(GC26-3783-5
File No. S370-30

OS/VS Data Management
Systems Services Guide

VS1 Release 5
VS2 Release 3

JIBIM

Sixth Edition (November 1975)
This edition replaces the previous edition (numbered GC26-3783-4) and makes it obsolete.

This edition applies both to Release 5 of OS/VS1 and to Release 3 of OS/VS2, and to all
subsequent releases of either system unless otherwise indicated in new editions or technical
newsletters.

Information on the IBM 3800 Printing Subsystem, IBM 3350 Direct Access Storage, and
1BM 3344 Direct Access Storage Device is provided only for planning purposes for Release
5 of OS/VS1 until the products are available. For OS/VS2, the information is only for
planning purposes until support for the 3800, 3350, and 3344 and the products become
available.

Significant system changes are summarized under “OS/VS1 Summary of Amendments” or
“*0S/VS2 Summary of Amendments’’ following the list of figures. In addition,
miscellaneous editorial and technical changes applicable to either or both of OS/VS1 and
08S/VS2 have been made throughout the publication. Each technical change is marked by
a vertical line to the left of the change.

Information in this publication is subject to significant change. Any such changes will be
published in new editions or technical newsletters. Before using the publication, consult the
latest IBM System/370 Bibliography, GC20-0001, and the technical newsletters that amend
the bibliography, to learn which editions and technical newsletters are applicable and
current.

Requests for copies of IBM publications should be made to the IBM branch office that
serves you.

Forms for readers’ comments are provided at the back of this publication. If the forms
have been removed, comments may be addressed to IBM Corporation, General Products
Division, Programming Publishing—Department J57, 1501 California Avenue, Palo Alto,
California 94304. All comments and suggestions become the property of IBM.

© Copyright International Business Machines Corporation 1972,1973,1975

PREFACE

This book describes all IBM data management except for VSAM (virtual storage access
method) and specialized applications such as the time sharing option (TSO), graphics,
teleprocessing, optical character readers, optical reader-sorters, and magnetic character
readers. These specialized applications are described in separate publications that are
listed in IBM System/360 and System/370 Bibliography, GA22-6822. To learn about
VSAM or to write programs that create and process VSAM data sets, refer to:

e OS/VS Virtual Storage Access Method (VSAM) Planning Guide, GC26-3799,
which introduces VSAM and describes its concepts and functions.

e« OS/VS Virtual Storage Access Method (VSAM) Programmer’s Guide, GC26-3838,
which describes how to create VSAM data sets and code the macro instructions
required to process them.

e OS/VS1 Access Method Services, GC26-3840, or OS/VS2 Access Method
Services, GC26-3841, which describes the service program commands used to
manipulate VSAM data sets.

e OS/VS Virtual Storage Access Method (VSAM) Options for Advanced
Applications, GC26-3819, which describes applications not required in the normal use
of VSAM.

Most of the information in this book applies to both OS/VS1 and OS/VS2. Statements
or sections that apply only to VS1 or VS2 are clearly identified in the book.

If you know how to write assembler-language programs and use job control statements,
you can use this book and OS/VS Data Management Macro Instructions, GC26-3793,
to write programs that create and process data sets. To use this book you must have basic
knowledge of the operating system as contained in OS/VS1 Planning and Use Guide,
GC24-5090, or OS/VS2 Release 3 Guide, GC28-0770; of assembler language as
described in OS/VS-DOS/VS~-VM/370 Assembler Language, GC33-4010; and of job
control language (JCL) as explained in OS/VS1 JCL Services, GC24-5100, and
0OS/VS1 JCL Reference, GC24-5099, or OS/VS2 JCL, GC28-0692.

This book has three parts:

“Part 1: Introduction to Data Management” introduces you to the characteristics of data
sets, how you name them, how the system catalogs them, and how you format the
records in them. The format of tracks on a direct-access storage device is explained
briefly.

Part 1 also describes the data control block (DCB) and the information it supplies to the
operating system. Special processing routines that you specify in the DCB macro
instruction are also explained in this section.

In “Part 2: Data Management Processing Procedures™ there is an explanation of
data-processing techniques that includes the macro instructions for the queued access
technique and the basic access technique and the macro instructions for analyzing input
and output errors. The section on data-processing techniques also tells how to select an
access method and how to begin and end processing of a data set.

The section “Buffer Acquisition and Control” in Part 2 explains three different methods
you can use to obtain buffers and the macro instructions you use with each method. This
section also describes ways to control buffers: simple buffering and exchange buffering
for the queued access technique, direct buffering and dynamic buffering for the basic
access technique. In addition, for the queued access technique, there is an explanation of
the four modes of moving the records in virtual storage: move mode, data mode, locate

Preface 3

mode, and substitute mode. Macro instructions for controlling buffers are described here,
too.

The next four sections of Part 2 concern processing data sets of four different types: a
sequential data set, a partitioned data set, an indexed sequential data set, and a direct
data set. They explain the organization of the data sets and the macro instructions used
to process them. In the examples the macro instructions are coded in just enough detail
to make the examples clear. For a complete description of the operands and options
available, see OS/VS Data Management Macro Instructions, GC26-3793.

“Part 3: Data Set Disposition and Space Allocation” tells you how to figure the amount
of space you need for a data set on a direct-access storage device and how to request that
space in your JCL DD statement. You are given special directions for allocating space
for a partitioned data set and an indexed sequential data set. Part 3 also tells how to
indicate in the JCL DD statement the status of the data set at the beginning of and
during processing and how to indicate what you want the system to do with the data set
when processing has terminated. You also are told how to use the DD statement to route
the data set to a system output writer, to concatenate data sets, to catalog data sets, and
to protect confidential data sets.

Appendix A describes data set labeling. Appendix B explains control characters you can
use to control card punches and printers. A glossary of acronyms and abbreviations used
in this book and the index follow Appendix B.

The following manuals are referred to in the text and are divided into three categories:
VS1 Manuals, VS2 Manuals, and VS1 or VS2 Manuals.

VS1 Manuals

e OS/VS Message Library: VS1 System Codes, GC38-1003

e OS/VS Message Library: VS1 System Messages, GC38-1001

e OS/VSI1 Data Management for System Programmers, GC26-3837
e OS/VS1 JCL Reference, GC24-5099

e OS/VS1 JCL Services, GC24-5100

e OS/VS1 Service Aids, GC28-0665

e OS/VS1 Supervisor Services and Macro Instructions, GC24-5103
e OS/VS1 System Data Areas, SY28-0605

e OS/VS1 System Generation Reference, GC26-3791

VS2 Manuals

e OS/VS Message Library: VS2 System Codes, GC38-1008

e« OS/VS Message Library: VS2 System Messages, GC38-1002

« OS/VS2 JCL, GC28-0692

e OS/VS2 Supervisor Services and Macro Instructions, GC27-6979

e OS/VS2 System Programming Library: Data Management, GC26-3830

e OS/VS2 System Programming Library: Debugging Handbook, GC28-0632

e OS/VS2 System Programming Library: Initialization and Tuning Guide,
GC28-0681

« OS/VS2 System Programming Library: Service Aids, GC28-0633

4 OS/VS Data Management Services Guide

OS/VS2 System Programming Library: Supervisor, GC28-0628
OS/VS2 System Programming Library: System Generation Reference, GC26-3792

VS1 or VS2 Manuals

IBM 3800 Printing Subsystem Programmer’s Guide, GC26-3846

IBM 3890 Document Processor Machine and Programming Description,
GA24-3612

OS Data Management Services and Macro Instructions for IBM 1419/1275,
GC21-5006

OS and OS/VS Programming Support for the IBM 3505 Card Reader and
IBM 3525 Card Punch, GC21-5097

OS/VS IBM 3886 Optical Character Reader Model 1 Reference, GC24-5101
OS/VS Mass Storage System (MSS) Planning Guide, GC35-0011

OS/VS Mass Storage System (MSS) Services for Space Management,
GC35-0012

OS/VS Tape Labels, GC26-3795
OS/VS Utilities, GC35-0005

Preface 5

CONTENTS

PIEEACE ..cociiiiieiiiiriieiereeeeecerreereeseiereeeeeessaseeesssneaessesesssssasssassetesentesessnnnsssasennsssnnneses 3
FHGUIES ..ottt sre s s sa s e e st ne e e s 11
OS/VS1 Summary Of AMENGMENLScccceererurrierinerrriererrccrteriieeneseessssssssssssssessesssses 13
| REICASE 5 ..ovveeveureteececteeteeeeeeteserteseeneseetesseseesenrerebesssssessesssnessesensesesssaseesensensesensersensnsen 13
ReEIEASE 4 ... ccereeccccereececstere s s ectre e s s s s ane s s s s b re s et e aee e e s en s e e s ae e raanessarentanas 13
| 2] (=TI U P 14
OS/VS2 Summary of AMENAMENLSccoeercverrrirecrerrrereresereersreesseresessesssseressesessesnnnes 15
REIEASE 3 ...eeeeiiiiiciiiietecercrtre e secrrtre e ss e s i re e s sssenssreseassssbasas e s s s nesesesbateseesabbneeasesnsanaeses 15
REIEASE 2 .oeeieeieiiiiiiiieteeeiccieneeeeesereneesssesersneressessnsnesessssneassssssssrnessssssnessssssrresssssssrsnnenss 16
Part 1: Introduction to Data Managementccceoveerevcnrerriieennsineerssniesseesessenesssnnns 19
Data Set CharacCteriStiCScccvveirerericerieeiisirnierersiretesesesssesessssssnnsssssssssessesssssssessassssnens 19
Data Set IdentifiCationcccccvviiiiiiniiiinieiicrrrrersrreserirr e srrrreeeeseesrsensssesssnassesssrneess 21
Data Set SLOTAZEcccevvererirerrrieniiiiiiieireerereseeseseeessoseesssseresasnessssseessssaresssseessasnesennnes 21
Direct-AcCesS VOIUINEScccoevrvureeeerreirrnreeriossneeesesenirnessessssnesssessssansssssssssansssssnsenes 22
Magnetic-Tape VOIUMEScccciiiiiiirirerereienreeerisrcreeeeeeenvnneessssssssseessssnnsaessasasnens 22

Data Set ReCOrd FOIMALScccovveereieiiieiiirieiiieeisieeeieeteessnsesessseessssssessssessssssesesnssssanes 23
Fixed-Length Recordscccccvivereecninriiieeinvnnecneeesssensesnens eeeeerrernrraeessnaeessssnnnne 24
Variable-Length RECOIASccccereviiieeeiiiiieiiriccreennienseseeecsereeseseneeeevassesessssessaans 26
Undefined-Length RecOrdsccocviiiireiieieireriirecnerreireserssteesseesessnressseessssessons 31
CONLIOL CRATACLETceveeiririnreeereienrnrrrrierrreeesessssenreeessssseseaesessssesssassanessssssseseseren 32
Direct-Access Device CharaCteriStiCscovveerreirrriieerisrneeireessereriesssrsnessecsssessessssnsesesas 33
TIACK FOIMAL ..cooiiniiiriiririiiiieesiicinreesrerscneressecsseeessesesnnsnessesarsssesesssanssnsesessanaessosnreenns 34
Track AdAIESSITEcoveiieiiirieiiiiireetiiniirrierersesressessstnrtreesssessesessssssseserssssnsssssesnesses 34
TTACK OVETEIOWeeevvieieceitieeecrcirtecerrerreeereseneeesessneaeesseserseneesssernresenssnsasnesssanrannes 35
Write-Validity-Check OPtionccccccceiieveriererncrerreitensieeenrneeeesnneeseeeesssenssssnesssnees 35
The Data Control BIOCKccceeiiieirrerreiciiinieeieeinnreesssissntresiesssnaesssssssssssssssssseesssssansessnss 36
Data Set DESCIIPLIONcveiiiiiiiiiiiieiiieiiieerrirreterererrresrsseerssesrnsnsserssrsresesneersessssseeneares 37
Processing Program DesCriptionccooeeeeiiiirrieeeeieeiiiiinceecceceseeseenneeeseeesssssessnnnns 39
Macro Instruction Form (MACRF)oiiiiiiiceccteeereeeceeesecreeessee e snnessneeas 39

Exits to Special Processing ROULINEScocceirieeireeiinicniinnnienscinnneesissssseessessaneeens 39
Modifying the Data Control BIOCKccccceeeviveirrrereneeircirnenresserneessesssersessssnseneans 55
Sharing @ Data Setccccveeiiiciiireiiieirieiieeciiteeessssrreeeseesessereseesssssenessssssnesessssnnessnsss 56
Part 2: Data Management Processing Procedurescccccocovviiiiinncncniccnnncnicnneeennne, 61
Data-Processing TEChIIGQUEScccereiiiiiinirrernerereriereeneceriressrerasreesesserssssesesssessssesssans 61
Queued Access TEChNIQUEccovveeieiriiiireiriiirieeeeissireeereessraraesesssstneessesssresessnessennns 61
GET—Retrieve @ RECOIAuuueeeiireeiiiriiieriieiereererrnrnenereeerereesesesesssneneessssssessssssannns 61
PUT—WIite @ RECOTAcccoeviinrrritiiietien et secsersrsvenrnnseereesessssessnssnrsensnressssssssnesens 61
PUTX—Write an Updated Recordcceeveeeeiemnccecicerinnneeneenssiesnenssneesieenne 62
Parallel Input Processing (QSAM Only)ccceovvvierverninrenineenieeressrnessnsesssenessennes 62
Basic Access TECHNIQUEccovieriiiiiirieiirreeriesrnnneerrresssreersessiereeesssrnesssesssesaessessassessssans 64
READ—ReEad @ BIOCKccoiirienrriiiiieeeeeiiereceerecrrnerreee s s sssesessnnssesenseessesesssessennnns 65
WRITE—WTite @ BIOCK ...coiiiiiiiiiiiiiiiiiiiiicrrrccreeiriesriesr e e eecseesraenenesassssssssesennaens 65
CHECK—Test Completion of Read or Write Operationcccccccovcciriannnnenn. 66
WAIT—Wait for Completion of a Read or Write Operationccccoeeeevvvvvunnnnnns 66

Data Event Control BIock (DECB)ooooovvvveriinivireeieiiinnecneeeeesessinnnsesssesssassesaans 67
Error Handlngocovieiiiiiiiiiieiniiriciineienreereeeesesssessinrnssessesesssssssssssssstnassesssessssesans 67
SYNADAF—Perform SYNAD Analysis Functioncccccceveeeiciiiiiciinieninineneenn, 67
SYNADRLS—Release SYNADAF Message and Save Areascccccoccervreeennnenn, 68
ATLAS—Perform Alternate Track Location Assignmentcccocccevvcinniniiiannnee 68
Selecting an Access MEthodeeeerieeiiiiiiiiiiiriierenererecenreasesissriannereestneeeseesesssssssnnnnes 68

Contents 7

Opening and Closing a Data Setccccviciiiieiiiiiiiienccieecrcreecesereeaesessseseessesssnnsssssas 69

OPEN—Prepare a Data Set for Processingcccoccevevcrrieivenniennenserenieenseneenscnnens 71
CLOSE—Terminate Processing of a Data Setcccoccveeviieeieirecrnineneeeseceeesennnes 72
End-of-Volume ProCessingccceciieeeviiiniiiemiiiieeciiesccieeseseeesesessssesseseessessesssnns 75
FEOV—Force End of VOIUmEcccccomiieiiiiiiiecctreecreeecee et e e e 76
Buffer Acquisition and Control ... e 17
Buffer POOl CONSIIUCLIONccccvvreiieciiiniiineeccnesseeeeeseeeresnenssssnesssseesessneesensesssssenssnneas 71
BUILD—Construct a Buffer PoOlccooovirieniiiieniirciiinceieeneerencntesesee s ssneeeenns 78
BUILDRCD—Build a Buffer Pool and a Record Areacccccceveeeeiveeenieneene. 78
GETPOOL—Get a BUffer POOLcccevevviiiririeinnienicccriesceee e ssseeesssiesssssessenens 78
Automatic Buffer Pool CONSIIUCHIONcoecviiiirciiiiiireiiiieiceeessenecereesseeessseeessens 79
FREEPOOL—Free a Buffer Poolc..ccocoviiiiiiiireeneeeeeces e cesnee s 79
BUffer CONIOLcovieiiiiiiieictireceeeecte st rccee s seee s seereseaee s esbee s ssaess st e snbnesssnnesvenes 80
Simple BUFfEringcccovvieciiiiriieccriniiesiireesiteesnrieesctreeeesrtesesseeseesesesseesesssassesssssnnes 81
Exchange Buffering (VS1 OnNlY) ...coovcveeiiiiiiiiiirciiicieeesieeeeneercessisesssssesssssessseeens 84
RELSE—Release an Input BUffercccoeciiieiiiiciieiniecncnenneeeecsieeessneeseseeeens 87
TRUNC—Truncate an Qutput Buffercccoevuieeiiinrvinieiireneeneeeccieeecee, 87
GETBUF—Get a Buffer from a Poolc.ccoccviiiriiiiciniinnieinniteecsieseceeeseeneeenns 88
FREEBUF—Return a Buffer t0 @ POOLcoveeiiieiiiecicieerreeereennccesenssnennneene 88
FREEDBUF—Return a Dynamic Buffer to a Poolccccccereiiieniieeeniiieenenenn. 88
Processing a Sequential Data Setcoccrivcrevreiicrercrrecnirerrsreerieeesseesseresressssesscsessenssseens 89
Data Format—Device Type Considerationsccccceeciverieeieriireeenieiiieneesercsenneesssanns 89
Magnetic Tape (TA) ..oiccviiiieeiiireccee et secie s srere s s sreeesres s nbeesenseesessesesssnnenass 90
Paper-Tape REAder (PT) ..ccccccceieciciiieeecccnrersveciereecssrenrsessssssseseessssnesessssnsanesssssnnne 91
Card Reader and Punch (RD/PC)ccviviieiiieeiiiiieiieteisssesssseessssessesssesssssesssssens 91
PrNLET (PR) ooeiieiiiiiiiiiiiiciiititirieeeeeteesesesesssssseeesseeessessseessessssssesssessessssssessnssssssnseense 92
Direct-Access Device (IDA) ...coociieieiieieiiieieiienseiessieresseeseseeesesieesessaesssassssssaasns 92
DEVICE CONLTOLeveiieiiereiiiicitererterereee e rsreeeesteeeste e ssaaresessaessesteesasteesensseassassssseennns 93
CNTRL—Control an I/O DEVICEceceeveeeieieeieveeeceeceresee e sreseseesreeessessnses 93
PRTOV—Test for Printer OVErflowcccccccvrvireecieeneiineeniirennereneneeescsnessesseeens 93

| SETPRT——PHIEr SELUDc..orvrvreevvvesssesrrssesssssssssscesssimmessssessssssssesessssssesssssssssee 93
BSP—Backspace a Magnetic Tape or Direct-Access Volumeccccoevcvvvreeernnne 94
NOTE—Return the Relative Address of a BIOCKccccecvverieieciiineeinninneneesennneen, 94
POINT—Position to @ BIOCKc.ccccveiiiieirieiniiniiiireesieesseeesineessreeeeesescasesesseeans 95
Device INAEPENAENCEcoccciiiiiiiriiiecctee v eceeereee e srer s estesesseeeseseeseesssesestasesnes 95
System Generation Considerationscc...ccceceeieiccrieiinrnsiesrenscneesenreeeeseeeseveessnees 95
Programming Considerationscccccciviieeiiniiniiinieiiieseesssisieseesssieeeeseessessessessnnes 96
Chained Scheduling for I/O OPerationsccccueevreerrervrecrerecveererenseescseesseeosveensns 97
Search Direct for Input Operationsccccecerrivreiiiiceesiieeeeieecceessereeesreesernseesnees 98
Creating a Sequential Data SEtcccccvvieeeeviieeeiieereeseesseessesteeesesessessestssessensssenss 99
Retrieving a Sequential Data Setcccceeeciireciiieirnincee e eesre s ere e 100
Updating a Sequential Data Setcccvciiiiiriiciiiiciiciiitees e rieees s veresee e 100
Extending a Sequential Data Setccceeviveieeriieeeierieecreeeseeeeeee e ee et eesareeeesrens 101
Determining the Length of a Record When Using the BSAM READ Macro 102
Writing a Short Block When Using the BSAM WRITE Macroccccceeevveevinennn. 103
Processing a Partitioned Data Setcccvevieireiieiiiiiiieiieesire e sete e e e eenes 103
Partitioned Data Set DITECLOTYc.cevevvriercririiirercreeeeiteesireeeesteeseseessssessssnsssssesenas 104
Processing a Member of a Partitioned Data Setcccocoeeceiiieivieviireeiceeeinreee e 106
BLDL—Construct a Directory Entry Listcccccccovcvviieiriecniiieininiiieenceccnneeeenns 107
FIND-—Position to @ MemMDETcceieiiiiiiiiircieeccine st ere e e cnee s 107
STOW-—Update the DIreCtOrycccoiviiieiiiieniiiiiiietiieneninrreeeerereesecssressossesnes 108

8 OS/VS Data Management Sewices Guide

Creating a Partitioned Data Setcccceiiiiiiiiiiiiiieiincccrreeeeccnrre s sre e s e svrreeeeens 108

Retrieving a Member of a Partitioned Data Setcccceevvrvecvieriviineenncceensnecnninee, 110
Updating a Member of a Partitioned Data Setc.cccceeceeeeeciireccieenrenccreeee e, 111
Updating in PIacecoivveiirvceiireriicecrteincienensnecssteesssenesssneesesraeessssnessnsassseessssnens 111
Rewriting @ MEmDETccccoiiviiiiiciiieniiircer et cecree s seeesesee s sse e e sseesesnesssnnessenne 112
Processing an Indexed Sequential Data Setccccccveenivenmnniiicniinnicieieeiennn, 113
Indexed Sequential Data Set Organization '..........ccccccceveeverrrirerrerieeecrenneneresreesennns 113
PriME ATEAooovreiieireieeecieerreeerieeeesesarensereesesstesesenessssnessenseesssnsesssasnssersessnsasssns 114
INAEX ATEAS ...evvirivviiiiiniieiiiiiesiteessstessieteseutessteesstrssassssess st essssaessnssssssensseenns 114
OVEITIOW ATCAS ...covreveerireeeeereeerriterieseeeseeaessieeesesseesssseenssseessesseessssensssssesssasssssees 116
Adding Records to an Indexed Sequential Data Setccccccevvveiriereenienninnciiinnennes 116
Inserting New Records into an Existing Indexed Sequential Data Set 116
Adding New Records to the End of an Indexed Sequential Data Set 117
Maintaining an Indexed Sequential Data Setccovveverricrireceericrnieneeenrnncesserenneens 118
Indexed Sequential Buffer and Work Area Requirementscccceevveeereveernceennnnen. 120
Controlling an Indexed Sequential Data Set Devicecccvcvveeieeireeriiieiininiiinenneeenn. 123
SETL—Specify Start of Sequential Retrievalccccveeveveieviiiiriicecrieereeeenenns 123
ESETL—End Sequential Retrievalcccccoveiiiiiinieeininiieeeenicnniineseessnnnnesensnenes 124
Creating an Indexed Sequential Data Setccccvvvverrieerieiiriecierccrrrrrrerre e eee e 125
Retrieving and Updating an Indexed Sequential Data Setccccevveeiniieencennnnen. 127
Sequential Retrieval and Updatec.covvvvveeeriimereeriiiiniecininneereesssrnereeessseneesses 127
Direct Retrieval and Updatecccceeeeviererieieiniiecireennieesineeeecneesssesesssssesssesnes 127
Processing a Direct Data Setccccovvviieiiiiiiiiiiiiiiiicecne s 133
Organizing a Direct Data Setccccvvveeirriiiiieene ittt eeeieree s e eeneeeeeenes 133
Referring to a Record in a Direct Data Setccccoeeevirererenieennioninnenennconnneeesnnennenes 134
Creating a Direct Data SEtccccccvierrrerreeeeriiesreerereinerrrerereeesessrssessesossnnssnressesssees 135
Adding or Updating Records on a Direct Data Setcccocevvieiiinvicnninnniennnennecnnens 136
Part 3: Data Set Disposition and Space Allocationccooovvmrrvreriiiiiriiiiniiiicinennnn 139
Allocating Space on Direct-Access VOIUMEScccceereeieiiiiniiieiiiineiiecncecccncrece e 139
Specifying Space REqUIrEMENtScccoueeeeriiniereriinnitieeinrienteee s seenreeesenreeeeesnsenesns 139
Estimating Space ReqUIrementsc.ccvceoeererieeeeeeriiereeneieeeerericcereeseeesessseesnmseenaees 140
Allocating Space for a Partitioned Data Setccooevveviininieenniiirnneeenesreeee e 142
Allocating Space for an Indexed Sequential Data Setcccooeevveiiiiiniiiieieeniinnennne 142
Specifying a Prime Data ATCaccccceveveverierinroieneeeninnieeeriecseneeessossosessessessesesnes 144
Specifying a Separate IndeX ATreac..cccceeririeiciiieneiiiieieecren et 145
Specifying an Independent OVerflow Areaccceveiveniiicniinninnicnecnnninnninins 145
Calculating Space Requirements for an Indexed Sequential Data Set 145
Control and Disposition of Data Setsc..ccccvcvveiiiiiiiiiiiniinicnicnee s 149
Routing Data Through the System Input and Output Streamscccccccecvvrrrnnnnen. 149
Concatenating Sequential and Partitioned Data Setscccccevrvviiiiiinncciiinninnnn. 151
Rotational Position Sensing Considerationscccceevvveeiiiiicrienniiiiniiiiccenienenes 152
Cataloging Data Sets in VSTcooiiiiiiiiiniiiierieceirecenieerec et ceeesnr e esesennes 153
Entering a Data Set Name in the Catalogccoocoviniiiiniinnicinnnnine, 154
Cataloging Data Sets in VS2cccoccciiiiiiiriininiiniiiiriree s 154
Entering a Data Set Name in the Catalogccccoocviireiienicnnniecieeeeeeiee 155
Generation Data GrOUPScovoiriiiiiiiiininnniierienieiinseerereeete s sessssseseeeseseessss s sesns 155
Absolute Generation and Version NUMDETScccccceeiriinienieiiceneneceereeneeeeee e 156
Relative Generation NUMDETcoooiiiurriiriireieresensetessenietiessaaeteeessnseaesesasseessasns 156
Building a Generation Index in VS1coriiiiiiiiiiiiiriceenrerrneerereesseees s snnnne 157
Creating a New Generation in VS1 ..ot 157
Allocating @ Generationcooceeeriurenniieniiininniieir e ssesessessssreses 157
Cataloging a GENerationc.....cccccvveiiiiiiiniiiieiiiiicee e 158
Passing a Generationccccccccviveeiiiiinineinneiere 158
Creating an ISAM Data Set as part of a Generation Data Groupccceueeee. 159
Retrieving a Generationcccceecviivreenerrreerienrcteereeriee e e eneeeee s eenene s ceneeesenennenees 159

Contents 9

Controlling Confidential Dataccccceevviiiieriercrreriieenensreeestienenseresreesseessessseesssssens 160

Password Protection for NONVSAM Data Setscccvvvveevvvcvireieenereerieerenieneneeneneeeee: 160
Appendix A: Direct-Access Labelsoooviiiiiiriiniiienienncnncrenreeeress s eecesesssnnnneeens 161
Volume-Label GIOUPcooccciviiiieiieritteeereee et s e e st s eare s e st ae s ee st e s naas 161

Initial Volume Label FOImatc.ceviveeriiirererienereririeeesiennsnrerreressiseesesssnssnsnnrenes 162
Data Set Control BIOCK (DSCB) ...t iiccrtiiteerreeeeeeeeesessssssssssstesseseesenessesssnnes 163
USET Label GIOUPS ...cceiireiviieeiieiiireeiisiteesiesinerersascaneesesssensesssssssssessnsnsesssssnsessessenssenes 163

User Header and Trailer Label FOIMAtcocevveeiieviiiieiieerenieneeennnerncereeeeeeesessrensenns 164
Appendix B: Control Charactersccoovvoviiiiiiiieirnnieiieeeticcnneeenecreeeeressneneeesessensesens 165
B, o] 1111 T O Yo L= SR 165
Extended American National Standards Institute Codecc.covvviereiinrierrinneererecnnennn. 166
Glossary of Acronyms and ABDreviationscccovvvrnererrereeirenensnrreseresiineesesssnneseenes 167
INAEX .cooiiniiiiiiiiiiiriiiieeiier e e etretuiieserrrenneraereassssanrsesensssaesssrsansssnsstesnssssressassanssnaressassnnssennen 171

10 OS/VS Data Management Services Guide

FIGURES

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure 10.
Figure 11.
Figure 12.
Figure 13.

Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.

Figure 25.

Figure 26.
Figure 27.
Figure 28.
Figure 29.

Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.

Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.

Figure 46.

A SR A Il ol S

Fixed-Length RECOIASccccivivreiiiireiiiiieiiieieiicciereeereees e s s ennennreaseeseeseessesnnns 24
Fixed-Length Records for ASCII Tapescccoecverevrererieenneesiereeeseveeesaens 25
Nonspanned, Variable-Length Recordscccoccviieriiivinieeininieniccnciieneeennn, 26
Spanned Variable-Length RECOrdSccccccverreverririiireiriensriereennneeseesssanns 28
Segment Control Coesc.cevivemreeiiiirierinreeiicrereseesesireeeceessereeseeeessensens 28
Spanned Variable-Length Records for BDAM Data Setsc.cccoceveecieeeenns 30
Variable-Length Records for ASCII Tapescccecceeeerneeeceesieenceneseeenennnns 31
Undefined-Length RECOTSccccereverienerieiieinniininreeeeieeeseeseesseesssneesessnns 32
Undefined-Length Records for ASCIL Tapesccccccevevvvereeirierneeeecnnieeeennnn 32
2316 DISK PACK ...eeoeeiiiiriiiirciiiceiinecseeesieessite s it se st e sseeesessee s s aaesesaasssnnnas 33
Direct-Access Volume Track FOrmatscc.cccevrevvereeiiericvnneiconienniieesenineeennns 34
Completing the Data Control BIOCKccccecceiriiieeiiinnieirneeeneeesiee e 36
Sources and Sequence of Operations for Completing the

Data Control BIOCKccooiviuiiiiiriiitinicrtreeieesiereseeneneesesssinseeeesesssenassessnns 37
Data Management Exit ROULINESc.ccccevvvviiviieiiieiiniieencineienrenniee e sieeeeeans 40
Format and Contents of an EXit LiStccccerveveererreierceeeerreseeceeeeeenae. 44
Parameter List Passed to User Label Exit Routineccccceeeevinvreenrieeeennns 45
System Response to a User Label Exit Routine Return Code 46
System Response to Block Count Exit Return Codecccoccvvevnerrnneennnenn. 50
Defining an FCB Imagecccviveiiiiiiciiiiiecieiinerenscrcereenscensrenene s cnnee 51
Parameter List Passed to DCB ABEND Exit Routinecccccoevveeerireinnns 52
Conditions for which Recovery Can Be Attemptedccccceereivercnienennnn. 53
ReCOVETY WOTK AT€a ...ccccuviieeeieiieieieitceeteseieeseseeeseeeesraeesestessestassensasennen .54
Modifying a Field in the Data Control Blockc.cceecviirvveicveeiiireennnannn. 55
JCL, Macro Instructions, and Procedures Required to Share

a Data Set Using Multiple DCBSccccccccviiiiiereiiniinniennnineeenesineessenssneeeasd 37
Macro Instructions and Procedures Required to Share a Data Set

Using a Single DCBiiieiiiirieineecrte ettt seeesseee s sesee s e aeee e as 58
Parallel Processing of Three Data Setscccocvcevvvvrieeeiicinineeiensnnneesesensnenes 63
Data Management Access Methodsccccoccieiriieniciiiniieeensee e, 68
Opening Three Data Sets SIMultaneouslycccccccveeeriiiiviiniiinneeneeeeneeeineenn. 72
Record Processed When LEAVE or REREAD is Specified for

CLOSE TYPESToooociiirteercitrecteerinrenenteeesnessenetsesseessseesensesssssesessseseas 73
Closing Three Data Sets SImultaneouslyccccovvvveeeeriiiereensicreeenresnreeenns 74
Constructing a Buffer Pool From a Static Storage Areac.cccceeveevnneeenne. 79
Constructing a Buffer Pool Using GETPOOL and FREEPOOL 80
Simple Buffering with MACRF=GL and MACRF=PMccccccvrrreuuun. 82
Simple Buffering with MACRF=GM and MACRF=PMcccceeecuuunnn. 82
Simple Buffering with MACRF=GL and MACRF=PLc..c.ceeccuure.... 83
Simple Buffering with MACRF=GL and

MACRF=PM—UPDAT MOEc.ccerreererrrrereerrrerteeeirerecereesnresssseessnnnnes 84
Exchange Buffering with MACRF=GT and MACRF=PT 85
Exchange Buffering with MACRF=GL and MACRF=PMc......c..... 86
Exchange Buffering with MACRF=GL and MACRF=PT 87
Buffering Technique and GET/PUT Processing Modesccceervevvrnnennn. 88
Tape Density (DEN) VAIUESccccceeieieeneeieierieiieneesnceesssenneesssesssssssessnes 90
Creating a Sequential Data Set—Move Mode, Simple Buffering 99
Creating a Sequential Data Set—Locate Mode, Simple Buffering 100

Creating a Sequential Data Set—Substitute Mode, Exchange Buffering ...101
One Method of Determining the Length of the Record

When Using BSAM to Read Undefined-Length Recordscccuueeeneee. 102
A Partitioned Data Setccceeevvrririernnireneiineeessiueressesseesresssseessesssseees 103

Figures 11

Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.

Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.

Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.

A Partitioned Data Set Directory BIOCKc....ccvecuercurreneviierienenrsenseessenies 104

A Partitioned Data Set Directory Entrycccccoveeviveciinncereniineecerensneen. 105
Build LiSt FOImMatcccccevivviiiiernerciieneinnneesressenesnneenssesensesssnnenssnsesssesssees 107
Creating One Member of a Partitioned Data Setcccoeeevvvrvvevcrceercnnnenenns 109
Creating Members of a Partitioned Data Set Using STOWcccovcvernneen. 110
Retrieving One Member of a Partitioned Data Setccccceeviereecneeennnnen. 110
Retrieving Several Members of a Partitioned Data Set

Using BLDL, FIND, and POINTccccooviiiiiiniiinrmirecccreesesesviisasesesssnenes 111
Updating a Member of a Partitioned Data Setccccccrviniinciiininennane. 112
Indexed Sequential Data Set Organizationccoveevceeciieniernveesceniennn, 114
Format of Track Index EDtriescccccovvivmnniiinniincnsinnniecnnencniecsnnneenns 115
Adding Records to an Indexed Sequential Data Setccccceevrverericecenene. 117
Deleting Records From an Indexed Sequential Data Setccccceevenne 119
Creating an Indexed Sequential Data Setc..ccccvvevverecveercinnercnnenncneennas 126
Sequentially Updating an Indexed Sequential Data Setc.cceeeveeevennnen. 128
Directly Updating an Indexed Sequential Data Setccccccovvirrvinineinneenne 130
Directly Updating an Indexed Sequential Data Set with

Variable-Length ReCOrdsccoieiieciiiinniiiiiercenecienecensereesennseneessssoneees 132
Creating a Direct Data Setcccoiveeirieiiiieiiiiniiieerinncenrreesseneeeesesccsennes e 136
Adding Records to a Direct Data Set ...c.ocovivviiivceirerniiiicereerieene e ereeseeennens 137
Updating a Direct Data Setccceeeiiriiiinenininnniinienninnieessieessresnenes 138
Direct-Access Storage Device Capacitiesccccecvrevrrerenrerrvcenricnneeennen 141
Direct-Access Device Overhead Formulasccccceveecevevieinccennicccnineen. 141
Requests for Indexed Sequential Data Setscccceveeerereieiiciennesciccnnnen, 144
Reissuing a READ for Unlike Concatenated Data Setscccoeeeceerenneen. 152
Catalog Structure on TWO VOIUMESccvveeeerivnnneieernsorireneecesinneessseerssnsenas 153
VS2 Catalog StUCLUIEcccceevevrrerrrereriiiierrrrereserecsarerssnnrssresesseessssseeees 154
Direct-Access Labelingc..cccvvieiviiirnnneeinnnnnineecninnmiiecnnennnn, 161
Initial Volume Labelccccceviiiineriiiiineneenicineirnneneeseeeseesseesesissieenns 162
User Header and Trailer Labelsccccvcveiiivmininiinininincnieneecnee, 163

12 OS/VS Data Management Services Guide

0S/VS1 SUMMARY OF AMENDMENTS

Release 5

New Programming Support

o The IBM 3800 Printing Subsystem is supported with this release. For additional
programming information for the 3800 and the IEBIMAGE utility program, see /BM
3800 Printing Subsystem Programmer’s Guide, GC26-3846. Information on the
3800 is provided for planning purposes only until the product is available.

« The IBM 3350 Direct Access Storage is supported with this release. For additional
information on the 3350, see Introduction to IBM 3350 Direct Access Storage,
GA26-1638. Information on the 3350 is provided for planning purposes only until the
product is available.

« The IBM 3344 Direct Access Storage is supported with this release. For additional
information on the 3344, see Reference Manual for IBM 3340 Disk Storage,
GA26-1619. Information on the 3344 is provided for planning purposes only until the
product is available.

« Chained scheduling is now supported in pageable and nonpageable storage.

Release 4

New Programming Support
The IBM 3850 Mass Storage System (MSS) is supported with this release. The MSS
virtual volumes are functionally equivalent to the 3330/3333 Disk Storage, Model 1. For
information on MSS, see OS/VS Mass Storage System (MSS) Planning Guide,
GC35-0011. MSS information is provided for planning purposes only until the system is
available.

Editorial Changes

o The explanation of the EODAD routine has been expanded.

« An explanation of how the SYNAD routine functions with QISAM load mode has
been added.

o A list of restrictions when sharing a direct data set in multitasking mode has been
added.

« The section titled ‘“Updating a Sequential Data Set” has been expanded.

e A section titled ‘“Writing a Short Block When Using the BSAM WRITE Macro” has
been added.

« An explanation of the capacity record (R0) has been added to the section titled
“Creating a Direct Data Set.”

0S/VS1 Summary of Amendments 13

Release 3

New Device Support

The new devices supported with this release are:

IBM 3330 Disk Storage (Model 11).

IBM 3333 Disk Storage and Control (Model 11). The 3333 is functionally equivalent
to the 3330.

I1BM 3340 Disk Storage.

IBM 3890 Document Processor and IBM 3886 Optical Character Reader. For
information on changes to macro instructions for these devices, see IBM 3890
Document Processor Machine and Programming Description, GA24-3612, or
OS/VS IBM 3886 Optical Character Reader Model 1 Reference, GC24-5101.

Other Technical Changes

Editorial Changes

A QSAM GET macro may be used to get the first available record from a group of
QSAM DCBs that are opened for input.

The system completion code 713 with return code 04 has been included under the
ABEND conditions for which recovery can be attempted.

The contents of registers 0-15 are defined for the situation when control is passed to
the EODAD routine.

The actions and corresponding settings of the option mask byte are given when the
DCB ABEND exit routine returns control to the system control program.

A new figure showing simple buffering with MACRF=GL and MACRF=PM in
UPDAT mode has been added.

A section on creating, retrieving, updating, and extending a sequential data set has
been added.

An expanded explanation of the SETL macro instruction for QISAM has been added.
A section explaining the feedback option for direct data sets has been added.

The direct-access device capacity tables have been revised.

The section on generation data groups has been expanded.

The section on routing data through the system input and output streams has been
revised.

Tables for machine code control characters for a printer and a card punch have been
added to Appendix B.

The section “Appendix C: Programming the 3505 Card Reader and the 3525 Card
Punch’ has been deleted. For information on the 3505 and 3525, see OS and
OS/VS Programming Support for the IBM 3505 Card Reader and IBM 3525
Card Punch, GC21-5097. '

14 OS/VS Data Management Services Guide

O0S/VS2 SUMMARY OF AMENDMENTS

Release 3

New Programming Support

Editorial Changes

The IBM 3850 Mass Storage System (MSS) is supported with this release. The MSS
virutal volumes are functionally equivalent to the 3330/3333 Disk Storage, Model 1. For
information on MSS, see OS/VS Mass Storage System (MSS) Planning Guide,
GC35-0011. MSS information is provided for planning purposes only until the system is
available.

Exchange buffering support was removed for VS2 because it can badly affect
performance in a virtual system. If exchange buffering is specified, it will be ignored by
the system. If exchange buffering is denied by the system for any reason, move mode will
be used instead. Move mode is compatible with exchange buffering.

Chained scheduling will now be supported by VS2 whether it is requested or not (except
for printers and format-U input records). This support was changed to improve
performance in a virtual system. Chained scheduling will not be used where it previously
was not allowed.

For QSAM, BUFNO will now default to 5 buffers instead of 2.

« The explanation of the EODAD routine has been expanded.

¢ An explanation of how the SYNAD routine functions with QISAM load mode has
been added.

o A list of restrictions when sharing a direct data set in multitasking mode has been
added.

« The section titled ‘“Updating a Sequential Data Set” has been expanded.

« A section titled “Writing a Short Block When Using the BSAM WRITE Macro” has
been added.

« An explanation of the capacity record (R0) has been added to the section titled
“Creating a Direct Data Set.”

0S/VS2 Summary of Amendments 15

Release 2

Information included in this manual for Release 2 is provided for planning purposes only
until the system is released.

New Device Support

The new devices supported with this release are:

IBM 3330 Disk Storage (Model 11).

IBM 3333 Disk Storage and Control (Model 11). The 3333 is functionally equivalent
to the 3330.

1BM 3340 Disk Storage.

1BM 3890 Document Processor and IBM 3886 Optical Character Reader. For
information on changes to macro instructions for these devices, see IBM 3890
Document Processor Machine and Programming Description, GA24-3612, or
OS/VS IBM 3886 Optical Character Reader Model 1 Reference, GC24-5101.

Other Technical Changes

Editorial Changes

Any task sharing a DCB (which it did not open) can now issue the RELEX macro
instruction to release exclusive control of a block.

A QSAM GET macro may be used to get the first available record from a group of
QSAM DCBs that are opened for input.

The system completion code 713 with return code 04 has been included under the
ABEND conditions for which recovery can be attempted.

A facility called virtual I/O (VIO) can be used with temporary data sets.

A new section has been added titled “Releasing Data Sets and Voluraes in VS2
Systems.”

A new section has been added on how to catalog data sets in VS2.

Chained scheduling is supported in virtual address spaces.

The contents of registers 0-15 are defined for the situation when control is passed to
the EODAD routine.

The actions and corresponding settings of the option mask byte are given when the
DCB ABEND exit routine returns control to the system control program.

A new figure showing simple buffering with MACRF=GL and MACRF=PM in
UPDAT mode has been added.

A section on creating, retrieving, updating, and extending a sequential data set has
been added.

An expanded explanation of the SETL macro instruction for QISAM has been added.
A section explaining the feedback option for direct data sets has been added.

The direct-access device capacity tables have been revised.

The section on generation data groups has been expanded.

The section on routing data through the sytem input and output streams has been
revised.

16 OS/VS Data Management Services Guide

« Tables for machine code control characters for a printer and a card punch have been
added to Appendix B.

o The section “Appendix C: Programming the 3505 Card Reader and the 3525 Card
Punch” has been deleted. For information on the 3505 and 3525, see OS and

OS/VS Programming Support for the IBM 3505 Card Reader and IBM 3525
Card Punch, GC21-5097.

0OS/VS2 Summary of Amendments 17

PART 1: INTRODUCTION TO DATA
MANAGEMENT

Data Set Characteristics

The data management programs of the operating system help you achieve maximum
efficiency in managing the mass of data associated with the many programs that are
processed at your installation by providing systematic and effective means of organizing,
identifying, storing, cataloging, and retrieving all data, including programs, processed by
the operating system.

Data set storage control, along with an extensive catalog system, makes it possible for
you to retrieve data by symbolic name alone, without specifying device types and volume
serial numbers. In freeing computer personnel from maintaining involved volume serial
number inventory lists of stored data and programs, the catalog reduces manual
intervention and the likelihood of human error.

Data sets stored within the cataloging system can be classified according to installation
needs. For example, a sales department could classify the data it uses by geographic area,
by individual salesman, or by any other logical plan.

The cataloging system also makes it possible for you to classify successive generations or
updates of related data. These generations can be given an identical name and
subsequently be referred to relative to the current generation. The system automatically
maintains a list of the most recent generations.

You can request data from a direct-access volume, a remote terminal, or a tape volume,
and data organized sequentially or directly, in essentially the same way. In addition, data
management provides:

« Allocation of space on direct-access volumes. Flexibility and efficiency of
direct-access devices are improved through greater use of available space.

« Automatic retrieval of data sets by name alone.

« Freedom to defer specifications such as buffer length, block size, and device type until
a job is submitted for processing. This permits the creation of programs that are in
many ways independent of their operating environment.

Control of confidential data is provided by the data set security part of the operating
system. You can prevent unauthorized access to payroll data, sales forecast data, and all
other data sets that require special security attention. An individual can use a
security-protected data set only after furnishing a predefined password.

Input/output routines are provided to efficiently schedule and control the transfer of
data between storage and input/output devices. Routines are available to:

+ Read data
o Write data

o Translate data from ASCII (American National Standard Code for Information
Interchange) to EBCDIC (Extended Binary Coded Decimal Interchange Code) and
back

. Block and deblock records
« Overlap reading, writing, and processing operations
« Read and verify volume and data set labels

« Write data set labels

Part 1: Introduction to Data Management 19

« Automatically position and reposition volumes
« Detect error conditions and correct them when possible
« Provide exits to user-written error and label routines

OS/VS data management programs also provide for a variety of methods for gaining
access to a data set. The methods are based on data set organization and data access
technique.

OS/VS data sets can be organized in four ways:

o Sequential: Records are placed in physical rather than logical sequence. Given one
record, the location of the next record is determined by its physical position in the
data set. Sequential organization is used for all magnetic-tape devices, and may be
selected for direct-access devices. Punched tape, punched cards, and printed output
are sequentially organized.

e Indexed Sequential: Records are arranged in sequence, according to a key that is a
part of every record, on the tracks of a direct-access volume. An index or set of
indexes maintained by the system gives the location of certain principal records. This
permits direct as well as sequential access to any record.

e Direct: The records within the data set, which must be on a direct-access volume, may
be organized in any manner you choose. All space allocated to the data set is available
for data records. No space is required for indexes. You specify addresses by which
records are stored and retrieved directly.

« Partitioned: Independent groups of sequentially organized records, called members,
are in direct-access storage. Each member has a simple name stored in a directory that
is part of the data set and contains the location of the member’s starting point.
Partitioned data sets are generally used to store programs. As a result, they are often
referred to as libraries.

Requests for input/output operations on data sets through macro instructions employ
two techniques: the technique for queued access and the technique for basic access.
Each technique is identified according to its treatment of buffering and synchronization
of input and output with processing. The combination of an access technique and a given
data set organization is called an access method. In choosing an access method for a data
set, therefore, you must consider not only its organization, but also what you need to
specify through macro instructions. Also, you may choose a data organization according
to the access techniques and processing capabilities available.

The code generated by the macro instructions for both techniques is optionally
reenterable depending on the form in which parameters are expressed.

In addition to the access methods provided by the operating system, an elementary
access technique called execute channel program (EXCP) is also provided. To use this
technique, you must establish your own system for organizing, storing, and retrieving
data. Its primary advantage is the complete flexibility it allows you in using the computer
directly.

An important feature of data management is that much of the detailed information
needed to store and retrieve data, such as device type, buffer processing technique, and
format of output records need not be supplied until the job is ready to be executed. This
device independence permits changes to those specifications to be made without changes
in the program. Therefore, you may design and test a program without knowing the exact
input/output devices that will be used when it is executed.

Device independence is a feature of both access techniques for processing a sequential
data set. To some extent, you determine the degree of device independence achieved.

20 OS/VS Data Management Services Guide

Many useful device-dependent features are available as part of certain macro
instructions, and achieving device independence requires some selectivity in their use.

Data Set Identification

Data Set Storage

Any information that is a named, organized collection of logically related records can be
classified as a data set. The information is not restricted to a specific type, purpose, or
storage medium. A data set may be, for example, a source program, a library of macro
instructions, or a file of data records used by a processing program.

Whenever you indicate that a new data set is to be created and placed on auxiliary
storage, you (or the operating system) must give the data set a name. The data set name
identifies a group of records as a data set. All data sets recognized by name (referred to
without volume identification) and all data sets residing on a given volume must be
distinguished from one another by unique names. To assist in this, the system provides a
means of qualifying data set names.

A data set name is one simple name or a series of simple names joined together so that
each represents a level of qualification. For example, the data set name
DEPTS58.SMITH.DATAS3 is composed of three simple names. Proceeding from the left,
each simple name is a category within which the next simple name is a subcategory.

Each simple name consists of from 1 to 8 alphameric characters, the first of which must
be alphabetic. The special character period (.) separates simple names from each other.
Including all simple names and periods, the length of the data set name must not exceed
44 characters. Thus, a maximum of 22 simple names can make up a data set name.

To permit different executions of a program to process different data sets without
program reassembly, the data set is not referred to by name in the processing program.
When the program is executed, the data set name and other pertinent information (such
as unit type and volume serial number) are specified in a job control statement called the
data definition (DD) statement. To gain access to the data set during processing,
reference is made to a data control block (DCB) associated with the name of the DD
statement. Space for a data control block, which specifies the particular data set to be
used, is reserved by a DCB macro instruction when your program is assembled.

System/370 provides a variety of devices for collecting, storing, and distributing data.
Despite the variety, the devices have many common characteristics. The generic term
volume is used to refer to a standard unit of auxiliary storage. A volume may be a reel of
magnetic tape, a disk pack, or a drum.

Each data set stored on a volume has its name, location, organization, and other control
information stored in the data set label or volume table of contents (for direct-access
volumes only). Thus, when the name of the data set and the volume on which it is stored
are made known to the operating system, a complete description of the data set,
including its location on the volume, can be retrieved. Then, the data itself can be
retrieved, or new data added to the data set.

Various groups of labels are used to identify magnetic-tape and direct-access volumes, as
well as the data sets they contain. Magnetic-tape volumes can have standard or
nonstandard labels, or they can be unlabeled. Direct-access volumes must use standard
labels. Standard labels include a volume label, a data set label for each data set, and
optional user labels.

Keeping track of the volume on which a particular data set resides can be a burden and a
source of error. To alleviate this problem, the system provides for automatic cataloging
of data sets. The system can retrieve a cataloged data set if given only the name of the

Part 1: Introduction to Data Management 21

data set. If the name is qualified, each qualifier corresponds to one of the indexes in the
catalog. For example, the system finds the data set DEPT58.SMITH.DATA3 by
searching a master index to determine the location of the index name DEPTS5S8, by
searching that index to find the location of the index SMITH, and by searching that
index for DATAS3 to find the identification of the volume containing the data set.

By use of the catalog, collections of data sets related by a common external name and
the time sequence in which they were cataloged (their generation) can be identified; they
are called generation data groups. For example, a data set name LAB.PAYROLL(0)
refers to the most recent data set of the group; LAB.PAYROLL(-1) refers to the second
most recent data set, etc. The same data set names can be used repeatedly with no
requirement to keep track of the volume serial numbers used.

Direct-Access Volumes

Direct-access volumes are used to store executable programs, including the operating
system itself. Direct-access storage is also used for data and for temporary working
storage. One direct-access storage volume may be used for many different data sets, and
space on it may be reallocated and reused. A volume table of contents (VTOC) is used
to account for each data set and available space on the volume.

Each direct-access volume is identified by a volume label, which is stored in track O of
cylinder 0. You may specify up to seven additional labels, located after the standard
volume label, for further identification.

The VTOC is a data set consisting of data set control blocks (DSCBs) that describe the
contents of the direct-access volume. The VTOC can contain seven kinds of DSCBs,
each with a different purpose and a different format number. OS/VS1 System Data
Areas or OS/VS2 System Programming Library: Debugging Handbook describes the
seven kinds of DSCBs, their purposes, and their formats.

Each direct-access volume is initialized by a utility program before being used on the
system. The initialization program generates the volume label and constructs the table of
contents. For additional information on direct-access labels, see ‘“Appendix A:
Direct-Access Labels.”

When a data set is to be stored on a direct-access volume, you must supply the operating
system with the amount of space to be allocated to the data set, expressed in blocks,
tracks, or cylinders. Space allocation can be independent of device type if the request is
expressed in blocks. If the request is made in tracks or cylinders, you must be aware of
such device considerations as cylinder capacity and track size.

Magnetic-Tape Volumes

Because data sets on magnetic-tape devices must be organized sequentially, the operating
system does not require space allocation procedures comparable to those for
direct-access devices. When a new data set is to be placed on a magnetic-tape volume,
you must specify the data set sequence number if it is not the first data set on the reel.
The operating system positions a volume with IBM standard labels, American National
Standard labels, or no labels so that the data set can be read or written. If the data set
has nonstandard labels, you must provide for volume positioning in your
nonstandard-label-processing routines. All data sets stored on a given magnetic-tape
volume must be recorded in the same density.

When a data set is to be stored on an unlabeled tape volume and you have not specified a
volume serial number, the system assigns a serial number to that volume and to any
additional volumes required for the data set. Each such volume is assigned a serial
number of the form Lxxxyy where xxx indicates the data set sequence number from IPL
to IPL and yy indicates the volume sequence number for the data set. If you specify
volume serial numbers for unlabeled volumes on which a data set is to be stored, the

22 0S/VS Data Management Services Guide

system assigns volume serial numbers to any additional volumes required. If data sets
residing on unlabeled volumes are to be cataloged or passed, you should specify the
volume serial numbers for the volumes required. This will prevent data sets residing on
different volumes from being cataloged or passed under identical volume serial numbers.
Retrieval of such data sets could result in unpredictable errors.

Each data set and each data set label group on magnetic tape that is to be processed by
the operating system must be followed by a tapemark. Tapemarks cannot exist within a
data set. When the operating system is used to create a tape with standard labels or no
labels, all tapemarks are automatically written. Two tapemarks are written after the last
trailer label group on a volume to indicate the last data set on the volume. On an
unlabeled volume, the two tapemarks are written after the last data set.

When the operating system is used to create a tape data set with nonstandard labels, the
delimiting tapemarks are not written. If the data set is to be retrieved by the operating
system, those tapemarks must be written by your nonstandard-label-processing routine.
Otherwise, tapemarks are not required after nonstandard labels since positioning of the
tape volumes must be handled by installation routines.

For more information on labels for magnetic-tape volumes, refer to OS/VS Tape
Labels.

The data on magnetic-tape volumes can be in either EBCDIC or ASCIIL. ASCII is a 7-bit
code consisting of 128 characters. It permits data on magnetic tape to be transferred
from one computer to another even though the two computers may be products of
different manufacturers.

Data management support of ASCII and of American National Standard tape labels is
such that data management can translate records on input tapes in ASCII into EBCDIC
for internal processing and translate the EBCDIC back into ASCII for output. Records
on such input tapes may be sorted into ASCII collating sequence.

Data Set Record Formats

A data set is composed of a collection of records that normally have some logical relation
to one another. The record is the basic unit of information used by a processing program.
It might be a single character, all information resulting from a given business transaction,
or measurements recorded at a given point in an experiment. Much data processing
consists of reading, processing, and writing individual records.

The process of grouping a number of records before writing them on a volume is referred
to as blocking. A block is made up of the data between interrecord gaps (IRGs). Each
block can consist of one or more records. Blocking conserves storage space on the
volume because it reduces the number of IRGs in the data set. In many cases, blocking
also increases processing efficiency by reducing the number of input/output operations
required to process a data set.

Records may be in one of four formats: fixed-length (format-F), variable-length for data
in EBCDIC (format-V), variable-length for data to be translated to or from ASCII
(format-D), or undefined-length (format-U). The main consideration in the selection of
a record format is the nature of the data set itself. You must know the type of input your
program will receive and the type of output it will produce. Selection of a record format
is based on this knowledge, as well as on an understanding of the input/output devices
that are used to contain the data set and the access method used to read and write the
data records. The record format of a data set is indicated in the data control block
according to specifications in the DCB macro instruction, the DD statement, or the data
set label.

For ASCII tapes, data can be in format-F, format-D, and format-U with the restrictions
noted under “Fixed-Length Records, ASCII tapes,” ‘“Variable-Length

Part 1: Introduction to Data Management 23

Records—Format D,” and “Undefined-Length Records.” When data management reads
records from ASCII tapes, it translates the records into EBCDIC. When data
management writes records onto ASCII tapes, it translates the records into ASCIL
Because you use input records after they are translated and because output records are
translated when you ask data management to write them, you work only with EBCDIC.

Note: There is no minimum requirement for block size; however, if a data check occurs
on a magnetic-tape device, any block shorter than 12 bytes in a Read operation or 18
bytes in a Write operation is treated as a noise record and lost. No check for noise is
made unless a data check occurs. The sort/merge program does not accept physical
blocks or logical records shorter than 18 bytes from any device.

Fixed-Length Records

The size of fixed-length (format-F) records, shown in Figure 1, is constant for all records
in the data set. The number of records within a block is constant for every block in the
data set, unless the data set contains truncated (short) blocks. If the data set contains
unblocked format-F records, one record constitutes one block.

The system automatically performs physical length checking (except for card readers) on
blocked or unblocked format-F records. Allowances are made for truncated blocks.

Format-F records are shown in Figure 1. The optional control character (c), used for
stacker selection or carriage control, may be included in each record to be printed or

punched.
Block Block —
A
N .
Blocked Records | Record A | Record B Record C Record D | Record E Record F
~
\\\ ~o - -
\\ h ~ ~
AS S o
\\ Record ~ < _
c Data
\f Optional Control
\ Character - 1 Byte //
\\ //
Block Block \\ // Block
—
Unblocked Records| Record A Record B Record C Record D

Figure 1. Fixed-Length Records

Fixed-Length Records, Standard Format: During creation of a sequential data set (to be
processed by BSAM or QSAM) with fixed-length records, the RECFM subparameter of
the DCB macro instruction may specify a standard format (RECFM=FS or FBS). A
standard-format data set must conform to the following specifications:

o All records in the data set are format-F records.

« No block except the last block is truncated. (With BSAM you must ensure that this
specification is met.)

« Every track except the last one contains the same number of blocks.

24 OS/VS Data Management Services Guide

« Every track except the last one is filled to capacity as determined by the track capacity
formula established for the device. (These formulas are presented in Part 3 of this
book under “Allocating Space on Direct-Access Volumes.”)

« The data set organization is physical-sequential. A member of a partitioned data set
cannot be specified.

A sequential data set with fixed-length records having a standard format can be read
more efficiently than a data set that doesn’t specify a standard format. This efficiency is
possible because the system is able to determine the address of each record to be read
because each track contains the same number of blocks.

You should never extend a data set of this type (by coding DISP=MOD) if the last block
is truncated, because the extension will cause the data set to contain a truncated block
that isn’t the last block. This type of data set on magnetic tape should not be read
backward, because then the data set would begin with a truncated block. Consequently,
you probably won’t want to use this type of data set with magnetic tape. If you use one
of the basic access techniques with this type of data set, you should not specify that the
track overflow feature is to be used with the data set.

Standard format should not be used to read records from a data set that was created
using a RECFM other than standard since other record formats may not create the
precise format required by standard.

If at any time the characteristics of your data set are altered from the specifications
described above, then the data set should no longer be processed with the standard
format specification.

Fixed-Length Records, ASCII Tapes: For ASCII tapes, format-F records are the same as
described above, with two exceptions:

« Control characters, if present, must be American National Standards Institute (ANSI)
control characters.

e Records or blocks of records can contain block prefixes.

Figure 2 shows the format of fixed-length records for ASCII tapes and where control
characters and block prefixes go if they exist.

Block Block
A A,

7

™\ 4 A

Optional
Blocked | Block

Records | Prefix

Record A

Optional
Record C Block
Prefix

Record B Record D Record E | Record F

AN ~
N ~

N ~
~ Recigrd ~

c Data

LOptional Control
Character-1 Byte /

Block Block \\ // Block
(A- \ r A b ' A N
Unblocked [C0tona! Optional Optional Optional
Records Bloqk Record A Bloqk Record B Bloc_k Record C Bloqk Record D
Prefix Prefix Prefix Prefix

Figure 2. Fixed-Length Records for ASCII Tapes

Part 1: Introduction to Data Management 25

The block prefix can vary in length from 0 to 99 bytes but the length must be constant
for the data set being processed. For blocked records, the block prefix precedes the first
logical record. For unblocked records, the block prefix precedes each logical record.

Using QSAM and BSAM to read records with block prefixes requires that you specify
the BUFOFF operand in the DCB. When using QSAM, you cannot read the block prefix
on input. When using BSAM, you must account for the block prefix on both input and
output. When using either QSAM or BSAM, you must account for the length of the
block prefix in the BLKSIZE and BUFL operands of the DCB.

When you use BSAM on output records, the operating system does not recognize a block
prefix. Therefore, if you want a block prefix, it must be part of your record. Note that
you cannot include block prefixes in QSAM output records.

The block prefix can contain any data you want, but you must avoid using data types
such as binary, packed decimal, and floating-point that cannot be translated into ASCIIL.

For more information about control characters, refer to ‘“Control Character” and to
“Appendix B: Control Characters.”

Variable-Length Records

The variable-length record formats are format-V and format-D. Format-V records can
be spanned; that is, records can be larger than the blocksize, as described below.
Format-D records are used for ASCII tape data sets and cannot be spanned. Figure 3
shows blocked and unblocked variable-length records without spanning.

Variable-Length Records—Format V: Format V provides for variable-length records,
variable-length record segments, each of which describes its own characteristics, and
variable-length blocks of such records or record segments. Except when variable-length
track overflow records are specified for volumes on devices with the rotational position
sensing feature, the control program performs length checking of the block and uses the
record or segment length information in blocking and deblocking. The first 4 bytes of

Blocked Records

Unblocked Records

D Block
BDW Is Ll N\
LL | 00 | Record A | Record B | Record C LL | 00| Record D | Record E | Record F
b Reserved - 2 Bytes \ T~
Block Length - \ T~
2 Bytes \ 20 T~
" RDW Data K
Record M 00 |c
A
| L—Optional Control Character 7
Reserved - 2 Bytes //
I Record Length- Y
| 2 Bytes
/
Block ' il Block
p - - Bow | ' Record
LL BOW
LL| 00 | Record B LL| 00 Record C LL |00 Record D

‘t t_Reserved - 2 Bytes
Block Length - 2 Bytes

Figure 3. Nonspanned, Variable-Length Records

26 OS/VS Data Management Services Guide

each record, record segment, or block make up a descriptor word containing control
information. You must allow for these additional 4 bytes in both your input and output
buffers.

Block Descriptor Word: A variable-length block consists of a block descriptor word
(BDW) followed by one or more logical records or record segments. The block
descriptor word is a 4-byte field that describes the block. The first 2 bytes specify the
block length (/7)—4 bytes for the BDW plus the total length of all records or segments
within the block. This length can be from 8 to 32,760 bytes or, when you are using
WRITE with tape, from 18 to 32,760. The third and fourth bytes are reserved for future
system use and must be 0. If the system does your blocking—that is, when you use the
queued access technique—the operating system automatically provides the BDW when it
writes the data set. If you do your own blocking—that is, when you use the basic access
technique—you must supply the BDW.

Record Descriptor Word: A variable-length logical record consists of a record descriptor
word (RDW) followed by the data. The record descriptor word is a 4-byte field
describing the record. The first 2 bytes contain the length (/') of the logical record
(including the 4-byte RDW). The length can be from 4 to 32,756. For information about
processing a sequential data set, see ‘“‘Data Format—Device Type Considerations.” All
bits of the third and fourth bytes must be 0, as other values are used for spanned records.
For output, you must provide the RDW except in data mode for spanned records
(described under “Buffer Control”). For output in data mode, you must provide the total
data length in the physical record length field (DCBPRECL) of the DCB. For input, the
operating system provides the RDW except in data mode. In data mode, the system
passes the record length to your program in the logical record length field (DCBLRECL)
of the DCB. The optional control character (c) may be specified as the fifth byte of each
record and must be followed by at least one byte of data (the length in the RDW, in this
case, would be six). The RDW and the control character, if specified, are not punched or
printed.

Spanned Variable-Length Records (Sequential Access Method): The spanning feature of the
queued and basic sequential access methods enables you to create and process
variable-length logical records that are larger than one physical block and/or to pack
blocks with variable-length records by splitting the records into segments so that they
can be written into more than one block, as shown in Figure 4.

When spanning is specified for blocked records, the system tries to fill all blocks. For
unblocked records, a record larger than blocksize is split and written in two or more
blocks, each block containing only one record or record segment. Thus the blocksize may
be set to the one that is best for a given device or processing situation. It is not restricted
by the maximum record length of a data set. A record may, therefore, span several
blocks, and may even span volumes. Note that a logical record spanning three or more
volumes cannot be processed in update mode (described under “Buffer Control”) by
QSAM. A block can contain a combination of records and record segments, but not
multiple segments of the same record. When records are added to or deleted from a data
set, or when the data set is processed again with different blocksize or record-size
parameters, the record segmenting will change.

Considerations for Processing Spanned Record Data Sets: When spanned records span
volumes, reading errors may occur when using QSAM if a volume which begins with a
middle or last segment is mounted first or if an FEOV macro instruction is issued
followed by another GET. QSAM cannot begin reading from the middle of the record.
The errors include duplicate records, program checks in the user’s program, and invalid
input from the spanned record data set.

Part 1: Introduction to Data Management 27

Block

BDW % N -~
g L
Last First Segment . Last First Segment
LL i:glinoge;?:al of Logical LL lg:erf‘o;di:::tleﬂse?o?g nBt LL of Log(;cBal gf Lo%icgl
Ccor ecor
Record A Record B Re:
L,Reserved -1 \ \ \ | AN
2 Bytes | N \ \ | \\
Block Length - I AR \ \ N
2 Bytes , o0 N \ 1] \ 2 AN
AL N \
” spw Data V" spow Data 7 spw Data
Inter-
First ediate Last
Segment | 0¢ c ;‘,negr:'\ent 2 Segment | g9
of Logical of Logical of Logical
Record ‘ L . Record Record
Optional Control L— Segment Control ‘—Segment Control
Character Code Code

Reserved - 1 Byte

1 Byte (See Figure 5)

Segment Control Code -

Segment Length - 2 bytes [14
4 RDW Data Portion of Logical Record B A
A
Logical Record Data Portion Data Portion Data Portion,
(In User's Work Areal M ¢ First (S,fegmem Intermedic;fte Segment soefgn:‘;a:tt

|
1 LOptional Control Character
b Reserved - 2 Bytes

Record Length - 2 Bytes

Figure 4. Spanned Variable-Length Records

When a spanned record data set is to be opened in UPDAT mode and QSAM is used, a
record area must be provided by using the BUILDRCD macro instruction or by
specifying BFTEK=A in the DCB.

If you issue the FEOV macro instruction when reading a data set that spans volumes, or
if a spanned multivolume data set is opened to other than the first volume, make sure
that each volume begins with the first (or only) segment of a logical record. Input
routines cannot begin reading in the middle of a logical record.

Segment Descriptor Word: Each record segment consists of a segment descriptor word
(SDW) followed by the data. The segment descriptor word, similar to the record
descriptor word, is a 4-byte field that describes the segment. The first 2 bytes contain the
length (‘") of the segment, including the 4-byte SDW. The length can be from 5 to
32,756 bytes or, when you are using WRITE with tape, from 18 to 32,756 bytes. The
third byte of the SDW contains the segment control code, which specifies the relative
position of the segment in the logical record. The segment control code is in the
rightmost 2 bits of the byte. The segment control codes are shown in Figure 5. The
remaining bits of the third byte and all of the fourth byte are reserved for future system
use and must be 0.

Binary Code Relative Position of Segment
00 Complete logical record
01 First segment of a multisegment record
10 Last segment of a multisegment record

11

Segment of a multisegment record other than the first or last segment

Figure 5. Segment Control Codes

28 OS/VS Data Management Services Guide

i v
The SDW for the first segment replaces the RDW for the record after the record has
been segmented. You or the operating system can build the SDW, depending on which
mode of processing is used. In the basic sequential access method, you must create and
interpret the spanned records yourself. In the queued sequential access method move
mode, complete logical records, including the RDW, are processed in your work area.
GET consolidates segments into logical records and creates the RDW. PUT forms
segments as required and creates the SDW for each segment. Data mode is similar to
move mode, but allows reference only to the data portion of the logical record in your
work area. The logical record length is passed to you through the DCBLRECL field of
the data control block. In locate mode, both GET and PUT process one segment at a
time. However, in locate mode, if you provide your own record area using the
BUILDRCD macro instruction or if you ask the system to provide a record area by
specifying BFTEK=A, then GET, PUT, and PUTX process one logical record at a time.
(BFTEK=A or the BUILDRCD macro cannot be specified when logical records exceed
32,760 bytes. To process logical records that exceed 32,760 bytes, you must use locate
mode and specify LRECL=X in your DCB macro.)

A logical record spanning three or more volumes cannot be processed when the data set
is opened for update.

When unit-record devices are used with spanned records, the system assumes that
unblocked records are being processed and the block size must be equivalent to the
length of one print line or one card. Records that span blocks are written one segment at
a time.

SYSIN and SYSOUT Restrictions: Spanned variable-length records cannot be specified
for a SYSIN data set. If you’re using QSAM to process a SYSOUT data set, move mode
(see “Buffer Control’) is more efficient than locate mode.

Null Segments: A 1 in bit position 0 of the SDW indicates a null segment. A null
segment means that there are no more segments in the block. Bits 1-7 of the SDW and
the remainder of the block must be binary zeros. A null segment is not an
end-of-logical-record delimiter. (You do not have to be concerned about null segments
unless you have created a data set using null segments.)

Spanned Variable-Length Records (Basic Direct Access Method): The spanning feature of
the basic direct access method (BDAM) enables you to create and process
variable-length unblocked logical records that are longer than one track. The feature also
enables you to pack tracks with variable-length records by splitting the records into
segments. These segments can then be written onto more than one track, as shown in
Figure 6.

When you specify spanned, unblocked record format for the basic direct access method
and when a complete logical record cannot fit on the track, the system tries to fill the
track with a record segment. Thus the maximum record length of a data set is not
restricted by block size. Furthermore, segmenting records allows a record to span several
tracks, with each segment of the record on a different track. However, since the system
does not allow a record to span volumes, all segments of a logical record in a direct data
set are on the same volume.

Variable-Length Records—Format D: For ASCII tapes, variable-length records must be
format-D records. Format-D records are the same as format-V records, except:

« Control characters, if present, must be ANSI control characters.
« Records or blocks of records can contain block prefixes.

Figure 7 shows the format of variable-length records for ASCII tapes, where the record
descriptor word (RDW) must go, and where block prefixes and control characters can go
when they exist.

Part 1: Introduction to Data Management 29

Track 1 Track 2 Track 3
o, . A
f N ‘ Block - >
BDW L N
4 A
First Segment . Last Segrent
LL of Logical LL '“‘eim‘?d'e"‘; S"g’;“rt of tL| |of Logical
Record A Ogical Recor Record A
\ N LL = track size ! A
Reterved - AN 128N \ | AN
. N \ \ ! \

2 Bytes N \ \ \
Block Length - '\ AN \ \\ \
2 Bytes AN \\\ \ \ \

AY \ \
\/‘ & \\\ \\/ % \ l/g \\
SDW Data SDW Data ” spw Data
Intermediate,

First Sef!glineqt | é.ast .

Segment of Logica egmen

of Logical 20 Record 2 of Logical 2

Record Record

L s
C

~——-Reserved - 1 Byte
t———Segment Control Code -

1 Byte {See Figure 5)
Segment Length - 2 Bytes

egment Control
ode

L—Segment Control

Code

LL
r N
BDW Data Portion of Logical Record A
N
.

Logical Record Data Portion Data Portion Data Portion
(In User’s Work of of of Last
Area) First Segment { Intermediate Segment | Segment
Block Length - J]
2 Bytes

Reserved - Note: Not All Segment and Block Combinations are Represented

2 Bytes

Figure 6. Spanned Variable-Length Records for BDAM Data Sets

To specify a block prefix, code the BUFOFF operand in the DCB macro. The block
prefix can vary in length from 0 to 99 bytes but its length must remain constant for the
data set being processed. For blocked records, the block prefix precedes the first logical
record in each block. For unblocked records, the block prefix precedes each logical
record. If the block prefix exists, it precedes the RDW.

To specify that the block prefix is to be treated as a BDW by data management for
format-D records on output, code BUFOFF=L as a DCB operand. Your block prefix
must be 4 bytes long, and it must contain the length of the block, including the block
prefix. The maximum length of a format D, BUFOFF=L block is 9999 because the
length (stated in binary by the user) is translated to a four-byte zoned decimal field on
the ASCII tape when the tape is written, and is then converted back to a two-byte length
field in binary followed by two bytes of zeros when the block is read. If you use QSAM
to write records, data management fills in the block prefix for you. If you use BSAM to
write records, you must fill in the block prefix yourself. If you are using chained
scheduling to read blocked format-D records, coding BUFOFF =absolute expression in
the DCB is not allowed. Instead, BUFOFF=L is required, because the access method
needs binary RDWs and valid end-of-block addresses to unblock the records.

When using QSAM, you cannot read the block prefix on input. When using BSAM, you
must account for the block prefix on both input and output. When using either QSAM or
BSAM, you must account for the length of the block prefix in the BLKSIZE and BUFL
operands.

30 OS/VS Data Management Services Guide

Block Block
A

A

r A 4)
Optional Optional
Blocked | Block |Record A| Record B RecordC Block | Record D Record E Record F
Records | prefix Prefix
\ T~ —
—
\\ %e ~ _
\f ﬂ
RDW Data
v ~ ~
90 |oof c
7t LOptionaI Control Character -
yZ 4 . Reserved - 2 Bytes - -
v t—————Record Length -~ —
s 2 Bytes__ —
2 - Block Block
/ —_ - A e N
Optional Optional Optional
Unblocked
Block Block Block dE

Records oy Record C Profie Record D Prefix Recor

Note: Block prefixes on output records must be 4-bytes long.

Figure 7. Variable-Length Records for ASCII Tapes

When you use BSAM on output records, the operating system does not recognize the
block prefix. Therefore, if you want a block prefix, it must be part of your record.

The block prefix can contain any data you want, but you must avoid using data types,
such as binary, packed decimal, and, floating-point, that cannot be translated into ASCIL
For format-D records, the only time the block prefix can contain binary data is when you
have coded BUFOFF=L, which tells data management that the prefix is a BDW. Unlike
the block prefix, the RDW must always be in binary.

If you create variable-length records that are shorter than 18 bytes, data management
pads each one up to a length of 18 bytes when the records are written onto ASCII tape.
The padding character used is the ASCII circumflex.

For more information about control characters, refer to ‘“Control Character” and to
“Appendix B: Control Characters.”

Undefined-Length Records

Format U permits processing of records that do not conform to the F or V format. As
shown in Figure 8, each block is treated as a record; therefore, deblocking must be
performed by your program. The optional control character may be used in the first byte
of each record. Because the system does not perform length checking on format-U
records, your program may be designed to read less than a complete block into virtual
storage.

For ASCII tapes, format-U records are the same as described above, with the two
exceptions described for format-F records on ASCII tapes.

Figure 9 shows the format of undefined-length records for ASCII tapes and where a
control character and block prefix, if any, go.

For format-U records, the user must specify the record length when issuing the WRITE,
PUT, or PUTX macro instruction. No length checking is performed by the system, so no

Part 1: Introduction to Data Management 31

Control Character

Record

c Data

L !
\\ Optional Control /
\\Character-1 Byte /

/

Block \\ Block // Block
/

Record A Record B Record C

Figure 8. Undefined-Length Records

Record
4 A N\
Optional
Block c Data
Prefix
\
\\ tOptional Control //
\ Character-1 Byte //
N /
AY
Block \ Block / Block
A \ A Al
r N\ \ N/ r)
Optional Optional Optional
Block | Record A Block | Racord B Block Record C
Prefix Prefix Prefix

Figure 9. Undefined-Length Records for ASCII Tapes

error indication will be given if the specified length does not match the buffer size or
physical record size.

In update mode, you must issue a GET or READ macro before you issue a PUTX or
WRITE macro to a data set on a direct-access device. If you change the record length
when you issue the PUTX or WRITE macro, the record will be padded with zeros or
truncated to match the length of the record received when the GET or READ macro was
issued. No error indication will be given.

You may specify in the DD statement, the DCB macro instruction, or the data set label
that an optional control character is part of each record in the data set. The 1-byte
character is used to indicate a carriage control channel when the data set is printed or a
stacker bin when the data set is punched. Although the character is a part of the record
in storage, it is never printed or punched. For that reason, buffer areas must be large
enough to accommodate the character. If the immediate destination of the record is a
device, such as disk, that does not recognize the control character, the system assumes
that the control character is the first byte of the data portion of the record. If the
destination of the record is a printer or punch and you have not indicated the presence of
a control character, the system regards the control character as the first byte of data. A
list of the control characters is in “Appendix B: Control Characters.”

32 OS/VS Data Management Services Guide

Direct-Access Device Characteristics

Regardless of organization, data sets created using the operating system can be stored on
a direct-access volume. Each block of data has a distinct location and a unique address,
making it possible to locate any record without extensive searching. Thus, records can be
stored and retrieved either directly or sequentially.

Although direct-access devices differ in physical appearance, capacity, and speed, they
are similar in data recording, data checking, data format, and programming. The
recording surface of each volume is divided into many concentric tracks. The number of
tracks and their capacity vary with the device. Each device has some type of access .
mechanism, containing read/write heads that transfer data as the recording surface
rotates past them. Only one head at a time can transfer data.

The logical arrangement of related tracks is vertical rather than horizontal. As shown in
Figure 10, a cylinder of a 2316 disk pack is composed of 20 tracks, one for each
recording surface. Because there are 203 tracks per recording surface, there are 203
vertical cylinders of 20 tracks each. If a data set extends to more than 1 track, it is
continued on the next track in the cylinder, not the next track on the same recording
surface.

00 Tracks 202 Track
— 1

Comb-Type
Access Assembly

Ten Access Arms

Twenty Read-Write Heads
Cylinder

Figure 10. 2316 Disk Pack

Part 1: Introduction to Data Management 33

Track Format

Track Addressing

Information is recorded on all direct-access volumes in a standard format. In addition to
device data, each track contains a track descriptor record (capacity record or RO) and
data records.

As shown in Figure 11, there are two possible data record formats—count-data and
count-key-data—only one of which can be used for a particular data set.

In addition to device data, the count area contains 8 bytes that identify the location of
the record by cylinder, head, and record numbers, its key length (0 if no keys are used),
and its data length.

If the records are written with keys, the key area (1 to 255 bytes) contains a record key
that specifies the data record by part number, account number, sequence number, or
some other identifier. In some cases, records are written with keys so that they can be
located quickly.

Two types of addresses can be used to store and retrieve data on a direct-access volume:
actual addresses and relative addresses. The only advantage of using actual addresses is
the elimination of time required to convert from relative to actual addresses and vice
versa. When sequentially processing a multiple-volume data set, you can refer only to
records of the current volume.

Actual Addresses: When the system returns the actual address of a record on a
direct-access volume to your program, it is in the form MBBCCHHR, where:

M

is a 1-byte binary number specifying the relative location of an entry in a data extent
block (DEB). The data extent block is created by the system when the data set is
opened. Each extent entry describes a set of consecutive tracks allocated for the data
set.

BBCCHH

is three 2-byte binary numbers specifying the cell (bin), cylinder, and head number for
the record (its track address). The cylinder and head numbers are recorded in the
count area for each record.

Count-Data Format

Count

Data

Count Data Ds I Count Data

Track Bascriptor
Record (RO)

Data Record (R1) Data Record (Rn)

Count-Key-Data Format

Count

Data

Count Key Data Bg Count Key Data

Track Descriptor
Record {RO)

Data Record (R1) Data Record (Rn)

Figure 11. Direct-Access Volume Track Formats

34 OS/VS Data Management Services Guide

Track Overflow

R

is a 1-byte binary number specifying the relative block number on the track. The
block number is also recorded in the count area.

If you use actual addresses in your program, the data set must be treated as unmovable.

Relative Addresses: Two kinds of relative addresses can be used to refer to records in a
direct-access data set: relative block addresses and relative track addresses.

The relative block address is a 3-byte binary number that indicates the position of the
block relative to the first block of the data set. Allocation of noncontinuous sets of
blocks does not affect the number. The first block of a data set always has a relative
block address of 0.

The relative track address has the form TTR, where:

TT

is a 2-byte binary number specifying the position of the track relative to the first track
allocated for the data set. The TT for the first track is 0. Allocation of noncontinuous
sets of tracks does not affect the number.

R

is a 1-byte binary number specifying the number of the block relative to the first block
on the track TT. The R value for the first block of data on a track is 1.

If the record overflow feature is available for the direct-access device being used, you
can reduce the amount of unused space on the volume by specifying the track overflow
option in the DD statement or the DCB macro instruction associated with the data set. If
the option is used, a block that does not fit on the track is partially written on that track
and continued on the next track. (The track onto which the record is continued must be
physically next and must be part of the same extent as the track that holds the first part
of the record.) Each segment (the portion written on one track) of an overflow block has
a count area. The data length field in the count area specifies the length of that segment
only. If the block is written with a key, there is only one key area for the block. It is
written with the first segment. If the track overflow option is not used, blocks are not
split between tracks.

Write-Validity-Check Option

You can specify the write-validity-check option in either the DD statement or the DCB
macro instruction. After a record is transferred from main to secondary storage, the
system reads the stored record (without data transfer) and, by testing for a data check
from the I/0 device, verifies that the record was written correctly. This verification
requires an additional revolution of the device for each record that was written. Standard
error recovery procedures are initiated if an error condition is detected.

Part 1: Introduction to Data Management 35

The Data Control Block

You must describe the characteristics of a data set, the volume on which it resides, and
its processing requirements before processing can begin. During execution, the
descriptive information is made available to the operating system in the data control
block (DCB). A DCB is required for each data set and is created in a processing
program by a DCB macro instruction.

Primary sources of information to be placed in the data control block are a DCB macro
instruction, a data definition (DD) statement, and a data set label. In addition, you can
provide or modify some of the information during execution by storing the pertinent data
in the appropriate field of the data control block. The specifications needed for
input/output operations are supplied during the initialization procedures of the OPEN
macro instruction. Therefore, the pertinent data can be provided when your job is to be
executed rather than when you write your program (see Figure 12).

When the OPEN macro instruction is executed, the Open routine:

o Completes the data control block

« Loads all necessary access method routines not already in virtual storage
« Initializes data sets by reading or writing labels and control information
o Constructs the necessary system control blocks

Information from a DD statement is stored in the job file control block (JFCB) by the
operating system. When the job is to be executed, the JFCB is made available to the
open routine. The data control block is filled in with information from the DCB macro
instruction, the JFCB, or an existing data set label. If more than one source specifies
information for a particular field, only one source is used. A DD statement takes
precedence over a data set label, and a DCB macro instruction over both. However, you
can modify most data control block fields either before the data set is opened or when
the operating system returns control to your program (at the data control block open
exit). Some fields can be modified during processing.

Figure 13 illustrates the process and the sequence of filling in the data control block from
various sources. The primary source is your program, that is, the DCB macro instruction.
In general, you should use only those DCB parameters that are needed to ensure correct
processing. The other parameters can be filled in when your program is to be executed.
When a direct-access data set is opened (or a magnetic tape with standard labels is

DCB Macro

DD Statement Data Set Label

B FGHJ

Cc D I A E

Data Control Block

ABCDEFGHIJ

Figure 12. Completing the Data Control Block

36 OS/VS Data Management Services Guide

opened for INPUT, RDBACK, or INOUT), any field in the JFCB not completed by a
DD statement is filled in from the data set label (if one exists). When opening a magnetic
tape for output, the tape label is assumed not to exist or to apply to the current data set
unless you specify DISP=MOD and a volume serial number in the volume parameter of
the DD statement. Any field not completed in the DCB is filled in from the JFCB. Fields
in the DCB can then be completed or modified by your own DCB exit routine. Then all
DCB fields are unconditionally merged into corresponding JFCB fields if your data set is
opened for output (OUTPUT or OUTIN is specified in the OPEN macro instruction).
The DSORG field is not merged unless this field contains zeros in the JFCB. If your data
set is opened for input (INPUT, INOUT, RDBACK, or UPDAT is specified in the
OPEN macro instruction), the DCB fields are not merged unless the corresponding
JFCB fields contain zeros.

DCB

DCB Data
Macro —————@—’J Control __‘@—~ Exit
Block Routine

DD Job File New
Statement ———@—-ﬂ Control /-7\ —pw| Data Set
Block \/ Label

Old
Data Set
Label

Figure 13. Sources and Sequence of Operations for Completing the Data Control Block

When the data set is closed, the data control block is restored to the condition it had
before the data set was opened (the buffer pool is not freed). The open and close
routines also use the updated JFCB to write the data set labels for output data sets. If the
data set is not closed when your program terminates, the operating system will close it
automatically. Note, however, that a VS1 system cannot automatically close any open
data sets after the normal termination of a program that was brought mto vu’tual storage

opened for INPUT, RDBACK, or INOUT), any field in the JFCB not completed by a
DD statement is filled in from the data set label (if one exists). When opening a magneti
tape for output, the tape label is assumed not to exist or to apply to the current data set
unless you specify DISP=MOD and a volume serial number in the volume parameter of
the DD statement. Any field not completed in the DCB is filled in from the JFCB. Fields
in the DCB can then be completed or modified by your own DCB exit routine. Then all
DCB fields are unconditionally merged into corresponding JFCB fields if your data set is
opened for output (OUTPUT or OUTIN is specified in the OPEN macro instruction).
The DSORG field is not merged unless this field contains zeros in the JFCB. If your dat:
set is opened for input (INPUT, INOUT, RDBACK, or UPDAT is specified in the
OPEN macro instruction), the DCB fields are not merged unless the corresponding
JFCB fields contain zeros.

DCB Data DCB
Macro ————@——-ﬁ Control -—@———— Exit
Block Routine
DD Job File New
Statement ————@—-.' Control /7\ Data Set
Block U Label
Old
Data Set
Label

Figure 13. Sources and Sequence of Operations for Completing the Data Control Block

When the data set is closed, the data control block is restored to the condition it had
before the data set was opened (the buffer pool is not freed). The open and close
routines also use the updated JFCB to write the data set labels for output data sets. If the
data set is not closed when your program terminates, the operating system will close it
automatically. Note, however, that a VS1 system cannot automatically close any open
data sets after the normal termination of a program that was brought into virtual storage
by the loader. Therefore, loaded programs must include CLOSE macro instructions for
all opened data sets.

Data Set Description

For each data set you are going to process, there must be a corresponding DCB and DD
statement. The characteristics of the data set and device-dependent information can be
supplied by either source. In addition, the DD statement must supply data set
identification, device characteristics, space allocation requests, and related information a:
specified in OS/VS1 JCL Reference or OS/VS2 JCL. You establish the logical
connection between a DCB and a DD statement by specifying the name of the DD
statement in the DDNAME field of the DCB macro instruction, or by completing the
field yourself before opening the data set.

Part 1: Introduction to Data Management 3'

Once the data set characteristics have been specified in the DCB macro instruction, they
can be changed only by modification of the DCB during execution. The fields of the
DCB discussed below are common to most data organizations and access techniques.

Data Set Organization (DSORG): specifies the organization of the data set as physical
sequential (PS), indexed sequential (IS), partitioned (PO), or direct (DA). If the data set
contains absolute rather than relative addresses, you must mark it as unmovable by
adding a U to the DSORG parameter (for example, by coding DSORG=PSU). You must
specify the data set organization in the DCB macro instruction. When creating or
processing an indexed sequential organization data set or creating a direct data set, you
must also specify DSORG in the DD statement.

Record Format (RECFM): specifies the characteristics of the records in the data set as
fixed-length (F), variable-length (V), or undefined-length (U). Blocked records are
specified as FB or VB. You may also specify the records as fixed-length standard by
using FS or FBS. You can request track overflow for records other than standard format
by adding a T to the RECFM parameter (for example, by coding FBT).

Record Length (LRECL): specifies the length, in bytes, of each record in the data set. If
the records are of variable length, the maximum record length must be specified. For
input, the field should be omitted for format-U records.

Blocksize (BLKSIZE): specifies the maximum length, in bytes, of a block. If the records
are of format F, the blocksize must be an integral muitiple of the record length except for
SYSOUT data sets. (See ‘“‘Routing Data Through the System Input and Output Streams”
in Part 3 of this book.) If the records are of format V, the blocksize specified must be the
maximum blocksize. If records are unblocked, the blocksize must be 4 bytes greater than
the record length (LRECL). When spanned variable-length records are specified, the
blocksize is independent of the record length.

Key Length (KEYLEN): specifies the length (0-255) in bytes of an optional key which
precedes each block on a direct-access device. The value of KEYLEN is not included in
BLKSIZE or LRECL but must be included in BUFL if buffer length is specified. Thus,
BUFL=KEYLEN+BLKSIZE.

Each of the data set description fields of the data control block, except as noted for data
set organization, can be specified when your job is to be executed. In addition, data set
identification and disposition, as well as device characteristics, can be specified at that
time. The parameters of the DD statement discussed below are common to most data set
organizations and devices.

Data Definition Name (ddname): is the name of the DD statement and connects the DD
statement to the data control block that specifies the same DDNAME.

Data Set Name (DSNAME): specifies the name of a newly defined data set, or refers to
a previously defined data set.

Data Control Block (DCB): provides, by means of subparameters, information to be used
to complete those fields of the data control block that were not specified in the DCB
macro instruction. This parameter cannot be used to modify a data control block.

Channel Separation and Affinity (SEP/AFF): requests that specified data sets use
different channels during input/output operations.

Input/Output Device (UNIT): specifies the number and type of I/O devices to be
allocated for use by the data set.

Space Allocation (SPACE): designates the amount of space on a direct-access volume
that should be allocated for the data set. Unused space can be released when your job is
finished.

38 OS/VS Data Management Services Guide

Volume Identification (VOLUME): identifies the particular volume or volumes, or the
number of volumes,|to be assigned to the data set, or the volumes on which existing data
sets reside.

Data Set Label (LABEL): indicates the type and contents of the label or labels
associated with the data set. The operating system verifies standard labels. Standard
labels include those specified in the DD statement as SL (standard labels), SUL
(standard user labels), AL (American National Standard labels), and AUL (American
National Standard user labels). Nonstandard labels (NSL) can be specified only if your
installation has incorporated into the operating system routines to write and process
nonstandard labels.

Data Set Disposition (DISP): describes the status of a data set and indicates what is to be
done with it at the end of the job step.

Processing Program Description

The operating system requires several types of processing information to ensure proper
control of your input/output operations. The forms of macro instructions in the program,
buffering requirements, and the addresses of your special processing routines must be
specified during either the assembly or the execution of your program. The DCB
parameters specifying buffer requirements are discussed in ‘“Buffer Acquisition and
Control.”

Because macro instructions are expanded during the assembly of your program, you must
supply the macro instruction forms that are to be used in processing each data set in the
associated DCB macro instruction. You can supply buffering requirements and related
information in the DCB macro instruction, the DD statement, or by storing the pertinent
data in the appropriate field of the data control block before the end of your DCB exit
routine. If the addresses of special processing routines are omitted from the DCB macro
instruction, you must complete them in the DCB before opening the data set.

Macro Instruction Form (MACRF)

The MACRF parameter of the DCB macro instruction specifies not only the macro
instructions used in your program, but also the processing mode as discussed in the
section “Buffer Control.” The organization of your data set, the macro instruction form,
and the processing mode determine which of the data access routines will be used during
execution.

[Exits to Special Processing Routines
The DCB macro instruction can be used to identify the location of:
« A routine that performs end-of-data procedures
« A routine that supplements the operating system’s error recovery routine
« A list that contains addresses of special exit routines

The exit addresses can be specified in the DCB macro instruction or you can complete
the DCB fields before opening the data set. Figure 14 summarizes the exits that you can
specify either explicitly in the DCB, or implicitly by specifying the address of an exit list
in the DCB.

End-of-Data-Set Exit Routine (EODAD): The EODAD parameter of the DCB macro
instruction specifies the address of your end-of-data routine, which may perform any
final processing on an input data set. This routine is entered when an FEOV macro is
issued or when a CHECK or GET macro is issued and there are no more records or
blocks to be retrieved. (On a READ request, this routine is entered when you issue a
CHECK macro instruction to check for completion of the read operation. For a BSAM

Part 1: Introduction to Data Management 3¢

Exit Routine

End-of-Data-Set

Error Analysis

Standard User Label
(physical sequential
or direct organization)

DCB Open

JFCBE

End-of-Volume

When Available

When no more sequential
records or blocks are
available

After an uncorrectable
input/output error

‘When opening, closing,

or reaching the end of a
data set, and when changing
volumes

When opening a data set

When opening a data set
for the 3800

When changing volumes

Where Specified
EODAD operand

SYNAD operand

EXLST operand and
exit list

EXLST operand and
exit list

EXLST operand and
exit list

EXLST operand and
exit list

Block Count After unequal block count EXLST operand and
comparison by end-of-volume exit list
routine

FCB Image When opening a data set or EXLST operand and
issuing a SETPRT macro exit list

DCB ABEND When an ABEND condition EXLST operand and
occurs in Open, Close, or exit list

end-of-volume routine.

Figure 14. Data Management Exit Routines

data set that is opened for UPDAT, this routine is entered at the end of each volume.
This allows you to issue WRITE macros before an FEOV macro is issued.)

The EODAD routine is not a subroutine, but rather a continuation of the routine which
issued the CHECK, GET, or FEOV macro instruction. Once in your EODAD routine,
you can continue normal processing, such as reposition and resume processing of the
data set, close the data set, or process another data set.

For BSAM, you must first reposition the data set that reached end-of-data if you wish to
issue a BSP, READ, or WRITE macro instruction. You can reposition your data set by
issuing a CLOSE TYPE=T macro instruction. If a READ macro is issued before the
data set is repositioned, unpredictable results will occur.

For BPAM, you may reposition the data set by issuing a FIND or POINT macro
instruction. (CLOSE TYPE=T with BPAM results in a no operation performed.)

For QISAM, you can continue processing the input data set that reached end-of-data by
first issuing an ESETL macro to end the sequential retrieval, then issuing a SETL macro
to set the lower limit of sequential retrieval. You can then issue GET macros to the data
set.

Your task will be abnormally terminated under either of the following conditions:
« No exit routine is provided.

+ A GET macro instruction is issued in the EODAD routine to the DCB which caused
this routine to be entered (unless the access method is QISAM).

40 OS/VS Data Management Services Guide

When control is passed to the EODAD routine, the registers contain the following
information:

Register Contents

0-1 Reserved
2-13 Contents before execution of CHECK, GET, or FEOV macro instruction
14 Address of the instruction after the last issued GET, CHECK, or FEOV macro instruction
15 Reserved

Synchronous Error Routine Exit (SYNAD): The SYNAD parameter of the DCB macro
instruction specifies the address of an error routine that is to be given control when an
input/output error occurs. This routine can be used to analyze exceptional conditions or
uncorrectable errors. The block being read or written can be accepted or skipped, or
processing can be terminated.

If an input/output error occurs during data transmission, standard error recovery
procedures, provided by the operating system, attempt to correct the error before
returning control to your program. An uncorrectable error usually causes an abnormal
termination of the task. However, if you specify in the DCB macro instruction the
address of an error analysis routine (called a SYNAD routine), the routine is given
control in the event of an uncorrectable error.

You can write a SYNAD routine to determine the cause and type of error that occurred
by examining:

« The contents of the general registers

« The data event control block (discussed in Part 2 under “Basic Access Technique”)
« The exceptional condition code

» The standard status and sense indicators

You can use the SYNADAF macro instruction to perform this analysis automatically.
This macro instruction produces an error message that can be printed by a subsequent
PUT or WRITE macro instruction.

After completing the analysis, you can return control to the operating system or close the
data set. If you close the data set, note that you may not use the temporary close
(CLOSE TYPE=T) option in the SYNAD routine. To continue processing the same dat
set, you must first return control to the control program by a RETURN macro
instruction. The control program then transfers control to your processing program,
subject to the conditions described below. In no case should you attempt to reread or
rewrite the record, because the system has already attempted to recover from the error.

When you are using GET and PUT to process a sequential data set, the operating system
provides three automatic error options (EROPT) to be used if there is no SYNAD
routine or if you want to return control to your program from the SYNAD routine:

e ACC accept the erroneous block
« SKP skip the erroneous block
« ABE abnormally terminate the task

These options are applicable only to data errors, as control errors result in abnormal
termination of the task. Data errors affect only the validity of a block of data. Control
errors affect information or operations necessary for continued processing of the data
set. These options are not applicable to output errors, except output errors on the printer
When chained scheduling is used, the SKP option is not available, and ACC is assumed i
SKP is coded. If the EROPT and SYNAD fields are not completed, ABE is assumed.

Part 1: Introduction to Data Management 4

When you use READ and WRITE macro instructions, errors are detected when you
issue a CHECK macro instruction. If you are processing a direct or sequential data set
and you return to the control program from your SYNAD routine, the operating system
assumes that you have accepted the bad record. If you are creating a direct data set and
you return to the control program from your SYNAD routine, your task is abnormally
terminated. In the case of processing a direct data set, the return should be made to the
control program via register 14 in order to make a control block (the IOB) available for
reuse in a subsequent READ or WRITE macro instruction.

For a detailed description of the register contents upon entry to your SYNAD routine,
refer to the tables in OS/VS Data Management Macro Instructions. The tables there
describe register contents for programs using QISAM, BISAM, BDAM, BPAM, BSAM,
and QSAM.

Your SYNAD routine can end by branching to another routine in your program, such as
a routine that closes the data set. It can also end by returning control to the control
program, which then returns control to the next sequential instruction (after the macro)
in your program. If your routine returns control, the conventions for saving and restoring
register contents are as follows:

« The SYNAD routine must preserve the contents of registers 13 and 14. If required by
the logic of your program, the routine must also preserve the contents of registers 2
through 12. Upon return to your program, the contents of registers 2 through 12 will
be the same as upon return to the control program from the SYNAD routine.

« The SYNAD routine must not use the save area whose address is in register 13,
because this area is used by the control program. If the routine saves and restores
register contents, it must provide its own save area.

« If the SYNAD routine calls another routine or issues supervisor or data management
macro instructions, it must provide its own save area or issue a SYNADAF macro
instruction. The SYNADAF macro instruction provides a save area for its own use,
and then makes this area available to the SYNAD routine. Such a save area must be
removed from the save area chain by a SYNADRLS macro instruction before control
is returned to the control program.

When you use QSAM to read and translate paper-tape characters, your SYNAD routine
receives control when you request the record preceding the record in error. Before giving
control to your SYNAD routine, the system translates the requested record into your
buffer.

For example, suppose that you are using QSAM to read and translate a paper-tape data
set and that you have specified, in your DCB, SYNAD=(address) and EROPT=ACC.
Suppose also that the third record of the data set has a parity error. When you issue a
GET request for the second record, the system translates that record into your buffer
and, as a result of the error in the third record, passes control to your SYNAD routine.
Because you specified the accept option, the system returns control to your program
after your SYNAD error analysis routine completes its processing. When you issue a
GET request for the third record, all characters other than the erroneous one are
translated into your buffer; the erroneous character is moved, in normal sequence, into
your buffer without translation.

42 OS/VS Data Management Services Guide

£,

If the error analysis routine receives control from the Close routine when indexed
sequential data sets are being created (the DCB is opened for QISAM load mode), bit 3
of the IOBFLAGS field in the load mode buffer control table (IOBBCT) is set to one.
The DCBWKPTS6 field in the DCB contains an address of a list of work area pointers
(ISLVPTRS). The pointer to the IOBBCT is at offset 8 in this list as shown in the
following diagram:

DCB Wgrk Area
Pointers
(ISLVPTRS) 10BBCT
0
L L L] |
4 0} 1
248 8
DCBWKPT6 A (IOBBCT)
IOBFLAGS

If the error analysis routine receives control from the Close routine when indexed
sequential data sets are being processed using QISAM scan mode, bit 2 of the DCB field
DCBEXCD? is set to one.

Exit List (EXLST): The EXLST parameter of the DCB macro instruction specifies the
address of a list that contains the addresses of special processing routines, a forms
control buffer (FCB) image, or a user totaling area. An exit list must be created if user
label, data control block, end-of-volume, block count, JFCBE, or DCB ABEND exits are
used, or if a PDAB macro or FCB image is defined in the processing program.

The exit list is constructed of 4-byte entries that must be aligned on fullword boundaries.
Each exit list entry is identified by a code in the high-order byte, and the address of the
routine, image, or area is specified in the 3 low-order bytes. Codes and addresses for the
exit list entries are shown in Figure 15.

You can activate or deactivate any entry in the list by placing the required code in the
high-order byte. Care must be taken, however, not to destroy the last entry indication.
The operating system routines scan the list from top to bottom, and the first active entry
found with the proper code is selected.

You can shorten the list during execution by setting the high-order bit to 1, and extend it
by setting the high-order bit to 0.

When control is passed to an exit routine, the registers contain the following information:

Register Contents
0 Variable; see exit routine description.

1 The three, low-order bytes contain the address of DCB currently being processed, except
when user-label exits (X‘01’-°04’), user totaling exit (X'0A”), or DCB ABEND exit (X'11’) is
taken, when register 1 contains the address of a parameter list. The contents of the
parameter list are described in each exit routine description.

2-13 Contents before execution of the macro instruction.
14 Return address (must not be altered by the exit routine).
15 Address of exit routine entry point.

The conventions for saving and restoring register contents are as follows:

« The exit routine must preserve the contents of register 14. It need not preserve the
contents of other registers. The control program restores the contents of registers 2-13
before returning control to your program.

« The exit routine must not use the save area whose address is in register 13, because
this area is used by the control program. If the exit routine calls another routine or

Part 1: Introduction to Data Management 43

Hexadecimal

Entry Type Code 3-Byte Address—Purpose

Inactive entry 00 Ignore the entry; it is not active.

Input header label 01 Process a user input header label.

Output header label 02 Create a user output header label.

Input trailer label 03 Process a user input trailer label.

Output trailer label 04 Create a user output tr_ailer label.

Data control block exit 05 Take a data control block exit.

End-of-volume 06 Take an end-of-volume exit.

User totaling 0A Address of beginning of user’s totaling area.

Block count exit 0B Take a block-count-unequal exit.

Defer input trailer oC Defer processing of a user input trailer label from

label end-of-data until closing.

Defer nonstandard 0D Defer processing a nonstandard input trailer label on

input trailer label magnetic tape unit from end-of-data until closing (no
exit routine address).

FCB image 10 Define an FCB image.

DCB ABEND exit 11 Examine the ABEND condition and select one of several
options.

QSAM parallel input 12 Address of the PDAB for which this DCB is a member.

JFCBE 15 Take an exit during open to allow user to examine

JCL-specified setup requirements for a 3800 printer.

Last entry 80 Treat this entry as last entry in list. This code can
be specified with any of the above but must always be
specified with the last entry.

Figure 15. Format and Contents of an Exit List

issues supervisor or data management macro instructions, it must provide the address
of a new save area in register 13.

Standard User Label Exit: When you create a data set with physical sequential or direct
organization, you can provide routines to create your own data set labels. You can also
provide routines to verify these labels when you use the data set as input. Each label is
80 characters long with the first 4 characters UHL1,UHL.2,...,UHLS for a header label
or UTL1,UTL?2,...,UTLS for a trailer label. User labels are not allowed on indexed
sequential data sets.

The physical location of the labels on the data set depends on the data set organization.
For direct (BDAM) data sets, user labels are placed on a separate user label track in the
first volume. User label exits are taken only during execution of the open and close
routines. Thus you may create or examine up to eight user header labels only during
execution of opern and up to eight trailer labels only during execution of close. Since the
trailer labels are on the same track as the header labels, the first volume of the data set
must be mounted when the data set is closed.

For physical sequential (BSAM or QSAM) data sets, you may create or examine up to
eight header labels and eight trailer labels on each volume of the data set. For ASCII
tape data sets, you may create an unlimited number of user header and trailer labels. The
user label exits are taken during open, close, and end-of-volume processing.

To create or verify labels, you must specify the addresses of your label exit routines in an
exit list as shown in Figure 15. Thus you may have separate routines for creating or
verifying header and trailer label groups. Care must be taken if a magnetic tape is read

44 OS/VS Data Management Services Guide

backward, since the trailer label group is processed as header labels and the header label
group is processed as trailer labels.

When your routine receives control, the contents of register 0 are unpredictable.
Register 1 contains the address of a parameter list. The contents of registers 2-13 are the
same as when the macro instruction was issued. However, if your program does not issue
the CLOSE macro instruction, or abnormally terminates before issuing CLOSE, the
CLOSE macro instruction will be issued by the control program, with control-program
information in these registers.

The parameter list pointed to by register 1 is a 16-byte area aligned on a fullword
boundary. Figure 16 shows the contents of the area.

0
////// Address of 80-byte buffer area
1 1

4
/ EOF flag Address of DCB being processed
/// i 1 ,
8 ///////

Error flags Address of status information

12)
////// Address of user totaling image area
1 1

Figure 16. Parameter List Passed to User Label Exit Routine

The first address in the parameter list points to an 80-byte label buffer area. For input,
the control program reads a user label into this area before passing control to the label
routine. For output, the user label exit routine constructs labels in this area and returns to
the control program, which writes the label. When an input trailer label routine receives
control, the EOF flag (high-order byte of the second entry in the parameter list) is set as
follows:

bit 0 = 0: Entered at end-of-volume
bit 0 = 1: Entered at end-of-file
bits 1-7: Reserved

When a user label exit routine receives control after an uncorrectable 1/O error has
occurred, the third entry of the parameter list contains the address of the standard status
information. The error flag (high-order byte of the third entry in the parameter list) is set
as follows:

bit 0 = 1: Uncorrectable 1/O error
bit 1=1: Error occurred during writing of updated label
bits 2-7: Reserved

The fourth entry in the parameter list is the address of the user totaling image area. This
image area is the entry in the user totaling save area that corresponds to the last record
physically written on the volume. The image area is discussed further under “User
Totaling.”

Each routine must create or verify one label of a header or trailer label group, place a
return code in register 15, and return control to the operating system. The operating
system responds to the decimal return code as shown in Figure 17.

You can create user labels only for data sets on magnetic-tape volumes with IBM
standard labels or American National Standard labels and for data sets on direct-access
volumes. When you specify both user labels and IBM standard or American National
Standard labels in a DD statement by specifying LABEL=(,SUL) or LABEL=(,AUL)

IPart 1: Introduction to Data Management 45

Routine Type Return Code System Response

Input header 0 Normal processing is resumed. If there are any remaining labels
or in the label group, they are ignored.
trailer label

4 The next user label is read into the label buffer area and control is
returned to the exit routine. If there are no more labels in the label
group, normal processing is resumed.

81 The label is written from the label buffer area and normal processing is
resumed.

121 The label is written from the label area, the next label is read into the
label buffer area, and control is returned to the label processing
routine. If there are no more labels, processing is resumed.

Output header 0 Normal processing is resumed; no label is written from the label
or trailer label buffer area.

4 User label is written from the label buffer area. Normal processing is -
resumed.

8 User label is written from the label buffer area. If fewer than eight
labels have been created, control is returned to the exit routine, which .
then creates the next label. If eight labels have been created, normal
processing is resumed.
1 your input label routines can only return these codes when you are processing a physical sequential data set opened for

UPDAT or a direct data set opened for OUTPUT or UPDAT. These return codes allow you to verify the existing labels,
update them if necessary, then request that the system write the updated labels.

Figure 17. System Response to a User Label Exit Routine Return Code

and there is an active entry in the exit list, a label exit is always taken. Thus, a label exit

is taken even when an input data set does not contain user labels, or when no user label

track has been allocated for writing labels on a direct-access volume. In either case, the A
appropriate exit routine is entered with the buffer area address parameter set to 0. On

return from the exit routine, normal processing is resumed; no return code is necessary.

Label exits are not taken for system output (SYSOUT) data sets, or for data sets on
volumes that do not have standard labels. For other data sets, exits are taken as follows:

« When an input data set is opened, the input header label exit 01 is taken. If the data
set is on tape being opened for RDBACK, user trailer labels will be processed.

« When an output data set is opened, the output header label exit 02 is taken. However,
if the data set already exists and DISP=MOD is coded in the DD statement, the input
trailer label exit 03 is taken to process any existing trailer labels. If the input trailer -
label exit 03 does not exist, then the deferred input trailer label exit OC is taken if it
exists; otherwise, no label exit is taken. For tape, these trailer labels will be
overwritten by the new output data or by EOV or close processing when writing new -
standard trailer labels. For direct-access devices, these trailer labels will still exist
unless rewritten by EOV or close processing in an output trailer label exit.

« When an input data set reaches end-of-volume, the input trailer label exit 03 is taken.
If the data set is on tape opened for RDBACK, header labels will be processed. The
input trailer label exit 03 is not taken if you issue an FEOV macro instruction. If a
defer input trailer label exit OC is present, it is taken instead of any input trailer label
exit 03. After switching volumes, the input header label exit 01 is taken. If the data set
is on tape opened for RDBACK, trailer labels will be processed.

« When an output data set reaches end-of-volume, the output trailer label exit 04 is
taken. After switching volumes, output header label exit 02 is taken.

« When an input data set reaches end-of-data, the input trailer label exit 03 is taken
before the EODAD exit, unless the DCB exit list contains a defer input trailer label
exit 0C.

46 OS/VS Data Management Services Guide

+ When an input data set is closed, no exit is taken unless the data set was previously
read to end-of-data and the defer input trailer label exit OC is present. If so, the defer
input trailer label exit OC is taken to process trailer labels, or if the tape is opened for
RDBACK, header labels.

« When an output data set is closed, the output trailer label exit 04 is taken.

To process records in reverse order, a data set on magnetic tape can be read backward.
When you read backward, header label exits are taken to process trailer labels, and trailer
label exits are taken to process header labels. The system presents labels from a label
group in ascending order by label number, which is the order in which the labels were
created. If necessary, an exit routine can determine label type (UHL or UTL) and
number by examining the first four characters of each label. Tapes with IBM standard
labels and direct-access devices can have as many as eight user labels. Tapes with
American National Standard labels can have unlimited user labels.

If an uncorrectable error occurs during reading or writing of a user label, the system
passes control to the appropriate exit routine with the third word of the parameter list
flagged and pointing to status information.

After an input error, the exit routine must return control with an appropriate return code
(0 or 4). No return code is required after an output error. If an output error occurs while
the system is opening a data set, the data set is not opened (DCB is flagged) and control
is returned to your program. If an output error occurs at any other time, the system
attempts to resume normal processing.

User Totaling (BSAM and QSAM only): When creating or processing a data set with user
labels, you may develop control totals for each volume of the data set and store this
information in your user labels. For example, a control total that was accumulated as the
data set was created can be stored in your user label and later compared with a total
accumulated during processing of the volume. User totaling assists you by synchronizing
the control data you create with records physically written on a volume. For an output
data set without user labels, you can also develop a control total that will be available to
your end-of-volume routine.

To request user totaling, you must specify OPTCD=T in the DCB macro instruction or
in the DCB parameter of the DD statement. The area in which you accumulate the
control data (the user totaling area) must be identified to the control program by an
entry of hexadecimal OA in the DCB exit list. OPTCD=T cannot be specified for SYSIN
or SYSOUT data sets.

The user totaling area, an area in storage that you provide, must begin on a halfword
boundary and be large enough to contain your accumulated data plus a 2-byte length
field. The length field must be the first 2 bytes of the area and specify the length of the
entire area. A data set for which you have specified user totaling (OPTCD=T) will not
be opened if either the totaling area length or the address in the exit list is 0, or if there is
no X‘0A’ entry in the exit list.

The control program establishes a user totaling save area, in which the control program
preserves an image of your totaling area, when an 1/O operation is scheduled. When the
output user label exits are taken, the address of the save area entry (user totaling image
area) corresponding to the last record physically written on a volume is passed to you in
the fourth entry of the user label parameter list. This parameter list is described in the
section “Standard User Label Exit.”” When an end-of-volume exit is taken for an output
data set and user totaling has been specified, the address of the user totaling image area
is in register 0.

When using user totaling for an output data set, that is, when creating the data set, you
must update your control data in your totaling area before issuing a PUT or a WRITE
macro instruction. The control program places an image of your totaling area in the user

Part 1: Introduction to Data Management 47

totaling save area when an I/O operation is scheduled. A pointer to the save area entry
(user totaling image area) corresponding to the last record physically written on the
volume, is passed to you in your label processing routine. Thus you can include the
control total in your user labels. When subsequently using this data set for input, you can
accumulate the same information as you read each record and compare this total with the
one previously stored in the user trailer label. If you have stored the total from the
preceding volume in the user header label of the current volume, you can process each
volume of a multivolume data set independently and still maintain this system of control.

When variable-length records are specified with the totaling facility for user labels,
special considerations are necessary. Since the control program determines whether a
variable-length record will fit in a buffer after a PUT or a WRITE has been issued, the
total you have accumulated may include one more record than is actually written on the
volume. In the case of variable-length spanned records, the accumulated total will include
the control data from the volume-spanning record although only a segment of the record
is on that volume. However, when you process such a data set, the volume-spanning
record or the first record on the next volume will not be available to you until after the
volume switch and user label processing are completed. Thus the totaling information in
the user label may not agree with that developed during processing of the volume.

One way you can resolve this situation is to maintain, when you are creating a data set,
control data pertaining to each of the last two records and include both totals in your
user labels. Then the total related to the last complete record on the volume and the
volume-spanning record or the first record on the next volume would be available to your
user label routines. During subsequent processing of the data set, your user label routines
can determine if there is agreement between the generated information and one of the
two totals previously saved.

Data Control Block Exit: You can specify in an exit list the address of a routine that
completes or modifies a DCB and does any additional processing required before the
data set is completely open. The routine is entered during the opening process after the
JECB has been used to supply information for the DCB. The routine can determine data
set characteristics by examining fields completed from the data set labels. When your
DCB exit routine receives control, the three, low-order bytes of register 1 will contain
the address of the DCB currently being processed.

As with label processing routines, register 14’s contents must be preserved and restored
if any macro instructions are used in the routine. Control is returned to the operating
system by a RETURN macro instruction; no return code is required.

This exit is mutually exclusive with the JFECBE exit. If you need both the JFCBE and data
control exits, you must use the JFECBE exit to pass control to your routines.

QOSAM Parallel Input Exit: A request for parallel input processing is indicated by
including the address of a parallel data access block (PDAB) in the DCB exit list. The
address must be on a fullword boundary with the first byte of the entry containing X‘12’
or, if it is the last entry, X‘92’. For more information on parallel input processing, see
“Parallel Input Processing (QSAM Only)”’.

JFCBE Exit: JCL-specified setup requirements for the 3800 printer cause a JFCB
extension (JFCBE) to be created to reflect those specifications. The JFCBE exit can be
used to examine or modify those specifications in the JFCBE. You can provide a JFCBE
exit routine to examine or modify those specifications. The address of the routine should
be placed in an exit list. This exit is taken during open processing and is mutually
exclusive with the data control block exit. If you need both the JFCBE and data control

48 OS/VS Data Management Services Guide

i)

block exits, you must use the JFCBE exit to pass control to your routines.
When control is passed to your exit routine, the contents of registers O and 1 will be:

Register Contents

0 If a JFCBE exists, this register will point to an area in your storage into which a copy of the
JFCBE has been placed. If a JFCBE does not exist, this register will be zero.
1 The address of the DCB being processed.

Registers 2-15 will contain the standard user exit contents.

The area in your storage pointed to by register 0 will also contain the 4-byte FCB
identification which is obtained from the JFCB. The FCB identification is placed in the
four bytes following the 176-byte JFCBE.

If your copy of the JFCBE is modified during an exit routine, you should indicate this
fact by turning on bit JFCBEOPN (X‘80’ in JFCBFLAG) in the JFCBE copy. On
return to open, this bit indicates whether the system copy is to be updated. The 4-byte
FCB identification in your area will be used to update the JFCB regardless of the bit
setting. Checkpoint/restart also interrogates this bit to determine which version of the
JFCBE will be used at restart time. If this bit is not on, the JFCBE generated by the
restart JCL will be used.

End-of-Volume Exit: You can specity 11 an exit hist the address of a routine that is
entered when end-of-volume is reached in processing of a physical sequential data set.

When the end-of-volume routine is entered, register 0 contains O unless user totaling was
specified. If you specified user totaling in the DCB macro instruction (by coding
OPTCD=T) or in the DD statement for an output data set, register 0 contains the
address of the user totaling image area. The routine is entered after a new volume has
been mounted and all necessary label processing has been completed. If the volume is a
reel of magnetic tape, the tape is positioned after the tapemark that precedes the
beginning of the data.

You can use the end-of-volume (EOV) exit routine to take a checkpoint by issuing the
CHKPT macro instruction, which is discussed in OS/VS Checkpoint/Restart,
specifications for the CHKPT macro are also included in OS/VS Data Management
Macro Instructions. If a checkpointed job step terminates abnormally, it can be restartec
from the EOV checkpoint. When the job step is restarted, the volume is mounted and
positioned as upon entry to the routine. In OS/VS1, restart becomes impossible if
changes are made to the supervisor call (SVC) library between the time the checkpoint is
taken and the time the job step is restarted. In OS/VS2, restart becomes impossible if
changes are made to the link pack area (LPA) library between the time the checkpoint is
taken and the time the job step is restarted. When the step is restarted, pointers to
end-of-volume modules must be the same as when the checkpoint was taken.

The end-of-volume exit routine returns control in the same manner as the data control
block exit routine. Register 14’s contents must be preserved and restored if any macro
instructions are used in the routine. Control is returned to the operating system by a
RETURN macro instruction; no return code is required.

Block Count Exit: You can specify in an exit list the address of a routine that will allow
you to abnormally terminate the task or continue processing when the end-of-volume
routine finds an unequal block count condition. When you are using standard labeled
input tapes, the block count in the trailer label is compared by the end-of-volume routine
with the block count in the DCB. The count in the trailer label reflects the number of
blocks written when the data set was created. The number of blocks read when the tape
is used as input is contained in the DCBBLKCT field of the DCB.

Part 1: Introduction to Data Management 49

The routine is entered during end-of-volume processing. The trailer label block count is
passed in register 0. You may gain access to the count field in the DCB by using the
address passed in register 1 plus the proper displacement, as given in OS/VSI System
Data Areas or OS/VS2 System Programming Library: Debugging Handbook. If the
block count in the DCB differs from that in the trailer label when no exit routine is
provided, the task is abnormally terminated. The routine must terminate with a
RETURN macro instruction and a return code that indicates what action is to be taken
by the operating system, as shown in Figure 18. As with other exit routines, register 14’s
contents must be saved and restored if any macro instructions are used.

Return Code System Action
0 The task is to be abnormally terminated.
4 Normal processing is to be resumed.

Figure 18. System Response to Block Count Exit Return Code

Defer Nonstandard Input Trailer Label Exit: In an exit list, you can specify a code that
indicates that you want to defer nonstandard input trailer label processing from
end-of-data until the data set is closed. The address portion of the entry is not used by
the operating system.

An end-of-volume condition exists in several situations. Two examples are: (1) when the
system reads a filemark or tapemark at the end of a volume of a multivolume data set but
that volume is not the last, and (2) when the system reads a filemark or tapemark at the
end of a data set. The first situation is referred to here as an end-of-volume condition,
and the second as an end-of-data condition, although it, too, can occur at the end of a
volume.

For an end-of-volume (EOV) condition, the EOV routine passes control to your
nonstandard input trailer label routine, whether or not this exit code is specified. For an
end-of-data condition when this exit code is specified, the EOV routine does not pass
control to your nonstandard input trailer label routine. Instead, the close routine passes
control to your end-of-data routine.

FCB Image Exit: You can specify in an exit list the address of a forms control buffer
(FCB) image. This FCB image can be loaded into the forms control buffer of the printer
control unit. The FCB controls the movement of forms in printers that do not use a
carriage control tape.

Multiple exit list entries in the exit list can define FCBs. The open and SETPRT routines
search the exit list for requested FCBs before searching SYS1.IMAGELIB.

The first 4 bytes of the FCB image contain the image identifier. To load the FCB, this
image identifier is specified in the FCB parameter of the DD statement, by the SETPRT
macro instruction, or by the system operator in response to message IEC127D or
IEC129D.

The image identifier is followed by the FCB load module, described in OS/VS1 Data
Management for System Programmers or OS/VS2 System Programming Library:
Data Management.

You can use an exit list to define an FCB image only when writing to an online printer.
Figure 19 illustrates one way the exit list can be used to define an FCB image.

DCB ABEND Exit: The DCB ABEND exit is provided to give you some options
regarding the action you want the system to take when a condition arises that may result
in abnormal termination of your task. This exit can be taken any time an ABEND
condition arises during the process of opening, closing, or handling an end-of-volume
condition for a DCB associated with your task.

50 OS/VS Data Management Services Guide

‘o ;

DCB

EXLIST DS

. . ;EXLST=EXLIST

oF
DC X'10" Flag code for FCB image
DC AL3(FCBIMG) Address of FCB image
DC X'80000000" End of EXLST and a null entry
FCBIMG DC CL4'IMG1" FCB identifier
DC X'00" FCB is not a default
DC AL1(67) Length of FCB
DC X'90" Offset print line
* 16 line character positions to the right
DC X'00" Spacing is 6 lines per inch
DC 5X'00' Lines 2-6 no channel codes
DC X'01" Line 7 channel 1
DC 6X'00"' Lines 8-13 no channel codes
DC X'02" Line (or Lines) 14 channel 2
DC 5X'00" Line (or Lines) 15-19 no channel codes
DC X'03" Line (or Lines) 20 channel 3
DC 9X'00" Line (or Lines) 21-29 no channel codes
DC X'o4a! Line (or Lines) 30 channel 4
DC 19X'00" Line (or Lines) 31-49 no channel codes
DC X'05" Line (or Lines) 50 channel 5
DC X'06" Line (or Lines) 51 channel 6
DC X'07! Line (or Lines) 52 channel 7
DC X'08! Line (or Lines) 53 channel 8
DC X'09"' Line (or Lines) 54 channel 9
DC X'0A" Line (or Lines) 55 channel 10
DC X'0B' Line (or Lines) 56 channel 11
DC X'oc! Line (or Lines) 57 channel 12
DC 8X'00" Line (or Lines) 58-65 no channel codes
DC X'10' End of FCB image
END

//ddname DD
Vi

UNIT=3211, FCB=(IMG1,VERIFY)

Figure 19. Defining an FCB Image

When an ABEND condition arises, a write-to-programmer message about the ABEND is
issued and your DCB ABEND exit is given control, provided there is an active DCB
ABEND exit routine address in the DCB being processed. If STOW called the
end-of-volume routines to get secondary space to write an end-of-file mark for a
partitioned data set, the DCB ABEND exit routine will not be given control if an
ABEND condition occurs. The contents of the registers when your exit routine is entered
are the same as for other DCB exit list routines except that the three, low-order bytes of
register 1 contain the address of the parameter list described in Figure 20. Your ABEND
exit routine can choose one of four options:

« to immediately terminate your task,

¢ to delay the ABEND until all of the DCBs in the same OPEN or CLOSE macro
instruction or opened or closed,

« toignore the ABEND condition and continue processing without making reference to
the DCB on which the ABEND condition was encountered, or

e to try to recover from the error.

Not all of these options are available for each ABEND condition. Your DCB ABEND
exit routine must determine which option is available by examining the contents of the
option mask byte (byte 3) of the parameter list. The address of the parameter list is
passed in register 1. Figure 20 shows the contents of the parameter list and the possible

Part 1: Introduction to Data Management 51

Displacement
0

4

8

12

Bit ’ Meaning

0-3 Reserved for Future Use
4 OK to Recover
5 OK to Ignore

6 OK to Delay

7 Reserved for Future Use

Fullword Boundary

System Completion Code* Return Code Option Mask

DCB Address

Open/Close/End-of-Volume Work Area Address

00

Recovery Work Area Address

*In the first 12 bits.
Figure 20. Parameter List Passed to DCB ABEND Exit Routine

settings of the option mask when your routine receives control. All information in the
parameter list is in binary.

When your DCB ABEND exit routine returns control to the system control program
(this can be done using the RETURN macro instruction), the option mask byte should
contain the setting that specifies the action you want to take. These actions and the
corresponding settings of the option mask byte are:

Bit Setting Action

0 abnormally terminate the task immediately

4 ignore the ABEND condition

8 delay the ABEND until the other DCBs being processed concurrently are opened or closed
12 make an attempt to recover

You must inspect bits 4, 5, and 6 of the option mask byte (byte 3 of the parameter list)
to determine which options are available. If a bit is set to 1, the corresponding option is
available. Indicate your choice by inserting the appropriate value in byte 3 of the
parameter list, overlaying the bits you inspected. If you use a value that specifies an
option that is not available, the ABEND is issued immediately.

If the contents of the option mask are 0, you must request an immediate ABEND by
leaving the value of 0 in the option mask unchanged.

52 OS/VS Data Management Services Guide

If bit 5 of the option mask is set to 1, you can ignore the ABEND by placing a decimal
value of 4 in byte 3 of the parameter list. Processing on the current DCB stops. If you
subsequently attempt to use this DCB, the results are unpredictable. If you ignore an
error in end-of-volume, the data set will be closed before control is returned to your
program at the point which caused the end-of-volume condition (unless the
end-of-volume routines were called by the close routines). If the end-of-volume routines
were called by the close routines, an ABEND macro will be issued even though the
ignore option was selected.

If bit 6 of the option mask is set to 1, you can delay the ABEND by placing a decimal
value of 8 in byte 3 of the parameter list. All other DCBs waiting for open or close
processing will be processed before the ABEND is issued. For end-of-volume, however,
you can’t delay the ABEND because the end-of-volume routine never has more than one
DCB to process.

If bit 4 of the option mask is set to 1, you can attempt to recover. Place a decimal value
of 12 in byte 3 of the parameter list and provide information for the recovery attempt.
Figure 21 lists the ABEND conditions for which recovery can be attempted. For
ABEND conditions which can be ignored or delayed, sce OS/VS Message Library:
VS1 System Messages or OS/VS Message Library: VS2 System Messages.

System
Completion Return
Code Code Description of Error
213 04 DSCB was not found on volume specified.
237 04 Block count in DCB does not agree with block count in trailer label.
413 18 Data set was opened for input and no volume serial number was specified.
613 08 I/0 error occurred during reading of tape label.
oC Invalid tape label was read.
10 1/0 error occurred during writing of tape label.
14 1/0 error occurred during writing of tapemark following header labels.
713 04 A data set on magnetic tape was opened for INOUT, but the volume
contained a data set whose expiration date had not been reached and the
operator denied permission.
717 10 1/0 error occurred during reading of trailer label 1 to update block count in
DCB.
813 04 Data set name on header label does not match data set name on DD
statement.

Figure 21. Conditions for which Recovery Can Be Attempted

Recovery Reguirements: For the recovery attempt, you should supply a recovery work
area (see Figure 22) with a new volume serial number for each volume associated with
an error. If no new volumes are supplied, recovery will be attempted with the existing
volumes, but the likelihood of successful recovery is greatly reduced.

If you request recovery for system completion code 213, return code 04, you must
indicate in your job control language (JCL) that the volumes are nonsharable by
specifying unit affinity, deferred mounting, or more volumes than units for the data set.

If you request recovery for system completion code 237, return code 04, you don’t need
to supply new volumes or a work area. The condition that caused the ABEND is the
disagreement between the block count in the DCB and that in the trailer label. This
disagreement is ignored to permit recovery.

If you request recovery for system completion code 717, return code 10, you don’t need
to supply new volumes or a work area. The ABEND is caused by an I/O error during

Part 1: Introduction to Data Management 53

Displacement
0

4

8

¢%
Bit Meaning
0 Free This Work Area
1 Volume Serial Numbers Are
Provided
2-7 Reserved for Future Use
Halfword Boundary
Length of This Work Area Option Byte Subpool Number
Number of
N:w Ve°r|3mes New Volume Serial Numbers (6 bytes each)
~ o
- Ve g

Figure 22. Recovery Work Area

updating of the DCB block count. To permit recovery, the block count is not updated.
Consequently, an abnormal termination with system completion code 237, return code
04, may result when you try to read from the tape after recovery. You may attempt
recovery from the ABEND with system completion code 237, return code 04, as
explained in the preceding paragraph.

System completion codes and their associated return codes are described in OS/VS
Message Library: VS1 System Codes or OS/VS Message Library: VS2 System *
Codes.

The work area that you supply for the recovery attempt must begin on a halfword
boundary and can contain the information described in Figure 22. Place a pointer to the
work area in the last 3 bytes of the parameter list pointed to by register 1 and described
in Figure 20.

If you acquire the storage for the work area by using the GETMAIN macro instruction,
you can request that it be freed by a FREEMAIN macro instruction after all information
has been extracted from it. Set the high-order bit of the option byte in the work area to 1
and place the number of the subpool from which the work area was requested in byte 3
of the recovery work area.

Only one recovery attempt per data set is allowed during open, close, or end-of-volume

processing. If a recovery attempt is unsuccessful, you may not request another recovery.

The second time through the exit routine you may request only one of the other options -
(if allowed): issue the ABEND immediately, ignore the ABEND, or delay the ABEND.
If at any time you select an option that is not allowed, the ABEND is issued immediately.

54 OS/VS Data Management Services Guide

Note that if recovery is successful, you still receive an ABEND message on your listing.
This message refers to the ABEND that would have been issued if the recovery had not
been successful.

Modifying the Data Control Block

You can complete or modify the DCB during execution of your program. You can also
determine data set characteristics from information supplied by the data set labels.
Changes or additions can be made before opening of the data set, after closing it, during
the DCB exit routine, or while the data set is open. Naturally, any information must be
supplied before it is needed.

Because each DCB does not have a symbolic name for each field, a DCBD macro
instruction must be used to supply the symbolic names. By loading a base register with
the address of the DCB to be processed, you can refer to any field symbolically.

The DCBD macro instruction generates a dummy control section (DSECT) named
IHADCB. The name of each field consists of DCB followed by the first five letters of
the keyword operand that represents the field in the DCB macro instruction. For
example, the field reserved for blocksize is referred to as DCBBLKSI. For the names of
other fields, including names of bits, see OS/VS Data Management Macro Instructions.

The attributes of each DCB field are defined in the dummy control section. Because each
field in the DCB is not necessarily aligned on a fullword boundary, care must be taken
when storing or moving data into the field. The length attribute and the alignment of
each field can be determined from an assembly listing of the DCBD macro instruction.

The DCBD macro instruction can be coded once to describe all DCBs even though their
fields differ because of differences in data set organization and access technique. It must
not be coded more than once for a single assembly. If it is coded before the end of a
control section, it must be followed by a CSECT or DSECT statement to resume the
original control section.

Changing an Address in the Data Control Block: Figure 23 illustrates how you can modify
a field in the data control block. The DCBD macro instruction defines the symbolic name
of each field.

OPEN (TEXTDCB, INOUT)

EOFEXIT CLOSE (TEXTDCB, REREAD), TYPE=T
LA 10, TEXTDCB
USING IHADCB, 10
MVC DCBSYNAD+1(3),=AL3(OUTERROR)
B OUTPUT
INERROR STM 14,12 ,SYNADSA+12
OUTERROR STM 14,12,SYNADSA+12
TEXTDCB DCB DSORG=PS,MACRF=(R,W),DDNAME=TEXTTAPE, Cc
EODAD=EOFEXIT, SYNAD=INERROR

DCBD DSORG=PS

Figure 23. Modifying a Field in the Data Control Block

The data set defined by the data control block TEXTDCB is opened for use as both an
input and an output data set. When its use as an input data set is completed, the EODAD
routine closes the data set temporarily to reposition the volume for output. The EODAD
routine then uses the dummy control section IHADCB to change the error exit address
(SYNAD) from INERROR to OUTERROR.

Part 1: Introduction to Data Management 55

The EODAD routine loads the address TEXTDCB into register 10, which it uses as a
base register for [HADCB. It then moves the address OUTERROR into the
DCBSYNAD ficld of the DCB. This field is a fullword, but contains information that
must not be disturbed in the high-order byte. For this reason, care must be taken to
change only the 3 low-order bytes of the field.

All unused address fields in the DCB are set to 1 during the DCB macro expansion.
Many system routines interpret a value of 1 in an address field to mean “no address
specified.” If you modify an address field and then want to reset it to ‘“‘no address
specified,” you should set it to a value of 1.

Sharing a Data Set

There are two conditions under which a data set on a direct-access device can be shared
by two or more tasks:

+ Two or more DCBs are opened and used concurrently by the tasks to refer to the
same, shared data set (multiple DCBs).

« Only one DCB is opened and used concurrently by multiple tasks in a single job step
(a single, shared DCB).

Job control language (JCL) statements and macro instructions are provided in the
operating system to help you to ensure the integrity of the data sets you wish to share
among the tasks that process them. Figures 24 and 25 show which JCL and macro
instructions you should use, depending on the access method your task is using and mode
of access (input, output, or update).

Figure 24 describes the macro instructions, JCL, and processing procedures you should
use if more than one DCB has been opened to the shared data set. The DCBs can be
used by tasks in the same or different job steps.

56 OS/VS Data Management Services Guide

-3

MULTIPLE DCBs

Access Method
Access Mode S -
BSAM, BPAM,
BDAM Create QSAM BDAM QISAM BISAM
Input DISP = SHR DISP = SHR DISP = SHR DISP = SHR DISP = SHR
. N N _shR B DISP = SHR and
Output No Facility No Facility DISP = SH No Facility ENQ on Data Set
DISP = SHR and DISP = SHR and
Update DISP = SHR and Disp = SHR.and DISP = SHR and ENQ on Data Set ENQ on Data Set
P ENQ on Block Guarantee Discrete ENQ on Block and Guarantee and Guarantee
Blocks Discrete Blocks Discrete Blocks
DISP-SHR:

Each job step sharing an existing data set must code SHR as the subparameter of the DISP parameter on the DD statement for
the shared data set to allow the steps to execute concurrently. For additional information about ensuring data set integrity, see
OS/VS1 JCL Services or OS/VS2 JCL. If the tasks are in the same job step, DISP=SHR is not required.

No Facility:
There are no facilities in the operating system for sharing a data set under these conditions.

ENQ on Data Set:
In addition to coding DISP=SHR on the DD statement for the data set that is to be shared, each task must issue ENQ and
DEQ macro instructions naming the data set as resource for which exclusive control is required. The ENQ must be issued
before the GET (READ); the DEQ macro should be issued after the PUTX or CHECK macro that concludes the operation.
See OS/VSI1 Supervisor Services and Macro Instructions and OS/VS2 Supervisor Services and Macro Instructions for
additional information on the use of ENQ and DEQ macro instructions.

Guarantee Discrete Blocks:
When you are using the access methods that provide blocking and unblocking of records (QSAM, QISAM, and BISAM), it is
necessary that every task updating the data set ensure that it is not updating a block that contains a record being updated by

any other task. There are no facilities in the operating system for ensuring that discrete blocks are being processed by different
tasks.

ENQ on Block:
If you are updating a shared data set (specified by coding DISP=SHR on the DD statement) using BSAM or BPAM, your task
and all other tasks must serialize processing of each block of records by issuing an ENQ macro instruction before the READ
macro and a DEQ macro after the CHECK macro that follows the WRITE macro you issued to update the record. If you are
using BDAM, the same procedure may be used; however BDAM provides for enqueuing on a block of records using the READ
exclusive option, which is requested by coding MACRF=X in the DCB and an X in the type operand of the READ and WRITE
macro instructions. See “Exclusive Control for Updating” for an example of the use of the BDAM macros.

Figure 24. JCL, Macro Instructions, and Procedures Required to Share a Data Set Using Multiple DCBs.

Part 1: Introduction to Data Management 37

Figure 25 describes the macros you can use to serialize processing of a shared data set
when a single DCB is being shared by several tasks in a job step. The DISP=SHR

specification on the DD statement is not required.

Data sets can also be shared both ways at the same time: more than one DCB can be
opened for a shared data set, while more than one task can be sharing one of the DCBs.
Under this condition, the serialization techniques specified for indexed sequential and
direct data sets in the Figure 24 satisfy the requirement. For sequential and partitioned

data sets, the techniques specified in Figure 24 and Figure 25 must be used.

A SINGLE SHARED DCB

Access Method
Access Mode
BSAM, BPAM
] ' BISAM
BDAM Create QSAM BDAM QISAM
No Action
ENQ
Input ENG ENQ Required ENQ
Output ENQ ENQ No Ac.tion ENQ and Key ENQ
Required Sequence
Update ENQ ENQ ENQ on Block ENQ ENQ

ENQ:
When a data set is being shared by two or more tasks in the same job step (all of which must be using the same DCB), each
task processing the data set must issue an. ENQ macro instruction on a predefined resource name before issuing the macro or
macros that begin the input/output operation. Each task must also release exclusive control by issuing the DEQ macro
instruction at the next sequential instruction following the input/output macro. If, however, you are processing an indexed
sequential data set sequentially using the SETL and ESETL macros, you must issue the ENQ macro before the SETL macro
and the DEQ macro after the ESETL macro. Note also that if two tasks are writing different members of a partitioned data
set, each task should issue the ENQ macro instruction before the FIND macro and issue the DEQ macro after the STOW
macro that completes processing of the member. Additional reference information on the ENQ and DEQ macros is presented
in OS/VS1 Supervisor Services and Macro Instructions and OS/VS2 Supervisor Services and Macro Instructions. For an
example of the use of ENQ and DEQ macro instructions with BISAM, see Figure 59.

No Action Required:
Sharing a Direct Data Set: BDAM supports multiple task users of a single DCB when working with existing data sets. When
operating in load mode, however, only one task may use the DCB at a time. The following restrictions and comments apply
when operating in a multitasking mode with existing data sets:

+ Subpool 0 must be shared.

« The user should insure that a WAIT or CHECK macro has been issued for all outstanding BDAM requests before the task
issuing the READ or WRITE macro terminates. In case of abnormal termination this can be done through a STAE/STAI
or ESTAE exit.

« FREEDBUF and/or RELEX macros should be issued to free any resources that could still be held by the terminating task.
This can be done during or after task termination.

ENQ on Block:
When updating a shared BDAM data set, every task must use the BDAM exclusive control option, which is requested by
coding MACRF=X in the DCB macro and an X in the type operand of the READ and WRITE macro instructions. See
“Exclusive Control for Updating” in this book for an example of the use of BDAM macros. Note that all tasks sharing a data
set must share subpool 0 (see the ATTACH macro description in OS/VS1 Supervisor Services and Macro Instructions) and
OS/VS2 Supervisor Services and Macro Instructions).

Key Sequence:
Tasks sharing a QISAM load-mode DCB must ensure that the records to be written are presented in ascending key sequence;
otherwise, a sequence check will result in (1) control being passed to the SYNAD routine identified by the DCB, or (2) if there
is no SYNAD routine, termination of the task.

Figure 25. Macro Instructions and Procedures Required to Share a Data Set Using a Single DCB

58 OS/VS Data Management Services Guide

More information on opening and closing data sets by more than one task is contained in
Part 2, “Opening and Closing a Data Set.”

Shared Direct-Access Storage Devices: At some installations, a direct-access storage
device is shared by two or more independent computing systems. Tasks executed on
these systems can share data sets stored on the device. For details, refer to OS/VS1
Planning and Use Guide or OS/VS2 System Programming Library: Supervisor.

Part 1: Introduction to Data Management 59

PART 2: DATA MANAGEMENT PROCESSING
PROCEDURES

Data-Processing Techniques

The operating system allows you to concentrate most of your efforts on processing the
records read or written by the data management routines. To get the records read and
written, your main responsibilities are to describe the data set to be processed, the
buffering techniques to be used, and the access method. An access method has been
defined as the combination of data set organization and the technique used to gain access
to the data. Data access.techniques are discussed here in two categories—queued and
basic.

Queued Access Technique

The queued access technique provides GET and PUT macro instructions for transmitting
data within virtual storage. These macro instructions cause automatic blocking and
deblocking of the records stored and retrieved. Anticipatory (look-ahead) buffering and
synchronization (overlap) of input and output operations with central processing unit
(CPU) processing are automatic features of the queued access technique.

Because the operating system controls buffer processing, you can use as many
input/output (I/0) buffers as needed without reissuing GET or PUT macro instructions
to fill or empty buffers. Usually, more than one input block is in storage at any given
time, so I/O operations do not delay record processing.

Because the operating system synchronizes input/output with processing, you need not
test for completion, errors, or exceptional conditions. After a GET or PUT macro
instruction is issued, control is not returned to your program until an input area is filled
or an output area is available. Exits to error analysis (SYNAD) and end-of-volume or
end-of-data (EODAD) routines are automatically taken when necessary.

GET—Retrieve a Record

The GET macro instruction obtains a record from an input data set. It operates in a
logical sequential and device-independent manner. As required, the GET macro
instruction schedules the filling of input buffers, deblocks records, and directs input error
recovery procedures. For sequential data sets, it also merges record segments into logical
records. After all records have been processed and the GET macro instruction detects an
end-of-data indication, the system automatically checks labels on sequential data sets and
passes control to your end-of-data (EODAD) routine. If an end-of-volume condition is
detected for a sequential data set, the system provides automatic volume switching if the
data set extends across several volumes or if concatenated data sets are being processed.
If you specify OPTCD=Q in the DCB, GET causes input data to be translated from
ASCII to EBCDIC.

PUT—Write a Record

The PUT macro instruction places a record into an output data set. Like the GET macro
instruction, it operates in a logical sequential and device-independent manner. As
required, the PUT macro instruction schedules the emptying of output buffers, blocks
records, and handles output error correction procedures. For sequential data sets, it also
initiates automatic volume switching and label creation, and also segments records for
spanning. If you specify OPTCD=Q in the DCB, PUT causes output to be translated
from EBCDIC to ASCIL.

Part 2: Data Management Processing Procedures 61

If the PUT macro instruction is directed to a card punch or printer, the system
automatically adjusts the number of records or record segments per block of format-F or
format-V blocks to 1. Thus, you can specify a record length (LRECL) and blocksize
(BLKSIZE) to provide an optimum blocksize if the records are temporarily placed on
magnetic tape or a direct-access volume.

For spanned variable-length records, the blocksize must be equivalent to the length of
one card or one print line. Record size may be greater than blocksize in this case.

PUTX—Write an Updated Record

The PUTX macro instruction is used to update a data set or to create an output data set
using records from an input data set as a base. PUTX updates, replaces, or inserts
records from existing data sets but does not create records.

When you use the PUTX macro instruction to update, each record is returned to the data
set referred to by a previous locate mode GET macro instruction. The buffer containing
the updated record is flagged and written back to the same location on the direct-access
storage device from which it was read. The block is not written until a GET macro
instruction is issued for the next buffer, except when a spanned record is to be updated.
In that case, the block is written with the next GET macro instruction.

When the PUTX macro instruction is used to create an output data set, you can add new
records by using the PUT macro instruction. As required, the PUTX macro instruction
blocks records, schedules the writing of output buffers, and handles output error
correction procedures.

Parallel Input Processing (QSAM Only)

QSAM parallel input processing may be used to process two or more input data sets

| concurrently, such as sorting or merging several data sets at the same time. This
eliminates the need for issuing a separate GET macro instruction to each DCB
processed. The get routine for parallel input processing selects a DCB with a ready
record and then transfers control to the normal get routine. If there is no DCB with a
ready record, a multiple WAIT macro instruction is issued.

Parallel input processing provides a logical input record from a queue of data sets with
equal priority. The function supports QSAM with input processing, simple buffering,
locate or move mode, and fixed, variable, or undefined length records. Spanned records,
track-overflow records, dummy data sets, and SYSIN data sets are not supported.

Parallel input processing can be interrupted at any time to retrieve records from a
specific data set, or to issue control instructions to a specific data set. When the retrieval
process has been completed, parallel input processing may be resumed.

Data sets can be added to or deleted from the data set queue at any time. It is important
to note, however, that as each data set reaches an end-of-data condition, the data set
must be removed from the queue with the CLOSE macro instruction before a subsequent
GET macro instruction is issued for the queue; otherwise, the task may be terminated
abnormally.

A request for parallel input processing is indicated by including the address of a paraliel
data access block (PDAB) in the DCB exit list. For additional information on the DCB
exit list, see “Exit List (EXLST).”

With the use of the PDAB macro instruction, you can create and format a work area that
identifies the maximum number of DCBs that can be processed at any one time. If you
exceed the maximum number of entries indicated in the PDAB macro when adding a
DCB to the queue with the OPEN macro, the data set will not be available for parallel
input processing; however, it may be available for sequential processing.

62 OS/VS Data Management Services Guide

When issuing a parallel GET macro, register 1 must always point to a PDAB. You may
load the register or let the GET macro do it for you. When control is returned to you,
register 1 contains the address of a logical record from one of the data sets in the queue;
registers 2-13 contain their original contents at the time the GET macro was issued;
registers 14, 15, and 0 are changed. You can locate the data set from which the record
was retrieved through the PDAB. A fullword address in the PDAB (PDADCBEP) points
to the address of the DCB. It should be noted that this pointer may be invalid from the
time a CLOSE macro is issued to the issuing of the next parallel GET macro.

In Figure 26, not more than three data sets (MAXDCB=3 in the PDAB operand) will be
open for parallel processing at any given time. Assuming that data definition statements
and data sets are supplied, DATASET1, DATASET2, and DATASET?3 will be opened
for parallel input processing as specified in the input processing OPEN macro instruction.
Other attributes of each data set are QSAM (MACRF=G), simple buffering by default,
locate or move mode (MACRF=L or M), fixed length records (RECFM=F), and exit
list entry for a PDAB (X‘92’). Note that both locate and move modes may be used in the
same data set queue. The mapping macros, DCBD and PDABD, are used to reference
the DCBs and the PDAB respectively.

GETRTN

EODRTN

DATASET1
DATASET2
DATASET3
DATASET4
DCBQUEUE

SET3XLST
ZEROS

DCB
DCB

PDAB
DC

DC
DCBD
PDABD

i

(DATASET1, (INPUT),DATASET2, (INPUT),DATASET3, X
(INPUT), DATASET4, (OUTPUT))
DATASET 1+DCBQSWS-IHADCB, DCBPOPEN Opened for parallel processing

SEQRTN Branch on no to sequential routine
DATASET2+DCBQSWS-IHADCB, DCBPOPEN

SEQRTN

DATASET3+DCBQSWS—-IHADCB, DCBPOPEN

SEQRTN

DCBQUEUE, BUFFERAD , TYPE=P

10,1 Save record pointer

Record updated in place

DATASET4,(10)

GETRTN
* Close DCB which just reached EODAD
2 ,DCBQUEUE+PDADCBREP-IHAPDAB
2,0(0,2)

((2))
ZEROS(2),DCBQUEUE+PDANODCB-IHAPDAB Any DCBs left?
GETRTN Branch if yes

DDNAME=DDNAME 1 , DSORG=PS , MACRF=GL , RECFM=FB,
LRECL=80 , EODAD=EODRTN , EXLST=SET3XLST
DDNAME=DDNAME?2 , DSORG=PS , MACRF=GL, RECFM=FB,
LRECL=80, EODAD=EODRTN , EXLST=SET3XLST
DDNAME=DDNAME3 , DSORG=PS , MACRF=GMC, RECFM=FB,
LRECL=80, EODAD=EODRTN , EXLST=SET3XLST
DDNAME=DDNAME4 , DSORG=PS , MACRF=PM, RECFM=FB,
LRECL=80

MAXDCB=3

OF'0', X'92', AL3(DCBQUEUE)

X'0000"

DSORG=QS

XXX X

Note: The number of bytes required for PDAB is equal to 24+8n where n is the value of the keyword, MAXDCB.

Figure 26. Parallel Processing of Three Data Sets

Part 2: Data Management Processing Procedures 63

Following the OPEN macro instruction, tests are made to determine whether the DCBs
were opened for parallel processing. If not, the sequential processing routine is given
control.

When one or more data sets are opened for parallel processing, the get routine retrieves a
record, saves the pointer in register 10, processes the record, and writes it to
DATASET4. This process continues until an end-of-data condition is detected on one of
the input data sets; the end-of-data routine locates the completed input data set and
removes it from the queue with the CLOSE macro instruction. A test is then made to
determine whether any data sets remain on the queue. Processing continues in this
manner until the queue is empty.

Basic Access Technique

The basic access technique provides the READ and WRITE macro instructions for
transmitting data between virtual and auxiliary storage. This technique is used when the
operating system cannot predict the sequence in which the records are to be processed or
when you do not want some or all of the automatic functions performed by the queued
access technique. Although the system does not provide anticipatory buffering or
synchronized scheduling, macro instructions are provided to help you program these
operations.

The READ and WRITE macro instructions process blocks, not records. Thus, blocking
and deblocking of records is your responsibility. Buffers, allocated by either you or the
operating system, are filled or emptied individually each time a READ or WRITE macro
instruction is issued. Moreover, the READ and WRITE macro instructions only initiate
input/output operations. To ensure that the operation is completed successfully, you
must issue a CHECK macro instruction to test the data event control block (DECB) or
issue a WAIT macro instruction and then check the DECB yourself. (The only exception
to this is when the SYNAD or EODAD routine is entered, neither a WAIT or CHECK
macro instruction should be issued to previously outstanding READ or WRITE
requests.) The number of READ or WRITE macro instructions issued before a CHECK
macro instruction is used should not exceed the specified number of channel programs
(NCP).

Grouping Related Control Blocks in a Paging Environment: In an OS/VS system, related
control blocks (the DCB and DECB) and data areas (buffers and key areas) should be
coded so they assemble in the same area of your program. This will reduce the number of
paging operations required to read from and write to your data set.

Using Overlapped I/0 with BSAM: When using BSAM with overlapped I/0O (multiple
1/0 requests outstanding at one time), more than one DECB must be used. A different
DECB should be specified for each channel program. For example, if you specify
NCP=3 in your DCB for the data set and you are reading records from the data set, you
should code the following macros in your program:

READ DECBI,...
READ DECB2,...
READ DECB3,...
CHECK DECBI1
CHECK DECB2
CHECK DECB3

64 OS/VS Data Management Services Guide

READ—Read a Block

The READ macro instruction retrieves a data block from an input data set and places it
in a designated area of virtual storage. To allow overlap of the input operation with
processing, the system returns control to your program before the read operation is
completed. The DECB created for the read operation must be tested for successful
completion before the record is processed or the DECB is reused.

If an indexed sequential data set is being read, the block is brought into virtual storage
and the address of the record is returned to you in the DECB.

When you use the READ macro instruction for BSAM to read a direct data set with
spanned records and keys and you specify BFTEK=R in your DCB, the data
management routines displace record segments after the first in a record by key length.
Thus, you can expect the block descriptor word and the segment descriptor word at the
same locations in your buffer or buffers, regardless of whether you read the first segment
of a record, which is preceded in the buffer by its key, or a subsequent segment, which
does not have a key. This procedure is called offset reading.

You can specify variations of the READ macro instruction according to the organization
of the data set being processed and the type of processing to be done by the system as

follows:
Sequential
SF - Read the data set sequentially.
SB - Read the data set backward (magnetic tape, format-F and format-U

only). When RECFM=FBS, data sets with the last block truncated
cannot be read backward.

Indexed Sequential
K - Read the data set.
KU - Read for update. The system maintains the device address of the
record; thus, when a WRITE macro instruction returns the record, no
index search is required.

Direct
D - Use the direct access method.
1 - Locate the block using a block identification.
K - Locate the block using a key.
F - Provide device position feedback.
X - Maintain exclusive control of the block.
R - Provide next address feedback.
U - Next address can be a capacity record or logical record, whichever
occurred first.
WRITE—Write a Block

The WRITE macro instruction places a data block in an output data set from a
designated area of virtual storage. The WRITE macro instruction can also be used to
return an updated record to a data set. To allow overlap of output operations with
processing, the system returns control to your program before the write operation is
completed. The DECB created for the write operation must be tested for successful
completion before the DECB can be reused. For ASCII tape data sets, do not issue more
than one WRITE on the same record, because the WRITE macro instruction causes the
data in the record area to be translated from EBCDIC to ASCII.

Part 2: Data Management Processing Procedures 6£

As with the READ macro instruction, you can specify variations of the WRITE macro
instruction according to the organization of the data set and the type of processing to be
done by the system as follows:

Sequential
SF - Write the data set sequentially.
SFR - Write the data set sequentially with next-address feedback.

Indexed Sequential
K - Write a block containing an updated record, or replace a record with
a fixed, unblocked record having the same key. The record to be
replaced need not have been read into virtual storage.

KN - Write a new record or change the length of a variable-length record.
Direct

SD - Write a dummy fixed-length record.

SZ - Write a capacity record (R0). The system supplies the data,

writes the capacity record, and advances to the next track.

D - Use the direct access method.

I - Search argument identifies a block.

K - Search argument is a key.

A - Add anew block.

F - Provide record location data (feedback).

X - Release exclusive control.

CHECK—Test Completion of Read or Write Operation

When processing a data set, you can test for completion of a READ or WRITE request
by issuing a CHECK macro instruction. The system tests for errors and exceptional
conditions in the data event control block (DECB). Successive CHECK macro
instructions issued for the same data set must be issued in the same order as the
associated READ and WRITE macro instructions.

The check routine passes control to the appropriate exit routines specified in the DCB
for error analysis (SYNAD) or, for sequential data sets, end-of-data (EODAD). It also
automatically initiates end-of-volume procedures (volume switching or extending output
data sets).

If you specify OPTCD=Q in the DCB, CHECK causes input data to be translated from
ASCII to EBCDIC.

WAIT—Wait for Completion of a Read or Write Operation

When processing a data set, you can test for completion of any READ or WRITE
request by issuing a WAIT macro instruction. The input/output operation is
synchronized with processing, but the DECB is not checked for errors or exceptional
conditions, nor are end-of-volume procedures initiated. Your program must perform
these operations.

For BDAM and BISAM, a WAIT macro must be issued for each READ or WRITE
macro if MACRF=C is not coded in the associated DCB. When MACRF=C is coded,
and at all times for BSAM and BPAM, a CHECK macro must be issued for each READ
or WRITE macro. Since the CHECK macro incorporates the function of the WAIT
macro, a WAIT is normally redundent for those access methods. The ECBLIST form of
the WAIT macro may be useful, though, in selecting which of a number of outstanding
events should be checked first.

The WAIT macro instruction can be used to await completion of multiple read and write
operations. Each operation must then be checked or tested separately.

Example: You have opened an input DCB for BSAM with NCP=2, and an output DCB
for BISAM with NCP=1 and without specifying MACRF=C. You have issued two
BSAM READ macros and one BISAM WRITE macro. You now issue the WAIT macro
with ECBLIST pointing to the BISAM DECB and the first BSAM DECB. (Since BSAM

66 OS/VS Data Management Services Guide

/A,

requests are serialized, the first request must execute before the second one.) When you
regain control, you will inspect the DECBs to see which has completed (second bit on).
If it was BISAM, you will issue another WRITE macros If it was BSAM, you will issue a
CHECK macro and then another READ macro. '

Data Event Control Block (DECB)

Error Handling

A data event control block is a 16- to 32-byte area reserved by each READ or WRITE
macro instruction. It contains control information and pointers to standard status
indicators. It is described in detail in Appéndix A of OS/VS Data Management Macro
Instructions.

The DECB is examined by the check routine when the I/0 operation is completed to
determine if an uncorrectable error or exceptional condition exists. If it does, control is
passed to your SYNAD routine. If you have no SYNAD routine, the task is abnormally
terminated.

The basic and queued access techniques both provide special macro instructions for
analyzing input/output errors. These macro instructions can be used in SYNAD routines
and in error analysis routines that are entered directly when you use the basic access
technique with indexed sequential data sets.

SYNADAF—Perform SYNAD Analysis Function

The SYNADAF macro instruction analyzes the status, sense, and exceptional condition
code data that is available to your error analysis routine. It produces an error message
that your routine can write into any appropriate data set. The message is in the form of
an unblocked variable-length record, but you can write it as a fixed-length record by
omitting the block length and record length fields that precede the message text.

The text of the message is 120 characters long, and begins with a field of 36 or 42
blanks; you can use the blank field to add your own remarks to the message. Following is
a typical message with the blank field omitted:

, TESTJOB®, STEP2Hbb, 283, TA, MASTERDD, READH , DATA CHECKBHHDD ,
0000015, BSAM

This message indicates that a data check occurred during reading of the fifteenth block of
a data set. The data set was identified by a DD statement named MASTER, and was on
a magnetic-tape volume on unit 283. The name of the job was TESTJOB; the name of
the job step was STEP2.

If the error analysis routine is entered because of an input error, the first 6 bytes of the
message (bytes 8-13) contain binary information. If no data was transmitted or if the
access method is QISAM, the first 6 bytes are blanks or binary zeros. If the error did not
prevent data transmission, the first 6 bytes contain the address of the input buffer and
the number of bytes read. You can use this information to process records from the
block; for example, you might print each record after printing the error message. Before
printing the message, however, you should replace this binary information with EBCDIC
characters.

The SYNADAF macro instruction provides its own save area and makes this area
available to your error analysis routine. When used at the entry point of a SYNAD
routine, it fulfills the routine’s responsibility for providing a save area.

Part 2: Data Management Processing Procedures 67

SYNADRLS—Release SYNADAF Message and Save Areas

The SYNADRILS macro instruction releases the message and save areas provided by the
SYNADAF macro instruction. You must issue this macro instruction before returning
from the error analysis routine.

ATLAS—Perform Alternate Track Location Assignment

The ATLAS macro instruction enables your program to recover from permanent
input/output errors when processing a data set in direct-access storage. After a data
check, or in certain missing-address-marker conditions, you can issue ATLAS to assign
an alternate track to replace the error track or transfer data from the error track to the
alternate track.

The use of this macro requires a knowledge of channel programming. A detailed
description of the macro instruction and its use is included in OS/VS1 Data
Management for System Programmers and OS/VS2 System Programming Library:
Data Management.

If you do not use the ATLAS macro instruction, you can use the IEHATLAS utility
program to perform the same function. The principal difference between the macro
instruction and the utility program is that the latter provides error recovery only after
your own program has been completed. For a detailed description of IEHATLAS, refer
to OS/VS Utilities.

Selecting an Access Method

Access methods are identified primarily by the data set organization to which they apply.
For instance, BDAM is the basic access method for direct organization. Nevertheless,
there are times when an access method identified with one organization can be used to
process a data set usually thought of as organized in a different manner. Thus, a data set
created by the basic access method for sequential organization (BSAM) may be
processed by the basic direct access method (BDAM). If the queued access technique is
used to process a sequential data set, the access method is referred to as the queued
sequential access method (QSAM).

Basic access methods are used for all data organizations, while queued access methods
apply only to sequential and indexed sequential data sets as shown in Figure 27.

Data Set

Organization Access Technique
Basic Queued

Sequential BSAM QSAM

Partitioned BPAM

Indexed Sequential BISAM QISAM

Direct BDAM

Figure 27. Data Management Access Methods

It is possible to control an I/O device directly while processing a data set with any data
organization without using a specific access method. The execute channel program
(EXCP) macro instruction uses the system programs that provide for scheduling and
queuing I/0 requests, efficient use of channels and devices, data protection, interruption
procedures, error recognition and retry. Complete details about the EXCP macro are in
0OS/VS1 Data Management for System Programmers and OS/VS2 System
Programming Library: Data Management.

68 OS/VS Data Management Services Guide

0S/VS2 temporary data sets can be handled by a facility called virtual I/O (VIO). Data
sets for which VIO is specified are located in external page storage. However, to the
access methods (BDAM, BPAM, BSAM, QSAM, and EXCP) the data sets appear to
reside on a real direct-access storage device. VIO provides these advantages:

+ Elimination of some of the usual I/O device allocation and data management
overhead for temporary data sets.

« Generally more efficient use of direct-access storage space.

To use VIO, you must specify VIO=YES in the UNITNAME macro during system
generation, and you must specify a unit name (defined in the UNITNAME macro) on
the DD statement for your data set. For additional information on VIO, see OS/VS2
System Programming Library: Initialization and Tuning Guide. For information on
the UNITNAME macro, see OS/VS2 System Programming Library: System
Generation Reference. For information on changes to the DD statement, see
0S/VS2 JCL.

Opening and Closing a Data Set

Although your program has been assembled, the various data management routines
required for 1/O operations are not a part of the object code. In other words, your
program is not completely assembled until the DCBs are initialized for execution. You
accomplish initialization by issuing the OPEN macro instruction. After all DCBs have
been completed, the system ensures that all required access method routines are loaded
and ready for use and that all channel command word lists and buffer areas are ready.

Access method routines are selected and loaded according to data control fields that
indicate:

« Data organization

« Buffering technique

« Access technique

» I/0 unit characteristics

This information is used by the system to allocate virtual-storage space and load the
appropriate routines. These routines, the channel command word (CCW) lists, and
buffer areas created automatically by the system remain in virtual storage until the close
routine signals that they are no longer needed by the DCB that was using them.

When I/0 operations for a data set are completed, you should issue a CLOSE macro
instruction to return the DCB to its original status, handle volume disposition, create dat
set labels, complete writing of queued output buffers, and free virtual and auxiliary
storage.

Managing Buffer Pools when Closing Data Sets: After closing the data set, you should
issue a FREEPOOL macro instruction to release the virtual storage used for the buffer
pool. If you plan to process other data sets, uss FREEPOOL to regain the buffer pool
storage space. If you expect to reopen a data set using the same DCB, use FREEPOOL
unless the buffer pool created the first time the data set was opened will meet your need:
when you reopen the data set. FREEPOOL is discussed in more detail in the section
“Buffer Pool Construction.”

After the data set has been closed, the DCB can be used for another data set. If you do
not close the data set before a task terminates, the operating system closes it
automatically. If the DCB is not available to the system at that time, the operating
system abnormally terminates the task, and data results can be unpredictable. Note,
however, that the operating system cannot automatically close any open data sets after
the normal termination of a program that was brought into virtual storage by the loader.

Part 2: Data Management Processing Procedures 6

Therefore, loaded programs must include CLOSE macro instructions for all open data
sets.

Simultaneous Opening and Closing of Multiple Data Sets: An OPEN or CLOSE macro
instruction can be used to initiate or terminate processing of more than one data set.
Simultaneous opening or closing is faster than issuing separate macro instructions;
however, additional storage space is required for each data set specified. The coding
examples in Figures 28 and 29 show the macro expansions for simultaneous open and
close operations.

Opening and Closing Data Sets Shared by More Than One Task: When more than one
task is sharing a data set, the following restrictions must be recognized. Failure to adhere
to these restrictions endangers the integrity of the shared data set.

« All tasks sharing a DCB must be in the job step that opened the DCB (see ““Sharing a
Data Set”).

« Fach task sharing a DCB must ensure that all of the input and output operations it
initiated using a given DCB are complete, before the task terminates. A CLOSE
macro instruction issued for the DCB will ensure termination of all input and output
operations.

« A DCB can be closed only by the task that opened it.
Considerations for Opening and Closing Data Sets:

+ Two or more DCBs should never be concurrently open for output to the same data set
on a direct-access device, except with the basic indexed sequential access method
(BISAM). Otherwise the end-of-file record written by CLOSE for one DCB may
overlay data associated with another DCB.

« If one DCB is concurrently open for input and one for output to the same data set on
a direct-access device, the input DCB may be unable to read what the output DCB
wrote if the output DCB extended the data set.

« If you want to use the same DD statement for two or more DCBs, you cannot specify
parameters for fields in the first DCB and then be assured of obtaining the default
parameters for the same fields in any subsequent DCB using the same DD statement.
This is true for both input and output and is especially important when you are using
more than one access method. Any action on one DCB that alters the JFCB affects
the other DCB(s) and thus can cause unpredictable results. Therefore, unless the
parameters of all DCBs using one DD statement are the same, you should use separate
DD statements.

« Associated data sets for the 3525 Card Punch can be opened in any order, but all data
sets must be opened before any processing can begin. Associated data sets can be
closed in any order, but once a data set has been closed, I/O operations cannot be
performed on any of the associated data sets. See OS and OS/VS Programming
Support for the IBM 3505 Card Reader and IBM 3525 Card Punch for more
information.

« Volume disposition specified in the OPEN or CLOSE macro instruction can be
overridden by the system if necessary. However, you need not be concerned; the
system automatically requests the mounting and demounting of volumes, depending
upon the availability of devices at a particular time. Additional information on volume
disposition is provided in OS/VS1 JCL Reference and OS/VS2 JCL.

o VSI1 Systems:

Two or more DCBs should not be concurrently open using the same ddname. Any
action on one DCB that alters the task input/output table (TIOT) or JFCB affects the
other DCB(s) and thus can cause unpredictable results. However, a concurrent open

70 OS/VS Data Management Services Guide

of a single volume data set allocated to a single unit does not adversely affect the
TIOT. Thus, a one volume physical sequential DASD data set can be multiply open
for input, or within the other restrictions, for output. A multivolume ISAM or BDAM
data set can be concurrently open as long as the volume serial list remains the same.

If an abnormal termination occurs during open, close, or end-of-volume processing,
the DCB causing the error and any DCBs being processed in parallel with it may be
left in such a state that they cannot be used and cannot be closed (or will be closed
incorrectly). The device associated with the DCB in error (such as a magnetic tape
unit) can become locked to this DCB and will not be reuseable until the end of the jol
step when device deallocation will unlock it. This is true whether or not the abnormal
termination is intercepted by a STAE routine, a DCB ABEND exit routine, or a
mother task. When opening or closing DCBs in parallel, specifying delay or ignore
abnormal termination in the DCB ABEND exit routine will allow the other DCBs to
complete processing normally.

e VS2 Systems:

There are two classes of errors that can occur during open, close, and end-of-volume
processing; determinate and indeterminate errors. Determinate errors are errors
associated with a system completion code. For example, a condition associated with
the 213 completion code with a return code of 04 might be detected during open
processing, indicating that a format-1 DSCB could not be found for a data set being
opened. Indeterminate errors are errors that cannot be anticipated, such as a program
check.

If a determinate error occurs during the processing resulting from a concurrent OPEN
or CLOSE macro instruction, an attempt will be made to complete open or close
processing of the DCBs that are not associated with the DCB in error. Note that you
can also choose to abnormally terminate the task immediately by coding a DCB
ABEND exit routine that indicates the “immediate termination” option (see “DCB
ABEND Exit”). When all open or close processing is completed, abnormal
termination processing is begun. Abnormal termination involves forcing all DCBs
associated with a given OPEN or CLOSE macro to close status, thereby freeing all
storage, devices, and other system resources related to the DCBs.

If an indeterminate error (such as a program check) occurs during open, close, or
EOV processing, no attempt is made by the system control program to complete
concurrent open or close processing. The DCBs associated with the OPEN or CLOSE
macro will, however, be forced to close status. The resources related to each DCB wil
be freed.

For more information on error processing and system recovery, see OS/VS2 System
Programming Library: Supervisor.

« During task termination the system issues a CLOSE macro for each data set which is
still open. If this is an abnormal termination, the QSAM close routines (which would
normally finish processing buffers) are bypassed. Any outstanding I/O requests are
purged. Thus, your last data records may be lost for a QSAM output data set.

« Itis a good procedure to close an ISAM data set before task termination because, if ai
1/0 error is detected, the ISAM close routines cannot return the problem program
registers to the SYNAD routine, causing unpredictable results.

OPEN—Prepare a Data Set for Processing

The OPEN macro instruction is used to complete a data control block for an associated
data set. The method of processing and the volume positioning instruction in the event o
an end-of-volume condition can be specified.

Part 2: Data Management Processing Procedures 7

Processing Method: You can process a data set as either input or output (by coding
INPUT or OUTPUT as the processing method operand of the OPEN macro) or, under
BSAM, a combination of the two (by coding INOUT or OUTIN). If the data set resides
on a direct-access volume, you can code UPDAT in the processing method operand to
indicate that records can be updated. By coding RDBACK in this operand, you can
specify that a magnetic-tape volume containing format-F or format-U records is to be
read backwards. Variable-length records cannot be read backwards. If the processing
method operand is omitted from the OPEN macro instruction, INPUT is assumed. The
operand is ignored by the basic indexed sequential access method (BISAM); it must be
specified as OUTPUT when you are using the queued indexed sequential access method
(QISAM) to create an indexed sequential data set. You can override the INOUT and
OUTIN at execution by using the LABEL parameter of the DD statement, as discussed
in OS/VS1 JCL Reference and OS/VS2 JCL.

SYSIN and SYSOUT data sets must be opened for INPUT and OUTPUT, respectively.
INOUT is treated as INPUT; OUTIN is treated as OUTPUT. UPDAT and RDBACK
cannot be used.

In Figure 28, the data sets associated with three DCBs are to be opened simultaneously.

OPEN (TEXTDCB, , CONVDCB, (OUTPUT), PRINTDCB, (OUTPUT))
+ CNOP 0,4 Align list to fullword
+ BAL 1,*%+16 Load regl w/list address
+ DC AL1(0) Option byte
+ DC AL3(TEXTDCB) DCB address
+ DC AL1(15) Option byte
+ DC AL3(CONVDCB) DCB address
+ DC AL1(143) Option byte
+ DC AL3(PRINTDCB) DCB address
+ svC 19 Issue open SVC

Figure 28. Opening Three Data Sets Simultaneously

Since no processing method operand is specified for TEXTDCB, the system assumes
INPUT. Both CONVDCB and PRINTDCB are opened for output. No volume
positioning options are specified; thus, the disposition indicated by the DD statement
DISP parameter is used.

At execution, the SVC 19 instruction passes control to the Open routine, which then
initializes the three DCBs and loads the appropriate access method routines.

CLOSE—Terminate Processing of a Data Set

The CLOSE macro instruction is used to terminate processing of a data set and release it
from a DCB. The volume positioning that is to result from closing the data set can also
be specified. Volume positioning options are the same as those that can be specified for
end-of-volume conditions in the OPEN macro instruction or the DD statement. An
additional volume positioning option, REWIND, is available and can be specified by the
CLOSE macro instruction for magnetic-tape volumes. REWIND positions the tape at the
load point regardless of the direction of processing.

| You can code CLOSE TYPE=T and perform some close functions for sequential data
sets on magnetic tape and direct-access volumes processed with BSAM. When you use
TYPE=T, the DCB used to process the data set maintains its open status, and you

| should not issue another OPEN macro instruction to continue processing the same data
set. This option cannot be used in a SYNAD routine.

| The TYPE=T operand causes the system control program to process labels, modify some
of the fields in the system control blocks for that data set, and reposition the volume (or
current volume in the case of multivolume data sets) in much the same way that the
normal CLOSE macro does. When you code TYPE=T, you can specify that the volume

72 OS/VS Data Management Services Guide

either be positioned at the end of data (the LEAVE option) or be repositioned at the
beginning of data (the REREAD option). Magnetic-tape volumes are repositioned either
immediately before the first data record or immediately after the last data record; the
presence of tape labels has no effect on repositioning. Figure 29, which assumes a sample
data set containing 1000 records, illustrates the relationship between each positioning
option and the point at which you resume processing the data set after issuing the
temporary close.

Begin processing
processing tape data set
(open for read

d‘ay backward)

Record Record Record Record Record
1 2 3 999 1000

Begin

~
~

~
~

After temporary close, you witl

If you CLOSE TYPE =T and specify resume processing

LEAVE Immediately after record 1000

LEAVE (with tape data set open

Immediately before record 1
for read backward)

REREAD immediately before record 1

REREAD (with tape data set open

Immediately after record 1000
for read backward)

Figure 29. Record Processed When LEAVE or REREAD is Specified for CLOSE TYPE=T

If you code the release (RLSE) operand on the DD statement for the data set, it is
ignored by temporary close, but any unused space will be released when you finally issue
the normal CLOSE macro instruction.

It is possible to use BSAM to process a data set that is not physical-sequential; if you use
CLOSE TYPE=T for them, the following restrictions apply:

» The DCB for the data set you are processing on a direct-access device must specify
either DSORG=PS or DSORG=PSU for input processing, and either DSORG=PS,
DSORG=PSU, DSORG=PO, or DSORG=POU for output processing.

e The DCB must not be open for input to a member of a partitioned data set.

« If you open a data set on a direct-access device for output and issue CLOSE
TYPE=T, the volume will be repositioned only if the data set was created with
DSORG=PS, DSORG=PSU, DSORG=PO, or DSORG=POU (you cannot specify
the REREAD option if DSORG=PO or DSORG=POU is specified). (This restriction
prohibits the use of temporary close following or during the building of a BDAM data
set that is created by specifying BSAM MACRF=WL).

« If you open the data set for input and issue CLOSE TYPE=T with the LEAVE
option, the volume will be repositioned only if the data set specifies DSORG=PS or
DSORG=PO.

Part 2: Data Management Processing Procedures 73

Note: When a data control block is shared among multiple tasks, only the task that
opened the data set can close it unless TYPE=T is specified. -~

Before issuing the CLOSE macro, a CHECK macro must be issued for all DECBs that
have outstanding I/O from WRITE macro instructions. When CI.OSE TYPE=T is
specified, a CHECK macro must be issued for all DECBs that have outstanding I/O

I from either WRITE or READ macro instructions.

In Figure 30, the data sets associated with three DCBs are to be closed simultaneously.

CLCSE (TEXTDCB, ,CONVDCB, ,PRINTDCB)
+ CNCP 0,4 Align list to fullword
+ BAL 1,*%+16 Load regl w/list addr
+ DC AL1(0) Option byte
+ DC AL3(TEXTDCB) DCB address
+ DC AL1(0) Option byte
+ DC AL3(CONVDCB) DCB address
+ DC AL1(128) Option byte N
+ DC AL3(PRINTDCB) DCB address
+ SvC 20 Issue close $VC
Figure 30. Closing Three Data Sets Simultaneously .

Because no volume positioning operands are specified, the position indicated by the DD
statement DISP parameter is used.

At execution, the SVC 20 instruction passes control to the Close routine, which
terminates processing of the three data sets and returns the three DCBs to their original
status.

Releasing Data Sets and Volumes in VS2 Systems: VS2 systems offer the option of being

able to release data sets and the volumes the data sets reside on when your task is no -~
longer using them. Assuming that you are not sharing data sets, these data sets and the
volumes on which they reside, would otherwise remain unavailable for use by other tasks

until the job step that opened them is terminated.

There are two ways to code the CLOSE macro instruction that can result in releasing a
data set and the volume on which it resides at the time the data set is closed:

In conjunction with the FREE=CLOSE parameter of the DD statement you can code:

CLOSE (DCB1,DISP) or
CLOSE (DCB1,REWIND

If you do not code FREE=CLOSE on the DD statement, you can code:
CLOSE (DCB1,FREE)

See OS/VS2 JCL for information about how to use and code the FREE=CLOSE .
parameter of the DD statement.

In either case, tape data sets and the volume on which the tape is mounted will be freed
for use by another job step. Data sets on direct-access devices will be freed and the
volumes on which they reside will be freed if no other data sets on the volume are open.
Additional information on volume disposition is provided in OS/VS2 JCL.

Data sets being temporarily closed (using CLOSE TYPE=T) cannot be released at the
time the data set is closed. They will be released at termination of the job step.

Refer to OS/VS Data Management Macro Instructions for additional information and
coding restrictions.

74 OS/VS Data Management Services Guide

End-of-Volume Processing

Control is passed automatically to the data management end-of-volume routine when
any of the following conditions is detected:

o Tapemark (input tape volume)
« Filemark or end of last extent (input direct-access volume)

o End-of-data indicator (input device other than magnetic tape or direct-access
volume). An example of this would be the last card read on a card reader.

o End of reel (output tape volume)
¢ End of extent (output direct-access volume)

You may issue a force end-of-volume (FEOV) macro instruction before the
end-of-volume condition is detected.

The end-of-volume routine checks or creates standard trailer labels, if the LABEL
parameter of the associated DD statement indicates standard labels. Control is then
passed to the appropriate user label routine if it is specified in your exit list.

If multiple-volume data sets are specified in your DD statement, automatic volume
switching is accomplished by the end-of-volume routine. When an end-of-volume
condition exists on an output data set, additional space is allocated as indicated in your
DD statement. If no more volumes are specified or if more than specified are required,
the storage is obtained from any available volume on a device of the same type. If no
such volume is available, your job is terminated.

Volume Positioning: When an end-of-volume condition is detected, the system positions
the volume according to the disposition specified in the DD statement unless the volume
disposition is specified in the OPEN macro instruction. Volume positioning instructions
for a sequential data set on magnetic tape can be specified as LEAVE or REREAD.

LEAVE
positions the volume at the logical end of the data set just read or written. If the data
set has been read backward, the logical end is the physical beginning of the data set.

REREAD
positions the volume at the logical beginning of the data set just read or written.

If, however, you want to position the current volume according to the option specified ir
the DISP parameter of the DD statement, you code DISP in the OPEN macro
instruction.

DISP
specifies that a tape volume is to be disposed of in the manner implied by the DD
statement associated with the data set. Direct-access volume positioning and
disposition are not affected by this parameter of the OPEN macro instruction. There
are several dispositions that can be specified in the DISP parameter of the DD
statement; DISP can be PASS, DELETE, KEEP, CATLG, or UNCATLG. This
option has significance at the time an end-of-volume condition is encountered only
when DISP is PASS. The end-of-volume condition may result from the issuance of an
FEOV macro instruction or may be the result of reaching the end of a volume.

If DISP is PASS in the DD statement, the tape will be forward spaced to the end of
the data set on the current volume.

Part 2: Data Management Processing Procedures 7

| VS1 Systems: The number of volumes is less than or equal to the number of allocated
units, the current volume will be positioned as follows:

DISP Parameter Action
PASS Forward space to the end of data set on the current volume.
DELETE Rewind the current volume.

KEEP. CATLG, or UNCATLG Rewind and unload the current volume.

If the number of volumes is greater than the number of units allocated, the current
volume will be rewound and unloaded.

VS2 Systems: The resultant action at the time an end-of-volume condition arises

depends on (1) how many tape units are allocated to the data set and (2) how many
volumes are specified for the data set in the DD statement. This is determined by the
UNIT and VOLUME parameters of the DD statement associated with the data set. If the
number of volumes is greater than the number of units allocated, the current volume will
be rewound and unloaded. If the number of volumes is less than or ecqual to the number
of units, the current volume is merely rewound.

A volume positioning instruction can be specified only if the processing method operand
has been specified. It is ignored if devices other than magnetic-tape and direct-access are
used, or if the number of volumes exceeds the number of available units.

For magnetic-tape volumes, positioning varies according to the direction of the last input
operation and the existence of tape labels. If the tape was last read forward:

LEAVE
positions a labeled tape to the point following the tapemark that follows the data set
trailer label group, and an unlabeled volume to the point following the tapemark that
follows the last block of the data set.

REREAD
positions a labeled tape to the point preceding the data set header label group, and an
unlabeled tape to the point preceding the first block of the data set.

If the tape was last read backward:

LEAVE
positions a labeled tape to the point preceding the data set header label group, and an
unlabeled tape to the point preceding the first block of the data set.

REREAD
positions a labeled tape to the point following the tapemark that follows the data set
trailer label group, and an unlabeled tape to the point following the tapemark that
follows the last block of the data set.

FEOV—Force End of Volume

The FEOV macro instruction directs the operating system to initiate end-of-volume
processing before the physical end of the current volume is reached. If another volume
has been specified for the data set, volume switching takes place automatically. The
volume positioning options REWIND and LEAVE are available.

If an FEOV macro is issued for a spanned multivolume data set which is being read using
QSAM, errors may occur when the next GET macro is issued. These errors are
documented in the section, ‘“‘Spanned Variable-Length Records” in “Part 1: Introduction
to Data Management.”

The FEOV macro instruction can only be used when you are using BSAM or QSAM.
FEOV is ignored if issued for a SYSIN or SYSOUT data set.

76 OS/VS Data Management Services Guide

Buffer Acquisition and Control

The operating system provides several methods of buffer acquisition and control. Each
buffer (virtual-storage area used for intermediate storage of input/output data) usually
corresponds in length to the size of a block in the data set being processed. When you
use the queued access technique, any reference to a buffer actually refers to the next
record (buffer segment).

You can assign more than one buffer to a data set by associating the buffer with a buffer
pool. A buffer pool must be constructed in a virtual-storage area allocated for a given
number of buffers of a given length.

The number of buffers you assign to a data set should be a tradeoff against the frequency
with which you refer to each buffer. A buffer that is not referred to for a relatively long
period of time may be paged out. If this were allowed to happen to any considerable
degree, it could result in a greater number of buffers actually decreasing throughout.

Buffer segments and buffers within the buffer pool are controlled automatically by the
system when the queued access technique is used. However, you can terminate
processing of a buffer by issuing a release (RELSE) macro instruction for input or a
truncate (TRUNC) macro instruction for output. Two buffering techniques, simple and
exchange, can be used to process a sequential data set. Only simple buffering can be used
to process an indexed sequential data set.

If you use the basic access technique, you can use buffers as work areas rather than as
intermediate storage areas. You can control them directly, by using the GETBUF and
FREEBUF macro instructions, or dynamically for BDAM and BISAM, by requesting
dynamic buffering in your DCB macro instruction and your READ or WRITE macro
instruction. If you request dynamic buffering, the system will automatically provide a
buffer each time a READ macro instruction is issued. That buffer will be freed when you
issue a WRITE or FREEDBUF macro instruction.

Buffer Pool Construction
Buffer pool construction can be accomplished in any of three ways:
« Statically using the BUILD macro instruction
« Explicitly using the GETPOOL macro instruction
« Automatically by the system when the data set is opened

If QSAM simple buffering is used, the buffers are automatically returned to the pool
when the data set is closed. If the buffer pool is constructed explicitly or automatically,
the virtual storage area must be returned to the system by the FREEPOOL macro
instruction.

In many applications, fullword or doubleword alignment of a block within a buffer is
important. You can specify in the DCB that buffers are to start on either a doubleword
boundary or a fullword boundary that is not also a doubleword boundary (by coding
BFALN=D or F). If doubleword alignment is specified for format-V records, the fifth
byte of the first record in the block is so aligned. For that reason, fullword alignment
must be requested to align the first byte of the variable-length record on a doubleword
boundary. The alignment of the records following the first in the block depends on the
length of the previous records.

Note that buffer alignment provides alignment only for the buffer. If records from ASCII
magnetic tape are read and the records use the block prefix, the boundary alignment of
logical records within the buffer depends on the length of the block prefix. If the length
is 4, logical records are on fullword boundaries. If the length is 8, logical records are on
doubleword boundaries.

Part 2: Data Management Processing Procedures 77

If the BUILD macro instruction is used to construct the buffer pool, alignment depends
on the alignment of the first byte of the reserved storage area.

When you process multiple QISAM data sets, you can use a common buffer pool. To do
this, however, you must use the BUILD macro instruction to reformat the buffer pool
before opening each data set.

BUILD—-Construct a Buffer Pool

When you know, before program assembly, both the number and the size of the buffers
required for a given data set, you can reserve an area of appropriate size to be used as a
buffer pool. Any type of area can be used—for example, a predefined storage area or an
area of coding no longer needed.

A BUILD macro instruction, issued during execution of your program, structures the
reserved storage area into a buffer pool. The address of the buffer pool must be the same
as that specified for the buffer pool control block (BUFCB) in your DCB. The buffer
pool control block is an 8-byte field preceding the buffers in the buffer pool. The number
(BUFNO) and length (BUFL) of the buffers must also be specified. For QSAM, the
length of BUFL must be at least the blocksize.

When the data set using the buffer pool is closed, you can reuse the area as required.
You can also reissue the BUILD macro instruction to reconstruct the area into a new
buffer pool to be used by another data set.

You can assign the buffer pool to two or more data sets that require buffers of the same
length. To do this, you must construct an area large enough to accommodate the total
number of buffers required at any one time during execution. That is, if each of two data
sets requires five buffers (BUFNQ=35), the BUILD macro instruction should specify ten
buffers. The area must also be large enough to contain the 8-byte buffer pool control
block.

BUILDRCD—Build a Buffer Pool and a Record Area

The BUILDRCD macro instruction, like the BUILD macro instruction, causes a buffer
pool to be constructed in an area of virtual storage you provide. In addition, BUILDRCD
makes it possible for you to access variable-length, spanned records as complete logical
records, rather than as segments.

You must be processing with QSAM in the locate mode and you must be processing
either VS or VBS records, if you want to access the variable-length, spanned records as
logical records. If you issue the BUILDRCD macro before the data set is opened, or
during your DCB exit routine, you automatically get logical records rather than segments
of spanned records.

Only one logical record storage area is built, no matter how many buffers are specified;
therefore, you can’t share the buffer pool with other data sets that may be open at the
same time.

GETPOOL~—Get a Buffer Pool

If a specified area is not reserved for use as a buffer pool, or you want to defer specifying
the number and length of the buffers until execution of your program, you should use the
GETPOOL macro instruction. It enables you to vary the size and number of buffers
according to the needs of the data set being processed.

The GETPOOL macro instruction structures a virtual-storage area allocated by the
system into a buffer pool, assigns a buffer pool control block, and associates the pool
with a specific data set. The GETPOOL macro instruction should be issued either before
opening of the data set or during your DCB exit routine.

78 OS/VS Data Management Services Guide

When using GETPOOL with QSAM, specify a buffer length (BUFL) of at least as large
as the blocksize.

Automatic Buffer Pool Construction

If you have requested a buffer pool and have not used an appropriate macro instruction
by the end of your DCB exit routine, the system automatically allocates virtual-storage
space for a buffer pool. The buffer pool control block is also assigned and the pool is
associated with a specific DCB. For BSAM, a buffer pool is requested by specifying
BUFNO. For QSAM, BUFNO can be specified or allowed to default to 2 (for all device:
except unit-record) or 3 (for 2540) by the open routines. For VS2 systems, BUFNO will
default to 5. If you are using the basic access technique to process an indexed sequential
or direct data set, you must indicate dynamic buffer control. Otherwise, the system does
not construct the buffer pool automatically.

Because a buffer pool obtained automatically is not freed automatically when you issue a
CLOSE macro instruction, you should also issue a FREEPOOL. macro instruction, whick
is discussed in the next section.

FREEPOOL~—Free a Buffer Pool

Any buffer pool assigned to a DCB either automatically by the OPEN macro instruction
(except when dynamic buffer control is used) or explicitly by the GETPOOL macro
instruction should be released before your program is terminated. The FREEPOOL
macro instruction should be issued to release the virtual-storage area as soon as the
buffers are no longer needed. When you are using the queued access technique, a data
set must be closed first. When you are using exchange buffering, the buffer pool must
not be released until all the data sets have been closed.

Constructing a Buffer Pool: Figures 31 and 32 illustrate several possible methods of
constructing a buffer pool. They do not take into account the method of processing or
controlling the buffers in the pool.

In Figure 31, a static storage area named INPOOL is allocated during program assembly.
The BUILD macro instruction, issued during execution, arranges the buffer pool into ten
buffers, each 52 bytes long. Five buffers are assigned to INDCB and five to OUTDCB,
as specified in the DCB macro instruction for each. The two data sets share the buffer
pool because both specify INPOOL as the buffer pool control block. Notice that an
additional 8 bytes have been allocated for the buffer pool to contain the buffer pool
control block.

In Figure 32, two buffer pools are constructed explicitly by the GETPOOL macro
instructions. Ten input buffers are provided, each 52 bytes long, to contain one
fixed-length record; five output buffers are provided, each 112 bytes long, to contain two
blocked records plus an 8-byte count field (required by ISAM). Notice that both data
sets are closed before the buffer pools are released by the FREEPOOL macro

e Processing
BUILD INPOOL, 10,52 Structure a buffer pool
OPEN (INDCB, ,0UTDCB, (OUTPUT))
. Processing
ENDJOB CLOSE (INDCB, ,OUTDCB)
N Processing
RETURN Return to system control
INDCB DCB BUFNO=5, BUFCB=INPOOL , EODAD=ENDJORB, ——-
OUTDCB DCB BUFNO=5 , BUFCB=INPOOL , ——-
CNOP 0,8 Force boundary alignment
Buffer pool

INPOOL Ds CL528

Figure 31. Constructing a Buffer Pool From a Static Storage Area

Part 2: Data Management Processing Procedures 79

Buffer Control

instructions. The same procedure should be used if the buffer pools were constructed
automatically by the OPEN macro instruction.

Your program can use four techniques to control the buffers used by your program. The
advantages of each depend to a great extent upon the type of job you are doing. Simple
and exchange buffering are provided for the queued access technique. The basic access
technique provides for either direct or dynamic buffer control.

Although only simple buffering can be used to process an indexed sequential data set,
buffer segments and buffers within a buffer pool are controlled automatically by the
operating system.

In addition, the queued access technique provides four processing modes that determine
the extent of data movement in virtual storage. Move, data, locate, or substitute mode
processing can be specified for either the GET or PUT macro instruction. The buffer
processing mode is specified in the MACREF field of the DCB macro instruction. The
movement of a record is determined as follows:

o Move mode: The record is moved from an input buffer to your work area, or from
your work area to an output buffer.

o Data mode (QSAM format-V spanned records only): The same as the move mode
except only the data portion of the record is moved.

e Locate mode: The record is not moved. Instead, the address of the next input or
output buffer is placed in register 1. For QSAM format-V spanned records, if you
have specified logical records by specifying BFTEK=A or by issuing the BUILDRCD
macro instruction, the address returned in register 1 points to a record area where the
spanned record is assembled or segmented.

The PUT-locate routine uses the value in the DCBLRECL field to determine whether
another record will fit into your buffer. Therefore, when you write a short record, you
can maximize the number of records per block by modifying the DCBLRECL field
before you issue a PUT-locate to get a buffer segment for the short record. The
processing sequence follows:

1. Register 1 is returned to you with the address of the next buffer segment.
2. Move the record into the output buffer segment.

3. Put the length of the next (short) record into DCBLRECL.

4. Issue PUT-locate.

5. Move the short record into the buffer segment.

ENDJOB

INDCB
OUTDCB

GETPOOL INDCB, 10,52
GETPOOL OUTDCB, 5,112

Construct a 10-buffer pool
Construct a 5-buffer pool

OPEN (INDCB, ,OUTDCB, (OUTPUT))
CLOSE (INDCB, ,OUTDCB)
FREEPOOL INDCB Release buffer pools after all

I1/0 is complete

FREEPOOL OUTDCB

RETURN
DCB
DCB

Return to system control
DSORG=PS, BFALN=F, LRECL=52 , RECFM=F , EODAD=ENDJOR , —-—
DSORG=IS, BFALN=D, LRECL=52,KEYLEN=10,BLKSIZE=104, c
RKP=0,RECFM=FB, -—--—

Figure 32. Constructing a Buffer Pool Using GETPOOL and FREEPOOL

80 OS/VS Data Management Services Guide

Simple Buffering

o Substitute mode: The record is not moved. Instead, the address of the next input or
output buffer is interchanged with the address of your work area.

Two processing modes of the PUTX macro instruction can be used in conjunction with a
GET-locate macro instruction. The update mode returns an updated record to the data
set from which it was read; the output mode transfers an updated record to an output
data set. There is no actual movement of data in virtual storage. The processing made is
specified by the operand of the PUTX macro instruction, as explained in OS/VS Data
Management Macro Instructions.

If you use the basic access technique, you can control buffers in one of two ways:

« Directly, using the GETBUF macro instruction to retrieve a buffer constructed as
described above. A buffer can then be returned to the pool by the FREEBUF macro
instruction.

« Dynamically, by requesting a dynamic buffer in your READ or WRITE macro
instruction. This technique can be used only when you are using BISAM or BDAM. If
you request dynamic buffering, the system automatically provides a buffer each time a
READ macro instruction is issued. The buffer is supplied from a buffer pool that is
created by the system when the data set is opened. The buffer is released (returned to
the pool) upon completion of a WRITE macro instruction when you are updating. If
you do not update the record in the buffer and thus release the buffer when the recorc
is written, the FREEDBUF macro instruction may be used. If you are processing an
indexed sequential data set, the buffer is automatically released upon the next issuance
of the READ macro instruction if there has been no intervening WRITE or
FREEDBUF macro instruction.

The term simple buffering refers to the relationship of segments within the buffer. All
segments in a simple buffer are together in storage and are always associated with the
same data set. When the buffer pool is constructed, the system creates a channel
command word (CCW) for each buffer in the buffer pool. For this reason, each record
must be physically moved from an input buffer segment to an output buffer segment. It
can be processed within either segment or in a work area.

If you use simple buffering, records of any format can be processed. New records can be
inserted and old records deleted as required to create a new data set. A record can be
moved and processed as follows:

¢ Processed in an input buffer and then moved to an output buffer (GET-locate,
PUT-move/PUTX-output)

¢ Moved from an input buffer to an output buffer where it can be processed
(GET-move, PUT-locate)

+ Moved from an input buffer to a work area where it can be processed and then moved
to an output buffer (GET-move, PUT-move)

+ Processed in an input buffer and returned to the data set (GET-locate, PUTX-update)

The following examples illustrate the control of simple buffers and the processing modes
that can be used. The buffer pools may have been constructed in any way previously
described.

Simple Buffering—GET-locate, PUT-move/PUTX-output: The GET macro instruction
(step A, Figure 33) locates the next input record to be processed. Its address is returned
in register 1 by the system. The address is passed to the PUT macro instruction in
register 0.

Part 2: Data Management Processing Procedures 81

GET

OUTPUT

OUTPUT

OUTPUT

OQUTPUT

Figure 33. Simple Buffering with MACRF=GL and MACRF=PM

NEXTREC GET
LR
PUT
B

INDCB DCB
OUTDCB DCB

INDCB

0,1

OUTDCB, (0)
NEXTREC
MACRF=(GL),---
MACRF=(PM), -—-

The PUT macro instruction (step B, Figure 33) specifies the address of the record in
register 0. The system then moves the record to the next output buffer.

Note: The PUTX-output macro instruction can be used in place of the PUT-move macro
instruction. However, processing will be as described under exchange buffering (see

PUT-substitute).

Simple Buffering—GET-move, PUT-locate: The PUT macro instruction locates the
address of the next available output buffer. Its address is returned in register 1 and is M;

passed to the GET macro instruction in register 0.

The GET macro instruction specifies the address of the output buffer into which the

system moves the next input record.

A filled output buffer is not written until the next PUT macro instruction is issued.

Simple Buffering—GET-move, PUT-move: The GET macro instruction (step A, Figure
34) specifies the address of a work area into which the system moves the next record

from the input buffer.

OUTPUT

OUTPUT

PUT

OUTPUT

Figure 34. Simple Buffering with MACRF=GM and MACRF=PM

NEXTREC GET
PUT
B

WORKAREA DS

INDCB DCB
OUTDCB DCB

Y

INDCB,WORKAREA

OUTDCB, WORKAREA
NEXTREC

CL50
MACRF=(GM),---
MACRF=(PM),---

#,

82 OS/VS Data Management Services Guide

The PUT macro instruction (step B, Figure 34) specifies the address of a work area from
which the system moves the record into the next output buffer.

Simple Buffering—GET-locate, PUT-locate: The GET macro instruction (step A, Figure
35) locates the address of the next available input buffer. The address is returned in
register 1.

The PUT macro instruction (step B, Figure 35) locates the address of the next available
output buffer. Its address is returned in register 1. You must then move the record from
the input buffer to the output buffer (step C, Figure 35). Processing can be done either
before or after the move operation.

A filled output buffer is not written until the next PUT macro instruction is issued. The
CLOSE and FEOV macro instructions write the last record of your data set by issuing
TRUNC and PUT macro instructions. Be careful not to issue an extra PUT before
issuing CLOSE or FEOV. Otherwise, when the CLOSE or FEOV macro instruction tries
to write your last record, the extra PUT will write a meaningless record or produce a
sequence error.

Note that if records other than format-F records are being moved, the length attribute of
the MVC instruction must be changed as shown by the code beginning with the USING
statement in Figure 35. If the record is more than 256 bytes, you can code a move
routine or use a MVCL instruction to process the complete record.

Simple Buffering-UPDAT Mode: When a data set is opened with UPDAT specified
(Figure 36), only GET-locate and PUTX-update are supported. The GET macro locates
the next input record to be processed and its address is returned in register 1 by the
system. The user may update the record and issue a PUTX macro which will cause the
block to be written back in its original location in the data set after all the logical records
in that block have been processed.

GET

NEXTREC GET INDCB

INPUT OUTPUT | OUTPUT IR 7,1
PUT OUTDCB
IR 6,1
LA 5, INDCB
PUT USING THADCB,5
LH 4, DCBLRECL
SH 4,=H"1"
INPUT OUTPUT | OUTPUT EX 4 ,MOVEREC
B NEXTREC

MOVEREC MVC 0(1,6),0(7)

Cc INPUT

INPUT

INDCB DCB MACRF=(GL),
OUTPUT EODAD=EOF , ———

Program

OUTDCB DCB MACRF=(PL),---
DCBD DSORG=(LR)
EOF .o

Figure 35. Simple Buffering with MACRF=GL and MACRF=PL

Part 2: Data Management Processing Procedures 83

/GET

INPUT/ INPUT/ OPEN (UPDCB, (UPDAT))
O P « s o
uTPUT ouTpPuT NEXTREC GET UPDCB
PUTX UPDCB
PUTX B NEXTREC

UPDCB DCB MACRF=(GL,PM),~-~

{No movement of data takes place)

Figure 36. Simple Buffering with MACRF=GL and MACRF=PM-UPDAT Mode

Exchange Buffering (VS1 Only)

The term exchange buffering refers to the relationship of segments within a buffer. All
the segments in an exchange buffer are not necessarily together in virtual storage, nor are
they always associated with the same data set. When the buffer pool is constructed, the
system creates a channel command word (CCW) for each buffer segment in the buffer.
The system can then combine all the segments (the logical records) of a buffer (a
physical record or block of data) by using a technique called data chaining. In data
chaining, a series of CCWs representing the buffer segments are chained and executed,
thereby improving performance. However, when using exchange buffering, you must be
sure that the CPU and channel can exchange CCWs faster than the I/0 device can
transfer data. Otherwise, as in the case of some of the faster direct-access storage devices
used in combination with some of the slower CPUs, a hardware error called data overrun
will resuit.

Exchange buffering is not supported in VS2. Its request will be ignored by the system. If
a request for exchange buffering is denied by the system for any reason, move mode will
be used instead. Move mode is compatible with exchange buffering.

To use exchange buffering, you must provide a work area comparable in size and
alignment to a buffer segment. That work area is substituted for the next buffer segment
(the storage areas change roles). The CCW created for the buffer segment actually
points to the work area.

Why use exchange buffering? Because there is no need to move the record. This can
mean a saving in processing time when you use substitute mode or PUTX-output mode.
The use of exchange buffering during execution of your program requires these
conditions:

« Input and output buffers must be of the same size and alignment.
« Records must be format-F records (blocked or unblocked).

« ASCII records must be format-F records with BUFOFF=(0).

« Track overflow cannot be used with blocked format-F records.

+ GET-move and PUT-locate modes cannot be used.

« Unit-record devices must not be specified.

If you request exchange buffering, but it cannot be used, the system automatically uses
simple buffering. Move mode processing is used in place of substitute mode.

After opening the data set, you can test the DCBCINDI field of the DCB to determine if
simple buffering was substituted for exchange buffering because of inconsistencies in the
DCB information. The eighth bit of the DCBCIND]1 field is 1 for exchange buffering
and O for simple buffering.

84 OS/VS Data Management Services Guide

If your records are blocked format-F records, each segment is aligned as specified in the
DCBBFALN field. Therefore, your buffer length (DCBBUFL) must specify buffers
large enough to contain segments whose length is a multiple of 16 bytes. Otherwise, the
specified boundary alignment cannot be achieved; simple buffering is used and only the
first byte in the first record is aligned as specified.

To reopen a DCB that has been opened for exchange buffering, you must first close all
DCBs using the buffer pool associated with the DCB to be reopened and issue a
FREEPOOL macro instruction specifying the DCB to be reopened. There are two
possible conditions that cannot be prechecked by the system:

« Word alignment that does not correspond to the characteristics of the machine. For
maximum efficiency on a System/370, your record length should be a multiple of 8.

» AnI/O device that transfers the data faster than the CPU can exchange the addresses
in the CCW, which may cause data overrun. Several factors should be considered:
(1) the relative rate of data transfer between the CPU and the 1/0 device,
(2) the logical record length, and (3) the blocking factor. This problem can be avoided
by making the logical record size equal to the block size to prevent data chaining of
record segments. Since this problem is closely related to installation planning and
system configuration, you may want to consult your installation planning
representative if it is a significant problem.

Note: VS1 performance can be adversely affected when exchange buffering is used with
blocked records due to the usage of longer channel programs.

The following examples illustrate the control of exchange buffers and the corresponding
processing modes that can be used. The buffer pools may have been constructed in any
way previously described.

Exchange Buffering—GET-substitute, PUT-substitute: The GET macro instruction
(step A, Figure 37) specifies the address of a work area. The work area address is
exchanged with the address of the next input record returned in register 1. After
processing, the address of a record can be passed to the PUT macro instruction. If you
issue a PUT macro, it need not be for the record just read.

WORK OUTPUT | OUTPUT
Exchanged PUT LA 0, WORKAREA
— NEXTREC GET INDCB,(0)
/ IR 0,1
INPUT OUTPUT | OUTPUT PUT OUTDCB, (0)
/Y LR 0,1
B NEXTREC
Exchanged WORKAREA DS CL50
* INDCB DCB MACRF=(GT),--~-
OUTDCB DCB MACRF=(PT),---—
INPUT WORK | ouTPUT -
1\
Exchanged

Figure 37. Exchange Buffering with MACRF=GT and MACRF=PT

Part 2: Data Management Processing Procedures 85

The PUT macro instruction (step B, Figure 37) specifies the address of the output
record. The output record address is exchanged for the address of the next output buffer
available for use as a work area. The work area address, returned in register 1, is passed
to the GET macro instruction (step C, Figure 37) in register O.

Notice that as the areas are exchanged there is no movement of data. Qutput records are
contained in the original input area and vice versa, but are logically associated with the
correct data set.

Exchange Buffering—GET-locate, PUTX-output: The GET macro instruction (step A,
Figure 38) locates the address of the next input record. The address is returned in
register 1. The record must be processed in the buffer segment before the PUTX macro
instruction (step B, Figure 38) is issued. The PUTX macro instruction specifies the
address of both the input and output data control block. The two buffer segments are
exchanged without any movement of data. The GET macro instruction (step C, Figure
38) locates the next record to be processed.

Notice that the DCB macro instruction for the output data set specifies move mode; this
is required.

Exchange Buffering—GET-locate, PUT-substitute: The GET macro instruction (step A,
Figure 39) locates the next input record. Its address is returned in register 1. You must
then move the record to a work area. You can process the record either before or after
the move.

The PUT macro instruction (step B, Figure 39) specifies the address of the work area
containing the next output record. The system returns the address of the next output
buffer available for use as a work area in register 1. That address is passed to the move
(MVC) instruction in register 6. The GET macro instruction (step C, Figure 39) locates
the next input record. You must then move the record to the new work area. Notice that
the previous work area becomes part of the output buffer (step C).

Note that if records other than format-F records are being moved, the length attribute of
the MVC instruction must be changed as shown by the code beginning with the USING
statement in Figure 39. If the record is more than 256 bytes long, you can code a move
routine or use an MVCL instruction to process the complete record.

OUTPUT | OUTPUT

PUTX
NEXTREC GET INDCB
OUTPUT | OUTPUT PUTX OUTDCB, INDCB
I B NEXTREC
INDCB DCB MACRF=(GL),-—-
Exchanged OUTDCB DCB MACRF=(PM),---

GET

INPUT OuUTPUT

Figure 38. Exchange Buffering with MACRF=GL and MACRF=PM

86 OS/VS Data Management Services Guide

B | INPUT

OUTPUT | OUTPUT LA 6, WORKAREA
NEXTREC GET INDCB

LR 7,1

USING IHADCB,5

LA 5,INDCB :

LH 4 ,DCBLRECL:

SH 4,=H"1"
OUTPUT | OUTPUT EX 4 ,MOVEREC

1 PUT OUTDCB,(6)

Exchanged LR 6,1
B NEXTREC
MOVEREC MVC 0(1,6),0(7)
WORKAREA DS CL50

OUTPUT | INDCB DCB MACRF=(GL),~-—-
OUTDCB DCB MACRF=(PT),---
DCBD DSORG=(LR)

Figure 39. Exchange Buffering with MACRF=GL and MACRF=PT

Buffering Techniques and GET/PUT Processing Modes: As you can see from the
previous examples, the most efficient code is achieved by use of automatic buffer pool
construction, and GET-locate and PUTX-output with either simple or exchange
buffering. Figure 40 summarizes the combinations of buffering techniques and
processing modes that can be used. Notice, for example, that if you use PUT-locate and
GET-substitute, you must provide a work area and you must also move the record from
the work area to the output buffer.

RELSE—Release an Input Buffer

When using the queued access technique to process a sequential or indexed sequential
data set, you can direct the system to ignore the remaining records in the input buffer
being processed. The next GET macro instruction retrieves a record from another buffer.
If format-V spanned records are being used, the next logical record obtained may begin
on any segment in any subsequent block.

If you are using move mode, the buffer is made available for refilling as soon as the
RELSE macro instruction is issued. When you are using locate mode, the system does
not refill the buffer until the next GET macro instruction is issued. If a PUTX macro
instruction has been used, the block is written before the buffer is refilled.

TRUNC—Truncate an Output Buffer

When using the queued access technique to process a sequential data set, you can direct
the system to write a short block. The first record in the next buffer is the next record
processed by a PUT-output or PUTX-output mode.

If the locate mode is being used, the system assumes that a record has been placed in the
buffer segment pointed to by the last PUT macro instruction.

The last block of a data set is truncated by the Close routine. Note that a data set
containing format-F records with truncated blocks cannot be read from direct-access
storage as efficiently as a standard format-F data set.

Part 2: Data Management Processing Procedures 87

Output Buffering: | Simple [Exchange] Simple [Exchange|Simple Simple [Exchange| Simple [Exchange -,
o) lel o 2lel o
glel3 s3] 3 sla|3
ol2lE 2| E|E 2| E|E
' ' =l = Ele e R
Input S1215| ¢l 2|22 & = [neut 21212 2lg |g |g [ge
Buffering: —¥» | o |& | & F e faja | :::,', S [Buffering: e e, 2|2 5 |5 |22
Simple o s | o =l &1 8 I R 1]] $|8EE 8E ol S olEE
" JHBE I e
E|E EE322_232§£ L2121 2|232122|2ElZ2E|Z3
i [SR (A PN B 1 o I (WA RS- Pl S I P [o A A FLAYEN [RAyAE
Actions il Rl Bl = RR iR A ESES’S bl |GL5lEs5|EEE5E5
QDO |0l O|O|O VA= QIO |Vajda|[Pajoa|lOn
Program must move X X X X X1 X
record
System moves record| X | X | X | X X1l X X X1 X
System moves record X
segment
Record is not moved X X
Work area required X X} X X X| X| X X| X
PUTX - output can X| X X | X
be used

Figure 40. Buffering Technique and GET/PUT Processing Modes

GETBUF—Get a Buffer from a Pool

The GETBUF macro instruction can be used with the basic access technique to request a

buffer from a buffer pool constructed by the BUILD, GETPOOL, or OPEN macro

instruction. The address of the buffer is returned by the system in a register you specify

when you issue the macro instruction. If no buffer is available, the register contains 0 .
instead of an address.

FREEBUF—Return a Buffer to a Pool .

The FREEBUF macro instruction is used with the basic access technique to return a
buffer to the buffer pool from which it was obtained by a GETBUF macro instruction.
Although the buffers need not be returned in the order in which they were obtained, they
must be returned when they are no longer needed.

FREEDBUF—Return a Dynamic Buffer to a Pool

Any buffer obtained through the dynamic buffer option must be released before it can be

used again. When you are processing a direct data set, if you do not update the block in

the buffer and thus free the buffer when the block is written, you must use the

FREEDBUF macro instruction. If there is an uncorrectable input/output error, the

control program releases the buffer. When you are processing an indexed sequential data PN
set, if you do not update the block in the buffer or if there is an uncorrectable input
error, the control program releases the buffer when the next READ macro instruction is
issued on the same DECB, unless you use the FREEDBUF macro instruction.

88 OS/VS Data Management Services Guide

To effect the release, you must specify the address of the DECB that was used when the
block was read using the dynamic buffering option, as well as the address of the DCB
associated with the data set being processed.

Processing a Sequential Data Set

Data sets residing on all volumes other than direct-access volumes must be processed
sequentially. In addition, a data set residing on a direct-access volume, regardless of
organization, can be processed sequentially. This includes data sets created using ISAM
or a similar access method. Since the entire data set (prime, index, and overflow areas)
will be processed, care should be taken to determine the type of records being processed.
This feature of the operating system allows you to write your program with little regard
for the type of device to be used when the program is executed, except for restrictions on
the use of certain device-dependent macro instructions and processing options.

Fither the queued or the basic access technique may be used to store and retrieve the
records of a sequential data set. Additionally, a technique called chained scheduling can
be used to accelerate the input/output operations required for a sequential data set. In
VS1, chained scheduling is supported only in nonpageable storage. If chained scheduling
is requested in pageable storage, the request is ignored and normal scheduling is
substituted.

Data Format—Device Type Considerations

Before execution of your program, you must supply the operating system with both the
record format (RECFM) and device-dependent (DEVD) information in a DCB macro
instruction, a DD statement, or a data set label. The DCB subparameters for the DD
statement differ slightly from those described here. A complete description of the DD
statement and a glossary of DCB subparameters is contained in OS/VS1 JCL
Reference and OS/VS2 JCL.

The record format (RECFM) parameter of the DCB macro instruction specifies the
characteristics of the records in the data set as fixed-length (RECFM=F),
variable-length (RECFM=V or D), or undefined-length (RECFM=U). Fixed-length
blocked records (RECFM=FB) can be specified as standard (RECFM=FBS), which
means there are no truncated (short) blocks or unfilled tracks within the data set, with
the possible exception of the last block or track. Data sets with a fixed-length, standard
format were described previously under “Fixed-Length Records, Standard Format.”

As an optional feature, a control character can be contained in each record. This control
character will be recognized and processed if the data set is printed or punched. The
control characters are transmitted on both tapes and direct-access volumes. The presence
of a control character is indicated by M or A in the RECFM field of the data control
block. M denotes machine code; A denotes American National Standards Institute
(ANSI) code. If either M or A is specified, the character must be present in every record;
the printer space (PRTSP) or stacker select (STACK) field of the DCB is ignored. The
optional control character must be in the first byte of format-F and format-U records
and in the fifth byte of format-V records and format-D records where BUFOFF=L.

Part 2: Data Management Processing Procedures 89

Control character codes are listed in “Appendix B: Control Characters.” The
device-dependent (DEVD) parameter of the DCB macro instruction specifies the type of
device on which the data set’s volume resides:

TA magnetic tape
PT paper tape reader
PR printer
PC card punch
RD card reader
DA direct-access device or
Mass Storage System (MSS) virtual volumes

Magnetic Tape (TA)

Format-F, V, D, and U records are acceptable for magnetic tape. Format-V records are
not acceptable on 7-track tape if the data conversion feature is not available. ASCII
records are not acceptable on 7-track tape.

When you create a tape data set with variable-length record format (V or D), the control
program pads any data block shorter than 18 bytes. For format-V records, it pads to the
right with binary zeros so that the data block length equals 18 bytes. For format-D
(ASCII) records, the padding consists of ASCII circumflex (>) characters which are
equivalent to X‘5E’s.

Note that there is no minimum requirement for blocksize; however, if a data check
occurs on a magnetic-tape device, any record shorter than 12 bytes in a read operation or
18 bytes in a write operation will be treated as a noise record and lost. No check for
noise will be made unless a data check occurs.

Tape density (DEN) specifies the recording density in bits per inch per track, as shown
in Figure 41. If this information is not supplied, the highest applicable density is assumed.

Recording Density

DEN 7-Track Tape 9-Track Tape
0 200 —

1 556 —

2 800 800 (NRZI)

3 —_ 1600 (PE)

4 — 6250 (GCR)

NRZI is for non-return-to-zero-inverted mode
PE is for phase encoded mode
GCR is for group coded recording mode

Note: Specifying DEN=0 for a 7-track 3420 tape attached to a 3803-1 will result in 556 bits per
inch recording, but corresponding messages and tape labels will indicate 200 bits per inch
recording density.

Figure 41. Tape Density (DEN) Values

The track recording technique (TRTCH) for 7-track tape can be specified as:

C Data conversion is to be used. Data conversion makes it possible to write 8 binary
bits of data on 7 tracks. Otherwise, only 6 bits of an 8-bit byte are recorded. The
length field of format-V records contains binary data and is not recorded correctly
without data conversion.

E Even parity is to be used; if E is omitted, odd parity is assumed.
T BCDIC to EBCDIC translation is required.

90 OS/VS Data Management Services Guide

Paper-Tape Reader (PT)

The paper-tape reader accepts format-F and format-U records. If you use QSAM, you
should not specify the records as blocked. Each format-U record is followed by an
end-of-record character. Data read from paper tape may optionally be converted into the
System/370 internal representation of one of six standard paper-tape codes. Any
character found to have a parity error will not be converted when the record is
transferred into the input area. Characters deleted in the conversion process are not
counted in determining the block size.

The following symbols indicate the code in which the data was punched. If this
information is omitted, I is assumed.

IBM BCD perforated tape and transmission code (8 tracks)
Friden (8 tracks)

Burroughs (7 tracks)

National Cash Register (8 tracks)

ASCII (8 tracks)

Teletypel (5 tracks)

No conversion

ZzHpy>pO03FT

Note that when you are using QSAM, the processing mode must be move mode.

Card Reader and Punch (RD/PC)

Format-F and U records are acceptable to both the reader and punch; format-V records
are acceptable to the punch only. The device control character, if specified in the
RECFM parameter, is used to select the stacker; it is not punched. The first 4 bytes
(record descriptor word or segment descriptor word) of format-V records or record
segments are not punched. For format-V records, at least 1 byte of data must follow the
record or segment descriptor word or the carriage control character.

Each punched card corresponds to one physical record. Therefore, you should restrict the
maximum record size to 80 (EBCDIC mode) or 160 (column binary mode) data bytes.
When mode (C) is used for the card punch, BLKSIZE must be 160 unless you are using
PUT. Then you can specify BLKSIZE as 160 or a multiple of 160, and the system
handles this as described earlier under “PUT—WTite a Record” in the section “Queued
Access Techniques.” You can specify the read/punch mode of operation (MODE)
parameter as either card image (column binary) mode (C) or EBCDIC mode (E). If this
information is omitted, E is assumed. The stacker selection parameter (STACK) can be
specified as either 1 or 2 to indicate which bin is to receive the card. If it is not specified,
1 is assumed.

For all QSAM, RECFM=FB, card punch data sets, the block size in the DCB will be
adjusted by the system to equal the logical record length. This data set will be treated as
RECFM=F. If the system builds the buffers for this data set, the buffer length will be
determined by the BUFL parameter. If the BUFL parameter was not specified, the
adjusted block size is used for the buffer length.

If the DCB is to be reused with a block size larger than the logical record length, you
must reset DCBBLKSI in the DCB and insure that the buffers are large enough to
contain the largest block size expected. You may insure the buffer size by specifying the
BUFL parameter before the first time the data set is opened or by issuing the
FREEPOOL macro instruction after each CLOSE macro so the system will build a new
buffer pool of the correct size each time the data set is opened.

Note that when QSAM is used, punch error correction on the IBM 2540 Card Read
Punch is automatically performed only for data sets using three or more buffers without

1 Trademark of the Teletype Corporation

Part 2: Data Management Processing Procedures 91

the chained scheduling feature. Punch error correction on the IBM 2540 Card Read
Punch is not performed when using MVS.

The 3525 Card Punch accepts only format-F records for print data sets and for
associated data sets. Other record formats are allowed for the read data set, the punch
data set, and the interpret punch data set. See OS and OS/VS Programming Support
for the IBM 3505 Card Reader and IBM 3525 Card Punch for more information
on programming for the 3525 Card Punch.

Printer (PR)

Records of format-F, V, and U are acceptable to the printer. The first 4 bytes (record
descriptor word or segment descriptor word) of format-V records or record segments are
not printed. For format-V records, at least 1 byte of data must follow the record or
segment descriptor word or the carriage control character. The carriage control
character, if specified in the RECFM parameter, is not printed. The system does not
position the printer to channel 1 for the first record unless specified by a carriage control
character.

Because each line of print corresponds to one record, the record length should not
exceed the length of one line on the printer. For variable-length spanned records, each
line corresponds to one record segment, and blocksize should not exceed the length of
one line on the printer.

If carriage control characters are not specified, you can indicate printer spacing (PRTSP)
as 0, 1, 2, or 3. If it is not specified, 1 is assumed.

For all QSAM, RECFM=FB, printer data sets, the block size in the DCB will be

adjusted by the system to equal the logical record length. This data set will be treated as

RECFM=F. If the system builds the buffers for this data set, the buffer length will be

determined by the BUFL parameter. If the BUFL parameter was not specified, the @,
adjusted block size is used for the buffer length.

If the DCB is to be reused with a block size larger than the logical record length, you
must reset DCBBLKSI in the DCB and insure that the buffers are large enough to
contain the largest block size expected. You may insure the buffer size by specifying the
BUFL parameter before the first time the data set is opened or by issuing the
FREEPOOL macro instruction after each CLOSE macro so the system will build a new
buffer pool of the correct size each time the data set is opened.

Direct-Access Device (DA)

Direct-access devices accept records of format-F, V, or U. If the records are to be read

or written with keys, the key length (KEYLEN) must be specified. In addition, the

operating system has a standard track format for all direct access volumes. Each track .
contains data information as well as certain control information such as: '

o The address of the track

« The address of each record
e The length of each record
« Gaps between areas

A complete description of track format is contained in the section “Direct-Access Device
Characteristics.” Your only concern in creating a sequential data set is to allow for an

8-byte track descriptor record (capacity record or R0) when requesting space on a

direct-access volume. In addition, device overhead, which varies with the device, must be "'-\
allocated for each block on the track. o

92 OS/VS Data Management Services Guide

Device Control

The operating system provides you with six macro instructions for controlling
input/output devices. Each is, to varying degrees, device-dependent. Therefore, you
must exercise some care if you wish to achieve device independence.

When you use the queued access technique, only unit record equipment can be controlled
directly. When using the basic access technique, limited device independence can be
achieved between magnetic-tape and direct-access devices. You must check all read or
write operations before issuing a device control macro instruction.

CNTRL—Control an I/O Device
The CNTRL macro instruction performs these device-dependent control functions:
o Card reader stacker selection (SS)
¢ Printer line spacing (SP)
« Printer carriage control (SK)
o Magnetic-tape backspace (BSR) over a specified number of blocks

¢ Magnetic-tape backspace (BSM) past a tapemark and forward space over the
tapemark

« Magnetic-tape forward space (FSR) over a specified number of blocks

o Magnetic-tape forward space (FSM) past a tapemark and a backspace over the
tapemark

Backspacing moves the tape toward the load point; forward spacing moves the tape away
from the load point.

Note that the CNTRL macro instruction cannot be used with an input data set
containing variable-length records on the card reader.

You can use the CNTRL macro instruction to position DOS tapes that contain
embedded DOS checkpoint records if you specify OPTCD=H in the DCB parameter
field of the DD statement. The CNTRL macro instruction cannot be used to backspace
DOS 7-track tapes that are written in data convert mode and contain embedded
checkpoint records.

PRTOV—Test for Printer Overflow

The PRTOV macro instruction tests for channel 9 or 12 of the printer carriage control
tape or the forms control buffer (FCB). An overflow condition causes either an
automatic skip to channel 1 or, if specified, transfer of control to your routine for
overflow processing. If you specify an overflow exit routine, set DCBIFLGS to X‘00’
before issuing another PRTOV.

If the data set specified in the DCB is not for a printer, no action is taken.

SETPRT—Printer Setup

The SETPRT macro instruction is used to initially set or dynamically change the
specifications of the 3800 Printing Subsystem. For additional information on how to use
the SETPRT macro with the 3800 printer, see IBM 3800 Printing Subsystem
Programmer’s Guide.

For printers that have a universal character set (UCS) buffer or a forms control buffer
(FCB), the SETPRT macro instruction is used to fetch UCS and FCB images from the
image library (SYS1.IMAGELIB) and load them into their respective buffers. Note that

Part 2: Data Management Processing Procedures 93

FCB images for the 3211 and 3800 are not compatible. The universal character sets for
the 1403 and the character arrangement tables for the 3800 are also incompatible.

The SETPRT macro allows you to request the operator to verify loading of the buffer.
For the 1403 and 3211 printers, the SETPRT macro allows you to specify the printing of
lowercase EBCDIC characters in uppercase when no uppercase/lowercase print chain or
train is available.

For a printer that has no carriage control tape, you can use the SETPRT macro
instruction to load the FCB, to request operator verification of buffer loading, and to
allow the operator to align the paper in the printer.

The FCB contents can be fetched from the system library or defined in your program
through the exit list of the DCB macro instruction, as discussed under “Exit List
(EXLST).”

When issued, the SETPRT macro instruction loads a special UCS buffer from the system
library. The library contains images of standard IBM character sets and of your own
special character sets. The operator can be requested to verify the loaded image after
mounting the appropriate print chain or train.

The SETPRT macro instruction can be used to block or unblock printer data checks.
When data checks are blocked, unprintable characters are treated as blanks and do not
cause an error condition.

If the specified UCS or FCB image is not found in the image library (or DCB exit list for
an FCB image), the operator is requested to specify a different one (message IEC127D
is issued).

BSP—Backspace a Magnetic Tape or Direct-Access Volume

The BSP macro instruction backspaces one block on the magnetic tape or direct-access
volume being processed. The block can then be reread or rewritten. An attempt to
rewrite the block destroys the contents of the remainder of the tape or track.

The direction of movement is toward the load point or beginning of the extent. You may
not use the BSP macro instruction if the track overflow option was specified or if the
CNTRL, NOTE, or POINT macro instruction is used. The BSP macro instruction should
be used only when other device control macro instructions could not be used for
backspacing.

Any attempt to backspace across a file mark will result in a return code of X‘04’ and
your tape or direct-access volume will be positioned after the file mark. This means you
cannot issue a successful backspace command once your EODAD routine is entered
unless you first reposition the tape or direct-access volume into your data set. (CLOSE
TYPE=T can get you positioned at the end of your data set.)

You can use the BSP macro instruction to backspace DOS tapes containing embedded
DOS checkpoint records. If you use this means of backspacing, you must test for and
bypass the embedded checkpoint records. You cannot use the BSP macro instruction for
DOS 7-track tapes written in translate mode.

NOTE~—Return the Relative Address of a Block

The NOTE macro instruction requests the relative address of the block just read or
written. In a multivolume data set, the address is relative to the beginning of the volume
currently being processed.

The address provided by the operating system is returned in register 1. The address is in
the form of a 4-byte relative block address for magnetic tape; for a direct-access device,

94 OS/VS Data Management Services Guide

it is a 4-byte relative track address. The amount of unused space available on the track of
the direct-access device is returned in register 0.

POINT—Position to a Block

The POINT macro instruction causes repositioning of a magnetic tape or direct-access
volume to a specified block. The next read or write operation begins at this block. In a
multivolume data set, you must ensure that the volume referred to is the volume
currently being processed. If a write operation follows the POINT macro instruction, all
of the track following the write operation is erased unless the data set is opened for
UPDAT. POINT is not meant to be used before a WRITE macro instruction when a data
set is opened for UPDAT. You can use the POINT macro instruction to position DOS
tapes that contain embedded checkpoint records if you specify OPTCD=H in the DCB
parameter field of the DD statement. The POINT macro instruction cannot be used to
backspace DOS 7-track tapes that are written in data convert mode and contain
embedded checkpoint records.

When using the POINT macro for a direct-access device that is opened for OUTPUT,
OUTIN, or INOUT, and the record format is not standard, the number of blocks per
track may vary slightly.

Device Independence

The ability to request input/output operations without regard for the physical
characteristics of the I/O devices makes it possible for you to write one program that will
fulfill a variety of needs. Device independence may be useful for:

e Accepting data from a number of recording devices, such as a disk pack, 7- or 9-track
magnetic tape, or unit-record equipment. This situation could arise when several types
of data-acquisition devices are feeding a centralized complex.

« Observing constraints imposed by the availability of input/output devices (for
example, when devices on order have not been installed).

« Assembling, testing, and debugging on one System/370 configuration and processing
on a different configuration. For example, a 2314 drive can be used as a substitute for
several magnetic-tape units.

Device independence is not difficult to achieve, but requires some planning and
forethought. There are two areas of planning necessary to achieve device
independence—system generation considerations and programming considerations.

System Generation Considerations

You can provide for device independence when the system is generated by generating a
system that not only meets the current input/output configuration requirements but
includes anticipated device attachments. Creating such a system entails looking ahead at
expected delivery of input/output devices and, during system generation, constructing
the necessary control blocks and tables. Thus, when the devices are delivered, they need
only be physically attached. The operating system recognizes the devices without
modification. However, until the devices are physically connected, the operator must
designate them as being offline, using the VARY command or using automatic device
status initialization. For information on automatic device status initialization, see
0S/VS1 System Generation Reference.

When new device attachments cannot be fully anticipated, you can add new devices by
performing an I/O device generation. This is a limited type of system generation that
enables you to change your 1/0 configuration without regenerating other parts of the
system.

Part 2: Data Management Processing Procedures 95

System generation techniques for effecting a smooth transition to new input/output
devices do not include addition of new device types. When support for new devices is
provided, a new system must be generated. A complete description of system generation
techniques is contained in OS/VS1 System Generation Reference and OS/VS2
System Programming Library: System Generation Reference.

Programming Considerations

Each of three data set organizations—partitioned, indexed sequential, and
direct—requires the use of a direct-access device. Device independence is meaningful,
then, only for a sequentially organized data set, that is, a data set where one block of
data follows another, thus allowing input or output to be on a magnetic tape drive, a
direct-access device, a card read/punch, a printer, or a spooled data set.

Your program will be device-independent if you do two things:

« Omit all device-dependent macro instructions and macro instruction parameters from
your program.

« Defer specifying any required device-dependent parameters until the program is ready
for execution. That is, supply the parameters on your data definition (DD) statement
or during the open exit routine.

In examining the following list of macro instructions, consider only the logical layout of
your data record without regard for the type of device used. Also, consider that any
reference to a direct-access volume is to be treated like a reference to magnetic tape, that
is, you must create a new data set rather than attempt to update.

OPEN
Specify INPUT, OUTPUT, INOUT, or OUTIN. The parameters RDBACK and
UPDAT are device-dependent and cause an abnormal termination if directed to a
device of the wrong type.

READ
Specify forward reading (SF) only.

WRITE
Specify forward writing (SF) only; use only to create new records.

PUTX
Use only output mode.

NOTE/POINT
These macros are valid for both magnetic-tape and direct-access volumes.

BSP
This macro is valid for magnetic-tape or direct-access volumes. However, its use
would be an attempt to perform device-dependent action.

CNTRL/PRTOV
These macros are device-dependent.

DCB Subparameters

MACRF
Specify R/W or G/P. Processing mode can also be indicated.

DEVD
Specify DA if any direct-access device may be used. Magnetic-tape and unit-record
equipment DCBs will fit in the area provided during assembly. Specify unit-record
devices only if you expect never to change to tape or direct-access devices. Key length
(KEYLEN) can be specified on the DD statement if necessary.

96 OS/VS Data Management Services Guide

RECFM, LRECL, BLKSIZE
These can be specified in the DD statement. However, you must consider maximum
record size for specific devices, and track overflow cannot be specified unless
supported.

DSORG
Specify sequential organization (PS or PSU).

OPTCD
This subparameter is device-dependent; specify it in the DD statement.

SYNAD

Any device-dependent error checking is automatic. Generalize your routine so that no
device-dependent information is required.

Chained Scheduling for 1/0 Operations

To accelerate the input/output operations required for a data set, the operating system
provides a technique called chained scheduling. When requested, the system bypasses
the normal I/O routines and dynamically chains several input/output operations
together. A series of separate read or write operations, functioning with chained
scheduling, is issued to the computing system as one continuous operation. In a
nonpageable partition or address space, the program-controlled interruption (PCI) flag in
the CCWs is used for synchronization of the I/O operations.

The I/0O performance is improved by reduction in both the CPU time and the channel
start/stop time required to transfer data within virtual storage. Some factors that affect
performance improvement are:

« Address space type (real or virtual)

« BUFNO for QSAM

« The number of overlapped requests for BSAM
« Other activity on the CPU and channel

The effects of rotational delay are also reduced since several successive blocks, requested
separately, can be retrieved in a single rotation. Chained scheduling can be used only
with simple buffering. Each data set for which chained scheduling is specified must be
assigned at least two and preferably three buffers with QSAM, or must have a value of at
least two and preferably three for NCP with BSAM or BPAM.

Chained scheduling will be supported by VS2 whether it is requested or not (except for
printers and format-U input records). Chained scheduling will not be used where it is not
allowed.

A request for chained scheduling will be ignored and normal scheduling used if any of
the following are encountered when the data set is opened:

« BDAM CREATE, that is, MACRF=(WL)

o Track overflow

« UPDAT in the operand of the OPEN macro instruction
| « Exchange buffering (in VS1)

« CNTRL macro instruction to be used

« Device type is paper tape reader

« Bypassing of embedded DOS checkpoint records on tape input data sets
| ¢ Spooled data sets (SYSIN or SYSOUT)

Part 2: Data Management Processing Procedures 97

« A print data set or any associated data set for the 3525 Card Punch. (See OS and
OS/VS Programming Support for the IBM 3505 Card Reader and IBM 3525 ~
Card Punch for more information on programming for the 3525.) i

The number of channel program segments that can be chained is limited to the value
specified in the NCP operand of BSAM and BPAM DCBs, and to the value specified in
the BUFNO operand of QSAM DCBs.

When chained scheduling is being used, the automatic skip feature of the PRTOV macro

instruction for the printer will not function. Format control must be achieved by ANSI or

machine control characters. (Control characters are discussed in more detail in Part 1

under “Control Character,” in Part 2 under “Data Format—Device Type

Considerations,” and in “Appendix B: Control Characters.””) When you read

undefined-length records with QSAM, the DCBLRECL field is equal to the BLKSIZE

field, not the actual record length. The entire block is moved to your work area in the

move mode. When you are using QSAM under chained scheduling to read

variable-length, blocked, ASCII tape records (format-DB), you must code BUFOFF=L ”
in the DCB for that data set.

Note also that if you are using BSAM with the chained scheduling option to read
format-DB records and have coded a value for the BUFOFF operand other than
BUFOFF=L, the input buffers will be converted from ASCII to EBCDIC as usual, but
the record length returned to the DCBLRECL field will equal the block size, not the
actual length of the record read in; the record descriptor word (RDW), if present, will
not have been converted from ASCII to binary.

When chained scheduling is used on the 2540 Card Read Punch, error recovery
procedures are not performed.

Chained scheduling is most valuable for programs that require extensive input and output -~
operations. Because a data set using chained scheduling may monopolize available time :
on a channel, separate channels should be assigned, if possible, when more than one data

set is to be processed.

Search Direct for Input Operations

To accelerate the input operations required for a data set on DASD, the operating system
provides a technique called search direct. Search direct reads in the requested record and
the count field of the second record. This allows the operation to get the next record
directly, along with the count field of the following record. Search direct can be used
with all record formats except format-UT, format-FBT, format-FS, format-FBS, and
spanned. You request search direct by coding OPTCD=Z in the DCB macro instruction.
For FS and FBS records, the access method routines always use a form of search-direct
processing. Search direct cannot be used under the following counditions: “

« In conjunction with the NOTE and POINT macro instructions
+ When you specify the UPDAT option of the OPEN macro instruction

« For partitioned data sets

98 OS/VS Data Management Services Guide

Creating a Sequential Data Set

As discussed earlier, a processing program should be developed using, as much as
possible, factors that are constant, with variable factors specified at execution. For that
reason, the following examples are generalized as much as possible. They are neither
exhaustive nor intended as complete examples. Rather, they are presented as
introductory sequences.

In creating a sequential data set on a magnetic tape or direct-access device, you must do
the following:

+ Code DSORG=PS or PSU in the DCB macro instruction

o Code a DD statement to describe the data set (See OS/VS1 JCL Reference or
0S/VS2 JCL))

« Process the data set with an OPEN macro instruction (data set is opened for output o
OUTIN), a series of PUT or WRITE and CHECK macros, and then a CLOSE macro

Tape-to-Print, Move Mode—Simple Buffering: In Figure 42, the GET-move and
PUT-move require two movements of the data records. If the record length (LRECL)
does not change in processing, only one move is necessary; you can process the record in
the input buffer segment. A GET-locate can be used to provide a pointer to the current
segment.

Tape-to-Print, Locate Mode—Simple Buffering: This example (Figure 43) is similar to
that in Figure 42. However, since there is no change in the record length, the records car
be processed in the input buffer. Only one move of each data record is required.

Tape-to-Print, Substitute Mode—Exchange Buffering: Although the initial problem is
the same, the solution described in Figure 44 takes advantage of exchange buffering,
which eliminates the need to move the data record, and makes direct reference to
individual fields within a record through the use of a dummy control section (DSECT).
The use of the DSECT allows symbolic reference to be made for storage-to-storage
operations; therefore, the length attributes need not be explicitly stated.

NEXTREC

TAPERROR

ENDJOB

WORKAREA
COUNT
NUMBER
SAVE14
INDATA

OUTDATA

OPEN

(INDATA, ,OUTDATA, (OUTPUT))
GET INDATA , WORKAREA Move mode
AP NUMBER,=P"'1"'
UNPK COUNT, NUMBER Record count adds 6
PUT OUTDATA, COUNT bytes to each record
B NEXTREC
SYNADAF ACSMETH=QSAM Control program returns message
LA 0,68(0,1) address in register 1.
ST 14 ,SAVE14 SYNAD routine prints part of
PUT OUTDATA,(0) the message (beginning with
SYNADRLS the unit number) as a 56-byte
L 14 ,SAVE14 fixed-length record. It then
RETURN returns to the control
CLOSE (INDATA, ,OUTDATA) program.
DS CL50
DS CL6
DC PL4'0’
DS F
DCB DDNAME=INPUTDD, DSORG=PS , MACRF=(GM) , EROPT=ACC, C
SYNAD=TAPERROR , EODAD=ENDJOB
DCB DDNAME=OUTPUTDD, DSORG=PS , MACRF=(PM), EROPT=ACC

Figure 42. Creating a Sequential Data Set—Move Mode, Simple Buffering

Part 2: Data Management Processing Procedures 9

e

OPEN (INDATA, ,OUTDATA, (OUTPUT), ERRORDCB, (OUTPUT))

NEXTREC GET INDATA Locate mode
LR 2,1 Save pointer
AP NUMBER,=P'1"
UNPK 0(6,2),NUMBER Process in input area
PUT OUTDATA Locate mode
MVC 0(50,1),0(2) Move record to output buffer
B NEXTREC :
TAPERROR - SYNADAF ACSMETH=QSAM Message address in register 1
ST 2,SAVE2 Save register 2 contents
L 2,8(0,1) Load pointer to input buffer
MVC 8(70,1),50(1) Shift nonblank message fields
MVI 78(1),Cct ! Blank end of message
MVC 79(49,1),78(1)
ST 2,128(1) Save address for debugging
CH 0,=H'4" Test SYNADAF return code
BE MOVERCD Branch if data not read
BL PRINTIT Branch if data not read
CLI 128(1),c' ! See if data read anyway
BE - PRINTIT Branch if definitely no data
MOVERCD MVC 78(50,1),0(2) Add input record to message
PRINTIT LA 0,4(1) Load address of message
LR 2,14 Save return address
PUT ERRORDCB, (0) Print message (move mode)
SYNADRLS Release message and save area
LR 14,2 Restore return address
L 2,SAVE2 Restore register 2 contents -
RETURN Return to control program
ENDJOB CLOSE (INDATA, ,OUTDATA, , ERRORDCB)
NUMBER DC PL4'0"
INDATA DCB DDNAME=INPUTDD, DSORG=PS ,MACRF=(GL), EROPT=ACC, C
SYNAD=TAPERROR , EODAD=ENDJOB
OUTDATA DCB DDNAME=0OUTPUTDD, DSORG=PS ,MACRF=(PL)
ERRORDCB DCB DDNAME=SYSOUTDD, DSORG=PS ,MACRF=(PM),RECFM=V, C

BLKSIZE=128, LRECL=124

SAVE2 DS F

Figure 43. Creating a Séquential Data Set—L.ocate Mode, Simple Buffering

Retrieving a Sequential Data Set

In retrieving a sequential data set on a magnetic tape or direct-access device, you must

do the following:

¢ Code DSORG=PS or PSU in the DCB macro instruction

« Tell the system where your data set is located (by coding a DD statement; see
OS/VS1 JCL Reference or OS/VS2 JCL).

« Process the data set with an OPEN macro instruction (data set is opened for input,
INOUT, RDBACK, or UPDAT), a series of GET or READ macros and then a

CLOSE macro.

Updating a Sequential Data Set

When you update in place, you read records, process them, and write them back to their
original positions without destroying the remaining records on the track. The following

rules apply:

« You must specify the update option (UPDAT) in the OPEN macro instruction. To
perform the update, you can use only the READ, WRITE, CHECK, NOTE, POINT,

GET, and PUTX macro instructions.

100 OS/VS Data Management Services Guide

.o e

OPEN (INDATA, ,OUTDATA, (OUTPUT) , ERRORDCB, (OUTPUT))

LA 0,GIVEAWAY Set up for first buffer
NEXTREC GET INDATA, (0) Substitute mode
LR 2,1 Pointer to next record
USING RECORD, 2 . Establish address of DSECT
AP NUMBER,=P'1" :
UNPK COUNT , NUMBER
PUT OUTDATA,RECORD Substitute mode
LR 0,1 . Exchange work area
B NEXTREC
TAPERROR SYNADAF ACSMETH=QSAM SYNAD routine is same
ves as in previous example
ENDJOB CLOSE (INDATA, ,OUTDATA, , ERRORDCE)
DS 0D
GIVEAWAY DS CL50
NUMBER DC PL4"'-"
INDATA DCB DDNAME=INPUTDD, DSORG=PS,MACRF=(GT), BFTEK=E, BFALN=D, C
EROPT=ACC, SYNAD=TAPERROR , EODAD=ENDJOB
OUTDATA DCB DDNAME=OUTPUTDD, DSORG=PS ,MACRF=(PT) , BFTEK=E, BFALN=D, C
EROPT=ACC
RECORD DSECT
COUNT DS CL6
RESTOFIT DS CL44

Figure 44. Creating a Sequential Data Set—Substitute Mode, Exchange Buffering

« You cannot use chained scheduling.
« You cannot delete any record or change its length; you cannot add new records.
« The data set must be on a direct-access device.

A record must be retrieved by a READ or GET macro instruction before it can be
updated by a WRITE or PUTX macro instruction. A WRITE or PUTX macro
instruction does not need to be issued after each READ or GET macro instruction. The
READ and WRITE macro instructions must be execute forms that refer to the same
DECB; the DECB must be provided by the list. forms of the READ or WRITE macro
instructions. (The execute and list forms of the READ and WRITE macro instructions
are described in OS/VS Data Management Macro Instructions.)

Updating With Overlapped Operations: To overlap input/output and CPU activity, you
can start several read or write operations before checking the first for completion. You
cannot overlap read with write operations, however, as operations of one type are startec
or resumed. Note that each concurrent read or write operation requires a separate
channel program and a separate DECB. If a single DECB were used for successive read
operations, only the last record read could be updated.

In Figure 54, overlap is achieved by having a read or write request outstanding while
each record is being processed. Note the use of the execute and list forms of the READ
and WRITE macro instructions, identified by the operands MF=E and MF=L..

Extending a Sequential Data Set

If you want to add records at the end of your data set, you must open the data set for
output with DISP=MOD specified in the DD statement. You can then issue PUT or
WRITE macros to the data set.

Part 2: Data Management Processing Procedures 10

Determining the Length of a Record When Using the BSAM

READ Macro

When you read a sequential data set, you can determine the length of the record in one
of the following four ways, depending upon the record format of the data set:

« For fixed-length, unblocked records, the length of all records is the value in the

DCBBLKSI field of the DCB.

For variable-length records, the block descriptor word in the record contains the
length of the record.

For fixed-length blocked or undefined-length records, the following method can be
used to calculate the block length. (This method should not be used when reading
track overflow records on a device with the rotational position sensing (RPS) feature
or when using chained scheduling on any device. The length of a record cannot be
determined when using chained scheduling.) After checking the DECB for the READ
request but before issuing any subsequent data management macro instructions that
specify the DCB for the READ request, obtain the IOB address from the DECB. The
IOB address can be loaded from the location 16 bytes from the start of the DECB.

Obtain the residual count from the channel status word (CSW) that has been stored in
the input/output block (I0B). The residual count is in the halfword 14 bytes from the
start of the IOB. Subtract this residual count from the number of data bytes requested
to be read by the READ macro instruction. If “S”’ was coded as the length parameter
of the READ macro instruction, the number of bytes requested is the value of
DCBBLKSI at the time the READ was issued. If the length was coded in the READ
macro instruction, this value is the number of data bytes and it is contained in the
halfword 6 bytes from the beginning of the DECB. The resuit of the subtraction is the
length of the block read. See Figure 45.

OPEN (DCB, (INPUT))

LA

USING

READ

READ

CHECK

LH

L

SH

CHECK

LH

L

SH

MVC

READ

CHECK

LH

L

SH
DCB DCB

DCBD

DCBR,DCB
IHADCB, DCBR

DECB1,SF,DCB, AREA1, 'S’
DECB2,SF,DCB,AREA2,50

DECB1

WORK1,DCBBLKSI Block size at time of READ
WORK2,DECB1+16 I0B address

WORK1, 14(WORK?2) WORK1 has block length
DECB2

WORK 1 ,DECB2+6 Length requested

WORK2 ,DECB2+16 IOB address

WORK1, 14(WORK2) WORK1 has block length
DCBBLKSI, LENGTH3 Length to be read

DECB3, SF,DCB,AREA3

DECB3

WORK 1, LENGTH3 Block size at time of READ
WORK?2 ,DECB+16 IOB address

WORK 1, 14(WORK2) WORK1 has block length

.. .RECFM=U,NCP=2, ...

Figure 45. One Method of Determining the Length of the Record When Using BSAM to Read Undefined-Length Records

102 OS/VS Data Management Services Guide

» For undefined-length records, the LRECL operand should be omitted; the actual
length can be supplied dynamically in a READ/WRITE macro instruction. (This
method should not be used when reading track overflow records on a device with the
rotational position sensing (RPS) feature or when using chained scheduling on any
device.) When an undefined-length record is read, the actual length of the record is
returned by the system in the DCBLRECL field of the data control block.

Writing a Short Block When Using the BSAM WRITE Macro

When you are writing blocks for a sequential data set, you can change the length of a
block if you have fixed-blocked record format. The DCB block size field (DCBBLKSI)
can be changed to specify a block size that is shorter than what was originally specified
for the data set. The DCBBLKSI field must be changed before issuing the WRITE macro
instruction and must be a multiple of the LRECL parameter in the DCB. Any
subsequent WRITE macro instructions issued will write records with the new block
length until the block size is changed again. The DCB block size field should not be
changed to specify a block size that is greater than what was originally specified for the
data set.

Processing a Partitioned Data Set

A partitioned data set can be stored only on a direct-access device. It is divided into
sequentially organized members, each made up of one or more records (see Figure 46).
Each member has a unique name, 1 to 8 characters long, stored in a directory that is part
of the data set. The records of a given member are stored or retrieved sequentially.

The main advantage of using a partitioned data set is that you can retrieve any individual
member once the data set is opened without searching the entire data set. For example, a
program library can be stored as a partitioned data set, each member of which is a
separate program or subroutine. The individual members can be added or deleted as
required. When a member is deleted, the member name is removed from the directory,
but the space used by the member cannot be reused until the data set is reorganized.

Directory
Records

T T

i
Entry for | Entry for : Entry for : Entry for
Member A | |

T T
|
[
|

Member B | Member C Member K

Space fr
- Deleted
Member

— Auvailab
Area

Figure 46. A Partitioned Data Set

Part 2: Data Management Processing Procedures 10

The directory, a series of records at the beginning of the data set, contains an entry for
each member. Each directory entry contains the member name and the starting location
of the member within the data set, as shown in Figure 46. In addition, you can specify up
to 62 characters of information in the entry. The directory entries are arranged in
alphameric collating sequence by name.

The track address of each member is recorded by the system as a relative track address
within the data set rather than as an absolute track address. Thus, an entire data set can
be moved without changing the relative track addresses in the directory. The data set can

be considered as one continuous set of tracks regardless of how the space was actually
allocated.

If there is not sufficient space available in the directory for an additional entry, or not

enough space available within the data set for an additional member, no new members
can be stored.

Partitioned Data Set Directory

The directory of a partitioned data set occupies the beginning of the area allocated to the
data set on a direct-access volume. It is searched and maintained by the FIND and
STOW macro instructions. The directory consists of member entries arranged in
ascending order according to the binary value of the member name or alias.

Member entries vary in length and are blocked into 256-byte blocks. Each block
contains as many complete entries as will fit in a maximum of 254 bytes; any remaining
bytes are left unused and are ignored. Each directory block contains a 2-byte count field
that specifies the number of active bytes in a block (including the count field). As shown
in Figure 47, each block is preceded by a hardware-defined key field containing the
name of the last member entry in the block, that is, the member name with the highest
binary value.

Each member entry contains a member name or alias. There can be as many as 16 aliases
for each member. Each entry also contains the relative track address of the member and
a count field, as shown in Figure 48. In addition, it may contain a user data field. The last
entry in the last directory block has a name field of maximum binary value—all 1s.

NAME

specifies the member name or alias. It contains up to 8 alphameric characters,
left-justified and padded with blanks if necessary.

TTR

is a pointer to the first block of the member; TT is the number of the track, relative to
the beginning of the data set, and R is the number of the block, relative to the
beginning of that track.

Note: This pointer is created by adding 1 to the TTR for the last block of the
previous member (which is an end-of-file mark). If track TT is full, the next block will
begin at record 1 of track TT + 1, and the pointer will be updated accordingly. The
control program finds the block by searching in multitrack mode using TT(R-1) as a

Count Key Data L
L : Name of Number of -
Iéast I(B&Ites Used Member Member Member
ntry in aximum Entry A Entry B
Block 256) Y A I Enury N
N M ~
Bytes 8 2 254

Figure 47. A Partitioned Data Set Directory Block

104 OS/VS Data Management Services Guide

Member Optional User Data

TTR c
Name TTRNJ TTRN] TTRN |

8 3 | = — ~ ~
| S~ 0-31 halfwords
I ~ _ (Maximum 62 bytes)
Pointer to | ~~ -
First Record : S~
of Member | S~
S~
| >~
| ~ -
~
11f Number of
Name is an User Data g:glﬁ;?vigze;
Alias TTRNs
Bits 0 1-2 3-7

Figure 48. A Partitioned Data Set Directory Entry

search argument.

C
specifies the number of halfwords contained in the user data field. It may also contain
additional information about the user data field, as shown below:

Bits 0 1-2 37

0 when set to 1, indicates that the NAME field contains an alias.
1-2 specifies the number of pointers to locations within the member.

A maximum of three pointers is allowed in the user data field. Additional pointers
may be contained in a record referred to as a note list, discussed below. The
pointers can be updated automatically if the data set is moved or copied by a utility
program such as IEHMOVE. The data set must be marked unmovable under the
following conditions:

o More than three pointers are used in the user data field.

« The pointers in the user data field or note list do not conform to the standard
format.

» The pointers are not placed first in the user data field.

+ Any direct access address (absolute or relative) is embedded in any data blocks
or in another data set that refers to this data set.

3-7 contains a binary value indicating the number of halfwords of user data. This
number must include the space used by pointers in the user data field.

Part 2: Data Management Processing Procedures 10!

You can use the user data field to provide variable data as input to the STOW macro
instruction. If pointers to locations within the member are provided, they must be 4 bytes
long and placed first in the user data field. The user data field format is as follows:

User Data

TTRN | TTRN | TTRN Optional

TT is the relative track address of the note list or area to which you are pointing.
R s the relative block number on that track.

N s a binary value that indicates the number of additional pointers contained in a
note list pointed to by the TTR. If the pointer is not to a note list, N=0.

A note list consists of additional pointers to blocks within the same member of a
partitioned data set. You can divide a member into subgroups and store a pointer to the
beginning of each subgroup in the note list. The member may be a load module
containing many control sections (CSECTs), each CSECT being a subgroup peinted to
by an entry in the note list. You get the pointer to the beginning of the subgroup by
using the NOTE macro instruction after you write the first record of the subgroup.
Remember that the pointer to the first record of the member is stored in the directory
entry by the system.

If the existence of a note list was indicated as shown above, the list can be updated
automatically when the data set is moved or copied by a utility program such as
IEHMOVE. Each 4-byte entry in the note list has the following format:

TTRX

TT is the relative track address of the area to which you are pointing.
R is the relative block number on that track.
X is available for any use.

To place the note list in the partitioned data set, you must use the WRITE macro
instruction. After checking the write operation, use the NOTE macro instruction to
determine the address of the list and place that address in the user data field of the
directory entry.

Processing a Member of a Partitioned Data Set

Because a member of a partitioned data set is sequentially organized, it is processed in
the same manner as a sequential data set. Either the basic or queued access technique
can be used. However, you cannot alter the directory when using the queued technique.

To locate a member or to process the directory, several macro instructions are provided
by the operating system. The BLDL macro instruction can be used to structure a list of
directory entries in virtual storage; the FIND macro instruction locates a member of the
data set for subsequent processing; the STOW macro instruction adds, deletes, replaces,
or changes a member name in the directory. To use these macro instructions, you must
specify DSORG=:PO or POU in the DCB macro instruction. Before issuing a FIND,
BLDL, or STOW macro instruction, you must check all preceding input/output
operations for completion.

106 OS/VS Data Management Services Guide

BLDL—Construct a Directory Entry List

The BLDL macro instruction is used to place directory information in virtual storage.
The data is placed in a build list, which you construct before the BLDL macro instruction
is issued. The format of the list is similar to that of the directory. For each member name
in the list, the system supplies the address of the member and any additional information
contained in the directory entry. Note that if there is more than one member name in the
list, the member names must be in collating sequence regardless of whether the members
are from the same library or from different libraries.

You can optimize retrieval time by directing a subsequent FIND macro instruction to the
build list rather than the directory to locate the member to be processed.

The build list, as shown in Figure 49, must be preceded by a 4-byte list description that
indicates the number of entries in the list and the length of each entry (12 to 76 bytes).
The first 8 bytes of each entry contain the member name or alias. The next 6 bytes must
be available to contain the starting address of the member plus some control data. If
there is no user data entry, only the TTR and C fields are required. If additional
information is to be supplied from the directory, up to 62 bytes can be reserved.

FIND—Position to a Member

To determine the starting address of a specific member, you must issue a FIND macro
instruction. The system places the correct address in the data control block so that a
subsequent input or output operation begins processing at that point.

There are two ways you can direct the system to the right member when you use the
FIND macro instruction: specify the address of an area containing the name of the
member or specify the address of the TTR field of the entry in a build list you have
created by using the BLDL macro instruction. In the first case, the system searches the
directory of the data set for the relative track address; in the second case, no search is
required because the relative track address is in the build list entry.

(Each entry starts on halfword boundary)

List Filled in by BLDL
Description FFLL | ~ s —

Member TIR | K | Z C Use’rFData
Name (C) @) (M| (C Halfwords)

Programmer Supplies:
FF Number of member entries in list.
LL Even number giving byte length of each entry (minimum of 12).

Member name

BLDL Supplies:
TTR
K

y4

C
User data

Eight bytes, left-justified.

Member starting location.

If only data set = 0. If concatenation = number.

Not required if no user data.

Source of directory entry. Private library = 0.

Link library = 1. Job or step library = 2.

Not required if no user data.

Same C field from directory. Gives number of user data halfwords.

As much as will fit in entry,

Figure 49. Build List Format

Part 2: Data Management Processing Procedures 107

If you want to process only one member, you can process it as a sequential data set
(DSORG=PS) using either BSAM or QSAM. You indicate the name of the member you
want to process and the name of the partitioned data set in the DSNAME parameter of
the DD statement. When you open the data set, the system places the starting address in
the data control block so that a subsequent GET or READ macro instruction begins
processing at that point. You cannot use the FIND, BLDL, or STOW macro instructions
when you are processing one member as a sequential data set.

STOW-—Update the Directory

When you add several members to a partitioned data set, you must issue a STOW macro
instruction after writing each member so that an entry for each one will be added to the

directory. To use the STOW macro instruction, DSORG=PO or POU must be specified
in the DCB macro instruction.

You can also use the STOW macro instruction to delete, replace, or change a member
name in the directory, as well as to store additional information with the directory entry.
Since an alias can also be stored in the directory the same way, you should be consistent
in altering all names associated with a given member. For example, if you replace a
member, you must delete related alias entries or change them so that they point to the
new member. '

If you add only one member to a partitioned data set and indicate the member name in
the DSNAME parameter of the DD statement, it is not necessary for you to use BPAM
and a STOW macro instruction in your program. If you wish to do so, you may use
BPAM and STOW, or BSAM or QSAM. If you use a sequential access method, or if you
use BPAM and issue a CLOSE macro instruction without issuing a STOW macro
instruction, the system will issue a STOW macro instruction using the member name you
have specified on the DD statement. This automatic STOW macro instruction will not be
issued if the CLOSE macro instruction is a TYPE=T. The DISP parameter on the DD
statement determines what directory action parameter will be chosen by the system for
the STOW macro mstructlon

If DISP=NEW or MOD was specified, a STOW macro mstructlon with the add option
will be issued. If the member name on the DD statement is not present in the data set
directory, it will be added. If the member name is already present in the directory, the
task will be abnormally terminated.

If DISP=0OLD was specified, a STOW macro instruction with the replace option will be
issued. The member name will be inserted into the directory, either as an addition if the
name is not already present or as a replacement if the name is present.

Thus, with an existing data set, you should use DISP=OLD to force a member into the
data set; you should use DISP=MOD to add members with protection against the
accidental destruction of an existing member.

Creating a Partitioned Data Set

If you have no need to add entries to the directory, that is, the STOW and BLDL macro
instructions will not be used, you can create a new data set and write the first member as
follows (see Figure 50):

« Code DSORG=PS or DSORG=PSU in the DCB macro instruction.

« Indicate in the DD statement that the data is to be stored as a member of a new
partitioned data set, that is, DSNAME=name (membername) and DISP=NEW.

« Request space for the member and the directory in the DD statement.

108 OS/VS Data Management Services Guide

« Process the member with an OPEN macro instruction, a series of PUT or WRITE

macro instructions, and then a CLOSE macro instruction. A STOW macro instruction
is issued automatically when the data set is closed.

As a result of these steps, the data set and its directory are created, the records of the
member are written, and a 12-byte entry is made in the directory.

To add additional members to the data set, follow the same procedure. However, a
separate DD statement (with the space request omitted) is required for each member.
The disposition should be specified as modify, DISP=MOD. The data set must be closed
and reopened each time a new member is specified.

To take full advantage of the STOW macro instruction, and thus the BLDL and FIND
macro instructions in future processing, you can provide additional information with each

directory entry. You do-this by using the basic access technique, which also allows you to

process more than one member without closing and reopening the data set, as follows
(see Figure 51): '

« Request space in the DD statement for the members and the directory.
« Define DSORG=PO or DSORG=POU in the DCB macro instructionf
« Use WRITE and CHECK to write and check the member records.

« -Use NOTE to note the location of any note list written within the member, if there is
a note list. '

//PDSDD

OUTDCB

DD

.o .

DCB

OPEN

~--,DSNAME=MASTFILE(MEMBERK) ,SPACE=(TRK, (100,5,7)), (
DISP=(NEW,KEEP) :

--,DSORG=PS, DDNAME=PDSDD, -~--

(OUTDCB, (OUTPUT))

PUT [or WRITE]

CLOSE

(OUTDCB) . Automatic Stow

Figure 50. Creating One Member of a Partitioned Data Set

Part 2: Data Management Processing Procedures 10

//PDSDD

OUTDCB

*
*

DCB
OPEN
WRITE
CHECK

WRITE
CHECK

NOTE
ST

WRITE
CHECK
NOTE

STOW

-—,DSNAME=MASTFILE, SPACE=(TRK, (100,5,7)),DISP=MOD -

--,DSORG=PO, DDNAME=PDSDD , ——

(OUTDCB, (OUTPUT))

*¥ Write and check first record of member.
The system will supply the relative
track address for the directory entry.
Write and check remaining records of
member.

If you are dividing the member into
subgroups, note the location of the first
record in subgroup, storing pointer

in note list.

Write note list at end of member.

Note location of note list, storing -
pointer in list for STOW.

Enter information in directory for
this member after all records and note
lists are written.

Repeat from ** for each additional member
CLOSE (OUTDCB)
Figure 51. Creating Members of a Partitioned Data Set Using STOW

« When all the member records have been written, issue a STOW macro instruction to
enter the member name, its location pointer, and any additional data in the directory.

« Continue to write, check, note, and stow until all the members of the data set and the

directory entries have been written. ‘;! ™
Retrieving a Member of a Partitioned Data Set
To retrieve a specific member from a partitioned data set, either the basic or queued
access technique can be used as follows (see Figure 52):
« Code DSORG=PS or DSORG=PSU in the DCB macro instruction.
« Indicate in the DD statement that the data is a member of an existing partitioned data
set by coding DSNAME=name(membername) and DISP=0OLD.
o Process the member with an OPEN macro instruction, a series of GET and READ)
macro instructions, and then a CLOSE macro instruction.
//PDSDD DD —-,DSNAME=MASTFILE(MEMBERK), DISP=0LD .
INDCB DCB ~-,DSORG=PS , DDNAME=PDSDD , ——
OPEN (INDCB) Automatic Find

GET (or READ)
CLOSE (INDCB)

Figure 52. Retrieving One Member of a Partitioned Data Set

When your program is executed, the directory is searched automatically and the location
of the member is placed in the DCB.

To process several members without closing and reopening, or to take advantage of
additional data in the directory, this technique should be used (see Figure 53): o~

¢« Code DSORG=PO or POU in the DCB macro instruction.

110 OS/VS Data Management Services Guide

Build a list (BLDL) of needed member entries from the directory.

Indicate in the DD statement the data set name of the partitioned data set by coding
DSNAME=name and DISP=OLD.

Use the FIND or POINT macro instruction to prepare for reading the member
records.

The records may be read from the beginning of the member, or a note list may be reac
first, to obtain additional locations that point to subcategories within the member.

Read (and check) the records until all those required have been processed.
Point to additional categories, if required, and read the records.

Repeat this procedure for each member to be retrieved.

//PDSDD DD --,DSNAME=MASTFILE,DISP=0OLD
INDCB DCB —-,DSORG=PO, DDNAME=PDSDD, ——
OPEN (INDCB)
BLDL Build a list of selected member names

in virtual storage.
FIND (or POINT)

**Read note list.

READ

CHECK

POINT Locate subgroup by using note list.
READ

CHECK Read member records.

Repeat from ** for each additional member.

CLOSE (INDCB)

Figure 53. Retrieving Several Members of a Partitioned Data Set Using BLDL, FIND, and POINT

Updating a Member of a Partitioned Data Set

A member of a partitioned data set can be updated in place, or can be deleted and
rewritten as a new member.

Updating in Place

When you update in place, you read records, process them, and write them back to their
original positions without destroying the remaining records on the track. The following
rules apply:

You must specify the update option (UPDAT) in the OPEN macro instruction. To
perform the update, you can use only the READ, WRITE, CHECK, NOTE, POINT,
FIND, and BLDL macro instructions.

You cannot update concatenated partitioned data sets.
You cannot use chained scheduling.

You cannot delete any record or change its length; you cannot add new records.

A record must be retrieved by a READ macro instruction before it can be updated by a
WRITE macro instruction. Both macro instructions must be execute forms that refer to
the same DECB; the DECB must be provided by a list form. (The execute and list forms
of the READ and WRITE macro instructions are described in OS/VS Data
Management Macro Instructions.)

Part 2: Data Management Processing Procedures 11°

Updating With QSAM: You can update a member of a partitioned data set using the
locate mode of QSAM (DCB specifies MACRF=PL) and using the PUTX macro
instruction. The DD statement must specify the data set and member name in the
DSNAME parameter. This method allows only the updating of the member specified in
the DD statement.

Updating With Overlapped Operations: To overlap input/output and CPU activity, you
can start several read or write operations before checking the first for completion. You
cannot overlap read and write operations, however, as operations of one type must be
checked for completion before operations of the other type are started or resumed. Note
that each concurrent read or write operation requires a separate channel program and a
separate DECB. If a single DECB were used for successive read operations, only the last
record read could be updated.

In Figure 54, overlap is achieved by having a read or write request outstanding while
each record is being processed. Note the use of the execute and list forms of the READ
and WRITE macro instructions, identified by the operands MF=E and MF=L.

Rewriting a Member

There is no actual update option that can be used to add or extend records in a
partitioned data set. If you want to extend or add a record within a member, you must
rewrite the complete member in another area of the data set. Since space is allocated
when the data set is created, there is no need to request additional space. Note, however,
that a partitioned data set must be contained on one volume. If sufficient space has not

//PDSDD DD DSNAME=MASTFILE(MEMBERK), DISP=0OLD,-—-
UPDATDCB DCB DSORG=PS , DDNAME=PDSDD,MACRF=(R,W),NCP=2, EODAD=FINISH
READ DECBA, SF,UPDATDCB, AREAA , MF=L, Define DECBA
READ DECBB, SF, UPDATDCB, AREAB, MF=L Define DECBB
AREAA DS —— Define buffers
AREAB DS —-— '
OPEN (UPDATDCB, UPDAT) Open for update
LA 2,DECBA Load DECB addresses
LA 3,DECBB
READRECD READ (2),SF,MF=E Read a record
NEXTRECD READ (3),SF,MF=E Read the next record
CHECK (2) Check previous read operation
(If update is required, branch to RZ2UPDATE)
LR 4,3 If no update is required,
LR 3,2 switch DECB addresses in
LR 2,4 registers 2 and 3
B NEXTRECD and loop

In the following statements, “R2” and ‘“R3” refer to the records that were read using the DECBs whose addresses are in
registers 2 and 3, respectively. Either register may point to either DECBA or DECBB.

R2UPDATE CALL UPDATE, ((2)) Call routine to update R2
CHECK (3) Check read for next record (R3)
WRITE (2),SF,MF=E Write updated R2
(If R3 requires an update, branch to R3UPDATE)
CHECK (2) If R3 requires no update, check
B READRECD write for R2 and loop

R3UPDATE CALL UPDATE,((3)) Call routine to update R3
WRITE (3),SF,MF=E Write updated R3
CHECK (2) Check write for R2
CHECK (3) Check write for R3
B READRECD Loop

FINISH CLOSE (UPDATDCB) End-of-Data exit routine

Figure 54. Updating a Member of a Partitioned Data Set

112 OS/VS Data Management Services Guide

e

been allocated, the data set must be reorganized by the IEBCOPY utility program.

When you rewrite the member, you must provide two DCBs, one for input and one for
output. Both DCB macro instructions can refer to the same data set, that is, only one DD
statement is required.

You can reflect the change in location of the member either automatically, by indicating
a disposition of OLD, or by using the STOW macro instruction. Although the old
member is, in effect, deleted, its space cannot be reused until the data set is reorganized.

Processing an Indexed Sequential Data Set

The organization of an indexed sequential data set allows you a great deal of flexibility in
the operations you can perform. The data set can be read or written sequentially,
individual records can be processed in any order, records can be deleted, and new
records can be added. The system automatically locates the proper position in the data
set for new records and makes any necessary adjustments when records are deleted.
However, when accessing an indexed sequential data set in VS1 systems, the key of user
control blocks and user storage must be in the same protection key as that specified in
the TCB (TCBPKF).

The queued access technique must be used to create an indexed sequential data set. It
can also be used to sequentially process or update the data set and to add records to the
end of the data set. The basic access technique can be used to insert new records
between records already in the data set and to update the data set directly.

Indexed Sequential Data Set Organization

The records in an indexed sequential data set are arranged according to collating
sequence by a key field in each record. Each block of records is preceded by a key field
that corresponds to the key of the last record in the block.

An indexed sequential data set resides on direct-access storage devices and can occupy
up to three different areas:

e Prime Area—This area, also called the prime data area, contains data records and
related track indexes. It exists for all indexed sequential data sets.

e Overflow Area—This area contains records that overflow from the prime area when
new data records are added. It is optional.

o Index Area—This area contains master and cylinder indexes associated with the data
set. It exists for a data set that has a prime area occupying more than one cylinder.

The indexes of an indexed sequential data set are analogous to the card catalog in a
library. For example, if the library user knows the name of the book or the author, he
can look in the card catalog and obtain a catalog number that will enable him to locate
the book in the book files. He would then go to the shelves and proceed through rows
until he found the shelf containing the book. Usually each row contains a sign to indicate
the beginning and ending numbers of all books in that particular row. Thus, as he
proceeded through the rows, he would compare the catalog number obtained from the
index with the numbers posted on each row. Upon locating the proper row, he would
then search that row for the shelf that contained the book. Then he would look at the
individual book numbers on that shelf until he found the particular book.

ISAM uses the indexes in much the same way to locate records in an indexed sequential
data set.

As the records are written in the prime area of the data set, the system accounts for the
records contained on each track in a track index area. Each entry in the track index

Part 2: Data Management Processing Procedures 11:

identifies the key of the last record on each track. There is a track index for each cylinder
in the data set. If more than one cylinder is used, the system develops a higher-level
index called a cylinder index. Each entry in the cylinder index identifies the key of the
last record in the cylinder. To increase the speed of searching the cylinder index, you can
request that a master index be developed for a specified number of cylinders, as shown
in Figure 55.

Rather than reorganize the whole data set when records are added, you can request that
space be allocated for additional records in an overflow area.

Prime Area
Records are written in the prime area when the data set is created or updated. The last
track of prime data is reserved for an end-of-file mark. The portion of Figure 55 labeled
Cylinder 1 illustrates the initial structure of the prime area. Although the prime area can
extend across several noncontiguous areas of the volume, all the records are written in
key sequence. Each record must contain a key; the system automatically writes the key
of the highest record before each block.
When the ABSTR option of the SPACE parameter of the DD statement is used to
generate a multivolume prime area, the VTOC of the second volume and on all
succeeding volumes must be contained within cylinder O of the volume.
Index Areas
The operating system generates track and cylinder indexes automatically. Up to three
levels of master indexes are created if requested.
Track Index: This is the lowest level of index and is always present. There is one track
index for each cylinder in the prime area; it is written on the first track(s) of the cylinder
that it indexes.
Master Index
450 | 900 | 2000 l
[4
Cylinder Index
© 200| 300 | 375 | 450 @l
500 600 | 700 { 900 |¢
1000 | 1200 | 1500 | 2000 ¢
Cylinder 1 Cylinder 11 Cylinder 12
> Track >
$ 100 | 100 | 200 | 200 e 1500 > 2000
Data | Data | Data | Data | Prime
10 20 40 100 | Data
Data [Data | Data | Data | Prime
150 | 175 | 190 | 200 | Data
Overflow

Figure 55. Indexed Sequential Data Set Organization

114 OS/VS Data Management Services Guide

.

The index consists of a series of paired entries, that is, of a normal entry and an overflow
entry for each prime track. For fixed-length records, each normal entry (and also
DCBFIRSH) points to either record 0 or the first prime record on a shared track. For
variable-length records, the normal entry contains the key of the highest record on the
track and the address of the last record on the track. The overflow entry is originally the
same as the normal entry. (This is why 100 appears twice on the track index for

cylinder 1 in Figure 55.) The overflow entry is changed when records are added to the
data set. Then the overflow entry contains the key of the highest overflow record and the
address of the lowest overflow record logically associated with the track. Figure 56
shows the format of a track index.

If all the tracks allocated for the prime data area are not used, the index entries for the
unused ones are flagged as inactive. The last entry of each track index is a dummy entry
indicating the end of the index. When fixed-length record format has been specified, the
remainder of the last track of each cylinder used for a track index contains prime data
records if there is room for them.

Each index entry has the same format. It is an unblocked, fixed-length record consisting
of a count, a key, and a data area. The length of the key corresponds to the length of the
key area in the record to which it points. The data area is always 10 bytes long. It
contains the full address of the track or record to which the index points, as well as the
level of the index and the entry type.

Cylinder Index: For every track index created, the system generates a cylinder index
entry. There is one cylinder index for a data set, each entry of which points to a track
index. Since there is one track index per cylinder, there is one cylinder index entry for
each cylinder in the prime data area, except in the case of a 1-cylinder prime area. As
with track indexes, inactive entries are created for any unused cylinders in the prime data
area.

Master Index: As an optional feature, the operating system creates, at your request, a
master index. The presence of this index makes long, serial searches through a large,
cylinder index unnecessary.

Normal/Overflow Normal/Overflow

Pair Pair

A A

Normal

Entry

A X4 N\

Overflow Normal Overflow
Entry Entry Entry

Key 1

Data

Key Da'ta4 Key 1 Data? Key3 Data4 g

1Normal key

2Normal data |
30verflow key
40verflow data

Notes:

key of the highest record on the prime data track

address of the prime data track

= key of the highest overflow record logically associated with the prime data track

= address of the lowest overflow record logically associated with the prime data track

e If there are no overflow records, overflow key and data entries are the same as normal key and data entries.
—’ ® This figure is a logical representation only; that is, it makes no attempt to show the physical size of track index entries.

Figure 56. Format of Track Index Entries

Part 2: Data Management Processing Procedures 115

You can specify the conditions under which you want a master index created. For
example, if you have specified NTM=3 and OPTCD=M in your DCBE macro instruction,
a master index is created when the cylinder index exceeds 3 tracks. The master index
consists of one entry for each track of cylinder index. If your data set is extremely large,
a higher-level master index is created when the first-level master index exceeds three
tracks. This higher-level master index consists of one entry for each track of the
first-level master index. This procedure can be repeated for as many as three levels of
master index.

Overflow Areas

As records are added to an indexed sequential data set, space is required to contain those
records that will not fit on the prime data track on which they belong. You can request
that a number of tracks be set aside as a cylinder overflow area to contain overflows
from prime tracks in each cylinder. An advantage of using cylinder overflow areas is a
reduction of search time required to locate overflow records. A disadvantage is that there
will be unused space if the additions are unevenly distributed throughout the data set.

Instead of, or in addition to, cylinder overflow areas, you can request an independent
overflow area. Qverflow from anywhere in the prime data area is placed in a specified
number of cylinders reserved solely for overflow records. An advantage of having an
independent overflow area is a reduction in unused space reserved for overflow. A
disadvantage is the increased search time required to locate overflow records in an
independent area.

If you request both cylinder overflow and independent overflow, the cylinder overflow
area is used first. It is a good practice to request cylinder overflow areas large enough to
contain a reasonable number of additional records and an independent overflow area to
be used as the cylinder overflow areas are filled.

Adding Records to an Indexed Sequential Data Set

Either the queued access technique or the basic access technique may be used to add
records to an indexed sequential data set. A record to be inserted between records
already in the data set must be inserted by the basic access method using WRITE KN
(key new). Records added to the end of a data set, that is, records with successively
higher keys, may be added to the prime data area or the overflow area by the basic
access method using WRITE KN, or they may be added to the prime data area by the
queued access technique using the PUT macro instruction.

Inserting New Records into an Existing Indexed Sequential Data Set

As you add records to an indexed sequential data set, the system inserts each record in its
proper sequence according to the record key. The remaining records on the track are
then moved up one position each. If the last record does not fit on the track, it is written
in the first available location in the overflow area. A 10-byte link field is added to the
record put in the overflow area to connect it logically to the correct track. The proper
adjustments are made to the track index entries. This procedure is illustrated in

Figure 57..

Subsequent additions are written either on the prime track or as part of the overflow
chain from that track. If the addition belongs after the last prime record on a track but
before a previous overflow record from that track, it is written in the first available
location in the overflow area. Its link field contains the address of the next record in the
chain.

116 OS/VS Data Management Services Guide

Normal Entry

Overflow Entry

I T T T
initial Format | 100 1 T2k | qo9 | Track | 99 | Track | g Track jrrack
1 1 : I 1
10 20 40 100
Prime
Data
150 175 190 200
Overflow
T T T T
Track Track 3 Track Track 3
Add Records 40 | 100 ! 190 ' 200 ! Track
25 and 101 L | Record 1 P2 __1Record 2 | |ndex
10 20 25 40
Prime
Data
101 150 175 190
T - T
100 | Track | 99 | THRCK Overflow
| i]
T T . : T T
Track y Track 3 v Track v Track 3 Track
Add Records 26 100 190 | 200 |
26 and 199 L1 | Record 3 2 | Record 4 | Index
10 20 25 26
. Prime
Data
101 160 175 190
P — P — ' i
Track 1 Track | Track 3 I Track 3
100 : 1 200 L2 40 ! Record 1 199 ! Record 2 | Overflow

Figure 57. Adding Records to an Indexed Sequential Data Set

~ Adding New Records to the End of an Indexed Sequential Data Set

Records added to the end of a data set, that is, records with successively higher keys,
may be added by the basic access method using WRITE KN (key new), or by the queuec
access method using the PUT macro instruction (resume load). In either case records
may be added to the prime data area. ‘

When you use the WRITE KN macro instruction, the record being added is placed in the
prime data area only if there is room for it on the prime data track containing the record
with the highest key currently in the data set. If there is not sufficient room on that track
the record is placed in the overflow area and linked to that prime track even though
additional prime data tracks originally allocated have not been filled.

When you use the PUT macro instruction (resume load), records are added to the prime
data area until the space originally allocated is filled. Once this allocated prime area is
filled, you can add records to the data set using WRITE KN, in which case they will be

Part 2: Data Management Processing Procedures 11°

placed in the overflow area. Resume load is discussed in more detail later under
“Creating an Indexed Sequential Data Set.”

In order to add records with successively higher keys using the PUT macro instruction
(resume load):

« The key of any record to be added must be higher than the highest key currently in
the data set.

o The DD statement must specify DISP=MOD.

« The data set must have been successfully closed when it was created or when records
were previously added using the PUT macro instruction.

You may continue to add fixed-length records in this manner until the original space
allocated for prime data is exhausted.

When you add records to an indexed sequential data set using the PUT macro instruction
(resume load), new entries are also made in the indexes. During resume load on a data
set with a partially filled track and/or a partially filled cylinder, the track index entry
and/or the cylinder index entry is overlaid when the track or cylinder is filled. If resume
load abnormally terminates after these index entries have been overlaid, a subsequent
resume load will get a sequence check when adding a key that is higher than the highest
key at the last successful CLOSE but lower than the key in the overlaid index entry.
When the SYNAD exit is taken for a sequence check, register O contains the address of
the highest key of the data set.

Maintaining an Indexed Sequential Data Set
An indexed sequential data set must be reorganized occasionally for two reasons:
« The overflow area will eventually be filled.
« Additions increase the time required to locate records directly.

The frequency of reorganization depends on the activity of the data set and on your
timing and storage requirements. There are two ways you can accomplish reorganization:

« You can reorganize the data set in two passes by writing it sequentially into another
area of direct-access storage or magnetic tape and then recreating it in the original
area.

« You can reorganize the data set in one pass by writing it directly into another area of
direct-access storage. In this case, the area occupied by the original data set cannot be
used by the reorganized data set.

The operating system maintains statistics that are pertinent to reorganization. The
statistics, written on the direct-access volume and available in the DCB for checking,
include the number of cylinder overflow areas, the number of unused tracks in the
independent overflow area, and the number of references to overflow records other than
the first. They appear in the RORG1, RORG2, and RORGS3 fields of the DCB.

If you indicate when creating or updating the data set that you want to be able to flag
records for deletion during updating, you can set the delete code (the first byte of a
fixed-length record or the fifth byte of a variable-length record) to X‘FF’. If a flagged
record is forced off its prime track during a subsequent update, it will not be rewritten in
the overflow area, as shown in Figure 58, unless it has the highest key on that cylinder.
Similarly, when you process sequentially, flagged records are not retrieved for processing.
During direct processing, flagged records are retrieved like any other records, and you
should check them for the delete code.

Note that to use the delete option, RKP must be greater than O for fixed-length records
and greater than 4 for variable-length records.

118 OS/VS Data Management Services Guide

Data

Kéy
T
Fixed Length X’FF': j
1
Delete Code
BDW RDW
Key P R R Data
. T T H
Variable LLOO | £200 | X‘FF'| 2200 : i
Length 1 1 i
Delete Code
T T T H
Initial Format 100 | Track 1 100 | Track 1 200 | Track 2 200 | Track 2
1 1 L I
10 20 40 100
150 175 190 200
. T T | T
Record 100is 40 | Track1 | 40 | Track1 | 200 | Track2 | 200 | Track 2
marked for deletion | | L 1
and record 25 is
added to the
data set 10 20 % oo -
150 175 190 200

Figure 58. Deleting Records From an Indexed Sequential Data Set

Part 2: Data Management Processing Procedures 11¢

Indexed Sequential Buffer and Work Area Requirements

The only case in which you will ever have to compute the buffer length (BUFL)
requirements for your program is when you use the BUILD or GETPOOL macro
instruction to construct the buffer area. If you are creating an indexed sequential data set
(using the PUT macro instruction), each buffer must be 8 bytes longer than the blocksize
to allow for the hardware count field, that is:

Buffer length = 8 + Blocksize

Data

® (BLKSIZE)

- Buffer

One exception to this formula arises when you are dealing with an unblocked format-F
record whose key field precedes the data field; its relative key position is 0 (RKP=0). In
that case the key length must also be added, that is:

Buffer length = 8 + Key length + Record length

(8)

Key
(KEYLEN)

Data
(LRECL)

-}

Buffer

-

The buffer requirements for using the queued access technique to read or update (using
the GET or PUTX macro instruction) an indexed sequential data set are discussed

below.

For fixed-length unblocked records when both the key and data are to be read and for
variable-length unblocked records, padding is added so that the data will be on a

doubleword boundary, that is:

Buffer length = Key length + Padding + 10 + Blocksize

Key
(KEYLEN)

Padding

Link
(10)

(BLKSIZE)

Data

-

Buffer

For fixed-length unblocked records when only data is to be read:

Buffer length = 16 + LRECL

Padding
(6)

Link
(10)

Data
(LRECL)

Buffer

120 OS/VS Data Management Services Guide

For fixed-length blocked records:

Buffer length = 16 + Blocksize

Padding Link Data
(6) (10) {(BLKSIZE)

- Buffer >

For variable-length blocked records, padding is 2 if the buffer starts on a fullword
boundary that is not also a doubleword boundary or 6 if the buffer starts on a
doubleword boundary, that is:

Buffer length = 12 or 16 + Blocksize

. Link Data
Padding (10) (BLKSIZE)

- Buffer -

If you are using the input data set with fixed-length, unblocked records as a basis for
creating a new data set, a work area is required.

The size of the work area is given by:

Work area = Key length + Record length

Data
Key (LRECL)

- Work Area -

If you are reading only the data portion of fixed-length unblocked records or
variable-length records, the work area is the same size as the record, that is:

Work area = Record length

Data
(LRECL)

-} Work Area .-

When you use the basic access technique to update records in an indexed sequential data
set, the key length field need not be considered in determining your buffer requirements.
The area for fixed-length records must be:

Buffer length = 16 + Blocksize

Padding Link Data
(6) (10) (BLKSIZE)

- Buffer

Part 2: Data Management Processing Procedures 121

For variable-length records, padding is 2 if the buffer starts on a fullword boundary that
is not also a doubleword boundary or 6 if a buffer starts on a doubleword boundary.
Thus, the area must be:

Buffer length = 12 or 16 + Blocksize

Link Data

Padding (10) (BLKSIZE)

- Buffer -

You can speed up the process of adding fixed-length or variable-length records to a data
set by using the MSWA parameter of the DCB macro instruction to provide a special
work area for the operating system. The size of the work area (SMSW parameter in the
DCB) must be large enough to contain a full track of data, the count fields of each block,
and the work space for inserting the new record.

The size of the work area needed varies according to the record format and the device
type. You can calculate it during execution using device-dependent information obtained
with the DEVTYPE macro instruction and data set information from the DSCB obtained
with the OBTAIN macro instruction. The DEVTYPE and OBTAIN macro instructions
are discussed in OS/VS1 Data Management for System Programmers and OS/VS2
System Programming Library: Data Management.

Note that you can use the DEVTYPE macro instruction only if the index and prime areas
are on devices of the same type or if the index area is on a device with a larger track
capacity than that of the device containing the prime area. If you are not trying to
maintain device independence, you may precalculate the size of the work area needed
and specify it in the SMSW field of the DCB macro instruction. The maximum value for
SMSW is 65,535.

For calculating the size of the work area, refer to the storage device capacities shown in
Figure 66 under “Estimating Space Requirements” and the device overhead formulas
given in the same section.

For fixed-length blocked records, SMSW is calculated as follows:
SMSW = HIRPD(BLKSIZE + 8) + LRECL + KEYLEN

The formula for fixed-length unblocked records is

SMSW = HIRPD(KEYLEN + LRECL + 8) + 2

The value for HIRPD is in the index (format-2) DSCB. OS/VS1 System Data Areas
and OS/VS2 System Programming Library: Debugging Handbook show the exact
location of this field in the index DSCB. If you don’t use the MSWA and SMSW
parameters, the control program supplies a work area using the formula BLKSIZE +
LRECL + KEYLEN.

For variable-length records, SMSW may be calculated by one of two methods. The first
method may lead to faster processing although it may require more storage than the
second method.

The first method is as follows:
SMSW = HIRPD(BLKSIZE + 8) + LRECL + KEYLEN + 10

The second method is as follows:

SMSW={Track Capacity-Bn+ 1)(BLKSIZE)+8(HIRPD)+LRECL+KEYLEN+ 10+(REM-N-KEYLEN)
Bi

122 OS/VS Data Management Services Guide

In all of the above formulas, the terms BLLKSIZE, LRECL, KEYLEN, and SMSW are
the same as the parameters in the DCB macro instruction. REM is the remainder of the
division operation in the formula and N is the first constant in the Bi formulas described
in Figure 67. (REM-N-KEYLEN) is added only if it is positive. The second method
yields a minimum value for SMSW. Therefore, the first method is valid only if its
application results in a value higher than the value that would be derived from the second
method. If neither MSWA nor SMSW is specified, the control program supplies the work
area for variable-length records, using the second method to calculate the size.

Another technique to increase the speed of processing is to provide space in virtual
storage for the highest-level index. To specify the address of this area, use the MSHI
operand of the DCB. When the address of this area is specified, you must also specify its
size, which you can do by using the SMSI operand of the DCB. The maximum value for
SMSI is 65,535. If you do not use this technique, the index on the volume must be
searched.

The size of the storage area (SMSI parameter) varies. To allocate that space during
execution, you can find the size of the high-level index in the DCBNCRHI field of the
DCB during your DCB exit routine or after the data set is open. Use the DCBD macro
instruction to gain access to the DCBNCRHI field (see ‘“Modifying the Data Control
Block” in Part 1). You can also find the size of the high-level index in the DS2NOBYT
field of the index (format 2) DSCB, but you must use the utility program IEHLIST to
print the information in the DSCB. You can calculate the size of the storage area
required for the high-level index by using the formula

SMSI = Number of Tracks Number of Entries\ (Key Length + 10)
in High-Level Index/ \ per Track

The formula for calculating the number of tracks in the high-level index is in the section
“Calculating Space Requirements for an Indexed Sequential Data Set” in Part 3. When a
data set is shared and has the DCB integrity feature (DISP=SHR), the high-level index
in storage is not updated when DCB fields are changed.

Controlling an Indexed Sequential Data Set Device

An indexed sequential data set is processed sequentially or directly. Direct processing is
accomplished by the basic access technique. Because you provide the key for the record
you want read or written, all device control is handled automatically by the system. If
you are processing the data set sequentially, using the queued access technique, the
device is automatically positioned at the beginning of the data set.

In some cases, you may wish to process only a section or several separate sections of the
data set. You do this by using the SETL. macro instruction, which directs the system to
begin sequential retrieval at the record having a specific key. The processing of
succeeding records is the same as for normal sequential processing, except that you must
recognize when the last desired record has been processed. At this point, issue the
ESETL macro instruction to terminate sequential processing. You can then begin
processing at another point in the data set.

SETL—Specify Start of Sequential Retrieval

The SETL macro instruction enables you to retrieve records starting at the beginning of
an indexed sequential data set or at any point in the data set. Processing that is to start at
a point other than the beginning can be requested in the form of a record key, a key class
(key prefix), or an actual address of a prime data record.

The key class concept is useful because you do not have to know the whole key of the
first record to be processed. A key class comprises all of the keys that begin with
identical characters. The key class is defined by specifying the desired characters of the

Part 2: Data Management Processing Procedures 127

key class at the address specified in the lower-limit operand of the SETL macro and
setting the remaining characters to the right of the key class to binary zeros.

To use actual addresses, you must keep an account of where the records were written
when the data set was created. The device address of the block containing the record just
processed by a PUT-move macro instruction is available in the 8-byte data control block
field DCBLPDA. For blocked records the address is the same for each record in the
block.

Normally, when a data set is created with the delete option specified, deleted records
cannot be retrieved using the QISAM retrieval mode. When the delete option is not
specified in the DCB, the SETL macro options function as follows:

SETL B — Start at first record in the data set

SETL K — Start with record having the specified key

SETL KH — Start with record whose key is equal to or higher than the specified key
SETL KC — Start with first record having a key that falls into the specified key class

SETL I— Start with the record found at the specified direct-access address in the
prime area of the data set

Because the DCBOPTCD field in the DCB can be changed after the data set is created
(by respecifying the OPTCD in the DCB or DD card), it is possible to retrieve deleted
records. In this case, SETL functions as noted above.

When the delete option is specified in the DCB, the SETL macro options function as
follows:

SETL B — Start retrieval at first nondeleted record in the data set

SETL K — Start retrieval at record matching the specified key if that record is not
deleted. If the record is deleted, an NRF (no record found) indication is set
in the DCBEXCD field of the DCB, and SYNAD is given control

SETL KH — Start with first nondeleted record whose key is equal to or higher thah the
specified key

SETL KC —- Start with first nondeleted record having a key that falls into the specified
key class or follows the specified key class

SETL 1 — Start with first nondeleted record following the specified direct-access
address

With the delete option not specified, QISAM retrieves and handles records marked for -
deletion like nondeleted records.

Note: Regardless of the SETL or delete option specified, the NRF condition will be
posted in the DCBEXCD field of the DCB, and SYNAD is given control if the key or
key class:

« Is higher than any key or key class in the data set

« Does not have a matching key or key class in the data set

ESETL—End Sequential Retrieval

The ESETL macro instruction directs the system to stop retrieving records from an
indexed sequential data set. A new scan limit can then be set, or processing terminated.
An end-of-data-set indication automatically terminates retrieval. An ESETL macro
instruction must be executed before another SETL macro instruction (described above)
using the same DCB is executed.

124 OS/VS Data Management Services Guide

Note: An ESETL macro instruction should be executed before another SETL macro
instruction if the previous SETL macro instruction completed with an error.

Creating an Indexed Sequential Data Set

You can create an indexed sequential data set in one step or in several steps. You can
create the data set either by writing all records in a single step or by writing one group of
records in one step and writing additional groups of records in subsequent steps. Writing
records in subsequent steps is resume loading. When using either one step or several
steps, you must present the records for writing in ascending order by key.

To create an indexed sequential data set by the one-step method, you should proceed as
follows:

e Code DSORG=IS or DSORG=ISU and MACRF=PM or MACRF=PL in the DCB
macro instruction.

« Specify in the DD statement the DCB attributes DSORG=IS or DSORG=ISU, record
length (LRECL), blocksize (BLKSIZE), record format (RECFM), key length
" (KEYLEN), relative key position (RKP), options required (OPTCD), cylinder
overflow (CYLOFL), and the number of tracks for a master index (NTM). Specify
space requirements with the SPACE parameter. To reuse previously allocated space,
omit the SPACE parameter and code DISP=(OLD, KEEP).

« Open the data set for output.

o Use the PUT macro instruction to place all the records or blocks on the direct-access
volume.

« Close the data set.

The records that compose a newly created data set must be presented for writing in
ascending order by key. You can merge two or more input data sets. If you want a data
set with no records (a null data set), you must write at least one record when you create
the data set. You can subsequently delete this record to achieve the null data set.

If records are blocked, you should not write a 1-byte record with the hexadecimal value
FF. This value is used for padding; if it occurs as the last record of a block, the record
cannot be retrieved. :

When creating an indexed sequential data set, a procedure called loading, you can
improve performance by using the full-track-index-write option. You do this by
specifying OPTCD=U in the DCB. This causes the operating system to accumulate
track-index entries in virtual storage. Note that the full-track-index-write option can be
used only for fixed-length records.

If you do not specify this option, the operating system writes each normal-overflow pair
of entries for the track index after the associated prime data track has been written. If
you specify this option, the operating system accumulates track-index entries in virtual
storage until either there are enough entries to fill a track or end-of-data or
end-of-cylinder is reached. Then the operating system writes these entries as a group,
writing one group for each track of track index. This option requires allocation of more
storage space (the space in which the track-index entries are gathered), but the number
of I/0 operations required to write the index can be significantly decreased.

When you specify the full-track-index-write option, the track index entries are written as
fixed-length unblocked records. If a large enough area of virtual storage is not available,
the entries are written as they are created, that is, in normal-overflow pairs.

Once an indexed sequential data set has been created, its characteristics cannot be
changed. However, for added flexibility, the system allows you to retrieve records using

Part 2: Data Management Processing Procedures 125

either the queued access technique with simple buffering, or the basic access technique
with dynamic buffering.

Tape-to-Disk—-Indexed Sequential Data Set: The example in Figure 59 shows the
creation of an indexed sequential data set from an input tape containing 60-character
records. The key by which the data set is organized is in positions 20-29. The output
records will be an exact image of the input, except that the records will be blocked. One
track per cylinder is to be reserved for cylinder overflow. Master indexes are to be built
when the cylinder index exceeds six tracks. Reorganization information about the status
of the cylinder overflow areas is to be maintained by the system. The delete option will
be used during any future updating.

To create an indexed sequential data set in more than one step, create the first group of
records using the one step method described above. This first section must contain at
least one data record. The remaining records can then be added to the end of the data set
in subsequent steps using resume load. Each group to be added must contain records
with successively higher keys. This method allows you to create the indexed sequential
data set in several short time periods rather than in a single long one.

This method also allows you to provide limited recovery from uncorrectable output
errors. When an uncorrectable output error is detected, do not attempt to continue
processing or to close the data set. If you have provided a SYNAD routine, it should
issue the ABEND macro instruction to terminate processing. If no SYNAD routine is
provided, the control program will terminate your processing. If the error shows that
space in which to add the record was not found, you must close the data set; issuing
subsequent PUT macro instructions can cause unpredictable results. You should begin
recovery at the record following the end of the data as of the last successful close. The
rerun time is limited to that necessary to add the new records, rather than to that
necessary to recreate the whole data set.

//INDEXDD DD
//

//INPUTDD DD

ISLOAD START

ISLOAD CSECT

NEXTREC GET

CHECKERR L
USING
™
BO
™
BO
™
BO

Rest of error checking

Error routine

DSNAME=SLATE.DICT(PRIME),DCB=(BLKSIZE=240,CYLOFL=1, C
DSORG=IS5, OPTCD=MYLR,RECFM=FB, LRECL=60,NTM=6 ,RKP=:19, Cc
KEYLEN=10),UNIT=3330,SPACE=(CYL,25,,CONTIG),---

0

DSORG=15

(IPDATA, , ISDATA, (OUTPUT))

IPDATA Locate mode

0,1 Address of record in register 1
ISDATA,{(0) Move mode

NEXTREC

3,=A(ISDATA) Initialize base for errors
IHADCB, 3

DCBEXCD1,X'04"

OPERR Uncorrectable error
DCBEXCD1,X'20"

NOSPACE Space not found
DCBEXCD2,X'80"'

SEQCHK Record out of sequence

End of job routine (EODAD FOR IPDATA)

IPDATA DCB
ISDATA DCB

DDNAME=INDEXDD, DSORG=1S,MACRF=(PM), SYNAD=CHECKERR

Figure 59. Creating an Indexed Sequential Data Set

126 OS/VS Data Management Services Guide

When you extend an indexed sequential data set with resume load, the disposition
parameter of the DD statement must specify MOD. To ensure that the necessary control
information is in the DSCB before attempting to add records, you should at least open
and close the data set successfully on a version of the system that includes resume load.
This need be done only if the data set was created on a previous version of the system.
Records may be added to the data set by resume load until the space allocated for prime
data in the first step has been filled.

During resume load on a data set with a partially filled track and/or a partially filled
cylinder, the track index entry and/or the cylinder index entry is overlaid when the track
or cylinder is filled. If resume load abnormally terminates after these index entries have
been overlaid, a subsequent resume load will result in a sequence check when it adds a
key that is higher than the highest key at the last successful CLOSE but lower than the
key in the overlaid index entry. When the SYNAD exit is taken for a sequence check,
register O contains the address of the high key of the data set.

Retrieving and Updating an Indexed Sequential Data Set

Sequential Retrieval and Update
To sequentially retrieve and update records in an indexed sequential data set:

« Code DSORG=IS or DSORG=ISU to agree with what you specified when you
created the data set, and MACRF=GL, MACRF=SK, or MACRF=PU in the DCB
macro instruction.

« Code a DD statement for retrieving the data set. The data set characteristics and
options are as defined when the data set was created.

« Open the data set.

« Set the beginning of sequential retrieval (SETL).

+ Retrieve records and process as required, marking records for deletion as required.
« Return records to the data set.

« Use ESETL to end sequential retrieval as required and reset the starting point.

« Close the data set to end all retrieval.

Sequential Updates—Indexed Sequential Data Set: Assume that, using the data set
created in the previous example, you are to retrieve all records beginning with 915.
Those records with a date (positions 13-16) before today’s date are to be deleted. The
date is in the standard form as returned by the system in response to the TIME macro
instruction, that is, packed decimal 00yyddds. Overflow records can be logically deleted
even though they cannot be physically deleted from the data set.

One way to solve this problem is shown in Figure 60.

Direct Retrieval and Update

By using the basic indexed sequential access method (BISAM) to process an indexed
sequential data set, you can make direct references to the records in the data set for the
purpose of:

« Direct retrieval of a record by its key
« Direct update of a record
« Direct insertion of new records

Because the operations are direct, there can be no anticipatory buffering. However, the
system provides dynamic buffering each time a read request is made, if specified.

Part 2: Data Management Processing Procedures 127

//INDEXDD DD

ISRETR START
DCBD
ISRETR CSECT
USING
LA
OPEN
SETL
TIME
ST
NEXTREC GET
CLC
BNL
Cp
BNL
MVI
PUTX
B
TODAY DS
KEYADDR DC
DC
LIMIT DC
DC

CHECKERR

DSNAME=SLATE.DICT,---

0
DSORG=IS

IHADCB, 3
3,ISDATA
(ISDATA)
ISDATA,KC,KEYADDR Set scan limit
Today's date in register 1
1, TODAY
ISDATA Locate mode
19(10,1),LIMIT
ENDJOB
12(4,1),TODAY Compare for old date
NEXTREC
0(1),X'FF' Flag old record for deletion -
ISDATA Return delete record
NEXTREC
F
c'915! Key prefix
XL7'0" Key padding
c'916'
XL7'0"

Test DCBEXCD1 and DCBEXDE?2 for error indication

Error Routines
ENDJOB CLOSE

ISDATA DCB

(ISDATA)
DDNAME=INDEXDD, DSORG=IS,MACRF=(GL, SK,PU), C -

SYNAD=CHECKRR

Figure 60. Sequentially Updating an Indexed Sequential Data Set

To ensure that the requested record is in virtual storage before you start processing, you

must issue a WAIT or CHECK macro instruction. If you issue a WAIT macro

instruction, you must test the exception code field of the DECB. If you issue a CHECK

macro instruction, the system tests the exception code field in the DECB. If an error

analysis routine has not been specified and a CHECK is issued, the program is

abnormally terminated with a system completion code X‘001°. In either case, if you wish .
to determine whether the record is an overflow record, you should test the exception

code field of the DECB.

After you test the exception code field of the DECB, you need not set it to 0. If you have
used a READ KU macro instruction and if you plan to use the same DECB again to
rewrite the updated record using a WRITE K macro instruction, you should not set the
field to 0. If you do, your record may not be rewritten properly.

To update existing records, you must use the READ KU and WRITE K combination.

Because READ KU implies that the record will be rewritten in the data set, the system

retains the DECB and the buffer used in the READ KU and uses them when the record

is written. If you decide not to write the record, you should use the same DECB in

another read or write macro instruction or issue a FREEDBUF macro instruction if

dynamic buffering was used. If you issue several READ KU or WRITE K macro

instructions before checking the first one, you may destroy some of your updated records

unless the records are from different blocks. Vi N

If there is the possibility that your task and another task will be simultaneously accessing
the same data set, or the same task has two or more DCBs opened for the same data set,

128 OS/VS Data Management Services Guide

you should use the DCB integrity feature. You specify the DCB integrity feature by
coding DISP=SHR in your DD statement. In this way you ensure that the DCB fields are
maintained for your program to process the data set correctly. If you do not use
DISP=SHR and more than one DCB is open for updating the data set, the results are
unpredicatable.

If you specify DISP=SHR, you must also issue an ENQ for the data set before each
input/output request and a DEQ upon completion of the request. All users of the data
set must use the same gname and rname operands for ENQ. For example, the users
might use the data set name as the gname operand. For more information about using
ENQ and DEQ, see OS/VS1 Supervisor Services and Macro Instructions or OS/VS2
Supervisor Services and Macro Instructions.

When you are using scan mode with QISAM and you want to issue PUTX, issue an ENQ
on the data set before processing it and a DEQ after processing is complete. ENQ must
be issued before the SETL macro instruction, and DEQ must be issued after the ESETL
macro instruction. When you are using BISAM to update the data set, do not modify any
DCB fields or issue a DEQ until you have issued CHECK or WAIT.

Sharing a BISAM DCB between Related Tasks: When a task using BISAM processes a
data set whose DCB is defined and opened by a related task, the task must issue an ENQ
on the DCB before an input/output request is issued and must issue a DEQ after the
WAIT or CHECK for the input/output request is issued. If the task does not enqueue
the DCB and any of its related tasks terminates abnormally, the task may enter a wait
state or a program check may occur. See OS/VS1 Supervisor Services and Macro
Instructions or OS/VS2 Supervisor Services and Macro Instructions for more
information on the ENQ and DEQ macro instructions and on multitasking.

In VS1, no task should process an open BISAM DCB if any other task has used it and
has terminated. Otherwise, storage used by IOBs or other data areas may be freed by
one task which another task might try to reuse. WAITs or CHECKSs may still be issued
after any of the other tasks has completed.

Direct Update With Exclusive Control—Indexed Sequential Data Set: In the example
shown in Figure 61, the previously described data set is to be updated directly with
transaction records on tape. The input tape records are 30 characters long, the key is in
positions 1-10, and the update information is in positions 11-30. The update information
replaces data in positions 31-50 of the indexed sequential data record.

Exclusive control of the data set is requested since more than one task may be referring
to the data set at the same time. Notice that exclusive control is released after each block
is written to avoid tying up the data set until the update is completed.

Note the use of the FREEDBUF macro instruction in Figure 61. Usually the
FREEDBUF macro instruction has two functions:

« To indicate to the ISAM routines that a record that has been read for update will not
be written back

+ To free a dynamically obtained buffer

In Figure 61, since the read operation was unsuccessful, the FREEDBUF macro
instruction frees only the dynamically obtained buffer.

The first function of FREEDBUF allows you to read a record for update and then decide
not to update it without performing a WRITE for update. You can use this function even
when your READ macro instruction does not specify dynamic buffering, provided that
you have included S (for dynamic buffering) in the MACREF field of your READ DCB.

You can effect an automatic FREEDBUF simply by reusing the DECB, that is, by
issuing another READ or a WRITE KN to the same DECB. You should use this feature

Part 2: Data Management Processing Procedures 12!

//INDEXDD DD
//TAPEDD DD

ISUPDATE START

NEXTREC GET

DSNAME=SLATE.DICT,DCB=(DSORG=1S,BUFNO=1,...),——-

0

TPDATA,KEY

ENQ (RESOURCE, ELEMENT, E, , SYSTEM)
READ DECBRW,KU,,'S' ,MF=E
WAIT ECB=DECBRW
™ DECBRW+24 ,X'FD' Test for any condition
BM RDCHECK but overflow
L 3,DECBRW+16 Pick up pointer to record
MvVC 30(20,3),UPDATE Update record
WRITE DECBRW, K, MF=E
WAIT ECB=DECBRW
™ DECBRW+24 ,X'FD' Any errors?
BM WRCHECK
DEQ (RESOURCE , ELEMENT, SYSTEM)
B NEXTREC
RDCHECK ™ DECBRW+24,X'80" No record found
BZ ERROR If not, go to error routine
FREEDBUF DECBRW,K,ISDATA Otherwise, free buffer
MvC AREA+19(L'KEY),KEY Key placed in positions 20-29
Mve AREA+30(L'UPDATE),UPDATE Updated information placed in
* positions 31-50 of record
WRITE DECBRW, KN, ,AREA-16,'S',MF=E Add record to file
WAIT ECB=DECBRW
™ DECBRW+24 ,X'FD' Test for errors
BM ERROR
DEQ (RESOURCE ,ELEMENT, ,SYSTEM) Release exclusive control
B NEXTREC
DS 4F BISAM WRITE KN work field
AREA DS 30C Logical record to be added
KEY DS CL10
UPDATE DS CL20
RESOURCE DC CL8'SLATE'
ELEMENT DC c'DIcT'
READ DECBRW, KU, ISDATA,'S','S' ,KEY,MF=L
ISDATA DCB DDNAME=INDEXDD,DSORG=1S, MACRF=(RUS,WUA), C
MSHI=INDEX,SMSI=2000
TPDATA DCB -—
INDEX DS 2000C

Figure 61. Directly Updating an Indexed Sequential Data Set

whenever possible, since it is more efficient than FREEDBUF. For example, in
Figure 61, the FREEDBUF macro instruction could be eliminated, since the WRITE KN
addressed the same DECB as the READ KU.

For an indexed sequential data set with variable-length records, you may make three
types of updates by using the basic access technique. You may read a record and write it
back with no change in its length, simply updating some part of the record. You do this
with a READ KU followed by a WRITE K, the same way you update fixed-length
records. Two other methods for updating variable-length records use the WRITE KN
macro instruction and allow you to change the record length.

In one method, a record read for update (by a READ KU) may be updated in a manner
that will change the record length and then be written back with its new length by a
WRITE KN. In the second method, you may replace a record with another record having
the same key and possibly a different length using the WRITE KN macro instruction. To
replace a record, it is not necessary to have first read the record.

130 OS/VS Data Management Services Guide

In either method, when changing the record length, you must place the new length in the
DECBLGTH field of the DECB before issuing the WRITE KN macro instruction. If you
use a WRITE KN macro instruction to update a variable-length record that has been
marked for deletion, the first bit (no record found) of the exceptional condition code
field (DECBEXC1) of the DECB is set on. If this condition is found, the record must be
written using a WRITE KN with nothing specified in the DECBLGTH field.

Do not try to use the DECBLGTH field to determine the length of a record read,
because DECBLGTH is for use with writing records, not reading them. If you are
reading fixed-length records, the length of the record read is in DCBLRECL, and if you
are reading variable-length records, the length is in the record descriptor word (RDW).

Direct Update—Indexed Sequential Data Set with Variable-Length Records: In Figure 62
an indexed sequential data set with variable-length records is updated directly with
transaction records on tape. The transaction records are of variable length and each
contains a code identifying the type of transaction. Transaction code 1 indicates that an
existing record is to be replaced by one with the same key; 2 indicates that the record is
to be updated by appending additional information, thus changing the record length; 3 o1
greater indicates that the record is to be updated with no change to its length. For this
example, the maximum record length of both data sets is 256 bytes. The key is in
positions 6-15 of the records in both data sets. The transaction code is in position 5 of
records on the transaction tape. The work area (REPLAREA) size is equal to the
maximum record length plus 16 bytes.

Part 2: Data Management Processing Procedures 1

//INDEXDD DD DSNAME=SLATE.DICT,DCB=(DSORG=IS,BUFNO=1,...),——-
//TAPEDD DD -

ISUPDVLR START 0

NEXTREC GET TPDATA, TRANAREA
CLI TRANCODE, 2 Determine if replacement or

* . other transaction
BL REPLACE Branch if replacement
READ DECBRW,KU,,'S','S',MF=E Read record for update
CHECK DECBRW, DSORG=IS Check exceptional conditions
CLI TRANCODE, 2 Determine if change or append
BH CHANGE Branch if change

* CODE TO MOVE RECORD INTO REPLACEA+16 AND APPEND DATA FROM TRANSACTION
* RECORD

P

MVC DECBRW+6(2),REPLAREA+16 Move new length from RDW
* into DECBLGTH (DECB+6)
WRITE DECBRW, KN, ,REPLAREA,MF=E Rewrite record with changed
* length
CHECK DECBRW,DSORG=IS
B NEXTREC

CHANGE

* CODE TO CHANGE FIELDS OR UPDATE FIELDS OF THE RECORD

WRITE DECBRW, K, MF=E Rewrite record with no
* change of length
CHECK DECBRW, DSORG=IS
B NEXTREC
REPLACE MVC DECBRW+6(2), TRANAREA Move new length from RDW
* into DECBLGTH (DECB+6)
WRITE DECBRW, KN, , TRANAREA-16,MF=E Write transaction record
* as replacement for record
* with the same key
CHECK DECBRW, DSORG=IS
B NEXTREC
CHECKERR ‘e SYNAD routine
REPLAREA DS CL272
TRANAREA DS CL4
TRANCODE DS CL1
KEY DS CL10
TRANDATA DS CL241
READ DECBRW, KU, ISDATA, 'S','S' ,KEY,MF=L
ISDATA DCB DDNAME=INDEXDD,DSORG=IS,MACRF=(RUSC,WUAC), SYNAD=CHECKERR
TPDATA DCB -—-

Figure 62. Directly Updating an Indexed Sequential Data Set with Variable-Length Records

132 OS/VS Data Management Services Guicde

Processing a Direct Data Set

In a direct data set, there is a relationship between a control number or identification of
each record and its location on the direct-access volume. This relationship allows you to
gain access to a record without an index search. You determine the actual organization of
the data set. If the data set has been carefully organized, location of a particular record
takes less time than with an indexed sequential data set.

Although you can process a direct data set sequentially using either the queued access
technique or the basic access technique, you cannot read record keys using the queued
access technique. When you use the basic access technique, each unit of data transmitted
between virtual storage and an I/O device is regarded by the system as a record. If, in
fact, it is a block, you must perform any blocking or deblocking required. For that
reason, the LRECL field is not used when processing a direct data set. Only BLKSIZE
must be specified when you add or update records on a direct data set.

If dynamic buffering is specified for your direct data set, the system will provide a buffer
for your records. If dynamic buffering is not specified, you must provide a buffer for the
system to use.

As indicated in the discussion of direct-access devices, record keys are optional. If they
are specified, they must be used for every record and must be of a fixed length.

Organizing a Direct Data Set

In developing the organization of your data set, you can use direct addressing. When
direct addresses are used, the location of each record in the data set is known.

If format-F records with keys are being written, the key of each record can be used to
identify the record. For example, a data set with keys ranging from 0O to 4999 should be
allocated space for 5000 records. Each key relates directly to a location that you can
refer to as a relative record number. Therefore, each record should be assigned a unique
key. If identical keys are used it is possible, during periods of high CPU and channel
activity, to skip the desired record and retrieve the next record on the track. The main
disadvantage of this type of organization is that records may not exist for many of the
keys even though space has been reserved for them.

Space could be allocated on the basis of the number of records in the data set rather than
on the range of keys. This type of organization requires the use of a cross-reference
table. When a record is written in the data set, you must note the physical location either
as an actual address or as a relative track and record number. The addresses must then be
stored in a table that is searched when a record is to be retrieved. Disadvantages are that
cross-referencing can be used efficiently only with a small data set, storage is required
for the table, and processing time is required for searching and updating the table.

A more common, but somewhat complex, technique for organizing the data set involves
the use of indirect addressing. In indirect addressing, the address of each record in the
data set is determined by a mathematical manipulation of the key. This manipulation is
referred to as randomizing or conversion. Since a number of randomizing procedures
could be used, no attempt is made here to describe or explain those that might be most
appropriate for your data set.

Part 2: Data Management Processing Procedures 132

Referring to a Record in a Direct Data Set

Once you have determined how your data set is to be organized, you must consider how
the individual records will be referred to when the data set is updated or new records are
added. This is important for determining whether a return address will be required when
the data is created and, if so, in what form the return address will be used. The record
identification can be represented in any of the following forms:

Relative Block Address: You specify the relative location of the record (block) within the
data set as a 3-byte binary number. This type of reference can be used only with
format-F records. The system computes the actual track and record number. The relative
block address of the first block is 0.

Relative Track Address: You specify the relative track as a 2-byte binary number and the
actual record number on that track as a 1-byte binary number. The relative track address
of the first track is 0.

Relative Track or Block Address and Actual Key: In addition to the relative track or block
address, you specify the address of a virtual-storage location containing the record key.
The system computes the actual track address and searches for the record with the
correct key.

Actual Address: You supply the actual address in the standard 8-byte
form—MBBCCHHR. Remember that the use of an actual address may force you to
indicate that the data set is unmovable.

Extended Search: You request that the system begin its search with a specified starting
location and continue for a certain number of records or tracks. This same option can be
used to request a search for unused space in which a record can be added.

To use the extended search option, you must indicate in the DCB the number of tracks
(including the starting track) or records (including the starting record) that are to be
searched. If you indicate a number of records, the system may actually examine more
than this number. In searching a track, the system searches the whole track (starting with
the first record); it therefore may examine records that precede the starting record or
follow the ending record.

If the DCB specifies a number equal to or greater than the number of tracks allocated to
the data set or the number of records within the data set, the entire data set is searched
in the attempt to satisfy your request.

Exclusive Control for Updating: When miore than one task is referring to the same data
set, exclusive control of the block being updated is required to prevent simultaneous
reference to the same record. Rather than issuing an ENQ macro instruction each time
you update a block, you can request exclusive control through the MACREF field of the
DCB and the type operand of the READ macro. The coding example in Figure 65
illustrates the use of exclusive control. After the READ macro instruction is executed,
your task has exclusive control of the block being updated. No other task in the system
requesting access to the block is given access until the operation started by your WRITE
macro is complete. If, however, the block is not to be written, you can release exclusive
control using the RELEX macro instruction.

Feedback Option: This option specifies that the system provide the address of the record
requested by a READ or WRITE macro instruction. This address may be in the same
form that was presented to the system in the READ or WRITE macro instruction, or as
an 8-byte actual address. This option can be specified in the OPTCD parameter of the
DCB and in the READ or WRITE macro instruction. If this option is omitted from the
DCB but is requested in a READ or WRITE macro instruction, an 8-byte actual address
is returned to the user.

134 OS/VS Data Management Services Guide

The feedback option is automatically provided for a READ macro instruction requesting
exclusive control for updating. This feedback will be in the form of an actual address
(MBBCCHHR) unless feedback was specified in the OPTCD field of the DCB. In this
case, feedback is returned in the format of the addressing scheme used in the problem
program (an actual or a relative address). When a WRITE or RELEX macro instruction
is issued (which releases the exclusive control that was gotten for the READ request),
the system will assume that the addressing scheme used for the WRITE or RELEX
macro instruction is in the same format as the addressing scheme used for feedback in
the READ macro instruction.

Creating a Direct Data Set

Once the organization of a direct data set has been determined, the process of creating it
is almost identical to that of creating a sequential data set. The BSAM DCB macro
instruction must be used with the WRITE macro instruction (the form used to create a
direct data set). The following parameters must be specified in the DCB macro
instruction:

« DSORG=PS or PSU
« DEVD=DA or omitted
« MACRF=WL

The DD statement must indicate direct-access (DSORG=DA or DAU). If keys are used,
a key length (KEYLEN) must also be specified. Record length (LRECL) need not be
specified but may be used to provide compatibility with sequential access method
processing of this data set.

It is possible to create a direct data set using QSAM (no keys allowed) or BSAM (with
or without keys and the DCB specifies MACRF=W). However, this method is not
recommended because when you access this direct data set, you cannot request a
function which requires the information in the capacity record (R0O) data field. For
example, the following restrictions would apply:

« Variable-length, undefined-length, or variable-length spanned record processing is not
allowed.

« The WRITE add function with extended search for fixed-length records (with or
without track overflow) is not allowed.

If a direct data set is created and updated or read within the same job step, and the
OPTCD parameter is used in the creation, updating, or reading of the data set, different
DCBs and DD statements should be used.

If you are using direct addressing with keys, you can reserve space for future format-F
records by writing a dummy record. To reserve or truncate a track for format-U or
format-V records, write a capacity record. The capacity record (R0) contains a 7-byte
data field (CCHHRLL) where CCHHR is the ID of the last record on the track, and LL
is the number of unused bytes on the track. If a WRITE SZ macro is issued for a track
with no records, R is zero and LL is the entire length of the track.

Format-F records are written sequentially as they are presented. When a track is filled,
the system automatically writes the capacity record and advances to the next track.
Because of the form in which relative track addresses are recorded, direct data sets
whose records are to be identified by means other than actual address must be limited in
size to no more than 65,536 tracks for the entire data set.

Tape-to-Disk—Direct Data Set: In the example problem in Figure 63, a tape containing
204-byte records arranged in key sequence is used to create a direct data set. A 4-byte

Part 2: Data Management Processing Procedures 13

binary key for each record ranges from 1000 to 8999, so space for 8000 records is
requested.

Adding or Updating Records on a Direct Data Set

The techniques for adding records to a direct data set depend on the format of the
records and the organization used.

Format-F With Keys: Adding a record amounts to essentially an update by record
identification. The reference to the record can be made by either a relative block address
or a relative track address.

If you attempt to add a record by relative block address, the system converts the address
to a relative track address. That track is searched and the new record written in place of
the first dummy record on the track. If there is no dummy record on the track, you are
informed that the write operation did not take place. If you request the extended search
option, the new record will be written in place of the first dummy record found within
the search limits you specify. If none is found, you are notified that the write operation
could not take place. In the same way, a reference by relative track address causes the
record to be written in place of the first dummy record on that track or the first within
the search limits, if requested.

Format-F Without Keys: Here too, adding a record is really updating a dummy record
already in the data set. The main difference is that dummy records cannot be written
automatically when the data set is created. You will have to use your own method for
flagging dummy records. The update form of the WRITE macro instruction

//DAOUTPUT DD DSNAME=SLATE.INDEX.WORDS,DCB=(DSORG=DA, c
// BLKSIZE=200,KEYLEN=4,RECFM=F), SPACE=(204,8000),-—--
//TAPINPUT DD —-——-

DIRECT START

L 9,=F'1000"
OPEN (DALOAD, (OQUTPUT), TAPEDCB)
LA 10, COMPARE
NEXTREC GET TAPEDCB
LR 2,1
COMPARE C 9,0(2) Compare key of input against
* control number
BNE DUMMY
WRITE DECB1, SF,DALOAD, (2) Write data record
CHECK DECB1
AH 9,=H"1"'
B NEXTREC :
DUMMY C 9,=F"'8999" Have 8000 records been written?
BH ENDJOB
WRITE DECB2,SD,DALOAD, DUMAREA Write dummy
CHECK DECB2
AH 9,=H'1"'
BR 10
INPUTEND LA 10, DUMMY
BR 10
ENDJOB CLOSE (TAPEDCB, ,DALOAD)
DUMAREA DS CL5
DALOAD DCB DSORG=PS ,MACRF=(WL) , DDNAME=DAOUTPUT, C
DEVD=DA, SYNAD=CHECKER,, ——-

TAPEDCB DCB EODAD=INPUTEND, MACRF=(GL), —---

Figure 63. Creating a Direct Data Set

136 OS/VS Data Management Services Guide

(MACRF=W) must be used rather than the add form (MACRF=WA).

You will have to retrieve the record first (using a READ macro instruction), test for a
dummy record, update, and write.

Format-V or Format-U With Keys: The technique used to add records in this case
depends on whether records are located by indirect addressing or a cross-reference table.
If indirect addressing is used, you must at least initialize each track (write a capacity
record) even if no data is actually written. That way the capacity record indicates how
much space is available on the track. If a cross-reference table is used, you should
exhaust the input and then initialize enough succeeding tracks to contain any additions
that might be required.

To add a new record, use a relative track address. The system examines the capacity
record to see if there is room on the track. If there is, the new record is written. Under
the extended search option, the record is written in the first available area within the
search limit.

Format-V or Format-U Without Keys: Because a record of this type does not have a key,
you can refer to the record only by its relative track or actual address (direct addressing
only). When you add a record to this data set, you must retain the relative track or actual
address data (for example, by updating your cross-reference table). The extended search
option is not allowed because this option requires keys.

Tape-to-Disk Add—Direct Data Set: The example in Figure 64 involves adding records
to the data set created in the last example. Notice that the write operation adds the key
and the data record to the data set. If the existing record is not a dummy record, an
indication is returned in the exception code of the DECB. For that reason, it is better to
use the WAIT macro instruction instead of the CHECK macro instruction to test for
errors or exceptional conditions.

Tape-to-Disk Update—Direct Data Set: The example in Figure 65 is similar to that in
Figure 64, but involves updating rather than adding. There is no check for dummy
records. The existing direct data set contains 25,000 records whose 5-byte keys range
from 00001 to 25000. Each data record is 100 bytes long. The first 30 characters are to

//DIRADD
//TAPEDD

DIRECTAD

NEXTREC

DIRECT

TAPEIN
KEY
DATA
REF

DD DSNAME=SLATE.INDEX.WORDS,———-

DD ———

START

OPEN (DIRECT, (OUTPUT), TAPEIN)

GET TAPEIN,KEY

L 4,KEY Set up relative record number

SH 4,=H'1000"

ST 4 ,REF

WRITE DECB,DA,DIRECT,DATA,'S',KEY,REF+1

WALT ECB=DECB

CLC DECB+1(2),=X'0000" Check for any errors

BE NEXTREC

Check error bits and take required action

DCB DDNAME=DIRADD, DSORG=DA,RECFM=F ,KEYLEN=4 ,BLKSIZE=200, C
MACRF=(WA)

DCB -

DS P

DS CL200

DS F

Figure 64. Adding Records to a Direct Data Set

Part 2: Data Management Processing Procedures 137

be updated. Each input tape record consists of a 5-byte key and a 30-byte data area.
Notice that only data is brought into virtual storage for updating. N

Consideration for User Labels: User labels, if desired, must be created when the data set
is created. They may be updated, but not added or deleted, during processing of a direct
data set. When creating a multivolume direct data set using BSAM, you should turn off
the header exit entry after OPEN and turn on the trailer label exit entry just before
issuing the CLOSE. This eliminates the end-of-volume exits. The first volume, containing
the user label track, must be mounted when the data set is closed. If you have requested
exclusive control, OPEN and CLOSE will ENQ and DEQ to prevent simultaneous
reference to user labels.

Consideration for using the 2305 Fixed Head Storage: When a data set on a 2305 device
is to be used by several tasks simultaneously, or when overlapping 1/O (successive
WRITEs issued without an intervening CHECK or WAIT) is used, the following
combination may produce overlaying of records:

« WRITE-add processing

« Fixed records with or without track overflow

//DIRECTDD DD DSNAME=SLATE . INDEX . WORDS , ——~
//TAPINPUT DD —_—
DIRUPDAT START
OPEN (DIRECT, (UPDAT), TAPEDCB)
NEXTREC GET TAPEDCB,KEY
PACK KEY,KEY
CVB 3,KEYFIELD
SH 3,=H'1"' *
ST 3,REF
READ DECBRD,DIX,DIRECT,'S','S',0,REF+1
CHECK DECBRD ~
L 3,DECBRD+12
MVC 0(30,3),DATA
ST 3,DECBWR+12
WRITE DECBWR,DIX,DIRECT,'S','S',0,REF+1
CHECK DECBWR
B NEXTREC
KEYFIELD DS 0D
DC XL3'0"'
KEY DS CcL5
DATA DS CL30
REF DS F
DIRECT DCB DSORG=DA, DDNAME=DIRECTDD ,MACRF=(RISXC,WIC), c
OPTCD=R, BUFNO=1,BUFL=100 -~

TAPEDCB DCB

...

Figure 65. Updating a Direct Data Set

138 OS/VS Data Management Services Guide

PART 3: DATA SET DISPOSITION AND SPACE
ALLOCATION

Allocating Space on Direct-Access Volumes

When direct-access storage space is required for a data set, you specify the amount of
space needed and the device type, and the operating system selects the device and
allocates the space accordingly. This arrangement provides for flexible and efficient use
of devices and available storage space, and relieves you of considering the details
involved in efficient space control.

Before a direct-access volume can be used for data storage, it must be initialized by
either of the utility programs IBCDASDI or IEHDASDR. The utilities’ functions include
in part:

¢ Creating the standard 80-byte volume label and writing it on cylinder 0, track 0, of
the volume.

« Initializing the volume table of contents (VTOC). The location of the VTOC depends
on the conventions your-installation uses in initializing the volume.

e Writing the home address (HA) and capacity record (RO) for each track.
« Checking tracks and making alternate track assignments if necessary.

When the data set is to be stored on a direct-access volume, you must supply, in the DD
statement, control information designating the amount of space to be allocated and the
manner in which it is to be allocated.

Note: IEHDASDR and IBCDASDI cannot be used for an MSS 3330 virtual volume.
The Access Method Services utility, CREATEV, must be used. See OS/VS Mass
Storage System (MSS) Services for Space Management for a description of the
CREATEYV command.

Specifying Space Requirements

The amount of space required can be specified in blocks, tracks, or cylinders. If you want
to maintain device independence, specify your space requirements in blocks. If your
request is in tracks or cylinders, you must be aware of such device considerations as
cylinder and track capacity.

Cylinder allocation allows faster input/output of sequential data sets than does track
allocation. Track allocation stops input/output at the end of every track to prevent
references on the same cylinder outside of the data set. The time difference occurs when
you use the sequential access method or the partitioned access method to read a data set
whose record format is not fixed standard (FS). If the data set is partitioned, the time
difference occurs during both loading of a module from the data set and reading of the
data set’s directory.

Allocation by Blocks: When the amount of space required is expressed in blocks, you
must specify the number and average length of the blocks within the data set, as in this
example:

// DD SPACE=(300,(5000,100)), .

300 = average block length in bytes
5000 primary quantity (number of blocks)
100 secondary quantity, to be allocated if the primary quantity is not
sufficient (in blocks)

Part 3: Data Set Disposition and Space Allocation 139

Note that when average block length and secondary space allocation are being used, the
BLKSIZE parameter specified must be equal to the maximum block length.

From this information, the operating system estimates and allocates the number of tracks
required. Space is always in whole tracks. You may also request that the space allocated
for a specific number of blocks begin and end on cylinder boundaries.

You must be certain that both the quantity and the increment are large enough to contain
the largest block to be written. Otherwise, all of the space requested is allocated but
erased as the system tries to find a space large enough for the record.

Allocation by Tracks or Cylinders: The amount of space required can be expressed in
tracks or cylinders, as in these examples:

// DD SPACE=(TRK,(100,5)), .
// DD SPACE=(CYL,(3,1)), . . .

Allocation by Absolute Address: If the data set contains location-dependent information
in the form of an absolute track address (MBBCCHHR), space should be requested with
respect to the number of tracks and the beginning address, as in this example:

// DD SPACE=(ABSTR,(500,10)),UNIT=2314, . . .
where 500 tracks are required, beginning at relative track 20, which is cylinder 1, track 0.

Allocation of Mass Storage System (MSS) Virtual Volumes: When the data set is to be
stored on an MSS virtual volume, a volume group (MSVGP) parameter may be specified
instead of using the SPACE parameter on the DD card. Before the MSVGP parameter
can be used, it must be identified to MSS by the utility program, IDCAMS.

Allocation of MSS virtual volume space should be in multiples of cylinders with
secondary allocation a multiple of the primary to insure maximum space usage and
minimum fragmentation.

Additional Space Allocation Options: The DD statement provides you with a great deal of
flexibility in specifying space requirements. These options are described in detail in
OS/VS1 JCL Reference and OS/VS2 JCL.

Estimating Space Requirements

To determine how much space your data set requires, you must consider these variables
for the device type:

o Track capacity

e Tracks per cylinder

¢ Cylinders per volume

« Data length (blocksize)

« Key length

« Device overhead

Figure 66 lists the physical characteristics of a number of direct-access storage devices.

The term device overhead refers to the space required on each track for hardware data,
that is, address markers, count areas, gaps between records, record 0, etc. Device
overhead varies with each device and depends also on whether the blocks are written
with keys. To compute the actual space required for each block including device
overhead, you can use the formulas in Figure 67. Note that any fraction of a byte must
be ignored. For example, if the formula gives 15.644 bytes, you must allocate 15 bytes.

140 OS/VS Data Management Services Guide

Maximum Number

VYolume Block size Tracks per of Total
Device Type per Track! Cylinder Cylinders? Capacity!l,2
2305-1 Drum 14136 8 48 5,428,224
2305-2 Drum 14660 8 96 11,258,880
2314/2319 Disk 7294 20 200 29,176,000
3330/33333
(Model 1) Disk 13030 19 404 100,018,280
3330/3333
(Model 11) Disk 13030 19 808 200,036,560
3340/33444 Disk 8368 12 696
(70-megabytes) 69,889,536
348
(35-megabytes) 34,944,768
3350 Disk 19069 30 555 317,498,850

1 Capacity indicated in bytes (when RO is used by the IBM programming system).
2 Excluding alternate cylinders.

The Mass Storage System (MSS) virtual volumes assume the characteristics of the 3330/3333, Model 1.
4 The 3344 is functionally equivalent to the 3340 Model 70.

Figure 66. Direct-Access Storage Device Capacities

Bytes Required by Each Data Block

Track
Device Capacity Blocks With Keys Blocks Without Keys
2305-1 145681 634+KL+DL 432+DL
2305-2 148581 289+KL+DL 198+DL
2314/2319 7294 146+(KL+DL)534/5122 101+(DL)534/5123
3330/33334
(Model 1 131651 191+KL+DL 135+DL
or11)
3340/3344 85351 242+KL+DL 167+DL
3350 19254 267+KL+DL 185+DL
DL is data length.
KL is key length.

1 This value is different from the maximum block size per track because the formula for the last block on
the track includes an overhead for this device.

2 The formula for the last block on the track is 45+KL+DL.

3 The formula for the last block on the track is DL.

4 The Mass Storage System (MSS) virtual volumes assume the characteristics of the 3330/3333, Model 1.

Figure 67. Direct-Access Device Overhead Formulas

The formulas can be combined in the following way:

If you intend to specify your space requirements in tracks (TRK) or cylinders (CYL),
your estimate should be made as shown above. If you request absolute tracks (ABSTR),
remember that you cannot allocate track 0, cylinder 0. The amount of space required foi
the VTOC will reduce the space available on the rest of the volume.

If you specify your space requirements in average block length, the system performs the
computations for you.

Because a sequential data set and a direct data set are created in the same way, the
estimate and specification of space requirements are identical. If you use the WRITE SZ
macro instruction, your secondary allocation for a direct data set should be at least 2
tracks. Space allocation for a partitioned data set requires that you also consider the
space used for the directory. Similarly, allocation for an indexed sequential data set

Part 3: Data Set Disposition and Space Allocation 14

requires that you consider the space needed for the prime area, index areas, and overflow
areas.

Allocating Space for a Partitioned Data Set

What is the average size of the members to be stored on your direct-access volume? How
many members will fit on the volume? Will you need directory entries for the member
names only or will aliases be used? How many? Will members be added or replaced
frequently? All of these questions must be answered if you are to estimate your space
requirements accurately and use the space efficiently. Note, too, that a partitioned data
set cannot extend beyond one volume.

If your data set will be quite large, or you expect to do a lot of updating, it might be best
to allocate a full volume. If it will be small or seldom subject to change, you should make
your estimate as accurate as possible to avoid wasted space or wasted time used for
recreating the data set.

If the average member length is close to or less than the track length, the most efficient
use of the direct-access storage space may be made with a block size of 1/3 or 1/2 the
track length. For load modules, the linkage editor ignores the specified maximum block
size and uses the maximum block size for the device. Program fetch always ignores
BLKSIZE. It may be a good practice to indicate a block length equal to track capacity,
for example, BLKSIZE=7294 for a 2314 disk. You might then ask for either 100 tracks,
or 5 cylinders, thus allowing for 729,400 bytes of data.

Assuming an average length of 70,000 bytes for each member, you need space for at
least 10 directory entries. If each member also has an average of three aliases, space for
an additional 30 directory entries is required.

Space for the directory is expressed in 256-byte blocks. Each block contains from 3 to
20 entries, depending on the length of the user data field. If you expect 40 directory
entries, request at least 8 blocks. Any unused space on the last track of the directory is
wasted unless there is enough space left to contain a block of the first member.
Therefore, the most advisable request in this case would be for 17 blocks.

Any of the following space specifications would cause the same size allocation for a 2314
disk:

SPACE=(7294,(100,,10))
SPACE=(CYL,(5,,10))
SPACE=(TRK,(100,,10))

Although a secondary allocation increment has been omitted in these examples, it could
have been supplied to provide for extension of the member area. The directory size,
however, cannot be extended.

Allocating Space for an Indexed Sequential Data Set

An indexed sequential data set has three areas: prime, index, and overflow. Space for
these areas can be subdivided and allocated as follows:

« Prime area—If you request a prime area only, the system automatically uses a portion
of that space for indexes, taking one cylinder at a time as needed. Any unused space
in the last cylinder used for index will be allocated as an independent overflow area.
More than one volume can be used in most cases, but all volumes must be for devices
of the same device type.

« Index area~——You can request that a separate area be allocated to contain your
cylinder and master indexes. The index area must be contained within one volume, but

142 OS/VS Data Management Services Guide

this volume can be on a device of a different type than the one that contains the prime
area volume. If a separate index area is requested, you cannot catalog the data set with
a DD statement.

If the total space occupied by the prime area and index area does not exceed one
volume, you can request that the separate index area be embedded in the prime area
(to reduce access arm movement) by indicating an index size in the SPACE parameter
of the DD statement defining the prime area. -

If you request space for prime and index areas only, the system automatically uses any
space remaining on the last cylinder used for master and cylinder indexes for overflow,
provided the index area is on a device of the same type as the prime area.

Overflow area—Although you can request an independent overflow area, it must be
contained within one volume. If no specific request for index area is made, then it will
be allocated from the specified independent overflow area.

To request that a designated number of tracks on each cylinder be used for cylinder
overflow records, you must use the CYLOFL parameter of the DCB macro
instruction. The number of tracks that you can use on each cylinder equals the total
number of tracks on the cylinder minus the number of tracks needed for track index
and for prime data, that is:

Usable tracks = total tracks - (track index tracks 4+ prime data tracks)

Note that when you create a 1-cylinder data set, ISAM reserves 1 track on the last
cylinder for the end-of-file filemark.

When you request space for an indexed sequential data set, the DD statement must
follow a number of conventions, as shown below and summarized in Figure 68.

Space can be requested only in cylinders, SPACE=(CYL,(...)), or absolute tracks,
SPACE=(ABSTR,(...)). If the absolute track technique is used, the designated tracks
must make up a whole number of cylinders.

Data set organization (DSORG) must be specified as indexed sequential (IS or ISU)
in both the DCB macro instruction and the DCB parameter of the DD statement.

All required volumes must be mounted when the data set is opened; that is, volume
mounting cannot be deferred.

If your prime area extends beyond one volume, you must indicate the number of units
and volumes to be spanned, for example, UNIT=(2314,3),VOLUME=(,,,3).

You can catalog the data set using the DD statement parameter DISP=(,CATLG)
only if the entire data set is defined by one DD statement; that is, if you did not
request a separate index or independent overflow area.

Part 3: Data Set Disposition and Space Allocation 14:

Criteria Restrictions on Resulting
Unit Types and Arrangement m
1. Number 2. Types 3. Index Number of Units of Areas ‘ -
of DD of DD Size Requested
Statements Statements Coded?
3 INDEX - None Separate index, prime,
PRIME and overflow areas.
OVFLOW
2 INDEX - None Separate index and prime
PRIME areas. Any partially used
index cylinder is used for
independent overflow if the
index and prime areas are
on the same type of device.
2 PRIME No None Prime area and overflow
OVFLOW area with an index at its
end. v
2 PRIME Yes The statement Prime area and embedded
OVFLOW defining the prime index, and overflow area.
area cannot request t
more than one unit.
1 PRIME No None Prime area with index at
its end. Any partially
used index cylinder
is used for independent
overflow.
1 PRIME Yes Statement cannot Prime area with embedded
request more than index area; independent
one unit. overflow in remainder of
partially used index ﬂ

Figure 68. Requests for Indexed Sequential Data Sets

cylinder

As your data set is created, the operating system builds the track indexes in the prime
data area. Unless you request a separate index area or an embedded index area, the
cylinder and master indexes are built in the independent overflow area. If you did not
request an independent overflow area, the cylinder and master indexes are built in the
prime area.

If an error is encountered during allocation of a multivolume data set, the IEHPROGM

utility program should be used to scratch the DSCBs of the data sets that were -
successfully allocated. The IEHLIST utility program can be used to determine whether or

not part of the data set has been allocated. The IEHLIST utility program is also useful to

determine whether space is available or whether identically named data sets exist before -
space allocation is attempted for indexed sequential data sets. These utility programs are

described in OS/VS Utilities.

Specifying a Prime Data Area

To request that the system allocate space and subdivide it as required, you should code:

//ddname DD DSNAME=dsname,DCB=DSORG=1S,
// SPACE=(CYL,quantity, ,CONTIG),UNIT=unitname,
// DISP=(,KEEP),——-

You can accomplish the same type of allocation by qualifying your dsname with the

element indication (PRIME). This element is assumed if omitted. It is required only if

you request an independent index or overflow area. To request an embedded index area (-_
when an independent overflow area is specified, you must indicate)

144 OS/VS Data Management Services Guide

DSNAME=dsname(PRIME). To indicate the size of the embedded index, you specify
SPACE=(CYL,(quantity,,index size)).

Specifying a Separate Index Area

To request a separate index area, other than an embedded area as described above, you
must use a separate DD statement. The element name is specified as (INDEX). The
space and unit designations are as required. Notice that only the first DD statement can
have a data definition name. The data set name (dsname) must be the same.

//ddname DD DSNAME=dsname(INDEX),-—-
// DD DSNAME=dsname(PRIME),---

Specifying an Independent Overflow Area

A request for an independent overflow area is essentially the same as for a separate index
area. Only the element name, OVFLOW, is changed. If you do not request a separate
index area, only two DD statements are required.

//ddname DD DSNAME=dsname(INDEX),---

// DD DSNAME=dsname(PRIME),---
// DD DSNAME=dsname(OVFLOW), ——-

Calculating Space Requirements for an Indexed Sequential Data Set

To determine the number of cylinders required for an indexed sequential data set, you
must consider the number of blocks that will fit on a cylinder, the number of blocks that
will be processed, and the amount of space required for indexes and overflow areas.
When you make the computations, consider how much additional space is required for
device overhead. Figures 66 and 67 show device capacities and overhead formulas. In the
formulas that follow, the length of the last block (or only block) must include device
overhead as given in Figure 67 as Bn.

Blocks = 1 4 ((Track capacity - Length of the last block)/(Length of other blocks))
per track

Bt 1 + ((Ct-Bn)/Bi)

The following eight steps summarize calculation of space requirements for an indexed
sequential data set.

Step 1

Once you know how many records will fit on a track and the maximum number of
records you expect to create, you can determine how many tracks you will need for your
data.

Number of tracks required = (Maximum number of blocks/Blocks per track) + 1
ISAM load mode reserves the last prime data track for the filemark.

Example: Assume that a 200,000 record part-of-speech dictionary is stored on an IBM
3330 Disk Storage, using the 3336 disk pack, as an indexed sequential data set. Each
record in the dictionary has a 12-byte key (the word itself) and an 8-byte data area
containing a part-of-speech code and control information. Each block contains 50
records; LRECL =20 and BLKSIZE=1000. Using the formula from Figure 67, we find
that each track will contain 10 blocks or 500 records. A total of 401 tracks will be
required for the dictionary.

Bt=1+ 13,165 - (191 + 12 + 1000) =1+ 11,962 =1+ 9 =10
191 + 12 + 1000 1203

Records per track = (10 blocks)(50 records per block) = 500

Prime data tracks required (T) = 200,000 records + 1 =401
500 records per track

Part 3: Data Set Disposition and Space Allocation 14!

Step 2

You will want to anticipate the number of tracks required for cylinder overflow areas. A,
The computation is the same as for prime data tracks, but you must remember that

overflow records are unblocked and a 10-byte link field is added. Remember, if you

exceed the space allocated for any cylinder overflow area, an independent overflow area

is required. Those records are not placed in another cylinder overflow area.

Overflow records = 1+ Track capacity - Length of last overflow record
per track (Ot) Length of other overflow records

Ot = 1+ ((Ct-Rn)/Ri)

Example: Approximately 5000 overflow records are expected for the data set described
in step 1. Since 56 overflow records will fit on a track, 90 overflow tracks are required.
This is 90 overflow tracks for 401 prime data tracks, or approximately 1 overflow track
for every 4 prime data tracks. Since the 3336 disk pack has 19 tracks per cylinder, it
would probably be best to allocate 4 tracks per cylinder for overflow.

Ot=1+ 13,165-(191 + 12 + 20 + 10) =14+ 12,932=1+55=56
191 + 12 4+ 20+ 10 233
Overflow tracks required = 5000 records =90 -

56 records per track

Overflow tracks per cylinder (Oc) = 4
Step 3

You will have to set aside space in the prime area for track index entries. There will be
two entries (normal and overflow) for each track on a cylinder that contains prime data
records. The data field of each index entry is always 10 bytes long. The key length
corresponds to the key length for the prime data records. How many index entries will fit

on a track? A_—
Index entries = 1 + Track capacity - Length of last index entry
per track (It) Length of other index entries

It 1 + ((Ct-En)/Ei)

Example: Again assuming use of a 3336 disk pack and records with 12-byte keys, we
find that 61 index entries will fit on a track.

It=1+ 13,165 - (191 + 12 + 10) =1+ 12,952 =1+ 60 = 61
191 + (12 + 10) 213
Step 4

The number of tracks required for track index entries will depend on the number of
tracks per cylinder and the number of track index entries per track. Any unused space on
the last track of the track index can be used for any prime data records that will fit.

Number of track index = 2(Tracks per cylinder-overflow tracks per cylinder) + 1
tracks per cylinder (Ic) Index entries per track + 2
Ic = (2(Tc-Oc)+1)/(It+2)

Note that for variable-length records or when a prime data record will not fit on the last
track of the track index, the last track of the track index is not shared with prime data
records. In such a case, if the remainder of the division is less than or equal to 2, drop the
remainder. In all other cases, round the quotient up to the next integer.

Example: The 3336 disk pack has 19 tracks per cylinder. You can fit 61 track index
entries per track. Therefore, you need less than 1 track for each cylinder:

Ic= 2(19-4) + 1= 31
61 +2 63 ",

The space remaining on the track is (1-31/63) (13,165) = 6686 bytes.

146 OS/VS Data Management Services Guide

This is enough for 6 blocks of prime data records. Since the normal number of blocks per
track is 10, the blocks use 6/10 of the track, and the effective value of Ic is therefore
1-6/10 = 2/5.

Note that space is required on the last track of the track index for a dummy entry to
indicate the end of the track index. The dummy entry consists of an 8-byte count field, a
key field the same size as the key field in the preceding entries, and a 10-byte data field.

Step 5

Next you have to compute the number of tracks available on each cylinder for prime data
records. You cannot include tracks set aside for cylinder overflow records.
Prime data (Tracks) (Overﬂow tracks) (Index tracks)

= T - -

tracks per per cylinde per cylinder per cylinder
cylinder

Pc=Tc-Oc-Ic
Example: If you set aside 4 cylinder overflow tracks, and you require 2/5 of a track for
the track index, 14 3/5 tracks are available on each cylinder for prime data records.
Pc=19-4-2/5=143/5
Step 6

The number of cylinders required to allocate prime space is determined by the number of
prime data tracks required divided by the number of prime data tracks available on each
cylinder. This area includes space for the prime data records, track indexes, and cylinder
overflow records.

Number of
cylinders = Prime data tracks required/Prime data tracks per cylinder
required

C = T/Pc

Example: You need 401 tracks for prime data records. You can use 14-3/5 tracks per
cylinder. Therefore, 28 cylinders are required for your prime area and cylinder overflow
areas.

C = (401)/(14 3/5) = 27+ ~ 28
Step 7

You will need space for a cylinder index as well as track indexes. There is a cylinder
index entry for each track index (for each cylinder allocated for the data set). The size of
each entry is the same as the size of the track index entries; therefore, the number of
entries that will fit on a track is the same as the number of track index entries. Unused
space on a cylinder index track is not shared.

Number of tracks

required for = (Track indexes + 1)/Index entries per track
cylinder index
Ci = (C+1)/It

Example: You have 28 track indexes (from Step 6). Since 61 index entries fit on a track
(from Step 3), you need 1 track for your cylinder index. The remaining space on the last
track is unused.

Ci= (28 + 1)/61 = 29/61 = 0475 < 1

Note that every time a cylinder index crosses a cylinder boundary, ISAM writes a dummy
index entry that lets ISAM chain the index levels together. The addition of dummy
entries can increase the number of tracks required for a given index level. To determine
how many dummy entries will be required, divide the total number of tracks required by
the number of tracks on a cylinder. If the remainder is O, subtract 1 from the quotient. If

Part 3: Data Set Disposition and Space Allocation 147

the corrected quotient is not 0, calculate the number of tracks these dummy entries
require. Also consider any additional cylinder boundaries crossed by the addition of these PN
tracks and by any track indexes starting and stopping within a cylinder. ;

Step 8

If you have a data set large enough to require master indexes, you will want to calculate
the space required according to the number of tracks for master indexes (NTM
parameter) you specified in the DCB macro instruction or the DD statement.

If the cylinder index exceeds the NTM specification, an entry is made in the master index
for each track of the cylinder index. If the master index itself exceeds the NTM
specification, a second-level master index is started. Up to three levels of master indexes
are created if required.

The space requirements for the master index are computed in the same way as those for
the cylinder index.

Number of tracks
required for =(Number of cylinder index tracks + 1)/Index entries per track
master indexes

M; = (Ci+1)/It when Ci>NTM
My = (M1+1)/1t when M1>2NTM
M3 = (Mz+1)/1t when M>NTM

Example: Assume that your cylinder index will require 22 tracks. Since large keys are
used, only 10 entries will fit on a track. Assuming that NTM was specified as 2, 3 tracks
will be required for a master index, and two levels of master index will be created.

My = (22+1)/10 = 2.3

Note that every time a master index crosses a cylinder boundary, ISAM writes a dummy
index entry that lets ISAM chain the index levels together. The addition of dummy
entries can increase the number of tracks required for a given index level. To determine
how many dummny entries will be required, divide the total number of tracks required by
the number of tracks on a cylinder. If the remainder is 0, subtract 1 from the quotient. If
the corrected quotient is not 0, calculate the number of tracks these dummy entries
require. Also consider any additional cylinder boundaries crossed by the addition of these
tracks and by any track indexes starting and stopping within a cylinder.

Summary: Indexed Sequential Space Requirement Calculations
1. How many blocks will fit on a track?
Bt = 1 + ((Ct-Bn)/Bi)
2. How many overflow records will fit on a track? -
Ot = 1 + ((Ct-Rn)/Ri)
3. How many index entries will fit on a track?
It = 1 + ((Ct-En)/Ei)
4. How many track index tracks are needed per cylinder?
Ic = (2(Tc-Oc)+1)/(It+2)
5. How many tracks on each cylinder can be used for prime data records?
Pc=Tc-0c-Ic
6. How many cylinders are needed for the prime data area? fﬁ

C=T/Pc

148 OS/VS Data Management Services Guide

7. How many tracks are required for the cylinder index?
Ci = (C+1)/It
8. How many tracks are required for master indexes?

M = (Ci+1)/1t

Control and Disposition of Data Sets

You specify two kinds of status and disposition information for the data sets you use for
your processing by coding DISP=(status,disposition) in the disposition field of the DD
statement. The first kind deals with the status of the data set when you begin processing
and the relationship of the data set to other job steps in your job or other jobs. The
second deals with what is to be done with the data set when you have completed
processing. In the latter case, you can take advantage of the catalog of the operating
system.

A data set that is being used for input has a status of OLD. If it can be used by more
than one job, the status should be specified as SHR. If you are going to add to the input
data set, specify MOD. The system automatically positions the access mechanism after
the last record when the data set is opened. A new output data set should be indicated as
NEW.

Having identified the status of the data set at the beginning of your job step, you should
specify how you want it disposed of at the end of processing. If the disposition is to be
unchanged, you need not specify anything. The status of an existing data set remains
unchanged; a new data set is deleted. The requested disposition is performed at the end
of the job step. A data set to be used in a later job can be kept (KEEP) until a
subsequent request is made to delete it. If the data set is to be used by more than one job
step in the same job, you can specify that it is to be passed (PASS).

If you specify the CATLG disposition, the data set name is recorded in the catalog by
the system and its volume is noted. An old data set can subsequently be removed from
the catalog if you specify UNCATLG.

If you wish, you can specify one disposition to be performed if the job step terminates
normally, and a different disposition to be performed if the job step terminates
abnormally. For example, you can specify DISP=(OLD,DELETE,KEEP) if you wish to
delete a data set under normal conditions, but wish to keep it if processing is abnormally
terminated. For normal termination, you can specify any disposition—PASS, KEEP,
DELETE, CATLG, or UNCATLG:; for abnormal termination, you can specify any
disposition except PASS.

Routing Data Through the System Input and Output Streams

The job entry subsystem is a system facility that provides spooling and scheduling of
input and output data streams.

Spooling includes two basic functions:

« Input streams are read from the input device and stored on an intermediate storage
device in a format convenient for later processing by the system and by the user’s
program.

o Output streams are similarly stored on an intermediate device until a convenient time
for printing or punching.

Scheduling provides the highest degree of system availability through the orderly use of
system resources that are the objects of contention.

Part 3: Data Set Disposition and Space Allocation 14¢

With spooling, unit record devices are used at full rated speed if enough buffers are
available, and they are used only for the time needed to read, print, or punch the data.
Without spooling, the device is occupied for the entire time that a job is doing other
processing. Also, because data is stored instead of being transmitted directly, output can
be queued in any order and scheduled by class and by priority within each class.

You enter data into the system input stream by preceding it with a DD * or DD DATA
JCL statement. This is a SYSIN data set.

Your output data can be printed or punched from a SYSOUT data set, which is called the
output stream. You code the SYSOUT keyword parameter in your DD statement and
designate the appropriate output class. For example, SYSOUT=A requests output class
A. The class-device relationship is established for each installation; and a list of devices
assigned to each output class will enable you to select the appropriate one. Refer to
OS/VS1 JCL Reference or OS/VS2 JCL for further information on SYSIN and
SYSOUT parameters.

SYSIN and SYSOUT must be BSAM or QSAM data sets and you open and close them in
the same manner as any other data set processed on a unit record device (except when
multiple DCBs are used to write to the same output class, the records are not
interspersed.) The DCB exit routine will be entered in the usual manner if you specify it
in an exit list.

When you use QSAM with fixed-length blocked records or BSAM, the DCB block size
parameter does not have to be a multiple of logical record length (LRECL) if the block
size is specified through the SYSOUT DD statement. Under these conditions, if block
size is greater than LRECL but not a multiple of LRECL, block size is reduced to the
nearest lower multiple of LRECL when the data set is opened. This feature allows a
cataloged procedure to specify blocking for SYSOUT data sets, even though your
LRECL is not known to the system until execution.

Therefore, the SYSOUT DD statement of the go step of a compile-load-go procedure
can specify block size without block size being a multiple of LRECL. For further
information, refer to OS/VS1 JCL Reference or OS/VS2 JCL.

Because a SYSOUT data set is written on a direct-access device, you should omit the
DEVD operand in the DCB macro instruction, or should code DEVD=DA. Because
SYSIN and SYSOUT data sets are spooled on intermediate devices, you should also
avoid using device dependent macro instructions (such as FEOV, CNTRL, PRTOV,
BSP, or SETPRT) in processing these data sets. (See the sections, “Device Control”” and
“Device Independence.’”)

The job entry subsystem controls all blocking and deblocking of your data to optimize
system operation and ignores the number of channel programs (NCP) you specify. The
block size (BLKSIZE) and number of buffers (BUFNO) specified in your program have
no correlation with what is actually used by the job entry subsystem. Therefore, you can
select the blocking factor that best fits your application program with no effect on the
spooling efficiency of the system. For QSAM applications, move mode is as efficient as
locate mode.

All record formats are allowed, except that spanned records (RECFM=VS or VBS)
cannot be specified for SYSIN.

The NOTE and POINT macro instructions may be used with SYSIN data sets on VS1
systems. However, there are restrictions associated with the usage of these macros with
SYSIN. (See OS/VS Data Management Macro Instructions.)

Your program is responsible for printing format, pagination, and header control. You can
supply control characters for SYSOUT data sets in the normal manner by specifying
ANSI or machine characters in the DCB. Standard controls are provided by default if

150 OS/VS Data Management Services Guide

(—-_—

they are not specified. The length of output records must not exceed the allowable
maximum length for the ultimate device. Cards can be punched in EBCDIC mode only.

Your SYNAD routine will be entered if an error occurs during data transmission to or
from an intermediate storage device. Again, because the specific device is indeterminate,
your SYNAD routine code should be device independent.

VS1Systems: For spooled data sets on VS1 systems, the area address must be in the
same protection key as that specified in the TCB (TCBPKTF field). If not, a system 001
ABEND will occur.

Concatenating Sequential and Partitioned Data Sets

Two or more sequential or partitioned data sets can be automatically retrieved by the
system and processed successively as a single data set. This reading technique is known
as concatenation. A maximum of 255 data sets (16, if partitioned) can be concatenated,
but they must be used only for input.

To save time when processing two consecutive data sets on a single volume, you specify
LEAVE in your OPEN macro instruction. Concatenated data sets cannot be read
backward.

When data sets are concatenated, the system treats the group as a single data set and
only one data extent block (DEB) is constructed. Thus, it is important to consider the
characteristics of the individual data sets being concatenated. Data sets with like
characteristics are those that may be processed correctly using the same data control
block (DCB), input/output block (IOB), and channel program. Any exception makes
them unlike. Concatenated partitioned data sets are always treated as like and use the
attributes of the first data set only. You must inform the system if unlike data sets are
concatenated by modifying the DCBOFLGS field of the DCB. The indication must be
made before the end of the current data set is reached. You must set bit 4 to 1 by using
the instruction OI DCBOFLGS,X‘08’ as described in “Modifying the Data Control
Block.” If bit 4 of the DCBOFLGS field is 1, end-of-volume processing for each data set
will issue a CLOSE for the data set just read and an OPEN for the next concatenated
data set. This opening and closing procedure updates the fields in the DCB and, if
necessary, builds a new IOB and a new channel program. If the buffer pool was obtained
automatically by the open routine, the procedure also frees the buffer pool and obtains a
new one for the next concatenated data set. The procedure does not issue a FREEPOOL
for the last concatenated data set. Unless you have some way of determining the
characteristics of the next data set before it is opened, you should not reset the
DCBOFLGS field to indicate like characteristics during processing.

When unlike data sets have been concatenated, you should not issue multiple input
requests, that is, a series of READ or GET macro instructions, in your program. If you
do, you will have to arrange some way to determine which requests have been completed
and which must be reissued. In any case, the GET or READ macro instruction that
detected the end of data set will have to be reissued. Figure 69 illustrates a possible
routine for determining when a GET or READ must be reissued. This restriction does
not apply to like data sets since no open or close operation is necessary between data
sets.

When the change from one data set to another is made, label exits are taken as required;
automatic volume switching is also performed for multiple-volume data sets unless they
are partitioned. Your end-of-data-set (EODAD) routine is not entered until the last data
set has been processed, except that for partitioned data sets, your EODAD routine
receives control at the end of each member. At that time, you can process the next
member or close the data set.

Part 3: Data Set Disposition and Space Allocation 15:

PROBPROG

DCBEXIT

Set First-
Yes Time-In
DCBEXIT Switch Off
s Set Bit 4
et
f
Reread Switch of OFLGS
On to1
-
Return
Return to to Open*
Check via Open*

Set

| Reread Switch :
off *Returns are to control

program address in register 14

Figure 69. Reissuing a READ for Unlike Concatenated Data Sets

You process a concatenation of partitioned data sets the same way you process a single

partitioned data set with one exception. You must use the FIND macro instruction to

begin processing a member; you cannot use the POINT (or NOTE) macro instruction

until after the FIND macro instruction has been issued. Figure 53 shows how to process

a single partitioned data set using FIND. If two members of different data sets in the

concatenation have the same name, the FIND macro instruction determines the address

of the first one in the concatenation. You would not be able to process the second one in

the concatenation. The BLDL macro instruction provides the concatenation number of

the data set to which the member belongs in the K field of the build list. See the section *
“BLDL—Construct a Directory Entry List” in Part 2 of this book.

Rotational Position Sensing Considerations ' -

Direct-access storage devices with the rotational position sensing (RPS) feature (for
example, the 3330) usually employ channel programs that are not compatible with
direct-access storage devices that lack the RPS feature. Therefore, if you concatenate
otherwise “like”” data sets residing on devices both with and without the RPS feature,
standard (nonRPS) channel programs will be used, with a resultant loss of the 1/O
overlap efficiency of rotational position sensing.

On the other hand, if you concatenate multiple-volume, sequential data sets with
“unlike” attributes, you’ll always get RPS channel programs for the volumes residing on
RPS devices.

Further discussion and examples of concatenated data sets are contained in OS/VS1 -
JCL Reference and OS/VS2 JCL. s

152 OS/VS Data Management Services Guide

2

Cataloging Data Sets in VS1

The nonVSAM catalog for the VS1 operating system is itself a data set residing on one
or more direct-access volumes. It is organized into levels of indexes that connect the
data-set names to corresponding volumes and data-set sequence numbers. For each level
of qualification in the data-set name, there is an index group in the catalog.

The highest level of the catalog resides on the system-residence volume. The VTOC
contains an entry for the DSCB defining the catalog and its highest-level index, the
volume index. The lowest-level index contains the simple name of the data set and the
number of the volume on which it resides.

The complete catalog can exist on the system-residence volume, or you can specify that
parts of it be constructed on other volumes. Any volume containing part of the catalog is
called a control volume. The use of control volumes allows data sets that are functionally
related to be cataloged separately. The advantages include:

o Control volumes can be moved from one processing system to another.

« System-residence requirements can be reduced by placement of seldom-used indexes
on a control volume.

For any given data set, only one level of control volume, other than the system-residence
volume, can be used. Notice that in Figure 70, index E, which is the highest-level index
on the control volume, has an entry in both volume indexes.

All VSAM data sets must be cataloged in a VSAM catalog. However, nonVSAM data
sets can be cataloged in a VSAM catalog instead of the system catalog. For further
information on the VSAM catalog, see OS/VS1 Access Method Services.

System-Residence Volume

Control Volume

Volume Table of Contents

Volume Table of Contents

Volume Volume
Index Index
DSCB DSCB

/__ﬁyme Index

Volume Index

Pointer to
P nter to | Volume Serial | Index E
oi E | 1
| Index B I Number of
| Control Volume
: Pointer to 'T Volume
Index | A | F | Number
E | Index A |
| 1 of F
| Volume 1 Volume Data
Index ' Number G! Number T Set
B |F, P | G 1 Volume { Volume E
L _© 1 o Index | | Number | p : Number E.
/ / ALl oft | | ofP
Data Data Data Data
Set Set Set Set
B.F B.G E.A.L E.AP

Figure 70. Catalog Structure on Two Volumes

Part 3: Data Set Disposition and Space Allocation 153

Permanent Mass Storage System (MSS) data sets should be cataloged to allow efficient
use of the Mass Storage Volume Control (MSVC) functions. For information on MSVC,
| see OS/VS Mass Storage System (MSS) Services for Space Management.

Entering a Data Set Name in the Catalog

The catalog structure, including all levels of indexes, is initially created by the utility
program, IEHPROGM, or when a qualified data set name is cataloged. A data set name
can then be entered if the proper index levels of the name exist.

For example, if a data set named A.B.C is to be cataloged, the volume index on the
system-residence volume must have an index entry for index A, which must point to an
index B. When the data set A.B.C is cataloged, C is entered into index B along with the
volume serial number of the volume where data set A.B.C resides. The cataloging request
is entered as:

//ddname DD DSNAME=A.B.C,DISP=(,CATLG)

The Access Method Services program may be used to catalog a data set (either VSAM or
nonVSAM) in a VSAM catalog. For more information on the Access Method Services
program, see OS/VSI Access Method Services.

Cataloging Data Sets in VS2

The VS2 operating system has a catalog structure consisting of a master catalog, user
(private) catalogs, and, optionally, control volumes. Figure 71 shows the VS2 catalog
structure.

Master Catalog

| USERID b

g[SYSCATLG.CVOL \
Catal
UCAT User Catalog Control Volume

Data Set
Data Set A Data Set UCAT.B) USERID.B >
/ —/
Data Set A
Data Set Data Set
UCAT-B USERID.B

Figure 71. VS2 Catalog Structure

There is one master catalog on each system. It is required and contains entries for system
data sets. It is also the VSAM master catalog and does not have to be on the system
residence volume. The master catalog contains a pointer to each user catalog. Both
VSAM and nonVSAM data sets can be cataloged in a user catalog.

NonVSAM data sets can be cataloged on control volumes (described under “Cataloging
Data Sets in VS1°’). The master catalog contains a pointer to each control volume. Data
sets can be cataloged, uncataloged, or recataloged but control volumes cannot be created

154 OS/VS Data Management Services Guide

or maintained on a VS2 system. If a data set is not cataloged in the master catalog, the
first name of a qualified data set name indicates the user catalog or control volume in
which it is cataloged. A user catalog can also be connected to the VS2 system as a job
catalog or a step catalog.

Permanent Mass Storage System (MSS) data sets should be cataloged to allow efficient
use of the Mass Storage Volume Control (MSVC) functions. For information on MSVC,
| see OS/VS Mass Storage System (MSS) Services for Space Management.

Entering a Data Set Name in the Catalog

The data set name of a nonVSAM data set can be entered in a master or user catalog
through (1) job control language (DISP parameter), (2) Access Method Services
(DEFINE command), or (3) catalog management macro instructions (CATALOG and
CAMLST). A nonVSAM data set name can be entered in a control volume through JCL
or the catalog management macros. VSAM data sets can only be cataloged by using
Access Method Services.

Access Method Services is also used to establish aliases for data set names and to
connect user catalogs and control volumes to the master catalog. See OS/VS2 Access
Method Services for information on how to use the Access Method Services commands.
See OS/VS2 System Programming Library: Data Management for information on
how to use the catalog management macro instructions.

Generation Data Groups

A generation data group is a group of related cataloged data sets. The manner in which
these data sets are cataloged is what makes them a generation data group. Within a
generation data group, the generations can have like or unlike DCB attributes and data
set organizations. If the attributes and organizations of all generations in a group are
identical, the generations can be retrieved together as a single data set. Each data set
within a generation data group is called a generation data set. Generation data sets are
sometimes called generations.

There are advantages to grouping related data sets. Because the catalog management
routines can refer to the information in a special index—called a generation index—in
the catalog:

« All of the data sets in the group can be referred to by a common name.
o The operating system is able to keep the generations in chronological order.

« Outdated or obsolete generations can be automatically deleted by the operating
system.

The management of a generation data group depends upon the fact that generation data
sets have sequentially ordered names—absolute and relative names—that represent their
age. The absolute generation name is the representation used by the catalog management
routines in the catalog. Older data sets have smaller absolute numbers. The relative name
is a signed integer used to refer to the latest (0), next to the latest (=1), etc. generation.
The relative number can also be used to catalog a new generation (+1).

| In MVS, a generation data group base is created in a VSAM catalog before the
generation data sets are cataloged. A generation data group is represented in the VS2
catalog by a generation data group base entry. The Access Method Services’ DEFINE
command is used to create the generation data group base. See OS/VS2 Access Method
Services for information on how to define and/or catalog generation data sets.

Part 3: Data Set Disposition and Space Allocation 15!

Absolute Generation and Version Numbers

An absolute generation and version number is used to identify a specific generation of a
generation data group. The generation and version numbers are in the form GxxxxVyy,
where xxxx is an unsigned four-digit decimal generation number and yy is an unsigned
two-digit decimal version number. For example:

+ A.B.C.G0000VOO is generation data set zero, version zero in the generation data
group A.B.C.

« A.B.C.G0001VO0O is generation data set one, version zero in generation data group
AB.C.

+ A.B.C.G0O009VO01 is generation data set nine, version one in generation data group
AB.C.

The number of new generations and versions is limited by the number of digits in the
absolute generation name, that is, 9999 for generations and 99 for versions.

The generation number is automatically maintained by the system. The number of
generations kept depends on the size of the generation index. For example, if the size of
the generation index allows ten entries, the ten latest generations may be maintained in
the generation data group.

The version number allows you to perform normal data set operations without disrupting
the management of the generation data group. For example, if you want to update the
second generation in a three-generation group, replace generation two, version zero, with
generation two, version one. Only one version is kept per generation.

A generation can be cataloged using either absolute or relative numbers. When a
generation is cataloged, a generation and version number is placed as a low level entry in
the generation data group. In order to catalog a version number other than V0O, you
must use an absolute generation and version number.

Relative Generation Number

As an alternative to using absolute generation and version numbers when cataloging or
referring to a generation, you can use a relative generation number. To specify a relative
number, use the generation data group name followed by a negative integer, a positive
integer, or a zero, enclosed in parentheses. For exampie, A.B.C(-1). A.B.C(+1), or
A.B.C(0).

The value of the specified integer tells the operating system what generation number to
assign to a new generation, or it tells the system the location (in the generation index) of
an entry representing a previously cataloged generation.

When you use a relative generation number to catalog a generation, the operating system
assigns an absolute generation number and a version number of VOO to represent that
generation. The absolute generation number assigned depends on the number last
assigned and the value of the relative generation number that you are now specifying.
For example, if in a previous job, generation A.B.C.G0005V00 was the last generation
cataloged, and you specify A.B.C(+1), the generation now cataloged is assigned the
number GO006V00. Though any positive relative generation number can be used, a
number greater than 1 may cause absolute generation numbers to be skipped.

When you use a relative generation number to refer to a generation that was cataloged in
a previous job, the relative number has the following meaning:

o A.B.C(0) refers to the latest existing cataloged entry.
o A.B.C(-1) refers to the next-to-the-latest entry, etc.

156 OS/VS Data Management Services Guide

When cataloging is requested via JCL, all actual cataloging occurs at job
termination—not at step termination. Because this is so:

¢ A relative number used in the JCL refers to the same generation throughout a job.

¢ A job step that terminates abnormally may be deferred for a later step restart. If the
step cataloged a generation data set via JCL, you must change all relative generation
numbers in the succeeding steps via JCL before resubmitting the job.

For example, if the succeeding steps contained the relative generation numbers:
« A.B.C(+1), which refers to the entry cataloged in the terminated job step.

« A.B.C(0), which refers to the next to the latest entry.

e A.B.C(-1), which refers to the latest entry, prior to A.B.C(0).

You must change them as follows before the step can be restarted: A.B.C(0), A.B.C(-1),
A.B.C(-2), etc.

Note: New generation data group requests are cataloged with a volume serial number of
X‘FF4040404040’ if they are not opened, so that data set integrity is maintained and an
incorrect generation is not retrieved.

Building a Generation Index in VS1

A generation data group is managed via the information found in a generation index.
(Note that an alias name cannot be assigned to the highest level of a generation index).
The BLDG function builds the index. The BLDG function also indicates how older or
obsolete generations are to be handled when the index is full. For example, when the
index is full, you may wish to empty it, scratch existing generations, and begin cataloging
a new series of generations.

After the index is built, a generation can be cataloged by its generation data group name
and either an absolute generation and version number or a relative generation number.

Examples on how to build a generation-data-group index are found in OS/VS Utilities.

Creating a New Generation in VS1

To create a new generation data set you must first allocate space for the generation, then
catalog the generation in the VS1 system catalog.

Allocating a Generation

To take full advantage of the facilities of the system, the allocation can be patterned
after a previously allocated generation in the same group. This is accomplished by the
specification of DCB attributes for the new generation as described below.

If you are using absolute generation and version numbers, DCB attributes for a
generation can be supplied directly in the DCB parameter of the DD statement defining
the generation to be created and cataloged.

If you are using relative generation numbers to catalog generations, DCB attributes can
be supplied either: (1) by creating a model DSCB on the volume on which the index
resides (the volume containing the SYSCTLG data set) or (2) by referring to a cataloged
data set for the use of its attributes. Attributes can be supplied before you catalog a
generation, when you catalog it, or at both times, as follows:

1. Create a model DSCB on the volume on which your index resides. You can provide
initial DCB attributes when you create your model; however, you need not provide
any attributes at this time. Since only the attributes in the data set label are used, the

Part 3: Data Set Disposition and Space Allocation 157

model data set should be allocated with SPACE=(TRK,0) to conserve direct-access
space. Initial or overriding attributes can be supplied when you create and catalog a
generation.! To create a model DSCB, include the following DD statement in the job
step that builds the index or in any other job step that precedes the step in which you
create and catalog your generation.

//name DD DSNAME=datagrpname,DISP=(,KEEP),SPACE=(TRK,(0)),

// UNIT=yyyy, VOLUME=SER=XXXXXX,
// DCB=(applicable subparameters)

The DSNAME is the common name by which each generation is identified; xxxxxx is
the serial number of the volume containing the catalog. If no DCB subparameters are
desired initially, you need not code the DCB parameter.

2. You do not need to create a model DSCB if you can refer to a cataloged data set
whose attributes are identical to those you desire or to an existing model DSCB for
which you can supply overriding attributes. A cataloged data set referred to in this
manner must reside on the same volume as your index. To refer to a cataloged data set
for the use of its attributes, specify DCB=(dsname) on the DD statement that creates
and catalogs your generation. To refer to an existing model, specify
DCB=(modeldscbname, your attributes) on the DD statement that creates and
catalogs your generation.

Cataloging a Generation

Passing a Generation

A generation can be cataloged through the use of normal job control language
procedures or through the use of IEHPROGM.

Using JCL to Catalog a Generation: Assuming that a generation data group index has
been built and that provisions have been made for supplying DCB attributes, a
generation is created and cataloged in the same manner as any other type of data set.

Whether you use relative numbers in job control language procedures or absolute
generation and version numbers, you need not catalog the new generation immediately.

Using IEHPROGM to Catalog a Generation: The CATLG function of IEHPROGM can
be used to catalog a generation. Again, the prerequisite for cataloging a generation is the
existence of a generation data group index in the SYSCTLG data set.

Note: You must always use an absolute generation and version number to catalog or
uncatalog a generation using IEHPROGM. (IEHMOVE and IEHLIST also require that
absolute generation and version numbers be used.)

In VS1, a new generation may be passed when created. That generation may then be
cataloged in a succeeding job step or deleted at the end of the job as in normal
disposition processing when DISP=(,PASS) is specified on the DD statement.

However, once a generation has been created with DISP=(NEW,PASS) specified on the
DD statement, another new generation for that data group must not be cataloged until
the passed version has been deleted or cataloged. To do so would cause the wrong

. generation to be used when referencing the passed generation data set. If that data set

was later cataloged, a bad generation would be cataloged and a good one lost.

For example, if A.B.C(+1) was created with DISP=(NEW,PASS) specified on the DD
statement, then A.B.C.(4-2) must not be created with DISP=(NEW,CATLG) until
A.B.C(+1) has been cataloged or deleted.

1 Only one model DSCB is necessary for any number of generations. If you plan to use only one model, do not supply
DCB attributes when you create the model. When you subsequently create and catalog a generation, include necessary DCB
attributes in the DD statement referring to the generation. In this manner, any number of generation data groups can refer
to the same model. Note that the catalog and model data set label are always located on a direct-access volume, even for a
magnetic tape generation data group.

158 OS/VS Data Management Services Guide

By using the proper JCL, the advantages to this support are:
o JCL will not have to be changed in order to rerun the job.

« The lowest generation version will not be deleted from the index until a valid version
is cataloged.

Creating an ISAM Data Set as Part of a Generation Data Group

To create an indexed-sequential data set as part of a generation data group, you must:
(1) create the indexed-sequential data set separately from the generation group and
(2) use IEHPROGM to put the indexed-sequential data set into the generation group.

Use the RENAME function to rename the data set. Then use the CATLG function to
catalog the data set. For instance, if MASTER is the name of the generation data group,
and GggggVvv is the absolute generation name, you would code the following:

RENAME DSNAME=ISAM,VOL=2314=SCRTCH,NEWNAME=MASTER.GggggVvv
CATLG DSNAME=MASTER.GggggVvv,VOL=2314=SCRTCH

Retrieving a Generation

A generation may be retrieved through the use of job control language procedures. Any
operation that can be applied to a non-generation data set can be applied to a generation.
For example, a generation can be updated and reentered in the catalog, or it can be
copied, printed, punched, or used in the creation of new generation or non-generation
data sets.

You can retrieve a generation by using either relative generation numbers or absolute
generation and version numbers.

Because two or more jobs can compete for the same resource, generation data groups
should be updated with care, as follows:

» No two jobs running concurrently should refer to the same generation data group. As
a partial safeguard against this situation, use absolute generation and version numbers
when cataloging or retrieving a generation in a multiprogramming environment. If you
use relative numbers, a job running concurrently may update the generation data
group index, perhaps cataloging a new generation which you will then retrieve in place
of the one you wanted.

« Even when using absolute generation and version numbers, a job running concurrently
might catalog a new version of a generation or perhaps delete the generation you
wished to retrieve. For this reason, some degree of control should be maintained over
the execution of job steps referring to generation data groups.

Part 3: Data Set Disposition and Space Allocation 159

Controlling Confidential Data

Password Protection for NonVSAM Data Sets

Password protection as described here applies to nonVSAM data sets only. For
information on password protection for VSAM data sets, see OS/VS1 Access Method
Services or OS/VS2 Access Method Services.

In addition to the usual label protection that prevents opening of a data set without the
correct data set name, the operating system provides data set security options that
prevent unauthorized access to confidential data. Two levels of protection options are
available. You specify these options in the LABEL field of a DD statement with the
parameter PASSWORD or NOPWREAD.

« Password protection (specified by the PASSWORD parameter) makes a data set
unavailable for all types of processing until a correct password is entered by the
system operator or for a TSO job on VS2, the TSO user.

« No-password-read protection (specified by the NOPWREAD parameter) makes a
data set available for input without a password, but requires that the password be
entered for output or delete operations.

If an incorrect password is entered twice, the job is terminated by the system if it is being
requested by the open or EOV routine. For a scratch or rename request, a return code is
given.

You can request password protection when you create the data set by using the LABEL
field of the DD statement in your JCL. The system sets the data set security byte either
in the standard header label 1 as shown in OS/VS Tape Labels or in the identifier
data set control block (DSCB) as shown in OS/VS1 System Data Areas or OS/VS2
System Programming Library: Debugging Handbook. Once you have requested
security protection for magnetic tapes, you cannot remove it with JCL. unless you
recreate the data set and scratch the protected data set.

In addition to requesting password protection in your JCL, you must enter at least one
record for each protected data set in a data set named PASSWORD that must be created
on the system-residence volume. You should also request password protection for the
PASSWORD data set itself to prevent both reading and writing without knowledge of
the password.

For a data set on a direct-access device you can place the data set under protection at the
same time that you enter its password in the PASSWORD data set. You can use the
PROTECT macro instruction or the IEHPROGM utility program to add, change, or
delete an entry in the PASSWORD data set; with either of these methods the system
updates the DSCB of the data set to reflect its protected status. This provision eliminates
the need for you to use JCL whenever you add, change, or remove security protection
for a data set on a direct-access device. OS/VSI Data Management for System
Programmers or OS/VS2 System Programming Library: Data Management describes
how to maintain the PASSWORD data set, including the PROTECT macro instruction;
OS/VS Utilities describes the [EHPROGM utility program.

160 OS/VS Data Management Services Guide

APPENDIX A: DIRECT-ACCESS LABELS

Only standard label formats are used on direct-access volumes. Volume, data set, and

optional user labels are used (see Figure 72). In the case of direct-access volumes, the
data set label is the data set control block (DSCB).

Cylinder IPL Records
Cylinder 0 Volume Label
Tracks 3 Additional Labels
Track 0 (Optional
oo
— g [
b
. .
—_— VTOC DSCB
Free Space DSCB
DSCB L VTOC
DSCB

[ocse]

All Remaining
Tracks of Volume
Unused Storage
Area for Data Sets

Figure 72. Direct-Access Labeling

Volume-Label Group

The volume-label group immediately follows the first two initial program loading (IPL)
records on track 0 of cylinder O of the volume. It consists of the initial volume label at
record 3 plus a maximum of seven additional volume labels. The initial volume label
identifies a volume and its owner, and is used to verify that the correct volume is
mounted. It can also be used to prevent use of the volume by unauthorized programs.

The additional labels can be processed by an installation routine that is incorporated into
the system.

The format of the direct-access volume label group is shown in Figure 73.

Appendix A: Direct-Access Labels 16

(Up to 7 Additional Volume Labels)
80-Byte Physical Record

Field 1 (3) Volume Label Identifier (VOL)
2 (1) Volume Label Number (1)
3 (6) Volume Serial Number
4 (1) Volume Security
5 (10) VTOC Pointer
6 (10) Reserved for Manufacturers (Blank)
7 (10) Reserved (Blank)
8 (10) Owner Name and Address Code
9 :J: (29) :: Blank

Figure 73. Initial Volume Label

Initial Volume Label Format
The 80-byte initial volume label is preceded by a four-byte key containing VOL1.
Volume Label Identifier (VOL): Field 1 identifies a volume label.

Volume Label Number (1): Field 2 identifies the relative position of the volume label in a
volume label group. It must be written as X‘F1°.

The operating system identifies an initial volume label when, in reading the initial record,
it finds that the first 4 characters of the record are VOL1.

Volume Serial Number: Field 3 contains a unique identification code assigned when the
volume enters the system. You can place the code on the external surface of the volume
for visual identification. The code is normally numeric (000001-999999), but may be
any 1 to 6 alphameric or national (#, $, @) characters, or a hyphen (X‘60°). If this field
is less than 6 characters, it is padded on the right with blanks.

Volume Security: Field 4 is reserved for future use by installations that wish to provide
security for volumes. It must be written as 0.

VTOC Pointer: Field 5 of direct-access volume label 1 contains the address of the
VTOC in the form of CCHHR.

Reserved for Manufacturers: Field 6 is reserved for future standardization purposes.
Leave it blank.

162 OS/VS Data Management Services Guide

Reserved: Field 7 is reserved for future developmental purposes. Leave it blank.

Owner Name and Address Code: Field 8 contains a unique identification of the owner of
the volume.

All of the bytes in Field 9 are left blank.

Data Set Control Block (DSCB)

The system automatically constructs a DSCB when space is requested for a data set on a
direct-access volume. Each data set on a direct-access volume has one or more DSCBs to
describe its characteristics. The DSCB appears in the VTOC and contains
operating-system data, device-dependent information, and data set characteristics, in
addition to space allocation and other control information. There are seven kinds of
DSCBs, each with a different purpose and a different format number. For an explanation
of the seven kinds of DSCBs, see OS/VS1 System Data Areas or OS/VS2 System
Programming Library: Debugging Handbook.

User Label Groups

User header and trailer label groups can be included with data sets of physically
sequential or direct organization. The labels in each group have the format shown in
Figure 74.

80-Byte Physical Record {Maximum of 8)

Field 1 (3) Label Identifier (UHL if Header, UTL if Trailer)
2 (1) Label Number (1 - 8)
3 X 76 = User-Specified
r (76) F P

Figure 74. User Header and Trailer Labels

Appendix A: Direct-Access Labels 16

Each group can include up to eight labels, but the space required for both groups must
not be more than 1 track on a direct-access device. The current minimum track size
allows a maximum of eight labels, including both header and trailer labels. Consequently,
a program becomes device-dependent (among direct-access devices) when it creates
more than eight labels.

If user labels are specified in the DD statement (LABEL=SUL), an additional track is
normally allocated when the data set is created. No additional track is allocated when
specific tracks are requested (SPACE=(ABSTR,...)), or when tracks allocated to
another data set are requested (SUBALLOC=...). In either case, labels are written on
the first track that is allocated.

User Header Label Group: The operating system writes these labels as directed by the
processing program recording the data set. The first 4 characters of the user header label
must be UHL1,..., UHLS; you can specify the remaining 76 characters. When the data
set is read, the operating system makes the user header labels available to the problem
program for processing.

User Trailer Label Group: These labels are recorded (and processed) as explained in the
preceding text for user header labels, except that the first 4 characters must be UTL1,....,
UTLS.

User Header and Trailer Label Format

Label Identifier: Field 1 indicates the kind of user header label. UHL indicates a user
header label; UTL indicates a user trailer label.

Label Number: Field 2 identifies the relative position (1-8) of the label within the user
label group.

User-Specified: Field 3 (76 bytes).

164 OS/VS Data Management Services Guide

APPENDIX B: CONTROL CHARACTERS

As an optional feature, each logical record, in any record format, may include a control
character. This control character is recognized and processed if a data set is being written
to a printer or punch.

For format-F and format-U records, this character is the first byte of the logical record.

For format-V records, it must be the fifth byte of the logical record, immediately
following the record descriptor word.

Two options are available. If either option is specified in the DCB, the character must
appear in every record and other line spacing or stacker selection options also specified
in the DCB are ignored.

Machine Code

You can specify in the DCB that the machine code control character has been placed in
each logical record. If the record is to be written, the appropriate byte must contain the
command code bit configuration specifying both the write and the desired carriage or
stacker select operation.

The machine code control characters for a printer are as follows:

Print and Then Act Act Immediately (No Printing)
Code in Hexadecimal Action Code in Hexadecimal

01 Print only (no space)

09 Space 1 line 0B
11 Space 2 lines 13
19 Space 3 lines 1B
89 Skip to channel 1 8B
91 Skip to channel 2 93
99 . Skip to channel 3 9B
Al Skip to channel 4 A3
A9 Skip to channel 5 AB
B1 Skip to channel 6 B3
B9 Skip to channel 7 BB
Ci Skip to channel 8 C3
C9 Skip to channel 9 CB
D1 Skip to channel 10 D3
D9 Skip to channel 11 DB
El Skip to channel 12 E3

Appendix B: Control Characters 16

The machine code control characters for a card read punch device are as follows:

Code in Hexadecimal Action)
01 Select stacker 1
41 Select stacker 2
81 Select stacker 3

Other command codes for specific devices are contained in publications describing the
control units and devices.

Extended American National Standards Institute Code

In place of machine code, you can specify control characters defined by the American
National Standards Institute, Inc. (ANSI). Whenever IBM publications refer to ANSI .
code, they are as follows:

Code Action Before Printing a Line

Space one line (blank code)

Space two lines

Space three lines

Suppress space

Skip to channel 1

Skip to channel 2

Skip to channel 3

Skip to channel 4

Skip to channel 5

Skip to channel 6

Skip to channel 7 A,
Skip to channel 8 b
Skip to channel 9

Skip to channel 10

Skip to channel 11

Skip to channel 12

Action After Punching a Card

Select punch pocket 1
W Select punch pocket 2

These control characters include those defined by ANSI FORTRAN. If aﬁy other
character is specified, it is interpreted as ‘b’ or V, depending on whether it is for a printer
or a punch; no error indication is returned.

AT P> LRI D WN = LI =

<g
-9
]

166 OS/VS Data Management Services Guide

GLOSSARY OF ACRONYMS AND
ABBREVIATIONS

The following terms are defined as they are used in this book. If you do not find the term
you are looking for, refer to the index or to the IBM Data Processing Glossary,

GC20-1699.

A ANSI control code (value of RECFM)

ABE abnormal end (value of EROPT)

ABEND abnormal end (macro instruction)

ACC accept erroneous block (value of EROPT)

AFF affinity (channel separation parameter of DD statement or unit affinity
value of UNIT)

ANSI American National Standards Institute

ASCII American National Standard Code for Information Interchange

ABSTR absolute track (value of SPACE)

AL American National Standard Labels

AUL American National Standard User labels (value of LABEL)

B blocked records (value of RECFM)

BCDIC binary coded decimal interchange code

BDAM basic direct access method

BDW block descriptor word

BFALN buffer alignment (operand of DCB)

BFTEK buffer technique (operand of DCB)

BISAM basic indexed sequential access method

BLDL build list (macro instruction)

BLKSIZE blocksize (operand of DCB)

BPAM basic partitioned access method

BPI bits per inch

BSAM basic sequential access method

BSM backspace past tapemark and forward space over tapemark (operand of
CNTRL)

BSP backspace one block (macro instruction)

BSR backspace over a specified number of blocks (records)
(operand of CNTRL)

BUFCB buffer pool control block (operand of DCB)

BUFL buffer length (operand of DCB)

BUFNO buffer number (operand of DCB)

BUFOFF buffer offset (length of ASCII block prefix by which the buffer
is offset; operand of DCB)

CCW channel command word

CONTIG contiguous space allocation (value of SPACE)

CNTRL control (macro instruction)

CPU central processing unit

CSwW channel status word

CYLOFL number of tracks for cylinder overflow records (operand of DCB)
D format-D (ASCII variable-length) records (value of RECFM)
DA direct-access (value of DEVD or DSORG)

DAU direct-access unmovable data set (value of DSORG)

DCB data control block (control block name or macro instruction)
DCBD data control block dummy section macro instruction

DD data definition

DEB data extent block

Glossary of Acronyms and Abbreviations 1€

DECB
DEN
DEVD
DISP
DSCB
DSORG

EBCDIC
EODAD
EOF
EOV
EROPT
ESETL
EXCP
EXLST

F
FB
FBS
FBT

FCB
FEOV
FS
FSM

FSR

GCR
GL
GM

I/0
INOUT
10B
IPL
IRG

IS
ISAM
ISU

JCL
JFCB
JFCBE

KEYLEN

LPA
LPALIB
LRECL

MACRF
MOD
MSHI
MSS

data event control block

magnetic tape density (operand of DCB)
device-dependent (operand of DCB)

data set disposition (parameter of DD statement)
data set control block

data set organization (operand of DCB)

extended binary coded decimal interchange code
end-of-data set exit routine address (operand of DCB)
end-of-file

end-of-volume

error options (operand of DCB)

end sequential retrieval (QISAM macro instruction)
execute channel program (macro instruction)

exit list (operand of DCB)

fixed-length records (value of RECFM)

fixed-length, blocked records (value of RECFM)

fixed-length, blocked, standard records (value of RECFM)
fixed-length, blocked records with track overflow option (value of
RECFM)

forms control buffer

force end-of-volume (macro instruction)

fixed-length, standard records (value of RECFM)

forward space past tapemark and backspace over tapemark (operand of
CNTRL)

forward space over a specified number of blocks (records) (operand of
CNTRL)

group coded recording
GET macro, locate mode (value of MACRF)
GET macro, move mode (value of MACRF)

home address

input/output

input then output (operand of OPEN)
input/output block

initial program load

interrecord gap

indexed sequential (value of DSORG)

indexed sequential access method

indexed sequential unmovable (value of DSORG)

job control language
job file control block
job file control block extension for 3800 printer

key length (operand of DCB)

link pack area
link pack area library
logical record length (operand of DCB)

machine control code (value of RECFM)

macro instruction form (operand of DCB)

modify data set (value of DISP)

main storage for highest-level index (operand of DCB)
Mass Storage System

168 OS/VS Data Management Services Guide

s N

MSVC Mass Storage Volume Control

MSWA main storage for work area (operand of DCB)

NCP number of channel programs (operand of DCB)

NOPWREAD no password to read a data set (value of LABEL)

NRZI non-return-to-zero-inverted (tape recording mode)

NSL nonstandard label (value of LABEL)

NTM number of tracks in cylinder index for each entry in lowest level of
master index (operand of DCB)

OMR optical mark read

OPTCD optional services code (operand of DCB)

0S/VS operating system/virtual storage

OUTIN output then input (operand of OPEN)

PCI program-controlled interruption

PDAB parallel data access block

PDS partitioned data set

PE phase encoding (tape recording mode)

PL PUT macro, locate mode (value of MACRF)

PM PUT macro, move mode (value of MACRF)

PO partitioned organization (value of DSORG)

POU partitioned organization unmovable (value of DSORG)

PRECL physical record length (field of DCB)

PRTSP printer line spacing (operand of DCB)

PS physical sequential (value of DSORG)

PSU physical sequential unmovable (value of DSORG)

QISAM queued indexed sequential access methods

QSAM queued sequential access method

RCE read column eliminate

RDBACK read backward (operand of OPEN)

RDW record descriptor word

RECFM record format (operand of DCB)

RKP relative key position (operand of DCB)

RLSE release unused space (DD statement)

RPS rotational position sensing

S standard format records (value of RECFM)

SDwW segment descriptor word

SEP separation (channel separation parameter of DD statement or
unit separation value of UNIT)

SER volume serial number (value of VOLUME)

SETL set lower limit of sequential retrieval (QISAM macro instruction)

SF sequential forward (operand of READ or WRITE)

SK skip to a printer channel (operand of CNTRL)

SKP skip erroneous block (value of EROPT)

SL IBM standard labels (value of LABEL)

SMSI size of main-storage area for highest-level index (operand of DCB)

SMSW size of main-storage work area (operand of DCB)

Sp space lines on a printer (operand of CNTRL)

SS select stacker on card reader (operand of CNTRL)

SUL IBM standard and user labels (value of LABEL)

SvC supervisor call

SVCLIB supervisor call library

SYNAD synchronous error routine address (operand of DCB)

Glossary of Acronyms and Abbreviations 16¢

SYSIN
SYSOUT

TIOT
TRTCH

ucs
UHL

VBS
VS
vVTOC

system input stream
system output stream

track overflow option (value of RECFM)
task I/0 table
track recording technique (operand of DCB)

undefined length records (value of RECFM)
universal character set

user header label

user trailer label

format-V (variable-length) records (value of RECFM)
variable-length, blocked records (value of RECFM)
variable-length, blocked, spanned records (value of RECFM)
virtual storage or variable-length, spanned records

volume table of contents

170 OS/VS Data Management Services Guide

INDEX

Indexes for reference manuals are consolidated in OS/VS1
Master Index, GC24-5104, and OS/VS2 Master Index,
GC28-0693. For additional information about any subject
listed below, refer to the publications that are listed under the
same subject in the master index.

A

abbreviations 167-170
ABE error option 41
ABEND exit 50-53
abnormal termination during open, close, EOV processing
ESTAE exit 58
for VS1 systems 70,71
for VS2 systems 71
STAE exit 58
STAI exit 58
absolute actual address 34-35
allocating space for data sets containing 140
use with direct data sets 134
absolute generation name 155
ACC error option 41
access method 20
basic 20,64-67
queued 20,61-64
selecting 68,69
Access Method Services
DEFINE command 155
program use of 134,154,155
access techniques
basic 20,64-67
queuved 20,61-64
acronyms 167-170
actual track address
(MBBCCHHR) 34-35
allocating space for data sets containing 140
use with direct data sets 134,135
use with feedback option 134,135
address, direct-access storage device
absolute actual 34-35
allocating space for data set containing 140
use with direct data sets 134
direct 133
indirect 133
relative 35
in directories 104-106
use with direct data sets 134
AFF affinity, channel 38
alias entry in directory
effect of changing directory entry 108
specifying 104
alignment
buffer 77,78,85
data control block 55
allocation (see space allocation)
American National Standard Code
for Information Interchange (see ASCII block prefix;
ASCII format)
American National Standard labels 23
American National Standard Institute (see ANSI control
character; American National Standard labels)

ANSI control character
described 166
device-type considerations 89
used with chained scheduling 98
with format-D records 29
with format-F ASCII tape records 25
anticipatory buffering
omitted with basic access technique 64
with queued access technique 61
ASCII block prefix
restriction 25,26,30
with format-D records 29
with format-F records 25-26
with format-U records 31
ASCII format
restriction for 7-track tape 90
translating data from 19,23,61,98
translating data to 19,23,61,65
ASCII tape
buffer alignment 77
fixed-length records 25
undefined-length records 31
variable-length records 29,30
associated data set
restriction with chained scheduling 98
ATLAS macro 68
automatic blocking/deblocking with quened
access techniques 61
automatic cataloging of data sets 21
automatic error options (EROPT) operand of
DCB macro 41
automatic volume switching 61,75,76,151
auxiliary storage (see data set storage; direct-access storage;
magnetic tape volumes)

B

backspace
by BSP macro 94
by CNTRL macro 93
basic access technique
(see also BDAM, BISAM, BPAM, and BSAM)
blocking 64
buffer acquisition and control 77,79,81
deblocking 64
definition of 64-67
overlapped /0 64
using BDW 27
BCDIC translation to EBCDIC 90
BDAM (basic direct-access method) data set
(see also basic access technique)
access technique 133
adding records 136-138
CHECK macro 66
creating 135,136
dynamic buffering 81,133
exclusive control for updating 134
extended search option 134
feedback option 134,135
multivolume considerations 71
organization 133
processing 133-138

Index 17:

READ macro 65
record format 136,137
restriction with chained scheduling 97
selecting an access method 68,69
sharing data set 57,58
spanned variable-length records 27-29
SYNAD routine 42
updating records 136-138
user labels 44,138
WAIT macro 66,67
when sharing a data set 57,58
WRITE macro 65,66
BDW (block descriptor word) 27
BFTEK operand of DCB macro
BFTEK=A 28,80
BFTEK=R spanned records 65
BISAM (basic indexed sequential access method) data set
(see also indexed sequential data set)
dynamic buffering 81
retrieving 127-129
sharing a DCB 58,129
updating 127-131 .
when sharing a data set 57,58
BLDL macro instruction
build list format 107
coding example 111
description 107
updating a partitioned data set 111
BLKSIZE operand of DCB macro
description 38
effect of data check on 24,90
for writing a short block 103
for card reader and punch 91
for undefined-length records with QSAM 98
including block prefix 30
requirement for direct data set 133
specifying 97,139,140
when ignored 142,150
block count exit routine 49-50
block, data 23
block descriptor word (BDW) 27
block prefix (ASCII) records
buffer alignment 77
with format-D records 29-31
with format-F records 25-26
with format-U records 31
block size field (see BLKSIZE field)
blocking
automatic 61
defined 23
with basic access technique 64
with fixed-length records 24-26
with spanned records 27
with variable-length records 26-27
with undefined-length records 31
boundary alignment
buffer 77-78,85
data control block 55
BPAM (basic partitioned access method) data set
concatenation 151,152
creating 108-110
defined 20,103,104
EODAD rountine 40
processing 103-113

172 OS/VS Data Management Services Guide

restriction with
chained scheduling 111
DCB ABEND exit routine 51
fixed-length records, standard format 25
search direct operation 98
retrieving member 110,111
space allocation for 142
updating member 111,112
when sharing a data set 57,58
BSAM (basic sequential access method) data set
as SYSIN/SYSOUT data sets 150
creating 99,100
creating a BDAM data set 135
determining the length of a record 102,103
EODAD routine 39,40
extending 101
how EODAD routine is entered 39-40
overlap of 1/0O 64,97
retrieving 100
to update the directory 108
updating 100,101
user labels 44
user totaling 47-48
when sharing a data set 57,58
writing a short block 103
BSP macro instruction
description 94
restriction in EODAD routine 40
BUFCB operand in DCB macro 78
buffer
(see also FREEBUF; FREEDBUF; GETBUF; RELSE)
acquisiton and control 77-89
alignment 77,78,85
automatic for ISAM 81
direct 77,81
dynamic 77,81
control 80,81
for basic access technique 77,79
length (BUFL operand of DCB macro) 78,120
number (BUFNO operand of DCB macro) 78,79,97,98
pool 77-80
(see also buffer pool)
releasing 87
segment 77,80
truncating 87
buffer pool
(see also BUILD; GETPOOL; FREEPOOL)
automatic construction 77,79
building 77-79
coding examples 79,80
description 77
explicit 77
freeing 79,80
getting 78,79
getting a buffer from 88
returning a buffer to 88
returning a dynamic buffer to 88,89
segment 77
static 77

buffering 70
anticipatory
for queued access technique 61

omitted for basic access technique 64

direct control of 81
dynamic 77
exchange 77,84-87
restriction 97
look-ahead 61
simple 77,81-84
BUFL operand in DCB macro
for card punch 91
for constructing a buffer pool 78
for ISAM 120 ‘
for printer 91
BUFNO operand in DCB macro
affecting chained scheduling 98
affecting performance 97

when constructing a buffer pool 78,79

when ignored 150
BUFOFF operand of DCB macro
with format-DB records 98
with QSAM or BSAM 26
with variable-length records 29-31
build list format 107
(see also BLDL)
BUILD macro instruction
description 78
with ISAM data set 120
building a generation index in VS1 157
BUILDRCD macro instruction
description 78
restriction 29
usage 28,29

C

CAMLST macro, use of 155
capacity for direct-access

cylinder 141

record 34,135,139

track 141
card punch, record format with 91
card reader

record format with 91

relationship with CNTRL macro 93

restriction with CNTRL macro 93
carriage control characters

defined 32,165,166

specification of in RECFM field 89
CATALOG macro, use of 155
catalog, system 153-155

control volumes 153,154

entering a data set name

for VS1 154
for VS2 155

cataloging data sets

automatic 21

defined 19

for a generation data group 155,156

in VS1 153,154

in VS2 154,155
CCW (ee channel command word)

chained scheduling
description 89,97,98
restriction with
BDAM 97
calculating record length 102,103
CNTRL macro 97
DOS checkpoint records, embedded on tape 97
exchange buffering 97
format-D records 30
paper-tape reader 97
partitioned data set 111
SKP option 41
spooled data sets 97
track overflow 97,102
UPDAT operand 97
updating a sequential data set 101
2540 Card Read Punch 98
3825 Card Punch 98
changing an address in the data control block 55,56
channel command word (CCW)
creation by OPEN 69
PClflagin 97
use in exchange buffering 84,85
use in simple buffering 81
channel program
effect on exchange buffering 85
execute (EXCP) 20,68
number of (NCP) 64,98,150
channel separation and affinity field of DD statement 38
character set, changing 93,94
CHECK macro instruction
description 66
to enter EODAD routine 39
to update a partitioned data set 111
to update a sequential data set 100
use with BDAM 58
use with SYNAD routine 42,64
using WAIT instead (see WAIT macro instruction)
when sharing a data set 57,58
with basic access technique 64
check routine, examining DECB 67
checkpoint/restart
check of JFCBFLAG 49
restriction for SVCLIB and LPALIB 49
CHKPT macro instruction
use in end-of-volume exit routine 49
CLOSE macro instruction
description 72-74
for multiple data sets 74
for parallel input processing 62-64
in EODAD routine 40
restriction with SYNAD 41,72
temporary close option 72-74
TYPE=T 72-74
volume positioning 70,72,73
with partitioned data set 108-110
with STOW macro 108
closing a data set 69-74
CNTRL macro instruction
device dependence 93
restrictions
with BSP macro instruction 94
with chained scheduling 97
with DOS checkpoint records 93
concatenation
defined 151

Index 17

of data sets on RPS devices 152
of partitioned data sets 151-152
of sequential data sets 151,152
of unlike data sets 151
restriction with partitioned data sets 111
control buffer (see forms control buffer)
control character
(see also CNTRL, PRTOV)
ANSI 25,29,89,98,166
carriage 24,32,165,166
code 165,166
explained 32
format-D 29
format-F 24,25
format-U 31
format-V 27
machine 89,98,165,166
specifying 89,165,166
with fixed-length records 24,25
with undefined-length records 31
with variable-length records 27
control section, dummy (DSECT) 55
control volume 153,154
count area 34
count-data format 34
count-key-data format 34
in device overhead 140
in ISAM index entry format 115
CREATEV command, use of 139
creating a new generation in VS1 157-159
cross reference table with direct data sets 133
CSECT statement, use of with DCBD macro 55
cylinder
allocation by 140
capacity 22,141
index
calculating space requirements for 142-145
definition 113,115
overflow
calculating space for 143,145
defined 113,116
specifying size
via CYLOFL parameter 143
CYLOFL (cylinder overflow) operand of DCB macro
when allocating ISAM data set 143
when creating ISAM data set 125

D

D-format records (see format-D records)
data access techniques (see access techniques)
data chaining 84
data check
effect on BLKSIZE 24,90
with SETPRT macro 94
data control block (DCB)
ABEND exit
description 50-53
when available 40
where specified 40

174 OS/VS Data Management Services Guide

attributes of, determining 37-39,55
changing an address in 55,56
creation by DCB macro instruction 21,36
description 36-37
dummy control section 55
exit
description 48
whei available 40
when used by SYSIN/SYSOUT 150
where specified 40
fields 37-39
initial setting of 56
modifying 36,55,56
operand of DD statement 38
primary sources of information 36-37
sequence of completion 37
use 21
when sharing a data set 56
data definition name (ddname) field of DI statement 38
data definition (DD) statement
fields 38-39
relationship to DCB 36-37
relationship to JFCB 36-37
use 21
data errors 41-43
(see also SYNAD routine)
data event control block (DECB)
description of 67
use of 101
data management, introduction to 19-59
data mode processing
relationship with buffers 80
data overrun 84,85
data set
characteristics 19-32
description 37-39
disposition (DISP) operand
cataloging 149
description 39
overridden by OPEN macro 75,76
identification 21
label (DSCB) 21,22,161-164
(see also magnetic tape volumes; data set control
block; labels, direct-access)
label (LABEL) field of DD statement 39
likc characteristics 151
name 21
name (DSNAME) field 38
organization 20
Gee also BDAM, BISAM, BPAM, BSAM, QISAM,
and QSAM data sets)
organiztion (DSORG) operand of DCB macro 38
record formats 23-32
routing through the input/output stream 149-151
security 19,160
sharing 56-59

~J

space allocation on direct-access volumes 139-149
estimation 140-142
for a direct data set 133
for indexed sequential data sets 142-149
for MSS volume 140
for partitioned data sets 142
specifying 139,140
storage 21-23
direct-access 22
magnetic-tape 22-23
SYSIN 149-151
SYSOUT 149-151
unlike characteristics 151
unmovable
direct organization 134
resulting from use of MMBBCCHHR 35
specification in DSORG operand of DCB 38
Gee also BDAM, BISAM, BPAM, BSAM, QISAM,
and QSAM data sets)
data set control block (DSCB)
contents of 161-164
data set label 161-164
data set security byte 160
described 21,22,163
index (format-2) HIRPD field of 122
DCB (see data control block)
DCB ABEND exit 50-53
DCB macro instruction 36-37
(see also data control block)
DCBBFALN field in DCB 85
DCBBLKSI field in DCB 91,92,103
DCBINDI field of DCB 84
DCBD macro instruction
restriction on use 55
use 55,56
DCBLPDA field of DCB 124
DCBLRECL field of DCB 103
DCBNCRHI field of DCB 123
IDCBPRECL field of DCB 27
DCBSYNAD field of DCB 56
DD statement fields 37-39
ddname (see data definition name field)
deblocking, automatic 61
DECB (ee data event control block)
defer nonstandard input trailer label exit 50
DEFINE command, use of 155
defining an FCB image 50
delete option
restriction when updating a sequential data set 101
restriction with RKP 118
use with SETL 124
deletion
of indexed sequential data set records 118,119
of member name using STOW macro 108
DEN (tape density) 90
density, tape 90
DEQ macro, use of 57,58,129
descriptor word (see block descriptor word; record descriptor
word; segment descriptor word)
determinate errors 71

DEVD operand of DCB
device-class independence considerations 96
restriction with SYSOUT data sets 150
specifying 89
with BDAM 135
with SYSOUT data sets 150
device control for sequential data sets 93-95
device-dependent macro instructions 93-95
device independence 95-97
device-type considerations for data format
sequential organization 89-92
DEVTYPE macro, use of 122
direct-access device characterisitics 33-35
direct-access volume 22
access mechanism 33
device characteristics 33-35
devices (see 2305 Fixed Head Storage; 2314 Direct Access
Storage Facility; 2319 Disk Storage; 3330 Disk Drive;
3333 Disk Storage; 3340 Disk Storage; 3350 Disk
Storage)
labels 21,161-164
record format 23-32,89,92
track, defined 33
track addressing 34-35
track format 34
track overflow 35
write validity check 35
direct addressing 133
direct data set (see BDAM data set)
direct organization (see BDAM data set)
directory (see BPAM data set)
disk drive (see 2305 Fixed Head Storage; 2314 Direct Access
Storage Facility; 2319 Disk Storage; 3330 Disk Drive;
3333 Disk Storage; 3340 Disk Storage; 3350 Disk
Storage)
Disk Operating System (see DOS tapes with embedded
checkpoint records)
DISP operand
description 39,75,76
for extending sequential data set 101
for indexed sequential data set 118
for partitioned data set 108,109
for tape 37,46
specifying 149
when DISP=SHR for sharing data sets 57,129
when passing a generation 158,159
when updating the directory 108
DOS (Disk Operating System) tapes with embedded
checkpoint records
restriction with BSP 94
restriction with chained scheduling 97
restriction with CNTRL 93
restriction with POINT 95
drum storage (see 2305 Fixed Head Storage)
DSCB (see data set control block)
DSECT statement 55
DSNAME operand of DD statement 38,108,111
DSORG operand of DCB macro
described 38
for direct data set 135
for sequential data set 99,100
with CLOSE TYPE=T 73

Index 175

with indexed sequential data set 125

with partitioned data set 108,109,110
dummy control section for DCB 55
dummy data set, restriction with parallel input processing 62
dummy record

with direct data set 135,136
dynamic buffering

buffer control 77,133

for direct data set 133

for ISAM data set 126,127

release of using FREEDBUF 88,89

(see also READ; RELEX; WRITE)
specifying 77

E

EBCDIC (extended binary coded decimal interchange code)

translation to and from ASCII 19,23,61,65,98

for magnetic-tape volumes 23
record-format dependencies 23-24

embedded index area 143,144
end-of-data indicator 75
end-of-data routine (EODAD) 39-41

changing address of in DCB 55,56

register contents 41

with basic access technique 64

with BSP macro 94

with concatenated data sets 151

with GET macro 61

with queued access technique 61
end-of-volume

exit routine 49

forcing 76

processing 75,76

routines, relationship with DCB ABEND exit 51,53

when EODAD routine entered 39-40
ENQ macro, use of

when sharing a data set 57,58,129
EODAD routine 39-41

changing address of in DCB 55-56

register contents 41

with basic access technique 64

with BSP macro 94

with concatenated data sets 151

with GET macro 61

with queued access technique 61
EROPT operand of DCB macro 41,42
error

analysis routine (SYNAD) 41-43

determinate 71

handling 67

indeterminate 71

options, automatic 41

uncorrectable 41
error routine (see SYNAD routine)
ESETL macro instruction

description 124,125

in EODAD routine 40

when sharing a data set 58
ESTAE exit, abnormal termination 58
exceptional condition code (see condition, exceptional)
exchange buffering 84-87

buffer length requirements 85

effect on chained scheduling 97

examples 83,85-87

ignored for VS4 84
exclusive control

176 OS/VS Data Management Services Guide

updating direct data sets 134
when sharing direct data sets 58 AN,
EXCP macro instruction 68 ‘ ;
execute channel program (EXCP) 20
exit list 43-44
exit routine
block count 49,50
conventions 43-44
data control block (DCB) 48
DCB ABEND 50-55
defer nonstandard input trailer label 50
end-of-data 39-47
end-of-volume 49
FCB image 50
JFCBE 48,49
list 43-44
QSAM parallel input 48 -
register contents on entry 43 \ 54
standard user label 44-47
synchronous error (SYNAD) 41-43
user totaling 47-48
exit routines identified by DCB 39
EXLST operand of DCB macro 43
extended binary coded decimal interchange code (EBCDIC)
translation to and from ASCII 19,23,61,65,98
for magnetic-tape volumes 23
record-format dependencies 23-24
extended American National Standards Institute
(ANSI) code 166
(see also ANSI control character)
extended search option for direct data sets 134

F -

F-format records (see format-F records)
FCB image
exit 50
identification in JFCBE 49
relationship with SETPRT 93,94
feedback
option 134,135
with BDAM READ macro 65
with BDAM WRITE macro 66
FEOV macro instruction
description 76 &
ignored for SYSIN/SYSOUT data sets 76
restriction with spanned records 27,28,76
restriction with trailer label exit 46
to enter EODAD routine 39 H
file mark, restriction 94
FIND macro instruction
description 107,108
in EODAD routine 40
updating a partitioned data set 111
when sharing a data set 58
fixed-length records 24-26
with parallel input processing 62
force end-of-volume (see FEOV macro instruction) 74
format-D records 29-31
restriction with chained scheduling 30
format-F records 24-26
ASCII tapes 25-26
standard format 24-25 PN
with card reader and punch 91 ’
with parallel input processing 62
format-FBS records, restriction with search direct 98
format-FBT records, restriction with search direct 98

o€

format-FS records, restriction with search direct 98

format-U records 31-32
calculating record length 103
restriction with chained scheduling 97
with card reader and punch 91
with parallel input processing 62

format-UT records, restriction with search direct 98

format-V records 26-31
block descriptor word 27
record descriptor word 27
segment descriptor word 28
segment control codes 28
spanned 27-29
with card punch 91
with parallel input processing 62
with user totaling 48
forms control buffer
image exit list 50
FREE operand 74
FREEBUF macro instruction
description 88
to control buffers 77
FREEDBUF macro instruction
description 88,89
example 130
for ISAM 126-128
when sharing data sets 58
FREEPOOL macro instruction 79,80
when issued for card punch data set 91
when issued for printer data set 92
full track-index write option 125

G

generation
data set 155
index 155
numbers, relative 155-157
generation data groups
absolute generation name 155,156
allocating in VS1 157,158
building an index 157
cataloging in VS1 158
creating a new 157-159
defined 22,155
entering in the catalog 155,156
passing in VS1 158,159
relative generation name 155-157
retrieving 159
GET macro instruction
description 61
in EODAD routine 39,40
restriction with spanned records 29
to enter EODAD routine 39
updating a sequential data set 100,101
when sharing a data set 57
with format-U records 32
with parallel input processing 62,63
GETBUF macro instruction
description 88
to control buffers
GETPOOL macro instruction
description 78,79
with ISAM data set 120
glossary 167-170
grouping related control blocks 64

H

header label, user 44-47,163,164

I

IBCDASDI utility program
restriction 139
IDCAMS, MSS utility program
use of 140
IEBCOPY utility program
useof 112,113
IEHATLAS utility program
use of 68
IEHDASDR utility program
restriction 139
IEHLIST utility program
use of 123,144,158
IEHMOVE utility program
use of 105,106,158
IEHPROGM utility program
use of 144,154,158,159
THADCB macro instruction label 56
independent overflow area
description 116
specifying 145
indeterminate errors 71
index
area 113
calculating space for 142-143
catalog 21-22,153
cylinder 115
calculating space for 142,143
master 115,116
calculating space for 142,143
track 114,115
calculating space for 143
indexed sequential data set
(see also BISAM and QISAM)
adding records 116-118
inserting new records 116
new records at the end 117,118
areas 113-116
allocating space for 120-123,142-149
prime 114
index 114-116
overflow 116
buffer requirements 120-123
creation 125-127
deleting records 118,119
device control 123-125
full track-index write option 125
multivolume considerations 71
retrieving 127-132
SYNAD routine 43
updating 127-132
indexes of the catalog 21-22,153
indirect addressing 133
INOUT option
OPEN macro 72
opening magnetic tape volume 37
when using POINT macro 95
INPUT option
OPEN macro instruction 72
opening magnetic tape volume 37
input/output device generation 95

Index 177

input/output devices for use with sequential data sets
card reader and punch 91,92
direct access 92
magnetic tape 90
paper tape reader 91
printer 92
input/output errors, recovering from 68
interrecord gaps (IRGs) 23
10B, relationship with SYNAD routine for BDAM 42
IRG (interrecord gap) 23
ISAM (see indexed sequential data set; BISAM; QISAM)

J

JES (job entry subsystem) 149-151

JFCB (job file control block) 36-37,70

JFCBE (job file control block extension) exit 48,49
JFCBFLAG 49

job file control block JFCB) 36-37,70

job file control block extension (JFCBE) exit 48,49

K

key
class 123
for direct-access devices 34
for indexed sequential data sets 113-115
protection 113,151

relative key position (RKP) for indexed sequential data

set 118,120,125

use of when adding records to indexed sequential data
set 116-118

use of when maintaining an indexed sequential data
set 118

use of when retrieving records from an indexed sequential

data set 127-130
KEYLEN operand of DCB macro
description 38
for direct-access device 92
for direct data set 135
KN see WRITE KN)
KU Gee READ KU)

L

label exits 44-47
labels, data set 21-22,37,39
(see also magnetic-tape volumes; labels, direct-access)
labels, direct-access
data set control block 161-164
format 161-164
user label groups 163,164
volume label group 161-163
LABEL parameter of DD statement
description 39
specifying password protection 160
specifying standard labels 45
LEAVE option
for close processing 72,73
for concatenated data sets 151
for end-of-volume processing 75
for forced end-of-volume processing 76
length checking 24
link field 120,121
link pack area library, restriction for checkpoint 49
load mode for QISAM
in SYNAD routine 43

178 OS/VS Data Management Services Guide

when sharing a DCB 58
load mode for BDAM when sharing data sets 58
loading an indexed sequential data set 125
locate mode processing
defined for buffering 80
example with exchange buffering 86
example with simple buffering 81-83
relationship with buffers 80
to process records that exceed 32,760 bytes 29
to update a member with QSAM 112
with GET macro instruction
creating a sequential data set, coding
example 99,100,101
exchange buffering 86,87
simple buffering 81-84,99,100
with parallel input processing 62
with PUT macro instruction
creating a sequential data set, coding example 100
simple buffering 81-84,99,100
look-ahead buffering 61
LPALIB, restriction for checkpoint 49
LRECL operand of DCB macro
described 38
device dependence 97
restriction when calculating record length 103
to process records that exceed 32,760 bytes 29
with BDAM 135
with BSAM 103
with ISAM
buffer requirements 122,123
data set creation 125
with PUT macro 61,62
with SYSOUT data set 150

M

machine code control character 89,98,165,166

MACREF (macro instruction form) operand of DCB macro

described 39
device independence 96
dynamic buffering 129
for BDAM 135
processing mode 80
relationship with WAIT macro 66,67
to update a member using QSAM 112
when sharing a data set 57,58
magnetic-tape volumes
defined 22-23
density 90
labels
American National Standard 22,23
none 22
nonstandard 22
standard 22
user 44-47
organization 22-23
positioning 22
during close processing 72-74
during end-of-volume processing 75,76
record format 23-32,90
serial number 22-23
tapemarks 23
master catalog 154-155
master index 115,116
MBBCCHHR (see actual address)

modes, processing (see data mode; locate mode; move mode;

substitute mode)

o

modifying the data control block 36,55,56
move mode processing
defined for buffering 80
relationship with buffers 80
with exchange buffering 84
with GET macro instruction
creating a sequential data set 99
simple buffering 81,82,99
with parallel input processing 62
with PUT macro instruction
creating a sequential data set 99
simple buffering 81-83,99
MSVGP parameter on JCL statement 140
MSWA operand of the DCB macro 123
multivolume data set
closing 70
opending 70
processing for QISAM 78
multitasking mode, sharing data sets 58,70
multivolume data set
with NOTE macro 94

N

names
data set 21
generation data group 22,155,156
NCP (number of channel programs) operand of the DCB
macro 64,98,150
nonstandard tape labels 22
note list 106
NOTE macro instruction
description 94,95
restriction with
BSP macro 94
multivolume data sets 94
search direct operation 98
updating a sequential data set 100
use with partitioned data set
updating 111
NTM operand 116
null segment 29

O

offset reading 65
OMR (see optical mark read)
OPEN macro instruction
considerations for 70
description 71,72
for parallel input processing 62-64
for simultaneous opening of multiple data sets 70
for updating a sequential data set 100
functions 36,71,72
restriction with search direct 98
used for more than one data set 70
volume positioning for EOV 75
opening a data set 69-71
OPTCD operand of the DCB macro
device dependence 97
with ASCII tapes (OPTCD=Q) 61
with BDAM 134,135
with ISAM 125
request user totaling (OPTCD=T) 47
OPTCD=H (embedded checkpoints, DOS tapes) 93
OPTCD=M (master index) 116
OPTCD=T (user totaling) 47

OPTCD=Z (search direct option) 98
OUTIN option
OPEN macro 72
when opening data set 37
when using POINT macro 95
output mode
defined 81
exchange buffering 84
OUTPUT option
OPEN macro 72
when opening data set 37
when using POINT macro 95
output stream 149-151
overflow
area 113,116
chain 116
cylinder (ee cylinder overflow)
independent area 116
PROTV macro 93
records 116
track
description 35
effect on chained scheduling 97
restriction on BSP macro instruction 94
restriction with BDAM 138
restriction with parallel input processing 62
restriction with RPS feature 102
overlap of input/output
performance improvement 97
with basic access technique 64,138
with partitioned data sets 112
with sequential data sets 101
with queued access technique 61

P

paging environment, related control block group 64
paper-tape reader
described 91
effect on chained scheduling 97
record format with 91
with a SYNAD routine 42
parallel
data access block (PDAB) 48,62,63
input processing 48,62-64
parameter list
contents of 52
use of by DCB ABEND exit routine 51-53
partitioned data set (see BPAM data set)
PASSWORD data set 160
password protection 160
PC (card punch) record format 91
PClI flag 97
PDABD DSECT 63
PDAB (parallel data access block) 48,62,63
PDS (see BPAM data set)
performance improvement 97

Index 179

POINT macro instruction
description 95
in EODAD routine 40
restriction with
BSP macro 94
multivolume data sets 95
search direct operation 98
updating a partitioned data set 111
updating a sequential data set 100
prefix, block (see block prefix)
prefix, key 123
prime data area
description 113,114
space allocation for 142,144,145
printer
overflow (PRTOV macro) 93
record format with 92
restriction with chained scheduling 97
program, describing the processing 39-55
PRTOV macro instruction
description 93
device dependent 96
when macro will not function 93
PT (see paper-tape reader)
PUT macro instruction
description 61,62
exchange buffering 85-87
locate mode 80-83
used to create a sequential data set, coding
example 99,100,101
with format-U records 31
with indexed sequential data set 116-118
with simple buffering 81-83
with spanned records 29
(see also data mode processing; locate mode
processing; move mode processing; substitite mode
processing)
PUTX macro instruction
description 62
device independence 96
for QISAM 129
UPDAT mode 83
updating a sequential data set 100,101
when sharing a data set 57
with exchange buffering 84,86,87
with format-U records 31,32
with simple buffering 81-83
with spanned records 29
(see also output mode; update mode)

180 OS/VS Data Management Services Guide

Q

QISAM data set

(see also indexed sequential data set)
EODAD routine 40

scan mode 129

sharing 57,58

SYNAD routine 42-43

using common buffer pool 78

QSAM

(see also queued access technique)
creating a BDAM data set 135
parallel input processing 62-64
performance improvement 97
restriction with

spanned records 27
spanned variable-length records 27-29
SYSIN/SYSOUT data sets 150
to update a directory 108
to update a member 112
user labels 44
user totaling 47-48
when sharing a data set 57,58
with card punch 91
with printer 92

queued access technique

R

buffer control 77,78

defined 61

introduced 20

processing modes (see data mode processing; locate mode
processing; move mode processing; substitute mode
processing)

RD (card reader) 91,92
RDBACK option 46,72

opening magnetic tape volume 37
restriction for variable-length records 72
restriction with SYSIN/SYSOUT data sets 72

RDW (see record descriptor word)
read backward (SB operand of READ macro) 65
READ macro instruction

description 65
device independence 96
in SYNAD routine 42
restriction in EODAD routine 40
supplying record length 103
to enter EODAD routine 39
to update existing records 128
updating a partitioned data set 111
updating a sequential data set 100,101
when sharing a data set 57,58
with basic access technique 64
with format-U records 32
with KU (key, update)

in coding example 130

RECFM operand of DCB macro
description 38
for sequential data sets 89
selecting 23-24
with card punch 91
with card reader 91
with control character 89
with direct-access storage device 92
with magnetic tape 90
with paper tape reader 91
with printer 92
with sequential organization 89
record blocking ee blocking)
record descriptor word (RDW) 27
data mode exception for spanned records 27
variable-length records format-D 29,30
when replaced by segment descriptor word 29
record format 23-32
fixed-length 24-25
fixed-length for ASCII 25-26
fixed-length standard 24-25
spanned variable-length 27-29
undefined-length 31-32
variable-length 26-27,29-31 .
record length (LRECL) operand of the DCB macro 38,97
relative block address
defined 35
with direct data set 134
with feedback option 134,135
relative generation name 155-157
relative key position operand of the DCB macro 118,120,125
relative track address
defined 35
with direct access 134
with feedback option 134,135
releasing VS2 data sets and volumes 74
RELEX macro instruction
exclusive control 58,134
when sharing data sets 58
RELSE macro instruction
defined 87
to terminate buffer processing 77
reorganization of indexed sequential data set 118
REREAD option 75,76
restart end-of-volume exit routine 49
restrictions
on ASCII records
block prefix 25-26,30
on 7-track tape 90
on chained scheduling with
BDAM 97
calculating record length 102,103
CNTRL macro 97
DOS checkpoint records 97
exchange buffering 97
format-D records 30
paper-tape reader 97
partitioned data set 111
SKP option 41
spooled data sets 97
track overflow 97,102
UPDAT operand 97
updating a sequential data set 101
2540 Card Read Punch 98
3525 Card Punch 98

on CNTRL macro
with BSP macro 94
with chained scheduling 97
with DOS checkpoint records 93
on data sets with same DDname 70
on DCB usage 70-71
on DCBD macro usage 55,56
on DOS checkpoint records 93-95,97
on format-D records with chained scheduling 30
on high-level index in storage 123
on NOTE macro with
BSP macro 94
multivolume data sets 94
search direct operation 98
on POINT macro with
BSP macro 94
multivolume data sets 95
search direct operation 98
on reading concatenated data sets backward 151
on user label exit routines 44-47
with search direct 98
resume load 118,125,127
retrieving a generation 159
return code
with block count exit 50
with user labels 46
RETURN macro
relationship in SYNAD routine 41
REWIND option
for CLOSE macro 72
for FEOV macro 76
RKP (relative key position 118,120,125
RLSE parameter of DD statement 73
RORG1, RORG2, RORGS3 fields of the DCB 118
routing data sets through the input/output stream 149-151
RPS (rotational position sensing) feature
concatenating data sets on nonRPS devices 152
restriction with track overflow records
variable-length records 26
when calculating record length 102
RO record 34,135,139

S

save area, user totaling 47-48
scan mode for QISAM

in SYNAD routine 43

issuing PUTX 129
scheduling of input/output streams 149
SDW (see segment descriptor word)
search direct for input 98
search option, extended 134
secondary storage (see data set storage; direct-access storage;

magnetic-tape volumes)

security, data set 19,160
segment

buffer 77,80

control code 28

descriptor word

for spanned records 28-29
indicating a null segment 29

null 29
selecting an access method 68,69
SEP (separation, channel) 38

Index 181

sequential data set
(see also BPAM, BSAM, and QSAM data sets)
creation 99,100
concatenation 151,152
extending 101
retrieving 100
updating 100,101
sequential organization
defined 20
device control 93-95
device independence 95-97
SETL macro instruction 123-124
in EODAD routine 40
when sharing a data set 58
SETPRT macro instruction 93-94
SETPRT routing 50
sharing data sets 56-59
sharing DASDs 59
simple buffering
description 81-83
when defaulted to 84
with parallel input processing 62,63
SKP error option 41
SMSI operand of the DCB macro 123
SMSW operand of the DCB macro 122,123
Sort/merge program
record restriction 24
space allocation
estimating requirements 140-142
for a direct data set 133
for an indexed sequential data set 142-149
for an MSS volume 140
for a partitioned data set 142
specifying 139-140
SPACE parameter 38
spanned records
basic direct access method 29
considerations for 27-29
restriction with parallel input processing 62
restriction with search direct 98
restriction with SYSIN data sets 29,150
sequential access method 27
variable-length 27
spooling of SYSIN and SYSOUT data sets 149-151
restriction 97
stacker selection
control characters for 24,32,166
STACK operand 91
using CNTRL macro 93
STAE exit 58
STAI exit 58
standard format for fixed-length records 24-25
standard labels
direct-access volumes 22,161
magnetic-tape volumes 22,23
storage (see direct-access storage; magnetic-tape volumes)
STOW macro instruction
description 108
restriction with DCB ABEND exit 51
when sharing a data set 58
subpool 0, when shared 58

182 OS/VS Data Management Services Guide

substitute mode processing
creating a sequential data set 101
defined for buffering 80
relationship with buffers 81
with exchange buffering 84,85,101
with GET macro instruction 85,101
with PUT macro instruction 85,86,101
supervisor call library, restriction 49
SVCLIB, restriction 49
switching, volume
automatic
with end-of-volume 75
with FEOV macro 76
with GET macro 61
restriction with concatenated data sets 151
initiated by CHECK 66
SYNAD field
programming consideration 97
SYNAD routine
changing address in DCB 55
description 41-43
macros used in 67,68
programming consideration 97
relationship with ISAM 71
relationship with SETL option 124
relationship with DECB 67
relationship with SYSIN/SYSOUT data sets 151
temporary close restriction 72
when adding records to ISAM data set 118
when sharing a data set 58
with basic access technique 64
with queued access technique 61
SYNADAF macro instruction
description 67
examples 99,100,101
use in SYNAD routine 41-42
SYNADRLS macro instruction
description 68
examples 99,100
use in SYNAD routine 42
synchronous error routine exit (see SYNAD routine)
SYSIN data set
FEOV macro ignored for 76
restriction with
chained scheduling 97
parallel input processing 62
spanned variable-length records 29
user totaling 47
routing data through input stream 149-151
SYSOUT data set
FEOV macro ignored for 76
restriction with
chained scheduling 97
label exits 46
spanned variable-length records 29
user totaling 47
routing data through output stream 149-151

<

Bgs T

system generation device independence
considerations 95-96
system input stream 149-151
system output stream 149-151
system output writer 149-151
SYS1, IMAGELIB
fetching images from 93
search of 50
SYS1.LPALIB and checkpoint/restart 49
SYS1.SVCLIB and checkpoint/restart 49

T

tape (see magnetic-tape volumes; paper-tape reader)
tapemark 23
task input/output table (TIOT) 70,71
TCB, use of 151
temporary close 72-74
TIOT (task input/output table) 70,71
totaling area, user totaling exit routine 47-48
track
addressing 34-35
defined 33
format
count-data format 34
count-key-data format 34
index 113,114,115
overflow option
description 35
effect on chained scheduling 97
restriction of BSP macro instruction 94
restriction with BDAM 138
restriction with parallel input processing 62
restriction with RPS feature 102
restriction with variable-length records 26
trailer label, user 44-47 :
TRTCH 90
TRUNC macro instruction
description 87
to terminate buffer processing 77
truncated blocks, format-F records 24
truncated format-U record 32
TTR (ee address, direct-access storage device, relative)
TYPE=T operand 72-74

U

U-format records (see format-U records)
UCS image
relationship with SETPRT 93,94
UHL (user header label) 44-47
undefined length records (see format-U records)
UNIT operand of the DD statement 38
unlabeled magnetic tape 22-23
UPDAT option
(see also update mode)
EODAD routine entered for BSAM 40
for updating a sequential data set 100
restriction with
chained scheduling 97
search direct operation 97
SYSIN/SYSOUT data sets 72
opening a data set 37
updating a sequential data set 100
with spanned records 28

update mode
(see also UPDAT option)
with format-U records 32
with PUTX 81
with simple buffering 83
user catalog
for VS2 154,155
user header label (UHL) 44-47
user label exit routine
description 44,47
exit list entry 45
restriction for data sets on volumes without standard
labels 46
restriction for SYSOUT data sets 46
with read backward 46-47
user totaling exit routine
control totals 47,48
description 47,48
exit list entry 47
how specified 47
image area address 47
relationship with end-of-volume exit 49
restricted to BSAM, QSAM 47
save area 47
totaling area 47
variable-length and spanned records 48
user trailer label (UTL) 48
utility programs, use of
IBCDASDI 139
IDCAMS 140
IEBCOPY 112,113
IEHATLAS 68
IEHDASDR 139
IEHLIST 123,144,158
IEHMOVE 105,106,158
IEHPROGM 144,154,158,159
initializing direct-access volume 22,139
UTL (user trailer label) 44-47

A/

variable-length record (format-V) 26-29
segments 27,28
spanned 27-29
restrictions with SYSIN and SYSOUT data sets 29
special considerations, with user totaling 48
with parallel input processing 62
variable-length record (format-D) 29-31
version increment of generation data group 156
VIO (virtual I/0) 69
virtual I/0 (VIO) 69
V-format records (see format-V records)
volume
control 153,154
defined 21
direct-access 22
(see also direct-access volume)
disposition (see DISP operand)
identification operand of DD statement 39
index (see index)
initializing 22,139
labels (see labels, direct access)
magnetic-tape (see magnetic tape volumes)
positioning 72-76
serial number 39
switching 61,75,76,151
table of contents (see VTOC)

Index 183

VSAM catalog
for VS1 153
for VS2 154,155
generation data group base created in 155
VS1 systems
abnormal termination during open, close, EOV
processing 70,71
action of DISP option 76
cataloging data sets 153,154
protection key usage when accessing indexed sequential
dataset 113
restriction when processing open BISAM DCB 129
restriction with chained scheduling 97
restriction with exchange buffering 85
VS2 systems
abnormal termination during open, close, or EOV
processing 71
action of DISP option 76
cataloging data sets 154-155
exchange buffering ignored 84
generation data group base 155
releasing data sets and volumes 74
restriction with 2540 92
use of VIO (virtual 1/0) 69
VTOC (volume table of contents 21,22
catalog DSCB 153
DSCB 161
for ISAM dataset 114
initializing 139
pointer 162

W

WALIT macro instruction
description 66-67
example 130
when sharing a data set 58
with basic access technique 64,66
BISAM 66,128
BDAM 58,66,138
with QSAM parallel input processing 62
WRITE macro instruction
add form 135,138
description 65,66
for format-U records 31,32
in EODAD routine 40
in SYNAD routine 41,42
programming consideration 96
supplying record length 103
update form 136,137
updating a partitioned dataset 111,112
updating a sequential data set 100,101
used with BDAM 134,135
used with note list 106
when sharing a data set 57,58
with basic access technique 64
with K (key) 128,130
with KN (key, new) 117,130,131
writing a short block 103
write validity check option 35

184 OS/VS Data Management Services Guide

123

1403 Printer
SETPRT macro for 94

1600 BPI 90

2305 Fixed Head Storage
capacity 141
overhead formula 141

programming considerations 138
2314 Direct Access Storage Facility

capacity 141
overhead formula 141
2319 Disk Storage
capacity 141
overhead formula 141
2400 Magnetic Tape Units
recording density 90
2540 Card Read Punch

chained scheduling restriction 98
punch error correction 90-92.

3211 Printer
SETPRT macro for 94
3330 Disk Drive
capacity 141
overhead formula 141
3333 Disk Storage
capacity 141
overhead formula 141
3340 Disk Storage
capacity 141
overhead formula 141
3350 Disk Storage
capacity 141
overhead formula 141
3400 Magnetic Tape Units
recording density 90
3525 Card Punch

chained scheduling ignored 98

record format 90
3800 Printer)
JFCBE exit for 48-49

SETPRT macro for 93-94

7-track tapes 90
9-track tapes 90
800 BPI 90

”y

[

GC26-3783-5

JIBIMI

®

International Business Machines Corporation

Data Processing Division

1133 Waestchester Avenue, White Plains, New York 10604
(U.S.A. only)

1BM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

G-€8/£-920D V'S'N Ul paluLgd (OE-OLES "ON 2]id) 8pIND saoinleg Juswiabeuely eleq SA/SO

14,

&~

OS/VS Data Management Services Guide Reader’s

GC26-3783-5. Comment
Form

Your comments about this publication will help us to improve it for you.
Comment in the space below, giving specific page and paragraph references
whenever.possible. All comments become the property of IBM.

Please do not use this form to ask technical questions about IBM systems and
programs or to request copies of publications. Rather, direct such questions or
requests to your local IBM representative.

If you would like a reply, please provide your name, job title, and business
address (including ZIP code).

Fold on two lines, staple, and mail, No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

GC26-3783-6

TSIV

®

Fold and Staple

First Class Permit
Number 439
Palo Alto, California

Business Reply Mail

No postage necessary if mailed in the U.S.A.

Postage will be paid by:

tBM Corporation

General Products Division

Programming Publishing—Department J57
1501 California Avenue

Palo Alto, California 94304

Fold and Staple

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604

(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017

(International)

§-€8/€-920D 'V'S'N Ul Parulld [0E-0LES “ON li4) 9pIND sedinseg Juawebeuepy e1eq SA/SO

OS/VS Data Management Services Guide Reader’s

GC26-3783-5. Comment
Form

Your comments about this publication will help us to improve it for you.
Comment in the space below, giving specific page and paragraph references
whenever.possible. All comments become the property of IBM.

Please do not use this form to ask technical questions about IBM systems and
programs or to request copies of publications. Rather, direct such questions or
requests to your local IBM representative.

If you would like a reply, please provide your name, job title, and business
address (including ZIP code).

Fold on two lines, staple, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

GC26-3783-5

JISIMG

®

Fold and Staple

First Class Permit
Number 439
Paio Aito, California

Business Reply Mail

No postage necessary if mailed in the U.S.A.

Postage will be paid by:

IBM Corporation

General Products Division

Programming Publishing—Department J57
1501 California Avenue

Palo Alto, California 94304

Fold and Staple

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604

(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017

(International)

§-€8/£:920D V'S Ul Palulld {0E-0LES "ON 3]!d) 8pIND sadinlag Juswabeuely eleq SA/SO

PN

<=

- _

P .

OS/VS Data Management Services Guide Reader’s

GC26-3783-5. Comment
Form

Your comments about this publication will help us to improve it for you.
Comment in the space below, giving specific page and paragraph references
whenever.possible. All comments become the property of IBM.

Please do not use this form to ask technical questions about IBM systems and
programs or to request copies of publications. Rather, direct such questions or
requests to your local IBM representative.

If you would like a reply, please provide your name, job title, and business
address (including ZIP code).

Fold on two lines, staple, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

GC26-3783-5

Fold and Staple

First Class Permit
Number 439
Palo Alto, California

Business Reply Mail

No postage necessary if mailed in the U.S.A.

Postage will be paid by:

IBM Corporation

General Products Division

Programming Publishing—Department J57
1501 California Avenue

Palo Alto, California 94304

Fold and Staple

JISIMC

®

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

G-€8/£:920D 'V'S'N Ul Palulld {OE-0LES "ON 3li4) 9PIND s801AleG Juawabeue eled SA/SO

P o

