also
the return codes supplied by VSAM into ISAM return codes.

It is not suggested to convert an ISAM program into a VSAM program
as the Interface routines are very fast and use only about 11K of
page able storage.

The ISAM interface support is also provided in the High Level
Languages which use ISAM.

~ HIGH LEVEL LANGUAGE VSAM SUPPORT

COBOL/VS, PL/I, and RPGII (DOS/VS only) provide native VSAM
support. They provide Sequential and Random accessing capabilities.

For further discussions see the appropriate COBOL/VS, PL/I, or
RPGII manuals.

78 VSAM PRIMER and REFERENCE

~ VSAH INSTALLATION AND USAGE Of YSAH CATALOGS WITH IPL

~ DOS/VS

6.1.1 VSAM RELATED PARAMETERS IN THE SUPERVISOR (DOS/VS)

FOPT

ALLOC

VSTAB

IOTAB

ASSGN

VSAM=YES,
GETVIS=YES,
RELLDR=YES,

BG=nK, ... ,F1=n1K

/

/

/

VSIZE=old VSIZE + nK. /
SVA=(old SVA-size + nK, ...), /
BUFSIZE=old value + m

NRES=nr, /

SYSCAT,X'cuu'

n = 170K->470k(depending
on se~vices used) fo~

pa~titions whe~e Access
Method Se~vices is
supposed to ~un.
Or user p~ogram size
plus an amount equiva­
lent to that of the
working set indicated
in section 9.2.1 on
page 228.

n > 350

m > 40/pa~tition

nr < 256 (numbe~ of VSAM
Resou~ce Usage ~eco~ds).

Standard assignment
for maste~ catalog.

6.1.2 HOW TO USE A USER CATALOG AS MASTER CATALOG (DOS/VS)

If the standa~d assignment of the the master catalog has to be
changed, it has to be specified between the 'SET' and the 'DPD'
commands in the fo~m :

CAT UNIT=X'cuu'

This is the ONLY point where a master catalog can be reassigned.
An ASSGN SYSCAT is an IPL command. It is liQI a valid Job Control
(JCL) no~ an Attention Routine (ATTN).

6.1.3 . LOAD A NEW SDL/SVA (DOS/VS)

Afte~ IPL, a new SDL/SVA has to be loaded (using for instance t~~
procedure 'VSAMSVA'). This has to be done just once and remai.na
valid until the VSIZE changes or the 'WARM COPY of SVA' is ~ejeut­
ed. See SYSGEN manual.

Chapter 6. VSAM Installation 79

~ VS2 MVS

6.2.1 HOW TO INSTALL VSAM IN VS2 MVS

As the p~ime system catalog is a VSAM maste~ catalog, VSAM suppo~t
is always included in the system.

The usual way to gene~ate a MVS system is by using anothe~ MVS
system as gene~ating system.

To c~eate a maste~ catalog fo~ the new system, the~e a~e two
possibilities:

1. Use the SYSGEN DATASET mac~o alone to c~eate the maste~ catalog.

If the new maste~ catalog ~s to be ~ecove~able this ve~sion

cannot be used. If this ve~sion is used and a maste~ password
is to be assigned to the maste~ catalog (st~ongl~ recommended)
this master password must be added with an ALTER command (see
example on page 121).

2. Use the DEFINE MASTERCATALOG command and the DATASET mac~o.

This version allows specification of all attributes valid for
the DEFINE MASTERCATALOG command, which includes the attribute
RECOVERABLE and the specification of passwo~ds.

C~eate the master catalog with the DATASET mac~o alone:

Specify the following:

DATASET VSCATLG,VOL=(SYSRES,3330),SPACE=(CYL,(10,S»,
NAME=SYS1.MASTERCT

*

Note: The master catalog n~ed not be on the systems residence
device. The ~esulting catalog is nonrecoverable.

This DATASET macro results in 3 major functions:

• DEFINE MASTERCATALOG (is t~eated as a DEFINE USERCATALOG in the
generating system).

• After defining the catalog, an EXPORT DISCONNECT command is
issued to detach the catalog from the generating system.

• A member with the name SYSCATLG is c~eated in SYS1.NUCLEUS
(this is the standard member pointing to the master catalog.
see also the next section).

80 VSAM PRIMER and REFERENCE

create the master cataloq with pre-allocation and DATASET macro:

Specify the following:

DEFINE MASTERCATALOG (NAME(SYS1.MASTERCT)
FILE (CATVOL)
RECOVERABLE
VOLUME (SYSRES)
CYL (10 5)
MASTERPW (MASTPROT))

After executing this command (which is treated like a DEFINE
USERCATALOG command) an EXPORT DISCONNECT command must be issued to
prevent the usage by the generating system.

In the subsequent SYSGEN for the new system, the DATASET macro must
not specify a SPACE value as follows:

DATASET VSCATLG,VOL=(SYSRES,3330),
NAME=SYS1.MASTERCT

*

The DATASET macro
SYS1.NUCLEUS (this

creates a member
is the standard

with the name SYSCATLG in
member pointing to the master

catalog, see also the next section.

6.2.2 HOW TO USE A USER CATALOG AS MASTER CATALOG (MVS)

A member of SYS1.NUCLEUS must be defined to point to the alternate
catalog (the user catalog to be used as master catalog). This
member consists of a 80 byte record as follows:

Columns Contents

1 to 6 Volume serial of volume containing the alternate catalog
7 unused
8 Device type (see following chart)
9 to 10 unused

11 to 54 Data set name of the alternate catalog left-justified
and padded with blanks

55 to 80 unused

The device type codes (used in column 8) and JCL block sizes are as
follows:

Device Code (hex) Card Punch BLKSIZE (in JCL)

2305-1 06 12-6-9 14136
2305-2 07 12-7-9 14660
2314 08 12-8-9 7294
3330 09 12-1-8-9 13030
3330 Mod.11 OD 12-5-8-9 13030
3340/3344 OA 12-2-8-9 8368
3350 OB 12-3-8-9 19069

Chapter 6 . VSAM Installation 81

The follow~ng job can be used to place the member in SYS1.NUCLEUS:

//ADD
//STEP
//SYSIN
//SYSUT2

JOB
EXEC PGM=IEBGENER
DD DUMMY
DD DSN=SYS1.NUCLEUS(KKXX),DISP=(MOD,KEEP),UNIT~uni~.

// DCB=(BLKSIZE=****),VOL=SER=volser
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD *

data card

xxxx = name of the new member with the alternate catalog pointer
**** = see BLKSIZE in device type code table on previous page

Note: Do not use IEBUPDTE to add the member because this alters the
blocksize of SYS1.NUCLEUS and makes further changes impossible.

If it is necessary to change the member, use IEHPROGM to scratch
the member and then add it again.

To use the new catalog after the next IPL (cold start) the pointer
in IEAVNP11 (in the NUCLEUS) pointing to SYSCATLG (SYSCATLG is the
standard member containing the pointer to the VSAM master cat~log)
must be changed to point to the new member (see the following
example).

To change the pointer in IEAVNP11 the following job can be used:

//ZAP JOB
//STEP EXEC PGM=AMASPZAP
//SYSLIB DD DSN=SYS1.NUCLEUS,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

NAME IEAVNP11 IEAVNP11
VER 1905 E2E8E2C3 C1E3D3C7
REP 1905 new member name

/*

Note: Before applying this change, use the AMASPZAP service aid
program to dump CSECT IEAVNP11. Then use the dump to determine the
exact location of the data to be altered.

The new catalog is used after the next IPL (cold start).

82 VSAM PRIMER and REFERENCE

~ VS1 AND VS2 SVS

6.3.1 HOW TO INSTALL VSAM IN VS1 AND VS2 SVS

VSAM is included in the system with the System Generation by
default.

To use VSAM a VSAM Master catalog must be created using the VSAM
utility Access Method Services (see example in section 7.3 on page
100) .

This DEFINE MASTERCATALOG places a pointer into the OS/VS system
catalog with the name AMASTCAT (independent of the specified master
catalog name).

After having a VSAM master catalog defined, other VSAM data spt~
and/or user catalogs may be defined.

6.3.2 HOW TO USE A USER CATALOG AS MASTER CATALOG(SVS/VS1)

As the format of a VSAM user catalog and the VSAM master catalog is
identical, any VSAM user catalog can be used as VSAM master cata­
log.

This is very important if the VSAM master catalog cannot be
accessed due to any reason. So a user catalog can be used as a
master catalog and the damaged master catalog can then be connected
to the new master catalog as a user catalog to be restored.

To use a user catalog as the VSAM master catalog, the pointer in
the OS/VS System catalog must be changed with the following Job:

//CHGCAT JOB
//STEP1 EXEC PGM=IEHPROGM
//SYSPRINT DD SYSOUT=A
//DD1 DD UNIT=disk,VOL=SER=mcatvolser,DISP=OLD
//DD2 DD UNIT=disk,VOL=SER=ucatvolser,DISP=OLD
//SYSIN DD *

UNCATLG DSNAME=AMASTCAT
CATLG DSNAME=AMASTCAT,VOL=3330=ucatvolser

After executing this job, the new catalog is used as master catalog
after the next IPL (cold start),

Chapter 6. VSAM Installation 83

84 VSAM PRIMER and REFERENCE

7.0 HOW TO START USING VSAM

After VSAM is installed in your Operating System you may begin to
use it.

Access Method Services commands must be used to define the VSAM
catalog and your VSAM data sets (in MVS the VSAM master catalog
already exists when the system is IPL-ed).

General comments on this chapter:

• To show the difference between DOS/VS and OS/VS, all the
examples are shown on the same page in two columns.

• To be able to print two columns on normal size paper, some
Access Method Services messages had to be abbreviated.

• To reduce the length of the output, most blank lines have been
deleted.

• The DOS/VS examples were executed with DOS/VS Rel.33.

~ HOW TO CODE ACCESS METHOD SERVICES COMMANDS

The following is a short description of how to code an Access
Method Services command. A detailed description is included in the
appropriate Acceis Method Services manual.

Commands and their parameters can be coded in free format as shown
below:

where:

COMMAND sep PARM1 sep PARM2 sep PARM3 cont
PARM4 term

sep (separator) 1 or more blanks, comma(,) or comments.

cont (continuation) there are two different types of
continuation:

1.A value, subparameter or parameter
has to be continued.
Plus (+) indicates the continuation
of a value within a parameter. The
remainder of the value has to star.t
at the left margin on next line.

2.A command has to be continued (more
parameter to follow).
Minus (-) indicates the continuation
or the same command on the next
line(s).

Chapter 7. Access Method Services Examples 85

term (terminators) right margin or absence of continuation,
or semicolon(;) or blank line.

comments format /* any text */ . A comment line placed
between 2 command lines must have a
continuation sign (-).

left/right margins the default left and right margins are
at columns 2 and 72. They can be
changed with the PARM MARGINS command.

Some rules and recommendations:

• Abbreviations of commands and keyword parameters can be inter­
mixed with full naming.

• An easy check of the continuation rules within a command verb
is possible if the continuation sign (-) is always placed in
the same column (see following examples).

Note: If no continuation sign (-) is coded and more parameters
belonging to the same command follow, the subsequent parameters
are ignored and defaulted by VSAM up to the next command (if
required parameters are missing, an error message is issued).
As this may lead to unexpected definition values, it is
suggested to issue a LISTCAT command following each DEFINE
command.

• There are two types of parameters: positional and keyword
parameters. In a parameter list or sublist, positional parame­
ters must always be specified first (positional parameters are
required parameters.

Example: INFILE (dname ENV (
INFILE (ENV () dname

correct
wrong

• Neither commands nor keyword parameters (in long or short form)
are reserved words: therefore it is dangerous and not suggested
to use parameters or keywords as component names (e.g. dont use
UPDATE as a data set name, as this is a parameter for Access
Method Services).

• DOS/VS only: when Access Method Services is used for tape
operations specific 'SYSnnn', is required, i.e.:

SYS004
SYS005

for input tape(s)
for output tape(s)

For functions using disks, any 'SYSnnn' can be chosen.
The default assignments are:

SYS006
SYS007

for input disk(s)
for output disk(s)

86 VSAM PRIMER and REFERENCE

~ EXPLANATION OF IMPORTANT DEFINE PARAMETERS

VSAM uses catalogs as a cent~al info~mation point fo~ all VSAM data
sets and the di~ect-access volumes on which they a~e sto~ed. You
can define a VSAM object in a VSAM catalog only by using the Access
Method Se~vices DEFINE command. Additionally, you can use the
DEFINE command to define nonVSAM objects in a VSAM catalog (in
DOS/VS nonVSAM objects can only be defined in a non~ecove~able

catalog; in MVS nonVSAM objects may also be defined using the JCL
pa~amete~ CATLG).

When you issue the DEFINE command
Method Se~vices builds one o~ mo~e

object.

to catalog an object, Access
catalog ent~ies to desc~ibe the

The VSAM objects you can define a~e:

• Maste~ catalog (in MVS this command c~eates a use~ catalog)
• Use~ catalog
• Data space
• Cluste~, o~ VSAM data set.

The~e a~e th~ee types of cluste~ data o~ganization:
ESDS (Entry Sequenced Data Set)
KSDS (Key Sequenced Data Set)
RRDS (Relative Reco~d Data Set)

• Alte~nate index
• Path
• NonVSAM data set (in DOS/VS only in non~ecove~able catalog and

fo~ compatibility pu~poses)

In MVS systems additionally the following can be defined:

• Alias (also in SVS possible)
• Gene~ation Data G~oup (GDG)
• Page space

Many pa~amete~s may be specified for the
The most impo~tant ones a~e desc~ibed

desc~ibed with the example):

• FILE
• FREESPACE
• IMBED/REPLICATE
• KEYRANGES
• NAME
• RECORDSIZE
• SHAREOPTIONS
• SPEED/RECOVERY
• SUB ALLOCATABLE/UNIQUE

va~ious DEFINE commands.
in detail (othe~s a~e

Chapte~ 7. Access Method Se~vices Examples 87

7.2.1 ~

The FILE parameter refers to the 'filename' of a DLBL statement
(DOS/VS), or to a 'dname' of a DD statement (OS/VS).

The FILE parameter and its associated vCL statement is always
required, when a volume has to be mounted to change the VTOC and/or
the CRA on that volume (not MVS, see 'MVS note' below).

MYS note: FILE may be omitted and the required volume ~s dynamical­
ly allocated (assuming the volume has been mounted with the correct
attributes).

The following commands require a FILE parameter (not MVS, see 'MVS
note'):

• DEFINE MASTERCATALOG
• DEFINE USERCATALOG
• DEFINE SPACE
• DEFINE ALTERNATEINDEX/CLUSTER with the UNIQUE attribute
• VERIFy1

1 FILE is always needed for VERIFY (even for nonrecoverable
catalog) and is not used to identify the CRA volume, but to
identify the DD statement which names the data set to be
opened and verified.

Most Access Method Services commands modifying a recoverable
catalog must have a FILE parameter and its associated vCL statement
(in OS/VS the vCL statement may be omitted (not suggested), if the
requested volume is already allocated by an other vCL statement or
when the catalog itself resides on the volume).

The FILE parameter is required for the
using a recoverable catalog (not MVS, see

• ALTER
• DEFINE commands
• DELETE
• IMPOR~2

• IMPORTRA2

following commands
'MVS note'):

when

2 FILE is only needed in a nonMVS system if the components are
unique and reside on different device types (FILE must be
coded separately for the data and index components); other
wise FILE is not needed.

7.2.2 FREESPACE

A KSDS can be specified to reserve space to be held free when
loading data (see also section 2.5 on page 20). (

88 VSAM PRIMER and REFERENCE

The specified amount is only held fxee, when sequential insextions,
such as 'loading' ox 'mass insextion' (see section 8.8 on page 207)
axe pexfoxmed.

Two values can be specified: FREESPACE(CI-pexcent CA-pexcent),

• 'CI-pexcent' specifies the amount of space to be held fxee pex
contxol intexval (CI).

The way VSAM txeats this fxee space definition is: specified
pexcentage times actual CI size (xounded down to a full byte).
So VSAM does not caxe about xecoxd length and does not xouhd
the value up, if the amount of fxee space is less then one
xecoxd.

EHample:

Definition:

Contxol Intexval Size = 1024 bytes
Fxee space = 15 ~ fxee CI space (FREESPACE (15 0)

VSAM calculation:

1024 * 15 ~ = 153,6 = 153 bytes minimum fxee space (eHclud­
ing contxol fields).

• 'CA-pexcent' specifies the amount of contxol intexvals to be
held fxee pex contxol axea (CA).

If the maHimum value (100~) is specified fox both Ci-pexcent and
CA-pexcent, each contxol intexval will contain one xecoxd and each
contxol axea will contain one used contxol intexval.

Section A.6.2 on page on 258 contains a descxiption of FREESPACE
considexations when issuing the IMPORT command. Fox a special
definition using diffexent FREESPACE values, see also section 8.4
on page 199.

7.2.3 IMBED/REPLICATE (INDEX OPTIONS)

When a key-sequenced data set is pxocessed sequentially, the
sequence set indeH level is used to indicate the oxdex in which
contxol intexvals axe to be accessed. To impxove pexfoxmance duxing
sequential pxocessing, the indeH sequence set can be sepaxated fxom
the xest of the indeH component (indeH set levels) and stoxed with
the logical xecoxds in the data component (IMBED). When this option
is chosen, the indeH xecoxds fox a contxol axea axe placed on the
fixst txack of the contxol axea that both indeH and logical xecoxds
can be accessed without moving the disk axm Csimilax to the loca­
tion of the txack indeH within the pxime axea in an ISAM data set).

Chaptex 7. Access Method Sexvices EHamples 89

When the index sequence set is sto~ed within the data component
(IMBED), sequence set ~ecords a~e also ~eplicated. That is, each
sequence set index record is allocated one track at the beginning
of the cont~ol area. The index ~eco~d is duplicated on the track as
many times as it will fit. This technique significantly minimi2es
the rotational delay involved in a~~iving at the beginning of an
index record. If the~e is only one control area in a cylinder,
index sequence set ~ecords will be ~eplicated beginning with track
O. If there are two control areas in a cylinder, initial tracks of
the first a~ea will contain ~eplicated index records for the first
control area, while initial tracks of the second area will cont~i'l
replicated index records fo~ the second control area.

Index set records, like index sequence set ~ecords, contain
compressed index' entries. The index entries in each level of the
index set point to index reco~ds of the next lower index level. An
index ent~y within the index set contains a pointer to an index
reco~d, the highest key in that index record, and control informa­
tion. Index set levels can also be replicated (REPLICATE). When
this option is chosen, one track is required for each index record
in the entire index set. An index record is duplicated on its
assigned track as many times as it will fit.

The index set may not be replicated when the index set and the
sequence set of the p~imary index a~e physically separate (sequence
set stored with logical records). However, when the index set and
the sequence set are stored together, both are replicated or
neither is replicated.

The following combinations are possible:

• HOIMBED HOREPLICATE:
All index levels are stored together and are not replicated.

• HOIMBED REPLICATE:
All index levels are sto~ed together, each index record occu­
pies an own track and is repeated on this track as often as
possible.

• IMBED HOREPLICATE:
The index sequence set level is stored with the data component.
Each index record in the index sequence set is stored with its
data control interval, occupies an own track, and is repeated
on this track as often as possible. In most cases this is the
best choice. The higher index levels are not repeated on a
track.

• IMBED REPLICATE:
The index sequence set level is stored with the data component.
Each index record in the index sequence set is stored with its
data control interval. Each index sequence set record occupies
its own track, and is repeated on this track as often as
possible.

90 VSAM PRIMER and REFEREHCE

7.2.~ KEYRANGES

KEYRANGES is a DEFINE parameter and specifies that in a KSDS
specific key ranges are to be stored on specific volumes.

As the user knows (or should know) which volume is to be used for a
specific key range, he can mount the volume he needs with a so
called subset mount (see also section 8.10 on page 216).

The allocation algorithms (amount of primary and
and the rules for multivolume data sets are
section 8.1.3.3 on page 188.

secondary space)
explained in the

When using key ranges, data on a specific volume can be restored
from a backup tape (with full volume restore, which may lead to a
data set 'out-of-synch' condition), as usually all keys of a ~~~

range are stored on one volume (see following examples).

• Example 1

A-F
A-F
A-F

(3 key ranges, 3 volumes)

DEFINE CLUSTER ... VOLUMES (V1,V2,V3)
KEYRANGES «A,F) (G,P) (Q,Z»
CYL (100,50)

V1
P
S
S

G-P
G-P
G-P
G-P

V*2

P = Primary allocation

2-Z
2-Z

S = Secondary allocation

Figure 37. Keyranges (example 1).

V3
P
S

Chapter 7. Access Method Services Examples 91

• Example 2 (2 key ranges, 3 volumes)

A-F
A-F
A-F
A-F
A-F
A-F
A-F

DEFINE CLUSTER ... VOLUMES (V1,V2,V3)
KEYRANGES «A,F) (G,Z»
CYL (100.50)

V1 V*2
P G-Z P A-F
S G-Z S
S G-Z S G-Z
S G-Z S A-F
S G-Z S G-Z
S G-Z S
S G-Z S

P = Primary allocation
S = Secondary allocation

Figure 38. Keyranges (example 2).

• Example 3 (5 key ranges. 3 volumes)

DEFINE CLUSTER ... VOLUMES (V1.V2.V3)
KEYRANGES «A,D) (E,H) (I.M) (N.R) (S.Z» -
CYL (100.50)

V1 V*2 V3
A-D P E-H P I-M
A-D S E-H S

E-H S N-R

S-Z
S-Z
I-M

P = Primary allocation
S = Secondary allocation

Figure 39. Keyranges (example 3).

92 VSAM PRIMER and REFERENCE

P

P
S
S

P

P

P
S
S

• Example 4 (4 Key%anges, 2 volumes (twice specified»

DEFINE CLUSTER ... VOLUMES (V1,V2,V1,V2)
KEYRANGES «A,D) (E,H) (I,M) (N,Z»­
CYL (100,50)

A-D

I-M
I-M
A-D

V1
P

P
S
S

E-H

N-Z
E-H
N-Z

P = P%ima%y allocation

V2

S = Seconda%y allocation

Figu%e 40. Key%anges (example 4).

7.2.5 NAME

P

P
S
S

The name specified fo% a VSAM data set may contain 1 - 44 alphanu­
me%ic cha%acte%s, national cha%acte%s (~, # and $) and two special
cha%acte%s (hyphen and 12-0 ove%punch).

Names containing mo%e than eight cha%acte%s must be segmented by
pe%iods; one to eight cha%acte%s may be specified between pe%iods.

The fi%st cha%acte% of a name 0% name segment must be either a~
alphabetic 0% national cha%acte%.

With multiple catalogs you should take ca%e that a data set name in
one catalog is not duplicated in anothe% catalog.

It is possible to have the same data set n~me in mo%e than one
catalog.

Access Method Se%vices p%events you f%om cataloging two objects
with the same name in the same catalog, and f%om alte%ing the name
of an object that its new name duplicates the name of anothe%
object in the same catalog.

Duplication is
impo%ted into

not checked 0% p%evented when a use% catalog is
a system (see IMPORT CONNECT command on page 166).

Chapte% 7. Access Method Se%vices Examples 93

Ho check is made to dete~mine whethe~ the impo~ted catalog contains
a name that anothe~ catalog a1~eady in the system contains. Fo~
c1uste~ naming conventions see also section 2.9.2 on page 43.

In MVS systems, the data set name can also be used to identify the
catalog whe~e the data set is cataloged. A name segmented with
pe~iods is called a qualified name. The fi~st qua1ifie~ (the pa~t
of the name up to the fi~st pe~iod) is used to find the use~

catalog if no STEPCAT o~ vOBCAT catalog is specified (the Access
Method Se~vices manual contains a section 'O~de~ of catalog use'
fo~ each command, whe~e the catalog sea~ch sequence is desc~ibed).

Hote (MVS only): As the data set name (qualified name) is used fo~
catalog allocation a qualified name and an unqualified name cannot
exist in the same catalog if the fi~st qua1ifie~ of the qualified
name is the same as the unqualified name.

The example in section 4.4 on page 60 does not wo~k in a MVS system
and is ~ejected with a message 'DUPLICATE DATA SET HAME', because
the c1uste~ name is CITY and the data component name is 'CITY.D'
which is then a violation of the ~est~iction desc~ibed above.

To p~event these p~oblems, it is suggested always to use qualified
names in an MVS syst~m and always use the same fi~st qua1ifie~ in
one catalog.

This fi~st qua1ifie~ ~hou1d be identical with the ALIAS o~ the
catalog name defined fo~ the use~ catalog.

7.2.6 RECORDSIZE

As desc~ibed on page 8 the~e is no special pa~amete~ to define that
fixed-length ~eco~ds o~ va~iab1e-length ~eco~ds a~e to be used.

The RECORD SIZE pa~amete~ indicates,
~eco~ds a~e to be used o~ not.

The fo~mat of RECORDSIZE is:

howeve~, if fixed-length

RECORDSIZE (avg.1ength max.1ength)

If fixed-length ~eco~ds with a length of 80 bytes a~e to be used,
the definition would be RECPRDSIZE (80 80).

The definition of RECORDSIZE (60 80)
the use~ to use fixed~length ~eco~ds
'avg.1ength' pa~amete~ is only used
m;nimum cont~ol inte~va1 size fo~ the
the size the u~e~ has defined).

would, howeve~, also enable
with 80 bytes, because the

by VSAM to calculate t~~

data component (o~ to Ch2r,~~

The ·avg.1en~th' pa~amete~ is also checked when an RRDS is being
defined (in this case 'avg. length' and 'max. length' must have the
same value, since fixed-length ieco~ds a~e ~equi~ed £o~ RRDS).

94 VSAM PRIMER and REFEREHCE

The 'max. length' parameter is a limiting size for VSAM. Records
with a larger size will force an error message, but if RECORDSIZE
(100 100) has been specified and only records with a length of 80
bytes are used, neither error messages are written nor is space
wasted on disk (except for an RRDS data set whose slots are pre for­
matted depending on the 'max.length' parameter), as VSAM checks the
actual length of the record and stores this information in the RDF
(Record Definition Field).

7.2.7 SHAREOPTIONS AND DATA SET SHARING

A VSAM data set can be accessed concurrently by two or more
subtasks within the same partition and two or more job steps
(partitions) (in OS/VS DISP=SHR must be specified for the VSAM data
set by each job step). Both types of sharing can be used for a
VSAM data set at the same time. The type of data set sharing
permitted for two or more partitions is controlled by using the
SHAREOPTIONS parameter of the DEFINE command when the VSAM data set
is defined.

The format of the SHAREOPTIONS command is as follows:

SHAREOPTIONS (cross-region [cross-system})

7.2.7.1 CROSS-PARTITION/REGION SHARING

The following types of options are supported:

• SHAREOPTIONS (1):

The data set can be opened by one user for output processing
(to update or add records) or the data set can be opened by
multiple users for read operations only. Full read and write
integrity is provided by this option.

• SHAREOPTIONS (2):

The data set can be ~pened by one user for updating or record
addition (output operations) and by multiple users for
read-only processing. Since only one user can perform write
operations, write integrity is provided by this option. Howev­
er, read integrity must be provided by each user since users
can read a record that is in the process of being updated.

• SHAREOPTIONS (3):

The data set can be openeq by any number of users for both read
and write operations. Data set integrity must be maintained by
the user. No integrity (read or write) is provided by VSAM.

Chapter 7. Access Method Services Examples 95

• SHAREOPTIONS (4):

The data set can be opened by any number of users for both read
and write operations. For direct processing operations, VSAM
provides a new buffer for each request. Control interval
splitting should be avoided when this option is used (to
prevent a possible CA split),

In DOS/VS the 'trackhold facility' is used to insure the
appropriate integrity.

In OS/VS the ENQ and DEQ macros must be issued by users to
maintain data integrity.

VSAM will not allow a control area split (and no CI split of
the 'high key CI' for SHAREOPTION 4 sharing of a key-sequenced
data set. VSAM indicates 'NO SPACE AVAILABLE' if an attempt is
made to add or change the s~ze of a record and a control area
split is required to perform the operation.

OS/VS Notes: Data set sharing by subtasks within the same
partition can be accomplished using one DD statement for the
VSAM data set or multiple DD statements. When a single DD
statement is used, multiple subtasks in the same partition can
perform read and update operations on the VSAM data set. VSAM
uses the exclusive control facility to maintain integrity
during update operations. The SHR disposition parameter need
not be specified in order to share a VSAM data set when one DD
statement is used. However, if DISP=SHR is specified when one
DD statement is used, both subtask sharing and cross-partition
sharing (as described above) can be used concurrently.

When multiple DD statements are used, multiple subtasks within
a partition can share a VSAM data set using the same options as
are supported for cross-partition sharing. The DISP=SHR parame­
ter must be specified on the DD statements.

Note the following restriction: When DISP=SHR and SHAREOPTION 4
is specified for cross- partition or cross-system sharing,
VSAM provides a new buffer for each direct processing request,
and users should be issuing ENQ/DEQ or RESERVE/RELEASE macros
to ensure data set integrity.

7.2.7.2 CROSS-SYSTEM SHARING (OS/VS ONLY)

The following options are supported in OS/VS (they may be specified
in DOS/VS but are meaningless):

• SHAREOPTIONS (x 3):

The data set can be opened by any number of users for both read
and write operations. Data set integrity is a user responsibil-

96 VSAM PRIMER and REFERENCE

ity as VSAM does not provide any.

• SHAREOPTIONS (x 4):

The data set can be opened by any number of users for both read
and write operations. VSAM provides a new buffer for each
direct processing request and RESERVE and RELEASE macros must
be issued by users to maintain data set integrity. All job
steps that are accessing a VSAM data set concurrently must
specify DISP=SHR if data set integrity is to be maintained.
Control interval splitting should be avoided.

Note the following OS/VS restriction: When DISP=SHR and SHAR­
EOPTION 4 is specified for cross- partition or cross-system
sharing, VSAM provides a new buffer for each direct processing
request. and users should be issuing ENQ/DEQ or RESERVE/RELEASE
macros to ensure data set integrity.

VSAM will not allow a control area split (and no CI split of
the 'high key CI' for SHAREOPTION 4 sharing of a key-sequenced
data set. VSAM indicates 'NO SPACE AVAILABLE' if an attempt is
made to add or change the size of a record and a control area
split is required to perform the operation.

7.2.8 SPEED/RECOVERY (LOADING OPTIONS)

When a VSAM data set is loaded, VSAM does or does
control areas, depending on the attribute specified
set is defined, RECOVERY or SPEED, respectively.

not preformat
when the data

When RECOVERY (the default) is specified, during loading VSAM
preformats each control area immediately before loading any records
into it. Preformatting for a key-sequenced data set consists of
putting the appropriate control information in each control inter­
val and an end-of-file indication in the first control interval in
the next control area after the control area just preformatted.
All zeros in the control interval definition field indicates end of
file or end of key range for a key-sequenced data set.

For an entry-sequenced or relative record data set, control infor­
mation and an end-of-file indication are placed in each control
interval of the control area during preformatting.

The RECOVERY option (not suggested) ensures that if an error
occurs, that prevents further processing while a control area is
being loaded, the previously loaded control areas are not lost.
Loading can resume from the first or only end-of-file indicator.
Preformatting in RECOVERY mode is always done when records are
added to an existing VSAM data set (even if SPEED was specified).

When SPEED is
between first

specified (suggested), records are loaded (i.e.
OPEN and CLOSE) without pre formatting each control

Chapter 7. Access Method Services Examples 97

area before loading and the end-of-file indicator is not written
until the data set is closed. When this option is chosen, loading
proceeds more rapidly, but if an error that prevents further
processing occurs, all the records loaded up to that point may be
lost and loading would have to resume at the beginning of the data
set.

The following should be considered when using RECOVERY:

• Up to now when an empty data set is loaded, the 'high used RBA'
(see page 156) is only updated if the data set has been closed
(by the user) after at least one record written into it, or if
a second extent has to be allocated.

• Since VERIFY does not work for a data set with a 'high used RBA
= 0', which usually indicates an empty data set, loading could
not be resumed, even when RECOVERY is specified.

• If the user-written load program had issued a CLOSE while
loading the data set (while REPRO does not), VERIFY may be used
after a system malfunction to adjust the 'high used RBA' and
the loading may be resumed (the user has to check which record
was entered last and he has to change the load program to
resume loading with the next record).

• It is suggested to always specify SPEED which is not the
default.

7.2.9 SUBALLOCATION/UNIQUE

As described in section 2.9 on page 40 VSAM uses two different
types of data spaces/data sets in terms of allocation.

The SUBALLOCATION parameter specifies that a data set shares a
predefined VSAM data space with other VSAM data sets.

VSAM does all the space management and no vCL specification for the
location of the data set must be given (DOS/VS).

SUBALLOCATION is the way of allocation VSAM is designed for~

For DOS/VS suballocated data sets offer a similar DASD management
as DADSM provides for OS/VS.

For OS/VS the advantage (if using suballocated data sets) is that
the 16 extent restriction per volume does not apply and therefore
the disk space can be used more ~lexibly.

The UNIQUE parameter requires a separate allocation for the data
set.

DOS/VS user must specify the number of tracks and the offset in the
DLBL EXTENT statement when a UNIQUE data set is to be defined. (

98 VSAM PRIMER and REFERENCE

One F1-DSCB (Label) (or two for a KSDS) are written into the VTOC
fo~ the UNIQUE data set.

The name in the F1 DSCB is the data component name (and for a KSDS
the index component name).

The 'cluster name specified in the DEFINE command is not used in the
VTOC. Therefore it is recommended to specify also a name for the
data component (and in case of a KSDS, also a name for the index
component), since otherwise VSAM would generate its own 44-Byte
name which is meaningless to the user when listing the VTOC o~ the
catalog (LISTCAT).

UNIQUE data sets should be restricted for special applications.

DOS/VS users should also read the ~estrictions for UNIQUE data sets
when using recoverable catalogs (section A.4 starting on page 250).

Chapter 7. Access MethodSe~vices Examples 99

7.3 DEFINE MASTERCATALOG

As described in chapter 3.0 starting on page 47. the first step of
creating VSAM objects. is to define the VSAM master catalog (see
also the appropriate sections in chapter 6.0 starting on page 79).
In MVS systems. a VSAM master catalog cannot be defined for the
active system; each DEFINE MASTERCATALOG is treated as a DEFINE
USERCATALOG.

Since any user catalog, however, can be used as master catalog (~e~

the appropriate section in chapter 6.0). this discussion is al~o
valid for MVS systems.

1. Since it is advisable that the master catalog (MCAT) should
contain only the UCAT's pointers (plus CVOL pointers and ALIAS
entries for MVS systems) it can be defined with CYL (1 1). if it
is a nonrecoverable catalog (see also section A.4 on page 250).

2. As described in section A.4.3.1 on page 252 the master catalog
need not be RECOVERABLE.

3. Even when the original space definition was large enough to hold
all future entries. a secondary allocation value should be
specified. as it is a very time consuming process to recover
from a 'catalog full' condition.

4. The master catalog should be made password protected in order to
prevent its accidental (or unauthorized) deletion or update. If
the master catalog is password protected, severe delete func­
tions, such as DELETE USERCATLOG FORCE (OS/VS only) or ALTER
REMOVEVOLUMES (a special OS/VS function to delete all VSAM
information on a disk, see example on page 181) are prevented as
long as the master password is not specified.

DOS/VS example (input):

II JOB DEFINE MASTER CATALOG
II OLBL IJSYSCT,'PRIMER.NCAT',99/36S,VSAM
II EXTENT SYSCAT,OOS30Z",4560,38
II EXEC IDCAMS,SIZE=AUTO

1&

OEF MCAT
NAME(PRIMER.MCAT)
FILE (IJSYSCT)
VOLUME (OOS30Z)
CYL (1 1)
MASTERPW (MCATMRPW)
)

DOS/VS example (output):

OS/VS example (input):

IIPRIMER JOB WTSC,IBM,MSGLEVEL=l
IIPRIM0012 EXEC PGM=IDCAMS
IIVOL1 DO VOL=SER=WTVSNC,OISP=OLO,UNIT=3330
IISYSPRINT DO SYSOUT=A
IISYSIN DO *

OEF MCAT
NAME (PRIMER.MCAT)
FILE (VOL1)
VOL (WTVSNC)
CYL (1 1)
MASTERPW (MCATMRPW)
)

OS/ys example (output):

IOC05101 CAT. ALLOC. STAT. FOR VOLUME OOS30Z IS 0 IOC05101 CAT. ALLOC. STAT. FOR VOLUME WTVSNC IS 0
IDC00011 FUNCTION COMPL .• HIGHEST COND.CODE WAS 0 IOC00011 FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDC00021 IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 IOC00021 IOCAMS PROC. COMPL. MAX. COND.CODE WAS 0

100 VSAM PRIMER and REFERENCE

Notes:

• The NAME parameter specifies the name of the master catalog.

• The FILE parameter is required (not for MVS,
7.2.1 on page 88).

see also section

• The VOL or VOLUME parameter specifies the volume the catalog is
to be allocated.

• The CYL or CYLINDERS parameter specifies the amount of primary
and secondary space to be allocated for the VSAM data space,
which is created with this command (see also section 2.11 on
page 45, 189).

Since no DATA and INDEX parameters are specified the master
catalog occupies the whole data space (see also begin of next
section DEFINE USERCATALOG).

• The MASTERPW parameter specifies the master password (MCATMR?W;
for the master catalog (see also section 3.3 on page 52).

DOS/VS notes:

• The 'dname' must be IJSYSCT in both the DLBL and the FILE
statements.

• The EXTENT must begin on a cylinder boundary. Since the
primary allocation is one cylinder and the catalog is not
RECOVERABLE, an EXTENT specification of two cylinders (~8

tracks on 3330) leaves one cylinder for catalog extension or
suballocatable space since the master catalog will contain only
user catalog pointers.

• No ASSGN is necessary since it has been specified either in the
supervisor or at IPL-time.

• The DLBL/EXTENT information will be stored in the STDLABEL
area, so they have been omitted in the following examples.

• The line ' //EXEC IDCAMS SIZE=AUTO ' is followed by one or more
Access Method Services commands as printed in the output.

•• A '/*' signals end of input to Access Method Services.

OS/VS notes:

• The line '//SYSIN DD * ' is followed by one or more Access
Method Services commands as printed in the output.

• A '/*' or '//' (next step) signals end of input.

Chapter 7. Access Method Services Examples 101

7.4 DEFINE USERCATALOG

As discussed in chapter 3.0 starting on page 47 user catalogs
should be used to ease transportation of VSAM data sets and catalog
recovery.

DEFINE USERCATALOG creates a suballocatable data space on a volume
not owned by any other VSAM catalog. If the catalog entries are
changed often by deleting or adding of VSAM objects, it might be
advisable to reserve for the catalog its own data spaqe to prevent
secondary allocation being built for form the catalogs prime
allocation.

To do so, do not specify DATA or INDEX parameters in the DEFINE
USERCATALOG command. Thus the whole space specified with the SPACE
parameter will be assigned to the user catalog (the UNIQUE attri­
bute is not allowed in this command).

In DOS/VS the size-definition in the EXTENT parameter determines,
only if the catalog resides in this space.

To define the user catalog the following assumptions were made:

• The user catalog occupies its own data space (therefore neither
DATA.llill. INDEX parameters were specified).

• The update password allows definitions of VSAM objects without
knowing the master password. The master password is requir~J
for all other functions (like deleting entries, alter passwo~':s
etc.) but the read-only ones. It is also required for the
function LISTCAT ALL (when the passwords are to be listed).

• The user catalog is recoverable, therefore a CRA (catalog
recovery area) with a size of one cylinder is allocated in
addition to the specified catalog space, either by OS-DADSM or
by DOS/VS using space specified in the EXTENT statement.

• In our example, the UCAT has to be large enough to contain
(long range planning~:

15 KSDS clusters

6 ESDS clusters

2 RRDS clusters

5 Alternate indexes

5 Paths

2 Volumes owned by the catalog.

102 VSAM PRIMER and REFERENCE

The numbe~ of t~acks ~equi~ed can be calculated using the wo~ksheet
shown in the section 'Estimating the Catalog's Space Requi~ements'
of the Access Method Se~vices manual (see page 2).

Based upon the p~evious assumptions, the wo~ksheet ~esult is a
minimum of 99 ent~ies o~ 15 t~acks fo~ the p~ima~y allocation.
This value was ~ounded up in the example to 2 cylinde~s.

DOS/Y~ example (input):

II JOB DEFINE USER CATALOG
II DLBL IJSYSUC,'PRIMER.UCAT1'"VSAM
II'EXTENT SYSOIO,WTVSAM.,,19,57
II ASSGN SYSO~O,DISK,VOL=WTVSAM,SHR
II EXEC IDCAMS,SIZE=AUTO

1&

DEF UCAT (
NAME (PRIMER.UCATl)
FILE (IJSYSUC)
VOL (WTVSAM)
CYL (2 1)
MASTERPW (UCATMRPW)
UPDATEPW (UCATUPDT)
RECOVERABLE

DOS/VS example (output):

OS/VS example (input):

IIPRIMER JOB WTSC,IBM,MSGLEVEL=l
IIPRIM0022 EXEC PGM=IDCAMS
IIVOL1 DO VOL=SER=WTVSAM,DISP=OLD,UNIT=3330
IISYSPRINT DO SYSOUT=A
IISYSIN DO *

DEF UCAT
NAME (PRIMER.UCATl)
FILE (VOLl)
VOL (WTVSAM)
CYL (3 1)
MASTERPW (UCATMRPW)
UPDATEPW (UCATUPDT)
RECOVERABLE

OS/VS example (output):

IDC05101 CAT. ALLOC. STAT. FOR VOLUME WTVSAM IS 0 IDC0510I CAT. ALLOC. STAT. FOR VOLUME WTVSAM IS 0
IDCOQ01I FUNCTION COMPL., HIGHEST COND.CODE WAS 0 IDCOOOII FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDC0002I IOCAMS PROC. COMPL. MAX. COND.CODE WAS 0 IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0

LISTCAT output' of this object is shown late~ in section 7.9.2

Notes:

• The FILE pazametez is zequi~ed (not %o~ MVS, see also section
7.2.1 on page 88), as the VTOC of the volume to contain the
catalog has to be modified (build F1-DSCB (Label), set VSAM
'ownezship-bit' ON).

The notes a~e continued on the next paqe.

Chapte~ 7. Access Method Se~vices Examples 103

DOS/VS notes:

• The 'dname' may be any name, but choosing IJSYSUC allows the
DLBL/EXTENT to be cataloged in the PARSTD area and makes this
UCAT default to the user catalog.

• The EXTENT of 3 cylinders contains

The UCAT primary allocation (2 cylinder)
The CRA (1 cylinder)

In case of a catalog overflow, any free cylinder in the subal­
locatable space(s) of this catalog (not yet defined) will be
used for secondary allocations.

OS/VS notes:

• The value 'CYL (3 1)' specifies, that 2 cylinders are to be
used for the catalog (no DATA and INDEX parameter specified
(see description for DEFINE MASTERCATALOG» and 1 cylinder is
to be used as CRA (catalog recovery area), since the RECOVERA­
BLE parameter is specified.

Up to a total of 15 extents can be allocated if necessary (in
extents of 1 cylinder).

104 VSAM PRIMER and REFERENCE

7.5 DEFINE SPACE

This command c~eates a suballocatable data space with a p~ima~y

allocation of 100 cylinde~s.

DOS/VS example (input):

II JOB DEFINE SPACE
II Ol8l SPACE",VSAM

OS/VS example (input):

IIPRIMER JOB WTSC,IBM,MSGlEVEL=l
IIPRIM0032 EXEC PGM=IOCAMS

II EXTENT SYSOlO,WTVSAM",76,1900
II ASSGN SYSOlO,OISK,VOl=WTVSAM,SHR
II EXEC IOCAMS,SIZE=AUTO

IISPACE 00 VOl=SER=WTVSAM,OISP=Olo,UNIT=3330

1&

OEF SPACE (
FILE (SPACE)
VOL (WTVSAM)
CYl (100)
)

CAT (PRIMER.UCATI/UCATUPOTI

DOS/VS example (output):

IISYSPRINT DO SYSOUT=A
IISYSIN 00 *

DEF SPACE
FILE (SPACE)
VOL (WTVSAM I
CYl (100,2 I
)

CAT (PRIMER.UCATI/UCATUPOTI

OS/VS example (output):

IDCOSllI SPACE AllOC.STAT. FOR VOLUME WTVSAM IS 0 IDCOSllI SPACE AllOC.STAT. FOR VOLUME WTVSAM IS 0
IDCOOOlI FUNCTION COMPl., HIGHEST COND.CODE WAS 0 IDCOOOlI FUNCTION COMPl., HIGHEST CONO.COoE WAS 0

IDC00021 IDCAMS PROC. COMPl. MAX. COND.CODE WAS 0 IDC00021 IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0

LISTCAT output of this object is shown late~ in section 7.9.2

Notes:

• The FILE pa~ameter is ~equi~ed (not for MVS, also see section
7.2.1 on page 88), as the VTOC of the volume to contain the
data space has to be modified (build F1-DSCB (Label», and a
copy of the data space ent~y has to be written into the CRA.

• The CAT pa~ameter must be coded since the UCAT is password
p~otected.

DOS/VS notes:

• Defining a SPACE (as well as any UNIQUE cluste~) ~equires an
EXTENT specification whe~e the object is to be placed.

• The seconda~y allocation fo~ SPACE is not used in DOS/VS.
a specification would, if indicated, be recorded in
catalog for OS/VS compatibility only.

Such
the

• The FILE parameter also indicates to the DOS/VS system routines
the amount fo space controlled by VSAM.

Chapter 7. Access Method Services Examples 105

~ KSDS (KEY-SEQUENCED DATA SET)

7.6.1 DEFINE KSDS

DOS/VS example (input):

II JOB DEFINE KSDS IN VSAM SPACE
II OLBL KSOS,'CUSTOMER.K'"VSAM
II EXTENT SYS010,WTVSAM
II ASSGN SYS010,DISK,VOL=wrVSAM,SHR
II EXEC IOCAMS,SIZE=AUTO

1&

OEF CLUSTER

DATA

INDEX

NAME (CU$TOMER.K)
FILE (KSDS)
VOL (WTVSAM)
CYL (S 2)
INDEXED
IMBO
)

(

NAME (CUSTOMER.K.D)
RECORDSIZE (200 200)
KEYS (S 0)
FSPC (20 10)
CISZ (1024)

NAME (CUSTOMER.K.IJ
CISZ (2048)
)

CAT (PRIMER.UCAT1IUCATUPDT)

DOS/VS example (output):

OS/VS example (input):

IIPRIMER JOB WTSC,IBM,MSGLEVEL=1
IIPRIM0042 EXEC PGM=IOCAMS
IISTEPCAT DO DSN=PRIMER.UCATl,DISP=SHR
IISYSPRINT 00 SYSOUT=A
I/KSDS DO VOL=SER=WTVSAN,DISP=OLD,UNIT=3330

OS/VS example (output)!

IDCOS08I DATA ALLOC. STAT. FOR VOLUME WTVSAM IS 0 IDC0508I DATA ALLOC. STAT. FOR VOLUME WTVSAM IS 0
IDCOS09I INDEX ALLOC.STAT. FOR VOLUME WTVSAM IS 0 IDCOS09I INDEX ALLOC.STAT. FOR VOLUME WTVSAM IS 0
IDCOS201 CATALOG RECOVERY VOLUME IS WTVSAM IOCOS20I CATALOG RECOVERY VOLUME IS WTVSAM
IDC0001I FUNCTION COMPL., HIGHEST COND.CODE WAS 0 IDC0001I FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0

LISTCAT output of this object is shown later in section 7.9.2

See notes on next page.

106 VSAM PRIMER and REFERENCE

Notes:

• INDEXED specifies that the clustez is a KSDS.

• The sequence set will be IMBEDded within the data i.e. evezy
sequence set CI will be zeplicated to fill the fizst logical
tzack of the cozzesponding CA. NOREPLICATE is assumed pez
default foz the index set.

• As DATA- and INDEX-names aze specified, VSAM does not have to
genezate names itself.

• Accozding to the calculation made in section 8.3 on page 197,
the minimum INDEX~CISZ is 2 K. If this pazametez specification
is too small, a ~ighez value will be used by VSAM without the
usez being notified by any kind of message. It is thezefoze
zecommended to look cazefully in the LISTCAT output foz any
diffezence between what has been specified and what VSAM
stated.

DOS/VS notes:

• IJSYSUC is stozed in the STDLABEL azea.

• The VSAM data set name in the DLBL statement is optional foz
DEFINE.

• The defined KSDS is suballocated (default), i.e. it occupies a
ceztain amount of space anywheze in a pze-defined VSAM space on
the volume specified in the EXTENT 'volid'. Thezefore only one
set of DLBL and EXTENT (shozt fozm) is zequized. Foz a UNIQUE
KSDS clustez two paizs of DLBL/EXTENT (full fozm) would be
zequized, one foz the DATA pazt of the clustez, the othez foz
the INDEX.

• Since the usez catalog is
needed to addzess the CRA
ments.

zecovezable, the FILE pazametez is
thzough DLBL/EXTENT and ASSGN state-

Chaptez 7. Access Method Sezvices Examples 107

7.6.2 REPRO (LOAD A KSDS)

DOS/VS eKample (input):

II JOB LOAD KSDS FROM DISK-SAM
II DLBL SQDSK.'KSDS.LARGE.DATA'
II EXTENT SYSOOO •••• 7562,57
II ASSGN SYSOOO.DISK.VOL=DOS30Z.SHR
II DLBL KSDS.'CUSTOMER.K' •• VSAM
II EXTENT SYS010.WTVSAM
II ASSGN SYS010. DISK. VOL=WTVSAM .• SHR
II EXEC IDCAMS.SIZE=AUTO

1&

REPRO
INFILE (SQOSK

ENV (RECFM (FB)
BLKSZ (1600)
RECSZ (200)
POEV (3330))

OUTFILE (KSDS)
REPLACE

DOS/VS eKample (output):

OS/VS eKample (input):

IIPRIMER JOB WTSC.IBM,MSGLEVEL=1
IIPRIM0052 EXEC PGM=IDCAMS
IISTEPCAT DO OSN=PRIMER.UCAT1,OISP=SHR
IISQOSK DO VOL=SER=WTVS1R,UNIT=3330.
II
II
IIKSDS

DSN=LOADKSOS,DISP=(OLD.KEEP).
OCB=(RECFM=FB,LRECL=200,BLKSIZE=16~O)

DO OSN=CUSTOMER.K,OISP=OLO
IISYSPRINT DO SYSOUT=A
IISYSIN DO *

REPRO
INFILE (SQDSK)
OUTFILE (KSDS)

OS/VS eKample (output):

10C00051 NUMBER OF RECORDS PROCESSED WAS 3000 IDC00051 NUMBER OF RECORDS PROCESSED WAS 3000
IOC00011 FUNCTION tOMPL .• HIGHEST CONO.CODE WAS 0 IDC0001I FUNCTION COMPL •• HIGHEST CONO.CODE WAS 0

IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 IDC00021 10CAMS PROC. COMPL. MAX. COND.CODE WAS 0

LISTCAT output of this object is shown later in section 7.9.2

DOS/VS notes:

-. Access Method Services needs complete specifications of an~
nonVSAM data set.

• REPLACE means that in case the output KSDS contains records,
those input records with matching keys will REPLACE the records
in the KSDS (could have been omitted like in OS/VS).

108 VSAM PRIMER and REFERENCE

\

7.6.3 PRIMT KSDS

This example shows a paztial pzintout of the KSDS clustez.

DOS/VS example (input):

II JOB PRINT KSDS (PARTIAL)
II DLBL KSDS,'CUSTOMER.K'"VSAM
II EXTENT SYSOI0,WTVSAM
II ASSGN SYSOI0,DISK,VOL=WTVSAM,SHR
II EXEC IDCAMS,SIZE=AUTO

1&

PRINT INFILE (KSDS)
CHAR
COUNT (S)

DOS/VS example (output):

LISTING OF OS -CUSTOMER.K
KEY OF RECORD - 10

10 PHOENIX JOHNSON
KEY OF RECORD - 20

20 NEW YORK ROBERTS
KEY OF RECORD - 30

30 SAN JOSE NIXON
KEY OF RECORD - 40

40 SAN FRANCISCO BURTON
KEY OF RECORD - 50

OS/VS example (input):

IIPRIMER JOB WTSC,IBM,MSGLEVEL=1
//PRIM0062 EXEC PGM=IDCAMS
/ISTEPCAT DO DSN=PRIMER.UCATl,DISP=SHR
IIKSDS DO DSN=CUSTOMER.K,DISP=OLD
//SYSPRINT DO SYSOUT=A
//SYSIN DO *

PRINT INFILE (KSDS)
CHAR
COUNT (5)

OS/VS example (output):

LISTING OF OS -CUSTOMER.K
KEY OF RECORD - 10

10 PHOENIX
KEY OF RECORD - 20

20 NEW YORK
KEY OF RECORD - 30

30 SAN JOSE
KEY OF RECORD - 40

40 SAN FRANCISCO
KEY OF RECORD - 50

JOHN50~!

ROBERTS

NIXON

BURTON

50 RENO SMITH 50 RENO SMITH
IDC00051 NUMBER OF RECORDS PROCESSED WAS 5 IDC00051 NUMBER OF RECORDS PROCESSED WAS 5
IDCOOOI1 FUNCTION COMPL., HIGHEST CONO.COpE WAS 0 IOC00011 FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IOC00021 IOCAMS PROC. COMPL. MAX. COND.CODE WAS 0 10C00021 IOCAMS PROC. COMPL. MAX. CONO.COOE WAS 0

Chaptez 7. Access Method Sezvices Examples 109

7.6.4 ALTERNATE INDEXES AND PATHS TO KSDS

7.6.4.1 EXPLANATION OF THE MOST IMPORTANT PARAMETERS

•

• RELATE

• UNIQUEKEY/NONUNIQUEKEY

• UPDATE/NOUPDATE

• UPGRADE/NOUPGRADE

specifies the s~ze and offset of the
alternate key field, which must be
included in each base cluster record
(and in case of a spanned record, in
the first segment).

The alternate key can overlap or be
contained entirely with another
(alternate or prime) key field. It
must consist of a contiguous field.

specifies the base cluster this
alternate index belongs to. The base
cluster can be a nonreusable ESDS or
KSDS cluster.

specifies, whether an alternate key
may occur only once in a base cluster
record (UNIQUE) or whether more than
one occurrences are allowed (NONUNI­
QUEKEY).

If NONUNIQUEKEY is used (see figure 13
on page 33) it has to be taken into
consideration (if the base cluster is
a KSDS), that for each occurrence the
prime key is stored in full length in
the alternate index data reccL1
adjacent to the alternate key, so th~

alternate index RECORDSIZE should b~

specified large enough.

For an ESDS base cluster 4 bytes RBA
are stored for each occurrence.

is a PATH parameter and specifies,
whether an alternate index belonging
to the upgrade set (see UPGRADE) is to
be updated (when necessary) or not
(further details see section 2.7.4 on
page 35).

specifies whether an alternate
index is automatically updated by VSAM
when base cluster records are insert­
ed, deleted or when the alternate key
field is changed (provided the base
cluster is not accessed via a path
with the NOUPDATE attribute.

110 VSAM PRIMER and REFERENCE

7.6.4.2 DEFINE AIX. DEFINE PATH

DOS/VS eHample (input):

II JOB DEF AIX 'SALESMAN' + PATH 'SALES.CUST'
II DLBL KSDSt'CUSTOMER.K'"VSAM
II EXTENT SYSOI0,WTVSAM
II DLBL AIXKl,'SALESMAN.K'"VSAM
II EXTENT SYSOI0,WTVSAM
II DLBL PATHKl,'SALES.CUST.K'"VSAM
II EXTENT SYSOI0,WTVSAM
II ASSGN SYSOI0,DISK,VOL=WTVSAM,SHR
II EXEC IDCAMS,SIZE=AUTO

1&

DEF AIX (

DATA

INDEX

NAME (SALESMAN.K)
FILE (AIXKU
RELATE (CUSTOMER.K)
KEYS (12 40)
VOL (WTVSAM)
CYL (l 1)

IMBD
NONUNIQUEKEY
UPGRADE
)

NAME (SALESMAN.K.D)
CISZ (4096)

FSPC (20 10)

NAME (SALESMAN.K.I)
)

CAT (PRIMER.UCATI/UCATUPDT)
DEF PATH (

NAME (SALES.CUST.K)
FILE (PATHK1)
PATH ENTRY (SALESMAN.K) -
UPDATE
)

CAT (PRIMER.UCATI/UCATUPDT)

OS/VS eHample (input):

IIPRIMER JOB WTSC,IBM,MSGLEVEL=l
IIPRIM0072 EXEC PGM=IDCAMS
IISTEPCAT DD DSN=PRIMER.UCATl,OISP=SHR
IIAIXKl DD VOL=SER=WTVSAM,DISP=OLD,UNIT=3330
IISYSPRINT DD SYSOUT=A
IISYSIN DD *

DEF AIX

DATA

INDEX

NAME (SALESMAN.K)
FILE (AIXKl)
RELATE (CUSTOMER.K)
KEYS (12 40)
VOL (WTVSAM)
CYL (l 1)

IMBD
NONUNIQUEKEY
UPGRADE
)

NAME (SALESMAN.K.D)
CISZ (4096)

FSPC (20 10)
)

NAME (SALESMAN.K.I)
)

CAT (PRIMER.UCATI/UCATUPOT)
DEF PATH (

NAME (SALES.CUST.K)
FI LE (AIXKU
UPDATE
PATHENTRY (SALESMAN.K) -

CAT (PRIMER.UCATlIUCATUPDT)

output listing is shown on neHt page 'J

Chapter 7. Access Method Services EHamples 111

DOS/VS example (output): OS/VS example (output):

***** THIS IS THE OUTPUT OF DEFINE AIX ***** ***** THIS IS THE OUTPUT OF DEFINE. AIX *****

IDCOSOSI DATA ALLOC. STAT. FOR VOLUME WTVSAM IS 0 IDCOSOSI DATA ALLOC. STAT. FOR VOLUME WTVSAM IS 0
IDCOS09I INDEX ALLOC.STAT. FOR VOLUME WTVSAM IS 0 IDC0509I INDEX ALLOC.STAT. FOR VOLUME WTVSAM IS 0
IDCOS20I CATALOG RECOVERY VOLUME IS WTVSAM IDC0520I CATALOG RECOVERY VOLUME IS WTVSAM
IDCOOOll FUNCTIoN COMPL., HIGHEST COND. CODE WAS 0 IDCOOOll FUNCTION COMPt., HIGHEST COND. CODE WAS 0

***** THIS IS THE OUTPUT OF DEFINE PATH ***** ***** THIS IS THE OUTPUT OF DEFINE PATH *****

IDC0520I CATALOG RECOVERY VOLUME IS WTVSAM IDC0520I CATALOG RECOVERY VOLUME IS WTVSAM
IDC0001I FUNCTION COMPL., HIGHEST COND.CODE WAS 0 IOC0001I FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDC0002I IOCAMS PROC. COMPL. MAX. COND.CODE WAS 0 IDC0002I IOCAMS PROC. COMPL. MAX. COND.CODE WAS 0

LISTCAT output of this object is shown late~ in section 7.9.2

Notes:

• KEY specifies the length and the offset of the key in the
~eco~d. That is the length and position (~elative to ze~o) of
the alte~nate key in the base cluste~ ~eco~d.

• NONUNIQUEKEY means that a seconda~y key may point to mo~e than
one p~ima~y ~eco~d (synonyms).

• This AIX will be in the UPGRADE set of the base cluste~

(UPGRADE is default) , i.e. it will be automatically updated
wheneve~ ~eco~ds in the base cluste~ a~e added/deleted o~ a
seconda~y key field is modified, and if the PATH accessing the
base cluste~ has the UPDATE option (default) .

• The DATA CISZ is difficult to dete~mine because of the NONUNI­
QUEKEY option. But even if specified too small, it would be
accepted since the data ~eco~ds of an AIX a~e in sp,anned fo~mat
(SPANNED is default).

• PATHENTRY indicates the name of the AIX this path ~efe~s to.

• The DATA RECSZ can be omitted (default is 4086 32600) fo~

ave~age and maximum. The actual size can be computed conride~­
ing thaf a data ~eco~d of any AIX must account fo~ five bytes
(heade~) plus the length of the alte~nate key plus one (UNIQUE­
KEY) to 'n' (NONUNIQUEKEY) times the length of the p~ima~y key
(KSDS base cluste~) o~ times fou~ bytes (RBA length fo~ an ESDS
base cluste~).

• The FILE pa~amete~ is ~equi~ed (not fo~ MVS, also see section
7.2. 1 on page 88). The same DD-statement can be used -Eo:::
DEFINE AIX and DEFINE PATH.

Th~ notes a~e continued on the next page.

112 VSAM PRIMER and REFERENCE

/

\

(
\

DOS/VS notes:

• IJSYSUC is sto~ed in the STDLABEL a~ea.

• The FILE pa~amete~s a~e ~equi~ed to add~ess the CRA of the
~ecove~able use~ catalog. The same set of DLBL, EXTENT, and
ASSGN statements can be used in fu~the~ jobs to access the data
sets since they have the file-ID pa~amete~ al~eady coded.

• The 'volid' in the path's EXTENT ~efe~s to the fi~st volume of
the index component of the KSDS base cluste~. o~ fo~ an ESDS.
to the fi~st volume containing the data component of the ESDS
base cluste~. to allocate the volume with the CRA containin~ a
copy of the catalog ent~ies fo~ this object.

7.6.4.3 BLDINDEX AIX ON KSDS

DOS/VS example (input):

II JOB BUILD AIX SALESMAN-CUSTOMER.K ON KSDS
II DLBL KSDS,'CUSTOMER.K'"VSAM
II EXTENT SYSOIO,WTVSAM
II DLBL AIXK1,'SALESMAN.K'"VSAM
II EXTENT SYSOIO,WTVSAM
II ASSGN SYSOIO,DISK,VOL=WTVSAM,SHR
II EXEC IDCAMS,SIZE=AUTO

1&

BLDINDEX INFILE (KSDS)
OUTFILE (AIXKU

DOS/VS example (output):

IDC06521 SALESMAN.K BUILT

OS/VS example (input):

IIPRIMER JOB WTSC,IBM,MSGLEVEL=l
IIPRIM0082 EXEC PGM=IDCAMS
IISTEPCAT DO DSN=PRIMER.UCAT1,DISP=SHR
IIKSDS DO DSN=CUSTOHER.K,DISP=OLD
IIAIXKl DO DSN=SALESMAN.K,DISP=OLD
IISYSPRINT DO SYSOUT=A
IISYSIN DO *

BLDINDEX INFILE (KSDS)
OUTFILE (AIXKU

OS/VS example (output):

IDC06521 SALESMAN.K BUILT
IDCOOOII FUNCTION COMPL., HIGHEST COND.CODE WAS 0 IDCOOOII FUNCTION COMPL •• HIGHEST COND.CODE WAS 0

IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0

Notes:

• To c~eate the AIXs. the BLDINDEX function uses a so~t which
will no~mally be executed in vi~tual sto~age, but if Access
Method Se~vices cannot obtain enough vi~tual sto~age (o~ if
EXTERNALSORT is specified), BLDINDEX automatically defines two
ESDS files in a VSAM space cont~olled by the same o~ of a
diffe~ent catalog. uses them as wo~k files fo~ the exte~nal
so~t and deletes them at the end of so~t. The default 'dnames'
a~e IDCUT1 and IDCUT2.

DOS/VS notes:

• If exte~nal so~t is used. two
only v~lume info~mation needed)
sto~ed in the label a~ea. The
IDCUT2.

sets of DLBL/EXTENTs(no EXTENT,
must be p~ovided. They can be
default 'dnames' a~e IDCUT1 and

Chapte~ 7. Ac~ess Method Se~vices Examples 113

7.6.4.4 PRINT AIX

DOS/VS example (input):

II JOB PRINT AIXK1 (PARTIAL)
II OLBL AIXK1.'SALESMAN.K' •• VSAM
II EXTENT SYSOI0,WTVSAM
II ASSGN SYS010,OISK,VOL=WTVSAM.SHR
II EXEC IDCAMS.SIZE=AUTO

1&

PRINT INFILE (AIXK1)
CHAR
COUNT (5)

OS/VS example (input).:

IIPRIMER JOB WTSC,IBM.MSGLEVEL=1
IIPRIM0092 EXEC PGM=IDCAMS
IISTEPCAT 00 DSN=PRIMER.UCATl,DISP=SHR
IIAIXK1 00 DSN=SALESMAN.K,OISP=OLD
IISYSPRINT DO SYSOUT=A
IISYSIN DO *

PRINT INFILE(AIXK1)
CHAR
COUNT (5)

output of Access Method Sezvices (DOS/VS and OS/VS aze simila~):

LISTING OF DS -SALESMAN.K

KEY OF RECORD - ASH
••••• ASH 70 1120 1330 1610 1990 2130 3180 3390 3670 4050 4190 5240 5450 5730 6110 6250 711
10 9360 9570 965010070111201133011610119901213013160133901367014050141901524015450157301611016250171/

1019360195701985020070211202133021610219902213023180233902367024050241902524025450257302611026250271/
10293602951029850
KEY OF RECORD - ASPINALL
••••• ASPINALL 300 930 1710 2040 2360 2990 3770 4100 4420 5050 5830 6160 6460 7110 7890 8220 811
3011710120401236012990137701410014420150501583016160164801711017890182201854019170199502030020930211/
70241002442025050258302616026480271102789028220285402917029950
KEY OF RECORD - BAXTER .
••••• BAXTER 350 1210 1650 1980 2410 3270 3710 4040 4470 5330 5770 6100 6530 7390 7830 8160 811
1011650119801241013270137101404014470153301577016100165301739017830181601859019450198902035021210211/
10240402447025330257702610026530273902783028160285902945029890
KEY OF RECORD - BOOTH
••••• BOOTH 530 920 1220 1600 1800 2020 2590 2980 3280 3660 3860 4080 4650 5040 5340 5720 511
00 7780 7980 8200 8770 9160 9460 9840105301092011220116001180012020125901298013280136601386014080141/
2016140167101710017400177801798018200187701916019460198402053020920212202160021800220202259022980231/
5025040253402572025920261402671027100274002778027980282002877Q291602946029840
KEY OF RECORD - BURTON
••••• BURTON 40 740 1050 1760 2100 2800 3110 3820 4160 4860 5170 5680 6220 6920 7230 7940 811
4010740110501176012100128001311013620141601466015170156601622016920172301794018280189801929020000201/
00228002311023820241602486025170258602622026920272302794028280289802929030000
IDC0005I NUMBER OF RECORDS PROCESSED WAS 5
IDC0001I FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0

Note: The output lines we~e tzuncated on the zight side due to
limited page size.

114 VSAM PRIMER and REFERENCE

7.6.4.5 PRINT PATH

DOS/VS example (input):

II JOB PRINT PATHK1 (PARTIAL)
II DLBL PATHK1,'SALES.CUST.K'"VSAM
II EXTENT SYS010,WTVSAM
II ASSGN SYS010,DISK,VOL=WTVSAM,SHR
II EXEC IDCAMS,SIZE=AUTO

1&

PRINT INFILE (PATHK1)
CHAR
COUNT (5)

DOS/VS example (output):

LISTING OF OS -SALES.CUST.K
KEY OF RECORD - ASH

70 WICHITA
KEY OF RECORD - ASH

1120 ALBANY
KEY OF RECORD - ASH

1330 SEATTLE
KEY OF RECORD - ASH

1610 OAKLAND
KEY OF RECORD - ASH

1990 NEW ORLEANS

ASH

ASH

ASH

ASH

ASH
IDC0005I NUMBER OF RECORDS PROCESSED WAS 5

OS/VS example (input):

IIPRIMER JOB WTSC,IBM,MSGLEVEL=1
/IPRIM0102 EXEC PGM=IOCAMS
IISTEPCAT DO DSN=PRIMER.UCAT1,DISP=SHR
IIPATHK1 00 DSN=SALES.CUST.K,DISP=OLO
IISYSPRINT DO SYSOUT=A
I/SYSIN DO *

PRINT INFILE (PATHK1)
CHAR
COUNT (5)

OS/VS example (output):

LISTING OF OS -SALES.CUST.K
KEY OF RECORD - ASH

70 WICHITA
KEY OF RECORD - ASH

1120 ALBANY
KEY OF RECORD - ASH

1330 SEATTLE
KEY OF RECORD - ASH

1610 OAKLAND
KEY OF RECORD - ASH

1990 NEW ORLEANS

ASH

ASH

ASH

ASH

ASH
IOC0005I NUMBER OF RECORDS PROCESSED WAS 5

IDCOOOlI FUNCTION COMPL., HIGHEST COND .CODE WAS 0 IDCOOOlI FUNCTION COMPL., HIGHEST cOIm. CODE WAS 0

IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0

Chapter 7. AcCess Method Servic~s Examples 115

7.6.4.6 DEFINE AIX. DEFINE PATH

DOS/VS example (input):

II JOB DEF AIX 'CITY' + PATH 'CITY.CUST'
II DLBL KSDS,'CUSTOMER.K'"VSAM
II EXTENT SYSOI0,WTVSAM
II DLBL AIXK2,'CITY.K'"VSAM
II EXTENT SYSOI0,WTVSAM
II DLBL PATHK2,'CITY.CUST.K'"VSAM
II EXTENT SYSOI0,WTVSAM
II ASSGN SYS010,DISK,VOL=WTVSAM,SHR
II EXEC IDCAMS,SIZE=AUTO

1&

DEF AIX (

DATA

INDEX

DEF PATH

NAME (CITY.K)
FILE (AIXK2)
RELATE (CUSTOMER.K)
KEYS (IS 25)
VOL (WTVSAM)
CYL (1 1)

IMBD
NONUNIQUEKEY
UPGRADE
)

NAME (CITY .K.D)
CISZ (4096)

FSPC (20 10)

)

(

NAME (CITY .K. I)
)

CAT (PRIMER.UCATIIUCATUPDT)

NAME (CITY.CUST.K)
FILE (PATHK2)
PATHENTRY (CITY.K)
UPDATE
)

CAT (PRIMER.UCATI/UCATUPDTl

OS/VS example (input):

IIPRIMER JOB WTSC,IBM,MSGLEVEL=l
IIPRIM0122 EXEC PGM=IDCAMS
IISTEPCAT DO DSN=PRIMER.UCATl,DISP=SHR
IIAIXK2 DO VOL=SER=WTVSAM,DISP=OLD,UNIT=3330
IISYSPRINT DO SYSOUT=A

output listing is shown on next page

116 VSAM PRIMER and REFERENCE

DOS/VS example (output): OS/VS example (output):

***** THIS IS THE OUTPUT OF DEFINE AIX ***** ***** THIS IS THE OUTPUT OF DEFINE AIX *****

IDC050S1 DATA ALL?C. STAT. FOR VOLUME WTVSAM IS 0 IDC050SI DATA ALLOC. STAT. FOR VOLUME WTVSAM IS 0
IDC05091 INDEX ALLOC.STAT. FOR VOLUME WTVSAM IS 0 IDC05091 INDEX ALLOC.STAT. FOR VOLUME WTVSAM IS 0
IDC05201 CATALOG RECOVERY VOLUME IS WTVSAM IDC05201 CATALOG RECOVERY VOLUME IS WTVSAM
IDCOOOlI FUNCTION COMPL., HIGHEST COND.CODE WAS 0 IDCOOOII FUNCTION COMPL., HIGHEST COND.CODE WAS 0

***** THIS IS THE OUTPUT OF DEFINE PATH ***** ***** THIS IS THE OUTPUT OF DEFINE PATH *****

IDC05201 CATALOG RECOVERY VOLUME IS WTVSAM IDC05201 CATALOG RECOVERY VOLUME IS WTVSAM
IDCOOOlI FUNCTION COMPL., HIGHEST COND.CODE WAS 0 IDCOOOII FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDC00021 IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 IDC00021 IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0

LISTCAT output o£ this object is shown later in section 7.9.2

Note: see notes in section 7.6.4.2 on page 111.

7.6.4.7 BLDINDEX AIX ON KSDS

DOS/VS example (input):

II JOB BUILD AIX CITY-CUSTOMER.K ON KSDS
II DLBL KSDS,'CUSTOMER.K'"VSAM
II EXTENT SYSOlO,WTVSAM
II DLBL AIXK2,'CITY.K'"VSAM
II EXTENT SYSOlO,WTVSAM
II ASSGN SYSOIO,DISK,VOL=WTVSAM,SHR
II EXEC IDCAMS,SIZE=AUTO

1&

BLDINDEX INFILE (KSDSI
OUTFILE (AIXK21

DOS/VS example (output):

IDC06521 CITY.K BUILT

OS/VS example (input):

IIPRIMER JOB WTSC,IBM,MSGLEVEL=l
IIPRIM0132 EXEC PGM=IDCAMS
IISTEPCAT DO DSN=PRIMER.UCATl,DISP=SHR
IIKSDS DO DSN=CUSTOMER.K.D±SP~OLD
IIAIXK2 DO DSN=CITY.K,DISP=OLD
IISYSPRINT DO SYSOUT=A
IISYSIN DO *

BLDINDEX INFILE (KSDSI
OUTFILE (AIXK2)

OS/VS example (output):

IDC06521 CITY.K BUILT
IDCOOOlI FUNCTION COMPL., HIGHEST COND.CODE WAS 0 IDCOOOlI FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDC00021 IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 IDC00021 IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0

Note: see notes in section 7.6.4.3 on page 113.

Chapter 7. Access Method Services Examples 117

7.6.4.8 PRINT PART OF AN AIX

DOS/VS example (input):

II JOB PRINT AIXK2 (PARTIAL)
II DLBL AIXK2,'CITY.K'.,VSAM
II EXTENT SYSOI0.WTVSAM
II ASSGN SYSOI0,DISK,VOL=WTVSAM,SHR
II EXEC IDCAMS,SIZE=AUTO

1&

PRINT INFILE (AIXK2)
CHAR
COUNT (3)

OS/VS example (input):

IIPRIMER JOB WTSC,IBM,MSGLEVEL=1
//PRIMOI42 EXEC PGM=IDCAMS
/ISTEPCAT DO DSN=PRIMER.UCATl,DISP=SHR
I/AIXK2 DO DSN=CITY.K,DISP=OLD
/ISYSPRINT DO SYSOUT=A
IISYSIN DO *

PRINT INFILE (AIXK2)
CHAR
COUNT (3)

output of Access Method Services (DOS/VS and OS/VS are similar):

LISTING OF OS -CITY.K

KEY OF RECORD - ALBANY
.•.•. ALBANY 260 770 1120 2320 2830 3180 4380 4890 5240 6440 6950 7300 8500 9010 9360102611

1318014380148901524016440169501730018500190101936020260207702112022320228302318024380248902524026441/

29360
KEY OF RECORD - ATLANTA
••••• ATLANTA 520 1840 2580 3900 4640 5960 6700 8020 876010520118401258013900146401596016701/

22580239002464025960267002802028760
KEY OF RECORD - AUSTIN
..••• AUSTIN 280 620 790 1420 1670 2060 2340 2680 2650 3460 3730 4120 4400 4740 4910 55411

6970 7600 7650 8240 8520 8660 9030 9660 9910102801062010790114201167012060123401268012850134801373//

1554015790161801646016800169701760017850182401852018860190301966019910202802062020790214202167022061/

23730241202440024740249102554025790261802646026800269702760027850282402852028860290302966029910
IDC0005I NUMBER OF RECORDS PROCESSED WAS 3
IDCOOOI1 FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0

Note: The output lines were truncated on the
limited page size.

118 VSAM PRIMER and REFERENCE

right side due to

7.6.4.9 PRINT PART OF A BASE CLUSTER VIA PATH

DOS/VS example (input):

II JOB PRINT PATHK2 (PARTIAL)
II DLBL PATHK2,'CITY.CUST.K'"YSAM
II EXTENT SYSOIO,WTVSAM
II ASSGN SYSOIO,DISK,VOL=WTYSAM,SHR
II EXEC IDCAMS,SIZE=AUTO

1&

PRINT INFILE (PATHK2)
CHAR
COUNT (5)

DOS/VS example (output):

LISTING OF DS -CITY.CUST.K
KEY OF RECORD - ALBANY

260 ALBANY
KEY OF RECORD - ALBANY

770 ALBANY
KEY OF RECORD - ALBANY

1120 ALBANY
KEY OF RECORD - ALBANY

2320 ALBANY
KEY OF RECORD - ALBANY

2830 ALBANY

SMITH

REYNOLDS

ASH

SMITH

REYNOLDS

OS/VS example (input):

IIPRIMER JOB WTSC,IBM,MSGLEVEL=l
IIPRIM0152 EXEC PGM=IDCAMS
IISTEPCAT DD DSN=PRIMER.UCAT1,DISP=SHR
IIPATHK2 DO OSN=CITY.CUST.K,OISP=OLD
IISYSPRINT DO SYSOUT=A
IISYSIN DD *

PRINT INFIlE (PATHK2)
CHAR
COUNT (5)

1*

OS/VS example (output):

LISTING OF OS -CITY.CUST.K
KEY OF RECORD - ALBANY

260 ALBANY
KEY OF RECORD - ALBANY

770 ALBANY
KEY OF RECORD - ALBANY

1120 ALBANY
KEY OF RECORD - ALBANY

2320 ALBANY
KEY OF RECORD - ALBANY

2830 ALBANY

SMITH

REYNOLDS

ASH

SMITH

REYNOLDS
IDC00051 NUMBER OF RECORDS PROCESSED WAS 5 IOC0005I NUMBER OF RECORDS PROCESSED WAS 5
IDCOOOII FUNCTION COMPL., HIGHEST COND.CODE WAS 0 IDCOOOII FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDCOOO2IIDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 IDC0002I IDCAHS PROC. COHPL. MAX. COND.CODE WAS 0

Chapte~ 7. Access Method Se~vices Examples 119

7.6.4.10 REPRO (COPY DATA OF A KSDS TO ASAM~FILE ON DISK)

DOS/VS example (input):

// JOB REPRO KSOS TO SAM-DISK
// DLBL KSDS,'CUSTOMER.K'"VSAM
// EXTENT SYSOIO,WTVSAM
// ASSGN SYSOIO,DISK,VOL=WTVSAM,SHR
// DLBL REPKSDS,'REPRO.KSDS'
// EXTENT SYSOOO,DOS30Z,l,0,6707.9S
// ASSGN SYSOOO,DISK.VOL=DOS30Z.SHR
// EXEC IDCAMS,SIZE=AUTO

/&

REPRO INFILE (KSDS)
OUTFILE (REPKSDS
ENV (BLKSZ (4000)

RECSZ (200)
RECFM (FB)
PDEV (3330))

DOS/VS example (output):

IDCOOOSI NUMBER OF RECORDS PROCESSED WAS 3000

OS/ys example (input):

//PRIMER JOB WTSC,IBM.MSGLEVEL=l
//PRIMOl62·EXEC PGM=IDCAMS
//STEPCAT DD DSN=PRIMER.UCATl,DISP=SHR
//KSDS DD DSN=CUSTOMER.K.DISP=OLD
//REPKSDS DD VOL=SER=WTVSIR.UNIT=3330,
//

//

//

SPACE=(CYL.(S,l)),
DSN=REPRO.KSDS,DISP=(NEW,KEEP).
DCB=(RECFM=FB.LRECL=200,BLKSIZE=4000)

//SYSPRINT DD SYSOUT=A
//SYSIN DO *

REPRO INFILE (KSDS)
OUTFILE (REPKSDS)

OS/VS example (output):

IOCOOOSI NUMBER OF RECORDS PROCESSED WAS 3000
IDCOOOlI FUNCTION COMPL •• HIGHEST COND.CODE W~S 0 IDCOOOlI FUNCTION COMPL •• HIGHEST COND.CODE WAS 0

IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0

DOS/VS note:

• Access Method Services needs complete specifications of any
nonVSAM data set.

120 VSAM PRIMER and REFERENCE

7.6.4.11 ALTER (FREE SPACE. PASSWORD)

The th~ee examples given below would p~obably not be used in a ~eal
application. They show th~ee diffe~ent goals which can be achieved
with ALTER.

• Modify the FREES PACE definition in the data component of a
cluste~ afte~ it has been loaded (also see section 8.4 on page
199) .

• P~otect a cluste~ with a maste~ passwo~d.

• Nullify passwo~d p~otection.

• Since a maste~ passwo~d is established by the second ALTER
command, the following one has to specify that passwo~d to
alte~ the data set att~ibutes.

DOS/VS example (input):

II JOB ALTER KSDS
II DLBL KSDS,'CUSTOMER.K'"VSAM
II EXTENT SYSOIO,WTVSAM
II DLBL KSDSD,'CUSTOMER.K.D'"VSAM
II EXTENT SYSOIO,WTVSAM
II ASSGN SYSOIO,DISK,VOL=WTVSAM,SHR
II EXEC IDCAMS,SIZE=AUTO

1&

ALTER CUSTOMER.K.D
FILE (KSDSD)
FREESPACE (20 20)

ALTER CUSTOMER.K
FILE (KSDS)
MASTERPW (KSDSMRPW)

ALTER CUSTOMER.K/KSDSMRPW
FILE (KSDS)
NULLIFY (MRPW)

DOS/VS example (output):

OS/VS example (input):

IIPRIMER JOB WTSC,IBM,MSGLEVEL=l
IIPRIM0172 EXEC PGM=IDCAMS
IISTEPCAT DD DSN=PRIMER.UCATl,DISP=SHR
IIKSDS DD VOL=SER=WTVSAM,DISP=OLD,UNIT=3330
IISYSPRINT DO SYSOUT=A
IISYSIN DD *

ALTER CUSTOMER.K.D
FILE (KSDS)
FREESPACE (20 20)

ALTER CUSTOMER.K
FILE (KSDS)
MASTERPW (KSDSMRPW)

ALTER CUSTOMER.K/KSDSMRPW
FILE (KSDS)
NULLIFY (MRPW)

OS/VS example (output):

IDCOOOII FUNCTION COMPL., HIGHEST COND.CODE WAS 0 IDCOS31I ENTRY CUSTOMER.K.D ALTERED
IDCOOOII FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDCOOOII FUNCTION COMPL., HIGHEST COND.CODE WAS 0 IDCOS311 ENTRY CUSTOMER.K ALTERED
IDCOOOII FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IOCOOOII FUNCTION COMPL., HIGHEST COND.CODE WAS 0 IDCOS311 ENTRY CUSTOMER.K ALTERED
IDCOOOII FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDC00021 IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0
IDC00021 IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0

Note: the FILE pa~amete~ is ~equi~ed (not fo~ MVS, also see section
7.2.1 on page 88).

Chapte~ 7. Access Method Se~vices Examples 121

7~6.4.12 EXPORT A KSDS AND ITS AIX'S

When EXPORT PERMANENT is specified. the exported cLusters and the~r
subordinate objects will be deleted from the VSAM-catalog after the
EXPORT. For this reason, all AIX's must be exported before the
base cluster itself.

DOS/VS example (inPut):

II JOB EXPORT AIXKl + AIXK2 + KSDS
II DLBL KSDS,'CUSTOMER.K'"VSAM
II EXTENT SYSOIO.WTVSAM
II DLBL AIXKl,'SALESMAN.K'"VSAM
II EXTENT SYSOIO,WTVSAM
II DLBL AIXK2,'CliY.K',.VSAM
II EXTENT SYSOIO,WTVSAM
II ASSGN SYSOIO,DISK,VOL=WTVSAM,SHR
II .TLBL TAPEOUT,'KSDS.AIXKl.AIXK2'
II ASSGN SYSOOS,TAPE,VOL=OS7454
II MTC REW,SYSOOS
II EXEC IDCAMS,SIZE=AUTO

1&

EXPORT SALESMAN.K

EXPORT

EXPORT

INFILE (AIXKU
OUTFILE ITAPEOUT
ENV (BLKSZ (4096)

PDEV (2400»
)

PERMANENT
CITY.K
INF I LE (AIXK2)
OUTFILE ITAPEOUT
ENV (SLKSl (4096)

PDEV (2400»
)

PERMANENT
CUSTOMER.K
INF ILE (KSDS)
OUTFILE (TAPEOUT
ENV (BLKSl (4096)

PDEV (2400»
)

PERMANENT

OS/VS example (input):

l/PRIMER .JOB WTSC,IBM,MSGLEVEL=l
, IPRIM0182 EXEC PGM=IDCAMS
/ISTEPCAT 00 DSN=PRIMER.UCATl,OISP=SHR
IIAIXKl DO OSN=SALESHAN.K.DISP=OLO
IIAIXK2
IIKSOS
IIEXPAXKl
II
II
IIEXPAXK2
II

DO OSN=CITY.K,DISP=OLO
ODOSN=CUSTOMER.K,oISP=OLO
00 VOL=(,RETAIN",SER=057454).
UNIT=3400-6,LABEL=(2,SL),
OSN=EXPORTEO.AIXKl,OISP=(NEW,PASS)
00 VOL=(,RETAIN" ,SER=057454),
UNIT=3400-6,tABEL=(3,SL),

II OSN=EXPORTEO.AIXK2,OISP=(NEW,PASS)
IIEXPKSDS DO VOL=(,RETAIN" ,SER=057454),
II UNIT=3400-6, LABEt=(4,Sl),
II OSN=EXPORTED.KSDS,DISP=HIEW ,PASS)
IISYSPRINTDD SYSOUT=A
IISYSIN DO *

EXPORT

EXPORT

EXPORT

SALESMAN.K
INFILE (AIXKl)
OUTFILE (EXPAXKl)
PERMANENT
CITY.K
INFILE (AIXK2)
OUTFILE (EXPAXK2)
PERMANENT
CUSTOMER.K
INFILE (KSDS)
OUTFILE (EXPKSDS)
PERMANENT

output listing is shown on next· page

122 VSAM PRIMER and REFERENCE

DOS/VS example (output): OS/VS example (output):

**** THIS IS THE OUTPUT OF THE FIRST EXPORT **** **** THIS IS THE OUTPUT OF THE FIRST EXPORT ****

IDC05941 PORT. OS CREATED ON 10/20/77 AT 15:57:18 IDC05941 PORT. OS CREATED ON 12/21/77 AT 21:32:52
IDC05501 ENTRY (R) SALES.CUST.K DELETED IDC05501 ENTRY (R) SALES.CUST.K DELETED
IDC05501 ENTRY (G) SALESMAN.K DELETED
IDC05501 ENTRY (D) SALESMAN.K.D DELETED
IDC05501 ENTRY (I) SALESMAN.K.I DELETED

IDC05501 ENTRY (D) SALESMAN.K.D DELETED
IDC05501 ENTRY (I) SALESMAN.K.I DELETED
IDC05501 ENTRY (G) SALESMAN.K DELETED

IDCOOOI1 fUNCTION COMPL •• HIGHEST COND.CODE WAS 0 IDCOOOII FUNCTION COMPL •• HIGHEST COND.CODE W.~5 0

**** THIS IS THE OUTPUT OF THE SECOND EXPORT **** **** THIS IS THE OUTPUT OF THE SECOND EXPORT ****

IDC0594I PORT. OS CREATED ON 10/20/77 AT 15:57:28 IDC0594I PORT. OS CREATED ON 12/21/77 AT 21:32:57
IDC0550I ENTRY (R) CITY.CUST.K DELETED
IDC0550I ENTRY (G) CITY.K DELETED
IDC0550I ENTRY (D) CITY.K.D DELETED

IDC05501 ENTRY (R) CITY.CUST.K DELETED
IDC05501 ENTRY (D) CITY.K.D DELETED
IDC0550I ENTRY (I) CITY.K.I DELETED

IDC0550I ENTRY (I) CITY.K.I DELETED IDC05501 ENTRY (G) CITY.K DELETED
IDCOOOI1 FUNCTION COMPL •• HIGHEST COND.CODE WAS 0 IDCOOOI1 FUNCTION COMPL •• HIGHEST COND.CODE WAS 0

**** THIS IS THE OUTPUT OF THE THIRD EXPORT **** **** THIS IS THE OUTPUT OF THE THIRD EXPORT ****

IDC05941 PORT. OS CREATED ON 10/20/77 AT 15:57:37 IDC05941 PORT. OS CREATED ON 12/21/77 AT 21:33:03
IDC05501 ENTRY (C) CUSTONER.K DELETED
IDC0550I ENTRY (D) CUSTOMER.K.D DELETED
IDC0550I ENTRY (I) CUSTOMER.K.I DELETED

IDC05501 ENTRY (D) CUSTONER.K.D DELETED
IDC05501 ENTRY (I) CUSTOMER.K.I DELETED
IDC05501 ENTRY (C) CUSTOMER.K DELETED

IDCOOOI1 FUNCTION COMPL •• HIGHEST COND.CODE WAS 0 IDCOOOI1 FUNCTION COMPL •• HIGHEST COND.CODE WAS 0

IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0

DOS/VS notes:

• Since standard tape
tapes allowed prior
contains these files

1. VOL + HDR-Iabel
2. AIXKl data
3. EOF label
4. HDR label
5. AIXK2 data
6 • EOF label
7. HDR label
8. KSDS data
9. EOF label

label processing
to DOS/VS ReI.

is used (no unlabeled
34), the output tape

• At EOJ the tape will not be rewound unless REWIND/UNLOAD is
specified in the ENV-parameter or a MTC REW/RUN is used at end
of 'step.

Chapter 7. Access Method Services Examples 123 ,

7.6.4.13 IMPORT A KSDS AND ITS AIX'S

DOS/VS example (input):

II JOB IMPORT KSDS + AIXKl + AIXK2
II DLBL KSDS,'CUSTOMER.K'"VSAM
II EXTENT SYSOIO,WTVSAM
II DLBL AIXKl,'SALESMAN.K'"VSAM
II EXTENT SYSOIO,WTVSAM
II DLBL AIXK2,'CITY.K'"VSAM
II EXTENT SYSOIO,WTVSAM
II ASSGN SYSOIO,DISK,VOL=WTVSAM,SHR
II TLBL TAPEIN,'KSDS.AIXK1.AIXK2'
II ASSGN SYS004,TAPE,VOL=OS74S4
II MTC REW,SYS004
II MTC FSF,SYS004,6
II EXEC IDCAMS,SIZE=AUTO

1&

IMPORT INFILE (TAPEIN
ENV (BLKSZ (4096)

PDEV (2400»
)

OUTFILE (KSOS)
CAT (PRIMER.UCATI/UCATUPDT)

II NTC REW,SYS004
II EXEC IDCAMS,SIZE=AUTO

1&

IMPORT INFILE (TAPEIN
ENV (BLKSZ (4096)

PDEV (2400»
)

OUTFILE (AIXKU
CAT (PRIMER.UCATI/UCATUPDT)

IMPORT INFILE (TAPEIN
ENV (BLKSZ (4096)

PDEV (2400»

OUTFILE (AIXK2)
CAT (PRIMER.UCATI/UCATUPDT)

OS/VS example (input):

IIPRIMER JOB WTSC,IBM,MSGLEVEL=l
IIPRIM0192 EXEC PGM=IDCAMS
IISTEPCAT DO DSN=PRINER.UCATl,DISP=SHR
IIAIXKl
II
IIAIXK2
II
IIKSDS
II

DO DSN=SALESMAN.K,AHP='AMORG',
VOL=SER=WTVSAM,DISP=OLD,UNIT=3330
DO DSN=CITY. K, AMP= ' AMORG', '
VOL=SER=WTVSAM,DISP=OLD,UNIT=3330
DO DSN=CUSTOMER.K,AMP='AMORG',
VOL=SER=WTVSAM,DISP=OLD,UNIT=3330

IIEXPAXKl DO VOL=(,RETAIN",SER=OS74S4),
II UNIT=3400-6,LABEL=(2,SLI,
II DSN=EXPORTED.AIXKl,DISP=(OLO,PASS)
IIEXPAXK2 DO VOL=(,RETAIN",SER=OS7454),
II UNIT=3400-6,LABEL=(3,SLI,
II DSN=EXPORTED.AIXK2,OISP=(OLO,PASS)
IIEXPKSDS DO VOL=(,RETAIN",SER=OS7454),
II UNIT=3400-6,LABEL=(4,SL),
II DSN=EXPORTED.KSDS,DISP=(OLD,PASS)
IISYSPRINT DO SYSOUT=A
IISYSIN DO *

IMPORT INFILE (EXPKSDS)
OUTFILE (KSOS)
CAT (PRIMER.UCATI/UCATUPDTI

IMPORT INFILE (EXPAXKll
OUTFILE (AIXKU
CAT (PRIMER.UCATI/UCATUPOTI

IMPORT INFILE (EXPAXK21
OUTFILE CAIXK21
CAT (PRIMER.UCATI/UCATUPOTI

output listing is shown on next page

124 VSAM PRIMER and REFERENCE

DOS/VS example (output): OS/VS example (output):

*** THIS IS THE OUTPUT OF THE SECOND IMPORT *** **** THIS IS THE OUTPUT OF THE FIRST IMPORT ****

IDC0604I OS BEING IMP. WAS EXP. 10/20/77 AT 15:57 IDC0604I OS BEING IMP. WAS EXP. 12/21/77 AT 21:33
IDC0520I CATALOG RECOVERY VOLUME IS WTVSAM IDC0520I CATALOG RECOVERY VOLUME IS WTVSAM
IDC050S1 DATA ALLOC. STAT. FOR VOLUME WTVSAM IS 0 IDC050S1 DATA ALLOC. STAT. FOR VOLUME WTVSAM IS 0
IDC05091 INDEX ALLOC.STAT. FOR VOLUME WTVSAM IS 0 IDC05091 INDEX ALLOC.STAT. FOR VOLUME WTVSAM IS 0
IDCOOOI1 FUNCTION COMPL •• HIGHEST COND.CODE WAS 0 IDCOOOI1 FUNCTION COMPL •• HIGHEST COND.CODE WAS 0

*** THIS IS THE OUTPUT OF THE SECOND IMPORT *** **** THIS IS THE OUTPUT OF THE SECOND IMPORT ****

IDC06041 OS BEING IMP. WAS EXP. 10/20/77 AT 15:57 IDC06041 OS BEING IMP. WAS EXP. 12/21/77 AT 21:32
IDC05201 CATALOG RECOVERY VOLUME IS WTVSAM IDC05201 CATALOG RECOVERY VOLUME IS WTVSAM
IDC050S1 DATA ALLOC. STAT. FOR VOLUME WTVSAM IS 0 IDC050S1 DATA ALLOC. STAT. FOR VOLUME WTVSAM IS 0
IDC05091 INDEX ALLOC.STAT. FOR VOLUME WTVSAM IS 0 IDC0509I INDEX ALLOC.STAT. FOR VOLUME WTVSAM IS 0
IDCOOOI1 FUNCTION COMPL •• HIGHEST COND.CODE WAS 0 IOCOOOII FUNCTION COMPL •• HIGHEST COND.CODE WAS 0

*** THIS IS THE OUTPUT OF THE THIRD IMPORT *** **** THIS IS THE OUTPUT OF THE THIRD IMPORT ****

IDC06041 OS BEING IMP. WAS EXP. 10/20/77 AT 15:57 IOC0604I OS BEING IMP. WAS EXP. 12/21/77 AT 21:32
IOC05201 CATALOG RECOVERY VOLUME IS WTVSAM IDC0520I CATALOG RECOVERY VOLUME IS WTVSAM
IDC050S1 DATA ALLOC. STAT. FOR VOLUME WTVSAM IS 0 IOC050S1 DATA ALLOC. STAT. FOR VOLUME WTVSAM IS 0
IDC0509I INDEX ALLOC.STAT. FOR VOLUME WTVSAM IS 0 IDC0509I INDEX ALLOC.STAT. FOR VOLUME WTVSAM IS 0
IDC00011 FUNCTION COMPL •• HIGHEST COND.CODE WAS 0 IOCOOOI1 FUNCTION COMPL •• HIGHEST COND.CODE WAS 0

IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 IDC00021 IDCAMS PROC. COMPL. MAX. CONO.CODE WAS 0

Notes:

• The PURGE pazametez is not zequized because no expization date
was specified in the DEFINE command.

• Read also section A.6.2 on page 258 wheze IMPORT considezations
aze desczibed.

• Since an AIX cannot be built oz
clustez is loaded oz impozted, the
the KSDS IMPORT.

impozted befoze its base
jobstzeam has to stazt with

DOS/VS notes:

• To impozt the KSDS, the input tape must be pzecisely positioned
at the beginning of the KSDS HDR1-label with a MTC FSF command
(see DOS/VS notes in the pzevious section foz the tape layout).

• Aftez the KSDS has been impozted, the tape must be zewound to
zead the AIX's data. This can only be done by a MTC REW
command between the two jobsteps. The REWIND option of the ENV
pazametez (available foz DOS/VS Rel.34 and up) cannot be used
since it would zewind the tape at both OPEN and CLOSE times and
lose the positioning.

Chaptez 7. Access Method Sezvices Examples 125

7.6.4.14 VERIFY KSDS

DOS/VS eHample (input):

II JOB VERIFY KSDS
II DLBL KSDS,'CUSTOMER.K',.VSAM
II EXTENT SYSOIO,WTVSAM
II ASSGN SYSOIO,DISK,VOL=WTVSAM,SHR
II EXEC IDCAMS.SIZE=AUTO

VERIFY FILE (KSDS)
1&

DOS/VS eHample (output):

OS/VS eHample (input):

IIPRIMER JOB WTsc,t8M,MSGLEVEL=1
IIPRIM0202 EXEC PGM=IDCAMS
IISTEPCAT DD DSN=PRIHER.UCAT1,DISP=SHR
IIKSDS DO DSN=cusfoMER.K,DISP=OLD
IISYSPRINT DO SYSOUT=A
IISYSIN DO *

VERIFY FILE (KSDS)

OS/VS eHample (output):

IDCOOOII FUNCTION COMPL., HIGHEST COND.CODE WAS 0 IDCOOOII FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0

Notes:

• The condition code '0' shows that the VERIFY function worked
properly.

If the data set was in need of VERIFYing, messages IDC3300I and
IDC3351I will be issued.

• The FILE parameter is requized to identify the DD statement
describing the data set to be verified.

12' VS~M PRIMER and REFERENCE

(

~ ESDS (ENTRY SEQUENCED DATA SET)

7.7.1 DEFINE ESDS

DOS/VS example (input):

II JOB DEFINE ESOS IN VSAM SPACE
II OLBL ESOS,'CUSTOMER.E'"VSAM
II EXTENT SYSOlO,WTVSAM
II ASSGN SYSOlO,OISK,VOL=HTVSAM,SHR
II EXEC IDCAMS,SIZE=AUTO

1&

OEF CLUSTER
(

DATA

NAME (CUSTOMER.E)
FILE (ESOS)
VOL (WTVSAM)
CYL (5 2)
NONINOEXED
)

NAME (CUSTOMER.E.O)
RECORDSIZE (200 200)
CISZ (4096)

CAT (P~lMER.UCATl/UCATMRPW)

DOS/VS example (output):

OS/VS example (input):

IIPRIMER JOB WTSC,IBM,MSGLEVEL=l
IIPRIM02l2 EXEC PGM=IOCAMS
IISTEPCAT DD DSN=PRIMER.UCATl,DISP=SHR
IIESOS DO VOL=SER=WTVSAM,OISP=OLO,UNIT=3330
IISYSPRINT DO SYSOUT=A
IISYSIN DO *

OEF CLUSTER
(

NAME (CUSTOMER.E)
FILE (ESOS)
VOL (WTVSAM)
CYL (S 2)
NON INDEXED
)

DATA (
NAME (CUSTOMER.E.O)
RECOROSIZE (200 200) -
CISZ (4096)
)

CAT (PRIMER.UCATl/UCATUPDTI

OS/VS example (output):

IOCOS08I DATA ALLOC. STAT. FOR VOLUME HTVSAM IS 0 IOCOS08I DATA ALLOC. STAT. FOR VOLUME WTVSAM IS 0
IOCOS201 CATALOG RECOVERY VOLUME IS WTVSAM IOCOS20I CATALOG RECOVERY VOLUME IS HTVSAM
IOCOOOlI FUNCTION COMPL., HIGHEST CONO.CODE .WASO IOCOOOlI FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDC00021 IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 IOC0002I IDCAMS PROC. COMPL. MAX. COND.CODE HAS 0

Notes:

• NONINDEXED is the parameter to specify a DEFINE ESDS.

• See also section 7.6.1 on page 106.

DOS/VS notes:

• IJSYSUC is stored in the STDLABEL area.

• The VSAM data set name in the DLBL statement is optional for
DEFINE.

Chapter 7. Access Method Services Examples 127

7.7.2 REPRO (LOAD AN ESDS)

DOS/VS example (input):

II JOB LOAD ESDS FROM DISK-SAM
II DLBL SQDSK,'LARGE.ESDS.DATA'
II EXTENT SYSOOO",,6802,9S
II ASSGN SYSOOO,DISK,VOL=DOS30Z,SHR
II DLBL ESDS,'CUSTOMER.E'.,VSAM
II EXTENT SYS010,WTVSAM
II ASSGN SYS010.DISK,VOL=WTVSAM,SHR
II EXEC IDCAMS,SIZE=AUTO

1&

REPRO
INFILE (SQDSK

ENV (RECFM (FB)
BLKSZ (1600)
RECSZ (200)
POEV (3330»
)

OUTFILE (ESOS)

DOS/VS example (output):

IDC0005I NUMBER OF RECORDS PROCESSED WAS 3000

OS/VS example (input):

IIPRIMER JOB WTSC,IBM.MSGLEVEL=1
IIPRIM0222 EXEC PGM=IDCAMS
IISTEPCAT DO DSN=PRIMER.UCAT1,DISP=SHR
IISQDSK DO VOL=SER=WTVS1R,UNIT=3330,
II DSN=LOADESDS,DISP=(OLO.KEEP),
II
IIESOS

DCB=(RECFM=FB,LRECL=200,BLKSIZE=1600)
DO OSN=CUSTOMER.E,OISP=OLO

IISYSPRINT DO SYSOUT=A
IISYSIN DO *

REPRO
INFnE (SQDSK)
OUTFILE (ESOS)

OS/VS example (output):

IOC0005I NUMBER OF RECORDS PROCESSED WAS 3000
IOC0001I FUNCTION CONPL., HIGHEST COND.CODE WAS 0 10C0001I FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDC00021 1DCAMS PROC. COMPL. MAX. COND.CODE WAS 0 10C0002I 1DCAMS PROC. COMPL. MAX. COND.CODE WAS 0

DOS/VS notes:

• Access Method Se~vices needs complete
nonVSAM data set.

128 VSAM PRIMER and REFERENCE

specifications of any

7.7.2.1 DEFINE A.X, DEFINE PATH

DOS/VS example (input):

II JOB OEF AIX 'SALESMAN' + PATH 'SALES.CUST'
II OLBL ESOS,'CUSTOMER.E'"VSAM
II EXTENT SYS010,WTVSAM
II OLBL AIXE1,'SALESMAN.E',.VSAM
II EXTENT SYS010,WTVSAM
II OLBL PATHE1.'SALES.CUST.E'"VSAM
II EXTENT SYS010,WTVSAM
II ASSGN SYS010.DISK.VOL=WTVSAM,SHR
II EXEC IOCAMS.SIZE=AUTO

1&

OEF AIX (

DATA

NAME (SALESMAN.E)
FILE (AIXEl)
RELATE (CUSTOMER.E)
KEYS (12 40)
VOL (WTVSAM)
cn (1 1)

IMBD
NONUNIQUEKEY
UPGRADE
)

NAME (SALESMAN.E.O)
CISZ (40961
FSPC (20 10)
)

INDEX (

DEF PATH

NAME (SALESMAN.E.I)
I

CAT (PRIMER.UCAT1/UCATMRPW)

NAME (SALES.CUST.EI
FILE (PATHEl)
PATH ENTRY (SALESMAN.E) -
UPDATE
)

CAT (PRIMER.UCAT1/UCATMRPW)

OS/VS example (input):

IIPRIMER JOB WTSC,IBM.MSGLEVEL=l
IIPRIM0232 EXEC PGM=IDCAMS
IISTEPCAT DO DSN=PRIMER.UCAT1,DISP=SHR
IIAIXE1 DO VOL=SER=WTVSAM,DISP=OLD,UNIT=3330
IISYSPRINT DO SYSOUT=A
IISYSIN 00 *

DEF AIX

DATA

INDEX

DEF PATH

NAME (SALESMAN.E)
FILE (·AIXE11
RELATE (CUSTOMER.E)
KEYS (12 401
VOL (WTVSAMI
CYL (1 II
IMBD
NONUNIQUEKEY
UPGRADE
)

NAME (SALESMAN.E.DI
CISZ (4096)
FSPC (20 10)
I

NAME (SALESMAN.E.I)
)

CATALOG (PRIMER.UCAT1/UCATMRPWI

NAME (SALES.CUST.E)
FILE (AIXE1)
UPDATE
PATHENTRY (SALESMAN.E) -
)

CATALOG (PRIMER.UCAT1/UCATMRPWI

output listing is shown on next page

Chaptex 7. Access Method Sexvices Examples 129

DOS/VS example (output): OS/VS example (output):

***** THIS IS THE OUTPUT OF DEFINE AIX ***** ***** THIS IS THE OUTPUT OF DEFINE AIX ****~

IDC0508I DATA ALLOC. STAT. FOR VOLUME WTVSAM IS 0 IDC0508I DATA ALLOC. STAT. FOR VOLUME WTVSAM IS 0
IDC0509I INDEX ALLOC.STAT. FOR VOLUME WTVSAM IS 0 IDC0509I INDEX ALLOC.STAT. FOR VOLUME WTVSAM IS 0
IDC0520I CATALOG RECOVERY VOLUME IS WTVSAM IDC0520I CATALOG RECOVERY VOLUME IS WTYSAM
IDCOOOII FUNCTION COMPL., HIGHEST COND.CODE WAS 0 IDCOOOII FUNCTION COMPL., HIGHEST CONO.CODE WAS 0

***** THIS IS THE OUTPUT OF DEFINE PATH ***** ***** THIS IS THE OUTPUT OF DEFINE PATH *****

IOC0520I CATALOG RECOVERY VOLUME IS WTVSAM IDC0520I CATALOG RECOVERY VOLUME IS WTVSAM
IOCOOOII FUNCTION COMPL., HIGHEST CONO.CODE WAS 0 IDCOOOII FUNCTION COMPL., HIGHEST CONO.CODE WAS 0

IOC0002I IDCAMS PROC. COMPL. MAX.CONO.CODE WAS 0 IDC0002I 1DCAMS PROC. COMPL. MAX. COND.CODE WAS C

LISTCAT output of this object is shown later in section 7.9.2

Note: see notes in section 7.6.4.2 on page 111.

7.7.2.2 BLDINDEX AIX ON ESDS

DOS/VS example (input):

// JOB BUILD AIX SALESMAN-CUSTOMER.E ON ESOS
// DLBL ESDS,'CUSTOMER.E'"YSAM
/1 EXTENT SYSOI0,WTVSAM
II DLBL AIXE1,'SALESMAN.E'"VSAM
1/ EXTENT SYSOI0,WTYSAM
II ASSGN SYSOI0,DISK,VOL=WTYSAM,SHR
/1 EXEC IOCAMS,SIZE=AUTO

1&

BLDINDEX INFILE (ESDS)
OUTFILE (AIXE1)

DOS/VS example (output):

OS/VS example (input):

IIPRIMER JOB WTSC,IBM,MSGLEVEL=1
IIPRIM0242 EXEC PGM=IDCAMS
IISTEPCAT DO DSN=PRIMER.UCAT1,OISP=SHR
/IESDS DO DSN=CUSTOHER.E,OISP=OLD
IIAIXEl DO DSN=SALESMAN.E,DISP=OLD
IISYSPRINT DO SYSOUT=A
IISYSIN 00 *

BLDINDEX INFILE (ESDS)
OUTFILE (AIXE1)

OS/VS example (output):

IDC0652I SALESMAN.E BUILT IOC0652I SALESMAN.E BUILT
IOCOOOII FUNCTION COMPL., HIGHEST COND.CODE WAS 0 IDCOOOII FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 10C0002I 1DCAMS PROC. COMPl. MAX. COND.CODE WAS 0

Note: see notes in section 7.6.4.3 on page 113.

130 VSAM PRIMER and REFERENCE

7.7.2.3 PRINT ESDS

DOS/VS example (input):

II JOB PRINT ESDS (PARTIAL)
II DLBL ESDS,'CUSTOMER.E'"VSAM
II EXTENT SYSOI0,WTVSAM
II ASSGN SYSOI0,DISK,VOL=WTVSAM,SHR
II EXEC IDCAMS,SIZE=AUTO

1&

PRINT INFILE (ESOS)
CHAR
COUNT (5)

DOS/VS example (output):

LISTING OF OS -CUSTOMER.E
RBA OF RECORD - 0

6000 MIAMI FLEMING
RBA OF RECORD - 200

20 NEW YORK ROBERTS
RBA OF RECORD - 400
16000 MIAMI FLEMING
RBA OF RECORD - 600

50 RENO SMITH
RBA OF RECORD - 800

60 HOUSTON JACKSON

OS/VS example (input):

IIPRIMER JOB WTSC,IBM,MSGLEVEL=l
IIPRIMOS72 EXEC PGM=IDCAMS
IISTEPCAT DO DSN=PRIMER.UCATl,DISP=SHR
IIESDS DO DSN=CUSTOMER.E,OISP=OLD
IISYSPRINT DO SYSOUT=A
IISYSIN DO *

PRINT INFILE (ESDS)
CHAR
COUNT (S)

OS/VS example (output):

LISTING OF OS -CUSTOMER.E
RBA OF RECORD - 0

6000 MIAMI
RBA OF RECORD - 200

20 NEW YORK
RBA OF RECORD - 400
16000 MIAMI
RBA OF RECORD - 600

SO RENO
RBA OF RECORD - 800

60 HOUSTON

FLEMING

ROBERTS

FLEMING

SMITH

JACKSON
IDCOOOSI NUMBER OF RECORDS PROCESSED WAS S IDCOOOSI NUMBER OF RECORDS PROCESSED WAS S
IDCOOOI1 FUNCTION COMPL., HIGHEST CONO.CODE WAS 0 IDCOOOI1 FUNCTION COMPL., HIGHEST CONO.CODE WAS 0

IDC00021 IDCAMS PROC. COMPL. MAX. CONO.CODE WAS 0 IDC00021 IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0

Note:

• Since data loaded into the ESDS base cluste~ a~e not the same
used in examples of section 7.6 (on page 106) fo~ the KSDS base
cluste~, the listings will diffe~ as well.

Chapte~ 7. Access Method Se~vices Examples 131

7.7.2.4 PRINT AIX

DOS/VS example (input):

II JOB PRINT AIXEl (PARTIAL)

II oLBL AIXEl,'SALESMAN.E' "VSAM
II EXTENT SYSOI0,WTVSAM
II ASSGN SYSOI0,oISK,VOL=WTVSAH,SHR
II EXEC IoCAMS,SIze=AUTO

1&

PRINT INFILE (AIXEl)

DUMP
COUNT (3)

OS/VS example (input):

IIPRIMER JOB WTSC,IBM,MSGLEVEL=1

IIPRIM0252 EXEC PGM=IoCAMS
IISTEPCAT DO oSN=PRIMER.UCATl,OISP=SHR
IIAIXEl DO OSN=SALESMAN.E.oISP=OLo
IISYSPRINT DO SYSOUT=A
IISYSIN DO *

PRINT INFILE (ESoS)

DUMP
COUNT (3)

output of Access Method Services (DOS/VS and OS/VS are similar):

LISTING OF OS -SALESHAN.E
KEY OF RECORD - CIE2C8404040404040404040
0000 00040048 OCCIE2C8 40404040 40404040 40000004 B000008E 08000090 C8000092 * ••••• ASH ••• 11

0020 580000AC 800000Ao 4800011B B8000110 4800011E D8000122 58000123 20000123 * 11
0040 E800013A 2800013A F000013B B80001AB B80001AD 480001AE 080001B2 5~0001B3 *Y ••••••• O •.•••••••••. -/
0060 200001B3 E80001CA 280001CA FOOOOICB B8000242 58000243 20000243 E800025A * •••• Y ••••••• O •••••. ,//

0080 2800025A F000025B B80002D2 58000203 20000203 E80002EA 280002EA F00002EB * O •. $ ••• K •.• L •.• LII
OOAO B8000317 00000318 98000319 60000362 58000363 20000363 E80003A7 o00003A8 * -....... 1,
OOCO 980003A9 60000437 00000438 98000439 600004C7 D00004C8 980004C9 60000557 * -........... - .. GII
OOEO 00000558 98000559 600005B7 000005B8 980005696000064700000648 98000649 * -........... 11

0100 6000060700000608 98000609 60000767 00000768 98000769 600007F7 o00007F8 *- .. P ••• Q ... R- ••••.•• II
0120 980007F9 60000956 B8000950 4800095E 08 * ... 9- •• $ •••) ••• ;Q
KEY OF RECORD - C1E207C905C1030340404040
0000 00040039 OCC1E207 C905CI03 03404040 40000075 78000077 0000007A 28000080 * ••••• ASPINALL ••••• 11
0020 C8000082 58000083 E8000100 00000103 20000106 4000010C 80000100 4800010E *H ••••••• Y ••••••••••• I/
0040 10000190 00000193 20000196 4000019C 8000019D 4800019E 10000222 58000224 * •••••••••••• ••••••• 11
0060 B0000227 08000209 6000020A 2800020A F000036E 1000036E 08000370 000003F9 * R- ••••••• O •• >I/
0080 600003FA 280003FA F000048E 1000048E D8000490 0000051E 1000051E D8000520 *- O ••••••• Q ••• II
OOAO 0000066A F00006BC 800006BE 1000074A F000074C 8000074E 10000700 4800070E * 0 •••••••.••• 0 •. <11
OOCO 1000070E 08000860 4800086E 1000086E 080008BC 800008SE 100008CO 000008FD * •••• Q .• _ ••• > ••• >Q ••• //

OOEO 480008FE 100008FE D800094A 2800094B B8000940 48
KEY OF RECORD - C2CIE7E3C509404040404040

* Q ••••••••• • (11

0000 00040039 OCC2CIE7 E3C5D940 40404040 40000076 40000078 9800007A F0000100 * ••••• BAXTER ••• ••• 11
0020 C8000103 E8000107 08000190 C8000193 E8000197 080001FA 280001FB B80001Fo *H ••• Y •.••••• H ••• Y ••• II
0040 4800028700000289 6000028A F000031A F000031D 48000320 0000035A F000035B * -... 0 ••• 0 ••• /1

0060 B800035C 800003AA F00003AC 800003AE 100003E8 980003E9 600003EA 2800043A * ... * O •••••••••• YII
0080 F000043C 8000043E 10000478 98000479 6000047A 28000506 40000507 08000507 *0 ••••••••••..•.• - •• :11
OOAO 00000598 98000599 6000059A 280006lE D8000620 00000620 C80006AC 800006AO * -....... Q ..• II
OOCO 480006AE 1000073C 80000730 4800073E 100007CC 800007CD 480007CE 1000085E * 11
OOEO 08000860 00000860 C8000945 78000946 40000947 08 *Q •• - ••• -H ••••••• ••• 11
IOC00051 NUMBER OF RECORDS PROCESSED WAS 3
IoCOOOII FUNCTION COMPL., HIGHEST CONO.CODE WAS 0

IoC0002I IOCAMS PROC. COMPL. MAX. CONO.COOE WAS 0

Note: The output lines were truncated on the right side due to \
limited page size.

132 VSAM PRIMER and REFERENCE

7.7.2.5 PRINT PATH

DOS/VS example (input):

II JOB PRINT PATHE1 (PARTIAL)
II DLBL PATHE1,'SALES.CUST.E'"VSAM
II EXTENT SYS010,WTVSAM
II ASSGN SYS010,DISK,VOL=WTVSAM,SHR
/1 EXEC ID.CAMS,SIZE=AUTO

1&

PRINT INFILE (PATHE1)
CHAR
COUNT (5)

DOS/VS example (output):

LISTING OF DS -SALES.CUST.E
KEY OF RECORD - ASH

70 WICHITA ASH
KEY OF RECORD - ASH
4050 NEW ORLEANS ASH

KEY OF RECORD - ASH
14050 NEW ORLEANS ASH
KEY OF 'RECORD - ASH
Z4050 NEW ORLEANS ASH
KEY OF RECORD - ASH
10070 WICHITA ASH
IDC0005I NUMBER OF RECORDS PROCESSED WAS 5

OS/VS example (input):

IIPRIMER JOB WTSC,IBM,MSGLEVEL=l
I/PRIMOZ62 EXEC PGM=IDCAMS
IISTEPCAT DO DSN=PRIMER.UCAT1,DISP=SHR
IIPATHE1 DO DSN=SALES.CUST.E,DISP=OLD
IISYSPRINT DO SYSOUT=A
/ISYSIN DO *

PRINT INFILE (PATHE1)
CHAR
COUNT (5)

1*

OS/VSexample (output):

LISTING OF OS -SALES.CUST.E
KEY OF RECORD - ASH

70 WICHITA
KEY OF RECORD - ASH
4050 NEW ORLEANS

KEY OF RECORD - ASH
14050 NEW ORLEANS
KEY OF RECORD - ASH
24050 NEW ORLEANS
KEY OF RECORD - ASH

ASH

ASH

ASH

ASH

10070 WICHITA ASH
IDC00051 NUMBER OF RECORDS PROCESSED WAS 5

IDC00011 FUNCTION COMPL., HIGHEST COND.CODE WAS 0 IDC0001I FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDC00021 IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WI·$ ~

Chapte% 7. Access Method Se%vices Examples 133

7.7.2.6 DEFINE AIX, DEFINE PATH

DOS/VS example (input):

// JOB DEF AIX 'CITY' + PATH 'CITY-CUST'
// DLBL ESDS.'CUSTOMER.E',.VSAM
// EXTENT SYSOI0,WTVSAM
// DLBL AIXEZ.'CITY.E',.VSAM
// EXTENT SYSOI0,WTVSAM
// DLBL PATHEZ.'CITY.CUST.E',.VSAM
// EXTENT SYSOI0.WTVSAM
// ASSGN SYSOI0,DISK,VOL=WTVSAM,SHR
// EXEC IDCAMS.SIZE=AUTO

/&

DEF AIX (

DATA

NAME (CITY.E)
FILE (AIXE2)
RELATE (CUSTOMER.E)
KEYS (IS 25)
VO L (WTVSAM)
CYL (1 1)

IMBD
NONUNIQUEKEY
UPGRADE
)

NAME (CITY. E • 0)
CISZ (4096)
FSPC (20 10)
)

INDEX (

DEF PATH

NAME (CITY.E.I)
)

CAT (PRIMER.UCAT1/UCATMRPW)

NAME (CITY.CUST.E)
FILE (PATHE2)
PATHENTRY (CITY.E)
UPDATE
)

CAT (PRIMER.UCATI/uCATMRPW)

OS/VS example (input):

//PRIMER JOB WTSC.IBM,MSGLEVEL=1
//PRIM0272 EXEC PGM=IDCAMS
//STEPCAT DO DSH=PRIMER.UCAT1,OISP=SHR
//AIXEZ DO VOL=SER=WTVSAM,DISP=OLD,UNIT=3330
//SYSPRINT DO SYSOUT=A
//SYSIN DD *

DEF AI>I

DATA

INDEX

NAME (CITY.E)
FILE (AIXE2)
RELATE (CUSTOMER.E)
KEYS (15 25)
Val (WTVSAM)
CYL (1 1)

IMBD
NONUHIQUEKEY
UPGRADE
)

NAME (CITY.E.O)
CISZ (4096)
FSPC (20 10)
)

(

NAME (CITY.E.I)
)

CAT (PRIMER.UCAT1/UCATMRPW)
DEF PATH (

/*

NAME (CITY.CUST.E)
FILE (AIXEZ)
UPDATE
PATHENTRY (CITY.E)

CAT (PRiMER.UCAT1/UCATMRPW)

Output listing is shown on next page

134 VSAM PRIMER and REFEREMcE

(

\

DOS/VS example (output): OS/VS example (output):

***** THIS IS THE OUTPUT OF DEFINE AIX ***** ***** THIS IS THE OUTPUT OF DEFINE AIX *****

IDCOSOSI DATA ALLOC. STAT. FOR VOLUME WTVSAM IS 0 IDCOSOSI DATA ALLOC. STAT. FOR VOLUME WTVSAM IS 0
IDCOS091 INDEX ALLOC.STAT. FOR VOLUME WTVSAM IS 0 IDCOS091 INDEX ALlOC.STAT. FOR VOL~ME WTVSAH IS 0
IDCOS20I CATALOG RECOVERY VOLUME IS WTVSAM IDCOS201 CATALOG RECOVERY VOLUME IS WTVSAM
IDCOOOII FUNCTION COMPL., HIGHEST COND.CODE WAS 0 IDCOOOII FUNCTION COMPL., HIGHEST COND.CODE WAS 0

***** THIS IS THE OUTPUT OF DEFINE PATH ***** ***** THIS IS THE OUTPUT OF DEFINE PATH *****

IDCOS201 CATALOG RECOVERY VOLUME IS WTVSAM IDCOS20I CATALOG RECOVERY VOLUME IS WTVSAM
IDCOOOII FUNCTION COMPL., HIGHEST COND.CODE WAS 0 IDCOOOII FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDC00021 IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 IDC00021 IDCAMS PROC. COMPL. MAX. CONO.CODE WAS 0

LISTCAT output of this object is shown late~ in section 7.9.2

Note: see notes in section 7.6.4.2 on page 111.

7.7.2.7 BLDINDEX AIX ON ESDS

DOS/VS example (input):

II JOB BUILD AIX CITY-CUSTOMER.E ON ESDS
II DLBL ESDS,'CUSTOMER.E'"VSAM
II EXTENT SYSOIO,WTVSAM
II DLBL AIXE2, 'CITY.E', ,VSAI'I
II EXTENT SYSOIO,WTVSAM
II ASSGN SYSOIO,DISK,VOL=WTVSAM,SHR
II EXEC IDCAMS,SIZE=AUTO

1&

BLDINDEX INFILE (ESDS)
OUTFILE (AIXE2)

DOS/VS example (output):

IDC06S21 CITY.E BUILT

OS/VS example (input):

IIPRIMER JOB WTSC,IBM,MSGLEVEL=l
IIPRIM02S2 EXEC PGM=IDCAMS
IISTEPCAT DO DSN=PRIMER.UCATl,DISP=SHR
IIESDS DO DSN=CUSTOMER.E,DISP=OLD
IIAIXE2 DO DSN=CITY.E,DISP=OLD
IISYSPRINT DD SYSOUT=A
IISYSIN DD *

1*

BLDINDEX INFILE (ESDS)
OUTF ILE (AIXE2)

OS/VS example (output):

IDC06521 CITY.E BUILT
IDCOOOII FUNCTION COMPL., HIGHEST COND.CODE WAS 0 IDCOOOII FUNCTION"COMPl., HIGHEST COND.CODE WAS 0

IDC00021 IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 IDC00021 IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0

Note: see notes in section 7.6.4.3 on page 113.

Chapte~ 7. Access Method Se~vices Examples 135

7.7.2.8 PRINT AIX

DOS/VS example (input):

II JOB PRINT AIXE2 (PARTIAL)
II OLBL AIXE2,'CITY.E'"VSAM
II EXTENT SYS010,WTVSAM
II ASSGN SYS010,DISK,VOL=WTVSAM,SHR
II EXEC IOCAMS,SIZE=AUTO

1&

PRINT INFILE (AIXE2)
DUMP
COUNT {3l

OS/VS example (input):

IIPRIMER JOB WTSC,IBM,MSGLEVEL=l
IIPRIM0292 EXEC PGM=IOCAMS
IISTEPCAT 00 OSN=PRIMER.UCAT1,OISP=SHR
IIAIXE2 00 OSN=CITY.E,OISP=OLO
IISYSPRINT 00 SYSOUT=A

IISYSIN 00 *
PRINT WFILE (AIXE2)

DUMP
COUNT (3)

output of Access Method Services (DOS/VS and OS/VS are similar):

LISTING OF OS -CITY. E
KEY OF RECORD - C103C2C1D5E8404040404040404040
0000 00040020 OFC1D3C2 C105E840 40404040 40404040 000020C8 00002190 00002258 * ALBANY ••• H .• II
0020 00012258 00012320 000123E8 0001B258 0001B320 0001B3E8 00024258 00024320 * Y II
0040 000243E8 00027258 00027320 000273E8 00020258 00020320 000203E8 00030258 * ... Y .•.•••••••. Y .• K.II
0060 00030320 000303E8 00036258 00036320 000363E8 00039258 00039320 000393E8 * Y ••••••••••. YII
0080 00042460 00042578 00042640 00046460 0004B578 00046640 00073700 00073898 * 11
OOAO 00073960 0007C700 0007C898 0007C960 00085A28 00085AFO 000856B8 0008EA28 * ... - .. G ..• H •.. I- .•.• II
OOCO 0008EAFO 0008E868 * ... 0 ••••

KEY OF RECORD - CIE303CID5E3C14040404040404040
0000 0004001B OFC1E303 C105E3C1 40404040 40404040 00004000 000040C8 00004190 * ATLANTA " .11

0020 0004E460 0004E578 0004E640 00057258 00057320 000573E8 00060480 00060578 * .. U ••• V ••• W •••••••• 11

0040 00060640 00069708 00069700 00069898 00072460 00072578 00072640 0007E708 * 11
0060 0007E700 0007E898 00087960 00087A28 00087AFO 00090960 00090A28 00090AFO * .. X ••. Y .••. - •. : ••. :OII
KEY OF RECORD - C1E4E2E3C905404040404040404040
0000 00040057 OFC1E4E2 E3C90540 40404040 40404040 00005A28 00005C80 00005E08 * AUSTIN •••.•• 11
0020 0000A3E8 0000A460 OOOOA578 000130C8 00013190 00013258 0001C320 0001C3E8 * ... y •••••••••• • H ••• .l1

0040 0001C460 000250C8 00025190 00025258 0002BOC8 00028190 00026258 00034320 * .. 0 ••• tH •••.•••••• . HII

0060 000343E8 00034460 00030578 00030640 00030708 00040320 000403E8 00040460 * ... y •••••• N ••. O •• P.II

0080 00046320 000463E8 00046460 00049320 000493E8 000494BO 0004FOC8 0004F190 * y ••••••.•.•. yll
OOAO 0004F258 000523E8 00052578 00052708 0005AE08 0005BOC8 0005B258 00050668 * .. 2 •••• y •••••••••• • QII

OOCO 00050C80 00050048 00063E08 000640C8 00064258 00065898 00065960 00065A28 * Q .• H •••• II

OOEO 00066668 00066C80 00066048 0006EAFO 0006E668 0006EC80 0006F6B8 0006FC80 * .. , ... 7. ••• _ .••. 0 ••. • 11

0100 0006F048 00077640 00077708 00077700 00077898 00077960 00077A28 00078C80 * • ••••••••• •• 1/

0120 00078ElO 00079000 00080640 00080708 00080700 00080898 00080960 00080A28 * 11

0140 00081C80 00081E10 00082000 000893E8 000894BO 00089578 00089640 00089708 * Y • ••• 11

0160 00089700 00092320 00092578 00092700 *
IOCOO051 NUMBER OF RECORDS PROCESSED WAS 3
IOC00011 FUNCTION COMPL., HIGHEST CONO.COOE WAS 0

IDC00021 IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0

Note: The output lines were truncated on the
limited page size.

right side due to

136 VSAM PRIMER and REFERENCE

7.7.2.9 PRINT PATH

DOS/VS example (input):

II JOB PRINT PATHE2 (PARTIAL)
II DLBL PATHE2,'CITY.CUST.E'"VSAM
II EXTENT SYSOI0,WTVSAM
II ASSGN SYSOI0,DISK,VOL=WTVSAM,SHR
II EXEC IDCAMS,SIZE=AUTO

1&

PRINT INFILE (PATHE2)
CHAR
COUNT (5)

DOS/VS example (output):

LISTING OF OS -CITY.CUST.E
KEY OF RECORD - ALBANY

9010 ALBANY REYNOLDS
KEY OF RECORD - ALBANY
19010 ALBANY REYNOLDS
KEY OF RECORD - ALBANY
29010 ALBANY REYNOLDS
KEY OF RECORD - ALBANY

1120 ALBANY ASH
KEY OF RECORD - ALBANY
11120 ALBANY ASH
IDCOO051 NUMBER OF RECORDS PROCESSED WAS 5
IOCOOO11 FUNCTION COMPL., HIGHEST COND.CODE WAS 0

OS/VS example (input):

IIPRIMER JOB WTSC,IBM,MSGLEVEL=l
IIPRIM0302 EXEC PGM=IDCAMS
IISTEPCAT DO DSN=PRIMER.UCAT1,DISP=SHR
IIPATHE2 DO DSN=CITY.CUST.E,DISP=OLD
IISYSPRINT DO SYSOUT=A
IISYSIN DO *

PRINT

1*

INFILE (PATHE2)
CHAR
COUNT (5)

OS/VS example (output):

LISTING OF OS -CITY.CUST.E
KEY OF RECORD - ALBANY

9010 ALBANY
KEY OF RECORD· ALBANY
19010 ALBANY
KEY OF RECORD - ALBANY
29010 ALBANY
KEY OF RECORD - ALBANY

1120 ALBANY
KEY OF RECORD - ALBANY

REYNOLDS

REYNOLDS

REYNOLDS

ASH

11120 ALBANY ASH
lDCOOOSI NUMBER OF RECORDS PROCESSED WAS 5
IDCOOOI1 FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDC00021 IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 IDC00021 IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0

Chapter 7. Access Method Services Examples 137

7.S RRDS (RELATIVE RECORD DATA SET)

7.S.1 DEFINE RRDS

DOS/VS example (input):

II JOB DEFINE RRDS IN VSAM SPACE
II DLBL RRDS,'CUSTOMER.R'"VSAM
II EXTENT SYSOIO,WTVSAM
II ASSGN SYSOIO,DISK,VOL=WTVSAM,SHR
II EXEC IDCAMS,SIZE=AUTO

1&

DEF CLUSTER
(

NAME (CUSTOMER.R)
FILE (RRDS)
VOL (WTVSAM)
cn (5 2)

NUMBERED
)

DATA (
NAME (CUSTOMER.R.D)
RECORDSIZE (SO SO)
CISZ (4096)
)

CAT (PRIMER.UCATlIUCATMRPW)

DOS/VS example (output):

OS/ys example (input):

/IPRIMER JOB WTSC,IBM,MSGLEVEL=l
//PRIM0312 EXEC PGM=IDCAMS
//STEPCAT DD DSN=PRIMER.UCAT1,DISP=SHR
I/RRDS ~D VOL=SER=WTVSAM,DISP=OLD,UNIT=3330
//SYSPRINT DD SYSOUT=A
//SYSIN DO *

DEF CLUSTER
(

DATA

NAME (CUSTOMER.R)
FILE (RRDS)
VOL (WTVSAM)
cn (5 2)

NUMBERED
)

NAME (CUSTOMER.R.D)
RECORDSIZE (SO SO)
CISZ (4096)

CAT (PRIMER.UCAT1/UCATUPDT)

OS/VS example (output):

IOC050SI DATA ALLOC. STAT. FOR VOLUME WTVSAM IS 0 IDC0508I DATA ALLOC. STAT. FOR VOLUME WTVSAN IS 0
IOC0520I CATALOG RECOVERY VOLUME IS WTVSAM IDC0520I CATALOG RECOVERY,VOLUME IS WTVSAN
IDCOOOII FUNCTION COMPL., HIGHEST COND.CODE WAS 0 IDCOOOII FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0

Notes:

• NUMBERED is the pazametez to specify to define an RRDS.

• See also notes in section 7.6.1 on page 106 •

13S VSAM PRIMER and REFERENCE

7.8.2 REPRO (LOAD AN RRDS)

DOS/VS example (input):

II JOB LOAD RRDS FROM DISK-SAM
II DLBL SQDSK.'RRDS.DATA'
II EXTENT SYSOOO •••• 4693.19
II ASSGN SYSOOO.DISK.VOL=DOS30Z.SHR
II DLBL RRDS.'CUSTOMER.R' •• VSAM
II EXTENT SYS010.WTVSAM
II ASSGN SYS010.DISK.VOL=WTVSAM.SHR
II EXEC IDCAMS.SIZE=AUTO

1&

REPRO
INFILE (SQDSK

ENV (RECFM (FBI
BLKSZ (16001
RECSZ (SOl
PDEV (3330 I I

OUTFILE (RRDSl

DOS/VS example (output):

IDCOOOSI NUMBER OF RECORDS PROCESSED WAS 206

OS/VS example (input):

IIPRIMER JOB WTSC.IBM.MSGLEVEL=l
IIPRIM0322 EXEC PGM=IDCAMS
I/STEPCAT DO DSN=PRIMER.UCAT1.DISP=SHR
IISQDSK
II
II
IIRRDS

DO VOL=SER=WTVS1R.UNIT=3330.
DSN=LOADRRDS,DISP=(OLD,KEEPI.
DCB=(RECFM=FB,LRECL=SO,BLKSIZE=16001
DO DSN=CUSTOMER.R.DISP=OLD

I/SYSPRINT DD SYSOUT=A
/ISYSIN DD*

REPRO
INFILE (SQDSK I
OUTFILE (RRDSI

OS/VS example (output)~

IDCOOOSI NUMBER OF RECORDS PROCESSED WAS 206
IDC0001I FUNCTION COMPL .• HIGHEST COND.CODE WAS 0 IDC0001I FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 IDC00021 IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0

Note:

• REPLACE is only used for RRDS to RRDS copy.

DOS/VS note:

• Access Method Services needs complete specifications of any
nonVSAM data set.

Chapter 7. Access Method Services Examples 139

7.9 LISTCAT

7.9.1 LISTCAT HAME

DOS/VS example (input):

II JOB LIST UCAT NAME
II DLBL IJSYSUC.'PRIMER.UCAT1' •• VSAM
II EXTENT SYSOIO,WTVSAM
II ASSGN SYSOIO,DISK,VOL=WTVSAM.SHR
II EXEC IDCAMS,SIZE=AUTO

LISTCAT NAME
CAT (PRIMER.UCATI/UCATMRPW)

1&

DOS/VS example (output):

LISTING FROM CATALOG -- PRIMER.UCATI

AIX ----------- CITY.E
DATA ------- CITY.E.D
INDEX ------ CITY.E.I
PATH ------- CITY.CUST.E

AIX ----------- CITY.K
DATA ------- CITY.K.D
INDEX ------ CITY.K.I
PATH ------- CITY.CUST.K

CLUSTER ------- CUSTOMER.E
DATA ------- CUSTOMER.E.D

CLUSTER ------- CUSTOMER.K
DATA ------- CUSTOMER.K.D
INDEX ------ CUSTOMER.K.I

CLUSTER ------- CUSTOMER.R
DATA ------- CUSTOMER.R.D

CLUSTER ------- PRIMER.UCATl
DATA ------- VSAM.CATALOG.BASE.DATA.RECORD
INDEX ------ VSAM.CATALOG.BASE.INDEX.RECORD

AIX ----------- SALESMAN.E
DATA ------- SALESMAN.E.D
INDEX ------ SALESMAN.E.I
PATH ------- SALES.CUST.E

AIX ----------- SALESMAN.K
DATA ------- SALESMAN.K.D
INDEX ------ SALESMAN.K.I
PATH ------- SALES.CUST.K

VOLUME -------- WTVSAM

OS/VS example (input):

IIPRIMER JOB WTSC.IBM,MSGLEVEL=l
IIPRIM0332 EXEC PGM=IDCAMS
IISTEPCAT DO DSN=PRIMER.UCAT1,DISP=SHR
IISYSPRINT DO SYSOUT=A
IISYSIN DO *

LISTCAT NAME
CAT (PRIMER.UCATI/UCATMRPW)

OS/VS example (output):

LISTING FROM CATALOG -- PRIMER.UCATI

AIX ----------- CITY.E
DATA ------- CITY.E.D
INDEX ------ CITY.E.I
PATH ------- CITY.CUST.E

AIX ----------- CITY.K
DATA ------- CITY.K.D
INDEX ------ CITY.K.I
PATH ------- CITY.CUST.K

CLUSTER ------- CUSTOMER.E
DATA ------- CUSTOMER.E.D

CLUSTER ------- CUSTOMER.K
DATA ------- CUSTOMER.K.D
INDEX ------ CUSTOMER.K.I

CLUSTER ------- CUSTOMER.R
DATA ------- CUSTOMER.R.D

CLUSTER -------PRIMER.UCATI
DATA ------- VSAM.CATALOG.BASE.DATA.RECORD
INDEX ------ VSAM.CATALOG.BASE.INDEX.RECORD

AIX ----------- SALESMAN.E
DATA ------- SALESMAN.E.D
INDEX ------ SALESMAN.E.I
PATH ------- SALES.CUST.E

AIX ----------- SALESMAN.K
DATA ------- SALESMAN.K.D
INDEX ------ SALESMAN.K.I
PATH ------- SALES.CUST.K

VOLUME -------- WTVSAM

output listing is continued on next page

140 VSAM PRIMER and REFERENCE

THE NUMBER OF ENTRIES PROCESSED WAS:

AIX -------------------4
CLUSTER ---------------4
DATA ------------------8
INDEX -----------------6
NONVSAM ---------------0
PATH ------------------4
SPACE -----------------1
USERCATALOG -----------0
TOTAL ----------------27

THE NUMBER OF PROTECTED ENTRIES SUPPRESSED WAS 0
IDCOOOlI FUNCTION COMPL., HIGHEST COND.CODE WAS 0

THE NUMBER OF ENTRIES PROCESSED WAS:

AIX -------------------4
ALIAS -----------------0

CLUSTER ---------------4
DATA ------------------8
GOG -------------------0
INDEX -----------------6
NONVSAM ---------------0
PATH ------------------4
SPACE -----------------1
USERCATALOG -----------0
TOTAL ----------------27

THE NUMBER OF PROTECTED ENTRIES SUPPR.ESSED WAS 0
IDC0002I IOCAMS PROC. COMPL. MAX. COND.CODE WAS 0 IDC0001I FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDC0002I IDCAMS PROC. COMPL. MAX. CONO.COOE WAS 0

Note:

• No catalog passwozd is zequized, since it is a zead-only
opezation and the vazious passwozds are not to be displayed.
NAME indicates that only names of objects and its type will be
listed.

Chapter 7. Access Method Services Examples 141

7.9.2 LISTCAT ALL AND EXPLANATION OF THE FIELDS

This output has been produced after having defined the USER CATA­
LOG, the SPACE, loaded the XSDS and built one alternate index (see
examples page 100 through 11~). The values are established by VSAM
by its own logic and by default.

DOS/VS example (input):

II JOB LIST UCAT ALL
II DLBL IJSYSUC,'PRIMER.UCAT1'"VSAM
II EXTENT SYSOIO,WTVSAM
II ASSGN SYSOIO,DISK,VOL=WTVSAM,SHR
II EXEC IDCAMS,SIZE=AUTO

LISTCAT ALL
CAT (PRIMER .• UCATl/UCATMRPWl

1&

OS/VS example (input):

IIPRIMER JOB WTSC,IBM,MSGLEVEL=l
IIPRIMOl12 EXEC PGM=IDCAMS
IISTEPCAT DO DSN=PRIMER.UCATl,DISP=SHR
IISYSPRINT DO SYSOUT=A
IISYSIN DO *

LISTCAT ALL
CAT (PRIMER.UCATI/UCATMRPWJ

output of Access Method Services (DOS/VS and OS/VS are similar):

LISTING FROM CATALOG -- PRIMER.UCATI
CLUSTER ------- CUSTOMER.K

HISTORY
OWNER-IDENT-------(NULLI CREATION----------77.355 RCVY-VOL----------WTVSAM RCVY-CI--------X'OOOOOE'
RELEASE----------------2 EXPIRATION--------OO.OOO RCVY-DEVT----X' 30502009'

PROTECTION-PSWD-----(NULL) RACF----------------(NO)
ASSOCIATIONS

DATA-----CUSTOMER.K.D
INDEX----CUSTOMER.K.I
AIX------SALESMAN.K

DATA ------- CUSTOMER.K.D
HISTORY

OWNER-IDENT-------(NULL) CREATION----------77.3S5 RCVY-VOL----------WTVSAM RCVY-CI--------X'OOOOOD'
RELEASE----------------2 EXPIRATION--------OO.OOO RCVY-DEVT----X'30502009'

PROTECTION-PSWD-----(NULL) RACF----------------(NO)
ASSOCIATIONS

CLUSTER--CUSTOMER.K
ATTRIBUTES

KEYLEN-----------------5 AVGLRECL-------------200 BUFSPACE------------4096 CISIZE--------------I024
RKP--------------------O MAXLRECL-------------200 EXCPEXIT----------(NULL) CI/CA----------------198
SHROPTNS(l,3J RECOVERY SUBALLOC NOERASE INDEXED NOWRITECHK IMBED NOREPLICAT
UNORDERED NOREUSE NONSPANNED

STATISTICS
~EC-TOTAL-----------3000 SPLITS-CI--------------O EXCPS---------------1601
REC-DELETED------------O SPLITS-CA--------------O EXTENTS----------------l
REC-INSERTED-----------O FREESPACE-XCI---------20 SYSTEM-TIMESTAMP:
REC-UPDATED------------O FREESPACE-XCA---------lO
REC-RETRIEVED-------30l0 FREESPC-BYTES-----245760

ALLOCATION
SPACE-TYPE------CYLINDER HI-ALLOC-RBA-----IOl3760
SPACE-PRI--------------5 HI-USED-RBA------I013760
SPACE-SEC--------------2

VOLUME

142 VSAM ~RIMER and REFERENCE

X'8BDE7F92DFlF7800'

VOlSER------------WTVSAM PHYREC-SIZE---------1024 HI-AllOC-RBA-----1013760 EXTENT-NUMBER----------1
DEVTYPE------X'30502009' PHYRECS/TRK-----------11 HI-USEO-RBA------1013760 EXTENT-TYPE--------X' 00 ,
VOlFlAG------------PRIME TRACKS/CA-------------19
EXTENTS:
lOW-CCHH-----X' 00040000' lOW-RBA----------------O TRACKS----------------95
HIGH-CCHH----X' 00080012' HIGH-RBA---------1013759

INDEX ------ CUSTOMER.K.I
HISTORY

OWNER-IDENT-------(NUlL) CREATION----------77.355 RCVY-VOL----------WTVSAM RCVY-CI--------X'OOOOOF'
RELEASE----------------2 EXPIRATION--------OO.OOO RCVY-DEVT----X'30502009'

PROTECTION-PSWD-----(NULL) RACF----------------(NO)
ASSOCIATIONS

CLUSTER--CUSTOMER.K
ATTRIBUTES

KEYLEN-----------------5 AVGLRECL---------------O BUFSPACE---------------O CISIZE--------------2048
RKP--------------------O MAXLRECL------------2041 EXCPEXIT----------(NULL) CI/CA------------------6
SHROPTNS(1.3) RECOVERY SUBALLOC
NOREUSE

STATISTICS

NOERASE NOWRITECHK IMBED NOREPLICAT

REC-TOTAL--------------6 SPLITS-CI--------------O EXCPS-----------------48 INDEX:

UNORDERED

REC-DELETED------------O SPLITS-CA--------------O EXTENTS----------------2 LEVELS-----------------2
REC-INSERTED-----------O FREESPACE-lCI----------O SYSTEM-TIMESTAMP: ENTRIES/SECT----------14
REC-UPDATED------------O FREESPACE-%CA----------O
REC-RETRIEVED----------O FREESPC-BYTES------10240

ALLOCATION
SPACE-TYPE---------TRACK HI-ALLOC-RBA-------22528
SPACE-PRI--------------1 HI-USED-RBA--------22528
SPACE-SEC--------------1

VOLUME

X'8BDE7F92DF1F7800' SEQ-SET-RBA--------12288
HI-LEVEL-RBA-----------O

VOLSER------------WTVSAM PHYREC-SIZE---------2048 HI-ALLOC-RBA-------12288 EXTENT-NUMBER----------1
DEVTYPE------X'30502009' PHYRECS/TRK------------6 HI-USED-RBA---------2048 EXTENT-TYPE--------X' 00 ,
VOlFLAG------------PRIME TRACKS/CA--------------1
EXTENTS:
LOW-CCHH-----X'00030011' LOW-RBA----------------O TRACKS-----------------1
HIGH-CCHH----X'00030011' HIGH-RBA-----------12287

VOLUME
VOLSER------------WTVSAM PHYREC-SIZE---------2048 HI-AlLOC-RBA-------22528 EXTENT-NUHBER----------1
DEVTYPE------X' 30502009' PHYRECS/TRK------------6 HI-USED-RBA--------22528 EXTENT -TYPE--------X' 80·'
VOLFLAG------------PRIME TRACKS/CA-------------19
EXTENTS:
LOW-CCHH-----X'00040000' LOW-RBA------------12288 TRACKS----------------95
HIGH-CCHH----X'00080012' HIGH-RBA-----------22527

CLUSTER ------- PRIMER.UCAT1
HISTORY

OWNER-IDENT-------(NULL) CREATION----------77.355
RELEASE----------------2 EXPIRATION--------OO.OOO

PROTECTION
MASTERPW--------UCATMRPW UPOATEPW--------UCATUPDT CODE--------------(NULLJ RACF----------------(NO)
CONTROLPW---------(NULLJ READPW------------(NULL) ATTEMPTS---------------2 USVR--------------(NULL)
USAR--------------(NONE)

ASSOCIATIONS
DATA-----VSAM.CATALOG.BASE.DATA.RECORD
INDEX----VSAM.CATALOG.BASE.INDEX.RECORD

Chaptei 7. Access Method Se~vices Examples 143

DATA --;..---- VSAM.CATALOG.BASE.DATA.RECORD
HISTORY

OWNER-IDENT-------(NULL) CREATION----------OO.OOO
RELEASE----------------2 EXPIRATION--------OO.OOO

PROTECTION-PSWD-----(NULL) RACF----------------(NO)
ASSOCIATIONS

CLUSTER--PRIMER.UCAT1

ATTRIBUTES
KEYLEN----------------44 AVGLRECL-------------505 BUFSPACE------------3072 CISIZE---------------512
RKP-------------~------O MAXLRECL-------------505 EXCPEXIT----------(NULL) CI/CA-----------------40
SHROPTNS(3,3) RECOVERY SUBALLOC NOERASE INDEXED NOWRITECHK IMBED
UNORDERED NOREUSE NONS PANNED BIND RECVABLE

STATISTICS
REC-TOTAL-------------1S SPLITS-CI--------------O EXCPS-----------------22
REC-DELETED------------O SPLITS-CA--------------O EXTENTS----------------2
REC-INSERTED-----------O FREESPACE-Y.CI----------O SYSTEM-TIMESTAMP:
REC-UPDATED------------O FREESPACE-Y.CA----------O
REC-RETRIEVED----------O FREESPC-BYTES-----218112

ALLOCATION
SPACE-TYPE---------TRACK HI-ALLOC-RBA------22S280
SPACE-PRI-------------33 HI-USED-RBA-------225280
SPACE-SEC-------------18

VOLUME

X'8BDE7F4DS5E43800'

NOREPLICAT

VOLSER------------WTVSAM PHYREC-SIZE----------512 HI-ALLOC-RBA------204800 EXTENT-NUMBER----------1
DEVTYPE-----~X'30502009' PHYRECS/TRK-----------20 HI-USED-RBA--------20480 EXTENT-TYPE--------X'OO'
VOLFLAG------------PRIME TRACKS/CA--------------3
LOW-KEY---------------OO
HIGH-KEY--------------3F
HI-KEY-RBA----------6144
EXTENTS:
LOW-CCHH-----X' 00010000 , LOW-RBA----------------O TRACKS----------------30
HIGH-CCHH----X'0002000A' HIGH-RBA----------204799

VOLUME
VOLSER------------WTVSAM PHYREC-SIZE----------512 HI-ALLDC-RBA------225280 EXTENT-NUMBER----------1
DEVTYPE------X'30502009' PHYRECS/TRK-----------20 HI-USED-RBA-------225280 EXTENT-TYPE--------X' 00 ,
VOLFLAG------------PRIME TRACKS/CA--------------3
LOW-KEY---------------40
HIGH-KEY--------------FF
HI-KEY-RBA--------204800
EXTENTS:
LOW-CCHH-----X'0002000E' LOW-RBA-----------204800 TRACKS-----------------3
HIGH-CCHH----X' 00020010' HIGH-RBA----------225279

INDEX ------ VSAM.CATALOG.BASE.INDEX.RECORD
HISTORY

OWNER-IDENT-------(NULL) CREATION--------~-OO.OOO
RELEASE----------------2 EXPIRATION--------OO.OOO

PROTECTION-PSWD-----(NULL) RACF----------------(NO)
ASSOCIATIONS

CLUSTER--PRIMER.UCAT1
ATTRIBUTES

KEYLEN----------------44 AVGLRECL---------------O BUFSPACE---------------O CISIZE---------------512
RKP--------------------O MAXLRECL-------------505 EXCPEXIT----------(NULL) CI/CA-----------------JO
SHROPTNS(3,3) RECOVERY SUBALLOC NOERASE NOWRITECHK IMBED NOREPLICAT UNORDERED

144 VSAM PRIMER and REFERENCE

(
\

!

\

NOREUSE BIND

STATISTICS
REC-TOTAL--------------3 SPLITS-CI--------------O EXCPS-----------------13 INDEX:
REC-DELETED------------O SPLITS-CA--------------O EXTENTS----------------3 LEVELS-----------------2
REC-INSERTED-----------O FREESPACE-Y.CI----------O SYSTEM-TIMESTAMP: ENTRIES/SECT-----------7
REC-UPDATED------------O FREESPACE-Y.CA----------O
REC-RETRIEVED----------O FREESPC-BYTES------34816

ALLOCATION
SPACE-TYPE---------TRACK HI-ALLOC-RBA-------36352
SPACE-PRI--------------3 HI-USED-RBA--------36352
SPACE-SEC--------------3

VOLUME

X'8BDE7F4D55E43800' SEQ-SET-RBA--------30720
HI-LEVEL-RBA-----------O

VOLSER------------WTVSAM PHYREC-SIZE----------S12 HI-ALLOC-RBA-------30720 EXTENT-NUMBER----------l
DEVTYPE------X'30S02009' PHYRECS/TRK-----------20 HI-USED-RBA----------512 EXTENT-TYPE--------X' 00 ,
VOLFLAG------------PRIME TRACKS/CA--------------1
EXTENTS:
LOW-CCHH-----X'0002000B' LOW-RBA----------------O TRACKS-----------------3
HIGH-CCHH----X'0002000D' HIGH-RBA-----------30719

VOLUME
VOLSER------------WTVSAM PHYREC-SIZE----------S12 HI-ALLOC-RBA-------3S840 EXTENT-NUMBER----------1
DEVTYPE------X'30S02009' PHYRECS/TRK-----------20 HI-USED-RBA--------31232 EXTENT-TYPE--------X'80'
VOLFLAG------------PRIME TRACKS/CA--------------3
LOW-KEY~--------------OO

HIGH-KEY--------------3F
EXTENTS:
LOW-CCHH-----X' 00010000 , LOW-RBA------------30720 TRACKS----------------30
HIGH-CCHH----X'0002000A' HIGH-RBA-----------3S839

VOLUME
VOLSER------------WTVSAM PHYREC-SIZE----------S12 HI-ALLOC-RBA-------36352 EXTENT-NUMBER----------~
DEVTYPE------X'30S02009' PHYRECS/TRK-----------20 HI-USED-RBA--------363S2 EXTENT-TYPE--------X'80'
VOLFLAG------------PRIME TRACKS/CA--------------3
LOW-KEY---------------40
HIGH-KEY--------------FF
EXTENTS:
LOW-CCHH-----X'0002000E' LOW-RBA------------35840 TRACKS-----------------3
HIGH-CCHH----X' 00020010' HIGH-RBA-----------363S1

AIX ----------- SALESMAN.K
HISTORY

OWNER-IDENT-------(NULLI CREATION----------77.3SS RCVY-VOL----------WTVSAM RCVY-CI--------X'OOOOlO'
RELEASE----------------2 EXPIRATION--------OO.OOO RCVY-DEVT----X'30S02009'

PROTECTION-PSWD-----(NULLI RACF----------------(NOI
ASSOCIATIONS

DATA-----SALESMAN.K.D
INDEX----SALESMAN.K.I
CLUSTER--CUSTOMER.K
PATH-----SALES.CUST.K

ATTRIBUTES
UPGRADE

DATA ------- SALESMAN.K.D
HISTORY

OWNER-IDENT-------(NULU CREATION----------77.3S5 RCVY-VOL----------WTVSAM RCVY-CI--------X'OOOOll.'
RELEASE----------------2 EXPIRATION--------OO.OOO RCVY-DEVT----X'30S02009'

PROTECTION-PSWD-----(NULll RACF----------------(NOI

Chapter 7. Access Method Services Examples 145

ASSOCIATIONS
AIX------SALESMAN.K

ATTRIBUTES
KEYLEN----------------l2AVGLRECL------------4086 BUFSPACE------------8704 CISIZE--------------40.96
RKP--------------------5 MAXLRECL-----------32600 EXCPEXIT----------{NULL) CI/CA-----------------S4
AXRKP-----------------40
SHROPTNS(l.3) RECOVERY SUBALLOC
UNORDERED NOREUSE SPANNED

STATISTICS

NOERASE INDEXED
NONUNIQKEY

NOWRITECHK IMBED

REC-TOTAL-------------SO SPLITS-CI--------------O EXCPS-----------------26
REC-DELETED------------O SPLITS-CA--------------O EXTENTS----------------l .
REC-INSE~TED-----------O FREESPACE-?CI---------20 SYSTEM-TIMESTAMP:
REC-UPDATED------------O FREESPACE-?CA---------lO X'8BDE7FBOB33BB800'
REC-RETRIEVED----------6 FREESPC-BYTES-----l96608

ALLOCATION
SPACE-TYPE------CYLINDER HI-ALLOC-RBA------22ll84
SPACE-PRI--------------l HI-USED-RBA-------22ll84
SPACE-SEC--------------l

WL~E

NOREPLICAT

VOLSER------------WTVSAM PHYREC-SIZE---------4096 HI-ALLOC-RBA------22ll84 EXTENT-NUMBER----------l
DEVTYPE------X'30S02009' PHYRECS/TRK------.-----3 HI-USED-RBA-------22ll84 EXTENT-TYPE--------X'OO'
VOLFLAG------------PRIME TRACKS/CA-------------l9
EXTENTS:
LOW-CCHH-----X' 00090000' LOW-RBA----------------O TRACKS----------------l9
HIGH-CCHH----X'000900l2' HIGH-RBA----------22ll83

INDEX ------ SALESMAN.K.I
HISTORY

OWNER-IDENT-------(NULL) CREATION----------77.3SS RCVY-VOL----------WTVSAM RCVY-CI--------X'OOOOl2'
RELEASE----------------2 EXPIRATION--------OO.OOO RCVY-DEVT----X'30S02009'

PROTECTION-PSWD-----(NULL) RACF----------------(NO)
ASSOCIATIONS

AIX------SALESMAN.K
ATTRIBUTES

KEYLEN----------------l2 AVGLRECL---------------O BUFSPACE---------------O CISIZE---------------Sl2
RKP--------------------S MAXLRECL-------------SOS EXCPEXIT----------(NULL) CI/CA-----------------20
SHROPTNS(l.3) RECOVERY SUBALLOC
NOREUSE

STATISTICS

NOERASE NOWRITECHK IMBED NOREPLICAT UNORDERED

REC-TOTAL--------------l SPLITS-CI--------------O EXCPS------------------6 INDEX:
REC-DELETED------------O SPLITS-CA--------------O EXTENTS----------------2 LEVELS-----------------l
REC-INSERTED-----------O FREESPACE-?CI----------O SYSTEM-TIMESTAMP: ENTRIES/SECT-----------7
REC-UPDATED------------O FREESPACE-?CA----------O X'8BDE7FBOB33BB800' SEQ-SET-RBA--------10240

REC-RETRIEVED----------O FREESPC-BYTES------l0240
ALLOCATION

SPACE-TYPE---------TRACK HI-ALLOC-RBA-------l07S2
SPACE-PRI--------------l HI-USED-RBA--------l07S2
SPACE-SEC--------------l

VOL~E

HI-LEVEL-RBA-------10240

VOLSER------------WTVSAM PHYREC-SIZE----------Sl2 HI-ALLOC-RBA-------10240 EXTENT-NUMBER----------l
DEVTYPE------X'30S02009' PHYRECS/TRK-----------20 HI-USED-RBA------------O EXTENT-TYPE--------X' 00 ,
VOLFLAG-----~------PRIME TRACKS/CA--------------l
EXTENTS:
LOW-CCHH-----X'000300l2' LOW-RBA----------------O TRACKS-----------------l
HIGH-CCHH----X'000300l2' HIGH-RBA-----------l0239

'_6 VSAM PRIMER and REFERENCE

I
\

(
\

(

VOLUME
VOLSER------------WTVSAM PHYREC-SIZE----------S12 HI-ALLOC-RBA-------107S2 EXTENT-NUMBER----------1
OEVTYPE------X'30S02009' PHYRECS/TRK-----------20 HI-USED-RBA--------I0752 EXTENT-TYPE--------X'80'
VOLFLAG------------PRIME TRACKS/CA-------------19
EXTENTS:
LOW-CCHH-----X' 00090000 , LOW-RBA------------10240 TRACKS----------------19
HIGH-CCHH----X'00090012' HIGH-RBA-----------10751

PATH ------- SALES.CUST.K
HISTORY

OWNER-IDENT-------(NULL) CREATION----------77.355 RCVY-VOL----------WTVSAM RCVY-CI--------X'000014'
RELEASE----------------2 EXPIRATION--------OO.OOO RCVY-OEVT----X'30S02009'

PROTECTION-PSWO-----(NULL) RACF----------------(NO)
ASSOCIATIONS

AIX------SALESMAN.K
DATA-----SALESMAN.K.D
INDEX----SALESMAN.K.I
DATA-----CUSTOMER.K.D
INDEX----CUSTOMER;K.I

ATTRIBUTES
UPDATE

VOLUME -------- WTVSAM
HISTORY

RELEASE----------------2 RCVY-VOL----------WTVSAM RCVY-DEVT----X'30502009' RCVY-CI--------X'000009'
CHARACTERISTICS

BYTES/TRK----------1316S DEVTYPE------X'30S02009' MAX-PHYREC-SZ------13030 DATASETS-ON-VOL--------5
TRKS/CYL--------------19 VOLUME-TIMESTAMP: MAX-EXT/ALLOC----------S DATASPCS-ON-VOL--------2
CYLS/VOL-------------411 X'8BDE7F9BA51F9000'

DATASPACE
DATASETS---------------3 FORMAT-I-OSCB: ATTRIBUTES:
EXTENTS-------_--------1 CCHHR------X'0000000303' SUBALLOC
SEC..;ALLOC'--------------I TIMESTAMP EXPLICIT
TYPE-------~----CYLINDER

EXTENT-DESCRIPTOR:
X '8BDE7F4AFA2AB800 , USERCAT

TRACKS-TOTAL----------S7 BEG-CCHH-----X'OOOlOOOO' SPACE-MAP-----------39

TRACKS-USED-----------S7
DATASET-DIRECTORY:

DSN----PRIMER.UCAT1
DSN----CUSTOMER.K.I
DSN---~SALESMAN.K.I

.DATASPACE
DATASETS---------------2 FORMAT-1-DSCB:
EXTENTS----------------l CCHHR------X' 0000000304'
SEC-ALLOC--------------2 TIMESTAMP
TYPE------------CYLINDER X'8BDE7F50C9DD7800'
EXTENT-DESCRIPTOR:

ATTRIBUTES--------(NULL) EXTENTS----------------3
ATTRIBUTES--------(NULL) EXTENTS----------------1
ATTRIBUTES--------(NULL) EXTENTS----------------1

ATTRIBUTES:
SUBALLOC
EXPLICIT

TRACKS-TOTAL--------1900 BEG-CCHH-----X'00040000' SPACE-MAP-----------72FD06FA
TRACKS-USED----------1l4
DATASET-DIRECTORY:

OSN----CUSTOMER.K.D
DSN----SALESMAN.K.D

THE NUMBER OF ENTRIES PROCESSED WAS:
AIX -------------------1

ATTRIBUTES--------(NULL) EXTENTS----------------l
ATTRIBUTES--------(NULL) EXTENTS----------------l

Chapte% 7. Access Method Se%vices EKampl~s 1q7

ALIAS -----------------0 (*)

CLUSTER ---------------2
DATA ------------------3
GOG -------------------0 (*)

INDEX -----------------3
NONYSAM ---------------0
PAGESPACE -------------0 (*)

PATH ------------------1
SPACE -----------------1
USERCATALOG -----------0
TOTAL ----------------11

THE NUMBER OF PROTECTED ENTRIES SUPPRESSED WAS 0
IDC0001I FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0

(*) = these lines do not apply to DOS/VS.

7 . 9 . 2 . 1 EXTRACTING ALL ALLOCATIONS FROM LISTCAT ALL

The following information containing the allocation values of all
components on the volume WTVSAM has been extracted from the previ­
ous list. The entries have been sorted to show the sequence of
allocating space (see figure 41 in next section on page 151).

1. User catalog data component:

The first extent describes the Low-Keyrange and the second the
High-Keyrange (the index allocation is between).

CLUSTER ------- PRIMER.UCAT1
DATA ------- VSAM.CATALOG.BASE.DATA.RECORD

VOLUME
EXTENTS:
LOW-CCHH-----X' 00010000 , LOW-RBA----------------O TRACKS----------------30
HIGH-CCHH----X'0002000A' HIGH-R6A----------204799

VOLUME
EXTENTS:
LOW-CCHH-----X'0002000E' LOW-RBA-----------204800 TRACKS-----------------3
HIGH-CCHH----X'00020010' HIGH-RBA----------225279

148 VSAM PRIMER and REFERENCE

/ ,
\
\

2. User catalog Index component:

CLUSTER ------- PRIMER.UCAT1
INDEX ------ VSAM.CATALOG.BASE.INDEX.RECORO

VOLUME
EXTENTS:
LOW-CCHH-----X'OOOZOOOB' LOW-RBA----------------O TRACKS-----------------3
HIGH-CCHH----X'0002000D' HIGH-RBA-----------30719

Note: The second and third volume entry of the index component
repeat the data component entries, since the Index Sequence Set
records are stored with the data (IMBED).

3. Cluster CUSTOMER.K Index component

The cluster was defined with IMBED. This is the Index Set. The
Index Sequence Set is stored with the data component.

CLUSTER ------- CUSTOMER.K
INDEX ------ CUSTOMER.K.I

VOLUME
EXTENTS:
LOW-CCHH-----X' 00030011 , LOW-RBA----------------O TRACKS-----------------1
HIGH-CCHH----X'00030011' HIGH-RBA-----------12287

Note: The second and third volume entry of the index component
repeat the data component entries, since the Index Sequence Set
records are stored with the data (IMBED).

4. Alternate index SALESMAN.K,Index component:

The alternate index was defined with IMBED (see description abov~~

AIX ----------- SAlESMAN.K
INDEX ------ SAlESMAN.K.I

VOLUME
EXTENTS:
LOW-CCHH-----X' 00030012' lOW-RBA----------------O TRACKS-----------------1
HIGH-CCHH----X'0003001Z' HIGH-RBA-----------10239

Note: The second and third volume entry of the index component
repeat the data component entries, since the Index Sequence Set
records are stored with the data (IMBED).

Chapter 7. Access Method Services Exsmples 149

5. Clustez CUSTOMER.K' Data component

CLUSTER ------- CUSTOMER.K
DATA ------- CUSTOMER.K.D

VOLUME
EXTENTS:
Low-CtHH-----X'00040000' LOW-RBA----------------O TRACKS----------------9S
HIGH-CCHH----X' 00080012 , HIGH-RBA---------I013759

6. Alteznate index SALESMAN.K Data component:

AIX ----------- SALESMAN.K
DATA ------- SALESMAN.K.D

VOLUME
EXTENTS:
LOW-CCHH-----X' 00090000' LOW-RBA----------------O TRACKS----------------19
HIGH-CCHH----X' 00090012 , HIGH-RBA----------221183

150 VSAM PRIMER and REFERENCE

7.9.2.2 ALLOCATION LAYOUT ON THE VSAM 3330 VOLUME

See description in section 7.9.2.1 on page 148

Allocation
(hex) CC HH

00 00-00 12

01 00-02 OA

02 OB-02 OD

02 OE-02 10

02 11-03 10

03 11

03 12

04 00-08 12

09 00-09 12

V T 0 C

User Catalog Data (LKR)

User Catalog Index

User Catalog Data (HKR)

C R A

CUSTOMER.K Index

AIX SALESMAN.K Index

CUST9MER.K Data

AIX SALESMAN.K Data

Figure 41. Volume allocation layout

19 tracks

30 tracks

3 tracks

3 tracks

19 tracks

track

1 track

95 tracks

19 tracks

Data space
allocated
with DEFINE
USERCATALOG

Data space
allocated

with
DEFINE SPACE

Chapter 7. Access Method Services Examples 151

7.9.2.3 EXPLANATION OF THE LISTCIT OUTPUT FIELDS:

CLUSTER ------- CUSTOMER.K
HISTORY

Cluster entry

OWNER-IDENT-------(NULL) CREATION----------77.355 RCVY-VOL----------WTVSAM RCVY-CI--------X'OOOOOE'
RELEASE----------------2 EXPIRATION--------OO.OOO RCVY-DEVT----X' 30502009'

PROTECTION-PSWD-----(NULL) RACF----------------(NO)
ASSOCIATIONS

DATA-----CUSTOMER.K.D
INDEX----CUSTOMER.K.I
AIX------SALESMAN.K

Explanation:

OWNER-IDENT: 1 to
CLUSTER.
object.

8 characters that can be specified for DEFINE
Used to identify the OWNER (owner-id) of the

'(NULL)' means no owner-id was specified.

CREATION: the julian date (YY.DDD) the entry was created.

EXPIRATION: the cluster can be deleted without specifying the PURGE
parameter (00.000).

RCVY-VOL: the volume serial where the CRA containing duplicated
catalog records for this object is located

RCVY-CI: the CI number in the CRA which contains the duplicated
catalog entry for this cluster. X'OE' means CI number
14.

RELEASE: Release number of VSAM under which the entry was created
(the format of catalog records may change between releas­
es, however, externals for the user are maintained).

DOS/VS: 1 = DOS/VS Rel. 28, 29, and 30
2 = DOS/VS Rel. 31 and up

OS/MVS: 1 = OS/VS2 Rel. 2 and 3
2 = OS/VS2 Rel. 3.6 and up

OS/SVS: 1 = SVS without VSAM ICR
2 = SVS with VSAM ICR

OS/VS 1 : 1 = OS/VS1 incl. Rel. 3.0
2 = OS/VSl Rel 4.0 and up

RECY-DEVT: device type of the volume containing the CRA for this
object. A translate iable is included in the Access
Method Services manual and in section C.l on page 279.
X'30502009' means 3330.

The explanations are continued on the next page.

152 VSAM PRIMER and REFERENCE

PROTECTION-PSWD: indicates the MASTERPW, CONTROLPW, UPDATEPW and/o~
READPW fo~ this object. '(NULL)' means no passwo~d has
been specified.

RACF: (this heading appea~s in MVS only)
ent~y is not RACF p~otected.

'(NO)' means thi~

ASSOCIATIONS: this g~oup lists the types and ent~y names of each
ent~y associated with the p~esent ent~y. This object
(cluste~) is associated with its data and index objects
and also with an alternate index (AIX) cluster.

DATA ------- CUSTOMER.K.D
HISTORY

Cluste~ data component ent~y

OWNER-IDENT-------(NULLI CREATION----------77.355 RCVY-VOL----------WTVSAM RCVY-CI--------X'OOOOOO'
RELEASE----------------2 EXPIRATION--------OO.OOO RCVY-DEVT----X' 30502009'

PROTECTION-PSWO-----(NULL) RACF----------------(NO)
ASSOCIATIONS

CLUSTER--CUSTOMER.K
ATTRIBUTES

KEYLEN-----------------5 AVGLRECL-------------200 BUFSPACE------------4096 CISIZE--------------I024
RKP--------------------O MAXLRECL-------------200 EXCPEXIT----------(NULLI CI/CA----------------198
SHROPTNS(1.3) RECOVERY SUBALLOC NOERASE INDEXED NOWRITECHK IMBED NOREPLICAT
UNORDERED NOREUSE NONSPANNED

Explanation:

Fo~ explanation of HISTORY, PROTECTION and ASSOCIATIONS see p~evi­
ous section.

Note that 3850 (MSS) default pa~amete~s NODESTAGEWAIT and STAGE are
not listed with LISTCAT.

KEYLEN:

RKP:

length of primary key (5 bytes).

~elative key position in the logical reco~d (key sta~ts
with Byte 0).

AVGLRECL: logical ~eco~d length average is 200 bytes.

MAXLRECL: maximum record length is 200 bytes.

The explanations are continued on the next page

Chapte~ 7. Access Method Se~vices Examples 153

BUFSPACE: minimum space in bytes that will be used byVSAM for data
and index buffers for this KSDS cluster. This value was
defaulted by VSAM as no parameter was specified. It can
be specified with the DEFINE command or changed with the
ALTER command. It can also be temporarily overridden by
a user program at OPEN time either by specifying a
greater value in the ACB (see chapter 8.11 starting on
page 217) or in the JCL (see appropriate section in
chapter 6.0).

CISIZE: control interval size for this data component in bytes.

CI/CA: number of control intervals per control area.

EXCPEXIT: '(NULL)' means no exception exit routine entry t:as
specified in the DEFINE command.

SHROPTNS: the SHAREOPTIONS were defaulted to 1/3 (see section 7.2.7
on page 95).

RECOVERY: is a loading option (see
page 97.

description in section 7.2.8 on

The opposite attribute is SPEED which
performance when loading the data set,
provide the RECOVERY facilities (also see
on page 97).

gives better
but does not
section 7.2.8

SUBALLOC: the space for this cluster is suballocated by VSAM from a
suballocatable data space.

NOERASE:

INDEXED:

the data are not overwritten with X'OO' when the entry is
deleted.

INDEXED identifies this cluster as KSDS.

NOWRITECHECK: write operations are not checked for correctness.

IMBED:

Specification of WRITECHECK results in time consuming
operations not needed for DASDs like 3330, 3340, or 3350.

the sequence-set index record is stored along with its
data control area and is replicated on its track.

NOREPLICAT: the index records on
replicated (NOREPLLCAT)
89) .

the higher index level
(also see section 7.2.3

are not
on page

UNORDERED: this is a meaningless default parameter as only on
volume is used. If more volumes are used, it specifies
the order of using the volumes for allocation.

NOREUSE: this data set cannot be used as temporary work data set.
This parameter cannot be changed with ALTER.

NONSPANNED: the records cannot span control intervals.

154 VSAM PRIMER and REFERENCE

Cluster data component entry (statistics)

STATISTICS
REC-TOTAL-----------3000 SPLITS-CI--------------O EXCPS---------------1601
REC-DELETED------------O SPLITS-CA--------------O EXTEHTS----------------l
REC-IHSERTED-----------O FREESPACE-%CI---------20 SYSTEM-TIMESTAMP:
REC-UPDATED------------O FREESPACE-%CA---------IO
REC-RETRIEVED-------3010 FREESPC-BYTES-----245760

Explanation:

X'8BDE7F92DFIF7800'

REC-TOTAL: this data component contains 3000 records.

REC-DELETED: no records have been deleted since the data set was
loaded.

REC-INSERTED: no records have been inserted after loading the data
set (records added at the end are not counted here,
therefore this field will always be '0' for an ESDS).

REC-UPDATED: no records have been updated in the data
field is updated when a PUT UPDATE request is
a record.

set.
issued ";;:";'1:

REC-RETRIEVED: 3010 records have been read
113) when the alternate index was
(page 109 and page 115».

(3000 by BLDINDEX (page
created and 10 by PRINT

SPLITS CI/CA: number of CI and CA splits since the data
loaded. The 'SPLIT CA' field should be
frequently. If the value increases too much,
set should be reorganized.

set was
examined
the data

FREESPACE-XCI/CA: 20X free space in the CI (1024 * 20% = 204 bytes)
and 10% of the number of CI per CA (198 * 10% = 19 CI)
are left free when the data set is loaded (also see
section 7.2.2 on page 88).

FREESPC-BYTES: this is the amount of free bytes in the data compo­
nent, excludinq the free space in the partially filled
CI's. This value can be calculated as follows:

EXCPS:

1. records per CI (minus free space) = 4
2. CI required (3000 rcd / 4) = 750
3. tot. alloc. CIs(198 (CI/CA) * 5 (CA=cyl» = 990
4. free CIs (990 - 750 = 240) • 1024 bytes = 245760

1601 EXCP (execute channel program SVC 0) macro
instructions have been issued against this data component
(about 50X when loading the data set, the rest by BLDIN­
DEX and PRINT).

The explanations are continued on the next paqe

Chapter 7. Access Method Services Examples 155

EXTENTS: the number of extents of this data component.

SYSTEM-TIMESTAMP: the time (System/370 time-of-day clock value)
this data component was last closed (no impor~ant times­
tamp).

Cluster data component entry (allocation)

ALLOCATION
SPACE-TyPE------CylIHDER HI-ALLOC-RBA-----I013760
SPACE-PRI--------------5 HI-USED-RBA------I013760
SPACE-SEC--------------2

Explanation:

SPACE-TYPE: indicates whether the suballocation of this data
component is in terms of CYLINDERs or TRACKs.

SPACE-PRI: contains the number of units' indicated by SPACE-TYPE of
space allocated to this data component when it was
defined (the same amount would be allocated on a new
CANDIDATE volume if the data component space must be
extended.

SPACE-SEC: contains the number of units indicated by SPACE-TYPE of
space to be allocated whenever the data component is ~c

be extended on the same volume.

HI-ALLOC-RBA: the h~ghest RBA
data component to
follows:

(plus 1) allocated by VSAM for this
store data. The calculation is as

990 (CIs) * 1024 (bytes/CI) = 1 013 760 bytes

HI-USED-RBA: the highest RBA (plus 1) within allocated space that
actually contains data. Since the data set was loaded
with the RECOVERY option, the last CA is always prefor­
matted. Actually it does not contain records at the end
but some FREESPC-BYTES for extending/adding more data
records.

156 VSAM PRIMER and REFERENCE

Cluster data component entry (volume information)

VOLUME
VOLSER------------WTVSAM PHYREC-SIZE---------I024 HI-ALLOC-RBA-----I013760 EXTENT-NUMBER----------l
DEVTYPE------X' 30502009' PHYRECS/TRK-----------ll HI-USED-RBA------I013760 EXTENT-TYPE--------X'OO'
VOLFLAG------------PRIME TRACKS/CA-------------19
EXTENTS:
LOW-CCHH-----X' 00040000' LOW-RBA----------------O TRACKS----------------95
HIGH-CCHH----X' 00080012' HIGH-RBA---------I013759

Explanation:

VOLSER: the volume serial number WTVSAM.

DEVTYPE: the device type is 3330 (the Access Method Services
manual contains a 'Device Type Translate Table' to
translate this code, also see section C.1 on page 279).

VOLFLAG: PRIME indicates that this is the first volume on which
data records for this data component are stored. Other
values may indicate OVERFLOW when the component contains
a Keyrange, or CANDIDATE where the component can be
extended.

PHYREC-SIZE: physical record size (sometimes called block size)
that VSAM uses to write CIs for this data component on
this device type (also see section 8.2, page 196).

PHYSRECS/TRK: 11 physical records with 1024 bytes (no key) are
written per track on a 3330.

TRACKS/CA: one CA is 19 tracks. Since the allocation was made in
terms of CYLINDERs, VSAM set the CA size equal to one
cylinder. One cylinder on a 3330 contains 19 tracks.

HI-ALLOC-RBA: see previous page (allocation).
HI-USED-RBA : see p~evious page (allocation).

EXTENT-NUMBER: number of extents allocated for this data component
on volume WTVSAM.

EXTENT-TYPE: X'OO' means the extents a~e contiguous.
X'40' means the extents are not preformatted.
X'80' is only used in an index component. As the volu~e
group for the data component is repeated in an ilLeaX
component when IMBED is specified, X'80' indicates that
the sequence set occupies the first t~ack of the data CA.

LOW/HIGH-RBA: the RBA indicating the begin/end of this extent.

TRACKS: 95 t~acks (5 cylinders) are allocated for this extent.

Chapte~ 7. Access Method Se~vices Examples 157

. INDEX ------ CUSTOMER.K. I
HISTORY

Cluster indeH component entry

OWNER-IDENT-------(NUlll CREATION----------77.355 RCVY-VOl----------WTVSAM RCVY-CI--------X'OOOOOF'
RElEASE----------------2 EXPIRATION--------OO.OOO RCVY-DEVT----X' 30502009'

PROTECTION-PSWO-----(NUlll RACF----------------(NOI
ASSOCIATIONS

ClUSTER--CUSTOMER.K
ATTRIBUTES

KEYlEN-----------------S AVGlRECl---------------O BUFSPACE---------------O CISIZE--------------2048
RKP--------------------O MAXlRECl------------2041 EXCPEXIT----------(NUlll CI/CA------------------6
SHROPTNS(1,31 RECOVERY SUBAllOC
NOREUSE

STATISTICS

NOERASE NOWRITECHK IMBED NOREPlICAT UNORDERED

REC-TOTAl--------------6 SPlITS-CI--------------O EXCPS-----------------48 INDEX:
REC-DElETED------------O SPlITS-CA--------------O EXTENTS----------------2 lEVElS-----------------2
REC-INSERTED-----------O FREESPACE-XCI----------O SYSTEM-TIMESTAMP: ENTRIES/SECT----------14
REC-UPDATED------------O FREESPACE-XCA----------O
REC-RETRIEVED----------O FREESPC-BYTES------I0240

X'8BOE7F92DFIF7800' SEQ-SET-RBA--------12288
HI-lEVEl-RBA-----------O

EHplanation:

Almost every parameter was eHplained in the previous sections.

The only new and/or important parameters here are:

INDEX LEVELS: '2' specifies that 2 indeH
first level is the 'Sequence set
with the data component (IMBED).
'IndeH set level'.

levels are built. The
level' which is stored
The second level is the

REC-TOTAL: '6' means a total of 6 indeH records (CIs) eHist. The
sequence set consists of 5 indeH records (one per CAl and
the indeH set consists of one indeH record (with the five
entries ,pointing to the sequence set records).

158 VSAM PRIMER and REFERENCE

Catalog volume record (with volume timestamp)

VOLUME -------- WTVSAM
HISTORY

RELEASE----------------Z RCVY-VOL----------WTVSAM RCVY-DEVT----X'30502009' RCVY-CI--------X'000009'
CHARACTERISTICS

BYTES/TRK----------13165 DEVTYPE------X'30502009' MAX-PHYREC-SZ------13030 DATASETS-ON-VOL--------5
TRKS/CYL--------------19 VOLUME-TIMESTAMP: MAX-EXT/ALLOC----------5 DATASPCS-ON-VOL--------2
CYLS/VOL-------------411 X'8BDE7F9BA51F9000'

Explanation:

BYTES/TRK: specifies the maximum bytes per track (not all usable by
VSAM).

TRKS/CYL: this device type (3330) has 19 tracks per cylinder.

CYL/VOL: this device type (3330) has 411 cylinder per volume.

DEVTYPE: this is a 3330 (see explanation in previous section).

MAX-PHYREC-SZ: the theoretical maximum physical record size VSAM
can write on this volume (see physical record sizes in
section 8.2 on page 196).

MAX-EXT/ALLOC: the maximum number of extents per allocation
request. This means if a primary or secondary allocation
request for a suballocated data set (in OS/VS also for an
UNIQUE data set) is issued, for example, for 10 cylin­
ders, VSAM (or in OS/VS for an UNIQUE data set OS/DADSM)
tries to allocate these 10 cylinders in a maximum of 5
pieces.

DATASETS-ON-VOL: there are 5 logical data sets stored on the
volume:

1. Catalog - CLUSTER
2. KSDS - DATA
3 .
4 .
5.

KSDS - INDEX
AIX
AIX

- DATA
- INDEX

DATASPCS-ON-VOL: there are 2 data spaces on the volume (one created
with DEFINE USERCATALOG, and one created with DEFINE
SPACE).

VOLUME-TIMESTAMp: this is the most and only important timestamp in
VSAM. This timestamp is checked by VSAM against the
timestamp in the VTOC F-4 DSCB timestamp.

The timestamp is described in detail in section A.2 on
page 244.

Chapter 7. Access Method Services Examples 159

L...1..Q. LISTCRA

7.10.1 LISTCRA NOCOMPARE

DOS/VS example (input):

II JOB LIST CRA NO COMPARE
II DLBL WTVSAN",VSAM
II EXTENT SYS010,WTVSAM
II ASSGN SYS010,DISK,VOL=WTVSAM,SHR
II EXEC IDCAMS,SIZE=AUTO

1&

LISTCRA INFILE (WTVSAM)
NOCOMPARE NAME
MASTERPW (MCATMRPW)

CAT (PRIMER.UCAT1IUCATMPRW WTVSAM)

DOS/VS example (output):

OS/VS example (input):

IIPRIMER JOB WTSC,IBM,MSGLEVEL=1
IIPRIM0342 EXEC PGM=IDCAMS
IIWTVSAM DO VOL=SER=WTVSAM,DISP=OLD;UNIT=3330
IISYSPRINT DO SYSOUT=A
IISYSIN DD *

LISTCRA INFILE (WTVSAMJ
NOCOMPARE NAME
MASTERPW CMCATMRPWJ
CAT (PRIMER.UCAT1/UCATMPRW WTVSAMl

OS/VS example (output):

LISTING OF CRA FOR VOLUME --WTVSAM-- VSAM ENTRIES LISTING OF CRA FOR VOLUME --WTVSAM-- VSAM ENTRIES
VOL - WTVSAM

CRAVOLRCD - 10/20177
F4DSCBVSAM - 10/20177
F4DSCBDUMP - 10/20177

AIX - CITY.E
DATA - CITY. E.D

DATA VOL -
WTVSAM

WDX - CITY.E.I
INDX VOL -

WTVSAM
WTVSAM

CLUS - CUSTOMER.E
PATH - CITY.CUST.E

AIX - CITY.K
DATA - CITY.K.D

DATA VOL -
WTVSAM

INDX - CITY.K.I
INDX VOL -

WTVSAM
WTVSAM

CLUS - CUSTOMER.K
PATH - CITY.CUST.K

15:50:33
15:50:33
15:50:33

VOL - WTVSAM
CRAVOLRCD - 12/22/77
F4DSCBVSAM - 12/22/77
F4DSCBDUMP - 12/22/77

AIX - CITY.E
DATA - CITY.E.D

DATA VOL -
WTVSAM

INDX - CITY.E.I
INDX VOL -

WTVSAM
WTVSAM

CLUS - CUSTOMER.E
PATH - CITY.CUST.E

AIX - CITY.K
DATA - CITY.K.D

DATA VOL -
WTVSAM

INDX - CITY .K. I
INDX VOL -

WTVSAM
WTVSAM

CLUS - CUSTOMER.K
PATH - CITY.CUST.K

05:35:30
05:35:30
05:35:30

Output listing is continued on next page

160 VSAM PRIMER and REFERENCE

CLUS - CUSTOMER.E
DATA - CUSTOMER.E.D

DATA VOL -
WTVSAM

AIX - SALESMAN.E
DATA VOL -

WTVSAM
WDX VOL -

WTVSAM
WTVSAM

AIX - CITY.E
DATA VOL -

WTVSAM
WDX VOL -

WTVSAM
WTVSAM

UPGD -
CLUS - CUSTOMER.K

DATA - CUSTOMER.K.D
DATA VOL -

WTVSAM
IHDX - CUSTOMER.K.I

INDX VOL -
WTVSAM
WTVSAM

AIX - SALESMAN.K
DATA VOL -

WTVSAM
IHDX VOL -

WTVSAM
WTVSAM

AIX - CITY.K
DATA VOL -

WTVSAM
INDX VOL -

WTVSAM
WTVSAM

UPGD -
CLUS - CUSTOMER.R

DATA - CUSTOMER.R.D
DATA VOL -

WTVSAM
AIX - SALESMAN.E

DATA - SALESMAN.E.D
DATA VOL -

WTVSAM
INDX - SALESMAN.E.I

IHDX VOL -
WTVSAM
WTVSAM

CLUS - CUSTOMER.E
PATH - SALES.CUST.E

CLUS - CUSTOMER.E
DATA - CUSTOMER.E.D

DATA VOL -
WTVSAM

AIX - SALESHAN.E
DATA VOL -

WTVSAM
INDX VOL -

WTVSAM
WTVSAM

AIX - CITY.E
DATA VOL -

WTVSAM
INDX VOL -

WTVSAM
WTVSAM

UPGD -
CLUS - CUSTOMER.K

DATA - CUSTOMER.K.D
DATA VOL -

WTVSAM
IHDX - CUSTOMER.K.I

IHDX VOL -
WTVSAM
WTVSAM

AIX - SALESMAN.K
DATA VOL -

WTVSAM
INDX VOL -

WTVSAM
WTVSAM

AIX - CITY.K
DATA VOL -

WTVSAM
INDX VOL -

WTVSAM
WTVSAM

UPGD -
CLUS - CUSTOMER.R

DATA - CUSTOMER.R.D
DATA VOL -

WTVSAM
AIX - SALESMAH.E

DATA - SALESMAN.E.D
DATA VOL -

WTVSAM
INDX - SALESMAN.E.I

IHDX VOL -
WTVSAM
WTVSAM

CLUS - CUSTOMER.E
PATH - SALES.CUST.E

output listing is continued on next page

Chapte~ 7. Access Method Se~vices Examples 161

AIX - SALESMAN.K
DATA - SALESMAN.K.D

DATA VOL -
WTVSAM

INDX - SALESMAN.K.I
INDX VOL -

WTVSAM
WTVSAM

CLUS - CUSTOMER.K
PATH - SALES.CUST.K

NUMBER OF ENTRIES PROCESSED
CLUS - 3
DATA - 7
AIX - 4
INDX - 5
PATH - 4
VOL - 1
UPGD - 2
SUM - 26

AIX - SALESMAN.K
DATA - SALESMAN.K.D

DATA VOL -
WTVSAM

INDX - SALESMAN.K.I
INDX VOL -

WTVSAM
WTVSAM

CLUS - CUSTOMER.K
PATH - SALES.CUST.K

NUMBER OF ENTRIES PROCESSED
CLUS - 3
DATA - 7

AIX - 4

INDX - 5

PATH - 4

VOL - 1

UPGD - 2
SUM - 26

IDCOOOII FUNCTION COMPL •• HIGHEST COND.CODE WAS 0 IDCOOOII FUNCTION COMPL •• HIGHEST COND.CODE WAS 0

IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 IDcoooeI IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0

Note:

• The mastez passwozd of the mastez catalog (MASTERPW) must be
specified if the mastez catalog is passwozd pzotected.

162 VSAM PRIMER and REFERENCE

(

7.10.2 LISTCRA COMPARE

DOS/VS example (input):

II JOB LIST CRA COMPARE
II DLBL WTVSAM",VSAM
II EXTENT SYS010,WTVSAM
II ASSGN SYS010,DISK,VOL=WTVSAM,SHR
II EXEC IDCAMS,SIZE=AUTO

1&

LISTCRA INFILE (WTVSAMI
COMPARE NAME
CAT (PRIMER.UCAT1/UCATMRPW IJSYSUCI­
HASTERPW (HCATMRPWI

DOS/VS example (output):

OS/VS example (input):

IIPRIMER JOB WTSC,IBM,MSGLEVEL=1
I/PRIH0352 EXEC PGM=IDCAHS
//STEPCAT DO DSN=PRIMER.UCAT1,DISP=OLD
/IWTVSAM DO VOL=SER=WTVSAM,DISP=OLO,UNIT=3330
I/CATVOL DD DSN=PRIHER.UCAT1,DISP=OLD
//SYSPRINT DO SYSOUT=A
I/SYSIN DO *

LISTCRA INFILE (WTVSAMJ
COMPARE NAME
MASTERPW IMCATMRPWJ
CAT IPRIMER.UCAT1/UCATMRPW CATVOLI

OS/VS example (output):

LISTING OF CRA FOR VOLUME --WTVSAM-- VSAM ENTRIES LISTING CRA FOR VOLUME --WTVSAM-- VSAM ENTRIES
CATVOLRCD - 10/20/77
CRAVOLRCD - 10/20/77
F4DSCBVSAM - 10/20/77
F4DSCBDUMP - 10/20/77

NUMBER OF ENTRIES PROCESSED
CLUS - 3
DATA - 7

AIX - 4
WDX - 5
PATH - 4
VOL - 1
UPGD - 2
SUM - 26

15:50:33
15:50:33
15:50:33
15:50:33

CATVOLRCD - 12/22/77
CRAVOLRCD - 12/22/77
F4DSCBVSAM - 12/22/77
F4DSCBDUMP - 12/22/77

NUMBER ENTRIES PROCESSED
CLUS - 3
DATA - 7

AIX - 4
INDX - 5
PATH - 4
VOL - 1
UPGD - 2
SUM - 26

05:35:30
05:35:30
05:35:30
05:35:30

IDC0665I NUI1BER ENTRIES MISCOMP. IN THIS CRA - 0
IDCOS77I NUMBER RECORDS MISCOMP. IN THIS CRA - 0

IOC06651 NUMBER ENTRIES MISCOMP. IN THIS CRA - 0
IDC08771 NUMBER RECORDS MISCOMP. IN THIS CRA - 0

IDC00011 FUNCTION COMPL., HIGHEST COND.CODE WAS 0 IDC00011 FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDC00021 IDCAHS PROC. COMPL. MAX. COND.CODE WAS 0 IDC0002I IDCAMS PROC. COMPL. MAX. COND~CODE WAS 0

Notes:

• LISTCRA with the COMPARE option can be used to detect the
following conditions for a recoverable catalog:

data set not properly closed
inaccessible data set
inaccessible volume

The mismatches detected between the catalog and the CRA are
listed. Then, depending on the degree of seriousn.ess, differ­
ent procedures to recover are to be taken as suggested in the
appropriate Access Method Services manual.

Chapter 7. Access Method Services Examples 163

1......11. RESETCAT

DOS/VS example (input):

II JOB RESET USER CAT
II DLBL WTVSAM",VSAM
II EXTENT SYS010,WTVSAM
II ASSGN SYS010,DISK.VOL=WTVSAM,SHR
II DLBL IJSYSWC,'PRIMER.UCAT2'.99/365,VSAM
II EXTENT SYS020,WTVS1R
II OLBL IOCUT1",VSAM,CAT=IJSYSWC
II EXTENT SYS020,WTVS1R
II ASSGN SYS020,OISK,VOL=WTVSIR,SHR
II EXEC IOCAMS,SIZE=AUTO

1&

RESETCAT CAT (PRIMER.UCATI/UCATMRPW IJSYSUC)­
CRAFILES (WTVSAM ALL)
WORKCAT (PRIMER.UCAT2 IJSYSWC)­
MASTERPW (MCATMRPW)
NOIGNORE

DOS/VS example (output):

IDC0100eI RESETCAT CATALOG PRIMER.UCATl
VOL WTVSAM LEVEL 10/20/77 16:24:15

IOC01011I CRA FOR RST-VOL WTVSAM
LEVEL 10/20/77 16:24:15

IDC010371 PRIMER.UCATl HAS BEEN RESET

OS/VS example (input):

IIPRIMER JOB WTSC,IBM,MSGLEVEL=1
IIPRIM0362 EXEC PGM=IDCAMS
IISTEPCAT DO O'SN=PRIMER.UCATl,DISP=SHR
II
IIUCATDD
IIWTVSAM

DO DSN=PRIMER.UCAT2,DISP=OLD
DO DSN=PRIMER.UCAT1,DISP=SHR
DO VOL=SER=WTVSAM,UNIT=3330,DISP=OLD

IIWORKF DO DSN=WORKFILE,DISP=OLD,UNIT=3330,
II VOL=SER=WTVS1R,AMP='AMORG'
IISYSPRINT DO SYSOUT=A
IISYSIN DO *

RESETCAT CAT(PRIMER.UCATI/UCATMRPW UCATDD)­
CRAFILES ((WTVSAM ALL»
WORKCAT (PRIMER.UCAT2)
MASTERPW (MCATMRPW)
WORKFILE (WORKF)

1*

OS/VS example (output):

IDC010021 RESETCAT,CATALOG PRIMER.UCAT1
VOL WTVSAM LEVEL 12/22/77 05:35:30

IDCOI011I CRA FOR RST-VOL WTVSAM
LEVEL 12/22/77 05:35:30

IDC01037I PRIMER.UCAT1 HAS BEEN RESET
IDCOOOII FUNCTION COMPL., HIGHEST COND.CODE WAS 0 IDCOOOII FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 IDC0002I IDCAMS PROC. COMPL. MAX. CONO.CODE WAS 0

Notes:

• RESETCAT must be used with caution to recover accessibility of
a volume that contains a portion of a multivolume file. Prior
to issuing RESETCAT, compatible levels of volumes contain~n;
multivolume files should be restored. Refer to the Accl'~s

Method Services manual for more information.

• RESETCAT function requires a WORKFILE for use as temporary
storage while processing the command. The space required is
suballocated from VSAM space(s) on the volume specified in its
EXTENT statement. Be sure the available suballocatable space
on the WORKFILE volume is at least as large as the resultant
catalog.

• The master password of the master catalog (MASTERPW) must be
specified if the master catalog is password protected.

• The WORKCAT catalog will be used to define this WORKFILE (and
to delete it at the end) since the catalog being reset can not
be used during such operation. Any other catalog can be used.
It must be connected to the master catalog.

The notes are continued on the next page.

164 VSAM PRIMER and REFERENCE

!
!

DOS/VS notes:

• The WORKFILE's DLBL/EXTENT must specify the 'dname' (IDCUT1 is
the default name in case the parameter WORKFILE (dname) is not
specified), the 'volid' where the ~ORKFILE will be allocated
(WTVS1R) and the CAT parameter indicating the catalog this
volume belongs to (IJSYSWC). The DLBL/EXTENT information for
the WORKCAT catalog must be provided.

~ EXPORT DISCONNECT USER CATALOG FROM MASTER CATALOG

DOS/VS example (input):

II JOB EXPORT DISCONNECT UCAT
II DLBL IJSYSUC,'PRIMER.UCAT1'"VSAM
II EXTENT SYS010,WTVSAM,1,0,19,57
II ASSGN SYS010,oISK,VOL=WTVSAM,SHR
II EXEC IOCAMS,SIZE=AUTO

1&

EXPORT PRIMER.UCATI/UCATMRPW
DISCONNECT

DOS/VS example (output):

OS/VS example (input):

IIPRIMER JOB WTSC,IBM,MSGLEVEL=1
IIPRIM0372 EXEC PGM=IDCAMS
IISYSPRINT DO SYSOUT=A
/ISYSIN DO *

EXPORT PRIMER.UCAT1/UCATMRPW
DISCONNECT

OS/VS example (output):

IoC0001I FUNCTION COMPL., HIGHEST CONO.CODE WAS 0 IDC0001I FUNCTION COMPL., HIGHEST CONO.COOE WAS 0

IDC0002I IDCAMS PROC. COMPL. MAX. CONo.COoE WAS 0 IoC0002I IoCAMS PROC. COMPL. MAX. CONO.COoE WAS 0

Notes:

• EXPORT DISCONNECT is required to signal the action to discon­
nect the user catalog PRIMER.UCAT1 (whose UPDATEPW or MASTERPW
is required) from the master catalog.

• The user catalog volume need not to be mounted.

DOS/VS note:

• No DLBL/EXTENT statements are required.

MVS notes:

• The EXPORT DISCONNECT command removes
catalog from the master catalog (the
does not recatalog the ALIASes).

the ALIASes for the useL
IMPORT CONNECT comm27~

Before issuing an EXPORT DISCONNECT command issue a LISTCAT
VOLUMES command to . list all ALIASes. After the IMPORT CONNECT
command, each ALIAS must be entered into the master catalog
with a separate DEFINE ALIAS command (see example on page 183).

Chapter 7. Access Method Services Examples 165

~ IMPORT CONNECT A USER CATALOG TO THE MASTER CATALOG

DOS/VS example (input):

II JOB IMPORT CONNECT UCAT
II OLBL IJSYSUC,'PRIMER.UCATl'"VSAM
II EXTENT SYSOlO,WTVSAM,l,0,l9,57
II ASSGN SYSOIO,OISK,VOL=WTVSAM,SHR
II EXEC IDCAMS,SIZE=AUTO

1&

IMPORT CONNECT
OBJECT (

PRIMER.UCATl
OEVT (3330)
VOL (WTVSAM)

CAT (PRIMER.MCAT/MCATMRPW)

DOS/VS example (output):

IOC0603I CONNECT UCAT PRIMER.UCAT1 SUCCESSFUL

OS/VS example (input):

I/PRIMER JOB WTSC,IBH,MSGLEVEL=1
I/PRIM0382 EXEC PGM=IDCAMS
IISYSPRINT DO SYSOUT=A
//SYSIN DO *

IMPORT CONNECT
OBJECTS (

PRIMER.UCAT1
OEVT (3330)
VOLUME (WTVSAM))

CAT (PRIMER.MCAT/MCATMRPW)

OS/VS example (output):

IDC0603I CONNECT UCAT PRIMER.UCATl SUCCESSFUL
IDC0001I FUNCTIONCOMPL., HIGHEST COND.CODE WAS 0 IDC0001I FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IOC0002I IOCAMS PROC. COHPL. MAX. CONO.CODEWAS 0 IOC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0

Notes:

• IMPORT CONNECT must be specified to connect (or reconnect an
already disconnected) user catalog to the master catalog.

A user catalog may be connected to more than one master catalog
but should only be used from one at a time.

A user catalog cannot be connected to another user catalog.

• OBJECT names the user catalog PRIMER.UCAT1 indicating the
device type and volume serial number of the volume containing
the user catalog.

With this information,
need not be mounted.

the volume containing the user catalog

• C~T names the master catalog PRIMER.MCAT and indicates its
UPDATEPW or MASTERPW needed for the CONNECT operation.

DOS/VS note:

• No DLBL/EXTENT statements are required.

166 VSAM PRIMER and REFERENCE

7.14 EXPORTRA

DOS/VS example (input):

II JOB EXPORT CRA
II OLBL CRAVOL1",VSAM
II EXTENT SYS010,WTVSAM
II ASSGN SYS010,OISK,VOL=WTVSAM,SHR
II TLBL SAVECRA,'SAVE.CRA.WTVSAM'
II ASSGN SYSOOS,TAPE,VOL=OS74S4
II MTC REW,SYS005
II EXEC IOCAMS,SIZE=AUTO

EXPORTRA CRA «(CRAVOL1 ALL))
OUTFILE (SAVECRA

ENV (BLKSZ (4096)
PDEV (2400))

)

MASTERPW (MCATMRPW)
1&

DOS/VS example (output):

IOC0669I EXPORTING FROM CRA ON VOLUME WTVSAM
IDC0670I DS EXP.
IDC0674I ** NAME IS CUSTOMER.R
IDC06701 DS EXP.
IDC0674I ** NAME IS CUSTOMER.E
IDC0670I DS EXP.
IDC0674I ** NAME IS CUSTOMER.K
IDC06701 DS EXP.
IDC0674I ** NAME IS CITY.E
IDC0670I DS EXP.
IDC0674I ** NAME IS SALESMAN.E
IDC0670I DS EXP.
IDC0674I ** NAME IS CITY.K

OS/VS example (input):

IIPRIMER JOB WTSC,IBM,MSGLEVEL=1
IIPRIM0392 EXEC PGM=IDCAMS
IIEXPCRA DD VOL=(,RETAIN",SER=0574S4),
II UNIT=3400-6,LABEL=(5,SL),
II DISP=(NEW,PASS),DSN=EXPCRA
IIWTVSAM DO UNIT=3330,VOL=SER=WTVSAM,
II DISP=OLO,AMP='AMORG'
IISYSPRINT DD SYSOUT=A
IISYSIN DO *

EXPORTRA CRA «WTVSAM ALL))
OUTFILE (EXPCRA)

OS/VS ~xample (output):

IDC0669I EXPORTING FROM CRA ON VOLUME WTVSAM
IDC0670I DS EXP.
IDC0674I ** NAME IS CUSTOMER.R
IDC0670I,DS EXP.
IDC0674I ** NAME IS CUSTOMER.E
IDC0670I OS EXP.
IDC0674I ** NAME IS CUSTOMER.K
IDC0670I OS EXP.
IOC06741 ** NAME IS CITY.E
IDC06701 DS EXP.
IDC0674I ** NAME IS SALESMAN.E
IDC06701 DS EXP.
IDC0674I ** NAME IS SALESMAN.K

IDC0670I DS EXP. IDC06701 OS EXP.
IDC0674I ** NAME IS SALESMAN.K IDC06741 ** NAME IS CITY.K
IDC0676I PORT. OS CREATED ON 10/20177 AT 16:50:1 IDC0676I PORT. OS CREATED ON 12/21/77 AT 21:38:05
IDC0001I FUNCTION COMPL •• HIGHEST COND.CODE WAS 0 IDC0001I FUNCTION COMPL •• HIGHEST COND.CODE WAS 0

IOC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0

See notes on next page.

Chapter 7. Access Method Services Examples 167

Notes:

• A description of EXPORTRA/IMPORTRA and their functions is
included in section A.6.3 on page 259.

• The master password of the master catalog (MASTERPW) must be
specified if the master catalog is password protected.

• There is no option in EXPORTRA to delete the exported objects
from their catalog.

• As with RESETCAT, special attention should be paid when working
with multivolume files. Read carefully the explanation of
these subparameters in the Access Method Services manual:

ALL INFILE I NONE , FORCE I NOFORCE

ALL means the data sets are exported using the CRA information
and not the catalog information.

• Note that the user catalog itself is not exported.

DOS/VS notes:

• The DLBL/EXTENT for the CRA is used to point to the volume
where the primary CRA resides. CRAVOLl was used as a filename
for the DLBL statement and is so coded in the EXPORTRA command.

• The tape (SAM) device used for unloading is defined in the
ENVironment parameter.

168 VSAM PRIMER and REFERENCE

7.15 IMPORTRA

DOS/VS example (input):

II JOB IMPORT CRA
II DLBL CRA,'WTVSAM'"VSAM
II EXTENT SYS010,WTVSAM
II ASSGN SYSOIO,DISK,VOL=WTVSAM,SHR
II TLBL SAVECRA,'SAVE.CRA.WTVSAM'
II ASSGN SYS004,TAPE,VOL=OS74S4
II MTC REW,SYS004
II EXEC IDCAMS,SIZE=AUTO

IMPORTRA INFILE (SAVECRA
ENV (BLKSZ (4096)

PDEV (2400»

OUTFILE (CRA)
CAT (PRIMER.UCATI/UCATMRPW)

1&

DOS/VS example (output):

OS/VS example (input):

IIPRIMER JOB WTSC,IBM,MSGLEVEL=l
IIPRIM0402 EXEC PGM=IDCAMS
IISTEPCAT DO DSN=PRIMER.UCAT1,DISP=OLD
IIIMPCRA DO VOL=(,RETAIN",SER=OS74S4),
II UNIT=3400-6,LABEL=(S,SL),
II DISP=(OLD,PASS),DSN=EXPCRA
IIWTDUMMY DO UNIT=3330,VOL=SER=WTVSAM,DISP=OlD,
II DSN=DUMMY.NAME,AMP='AMORG'
IISYSPRINT DO SYSOUT=A
IISYSIN DO *

IMPORTRA INFILE (IMPCRA)
OUTFILE (WTDUMMY)

CAT (PRIMER.UCATI/UCATMRPW)

OS/VS example (output):

IDC06041 OS BEING IMP. WAS EXP. 10/20/77 AT 16:49 IDC06041 DS BEING IMP. WAS EXP. 12/21/77 AT 21:37
IDCOSSOI ENTRY (C) CUSTOMER.R DELETED
IDCOSSOI ENTRY (D) CUSTOMER.R.D DELETED
IDCOS201 CATALOG RECOVERY VOLUME IS WTVSAM

IDCOSSOI ENTRY (D) CUSTOMER.R.D DELETED
IDCOSSOI ENTRY (C) CUSTOMER.R DELETED
IDCOS201 CATALOG RECOVERY VOLUME IS WTVSAM

IDCOS081 DATA ALLOC. STAT. FOR VOLUME WTVSAM IS 0 IDCOS081 DATA ALLOC. STAT. FOR VOLUME WTVSAM IS 0
IDC0626I IMPORTRA SUCCEEDED FOR CUSTOMER.R IDC06261 IMPORTRA SUCCEEDED FOR CUSTOMER.R
IDC06041 OS BEING IMP. WAS EXP. 10/20/77 AT 16:49 IDC06041 OS BEING IMP. WAS EXP. 12/21/77 AT 21:37
IDCOSSOI ENTRY (R) SALES.CUST.E DELETED
IDCOSSOI ENTRY (G) SALESMAN.E DELETED
IDCOSSOI ENTRY (D) SALESMAN.E.D DELETED
IDC05501 ENTRY (I) SALESMAN.E.I DELETED
IDC05501 ENTRY (R) CITY.CUST.E DELETED
IDC05501 ENTRY (G) CITY.E DELETED
IDCOS501 ENTRY (D) CITY.E.D DELETED
IDC05501 ENTRY (1) CITY.E.I DELETED
IDC05S01 ENTRY (C) CUSTOMER.E DELETED
IDCOSSOI ENTRY (D) CUSTOMER.E.D DELETED
IDC05201 CATALOG RECOVERY VOLUME IS WTVSAM

IDCOSSOI ENTRY (R) SALES.CUST.E DELETED
IDC05501 ENTRY (D) SALESMAN.E.D DELETED
IDC0550I ENTRY (I) SALESMAN.E.I DELETED
IDC05S0I ENTRY (G) SALESMAN.E DELETED
IDC05S01 ENTRY (R) CITY.CUST.E DELETED
IDC05501 ENTRY (D) CITY.E.D DELETED
IDC0550I ENTRY (I) CITY.E.I DELETED
IDC05S01 ENTRY (G) CITY.E DELETED
IDCOSSOI ENTRY (D) CUSTOMER.E.D DELETED
IDCOS50I ENTRY (C) CUSTOMER.E DELETED
IDC05201 CATALOG RECOVERY VOLUME IS WTVSAM

IDC0508I DATA ALLOC. STAT. FOR VOLUME WTVSAM IS 0 IDCOS08I DATA ALLOC. STAT. FOR VOLUME WTVSAM IS 0
IDC06261 IMPORTRA SUCCEEDED FOR CUSTOMER.E IDC0626I IMPORTRA SUCCEEDED FOR CUSTOMER.E

output listing is continued on next page

Chapte% 7. Access Method Se%vices Examples 1~9

IDC06041 OS BEING IMP. WAS EXP. 10/20/77 AT 16:49 IDC0604I OS BEING IMP. WAS EXP. 12/21/77 AT 21:37
IDC05501 ENTRY (R) SALES.CUST.K DELETED 10C05501 ENTRY (R) SALES.CUST.K DELETED
IDC05501 ENTRY (G) SALESMAN.K DELETED IDC05501 ENTRY (D) SALESMAN.K.D DELETED
IDC05501 ENTRY (D) SALESMAN.K.D DELETED IDC05501 ENTRY (1) SALESMAN.K.I DELETED
IDC05501 ENTRY (1) SALESMAN.K.I DELETED IDC0550I ENTRY (G) SALESMAN.K DELETED
IDC05501 ENTRY (R) CITY.CUST.K DELETED IDC05501 ENTRY (R) CITY.CUST.K DELETED
IDC05501 ENTRY (G) CITY.K DELETED IDCOS50I ENTRY (0) CITY. K. D DELETED
IDC05501 ENTRY (D) CITY.K.O DELETED IDC0550I ENTRY (I) CITY.K.I DELETED
IDC0550I ENTRY (1) CITY.K.I DELETED IDC05501 ENTRY (G) CITY.K DELETED
IDC0550I ENTRY (C) CUSTOMER.K DELETED IDC0550I ENTRY (D) CUSTOMER.K.D DELETED
IDC05501 ENTRY (D) CUSTOMER.K.D DELETED IDC05501 ENTRY (I) CUSTOMER.K.I DELETED
IDC05501 ENTRY (I) CUSTOMER.K.I DELETED IDCOS501 ENTRY (C) CUSTOMER.K DELETEO
IDC0520I
IDC05081
IDC0509I

CATALOG RECOVERY VOLUME IS WTVSAM
DATA ALLOC. STAT. FOR VOLUME WTVSAM IS 0
INDEX ALLOC.STAT. FOR VOLUME WTVSAM IS 0

IDC0520I CATALOG RECOVERY VOLUME IS WTVSAM
IOC0508I DATA ALLOC. STAT. FOR VOLUME WTVSAM IS 0
IDCOS09I INDEX ALLOC.STAT. FOR VOLUME WTVSAM IS 0

IDC06261 IMPORTRA SUCCEEDED FOR CUSTOMER.K IDC0626I IMPORTRA SUCCEEDED FOR CUSTOMER.K
IDC06041 OS BEING IMP. WAS EXP. 10/20/77 AT 16:49 IOC06041 OS BEING IMP. WAS EXP. 12/21/77 AT 21:37
IDCOS20I CATALOG RECOVERY VOLUME IS WTVSAM IDC0520I CATALOG RECOVERY VOLUME IS WTVSAM
IDCOS08I DATA ALLOC. STAT. FOR VOLUME WTVSAM IS 0 IOC0508I DATA ALLOC. STAT. FOR VOLUME WTVSAM IS 0
IDC05091 INDEX ALLOC.STAT. FOR VOLUME WTVSAM IS 0 IDC0509I INDEX ALLOC.STAT. FOR VOLUME WTVSAM IS 0
IDC0626I IMPORTRA SUCCEEDED FOR CITY.E IDC0626I IMPORTRA SUCCEEDED FOR CITY.E
IDC0604I OS BEING IMP. WAS EXP. 10/20177 AT 16:49 IDC06041 OS BEING IMP. WAS EXP. 12/21/77 AT 2:·3P'

IDC0520I CATALOG RECOVERY VOLUME IS WTVSAM IDC05201 CATALOG RECOVERY VOLUME IS WTVSAM
IDC05081 DATA ALLOC. STAT. FOR VOLUME WTVSAM IS 0 IDC0508I DATA ALLOC. STAT. FOR VOLUME WTVSAM !~ 0
IDCOS09I INDEX ALLOC.STAT. FOR VOLUME WTVSAM IS 0 IDC05091 INDEX ALLOC.STAT. FOR VOLUME WTVSAM IS 0
IDC0626I IMPORTRA SUCCEEDED FOR SALESMAN.E IDC0626I IMPORTRA SUCCEEDED FOR SALESMAN.E
IDC0604I OS BEING IMP. WAS EXP. 10/20/77 AT 16:49 IDC0604I OS BEING IMP. WAS EXP. 12/21/77 AT 21:38
IDC05201 CATALOG RECOVERY VOLUME IS WTVSAM IDC0520I CATALOG RECOVERY VOLUME IS WTVSAM
IDC0508I DATA ALLOC. STAT. FOR VOLUME WTVSAM IS 0 IDCOS08I DATA ALLOC. STAT. FOR VOLUME WTVSAM IS 0
IDC0509I INDEX ALLOC.STAT. FOR VOLUME WTVSAM IS 0 IDCOS09I INDEX ALLOC.STAT. FOR VOLUME WTVSAM IS 0
IDC0626I IMPORTRA SUCCEEDED FOR CITY.K IDC06261 IMPORTRA SUCCEEDED FOR SALESMAN.K
IDC06041 OS BEING IMP. WAS EXP. 10/20/77 AT 16:50 IDC0604I OS BEING IMP. WAS EXP. 12/21/77 AT 21:38
IDCOS20I CATALOG RECOVERY VOLUME IS WTVSAM IDC0520I CATALOG RECOVERY VOLUME IS WTVSAN
IDCOS08I DATA ALLOC. STAT. FOR VOLUME WTVSAM IS 0 IDCOS081 DATA ALLOC. STAT. FOR VOLUME WTVSAM IS 0
IDC0509I INDEX ALLOC.STAT. FOR VOLUME WTVSAM IS 0 IDC05091 INDEX ALLOC.STAT. FOR VOLUME WTVSAM IS 0
IDC0626I IMPORTRA SUCCEEDED FOR SALESMAN.K IOC06261 IMPORTRA SUCCEEDED FOR CITY.K
IDC00011 FUNCTION COMPL .• HIGHEST COND.CODE WAS 0 IOC00011 FUNCTION COMPL .• HIGHEST COND.CODE WAS 0

IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 IDC00021 IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0

Notes:

•

•

A description of EXPORTRA/IMPORTRA and
included in section A.6.3 on page 259.

their functions

It is not possible to selectively restore
specifying them in the OBJECTS parameter.

VSAM objects

is

by

DOS/VS notes:

• EXTENT specifies the 'volid' where the IMPORTRA will import the
VSAM objects. This is indicated in the OUTFILE parameter,
where CRA was chosen for the DLBL/EXTENT filename.

170 VSAM PRIMER and REFERENCE

I
i

~ REPRO (UNLOAD - BACKUP A USER CATALOG

DOS/VS example (input):

II JOB REPRO UCAT TO TAPE
II DLBL IJSYSUC,'PRIMER.UCAT1'"VSAM
II EXTENT SYSOIO,WTVSAM,l,O,19,57
II ASSGN SYS010,DISK,VOL=WTVSAM,SHR
II TLBL SAVUCAT,'SAVE.UCAT'
II ASSGN SYS005,TAPE,VOL=057454
II MTC REW,SYS005
II EXEC IDCAMS,SIZE=AUTO

1&

REPRO INFILE (IJSYSUC/UCATUPDT)
OUTFILE (SAVUCAT

ENV (
BLKSZ (4096)

RECFM (VB)
PDEV (2400))

)

DOS/VS example (output):

OS/VS example (input):

IIPRIMER JOB WTSC,IBM,MSGLEVEL=1
IIPRIM0412 EXEC PGM=IDCAMS
IISTEPCAT DD DSN=PRIMER.UCAT1,DISP=SHR
IICATIN DD DSN=PRIMER.UCAT1,DISP=SHR
IISAVEUCAT DO VOL=(,RETAIN",SER=OS7454),
II UNIT=3400-6,LABEL=(6,SL),
II DISP=(NEW,PASS),DSN=SAVEUC,
II DCB=(LRECL=516,RECFM=VB,BLKSIZE=5164)
IISYSPRINT DD SYSOUT=A
IISYSIN DD *

REPRO INFILE (CATIN/UCATMRPW)­
OUTFILE (SAVEUCAT)

OS/VS example (output):

IDC0005I NUMBER OF RECORDS PROCESSED WAS 413 IDC0005I NUMBER OF RECORDS PROCESSED WAS 422
IDC0001I FUNCTION COMPL., HIGHEST COND.CODE WAS 0 IDC0001I FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 IDC0002I IDCAHS PROC. COMPL. MAX. COND.CODE WAS 0

Notes:

• The READPW. UPDATEPW o~ MASTERPW of the REPROduced object must
be specified. In this case it is the UPDATEPW.

• Read also section A.5.l on page 254.

DOS/VS notes:

• Access Method Se~vices needs complete specifications of any
nonVSAM data set.

• IJSYSUC was the name chosen fo~ the DLBL/EXTENT
add~ess the object to be copied as PRIMER.UCAT1
volume WTVSAM at SYS010.

filename to
(file-ID) on

Chapte~ 7. Access Method Se~vices Examples 171

1......1Z. REPRO (RELOAD A USER CATALOG FROM BACKUP TAPE)

DOS/YS example (input):

II JOB REPRO UCAT FROM TAPE
II DLBL IJSYSUC,'PRIMER.UCAT1'"VSAM
II EXTENT SYSOIO,WTVSAM,1,0,19,57
II ASSGN SYSOIO,DISK,VOL=WTVSAM,SHR
II TLBL SAVUCAT,'SAVE.UCAT'
II ASSGN SYS004,TAPE,VOL=057454
II MTC REW,SYS004
II EXEC IDCAMS,SIZE=AUTO

1&

REPRO INFILE (SAVUCAT
ENV (

BLKSZ (4096)

PDEV (e400)
RECFM (VB))

)

OUTFILE (IJSYSUC/UCATUPDT)

DOS/YS example (output):

IDC0571I CATALOG RELOAD HAS BEEN INVOKED

OS/YS example (input):

IIPRIMER JOB WTSC,IBM,MSGLEVEL=l
IIPRIM04ee EXEC PGM=IDCAMS
IISTEPCAT DO DSN=PRIMER.UCAT1,DISP=SHR
IISAVEUCAT DO VOL=(,RETAIN" ,SER=0574S4),
II UNIT=3400-6,LABEL=(6,SL),
II DISP=(OLD,PASS),DSN=SAVEUC,
II DCB=(LRECL=S16,RECfM=VB,BLKSIZE=5164)
IICATOUT DO DSN=PRIMER.UCATl,DISP=SHR
IISYSPRINT DO SYSOUT=A
IISYSIN DO *

REPRO INFILE (SAVEUCAT)
OUTFILE (CATOUT/uCATMRPW)

1*

OS/VS example (output):

IDC0571I CATALOG RELOAD HAS BEEN INVOKED
IDCOOOSI NUMBER OF RECORDS PROCESSED WAS 413 IDCOOOSI NUMBER OF RECORDS PROCESSED WAS 4e2
IDCOOOII FUNCTION COMPL., HIGHEST COND.CODE WAS 0 IDCOOOII FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 IDC00021 IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0

DOS/VS notes:

• Access Method Se%vices needs complete specifications of any
nonVSAM data set.

• The same conside%ation as in REPRO UNLOAD on page 171 applie(:;

172 VSAM PRIMER and REFERENCE

7.18 DELETE

7.18.1 DELETE AIX

DELETE just one AIX and its related path(s).

DOS/VS example (input):

II JOB DEL AIX SALESMAN-CUSTOMER.K ON KSDS
II DLBL AIXKl,'SALESMAN.K'"VSAM
II EXTENT SYSOIO,WTVSAM
II ASSGN SYSOIO,DISK,VOL=WTVSAM,SHR
II EXEC IDCAMS,SIZE=AUTO

1&

DELETE SALESMAN.K
ALTERNATEINDEX
FILE (AIXKll
CAT (PRIMER.UCATI/UCATMRPW)

DOS/VS example (output):

IDC05501 ENTRY (R) SALES.CUST.K DELETED
IDC05501 ENTRY (G) SALESMAN.K DELETED
IDC05501 ENTRY (D) SALESMAN.K.D DELETED
IDC05501 ENTRY (I) SALESMAN.K.I DELETED
IDCOOOII FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDC00021 IDCAMS PRoe. COMPL. MAX. COND.CODE WAS 0

Notes:

OS/VS example (input):

IIPRIMER ,JOB WTSC,IBM,MSGLEVEL=l
IIPRIM0432 EXEC PGM=IDCAHS
IISTEPCAT DO DSN=PRIMER.UCATl,DISP=SHR
IIAIXKl DO VOL=SER=WTVSAM,DISP=OLD,UNIT=3330
IISYSPRINT DD SYSOUT=A
IISYSIN DO *

DelETE SALESMAN.K
ALTERNATEINDEX
FILE (AIXKl)
CAT (PRIMER.UCATI/UCATMRPW)

OS/VS example (output):

IDC05501 ENTRY (R) SALES.CUST.K DELETED
IDC05501 ENTRY (D) SALESMAN.K.D DELETED
IDC05501 ENTRY (1) SALESMAN.K.I DELETED
IDC0550I ENTRY (S) SALESHAN.K DELETED
IDCOOOlI FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDCOOO21 IDCAHS PROC. COMPL. MAX. COND.CODE WAS 0

• The FILE parameter is required (not for MVS, also see section
7.2.1 on page 88) to address the CRA (AIXK1). If the catalog
were not recoverable , there would be no need for this parame­
ter nor for the eRA volume to be mounted.

• The entry types (D, G, I. and R) are explained on page 51.

Chapter 7. Access Method Services Examples 113

7.18.2 DELETE A KSDS CLUSTER (AND ITS AIX'S)

When a cluster is deleted, all its related objects (i.e., AIXs,
PATHs) will automatically be deleted at the same time.

DOS/YS example (input):

II .JOB DELETE KSDS
II DLBL KSDS,'CUSTOMER.K'"VSAM
1/ EXTENT SYS010,WTVSAM
II ASSGN SYS010,DISK,VOL=WTVSAM,SHR
II EXEC IDCAMS,SIZE=AUTO

DELETE CUSTOMER.K

1&

FILE (KSDS)
CLUSTER
CAT (PRIMER.UCAT1IUCATMRPW)

DOS/VS example (output):

IDC05501 ENTRY (R) CITY.CUST.K DELETED
IDC05501 ENTRY (G) CITY.K DELETED
IDC0550I ENTRY (D) CITY.K.D DELETED
IDC05501 ENTRY (I) CITY.K.I DELETED
IDC0550I ENTRY (C) CUSTOMER.K DELETED
IDC05501 ENTRY (D) CUSTOMER.K.D DELETED

OS/VS example (input):

IIPRIMER JOB WTSC,IBM,MSGLEVEL=l
IIPRIM0442 EXEC PGM=1DCAMS
IISTEPCAT DO DSN=PR1MER.UCAT1,DISP=SHR
IIKSDS DO VOL=SER=WTVSAM,D1SP=OLD,UNIT=3330
IISYSPRINT DO SYSOUT=A
IISYSIN DO *

DELETE CUSTOMER.K
FILE (KSDS)
CLUSTER
CAT (PRIMER.UCAT1/UCATMRPW)

OS/VS example (output):

IDC05501 ENTRY (R) CITY.CUST.K DELETED
IDC0550I ENTRY (D) CITY.K.D DELETED
IDC05501 ENTRY (I) CITY.K.I DELETED
IDC05501 ENTRY (G) CITY.K DELETED
IDC05501 ENTRY (D) CUSTOMER.K.D DELETED
IDC05501 ENTRY (I) CUSTOMER.K.I DELETED

IDC05501 ENTRY (I) CUSTOMER.K.I DELETED IDC05501 ENTRY (C) CUSTOMER.K DELETED
IDC00011 FUNCTION COMPL •• HIGHEST COND.CODE WAS 0 IDC00011 FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDC00021 IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 IDC00021 IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0

Notes:

• The PURGE parameter need not to be specified, since no expira­
tion date was .specified at DEFINE time.

• ERASE can be specified to ov.rride the data component of an AIX
or cluster to be deleted with binary zeros.

• The FILE parameter is required (not for MVS,
7.2.1 on page 88) to address the CRA volume.

also see section

• The entry types (C, D, G, I, and R) are explained on page 51.

174 VSAM PRIMER and REFERENCE

(
\

7.18.3 DELETE AN ESDS CLYSTER (AND ITS AIX'S)

DOS/VS example (input):

II JOB DELETE ESDS
II DLBL ESDS,'CUSTOMER.E',.VSAM
II EXTENT SYS010,WTVSAM
II ASSGN SYS010,DISK.VOL=WTVSAM.SHR
II EXEC IDCAMS.SIZE=AUTO

DELETE CUSTOMER.E

1&

DOS/VS

IDC05501 ENTRY
IDC0550I ENTRY
IDC0550I ENTRY
IDC0550I ENTRY
IDC05501 ENTRY
IDC05501 ENTRY
IDC0550I ENTRY

FILE (ESDS)
CLUSTER
CAT (PRIMER.UCAT1/UCATMRPW)

example (output) :

(R) CITY.CUST.E DELETED
(G) CITY. E DELETED
(D) CITY.E.D DELETED
(I) CITY.E.I DELETED
(R) SALES.CUST.E DELETED
(G) SALESMAN.E DELETED
(D) SALESMAN.E.D DELETED

IDC05501 ENTRY (I) SALESMAN.E.I DELETED
IDC0550I ENTRY (C) CUSTOMER.E DELETED
IDC0550I ENTRY (D) CUSTOMER.E.D DELETED
IDC0001I FUNCTION COMPL., HIGHEST COND.CODE WAS 0

OS/VS example (input) :.

IIPRIMER JOB WTSC,IBM,MSGLEVEL=l
IIPRIM0452 EXEC PGM=IDCAMS #

IISTEPCAT DO DSN=PRIMER.UCAT1,DISP=SHR
IIESDS DO VOL=SER=WTVSAM,DISP=OLD,UNIT=3330
IISYSPRINT DO SYSOUT=A
IISYSIN DO *

DELETE CUSTOMER.E
FILE (ESDS)
CLUSTER
CAT (PRIMER.UCAT1/UCATMRPW)

OS/ys example (output):

IDC0550I ENTRY (R) CITY.CUST.E DELETED
IDC05S0I ENTRY (0) CITY.E.D DELETED
IDC05S0I ENTRY (I) CITY.E.I DELETED
IDC0550I ENTRY IG) CITY.E DELETED
IDC05S01 ENTRY (R) SALES.CUST.E DELETED
IDCOSSOI ENTRY (D) SALESMAN.E.D DELETED
IDC0550I ENTRY (I) SALESMAN.E.I DELETED
IDC05501 ENTRY (G) SALESMAN.E DELETED
IDCOSSOI ENTRY (0) CUSTOMER.E.D DELETED
IDCOS50I ENTRY (C) CUSTOMER.E DELETED
IDCOOOlI FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0

Notes:

• The FILE parameter is required (not for MVS,
7.2.1 on page 88) to address the CRA volume.

also see section

• The entry types (C, D, G, I, and R) are explained on page 51.

Chapter 7. Access Method Services Examples 175

7 • 18. 4 DELETE AN RRDS CLUSTER

DOS/VS example (input):

II JOB DELETE RRDS
1/ DLBL RRDS,'CUSTOMER.R'"VSAM
II EXTENT SYSOlO,WTVSAM
II ASSGM SYSOlO,DISK,VOL=WTVSAM,SHR
II EXEC IDCAMS,SIZE=AUTO

1&

DELETE CUSTOMER.R
FILE (RRDS)
CLUSTER
CAT (PRIMER.UCATI/UCATMRPW)

OS/VS example (input):

IIPRIMER JOB WTSC,IBM,MSGLEVEL=l
IIPRIM0462 EXEC PGM=IDCAMS
IISTEPCAT DO DSN=PRIMER.UCAT1,DISP=SHR
IIRRDS DO VOL=SER=WTVSAM,DISP=OLD,UNIT=3330
IISYSPRIHT DO SYSOUT=A
IISYSIH DO *

DELETE CUSTOMER.R
FILE (RRDS)
CLUSTER
CAT (PRIMER .UCATl/UCAH1RPW)

DOS/VS example (output): OS/VS example (output):

IDC0550I ENTity (C) CUSTOMER.R DELETED IoC0550I ENTRY (D) CUSTOMER.R.o DELETED
IoC0550I ENTRY (D) CUSTOMER.R.o DELETED IDC0550I ENTRY (C) CUSTOMER.R DELETED
IoCOOOlI FUNCTION COMPL., HIGHEST COND.CODE WAS 0 IDCOOOII FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 IDC00021 IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0

Notes:

• The FILE parameter is required (not for MVS.
7.2.1 on page 88) to address the CRA volume.

also see section

• The entry types (C and D) are explained on page 51.

176 VSAM PRIMER and REFERENCE

\

7.18.5 DELETE SPACE

DOS/VS example (input):

II JOB DELETE SPACE
II DLBL SPACE,'VSAM.SPACE'"VSAM
II EXTENT SYSOIO,WTVSAM",114,1900
II ASSGN SYSOIO,DISK,VOL=WTVSAM,SHR
II EXEC IDCAMS,SIZE=AUTO

1&

DELETE (WTVSAH) SPACE
FILE (SPACE)
CAT (PRIHER.UCATI/UCATMRPW)

DOS/VS example (output):

IDCOSSSI DELETE OF SPACE DID NOT CAUSE WTVSAH
TO BE DELETED

OS/VS example (input):

IIPRIHER JOB WTSC,IBH,HSGLEVEL=l
IIPRIM0472 EXEC PGH=IDCAMS
IISTEPCAT DO DSN=PRIMER.UCATl,DISP=SHR
IISPACE DO VOL=SER=WTVSAM,DISP=OLO,UNIT=3330
IISYSPRINT DO SYSOUT=A
IISYSIN DO *

DELETE (WTVSAM) SPACE
FILE (SPACE)
CAT (PRIMER.UCATl/UCATMRPW)

OS/VS example (output):

IDCOSSSI DELETE OF SPACE DID NOT CAUSE WTVSAM
TO BE DELETED

IDCOOOII FUNCTION COHPL., HIGHEST COND.CODE WAS 0 IDCOOOII FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0 IDC0002I IDCAHS PRoe. COMPL. MAX. COND.CODE WAS 0

Notes:

• '(WTVSAM) SPACE' indicates that all the VSAM spaces on volume
WTVSAM will be deleted provided they are empty. If nonempty
VSAM data spaces should be scratched from the VTOC and VSAM
volume ownership should be given up, the FORCE parameter may be
specified. FORCE cannot be specified, if the volume contains a
VSAM catalog.

• The FILE parameter is required (not for MVS, also see section
7.2.1 on page 88) to address the CRA volume and to mount the
volume (also for nonrecoverable catalogs) to change the VTOC
(delete F1-DSCBs describing the VSAM data spaces).

• The message IDC0555I means, that some VSAM space is still
allocated on the volume WTVSAM, i.e., the catalog itself.

Chapter 7. Access Method Services Examples 177

7.18.6 DELETE USER CATALOG

DOS/VS example (input):

II JOB DELETE UCAT
II DLBL 1JSYSUC,'PR1MER.UCAT1'"VSAM
II EXTENT SYSOIO,WTVSAM
II ASSGN SYSOIO,D1SK,VOL=WTVSAM,SHR
II EXEC 1DCAMS,S1ZE=AUTO

DELETE (PRIMER.UCATI/UCATMRPW)-
UCAT

1&

DOS/VS example (output):

IDC05501 ENTRY (U) PRIMER.UCATI DELETED

OS/VS example (input):

IIPR1MER JOB WTSC,IBM,MSGLEVEL=l
IIPR1M0482 EXEC PGM=1DCAMS
IISTEPCAT DO DSN=PRIMER.UCAT1,DISP=OLD
IISYSPRINT DO SYSOUT=A
IISYSIN DO *

DELETE (PRINER.UCATI/UCATNRPW) -
UCAT
FORCE

OS/VS example (output):

IDC0550I EtHRY (u) PRIMER.UCATl DELETED
IDCOOOI1 FUNCTION COMPL., HIGHEST COND .CODE WAS 0 1DCOOOlI FUNCTION COMPL., HIGHEST COND .CODE WAS 0

IDC00021 1DCAMS PROC. COMPL. MAX. COND.CODE WAS 0 1DC00021 1DCAMS PROC. COMPL. MAX. COND.CODE WAS 0

Notes:

• A user catalog can only be deleted if it is empty and is not in
use by any other partition/region (in OS/VS the FORCE parameter
can be specified to delete a non-empty catalog provided it is
not opened by any other partition/region).

• The master catalog connector entry pointing to that user
catalog is also deleted.

• The entry type 'u' specifies a user catalog entry. All catalog
entry types are explained on page 51.

oS/VS note:

• The FORCE parameter is not needed since the catalog is empty.

DOS/VS .notes:

• The user catalog to be deleted must be the current 'job
catalog'. This is indicated by the DLBL/EXTENT/ASSGN state­
ments with the filename=IJSYSUC and file-ID=PRIMER.UCAT1.

• The FORCE parameter is not allowed for catalogs and is not
needed since'the catalog is empty.

178 VSAM PRIMER,and REFERENCE

7.19 VOLUME CLEANUP

7.19.1 VOLUME CLEANUP DOS/VS (UTILITY IKRVDU)

A VSAM service aid has been provided to assist the system program­
mer in maintaining the VTOC and VOL1 labels on DASD devices.

This aid is described together with other VSAM aids in the DOS/VS
HANDBOOK part 2 (SY33-8572) chapter 3 section SERVICE AIDS or in
the DOS/VS VSAM LOGIC (SY33-8562).

It should be used with great caution since it is possible to modify
and even scratch all or part of the DASD VTOC.

All VSAM aids can be installed by executing the following job

II JOB CATAL IKQVEDA IKQVDU $$BCVS04
II OPTION CATAL

INCLUDE IKQCLNlK
II EXEC LNKEDT
1&

To execute IKRVDU, the following job should be executed:

II JOB IKQVDU
II ASSGN SYSOOO,DISK,VOL=WTVSAM
II EXEC IKQVDU,SIZE=AUTO

The next page contains an example of executing IKRYQQ.

Chapter 7. Access Method Services Examples 179

The following is an example of executing IKQVDU using the system
typew:r::ite:r:::

?

SPECIFY FUNCTION OR
REPLY'?' FOR OPTIONS
READY

TO SET THE VOLUME OWNERSHIP FLAG REPLY 'SET OWNERSHIP'
TO SET THE CRA POINTER REPLY 'SET OWNERSHIP'
TO RESET THE VOLUME OWNERSHIP FLAG AND CRA POINTER REPLY 'RESET OWNERSHIP' OR 'RESET CRA'
TO SET THE SECURITY FLAG IN A Fl DSCB REPLY 'SET SECURITY'
TO RESET THE SECURITY FLAG IN A Fl DSCB REPLY 'RESET SECURITY'
TO REMOVE A DSCB FROM THE VTOC REPLY 'SCRATCH'
TO RENAME A DSCB REPLY 'RENAME'
TO ALLOCATE A DSCB REPLY 'ALLOCATE'
TO REINITIATE PROCESSING REPLY 'RESTART'
TO ALTER OR DISPLAY A DASD VOLl LABEL
REPLY 'CLIP LABEL=SER=N •• N' OR 'CLIP LABEL=DISPLAY'
TO TERMINATE PROCESSING REPLY 'END'
READY

SCRATCH DSN
ENTER DSN

Z9999994.VSAMDSPC.T8B8486E.T3293420
SCRATCH SECURITY PROTECTED CATALOG?
REPLY YESINO

YES
READY

SCRATCH DSN
ENTER DSN

Z9999992.VSAMDSPC.T8B84870.T54A8380

Z9999994.VSAMDSPC.T8B8486E.T3293420

SCRATCH SECURITY PROTECTED DATA SPACE? Z9999992.VSAMDSPC.T8B84870.T54A8380
REPLY YESINO

YES
READY

RESET OWNERSHIP
VOLUME OWNERSHIP FLAG AND CRA POINTER RESET
READY

END

Explanation of ente:r::ed commands (sta:r::t in column 1):

? = all functions of IKQVDU a:r::e to be listed

SCRATCH DSN = a data set (in this case a VSAM catalog and
a VSAM space) is to be sc:r::atched.

Z9999994. = the (VTOC) data set name of the VSAM catalog

Z999999Z. = the (VTOC) data set name of the VSAM space

RESET OWNERSHIP = :r::emove VSAM owne:r::ship afte:r:: sc:r::atching all VSAM
data sets

END = te:r::minate utility

180 VSAM PRIMER and REFERENCE

7.19.2 VOLUME CLEANUP OS/VS (1/2) (ALTER REMOYEVOLUMES)

This step is only necessary, if the volume to contain the user
catalog or any VSAM object (as first VSAM object on that volume) is
owned by a unknown or inaccessible VSAM catalog. If there are
problems in defining a VSAM user catalog, or a VSAM data space on a
volume without a catalog, this step can be executed to delete all
VSAM information from a disk, without accessing any VSAM catalog.

Attention:

This function destroYs VSAM catalogs/data sets on that volume.

The VSAM master catalog name and its master password (if any) must
be supplied as data set name. If the master catalog is not known,
a LISTCAT command without any parameter should be issued. If,
however the VSAM master catalog is password protected, this pass­
word will not be printed on the LISTCAT output.

IIPRIMER JOB WTSC,IBM,MSGLEVEL=l
IIPRIM0492 EXEC PGM=IDCAMS
IIWTVSAM DO VOL=SER=WTVSAM,DISP=OLD,UNIT=3330
IISYSPRINT DO SYSOUT=A
IISYSIN DO *

REMOVEVOLUMES(WTVSAH)
MASTERPW(MCATMRPW)
FILE(WTVSAM)

Output of Access Method Services:

IDC0526I ALTERED ALLOC. STAT. FOR VOLUME WTVSAM IS 0
IDC0531I ENTRY PRIMER.MCAT ALTERED
IDCOOOII FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDC0002I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0

Chapter 7. Access Method Services Examples 181

7.19.3 VOLUME CLEANUP OS/YS (2/2) (EXPORT DISCONNECT)

If a use~ catalog. still cataloged in the VSAM maste~ catalog, was
on the old volume~ this use~ catalog ent~y must be ~emoved f~om the
maste~ catalog with the following job.

If the use~ catalog is still not cataloged in the maste~ catalog,
the. use~ catalog can nQW be defined (see p~evious section 7.4 ori
page 102).

IIPRIMER JOB WTSC,IBM,MSGLEVEL=l
IIPRIM0374 EXEC PGM=IDCAMS
I/SYSPRINT DO SYSOUT=A
//SYSIN DO *

EXPORT PRIMER.UCAT1/uCATMRPW
DISCONNECT

• Output of Access Method Se~vices:

IDC0001I ·FUNCTION COMPL., HIGHEST COND.CODE WAS 0

IDCOOO2I IDCAMS PROC. COMPL. MAX. COND.CODE WAS 0

182 VSAM PRIMER and REFERENCE

7.20 DEFINE NONVSAM (OS/VS)

//PRIMER JOB WTSC,IBM,MSGLEVEL=l
//PRIM0582 EXEC PGM=IDCAMS
//STEPCAT DO OSN=PRIMER.UCAT2,DISP=SHR
//SYSPRINT 00 SYSOUT=A
//SYSIN DO *

DEFINE NONVSAM
(HAME(LOAOKSDS)
OEVT(3330)
VOLIWTVS1R))
CAT (PRIMER.UCAT2/UCATMRPW)

• output of Access Method Se~vices:

IOC0001I FUNCTION COMPL., HIGHEST CONO.CODE WAS 0

IOC0002I IOCAMS PROC. COMPL. MAX. CONO.COOE WAS 0

Note: This object was defined in VSAM catalog PRIMER.UCAT2. The
definition of this catalog is not included in this manual.

~ DEFINE ALIAS (MVS)

//PRIMER JOB WTSC,IBM,MSGLEVEL=l
//PRIM0592 EXEC PGM=IDCAMS
//STEPCAT DO OSN=PRIMER.UCAT2.0ISP=SHR
//SYSPRINT 00 SYSOUT=A
//SYSIN DO *

DEFINE ALIAS
(NAME(LOAD)
RELATE (LOAOKSOS)
CAT (PRIMER.UCAT2/UCATMRPW)

• Output of Access Method Se~vices:

IOC0001I FUNCTION COMPL., HIGHEST CONO.COOE WAS 0

IOC0002I IOCAMS PROC. COMPL. MAX. CONO.CODE WAS 0

Note: This object was defined in VSAM catalog PRIMER.UCAT2. The
definition of this catalog is not included in this manual.

Chapte~ 7. Access Method Se~vices Examples 183

(
184 VSAM PRIMER and REFERENCE

~ MISCELLANEOUS

~ PERFORMANCE

8.1.1 CHOOSING THE DATA CI-SIZE

• Space utilization

A given logical ~eco~d size may fit some CI sizes bette~ than
othe~s. Gene~ally, la~ge CI sizes p~ovide bette~ fits. Also
some CI sizes fit a t~ack of a given device bette~ than othe~E-.
Fo~ example, on a IBM 33~0 t~ack a 512 byte CI yields a poten­
tial 61~~ bytes (12 CIs), which is 67~ of usable space p~£
t~ack (see section 8.2) whe~eas a ~096 byte CI yields C192
bytes (2 CIs) of data on a IBM 33~0 t~ack, which is 9~% of
usable space. Assuming a 80 byte ~eco~d; in one case the~e
would be 72 ~eco~ds pe~ t~ack and in the othe~ case the~e would
be 102 ~eco~ds pe~ t~ack.

• Di~ect p~ocessing

If di~ect p~ocessing is the p~eQominant manne~ of accessing the
data, then a choice of a small data CI is p~efe~able. In
gene~al, select the smallest data CI that yields a ~easonable
space utilization. No~mally 102~ 0% 20~8 byte CIs a~e good,
but on a device with la~ge cylinde~ and t~ack capacities like
the IBM 3350 device, the index CI-size will be ~ K when using
1 K data CIs (see page 198).

• Sequential p~ocessing

If the p~ocessing is p~edominantly sequential. even la~ge~ data
CIs may be a good choice.

• Data CI size selection:

Figu~e 7 ~ep~esents a summa~y of gene~ally applicable choices.
The~e a~e conditions whe~e the next smalle~ o~ next la~ge~ CI
than is ~ecommended is actually a bette~ choice based upon
space utilization, index CI size conside~ations o~ CPU sto~age
capabilities.

Chapte~ 8. Miscellaneous 185

"

"

Accessing patte:tn Condition or device Recommended
'data ,CI si2e

3340 1024 '

Di:tect 2314 1024 or 2048

3330. 3350 4096
.'

2314. 3330 4096 o:t 6144

Sequential 3340 lf096 o:t 8192

3350 4096. 6144 o:t 8192

<2 reco:tds :tefe:t- Choose CI si2e as
Skip sequential ence-d pe:t t:tack fo:t Di:tect access

othe:twise 4096 "

Figu:te 42. VSAM data CI si2e :tec~~men~ati6ns

8.1.2 CHOOSING THE INDEX CI SIZE (KSDS DATA SETS)

If no index CI value is def{ned fo:t a KSDS data set (which t~
suggested) VSAM chooses the minimumindexCI based on the calcula­
tion as explained in section 8.3. The VSAM chosen index CI-si2e
may be checked using the LISTCAT command (the fields az:e explained
on page 158).

This si2e can be inc:teased by defining an indexCI up to 4096.
This definition may help to h~ve fewe:t inde~ levels. as the highest
level index CI can hold a maximum of about 502 ent:ties (CI si2e =
4096).

Using the index fo:tmula desc:tibed ih section 8.7 on page 206) to
calculate the CI si2e fo:t502 ent:ties would :tesult in 4092 bytes.
A data set. which is smaller than 502 cylinde:ts (assumed 1 CA = 1
cyl). has then only two index levels (sequence set + 1 index-set
CI). The disadvantage howeve:t. is the huge amount of buffez: space
needed t,o hold the index CIs (fo:t buffe:ts see section 8. 1 .5 on page
190). Page 195 contairt~ a table with the ave:tage numbe:tof entz:ies
£o:t the 4 index CI si2es.

The si2e of an index CI also affects the :teplication facto:t (when
REPLICATION o:t IMBED is used) and thus affects pe:t£o:tmance.

186 VSAM PRIMER and REFERENCE

(
I
\

(

\

(

Notes:

If you specify an index CI size which is too small to hold all
necessa~y ent~ies fo~ all CIs of one CA, the CA's a~e neve~ filled
to thei~ maximum capacity and no message is issued by VSAM to
indicate this condition. Then it is bette~ to let VSAM choose the
index CI size. Afte~ DEFINE, a LISTCAT command can be issued and
the ent~ies be checked to ~edefine the cluste~ with a diffe~ent
data CA size if the index ~eco~d is too big.

If an index CI size is specified in a DEFINE command this
checked based on the specified/default data CA size, and
ove~~idden without notice.

8.1.3 DATA SET SPACE ALLOCATION

8.1.3.1 SMALL DATA SETS

size is
may be

Fo~ data sets less than one cylinde~ in size it is mo~e advanta­
geous fo~space utilisation conside~ations (but not fo~ pe~fo~­

mance) to specify the maximum numbe~ of t~acks ~equi~ed in the
p~ima~y allocation of the data component, one t~ack fo~ the non-im­
bedded sequence set index, and no seconda~y definition fo~ eithe~
data o~ index. The allocations fo~ this data set should be set so
that only 1 index ~eco~d is allocated. This is possible if only
one CA is allocated fo~ the data component (see also next section).

8.1.3.2 MULTIPLE CYLINDER DATA SETS (NOT MULTIVOLUME)

It is usually best to calculate the numbe~ of cylinde~s needed fo~
data in a newly c~eated data set and specify this amount in cyljL­
ders for the primary allocation of the data component (a calcu:~­
tion example is included in section 8.3 on page 197).

Make the seconda~y allocation equal or g~eate~ than one cylinder
but less than the p~ima~y allocation.

VSAM calculates the CA size based on p~imary and seconda~y alloca­
tions.

• If p~ima~y o~ seconda~y allocation is smaller than one cylin­
de~, the smalle~ value (~ounded up to full t~acks in case of
RECORDS) is used as CA size.

• If p~ima~y and seconda~y allocation is la~ge~ than one cylin­
de~, the CA size is one cylinde~ (maximum CA size).

Chapter 8. Miscellaneous 187

8.1.3.3 MULTIVOLUME DATA SETS

When defining multivolume data sets, the following %ules must be
conside%ed:

1. Fo% suballocatable multivolume data sets a VSAM data space must
exist on all volumes specified in the VOLUMES pa%amete%.

2. Fo% unique multivolume data sets all volumes which a%e specified
in the VOLUMES pa%amete% (except the fi%st volume in the list),
must already be owned by the catalog, in which the multivolume
data set is to be cataloged.

3. The primary 0% seconda%y allocation value must not exceed the
maximum capacity of one volume.

Explanation of the rules:

Rule 1:

• Suballocated data sets

Befo%e defining the multivolume data set, a DEFINE SPACE
command must have been issued for all volumes defined in the
VOLUMES paramete% of the multivolume data set. When there
is not enough space in a VSAM data space fo% a secondary
allocation. the data space may be extended (not in DOS/VS)
(see section 8.1.3.4).

• UNIQUE data sets

Check if all volumes of the VOLUMES paramete% (except the
first) belong to the catalog. in which the data set is to be
cataloged (for DOS/VS see description and notes in section
2.9 on page 40). If not. issue a DEFINE SPACE CANDIDATE
command for all volumes not belonging to that catalog (in
DOS/VS DEFINE SPACE CANDIDATE is not allowed when using a
recove%able catalog). After correct operation, 'define the
multivolume data set.

Note: All volumes specified in the DEFINE SPACE CANDIDATE
command must be mounted. since the VSAM ownership bit in tIle
F4-DSCB is set ON.

In OS/VS systems when using recoverable catalogs also a
F1-DSCB describing the one cylinder CRA is written into the
VTOC of each volume when the command is executed.

188 VSAM PRIMER and REFERENCE

{
\

Rule 2:

VSAM allocates the primary space on the first volume at
DEFINE-time for non-Keyrange data sets. When loading the
data set and the primary space is filled, the secondary
amount of space is allocated on the first volume as long as
there is enough space available. If there is no more space
for secondary allocations on the first volume, VSAM allo­
cates primary space on the second volume. Then secondary
space is allocated on volume 2, etc.

Generally, VSAM always allocates primary space on a new
volume first and continues with secondary allocations. This
is important for the last volume. When, for example the
space allocation was CYL (200,50), then 200 cylinders are
allocated, even when only 20 cylinders are needed. In this
case, the specification CYL (50,200) would fit better.

8.1.3.4 DATA SPACE ALLOCATION AND EXTENSION

• DOS/VS

In DOS/VS the location and size of a VSAM data space or of a
UNIQUE data set must be specified in an EXTENT statement.

DOS/VS does not allow secondary space allocations for VSAM data
spaces or UNIQUE data sets. Therefore the use of UNIQUE data
set should be limited to specific applications.

• VS1, SVS and MVS

The location of a VSAM data space or of a UNIQUE data set
cannot be specified with OS/VS JCL. The size is specified in
the DEFINE SPACE or DEFINE CLUSTER ... UNIQUE command.

When VSAM recognizes that a data space or a UNIQUE data set
must be allocated or extended (secondary allocation), OS/DADSM
is automatically called to allocate the requested space. A
data space can only be extended on one volume. When a multivo­
lume UNIQUE data set has to be extended to the next volume
(when there is not enough space on the first one) OS/DADSM will
perform the allocation.

When VSAM tries to allocate secondary space for a suballocated
data set and there is not enough room in the VSAM data space,
VSAM, and in sequence OS/DADSM allocates an amount of space
either in data space secondary allocation size, or, if this is
not enough, in the requested data set secondary allocation
size. A data space, however can only allocate secondary
extents if a secondary value was specified in the DEFINE SPACE
command.

Chapter 8. Miscellaneous 189

8.1.q INDEX PERFORMANCE CONSIDERATIONS

To improve performance during processing, each sequence set index
record may be stored with the CA it points to (by using the defini­
tion parameter IMBED, see section 7.2.3 on page 89). This general­
ly eliminates disk-arm movement because it is not necessary to do
separate seeks to locate both the sequence index record and the
data record (if the arm has not been moved by other activities
between index and data reference).

When the imbedded sequence set record is then duplicated on the
first track of its CA as many times as it will fit to reduce the
rotational delay. A data CI can never reside on the same physical
track as the index GI. Most of the index (index sequence set
records and all higher level index records) can reside in virtual
storage if enough buffer storage is specified by the user, but VSAM
does not preload index buffer(s). Depending on the type of access
index buffers are assigned and used differently (for further
information see section 8.1.5 starting on page 190).

8.1.5 VSAM BUFFERS (NON-SHARED RESOURCES) AND STRINGS

Non-shared resources is the standard usage of VSAM buffers for one
data set only.

VSAM b~ffers are used by VSAM to read/write CIs from/to DASD.

To increase performance, there are parameters (three for KSDS and
two for ESDS and RRDS), to override the VSAM default values:

• BUFNI - number of index buffers (default 1) (KSDS only)

• BUFND number of data buffers (default 2
(DOS/VS read-only = 1»

• BUFSP - amount of virtual storage to be reserved for VSAM
buffers, when opening the data set (default = 2 data buffer + 1
index buffer)

BUFND and BUFNI are ACB parameters (see figures q7, 48 on page 212,
215) and in OS/VS systems also JCL parameters (see description
starting on page 213 on how to specify these parameter in the JCL
statement). BUFSP is a DEFINE, ACB and JCL parameter (the ACB
macro instruction is described in section 8.11.1.1 on page 217).
Any combination of these parameters can be used.

If a parameter is specified in JCL, this value overrides any
previous specification of this parameter (ACB or DEFINE), provided
it is a larger value (DOS/VS). In OS/VS the JCL overrides the ICB
and catalog values even if it is smaller.

If one of the parameters is specified in the ACB macro instruction
(in the user program) this value overrides the default values, or
in case of BUFSP the DEFINE value, even if it is a smaller valu~. (

190 VSAM PRIMER and REFERENCE

• Data buffe~s (BUFND).

To calculate the number of data buffers, the number of stri~g~
used must be determined. A string is a ~equest to a VSAM data
set requiring data set positioning. VSAM stores e.g. for a
sequential access the information about which record has been
accessed. If different concurrent accesses to the same data
set are necessary multiple strings are used. For multiple
string buffers see also page 194.

It is possible to work with multiple strings (ACB parameter
STRNO=x). Multiple strings allow, for example, access to the
data set directly with one string and sequentially with the
second string. For each string there must be at least one
buffer.

OS/VS:
Usually the user defines the amount of strings he intends to
use in his program (ACB STRNO=x) (see also section 8.11.4 on
page 223 and figures 47, 48 on pages 212,215). But when all
strings are active and there is another request waiting, a new
string is built dynamically. Dynamic string addition does not
apply to shared resources as used in CICS and IMS. The string
is not erased, when it is not used any more, but it can be
reused for the next request.

The minimum Humber of data buffers is two (1 per string + 1 for
splits). It is very important to know that the OS/VS user can
use only one of these two buffers. One buffer is always
reserved by VSAM for splits. If 4 buffers should be used, 5
must be specified.

DOS/VS:
If in DOS/VS BUFND=2 is specified, the user has access to 2
buffers (and not just to 1 as in OS/VS).

• Index buffers (BUFNI).

The minimum number of index buffers is one. As described
later, it may be advisable to have more index buffers for
extensive index ope~ations (diract). If multiple strings are
used, the minimum needed is one index buffer per string.

• Buffer space (BUFSP).

This value specifies the amount of virtual storage, which must
be available when opening the data set. If more buffer space
is defined than used for default buffe~s (2 (DOS/VS = 1 if
read-only) data and 1 index buffer) or specified by BUFND plus
BUFNI, VSAM allocates more buffers in this area as determined
by its algorithms.

Chapter 8. Miscellaneous 191

Note that the allocation of buffe~s by VSAM is
access mode indicated in the ACB at "OPEN"
~esult in inefficient buffe~ usage if the ACB
fo~m (sequential o~ di~ect) but the majo~ity
in the othe~).

8.1.5.1 BUFFERS FOR DIRECT ACCESS

based upon the
time; this may

is opened in one
of p~ocessing is

Gene~ally, the mo~e index buffe~s. thebette~ pe~fo~mance that can
be obtained. Data buffe~s are not important, because only one is
used for each access.

As there is always a top down search through the index, at least
two index buffers should be specified. to hold the highest index CI
in the buffer.

If more than one index buffer is specified, the additional buffers
can hold index set CIs but only one index buffe~ is used for the
sequence set per st~ing.

If too few index buffers are specified, the result may be poor
performance, as extensive EXCPs may have to be issued. If theEe
a~e th~ee index levels and only one index buffe~, th~ee index EXCPs
a~e necessa~y to find the pointe~ to the co~~ect data CI.

Suggested number of buffe~s:

BUFNI: minimum = no. of index levels + 1 * STRNO (default = 1)
maximum = (no. of ~ecords (CI's) in index set + 1) * STRNO

BUFND: default = 2 (STRNO value + 1 fo~ splits)
(DOS/VS ~ead-only = 1)

The default BUFND is STRNO + 1, in tu~n STRNO's default is 1.

8.1.5.2 BUFFERS FOR SKIP SEQUENTIAL ~cctss

The~e is no good way to p~edict the numbe~ of buffe~s ~equi~ed,

when using skip sequential access. as only 1 data buffe~ is used
(as fo~ direct p~ocessing) and only 1 index buffe~ is used fo~ the
sequence set level. The suggestion below is a sta~ting suggestion
and should be modified by experience.

The~eis no look ahead for index sequence set CIs, so the~e may be
poo~ pe~fo~mance if the keys to access a~e not adjacent.

Suggested numbe~ of buffers:

BUFNI
BUFND

default = 1
default = 2 (DOS/VS ~ead-only = 1)

If the keys to be processed a~e grouped, that is concent~ated on
one o~ mo~e places in the data set, the app~oach fo~ sequential
access can be followed (see next section).

1~2 VSAM PRIMER and REFERENCE

\

\

8.1.5.3 BUFFERS FOR SEQUENTIAL ACCESS

Generally, the more data buffers, the better performance that can
be obtained.

Index Buffers DOS/VS:

It may be sometimes advantageous to have 2 index buffers, especial­
ly if IMBED is not used. DOS/VS VSAM will read ahead on the next
sequence set if 2 buffers are available"

Index buffers OS/VS:

For keyed sequential access in a KSDS only one index buffer (for
the sequence set record) is used.

Data buffers:

If multiple data buffers are specified. VSAM uses a so cal~e~

read-ahead function. The next data control intervals are read in
before they are needed.

The following figure demonstrates how VSAM decreases the number of
EXCPs when reading 1000 CIs with a different number of data buffers
(remember in OS/VS 1 data buffer is not used). BUrNI = 1
(default).

DOS/VS OS/VS
/

1\

\
1\

/

BUFND number of I/O overlapped BUFND number of
EXCPs with processing EXCPs

1 1000 No 2 1000
2 500 No 3 500
3 334 No 4 334
4 500 Yes 5 334
5 334 Yes 6 225
6 334 Yes 7 225
7 250 Yes 8 200

The difference between the number of EXCPs (or I/O operations) for
DOS/VS and OS/VS is because of different way of buffer usage.

Suggested number of buffers:

BUFNI = 1 (or STRNO (number of strings»
BUFND = >4 (for multiple strings see section 8.1.5.4)

\

Chapter 8. Miscellaneous 193

8.1.5.4 BUFFERS FOR MULTIPLE STRINGS

• Index buffer

Index buffezs with index set records (CIs) are used for all
strings. Index Sequence Set records are handled as follows:

records are read and used separately for each string, even
when another string already read it into a buffer.

DOS/VS: Records are reread only if the needed CI is not
already in a buffer (except with SHAREOPTION 4).

• Direct pzocessing (data buffer)

As described on page 191 there must be at least
string plus one buffer for splits. If STRNO=2
three buffers are allocated (VSAM default).

• Sequential processing (data buffer)

one buffer per
is specified,

If multiple strings are used for sequential processing. the
following must be considered:

DOS/VS:

There is no buffer reserved for splits

There is no buffer allocated to each string, but rathe~
buffers are attached to the last string. In DOS/VS a stz~r~

doing sequential processing will repeatedly try to get a
surplus buffer from strings not actively doing sequential
processing.

OS/VS:

one buffer is used for VSAM splits

one buffer is automatically allocated per string

The first sequential request is allocated all remaining
buffers. These buffers are kept for this string until an
ENDREQ (end request) macro (see description in section 8.11
starting on page 217 is issued. even when they are not
used. A second string in this case has no read-ahead
capability as there is no extra free buffer available.

194 VSAM PRIMER and REFERENCE

8.2 VSAM SIZES FOR DOS/VS AND OS/VS (CI-, CA-SIZES ETC.)

• Catalog

Minimum size on 2305, 3330, 3350
Minimum size on 2314, 3340
Maximum numbe~ of extents (data component)

• Cont~ol a~ea (CA)

Minimum size 1 t~ack max.
(so the actual size is device dependent)

• Cont~ol inte~val (CI)

Data component (minimum 512 bytes) max.
(in inc~ements of 512 bytes up to 8 K.
then in inc:r:ements of 2 K up to maximum)
Index component (minimum 512 bytes) max.
(only sizes 512, 1024, 2048, 4096)

• CRA (~ecove~able catalog only)

Minimum size
Maximum size

• Data set

Maximum size of a multivolume data set
(2 32 = 4 294 967 296 bytes)

Maximum numbe~ of VSAM extents
Maximum numbe~ of AIX pe~ base cluste~
Maximum no. extents/volume (UNIQUE) (OS/VS)

• Data space

Maximum size
Maximum numbe~ of extents (OS/VS)

• Index cont~ol inte~val numbe~ of ent~ies:

=
=
=

=

9 t:r:ks
15 t~ks
13

1 cyl

= 32768 bytes

= 4096 bytes

=
=

=

=
=
=

=
=

1 cyl
16 cyl

2 32 bytes

123
253

16

1 vol
16

An index cont~ol inte~val may hold the following numbe~ of
ent~ies (8 bytes/ent~y based on no~mal key comp~ession):

CI Size
512

1024
2048
4096

Numbe~ of ent~ies
58

121
248
502

Chaptex 8. Miscellaneous 195

• Key length

maximum key length = 255 bytes
used key length Keyranges max. = 64 bytes

(0-63)

• Logical record length:

Non-spanned (max. CI-size minus 7) max. = 32761 bytes
(1 RDF + 1 CIDF = 7 bytes)

Spanned
(max. 1 CA-size minus 10 :« number CI/CA)
(10 = 2 RDFs plus 1 CIDF) max. = < 1 cyl

• Physical record (block) sizes (no DEFINE-option)

•

4 sizes: 512, 1024, 2048 and (3330,3340,3350) 4096 bytes

Each control interval is automatically divided by VSAM into an
integral number of physical blocks (e.g. CI = 512 results in
physical block = 512, CI = 1536 results in physical block =
512, so 3 blocks are needed to hold one CI; CI = 6144 results
in physical block = 2048, so 3 blocks are needed (3330 and 3350
only, 3340 would be set to 1K), etc.). For further information
see also page 9.

Device characteristics

device characteristics number of physical blocks/track
device trk/cyl cyl/vol 512 1024 2048 4096

3330-1 19 404 20 1 1 6 3
3330-11 19 808 20 1 1 6 3
3340-35 12 348 12 7 :« 2
3340-70 1 2 696 12 7 :« 2
3350 30 555 27 15 8 4

:« 2K is not used for 3340 (would result in only 75% track
utilization)

Example: On a 3340, 2 physical blocks with a length of 4096 can
be stored on one track, but only 7 physical blo~ks
with each 1024 bytes.

196 VSAM PRIMER and REFERENCE

8.3 HOW TO CALCULATE A VSAM KSDS DATA SET

This example shows how to calculate the following values foz the
KSDS CUSTOMER.K (see section 7.6.1 on page 106).

• Size of da~a component

• Size of index component

• Minimum size of index contzolintezval

The following is assumed foz the calculations:

Device type is = 3330

Contzol azea size (CA) = 1 cyl

Data contzol intezval size (CI) = 1024 bytes

Physical blocksize (calculated by VSAM) = 1024 bytes

Recozd size = 200 bytes

Key length = 5 bytes

Fzee space definition contzol intezval = 20 Yo

Fzee space definition contzol azea = 10 Yo

Numbez of zecozds to be loaded = 3000

Index options defined = IMBED/
REPLICATE

The calculations a%e shown on the next page.

Chaptez 8. Miscellaneous 197

Based on the previous specifications the following can be calculat­
ed (see also notes on the following page):

• Data component:

(1) number maximum records/CI «1024-10)/200) =
min.free bytes (20% * CIsize)(see page 88) =
number loaded records (1024-10-204) / 200 =

(2) number physical blocks/track =
(3) number max. CI/CA (11*18) =

(1 cyl=19 trks - 1 track for index seq.set)
number loaded CI/CA (198-10% freespace) =
number loaded records/cyl (4*178) =

5
204

4
1 1

198

178
712

Total space for data component (3000/712) (rounded)

• Index component

sequence set: (included in data component)

index set:

calculation for one sequence set index entry
(1 entry per data CI):

(4)
(5)
(6)

key compressed
control bytes
pointer to a data CI in a CA

= 3
= 2
=

= 5 cyl

= 0 trks

total bytes per seq. set or index set entry = 6

(7) number index entr. per index CI (data CI/CA)=
length index entr. per index CI (198*6) =
control fields/index CI(header,RDF,CIDF) =
total (minimum) length/index CI bytes =

198
1188

31
1219

Minimum index CI-size (see CI sizes page 195) = 2048

(8) number of different index CI records in
sequence set (included in data component) =
number of index CIs index set =
space for index set (1 CI/track (REPLICATE»=

5
1
1 trk

Total space for index component = 1 trk

Notes:

(1) The value (1024-10) is CI length minus 10 bytes for 2
RDFs and 1 CIDF for fixed length records. For variable
length records 19 bytes (for 5 RDFs and 1 CIDF) are
needed, but calculations are not affected.

198 VSAM PRIMER and REFERENCE

(2) On IBM 3330. eleven physical blocks with 1024 bytes can
be sto~ed on one t~ack (see physical block sizes on page
196) .

(3) The value (11*18) is the numbe~ of physical blocks pe%
t~ack multiplied by the numbe~ of data t~acks pe~ cylin­
de~ (19 minus. 1 fo~ the sequence set cont~ol inte~v~l

(IMBED».

(4) Fo~ index calculations 3 bytes can be used as an ave~age
comp~essed key length. This ave~age value is almost
independent of the actual key length and is also valid
fo~ longe~ keys. Only in ve%y unusual key st~uctu~es,
this value may be highe~.

As a guidance if keys a~e comp~essed well, smalle~ keys
(5-15 bytes) can comp~ess to 3-5 bytes and longe~. Keys
(20-30 bytes) can comp~ess to 6-7 bytes.

Index key comp~ession is explained in section 8.6 on page
203. The fo~mula fo~ the index cont~ol inte~val size is
explained in section 8.7 on page 206.

(5) The cont~ol fields have a fixed length of 2 bytes (used
fo~ the key comp~ession).

(6) The length of the pointe~ (a cont~ol inte~val numbe~) is
usually 1 byte fo~ the sequence set and 2 bytes fo~ all
highe~ index levels (the index set).

(7) Fo~ calculation of the minimum index CI size, the maximum
numbe~ of ent~ies pe~ CA must be used.

(8) On IBM 3330 six physical blocks with the length of 2048
bytes can be sto~ed on one t~ack (see physical block
sizes on page 196). See also index CI size fo~mula

explained on page 206.

One index CI of the sequence set add~esses one CA. Since
in ou~ case 1 CA = 1 cylinde~ and the size of the KSDS is
5 cylinde~s, 5 index CI sequence set ~eco~ds a~e

~equi~ed. They a~e imbedded. that is ~eplicated on the
fi~st t~ack of the' coz:z:esponding CA and do not occupy
space in the index component itself. Then one index set
CI would be enough to accommodate 5 entz:ies. The minimum
allocation of 1 tz:ack foz: an index CA (6 CI pez: CAl was
chosen by VSAM.

8.4 LOADING A KSDS WITH DIFFERENT FREE SPACE

As discussed in section 7.2.2 on page 88, fz:ee space to be held
fz:ee foz: latez: insez:tions can be defined in the DEFINE command.
This value can be changed with the ALTER command. The following
discussion shows an example using these two commands.

Chapte~ 8. Miscellaneous 199

Assuming a la~ge KSDS data set is to contain ~eco~ds with keys f~om
1 - 300000. It is expected to have
100000, some inse~ts in Key~ange 100001
in Key~ange 200001 - 300000.

no inse~ts in Key~ange 1-
- 200000 and heavy inse~ts

An ideal data st~uctu~e at loading time would be fo~ example:

• Key~ange 1 - 100000 no f~ee space
• Key~ange 100001 - 200000 5~ CA f~ee space
• Key~ange 200001 - 300000 5~ CI and 20~ CA f~ee space

This st~uctu~e can be built as follows:

1. DEFINE CLUSTER with FREESPACE (0 0), o~ without any FREESPACE
pa~amete~.

2. Load ~eco~ds 1 - 100000 with REPRO o~ any use~ p~og~am u~ing

sequential inse~tion technique.

3. CLOSE the data set.

4. Change the FREESPACE value of the cluste~ with the Access
Method Se~vices command 'ALTER cluste~name FREESPACE (0 5)'.

5. Load ~eco~ds 100001 - 200000 with REPRO o~ any use~ p~og~am

using sequential inse~tion technique.

6. CLOSE the data set.

7. Change the FREESPACE value of the cluste~ with the Access
Method Se~vices command 'ALTER cluste~name FREESPACE (5 20)'.

8. Load ~eco~qs 200001 - 300000 with REPRO o~ any use~ p~og~am

using sequ~ntial inse~tion technique.

As ~esult, this p~ocedu~e:

• p~events wasting space (as it would be, if e.g FREESPACE (0 10)
would be defined fo~ the whole data set)

• minimizes eI o~ CA splits (fo~ the fi~st inse~ts the~e would be
a huge numbe~ of CI o~ CA splits, if e.g. FREESPACE (0 0) would
be defined fo~ the whole data set).

NOTE: A sequential inse~tion technique must be used to load the
pa~ts of the data set to ~ese~ve the amount of FREESPACE in the
data set (see also section 8.8 on page 207, which desc~ibes this
technique).

Subsequent sequential inse~tions to any point of the data set will
p~ese~ve FREESPACE acco~ding to final value left in the catalog.

200 VSAM PRIMER and REFERENCE

(
I
\

8.5 CONTROL INTERVAL SPLIT (DIRECT INSERT)

If the %eco%d to be inserted will not fit in the control interval,
a control interval split takes place as illustrated in the follow­
ing example.

• Assume the following cont%ol a%ea contains q control intervals.
A free space value has been specified to reserve 25% of the
numbe% of CIs to be used for later insertions. This results in
one free control interval per CA (25% of q control intervals).

index
sequence
set

logical

%ecords

10

68

205

unused space

20 30 35 qO 47 lui cf

I u I "1
75 95 100 125 180 ci I

I
-..J

240 300 570 950 1200 I u I cf

f%ee control inte%val

cf = control fields (RDFs, CIDF)
fp = pointer to free CI

u = unused space

cf

Figu%e 43. Control inte%val split (1 of 2)

• Now record 70 is to be inse%ted. In this example, the second
data control inte%val is read by VSAM into a VSAM buffer. By
examining the control fields VSAM determines that there is not
enough free space available fo% this %ecord. About half of the
cont%ol inte%val is moved from this buffer to a second empty
buffe% (in OS/VS systems it is already %eserved for control
inte%val split by VSAM; in DOS/VS systems it will be allocated
when needed). Insert new %ecord into appropriate buffer. If,
as in this example, there is an empty control interval avail­
able (at the end of the cont%ol area), the second buffer is
written into this empty control interval on auxiliary storage.

Chapter 8. Miscellaneous 201

Aftez this, the physical sequence of control intervals within
the CA no longer represents the correct sequence o£ the logical
records. Therefore, the primary index is updated to reflect
this condition.

The first buffer is written back into the old control interval
on auxiliary storage (the sequence of writing buffers back is
different in DOS/VS systems).

index
sequence
set

logical

records

unused space

10 20 30 35 40

68 70 75 95 free space

205 240 300 570 950 1200

100 125 180 free space

cf = control fields (RDFs, CIDF)
u = unused space

I u I

* = entry added due to control interval split

cf

cf

** = pointer changed due to control interval split

Figure 43. Control interval split (2 of 2)

If there is no free control interval in the control area, the
record is not inserted until a control area split takes place (in
DOS/VS the CA is scanned for an 'erased' Cli if one found, it its
used; if not, then the CA split proceeds) to provide free control
intervals.

VSAM obtains a new empty control area
Then the whole control area is split
control area into virtual storage and
storage into the new control area.

202 VSAM PRIMER and REFERENCE

from the end of the data set.
by reading about half of the
writing it back to auxiliary

The minimum amount of VSAM buffe~s used fo~ the CA split is STRNO+1
(STRNO is the numbe~ of st~ings specified; see desc~iption on page
191) .

Logically coincident with w~iting the 'new' CA to aUKilia~y
sto~age, a sequence set ~eco~d is const~ucted fo~ it and w~itten,
the 'old' CA is ~ew~itten, and the sequence set fo~ the old CA is
fi~st adjusted and then ~ew~itten.

Afte~ the cont~ol a~ea split, the cont~ol inte~val split takes
place and the ~eco~d is inse~ted.

8.6 KEY COMPRESSION

As desc~ibed in section 2.4 on page 13, 18 the indeK sequence set
contains an ent~y fo~ each data CI of a KSDS.

Each ent~y consists of the highest key in that CI and an RBA
offset. To sho~ten the size of the indeK ent~y, the keys a~e

comp~essed by VSAM ~outines. This is called key comp~es§ion.

The key comp~ession uses f~ont key comp~ession and ~ea~ key
comp~ession.

The following eKample shows how key comp~ession wo~ks.

Assuming the following CIs eKist in a cluste~:

CI 1 10001 10002 10003 10009

CI 2 10052 10060 10070 10080

CI 3 10222 10250 10300 10333

CI 4 14021 14023 14024 14028

Chapte~ 8. Miscellaneous 293

For front key compression the highest key of the first CI is
compared and all identical values starting from left are
compressed. Using the previous CIs the following compression would
take place:

Full key Front compressed key

10009 10009
10080

10080 ===80
10333

10333 ==333
14028

14028 =4028

For the rear key compression the highest key of the first CI is
compared with the lowest key of the second CI, and so on. Value by
value is compressed starting from the right as long as the second
value is higher.

Full key Rear gompressed key

10009 1000-
10052

10080 100--
10222

10333 10---
14021

14028 14028

VSAM uses both types of compression. To indicate how many bytes are
compressed and how large the compressed key is, two one-byte fields
are used. The 'F' field contains the number of front key
compressed bytes. The 'L' field contains the residual key length.

204 VSAM PRIMER and REFERENCE

Combining front
their F+L fields
compression):

and rear key compression the compressed
are as follows ('=' is front and '-' is

keys and
rear ke}'

full key Full compressed key I l!

CI 10009 1000- 0 4

CI 2 10080 ===-- 3 0

CI 3 10333 ==--- 2 0

CI 4 14028 14028 0 5

VSAM reconstructs a compressed key as follows:

• Front compressed values are taken from the previous uncom­
pressed key.

• Rear compressed values are substituted by X'FF'

The previously compressed keys would then be reconstructed as
follows ('f' represents the hex value X'FF'):

Full key Full compressed key 1: l! reconstructed key

CI 10009 1000- 0 4 1000£

CI 2 10080 ===-- 3 0 100ff

CI 3 10333 ==--- 2 0 10fff

CI 4 14028 14028 0 5 14028

Based on the key compression, VSAM determines, into which CI a new
record has to be inserted. A record with the value 10088 would be
inserted into CI 2 since the value is lower than 100ff (f=X'FF').A
record with the value of 10100 would be inserted into CI 3.

Single field keys do compress well. Larger keys (20-30 bytes)
compress out to 8 or 9 bytes including control information. Smaller
keys (5-15 bytes) can compress to 3 to 5 bytes.

Chapter 8. Miscellaneous 205

8.7 INDEX CI SIZE FORMULA

The formUla used to determine the appropriate index CI size in
DOS/VS and OS/VS systems is:

8*(CIs/CA)+2«CIs/CA)**0.5)+31 .

In OS/VS systems additionally another formula (for minimum calcula­
tion) is used:

Explanations:

Formula 1:

8*(CI/CA)

2*(Keylength+2)+(3*(CI/CA»+31

= 8 bytes per CI = (3 bytes compressed key +
F + L + 3 bytes RBA displacement value; for
compressed key, F and L see section 8.6 on
page 203)

2*«CI/CA)**0.5) = calculation for the index segment entries
(2 bytes * number of entries).

31 = index control fields (24 bytes header + 3
bytes RDF + 4 bytes CIDF).

Formula 2 (OS/VS):

2*(Keylength+2) = 2 CI/CA (minimum) * uncompressed key + L +
F (for compressed key, F and L see section
8.6 on page 203)

(3*(CI/CA» = number of RBA pointer (displacement values)

31

* 3 (maximum size is 3 bytes).

= index control fields (24 bytes header + 3
bytes RDF + 4 bytes CIDF).

Note: The average number of entries per control interval is listed
on page 195.

206 VSAM PRIMER and REFERENCE

8.8 SINGLE/MASS-INSERTION

As desc~ibed in section 2.6 sta~ting on page 22 va~ious techniques
can be used to enter data into a KSDS:

• Keyed di~ect p~ocessing

• Keyed sequential p~ocessing

• Keyed skip-sequential processing

The following discussion t~ies to show the diffe~ences between
di~ect p~ocessing and sequential processing when inse~ting reco~ds
between existing ~eco~ds.

Mass inse~tion is a technique which is automatically used by VSAM
when:

• The data set is opened for output (ACB MACRF=OUT)

• Sequential inse~tion technique is used (RPL OPTCD=SEQ)

• The ~eco~ds to be inse~ted a~e so~ted in ascending sequence and

a~e to be loaded into an empty data set, o~

fit between 2 existing records, or

a~e to be loaded at the end of a data set.

This technique is, fo~ example, automatically used, when so~ted

~eco~ds a~e loaded with REPRO into an empty data set.

Mass inse~tion rese~ves defined FREESPACE and does not pe~fo~m CI­
or CA splits (only 1 CI split is executed, if ~eco~ds a~e to be
inserted between existing reco~ds). This imp~oves loading time.

As there are no CI splits (except the fi~st) this technique reduces
DASD space usage dramatically.

The following examples show the difference in space usage when
inserting adjacent records with direct insertions or with sequen­
tial inse~tion (mass insert).

Note that buffers a~e written back to disk each time after inser­
tion when using direct insertion and delayed (depending on the
amount of available buffers) when using mass insertion.

Due to space limitations only the sequence of 9 ~eco~ds to be
inserted can be shown. The inse~tion of only 9 records does not
show a g~eat enhancement (in disk space usage) of mass insertion
(with FREESPACE) ove~ di~ect inse~tion, but it is mo~e effective,
if more ~ecords are to be inserted.

Chapte~ 8. Miscellaneous 207

In the following example ~eco~ds 31' to 39 a~e to be inse~ted with
direct inse~tion technique (a search argument is supplied by the
user for each reco~d) into a VSAM data set already containing
records 10, 13, 15, and 55 (first line).

The content of the 4 CIs is ~hown after each insert.

Inse~t ~ecord 31.

\10 113 115 \31 15511 II I I II I I I I II I I II I
Insert ~~cord 32 (the CI must be split):

I 'II I I I I II I I I I I
Inse~t record 33:

II I I I I II I I I I
Insert record 34:

I I I I II I I I I I
Inse~t record 35 (the CI must be split):

I III II I J
Insert record 36:

II I I I I I
Inse~t reco~d 37:

I I I I I
Inse~t record 38 (the CI must be split):

I I
Inse~t record 39:

Result: 3 CIs were split and approximately 50% (in this example
40%) of their space wasted, because no records will be inse~ted in
the f~ee space, since adjacent ~ecords a~e already stored.

Figure 44. Insertions: Direct insertion

208 V5AM PRIMER and REFERENCE

In the following example zecozds 31 to 39 axe to be insexted with
mass sequential insextion technique into a data set alzeady
containing xecozds 10, 13, 15, and 55 (fizst line). Ko FREESPACE
value was defined foz the data set.

The content of the 4 CIs is shown aftez each insezt.

II I I I I II I I I I II I I I I I
Insezt zecozd 31:

110113115131 15511 I I I I II I I I I II I I I I I
Insezt zecozd 32 (the CI is split at the point of inseztion):

11011311513113211551 I I I II I I I I II I I I I I
Insezt zecozd 33 (a fzee CI is used, no split):

\ \ \ 11 33 \ \ \ I 1\ \ \ I I I
Insezt zecozd 34

110113115131 132 11 55 1

Insezt zecozd 35:

I II I I I I
Insezt xecozd 36:

II I I I I I
Insezt recozd37:

1.11 D
Insezt zecozd 38 (a fzee CI is used, no split):

Insezt zecozd 39:

Result: Theze is only 1 CI split at the point of inseztions. Then
the next fzee CI in the CA (oz, if necessazy the next fzee CI in
the nextfzee CAl is used foz fuzthez inseztions.

Figuze 45. Inseztions: Mass inseztion (no FREESPACE)

Chaptez 8. Miscellaneous 209

In the following example :reco:rds 31-39 a:re to be inse:rted with mass
sequential insertion technique into a data set al:ready containing
reco:rds 10,13,15, and 55. A FREESPACE value of 20% f:ree CI space
was defined fo:r the data set, which :results in orie f:ree :reco:rd pex
CI. The content of the 4 CIs is shown afte:r each inse:rt.

11111 11111 III! 11111
Inse:rt :reco:rd 31:
110113115131 155 \\ \ 1\ \ \1 I I II II I II II

Inse:rt :reco:rd 32 (CI split at point of inse:rtion):

110113115\31 132 11 55 1 I II" I I I I I! I I I I I
Inse:rt :reco:rd 33 (a new f:ree CI is used to avoid fu:rthe:r splits):

110 11 31 1 51 3 1, 13 2\\55\
Inse:rt :reco:rd 34:,

110113\1513113211551 I I I 11 331341 I I II I I I I I
Inse:rt :reco:rd 35:

I II I I I [J
Inse:rt :reco:rd 36:

II I I \ I I

Inse:rt :reco:rd 37 (a new f:ree CI is used due to FREESPACE def.):

Inse:rt :reco:rd 38:

Inse:rt :reco:rd 39:

! I

Result: The fi:rst cont:rol inte:rval is filled independent of the
FREESPACE definition, because the new reco:rds we:re inse:rted in the
middle (and not at the end) of the cont:rol inte:rval. Only fo:r
inse:rtions at the end (which is the case sta:rting with :reco:rd 33)
the amount of specifiedFREESPACE is held f:ree. The:re is only 1 CI
split at the point of inse:rtions. Then the next f:ree CI in the CA
(o:r, if necessa:ry the next £:ree CI in the next f:ree CAl is used £o:r
fu:rthe:r ins:e:rtions (1 :reco:rd is held f:ree pe:r CI).
-..:-. - - .

Figu:re 46. Inse:rtions: Mass inse:rtion (with,FREESPACE)

210 VSAM PRIMER and REFERENCE

(

~ VSAM RELATED PARAMETERS IN THE JCL

8.9.1 DOS/VS JCL PARAMETER

Since all VSAM data set related information is stored in a VSAM
catalog, the JCL pa%amete%s fo% VSAM data sets a%e diffe%ent.

// DLBL ... ,VSAM[,BUFSP=n)[,CAT=filename)

// EXTENT SYSnnn,volid[",start,# of tracks)
\ v 1\ V /

%equired for: all VSAM files SPACEs, UNIQUE data sets,
and DEFINE MCAT/UCAT

// EXEC p%og,SIZE=mK

(Not needed fo% suballocated
data sets).

NOTE: Pa%ameter in b%ackets a%e optional.

Legend:

n = number of bytes fo% buffer space. This value, if higher,
will %eplace the value indicated in the catalog 0% in
the p%ogram.

filename = name of the catalog that owns the data set. It ove%%ides
defaults which a%e the maste% 0% the cu%%ent use%
catalog (also called 'job catalog').

m = numbe% of K bytes occupied by the p%og%am. The remaining
GETVIS will be used as indicated in sections 9.2.1 and
6.1.1.

Chapter 8. Miscellaneous 211

8'.9.2 DOS/VS JCL TO VSAM MACRO RELATIONSHIP

// DLBL filename,['file-ID'),,[VSAM)[,BUFSP=n)[,CAT=name]
'----v---I [,BLKSIZE=nJ

I

(label] OPEN (address [, (options)], ...)

'---v--J
J

I [label] I GET!PUT I RPL=address I
'---v--J

J

'----- .-+[label] RPL [ACB=address]
[,OPTCD=([DIR!~!SKP]

(.])]

·

(label) ACB ·
(, DDNAME=ddname)
[,BUFND=number]
[,BUFNI=number)
[,BUFSP=number]
[, MACRF= ([DIR)[,~)[, S!<P]

[, IN] [, OUT)
[, NRS J [, RST]
(..])]

I (,STRNO=numberJ
(,PASSWD=addressJ
[,EXLST=addressJ
·

- f-+-[label) EXLST (JRNAD= (add:t:ess [,,A! N)[, L]))
[SYNAD= (address (,,A! N][, L J)]

·

Figure 47. DOS/VS JCL to VSAM macro relationship

\

212 VSAM PRIMER and REFERENCE

8.9.3 OS/VS JCL PARAMETER

Since all VSAM data set zelated infozmation is stozed in a VSAM
catalog, the JCL pazametezs foz VSAM data sets aze diffezent.

The DD statement has the following fozmat:

//ddname DD DSN=dsname,DISP={OLDISHR}[,UNIT=unitJ
[,VOL=SER=volsezJ[,AMP=listJ

DISP=OLDIPASS

DISP=SHR

UNIT and VOL

usage like in nozmal OS/VS

foz shazed data sets (the amount of shazing is
specified with the SHAREOPTION pazametez at
DEFINE time (oz changed with ALTER)

only necessazy foz Subset Mount (see page 216)

AMP has the following pazametezs:
\

[AMP=['AMORG' J only necessazy if UNIT and VOL specified (see
page 216)

[,'BUFND=numbez'] ovezzides ACB specification
[,'BUFNI=numbez' J ovezzides ACB specification
[,'BUFSP=numbez' J ovezzides ACB specification
[,'STRNO=numbez' J ovezzides ACB specification
[,'SYNAD=modulename' J ovezzides EXLST specification
[,'TRACE' J use with GTF foz OPEN/CLOSE/EOV
[,'CROPS={RCKINCKINREINRC}'] Checkpt. Restazt opt. (GC26-3784)
[,'OPTCD={IILIIL}'] ISAM options (foz ISAM Interface)
[,'RECFM={FIFBIVIVB}']] ISAM options (foz ISAM Intezface)

If data sets zesiding in a usez catalog are tp be accessed this
user catalog must be specified either with a JOBCAT DD statement
(the usez catalog is used foz all steps of the job) or with a
STEPCAT DD statement (the usez catalog is used foz this step only).

In MVS JOBCAT oz STEPCAT DD statements are not necessary if the
high level qualifier of the data set name is the same name as the
name of a user catalog oz the ALIAS of one. A STEPCAT DD statement
overzides a JOBCAT DD statement.

The JOBCAT DD statement must follow the JOB statement (after a
JOB LIB DD statement if available) befoze the EXEC statement.

The STEPCAT DD statement must follow the EXEC statement and can be
placed anywhere among the othez DD statements.

JOBCAT and STEPCAT DD statements may be concatenated to specify
more than one usez catalog to be used for the job oz the step.

Chaptez 8. Miscellaneous 213

The fozmat of these statements is as follows:

//JOBCAT DDDSN=usezcatalogname,DISP=SHR
//STEPCAT DD DSN=usezcatalogname,DISP=SHR

8.9.3.1 OS/VS JCt DDNAME/DSNAME SHARING

If a VSAM data set has to be accessed dizectly
simultaneously eithez multiple stzing pzocessing
shazing can be used.

The following applies:

and sequentially
oz DDNAME/DSNAME

• DDNAME/DSNAME shazing wozks like multiple stzing pzocessing
fzom the VSAM point of view

• VSAM maintains integzity

• CIs obtained foz UPDATE aze 'lock~d'

• 'Exclusive contzol ezzoz' is zetuzned if access to 'locked' CI
is attempted

• multiple copies of the same CI can be in stozage

The following is a shbzt example of how to use DDNAME shazing:

//VSAMl

ACB1
ACB2

DD DSN=clustez,DISP=SHR

DDNAME=VSAM1,MACRF=DDN
DDNAME=VSAM1,MACRF=DDN

The following is a shozt example of how to use DSNAME shazing:

//VSAM1
//VSAM2

ACB1
ACB2

DD DSN=clustez,DISP=SHR
DD DSN=clustez,DISP=SHR

DDNAME=VSAM1,MACRF=DSN
DDNAME=VSAM2,MACRF=DSN

214 VSAM PRIMER and REFERENCE

I
I
\

8.9.4 OS/VS JCL TO VSAM MACRO RELATIONSHIP

//ddnarne DD DSNAME=dsnarne,DISP={OLDlsHR}
'---v---I

I

[labell OPEN (add:tess [, (options) I, ...)

'---v----I
I

I [labell I GETIPUT I RPL=add:tess I
'---v----I

I

- 1+ [label I RPL [ACB=add:tessl
[,OPTCD=([DIRI~lsKPI

I
I I

[. I) I

I

[labell ACB

~[,DDNAME=ddnarnel
[,BUFND=nurnbe:t1
[,BUFNI=nurnbe:t1
[,BUFSP=nurnbe:t1
[,MAC~F=([DIRI[,~I[,SKPI

[,IN)[,OUT I
[,NRS I [, RST I
[. I) I

[,STRNO=nurnbe:t1
[,PASSWD=add:tessl
[,EXLST=add:tess]
..

'--~[label I EXLST [JRNAD=(add:tess[,AINlI ,Ll) I
[SYNAD=(address[,AIN)[,Ll)]
..,...

Figu:te 48. OS/VS JCL to VSAM rnac:to relationship

Chapte:t 8. Miscellaneous 215

~ SUBSET MOUKT

'Subset Mount' is ~ part of VSAM and must be used very carefully
to avoid mounting and demounting problems., If possible, 'Subset
Mount' should be used for read-only operations.

Special problem areas are:

• Index and data component on different device types

• Extending a data set onto a new volume

• Using recoverable catalogs

8.10.1 SUBSET MOUNT (DOS/VS)

In DOS/VS
data set
specific
mounted,
(so this

for all but Keyrange data sets. ~ the volumes of a VSAM
must be specified in the EXTENT statement. If only a
volume of a multivolume Keyrange data set should ~~

only this volume may be specified in the EXTENT statem~nt
is the same as OS/VS subset mount).

8.10~2 SUBSET MOUNT (OS/VS)

In OS/VS a VSAM data set and its volumes are found by specifying
only the cluster name and. if necessary. the catalog name. OS/VS
then uses the catalog information and issues a mount request for
all volumes of the data set.

If a multivolume data set is to be opened. normally All volumes are
mounted.

If the user knows however. on which volume the required data is
stored. (if key ranges are used, it is very easy to determine.
which volume contains the data) he can mount only this volume with
subset mount (mounting only one volume of a multivolume data set
may be desirable. if insufficient drives are available or to reduce
mount time).

The following example shows how to use OS/VS subset mount:

• Assuming the data set KSDSKEYR was defined with key ranges
using three volumes (V1: keys A-F, V2: keys G-P. V3: keys Q-Z)
(see key range example 1 in section 7.2.4).

If the specific job only uses keys between G and P. only volume
V2 need be mounted.

216 VSAM PRIMER and REFERENCE

(

OS/VS vCL for notmal and for subset mount:

Normal mount (all 4 volumes)

//DD1 DD DSN=KSDSKEYR,DISP=OLD

OS/VS subset mount (only volume V2)

//DDl DD DSN=KSDSKEYR,DISP=OLD,UNIT=3330,
// VOL=SER=V2,AMP='AMORG'

AMP='AMORG' may be specified to specify buffers, etc.

If there is any access to a part of the data set, which is
not on volume V2, an error message is issued (no additional
volume is mounted).

~ VSAM ASSEMBLER MACROS (SHORT DESCRIPTION)

The macros provided to define and process VSAM data sets are
divided into control block macros and tequest macros.

The control block macros are used to define, modify, display, and
test the contents of VSAM control blocks and lists. The request
macros are used to specify the processing action (read, write,
etc.) to be taken on data and index records.

8.11.1 VSAM CONTROL BLOCK MACROS

8.11.1.1 ACB (GENERATE AN ACCESS CONTROL BLOCK)

The ACB macro causes an access control block to be generated during
program assembly. One ACB (or GENCB, see section 8.11.1.4 on page
219) macro must be specified in a program for each VSAM data set
that is to be processed by the program. More that one ACB can be
specified in a program for the same VSAM data set. In this case,
the ACB's are connected to the same VSAM control block structure
and the same set of I/O buffers is used for all requests issued to
the data set (see section 8.9.3.1 on page 214). The access control
block for a VSAM data set must be opened before any processing of
the data set can occur.

The ACB specifies the
DD statement (OS/VS)

following for a VSAM data set:
or the DLBL 'filename' (DOS/VS)

name of the
for the data

set, address of a list of exit routine addresses for user-written
exit routines, buffer space requirements, the password required for
the type of processing to be done, all processing options to be
used with the data set (keyed, addressed, and/or control interval,
sequential, skip-sequential, and/or direct, etc.), and the number
of requests that can be outstanding concurrently for the data set
using this ACB.

Chapter 8. Miscellaneous 217

8.11.1.2. EXLST (GENERATE AN EXIT LIST)

The EXLST mac~o is used to define a list of the add~esses of the
use~-w~itten exit ~outines that a~e to be ente~ed when ce~tain

conditions occu~ du~ing the p~ocessing of a VSAM data set. The
EXLST mac~o causes an exit list to be gene~ated du~ing p~og~am
assembly.

Exit to a use~-w~itten ~outine can be taken when end of data set is
~eached (EODAD exit), a logical e~~o~ occu~s (LERAD exit), an
unco~zectable physical I/O ezzo~ occuzs (SYNAD exit), oz to pezfozm
a jou~naling opezation (JRNAD·exitl. Each exit zoutine can be
ma~ked active o~ inactive. An exit ~outine that is inactive is not
ente~ed when its associated condition occuzs. The exits to be used
duzing the pzocessing of a given VSAM data set azespecified in its
ACB(theadd~ess of an EXLST mac~o can be given). Mo~e that one
ACB can specify the same EXLST mac~o.

The jou~naling exit is taken by VSAM at the following times:
wheneve~ a GET, PUT, o~ ERASE mac~o is issued to the VSAM data set;
each time data is shifted within a contzol intezval oz moved to
anothe~ cont~ol inte~val (key-sequenced data sets only); and each
time a physical I/O ezzoz occuzs.

A use~-w~itten jou~naling zoutine can be used, the~efoze, to keep
tzack of any RBA changes fo~ the log~cal~eco~ds of a key-sequenced
data set, if it is to be pzocessed by RBA, and/o~ to ~ecozd the
VSAM ~equests that a~e p~ocessed against a VSAM data set (fo~

~ecovezy and ~econst~uction pu~poses, foz example).

8.11.1.3 RPL (GENERATE A REQUEST PARAMETER LIST)

An RPL maczo is used to gene~ate a ~equest pa~amete~ list du~ing
pzog~am asse~bly. This list defines a zequest fo~ p~ocessing.

Ceztain ~equest mac~os (GET, PUT, ERASE, POINT, CHECK, ENDREQ,
GETIX, and PUTIX) must specify the add~ess of a ~equest pazametez
list to indicate the p~ocessing to be pezfozmed. The same RPL can
be specified in mo~e than one type of ~equest mac~o.

An RPL mac~o specifies the following: the ACB of the data set wit~
which it is to be used (multiple RPL mac~os can specify the S~~~
ACB); the size and add~ess of a wo~k a~ea if logical zecozds aL6
not to be p~ocessed in an I/O buffez; the seazch azgument to =e
used du~ing di~ect ~et~ieval, skip-sequential ~et~ieval, and
positioning (full key, gene~ic key, RBA, oz zelative zeco~d

numbez); addzess of an ECB if this is an asynch~onotis iequest
(optional pazamete~); the type of p~ocessing fo~ this ~equest, such
as keyed o~ addzessed, sequential o~ dizect, fozwa~d o~ backwazd,
synchzonous oz asynch~onous ~equest (OS/VS only), etc.

When a synch~onous ~equest is specified in the RPL indicated by a
GET o~ PUT maczo, contzol is not ~eturned to the inst~uction aftez
the GET/PUT mac~o until p~ocessing of the ~equest is completed;Thp
logical zeco~d is then available foz p~ocessing.

21~ VSAM PRIMER and REFERENCE

\

In OS/VS when an asynchronous request is specified, control returns
to the instruction after the GET/PUT macro as soon as the request
has been scheduled. The user must then test for completion of the
I/O operation (usually using a CHECK macro). Asynchronous proces­
sing of a request permits the overlap of I/O operations with
program execution and is particularly useful with skip-sequentiaL
and direct processing. Up to 255 asynchronous requests (RPL's) can
be outstanding concurrently for the same VSAM data set.

Two or more RPLs can be chained together via a pointer field in the
RPL itself. A chained parameter list can be used to read or write
several records (one for each RPL in the chain) using one GET or
PUT macro instead of multiple macros. Chained parameter lists can
be used only to retrieve several existing records or to add several
new records. It cannot be used to retrieve-for-update, update, or
delete existing records.

8.11.1.4 GENCB (GENERATE A CONTROL BLOCK OR LIST)

The GENCB macro can be used to generate an ACB, EXLST, or RPL
during program execution instead of program assembly. The GENCB
macros can be used to eliminate changing these control macros and
reassembling VSAM programs when control block formats change in new
versions of VSAM.

The same parameters can be specified in a GENCB macro as in ACB,
EXLST, and RPL macros. However, a GENCB macro can specify that
multiple copies of the control block are to be generated and
parameter values can be specified in more ways (such as in general
registers).

8.11.1.5 MODCB (MODIFY CONTENTS OF CONTROL BLOCK OR LIST)

The MODCB macro is used to change, during program execution, the
contents of an unopened ACB, an EXLST, or an inactive RPL (one not
currently involved in a processing operation).

8.11.1.6 SHOWCB (DISPLAY CONTENTS OF CONTROL BLOCK/LIST)

The SHOWCB macro issued to place the contents of user-specified
fields of an ACB, EXLST, or RPL in a user-specified work area.

8.11.1.7" TESTCB (TEST CONTENTS OF CONTROL BLOCK OR LIST)

The TESTCB macro is used to have VSAM compare a user-specif1~d

value with a field in an ACB, EXLST, or RPL. The condition code in
the PSW is set to indicate the results of the comparison.

Chapter 8. Miscellaneous 219

8.11.1.8 SHOWCAT (DISPLAY FIELDS IN A VSAM CATALOG)

The SHOWCAT macro can be used to cause selected fields from the
catalog entry for a specified data set to be moved to a user-pro­
vided work area. The data set whose catalog entry is being inspect­
ed need not be open in order for the SHOWCAT macro to be issued.

8.11.2 VSAM REQUEST MACROS

8.11.2.1 OPEN

A VSAM data set must be opened before it can be processed by other
request macros. The OPEN macro provides the same types of proces­
sing functions for VSAM data sets as for other types of data sets.
OPEN causes the volumes of the VSAM data set to be mounted if
necessary, constructs the control blocks required (in addition to
those already created by EXLST, ACB, and GENCB macros) for the type
of processing to be done, overrides information in the ACB and
EXLST with any parameters specified in the DD statement for the
data set, causes the loading into virtual storage of any VSAM
routines required (in addition to the resident VSAM routines) for
the processing specified, and verifies that the password given is
correct. Any parameter not specified via job control or the ACB is
taken from the catalog entry for the data set.

Both sequential and direct processing can be performed on a VSAM
data set using one OPEN macro and one ACB. Closing and reopening of
the data set to switch modes, as is required for an ISAM data set,
is not necessary.

8.11.2.2 GET

This macro is used for simple retrieval and for retrieval
update (GET for update) operations. The RPL specified by a
macro indicates whether the request is for a retrieval only
retrieve and update operation. A record that was retrieved
GET-for-update request need not be written back if it is not
changed.

for
GET

or a
by a

to be

Locate mode (logical record made available in the input buffer) can
be specified for retrieval only (GET) and retrieve for update
without record length change (GET-for-update) operations. In the
latter case, however, the updated record must be placed in a work
area before it is rewritten. Move mode (logical record made avail­
able in a work area) is supported for all read and write requests
and is required for all write (PUT and ERASE) operations.

220 VSAM PRIMER and REFERENCE

8.11.2.3 put

This macro is used to write a new record in a data set during its
creation or to insert a new record in an existing data set. A PUT
for update is used to change the contents of an existing record
(update it or mark it deleted with a user-defined deletion indica­
tion).A PUT-£or-update request must be preceded by a GET­
for-update request. Write verification (automatic reading by DASD
hardware after each write operation) is optional and can be speci­
fied with the DEFINE parameter WRITECHECK (not suggested).

8.11.2.4 ERASE

This macro is used to delete a logical record from a key­
sequenced oi relative record data set. The record is physically
removed from the data set. An ERASE macro must be preceded by a
GET-£or-update macro.

8. 11 .2.5 POINT

This macro is used to position VSAM to a particular logical record
in the data set from which processing is to continue. Positioning
can be in a forward or backward direction and a key value (includ­
ing a relative record number) or RBA (not fot RRDS) can be used to
identify the logical record at which positioning is set.

8.11.2.6 CHECK (OS/VS ONLY)

This macro is used to cause VSAM to determine whether processing o£
a specific asynchronous request has been completed and to suspend
program execution until processing i~ completed for an incomplete
request. CHECK also causes the appropriate active user- written
exit routine to be entered, i£ necessary, at the completion o£ the
request.

A test for the completion o£ an asynchronous request can also be
made by specifying an ECB in the RPL for the request and testing
the completion bit. Completion can be tested using the TESTCB macro
(IO=COMPLETE operand) as well. These two completion tests can be
used to delay issuing the CHECK macro until the operation is
completed so that processing is not suspended by the CHECK macro.

8.11.2.7 ENDREQ

This macro is used to terminate the processing o£ a chain of
requests or a single asynchronous request whose completion is no
longer required to to free VSAM from keeping trac~ of a position in
a data set. VSAM can maintain knowledge o£ the same number o£
positions as the number o£ requests that can be outstanding concur­
rently (speci£ied in the ACB or GENCB macro).

Chapter 8. Miscellaneous 221

8.11.2.8 GETIX AND PUTIX (OS/VS ONLY)

These macros are used to process an index component of a key-se­
quenced data set (speCial application).

8.11.2.9 CLOSE

The CLOSE macro provides the same types of processing functions for
VSAM da~a sets as for other types of data sets. It causes VSAM to
write any unwritten data or index records remaining in the output
buffers if their contents have changed, update the catalog entry
for the data set; if necessary (if the location of the end-~f-file
indicator ~as changed, for example), and write SMF records if SMF
is being used. The access method controi block(s) for the data set
(such as the ACB's) are resfore4 to what they were before the data
set was opened and virtual storage that was obtained during OPEN
processing for additional VSAM control blocks and VSAM routines is
relea~ed.

Once a VSAM data set has been closed, it must be reopened before
any additional processing can be performed on it. A CLOSE macro
with TYPE=T (OS/VS) or TCLOSE (DOS/VS) (temporary CLOSE) can be
issued to cause VSAM to complete any outstanding I/O operations,
update the catalog if necessary, and write any required SMF
records. Processing can continue after a temporary CLOSE without
the issuing of an OPEN macro.

8.11.3 VSAM M~CROS FOR SHARED RESOURCES

This is an i~terface to VSAM that is designed to be used in a data
base/data communications environment. Five macros are available.
Shared resources enable the user to share I/O buffers, I/O-related
control blocks, ·and channel programs a~ong several VSAM data sets
and permit management of I/O buffers. The sharing of I/O resources
and the buffer management available can speed .uP the direct proces­
sing of VSAM data sets whose activity is unpredictable and the
processing of one transaction that requires access to several data
sets.

8.11.3.1 BLDVRP AND DLVRP

The BLDVRP and DLVRP macros are provided to build and delete,
respectively, a share~ resource pool. A resource pool can be shared
by the VSAM d~ta sets being processed in the same partition.

8.11.3.2 WRTBFR

The WRTBFR macro causes the
~hen deferreq processing is

writing of a
specified in

222 VSAM PRIMER and REFERENCE

buffer and can be used
the ACB. When deferred

processing is specified, VSAM does not write a buffer after a PUT
for direct processing is issued.

8.11.3.3 SCHBFR AND MRKBFR (OS/VS ONLY)

The SCHBFR macro is provided to search the shared buffer pool for a
particular range of RBAs (locate a buffer) and the MRKBFR macro
causes a buffer to be marked for output without issuing a PUT for
update. Details regarding the use of these five macros are
contained in OS/VS Virtual storage Access Method: Options for
Advanced Applications.

8.11.4 CONCURRENT PROCESSING (STRINGS)

Note that several parts of a VSAM data set can be accessed concur­
rently via sequential and direct processing by a program or its
subtasks using the same ACB without the necessity of closing and
reopening the data set. Each request is processed independently and
asynchronously with respect to all other outstanding requests. This
is called concurrent request processing and is made possible by the
fact that VSAM can keep account of multiple positions in the data
set at one time. The number of concurrent requests that can be
outstanding is specified in the ACB but is extended by YSAM during
processing if necessary.

Concurrently outstanding requests for a data set can be any combi­
nation of sequential and direct processing requests. Each outstand­
ing request can specify one RPL or a list of RPLs (chained RPLs)
and synchronous or asynchronous processing (OS/YS only). When a
request consists of a list of RPLs, the first RPL in the list
determines whether synchronous or asynchronous processing is
performed for the request.

When synchronous processing is requested in the first RPL, control
is not returned to the user until all requests in the list have
been processed. When asynchronous processing is specified in the
first RPL, control is returned to the'user as soon as the chained
request is accepted by VSAM, and the processing status of the list
must be checked by the user by issuing a CHECK macro for each RPL
in the list.

For additional information about string processing see also page
191 .

Chapter 8. Miscellaneous 223

(

224 VSAM PRIMER and REFERENCE

~ SYSTEM CONSIDERAT~

All sto~age figu~es given in this chapte~ a~e the best app~oKima­
tions available and may diffe~ f~om use~ to use~.

~ WHERE IS VSAM IN MAIN STORAGE

9.1.1 ACCESS METHOD SERVICES AND VSAM IN STORAGE (DOS/VS)

DOS/VS
Supe~viso~

Pa~tition

GETVIS­
a~ea

BG/Fn up to 7 p~oq~am pa~titions

User program

+ ACBs , RPLs , EXLSTs

Space fo~ Reco~d Management a~eas

VSAM I/O buffe~s and wo~k a~eas

VSAM Cont~ol Blocks fo~ data sets
and catalogs

Access Method Se~vices modules

(ISAM Inte~face P~og~am modules)

IKQVRM

Sha~eable VSAM modules

Figu~e ~9. Whe~e is VSAM in sto~age (DOS/VS)

'SIZE' as
specified

in // EXEC

I

Chapte~ 9. System Conside~ations 225

9.1.2 ACCESS METHOD SERVICES AND VSAM IN STORAGE (VS1/SVS)

Common
area

Partition/
Region

Nucleus
area

VSAM catalog control blocks
and appendages

VSAM routines (app. 400K)

Buffers

Data set control blocks

Access Method Services routines

ISAM Interface routines

VSAM control blocks

F~gure 50. Where is VSAM in storage (VS1/SVS)

226 VSAM PRIMER and REFERENCE

SQA

PLPA

Fixed LPA

9.1.3 ACCESS METHOD SERVICES AND VSAM IN STORAGE (MVS)

Common
a:t:ea

Region

Nucleus
a:t:ea

1200 byte~ pe:t: opened catalog
600 bytes pe:t: opened KSDS
300 bytes pe:t: opened ESDS/RRDS

VSAM :t:outines (app. 445 K)

10K pe:t: opened catalog
+ 8K pe:t: opened :t:ecove:t:able cat.

Non-sha:t:ed :t:es.: 340 bytes/ds
GSR: 450 bytes pe:t: OPt ~SDS/RRDS

900 bytes pe:t: opened KSDS
604 bytes * no. of st:t:ings
Buffe:t:s

VSAM cont:t:ol blocks (4K)

VSAM cont:t:ol blocks, DEBs

Buffe:t:s (non-sha:t:ed :t:esou:t:ces)

Access Method Se:t:vices :t:outines

ISAM Inte:t:face :t:outines

VSAM cont:t:ol blocks

Figu:t:e 51. Whe:t:e is 'VSAM in sto:t:age (MVS)

S2A

PLPA

CSA

LS2A

Subpool
229/230

FiNed LPA

Chapte:t: 9. SystemConside:t:ations Z27

LA VSAM WORKING SETS

9.2.1 MINIMUM WORKING SET FOR A SINGLE KSDS (DOS/VS)

The virtual storage requirements of VSAM are big, but it is
designed to operate efficiently in a VS environment with relatively
small Real Storage (Working Set) requirements. For further infor­
mation see the manual 'DOS/VS System Generation', GC33-5377).

The following conditions are assumed:

• One EXTENT for the data component

• SHAREOPTION(4) not specified (SHAREOPTIONs are described on
page 95)

• The key is 4 bytes long

• One eKtent for the sequence set and the in4eK set

• 2 data buffers and 1 indeK buffer (KSDS data set)

• The ACB and RPL are created in this sequence via GENCB, leaving
the space allocation up to VSAM (ACB, RPL, and GENCB are VSAM
macros and are described on page 217)

The minimum wo;kinq set for a single VSAM data set (KSDS, ESDS,
RRDS) can be calculated as follows :

IK2VRM (VSAM record management)
(if loading/eKtending the file
Control blocks and channel
program area

22 K1
4 K)

4 K

26-30 K + VSAM buffers

1 per partition or system if in SVA

If an alternate
is, without its
data set.

indeK is processed as an end-use object, that
related base cluster, it is treated as a KSDS

For each additional data set in the partition, the following
has to be added to this minimum :

Control blocks and channel
program area
VSAM buffers

228 VSAM PRIMER and REFERENCE

4 K
n K

(

(
\,

9.2.'.' WORKING SET FOR ALTERNATE INDEX PROCESSING(DOS/VS)

If a path is established between an alteznate index and its base
clustez. the wozking set zequizements foz pzocessing the path a~e
as follows :

Notes:

IK2VRM

Path entzy min.

Base cluste~ min.

Othez alte:rnate indexes
in the upg~ade set min.

Buffe:rs fo:r
the base clustez. the AIX path and
each :remaining alte:rnate index
with the UPGRADE
att:ribute belonging to the
base cluste:r
(see also section 8.1.5)

28 K pez paztition

2 K

4 K

2 K pe:r each one

m K

1. All alte:rnate indexes of an upg:rade set (except that of the path
ent:ry) sha:re a common set of buffe:rs whose siza is that of the
lazgest buffezs specified.

2, When opening an alte:rnate index and its base cluste:r th:rough a
NOUPDATE path. no othe:r alte:rnate index is opened. even if its a
membe:r of the same upgzade set (pa:ramete:r NOUPDATE is explained
on page 110). Thezefo~e. only space fo:r the path ent:ry and the
base clustez has to be p:rovided unless the base cluste:r is
opened with NOUPDATE.

3. If a base
upg:rade set
and fo:r the
p:rovided.

clustez is not pzocessed via a path. but has an
assigned to it. space fo:r the base cluste:r itself
upg:rade set membe:rs (alteznate indexes) has to be

Chapte:r 9. System Conside:rations 229

9.2.2 MINIMUM WORKING SET FOR A .SINGLE KSDS (MVS)

The virtual storage requirements of VSAM are big, but it is
designed to operate efficiently ih a VS environment with relatively
small Real storage (Working Set) requirements.

The following conditions are assumed:

• One EXTENT for the data component

• SHAREOPTION(4) not specified (SHAREOPTIONs are described on
page 95)

• The key is 4 bytes long

• One extent for the sequence set and the index set

• 2 data buffers and 1 index buffer (KSDS data set)

• The ACB and RPL are created in this sequence via GENCB, leaving
the space allocation up to VSAM (ACB, RPL, and GENCB are VSAM
macros and are described on page 217)

The minimum workinq set for a single VSAM data set (KSDS, ESDS,
RRDS) can be calculated as follows :

VSAM reco~d management 36
(if loading/extending the file 12
Control blocks and channel

K1 PLPA
K)

program area 3.8 K

39.8-51.8 K + VSAM buffers

1 PLPA is shared by ali regions

If an alternate ,index is processed as an end-use object, that is,
without its related base cluster, it is treated as a KSDS data set.

For each additional data set in the region, the following has to be
added to this minimum

Control blocks and channel
program area
VSAM buffers

230 VSAM ~RIMER and REFERENCE

3.8 K
n K

9.2.2.1 WORKING SET FOR ALTERNATE INDEX PROCESSING (MVS)

If a path is established between an alte~nate index and its base
cluste~, the wo~king set ~equi~ements fo~ p~ocessing the path a~e
as follows :

Notes:

VSAM Reco~d management

Path ent~y min.

Base cluste~ min.

Othe~ alte~nate indexes
in the upg~ade set min.

Buffe~s fo~

the base cluste~, the AIX
path and each remaining alte~­
nate index with the UPGRADE
att~ibute belonging to the
base cluste~
(see also section 8.1.5)

48

4

1 PLPA is sha~ed by all ~egions
2 includes channel p~og~am a~eas

K2 per each one

m K

1. All alte~nate indexes of an upg~ade set (except that of the path
ent~y) sha~e a common set of buffe~s whose size is that of the
la~gest buffe~s specified.

2. When opening an alte~nate index and its base cluste~ through a
NOUPDATE path, no othe~ alte~nate index is opened, even if its a
membe~ of the same upgrade set (pa~ameter NOUPDATE is explained
on page 110). Therefo~e, only space for the path ent~y and the
base cluste~ has to be p~ovided unless the base cluste~ is
opened with NOUPDATE.

3. If a base cluste~ is not p~ocessed via a path, but has an
upg~ade set assigned to it, space fo~ the base cluste~ jtself
and for the upg~ade set membe~s (alte~nate indexes) has to be
p~ovided.

Chapte~ 9. System Conside~ations 231

9.2.3 MINIMUM WORKING SET FOR A SINGLE KSDS (SVS)

The virtual storage requirements of VSAM are big, but it is
designed to operate efficiently in a VS environment with relatively
small Real Storage (Working Set) requirements.

The following conditions are assumed:

• One EXTENT for the data component

• SHAREOPTION(4) not specified (SHAREOPTIONs are described on
page 95)

• The key is 4 bytes long

• One extent for the sequence set and the index set

• 2 data buffers and 1 index buffer (KSDS data set)

• The ACB and RPL are created in this sequence via GENCB, leaving
the .space allocation up to VSAM (ACB, RPL, and GENCB are VSAM
macros and are described on page 217)

The minimum workinq set for a single VSAM data set (KSDS, ESDS,
RRDS) can be calculated as follows :

VSAM record management 36
(if loading/extending the file 12
Control blocks and channel
program area 3.3 K

39.3-51.3 K + VSAM buffers

1 PLPA is shared by all regions

If an alternate index is processed as an end-use object, that is,
without its related base cluster, it is treated as a KSDS data set.

For each additional data set in the region, the following has to be
. added to this minimum

Control blocks and channel
program area
VSAM buffers

232 VSAM PRIMER and REFERENCE

3.3 K
n K

9.2.3.1 WORKING SET FOR ALTERNATE INDEX PROCESSING (SVS)

If a path is established between an alte~nate index and its base
cluster. the wo~king set requirements for p~ocessing the path are
as follows :

Notes:

VSAM Reco~d management

Path ent~y min.

Base cluster min.

Othe~ alternate indexes
in the upg~ade set min.

Buffers for
the base cluster. the AIX
path and each ~emaining alter­
nate index with the UPGRADE
attribute belonging to the
base cluster
(see also section 8.1.5)

K1 PLPA

3.4 K2

3.3 K2

3.4 K2 pe~ each one

m K

1 PLPA is sha~ed by all regions
2 includes channel program a~eas

1. All alte~nate indexes of an upgrade set (except that of the path
ent~y) sha~e a common set of buffers whose size is that of the
la~gest buffers specified.

2. When opening an alt~~nate index and its base cluster th~ough a
NOUPDATE path, no other alternate index is opened. even if its a
member of the same upgrade set (parameter NOUPDATE is explained
on page 110). Therefore. only space for the path entry and thA
base cluster has to be provided unless the base cluster is
opened with NOUPDATE.

3. If a base
upgrade set
and for the
provided.

cluster is not p~ocessed via a path, but has an
assigned to it. space fo~ the base cluster itself
upgrade set members (alternate indexes) has to be

Chapter 9. System Considerations 233

9.2.4 MINIMUM WORKING SET FOR A SINGLE KSDS (VS1)

The virtual storage requirements of VSAM are big, but it is
designed to operate efficiently in a VS environment with relatively
small Real Storage (Working Set) requirements.

The following conditions are assumed:

• One EXTENT for the data component

• SHAREOPTION(4) not specified (SHAREOPTIONs are described on
page 95)

• The key is 4 bytes long

• One extent for the sequence set and the index set

• 2 data buffers and 1 index buffer (KSDS data set)

• The ACB and RPL are created in this sequence via GENCB, leaving
the space allocation up to VSAM (ACB, RPL, and GENCB are VSAM
macros and are described on page 217)

The minimum working set for a single VSAM data set (KSDS, ESDS,
RRDS) can be calculated as follows :

VSAM record management 36
(if loading/extending the file 12
Control blocks and channel

K1 PLPA
K)

program area 3.3 K

39.3-51.3 K + VSAM buffers

1 PLPA is shared by all partitions

If an alternate index is processed as an end-use object, that is,
without its related base cluster, it is treated as a KSDS data set.

For each additional data set in the region, the following has to be
added to this minimum

Control blocks and channel
program area
VSAM buffers

234 VSAM PRIMER and REFERENCE

3.3 K
n K

9.2.4.1 WORKING SET FOR ALTERNATE INDEX PROCESSING (YS1)

If a path is established between an alteznate indeH and its base
clustez. the wozking set zequizements foz pzocessing the path aze
as follows :

Notes:

VSAM Recozd management 48 K1 PLPA

Path entzy min.

Base clustez min.

Othez alteznate indeHes
in the upgzade set min. 3.4 KZ pez each one

Buffezs foz
the base clustez. the AIX
path and each zemaining altez­
nate indeH with the UPGRADE
attzibute belonging to the
base clustez
(see also section 8.1.5)

1 PLPA is shazed by all zegions
Z includes channel pzogzam azeas

m K

1. All alteznate indeHes of an upgzade set (eHcept that of the path
entzy) shaze a common set of buffezs whose size is that of the
lazgest buffezs specified.

2. When opening an alteznate indeH and its base clustez thzough a
NOUPDATE path. no othez alteznate indeH is opened. even if its a
membez of the same upgzade set (pazametez NOUPDATE is eHplained
on page 110). Thezefoze. only space foz the path entzy and the
base clustez has to be pzovided unless the base clustez is
opened with NOUPDATE.

3. If a base clustez is not pzocessed via a path, but has an
upgzade set assigned to it. space foz the base clustez itself
and fo~ the upgzade set membezs (alteznate indeHes) has to be
pzovided.

Chaptez 9. System Considezations 235

9.2.5 VSAM VIRTUAL STORAGE REQUIREMENTS (DOS/VS)

Although most of the sto~age ~equi~ed fo~ VSAM and Access Method
Sezvices is in SVA, additional vi~tual sto~age is ~equi~ed in the
use~ts add~ess space fo~ cont~ol blocks, buffe~s, Access Method
Se~vices, and if used, the ISAM inte~face ~outines.

The following info~mation is based on DOS/VS Release 34. Fo~

fu~the~ info~mation see DOS/VS2 System Gene~ation, GC33-5377-6.

• Access Method Se~vices

•

Any function except BLDINDEX, EXPORTRA, RESETCAT
BLDINDEX (without inte~nal so~t a~ea)
EXPORTRA
RESETCAT

Main sto~age ~equi~ements pe~ opened catalog

Catalog with 3K buffe~ (non~ecove~able on 3330)
Catalog with 8K buffe~ (non~ecove~able on 3330)
Catalog with 3K buffe~ (~ecove~able on 3330)
Catalog with 8K buffe~ (~ecove~able on 3330)

= 116K-166K
= 138K
= 414K
= 238K

= 10K
= 18K
= 14K
= 23K

• Catalog management cont~ol blocks (fo~ catalog access)

OPEN/CLOSE
LOCATE, UPDATE, DEFINE NONVSAM,DELETE SPACE,
DELETE catalog, LISTCAT
DEFINE (common)
DEFINE catalog, ALTER

• Reco~d management control blocks (example)

This is an example fo~ a K5DS data set:

1. Key length is 8
2. Numbe~ of data buffe~s is 2 (2048)
3. Number of index buffe~ is 1 (512)
4. No IMBED, no KEYRANGEs
5. Disk is IBM 3330

Total amount used fo~ cont~ol blocks
Total amount used fo~ buffers (2*2048+1*51i)

236 VSAM PRIMER and REFERENCE

= 1K

= 5K
= 6-7K
= 14K

= 4 K bytEt~
= 4608 bytes

9.2.6 VSAM VIRTUAL STORAGE REQUIREMENTS (MVS)

Although most of the stozage zequized foz VSAM and Access Meth~d
Sezvices is in the PLPA, additional viztual stozage is zequized in
the usez's addzess space foz contzol blocks, buffezs, Access Method
Sezvices, and if used, the ISAM intezface zoutines.

The following infozmation is based on VS2 Release 3.7. Foz fuzthez
infozmation see OS/VS2 Stozage Estimates, GC28-0604-4.

• Access Method Se%vices

Any function except BLDINDEX, EXPORTRA, RESETCAT
BLDINDEX (without inte%nal SO%t azea)
EXPORTRA
RESETCAT

-Main sto%age %equizements pe% opened catalog

Catalog with 3K buffe% (non%ecove%able on 3330)
Catalog with 8K buffez (non%ecovezable on 3330)
Catalog with 3K buffe% (%ecovezable on 3330)
Catalog with 8K buffe% (%ecove%able on 3330)

VSAM LS2A %equizement

= 220K
= 170K
= 445K
= 270K

~SA + SgA
= 10K 1K
= 18K 1K
= 18K 1K
= 24K 1K

= 4K

- Catalog management contzol blocks (fo% catalog access)

OPEN/CLOSE = 1K
LOCATE, UPDATE, DEFINE NONVSAM,DELETE SPACE,
DELETE catalog, LISTCAT = 5K
DEFINE (cc;>mmon) = 6-7K
DEFINE catalog, ALTER = 14K

- Reco%d management cont%ol blocks (example)

This is an example fo% a KSDS data set:

1. Ke9 length is 8
2. Numbe% of data buffe%s is 2 (2048)
3. Numbez of index buffe% is 1 (512)
4. No IMBED, no KEYRANGEs
5. Disk is IBM 3330

Total amount used fo% cont%ol blocks = 5 K bytes
Total amount used for buffers (2*2048+1*512) = 4608 bytes

Chaptez 9. System Considezations 237

9.2.7 VSAM VIRTUAL STORAGE REQUIREMENTS (SVS)

Although most of the storage required for VSAM and Access Method
Sel:vices is in the PLPA, ad'di tional virtual storage is required in
the user's address space for control blocks, buffers, Access Method
Serviees, and if used, the ISAM interface routines.

The following information is based on VS2 Release 1.7 with VSAM
ICR. For further information see OS/VS2 SVS Independent Component:
Planning for Enhanced VSAM, GC26-3869.

• Access Method Services

•

Arty fUnction except BLD!NDEX, EXPORTRA, RESETCAT
Btb!NOEX (without internal sort area)
EXPORTRA
RESETCAT

Mclin storage requirements per opened catalog

Catalog with 3K buffer (nonrecoverable on 3330)
c~talog with· 8K buffer (nonrecoverable on 3330)
Catalog with 3K buffer (recoverable on 3330)
Catalog with 8K buffer (recoverable on 3330)

= 204K
= 204K
= 444K
= 390K

= 10K
= 18K
= 14K
= 23K

• catalog management control blocks (for catalog access)

OPEN/CLOSE = 1K
lOCATE, UPDATE, DEFINE NONVSAM,DELETE SPACE,
DELETE catalog, LISTCAT = 5K
DttINE (common) = 6-7K
DEFINE catalog, ALTER = 14K

• Record management control blocks (example)

This is an example for a KSDS data set:

1. Key length is 8
2 . Number of data buffers is 2 (2048)
3. Number of index buffer is 1 (512)
4. No IMBED, no KEY'RANGEs
5. Disk is IBM 3330

total amount used for control blocks = ·5 K bytes
Total amount used for buffers (2*2048+1*512) 4608 bytes

238 VSAM PRIMER and REFERENCE

902.8 VSAM VIRTUAL STORAGE REQUIREMENTS (VS1)

Although most of the sto~age ~equi~ed fo~ VSAM and Access Method
Se~vices is in the PLPA, additional virtual sto~age is ~equired in
the use~'s add~ess space for control blocks, buffers, Access Method
Se~vices, and if used, the ISAM inte~face ~outines.

The following info~mation is based on VS1 Release 6.
information see OS/VS1 Sto~age Estimates, GC24-5094-6.

• Access Method Se~vices

•

Any function except BLDINDEX, EXPORTRA, RESETCAT
~LDINDEX (without inte~nal sort a~ea)
EXPORTRA
RESETCAT

Main sto~age ~equi~ements pe~ opened catalog

Catalog with 3K buffe~ (non~ecove~able on 3330)
Catalog with 8K buffer (non~ecoverable on 3330)
Catalog with 3K buffe~ (~ecove~able on 3330)
Catalog with 8K buffe~ (~ecove~able on 3330)

Fo~ furthe~

= 220K
= 17 OK
= 445K
= 270K

= 10K
= 18K
= 141<
= 23K

• Catalog management cont~ol blocks (fo~ catalog access)

OPEN/CLOSE = 1K
LOCATE, UPDATE, DEFINE NONVSAM,DELETE SPACE,
DELETE catalog, LISTCAT = 5K
DEFINE (common) = 6-7K
DEFINE catalog, ALTER = 14K

• Record management control blocks (example)

This is an example fo~ a KSDS data set:

1. Key length is 8
2. Numbe~ of data buffe~s is 2 (2048)
3. Numbe~ of index buffe~ is 1 (512)
4. No IMBED, no KEYRANGEs
5. Disk is IBM 3330

Total amount used fo~ cont~ol blocks = 4 K bytes
Total amount used fo~ buffe~s (2*2048+1*512) = 4608 bytes

Chapter 9. System Conside~ations 239

2~O VSAM PRIMER and REFERENCE

~ APPENDIX A. VSAM CATALOG MISCELLANEOUS

~ VSAM CATALOG KEYRAHGES

A.l.' THE HIGH-KEYRAHGE (HKR)

As desc~ibed in the p~evious section, each VSAM catalog is a
KEYRAHGE data set (no~mal Key~anges a~e desc~ibed on page 91). The
second Key~ange called the 'High-Key~ange' (HKR) o~ the 'T~ue Name
Section' is whe~e the actual data set names, volume names, etc.
~eside (Key~ange X'40' - X'FF').
Each CI he~e is 512 bytes (the same as th~oughout the data and
index components of the catalog) and contains 44 byte data set
names and 3 byte LKR CI pointe~s. Each LKR CI pointe~ associated
with each data set ent~y contains the numbe~ of a CI in the
Low-Key~ange (LKR) (see section A.1.2) whe~e the actual data and
info~mation with ~egard to the particular entry itself resides.
Thus the HKR functions as an additional index to the LKR record.

Given a data set name the index component is searched to find the
entry in the HKR. Once there, Catalog Management can pick up the
LKR CI pointe~ multiply it by 512 (CI size) to get the RBA value.
add it to the beginning of the LKR extent, and find the actual data
relative to the data set name.

Catalog Management uses ~egular keyed di~ect VSAM Record Management
p~ocessing to do I/O to the HKR. The HKR is subject to CI and CA
splits (unlike the LKR) and the~efo~e the catalog should be subject
to periodic reorganization by the user.

A.l.Z THE LOW-KEYRAHGE (LKR)

The LKR is actually the first extent of the VSAM catalog data space
(Keyrange X'OO' - X'3F'). It is where the body of information
relating to data sets is sto~ed. It consists of a series of
pre-formatted 512 byte data CIs each of which contain the appropri­
ate data set, volume, etc., information.
An enti~e 512 byte CI is wholly used to contain
there is not enough room available, extension
A KSDS cluster, for example occupies three 512
data and index ent~y).

a catalog ent~y (ii
records are buil~;.

byte CIs (cluster,

-The Catalog Self Describing Reco~ds (see next section A.l.4) reside
in the fi~st 15-20 (dependent on device type) CIs of the LKR.
Catalog Management when it is opening the catalog accesses these
~ecords via its own channel program and builds the catalog control
blocks needed. Cont~ol Inte~val p~ocessing (CHV) (see desc~iption
on page 74) is used to do I/O to the rest of the LKR. Since CNV
processing is done to a series of preformatted CIs, the LKR is not
subject to CI and CA splits.

Appendix A. VSAM Catalog Miscellaneous 241

If a record needs to be retrieved, it can be done via the CI
pointer retrieved from the HKR. If a record needs to be written,
it is first written in the LKR. Then the appropriate HKR record
pointing to it is written.

A.l.3 CATLOG HKR AND LKR LOGIC

As described in the previous sections, the catalog consists of 3
parts, the index, the HKR and the LKR. The index points to the HKR
and the HKR points to the LKR (see figure 52). Th. HKR is used
like a second index.

This structure was chosen for the following reasons:

1. As shown in figure 52, some records in the LKR contain CI number
pointers pointing to each other. Due to these pointers, CI or CA
splits are not allowed, since otherwise all pointers must be
rewritten after a split.

2. KSDS allows direct access using an index to find a specific
entry, so the advantages of a KSDS were included.

Since an ESDS structure (LKR) does not have an index and a KSDS
data component allows splits, both these functions have been
combined using a HKR where splits are allowed. Record Management
routines are used to access the HKR via the index. Catalog Manage­
ment routines convert the LKR CI pointer in the HKR record (via its
own channel programs).

preformattinq: The catalog areas are preformatted in the different
systems at different times (preformatting can take a considerable
amount of time depending on the size of the catalog):

• MVS all catalog primary allocation space is prefor­
matted when first entry is stored in catalog.

• DOS/VS,VS1,SVS one CA is preformatted the others when needed.

A.l.4 THE SELF DESCRIBING RECORDS

Each VSAM data set must be cataloged in a VSAM catalog. All the
information with regard to the VSAM data set needed for open,
close, EOV, allocation, etc, is kept in a VSAM catalog.

A VSAM catalog being a special KSDS, m~st be cataloged somewhere.
One cannot 'catalog' a catalog. What is used instead are self-des­
cribing records in each catalog. These records describe the
catalog itself, exactly like a catalog would describe a VSAM data"
set.

These records (described in the appropriate VSAM or Catalog Manage­
ment PLMs) reside in the first few CIs of the LKR. They descrihe
the space the catalog resides in, its extent per each Keyzan~a,
where the free records are, wh~t type of device the catalog resid~s
on, etc. If these records are bad, then the catalog is bad and the
message "Catalog Unavailable" is issued.

VSAM PRIMER and REFERENCE

Figure 52 shows the relation of catalog entries (records) for a
KSDS cluster 'PAYROL' with its data component 'PAYROL.D' and its
index component 'PAYROL.I'. All CIs are 512 bytes in length. The
index CIs have been shortened due to limited space.

rINDEX--,
I
I

:IS
I
I
I

: ~
: r----r----------------------~__,
:ISS
I
I

I
1.------ --~

-HKR--- --,

PAYROL

It It 3 L___________________ _ __ ~

rLKR---
I
I
I
I
I
I :C

I

:D

I

--,

PAYROL

3 " 0 " " "

PAYROL.I

3 It 0 It "

00005E I 00005F

+ "

*

*

I

I
I
I
I
I
I L ___ ~

C = Cluster entry
D = Data component entry
I = Index component entry
+ = variable length

* = Miscellaneous fields
t 1 = these fields contain

HKR =
LKR =
IS =
ISS =

(see PLM)
CRA references

High Keyrange
Low Keyrange
Index Set
Index Sequence set

(recoverable catalog only)

Figure 52. VSAM catalog structure

Appendix A. VSAM Catalog Miscellaneous 243

A.......A TIMESTAMPS, VTOC

The VSAM catalog ~eco~ds five diffe~ent timestamp~. The most
impo~tant and the only one discussed in this manual is the 'volume
timestamp' (most othe~ timestamps a~e used inte~nally fo~ identifi­
cation).

A.2.1 VOLUME TIMESTAMP

The pu~pose of this timestamp is to check that the catalog and its
owned volumes a~e on the same level f~om the space allocation
standpoint.

This timestamp is located in the Fo~mat 4 DSCB (see page 245, note
6) as well as in the volume ~eco~d (see page 159).

Actually, this timestamp is
offset X' 4C' (page 245 note
note 6). The fo~me~ one (at
IEHDASDR; it is completely
Enhanced VSAM.

~eco~ded twice in the Fo~mat-4, at
3) as well as at X'57'(see page 245
X'4C') is used by Ve~sion 1 VSAM and

igno~ed by the checking algo~ithm in

The volume timestamp update is t~eated diffe~ently fo~ a ~ecove~a­
ble catalog as compa~ed to non~ecove~able catalog. In a ~ecove~a­
ble catalog, when space on a volume is alte~ed the fi~st time afte~
the CRA is opened, the timestamp in the Fo~mat 4· DSCB and the
volume ~eco~d in the VSAM catalog will be updated. Subsequent
alte~ation in VSAM data space will not cause the volume timestamp
to be updated. Any allocation change in a data space (DEFINE o~

DELETE), which changes the space bit map (this is a field in the
volume ~eco~d whe~e VSAM ~eco~ds which VSAM data space t~acks a~e
f~ee o~ occupied) changes the volume timestamp (non~ecove~able

catalog only).

The volume timestamp checking algo~ithm in Enhanced VSAM is diffe~­
ent f~om Ve~sion 1. In Ve~sion 1 VSAM the old timestamp field in
the F4 DSCB (X'4C' - X'53) was checked against the catalog volume
timestamp (see page 159) fo~ equal o~ high. In Enhanced VSAM, the
check is fo~ exact equal at volume mount time. A mismatch will
cause the UCBAMV bit not to be set. If the~e is DQ mismatch, this
bit will be set ON ('1') by VSAM. This indicato~ will be checked
by VSAM OPEN.

A timestamp mismatch can be encounte~ed in VSAM usage and will
cause se~ious ope~ational p~oblems. This out-of-sync condition is
usually caused by ~esto~ing a back-level volume o~ catalog.
Timestamp mismatch will p~event opening of all VSAM data set on
that volume.

(

\
\

(

\

On page 254 the timestamp mismatch p~oblem is discussed in mo~e
detail. (

244 VSAM PRIMER and REFERENCE

A.2.2 VTOC F1 AND F4 DSCB'S (LABELS)

The f~llowing is pazt of a pzintout of the VTOC taken aftez the
LISTCAT ALL example (see section 7.9.2 on page 142).

DOS/VS example (input): OS/VS example (input):

II JOB VTOC
II ASSGN SYS004,X'191'
II ASSGN SYS005,X'OOE'

IIPRIMER JOB WTSC,IBM,MSGLEVEL=l
IIPRIMOLI2 EXEC PGM=IEHLIST
IISYSPRINT 00 SYSOUT=A
11001 00 UNIT=3330,OISP=OLD,VOL=SER=WTVSAM

II PAUSE REPLY NO IF MSG 8V960 IS ISSUEO
/I EXEC LVTOC
1&

IISYSIN 00 *
LISTVTOC OUMP,VOL=3330=WTVSAM

The output fozmat has been modified to fit on this papez size.

o •• 4
44
99 .

•• 49 •
104 •

FORMAT 4 OSCB

1

.9.

.54
109

CONTENTS OF VTOC ON VOL WTVSAM

.14. • .19 • I I .29 •••• 34
•• 59

114

.64 I I .74
119 I I 129

.79
134

.39

.84
139

1. Fozmat 4 DSCB (VTOC descziptoz):

.89 •.•. 94
DSCB AOOR (CCHHR)

0401 104040404040404040404040404040404

F4000000030502450194000E007708010000019B001331 100271C8BDE7F9BA51F90008000378BDE7F9BA51F900000000000
---------------~++----++++++++++++++++

2 3 4 5

0000000000000100000000030000001100000000000001 1000000000000000000000000

2. Fozmat 1 DSCB (VSAM catalog):

Z9999994.VSAMDSPC.T8BDE7F4.TAFA2AB8

7

6

0000000301

FIE6E3E5E2CI04000140016363016DOI0000C9C2D406EI 14040000000000000000008C0001000000000000010COOOOOOI00

8 9

000033600000810000010000000300120000000000000/ 1000000000000000000000000

3. Fozmat 1 DSCB (VSAM data space):

Z9999992.VSAMDSPC.T8BOE7F5.TOC90D78

11

10
000000030""

FIE6E3E5E2CID400014D016363016D010000C9C2D406EI 14040000000000000000008COOOI0000000000000I0C000000200

12 13
0000336000008100000400000067001200000000000001 1000000000000000000000000

The numbezs aze explained on the next page.

14
0000000304

Appendix A. VSAM Catalog Miscellaneous 245

Leqend:

1 = This line was added by the utility p~og~am to identify the
Fo~mat-4 DSCB (Label).

2 = Fo~mat~4 identifie~
3 = bytes 76-83 (X'4C'-'53').

'VSAM old timestamp' used by Non-Enhanced VSAM and IEHDASDR.
This timestamp is updated but not checked in systems using
Enhanced VSAM (DOS/VS ~R.31, MVS ~R.3.6, SVS with ICR, VSl
~R. 4 >.

4 = Byte 84 (X'54') bit O.
'VSAM owne~ship bit'. This volume is owned by a VSAM catalog.
Wheneve~ a VSAM catalog is defined o~ a VSAM catalog allo­
cates space on a volume, bit '0' is set ON.

5 = bytes 85-86 (X'55'-'56').
Sta~t of CRA (t~ack offset in hex). 0037 = cyl 2 t~ack ~7

(dec).
6 = bytes 87-94 (X'57-'5E').

'VSAM volume timestamp'. This is the cataloq/volume times­
tamp.

7 = bytes 0-43 (X'00'-'2B').
This is the identification of the VSAM catalog:
Z9999994 = the '4' at the end identifies this VSAM object as

a VSAM catalog. In DOS/VS, SVS and VSl this is the
identification fo~ a use~ catalog (the maste~

catalog uses a '6' instead of a '4'). In MVS the
maste~ and use~ catalog identifie~ is '4'.

Txxxxxxx.Txxxxxxx
is the timestamp when this F-1 DSCB (Label) was
c~eated.

8 = Byte 44 (X'2C').
Fo~mat-1 identifie~

9 = bytes 82-83 (X'52'-'53').
Data set o~ganization (0008 = VSAM)

10 = Byte 93 (X'5D') bit 3.
'Data set secu~ity .bit' (in OS/VS systems also 'OS/VS pass­
wo~d p~otection bit'). This bit p~events othe~ access
methods f~om accessing this data space.

11 = bytes 0-43 (X'OO'-'2B').
This is the identific~tion of a VSAM data space:
Z9999992 = the '2' at the end identifies this VSAM object as

a suballocatable VSAM data space.
12 = Byte 44 (X'2C').

Fo~mat-1 identifie~

13 = bytes 82-83 (X'52'-'53').
Data set o~ganization (0008 = VSAM)

14 = Byte 93 (X'5D') bit 3.
'Data set secu~ity bit' (in OS/VS. systems also 'OS/VS pass­
wo~d p~otection bit').
This bit p~events othe~ access methods f~om accessing this
data space.

246 VSAM PRIMER and REFERENCE

A.3 HOW TO CALCULATE USED SPACE IN A VSAM CATALOG

As desczibed in section 7.4 on page 102 the space foz a catalog can
be calculated using the wozksheet of the Access Method Sezvices
manual. Sometimes, howevez it might be necessazy to calculate the
used space in a catalog as a base foz defining a new catalog.

Nozmally the statistics fields show the numbez of zecozds oz used
RBA-values, but foz a catalog these fields in a LISTCAT output of a
catalog aze meaningless ~nd cannot be used foz space calculations.

The only possible way to find the numbez of occupied zecozds (CIs)
in the catalog 'Low-Keyzange' azea (usually about 90% of the
catalog space). is to analyze the catalog contzol zecozd, CCR (see
also VSAM Logic manuals).

The following is an example of how to pzint the CCR-zecozd of a
catalog to estimate the used space.

The fozmat of the impoztant CCR-zecozd fields is:

X'OO'-'2B'= key (44 bytes)
X'01'-'03'= 3, the CI numbez of this zecozd
X'2C' = X'D3' = 'L' (id of CCR zecozd)
X'2D'-'2F'= (c)numbez of highest CI in the extent
X'30'~'32'= (b)numbez of next fzee CI (not pzeviously assigned) CI
X!33'-'35'= (a)numbez of deleted (pzeviously assigned but fzeed

by deletion) CIs (they ne~d not to be contiguous)

The appzoximate catalog si~e can be estimated by calculating the
numbez of CIs used in the catalog Low-Keyzange, which is about 90%
of the actual catalog size, using this fozmula:

Catalog Low-~eyra~ge = b - a + 1

The following is a gzaphic to show how the values 'a' - 'c' aze
used.

o b c

• • •
\~--------------------------~v~--------------------------~I

total numbez of allocated CIs (LKR)

Appendix A. VSAM Catalog Miscellaneous 247

The CCR is the fou~th CI ~eco~d of any catalog and can be p~inted
using Access Method Se~vices commands as follows:

DOS/VS example (input):

II JOB PRINT UCAT (PARTIAL)

1/ OLBL UCAT,'PRIMER.UCATl'"VSAM
II EXTENT SYSOlO,WTVSAM

II ASSGN SYS010,OISK,VOL=WTVSAM,SHR
II EXEC IOCAMS,SIZE=AUTO

1&

PRINT INFILE (UCAT)

SKIP (31
COUNT (l)

OS/VS example (input):

IIPRIMER JOB WTSC,IBM,MSGLEVEL=l
//PRIM0562 EXEC PGM=IOCAMS
I/STEPCAT DO OSN=PRIMER.UCATl,OISP=SHR

IIUCAT DO OSN=PRIMER.UCAT1,OISP=OLO

IISYSPRINT DO SYSOUT=A

IISYSIN DO *
PRINT INFILE (UCAT/UCATl1RPW)

SKIP (3)

COUNT (1)

output of Access Method Se~vices (DOS/VS and OS/VS a~e simila~):

LISTING OF OS -PRIMER.UCAT1

KEY OF RECORD - 0000000300011

0000 00000003 00000000 00000000 00000000 00000000
0020 00000000 00000000 00000000 03000l8F 00018000
0040 00000320 00000322 00000370 00000370 00000002
0060 0000008E 0000008E 00000000 00000000 00000000
0080 00000000 00000000 00000000 00000000 00000000

OOAO 00000000 00000000 00000000 00000000 00000000
OOCO 00000000 00000000 00000000 00000000 00000000
OOEO 00000000 00000000 00000000 00000000 00000000
0100 00000000 00000000 00000000 00000000 00000000
0120 00000000 00000000 00000000 00000000 00000000
0140 00000000 00000000 00000000 00000000 00000000

0160 00000000 00000000 00000000 00000000 00000000
0180 00000000 00000000 00000000 00000000 00000000

OlAO 00000000 00000000 00000000 00000000 00000000
OlCO 00000000 00000000 00000000 00000000 00000000
OlEO 00000000 00000000 00000000 00000000 00000000

IOCOOOSI NUMBER OF RECORDS PROCESSED WAS 1
IOCOOOlI FUNCTION COMPL, HIGHEST COHO.COOE WAS 0

IOC0002I IDCAMS PROC COMPL. MAX. CONO.COOE WAS 0

00000000 00000000 00000000 * 11

01660001 72000318 00000320 * L •••••••• II

00000078 0000008C 0000008C * /1

00000000 00000000 00000000 * 11

00000000 00000000 00000000 * /1

00000000 00000000 00000000 * 11

00000000 00000000 00000000 * 1/

00000000 00000000 00000000 * / /
00000000 00000000 00000000 * 11

00000000 00000000 00000000 * 1/

00000000 00000000 00000000 *,'1

00000000 00000000 00000000 * _.1'/

00000000 00000000 00000000 * ,.11

00000000 00000000 00000000 * .. ,../ ..
00000000 00000000 00000000 * 11

00000000 00 * / /

Note: The output lines we~e t~uncated on the
limited page size.

~ight side due to

248 VSAM PRIMER and REFERENCE

The approximate catalog size can now be calculated by adding the
three logical parts:

• Low-Keyrange

The number of occupied CIs in 'Low-Keyrange' is 40, since:

b - a + 1 = X'18D' - X'166' = X'27' + 1 = ~

Each CI is 512 bytes in length. Use the device characteristics
table in section 8.2 on page 196 to determine the number of
tracks:

device type = 3330 = 20 * 512 bytes per track

40 entries = 2 tracks for data in Low-Keyranqe used

Add 1 track per data CA (for the imbedded sequence set record).

The data CA sizes in a catalog are as follows:

2305, 3330, 3350 = 3 tracks (2 tracks +
= 5 tracks (4 tracks + 2314, 3340

1 track sequence set)
1 track sequence set)

The allocation units in a catalog are one data control area + one
track.

Total space used for Low-Keyranqe = 3 tracks

• High-Keyrange

The High-Keyrange size is about 10% (DOS/VS Rel.34 20%) of
Low-Keyrange (minimum 1 allocation unit).

• Index set

The index set size is 1 allocation unit (an allocation unit is
1 CA (3 or 5 tracks depending on device type) + 1 track).

Total calculation summary for the catalog:

- Low-Keyrange = 3 tracks
- High-Keyrange = 3 tracks
- index set = 3 tracks

Total catalog space used = 9 tracks

Appendix A. VSAM Catalog Miscellaneous 249

A.4 CATALOG RECOVERY

A.4.1 INTRODUCTION

Unlike nonVSAM, each VSAM data set must be cataloged in a VSAM
catalog. In order to process a VSAM data set, that data set's
catalog entry must be accessible. A damaged catalog will prevent
accessibility of VSAM data sets even though the data may be in
perfectly good condition.

In an MVS environment, a damaged catalog can also affect nonVSAM
users. It is not uncommon to find an MVS installation having a
VSAM catalog that contains several thousand nonVSAM entries.
Damage to such a catalog does not normally prevent accessibility of
nonVSAM data sets, however, the changes that have to be made in JCL
procedures and VS2 TSO C-lists may impact the operation of an
installation.

A much more common problem than the damaged catalog is an
out-of-sync condition where the catalog or its owned volumes is
down-level. A down-level situation is usually created by restoring
an earlier version of the catalog or its owned volumes (see also
description of DUMP/RESTORE on page 255).

Such out-of-sync conditions will usually prevent opening of the
VSAM data set on that particul~r volume. For all practical purpos­
es, this condition is just as unacceptable as the damaged catalog
as far as the particular application is concerned.

With Enhanced VSAM a recovery f~cility is available for VSAM
catalogs. It enables VSAM data sets and catalog entries for both
VSAM and nonVSAM data sets to be recovered in the event that a VSAM
catalog cannot be read for any reason. Use of the recovery facili­
ty for a VSAM catalog is specified via the RECOVERABLE attribute.
Use of this facility is optional.

When a catalog is recoverable, catalog information for each data
set described by the catalog is recorded in both the catalog and
usually in the catalog recovery area (eRA) on the first volume of
the data set on which a data space is defined. Thus, each volume
identified by a recoverable catalog gonta;ns its own catalog
recovery information.

A CRA is autom~tically reserved on a vQlume by VSAM when the first
data space allocation occurs for the volume. Initially, one
cylinder is allocated. If this' space becomes filled. one addition­
al c¥+inder ~sallocated each time ~ cylinder is filled. A CRA can
conta~n a maximu~ of 16 cylinders.

The location of the CRA is specified in the Format-4 DSCB (Label)
for the volume and is not indicated in the associated catalog (see
page 49 and 245). Whenever an entry in a recoverable catalog is
updated, the corresponding catalog information in the catalog
recovery area of the affected volume is also automatically updated.

2~O VSAM PRIMER and REFERENCE

\

This means the affected volume must be mounted.

In DOS/VS systems if the fi~st data space on a volume
with llQ DATA o~ INDEX pa~amete~ specified, the CRA is
cated f~om the data space. The~efo~e, the space value
the EXTENT cont~ol statement must be inc~eased by 1
the CRA.

is a catalog
llQ1 sUballo­
specified in
cylinde~ fo~

In OS/VS systems if the fi~st data space on a volume is a unique
data space the CRA is not suballocated f~om the data space. The
OS/VS DADSM ~outines t~y to dynamically allocate one additional
cylinder fo~ the CRA. For catalogs, the CRA is always suballocated
from the catalog data space.

If the catalog is down-level, a cu~~ent copy of the ent~ies are
still available th~ough the CRA. On the other hand, if the volume
is down-level (and, therefo~e, also the data set and the CRA), the
data and the associated catalog ent~ies can be unloaded (using the
CRA) and reloaded back into the catalog. This will synch~onize the
catalog with its owned volumes.

Two points a~e wo~th noting:

1. The CRA, although containing duplicated ~eco~ds of the catalog,
cannot be p~ocessed as a catalog.

2. With Enhanced VSAM, the synch~onization of the catalog with its
owned volume(s) will ~equire data movement via the
EXPORTRA/IMPORTRA commands (described later).

With DOS/VS Release 33, MVS Data Management Selectable Unit, SVS
with VSAM ICR, and VS/1 Release 6 a new Access Method Se~vices
command, RESETCAT, is int~oduced. This command will take the
entries in the CRA and use them to update (inse~t, delete, ~eplace)

the catalog. This synch~onization p~ocess does not ~equi~e data
movement, thus p~oviding a faste~ way to ~ecove~ the catalog than
EXPORTRA/tMPORTRA.

In DOS/VS nonVSAM data sets cannot be defined in a ~ecoverable

catalog.

A.4.2 CRA OPEN AND CLOSE

A CRA is opened when it is fi~st needed (when CRA ~eco~ds have to
be changed, added o~ deleted), and will ~emain open as long as the
use~ catalog is open. Because of this fact, the CRA volume must
~emain mounted du~ing that pe~iod of time (until the use~ catalog
is closed).

The CRA is not ~efe~enced when the catalog is ~ead.

Appendix A. VSAM Catalog Miscellaneous 251

A.q.3 RECOVERABLE OR NONRECOVERABLE CATALOG

A.q.3.1 MASTER CATALOG

It is the consensus today that the mastex catalog should be kept
'puze'. In othez wozds, the mastez catalog should contain only the
following kinds of data set entzies:

• Usez catalog connectoz entzies

Additional entzies foz MVS systems only:

• ALIAS entzies

• CVOL connectoxs and ALIASes

• System data sets such as LINKLIB

• System wozk data sets such as Page Space

The only way that a mastex catalog can be kept 'puze' and not be
cluttezed with usez data sets is thzough the implementation of a
VSAM passwozd at the update level (see descziption on page 52).

With a 'puze' mastez catalog established, the only advantage that
we can conceive in using a zecovezable catalog is the facility o£
EXPORTRA ENTRIES. This may be useful in a VS2 TSO envizonment
wheze it ii not unusual to find hundzeds of ALIASes (usezid)
zelating to the usez catalog. The EXPORTRA/IMPORTRA command will
allow us to back up and xestoze all the entzies in a stzaightfoz­
wazd mannez.

A.Q.3.2 USER CATALOG

Fox the usez catalog, the selection of zecovezable vexsus nonzecov­
ezable is not as cleaz-cut. Befoze a usez catalog is defined, the
following questions should be addzessed:

1. Is zecovezy of the catalog an impoxtant issue?

It is conceivable that VSAM data sets aze used foz tempozazy
files, which minimize the impoztance of catalog zecovezy.

2. Is good catalog pezfozmance impoztant to the installation oz
application?

The catalog to be used foz VS2 TSO data sets may want to consid­
ez nonzecovezable foz pezfozmance zeasons. Pezfozmance tests
have shown that defining a KSDS took considexably longex with a
zecovezable than a nonzecovezable catalog.

252 VSAM PRIMER and REFERENCE

(

3. A~e the missing Access Method Se~vices functions for a ~ecove~a­
ble catalog impo~tant to the installation?

The following functions a~e (pa~tially) implemented fo~ ~ecover­
able catalog:

Nonrecoverable Recoverable

UNLOAD/RELOAD via REPR01 yes partially supported

DELETE NOSCRATCH2 yes no

Catalog to catalog copy2 yes no

Legend:

1 Unload/reload of a recoverable catalog via REPRO will work
except that the CRA will be ignored in both directions.

2 These commands are supported in MVS only.

4. Are the added functions in EXPORTRA, IMPORTRA and RESETCAT
playing a role in selecting recoverable catalog?

We are referring to features that
recoverability. An example of this
unload a nonVSAM entry and all its
EXPORT does not support nonVSAM data

are not directly related to
is EXPORTRA allowing you to
associated ALIASes, whereas
sets.

The most important question to raise is the first one. If recovery
of the catalog and synchronization of the catalog with its owned
volumes are germane to the operation of the installation, then
recoverable catalog is the only way to go.

~.5 CATALOG BACKUP

Generally, there are two ways to backup a VSAM catalog:

1. Unload/reload the catalog using REPRO

2. Dump the catalog volume with utilities:

• DOS/VS: BACKUP/RESTORE (see utilities manual GC33-5381)

• OS/VS: IEHDASDR (see utilities manual GC26-3901 (VS1) or
GC26-3902 (VS2»

DRWDASDR (Program Product 5740-UT1)

Appendix A. VSAM Catalog Miscellaneous 253

A.S.l REPRO (CATALQG UNLOAD/RELQAD)

REPRO can be used to unload and reload a VSAM catalog. The unload­
ed version called portable catalog here, can be reloaded back into
an existing or new catalog. The new catalog must

• have the same name, same devicetype, same volume serial number
as the catalog prior to unload.

• be large enough in its primary allocation to accommodate all
the extents of the portable catalog.

Insertion, deletion, and replacement will take place for the target
catalog. The content of the target catalog after reload will have
the same content as the portable catalog with one exception; when
reloading into a new catalog, the volume record of the tar~e~

catalog's volume is retained.

Unload/reload will ignore the CRA in both directions and essential­
ly will treat recoverable and nonrecoverable catalogs ~like. When
reloading into a new recoverable catalog, the CRA which is empty
except for self-defining records, will be out of step with the
catalog. RESETCAT.should be executed immediately after reload is
performed (since RESETCAT deletes all entries associated with the
catalog volume, all data sets on the catalog volume should be saved
with EXPORTRA before the RELOAD CATALOG operation is started),

In addition to ignoring the CRA, reload will not attempt to
synchronize the Format-4 'volume timestamp' and the catalog 'volu~e
timesta~p' (see section A.2 on page 244).

This will create an out-of-sync condition that will preclude the
opening of VSAM data sets on the catalog volume.

If the catalog is to be opened as a data set, as in the cases of
LISTCRA COMPARE and RESETCAT, VSAM OPEN will fail with a volume
timestamp mismatch. The only way to get around the problem is to
SUPERZAP the Format-4 'volume timestamp' timestamp (see page 245
note 6) (for DOS/VS systems use IK2VDU, see description on page
179; for OS/VS systems use H/AMASPZAP, see description on page
270).

This super zapping undoubtedly is a violation of VSAM integrity, but
if the action is confined to LISTCRA and RESETCAT, there should be
no unpredictable and undesirable results. It should be pointed out
that the above discussion is applicable only to the catalog volume.
Timestamp out~o£-sync condition on a catalog volume without a
catalog will be corrected by RESETCAT.

254 VSAM PRIMER and REFERENCE

Even with the ~est~ictions of not updating the CRA and F4DSCB, any
out-of-sync condition can be co~~ected by RESETCAT. The~efo~e,

unload/~eload is a viable method in catalog backup and ~esto~e

(since RESETCAT deletes all ent~ies associated with the catalog
volume, all data sets on the catalog volume should be saved with
EXPORTRA befo~e the RELOAD CATALOG ope~ation is sta~ted) o~ backup
with catalog.

One final point ~ega~ding ~eload: if LISTCAT ALL is executed in
the same job step as ~eload, p~obably only a pa~t of the catalog is
listed since the catalog has not yet been closed.

Examples on how to use REPRO fo~ catalog unload/~eload a~e included
on pages 171, 172.

A.5.2 DUMP/RESTORE (OS/VS UTILITY)

A.5.2.1 DUMP/RESTORE VOLUMES (OS/VS)

IEHDASDR dump obviously will take mo~e time than unload, especially
on a device such as 3350. 3850 use~s should also be awa~e that
3330V (which is a vi~tual 3330) is an unsuppo~ted device ~Cl

IEHDASDR.

IEHDASDR ~esto~e has the distinct advantage of p~oviding the same
level of F4DSCB and CRA as expected by VSAM catalog management. On
the othe~ hand, IEHDASDR will ~esto~e all data sets to an ea~lie~
level which may not be acceptable. Fu~the~mo~e, the time involved
in ~esto~ing a pack may be p~ohibitive in u~gent ~ecove~y situa­
tions. Its sho~tcoming may outweigh its advantages.

As VSAM objects a~e p~otected against any nonVSAM access method by
setting the 'data set secu~ity bit' ('OS/VS passwo~d p~otection

bit') in the Fl-DSCB (Label) X'5D' to 'ON' (not to be mixed up with
VSAM passwo~d p~otection, which is sto~ed in the VSAM catalog
only), special setup is necessa~y fo~ volumes containing VSAM
objects when using IEHDASDR o~ DRWDASDR (PP 5740-UT1) (see the
app~op~iate manuals).

Appendix A. VSAM Catalog Miscellaneous 255

The following a~e examples on how to use IEHDASDR:

The fi~st jobs dumps the volume WTVSAM. This job was executed afte~
the LISTCAT ALL example (see section 7.9.2 on page 142).

IIPRIMER JOB WTSC,IBM,MSGLEVEL=l
IIPRIMODU2 EXEC PGM=IEHDASDR
IISTEPCAT DO DSNAME=PRIMER.UCATl,DISP=OLD
IISYSPRINT DO SYSOUT=A
/IDISKl
I/TAPEl
II
II

DO UNIT=3330,DISP=OLD,VOL=SER=WTVSAM
00 VOL=(,RETAIN",SER=057454),UNIT=3400-6,
LABEL=(l ,Sl),
OSN=DUMPVS1,DISP=(NEW,PASS)

IISYSIN DO *
DUMP FROMDO=DISK1,TODD=TAPEl

1*

The output is as follows:

IEH806I DUMP TO DDNAME=TAPEl IS COMPLETED
IEH839I HIGHEST RETURN CODE ENCOUNTERED WAS 00

Note:

The IISTEPCAT DO statement is necessa~y when a VSAM object ~esides
on the volume (othe~wise a 913 ABEND is issued).

The ope~ato~ was p~ompted to ente~ the VSAM catalog master passwo~d
(the catalog was defined with passwo~ds (see page 102).

The second Job ~esto~es the volume.

It is assumed that the~e is a valid VSAM
PRIMER.UCAT1 on the volume. For the JCL
app~opriate utilities manual.

IIPRIMER JOB WTSC,IBM,MSGLEVEL=l
I/PRIMORE2 EXEC PGM=IEHDASOR
I/STEPCAT DO DSNAME=PRIMER.UCAT1,DISP=OLO
IISYSPRINT DO SYSOUT=A
I/TAPEl
1/

II

DO VOL=(,RETAIN",SER=057454),UNIT=3400-6,
LABEL=(l ,Sl),
DSN=DUMPVS1,OISP=OLD

IISYSIN DO *
RESTORE TODO=STEPCAT,FROMDD=TAPE1,PURGE=YES

1*

The output is as follows:

catalog with the name
specification see the

IEH806I RESTORE TO DDNAME=STEPCAT IS COMPLETE. VOLUME SERIAL NO.=WTVSAM
IEH839I HIGHEST RETURN CODE ENCOUNTERED WAS 00

256 VSAM PRIMER and REFERENCE

A.6 CATALOG DEVICE CONVERSION

The only utility cuxxently available to do dixect device convex­
sions of VSAM catalogs is REPRO 'COPYCAT' (see section B.3 on page
272). This howevex is an MVS exclusive and only woxks fox nonxe­
covexable catalogs. The following also discusses othex altexna­
tives with RCATs and othex SCPs.

If a catalog needs to be xeoxganized. ox its allocation needs to be
changed, a catalog copy function needs to be pexfoxmed. The
considexations involved axe genexally the same as device convexsion
and axe mentioned below.

A.G.1 NONRECOVERABLE CATALOG DEVICE CONVERSION (MVS)

REPRO 'COPYCAT' (section B.3 on page 272) can be dixectly used to
move a catalog fxom one device to anothex. A new empty catalog can
be defined on the new volume and the old catalog copied into it.
The new catalog must have a diffexent name, be on a diffexent
volume and be laxge enough to contain all the extents of the old
catalog. Additionally both catalogs must be nonxecovexable.

Following the 'COPYCAT' function the usex must EXPORT DISCONNECT
the oxiginal catalog and delete the clustex entxies that descxibed
the oxiginal catalog and which now xesides in the new catalog. This
function will make the old catalog space available, clean up the
volume's F4 DSCB and wxite a new Volume Recoxd fox the old volume
in the new catalog. The new catalog now owns the old volume.

If the Mastex Catalog (MCAT) device is being convexted ox copied.
the SYSCTLG membex of the SYS1.NUCLEUS must be changed to point to
the new MCAT device. followed by an IPL (see descxiption on page
81). Subsequent to the IPL the DELETE and EXPORT DISCONNF.CT action
must be taken.

When 'COPYCAT' is being used fox device convexsion, the usex must
define a new catalog with a diffexent name than the oxiginal and it
must also xeside on a diffexent vol sex numbex. The xeasons fox this
are because the DEFINE process of the new catalog involves writing
an entry in the MCAT which points to the new catalog. This entry
cannot obviously have the same name as the original souxce catalog.
Since the source and target volumes must also be mounted when Th2

actual copying is being done, the taxget volume must also hav~ a
diffexent volsex. If the usex wants to retain the same volser
and/ox xetain the same catalog name, thexe is no easy straightfor­
ward utility command available to accomplish the task.

Appendix A. VSAM Catalog Miscellaneous 257

what has to be done is the execution of two sets of 'COPYCAT'.
The. first step would be a 'COPYCAT' to an interim catalog on any
scratch volume. The entire 'COPYCAT' process including EXPORT
DISCONNECT and DELETE CLUSTER of the original sources must be
executed here. The second step would be the definition of the new
catalog with the same catalog name on the new volume of the desired
devicetype and bearing the same volser name, followed by the
'COPYCAT' function from the interim catalog on the scratch volume
to the new devicetype.

An additional consideration is the question of the UCAT associated
ALIAS names. These ALIAS names do not reside in the UCAT itself.
They are associated with the user catalog record (U record) in the
MCAT that points to the UCAT volume.

When the catalog copy is done and the EXPORT DISCONNECT command is
issued against the original source catalog (and this must be done),
it deletes the U record and associated ALIAS entries from the MCAT.
The new version of the UCAT is left without its ALIAS names. As a
consequence of this it is generally a good idea to do a LISTCAT of
the original source catalog's U entry in the MCAT, before 'COPYCAT'
is done. The output of this run can be directed to SYSPRINT so a
hardcopy of the ALIAS names is produced or it can be directed to
some tape or disk data set for subsequent retrieval.

Subsequent to the 'COPYCAT' procedure, the user, using the LISTCAT
output, can either manually, (via the Access Method Services DEFINE
ALIAS command), or via a user-written program, (that retrieves the
ALIAS names from the output data set of LISTCAT and generates
DEFINE ALIAS commands) rebuild the ALIAS names for the new UCAT.

A.6,2 NONRECOVERABLE CATALOG DEVICE CONVERSION

REPRO 'COPYCAT' not being available with DOS/VS, SVS, and VS1, the
only choice the user has for device conversion is via EXPORT/IMPORT
of individual data sets. The REPRO Unload/Reload function available
here will not help since it has a requirement that the reload must
be done to a catalog with the same name and devicetype.

Each data set in the catalog being converted must be backed up.
This can be done either via REPRO or EXPORT. Once everything is out
of the catalog being converted, it can be deleted and removed. A
DEFINE for the new catalog must be issued, on the new device type,
and the data set entries moved back into it. If REPRO was used for
backup, the data set can be manually redefined in the new catalog
followed by the REPRO of the data. If EXPORT was used the data set
can now be imported. IMPORT, generally speaking, is nothing more
than a DEFINE followed by a REPRO issued by Access Method Services.

258 VSAM PRIMER ~nd REFERENCE

With Enhanced VSAM (DOS/VS ReI. 31, VS1 Rel.4 and up, SVS ReI. 1.7
with ICR, and MVS ReI. 3.0 with ICR and up) a data set can be
predefined and then IMPORTed into. If the data set, as it is
defined in the catalog is empty (IMPORT checks this) the existing
definition in the catalog will be used. If the data set is indicat­
ed as nonempty in the catalog and is being IMPORTed into, IMPORT
will issue a delete, followed by a DEFINE based on information on
the portable tape data set produced by EXPORT, and then REPRO the
data set in.

During the IMPORT process, since sequential VSAM I/O is being done,
any KSDS being imported will be reorganized. The important point to
remember here is that some of the important performance options
(such as FREESPACE) originally specified for the data set should
probably be changed. If for example FREESPACE (50 50) was original­
ly specified for the data set in anticipation of insert activity
subsequent to the original load process, since these records
probably now do exist in the data set, the FREESPACE parameter
should be reduced. Since the REPRO or IMPORT functions are essen­
tially reload functions, users should make a point of rechecking
the parameters that are specifiable at DEFINE time and make the
appropriate changes (with IMPORT the FREESPACE value can only be
changed if the data set is imported into an empty cluster).

Note: Since device types
space parameters must be
type.

have different cylinder capacities the
checked for accuracy on the new device

Since the data sets involved are
new catalog the catalog statistics
is as if we have a new data set
information available.

being totally reloaded into the
information is also changed. It

with no accumulated statistical

Since EXPORT/IMPORT does not support nonVSAM data sets, any nonVSAM
data sets cataloged in the old catalog must be manually recata­
loged.

A.6.3 RECOVERABLE CATALOG DEVICE CONVERSION

Prior to the availability of the Access Method Services RESETCAT
command, the only tool available to do this kind of conversion were
either EXPORT/IMPORT or EXPORTRA/IMPORTRA. The consideration
relative to these commands are the same as was discussed in the
previous section. EXPORTRA/IMPORTRA essentially do the same as
EXPORT/IMPORT but they do it through the catalog entries in the
CRAs on each owned volume.

Appendix A. VSAM Catalog Miscellaneous 259

The major di££erences are as £ollows:

• With EXPORTRA one can point to a certain CRA and issue a
EXPORTRA ALL command rather than individually EXPORT or EXPO?­
TRA each. entry. This involves. o£ course. less work by the
user.

• EXPORTRA also supports nonVSAM names cataloged in CRAs and will
also move these to the portability tape (or disk). Unlike
EXPORT/IMPORT. the user does not have to manually reenter the
nonVSAM entries; IMPORTRA can be used instead.

• IMPORTRA always does a delete £ollowed by a rede£ine. With
IMPORT i£ the existing catalog entry £or the data set being
imported indicated that it was empty, the existing de£inition
would be used. This is not the case with IMPORTRA.

• I£ an EXPORTRA ALL was originally coded. there is no tool
available to do individual IMPORTRA entries (DSN). It is an all
or nothing proposition.

• Both EXPORTRA and IMPORTRA only support recoverable catalogs
which are only available in Enhanced VSAM. Until Enhanced VSAM
support became available in SVS (with ICR), none o£ what is
discussed here was available to SVS users.

The Access Method Services command RESETCAT became available in
DOS/VS ReI. 33. in VS1 Rel.6. in SVS with the VSAM ICR. and in
MVS via SU 8. Its primary £unction is to rebuild a catalog
through the duplicated entries in the owned volume CRAs. Using
this in£ormation a catalog is rebuilt.

Although not designed to be used as a conversion tool. it can
be used to do so. I£ the RESETCAT £unction is directed to a new
catalog. the entries in this catalog are rebuilt via the CRA
contents. RESETCAT cannot be used against an MVS live master
catalog. It requires the exclusive control o£ the catalog being
reset which is not possible in the case o£ the MVS MCAT.

The steps involved in using RESETCAT to do device conversion
£or a recoverable user catalog are listed below. The new
catalog can be on a di££erent devicetype. di££erent volume
serial number and can also have di££erent space allocation
values. The only restriction is that it must have the same
name as the catalog that originally produced the CRAs involved.

260 VSAM PRIMER and REFERENCE

Resetting into a new RCAT involves the steps listed below. As an
example let us assume that a UCAT called CATl which is on volume
OLPVOL is being moved to volume NEWVOL. CATl owns volume VOLl and
VOL2 in addition to OLDVOL.

Action

1. Using IEHDASDR (FASTCOPY
fo:r: DOS/VS) backup all
volumes involved.

2. LISTCAT ENTRIES (CAT 1) ALL
CAT (maste:r: catalog name)
(OS/VS only) .

3. EXPORT DISCONNECT CAT 1.

4. ~EFINE new catalog called
CATl which is :r:ecove:r:able
on volume NEWVOL.

5. RESETCAT into CATl on
NEWVOL pointing to the
CRAs on VOL1, VOL2 and
OLDVOL.

Explanation

If an e:r::r:o:r: condition occu:r:s
~u:r:ing RESETCAT, then the
rolumes can be :r:estored.

List the use:r: catalog ent:r:y in
the MCAT to get a list of all
its ALIAS names.

Deletes the MCAT ent:r:y fo:r:
CAT1. Also deletes ALIAS names
fo:r: CAT 1 .

Rebuild CATl based on the in­
fo:r:mation in CRAs on all owned
volumes, we now have a new
RCAT on NEWVOL.

of this p:r:ocess, the use:r: should p:r:oceed to
new catalog. The space which the old catalog
now available fo:r: suballocation and is owned

At the completion
thoroughly check the
occupied on OLDVOL is
by the new catalog.

A.7 CATALOG REORGANIZATION

The High-Keyrange po:r:tion of a catalog could requi:r:e pe:r:iodic
reorganization. It currently consists of 10% (DOS/VS Rel.34 20%) of
the total allocated space of a catalog and it is subject to CI and
CA splits. The :r:eo:r:ganization of the catalog essentially involves
the :r:ew:r:iting of all its contents. This can be done if a new
catalog is defined and a :r:ecent backup copy of the catalog is
:r:esto:r:ed into it.

In MVS the REPRO 'COPYCAT' function can be used to copy a non:r:ecov­
e:r:able catalog into another catalog (see section B.3 on page 272).
The disadvantages of 'COPYCAT', as described earlier, is that the
new catalog will have a new name unless 'COPYCAT' is executed twice
with the first execution p:r:oducing an interim version of the
catalog.

REPRO Unload/Reload, if the reload is done to a new catalog, can be
used to reo:r:ganize the catalog. It requires that the catalog being
reloaded have the same name and device type and volser as the

Appendix A. VSAM Catalog Miscellaneous 261

originally unloaded catalog. It also works with RCATs as opposed to
'COPYCAT' that does not. It can also be used to rebuild a catalog
if it has run out of extents or if the user wants to consolidate
all of the extents into one extent (for UNLOAD/RELOAD considera­
tions see also section A.5.1 on page 254).

It is always necessary to insure that the particular catalog
involved in an Unload/Reload operation is quiesced. If this is not
done, since a backup/restore operation is involved, out of sync
conditions could arise that could make either the catalog or some
data sets unusable.

A.7.1 REORGANIZING A NONRECOVERABLE CATALOG

The steps are as follows:

Action Explanation

1. LISTCAT ALL the UCAT To have a list of catalog
entries.

2. LISTCAT ENTRIES (UCATname) To get the catalog ALIAS
ALL CAT(master catalog name) names.
(OS/VS only).

3. EXPORT all of the VSAM data
sets that are wholly or
partially contained on the
catalog volume.

4. Unload the catalog to tape
or disk using REPRO.

5. EXPORT DISCONNECT the
catalog.

6. ALTER REMOVEVOLUMES on the
catalog volume to clean up
the volume.

7. DEFINE new catalog on the
same volume, with same name.
Allocation amounts could be
larger.

8. Reload the catalog (REPRO).

9. IMPORT all data sets EXPORTed
in step 2 above.

10. Manually restore the ALIAS

To remove its name and ALIAS
names from MCAT.

Function is not available in
old VSAM. Volume clean up
can be done via super­
zapping OFF the VSAM
ownership-bit in the F4 DSCB
followed by IEHPROGM SCRATCH.

names for the UCAT (OS/VS only).

262 VSAM PRIMER and REFERENCE

A.7.2 REORGANIZING A RECOVERABLE CATALOG

Reo~ganizing a ~ecove~able. catalog involves some additional steps.
since Unload/Reload opens a catalog as a data set and is not awa~e
of CRAs.

Action

1. LISTCAT ALL use~ catalog.

2. LISTCAT ENTRIES (UCATname)
ALL CAT(maste~ catalog name)
(OS/VS only).

3. EXPORTRA ALL out of CRA on
catalog volume.

4. EXPORTRA ENT (multivolume
data set) of data sets that
wholly o~ pa~tially ~eside
on catalog volume.

5. Unload the catalog to tape.

6. EXPORT DISCONNECT catalog
f~om maste~ catalog.

7. ALTER REMOVEVOLUMES catalog
volume. ~

S. DEFINE new RCAT on same
volume.

9. Reload into new catalog.

10. IMPORTRA all data sets ex­
po~ted in steps 2 and 3
above.

11. Rebuild the ALIAS names fo~
UCAT.

Explanation

To have a list of catalog
ent~ies.

To get a list of the UCATs
ALIAS names out of the maste~
catalog.
To 9aptu~e all of VSAM and
no~VSAM data sets on the
catalog volume.
Get the multi volume data
set names f~om step 1 above.

Use Access Method Se~vices
REPRO.

Cleans up pack and deletes
all VSAM info~mation.
Could have la~ge~ extents.

Use Access Method Se~vices
REPRO.
Resto~es all VSAM and nonVSAM
data sets.

A.S CHANGING THE ALLOCATION OF A NONRECOVERABLE CATALOG.

It is always a good idea to give a catalog the capability of
extending i~to seconda~y extents if it needs to do so. A su~p~is­
ingly la~ge numbe~ of VSAM catalog use~s have not done so.

Once a decision is made to ~eo~ganize a catalog o~ to ~edefine it
with seconda~y allocation amounts specified. the use~ faces the
p~oblem of what to do with possibly a la~ge numbe~ of ALIAS names
associated with the catalog. These ALIAS names will be deleted when
the UCAT is EXPORT DISCONNECTed and can always be manually ~een­
te~ed in the MCAT. but if quite a few of these a~e involved (such
as in a TSO envi~onment) the p~ocess could take a long time. A use~
could always w~ite a utility that would take LISTCAT output and
gene~ate DEFINE ALIAS commands (OS/VS only). Failing this. the
p~ocess mention~d below can be used fo~ non~ecove~able UCATs.

Appendix A. VSAM Catalog Miscellaneous 263

Since the process described below involves backup and restore of
the MCAT and the UCAT, the access to these objects should be
absolutely minimized. Any changes made to . these after they have
been unloaded will not be reflected in the catalogs after they have
been restored. Of particular interest, in the case of the MCAT, are
MVS PAGE data set and SYS1.STGINDEX. Activity against these data
sets should be minimal (hence a quiesced standalone environment) to
prevent their extension between the MCAT unload and subsequent
reload.

Action

1. 2uiesce the system.

2. Backup MCAT and UCAT
volumes.

3. Unload MCAT to tape.

4. EXPORT all VSAM multi or
single volume data sets on
UCAT volume.

5. Unload UCAT to tape.

6. EXPORT DISCONNECT UCAT.

7. ALTER REMOVEVOLUMES UCAT
volume.

8. DEFINE new UCAT.

9. Reload into UCAT.

10. IMPORT data sets EXPORTed
in Step 5.

11. Reload MCAT.

264 VSAM PRIMER and REFERENCE

Explanation

The following steps involve
MCAT backup/restore. It is
necessary to have a stand­
alone quiesced system to
do the following.

For recovery purposes if an
error condition occurs.

This step copies all of the
UCAT's ALIAS names to tape.

Deletes UCAT entry and its
ALIAS names from MCAT.

Cleans up UCAT volume.

Should have secondary alloca­
tion specified and be larger
than all extents of original.

Restores UCAT to original
contents and reorganizes HY.h,

Reloads MCAT and restores
UCAT's original record and
its associated ALIAS names.

~ CHANGING THE NAME OF A VSAM CATALOG

The ALTER NEWNAME command of Access Method Se~vices does not
suppo~t VSAM catalog name changes. If a catalog name is specified
on this command, catalog management checks the old name against the
catalog name and if they match, the command will be rejected. The
primary ~eason fo~ this ~ejection is fo~ integrity purposes.
Catalog management cannot allow a catalog name ohange if there is a
possibility that it might be sha~ed with another region, address
space or cpu.

Currently the only means available to ohange the catalog name, is
via its deletion and redefinition. The user must of cou~se capture
all the entries in the catalog, via EXPORT, EXPORTRA or REPRO,
essentially emptying it out, prio~ to deleting and redefining it.
This is a very time consuming task. Additionally if the catalog is
nonrecoverable, EXPORT does not support nonVSAM entries either, so
subsequently these entries must be manually ~ecataloged. (EXPORTRA
for recoverable catalogs does support nonVSAM entries.)

In MVS, with nonrecoverable catalogs,
to copy the catalog into a new one
'COPYCAT' however is not available in
support recoverable catalogs.

'COPYCAT' can be used simply
with the new desired name.
DOS/VS, SVS, VS1 nor does it

Appendix A. VSAM Catalog Miscallaneous 265

_266 VSAM .PRIMER and aEFtRENtE

~ APPENDIX B. OS/VS CATALOG CONSIDERATIONS

~ USING OS/VS SERVICE AIDS AND UTILITIES WITH VSAM

B.1.1 PRINTING A VSAM CATALOG WITH OS/VS UTILITIES

B.1.1.1 PRINT PARTS OF A CATALOG WITH IEHDASDR/DRWDASDR

The IEHDASDR/DRWDASDR utility can be used to pxint all catalog
extents including index and sequence sets.

If the volume is owned by a usex catalog, a STEPCAT ox JOBCAT
DD-statement must be pxovided.

• The output of LISTCAT (staxting on page 142, contains the
catalog extents as follows (see also descxiption on page 148).

section: CLUSTER ------- PRIMER.UCATl
gxoup: DATA ------- VSAM.CATALOG.BASE.DATA.RECORD

The fixst 'VOLUME' gxoup (descxibing the 'Low-Keyxange')
contains the beginning of the catalog:

EXTENTS LOW-CCHH----X' 00010000 ,

The second 'VOLUME' gxoup (descxibing the 'High-Keyxange')
contains the end of the catalog (if no extents ~ist):

EXTENTS HIGH-CCHH---X'00020010'

• To pxint the catalog use the following job:

//LIST
//STEPCAT
//SYSPRINT
/IDD1
IISYSIN.

EXEC
DD
DO
DD
DO

DUMP FROMDD=DD1,
TODD=SYSPRINT.
BEGIN=OOOlOOOO.
EHD=00020010

1*

PGM=IEHDASDR
DSN=PRIMER.UCAT1,DISP=SHR
SYSOUT=A
UNIT=3330,VOL=SER=WTVSAM,DISP=SHR

*
X

X
X

Appendix B. OS/VS Catalog Cons~dexations 267

B.l.l.2 PRINT PARTS OF A CATALOG WITH A/HMASPZAP

The AMASPZAP (MVS, SVS), or HMASPZAP (VS1) program can be used to
print catalog extents, including index and sequence sets.

A STEPCAT or JOBCAT DD-statement must be provided.

• Obtain the begin and end of the catalog as described in section
B.l.l.1 on page 267).

LOW-CCHH----X·00020000·
HIGH-CCHH---X'00020020'

• Execute utility IEHLIST with the LISTVTOC function (see page
245).

The printout shows the catalog data space name as follows:

Z9999994. VSAMDSPC.TXXXXXXX. TYYYYYYY

• To print the catalog the following job may be used:

IILIST EXEC PGM=AMASPZAP
IISTEPCAT DO DSN=PRIMER.UCAT1.DISP=SHR
IISYSPRINT DO SYSOUT=A
IISYSLIB DO DSN=Z99999994.VSAMDSPC.TXXXXXXX.TYYYYYYY.
1/ UNIT=3330.VOL=SER=WTVSAM.DISP=OLD
IISYSIN DO * ABSDUMPT 00010000 00010010

OR
WILL PRINT SPECIFIC EXTENTS

ABSDUMPT ALL WILL PRINT THE ENTIRE CATALOG DATA SPACE

268 VSAM PRIMER and REFERENCE

B.1.2 HOW TO CHANGE OWNERSHIP BITS AND VOLUME TIMESTAMP:

For all functions described in the next three sections DOS/VS users
may use the IK2VDU utility (described on page 179).

The functions described in the next thtee sections ate a violation
of VSAM data set security and protection and should only be used in
critical situations.

A description. of the 'data set security bit' is included in section
2.10.2 on page 45.

A description of the 'VSAM ownership bit' is included in section
2.10.1 on page 44.

A description of the 'VSAM volume timestamp' is included in sectioa
A.2 on page 244.

B.1.2.1 TURN OFF THE 'DATA SET SECURITY BIT' (OS/VS)

When the catalog cannot be opened due to I/O errors or damaged
self-defining records, the only way to print the catalog without
STEPCAT is turning off the 'data set security bit' (in OS/VS
systems also called 'OS/VS password protection bit') in the Format
1 DSCB (see page 245 note 10) for the catalog data space.

The following procedure can be used to turn off the 'data set
security bit'

• First execute utility IEHLIST with the LISTVTOC function to get
the 'cccchhhhrr' of the FORMAT-1 DSCB of the catalog space with
the name 'Z9999994.VSAMDSPC.Txxxxxxx.Tyyyyyyy' (see section
A.2.2 on page 245).

• Then turn the 'data set security bit' OFF with the following
job:

IIZAP
IISYSPRINT
IISYSLIB
II
IISYSIN

CCHHR
VER
REP

1*

Note:

EXEC
DD
DD

DO
CCCCHHHHRR
0050
0050

PGM=AMASPZAP
SYSOUT=A
oSN=FORMAT4.oSCB,UNIT=3330,
VOL=SER=WTVSAM ,0ISP=OLo, DCB=KEYLEN=4.4

*
I*OBTAIN FROM FORMAT-l oSCB*1

lOCO
OOCO I*TURN OFF 'DATA SET SECURITY BIT' *1

The SYSLIB to be specified is always 'FORMAT4.DSCB' even though the
Format-1 DSCB is modified.

Appendix B. OS/VS Catalog Considerations 269

B.l.2.2 TURNOFF THE 'VSAM OWNERSHIP BIT' (OS/VS)

If a disk contains VSAM objects which should be deleted and the
VSAM catalog which owned the volume is not accessible or not
available any more, one way to use the volume for VSAM objects is
to turn the VSAM ownership bit off.

In DOS/VS the IKQVDU utility (described on page 179) can be used.
In OS/VS the following method or ALTER REMOVEVOLUMES (see example
on page 181) can be used.

The 'VSAM ownership bit' in the Format-4 DSCB is shown on page 245
note 4.

IIZAP
IISYSPRINT
IISYSpB
II
II~YSIN

1*

CCHHR
VER
REP

EXEC
DO
DO

DO
CCCGHHHHRR
0054
0054

80
00

PGM=AMASPZAP
SYSOUT=A
oSN=FORMAT4.DSCB,UNIT=3330,
VOL=SER=WTVSAM,DISP=OLD,DCB=KEYLEN=44

*
I*OBTAIN FROM FORMAT-4 DSCB*I

I*TURN OFF VSAM OWNERSHIP BIT *1

B.1.2.3 MODIFY THE VSAM VOLUME TIMESTAMP (OS/VS)

As described in section A.5.l on page 254 a catalog maybe out of
sync with its volume(s) after either reloading a backlevel catalog
or a backlevel volume containing the catalog.

To enable access t~ the VSAM data sets for recovery purposes the F4
'volume timestamp' (see page 245) must be changed to exactly the
same value as the 'volume timestamp' in the catalog's volume record
(see page 159).

The catalog timestamp is shown on pa9,e 159.

The VToe volume timestamp is shown oq page 245 note 6.

The Format-4 'volume timestamp' may be modified with the following
job:

IIZAP EXEC PGM=AMASPZAP
IISYSPRINT DO SYSOUT=A
IISYSLIB DO DSN=FORMAT4.DSCB,UNIT=3330,
II VOL=SER=WTVSAM,DISP=OLD,DCB=KEYLEN=44
IISYSIN DO *

CCHHR CCCCHHHHRR 1* OBTAIN FROM LISTVTOC *1
VER 0057 XXXXXXXXYYYYYYYY 1* OBTAIN FROM LISTVTOC *1
REP 0057 XXXXXXXXYYYYYYYY 1* OBTAIN FROM LISTCAT *1

1*

270 VSAM PRIMER and REFERENCE

~ CATALOG PERFORMANCE CONSIDERATIONS (OS/VS)

As desc~ibed in det~il in the following sections, VSAM catalog
management uses multi-st~ing di~ect I/O to ~ead the catalog.

The default bu££e~ space e3K) allows to build 2 st~ings.

I£ a catalog is used by many use~s/p~og~ams additional st~ings may
imp~ove pe~£o~mance d~amatically.

The following table sho~s the ~elation o£ bu££e~ space, defined
with the BUFSP pa~amete~ at DEFINE time and the numbe~ o£ ~esulting
st~ings.

BUFSP ~t~ings Xng~x Bu££e~ Data By£fe,
3 K 2 3 3
4 K 3 4 4
5 K 4 5 5
6 K 5 6 6
7 K 6 7 7
8 K 7 8 8
9 K 7 10 8

10 K 7 12 8

Theo~etically the~e is no limit in specifying a la~ge

BUFSP. This is not yet documented in Access Method
Manuals. The specified bu££e~ space in excess o£ 8K is
numbe~ of index bu££e~s.

amount o£
Se~vices

added to

When using sha~ed UCB to access a catalog £~om multiple CPUs rll
bu££e~s a~e ~e£~eshed £o~ each access. This may dec~ease pe~fo~­

mance when using too many bu££e~s.

Appendix B. OS/VS Catalog Conside~ations 271

1L...l COpy CATALOG - CATALOG (REPRO) (MVS ONLY)

The following tezms aze used:

COPYCAT = is a terminology used loosely to desczibe the REPRO
function which copies a VSAMcatalog into another
VSAM catalog tMVS only)

CRA
MCAT
RCAT
UCAT

= Catalog Recovezy Azea
= VSAM Mastez Catalog
= VSAM Recoverable Catalog (usez oz maste~ catalog)
= VSAM User Catalog

'COPYCAT' is an MVS exclusive function. It allows an MVS user to
copy a catalog directly into another new catalog. The target
catalog must bea new empty catalog, but it could have a different
name, volser and devicetype than the souzce catalog. Thus it is a
very nice tool to be used by MVS usezs foz catalog device convez­
sion oz backup.

'COPYCAT' only suppozts regulaz (nonzecovezable) catalogs. If
eithez the source oz the tazget is zecovezable, 'COPYCAT' stops.
The reason foz this is that 'COPYCAT' opens both catalogs as VSAM
data sets and uses regulaz VSAM GET/PUT logic. Thus it bypasses any
kind of CRA pzocessing which of couzse, if 'COPYCAT' with zecovera­
ble catalogs were allowed, would cause catalog-CRA out of sync
conditions. Hence no support for zecovezable catalogs (heze called
'RCAT') at all.

In the pzocess of copying, 'COPYCAT' copies the self describing
recozds of the oziginal source catalog also (it is s~mply doing CI
by CI zeads and wzites.) It is up to the user to delete these
entries subsequent to the copy function. The user must also realize
that uniil such a point as the oziginalsouzce Catalog is deleted,
we have- 2 catalogs owning the volumes and data ~ets involved. This
is a severe integrity exposuze that should be immediately zemedied
by the usez deleting the souzce catalog's 'clustez entry in the new
target catalog. This DELETE run cleans up the F4 DSCB VTOC on the
oziginal catalog indicating that the catalog is gone and fzees up
the oziginal catalog space. It also deletes t~e souzce catalog
self-describing zecozds and clustez entries in tazget. The MVS
Access Method Sezvices SRL (see page 2) describes this function
fuzthez under the topic of "Copy ~ Catalog Pzocedure""in the
chaptez "Copying and Pzinting".

~ OS/VS CVOL CATALOG VERSUS VSAM CATALOG

The discussion is designed to give the readez enough pertinent
infozmation such that an appzopziate decision can be made in
deciding between VSAM Usez Catalogs (UCATs) and OS/VS CVOLs. It
will howevez point out impoztant considerations that can be used by
any SCP user to detezmine the contents of each type of catalog.

272 VSAM PRIMER and REFERENCE

(

The following te~ms a~e used:

CVOL = OS/VS System Catalog
HKR = High-Key~ange
LKR = Low-Key~ange
MCAT = VSAM Maste~ Catalog
RCAT = VSAM Recove~able Catalog (use~ o~ maste~ catalog)
UCAT = VSAM Use~ Catalog

This discussion does not ~efe~ence any di~ect pe~fo~mance figu~es.
Benchma~k figu~es in this type of compa~ison would be meaningless
since pe~fo~mance, as it will be pointed out, is dependent on the
contents of each catalog and the type of p~ocessing done. Any UCAT
o~iented discussion natu~ally applies to the MVS MCAT also since
the MCAT is nothing othe~ than a UCAT that is designated by the
use~ as an MCAT.

B.4.1 VSAM USER CATALOG ADVANTAGES (OS/VS)

The following section discusses the mo~e favo~able aspects of a
VSAM catalog.

• A VSAM catalog's index st~uctu~e is a balanced t~ee. Additions
o~ deletions to the catalog do not change the st~uctu~e, i.e.
gaps a~e not int~oduced and f~agmentation does not occu~. So
the pe~fo~mance of the catalog does not necessa~ily deg~ade

with additions o~ deletions (in some cases the DEFINE pe~fo~­
mance may dec~ease significantly if many VSAM data sets a~e
defined on the same volume).

• A VSAM catalog suppo~ts both VSAM and nonVSAM ent~ies.

• VSAM catalogs can be sha~ed between vi~tual SCP systems with
total integ~ity.

• VSAM catalogs a~e also totally po~table between systems. A MCAT
can be taken ove~ to anothe~ system and used as an MCAT o~

connected as a UCAT to the existing MCAT. The incompatibilities
in te~ms of po~tability ~~ sha~ing possibilities a~e only
~elative to Recove~able Catalogs (RCAT) in cases whe~e an SCP
does not suppo~t RCATs (SVS until Ap~il 77).

• VSAM catalogs ce~tainly do not suffe~ £~om lack of utility
suppo~t. In fact if the~e is a p~oblem it is the othe~ way
a~ound whe~e the~e a~e many utilities that a use~ has to know
about and lea~n.

• If we use VSAM catalogs we have the capability of using Recov­
e~able Catalogs (RCAT) which is ce~tainly a useful featu~e to
have. They, unlike othe~ catalogs, give you the capability of
having a dynamic backup st~uctu~e such that at any given point
in time you~ backup is totally up to date and in sync with you~
catalog. We additionally have a comp~ehensive set of utilities
to access this backup st~uctu~e fo~ ~ecove~y pu~poses. All of
this is available without any majo~ loss in pe~fo~mance.

Appendix B. OS/VS Catalog Conside~ations 273

• JOBCAT/STEPCAT DD cards give a user the capability of directing
a requeit to a particular catalog. This r~duces the search path
length and is optimum in terms of performance.

• Qne can specify additional new fields for even nonVSAM data
sets in a VSAM catalog. Owner ID and retention period are new
fields in addition to the normal volser, devicetype informa­
tion.

• In terms of protection VSAM catalogs have the ad,ded function of
password protection. Three levels of passwords, Master, Update
and Read levels can be specified for a catalog. The fourth
type, CI level password, does not really have any meaning with
VSAM catalogs (s~e also description of passwords on page 52).

B.4.2 VSAM USER CATALOG DISADVANTAGES (OS/VS)

The following is a compilation of unfavorable items relative to
VSAM catalogs.

• A lot of users, specially MVS MCAT users would like a relaxa­
tion of volume ownership rules. These rules limit the ownership
of a volume to only one VSAM catalog. This rule only applies to
VSAM data sets. NonVSAM data sets on an owned VSAM pack can of
course be cataloged in any other catalog.

• VSAM catalogs generally end up being very large objects.
Especially compared with OS/VS CVOLs they are much larger.
There is a good deal of space in the Low-Keyrange of VSAM
catalogs specially for nonVSAM entries. But then again for VSAM
entries there is a great deal more information recorded than
what we have been used to.

The big size of a catalog, apart from obvious disk space
considerations, makes the DASD arm seek s~an larger which is a
performance consideration.

• The number of I/Os required to locate anything in a VSAM
catalog is more than likely a minimum of 3. As an example to
locate a nonVSAM single volume entry, catalog management must
read the following:

1. High level index record

No I/O. This is kept in storage after the very first access.

2. An intermediate level index record if the number of index
levels are greater than 2

3. A sequence set record. This however can be in storage in an
index buffer

4. The High-Keyrange recor~

274 VSAM PRIMER and REFERENCE

5. The Low-KeYEange EecoEd.

• Catalog management uses VSAM multi-st~ing di~ect I/O to =ead
the catalog. This type of I/O invalidates the data buffeE afteE
the buffeE is ~eleased, i.e. when the I/O is done, so the
likelihood of finding any valid data associated with the st~ing
being used is veEY low. So at least the HKR and LKR EeboEds
must be Eead. The sequence set EecoEd will p~obably have to be
Eead since multiple stEings do not shaEe sequence set buffeEs
hence the likelihood of a.stEing finding a sequence set EecoEd
associated with its buffeE is minimal.

• VSAM KSDS's cUEEently suffeE fEom a
which ingenezal is EefeEEed to
pEoblem." A VSAM catalog being
pEoblem. The p;oble~ is. howeve;.

phenomenon, explained below,
as the "Space Reclamation
a KSDS suffeEs fEom this

limited only to the HKR.

FOE eveEY data CI in a KSDS, theEe is an entEY in a sequence
set EecoEd. This entEY contains the compEessed key of the
zecoEd with the highest key in the CI. Keys, when they azzive
into the index component, aEe compEessed zelative to what key
had aEEived pEioE to them and what will come afteE them. They
aEe fEont and zeaz compEessed. One Qan have a 255 byte key that
gets compzessed down to 1 byte by the tim~ it gets into. the
sequence set EecoEd. Because of the compression they actually
expzess a Eange of possible keys as opposed to an actual key
associated with the paEticulaE CI.

With the cUEEent implementation, all the Eecozds in a CI can be
eEased so that it is totaLly empty, howeveE the sequence set
pointeE is not Eemoved. As long as the sequence set pointeE
zemains wheze it is, the only way one can put a zecoEd into
this empty CI, is via coming in with a EecoEd whose key fits
within the zange descEibed by the sequence set pointeE. If this
is neveE the case, the CI will always sit theEe, taking space
and neveE being used. The space will neveE be Eeclaimed. Hence
the "Space Reclamation PEoblem."

In nOEmal KSDS type of pEocessing, it being considered a
Eandomly Eetrieved OE accessed kirid of object, theze is no
problem of space Eecl~mation. Random access means just that.
The likelihood of coming in with a key that fits in the zange
described with the sequence set zecoEd is veEY good. lri certain
cases however, we might h~ve this pEoblem. If we are always
inseEting Eecords that have successively higher key values and
never coming in with loweE keys we will have this problem.

VSAM catalogs suffeE fEom this problem when GDGs aEe cataloged
in them and the GDG geneEation numbers aEe n~veE Eeused. Each
generation of a GDG has a key higheE than the pzevious key. If
we delete a GDG base and never Eeuse those same genezation
numbers (urilikely situation') we will have the wasted space in
the HKR and only the HKR.

The problem used to be worse in the old version of VSAM.
GeneEated VSAM names aLways consisted of 8 bytes of the time of

Appendix B. OS/VS Catalog Considerations 275

day clock value. So they were always in ascending sequence.
Their subsequent deletions did not do any good because other
generated keys always had a higher value. Enhanced VSAM fixed
this particular problem by taking the TOD value and breaking it
in half, putting one half in the front of the name and the
other half on the other end, thus making the name totally
random.

If a user currently uses GDGs the way it is explained above,
his/her choices are twofold:

(1) Do not put GDGs in VSAM catalogs;
(2) Periodically reorganize the catalog via the Repro Accaqs
Method Services command. More on this later (see section A.7 on
page 261),

• There is no GDG support in VS1/SVS VSAM catalogs. If a GDG Base
or new generation is cataloged in a VSAM catalog during an MVS
migration process and the catalog is subsequently moved back to
VS1/SVS, the new GDG entries must be manually recataloged in an
appropriate CVOL. Additionally there is no ALIAS name support
in SVS/VS1 VSAM catalogs.

• ALIAS support is an MVS exclusive support which is mainly used
for CVOL or UCAT entries. Data set names cataloged in MVS CVOLs
or UCATS are mostly accessed through qualified dataset names
that have the ALIAS of the CVOL (or UCAT) or the catalog name
as a first level qualifier. This support is not needed in
SVS/VS1 because ALIAS support for CVOLs has always been avail­
able in these systems and of course STEPCAT/JOBCAT DD cards are
the only means of accessing VSAM catalogs even i,f the entries
are qualified.

• VSAM catalogs require a good deal of virtual storage for
buffers and control blocks. In an SVS environment all of the
catalog control blocks are fixed for the duration of the OPEN.
In VS1 and MVS (Enhanced VSAM) these control blocks and buffers
are "not fixed; they are page able . These required control blocks
and buffers get fixed only for the duration of the I/O.

Generally speaking, for a KSDS, the amount of storage needed
for control blocks is equal to 4560 + 1560 (S - 1) where S it
the number of strings. A YSAM catalog being a KSDS, therefore
requires a minimum of 4560 + 2560, i.e. 7120 bytes of control
blocks. This is for the case when bufferspace of 3K is speci­
fied which translates into 2 strings. The 3K of buffers is on
top of this which makes it approximately 10K of virtual
storage. Of this amount only 224 x S (MVS) or 72 x S (VS1) is
always fixed. The rest is pageable common storage.

To summarize, a VSAM catalog requires anywhere from 10K (2
strings) to 20K (7 strings) of virtual storage. This storage
comes out of protected common storage areas. CSA in MVS and SQA
in VS1. Too many open catalogs will have the effect of extend­
ing the users address space or partition size (see also chapter
9.0 starting on page 225, where VSAM working set and storage

276 VSAM PRIMER and REFERENCE

;'
\

sizes a~e desczibed).

• Without Recove~able VSAM catalogs (RCATs), the act of catalog­
ing an ent~y in a VSAM catalog was nothing mo~e than making an
ent~y into the catalog. The volume containing the data set did
not even have to be azound. With RCAT since the catalog entzies
a~e duplicated in the CRAs on each owned volume, ell of the
volumes specified must be mounted. Anytime a CRA is accessed
the volume must be mounted. In MVS these volumes a~e dynamical­
ly allocated and mounted. In VSl we need to specify DD ca~ds so
the schedule~ can mount and access them.

• Compa~ed to CVOLs, VSAM catalogs suffe~ f~om limited access
p~oblems.

Fo~ update p~ocessing, w~iting into o~ updating, VSAM catalogs
allow only single access. This says that while a ~equeste~ is
w~iting. eve~y othe~ ~equeste~ must wait. Fo~ nonupdate type of
zequests, this ~est~iction does not apply, but we still have a
maximum limitation. The limitation is based on the STRIJ:G
numbe~. Each st~ing specifies a concu~zent ~equest.· If 0UZ

st~ing numbe~ is 2 we can only have 2 ~equestezs concu~~en~ly
~eading. If the st~ing numbe~ ~s 7 the limit is foz 7 zeq~E5-
te~s and no mo~e.

B.4.3 CVOL ADVANTAGES (OS/VS)

Pzioz to the availability of the Data Management SU (SU 8), CVOL
suppo~t in MVS was minimal. SU 8 has zestozed CVOL suppo~t to the
level available in SVS, VS1, etc. subject, howevez, to the single
catalog stzuctu~e of MVS (as opposed to dual catalog st~uctuze of
SVS/VSl whe~e we have an OS/VS System Catalog and a VSAM Maste~
Catalog). Some of these diffezences have been discussed and the
~est will be pointed out shoztly.

• CVOLs a~e typically much smallez objects than
This in tuzn means that the seek span of the
accessing a CVOL can be much smalle~. which
tzanslate into bettez pezfozmance

VSAM catalogs .
DASD azm when
in tuzn could

• CVOLs a~e migzatable between not only vi~tual SCP's but also
MVT and othez non-vi~tual contzol pzog~ams.

• The~e is no limit fo~ concu~~ent READ access to CVOLs in one
CPU. This is contzasted to VSAM catalogs that have a maximum
limit of concuz~ency of access of 7.

• CVOLs do not suffez f~om the so called "space zeclamation"
pzoblem of VSAM catalogs as desczibed ea~liez (section B.4.2 on
page 274), They have total space ~eusage. Although this saves
DASD space fo~ the usez, it can pose othez pzoblems that will
be discussed in section B.4.4 on page 278).

• CVOL entzies a~e stozed with the key field on the DASD device.
Thezefoze seazches aze done on the DASD device by DASD key.

Appendix B. OS/VS Catalog Considezations 277

VSAM catalogs have an index structure which is read into
storage and searched via the cpu. CVOL searches mean more DASD
and channel time, whereas VSAM searches involve more cpu time.

• CVOLs performance is dependent on the size of the catalog, the
number of index levels and the number of names at each level.
The smaller the sii. the smaller the,DASD arm seek span. The
smaller the number of index levels and entries at each level,
the lesser the search time and therefore the faster the access.

• It is possible to chain CVOLs such that a data set can be dound
yia searching multiple CVOLs chained together. Another way to
point this ,out is to indicate that a CVOL can point to CVOL and
so on. VSAM catalogs can not point to other VSAM catalogs (no
chaining) with the exception of the Master catalog pointing to
user catalogs or to a CVOL (MVS only). User catalogs can not
point to user catalogs.

B.4.4 CVOL DISADVANTAGES (OS/VS)

• CVOLs do not support VSAM data sets. VSAM catalogs support both
VSAM and nonVSAM.

• Although, as pointed out earlier, CVOLs have total space reuse,
this can be done at the expense of some performance. It is
ehtirely possible that over a period of time with additions
and/or deletions, CVOLs can become fragmented to the point th&t
~he DA~D arm can "ping-pong" back and forth between cylind~~~
far apart. This is a characteristic of large very active ol~
CVOLs. The obvious solution to the problem is eventual reorg&~­
ization, which leads us into the next topic.

• Certainly, compared to VSAM catalogs, CVOLs suffer from the
lack of comprehensive utility support. The only utility avail­
able for any CVOL activity in terms of backup, recovery,
teorganization etc. is IEHMOVEwhich is not exactly near and
dear to too many hearts. Most shops have their own user-written
version of a utility to backup and reorganize CVOLs.

• Syst~m access to CVOL entries, in an MVS environment, is
through qualified data set names. By system access this means
scheduler allocation activity via JCL. Generally speaking
access in MVS is always through the MCAT via qualified data set
names and "SYSCTLG" pointers in the MCAT.

The only exception is where a user through IEHPROGM or some
user code, writes a CAMLST macro specifying a CVOL parameter.
Access in this case is directly to the particular CVOL, but
even in this case the SYSCTLG entry in the MCAT must exist,
since the scheduler still accesses the MCAT to find out the
CVOL devicetype. This essentially indicates that all data set
names in a CVOL must be qualified and the first level qualifier
must be an ALIAS name of the CVOL and reflected in the MCAT.

278 VSAM PRIMER and REFERENCE

C.O APPENDIX C

~ DEVICE TYPE TRANSLATE TABLE

The following device type translate table has been extracted from
Access Method Services manual and is valid for all systems:

LISTCAT Code

3000 8001
3040 200A
3050 2006
3050 2007
3050 2009
3050 200B
3050 200D
3058 2009
3080 8001
30CO 2008

Device Type

9 TRK TAPE
3340 (35M/70M)
2305-1
2305-2
3330-1,2
3350
3330-11
3330V
7 TRK TAPE
2314/2319

C.2 LIST OF ABBREVIATIONS

ACB =
AIX =
AMS =
CA =
CI =
CIDF =
CNV =
CRA =
DASD =
DCB =
DSCB =
ESDS =
HKR =
ICI =
IS =
KSDS =
LKR =
LR =
MCAT =
RBA =
RCAT =
RDF =
RPL =
RRDS =
SS =
UCAT =
VTOC =

Access Method Control Block (VSAM DCB equivalent)
Alternate Index
Access Method Services (abbreviation not used any more)
Control Area
Control Interval
Control Interval Definition Field
Control Interval (used for control interval access)
Catalog Recovery Area
Direct Access Storage Device
Data Control Block (OS/VS control block to describe a
nonVSAM data set)
Data Set Control Block (in the VTOC)
Entry Sequenced Data Set
High-Keyrange
Improved Control Interval access
Index Set (part of the index)
Key Sequenced Data Set
Low-Keyrange
Logical Record
VSAM Master Catalog
Relative Byte Address
VSAM Recoverable Catalog (user or master catalog)
Record Definition Field
Request Parameter List (VSAM control block)
Relative Record Data Set
Sequence Set (part of the index)
VSAM User Catalog
Volume Table Of Contents (disk directory)

Appendix C. 279

(

280 VSAM PRIMER and REFERENCE

IHDEX:

Abb~eviations 279
ACB

BUFHD DOS/VS 212
BUFHD OS/VS 215
BUFHI DOS/VS 212
BUFHI OS/VS 215
BUFSP DOS/VS 212
BUFSP OS/VS 215
ICI option 74
mac~o 217

fo~mat DOS/VS 212
fo~mat OS/VS 215

specify a password 55
Access

alte~nate index 36
base cluste~ 36

via alte~nate index 36
Access Method Services

command fo~mat 85
command overview 57
in sto~age

DOS/VS 225
MVS 227
SVS-VS1 226

manuals 2
SYSxxx assignment(DOS/VS) 86
usage 85

Access methods
BDAM ve~sus VSAM 74
ISAM versus VSAM 75
overview 71
SAM ve~sus Seq. VSAM 73

Access types 20
Addressed p~ocessing

ESDS direct 27
ESDS sequential 26
KSDS direct 24

AIX see Alte~nate Index
Alias

definition 183
entry in catalog 51
support in MVS 276
with qualified names 94

Allocation
ext~act from LISTCAT 148
units

description 50
sizes 249

ALTER
command overview 58
example 58,121
free space 121
passwo~d 121
REMOVEVOLUMES 181

Alternate Index
access· 36
allocation (LISTCAT)

data component 150
index component 149

cluster 30
components 30
deletion (example) 173
description 29
ent~y in catalog 51
export 122
for ESDS

definition 129,134
desc~iption 31.34

for KSDS
definition 111,116
description 31.33

import 124
loading 113
parameters

KEYS 110
NOHUNIQUEKEY 110
HOUPDATE 110
HOUPGRADE 110
RELATE 110
UHIQUEKEY 110
UPDATE 110
UPGRADE 110

update examples 37
upgrade set 31
st~ucture 32
with Path 29,35
working set

DOS/VS 229
MVS 231
SVS 233
VS1 235

Alternate key 12.30
AMASPZAP service aid (OS/VS)

alter ds secu~ity bit 269
alter ownership bit 269
print the catalog 268

Assembler Mac~os
compatibility 5
description 217
ACB 217
BLDVRP (OS/VS) 222
CHECK 221
CLOSE 222
DLVRP (OS/VS) 222
EHDREQ 221
ERASE 221
EXLST 218
GEHCB 219

Index 281

Assembler Macros (cont.)
GET 220
GETIX 222
MODCB 219
MRKBF. (OS/VS) 223
OPEN 220
POINT macro 221
PUT 221
PUTIX 222
RPL 218
SCHBFR (OS/VS) 223
SHOWCAT 220
SHOWCB 219
TESTCB 219
WRTBFR (OS/VS) 222

ATTEMPTS parameter 55
Backing up

catalog (see Catalog) 171.172
data set (see Data set) 66.122

BACKUP/RESTORE (DOS/VS) 253
Backward processing 22
Base

.cluster
access 36
description 29

key 12
Basic description of VSAM 5
BDAM

description 71
versus VSAM 71.f.

BISAM description 71
BLDINDEX

command overview 59
description 30
example (ESDS) 130.135
example (KSDS) 113

BLDVRP macro (OS/VS) 222'
BPAM description 71
BSAM description 72
Buffers

description 10.190
for direct access 192
for multiple strings191.f.
for sequential access 193
for skip seq. access 192
non-shared resources 190

BUFND parameter
default 190
DOS/VS ACB 212
OS/VS ACB 215
OS/VS JCL 213
suggested value for

direct access 192
sequential access 193
skip-sequential access 192

182 VSAM PRIMER and REFERENCE

BUFNI parameter
default 190
DOS/VS ACB 212
OS/VS ACB 215
OS/VS JCL213
suggested value for

direct access 192
sequential access 193
skip-sequential access 192

BUFSP parameter
default 190
DOS/VS ACB 212
DOS/VS JCL 211
for OS/VS catalog 271
in DEFINE command 190
OS/VS ACB 215
OS/VS JeL 213
suggested value for

direct access 192
sequential access 193
skip-sequential access 192

CA see Control Area
Calculate

KSDS size 197
used catalog space 247

Catalog
allocation change 263
backup

BACKUP/RESTORE (DOS) 253
IEHDASDR des cr. (OS) 255
IEHDASDR examples (OS) 256
REPRO description 254
REPRO examples 171,172

BUFSP parameter (OS/VS) 271
calculate used space 247
CCR catalog control record

format 247
printout 248

change allocation 263
chang~ catalGg name 265
change master catalog

DOS/VS 79 .
MVS 81
SVS 83
VS 1 83

cleanup 181
components 49
considerations 47
content 50
description 50
device conv. nonrec. cat.

MVS 257
DOS/VS,SVS,VS1 258

device conv. rec. cat. 259
dynamic allocation MVS 1.f.3

Catalog (cont.)
entries 51
High-/Low-Keyrange logic 242
High-Keyrange 241
layout 49
Low-Keyrange 241
multiple strings (OS/VS) 271
name change 265
ownership of volumes 47
performance (OS/VSO 271
philosophy 47
print the catalog

with A/HMASPZAP 268
with IEHDASDR 267
with LISTCAT 142

recoverable catalog
description 250
versus nonrecoverable 252

recovery area
description 250
Open and Close 251
pointer in VTOC 49
size 195
space allocation 250

recovery
introduction 250
versus nonrecovery 252

reorganization
introduction 261
nonrecoverable catalog 262
recoverable catalog 263

self d~scribing records 242
shared UCB (OS/VS) 271
sharing 51
size 195
space allocation

DOS/VS 45
OS/VS 45

structure 243
used space calculation 247

CCR catalog control record
format 247
printout 248

Change data set attributes
see ALTER

Change (with ALTER)
FREESPACE 121
PASSWORD 121

CHECK macro 221
CHKLIST

command overview 59
CHKPT macro 59
Choosing

the data CI-size 185
the index CI size 186

CI see Control Interval
CIDF description 7
Cleanup volumes 181
CLOSE macro 222
Cluster

alternate index cluster 30
base cluster 29
description 16
entry in catalog 51
entry displayed

with LISTCAT 152
names 43

Commands
overview 57
ALTER 58.121
~LDINDEX see BLDINDEX
CHKLIST 59
CNVTCAT 57
DEFINE see DEFINE
DELETE see DELETE
EXPORT 122
EXPORTRA 167
IMPORT 124.166
IMPORTRA 169
LISTCAT 140,142
LISTCRA 160,163
PRINT see PRINT
REPRO see REPRO
RESETCAT 164
VERIFY 126

Compression
see Key compression 203

Connecting a user catalog
with the master catalog 166

Control Area (CA)
description 10
size 10.195
size calc. by VSAM 187
split

direct insert 202
mass insert 209
restriction 96

structure 10
Control (information) field

CIDF 7
RDF 7'

Control Interval (CI)
calc. formula (index) 206
capacity (index entries> 195
choosing data CI-size 185
choosing index CI-size 186
description 6
processing

description 74
ESDS 27

Index 283

Control Interval proc. (cont.)
KSDS 24
RRDS 29

size
calc. formula (index) 206
recommendations 186

split 201
structure 7
with fixed records 8
with var-length records 8

Control block macros 217
Convert ISAM to VSAM

description 76
overview 67

Copy functions see REPRO
CRA see

Catalog recovery area
Cross-partit. sharing 95
Cross-system sharing 96
Create VSAM objects 6
CVOL

advantages 277
cataloged in VSAM 43
disadvantages 278
versus VSAM catalog 272

DAM see BDAM
Data

buffers 190
CI-size recommendations 185
component

calculation (KSDS) 197
description 16
entry in catalog 51
names 43

set
backup with IEHDASDR 255
backup with REPRO 66,122
bu~fer EXCPs 193
comparison 39
conversion 76
cross-partit. sharing 95
cross-system sharing 96
multi-cylinder ds 187
multi-volume ds 188
names 43
sharing see SHAREOPTIONS
size 195
space allocation 187
space calculation 197
small data sets 187
suballocated 40
unique 40

set security bit
alter with A/HMASPZAP 269
description 45

284 VSAM PRIMER and REFERENCE

Data set security bit (cont.)
display 246

space
allocation 45,189
description 40
example 105
extension 189
names 43
primary allocation 189
secondary allocation 189
size 195
sub allocatable 40
unique 40

structure
control area 10
control interval 6

DATASET macro (MVS) 80
DDNAME sharing (OS/VS) 214
DEFINE

BUFSP parameter 190
command overview 60
DEFINE ALIAS

example 183
DEFINE ALTERNATEINDEX

ESDS example 129,134
KSDS example 111,116

DEFINE CLUSTER
command overview 60
ESDS example 127
KSDS example 106
KSDS parameter 87
RRDS example 138

DEFINE MASTERCATALOG
example 100

DEFINE NONVSAM
example 183

DEFINE PATH for
ESDS (example) 129,134
KSDS (example) 111,116

DEFINE SPACE
example 105

DEFINE USERCATALOG
command overview 60
example 1.02

Parameter description
FILE 88
FREESPACE 88
IMBED/REPLICATE 89,190
KEYRANGES 91
NAME 93
RECORDSIZE 94
SHAREOPTIONS 95
SPEED/RECOVERY 97
SUBALLOCATION/UNIQUE 98

(

Delete a record
in KSDS and RRDS 39
in KSDS description 21

DELETE
AIX (example) 173
all VSAM objects

DOS/VS 179
OS/VS 181

command overview 61
ESDS (example) 175
KSDS (example) 174
NOSCRATCH (MVS) 252
RRDS (example) 176
SPACE (example) 177
suballocatable space 177
USER CATALOG (ex.) 178

Device
characteristics table 196
type translate table 279

Direct access
buffer 192
ESDS 27
KSDS

addressed 24
keyed 23

processing 23,27,29
Disconnecting a user catalog

from the master cat. 165,182
Distributed free space

see Free space
DLBL statement (DOS/VS) 211
DLVRP macro' (OS/VS) 222
DOS/VS

catalog sharing 51
change the master cat. 79
compatibility 5
JCL parameter 211
Load a new SDL/SVA 79
manuals 2
space allocation 45
Supervisor parameters 79
SYSnnn (Acc.Meth.Serv.) 86
user information 2

DRWDASDR (OS/VS) see IEHDASDR
DSNAME sharing (OS/VS) 214
Dump/Restore VSAM vol. 255,256
EODAD exit 218
ENDREQ macro 221
Entries in catalog 51
Entry-sequenced data set

see ESDS
ERASE macro 221
ESDS (Entry-Seq. Data Set)

base cluster 16
cluster 16

ESDS (Entry-Seq. Data Set) (cont.)
components 16
definition (example) 127
deletion (example) 175
description 14
loading

description 67
example 128

logical rcd processing 73
positioning 27
printing (example) 131
processing 26
requests 26
structure 14

Exclusive control 96
EXCPs reading data buffer 193
EXLST macro

description 218
format DOS/VS 212
format OS/VS 215

EXPORT
command overview 61
DISCONNECT 165,182
example 122

EXPORtRA
command overview 63
description 259
example 167

Extending
a data set 189
records 20

EXTENT statement (DOS/VS) 211
FILE parameter 88
Fixed-length records

definition 94
description 8

Forward processing 22
Free space

calculation by VSAM 88
changing with ALTER 121
description 88
loading with different

values 199
logical examples 19,21

FREESPACE parameter descr. 88
F1 timestamp 245
F4 timestamp 245
GENCB macro 219
Generation data groups

entry in catalog 51
in catalog 275

Generic key 23
GET

examples 36

Index 285

GET (oont.)
macro

desca:iption 220
£otmat DOS/VS 212
format OS/VS 215

GETIXmacro 222
GUipelines to this manual 1
High level languages 78
High-Keyrange of catalog

description 241
overview 50

High-used RBA
Cie$c:i:iption 16
display with LISTCAT 156

HMASPZAP service aid (OS/VS)
see.AMASPZAP

ICI option in ACB 74
IEHDASDR utility (OS/VS)

backing up examples 256
backing up the catalog 255
print the catalog 267

IK2VDU-Utility (DOS/VS) 179
IMBED parameter

combinations 90
description 89,190

IMPORT
command overview 61
CONNECT a user catalog 166
KSDS and its AIXs 124

IMPORTRA
command overview 63
description 259
example 169

Index
alternate index see

Alternate index
buffers 190
component

calculation (KSDS) 198
description 18
entry in catalog 51

Control Interval (CI)
capacity (entries) 195
formula 206
recommendations 186

index set 18
level 18
names 43
parameter combinations 90
performance 190
primary index 13,18

·record 18
replicate 89
sequence set 18
structure 18

286 VSAM PRIMER and REFERENCE

Inserting
single records 20
Single/Mass-insertion 23,207

Installation of VSAM
in DOS/VS 79
in SVS 83
in VS1 83
in MVS 80

ISAM
backup/unload 66
converting to VSAM 67
desc::r:iption 72
Interface Program

description 76
example 76

versus VSAM 75
JCL

parameter
DOS/VS 211
oS/VS 213

to macro relationship
DOS/VS 212
OS/VS 215

JOBCAT (OS/VS) 213
JR:NAD exit 218
Key

alternate key 12,30
base key 12
compression 203
generic key 23
length (size) 196
primary key 12

Keyed processing
direct 23
overview 24
sequential 22
skip-sequential 23

KEY' RANGES
catalog keyranges 50
description 91
examples 91
with diff. free space 199

KEY'S parameter 110
Key-sequenced data set

see KSDS
KSDS (Key-Seq. Data Set)

allocation (LISTCAT)
data component 149
index component 149

base cluster 16
CA structure 11
calculate size 197
cluster 16
components 16
copy data to SAM file 120 (

KSDS (Key-Seq. Data Set) (cont.)
data component 16
definition (example) 106
deletion (example) 174
description 12
export 122
import 124
index 18
index component 16
loading the data set

description 67
normal loading (ex.) 108
with diff. free space 199

positioning 25
printing 109
processing 22
requests 22
structure 13,19
verify 126
working set

DOS/VS 229
MVS 231
SVS 233
VS 1 235

LERAD exit 218
LISTCAT

ALL (example) 142
command overview 65
explanation of fields

cluster entry 152
cl data component entry 153
cl data cmp. statistics 155
cl data cmp. allocation 156
cl data cmp. vol. info. 157
cl index component 158
catalog volume record 159

extract allocations 148
NAME (example) 140

LISTCRA
command overview 65
COMPARE (example) 163
NOCOMPARE (example) 160

Load .new SDL/SVA (DOS/VS) 79
Loadihg

~ data set (descr.) 67
ds with diff. free space 199
ESDS 128
KSDS 108
options 97
RRDS 139

Logical record
length (size) 196
processing 73
relation to physical rcd 9

Low-Keyrange of catalog
description 241
overview 50

Macros description 217
Manuals 2
Mark delete ESDS record 26
Mass-sequential insertion 23,207
Master catalog

defiriition 100
master password 54
recoverable/nonrec. 252
using a user catalog as

master catalog 79,81
Merging records 66
MODCB macro 219
MRKBFR macro (OS/VS) 223
MSS (3850) default parameter

in LISTCAT listing 153
Multiple cylinder data sets

(not multivolume) 187
Multiple strings 191,194
Multivolume data sets 188
MVS

catalog sharing 51
change the master cat. 81
create a master catalog 80
CVOL versus VSAM catalog 272
DATASET macro 80
install VSAM 80
manuals 2
naming restrictions 94
storage requirements 237
use a user catalog as

master catalog 81
user information 2

NAME
parameter description 93
qualified 94

NO IMBED parameter 90
Nonrecoverable catalog

see Catalog
Nonsuballocatable see Unique
NONUNIQUEKEY parameter 110
Non-VSAM data set

definition 183
entry in catalog 51

NOREPLICATE parameter 90
NOUPDATE parameter 110
NOUPGRADE parameter 110
OPEN

examples 36
macro

description 220
format DOS/VS 212
format OS/VS 215

Index 287

OSIVS
~it. pointer to VSAM MCAT 83
compatibility 5
JCL parameter 213
Password bit
:$~e Data set security bit

Se:lr:vice Aids. 268
~p'c~allocatiori 45
utilities 255,267

Out-of-synch condition 250
Owne;ship

bi'\;
4escription 44
display 246

cOncept· 43
reset ownership

DOS/VS with IK2VDU 179
.OS ALTER REMOVEVOLUME 181
OS with A/HMASPZAP 269

test for space alloc. 45,189
Path

access 36
d~scription 35
~n't;ry in catalog 51
t6ESDS (eHample) 129,134
t6KSDS (eHample) 111,116

Pass~()rds
ohanging with ALTER eH. 121
f~% the master catalo~ 54
definition in DEFINE 103
definition with ALTER eH. 121
description 52
re't;ry'55
~pecified in user pgm. 55
usage on diff. levels 54

Performance
buffer 190
catalog (OS/VS) 271
choose data CI size 185
choose indeH CI size 186
data set space 187
indeH 190

Physical record
description 9
size 196

POINT macro ·221
Positioning for

key sequential access 25
skip seq. access 25

Primary
indeH

space allocation 187,188
st:tucture 13,18

key 12,30
space allocation 189

288 VSAM PRIMER and REFERENCE

PRINT
AIX (eHample) 114,132
catalog

with H/AMASPZAP 268
with IEHDASDR 267
with LISTCAT 142

command overview 65
ESDS 131
KSDS 109
parts of a base cluster

via a path (eH.) 115,119
parts of an AIX 114,118

Processing of data sets 22
PUT

eHamples 36
macro 221

description 221
format DOS/VS 212
format OS/VS 215

PUTIX macro 222
2ISAM description 72
2SAM description 72
2ualified names 94
RBA (Relative Byte Address)

description 10
high-used RBA

description 16
display with LISTCAT 156

used in an ESDS 34
RDF description 7
Record

data structure 7
description

fiHed-length 8
logical 9
physical 9
spanned 11
variable length 8

length
restrictions 94
size 196

RECORDSIZE parameter descr. 94
Recoverable cat.(see Catalog)

description 250
versus nonrec. catalog 252

RECOVERY parameter descr. 97
RELATE parameter 110
Relationship of data access

to data organization 71
Relative

byte ~ddress see RBA
record data set see RRDS
record number 15

Release (VSAM release) 152
Relinquish ownership 43 (

Reload a user catalog 172
Reorganize a

catalog 261
data set 66

REPLICATE parameter
combinations 90
descx:iption 89

REPRO
catalog backup

description 254
examples 171,172

command overview 66
copy catalog - catalog

(MVS only) 272
copy data of a KSDS to a

SAM-file on disk (ex.) 120
load ESDS (example) 128
load KSDS (example) 108
load RRDS (example) 139
reload usex: catalog from

backup tape (example) 172
x:eorganize data set 66
unload - backup

catalog (example) 171
recoverable catalog 252

Request
macros 220
types

ESDS 26
KSDS 22
RRDS 28

RESETCAT
command overview 69
example 164
usage for

device convex:sion 259
unload/reload 254

Resetting a reusable ds 17
Restox:e a damaged

data set 66,122
Reusable data set

descx:iption 16
resetting 17

RPL macro
description 218
format DOS/VS 212
format OS/VS 215

RRDS (Relative Recox:d Data Set)
base cluster 16
cluster 16
components 16
definition (example) 138
deletion (example) 176
description 15

RRDS (Relative Record Data Set) (cont.)
loading

description 67
example 139

logicalrcd processing 73
positioning 29
processing 28
requefOts 28
slot description 15
structure 15

SAM
description 73
versus Sequential VSAM 73

SCHBFR macro (OS/VS) 223
Secondary space alloc. 189
Security author. routine 53
Sequence set

see Index sequence set
Sequential

access
buffer 193
description 22,26,28

insertion 23,207
processing

ESDS 26
KSDS 22
RRDS 28

Service Aids (DOS/VS) 179
Shared

resources macros 222
UCBs (OS/VS) 271

SHAREOPTIONS
cross-partition/region 95
cross-,.system 96
description 95

Sharing
catalogs 51
data sets 95
DDNAME/DSNAME (OS/VS) 214

SHOWCAT macro 220
SHOWCB macro 219
Single/Mass-insertion 23,207
Sizes

allocation unit 249
catalog 195
control area 10,195
control interval 195
CRA 195
data set f95
data space 195
device characteristics 196
key length 196
logical record length 196
physical record size 196

Index 289

Skip-sequential pEocessing
buffeE 192
KSDS 23
RRDS 28

Slot descEiption15
Small data sets 187
Space

allocation
descEiption 45,189
extension 189
fOE a data set 187
pEimaEY 189
secondaEY 189

calculation
fOE a catalog 247
foz: a KSDS 197

definition (example) 105
deletion

suballocated space ex. 177
unique space 40

Spanned EecoEds
descEiption 11
length 196
stEuctuEe 12

SPEED paz:ameteE descE. 97
Splits

CA split 202
CI split 201

STEPCAT (OS/VS) 213
StoEage

location of Eoutines
DOS/VS 225
MVS 227
SVS 226
VS 1 226

EequiEements
DOS/VS 236
MVS 237

'SVS 238
VS1 239

StEings
concuEEent pEocessing 223
descEiption 191
multiple stEings buffeE 194

STRNO paEameteE
see StEings

StEuctuEe of
catalog 243
contEol aEea 10
contEol inteEval 6
ESDS 14
KSDS 13,19
RRDS 15

Suballocated
clusteE 40

290 VSAM PRIMER and REFERENtE

Suballocated (cont.)
data set 40

Suballocatable
data space 40

SUBALLOCATION paEameteE 98
Subset mount 216
SUPERZAP (OS/VS) see AMASPZAP
SVS

catalog shaz:ing 51
change the masteE catalog 83
install VSAM 83
manuals 2

I stoEage EequiEements 238
use a usez: catalog

as mastez: catalog 83
US~E infoEmation 2

SYNAD exit 218
SYSnnn (DOS/VS) 86
System GeneEation fOE VSAM

DOS/VS 79
MVS 80
SVS - VS1 83

SYS1.NUCLEUS membeE (MVS) 81
TESTCB maCEO 219
Timestamps

change with
IKQVDU (DOS/VS) 179
H/AMASPZAP (OS/VS) 270

descEiption 244
mismatch 254

TEackhold facil~ty (DOS/VS) 96
TEanslate table 279
Types of data sets 12
Unique

clusteE 40
data set 40
data space 40

UNIQUE paEameteE 98
UNIQUEKEY paEameteE 110
Unload - backup

catalog (example) 171
EecoveEable catalog 252

UPDATE
paEameteE 110
EestEictions 38

Updating
alteEnate index 37
EecoEds 20

UPGRADE
examples 37
paEameteE 110

UpgEade set
descEiption 31
entEY in catalog 51

(

User catalog
advantages (OS/VS) 273
allocation (LISTCAT)

data component 148
index component 148

connecting to mast. cat 166
definition 102
deletion (example) 178
disadvantage (OS/VS) 274
disconnecting (ex.) 165,182
entry in master catalog 51
philosophy 47
recoverable/nonrec. 252
reload catalog from

backup tape 172
unload/backup catalog 171
usage 47
using as a master catalog

DOS/VS 79
MVS 81
SVS 83
VS 1 83

versus CVOL (MVS) 273
Variable-length records

definition 94
description 8

VERIFY
command overview 68
example 126
macro 68

Virtual storage requirements
see storage requirements

Volume
cleanup

DOS/VS 179
OS/VS 181

dump/restore 255,256
entry in catalog

description 51
display with LISTCAT 159

ownership 47
ownership bit reset with

DOS/VS IKQVDU 179
OS/VS ALTER REMOVEVOL. 181
OS/VS A/HMASPZAP 269

timestamp
change (DOS/VS) 179
change (OS/VS) 270
description 244
display with LISTCAT 159
mismatch 254

VSAM release 152
VS1

catalog sharing 51
change the master catalog 83

VS1 (cont.)
install VSAM 83
storage requirements 239
use a user catalog

as master catalog 83
user information 2

VTOC
Fl and F4 DSCB (Labels) 245

Where is VSAM in storage
DOS/VS 225
MVS 227
SVS 226
VS 1 226

Working Set
DOS/VS

for AIX processing 229
for a KSDS data set 228

MVS/VS
for AIX processing 231
for a KSDS data set 230

SVS/VS
for AIX processing 233
for a KSDS data set 232

VS1/VS
for AIX processing 235
for a KSDS data set 234

WRTBFR macro (OS/VS) 222

Index 291

VSAM PRIMER AND REFERENCE G320-5774-01

Your comments Please . . .

Reply requested

Yes 0
No 0

Name __________________________________ ~--------------

Job Title ___ _

Address __ _

Thank you for your cooperation

YOUR COMMENTS PLEASE ••••••

Your comments on the other side of this form will help us
improve future editions of this publication. Each reply
will be carefully reviewed by the persons responsible for
wr{ting and publishing this material.

I

I
I
I

fold fold I
- - - - - - - - - _ ... - __ - - - - I

fold

IBM World Trade Corporation
World Trade Systems Center
Department 471
P.O. Box 50020
San Jose, California 95150
U.S.A.

- - -- - - - - -- -- ... - - - -,
fold

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
360 Hamilton Avenue, White Plains, New York 10601
(international)

(
\

(

