GC26-3813-4
File No. S370-31

OS/VS Linkage Editor
Systems | and Loader

VS1Release 5
VS2 Release 3

Fifth Edition (November 1975)

This edition replaces the previous editions (GC26-3813-2 and its technical newsletters,
GN26-0744 and GN26-0779, and GC26-3813-3) and makes them obsolete.

This edition applies both to Release 5 of OS/VS1 and to Release 2 of OS/VS2 and to all
subsequent releases of either system unless otherwise indicated in new editions or technical
newsletters.

However, information about the IBM 3350 Direct Access Storage and the IBM 3344 Direct
Access Storage Device is for VS1 Release S users only. This information is for planning
purposes only until the availability of the product.

Significant system changes are summarized under “OS/VS1 Summary of Amendments” or
“0S/VS2 Summary of Amendments” following the list of figures. In addition,
miscellaneous editorial and technical changes have been made throughout the publication.
Each technical change is marked by a vertical line to the left of the change.

Information in this publication is subject to significant change. Any such changes will be
published in new editions or technical newsletters. Before using the publication, consult the
latest IBM System/370 Bibliography, GC20-0001, and the technical newsletters that amend
the bibliography, to learn which editions and technical newsletters are applicable and
current.

Requests for copies of IBM publications should be made to the IBM branch office that
Serves you.

Forms for readers’ comments are provided at the back of the publication. If the forms have
been removed, comments may be addressed to IBM Corporation, General Products
Division, Programming Publishing—Department J57, Palo Alto, California 94304. All
comments and suggestions become the property of IBM.

©.Copyright International Business Machines Corporation 1972, 1973, 1974, 1975

PREFACE

This publication provides applications programmers with the information
necessary to use the OS/VS Linkage Editor and Loader to prepare the output
of a language translator for execution. Additional information on the
operation and use of the linkage editor and loader is directed to the system
programmer responsible for installing and maintaining the operating system.

The “Introduction” briefly defines the functions of the linkage editor and
loader and gives recommendations for the use of each. Part 1 describes the
linkage editor, and should be read before Part 2, which describes the loader.

The linkage editor combines and edits modules to produce a single module
that can be brought into storage by program fetch for execution. It operates
as a processing program rather than as part of the control program. The
linkage editor provides several processing facilities that are either performed
automatically or invoked in response to control statements prepared by the
programmer.

Part 1, which consists of six chapters and three appendixes, briefly describes
the processing facilities and operation of the linkage editor. The introduction
also defines linkage editor terms in reference to the source language
statements that cause them to be created.

The six chapters describe the input to the linkage editor, the output from the
linkage editor, module editing functions, design and specification of overlay
programs, the job control language necessary to run a linkage editor job step,
and the linkage editor control statements. The last two chapters are
summaries of reference information to be used after the general information
in the first four chapters is learned. The appendixes to Part 1 contain sample
programs, a description of the linkage editor programs, and information on
the invocation of the linkage editor.

The loader program combines the basic editing and loading functions of the
linkage editor and program fetch in one job step. It is designed for
high-performance loading of modules that do not require the special
processing facilities of the linkage editor and fetch, such as overlay. The
loader does not produce load modules for program libraries.

Part 2 of this publication describes the loader. The introduction to this part
describes the functional characteristics of the loader, along with its
compatibility with the linkage editor and restrictions on its use. The chapter
on using the loader describes the job control language statements and
invocation procedures for the loader, as well as loader input and output, and
user program data. The appendixes to Part 2 contain sample input, a
description of loader return codes, and storage considerations. All of these
items are discussed in relation to the capabilities of the linkage editor;
therefore, the reader must be familiar with Part 1 of this publication.

The diagnostic messages issued by both the linkage editor and the loader
program are described in OS/VS Message Library: Linkage Editor and
Loader Messages, GC38-1007. The description of each message includes an
explanation, a system action, and a problem determination action to be taken.

Preface 3

Time Sharing Option (TSO)

The following publication is needed to use the linkage editor or loader under
the Time Sharing Option (TSO):

Additional Publications

4 0OS/VS Linkage Editor and Loader

OS/VS2 TSO Terminal User’s Guide, GC28-0645

This manual contains procedures for invoking the linkage editor or loader
from the terminal and gives a brief description of the options that can be
specified under TSO.

Further information on TSO can be found in the following two manuals:

0S/VS2 System Programming Library: TSO, GC28-0629
0S/VS2 TSO Command Language Reference, GC28-0646

Within the text, references are made to the following publications:

OS/VS Data Management Services Guide, GC26-3783
OS/VS1 Planning and Use Guide, GC24-5090

OS/VS2 System Programming Library: Initialization and Tuning Guide,
GC28-0681

OS/VS2 Planning Guide for Release 2, GC28-0667
0S/VS1 Service Aids, GC28-0665
OS/VS2 System Programming Library: Service Aids, GC28-0674

OS/VS1 Storage Estimates, GC24-5094

0S/VS2 System Programming Library: Storage Estimates, GC28-0604
OS/VS1 Supervisor Services and Macro Instructions, GC24-5103
OS/VS2 Supervisor Services and Macro Instructions, GC28-0683
OS/VS1 System Data Areas, SY28-0605

OS/VS2 Data Areas, SYB8-0606

OS/VS1 System Generation Reference, GC26-3791

OS/VS2 System Programming Library: System Generation Reference,‘
GC26-3792

OS/VS Utilities, GC35-0005

OS/VS Message Library: VS1 System Codes, GC38-1003

OS/VS Message Library: VS2 System Codes, GC38-1008

OS/VS Message Library: Routing and Descriptor Codes, GC38-1004

OS/VS Message Library: Linkage Editor and Loader Messages,
GC38-1007

0S/VS1 JCL Reference, GC24-5099
0S/VS2 JCL, GC28-0692

CONTENTS

PLEfACEococveeiiieiiieeiiecreeeiererceeeetesessatesssseesssnnesssstsesseessnesansaasssasersenesane
Time Sharing Option (TSO)coooviiiiiieiieieeeeeeeeerre et 4
Additional PUBLCAtIONScccocerevuereiuienrirensiiene et neeeesree e reeeseee s ree e s aeesaeas 4
FAGUEES ...coonveiiiieeiriereeereetreeeeete s et eeeaeeesnsesessneassssasssssessstesensaesssnesnsssnanns 11
OS/VS1 Summary of AMendmentsc..cccceerueerieerieeeereesreesrersreesseessseenns 13
REIEASE 5 ...oneeieiieeiiierteectreeeeeeeste st ee et e sesresesseesessresessreseneesssseesssaessssnaanns 13
REICASE 3oeieiiieeerieetiectretreteeteserresesnresesar e st e eesseeeesseesasstassnsessssassnsesnsnes 13
REIEASE 2 ...ttt ettt esr e e re et e sae e a e s eenan 13
OS/VS2 Summary of AMendmentsccceceeeeeeeneesreeeeeeseeeseeeseeesveessesnns 15
REICASE 2 ...ttt ettt ettt et et s et e e et e e 15
REIEASE 1 ...oeeeieiiiieeiieriecrerctreteeeeesetesssee s e st essteesesanassssesesssassnsesansassassananes 15
INOUCHION ...ttt eere et e s e e et e ss s s snne e e s s sraeesersnaasannns 17
Part 1. Linkage EdItorccccoooviiiiiiiiiiiiciirreereeie e 19
Object and Load MOQUIESccccereveererciireeeerceeenieeceseesereeessreeseseessnnesenenas 21
External Symbol Dictionaryccccveeeveeevueereierinieneesneeseesseeesssneens 21

TEXL ceeeveeeeereerereesresrersseseaeseesseasntaseessstseseesssesssessntesssesssesssesssensenssesnnnes 22
Relocation DIiCtiONArYcccceeveieerieriiieieretenreeeerteeseeesteeesreeessaeeenns 22

End INdicationcccoccoveveeriienierectinnie et et seee s sreeeeeeesnaennne 23
Linkage Editor PrOCESSINGc..cccoceeveerreereiresereiereneereneereesieesseesseesseessaesssnans 23
Input and OULPUL SOUICESccerererierreerrrreerrrrersieereseeeeseeesaesesseserasessnaes 23
Load Module Creationcc.cceeveeeveeeerieereisnensneessreeesneessnessssessssessenns 23
AsSigning AdAIESSEScceeviierieiertienrieieieereseeiertreeseeesssesesseesssaesenns 25
Resolving External Referencesccccccceeeeeiiiieiivcisneneeceecnnisneneseenenenn. 25
Functions of the Linkage EdItOrccooveereeieriereeiieeeireeneeeeieeesereennenenns 25
Links MOdUIESccoeveriiereiitetitititcitciee e 26
Edits MOAUIEScccceiriieiieeiirereecrteeneteeeeesceteesrte st e serressateeseneanas 27
Aligns Control Sections or Common Areas on Page Boundaries 27
Accepts Additional INput SOUICEScccereeereirerienreeresereerieneiereseeeseane 27
RESEIVES StOTAZEeeevveenrireriererereeieeretresrreeestesesseessssessseessseesssseesans 28
Processes Pseudo REZIStErscocevvieeniienieriienneeniencneeencnnre e 28
Creates Overlay Programsccoceeveerreevceerieennreeeensneeesesieessssienessennes 28
Creates Multiple Load Modulescccccceereviinininircinnnnenceenceeneneen, 29
Provides Special Processing and Diagnostic Output Options 29
Assigns Load Module Attributescccocceeeeviieiienniinincnenieeceeeennns 29
Allocates User-Specified Virtual Storage Areascccccceeeveeecueeennee. 29
Stores System Status Index Informationcccecceevevereciiirniniinennnnen. 29
Traces Processing HiStorycccoccceeiviiiiiiiiinniciiciiiiineeccceceeceeenns 30
Lengthens Control Sections or Named Common Sections 30
Assigns an Authorization Code to Output Load Modules 30
Relationship to the Operating SYStemc..ccceevveereererrrveecnernnereiereseeeennns 31
Time Sharing Option (TSO) ...cccceeeeviiieeiieereeeereeecee e eeeeeeree e 31
Language Dependenciesc..cccceieerceeireirreienriitierieneeeteeseeteeesceessesnseeaennns 31
Assembler Languagecccocceeverviirniieinecneenstenseneteeeeee e seens e 31
COBOLcootietierieeninenteesteetesstessseseeesstessseesssessseessessseessesssassssansesns 32
FORTRANootiiiierieentreeteneeseessreesstessesesssessssessessssassesssesssesnsennnes 32
PL/T ettt see e et esee s aesnesae s s e s e s aa st e s s e stessaeaesa e sensansenn 32

Contents 5

6 OS/VS Linkage Editor and Loader

Input to the Linkage EdItorccccocoviiiiiiiiiiiiiiiininticcitcecnrcrcsneeeessnnens 35

Primary Input Data Setcccceeevererirerciiencnrecnrceteereeenseeeeseessseeessessssnessnneens 35
ODbjJect MOAUIEScccceereeeerierreeiireireeereseeeeseeessateessesesseessanssseesssassessesssasans 35
From Cards eeeeeerereteesteesbae et e e e aetesraa e ae e e e e s e aesaae s raanatannraaaan 36

As a Member of a Partitioned Data Setcccceecereerrecnrennennveiseennne 36
Passed from a Previous JOb Stepcccccerevverieeenreenreenreenneencseeecnnnens 36
Created in @ Separate JODcccccveeeevieiieieiiieeiciireeccreeeeenereeeeeseesssssseens 38
Control StAtEMENLSccccevvveerreerrererrreeseessseeesssseesseesssessssressaesssassessassrasans 38
Object Modules and Control Statementscccccceeeveeerveeeseesreceseerenneen 38
Control Statements in the Input Streamcccccccevveieverccenrceeecreeennnns 38
Control Statements in a Separate Data Setcccccceeeeeveernneeeeervenenen 39
Automatic Call LIDrarycccccceevmrverniiinninniinnniennineneenstecssesesseeseesnessesssens 39
SYSLIB DD Statementccceeeveeeerriceneennas erererenrsest st s aranerassnnes 40
System Call LIBrarycccoeverveeeiircniennnnnienseesreeeseessessnsssessnesssesseessens 40
Private Call Librariescccccecireerveiiiiniciininnenrecrieiecinnessseesessnnessssnnns 41
Concatenation of Call Librariesccccecervveereveereveeenveinieeissneesseenaens 41
Library Control Statementcccccceeevereeveeicrnereressseeeseesreesssassessssesneans 41
Additional Call LIDIariesccccceeeereeeserseerinesreecneseesseessesssessasessenns 42
Restricted No-Call FUNCionccccccevereerieeniieeesseesieesseeeseesssneesnenns 42
Never-Call FUNCHONcooieiviiieieciiinitiniiteneeseiessiteesteeseesesseessseees 43
NCAL OPLiONcceeireeiieeeeieerereteeeercrceeereeeeseeeernnnenseesesnns aerereereeeesnnnnnene 43
Included Data SEtscccceeeirrceereerirrenenrersteetesseeeseesssessecssnssnssssesseessaessnasnne 43
Including Sequential Data Setsccceecerevereriiernrierereeenerneeeeneeensenens 45
Including Library Membersc.ccccoceerceeerernieennienieessntecreessnesesiens 45
Including Concatenated Data Setscccccevveererreeeveensiierseenieeecreeseseennn, 46
Output from the Linkage Editorccccoceoiiiiriiniiiininrencrreercnrensneeesecneeens 47
Output Load ModUIEccccveiiieireriecereniieniterrcenereeestessneeesoresseessseasesasass 47
Output Module LIbrarycccceecieeeeeriirencrertnnreeenerssnesseeeseessseeseseens 47
Member NAIMEccceeeiierirriieieniieereneeeesrieesisresseesessessssesssessssnessssassns 48
ALIAS NAMES ...oovvriireiiieiiieriiiieirereeeeereeeessneessssseteeesseesssssesssssneesosorans 49
Entry POIntcciiiiiiiiiiieecetcinetcccneccn e et aree e 49
AUthorization Codec.ceeevveeerernierenernrrenereenieteneeeseesseesssseesenaenss 50
Reserving Storage in the Output Load Moduleccccoeriiiniinnniecnnnn. 50
Processing Pseudo REgIStErScoocvcerieernierriinienerrnneesecseeesesnueeecianenssssanees 51
Multiple Load Module ProCessingccceeecereveerererirerssersareeseeessesenneens 51
Diagnostic QULPULcccevviiiiiiiiiiiiiiniir ittt sae s assssne s 52
Diagnostic MESSALESceeeeeiierirrieriiirieiiiireetenserte s creresssreseesares s saensessneenes 52
Module Disposition MESSagEScccceevveieriiiceeriniieiniieeiereeesseneessennns 52
Error/Warning MESSAZEScceeveereereereereeraeraesessessassssssessssasssassasssenss 53
Sample Diagnostic QULPULccceeeeceieircerineeriinrenicctrreeseeeesssnenessanens 55
Optional Outputccccceevveeeneen. erreereessteesesteeeerraseentesesatae e nraaesnnraeeas 55
Control Statement LiStingc.ccccerercverrercrnriesrrencessreeensresssrereescssecas 55
MOQUIE MAPoveiiiieriieirnerecreeeesrrneeseccntteecneeesssseesesetsessnonesssnnessssnenes 55
Cross-Reference Tablecccvveeeericeerecniierinnnreereeneenreneenssnnecesssseasens 56
Module Editingccocveeeieiriiiriereenienieinentene st sseesssesseeseessnesssesons 59
Editing CONVENtIONScccoocereveerreceririerriieeitneeeecetesstesneeseneessssessseenas 59
Changing External SYMDbOIScccccevrueirreicerieririencnnereeniteeseresssneeessaseeses 60
Replacing Control SECHONSccccvvereremruiiiiinienrinieniiieeeresseessesssiasesas 61
Automatic Replacementcccceeeevueerernieierenvnercesiarecesnresesseessssnnessesneeees 62
EXample 1 ...coorieiiiiiiciteecererete ettt s sttt anee 62

| 251111 0) (0 O SO OO RP R PPRRRPPPTRRINt 62
REPLACE Statementc.ccceveenvernerrecssneiceecsessnseeseessaennes reeerre et e 64
Deleting a Control Section or Entry Namecoccccovviiniineiiisiinniecinnennnne 65
Ordering Control Sections or Named Common ATeasc.ccceveeveerererreennn 67

Aligning Control Sections or Named Common Areas on Page Boundaries . 69

Overlay Programscccoccvviiiiiiininncciseteennnneesesssnnessessseasssssssessssssessssssens 71

Design of an Overlay Programcccceceeeveieiiieiiniieeeieesecineeeseseseessnnessseees 71
Single Region Overlay Programc.ccecceeevceeerneeenveeennneenseecsnesseesnnnns 72
Control Section Dependencycccccceeeveeeecreereseesenernsreesseeessaessseeens 72
Segment DEPENAENCYcccecveereruereneernrerenreeierseeesseeesseeessesesssessssessnns 74
Length of an Overlay Programccccecoveeeeeiiiieeeiennneeeecsieeesesineensnnnns 75
Segment OTZINccccoviieeireriiererererereereeeerrsreeeseeesrreessreeseaeassnasnns 76
Communication Between SEgmentscccceeeveeerveerererenieesseeecsneennns 76
OVETIaY PTOCESS ...ccceveeirreniieticirneeeteeseeesneseneeeneeseassssessessssessaessessaanns 78
Multiple Region Overlay Programcccccoveeiereiieriiiiiieeneecsieeeeesineeeennnns 80
Specification of an Overlay Programcccccceeeveeiiveeriveeenineeesieenieeescnnenns 82
Segment OFIZINcc.ccocviiiiiiiereiiiiiiiecnretrieenree st e seeesssesreesseessesssesssesssasnns 83
Region OFiZINccoiiiiiiiiriieeireerteereereeeresteeereeseseesesseessseesssasesssesssenasnns 84
Positioning Control SECLIONScccceeeverrrvreecrreernrieeecreereseeesreeeseeseraeennns 85
Using Object DECKScocveivvirrrueremmeemierneeeenieeeseereneeesecesseesesseessneens 85
Using INCLUDE Statementsccccecceeereeereeeicreeesseeessesseeesssesssens 86
Using INSERT Statementscccccecveriveeerneeneieeresseeesneessseessesessneens 86
SpPecial OPLIONScccveireiieireireeerereeeste e steesee e e eessaeesssraseseessssaeseseaensans 88
OVLY OPLION ..cooecrieeeieieeererecireeeeerereeeessresessssseseessssseessssssessssssesssssns 88

LET OPHON ...cooouiieeieeiriteesieeniiteeeeeeeseeeeseeessssasessssesssasssssesssssssssssssses 88
XCAL OPLIONveeeeeieriereeieeeecrneeeseeesssesssesesssssssssassssassssssesssssssssessssas 89
Special Considerationscccccceeevieeeeiieeeeiiiiieeiccrereeeeeeeeeeerraeseseereseensaesenns 89
COMMON ATEASccouerrruerrrenrureesreessreeesssesesseessseesssssessssesssssesasssssssasesssasssens 89
Storage ReqUIrEmMENtSc.cceeeevvvierereereeeiiieeirrereeeeeereseecsrensaeeeseseennsnseeeenns 91
Overlay COMMUNICALIONc..eeeeererereecrerrereereneereieeeeseeesseeesseesesesassessnsas 92
CALL Statement or CALL Macro Instructionccceceevereveeneennennne. 93
Branch INStruCtionccecccceviereerceniieeneeeeeeeeeeeecee e e e reee e sne e 93
Segment Load (SEGLD) Macro Instructionccccceeeeveeeccveecreeeennen. 94
Segment Wait (SEGWT) Macro Instructionccccceeeevveeeeennnnnencnnns 94

Job Control Language SUmMMATYcccccceeeeiiieeecrrinieeirsnreeseeesesesssssseesssneeas 97
EXEC Statement—Introductioncceeeceeereeeernieinieeeenneennseeesseenenneesneens 97
EXEC Statement—Job Step OPtionsccccceeevveeerreeeneeersreeenieesceeeseeenen. 97
Module ALrDULEScccooiiiriiiieiiieiette et ee et et re e e re e e s e aaeeesnens 98
Downward Compatible Attributeccccceveeerieeeeeecneeeeeenerenecveeeeennns 98
Hierarchy Format Attributeccccceeviieiiernneenrieeneeeeceeeeeeeeeeeenen 98
Scatter Format Attributeccocceeeeveiivieeeriieinnieeenreeeenreeseeesreesaeens 99

Not Editable Attributecccocceeeiieieiiiiieiceceeecee et ecee e e eeens 100
Only Loadable Attributecccoeeeiceiiiiiniiiiiniceneceee e 100
OVerlay AIDULEcceoiieeiieeeereieeerieerteeeererere e e etecesree s seessenesaaees 100
Reusability AtIDULESccccceeeevieeerieeeeriiiieeereeeerceeserreessseeeseneessneenns 101
Refreshable Atributeccccocveveveieienrineenrerceeeeenreeseesessseesaesnnes 101

Test AIIDULEccocveiiviieiiiieeee et eccere e e sereees e ene s e e seaseeesasees 102
Page Boundary Attributecceccceeieevnreenncrnnensieennrensnesscessenseesnes 102
Authorization Codeccceecveerercrriiirreierenrereeeeeseeeeseeeseeeseeeeenees 102
Default Attributescccceeeveerevireeiereiieereeeereeeeee e ceseeeeeeseeeeenes 103
Incompatible Attributesccccceeeveieeriiiiieenrieierceeee e e eeeens 103
Special Processing OPtionsccoocevciiriiiniieierrineeeerieeeeseeseeeeneeeeenees 103
Exclusive Call Optioniceceeeveerevreveeeeeierieresseeereeeseseeseseesenns eeeeeeneas 103

Let EXECUte OPtionc.ovvceerierieieietiiineeetreeeesteteieestesiessesasaesesseeesnnens 104

No Automatic Library Call Optioncccceevveervecvrrerneerenvereeennnnes ereeeaees 104
Space Allocation OPLiONScccceereveveeirerisireiccnreeerersneeesesrsneeesessnesesnnnes 104
SIZE OPLIONcooeeeeeireerererrreereneeerreeesreesesseesssessesssassssessssessssssssses 104
DCBS OPLIONoeieriierieeireteerreeeessreeesaeesreeesanesssesesssesssssasssasssssassns 110
OULPUL OPLIONS ..ocineeeieiiiiiereeeeeesieerereeeeeereererrsreeseeeeeeeessesssssaesesssesnsnnes 110
Control Statement Listing Optioncccccceeeverervernrceiinnceeenscenneennee. 110

Contents 7

8 0S/VS Linkage Editor and Loader

Module Map OPHONcccooeviieeiirerieeertrreieeeeeeereeeesnesseressseesssassssassns 111

Cross-Reference Table Optionccccceeveeeveerereecneecnennneeessenesseeennes 111
Alternate Output (SYSTERM) OpLioncccoveeeerreeecrunrecrnneecssneenes 111
Incompatible JOb Step OPLONSccccieieieeireiicrreereereeeeeresaeeeesneens 111
EXEC Statement—Region Parameterccccceveeeereeiverecrecceeecrneernnens 112
EXEC Statement—Return Codecccevereeiiiecnneeiernceenecnnneecsrneessesaenes 113
DD Statementsccccceeeecreererreresereeerseseessecsneesersssesssassssssssssssssasssaaas 113
Linkage Editor DD Statementsccccccceeeceeeereeeseeeereeesseeessesssseessncennes 115
SYSLIN DD Statementccccccceeeeerereerrsreesersreeccsrensesssaeeesssasessssases 115
SYSLIB DD Statementcccccceeeereeeeencreeeecrreeeessraecssssesessaseessssneens 115
SYSUT1 DD Statementccccceeeererrerrneeeecseeeesseesessnsesssseseesssasasens 116
SYSPRINT DD Statementcccccevveeeeeerrueeecsssneceesseececrsnsesssseeenes i 116
SYSLMOD DD Statementcccccceeeeeineeeecsreeeeesiececsnsesesresseserssasens 116
SYSTERM DD Statementcccccceeeveeeereereseeecsrecsenssaescseessesessansns 117
Additional DD Statementscccceeeceeeeeeniereeesieeereesreeeessreeesseseeserasenens 118
Cataloged ProCeAUIEScccceerveereereeirererrcrnensseerenseesseessseesssessaresssessasaeses 118
Linkage Editor Cataloged Proceduresccoveeeercerivcnrecsersnenseessanns 119
Procedure LKEDcoiiiiiiiiriiieeinceeeneeceseeseseeecseesssessssesssesssaens 119
Procedure LKEDGcccceiinitieenieniccnneeeiesseeesssrsneessssesessssessssensesssnns 120
Overriding Cataloged Procedurescccccceeereecreeresersseesssneesecsssneasens 121
Overriding the EXEC Statementcccccceeveeeniieeneeereeecreessseesssnesns 121
Overriding DD Statementscccceeeerrereerereeesseeeseeereneeseesssssssssesns 122
Adding DD Statementsccccccvrieericeeeeniniecescrnneeersrseeesssesesssaseessssaeens 122
Linkage Editor Control Statement Summaryccccoccceenneiiicnniinnecnecnnnen. 123
General FOrmatcocoveiiiveecriieieinneeeinineeesessnneesssseeessssecessansesssnneees 123
Format Conventionscceveeeeeieneeniencieinninnceeneeseecesesssseenes 123
Placement INfOrmationccccccceeereccerieicceeiecnnnennnsseeesssneeecseneeecsnneees 124
ALTAS Statementccccceeeveerievreeeienreeeecrreeeesssseeessnesesssnsessseasssseees 125
CHANGE Statementcccceeeeeerreeeereieesersreseeeseseesssseeseessssnsessesnssns 126
ENTRY Statementccccceeeeeirecieiecireerenssseesesssneeseseesssssecssssensssssnns 128
EXPAND Statementcccccceeeeieeeieneeeersrueeessssesesssssssrsssssssssessessasas 129
IDENTIFY Statementccccceeiieriivcreeeeeeieeensrineeeeecessinneeeessssnnnsseeens 130
INCLUDE Statementccceeceveerierreeeercsreecessseessecsonesessassesssassssssnes 132
INSERT Statementccccccceeeeeiereecnreeeeesseeseessssesssrseesersssessnsassenes 133
LIBRARY Statementccccceeeeerurerecrnreeeersrecescssuneasessessssnsesessassssssens 135
NAME Statementcccceevveeeieiieeirisineeesssreeeesssnseessssseeserssssssnsssssnns 137
ORDER Statementcccccceeereiieeererreeeerereeeessssessessssessssessssseessssens 138
OVERLAY Statementccccceeererrerrcreeeeennececssnsnnneessssscsnnnesssscssssnnaenes 140
PAGE Statementcccccereceeeeeneeeeicineeeennseeeeesseeessseeeesssessesanessenns 142
REPLACE Statementccccccevvuueeeerneneeessceenessnneescsseesesssessssscnsssssnes 144
SETCODE Statementccccccueeeiurecreererirereseeesessessasesassesessssassssasanns 146
SETSSI Statementcccccoveeeieiicvrieereeeeeierrseseeeeeeesssssseessesserssasessessns 147
Appendix A. Sample Programscccceevveeieiirerinnnneeesnreeessnnessesseesesenens 149
Sample Program COBFORTcocoevimiiiiineiiinnennteneeneeeeessesseessneenen. 149
Job Control Languageccccceeeveeeerrcneirnrennerescseeescsseeessressscsennescses 149
Linkage Editor QUtPULcccceevereciiiinernreerercnenteeneeesreeseesssneesnees 150
Sample Program RPLACJIOBcoocviriviiiiiiiriineereteneeeeeneeeeeseneenenens 151
Job Control Languagec.cceceeveiierinnnennenineeninnecesesssessessnesaens 152
Linkage Editor Control Statementsc.cccceevueeeveciineninccnncenneennees 152
Linkage Editor OUtputcccceeeiruiiieriieeririeeeeenrereessneeesseesessansesssnns 152
Sample Program REGNOVLYccccooviiiiiniinniineniiiniecenennseseseeneeeenes 153
Job Control Languageccc.cceeveeeeveererernreeeeseenesuerssersssesesseseseasnns 154
Linkage Editor Control Statementscccocevveereeeriinnineeenieceennnens 155
Linkage Editor QULPULccooceeverrnirircennieneeneesresieeseeeseeceesssesseaenes 156

Sample Program PARTDScoooiireierrieeerieeeeneeeeneeessntesenesssseessssesssnenss 159

Job Control LangUagec.ccceereceerecerrvceereseeessneesseessssesssnsessssssesaes 159
Linkage Editor Control Statementscccccoceveeererrecrreersveeesrecesiueees 160
Linkage Editor QULPULccocceireiiriccrerrietrereeesreeeseeeesseessseesssaesesaens 160
Appendix B: Invocation of the Linkage Editorccccccceiiiiinnnnnnnene. 161
Appendix C: Storage Requirements and Capacitiesc...ccccceevcirannnnenn. 163
CAPACILIESeeeeoeereeeecernienitreeteeerreessreeessesasnsesessesssseessssessssesssseessssesans 163
Intermediate Data Setccccceverreriererrennenenerieneressreesnensresessseaneseees 165
Linkage Editor Storage Requirementscccceeecceeeiecnneeesenneeeessanee 165

Part 2. LOAErcooviieiiiiiiereceec ettt e see st e s e ntt e s e s e s nme e s s mne s 167
Functional CharacteristiCsc...ccecveeeerernruteirnrerestenincesiesinseenereeessseessees 167
Compatibility and RestriCtionsccocvveeinueicreinriniennninetncsnneeneceieenees 169
Time Sharing Option (TSO)cccciveiriicicrininiieirce e 169
Processing Object Modules in Virtual Storagecccccceveveereceerneee. 170
Loaded Program ReStrictionsccoecceeerevcerneeesenserinunnsenseessncenneens 170
Using The LORAETcoooviiiiiniririreneeteerecceeesseeteseesraraeseseesssssnnesns 171
Input for the Loadercccvuieeiiiienniintieeeneeceeeee et eee s eeeees 171
EXEC Statementcoccceviierrrererreniersteissnieneeresssiesssstessanessssesessesensseses 171
DD Statementscccocceeeeereerereerenerererestesesneeessereesseeseesessssessssesssseesenes 173
SYSLIN DD Statementccceeerereerererrersenesseressereseesessaessesasessasaesens 173
SYSLIB DD Statementcccceeeveerieeinneeeenersanessieeceneesssneeseseesennees 174
SYSLOUT DD Statementcccccceeerreineerineineecenenseesenenieseecsseesecsanes 175
SYSTERM DD Statementccccocvveerrnrencneecseeenuessnneensseessseesssnenss 175
Loaded Program Dataccceeceeeererenreeecreenseeeeseesesresesnressseesssnessnsenses 175
Invoking the Loaderc..eiiiiiiiniiniicnnicenniiiieeinieceeeenseeseseessnees 176
Loader OQULPULccooeeeeirirririeieiieeerrieeeeseeteeesesneseesessncesssssneeassnsessssssnnees 180
Appendix D: Sample Input for the Loadercccccecoiiiniiincininniinccnnnnen. 183
Appendix E: Loader Return Codescccceieiiinnninniicnnneinrnnneeneneenneen 185
Appendix F: Storage Considerationscccccoevciieiiiiiiiiiiicenincniecnecnneeen. 187
Appendix G: Load Module Formatc.cccceverrerereveniernsencnesesesennenens 189
Appendix H: SIZE and REGION Parameter Guidelinesc.ccc.ec... 191
GIOSSATYooiiiiiiiiiieieeeteeitetee ettt st e s st e s st s et s sae e s saeesseaen 193
INAEXooeieiiiiieiiiiteererccceee s rertereeresneeeeees e s e e srrasneseeessesssnneraeasesssssssnnnananes 195

Contents 9

FIGURES

Figure 1.
Figure 2.

Figure
Figure
Figure

Figure
Figure
Figure
Figure

Figure 10.
Figure 11.

Figure 12.

Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.

Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.

Figure 30.
Figure 31.
Figure 32.
Figure 33.

Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.

Figure 40.
Figure 41.

Figure 42.
Figure 43.

il

© % N o

Preparing a Source Module for Executionccocceeeecveencneennne 19
Preparing A Source Module for Execution and Executing the
Load ModUIEoociiiiiiiiiricetcee ettt 20
External Names and External Referencescccoevivinuninnnnen. 20
Use of the External Symbol Dictionarycccccceevivivininiieennns 22
Input, Intermediate, and Output Sources

for the Linkage Editorcccceieiiiiieiiiiienncieeercrseercecsneecesenenens 24
A Load Module Produced by the Linkage Editor 24
Linkage Editor Processing—Module Linkageccecceeuuennen. 26
Linkage Editor Processing—Module Editingccccccovveennnnns 27
Linkage Editor Processing—Additional Input Sources 28
System Automatic Call Librariesc..cccccccveveveeerecrvneenresenennn. 40
Processing of One INCLUDE

Control Statementccccceeeeeeerrrrnneeeeiieierarrseeeeeeeesesssssssrsennaees 44
Processing of More than One INCLUDE

Control Statementccccceieieiierrirrieererreeeerrineeeeesesneesasesneeens 44
Diagnostic Messages Issued by the Linkage Editor 55
MOUIE MAP ...conieeriieiiieeieneceeeeeeee et s e e st e st e s san s e neeeseeasenae 56
Cross-Reference Tablec.cccoeveeeriieenieeneninereerereenseeseeceneees 57
Editing a MOQUIEccceeeeeiieeierieercieeenreereseeesreeseneeseeeessneeenns 59
Changing an External Reference and an Entry Point 61
Automatic Replacement of Control Sectionscccceeceeeeeerennes 63
Replacing a Control Section with the REPLACE Control
SAtEMENLoorniiiiiiiiiritere ettt s 65
Deleting a Control SECtionccccverriveeeeeecrieeeriessreeseesrneessennns 66
Ordering Control SECLIONSccceeeeveereeerrernercneeeeseneeeresenaeenss 68
Aligning Control Sections on Page Boundariescc.cccceeuneene. 70
Control Section Dependenciescccccceeevcereveeersrereneseercreeeeenenn 73
Single-Region Overlay Tree Structureccccceevcerevceereneenens 74
Length of an Overlay Modulecccceevviireiinivinniiiiecieneiennne 75
Segment Origin and Use of Storagecccoeevceevevceniiccericenennen. 76
Inclusive and Exclusive Segmentsc.ccceeveeeeereerenvencneceneneenens 71
Inclusive and Exclusive Referencesccccoocciiiiiiciiniiicinncnnee 78
Location of Segment and Entry Tables in

an Overlay Moduleccoocociiiiiieiiiiiiiniceniteececeeeeee 79
Control Sections Used by Several Pathsccceccceveveinennnnen. 81
Overlay Tree for Multiple-Region Programcccccccernnneennn. 82
Symbolic Segment Origin in Single-Region Program 84
Symbolic Segment and Region Origin

in Multiple-Region Programcccccccceiiiinnieininnnnecniinieenncnnnee 85
Common Areas before Processingcccececeveveeereveercveeencseennnnns 90
Common Areas after Processingccceccevvveeirvveininceniecenneen. 91
Branch Sequences for Overlay Programscccccceveeeenueeennen. 93
Use of the SEGLD Macro Instructioncccceeeveieiiineeennenee 94
Use of the SEGWT Macro Instructionccecccceveverrenincnennne 95
SYSUT1 and SYSLMOD Device Types and Their Maximum
RECOTA SIZES ..eveieirerereiieeiiereeeeesteeeeerenee s eeeseeeesseeessneessnnees 105
Load Module Buffer Area and SYSLMOD and

SYSUT1 Record SiZesevveiiieirireerrrneeeeeensresssssrnneneeeeenessenns 107
Incompatible Job Step Options for the Linkage Editor 112
Linkage Editor Return Codescccccceeveeeereerrseeenseeneseeenenees 113
Linkage Editor ddnamescccocvveeerevereercineneeesecsnneeessrnneeens 115

Figures 11

12 OS/VS Linkage Editor and Loader

Figure 44.

Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.

Figure 57.
Figure 58.
Figure 59.

Figure 60.
Figure 61.

Figure 62.
Figure 63.
Figure 64.

Figure 65.
Figure 66.

Figure 67.

Figure 68.
Figure 69.
Figure 70.
Figure 71.

Figure 72.
Figure 73.
Figure 74.

DCB Requirements for Object Module and Control Statement

INPUL ...ttt te e e s anat e s s sssssensesssessrsnnenans 115
DCB Requirements for SYSPRINTcccccoeivivririeriiccnneenennn. 116
DCB Requirements for Additional Input Data Sets 118
Statements in the LKED Cataloged Procedure 119
Statements in the LKEDG Cataloged Procedure 121
Overlay Structure for INSERT Statement Example 134
Output Load Module for ORDER Statement Example 139
Overlay Structure for OVERLAY Statement Example 141
Output Load Module for PAGE Statement Example 143
Linkage Editor Output for Sample Program COBFORT 150

Linkage Editor Output for Job Step that Created SUBONE ... 151
Linkage Editor Output for Sample Program RPLACJOB 153
Overlay Tree for Multiple-Region Sample

Program REGNOVLYcccoiiniiiininniniinnecnnienneeesesnees 154
Linkage Editor Output for Sample Program REGNOVLY 156
Input Statements for IEBUPDTE Utility Program 159
Linkage Editor Capacities for Minimal SIZE

Values (64K, 6K)ocoviieniicriiciieneeenreenseeesseeesseessanessseessnens 163
Loader Processing—SYSLIB Resolutioncccccceeeeueeencnnnnnn. 168
Loader Processing—Link Pack Area and

SYSLIB ReSOIItION ...c.ceeeveereiierenuerrereereneernsersseeessaeesseeseseessnnens 168
Loader Processing—Automatic Editingccceccervireennucnene 169
Input Deck for the Loader—Basic Formatcccccevuvrennene. 171
Loader and Loaded Program Data in VS1 or

VS2 INPUt SErEamcccccvvreerreerrinrnereeresnnereecsseeeessnesessanessssneeses 176

Using the LINK Macro Instruction to Refer to the Loader 177
Using the LOAD and CALL Macro Instructions to Refer to

HEWLOADR (Loading Without Identification) 179
Using the LOAD and CALL Macro Instructions to Refer to
HEWLOAD (Loading With Identification)c.cccceereueneen. 180
Module Map Format Exampleccccoceeeeeereerrrnveneecneneneneeenn. 181
Input Deck for a Load JObcocceeieeireciiecirrceeecceereeeree e 183
Input Deck for a Compile-Load JObeveeiiiiiceeeeeeeeennees 183
Input Deck for Compilation and Loading

of the Three Modulescccoveeiercireeiirieeeecnieeeicreeesrereeesnseenns 184
RetUIN COdES ...cccuvievuirriirierereereeeeereeeseeesseeeeteesseesssesssanssnns 185
Virtual Storage Requirementsccccovceeeeecreeerrneerernnneessneenns 188
Load Module FOrmatcocceereveeernceennieeecreenseecsessseeesseessnees 189

OS/VS1 SUMMARY OF AMENDMENTS

Release 5

Release 3

Release 2

« The appropriate figures have been updated to include specifications for the
IBM 3350 Direct Access Storage and the IBM 3344 Direct Access Storage
Device.

« The appropriate figures have been updated to include specifications for the
3330-1 and 3340 disk storage devices.

« The format for the load modules produced by the linkage editor has been
included in this edition. See Appendix G.

« The “SIZE option” has been rewritten to make it easier for the user to
determine the correct values for the option. Appendix H is a summary of
this section.

« The load module size restriction of 512K bytes has been removed.

¢ APF (Authorized Program Facility) support has been added and several
additions and corrections have been made to the ‘“Job Control Language
Summary” section of the book.

« The PAGE statement may now be used with VS1 systems.

There are no significant system changes in OS/VS1 Release 2. A more
efficient EXEC statement has been added for use in the LKEDG procedure
when the programmer wishes to specify the LET parameter in the LKED
step. This change applies to both OS/VS1 and OS/VS2.

0S/VS1 Summary of Amendments 13

OS/VS2 SUMMARY OF AMENDMENTS

Release 2

« The appropriate figures have been updated to include specifications for the
3330-1 and 3340 disk storage devices.

« The format for the load modules produced by the linkage editor has been
included in this edition. See Appendix G.

« The “SIZE option” has been rewritten to make it easier for the user to
determine the correct values for the option. Appendix H is a summary of
this section.

Release 1

« A more efficient EXEC statement has been added for use in the LKEDG
procedure when the programmer wishes to specify the LET parameter in
the LKED step. This change applies to both OS/VS1 and OS/VS2.

0S/VS2 Summary of Amendments 15

INTRODUCTION

The linkage editor and the loader processing programs prepare the output of
language translators for exectution. The linkage editor prepares a load module
that is to be brought into storage for execution by program fetch. The loader
prepares the executable program in storage and passes control to it directly.

The linkage editor provides several processing facilities such as creating
overlay programs, and aiding program modification. (The linkage editor is
also used to build and edit system libraries.) The loader provides high
performance loading of programs that do not require the special processing
facilities of the linkage editor.

Use of the linkage editor is recommended in the following cases:

« If the program requires linkage editor services in addition to the MAP,
LET, NCAL, and SIZE options.

« If the program uses linkage editor control statements such as INCLUDE,
NAME, OVERLAY, etc.

« If a load module is to be produced for a program library.

Use of the loader is recommended if the program only requires the use of the
following linkage editor options: MAP, LET, NCAL, and SIZE. Because of
its fewer options and because it can process a job in one job step, the loader
reduces editing and loading time by about one-half.

Linkage editor processing is performed in a link edit step. The linkage editor
can be used for compile-link edit-go, compile-link edit, link edit, and link
edit-go jobs. Loader processing is performed in a load step, which is
equivalent to the link edit-go steps. The loader can be used for compile-load
and load jobs.

Introduction 17

PART 1. LINKAGE EDITOR

Linkage editor processing is a necessary step that follows the source program
assembly or compilation of any problem program. The linkage editor is a
processing program and a service program used in association with the
language translators.

Every problem program is designed to fulfill a particular purpose. To achieve
that purpose, the program can generally be divided into logical units that
perform specific functions. A logical unit of coding that performs a function,
or several related functions, is a module. Ordinarily, separate functions should
be programmed into separate modules, a process called modular
programming. Each module can be written in the symbolic language that best
suits the function to be performed. (The symbolic languages are Assembler,
ALGOL, COBOL, FORTRAN, PL/I, and RPG.)

Each module is separately assembled or compiled by one of the language
translators. The input to a language translator is a source module; the output
from a language translator is an object module. Before an object module can
be executed, it must be processed by the linkage editor. The output of the
linkage editor is a load module (Figure 1).

An object module is in relocatable format with unexecutable machine code. A
load module (see Appendix G) is also relocatable, but with executable
machine code. A load module is in a format that can be loaded into virtual
storage and relocated by program fetch (Figure 2).

Any module is composed of one or more control sections. A control section is
a unit of coding (instructions and data) that is, in itself, an entity. All
elements of a control section are loaded and executed in a constant
relationship to one another. A control section is, therefore, the smallest
separately relocatable unit of a program.

Each module in the input to the linkage editor may contain symbolic
references to control sections in other modules; such references are called
external references. These references are made by means of address constants
(adcons). The symbol referred to by an external reference must be either the
name of a control section or the name of an entry point in a control section.
Control section names and entry names are called external names. By
matching an external reference with an external name, the linkage editor
resolves references between modules. External references and external names
are called external symbols (Figure 3). An external symbol is one that is
defined in one module and can be referred to in another.

Source N
Module

J

Object w Load
Module Module
/7
Language Linkage ‘
Translator Editor /

Figure 1. Preparing a Source Module for Execution

Part 1. Linkage Editor 19

Source Object
Module Module

Language
Translator

Figure 2. Preparing a Source Module for Execution and Executing the Load Module

Linkage

Editor

!

Program
Fetch

l

Execution

Input
Module A

CSECT Al

ENTRY All

CALL B1

(" External Names:
Input
Control Section Entry Name Module B
Al All
External < B1 CSECT B1
Symbols
External References:
From A1 to Bl .
L From B1 to A1l CALL A1l

Figure 3. External Names and External References

Linkage
Editor

Output Load
Module AB

CSECT Al
ENTRY All

CALL B1

CSECT B1

CALL A1l

20 OS/VS Linkage Editor and Loader

Object and Load Modules

External Symbol Dictionary

Object modules and load modules have the same basic logical structure. Each
consists of:

« Control dictionaries, containing the information necessary to resolve
symbolic cross-references between control sections of different modules,
and to relocate address constants. Control dictionary entries are generated
when external symbols, address constants, or control sections are
processed by a language translator. Each language translator usually
produces two kinds of control dictionaries: an external symbol dictionary
(ESD) and a relocation dictionary (RLD).

« Text, containing the instructions and data of the program.

+ An end-of-module indication: an END statement in an object module, an
end-of-module indicator in a load module.

Each control dictionary, text, and end indication is described in greater detail
in the following text.

Both object modules and load modules can contain data used by the linkage
editor to create CSECT Identification (IDR) records. If the language
translator creating an object module supports CSECT Identification, the input
object module can contain translator data for Identification records on the
END statement. Input load modules differ from object modules in the type of
data they supply. Input load modules can also provide HMASPZAP data,
linkage editor data, and user data to the Identification records that are built
during linkage editor processing. During the link edit step, the optional
IDENTIFY control statement is used to supply the optional user data for the
CSECT Identification records.

The external symbol dictionary (ESD) contains one entry for each external
symbol defined or referred to within a module. The dictionary contains an
entry for each external reference, pseudo register (external dummy section),
entry name, named or unnamed control section, and blank or named common
area. An entry name, pseudo register, or named control section can be
referred to by any control section or separately processed module; an
unnamed control section cannot.

Each entry identifies a symbol, or a symbol reference, and gives its location, if
known, within the module. Each entry in the external symbol dictionary is
classified as one of the following:

e External reference—a symbol that is defined as an external name in
another separately processed module, but is referred to in the module being
processed. The external symbol dictionary entry specifies the symbol; the
location is unknown.

e Weak external reference—a special type of external reference that is not
to be resolved by automatic library call unless an ordinary external
reference to the same symbol is found. The external symbol dictionary
entry specifies the symbol; the location is unknown.

e Entry name—a name with a control section that defines an entry point.
The external symbol dictionary entry specifies the symbol and its location,
and identifies the control section to which it belongs.

Part 1. Linkage Editor 21

o Control section name—the symbolic name of a control section. The
external symbol dictionary entry specifies the symbol, the length of the
control section, and its location. In this case, the location represents the
origin of the control section, which is the first byte of the control section.

e Blank or named common area—a control section used to reserve a
virtual storage area that can be referred to by other modules. The reserved
storage area can be used, for example, as a communications region within a
program or to hold data supplied at execution time. The external symbol
dictionary entry specifies the name, it present, and the length of the area. If
there is no name, the name field contains blanks.

e Private code—an unnamed control section. The external symbol dictionary
entry specifies the length of the control section and the origin. The name
field contains blanks.

o Pseudo register—a special facility (corresponding to the external dummy
section feature of Assembler F) that can be used to write re-enterable
programs. A pseudo register is a dynamically obtained location in virtual
storage that can be used as a pointer to dynamically acquired storage; that
is, the space for such areas is not reserved in the load module but is
acquired during execution. The external symbol dictionary contains the
name, length, alignment, and displacement of the pseudo register.

When processing input modules, the linkage editor resolves references
between modules by matching the referenced symbols to defined symbols. To
do this, the linkage editor searches for the external symbol definition in the
external symbol dictionary of each input module. As shown in Figure 4, the
linkage editor matches the external reference to B1 by locating the definition
for B1 in the external symbol dictionary of Module B. In the same way, it
matches the external reference to Al1 by locating the definition for A1l in
the external symbol dictionary of Module A.

Text
The text contains the instructions and data of the module.
Relocation Dictionary
The relocation dictionary (RLD) contains one entry for each relocatable
address constant that must be modified before a module is executed. An entry
identifies an address constant by indicating both its location within a control
section and the external symbol whose value must be used to compute the
Input ESD for A
Module A -
Symbol - Type Location ESD for B \
\ Input
Al Control Known Symbol Types Location § \ Module B
Section \
ESD Name B1 Control Known \
All Entry Name | Known Section \
CSECT Al Y Name
. ESD
. B1 External Unknown /
. Reference i All External Unknown /
ENTR.Y All Reference | / CSECT B1
CALL B1 CALL A1l

Figure 4. Use of the External Symbol Dictionary

22 OS/VS Linkage Editor and Loader

End Indication

value of the address constant. (The external symbol is defined in an external
symbol dictionary entry in another control section or module.)

The linkage editor uses the relocation dictionary whenever it processes a
module to adjust the address constants for references to other control sections
and modules. This dictionary is also used to adjust these address constants
again after program fetch reads an output load module from a library and
loads it into virtual storage for execution.

The end of a load module is marked by an end-of-module indicator (EOM).
The EOM cannot, like the assembler END instruction, specify an entry point.
Therefore, whenever a load module is reprocessed by the linkage editor, a
main entry point should be specified on an ENTRY statement. If one is not
specified, the linkage editor will assign the first byte of the first control
section encountered as the entry point.

Linkage Editor Processing

Input and Output Sources

Load Module Creation

This section discusses the input and output sources of the linkage editor, and
the way in which the linkage editor produces a load module.

The linkage editor can receive its input from several sources, as follows:

 The primary input, which can contain only object modules and linkage
editor control statements (called control statements in the following text).

« Additional user-specified input, which can contain either object modules
and control statements, or load modules. This input is either specified by
the user as input, or incorporated automatically by the linkage editor from
a call library.

During processing, the linkage editor generates intermediate data.
Intermediate data is placed on a direct-access storage device when virtual
storage allocated for input data is exhausted.

Output of the linkage editor is of two types:

« A load module, which is always placed in a library (a partitioned data set)
as a named member.

« Diagnostic output, which is produced as a sequential data set.

Figure 5 shows the input, intermediate, and output sources for the linkage
editor program.

In processing object and load modules, the linkage editor assigns consecutive
relative addresses to all control sections and resolves all references between
control sections. Object modules produced by several different language
translators can be used to form one load module.

An output load module is composed of all input object modules and input
load modules processed by the linkage editor. The control dictionaries of an
output module are, therefore, a composite of all the control dictionaries in the
linkage editor input. The control dictionaries of a load module are called the

Part 1. Linkage Editor 23

Inter-
mediate

Load
Module

Automatic
Call
Library

Diagnostic
Output

User-
Specified
Input

Figure 5. Input, Intermediate, and Output Sources for the Linkage Editor

composite external symbol dictionary (CESD) and the relocation dictionary
(RLD). The load module also contains all of the text from each input module,
and one end-of-module indicator (Figure 6.) See Appendix G for the format
of a load module.

Module A
' Output Load
Module AB
TXT CESD
RLD TXT
END
Module B
ESD
RLD
TXT
EOM
RLD
END

Figure 6. A Load Module Produced by the Linkage Editor

24 OS/VS Linkage Editor and Loader

Assigning Addresses

Each module to be processed by the linkage editor has an origin that was
assigned during assembly, compilation, or a previous execution of the linkage
editor. When several modules, each with an independently assigned origin, are
to be processed by the linkage editor, the sequence of the addresses is
unpredictable; two input modules may even have the same origin.

Each input module can be made up of one or more control sections. To
produce an executable output load module, the linkage editor assigns relative
virtual storage addresses to each control section by assigning an origin to the
first control section encountered and then assigning addresses, relative to that
origin, to all other control sections to be included in the output load module.
The value assigned as the origin of the control section is used to relocate each
address dependent item in the control section.

Although the addresses in a load module are consecutive, they are relative to
zero. When a load module is to be executed, program fetch prepares the
module for execution by loading it at a specific virtual storage location. The
addresses in the module are then increased by this base address. Each address
constant must also be readjusted, another function of program fetch.

Resolving External References

The linkage editor also resolves external references in the input modules.
Cross references between control sections in different modules are symbolic.
They must be resolved relative to the addresses assigned to the load module.
The linkage editor calculates the new address of each relocatable expression
in a control section and determines the assigned origin of the item to which it
refers.

Functions of the Linkage Editor

Linkage editor input may consist of a combination of object modules, load
modules, and control statements. The primary function of the linkage editor is
to combine these modules, in accordance with the requirements stated on
control statements, into a single output load module. Although this linking or
combining of modules is its primary function, the linkage editor also:

« Edits modules by replacing, deleting, rearranging, and ordering control
sections as directed by control statements.

« Aligns control sections and named common areas on 2K or 4K page
boundaries as directed by control statements.

« Accepts additional input modules from data sets other than the primary
input data set, either automatically, or upon request.

« Reserves storage for the common control sections generated by Assembler
and FORTRAN language translators, and static external areas generated
by PL/1

o Computes total length and assigns displacements for all pseudo registers
(external dummy sections).

o Creates overlay programs in a structure defined by control statements.
o Creates multiple output load modules as directed by control statements.

« Provides special processing and diagnostic output options.

Part 1. Linkage Editor 25

o Assigns module attributes that describe the structure, content, and logical
format of the output load module.

o Allocates storage areas for linkage editor processing as specified by the
programmer.

« Stores system status index information in the directory of the output
module library (systems personnel only).

« Traces the processing history of a program.

« Allows the user to lengthen a control section or named common section
without changing source code, reassembling, or recompliling.

« Allows the user to assign an authorization code to a load module that (a)
makes it a restricted resouce and (b) enables it to pass control to other
restricted resources.

Each of the linkage editor functions is described briefly in the following
paragraphs.

Links Modules

Processing by the linkage editor makes it possible for the programmer to
divide his program into several modules, each containing one or more control
sections. The modules can be separately assembled or compiled. The linkage
editor combines these modules into one output load module (Figure 7) with
contiguous storage addresses. During processing by the linkage editor,
references between modules within the input are resolved. The output module
is placed in a library (partitioned data set).

Assembler

Source
Module

N

A

Module
Object

Module Y /
\ ———
Linkage \

Load
Module

Figure 7. Linkage Editor Processing—Module Linkage

26 OS/VS Linkage Editor and Loader

Edits Modules

Program modification is made easier by the editing functions of the linkage
editor. When the functions of a program are changed, the programmer
modifies, then compiles and link edits again only the affected control sections
instead of the entire source module.

Control sections can be replaced, renamed, deleted, moved, or ordered as
directed by control statements. Control sections can also be automatically
replaced by the linkage editor. External symbols can be changed or deleted as
directed by control statements.

Figure 8 illustrates the module editing function of the linkage editor.

Object
Module
A

Control
Statements

Linkage
Editor

Figure 8. Linkage Editor Processing—Module Editing

Aligns Control Sections or Common Areas on Page Boundaries

Accepts Additional Input Sources

Control sections or named common areas in the output load module can be

aligned on either 2K or 4K page boundaries. Alignment on page boundaries
enables the programmer to use real storage more efficiently and appreciably
reduce the paging rate for the job.

Standard subroutines can be included in the output module, thus reducing the
work in coding programs. The programmer can specify that a subroutine be
included at a particular time during the processing of his program by using a
control statement. When the linkage editor processes a program that contains
this statement, the module containing the subroutine is retrived from the
indicated input source, and made a part of the output module (Figure 9).

Symbols that are still undefined after all input modules have been processed
cause the automatic library call mechanism to search for modules that will
resolve these references. When a module name is found that matches the
unresolved symbol, the module is processed by the linkage editor and also
becomes part of the output module (Figure 9).

Part 1. Linkage Editor 27

Reserves Storage

Processes Pseudo Registers

Creates Overlay Programs

Primary Input:

Object
Module
A

Control

Statements J _
Linkage
Editor /
Additional Input: 4 “
P / \ N
Automatic | Load
Call Module
Library A
2 lcand D B
/1 c
D
E
F
- \
Module
F
Object
Module E »)

Figure 9. Linkage Editor Processing—Additional Input Sources

Note: The level F linkage editor distinguishes a special type of external
reference— the weak external reference. An unresolved weak external
reference does not cause the linkage editor to use the automatic library call
mechanism. Instead, the reference is left unresolved, and the load module is
marked as executable.

The linkage editor processes common control sections generated by the
FORTRAN and Assember language translators. The static external storage
areas generated by the PL/I compiler are processed in the same way. The
common areas are collected by the linkage editor, and a reserved virtual
storage area is provided within the output module.

Pseudo registers, like the external dummy sections of Assembler F, aid in
generating re-enterable code. The linkage editor processes pseudo registers by
accumulating the total length of storage required for all pseudo registers and
recording the displacement of each. During execution, the program
dynamically acquires the necessary storage.

To minimize virtual storage requirements, the programmer can organize his
program into an overlay structure by dividing it into segments according to
the functional relationships of the control sections. Two or more segments
that need not be in virtual storage at the same time can be assigned the same

28 OS/VS Linkage Editor and Loader

Creates Multiple Load Modules

relative virtual storage addresses, and can be loaded at different times.

The programmer uses control statements to specify the relationship of
segments within the overlay structure. The segments of the load module are
placed in a library so that the control program can load them separately when
the load module is executed.

The linkage editor can also proces§ its input to form more than one load
module within a single job step. Each load module is placed in the library
under a unique member name, as specified by a control statement.

Provides Special Processing and Diagnostic Output Options

Assigns Load Module Attributes

The programmer can specify special processing options that negate automatic
library call or the effect of minor errors. In addition, the linkage editor can
produce a module map or cross-reference table that shows the arrangement of
control sections in the output module and indicates how they communicate
with one another. A list of the control statements processed can also be
produced.

Throughout processing, errors and possible error conditions are logged.
Serious errors cause the linkage editor to mark the output module not
executable. Additional diagnostic data is automatically logged by the linkage
editor. The data indicates the disposition of the load module in the output
module library.

When the linkage editor generates a load module, it places an entry for the
module in the directory of the library. This entry contains attributes that
describe the structure, content, and logical format of the load module. The
control program uses these attributes to determine how a module is to be
loaded, what it contains, if it is executable, whether it is executable more than
once without reloading, and if it can be executed by concurrent tasks. Some
module attributes can-be specified by the programmer; others are specified by
the linkage editor as a result of information gathered during processing.

Allocates User-Specified Virtual Storage Areas

The programmer can specify the total amount of virtual storage to be made
available to the linkage editor, the amount to be used for the load module
buffer, and the buffer for the output load module.

Stores System Status Index Information

The following information is intended for systems personnel responsible for
maintaining IBM-supplied load modules. It is not generally applicable to
non-IBM load modules.

Four bytes in the library directory entry for IBM-supplied load modules are
used to store system status index information. This information, which is used
for maintenance of the modules, is placed in the directory with a control
statement.

Part 1. Linkage Editor 29

Traces Processing History

Tracing the processing history of a program is simplified by the CSECT
Identification (IDR) records created and maintained by the linkage editor. A
CSECT Identification record can contain data that describes:

« The language translator, its level, and the translation date for each control
section.

« The most recent processing by the linkage editor.
« Any modification made to the executable code of any control section.

Optionally, user-supplied data associated with the executable code of a
control section can also be recorded.

Lengthens Control Sections or Named Common Sections

The user can lengthen control sections or named common sections of a
program to add patch space without changing the source code, reassembling,
or recompiling.

Added space, consisting of binary zeros, is put at the end of a specified
control section by using the EXPAND control statement (see the ‘“‘Control
Statement Summary”’ section). Space cannot be added to a private code or
blank common section.

Assigns an Authorization Code to Output Load Modules

The authorized program facility (APF) limits the use of sensitive system and
(optionally) user services and resources to authorized system and user
programs. Authorization is defined as accesss to those services and resources.
The services and resources to which access is limited are described in the
following publications: for VS1, OS/VS1 Planning and Use Guide; for
VS2, OS/VS2 System Programming Library: Initialization and Tuning
Guide.

Programs are authorized at the job-step level. For a job step to gain
authorization initially, the first module loaded at the start of the job step must
be an authorized module, and it must have been loaded from an authorized
library. Otherwise, the job step is not authorized initially and cannot
subsequently gain authorization.

For a job step to maintain its authorization, all subsequent modules invoked
during the job step (via LINK, LOAD, ATTACH, and/or XCTL macro
instructions) must be loaded from an authorized library. Otherwise, the job
step loses its authorization and cannot gain authorization.

A library becomes an ‘““‘authorized” library by the inclusion of its name in a
list called IEAAPFQO. This list is described in more detail in OS/VS2 System
Programming Library: nitialization and Tuning Guide.

In VS1, a load module becomes ‘““authorized” by the inclusion of its name in a
list called IEFSDPPT. This list is described in more detail in OS/VS1
Planning and Use Guide.

In VS2, a load module becomes ‘‘authorized’” by the assignment of an
authorization code to the load module during linkage-editing. This assignment
is made via the PARM field parameter AC or via the control statement
SETCODE, which are described in the sections that follow.

30 OS/VS Linkage Editor and Loader

Relationship to the Operating System

Time Sharing Option (TSO)

Language Dependencies

Assembler Language

The linkage editor has the same relationship to the operating system as any
other processing program. It can be executed either as a job step, a
subprogram, or a subtask. Control is passed to the linkage editor in one of
three ways:

« As a job step, when the linkage editor is specified on an EXEC job control
statement in the input stream.

« As a subprogram, with the execution of a CALL macro instruction (after
the execution of a LOAD macro instruction), a LINK macro instruction, or
an XCTL macro instruction.

« As a subtask, in multitasking systems, with the execution of the ATTACH
macro instruction.

Execution of the linkage editor and the data sets used by the linkage editor
are described to the system with job control language statements. These
statements describe all jobs to be performed by the system.

Note: Job control statements are not to be confused with linkage editor
control statements. Job control statements are processed before the linkage
editor is executed; linkage editor control statements are processed during
linkage editor execution.

When the linkage editor is used under TSO (VS2 only), it is invoked by the
linkage editor prompter program that acts as an interface between the user,
operating system, and linkage editor. Under TSO, execution of the linkage
editor and definition of data sets used by the linkage editor are described to
the system through use of the LINK command that causes the prompter to be
executed. Operands of the LINK command can also be used to specify the
linkage editor options a job requires. Complete procedures for use of the
LINK command are given in the OS/VS2 TSO Terminal User’s Guide.

This section defines control section, entry name, external reference, common
area, and pseudo register (external dummy section) in terms of the source
language statements that generally create them. The languages described are
Assembler, COBOL, FORTRAN, and PL/I.

Note: Unless the language translator supports CSECT Identification (IDR)
records, identification data is not produced.

In the Assembler language, a control section is defined by a CSECT
statement or a START statement. Either statement may specify a control
section name. The control section delimiter is an END statement, or another
CSECT or START statement.

An entry name is defined with an ENTRY statement.

An external reference to a data area is specified with an EXTRN statement
and an A-type address constant; an external reference to a control section or
an entry name is specified with a V-type address constant.

A common area is specified with a COM statement.

Part 1. Linkage Editor 31

COBOL

FORTRAN

PL/1

An external dummy section (Assembler XF and Assember H only) is defined
with a DXD instruction or a DSECT and a Q-type address constant; a CXD
instruction defines a 4-byte field that the linkage editor uses to accumulate
the length of all external dummy sections in a load module.

In COBOL, a control section is produced for each compilation. COBOL
control sections are always named, because a name must be specified in the
PROGRAM-ID paragraph of the IDENTIFICATION DIVISION.

An entry name is defined with an ENTRY statement.

An external reference is created by the compiler when a CALL statement is
used.

COBOL does not use common areas or pseudo registers.

In FORTRAN, a control section is defined with a SUBROUTINE,
FUNCTION, or BLOCK DATA statement that specifies the control section
name. If the first statement in a FORTRAN routine is not one of these, it is
assumed to begin the main routine of the program. Automatically, the
statement defines a control section named MAIN, the name always assigned
to the main routine of a FORTRAN program unless the programmer has used
the NAME option to assign a name to his main routine. A control section
delimiter is an END statement.

An entry name is defined with an ENTRY statement.

An external reference is created for an EXTERNAL statement or a reference
to a subroutine subprogrmm, a function subprogram, or a BLOCK DATA
subprogram.

A common area is specified with a COMMON statement. A name may be
specified, if desired.

FORTRAN does not use pseudo registers.

In PL/1, a control section is defined by an external PROCEDURE statement
and named by the first statement label. When the MAIN option is specified,
the control section IHEMAIN, which contains the address of the principal
entry point, is created. In both cases, the control section IHENTRY is
generated to provide appropriate linkage to the library storage management
modules. Control sections are also created for each STATIC EXTERNAL or
EXTERNAL declaration with initial text and for each EXTERNAL file
constant.

Note: If the labels or variable names used for control section names exceed
seven characters, PL/I generates a seven-character control section name by
concatenating the first four and the last three characters in the label or
variable name.

A control section is also created for STATIC INTERNAL storage; it contains
the items declared with their storage class attributes as well as work areas and
control blocks added by the compiler. This control section takes its name
from the name of the external procedure control section, followed by the
letter A and padded to the left with asterisks to a length of eight characters.

32 0OS/VS Linkage Editor and Loader

An entry name is defined with an ENTRY statement.

An external reference is created for an ENTRY declaration, either explicitly
or implicity declared with the EXTERNAL attribute. Unresolved function
references or procedure calls imply EXTERNAL scope and also cause an
external reference to be generated.

A named common area is specified wyith a STATIC EXTERNAL or
EXTERNAL declaration when the defined area does not contain initial text.
(When the area is initialized, a control section is generated.) The name is the
name of the variable. PL/I does not use blank common areas.

A pseudo register is created for each CONTROLLED variable, for each file
declared, and for each PROCEDURE or PROCEDURE BEGIN block or ON
unit in the program. The name of the pseudo register created for a
CONTROLLED EXTERNAL variable is the name of the variable. In all
other cases, the name of the pseudo register is generated from the external
procedure control section name followed by a letter (B, C, etc.) and padded
to the left with asterisks to a length of eight characters. The asterisks can be
replaced, if necessary, to provide sufficient unique names.

Part 1. Linkage Editor 33

INPUT TO THE LINKAGE EDITOR

Primary Input Data Set

Object Modules

The linkage editor accepts input from two major sources: the primary input
data set and additional data sets. The primary input data set is made
available through job control language specifications. Additional data sets
are made available either through the automatic library call mechanism, or
through user-specified control statements. They must, however, also be
defined with job control language specifications.

Primary and additional input data sets may contain the following types of
data:

e One or more object modules.
+ One or more load modules.
+ Control statements.

« Combinations of the above (restrictions on certain combinations are noted
where they apply).

Object modules and control statements may be contained in either sequential
or partitioned data sets. Load modules must be contained in partitioned data
sets.

This chapter describes the “linking ” functions of the linkage editor only; the
“editing” functions are described in the chapter “Module Editing.”

The primary input data set is required for every linkage editor job step. It
must be defined by a DD statement with the ddname SYSLIN. The primary
input can be:

« A sequential data set.
« A member of a partitioned data set.

» A concatenation of sequential data sets and/or members of partitioned
data sets.

The primary input data set must contain object modules and/or control
statements. The modules and control statements are processed sequentially
and their order determines the basic order of linkage editor processing during
a given execution. However, the order of the control sections after processing
does not necessarily reflect the order in which they appeared in the input.

In the examples that follow, only the statements necessary to define the input
to the linkage editor are shown; complete examples are shown in Appendix A.

The primary input to the linkage editor may consist solely of one or more
object modules. The rest of this section discusses object module input from
cards, as a member of a partitioned data set, passed from a previous job step,
and created in a separate job.

Input to the Linkage Editor 35

From Cards

Object module input to the linkage editor may be on cards. The card deck
itself is treated as a sequential data set; the cards are placed in the input
stream, after a DD * statement, as follows:

//SYSLIN DD *
Object Deck A

Object Deck B

/*

The card input is followed by a /* statement.

An example of the JCL when card decks are used in addition to other input is
as follows:

//SYSLIN DD DSNAME=INPUT, ...
// DD *

Object Deck A

Object Deck B

/*

By omitting the ddname on the second DD statement, the card input is
concatenated to the data set described on the SYSLIN DD statement.

As a Member of a Partitioned Data Set

Passed from a Previous Job Step

An object module in a partitioned data set can be used as primary input to the
linkage editor by specifying its data set name and member name on the
SYSLIN DD statement. In the following example, the member named
TAXCOMP in the object module library LIBROUT is to be the primary
input; LIBROUT is a cataloged data set:

//SYSLIN DD DSNAME=LIBROUT(TAXCOMP),
// DISP=(OLD,KEEP)

The library member is processed as if it were a sequential data set.

Members of partitioned data sets can be concatenated with other input data
sets, as follows:

//SYSLIN DD DSNAME=OBJLIB,DISP=(OLD,KEEP), .
// DD DSNAME=LIBROUT(TAXCOMP),
// DISP=(OLD,KEEP)

Library member TAXCOMP is concatenated to data set OBJLIB; both must
contain object modules since they are the primary input.

An object module to be used as input can be passed from a previous job step
to a linkage editor job step in the same job, as in a compile-link edit job. That
is, the output from the compiler is direct input to the linkage editor. In the
following example, and object module that was created in a previous job step
(Step A) is passed to the linkage editor job step (Step B):

Step A:

//SYSGO DD DSNAME=§&OBJECT ,DISP=(NEW,PASS), ...
Step B:

//SYSLIN DD DSNAME=§ EOBJECT ,DISP=(OLD,DELETE)

36 OS/VS Linkage Editor and Loader

The data set name &&OBJECT, used in both job steps, identifies the object:
module as the output of the language processor on the SYSGO DD statement,
and as the primary input to the linkage editor on the SYSLIN DD statement.

Note: The double ampersand (&&) in the data set name defines a temporary
data set. These data sets exist for the duration of the job and are
automatically deleted at the end of the job. If the data set is to be preserved
for longer than the duration of a single job, the double ampersand is not used
(DSNAME=0BJECT).

The method used in the preceding example can also be used to retrieve object
modules created in previous steps. If the same data set name is used for the
output of each language processor, one SYSLIN DD statement can be used to
retrieve all the object modules, as follows:

Step A:

//SYSGO DD DSNAME=§ §OBJMOD ,DISP=(NEW,PASS), .
Step B:

//SYSPUNCH DD DSNAME=§ &§OBJMOD ,DISP=(MOD, PASS)
Step C:

//SYSLIN DD DSNAME=¢§ &§0OBJMOD,DISP=(OLD,DELETE)

The two object modules from Step A and Step B are placed in the same
sequential data set, &&OBJMOD. The SYSLIN DD statement in Step C
causes both object modules to be used as the primary input to the linkage
editor.

Another method can be used to accomplish this purpose: concatenation of
data sets. This method could be used if the object modules were created in
previous job steps with different member names, as follows:

Step A:

//SYSGO DD DSNAME=§ §OBJLIB(MODA), DISP=(NEW,
// PASS), ..

Step B:

//SYSPUNCH DD DSNAME=¢§ EOBJLIB(MODB), DISP=(MOD,
// . PASS), ...

Step C:

//SYSLIN DD DSNAME=§ §OBJLIB(MODA),DISP=(OLD,
// DELETE)

// DD DSNAME=§ §OBJLIB(MODB), DISP=(OLD,
// DELETE)

The object modules created in Step A and Step B were placed in a partitioned
data set with different member names. The two members are concatenated in
Step C as primary input. Each member is considered to be a sequential data
set.

Input to the Linkage Editor 37

Created in a Separate Job

If the only input to the linkage editor is an object module from a previous job,
the SYSLIN DD statement contains all the information necessary to locate
the object module, as follows:

//SYSLIN DD DSNAME=0OBJECT,DISP=(OLD,DELETE),
// _ UNIT=2314,VOLUME=SER=LIB613

An object module created in a separate job may also be on cards, in which
case it is handled as described earlier.

Control Statements

The primary input data set may also consist solely of control statements.
When the primary input is control statements, input modules are specified on
INCLUDE control statements (see “Included Data Sets). The control
statements may be either placed‘in the input stream or stored in a permanent
data set.

In the following example, the primary input consists of control statements in
the input stream:

//SYSLIN DD *
Linkage Editor Control Statements
/ *

In the next example, the primary input consists of control statements stored in
the member INCLUDES in the partitioned data set CTLSTMTS:

//SYSLIN DD DSNAME=CTLSTMTS(INCLUDES),DISP=(OLD,
// KEEP), ..

In either case, the control statements can be any of those described in
“Linkage Editor Control Statement Summary,” as long as the rules given
there are followed.

Object Modules and Control Statements

The primary input to the linkage editor may contain both object modules and
control statements. The object modules and control statements may be in
either the same data set or different data sets. If the modules and statements
are in the same data set, this data set is described on the SYSLIN DD
statement as any data set is described.

If the modules and statements are in different data sets, the data sets are
concatenated. The control statements may be defined either in the input
stream or as a separate data set.

Control Statements in the Input Stream

Control statements can be placed in the input stream and concatenated to an
object module data set, as follows:

//SYSLIN DD DSNAME=§EOBJECT, ...
// DD *

Linkage Editor Control Statements

/%

38 OS/VS Linkage Editor and Loader

Another method of handling control statements in the input stream is to use
the DDNAME parameter, as follows:

//SYSLIN DD DSNAME=§ EOBJECT, . ..
// DD DDNAME=SYSIN
//SYSIN DD *

Linkage Editor Control Statements

/ *

Note: The linkage editor cataloged procedures use DDNAME=SYSIN for the
SYSLIN DD statement to allow the programmer to specify the primary input
data set required.

Control Statements in a Separate Data Set

Automatic Call Library

A separate data set that contains control statements may be concatenated to a
data set that contains an object module. The control statements for a
frequently used procedure (for example, a complex overlay structure or a
series of INCLUDE statements) can be stored permanently. In the following
example, the members of data set CTLSTMTS contain linkage editor control
statements. One of the members is concatenated to data set & & OBJECT.

//SYSLIN DD DSNAME=§ §OBJECT,DISP=(OLD,DELETE), . .
// DD DSNAME=CTLSTMTS(OVLY),DISP=(OLD,
// KEEP), .

The control statements in the member named OVLY of the partitioned data
set CTLSTMTS are used to structure the object module.

The automatic library call mechanism is used to resolve external references
that were not resolved during primary input processing. Unresolved external
references found in modules from additional data sources are also processed
by this mechanism.

Note: The following discussion of automatic library call does not apply to
unresolved weak external references; they are left unresolved.

The automatic library call mechanism involves a search of the directory of the
automatic call library for an entry that matches the unresolved external
reference. When a match is found, the entire member is processed as input to
the linkage editor.

Automatic library call can resolve an external reference when the following
conditions exist; the external reference must be (1) a member name or an
alias of a module in the call library, and (2) defined as an external name in
the external symbol dictionary of the module with that name. If the
unresolved external reference is a member name or an alias in the library, but
is not an external name in that member, the member is processed but the
external reference remains unresolved unless subsequently defined.

The automatic library call mechanism searches the call library defined on the
SYSLIB DD statement. The call library can contain either (1) object modules
and control statements or (2) load modules; it must not contain both.

Modules from libraries other than the SYSLIB call library can be searched by
the automatic library call mechanism as directed by the LIBRARY control

Input to the Linkage Editor 39

statement. The library specified in the control statement is searched for
member names that match specific external references that are unresolved at
the end of input processing. If any unresolved references are found in the
modules located by automatic library call, they are resolved by another search
of the library. Any external references not specified on a LIBRARY control
statement are resolved from the library defined on the SYSLIB DD statement.

In addition, two means exist to negate the automatic library call mechanism.
The LIBRARY statement can be used to negate the automatic library call for
selected external references unresolved after input processing; the NCAL
option on the EXEC statement can be used to negate the automatic library
call for all external references unresolved after input processing. Use of the
LIBRARY control statement and the NCAL option are discussed after the
SYSLIB DD statement that follows.

SYSLIB DD Statement
If the automatic library call mechanism is to be used, the call library must be a
partitioned data set described by a DD statement with a ddname of SYSLIB.
The call library may be either a system call library or a private call library; call
libraries may be concatenated.

System Call Library

Most of the system processing programs have their own automatic call library
(Figure 10). This library must be defined when an object module produced by
that processor is to be link edited.

Processing Program Library Name
ALGOL SYS1.ALGLIB
COBOL SYS1.COBLIB
FORTRAN SYS1.FORTLIB
PL/I SYS1.PLILIB
Sort/Merge SYS1.SORTLIB

Figure 10. System Automatic Call Libraries

The call library may contain input/output, data conversion, and/or other
special routines that are needed to complete the module. The processor
creates an external reference for these special routines and the linkage editor
resolves the references from the appropriate call library.

In the following example, a FORTRAN object module created in Step A is to
be link edited in Step B, and the FORTRAN automatic call library is used to
resolve external references:

Step A:

//SYSOBJ DD DSNAME=§ EOBJIJMOD ,DISP=(NEW,

// PASS), ...

Step B:

//SYSLIN DD DSNAME=§&0OBJMOD, DISP=(OLD,DELETE)
//SYSLIB DD DSNAME=SYS1.FORTLIB,DISP=SHR

40 OS/VS Linkage Editor and Loader

Private Call Libraries

Concatenation of Call Libraries

Library Control Statement

The disposition of SHR on the SYSLIB DD statement means that other tasks
which may be executing concurrently with Step B may also use
SYS1.FORTLIB.

The SYSLIB DD statement can also describe a private, user-written library.
In this case, the automatic library call mechanism searches the private library
for unresolved external references. In the following example, unresolved
external references are to be resolved from a private library named
PVTPROG:

//SYSLIB DD DSNAME=PVTPROG,DISP=SHR,UNIT=2314,
// VOLUME=SER=PVT002

System call libraries and private call libraries may be concatenated either to
themselves, and/or to each other. When librariess are concatenated, they
must all be either object module libraries or load module libraries; they may
not be mixed.

If object modules from different system processors are to be link edited to
form one load module, the call library for each must be defined. This is
accomplished by concatenating the additional call libraries to the library
defined on the SYSLIB DD statement. In the following example, a
FORTRAN object module and a COBOL object module are to be link
edited; the two system call libraries are concatenated as follows:

//SYSLIB DD DSNAME=SYS1.FORTLIB,DISP=SHR
// DD DSNAME=SYS1.COBLIB,DISP=SHR

System libraries are cataloged; no unit or volume information is needed.

A system call library and a private call library can also be concatenated in this
way. For example, by adding the following statement to the two in the
preceding example, the private call library PVTPROG, which is not cataloged,
is concatenated to the two system call libraries:

// DD DSNAME=PVTPROG, DISP=SHR, UNIT=2314,
// VOLUME=SER=PVTO002

Any external references not resolved from the two system libraries are
resolved from the private library.

The LIBRARY control statement can be used to direct the automatic library
call mechanism to a library other than that specified in the SYSLIB DD
statement. Only external references listed on the LIBRARY statement are
resolved in this way. All other unresolved external references are resolved
from the library in the SYSLIB DD statement.

The LIBRARY statement can also be used to specify external references that
are not to be resolved by the automatic library call mechanism. The
LIBRARY statement specifies the duration of the nonresolution: either
during the current linkage editor job step, called restricted no-call, or during
this or any subsequent linkage editor job step, called never-call.

Examples of each use of the LIBRARY statement follow; a description of the
format is given in “Linkage Editor Control Statement Summary.”

Input to the Linkage Editor 41

Additional Call Libraries

Restricted No-Call Function

If the additional libraries are to be used to resolve specific references, the
LIBRARY statement contains the ddname of a DD statement that describes
the library. The LIBRARY statement also contains, in parentheses, the
external references to be resolved from the iibrary; i.e., the names of the
members to be used from the library. If the unresolved external reference is
not a member name in the specified library, the reference remains unresolved
unless subsequently defined.

For example, two modules (DATE and TIME) from a system call library have
been rewritten. The new modules are to be tested with the calling modules

. before they replace the old modules. Because the automatic library call

mechanism would otherwise search the system call library (which is needed
for other modules), a LIBRARY statement is used, as follows:

//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=SHR
//TESTLIB DD DSNAME=TEST ,DISP=(OLD,KEEP), ...
//SYSLIN DD DSNAME=ACCTROUT, .
// DD *

LIBRARY TESTLIB(DATE,TIME)
/*

Two external references, DATE and TIME, are resolved from the library
described on the TESTLIB DD statement. All other unresolved external
references are resolved from the library described on the SYSLIB DD
statement.

The programmer can use the LIBRARY statement to specify those external
references in the output module for which there is to be no library search
during the current linkage editor job step. This is done by specifying the
external reference(s) in parenthese without specifying a ddname. The
reference remains unresolved, but the linkage editor marks the module
executable.

For example, a program contains references to two large module that are
called from the automatic call library. One of the modules has been tested and
corrected, the other is to be tested in this job step. Rather than execute the
tested module again, the restricted no-call function is used to prevent
automatic library call from processing the module as follows:

// EXEC PGM=HEWL,PARM=LET
//SYSLIB DD DSNAME=PVTPROG,DISP=SHR,UNIT=2314,
// VOLUME=SER=PVT002
//SYSLIN DD DSNAME= & §PAYROL, . . .
// DD *
LIBRARY (OVERTIME)
/*

As a result, the external reference to OVERTIME is not resolved by
automatic library call.

42 0S/VS Linkage Editor and Loader

Never-Call Function

NCAL OPTION

Included Data Sets

The never-call function specifies those external references that are not to be
resolved by automatic library call during this or any subsequent linkage editor
job step. This is done by specifying an asterisk followed by the external
reference(s) in parentheses. The reference remains unresolved but the linkage
editor marks the module executable.

For example, a certain part of a program is never executed, but it contains an
external reference to a large module (CITYTAX) which is no longer used by
this program. However, the module is in a call library needed to resolve other
references. Rather than take up storage for a module that is never used, the
never-call function is specified, as follows:

// EXEC PGM=HEWL, PARM=LET
//SYSLIB DD DSNAME=PVTPROG,DISP=SHR,UNIT=2314,
// VOLUME=SER=PVT002
//SYSLIN DD DSNAME=TAXROUT,DISP=0LD, .
// DD *
LIBRARY *¥(CITYTAX)
/*

As a result, when program TAXROUT is link edited, the external reference to
CITYTAX is not resolved by automatic library call.

When the NCAL option is specified, no automatic library call occurs to
resolve external references that are unresolved after input processing. The
NCAL option is similar to the restricted no-call function on the LIBRARY
statement, except that the NCAL option negates automatic library call for all
unresolved external references and restricted no-call negates automatic library
call for selected unresolved external references. With NCAL, all external
references that are unresolved after input processing is finished, remain
unresolved. The module is however, marked executable.

The NCAL option is a special processing parameter that is specified on the
EXEC statement as described in “No Automatic Library Call Option.”

The INCLUDE control statement requests the linkage editor to use additional
data sets as input. These can be sequential data sets containing object
modules and/or control statements, or members of partitioned data sets
containing object modules and/or control statements, or load modules.

The INCLUDE statement specifies the ddname of a DD statement that
describes the data set to be used as additional input. If the DD statement
describes a partitioned data set, the INCLUDE statement also contains the
name of each member to be used. See “Linkage Editor Control Statement
Summary” for a detailed description of the format of the INCLUDE statement.

Input to the Linkage Editor 43

When an INCLUDE control statement is encountered, the linkage editor
processes the module or modules indicated. Figure 11 shows the processing of
an INCLUDE statement. In the illustration, the primary input data set is a
sequential data set named OBJMOD which contains an INCLUDE statement.
After processing the included data set, the linkage editor processes the next
primary input item. The arrows indicate the flow of processing.

Primary Input

Data Set OBJMOD
Library OBJLIB
Member MODA
Include OBJLIB (MODA)

Figure 11. Processing of One INCLUDE Control Statement

Primary Input
Data Set SYSLIN

2%V

Include OBJMOD

NAAAANV]

Sequential
Data Set OBIMOD

Library OBJLIB
Member MODA

VIAAN

Include OBJIB (MODA)

A AAN

not processed

Figure 12. Processing of More than One INCLUDE Control Statement

44 OS/VS Linkage Editor and Loader

Including Sequential Data Sets

Including Library Members

If an included data set also contains an INCLUDE statement, this specified
module is also processed. However, any data following the INCLUDE
statement is not processed.

If the OBJMOD data set shown in Figure 11 is itself included, the data
following the INCLUDE statement for OBJLIB is not processed. Figure 12
shows the flow of processing for this example.

Sequential data sets containing object modules and/or control statements can
be specified by an INCLUDE control statement. In the following example, an
INCLUDE statement specifies the ddnames of two sequential data sets to be
used as additional input:

//ACCOUNTS DD DSNAME=ACCTROUT,DISP=(OLD,KEEP), ...
//INVENTRY DD DSNAME=INVENTRY,DISP=(OLD,KEEP), ..
//SYSLIN DD DSNAME=QTREND, . ..
// DD *

INCLUDE ACCOUNTS, INVENTRY
/*

Each ddname could also have been specified on a separate INCLUDE
statement; with either method, a DD statement must be specified for each
ddname.

Another method of doing the preceding example is given in “Including
Concatenated Data Sets.”

One or more members of a partitioned data set can be specified on an
INCLUDE control statement. The member name must be specified on the
INCLUDE statement; no member name should appear on the DD statement
itself.

In the following example, one member name is specified on the INCLUDE
statement:

//PAYROLL DD DSNAME=PAYROUTS,DISP=(OLD,KEEP), ...
//SYSLIN DD DSNAME=§ &§CHECKS , DISP=(OLD, DELETE)
// DD *

INCLUDE PAYROLL(FICA)
/*

If more than one member of a partitioned data set is to be included, the
INCLUDE statement specifies all the members to be used from each library.
The member names are not repeated on the DD statement.

In the following example, an INCLUDE statement specifies two members
from each of two libraries to be used as additional input:

//PAYROLL DD DSNAME=PAYROUTS,DISP=(OLD,KEEP), ...
//ATTEND DD DSNAME=ATTROUTS,DISP=(OLD,KEEP),...
//SYSLIN DD *

INCLUDE PAYROLL(FICA,TAX),ATTEND(ABSENCE, OVERTIME)
/%

Each library could have been specified on a separate INCLUDE statement;
with either method, a DD statement must be specified for each ddname.

Another method of doing this example is given in “Including Concatenated
Data Sets.”

Input to the Linkage Editor 45

Including Concatenated Data Sets

Several data sets can be designated as input with one INCLUDE statement
that specifies one ddname; additional data sets are then concatenated to the
data set described on the specified DD statement. When data sets are
concatenated, all of the records must have the same characteristics (i.e.,
format, record length, block size, etc.).

Sequential Data Sets: In the following example, two sequential data sets are
concatenated and then specified as input with one INCLUDE statement:

//CONCAT DD DSNAME=ACCTROUT ,DISP=(OLD,KEEP), ...
DD DSNAME=INVENTRY,DISP=(OLD,KEEP), ...
//SYSLIN DD DSNAME=SALES,DISP=0OLD, ...
// DD *
INCLUDE CONCAT
/*

When the INCLUDE statement is recognized, the contents of the sequential
data sets ACCTROUT and INVENTRY are processed.

Library Members: Members from more than one library can be designated as
input with one ddname on an INCLUDE statement. In this case, all the
members are listed on the INCLUDE statement; the partitioned data sets are
concatenated using the ddname from the INCLUDE statement:

//CONCAT DD DSNAME=PAYROUTS,DISP=(OLD,KEEP), ...
// DD DSNAME=ATTROUTS ,DISP=(OLD,KEEP), ...
//SYSLIN DD DSNAME=REPORT,DISP=0LD, ...

DD *

INCLUDE CONCAT(FICA,TAX,ABSENCE,OVERTIME)
/*
When the INCLUDE statement is recognized, the two libraries PAYROUTS
and ATTROUTS are searched for the four members; the members are then
processed as input.

46 OS/VS Linkage Editor and Loader

OUTPUT FROM THE LINKAGE EDITOR

Output Load Module

Output Module Library

The linkage editor produces two types of output: a load module and
diagnostic information. The principal output of the linkage editor is the output
load module. The linkage editor always places this load module in a
partitioned data set. In addition, the linkage editor issues diagnostic
information. Error and/or warning messages, module disposition data, and
optional diagnostic output are stored in the diagnostic output data set.

The linkage editor produces one or more load modules (see Appendix G)
from the input processed. When more than one load module is produced, the
process is called multiple load module processing.

Whether or not the linkage editor produces one or more load modules, the
following apply:

« The load module is stored in a partitioned data set called the outpur
module library.

¢ The load module must have an entry point; if the programmer has not
assigned one, the linkage editor does.

« The output load module is assigned an authorization code.

» During processing, the linkage editor reserves and collects common areas,
as specified in the source language program.

» During processing, the linkage editor accumulates total length and
individual displacements for each pseudo register (external dummy
section).

« During processing, the linkage editor collects and records identification
data in the CSECT Identification (IDR) records.

o During the processing of a load module, the linkage editor deletes any
private code (unnamed control section) having a length of zero and any
identification data associated with it.

The linkage editor stores every load module it produces in the output module
library. This library is a partitioned data set that must be described by a DD
statement with the name SYSLMOD. The data set name of the library is also
specified on this DD statement. The data set can be either temporary (defined
with a double ampersand), or permanent (defined without a double
ampersand). If the data set name is either SYS1.LINKLIB or SYS1.SVCLIB,
it would be advisable to re-IPL the system after linkage editor processing is
complete. This ensures that the corresponding Data Extent Block (DEB) is
updated to reflect additional extents if secondary allocation of direct-access
space was required.

Whether the data set is permanent or temporary, each module must be
assigned a unique name, called the member name, to distinguish one load
module from another. The output module can be assigned aliases if the
programmer wants the module either identified by more than one name or
entered for execution at several different points. Each member name and alias

Output from the Linkage Editor 47

Member Name

in a load module library must be unique. The library member name and aliases
for each load module appear as separate entries in the library directory, along
with the module attributes. (Some module attributes can be assigned on the
EXEC statement for each linkage editor job step; see ‘“Module Attributes” in
“Job Control Language Summary.”’)

The member name of the output load module may be specified either on the
SYSLMOD DD statement, in a NAME statement, or both. If the member
name is not specified, the default is TEMPNAME. If this default name has
been previously assigned to a load module, using it again will cause a failure.

Assigned on SYSLMOD DD Statement: If the member name is assigned on
the SYSLMOD DD statement, the name is written in parentheses following
the data set name of the library. For example:

//SYSLMOD DD DSNAME=MATHLIB(SQDEV),DISP=(NEW,KEEP),
// UNIT=2314,SPACE=(TRK,(100,10,1)),
// VOLUME=SER=LIB002

The member name SQDEYV is assigned to the load module, which is placed in
the new library named MATHLIB.

Assigned on NAME Control Statement: If the member name is not specified
on the SYSLMOD DD statement, it may be assigned in a NAME control
statement. For example:

//SYSLMOD DD DSNAME=MATHLIB,DISP=(NEW,KEEP), .
//SYSLIN DD DSNAME=§EOBJECT, DISP=(OLD,DELETE)
// DD * '

NAME SQDEV
/*

The member name SQDEYV is assigned to the load module, which is placed in
the library named MATHLIB.

Assigned on Both: If both the SYSLMOD DD statement and the NAME
control statement specify a member name, the names should be identical. If
the names are different, the name on the NAME control statement is used as
the member name. '

Note: If a “link-edit and go”’ sequence of job steps is performed and the
program name in the EXEC statement of the “go’’step contains a backward
reference to the SYSLMOD DD statement in the “link-edit” step, the user
must ensure that the member name specified in the SYSLMOD DD statement
is valid and is not overridden by a NAME control statement. For example:

//LKED EXEC PGM=HEWL
//SYSLMOD DD DSNAME=§ELOADST(GO),DISP=(NEW,
//SYSLIN DD DSNAME=§ §OBJECT ,DISP=(OLD,DELETE)
// DD *

NAME READ
/*

//GO EXEC PGM=%* .LKED.SYSLMOD

The EXEC statement of the GO step specifies that the module to be executed
is described in the LKED step in the SYSLMOD statement. The system tries

48 OS/VS Linkage Editor and Loader

Alias Names

Entry Point

to locate a member named GO; however, the output module was assigned the
name READ.

Replacing an Identically Named Library Member: An output module can
replace an identically named member in the library in either of two ways. The
SYSLMOD DD statement names an existing data set, as follows:

//SYSLMOD DD DSNAME=MATHLIB(SQDEV),DISP=(OLD,
// KEEP), ...

Or, the NAME control statement specifies the replace function, as follows:
NAME SQDEV(R)

In either case, the member named SQDEV is replaced with a new module of
the same name.

An output module can be assigned a maximum of 16 aliases, specified with
the ALIAS control statement. The aliases exist in addition to the member
name of the output module. When a module is referred to by an alias,
execution begins at the external name specified by the alias. If the name
specified by the ALIAS statement is not an external symbol within the
module, the main entry point is used.

For example, an output module is to be assigned two additional entry points,
CODEL1 and CODE2. In addition, due to a misunderstanding, calling modules
have been written and tested using both ROUTONE and ROUT1 to refer to
the output module. Rather than correct the calling modules, an alternate
library member name (alias) is also assigned.

//SYSLMOD DD DSNAME=PVTLIB,DISP=OLD,UNIT=2314,
// VOLUME=SER=LIB0O
//SYSLIN DD DSNAME=§ EOBJECT , DISP=(OLD , DELETE)
// DD * P

ALIAS ‘CODE1, CODE2, ROUTONE

NAME ROUT .
/* -

The names CODE1, CODE2, and ROUTONE appear in the library directory
along with ROUT]1, the member name. Because CODE1 and CODE2 are
defined as external symbols within the output module, when these names are
used, execution begins at these points. Control may be passed to the main
entry point by using either the member name ROUT1 or the alias
ROUTONE.

Every load module must have a main entry point. The programmer may
specify the entry point in one of two ways:

e On a linkage editor ENTRY control statement.

« On an Assembler language END statement, which is the last statement in
the source program. The assembler produces an object module and an
END statement for the module. The assembler-produced END statement
contains an entry point only if the source language END statement
contained one.

From its input, the linkage editor selects the entry point for the load module
as follows:

1. From the first ENTRY control statement in the input.

Output from the Linkage Editor 49

Authorization Code

2. If there is no ENTRY control statement in the input, from the first
assembler-procuced END statement that specifies an entry point.

3. If no ENTRY control statement or no assembler-produced END statement
specifies an entry point, the first byte of the first control section of the load
module is used as the entry point.

In general, the entry point should be explicitly specified because it is not
always possible to predict which control section will be first in the output
module.

When a load module is reprocessed by the linkage editor, it has no END
statement. Therefore, if the first byte of the first control section of the load
module is not a suitable entry point, the entry point must be specified in one
of two ways:

« Through an ENTRY control statement.

« Through the assembler-produced END statement of another input module,
which is being processed for the first time. This object module must be the
first such module to be processed by the linkage editor.

Entry points other than the main entry point may be specified with an ALIAS
control statement. The symbol specified on the ALIAS statement must be
defined as an external symbol in the load module. Any reference to that
symbol causes execution of the module to begin at that point instead of the
main entry point. ‘ :

In the following example, assume that CDCHECK, CODE]1, and CODE2 are
defined as external symbols in the output module:

//SYSLIN DD DSNAME=¢€ §OBJECT,DISP=(OLD,DELETE)

// DD *

. ENTRY CDCHECK
ALIAS CODE1,CODE2,ROUTONE
NAME ROUT1

/*

As a result of the preceding control statements, CDCHECK is the main entry
point; CODE1 and CODE?2 are additional entry points. Any reference to
ROUTONE or ROUT1 causes execution to begin at CDCHECK; any
reference to CODE1 and CODE2 causes execution to begin at these points.

Each load module link edited is assigned an authorization code that
determines whether or not the module is allowed to use restricted system
services and resources. A non-zero code allows the module to use restricted
services and resources, and a zero code disallows that usage. The
authorization code becomes part of the directory entry for the module in the
library containing the module.

Reserving Storage in the Output Load Module

In FORTRAN, Assembler language, and PL/1, the programmer can create
control sections that reserve virtual storage areas that contain no data or
instructions. These control sections are called “common” or ‘“‘static external”
areas, and are produced in the object modules by the language translators.
These common areas are used, for example, as communication regions for
different parts of a program or to reserve virtual storage areas for data
supplied at execution time. These common areas are either named or
unnamed (blank).

50 OS/VS Linkage Editor and Loader

Collection of Common Areas: During processing, the linkage editor collects
common areas. That is, if two or more blank common areas are found in the
input, the largest blank common area is used in the output module; all
references to a blank common area refer to the one retained. If two or more
named common areas have the same name, the largest of the identically
named common areas is used in the output module; all references to the
named common areas refer to the one area retained.

Identically Named Common Areas and Control Sections: If a control section (as
is generated from a BLOCK DATA subprogram in FORTRAN, for example)
and a named common area have the same name, the length of the control
section must be greater than or equal to the length of the named common
area. If the control section is smaller in length than the named common area,
a diagnostic message is issued. The control section is regarded as the largest of
the common areas processed with that name. All subsequent control sections
and/or common areas with the same name are ignored.

Processing Pseudo Registers

In PL/I, programmers can use pseudo registers to define storage that will not
be reserved in the load module but can be allocated dynamically during
execution. The external dummy sections generated by Assembler F or
Assembler H correspond to the pseudo registers of PL/L

The linkage editor accumulates the total length of all pseudo registers in the
input and records the displacement of each. If two or more pseudo registers
have the same name, the one with the longest length and the most restrictive
alignment will be retained. All other pseudo registers with the same name will
be ignored; all references to the identically named pseudo registers will refer
to the one retained.

Multiple Load Module Processing

The linkage editor can produce more than one load module in a single job
step. A NAME control statement in the input stream is used as a delimiter for
input to a load module. If additional input modules follow the NAME
statement in the input stream, they are used in the formation of the next load
module.

Each load module that is formed has a unique name and is placed in the same
\ library as a separate member. When processing multiple load modules in a
single job step, the options and attributes specified in the EXEC statement
for that job step apply to all load modules created. If the linkage editor
terminates abnormally during processing of any of the output modules,
neither that module nor any of the modules yet to be processed in the job step
is processed or placed in the library. Load modules processed before
abnormal termination have already been placed in the library.

The SYSLMOD DD statement should not specify a member name when a
NAME control statement is used to specify the name of the first load module.
However, if the SYSLMOD statement does specify a member name, the name
should be identical to that specified in either the first NAME statement or an
ALIAS statement for the first module. In either case, the NAME statement is
regarded as the last item to be processed for the preceding load module.

Output from the Linkage Editor 51

Diagnostic Output

Diagnostic Messages

Module Disposition Messages

In the following example, two load modules are produced in one linkage
editor job step: '

//LKED EXEC PGM=HEWL,PARM='MAP,LIST'
//SYSLMOD DD DSNAME=PAYROLL(OVERTIME) ,DISP=0LD,
// UNIT=2314,VOLUME=SER=LIB002
//MODTWO DD DSNAME= & §OBJECT, DISP=(OLD,DELETE)
//SYSLIN DD DSNAME=§ §OBJECT(A),DISP=(OLD,DELETE)
// DD *

ENTRY INIT

NAME OVERTIME

INCLUDE MODTWO(B)

ENTRY HSKEEP

NAME VACATION
/*

The first load module is produced from the object module in the data set
defined on the SYSLIN DD statement. The main entry point is INIT:and the
member name is OVERTIME.

‘The second load module is produced from the object module specified by the

INCLUDE statement. The main entry point is HSKEEP and the member
name is VACATION.

Both load modules are placed in the library PAYROLL, defined on the
SYSLMOD statement. Note that the member name specified on the
SYSLMOD statement is identical to the name given the first load module.

The parameters on the EXEC card specify that a module map and a control
statement listing is produced for each load module. The map and listing are
discussed in detail in the next section.

Diagnostic information is stored in the diagnostic output data set, which must
be defined by a DD statement with the name SYSPRINT. This output is a
collection of messages generated by the linkage editor, as well as any optional
output requested by the programmer.

The linkage editor generates two types of messages: module disposition
messages and error/warning messages. Descriptions of the error/warning
messages can be found in Linkage Editor and Loader Messages.

Module disposition messages of several types are printed for each load
module produced. The first message indicates the options and attributes
specified for each module. Invalid options or attributes are replaced by
INVALID in the output. Messages are also generated to inform the
programmer that incompatible attributes have been specified.

52 OS/VS Linkage Editor and Loader

Error/Warning Messages

Disposition messages also describe the handling of the load module. These
messages are preceded by several asterisks, and are:

« member name NOW ADDED TO DATA SET.
o member name NOW REPLACED IN DATA SET.

e member name DOES NOT EXIST BUT HAS BEEN ADDED TO THE DATA
SET.

The replacement function was specified, but the member did not exist in
the data set; the module is added to the data set using the member name
given.)

o alias name 1S AN ALIAS FOR THIS MEMBER.
e MODULE HAS BEEN MARKED NOT EXECUTABLE.

In addition, module disposition messages are used when the re-enterable
(RENT), reusable (REUS), and/or refreshable (REFR) linkage editor
options have been specified for the module. When one or more of these
module attributes has been indicated, a message informs the user what
attribute(s) have been assigned to the module. This message indicates
whether the load module has been marked re-enterable or not re-enterable,
reusable or not reusable, refreshable or not refreshable, depending on the
option or options used. (See ‘“Reusablity Attributes” and “Refreshable
Attribute” in the job control language summary section for more information
on these options.)

The message consists of several asterisks and MODULE HAS BEEN MARKED,
followed by the attribute(s) assigned as a result of the linkage editor options
specified. The programmer, of course, is responsible for verifying that the
module actually is re-enterable, reusable, and/or refreshable. The following
messages are examples of some possible combinations:

e MODULE HAS BEEN MARKED REFRESHABLE.

e MODULE HAS BEEN MARKED NOT REFRESHABLE.

e MODULE HAS BEEN MARKED REUSABLE AND NOT REFRESHABLE.
e MODULE HAS BEEN MARKED REUSABLE AND REFRESHABLE.

When an error causes the linkage editor to mark a module not executable,
only the MODULE HAS BEEN MARKED NOT EXECUTABLE message appears; no
attribute messages are generated.

Certain conditions that are present when a module is being processed can
cause an error or warning message to be printed. These messages contain a
message code and message text. If an error is encountered during processing,
the message code for that error is printed with the applicable symbol or
record in error. After processing is completed, the diagnostic message

Output from the Linkage Editor 53

associated with that code is printed. The error warning messages have the
following format:

IEWOmms message text

where:

IEWO indicates a linkage editor message

mm is the message number

s is the severity code, and may be one of the following values:

1 Indicates a condition that may cause an error during execution
of the output module. A module map or cross-reference table is
produced if specified by the programmer. The output module is
marked executable.

2 Indicates an error that could make execution of the output

~ module impossible. Processing continues. When possible, a
module map or cross-reference table is produced if specified by
the programmer. The output module is marked not executable
unless the LET option is specified on the EXEC statement.

3 Indicates an error that will make execution of the output
module impossible. Processing continues. When possible, a
module map or cross-reference table is produced if specified by
the programmer. The output module is marked not executable.

4 Indicates an error condition from which no recovery is possible.
Processing terminates. The only output is diagnostic messages.

Note: A special severity code of zero is generated for each control
statement printed as a result of the LIST option. Severity zero
does not indicate an error or warning condition.

The highest severity code encountered during processing is
multiplied by 4 to create a return code that is placed in resister 15
at the end of processing. This return code can be tested to
determine whether or not processing is to continue (see ‘“Job
Control Language Summary”’).

message text contains combinations of the following:
« The message classification (either error or warning).
« Cause of error.

« Identification of the symbol, segment number (when in
overlay), or input item to which the message applies.

« Instructions to the programmer.
« Action taken by the linkage editor.

Optionally, error/warning messages can be sent to a separate output data set,
which is defined by specifying TERM in the PARM field of the EXEC
statement and including a SYSTERM DD statement. This separate
SYSTERM data set consists of only numbered error/warning messages. It
supplements the SYSPRINT output data set, which can also include module
disposition messages and optional diagnostic output. When SYSTERM is
used, the numbered error/warning messages appear in both data sets.

Linkage Editor and Loader Messages contains a complete list of
error/warning messages.

54 OS/VS Linkage Editor and Loader

Sample Diagnostic Output

Optional Output

Control Statement Listing

Module Map

Figure 13 shows the format of the diagnostic output for the linkage editor. No
optional output was requested other than the list of control statements.

The letters indicate the disposition and error/warning messages as follows:

A Is a module disposition message that lists the options and attributes
specified. Additional information is printed indicating the variable and
default options used.

B Is a list of control statements used (IEW0000) and the message codes
(IEW0201 and IEWO0461) for error/warning conditions discovered during
processing. For error/warning message codes, the symbol in error, if
necessary, is also listed (CCCCCCCC and BASEDUMP).

C Is a module disposition message (****) that indicates that the output
module (BBBBBBBB) has been added to the output module data set.

D Is the diagnostic message directory that contains the text of the error codes
listed in item B.

In addition to error/warning and disposition messages, the linkage editor can
produce diagnostic output as requested by the programmer. This optional
output includes a control statement listing, a module map, and a
cross-reference table.

If the LIST option is specified on the EXEC statement, a listing of all linkage
editor control statements is produced. For each control statement, the listing
contains a special message code, IEW0000, followed by the control statement.
Item B in Figure 13 contains an example of a control statement listing.

If the MAP option is specified on the EXEC statement, a module map of the
output load module is produced. The module map shows all control sections in
the output module and all entry names in each control section. Named
common areas are listed as control sections.

For each control section, the module map indicates its origin (relative to zero)
and length in bytes (in hexadecimal notation). For each entry name in each
control section, the module map indicates the location at which the name is
defined. These locations are also relative to zero.

>

B IEW0000
IEW0201
IEWO0461
IEW0461

F64-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED LET,NCAL,XREF,OVLY,LIST

DEFAULT OPTION(S) USED - SIZE=(65536,6144)
NAME BBBBBBBB

cceeeece
BASEDUMP

C *+4+BBBBBBBB NOW ADDED TO DATA SET

DIAGNOSTIC MESSAGE DIRECTORY

IEW0201 WARNING - OVERLAY STRUCTURE CONTAINS ONLY ONE SEGMENT -- OVERLAY OPTION

CANCELED.

IEW0461 WARNING - SYMBOL PRINTED IS AN UNRESOLVED EXTERNAL REFERENCE, NCAL WAS

SPECIFIED.

Figure 13. Diagnostic Messages Issued by the Linkage Editor

Output from the Linkage Editor 55

Cross Reference Table

If the module is not in an overlay structure, the control sections are arranged
in ascending order according to their origins. An entry name is listed with the
control section in which it is defined.

If the module is an overlay structure, the control sections are arranged by
segment. The segments are listed as they appear in the overlay structure, top
to bottom, left to right, and region by region. Within each segment, the
control sections and their corresponding entry names are listed in ascending
order according to their assigned origins. The number of the segment in which
they appear is also listed.

In any module map, the following are identified by a dollar sign:
o Blank common area.

o Private code (unnamed control section).

« For overlay programs, the segment table and each entry table.

When the load module processed by the linkage editor does not have an origin
of zero, the linkage editor generates a one-byte private code (unnamed
control section) as the first text record. This private code is deleted in any
subsequent reprocessing of the load module by the linkage editor.

Each control section that is obtained from a call library during automatic
library call is identified by an asterisk after the control section name.

At the end of the module map is the entry address, that is, the relative address
of the main entry point. The entry address is followed by the total length of
the module in bytes; in the case of an overlay module, the length is that of the
longest path. Pseudo registers, if used, also appear at the end of the module
map; the name, length, and displacement of each pseudo register is given.

Figure 14 contains a module map with five control sections. There are two
named control sections (COBSUB snd MAINMOD), one unnamed control
section (designated by $PRIVATE), and two control sections obtained from a
call library (ILBODSPO and ILBOSTPO). In addition, two entry names are
defined, SUB1 in the unnamed control section and ILBOSTP1 in control
section ILBOSTPO. ‘

Note: The HMBLIST service aid program described in the OS/VS Service
Aids publication can also be used to obtain a module map.

If the XREF option is specified on the EXEC statement, a cross-reference
table is produced. The cross-reference table consists of a module map and a
list of cross-references for each control section. Each address constant that
refers to a symbol defined in another control section is listed with its assigned
location, the symbol referred to, and the name of the control section in which

CONTROL SECTION

ENTRY

NAME ORIGIN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
COBSUB 00 33a
$PRIVATE 340 EF
SUB1 340
MAINMOD 430 166
ILBODSPO* 598 5E2
ILBOSTPO* B8O 35
ILBOSTP1 B96
ENTRY ADDRESS 430
TOTAL LENGTH BB8
*REXGO DOES NOT EXIST BUT HAS BEEN ADDED TO DATA SET

Figure 14. Module Map

56 OS/VS Linkage Editor and Loader

the symbol is defined. In cases where control sections are compiled together
and simple address constants are used to refer from one control section to
another (instead of using external symbols and entry names) the control
section name is listed as the symbol referred to.

For overlay programs, this information is provided for each segment; in
addition, the number of the segment in which the symbol is defined is
provided.

If a symbol is unresolved after processing by the linkage editor, it is identified
by SUNRESOLVED in the list. However, if an unresolved symbol is marked

by the never-call function (as specified on a LIBRARY control statement), it
is identified by SNEVER-CALL. If an unresolved symbol is a weak external

reference, it is identified by SUNRESOLVED(W).

Figure 15 contains a cross-reference table for the same program whose
module map is shown in Figure 14. All of the information from the module
map is present, plus a list of cross references for each control section.

CROSS REFERENCE TABLE

CONTROL SECTION ENTRY
NAME ORIGIN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
COBSUB 00 33a
$PRIVATE 340 EF
SUB1 340
MAINMOD 430 166
ILBODSPO* 598 5E2
ILBOSTPO* B8O 35
ILBOSTP1 B96
LOCATION REFERS TO SYMBOL IN CONTROL SECTION LOCATION REFERS TO SYMBOL IN CONTROL SECTION
250 ILBOSTPO ILBOSTPO 254 ILBODSPO ILBODSPO
258 ILBOSTP1 ILBOSTPO 450 SUB1
478 COBSUB COBSUB
ENTRY ADDRESS 430
TOTAL LENGTH BB8

Figure 15. Cross Reference Table

Output from the Linkage Editor 57

MODULE EDITING

The linkage editor performs editing functions either automatically or as
directed by control statements. These editing functions provide for program
modification on a control section basis. That is, they make it possible to
modify a control section within an object or load module, without recompiling
the entire source program.

The editing functions can modify either an entire control section or external
symbols within a control section. Control sections can be deleted, replaced, or
arranged in sequence; external symbols can be deleted or changed. (External
symbols are control section names, entry names, external references, named
common areas, or pseudo registers.)

Whatever function is used, it is requested in reference to an input module.
The resulting output load module reflects the request. That is, no actual
change, deletion, or replacement is made to an input module. The requested
alterations are used to control linkage editor processing (Figure 16).

Editing Conventions
In requesting editing functions, certain conventions should be followed to
ensure that the specified modification is processed correctly. These
conventions concern the following items:
« Entry points for the new module.
« Placement of control statements.
« Identical old and new symbols.
Entry Points: Each time the linkage editor reprocesses a load module, the
entry point for the output module should be specified in one of two ways:
o Through an ENTRY control statement.
Input Modules JCL and Control Statements Output Load Module
MODA1 N
MODA1A2
CSECTA > :
//SYSLMOD DD DSNAME=NEWLIB(MODA1A2),... CSECT1
J //MODATWO DD DSNAME=MODA2, ...
//SYSLIN DD DSNAME=MODAT,...
// DD * CSECTA
MODA2 ENTRY CSECT3
REPLACE CSECTZ2(CSECTA)
CSECT1 INCLUDE MODATWO CSECT3
CSECT2 \
CSECT3
J

Figure 16. Editing a Module

Module Editing 59

« Through the assembler-produced END statement of an input object
module, if one is present. If the entry point specified in the
assembler-produced END statement is not defined in the object module,
the entry name must be defined as an external reference.

The entry point assigned must be defined as an external name within the
resulting load module.

Placement of Control Statements: The control statement (such as CHANGE
or REPLACE) used to specify an editing function must precede either the
module to be modified, or the INCLUDE statement that specifies the module.
If an INCLUDE statement specifies several modules, the CHANGE or
REPLACE statement applies only to the first module included.

Identical Old and New Symbols: The same symbol should not appear as both
an old external symbol and a new external symbol in one linkage editor run. If
a control section is to be replaced by another control section with the same
name, the linkage editor handles this automatically (see ‘ Automatic
Replacement”’).

Changing External Symbols

The linkage editor can be directed to change an external symbol to a new
symbol while processing an input module. External references and address
constants within the module automatically refer to the new symbol. External
references from other modules to a changed external symbol must be changed
with separate control statements.

Both the old and the new symbols are specified on either a CHANGE control
statement or a REPLACE control statement. The use of the old symbol
within the module determines whether the new symbol becomes a control
section name, an entry name, or an external reference. The old symbol
appears first, followed by the new symbol in parentheses.

The CHANGE control statement changes a control section name, an entry
name, or an external reference. The REPLACE statement changes or deletes
an entry name; if the symbols on a REPLACE statement are control section
names, the entire control section is replaced or deleted (see “Replacing
Control Sections”).

The CHANGE statement must immediately precede either the input module
that contains the external symbol to be changed, or the INCLUDE statement
that specifies the input module. The scope of the CHANGE statement is
across the immediately following module (object module or load module).
The END record in the immediately following object module or the
end-of-module indication in the load module terminates the action of the
CHANGE statement. :

In the following example, assume that SUBONE is defined as an external
reference in the input load module. A CHANGE statement is used to change
the external reference to NEWMOD (Figure 17).

//SYSLMOD DD DSNAME=PVTLIB,DISP=OLD,UNIT=2314,
// VOLUME=SER=PVT002
//SYSLIN DD *
ENTRY BEGIN
CHANGE SUBONE (NEWMOD)
INCLUDE SYSLMOD(MAINROUT)
NAME MAINROUT(R)
/*

60 OS/VS Linkage Editor and Loader

Input Module

MAINROUT

BEGIN ENTRY
CALL SUBONE

CALL SUBONE

CALL SUBONE

>\\T’-

J

JCL and Control Statements Output Load Module

MAINROUT

MAINEP ENTRY

//SYSLMOD DD DSNAME=PVTLIB, ... CALL NEWMOD
//SYSLIN DD *
ENTRY MAINEP :
CHANGE SUBONE(NEWMOD), BEGIN(MAINEP) | caLL NEWMOD
INCLUDE SYSLMOD(MAINROUT)
NAME MAINROUT(R)
/*

CALL NEWMOD

Figure 17. Changing an External Reference and an Entry Point

In the load module MAINROUT, every reference to SUBONE is changed to
NEWMOD. Note also that the INCLUDE statement specifies a ddname of
SYSLMOD. This allows a library to be used both as input and as the output
module library.

More than one change can be specified on the same control statement. If, in
the same example, the entry point is also to be changed, the two changes can
be specified at once (Figure 17).

//SYSLMOD DD DSNAME=PVTLIB,DISP=OLD, UNIT=2314,
// VOLUME=SER=PVT002
//SYSLIN DD *
ENTRY MAINEP
CHANGE SUBONE(NEWMOD) , BEGIN(MAINEP)
INCLUDE SYSLMOD(MAINROUT)
NAME MAINROUT(R)
/*

The main entry point is now MAINEP instead of BEGIN. The ENTRY
control statement specifies the new entry point because this is the entry point
that is entered in the library directory entry for the load module.

Replacing Control Sections

An entire control section can be replaced with a new control section. Control
sections can be replaced either automatically or with a REPLACE control
statement. Automatic replacement acts upon all input modules; the
REPLACE statement acts only upon the module that follows it.

Note 1: Any CSECT Identification (IDR) records associated with a particular
control section are also replaced.

Note 2: (For Assembler language programmers only.) When some but not all
control sections of a separately assembled module are to be replaced, A-type
address constants that refer to a deleted symbol will be incorrectly resolved
unless the entry name is at the same displacement from the origin in both the
old and the new control section. If all control sections of a separately
assembled module are replaced, no restrictions apply.

Module Editing 61

Automatic Replacement

Example 1

Example 2

Control sections are automatically replaced if both the old and the new
control section have the same name. The first of the identically named control
sections processed by the linkage editor is made a part of the output module.
All subsequent identically named control sections are ignored; external
references to identically named control sections are resolved with respect to
the first one processed. Therefore, to cause automatic replacement, the new
control section must have the same name as the control section to be
replaced, and must be processed before the old control section.

Caution: Automatic replacement applies to duplicate control section names
only; if duplicate entry points exist in control sections with different names, a
REPLACE control statement must be used to specify the entry point name. If
a control section being automatically replaced contains unresolved external
references and the control section replacing it does not, the parameter NCAL
must be specified or the unresolved external references must be explicitly
deleted using the REPLACE statement or marked for restricted no-call or
never-call using the LIBRARY statement; otherwise, the unresolved external
reference is retained.

Note on Overlay Programs: When identically named control sections appear in
modules being placed in an overlay structure, the second and any subsequent
control sections with that name are ignored. This occurs whether the modules
are in segments in the same path or in exclusive segments. Resolution of
external references may therefore cause invalid exclusive references. Invalid
exclusive references cause the linkage editor to mark the output module not
executable unless the XCAL option is specified on the EXEC statement.

An object module deck contains two control sections, READ and WRITE;
member INOUT of library PVTLIB also contains a control section WRITE.

//SYSLMOD DD DSNAME=PVTLIB,DISP=0OLD,UNIT=2314,
// VOLUME=SER=PVT002
//SYSLIN DD *
Object Deck for READ
Object Deck for WRITE
ENTRY READIN
INCLUDE SYSLMOD(INOUT)
NAME INOUT(R)
/*

The output load module contains the new READ control section, the new
WRITE control section (replacing the old WRITE control section in member
INOUT), and all remaining control sections from INOUT.

A large load module named PAYROLL, originally written in COBOL,
contains many control sections. Two control sections, FICA and
STATETAX, were recompiled and passed to the linkage editor job step in the
& & OBJECT data set. Then, by including the load module PAYROLL, a
member of the partitioned data set LIBOO1, as well as the output of the
language translator, the modified control sections automatically replace the
identically named control sections (Figure 18).

62 OS/VS Linkage Editor and Loader

//SYSILMOD DD DSNAME=LIB0O02(PAYROLL),DISP=0LD,

UNIT=2314,VOLUME=SER=LIB002
//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=SHR

//OLDLOAD DD DSNAME=LIB001,DISP=(OLD,DELETE),

// UNIT=2314,VOLUME=SER=LIBO0O1

//SYSLIN DD DSNAME=§&0OBJECT,DISP=(0OLD,DELETE)

// DD *
INCLUDE OLDLOAD(PAYROLL)
ENTRY INITI1

/*

The output module contains the modified FICA and STATETAX control
sections and the rest of the control sections from the old PAYROLL module.
The main entry point is INIT1, and the output module is placed in a library
named LIB002. The COBOL automatic call library is used to resolve any
external references that may be unresolved after the SYSLIN data sets are

processed.

Input Modules

&&OBJECT

FICA
(new)

STATETAX
(new)

LIB0O1
(Payroll)

MAINROUT

OVERTIME

FICA
(old)

STATETAX
(old)

FEDTAX

ILLACC

VAKTION

/\:/w

L

JCL and Control Statements

//SYSLMOD DD DSNAME=LIB0O0O2(PAYROLL), ...

//OLDLOAD DD DSNAME=LIBOO1, ...
//SYSLIN DD DSNAME=§ §OBJECT, . ..

// DD *
INCLUDE OLDLOAD(PAYROLL)
ENTRY INIT1

/*

Figure 18. Automatic Replacement of Control Sections

Output Load Module

LIB002
(Payroll)

FICA
(new)

STATETAX
(new)

MAINROUT

OVERTIME

FEDTAX

ILLACC

VAKTION

W/

Module Editing 63

REPLACE Statement

The REPLACE statement is used to replace control sections when the old
and the new control sections have different names. The name of the old
control section appears first, followed by the name of the new control section
in parentheses. The REPLACE statement must immediately precede either
the input module that contains the control section to be replaced, or the
INCLUDE statement that specifies the input module. The scope of the
REPLACE statement is across the immediately following module (object
module or load module). The END record in the immediately following object
module or the End-of-Module indication in the load module terminates the
action of the REPLACE statement.

An external reference to the old control section from within the same input
module is resolved to the new control section. An external reference to the
old control section from any other module becomes an unresolved external
reference unless one of the following occurs:

« The external reference to the old control section is changed to the new
control section with a separate CHANGE control statement.

+ The same entry name appears in the new control section or in some other
control section in the linkage editor input.

In the following example, the REPLACE statement is used to replace one
control section with another of a different name. Assume that the old control
section SEARCH is in library member TBLESRCH, and that the new control
section BINSRCH is in the data set & & OBJECT, which was passed from a
previous step (Figure 19).

//SYSLMOD DD DSNAME=SRCHRTN, DISP=0LD,UNIT=2314,
// VOLUME=SER=SRCHLIB
//SYSLIN DD DSNAME=§ §OBJECT , DISP=(OLD, DELETE)
// DD *

ENTRY READIN

REPLACE SEARCH(BINSRCH)

INCLUDE SYSLMOD(TBLESRCH)

NAME TBLESRCH(R)
/*

The output module contains BINSRCH instead of SEARCH; any references
to SEARCH within the module refer to BINSRCH. Any external references
to SEARCH from other modules will not be resolved to BINSRCH.

64 OS/VS Linkage Editor and Loader

Input Modules

&&OBJECT

BINSRCH

TBLESRCH

READIN ENTRY

CALL SEARCH

SEARCH

\

JCL and Control Statements

Output Load Module

//SYSLMOD DD DSNAME=SRCHRTN, . . .
//SYSLIN DD DSNAME=§EOBJECT, . . . TBLESRCH
// DD *
ENTRY READIN READIN ENTRY
REPLACE SEARCH(BINSRCH)
NAME TBLESRCH(R)
/* CALL BINSRCH

BINSRCH

Figure 19. Replacing a Control Section with the REPLACE Control Statement

Deleting a Control Section or Entry Name

The REPLACE statement can be used to delete a control section or an entry
name. The REPLACE statement must immediately precede either the module
that contains the control section or entry name to be deleted or the
INCLUDE statement that specifies the module. Only one symbol appears on
the REPLACE statement; the appropriate deletion is made depending on how
the symbol is defined in the module.

If the symbol is a control section name, the entire control section is deleted.
The control section name is deleted from the external symbol dictionary only
if no address constants refer to the name from within the same input module.
If an address constant does refer to it, the control section name is changed to
an external record.

The preceding is also true of an entry name to be deleted. Any references to it
from within the input module cause the entry name to be changed to an
external reference.

These editor-supplied external references, unless resolved with other input
modules, cause the automatic library call mechanism to attempt to resolve
them. Also, the deletion of a control section or an entry name may cause
external references from other input modules to be unresolved. Either
condition can cause the output load module to be marked not executable.

If a deleted control section contains an unresolved external reference, the
reference remains.

Module Editing 65

Note: When a control section is deleted, any CSECT Identification data
associated with that control section is also deleted.

In the following example, control section CODER is to be deleted (Figure
20).

//SYSLMOD DD DSNAME=PVTLIB,DISP=0OLD,UNIT=2314,
VOLUME=SER=PVT002

//SYSLIN DD *
ENTRY START
REPLACE CODER
INCLUDE SYSLMOD(CODEROUT)
NAME CODEROUT(R)
/*

The control section CODER is deleted. If no address constants refer to
CODER from other control sections in the module, the control section name
is also deleted. If address constants refer to CODER, the name is retained as
an external reference.

Input Module

CODEROUT

ENCODE

CODER

L__.. NAME CODEROUT(R)
/*

DECODF

Figure 20. Deleting a Control Section

JCL and Control Statements ‘ Output Load Module
: CODEROUT
//SYSLMOD DD DSNAME=PVTLIB, ...
//SYSLIN DD * ENCODE
ENTRY START1

REPLACE CODER
INCLUDE SYSLMOD(CODEROUT)

DECODE

66 OS/VS Linkage Editor and Loader

Ordering Control Sections or Named Common Areas

The sequence of control sections or named common areas in an output load
module can be specified by using the ORDER control statement.

Individual control sections or named common areas are arranged in the output
load module according to the sequence in which they appear on the ORDER
control statement. Multiple ORDER control statements can be used in a job
step. The sequence of the ORDER statements determines the sequence of the
control sections or named common areas in the load module.

Any control sections or named common areas that are not specified on
ORDER statements appear last in the output load module. If a control section
or named common area is changed by a CHANGE or REPLACE control
statement, the new name must be used on the ORDER statement.

In the following example, ORDER statements are used to specify the
sequence of five of the six control sections in an output load module. A
REPLACE statement is used to replace the old control section SESECTA
with the new control section CSECTA from the data set & & OBJECT,
which was passed from a previous step. Assume that the control sections to be
ordered are found in library member MAINROOT (Figure 21).

//SYSLMOD DD DSNAME=PVTLIB,DISP=0LD,
// UNIT=2314,VOLUME=SER=PVT002
//SYSLIN DD DSNAME=§ §OBJECT , DISP=(OLD,DELETE)
// DD *

ORDER MAINEP(P),SEGMT1,SEG2

REPLACE SESECTA(CSECTA)

ORDER CSECTA,CSECTB(P)

INCLUDE SYSLMOD(MAINROOT)

NAME MAINROOT
/*

Module Editing 67

Input Modules

&&OBJECT

CSECTA

MAINROOT

CSECTB

SESECTA

MAINEP

LASTEP

SEGMT1

SEG2

JCL and Control Statements

//

//SYSLMOD
//SYSLIN
//
ORDER
REPLACE
ORDER
INCLUDE
NAME
/*

Figure 21. Ordering Control Sections

PGM=HEWL , PARM="'ALIGN2'

DSNAME=PVTLIB, ...
DSNAME=§ EOBJECT, . ..

*
MAINEP(P),SEGMT1,SEG2
SESECTA(CSECTA)
CSECTA,CSECTB(P)
SYSLMOD(MAINROOT)
MAINROOT

0K

2K

Output Load Module

MAINRCOT

MAINEP

SEGMT1

SEG2

CSECTA

CSECTB

LASTEP

In the load module MAINROOT, the control sections MAINEP, SEGMT1,

SEG2, CSECTA, CSECTB are rearranged in the output load module

according to the sequence specified in the ORDER statements. A REPLACE

statement is used to replace the control section SESECTA with control
section CSECTA from the data set &&OBJECT, which was passed from a
previous step. The ORDER statement refers to the new control section

CSECTA. Control section LASTEP appears after the other control sections

in the oupput load module because it was not included in the ORDER
statement operands.

68 OS/VS Linkage Editor and Loader

Aligning Control Sections or Named Common Areas on

Page Boundaries

A control section or named common area can be placed on a page boundary
by using either the ORDER statement (with the P operand) or the PAGE
statement. Alignment on a page boundary can be used to effect a lower
paging rate and thus make more efficient use of real storage.

The control section or common area to be aligned is named on either the
PAGE statement or the ORDER statement with the P operand. Either the
PAGE statement or the ORDER statement (with the P operand) causes the
linkage editor to locate the starting address of the control section or common
area on a page boundary within the load module.

The default value for the page boundary is 4K. Under VS1, the ALIGN2
attribute must be specified in the PARM field of the EXEC statement to
override the default. Because a module using the 2K page boundary alignment
may suffer performance degradation if it is moved from a VS1 system to a
VS2 system, the 2K page boundary should be used only when virtual storage
is limited.

In the following example, the control sections RAREUSE and MAINRT are
aligned on 2K page boundaries by PAGE and ORDER control statements
used with the ALIGN2 attribute. Control sections CSECTA and SESECT1
are sequenced by the ORDER control statement. Assume that each control
section is 2K in length except for SESECT1 and RAREUSE (Figure 22).

//LKED EXEC PGM=HEWL , PARM="'ALIGN2, . ..
//SYSLMOD DD DSNAME=OWNLIB,DISP=OLD,UNIT=2314,
// VOLUME=SER=0OWN002

//SYSLIN DD’ *

PAGE RAREUSE

ORDER MAINRT(P),CSECTA,SESECT1

INCLUDE SYSLMOD (MAINROOT)

NAME MAINROOT
/%
The linkage editor places the control sections MAINRT and RAREUSE on
2K page boundaries because ALIGN?2 is specified on the EXEC statement.
Control sections MAINRT, CSECTA, and SESECT1 are sequenced as
specified in the ORDER statement. RAREUSE, while placed on a 2K page
boundary, appears after the control sections specified in the ORDER
statement because it was not included. The control section BOTTOM comes
after RAREUSE because it appeared after RAREUSE in the input module.

Module Editing 69

Input Module

MAINROOT

CSECTA

RAREUSE

SESECT1

BOTTOM

MAINRT

JCL and Controls Statements

//LKED EXEC PGM=HEWL, PARM='ALIGN2,..."

.

//SYSLMOD DD DSNAME=OWNLIB, ...
//SYSLIN DD *
PAGE RAREUSE
ORDER MAINRT(P),CSECTA,SESECT1
INCLUDE SYSLMOD(MAINROOT)
NAME MAINROOT

/*

Figure 22. Aligning Control Sections on Page Boundaries

0K,

2K]

4K

6K

Output Load Module

MAINROOT

MAINRT

CSECTA

SESECT1

RAREUSE

BOTTOM

70 OS/VS Linkage Editor and Loader

OVERLAY PROGRAMS

Ordinarily, when a load module produced by the linkage editor is executed, all
of the control sections of the module remain in virtual storage throughout
execution. The length of the load module is, therefore, the sum of the lengths
of all of the control sections. When storage space is not at a premium, this is
the most efficient way to execute a program. However, if a program
approaches the limits of the virtual storage available, the programmer should
consider using the overlay facilities of the linkage editor.

In most cases, all that is needed to convert an ordinary program to an overlay
program is the addition of control statements to structure the module. The
programmer chooses the overlayable portions of the program, and the system
arranges to load the required portions when needed during execution of the
program.

When the linkage editor overlay facility is requested, the load module is
structured so that, at execution time, certain control sections are loaded only
when referenced. When a reference is made from an executing control section
to another, the system determines whether or not the code required is already
in virtual storage. If it is not, the code is loaded dynamically and may overlay
an unneeded part of the module already in storage.

The rest of this chapter is divided into three sections that describe the design,
specification, and special considerations for overlay programs.

Design of an Overlay Program

The way in which an overlay module is structured depends on the
relationships among the control sections within the module. Two control
sections that do not have to be in storage at the same time can overlay each
other. Such control sections are independent; that is, they do not reference
each other either directly or indirectly. Independent control sections can be
assigned the same load addresses and are loaded only when referenced. For
example, control sections that handle error conditions or unusual data may be
used infrequently, and need not be occupying storage unless in use.

Control sections are grouped into segments. A segment is the smallest
functional unit (one or more control sections) that can be loaded as one
logical entity during execution. The control sections required all of the time
are grouped into a special segment called the root segment. This segment
remains in storage throughout execution of an overlay program.

When a particular segment is to be executed, any segments between it and the
root segment must also be in storage. This is a path. A reference from one
segment to another segment lower in a path is a downward reference. That is,
the segment contains a reference to another segment farther from the root
segment. Conversely, a reference from one segment to another segment
higher in a path (closer to the root segment) is an upward reference.

Therefore, a downward reference may cause overlay because the necessary
segment may not yet be in virtual storage. An upward reference will not cause
overlay because all segments between a segment and the root segment must
be present in storage.

Sometimes several paths need the same control sections. This problem may be
solved by placing the control sections in another region. In an overlay

Overlay Programs 71

structure, a region is a contiguous area of virtual storage within which
segments can be loaded independently of paths in other regions. An overlay
program can be designed in single or multiple regions.

Single Region Overlay Program

Control Section Dependency

To design an overlay structure, the programmer should select those control
sections that will receive control at the beginning of execution, plus those that
should always remain in storage; these control sections form the root
segment. The rest of the structure is developed by determining the
dependencies of the remaining control sections and how they can use the
same virtual storage locations at different times during execution.

Besides control section dependency, other topics discussed in this section are
segment dependency, the length of the overlay program, segment origin,
communication between segments, and overlay processing.

Control section dependency is determined by the requirements of a control
section for a given routine in another control section. A control section is
dependent upon any control section from which it receives control, or which
processes its data. For example, if control section C receives control from
control section B, then C is dependent upon B. That is, both control sections
must be in storage before execution can continue beyond a given point in the

program.

A program contains seven control sections, CSA through CSG, and exceeds
the amount of storage available for its execution. Before the program is
rewritten, it is examined to see whether or not it could be placed into an
overlay structure. Figure 23 shows the groups of dependent control sections
in the program (the arrows indicate dependencies).

Each dependent group is also a path. That is, if control section CSG is to be
executed, CSB and CSA must also be in storage. Because CSA and CSB are
in each path, they must be in the root segment. Control section CSC is in two
groups, and therefore is a common segment in two different paths.

A better way to show the relationship between segments is with a tree
structure. A tree is the graphic representation that shows how segments can
use virtual storage at different times. It does not imply the order of execution,
although the root segment is the first to receive control. Figure 24 shows the
tree structure for the dependent groups shown in Figure 23. The structure is
contained in one region, and has five segments.

72 OS/VS Linkage Editor and Loader

CSA CSA CSA
A A A
CSB CSB CSB
A A A
CSC CSC CSG
A A
Dependent
Group 3
CSD CSF
A
Dependent
Group 2
CSE
Dependent
Group 1

Figure 23. Control Section Dependencies

Overlay Programs 73

T
CSA
4 > Root Segment 1
CSB
J
) \
csc }Segment 2 CSG > Segment 5
< 1)

T r Segment 3 CSF } Segment 4

Figure 24. Single-Region Overlay Tree Structure

Segment Dependency

When a segment is in virtual storage, all segments in its path are also in virtual
storage. Each time a segment is loaded, all segments in its path are loaded if
they are not already in virtual storage. In Figure 24 when segment 3 is in
virtual storage, segments 1 and 2 are also in virtual storage. However, if
segment 2 is in storage, this does not imply that segment 3 or 4 is in virtual
storage since neither segment is in the path of segment 2.

The position of the segments in an overlay tree structure does not imply the
sequence in which the segments are executed. A segment can be loaded and
overlaid as many times as required by the logic of the program. However, a
segment will not be overlaid by itself. If a segment is modified during
execution, that modification remains only until the segment is overlaid.

74 OS/VS Linkage Editor and Loader

Length of an Overlay Program

For purposes of illustration, assume that the control sections in the sample
program have the following lengths:

Control Section Length (in bytes)

CSA 3,000
CSB 2,000
CsC 6,000
CSD 4,000
CSE 3,000
CSF 6,000
CSG 8,000

If the program were not in overlay, it would require 32,000 bytes of virtual
storage. In overlay, however, the program requires the amount of storage
needed for the longest path. In this structure, the longest path is formed by
segments 1, 2, and 3, since, when they are all in storage, they require 18,000
bytes, as shown in Figure 25.

Note, however, that the length of the longest path is not the minimum
requirement for an overlay program; when a program is in overlay, certain
tables are used, and their storage requirements must also be considered. The
storage required by these tables is given in the section ‘“Special
Considerations.”

T)
CSA
3,000
bytes
Root Segment 1
—I— ? 5,000 bytes
CSB
2,000
bytes
| | J .
CSC
Segment 2
2’000 6,000 bytes gsogo Segment 5
ytes ’ 8,000 bytes
bytes
) B

csb - 7

4,000 ESO}Z)O Segment 4

byte ’

ytes bytes 6,000 bytes
Segment 3 _I-
?' 7,000 bytes

CSE

3,000

bytes

1)

Figure 25. Length of an Overlay Module

Overlay Programs 75

Segment ' Origin

The linkage editor assigns the relocatable origin of the root segment (the
origin of the program) at 0. The relative origin of each segment is determined
by 0 plus the length of all segments in the path. For example, the origin of
segments 3 and 4 is equal to 0 plus 6,000 (the length of segment 2) plus
5,000 (the length of the root segment), or 11,000. The origins of all the
segments are as follows:

Segment Origin
1 0
2 5,000
3 11,000
4 11,000
5 5,000

The segment origin is also called the load point, because it is the relative
location at which the segment is loaded.

Figure 26 shows the segment origin for each segment and the way storage is
used by the sample program. In the illustration, the vertical bars indicate
segment origin; any two segments with the same origin may use the same
storage area. Figure 25 also shows that the longest path is that of segments 1,
2, and 3.

Communication Between Segments

Segments that can be in virtual storage simultaneously are considered to be
inclusive. Segments in the same region but not in the same path are considered
to be exclusive; they cannot be in virtual storage simultaneously. Figure 27
shows the inclusive and exclusive segments in the sample program.

Segments upon which two or more exclusive segments are dependent are
called common segments. A segment common to two other segments is part of
the path of each segment. In Figure 27 segment 2 is common to segments 3
and 4, but not to segment 5.

Root Segment 1
5,000 bytes

Segment 5
8,000 bytes
Segment 2
6,000 bytes
Segment 4
6,000 bytes
Segment 3
7,000 bytes

Relative Storage Location (in 1,000 byte increments)

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

)

Figure 26. Segment Origin and Use of Storage

76 OS/VS Linkage Editor and Loader

-

Root
Segment 1

Segment 2
I Segment 5

| Inclusive Segments

Segment 4 1,2,and 3

1;2,and 4
Segment 3 J_ land §

Exclusive Segments

2and 5
3and 4
3and 5
4and 5

Figure 27. Inclusive and Exclusive Segments

An inclusive reference is a reference between inclusive segments; that is, a
reference from a segment in storage to an external symbol in a segment that
will not cause overlay of the calling segment. An exclusive reference is a
reference between exclusive segments; that is, a reference from a segment in
storage to an external symbol in a segment that will cause overlay of the
calling segment.

Figure 28 shows the difference between an inclusive reference and an
exclusive reference; the arrows indicate references between segments.

Inclusive References: Wherever possible, inclusive references should be used
instead of exclusive references. Inclusive references between segments are
always valid and do not require special options. When inclusive references are
used, there is also less chance for error in structuring the overlay program
correctly.

Exclusive References: An exclusive reference is made when the external
reference in the requesting segment is to a symbol defined in a segment not in
the path of the requesting segment. Exclusive references are either valid or
invalid.

An exclusive reference is valid only if there is also a reference to the

requested control section in a segment common to both the segment to be
loaded and the segment to be overlaid. The same symbol must be used in both
the common segment and the exclusive reference. In Figure 28, a reference
from segment B to segment A is valid, because there is an inclusive reference
from the common segment to segment A. (An entry table in the common
segment contains the address of segment A; the overlay does not destroy this
table.)

In the same illustration, a reference from segment A to segment B is invalid
because there is no reference from the common segment to segment B. A
reference from segment A to segment B can be made valid by including, in
the common segment, an external reference to the symbol used in the
exclusive reference to segment B.

Overlay Programs 77

Inclusive
Reference

Common Segment

Segment B
Segment A

R Exclusive —1
Reference

Figure 28. Inclusive and Exclusive References

Another way to eliminate exclusive references is to arrange the program so
that the references that will cause overlay are made in a higher segment. For
example, the programmer could eliminate the exclusive reference shown in
Figure 28 by writing a new module to be placed in the common segment; the
new module’s only function would be to reference segment B. He would then
change the code in segment A to refer to the new module instead of to
segment B. Control then would pass from segment A to the common segment,
where the overlay of segment A by segment B would be initiated.

If either valid or invalid exclusive references appear in the program, the
linkage editor considers them errors unless one of the special options is used.
These options are described later in this section.

Notes:

« During the execution of a program written in a higher level language such
as FORTRAN, COBOL, or PL/I, an exclusive call results in abnormal
termination of the program if the requested segment attempts to return
control directly to the invoking segment that has been overlaid.

o If a program written in COBOL includes a segment that contains a
reference to a COBOL class test or TRANSFORM table, the segment
containing the table must be either (1) in the root segment or (2) a
segment that is higher in the same path than the segment containing the
reference to the table.

Overlay Process

The overlay process is initiated during execution of a program only if a
control section in virtual storage references a control section not in storage.
The control program determines the segment that the referenced control
section is in and, if necessary, loads the segment. When a segment is loaded, it
overlays any segment in storage with the same relative origin. Any segments
in storage that are lower in the path of the overlaid segment may also be
overlaid. An exclusive reference can also cause segments higher in the path to
be overlaid. If a control section in storage references a control section in
another segment already in storage, no overlay occurs.

78 OS/VS Linkage Editor and Loader

The portion of the control program that determines when overlay is to occur
is the overlay supervisor, which uses special tables to determine when overlay
is necessary. These tables are generated by the linkage editor, and are part of
the output load module. The special tables are the segment table and the entry
table(s). Figure 29 shows the location of the segment and entry tables in the
sample program.

Because the tables are present in every overlay module, their size must be
considered when planning the use of virtual storage. The storage reguirements
for the tables are given in ‘“‘Special Considerations.” A more detailed
discussion of the segment and entry tables follows.

Segment Table: Each overlay program contains one segment table
(SEGTAB); this table is the first control section in the root segment. The
segment table contains information about the relationship of the segments
and regions in the program. During execution, the table also indicates which
segments are either in storage or being loaded, and other control information.

Entry Table: Each segment that is not the last segment in a path may contain
one entry table (ENTAB); this table, when present, is the last control section
in a segment.

When overlay will be required, an entry in the table is created for a symbol to
which control is to be passed, provided (1) the symbol is used as an external
reference in the requesting segment, and (2) the symbol is defined in another
segment either lower in the path of the requesting segment, or in another
region. An ENTAB entry is not created for any symbol already present in an

\
SEGTAB
CSA
>Root Segment 1
(i;'B
ENTAB J
| | “
CSC
Segment 2 CSG >Segment 5
ENTAB
' < l 4
CSD CSF Segment 4
?Segment 3 _l_

Figure 29. Location of Segment and Entry Tables in an Overlay Module

Overlay Programs 79

entry table closer to the root segment (higher in the path), or for a symbol
defined higher in the path. (A reference to a symbol higher in the path does
not have to go through the control program because no overlay is required.)

If an external reference and the symbol to which it refers are in segments not
in the same path but in the same region, an exclusive reference was made. If
the exclusive reference is valid, an ENTAB entry for the symbol is present in
the common segment. Since the common segment is higher in the path of the
requesting segment, no ENTAB entry is created in the requesting segment.
When the reference is executed, control passes through the ENTAB entry in
the common segment. That is, a branch to the location in the ENTAB causes
the overlay supervisor to be called to load the needed segment or segments.

If the exclusive reference is invalid, no ENTAB entry is present in the
common segment. If the LET option is specified, an invalid exclusive
reference causes unpredictable results when the program is executed. Since no
ENTAB-entry exists, control is passed directly to the relative address
specified in the reference, even though the requested segment may not be in
virtual storage.

Multiple Region Overlay Program

If a control section is used by several segments, it is usually desirable to place
that control section in the root segment. However, the root segment can get
so large that the benefits of overlay are lost. If some of the control sections in
the root segment could overlay each other (except for the requirement that all
segments in a path must be in storage at the same time), the job may be a
candidate for multiple region structure. Multiple region structures can also be
used to increase segment loading efficiency: processing can continue in one
region while the next path to be executed is being loaded into another region.

With multiple regions, a segment has access to segments that are not in its
path. Within each region, the rules for single region overlay programs apply,
but the regions are independent of each other. A maximum of four regions
can be used.

Figure 30 shows the relationship between the control sections in the sample
program and two new control sections, CSH and CSI. The two new control
sections are each used by two other control sections in different paths.
Placing CSH and CSI in the root segment makes the segment larger than
necessary because CSH and CSI can overlay each other. The two control
sections should not be duplicated in two paths because the linkage editor
automatically deletes the second pair and an invalid exclusive reference may
then result.

If however, the two control sections are placed in another region, they can be
in virtual storage when needed, regardless of the path being executed in the
first region. Figure 31 shows all of the control sections in a two-region
structure. Either path in region 2 can be in virtual storage regardless of the
path being executed in region 1; segments in region 2 can cause segments in
region 1 to be loaded without being overlaid themselves.

The relative origin of a second region is determined by the length of the
longest path in the first region (18,000 bytes). Region 2, therefore, begins at
0 plus 18,000 bytes. The relative origin of a third region would be determined
by the length of the longest path in the first region plus the longest path in the
second region.

80 OS/VS Linkage Editor and Loader

Figure 30. Control Sections Used by Several Paths

The virtual storage required for the program is determined by adding the
lengths of the longest path in each region. In Figure 31, if CSH is 4,000 bytes
and CSI is 3,000 bytes, the storage required is 22,000 bytes, plus the storage
required by the special overlay tables. Care should be exercised when
choosing multiple regions. There may be some system degradation due to the
overlay supervisor being unable to optimize segment loading when multiple
regions are used.

Overlay Programs 81

REGION 1

CSA

+ Root Segment 1

SB
|

@]

CSG > Segment 5

CSC pSegment 2
CSD
+ Segment 3
CSE

REGION 2

CSF »Segment 4 1/

-"“-L““_"T B R

CSI Segment 7
CSH Segment 6

Figure 31. Overlay Tree for Multiple-Region Program

Specification of an Overlay Program

Once the programmer has designed an overlay structure, he must place the
module in that structure by indicating to the linkage editor the relative
positions of the segments and regions, and the control sections in each
segment. Positioning is accomplished as follows:

Segments are positioned by OVERLAY statements. Since segments are
not named, the programmer identifies a segment by giving its origin (or
load point) a symbolic name and then uses that name in an OVERLAY
statement to specify a symbolic origin. Each OVERLAY statement begins
a new segment.

Regions are also positioned by OVERLAY statements. The programmer
specifies the origin of the first segment of the region, followed by the word
REGION in parentheses.

Control sections are positioned in the segment specified by the
OVERLAY statement with which they are associated in the input
sequence. However, the sequence of the control sections within a segment
is not necessarily the order in which the control sections are specified.

The input sequence of control statements and control sections should reflect
the sequence of the segments in the overlay structure from top to bottom, left
to right, and region by region. This sequence is illustrated in later examples.

82 OS/VS Linkage Editor and Loader

Segment Origin

In addition, several special options are used with overlay programs. These
options are specified on the EXEC statement for the linkage editor job step,
and are described at the end of this section.

Note: If a load module in overlay structure is to be reprocessed by the linkage
editor, the OVERLAY statements and special options (such as OVLY) must
be respecified. If the statements and options are not provided, the output load
module will not be in overlay structure.

The symbolic origin of every segment, other than the root segment, must be
specified with an OVERLAY statement. The first time a symbolic origin is
specified, a load point is created at the end of the previous segment. That load
point is logically assigned a relative address at the doubleword boundary that
follows the last byte in the preceding segment. Subsequent use of the same
symbolic origin indicates that the next segment is to have its origin at the
same load point.

In the sample single-region program, the symbolic origin names ONE and
TWO are assigned to the two necessary load points, as shown in Figure 31.
Segments 2 and 5 are at load point ONE, segments 3 and 4 are at load point
TWO.

The following sequence of OVERLAY statements will result in the structure
in Figure 32 (the control sections in each segment are indicated by name):

Control section CSA
Control section CSB
OVERLAY ONE
Control section CSC
OVERLAY TWO
Control section CSD
Control section CSE
OVERLAY TWO
Control section CSF
OVERLAY ONE
Control section CSG

Note that the sequence of OVERLAY statements reflects the order of
segments in the structure from top to bottom and left to right.

Overlay Programs 83

Root Segment 1

ONE

Segment 2

Segment 5§

TWO

Segment 3 Segment 4

A

Figure 32. Symbolic Segment Origin in Single-Region Program

Region Origin

The symbolic origin of every region, other than the first, must be specified
with an OVERLAY statement. Once a new region is specified, a segment
origin from a previous region should not be specified.

In the sample multiple-region program, the symbolic origin THREE is
assigned to region 2, as shown in Figure 33. Segments 6 and 7 are at load
point THREE.

If the following is added to the sequence for the single-region program, the
multiple-region structure will be produced:

.

.

OVERLAY THREE(REGION)
Control section CSH

OVERLAY THREE

Control section CSI

84 0OS/VS Linkage Editor and Loader

REGION 1

:

Root Segment 1

ONE
Segment 2
Segment 5
TWO]
1
Segment 4
Segment 3 -|_
NS GEED GINED GEED GENED GEEND GWED CGHNND NS G NS G WSS GERED GENED IS GENED CERNN G NN GEED IR GENR GRS GRS GRS S
REGION 2 -l- THREE
Segment 7
Segment 6

1

Figure 33. Symbolic Segment and Region Origin in Multiple-Region Program

Positioning Control Sections

Using Object Decks

After each OVERLAY statement, the control sections for that segment must
be specified. The control sections for a segment can be specified in one of
three ways:

« By placing the object decks for each segment after the appropriate
OVERLAY statement.

« By using INCLUDE control statements for the modules containing the
control sections for the segment.

« By using INSERT control statements to reposition a control section from
its position in the input stream to a particular segment.

Any control sections that precede the first OVERLAY statement are placed
in the root segment; they can be repositioned with an INSERT statement.
Control sections from the automatic call library are also placed in the root
segment. The INSERT statement can be used to place these control sections
in another specific segment. Common areas in an overlay program are
described in “Special Considerations.”

An example of each of the three methods of positioning control sections
follows. Each example results in the structure for the single-region sample
program. An example is also given of repositioning control sections from the
automatic call library.

The primary input data set for this example contains an ENTRY statement
and seven object decks, separated by OVERLAY statements:

Overlay Programs 85

Using INCLUDE Statements

Using INSERT Statements

//LKED EXEC PGM=HEWL,PARM='OVLY'

.
.

//SYSLIN DD *
ENTRY BEGIN
Object deck for CSA
Object deck for CSB
OVERLAY ONE
Object deck for CSC
OVERLAY TWO
Object deck for CSD
Object deck for CSE
OVERLAY TWO
Object deck for CSF
OVERLAY ONE
Object deck for CSG
/ *

The EXEC statement illustrates that the OVLY parameter must be specified
for every overlay program to be processed by the linkage editor.

The primary input data set for this example contains a series of control
statements. The INCLUDE statements in the primary input data set direct the
linkage editor to library members that contain the control sections of the
program.

//LKED EXEC PGM=HEWL,PARM='OVLY'
//MODLIB DD DSNAME=OBJLIB,DISP=(OLD,KEEP), ...
//SYSLIN DD *

ENTRY BEGIN

INCLUDE MODLIB(CSA,CSB)

OVERLAY ONE

INCLUDE MODLIB(CSC)

OVERLAY TWO

INCLUDE MODLIB(CSD,CSE)

OVERLAY TWO

INCLUDE MODLIB(CSF)

OVERLAY ONE

INCLUDE MODLIB(CSG)
/*
This example differs from the previous one in that the control sections of the
program are not part of the primary input data set, but are represented in the
primary input by the INCLUDE statements. When an INCLUDE statement
is processed, the appropriate control section is retrieved from the library and
processed.

When INSERT statements are used, the INSERT and OVERLAY statements
may either follow or precede all the input modules. However, the order of the
control sections in a segment is not necessarily the same as the order of the
INSERT statements for each segment. An example of each is given, as well as
an example of repositioning automatically called control sections.

86 OS/VS Linkage Editor and Loader

Following All Input: The control statements can follow all the input modules,
as shown in the following example:

//LKED EXEC PGM=HEWL,PARM="'OVLY"'
//SYSLIN DD DSNAME=OBJECT,DISP=(OLD,KEEP), . .
// DD *

ENTRY BEGIN
INSERT CSA,CSB
OVERLAY ONE
INSERT CSC
OVERLAY TWO
INSERT CSD,CSE
OVERLAY TWO
INSERT CSF
OVERLAY ONE
INSERT CSG
/*

The primary input data set contains the object modules for the control
sections, and the input stream is concatenated to it.

Preceding All Input: The control statements can also precede all input
modules, as shown in the following example:

//LKED EXEC PGM=HEWL,PARM='OVLY'
//MODULES DD DSNAME=OBJSEQ, DISP=(OLD,KEEP), .
//SYSLIN DD *

ENTRY -BEGIN

INSERT CSA,CSB

OVERLAY ONE

INSERT CSC

OVERLAY TWO

INSERT CSD,CSE

OVERLAY TWO

INSERT CSF

OVERLAY ONE

INSERT CSG

INCLUDE MODULES
/*
The primary input data set contains all of the control statements for the
overlay structure and an INCLUDE statement. The data set specified by the
INCLUDE statement contains all of the object modules for the structure, and

is a sequential data set.

Repositioning Automatically Called Control Sections: The INSERT statement
can also be used to move automatically called control sections from the root
segment to the desired segment. This is helpful when control sections from
the automatic call library are used in only one segment. By moving such
control sections, the root segment will contain only those control sections
used by more than one segment.

When a program is written in a higher level language, special control sections
are called from the automatic call library. Assume that the sample program is
written in COBOL and that two control sections ILBOVTRO and
ILBOSCHO) are called automatically from SYS1.COBLIB. Ordinarily, these
control sections are placed in the root segment. However, INSERT statements
are used in the following example to place these control sections in segments
other than the root segment.

Overlay Programs 87

Special Options

OVLY Option

LET Option

//LKED EXEC PGM=HEWL, PARM='OVLY'

//MODLIB DD DSNAME=OBJLIB,DISP=(OLD,KEEP), ...
//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=SHR
//SYSLIN DD *

ENTRY BEGIN
INCLUDE MODLIB(CSA,CSB)
OVERLAY ONE
INCLUDE MODLIB(CSC)
OVERLAY TWO
INCLUDE MODLIB(CSD,CSE)
INSERT ILBOVTRO
OVERLAY TWO
INCLUDE MODLIB(CSF)
INSERT ILBOSCHO
OVERLAY ONE
INCLUDE MODLIB(CSG)
/*
As a result, segments 3 and 4 will also contain ILBOVTRO and ILBOSCHO,
respectively.

This example also combines two of the ways of specifying the control sections
for a segment.

The linkage editor provides three special job step options for the overlay
programmer. These options are specified on the EXEC statement for the
linkage editor job step. They must be specified each time a load module in
overlay structure is reprocessed by the linkage editor. The three options are
OVLY, LET, and XCAL.

The OVLY option must be specified for every overlay program. If the option
is omitted, all the OVERLAY and INSERT statements are considered invalid.
The output module is marked not executable unless the LET option is
specified. The output module is not in an overlay structure.

With the LET option, the output module is marked executable even though
certain error conditions were found during linkage editor processing. When
LET is specified, any exclusive reference (valid or invalid) is accepted. At
execution time, a valid exclusive reference is executed correctly; an invalid
exclusive reference usually causes unpredictable results.

Also with the LET option, unresolved external references do not prevent the
module from being marked executable. This could be helpful when part of a
large program is ready for testing; the segments to be tested may contain
references to segments not yet coded. If LET is specified, the program can be
executed to test those parts that are finished (as long as the references to the
absent segments are not executed). If the LET option is not specified, these
unresolved references will cause the module to be marked not executable.

88 OS/VS Linkage Editor and Loader

XCAL Option

Special Considerations

Common Areas

With the XCAL option, a valid exclusive call is not considered an error, and
the load module is marked executable. However, other errors could cause the
module to be marked not executable, unless the LET option is specified; in
this case, the XCAL option is not required.)

This section discusses several special considerations that affec<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>