
Order Number

SC26-4223-1

VS FORTR.
Interactive
Guide and

Program Numbers
5668-805

5668-806

M

m t-i-.

Release 2

VS FORTRAN Version 2 Licensed
Interactive Debug Program
Guide and Reference

Order Number Program Numbers Release 2
SC26-4223-1 6668-805

5668-806

Second Edition (June 1987)

This edition replaces and makes obsolete the previous edition, SC26-4223-0.

This edition applies to Release 2 of VS FORTRAN Version 2, Licensed Programs
5668-805 and 5668-806, and to any subsequent releases until otherwise indicated in new
editions or technical newsletters. The changes for this edition are summarized under
"Summary of Changes" following the preface. Specific changes are indicated by a vertical
bar to the left of the change. These bars will be deleted at any subsequent publication of
the page affected. Editorial changes that have no technical significance are not noted.

Changes are made periodically to this publication; before using this publicadon in
connection with the operation of IBM systems, consult the latest IBM System/370, 30xx,
and 4300 Processors Bibliography, GC20-0001, for the editions that are applicable and
current.

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in aU countries in which IBM operates. Any
reference to an IBM licensed program in this publication is not intended to state or imply
that only IBM's program may be used. Any functionally equivalent program may be used
instead.

Requests for IBM publications should be made to your IBM representative or to the IBM
branch office serving your locality. If you request publications from the address given
below, your order will be delayed because publications are not stocked there.

A form for readers' comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, P.O. Box 50020,
Programming Publishing, San Jose, California, U.S.A. 95150. IBM may use or distribute
whatever information you supply in any way it believes appropriate without incurring any
obligation to you.

© Copyright International Business Machines Corporation 1986, 1987

Preface

About This Book

Part 1. VS FORTRAN Version 2 Interactive Debug Guide

The guide contains the following information on how to use Interactive Debug:

• How to set up and use Interactive Debug in your environment

• A sample debugging session

• How to use some common commands

• Special considerations when using Interactive Debug

Part 2. VS FORTRAN Version 2 Interactive Debug Reference

The reference section contains:

• An explanation of syntax and statement identifier conventions

• A table listing the Interactive Debug commands according to the functions they
perform

• Detailed descriptions of all the Interactive Debug commands

Appendixes

The appendixes include:

• Information on using the Interactive Debug HELP facility

• A summary of Interactive Debug commands, illustrating syntax and function

• A listing of Interactive Debug messages

Preface 111

Summary of Changes

Release 2, June 1987

Major Changes to the Product

• Support for 31-character symbolic names, including the underscore ()
character.

• Addition of a program sampling capability, to assist in identifying areas of a
program that use the most CPU time.

• Addition of four new commands:

1. ANNOTATE, to support program sampling.

2. LISTSAMP, to support program sampling.

3. LISTINGS, to display the listings data set specification panel when using
ISPF Version 2.

4. RECONNECT, to allow a CLOSED unit to be reset to its original
(preconnected) state so that it can be implicitly opened again.

Capability of providing substring notation for character variables.

Capability of referencing array subscripts outside the range of the declared
dimensions.

Reduced dependency on TSO, including removal of the TSOLIB requirement
under CMS batch.

Capability to debug programs invoked under TSO LOADGO.

Support for debugging CMS MODULE files under ISPF.

IV VS FORTRAN Version 2: Interactive Debug Guide and Reference

Contents

Part 1. VS FORTRAN Version 2 Interactive Debug Guide 1

Chapter 1. Introducing VS FORTRAN Version 2 Interactive Debug 3
Interactive Debug Features 3
Interactive Debug Programming Requirements 5
System Requirements 5
Compiler Requirements 5
Library Requirements 6
Restrictions 6

Performance Considerations 7

Discovering Program Bugs 7
Invoking Interactive Debug 8

Chapter 2. UsingInteractive Debug with ISPF 9
Invoking Interactive Debug 9

Under CMS 10

Under TSO 17
Using the Execution Panel 21

Entering Commands 22
Using Program Function Keys to Enter Commands 22
Entering Input to a VS FORTRAN Version 2 Program 23
Viewingthe ScrollableLog 23
Error Messages 24
Breaks Initiated by Interactive Debug 24

Using Interactive Debug Features under ISPF Version 2 24
Setting or Changing the Defaults for Your Debugging Sessions 25
Displa3ring Your SourceListingin a Window 26
Using Cursor-Oriented Commands 30
Searching the Source Listing or the Log for Character Strings 31
Animating the Execution of Your Program 32
Changingthe Color Attributes of Your Panel 33

Splitting the Screen Using ISPF and PDF 33
Recompiling a Program while Using a Split Screen (TSO Only) 33

After Ending the Debugging Session 34
Bypassing the BROWSE Step 35

UsingOptional Debugging Files or Data Sets 36
Specifying an Output Log File or Data Set (AFFOUT) 36
Specifying a Print File or Data Set (AFFPRINT) 36
Specifying Program Units to be Debugged (AFFON) 37
Specifying a Restart File or Data Set (AFFIN) 39

Chapter 3. Using InteractiveDebugin Line Mode 41
Invoking Interactive Debug 41

Under CMS 41

Contents V

Under ISO 45

Entering Commands 46
Entering Input to a VS FORTRAN Program 47
Using a Listing File while Debugging 48
Using Optional Debugging Files or Data Sets 48

Specifjnng Program Units to Be Debugged (AFFON) 48
Specifying a Print File or Data Set (AFFPRINT) 50

Chapter 4. Using Interactive Debug in Batch Mode 51
Invoking Interactive Debug 51

Under CMS 52

I Under MVS 53
Running a Batch Debugging Session 55
Specifying the Input File or Data Set (AFFIN) 56

I Including Program Input in AFFIN 57
Specifying an Output File or Data Set (AFFOUT) 58
After Ending a Debugging Session 58
Using Optional Debugging Files or Data Sets 58

Specifying a Print File or Data Set (AFFPRINT) 58
Specifying Program Units to be Debugged (AFFON) 59

Chapter 5. A Sample Debugging Session 61
Sample Program 61
Sample Debugging Session 64

Chapter 6. Using Some Common Interactive Debug Commands 69
Displaying Information about Debuggable Program Units 69
Referring to Statements or Variables in Other Program Units 70 f >

Displaying the Current Program Qualification 71
Changing the Current Program Qualification 71
Explicit Qualification of Individual Variables 72

Setting Breakpoints at Debugging Hooks 72
Controlling Program Execution 74
Using Command Lists 76
Displaying the Data Types of Scalar Variables and Arrays 77
Determining Statement Execution Frequency 78

I Program Sampling 79
I Initiating Program Sampling 79
I Displaying Program Sampling Statistics 80
I Limitations Using Program Sampling 82

Displaying Timing Information 82
Tracing Program Execution 83
Displaying Formatted Variable and Array Values 85
Handling Execution-Time Errors 86

Identifying Errors 86
Performing Corrective Action 87

Processing External Files 89
Using System Commands 90
Entering Terminal Input 91
Continuing Execution without Further Debugging 93

Chapter 7. Special Considerations When Using Interactive Debug 95
Issuing Commands after Termination of a VS FORTRAN Program 96
Handling Loops in Nondebuggable Program Units 96 '

VI VS FORTRAN Version 2: Interactive Debug Guide and Reference

specifying DefaultExecution-Time Options 96
Monitoring Floating-Point Equalities 97
Referring to Unused VSFORTRAN Variables 97
Entering Commands in an Attention-Interrupt Exit 97
Debugging Optimized and Vectorized Code 98

Optimization Levels and Functions 99
Vectorization Levels and Functions 102
Some Practical Examples: Optimization 103
Some Practical Examples: Vectorization 105
Commands Affected by Optimization and Vectorization 107

Improving Performance when UsingInteractive Debug 109
Recognizing Some Common Errors when Setting up a Debugging Session ... 109

Part 2. VS FORTRAN Version 2 Interactive Debug Reference . Ill

Chapters. Interactive Debug Commands 113
Syntax Conventions 113
Statement Identifier Conventions 114
Commands 115
* or " (Comments) 117

I ANNOTATE Command 118
AT Command 121
AUTOLIST Command 125
BACKSPACE Command 131
CLOSE Command 132
COLOR Command 134
DESCRIBE Command 136
ENDDEBUG Command 138
ENDFILE Command 141
ERROR Command 142
FIXUP Command 144
GO Command 146
HALT Command 148

I HELP Command (ISPF Version) 150
HELP Command (CMS Version) 151
HELP Command (TSO Version) 153
IF Command 155
LIST Command 158
LISTBRKS Command 164
LISTFREQ Command 165

I LISTINGS Command 168
I LISTSAMP Command 170

LISTSUBS Command 174
LISTTIME Command 176
MOVECURS Command 177
NEXT Command 178
OFF Command 180
OFFWN Command 182
POSITION Command 183
PREVDISP Command 185
PROFILE Command 186
PURGE Command 188
QUALIFY Command 189
QUIT Command 191

Contents Vll

RECONNECT Command 192
REFRESH Command 193
RESTART Command 194

REWIND Command 195
SEARCH Command 197
SET Command 199

STEP Command 203

SYSCMD Command 205

TERMIO Command 207

TIMER Command 209

TRACE Command 211

WHEN Command 213

WHERE Command 216

WINDOW Command 217

Appendix A. Using the Interactive Debug HELP Facility 219
Help at the Terminal 219
ISPF Procedures 222

CMS Procedures 222

TSO Procedures 223

Appendix B. Interactive Debug Conunand Summary 225

Appendix C. Interactive Debug Messages 231

Glossary 269

Index 275

Vlll VS FORTRAN Version 2: Interactive Debug Guide and Reference

Figures

1. The FOREGROUND VS FORTRAN Version 2 Interactive Debug Panel
for CMS 10

2. A Sample Modification of the ISPF Invocation EXEC 14
3. Sample Modifications to ISPF Master Application Menu 14
4. Sample Application Panel (USERISP) to Prompt for the Text File Name 15
5. Sample EXEC (USERDBG) to Invoke the Program without PDF 16
6. The FOREGROUND VS FORTRAN Version 2 Interactive Debug Panel

forTSO 17
7. Sample Modifications to the ISPFInvocation CLIST 18
8. Sample Modifications to ISPF MasterApplication Menu 19
9. Sample Application Panel (USERISP) to Promptfor the Text File Name 20

10. Sample CLIST (USERDBG) to Invoke the Program without PDF 20
11. VS FORTRAN Version 2 Interactive Debug Execution Panel 21
12. Modifying the PROFILE Command Panel 25
13. The Listings Data Set Specification Panelin CMS 28
14. Example of Debugging Using a Source Window 29
15. Modifying the STEP DELAY Field 32
16. The Foreground Print Options Panel underISPF in CMS 34
17. Sample CMS EXECto Invoke a VS FORTRAN Program 45
18. Sample TSO CLIST to Invoke a VS FORTRAN Program 46
19. Sample Commands for a Batch Debugging Session under CMS 52
20. Sample JCL for a Batch Debugging Session under MVS with TSO 54
21. Sample JCL for a Batch Debugging Session under MVS without TSO .. 55
22. Program Source File for SAMPLE Program 61
23. Program Source Listing for SAMPLE Program 63
24. Example of WHERE FLOW Output 84
25. Functional Summary of Interactive DebugCommands 115
26. DUMP and FORMAT Codes for the AUTOLIST Command 127
27. Color and Attribute Selection Panel under ISPF Version 2 135
28. DUMP and FORMAT Codes for the LIST Command 160
29. TheListings DataSetSpecification Panel in CMS 168
30. ValidSET Command Assignments 199
31. MainMenu for the HelpFacility (underISPF) 220
32. Help Facility Task Menu (under ISPF) 221
33. Sample Help Screen 221

Figures IX

Part 1. VS FORTRAN Version 2 Interactive Debug Guide

VS FORTRAN Version 2 Interactive Debug provides a set of commands to help
you locateand diagnose problems in your VS FORTRAN Version 1 or VS
FORTRAN Version 2 programs. ("VS FORTRAN" is used in this book as a
common term to refer to programs written with either product.)

This section of the book contains instructional material to guide you through the
process of learning those commands.

For a summary of VS FORTRAN Version 2 Interactive Debugcommands,
including descriptions, keywords, and abbreviations, seeAppendix B, "Interactive
Debug Command Summary" on page 225.

If youalready know howto useInteractive Debug, youmaywant to go directly to
the reference section in "Part 2. VS FORTRAN Version 2 Interactive Debug
Reference" on page 111.

Part 1.VSFORTRAN Version 2 Interactive Debug Guide 1

Chapter 1. Introducing VS FORTRAN Version 2 Interactive Debug

VS FORTRAN Version 2 Interactive Debug is a flexible, efficient tool that assists
you in monitoring the executionof VS FORTRAN Version 1 and VS FORTRAN
Version2 programs. (For convenience, we refer to both kinds of programsas VS
FORTRANprograms, unless special information applies to onlyone product.)

With VS FORTRAN Interactive Debug, you can suspend program execution,
analyze program performance, continueexecution, skipsectionsof code, correct
errors, display and set variables, set up expected input, and display output.

You can debug your programs in full screen mode, line mode, or batch mode. For
full screen mode, the Interactive System Productivity Facility (ISPF) is required.
With ISPF Version 2, you can view your source listing in a portion of the screen
calleda source listing window. You can control the pace of execution, and
highlight the command currently executing.

VS FORTRAN Interactive Debug can be used easily and effectively by scientists,
engineers, other professionals, andstudents—all those who use VS FORTRAN for
engineeringand scientificproblem solving.

Application programmers using VS FORTRAN will also findVSFORTRAN
Interactive Debug to be an essential aid to increased- productivity. Through
improved tracing, reduced dump analysis, and fewer recompilations, measurable
savings in time and effort can be realized.

Interactive Debug Features

VS FORTRAN Version 2 Interactive Debug offers versatile capabilities for VS
FORTRAN Version 1 or VS FORTRAN Version 2 program debugging.

VS FORTRAN Version 2 Interactive Debug provides the following features:

An easy Invocation procedure: Usually, yousimply specify the DEBUGoption
when you invoke the program to be debugged. This reduces the need for advance
planning, andalso allows you to debug previously compiled programs with minimal
effort.

1 31-character names: You canuses3mibolic names up to 31characters in length,
I including the underscore () character, for both local and global names.

Online HELP information: Information is provided for all VS FORTRAN Version
2 Interactive Debug commands and functionsand is available under Time Sharing
Option (TSO), Conversational MonitorSystem (CMS), and ISPF. By entering

Chapter 1. Introducing VS FORTRAN Version 2 Interactive Debug 3

HELP (or by using an equivalent PF key), you will be presented with the first of a
set of screens containing HELP information. r A

Full screen display: VS FORTRAN Version 2 Interactive Debug offers full screen
support. Using the facilities of ISPF and the Program Development Facility (PDF),
you can split your screen to perform debugging on one section of the screen, while
editing or browsing your program or files on the other section.

Source listing window and animation: Using ISPF Version 2, you can view your
source listing in an area of the screen called a source listing window. You can
highlight the command currently executing, and control the pace of execution. This
capability is called program animation.

Ability to issue AT, OFF, and LIST with PF keys: When you use a source listing
window, you can assign the AT, LIST, and OFF commands to a PF key, and then
perform many tasks by "pointing" with the cursor, instead of typing identifiers on
the command line. This allows you to use Interactive Debug without knowing
complex syntax or remembering command names.

Selective debugging of program units: An optional execution-time control file lets
you specify which program units will be debugged, and which statements in those
program units will have debugging hooks. Those not selected for debugging will
run at normal speed.

Manipulation of external flies while debugging: Commands that are similar to VS
FORTRAN Version 2 I/O statements (for example, ENDFILE, BACKSPACE,
CLOSE, and REWIND) allow you to manipulate external sequential files. Also,
while remaining in debug mode, you can browse or edit external sequential files
used by the program being debugged.

Abilityto issue system commandswhiledebugging: Without terminating your debug
session, you can issue commands at the system level.

On MVS/XA, ability to debi% programs in either addressing mode: Programs that
run in 31-bit addressing mode and reside either above or below the 16-megabyte
line can be debugged.

Debu^ling of optimizedcode: Programs compiled at any optimization level can be
debugged (with restrictions).

Debugging of vectorized code: Programs compiled at any vectorization level can be
debugged (with restrictions).

Debugging of reentrant code: Programs compiled with the RENT option and run in
reentrant mode can be debugged. (For full debugging function, the TEST option is
also required.)

Using sequence numbersinstead of ISNs for source statements: Programs compiled
with the SDUMP (SEQ) option will generate the SDUMP statement table using
the sequence numbers you supply in columns 73 through 80. This makes it possible
for you to debug programs using those numbers instead of ISNs.

I Program sampling: This capability enables you to obtain an activity analysis of an
I application program,identifying areas that take the most CPU time to execute.

4 VS FORTRAN Version 2: Interactive Debug Guide and Reference

I This information can assistyou in directing your performance improvement
I activities to where they can provide the most gain in efficiency.

Interactive Debug Progranuning Requirements

The operatingsystem, compiler, and library requirements for Interactive Debugare
listed in the following sections.

System Requirements

Execution with VS FORTRAN Version 2 Interactive Debug is supported under the
following operating systems:

I MVS/SP Version 1—All Releases (with or without TSO/E)
MVS/SP Version 2 (MVS/XA)—All Releases

I MVS/XA DPP—^Version 1 or Version 2 (with orwithout TSO/E)
I VM/SP—^Release 4 and later (with or without VM/SP HPO Release 4 or
I later)
I VM/XA System Facility—Release 2 and later

VS FORTRAN Version 2 Interactive Debug operates in line or batch mode. It also
operates in full screen mode with the Interactive System Productivity Facility

I (ISPF), andoptionally, theProgram Development Facility (PDF). Use of
^ I Interactive Debug infull screen mode, including support for thesource listing

1 window, animation, and color, requires the following:

I ISPF Version2 Release 1 or later

If your installation does not have PDF,you must follow special invocation
procedures, as described in "Invoking IAD without PDF" on page 13, or
"InvokingIAD for TSO without PDF" on page 18.

I Note that VS FORTRAN Version 2 Release 2 will run in the VM/SP operating
1 system only with the OS simulation facility. It cannot run with the DOS simulation
I capability of VM/CMS active.

I Interactive debug supports the same operating systems asthecompiler; however,
I TSO/E is required when running interactively onMVS orMVS/XA, orifTSO
I commands are issued in batch mode.

Compiler Requirements

VS FORTRAN Version 2 Interactive Debug is designed for use with programs
compiled by VS FORTRAN Version 2, andby VS FORTRAN Version 1 Release
2 or later.

I TheTEST compiler option is required forprogram units compiled byVS
' I FORTRAN Version 1 Release 2, and for those that are compiled by VS

Chapter 1. Introducing VS FORTRAN Version 2Interactive Debug 5

I FORTRAN Version 1 Release 3 if running on MVS/XA. It is also required for
I RENT program units in protected storage.

I To be eligible for deugging, program units must be compiled with the SDUMP
I option in effect.

Library Requirements

All programs to be debugged with VS FORTRAN Version 2 Interactive Debug
must be link-edited (or, under CMS, loaded) with the VS FORTRAN Version 2
Library, or with the Release 3.1, 4, or 4.1 VS FORTRAN Version 1 Library
(5748-LM3).

VS FORTRAN modules link-edited with the Release 3.1 VS FORTRAN Library
will be debuggable in the MVS/XA environment only when linked (or re-linked)
to override the addressing and residency modes to 24/24.

I Batch-mode debugging is only available if the program is using the VS FORTRAN
I Version 2 library.

I In general, the VS FORTRAN library must be at least at the same release level as
I the compiler used for the program units. In addition, VS FORTRAN Version 2
I Interactive Debug requires at least the VS FORTRAN Version 1 Release 3.1
I library.

Restrictions

MVS/XA: On an MVS/XA system, using VS FORTRAN Version 2 Interactive
Debug to debug VS FORTRAN programs running in 31-bit addressing mode
requires that those programs be linked with Release 4 or 4.1 of the VS FORTRAN
Version 1 Library, or any release of the VS FORTRAN Version 2 Library.
Programs linked with the VS FORTRAN Version 1 Release 3.1 Library must
specify an AMODE and RMODE of 24 in order to be debugged.

Shared Storage: VS FORTRAN reentrant programs that will reside in a shared
area (DCSS or LPA) must have been compiled with the TEST option in order to be
debuggable. Reentrant VS FORTRAN Version 2 programs can be debugged in
user storage with or without the TEST option.

Overlays: VS FORTRAN Version 2 Interactive Debug cannot debug programs
that use overlays.

MuM Taskit^ Facilities: If you are using the Multitasking Facility (MTF), only the
main task can be debugged.

6 VS FORTRAN Version 2: Interactive Debug Guide andReference

^ Performance Considerations

I For programs compiled with VS FORTRAN Version 1Release 3 orlater, orwith
I any release ofVS FORTRAN Version 2,VS FORTRAN Version 2Interactive

Debug canbe invoked merely byspecifying the DEBUG option at execution time
(so long as SDUMP was in effect for the compilation). There is noneed to have
compiled with the TEST option.

However, there are two exceptions:

• A reentrant program in a shared area (DCSS or LPA) requires the TEST
option in order to be debuggable; and

• On an MVS/XAsystem, programs compiled by Release 3 of VS FORTRAN
Version 1 without TEST will need to be recompiled with Release 3.1 or 4, or
with VS FORTRAN Version 2, in order to be debuggable. (Programs
compUed by VS FORTRAN Version 1 Release 3 with TEST, however, canbe
debuggedunder MVS/XA.)

VS FORTRAN Version 2 Interactive Debug permits debugging of optimizedand
vectorized code, but youneed to be aware of the effects of optimization and
vectorization to correctly interpret the debugging results. Whenever a program unit
hasbeencompiled with an optimization or vectorization level otherthan 0,
Interactive Debug will issue a warning message indicating that the results of some
debugging commands are unpredictable.

I VS FORTRAN Version 2 Interactive Debug requires about 300K bytes ofstorage
I to begin execution (plus the storage required to load the program that will be

debugged). Interactive Debug also acquires additional dynamic storage during
execution. The amount variesaccordingto the nature of the programbeing
debugged, and thetype and quantity of debugging commands issued.

Discovering Program Bugs

VS FORTRAN Version 2 Interactive Debug helps find program bugsby giving you
control over program execution. You canuse it to debug VS FORTRAN programs
in an easy-to-use, conversational manner. You can:

Start and stop the program

Examineand change values of variables, arrays, and array elements

Trace program transfers

Track execution frequency of statements

Control the action taken for execution errors

Receive online help at the terminal

• Manipulate external files

Chapter 1. Introducing VS FORTRAN Version 2Interactive Debug 7

• Locate errors, fix the problem, and continue debugging

VS FORTRAN Version 2 Interactive Debug allows you to place the output from
some of the commands in a print data set for later examination. In addition, when
executingunder ISPF or in batch mode, a log of the debug session is placed in a
data set. Thisdata set can subsequently be usedas input to Interactive Debugto
re-create a previous debugging session.

Invoking Interactive Debug

The DEBUG execution-time option causes the VS FORTRAN Version 2 library
initialization routines to load VS FORTRAN Version 2 InteractiveDebug.

The format of the execution command depends on the particular environment in
which the program is being run.

• In ISPF with PDF (under either CMS or TSO), a panel is providedfor
executinga VS FORTRAN programand passingit the DEBUG option.

• In CMS, there are several ways to invoke Interactive Debug. For example,
entering the following commands will execute the programwith the DEBUG
option:

LOAD progname
START ♦ DEBUG

• In TSO, the format for invoking VS FORTRAN Version 2 Interactive Debug
is:

CALL progname 'DEBUG'

or

LOADGO progname 'DEBUG'

In these examples, progname is the name of the program to be executed.

When a VS FORTRAN program isdynamically invoked from another program, the
VSFORTRAN program can be debugged by passing DEBUG as the
execution-time parameter, or by including a specialobject module. This is
explained more fully in "Specifying Default Execution-Time Options" on page 96.

8 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Chapter 2. Using Interactive Debug with ISPF

When VS FORTRAN Version 2 Interactive Debug runs with ISPF in either a CMS
or a TSO environment, we say it is executing in full screen mode because the entire
screen is available. In contrast, when Interactive Debug reads and writes one line
at a time, we say it is executing in line mode.

When executing in an ISPF environment, VS FORTRAN Version 2 Interactive
Debug will run in full screen mode using ISPF panels and services. You can enter
Interactive Debug commands, and view both the commands and output on your
terminal in the scrollable log.

Using ISPF Version 2, you can view your source listingin an area of the screen
called the source listing window. You can also choose to look at the source file by
splittingthe physical screen into two logical screens. Usinga split screen, you can
browse or edit the source file (or, under MVS, even recompile) while debugging.
The IBM Program Development Facility (PDF) is required for the browse and edit
functions in split-screen mode.

Invoking Interactive Debug

During installation of VSFORTRAN Version 2 Interactive Debug, modifications
should have been made to allowyou to debug a VS FORTRAN program under
ISPF using standardprocedures. PDF is required for the foreground invocation
panel supplied with Interactive Debug.

After you invoke ISPF/PDF, you will be presentedwith the Primary Option Menu.
Select option 4, FOREGROUND PROCESSING. When the next panel appears,
select the number of the option associated with VS FORTRAN Version 2
Interactive Debug. (This is likely to be option 11.)

You can also proceed directly to the Interactive Debug panel by typing 4.11 on
the command line of the Primary Option Menu.

You will then be presented with the FOREGROUND VS FORTRAN Version2
Interactive Debug panel. See Figure 1 on page 10 for CMS,and Figure 6 on
page 17 for TSO.

Chapter 2. Using Interactive Debug with ISPF 9

Under CMS

If you are using CMS, you will see the panel shown in Figure 1. This panel is
similar to other invocation panels accessible from the FOREGROUND
PROCESSING panel under CMS.

FOREGROUND VS FORTRAN VERSION 2.2.0 INTERACTIVE DEBUG
COMMAND ===>

ISPF LIBRARY:

PROJECT ===>

LIBRARY ===>

TYPE ===>

MEMBER ===>

CMS FILE:

FILE ID ===>

MEMBER ===>

IF NOT LINKED, SPECIFY:
OWNER'S ID ===>

READ PASSWORD ===>

EXECUTION TIME OPTIONS:

DEBUG ===>

OTHER ===>

(Blank for member selection list)

(TEXT or MODULE file or LOADLIB)
(If member of a LOADLIB)

DEVICE ADDR. ===> LINK ACCESS MODE ===>

(Enter DEBUG or NODEBUG)

SYSLIB TXTLIB: (VSF2F0RT, TSOLIB and CMSLIB already specified)

Figure 1. The FOREGROUND VSFORTRAN Version 2 Interactive Debug Panelfor CMS

Fill in either the ISPF LIBRARYfields or the CMSFILE fields (and, if necessary,
the READ PASSWORD field) before pressingthe ENTER key. (If you are not
already familiar with ISPF libraries, you should probably use the CMS FILE
fields.) If both fields are filled in, the CMS FILE fields will be read and the ISPF
LIBRARY fields will be ignored.

You can process programs that have been loaded as TEXT files, MODULE files,
or as members of a LOAD LIBRARY, as follows:

• For a TEXT file, fill-in the FILE ID line with the filename optionallyfollowed
by a filetype of TEXT. Leave the MEMBER line blank.

• For a MODULE file, fill-in the FILE ID line with the filename followed by a
filetjrpe of MODULE. Leave the MEMBER line blank.

• For a LOAD LIBRARY member, fill-in the FILE ID line with the filename
and do not specify a filetype. Fill-in the MEMBER line with the library
member name of your program.

The FILE ID or MEMBER line is also used to build file names for several
Interactive Debug files described later in this chapter. These file names are:

10 VS FORTRAN Version 2: Interactive Debug Guide and Reference

fname INCLUDE* (forAFFON)

fname LIST A (for AFFPRINT)

fname LOG A (for AFFOUT)

fname RESTART ♦ (for AFFIN)

fname LISTING * (default listing name)

If you do not provide the file ED, the ISPF library member name will be used. Use
the READ PASSWORD field to specify a required password for the disk access.

In all cases, you must enter DEBUG under EXECUTION OPTIONS to invoke
Interactive Debug. If you specify NODEBUG, Interactive Debug will not be
invoked unless you include a special object module to override the default. For
further information about overriding the default options, see "Specifying Default
Execution-Time Options" on page 96.

In addition to the DEBUG parameter, you can also specify other execution-time
parameters in the OTHER field. You can wrap the list of other parameters onto
the second line if necessary. Use commas with no embedded blanks to separate
parameters. You must also use commas with no embeddedblankswithin individual
parameters, such as the DEBUNIT option.

For an explanation of the possible parameters, enter HELP. From the main HELP
panel, select option 2 for a description of the parametersand the IBMsupplied
default values. For more detailed information about the parameters, see VS
FORTRAN Version 2: Programming Guide.

The SYSLIB TXTLIB fields allow you to enter up to four CMS TXTLIBs. These
may be accessed in addition to VSF2FORTwhenever CMSdetermines that it
needs to search a TXTLIB (for example, when loading a TEXT file and resolving
all the external references).

The VS FORTRAN Version 2 Library is capable of running in either of two
"modes." If you choose to have the necessary library routines included within your
executable program, you are operating in link mode. If, on the other hand, you
choose to have the library routines loaded during execution of your program, you
are operating in loadmode. You make the choiceof link mode or load mode by
making the appropriate combination of libraries available when you create your
executable program from your TEXT files.

VS FORTRAN Version 2 Interactive Debug's ISPF invocation EXEC is set up to
execute TEXT files using load mode. If you want your program to operate in link
mode, you should specify VSF2LINK as an additional TXTLIB on the bottom line
of this invocation panel.

For more information on using link and load mode with the VS FORTRAN
Version 2 Library, see VS FORTRAN Version 2: Programming Guide.

Chapter 2. Using Interactive Debug with ISPF 11

Loading Multiple Text Files

When you use the ISPF panel to start debugging a TEXT file, you can specify only
a single TEXT file (program name). Should you be debugging a program that calls
other programs, the calls will be automatically resolved for you — provided the
called programs are either in a TXTLDB (specified on the panel as a SYSLIB
TXTLIB) or referenced in the calling program by their file names. (The file names
must be the same as the SUBROUTINE or FUNCTION names.) If your called
programs are not in a SYSLIB TXTLIB or referenced by their file names, you will
need to follow a different procedure. Here are three alternative methods:

Loading from a LOADLIB

Before invoking ISPF, place your main program and all its called programs in a
LOADLIB. You can use the CMS LKED command to build a LOADLIB.

The input to LKED is a file containing any combination of text files and LKED
control statements. (LKED control statements are the same as those accepted by
the MVS linkage editor.) For example, you could create a file of control
statements such as:

INCLUDE MYPROG

INCLUDE SUBI

INCLUDE MYMATH

ENTRY MAIN

NAME MYPROG(R)

Assume this file is named "MYFILE TEXT." Each control statement must be

preceded by at least one blank.

Now, enter the FILEDEF and LKED commands for your LOADLIB; for example:

FILEDEF SYSLIB DISK VSF2F0RT TXTLIB fm

LKED MYFILE (MAP

This produces a file named "MYFILE LOADLIB," which contains a link-edited
program named MYPROG. It also produces a listing file named "MYFILE
LKEDIT," which contains a map of your link-edited program.

Specify the LOADLIB name and member name in the FOREGROUND VS
FORTRAN Version 2 Interactive Debug panel.

Loading a concatenated TEXT fOe

Alternatively, you can concatenate all the TEXT files into a single TEXT file. Use
the CMS COPYFILEcommand with the APPEND option, or an editor such as
XEDIT or the ISPF/PDF editor, to create a composite TEXT file. Then, specify
this composite TEXT file in the FOREGROUND VS FORTRAN Version 2
Interactive Debug Panel.

12 VS FORTRAN Version 2: Interactive Debug Guide and Reference

- I Loading a module flle

Invoking IAD without PDF

If you have generated a MODULE file containing your VS FORTRAN program,
you can specify the module filename and filetype on the ISPF panel. However, the
module must be generated with a higher origin than the default in order to leave
room for the invocation program. (ORIGIN 22000 will probably be high enough.)
If the module origin is too low, the message

MODULE ORIGIN TOO LOW

will appear at the upper right of the panel.

If you want to use Interactive Debug without PDF on VM/SP, you must complete
the following steps:

1. Modify the ISPF invocation EXEC to include FILEDEF statements for
VSF2PLIB and VSF2MLIB.

2. Modify the ISPF Master Application Menu to include an option for Interactive
Debug. The panel must also be modified to call an application panel created
by your installation (see step 3).

3. Create an application panel that prompts for the name of your text file and
then invokes an EXEC created by your installation (see step 4).

4. Create an EXEC to execute the VS FORTRAN program and pass the DEBUG
parameter, and any other parameters you need. (Note: EXEC2 or REXX is
recommended for writing the EXEC to avoid tokenization problems.)

Each of these steps is described in more detail in the following sections.

Modify the ISPFInvocation EXEC: Figure 2 on page 14 shows how you might
modify the ISPF invocation EXEC to include FILEDEF information for
VSF2PLIB, VSF2MLIB, and lADCMDS table.

Before you invoke this EXEC, you must issue FILEDEFs for any additional panel,
message, table, or skeleton libraries from which you plan to operate. You must
also issue a FILEDEF for the MACLIB to be used for ISPPROF.

Chapter 2. Using Interactive Debug with ISPF 13

STRACE OFF

FILEDEF

FILEDEF

FILEDEF

FILEDEF
*

FILEDEF

FILEDEF
*

I FILEDEF
FILEDEF

FILEDEF
♦

ISPDCS

ISPPLIB CLEAR

ISPMLIB CLEAR

ISPPLIB DISK VSF2PLIB MACLIB » (PERM CONCAT
ISPPLIB DISK ISPPLIB MACLIB ♦ (PERM CONCAT

ISPMLIB DISK VSF2MLIB MACLIB ♦ (PERM CONCAT
ISPMLIB DISK ISPMLIB MACLIB ♦ (PERM CONCAT

ISPTLIB DISK lADCMDS TABLE ♦ (PERM CONCAT
ISPTLIB DISK ISPTLIB MACLIB * (PERM CONCAT

ISPPROF DISK DEFAULTS MACLIB A

ISPDCSS ISPVM PANEL(ISPaMSTR) &ARGSTRING

Figure 2. A Sample Modification of the ISPF Invocation EXEC

Modify IkeISPFMasterApplication Menu: Figure 3 shows how you might modify
the ISPF master application menu to provide an option for Interactive Debug (here,
option 2) and invoke a prompt panel (here, called USERISP).

% ISPF MASTER APPLICATION MENU

J50PTI0N ===>_ZMCD % +USERID
35 1 +SAMPLE1 - Sample application 1 +TIME - fiZTIME
35 2 +VSF IAD - VS FORTRAN Interactive Debug +TERMINAL - &ZTERM
^ 3 +. - (Description for option 3) +PF KEYS - SZKEYS
X 4 +. - (Description for option 4)
% 5 +. - (Description for option 5)
? X +EXIT - Terminate ISPF using list/log defaults
35
+Enter35END+command to terminate ISPF.

) INIT
.HELP = ISP00005

SZPRIM = YES

)PROC
gZSEL = TRANS(TRUNC (SZCMD,'.')

1,'PANEL(ISPaPRIM)• /» Sample primary option menu »/
2,'PANEL(USERISP)• /* SAMPLE PANEL TO INVOKE IAD »/

^:)c:|c:(e:|c4(:(e4c4c4c:|c4c4c#4c:|c4E4c#4c4ta|c4(*it!*4c4:4c4c)|c4(j|c4c4ii(c4ti|c4c)iE)|c:|c**4c4c4c4c4(4(4t4'4c%4i/

/* */
/* Add other applications here ♦/

/* */

)END

X,'EXIT'

/♦ Help for this master menu
/♦ This is a primary option menu

Figure 3. Sample ModiHcations to ISPF Master Application Menu

14 VS FORTRAN Version2: Interactive Debug Guide and Reference

»/
♦/

- SZUSER

Create an Application Panel: You must create an application panel at your
installation similar to the one shown in Figure 4. The sample prompts the user for
the name of the text file, and then invokes an EXEC called USERDBG.

)ATTR DEFAULT(%+_)
/» % TYPE(TEXT) INTENS(HIGH)
/♦ + TYPE(TEXT) INTENS(LOW)
/* _ TYPE(INPUT) INTENS(HIGH)

$ TYPE(INPUT) INTENS(LOW) PAD(_)
! TYPE(INPUT) INTENS(LOW) PAD(' ')

)BODY
35 SAMPLE VSF IAD PANEL

S6C0MMAND ===>_ZCMD
ENTER THE NAME OF YOUR TEXT FILE BELOW.

FILE ID ?5===>_NAME
MEMBER ?5===>!MEMBER + (if a
ENTER THE EXECUTION TIME OPTIONS BELOW..

OPTIONS ===>!FDEBUG

defaults displayed for ♦/

information only ♦/

CAPS(ON) JUST(LEFT) ♦/

/♦ input field padded with »/
/♦ input field padded with ' * »/

+ (TEXT or MODULE file or LOADLIB)
member of LOADLIB)

)PROC
VPUT (NAME,MEMBER,FDEBUG) PROFILE
£ZSEL='CMD(USERDBG)'

) END

Figure 4. Sample AppUcadon Panel (USERISP) to Prompt for the Text FUe Name

Create an EXEC to Pass the DEBUG Parameter: We recommend that you use
EXEC2 or REXX when creating the EXEC to avoid tokenization problems. The
sample EXEC in Figure 5 on page 16 uses EXEC2 to invoke AFFLOADF, which
in turn loads the VS FORTRAN program with the DEBUG parameter. For this
example, we have called the EXEC "USERDBG."

Chapter2. Using Interactive DebugwithISPF 15

STRACE OFF

MAKEBUF

gPRESUME SSUBCOMMAND ISPEXEC

gCOMMAND GLOBAL TXTLIB VSF2F0RT

SUSRLDLIB = SBLANK

STYPE = 6BLANK

ISPEXEC VGET (NAME,MEMBER,FDEBUG)
£IF /SMEMBER = /&BLANK SGOTO -PARSE
gUSRLDLIB = gNAME

gNAME = gMEMBER

gCOMMAND STATE gUSRLDLIB LOADLIB *

gIF gRETCODE -.= 0 gGOTO -EXIT

gCOMMAND FILEDEF USRLB DISK gUSRLDLIB LOADLIB ♦

gGOTO -AFFFILE

-PARSE

gIF /gNAME = /gBLANK gGOTO -EXIT
gL = gLOCATION OF MODULE gNAME

gIF gL = 0 gGOTO -TXTSTATE

gLL = gL - 2

gNAME = gLEFT OF gNAME gLL

gTYPE = MODULE

gGOTO -AFFFILE

-TXTSTATE

gCOMMAND STATE gNAME TEXT ♦

gIF gRETCODE -i= 0 gGOTO -EXIT

-AFFFILE

gCOMMAND ERASE gNAME LOG A

gCOMMAND ERASE gNAME LIST A

gCOMMAND STATE gNAME RESTART »

gIF gRETCODE = 0 gCOMMAND FILEDEF AFFIN DISK gNAME RESTART »
gIF gRETCODE -i= 0 gCOMMAND FILEDEF AFFIN DUMMY

gCOMMAND STATE gNAME INCLUDE ♦

gIF gRETCODE = 0 gCOMMAND FILEDEF AFFON DISK gNAME INCLUDE »
gIF gRETCODE -i= 0 gCOMMAND FILEDEF AFFON DUMMY
gCOMMAND FILEDEF AFFOUT DISK gNAME LOG A (DISP MOD
gCOMMAND FILEDEF AFFPRINT DISK gN/^E LIST A (DISP MOD

-RESTART

gCOMMAND LOAD DMSZIT (CLEAR
gCOMMAND LOADMOD MOVEFILE

gSTACK GLOBAL TXTLIB VSF2LINK VSF2F0RT CMSLIB TSOLIB

gSTACK GLOBAL LOADLIB gUSRLDLIB VSF2L0AD
gSTACK gUSRLDLIB

gSTACK gNAME gTYPE

ISPEXEC SELECT PGM(AFFLOADF) PARM(gFDEBUG) NEWPOOL NEWAPPL(IAD)
gCOMMAND SENTRIES

gIF gRETCODE = 1 gREAD VARS gRST

gIF .gRST -1= .RESTART gGOTO -EXIT

gGOTO -RESTART

-EXIT

gCOMMAND DROPBUF

gEXIT

Figure 5. Sample EXEC (USERDBG) to Invoke the Program without PDF

16 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Under TSO

TSO users will see the ISPF/PDF panel shown in Figure 6. This panel is similar to
other invocation panels accessible from the FOREGROUND panel under TSO.
Fill in either the ISPF LIBRARY fields or the OTHER PARTITIONED DATA

SET fields before pressing the ENTER key. If both fields are filled in, the OTHER
PARTITIONED DATA SET fields will be read and the ISPF LIBRARY fields will

be ignored.

If the OTHER PARTITIONED DATA SET line is filled in, you should specify
both the data set and member names. If you do not specify the member name, you
will see a panel with a list of member names. You then choose the member name
you need. Specify the data set and member names as follows:

'data.set.name(member)'

Note: If you omit the quotation marks, ISPF will supply the data set prefix
specified as the default in your TSO profile.

FOREGROUND VS FORTRAN VERSION 2,2.0 INTERACTIVE DEBUG

COMMAND ===>

ISPF LIBRARY:

PROJECT ===>

LIBRARY ===>

TYPE ===>

MEMBER ===>

OTHER PARTITIONED DATA SET;

DATASET NAME ===>

FILE ID FOR DEBUG FILES

EXECUTION TIME OPTIONS:

DEBUG ===>

OTHER ===>

(Blank for member selection list)

PASSWORD ===>

(Enter DEBUG or NODEBUG)

Figure 6. The FOREGROUND VS FORTRAN Version 2 Interactive Debug Panel for TSO

Use the FILE ID FOR DEBUG FILES line to specify a file ID to be used to build
data set names for the Interactive Debug data sets described later in this chapter.
These data set names are:

userid.fileid.INCLUDE

i]serid.fileid.PRINT

iiserid.fOeid.LOG

iiserid.fOeid.R£START

iiserid.Bleid.LIST

(for AFFON)
(for AFFPRINT)
(for AFFOUT)
(for AFFIN)
(default listing name)

If you do not provide the file ID, the ISPF library member name will be used. Use
the PASSWORD field to specify a password for any password-protected data sets.

Chapter 2. Using Interactive Debug with ISPF 17

In all cases, you must enter DEBUG under EXECUTION OPTIONS to invoke
Interactive Debug.

If you do not specify DEBUG, Interactive Debug will not be invoked unless you
include a special object module to override the default. (For further information
about overriding the default options, see "Specifying Default Execution-Time
Options" on page 96.)

In addition to the DEBUG parameter, you can also specify other execution-time
parameters in the OTHER field. You can wrap the list of other parameters onto
the second line if necessary. Use a comma to separate consecutive parameters.
For an explanation of the possible parameters, enter HELP. From the main HELP
panel, select option 2 for a description of the parameters and the IBM supplied
default values. For more detailed explanations of the parameters, see VS
FORTRAN Version 2: Programming Guide.

Invoking IAD for TSO without PDF

FREE

ALLOC

ALLOC

ALLOC

ALLOC

ALLOC

ALLOC

ALLOC

ALLOC

If you want to use Interactive Debug without PDF under TSO, you must complete
the following steps:

1. Define the necessary data sets for running ISPF and IAD.

2. Modify the ISPF Master Application Menu to include an option for Interactive
Debug. The panel must also be modified to call an application panel created
by your installation (see step 3).

3. Create an application panel that prompts for the name of your load module and
then invokes a CLIST created by your installation (see step 4).

4. Create a CLIST to execute the VS FORTRAN program and pass the
execution-time options.

Each of these steps is described in more detail in the following sections.

Defining the Necessary Data Sets: Modify your allocations for the ISPF data sets to
include allocations for the IAD panel library, message library and command table.
Examples of lines which could be included in a CLIST are shown in Figure 7.

FKISPPLIB ISPMLIB ISPSLIB ISPLLIB ISPTLIB ISPPROF)
FI(ISPPROF)
FI(SYSPROC)
FI(ISPMLIB)
FI(ISPPLIB)
FI(ISPTLIB)
FI(ISPLLIB)
FI(FT05F001)
FI(FT06F001)

DA('userid.ISPF.PROFILE') SHR REUSE
DA('SYSl.VSF2CLIB'
DA('SYS1.VSF2MLIB'
DA('SYSl.VSF2PLIB'
DA('SYSl.VSF2TLIB'
DA('SYS1.VSF2L0AD'
DA(#)
DA(»)

'SYSl.ISPCLIB')
'SYSl.ISPMLIB')
'SYSl.ISPPLIB')
'SYSl.ISPTLIB')
'SYSl.ISPLOAD')

SHR REUSE

SHR REUSE

SHR REUSE

SHR REUSE

SHR REUSE

Figure 7. Sample Modifications to the ISPF Invocation CLIST

18 VS FORTRANVersion2: Interactive Debug Guideand Reference

Modify the ISPFMasterApplication Menu: Figure 8 shows how you might modify
the ISPF master application menu to provide an option for Interactive Debug (here,

I option 2) and invoke a prompt panel (here, called USERISP).

JSPF master application MENU

J50PTION ===>_ZCMD % +USERID - gZUSER
% 1 +SAMPLE1 - Sample application 1 +TIME - &ZTIME
% 2 +VSF IAD - VS FORTRAN Interactive Debug +TERMINAL - gZTERM

3 +. - (Description for option 3) +PF KEYS - SZKEYS
4 +. - (Description for option 4)

X 5 +. - (Description for option 5)
% X +EXIT - Terminate ISPF using list/log defaults
%
+Enter^END+command to terminate ISPF.
%
)INIT

.HELP = ISP00005 /♦ Help for this master menu »/
gZPRIM = YES /* This is a primary option menu ♦/

)PROC
6ZSEL = TRANS(TRUNC (SZCMD,'.')

1PANEL(ISPSPRIM)' /♦ Sample primary option menu ♦/

2,'PANEL(USERISP)• /♦ SAMPLE PANEL TO INVOKE IAD */

/* ♦/
/» Add other applications here. ♦/

/» »/

till

X,'EXIT'
)

)END

Figure 8. Sample Modifications to ISPF Master Application Menu

Create an Application Panel: You must create an application panel at your
installation similar to the one shown in Figure 9 on page 20. The sample prompts
the user for the name of the text file, and then invokes a CLIST called USERDBG.

Chapter 2. Using Interactive DebugwithISPF 19

)ATTR DEFAULT (?5+_)
/♦ % TYPE(TEXT) INTENS{HIGH) defaults displayed for */
/♦ + TYPE(TEXT) INTENS(LOW) information only »/
/♦ _ TYPE(INPUT) INTENS(HIGH) CAPS(ON) JUST(LEFT) ♦/

! TYPE(INPUT) INTENS(LOW) PAD(' ') /» input field padded with ' ' ♦/
)BODY
% SAMPLE VSF IAD PANEL

J5C0MMAND ===>_ZCMD %
+ ENTER THE NAME OF YOUR PROGRAM BELOW...
+ %===>I MEM

+ ENTER THE NAME OF YOUR LIBRARY BELOW...

+ %===>!LIB

+ ENTER THE LIST OF YOUR EXECUTION TIME OPTIONS BELOW...

+ 5E===>! FDEBUG

) PROC
VER(£MEM,NB,NAME)
VPUT (MEM,LIB,FDEBUG) PROFILE
SZSEL='CMD(?5USERDBG) '

)END

Figure 9. Sample Application Panel (USERISP) to Prompt for the Text FOe Name

Create a CLIST to Pass the Execution-TimeOptions: The sample CLIST in
Figure 10 invokes AFFLOAD which in turn loads the VS FORTRAN program
with the DEBUG parameter. For this example, we have called the CLIST
"USERDBG."

PROC 0

CONTROL NOLIST MAIN NOFLUSH NOMSG

/♦ MEM - MEMBER NAME »/
/* LIB - LIBRARY NAME »/
/» FDEBUG - EXECUTION TIME OPTIONS »/
ISPEXEC VGET (MEM,LIB,FDEBUG,ZPREFIX)
SET &FAFFID = &MEM /♦ DEFAULT TO MEMBER NAME ♦/
SET &ZFAFFIN = SSTR('&ZPREFIX..gFAFFID..RESTART')
SET gZFAFFOU = £STR('£ZPREFIX..£FAFFID..LOG')
SET £ZFAFFON = £STR('£ZPREFIX..£FAFFID..INCLUDE')
SET £ZFAFFPR = £STR('£ZPREFIX..£FAFFID..PRINT')
FREE FKAFFPRINT AFFIN AFFOUT AFFON AFFLOAD)
ALLOC FI(AFFIN) DA(£ZFAFFIN) SHR
IF £LASTCC -.= 0 THEN ALLOC FI(AFFIN) DUMMY RECFM(F)
ALLOC FI(AFFON) DA(£ZFAFFON) SHR
IF £LASTCC -1= 0 THEN ALLOC FI(AFFON) DUMMY RECFM(F)
DELETE £ZFAFFOU

ALLOC FI(AFFOUT) DA(£ZFAFFOU) MOD CATALOG SPACE (1) CYLINDERS
DELETE £ZFAFFPR

ALLOC FKAFFPRINT) DA(£ZFAFFPR) MOD CATALOG SPACE(1) CYLINDERS
ALLOC FI(AFFLOAD) DA(£LIB) SHR
ISPEXEC SELECT PGM(AFFLINKF) PARM(£MEM/£FDEBUG) NEWAPPL(AFF) NEWPOOL
FREE FKAFFPRINT AFFIN AFFOUT AFFON AFFLOAD)

Figure 10. Sample CLIST (USERDBG) to Invoke the Program without PDF

20 VS FORTRAN Version2: Interactive Debug Guide and Reference

Using the Execution Panel

©

©

After you have filled in the FOREGROUND VS FORTRAN Version 2 Interactive
Debug panel and pressed the ENTER key, you willbe presented with the
Interactive Debug execution panel. This panel is used for almost all communication
with Interactive Debug. See Figure 11.

Note: You may initially be presented with the listings data set specification panel if
every debuggable program routine does not have a listing defined. See "Modifying
the Listings Data Set Specification Panel" on page 27.

© ©
IAD Q: SAMPLE_PROGRAM
COMMAND ===>

LOG 0 + 1 + 2 + 3 + 4 +-
000001 VS FORTRAN VERSION 2.2.0 INTERACTIVE DEBUG
000002 (C) COPYRIGHT IBM CORP 1985, 1987
000003 ALL RIGHTS RESERVED
000004 LICENSED MATERIALS-PROPERTY OF IBM
000005 WHERE: SAMPLE PROGRAM.3

©
W: SAMPLE PROGRAM.3

SCROLL===> 10

•+ LINE: 1 OF 5

Figure 11. VS FORTRAN Version2 Interactive DebugExecution Panel

The labels and fields in the executionpanel includethe following: (The numbers to
the left of each item refer to the circled numbers in Figure 11.)

(T) IAD —Indicates Interactive Debug status. May be coupled with a /R
(read), /E (error), /W (write), or /F (finished).

@ Q: —The name ofthe currently qualified program unit. Normally, the name
is that of the program unit executing. In this example, the unit is
SAMPLE_PROGRAM

d) W: —The statement in the VS FORTRAN program atwhich execution has
been suspended. Also displayed is the name of the program unit where the
statement is located. In our sample panel, this is statement 3 in
SAMPLE_PROGRAM (SAMPLE_PROGRAM.3)

(4) COMMAND ===> —The input area for the next debug command.

(s) The numbered list is the log ofdebug commands and responses.

Chapter 2. UsingInteractive Debug with ISPF 21

Entering Conunands ^
Commands are entered on the command line near the top of the panel.

To enter an Interactive Debug command, you may either type the complete
command, or movethe cursor into the scrollable log, modify the command in the
log(removing the asterisk is sufficient), and press the Enterkey. This will cause
the command to be copiedto the command line. You may modify the command
further before pressing the Enter key.

Certainkeywords (such as UP or SPLIT) have special meaning to ISPFand will
not be passed to Interactive Debug.

It may be necessary to enter a command that will not fit on the command line. In
thiscase, youmayenter some portionof the command, then the continuation
character (-) to indicate that the commandis not yet complete. Then enter the
remainder of the command.

The continuation character (-) must be the last character entered on the command
line. Youmayenter up to 252 characters, including blanks, in one command. If a
continuation segment requires leading blanks, tjrpe a quotation mark (") first, then
the required leading blanks. Interactive Debug will remove the quotation mark and
recognize the leading blanks.

While Interactive Debugis awaiting the continuation of a command, command will
be replaced on the panel by MORE If, afterentering a portion of a command,
you decide that you don'twant to complete theconunand, you may enter END (or
press aPF key that has been assigned the character string END) and the entire '
command will be ignored.

The following commands cannot be used with the continuation character:

COLOR

LISTINGS

MOVECURS

POSITION

PREVDISP

PROFILE

SEARCH

WINDOW

Using Program Function Keys to Enter Commands

Under ISPF,you can use program function keys (PF keys) to enter commands on
the command hne. This saves you time because you can merely press a PF key
instead of typing in a long command.

To define PF keys when running Interactive Debug under ISPF, enter the
command keys on the execution panel command line. This is an ISPF command,
not an Interactive Debug command, but it should be entered from the execution
panel to define Interactive Debug PF keys.

ISPF immediately presents you with a panel that displays the current PF key
definitions and allowsyou to change them. Move the cursor to the definition you

22 VS FORTRAN Version 2: Interactive Debug Guide and Reference

want to change, and type over it with the new definition. For example, you can
assign any Interactive Debug command or a stack of commands to any PF key.
There are certain keys you may want to avoid changing, because they have
standard ISPF meanings. When you have made all the changes you want, press the
END key.

I You can use the ISPF command PFSHOW to display your PF key settings across
I the bottom of the screen.

Entering Input to a VS FORTRAN Version 2 Program

Note: The discussion below assumes that the TERMIO setting is IAD, which
causes Interactive Debug routines to be used for terminal I/O. (TERMIO IAD is
the default, so you may not need to issue the command.) If TERMIO IAD is not in
effect, you do not have the ability to enter Interactive Debug commands while a VS
FORTRAN READ is pending, and the discussion is not applicable. The TERMIO
command is described in "TERMIO Command" on page 207. For additional
information, see "Entering Terminal Input" on page 91.

VS FORTRAN Version 2 Interactive Debug will issue a message before attempting
to read input for your program from the terminal. You can enter Interactive Debug
commands (except GO, STEP, or ENDDEBUG) prior to responding to the
program's request for input.

When execution is suspended for terminal input, the IAD heading will change to
IAD /R and the following message will appear:

FT05F001 INPUT: PRECEDE INPUT WITH % OR ENTER IAD COMMAND

When entering input to a VS FORTRAN program, you must precede it with a
percent sign (%); the leading percent sign will not be passed to the program. If
you need to precede your input with one or more leading blanks, you may do so
following the percent sign and your program will receive the leading blanks.
Similarly, you can include trailing blanks in your input by typing a percent sign at
the end of the blanks. To simulate entering a null line to indicate end-of-data set,
enter:

Viewing the Scrollable Log

Interactive Debug commands and output sent to the terminal will appear on the
execution panel below the command line. This output is called the scrollable log.
Space for this output is limited, especially if the screen is split into two portions. If
you have not changed the default settings, you can use the PF7 and PF8 keys to
move the scrollable log up and down. You may also use the standard ISPF
commands, such as UP and DOWN, for positioning the scrollable log vertically. To
position the scrollable log horizontally, use the standard ISPF commands LEFT
and RIGHT.

The last 1000 lines are retained for viewing in the scrollable log.

Chapter2. Using Interactive Debug withISPF 23

Error Messages

If Interactive Debugdetects an error, a general message, ERROR DETECTED BY
IAD,will overlay the upper rightcomer of the screen, and an alarmwill sound. In
addition, a specific error message will usually appearin the scrollable log.

I Interactive Debug messages are described in Appendix C, "Interactive Debug
I Messages" on page 231

If you needhelp at the terminal, see Appendix A, "Using the Interactive Debug
HELP Facility" on page 219.

Breaks Initiated by Interactive Debug

I ISPF does not display results until alloutputis completed. Using the PROFILE
panel, you can specify how oftenInteractive Debug should suspend its production

1 of outputso youcanexamine the information produced. The"Outputhalt value"
I field on thePROFILE panel allows you to specify the number of lines afterwhich
I Interactive Debug should initiate a break. Thehaltvalue isdescribed in "Setting or

Changingthe Defaults for Your Debugging Sessions" on page 25.

The default value of 50 indicates that Interactive Debug suspends the output after
every 50 lines produced. For example, if a program produces morethan 50 lines of
output to the terminal without an intervening breakpoint. Interactive Debugforces
a break in execution and displays the message HALTED FOR OUTPUT. If
Interactive Debug, in response to a command, produces morethan the designated
number of lines of output without breaking, execution is suspended at the next
statement boundary and the message "NEXT" FORCED FOR OUTPUT is ^

I displayed. Issuing the GO command will resume execution until the next break.

Using Interactive Debug Features under ISPF Version 2

The following features are available with InteractiveDebug under ISPF Version2,
and are described in this section:

• Setting or changing the defaults for your debugging sessions

I • Displajdng your source listingin a window, including an optional overlayof
I program sampling statistics in the form of a bar chart

• Using cursor-oriented commands

• Searching the source listing or the log for variable strings

• Animating the execution of your program

• Changing the color attributes of your panel

RunningInteractive Debug with ISPF Version 2, you can viewyour source listing
in one area of the screen without splitting the screen. This area is called the source
listing window.

24 VS FORTRAN Version 2: Interactive Debug Guide and Reference

r"

You can also highlight the command currently executing, and control the pace of
execution when using the STEP command. This capability is called program
animation, because it creates an animated picture of your program's execution. The
screen is automatically rewritten at every statement hook. In addition, you can
change the color attributes of the execution panel.

The following commands are valid if you are using Interactive Debug with ISPF
Version 2:

COLOR

LISTINGS

MOVECURS

POSITION

PREVDISP

PROFILE

SEARCH

WINDOW

These commands are referred to in this manual as the full screen display commands.

Setting or Changing the Defaults for Your Debugging Sessions

COMMAND ===>

When you begin a debugging session under ISPF Version 2, you may want to
display the default settings for various parameters that affect the way IAD runs.
To see these parameters, enter the command profile. A display panel will then
appear on your screen. You can modify this display any time during a debugging
session. Initially, the current setting for any of the parameters displayed will be the
same as your profile setting. However, if you want to modify a parameter for the
current session, you can type over that field on the display panel with a new value.
If you modify the profile settings, the new values are saved and used whenever you
begin a new debugging session.

After you have modified some of your current settings, the profile panel might look
like this;

VS FORTRAN INTERACTIVE DEBUG (CURRENT g PROFILE Settings)

PROFILE SETTING

Step delay (.01 sec)
Frequency count display
Window columns

Window rows

Window ON

Log line numbers
Output halt value

CURRENT SETTING

10

NO

60

10

NO

YES

50

50

YES

40

10

YES

YES

50

Enter END or RETURN to go back to IAD panel,

Figure 12. Modifying the PROFILE Command Panel

Chapter 2. Using Interactive DebugwithISPF 25

Initially, the profile settings have the values displayed in Figure 12. However, you
can modify these values (in addition to modifjring the current settings).

The parameters are:

Step delay Initially set to 50. This value controls the pace of animation, measured
in hundredths of a second. For more information, see Figure 15 on
page 32.

Frequency count display
I Initially set to YES. YES indicates that the statement frequency
I counts or sampling percentages are shown within the source listing

window.

Window columns

Initially set to 40. This value specifies the width of the source window
listing, measured in characters. To make the window wider, increase
this value.

Window rows

Initially set to 10. This value specifies how deep the source listing
window will be, measured in lines. To see more than 10 lines at a time
in the window, increase this value.

Window ON

Initially set to YES. This value indicates that a source listing window
automatically appears on your screen, provided that its dimensions
have been defined and the listing data set is known for the current
program unit. Setting this value to YES is equivalent to entering the
WINDOW or WINDOW ON command.

Log line numbers
Initially set to YES. This value indicates that the log line numbers are
displayed in your scrollable log. Enter NO to inhibit the display of
these numbers.

Output halt value
Initially set to 50. This value indicates how often Interactive Debug
should suspend its production of output so you can examine the
information produced. The value is specified as the number of lines
after which Interactive Debug should initiate a break.

Displaying Your Source Listing in a Window

You can use a window to display the source listing for a selected program unit.
The source listing window overlays the log display, without splitting the screen.
One way to define a window is by changing the "window rows" and "window
columns" values on the profile panel, as described in the previous section. Another
way is to use the WINDOW command.

26 VS FORTRAN Version 2: Interactive DebugGuide and Reference

Deflning the Window with the WINDOW Command

To define the dimensions of your source listing window, first tjrpe WINDOW on the
command line, then position your cursor at the place where you would like to have
the lower left comer of the source display. By moving the cursor downward or to
the left, you can expand the dimensions of the window. (The upper right comer of
the window is fixed at the upper right of the screen.) When you have the
dimensions you want, press ENTER.

Note: If you have not yet modified the listings data set specification panel
(described below), you may not immediately see the source listing window, but the
dimensions will be saved and the window is defined.

If you have a PF key assigned to the WINDOW command, move your cursor to the
position where you want the lower left comer and press the PF key.

You can change the dimensions of the window at any time during a debugging
session to take advantage of your terminal or your special debugging needs. You
can save the window definition on the PROFILE panel, so it will be used the next
time you debug a program with Interactive Debug.

To temporarily tum the window off, use the command window off. The window
returns when you enter window or window on (or when you press the equivalent
PF key), provided that the listings data set is known to Interactive Debug for the
current program unit.

I DisplayingProgram Sampling Bar Charts

As an option, you can have the source listing window overlaid with bar charts that
display program sampling statistics for each statement in the listing. For a
description of this feature and of program sampling, see "Program Sampling" on
page 79.

Modifying the Listings Data Set Specification Panel

If there is at least one debuggable program routine that has no listing defined, the
listings data set specification panel is automatically displayed at IAD initialization.
This can occur if these routines are not all specified in AFFON, described on page
37, or subsequently not found in an attempt made by Interactive Debug to search a
file or data set whose name is generated by IAD from the given application
program name. You can enter missing data set definitions on the listings data set
specification panel. Press the END key when you are done.

Note: If a restart file is present, this automatic display of the listings data set
specification panel is deferred until the end of the restart file is reached. If a QUIT
command is executed from the restart file, the automatic intervention is bypassed.

You can also request the listings data set specification panel from the debugging
session by entering the LISTINGS command or by typing over the first character
of the Q: field in the header with a question mark (?). A sample CMS panel is
shown in Figure 13 on page 28

Chapter 2. Using Interactive Debug with ISPF 27

VS FORTRAN INTERACTIVE DEBUG

COMMAND ===>

ROW 1 OF 4

SCROLL ===> HALF

PROGRAM UNIT NAME CMS FILE ID SOURCE

FORTPROG LISTING ♦_ NO
SUB1 LISTING »_ YES
SUB2 LISTING ♦_ NO
SUB1 LISTING ♦ NO

MAIN_PROGRAM_
SUB1]
SUB2

SUBROUTINES
BOTTOM OF DATA

FILE NOT FOUND

FILE NOT USABLE

PROGRAM NOT FOUND

I Figure 13. The Listings Data Set SpeciHcation Panel in CMS

The TSO panel is similar. The CMS FBLE ID column is replaced by the DATA
SET NAME column. Under TSO, the top line of the panel looks like this:

PROGRAM UNIT DATA SET NAME SOURCE

If the source listing you want does not appear on the panel, you must specify the
file ID or data set name for the program unit source listing. To fill in the listings
data set specification panel, enter the name of the program unit source listing in the
"CMS FILE ID" or "DATA SET NAME" column. Interactive Debug then
automatically fills in the names of all program units found in that listing, and
changes the "SOURCE" column to YES. If the listing is in a PDS member, include
the member name in parentheses at the end of the data set name.

To display a listing in the source listing window, the "SOURCE" column for that
listing must specify YES. You may want to change some of these values to NO if
you do not want particular program units to be displayed.

In Figure 13, the CMS message FILE NOT FOUND indicates that the specified
file was not found on any of your accessible disks. Under TSO, the equivalent
message is DATA SET NOT FOUND. To correct the problem, make sure the file
ID for the listing containing the program unit is correctly spelled and is accessible.
If it is necessary to use system commands (CMS or TSO) to make the listing
accessible, you can enter them on the command line prefixed by "CMS" or "TSO,"
as appropriate.

The message PROGRAM NOT FOUND indicates that the listing file was found,
but did not contain the named program (in this example, SUBROUTINES). To
correct the problem, make sure the file ID for the listing containing the program
unit is correctly spelled and is accessible.

If you receive the message FILE NOT USABLE, it indicates that the data set was
found but cannot be used as a listing in the source window. Under TSO, the
message will be DATA SET NOT USABLE. In either case, check for an invalid
record length (it should not be greater than 137 bytes). If operating under CMS,
insure that the file is not in PACKED format. If under TSO, insure that the file is
not security protected by another user.

After filling in the listings data set specification panel, you return to the execution
panel by entering end, usually PF key 3.

28 VSFORTRAN Version 2: Interactive DebugGuide and Reference

A Sample Source Listmg Window

A debugging session using a source window might look like that in Figure 14.

lAD/F Q: SUB1
COMMAND ===>

W: ?

SCROLL ===> HALF

♦TOP* TOP OF SUB1

C * SUBROUTINE SUBI

1 SUBROUTINE SUBI

2 INTEGER I

3 DO 10 I = 1, 2
4 IF (I.EQ.1) THEN
5 CALL SUB3

6 ENDIF

7 IF (I.EQ.2) THEN
8 CALL SUB2

9 ENDIF

10 10 CONTINUE

1 1 END

♦END* BOTTOM OF SUBI

LOG 0 + 1 + 2 + 3 + 4 + 5 + LINE: 1 OF 12
000001 VS FORTRAN VERSION 2.2.0 INTERACTIVE DEBUG

000002 (C) COPYRIGHT IBM CORP 1985, 1987
000003 ALL RIGHTS RESERVED

000004 LICENSED MATERIALS-PROPERTY OF IBM

000005 WHERE: TDYNCM.3

000006 * list i

000007 TDYNCM.I = 0

000008 * q sub3
000009 * enddebug sample(5) called
000010 PROGRAM HAS TERMINATED; RC (0)
000011 * q subl
000012 * annotate on all

Figure 14. Example of Debugging Using a Source Window

♦ 0017

♦♦♦ 0039

0296

0006

0056

0218

♦ 0017
««««« 0073

♦♦ 0034

Note: The border below the source listing window is not displayed on 7-color
terminals. However, you can choose a contrasting color for the window to make it
distinct and more visible.

When program sampling bar charts are shown, the column at the far right of the
source window shows sampling percentages relative to the displayed program unit.
One decimal place is implied, for example, 0218 means 21.8%.

The source listing window displays the source listing for the current program unit
(if possible). Whenever execution is suspended, you can change the Q: field on the
panel heading to tell Interactive Debug to temporarily display the source listing for
another program unit. When you resume execution, the display automatically
returns to the source listing for the current program unit (if possible). To change
the Q: field in the panel heading, merely type over the qualification field with a
new valid unit name.

Chapter 2. Using Interactive Debug with ISPF 29

Scrolling the Listing

Moving the Cursor

If the followingconditions are met, Interactive Debug automatically displays the
source listing for the currently executing program unit:

• The data set must be accessible to Interactive Debug, and defined on the
Listings Data Set Specification Panel.

• The program unit must be debuggable, and must have been compiled with VS
FORTRAN Version 2, or with VS FORTRAN Version 1 Release 3.1 or later.
If compiled with VS FORTRAN Version 1, the options TEST and NOSDUMP
must not have been specified together.

• The "Source" column of the Listings Data Set Specification panel must specify
YES for this program unit.

You can scroll the source listing vertically or horizontally, just as you scroll the
session log. Use the same ISPF commands (UP and DOWN, LEFT and RIGHT)
or function keys. The position of the cursor determines which information is
scrolled. If the cursor is within the source window, the source listing is scrolled. If
the cursor is anywhere else on the execution panel, the log is scrolled.

To quickly move the cursor back and forth between the source window and the
command line, use the MOVECURS command. If the cursor is not on the
command line when you enter the MOVECURS command, it is placed at the
command line. If the cursor is on the command line when you enter the
MOVECURS command, the cursor is moved to its previous position in the
window, or to the upper left comer of the window if the previous position is not
known.

You can assign the MOVECURS function to a PF key by issuing the ISPF keys
command. You might want to assign it to the PF key normally used for the PDF
CURSOR function.

Using Cursor-Oriented Conunands

When you use a source window, you can perform many tasks by "pointing" with
the cursor, instead of typing operands on the command line. The commands that
can be issued this way are called cursor-orientedcommands. The AT, LIST, and
OFF commands are cursor-oriented commands.

AT You can issue an AT command (with no command list) using your
cursor. If the AT command is already assigned to a PF key, place the
cursor at an ISN or sequence number field in the source window, and
press the PF key for AT.

Instead of assigning a PF key to the AT command, you can type the AT
command over the ISN or sequence number, or you can tjrpe AT on the
command line and move the cursor to the target statement number
before pressing ENTER.

30 VS FORTRANVersion 2: InteractiveDebug Guideand Reference

^ LIST You can issue a simple LIST command using your cursor. Ifthe LIST
^ ^ command is already assigned to a PF key,place the cursor at a variable

I name in the source window, andpress the PF keyfor LIST. Thevariable
I mayinclude eithersubscript or substring notation. If both are present,
I only the subscript will be included in the command.

Instead of assigning a PF key to the LIST command, you can type LIST
on the command line and move the cursor to a variable name before
pressing ENTER.

OFF You can issue an OFF command using your cursor. If the OFF
command (with no parameters) is already assigned to a PF key, place the
cursor at an ISN or sequence munber field in the source window, and
press the PF key for OFF.

Instead of assigning a PF key to the OFF conunand, you can type the
OFF command over the ISN or sequence number, or you can type OFF
on the command line and move the cursor to the target statement
number before pressing ENTER.

Cursor-oriented commands are recorded in your session log as if the equivalent
command had been typed on the command line. For example, if you type AT over
ISN 12 in the source window while program unit SUBl is displayed, the command
AT 12 is recorded in the session log.

If the command line contains a command when you press a PF key for a
cursor-oriented command, the command on the command line is not executed. If
youtypeover multiple ISN or sequence number fields with AT or OFF commands,
only the first command is executed.

Searchingthe Source Listing or the Log for Character Strings

You can use the SEARCH command to search the source listing or the log for a
string up to 64 characters long, depending on yourterminal type. For the syntax of
the search command, see "SEARCH Command" on page 197.

If you issue the SEARCH command while the cursor is in the source listing
window, the source listingis searched; otherwise, the log informationis searched.
The search argument is translated to uppercase, and the entire listing is treatedas
uppercase. (That is, the targetwill be found regardless of case.) The mostrecent
searchargument issued on a SEARCH command is always saved, so if you later
issue the SEARCH command without an argument, the saved argument is assumed.

Youcan position at a loglinenumber, or an ISNor sequence number, by using the
POSITION command. (For the syntax of the POSITION command, see
"POSITION Command" on page 183.) If you issue the POSITION command
while the cursor is in the source listing window, an ISN or sequence number is
searched for; otherwise, a log line is searched for.

Chapter 2. Using Interactive Debug with ISPF 31

Animating the Execution of Your Program

When you use the STEP command with the source listing window, Interactive
Debug "animates" the execution of your program so you can watch the execution
progress. The currently executing line is highlighted in the source listing.

The source, as well as the log and a display generated by the AUTOLIST command
(if such a display exists), is redisplayed after each step of the program has been
executed. When the STEP command terminates, or when execution is halted by
some other means (such as breakpoints), animation ends. For more detail, see
"STEP Command" on page 203.

Controlling the Pace of Execution

You can control the timing of animation by modifying the STEP DELAY field in
the profile panel. To change the value, enter the command profile.

When the profile panel appears, tjrpe over the existing value in the "Step delay"
field. The delay time is specified in hundredths of a second. The default is set to
50 hundredths of a second. Figure 15 shows that the current setting for the delay
time has been changed to 10 hundredths of a second, although the setting for the
profile is still 50 (the default).

VS FORTRAN INTERACTIVE DEBUG

COMMAND ===>

Step delay (.01 sec)
Frequency count display
Window columns

Window rows

Window ON

Log line numbers
Output halt value

CURRENT SETTING

10

YES

60

10

NO

YES

50

Enter END or RETURN to go back to the IAD panel.

Figure 15. Modifying the STEP DELAY Field

(CURRENT 8 PROFILE Settings)

PROFILE SETTING

50

NO

40

10

YES

YES

50

When the source display is inhibited, the program steps with the minimum
processing time between steps (in other words, no delay).

32 VS FORTRAN Version 2: Interactive Debug Guide andReference

Using HALT/GO Animation

Another way of "animating" your program is to issue repeated GO commands in
conjunction with a HALT statement. To do this, assign the GO command to a PF
key. Next issue a HALT statement to specify the conditions under which the
program will be halted and the source listing redisplayed. If you now repeatedly
press the PF key for the GO command, you can watch the flow of control in the
program by observing the highlighted line in the source window.

Changing the Color Attributes of Your Panel

You will probably find debugging more convenient if you highlight certain parts of
the Interactive Debug Execution Panel, such as the current statement in the source
window, and the statement identifiers at which breakpoints have been set. You can
change the color, highlighting, or intensity of various fields on the panel, using the
COLOR command. For more information, see "COLOR Conunand" on
page 134.

Splitting the Screen Using ISPF and PDF

With ISPF and PDF, you can look at a compiler listing file (or the source file) by
splitting the physical screen into two logical screens. With a split screen, a source
or listing file may be browsed or edited (or even recompiledunder TSO) while

_n. debugging. This assumes the presence of IBM Program Development Facility
^ (PDF), which provides thebrowse and edit functions.

To split the screen, use the SPLIT command (or a PF key assigned the SPLIT
function, normally PF2), and then use BROWSE or EDIT to look at the
appropriate file or data set.

Note: The second screen in split-screen mode cannot be used to run a second
session of Interactive Debug (or any other debugging product). You cannot run
any program in the second screen that would intercept attentions, unlessyou let
that program terminate before trying to continue with Interactive Debug.

Recompiling a Program whUe Using a Split Screen (TSO Only)

You can use the split screen to perform a number of tasks. For example, under
TSO, you might want to split the screen, recompilea program, and then restart the
debugging session using the new compilation. You would need to complete the
following steps:

1. Split the screen into two portions.

2. Go into edit mode on the lower half of the screen (usually panel 2).

3. Make changes to the source program in the lower half of your screen.

4. Request the VS FORTRAN compilation panel (usually 4.3), and specify the
member name to be compiled.

Chapter 2. Using Interactive Debug with ISPF 33

5. When the program has compUed, request the link-edit panel (usually 4.7), and
specify the member name to be link-edited.

6. When the program has been link-edited, end the split-screen mode and issue
the RESTART command on the command line of the execution panel.

You can now debug the newly-compiled program. If you want, you can display the
new source listing by splitting the screen, or by issuing the WINDOW command
under ISPF Version 2.

After Ending the Debugging Session

OPTION ===>

When you enter the QUIT command to end Interactive Debug activity, ISPF
automatically enters BROWSE so you can examine the complete output log
(AFFOUT). If you have used the PRINT kejrword on any Interactive Debug
commands that allow it, ISPF first enters BROWSE for the AFFPRINT file.

After browsing these files, enter the END command, or use the PF key assigned to
END (usually PF 3). You will then be presented with the standard ISPF
FOREGROUND PRINT OPTIONS panel, allowing you to print each file and then
to keep or delete the file. A sample panel is shown in Figure 16.

FOREGROUND PRINT OPTIONS

PK - Print file and keep
PD - Print file and delete

K - Keep file (without printing)
D - Delete (erase) file (without printing)

If END command is entered, file is kept without printing.

FILE ID: MAIN LOG A

SPOOL OPTIONS:

NUMBER OF COPIES ===> 1

BIN NUMBER ===>

3800 KEYWORDS ===>

FOR SPOOLING TO ANOTHER USER OR MACHINE;

USER / MACHINE ID ===>
NODE / LINK ID ===>
TAG TEXT ===>

SPOOL CLASS ===> A

'FOR' USER ===>

Figure 16. The Foreground Print Options Panel under ISPF in CMS

You can fill in the file ID field and any spooling options, and then enter one of the
four options listed at the top of the panel. To leave this panel without printing your
log file, enter the END command or use the PF key assigned to END.

34 VS FORTRAN Version 2: Interactive Debug Guide andReference

Bypassing the BROWSE Step

It is possible to bypass the BROWSE step by modifyingthe AFFFXl 1 EXEC
under CMS, or the AFFFCll CLIST in TSO.

Under CMS, follow these steps:

1. Editthe AFFFXl 1 EXEC.

2. Add the lines zfbrows = ' ' and zfprint = • ' to the EXEC as follows:

zfbrows = ''
zfprint = ' '
/♦ Browse print file if it exists, set message if not »/
afftype = 'PRINT' /» afftype is used in message AFFS006 »/

3. Alternatively, you can use ' /♦' and '»/' to comment out the lines

If zfbrows -1= '' then 'ISPEXEC BROWSE FILE('lid')'
If zfprint -1= ' ' then

'ISPEXEC SELECT CMD(ISRFXPRT ISRFPPRT' lid')'

These lines occurs twice—once for displaying the print file and once for
displaying the log file. For example, after you commentout the lines for
displaying the log file, the EXEC should look like this:

/» Browse log file if it exists, set message if not »/
formsg = ''
afftype = 'LOG'
lid = zfname 'LOG A'
'STATE' lid

If rc <= 0 then Do

Address 'ISPEXEC'

/* If zfbrows -1= '' then 'ISPEXEC BROWSE FILE('lid')'
If zfprint -1= ' ' then

'ISPEXEC SELECT CMD(ISRFXPRT ISRFPPRT' lid')'»/
Address CMS

End

Else formsg = 'AFFS006'

If you want to bypass browsing the print menu, search for the first occurrence
of these lines and comment them out also.

Under TSO, follow these steps:

1. Edit the AFFFC11 CLIST.

2. Search for the following line:

SET ZFBROWS = BROWSE /» ASK FOR BROWSE

3. Change the line to read as follows:

SET ZFBROWS = £Z /♦ BYPASS BROWSE

*/

♦/

You can also bypass the print menu by setting ZFPRINT to a null string, as
follows:

SET ZFPRINT SZ /♦ BYPASS PRINT */

Chapter 2. Using Interactive Debug with ISPF 35

Using Optional Debuggiiig Files or Data Sets ^

The following sections discuss the output log file, and three optional files (or data
sets). It describes how to define each file when invoking Interactive Debug with
ISPF.

Specifying an Output Log FUe or Data Set (AFFOUT)

When running under ISPF, Interactive Debug creates a log of its activity for you to
examine; this log can be viewed after completion of the debugging session. The log
information is contained in the AFFOUT data set or the AFFOUT file.

The AFFOUT file does not need to exist prior to execution of the VS FORTRAN
program. Under CMS, the invocation procedures define a file named fname LOG
(where fname is the name specified on the FILE ID line of the invocation panel).
Under TSO, the invocation procedures define a data set named userid.fname.LOG
(where fname is the name specified on the MEMBER line or on the FILE ID FOR
DEBUG FILES line on the invocation panel).

Note: To prevent an existing file from being overwritten, you must rename it
before executing a program.

The log file has the following characteristics:

• All Interactive Debug I/O is logged (except for a small number of commands
associated with functions available under ISPF Version 2: COLOR, A >
LISTINGS, MOVECURS, POSITION, PREVDISP, PROITLE, SEARCH,
WINDOW). Unless TERMIO LIBRARY has been specified, aU
program-initiated terminal 1/O is also logged.

• The file is created with a RECFM of FB and an LRECL of 80 (and a
BLKSIZE of 800 for TSO).

• Each line is preceded with an equal sign (=).

• Each line of input is preceded by an asterisk (*) following the equal sign.

• Input and output occurring within an attention exit are not logged; however,
the entering of an attention exit is logged.

Specifying a Print File or Data Set (AFFPRINT)

Certain VS FORTRAN Version 2 Interactive Debug commands allow you to
specify a PRINT keyword, causing command output to be sent to a print data set
rather than to your terminal. This may prove useful, for example, when you are
listing the contents of a large array and want to keep this output separate from the
normal log. This print data set is referred to as the AFFPRINT data set or the
AFFPRINT file.

AFFPRJNT does not need to exist prior to executing a VS FORTRAN program.
Under CMS, the invocation procedures will define a file named fname LIST A
(where fname is the name specified on the FILE ID line of the invocation panel).
Under TSO, the invocation procedures will define a data set named

36 VS FORTRAN Version 2: Interactive Debug Guide and Reference

userid.fname.VmKT (where fname is the name specified on the MEMBER line or
^ on the FILE ID FOR DEBUG FILES line on the invocation panel).

Note: To prevent an existing AFFPRINT file from being overwritten, you must
rename it before executing a program with the same name.

SpecifyingProgram Units to be Debused (AFFON)

When Interactive Debug is invoked, you can set breakpoints in any debuggable
programunits. Becausethere is some overhead associatedwith this ability, it is
more efficient to exclude from debugging those program units that are known to be
error free. You can also exclude part of a program unit, which may be helpful if
there are heavily-executed sections that are error free.

The AFFON file or AFFON data set is a sequential file containing a list of
1 program unit names, up to 31 characters in length, to be debugged. The AFFON

file is read by Interactive Debug; it must exist before execution of the VS
FORTRAN program. (Using the RESTARTcommand, you can change the

I allocation or the content of the existing file prior to restarting.) Using the
I informationin the AFFON fileentries, Interactive Debug willattempt to
I automatically identifythe data sets containing the program listings for use in the
I source windowand with the ANNOTATE command.

The invocationprocedures must includea correct FILEDEF statement (CMS) or
ALLOCATE statement (TSO) to define the AFFON file or data set. The
invocation procedure supplied by IBM for usewith ISPF/PDF under CMS assumes
that the AFFON file is calledfname INCLUDE (wherefname is the name specified
on the FILE ID line of the invocation panel). Under TSO, it is called
userid.fname.\NCL\JUE (where fname is the namespecified on the MEMBER line
or on the FILE ID FOR DEBUG FILES line on the invocation panel).

The file contains a list of program unit names to be selected for debugging, and
maycontaincomment entriesidentified by an asterisk (*) in the first record
position. Program unit names are assumed to be the first character stringin the
record (terminated by a blank), and may appear after initialleadingblanks.

I Each program unit name can be followed by the data set name containing the
1 source listing for a program unitas well as a listof statement numbers (ISNs or
I sequence numbers), or statement number ranges. (ISNs are the default, unless you
I specified SDUMP(SEQ) whenyoucompiled the program unit.) If any statement

numbers are specified,only statements falling within the specified ranges, or
I included in the listof statementnumbers, are selected for debugging. If no
I statementnumbers are specified, all executable statements are selected. Note that

statement labels are not allowed.

The syntax of each entry in the AFFON file is as follows:

I unitname [*dataset[(member)]'][n[:n]]...

I or

I unitname ['dataset[(member)]'][ENTRY]

I or

Chapter 2. Using Interactive Debug with ISPF 37

I unitname ['dataset[(member)]'][NONE]

I Blanks or commas separate entries in the list of statement number ranges. The
program unit name and the list of statement number ranges must all fit within one
record. The ENTRY parameter specifies that only ENTRY and EXIT hooks are to
be placed in the program unit. This is helpful if you want to increase the accuracy

I of timing information. The NONE parameter allows data set names to be
I specified, but by passes inclusion of debugging hooks.

I For example, to place debugging hooks between statements 6 and 16 and at
I statement 18 of SUBl, you could make the following entry, under CMS, in your
I AFFON file:

I Subl 'SUBl Listing »' 6:16 18

I In the above example, SUBl Listing ♦ is defined as the default listing. ENTRY and
I EXIT hooks are always placed in the program unit whenever any statement number
I ranges are specified.

I An equivalent example for TSO would be:

I Subl 'userid.subl.list' 6:16 18

Note that there may be executable statements in the specified ranges that cannot
have debugging hooks placed on them because of optimization or vectorization. To
find out which statements have had hooks placed on them, you can use the
LISTFREQ command.

Program units that do not meet the requirements for debugging will not have
program hooks inserted, even though they may be in the AFFON list.

One way to create an AFFON file is to edit the map produced when the module to
be executed is built. Normally, this is the linkage editor map or the CMS load map.
The map can be edited by placing an asterisk before any program unit name that is
not to be debugged, nominating the other program units for debugging. You can
then add in a list of statement numbers or statement number range specifications.

Note: Because the CMS load map truncates long names to 7 characters, you will
have to replace truncated names with complete names as required by Interactive
Debug.

AFFON can have any record format; entries can be in lower case. The logical
record length can be any value up to 255 bytes. If the file exists but has incorrect
attributes, you will receive an error message stating that the AFFON file cannot be
read, AFFON can contain references to sequence numbers for VS FORTRAN
programs compiled with SDUMP(SEQ), but AFFON itself cannot be sequenced.

If the AFFON data set is found and contains at least one entry that is not a
comment, only the valid program unit names found in the data set or the program
unit compiled with the test option will be considered for debugging. Otherwise, all
VS FORTRAN program units will be considered for debugging.

For compiler and library restrictions that may make a program unit nondebuggable,
see "Interactive Debug Programming Requirements" on page 5.

38 VSFORTRAN Version 2: Interactive Debug Guide and Reference

Specifying a Restart FUe or Data Set (AFFIN)

Whenrunning under ISPF, Interactive Debugcommands can be read from the
AFFIN input file. AFFIN is a file of debugging commands, initially created either
with an editor or obtained by editing the output from a previous debugging session.
This file is optional under ISPF.

The AFFIN file must exist prior to executing the VS FORTRAN program. (If you
use the RESTART command, you can change the allocation or the content of the
existing file prior to restarting.)

Under CMS, the ISPF invocation procedures supplied by IBM assume that the
AFFIN file is called/name RESTART (wherefname is the name specified on the
FILE ID line or MEMBER line of the invocation panel). Under TSO, it is assumed
to be «ser/rf./mime,RESTART (wherefname is the name specifiedon the
MEMBER line or on the FILE ID FOR DEBUG FILES line on the invocation
panel).

The AFFIN file must have a RECFM of F or FB and an LRECL of 80. The file
will be read until end-of-file is encountered. After the commands in the file have
been executed, additional input can be entered from the terminal.

Note: Sequence numbers are not allowed in columns 73 through 80.

Youmaywant to use the log file (AFFOUT) as input to a subsequent debugging
sessionif, for example, you had to discontinue a debugging sessionbut had not yet
solved the problem. To do this, follow these steps:

1. Use the QUIT command to stop debugging.

2. Keep the AFFOUT log file, and edit it to removethe QUIT command.

3. Prior to using the AFFOUT file as input to Interactive Debug, you must
rename it, as described above.

4. The logfile can now be usedas input to retrace the steps taken in the previous
session.

After the log file has been executed, you should be at the sameposition as when
you stopped the previous session.

Interactive Debugrecognizes a savedlogfile by the presence of leading equalsigns
(=). Linesin the input filebeginning withan equalsignand an asterisk (=*), and
linesnot beginning withan equalsign, are assumed to be debugging commands.
Linesbeginning withan equalsignnot followed by an asterisk are assumed to be
output and are ignored.

Chapter 2. Using Interactive Debug with ISPF 39

Chapter 3. Using Interactive Debi^ in Line Mode

Interactive Debug may be executed in line mode in either a CMS or a TSO
environment. It is referred to as line mode because input and output are presented
sequentially, one line at a time. This is in contrast to executing in full screen
mode, when the entire screen is controlled and used by Interactive Debug. Use of
Interactive Debug in line mode is intended primarily for users with access to only a
typewriter-like terminal or when ISPF is not installed.

Invoking Interactive Debug

Under CMS

The DEBUG execution-time option causes the VS FORTRAN library initialization
routines to load Interactive Debug. The program will be suspended at the first
statement with a debugging hook, so you can issue Interactive Debug commands
before execution proceeds.

The invocation procedure varies depending on whether you are using CMS or TSO.
Both procedures are described below.

When you are executingunder CMS without ISPF, you can build your executable
program and invoke Interactive Debug in one of three ways:

1. Use the LOAD command to load your VS FORTRAN program. You execute
the program using the START command with the DEBUG option. No
permanent copy of the executable program is made.

2. Use the LOAD and GENMOD commands to generate a module. You can
invoke the program later by issuing a CMS command with the same name as
the MODULE file, and the DEBUG operand.

3. Use the LKED command to link-edit your VS FORTRAN program into a load
library. You execute the program later, using the OSRUN command with the
PARM=DEBUG parameter.

The steps to invoke Interactive Debug under each of these methods are described
in the following sections. The steps include instructions to invoke Interactive
Debug under both link mode and load mode with VS FORTRAN Version 1 or VS
FORTRAN Version 2. The steps also include instructions for executing programs
created prior to Version 1 Release 4 of VS FORTRAN.

Chapters. Using Interactive Debug inLine Mode 41

Link Mode and Load Mode

If you are runningunder the VSFORTRAN Version 1 Release 4, 4.1, or VS
FORTRAN Version 2 Library, you should be aware of the distinction between two
modes of operation.

If youchoose to have the necessary library routines included within your
executable program, youare operating in linkmode. If, on the other hand,you
choose to have the library routines loaded during execution of your program, you
are operating in loadmode. Youmake the choice of linkmode or load mode by
making the appropriate combination of libraries available when youcreate your
executable program from your TEXT files.

For more information on link versus load mode, see VS FORTRAN Version 2:
Programming Guide.

Using the LOAD and START Commands

The LOAD command creates a temporary copyof your executable program in
virtual storage. The object code from which the executableprogram is built is
either in TEXT files or in text libraries, or both.

1. You must make the appropriateVS FORTRAN Version 2 Library text libraries
as wellas your own text libraries, if any, available using a GLOBAL command.

a. If you want your program to execute in link mode, use this command:

GLOBAL TXTLIB VSF2LINK VSF2F0RT CMSLIB TSOLIB userlib...

b. If you want your program to execute in load mode, use this command:

GLOBAL TXTLIB VSF2F0RT CMSLIB TSOLIB userlib...

2. To createthe temporary copyof yourexecutable program in virtual storage,
issue the LOAD command, as follows:

LOAD myprog...

3. Next issue the following command:

GLOBAL LOADLIB VSF2L0AD

4. Finally, to execute the temporary copy of your program that has been built in
virtual storage and invoke Interactive Debug, issue the following command:

START * DEBUG

Using the LOAD and GENMOD Commands

The LOAD and GENMODcommands create an executable programthat is stored
as a nonrelocatable file on your CMS disk. The object code from which the
executable program is built is either in a TEXT file or in a member of a text library.

Note: If you have created a nonrelocatablefile with a file type of MODULE for
your program in the past, you can execute the program by completingsteps 4
through 6 under the "Executing the Program" section that follows.

42 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Creati/^ the MODULE File

1. You must make the appropriate VS FORTRAN Version 2 Library text libraries
as well as your own text libraries, if any, available using a GLOBAL command.

a. If you want your program to execute in link mode, use this command:

GLOBAL TXTLIB VSF2LINK VSF2F0RT userlib...

b. If you want your program to execute in load mode, use this command:

GLOBAL TXTLIB VSF2F0RT userlib...

2. Next, create the temporary copy of your executable program in virtual storage
by issuing the LOAD command, as follows:

LOAD myprog...

3. To create the nonrelocatable file on your CMS disk, issue the following
GENMOD command:

GENMOD modname

This command builds a file with the file name assigned as modname, and a file
type of MODULE. This program can be executed at any time.

Executii^ the Program

4. You may need to issue one or more GLOBAL commands before executing
your program. Issue the following command if the simulation of extended
precision floating-point instructions is required on the machine you are using:

GLOBAL TXTLIB CMSLIB TSOLIB

5. Next issue the following command:

GLOBAL LOADLIB VSF2L0AD

6. Finally, to execute your program that is stored as a nonrelocatable file and to
invoke Interactive Debug, issue the following command:

modname DEBUG

where modname is the file name of your MODULE file, as originally specified
in the GENMOD command.

Using the LKED Command

Use the LKED command to link-edit your program and store it as a relocatable
load module in a member of a CMS LOADLIB.

Note: If you have created a load module from your program in the past, you can
execute the program by completing steps 3 through 5 under the "Executing the
Program" section that follows.

Chapter 3. Using Interactive Debug inLine Mode 43

Creating a Load Module

1. Prior to issuing the LKED command, issue the following FILEDEF command:

FILEDEF SYSLIB DISK VSF2F0RT TXTLIB fm

where fm is either the file mode of the CMS disk that contains the library
VSF2FORT, or an asterisk (♦).

2. Then issue the following LKED command:

LKED myprog (LIBE libname NAME membname

where:

myprog is the file name of the TEXT file that contains your object code.

libname is the file name of the LOADLIB file into which the resulting load
module is to be placed as a member.

membname is the name of the member in the LOADLIB file designated by
libname above, into which the resulting load module is to be
placed.

Executing the Program

3. Next issue the following GLOBAL command:

GLOBAL LOADLIB VSF2L0AD libname

where libname is the file name of the LOADLIB file into which your load
module was placed as a member by the LKED command.

4. Issue the following command if the simulation of extended precision
floating-point instructions is required on the machine you are using:

GLOBAL TXTLIB CMSLIB TSOLIB

I 5. Issue FILEDEF statements for the AFFON and AFFPRINT files. For
I example,

I FILEDEF AFFON DISK progname AFFON A
I FILEDEF AFFPRINT DISK progname AFFPRINT A

6. Finally, issue the following command to execute your program and invoke
Interactive Debug:

OSRUN membname PARM=DEBUG

where membname is the name of the member that contains the load module

created with the LKED command.

44 VS FORTRAN Version 2: Interactive Debug Guide andReference

Under ISO

A Simple Invocation EXEC: To invoke VS FORTRAN programs, you may find it
convenient to create a CMS EXEC. If you already have one, you will probably
want to modify it to invoke Interactive Debug.

Figure 17 is an example of a simple EXEC that invokes the VS FORTRAN
program with the DEBUG option. The EXEC allocates an AFFPRINT file, and
does not allocate an AFFON file. (The AFFPRINT and AFFON files are
described later in this chapter.) If DEBUG is not specified (or defaulted by the
EXEC), Interactive Debug will not be invoked unless you have included a special
object module to override the default. For further information about how to
override the default, see "Specifying Default Execution-Time Options" on
page 96.

This sample EXEC assumes you are running with a previously-linked VS
FORTRAN module, or are starting with TEXT files you want to link with the VS
FORTRAN Version 2 Library to run in load mode. On the other hand, if you are
starting with TEXT files and want to link with the VS FORTRAN Version 2
Library to run in link mode, you need to alter the sample EXEC: Add VSF2LINK
as the first GLOBAL TXTLIB (see the examples above under "Link Mode and
Load Mode" on page 42).

6TRACE

GLOBAL TXTLIB VSF2F0RT CMSLIB TSOLIB

♦ THE ABOVE STATEMENT ASSUMES YOU WILL RUN IN LOAD

♦ MODE. IF YOU WISH TO RUN IN LINK MODE, REPLACE THE
♦ ABOVE STATEMENT WITH THE FOLLOWING GLOBAL STATEMENT:

» GLOBAL TXTLIB VSF2LINK VSF2F0RT CMSLIB TSOLIB
♦

GLOBAL LOADLIB VSF2L0AD

FILEDEF AFFON DUMMY

FILEDEF AFFPRINT DISK 61 AFFPRINT A

ePARM = 62

6IF .6PARM = . 6PARM = DEBUG

LOAD 61 (CLEAR
START ♦ 6PARM 63 64 65 66 67 68

6EXIT 6RETC0DE

Figure 17. Sample CMS EXEC to Invoke a VS FORTRAN Program

If the EXEC in this example is invoked without specifying a second parameter,
DEBUG will be the default option. If the EXEC were named FORTIAD,
specifying

FORTIAD MYPROG

would cause MYPROG to be invoked with the DEBUG option.

When you are executing under TSO without ISPF, VS FORTRAN Version 2
Interactive Debug can be invoked with the CALL command:

CALL progname 'DEBUG'

or with the LOADGO command:

Chapter3. Using Interactive Debug in LineMode 45

LOADGO progname 'DEBUG'

To invoke VS FORTRAN programs, you may find it convenient to create a TSO
CLIST. If you already have one, you will probably want to modify it to invoke
Interactive Debug.

Figure 18 is an example of a simple CLIST that allocates an AFFPRINT file
(described later in this chapter), and a dummy AFFON file. It invokes the VS
FORTRAN program with or without the DEBUG option. Unless you specify
NODBBUG when invoking the CLIST, Interactive Debug will be invoked.

In this example, if the CLIST is invoked without specifying an OPTION parameter,
the VS FORTRAN program will be invoked with the DEBUG execution-time
parameter. If the CLIST were named FORTIAD, specifying

FORTIAD MYPROG DSN(MYLIB.LOAD)

would cause program MYPROG, contained in library us^r/rf.MYLIB, to be invoked
with the DEBUG option specified.

PROC 1 MEMBER DSN(FORTRAN.LOAD) OPTION(DEBUG)
CONTROL NOMSG NOFLUSH NOLIST NOSYMLIST NOCONLIST

IF 60PTI0N = DEBUG THEN DO

FREE FI(AFFPRINT AFFON)
ALLOC FI(AFFON) DUMMY
ALLOC FI(AFFPRINT) DA(SMEMBER..PRINT) SHR
IF gLASTCC -.= 0 THEN + ..

ALLOC FI(AFFPRINT) DA(SMEMBER..PRINT) NEW CATALOG SPACE(5 5) TRACKS
END

SET RCODE = gLASTCC

CALL 'gSYSUID..gDSN.(gMEMBER) ' 'gOPTION'
FREE FI(AFFPRINT AFFON)
WRITE RETURN CODE: gRCODE

EXIT

END

F^ure 18. Sample TSO CLIST to Invoke a VS FORTRAN Program

Entering Conunands

In both CMS and TSO, after invoking a VS FORTRAN program with the DEBUG
option, you will receive the informational message VS FORTRAN VERSION
2.2.0 Interactive Debug, and several lines of copyright information,
followed by a WHERE message identifying the statement about to be executed.
This is followed by the Interactive Debug prompt FORTIAD, indicating that the
VS FORTRAN program has reached the first debugging hook. At this point,
execution is temporarily suspended to allow you to enter debugging commands.

Commands are normally entered following the Interactive Debug prompt. __
Commands may also be issued when execution is suspended because of an input
request originating in the VS FORTRAN program while TERMIO IAD is in effect.

46 VSFORTRAN Version 2: Interactive Debug Guide and Reference

This is described further in "Entering Input to a VS FORTRAN Program" on
page 47.

When executing Interactive Debug in line mode, a command is limited to 131
characters, including blanks. You may choose not to enter an entire command on
one line of the terminal. In this case, you may enter some portion of the command,
follow it with the continuation character (-), and then start a new line to enter the
remainder of the command. The continuation character is a hyphen (-) and must
be the last character entered on the command line before pressing the RETURN
key.

When Interactive Debug is awaiting the continuation of a command, you will not
receive another prompt until the command has been completely entered and
processed.

Using Program Function Keys to Enter Commands

If you are using a 3270-type terminal on VM/SP, you can use program function
keys (PF keys) to enter commands in line mode. (It is not possible to define PF
keys under TSO in line mode.)

To define PF keys when running Interactive Debug under CMS in line mode, enter
the CP command SET PF on the command line. You can use this command to

change any current PF key value. For example, you might want to set certain PF
keys to Interactive Debug commands that you issue frequently. To set PF key 4 to
the NEXT command, enter this on the command line:

SYSCMD SET PF4 NEXT

Entering Input to a VS FORTRAN Program

Note: This discussion assumes that TERMIO IAD is in effect. If not, then you do
not have the ability to enter Interactive Debug commands while a read is pending,
and the discussion below is not applicable. For additional information, see
"Entering Terminal Input" on page 91.

VS FORTRAN Version 2 Interactive Debug will issue a message before attempting
to read input from the terminal. You can enter Interactive Debug commands prior
to responding to the program's request for input.

When execution is suspended for terminal input, the FORTIAD prompt will appear
following the message:

FT05F001 INPUT: PRECEDE INPUT WITH % OR ENTER IAD COMMAND

When entering input to a VS FORTRAN program, you must precede it with a
percent sign (%). The leading percent sign will not be passed to the VS
FORTRAN program. If you need to precede your input with one or more leading
blanks, you may do so following the percent sign and your program will receive the
leading blanks. To simulate entering a null line, enter %%.

Chapter 3. Using Interactive Debugin Line Mode 47

Using a Listing File whUe Debugging

To view a compiler listing file (or the source file) while debugging, use the
SYSCMD command. You can use the SYSCMD command to list the file, to edit
the file, or to execute other system commands. For more information, see
"SYSCMD Command" on page 205.

Using Optional Debugging Files or Data Sets

The following sections discuss two optional files (or data sets), and howto define
them when invoking Interactive Debug in line mode.

Specifying Program Units to Be Debugged (AFFON)

When Interactive Debug is invoked,you can set breakpoints in any debuggable
program units. Because thereis some overhead associated with thisability, it will
be more efficient to exclude from debugging those program units that are known to
be error free. You can also exclude part of a program unit, which may be helpful if
there are heavily-executed sections that are error free.

The AFFON file or AFFON data set is a sequential file containing a list of
I program unit names, up to 31 characters in length, to be debugged. AFFON is

read by Interactive Debug; it must be defined prior to executionof the VS
FORTRAN program.

In a CMS environment, the EXEC used to execute VS FORTRAN programs
should contain a FILEDEF statement for the AFFON file; for example:

I FILEDEF AFFON DISK progname INCLUDE A

In a TSO environment, the CLIST used to execute VS FORTRAN programs,
should contain an ALLOCATE command for the AFFON data set; for example:

I ALLOCATE FI(AFFON) DA(progname.INCLUDE)

where progname is the name of the program you want to debug.

The AFFON file contains a list of program unit names to be selected for
debugging, and may contain commententries identifiedby an asterisk (*) in the
first record position. Program unit names are assumed to be the first character
string in the record (terminated by a blank), and may appear after initialleading
blanks.

I Each program unit name can be followed by the data set name containing the
I source listing for a program unit, as well as a list of statement numbers (ISNsor
I sequence numbers) and statement number ranges. (ISNsare the default, unless
I you specified SDUMP(SEQ) when you compiled the program unit.) If any

statement numbers are specified, only statements falling within the specified
I ranges, or included in the list of statement numbers, are selectedfor debugging. If
I no statement numbers are specified, all executable statements are selected. Note ^

that statement labels are not allowed. '

48 VS FORTRAN Version 2: Interactive Debug Guide and Reference

The syntax of each entry in the AFFON file is as follows:

unitname ['dataset[(member)]'][n[:n]]...

or

unitname ['dataset[(member)]'][ENTRY]

or

unitname ['dataset[(member)]'][NONE]

Blanks or commas separate entries in the list of statement number ranges. The
program unit name and the list of statement number ranges must all fit within one
record. The ENTRY parameter specifies that only ENTRY and EXIT hooks are to
be placed in the program unit. This is especially helpful if you want to increase the
accuracy of timing information. The NONE parameter allows data set names to be
specified, but bypasses inclusion of debugging hooks.

For example, to place debugging hooks between statements 6 and 16 and at
statement 18 of SUBl, you could make the following entry, under CMS, in your
AFFON file:

Subl SUBl Listing » 6:16 18

In the above example, SUBl LISTING * is defined as the default listing. ENTRY
and EXIT hooks are always placed in the program unit whenever any statement
number ranges are specified.

An equivalent example for TSO would be:

Subl 'userid.subl.list' 6:16 18

Note that there may be executable statements in the specified ranges that cannot
have debugging hooks placed on them because of optimization or vectorization. To
find out which statements have had hooks placed on them, you can use the
LISTFREQ command.

Program units that do not meet the requirements for debugging will not have
program hooks inserted, even though they may be in the AFFON list.

One way to create an AFFON file is to edit the map produced when the module to
be executed is built. Normally, this is the linkage editor map or the CMS load map.
The map can be edited by placing an asterisk before any program unit name that is
not to be debugged, nominating the other program units for debugging. You can
then add in a list of statement numbers or statement number range specifications.

Note: Because the CMS load map truncates long names to 7 characters, you will
have to replace truncated names with complete names as required by Interactive
Debug.

AFFON can have any record format, and entries can be in lower case. The logical
record length can be any value up to 255 bjrtes. If the fUe exists but has incorrect
attributes, you will receive an error message stating that the AFFON file cannot be
found. AFFON can contain references to sequence numbers for VS FORTRAN
programs compiled with SDUMP(SEQ), but AFFON itself cannot be sequenced.

Chapter 3. UsingInteractive Debugin Line Mode 49

If the AFFON data set is found and contains at least one entry that is not a
comment, only the valid program unit names or ranges found in the data set or the
program unit compiled with the test option wiU be considered for debugging.
Otherwise, all VS FORTRAN program units will be considered for debugging.

For compiler and library restrictions that may make a program unit nondebuggable,
see "Interactive Debug Programming Requirements" on page 5.

Specifying a Print FUeor Data Set (AFFPRINT)

Certain VS FORTRAN Version 2 Interactive Debug commands allow you to
specify a PRINT keyword causing command output to be sent to a print data set
rather than to your terminal. This may prove useful, for example, when you are
listing the contents of a large array and want to keep this output separate from the
normal log. This print data set is referred to as the AFFPRINT data set or the
AFFPRINT file.

AFFPRINT must be defined prior to executing a VS FORTRAN program.

In a CMS environment, the EXEC used to execute VS FORTRAN programs
should contain a FILEDEF statement for the AFFPRINT file.

FILEDEF AFFPRINT DISK progname LIST A

In a TSO environment, the CLIST used to execute VS FORTRAN programs
should contain an ALLOCATE command for the AFFPRINT data set.

ALLOCATE FI (AFFPRINT) DA (progname. PRINT)

Note: To prevent an existing AFFPRINT file from being overwritten, you must
rename it before executing a program with the same name.

50 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Chapter 4. Using Interactive Debug in Batch Mode

VS FORTRAN Version 2 Interactive Debug can be run in batch mode, which
creates a noninteractive debugging session. Batch mode can be run in either a
CMS or a TSO environment.

In batch mode, Interactive Debug takes its input from a file or data set with the DD
name AFFIN, and writes its normal output to one with the DD name AFFOUT.
During a batch session, you cannot interact with the batch job from your terminal.
Commands that require user interaction (such as prompt panels) cannot be used.

You might want to run a debugging session in batch mode if:

• You want to restrict the resources used. Batch mode generally uses fewer
resources than interactive mode.

• You have a program that might tie up your terminal for long periods of time. If
you use batch mode, you can continue to use your terminal for other work
while the batch job runs.

• You are using Interactive Debug to collect performance or execution data
about your program. For example, batch mode might be helpful if you want to
use LISTFREQ to get statement frequency information, but you do not want
to do any debugging.

Be aware that the following Interactive Debug commands are NOT AVAILABLE
in batch mode:

AUTOLIST

COLOR

HELP

LISTINGS

MOVECURS

POSITION

Invoking Interactive Debug

PREVDISP

PROFILE

REFRESH

RESTART

SEARCH

WINDOW

The invocation procedure you use to start a batch session will depend on the batch
procedures set up for you by your installation. Be sure you understand how batch
mode is invoked on your system before running Interactive Debug in batch mode.

Chapter 4. UsingInteractive Debug in Batch Mode 51

Under CMS

There are many batch facilities that can be run on CMS (CMSBATCH,
BATCHMON, VMBATCH, and so on). Interactive Debug considers batch mode
to occur whenever there is no physical terminal attached to the console, which is
true of all the batch facilities listed above. The following gives an overview of an
EXEC or job file for a batch job to be run on CMS:

1. The first part of the job is usuallya set of control statements for the batch
machine, such as a job statement, accounting information, console routing
control, and resource limit specifications.

2. The job probably needs CMS commands to link and access the disks
containingthe application program, the Interactive Debug product, input files,
and any other EXECs or programs needed.

3. Next, the job needs commands to run your application with the DEBUG
option. These are similar to the commands in the sample EXEC to invoke
Interactive Debug in line mode (FORTIAD EXEC), but must include
definitions for the AFFIN and AFFOUT files. The sample FORTIAD EXEC
is described in Chapter 3, "Using Interactive Debug in Line Mode" on
page 41.

If youhave a FORTIAD EXEC, modify it as aboveif necessary, and then
enter the following in your job file:

EXEC FORTIAD myprog

If you want to include the information contained in FORTIADdirectly in your
job file, it might look like that shown in Figure 19.

GLOBAL TXTLIB VSF2F0RT CMSLIB
GLOBAL LOADLIB VSF2L0AD

FILEDEF AFFIN DISK myprog AFFIN »
FILEDEF AFFOUT DISK myprog AFFOUT A
FILEDEF AFFON DUMMY

FILEDEF AFFPRINT DISK myprog AFFPRINT A
LOAD myprog {CLEAR
START ♦ DEBUG

Figure 19. Sample Commands for a BatchDebusing Session underCMS

These sample statements invoke the program with the DEBUG option. They
allocate an AFFPRINT file, but not an AFFON file. They assume you are
starting with TEXT files you want to link with the VS FORTRAN Version 2
Library to run in load mode.

Finally, you need CMS commands to send back any output files that were
written to disk.

For example, to send the AFFOUT file to your reader, you might use these
commands:

52 VS FORTRAN Version 2: Interactive Debug Guide and Reference

I Under MVS

CP SPOOL PUN TO userid NOCONT

PUNCH myprog AFFOUT

To send the AFFPRINT file to the printer, you might use these commands;

CP SPOOL PRT FOR userid

PRINT myprog AFFPRINT

When the EXEC or job file is complete, submit it to the batch machine using the
procedures set up for your installation.

In MVS, Interactive Debug considers batch mode to occur whenever no physical
terminal is attached. There are two ways to run Interactive Debug under MVS:
with TSO and without TSO.

To set up the batch job using TSO, you might use JCL that looks like that shown in
Figure 20 on page 54.

Chapter 4. UsingInteractive Debug in Batch Mode 53

//SAMPLE JOB (accounting-information),'programmer-name',
// MSGLEVEL=1,MSGCLASS=Z,USER=userid,
// TIME=(0,5),NOTIFY=userid,CLASS=A,
// PASSWORD=password
//*

//♦ INVOKE THE TMP.. *

// EXEC PGM=IKJEFT01,DYNAMNBR=100,REGION=2048K
//*

//♦ DESCRIPTION OF FORTRAN PROGRAM DATA SETS ♦

//FT06F001 DD SYSOUT=#
//SYSUDUMP DD SYSOUT=#

//»

//♦ DESCRIPTION OF DEBUGGER DATA SETS »

//AFFON DD DUMMY /* INCLUDE FILE »/
//AFFPRINT DD SYSOUT=# /* PRINT FILE ♦/
//AFFOUT DD DSN=log-name,DISP=OLD /* OUTPUT FROM IAD ♦/
//AFFIN DD DSN=restart-name,DISP=SHR /* DEBUG SCRIPT ♦/

//*

//♦ LOCATION OF FORTRAN PROGRAM AND LIBRARIES »
//♦♦*♦♦♦♦♦♦♦♦♦♦♦♦♦♦*♦**♦*♦♦*♦♦♦

//STEPLIB DD DSN=SYS1.VSF2F0RT,DISP=SHR /♦ FORTRAN LIB ♦/
//♦

//♦ DESCRIPTION OF TSO SESSION INPUT AND OUTPUT »

//SYSTSPRT DD SYSOUT=*,
// DCB=(RECFM=F,LRECL=255,BLKSIZE=255)
//SYSTSIN DD »
/* INVOKE FORTRAN PROGRAM AND PASS DEBUG PARAMETER ♦/

CALL 'userid.TESTCASE.LOAD(program)' 'DEBUG'
/♦

Figure 20. Sample JCL for a Batch Debuggliig SessionunderMVS with TSO

If youare not running underTSO, yourJCL for the batch job would be similar to
the sample shown in Figure 21 on page 55.

54 VS FORTRAN Version 2: Interactive Debug Guide and Reference

r^'

//SAMPLE JOB (accounting-information),'programmer-name',
// MSGLEVEL=1,MSGCLASS=Z,USER=userid,
// TIME=(0,5),NOTIFY=userid,CLASS=A,
// PASSWORD=password
//»
^ 3|c **«««* «*)(<***)|c i|c IK He If******If41**3|c ****** if* 4c * 4c 4! ♦

//» INVOKE THE APPLICATION PROGRAM ♦
y/'^******************** ****************** *******************************

// EXEC PGM=member,PARM='DEBUG',REGION=2048K
//*
^^***

//* DESCRIPTION OF FORTRAN PROGRAM DATA SETS ♦
^^***

//FT06F001 DD SYSOUT=#
//SYSUDUMP DD SYSOUT=#
//*
yy***

//* DESCRIPTION OF DEBUGGER DATA SETS ♦
yy***

//AFFON DD DUMMY /♦ INCLUDE FILE ♦/

//AFFPRINT DD SYSOUT=» /♦ PRINT FILE »/
//AFFOUT DD DSN=log-name,DISP=OLD /» OUTPUT FROM IAD ♦/

//AFFIN DD DSN=restart-name,DISP=SHR /* DEBUG SCRIPT »/
//*
y^i^************************** ***

//» LOCATION OF FORTRAN PROGRAM AND LIBRARIES ♦
^^***

//STEPLIB DD DSN=SYS1.VSF2F0RT,DISP=SHR /♦ FORTRAN LIB ♦/

// DD DSN=userid.TESTCASE.LOAD,DISP=SHR
//*

I Figure 21. Sample JCL for a Batch Debugging Session underMVS without TSO

I

The JCL in Figure 20 on page 54 and in Figure 21 define AFFPRINT,
AFFOUT, and AFFIN data sets. No AFFON data set is used. You can modify
these DD cards for the combination of data sets you need.

Wherever lowercase variables, such as programmer-name or log-name are
shown, you need to substitute the appropriate information. (You can usually
substitute an asterisk (*) for your user ID and password if you prefer.) You will
need to set up your own accounting information, and DD cards with appropriate
names for your program data sets. You also need to designate the location and
name of your program, and the libraries needed.

If AFFIN contains any SYSCMD or TSO commands, you must run the TSO
terminal monitor program.

Runnmg a Batch Debugging Session

In batch mode, all Interactive Debug prompts are suppressed. Whenever a
simulated terminal input line is read, it is echoed to the simulated terminal output,
prefixed with an equal sign and asterisk (=*'). If the AFFIN file does not exist or
the AFFOUT file is not defined, the program is terminated.

Chapter 4. UsingInteractive Debug in BatchMode 55

Standard corrective action is taken for all VS FORTRAN errors (unless the VS
FORTRAN program calls ERRSET to change them). This will cause the program
to terminate for unrecoverable errors.

Note: Interactive Debug avoids any real terminal interaction in batch mode.
However, it cannot guard against interactions required by the application program
or by SYSCMD commands. It is your responsibility to restrict the use of
interactive commands during batch sessions.

Specifying the Input File or Data Set (AFFIN)

WhenrunningInteractive Debugin batch mode, all commands to be executed
duringthe batch debugging session must be entered in a single input file. The input
file or data set must be defined as AFFIN. It must exist prior to executing the VS
FORTRAN program.

Remember that you cannot enter any interactive commands, such as HELP.
SYSCMD and CMS or TSO commands are not permitted without operands. You
must specifythe command and any required operands on a singleline; you willnot
be prompted interactively for commandoperands. Also, do not specifyany
commands that require interaction.

I Under MVS, SYSCMD or TSO commands are permitted only if the TSOTerminal
I Monitor Program is running.

The file will be read until end-of-file or a QUIT command is encountered. (If
end-of-file is reached, a QUIT command is forced.)

The AFFIN file must have a RECFM of F or FB and an LRECL of 80. It has the
same format as an output file, and may even be a previous output file. If it is a
previousoutput file. Interactive Debug will ignore any output contained in the file
(anythingpreceded by only an equal sign, or only an asterisk.) It acceptsany line
preceded by =* , or by nothing, as input.

Note: Sequence numbers are not allowed in columns 73 through 80.

Although it is possible in principle to use the logfile froma full screendebugging
session as AFFIN input for a batch debugging session, you should be aware that
there are some differences.

• TERMIO is likely to have different effects in batch. Under MVS it is not
possible to connect a data set to a terminal device in batch. However, you can
use the DEBUNIT execution-time option to specify one or more units that will
be treated as terminals. It is then possible, for example, for you to use your
output from a full screen session as a restart file, with TERMIO set to IAD.

In CMS, you can still use TERMINAL in a FILEDEF command, but you
should be careful not to issue TERMIO LIBRARY if there will be any terminal
input, because your programwould then attempt to actuallyget terminal input
and the batch job would stall.

56 VS FORTRAN Version 2: Interactive Debug Guide and Reference

_ You may want to add TERMIO MSG and NOMSG commands in order to get
some notification as the job progresses. (This should normally be used with
restraint.)

• Error handling is different in batch. In order to avoid unplanned interactions,
the debugger always forces standard fixup for errors in batch mode. Thus
ERROR EXIT will never cause an exit to be taken. Error limits are in effect as

if Interactive Debug were not present.

• SYSCMD commands with no system command specified are considered an
error in batch mode (but cause no harm otherwise). You should also avoid any
system conunands that might themselves require interaction.

• Prompts are suppressed in batch. For example, GO with a statement identifier
does not prompt for confirmation in batch mode, even if an optimized program
unit is being debugged.

I Including Program Input in AFFIN

I When TERMIO IAD is in effect, all terminal input is obtained from AFFIN,
I preceded with %, and interspersed with the LAD comments.

In batch mode under MVS, you do not have a terminal available, so it is therefore
impossible to connect VS FORTRAN files to a terminal. However, by specif3ring
the DEBUNTT execution-time option, which specifies a device to be treated as a
terminal, you can use the TERMIO command with MVS batch.

The DEBUNIT option may already be set up for you as a local default whenever
you specify the DEBUG option, or you may need to specify it at execution-time
when you run your program. If you need to specify it, the format is as follows:

DEBUNIT(SI[,S2,...])

where S is a unit number (such as 5), or an inclusive range of unit numbers (such
as 35-40).

Note that in CMS, the commas must be replaced by blanks, unless the program will
be invoked by an EXEC2 or REXX EXEC and uses the extended PLIST facilities.
If I/O is to be issued to the units, the job stream must also include a FILEDEF (in
CMS) or a DD card (in TSO) for each unit.

Remember that, when running in batch, the program must get its input from real
data sets, and must send its output to real data sets. In CMS batch, you should not
specify TERMIO LIBRARY if there will be any terminal input, because this
requests interaction and will cause the batch job to fail.

For more information on TERMIO, see "Entering Terminal Input" on page 91
and "TERMIO Command" on page 207.

Chapter 4. Using InteractiveDebug in Batch Mode 57

Specifying an Output File or Data Set (AFFOUT)

Interactive Debug creates a log of its activity for you to examine; you can view this
output after the batch debugging session has completed. The output data set is
referred to as the AFFOUT data set or the AFFOUT file. AFFOUT does not have

to exist prior to executing the VS FORTRAN program, but must be defined. The
DD name identifies the file to Interactive Debug.

The output file has the following characteristics:

• All Interactive Debug I/O is logged, along with all VS FORTRAN terminal
1/O that occurs while TERMIO IAD is in effect.

• The file is created with a RECFM of FB and an LRECL of 80 (and a
BLKSIZE of 800 for TSO).

• Each line is preceded with an equal sign (=).

• Each line of input is preceded by an asterisk (*) following the equal sign.

After Ending a Debugging Session

It is your responsibility to make sure that AFFOUT and any other batch output
files are returned to you or sent to an appropriate printer. The batch output files
are:

• AFFOUT for debug output
• AFFPRINT for debug print output
• Any output files that your VS FORTRAN program writes.

Using Optional Debugging Ffles or Data Sets

The following sections discuss two optional files (or data sets), and how to define
them when invoking Interactive Debug in batch mode.

Specifying a Print File or Data Set (AFFPRINT)

Certain VS FORTRAN Version 2 Interactive Debug commands allow you to
specify a PRINT keyword. You can use the PRINT keyword to send output to a
print data set rather than AFFOUT. This may prove useful, for example, when you
are listing the contents of a large array and want to keep that output separate from
normal debug output. This print data set is referred to as the AFFPRINT data set
or the AFFPRINT fUe.

Because AFFPRINT is an output file, it does not need to exist prior to executing
your VS FORTRAN program. However, it must be defined with a FILEDEF or
DD statement. The DD name identifies the file to Interactive Debug.

58 VSFORTRAN Version 2: Interactive DebugGuideand Reference

Specifying Program Units to be Debugged (AFFON)

When Interactive Debug is invoked, you can set breakpoints in any debuggable
program units. Because there is some overhead associated with this ability, it will
be more efficient to exclude from debugging those program units that are known to
be error free. You can also exclude part of a program unit, which may be helpful if
there are heavily-executed sections that are error free.

The AFFON file or AFFON data set is a sequential file containing a list of
program unit names, up to 31 characters in length, to be debugged. AFFON is
read by Interactive Debug; it must exist before execution of the VS FORTRAN
program, and must be accessible to the batch job.

AFFON contains a list of program unit names to be selected for debugging, and
may contain comment entries identified by an asterisk (*) in the first record
position. Program unit names are assumed to be the first character string in the
record (terminated by a blank), and may appear after initial leading blanks.

Each program unit name can be followed by the data set name containing the
source listing for a program unit as well as a list of statement numbers (ISNs or
sequence numbers), or statement number ranges. (ISNs are the default, unless you
specified SDUMP(SEQ) when you compiled the program unit.) If any statement
numbers are specified, only statements falling within the specified ranges, or
included in the list of statement numbers, are selected for debugging. If no
statement numbers are specified, all executable statements are selected. Note that
statement labels are not allowed.

The syntax of each entry in the AFFON file is as follows:

unitname ['dataset[(member)]'][n[:n]]...

or

unitname ['dataset[(member)]'][ENTRY]

or

unitname ['dataset[(member)]'][NONE]

Blanks or commas separate entries in the list of statement number ranges. The
program unit name and the list of statement number ranges must all fit within one
record. The ENTRY form indicates that only entry and exit hooks are to be placed
in the program unit. This is especially helpful if you want to increase the accuracy
of timing information. The NONE parameter allows data set names to be
specified, but by passes inclusion of debugging hooks.

For example, to specify that you want to place debugging hooks at the ENTRY and
EXIT, on the statements in SUBl whose statement numbers fall between 6 and 16,
and at statement 18, you could make the following entry, under CMS, in your
AFFON file:

Subl SUBl Listing *' 6:16 18

In the above example, SUBl LISTING * is defined as the default listing. ENTRY
and EXIT hooks are always placed in the program unit whenever any statement
number ranges are specified.

Chapter 4. Using Interactive Debug in BatchMode 59

An equivalent example for TSO would be:

Subl 'userid.subl.list' 6:16 18

Note that there may be executable statements in the specified ranges that cannot
have debugging hooks placed on them because of optimization or vectorization. To
find out which statements have had hooks placed on them, you can use the
LISTFREQ conunand.

Program units that do not meet the requirements for debugging will not have
program hooks inserted, even though they may be in the AFFON list.

AFFON can have any record format; entries can be in lower case. The logical
record length can be any value up to 255 bytes. If the file exists but has incorrect
attributes, you will receive an error message stating that the AFFON file cannot be
read. AFFON can contain references to sequence numbers for VS FORTRAN
programs compiled with SDUMP(SEQ), but AFFON itself cannot be sequenced.

If the AFFON data set is found and contains at least one entry that is not a
comment, only the valid program unit names found in the data set or the program
unit compiled with the test option will be considered for debugging. Otherwise, all
VS FORTRAN program units will be considered for debugging.

For compiler and library restrictions that may make a program unit nondebuggable,
see "Interactive Debug Progranuning Requirements" on page 5.

60 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Chapter 5. A Sample Debuggii^ Session

Sample Program

This section is intended for those who are unfamiliar with VS FORTRAN Version

2 Interactive Debug. Through a sample debugging session, it introduces you to
some basic concepts and several commands.

Assume you want to debug the VS FORTRAN program shown in Figure 22. The
program includes a subroutine, DIVIDE, which divides an array used as the
dividend by a second array used as the divisor, and returns the result back to the
main program in a third array. The three integer arrays each have 10 elements.
The main program, named SAMPLE, uses a DO loop to assign values to the arrays
for the dividend and divisor, named A1 and A2 respectively.

If you would like to follow this sample session on your terminal, enter the program
as shown in Figure 22.

aPROCESS

PROGRAM SAMPLE

INTEGER A1(10),A2(10),A3(10)
DO 20 1=1,10

A1 (I)=I+1
A2 (I)=I-1

20 CONTINUE

CALL DIVIDE (A1,A2,A3)
WRITE (6,30)(A3(I),1=1,10)

30 FORMAT (' *,15)
STOP

END

aPROCESS

SUBROUTINE DIVIDE (DIVEND, DIV, RES)
INTEGER DIVEND(IO),DIV(10),RES(10)
DO 10 1=1,10

RES(I)=DIVEND(I)/DIV(I)
10 CONTINUE

RETURN

END

Figure 22. Program Source File for SAMPLE Program

Now compile the program with the SDUMP and OPT(O) options, and execute the
program under the control of Interactive Debug by specifying the execution-time
option, DEBUG. If you are using ISPF, refer to Chapter 2, "Using Interactive
Debug with ISPF" on page 9, for more detail. If you are operating in line mode,
refer to Chapter 3, "Using Interactive Debug in Line Mode" on page 41.

Chapter S. A Sample Debugging Session 61

VS FORTRAN Version 2 Interactive Debug will be invoked, allowing you to begin
a debugging session. Figure 23 on page 63 shows howthe compiler listing for the
SAMPLE program might appear. During the debugging session, this listing will be
usefulfor determining statement identifiers for breakpoints. A statement identifier
can be an ISN, a sequencenumber in columns 73 through 80, or a statement label.

The compiler assigns a number known as the internal statement number (ISN) to
each statement in the program. For example, the first executablestatement in
Figure 23 has an ISNof 3. To reference that statementin a VSFORTRAN
Version 2 Interactive Debug command, you would normally use this ISN. You can
use a qualifier to distinguish ISNswith the samenumber in different program units.

If you specify SDUMP (SEQ) whenyou compile yourprogram, you must always
refer to the sequence numbers in columns73 through 80 instead of the
compiler-generated ISNs. However, for this sample program, we will assume you
are using ISNs as your statement mmibers.

Statements that have a user-specified statement label in columns 1 through 5, such
as the CONTINUE statement in Figure 22 on page 61, can also be referenced by
that statement label. When a statement label is used, the number must be preceded
by a slash (/). The CONTINUE statementin SAMPLE may be referenced as
/20 as well as 6.

62 VS FORTRAN Version 2: Interactive Debug Guide and Reference

LEVEL 2.2.0 (JUNE 1987) VS FORTRAN GOT 09, 1987 10:42:15
REQUESTED OPTIONS
OPTIONS IN EFFECT;

(PROCESS):
NOLIST NOMAP NOXREF NOGOSTMT NODECK SOURCE TERM OBJECT FIXED

TRMFLG SRCFLG NOSYM NORENT SDUMP(ISN) AUTODBL(NONE) NOSXM
NOVECTOR IL NOTEST NODC NOICA NODIRECTIVE OPT(O) LANGLVL(77)
NOFIPS FLAG(I) NAME(MAIN) LINECOUNT(60) CHARLEN(500)

IF DO ISN

1

2

3

1 4

1 5

1 6

7

8

9

10

11

♦STATISTICS#

♦STATISTICS#

IF DO ISN

1

2

3

1 4

1 5

6

7

♦STATISTICS#

♦STATISTICS#

♦♦... 1 2 3 4 1
PROGRAM SAMPLE

INTEGER A1(10),A2(10),A3(10)
DO 20 1=1,10

A1(I)=I+1
A2(I)=I-1

20 CONTINUE

CALL DIVIDE (Al,A2,A3)
WRITE (6,30)(A3(I),1=1,10)

30 FORMAT (' ',15)
STOP

END

SOURCE STATEMENTS =11, PROGRAM SIZE = 964 BYTES,
PAGE; 1.PROGRAM NAME = SAMPLE

NO DIAGNOSTICS GENERATED.

♦♦SAMPLE♦♦ END OF COMPILATION 1 ♦♦♦♦♦♦

LEVEL 2.2.0 (xxxx 1987) VS FORTRAN
REQUESTED OPTIONS (PROCESS):
OPTIONS IN EFFECT: NOLIST NOMAP NOXREF NOGOSTMT NODECK SOURCE TERM OBJECT FIXED

TRMFLG SRCFLG NOSYM NORENT SDUMP(ISN) AUTODBL(NONE) NOSXM
NOVECTOR IL NOTEST NODC NOICA NODIRECTIVE OPT(O) LANGLVL(77)
NOFIPS FLAG(I) NAME(MAIN) LINECOUNT(60) CHARLEN(500)

♦....♦...1 2 3 4 5 6....,
SUBROUTINE DIVIDE (DIVEND,DIV,RES)
INTEGER DIVEND(IO),DIV(10),RES(10)
DO 10 1=1,10

RES(I)=DIVEND(I)/DIV(I)
10 CONTINUE

RETURN

END

SOURCE STATEMENTS = 7, PROGRAM SIZE = 828 BYTES,
PROGRAM NAME = DIVIDE PAGE: 2.

NO DIAGNOSTICS GENERATED.

♦♦DIVIDE## END OF COMPILATION 2 ♦♦♦♦♦♦

LEVEL 2.2.0 (xxxx 1987) VS FORTRAN JAN 09, 1987 10:42:15
SUMMARY OF MESSAGES AND STATISTICS FOR ALL COMPILATIONS
♦STATISTICS# SOURCE STATEMENTS =11, PROGRAM SIZE = 964 BYTES,

PROGRAM NAME = SAMPLE PAGE: 1.
♦STATISTICS# NO DIAGNOSTICS GENERATED.

♦♦SAMPLE## END OF COMPILATION 1 ♦♦♦♦♦♦

♦STATISTICS# SOURCE STATEMENTS = 7, PROGRAM SIZE = 828 BYTES,
PROGRAM NAME = DIVIDE PAGE: 2.

♦STATISTICS# NO DIAGNOSTICS GENERATED.

♦♦DIVIDE## END OF COMPILATION 2 ♦♦♦♦♦♦

SUMMARY STATISTICS ♦♦♦♦♦♦♦ 0 DIAGNOSTICS GENERATED.
HIGHEST SEVERITY CODE IS 0.

JAN 09, 1987 10:42:15

Figure 23. Pr(^am Source Listing for SAMPLE Program

Chapters. ASample Debugging Session 63

Sample Debugging Session

Now that you have compiled the program and invoked Interactive Debug, you are
ready to begin the debugging session. Before executing the first statement, VS
FORTRAN Version 2 Interactive Debug suspends execution and allows you to
enter commands. The log tells you that execution is suspended at ISN 3:

WHERE: SAMPLE.3

Interactive Debug will prompt you for commands wherever execution is suspended.
You can enter commands in upper- or lowercase letters, but all system responses
will appear in uppercase letters.

To begin our debugging session, let's list the program units available for debugging:

listsubs

The response to LISTSUBS should look like this:

I PROGRAM UNIT COMPILER OPT HOOKED TIMING
I SAMPLE VSF 2.2.0 0 YES OFF
I DIVIDE VSF 2.2.0 0 YES OFF

Now let's try executing the program. The GO command begins execution at the
next executable statement. Because we are not aware of any errors in the program,
let's try executing it without setting any breakpoints.

go

Unfortunately, there is an error in the program. You should receive an error
message that looks like this:

ERRMSG=> AFB209I VFNTH : PROGRAM INTERRUPT - FIXED-POINT DIVIDE EXCEP

ERRMSG=> TION

I ERRMSG=> VFNTH : PSW 4009A20205DC
I ERRMSG=> VFNTH : LAST EXECUTED FORTRAN STATEMENT IN PROGRAM D
I ERRMSG=> IVIDE AT ISN 4 (OFFSET 000214).

INFMSG=> USER ERROR CORRECTIVE ROUTINE ENTERED.

ERROR EXIT: ERROR 209 AT DIVIDE.4

Now we know that there is a problem at ISN 4 in program unit DIVIDE. You may
want to look at ISN 4 in the source listing while continuing to debug.

There are several ways to look at the source listing without exiting the debugging
session, depending on your operating environment. Under ISPF Version 2, the
source listing will automatically be shown in a window if you have defined the
window size (using the WINDOW command) and have identified the source listing
file on the listings data set specification panel. To see the listings data set

I specification panel, enter the LISTINGS commandor type a question mark (?) in
the first character of the Q field of the execution panel header.

If you are using ISPF with PDF, you can split the screen with the SPLIT function
of ISPF, and use PDF's BROWSE or EDIT facilities. For those not running under
ISPF and PDF, the VS FORTRAN Version 2 Interactive Debug SYSCMD

64 VS FORTRAN Version 2: Interactive Debug Guide and Reference

command can be used to invoke an editor. For example:

syscmd edit sample.for (TSO)

syscmd xedit sample fortran a (CMS)

Because ISN 4 contains several variables, it might help to look at the values of the
variables there. We can do this using the LIST command. (We are already in
program unit DIVIDE, so we do not need to qualify any of the variables.)

list (i,divend(i),div(i),res(i))

In the log file, we see the value of I, and the first elements of DIVEND, DIV, and
RES:

DIVIDE.I = 1

DIVIDE.DIVEND{1) = 2
DIVIDE.DIVd} = 0
DIVIDE.RES(I) = 0

Look at the value of our divisor, DIV. At this point in the program, DIV is 0, an
invalid value for a division operation. But how did the value become 0? To find
out, we need to restart the program and check what it does at earlier points. Under
ISPF Version 2, you can simply type restart, but let's use a longer method that
will also work in line mode. We will tell Interactive Debug to go back to ISN 3 in
the main program, SAMPLE.

Because the GO command cannot switch from one program unit to another, we
must first get back to SAMPLE before we can GO to ISN 3. On our listing, we see
that ISN 8 is the first statement in SAMPLE after returning from the call to
DIVIDE. Let's set a breakpoint there. To suspend execution of the program just •
before the WRITE statement is executed, use the AT command. We need to
qualify the ISN with the name of the main program because the currently qualified
unit is still DIVIDE:

at sample.8

Now resume execution:

go

At the WRITE statement, execution will be suspended and you will receive the
following messages:

INFMSG=> STANDARD CORRECTIVE ACTION TAKEN. EXECUTION CONTINUING.
AT: SAMPLE.8

The error in DIVIDE has been temporarily corrected, and execution has resumed
up to ISN 8. The AT message indicates where execution is now suspended by
displaying the ISN of the statement and the name of its program unit (in this case,
SAMPLE, the main program).

By using the GO command with a statement identifier, the initialization loop can be
executed again. We can check the values in the three arrays just before DIVIDE is
called. To do this, we should set a breakpoint at the statement labeled 20, and use
a command list to list the values of the variables at this point:

at /20 (list (i,a1(i),a2(i),a3(i)))

Chapter 5. A Sample Debugging Session 65

Before resuming execution, we can verify that we set the correct breakpoints by
listing them:

listbrks

The output from LISTBRKS should be:

CURRENT BREAKPOINTS:

SAMPLE.6/20
SAMPLE.8

CURRENT WHEN CONDITIONS:

NONE

CURRENT HALT STATUS: OFF

We see that a breakpoint is indeed set at ISN 6, which is also statement label 20, in
SAMPLE. So we are ready to resume execution at the beginning of the array
initialization loop, ISN 3.

go 3

Execution will be suspended at ISN 6, and the values of the variables listed:

AT: SAMPLE.6/20
SAMPLE.I = 1

SAMPLE. Aid) = 2
SAMPLE.A2{1) = 0
SAMPLE.ABd) = 2

Again, we can see that the value in the second array, A2, which is referenced
indirectly by subroutine DIVIDE as DIV, is 0. For now, let's temporarily correct
this value. We can use the SET command to change the value for the rest of the
debugging session, but later we will need to modify the actual program.

set a2(1) = 1

To execute the rest of the program with the new value and end the debugging
session, enter:

off ♦

go

Now the SAMPLE program will produce the following output to the terminal:

FT06F001 2

FT06F001 3

FT06F001 2

FT06F001

FT06F001

FT06F001

FT06F001

FT06F001

FT06F001

FT06F001

PROGRAM HAS TERMINATED; RC = (0)

The last message indicates that the program has completed execution, in this case
as the result of the STOP statement. Because the arrays are integer, the values are
truncated. The output is correct up to the truncated value, so you can assume that
the value of A2 was the bug in the program.

66 VS FORTRAN Version 2: Interactive Debug Guide andReference

You can terminate the debugging session by entering the QUIT command, which
will return you to the system (ISPF, CMS or TSO) from which you initiated
debugging. You may terminate the debugging session at any time by entering the
QUIT command.

To correct the problem, you must edit the source program so that no value of A2
(or DIV) is ever 0. Then save the new version of the program. To run the edited
version, you must terminate the current debug session, recompile the program, and
then reexecute it.

Chapter 5. ASample Debugging Session 67

Chapter 6. Using Some Common Interactive Debug Commands

This section describes some of the common debugging tasks you may need to
perform, and explains the Interactive Debug commands that will help you perform
them.

Examples of the following commands are used in this chapter:

ANNOTATE LISTSAMP

AT LISTSUBS

BACKSPACE LISTTIME

CLOSE NEXT

DESCRIBE OFFWN

ENDDEBUG QUALIFY

ENDFILE RECONNECT

ERROR REWIND

FIXUP SYSCMD

HALT TERMIO

LIST TIMER

LISTBRKS TRACE

LISTFREQ WHEN

WHERE

For the complete syntax of all commands and more detail, see
Chapter 8, "Interactive Debug Commands" on page 113.

DisplayingInformation about Debuggable Program Units

I Mostdebugging activities, such as displaying variables, can only be performed on
I program units that are considered debuggable by Interactive Debug. To be
I debuggable, a program unit mustbe compiled with the SDUMP option. In
I addition, it mustbe in storage at the time the VS FORTRAN Library is initialized.

I Note: The reentrant part of a program unit compiled withthe RENT optionneed
1 not be in storage at this time.

If you want to see whichprogram units are debuggable, you can use the LISTSUBS
command.

Chapter 6. Using Some Common Interactive Debug Conunands 69

The following is a sample of the output produced by LISTSUBS:

PROGRAM UNIT COMPILER OPT HOOKED TIMING

MAINLINE VSF 2.2.0 V2 YES ON

SUBBUILD VSF 1.4.0 3 NO OFF RENT

SUBDOWN VSF (TEST) 0 YES OFF

SUBREFIT VSF 1.3.1 1 NO ON

In this example, we see that the program unit MAINLINE was compiled using VS
FORTRAN Version 2, Release 2, identified as VSF 2.2.0. SUBBUILD was
compiled with Release 4 of VS FORTRAN Version 1, and SUBREFIT with
Release 3.1 of VS FORTRAN Version 1. vsF (TEST) tells us that SUBDOWN
was compiled prior to VS FORTRAN Version 1 Release 4, and the TEST option
was specified. In this case, it is not possible to determine the VS FORTRAN
release level.

Notice that, for MAINLINE, the OPT column specifies V2. This indicates
vectorization level 2. When the OPT column shows a vectorization level (VI or
V2), the optimization level is always 3.

In the HOOKED column, "YES" means that hooks are installed at entry and exit
points and possibly at some or all statement boundaries as well. You can set
breakpoints only in program units that have hooks. The hook settings are
controlled by the AFFON file. "NO" in the HOOKED column indicates that no
hooks are installed in the program unit. The TIMING column indicates whether
the TIMER command has been activated for each program unit listed. This column
may also be followed by an indication of the load status for reentrant programs. In
our example, SUBBUILD indicates rent not loaded, meaning that the
program unit has not yet been called, and has not been located (although it may
actually be in storage).

Referring to Statements or Variables in Other Program Units

Programs often contain more than one program unit. A program unit is defined as
a main program, a function subprogram, or a subroutine subprogram. Each of
these units has its own set of variables, but variables in different program units may
have the same names.

A similar situation exists with statement identification; two statements in different
program units may have the same statement label or be assigned the same ISN by
the VS FORTRAN compiler. On Interactive Debug commands that refer to
statements or variables, you can specify the program unit as a qualiEer (in the form
of the program unit name followed by a period). If no qualifier is specified in a
command that references statements or variables. Interactive Debug resolves these
references using the current program qualification.

The current program qualification is normally the program unit that is executing (or
in which execution is suspended). However, you can change the current
qualification by issuing the QUALIFY command.

Note: Each time execution is resumed. Interactive Debug will reset the
qualification to the program unit currently executing.

70 VSFORTRAN Version 2: Interactive Debug Guide and Reference

Displaying the Current Program Qualification

To seewhich program unitis currently qualified, enter theQUALIFY command
with no arguments:

qualify

The response will be something like:

QUALIFICATION IS MAIN

Changing the Current Program Qualification

If the current qualification isMAIN, unqualified statement identifiers andvariable
names will refer to statements and variables in MAIN. Issuing the command AT
/10 willset a breakpoint at the statement labeled 10 in MAIN. If your program
has a subroutine (or function) named SUBl and you wanted to set a breakpoint in
that subroutine, you could do so by using an explicit qualifier. For example:

AT subl./10

You could also change the current qualification. For example:

qualify subl

Now entering:

at /10

sets a breakpoint at the statement labeled 10 in yoursubroutine SUBl. To check
current breakpoint settings, entering the LISTBRKS command:

listbrks

would produce output similar to that shown below.

CURRENT BREAKPOINTS:
MAIN.25/10
SUBl.32/10

CURRENT WHEN CONDITIONS:
NONE

CURRENT HALT STATUS: OFF

Breakpoint settings are displayed for both the main program and the subroutine
SUBl.

Youcan display all the variables in the currently qualified program unit with the
LIST command by entering:

list ♦

To issue commands without explicit qualification that reference statements or
variablesin MAIN, change the currently qualified programunit back to the main
program by entering:

qualify main

Chapter 6. Using Some Common Interactive Debug Commands 71

Now enter LIST * again to display all the variables in MAIN. If, on resuming
execution, the breakpoint you set in SUBl was reached, the currently qualified
program unit would be set to SUBl. For example:

go

AT SUBl.32/10
list *

would list all the variables in SUBl.

Explicit Qualification of Individual Variables

You can qualify individual variables without a QUALIFY command by preceding
the variable name with the name of the program unit that it belongs to and a
period. For example, you can refer to variable x from MAIN as:

main.x

You can refer to an array element data(lO) from sub2 as:

sub2.data(10)

When qualifying an array element with a symbolic subscript, remember to also
qualify the subscript. For example, to display array element data(I) from sub2
while execution is suspended in MAIN, enter:

list sub2.data(sub2.i)

If you omit the second SUB2, and the current qualification is MAIN, Interactive ' ^
Debug willlook for a value of I in MAIN. If it finds one, it willgive you that
element of DATA instead of the one you want in SUB2. You must qualify each
variable that is not in the currently qualified program unit.

You can reference variables outside the currently executing program unit in any
command dealing with VS FORTRAN variables. For example:

list (a,b,sub1.alpha,sub2.beta,x,y,z)
set a=sub1.value

when over (subl.rchg=5.)

Setting Breakpoints at Debugging Hooks

The AT command sets breakpoints at specific statements. Breakpoints can be set
only at statements that have debugging hooks. A hook gives temporary control to
Interactive Debug at a specific point within a program (usually at the beginning of
an executable statement).

For VS FORTRAN code compiled with the TEST option, hooks are placed in the
object code by the compiler. For VS FORTRAN code compiled with the NOTEST
and SDUMP options, hooks can be inserted into the object code by IAD at
execution time.

When using the AT command, you can identify the statement either by its
statement number or by the statement label, if it has one. Normally, the statement

72 VS FORTRAN Version 2: Interactive Debug Guide and Reference

number refers to the Internal Statement Number (ISN) generated by the compiler
(see "Statement Identifier Conventions" on page 114 for more details). However,
you can specify at compile time that you want to use the sequence numbers in
columns 73 through 80 as the statement numbers for your debugging session
instead of the ISNs.

As an example, assume that your main program has a write statement labeled 10
and that the compiler has assigned an ISN of 6 to this statement. The listing might
show:

ISN 6 10 WRITE{*,*) 'Example Program'

You can set a breakpoint at this statement by issuing either of the following two
commands:

at 6

or

at /10

Statement labels are preceded with a slash to distinguish them from ISNs or
sequence numbers. Remember that, if no qualifier is specified, Interactive Debug
uses the current qualification to determine which program unit this statement is
located in. (MAIN is assumed here.) When the statement is reached, execution is
suspended and the following message is displayed:

AT: MAIN.6/10

You may specify a list of statements or a range of statements with the AT
command. For example, the following command:

at { 6 /15 14 3)

sets breakpoints at statement numbers 6, 14, and 3, and also at statement label 15,
providing they are all executable statements and have debugging hooks.

at (6:/15)

sets breakpoints at every hooked executable statement between the statement
whose ISN is 6 and the statement labeled 15. Both statements specified in a range
must be executable, and the statement on the left must appear in the program
before the statement on the right.

Breakpoints cannot be set if optimization or vectorization causes the statement to
be collapsed. A collapsed statement is an executable source statement that occupies
no object code because of the effects of optimization or vectorization. (The code
was either moved to a new location, or eliminated.) For further explanation, see
"Debugging Optimized and Vectorized Code" on page 98.

If the statement is nonexecutable, you cannot set a breakpoint.

If you have specified statement ranges for one or more program units in the
AFFON control file, breakpoints can only be set in the specified statement ranges
for those program units. Multiple units and ranges can be specified. See Chapters
on ISPF, line mode, or batch mode for more information about specifying
statement ranges in your environment.

Chapter 6. Using Some Common Interactive Debug Commands 73

You cannot suspend execution at the "trailer" statement following a logical IF
under any of these conditions:

• The program was compiled prior to VS FORTRAN Version 1 Release 3.1.
• The trailer statement is a GOTO statement.

• Sequence numbers were used instead of ISNs.

Controlling Program Execution

Note: The following section refers only to statements that have hooks. You
cannot suspend execution at a statement that does not have a hook.

The HALT, NEXT, and WHEN commands provide a number of different ways to
control program execution. These commands allow you to suspend execution:

At every executable statement

At the next executable statement (without knowing which it is)

At every apparent program branch

At every entry to and exit from a program unit

Whenever a user-defined condition is met

Whenever a specific variable is modified

The HALT command allows you to suspend execution under certain specified
conditions. For example:

halt stmt

suspends execution at every executable statement. This allows you to single step
through your program, which can be helpful in finding errors related to the
processing flow.

halt goto

suspends execution at every apparent program branch. Halting can occur for
several reasons, including a GOTO, a DO group, and an IF statement.

halt entry

suspends execution at every entry to or exit from a debuggable program unit.

The HALT command remains in effect until you cancel it with:

halt off

The NEXT command requests that execution be suspended at the next executable
statement. It is similar to the HALT STMT command, except that the NEXT
command is temporary and does not remain in effect after execution is suspended.

74 VS FORTRAN Version 2: Interactive Debug Guide andReference

The WHEN command allows you to suspend execution every time a particular
condition is met. You define the condition and supply its name. Later you can
refer to the condition by name without redefining it. With WHEN, you can
monitor:

• An arithmetic relationship between two variables or between a variable and a
constant

• The status of a logical variable

• A change in the value of a variable

For example, to cause execution to be suspended when variable SMITH equals 30,
define a condition, such as the one below named RDS. (The name can be one to
four alphameric characters, the first character alphabetic.)

when rds (smith = 30)

Execution is suspended at the first possible statement following the point at which
the condition becomes true. For example, if condition RDS was found to be
satisfied at the beginning of statement 46 in program unit MAIN, you would
receive the following:

WHEN: "RDS" SATISFIED;
CURRENTLY AT MAIN.46

The first line teUsyou which condition was satisfied; the second tells you where
execution is suspended. To detect when SMITH changes value, enter:

when rds smith

Notice that when you want to define a condition that monitors any change in the
value of a variable, the variable name is not enclosed in parentheses.

If the value of SMITH is continually being changed, and SMITH changes initially
from 2 to 3, you are notified. If SMITH changes to 4, you are notified again.

Examples:

when rdsl (smith = md)

when rds2 (smith .It. 4.7)

when rds3 (rich)

In the final example, RICH is a logical variable. In this case, you get control when
RICH is true. If the parentheses were omitted, you would get control whenever
RICH was modified.

Note: Interactive Debug cannot tell you exactly which statement changed the
variable being monitored. (It might have occurred in a section of code that has no
debugging hooks.) However, you can get a list of the last ten branches known to
the debugger by entering WHERE FLOW. This should help you deduce which
statement actually caused the change.

To turn off WHEN condition monitoring, use the OFFWN command. For
example, to turn off condition RDS, enter:

Chapter 6. Using Some Common Interactive Debug Commands 75

offwn rds

To turn off condition DJV along with condition RDS, enter:

offwn (djv,rds)

To stop all condition monitoring, enter:

offwn *

WHEN condition monitoring is not automatically turned off when a condition is
satisfied. If you do not want Interactive Debug to continue monitoring the same
condition, you must issue the OFFWN command after the condition has been
satisfied. If you want to reactivate a condition after it has been deactivated by an
OFFWN command, enter WHEN with the condition name. For example:

when rds

Using Conunand Lists

As part of an AT command, you can specify a list of commands to be executed
whenever a breakpoint is reached. This allows you to conditionally suspend
execution at a specific statement or to specify a list of commands to be executed
there. When you specify a command list, you can control whether Interactive
Debug will wait for a command, or whether it will continue execution without the
need for intervention.

In this example, the value of variable A will be displayed each time sequence
number 10 is reached, and execution will then continue.

at 10 {list a JJgo)

This is useful for observing how the value of a variable changes in a loop. Here,
sequence number 10 could be at the end of a loop and the value of variable A
would be displayed at each iteration of the loop.

Note: The percent sign (%) is used to separate commands within the list.

To conditionally suspend execution at a particular statement, you can use the IF
and HALT commands within an AT command list. The HALT command will

suspend the execution of the command list. For example, entering:

at 10 (list (a,b) SSif (a.lt.b) halt 35go)

will cause execution to be suspended at sequence number 10 only if A is less than
B. Otherwise, the GO command will cause execution to continue. In either case,
the values of A and B will be displayed.

A command in an AT command list that causes execution to resume or halt will

cause the remainder of the command list to be ignored. In this example:

at /200 (if (a=0) go /10 55if (b=0) go /10 ^go /300)

if the value of A or B is equal to 0, execution will resume at the statement labeled
10; otherwise, execution will resiune at the statement labeled 300.

76 VS FORTRAN Version 2: Interactive Debug Guide and Reference

The following commands cannot be used in a command list:

COLOR

FIXUP

HELP

LISTINGS

MOVECURS

POSITION

PREVDISP

PROFILE

SEARCH

WINDOW

Displaying the Data Types of Scalar Variables and Arrays

To display the data t3rpes of scalar variables and arrays, use the DESCRIBE
command. DESCRIBE also displays dimension information for arrays. This
command can be useful for checking the attributes of variables and arrays when it
is inconvenient to search the source listing for their declarations. It is particularly
useful for displa3ring the dimensions that were passed for dummy array arguments.

For example, to see the data type of the variable
this command:

describe subl.a

*a" in program unit "subl," enter

By entering an asterisk (*), you can request a display of the type of every variable
in the currently qualified program unit. To see a list of all the names in the current
program unit, with their data types, enter this:

describe »

Let's say you have a program that uses a mixture of scalars and arrays, and you
would like to display the type of a specific group of them. You can specify the
scalars and arrays in a name list, for example:

describe {i,k,sub2.dumchr,rSary,sub2.r4dumy,11aymn)

The output might look like this:

SUB3.I:

SUB3.K:

SUB2.DUMCHR:

SUB3,RSARY:

RANK = 2,
DIM 1 :

DIM 2:

SUB2.R4DUMY:

RANK = 3;

SUB3.L1AYMN:

RANK = 2,
DIM 1 :

DIM 2:

SIZE = 49 ELEMENTS

EXTENT = 7, LBOUND
EXTENT = 7, LBOUND

INTEGER*4

INTEGER*4

CHARACTER*(*)
REAL*8

DUMMY

DUMMY

(1), UBOUND = (7)
(1), UBOUND = (7)

REAL*4 DUMMY

DUMMY ARRAY ARGUMENT OF INACTIVE SUBPROGRAM OR

ALTERNATE ENTRY POINT;
DIMENSION INFORMATION NOT AVAILABLE

LOGICAL*1 DUMMY

SIZE = * ELEMENTS

EXTENT = 5, LBOUND =(-2), UBOUND = (2)
EXTENT = *, LBOUND = (1), UBOUND = (*)

Dummy arguments are identified by dummy in the right-hand column. The length
of DUMCHR could not be determined because it is a dummy argument in an
inactive program unit, so the length is displayed as character* (*).

Chapter 6. Using Some Common Interactive Debug Commands 77

Dimension information is not available for R4DUMY. This information is never
displayedfor arrays that are dummy arguments in an inactive program unit, or that
are defined only when entered by some other entry point.

LIAYMN is an assumed-size array. The upper bound for the last dimension of
such arrays is displayedas an asterisk (♦), and the size is indicated as follows:

♦ ELEMENTS

Determining Statement Execution Frequency

The LISTFREQ command displays the number of times each statement has been
executed. For example, to see how often the statement whose statement number is
100 has been executed, enter;

listfreq 100

You can specify a statement label or a statement munber (an ISN or sequence
number), a list of statement labels or statement numbers (in parentheses), or a
range of statements. For example, to see how often each statement between
sequence numbers 45 and 52 has been executed, enter:

listfreq 45:52

To list the number of times every statement in the currently qualified program unit
has been executed, enter:

listfreq

This produces output similar to the following:

STATEMENT FREQUENCY
MAIN.ENTRY NO HOOK
MAIN.EXIT NO HOOK
MAIN.14/80 6
MAIN.15 6
MAIN.16 90
MAIN.17 90
MAIN.18 12
MAIN.19 90
MAIN.20/50 90
MAIN.21 6
MAIN.22 5

The LISTFREQ output tells you which statements have debugging hooks. Those
that do will have an execution count in the FREQUENCY column. Those that do
not will be identified as either COLLAPSED STMT or NO HOOK. COLLAPSED
STMT indicates that, because of optimization or vectorization, there is no code at
this location. NO HOOK indicates that the statement was not in the AFFON
statement range list, or that it is an ENTRY/EXIT to the main programunit.

You can also use LISTFREQ to list statements that have never been executed. The
ZEROFREQ keyword is used to create such a list. The PRINT keyword can be
added to obtain a listing file or a print data set.

listfreq 11:74 zerofreq print

78 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Interactive Debug will list to the print file all the statements between statement
numbers 11 and 74 that have never been executed.

Program Sampling

Program sampling can help you identify the portions of your program that are using
the most CPU time, without using the resources required when using debugging
hooks. The information developed by program sampling can be displayed at your
terminal using the LISTSAMP command, or reported as printed output using the
ANNOTATE command.

Initiating Program Sampling

You can initiate program sampling by issuing the ENDDEBUG command with the
SAMPLE option. (See "ENDDEBUG Command" on page 138.) This will cause
interactive debug to interrupt your program's execution periodically to collect
sampling data. Data is collected for each statement of every debuggable program
unit and for each entry point in every nondebuggable program unit. The sampling
data is recorded in two counters for each of the statements and entry points, as
follows:

• DIRECT counter

If the interruption occurs in the code of a debuggable program unit, the
DIRECT counter for the interrupted statement is incremented. If the
interruption occurs while the VS FORTRAN library is active, the DIRECT
counter for the library entry point is also incremented.

• CALLED counter

If sampling is initiated with the CALLED option of ENDDEBUG, the
CALLED counter is incremented for each statement (or entry) included in the
sequence of calling program units that lead to the interrupted statement. This
is done by tracing the register save area chain back to the main program. In
addition, if an I/O operation is in process when an interruption occurs, the
CALLED counter is incremented for the statement (or entry) that requested
the operation.

All interruptions that cannot be associated with any statement or entry are
recorded in the *UNKNOWN DIRECT counter.^ This count is incremented if an

interruption occurs in a program that has no entry identifier or in system code
servicing an asynchronous interrupt. The ♦UNKNOWNCALLED counter is
incremented when the save area chain cannot be successfully traced back to the
main program.

An additional counter, ♦LIBRARYDIRECT, shows the sampling count for all VS
FORTRAN library modules, other than the mathematical functions and the Error

In order to be properly identified, nondebuggable modules must follow standard MVS
linkage conventions.

Chapter6. Using Some Common Interactive Debug Commands 79

Monitor. This includes lower-level calls to system services. The ♦LIBRARY
CALLED counter is never incremented.

Displaying Program Sampling Statistics

When your program has completed, you can report the program sampling statistics
in three ways:

1. Terminal display: Using LISTSAMP, you can show information either for
selected statement ranges or summarized by program unit. Additionally,
LISTSAMP allows you to list only those statements or program units having
the highest sampling counts, using the TOP(n) option.

2. Printout: Using ANNOTATE, you can copy the VS FORTRAN source listings
to AFFPRINT. Sampling data is added to the right of each statement and is
summarized by program unit. All program units and nondebuggable entries
that were encountered are included in the summary. Page number references
are shown for program units whose listings were annotated.

3. Bar chart: Under ISPF Version 2, you can have the source listing window
overlaid with a bar chart that displays the frequency or sampling data for each
statement in the listing. You control this feature by your choice of options for
the ANNOTATE command, specifying whether you want the bar chart to be
in terms of "frequency" (total executions) or "sample" (timer interrupts).

The bar chart adjusts to the size of the window so that 100% would cover the
full width. On a seven color terminal, the bar charts are shown by simply
changing the color (reversevideois assumed). Otherwise, asterisks (♦) are
displayed.

The ANNOTATE and LISTSAMP commands provide options to let you display
the DIRECT counts, the CALLED counts, or the sum of the two (ALL) in your
terminal or printed output.

The following examples illustrate some forms of the ANNOTATE and LISTSAMP
commands.

Example 1

Copy the source listing for SUB2 to AFFPRINT, annotating it with sampling
information.

annotate sub2

Example!

Overlay the source listing window with a bar chart showing the sum of the
DIRECT and CALLED counters.

annotate on all

80 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Example 3

Display a summary of the sampling counts for all program units

listsamp ♦ sununary

PROGRAM SAMPLING INTERVAL WAS 10 MS; TOTAL NUMBER OF SAMPLES
WAS 2698.

DIRECT SAMPLES:

PROGRAM UNIT SAMPLES SJTOTAL
MAIN 90 3.34 *

INIT 0 0.00

FUNl 177 6.56 *

SUBl 752 27.87

S#QRT 61 2.26

S#IN 4 0.15

A#LOG 5 0.19

♦LIBRARY 1609 59.64 :|c:|c:|c:|c:|c4c:|t3|ii|(^4(4c

(MAIN, INTT, FUNl, and SUBl are VS FORTRAN program units; S#QRT, S#IN,
and A#LOG are VS FORTRAN math library entry points; ♦LIBRARY contains
the counts of sampling occurrences in VS FORTRAN non-math library routines.)

Example 4

Display the sampling counts for SUBl, including the CALLED counts (Sampling
counts will include interruptions which occurred in the code of a statement as well
as in any lower-level routines called by the statement.)

listsamp subl.# all

PROGRAM SAMPLING INTERVAL WAS 10 MS; TOTAL NUMBER OF SAMPLES
WAS 2698.

SUM OF DIRECT AND CALLED SAMPLES:

STATEMENT SAMPLES J5UNIT S5T0TAL
SUBl.ENTRY/EXIT 52 6.47 1 .93

SUBl.8 7 0.87 0.26

SUBl.9 34 4.23 1 .26
SUBl.10 561 69.78 20.79 ♦

SUBl.11/10 146 18.16 5.41 ♦

SUBl.12 4 0.50 0.15

SUBl.13 0 0.00 0.00

Chapter 6. UsingSomeCommon Interactive DebugCommands 81

Limitations Using Program Sampling

There are some limitations that you should keep in mind with regard to program
sampling:

1. Use of sampling will cancel any active timer interval at the start of execution.

2. In CMS, the BLIP will be turned off during sampling.

3. Program performancewill be slightly degraded due to the executionof
sampling code at each interrupt.^ Use of the CALLED option executes
additional code in order to trace back through the call chain.

4. Code generated by VS FORTRAN currently does not follow MVS standard
linkage conventions. Specifically, it loads register 13 with the address of the
new SAVE area before chaining the new SAVE area to the old SAVE area. In
rare situations, this can cause errors in the CALLED counts.

5. Interruptions that occur in math library routines called by program units
compiled with NOSDUMP will be attributed to the program unit insteadof the
library routine. You can eliminatethis inaccuracy by recompiling with the
SDUMP option.

6. The accuracy of the STIMER macro, used to provide periodic interruptions on
VM and MVS, is sensitive to system activity. Thus, sampling may occur less
often than the interval you specified in ENDDEBUG. If your CPU has the
virtual interval timer assist facility, and you are using CMS, you may be able to
improve the timing values. You can turn on this facility by issuing:

SYSCMD CP SET ASSIST ON TMR

7. If you use the STIMER macro in your program, sampling willbe discontinued.

Displaying Timing Information

If you want to time one or more program units and then see the timing information
produced by Interactive Debug, use the TIMER and LISTTTME commands.

The TIMER command turns timing on and off, or resets the activation count and
time to zero for a specified program unit. When you want to turn timing on for a
program unit named LOOP, for example, you must issue the command:

TIMER LOOP

I After your program has executed, you can issue the LISlTlME command to see
I both the cumulative values and the percent of total execution time for each timed

program unit and for each entry point. (The timing informationis presented by
entry point, although timing is controlled by the program unit name:) LISlT lME
shows values only for those program units for which timing has been turned on

2 On the order of one millisecond per timer interruption.

82 VS FORTRAN Version 2: Interactive Debug Guide and Reference

(using TIMER). To get a printed listing of the LISTTIME information, enter the
command:

LISTTIME PRINT

To see the information at your terminal, omit the PRINT keyword.

If you want to increase the accuracy of timing information for subroutines, you
must minimize the overhead caused by debugging hooks in your program. To do
this, use the AFFON selection file to specify hooks only on entry and exit points.
Your entry in the AFFON file might look like this for the program unit LOOP:

LOOP ENTRY

Next use the TIMER command to turn timing on for the subroutine you are
interested in. If the subroutine calls any other routines, be sure to turn timing on
for them also. If you do not, the time spent in any called routines is included in the
measurement for the calling routine.

When you ask for your LISTTIME display, you should see a fairly accurate
execution time for that subroutine.

Tracing Execution

Two commands provide trace information: TRACE and WHERE.

The TRACE command traces control transfers within your program as it executes.
To trace each entry to and exit from any subprogram as it occurs, enter:

trace entry

This produces output similar to the following:

TRACE: FROM MAIN.14 TO SUB1.ENTRY

To trace the origin and destination of every apparent branch within the program
(including entry to and exit from subprograms) listed by statement identifier, enter:

trace goto

This produces output similar to the following:

TRACE: FROM SUBI.150/20 TO SUBI.210/40

If you don't need to examine your TRACE output right away, you can add PRINT
to the TRACE command and send the output to the print data set.

trace goto print

To stop tracing, enter:

trace off

The WHERE command shows you the number of the statement at which execution
is suspended. This statement willnormally be the one executed next. For example.

Chapter 6. UsingSomeCommon Interactive Debug Commands 83

if MAIN calls subroutine TAD at sequence number 150, but a breakpoint is set at
sequence number 20 in TAD, a WHERE command produces:

WHERE; TAD.20

WHERE has a TRBACK keyword that gives you a trace of the calls that got you to
your current location. For example, if your programMAIN calls subroutine TAD
and execution is suspended, entering:

where trback

might produce the following:

WHERE: TAD.20

TAD CALLED AT MAIN.150

TRBACK output is limitedto the transfers between debuggable programunits.

WHERE also has a FLOW keyword that gives you a trace of the last ten program
transfers executed. For example, if you specify the FLOW keyword:

where flow

you will receive output similar to that in Figure 24.

WHERE: MAIN.92 (WHERE response)
TO: MAIN.80 FROM: MAIN.85 (FLOW response, prev. branch)
TO: MAIN.65 FROM: MAIN.70 (Next most recent branch)

TO: MAIN.51 FROM: MAIN.53

TO: MAIN.49 FROM: MAIN.53 (Loop in MAIN)

TO: MAIN.49 FROM: MAIN.53

TO: MAIN.47 FROM: MAIN.40

TO: MAIN.38 FROM: MAIN.20

TO: MAIN.15 FROM: MAIN.10

TO: MAIN.3 FROM: MAIN.10 (Loop in MAIN)

TO: MAIN.3 FROM: MAIN.10

Figure 24. Example of WHERE FLOW Output

Note that Interactive Debug can only keep track of statements that have debugging
hooks. If there is a block of code that has no hooks, it appears to Interactive
Debug as if there was a branch from the statement before the block to the
statement after it.

The PRINT ke5rword can be used to send WHERE information to the print data
set. For example, you can record the contents of a 100-element array, "ar," at
several points in your program by issuingthe following sequenceof commands
each time you want "ar" recorded:

where print
list ar(1):ar(100) print

This produces a record on your print data set both of the array "ar" and of the
exact program location where "ar" had that particular content.

84 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Displaying Formatted Variable and Array Values

To display values, use the LIST command. To display the value of variable A,
enter:

list a

To display the values of variables A, B, C, D, enter:

list (a,b,c,d)

Similarly, to display array elements ARY(1,1) through ARY(3,4), enter:

list ary{1,1);ary(3,4)

Output from the LIST command can be very long and you may not want it
displayed at the terminal. The LIST command has a PRINT keyword that sends its
output to a print data set.

list a{1);a(100) print

The value of each variable in a LIST command is normally displayed in its correct
VS FORTRAN data type and precision: integer, real, complex, and so on. If you
want to display the values in a different format, you can use the FORMAT or
DUMP keyword. To display the hexadecimal values of some variables, enter:

list (a,i,n,r) format(x)

To display the values as if they were character strings, enter:

list (a,i,n,r) forinat(a)

The DUMP keyword is similar to the FORMAT keyword, but shows the
hexadecimal storage location instead of the name. For example, to display the
storage location and the hexadecimal value of variable A, enter:

list (a) dump(x)

The FORMAT and DUMP keywords and codes are described in the reference
section in Figure 26 on page 127.

Note: For the LIST command and other commands that allow array element
references, the subscripts must use simple arithmetic expressions no more complex
than the form "variable plus (or minus) a constant." For example,

A(I), A(3), ARY(I+3) or ARY(I-3)

are valid.

Chapter 6. Using Some Common Interactive DebugCommands 85

Handling Execution-Time Errors

Identifying Errors

VS FORTRAN Version 2 Interactive Debug allowsyou to control the action taken
when execution errors are encountered. The ERROR command allows you to
specify whether to takecorrective action or to suspend execution when an error
occurs. If youchoose the latter,corrective action canbe specified by the FDCUP
command. It also allows you to suppress the VS FORTRAN library execution-time
error messages for specific errors.

Initially, whenever an execution-time erroroccurs, execution is suspended and VS
FORTRAN library execution-time error messages are displayed. The ERROR
command allows you to change theseinitial error settings. There are two pairsof
kejrwordsfor the ERROR command:

MSG/NOMSG — specifies whether or not the VS FORTRAN library
execution-time messages are to be displayed.

EXIT/NOEXIT — specifieswhether execution is to be suspended or
corrective action is to be performed. If you specify that corrective action is to
be taken (NOEXTT), standard corrective action will normally be taken.
However, if you havespecified yourown corrective actionby calling ERRSET
in your program, whateveraction you specified will be taken.

Note: Calling ERRSET in yourprogram will causethe NOEXTT and MSG
settings to be in effect for thespecified errors. You canissue the ERROR
command afterward to change this if you want.

The MSG and EXIT keywords are the defaults.

The ERROR command uses the identification numbers from the VS FORTRAN
library to identify execution-time errors. (You can find these error numbers in VS
FORTRAN Version 2: Language and Library Reference.)

The following examples illustrate the use of the ERROR command.

error 215 noexit msg

causes corrective action to be taken and a full diagnostic message to be displayed
for error AFB215I.

error 215 noexit

has the same effect as the previous command, because MSG is the default.

error 215 noexit nomsg

causes corrective action to be taken and will suppresses the diagnostic message.

86 VS FORTRAN Version 2: Interactive Debug Guide and Reference

After entering this command you will not be notified if error AFB215I occurs
again. You can change the error settings back to their original settings by entering
any one of the following commands:

error 215

error 215 exit

error 215 msg
error 215 msg exit

All these commands have the same effect because of keyword defaults.

You may also specify a list of errors or a range of errors. For example:

error (215 243 247 289) noexit

will cause corrective action to be taken, and full diagnostic messages to be
displayed for errors AFB215I, AFB243I, AFB247I, and AFB289I.

error (215:218 290) nomsg

will cause execution to be suspended and suppress diagnostic messages for errors
AFB215I, AFB216I, AFB217I, AFB218I, and AFB290L

Note: When executing under VS FORTRAN Version 2 Interactive Debug (except
in batch mode), the VS FORTRAN library does not update the execution-time
error occurrence counts; therefore, settings in the VS FORTRAN Version 2 error
option table that depend on these counts have no effect. This permits unlimited
occurrences of errors and messages regardless of the settings in the error option
table.

In batch mode, the error counts are updated and tested just as if running without
Interactive Debug.

Performing Corrective Action

When execution is suspended because of an error. Interactive Debug displays a
message like this:

ERROR EXIT: ERROR 243 AT MAIN.6/15

and waits for you to enter a command. You may not enter a GO command with a
statement identifier. Entering the FDCUP command with no arguments, or a GO
command with no statement identification, will cause standard corrective action to
be taken and execution to resume. If the error is caused by an incorrect value
passed to a VS FORTRAN library mathematical routine, you may use the FIXUP
command to specify corrected values to be used to recalculate the function.

Chapter 6. Using Some Common Interactive DebugCommands 87

With FDCUP, you can assignvalues to the first, second, or both argumentsof a
function. The following examples illustrate some of the uses of the FDCUP
command:

ERRMSG=> AFB241I FIXPI : INTEGER BASE=0, INTEGER EXPONENT=0, LESS THAN
ERRMSG=> OR EQUAL TO ZERO
ERRMSG=> FIXPI : LAST EXECUTED FORTRAN STATEMENT IN PROGRAM
ERRMSG=> MAIN AT ISN 44 (OFFSET 000954).
INFMSG=> USER ERROR CORRECTIVE ROUTINE ENTERED.

ERROR EXIT: ERROR 241 AT MAIN.44

lAD/E
fixup argi(2) arg2(2)
INFMSG=> USER CORRECTIVE ACTION TAKEN. EXECUTION CONTINUING.

The function has been reevaluated using both arguments, and execution continues.

ERRMSG=> AFB242I FRXPI : REAL»4 BASE=0.0, INTEGER EXPONENT = 0, LESS
ERRMSG=> THAN OR EQUAL TO ZERO
ERRMSG=> FRXPI : LAST EXECUTED FORTRAN STATEMENT IN PROGRAM

ERRMSG=> MAIN AT ISN 51 (OFFSET 00099E).
INFMSG=> USER ERROR CORRECTIVE ROUTINE ENTERED.

ERROR EXIT: ERROR 242 AT MAIN.51

lAD/E
fixup argi(2.0)
INFMSG=> USER CORRECTIVE ACTION TAKEN. EXECUTION CONTINUING.

A new value is given for the first argument (base) only; the second argument
(exponent) remains unchanged.

ERRMSG=> AFB244I FRXPR : REAL*4 BASE=0.0, REAL#4 EXPONENT= 0.OOOOOOOE
ERRMSG=> +00,LESS THAN OR EQUAL TO ZERO
ERRMSG=> FRXPR : LAST EXECUTED FORTRAN STATEMENT IN PROGRAM MAIN

ERRMSG=> AT ISN 61 (OFFSET OOOAOE).
INFMSG=> USER ERROR CORRECTIVE ROUTINE ENTERED.

ERROR EXIT: ERROR 244 AT MAIN.61

lAD/E
fixup arg2(1.Oe)
INFMSG=> USER CORRECTIVE ACTION TAKEN. EXECUTION CONTINUING.

The function has been reevaluated by changing the second argument; the first
argument is unchanged.

88 VS FORTRAN Version 2: InteractiveDebugGuideand Reference

ERRMSG=> AFB243I FDXPI : REAL»8 BASE=0.0, INTEGER EXPONENT = 0, LESS
ERRMSG=> THAN OR EQUAL TO ZERO
ERRMSG=> FDXPI : LAST EXECUTED FORTRAN STATEMENT IN PROGRAM
ERRMSG=> MAIN AT ISN 56 (OFFSET 0009D6).
INFMSG=> USER ERROR CORRECTIVE ROUTINE ENTERED.
ERROR EXIT: ERROR 243 AT MAIN.56
lAD/E
f

INFMSG=> STANDARD CORRECTIVE ACTION TAKEN. EXECUTION CONTINUING.

The abbreviation F for FIXUP is used with no arguments. Standard corrective
action is taken. The same action would have been taken if GO had been entered
instead.

To determinewhat standard corrective action is applied for a particular error or for
more information about mathematical functions and their arguments, see VS
FORTRAN Version 2: Language and Library Reference.

Processing External Files

VS FORTRAN Version 2 Interactive Debug allows you to manipulate external files
used by a VS FORTRAN program through a set of commands that are similar to
corresponding VS FORTRAN statements.

The BACKSPACE command positions a sequentially accessed external file at the
beginning of the previous record. For example:

backspace 8

positions the file connected to 1/O unit 8 at the beginning of the last record written
or read, allowing it to be written or read again.

The REWIND command positions a sequentially accessed external file at the
beginning of the first record of the file. For example:

rewind 4

positions the file connected to 1/O unit 4 at the beginning. This permits you to
perform 1/O operations as though the file had just been opened. VS FORTRAN
supports multiple files under the same I/O unit. The REWIND command sets the
VS FORTRAN file name to the first in the sequence of files for the specified I/O
unit. For example, if you were currently processing file FT08F003 on I/O unit 8
and entered:

rewind 8

I/O unit 8 would be connected to file FT08F001, whichwould be positionedat the
beginning of the first record.

The ENDFILE command writes an end-of-file record on a sequentially accessed
external file. This causes subsequent I/O operations to be performed on the next

Chapter 6. Using Some Common Interactive DebugCommands 89

fUe for the specified I/O unit. For example, if you are currently processing file
FT05F001 on I/O unit 5, entering:

endfile 5

causes subsequent I/O operations to be performed, using file FT05F002. If
REWIND were issued for I/O unit 5, the filename would be set back to
FT05F001.

The CLOSE command disconnects an external file from an I/O unit. For example:

close 1

disconnects the VS FORTRAN file connected to I/O unit 1, allowing you to
associate a different CMS file or TSO data set with that I/O unit, if desired, or to
examine the file contents using an editor or browser.

The RECONNECT command resets a file to its original (preconnected) condition.
For example, if unit 8 has been closed, you can make it possible for the program to
perform additional I/O on unit 8 (without executing an OPEN) by issuing

reconnect 8

to reconnect unit 8 to file FT08F001. This is necessary only if the OCSTATUS
run-time option is in effect.

If you neglected to allocate a file that is needed by your program, you will receive
an error message when the program attempts to access that file. If the program is
debuggable and ERROR EXIT is in effect, you can recover from this condition by
issuing the following sequence:

NEXT

GO

SYSCMD ALLOCATE...(or FILEDEF...)
GO n

where n is the statement identifier for the I/O statement. The ALLOCATE or
FILEDEF command must be completed as appropriate for allocating the required
file. This procedure will work whether or not the OCSTATUS run-time option is
in effect.

Using System Commands

Using SYSCMD, you can issue a system command while debugging. For example,
if you wanted to begin processing a different CMS file or TSO data set using I/O
unit 8, you could enter the following:

CMS Example

close 8

syscmd filedef 8 disk example data a

TSO Example

close 8

syscrad allocate file (ft08f001) da(example.data) reuse

90 VS FORTRAN Version 2: Interactive Debug Guide and Reference

SYSCMD has many uses; the ability to view your VS FORTRAN source or listing
files is particularly useful in the line mode environment. For example:

CMS Example

syscmd xedit example fortran a
syscmd type example listing a

TSO Example

syscmd edit example.fort
syscmd list example.list

Another possible use is to show which CMS files are currently defined or which
TSO data sets are currently allocated. For example:

CMS Example

syscmd filedef

TSO Example

syscmd listalc status

Entering Terminal Input

When a VS FORTRAN program attempts to perform any I/O to or from the
terminal, either the VS FORTRAN Version 2 Interactive Debug I/O routines or
the VS FORTRAN library I/O routines can be used. The TERMIO setting
determines which set of routines is used. Using the Interactive Debug routines
gives you the advantage of being told which unit is being read, and you have the
ability to issue Interactive Debug commands while the read is pending. In addition,
when operating in full screen mode, the Interactive Debug routines remain in full
screen mode for the read or write.

When executing under Interactive Debug, the initial TERMIO setting is IAD,
specifying that the Interactive Debug routines should be used for terminal I/O.
The TERMIO command allows you to change the setting to either IAD or
LIBRARY or to display the current TERMIO setting. When the option selected is
LIBRARY, all terminal 1/O is performed in line mode in the same manner as when
Interactive Debug is not active.

When executing in batch mode on MVS, no actual terminal is available. However,
the DEBUNIT execution option may be used to specify that certain I/O units are
to be treated as if they were allocated to the terminal. These units then come
under the control of TERMIO. For details about using DEBUNIT, see VS
FORTRAN Version 2: Programming Guide.

When the TERMIO setting is IAD and your program attempts to read from the
terminal, the following message is displayed:

FT05F001 INPUT: PRECEDE INPUT WITH % OR ENTER IAD COMMAND

where FT05F001 indicates the VS FORTRAN file being read. When this message
is displayed, you may either:

Chapter 6. Using Some Common Interactive Debug Commands 91

• Issue a debugging command (other than STEP, GO, or ENDDBBUG).

• Enter the requested input, prefaced with a percent sign (%).

The percent sign is not passed to the VS FORTRAN program. For example:

FT05F001 INPUT: PRECEDE INPUT WITH % OR ENTER IAD COMMAND

S?7'43

inputs the number 743 to your program. Alternatively, you could have first
determined which statement in your program was issuing the read, as follows:

FT05F001 INPUT: PRECEDE INPUT WITH % OR ENTER IAD COMMAND

where

WHERE: MAIN.10

FT05F001 INPUT: PRECEDE INPUT WITH % OR ENTER IAD COMMAND
55743

When the TERMIO setting is IAD:

• The leading and trailing percent signs are removed before the input is sent to
the VS FORTRAN program (the trailing percent sign is not required).
Whenever you want to include a percent sign as part of your input, you must
include a trailing percent sign. For example, to input the string 55% to a VS
FORTRAN program, enter:

5655S5S5

To enter two percent signs (%%), enter:

To signify an end-of-fUe from the terminal, use two percent signs. For
example:

All terminal input is padded on the right with blanks to the LRECL of the
terminal file.

All terminal input is converted to uppercase. To avoid this in environments
that support mixed-case input, use the TERMIO LIBRARY setting.

Both VS FORTRAN Version 2 Interactive Debug commands and terminal
input can be continued on succeeding lines by ending each continued line with
a hyphen (-). For example:

FT05F001 INPUT: PRECEDE INPUT WITH 35 OR ENTER IAD COMMAND
35 hello, this input line is -
broken across two lines.

Under ISPF, leading blanks are stripped from the beginning of all continuation
lines. To avoid this, precede the continuation line with a single quotation mark
("). The quotation mark will not be passed to the program. For example:

FT05F001 INPUT: PRECEDE INPUT WITH 35 OR ENTER IAD COMMAND
35 hello, this input line is -
" broken across two lines.

92 VS FORTRAN Version 2: Interactive Debug Guide and Reference

• In CMS line mode, the maximum length of an input line is 131 characters.
Any input longer than this is truncated.

• In TSO line mode, the maximum length of an input line is 251 characters. Any
input longer than this is truncated.

• In ISPF, the maximum length of an input line is 251 characters. When this
limit is exceeded, a message is displayed and the input is ignored.

• All output written from your program to the terminal is shown in the log,
preceded by the name of the VS FORTRAN file it was written to, and is
broken into lines that are 60 characters long.

Continuing Execution without Further Debi^ging

When you complete debugging and want to finish execution of the program, use
the ENDDEBUG command. This command discontinues communication between

the program and VS FORTRAN Version 2 Interactive Debug until the program
terminates. Only use ENDDEBUG when you are certain that further debugging is
not required.

Using ENDDEBUG causes the program to execute as if the DEBUG
execution-time option had never been specified, except that attention interrupts are
possible, and Interactive Debug will be reentered at termination.

After ENDDEBUG has been issued, all terminal I/O is handled by the VS
FORTRAN library I/O routines (as if TERMIO LIBRARY had been issued).

In addition, the VS FORTRAN library begins updating the occurrence count for
execution-time errors. All error handling is determined by settings in the VS
FORTRAN Version 2 error option table. The error summary displayed when the
program terminates reflects only errors occurring after ENDDEBUG was issued.
WHERE information is not available.

When the program terminates after issuing an ENDDEBUG command, you may
issue Interactive Debug commands. However, commands such as LISTFREQ and
LISTTIME will display only the information that was current when ENDDEBUG
was issued.

Attention can still be used to interrupt the program after ENDDEBUG is issued;
however, no program information is available at that time. To resume execution
after an attention interrupt, enter a null line. The only command allowed while in
an attention exit after ENDDEBUG has been issued is QUIT, which terminates the
program execution. You can then list the values of variables or issue other
commands that do not require program execution.

Chapter6. Using Some Common Interactive Debug Commands 93

Chapter 7. Special Considerations When Using Interactive Dehug

This section describes various situations you may encounter while using Interactive
Debug, and gives youmoredetail than the previous chapters. It presents methods
of completing various tasks or handling common problems. The topics discussed
here are:

• Issuing commands after program termination

• Handling loops in nondebuggable program units

• Specifjdng the default execution-time options

• Monitoring floating-point equalities

• Referring to unused FORTRAN variables

• Enteringcommands in an attention-interrupt exit

• Debugging optimizedand vectorizedcode

• Improving performance whenusing Interactive Debug

• Recognizing some common errors when setting upa debugging session

For conventions when using any Interactive Debug command with statement labels
or statementnumbers, see "StatementIdentifier Conventions" on page 114.

Chapter 7. Special Considerations When Using Interactive Debug 95

Issuing Commands after Termination of a VS FORTRAN Pn^p'am

You can issue the following Interactive Debug commands after your program
finishes execution:

ANNOTATE LISTFREQ QUIT
AUTOLIST LISTINGS REFRESH

BACKSPACE LISTSAMP RESTART

CLOSE LISTSUBS REWIND

COLOR LISTTIME SEARCH

comment MOVECURS SET

DESCRIBE POSITION SYSCMD

ENDFILE PREVDISP TERMIO

HELP PROFILE WHERE

LIST PURGE WINDOW

LISTBRKS QUALIFY

The following commands cannot be entered after program termination:

AT

ENDDEBUG

ERROR

FIXUP

GO

HALT

IF

NEXT

OFF

OFFWN

RECONNECT

STEP

TIMER

TRACE

WHEN

Handing Loops in Nondebu^able Program Units

Manyprograms maycontain units that cannot be debugged. These may be
subroutines coded in some language other than VS FORTRAN Version 1 or VS
FORTRAN Version 2, a VS FORTRAN module that isnot debuggable, and so
forth. It ispossible forexecution to getcaught in a loop in such a nondebuggable
program unit. When thishappens, the onlywayto suspend the program is by
issuing an attention interrupt,and the only accepted command that will affect
programexecution is QUIT. WhenQUIT is entered following an attention
interrupt, VS FORTRAN Version 2 Interactive Debug terminates theprogram and
allows you to list the values of variables or issue otherInteractive Debug
commands that do not require further execution. When QUIT is issued again, the
debugging session is terminated.

Specifying Default Execution-Time Options

You may occasionally need to usea program compiled with a compiler other than
VS FORTRAN (COBOL, for example), which then invokes a VS FORTRAN
program. However, whenyou have no FORTRAN mainprogram to accepta
parameter, there is no way to explicitly specify DEBUG or any other
execution-time option. One way to solve this problem is to override the normal VS
FORTRAN default options by including a local parameter specification module
(AFBVLPRM) when you link-edit your module, or byusing a customized library
containinga global parameter specification module (AFBVGPRM). You can

96 VS FORTRAN Version 2: Interactive Debug Guide and Reference

create either a local or a global parameter specification program by assembling a
^ ^ small program that invokes a macro supplied withthe VS FORTRAN Version 2

library. For details, see VS FORTRAN Version 2: Programming Guide.

Monitoring Floating-Point Equalities

Requesting Interactive Debug to monitor equal conditions for floating-point
numbers requires caution. Equality comparisons are performed on a bit-by-bit
basis. Numbers may appear to be equal in a program designed to be insensitive to
minor differences, but may differ by a single bit and not be considered equal when
compared by Interactive Debug. Becauseonly simple relations are supported, there
is no way to monitorequalityto a given precision. See "WHEN Command"on
page 213 for more information.

Referring to Unused VS FORTRAN Variables

If you define a variable in your VS FORTRAN program without assigning an initial
value, and neverrefer to it in yourprogram, no storage is allocated for the variable
and it does not appear in the symbol table usedby Interactive Debug. If you try to
refer to the variable in yourdebugsession, you will get an error message stating
that the variable does not exist.

Therefore, if there are VS FORTRAN variables that youmay want to reference in
^ ^ Interactive Debug but which are not referenced inthe VS FORTRAN program,

you should assigninitialvalues to them.

Entering Conunands in an Attention-Interrupt Exit

You caninterrupt processing infull screen or line mode by issuing an attention
interrupt signal. You can usethissignal to gain control if yourprogram appears to
be looping, or if anInteractive Debug command isproducing excessive output.

The way you issue anattention interrupt signal varies with theoperating system
and with thetype of terminal. A line mode terminal typically has a BREAK key, or
one marked ATTN. On a 3270-type terminal, youcan use the PAl key. Under
VM, pressing ENTER may signal attention.

When you enter an attention interrupt. Interactive Debug issues theattention
prompt (lAD/A), and temporarily suspends your program. Your program is now in
an attention exit. You can either:

. Entera null line, which will cause execution to continue. (You will leave the
attention exit.)

• Enter an Interactive Debug command.

. Enter QUIT, which will terminate yourprogram. (However, youwill stillhave
a chanceto issue any Interactive Debug command that is valid after program
termination.)

Chapter 7. Special Considerations When Using Interactive Debug 97

If you issue any of the following conunands while in an attention exit, the
command will be executed and you will remain in the attention exit:

PURGE To terminate excessive output, such as from a LIST
command.

WHERE To identify the last statement that was begun in a
debuggable program unit (parameters are not honored).

NEXT To request a pause at the next executable statement in a
debuggable program unit. However, if your program is
looping in a nondebuggable program unit, you may never
get back to a debuggable unit.

* or " (comment) To enter a comment. (However, the comment willnot be
logged.)

If you issue a QUIT command while the program is executing, the program will be
terminated and Interactive Debug will accept debugging commands that are not
related to execution.

If you issue any other non-fullscreen Interactive Debug command while the
program is executing, the command will be saved, the attention routine will be
exited, and execution will continue. The saved command is deferred until an
executable statement in a debuggable program unit is reached (whichmay not
happen). Note that if the program is looping in a nondebuggable routine, the saved
command will never be executed. Under ISPF Version 2, the full screen commands
cannot be issued from an attention exit.

Debugging Optimized and Vectorized Code

VS FORTRANVersion 2 Interactive Debugallows you to debugVSFORTRAN
programs compiled at any optimization level available in the VS FORTRAN
compilers (0, 1, 2, or 3), or at any vectorization level (0,1, or 2). Vectorization
levels 1 and2 require optimization level 3, so debugging vectorized code always
involves debugging optimized code.

Debugging is least complicated for programs compiled at optimization level 0 with
no vectorization. Optumzation level 0 provides objectcode that mostclosely
follows the source code, so a bugfound in the executing objectcodecan be most
easilyand directly traced to its corresponding source statement.

Debugging optimized or vectorized programs may be necessary, but it requires
careful, informed interpretation of the results. You must recognize certainactions
taken by the compiler for optimization level 1, 2, or 3, and vectorization level 1 or
2. These actions are:

Register optimization
Retaining values in registers instead of in storage.

Common expression elimination
Ehminating duplicated instructions by retaining subexpression values
for later use.

98 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Strength reduction
^ Replacing an operation bya faster oneto improve execution of

DO-loops.

Code motion

Altering the placement of calculations, usually by moving instructions
from inside a loop to outside

Vectorization

Executing certain computations in DO-loops with vector instructions
rather than scalar instructions.

Because of these actions, debugging optimized or vectorized programs can
sometimes be difficult and confusing. Interactive Debug will not be able to counter
all the effects of optimization or vectorization, but will issue a warning message to
inform you that optimized or vectorizedcode is being debugged. These messages
are issuedat your first attempt to reference a variablein an optimizedor vectorized
program unit. Rather than appearing everytimean affectedcommand is used, such
messages appear only once for each program unit.

If you must debug optimizedor vectorizedcode, you can determine how
optimization or vectorization has affected yourprogram by looking at the listing
and vector report.

Optimization Levels and Functions

When debugging optimized code, you should expect to get different results from
Interactive Debug commands than with nonoptimized code. These unexpected
results are actually a result of the optimization process.

Statements that have been eliminated or moved as a result of optimization or
vectorization occupy no storage and consequently cannot have debugging hooks. If
you try to set a breakpoint at such a statement, a message will indicate that it is
"collapsed," which means no machine code hasbeengenerated for the statement.
Setting or listing variables that arecarried in registers across statement boundaries
produces unpredictable results because Interactive Debug references the storage
locations for such variables, and the registerversions (which are the "real" values)
will not be displayed or set.

Examples of how these possibly misleading results occur andcanbe recognized are
given in this section.

Optimization Level 0

Optimization level 0 is the recommended level of optimization when a program is
to be debugged, or is beingcompiled to checksyntax. It provides the fastest
compile time, although it has the least efficientexecution time.

The compiler may perform some minor optimizations, evenat optimization level 0.
However, this is suppressed if the SDUMP option is in effect. Because SDUMP is
required for debugging, you can be sure there was no optimization if you are
debugginga program unit compiledwith optimization level 0.

Chapter 7. Special Considerations When Using Interactive Debug 99

Optimization Level 1

Even at optimization level 0, variables that are declared but never used in a
program have no storage allocated to hold their values. If Interactive Debugclaims f ~̂
that a certain variable does not exist, check to see that the variable is actually used
in the program.

This option performs register and branch optimization. Variables are retained in
registers where possible and time is saved by eliminating unnecessary loads and
stores. Branching is improved by the use of RX format branch instructions. This
provides a moderate level of optimization for programs that do not have nested
loops. Loop structure is not considered.

At OPT(l), all the statements in a block are considered when attempting to use a
value already in a register. (Think of a block as a section of code that must always
be executed sequentially.) For purposes of debugging, it can be assumed that
OPT(l) attempts to use variables and constants placed in registers earlier in the
block.

For example:

29 NUM = 1

30 10 SUM = SUM + NEXT{NUM)
31 NUM = NUM + 1

32 AVG = SUM / NUM
33 TABLE (NUM) = NEXT(NUM)
34 IF (NUM.LT.100) GOTO 10
36 NUM = NUM * 2

Because the flow of control is sequential in the block of statements from ISN 30 to
ISN 34, the optimizer attempts to retain variables in registersover the entire span
of the block. For example, SUM may be placed in a hardware register at ISN 30
and that register may be used again at ISN 32.

The register used for NUM at ISN 29 might not be used for NUM at ISN 30
because ISN 30 has a label. The label indicates that ISN 30 is a possible target for
a branch. Therefore, the value of NUM mustbe obtained from storagein ISN 30.

Interactive Debug accesses the storage location associated with a variable whenever
processinga command that refers to the variable. When code is optimized, the
actualvalue of a variable maybe kept in a register; therefore, altering or displaying
variables can result in misleading results. Before altering a variable at a breakpoint,
examine the statements preceding and following the statement at which the
breakpointwas set. Look for a block that has a sequential execution path. In the
example above, you should not alter NUM while stopped at a breakpoint at ISN
32, and then expect the computation at ISN 32 to use the new value.

A label begins a new block. A branch, which may be explicit as in the IF
statement, or implicitas in the DO statement, terminates a block. Altering NUM
while at ISN 30 should produce normal results.

At OPT(l), the results of an assignment statement are always stored. Be careful
about subsequent statements that use the variable again if the variable has been
altered at an intervening breakpoint.

100 VS FORTRAN Version 2: Interactive Debug Guide and Reference

_ Optimization Levels 2 and 3

Optimization levels 2 and 3 are both designed to produce as much optimization as
possible. The algorithms used are sophisticated and effective, but the general
principles are relatively easy to understand.

With levels 2 and 3, control and data flow analysis is done for the entire program.
This analysis allows optimizations such as common expression elimination, strength
reduction, code motion, and global register assignment. Particular attention is paid
to innermost loops.

VS FORTRAN Version 2 performs a very detailed control flow analysis and data
flow analysis at OPT(2) and 0PT(3). A control flow graph of the program is
constructed. A data flow analysis is performed based on the flow graph used in
conjunction with the "set and fetch" information for the program's data.

Optimization Level 2: This option performsfull text and register assignment. It is
identical to OPTIMIZE(3) except that certain optimizations are suppressed in
order to provide interruption localizing. The basic rule in interruption localizing is:
Do not move any code out of a loop if it mightcause an interruption that would not
occur without optimization. (Note that common expression elimination may result
in apparent code motionwithin a loop, but if evaluation of the expression could
cause an interruption, it will not be moved outside the loop.)

An example of such an interruption wouldbe a possible division by 0 within a loop.
If the division were to be moved out of the loop by the optimizer, it could be
moved to a position whereit is no longerunder the controlof an IF statement that
checks for the 0 condition.

For example, in the loop

DO 2 J=1,N
IF(K.NE.O)M(J)=N/K

2 CONTINUE

the code to evaluate the expression N/K could be movedoutside the loop, because
it is invariant for each iteration of the loop. However, at OPT(2), it will not be
moved.

Invariant computations involving floating pointarithmetic or integer division
(including the MODfunction), or intrinsic function calls withinvariant arguments,
will not be moved out of a loop.

Optimization Level 3: This is the highest level of optunization. Invariant
computations are moved outside loops wherever possible. This may result in
unanticipated interruptions, but incorrect answers will not be generated froma
legal program. The only difference from OPT(2) is thatan extra error signal is
possible.

Chapter 7. Special Considerations When Using Interactive Debug 101

If the precedingexample were compiledat OPT(3), the invariant computation N/K
would be moved outside the loop as follows: i N

itemp=N/K
DO 2 J=1,N

IF{K.NE.O)M(J)=itemp
2 CONTINUE

where itemp is a compiler-generated temporary.

If K is zero, an unanticipated interruption (for integer division by zero) will occur
in calculating itemp. However, the values stored in the elements of the M array
will be the same as if the computation had not been moved outside the loop.

Vectorization Levels and Functions

Vectorization Level 1

When debugging vectorized code, you should expect that you may get different
results from Interactive Debug commands than when debugging nonvectorized
code. These results are caused by the vectorization process. Examples of how
these different results occur and can be recognized are given in this section.

If you must debug fully vectorized programs, keep these points in mind:

• You may not be able to suspend the program inside a vectorized loop because
there may not be any hooks there. This means that you cannot set breakpoints
or examine variables inside a vectorized loop.

• There may be multiple instancesof the sameISN if vectorization has split a
loop. In this case, breakpoints can be set only at the first instance.

• Keep in mind that optimization is still in effect even if you set breakpoints
outside the vectorized loop.

This option requests vectorization on a loop-by-loop basis. VS FORTRAN
Version 2 must be able to vectorize every statement in the selected loop with no
reordering; otherwise none of the statements in the loop will be vectorized.
Optunization level 3 must be in effect. If the level is not explicitly specified, it will
be forced to level 3 by the compiler.

When you specify vectorization level 1, the VS FORTRAN Version 2 compiler
attempts to convert complete DO-loops into vector object code. Nests of
DO-loops are analyzed, andloops aremarked as vectorizable or not. If any
statement within the loop is not vectorizable, the loop is not selected for
vectorization.

For example, the following nest of loops is vectorizable because all statements
within it can be vectorized.

DO 1 K=1, N
DO 1 J=^, N

DO 1 1=1, N

A(I,J,K)=B(I,J,K)+P(J,K)#Q(J,K)
1 E(K,J,I)=F(K,J,I)+X(I,J)*Y(I,J)

102 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Vectorization level 1 does not itself cause code motion. However, optimization
level 3, which is required, might.

Vectorization Level 2

This option requests vectorization on a statement-by-statement basis. As much of
a loop as possible will be translated into vector object code, and the remainder will
be translated into scalar object code. Optimization level 3 must be in effect. If it is
not explicitly specified, it will be forced to level 3 by the compiler.

When you specify vectorization level 2, the VS FORTRAN Version 2 compiler
attempts to convert as many statements as possible into vector object code. Nests
of DO-loops are analyzed, and certain groupsof statements in nests are marked as
vectorizable or not. The compiler selects for vectorization only those statements it
knows will run faster when compiled into vector instructions.

For example, the following DO-loopis not vectorizable imder vectorization level 1
because one of the statements (A(I) =A(i+l) +A(i-1)) within the loop is not
vectorizable:

DO 300 1=1,100
A(I)=A(H-1)+A(I-1)
C(I)=D{I)

300 CONTINUE

However, this program can be vectorized at level 2, by statement, by creatinga
separate scalar loop for the unvectorizable statement. After vectorization, the loop
will look like this in your vector report listing:

ISN FLAG NESTING ♦ »...1 2 3 4...

0005 SCAL + DO 300 1=1,100
0006 I A(I) = A(I+1) + A(I-1)

0005 VECT + DO 300 1=1,100
0007 I C(I)=D(I)
0009 STOP
0010 end

Using vectorization level 2, it is possible for duplicate ISN's tobeassigned by the
compiler. If this occurs, youcanonly assign a breakpoint to the first occurrence.
The LISTFREQ command allows you to list all statements, including any
duplicates.

Some Practical Examples: Optimlzatioii

Nowthat we havediscussed optimization and vectorization levels, we can lookat a
few simple examples. Remember thatvectorized programs arealways optimized at
OPT(3), so problems in debugging associated withoptimization occurin
vectorization as well. Examples that applyonly to vectorization are explained in
"Some Practical Examples: Vectorization" on page 105.

Chapter 7. Special Considerations When Using Interactive Debug 103

Constant Propagation: Constant propagation is a calculation done at compile time.
The precalculated results are used at execution time. For example:

II = 10

JJ = II is replaced by JJ = 10

Results may be unexpected when you change the value of n at a breakpoint and
later look at the value of JJ.

Conunon Expression Elimination: Common expressions are those in which the result
of a calculation is available because of a previous calculation. In the example
below, the calculation J + K is performed twice:

20 I = J + K

21 II = 10

22 JJ = J + K can be replaced by JJ = I

Note the opportunity for unexpected results when you change the value of J or K
while at ISN 21. Because the recalculation of the common expression J+K has
been eliminated, JJ will be equal to I, not the new sum of J + K. If there is a
breakpoint set at ISN 21 and the value of K is altered, it will have no effect on the
value assigned to JJ.

BackwardMovement: If the variables involved in an expression are not changed in
a loop, it may be possible to move an expression outside of the loop. In the
example below, A = B could be moved out of the loop:

20 X = Y

21 DO 10 I = 1,10
22 ARR(I) = ARR (I) + I
23 A = B

24 10 CONTINUE

25 WRITE(6,#) X,A

The program then becomes:

20 X = Y

21 A = B

DO 10 I = 1,10
22 ARR(I) = ARR (I) + I
23

24 10 CONTINUE
25 WRITE(6,*) X,A

The optimizer recognizes that both A and B are loop invariant, and the
computation can therefore be moved outside the loop. Note that ISN 23 is still
there, but is empty, or "collapsed."An attempt to set a breakpointat ISN 23 would
result in an Interactive Debug error message.

Strengdi Reduction: Strength reduction replacesone operation by a faster one to
improve execution of DO loops.

Let's assume that elements of an array such as ARR, in the example below, are 4
bytes long.

21 DO 10 I = 1,10
22 ARR(I) = ARR(I) + B
23 10 CONTINUE

104 VS FORTRAN Version 2:Interactive Debug Guide and Reference

Since each element is 4 bytes long, the subscript I must be internally multiplied by
4 to obtain the proper offset from the start of the array. The addresses of elements
in this array actually increase in steps of 4, rather than in the steps of 1 implied by
the DO loop. Thus, the offset takes on values of 4, 8, 12, and so on, as the
subscript I takes on values of 1, 2, 3, and so on.

Strength reduction replaces one operation (in this case, the internal multiplication)
by a faster one (in this case, addition). The loop code generated for the loop would
contain instructions to add 4 to each iteration of an internally maintained offset,
rather than keeping the subscript I and multiplying it by 4 on each iteration.

If strength reduction occurred in the example above and you set a breakpoint at the
statement following CONTINUE to display the value of I, the value would be 1.
This is a misleading value. I is never really used in the optimized loop. A
compiler-generated temporary is used instead to calculate the offsets.

Ghbai RegisterAssigrment: Global register assignment is another way to improve
the generated code. The example below illustrates the principle involved.

21 DO 10 I = 1,10
22 J = J + I

23 10 CONTINUE

results in machine code that performs these actions:

load 1 into a register
I—. store register at I

^ ^ ♦ add register to J
add 1 to register
compare register contents with 10
branch (to *) if compare is less than or equal
store final value at J

This is not an exact representation of the machine code, but illustrates the principle
of register assignment. Instructions that use registersare faster than instructions
that reference storage. For the duration of this loop, I is assigned to a register.

If you were to set a breakpoint at ISN 22 and displaythe variable I, the value
would be 1.

If a program works correctly at OPT(O) and fails when optimized at a higher level,
check for variables assigned to registers, or uninitialized variables. Frequently, a
variable kept in storage at OPT(O) is assigned to a register under OPT(3). This is
only one of the effects of debugging an optimized program.

Some Practical Examples: Vectorization

Grouping of Data Elanents: When a DO-loop is vectorized, individual loops that
operate on single elements are modified to produce less-frequently executed loops
that operate on groups of elements. When you try to set a breakpoint at a
particular statement in a program unit that has been vectorized, you may find that
the loop index and/or the contents of storage have unexpected values. For

^,^1^ example, examine the following code:

Chapter 7. Special Considerations When Using Interactive Debug 105

1 REAL A{100), B(100)
2 DO 2 K = 1 , N /^\
3 2 A(K) = B(K)

The single loop in the above example may actually look like this in the vectorized
code:

DO 2 K = 1, N, Z
DO 2 KK = K, K+MIN{N-K,Z-1)

2 A{KK) = B(KK)

where Z is the size of the group, and the inner "loop" is actually performed by
vector instructions.

After vectorization, the single loop over individual elements becomes a loop over
groups of elements. This loop contains a second "conceptual" loop, executed in
vector instructions, over elements in the group.

The original statement labeled "2" (ISN 3) no longer exists. It has been placed
under ISN 2 in a different form. If you try to set a breakpoint there. Interactive
Debug may issue a message saying that it cannot find the statement.

Statement Reordering: To vectorize certain loops, the order of execution of
statements may have to be modified. When you later try to debug a statement in
this loop, you may find that it doesn't appear where you expected to find it.

For example, you may have coded the following:

1 DIMENSION A(100) ,B(100) ,C(100)
2 DO 500 I = 2,100
3 A(I) = B(I-1) ♦ 3.0
4 B(I) = C(I) ♦ 3.0
5 500 CONTINUE

But your vector report listing after vectorization at level 2 may look like this:

ISN FLAG NESTING * ♦...1 2 3 4

0001 DIMENSION A(100),B(100),C(100)
0002 VECT + DO 500 I = 2,100
0004 I B{I) = 0(1) ♦ 3.0
0003 I A(I) = B(I-1) ♦ 3.0
0006 END

In this case, ISNs 3, 4, and 5 no longer exist. They have been placed under ISN 2
in a different form. You will not be able to set breakpoints at these statements.

LoopDistribution: During vectorization, statements coded within a single DO loop
are sometimes distributed to separate loops during vectorization.

For example, if you code this loop:

1 REAL A(200), B(200)
2 DO 20 I = 2,100,2
3 A(I) = A(I) + 2
4 B(I+2) = B(I) + 2
5 20 CONTINUE

106 VS FORTRAN Version 2: Interactive Debug Guide and Reference

your vector report listing might look like this after vectorization:

ISN FLAG NESTING ♦ 2 3
+
0001 REAL A{200),B(200)
0002 VECT + DO 20 I = 2,100,2
0003

0002 SCAL +-

0004 I
0006

A(I) = A(I) + 2

DO 20 I = 2,100,2
B(I+2) = B(I) + 2

END

You will not be able to set breakpoints inside the original loop. If you attempt to
debug statements within the original loop, you will find that ISNs 3, 4, and 5 have
disappeared. They have been placed under ISN 2 in a different form.

Commands Affected by Optimization and Vectorization

AT Command

AUTOLIST Command

GO Command

A number of Interactive Debug commands are affected by the processes of
optimization and vectorization. These commands may produce unexpected or
inaccurate results when used in debugging optimized or vectorized code. This
section describes the commands that may function differently when used with
optimized or vectorized code.

Use of the AT command with optimized or vectorized code can be confusing if
some statements have been relocated or removed. If a statement has been moved

or completely eliminated. Interactive Debug will issue a message telling you that no
breakpoint can be established at that statement.

The AUTOLIST command displays the contents of the storage area that the
compiler assigned to a specified variable. When the program is optimized or
vectorized, it is possible that the current value of a variable, or of an array element,
is only in a register. As a result, what is displayed by the AUTOLIST command
may not be the current value of the variable or variables.

You will receive a message if you issue a GO command that refers to a statement
identifier in a program unit compiled with an optimization level greater than 0
(including vectorization levels 1 or 2). The message indicates that results are
unpredictable, and requires your confirmation before proceeding. The VS
FORTRAN Version 2 optimizer produces code assuming that the possible paths
through a module are known—for example, that a sequence of ten assignment
statements will always be executed in order. Based on this assumption, a register
may be loaded once at the beginning, and used by subsequent statements without
being reloaded. If you issue a GO command referring to a statement in the middle
of that sequence, you may be bypassing code that causes an important register to
be loaded. Results are unpredictable when a statement using that register is
subsequently executed.

Chapter 7. Special Considerations When Using Interactive Debug 107

IF Command

LIST Command

LISTFREQ Command

SET Command

WHEN Command

Warning Messages

IF specifies a condition to be tested. This involves examining the value assigned to
a variable, and may not produce the correct results if the value is being kept in a
register.

The LIST command displays the contents of the storage area that the compiler
assigned to a specified variable. When the program is optimized or vectorized, it is
possible that the current value of a variable, or of an array element, is only in a
register. As a result, what is displayed by the LIST command may not be the
current value of the variable or variables.

The LISTFREQ command lists statements even though they have been moved,
optimized away, or vectorized away, but indicates that these are "collapsed
statements" in the "frequency" field. Execution counts cannot be maintained for
these statements.

Like LIST, the SET command may produce confusing results. The SET command
alters the contents of a storage location assigned to a variable by the compiler.
However, optimized or vectorized code may not be using this storage location to
contain the current value. Even if the optimized or vectorized code has stored the
value in this location, VS FORTRAN Version 2 may use a copy of the register
value or values (without reloading it from storage) for the next use of the variable.
Furthermore, subsequent instructions may store the values from the registers into
storage, thereby overwriting the value just stored by the SET command. Under
either of these circumstances, changing the value in storage will not have the
desired effect.

The WHEN command uses the storage value of a variable, and may not produce
correct results if the value is being kept in a register.

On the first AUTOLIST, IF, LIST, SET, or WHEN command in any program unit
compiled with OPT(l), OPT(2), or OPT(3), or with VECT0R(LEV(1)) or
VECTOR(LEV(2)), a warning message will appear, stating that the program unit
contains optimized or vectorized code. Subsequent commands involving the same
unit will not result in further messages.

108 VS FORTRAN Version 2: Interactive Debug Guide andReference

Improving Performance when Usii^ Interactive Debug

When you use VS FORTRAN Version 2 Interactive Debug with your program, the
program runs slower. This is typical of high-level language debuggers that get
control at every statement boundary to check for breakpoints or other conditions.

The greatest impact on performance occurs when you are debugging a program
that executes many very simple VS FORTRAN statements, with debugging hooks
at all (or most) of them. Having very small subroutines will also degrade
performance.

Techniques to Improve Performance

For normal debugging of typical programs, you may find that performance is
satisfactory. By limiting the amount of input to be processed (which you would
probably do anyway when debugging), you may avoid any problems with
performance. However, if you find performance seriously affected when running
under Interactive Debug, there are a number of things you can do to improve it.

• Try to limit the number of program units being debugged at one time. The
"include" file (AFFON) can be used to tell IAD which program units you want
to debug, allowing the rest to run at full speed. This is especially important if
some subroutines are called often. You can debug some of the program units
in one debugging session, and others in another debugging session.

• If possible, insert only entry/exit hooks in heavily-used subroutines. This may
be all you need to decide whether the subroutine is incorrectly changing a
variable, for example. If you find that a such a subroutine is producing errors,
you may be able to use the AT command with a command list to temporarily
generate correct values while you are debugging other subroutines. Later, you
can restart the debugging session with a different AFFON file and concentrate
on the other subroutines that are generating incorrect results.

• If possible, avoid putting hooks in heavily executed code, especially if it
consists of many very simple statements. You can use the "include" file
(AFFON) to specify which parts of each program unit are to have hooks
inserted in them.

Recognizing Some Common Errors when Setting up a Debugging
Session

If you try to begin a debugging session without success, or if you try to debug a
program unit that Interactive Debug considers nondebuggable, look through the
following list of common errors to find a possible solution:

Chapter 7. Special Considerations When Using Interactive Debug 109

Problem

All program units are nondebuggable.

One or more program units are
nondebuggable.

Interactive Debug is not loaded and a
debugging session is not initialized.

Under ISPF, you receive the message
"LOG FILE NOT FOUND," and
Interactive Debug never runs.

Solution

Check your AFFON file for incorrectly
coded AFFON entries.

Insure that the AFFON file matches the

program being run. Make necessary
corrections try again.

Check to see whether the program unit
was compiled without SDUMP, or was
compiled with a FORTRAN compiler
level that is not supported. If so,
recompile the program unit.

Be sure you have specified the DEBUG
execution-time option, or have taken steps
to override the default option.

Be sure you are running your program
with a level of the VS FORTRAN library
that supports Interactive Debug. If a
program was link-edited with an older
library, re-link-edit it with the current
library.

Be sure that the VS FORTRAN Version 2

libraries are accessible and that you have
allocated the FT06F001 file, then rerun
the program. Also be sure you have
allocated enough storage.

110 VS FORTRANVersion2: InteractiveDebug Guideand Reference

Part 2. VS FORTRAN Version 2 Interactive Debug Reference

This section contains:

• VS FORTRAN Version 2 Interactive Debug syntax conventions

• VS FORTRAN Version 2 Interactive Debug statement identifier conventions

• A functional summary of Interactive Debug commands

• Descriptions of all Interactive Debug commands

The commands are in alphabetic order. Each command description includes the
command syntax, function, and examples.

Part 2. VS FORTRANVersion 2 Interactive DebugReference 111

Chapter 8. Interactive Debi^ Commands

This chapter summarizes all VS FORTRAN Version 2 Interactive Debug
commands.

Syntax Conventions

Symbols used to describe the syntax of VS FORTRAN Version 2 Interactive
Debug commands are the same as in other VS FORTRAN Version 2 publications.

• The syntax for each command is shown in a box, with any allowable
abbreviations for the conunand name shown above the box.

• Lowercase character strings within the box indicate information you must
supply.

• Uppercase character strings indicate Interactive Debug keywords.

• Square brackets ([]) set off optional portions of a command.

• Braces ({ }) indicate a choice. One or more vertical lines (|) within the
braces separate the choices.

If an optional portion consists entirely of a choice ([{... |... |... |...}]), the
braces are omitted.

• Where optional keywords are listed, the default is underlined. An explanation
of the default is provided in the text below the box.

• Special characters (for example, colons, parentheses, and asterisks), must be
entered as shown.

Keyword operands can be abbreviated to any unique shortened form. For
example, NOTIFY can be abbreviated to NOT (but not to NO, to distinguish it
from NONOTIFY). Command names can be abbreviated only with the explicit
abbreviation shown in this manual for the command.

Chapter 8. Interactive DebugCommands 113

Statement Identifier Conventions

Follow these conventions when using any Interactive Debug command with VS
FORTRAN statement labels, ISNs, or sequence numbers:

• All statement labels (numbers in columns 1 through 5 of the source program)
must be preceded with a slash (for example, /100).

• The type of statement number is determined by the compiler and the options
used when the program was compiled. A statement number is either an ISN or
a sequence number.

— If the program was compiled with VS FORTRAN Version 2, you can use
either the ISN or the sequence number. ISNs are the default; to use
sequence numbers, specify the compiler option SDUMP (SEQ).

— If the program was compiled with VS FORTRAN Version 1, and if both
TEST and NOSDUMP were in effect or if VS FORTRAN Release 2 was

used, and if the first record has a number in columns 73 through 80, use
the sequence numbers. If the first record does not have a number in
positions73 through 80, use the internal statement number (ISN) provided
in the compiler listing. VS FORTRAN Version 1 sequence numbers are
not supported in full screen mode.

— For all other combinations of VS FORTRAN Version 1 options, use the
ISN.

114 VSFORTRAN Version 2: Interactive DebugGuide and Reference

Commands

Figure 25 lists the commands by function.

Functions

Controlling Program Execution

Monitoring and Modifying Variables

Processing Sequential Files

Controlling Full screen Display

Tracing and Timing

Commands

AT

GO

ENDDEBUG

HALT

LISTBRKS

NEXT

OFF

OFFWN

RESTART

STEP

WHEN

AUTOLIST

DESCRIBE

IF

LIST

QUALIFY
SET

BACKSPACE

CLOSE

ENDFILE

RECONNECT

REWIND

COLOR

LISTINGS

MOVECURS

POSITION

PREVDISP

PROFILE

REFRESH

SEARCH

WINDOW

ANNOTATE

LISTFREQ
LISTSAMP

LISTSUBS

LISTTIME

TIMER

TRACE

WHERE

Figure 25 (Part 1 of 2). Functional Sununary of InteractiveDebugCommands

Chapter 8. InteractiveDebug Commands 115

Correcting Errors ERROR

FIXUP

General * or " (comment)
HELP

PURGE

QUIT

SYSCMD

TERMIO

Figure 25 (Part 2 of 2). Functioiial Summary of Interactive Debug Commands

The commands are presented below in alphabetic order. A summary of the
commands appears in Appendix B, "Interactive Debug Command Summary'
page 225.

116 VS FORTRAN Version 2: Interactive Debug Guide and Reference

on

* or" (Comments)

Anasterisk (*) or a quotation mark (") can be used to insert comments into thelog
of debugging activity. When running in an ISPFenvironment or in batch, a log of
debugging activity is maintained. A log is also available in a CMS line-mode
environment, if youspecify CP SPOOL console start. Comments maythen be
used to identify items for later examination.

Abbreviation: None

Syntax

{* I '} [comment]

comment

is any character string. This character string will appear in the log of the
debugging session.

Notes:

When running in a CMS environment, the use ofa quotation mark C) to identify
a comment command may be inhibited because the C) mark is normally assigned
to be the CMS escape character. In this case, a double quotation mark is required
to enter a comment. For example:

"" This is a comment.

Comments entered in a command list as part of an AT command are ignored.
They are also ignored ifentered as the commandportion on the IF command, or
if entered in an attention exit.

Example

This is how comments are inserted into the log.
A quotation mark also works.

Chapter 8. Interactive Debug Commands 117

ANNOTATE Command

The ANNOTATE command provides program sampling information in either of
two forms:

1. Asa source listing to the AFFPRINT file, showing sampling or frequency data.

2. As a bar chart overlay on the source listing window, showing the sampling or
frequency data

Abbreviation: AN

Format I

Syntax for Copying Source Listings to a Print FUe

ANNOTATE {unit | (unit Ust) | ♦ }

{SAMPLING{DIRECT | CALLED | ALL] 1 FREQUENCY]

Format 2

— Syntax for Providing a Bar Chart on the Source Listing Window

ANNOTATE [ON | OFF | TOGGLE]

{SAMPLINGiDIRECT | CALLED | ALL] | FREQUENCY]

unit

specifies the name of a program unit whose listing is to be copied to
AFFPRINT with sampling or frequency information added. The program
unit must be a VS FORTRAN program unit compiled with the SDUMP
option. Listing files must be identified either by specification in AFFON or
on the listings data set specification panel.

unit list

specifies a list of program units whose listings are to be copied to
AFFPRINT with sampling or frequency information added. (See restriction
under unit, above.)

ON

specifies that all available program unit listings are to be copied to
AFFPRINT with sampling or frequency information added. Listings will be
copied only for VS FORTRAN program units compiled with the SDUMP
option. Listing files must be identified either by specification in AFFON or
on the listings data set specification panel.

specifies that the source listing windowis to be shown with overlaid sampling
or frequency bar charts (valid in ISPF only). Note that ON cannot be
abbreviated.

118 VS FORTRAN Version 2: Interactive Debug Guide and Reference

OFF

specifies that overlaid sampling or frequency charts are NOT to be shown in
the source listing window (valid in ISPF only). Note that OFF cannot be
abbreviated.

TOGGLE

specifies that overlaying of the source listing window with sampling or
frequency bar charts is to be changed to ON if currently OFF, or to OFF if
currently ON (valid in ISPF only). This form is intended for assignment to a
PF key. Note that TOGGLE cannot be abbreviated.

SAMPLING

requests sampling information annotation. For Format 1, SAMPLING is the
default when neither SAMPLING or FREQUENCY is specified.

DIRECT

counts interruptions occurring in the code.
SAMPLING is specified or defaulted.

DIRECT is the default when

CALLED

counts interruptions occurring in lower-level routines. This option is valid
only if sampling was initiated with the CALLED option.

.4LL

indicates that sampling counts are to be the sum of the DIRECT and
CALLED counts.

FREQUENCY
requests statement frequency annotation information

Notes:

1. Annotated information listings show a summary of all program units and entries
for which sampling counts have been accumulated. This summary includes
non-FORTRAN units, FORTRAN units compiled with NOSDUMP, and
program units not specified in the unit list operand of the command.

2. When SAMPLING is specified along with the ON, OFF, or TOGGLE options,
the current ANNOTATE settings are unchanged ifFREQUENCY, DIRECT,
CALLED, or ALL are not specified. The initial ANNOTATE settings are OFF
and FREQUENCY. If SAMPLING is done, the ON and DIRECT options are
turned on, turning off FREQUENCY.

3. If no operands are specified, the current ANNOTATE settings are displayed.

4. Only the first three options (unit, unit list, *) may be used in a restart file or in
batch mode. Annotation is then limited to listings identified in the AFFONfile.

5. In the histogram bars that are shown in the annotated source listings, each
asterisk (*) represents 2 % (rounded). In order to prevent the lines from getting
too wide, any histogram bar that would exceed 17 characters (34%) is truncated
to 17 characters, and the rightmost character is shown as a plus sign (+) instead
of an asterisk.

Chapters. Interactive Debug Commands 119

Example 1

Overlay the source listing window with bar charts indicating the sum of both
DIRECT and CALLED sampling.

annotate on all

Example 2

Remove the bar chart overlays from the source listing window,

annotate off

Example 3

Query the ANNOTATE settings

annotate

Example 4

Copy the VS FORTRAN source listings (if known) for all programunits to
AFFPRINT, annotating them with DIRECT sampling information.

annotate »

Example 5

Copy the VS FORTRAN source listings for MAINand SUBl to AFFPRINT,
annotating them with frequency information.

annotate (main,subl) frequency

120 VS FORTRAN Version 2: Interactive Debug Guide and Reference

AT Command

The AT command sets breakpoints in a VS FORTRAN program at executable
statements, entry points, or exit points. When defining a breakpoint, you may
specify a list of Interactive Debug conunands to be executed whenever the
breakpoint is reached. Execution will be suspended before the specified statement
is executed. For examples of how to use the AT command, see "Controlling
Program Execution" on page 74 and "Using Command Lists" on page 76.

The AT command can also be used without parameters as one of the cursor
commands under ISPF Version 2. For more information, see "Using Interactive
Debug Features under ISPF Version 2" on page 24.

Abbreviation: None

— Syntax

AT [qual.]{number [:[qual.]number] | ENTRY | EXIT}

I (number/ENTRY/EXTTlist)

[(command list)] [COUNT(n)][NOIIFY | NONOTIFY]

qual
specifies a program unit name prefix to temporarily override the current
qualifier for the prefixed operand only.

number

specifies the statement label, ISN, or sequence number of an executable VS
FORTRAN statement. Precede a statement label with a slash to distinguish
it from an ISN or sequence number. The type of statement number used
(ISN or sequence number) is determined by the compiler and the options
used. See "Statement Identifier Conventions" on page 114.

number:[qual.]number
specifies a range of statement labels and/or statement numbers (either ISNs
or sequence numbers). A breakpoint is set at each executable statement
within the range. Statement labels can be combined with ISNs or sequence
numbers in the range, but the first and last must both be executable
statements. Precede each statement label with a slash.

Statement identifiers can be qualified with a program unit name. The default
program unit for the first identifier is the current qualifier. The default
program unit for the second identifier in a range is the program unit specified
or defaulted for the first identifier. Both identifiers must have the same

program unit in effect.

For example, a . 5:6 is the same as A. 5; A. 6. However, A. 5: B. 6 is invalid.

ENTRY

specifies that an entry breakpoint is to be set. The breakpoint occurs in the
prolog of the program unit. The subroutine or function is not yet active, so
dummy arguments are not accessible, and a GOwith a statement identifier

Chapters. Interactive Debug Commands 121

cannot be issued. The breakpoint occurs regardlessof which entry point of
the program unit is entered.

EXIT

specifies that an exit breakpoint is to be set. The breakpoint occurs after the
last FORTRAN statement in the program unit has been executed.

(number/ENTRY/EXIT list)
specifies a list of statement labels, ISNs, sequence numbers, entry
breakpoints, exit breakpoints, and/or ranges of numbers. A breakpoint is
set at each executable statement specified. Enclose the list in parentheses,
and separate entries with commas or blanks. Precede each statement label
with a slash.

Note: If a statement that does not have a debugging hook is specified in the
number list, an error message is issued but breakpoints are still set at the
remaining statements.

(command list)
specifies a list of commands to be executed at the specified statement. If
more than one statement is listed, the command list is executed at every
statement listed. Enclose the command list in parentheses, and separate
commands with percent signs (%).

The qualification in effect when the AT command is issued is used as the
default for any variables and statements referenced in the command list.

COUNT(n)
specifies that a breakpoint occurs only every nth time the specified statement
is reached. Specify n as an integer. If more than one statement is specified,
the iteration count is applied independently to each listed statement.

NOTIFY

specifies that the location of every breakpoint is to be displayed when it is
reached. This includes breakpoints that cause the program to resume
without user intervention. This is the default action.

NONOTIFY

specifies that no notification is given when the AT command list contains a
command, such as GO, that causes execution to resume.
NOTEFY/NONOTIFY has no effect on the notification that is done when a
breakpoint is reached and execution is suspended. You cannot turn off
notification when execution is suspended.

Notes:

1. Unless you have attached a command list containing a GO, ENDDEBUG, STEP,
RESTART, or QUIT command, execution is always suspended when a breakpoint
is reached.

2. You may include any VS FORTRAN Version 2 Interactive Debug command in
I the command list except HELP, FIXUP, LISTSAMP or any full screen display
I commands.

122 VS FORTRAN Version 2: Interactive DebugGuideand Reference

3. A new validAT command overrides any previousAT command in effect for a
specific statement.

4. HALT, NEXT, WHEN conditions, and AT breakpoints all cause execution to be
suspended. When execution is stdspendedfor multiple reasons, messages are issued
for all the reasons.

5. At ENTR Y, the following restrictions apply:

• The GO command with a statement ID is not permitted.

• Variables in a dynamic common cannot be referenced.

• Dummy arguments are not accessible.

6. Youcan associate a remark with a breakpoint by using the LIST command to
display a quoted string as part of the command list for the breakpoint. For more
information, see "LIST Command" on page 158.

7. You can set a breakpoint only on statements that have a debii^;iiig hook You
cannot set a breakpoint on statements outside the AFFON statement list, on
statements that are collapsed, on the ENTRY of a VS FORTRAN main program,
or on the EXIT of a VS FORTRAN main program. For more information on
debugging hooks, see "Setting Breakpoints at Debusing Hooks" on page 72.

8. A command in an AT command list that causes execution to resume will cause the

remainder of the command list to be ignored. These commands are GO, STEP,
ENDDEBUG, and RESTART. Q UITand HALT IMMED also cause the
remainder of the command list to be ignored.

9. AT is not permitted after the VS FORTRANprogram has terminated.

Chapters. Interactive Debug Commands 123

Example I

Stop execution every 10th time the program reaches the beginningof a loop that
begins at statement label 65.

at /65 count(10)

Example 2

Set breakpoints at ISNs 180 and 220 in the currently qualified program unit, at
every executable statement in program unit SUBl between ISN 10 and statement
label 50, and at entry to program unit CHECK. Execution is suspended at each of
these points.

at (180 220 sub1.10:/50 check.entry)

Example 3

At ISN 140, list the value of variable A, set variable I to 10, and continue
execution. Except for listing the value of A, no notification is given.

at 140 (list a^set i=10?5go) nonotify

Example 4

At ISN 5 in program unit STUB, set variable ANSWER to 100 and exit the
subroutine.

at stub.5 (set stub.answer=100SSgo stub.exit)

124 VS FORTRAN Version2: Interactive Debug Guide and Reference

AUTOLIST Command

You can use the AUTOLIST command in full screen mode to specify up to ten
lines of variable and array information. The information is then displayed at the
top of the screen each time the program is suspended, or when the display is
refreshed during animation.

The containing program unit name is shown with all variable or array names. Array
elements may be displayed outside the defined dimensions. You can remove the
display by issuing the AUTOLIST command with no operands.

You cannot use AUTOLIST in line mode or batch mode. If you try to, Interactive
Debug issues an error message.

Abbreviation: AL

— Syntax

AUTOLIST [{[qual.]name[:[qual.]name]

I 'string' I number | (specification list)}

[FORMAT [(code)] | DUMP [(code)]]]

[qual.]name
specifies the name of a variable, array, or array element used in the program.
If a qualifier is specified, it overrides the current qualifier for the specified
name. Substring notation may be used with string variables.

[qual.]name:[qual.|name
specifies a range of variable, array, or array element names used in the
program. If a qualifier is specified, it overrides the current qualifier for the
specified name.

AUTOLIST displays all storage locations between the two variables. Unless
FORMAT or DUMP is specified, the format of the displayed storage is the
same as the type of the first variable.

specifies that a list of all the variables and arrays in the currently qualified
program unit is desired. Unless FORMAT or DUMP is specified, each is
displayed according to its own type.

^string*
specifies a character string to be displayed as a remark. You can use this
operand to help identify the AUTOLIST display.

number

specifies an integer or real numeric constant to be displayed as a remark.
This function can be useful in converting numbers, when used in conjunction
with the FORMAT option.

Chapters. Interactive Debug Commands 125

I specification iist _
I identifies a list of individual specifications. The list must be enclosed in r S
I parentheses. Individual entries must be separated by commas or blanks.

FORMAT [(code)] or DUMP [(code)]
specifies a particular data format:

• FORMAT displaysthe names listed and their values in the specified
format.

• DUMP displays the address in storage of the names listed and their
values in the specified format.

• (code) specifies the format or dump code for the names to be listed. The
default format code is X. The default dump code is Z.

• FORMAT and DUMP are mutually exclusive.

FORMAT and DUMP codes for the AUTOLIST command are shown in
Figure 26 on page 127.

126 VS FORTRAN Version 2: Interactive DebugGuideand Reference

Code Output

LI Logical* 1

L4 Logical*4

12 Integer*2

14 Integer*4

R4 Real*4

R8 Real*8

R16 Real*16

C8 CompIex*8

C16 Complex*16

C32 Complex*32

L Logical with size closest to internal data size

I Integer with size closest to internal data size

R Real with size closest to internal data size

C Complex with size closest to internal data size

X[nnn] Hexadecimal with nnn bytes per data item
(default to internal data size)

Z[nnn] Hexadecimal with nnn bytes per data item
(default to Z4)

A[nnn] Character with nnn bjrtes per data item
(default to internal data size)

H[nnn] Character with nnn bytes per data item
(default to continuous full line output)

Figure 26. DUMPandFORMAT Codes for theAUTOLIST Command

Notes:

1. Each time you issue the AUTOLIST command, the setof variables to be listed is
redefined. The lists are not cumulative. To turn off the AUTOLIST display,
specifyAUTOLIST with no operands.

For example, ifyou type AL (X,Y), then Xand Yare displayed. Ifyou later
typeAL Z, only Z will be displayed.

2. The output is displayed in thefirst ten lines of thefull screen panel. No
AUTOLIST output isshown in thescrollable log. Ifmore than ten lines of
output are requested, the excess is not displayed.

3. Dummy arguments can onlybe displayed when theprogram unit in
which they are defined isactive. Forexample, when executing in MAIN before
calling SUBl, entering:

autolist subl.a

Chapters. Interactive Debug Commands 127

will cause a message to be produced if a is a parameter. Results are unpredictable
ifyou display a dummy argument that is not defined at the entry point called.
(Note that a program unit is not yet active when suspended at entry.)

4. Variables in dynamic commons can only be displayed if the program unit used to
qualify the variable has been activated at least once. (If not, you may receive an
error message. However, if a variable has a large displacement in its dynamic
common. Interactive Debug cannot detect that it is not initialized.)

5. When you request an individual name or list of names, the default format is
determined by the type ofeach variable being displayed. Whenyou request a
range of names, the formatting of the values is determined by the format of the
first name in the range. The locations of the listed names are not identified in the
output. Youmay, however, specify a different format using the FORMAT or
DUMP keyword.

6. VS FORTRAN defines storage layout only within arrays, variables in a common
block (defined in a COMMON statement), and variables in equivalencegroups
(defined in an EQUIVALENCE statement). The relativepositionsofany other
names in storage cannot be predicted. Names that you may expect to be adjacent
in storage may be widely separated by other data. Therefore, a range specification
for names other than array, equivalence, or common variables may produce
unexpected results.

7. The DUMP option is notpermitted with constant operands, includingstrings.

8. The lengthspecification in a FORMAT or DUMP code may be entered with 1
through 3 digits. Thus, 14, 104, and 1004 are equivalent.

9. A length specification of 0 in character and hexadecimal FORMAT and DUMP
codes (for example, AO or ZO) causes the data to be displayed as a continuous
string, rather than split intopieces ofsome specified length.

10. If a FORMATor DUMP code with no length specification isgiven for a rangeof
variables or array elements, each variable or array element is displayed separately
in the specifiedformat. However, ifa lengthspecification is given. Interactive
Debugwill consider the entirestorage area occupied byall the rangeof variables
or array elements, or occupiedby the entire array, as if it were broken intopieces,
each with a length equal to that specified in the DUMP or FORMAT code, and
willdisplay eachpieceaccording to the specifiedformat. For example, if
PRIMES isa 2 X 3 array of INTEGER*4 values, then:

autolist primes format(x)

willcause a displayof 6 values, each corresponding to an elementof the array.
However:

autolist primes format(x2)

willcause a displayof 12 values, each displaying the contents ofsuccessive 2-byte
storage areas within the array.

128 VS FORTRAN Version 2: Interactive Debug Guide and Reference

11. An assumed size array cannot be listed byjust specifying the array name; the
I specificelementor range ofelementsmust be specified. (Anassumed size array is

an array with the last upper boundspecifiedas an asterisk (*).) This restriction
does not apply to arrays whose last dimension is "1" even though such arrays are
otherwise treated as assumed size arrays. However, only the elements whose last
subscript is "1" will be displayed if no subscripts are specified.

12. For array elements, subscriptsmay have values beyondthe range of the
correspondingarray dimensions. A warning message will be issued except in the
special case where the last dimension is "1" or and only the last subscript is
out of range.

13. Arraysubscripts may contain simplearithmetic expressions no morecomplex than
the form "variable plus (or minus) a constant." For example,

autolist ARY(I), autolist ARY(3), autolist ARY(I + 3),
or autolist ARY(I - 3)

I are valid forms.

Example 1

Display the value of the variable named NCOUNT whenever the program is
suspended or the screen is refreshed during animation.

autolist ncount

Example 2

Obtain a hexadecimal dump (FORMAT(X)) showing values of array variables
A(l,l) through A(2,3). The dump appears whenever the program is suspended or
the screen is refreshed during animation.

autolist a(1,1):a(2,3) format

Example 3

Display several variables in hexadecimal, each with as many bytes as are
appropriate for its data type. The informationappears whenever the program is
suspended, or the screen is refreshed during animation.

autolist (i,j/P,q,r) format

Example 4

Display an entire array (CHARAY) containing a series of 30-character alphabetic
stringsso that each character string is separated from the others. (If the array is
declared in the program to be a CHARACTER*30 array, then the elements of the
array willbe separated from each other when the array is listed.) The information
appears whenever the program is suspended, or the screen is refreshed during
animation.

autolist charay format(a30)

Chapters. Interactive Debug Commands 129

Example 5

n\
Display the value of the variable REALl in SUBl, ARRAY(I,J) in SIJB2, and
STRING, I, and J in the currently qualified program unit whenever the program is
suspended, or the screen is refreshed during animation.

autolist (subl.reall,sub2.array(i,j),string,i,j)

i Example 6

I Display the decimal number 12345 in hex whenever the program is suspended or
I the screen is refreshed during animation.

I autolist 12345 f(x)

130 VS FORTRAN Version 2: Interactive Debug Guide and Reference

BACKSPACE Command

The BACKSPACE command positions a sequentially accessed external file to the
beginning of the previous record. It is similar to the BACKSPACE statement in
the VS FORTRAN Version 2 language. This command allows you to move
backward in the file, for example to rewrite or reread a record.

Abbreviation: BACKSPAC, BACKS

— Syntax

BACKSPACE {number | [qual.{integer-variable |
[qual.]integer-array-element}

number

is the number of the I/O unit associated with the sequential file on which the
backspace is to be performed.

[qual.]uiteger-variable
is the name of an integer variable in the VS FORTRAN program. This
variable specifies the number of the I/O unit associated with the sequential
file on which the backspace is to be performed.

[quaI.]integer-aiTay-element
is the name of an element of an integer array in the VS FORTRAN program.
This element specifies the number of the I/O unit associated with the
sequential file on which the backspace is to be performed.

Notes

1 "Number," "integer-variable," or "integer-array-element" must be specified;
there is no default number.

2. This command may not be issued when//O is currently active.

3. When referring to array elements, the subscripts must usesimplearithmetic
expressions no morecomplex than theform "variableplus (or minus) a constant."
For example,

A(I), A(3), ARY(I+3) or ARY(I-3)

are valid.

Example

Backspace the sequentially accessed external file associated with 1/O unit 8 so that
the last record written can be rewritten.

backspace 8

For additional examples of the BACKSPACE command, see "Processing External
Files" on page 89.

Chapter 8. Interactive Debug Commands 131

CLOSE Command _

The CLOSE command disconnects a VS FORTRAN external file from an input or
output unit. Its usage is similar to that of the CLOSE statement in the VS
FORTRAN Version 2 language. This command allows you to close an external
file, for example to assign another file to the input or output unit, or to examine the
contents of the file.

Abbreviation: None

CLOSE {number | [qual.Jinteger-variable | [qual.]integer-array-element}

number

is the number of the I/O unit associated with the file that is to be closed.

[qual.]integer-variable
is the name of an integer-variable in the VS FORTRAN program. This
variable specifies the number of the I/O unit associated with the file that is
to be closed.

I [qual.Jinteger-airay-element
I is the nameof an element of an integerarray in the VS FORTRAN program.
I This element specifies the number of the I/O unit associated with the file
I that is to be closed.

Notes:

I 1. "Number," "integer-variable," or "integer-array-element" must bespecified;
I there is no default number.

2. This command may not be issued whenI/O is currently active.

3. Files used in theprogram but not explicitlyclosedwillstill be open when
Interactive Debug givesyou control at termination. Ifyou want to examine such a
file, you must CLOSE it first.

4. Under certain conditions, use of the CLOSE command may make it necessaryfor
you to use the RECONNECT command beforeyourprogram can perform
additional 1/O operations on the file. This situation occurs when the
OCSTATUS run-time option is in effect, and the program cannot be made to
execute an OPENstatement before doing more I/O to thefile. (See
"RECONNECT Command" on page 192.)

5. When referring to array elements, the subscripts'must use simple arithmetic
expressions no more complex than the form "variable plus (or minus) a constant."
For example,

A(I), A(3), ARY{I+3) or ARY(I-3)

are valid.

132 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Example undo- CMS

Reallocate an external output file for I/O unit 8.

close 8

sys filedef 8 disk output file a

Example under TSO

Reallocate an external output file for I/O unit 8.

close 8

sys allocate file(ft08f001) dataset(output.file)

For additional examples of the CLOSE command, see "Processing External Files'
on page 89.

Chapters. Interactive Debug Commands 133

COLOR Command

The COLOR command allows you to tailor the color and attribute setting of the
full screen display under ISPF Version 2. This command cannot be issued in a

I command list, as the command portion of an IF command, in an attention exit, or a
I restart file.

The COLOR command displays a panel that allows you to select the color,
highlighting and intensity of the various parts of the interactive debug panel. The
panel characteristics can be customized for each user.

You can save your color specifications from session to session in the ISPF profile
by entering SAVE on the command line when the color panel is displayed. If you
do not save a color specification, you are assigned the default. To restore the
default if you have changed a color setting, enter DEFAULT on the command line
when the color panel is displayed.

Enter END or use the END PF key to return to the debugging session.

Abbreviation: None

COLOR

Note: COLOR will operate as usual with a parameter list, but the panel will
include the message "PARAMETERS IGNORED."

The color and attribute selection panel is shown in Figure 27 on page 135

134 VSFORTRAN Version 2: Interactive Debug Guide and Reference

vs FORTRAN INTERACTIVE DEBUG (COLOR and ATTRIBUTE settings)

COMMAND ===>

COLOR HIGHLIGHT INTENSITY

Title : field headers WHITE NONE HIGH Enter:

output fields BLUE NONE LOW SAVE to save your

input fields YELLOW NONE LOW color settings.

Auto : autolist area TURQ NONE LOW DEFAULT to restore

Source : listing area WHITE REVERSE LOW default settings.

prefix area TURQ REVERSE LOW

suffix area BLUE REVERSE LOW END to return to

current line YELLOW REVERSE HIGH debug session with

breakpoints RED REVERSE HIGH current settings

TOF £ EOF line PINK REVERSE HIGH in effect.

bar graphs GREEN REVERSE HIGH

Log ; output lines GREEN NONE LOW

input lines YELLOW NONE HIGH COLOR and HIGHLIGHT

line numbers TURQ NONE HIGH are valid only with

Search target TURQ REVERSE LOW color terminals.

Field headers TURQ NONE HIGH

Valid COLOR : White Yellow Blue Turq Green Pink Red

Valid HIGHLIGHT : Uscore Blink Reverse None

Valid INTENSITY : High Low

Figure 27. Color and Attribute Selection Panel under ISPF Version2

Chapters. Interactive Debug Commands 135

DESCRIBE Command

The DESCRIBE command displays the data type of scalar variables or arrays, and
also supplies dimension information for arrays.

Abbreviation: DE

DESCRIBE {[quaLJname | ♦ | (name list)} [PRINT]

Iqual.]name
specifies the name of a variable, or array used in the program. The name can
be qualified by the name of a program unit.

specifies a list of all the names in the currently qualified program unit. The
type of each is displayed.

(name list)
specifies a list of names. Enclose the list in parentheses and separate
individual names with commas or blanks.

PRINT

specifies that the output be sent to the print data set instead of the terminal.

Notes:

1. In your output, dummy arguments are identified in the last column with the word
DUMMY.

2. Interactive Debug cannot determine the length of character variables that are
dummy arguments in an inactiveprogram unit. The length is displayed as
CHARACTER *(*). (Note that at ENTR Y, the program unit is not yet active.)

3. Dimension information is not displayedfor arrays that are dummy arguments in
an inactiveprogram unit, or that are defined only whenentered by some other
entry point. (Note that at ENTR Y, the program unit is not yet active.)

4. The upper boundfor the last dimension ofan assumed-sizearray is displayedas
an asterisk, and the size is indicated as * ELEMENTS.

136 VS FORTRAN Version 2: Interactive Debug Guide andReference

Example

Display the data type information for the variables I and R4, for array CM8ARY,
for the dummy array R8ASAR, for the dummy variable WHERE in program unit
SUBl, and for dummy array LIAYMN in program unit SUBl.

describe (i,r4,cm8ary,r8asar,sub1.where,sub1.llaymn)

The output from this command should look something like this:

SUB2.I;

SUB2.R4:

SUB2.CM8ARY:

RANK = 2,
DIM 1 :

DIM 2:

SUB2.R8ASAR:

RANK = 1,
DIM 1 :

SUBl.WHERE:

SUBl.LIAYMN:

RANK = 1;

SIZE =

EXTENT

EXTENT

SIZE =

EXTENT

21 ELEMENTS

= 3, LBOUND
= 7, LBOUND

* ELEMENTS

= », LBOUND

INTEGER*4

REAL*4

COMPLEX*8

{1), UBOUND
{1), UBOUND
REAL*8

(3)
(7)

DUMMY

(-3), UBOUND =
CHARACTER*(*) DUMMY
LOGICAL*1 DUMMY

DUMMY ARRAY ARGUMENT OF INACTIVE SUBPROGRAM OR
ALTERNATE ENTRY POINT

DIMENSION INFORMATION NOT AVAILABLE

(♦)

For additional examples of the DESCRIBE command, see "Displaying the Data
Types of Scalar Variables and Arrays" on page 77.

Chapters. Interactive Debug Commands 137

ENDDEBUG Command

The ENDDEBUG command provides two capabilities:

1. It allows you to discontinue debugging and run the program at full speed.
Except for entering limited commands after the program has terminated, no
debugging is available after using the ENDDEBUG command.

2. Using the SAMPLE option, you can initiate program sampling to obtain an
approximation of relative CPU time.

Abbreviation: None

ENDDEBUG [SAMPLE[(msecs)][MAXSAMP(n[,STOP])][CALLED 1]

SAMPLE [(msecs)]
indicates that sampling is to occur during subsequent execution, msecs is the
time interval in milliseconds between sampling interruptions; the default is
10 milliseconds.

MAXSAMP(n[,STOPl)
specifies the maximum number of sampling interruptions (n) that can occur.
If STOP is specified, the program will be terminated when the specified
number of samples is reached. Otherwise, the program will continue
execution without sampling interruptions after the specified number of
samples is reached. If MAXSAMP is not specified, sampling interruptions
will continue until the program terminates. MAXSAMP is valid only if
SAMPLE is specified.

CALLED

specifies that each sampling interruption is to be counted for each caller in
the save chain. This option may cause an appreciable increase in overhead
for the sampling function; however, it makes it much easier to determine
when CPU usage is primarily due to called subroutines. CALLED is valid
only if SAMPLE is specified.

If CALLED is not specified in the ENDDEBUG command, the CALLED
option will not be permitted the ANNOTATE and LISTSAMP commands.

Notes:

1. All breakpoints and WHEN conditions are removed and the HALT command
status is set to OFF.

2. TERMIO is set to LIBRAE Y.

3. Timing is turned offfor allprogram units.

4. The VS FORTRANlibrary will begin updating the occurrence countfor —,
execution-time errors. All error handling actions will be determined by the settings ' ^
in the VS FORTRAN error option table.

138 VS FORTRAN Version 2: Interactive Debug Guide and Reference

5. The attention exit will no longer allow entry of Interactive Debug commands. The
only Interactive Debug command allowed from an attention exit is QUIT, which
will terminate the VS FORTRANprogram. You will then be promptedfor
furttwr Interactive Debug commands. Entering QUIT a second time will
terminate the debugging session. To resume execution following an attention
interrupt, enter a null line.

6. At the end ofprogram execution. Interactive Debug willprompt for commands.
LISTTIME and LISTFREQ will show information that was current when the .
ENDDEBUG command was issued. WHERE information cannot be determined
after ENDDEBUG is issued.

I 7. Unless the program was compiledwith the TEST option, or SAMPLE was
I specified, execution willproceedat the same speedat which it would run if the

DEBUG execution-time option had not been specified.

Ifa program unit was compiled with the TEST option. Interactive Debug will still
be calledfor each VS FORTRAN statement in that program unit. While this
activity will not be apparent, there will be a slight increase in the time required to
execute your program.

I 8. IfSAMPLE wasspecified, program speed will be reduced due to the overhead
I involved in recording the sampling information at each interrupt. However, this
I overhead should not be greater than 15%.

I P. IfSAMPLE is specified without CALLED, the ANNOTATE settings (for the
r-_ I source window) are changed to ON. IfSAMPLE and CALLED are both

^ I specified, the settings arechanged to ON andCALLED.

10. ENDDEBUG is not permitted after the VS FORTRANprogram has terminated
or while a read is pending. If issued in an error exit, standard corrective action is
taken.

1 11. The BLIP is turned off when sampling is in operation and restored when sampling
I completes.

Chapters. Interactive Debug Commands 139

Example 1

Continue executing a program from the current statement to the end of the
program with no further debugging activity.

enddebug

Example 2

End debugging, but continue executing the program with sampling interruptions
every 10 milliseconds.

enddebug sample

Example 3

End debugging, but continue executing the program with sampling interruptions
every 20 milliseconds and CALLED counts accumulated.

enddebug sample(20) called

Example 4

End debugging, but continue executing the program with sampling interruptions
occurring every 40 milliseconds. Continue execution of the program without
interruptions if the number of interruptions exceeds 10,000.

enddebug sample(40) maxsamp(10000)

For additional explanation of the ENDDEBUG command, see "Continuing
Execution without Further Debugging" on page 93.

140 VS FORTRAN Version2: Interactive Debug Guide and Reference

ENDFDLE Command

The ENDFILE command writes an end-of-file record on a sequentially accessed
external file. Its usage is similar to that of the ENDFILE statement in the VS
FORTRAN Version 2 language.

Abbreviation: ENDF

— Syntax

ENDFILE {number | [qual.Jinteger-variable |
[qual.]integer-array-element}

number

is the munber of the I/O unit associated with the sequential file on which the
end-of-file record is to be written.

[qualjinteger-variable
is the name of an integer-variable in the VS FORTRAN program. This
variable specifies the number of the I/O unit associated with the sequential
file on which the end-of-file record is to be written.

[qual.]integer-array-element
is the name of an element of an integer array in the VS FORTRAN program.
This element specifies the number of the I/O unit associated with the
sequential file on which the end-of-file record is to be written.

Notes:

1. "number," "integer-variable," or "integer-array-element" must be specified; there
is no default number.

2. This command may not be issued when IlO is currently active.

3. Writing an end-of-file record erases all records that may follow.

4. When referring to array elements, the subscripts must use simple arithmetic
expressions no more complex than the form "variable plus (or minus) a constant."
For example,

ARY(I), ARY(3), ARY(H-3) or ARY(I-3)

are valid.

Emmple

Write an end-of-file record on the sequentially accessed external file associated
with I/O unit 8.

endfile 8

For additional examples of the ENDFILE command, see "Processing External
Files" on page 89.

Chapters. Interactive Debug Commands 141

ERROR Command

The ERROR command specifies whethercorrective action is to be performed or
executionis to be suspended, and whether messages are to be received for
execution-time errors. If execution is suspended, you may specify the corrective
action to be taken by issuingthe FIXUP command. For more information on
library error messages, see VS FORTRAN Version 2: Language and Library
Reference.

Abbreviation: ER

— Syntax

ERROR {error | errorierror | (error list)}

rMSG INOMSG] lEXTT | NOEXIT]

error

specifies a single error. It is the identification number of the error as defined
by the VSFORTRAN Version 2 or VSFORTRAN Version 1 library, or as
defined by an auxiliary product.

error:error

specifies a range of error identification numbers to whichall specified
keywords apply. —

(error list)
specifies a list of error numbers or ranges to whichall specified keywords
apply. Enclose the list in parentheses, and separate entries with commas or
blanks.

MSG

specifies that, if an execution-time error occurs among those listed, a full
diagnostic message is to be displayed. This is the default action.

NOMSG

specifies that, if an execution-time error occurs among those listed, no
diagnostic message is to be displayed.

EXIT

specifies that program execution is to be suspended if any of the listed errors
occur. This is the default action.

NOEXIT

specifies that the VS FORTRAN library is to take corrective action and
execution is to continue if any of the listed errors occur.

142 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Notes:

L The default options at thestartof a debugging session are toprovide all diagnostic
messages (MSG) and to suspend execution of theprogram ifany execution-time
erroroccurs (EXIT). Ifyourprogram callsERRSET, this will change thesettings
for the specified errors to MSG and NOEXIT.

2. If theEXITkeyword is in effect for a particularerror, youare notified of the
location and error number when the erroroccurs. You can then tracethe sequence
of control that led to the error location by issuing the WHERE command with the
TRBACK or FLOW keyword. If NOEXIT and NOMSG are both in effect, no
notification of error location or error number isgiven. IfMSG is in effect, the
error number will be contained in the error message.

3. Ifyou specify a largerange oferror numbers, the ERROR command may
generate a large number ofdiagnostic messages. You can use the PURGE
command in an attention exit to terminate ERROR if the messages are excessive.

4. IfNOEXIT has been specified, standard corrective action willbe taken unless you
have defined user corrective action by calling ERRSETfrom your VS FORTRAN
program. Execution will not be suspended in either case.

5. Not all VS FORTRAN library error numbers may be specified by the ERROR
command. Ifyou specifyone that may not,you willreceive thefollowing
message:

AFB198I VMOPP : ATTEMPT TO CHANGE UNMODIFIABLE MESSAGE TABLE
ENTRY, MESSAGE NUMBER 240

6. ERROR is not permitted after the VS FORTRANprogram has terminated.

Example I

You have set a variable to a negative value to test a condition but then realize that
the square root of the variable will be taken later. To avoid halting execution when
this occurs, you want the library to perform standard corrective action and continue
with no notification of the error. The error number for the square root of a
negative number is 251.

error 251 nomsg noexit

Example 2

If any single or double precision arithmetic execution errors (logs, trigonometric
functions, exponents) occur, you want Interactive Debug to provide full diagnostics
and to also take standard corrective action. The error numbers are 241 through
285.

error 241:285 noexit

For additional examples of the ERROR command, see "Handling Execution-Time
Errors" on page 86.

Chapters. Interactive DebugCommands 143

FIXUP Command

The FIXUP command may be used to specify corrected argument values when
execution has been suspended because of errors in a VS FORTRAN library
mathematical function. This command causes the function to be evaluated with
newarguments and execution to be continued. A FIXUP command withno
arguments causes standard corrective action to be taken.

Abbreviation: F

Syntax

FIXUP [ARGl(value)] [ARG2(value)]

ARGl (value)
specifies the value of the first argument of the function. The value can be a
variable, an array element, or a constant.

ARG2(value)
specifies the value of the secondargument of the function. The value can be
a variable, an array element, or a constant.

Notes:

1. FIXUP ispermittedonly when execution is suspendedfor a libraryfunction error.

2. If the libraryfunction for which FIXUP is to beperformed has two arguments,
you can specify a single value for eitherof the two arguments, oryou can specify
valuesfor both arguments.

3. Ifyou issue GO or FIXUP withoutarguments after an execution-timeerror,
standard correctiveaction is performed and execution is resumed.

4. You cannot change the actual valueof the variable in storage by using FIXUP.

I 5. When referring to array elements, the subscripts must usesimplearithmetic
I expressions no more complex than theform "variable plus (orminus) a constant."
I For example,

I A(I), A(3), ARY(I+3), or ARY(I-3)

I are valid.

144 VS FORTRAN Version 2: Interactive Debug Guide and Reference

r\

Example 1

Your program stops because of an arithmetic error. You want the library to
perform standard corrective action and to resume execution.

f ixup

Example!

Your program attempts to take the square root of a variable that is set to a negative
value. Instead of taking standard corrective action, you reset the negative variable
to a positive number and resume execution. (The value of the variable in storage
is not changed.)

fixup argi(36)

For additional examples and a discussion of error correction, see "Handling
Execution-Time Errors" on page 86.

Chapters. Interactive DebugCommands 145

GO Command

The GO command resumes program execution.

Abbreviation: None

Syntax

GO [[qual.]{number | EXIT}]

qual
specifies a program unit name to temporarily override the current qualifier
for this command. The qualifier must be the program unit that will be in
execution when the GO is executed.

number

specifies the statement identifier of an executable VS FORTRAN statement
at which execution is to be resumed. The statement identifier is a statement
label, an ISN, or a sequence number in columns 73 through 80. The type of
statement number used (ISN or sequence number) is determined by the
compiler and the options used. (See "Statement Identifier Conventions" on
page 114.) Precede a statement label with a slash. The statement must be
an executable statement with a debugging hook.

EXIT

specifies that Interactive Debug will resume execution of the program unit at
the exit point that corresponds to the entry point used.

Notes:

1. The statement identifier or EXIT keyword is optional, and is used if execution is
to resume at a specific point outside of the normal execution sequence. GO
withoutan operand causes execution to be resumed at the currently suspended
statement.

2. If execution has stopped because of an execution-time error, resuming it with GO
produces standard corrective action tofix the error. (GO with an operand is not
allowed in an error exit.)

3. Execution of the GO command is subject to the same language restrictions as the
GOTO statement in VS FORTRAN. Branches into DO-loops and inner
DO-loops (except from the extendedrange of the DO loop(LANGLVL(66) only))
willproduce unpredictable results.

4. The number or EXIT operand is not allowed with the GO command:

• In an error exit

• When execution is suspended at the ENTR Ypoint of a program unit

• When execution is suspendedfor output

• When execution is suspended during a termittal read

146 VSFORTRAN Version 2: Interactive DebugGuideand Reference

5. It isnot advisable tospecify a statement label orstatement identifier when
executing in a program unit that has been compiled with an optimization level
higher than zero. (This isbecause optimized code is highly dependent on register
contents.) Interactive Debug allows the operand, but will warn you (except in
batch mode) that theprogram unit is optimized and ask ifyou wish to continue.
Ifyou type YES, the GO will be executed.

6. GO is notpermittedafter the VS FORTRANprogramhas terminated. It is also
not permitted ifexecution is suspended during a terminal read.

Example 1

Yourprogram suspends execution at a breakpoint for debugging, and you now
want to resume execution at the currently suspended statement.

go

Example 2

Your program suspends execution at a breakpoint for debugging, and you now
want to skip ahead and resume execution at sequence number 410.

go 410

Example 3

Your program suspends execution at a breakpoint for debugging, and you have
changed the qualification to display variables in another program unit. You now
want to skip ahead and resume execution at the exit point of the program unit
currently executing, which is SUBl.

go subl.exit

Example 4

You know that program unit BUGGY produces incorrect results past the statement
labeled ICQ. For now, you want to set RESULT to the value A, and exit whenever
statement 100 is reached.

at buggy./IGO (set result = a ^ go buggy.exit) nonotify

Chapters. InteractiveDebug Commands 147

HALT Command

The HALT command causes execution to be suspended for every statement of a
given class, or at a specific point in a command list. The classes of statements are:
at the start of everystatement, or after every branch, or at entry to and exit from a
debuggable routine.

For more information on use of the HALT command under ISPF Version 2, see
"Using Interactive Debug Features under ISPF Version 2" on page 24.

Abbreviation: None

Syntax

HALT [OFF ISTMT | GOTO | ENTRY llMMEDl

OFF

specifies that the HALT setting in effect is to be terminated. This is the
setting when Interactive Debug execution begins.

STMT

indicates that execution is to be suspended before every executable
statement that has a debugging hook.

GOTO

indicates that execution is to be suspended whenever two consecutively
executed debugging hooks are not on consecutively stored statements. This
could occur for several reasons, including a GOTO, a DO group, a CALL, or
an IF statement. It also might occur if one or more statements have been
collapsed by optimization or vectorization, or because of hook restrictions
specified for ranges in AFFON, or when debug packets occur in the code.

ENTRY

specifies that execution is to be suspended whenever any debuggable
program unit is entered or exited. This could be as a result of a subroutine or
function call or return from a subroutine or function.

HALT ENTRY causes suspension of execution at the same points as AT
EXIT or AT ENTRY. At an entry breakpoint, the program unit is not yet
active. Thus, dummy arguments or variables in a dynamic common cannot
be accessed, and GO with an operand is not permitted.

IMMED

indicates that execution of an AT conunand list should be suspended
immediately and a prompt should be issued. This is the default action when
HALT is issued with no operand. In an attention exit, this will terminate the
current AT command list if one is executing.

148 VS FORTRAN Version2: Interactive Debug Guide and Reference

Notes:

1. You can issue a HALT IMMED command to terminate a command list. You can
also use HALT IMMED in an attention exit to terminatecommand loops. For
example: AT 5 (GO 5).

2. Ifa statement at which execution wouldnormally be suspendedby the current
HALT setting has an AT breakpoint with a command list that causes execution to
resume, the HALTsetting will not suspend that statement.

For example, ifHALT STMT is in effect but you have issued the command AT 5
(SET A=10 ^GO), execution will not be suspended at statement 5.

3. Any statement for which execution would be suspended by HALT GOTO will also
have execution suspended by HALT STMT.

Any statement for whichexecution wouldbe suspended by HALT ENTRY will
also have execution suspended by HALT GOTO and HALT STMT.

4. HALT is not permitted after the VS FORTRANprogram has terminated.

5. To see the current HALTsetting, type listbrks.

Extmple I

Suspend execution at entry to or exit from all debuggable units.

halt entry

Example 2

Suspend execution prior to executing each statement with a debugging hook in the
program.

halt stmt

Example 3

At statement identifier 10, halt execution if A is greater than B; otherwise,
continue executing with no notification of the breakpoint.

at 10 (if (a .gt. b) haltSSgo) nonotify

For additional examples of the HALT command, see "Controlling Program
Execution" on page 74.

Chapters. Interactive DebugCommands 149

I HELP Command OSFF Version)

The HELP command provides information about the description, format, and
keywords ofall Interactive Debug commands asweU asa task-oriented tutorial.
SeeAppendbc A, "Using the Interactive Debug HELP Facility" on page 219fora
description of HELP capabilities, procedures, and examples. The following form of
the command is intended for use in an ISPF environment.

Abbreviation: H (ISPF Version 2)

Syntax

HELP [command]

command

specifies the name of a command, or oneof the keywords TASK or MENU.
If no commandis specified, a HELP menu is displayed for further selection.
You cannot use a command abbreviation.

Notes:

1. If HELP is issued with no operand after an error has occurred in an Interactive
Debug command, theHELPpanelfor thatcommand isshown. Otherwise, the
HELP main menu is displayedfor you to selecta specifichelppanel.

2. The HELP commandcannot be usedas part of an AT command list or with an
IF command.

3. HELP TASK displays a menu of debugging tasks. From this menu, you may
requestfurther informationfor a specific task.

4. HELP or HELP MENU displays a menu of all commands available in the
Interactive Debug HELP facility. From this menu, you mayrequest further
informationfor a specificcommand in the menu.

Example I

Display a list of all available HELP command topics.

help

Example 2

Display HELP information for the LIST command.

help list

150 VS FORTRAN Version 2: Interactive Debug Guide and Reference

HELP Command (CMS Version)

The HELP command provides information about the description, format, and
keywords of all Interactive Debug commands as well as a task-oriented tutorial.
See Appendix A, "Using the Interactive Debug HELP Facility" on page 219 for a
descriptionof HELP capabilities, procedures, and examples. The following form of
the command is intended for use in a CMS line mode environment.

Abbreviation: H

Syntax

HELP [command [(ALL | (DESC | (PARM | (FORM]]

command

specifies the name of a command, or one of the keywords TASK or MENU.
If no command is specified, no other option may be specified; a HELP menu
is displayed for further selection. You cannot specify a command
abbreviation.

ALL

requests information about keywords and syntax of the named command.
This is the default action.

DESC

requests a description of the named command.

PARM

requests a description of the keywords of the named command.

FORM

requests a description of the syntax of the named command.

Notes:

1. The HELP command cannot be used as part of an AT command list, with an IF
command, or in batch mode,

2. In CMS line mode, HELP TASKdisplays a menu ofdebuggingtasks. From this
menu, you may requestfurther informationfor a specific task.

3. In CMS line mode, HELP or HELP MENU displays a menu ofall commands
available in the Interactive Debug HELPfacility. From this menu,you may
request further information for a specific command in the menu.

4. In CMS line mode, if HELP is issued withoutany operands after an error has
occurred in an Interactive Debug command, the HELP panelfor that command
will appear.

Chapter 8. Interactive Debug Commands 151

Example 1

Display a list of all available HELP command topics,

help

Example 2

Display all HELP information for the IF command.

help if

Example 3

Display HELP information for all ERROR command keywords.

help error (parm

152 VS FORTRAN Version 2: Interactive Debug Guide and Reference

HELP Command (TSO Version)

The HELP command provides information about the function, syntax, and
ke3rwords of all Interactive Debug conunands as well as a task-oriented tutorial.
See on Appendix A, "Using the Interactive Debug HELP Facility" on page 219
for a description of HELP capabilities, procedures, and examples. The following
form of the command is intended for use in a TSO line mode environment.

Abbreviation; H

— Syntax

HELP [command][ALL][FUNCTION][SYNTAX]

[OPERANDS [(keyword list)]]

command

specifies the name of a command, or one of the keywords TASK or
lADMENU. If no command is specified, no other option may be specified; a
list of commands is displayed for further selection. You cannot specify a
command abbreviation.

ALL

requests information about the function, syntax, and operands of the named
conunand. This is the default action.

FUNCTION

requests information about the function of the named command.

SYNTAX

requests information about the syntax of the named command.

OPERANDS [(keyword list)]
requests information about kejrwords for the named command. Enclose the
list in parentheses and separate the keywords in the list with commas or
blanks. If the list is omitted, all keywords, operands, notes, and examples for
the named command are explained.

Notes:

1 The HELP command cannot be used as part of an AT command list, with an IF
command, or in batch mode.

2. In TSO line mode, HELP TASK displays a menu ofdebugging tasks. You may
then issue another HELP command to request further information for a specific
task.

3. In TSO line mode, HELP lADMENU displays a menu of all topics available in
the Interactive Debug HELPfacility. You may then issue another HELP
commandfor a specific item in the menu.

Chapters. Interactive DebugCommands 153

4. In TSO line mode, if HELP is issued without anyoperands afteran error has
occurred in an Interactive Debug command, the HELPpanelfor thatcommand
appears.

5. In line mode, you can request thatnotes andexamples beshown by specifying
NOTES or EXAMPLES as a keyword with OPERANDS.

Example I

Display a list of all available HELP topics,

help

Example 2

Display all HELP information for the IF command.

help if

Example 3

DisplayERROR commandsyntax and HELP information for the EXIT keyword.

help error syntax operands(exit)

Example 4

Display the notes and examples for the GO command in addition to the syntax.

help go syntax operands (notes, examples)

154 VS FORTRAN Version 2: Interactive Debug Guide and Reference

IF Command

The IF command is used, usually within an AT command list, to test a relational or
a logical condition when the specified breakpoint is reached. If the condition is
true, the command specified within the IF command is executed.

Abbreviation: None

Syntax

IF (condition) command

(condition)
is the condition to be tested. It can be either a relational or a logical
condition.

command

is a single Interactive Debug command that is executed only if the specified
condition is true.

Relational condition: A relational condition is a signed or unsigned variable or array
element or constant, followed by a relational operator^ followed by another signed
or unsigned variable or array element or constant.

There are six relational operators that can be used to test relational conditions.

= or .EQ.

-.= or.NE.

> or.GT.

< or.LT.

>= or .GE.

<= or .LE.

Lineal condition: A logical condition is a logical variable or a logical array
element, optionally preceded by the negation operator (-• or .NOT.). No other
operators are permitted.

Notes

I The following is an example of the relational condition form of the IF command:

IF (A .GT. B) HALT

With the relational condition form of the IF command, the following is true:

• When either variable or constant is a logical or character type, both must be
of that same type, and no sign is permittedpreceding either variable or
constant.

Chapters. Interactive Debug Commands 155

• Wheneither variable or constant is a logical or complex type, only the
relational operators .EQ. and .NE. (or = and =) may be used.

2. Substring notation is permittedfor string variables.

3. For array elements, subscripts may have values beyond the range of the
corresponding array dimensions. A warning message will be issued except in the
specialcase where the last dimension is "1" or and onlythe last subscript is
out of range.

4. When referring to array elements, the subscripts must usesimplearithmetic
expressions no more complex than theform "variable plus (orminus) a constant."
For example,

ARY(I), ARY(3), ARY(H-3) or ARY(I-3)

are valid forms.

5. You cannot reference variables that are not currentlydefined, such as dummy
arguments in an inactivesubroutine.

6. Logical variables must have beenset to VSFORTRAN logicalconstantsfor
condition testing to produce predictable results.

7. Variables in different program units can be referenced by qualifying the variable
names with program unit names; for example:

IF (MAIN.A .LT. SUB1.B) SET SUB1.B = MAIN.A

8. The command specified with IF cannot be HELP, QUALIFY, or FIXUP. You
also cannot specify any of the full screen display commands.

9. When character variables or constants of unequal length are compared, the shorter
is considered to be extended with blanks during the comparison.

10. IF is not permitted after the VS FORTRANprogram has terminated.

Example 1

At the statement labeled 100, determine whether logical variable OVER is true,
and if it is true, reinitialize counter I and resume processing; if OVER is false,
continue processing without resetting 1.

at /ICG (if (over) set i=035go)

Example 2

At statement number 10, test if variable A in subroutine SUB is zero; if it is,
suspend execution; if A is not zero, continue processing.

at 10 (if (sub.a = 0.0) halt?5go)

156 VS FORTRAN Version2: Interactive Debug Guide and Reference

^ Example 3

At statement 5, test the following set of logical conditions; if either A or B is true,
go to the statement labeled 10 and continue processing; if neither is true, continue
processing at the next executable statement.

at 5 (if (a) go /^0%if (b) go /10 Xgo)

Example 4

At statement 7, if the first five characters of the variable SOLAR are ABODE, set
counter i to 2

at 7 (if (solar(1:5)='ABCDE') set 1=2)

Chapters. Interactive DebugCommands 157

LIST Command

The LIST command displays the values of specified scalar variables, arrays, array
elements,or string constants at the terminalor in a print data set. Valuescan be
displayed in a variety of formats. The specified or implied qualifier is shown with
all variable or array names and the array elements may be displayed outside the
defined dimensions. For more information on how to use LIST under ISPF
Version 2, see "Using Interactive Debug Features under ISPF Version 2" on
page 24. See also "Displaying Formatted Variable and Array Values" on
page 85.

Abbreviation: L

— Syntax

LIST {[qual.]name[:[qual.]name]| * | 'string' |

number | (specification list)}

[PRINT] [FORMAT [(code)] | DUMP [(code)]]

[qual.]name
specifies the name of a variable, array, or array element used in the program.
If a qualifier is specified, it overrides the current qualifier for the specified
name.

[qual.]name:[qual.]name
specifies a range of variable, array, or array element names used in the
program. If a qualifier is specified, it overrides the current qualifier for the
specified name.

LIST displays all storage locations between the two variables. Unless
FORMAT or DUMP is specified, the format of the displayed variables is the
same as the type of the first variable.

specifies that a list of all the names in the currently qualified program unit is
desired. Unless FORMAT or DUMP is specified, each is displayed
according to its own type.

'string'
specifies a character string to be displayed as a remark. You can use this
operand to help identify breakpoints.

number

I
I FORMAT option

specifies an integer or real numeric constant to be displayed as a remark.
This function is useful for converting numbers, in conjunction with the
cnnxif AT

158 VS FORTRAN Version 2: Interactive Debug Guide and Reference

speciHcatioii list
specifies a list of individual specifications. Enclose the list in parentheses
and separate entries with commas or blanks.

PRINT

specifies that output is to be sent to the print data set instead of to the
terminal.

FORMAT [(code)] or DUMP [(code)]
specifies a particular data format;

• FORMAT displays the names listed and their values in the specified
format.

• DUMP displays the address in storage of the names listed and their
values in the specified format.

• (code) specifies the format or dump code for the names to be listed. The
default format code is X. The default dump code is Z.

• FORMAT and DUMP are mutually exclusive.

FORMAT and DUMP codes for the LIST command are the same as for

the AUTOLIST command, and are shown again in Figure 28 on
page 160.

Chapters. Interactive Debug Commands 159

Code Output

LI Logical* 1

L4 Logical*4

12 Integer*2

14 Integer*4

R4 Real*4

R8 Real* 8

R16 Real*16

C8 Complex*8

C16 Complex* 16

C32 Complex*32

L Logical with size closest to internal data size

I Integer with size closest to internal data size

R Real with size closest to internal data size

C Complex with size closest to internal data size

X[nnn] Hexadecimal with nnn bytes per data item
(default to internal data size)

Z[nim] Hexadecimal with nnn bjrtes per data item
(default to Z4)

A[nim] Character with nnn bytes per data item
(default to internal data size)

H[nnn] Character with nnn bytes per data item
(default to continuous full line output)

Figure 28. DUMP and FORMAT Codes for the LIST Command

Notes:

1. When you request an individual name or listof names, thedefaultformatting of
values isdetermined bythe type of eachname being displayed. When yourequest
a rangeof names, theformatting of the values is determined bytheformat of the
first name in therange. You may, however, specify a different format using the
FORMAT or DUMP keyword. The locations of the listednamesare identified in
the output only ifDUMP is specified.

2. VSFORTRAN definesstorage layoutonlyfor arrays, variables in a common
block(defined in a COMMONstatement), and variables in equivalence groups
(defined in an EQUIVALENCE statement). The relative positions ofanyother
names in storage cannot bepredicted. Names that you may expectto be adjacent
in storage may be widely separated byother data. Therefore, a range specification
for namesother than array, equivalence, or common variables mayproduce
unexpected results.

3. The length specification in a FORMAT or DUMP codemay be entered with 1
through 3 digits. Thus, 14,104, and 1004 are equivalent.

160 VS FORTRAN Version 2: Interactive Debug Guide and Reference

4. A length specification of 0 in character and hexadecimal FORMAT and DUMP
codes (for example, AO or ZD) causes the data to be displayed as a continuous
string, rather than split into pieces ofsome specified length.

5. If a FORMAT or DUMP code with no length specification is givenfor a range of
variables or array elements, each variable or array element is displayed separately
in the specifiedformat. However, if a length specification is given. Interactive
Debug will consider the entire storage area occupied by all the range of variables
or array elements, or occupied by the entire array, as if it were broken into pieces,
each with a length equal to that specified in the DUMP or FORMAT code, and
will display each piece according to the specifiedformat. For example, if
PRIMES is a 2 X 3 array of INTEGER *4 values, then:

list primes format(x)

will cause a display of 6 values, each correspondingto an element of the array.
However:

list primes format(x2)

willcause a displayof 12 values, each displaying the contents ofsuccessive 2-byte
storage areas within the array.

I 6. TheDUMP option is notpermitted with constantoperands, includingstrings;
I using it willproduce an error message.

I 7. An assumed size array cannot be listedbyjust specifying the array name; the
, I specific element or rangeofelements must bespecified. (An assumed size array is

I an array with the last upper bound declarator specified as an asterisk (*).) This
I restriction does notapply toarrays whose lastdimension is "1," even though such
I arrays are otherwise treated as assumed size arrays. However, only theelements
I whose lastsubscript is "I" will bedisplayed if nosubscripts are specified.

I 8. For array elements, subscripts mayhave values beyond the rangeof the
I corresponding arraydimensions. A warning message will be issued except in the
I special case where the last dimension is "I" or and only the lastsubscript is
I out of range.

I 9. Array subscripts must consist of simple arithmetic expressions no more complex
I than theform "variable plus (orminus) a constant."For example,

I list ARY(I), list ARY{3), list ARY(I + 3) or list ARY(I - 3)

I are valid.

10. Dummyarguments can onlybe displayed when theprogram unit in which theyare
defined is active. If not, an error message is issued. Results are unpredictable if

I you display a dummy argument that is notdefined at the entrypoint called. Note
I that a program unit is notyet active when suspendedat entry.

11. Variables in dynamiccommons can only be displayedif theprogram unit used to
qualify the variablehas been activatedat least once. (If not, an error message
may be issued. However, ifa variablehas a large displacement in its dynamic
common. Interactive Debug cannot detect that it is not initialized.)

Chapter 8. Interactive Debug Commands 161

12. Although a quotedstring can be usedas an operandon the LIST command, you
cannotpoint the cursor at a quotedstring in the source listing window (when using
LIST as a cursor-oriented command).

Example 1

Display at the terminal the value of the variable named NCOUNT.

list ncount

Example 2

Obtain a hexadecimal dump (FORMAT(X)) showing values of array variables
A(l,l) through A(7,10). Have the display sent to the print data set.

list a{1,1);a(7,10) print format

Example 3

I List the decimal number 12345 in hex.

I list 12345 f(x)

Example 4

Display an entire array (CHARAY) containing a series of 30-character alphabetic
strings so that each character string is separated from the others. (If the array is
declared in the program to be a CHARACTER*30 array, the elements of the array
wUl be separated from each other when the array is listed.)

list charay format(a30)

Example 5

Display the value of the variable named CTR in subroutine SUBl.

list subl.ctr

Example 6

Display the message "inside loop" whenever ISN 100 is executed.

at 100 (list 'inside loop'?5go)

Example 7

Display variable LONG NAME VAR in program unit SUBl, and variable
SHORT in program unit SUB2. This illustrates the LIST format in support of long
(31 character) names. Note that long names cause a line break to allow alignment
of the "="s without excessive horizontal spread.

list (subl.long_name_var,sub2.short)
SUBl.LONG_NAME_VAR

10

SUB2.SHORT = 25

162 VS FORTRAN Version 2: Interactive Debug Guide andReference

I Eiaimple 8

I Display values of the second through sixth characters in the character variable
I PORT

I list PORT(2;6)

For additional examples of the LIST command, see "Displaying Formatted
Variable and Array Values" on page 85.

Chapters. Interactive Debug Commands 163

LISTBRKS Command

The LISTBRKS command provides the following information:

• All breakpoints that are currently set, including entry, exit, and statement
breakpoints

• All WHEN conditions (both on and off) that are currently defined, and the
condition being tested

• The current HALT status (OFF, STMT, GOTO, or ENTRY)

Abbreviation: LB

LISTBRKS [PRINl]

PRINT

specifies that output is to be sent to the print data set instead of to the
terminal.

Note: LISTBRKS lists breakpoints and WHEN conditions for all program units.

Example

The following is a sample of the output produced by LISTBRKS:

CURRENT BREAKPOINTS:

MAIN.15/30
SUB.ENTRY

SUB.8/10
CURRENT WHEN CONDITIONS:

ABCD ON (SUB.X > 5)
EFGH ON (CH(1:2)='AB')

CURRENT HALT STATUS: OFF

For additional examples of the LISTBRKS command, see "Referring to Statements
or Variables in Other Program Units" on page 70,

164 VSFORTRAN Version 2: Interactive DebugGuideand Reference

LISTFREQ Command

The LISTFREQ command lists the number of times statements in the currently
qualified program unit have been executed. This command can also be used to list
the statements that have not been executed.

Abbreviation: LF

— Syntax —

LISTFREQ [[qual.]{number[:[qual.]number] | ENTRY | EXIT} |

(number/ENTRY/EXIT list)]

[ZEROFREQ] [PRINT]

qual
specifies a program unit name prefix to temporarily override the current
qualifier for the prefixed operand only.

number

specifies the statement label, ISN, or sequence number of an executable VS
FORTRAN statement whose execution counts are to be listed or checked for
zero. Precede a statement label with a slash to distinguish it from an ISN or
sequence number.

number:[qual.]number
specifies a range of statement labels or statement numbers (ISNs or sequence
numbers) whose execution counts are to be listed or checked for zero.
Statement labels can be combined with ISNs or sequence numbers in the
range specification, but the first and last must be executable statements.
Precede each statement label with a slash.

Statement identifiers can be qualified with a program unit name. The default
program unit for the first identifier is the current qualifier. The default
program unit for the second identifier is the program unit specified or
defaulted for the first identifier. Both identifiers must have the same

program unit in effect.

ENTRY

specifies entry points. The frequency of entry into the program unit is
specified.

EXIT

specifies exit points. The frequency of exit from the program unit is
specified.

(number/ENTRY/EXIT list)
requests a list of statement labels, ISNs or sequence numbers, entry points,
exit points, and ranges. (Note that ENTRY and EXIT are not permitted in a
range.) The frequency for each specified statement is listed. Enclose the list

^ ^ in parentheses, with individual entries separated by commasor blanks.
Precede each statement label with a slash.

Chapters. Interactive Debug Commands 165

ZEROFREQ
requests a list of statements that have not been executed. All statements
may be tested, or specific statements may be specified using the options
discussed above.

PRINT

requests that the output go to a print data set instead of to the terminal.

Notes:

1. If no operand is specified, the counts are displayed for ENTR Y, EXIT, and all
executable statements with debugging hooks in the currently qualified program
unit.

2. If LISTFREQ is issued after an ENDDEBUG command, the execution counts
displayed are those that existed when ENDDEB UG was issued.

3. Execution counts of unhooked or collapsed statements are not displayed. Instead,
you will see the phrase "NO HOOK" or "COLLAPSED STMT."

4. Before a RENTprogram unit is first entered, all statements are considered to have
no hook. Statements in a reentrant program unit that are excluded in the AFFON
file will show "COLLAPSED STMT" on the LISTFREQ display.

5. After ENDDEBUG is issued, LISTFREQ displays counts for all noncollapsed
statements.

6. Statements in a debug packet will be treated as collapsed in VS FORTRAN
programs compiled prior to Version 1 Release 4.0. If the program is compiled
with VS FORTRAN Version I Release 4.0 or later, the debug statements are
inserted directly into the code and LISTFREQ will show duplicate statements in
addition to the DEBUG packet code.

7. Ifyou request ZEROFREQ, Interactive Debug displays only hooked statements
that have not been executed.

Example I

On the print data set, list how many times each executable statement in the
currently qualified program unit has been executed.

listfreq print

Your output might look something like this:

STATEMENT FREQUENCY
MAIN.ENTRY NO HOOK

MAIN.EXIT NO HOOK

MAIN.6 1

MAIN.7 COLLAPSED STMT

MAIN.8 COLLAPSED STMT

MAIN.9 NO HOOK

MAIN.10 3

MAIN.11 3

MAIN.12 NO HOOK

MAIN.13/10014 NO HOOK

166 VSFORTRAN Version 2: Interactive Debug Guide and Reference

Example 2

List the statements that have not been executed in the currently qualified program
unit.

listfreq zerofreq

Example 3

List how many times some specific statements have been executed in the currently
qualified program unit.

listfreq (10:/80,300,/95,/105,ENTRY)

listfreq (20:130 ENTRY 250 /1000)

Example 4

List how many times the executable statements 12 through 15 in subroutine SUBl
have been executed.

listfreq subl.12:sub1.15

For additional examples of the LISTFREQ command, see "Determining Statement
Execution Frequency" on page 78.

Chapters. Interactive Debug Commands 167

I USTEVGS Command

COMMAND ===>

The LISTINGS command displays the listings data set specification panel under
ISPF version 2. This provides a command equivalent to tjrping "?" in the Q: field.

Abbreviation: None

LISTINGS

Notes:

1. LISTINGS cannot be issued in a command list, as the commandportion of an IF
command, in an attention exit, or a restart file.

2. LISTINGS willoperate as usual with a parameter list, but the panel will indicate
the message "PARAMETERS IGNORED."

Example

When you issue the LISTINGS command, a Listings Data Set Specification Panel,
similar to Figure 29, will be displayed.

VS FORTRAN INTERACTIVE DEBUG ROW 1 OF 4

SCROLL ===> HALF

PROGRAM UNIT NAME

MAIN_PROGRAM
SUB1
SUB2

CMS FILE ID

FORTPROG LISTING

SUB1 LISTING

SUB2 LISTING

SUB1 LISTING

SOURCE

NO

YES

NO

NO

FILE NOT FOUND

FILE NOT USABLE

PROGRAM NOT FOUNDSUBROUTINES

BOTTOM OF DATA

Figure 29. The Listings Data Set Specification Panel in CMS

The column labelled "PROGRAM UNIT NAME" identifies the debuggable VS
FORTRAN program units. The second column, "CMS FILE ID," indicates the
names of files where the listings are to be found. In the column labelled
"SOURCE," YES indicates that the listing will be displayed in the Source Listing
Window.

In the last column, the CMS message FILE NOT FOUND indicates that the
specified file was not found on any of your accessible disks. The equivalent TSO
message is DATA SET NOT FOUND. The message PROGRAM NOT FOUND
indicates that the listing file was found, but did not contain the named program (in
this case, SUBROUTINES). The FILE NOT USABLE message indicates that the

168 VS FORTRAN Version 2: Interactive Debug Guide and Reference

I data set was found but cannot be used as a listing in the source window. Under
I TSO, the message is DATA SET NOT USABLE.

I After filling in the listings data set specification panel, you return to the execution
I panel by entering end, usually PF key 3.

Chapters. Interactive Debug Commands 169

I USTSAMP Command

The LISTSAMP command lists sampling counts by statement or by program unit.
Percentage of program unit samples and percentage of total number of samples are
also listed, along with a bar chart of the sampling counts.

Abbreviation: None

Format 1

Syntax for Listing Sampling Counts by Statement

LISTSAMP {[qual.]mmiber[:[qual.]number]

I [qual.]ENTRY | [qual.]* | (specification list) 1 *.*}

rPIRECTirCALLEDirALLI [TOP[(n)]][PRINT]

Format 2

— Syntax for Listing Sampling Counts by Program Unit -

LISTSAMP {unit name | (unitname list) | ♦} SUMMARY

[DffiECI][CALLED][ALL] [TOP[(n)]][PRINT]

[qual.]number
is the statement label, ISN, or sequence number of an executable statement
whose sampling information is to be listed. Qualification is optional. A
statement label must be prefixed with a slash (/).

Iqual.]number:[qual.]number
specifies a range of statements in the program whose sampling information is
to be listed. Qualification is optional. If the second qualifier is specified, it
must be the same as that specified for the first qualifier.

[qual.]ENTRY
indicates that the sampling count for the entry and exit code of the specified
or currently qualified program unit is to be listed. There is only one sampling
count to cover both entry and exit code.

[qual.]'*'
indicates that all statements in the specified or currently qualified program
unit are to be included.

speciEcation list
specifies a list of individual specifications. Enclose the list in parentheses
and separate entries using commas or blanks.

•K *

includes all statements in all programming units.

170 VS FORTRAN Version2: Interactive Debug Guide and Reference

unitname

specifies the name of a program unit whose sampling summary is to be listed.
This must be a VS FORTRAN unit compiled with SDUMP.

unitname list

specifies a list of program unit names separated by commas or blanks.

indicates that all program units, debuggable or not, are to be included. In
addition, there are two special names that are reported when is specified:

""LIBRARY shows the sampling count accumulated for all VS
FORTRAN Library modules other than the mathematical functions and
the Error Monitor. This includes lower-level calls to system services.

♦UNKNOWNshows the count of sampling interrupts that could not be
assigned to any program unit.

SUMMARY

indicates that sampling counts are to be summarized by program unit. This
keyword is only allowed in format 2.

DIRECT

indicates that interruptions occurring in the code are to be included in the
sampling counts for that code. DIRECT is the default.

CALLED

indicates that interruptions occurring in lower-level routines are also to be
included in the sampling counts of the code being sampled. This option is
valid only when sampling is initiated with the CALLED option.

ALL

indicates that sampling counts are to be the sum of the DIRECT and
CALLED counts.

TOP(n)
indicates that only the number of statements specified by n (or programming
units, if the SUMMARY option was specified) having the highest counts are
to be listed. The output is sorted in descending order by count. The default
for n is "1"; the maximum value is "9999."

If TOP is not specified, the output is in the order shown in the specification
list, and within that by statement table order.

PRINT

indicates that output is to be written to the print data set instead of to the
terminal.

Chapters. Interactive DebugCommands 171

Notes:

1. The LISTSAMP command is valid only when sampling has been performed.

2. Qualifiers and unit names are restricted to VS FORTRANprogram units
compiled with SDUMP.

3. Non-FORTRANprogram units (and units compiled with NOSDUMP) are
identified by the entry ID located using the value of GPR 15 saved in the
savearea. Programs that do not follow MVS standards for entry identifiers will
not be correctly identified. Note that the entire ID string is shown, up to 31
characters. This often includes blanks and additional information such as date
and time of compilation.

4. Sampling counts for nondebuggable program units cannot be requested by name;
however, the operand with the SUMMAR Y option will show sampling counts
for both debuggable and nondebuggable program units, including VS FORTRAN
library counts.

Example 1

Display a summary of the sampling counts for all program units

listsamp * summary

PROGRAM SAMPLING INTERVAL WAS 20 MS; TOTAL NUMBER OF SAMPLES
WAS 9745.

DIRECT SAMPLES:

PROGRAM UNIT SAMPLES S5T0TAL

MAIN 613 6.35 *

SUBl 15 0.15

SUB2 5763 59.71

SUBS 1882 19.31

S#IN 1251 12.83

♦LIBRARY 128 1.31

♦UNKNOWN 93 1.01

Example 2

Display a summary of the sampling counts for SUBl and SUB2

listsamp (sub1,sub2) summary

PROGRAM SAMPLING INTERVAL WAS 20 MS; TOTAL NUMBER OF SAMPLES
WAS 9745.

DIRECT SAMPLES;

PROGRAM SAMPLES J5T0TAL

SUBl 15 0.15

SUB2 5763 59.71 ♦♦♦♦♦♦♦♦♦♦♦♦

172 VS FORTRAN Version2: Interactive Debug Guide and Reference

Example 3

Display the sampling counts for a range of statements in SUB2. (Sampling counts
will include interruptions which occurred in the code of a statement as well as in
any lower-level routines called by the statement.)

listsamp sub2.10:20 all

PROGRAM SAMPLING INTERVAL WAS 20 MS; TOTAL NUMBER OF SAMPLES
WAS 9745.

SUM OF DIRECT AND CALLED SAMPLES:

STATEMENT SAMPLES S5UNIT 35TOTAL

SUB2.10/10 1142 73.15 12.53

SUB2.11/12 231 15.42 3.02

SUB2.13 12 1 .22 0.15

SUB2.15 COLLAPSED

SUB2.16 22 2.38 0.32

SUB2.18 14 1 .24 0.16

SUB2.20 46 5.17 0.77 *

Example 4

Display the four highest counts in SUB2. (Sampling counts will include
interruptions which occurred in the code of a statement as well as in any
lower-level routines called by the statement.)

listsamp sub2.» top(4) all

PROGRAM SAMPLING INTERVAL WAS 20 MS; TOTAL NUMBER OF SAMPLES
WAS 9745.

SUM OF DIRECT AND CALLED SAMPLES:

STATEMENT SAMPLES 55UNIT
SUB2.10/920 1142 73.15
SUB2.il/930 231 15.42
SUB2.20 46 5.17

SUB2.ENTRY/EXIT 42 4.92

S8T0TAL

12.53 ♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

3.02 »»♦

0.77 ♦

0.72 »

Chapters. Interactive Debug Commands 173

LISTSUBS Command

The LISTSUBS command displays a list of all VS FORTRAN program units
compiled with SDUMP, including those not listed in AFFON, with the following
information for each:

Compiler level used to produce the object code (if it can be determined)

Optimization level

Vectorization level

Hook existence

Timing status

Load status for units compiled with RENT

Abbreviation: LS

Syntax

LISTSUBS [PRINT]

PRINT

specifies that output is to be sent to the print data set instead of to the
terminal.

Example

The following is a sample of the output produced by LISTSUBS:

PROGRAM UNIT COMPILER OPT HOOKED TIMING

MAINLINE VSF 2.2.0 V2 YES ON

SUBBUILD VSF 1.4.0 3 NO OFF

SUBDOWN VSF (TEST) 0 YES OFF

SUBREFIT VSF 1.3.1 1 NO ON

In the sample output above, VSF (TEST) means that the program unit was
compiled prior to VS FORTRAN Version 1 Release 4.0, and the TEST option was
specified. In this case, it is not possible to determine the VS FORTRAN release
level.

For nonvectorized programs, the "OPT" column displays the level of optimization:
0, 1,2, or 3. For vectorized programs, the "OPT" column in the output displays
one of the following values:

VI

V2

VECTOR (LEVEL(l))

VECTOR (LEVEL(2))

If the program unit has been vectorized, the optimization level is always 3, and is
not shown.

174 VSFORTRAN Version 2: Interactive DebugGuide and Reference

I YES means that hooks are installedat entry and exit pointsand possibly at someor
^ I all statement boundaries as well. The hook settingsare controlledby the AFFON

1 file. NO in the "HOOKED" column indicates that no hooks are installed in the
I program unit.

I ON in the "TIMING" columnindicates that timing has been activatedfor the
1 program unit. The TIMERcommand is used to set timing ON or OFF.

The possible load status indications for RENT program units are:

RENT NOT LOADED The program unit has not yet been called, and has not
been located (although it may actually be in storage).

RENT IN USER AREA The program unit has been called and is in user-owned
storage.

RENT IN PROT AREA The program imit has been called and is in protected
storage.

For additional examples of the LISTSUBS command, see "Displaying Information
about Debuggable Program Units" on page 69.

Chapters. Interactive DebugCommands 175

USTTIME Command

The LISTTIME command displays timings for all program units for which timing is
active or was previously active. The TIMER command activates timing for a unit.

See the TIMER command for more information on activating timing.

Abbreviation: LT

Syntax

LISTTIME [PRINT]

PRINT

specifies that output is to be sent to the print data set instead of to the
terminal.

Notes:

1. The timing information provided by Interactive Debug may include overhead
caused by the debugging hooks in yourprogram. Thus, the timing information is
not an accurate representation of the time it takes to execute without Interactive
Debug.

2. Timing for verysmall subroutines may be erratic.

3. Timing is measured separatelyfor each entry point in the program unit.

4. IfLISTTIME is issued after an ENDDEBUG command, the times and
activation counts are those that existed when ENDDEBUG was issued.

Example

The following is a sample of the output produced by LISTTIME:

ENTRY POINT TASK TIME (MIC) PERCENT INVOCATIONS
MAIN 31680 48.48 1
SUBA1 4128 6.32 2

SUBA2 28544 43.68 15
SUBB 942 1.52 1

For additional examples of the LISTTIME command, see "Displaying Timing
Information" on page 82.

176 VSFORTRAN Version 2: Interactive Debug Guide and Reference

MOVECURS Command

The MOVECURS command is used under ISPF Version 2 to move the cursor

between the source window and the command line. It can be used only in full
screen mode under ISPF Version 2, and is invalid if used in any other environment.
It cannot be issued in a command list, an IF command, an attention exit, or a
restart file.

See "Using Interactive Debug Features under ISPF Version 2" on page 24 for
more information.

Abbreviation: MC

MOVECURS

Notes:

1. If the cursor is anywhere outside the command line when you give the
MOVECURS command, the cursor is returned to the command line. If the
cursor is already on the command line, it will be positioned at the most recent
position in the source window (if the position is known and available). Otherwise,
it is positioned at the beginning of the source window.

2. You may find it convenient to redefine the ISPF "CURSOR " PF key to issue the
MOVECURS command. To do this, enter the ISPF command KEYS on the
ISPF command line. You will then see a list of all current PF key assignments.
You can change the CURSOR key (usually PF 12) to MOVECURS by typing
MOVECURS TKxt to the appropriate PF key number andpressing ENTER.

Chapters. Interactive DebugCommands 177

NEXT Command ^

The NEXT command suspends program execution at the next statement, entry, or
exitwith a debugging hook. Because some statements may not have beenincluded
in the AFFON list or may have been collapsed, executionneed not necessarily be
suspended at the next statement to be executed.

Abbreviation: N

Syntax

NEXT

Notes:

1. There are no operandsfor the NEXT command.

2. You are notified of thepoint where execution is suspended because of NEXT.

3. NEXTsuspension is not a breakpoint. It is not listedby LISTBRKS.

4. Certain commands are not allowed while I/O is active. When execution is
suspendedfor output, theNEXT command can be issued tocause execution to be
suspended again after the completion of the I/O operation. At the nextstatement
boundary with a debugging hook, execution willbe suspended, and you may issue
other commands.

5. UnderISPF, when an InteractiveDebug command (or commands in a command
list) produces more lines of output than theoutput halt value, a NEXT isforcedto
ensure that the output is displayed. A message willappear in the ISPF message
area of the terminal, stating:

"NEXT" FORCED FOR OUTPUT

Thedefaultfor the outputhalt value is 50 lines, butyou can changethis value on
the PROFILE panel under ISPF Version 2.

6. If thestatement at which execution is to besuspended has a breakpoint set with an
AT command, includinga command list that causes execution to resume, the
NEXT command will not cause execution to be suspended at that statement.

7. NEXTis notpermitted after the VSFORTRAN program has terminated.

8. The STEP command can be issued to replace NEXT/GO combinations. See
"STEP Command" on page 203 for more information.

178 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Example 1

Suspend execution after executing one statement.

AT: MAIN.10

next

go

NEXT: MAIN.11

next

go 40
NEXT: MAIN.40

Example 2

You are in an error exit, and want to suspend execution after having performed
corrective action.

ERROR EXIT: ERROR 209 AT MAIN.11

next

f ixup
STANDARD CORRECTIVE ACTION TAKEN. EXECUTION CONTINUING.
NEXT: MAIN.12

For additional examples of the NEXT command, see "Controlling Program
Execution" on page 74.

Chapters. Interactive DebugCommands 179

OFF Command ^

The OFF command removes breakpoints in the currently qualified program unit.

OFF can also be used without parameters as one of the cursor commands under
ISPF Version 2. For more information, see "Using Interactive Debug Features
under ISPF Version 2" on page 24.

Abbreviation: None

— Syntax

OFF [qual.] {number[:[qual.]number] | ENTRY | EXIT} | * |

(number/ENTRY/EXIT list)

qual
specifies a program unit name prefix to temporarily override the current
qualifier. The program unit name is used for the prefixedoperand only.

number

specifies the statement label, ISN, or sequence number of a single breakpoint
you want to remove. Precede a statement label with a slash to distinguish it
from an ISN or sequence number.

number:lqual.]number
specifiesa range of statement labels and/or statement numbers (ISNs or
sequence numbers). Breakpoints set at any statement within the range are
removed. Statement labels and statement numbers (ISNs or sequence
numbers) can be combined in the range. Precede each statement label with
a slash.

Statement identifiers can be qualified with a program unit name. The default
program unit for the first identifier is the current qualifier. The default
program unit for the second identifier is the program unit specified or
defaulted for the first identifier. Both identifiers must have the same

program unit in effect.

ENTRY

specifies that the entry breakpoint is to be removed.

EXIT

specifies that the exit breakpoint is to be removed.

♦

specifies that all breakpoints will be removed from the qualified program
unit.

(number/ENTRY/EXTT list)
specifies a list of statement labels, ISNsor sequence numbers, entry points,
exit points, and ranges of numbers. Breakpoints set at each specified
statement and within each range are removed. Enclose the list in

180 VS FORTRAN Version 2: Interactive Debug Guide and Reference

r^.
parentheses, and separate entries with commas or blanks. Precede each
statement label with a slash.

If the number of a statement that does not have a debugging hook is entered
in the number list, an error message is issued but breakpoints are still
removed from the remaining statements.

Notes:

1. OFF with no operands is only valid when used as a cursor command under ISPF
Version 2.

2. OFF is not permitted after the VS FOR TRANprogram has terminated.

Example I

Remove all breakpoints in the currently qualified program unit.

off »

Examjde 2

Remove breakpoints at statement numbers 120 and 560 in program SUBl.

off (sub1.120 sub1.560)

Example 3

Remove specific breakpoints in the currently qualified program unit.

off (20:80 /100 ENTRY)

Chapters. Interactive DebugCommands 181

OFFWN Command

The OFFWN command turns off the monitoring of WHEN conditions.

Abbreviation: None

Syntax

OFFWN condition name I * I (condition name list)

condition name

specifies the 1- through 4-character name of a WHEN condition that is
currentlybeing monitored and that you want to stop monitoring.

turns off aU WHEN condition monitoring.

(condition name list)
specifies a list of such WHEN condition names. Monitoring isstopped for all
of them. Enclose the list in parentheses,with individual names separated by
commas or blanks.

Notes:

1. Use of OFFWN to turn off monitoring of a condition does not remove the
definition of the condition. Any condition can bereactivated by using the WHEN
command.

2. Tosee the currentlydefined conditions, use the LISTSRKS command.

3. OFFWNis notpermitted after the VS FORTRANprogram has terminated.

Example 1

Stop monitoring all WHEN conditions.

offwn »

Example 2

Stop monitoring a certain WHEN condition called ABS.

offwn abs

For additional examples of the OFFWN command, see "Controlling Program
Execution" on page 74.

182 VS FORTRAN Version 2: Interactive Debug Guide and Reference

POSITION Command

The POSITION command positions the cursor in the log file at a specified log line,
or in the source window at a specified ISN or sequence number. This command is
valid only under ISPF Version 2, and cannot be issued in a command list, an IF
command, an attention exit, or a restart file.

Abbreviation: POS

Syntax

POSITION number

number

specifies either a statement number (an ISN or sequence number), or a log
line number to be used as the target. If the cursor is within the source
window. Interactive Debug interprets the number as an ISN or sequence
number. Otherwise, it is interpreted as a log line number.

Notes:

1. If the search is successful, the cursor is placed at the beginning of the ISN or
sequence number, or at the log line number.

2. If the search is successful, the log or source listing is scrolled vertically so the
target line is displayed as the first line on the screen (unless it is already displayed
in the current ISPFpanel).

3. If the statement number or log number is not found, you will receivethe message
"TARGET NOT FOUND" in the upper right comer of the screen.

4. Only the last 1000 lines of the log are available for display during the debugging
session. A target located belowthe last 1000 lines will cause POSITION to
respond with the message "TARGET NOT FOUND."

5. Ifyou issue POSITION without a parameter, you receive the message
"PARAMETER MISSING."

6. Ifyou issue POSITION witha nonnumericparameter, you receive the message
"INVALID PARAMETER(S)."

7. Sequence numbers (in columns 73 through 80) can be used onlyfor program units
that were compiledwith VSFORTRAN Version 2 with the SDUMP(SEQ)
option. In all other cases, ISNs must be used.

8. Ifyou have MOVECURS assigned to a PF key, you can type the POSITION
command on the command line. Then, without pressing ENTER, press the
MOVECURS PF key to move the cursor to the source window, andfinally press
ENTER to search the source listing.

Chapters. Interactive Debug Commands 183

Example

The following command searches for ISN or log line 100, depending on cursor
position.

position ICQ

184 VSFORTRANVersion 2: Interactive DebugGuideand Reference

PREVDISP Command

Under ISPF Version 2, the PREVDISP command redisplays the previous panel
displayed by the application program (if ISPF was used). The panels are saved
automatically by ISPF, and are redisplayed with an ISPF message "Saved Panel
Display."

PREVDISP is valid only under ISPF Version 2, and cannot be issued in a command
list, an IF command, an attention exit, or a restart file.

Warning: The variables in the program are actually reset to the values of the
variables in the previously displayed panel, (unless the application program has
used VDELETE for those variables). The information in a saved panel is
redisplayed exactly as it appeared when the panel was originally displayed, and may
no longer be correct. You will not receive a message to remind you of this, nor will
the change in values be logged.

Abbreviation: PREV

PREVDISP

Notes:

1. There are no operands for the PREVDISP command.

2. If no previous panel exists, the first PREVDISP Help panel is displayed.

If the HELP panel is displayed, you cannot access the main menu or subsequent
panels.

3. The display of a previous panel is not an active display. For example, ifyou
redisplay an EDITsession, you cannot edit the panel as ifyou were in an editing
session.

You can, however, change the values ofapplication variables on a savedpanel
display, but this is not recommeitded. The application program may not be
prepared to have the variables changed at that point.

4. GDDM must still be active to redisplay a panel with a graphic area. If GDDM is
not active (for example, if GRTERM has been invoked), the graphic area will be
empty.

Chapters. Interactive Debug Commands 185

PROFILE Command

The PROFILE command displays a panel containing the settings for various
parameters that affect the way your debugging session executes. Both the default
profile settings and your current settings are shown for each parameter. This

I command is valid only under ISPF Version 2, and cannot be issued in a command
I list, an IF command, an attention exit, or a restart file.

Abbreviation: None

Syntax

Notes:

1. Initially, the current setting for any of the parameters displayed will be the same
as your profile setting. However, ifyou want to modify a parameter for the
current session,you can type over that field on the displaypanel with a new value.
Ifyou modify theprofile settings, the new valuesare saved and will be used
wheneveryou begin a new debugging session.

Initially, the profile settings will have the values displayed in the example below.
However, you can modify these values (in addition to modifying the current
settings).

2. The parameters displayed in the PROFILE panel are:

Step delay Initially set to 50. This value controls the pace of animation,
measured in hundredths of a second. For more information, see
Figure 15 on page 32.

Frequency count display
Initially set to YES. YES indicates that the statement execution
counts will be shown within the source listing window.

Window columns

Initially set to 40. This value specifies the width of the source
window listing, measured in characters. To make the window wider,
increase this value.

Window rows

Initially set to 10. This value specifies how deep the source listing
window will be, measured in lines. To see more than 10 lines at a

time in the window, increase this value.

Window on Initially set to YES. This value indicates that a source listing
window will automatically appear on your screen, provided that its
dimensions have been defined and the listing file is available for the
current program unit. Setting this value to YES is equivalent to
entering the WINDOW or WINDOW ONcommand.

186 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Ix^ line numbers
Initially set to YES. This value indicates that the log line numbers
will be displayed in your scrollable log. Enter NO to inhibit the
display of these numbers.

Output halt value
Initially set to 50. This is the number of output lines after which
Interactive Debug will initiate a break to be sure output is displayed
periodically. The break causes a NEXT FORCED FOR OUTPUT
or HALTED FOR OUTPUT condition to occur.

Example

Display the PROFILE command to modify the value of some of your current
settings.

PROFILE

The profUe panel might look like this after you modify some of the current settings:

VS FORTRAN INTERACTIVE DEBUG (CURRENT AND PROFILE SETTINGS)

COMMAND ===>

CURRENT SETTING PROFILE SETTING

Step delay (.01 sec) 10 50
Frequency count display NO YES
Window columns 60 40

Window rows 10 10

Window on NO YES

Log line numbers YES YES
Output halt value 50 50

Enter END or RETURN to go back to the IAD panel.

Chapters. Interactive Debug Commands 187

PURGE Command

The PURGE command terminates the output of a single Interactive Debug
command after the output has been suspended by an attention interrupt.
Subsequent commands in a command list are not affected. Following the PURGE
command, resume execution by entering a null line.

Abbreviation: None

Syntax

PURGE

Notes:

1. There are no operands for the PURGE command.

2. PURGE cannot be used to stop output beingproduced as a result ofa VS
FORTRAN WRITE statement or a command in a static DEBUG packet,

3. PURGE cannot be used to stop output from the HELP command.

4. The terminal displays the results of commands more slowlythan the processor
produces these results. This may cause theprocessorto beginprocessing the
command(s) following the one displayed on the terminal at the same time the null
line (ATTN) was issued. In this case, PURGE may not have the desired results.

5. PURGE has no effect outside an attention exit.

Example

The following AT command list is being executed:

at 100 (list aSi set i=OSSlist bS8 whereSS go)

A contains 1000 elements. When A starts to be displayed, stop the display before
its completion.

Press ENTER (or ATTN)
purge

This sequence suppresses the output of A. When a null line is entered, execution
will resume with the next command in the command list (set i=0).

188 VS FORTRAN Version 2: Interactive Debug Guide and Reference

QUALIFY Command

The QUALIFY command changes or displays the current qualification. This
command allows you to change the default qualification that determines which
program unit any unqualified statement or variable references apply to.

Abbreviation: Q

Syntax

QUALIFY [program]

program

specifies the name of the main program or subroutine, or the name of a
function subprogram.

Notes:

1. The QUALIFY command remains in effect until the next QUALIFY command,
or until execution is resumed. When execution is resumed, the current
qualification is reset to the executing program unit.

2. Ifa QUALIFY command is not entered, it is assumed that any Interactive Debug
commands apply to the currently executingprogram unit (exceptfor individually
qualified operands).

3. A QUALIFY command without the program unit parameter will display the name
of the currently qualified program unit.

4. QUALIFY is not permitted as the command specified in an IF command.

5. To qualify an individual VS FORTRAN variable, place the variable name after
the name of the program unit.

list subl.X

6. To qualify an individual statement identifier, place the number or statement label
after the name of the program unit. Thestatement label must bepreceded by a
slash.

at subl./50

7. Ifyou type over the Q: field in ISPF Version 2, a QUALIFY command is
generated and logged.

Chapters. Interactive Debug Commands 189

Example I

Display the value of aU the variables in subroutine SUBl while execution is
suspended at a breakpoint in the main program.

qualify subl
list *

Example 2

Display the name of the currently qualified program unit.

qualify

For additional examples of the QUALIFY command, see "Referring to Statements
or Variables in Other Program Units" on page 70.

190 VS FORTRAN Version 2: Interactive Debug Guide andReference

QUIT Command

The QUIT command exits Interactive Debug and returns program control to ISPF,
CMS, or TSO.

Abbreviation: None

Syntax

QUIT

Notes:

1. If QUITis issuedfollowing an attention interrupt, yourprogram will be
terminated. You may then issue certain Interactive Debug commands (for
example, LIST) before returning to ISPF, CMS, or TSO. You must issue
another QUIT to terminate the session.

2. Commands following QUIT in a command list are ignored.

3. The ISPF END command cannot be used to terminate a debugging session. The
QUIT command must beused. This isdesigned toavoid accidentally terminating
a debugging session with PF key 3.

Example

Discontinuedebugging and return to ISPF, CMS, or TSO.

quit

Chapters. Interactive Debug Commands 191

I RECONNECT Command

The RECONNECT commandresets a file to its original (preconnected) condition.
Thismaybe necessary if youhave used the CLOSE command or your program has
executed a CLOSE, and you wish to make it possible for the program to do
additional I/O to the preconnected file.

Abbreviation: RECONN, RECONNEC

— Syntax — ;

RECONNECT {number | [qual.Jinteger-variable |
[qual.]integer-array-element}

number

is the number of the 1/O unit associated with the sequential file on which the
reconnect is to be performed.

[qual.llnteger-variable
is the name of an integer variable in the VS FORTRAN program. This
variable specifies the number of the 1/O unit associated with the sequential
file on which the reconnect is to be performed.

[qual.]integer-aiTay-eiement
is the name of an elementof an integer array in the VS FORTRAN program.
This element specifies the number of the I/O unit associated with the
sequential file on which the reconnect is to be performed.

Notes:

1. "Number," "integer-variable," or "integer-array-element" must bespecified;
there is no default number.

2. This command maynot be issued when I/O is currently active.

3. RECONNECT is only necessary if the OCSTATUS run-time option is in effect
andyou wish to allow yourprogram toperform additional I/O on a file that has
been closed, withoutexecuting another OPEN.

4. When referring to array elements, the subscripts must usesimple arithmetic
expressions no more complex than theform "variableplus (or minus) a constant."
For example,

ARY(I), ARY(3), ARY(I+3) or ARY(I-3)

are valid forms.

Example

Reconnect the sequentially accessed external file associated with I/O unit 8.

reconnect 8

192 VS FORTRAN Version 2: Interactive Debug Guide and Reference

REFRESH Command

The REFRESH command controls whether or not the Interactive Debug panel is
completely refreshed whenInteractive Debug panels are displayed.

If you have applications that do full screen I/O without using ISPF, theremay be
changes to the screen contents that ISPFis not aware of, and portions of the
application display may remain on the screen. REFRESH is helpful in these
situations.

REFRESH is not valid in line mode or batch mode.

Abbreviation: None

Syntax

REFRESH [ON IOFF]

ON

indicates that everydisplay of an Interactive Debugpanel should rewrite the
entire screen.

OFF

indicates that ISPF does not need to rewrite portions of the screen that
already seem to have the propercontents. This is the initial setting for
REFRESH.

Notes:

1. When refresh ison, animation is less smooth because the entire screen is refreshed
for eachstep. The screen may appear toflash each time.

2. Response time may increase for remote terminals when refresh is on.

3. Entering REFRESH without a parameter queries thestatus of REFRESH.

Exanple

Query the current status of REFRESH:

refresh

Chapters. Interactive Debug Commands 193

RESTART Command

The RESTART command allows you to restart a debugging session in full screen
mode without clearing the log file. The variable values are all cleared unless they
are in dynamic commons. The VS FORTRAN program restarts at the first
executable statement. Any new log information is appended to the existing log file.

RESTART is not valid in line mode or batch mode. It is also not allowed in a

restart file.

Abbreviation: None

Syntax

Notes:

1. There are no operands for the RESTART command.

2. Commands following RESTART in a command list are ignored.

3. When RESTART is issued, all Interactive Debug settings such as breakpoints,
WHEN conditions, HALTstatus, AUTOLIST window, and so on are reset. The
TIMER status is turned offand all times are cleared.

4. Under TSO, you can recompile a program unit using a split screen, then issue
RESTART to restart the debugging session using the new object deck. (This is not
possible under CMS.)

5. The AFFON and AFFINfiles are re-read whenyou issue RESTART. Ifyou
have modified thesefiles (for example, in a split-screen edit session), the newfiles
are used.

Example

Restart a debugging session in full screen mode, but retain the current log file.

restart

194 VS FORTRAN Version 2: Interactive Debug Guide and Reference

REWIND Command

The REWIND command positions a sequentially accessed external file at the
beginning of the first record. Its usage is similar to that of the REWIND statement
in the VS FORTRAN Version 2 language, allowingyou to move to the beginning
of the file.

Abbreviation: REW

Syntax

REWIND {number | [qual.]integer-variable 1 [qual.]integer-array-element}

number

is the number of the I/O unit associated with the sequential file that is to be
rewound.

[qual.)integer-variable
is the name of an integer variable in the VS FORTRAN program. This
variable specifies the number of the I/O unitassociated with the sequential
file that is to be rewound.

[qual.]integer-array-element
is the name of an element of an integer array in the VS FORTRAN program.
Thiselement specifies the number of the 1/O unit associated with the
sequential file that is to be rewound.

Notes:

1 "number," "integer-variable," or "integer-array-element" must bespecified; there
is no default number.

2. When referring toarrayelements, thesubscripts must use simple arithmetic
expressions no more complex than the form "variable plus (or minus) a constant."
For example,

ARY(I), ARY(3), ARY(I+3) or ARY(I-3)

are valid forms.

3. This command may not be issued when I/O is currently active.

KS FORTRAN Version 1 and VS FORTRAN Version 2 support multiple files
under thesameI/O unit. The REWIND command sets the VS FORTRANfile
name tothe first in the sequence offiles for the specified //O unit. Forexample,
ifyou were currently processingfile FT08F003 on 1/O unit 8, andentered:

rewind 8

I/O unit8 would be connected tofile FT08F001, which would bepositioned at
the beginning of the first record.

Chapters. Interactive Debug Commands 195

Example

Rewind the sequentially accessed externalfile associated withlogical unit4 so that
it may be rewritten.

rewind 4

For additional examples of the REWINDcommand, see "ProcessingExternal
Files" on page 89.

196 VS FORTRAN Version 2: Interactive Debug Guide and Reference

SEARCH Command

The SEARCH command searches the source listing window or the scrollable log
fora given character string. SEARCH is valid only under ISPF Version 2, and
cannot be issued in a command list, an IF command, or a restart file.

Abbreviation: None

SEARCH /string[/]

string
specifies a character string to be searched for. The search is not case
sensitive, so your string canbe found in any combination of upper or lower
case. If the cursor is within the source window, the source listing is
searched; otherwise, the last 1000 lines of the logare searched. The
character string can be up to 64 characters long.

You canuse any nonblank character as a delimiter. A slash (/) isshown in
the syntax box above.

The initial and final delimiter must be the same character. The final
delimiter is required if the search string contains trailing blanks. In allother
cases, it is optional.

Notes:

1. If the search issuccessful, the log orsource listing is scrolled vertically and
horizontally so the target line isdisplayed as the first line on the screen with the
string visible (unless it iscontained in the current ISPFpanel). The cursor is
placed at the beginning of the string.

2. The source listing search isperformed starting at the top line displayed on the
screen. However, if the SEARCH arguments are identical andthe last-found
search argument is still on the current screen, the search begins at the location of
the last-found search argument.

3. When searching the log, only the last WOO lines of the log areavailable.

4. Ifthe search requires the cursor to return to the beginning of the source listing or
the log, the message "WRAPPED..." isdisplayed inthe upper right comer of the
screen.

5. If the search argument is not found, you will receive the message "TARGET NOT
FOUND" in the upper right comer of the screen.

6. Ifyou search without a parameter, the most recent character string used asa
target is searchedfor again. If there isno previous string, you will receive the
message "NO SEARCH ARGUMENT."

Chapters. Interactive Debug Commands 197

7. Ifyou have MOVECURS assigned to a PF key, you can type the SEARCH
command on the command line. Then, without pressing ENTER, press the r\
MOVECURS PF key to move the cursor to the source window, and finally press
ENTER to search the source listing.

Example

Search for the character string VM/CMS, using a question mark as the delimiter.

search ?VM/CMS?

198 VS FORTRAN Version 2: Interactive Debug Guide and Reference

SET Command

The SET command changes the value of a variable, array, array element, or group
of array elements.

Abbreviation: S

— Syntax

SET [qual.]name=value[,value...]

qua!
specifiesa program unit name to temporarily override the current qualifier
for the prefixed name only.

name

value

specifies the name of a variable, array, or array element.

is the value to be assigned to a single variable or single array element. A
groupof values (separated by commas or blanks) can be assigned to an
entire array or part of an array. A value can also be another qualified
variable name or array element, and can be prefixed by a numeric replication
factor.

Notes:

1. Valid SET command assignments for the different types of namesare shown in
Figure 30. All names can be qualified.

Name Set Type of Value Example

Real,
Integer,
or

Complex
scalar

Another scalar variable

An array element

A constant

ALPHA=BETA

ALPHA=-BETA

ALPHA=A(3)
ALPHA=-A(3)
NUM=7

Logical =
Another logical variable
An array element
A logical value

LOGl=LOG2

LOGl=LOG(2)
LOG=.TRUE.

Character Another character variable

An array element
A character constant

A substring

CHAR1=CHAR2

CHAR1=CHAR(2)
MSG='HELLO'

A(1:3)='ABC'

Figure 30 (Part 1 of 2). Valid SET Comniand Assignments

Chapters, Interactive Debug Commands 199

Name Set Type of Value Ebcample

Array
element

Another array element

A scalar variable

A constant

A(4)=B(1)
AR(2,2)=-AR(5,5)
C(7)=RATE
C(8)=-TIME
D(I,J)=0.0

Contiguous
array

elements

Value,value,...
(Values can be variables,
array elements, or
constants; multiple
assignments of a value
can be entered as

n*value.)

A=3*1.0,4»0.0,
7.2,5.,ACCL,
8.5E9

B(J,K)='C',
3*'Q',2»,'X'

Figure 30 (Part 2 of 2). Valid SET Command Assignments

2. When referring to array elements, the subscripts must usesimplearithmetic
expressionsno more complex than the form "variable plus (or minus) a constant."
For example,

ARY(I), ARY(3), ARY(I+3) or ARY(I-3)

are valid forms.

3. Noarithmetic operations (except negation) are allowed in the value assignments;
for example, SETA=B-¥4 is not allowed.

4. Upper- and lowercase character constants may beentered at the terminal. They
mustbeenclosed in single quotation marks when entered, but the enclosing single
quotation marks are removed before the assignment isperformed. If a single
quotation mark is to be assigned as part of the characterconstant, two single
quotation marks must be entered; for example:

set c='•''

sets C to a singlequotation mark. Characterstringsare truncatedor extended
with blanks to match the length of the receiving character variable or array
element.

5. In assigning values to contiguous arrayelements, values may be repeated using the
notation n*value. For example,

set ary=10*4

sets the first 10 elementsof the array AR Yto 4.

6. In assigning values to contiguous arrayelements, elements can beomitted byusing
theasterisk notation with no value following theasterisk. For example, a single
omission is entered as 1*, and a multipleomission might be entered as 3* (this
would leave threesuccessive elements of the array unchanged).

7. Substring notation ispermitted with string variables.

200 VS FORTRAN Version 2:Interactive Debug Guide and Reference

8. Ontherightsideof the "= " sign, an arrayreference can have subscripts that
exceed the bounds of the dimensions. A warning message will be issued except for
thespecialcase where onlythe last dimension is exceeded, and that dimension is

44 J 99
or "1.

9. An assumedsizearray is not set unlessa specificelementor range ofelements is
specified. An assumed size array is an array with the last upperbound declarator
specified as an asterisk (*). Results are unpredictable ifyou SET array elements
beyond the end of the original array.

10. Dummy arguments can only be usedor set when theprogram unit in which they
are defined is active. (Note that a program unit is notyet active when suspended
at entry.) If this rule is violated, you willget an error message.

11. Variables in a dynamic common can only be usedor set after theprogram unit
usedto qualifythe variable has been activated at leastonce. If this rule is
violated, you will get an error message.

12. When setting a variable, resultsare unpredictable if:

• More valuesare specified than willfit in an assumed-sizearray or an array
whose last dimension is "I."

• The right handsidecontains an arrayreference whose subscripts are notall
within the array dimensions. You willget a warningmessage in this case.

• Theright-hand side of thestatement contains an inaccessible variable. You
will get an error message in this case.

Example I

Change the values of several variables.

set dan=8.9e+7

set m=-int

set a(3)=b(5)
set c{i,2)=4.1
set d{10)=xray
set a(i-1,3)=b(4,j+6)
set main.x=sub1.X

set quote='he said: ''bye, bye.'''

Example 2

Set the ten elements of array ALFIE to 0, 0, 0, .666, .21E-08, 1.0, 0, 0, 0, 0.

set alfie=3*0.0,.666,.21e-8,1.0,4*0.0

Example 3

Set the second element of array DATA to 0, leave the third element unchanged, set
the fourth througheighth elements to 1.0, and leaveallother elements unchanged.

set data(2)=0,1♦,5*1.0

Chapter 8. Interactive Debug Commands 201

I Example 4

I Set the third through the fifth characters of character string DATA to 'ABC.

I set data(3:5)='ABC'

202 VSFORTRAN Version 2: Interactive Debug Guide and Reference

STEP Command

The STEP command executes one or more FORTRAN statements and then gives
control back to you. STEP is similar to a series of NEXT and GO command pairs.

Under ISPF Version 2, STEP execution is automatically animated if the source
listing is available to Interactive Debug. Animated execution means that the source
listing window is refreshed at each statement boundary where a hook exists, and
the ciurent statement is highlighted. Highlighting is determined by the COLOR
settings. If an AUTOLIST display is defined in full screen mode, it will also be
updated, or refresM as necessary at each debugging hook.

Abbreviation: ST

Syntax

STEP [number]

number

specifies the maximum number of hooked statements to be executed before
execution stops. The number must be a positive integer. The default is one.

Notes:

1. The STEP command itself causes your program to resume execution. Youdo not
need to use a GO command.

2. Ifany of the following conditions occur, STEP execution will terminate before the
STEP count runs out:

• A breakpoint is encountered.

• A WHEN condition is satisfied.

• The HALTstatus is satisfied.

• An error condition is detected.

• Terminal input occurs with TERMIO IAD in effect.

• Terminal output exceeds the output halt value in full screen mode.

• An attention is issued.

• The program terminates.

3. If STEP processingends after finding one of the aboveconditions or after
reaching the end of the step count, you cannot resume STEP. You must issue a
new STEP command.

4. Ifa STEP command is terminated because ofa terminal READ, a NEXT will be
forced at the next hooked statement.

Chapter 8. Interactive Debug Commands 203

5. If STEP is issued within a command list, the remainder of the list is ignored.

6. STEP counts only those statements that have debugging hooks. Thus, STEP may
execute many statements before stopping. Statements that have been collapsed and
statements not included in the AFFON statement list are not counted and

execution does not stop.

7. STEP is not permitted after the VS FORTRANprogram has terminated, or while
a READ is peruling. If issued in an error exit, standard corrective action is taken.

Example

Execute the next 12 hooked statements before suspending execution:

step 12

204 VS FORTRAN Version2: Interactive Debug Guide and Reference

SYSCMD Command

The SYSCMD command executes system commands during an Interactive Debug
session. SYSCMD can also be included in a command list and on the IF command.

Abbreviation: SYS, CMS, TSO

Syntax

SYSCMD [system—command]

system—command
is a CMS or TSO system command to be executed.

Notes:

1. Under ISPF, the abbreviations CMS and TSO are recognized and executed, but
the command entered will not appear in the session log.

2. Caution should be observed when issuing commands that would cause the
currently executing program to be overlaid. For example, a CMS LOAD
command with the CLEAR option could cause Interactive Debug and the VS
FORTRAN application program to be erasedfrom storage.

3. CMS Considerations: If the system command is omitted, the standard CMS
SUBSET will be entered. In this mode, CMS commands may be issued and
Interactive Debug will not regain control until the RETURN command is issued.
CMS commands issued in this mode (or specified with the SYSCMD command)
are limited to those commands allowed in CMS SUBSET mode.

4. TSO Considerations: If the system command is omitted, a special command entry
mode will be entered. Interactive Debug will produce the message,

ENTER A TSO COMMAND OR A NULL LINE

In this mode, TSO commands may be issued and Interactive Debug willpass them
along to TSO until a null line is entered.

5. In order to use SYSCMD in batch mode on MVS, it is necessary to run a TSO
Terminal Monitor Program (TMP).

6. In batch mode, the system command must be specified, and must not be a
command that requires interaction. Interactive Debug cannot guard against
system commands that require interaction during a batch session; this is your
responsibility.

Chapter 8. Interactive Debug Commands 205

CMS Example

List the files that have been allocated:

syscmd q filedef

TSO Example

List the data sets that have been allocated:

syscmd listalc status

For additional examples of the SYSCMD command, see "Using System
Commands" on page 90.

206 VSFORTRANVersion 2: Interactive DebugGuideand Reference

TERMIO Command
r ^

The TERMIO command allows you to select the 1/O routines that you want to use
for terminal I/O for your VS FORTRAN program. You can select either the VS
FORTRAN Version 2 Interactive Debug I/O routines, or the VS FORTRAN
library routines.

You can also use TERMIO to send a copy of batch mode output to a user as
message text. To query the current settings, enter TERMIO with no operands.

Abbreviation: None

Syntax

TERMIO [IAD I LIBRARY] [MSG [(userid)] | NOMSGl

IAD

indicates that terminal 1/O is to be performed using the VS FORTRAN
Version 2 Interactive Debug I/O routines. The Interactive Debug I/O
routines combine input and output from the VS FORTRAN program with
Interactive Debug input and output. You must precede terminal input with a
percent sign (%) to distinguish it from Interactive Debug commands.

This is the setting when Interactive Debug execution begins.

In full screen mode or batch mode, terminal input and output are included in
the log file. This includes library error messages.

LIBRARY

indicates that terminal I/O is to be performed using the VS FORTRAN
library routines. The library 1/O routines cause output from the VS
FORTRAN program to be displayed as it would be if the program were not
being debugged.

Terminal input and output are not included in the log file. In full screen
mode, a request for terminal input causes the screen to be cleared and the
keyboard to be unlocked. Terminal output is written on a blank screen.

MSG

In batch mode only, this indicates that a copy of each line of Interactive
Debug input and output is to be sent to the specified or defaulted user ID as
message text.

userid

specifies the user ID to which message text is to be sent. If this operand is
omitted, it defaults to the previously established user ID (if one exists), or to
the submitter's user ID if available. The operand is required if the
submitter's user ID is not available and no user ID has been previously
established.

r-j. The default user ID is obtained from the JOB card information in MVS, if
' ' available. In CMS, no default user ID is available.

Chapter8. Interactive DebugCommands 207

NOMSG

specifies that Interactive Debug input and output are not to be copied as
message text. This is the initial setting.

Notes:

1. When no operands are specified, the current TERMIO setting is displayed.

2. This command does not affect 1/O operations other than those requested by the
VS FORTRAN application program. This implies that, if Interactive Debug is
executing under ISPF, a specification of LIBRAR Y will cause any application
program terminal //O operation to occur in line mode. At the completion of the
I/O operation, full screen operation will resume.

3. When running in batch mode on MVS, a VS FORTRANprogram has no real
terminal inputs or outputs. You can simulate these terminal inputs and outputs by
specifying one or more units on the DEB UNIT execution-time optionfor your VS
FORTRANprogram. Ifyou do not specify the DEB UNIT option, the
IAD/LIBRARY operand has no effect on program I/O.

4. Whenevercharacter data is entered. Interactive Debug //O routines change it to
uppercase. Ifmixed-case input is required (and supported by the host system), the
library I/O routines must be used.

5. If output cannot fit on one line in whatever mode Interactive Debug is operating,
it is split across multiple lines. The lengths of these lines are 60 characters if
Interactive Debug I/O routines are used. When the library routines are used, //O
operations produce the same results as would be produced if the program were
executed without Interactive Debug.

6. When TERMIO IAD is in effect, any continuation line that begins with leading
blanks must beprefixed with a quotation mark C). Thequotation mark willnot
be passed to the program.

Example 1

Specify that Interactive Debug routines are to be used for subsequent 1/O requests
of the VS FORTRAN program.

termio iad

Example 2

Display the current setting of the terminal I/O mode.

termio

Example 3

Specify that Interactive Debug input and output are to be echoed to user ID
"SMITH" (in batch mode).

termio msg(smith)

For additional examples of the TERMIO command, see "Entering Terminal Input"
on page 91.

208 VS FORTRANVersion2: InteractiveDebugGuideand Reference

TIMER Command

The TIMER command controls the timing of program units. If timing is activated
for a program unit, that unit will be timed when called. The LISTTIME command
displays the timing information.

Abbreviation: None

— Syntax

TIMER { * I program-unit-name | (program-unit-name list) }
ION I OFF I RESET]

specifies that the command applies to all debuggable program units.

program-unit-name
specifies an individual program unit.

program-unit-name list
specifies a list of program unit names. Enclose the list in parentheses and
separate entries with commas or blanks.

ON

OFF

specifies that timing is to be activated for the indicated program units. The
program units are timed when called. ON is the default.

specifies that timing is to be deactivated for the indicated program units.
This does not clear the timing values or activation counts. The program units
are no longer timed. OFF is the initial setting for TIMER.

RESET

specifies that timing information and activation counts are to be reset to zero
for the indicated program units.

Notes:

1. Timing is cumulative. Timing values are only reset by TIMER name RESET.

2. The time for a routine is measured beginning at the entry point and ending at the
exit. If a call is made to another routine for which TIMER is on, the time spent
in the second routine (and lower-level routines) is not included in the measurement
for the first routine. However, time spent in called (and lower-level)nontimed
routines is included in the measurement for the calling routine. For example, if
program A calls program B andyou do not want the time in B to be included in
the timing ofA, you must specify: TIMER {A,B) ON. Program B must be
debuggable.

Chapter 8. Interactive Debug Commands 209

3. In MVS, timing measurements will be incorrect ifyourprogram uses the
STIMER macro, or if it uses a system service that calls STIMER. This includes
the BTAM OPEN and LINE OPEN operations, and Dynamic Allocation.
Animated execution with the STEP command under ISPF Version 2 also
interferes with timing on MVS.

4. Timing for verysmall routines may be erratic.

5. The timing information provided byInteractive Debug includes overhead caused by
the debugging hooks inyourprogram. Thus, the timinginformation is not an
accurate representation of the timeit takes to execute without Interactive Debug.

To get themost accurate timing information, there should behooks only at entry
and exitof theprogram unit. To set only entry and exithooks, specify name
ENTRY in the AFFONfile. For more information, see "Displaying Timing
Information" on page 82.

6. Die ENDDEBUG command turns timing offfor all program units.

7. TIMER is notpermitted after the VS FORTRANprogram has terminated.

8. Timing is measuredseparatelyfor each entrypoint in the program unit.

Example I

Turn timing on for program units MAIN and SUB2:

timer (main,sub2)

Example 2

Reset timing to zero for program unit MAIN:

timer main reset

E^unple 3

Turn timing off for all debuggable program units:

timer » off

210 VS FORTRAN Version 2: Interactive Debug Guide and Reference

TRACE Command

The TRACE command starts or stops tracing of the flow of the program as it
executes. You can trace each transfer of control in the program, trace just entries
to and exits from debuggable subroutines, or determine the current trace status.

Abbreviation: T

Syntax

TRACE [GOTO ENTRY OFF] [PRINT]

GOTO

specifies that a record of each apparent branch taken within the program is
to be created. GOTO produces a listing showing a statement label or
statement identifier for the origin and destination of each transfer made,
including entries to and exits from debuggable subroutines.

ENTRY

specifies that only a record of entries to and exits from debuggable
subroutines is to be produced.

OFF

turns off tracing that you previously initiated. This is the initial setting.

PRINT

specifies that output is to be written to the print data set instead of to the
terminal.

'Notes:

1. Tracing continues until turned off, or altered by another TRACE command, or an
ENDDEBUG command is issued.

2. TRACE operations apply to all debuggable program units.

3. TRACE GOTO issuesa trace message if two consecutively executeddebugging
hooksare not on consecutively storedstatements. Thisalso occurs ifstatements
have been collapsed or vectorized, or have no debugging hooks.

4. TRACE is not permitted after the VS FORTRANprogram has terminated.

5. If no operand is specified, TRACE issuesa messagedescribing the current trace
status.

Chapters. Interactive DebugCommands 211

Example 1

Trace each program transfer, and have the trace output sent to the print data set
instead of to the terminal.

trace goto print

Example 2

Discontinue tracing entirely.

trace off

Example 3

Trace only the calls to and returns from subroutines and functions.

trace entry

For additional examples of the TRACE command, see "Tracing Program
Execution" on page 83.

212 VS FORTRAN Version 2: Interactive Debug Guide and Reference

y

WHEN Command

The WHEN command allows you to suspend execution every time a particular
condition is met. You can define a condition and supply its name, or restart
monitoring of a previously defined condition. The condition is tested at all
statements with debugging hooks.

Abbreviation: WN

Syntax

WHEN condition-name [(condition) | variable]

condition-name

identifies the condition. The conditionname must be 1 through 4 alphameric
characters, with the first character alphabetic. The condition name is only a
name; it is not to be confused with the definition of the condition.

(condition)
defines a condition to be monitored. The condition itself appears only in the
initial WHEN command. The condition must be enclosed in parentheses.

Only scalars and single array elements are allowed in the condition
expressions. They can be explicitly qualified; for example, subl .x=4.0

variable

specifies the name of a variableor an array element to be monitored for any
change in value. Only the name is specified; no parentheses to enclose the
name are used. The name can be explicitly qualified.

The condition used in the WHEN commandcan be either relational or logical.

Relational condition: A relational condition is a signed or unsigned variable or array
element or constant, followed by a relationaloperator, followed by another signed
or unsigned variable or array element or constant.

There are six relational operators that can be used to define test conditions
between scalar variables, array elements or constants.

= or .EQ.

-.= or.NE.

> or.GT.

< or .LT.

>= or .GE.

<= or .LE.

Chapters. Interactive DebugCommands 213

Logical condition: A logical conditionis a logical variable or a logical array
element,optionally precededby the negationoperator (-. or .NOT.). No other
operatorsare permitted. If the value beingtested is a logical variable or a logical
array element, the negationoperator can be applied in the condition definition.
For example:

WHEN NTON (-1 LOGVAR)

Notes:

1. The condition itself is onlydefined once. At that time, a condition namemust be
supplied. Subsequent WHEN commands referring to that condition should
contain only the condition name.

2. Monitoring remains in effect after a condition is satisfied. To turn the condition
off, issuean OFFWN command, naming the condition.

3. Afterbeing turned off byan OFFWN, condition monitoring can be reactivated by
reissuing WHEN and specifying only the condition name.

4. WHEN conditionsare evaluated at each debugging hook in each debuggable
program unit. Ifyou use a variable subscript, it is reevaluated each time the
condition is tested. Thearray element actually tested, therefore, depends on the
subscript value at that moment.

5. You can redefine an existing WHENcondition byentering a new WHEN
command with the same condition name and a new condition definition.

6. Variables can beprefixed bya program unit qualifier to override the current
qualification (at the time the WHEN command is issued). For example,

WHEN COND (MAIN.A .LT. SUB1.B)

7. When referring to array elements, thesubscripts must use simple arithmetic
expressions no more complex than theform "variable plus (orminus) a constant."
For example.

I ARY(I), ARY(3), ARY(I+3) or ARY(I-3)

I are valid.

8. In the relational conditionform of the WHEN command, for example, WHEN
TEST (A .GT. B):

• When either variable or constant is a logical, character, or complex type, both
must be of that same type, and a sign preceding the variable or constant is not
permitted.

• When either variable or constant is a logical or complex type, only the
relational operators .EQ. and .NE. (or = and -«=) may be used.

• When character variables or constants of unequal length are compared, the
shorter is considered to be extended with blanks during the comparison.

214 VS FORTRAN Version 2: Interactive Debug Guide and Reference

p. When an unparenthesized variable name is specified as the condition (for example,
WHEN TEST NAME) and the variable is a character variable:

• The length of the character variable is determined at the time the WHEN
command is issued.

• If the character variable subsequently changes length (perhaps because it is a
parameter to the subroutine being monitored), the old and new values are
compared by effectively extending the shorter one with blanks.

• If a change in value is found, the new value is preserved, either extended or
truncated, using the size of the variable at the time the WHEN command was
issued.

• The current length and value of the variable can be captured at any time by
issuing the WHEN command withjust the condition name (for example,
WHEN TEST). It is not necessary to issue an OFFWN commandfirst or to
state the variable name again. (The WHEN command can be embedded in an
AT command list to automate this process.)

10. When a specified condition is met, messages will be displayed. These indicate the
condition name that was satisfied, and where execution is currently suspended.

11. Ifyou refer to undefined variables (such as dummy arguments in an inactive
subprogram), you will receive an error message at each statement where the
condition is tested. To avoid these messages, you can use OFFWN in an AT
EXIT command list, and WHEN to reactivate it in an AT ENTR Y command list.

12. WHEN is not permitted after the VS FORTRANprogram has terminated.

Example 1

Start monitoring variable MIKE to see if it changes. Call the condition (the change
to variable MIKE) OLD.

when old mike

Example 2

Define a condition named OVFL as an array element A(l,5) greater than 3.5E10.
Start monitoring it.

when ovfl (a(1,5) -gt. 3.5e+10)

Ex€unple 3

If the monitoring from Example 2 has been turned off with an OFFWN command,
restart monitoring condition OVFL.

when ovfl

For additional examples of the WHEN command, see "Controlling Program
Execution" on page 74.

Chapters. Interactive Debug Commands 215

WHERE Command

The WHERE command identifies the statement at which execution is suspended.

Abbreviation: W

Syntax

WHERE [TRBACK] [FLOW] [PRINT]

TRBACK

specifies a traceback showing the names of all program units that are
currently active.

FLOW

specifies a trace of the last 10 program transfers that were executed.

PRINT

specifies that output is to be written to the print data set instead of to the
terminal.

Notes:

1. If WHERE is usedfollowing an attention interrupt, it can only be usedto identify
the current statement. Any parameters are ignored.

2. If there are no activeprogram units, WHERE TRBACK indicates that no
subroutines have been called.

3. The current statement identified by the WHERE command has not yet been
executed.

4. An automatic WHERE command is forced at the first debugging hook found.
This is usually the first executable statement in the main program.

Exionple 1

Find out where you are after execution was suspended by an attention interrupt.

where

Example 2

Find out the sequence of control transfers that led to the cmrent breakpoint.

where trback flow

Example 3

Conditionally indicate that a breakpoint has been reached, even though the AT
command list does not cause execution to be suspended. The WHERE command
will only be executed if A is less than or equal to 4.8.

at 120 (if (a .gt. 4.8) go?5where?51ist a%go) nonotify

For additional examples of the WHERE command, see "Tracing Program
Execution" on page 83.

216 VS FORTRANVersion 2: Interactive DebugGuideand Reference

WINDOW Command

The WINDOW command opens or closes the source listing display window. The
size of the window can be defined in the PROFILE command panel, or by
positioning the cursor. If the cursor is positioned in the log area or an existing
window and WINDOW is entered with no operand, the current cursor position
determines the lower left comer of the source display window. The upper right
corner is fixed.

WINDOW is valid only under ISPF Version 2, and cannot be used in a command
list, an IF command, an attention exit, or a restart file.

Abbreviation: None

Syntax

WINDOW [OFF I ON]

ON

OFF

specifies that the source listing window is to be open. This is the initial and
default setting under ISPF Version 2.

If the window size has been defined and "YES" has been specified in the
SOURCE column of the ISPF data set name panel for the currently qualified
program unit, the source listing is displayed in the window.

If a window has previously been defined and the cursor is positioned on the
command line, the previous window dimensions will be restored. The
previous dimensions are also used if the cursor is at an invalid position. In all
other cases, new dimensions will be used.

temporarily removes the source listing window from the screen. The window
size, if defined, is saved. The window is not displayed again until you enter
WINDOW or WINDOW ON, provided that the listing file is known for the current
program unit.

Notes:

1. If the cursor is positioned on the command line, WINDOW with no parameters
has the same effect as WINDOW ON.

2. When defining the windowsize by cursor position, WINDOW is easiest to use if
assigned to a PF key.

3. You can turn the window on or off, or define the window's size, using the
PROFILE command panel. For details, see "PROFILE Command" on
page 186.

4. Ifyou have specified NO in the SOURCE column of the ISPF data set name
panel for the currently qualified program unit, or ifyou have not yet specified the
source listing file name, WINDOW has no immediate effect.

Chapters. Interactive DebugCommands 217

Tospecifysource listingfile names, type a question mark (?) in thefirst character
of the Q: field of the screen header line, and the data set namepanel willbe
displayed.

5. The size of the window is saved in your user profile from one session to the next.
Whenyou later begin a new debugging session, the saved window size will be used
to automatically define the source listing display window at the start of the session.

6. If the window is too widefor any part of the log to be seen on the left, thefirst log
line visible below the source window becomes the top line of the log. In this case,
no information is hidden beneath the source. Scrolling to the top of the logfile
displays log line 1 as the first line below the source.

7. It is possible to cover the entire screen with the source display (exceptfor the
header and command lines).

218 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Appendix A. Usii^ the Interactive Debug HELP Facility

Help at the Terminal

The HELP command offers interactive tutorial assistance in learning about or using
VS FORTRAN Version 2 Interactive Debug. The HELP command displays
information about any VS FORTRAN Version 2 Interactive Debug command or
function.

HELP contains:

• A brief introduction to VS FORTRAN Version 2 Interactive Debug, composed
of a general discussion of VS FORTRAN Version 2 Interactive Debug
components

• Individual command descriptions, each of which contains a description of the
command, the syntax, usage notes, and examples

• A task-oriented section offering an explanation of related commands required
to perform various basic debugging tasks

You can invoke help by entering HELP (or using an equivalent PF key). The main
help menu will appear, or, if the last command was in error, a screen will appear
containing an explanation of the specific command.

I Alternatively, you can enter HELP with an operand to go directly to the
I information for a specific command or task.

Help screens for each command consist of:

• The function of the command

• The syntax of the command

• A description of each component of the syntax

• Usage notes and examples

Figure 31 on page 220 shows the main menu screen for the help facility. This
screen lists all the topics for which help is available. In ISPF or CMS line mode,
you can select additional information from the main menu.

Appendix A. Using the Interactive Debug HELPFacility 219

A tutorial is included in the help facility to familiarize you with VS FORTRAN
Version 2 Interactive Debug by describing a basic debugging session. The tutorial
can only be accessed from the main menu.

Figure 32 on page 221 shows the task menu screen for the help facility,
illustrating which tasks have information available. After selecting a task, another
screen (or set of screens) is presented, describing how the task is accomplished.
The task menu may be accessed from the main menu.

Figure 33 on page 221 is a sample help screen for an individual command,
this case, more information about the CLOSE command would appear on
additional screens.)

(In

SELECTION ===> VS FORTRAN VERSION 2 INTERACTIVE DEBUG

VS FORTRAN VERSION 2 INTERACTIVE DEBUG

Main Menu

These are the topics available for help on VS FORTRAN Version 2
Interactive Debug. Select a topic by number. When finished
reading a topic, enter TOP to redisplay this menu. Note: The
enter key alternates between this menu and the task menu.

1 Task Menu 14 go 26 next 38 rewind

2 tutorial 15 halt 27 off 39 search

3 annotate 16 help 28 offwn 40 set

4 at 17 if 29 position 41 step
5 autolist 18 list 30 prevdisp 42 syscmd
6 backspace 19 listbrks 31 profile 43 termio

7 close 20 listfreq 32 purge 44 timer

8 color 21 listings 33 qualify 45 trace

9 describe 22 listsamp 34 quit 46 when

10 enddebug 23 listsubs 35 reconnect 47 where

11 endfile 24 listtime 36 refresh 48 window

12 error 25 movecurs 37 restart 49
A II
* r

13 f ixup

TOP for main menu

Figure 31. Main Menu for the Help Facility (under ISPF)

220 VS FORTRAN Version 2: Interactive Debug Guide and Reference

SELECTION ===> VS FORTRAN VERSION 2 INTERACTIVE DEBUG

VS FORTRAN VERSION 2 INTERACTIVE DEBUG
TASK MENU

The topics below describe debugging tasks. To request
information for one of the tasks, enter the corresponding number
in the command line. Note: The enter key alternates between this
menu and the main menu.

Display variable values
Handle library errors
Enter program input
Debug optimized code
Use program sampling
Process external files

Define LISTING files

Set breakpoints
Execute a system command
Display timing information
Trace program execution

1 (Return to main menu) 13

2 Specify files to debug 14

3 Use full-screen animation 15

4 Enter commands in attention 16

5 Debug in batch mode 17

6 Use command continuation 18

7 Use command lists 19

8 Control program execution 20

9 Use cursor-oriented commands 21

10 Display statement frequencies 22

11 Display program information 23

12 Display data types

TOP for main menu

Figure 32. Help Facility Task Menu (under ISPF)

SELECTION ===>

CLOSE COMMAND

VS FORTRAN VERSION 2 INTERACTIVE DEBUG

panel 1 of 4

The CLOSE command disconnects a VS FORTRAN external file from an input or
output unit. Its usage is similar to that of the CLOSE statement in the VS
FORTRAN Version 2 language. This command'allows you to close an external
file, for example to assign another file to the input or output unit, or to
examine the contents of the file.

Abbreviation: None

Syntax:
CLOSE <I number I <qual.>integer-variable I
<qual.>integer-array-elementI>

NUMBER

is the number of the I/O unit associated with the file that is to be
closed.

TOP for main menu hit ENTER for next page

Figure 33. Sample Help Screen

Appendix A. Using the Interactive Debug HELP Facility 221

ISPF Procedures

When using VS FORTRAN Version 2 Interactive Debug under ISPF (in either
I CMS or TSO), the HELP command invokes the ISPF HELP facility. If you prefer
I to invoke CMS or TSO HELP, precede the HELP command with "CMS" or
I "TSO."

I When HELP is specified without an operand, you wiU be presented with either the
main menu or a description of an unsuccessfully executed command.

When you are viewing the main menu, and want to transfer to another panel, you
can:

• Press the Enter key, causing the task menu to be displayed.

• Enter a number corresponding to one of the items listed on the menu.

The task menu operates in the same manner as the main menu. Pressing the Enter
key will return you to the main menu.

I If you specify HELP with an operand, the panel for that particular command or
I task will be displayed.

When you are viewing HELP information for a particular command or task, use the
following procedures:

• LFse PF3 (or enter QUIT) to terminate viewing of HELP information and
return to Interactive Debug.

• Press the Enter key to move to the next panel. If you press Enter on the final
panel for a particular command or task, you will be returned to the first panel
of that command or task.

• Enter TOP on the command line of any panel to return to the main menu.

CMS Procedures

When executing VS FORTRAN Version 2 Interactive Debug in line mode under
CMS, CMS HELP procedures must be used to transfer between panels. When
HELP is entered following an Interactive Debug prompt (FORTIAD), Interactive
Debug invokes the CMS HELP facility, passing along any options that were
specified on the Interactive Debug HELP command.

When HELP is specified without any options, you will be presented with either the
main menu, or a description of an unsuccessfully executed command.

222 VSFORTRAN Version 2: Interactive Debug Guide and Reference

TSO Procedures

To transfer from the main menu to another panel, you can:

• Position the cursor under one of the names on the menu and press PFl (or
press the Enter key).

• Enter a complete HELP command of the form:

HELP AFF name {options

The task menu operates in the same manner as the main menu. To view
information about one of the tasks, enter HELP TASK name.

When executing VS FORTRAN Version 2 Interactive Debug in line mode under
TSO, TSO HELP procedures areemployed. To display the main menu in line
mode, enter:

1 HELP lADHELP

Information is written to the terminal one line at a time until the screen fills up.
Usethe Enter keyto display more information. There is no wayto go backto
information presented earlierwithout reenteringthe command.

If you entera HELP command without options, you will receive either the main
menu or information about an unsuccessfully executed command.

Youwill need to issue a separateHELP command for each topic. If you have just
seen the main menu and now want to see the task menu, you must enter HELP
TASK.

Appendix A. Using the Interactive Debug HELP Facility 223

Appendix B. Interactive Debug Conunand Summary

Symbols used to describe thesyntax of VS FORTRAN Version 2 Interactive
Debug commands are thesame asare used inother VS FORTRAN Version 2
publications.

• All entries in uppercase letters indicate the minimum abbreviation allowed.

• Square brackets indicate optional entries.

• Braces contain required entries separated byoneor more vertical lines (1);
select one.

• Defaults are underlined.

Command and Syntax Fimction

* or

[comment]

Insert comments in the debug log.

Format 1

ANnotate

{unit 1 (unit list) | * }

Format 1 Copy source listings to a print file
with program sampling information.

rSAMPLING FDIRECT 1 CALLED I ALL]

1 FREQUENCY]

Format 2

ANnotate

[ON 1 OFF 1 TOGGLE]

Format 2 Display a program sampling bar
chart on the source listing window.

rSAMPLING IDIRECT 1 CALLED I ALL]

1 FREQUENCY]

AT

[qual.] {number [:[qual.]number] |

ENTRY 1 EXIT } | (number/ENTRY/EXIT list)

Set breakpoints. Use a percent sign (%) to
separate individual commands in a command
list.

[(command list)] [Count(n)]

FNOTifvl NONotify]

Appendix B. Interactive Debug Command Summary 225

Command and Syntax Function

AutoList

[{[qual.] name [;[qual.]name] |

♦ 1 'string' 1 number | (specification list)}

[Format [(code)] | Dump [(code)]]]

Automatically display values of variables in
full screen mode. Valid only under ISPF.

Note: Check the format and dump codes
table. See Figure 26 on page 127.

BACKSpace
{number | [qualjinteger—variable |

[qual.]integer—array—element}

Position a sequentially accessed external file
at the beginning of the previous record.

CLOSE

{number | [qual.]integer—variable |

[qualjinteger—array—element}

Disconnect a sequential external file from an
input or output unit.

COLOR Allows you to select color, highlighting and
intensity on the debug panel. Valid only
under ISPF Version 2.

DEscribe

{[qual.] name | * | (name list)} [Print]
List data types of variables and dimension
information for arrays.

ENDDEBUG

[SAMPLE[(msecs)] [MAXSAMP(n[,STOP])]

[CALLED]]

1- Terminate debugging and continue
program execution.
2- Initiate program sampling.

ENDFile

{number | [qual.]integer—variable |

[qual.]integer—array—element}

Write an end-of-file record on a sequentially
accessed external file.

ERror

{error | error:error | (error list)}

[Msc 1 NOMsg] [Exit 1 NOExit]

Select diagnostic options for execution
errors.

Fixup
[ARGl(value)] [ARG2(value)]

Specify corrective action.

GO

[[qual.] {number | EXIT}]
Resume execution.

HALT

[Off 1 Stmt 1 Goto 1 Entry | Immed]
Continue execution until a specified
condition is reached.

Help (ISPF Version 2)
[command]

Request online information about a
command.

Help (CMS)
[command [(ALL | (DESC | (PARM |

(FORM]]

Request online information about a
command.

226 VS FORTRAN Version 2: Interactive Debug Guide and Reference

Command and Syntax Function

Help (TSO)
[command] [ALL | FUNCTION | SYNTAX]

[OPERANDS [(keyword Ust)]]

Request online information about a
command.

IF

(condition) command

Test a condition.

Note: Check the accompanying table for
valid conditions.

List

[[qual.]name[:[qual.]name] | * | 'string'

1 number | specification list)} [Print]

[Format [(code)] | Dump [(code)]]

Display values of variables.

Note: Check the format and dump codes
table. See Figure 26 on page 127.

ListBrks [Print] List all breakpoints and WHEN conditions
currently set, and the current HALT status.

ListFreq
[[qual.]{number[;[quai.]number] |

ENTRY 1 EXIT] | (number/ENTRY/EXIT list)]

[Zerofreq] [Print]

List the number of times statements have

been executed.

LISTINGS Display the listingsdata set specification
panel under ISPF Version 2.

Format 1

LISTSAMP

{[qual.]number[:[qual.]number]

1 [qual.]ENTRY | [qua!.]*

1 (specification list) | *.*}

fDIRECTirCALLEDIlALL] [TOP[(n)]][PRINT]

Format 2

LISTSAMP

[unit name | (unitname list) | *} SUMMARY

TDIRECTirCALLEDlIALLl [TOP[(n)]][PRINT]

Format 1 List sampling counts by
statement.

Format 2 List sampling counts by program
unit.

ListSubs

[Print]

List information about all debuggable
program units in the executing load module.

Appendix B. Interactive Debug Command Summary 227

Command and Syntax Function

ListTime

[Print]
Display timing information for all program
units.

MoveCurs Move the cursor between the primary
command line and the source window.

Valid only under ISPF Version 2.

Next Set a temporary breakpoint at the next
executable statement that has a debugging
hook.

OFF

[qual.] {number [:[qual.]number] |
Turn off breakpoints.

ENTRY 1 EXIT} | ♦ |

(number/ENTRY/EXIT Ust)

OFFWN

condition name | * | (condition name list)
Turn off WHEN monitoring.

position

number

Position the cursor at a given ISN or
sequence number. Valid only under ISPF
Version 2.

PREVdisp Redisplay the previous panel displayed by
the application program. Valid only under
ISPF Version 2.

PROFILE Display a profile panel to change current
conditions or profile settings. Valid only
under ISPF Version 2.

PURGE Purge output.

Qualify
[program]

Change the current default program unit
name.

QUIT End the debugging session.

RECONNECT

{number | [quai.]integer—variable |
Reconnect a closed external file.

[qual.]integer—array-element}

REFRESH

[ON 1 OFF]
Control whether the IAD panel is refreshed.
Valid only under ISPF.

RESTART Restarts the debugging session while
maintaining the log file. Valid only under
ISPF.

REWind

{number | [qualjinteger—variable |
Position a sequentially accessed external file
at the beginning of its first record.

[qual.]integer—array—element}

228 VS FORTRAN Version 2: Interactive Debug Guide andReference

Command and Syntax Function

SEARCH

[/string[/]]
Search the source listing window or the
scrollable log for a given character string.
Valid only under ISPF Version 2.

Set

[quaL]name=value[,value...]
Assign values to variables.

STep
[niunber]

Execute one or more statements, then
suspend execution. Under ISPF Version 2,
execution is animated.

SYScmd

[system—command]
Execute system commands during debugger
execution.

TERMIO

riAD 1 Library] [Msg [(userid)] I Nomsg]

Select I/O routines for terminal I/O from
the VS FORTRAN program.

TIMER

{♦ 1 program-unit-name |

(program-unit-name list)}

[ON 1 OFf 1 Reset]

Control program unit timing.

Trace

[Goto 1 Entry 1 Off] [Print]
Trace statement branches and subprogram
calls.

WheN

condition-name [(condition) | variable]
Set up monitoring of a condition.

Where

[Trback] [Flow] [Print]

Display statement at which execution is
suspended.

WINDOW

[ON 1 OFF]

Open or close the source listing window, or
define the window so the lower left corner is
at the cursor position. Valid only under
ISPF Version 2.

Appendix B. Interactive Debug Command Summary 229

Appendix C. Interactive Debug Messi^es

All the following VS FORTRAN Version 2 Interactive Debug messages consist of
a message number and text. The message number is composed of three parts:

1. A prefix, AFF

2. A 3-digit number

3. A suffix, which indicates the level of the message:

• I - informational

• W - warning
• E - error

• A - action required

You can control whether or not the message numbers are displayed. Under CMS,
use the SET EMSG command. Under TSO, use the PROFILE MSGID command.

An Explanation is provided for each message, and, in many cases, a User Response
and System Action are also presented. Generally, the User Response for many of
the messages is to reenter the command, correcting the problem that was identified
in the error message.

Similarly, the System Action for many of the messages is to issue the VS
FORTRAN Version 2 Interactive Debug prompt (FORTIAD) in line mode, or
redisplay the screen in full screen mode, and await entry of another command.

In this appendix, a User Action and/or System Action is shown only if it differs
from the above general actions.

Appendix C. Interactive Debug Messages 231

AFFOOOE THIS MESSAGE IS RESERVED FOR FUTURE USE; INFORM
IBM

Explanation: This message should never occur. If it does, it is the
result of a programming error within VS FORTRAN Version 2
Interactive Debug.

User Response: Contact your IBM representative.

AFFOOIA FORTIAD

Explanation: This is the standard prompt displayed when executing VS
FORTRAN Version 2 Interactive Debug in line mode (that is, not
under ISPF).

User Response: Enter any VS FORTRAN Version 2 Interactive
Debug command.

AFF002A lAD/E

Explanation: This is the prompt displayed when execution is
suspended during an error exit for an error detected by the VS
FORTRAN Version 1 or VS FORTRAN Version 2 Library.

User Response: When appropriate, use the FIXUP command to
supply corrected values for invalid arguments. Use the GO command
to cause standard corrective action to be taken.

AFF003A IAD/A

Explanation: This is the prompt displayed when execution is
suspended because of an attention interrupt. When this prompt is
displayed, processing is within the VS FORTRAN Version 2
Interactive Debug attention exit.

User Response: Enter an Interactive Debug command or a null line.

AFFOIOI VS FORTRAN VERSION 2.2 INTERACTIVE DEBUG

Explanation: This message is issued at the first hook in the program to
identify the Interactive Debug product and the release level.

User Response: None required.

AFFOllI (C) COPYRIGHT IBM CORP. 1985,1987

Explanation: This message is issued at the first hook in the program.

User Response: None required.

232 VSFORTRAN Version 2: Interactive Debug Guide and Reference

AFF012I ALL RIGHTS RESERVED

Explanation: This message is issued at the first hook in the program.

User Response: None required.

AFF013I LICENSED MATERIALS - PROPERTY OF IBM

Explanation: This message is issued at the first hook in the program.

User Response: None required.

AFF020E INTERNAL IAD ERROR nw/wAer. FORTRAN PROGRAM MAY
HAVE MODIFIED IAD STORAGE

Explanation: This message is issued when an internal error occurs.

User Response: Make sure the application program has not modified
Interactive Debug storage. If it has not, contact your IBM
representative.

AFFl OOE "PRINT" OPTION NOT PERMITTED

Explanation: The AUTOLIST command was entered with the PRINT
option.

AFFIOIE "name" IS ONLY VALID IN FULLSCREEN MODE UNDER ISPF
VERSION 2 OR HIGHER; COMMAND IGNORED

I Explanation: The COLOR, LISTINGS, MOVECURS, POSITION,
I PREVDISP,PROFILE, SEARCH, or WINDOW commandwas

entered using line mode or batch mode.

User Response: Be sure you are running under ISPF Version 2 before
issuing this command.

AFF102E "name" MUST SPECIFY A COMMAND IN BATCH MODE

Explanation: A SYSCMD, CMS, or TSO command was entered with
no operand while operating in batch mode.

User Response: Correct the problem and resubmit the job. If you
want to issue a sequence of system commands, you must enter
separate SYSCMDs.

AFF103E "name" IS SUPPORTED ONLY IN FULLSCREEN MODE;
COMMAND IGNORED

Explanation: AUTOLIST, REFRESH, or RESTART was entered in
line mode or batch mode.

User Response: Be sure you are running under ISPF before entering
this command.

Appendix C. Interactive Debug Messages 233

AFFl 1II PROGRAM TERMINATED EARLY BECAUSE MAXIMUM
COUNT WAS REACHED

Explanation: The maximum count value specified in the sublist for the
MAXSAMP keyword of the ENDDEBUG command was reached.
STOP was also specified which caused the program to be terminated.

AFF112E INTERVAL TIMER WAS RESET BY USER PROGRAM, THUS
CANCELLING SAMPLING

Explanation: A non-VS FORTRAN routine called by a VS
FORTRAN program performed an STIMER macro, resetting the
STIMER set by LAD program sampling.

System Action: Program sampling was discontinued.

AFF121E THE AFFON STATEMENT RESTRICTION LIST WILL BE

IGNORED FOR "name" BECAUSE IT WAS COMPILED WITH

THE "TESP' OPTION

Explanation: You cannot restrict statement hooks if the program unit
is compiled with "TEST" because the compiler inserts the hooks.

User Response: Remove the statement restriction list, or recompile the
program unit.

System Action: The restriction list is ignored.

AFF122E THE AFFON STATEMENT RESTRICTION LIST FOR "name"

CONTAINS AN INVALID RANGE, WHICH WELL BE TREATED
AS A SINGLE ISN

Explanation: If an invalid range syntax is specified in the AFFON file,
only the first ISN will be considered.

User Response: Correct the restriction list, and rerun the job.

System Action: The second ISN is ignored.

AFF123E THE AFFON STATEMENT RESTRICTION LIST FOR "name"

CONTAINS INVALID SYNTAX AND WILL BE IGNORED

Explanation: If invalid syntax such as alphabetic characters are
specified in the AFFON file, the entire list for the associated program
unit will be ignored.

User Response: Correct the restriction list, and rerun the job.

System Action: The restriction list is ignored.

234 VS FORTRAN Version2: Interactive Debug Guide and Reference

AFF124E THE AFFON STATEMENT RESTRICTION LIST FOR "name"

CONTAINS AN ENTRY THAT EXCEEDS THE MAXIMUM

POSSIBLE ISN; THE MAXIMUM IS ASSUMED

Explanation: An ISN greater than 16777215 was specified in the
AFFON restriction list.

User Response: Correct the restriction list, and rerun the job.

System Action: The entry is treated as 16777215.

AFF190E ATTEMPT TO REFERENCE INACCESSIBLE STORAGE

Explanation: Interactive Debug tried to examine storage in an area
where it was not allowed to look. This was probably caused by either
an invalid address entered as part of a LIST command, or an invalid
address within a VS FORTRAN module.

User Response: If you specified an invalid address on a LIST
command, reissue the command with valid addresses. If not, try to
determine the cause of the invalid address in the program.

AFFl91E END STATEMENT SAME AS EPILOG IN PROGRAM program;
INTERNAL ERROR

Explanation: This indicates an internal error and should not occur.
The statement table entry in a VS FORTRAN Version 1 program for
an END statement points to the epilog processing routine.

User Response: Contact your IBM representative. Debugging may be
continued, however.

System Action: The statement is treated as a collapsed statement.

AFF192I CURRENT HALT STATUS: status

Explanation: This message tells you whether HALT has been issued to
indicate when execution is to be suspended. Possible status is STMT,
GOTO, or ENTRY.

User Response: None required. This is an informational message.

AFFl94E I/O IS ALREADY ACTIVE; COMMAND IGNORED

Explanation: An attempt to issue BACKSPACE, CLOSE, ENDFELE,
RECONNECT or REWIND, has been detected while I/O was
already active.

User Response: If you need to issue one of these commands, issue a
NEXT command so that execution will be suspended after the 1/O
event is completed.

Appendix C. Interactive Debug Messages 235

AFFl 95E NO DEBUGGABLE FORTRAN PROGRAMS WERE FOUND

Explanation: Interactive Debug has not found any programs within the
module to be executed that are debuggable program units. In general,
for a program unit to be considered debuggable, it must have been
compiled with the SDUMP option.

User Response: The problem may be because of an incorrectly
specified AFFON file. If so, you should have received other messages
detailing other errors.

AFFl96E THERE IS NO PRINT DATA SET DEFINED

Explanation: An error has occurred while attempting to open the
AFFPRJNT data set.

User Response: Correct the cause of the error.

System Action: Processingcontinues. You willnot be able to use the
PRINT keyword on any Interactive Debug command.

AFF198E RELEASE 4.0 LIBRARY TRANSFERRED TO IAD IN 24-BIT
ADDRESSING MODE, CONTACT IBM

Explanation: This indicates an internal library error, or an installation
or system error that should not occur.

User Response: Contact your IBM representative.

AFF199E RELEASE 3.1 LIBRARY TRANSFERRED TO IAD IN 31-BIT
ADDRESSING MODE

Explanation: This indicates a link-edit error, an internal library error,
or an installation or system error.

User Response: Relink-edit your program with
AMODE(24)/RMODE(24). If this does not solve the problem,
contact your IBM representative.

AFF200E STORAGE EXHAUSTED; SIMPLIFY THE COMMAND OR
REMOVE SOME BREAKPOINTS

Explanation: While attempting to build internal control blocks to
represent a command. Interactive Debug used up all available storage.

User Response: If possible, issue a less complicated command, or
reinvoke Interactive Debug with more virtual storage (VM) or a larger
user region (MVS).

236 VS FORTRAN Version 2: Interactive Debug Guide and Reference

AFF210E STORAGE EXHAUSTED DURING SAMPLING, ENTRY POINT
SAMPLING INFORMATION WILL BE INCOMPLETE

Explanation: IAD was not able to obtain storage for recording the
sampling counts for some entry points of nondebuggable VS
FORTRAN routines, VS FORTRAN math, library routines, or
non-VS FORTRAN routines. Counts that would have normally been
categorized by entry point are grouped together in the ♦UNKNOWN
count.

User Response: Reinvoke Interactive Debug with more virtual storage
(VM) or a larger user region (MVS).

AFF220I synod message

Explanation: This is the error message returned by the operating
system when an attempt was made to write to the AFFPRINT data
set.

User Response: Correct the error that caused the message. If printed
output is required, after correcting the problem, reinvoke Interactive
Debug.

AFF224I LINES OF OUTPUT WRITTEN TO AFFPRINT BY

command

Explanation: Confirms that information was written to the print file,
following a command that was specified with the print option.

AFF225E ERROR WRITING THE PRINT DATA SET; SUBSEQUENT
OUTPUT WILL BE WRITTEN TO THE TERMINAL

Explanation: An error was detected when attempting to send
"printed" output to the AFFPRINT data set. From this point on,
output that would be destined for the print data set is redirected to the
terminal.

User Response: If you need to have the print output in a print data
set, terminate your debugging session, correct the error, and reinvoke
the program.

AFF226E

System Action: Further print output is sent to the terminal.

ERROR WRITING THE PRINT DATA SET; SUBSEQUENT
OUTPUT WILL BE DISCARDED.

Explanation: An error was detected when attempting to send
"printed" output to the AFFPRINT data set in batch mode under
TSO. From this point on, output that would be destined for the print
data set is discarded.

User Response: If you must have the print output in a print data set,
terminate your debugging session, correct the error, and reinvoke the
program.

Appendix C. Interactive DebugMessages 237

SystemAction: Further print output is discarded.

AFF229E INVALID COUNT VALUE SPECIFIED IN ''numbei"

Explanation: A count value larger than 65535 was specified on the AT
command.

User Response: Specify a smaller count value, and reissue the AT
command.

AFF230E NO BREAKPOINTS CAN BE SET AT STATEMENT ''number"

BECAUSE IT IS COLLAPSED

I Explanation: The indicated statement occupies no storage so a
I breakpoint cannot be set.

I User Response: Set your breakpoint at a statement before or after the
I indicated statement. You can use LISTFREQ to see which statements

have hooks.

AFF231E NO BREAKPOINT CAN BE SET AT STATEMENT "number"
BECAUSE THERE IS NO HOOK THERE

Explanation: The specified statement was not included in the AFFON
file restriction list, or is an ENTRY or EXIT of a main program unit.

User Response: None required. You can use LISTFREQ to see which
statements have hooks.

AFF240W A SUBSCRIPT IS OUT OF RANGE IN "array element

Explanation: A subscript has been specified for the indicated array
element that exceeds the dimension specified when the array element
was defined.

I AFF241W WARNING: A SUBSTRING BOUNDARY IS OUT OF RANGE IN
I "string"

I Explanation: A substring value has been specified which is outside the
I defined variable length.

I System Action: The command is executed as normal.

AFF242E "name" CANNOT BE ACCESSED; IT COULD BE IN AN
UNINITIALIZED DYNAMIC COMMON

Explanation: Variables in a dynamic common cannot be accessed until
the common has been initialized and the address has been obtained for
the qualifying VS FORTRAN program unit. This occurs the first time
the program unit is entered.

User Response: Set a breakpoint at some point that will be reached
after the program unit is entered, and access the variables when you
get there. If the dynamic commonhas been initialized, you may be

238 VS FORTRAN Version 2: Interactive Debug Guide and Reference

_ able to access it using a different program unit that has already been
entered at least once.

AFF245E "WHERE" INFORMATION IS NOT AVAILABLE AFTER

"ENDDEBUG" IS ISSUED

Explanation: ENDDEBUG has been issued and WHERE information
cannot be determined.

I AFF292E LISTING HLE **dsname" CANNOT BE READ

I Explanation: Issued when a read error occurs while attempting to
I annotate a listing. Can occur due to an actual read error or
I unexpected file format.

I User Response: Insure that thefile or dataset is sequential or is a PDS
I member and that the LRECL is not greater than 151.

AFF293E AN ARRAY WAS USED WHERE A SCALAR IS REQUIRED IN
"variable"

Explanation: While scanning the syntax of the previous command, an
array variable was found when a scalar variable was required.

AFF294E A SIGN WAS SPECIFIED IN "text," BUT THE VARIABLE IS NOT
A NUMERIC SCALAR

Explanation: While scanning the previous command, a sign (+ or -)
was specified for a nonnumeric variable. Only numeric variables may
have signs.

AFF295E THERE IS NO ROOM TO INSERT A HOOK IN STATEMENT
"name.numbet''; STATEMENT TREATED AS COLLAPSED

Explanation: This is an internal error and should not occur. It
indicates that the VS FORTRAN Version 1 or VS FORTRAN
Version 2 compiler only allocated two bytes for a VS FORTRAN
statement. The compiler should allocate at least four bytes so that an
Interactive Debug hook can be inserted.

User Response: Contact your IBM representative. Debugging may be
continued, however.

System Action: The statement is treated as a collapsed statement, and
you will not be allowed to set a breakpoint at the statement.

AFF296E THE AFFON FILE CANNOT BE READ; FILE IGNORED

Explanation: An 1/O error occurred trying to access the AFFON file.

User Response: Correct the cause of the I/O error if you want the
AFFON file to be read.

System Action: The AFFON file is ignored and processing continues.

Appendix C. Interactive DebugMessages 239

AFF297E AN ATTEMPTED BRANCH TO LOW STORAGE OCCURRED AT
**name.number'*', IT MAY BE A CALLTO A NONEXISTENT
PROGRAM

Explanation: An attempted branch to low storage hasoccurred. This
is frequently caused by a call to a missing program unit.

User Response: Determine the cause of the error. Perhaps the
required program unit was not found at link-edit or load time.

System Action: Control is returned to the calling program as if the
called program only contained a RETURN statement.

AFF298I FORTRAN DEBUG PACKET STATEMENTS IN PROGRAM
''program'' WILL BE TREATEDAS COLLAPSED

Explanation: For programs compiled prior to VSFORTRAN Version
1 Release 4, Interactive Debug has detected static debug packet
statements within the program. Interactive Debug willoperate with
programs containing debugpackets, but debugging of the packets
themselves is not supported.

User Response: None required.

System Action: Thestatements within the debug packet are treated as
collapsed statements, and debugging will not be possible at those
statements.

AFF299E ERROR WRITING AFFOUT FILE; FILE IGNORED

Explanation: An I/O error has occurred while attempting to write to
the AFFOUT data set. No further attempts will be made to access the
file.

UserResponse: Correctthe problem that caused the message. If the
log is required, reinvoke Interactive Debugafter correcting the
problem.

AFF300I AT: name.number

Explanation: Execution has been suspended at the identified statement
in the identified program unit. It is suspended because a prior AT
command requested a breakpoint at this statement.

User Response: Enter debugging commands, or GO to resume
execution.

AFF301I NEXT: name.number

Explanation: Executionhas been suspended at the identifiedstatement
in the identified program unit. It is suspended because a NEXT or
STEP command was issued.

User Response: Enter debugging commands, or GO to resume
execution.

240 VS FORTRAN Version 2: Interactive Debug Guide and Reference

I AFF303I TRACE STATUS: status

I Explanation: Provides the current trace status in response to the
I TRACEcommand withno operands. •

AFF304I TRACE: FROM name.number TO name.number

Explanation: Execution has passed from the first identified statement
to the second identified statement. The second statement did not

immediately follow the first statement in the VS FORTRAN source.
This message is received because of an earlier TRACE command that
was issued.

User Response: None required.

AFF305W "ERROR" COMMAND TERMINATED AFTER PROCESSING

ERROR NUMBER number

Explanation: The PURGE command was used to terminate excessive
output from an ERROR command. The last error number processed
was "number."

User Response: None required.

AFF306I PROGRAM HAS TERMINATED; RC=(code)

Explanation: The application program being executed has completed.
If a return code was coded on the STOP statement, it is provided.

User Response: None required.

System Action: You will be allowed to continue entering commands
until a QUIT command is entered, at which time the debugging session
will be terminated.

AFF307W COMMAND OUTPUT REFLECTS THE STATE OF EXECUTION

PRIOR TO ENTERING "ENDDEBUG"

Explanation: The information presented as output for the conunand
which was just issued, is not necessarily current information. It was
correct when you issued an ENDDEBUG command earlier in the
debugging session, and has not been updated since ENDDEBUG was
issued.

User Response: None required.

AFF400I THE COMMAND LIST FOR THE BREAKPOINT AT

''name.numbet'' HAS BEEN TERMINATED BY AN ATTENTION

Explanation: Because of entering an attention exit, the indicated
command list cannot be completed.

User Response: If necessary, enter the commands that were not
completed.

Appendix C. Interactive DebugMessages 241

AFF405E THE NONIMMEDIATE COMMAND ''command" WAS IGNORED
DUE TO A PENDING ERROR EXIT

Explanation: The indicated commandcould not be executed now
because it is not a command that can be immediately processed (that
is, processed easilyby issuing a message, like WHERE, or by setting a
flag, like NEXT), and cannot be deferred to later processing because
execution is currently within an error exit.

User Response: Issue a NEXT, and then issue the command after
execution has left the error exit.

AFF410E UNKNOWN COMMAND

I Explanation: The syntax of the previous"command" name was not a
I valid Interactive Debug command.

I UserResponse: Checkyour spelling of the command namefor
I accuracy or insure that you have included the SYSCMD command for
I a system command.

AFF450E "name" IS AN ASSUMED SIZE ARRAY; SUBSCRIPTS MUST BE
SPECIFIED FOR "LIST"

Explanation: A LISTor SETcommand was issued for the specified
array. However, the final dimension of the arrayis unknown because
it was not defined at compile time. For example, B(*) may have been
specified. Interactive Debug wiU not LIST or SET values in an
assumed size array unless a specified element (for example,B(3)) is
specified.

I AFF454E "GOTO" OR "ENTRY" MUST BESPECIFIED WITH "PRINT*

I Explanation: GOTO or ENTRY was not specified with the PRINT
I option on the TRACE command.

I User Response: Reissue theTRACE command with either the GOTO
I or ENTRY options.

AFF455E INVALID OPERAND SYNTAX SPECIFIED IN "text"

Explanation: Invalid syntaxhas been specified for the indicated
command operand.

I AFF456E "word" IS NOTA VALID KEYWORD FORTHE "cmnd"
1 COMMAND

I Explanation: Issued when an invalid keyword option isdetected in an
I IAD command.

242 VS FORTRAN Version 2: Interactive Debug Guide and Reference

AFF457E ''abb^ IS AN AMBIGUOUS KEYWORD ABBREVIATION FOR

THE COMMAND

Explanation: Issued when an ambiguous abbreviation is detected in an
IAD command.

AFF458E

AFF459E

User Response: Use a longer abbreviation for the keyword.

KEYWORD ''word" WAS SPECIFIED MORE THAN ONCE FOR
THE "cmnd" COMMAND

Explanation: Issued when an option keyword is specified more than
once in an IAD command.

User Response: Specify the option keyword only once.

"wordr AND "word2" CANNOT BOTH BE SPECIFIED ON THE
"cmnd" COMMAND

Explanation: Conflicting keywords are specified.

User Response: Reissue the command with only one of the keywords.

AFF460E UNBALANCED DELIMITERS SPECIFIED IN "text"

Explanation: While scanning the syntax of the previous command, an
invalid use of delimiters was detected. Usually, a right or left
parenthesis is missing.

AFF461E INVALID SUBLIST SYNTAX IN "text"

AFF462E

Explanation: Issued when incorrect syntax is detected in a
parenthesized sublist following a keyword.

KEYWORD "word" OF THE "cmnd" COMMAND REQUIRES A
SUBLIST

Explanation: Issued when a parenthesized sublist was not specified for
a keyword that requires one.

User Response: Reissue the command with the required sublist.

AFF463E KEYWORD "word^ OF THE "cmncP* COMMAND DOES NOT
ALLOW A SUBLIST

Explanation: Issued when a parenthesized sublist was specified for a
keyword that does not permit one.

AFF464E SUBLIST VALUE "number'' IS TOO LARGE FOR KEYWORD
"word"

Explanation: The value specified in the sublist is larger than the
maximum allowed.

Appendix C. Interactive DebugMessages 243

ArF470E UNKNOWN COMMAND ''text"

Explanation: The indicated string was found in a command list, but is
not recognized as a valid Interactive Debugcommand.

AFF481E THE DESTINATION CANNOT BE BRANCHED TO IN "text"

Explanation: A GO command was entered that references a VS
FORTRAN statement that has no hook. This includes a GO EXIT for
a VS FORTRAN Version 1 MAIN program.

User Response: You canuseLISTFREQ to seewhich statements have
hooks.

AFF483E "GO" WITH A STATEMENT IDENTinER CANNOT BE ISSUED
FROM AN ENTRY

Explanation: A GO command with a statement identifier cannot be
issued from the entry point of any VS FORTRAN program unit. At
entry, the unit is not yet active.

User Response: Issue step 1 to get to the first statement with a
hook. You should be able to issue the GO command from there.

AFF484E CONTINUATION IS NOT PERMITTEDWITH THE "command"
COMMAND

Explanation: A command valid onlyunder ISPF Version 2 was
entered under ISPF Version 2, but with continuation. Continuation is
not supported for these conunands.

AFF485E "cmnd" COMMAND CANNOT BE ISSUED FROM AN
ATTENTION EXIT

Explanation: A full screen display conunand isnot allowed from an
attention exit.

User Response: Exitthe attention mode andreissue the command.

AFF486E "cmnd" COMMAND CANNOT BE ISSUED FROM A RESTART
FILE

Explanation: A full screen display command is not allowed in a
RESTART file.

System Action: The command is ignored.

AFF500E STATEMENT number IS NOT EXECUTABLE

Explanation: Thestatement reference does not identify an executable
statement. Possibly the currentqualification identifies a program unit
that does not contain a statement with the specified number.

User Response: Use the QUALIFYcommand to set the proper
qualification, or select a different statement.

244 VS FORTRAN Version 2: Interactive Debug Guide and Reference

AFFSlOE INVALID RANGE; THE RIGHT SIDE (numier) IS LESS THAN
THE LEFT SIDE {number)

Explanation: If a commandhas been entered with a range of
statements specified, the first statement must appear prior to the
second in the program.

I AFF511E INVALID SUBSTRING RANGE; THE RIGHT SIDE ISLESS THAN
I THE LEFT SIDE IN"5/rmg"

I Explanation: The value specified on the right side ofthe substring
I notation is larger thanthe value specified on the leftside.

AFF520E program IS NOT A DEBUGGABLE FORTRAN PROGRAM UNIT

Explanation: The indicatedprogram unit cannot be debugged.

1. If it is a VS FORTRAN Version 1 or VS FORTRAN Version 2
program, it probably was compiled with the NOSDUMPoption.
Either SDUMP or TEST must be specified (or defaulted) for the
program unit to be eligible for debugging.

2. A valid AFFON file was found but did not containthis program
unit.

User Response: If you want to debug the indicatedprogramunit,
terminate the current debugging session, usingthe QUIT command,
correct the AFFON file or recompile the program unit with the
appropriate compileroptions, and reexecute the program.

AFF530E 'Uexr IS INVALID "FTXUP" SYNTAX

Explanation: Invalid keyword syntax has been detected for a FDCUP
command. The only valid keywords are ARGl and ARG2 and both
must contain a valuewithinparenthesesfollowing the keyword.

AFF535E NONNUMERIC VALUE "text" IS NOT ALLOWED IN FTXUP

Explanation: A logical or charactervaluehas been specified in a
FIXUPcommand as value for either ARGl or ARG2. Onlynumeric
values are valid.

AFF540E FORTRAN TERM "text" IS NOT ALLOWED IN FIXUP

Explanation: Usually, valid syntax has been detected where it is not
allowed in a FIXUP command (for example, a duplication factor).

AFF545E A NULL FORTRAN TERM IS INVALID

Explanation: One of the sides of a range specification is missing (for
example, "LISTA(l):").

Appendix C. Interactive DebugMessages 245

AFF549E PROGRAM SAMPLING REQUIRES VS FORTRAN VERSION 2
RELEASE 2.0 LIBRARY OR LATER

Explanation: The modulebeing debuggedwas link-editedwith an
older release of the VS FORTRAN library. Interactive Debug needs
Version 2 Release 2.0 in order to perform program sampling.

User Response: Relink-edit the program with the latest release of the
library.

AFF550I PROGRAM SAMPLING INTERVAL WAS m MS; TOTAL
NUMBER OF SAMPLES WAS n

Explanation: This is the header message for a LISTSAMP display,
where "m" is the sampling time interval used and "n" is the total
number of sampling interruptions that occurred.

AFFSSn "type" SAMPLES:

Explanation: The sampling counts that follow are for sampling
interruptions of the type indicated.

AFF552I SUM OF DIRECT AND CALLED SAMPLES:

Explanation: Thecounts that follow are thesum of bothDIRECT and
CALLED counts.

AFF553E ''unitnam^' CANNOT BE ANNOTATED BECAUSE ITS LISTING
FILE IS NOT KNOWN

Explanation: Issued when the listing file hasnot beenidentified for a
program unit that has had annotation requestedfor it.

UserResponse: Specify the file or data set name in the AFFON file,
or use the LISTINGS panel under ISPF Version 2.

AFF554E ''unitname'' CANNOT BE ANNOTATED BECAUSE IT WAS NOT
FOUND IN '*dsname"

Explanation: Issued whenthe listing for a specified program unit
cannot be found in the specified listing data set.

User Response: Besurethe correct file or data set name is specified in
the AFFON file.

AFF555I STATEMENT SAMPLES %UNIT %TOTAL

Explanation: This is the title line for a LISTSAMP outputwhen
statement information is listed.

AFF556I PROGRAM UNIT SAMPLES %TOTAL

Explanation: This is the title line for LISTSAMP outputwhen
summary information is listed.

246 VS FORTRAN Version 2: Interactive Debug Guide and Reference

AFF557I statement samples %iinit %total histogram

Explanation: This is the program sampling information for a
statement, showing statement number, number of samples, percentage
of total samples for the program unit, percentage of total samples for
the entire program, and a histogram (bar chart) that graphically
displays the size of this value relative to the other sampling values
listed.

AFF558I program samples %total histogram

Explanation: This is the program sampling information for a program
unit, showing program unit name, number of samples, percent of total
samples, and a histogram (bar chart).

AFF559E *'unitname'' CANNOT BE ANNOTATED BECAUSE IT WAS NOT

COMPILED WITH VS FORTRAN V2

Explanation: Issued when annotation is requested for a program unit
that was not compiled with VS FORTRAN VERSION 2. Annotation
is not supported for listings produced by previous versions of the
compiler.

AFF560E PROGRAM SAMPLING HAS NOT BEEN DONE; ISSUE
"ENDDEBUG" WITH THE "SAMPLE" OPTION TO INITIATE

PROGRAM SAMPLING

Explanation: Issued when LISTSAMP or ANNOTATE with the
SAMPLING option is entered but program sampling has not been
initiated.

AFF561I ANNOTATING LISTING FOR PROGRAM UNIT "uni/name"

Explanation: An informational message indicating the progress of the
ANNOTATE command.

AFF562I samples %unit %total histogram

Explanation: This is program sampling information for a statement,
showing number of samples, percentage of total samples for the
program unit, percentage of total samples for the entire program, and
a histogram (bar chart) that graphically displays the size of this value
relative to the other sampling values listed. This information will
appear on the line below the statement number, in those cases where
these fields and the statement number are too long to display together
on a single line.

AFF563I VS FORTRAN INTERACTIVE DEBUG V2 R2.0 ANNOTATED

LISTINGS:

Explanation: This is the heading line for annotated listings.

Appendbc C. Interactive DebugMessages 247

AFF564I PROGRAM UNIT PAGE %TOTAL DISTRIBUTION

Explanation: This is the heading line for the summary page of annoted
listings.

AFF565I unitname page percent histogram

Explanation: This is the format of the output of the summary lines
shown on the summary page of annotated listings.

AFF566I ANNOTATE: status

Explanation: Indicates the current status of the ANNOTATE controls
that are used for displaying bar charts on the source listing window.

AFF567E "CALLED" IS NOT VALID UNLESS SAMPLING WAS INITIATED
WITH THE "CALLED" OPTION

Explanation: The CALLED keywordmust be specifiedin the
ENDDEBUG command in order for CALLED to be valid in the
ANNOTATE and LISTSAMP commands.

User Response: Reissue the commandwithout the CALLED option,
or restart the debugging and specify the CALLED option, in
ENDDEBUG, when initiating sampling.

AFF568I FREQUENCIES

Explanation: Heading for annotated listingby programunit when
frequency values are displayed.

AFF569E KEYWORD IS NOT PERMITTED WITHOUT THE
"SAMPLE" KEYWORD

Explanation: The MAXSAMP or CALLED keywords are only valid if
SAMPLE has been specified for the ENDDEBUG command.

AFTSTOE TIMING INTERVAL MUST BE AN INTEGER LARGER THAN
ZERO

Explanation: The sample timespecified in the SAMPLE sublist of the
ENDDEBUG command must be an integer value larger than zero.

AFTSTIE INVALID STOP PARAMETER SPECIHED IN "MAXSAMP"
SUBLIST

Explanation: STOP, or an abbreviated form of STOP, wasincorrectly
specified in the MAXSAMP sublist of the ENDDEBUG command.

AFTSTIE NO SUBLIST SPECIFIED FOR THE ''word" KEYWORD

Explanation: A sublist is required with the indicated keyword.

248 VS FORTRAN Version 2: Interactive Debug Guide and Reference

AFF573E ''number^' IS AN INVALID "wor^f' VALUE

Explanation: The numeric value specified in the keyword sublist is too
large.

AFF574E MAXIMUM NUMBER OF SAMPLING INTERRUPTS MUST BE

AN INTEGER GREATER THAN ZERO

Explanation: The maximum number of sampling interrupts specified in
the MAXSAMP sublist of the ENDDEBUG command must be an

integer value greater than zero.

AFF575E "tejc/" IS NOT A VALID SUBLIST FOR ''worcP'

Explanation: A sublist after the kejnvord on a command contains
invalid syntax.

AFF576E "DUMP" IS NOT PERMITTED WITH A CONSTANT OPERAND

Explanation: LIST or AUTOLIST has been specified with both a
constant operand and the dump option. This combination is not
permitted.

AFF577E THE MINIMUM SAMPLING INTERVAL ON CMS IS 4

MILLISECONDS.

Explanation: When using CP timer assist, the minimum accuracy of
the interval timer on CMS is about 3.3 milliseconds. To prevent
sampling interruptions from occurring in the operating system code
servicing of the interruption, the interval time is restricted to 4
milliseconds or greater.

AFF605E ONLY REALS ALLOWED IN COMPLEX CONSTANT "/ex/"

Explanation: Integers have been used as part of a complex constant.
Only real numbers are allowed.

AFF610E REAL AND IMAGINARY PARTS OF "var/a^/e" DIFFER IN

LENGTH

Explanation: One part of a complex constant has been entered as a
REAL*4 number and the other part has been entered as a REAL*8
number. Both parts must be of equal length.

AFF615E "/ex/" IS INVALID FORTRAN TERM SYNTAX

AFF620E

Explanation: While scanning the previous command, an operand that
must be a VS FORTRAN term had invalid syntax.

SUBSCRIPTS ARE NOT PERMTITED ON "varwWe"; THE
VARIABLE IS NOT AN ARRAY

Explanation: Subscripts have been specified for a variable that is not
an array.

Appendix C. Interactive Debug Messages 249

AFF625E THE NUMBER OF SUBSCRIPTS ON "arra/' DOES NOT MATCH
THE DECLARED NUMBER OF DIMENSIONS

Explanation: There are too many or too few subscripts specified for
the indicated array.

AFF630E ''variable' IS AN INVALID FORTRAN VARIABLE NAME

Explanation: The name of a VS FORTRAN variable is invalid. For
example, the name contains more than six characters, or does not
begin with an alphabetic character.

AFF631E PROGRAM UNIT "name" IS NOT ACTIVE; ''vamame" IS A
DUMMY ARGUMENT AND CANNOT BE ACCESSED

I Explanation: An AUTOLIST, LIST, SET, IF, or WHEN command
I attempted to access variables that have no storage because the

program unit is not active.

User Response: Set a breakpoint within the program unit and access
the variables when you get there. If the dynamic common has been
initialized, you may be able to access it using a different program unit.

AFF632E ''varname'' IS A DUMMY ARGUMENT THAT IS NOT DEFINED
AT THE ENTRY POINT BY WHICH ''program'' WAS ENTERED,
AND CANNOT BE ACCESSED

Explanation: An attempt was made to reference a dummy argmnent
that is defined only in an alternate entry point.

User Response: Wait until the program unit is entered by an entry
point that defines the dummy variable you want to access.

AFF633E "QUIT" HAS BEEN ISSUED. ENTER "QUIT" AGAIN TO FORCE
AN ABNORMAL TERMINATION

Explanation: This message is issued by the attention interrupt handler.

User Response: Enter QUIT again if you want to terminate
debugging; otherwise, enter any command that is appropriate in an
attention exit.

AFF634E "H" IS NOT A VALID ABBREVIATION UNDER ISPF; USE
"HELP*

Explanation: The only way to request HELP information when
executing VS FORTRAN Version 2 Interactive Debug under ISPF is
to type "HELP" and press the Enter key, or to press a PF key that has
been assigned to HELP (normally PFl).

User Response: If HELP information is desired, request it, using one
of the two techniques described in the Explanation.

250 VS FORTRAN Version 2: Interactive Debug Guide and Reference

AFF635E VARIABLE ''variable*' IS NOT IN PROGRAM UNITprogram

Explanation: The specified variable was not found in the specified
program unit. The variable may be misspelled, the program
qualification may be missing or incorrect, or the variable may have
been removed by the optimizer.

User Response: Make sure that the variable is defined in the currently
qualified program unit. If not, then either use the QUALIFY
command, or explicitly qualify the variable name in the Interactive
Debug command.

AFF636E "COMMAND NOT FOUND"

Explanation: The TSO command requested using the SYSCMD
command was not found by TSO.

AFF640E "text" IS INVALID CONSTANT SYNTAX

Explanation: There is a syntax error in the indicated constant.

AFF645E CONSTANT "number"' EXCEEDS THE MACHINE CAPACITY

Explanation: The indicated constant is too large. This may occur if
leading zeros are specified with the constant.

AFF650E INVALID SUBSCRIPT IN "text"\ A SUBSCRIPT CANNOT BE AN
ARRAY OR ARRAY ELEMENT

Explanation: The subscripts of the indicated array must be scalar
constants or variables.

AFF655E ONE OR MORE PARTS OF COMPLEX CONSTANT "text" ARE
MISSING

Explanation: Either the real or the imaginary portionof the indicated
complex constant is missing. Both portions are required.

AFF660E "text" HAS INVALID SUBSCRIPT SYNTAX

Explanation: While scanning what appears to be a subscript, invalid
syntaxwas discovered. Possibly the right parenthesis was missing.

AFF665E INVALID SUBSCRIPT IN "array'; A NON-INTEGER VARIABLE
WAS SPECIFIED

Explanation: A logical, real, character, or complex variable has been
used as a subscript for the indicated array. Only integer numbers may
be used as subscripts.

Appendix C. Interactive Debug Messages 251

AFF670E 'Uexr IS INVALID ON THE LEFT SIDE OF A SET COMMAND

Explanation: A duplication factor, a minus sign, or a constant appears
on the left side of a SET command. None of these are valid on the left

side.

AFF675E "texr" IS INVALID "SET" SYNTAX

Explanation: Either the equal sign (=) or the right side of the SET
assignment has been omitted.

I AFF680E ''texr IS INVALID IN THE "LIST" RANGE

I Explanation: An item is specified in a range that is not allowed in a
I LIST command.

AFF690E VARIABLE ''variable'' IS INVALID IN "command" COMMAND

Explanation: A duplication factor, a minus sign (-), or a constant
appears with a variable in the indicated command.

I AFF691E LITERAL OR NUMERIC CONSTANTS ARE NOT PERMITTED
I IN THE "DESCRIBE" COMMAND

Explanation: Only variables and array names can be specified on the
DESCRIBE command.

AFF700E NULL VARIABLE LIST/RANGE SPECinED IN "text"

Explanation: While scanning the previous command, the end of the
command was found before a list or range specification was
completed.

AFF715E "variable" IS NOT A LOGICAL VARIABLE

Explanation: While scanning the previous command, a logical variable
was expected, but the indicated variable, which is not a logical
variable, was found instead.

AFF720E "condition" HAS AN INVALID CONDITION

Explanation: The indicated condition is not syntactically correct. For
example, ".EE." may have been used instead of ".EQ.."

AFF725E INVALID COMBINATION OF DATA TYPES IN CONDITION

"condition"

Explanation: While scanning the syntax of the previous command, an
invalid combination of data type was found within the condition
specification. The data types of the variables must be the same or
compatible.

252 VS FORTRAN Version 2: Interactive Debug Guide and Reference

AFF730E ''condition'' IS INVALID CONDITION SYNTAX

Explanation: In the specification of an arithmetic condition, either the
right side of the condition has been omitted, or some extraneous data
follows what appears to be a complete condition.

AFF735E CONDITION "condition" HAS AN INVALID FORTRAN TERM

Explanation: A duplication factor is specified within a condition
specification. This is not valid.

AFF740E "text" IS INVALID "IF' SYNTAX

Explanation: Invalid syntax has been detected within an IF command.
For example, parentheses may be missing around the condition
definition.

AFF741E A USERID MUST BE SPECIFIED WITH THE MSG OPERAND;
NO DEFAULT IS AVAILABLE

Explanation: TERMIO MSG was entered and the default user ID
cannot be determined.

User Response: If the MSG operand is desired, specify the desired
user ID.

AFF742W "MSG" OPERAND IGNORED; "MSG" IS NOT VALID OUTSIDE
BATCH MODE

Explanation: A TERMIO command containing a MSG operand was
entered while Interactive Debug was being used interactively. The
MSG operand is only for batch mode.

AFF743E "command" COMMAND IS NOT PERMITTED IN BATCH MODE

Explanation: The indicated command was entered while in batch
mode, but is not permitted there.

AFF745E "text" IS INVALID "WHEN" SYNTAX

Explanation: In the specification of an arithmetic condition, either the
right side of the condition has been omitted, or some extraneous data
follows what appears to be a complete condition.

AFF750E A COMMAND MUST BE SPECIFIED AFTER "texf

Explanation: No command was specified after the condition on an IF
statement.

AFF755E "QUALIFY" IS NOT PERMITTED IN AN "IF' COMMAND

Explanation: QUALIFY cannot be the command specified as the
action to be taken if the condition specified in an IF command is true.

Appendix C. Interactive Debug Messages 253

AFF760E 'W REQUIRES AN OPERAND; THE COMMAND IS IGNORED

Explanation: An operand must be specified on the indicated
command.

AFF765E ''condition'* HAS AN INVALID "WHEN" CONDITION NAME

Explanation: The name of the indicated condition has a syntactically
invalid name. Valid names must begin with an alphabetic character
and contain no more than four alphameric characters.

AFF768W "condition" CONDITION IS NOT ON

Explanation: An attempt to turn off the indicated condition has been
detected, but the condition is already off.

AFF775E "command" COMMAND IGNORED IN AN IF OR COMMAND

LIST

Explanation: The indicated command was found in an IF command or
a command list specified with an AT command. The command is not
valid in this context and is ignored.

AFF780E "command" IS NOT PERMITTED TO HAVE OPERANDS; THE
COMMAND IS IGNORED

Explanation: A keyword has been specified for a command that has no
keywords. The extra ke3rword is ignored.

User Response: Determine why the extra keyword was entered.
Possibly the wrong command was issued. If so, issue the right
command.

AFF795E INVALID COMBINATION OF DATA TYPES IN "text"

Explanation: In a SET command, the data type of the variables and
constants on the right side of the equal sign is different from the data
type of the variable on the left side of the equal sign.

• A character variable may be assigned only character data items.

• A logical variable may be assigned only logical data items.

• An arithmetic variable may be assigned only arithmetic data items.

254 VSFORTRAN Version 2: Interactive Debug Guide and Reference

AFF800E INVALID "GO"; THE STATEMENT IDENTinER IS NOT IN THE
CURRENT PROGRAM UNIT

Explanation: An attempt has been detected to go to a statement
outside the program unit that was being executed when processing was
suspended.

User Response: Reenter the GO command either without an ISN or
sequence number, or with an ISN or sequence number that is within
the correct program unit.

AFF8011 QUALIFICATION IS program

Explanation: This message is issued in response to a QUALIFY
command, and identifies the currently qualified program unit. Unless
you have issued a QUALIFY command to set a different program
unit, the currently qualified program unit will be the program unit
which is currently being executed.

AFF802E COMMAND IGNORED; THE PROGRAM HAS FINISHED
EXECUTION

Explanation: The VS FORTRAN program has finished execution.
Interactive Debug will allow you to enter most commands before you
enter the QUIT command, but the last command entered is not one of
those that may be issued at this time.

User Response: Enter a valid command. Valid commands are:

ANNOTATE

AUTOLIST

BACKSPACE

CLOSE

COLOR

comment

DESCRIBE

ENDFILE

HELP

LIST

LISTBRKS

LISTFREQ

LISTINGS

LISTSAMP

LISTSUBS

LISTTIME

MOVECURS

POSITION

PROFILE

PREVDISP

PURGE

QUALIFY

QUIT

RECONNECT

REFRESH

RESTART

REWIND

SEARCH

SET

SYSCMD

TERMIO

WHERE

WINDOW

For a list of commands that are not valid, see "Issuing Commands
after Termination of a VS FORTRAN Program" on page 96.

AFF805W program IS OPTIMIZED; "GO" WITH STATEMENT ID MAY
CAUSE UNPREDICTABLE RESULTS

Explanation: The indicated program unit was compiled with OPT(n)
with n>0. Because the program is optimized, it may depend on values
being kept in registers between some statements. A GO command to
a specific statement may bypass code that is needed to set registers,
and may cause unpredictable results.

System Action: Message AFF806 is issued to confirm whether the
command should be executed.

Appendbc C. Interactive Debug Messages 255

AFF806A DO YOU WISH TO EXECUTE THIS COMMAND? (YES OR NO)

Explanation: This message was preceded by message AFF805, which
warned of the possible consequences of executing the GO command.
You must now confirm your desire to issue the command.

User Response: Reply YES or NO.

System Action: If YES is specified, the command is issued. If NO is
specified, the command is not issued. Following either action,
processing continues.

AFF820E OPEN ERROR ON AFFOUT FILE

Explanation: This message is issued to your SYSMSG file or spooled
console when the OPEN of the AFFOUT file fails while running batch
mode.

User Response: Correct the cause of the I/O error.

AFF821E ERROR PROCESSING AFFOUT FILE

Explanation: This message is issued to your SYSMSG file or spooled
console when a PUT to the AFFOUT file faUs while running batch
mode.

User Response: Correct the cause of the I/O error.

AFF822E OPEN ERROR ON AFFIN FILE

Explanation: This message is issued when the OPEN of the AFFIN
file fails while running batch mode.

User Response: Correct the cause of the I/O error.

System Action: Debugging is terminated.

AFF823E ERROR PROCESSING AFFIN FILE

Explanation: This message is issued if a GET to the AFFIN file fails
while running batch mode.

User Response: Correct the cause of the I/O error.

System Action: Debugging is terminated.

AFF824E END-OF-FILE ON AFFIN FILE

Explanation: This message is issued when end-of-file is reached on the
AFFIN file for batch mode.

User Response: Correct the input file and rerun the job if more
commands are desired.

System Action: A QUIT command is forced.

256 VS FORTRAN Version 2: Interactive Debug Guide and Reference

AFF825E UNABLE TO WRITE DIAGNOSTIC MESSAGE CONCERNING
AFFIN FILE

Explanation: This message is issued to your SYSMSG file or spooled
console when an AFFIN diagnostic cannot be written to the AFFOUT
file in batch mode.

User Response: Correct the cause of the I/O error.

AFF831E "ENTRY" AND "EXIT' ARE NOT PERMITTED IN A RANGE

Explanation: An ENTRY or EXIT keyword was issued in a statement
ID range.

User Response: Use ISNs or sequence numbers for ranges. ENTRY
and EXIT are usable only as individual elements.

AFF832E THE QUALIFIER ON THE RIGHT SIDE OF A RANGE MUST
MATCH THE QUALIFIER ON THE LEFT SIDE

Explanation: A statement ID range was entered where a qualifier was
specified for the right statement ID that does not match the one on the
left side.

User Response: Use a matching qualifier or allow it to default.

AFF840E LIST RANGE IGNORED; THE SECOND VARIABLE PRECEDES
THE FIRST IN STORAGE

Explanation: A LIST command has been entered with a range of
variables specified. In a range, the first variable must appear in
storage prior to the second variable so that the area between the two
variables may be displayed.

AFF841I RANK = number; DUMMY ARRAY ARGUMENT OF INACTIVE
SUBPROGRAM OR ALTERNATE ENTRY POINT

Explanation: This message is produced by the DESCRIBE command
for a dummy array argument of an inactive subprogram or alternate
entry point.

AFF850I variable value

Explanation: This is the output of a LIST command that did not
include the DUMP keyword. The name of the requested variable is
shown along with its current value.

AFF851I PROGRAM UNIT COMPILER OPT HOOKED TIMING

Explanation: This is the title line for LISTSUBS output.

AFF852I ENTRY POINT TASK TIME (MIC) PERCENT INVOCATIONS

Explanation: This is the title line for LISTTIME output.

Appendix C. Interactive Debug Messages 257

AFF853I timing information

Explanation: This is the output line for timing information for program
units that are being timed.

AFF854I NO TIMING INFORMATION IS AVAILABLE

Explanation: This message is issued if no program units are timing or
have accumulated time.

AFF855I name datatype

Explanation: This is the DESCRIBE output for a scalar variable.

AFF856I RANK = number^ SIZE = number ELEMENTS

Explanation: This message provides DESCRIBE information about
the size of an array variable.

AFF857I DIM number^ LBOUND = (number\ UBOUND = {number)

Explanation: This message provides DESCRIBE information about
the dimensions of an array variable.

AFF859I DIMENSION INFORMATION NOT AVAILABLE

Explanation: Dimension information is not available for dummy
arguments of an inactive subprogram or for an alternate entry point.

AFF860E FIXUP IGNORED; SUBSCRIPT ERROR

Explanation: A subscript specified within a FIXUP command was out
of range for the variable it was subscripting.

AFF861E FIXUP IGNORED; NOT IN ERROR EXIT

Explanation: You can issue a FIXUP command only if an execution
error has occurred in the VS FORTRAN program.

AFF862E FIXUP IGNORED; NO ARGUMENTS MAY BE MODIFIED

Explanation: A FDCUP command with either ARGl or ARG2 (or
both) specified was entered for an error that has no modifiable
arguments.

User Response: Enter a corrected FIXUP command or a GO
command.

AFF863E FIXUP IGNORED; ARG2 MAY NOT BE MODIFIED

Explanation: A FIXUP command has been entered with a value
specified for ARG2, but the VS FORTRAN library subroutine that
detected the error only has one modifiable argument.

258 VS FORTRAN Version 2: InteractiveDebugGuideand Reference

AFF865E "GO" WITH A STATEMENT ID IS NOT ALLOWED IN AN

ERROR EXIT

Explanation: This type of GO command is not allowed within an error
exit.

User Response: If you want to continue processing at some other
statement, you may issue a NEXT command followed by a GO
command. When execution is suspended because of the NEXT
command, you may issue the GO command with a specific statement
identification.

AFF866E LAST COMMAND IGNORED DUE TO AN ERROR EXIT

Explanation: The last command entered within an attention exit was
not executed because an error exit occurred.

AFF867E ERROR EXIT: ERROR number AT name.number

Explanation: This is the notification message that occurs when an
error exit is taken. It is also the response to a WHERE command in
an error exit. The indicated statement and program unit name identify
the last statement that was executing prior to the indicated error.

User Response: None required. Use the FIXUP or GO command to
terminate the error exit processing.

AFF868E "text" IS INVALID I/O COMMAND SYNTAX

Explanation: The syntax of the previous BACKSPACE, CLOSE,
ENDFILE, or REWIND command is invalid. An integer variable or
constant must be specified.

AFF871I WHEN: condition SATISFIED

Explanation: The indicated WHEN condition has been satisfied.

System Action: This message will be followed by message AFF872I.

AFF872I CURRENTLY AT name.number

Explanation: This message is issued after message AFF871I to identify
the current location within the program unit.

AFF873I PROGRAM TERMINATED BY USER REQUEST

Explanation: This message is issued when you enter the "QUIT"
command in an attention exit to terminate execution of a VS

FORTRAN program.

System Action: Control is returned to Interactive Debug.

Appendix C. Interactive DebugMessages 259

AFF874E ERROR ON AFFIN FILE; FILE IGNORED

Explanation: An error has occurred while attempting to open the
AFFIN file. No further attempts to access this file are made.

User Response: Correct the problem that caused the message. If the
file is required, correct the problem and reinvoke Interactive Debug.

AFF875E WHEN IGNORED; CONDITION ^'condition'' NOT DEFINED

Explanation: A WHEN command has been detected that contains only
a condition name. This is interpreted as a request to "turn the
condition on." However, no condition with the specified name has
been defined.

AFF876E WHEN IGNORED; SUBSCRIPT ERROR

Explanation: A subscript error was encountered while processing the
WHEN command.

AFF880E OFFWN IGNORED; NO WHEN CONDITIONS ARE DEFINED

Explanation: The previous OFFWN command was ignored because
there are no WHEN conditions defined that could be turned off.

AFF881E OFFWN IGNORED FOR UNDEFINED CONDITION ^'condition''

Explanation: The previous OFFWN command specified a WHEN
condition that does not exist. The command is ignored.

AFF900E SYSTEM COMMAND RETURN CODE: code

Explanation: The indicated code was received from processing the
previous system command using Interactive Debug's SYSCMD
command.

AFF9101 CURRENT TERMIO STATUS: status

Explanation: This message indicates the status of settings that are
controlled by the TERMIO command.

AFF920E SET COMMAND NOT COMPLETED NORMALLY

Explanation: Because of an error described in the preceding message,
the SET command was unable to be completed; not all values were
assigned.

AFF925E TOO MANY VALUES; EXCESS IGNORED; SET COMPLETED

Explanation: Too many values for an array have been specified with a
SET command. The extraneous values are ignored.

260 VSFORTRAN Version 2: Interactive DebugGuideand Reference

AFF929E MULTIPLE FORTRAN MAIN PROGRAMS HAVE BEEN FOUND;
PROGRAM '^program-imit-name'* IS ALSO A MAIN PROGRAM

Explanation: Multiple main FORTRAN program units were found in
the program being debugged. Only programs with a single main
program unit can be debugged.

System Action: Processing continues. Interactive Debug assumes that
the last main program unit in the load module is the main program that
was invoked. If this is not the case, message AFF937E will be issued.

User Response: Relink-edit the program to contain only one main
program unit.

AFF930E NAME **name" GREATER THAN 31 CHARACTERS;TRUNCATED

Explanation: A program unit name in the AFFON file is greater than
31 characters. The name is truncated to 31 characters.

User Response: If the name is misspelled, correct the spelling in the
AFFON file and reinvoke the debugger.

AFF931E THE AFFON SOURCE LISTING DATA SET NAME FOR 'hiame"
CONTAINS INVALID SYNTAX AND WILL BE IGNORED.

Explanation: The syntax of the data set name specified in the AFFON
file for the named program unit is invalid.

System Action: The listing data set name specification and the ISN
restriction list (if any) are ignored.

User Response: Correct the file name. Especially check for a missing
closing quote.

AFF932E DUPLICATE NAME "name"

Explanation: The indicated program unit name has been found more
than once in the AFFON file.

System Action: The duplicate entry is ignored, and processing
continues.

AFF933I AFFON FILE PROCESSED

Explanation: This is an informational message informing you that the
AFFON file was processed.

AFF934E PROGRAM NAME ''program'' NOT FOUND

Explanation: The indicated program unit name was specified in the
AFFON file, but could not be found in the program to be debugged.

System Action: The program unit name is ignored, and processing
continues.

Appendix C. Interactive DebugMessages 261

AFF935E INTERNAL ERROR IN GENERATED CODE FOR ''program*'

Explanation: This is an internal error and should never occur. It
indicates that, within the first four bytes generated by the VS
FORTRAN Version 1 or VS FORTRAN Version 2 compiler for a VS
FORTRAN statement, an instruction of the form "BALR x,y" was
detected. Such an instruction is only valid if y=0.

User Response: Contact your IBM representative.

System Action: Debugging is discontinued.

AFF936E CALL STACK OVERFLOW; TOO MANY LEVELS OF CALL IN
"program"

Explanation: Interactive Debug maintains information about each
debuggable program unit involved in execution. It has the ability to
keep information for 512 different program units. This message
indicates that more than 512 debuggable program units are currently
active.

User Response: Use the AFFON file to select fewer program units for
debugging so no more than 512 units will be active at one time.

System Action: An abend is forced.

AFF937E HOOK FOUND AT UNKNOWN LOCATION

Explanation: This is probably an internal error. It indicates that what
appears to be an Interactive Debug hook was found at a location that
Interactive Debug could not recognize.

User Response: Contact your IBM representative.

System Action: Interactive Debug returns control to the VS
FORTRAN Version 2 library for its normal program check handling.

AFF938E ADDRESSING MODE CHANGED IN program unit name

Explanation: An external routine called from a VS FORTRAN
program unit has changed the MVS/XA addressing mode and not
restored it. Unless this is an unusual or intentional situation, an abend
will probably occur. Be aware that there are some situations in which
an abend will occur before Interactive Debug can get control and issue
this message. For example, a program running above the 16-megabyte
line that switches to 24-bit addressing mode will abend immediately.

There are situations, however, where this message will be issued as
informational only. For example, the Release 4 VS FORTRAN
Version 1 library always enters user error exits in 31-bit addressing
mode. If an MVS/XA program is linked to run 24/24, this message
will be issued the first time such a routine is entered. In this case, it
should be treated as informational only, and not regarded as an error
condition.

262 VS FORTRAN Version 2: Interactive Debug Guide and Reference

User Response: Unless the change of addressing mode was
intentional, or unless a user exit was taken by a 24/24 program, you
should check and correct the addressing mode logic in any external
routines called by the specified program unit.

AFF939I RELEASE 3.0 COMPILED PROGRAM UNIT name CANNOT BE

DEBUGGED ON MVS/XA

Explanation: A program unit compiled with the Release 3 VS
FORTRAN Version 1 compiler has been included in the AFFON file.
Such program units are not debuggable in MVS/XA, unless they were
compiled with the TEST option, or are recompiled with Release 3.1 or
later.

System Action: The program unit name is ignored, and processing
continues.

AFF940I ZERO-FREQUENCY STATEMENTS

Explanation: This is the heading of a listing of statements within the
indicated program unit that have not been executed, in response to
LISTFREQ.

System Action: The ISNs or sequence numbers are listed.

AFF942I name.statement

Explanation: This is the output of the LISTFREQ command when the
ZEROFREQ keyword has been specified.

AFF943I NONE

Explanation: One of the following is true:

• A LISTFREQ command with the ZEROFREQ kejrword was
entered, and all statements in the currently qualified program unit
have been executed at least once.

• A LISTBRKS command was entered, and no breakpoints have
been established using the AT command.

• A LISTBRKS command was entered, and no WHEN conditions
have been established.

AFF945I STATEMENT FREQUENCY

Explanation: This is the heading for a listing of execution counts, in
response to LISTFREQ.

System Action: The ISNs or sequence numbers are listed.

AFF947I name.number frequency

Explanation: This is the output of the LISTFREQ command.

Appendix C. Interactive Debug Messages 263

AFF950I CURRENT BREAKPOINTS:

Explanation: This is the heading for the output of the LISTBRKS
command for breakpoints set by the AT command.

System Action: All active breakpoints are listed.

AFF952I nanw.statement

Explanation: This is the output from the LISTBRKS conunand for AT
commands with a COUNT of 1.

AFF953I name.statement CGUNTfcownr)

Explanation: This is the output from the LISTBRKS command for AT
commands with a COUNT greater than 1.

AFF955I CURRENT WHEN CONDITIONS:

Explanation: This is the heading for the output of the LISTBRKS
command for WHEN conditions.

AFF957I condition name setting condition

Explanation: This is the output from the LISTBRKS command for
WHEN conditions. Each defined condition is shown, along with an
indication of whether the condition is currently being monitored (ON)
or not (OFF).

AFF960W COMMAND WILL BE ATTEMPTED, BUT PROGRAM HAS
FINISHED EXECUTION

Explanation: The previous command has been accepted and will be
executed normally, but execution of the program has completed and
may not be restarted.

AFF970W program IS OPTIMIZED; SETS MAY BE INEFFECTIVE AND
REFERENCES MAY GET INVALID VALUES

Explanation: The indicated program unit has been compiled with the
OPT(n) or VECTOR(n) compiler option with n>0. Because the
program unit is optimized. Interactive Debug commands that reference
storage locations may produce unexpected results. For example, LIST
A will report the value in the storage location the compiler established
for variable A, but the compiled code may not be using the storage
location to keep the value of the variable; it may be kept in a register
instead. Interactive Debug cannot detect this situation, but it is likely
to occur in optimized program units.

User Response: Use affected commands with care. See "Debugging
Optimized and Vectorized Code" on page 98, which discusses the
effect of optimized code on VS FORTRAN Version 2 Interactive
Debug.

264 VS FORTRAN Version 2: Interactive Debug Guide and Reference

System Action: Processing continues. This message should only
appear the first time you issue one of the affected commands in a
program unit.

AFF971E STATEMENT number IS COLLAPSED AND MAY NOT BE USED

FOR DEBUGGING

Explanation: The indicated statement cannot have a breakpoint
associated with it because it occupies no storage (because of
optimization or vectorization).

AFF972I

User Response: If necessary, set a breakpoint at a statement
immediately before or after the collapsed statement. You can use
LISTFREQ to show which statements are collapsed.

STATEMENT number DOES NOT HAVE AN ESTABLISHED

BREAKPOINT

Explanation: An OFF command specifies that a breakpoint at the
indicated statement is to be removed. There is no breakpoint at this
statement.

AFF973I "OFF' IGNORED; NO BREAKPOINTS ARE DEFINED

Explanation: An OFF command has been issued, but there are no
breakpoints defined in the currently qualified program unit.

AFF974E NO FORTRAN MODULE WAS FOUND IN STORAGE

Explanation: Interactive Debug could not determine the storage limits
for searching for debuggable programs. This happens if the
application program was invoked using a load (for example, using the
TSO LOADGO command).

User Response: Be sure your application program is invoked using an
attach or link command.

AFF975E

System Action: Debugging is terminated with ABEND 111.

command COMMAND IGNORED; NO CURRENT
QUALinCATION

Explanation: There is no program unit serving as the current
qualification. Perhaps execution was suspended before any
debuggable program was executed.

User Response: Set a qualification using the QUALIFY command,
and reenter the command causing the message.

Appendix C. Interactive Debug Messages 265

AFF976E SYNTAX ERROR IN command COMMAND

Explanation: A syntax error was detected in scanning the indicated
command.

User Response: Determine the cause of the error, and reenter the
command with the correct syntax.

AFF977E I/O UNIT NUMBER IN ''command" MUST BE AN INTEGER

Explanation: While scanning the previous command, where an integer
value or integer variable was expected, a duplication factor or some
other type of data was found.

User Response: Reenter the command with an integer value or the
name of an INTEGER variable.

AFF978E COMMAND IGNORED; "ENDDEBUG" HAS BEEN ISSUED

Explanation: The last command entered is being ignored because of a
previously issued ENDDEBUG command. After ENDDEBUG is
issued, you no longer have the ability to debug.

User Response: You may issue QUIT if you no longer want to execute
the program, or may enter a null line to continue execution.

AFF979E "command" IGNORED; TERMINAL INPUT PENDING

Explanation: A GO, ENDDEBUG, or STEP command was entered,
but is not permitted when a program is waiting for input.

User Response: If you want to enter a GO, ENDDEBUG, or STEP
command, enter a NEXT command now, and, when execution stops
for the NEXT, enter the GO or ENDDEBUG command.

AFF980E THE "STEP" OPERAND MUST BE AN INTEGER GREATER
THAN ZERO

Explanation: STEP was entered with an invalid operand.

AFF981I ALL BREAKPOINTS IGNORED FOR PROGRAM UNIT "name"

Explanation: A dynamically loaded program unit with pending
breakpoints was found to be loaded in read-only storage.

AFF982I NO BREAKPOINTS ARE DEFINED WITHIN THE SPECIFIED
RANGE

Explanation: The OFF command specified a range where no
breakpoints were defined.

266 VS FORTRAN Version 2: Interactive Debug Guide and Reference

AFF990I START OF RUN OR NO DEBUGGABLE PROGRAM EXECUTING

Explanation: A WHERE command has been detected, but either only
the first prompt has been received and execution has not really started,
or execution was interrupted while a nondebuggable program was
executing.

AFF991I program CALLED AT name.number

Explanation: This message is the output of the WHERE command
with the TRBACK kejrword. The message indicates the logic flow
through the program units.

AFF992I NO SUBROUTINES CALLED

Explanation: This message is issued following a WHERE TRBACK
command when no subroutines have been called. This implies that
execution is currently within the topmost debuggable program unit
(usually the "main" program).

AFF995I WHERE: name.number

Explanation: This is the output of the WHERE command. It shows
that execution is currently at the indicated statement in the indicated
program unit. If execution is currently within a program unit that is
not debuggable (and execution was suspended because of an attention
interrupt), then the specified statement will be the last statement
executed in a debuggable program unit.

AFF996I TO: name.number FROM: name.number

Explanation: This message is the output of the WHERE command
with the FLOW keyword. The message indicates the logic flow
through the program units.

AFF998E INTERNAL ERROR number AT LOCATION number, IAD
STORAGE MAY HAVE BEEN OVERLAID BY PROGRAM

Explanation: This message is issued when an internal Interactive
Debug abend occurs.

User Response: Contact your IBM representative.

System Action: Abend 101 is issued.

Appendbc C. Interactive Debug Messages 267

Glossaiy

This glossary includes definitions developed by the
American National Standards Institute (ANSI), and the
International Organization for Standardization (ISO).

This material is reproduced from the American National
Dictionary for Information Processing, copyright 1977 by
the Computer and Business Equipment Manufacturers
Association, copies of which may be purchased from the
American National Standards Institute, 1430 Broadway,
New York, New York 10018.

An asterisk (*) to the right of an item number indicates an
ANSI definition in an entry that also includes other
definitions.

The symbol "(ISO)" at the beginning of a definition
indicates that it has been discussed and agreed upon at
meetings of the International Organization for
Standardization Technical Committee 97/Subcommittee 1
(Data Processing Vocabulary), and has also been
approved by ANSI and included in the American National
Dictionaryfor Information Processing.

addressing mode. The length of an address, either 24 bits
or 31 bits, used by the processor. Indicated by the
high-order bit of the PSW in an MVS/XA environment.

alphabetic character. A character of the set A, B, C,... Z.
See also "letter." In VS FORTRAN Version 1 and VS

FORTRAN Version 2, the currency symbol ($) is
considered an alphabetic character. In VS FORTRAN
Version 2, lowercase letters (a through z) are also valid.

alphameric. Pertaining to a character set that contains
letters (A through Z) and digits (0 through 9) only. In VS
FORTRAN Version 2, the character set may also contain
lowercase letters (a through z).

alphameric character set.
both letters and digits.

A character set that contains

alternate entry. (1) In VS FORTRAN, an entry provided
by means of the ENTRY statement. (2) As used by
Interactive Debug, an entry other than the one by which
the subprogram was actually entered.

animation. Under ISPF with Interactive Debug, the ability
to highlight the command currently executing and control
the pace of execution when using the STEP conunand.
This creates an "animated" picture of your program's
execution.

argument. A parameter passed between a calling program
and a SUBROUTINE subprogram, a FUNCTION
subprogram, or a statement function.

arithmetic constant. A constant of type integer, real,
double-precision, or complex.

arithmetic expression. One or more arithmetic operators
and/or arithmetic primaries, the evaluation of which
produces a numeric value. An arithmetic expression can
be an unsigned arithmetic constant, the name of an
arithmetic constant, or a reference to an arithmetic
variable, array element, or function reference, or a
combination of such primaries formed by using arithmetic
operators and parentheses.

arithmetic operator. A symbol that directs VS FORTRAN
to perform an arithmetic operation. The arithmetic
operators are:

+ addition

subtraction

* multiplication
/ division
** exponentiation

array. An ordered set of data items identified by a single
name.

array declarator. The part of a statement that describes an
array used in a program unit. It indicates the name of the
array, the number of dimensions it contains, and the size
of each dimension. An array declarator may appear in a
DIMENSION, COMMON, or explicit type statement.

array element A data item in an array, identified by the
array name followed by a subscript indicating its position
in the array.

array name. The name of an ordered set of data items
that make up an array.

Glossary 269

assignment statement. A statement that assigns a value to
a variable or array element. It is made up of a variable or
array element, followed by an equal sign (=), followed by
an expression. The variable, array element, or expression
can be of type character, logical, or arithmetic. When the
assignment statement is executed, the expression to the
right of the equal sign replaces the value of the variable or
array element to the left.

basic real constant. A string of decimal digits containing a
decimal point, and expressing a real value.

blank common. An unnamed common block.

breakpoint. (1) (ISO) A place in a computer program,
usually specified by an instruction, where its execution
may be interrupted by external intervention or by a
monitor program. (2) As used by IAD, a VS FORTRAN
statement where the user has specified that execution is to
be suspended, or that some action is to be taken.

character constant. A string of one or more characters
enclosed in apostrophes. The delimiting apostrophes are
not part of the constant.

character expression. An expression in the form of a
single character constant, variable, array element,
substring, function reference, or another expression
enclosed in parentheses. A character expression is always
of type character.

character type. A data type that can consist of any
characters; in storage, one byte is used for each character.

collapsed statement. A statement for which no machine
code has been generated because of the nature of the
statement, or as a result of optimization or vectorization.

common block. A storage area that may be referred to by
a calling program and one or more subprograms.

complex constant. An ordered pair of real or integer
constants separated by a comma and enclosed in
parentheses. The first real constant of the pair is the real
part of the complex number; the second is the imaginary
part.

complex type. An approximation of the value of a
complex number, consisting of an ordered pair of real data
items separated by a comma and enclosed in parentheses.
The first item represents the real part of the complex
number; the second represents the imaginary part.

connected file. A file that has been connected to a unit

and defined by a FILEDEF command or by job control
statements.

constant. An unvarying quantity. The four classes of
constants specify numbers (arithmetic), truth values
(logical), character data (character), and hexadecimal
data.

control statement. Any of the statements used to alter the
normal sequential execution of FORTRAN statements, or
to terminate the execution of a VS FORTRAN program.
FORTRAN control statements are any of the forms of the
GO TO, IF, and DO statements, or the PAUSE,
CONTINUE, and STOP statements.

data. (1) * (ISO) A representation of facts or instructions
in a form suitable for communication, interpretation, or
processing by human or automatic means. (2) In
FORTRAN, data includes constants, variables, arrays, and
character substrings.

data item. A constant, variable, array element, or
character substring.

data set. The major unit of data storage and retrieval
consisting of data collected in one of several prescribed
arrangements and described by control information to
which the system has access.

data set reference number. A constant or variable in an

input or output statement that identifies a data set to be
processed.

data type. The properties and internal representation that
characterize data and functions. The basic types are
integer, real, complex, logical, double precision, and
character.

debugging hook. See "hook."

♦ digit. (ISO) A graphic character that represents an
integer. For example, one of the characters 0 through 9.

DO-loop. A range of statements executed repetitively by
a DO statement.

double precision. The standard name for real data of
storage length 8.

DO variable. A variable, specified in a DO statement,
that is initialized or incremented prior to each execution of
the statement or statements within a DO range. It is used
to control the number of times the statements within the

range are executed.

dummy argument. A variable within a subprogram or
statement function definition with which actual arguments
from the calling program or function reference are
positionally associated. Dummy arguments are defined in
a SUBROUTINE or FUNCTION statement, or in a

statement function definition.

270 VS FORTRAN Version 2: Interactive Debug Guide and Reference

dynamic common. A VS FORTRAN named common
which the DC compiler option specifies should be
allocated at execution time.

executable program. A program that can be executed as a
self-contained procedure. It consists of a main program
and, optionally, one or more subprograms or
non-FORTRAN-defined external procedures, or both.

executable statement. A statement that causes an action
to be taken by the program; for example, to calculate, to
test conditions, or is a control statement.

existing file. A file that has been defined by a FILEDEF
command or by job control statements. A valid unit
number in FORTRAN'S internal unit assignment table, as
specified at installation time.

The INQUIRE statement considers a file to exist on the
basis of FORTRAN I/O statements that have been
processed.

existing unit. A valid unit number in FORTRAN'S
internal unit assignment table, as specified at installation.

expression. A notation that represents a value: a
constant or a reference appearing alone, or combinations
of constants and/or references with operators. An
expression can be arithmetic, character, logical, or
relational.

external file. A set of related external records treated as a

unit; for example, in stock control, an external file would
consist of a set of invoices.

external function. A function defined outside the program
unit that refers to it.

external procedure. A SUBROUTINE OR FUNCTION
subprogram written in FORTRAN.

file. A set of records. If the file is located in internal

storage, it is an internal file; if it is on an input/output
device, it is an external file.

nie definition statement. A statement that describes the
characteristics of a file to a user program. For example,
the OS/VS DD statement or the FILEDEF command for
CMS processing.

file reference. A reference within a program to a file. It
is specified by a unit identifier.

formatted record. (1) A record, described in a FORMAT
statement, that is transmitted, when necessary with data
conversion, between internal storage and internal storage
or to an external record. (2) A record transmitted with
list-directed READ or WRITE statements and an

EXTERNAL statement.

FORTRAN-suppIied procedure. See "intrinsic function."

function reference. A source program reference to an
intrinsic function, to an external function, or to a
statement function.

function subprogram. A subprogram invoked through a
function reference, and headed by a FUNCTION
statement. It returns a value to the calling program unit at
the point of reference.

hexadecimal constant. A constant that is made up of the
character Z followed by two or more hexadecimal digits.

hierarchy of operations. The relative priority order used to
evaluate expressions containing arithmetic, logical, or
character operations.

hook. Also, debugging hook. An internal segment of
code that is able to give temporary control to a debugging
program such as Interactive Debug. The code is
independent of the algorithm implemented in the
application program containing the hook. In VS
FORTRAN Version 2 Interactive Debug, breakpoints can
only be set at statements that have hooks.

IAD. An abbreviation for Interactive Debug, used with
VS FORTRAN Version 1 and VS FORTRAN Version 2.

implied DO. An indexing specification, similar to a DO
statement, causing repetition over a range of data
elements. (The word DO is omitted, hence the term
"implied.")

integer constant. A string of decimal digits containing
decimal point and expressing a whole number.

integer expression. An arithmetic expression whose values
are of integer type.

integer type. An arithmetic data type, capable of
expressing the value of an integer. It can have a positive,
negative, or zero value; it must not include a decimal
point.

internal file. A set of related internal records treated as a

unit.

internal statement number (ISN). A number assigned to
each statement in a VS FORTRAN program by the VS
FORTRAN compiler. ISNs are assigned sequentially
beginning with 1, and are visible on the listing produced
by the compiler.

ISN is sometimes referred to as "internal sequence
number." See also "statement identifier" and "sequence
number."

interruption localizing. A function that occurs at
optimization level 2. It restricts certain optimizations so
that no code is moved out of a loop if it would cause an
interruption that would not occur without optimization.

no

Glossary 271

intrinsic function. A function, supplied by VS
FORTRAN, that performs mathematical or character
operations.

* I/O. Pertaining to either input or output, or both.

I/O list. A list of variables in an input or output
statement specifying which data is to be read or which
data is to be written. An output list may also contain a
constant, an expression involving operators or function
references, or an expression enclosed in parentheses.

labeled common. See "named common."

length specification. A source language specification of
the number of bytes to be occupied by a variable or an
array element.

letter. A symbol representing a unit of the English
alphabet.

list-directed. An input/output specification that uses a
data list instead of a FORMAT specification.

logical constant. A constant that can have one of two
values: "true" or "false."

logical expression. A combination of logical primaries and
logical operators. A logical operator can have one of two
values: true or false.

logical operator. Any of the set of operators .NOT.
(negation), .AND. (connection: both), or .OR. (inclusion:
either or both), .EQV. (equal), .NEQV.(not equal).

logical primary. A primary that can have the value "true"
or "false." See also "primary."

logical type. A data type that can have the value "true" or
"false" for VS FORTRAN Version 1 or VS FORTRAN

Version 2. See also "data type."

looping. Repetitive execution of the same statement or
statements. Usually controlled by a DO statement.

main program. A program unit, required for execution,
that can call other program units but cannot be called by
them.

name. A string of from one through thirty-one alphameric
characters, the first of which must be alphabetic. The
underscore () is a valid character. Used to identify a
constant, a variable, an array, a function, a subroutine, or
a common block.

named common. A separate common block consisting of
variables, arrays, and array declarators, and given a name.

nested DO. A DO statement whose range of statements
is entirely contained within the range of another DO
statement.

nonexecutable statement. A statement that describes the

characteristics of the program unit, of data, of editing
information, or of statement functions, but does not cause
an action to be taken by the program.

nonexisting Hie. A file that has not been defined by a
FILEDEF command or by job control statements.

♦ numeric character. (ISO) Synonym for digit.

numeric constant. A constant that expresses an integer,
real, or complex number.

preconnected file. A unit that was defined at installation
time. However, a preconnected unit does not exist for a
program if the unit is not defined by a FILEDEF
command or by job control statements.

predefined specification. The implied type and length
specification of a data item, based on the initial character
of its name in the absence of any specification to the
contrary. The initial characters I-N type data items as
integer; the initial characters A-H, O-Z, and $ type data
items as real. No other data types are predefined. For VS
FORTRAN Version 1 and VS FORTRAN Version 2, the
length of both types is 4 bytes.

primary. An irreducible unit of data; a single constant,
variable, array element, function reference, or expression
enclosed in parentheses.

procedure. A sequenced set of statements that may be
used at one or more points in one or more computer
programs, and that usually is given one or more input
parameters and returns one or more output parameters. A
procedure consists of subroutines, function subprograms,
and intrinsic functions.

procedure subprogram. A function or subroutine
subprogram.

program return code. When a program is terminated with
a nonzero return code, the code is available for
interrogation by means of job control language for the
appropriate operating system.

program unit. A sequence of statements constituting a
main program or subprogram.

real constant. A string of decimal digits that expresses a
real number. A real constant must contain either a

decimal point or a decimal exponent and may contain
both.

real type. An arithmetic data type, capable of
approximating the value of a real number. It can have a
positive, negative, or zero value.

272 VS FORTRAN Version 2: Interactive Debug Guide and Reference

record. A collection of related items of data treated as a
unit.

relational expression. An expression that consists of an
arithmetic expression followed by a relational operator,
followed by another arithmeticexpressionor a character
expression followed by a relational operator, followed by
another character expression. The result is a value that is
true or false. In Interactive Debug the only arithmetic
expression permitted in a relational expression is a
variable, an array element, or a constant.

relationaloperator. Any of the set of operators that can
express a comparison betweenarithmetic expressions, and
that can be either true or false:

.GT. greater than

.GE. greater than or equal to

.LT. less than

.LB. less than or equal to

.HQ. equal to

.NB. not equal to

residence mode. Where a program resides in virtual
storage in an MVS/XA environment: above or below 16
megabytes.

scale factor. A specification in a FORMAT statement
that changes the location of the decimal point in a real
number (and, if there is no exponent, the magnitude of the
number).

sequence number. A number found in positions 73
through 80 of records containingsource statements for the
VS FORTRAN compiler. Sequence numbers are not
necessarily unique, in sequence,or present in every record.
See "internal statement number" and "statement
identifier."

specification statement. One of the set of statements that
providesthe compilerwith informationabout the data
used in the source program. In addition, the statement
supplies the information required to allocate data storage.

specification subprogram. A subprogram headed by a
BLOCK DATA statement and used to initialize variables
in named common blocks.

statement. The basic unit of a VS FORTRAN program,
that specifies an action to be performed, or the nature and
characteristics of the data to be processed, or information
about the program itself. Statements fall into two broad
classes: executable and nonexecutable.

statement function. A name, followed by a list of dummy
arguments, that is equated to an arithmetic, logical,or
character expression. In the remainder of the program the
name can be used as a substitute for the expression.

statement function definition. A statement that defines a
statement function. Its form is a name, followed by a list
of dummyarguments, followed by an equal sign (=),
followed by an arithmetic, logical, or character expression.

statement function reference. A reference in an
arithmetic, logical, or character expressionto the name of
a previously defined statement function.

statement identifier. The statement label, internal
statement number (ISN), or sequence number used by VS
FORTRAN Version 2 Interactive Debug to identify a
statement in a VS FORTRAN program. The options that
existed when the program was compiled determine
whether the ISN or the sequence number is valid. In many
cases, you can also use the statement label, preceded by a
slash, as a valid identifier for a statement.

See also "internal statement number" and "sequence
number."

statement label. A number of from one through five
decimal digits that is used to identify a statement.
Statement labels can be used to transfer control, to define
the range of a DO statement, or to refer to a FORMAT
statement.

subprogram. A program unit that is invokedby another
programunit in the same program. In FORTRAN, a
subprogramhas a FUNCTION, SUBROUTINE,or
BLOCK DATA statement as its first statement.

subroutinesubprogram. A subprogram whose first
statement is a SUBROUTINE statement. It optionally
returns one or more parameters to the calling program
unit.

♦ subscript. A subscript quantity or set of subscript
quantities, enclosed in parentheses and usedwithan array
name to identify a particular array element.

subscriptquantity. A component of a subscript: an
integer constant, an integer variable,or an expression
evaluated as an integer constant.

type specification. The explicit specification of the type of
a constant, variable, array, or function by use of an
explicit type specification statement.

unformatted record. A record that is transmitted
unchangedbetween internal storage and an external
record.

unit. A means of referring to a file in order to use
input/output statements. A unit can be connected or not
connected to a file. If connected, it refers to a file. The
connection is symmetric: that is, if a unit is connected to a
file, the file is connected to the unit.

Glossary 273

unit identifler. The number that specifiesan external unit. variable. A data item, identifiedby a name, that is not a
named constant, array, or array element, and that can

1. An integer expressionwhose value must be zero or assiunedifferent values at different times during program
positive. For VS FORTRAN Version 1 and VS execution.
FORTRAN Version 2, this integer value of length 4
must correspond to a DD name, a FILEDEF name, or vectorization. The process of creating machine
an ASSGNname. instructionsthat willexecute on the specialvector

processing facility of the IBM 3090 Vector Facility.
2. An asterisk (*) that corresponds on input to

FT05F001 and on output to FT06F001. vectorize. To compilea source program so its eligibleDO
loop statements are transformed into vector object code.

3. The name of a character array, character array
element, or character substring for an internal file.

/^N

2,14 VS FORTRAN Version 2: Interactive Debug Guide andReference

Index

Special Characters

I (vertical lines) 113
* (asterisk), inserting comments into debug log 117
-(hyphen) 92
% (percent sign)

entering input to a VS FORTRAN program 23
leading 92
trailing 92

" (quotationmark)
inserting comments into debug log 117
use with continuation lines 92

" "(doublequotationmark) 117
[] (square brackets) 113
{ } (braces) 113

0
addressing mode, definition
AFFIN

specifying in batch 56
specifying under ISPF 39

AFFON

defining in line mode, requirements for
defining under batch, requirements for
defining under ISPF, requirements for
record format, setting 38, 60
record length 38, 60
selection criteria 38, 60
with TIMER command 82

AFFOUT

for use with AFFIN in batch 56

for use with AFFIN in ISPF 39

output file or data set in batch 58
output file or data set in ISPF

AFFPRINT

specifying in batch 58
specifying in line mode 50
specifying under ISPF 36

ALL keyword (HELP CMS) 151
ALL keyword (HELP TSO) 153
alphabetic character, definition 269
alphameric, definition 269
animation

definition 269

program execution 32
specifying step delay 186
using STEP 32
with HALT/GO 33

ANNOTATE command

description of 118
syntax of 118
use in program sampling 80

269

36

48

58

37

argument

assigning values to 87
definition 269

ARGl keyword (FIXUP) 144
ARG2 keyword (FIXUP) 144
arithmetic expression, definition 269
arithmetic operator, definition 269
array

declarator, definition 269
definition 269

displaying data type of 77, 136
element, definition 269
how to change value of 199
name, definition 269

assigning values 199
assignment statement, definition 269
asterisk (*), inserting comments into debug log 117
AT command

at specific statements 72
conditions, restrictions, and exceptions 123
COUNT keyword 121
description of 121
effects of optimization or vectorization 107
list of statements 121
NOTIFY/NONOTIFY keywords 122
range of statements 121
setting up command lists 76
specifying breakpoints 72
syntax of 121

attention interrupt
attention prompt 97
entering commands 97
exit, entering commands in an 97
PURGE, NEXT, WHERE, or » (comment)
resuming execution with null line 93, 97
use of QUIT 93, 97

AUTOLIST command

arrays, display values of 129
common variables 128

conditions 125

description 125
effects of optimization or vectorization 107
EQUIVALENCE statement 128
equivalence variables 128
hexadecimal, display values in 129
syntax 125

B

BACKSPACE command

abbreviations 131

conditions 131

description 131
position external files 89
syntax 131

98

Index 275

backward movement 101

basic real constant, definition 270

batch mode

and FORTIAD EXEC 51

connecting a data set to a terminal device 56
DEBUNIT execution-time option 56
description of 51
restrictions 55

bit-by-bit comparison 97
blank common, definition 270
blanks, inputting 92
block 100

braces ({}) 113
breakpoint, definition 270
breakpoints

listaU 164

qualifying 71
remove 180

set 121

set for the next executable statement 178

setting 62,72
browsing and editing 33

character constants

definition 270

enclosed in single quotation marks 200
character data type, definition 270
character expression, definition 270
character string, searching for 197
CLIST, using to invoke VS FORTRAN programs
CLOSE command

conditions 132

description 132
disconnect external file 90

syntax 132
CMS

see Conversational Monitor System
collapsed statement

and debugging hooks 72
definition 270

COLOR command

conditions 134

description 134
syntax 134
using ISPF 33

command lists

effects of optimization or vectorization 107
IF command used within AT 155

parameters 121
resuming execution 76
setting up 76
uses 76

command summary 225
commands

*or" 117
ANNOTATE 118

46

AT 121

AUTOLIST 125

BACKSPACE 131

CLOSE 132

COLOR 134

continuation of 22,46
DESCRTOE 136

ENDDEBUG 138

ENDFILE 141

entering in an attention-interrupt exit 97
entering in ISPF 22
entering in line mode 46
ERROR 142

examples of common usage 70
FIXUP 144

functions 61

GO 146

HALT 148

HELP (CMS) 151
HELP (ISPF) 150
HELP(TSO) 153
IF 155

KEYS 177

LIST 158

LISTBRKS 164

LISTFREQ 165

LISTINGS 168

LISTSAMP 170

LISTSUBS 174

LISTTIME 176

maximum length 46
MOVECURS 177

NEXT 178

OFF 180

OFFWN 182

on the ISPF execution panel 23
QUALIFY 189

QUIT 191

RECONNECT 192

REFRESH 193

RESTART 194

restrictions in batch mode 51

REWIND 195

SEARCH 197

SET 199

some common commands with examples 70
STEP 203

summary 225
summary by function 115
syntax 225
SYSCMD 205

TERMIO 207

TIMER 209

TRACE 211

usage, advanced 70
using system 90
valid after program execution, list of 96
WHEN 213

WHERE 216

WINDOW 217

276 VS FORTRAN Version 2: Interactive Debug Guide andReference

comments into debug log, inserting 117
common block, definition 270
common expression elimination 101
compare floating point numbers 97
compare variables 155
complex constant, definition 270
complex data type, definition 270
connected file, definition 270
constant (WHEN) 213
constant propagation 101
constant, definition 270
continuation character

how to enter 22

restricted commands 22

terminal input 92
control statement, definition 270
conventions

statement identifier 114

syntax 113
Conversational Monitor System (CMS)

AFFON

using in batch mode 60
using in line mode 48
using under ISPF 38

entering system commands
invoking interactive debug

in batch mode 52

in line mode 41

overview 8

using ISPF with PDF
using ISPF without PDF

online help 222
show defined files 91

corrective action 87

CP SET PF command 47

current statement boundary 216
cursor-oriented commands 30

cursor, moving between window and command line

205

10

13

data item, definition 270
data set reference number, definition
data set, definition 270
data type

definition 270

displaying 77
data tjrpe, displaying 136
data, definition 270
DEBUG execution-time option 17
debuggable program units

defined 69

display a list of 174
how to list 69

debugging
changing defaults for session 25
data sets required 17
files required 17
fimctions that affect 98

270

177

optimized code 98
restarting 194
using common commands
vectorized code 98

warning messages 99
debugging hooks

see hook

DEBUNIT execution-time option 57
default qualification, how to change 189
default settings for profile panel 186
DESC keyword (HELP CMS) 151
DESCRIBE command

conditions 136

description 136
examples 77
setting up 77
syntax 136

digit, definition 270
display

compiler level 174
current statement boundary 216
datatypes 77,136
load status 174

log line numbers 186
nonexecuted statements 165

optimization level 174
previous panel 185
timing status 174
values of variables 85, 158
vectorization level 174

DO variable, definition 270
DO-loop, definition 270
double precision, definition 270
double quotation mark ("") 117
dummy argument, definition 270
DUMP codes for LIST 127, 160
dynamic common

definition 270

displaying variables in
dynamic invocation

considerations 97

in batch mode 51

in CMS in line mode

in CMS with ISPF 9

in TSO in line mode

introduced 8

70

128

41

45

0
end-of-file, entering 92
ENDDEBUG command

conditions 138

description 138
end debugging 93
entering subsequent commands
syntax 138
terminal I/O 93

ENDFILE command

93

Index 277

abbreviation 141

conditions 141

description 141
end-of-file record 90

perform 1/O operations 90
syntax 141

entering
commands 22

input to a VS FORTRAN program 23
terminalinput 91

ENTRY keyword (TRACE) 211
error

handling 87
messages, list of 231
occurrence counts 87

option table 87
ERROR command

abbreviation 142

conditions 142

corrective action with FIXUP command 86

description 142
EXIT/NOEXIT keywords

definitions 142

display messages 86
initial error settings 86
messages 86
MSG/NOMSG keywords

definitions 142

perform corrective action 86
suspend execution 86

syntax 142
example

of a debugging session 61
of common commands 69

of execution panel 21
of optimization 100
of source listing window 29
of vectorization 102

see also sample
excluding program units 73
EXEC, using to invoke FORTRAN programs 41
executable program, definition 271
executable statement, definition 271
execution

controlling program 72
frequency 165
frequency, determining statement 78
of one or more statements using STEP 203
panel for ISPF 21
tracing program 83

execution-time

error, handling 86
option

DEBUG 61

overriding default value 97
with ISPF 9

existing file, definition of 271
existing unit, definition of 271
expression, definition 271
external files

definition 271

disconnect 89

end-of file record, writing
positioning 89
processing 89
sequentially accessed 89

external function, definition

89

271

0
features. Interactive Debug 3
file definition statement, definition 271
file names

for CMS files under Interactive Debug 10
of optional debugging files 10

file reference, definition 271
file, definition 271
FIXUP command

abbreviation 144

ARGl keyword 144
ARG2 keyword 144
assign values to arguments 87
conditions 144

description 144
specify corrected values 87
syntax 144

fixup, standard 86
floating-point equalities 97
flow analysis 101
FLOW keyword (WHERE) 216
foreground panel 9
FORM keyword (HELP CMS) 151
FORMAT codes for LIST 127, 160
formatted record, definition 271
FORTIAD EXEC

as a TSO CLIST to invoke line mode 46

modified for batch mode S1

to invoke line mode under CMS 45

frequency count
modifying on profile panel

frequency of execution 165
full screen display commands

defined 25

restriction in command list

restriction with IF 156

full screen mode 9, 33
FUNCTION keyword (HELP TSO) 153
function reference, definition 271
function subprogram, definition 271

186

122

21S VS FORTRAN Version 2: Interactive Debug Guide and Reference

a
global register assignment 104
glossary

ANSI definitions 269

definitions of terms 269-21A

ISO definitions 269

GO command

beginning or resuming execution 62
conditions and restrictions 146

description 146
effects of optimization or vectorization 107
in command lists 78

syntax 146
GOTO keyword (TRACE) 211

H

HALT command

conditions 148

description 148
ENTRY keyword

definition 148

entries or exits to program units 74
GOTO keyword

definition 148

program branch 74
in command lists 76

OFF keyword
canceling 74
definition 148

STMT keyword
definition 148

single step with 74
stop execution 74
syntax 148

HALTED FOR OUTPUT msg 24
handling errors 87
HELP command (CMS)

ALL keyword 151
conditions and restrictions 151

DESC keyword 151
description 151
FORM keyword 151
PARM keyword 151
syntax 151

HELP command (ISPF)
conditions and restrictions 150

description 150
syntax 150

HELP command (TSO)
ALL keyword 153
conditions and restrictions 153

description 153
FUNCTION keyword 153
OPERANDS keyword 153
syntax 153

SYNTAX keyword 153
HELP facility

CMS procedures 222
command syntax under CMS 151
command syntax under ISPF 150
command syntax under TSO 153
HELP menu 220

invoking 219
ISPF procedures 222
overview 219

task menu 221

TSO procedures 222
tutorial 220

hexadecimal constant, definition 271
hierarchy of operations, definition 271
hook, debugging

and compiler options 72
and program animation 25
display list of 78
displaying list of 38
eliminating overhead caused by 83
entry and exit 38
how to insert 72

none 38

suspending execution at a 74
use of LISTSUBS command 174

hook, definition 271
horizontal scrolling 30
hyphen, to continue input on succeeding lines 92

0
I/O list, definition 272
I/O, definition 272
IAD 271

definition 271

See Interactive Debug
IAD keyword (TERMIO) 23, 91, 207

message to enter 23
IF command

conditions and restrictions 155

description 155
effects of optimization or vectorization 107
in command lists 76

syntax 155
implied DO, definition 271
INCLUDE fUes 10

individual variable qualification 70
information about a function 150, 151, 153
informational messages 231
initializing variables 97
input log

in batch 56

using ISPF 39
input, entering terminal 91
integer constant, definition 271
integer expression, definition 271
integer type, definition 271

Index 279

Interactive Debug
batch mode support 51
batch mode, requirements for 5
browsing and editing 33
command summary 115
dynamic invocation of 8,97
entering terminal input 91
error messages from 24
execution panel, contents and use 21
features 3

full screen support 33
HELP command 219

introducing 3
invoking

at execution time 8

in batch mode 51

in line mode 41

using ISPF 9
ISPF and PDF, requirements for 5
ISPF, using 9
line mode, requirements for 5
options to allocate files and control Interactive Debug

I/O 8
performance considerations 7
product requirements 5
programming requirements for 5
routines for terminal input 91
source listing window, using 24
storage requirements for 7
termination 36,58
warning messages 99

Interactive System Product Facility
changing color attributes of display 134
changing PF key definitions 22
CMS file IDs, building 10
commands valid under Version 2 25

defining a source listing window 217
full screen display 4
full screen support 33
invocation panels 9
keywords 23
maximum length of an input line 93
online help 222
setting PF key for MOVECURS 177
TSO data set names, building 17
use of Interactive Debug with 9
Version 2, under

changing profile settings 25
description of animation 32
description of source window 26
features 24

list of valid commands 25

STEP command 203

WINDOW command 217

internal file, definition 271
Internal Statement Number

definition 271

positional 183
range in AFFON file 59
referencing 61
when to use 114

interruption localizing
at optimization level 2
definition 271

intrinsic function, definition
invoking interactive debug

at execution time 8

in batch mode

overview 51

using CMS 52
using MVS with TSO 53
using MVS without TSO 54

in line mode

overview 41

using CMS 41
using TSO 45

using ISPF
overview 9

using CMS with PDF 10
using CMS without PDF 13
using TSO with PDF 17
using TSO without PDF 18

ISO, identifies ISO glossary definitions
ISPF

See Interactive System Product Facility

B
KEYS command 22,177

B

101

271

269

label, statement, definition 273
length specification, definition 272
letter, definition 272
LIBRARY keyword (TERMIO)

description of command 207
relationship to log 36, 58
restrictions 23

line mode

AFFPRINT, defining 50
changing PF key definitions 47
entering input 47
listing file, using 48
maximum length of an input line 93
use of Interactive Debug with 41

line number

displaying or inhibiting 186
on execution panel 21
positional 31

link mode

modifications for batch mode 52

specifying as GLOBAL TXTLIB for line mode 42
specifying on ISPF invocation panel 11

LIST command

array elements 85

280 VS FORTRAN Version 2: Interactive Debug Guide andReference

arrays, display values of 162
common variables 160

conditions and restrictions 158

description 158
display all variables 71
DUMP keyword

conditions 128, 160
definition 158

use of 85

effects of optimization or vectorization 107
EQUIVALENCE statement 160
equivalence variables 160
FORMAT keyword

conditions 128, 160
definition 158

use of 85

hexadecimal, display values in 162
series of variables 85

syntax 158
to a print data set 85
variables in different format 85

LIST fUes 10

list the number of times statements have been

executed 165

list-directed, definition 272
LISTBRKS command

check breakpoint settings 71
description 164
syntax 164

LISTFREQ command
conditions 165

description 165
effects of optimization or vectorization 107
obtain a listing file or a print data set 78
syntax 165

listing file, using while debugging 33
LISTINGS command

conditions and restrictions 168

description 168
syntax 168

listings data set specification panel
display with LISTINGS conunand 168
modifying 27

Listsamp command
conditions and restrictions 170

description 170
syntax 170
use in program sampling 80

LISTSUBS command

conditions and restrictions 174

description 174
for determining debuggable program units 69
syntax 174

LISTTIME command

conditions and restrictions 176

description 176
syntax 176
to get timing information 82
used with TIMER command 209

load mode

default for Interactive Debug 11

default in line mode 42

load status, displaying 174
location information (WHERE) 83, 216
log

example 21
file at termination of activity '34, 58
file or data set, specifying an output 36, 58
inhibiting display of line numbers 186
input, specifying in batch 56
input, specifying in ISPF 39
restarting a debugging session 194
searching for character string 197
searching for log line number 183
viewing the scrollable 23

LOG files 10

log number
see line number

logical constant, definition 272
logical expression, definition 272
logical operator

definition 272

used with IF command 155

logical primary, definition 272
logical type, definition 272
looping, definition 272
loops in nondebuggable program units

escaping from 96
using the QUIT command 96

M

main program, definition 272
maximum length of an input line

in CMS or TSO line mode 93

in ISPF 93

messages 231
mixed-case input 92
monitor

a condition using WHEN 74
a condition, turn off 182
a condition, turn on 213

across program boundaries (QUALIFY) 71
MOVECURS command

conditions and restrictions 177

description 177
move cursor to source listing window 30
syntax 177

multiple assignments of a value 199

0
name, definition 272
named common, definition 272
nested DO, definition 272
NEXT command

conditions and restrictions 178

Index 281

description 178
next executable statement

suspend execution 74
syntax 178
using STEP as NEXT/GO pair 203

NEXT FORCED FOR OUTPUT msg 24, 178
NODEBUG option 17
nonexecutable statement, definition 272
nonexecuted statements, display 165
nonexisting file, definition 272
null line 93

numeric character, definition 272
numeric constant, definition 272

0

74

occurrence count for execution-time errors

OFF command

conditions 181

description 180
syntax 180

OFF keyword (TRACE) 211
OFFWN command

condition name list 182

conditions 182

description 182
reactivate condition monitoring 75
syntax 182
turn off WHEN condition monitoring 75

one-time testing of conditions (IF) 155
online HELP

invoking 3
to get a set of screens with help information
using 22
using to invoke 3

OPERANDS keyword (HELP TSO) 153
operating procedures, ISPF 21
optimization

commands effected 107

display level for debuggable units
effects on debugging 98
execution of DO loops 104
flow analysis 101
levels and functions

operational situations
OPT(O) 99
OPT(l) 100
OPT(2) 101
OPT(3) 101
warning messages 108
warning messages while debugging 99

optimized code, limited debugging of 7
option

DEBUG/NODEBUG 97
overriding execution-time 97
to allocate files and control Interactive Debug 1/O

output halt value 25, 178
overriding execution default 18

93

174

98

96

0
panel

display previous 185
filling in the CMS 10
filling in the TSO 17
refreshing the screen 193

PARM keyword (HELP CMS) 151
PDF

See Program Development Facility (PDF)
percent sign

see % (percent sign)
performance

hints for improving 109
PF keys

how to change in line mode 47
how to change under ISPF 22
limited number of lines 23

restrictions 23

scrolling with 23
setting up for MOVECURS 177
using with cursor-oriented commands 30

POSITION command

conditions 183

description 183
positioning at a log number or ISN 31
syntax 183

preconnected file, definition 272
predefined specification, definition 272
PREVDISP command

conditions 185

description 185
syntax 185

primary option menu 9
primary, definition 272
PRINT keyword (LISTFREQ)

definition 165

display statement frequency
range of statements 78
single statements 78

PRINT keyword (TRACE) 211
PRINT keyword (WHERE) 216
printing files or data sets

in batch mode 58

in line mode 50

using ISPF 36
procedure subprogram, definition 272
procedure, definition 272
processing flow errors 74

see also HALT

PROFILE command

changing settings 25
conditions 186

description 186
syntax 186

Program Development Facility (PDF)
browsing and editing 33

282 VS FORTRAN Version 2: Interactive Debug Guide and Reference

invocation without PDF 13,18
required for browse and edit 9
split-screen browsing and editing 4

program function keys
See PF keys

program return code, definition 272
program sampling

bar charts in a source listing window 29
bar charts in ISPF version 2 80

initiation 79

limitations 82

statistics 80

use of ANNOTATE 118

use of CALLED counter 79

use of DIRECT counter 79

useofENDDEBUG 138

useofLISTSAMP 170

program units
activating timing 209
changing qualification 189
definition 272

main, subprogram, subroutine 70
moving between 71
multi-subroutine modules 73

qualifying 70
see also AFFON

to be debugged, specifying
in batch mode 58

in line mode 48

under ISPF 37

transfers 83

programming requirements S
PURGE command

conditions 188

description 188
syntax 188
terminate output of a single command 188

qualification
apply commands to another unit 70
in another program 71
individual variables 71

overriding on AT statement 121
overriding on OFF statement 180
set breakpoints in another program 71

QUALIFY command

conditions and restrictions 189

description 189
qualify variables 70
syntax 189

QUIT command
description 191

terminate debugging 67
terminate execution 93

while in attention exit 93, 97

quotationmark(")
inserting comments into debug log 117
use with continuation lines 92

0
range of statements (AT) 121
reactivate WHEN monitoring 182
real constant, definition 272
real type, definition 272
recompile in split screen 9
RECONNECT Command

abbreviations 192

conditions 192

description 192
syntax 192
use with CLOSE Command 132

record format, setting in line mode 49
record length, in line mode 49
record, definition 273
recovery after messages 231
reentrant object code, debugging 4
reference number, data set (definition) 270
REFRESH command

conditions 193

description 193
syntax 193

registers ICQ
relational conditions 155

relational expression, definition 273
relational operator, definition 273
remove WHEN breakpoints (OFFWN) 182
RENT option

display load status for units compiled with
RENT 174

requirement for reentrant code 4
residence mode, definition 273
respond to errors 86
RESTART command

conditions 194

description 194
syntax 194
using to start session with new compilation 33

RESTART fUes 10

return to system, see also quit 67
REWIND command

conditions 195

description 195
perform I/O operations 89
position external file 89
syntax 195

Index 283

0
sample

debugging session 64
program 61

scalar variable

and WHEN command 213

displaying data type of 77, 136
scale factor, definition 273
screen support, full 33
scrollable log

see log
scrolling the listing and log 30
SDUMP option

to generate sequence numbers 4
SEARCH command

conditions 197

description 197
searching for a character string 31
syntax 197

search for an ISN or log number 183
select I/O routines 207
sequence number

definition 273

generating instead of ISNs 4, 114
restriction in AFFIN 39, 56

sequence of control, tracing
TRACE 211

WHERE 216

SET command

assignments 199
changing the value of variables 66
description 199
effects of optimization or vectorization 107
syntax 199
valid format 199

slash (/) (statement label) 121
source listing window

and animation 24

and cursor-oriented commands 30

and listings data set specification panel 27
and STEP command for animation 32

changing color or highlighting 33
columns 25

conditions for displaying 30
defining 217
defining defaults 186
defining size of 26
example 29
inhibiting display of source listing 27
introduction 9

moving cursor to command line 30, 177
positioning at ISN or log line 31
rows 25

searching 31
searching for character string 31,197
searching for ISN or sequence number 183
setting default values 25
turning off or on 186

turning on and off 26
using cursor to define 27

source statement, tracing (TRACE) 211
special characters, entering 113
special considerations

entering commands in an attention-interrupt exit 97
excluding program units 73
identifying debuggable statements 73
initializing VS FORTRAN variables 97
loops in nondebuggable program units 96
modifying the default value for the execution-time

option 97
monitoring floating-point equalities 97
statement identifier conventions 114

specification statement, definition 273
specification subprogram, definition 273
split screen, debugging in 33
square brackets ([]) 113
standard corrective action 86

statement

definition 273

not executed, displaying 165
statement boundary, displaying 216
statement fimction definition, definition 273
statement function reference, definition 273
statement function, definition 273
statement identifier

conventions 113

definition 273

internal statement numbers 114

ISNs 114

position at ISN or log number 183
sequence numbers 114
statement labels 114

with TEST and NOSDUMP options 114
statement label

definition 273

preceded with a slash 114
referencing 62

STEP command

abbreviation 203

conditions 203

description 203
syntax 203

step delay value 25
STOP statement 66

storage

effects of optimization on 100
requirements 7

strength reduction 104
subprogram transfers, tracing (TRACE) 83
subprogram, definition 273
subroutine subprogram, definition 273
subroutines, how to exclude 73
subscript

definition 273

for arrays 199
subscript quantity, definition 273
suspend execution at condition (HALT) 148
syntax conventions

284 VS FORTRAN Version 2: Interactive Debug Guide and Reference

braces ({}) 113
keywords 113
square brackets ([]) 113
vertical lines (|) 113

SYNTAX keyword (HELP TSO)
system commands

abbreviation 205

CMS files defined 91

conditions 205

description 205
syntax 205
TSO data sets allocated 91

using 90
view listing files 91
view source files 91

0

153

terminal input, entering 91
termination

entering commands after 96
in batch mode 58

using ISPF 36
TERMIO command

and DEBUNIT execution-time option 57
conditions 207

default setting 91
description 207
IAD keyword 207
LIBRARY keyword 207
LIBRARY, restrictions in line mode 47
syntax 207
with MVS batch 57

test a condition 155

TEST INOTEST option 7
Time Sharing Option (TSO)

AFFON

using in batch mode 60
using in line mode 48
using under ISPF 38

connecting a data set to a terminal device in
batch 56

entering system commands 205
full screen mode 9

invoking interactive debug
in batch mode 53

in line mode 45

overview 8

using ISPF with PDF 17
using ISPF without PDF 18

online help 222
show allocated data sets 91

TIMER command

abbreviation 209

conditions 209

description 209
syntax 209
to get timing information 82

timing

activating with TIMER 209
display all program units with timing active 176
display status 174
using the LISTTIME command 176
using TIMER and LISTTIME 82

TRACE command

conditions 211

control transfers 83

description 211
GOTO keyword

branches 83

definition 211

OFF keyword
definition 211

end tracing 83
PRINT keyword

definition 211

print data set 83
source statements 83

syntax 211
trailer statements 73

TRBACK keyword (WHERE) 216
TSO (Time Sharing Option)

see Time Sharing Option
tutorial

a sample debugging session 61
HELP 220

type specification, definition 273

0
unformatted record, definition
unit identifier, definition 274
unit, definition 273
unit, program 71
uppercase terminal input 92

0

273

variables

defining 97
definition 274

display value of 85
how to change value of 199
initializing 97
qualifying 70

vectorization

definition 274

display level for debuggable units
effects on debugging 98
levels and functions 98

vectorize, definition 274
vertical lines (|) 113
vertical scrolling 30
VS FORTRAN Version 2

assigning initial values 97

174

Index 285

entering input in ISPF 23
percent sign % 23

entering input in line mode
initializing variables 97
listing file 23
scrolling with PF keys 23
source file 23

w

47

warning messages 99, 231
WHEN command

canceling 75
description 213
effects of optimization or vectorization
list conditions 164

logical conditions 213
monitoring a condition 74
naming a condition 74
relational condition 213

resume monitoring 75
see also OFFWN 75

suspend execution at a defined condition
syntax 213

WHERE command

conditions 216

description 216
FLOW keyword

definition 216

107

74

tracing program unit transfers 83
next executing statement 83
PRINT keyword

definition 216

print data set 83
syntax 216
tracing 83
TRBACK keyword

definition 216

tracing program unit transfers 83
window

see source listing window
WINDOW command

description 217
syntax 217

0
ZEROFREQ keyword (LISTFREQ)

definition 165

never executed statements 78

Numerics

16-megabyte line 4
31-bit addressing mode

286 VS FORTRAN Version 2: Interactive Debug Guide and Reference

VS FORTRAN Version 2

Interactive Debug

Guide and Reference

SC26-4223-1

Reader's

Comment

Form

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of IBM
systems. You may use this form to communicate your comments about this publication, its organization, or subject matter,
with the understanding that IBM may use or distribute whatever information you supply in any way it believes appropriate
without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed appropriate.

Note: Do not use this form to request IBM publications. If you do, your order will be delayed because publications are not
stocked at the address printed on the reverse side. Instead, you should direct any requests for copies of publications, or for
assistance in using your IBM system, to your IBM representative or to the IBM branch office serving your locality.

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Chapter/Section

Page No

Comments:

If you want a reply, please complete the following information.

Name

Company.

Address

Phone No. (.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office or repre
sentative will be happy to forward your comments or you may mail directly to the address in the Edition Notice on the
back of the title page.)

SC26-4223-1

Reader's Comment Form

Fold and tape

Fold and tape

Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
P.O. Box 50020

Programming Publishing
San Jose, California 95150

Please do not staple

Fold and tape

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

Fold and tape

<
cn

m

O
30

H
30

>

D
(0
cr
c

U3

o
c

CL

3
Q.

CO
CO
•«s|
o

o

Q.

5'
c

CO

>

CO
o
lO
o>

tvj
fO
CO

= i
e °
Q, M

"5 ic

15
o> «

" a
= <0
(0 *-•

E -o
a>

"O P

®1
C 3

1 ®
(D

£ o

•§ o

eI
(D —

^ V>
^ C
O ^
w (A

a 0)

% 3
n s
O t-

c ^
CD 0)
<j tf>

q) 0)

Q. (8
CO 0)

VS FORTRAN Version 2

Interactive Debug
Guide and Reference

SC26-4223-1

Reader's

Comment

Form

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of IBM
systems. You may use this form to communicate your comments about this publication, its organization, or subject matter,
with the understanding that IBM may use or distribute whatever information you supply in any way it believes appropriate
without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed appropriate.

Note: Do not use this form to request IBM publications. If you do, your order will be delayed because publications are not
stocked at the address printed on the reverse side. Instead, you should direct any requests for copies of publications, or for
assistance in using your IBMsystem, to your IBM representative or to the IBM branch office serving your locality.

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Chapter/Section

Comments:

If you want a reply, please complete the following information.

Name

Company.

Address

Page No.

Phone No. (.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office or repre
sentative will be happy to forward your comments or you may mail directly to the address in the Edition Notice on the
back of the title page.)

SC26-4223-1

Reader's Comment Form

Fold and tape

Fold and tape

Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
P.O. Box 50020

Programming Publishing
San Jose, California 35150

Please do not staple

Fold and tape

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

Fold and tape

<
CO

-n

O
:j}
H
JO

>

<
CD

a-
c
(O

O
c

K
CD

Q.

JO

CO
CO

o

o

T3

5"
#-♦

CD
Q.

5'
c

CO

>

CO
o

O)

lO
lO
CO

VS FORTRAN Version 2

Interactive Debug

Guide and Reference

SC26-4223-1

Reader's

Comment

Form

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of IBM
systems. You may use this form to communicate your comments about this publication, its organization, or subject matter,
with the understanding that IBM may use or distribute whatever information you supply in any way it believes appropriate
without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed appropriate.

Note: Do not use this form to request IBM publications. If you do, your order will be delayed because publications are not
stocked at the address printed on the reverse side. Instead, you should direct any requests for copies of publications, or for
assistance in using your IBM system, to your IBM representative or to the IBM branch office serving your locality.

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Chapter/Section

Comments:

If you want a reply, please complete the following information.

Name

Company.

Address

Page No.

Phone No. (.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office or repre
sentative will be happy to forward your comments or you may mail directly to the address in the Edition Notice on the
back of the title page.)

SC26-4223-1

Reader's Comment Form

Fold and tape

Fold and tape

Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
P.O. Box 50020

Programming Publishing
San Jose, California 95150

Please do not staple

Fold and tape

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

Fold and tape

<
CO

Tl

O
3D
H
3D

>
Z

o-
c
(O

O

Q.

3D

crt
CO
-j
p

o

"O

5'

3

c

'(/>
>

CO
o
ro
a>

lO
ro
CO

CO

VS FORTRAN Version 2

Interactive Debug
Guide and Reference

SC26-4223-1

Reader's

Comment

Form

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of IBM
systems. You may use this form to communicate your comments about this publication, its organization, or subject matter,
with the understanding that IBM may use or distribute whatever information you supply in any way it believesappropriate
without incurring any obligation to you.

Your comments will be sent to the author's department for whatever reviewand action, if any, are deemed appropriate.

Note; Do not use this form to request IBM publications. If you do, your order will be delayed because publications are not
stocked at the address printed on the reverseside. Instead, you should direct any requests for copies of publications, or for
assistance in usingyour IBM system, to your IBM representative or to the IBM branch office servingyour locality.

If you haveapplied any technical newsletters (TNLs) to this book, please list them here:

Chapter/Section

Comments:

If you want a reply, please complete the following information.

Name

Company.

Address .

Page No.

Phone No. (.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office or repre
sentative will be happy to forward your comments or you may mail directly to the address in the Edition Notice on the
back of the title page.)

SC26-4223-1

Reader's Comment Form

Fold and tape

Fold and tape

Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
P.O. Box 50020

Programming Publishing
San Jose, California 95150

Please do not staple

Fold and tape

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

Fold and tape

<
Ol

T1

O
33

H
33

>

o
<D

CT
C

(£3

O
C

51

w
CO

o

o

CL

5'

c

w

>

C/)
o
N3
o>

to
IV3
CO

VS FORTRAN Version 2

Interactive Debug
Guide and Reference

File Number S370-40

The VS FORTRAN Version 2 Library

LY27-9516 Diagnosis Guide

GC26-4219 General Information

SC26-4340 Installation and Customization for MVS

SC26-4339 Installation and Cus tomization for VM

SC26-4223 Interactive Debug Giuide and Reference

SC26-4221 Language and Librsiry Reference

GC26-4225 Licensed Program Specifications
SC26-4222 Programming Guid^SC26-4222

8X26-3751 Reference SummarL

Printed in U.S.A.

