Licensed Material - Property of IBM

LY28-6486- 2

IBM OS/VS COBOL Compiler
Program Product Program Logic

Program Number 5740-CB1

This edition replaces the previous edition (numbered LY28-6486-0) and its
technical newsletter (numbered LN20-9106) and makes them obsolete.

This edition corresponds to the second release of the IBM 0S/VS COBOL
Compiler and to any subsequent releases unless otherwise indicated in
new editions or technical newsletters.

Technical changes are summarized under "Summary of Amendments" following
the list of figures. Each technical change is marked by a vertical line
to the left of the change. 1In addition, miscellaneous editorial and
technical changes have been made throughout the publication.

Information in this publication is subject to significant change. Any
such changes will be published in new editions or technical newsletters.
Bibliography, GC20-0001, and the technical newsletters that amend the
bibliography, to learn which editions and technical newsletters are
applicable and current.

Requests for copies of IBM publications should be made to the IBM branch
office that serves you. .

Forms for readers' comments are provided at the back of the publication.
If the forms have been removed, comments may be addressed to IBM
Corporation, P. O. Box 50020, Programming Publishing, San Jose,
California 95150. All comments and suggestions become the property of
IBM.

© Copyright International Business Machines Corporation 1974,1976

Licensed Material - Property of IBM

Summary of Amendments Number 1

Date of Publication: November 1, 1976
Form of Publication: Revision, LY28-6486-2

0S/VS COBOL RELEASE 2

New: Programming Feature

The text has been updated to reflect Release 2 of the 0S/VS COBOL Compiler. Major
updates include:

® Phase 04, a new phase that processes the COPY statement and performs BASIS processing.
® Phase 35, a new phase that processes USE FOR DEBUGGING statements and their operands.

® A new compiler option, LANGLVL, applies to those language elements where the
interpretation differs from the 1968 American National Standard, X3.23-1968, COBOL,
to the 1974 American National Standard, X3.23-1974, COBOL.

® Phases 05, 06, 08, and 80 flowcharts have been added.

® Extensive updates have been made to; Communications Area, Compiler Table
Formats, and Internal Text Formats in the Data Areas Section.

® Several updates, including a list of user ABEND codes, have been made to the
Diagnostic Section.

Miscellaneous Changes

Maintenance: Documentation Only

Some maintenance changes have also been made.

This publication describes the internal
design of the IBM 0S/VS COBOL Release 2
compiler. The manual is intended for use
by persons involved in program support and
by systems programmers involved in altering
the program design for installations
requiring such alteration. It supplements
the compiler listing and its comments but
is not a. substitute for then.

The publication is divided into the
following sections:

e An introduction that describes the
compiler functions and specifies the
relationship of the compiler to the
operating systen.

e A Method of Operations section that
includes a section on each of the
compiler phases. Within these
chapters, the material is organized by
phase functions and is not necessarily
presented in the order in which the
phase operations are performed.

e A Program Organization section that
includes one chart of the overall logic
flow for each phase and other charts
showing detailed descriptions of some
of the major phase routines.

e A Directory section that shows register
usage, flowchart labels, and the tables
used by each phase.

e A Data Areas section showing the
formats of the compiler Communication
Region, the dictionary, the internal
texts, the tables that occupy the
table-handling area, and the tables
that are created for object-time
debugging purposes.

e A Diagnostic Aids section.

e An appendix that describes the routines
that handle compiler tables and the
dictionary.

e An appendix that describes the object
nodule produced by the compiler.

e An appendix that describes the Réport
Writer subprogram.

e An appendix that describes the
interface with the Conversational
Monitor System (CMS).

PREFACE

e A Glossary of special terms.

e Foldout Diagrams.

e An index.

Effective use of this manual requires an
extensive knowledge of the IBM Assembler
Language, 0S/VS System Control, and the IBM
0S/VS COBOL language. Prerequisite and
related publications include:

IBM_OS/VS_Supervisor_Services and_Macro
Instructions, Order No. GC28-0683

IBM _0S/VS Data Management Services
Guide, Order No. GC26-3783

IBM_OS/VS _Data Management_ Macro
Instructions, Order No. GC26-3793

=St ——— — s e S e e S e e S S

Oorder No. GC26-3813

IBM_0OS/VS_and DOS/VS_ A
Guide, Order No. GC33-

embler Lanquage
10

ss
40

IBM_0S/VS _sServices_Aids, oOrder
No. GC28-0633

IBM_0OS/VS_System Utilities, Order
No. GC35-0005

IBM_OS/VS System_Management Facilities
{SMF) , Order No. GC35-0004

IBM_OS/VS Data_Management for System
Programmers, Order No. GC26-3837

IBM_OS/VS_Virtual Storage_ Access Method

No. GC26-3838

Prerequsite Program Product documents
include:

IBM_VS COBOL_for 0S/VS, Order
No. GC26-3857

IBM_0S/VS_COBOL_Compiler_and_ Library
Programmer's Guide, Order No. SC28-6483

IBM_0S/VS_COBOL_Compiler and_Library

No. SC28-6481

IBM_0S/VS_COBOL_Subroutine Library

Program_Logic, Order No. LY28-6425

Licensed Material - Property of IBHM

The following extract from Government:
Printing Office Form Number 1965-0795689 is
presented for the information and guidance
of the user:

"Any organization interested in reproducing
the COBOL report and specifications in
whole or in part, using ideas taken from
this report as the basis for an instruction
manual or for any other purpose is free to
do so. However, all such organizations are
requested to reproduce this section as part
of the introduction to the document. : Those
using a short passage, as in a book review,
are requested to mention *COBOL' in
acknowledgment of the source, but need not
quote this entire section.

"COBOL is an industry language and is not
the property of any company or group of
companies, or of any organization or group
of organizations. B

"No warranty, expressed or implied, is made
by any contributor or by the COBOL
Committee as to the accuracy and
functioning of the programming system and
language. Moreover, no responsibility is
assumed by any contributor, or by the
committee, in connection therewith.

"Procedures have been established for the
maintenance of COBOL. Inquiries concerning
the procedures for proposing changes should
be directed to the Executive Committee of
the Conference on Data Systems Languages.

"The authors and copyright holders of the
copyrighted material used herein

FLOW-MATIC (Trademark of Sperry Rand
corporation), Programming for the
UNIVAC (R) I and II, Data Automation
Systems copyrighted 1958, 1959, by
Sperry Rand Corporation; IBM
Commercial Translator, Form No.
F28-8013, copyrighted 1959 by IBM;
FACT, DSI 27A5260-2760, copyrighted
1960 by Minneapolis-Honeywell

have specifically authorized the use of
this material in whole or in part, in the
COBOL specifications. Such authorization
extends to ‘the reproduction and use of
COBOL specifications in programming manuals
or similar publications."

/N

SECTION 1. INTRODUCTION
Relationship of the Compiler to the IBM
OS/VS System o« « ¢ ¢ o o o & o
Characteristics of the Compller
Physical Characteristics . .
Operational Characteristics
Input . ¢« ¢« & & o & .
Output
Design of the Compiler .
Compiler Data Sets ., . .
Compiler Phases . .

« o e
.
o o o o s @
¢ o o s 8 & o e
s o s o o o o o
e o o

.
« ¢ o o o

Phase 00 (IKFCBLOO) e e e e e
Phase 01 (IKFCBLO1) . ¢ & « o « =«
Phase 02 (IKFCBLO2) e s . s e o s e
Phase 03 (IKFCBLO3) . . « « « + «
Phase O4 (IKFCBLOS) . « « + & o+ &
Phase 05 (IKFCBLOS5) e e s 4 e e @
Phase 06 (IKFCBLO6) . ¢ ¢ & o o &
Phase 08 (IKFCBLO8) ¢ o« & o. 04 » o
Phase 10 (IKFCBL10) . + ¢ o &+ + &
Phase 12 (IKFCBL12) e+ 92 e o o @
Phase 1B (IKFCBL1B) s e o s e« &
Phase 20 (IKFCBL20) .+ . + « o . .
Phase 22 (IKFCBL22) s e s o s s
Phase 21 (IKFCBL21) c s e o s s o
Phase 25 (IKFCBL25) . + &« o o o &
Phase 3 (IRFCBL30) &+ + ¢ o o o o &
Phase 35 (IKFCBL35) e o o o »
Phase U4 (IKFCBL40) . e e e

Phase .
Phase .
Phase .
Phase 6 (IKFCBL60) . .
Phases 62, 63, and 64 (IKFCBL62
IKFCBL63, and IKFCBL®64) s . .
Phase 65 (IKFCBL65) .« & « & + o« &
Phase 6A (IKFCBL6A) . . o
Phases 70, 71, and 72 (IKFCBL70,
IKFCBL71, and IKFCBL72) e« o o e
Phase 80 ({IKFCBLBS8O) e o s e s s
Compiler Options . + + & o o o o o &
Storage Requirements . . « o« ¢ ¢« o

45 (IKFCBLUS)
50 (IKFCBL50)
51 (IKFCBLS51)

°
. .
. .

.
.
°

e » o o o ¢

~

SECTION 2. METHOD OF OPERATION
Phase 00 e e s e e s e
Receiving Control from the Operating
SYStem o ¢ o o ¢ o o s o o o o s e

« & o o & . e e o s e

e o &+ o o

s e e e ¢

31

Returning Control to the OperatingSystem 31

Processing Between Phases . . « « «
Phase Input/Output Requests
Compiler lLinkage to Data Management
Directing Error HMessages and
Progress Messages to the SYSTERM
Data Set ¢« ¢ ¢ o ¢ o+ o o o o o o
Segmentation Operations . .
Table and Dictionary Handling
Communications Area (COMMON) .
Syntax-Checking Compilations .
Terminal Error Conditions«

. ¢ v
°
.

PHASE 071 & ¢ o o o o. 0 s o o o o o o »
Compilation Parameters . « « « « +
Return From Phase 02 . . . « . . . &

PHASE 02 & v 4o o o o 5 ¢ s o o @
Compilation Paramet2rs . . . « . . .
Buffer Size Determination

.

31

Licensed Material - Property of IBM

Table of contants

Processing for the BATCH Option . . .
Entering Statistical Information In
COMMON + « & &+ & o . « e s e-s s o
Preparing For Faderal Informatlon
Processing Standard (FIPS) Flagging .
Information Returned to Phase 00 . . .
Error Conditions + ¢ « & o & « o o o

PHASE 03 . . & ¢ o o o« o s o o s o o o ¢

Obtaining and Printing Error Messages
Returning Control to Phase 00

PHASE QU . . + & » &
Input <« « o« & & e s s e s e e s
Output . « . . .

Error Conditions .

Tables Used . . . e e e e e s

s e o & o s s

e » s 3 e =

« o o e e

Main Flow of Control in PHASE 04
Processing Routines Used

PHASE 05 ¢ ¢ ¢ o o ¢ o o o o o o s o s »
Input. o ¢ ¢ ¢ ¢ o o ¢ ¢ o o o o o o
output « ¢ ¢ ¢ ¢ 4 4 e v e e e e e .

Syntax Languag?® SUmmMary .+ + o » o e =
Error Conditions « . « « .« . .

PHASE 00 4 o ¢ o o o s o o .o o s o o o &

Input. « « o o o o o o & o o o o s e

output . « & ¢ ¢ ¢ ¢ e e e e e . e

PHASE 08 &4 & ¢« v o o o o o o s o o o o &
Input. « « ¢ o & ¢ o ¢« o o o o o . .
Output. e e e e e e e s e
ProcesSsSing « « « o o o o o o o o o @

Error Conditions . .« « « « « o « < &
PHASE 10 & 4 v o ¢ o o o « o &
Major Working Routines

GETDLM Routine

GETH#D Routine

GETCRD Routine . « o + « +
Identification Division . . .
Environment Division

Confiquration Section . . .

Input-Output Section

FILE-CONTROL Paragraph .
I-0O-CONTROL Paragraph .

Data Division .,

File Section « . « « « . .

File Description Entries
Sort Description Entries
Record Description Entries
Working-Storage and Linkage Sections
Communication Section « . . .

» s e * ¢ o
¢« e o s s o

* e e o ¢ @
o o o

. ¢ o &

¢ o o s o s s
. .

* e e o o o 5 o

ec 5
PHASE 12 . 4 o ¢ o o o o &
Operations in Other Phases
REPORT Clause . « « » &
Report Section Header .
USE Sentences
Procedure Division Verbs
Control-Field Save-Area N
REDEFINES Clause
producing the Report Writer Sprroqram
(R¥S) « « . . e e e v e e e e .

Routine RDSCAN e s s s e o e e s o o o
Routine PROCOT & v v o ¢ o o o s o s o

e o s e

* e e e o

e o . o o
.

.
.

.

.

.

« » « & .
nes

»
.
.
.
.
.
e ° e e
.

.m.-....

- s e o

us

48

Licensed Material - Property of IBM

Routine PROCO2 . . « « .+

Routine FLUSH . . + . .+ &

Routine GNSPRT &« o + o + &
Generating Error Messages .
Generating the Source lListing
Information for Later Phases .

= e o
e o o o s e
¢ ¢ e e o &
LI)

PHASE 1B 4 4 v o o s o o o s .o o o =
Procedure-namesS . « o+ o o s, 0 . .
Entering Procedure-names in the

Dictionary « « « « o & .

Using the PNTABL and PNQTBL Tables
Storing Information
Moving Information into the
Dictionary + o« « o + o o o o o &

Priority Checking for Segmentation

Verbs o o o o s o o o o o o a2 s o

Procedure-Branching Verbs .

Input/Output Verbs

Other Verbs

Declaratives « « + « « « + o o

“« o o ®
s o e o
.

PHASE 20 . . « o e
Translating LD Entrles 1nto ATF- text
Processing Elementary Items . . .
Processing Group Items . « + « o
Producing Incomplete Data A-text . .
Processing File Section Entries .
Processing Communication Section
Entries . o o o o o o o o o o o o
Processing FITOTS « o« o o« &+ o o o &«

PHASE 22 4 4 4 o » o o o s s o
" Building Dictionary Entries . .
Dictionary Preprocessing . . .
Completing Dictionary Entries
Generating Data A-Text
Q-Routine Generation . . + « « .
Processing EITOTS .+ + & o o o o
Building Tables for Later Phases

e & ¢ ¢ o o o 8

e s ® e o & o o

PHASE 21 o ¢ o« 2 o «

.

FD Dictionary Entries . . « .« + .« &
SD Dictionary FEn*tries . . « + & o+ &
Linage-Counter Entries . . « + . - &
Data A-text Elements « .
FIB Address Element+ « « &
Block and Working-Storage Section
Address Elements « « ¢« o o o o o &

Constant and Address Constant
Definition Elements . « ¢« « « « &
Creation of Exit Lists «
DCB's and DECB's -- Address and
Constant Definition Elements . . .
File Information Block (FIB) . .

Determination of Buffer Area Size

Clause Compatibility . . . « « + .« &

PHASE 25 ¢« 4 o « o o . . .
Phase 25 Processing for the Debuq
Data Set . . . o o e

Building the OBODOTAB Table o .
Building the DATATAB Table . . .

PHASE 3 . 4 o o o 5 o o s o o o o @

Glossary Building

Translation from PO-text to P1-text
READ Verb Strings . « ¢ o o o &«

« ¢ ¢ & s o &

v o a o

* 8 o @

. “ o o @

. e o o &

¢« o ¢ @

e s 2 s e o

« * s a2 s s & .

e e . s o e o

e s ® 8 o » v @

80

84

Statements with CORRESPONDING
Options + o 4 o ¢ o 2 s o 0 o
SEARCH Verb Strlngs « s e s
Determining the Unigueness of a
NAME o« v o s o o o o o 2 s o o @
Replacing Names with Dictionary
Rttributes o ¢« o o o o s o o o &
Debugging . .+ « « « ¢« o ¢ o o .
Error Processing . . » « o o o &

PHASE 35 4 & o o o o o o o = o s o »
Table Handling « « « ¢ ¢ o o o o »
Processing Routines
Non-Debugging Declarative
Considerations « o o « o o » » o o

Output ¢ « o ¢ o ¢ o o e o e . .

PHASE 4 . . &+ + « o &« . e e o e
Translation of P1-Text to P2 Text
Verbs .« o o o o o o o .o o o s o
MOVE Statement -- qubscrzptlng
DEBUG Card « « » s o .o o » o
ALTER Statement . . . «+ + . &
PERFORM Statement . « ¢ « o &
COMPUTE Statement .
Multiple Results in Arlthmetlc
Statements ® o 6 e e e e © & e s @
IF Statement . . s s s e s e s
Nested IF Statement e s e e s e
SEARCH Format-2 (SEARCH ALL)
Statement . . ¢ ¢ . . . e v e .
Syntax Analysis and Error checklng .
Method of Defining Verb Blocks . . .
Phase 40 Initialization Routine
ID5 Routine . o o o o &
ISTRUV Routine
IDBRK Routine
IDLHO3 Routine . .+ . . .
SORT, MERGE Routines . .
EOF Routine . . o e
GETNXT (GET13 and GET1M)
EXITS5 (EXIT PROGRAM) Routi
GENNOD Routine
GENPAR Routine
GENTIM Routine
WRSYS4 Routine

e o o e & &

e« o .

t

=]
o« e o & o &
=
*» MD e o o o o o

e o o o DL e o s v .

» o e

8 e o o |ihEge e o s o

e o o o
» s o @

.
s+ s e
e s o »
s e = o

PHASE 45 . . .« e e s o 8 s ° e
Initialization and ATM-Text Analysis

Creating P2-Text for Phases 50 and 51
PHASE 50 ¢ o ¢ ¢ ¢ o o o o o o o 5 =«
Program BreakS « o « s s ¢ o o 2 o o
Verb Strings « « « o o o s « s s o &
Verb Processing .« « « o o o o ¢ o
Resolving Subscripted and Indexed
References e o« e e

How Subscripted Addresses Are
Calculated « « o o o o o & & .

Using and Optimizing Subscrlpt
References . « « & o + » .
Indexed Refereuces
Arithmetic Verb Strings . .
Hork ATea + o« o o o o » .
Compile-Time Arithmetic .
Mode of Operation .,
Register and Storage Allocation
Generating A-teXt o« .+ o 2 46 s & e

.
.
.
.
.

¢« s o o + o

»
.
.
»
.
.
(o]

e & o 8 o & o o

* o o

¢ o o o e & o o

.+ 95

. 100
. 100

. 102
. 103

. 104
. 104
. 104
. 104
. 105
. 105
. 109
L1117

113

<113
. 113

.113
. 116
.116
.116
.116
<116
. 116
. 116
. 116
.116
. 117
. 117
117
<117
. 117
. 117

.118
.118
. 118

. 119
. 119
. 119
<120

. 120
121

122
.123
. 124
124
. 125
. 126
. 126
. 127

N

Literals and Virtuwals . . . e . a
Handling Phase 51 Verb Strlngs “« o 0
BRdditional Processing for the OPT

OPtion & 4 & o o ¢ o o o o & o o o

PHASE 51 ¢ ¢ ¢ ¢ ¢ o o o o o o
E‘Text . o » e o o o » s e o .
Program Breakso .
Segmentation Control Breaks .« o
PN, GN, and VN Definitions . . .

t

Building the PNUTBL Table .

Verb Strings . « « o « ¢ & o+ o o
Input/Output Verbs
Other Nonarithmetic Verb String
Special Considerations for
Nonarithmetic Verbs
Verbs Requiring cCalls to

Building PN and GN Equate Strings
ngs

.
.
.
.
.

Object-Time Subroutines
DISPLAY Literals o« e
Generating System/370 Instructlons
Text Generation for the OPT Option

Generating Object Code to Process VSAM

Files
Generating Calls to the ILBOVCOO and
ILBOVIOO Subroutines . . « ¢« o o o &

PHASE 6 . . . « s s e s e o »
Output of Phase 6 e s e e e s e .
Suppression of Output Llstlng .
Glossary and Listing Symbols . .
Task Global Table Storage Allocation
Optimizing Storage for the Program
Global Table
Building the VN Prlorlty Table .
Optimizing PNs and GNs
Optimizing Literals and DISPLAY
Literals o o o o ¢ o o s o o o
Optimizing Virtuwals
Allocating Storage for the Program
Global Table « o e o
OVERFLOW Allocatlon o e e e
VIRTUAL 2llocation . . .« . .
VIRTUAL EBCDIC NAMES
PN Allocation . . .
GN Allocation . . .
DCBADR Allocation .
VNI Allocation . . .
LITERAL Allocation . .
Procedure A-text Processing . .
Procedure A-text Processing
Segmented Program . .+ .
Listing A-Text . . « + « + =«
Execution-Time Base Register
Assignment . « < .+ ¢ s o« s o4 o s
Processing Data A-text, E-text, and

Allocation

« o
o o o

.
.
* e »
.
.

[N

e o e e s s s o

¢ s R e e

DEP-text e s o s e

Processing the RLDTBL Table . e e e
Initialization Coding Generation . .

PHASE 62 . . . P
Output of Phases 62, 63, and 6& . .
Suppression of Output Listing .
Task Global Table Storage allocation
Optimizing Storage for the Program
Global Table « « & & o o + ¢ o o o &

o« v o

a & 8 e o o s s o

. 131
. 132

. 132

. 133
.133
. 134
. 134
. 134
. 134
. 135
. 135
. 135
. 137

. 138

. 139
.139
. 140
140

. 140
. 140

141
. 141
. 142
. 142
. 143

L1484
. 144
.46

. 147
. 147

.48
. 149
. 149
. 149
. 149
. 150
. 150
. 150
. 150

.« 151

. 155
. 156

. 156

. 157
. 157
. 157

. 161
. 161
.162
. 162

. 164

Licensed Material - Property of IBM

Building the VN Priority Table ., . .165
Processing PNs and GNsS « « 165
Ooptimizing Literals and Processing
DISPLAY Literals . . « + « + + « o+ 165
Optimizing Virtuals . . « «166
Allocating Storage for the Program
Global Table e s s a » s » » 2166
DEBUG LINKAGE AREA Allocation . . .166
OVERFLOW Allocation166
VIRTUAL Allocation . « ¢« & o o o » 167
VIRTUAL EBCDIC NAMES Allocation . .167
PN Allocation . .+ & & o o« « .+ o . 167
GN Allocation . . « &+ « o o o « o 2167
DCBADR Allocation « « . .168
VNI Allocation « « « . o . .168
LITERAL Allocation . . . s s« » o« 168
PROCEDURE BLOCK Allocatlon e .+ . 2168
Optimizing Register Assignments168
Permanent Register Assignments169
Temporary Register Assignments . ., . .169
Optimizing and Allocating Storage for
the Procedure Division . . . 171
Building the PNLABTBL and GNLABTBL
Tableso . . L 171
Incrementing thn ACCUMCTF Counter 171
PHASE 63« . e e s s o . =175
Initialization of Phase 63 s o s+ s e o 175
Constructing Procedure Al-text175
control Routine « . . 175
Processing Programs with One
Procedure Block . . « « « +» « .+ + . 175
Processing for Branch Instructions . .175

Processing for Optimization Information

Elements {(C001-C007) e . o176
Processing for RPT-Origin (Du)
Element . . ¢ & & o o o o o o + « » 2176
Processing for Address Reference (78)
ElementsS o+ o« « o« o « s o o o o s o » 2176
Processing for Address Increment (80)
ElomentsS o 4 o o o o o o o o o s o » 2176
Processing for Incremented Address
(A4) ElementsS . « o 2 « o o o o« » o o176
Constructing Debug-text » . .176
Counters Used in Phase 63 177
Building the QGNTBL Table . . « . . . »177
Making Fntries in the RLDTBL Table . . .177
Processing in a Segmented Program . . .177
Processing at End of File178
PHASE 64 P
OQutput of Phase 6ﬂ o s s s s e e s s 2179
Processing Data A-text, E- text, and
DEF-teXte & o o o o o o o o o 2 o » «179
Processing Procedure Al-text179
Initialization Coding Generation . . ., .183
Processing the RLDTBL Table183
PHASE 65 e s e o e ».e s <187
Processing the FLOW Opt1on e v e s . «.187
Common Processing For The STATE,
SYMDMP, And TEST Options . « + » « » » »187
Processing Debug-text .,187
Building the PROCTAB Table187
Building the SEGINDX Table ., . . .188
Further Processing for the STATE Optlon 188
Further Processing For The SYMDMP Or
TEST Options « - +« « s « « « +« & » « o« 188

Licensed Material - Property of IBM

Building the CARDINDX Table . . .
. Building the PROCINDX Table . . .
~Debug Data Set Processing ¢ « o o .
Final Processing . « o o o 5 o' ¢ o » o

PHASE 6 « o 6o o' ¢ o o o » e e e e e
Producing a Source Ordered)
Cross-Reference Listing
Producing an Aplhabetically Ordered
Cross-Reference Listing . « + « .+ &

PHASES 7CG, 71, AND 72 . . .
Input from Prior Phases .
Phase 70 Error Processing

PARTBL and EACTBL Tables
PHXERR Tables
Generating Messages . . .
Error Message Listing . .
FIPS Processing . . « .

* o o @
¢« o s 0.0 4 »

o o o o .0
c‘!cm'.;

PHASE 80
Input
Output
Processing . . .« . . .

Scanning the Source Program .

]

Generating Diagnostic Message
Writing the Source Progranm .

® ¢ . o o s. o
e & & o s ¥ o
¢ o ® & o e o

¢ s ® o s @

SECTION 3, PROGRAM ORGANIZATION . .
FlowcharTrts o o« o 4 o o o e o s o o o+ =

SECTION 4. DIRECTORY 4 « o o o o o .
Flowchart Label Directory« .
Tables Used by Phases .+ « o o o o o

.

MICROFICHE DIRECTORIES o' ¢ o o o « o »

SECTION 5. DATA AREAS . & &« o o o »
Communications Area (COMMON) . . « .

COMPILER TABLE FORMATS » s s e e o
Notes on Compiler Table Formats . .

INTERNAL TEXT FORMATS . & +« o«

Notes on Text Element Formats
IPTEXT o o o o o o o o o o .0
NData IC-TeXt o o o o o o o o
ATP-Text o+ o o o o o o o & »
Data A-Text
Procedure IC-Text (?O Format)
Procedure IC-Text (P1 Format)

.

)
0
.

e ¢ » o 0 & o ®
s & o o & o o @

o o 8w e

PROCEDURE P1A-TEXT »
Procedure IC- Text {P2 Format) .
ATH-TeXt ¢ « o o o o o «
Procedure A-text . . .
Optimization A-Text
Procedure A1-Text
Listing A-Text . .
E-Text « . « « .« .
XREF-Text
Debug-Text . .« . .

. s o
.

.
o6 o 8 e w 6 & + e
.
.

s 8 0 0

e & & o o @

a8 8 e

s v & & o8 o =

¢« 8 o & . »
.

¢ & s & @

e 8 & 9 8. e @

DICTIONARY ENTRY FORMATS . i + « o .,
Notes on Dictionmary Entry Formats
Procedure-Name (Paragraph) Entry .
Procedure-Name {Section) Entry . .
FD EREXY & & o6 5 o & s o o 2 o @

« 2 8 s e

.188
.188
. 188

. 189

.190
. 190

. 191

.192

. 192

. 192

. 193
. 193
. 193
. 194
. 194

. 195
. 195
. 195
. 195
'195
« 195
<196

. 197
« 197

. 309
. 309
.313
317

. 324
. 32u

-+ 340

<340

. 399
. 399
.400
.402

".408
:+409

.411

.419

.424
.425
.433
.434
.439
.441
«442
.442
.443
444

=445
.445
. 446

446

. 447

SD Entry , .
RD Entry . o
LD Entry . . s s e e o,
CD Entry . « . e e . e s,
Condition-Name Entry .« .8
Index-Name Entry

» 2 2 8 o

e ® 5 e e

o e o
« 88 e e .0
.
°
¢ o o o 8 @
e o o & o o

DEBUG DATA SET TABLES
PROGSUM Table
OBODOTAB Table
DATATAB Table
PROCTAB Table
CARDINDX Table
SEGINDX Table
PROCINDX Table . .
BCDPN Table . . .
VSAM File Informatlon Block (FIB) . .

e o 0 o s .
e s s e s o
" e e s e 4 e
e s v o 4 @

3 e e © e

e o o *» & o &

*« o o 4 ® e s e
e e o o s ¢ 4 »

" e e o e .0 o o
o ¢ o » o o & &
.

o e
* e
o e
. .
s e
. .
. e
.« e
s e
FIB

SECTION 6, DIAGNOSTIC AIDS . o« o & +
Procedure.To Porce Core Dump « + o &
Response to System Error Recovery
Pindings « + o o o 5.0 s »
Compiler Data Set Activity .
Register Usage by Each Phase
Register Assignment
Elements of Program Design .

Compiler Error Messages .
ABEND Code€S « o o o o o, o
Identifying the Version of
~Compiler . . ¢ & o . s o .
Current Phase and Record .
Saving Registers . . . o« &
Buffers and Their Contents
Locating Tables
Diagnostic Assistance . . .

e & o 8 0 0 e
e o o o o & o

e ¢ s o & s (te ® o s .0 o &
= .
e o o o o (D ¥ ¢ s o e o

.
® -6 o o o »

e ° o o o o

APPENDIX A: TABLE AND DICTIONARY

HANDLING (TAMER) + o + o o o o o o

Access Dictionary Handling Routines
‘organization of the Dictionary . .
Storage for the Dictionary . . .
Initialization of ACCESS Routines

“ s 8 e o

ACCESS Routines . o+ o « o o = o o e

ENTNAM {Enter Attributes G1ven
NAam@) o o o o o s o o o ¢ o o o &
ENTPTR (Enter Attributes Given
POINter) o o« ¢ o o o » s o o o o
GETPTR (Get Pointer)
ENTDEL (Enter Delimiter P01nter) .
LATRNM {(Locate Attributes Given

Name) + o o o o o s 0 0 6 s o0 s .

LATRPT (Locate Attributes Given
POINteT) o & o o 4 o & o o o o o o
LOCNXT (Locate Next Eantry)
LDELNM {Locate Delimiter Given
Name) e o s s s s s s e s s s e =
LATACP (Locate Attributes Using
ACCESS Pointer) e e s.8 s s s s
LATGRP (Locate Attributes Given
Group Pointer) . . « ¢ ¢« o o . o
Table Handling with TAMER
CONTROL Fields . « o o . o s .
TIBs (Table Informatlon Blocks)
TAMMs (Table Area Management Maps
MASTAMs (Master TAMHM Tabdbles) . .
How Space is Assigned
TAMEIN Routine . . o+ ¢« ¢ o 2. s o
PRIME Routine ", « « .« &

8 e e 6 o 0 e

*« 0 5 & 8 ¢

<449
. 449
.450
. 450
. 454
. 454

«455
.456
.457
.458
.465
.465
.466
.466
.466
. 467

. 470
+470

. +470

.470
.470
.483
.483
.483
.483

.486
.486
.487
. 487
.488
.488

.494
.494
. 494
. 494
. 495

.495
.495

. 495
L1496

.496
. 496

.+497

.497
-497
.497

498

.498
.498

TBGETSPC Routjine .
MOVDIC Routine ., .
DICSPC Routine . .
STATIC Routine . .
TABREL Routine . .
INSERT Routine .. .

.

« & & &

TAMEOP Routine

TBSPILL Routlne
TBWRITE Routine
TBREADIC Routine
GETALL Routine .

o & o © s o 8 4 e e o
e o o ¢ ® o o o o & o
e o o o ¢ 8 s o & ¢ .
« » ‘- e & & & o s o @

o ¢ o 8 o @ s 8 0 e @
* s & o o @
e o ® & e & o o & s @

APPENDIX B: OBJECT MODULE ., . . .
Overview of Object Module Fields .
Initialization 1 Routine {INIT1) .
Data Area .+ « ¢ « ¢ o o & .

Exit Lists ¢« o ¢ o « o« &

“ o s e ¢ @

Task Global Table (TGT) . .
Program Global Table (PGT) . .
)

Report Writer Routines (RPT
ProcedUre . « « « « o s+ o«
Q-Routines o« o« « o o o o o o
COUNT Table
Initialization 2 Routlne (INITz)
Initialization 3 Routine (INIT3)
PROCTAB Table (PROCTAB) . .
SEGINDX Table {(SEGINDX) « o o
Segmented Object Module (TRANSIENT
ARER) 4 4 4 4 o ¢ o o o o s o o o o

.
o o
.

-
.
.
* e
.
.
.
)

o o ° o o .
@ o ¢ ® 0 o o ® ¥ ¥ s 6 e s o

APPENDIX C: REPORT WRITER SUBPROGRAM .
Structure of the Report Writer
Subprogram (RWS) « « ¢ « o ¢ o « & o« &
Elements of a Report Writer Subprogram
C(BES) 4 e e e e e e e e e
Fixed Routines . .
1ST-ROUT Routine
LST-ROUT Routine
WRT-ROUT Routine
Parametric Routines
USM-ROUT Routine
CTB-ROUT Routine
ROL-ROUT Routine
RST-ROUT Routine
SAV-ROUT Routine
RET-ROUT Routine
INT-ROUT Routine
ALS-ROUT Routine
RLS-ROUT Routine
Group Routines . .
RPH-ROUT Routine
RPF-ROUT Routine
CTH-ROUT Routine
CTF-ROUT Routine
CHF-ROUT Routine

e o o o
o o o o o s o s o o

e o & s o s o
e & o 8 4 e e s o o
o .

e 5 & s o o e

e ® 0 s o o ¢ & o ¢
e ¢ 6 6 8 & 6 6 o & ¢ 0 e & 6 e s @

@ ¢ 8 ¢ ® 8 ¢ ¢ ® & s ® o & 0 8 o & o &
o o 6 & 0 6 o s s »
@ * o ¢ ¥ & s o 6 e o ¢
@ ® e o 6 6 6 6 8 e 6 o & s s 8 e e & * @
¢ e & 4+ & & 8 o 0 & & o 8 8 s 6 .8

. o

» s o o o
® o & o+ 3 & ¥ o s o o & o

499
.499
. 499
. 499
. 499
.500
. 500
. 500
. 500
. 500
- 500

.501
.501
. 501
.502
.502
.505
. 510
. 512
.512
«512
.512
.513
.513
.514
«514

.514
.515
. 515

.515
. 515
.515
.515
. 515
.520
520
.520
.520
.520
.520
.520
.520
.520
.521
. 521
. 521
.521
.521

521
. 521

Licensed Material - Property of IBM

CFF-ROUT Routine + « « &4 o o« « o o o521
PGH-ROUT Routine . . « . « &+ « s s+ +521
PGF-ROUT Routine . + + + « « « « » .521
DET-ROUT Routine . + o « 2 « o o » o522
Data-Names et e e e e e e s s e . .5h22
COBOL Word Data-names522
Nonstandard Data-namesS . . « o o o o522
Special Report Writer Verbs523
Response to Procedure Division Verbs . ,524

Finding the Elements of a Report Writer
Subprogram (RHS) . « « « & s s » « « o« 524
Locating Data Items in a Storage Dump 524
Locating Data Items in the Object
Module o & o o o o« » o = o o o o o « o524
Locating Routines in a Storage Dump .524
Locating Routines in the Object

Module . . . e e e e e . o 4527
Locating DET ROUT and OSH- ROUT
Routines 527

Locating CTF- ROUT and CTH ROUT
ROUtinesS o+ o o o 4 o o & o o « o« o« 528

APPENDIYX D: INTERFACE WITH
CONVERSATIONAL MONITOR SYSTEM (CMS) . 529
Introduction « « « + . o . e e e o « «529

Register Usage + « « + « & e s+ o o 539
Elenents of Program Design e + o+ . 4539
Error Messages Issued by DMSCOB . .539
CMS Service Routines Called by
DHSCOB o 4 o o o o o o o o o o o » <541
Register Saving . . . « + o+ o » . »541

FURCtionS .+ « 4 2 s o « o o« o o o » 4529
Environment . . o« « « s s o o o o+ #4529
Physical Characteristics . . + . . « .529
Operational Considerations 531
Source Program Filename . . « . . »531
option List . . . e« o« o »531
Issuing CMS FILEDEF Commands e o . 2532
Method of Operation . .+ & + o & &« o« o+ »532
Initialization 4533
Special Processing for TFXT and
SYSPUNCH FileS o & « &4 « « « o o o+ 2533
Compiler Directory Information . . ,533
Error Processing + + + o« « o« o o o #9533
Returning Control to the CMS Command
Environment . . ¢« « o ¢ o« ¢« o o s s 535
Program Organization . . . « . « . « « .535
Directories . « + o o o o » & o o o o« 4535
Flowchart Label Directory . . « « « » 539
Diagnostic Aids . . . « ¢« + ¢« + .« . . 539
Data Set Activity + « . o . .539

GLOSSARY ¢« & o o o o o s ¢ o s o o o o« 2542
DIAGRAMS o & & o 4 o o o o o o o o & » 4547

INDEX & & o o o o o o s o » « o o o « 2587

Pigure 1. Flow of Control at End of
Compilation .« « ¢ o o 4 o o o o = o
Figure 2 (Part 1 of 2). linkage
Codes to Phase 00 « s s s e e s e
Figure 3. Flow of Control for
Processing Between Phases
Pigure 4. Optional Phase Processing
Figure 5. Activity of the Compiler
Data Sets and Buffer Assignments (Part
TOof 7)) v v o o o 6 s o o o o s o o
Figure 6. Table Usage During Record
Description Processing . . +. « o « & &
Figure 7. Phase 12 Input/Output Flow
Figure 8. Entering PNTABL and PNQTBL

Information in the Dictionary . . .
Figure 9. Phase 20 Input/Output Flou
Figure 10. Phase 22 Input/Output Flow
Pigure 11. Building the OBODOTAB

Table .+ & & ¢ ¢ o o o o o o o o o o
Pigure 12. P1-text Resulting from an
ADD CORRESPONDING Option . . « « o« o &
Figure 13. P1-text Resulting fronm a
MOVE CORRESPONDING Option
Figure 14, P1-text Written for SEARCH
Format-1 P0-text (Part 1 of 2)
Figure 15. P1-text Written for SEARCH
Format-2 PO-text o o o »
Pigure 16. Pl1-text Hrltten for
Condition-String Testing Multiple
Values without Using the VALUE...THRU
ClausSe o« 4 o o o o« o s o o o o s o o o
FPigure 17. P1-text Written for
Condition-String with VALUE...THRU
ClauSe + « « o o o o o o o o o o o o =
Pigure 18. Tables and Output for the
Statement MOVE A(6) TO B(C,D,E) e o o
Figure 19. DBGTBL Entries and P2-text
for DEBUG Card Processing . +. + + « &
Pigure 20. Table Entries and Output
for ALTER Statements « « o« o o ¢ o « &«
Figure 21. Execution of an ALTER
Statement . ¢ ¢ ¢ . 0 e o e 6 e e a2
Pigure 22. Flow of Control for
ALTER/GO TO Statements . . . o o e
Figure 23. Effect of a PERFORM
Statement . ¢ ¢ s ¢ e e s e 6 e o s .
Fiqure 24. Execution of a PERFORY
Statement .+ ¢ ¢ 4 4 4 e e . . s e s
Figure 25. Flow of Control for a
PERFORYM Statement P
Figure 26, Evaluation of a COHPUTF
Statement . ¢ o 4 4 s e e e e e e e .
Pigure 27. Strings Resulting from a
COMPUTE Statement ., . « o ¢ o o o o
Fiqure 28, Evaluation of a Nested IF
Statement . . ¢ ¢ 4 4 s 4 e e e s e
Fiqure 29. Example of Phase 4 Output
for a SEARCH ALL Statement
Pigqure 30. Flow of Execution for a
SEARCH ALL Statement « « « o« s s o o »
Pigure 31, Arithmetic Processing
Switches e o o s e s o e s 8 = s s

. 35

63

75

Licensed Material - Property of IBM

FIGURES

Figure 32. Parameter Cells for the

A-Text Generator (Part 1 of #) « « » 2128
FPigure 33, Analysis of an ON

Statement . ¢ 4 4 4 4 ¢ s o ¢ o o o s o138
Figure 34. Analysis of a DISPLAY Verb 139
Figure 35. Symbols Used in the

Listing and Glossary to Define
Compiler-Generated Information143
Figure 36., Use of Counters in COMMON

to Allocate Space in the TGT for
vVariable-length Fields (Part 1 of 2) . 145
Fiqure 37. PNUTBL, PNTBL, and GNTBL

Tables at the Beginning of

Optimization Processing46
Figure 38. GNTBL Table after PN and GN
Equate Strings Have Been Processed . 147
Pigure 39. GNTBL Table after the

Relative Numbers Have Been Assigned . .147
Fiqure 40. CONTBL, CONDIS, and LTLTBL
Tables after Processing Literals . o o148
Figure 41, CVIRTB and VIRPTR Tables

after Processing Virtuals . « = o .148
Figure 42, VIRPTR Table after VIRTUAL
Allocation . . . e . .« . e L
Figure 43. PNTBL and GNTBL Values

after PGT Allocation . . . » 150
Figure 44, LTLTBL Table after theral
Allocation « ¢« « ¢« & 4 ¢« & « ¢ 4 . o . 151
Figure 45. Processing Procedure

A-text Elements (Part 1 of 3)152
Fiqure 46, Contents of SYSUT4 When

Read by Phase 6 . . . + &« o « o 2 « « o158
Figure 47. Processing Data A-text,

E-text, and DEF-text (Part 1 of 2) . «159
Figure 48. Use of Counters in COMMON

to Allocate Space in the TGT for
Variable-length Fields (Part 1 of 2) .163
Figure 49, CONTBL, CONDIS, and LTLTBL
Tables after Processing Literals165
Figure 50. CVIRTB and VIRPTR Tables

after Processing Virtuals 166
Figure 51. VIRPTR Table after VIRTUAL
Allocation . N “ o s = . 167
Figure 52. LTLTBL Table after Literal
Allocation « + « o o o o s s s s o + o 168
Figure 53. Optimizing Assignment of
Registers 14 and 15 . . « « &+ « « + &« 170
Figure 54, Processing for

Optimization Information Elements

(Part 1 0f 3) + ¢ o o & o s = & e s o172
Figure 55. Contents of SYSUTYH when

read by Phase 64 o s e .« e« s s o« « 2180
Figure 56, Processing Data A-text,

E-text, and DEF-text (Part 1 of 2) . . 181
Figure 57. Processing Procedure

A1-text Elements (Part 1 of 4) « » + 183
Figure 58. Explanation of Flowchart
Symbols & . ¢ & ¢ ¢« ¢ ¢ ¢ & s s . s . o198
Figure 59. Tables Used by Phases

(Part 1T 0of 2) .+ & ¢ ¢ &« ¢ o o o & =« « 313
Figure 60, TIB USQgd€ < « + « « = « » 315

Licensed Material - Property of IBM

Figure 61. Types of compiler Text
Produced by Fach Phase o + o s o o o 2316

Figure 62, Load Module Directory
(Part 1o0f 4) .. e o s o e s & e #3717
Figure 63 (Part 1 of 5). External
Symbol Directory e s e s s s s s o e 321
Fiqure 64, Registers Pointing to
COMMNON . e s s s s s e o e o #324
Figure 65 (Part 1 of 2). LD Entry
Variable Information . . .« » 2452
Figure 66, SYSUT5 (Debuq Data Set) . +455

Figure 67 (Part 1 of 12). Register

Usage According to Phase . . « « « .+ . .471
Pigure 68. Register Usage at Execution 483
Figure 69. Register Usage at Execution
OPT) & v o o o o o o o o o o o o o &
Pigure 70 (Part 1 of 2). Error
Messages Indicating Compiler Error . .485
Figure 71. Location of Identifier

constant ¢« ¢« ¢ ¢ o ¢ o o o 4 e o o o o 486
Figure 72, POINT Table Entry Format .488
F1gure 73. Arrangement of Tables and
Dictionary Sections in Contiguous Areas 492
Figure 74, Storage Map of a COBOL

Object Module . . & « ¢« « & o » o o« o o501

.'483

Figure 75. Format of the Data Area . .502
Pigure 76. Fields of the Exit List . ,.503
Figure 77. Fields of the Task Global

Table =+ o o« o » s o s o« s s o o s o o« +505

Figqure 78. Fields of the Preogranm

Global Table o e o s s e s s e
Figure 79 (Part 1 of u) Logic of the
Generated Report Writer Subprogram . . .516

.510

Figure 80, First GENERATE Statement

LOgic FlOW « &« o o o « « o o o o o + « 4525
Figure 81. Logic Flow of All GEMNERATE
Statements After the First e e o s s 4526
Figure 82. TERMINATE Statement Logic

FlOW o « o o o o o o o o o o o o o = . 527

Figure 83, Report Writer Subprogram GN
Numbers . ¢ o o ¢ o o o o o o s o o
Figure 84, Relationships Among
CMS-COBOL Interface Routine, the COBOL
Compiler, and CMS . &« ¢ o & = o o o &
Figure 85. COBOL Compiler Options
Under CMS & & o o o o s s o o o s o o 531
Figure 86. FILEDEF Commands Issued
for Compilation Under CMS . « +« « « &
Figure 87. Operations of DMSCOB
Routine at Initialization534
Figure 88, Load Module Directory . . .535
Figure 89. External Symbol Directory .535
Figure 90 (Part 1 of 2). PFlowchart

Label Directory . « 4 « « « o o o« » s« 4539
Figure 91, Register Usage by DMSCOB . ,540
Figure 92. Error Messages Issued by
DMSCOB e o s » s s s s e e s e s e @
Figure 93, CHMS Service Routines
Called by DMSCOB e e e s e e e s a s

.528

. 530

532

. 540

.541

Chart AA {Part 1
Overall Flow . .
Chart AA (Part 2
READ Routine . .
Chart AA (Part 3
WRITEA, WRITE,
Chart AA (Part 4
WRITEA, WRITE,
Chart AA (Part 5

WPCH and WGO Routines . .

Chart AR (Part 6

of 7). Phase 00:
of 7). Phase 00:
of 7). Phase 00:
and WOUT Routines .

of 7). Phase 00:

and WOUT Routines .

of 7). Phase 00:
of 7). Phase 00:

READ Library Routines . . . « .

Chart AA (Part 7 of 7). Phase 00:
PLSCALL Routines « v o o o+ o o o o
Chart BA., Phase 01: Overall Flow .
Chart BB. Phase 02: Overall
Chart BC. Phase 03: Overall Flow .
Chart BD (Part 1 of 4). Phase 0Of:
IKFCBLOS . & ¢ « o o o o o o o o o @
Chart BD (Part 2 of 4). Phase 0#4:
BASISRTN 4 o o o o o v 2 s o o o o &
Chart BD (Part 3 of 4). Phase Qu:
COPYRTN & & 4 o « o s o o o s » o o
Chart BD (Part 4 of 4). Phase 0Ob:
COPYPROC 2 &+ o o s 5 o o o o o o o o
Chart BE (Part 1 of 3). Phase 05:
Overall FloW o o o o o o o o o s o »
Chart BE (Part 2 of 3). Phase 05:
Language Analysis Routine
Chart BE (Part 3 of 3). Phase 05:
Input and Scanning Routines (SCAN) .
Chart BF (Part 1 of 4). Phase 06:
Overall Flow s o o s o o »
Chart BF (Part 2 of U). Phase 06:
IPTEXT ITEM ProcesSSOYLS o+ o o o o o
Chart BF (Part 3 of 4), Phase 06:
IPTEXT ITEM PrOCESSOLS o + o o o o
Chart BF (Part 4 of 4). Phase 06:
IPTEXT ITEM ProCeSSOILS « o+ o o o o o
Chart BG {pPart 1 of 2). Phase 08:
Overall Flow e e o s e o
Chart BG (Part 2 of 2). Phase 08:
Data Division Flow
Chart CA. Phase 10: Overall Flow
Chart CB, Phase 10: IDDSCN Routlne
Chart CC. Phase 10: ENVSCN Routine
Chart CD., Phase 10: DDSCN Routine
Chart CE. Phase 12: Overall Flow .
Chart CF. Phase 12: RDSCAN Routine
Chart CG. Phase 12: PROC0O1 Routine
Chart CH., Phase 12: PROCO2 Routine
Chart CI. Phase 12: FLUSH Routine
Chart CJ. Phase 12: GNSPRT and
SPCRTS ROUtINES « & o o s o« o s o «
Chart CK. Phase 1B: Overall Flow
(PDSCN Routine) .+ ¢ o« o o o o.0 o »
Chart DA. Phase 20: Overall Flow .
Chart DB. Phase 20: FILEST Routine
Chart DC. Phase 20: WSTSCT, LINKST,
COMSCT, and REPORT Routines
Chart DD. Phase 20: LDTEXT Routin=2
Chart DE. Phase 22: Overall Flow .
Chart DF., Phase 22: FSECT Routine
Chart DG. Phase 22: HASECT and LSECT
BOULINES o o o o 2 o a o o o o o o &
Chart DH. Phase 22: CDSECT Routine
Chart DI, Phase 22: RSECT Routine
Chart DJ. Phase 22: LDTXT Routine

.

.

.199
. 200
. 201
.202
.203
. 204
. 205

.206
. 207

.208

. 209
.210
<211
.212
.213
. 214
.215
. 216
217
.218
.219
.220

.221
222
.223
. 224
225
. 226
.227
.228
.229
.230

.231

.232
.233
. 234

.235
.236
. 237
.238

.239
. 240
. 241
. 202

List of Charts
Chart DK. Phase 22: READF4 Routine . .243
Chart DL. Phase 22: DICTBD Routine . .2u44
Chart DM. Phase 21: Overall Flow . . .2u45
Chart DN. Phase 21: FILEST Routine . .246
Chart DO. Phase 25: Overall Flow . . .247
Chart DP. Phase 25: ODOBLD,
BLDOBODO, and ENDP1 Routines « .28
Chart DQ. Phase 25: BFGPASS Routine .249
Chart DR. Phase 25: TESTSUBS and '
SETNAMS ROUtines . « o o ¢« o o o o o o 250
Chart EA. Phase 3: Overall Flow . 251
Chart EB. Phase 3: GLOSRY Routine . .252
Chart EC. Phase 3: PHCTRL Routine . ,.,253
Chart ED (Part 1 of 5). Phase 35:
PHCTRL Main Control Routine254
Chart ED (Part 2 of 5). Phase 35:
ANLZUFDS Routine . « o « « o« o« o o o« o 255
Chart ED (Part 3 of 5). Phase 35:
PNDEFRTN Routine . . + « « o o = o « » +256
Chart ED (Part 4 of S5). Phase 35:
GOTAVERB Routine . . o« 4 o« 2 o o o o o 2257
Chart ED (Parq 5 of 5). Phase 35:
ANLZVRBS Routine « « « « « o+ o« .258
Chart FA., Phase #4: Overall Flow . . .259
Chart FB. Phase 4: IF Routine260
Chart FC. Phase 4: PRFORM Routine . ,.261
Chart FD. Phase 45: Overall Flow . . .262
Chart FE. Phase 45: UNSTRING Routine .263
Chart FF. Phase 45: SORTXT Routine .2604
Chart GA. Phase 50: Overall Flow . . .265
Chart GB. Phase 50: PHS5CTL Routine . .266
Chart GC (Part 1 of 2). Phase 50:
GETNXT Routine . .+ « & +o & o « o o o« « +267
Chart GC {(Part 2 of 2). Phase 50:
GETNXT Routine « « &+ o s o » o o o o« o+ 268
Chart GD. Phase 50: Generate Routine ,.269
Chart GE. Phase 50: XSPRO and KILSUB
ROULINES o o 4 o o o o o o.e o s o o.s o270
Chart GF. Phase 51: Overall Flow . . .271
Chart GG. Phase 51: DBGTEST Routine ,272
Chart GH. Phase 51: GETNXT Routine . .273
Chart GI. Phase 51: PUTDEF Routine . .274
Chart GJ. Phase 51: A-text Generator
ROULINE® & & o o o o o s.o o o o o o o 275
Chart HA. Phase 6: Overall Flow . . .276
Chart HB. Phase 6: PH6 Routine277
Chart HC. Phase 6: PRFTHO Routine ., .278
Chart HD. Phase 6: SE6000 Routine . .279
Chart HE. Phase 6: PDATEX Routins . .280
Chart HF. Phase 6: GINIT2 Routine . .281
Chart IA. Phase 62: Overall Flow . . .282
Chart IB. Phase 62: PH6 Routine . . .283
Chart IC. Phase 62: PRFTHO Routine . .284
Chart ID (Part 1 of 2). Phase 62:
SE6CO00 Routine « o + &+ « o« o o o o « » 285
Chart ID (Part 2 of 2). Phase 62: .
SE6000 Routine + + 286
Chart IE., Phase 63: Overall Flou .« 2287
Chart IF. Phase 63: BRANCH Routine . .288
Chart IG. Phase 63: G¥DEF Roultine . .289
Chart IH. Phase 63: PNDEF Routine . .290
Chart II. Phase 63: ADREF Routine . ,.291
Chart IJ. Phase 63: C1REF Routine . .292
Chart IK. Phase 64: Overall Flow . . .293
Chart IL. Phase 64: PDATEX Routine . .294
Chart IM, Phase 6#: SE6000 Routine . ,295
Chart IN. Phase 64: ADREF, RCH,
RC8C, and RDOO1 Routines . . « « o s o« 296 _

Licensed Material ~ Property of IBM

chart IO.
Chart IP.
Chart IQ.
THENPROC,

Chart IR (Part 1 of 3).
Chart IR (Part 2 of 3).

Chart IR (Part 3 of 3).

Phase 64: GINIT2 Routipe
Phase 65: Overall Flow .
Phase 653 TENPROC,
and GTEQ10K Routines . . .
Phase 6A:
Overall Flow s+ e 8 . e
Phase 6A:
Overall Flow . . . « % s e e = e
Phase 6A:

Overall F1 w . . .
Chart JA.

Phases 70 71, and 72'

Overall Flow « + s

Chart KA (Part 1 of 5)

FIPS . .

Phase 80:

e o ® e 2 e+ s+ e s s » & »

. 297
.298

.299

. 300
. 301
. 302
.303

. 304

Chart KA {(Part 2 of 5). Phase 8
FIPS o o o o o s o . o s 5 o »
Chart KA (Part 3 of 5). Phase
FIPS o o o o o o s s 2 o s o
Chart KA (Part 4 of 5). Phase
FIPS v o o o o o o o o o s +
Chart KA (Part 5 of 5). Phase
FIPS o o o o = o « o o s o o »
- Chart VM (Part 1 of 3). DMSCOB

(COBOL-CHMS Interface Routine) .
Chart VM (Part 2 of 3).. DMSCOB
(COBOL-CHMS Interface Routine) .
Chart V¥ (Part 3 of 3). DMSCOB
(COBOL-CHMS Interface Routine) .

<
b & 4s b e

[l

o 0 e

e e e DO

. 305
. 306
. 307
.308
.536
.537

.537

T~

Diagram 1, Part 1. Design of the
0S/VS COBOL Compiler . o « + o o o &
Diagram 1, Part 2. Design of the

0S5/VS COBOL Compiler ., « o+ o+ o « o «

Diagram 1. Part 3. Design of the
0S/VS COBOL Compiler o o s e s e
Diagram 2, Part 1. MNethod of
Operation: Table of Contents . . .
Diagram 2, Part 2, Method of
Operation: Overview e .0 o a s » o
Diagram 2. Part 3, Method of

Operation: Control and Input/Output
Diagram 2. Part 3a. COPY and BASIS
PTOCESSOT « o o o s o o o o o »
Diagram 2. Part 3B., Reformatted
Source Code Listing and Embedded
Cross-references « « « o o o o o o &
Diagram 2., Part 4. Method of
Operation: Identification,
Environment, and Data Division
Translation .« o o o o o o o s o o »

. 549
. 551
. 553
. 555
. 557
+559
.561

.563

.565

Licensed Material - Property of IBM

Diagram 2, Part 5. Method of
Operation: Procedure Division
Translation . « « « o o o &

Diagram 2. Part 6, Method of
Operation: Object Module Production
Diagram 2. Part 7. Method of
Operation: Optimization of Object

Module {(Optional) . « . + « &
Diagram 2. Part 8. Method of '
Operation: Debug Data Set Creation
{Optional) . e s o o s .8
Diagram 2. Part 9. Method of
Operation: Error Messages,

Diagnostics, and Cross-Reference
Listings o o o o o o o o o o o

Diagram 3. Phase 25 Operations . .
Diagram 4., Phase 3 Operations . . .
Diagram 5. Phase 62 Operations . .
Diagram 6. Phase 63 Operations . .
Diagram 7. Phase 65 Operations . .

iagrams

® o o o & o

.567

.569

. 575
<577
.579
.581
.583
.585

The IBM 0S/VS COBOL Compiler analyzes
source modules written in the COBOL
language and translates them into object
programs suitable for input to the linkage
editor for subsequent execution on the
computer. This publication describes the
design of this compiler and the
characteristics of the object program which
it produces.

RELATIONSHIP OF THE COMPILER_TO THE IBM

—_——E e

A COBOL compilation is a job step under the
control of the operating system. The 0S/VS
COBOL compiler can also be invoked under
the Time Sharing Option (TSO) of the IBM
Operating System. The compiler, operating
under TSO, can be invoked most conveniently
by the Program Product, TSO COBOL Prompter,
Program Number 5734-CP1. The 0S/VS COBOL
compiler can also be invoked under the IBM
Virtual Machine PFacility/370 Conversational
Monitor System (CMS).! To use the compiler,
see the publication IBM_OS/VS_COBOL
Compiler and_Library_ Programmer's Guide,
which explains how a COBOL compilation is
introduced to the operating systen.

As a processing program of the IBN
Operating System, the compiler communicates
with the control program of the operating
systemn for input/output and other services.
‘The services provided by the control
program are described in the publications
IBM_0S/VS_Supervisor_ Services_and Macro
Instructions, IBM 0S/VS_Data_Management
Services_Guide, IBM_OS/VS Data Management
Macro Instructions.

CHARACTERISTICS OF _THE_COMPILER

PHYSICAL CHARACTERISTICS

The compiler consists of 31 phases; from 10
to 14 of these phases perform the actual
transformation of a source module into an
object program. Phase 04 is called only if

1The COBOL-CMS Interface routine, which
allows compilation under CMS, is described
in "Appendix D: Interface with
Conversational Monitor System (CMS)."

Licensed Material - Property of IBM

SECTION_ 1. _INTRODUCTION

there is COPY or BASIS processing to be
performed. Phases 05, 06, and 08 are
called only if the Lister (LSTCOMP or
LSTONLY) option is in effect. Phase 12 is
called only if a Report Section appears in
the Data Division. Phase 35 is called only
if WITH DEBUGGING MODE and USE FOR
DEBUGGING declaratives are present. Phase
45 is entered only if an UNSTRING verb is
encountered in the source program. If
optimization of the object code has been
requested through the OPT option, phases
62, 63, and 64 replace phase 6. Phase 80
is called to flag source statements which
do not meet the Federal Information
Processing Standard when the LVL option is
specified.

Phases 25, 65, 6A, 70, 71, and 72 are
also optional phases: phases 25 and 65
generate debugging information for the
SYMDMP, FLOW, and/or STATE options; phase
6A produces a cross-reference listing if
the user requests one; and phases 70, 71,
and 72 are used to list the error messages
if errors were found in the source module.

0f the other phases, phase 00 acts as
the interface between the compiler and the
operating system, phase 01 contains the
installation default values of compilation
parameters, phase 02 °‘performs compiler
initialization, and phase 03 issues error
messages for terminal error conditions.

The phases are organized into an overlay
structure, but the overlays are controlled
through phase 00. Phase 00 is resident
throughout compilation. It links to other
phases as they are needed. The linkage
sequence is as follows:

Phase 00 links to phases

01

03 (if disaster condition with
NODUMP)

04 (if COPY or.BASIS)

05 (1f LSTCOMP or LSTONLY)

06 (if LSTCOMP or LSTONLY)

08 (if LSTCOMP or LSTONLY)

10

12 (if report writer)

25 (if SYMDMP TEST)
35 (if USE FOR DEBUGGING)

45 (if UNSTRING)

Introduction 19

6 (if NOOPT)

62 (if OPT)

63 (i1f OPT)

64 (1f OPT)

65 (if FLOW, STATE, SYM, or TEST)

6A (1f SXREF, VBREF, VBSUM, or XREF)

70 (if any error message from phases
04 through 6a)

80 (if LvL)

Phase 01 links to phase 02.
Phase 70 links to phases 71 and 72.

OPERATIONAL CHARACTERISTICS

Input

Input to the compiler consists of an 0S/VS
COBOL program, written in the language
described in IBM_VS_COBOL_for 0S/VS.

The source program is read from the SYSIN
and, optionally, the SYSLIB or other
library data sets. Other input consists of
control cards for BASIS and COPY and for
batch multiple compilations.

Output

The output of the compiler depends upon the
options specified by the user on the EXEC
statement, in the COBOL command string, or
at installation time. It may consist of:

1. A source program listing on SYSPRINT1

2. Compilation progress messages and
error messages on SYSTERM and error
messages on SYSPRINT!

3. The Data Division glossary on
SYSPRINT?

4. Formats of the object program global
tables on SYSPRINT!

5. Listing of the object code on
SYSPRINT?

6. A cross-reference listing on SYSPRINT!

7. An object deck on SYSPUNCH if the
compiler is not running under TSO or
CHMS

8. The obﬁect program on SYSLIN

9. Debug data set on SYSUTS

20 Section 1. Introduction

10. FIPS messages on SYSPRINT

11. Reformatted source listing with
expanded, embedded cross-referencing
information on SYSPRINT

12. Reformatted source deck on SYSPUNCH
13. A verb summary listing on SYSPRINT

The user can also request a conditional
or unconditional syntax-checking
compilation. When unconditional
syntax-checking is requested, the compiler
scans the source text for syntax errors and
generates the appropriate error messages,
but does not generate object text. When
conditional syntax-checking is requested,
the compiler scans the source text for
syntax errors and generates the appropriate
error messages. If no message exceeds the
warning (W) or conditional (C) level, a
full compilation is produced. Otherwise,
the object text is not generated.

"Compiler Options" in this chapter
describes each of these options.

DESIGN OF THE COMPILER

The design of the COBOL compiler is based
on the structure of the source progranm.

In a COBOL source program, a clear

- distinction is made between descriptions of

the operations to be performed and
descriptions of the data to be operated
upon. The Environment and Data Divisions
provide information about the files and
data items. The Procedure Division lists
the operations to be performed, and
specifies in what sequence and under what
conditions particular operations are to be
performed.

Diagram 1 (located within the Foldouts
at the back of this book) illustrates how
the compiler uses this distinction. Phases
10, 12, 20, 22, and 21, the data
translation phases, develop the Environment
and Data Divisions into areas of allocated
storage for data items (including the
specification of constant values where
required) , and provide buffers and control
blocks for files. Phases 1B, 3, 35, 4, 45,
50, and 51, the procedure translation
phases, break down the Procedure Division

- - =

igutput is written directly on SYSPRINT if
the NOLVL option is in effect. If the LVL
option is in effect, the output is written
on SYSUT6, which is used by phase 80 to
produce a listing on SYSPRINT.

into executable instructions. The output
of these phases is used by phase 6 or
phases 62, 63, and 64, the assembler
phases, to produce a machine language
program. The section "Compiler Phases" in
this chapter discusses the function of each
phase.

The phases communicate with each other
by means of texts. Each phase produces a
text for input to a subsequent phase. The
text produced is the result of this phase's
analysis of the text it received. Texts
are written out on the compiler's work
files as a series of elements. (An element
is a logical unit of information; for
example, one type of Data IC-text element
is the description of a single data item.)
Those texts named "IC-text" ("internal
compiler") are passed from one translation
phase to another and those named "A-text®
("assembler") are used as input by phase 6
or phases 62, 63, and 64 (note that PO-,
P1-, P1A, ATM-, and P2-texts are forms of
Procedure IC-text). A summary of the
contents of each type of text is included
in the description of the phase that
produces it. The passing of text between
phases is shown in Diagram 1.

Phases also pass information in tables.
A table is a collection of information in a
specified format that is_left in storage.
Some tables are built, used, and released
all within one phase; others are passed
from one phase to another. (Some tables
are built by one phase for use by a
subsequent phase which does not follow
immediately; in this case, the table
remains in storage during all the
intervening phases. For example, CKPTBL
built by phase 10 for phase 21: this table
is resident in storage during phases 1B,
20, and 22, although not used.) The uses
of these tables are described in the
chapters on the phases which build and use
then.

A special type of table is the
dictionary. Each data-name, file-name, and
procedure-name in the program is entered in
the dictionary, together with all the
information collected about that item. The
dictionary is unique among the compiler's
tables in that it is the only table which
may overflow its allocated storage. If the
dictionary becomes too large, direct-access
data set SYSUT1 is used as a spill file to
hold the overflow. After the dictionary
has been built, the dictionary description
of an item is written (in P1-text) in place
of that item's name (in PO-text), and the
dictionary is no longer needed.

Transfer of information also takes place
through COMMON, or the communications area,
a collection of cells of information

Licensed Material - Property of IBM

resident in storage throughout compilation
and accessible to every phase. Each cell
holds a prescribed type of information;
these are listed in "Section 5. Data
Areas. "

The COMMON area is represented in each
phase by a DSECT which describes the
displacement of each field, with the
name as it exists in the first phase 00
CSECT. The actual address of COMMON is
passed to the phase as a parameter of the
LINK macro instruction which gives control
to the phase.

same

COMPILER DATA SETS

The source module to be compiled appears as
input to the compiler on the SYSIN and,
optionally, the SYSLIB data sets.
Direct-access data set SYSUT1 and utility
data sets SYSUT2, SYSUT3, SYSUT4, SYSUTS5,
and SYSUT6 are used as work files. The
output of compilation, depending on the
options specified by the source programmer,
appears on SYSPRINT, SYSLIN, SYSPUNCH, and
SYSTERM. Diagram 1 shows how these data
sets are used. Note that SYSUTS5 is not
really an internal work file, but is used
to hold output from the compile step if the
SYMDMP option is in effect. SYSUT6 is used
only when Federal Information Processing
Standard (FIPS) flagging has been
requested.

COMPILER PHASES

The following text lists the phases in the
order in which they receive control, and
summarizes the functions and text output of
each phase. The flow of information for
all phases, except phases 00, 01, 02, and
03, is shown in Diagram 1.

Phase 00_(TKFCBLOO)

Phase 00 is resident in storage throughout
compilation. It handles most of the
interfaces to the operating system by the
compiler, both for receiving and returning
control, and for performing input/output
operations. When another phase has
control, it calls phase 00 to request
input/output operations and to access the
compiler's tables. Phase 00 also performs
interphase processing and links to the next
phase.

Introduction 21

Licensed Material - Property of IBM

Phase_01_(IKFCBLO1)

o e

Phase 01 contains the installation default
values of compilation parameters. It
passes these to phase 02.

Phase 02 performs compiler initialization.
It processes the compilation parameters,
determines buffer sizes, and obtains
storage for buffers, tables, and the
dictionary.

Phase 03_(IKFCBLO03)

——=

Phase 03 issues error messages in the event
that a terminal error condition arises.
This phase receives control from phase 00
and returns to phase 00, which then
terminates compilation of the program and,
for a batch compilation, all other programs
in the batch.

Phase 04 (IKFCBLOUY)

Phase 04 is an optional phase. It
processes the COPY statement. In addition,
it performs BASIS processing. COPY allows
insertion of prewritten COBOL entries,
which reside in a library, into a COBOL
source program at compile time. COPY also
allows the user to alter these prewritten
entries at compile time. If the BASIS or
COPY facility is used, the LIB option must
be in effect. Phase 04 reads the
user-created COBOL libraries, and passes

| the entire source program to phases 10 or,
optionally phase 12 and 1B or to phase 05
if LSTCOMP or LSTONLY is in effect.

Phase 05_(IKFCBLOS)

Phase 05 is the first of three Lister
phases, which are used only when the
LSTCOMP or LSTONLY option is in effect. It
analyzes the syntax of the COBOL source
program and inserts syntactic markers
between the elements of the source progran.

22 Section 1. 1Introduction

Phase 06 (IKFCBLO6)

Phase 06 is the second Lister phase. It
inserts cross~reference information into
the source program based on the syntactic
markers provided by phase 05. During one
or more passes of the file, phase 06
resolves references and merges them into
the source progranm.

Phase 08 (IKFCBLO8)

Phase 08 is the last Lister phase. It
produces Lister output in accordance with
the options specified. The output consists
of a reformatted listing of the source
program with cross-reference information;
the listing begins with a preface that
explains the cross-reference information
that is provided by the Lister. Depending
on the options in effect, phase 08 will
provide a reformatted source deck and/or
pass the source program to phase 10 for
compilation.

Phase 10_(IKFCBL10)

Phase 10 is the first of the five data
translation phases. It reads the
Identification, Environment, and Data
Divisions of a source program and performs
syntax analysis for these divisions. Fron
the Environment and Data Divisioms, it

and data descriptions translated into
internal format. If the user requests a
source program listing, phase 10 produces
the listing for the Identification,
Environment, and Data Divisions.

Phase 12 (IKFCBL12)

Phase 12 is the second data translation
phase; it receives control only if a Report
Section appears in the Data Division. It
expands Report Writer statements in the
Environment and Data Divisions into Report
Writer subroutines, which are written out
as P0-text (see "Phase 1B" below). If the
user requested a source program listing,
phase 12 produces the listing for the
Report Section.

Phase 1B_(IKFCBLIB)

Phase 1B is the first of the seven
procedure translation phases. It reads the

—~

source program Procedure Division and
translates it into P0O-text, one form of
Procedure IC-text containing the procedure
statements in a format internal to the
compiler. In general, there is a
one-to-one correspondence between COBOL
vords and P0-text codes. Data-names,
file-names, and procedure-names are
reproduced in PO-text in their external
EBCDIC forms. A dictionary entry is made
for every procedure-name. The dictionary
eéntry contains the internal procedure-nane
(PN number) and attributes of the
procedure-name.

Phase 20 (IKFCBL20)

Phase 20, the third data translation phase,
reads Data IC-text and creates partial

dictionary entries, called ATF-text. Phase

(see "Phase 21" belou) for VALUE clauses.

Phase 22 (IKFCBL22)

Phase 22, the fourth data translation
phase, reads incomplete Data IC-text and
ATF-text. TFrom these texts, it creates
complete entries for LDs, CDs, and RDs
(record-level descriptions) and partial
(dummy) entries for SDs and FDs in the
dictionary. The entry for each item is
referred to by a unique dictionary pointer,
vhich is used by later phases as the
internal name of the data item. If any
data items were described by the OCCURS
clause with the DEPENDING ON option, phase
22 produces PO-text (see "Phase 1B" above)
for special subroutines called Q-Routines,
vhich calculate the lengths of the
OCCURS...DEPENDING ON fields and the
locations of the fields that follow themn.
the point of definition of data-names and
file-names required for cross-reference
listings, is also created by phase 22 and
passed through phase 21 to phase 6 or 64.

Phase 21 _(IKFCBL21)

Phase 21, the last data translation phase,
conpletes the SD and FD dictionary entries
and the translation of Data IC-text into
Data A-text. Data_ A-text

phase 6 or 64, provides address constants
to make the data area of the object progranm
addressable, and it specifies constant
values to be placed in the data area where
they are regquired (including fields for
DCBs, DECBs, FIBs).

Licensed HMaterial - Property of IBM

Phase 25 (IKFCBL25)

Phase 25 is an optional phase. It receives
control only if the user requested the
symbolic debug option (SYMDMP). Phase 25
builds two tables (DATATAB and OBODOTAB) on
the debug data set (SYSUTS5) which are used
by the object-time COBOL library debugging
subroutines.

Phase 3 (IKFCBL30)

Phase 3 is the second procedure translatiom
phase. It produces Pl-text, a type of
Procedure IC-text, by replacing all
data-names, CD-names, file-names, and
procedure-names with their dictionary
attributes. If a procedure statement uses
the CORRESPONDING option, phase 3 breaks
this statement down into several
statements, each naming elementary data
items. If a Data Division glossary was
requested, phase 3 produces it.

Phase 35 (IKFCBL3S5)

Phase 35, an optional phase, is the third
procedure translation phase. It processes
USE FOR DEBUGGING statements and their
operands. Phase 35 is invoked only if WITH
DEBUGGING MODE is specified, and there are
USE FOR DEBUGGING declaratives present.
Phase 35 produces P1A-text to be processed
by phase 04.

Phase 4 (IKFCBL40)

Phase 4, the fourth procedure translation
phase, performs syntax analysis on the
P1-text. P2-t

conplex and implied verbs (such as IF,
COMPUTE, CALL, PERFORM) are broken down
into simpler statements, and ATM-text
(vhich is a subset of P2-text) for the
UNSTRING verb.

Phase_U45_(IKFCBLA45S)

Phase 45, the fifth procedure translation
phase, receives control only if an UNSTRING
verb is encountered in the source progranm.
It translates ATH-text from phase 4 into
P2-text (see "Phase 4" above) for the
UNSTRING verb.

Introduction 23

‘I

Licensed Material - Property of IBM

Phase 50 (IKFCBL50)

Phase 50, the sixth procedure translation
phase, reads P2-text. Phase 50 begins the
process, which phase 51 will complete, of
breaking the P2-text down into Procedure
A-text -- assembler-like statements which,
in general, have a one-to-one
correspondence with machine instructions.
Phase 50 also produces Optimization A-text,
used by phase 6 or 62 to eliminate
unnecessary storage duplication. The
output of phase 50 is Intermediate_ A-text,
which consists of intermediate Procedure
A-text and intermediate Optimization A-text
for input to phase 51; and, in the case of
literal definitions, final Optimization
A-text for phase 6 or 62. For the
statement number option (STATE) or the
symbolic debug option (SYMDMP), or the
Interactive Debug facility (TEST), phase 50
generates linkages to object-time COBOL
library debugging subroutines.

Phase 51_(IKFCBL51)

Phase 51 continues the process phase 50
began of breaking down P2-text into
assembler-like statements, which in general
have a one-to~one correspondence with
machine instructions. The assembler-like
statements are written out as Procedure
A-text. Phase 51 also produces
optimization A-text, used by phase 6 or 62
to eliminate unnecessary storage
duplication. For any of the debugging
options (STATE, SYMDMP, FLOW, or the
Interactive Debug option (TEST)), phase 51
generates linkages to object-time COBOL
library debugging subroutines.

Phase 6_(IKFCBL60)

Phase 6 is the assembler phase. It
combines all the information in the
Procedure A-text, Optimization A-text, and
Data A-text to produce an object program
suitable for input to the linkage editor.
The object program is written on SYSLIN
and/or punched on SYSPUNCH according to the
user's options. Phase 6 also produces an
object program listing, if requested. For
the statement number option (STATE), phase
6 produces Debug-text, which contains the
card numbers of the source progran
statements, and their location within the
object module.

24 Section 1. Introduction

Phases_62, 63, and_64 (TKFCBL62, IKFCBL63,
—*——)L———— === £—=

and IKFCBLGU "

Phases 62, 63, and 64 are the optional
version of the assembler phase (phase 6);
these phases are given control if the user
requested the optimizer option (OPT), the
symbolic debug option (SYMDHP), or the
Interactive Debug option (TEST). Like
phase 6, the function of phases 62, 63, and
64 is to produce an object program suitable
for input to the linkage editor. Phase 62
reads and processes Optimization A-text and
both phases 62 and 63 read Procedure A-text
which phase 63 converts into Procedure
Al-text. Phase 64 uses Data A-text and
Procedure Al1-text to complete the object
(nachine language) program. The object
program produced by phases 62, 63, and 64
is optimized for instructions generated
from the Procedure Division. The object
program is written on SYSLIN and/or punched
on SYSPUNCH according to the user's
options. Phases 62 and 64 also produce an
object program listing if requested. For
the SYMDMP or the statement number option
(STATE) , phase 63 produces Debug-text.

Phase 65 (IKFCBL65)

Phase 65 is an optional phase. It receives
control only if the user requested the
statement number option (STATE), the
symbolic debug option (SYMDMP), the flow
trace option (FLOW), or the Interactive
Debug option (TEST). For STATE, phase 65
uses the Debug-text written by phase 6 or
63 to produce two tables in the object
module. For SYNDMP and TEST, phase 65
builds the remaining tables for the Debug
data set on SYSUTS5 (phase 25 has already
produced two of the tables and written thenm
on SYSUTS) . For STATE, SYMDMP, or TEST
these tables are used by the object-tinme
COBOL library debugging subroutines. For
FLOW, phase 65 places the number of traces
requested in the variable portion of the
Task Global Table in the object module.

For any of the debugging options, the end
card of the object module is written in
phase 65. If the program is segmented and
if the OPT or SYMDHP option is in effect,
phase 65 copies onto SYSLIN and/or SYSPUNCH
the independent segments written on SYSUT1
by phase 64.

Phase 6A_(IKFCBL6A)

e e s e s S S S SIS0

Phase 6A is an optional phase. It receives
control only if the user requested a
cross-reference listing by specifying the

SXREF, XREF, VBREF, and/or VBSUM option.
In this case, phases 22 and 3 produced
DEF-text, specifying the internal card
number of the card in which every
data-name, file-name, and procedure-name in
the program was defined. This text uwas
read intermixed with other text and
rewritten by phase 6 or 64. Phase 6 or 64
also produced REF-text, giving the card
number for every reference to a data-nane,
file-name, or procedure-name. Phase 6A
uses these texts to urite the
cross~reference listing.

(IKFCBL70, IKFCBL71,

Phases 70, 71, and_72
and IKFCBL72)

Phase 70 is given control only if source
program errors were detected by the
translation phases {phases 10 through 51),
or if the ERRMSG program-id is specified.
Its input is E-text. Any phase that found
an error produced an E-text element,
specifying the error message to be written.
These E-text elements were passed on
intermixed with other text produced by the
phase until control was passed to phase 51
(unless a syntax-checking compilation was
requested, in which case, E-text was
written on a separate data set as direct
input to phase 70 by phases 4, 50, and 51).
When phase 51 encountered an E-text element
uritten by another phase, or produced an
E-text element itself, it wrote the element
on a separate data set (see Diagram 1 for
the flow of E-text). This data set also
contained E-text from the data translation
phases, intermixed with Data A-text and
DEF-text. 1In general, E-text uwas read and
saved in storage by phase 6 or 64. Phase
70 uses the E-text to produce a list of
error messages (and warning messages if the
user requested them) on SYSPRINT and/or
SYSTERH. Phases 71 and 72 contain only
message texts and are linked, as needed, by
phase 70.

Phase_ 80

(IKFCBL8O)

Phase 80 scans the source program for
deviations from the Federal Information
Processing Standard (FIPS) and issues
messages along with the compiler print
output, including the source progran
listing. Phase 80 is the last phase
executed when the LVL option is in effect.
Note that this phase can be optional only
if NOLVL vwas specified as the default at
installation time. Phase 80, which
performs its own input and output
operations, and obtains its input from
SYSUT6. Input consists of all output that

Licensed Material - Property of IBM

vould have been written on SYSPRINT by
previous phases if the LVL option had not
been specified; phase 00 diverts all
SYSPRINT output to SYSUT6 whenever the LVL
option is specified. The output from phase
80 is written on SYSPRINT or SYSTERM; the
output consists of all data written on
SYSUT6é with the COBOL source progran
flagged according to the specified FIPS
level. Upon completion, phase 80 sets the
return code and returns to phase 00.

COMPILER OPTIONS

The options listed below control certain
events during compilation. The compiler
recognizes the presence or absence of each
option. The user may set default values
for the options at installation time, or
they may be set via the EXEC statement or
the COBOL command under TSO or CMS at
compilation time. The NAME option may also
be set via the CBL card at compilation
time. The underscore indicates the default
option that is assumed by the compiler if
not set otherwvise.

SIZE = Yyyyyyyy .
indicates the amount of storage, in
bytes, available for compilation.?
This information is used by phase 02.

BOF = yyyyyy
indicates the amount of storage, in
bytes, to be allocated to buffers.t If
both SIZE and BUPF are specified, the
amount allocated to buffers is
included in the amount of storage
available for compilation. Buffers
are allocated in phase 02.

SOURCE

NOSOURCE
indicates whether the source module is
to be listed or not. This listing is
produced by phases 10 and 12 for the
Identification, Environment, and Data
Divisions, and phase 1B for the
Procedure Division. If the compiler
is invoked by the COBOL Prompter under
TS0, the default value is NOSOURCE.
SOURCE is always in effect when LVL is
specified.

LIB

NOLIB
indicates that the SYSLIB data set is
to be opened. This information is
used by phase 04 to process BASIS and
COPY statements in the source program.

iThe SIZE and BUF compile-time parameters
can also be given in multiples of K
(K=1024 bytes), for example, SIZE=128K.

Introduction 25

Licensed Haterial - Property of IBM

If there are neither BASIS nor COPY
statements in the source progranm,
specifying NOLIB allows more efficient
processing.

LOAD

NOLOAD ,
indicates whether the object program
is to be placed on a direct-access or
a tape volume so that the program can
be used as input to the linkage
editor. The object program is
written, if specified, by phase 6 or
62 and 64.

SYNTAX

CSYNTAX

NOSYNTAX

NOCSYNTAX
indicates that a syntax-checking
compilation is to be done. When }
SYNTAX (unconditional syntax-checking)
is specified, the compiler scans the
source text for syntax errors and
generates the appropriate error
messages, but does not generate object
code, When CSYNTAX (conditional
syntax~-checking) is specified, the
compiler scans the source text for
syntax errors and generates the
appropriate error messages. If no
message exceeds the warning (W) or
conditional (C) level, a full
compilation is produced. Otherwise,
the object text is not generated.
When SYNTAX is specified, all of the
following options are suppressed:
LOAD, XREF, SXREF, CLIST, HOSUPHAPR,
PMAP, DECK, SYHUDHP, OPT, TRUNC, FLOW,
ST&TE, VBREF, VBSUM, COUNT, and WAHE.
Then CSYNTAY is specified, the above
options are suppressed only if one or
nore error (E} or disaster (D) level
messages are generated. If both
SYNTAX and CSYHTAX are specified,
CSYNTAX overrides SYNTAX.

BATCH
indicates whether batch compilation is
requested, vhich allowus multiple
programs and/or subprograms to be
compiled with a single invocation of
the compiler. This information is
used by phases 10, 1B, and 6 or 64.
BATCH should not be specified for the
same compilation as SYMDMP, TEST, or
LVL. If both are specified, BATCH
overrides SYMDMP, TEST, or LVL.

NAME

NONAHME
indicates to phase 6 or 64 that, if
the BATCH option is also specified, a
linkage editor control card must be
generated so that the object module
will be a separate load module.

26 Section 1. Introduction

TERHM

NOTERH

NUH

indicates to phase 00 that diagnostic
messages are to be directed to the
SYSTERH data set as well as the
SYSPRINT data set. Progress messages
are also directed to the SYSTERH data
set. If the compiler is invoked under
CHS or by the COBOL Prompter under
TSO, the default value is TERH.

NONUN

OPT

indicates to phases 10, 12, and 1B, or
04 that line numbers recorded in
columns 1-6 of the source staterments
are to be passed to the subsequent
phases in the internal compiler text
instead of compiler-generated card
numbers. If a source statement number
contains a nonnumeric character or
appears out of seguence, the conpiler
generates a. card number equal to the
last source statement number plus 1.
Hence, source statement numbers will
appear in diagnostic messages and
PY¥RP, CLIST, XREF, SXREF, REzDY TRACE,
FLOW, SYHDMP, and STATE references
rather than compiler-generated card
numbers. If the compiler is invoked
by the COBOL Prompter under TS0, the
defauvlt value is HWUH.

NOOPT

FLOW=

indicates that the object module is to
be optirized by phases 62, 63, and 64
for instructions generated from the
Procedure Division.

n{n] or FLOW

NOFLOW

indicates whether the object progran
is to include the flow trace option.
This option causes a formatted trace
of the last nf{n] procedures executed
before an abnormal termination to be
printed at execution time. If this
option is specified, special P2-text
elenents are produced by phase 4, and
phase 51 generates calls to the COBOL
library flow trace subroutine. Phase
02 places the number of traces
requested in COMHON. At execution
time, initial control is passed to the
COBOL library flow trace subroutine by
the object-time COBOL library
debugging control subroutine, which is
called during INIT3.

STATE
NOSTATE

indicates whether the cbject progranm
is to include the statement number
option, which prints the last
statement number and verb number

‘executed before the occurrence of an

abnormal termination. If this option

is specified, phase 6 writes
Debug-text on SYSUT2 or phase 63
writes Debug-text on SYSUT4 for use by
phase 65. At execution time, control
is passed to the COBOL library
statement number subroutine by the
object-time COBOL library debugging
control subroutine. STATE should not
be specified for the same compilation
as SYMDMP. If both are specified,
SYMDHP overrides STATE.

SYMD MP

NOSYMDHP
indicates that a formatted symbolic
dump of specified data areas is to be
printed on SYSPRINT dynamically, at
various points, as requested prior to
execution of a program; or that, in
the event of abnormal termination, a
formatted symbolic dump of all data
areas is to be printed on SYSPRINT.
SYMDMP should not be specified for the
same compilation as BATCH or STATE.
If both BATCH and SYMDMP are
specified, BATCH overrides SYMDMP; if
both STATE and SYMDMP are specified,
SYMDHP overrides STATE. If more than
one COBOL program wWith the SYMDMP
option is included in the job step and
if all of the Debug data sets are on
the same direct-access device, each
nust be given a unique name.
specification of SYMDMP automatically
causes OPT to be in effect for the
compilation. If WITH DEBUGGING MODE
and USE FOR DEBUGGING declaratives are
specified, SYMDMP will be cancelled.

TEST

NOTEST
indicates that the program is to be
executed with the TSO Interactive
Symbolic Debug package. This option
overrides the STATE, FLOW, COOUNT, and
If WITH DEBUGGING MODE and USE FOR
DEBUGGING declaratives are specified,
SYMDMP will be cancelled.

SXREF

NOSXREF

XREF

NOXREF
indicates that a cross-reference
listing is to be produced. If the
SXREF or the XREF option is specified,
special text elements are produced by
phases 22, 3, and 6 or 64, and phase
6A is called to generate the listing.
If SXREF is specified, an ‘
alphabetically ordered cross-reference
listing is generated. If XREF is
specified, a cross-reference listing
ordered by source statement sequence
is generated. SXREF should not be
specified for the same compilation as
XREF. If both SXREF and XREF are
specified and if the compiler was

CLIST

Licensed Material -~ Property of IBM

invoked by the COBOL Prompter, SXREF
overrides XREF. Otherwise, if both
are specified, the last option
specified is used.

NOCLIST

indicates that global tables, literal
pool, register assignments,
Working-storage message, and a
condensed listing are to be produced
by phase 6 or phases 62 and 64. The
procedure portion of the listing Hlll
contain only the source or
compiler-generated card number, verb
name, and relative location of the
first instruction for each verb.
CLIST should not be specified for the
same compilation as PHAP. If both
PMAP and CLIST are specified, PMAP
overrides CLIST.

SUPMAP

NOSUPNAP

DMAP

causes phase 6 or phases 62, 63, and
64 to suppress their output if a
D-level or E-level error message is
generated by the compiler.

Nopuap

PMAP

indicates whether phase 3 is to print
a Data Division glossary and whether
phase 6 or 62 is to print global
tables, literal pool, register
assignments, and the Working-Storage
message.

NOPMAP

2¥B
NOZWB

indicates whether global tables,
literal pool, register assignments,
Working~-Storage message, object code
listing, and assembler language
expansion of the source module is to
be listed by phase 6 or phases 62 and
64. PMAP should not be specified for
the same compilation as CLIST. If
both PMAP and CLIST are specified,

the last one specified has precedeéence.

indicates whether the compiler is to
generate code to strip the sign when
comparing a signed external decimal
field to an alphanumeric field. If
ZWB is specified, the signed external
decimal field is moved to an
intermediate field and has its sign
stripped before being compared to the
alphanumeric field. Note that the
default value cannot be changed at
installation time.

TRUNC
NOTRONC

indicates whether standard truncation

Introduction 27

Licensed Haterial - Property of IBM

is to be applied to computational
items. If TRUNC (standard truncation)
is specified and the number of digits
in the sending field is greater than
the number of digits in the receiving
field, the computational item is
truncated to the number of digits
specified in the PICTURE clause of the
receiving field when moved. With
nonstandard truncation, they are
truncated according to the actual
amount of storage each item occupies.
This option determines the
instructions generated by phase 51.

DECK
NODECK :
indicates whether the object program
produced by phase 6 or by phases 62
and 64 is to be punched by phase 00 on
SYSPUNCH or, under CMS, on the virtual
punch. Under TSO, the object program
is never punched.

RESIDENT :

NORESIDENT .
indicates whether the library
management facility is to be used.
The library management facility allows
a single copy of a library subroutine
to be shared by all COBOL programs in
the same or different partitiomns or
regions. If DYNAM is specified,
RESIDENT is also in effect for the
compilation.

DYNAM

NODYNAM
indicates whether all user subprograms
are to be dynamically loaded at object
time. If DYNAM is specified, RESIDENT
is. also in effect for the compilation.

QUOTE

APOST
indicates to phases 10, 12, and 1B, or
04 to accept either the double
quotation marks ("™ or the apostrophe
(') as the character to delineate
literals and to use that character in
the generation of figurative
constants.

SEQ

NOSEQ
indicates whether phases 10, 12, and
1B, or 04 are to check the sequence of
the source module statements. If the
statements are not in sequence and SEQ
is specified, a message is printed.
If the compiler is invoked by the
COBOL Prompter under TSO, the default
value is NOSEQ. If LSTCOMP or LSTONLY
is in effect, this option is ignored.

LINECNT = nn
indicates the number of lines to be
printed on each page of the compiler

28 Section 1. Introduction

output listing. It is used as control
information by phase 00.

FLAGH

FLAGE
indicates to phase 70 the type of
messages that are to be listed for the
compilation. FLAGW indicates that all
warning and diagnostic messages are to
be listed. FLAGE indicates that all
diagnostic messages are to be listed,
but not warning messages.

SPACE}

SPACE2

SPACE3
indicates to phase 00 the type of
spacing to be used on the listing.

indicates whether SYSOUT or SYSOUx
(wvhere 'x' is an alphanumeric
character) is the DDname of the file
to be used for data when SYSOUT is
specified (implicitly or explicitly)
in a DISPLAY statement. When more
than one program in a job step access
this file, the DDname specified in the
first program is used.

VERB

NOVERB-
indicates whether procedure-names and
verb-names are to be listed with the
associated code on the object-program
listing. VERB has meaning only if the
PMAP or CLIST compiler option is
specified or if READY TRACE is used in
the source program.

LVL = ¢

NOLVL
indicates whether the Federal
Information Processing Standard (FIPS)
flagger is to be activated. ¢
indicates the level of the standard to
be checked (A = low; B = low
intermediate; C = high intermediate; D
= full standard). Where LVL = c is
designated as the default at
installation time, NOLVL cannot be
specified at compile-time.

ENDJOB

NOENDJOB
indicates whether or not, at the end
of each job, COBOL library subroutines
are to be called to delete modules,
free storage acquired through GETMAINs
issued by the COBOL program or COBOL
library subroutines, close DCBs opened
by subroutines and free their
associated buffers. Specifying ENDJOB
prevents fragmentation of storage for
programs executed on the system after
the COBOL program. This option takes
effect at a STOP RUN statement in any

program and at a GOBACK statement in a
main program only.

LSTONLY

LSTCOMP

NOLST
LSTONLY indicates that a listing of
the reformatted source program is to
be produced, but that the program is
not to be compiled; if the FDECK
option is in effect, the updated
source deck will also be produced.
LSTCOMP indicates that, in addition to
the listing and optional deck produced
by the LSTONLY option, the source
program is to be compiled. NOLST

indicates that the Lister is not to be

used. When NOLST is in effect, the
FDECK, CDECK, LCOL1, and LCOL2 options
are ignored. The L120 and L132
options are ignored if NOLST and
NOBATCH are specified.

CDECK

NOCDECK
CDECK indicates that the updated and
reformatted copy libraries are to be
punched. If the FDECK option is in
effect, the libraries will be punched
as part of the source deck. If the
NOFDECK option is in effect, the
libraries will be punched as a
separate deck. If NOLST is in effect,
this option is ignored.

FDECK

NOFDECK
FDECK indicates that an updated source
deck is to be produced. 1If the CDECK
option is in effect, the updated
source deck will include the updated
and reformatted copy libraries. If
NOLST is in effect, this option is
ignored.

LCOL1 indicates that the Procedure
Division is to be listed in
single-column format. LCOL2 indicates
that the Procedure Division is to be
listed in double-column format. If
NOLST is in effect, this option is
ignored.

L120

1132
L120 indicates that the print line is
120 characters long. L132 indicates
that it is 132 characters long. If
NOLST is in effect, this option is
ignored unless BATCH is specified. 1If
L120 or 1132 is specified on an EXEC
PARM card, the option is in effect for
any compilation with LSTCOMP or
LSTONLY in the batch compilation. The
L120 or L132 option on a CBL card is.
ignored.

COUNT

NOCOUNT
COUNT indicates that an execution
summary is to be produced at the end
of execution of the compiled program.

VBREF

NOVBREF
VBREF indicates that a verb
cross-reference listing is to be
produced for the compiled progranm.
The VBREF option also implies the

VBSUM and VERB options.

VvBsSUH

NOVBSUM -

VBSUM indicates that a verb summary
listing is to be produced for the
compiled program. The VBSUM option
also implies the VERB option.

DUMP

NODUMP
DUMP indicates that the compiler will
issue an ABEND for a D-level message
condition caused by a possible
compiler error. NODUMP indicates that
the ABEND will not be issued and that
the D-level message will be produced.

ADY

NOADV

indicates whether or not records for
files with WRITE...ADVANCING need
reserve the first byte for the control
character. ADV specifies that the
first byte need not be reserved.

LANGLVL (1] 2)
indicates which level of the American
National Standard (ANS) COBOL
definition should be used by the
compiler when it encounters those few
language elements whose meaning
changed from 1968 to 1974. The ANS
-X3.23-1968 interpretation is indicated
by LANGLVL (1) ; the ANS X3.23-1974
interpretation is indicated by
LANGLVL (2), which is also the default.
New language elements (those not in
the 1968 ANS standard at all) are
unaffected by this option. They will
be accepted by the compiler even if
LANGLVL(1) is specified. All IBM
extensions to the language are also
unaffected.

STORAGE REQUIREMENTS

Phase 00, which is resident in storage
throughout compilation, occupies 18K bytes
of storage (where K=1024 decimal). The
additional storage required by each of the
other phases is as follows:

Introduction 29

Licensed Material - Property of IBM

30

Section 1.

Storage
Lin_bytes)
236
14K
2K
20K
20K
4K
20K
38K
36K
26K*
34K*
10K*
16K **
8K
52K
8K
42K
SOK
34K
20K
10K

Introduction

64 26K
65 8K
67 12K
70 28K
71 20K
72 16K
80 36K
1B 34K*

20 26K

Each phase except phases 01 and 02 uses
TAMER tables and requires table space. The
amount of space needed for tables varies
greatly with each compilation.

*These phases build the dictionary and
include from 2K to 3K bytes for ACCESS
dictionary-handling routines.

**An additional 1K bytes is ingluded for
ACCESS routines; the dictionary is also
present during this phase.

PHASE 0

Phase 00 (IKFCBLOO), the interface between
the COBOL compiler and the operating’
system, is resident in storage throughout
compilation. Its major functions are:

1. Receiving control from the operating
system and, at the end of compilation,
returning control to it.

2. Performing reallocation and linkage
functions after each of the other
phases has completed its operations.

3. Handling input/output requests from
the other phases and providing
routines to handle permanent
input/output errors.

4. Hanipulating tables for the other
phases.

5. Providing a communications area
(COMMON) for the other phases.

RECEIVING CONTROL FROM THE OPERATING SYSTEM

Compilation is invoked by an. EXEC control
card or by a CALL, LINK, ATTACH, or XCTL
macro instruction containing the
compilation parameters. Phase 00 receives
the call at entry point START, and in
routine LINKA links to phase 01.and passes
the parameters to it for processing.

RETURNING CONTROL TO THE OPERATING SYSTEM
When phase 4, 6, 08, 64, 65, 6A, or 70 is
the last phase, it calls phase 00 to
terminate compilation of the current
program. If there are no more programs to
compile (BATCH), phase 00 puts a code into
register 15 indicating the highest source
program error severity level that was
encountered and branches on register. 14 to
return to the operating system. If an
error occurs that stops compilation (see
"syntax-checking Compilations" and
"Terminal Error Conditions" in this
chapter), phase 00 returns to the operating

SECTION 2. _METHOD_ OF OPERATION

system in the same manner. When LVL is in
effect, phase 80 is the final phase and it
returns control to the systemn.

Phase 00 keeps track of which processing
phase is currently active by means of a
2-byte cell named LINKCNT. Routine LINKA
increments LINKCNT by 2 before it links to
the next phase so that, for example, the
value of LINKCNT is 2 at entry to phase 01.
LINKCNT is not incremented for phases 02,
71, and 72 since the linking of these
phases is transparent to phase 00. Also,
there is no unique value assigned to
LINKCNT for phase 03, the error handling
phase.

Figure 1 traces the routines used by
phase 00 for both normal and abnormal end
of compilation.

PROCESSING_BETWEEN_PHASES

Oother phases call phase 00 for
between-phase processing or for
input/output request with the following
sequence:

L register,=A(C0S) See note 1.
BALR O, register
DC Xtxye See note 2.

DC X' 272" See note 3.

A (COS) is the relocated address of the
entry point to phase 00. Routine
LINKPH1 passes this address.in
register 1 to each phase that it calls
into storage.

2, 'XY'" is a hexadecimal linkage code.
*X' bits indicate the function to be
performed. 'Y' bits indicate the
affected file. 'Y' bits are ignored
when the function does not involve a
file. See Fiqure 2 for 'XY' values.

3. 'Z2' indicates functions to be
performed by phase 00. See Figure 2
for 'Zz' values.

Other phases call the table handling
routines of phase 00 at the entry point of
each routine. These routines are discussed
in "Appendix A. Table and Dictionary
Handling."

Phase 00 31

Licensed Material - Property of IBM

COPY/BASIS Library Error Call from a Phase with
Permanent I/0 Error or TAMER Cannot Continue Request for End of Job
r] L e 1 . v 1
|SYNAD routine | |Store address of | | Set EOJCALL switch|
|Store pointer to | lerror message code] {and issue RETURN |
lexit code and reg-|]in COMMON | |macro instruction |
|isters 0 and 1 in | | i | |
|COMMON | | | l |
L -] L T N N i X
L > |
| |
v v

L]

{Go to appropriate
finterlude routine
|to purge files

|

|

[

r
|Issue RETURN macro
|instruction, if
|necessary, & link
|to phase 03 to

|handle error
L

N
e e

|
l
|
v

-
|Release storage
fand close files
|

e e e — — e =

< e o]

L] 1
|Reset SPIE, place |
If LVL|RETCDE in register|

iLink to phase 80
{for FIPS listing

|
I

| 1< {15 |
| | | |
| | | |
I T '} [¥ J

| {If NOLVL

| |

| |

v v
o -1 r u |
fRestore system's | | Restore system's |
registers	iregisters	
[| | |
L [} 1]

Ll L]

| |

| |

| |

v v
r B :
|Branch on register|) |{Branch on register
|14 to the invoker | 114 to control
jof the compiler | . { program

|control program |
i |

Figure 1. Flow of Control at End of Compilation

o wma aan
b e e s ——

32 sSection 2. Method of Operation

Licensed Material - Property of IBM

<

X Code Routine Called Function of Routine Code Data Set

READ Reads a utility data set. Passes back
to caller the storage address of the

logical record. SYSUT1

WRITE PUTN: Writes a record, where caller

gives address and length of data. SYSUT2

WRITEA PUT: Writes Data IC-text, where caller
gives address of data and the first

tuo bytes of data give length. SYSUT3

OPENLIB Issues OPEN to library data set, and
passes back the return code to the

calling phase

CLOSET Issues SVC 23 (temporary close). If a
second parameter byte containing
X'00°' follous the ¥XY' code, the data|
set will not be purged before TCLOSE. |
If a second parameter byte contains |
¥'01?, the data set will be purged

before TCLOSE.

. o — iy - — s alt — — el —— . — wdis w—nd

SYSUT4

READ Reads SYSIN. SYSIN

wour Pads to the right with blanks to £ill

up a record for the print data set. SYSPRINT

SEGPNT Positions access mechanism to a disk
address supplied by caller (on
SYSUT1) and reads the record. See
“Segmentation Operations® in this

section. SYSPUNCH

LINKB Issues RETURN to terminate the previous

processing phase. SYSLIN

EOJ Returns to operating systen. SYSLIB

|
I
4
|
!
|
(
!
|
|
|
|
{
£
1
|
|
]
L}
[
%
SEGNOTE Records the relative disk addresses of |
Procedure A-text on SYSUT1 for phase |
51. See “Segmentation ‘ |
:

i

|

|

|

|

|

|

1‘

[

|

|

|

{

_=

|

|

|

|

i

]

Operations" in this section. SYSTERM

EJECT or SKIP Positions printer. The exact function SYSUTS
is determined by a second parameter
byte as follows:

X'00' eject

X'01' skip 1 line

X'02' skip 2 lines

X'03? skip 3 lines

"GO1 PUT: Hoves logical record into a
buffer. If a second parameter byte
containing X'CC' follows the 'XY!
code, the call was not from phase 00

internally but from another phase.

CLOSER When a file is to be closed, moves 'FF?
into buffer to indicate end-of-file,
checks previous input/output
operation, writes and closes the

file.

ST T T T T T YT T T T T YT T T YT T T T T T T T T T T T T T

e e o e S - ——— S — - — S - £ o T e - o i M i - ST - S e = . o €T A o = = — e T = = > —)
s o o e o o Mn = e A o ———— e af = . - e S M P . S o " S e O b O o —n . —n i —n o e — o e — s s —fn o
e e o e o o s = o S e = —— e - e o —— e ——fn e e e OB e - e e = — ale - — e — - —n —
o o e e - - e - - —— - - — e e e ——— e e e ot e e - - e —— e ——— e e e e
-——-———J.—-_——-_.I-_—___._._-I._.—_.._.-—-4-—._-4-——-—-—-—._-—-._.-i-_.I-——_—-_.——-l.__-—d-._..._-_.—d-———--—-

Figure 2 (Part 1 of 2). Linkage Codes to Phase 00

Phase 00 33

Licensed Haterial ~ Property of IBM

€ L] 1
| ZZ code | HMeaning i
t L]]
¥ L] L
{ 01 | NOTE macro instruction to retrieve the absolute address. i
L £]
L i) A
| 02 { POINT macro instruction to cause processing to start at the specified block |
i | in the data set. |
£ L]
Ll ¥ Bl
{. 03 { POINT macro instruction to rewind the data set. |
[o] '}
¥ L} B a i
{ oy { WRITE UPDATE (disk only). !
g j 3 3
¥ v Ll
{ 05 | Hhen preceded by an 'XY' code of X922%, WRITE on SYSUTZ from SYSUTS buffer |
{ { with a buffer size of 512 bytes; when preceded by an 'XY¥' code of X*'02¢, |
| 1 READ from SYSUT2 into SYSUT5 buffer with a buffer size of 512 bytes. [
[] L]]

Figure 2 (Part 2 of 2).

Fiqure 3 shous the flow of control for
processing betvween phases.

When the calling code received by phase
00 indicates that the next phase is to be
linked (X°A0?), phase 00 issues a RETURH
macro instruction and then uses LINKCHT to
determine which phase interlude routine to
branch to,

Each interlude routine sets the PURGER
string and branches to purge data sets and
issue progress messages, as required. The
interlude routine then performs TCLOSE,
OPEN, and CLOSE operations, as necessary;
rakes any required changes to the buffer
pointer table through which buffers are
assigned to data sets; and determines which
phase is to be linked next and sets LINKCNT
accordingly.

Each interlude routine exits to a common
routine in which the value of the COBOL
space constant for the next phase is set.
If the next phase is larger than the
previous phase, the TANER interlude routine
is called to move tables and free main
storage as necessary.

Finally, LINKCNT is incremented by 2,
and control is passed to the next phase
through the execution of a LINK macro
instruction.

Figure 4 shous the conditions under
which optional phases are called.

If the LVL option has been specified
phase 00 links to phase 80 for Federal
Information Processing Standard flagging.

34 Section 2. Hethod of Operation

Linkage Codes to Phase 00

PHASE INPUT/OUTPUT REQUESTS

Phase 00 translates all phase input/output
requests for all phases except phase 80
into branches to data management routines
or SVCs. It switches the buffer pointers
in the point table if the data set is
double buffered, blocks and unblocks the
records, and checks to determine whether
the operation is completed successfully.
If necessary, it also calls TAHER to handle
dictionary spill during phase processing
(see the section "Table and Dictionary
Handling%) ., Pigure 5 shows the
input/output requests for each phase.
Figure 2 shows the linkage codes used in
these requests.

When a permanent input/output error
occurs in any phase except phase 80, a
SYNAD routine (SYAA, SYAB, or SYAD} is
called to handle the error, and phase 03,
the error handling phase, is linked. Phase
03 issues a SYNADAF macro instruction to
obtain the input/output error message and
then issues a WTO (write-to-operator) macro
instruction to print the message obtained.
Finally, phase 03 sets LINKCNT to 2 more
than the value assigned to phase 70 and
returns to phase 00 with an end-of-job
calling code (X*BO'). Compilation is
abandoned via the routines described
earlier in this section under "Returning
control to the Operating System."

Licensed Material - Property of IBM

®

|
|
v

—
Phase xx - INTxx
v 1 A L)) L] 1
|When processing | | |Move in purge | |Set COBOL space |
{is completed, | { |string | |for next phase |
{BALR to COS | { 1 | | |
L . [] I L Y 1] L T]
| | | i
| | | |
| | | |
CcOos v | v \')
r 1 ‘ r 1 L Al
{Calling code | | {Purge, issue | |TAMER interlude |
{(X'20%) indicates | | |progress messages | |processing if next|
{that LINKB is to | | |as necessary | | phase is larger i
|be called | [| | |than last phase |
| | | | | | |
[-)] l L T I} [+ J
i | | |
| | | |
] Interlude | |
LINKB v Routine v v
- 1. | r ' r K
|Issue RETURN macro| | | TCLOSE, OPEN, | |Increment LINKCNT |
linstructions | | |CLOSE, as | |by 2 |
| | [} | necessary [} | |
[v J | [} Y] [- J
| | | |
| | | |
i | | |
v | A v
' LI hJ T 1
| |Reassign buffers, | ILink to next phase|
| |as necessary | | |
l L —] [}]
| |
| |
| v
' r 1
i | Determine next |
i |phase to be called|
v land set LINKCNT |
P L]

L]
|
v

Figure 3. Flow of Control for Processing Betuween Phases

Phase 00 35

Licensed Material - Property of IBM

{*The WITH DEBUGGING MODE clause is
| specified under the SOURCE-COMPUTER

paragraph,

and the USE FOR DEBUGGING

| statements follow the DECLARATIVES
| header.

R T Ll
| Optional | Preceding | Compiler |
| Phase | Phase | Option |
+ 1 t 1
i (L | 02 | LIB |
[I} 'l []
©] L) Ll
i 05 | 02 | LSTONLY or |
| | | LSTCOMP |
I + t 4
| 06 1 05 | LSTONLY or |
| { | LSTCOMP]
L A] 1
v AJ L] il
{ 08 | 06 | LSTONLY or |
| | | LSTCOMP {
k + 4 1
| 25 | 21 | SYMDMP or |
| ! | TEST i
= ¢ i {
] 35] 30 | USE FOR |
| | | DEBUGGING* |
t t t i
i 6A 1 60 | XREF |
| | 64 | SXREF |
| { 65 | VBREF |
| l | VBSUM |
[L] 1
Lo ¥ L] il
| 62 | 51 | OPT |
| 63 | | {
| 64 | | |
+ —+ t 1
{ 65 | 60 | SYMDMP or |
| [64 | TEST |
L 1 i]
v L] L 1
|- 70 | Varies | If errors |
| | | in source |
| | | program l
L 1 1 1
© L) L il
| 80 i 60 | LVL |
| | 6A | |
{ I 64 I co
l | 65 | |
| | 70 | |
F L A |

|
|
|
|
|
i]

Figure 4.

36

Section 2.

Optional Phase Processing

Method of Operation

00 3seyqd

LE

ainbta

S

(L 30 | 31eg) SjusuubIssy I93Ing pue s3aS eied IaTtdmod @Yz Jo A3TATIOV

Phase SYSUT12 SYSuUT2’ SYSUT3 SYSUT4S SYSUT5? SYSIN SYSPRINT® SYSPUNCH SYSLIN SYSLIB SYSTERM
00 WRITE
02 OPEN spill OPEN OPEN OPEN OPEN OPEN OPEN OPEN OPEN OPEN
WRITE CLOSE CLOSE WRITE
03 OPEN
Pfu:-glfeBITngSE
[}
00 1 LSTONLY or PURGE
INTO1 LSTCOMP
Buffers 4, 5 E—
WRITE/ WRITE
, WRITE Purgo/ READ OPEN
04 (if LIB) TCLOSE/ if LIB TCLOSE ifLIB READ
READ if LIB
Purge/
00 T\gf(e)se li"
LSTCOM
INTO4 or LSTONLY
. WRITE READ READ READ
05 {if LST) if LIB if LIB if LIB if NOLIB
00 Purge, TCLOSE TCLOSE
INTOS TCLOSE if LIB if LIB
06 (if LST) READ READ
WRITE WRITE
00 Purge, TCLOSE
INTO6* TCLOSE
08 (if LST) READ WRITE WRITE WRITE WRITE
00 (if Purge, Pur Purge if
LSTCOMP) TCLOSE TCLOSE chgse FDECK/
INTO8 if LIB CDECK
00 (if Purge if
_ LSTONLY) CLOSE CLOSE CLOSE CLOSE CLOSE FDECK/ CLOSE CLOSE
INTO8 CDECK, CLOSE
WRITE READ READ WRITE READ
10 Data IC-text if LIB/ if NOLIB/
E-text LSTCOMP NOLST
00
INT10 Buffers 2,3 Buffers 4,5 Buffer 1

Nambers specified in INTxx routines indicate the buffers used by the next phase. SYSIN, SYSPRINT, SYSPUNCH, SYSLIN, SYSLIB, and SYSTERM all use buffer 6.
2use of SYSUT1: Phases 1B, 22, 21, 25, and 3 use the dictionary. If dictionary spill occurs, SYSUT1 is used to write the overflow. This will never occur after phase 3 since the dictionary is released at the end of phase 3. XDAP 1s a macro
instruction that reads what has previously been written (spilled); XDAP.writes directly from tne dictionary to storage and, therefore, uses no buffer, After phase 3, SYSUT1 is available for use as a utility data set.
SUsa of SYSUT5: 1f the SYMDMP or TEST optionis not in effect, SYSUTS5 is not used.
Headmg by phase 70: Phase 70 only reads E-text from SYSUTA4 if the SYNTAX option is in effect or if phase 6 or phases 62, 63, and 64 have been bypassed, that is, no reading has been done since the TCLOSE in INT51. Otherwise, phase 6
or 64 passes the E-text to phase 70 through a table in storage. If thé table exceeds 256 bytes, phase 6 or 64 writes the E-text on SYSUT3.
SUse of SYSUT4: Phase 04 writes on SYSUT4 and phases 10 and 1B read from SYSUT4 only it the LIB option is in effect. If the LIB option was not specified, that’
_is, BASIS or COPY statements are not present in the source program, phases 10 and 1B read from SYSIN.
6Uu of SYSUT6: The SYSUT6 DDname replaces SVSPFIINT when LVL is specified. After phase 80 processing, FIPS flagger output is directed to SYSPRINT or SYSTERM.
“Use or SYSUT2: Phase 04 outputs source programs to SYSUT2 as BASIS control cards are processed. Phase 04 then reads SYSUT2 in order to process any COPY statements.

HII Fo £319doid - TeTI9IRN DPISU3DTT]

8¢

*Z uot3oes

uot3ieiado JO pOY3ISH

?anbTta

°S

(L 30 Z 3Ied) siruauubrssy Io3Ing pue S3oS ejzed 1a7rdmo)d ay3 jo A3FTATION

Phase SYSUT12 SYSUT2 SYSUT3 SYSUT4S SYSUT5? SYSIN SYSPRINT® | SYSPUNCH SYSLIN SYSLIB SYSTERM
12 WRITE WRITE READ READ WRITE READ
(Report Writer) PO-text Data IC-text if LIB/ if NOLIB/
E-text LSTCOMP NOLST
00
INT12
Buffers 2,3
WRITE WRITE READ. READ WRITE READ
182 XDAP PO-text if LIB/ if NOLIB/
E-text LSTCOMP NOLST
00 Purge TCLOSE Purge
INT18 TCLOSE
Buli_ers 45 Buffers 1,6
READ WRITE
Data IC-text Data IC-text
202 E-text Incomplete
Data A-text
ATF-text
E-text
0 TCLOSE Purge
INT20 TCLOSE
Buffers 2,3 Buffers4,5 Buffers 1,6
WRITE WRITE WRITE READ
XDAP PO-text for Data IC-text Data IC-text
292 Q-Routines Data A-text Incomplete
DEF-text Data A-text
E-text ATF-text
E-text
00 Purge TCLOSE
INT22 TCLOSE
Buffers 2,3 Buffers 4,5 Buffers 1,6
WRITE WRITE READ WRITE
XDAP PO-text Data IC-text Data A-text
21% Data A-text E-text
DEF-text DEF-text
E-text
00 Purge TCLOSE Purge
INT21 TCLOSE
Buffers 2,3 Buffers 1,6 Buffer 4
If . READ WRITE WRITE
SYMDMP DEF-text E-text DATATAB
252 OBODOTAB

in INTxx

the buffers used by the next phase, SYSIN, SYSPRINT, SYSPUNCH, SYSLIN, SYSLIB, and SYSTERM all use buffer 6.

2Use of SYSUT1: Phases 1B, 22, 21, 25, and 3 use the dictionary. If dictionary spill occurs, SYSUT1 is used to write the overflow, This will never occur after phase 3 since the dictionary is released at the end of phase 3. XDAP is a macro
instruction that reads what has previously been written (spilled); XDAP writes directly from the dictionary to storage and, therefore, uses no buffer. After phase 3, SYSUT1 is available for use as a utility data set.
3Use of SYSUTS: If the SYMDMP or TEST option is not in effect, SYSUTS is not used.
Readmy by phase 70: Phase 70 only reads E-text from SYSUT4 if the syntax option is in effect or if phase 6 or phases 62, 63, and 64 have been bypassed, that is, no reading has been done since the TCLOSE in INTS51. Otherwise, phase 6

or 64 passes the E-text to phase 70 through a table in storage. If the table exceeds 256 bytes, phase 6 or 64 writes the E-text on SYSUT3.
SUse of SYSUT4: Phase 04 writes on SYSUT4 and phases 10 and 1B read from SYSUT4 only if the LIB option is in effect. If the LIB option was not specified, that

is, BASIS or COPY statements are not present in the source program, phases 10 and 1B read from SYSIN.
SUse of SYSUT6: The SYSUT6 DDname replaces SYSPRINT when LVL is specified. After phase 80 processing, FIPS flagger output is directed to SYSPRINT or SYSTERM.

WgI Jo K319doigd - TeRTIS3IBH PISULDTT

00 @seyd

6€

b

aanbtg

°S

(L 30 € 3Ie3) S3jueumubissy IoFFnd pue s3aS eied Ia7Tdwod @yl o A3TATION

sysuTa4’®

Phase SYSUT1? SYSUT2 SYSUT3 SYSUTS? SYSIN SYSPRINT® | SYSPUNCH SYSLIN SYSLIB SYSTERM
00 TCLOSE
INT25 Buffers 2,3 Buffers4,5 Buffer 1
WRITE READ WRITE WRITE WRITE
3? XDAP PO-text P1-text DEF-text
E-text E-text
Purge 3 TCLOSE Purge Purge CLOSE Purge CLOSE WRITE
00 CLOSE spill TCLOSE , Purge
INT3 OPEN utility Buffers 2,3 Buffers 4,5 Buffer 6
Buffers 1,6 or 1 if (C)ISYNTAX
if (CISYNTAX
WRITE READ
WRITE ATM-text P1-text E-text WRITE
4 P2-text READ P1-text WRITE " E-text
E-text VisUsoL | vasuGoon | if (CISYNTAX
00 Purge TCLOSE TCLOSE
INT4 TCLOSE (if (if
Buffers 1,6 V2BUGDCL) V2BUGDCL)
NoSYNTAX Buffers 2,3 Buffers 4,5
No CSYNTAX
No UNSTRING
0 Purge TCLOSE Purge
INT4 TCLOSE
Buffer 1 Buffers 2,3 Buffers 4,5 Buffer 6
CSYNTAX
No SYNTAX
No UNSTRING
00 Purge Purge Purge (if
INT4 TCLOSE V2BUGDCL)
Buffers 1,6 Buffers 2,3 TCLOSE
UNSTRING Buffers 4,5
No SYNTAX
No CSYNTAX
00 Purge Purge Purge (if Purge
INT4 TCLOSE V2BUGDCL)
Buffer 7 Buffers 2,3 TCLOSE Buffer 6
CSYNTAX Buffers 4,5
UNSTRING
No SYNTAX
WRITE READ
35 P1Atext P1-text
E-text E-text
00 Purge
INT35 TCLOSE TCLOSE

ites the E-text on SYSUT3.

lNumhers specified in INTxx routinas indicate the buifers used by the next phase. SYSIN, SYSPRINT, SYSPUNCH, SYSLIN, SYSLIB, and SYSTERM ell use buffer 6.
2Use of SYSUT1: Phases 1B, 22, 21, 25, and 3 use the dictionary. If dictionary spill occurs, SYSUT1 is used to write the overflow. This will never occur after phase 3 since the dictionary is released 2t the end of phase 3. XDAP is a macro
instruction that reads what has previously been written (spilled); XDAP writes directly from the dictionary to storage and, therefore, uses no butfer, After phase 3, SYSUT1 is available for use as a utility data set.
3U.w of SYSUTS: If the SYMDMP or TEST option is not in effect, SYSUTS is not used.
dﬂeading by phase 70: Phase 70 only reads E-text from SYSUTA4 if the syntax option is in effect or if phase 6 or phases 62, 63, and 64 have been bypascad, that is, o reading has been done since the TCLOSE in INT51. Otherwise, phasc &
or 64 passes the E-text to phase 70 through s table in storage. If the table exceeds 256 bytez, ohase 6 or 64
SUse of SYSUT4: Phase 02 writes on SYSUT4 and phases 10 and 1B read from SYSUT4 only it the LIB option is in effect. |f the LIB option was not specified, that
is, BASIS or COPY statements are not present in the source program, phases 10 and 18 read from SYSIN. .
6 Use of SYSUT6: The SYSUT6 DDname reptaces SYSPRINT wiien LVL is specified. Atter phase 80 processing, FIPS flzgger output is directed to SYSPRINT or SYSTERM.

RAI Jo A3zedoad - TeTIalell pPasuULDTI

ot

*Z UOT3D9S

uotT3eIado JO POYISN

(L 30 # 33ed) s3juemubrssy 193Ing pue s3as eieq I197rdwod oyl yo A3TAT3OV

*G 9aanbta

Phase SYSUT? SYSUT2 SYSUT3 | sysuT4® | sysuTs? SYSIN | SYSPRINT® | SYSPUNCH | SYSLIN SYSLIB | SYSTERM
00 * Purge)
INT4 TCLOSE
SYNTAX Buffer 6
{Phase 70 next)
45 WRITE READ READ WRITE
(UNSTRING) | P2-text AT taxt i taxt E-text
E-text V2BUGDLL) V2BUGDLL) if (CISYNTAX
00 Purge
INT45 TCLOSE
SYNTAX Buffer 6
(Phase 70 is
next)
00 Purge ToLose TCLOSE if Purge -
(ot
INT45 TCLOSE vasuGpLy | V2BUGDCL
CSYNTAX Buffer 1 Buffers 2,3 Buffers 4,5 Buffer 6
00 Purge '(I'CLOSE TCLOSE (if Purge
if not
INT45 TCLOSE \;2'5,?JGDLL) V2BUGDCL)
No SYNTAX Buffers 1,6 Buffers 2,3 Buffers 4,5
No CSYNTAX
READ WRITE WRITE WRITE -
P2-text Intermediate | Final E-text
E-text Procedure Optimization if (C)SYNTAX
A-text A-text
50 Intermediate
Optimization
A-text
Intermediate
E-text
P2-text
00 Purge
INT50 TCLOSE
SYNTAX Buffers 3,4
(Phase 70.is
next)
00 TCLOSE Purge
INT50 TCLOSE
No SYNTAX Buffers 4,6 Buffers 2,3 Buffer5 Buffer 1
1 ified in INTxx the buffers used by the next phase. SYSIN, SYSPRINT, SYSPUNCH, SYSLIN, SYSLIB, and SYSTERM all use buffer 6.

2Uso: of SYSUT1: Phases 1B, 22, 21, 25, and 3 use the dictionary. If dictionary spill occurs, SYSUT1 is used to write the overflow. This will never occur after phase 3 since the dictionary is released at the end of phase 3. XDAP is a macro
instruction that reads what has previously been written (spilled); XDAP writes directly from the dictionary to storage and, therefore, uses no buffer. After phase 3, SYSUT1 is available for use as a utility data set.

3Use of SYSUTS: If the SYMDMP or TEST option is not in effect, SYSUTS is not used.
4I7eading by phase 70: Phase 70 only reads E-text from SYSUT4 if the syntax option is in effect or if phase 6 or phases 62, 63, and 64 have been bypassed, that is, no reading has been done since the TCLOSE in INT51. Otherwise, phase 6

or 64 passes the E-text to phase 70 through a table in storage. If the table exceeds 256 bytes, phase 6 or 64 writes the E-text on SYSUT3.
sUsa of SYSUT4: Phase 04 writes on SYSUT4 and phases 10 and 1B read from SYSUT4 only if the LIB option is in effect. If the LIB option was not specified, that

is, BASIS or COPY statements are not present in the source program, phases 10 and 1B read from SYSIN.
S Use of SYSUT6: The SYSUT6 DDname replaces SYSPRINT when LVL is specified. After phase 80 processing, FIPS flagger output is directed to SYSPRINT or SYSTERM.

WI Jo £319doxd - TRTISIRH DOSUSDTT

L 00 °seyd

21nbtg

°S

(L 30 ¢ 33ed) s3jueumubrssy Iazng pue s3aS eleq Iafrduod ay3x o A3TATION

Phase SYSUT12 SYSUT2 SYSUT3 sysuts4® SYSUT5? SYSIN SYSPRINT® SYSPUNCH SYSLIN SYSLIB SYSTERM
WRITE READ WRITE WRITE
Procedure Intermediate Final E-text
A-text Procedure Optimization
A-text A-text
Intermediate
51 Optimization
A-text
Intermediate
E-text
P2-text
00 Purge Purge Purge
INT51 TCLOSE TCLOSE TCLOSE TCLOSE
(Phase 60 is Buffers 4,3 Buffer 2 Buffer§ Buffer 1
next)
00 Purge Purge Purge
INT51 TCLOSE TCLOSE
OPT Buffers 1,2 Buffers 3,4
(Phase 62 is
next)
00 Purge
INT51 TCLOSE
SYNTAX Buffers 3,4
{Phase 70 is
next)
READ WRITE READ READ WRITE WRITE WRITE WRITE
Procedure Debug-text Optimization Data Object
A-text A-text A-text Module
TCLOSE TCLOSE E-text
6 DEF-text
WRITE WRITE
DEF-text E-text if
ERRTBL
overflows,
REF-text
00 Purge Purge Purge Purge WRITE
INT60 TCLOSE TCLOSE Purge
No Phase 656 Buffers 1,2 Buffers 3,4
No Phase 6A
00 Purge Purge Purge WRITE
INT60 TCLOSE TCLOSE TCLOSE Purge
Phase 65 Buffers 4,3 Buffers 2,5 Buffer 1
No Phase 6A

Loy, mb

in INTxx

indicate the buffers used by the next phase. SYSIN, SYSPRINT, SYSPUNCH, SYSLIN, SYSLIB, and SYSTERM all use buffer 6.

2Uw of SYSUT1: Phases 1B, 22, 21, 25, and 3 use the dictionary. If dictionary spill occurs, SYSUT1 is used to write the overflow. This will nevér occur after phase 3 since the dictionary is released at the end of phase 3. XDAP is a macro

instruction that reads what has previously been written (spilied); XDAP writes directly from the dictionary to storage and, therefore, uses no buffer, After phase 3, SYSUT1 is available for use as a utility data set.
3Use of SYSUT5: if the SYMDMP or TEST option is not in effect, SYSUT5 is not used.
4Reading by phase 70: Phase 70 only reads E-text from SYSUT4 if the syntax option is in effect or if phase 6 or phases 62, 63, and 64 have been bypassed, that is, no reading has been done since the TCLOSE in INT51. Othenwise, phase 6

or 64 passes the E-text to phase 70 through a table in storage. If the table exceeds 256 bytes, phase 6 or 64 writes the E-text on SYSUT3.

5 Use of SYSUT4: Pnase 04 writes on SYSUT4 and phases 10 and 1B read from SYSUT4 only if the LIB option is in effect. If the LIB option was not specified, that
is, BASIS or COPY statements are not present in the source program, phases 10 and 18 read from SYSIN.
Use of SYSUT6: The SYSUT6 DDname replaces SYSPRINT when LVL is specified. After phase 80 processing, FIPS flagger output is directed to SYSPRINT or SYSTERM,

RAI Jo K3isdoigd - TeTISIRW POSUSIDTI

Zh

*Z uoT309§

uotr3eiado Jo pPoOYlIaW

(L 30 9 31ed) S3usmubrssy I93Jng pue s3eS eyeq Iorrducs oyl IO L3TATIONW

aanbtyg

S

Phase SYSUT1? SYSUT2 SYSUT3 sysuT4’® SYSUT53 SYSIN SYSPRINT® | SYSPUNCH SYSLIN SYSLIB SYSTERWM
00 Purge Purge Purge Purge WRITE
INT60 TCLOSE TCLOSE TCLOSE Purge
Phase 65 Buffers 4,3 Buffers 2,5 Buffer 1
Phase 6A
00 Purge Purge Purge Purge Purge WRITE
INT60 TCLOSE TCLOSE TCLOSE Purge
Phase 6A Buffers 1,2 Buffers 3,4
No Phase 65
I1f OPT READ READ WRITE WRITE
62 Procedure Optimization
A-text A-text
00 Purge Purge
INT62 TCLOSE TCLOSE
Buffers 1,2 Buffers 3,4 Buffers 5
READ WRITE WRITE
63 Procedure Procedure Debug-text WRITE
A-text Al-text
00 Purge Purge
INT63 TCLOSE TCLOSE TCLOSE TCLOSE
Buffer 1 Buffers 2,3 Buffer 4 Buffer 5
WRITE READ WRITE READ WRITE WRITE
64 DEF-text, Procedure Data
independent Al-text E-text if A-text
segments ERRTBL DEF-text
if SYMDMP overflows, E-text
REF-text
00 Purge Purge Purge Purge Purge WRITE
INT64 TCLOSE TCLOSE TCLOSE Purge
(Phase 65 is Buffer 1 Buffers 2,3
next)
00 Purge Purge Purge Purge Purge WRITE
INT64 TCLOSE TCLOSE TCLOSE Purge
(Phase 6A is Buffers 1,2 Buffers 3,4
next)
00 Purge Purge Purge Purge Purge WRITE
INT64 TCLOSE TCLOSE TCLOSE Purge
(Phase 70 is ’ Buffers 1,2 Buffers 3,4
next)

! Numbers specified in INTxx routines indicate the buffers used by the next phase. SYSIN, SYSPRINT, SYSPUNCH, SYSLIN, SYSLIB, and SYSTERM all use buffer 6.
2Use of SYSUT1: Phases 1B, 22, 21, 25, and 3 use the dictionary, If dictionary spill occurs, SYSUT1 is used to write the overflow. This will never occur after phase 3 since the dictionary is released at the end of phase 3, XDAP is a macro
ms(ruc(lon that reads what has previously been written (spilled); XDAP writes directly from the dictionary to storage and, therefore, uses no buffer. After phase 3, SYSUT1 is available for use asa utility data set.

Use of SYSUTS:

If the SYMDMP or TEST optionis not in effect, SYSUTS is not used.

Read:ng by phase 70: Phase 70 only reads E-text from SYSUT4 if the syntax option is in effect or if phase 6 or phases 62, 63, and 64 have been bypassed, that is, no reading has been done since the TCLOSE in INTS1. Otherwise, phase 6
or 64 passes the E-text to phase 70 through a table in storage. If the table exceeds 256 bytes, phase 6 or 64 writes the E-text on SYSUT3.

S Use of SYSUT4: Phase 04 writes on SYSUT4 and phases 10 and 1B read from SYSUT4 only if the LIB option is in effect. |f the LIB option was not specified, that
is, BASIS or COPY statements are not present in the source program, phases 10 and 1B read from SYSIN.

Suse of SYSUT6: The SYSUT6 DDnames replaces SYSPRINT when LVL is specified. After phase 80 processing, FIPS flagger output is directed to SYSPRINT or SYSTEHM

WII 3o K319doid - TeTIS}RH POSUSDTT

00 @se®eyqd

€h

aanbta

°S

(L 30 L 31ed) sjusuubrssy Ia2F3ng pue s3as ejeqd I2Trduwod ay3 Jjo A3TATIOV

Phase SYSUT1? SYSUT2 SYSUT3 sysuTta® SYSUTS? SYSIN SYSPRINT® |-SYSPUNCH SYSLIN SyYsLiB SYSTERM SYSUT6
If READ WRITE-READ READ WRITE WRITE WRITE
FLOW Independent if SYSUTS Debug-text DEBUG
STATE or segments if is assigned tables for
SYMDMP SYMDMP to tape SYMDMP
65 device only
Ifno TCLOSE Purge Purge
SXREF, if OPT
XREF, Buffers 1,2
00
INT65
1f SXREF TCLOSE TCLOSE Purge Purge
or XREF Buffers 1,2 Buffers 3,4
00
INT65
1f SXREF READ READ WRITE WRITE
or XREF DEF-text REF-text
6A
00 TCLOSE
INT6A if OPT
Buffers 1,2 Buffers 3,4.
70 READ READ* WRITE WRITE
E-text E-text
00 CLOSE CLOSE CLOSE CLOSE CLOSE CLOSE CLOSE CLOSE
INT70
OPEN OPEN OPEN OPEN
80 WRITE WRITE WRITE READ
READ CLOSE CLOSE CLOSE
CLOSE if TERM

 Numbers specified in INTxx routines indicate the buffers used by the next phase. SYSIN, SYSPRINT, SYSPUNCH, SYSLIN, SYSLIB, and SYSTERM all use buffer 6.
2Use of SYSUT1: Phases 1B, 22, 21, 25, and 3 use the dictionary. If dictionary spill occurs, SYSUT1 is used to write the overflow. This will never occur after phase 3 since the dictionary is released at the end of phase 3. XDAP is a macro

instruction that reads what has previously been written (spilled); XDAP writes directly from the dictionary to storage and, therefore, uses no buffer. After phase 3, SYSUT1 is available for use as a utility data set.
3Use of SYSUTS: 1If the SYMDMP or TEST option s notin effect, SYSUTS is not used.
"Raading by phase 70: Phase 70 only reads E-text from SYSUTA4 if the syntax option is in effect or if phase 6 or phases 62, 63, and 64 have been bypassed, that is, no reading has been done since the TCLOSE in INT51. Otherwise, phase 6

$ O 64 passes the E-text to phase 70 through a table in storage. If the table exceeds 256 bytes, phase 6 or 64 writes the E-text on SYSUT3.
Use of SYSUT4: Phase 04 writes on SYSUT4 and phases 10 and 18 read from SYSUT4 only if the LIB option is in effect. If the L1B option was not specified, that

is, BASIS or COPY statements are not present in the source program, phases 10 and 1B read from SYSIN. .
Suse of SYSUT6: The SYSUT6 DDname replaces SYSPRINT when LVL is specified. After phase 80 processing, FIPS flagger output is directed to SYSPRINT or SYSTERM.

RAT 3o K3iedoad - TeTISIRH DPOSUIDTT

Licensed Material - Property of IBM

Compiler Linkage to_Data_Management

Phase 00 does not use data management macro
instructions for OPEN, CLOSE, TCLOSE, READ,
and WRITE. To open files, phase 00 issues
SVC 19; to close files, SVC 20; to close
temporarily, SVC 23. To read and write,
phase 00 updates the appropriate fields of
the DCB and DECB, and then branches and
links to the data management READ/WRITE
routine. The address of this data
management routine is picked up from the
DCB.

The interlude (INTxX) routines, which
handle opening and closing of files, issue
one SVC for all files to be opened or
closed at a given time. Register 1 points
to a list which gives the address of DCBs
for all files to be included in this SVC.
The last entry in the list has the
high-order bit turned on to indicate
end-of-list.

Directing Error Messages_and_Progress
Messages_to_the SYSTERHM Data_Set

If the TERM option is in effect, error
messages are directed to SYSTERM as well as
SYSPRINT (SYSUT6 for LVL option). However,
if SYSPRINT cannot be opened or is a dummy
data set, error messages are directed to
SYSTERM only.

In addition, if the TERM option is in
effect, a progress message is written to
SYSTERM (never SYSPRINT) by phase 00. The
progress message states: "Release 2.0
0S/VS COBOL IN PROGRESS." 1If errors have
occurred, a message stating the number of
errors and the highest severity code
encountered during the compilation is also
written.

Segmentation_ Operations

When a segmented program is being compiled,
phase 00 issues NOTE and POINT macro
instructions for phases 51, 6, 62, and 63.
Phase 51 keeps track of the sections of
Procedure A-text that belong to each
segment; phase 6 or phases 62 and 63 use
the information passed to them by phase 51
to construct the object module, segment by
segment.

In the P2-text processed by phase 51, a
segmentation control break signals a
section of text whose priority is different
from that of the section just processed.
SEGSAVE contains the relative track and

44 sSection 2. Method of Operation

cylinder numbers on SYSUT1 of the first
record in the section. Phase 51 then calls
the COS routine with a C1 in the XY
parameters (see "Receiving Control from
Another Phase" in this section for the
meaning of X and Y). 1In response to these
parameters, the COS routine branches to the
NOTE routine, which issues a NOTE macro
instruction to retrieve the relative
address on SYSUT1 of the record phase 00 is
about to write (that is, for the next
section). The NOTE routine places the
address in SEGSAVE, and phase 00 returns to
phase 51.

Using the priority numbers in the SEGTBL
table entries, phase 6 or phases 62 and 63
first process all the sections for one
segment, then all the sections for the
next, and so on. Each time it picks up the
SEGTBL entry for a new section of Procedure
A-text, phase 6 or phases 62 and 63 call
the COS routine with a value of 91 in the
XY parameters. It also passes the relative
track and cylinder for the new section in
its SEGTBL table entry. In response to
these parameters, the COS routine branches
to the SEGPNT routine, which issues a POINT
macro instruction to the SYSUT1 address of
the section. It then reads the first
record of the new section for phase 6 or
phases 62 and 63. Subsequent calls to read
records of the same section are made by
phase 6 or phases 62 and 63 with a value of
01 in the XY parameters. :

When the OPT option is in effect, phase
62 reads, in order of ascending priority,
the sections of Procedure A-text that
belong to each segment to determine the
main storage requirements for the progranm.

TABLE AND DICTIONARY HANDLING

A portion of storage is reserved throughout
compilation for tables built and used by
the phases. All processing involving these
tables (inserting new entries,.releasing a
table when no longer needed, etc.) is
handled by the group of routines known
collectively as TAMER. These routines are
resident in phase 00. They are described
in "Appendix A: Table and Dictionary
Handling."

COMMUNICATIONS AREA (COMMON)

The communications area (COMMON) is
resident in phase 00. It contains
information to which all phases can refer
directly. The format of COMMON is givem im
"Communications Area" in "Section 5. Data
Areas."

SYNTAX-CHECKING COHMPILATIONS

An unconditional syntax-checking (SYNTAX)
compilation or the production of an error
(E) or disaster (D) level message during a
conditional syntax-checking (CSYNTAX)
compilation causes the compiler to produce
no object code and to print out the
appropriate messages on SYSPRINT (SYSUT6
for LVL option) and/or SYSTERM. The
CSYNTAX compilation, upon generating an E
or D level message, becomes in effect a
SYNTAX compilation and the SYNTAX switch in
the PHZSH3 cell in COMMON is set on. After
phase 22, any phase detecting a syntax
error sets the ERRSEV cell in COMMON to the
highest error severity level encountered.

After phase 4, E-text is on SYSUT4.
During INT4, phase 00 checks the SYNTAX
syitch. If it is on, phase 00 sets the
value of LINKCNT to indicate that phase 70
is to be executed next. The RDERRFIL bit
in the SWITCH cell in COMMON is set omn to
indicate to phase 70 that E-text is to be
read from SYSUT4. After phase 70
processing, phase 00 either gives control
to phase 80 if the LVL option is in effect
or returns to the operating system via the
routines described earlier in this section
under "Returning Control to the Operating
Systen."

If the SYNTAX switch is off, processing
continues with phase 50. Phase 50 writes
E-text on SYSUTU4 if the CSYNTAX option is
in effect; the generation of an E level
nessage causes the SYNTAX switch to be set
on. During INT50, phase 00 performs the
same processing if the SYNTAX switch is on
as it does during INT4. If the SYNTAX
svitch is off, processing continues with
phase 51.

- e e > = o - -

*If the TERM option is in effect and the
permanent input/output error did not occur
on a write to SYSTERM, the message is
written to SYSTERM as well as the comnsole.
If the permanent input/output error
occurred on a wWrite to SYSTERM and not
SYSPRINT, the message is written to
SYSPRINT (SYSUT6 for LVL option) as well
as the console.

Licensed Material - Property of IBM

Phase 51 processing for the CSYNTAX
option is the same as phase 50 processing.
If phase 51 detects no syntax error which
would cause an E level message, a full
compilation is produced.

TERMINAL ERROR CONDITIONS

The following conditions will cause
compilation to be abandoned. 1In each case,
if NODUMP is specified, phase 03 is called
to print an error message on the console or
SYSPRINT (SYSUT6 for LVL option); phase 03
then returns to phase 00, vhich returns to
the operating system via the routines
described earlier in this section under
"Returning Control to the Operating
System."

1. A permanent input/output error is
encountered on a device.*

2. An invalid COPY or BASIS library name
is encountered.

3. TAMER cannot continue:
o Larger region needed.

o Compiler error.*x*

A table has exceeded the maximum
‘permissible size.**

©

Fragmented storage.*=*

*%*If the DUMP option is in effect, this
error causes an ABEND with a dump.

Phase 00 45

Licensed Material - Property of IBM

Phase 01 (IKFCBLO1) is logically a part of
phase 00, but is a separate load module
because it is not required in storage
throughout compilation. The functions of
phase 01 are:

1. To contain the installation default
values of compilation parameters in a
module separate from the actual
initialization coding {(phase 02
contains the actual initialization
coding) .

2. To pass these default values of the
compilation parameters, together with
any values of the compilation
parameters chosen by the user at
compilation time, to phase 02.

COMPILATION PARAMETERS

When phase 00 links to phase 01, it passes
the address of a parameter list that points
to the compilation options, altered DD
names, and augmented headings. The section
"Introduction”™ in this publication explains
the options that can be used on an EXEC

46 section 2. Method of Operation

control card or that can be passed by the
COBOL Prompter to the compiler if specified
as operands of the COBOL command under TSO.
These options can also be used in an
ATTACH, LINK, CALL, or XCTL macro
instruction. In addition, the macro
instruction parameters can specify a change
in the user data set names or an addition
to the standard page heading for the output
listing. (The standard page heading
consists of a page number only.) Phase 01
passes these parameters, together with
their installation default values, to

phase 02.

RETURN FROM PHASE 02

Phase 01 is a macro instruction. When
phase 02 has finished processing, it
returns to phase 01, thereby restoring
phase 01 registers and releasing phase 02
storage. Phase 01 branches to phase 00.
Phase 00 then issues a RETURN macro
instruction for phase 01, which restores
phase 00 registers and releases phase 01
storage.

Phase 02 (IKFCBL02) is the initialization
phase., It is logically part of phase 01,
which contains the installation default
values of compilation parameters, but phase
02 is a separate load module. The major
functions of phase 02 are:

o Processing the compilation parameters
specified on the EXEC card or passed
with the CALL, LINK, XCTL, or ATTACH
macro instruction. (If the COBOL
command is used to invoke the compiler,
a LINK macro instruction is executed to
pass control to the compiler.)

o Determining buffer sizes for the
compiler data sets for all phases.

o Obtaining storage for tables, the
dictionary, and buffers.

o Entering information in COMMON to be
used for statistics in the program
listing.

o Opening all required data sets to check
that they can be opened and to
determine the block sizes specified by
the user.

‘o Processing for the BATCH option.

o Building the table of COBOL space
constants in phase 00, using the BLDL
macro instruction which allows dynamic
calculation of phase sizes.

COMPILATICHN PARAMETERS

Phase 02 sets switches in COHMNON locations
SWITV2, LISTERSW, PHZSW, PHZSW1, PHZsSW2,
PHZSW3, and PHZSW4 for phase 00 to indicate
which of the following options were chosen:

ADV
BATCH LIB SOURCE
CLIST LOAD STATE
COUNT LSTCOHP SUPHAB
CSYNTAX LSTONLY SXREF
DECK VL SYHDMP
DH AP 1120 SYNTAX
DUMP

DYNAM . L132 SYSx
ENDJOB NAME TERH
FLAG wun TEST
FLOW OPT VBREF
LANGLVL (1}2}

LCOL1 PMAP yBsSUN
LCOL2 QUOTE VERB
LCPY RESIDENT XREF

FDECK SEQ ZWB

Licensed HMaterial - Property of IBM

PHASE 02

From the BUF and SIZE parameters, phase
02 determines the amount of space that is
avaeilable (see "Buffer Size Determination®
below) . From the SPACE parameter, phase 02
sets the print control character both in
the carriage control field for SYSPRIET and
also in the COHMON location SPACING. Fronm
the LINECNT parameter, phase 02 records in
CGREON location CNTLIN the wvalue for the
nunier of lines per page to Le printed in
the source card lis:ting.

If augmented page headings dere given in
a macro instruction, phase 02 records then
for phase 00 so that it can set up the
proper heading print format.

If the data set names were changed by a
LINK, ATTACH, or XCTL macro imstruction,
phase 02 changes the names in the DCB's.,

Phase 02 uses the control program to

determine the date of compilation, which it
records in COHMMON.

BUFFER SIZE DETERHINATION

The compiler uses six buffer areas. Figure

5 shows, for each phase, the buffers used
by the data sets active in that phase.
Because buffers 1 through 5 are alvays used
for utility data sets, they are of uniform
size so that they can be used for different
data sets from phase to phase. Buffer 6 is
also used for a utility data set in phases
20, 22, 21, 25, 50, and 51; therefore, it
must be at least as large as the other
buffers. Buffer 6 may need to be larger
than the other buffers since in phases 10,
12, 1B, 3, and 6 it is used for up to three
double-buffered data sets. Hote that in
Figure 4 if the two buffer numbers are the
same, the data set is single-~buffered.

Note: If the BATCH option has been

specified, a seventh buffer is used. This

.buffer is used only by the SYSIN data set

and is present throughout the compilation.
It is necessary to save the input cards of
subsequent compilations wilkin a batch.

Phase 02 determines the total buffer
size available from the BUF option on the
BZEC control card or in the COBOL command
string. If BUF was not specified but SIZE
was, phase 02 calculates BUF £from the
formula:

Phase 02 47

Licensed Material -~ Property of IBHM

BUF = 1/4 (SIZE - 96K) + 4K

If neither BUF nor SIZE was specified on
the EXEC control card or in the COBOL
command string, phase 02 sets BUF equal to
the default value specified at installation
time.

BUF is the total amount of storage
available for buffers. To determine the
buffer sizes from this value, phase 02:

1. Determines the block sizes of the user
data sets by opening the data sets;
or, if the block sizes have not been
given on the DD cards or have been
specified incorrectly, assigns the
following default sizes:

e 80 bytes for SYSIN, SYSLIN,
SYSPUNCH, and SYSLIB.

e 121 bytes (133 if 1L132 is in effect)
for SYSPRINT (SYSUT6 for LVL option)
and SYSTERM.

2. Using these block sizes, determines
the required size of buffer 6 in
phases 10, 12, 1B, 3, and 6, and
chooses the larger of these sizes as
the size of buffer 6. (If, for
example, the default block sizes were
assigned, the size of buffer 6 would
be 804 bytes.)

3. Subtracts the size of buffer 6 from
BUF and divides the remainder equally
among the other five buffers.

4. Compares the size of buffer 6 to
buffers 1 through 5. If buffer 6 is
smaller, it makes all the buffers the
same size, that is, one-sixth of BUF.

5. Finally, to ensure that the determined
buffer size is not greater than that
which the input/output devices can
handle, the maximum block size
permitted on the device is determined
via a DEVTYPE macro instruction and
compared with the calculated buffer
sizes. The smaller of these two is
chosen as the buffer size.

Phase 02 records the buffer sizes in
phase 00 buffer control blocks. Phase 00
uses the buffer control blocks to keep
track of how much of the buffer has been
used in blocking and unblocking records.

PROCESSING FOR THE BATCH OPTION

If the BATCH option has been specified and
if the compilation is the first within the
batch, phase 02 reads until it encounters a

48 Section 2. Method of Operation

card wvhich is not a CBL card (COBOL options
card). Phase 02 then processes the options
contained on all the CBL cards and alters
switch settings in SWITV2, LISTERSW, PHZSW,
PHZSW1, PHZSW2, and PHZSW3 in COMMON.

Phase 02 also saves the address of the
first non-CBL card in COHMMON location
ADDRCARD and sets the BATCHSH switch in
COMMON to hexadecimal '08' (CARDHELD). For
subsequent compilations in the batch, the
COMMON location ADDRCARD contains the
address of the next CBL card. After the
first compilation, phase 02 tests the
BATCHSW switch for a hexadecimal '08" and
obtains the address of the CBL card from
ADDRCARD and processes the options as
described above. 1In addition, areas in
phase 00 are initialized to their original
values for subsequent compilatioms.

ENTERING STATISTICAL INFORMATION IN COMHON

In addition to the information stored in
COMHMON as a result of compiler option
parameters, phase 02 stores other
information in COMMON that it has
determined during storage and buffer
allocation. The total area to be used for
buffers is stored in BUFSIZE. The total
area available for compilation is stored in
CORESIZE. Phase 00 uses the information in
these cells, as well as the information in
PHZSW, PHZSH1, PHZSW2, PHZSHW3, CNTLINE, and
SPACING (see "Compilation Parameters") to
produce statistical data for the listing.

PREPARING FOR FEDERAL INFORMATION
PROCESSING STANDARD (FIPS) FLAGGING

When the LVL option is specified, phase 02
enters the level character in the FIPLVL
cell in COMMON to indicate to phase 80 what
level of the FIPS standard is to be flagged
(A = low; B = low intermediate; C = high
intermediate; D = full standard). Phase 02
also:

o Sets the LIST bit in COMMON to indicate
that the source option is in effect.

o Replaces the SYSPRINT DDname with the
SYSUT6 DDname. (This data set receives
the source listing that is used for
input to phase 80 for FIPS flagging.)

o Opens the DCB for SYSUT6, or, if the
OPEN is unsuccessful, cancels the LVL
option.

o Moves the SYSUT6 DDname (or its
alternate DDname) and the DDname for
the FIPS output file into the DDNTBL
table.

INFORMATION RETURNED TO PHASE 00

Hhen phase 02 has finished processing, it
returns to phase 01, restoring phase 01
registers and releasing phase 02 storage.
Phase 01 then branches to phase 00.

Phase 02 passes the following
information back to phase 00:

1. DCBs modified by the compilation
parameters.

2. The switches indicating the
compilation options.

3. The LINECNT indication.

4. An indication of the difference
between the maximum amount of storage
requested for tables, the dictionary,
and buffers, and the amount actually
received.

5. The address of the buffer area and the

buffer lengths.

6. The date of the compilation.

ERROR CONDIT IONS

Phase 02 detects and handles the following
error conditions:

1. A data set cannot be opened. TIf the
data set is SYSLIB, when required for
any compiler data set, compilation is
terminated. If the data set is SYSIN,
SYSUT1, SYSUT2, SYSUT3, or SYSUT4, a
disaster message is written and
compilation is terminated. If the
data set is SYSUTS5, a warning message
is written and the symbolic debug
(SYHDMP) option is canceled. If the

3.

Licensed Material - Property of IBM

data set is SYSLIN, when the LOAD
option is requested, a warning message
is written, the LOAD option is
canceled, and compilation continues.
If the data set is SYSPUNCH, when the
DECK option is requested, a warning
message is written, the DECK option is
canceled, and compilation continues.
If the data set is SYSUT6 when the LVL
option is specified, a warning message
is written and the LVL option is
canceled. If the data set is
SYSPRINT, when the NOTERM option is
requested, a disaster message is
written to the console and compilation
is terminated. However, if SYSTERHM
can be opened when SYSPRINT (SYSUT6
for LVL option) cannot be opened, a
warning message is written to the
console and compilation continues. If
the data set is SYSTERM when the TERM
option is requested, phase 02 checks
to see if SYSPRINT is usable. If
SYSPRINT can be opened and it is not a
dummy data set, a warning message is
Wwritten to both SYSPRINT and the
console, the TERM option is canceled,
and compilation continues. Hovwever,
if the TERM option is requested but
SYSTERM cannot be opened and SYSPRINT
cannot be opened or is a dummy data
set, a disaster message is written to
the console and compilation is
terminated.

Specified storage device block size is
larger than the buffer space
allocated, or is not an even nmultiple
of the record length. The block size
is set to equal the length of one
logical record, and a message
indicating this is printed.

Invalid or insufficient SIZE or BUF

parameter. Warning only: an
alternate value is chosen.

Phase 02 49

Licensed Material - Property of IBM

PHASE_03

R R

Phase 03 (IKFCBL03) is logically part of
phase 00, but is a separate load module
because it is required to be in storage
only if a terminal error condition occurs
(see "Terminal Error Conditions" in the
section "Phase 00"). Phase 03 is linked to
by phase 00 whenever a SYNAD routine exit
is to be taken, when TAMER cannot continue,
or when phase 00 encounters an invalid COPY
or BASIS library name.

The functions of phase 03 are to issue
error messages and to indicate to phase 00
that compilation is to be terminated.

OBTAINING AND PRINTING ERROR MESSAGES

Before linking to phase 03, phase 00 places
the address of a one-byte error code in the
KTRMNATE cell in COMMON. It also saves the
contents of registers 0 and 1 in the
SYNADRO1 location in COMMON, these are
needed for the SYNADAF macro instructiomn.
The following ccdes are used:

Code
thexadecimal) Heaning
SYNAD exit for SYSLIB
01 SYNAD exit for all data
sets except SYSLIB and
SYSTERM
02 SYNAD exit for SYSTERM
06 Larger region needed
07 Compiler error
08 A table has exceeded the
* maximum permissible
size
09 Fragmented storage
0a Invalid BASIS request
0B Invalid library name

*If the DUMP option is specified, phase 00
issues an abend with dump 1nstead of
linking to phase 03.

50 Section 2. Method of Operation

Phase 03 examines the code. If a SYNAD
exit is indicated, registers 0 and 1 are
loaded from COMMOR and a SYNADAF macro
instruction is issued to obtain the
input/output error message. This message
with a COBOL prefix is then written out on
the console through the execution of a WTO
(vrite-to-operator) macro instruction.

Phase 03 next calls phase 00 to print
out the message on SYSPRINT and/or SYSTERM
according to the following conditions. If
the error occurred on the SYSTERM data set,
the nmessage is written out on SYSPRINT if
the SOURCE option is in effect. If the
error occurred on the SYSLIB data set, the
message is written out on SYSPRINT if the
SOURCE option is in effect and on SYSTERHM
if the TERM option is in effect. If the
error occurred on a data set other than
SYSLIB or SYSTERM, the message is not
written out on SYSPRINT, but is written out
on SYSTERM if the TERM option is in effect.

If a SYNAD exit is not to be taken,
phase 03 obtains the text and length of the
appropriate message and then calls phase 00
to print out the message on SYSPRINT and/or
SYSTERM depending upon whether the SOURCE
and/or TERM option is in effect.

RETURNING CORTROL TO PHASE 00

After printing the error message, phase 00
returns to phase 03. Phase 03 sets LINKCNT
to 2 more than the value assigned to phase
70 and sets the BATCHSW switch in COMHON to
indicate that compilation of other programs
in the batch is to be bypassed. Finally,
phase 03 returns to phase 00 with an
end-of-job (X'B0') calling code.

Phase 04 (IKFCBLOY4) implements the COPY
language of American National Standard
COBOL, ¥3.23-1974, by allowing insertion of
preuritten COBOL entries, which reside in a
library, into a COBOL source program at
compile time. COPY also allows the option
to alter these prewritten entries at
compile time.

Phase 04 reads the user-created COBOL
libraries and passes the entire source
program to phases 10 and 1B, or to phase 05
if LSTCOHMP or LSTONWLY is in effect. The
LIB option must be in effect if the BASIS
or COPY facility is used.

Input

The input to phase 04 can be source input
text and library text.

output

During BASIS processing SYSUT2 is used as
output during BASIS processing. This is
then read as source to process any COPY
statements. SYSUT4 is used as final output
from phase 04. If Lister is not to be
invoked, a source listing is produced on
SYSPRINT.

ERROR CONDITIORS

Phase 04 contains text for error messages
and produces the error messages. It
produces E~-text on SYSUT3 as it scans the
source program listings and analyzes
syntax.

TABLES USED

Phase 04 creates the DCBTBL which contains
one entry for each unique library nane.
Upon completion of processing, phase 04
deletes DCBTBL.

Licensed HMaterial - Property of IBM

MAIN FLOW OF CONTROL IN PHASE 04

Phase 04 invokes the PHO4INIT subroutine to
initialize variables, allocate work area
storage and build the DCBTBL, then reads
the initial SYSIN record.

If BASIS is desired, phase 04 invokes
the BASISRTN subroutine to read and update
the BASIS library from SYSLIB. The
resulting source is written to SYSUT2.

Phase 04 next invokes the COPYRTN
subroutine to scan SYSIN or SYSUT2 (if
BASIS) source for COPY statements. COPYRTN
invokes COPYROC to syntax check a COPY
statement and to read and update the source
from the identified COPY library member.

Hhen source end-of-file is reached,
phase 04 closes any COPY libraries that
have been opened.

PROCESSING ROUTINES USED

BASISRTN: The BASISRTN routine merges
source from the BASIS library specified
uith the users source from SYSIN, matching
serial numbers appearing on the BASIS
INSERT and DELETE cards with those in
columns 1 through 6 on the BASIS library
source. When the merge is complete, SYSUT2
is TCLOSEd and made ready for COPYRTN
processing, and SYSLIB is closed.

COPYRTHN: The COPYRTN routine reads all
source input looking for a COPY verb that
is not part of a NOTE, comment line, or
conment entry. Whenever COPY is found,
COPYRTHN invokes COPYROC to process the
statements. WHWhen source end-of-file is
reached, COPYRTN returns to the phase 04
controller routine for phase termination.

COPYPROC: COPYROC validates the COPY

statement,

The library is identified and opened.
The REPLACING arguments are passed and
saved in a vork area. Any syntax or OPEN
errors ¥ill result in the COPY statement
being nullified. If the COPY statement has
no errors, the CCPY library is read and the
source updated according to the REPLACING
rules. At library end-of-file, COPYROC
returns control to COPYRTHN.

Phase'Ou 51

Licensed Material - Property of IBM

SRR e

control is given to phase 05 (IKFCBLOS)
only when the Lister option (LSTONLY or.
LSTCONP} has been specified. Phase 05 is
the Lister scan phase, which analyzes the
syntax of the COBOL source program. This
phase inserts syntactic markers between the
various elements of the 'source program.
The syntactic markers are used by
subsequent phases to produce the
cross-references and to reformat the
program for the Lister option listing.

Phase 05 is divided into major functions
that:)

e tokenize the output (COBOL source) into
syntactic units or words (the SCRN and
READ routines) :

e decode Y instructions from the YBGN
table

e place COBOL source and inserted
syntactic markers into a large body of
contiguous storage known as the
HOLDARER (in order that delayed
recognition of COBOL statements can
occur)

e output COBOL source and syntactic
markers in the correct sequence fronm
the HOLDAREA to SYSUT2

Input

If NOLIB is in effect, the input to phase
05 is the COBOL source program. Input can
be read from the card reader or the system
input device. If COPY/BASIS is in effect,
the input is passed from phase 04 on SYSUTH
(source with COPY/BASIS resolved) and on
SYSUT3 (E-text).

Qutput

The output from phase 05 is written on
SYSUT2. The output consists of the COBOL
source program with syntactic markers
inserted to identify the various elements
of the program. Syntactic markers indicate
such items as new statement, reference
type, level number, indentation, and
qualifiers. If phase 05 detects syntax
errors, the output also includes error and
recovery markers, to indicate that the
errors are to be identified in the Lister
52 Section 2. HMethod of Operation

—

output listing. Also, any E-text read from
SYSUT3 is written on SYSUT2.

SYNTAX LANGUAGE SUMMARY

The syntax analysis done by Phase 05 is a
table-driven process whereby the table
entries (called Y-instructions in the Phase
05 assembler listing) control the
recognition of COBOL source and resulting
generation of phase 05 output.

. w Reserved word G[n] * Text-type byte
[O]4 P {[A[B]] ¢{ Punctuation M[n] * Modifying byte
T Operand term Cn *

(sce Note 3) (see Note 5)

o Clause name X * Exit routine name

[0 IN] [1]1/[[number of items in clause
name of first statement beyond

(see Note 4)

| Notes:

1. Syntax language is written as a
sequence of statements, optionally
named, each of which contains a
sequence of items separated by commas.

Syntax language
define clauses,
These functions
infixed period,

items perform tests,
or control generation.
are denoted by an
slash, or asterisk,

respectively.
Tests may be:

0 optional (brackets)

W testing reserved words
P punctuation

T generic terms

For example, DATANAME, ALPHALIT, or
®clauses® (nul), such as "identifier®
(IDFR), and test may specify A margin
(3) , B margin (B), or both (ABj.

Clause definition corresponds to the
COBOL use of brackets, braces, and
elipses:

0 is optional (brackets)
N may be repeated (elipses)
1 select only one (braces)

Information after the slash specifies
end-of-clause; if omitted, the end of
the current statement is assumed.

Generation (of IPTEXT) is implied by
successful tests, and is explicitly
ordered by G, the type-byte implies
the length. M modifies one byte of
already generated text. <C changes an
index to the current point of
generation for possible subsequent use
by M or C commands. X causes

"execution of an exit routine.

Items in general return results in
quaternary logic. "“True" means a
positive identification, "false" .means
a clear failure, "maybe" results from
generation or from a failed optional
test, and "disaster" results from a
"true" test followed by a "false"
within a clause where all items must
be found.

Licensed Material - Property of IBM

ERROR CONDITIONS

Phase 05 terminates upon detecting a syntax
error that it detects in the COBOL source
program. When such an error is detected,
phase 05 issues an error flag to signal
phase 08 that the following source cards
are to be passed on without processing.
Phase 05 then treats the balance of the
program as comment cards.

In addition to the condition mentioned
above, unusual termination of phase 05 can
occur if the source program contains:

e Too many (approximately 80 or more)
consecutive *-comments cards.

e Too many (approximately 100 or more)
consecutive blank cards.

If one of the above two conditions (of

phase 05) occurs, the file written on
SYSUT2 is incomplete.

Phase 05 53

Licensed Material - Property of IBM

Phase 06 (IKFCBL06), the Lister sort phase,
inserts cross-reference information into
the source program. Phase 06 makes two or
more passes of the file created by phase
05. Based on the syntactic markers
contained in the file, this phase inserts
pointers into the source progranm as
follows:

o At the place of definition of a name,
pointers to the places where references
to that name occur.

o At the places of reference, pointers to
the place of definition.

During each pass of the file, phase 06
resolves references and merges them into
the source program; the number of passes
depends on the amount of storage available
and the number of cross-references to be
processed. A partial dictionary of all
definitions is used by all passes. The
dictionary is continually updated by adding
new definitions as space becomes available
and deleting definitions that have been
completely processed and are no longer
needed.

54 Section 2. Method of Operation

Input

The input for the first pass of phase 06 is
the file written on SYSUT2 by phase 05.
Input for subsequent passes of phase 06 is
the output of the previous pass. That is,
input is read alternately from SYSUT2 and
SYSUT3 (beginning with SYSUT2).

Output

The output of phase 06 is written
alternately on SYSUT3 and SYSUT2. Output
of the first pass of phase 06 is always
written on SYSUT3 and output of the last
pass is always written on SYSUT2. The
output file consists of the source program
with cross-reference information embedded
in it; the contents of the file are printed
by phase 08.

The functions of phase 08 (IKFCBL08) are as
followus:

e Print the first page (preface) of the
Lister listing

e Print the body of the Lister listing

o Depending on the options specified

-- Punch the reformatted source program
deck on SYSPUNCH

-~ Pass the reformatted source progranm,
via SYSUT4 to phase 10 for
compilation

-- Hrite COPY/BASIS-related E-text on
SYSUT3

Input

For the preface, phase 08 uses no input.
For the remainder of the listing, phase
08 reads input from SYSUT2. Input consists

of the source program with embedded
cross-reference information from phase 06.

outpat

The output of phase 08 consists of:
e The preface which describes
~- The format of the listing
-- The use of statement numbers
-- The classification of references
-= The uselof footnotes in the listing
-- The method of indentation

-- The reformatted deck that can be
obtained

-- The summary listing

o The Lister option listing

Licensed Material - Property of IBNM

PHASE_08

e An internal card-image COBOL source
program

o A reformatted source deck.

The Lister option preface and listing
are printed on SYSPRINT. The internal
card-image source program, which may serve
as input for subsequent compilation, is
produced on SYSUT4 if the LSTCOMP option is
in effect. The reformatted source deck is
produced on SYSPUNCH if the Lister FDECK
option is in effect.

SESESSEs

From the source program with embedded
cross-reference information, phase 08
builds an entire page in storage. The
phase reformats the source program and
creates footnotes as required. When the
optimum place for a new page is reached,
phase 08 prints the created page on
SYSPRINT and then deletes the page from
storage. The process is repeated until all
data from SYSUT2 has been processed. To
produce the summary listing, phase 08
positions SYSUT2 at the beginning and reads
it again.

ERROR CONDITIONS

It is possible that some footnotes on some
COBOL programs may be lost. If a
particular COBOL program requires a very
large number of footnotes, there may not be
enough storage space to contain the
complete footnote table. 1In those cases,
some of the footnotes that could be printed
in the Procedure Division of the Lister
will be handled as ordinary data
references, rather than as footnotes.

Upon encountering the error flag, phase
08 issues a message informing the user that
Lister processing has terminated because of
a source syntax error. The balance of the
program is then printed (and passed on
SYSUT4, if LSTCOHP) without reformatting or
cross~-referencing).

Phase 8 55

Licensed Material - Property of IBM

Phase 10 (IKFCBL10) reads the source
statements in the Identification,
Environment, and Data Divisions. As it
reads the card images of the source
program, it performs the following major
functions:

1. Storing information from the
Environment and Data Divisions in the
form of Data IC-text and as entries of
tables supplementing the text (see
"Section 5. Data Areas" for formats).

2. Sorting all other significant
information in other tables and in
cells of the COMMON communications
area (see "Section 5. Data Areas" for
format) .

3. Analyzing the syntax of source
statements.

4. Writing each statement on SYSPRINT as
part of the source program listing, if
the user specified the SOURCE option.

5. Checking for the CBL card, if the user
specified the BATCH option. When the
CBL card is found, phase 10 sets on
the hexadecimal '08' (CARDHELD) and
hexadecimal '40' (ENDFOUND) values in
the BATCHSW switch in COMMON and
stores the address of the CBL card in
COMMON location ADDRCARD.

These functions are performed under the
control of three major working routines and
three division-processing routines. Among
the working routines, GETDLM supervises the
division processors and GETWD and GETCRD
supply them with input. Among the division
processors, IDDSCN processes the
Identification Division, ENVSCN the
Environment Division, and DDSCN the Data
Division.

syntax analysis, although not
specifically described here, is performed
as part of division processing. It
includes such functions as checking for
division headers and the proper position of
words and clauses. If user errors are
detected, the division processors call
routines of the generic name MSGxxx (where
xxx is the message number) to generate
E-text.

56 Section 2. Method of Operation

MAJOR_KORKING ROUTINES

There are three routines in phase 10 that
are used extensively by more than one of
the division processing routines. These
are the GETDLM, GETWD, and GETCRD routines.

GETDLH ROUTINE

The major functions of the GETDLM routine
are:

e Searching for delimiters (division
headers, level numbers, etc.) and
passing control to the proper division
routines.

e Recognizing literals that are level
numbers and encoding them as such.

o Causing termination of phase 10 when it
recognizes the Report Section, the
Procedure Division header, or
end-of-file on the input device.

GETIWD ROUTINE

The major functions of the GETWD routine
are:

e Getting a logical unit from the input
card provided by the GETCRD routine,
identifying and encoding it, and
sending it to the calling routines for
processing. A logical unit is defined
as all the characters between one blank
and the next.

e If the NUM compiler option is not in
effect, generating a card number for
each input card, starting with 1 and
(except for Report HWriter statements)
incrementing by 1. If the NUM compiler
option is in effect, the user-specified
card number is converted to binary. In
either case, the current card number is
kept in a three-byte cell labeled
CURGCN and in the COMMON cell CURCRD.
If the STATE, TEST, or SYMDMP option
and the NUM option are in effect, a
warning (W) level messade is issued if
card numbers are found to be out of
sequence. Beginning with the first
out-of-sequence card number, phase 10
resequences the card numbers,

incrementing by one, until, and unless,
the source card numbers fall within the
ascending sequence again.

o Ensuring that the next logical unit is
valid for the division being processed.

Each logical unit is analyzed and encoded
into internal phase 10 code which tells the
processing routine what type of item it is
(COBOL word, qualified EBCDIC name, etc.).

GETCRD ROUTINE

The GETCRD routine gets the next card image
according to the user's options and writes
a line on SYSPRINT if the SOURCE option was
requested. If the LIB or LSTCOMP option is
in effect, the source program is read from
SYSUTH.

The GETWD and GETCRD routines are also
used by phases 1B and 12.

IDENTIFICATION DIVISION

The Identification Division scan routine
(IDDSCN) is entered immediately after the
phase 10 initialization routines. The
input is scanned for an Identification
Division header. When it is encountered,
the cell for the next logical unit is
filled by the GETWD routine and checked to
determine whether it is PROGRAM-ID. If it
is, the program-name is saved in the PROGID
cell of COMMON (see "Section 5. Data
Areas") to be used later either as the
CSECT name of the object module or to form
the names of segments in a segmented
program.

After the PROGRAM-ID (if any) has been
saved and if the SOURCE option was
specified, the Identification Division is
written on SYSPRINT. If DATE-COMPILED is
included, the information that follows it
is deleted, and the current date is
inserted from COMMON.

When another division header is

encountered by routine GETDLM, control
passes to the proper division scan routine.

ENVIRONMENT DIVISION

When the Environment Division header is
encountered, the Environment Division scan
routine (ENVSCN) searches for the
Configuration and Input-Output Sections and

Licensed Material - Property of IBM

then branches to the routines that process
them. These routines produce the file
definition portion of Data IC-text (see in
"Section 5. Data Areas"), which will be
combined with the data definition portion
later in phase 10.

CONFIGURATION SECTION

The OBJECT-COMPUTER paragraph, including
the SEGMENT-LIMIT clause, and the
SPECIAL-NAMES paragraph are processed.

SOURCE-COMPUTER_Paraqraph: If the WITH
DEBUGGING MODE clause is specified, the
V2BUGON switch in COMMON will be set on.

OBJECT-COMPUTER Paragraph: If the
computer-name specified is IBM-37C
[-model-number], the S370IN switch in the
PH1BYTE cell in COMMON is set to 1.

If PROGRAM COLLATING SEQUENCE, save the
name to be checked for during SPECIAL-NAMES
processing.
SEGMENT-LIHIT Clause: When the priority
nunber specified is less than 50, this
number is stored in the SEGLHMT cell of
COMMON., If no SEGMENT-LIMIT clause is
specified, or if the value exceeds 49,
SEGLMT is set to 49.

SPECIAL~-NAMES Paragraph: The SPNSCN
routine processes the SPECIAL-NAMES
paragraph.

CURRENCY-SIGN Clause: The literal
specified is checked for validity (based on
the setting of LANGLVL) and then stored in
the CURSGN cell of COMMON. Thereafter,
whenever phase 20 scans the PICTURE clause,
it recognizes the literal as the currency
sign.

DECIMAL-POINT Clause: A code is entered in
the COMMAD cell of COMMON. Thereafter,
wvhen phases 10, 12, and 1B scan numeric and
floating-point literals, commas instead of
periods are recognized as decimal points.

System-name_Is_Mnemonic-name: An entry is
made in the SPNTBL table for each
mnemonic-name, and in the ALPHTRL for each
alphabet-name. These table entries are
used by phase 1B in processing the
Procedure Division. When phase 1B scans
ACCEPT, DISPLAY, or WRITE statements, it
replaces any mnemonic-names with the proper
system-name by checking the SPNTBL table.
When it processes any SORT or MERGE verb
with COLLATING SEQUENCE specified, it
checks the ALPHTBL for a valid name.

Phase 10 57

Licensed Material - Property of IBM

INPUT-OUTPUT SECTION

The routines that process the Input-Output
Section build and use the ENVTBL and QNMTBL
tables. 'The QNMTBL is a table of
variable~length names, with pointers to
each of its entries in the appropriate
fields of the ENVTBL entries. ' These tables
are released later in phase 10. Formats of
these tables are given in "Section 5. Data
Areas."

FILE-CONTROL_Paragraph

The SELSCN routine processes the SELECT
clauses and produces partial Data IC-text
(see "Section 5. Data Areas") from the
information obtained. At the end of
Environment Division processing, the text
is in the form of ENVTBL entries, one for
each SELECT clause in the source program,
and contains only file information.
Sutbsequent Data Division processing uses
the ENVTBL entries for the complstion of
Data IC-text (see "File Section" in this
chapter). The text itself is tramnslated
into Data A-text in phase 21 and is further
processed in phase 6 or 64.

For each SELECT clause, the file-name
and other pertinent information are entered
in the ENVTBL table. Variable-length nanes
are entered in QNHTBL; pointers to the
QWHEBTL entries are placed in the
appropriate ENVTBL fields.

For FILE STATUS clause processing,
SKLSCH passes control to the file status
routine to enter the FILE STATUS dataname
into the QHMTBL and to set a pointer to
QUHMTBL in the corresponding ERVTEL table
field. A corresponding bit is also turned
on in the ENVTBL to indicate that a FILE
STATUS clause has been specified.

For PASSWORD clause processing, SELSCHN
passes control to the password routine to
enter the password into the QNHTBL and to
set a pointer to QNMTBL in the
corresponding ERVYTBL table field. A
corresponding bit is also turned on in the
ENVTBL to indicate that a PASSHWORD clause
has been specified.

The ALTSCN routine gains control from
SAENT vhenever ALTERNATE is found in a
SELECT statement. ALTSCHN first tests the
FRSTALT bit switch, checking for ALTERNATE
RECORD KEY under current SELECT. For all
ALTERNATE RECORD KEY clauses, CHKSAR enters
the data-name in QNMTBL. If the DUPLICATES
option is present, a bit is turned on in
INDTBL for that key. When another
ALTERNATE clause is found in NXTCOD, a

58 Section 2. Method of Operation

chain bit is turned on in the INDTBL entry.
Controi is returned to SAENT after FRSTALT
is reset.

I-0-CONTROL Paragraph

When the ENVSCHK routine encounters the
I-0-CONTROL paragraph header, it calls the
pertinent routines for processing the SAME,
RERUN, and APPLY clauses.

SAME Clause: For each clause encountered,
the files named are entered into one of the
following tables:

Clause Table
SAME AREA SATBL
SAME RECORD/AREA SRATBL

At the end of Environment Division
processing, a unique number is assigned to
each clause of each type (by means of
incrementing counters). For example, the
first SAHME AREA clause is assigned the
nunber 1, the second SAHE AREAR clause is
assigned 2, and so forth. Similarly, the
first SAME RECORD ARER clause is assigned
1, the next clause 2, and so forth.

The ENVTBL table is then searched for
all the files named in SAHE clauses, and
appropriate numbers are inserted into these
ENVTBL entries to identify the SAME clauses
in which the files are named. For example,
if three SAHE RECORD AREA clauses HWere
specified, each file namned in the first
clause would hawve "i% in the SAHE RECORD
AREA field of its ENVTBL entry: each file
naned in the second SAHE RECORD AREA clause
would have %29 in that field, and so forth.
The appropriate switches are also set in
the ENVTBL entries. At this time, the
SATBL and SRATBL tables are released and
may be overlaid by new tables.

RERUN _Clause:

Format_1i: An entry for the file named
is made in the CKPTBL table and a bit is
set in the entry to indicate whether the
WEND OF REEL/UNITY or the "integer-1
RECORDS" option was specified in the RERUN
clause. Both options can be applied to one
file, and, in this case, two entries are
made in the CKPTBL tablé. 1In the ENVTBL
entry for the file, the CRPTBL bit is set
to 1 and a pointer to the first of two
possible entries in the CKPTBL table is
inserted. A pointer to the second entry,
if specified, is entered in the first entry
in the CKPTBL table. Later when the FD
statement for this file is scanned, the
CKPTBL bit is tested. If it is 1 and if
the "integer-1 RECORDS"™ option was
specified in the RERUN clause, the RERUN

bit in the PIOTBL table entry for the file
is set to 1. Phase 1B uses this bit in
processing READ and WRITE statements.

Format_2_(SORT-RERUN) : An entry is made
in the CRPTBL table, with the INTEGER field
set to 0. The RERUNN switch in COMMON is
set.

APPLY Clause: For each option, a switch is
set in the ENVTBL entry for the file-name
specified in the clause,

Option Suitch_set
1 WRITE-ONLY
2 CORE-INDEX
3 RECORD~OVERFLOW
4 REORG-CRITERIA

Hote that the data-name is entered in
the QNMTBL table, and a pointer to the
QNMTBL entry is placed in the ENVTBL entry
for this file.

HULTIPLE FILE TAPE_Clause:

—— e e e R s S

treated as comments.

clause is

DATA DIVISION

When the Data Division header is
encountered, the GETDLH routine calls the
DDSCH routine, which in turn calls the
routines that process the File,
Working-Storage, Linkage, and Communication
Sections. If a Report Section is
encountered, phase 00 is called to load
phase 12, vhich processes the Report
Section.

As the Data Division source statements
are encountered, the following steps are
taken to form Data IC-text:

1. Pile and record information is entered
into a work area called ICTEXT.

2. Entries are made in the OD2TBL,
TOTTBL, QNHMTBL, FNTBL, and RCDTBL
tables.

3. 1Information in the work area is merged
with the corresponding ENVTBL entry
(for file descriptions).

4. Dpata IC-text for FDs, LDs, SDs, and
CDs is generated and written on
SYSUT3. At this time, space is
reserved in the PIOTBL table.

Completed Data IC-text is used in phases
22 and 21 to make dictionary entries for
data-names and file-names and to generate
Data A-text.

Licensed Material - Property of IBM

Data Division processing uses the ENVTBL
table and builds the FNTBL, OD2TBL, PIOTBL,
QNMTBL, RCDTBL, and TOTTBL tables. All of
these tables (see "Section 5. Data Areas"
for formats) except the ENVTBL table are
passed to phase 1B. The PIOTBL table is
also used by phase 21, the OD2TBL table by
phases 22 and 25, and the TOTTBL table by
phase 22. The PIOTBL table indicates which
OPEN options and input/output verbs are
used for each file; and the OD2TBL table is
used to generate Q-routines (object module
subroutines used to calculate variable
lengths and locations for
OCCURS...DEPENDING ON fields).

FILE SECTION

When the File Section header is
encountered, the DDSCN routine calls the
appropriate routines to process FDs, SDs,
and LDs in the source program.

File Description Entries

Bach File Description (FD) entry is
analyzed, and information from the clauses
is entered in the work area ICTEXT. (The
REPORT clause requires special processing;
it is described in the chapter "Phase 12.%)
A blank PIOTBL entry is created, and
pointers to this entry are placed in the
FNTBL and ENVTBL tables. The file-name
from the FD is entered in the FNTBL table
entry and the LABEL RECORDS switches are
set. The ACCESS RANKDOM and mass-storage
switches are picked up from the ENVTBL
entry. Variable-length names such as LABEL
RECORD names are entered in the QNNTBL, and
pointers to these entries are placed in the
work area.)

When this processing has been completed,
the ENVTBL entry and the file description
information from the work area are merged
into Data IC-text elements. Names from the
QONMTBL table are located (from their ENVTBL
pointers) and inserted where needed. Each
completed Data IC-text element is written
out. When File Section processing has been
completed, the QNMTBL table is released.

Sort_Description Entries

Each Sort Description (SD) entry is placed
in a work area and is used to generate an
SD entry in Data IC-text.

Phase 10 59

Licensed Material - Property of IBM

Record Description Entries

When a level number is encountered
signaling a record description entry, the
entry is analyzed and information from the
clauses is put into a work area. If the
OCCURS...DEPENDING ON clause is included,
the object of the clause and its qualifiers
are entered in the OD2TBL (no duplicate
entries are made). A pointer to the entry
is inserted later into the Data IC-text for
the record description. (Each level number
results in a Data IC-text element in
LD-text format; see "Internal Text
Formats.")

For level-01 items, an RCDTBL entry is
made, consisting of a pointer to the most
recent file-name entry in the FNTBL,
followed by the record-name. This results
in the arrangement of pointers shown in
Figure 6. The relationships are used by
phase 1B when processing WRITE and REWRITE
statements to relate records to their
associated files.

‘PIOTBL

L —
b e

FNTBL

A\

- = e oy —— o

—— . ——— — — — ——

-

Pointer to PIOTBL

File-name

-—J-—J-[

RCDTBL

—— e — — ——— —

r
Pointer to FNTBL

o —

Record-name

Ll
|
1

Ll
|
1

]
|
J

d

Figure 6. Table Usage During Recor

Description Processing

60 Section 2. Method of Operation

Then the LD-text is written out.

WORKING-STORAGE AND LINKAGE SECTIONS

The record descriptions in the
Working-Storage and Linkage Sections are
processed in much the same way as those in
the PFile Section. However, since they are
not associated with files, no RCDTBL
entries are made.

COMMUNICATION SECTION

When the Communication Section header is
encountered, the DDSCN routine calls the
CDSCNA routine to process the CDs in the
source program. Each Communication
Description (CD) entry is analyzed and Data
IC-text elements are created. Record
descriptions in the Communication Section
are processed in much the same way as those
in the File Section. However, since they
are not associated with files, no RCDTBL
entries are made.

Phase 12 (IKFCBL12) is loaded after phase
10 processing only if the source progran
contains a Report Section. Phase 12 reads
the source statements of the Report Section
of the Data Division, producing one
conplete Report Writer Subprogram (RWS) for
each RD that it encounters. As it does so,
it also:

o Scans its input for errors and
generates any necessary E-text.

o Generates a listing of the Report
Section on SYSPRINT if the SOURCE and
NOLIB options are in effect or on
SYSuT6 if LVL is in effect.

o Records information for later phases in
TAHER tables and in COMMON cells.

Phase 12 reads its input from SYSIN or
from SyYsUT4# if LIB or LSTCOHMP is in effect.
It writes its output, the RWHS, in the form
of Data IC-text on SYSUT3 and in PO-text on
SYSUT2. Any E-text produced is also
written on SYSUT2, intermingled with the
PO-text. The input and output are
summarized in Fiqure 7. The RWS is
described, in "Appendix C. Report Writer
Subprogram.®

If the VERB option is in effect, Listing
A-text is generated and passed to phase 60
or 64 so that the object program listing
can include verb-names and procedure names.
Each text element is simply a word in
EBCDIC format preceded by a code and a
count. For every Listing A-text element
uritten, a card number element is written
in PO-text. This card number (passed on
through the changing text forms) indicates
to phase 60 or 64 when to read a Listing
A-text element.

OPERATIONS IN_ OTHER_PHASES

In addition to normal processing of the
Data IC- and PO-texts, other phases perform
related operations in response to elements
of the source program or of the RWS. These
elements include the REPORT clause, the
Report Section header, USE sentences, the
Procedure Division verbs INITIATE,
GENERATE, and TERMINATE, control-field
save-area names, and REDEFINES clauses.

Licensed Material - Property of IBM

REPORT CLAUSE

fhen a REPORT clause in an FD statement is
encountered, routine TBLRPT of phase 10
primes the RWRTBL table (first REPORT
clause only), sets a flag bit in the P1BTBL
table (first REPORT clause only), and
enters the report name into the RWRTBL
table (each REPORT clause encountered).
Phase 12 later checks the flag bit and, if
it is not set, returns control to phase 00
without producing an RWS.

REPORT SECTION HEADER

Upon encountering the Report Section
Header, phase 10 sets the RPTHWHTR bit in the
SWITCH cell in COMMON. Routine -INT10 of
phase 00 later checks the bit and calls
phase 12 wvhen it is set.

USE SENTENRCES

Upon encountering a USE sentence in the
Declaratives Section of the Procedure
Division, phase 1B:

e Generates REPORT~ORIGIN, a special
Report Writer verb, to cause the
address counter to be set to the first
instruction in the RWS group routine
resulting from the report group
specified in the USE sentence.

o Inserts, at that point in the RHS
routine, a link to the USE routine.

o Generates another Report Writer special
verb, REPORT-REORIGIN, to reset the
address counter.

Note: Report Writer verbs are discussed
under "Elements of a Report Writer
Subprogram" in "Appendix C. Report Writer
Subprogram."

PROCEDURE DIVISION VERBS

Upon encountering an INITIATE, GENERATE, or
TERMINATE verb, phase 1B generates PO-text,
ard phase 51 later generates linkage
between the main program and appropriate

Phase 12 61

Licensed Material - Property of IBM

routines in the RWS. The INITIATE verb
results in a link to the INT~ROUT routine,
TERMINATE to the LST-ROUT routine, GENERATE
report-name to the 1ST-ROUT routine, and
GENERATE detail-name to the DET-ROUT
routine. .

CONTROL-FIELD SAVE-AREA HNAHES

Upon encountering control-field save-area
names (which are generated by phase 12),
phase 22 generates a dictionary entry
consisting of the "-nnnn" name and the
attributes of the control field which had
been previously defined in the Data
Division. Further discussion of
control-field save-areas is provided under
“"Nonstandard Data-names"™ in "Appendix C:
Report Hriter Subprogram."

REDEFINES CLAUSE

Upon encountering Data IC-text for a Report
Writer REDEFINES clause, phase 22 so
processes it that the E-point name data
item generated from the COLUMN clause
points to the relative location in the
print-line work area, RPT.LIN, equal to the
integer specified in the COLUMN clause.
When an item is later to be moved to
RPT.LIN, the location can be determined
from the E-point name. The length is taken
from the PICTURE clause information in the
dictionary attributes for the item.

E-Point and RPT.LIN are discussed under
"Nonstandard Data-names" in "Appendix C.
Report Writer Subprogram."

N

PRODUCING THE REPORT WRITER_SUBPROGRAH
{RUS)

Generating a complete subprogram is the
task of five routines in phase 12: RDSCAN,
PROCO1, PROCO02, FLUSH, and GNSPRT.
GETDLYM controls the flouw of processing for
phase 12. That flow is tailored to the
particular source program, but the
following discussion explains the general
concept. .

62 Section 2. Hethod of Operation

Routine-

The RDSCAN routine processes the RD
statement and is followed by routine
PROCO1, which processes the level-01
sentence. If that sentence is an
elementary item, routine PROC02 is called
upon to process each elementary-level
clause until the entire sentence has been
processed. At that point, the FLUSH
routine is called to finish generating the
group routine. If the sentence is the
level-01 statement of a group item, routine
PROCO1 processes the sentence, and routine
PROCO02 is called to process the elementary
and lower-level group items following.

When that is done, routine FLUSH is called,
does its processing, and the compiler goes
on to the next level-01 level statement.

The PROCO1~-FLUSH.- or PROCO1-PROC02-FLUSH
loops continue until phase 12 has generated
RUS group routines for all of the level-01
statements defined in the source program.
Routine GNSPRT is then called on to
conplete the RWS by filling in the fixed
and parametric routines and any necessary
dummy group routimes. Phase 12 then checks
to see if the next logical record is an RD
statement, in wvhich case another RUS is
needed and the process begins again with
routine RDSCAN, or if it is the Procedure
Division header, in which case phase 12,
being finished, returns control to phase
00.

ROUTINE RDSCAN

The RDSCAN routine is responsible for
processing the RD entry of the source
program., After first ensuring that an RUS
should be generated {by determining vhether
the RERTBL table is primed), it reads each
logical unit of the RD and processes it.
The routine operates in a loop-type scan,
checking each item to see if it is a
period, CODE clause, CONTROL clause, or
PAGE clause. If it is none of these, it is
treated as an error.

Routine RDSCAN then sets appropriate
switches and enters data into storage areas
and tables. It then gets a new record and
repeats the loop until it encounters a
period. When this happens, control returns
to routine GETDLM, which calls routine
PROCO1.

Licensed HMaterial - Property of IBM

SYSIN (SsyYysuT4 if LIB or LSTCOHP) SYSPRINTT (if NOLIB)

r L] r 1 To

|Source Program | ' |Source Progran {printer

i) ——— —>1 —>
| (Report Section) | | (Report Section) |

L J L J

A O s o - e -

Note: Tables not |

hown here are re-j|
e

s
leased by phase 12}
]

|
|
1
|
|
|
[} SYSUT3
l r ~ To
| |Data IC-text | phase 20
I —> | e
| | | |
l l 1 |
1 |
| |
| |
| |
Storage (TAMER} ! 1 SYSUT2
Y 4 | | r TO
| Tables passed to ! i | |PO-text and E-text|phase 1B
{phase 12 { | T g —>1 >
| i v | ‘ | | | |
| FNTBL > PHASE 21 L 1
| PIOTBL 1 N ! 12 | |
i P1BTBL | | | | |
| QLT ABL H i L 1 i
| REPTAB | | - | Storage (phase 00)
| RWRTBL | | | | r !
| SPNTBL | | | 1 | |
1 RCDTBL i 1 i —>1 COMMON |
| | | | | | |
| | | | | L !
[J ‘ v '
{ Storage (TAHER) |
| r 1 l
| {Tables built by { |)
Storage (phase 00) | |phase 12 | | Storage (TAMER)
r 1] i | l | e !
| P | CTLTBL i { | Tables passed to |
| COMMON { | DETTBL i | |later phases |
{ | | GCNTBL | | | |
L 4] NPTTBL | {] DETTBL |
i QALTBL | | | FNTBL |
i RNMTBL | | | PIOTBL |
| ROLTBL | | 1 P1BTBL |
[} ROUTBL { | | REPTAB |
| SMSTBL] L—>| RNMTBL |
1 SNMTBL | [} ROUTBL |
[SRCTBL i i RWRTBL !
| SUMTBL | | SPNTBL [}
L 4 | RCDTBL |
| |
|
|
|
[}

1SYSUT6 is used if the LVL option is in effect.

Figure 7. ©Phase 12 Input/Output Flow

Phase 12 63

Licensed Material - Property of IBM

ROUTINE PROCO1

Routine PROCO1 processes the level-01
record descriptions. Valid input for this
routine includes the period and the NEXT
GROUP, LINE, TYPE, and USAGE clauses. It
operates in a loop-type scan and processes
each clause in much the same way as the
RDSCAN routine does. Since an level-01
elementary entry is permissible, other
clauses can also be valid. Before assuming
an error, routine PROCO1, therefore,
branches to the PROCO2 routine to check for
and process elementary-level clauses. Once
a valid clause is processed in one or
another of these routines, control returns
to the beginning of the loop in routine
PROCO1.

Processing of the TYPE clause marks the
generation of the initial coding for the
group routines. Since the compiler has, at
that point, enough input to begin the group
routine, the first part of that routine is
generated here,

ROUTINE PROCO02

Routine PROCO2 is entered when routine
GETDLM encounters a level-02 through
level-U49 entry or, at entry point PRO2A,
during PROCO1's scan of an level-01
elementary item. Its operation is similar
to that of routines RDSCAN and PROCO1,
except that checks are made so that control
returns to routine PROCO1 when appropriate.

ROUTINE FLUSH

!

When routine FLUSH is called, all the
information needed to complete omne group
routine is available in the form of table
entries, contents of data areas in storage,
and switch settings. Routine FLUSH
generates the exit coding for the group
routine, and then returns control to
routine GETDLHM.

ROUTINE GNSPRT

Routine GNSPRT is called when the GETDLM
routine encounters a new RD or the
Procedure Division header. At this point,
all group routines defined in the source
program have been written on SYSUT2 (in
PO-text), and all data needed to complete
the RWS is in storage. Routine GNSPRT
first writes out the necessary Data IC-text
on SYSUT3 and then, in order:

64 Section 2. Method of Operation

1. Generates the WRT-ROUT routine.

2. Generates a dummy group routine for
any of the following groups not
defined in the source program:

Control Heading Final, Control Footing
Final, Page Footing, Page Heading,
Report Heading, and Report Footing.

3. Generates the INT-ROUT routine.

4. Generates, if a PAGE LIMIT clause uas
specified in the source program, an
ALS-ROUT routine and an RLS-ROUT
routine. If no PAGE LIHIT clause was
specified, the RWS contains neither of
these two routines.

5. Generates one USHM-ROUT routine for
each TYPE IS DETAIL group specified
under the RD statement being
processed.

6. Generates in order, one each of the
following routines: CTB-ROUT,
RST-ROUT, 1ST-ROUT, LST-ROUT, and
ROL-ROUT.

7. Generates any needed CTH-ROUT
routines. A CTH-ROUT routine is
needed for any control specified in
the source program after the highest
level (of FINAL) control. If the
source program contains no TYPE IS
CONTROL HEADING report description for
such a control, routine GNSPRT
generates a dummy group routine here
to fill the need.

8. Generates any needed CTF-ROUT
routines. A CTF-ROUT routine is
needed under circumstances like those
for a CTH-ROUT routine.

9. Generates one SAV-ROUT routine and one
RET-ROUT routine.

GENERATING _ERROR MESSAGES

—— s s

Coincident with producing the RWS, phase 12
scans its input for syntax errors. Checks
are made to ensure that each routine is
both correct in itself and compatible with
the rest of the RWS. If errors are
detected, messages are written in E-text
and recovery is attempted. When necessary,
attempts to produce the particular RWS are
abandoned. The E-text is written
intermingled with PO-text, on SYSUT2.

BUERATING THE_SOURCE_LISTING

< im

As each record is read from SYSIN, a check
is made to determine if the SOURCE option
is in effect. If so, the source statement
is copied out on SYSPRINT (or SYSUT6 for
LVL option).

During its processing, phase 12 stores
various types of information for later

Licensed Material - Property of IBH

phases to use. For example, phase 12
builids the ROUTBL *table, which contains the
specific GN numbers assigned to certain RWS
routines. Phase 1B needs this information
to process INITIATE, TERMINATE, GENERATE,
and USE BEFORE REPORTING statements. Such
items are stored in TAMER tables and in
cells in COHMMON. For more details on this
subject, see Figure 7 and "Section 5. Data
Areas."

Phase 12 65

Licensed Material - Property of IBM

Phase 1B (IKFCBL1B) reads the Procedure
Division of the source program. It is
entered, via phase 00, when the GETDLM
routine in phase 10.or 12 encounters the
Procedure Division header. As it reads
each card image in the Procedure Division,
it performs the following major functions:

e Encoding the Procedure Division into
Procedure IC-text (PO-text format).

e Creating dictionary entries for
procedure-names.

o Writing the Procedure Division onmn.
SYSPRINT (SYSUT6 for LVL option) if the
SOURCE option was specified by the
user.

o Testing the BATCHSW switch in COMMON
for a hexadecimal '40' (ENDFOUND)
value, if the BATCH option was
specified by the user. If this value
is on, the last card in the current
compilation has been read in phase 10
and the switch is set off. Phase 1B
then returns to phase 00. Otherwise,
phase 1B checks for the CBL card, which
is a source delimiter. When a CBL card
is found, phase 1B sets on the
hexadecimal '08' (CARDHELD) value in
the BATCHSHW switch in COMMON, stores
the address of the CBL card in COMHON
location ADDRCARD, and returns to phase
00.

Phase 1B routines first process the
out-of-line procedures contained in the
Declaratives Section. (This processing is
described under "Declaratives" below.)
Then the in-line program is processed.

Tables passed from phase 10 and used by
phase 1B include the P1BTBL, PIOTBL, FNTBL,
RCDTBL, SPNTBL, and TOTTBL tables. Tables
passed from phase 12 for Report Writer
operations are the RWRTBL, DETTBL, ROUTBL,
and RNMTBL tables. The PNTABL and PNQTBL
tables are built during phase 1B. If the
VBREF or VBSUM option is in effect, phase
1B will create the VERBDEF Tamer table.
(See "Section 5. Data Areas" for formats
of all these tables). Dictionary entries
are made for all source procedure-names.
Procedure IC-text (in PO-text format) is
generated from the procedure statements.
Formats for these texts and the dictionary
are given in "Section-5. Data Areas."

66 Section 2. Method of Operation

The PDSCN routine controls Procedure
Division processing. The GETCRD and GETHD
routines supply the input in a manner
similar to the description under "Hajor
Working Routines"™ in the "Phase 10%
chapter. These and all other routines used
by both phases are indicated by an asterisk
in the subroutine directories for both
phases. Such routines do not remain in
storage from phase 10, but are reloaded
with phase 1B.

A major activity of phase 1B is writing
PO—-text. This text is, roughly, the source
progran Procedure Division recoded into a
form acceptable to later phases. Logical
units (source program words) are processed,
encoded, and written out one at a time.
Some information, such as card numbers, is
generated for PO-text. All user-assigned
names are passed unchanged (preceded by
code and count fields) from the source
text. Verbs and other COBOL words are
replaced by unique 2-byte codes. TFor the
complete text formats, see %“Section 5.

Data Areas."

"If the VERB option is in effect, Listing
R-text is generated and passed to phase 60
or 64 so that the object program listing
can include verb-names and procedure names.
Each text element is simply a word in
EBCDIC format preceded by a code and a
count. For every Listing A-text element
written, a card number element is written
in PO-text. This card number (passed on
through the changing text forms) indicates
to phase 60 or 64 when to read a Listing
A-text element.

PROCEDURE-NAMES

At its point of definition, each
procedure-name (paragraph-name or
section-name) is given a PN number. The
point of definition is that point at which
the name appears in Area A of the source
program. PN numbers are assigned
sequentially starting with 1 from cell
PNCTR in COMMON. The procedure-name is
entered in the dictiomary, and written in
PO-text.

ENTERING PROCEDURE-NAMES IW THE DICTIONARY

The dictionary is a repository for all
information that can be gathered about each
user-assigned name in the source progran
and dummy procedure-names for the beginning
and end of the Procedure Division and of
the Declaratives Section. Such information
about a name comprises its attributes.
After the dictionary has been completed by
phase 21, the attributes are substituted
for the name itself in the Procedure
IC~-text produced by phase 3. 1In later
Procedure IC-text processing by phases 4,
45, 50, and 51, all information about the
name appears conveniently in the text
stream, and the space required by the
dictionary can be released.

Dictionary entries for procedure-names
are made, using the DICOT and HASH tables,
by phase 1B. A procedure-name may occur in
the source program at its point of
definition, vhere it is called a left-hand
name. The name may also occur as an
operand in a statement such as "GO TO
procedure-name." A procedure-name used as
an operand is called a right-hand name.

A dictionary entry is made for each
left-hand name as it occurs in the source
text, and some of its attribute bits are
set at this time. Other attribute
information is not knoun until all
occurrences of the name as a right-hand
name have been read. (Verbs associated
yith right-hand names are discussed under
"Declaratives" and "Procedure-Branching
Verbs" later in this chapter.)

The phase 1B routines do not make
entries directly in the dictionary by
themselves. Rather, they call a special
group of routines called ACCESS routines,
vhich are resident during phase 1B in the
area of storage belou the phase 1B code.
These routines are designed especially to
build and use the dictionary. They are
also resident during phases 22, 21, 25, and
3, the other phases which use the
dictionary. They are described in
"Appendix A: Table and Dictionary
Handling.®

USING THE PNTABL AND PRQTBL TABLES

The PNTABL and PNQTBL tables are used to
store certain attributes of procedure-names
before these attributes are entered in the
dictionary. The PNQTBL table contains
entries for certain procedure-names that
are qualified by section-names, while the
PNTABL table contains entries for certain
nonqualified procedure-names.

Licensed Material - Property of IBM

Storing Information

Entries are made in the PNTABL or the
PWQTBL tables when certain verbs are
encountered (see "Procedure-Branching
Verbs® and “DEBUGY" belov), or when a
declarative section is processed (see
"Declaratives" below). Entries are also
made for dummy names. Information may be
added to a table entry if the
precedure-name occurs again before the
dictionary entry is found. A new entry
uill be made for a previously entered
procedure-name only if the o0ld entry has
already been deleted.

The formats of these entries correspond
exactly to the format of dictionary
attributes for procedure-names. Note that
a source statement may refer to a
procedure-name vhich has not yet been

‘defined and, therefore, is not yet in the

dictionary.

Hoving _Information_into_the Dictionary

The dictionary is searched at the end of
every source program section. When the
procedure-name in the table matches the
procedure~name in the dictionary,
information from the suitches in the table
is recorded in the dictionary attributes
field, and the table entry is deleted. The
dictionary search techniques are different
for the PNTABL and PNQTBL tables.

At the end of the first source progran
section, the dictionary is searched for
every procedure-name in the PNTABL. If a
dictionary entry is found, the information
is transferred and the PNTABL entry is
deleted. If no entry yvet exists, the
search bit is turned on in the PNTABL
entry. This bit indicates that the
procedure-nan€ does not appear in the
portion of the dictionary previously
searched. At the end of the next source
program section, another search is
perforned for each procedure-name then in
the PNTABL table. Whenever the search bit
is on for a given entry, the search is
restricted to the dictionary entries of the
most recent source program section (see
ULATACP" in "Appendix A. Table and
Dictionary Handling¥) .

The PHNQTBIL table contains the source
progran section-name qualifiers of the
procedure-names entered. Thus, if the
source program section named in the table
has already been processed, a corresponding
entry can be found in the dictionary by a.
linited search (see "LDELNHM" and "LATACP®
in "Appendix AR. Table and Dictionary

Phase 1B 67

Licensed Material - Property of IBM

Handling¥). The table entry is deleted
after the information has been transferred
to the dictionary entry., If the
section-name has not yet been encountered,

Figure 8 shows in diagram form an
example of the dictionary search. It
explains how the search would proceed for
several hypothetical procedure-names. Hote

no search is made.
does not require search bits.

Therefore, this table

that the figure does not represent table

formats.

USE OF DICTIONARY

v r L]
| Dictionary Entry Hade | K Attribute Information added §
| While Processing Section | Procedure-nane | After Processing Section i
t { + -
| 1 I PN2 i 2 §
{ - + 4
| | PN3 | 1 i
L 1 1 a
L) -) 3
| 3 i PN5 l 3 q
| = + 4
| | PN7 { 3 g
L [})]]

- USE OF PNTABL

L]
| Table Entry Hade
While Processing

o

iy 0RO aow D D e D G, e D G S e ST R s D am N S S eme SR e W T e O3 wm GRS A SUD o @S T o e e IO c s D aum 8 e cmn OB e cmd 5D eom @ e O

68 Section 2. HMethod of Operation

L)

{

|

|

|

|

i

|

|

{

|

{

{

{

|

{

' v L]

| 1 | §
1 { o {
(| Section | Procedure-nauwe. | - Action Taken 8
(I { t - g
{1 1 | PH3 { Dictionary entry is found on first search. i
[| { Table entry is deleted. i
11 k t {
i1 | PN7 { On the first search, dictionary entry has notj
11 | { yet been made, so the search bit is set. §
1 1 | | Oon the second search, only entries for’ {
11 1 | section 2 are searched. Since the name is |
[| { still not entered in the dictionary, the 1
1 1 i search bit remains on. On the third 4
11 { | search, only section 3 entries are i
I 1 | i searched. The dictionary entry is found, {
[| | 1 and the table entry is deleted. i
Ik ¢ = 1
1 3 { PN5 { Oon the third search, the whole dictionary is {
11 i | searched for this name, which is in the i
[| | table for the first time. The dictionary ¢
11 | | entry is found, and the table entry is §
[| | deleted. |
I [4 A 5
|

] .USE OF PNQTBL

| L] L] L] L]
| | Table Entry Made | | {
{ | While Processing | Qualified { i
11 Section | Procedure-name | Action Taken §
| + { 1
[2 { PN2 | on the second search, the entries for section}
(| | in { 1 are immediately searched. The dictionary|
11 | Section 1 { entry is found, and the table entry is {
[| i { deleted. i
l [[} (] 3
f DNote: 'sSection" as used in this figure refers only to source program sections.

| Dictionary sections are of fixed length and do not correspond to source progranm

| sections.

1

Figure 8. Entering PNTABL and PNQTBL Information in the Dictionary

PRIORITY CHECKING FOR SEGHMENTATION

For each section-name, the segmentation
priority is entered in the dictionary. If
no priority number was specified, zero is
entered as the priority. (In a
nonsegnented program, all sections are
given a zero priority.) If a priority
nunber wvas specified, its value is compared
to the value of the SEGLHT cell in COMMON
(set by phase 10; see WSEGHENT-LIHKIT
Clause% in the "“Phase 10" chapter). If the
priority number of the section-name is less
than SEGLHT, it indicates that the section
is part of the root segment. In this case,
the priority number of the section-name is
entered in the dictionary as zero. If the
priority number exceeds SEGLHT, it is
entered as specified.

Each time a section-name is found whose
priority exceeds the value of SEGLHT, a
suitch called SEGSH, whose location is
internal to phase 1B, is turned on. If, at
the end of Procedure Division processing,
this swvitch still contains zero, it means
that the program is not segmented, and
SEGLHT is set to hexadecimal 'FF'. ' If the
suitch is on, SEGLMT is left as it is. The
value of SEGLHMT is used by later phases to
deternine wvhether the program is segmented.

YERBS

All verbs are encoded and written into
PO-text. In addition, the verbs discussed
belov require special handling.

PROCEDURE-BRANCHING VERBS

Procedure-branching verbs use the PNTABL
and PNQTBL tables. Entries in these tables
are used to set some of the attribute bits
in the dictionary entries for the
procedure-names. The process by which
dictionary entries are made from these
tables is described in this chapter under
"Using the PNTABL and PNQTBL Tables."

GO_TO: The left-hand name (the procedure-
name appearing in Area A, not the object of
the GO TO statement) is entered into the
table. (& GO TO statement preceded by a
procedure-name definition may be the object
of an ALTER statement elsewhere in the
program.) If the DEPENDING ON option is
used, no entry is made.

EXIT: The left-hand name is entered.
ALTER: The procedure-name following the
word ALTER and the procedure-name following
the phrase TO PROCEED TO are entered.

Licensed Material - Property of IBM

PERFORM...THRU: The procedure-name
following the THRU is entered. If the THRU
option is not used, the procedure-name
following PERFORM is entered. (This entry
directs phase 4 to provide a return of
control at the end of the PERFORM
procedure.)

INPUT/OUTPUT VERBS

Suitches are set in the PIOTBL entry for
the file named in the input/output
statement. These switches indicate to
phase 21 how the file is used. 1In
addition, the following processing takes
place:

DELETE: The FILSVB subroutine checks that
the file name specified in the DELETE verb
vas previously specified in a SELECT
statement. The subroutine turns on the
appropriate bit in the PIOTBL table if the
filename is valid.

OPEN: If label- or error-processing
declaratives were vwritten for this file,
GNs' (generated procedure-name references)
for the declaratives are encoded in the
PO-text following the file-names in the
OPEN statements. The handling of these
declaratives is described below under
"Declaratives."

READ: The PIOTBL entry for the file is
checked to determine whether the RERUN bit
is on. If it is, a special verb code is
used. The REDSVB routine also checks for
the word NEXT in the READ verb. If
present, the routine turns on the
appropriate bit in the PIOTBL table.

HRITE, REWRITE: The record-name is sought
in the RCDTBL table and from its FNTBL
pointer the file-name is found. The
file-name is then included in the PO-text
entry (in the form WRITE file-name

For a WRITE statement, the
PIOTBL entry for the file is checked to
determine whether the RERUN bit is on. If
it is, a special verb code is used in the
PO0-text. If the ADVANCING mnemonic-name
option of the WRITE statement is used, the
mnemonic-name is sought in the SPNTBL table
and replaced with the proper special-name.
If an INVALID KEY option is used, phase 1B
sets the appropriate PIOTBL bit to 1.

START: The STTSVB subroutine checks that
the file name specified in the START verb
vas previously specified in a SELECT
statement. The subroutine turns on the
appropriate bit in the PIOTBL table if the
filename is valid. The subroutine also
checks for a KEY of REFERENCE and/or an
INVALID KEY clause. If either or both are
found, the subroutine turns on the
appropriate bit(s) in the PIOTBL table.

Phase 1B 69

Licensed Material - Property of IBNM

OTHER VERBS

ACCEPT, DISPLAY: The mnemonic-name used is
sought in the SPNTBL table and replaced by
the proper special-name.

DEBUG: The attribute bits in the
dictionary entry for the specified
paragraph are set, using the PNTABL and
PNQTBL tables as described above.

. EXHIBIT: A special EXHIBIT data-name is
generated.
.READY: The SWTRCE switch in the SWITCH

cell in COMMON is set.

SORT/MERGE: If the USING or GIVING options
are specified, the appropriate PIOTBL bits
are set in the entries for the files named.
If these files are also specified in label-
or error-processing declaratives, a special
code is used for the USING or GIVING
elements in the PO-text.

If the COLLATING SEQUENCE phase is
specified, the ALPHTBL is scanned to ensure
that the phase is valid.

Report_Writer Verbs: See the chapter
"Report Writer Subprogram."

DECLARATIVES

When a declarative section is encountered,
the section-name (and paragraph-names, if
any) are entered into the dictionary. ‘A
PNTABL entry is made for the section name,
with the declarative bit and the
appropriate bit to identify the type of
declarative set. Every paragraph-name in
the section is also entered in this table,
with only the declarative bit set. These
bits are used later to set dictiomnary
attribute bits.

Each label or error declarative is given
a GN (generated procedure-name) number.
These numbers are assigned sequentially
starting with 1 from the GNCTR cell of
COMMON. If the USE sentence specified
file-name, the GNs are entered in the
appropriate fields of the FNTBL entry for
the file. If the USE sentence specified
INPUT, OUTPUT, EXTEND, or I-O, the GN
number is entered in a work area. If a USE
FOR ERROR declarative statement is
encountered, the appropriate PIOTBL table
bit is set to 1.

These work areas and tables are checked
when OPEN verbs are encountered. For each
file-name specified in an OPEN statement,
the corresponding FNTBL entry is inspected.

70 - Section 2. Method of Operation

If GNs were entered in the FNTBL table
during declarative processing, they are
inserted in the PO-text. Otherwise, the.
work areas for the particular OPEN option
are used for GNs. If an ON INPUT GN for an
error declarative is found in the work
area, the GN number is inserted in all OPEN
INPUT PO-text entries. The GNs for label
declaratives are determined for files whose
FD statements include a LABEL RECORD IS
data-name clause. OUTPUT and I-O GNs are
handled the same vay.

The USESVB routine builds the GVNHTBL
table containing the fully qualified
data-names used in the GIVING option of the
STANDARD ERROR/EXCEPTION PROCEDURE
declarative for VSAM files. The routine
also builds the GVFNTBL table when a VSAM
file has been specified in the ON option of
the declarative.

For a USE FOR DEBUGGING declarative, the
USEGEN label is used for the DEBUG
processing code, and will be entered only
from DCLSCN at the start of the
declaratives. Following USEMSG, a branch
will be inserted to label USEGN1. At label
USEGN1 a check is made for FOR followed by
DEBUGGING; if found, the USEDBG code is
executed; othervise the USE verb code
(USECON) is restored to CURCOD and a branch
is taken to continue processing at USEGN1.

The USEDBG verb is generated if a USE
FOR DEBUGGING declarative has at least one
valid operand. USEDBG checks the V2BUGON
switch. If V2BUGON is not on, USEDBG

.ignores all code for this USE sections and

scans to the next section-name, USE verb,
or END DECLARATIVES. If V2BUGON is on,
USEDBG checks for ALL PROCEDURES; if found,
BGALLPRC is tested to see if it has been
specified before. If so, a message is .
produced indicating that the second
occurrence of ALL PROCEDURES is ignored.

If valid, a procedure-name number for the
section-name, prior to USE, is entered in
BGALLPN and its priority number is entered
in BGALLPRI, and a USEDBG verb is
generated. V2BUGDCL is set on ' to indicate
a valid USE FOR DEBUGGING declarative has
been found. Control is transferred to
USEDCB which checks the BCD-name operand.
USEBCD generates an alphanumeric literal
representing the BCD-name operand. If it
is a qualified-name, it goes to QLTABL to
generate an alphanumeric literal for up to
30 bytes containing the name and its
qualifiers, separated by OF. If it is a
BCD-name, the contents of CURBCD can be
used. Then the name is generated and
end-of-sentence is checked for; if so, exit
is to VRBENT, if not, return to search for
more operands. If no operands are found
for the USE verb, a message is produced and
the USE sentence is discarded.

7~

Phase 20 (IKFCBL20) is the third of five
phases that process the Data Division. It
follows phase 1B, overlaying it in storage.
Phase 20 is called by routine LINKPH1 of
phase 00 and returns control to phase 00
vhen it encounters an end-of-file condition
on SYSUT3. The primary concerns of phase
20 are the VALUE and PICTURE clauses of the
data descriptions, which it translates from
Data IC-text into ATF-text.

Phase 20 processing is initiated and
controlled by the BEGIN routine. It reads
each Data IC-text element and, from each LD
entry, it computes and writes a partial

Licensed Material - Property of IBM

PHASE_20

After completing the partial entry, phase
20 writes it on SYSUT4 (the format of the
entry is called ATF-text) and reads the
next Data IC-text element, continuing until
SYSUT3 has been exhausted. All Data
Ic-text for FDs, SDs, CDs, and keys for
table handling and any E-text encountered
is copied unchanged onto SYSUTH.

Phase 20 also scans its input for syntax
compatability and error conditions,
producing any necessary E-text; it produces
and passes tuo tables, the VALTRU and the
VALGRP, to later phases. The input and
output for this phase are summarized in

dictionary entry to be passed toc phase 22. "Figure 9.
SYSUT3 SYSUTH
v Ll ¥ L]
i | {Incomplete Data |[To
i Data IC-text i | A-text |phase 22
{ E-text — ——>|Data IC-text — >
i i i | | ATF-text {
| | | { |E-text {
[[} ' ’ (] 1
| |
| {
| {

Storage (phase 00) | 1 Storage (phase 00)
| A | T L] ‘ T]
! | | { | i | |
{ i | i i | ! !
§ COHHON 3 L > PHASE 20 > COMHMON i
{ { | | | i |
H I { | 1 i i
L 1 L 3 I] (]

oS |
{ |
i |

Storage (TAMER) i { Storage (TAHER)
L] L} g , LN 1
{Tables built by | 1 { i !
{phase 20 | ! { 1 i
| 1< i L——> | VALTRU table |
i LABTBL table |} | VALGRP table |
I VALGRP table 1 | |
| VALTRU table { [{
1 '] L]
Figure 9. Phase 20 Input/Output Flow

Phase 20 71

Licensed Material - Property of IBM

TRANSLATING LD _ENTRIES_INTO ATF-TEXT

Routine BEGIN first determines whether the
element read is an LD element; that is, one
resulting from a source program record
description entry of level numbers 01
through 49, 66, 77, or 88. If so, BEGIN
stores the current input card number in
COMMON and calls on routine LDTEXT. LDTEXT
copies the element from the input buffer
into a work area, called ATFTXT, reads the
next record (Data IC-text element) into the
buffer, compares the current level number
to the next element's level number to
determine whether it is a group or an
elementary item, and calls the appropriate
routines to create the ATF-text.

PROCESSING ELEMENTARY ITEMS

For an elementary item, the LDTEXT routines
described below produce a portion of an
ATF-text element that contains fields
identical to a dictionary entry except for
the addressing parameters. Routine DICTBD
of phase 22 fills these in later.

If there was a PICTURE flag in the Data
IC-text for the elementary item, the LDTEXT
routine calls routine GSPICT to distribute
the PICTURE into work areas. The kind of
character is stored in work area IPT and
the number of occurrences of that character
in IPLT. Subroutines, depending on the
type of the PICTURE, determine the length
of the item and its attributes. The
attributes are entered in the variable
information field of the ATF-text element.

An indication of how many subscripts are
needed to refer to the item is set in the
text element by subroutine BMBSRN. The
REDEFINES bit is set from the REDEFINES
flag in the Data IC-text, and the object of
the REDEFINES clause is saved for
processing by phase 22. (If the REDEFINES
clause is internal, that is, generated for
the Report Section, and the subject of the
clause is a name plus a displacement, phase
22 adjusts the addressing parameters of the
object of the clause to reflect the
displacement.) The major code, which is
changed only when a new section header is
encountered, is moved from a work area to
an ATF-text field. 1In addition, the level
numbers are normalized as an aid to phase
3.

Routine BUSAGE utilizes the USAGE
information in the Data IC-text to
determine the size of the elementary iten
if there was no PICTURE. It provides
enough information to set the minor code
field in the ATF-text element to the type

72 Section 2. Method of Operation

of the entry and to £ill in the variable
information field with a description of the
item. If there was a PICTURE, the USAGE
information, together with the PICTURE,
provides enough information to set the
ninor code and variable information fields.

If a RENAMES clause is associated with a
data item, no partial dictionary entry
exists in the ATF-text element, and all
processing is done by phase 22. The BCD
names are passed on unchanged from the Data
IC-text element. '

PROCESSING GROUP ITEHMS

For a group item, the LDTEXT routines
produce a portion of an ATF-text element
that is identical to a dictionary entry
except for the addressing parameters and
the length of the group. These are later
filled in by phase 22.

The processing is the same as that for
elementary items with two exceptions.
Routine BUSAGE saveS the USAGE, in area
GUI, to verify the USAGE of the elementary

items. Routine SRCHTB passes the keys for
table handling, if any, unchanged to phase
22.

PRODUCING INCOMPLETE DATA A-TEXT

Phase 20 generates incomplete Data A-text
elements for constants defined by VALUE
clauses. Information for constructing this
text comes from the Data IC-text read from
SYSUT3. For LD entries with VALUE clauses,
the value is given in the Data IC-text
element and is entered directly by routine
VALGEN into the incomplete Data BA-text
element. Constants defined by VALUE IS
SERIES clauses are discussed under
"Building Tables for Later Phases" in this
chapter. For the formats of Data A-text
and Data IC-text, see "Section 5. Data
Areas. "

PROCESSING FILE SECTION ENTRIES

When it encounters the File Section header,
the BEGIN routine transfers control to
routine FILEST, which controls the
processing of the section. Routine FILEST
uses the BSUBRN routine to read the Data
IC-text elements. If the next item read is
a critical program break or if EOF is
encountered, routine FILEST returns control
to routine BEGIN.

PROCESSING COMMUNICATION SECTION_ENTRIES

When it encounters the Communication
Section header, the BEGIN routine transfers
control to routine COMSCT, which controls
the processing of the section. CD entries
are passed unchanged by routine CDTEXT; LD
entries are processed by routine LDTEXT as
described earlier.

PROCESSING_ERRORS

As phase 20 processes Data IC-text, the
clauses are checked to determine whether

Licensed Material - Property of IBM

they are allowed to be used together. The
following is an example of the checking
that is performed.

When routine LDTEXT processes Data
IC-text elements for LD entries, some of
the clauses are processed before a
determination is made of whether the iten
is a group or elementary item. Then, when
the LDTEXT routine determines whether the
item is a group or elementary item, it
eliminates any invalid clauses. For
example, if a PICTURE clause is given for a
group item, routine LDTEXT processes it.
Then when it determines the item is a group
item, routine ERRTN issues E-text for the
invalid PICTURE clause.

Phase 20 73

Licensed Material - Property of IBM

4
ted
o]
N
(¥

Phase 22 (IKFCBL22) is the fourth of five
phases that process the Data Division.
Phase 22 follows phase 20, overlaying it in
storage. Its major functions are producing
dictionary entries, completing Data-A text,
and generating Q-routines.

Phase 22 processing is initiated and
controlled by the DIRECTOR routine. A Data
IC-text or ATF-text element is read from
SYSUT4 and distributed to work areas.
Routine DICTBD then completes fields in the
entry and places it in the dictionary.
While building the dictionary entry, phase
22 also checks for syntax compatibility and
error conditions. After phase 22 has
completed the dictionary entry for a given
text element, it picks up the next element
for processing, continuing until SYSUT4 has
been exhausted. All Data IC-text for FDs
and SDs and any E-text encountered is
copied unchanged onto SYSUT3.

Incomplete index-name entries (prefix
04) are entered into the dictiomnary by
routine READFY4 when they are encountered.
Later, information is filled in by routine
XTEN, a subroutine of DICTBD.

The input and output for this phase are
summarized in Figure 10.

BUILDING DICTIONARY ENTRIES

The dictionary is used to store information
about procedure-names and data operands and
is the product of phases 1B, 21, and 22.
Phase 22 stores the current card number,

74 Section 2. Hethod of Operation

generated during phase 10 for each input
card in COMMON. It then calls the
appropriate routine for preprocessing of
the data item, and after the preprecessing
is finished, it calls routine DICTBD to
complete the entries. The routine makes
either complete or dummy dictionary
entries.

DICTIONARY PREPROCESSING

RENAMES Entries: If a RENAMES clause is
associated with a data item, routine RENAHS
goes to the dictionary and locates the data
item or items being renamed. The routine
picks up the attributes and addressing
parameters for the dictionary entry or
entries and assigns them to the RENAMES
item. The routine then places the
conpleted entry for the RENAMES item into
the dictionary. The entire dictionary
entry for a RENAHMES item is formulated by
the REFAHS routine.

LD_Entries: Before the dictionary build
routine is called to complete the
dictionary entry for an elementary itenm,
routine LDTXT obtains a dictionary pointer
for the item by calling an ACCESS routine,
GETPTR. (ACCESS routines are
dictionary-handling routines.)

A delimiter pointer is needed for group
itenms.

Level-88 entries are put into the
dictionary directly by the input routine
READF4.

Licensed Material - Property of IBM

INPOT QUTPRUT
SYSUT4H SYSUT3
¥ 1 r 1
|ATF-text | {Data A-text |To
|Data A-text | |Data IC-text Iphase 21
| (incomplete) — ——>| DEF-TEXT | —
IData IC-text | | | {E-text]
|E-text | [| | |
[J ' | L J
{ |
| |
| |
i { SYSUT2
| | - 1 TO
| | | {phase 3
i —>1 Q-routines —
| L !
I |
I |
| |
Storage | ! Storage
(in phase 00) | | (in phase 00)
v 1 ' r 1 | ¥ L}
| { | | | | | |
| | \ | | | | |
] COMHON [>3 | PHASE 22 t—t—>| COMMON |
| t A | | | | |
I | | | | | | |
[} Jd ' L r] l L]
| A |
| | |
| I |
‘ | | |
Storage (TAHER) { 1 | Storage (TAMER)
r 1 | i | r 1
Tables passed to I i]					
phase 22			{		
					L
DICOT	et	—>1 Dictionary			
HASH	I				
OD2TBL				{	
] VALTRU	[]			
VALGRP					
UPSTBL 1					
L L] . l L J					
{ {					
v					
Storage (TAMER)	Storage (TAMER)				
r 1 l ¥ 1					
Tables built by			Tables:		
phase 22			DICOT		
i		i FDTAB			
GPLSTK]		HASH			
QITBL		{ INDKEY			
QRTN	—>] MASTODO				
RDFSTK		OCCTBL			
RNMTBL i	QFILE 1				
SRCHKY		QVAR			
		RENAMTB			
		VALTRU			
[] VARLTBL {					
L J []

Figure 10. Phase 22 Input/Output Flow

Phase 22 75

Licensed Material - Property of IBM

FD_Dictionary Entries: . A skeleton
dictionary entry is created by routine
FSTXT. This entry contains only the file
name; the attributes are filled in by phase
21. The length of the VSAM FD dictionary
attributes is determined by phase 22 when
making the skeleton entry. This is true
for all other access methods. Routine
FSTXT writes the Data IC-text for the FD on
SYSUT3. Phase 22 determines if there is an
ISAM file which has' no RESERVE NO clause
and is opened INPUT or I-O.

Since Phase 21 processes the Data
IC-text for FDs, routine FSTXT passes this
text to SYSUT3 (the same file on which
phase 22 writes Data A-text) except for
user label record information.

A dictionary pointer is obtained and
processing of the entry is completed by
routine DICTBD and its subroutine FST000.

A skeleton dictionary entry is also
created for any LINAGE-COUNTERs specified
for an FD. :

CD_Dictionary Entries: Routine CDTEXT does
the processing for the CD dictionary entry;
it creates a dummy level-01 entry and dummy
level-02 entries for each CD-name from
predefined attributes. Routine DICTBD
enters these in the dictionary.

Partial RD Dictionary Entries: Routine
RDTXT does most of the processing for the
RD dictionary entry. At the end of this
processing, the entry is complete and
entered in the dictionary by routine
DICTBD.

SD entries are
Routine SDTXT

SD_Dictionary Entries:
handled like FD entries.
performs this processing.

COMPLETING DICTIONARY ENTRIES

The dictionary build routine, DICTBD,
completes these dictionary entries which
were begun in phase 20 by filling in
addressing information. Each data item is
addressed by a base locator number and a
displacement.

The addressing parameter field has three
parts, called i, d, and k, where i
specifies the type of base locator (BL,
BLL, or SBL), d specifies the displacement
of the item from the beginning of the area
controlled by the base locator, and k
specifies the base locator number.

A base locator number is assigned to the
beginning of each major data area, such as
the Working-Storage Section, and to each FD

76 Section 2. Method of Operation

and SD entry. Then the displacement of
each item in these areas from the beginning
of the area is calculated. If the items in
the area occupy more than 4,096 bytes, a
second base locator number is assigned to
the second 4,096 bytes, etc. (In this
case, CD and RD entries are considered to
be an extension of the Working-Storage
Section and the same base locators are
used.)

There are three types of base locators
(BL, BLL, and SBL) depending on the type of
data area. Base locator numbers are
assigned sequentially from counters in the
COMMON area.

Type Counter Use

BL BLCTR BL numbers are assigned to
the Working-sStorage
Section, the Communication
Section, the Report
Section, and to each FD,
CD, and RD entry.

BLL BLLCTR BLL numbers are assigned to
the Linkage Section, the
DEBUG-ITEM special
register, if specified,
label records, and to each
SD entry.

SBL SBLCTR See "Q-routine Generation®
in this chapter. :

Completing Working-Storaqge Section Entries:
The Working-Storage Section contains only
LD entries. Routine DICTBD completes the
LD dictionary entries by filling in the
addressing parameter field for group and
elementary items and by determining the
length and the delimiter pointer for group
items. .

Routine DICTBD assigns a base locator
number to the beginning of the
Working-Storage Section. The type of the
base locator number is BL, and the base
locator number is the next available number
from field BLCTR in COMMON. The d part of
the addressing parameter is obtained from
the LOCCTR counter in COMMON. Each time a
data item is processed; the counter is
incremented by the number of bytes the
element will occupy at object time.

Routine DICTBD uses the GPLSTK table to
keep track of the length of group items.
It enters the length and the delimiter
pointer (the dictionary pointer of the
group delimiter) in the .dictionary entry
for the group. It also deletes the GPLSTK
table entry for the group.

Note: The lengths of level-77 items are
not added to the GPLSTK table since they
are independent itenms.

If an item contains a REDEFINES clause,
routine DICTBD calls routines REDEF and
RDSYN to process the item using tables
RDFSTK and RNMTBL. The REDEF routine makes
an entry in the RDFSTK table, giving the
length of the REDEFINES object and the
level number and current addressing
parameters of the REDEFINES subject. Then
the REDEF routine assigns the addressing
parameters of the REDEFINES object to the
REDEFINES subject. An entry is also made
in the RNHTBL table, giving the level
number, dictionary pointer, and length of
the object of the REDEFINES.

Hhen an item is encountered with a level
number less than or equal to the last level
number in the RDFSTK table, it is assigned
the addressing parameters from the entry.

The length of the REDEFINES object is
saved in the RDFSTK table to see whether
the length of the REDEFINES subject is less
than or equal to it. If the REDEFINES
subject is a group item, its length is
deternined by the GPLSTK table. If it is
an elementary item, routine RDSYN
determines its length. (Routine RDSYN also
checks the name of the REDEFINES object
against the entries in the RNMTBL table to
see wvhether or not it is valid.)

Table RNMTBL is also used if there are a
series of items with REDEFINES clauses. It
saves the names so that an item can
redefine an item that does not immediately
precede it in the series.

Completing File Section Entries: Routine
DICTBD uses its subroutine FST000 to
complete dictionary entries for FDs.
subroutine FST000 performs two major
functions:

o It resolves the previous FD, if any.

o It completes the processing of the
current FD, if any.

Routine DICTBD processes SD entries in
the same way it processes FD entries,
except that the type of base locator number
assigned is BLL. These are obtained from
field BLLCTR in COMHMON, and the first BLL
nunber used is 3.

Completing Linkage Section_Entries:

Linkage Section entries are processed the
same as Working-Storage Section entries,
except that the type of base locator number
assigned is BLL. For a label record itenm,
the first BLL is assigned. For other items
in the Linkage Section, BLL numbers are

assigned starting with the first BLL number-

not used for an SD entry. All level-77
itens and all group items starting with
level-01 in the Linkage Section are
assigned unique BLL numbers.

Licensed Material -~ Property of IBH

Completing Communication Section Entries:
Routine CDTEXT calls routine DICTBD to
process the dummy CD entries that CDTEXT
has created. Location counter values are
saved so that every level-01 entry under a
CD starts at the same location. Base
locator numbers for level-01 entries are
assigned to these items as though they were
in the Working-Storage Section. The
location counter value for the CD FOR
INITIAL INPUT, if specified, is saved in
CDLCCTR in COHIMON.

Completing Report Section Entries: Routine
DICTBD adds no information to Report
Section entries before it puts them in the

dictionary.

GENERATING _DATA_ A-TEXT

Phase 22 completes the incomplete Data
A-text elements passed to it by phase 20 by
adding the location counter values. The
two prefix bytes (the X'10¢ indicator and
the length count affixed by phase 20) are
left to serve as an indicator to phase 21
that the text element needs no further
processing. Phase 21 deletes the first 2
bytes and then passes it unchanged to phase
6 or 64 and selects the Data IC-text
elements (for FDs and SDs) for translation
into Data A-text.

Phase 22 generates five types of Data
A-text elements itself. While doing so, it
prefixes them with the same two bytes of
information discussed above. The four
types are:

o Working-Storage Section address
elements.

o

Constants from VALUE clauses.

[}

Data-name DEF elements.

Verb DEF elements.
o Q-routine identification elements.

To create these elements, phase 22 uses
information stored in CONMHON, tables
GPLSTK, VERBDEF, and VALGRP, Data IC-text
created in phase 10 or 12 and passed by
phase 20, and ATF-text created by phase 20.

Q-ROUTINE _GENERATION

Phase 22 uses the following tables to
generate Q-routines: OD2TBL, QFILE, QVAR,
OBJSUB, QITBL, and QRTN. The OD2TBL table
is created by phase 10 and the other tables

Phase 22 77

Licensed HMaterial - Property of IBHN

by phase 22. The QFILE table is passed to
phases 21 and 3 and the QVAR table is
passed to phase 3; the OD2TBL, OBJSUB,
QITBL, and QRTN tables are released by
phase 22. (When the SYMDHP option is in
effect, however, the QITBL and QRTHN tables
are passed to phase 25.) the OD2TBL
contains the qualified names of objects of
OCCURS...DEPENDING ON clauses.

Routine QVARBD combines the information
contained in the OD2TBL, the QRTN, the
OBJSUB, and the QITBL and QFILE tables into
the QVAR and QFILE tables for phase 3; the
QFILE table may be updated by phase 21.

The routine then releases the OD2TBL, QRTH,
and QITBL tables. (When SYMDHP is in
effect, it releases only the OD2PTBL table.)

If phase 10 created an OD2TBL table,
phase 22 checks each elementary item that
it processes to see whether or not it is in
the OD2TBL table. If it is, phase 22 sets
the dictionary entries of the item and all
its groups to reflect that they are objects
of OCCURS...DEPENDING ON clauses. If it is
a group item, routine XTEN performs the
processing; if it is an elementary item,
routine ELIPR handles the processing.
Routine ELIODO then places the dictionary
pointer for the item and a pointer to the
related OD2TBL entry in the QITBL table.

If an object of an OCCURS...DEPENDING ON
clause is encountered while processing the
File Section, its OD2TBL table.displacement
is placed in the OBJSUB table.

Hhen phase 22 encounters an ATF-text
element for an 1D entry with a pointer to
the OD2TBL table (that is, the item was
described with an OCCURS...DEPERDING ON
clause), routine INTVLC marks all the group
items currently in the GPLSTK table as
variable in length by assigning a VLC
(variable-length cell) number from field
VLLCTR in COMMON to each item. If a
subject of an OCCURS...DEPENDING ON clause
is encountered while processing the File
Section, its GN number is placed in the
OBJSUB table. ‘

In addition, if an item follows a
variable-length field and is not a new file
or record, it is variably located. To each
of these items, phase 22 assigns an SBL
(secondary base locator) number from field
SBLCTR in COMMON. At execution time, there
are secondary base locator cells (one for
each SBL number) in the Task Global Table
that contain the current location of the
variably located field. Phase 22 generates
Q-routines to calculate initial values and
changes in these secondary base locator
cells.

Whenever phase 22 generates Q-Routine
text, a determination is made to see
wvhether or not it is the first time that

78 Section 2. Method of Operation

Q-Routine text has been generated for this
record. If it is the first time, a GN
number is generated and routine QBUILD
places it in front of the Q-Routine text
for identification. This routine then
makes an entry in the QRTN table containing
the GN and the pointer to the OD2TBL table.
If it is not the first time, the QRTN table
is checked to see whether the pointer to
the OD2TBL table is there. If the pointer
is missing, it is put in.

Data A-text Q-routine identification
elements are generated for each Q-routine
and placed on the Data A-text data set.
These indicate that the Q-routines are to
be executed during initialization
processing at execution time.

PROCESSING _ERRORS

As phase 22 processes Data IC-text and
ATF-text, a check is made of the clauses to
be sure that they are.allowed to be used
together.

EBCDIC names for keys for table handling
(prefix 01 or 02) are entered into the
SRCHKY table by routine READF4 while the
dictionary is being built. This table is
used for syntax checking whenever the names
are encountered.

BUILDING _TABLES _FOR_LATER PHASES

Phase 22 builds eight tables for later
phases. In addition, it uses the VALTRU
table for syntax checking of the VALUE IS
SERIES clause, but then leaves that table
in storage for phase 3. The VALTRU table
is built by phase 20 and described under
that heading.

The QVAR and QFILE tables are built
during Q-routine generation and stored for
use by phase 3; the QFILE table may be
updated by phase 21. They are discussed
above under "Q-routine Generation."

During dictionary preprocessing
(described above) , routine SRH200 creates
the INDKEY table.

The FDTAB table is built for phase 21.

If the SYMDMP or TEST option is in
effect, phase 22 primes and builds as many
as four tables, depending on the clauses in
the source program, for phase 25: the
OCCTBL, HMASTODO, VARLTBL, and RENAMTB
tables.

Phase 21 (IKFCBL21) is the last of the five
phases that process the Data Division.

When phase 21 is loaded into storage, the
dictionary is complete except that the FD
and SD entries and the LINAGE-COUNTER
special register are dummy entries without
data attributes written by phase 22.

The input to phase 21 includes Data
IC-text, Data A-text (with two-byte
prefix), E-text, and four tables. The
PIOTBL table, built by phase 1B, and the
FPDTAB table, built by phase 22, are used to
supply information about files for Data
A-text. The QFILE table, built by phase
22, is updated if DCBs are created for
checkpoint files. The CKPTBL table, built
by phase 10, supplies information about
each RERUN statement in the source program.
Phase 21 uses the CKPTBL table to build the
RUNTBL table, which is used in phase 51 to
process verbs for RERUN files.

After phase initialization, each record
is read from SYSUT3 and the action to be
taken is determined. For a Data A-text
element, the 2-byte prefix attached in
phase 22 is removed, and the element is
copied onto SYSUT4; FD and SD elements are
selected for processing by phase 21; all
other records are copied unchanged onto
SYSUT4.

From the FD and SD Data IC-text elements
and frcm information stored in the
dictionary and the PIOTBL and FDTAB tables,
phase 21:

o Completes FD dictionary entries from
source program file description entries
in the File Section.

¢ Completes SD dictiondry entries from
source program sort description entries
in the File Section.

o Completes LINAGE-COUNTER entries.

o Writes the Data A-text for DCBs, DECBs,
and buffers onto SYSUT4.

Phase 21 alsc produces E-text. If an error
(E) level message is generated and the
CSYNTAX opticn is in effect, the SYHTAX
option is forced into effect and the
options suppressed when SYNTAY is in effect
are turned off (see "Compiler Options" in
the section "Introduction®).

Licensed Material - Property of IBM

FD_DICTIONARY ENTRIES

The FD dictionary attributes work area (CI)
is filled in from Data IC-text in FD form
and from FDTAB table information in FD
form. Routine FSTXT and its subroutine
ACCHET do most of the processing. The
remaining information needed, that is, base
locator number, Q-Routine indication,
maximnum record size, and recording mode
fields, is filled in by the FSTO000 routine.

The count and major code fields in the
dictionary entry are predetermined by the
Data IC-text. The access method field is
filled in from the information in the
access and organization fields of the Data
IC-text.

As phase 21 sets up DCB, DECB,
identifying elements for the file
(described in "Data A-text Elements" in
this chapter), subroutine ACCMET assigns
DCB and DECB identifying numbers from the
fields DCBCTR or DECBCT in COMMON and
subroutine AMTXT assigns FIB identifying
nupbers from the AMICTR field in COMMON.
These numbers are placed in the dictionary
attributes work area..

and FIB

If the checkpoint bit in the Data
IC-text is set to 1, phase 21 searches the
CKPTBL table for the entry for the
file-name. The TYPE field in the CKPTBL
table is tested and if the “END OF
REEL/UNIT" option was specified, phase 21
builds a BSAM DCB for the checkpoint file
and makes one entry in the exit list. See
"Creation of Exit Lists" in this chapter.
If the "integer-1 RECORDS" option was
specified, phase 21 builds a BSAM DCB for
the checkpoint file for each unique
external name and creates a RUNTBL table
entry from the CKPTBL table. 1In both
cases, the Chain Pointer field in the
CKPTBL table is tested and if it is not
zero, the other entry for the file-name is
processed as described above. After the
RUNTBL table is completed, the CKPTBL table
is released and the RUNTBL is made static.
Finally, the CKPCTR cell in COMMON is set
to the number of RERUN files with the
®*integer-1 RECORDS" option.

If DCBs are generated for checkpoint
files and the QFILE table is present, phase
21 increments the DCB numbers in the QFILE
table by the number of DCBs created for
checkpoint files.)

Phase 21 79

Licensed Material - Property of IBHM

While forming partial FD entries, the
ACCMET subroutine begins building the
SAMETB and SMRCDTBL tables. Routine FST000
completes the fields in the tables.

Phase 21 builds the FD dictionary
entries, the File Information Block (FIB),
and the IND2TBL table entry if Record key
is specified for VSAM files.

In building the dictionary entries, FIB,

and IND2TBL table entry, phase 21 uses
FS-text as its input.

SD_DICTIONARY ENTRIES

The SD dictionary attributes work area (CI)
is filled in from Data IC-text in SD form
and from FDTAB table information in SD
form. Routine SDTEXT fills in count and
ma jor code information, which is
predetermined by the Data IC-text.
lengths, BLL information, Q-Routine
indication, and recording mode are filled
in by the FST000 routine which does most of
the processing for the entry.

Record

INAGE-COUNTER_ENTRIES

LINAGE-COUNTER entries are completed from
the Data IC-text and the dictionary.

DATA_A-TEXT ELEMENTS

Phase 21 generates the following types of
Data A-text elements from which phase 6 or
64 creates object text for the data area of
the object module.

o Block address elements
o Constant definition elements
o Address constant definition elements

e DCB, DECB, and FIB address elements

To create these elements, phase 21 uses
the COMMON area, the FDTAB table, Data
IC-text, and the PIOTBL table from phase
1B. If there is an entry for a file in the
PIOTBL table, the Data IC-text for the file
has a pointer to the table. The PIOTBL
table indicates the usage of the file. 1In
addition, phase 21 creates the SAMETB, and
SMRCDTBL tables to aid in producing Data
A-text.

80 Section 2. Method of Operation

FIB ADDRESS ELEMENT

Phase 21 creates a FIB address element for
each FD entry that describes a VSAH file.

BLOCK AND WORKING-STORAGE SECTION ADDRESS
ELEMENTS

Phase 21 creates a block address element
for each FD entry that describes a basic
access method (BSAM, BISAM, and BDAHM) or a
queued access method (QSAM and QISAM) with
the SAME AREA clause.

The element contains the location of the
specified area in the object module data
area. (that is, the current value of field
LOCCTR in COMMON) and the first base
locator number assigned to the area.

CONSTANT AND ADDRESS CONSTANT DEFINITIOW
ELEMENTS

Constant, address constant, and virtual
reference definition elements are created
to build exit lists and to specify the
contents of DCBs and DECBs created for
files described in FD entries.

Creation of Exit Lists

Exit lists are built of constant and
address constant definition elements.

The area for the exit list is reserved
and the pointer to the list is indicated in
the DCBEXLST field. Some of the actual
entries to the exit list will be made at
object time by code generated by phase 51.

The format and contents of the exit list

are described in "Appendix B. Object
Hodule."
DCB'S AND DECB'S -- ADDRESS AND CONSTANT

DEFINITION ELEMENTS

File Information Block (FIB)

Phase 21 creates the fixed portion of the
File Information Block (FIB) for VSAH
files. The FIB work area is generated by
means of the GENFIB data macro. The ANTXT,
IDTXT, and FST000 routines £ill in fields

of the FIB, and the BEGIN routine urites
the PIB as Data A-text (constant
definition).

Phase 21 produces Data A-text address
elements and constant definition elements
vhich are used to create DCBs and DECBs.
The DCB and DECB address element specifies
the location of the DCB or DECB; the
constant definition, and address constant
definition elements specify the contents of
fields within the DCB or DECB. These Data
A-text elements are used by Phase 6 or 64
to produce the actual DCBs and DECBs.

In addition to the location of the DCB
or DECB, which is the current value
{adjusted to fall on a doubleword boundary)
of the LOCCTR cell in COKMON, the DCB and
DECB address element contains the DCB or
DECB number assigned to the file from cell
DCBCTR or DECBCT in COHMON.

The contents of the DCBs and DECBs are
produced in several stages as information
becomes available. The following
discussion shous how phase 21 provides the
contents of some of the DCB fields. DCB
and DECB formats are given in Q0S/VS1_System
Data_Areas and 0S/VS2 System_ Data_Areas.

When phase 21 encounters the Data
ICc-text for an FD entry, the FSTXT routines

Licensed Material - Property of IBM

specify the size of the DCB for each file
and DECB for files with basic access
methods (BISAM, BSAHM, and BDAHM). The size
is determined from the access method.
Using the Data IC-text information, phase
21 issues constant definition elements
which contain the information to be placed
into the fields of the DCB and DECB; for
example, file-name and organization.

If the file contains a SRME AREA or SAME
RECORD AREA clause, additional processing
described in "Block and Working-Storage
Section Address Elements" must be
performed.

Determination of Buffer Area Size

Constant definition elements for the DCB
and DECB entries relating to the size of
the buffer area to be allocated for a file
are created after appropriate calculation.
In most cases, the compiler allocates all
the buffer area statically at compile time.
But in the case of QSAM or QISAM files, and
only for those unaffected by a SAHE AREA
clause, the system allocates the buffers
automatically at OPEN time.

Phase 21 81

Licensed Material - Property of IBHN

BUFFER_AREA FOR A SINGLE_FILE: The size of the buffer area to be ailoceted for any given
file is determined in general as follows:

If

Csy maximum number of characters in a block {teken from BLOCK CTONTRINS {c; 70}

c, CHARACTERS)

lal
N
L]

maximum number of records in a block (taken from BLOCK CO¥TAINS [r: TC1 ra
RECORDS, or default = i}

size of ACTUAL KEY -4, if direct BSAHM with key or direct BDAN
KEY =
0 in any other case

ri

size of record length field

{u if RECORDING HODE ¥
0 in any other case

b1

size of block length fielgd

{u if RECORDING HODE V
0 in any other case
RCD = maximum data record size for the file (calculated by the compiler fiom the
maximum size cf the relevant level-01 entries)

Then

BLK block size

{cz if CHARACTERS option specified in BLOCK CONTAINS clause

?b1 + (KEY + r1 + RCD)*r, in any other case
And also if

BCB = buffer control block size
16 for BISAH or QISAHN

12 for QSAHM if RECORDING HODE S

8 for QSAl if RECORDING HMODE F, V, or U

0 if neither BISAHM, QISAN, nor QSAM

=2
]

total number of areas for file

i

neeber of alternate areas + 1 (taken from RESERVE...ALTERNATE AREAS for
QSAN or QISAH)

RCD + 32 for QSAM if RECORDING MODE S

fl

SR min [RCD, track capacity] + 8 for BSAH or BDAHN if RECORDING HODE S
9 in any other case

Then

w0
il

total buffer area for file

1}

BCB + (BLK*N) + SR

82 Section 2. Method of Operation

Licensed Material -~ Property of IBM

BUFFER_AREA INVOLVING HMORE_THAN ONE FILE: The total amount of buffer space to be
allocated depends, in addition, on the presence of SAME AREA and SAME RECORD AREA
clauses. Three cases are shown below. There are p files £ , where £ (i=k+1,...,n) use
VSAH, BSAH, or BDAM, and where £ (i=1,...,k) use some other access method. all S , RCD ,
rl , bl , and KEY are determined according to the formulas and definitions shown in the

preceding paragraph.

Note: For automatically buffered files, as described above, the buffer area is allocated
only if the file is currently open.

Case 1.

If SAHME AREA was specified for all files
total size = max [S]
1€i<n

Case 2.

If SAME RECORD, AREA ,vas specified for all files

k
total size = > [S]+ max [RCD] + max [bl + rl + KEY]

i=1 1<i<n k<i<n

vhere max [RCD] represents the shared record area size
1<i<n

and max (bl + rl <+ KEY] represents the size of the shared
k<i<n

block length, record length, and key fields (if any) for
the BSAH and BDAH files.

Case 3.
If neither of the above clauses was specified for any file

n
total size =)3 [s 1]
i=1

SAME AREA clauses are processed by the SAHME routine using the SAMETB table; SAHME
RECORD AREA clauses are processed by the SAHER routine using the SHRCDTBL table.

Phase 21 83

Licensed HMaterial - Property of IBM

CLAUSE_COMPATIBILITY

As phase 21 processes Data IC-text, a check
is made of the clauses to be sure that they
are allowed to be used together. This
section gives some examples of the checking
that is performed.

The clauses that can be used in an FD
entry depend upon the access method of the
file. For example, RECORD KEY cannot be
used with a physical sequential file.

84 Section 2. HMethod of Operation

Phase 21 contains a list of valid
clauses for each access method. When a
Data IC-text element for an FD entry is
encountered, the access method for the file
is determined. Then, as the entry is
processed, the clauses used are checked
against the list to determine that no
invalid clauses for that access method have
been used.

Phase 25 (IKFCBL25) is loaded only if the
SYHDHP or TEST option is in effect. The
major functions of phase 25 are:

o Building the OBODOTAB table and writing
it on the debug data set (SYSUTS5) if
the program contains any
OCCURS.. .DEPENDING ON clauses

o Building the DATATAB table and writing
it on the debug data set (SYSUTS5). -

The operations of phase 25 are described
in Diagram 3, located with the foldouts at
the back of this publication. The
functions of the OBODOTAB and DATATAB
tables vhen SYNMDHP is specified can be
found in IBH_O0S/VYS_COBOL_Subroutine Library

Program_Logic. The tables are also used by
the program product IBH O0S COBOL
Interactive Debug when TEST is specified.

PHASE 25 PROCESSING FOR THE DEBUG DATA SET

To build the OBODOTAB and DATATAB tables,
phase 25 uses the following tables passed
from phase 22:

© The DICOT table, which contains
information about the COBOL dictionary.

o The HASH table which is used in
locating dictionary entries.

o The QITBL table, which contains a COBOL
dictionary pointer for every object of
an OCCURS...DEPENDING ON clause.

o The QRTN table, which contains a COBOL
dictionary pointer for every subject of
an OCCURS...DEPENDING ON clause.

o The RENAHMTB table, which associates
renamed data-names with their renamers.

o The OCCTBL tablée, which contains
information about each subject of an
OCCURS clause,

o The HMASTODO table, which identifies all
data-names which do not contain an
CCCURS...DEPENDING ON clause
themnselves, but one of whose
subordinate items at the next level
does.

o The VARLTBL table, which contains an
entry for each variable-length item.

Licensed Material - Property of IBM

PHASE_ 25

There is a DATATAB entry for each data
item in the Data Division. There is also a
DATATAB entry for some of the
compiler-generated names associated with
the Report Writer feature. There is an
OBODOTAB entry for each unique object of an
OCCURS...DEPENDING ON clause.

The OBODOTAB and DATATAB tables list the
characteristics of data items in the Data
Division. . (See "Section 5. Data Areas"
for the format of the OBODOTAB and DATATAB
tables).

Entries for either the OBODOTAB or
DATATAB table are built in a work area
(WRKAREA) in phase 25. Each entry in the
OBODOTAB and DATATAB tables is moved
directly into the debug data set buffer as
soon as it is completed. " OBODOTAB entries

are entered in the debug data set on

fullword boundaries. DATATAB entries are

not aligned.

Certain of the DATATAB entries contain
pointers to OBODOTAB entries. FEach DATATAB
entry for the subject of an
OCCURS...DEPENDING ON CLAUSE contains a
pointer to the OBODOTAB entry for its
corresponding object. The pointer consists
of the relative block number within the
OBODOTAB table and the displacement into
the block (in fullwords). Each DATATAB
entry for a data-name subordinate to the
subject of an OCCURS...DEPENDING ON clause
also contains a pointer to the OBODOTAB
entry for the object of that
OCCURS.. .DEPENDING ON clause.

Building the_ OBODOTAB_Table

Phase 25 uses the OCCTBL table passed from
phase 22 and builds the ODOTEL table in the
process of building the OBODOTAB table.
Phase 25 processing for the OBODOTAB table
is shown in Figure 11.

After the OBODOTAB table is built,
OCCTBL table entries are completed. The
completed OCCTBL table is used by routine
TESTSUBS during the building of the DATATAB
table later in the phase.

Phase 25 85

Licensed Material - Property of IBM

Building_the DATATAB_Table

The BEGPASS routine controls building of
the DATATAB table entries, using the
SYMDICT DSECT. It performs the following
functions: :

86

(-]

Calls LOCNXT to read dictionary entries

Calls GETDEF to get generated card
numnber for data-name from DEF-text.
RENAMES items are ignored.

Calls BLDRD to process RD level
entries.

Calls SETNAN to build fixed portion of

entry. SETNAM calls PROCESLD to build
variable portion of entry for LD under

Section 2. Method of Operation

FD, SD, Working-Storage, Linkage
Section. .

o Calls PROCRENM to process RENAMES itenms
for data-name. PROCRENM calls ENTRDATA
to move complete entry in output
buffer.

e Branches to TESTSUBS to determine
subscripted items. TESTSUBS uses the
OCCTBL table for subscripting
information, and calls ENTRDATA as
above.

ENTRDATA routine calls WRITES to write
buffer on SYSUTS at end of buffer. PHASEND
routine releases tables and repositions
SYSUT4 when the dictionary processing is
complete.

°Lt sawbrg

aTqel gvI0ododo 243} butpiTng

L8 GZ °seyd

ﬁ The COBOL source g If there are ODOs,

§j Pprogram contains routine ODOBLD Routine BLDOBODO builds the OBODOTAB
both OCCURS builds the ODOTBL table on the Debug data set from information
and OCCURS... table by: stored in the dictionary, using entries in the
DEPENDING ON ODOTBL table to locate the data items which
clauses. Checking the ODOCT pom;;rlse thp ?B?EOtTABhtaE:e. kBLDObBODC():l
77 X USAGE 1S COMP PIC 9(3). counter defined in inserts a pointer (that is, the block number an
77 ¥ USAGE 1S COMP PIC 903, phase 25 for the ;c)he displacement wn‘thm 'the block) to t_aach
o number of the ODO BODOTARB entry into its corresponding

entry to be processed. ODOTBL entry.
02 B OCCURS 2 TIMES,

03 C OCCURS 10 TIMES DEPENDING ON X, ODOCT counter
04 D OCCURS 10 TIMES DEPENDING ON Y. 1 BLDOBODO
O5EPIC 9. Builds the
OBODOTAB
table; OBODOTAB Table
completes
the ODOTBL
table
ODOBLD Using that number to 0.012
Builds find the QRTN table 0' o
the entry for that OCCURS . . . -020
, ?Elom DEPENDING ON clause.
able
Phase 22 builds the OCCTBL table
ini.tializing it with t_he dictionary Displacement ODOTBL Table
pointer of each subject of an of OD2TBL entry Dictionary Displ'mnt in For
OCCURS or an OCCURS . .. associated with pointer to OCCTBL o OBODOTAB
DEPENDING ON clause. A bit QRIN Tob! ODO clause attributes of OBODOTAB pointer
i indi ter. aple cbject of pointer of
Is set to indicate the lat Istentry |]]]]0]0]0]6K ODO clause correspond- ENDP1
OCCTBL Table 2nd entry 0[{0]0]|8 ing entry
L Tabl Pointer 116 0012
Dictionary Length QITBD:[O'_. e for X
. . ictionary .
:’:rmter *Irzlf.onnahonsov‘II)OTo e pointer o Displacement :’ou?er 126 0020
Displ filled in by The QRTN table entry attributes of OD2TBL entry bl
100 | B B OFF | Phase 25 is used to find in the of object of associated with
e - - ODO clause ODO clause
108 ¢ C ON QITBL table the i e . .
— ioti ; : 1 dofof1{o0 Finally, using the ODOTBL table,
D b ON dictionary pointer for . > VL
e the object of the ODO | | | | |0]0]0]2 routine ENDP1 fills in the OBODOTAB
clause Pointer for Y| 010018 pointer for each OCCTBL table entry
- T T T lololola which is the subject of an ODO clause.
ODOTBL Table
J0jo0f1]2
_— T . il 5 OCCTBL Table
DI?;;:::LY gléFéTrgErt;n E)ogODOTAB Pointer for X| 001 0|6 Dictionary Length Pointer to
OCCTEST S?fribufes of OBODOTAB pointer 0j0|1(4 Pointer Information ODO OBODOTAB
’ object of pointer of D . . . for for W table entry
Tests for ODO clause correspond- The d'c“o_nary pointer Displ T i g-’f =116
presence ing entry for the object of ODO 100 | B B FF ispl =
of OCCURS... b e 3 is inserted into the 108 C C ON 0-012
ointer g]
chitEeNDING ON for';(ODOTBL table. 18 | D D ON 0-020
Pointer 126 Displ = 126
for Y

HgTI Jo A3i1sdoid - TeTI®3R[POSUSOTT

Licensed Material - Property of IBM

By the time phase 3 (IKFCBL30) is loaded
into storage, almost all information on
source program names in P0-text has been
concentrated in the attributes of
dictionary entries. Supplementary
information is stored in the QVAR, QFILE,
INDKEY, and VALTRU tables. Phase 3 can now
replace each name with its attributes, as
well as add information to verb strings
such as SEARCH and OPEN.

Phase 3 also performs any other
processing that requires the dictionary.
In this manner, storage space for the
dictionary and for dictionary ACCESS
routines is freed for subsequent phases.
Phase 3's use of the ACCESS routines and
descriptions of their functions are given
in "aAppendix A. Table and Dictionary
Handling."

Phase 3 processing thus consists of four
main operations, all dependent on the
dictionary:

e Building a Data Division glossary of
all source program data-names.

e Replacing source program names with
their attributes.

e Performing special processing on
procedure-names in segmented progranms,
verb strings, and verb strings with
CORRESPONDING options.

e Performing any syntax analysis that
requires the dictionary.

Diagram 4 shows the overall flow of
phase 3 operations. Phase 3 input consists
of PO-text and E-text on SYSUT2, and the
dictionary and the QFILE, QVAR, INDKEY,
IND2TBL, and VALTRU tables in storage. Its
output consists of P1-text and E-text on
SYSUT3, DEP-text on SYSUTH4, the glossary on
SYSPRINT, and the DTAB table in storage.

After the PHINIT routine receives
control from phase 00 and performs
initialization for the phase, operations
occur in two stages: glossary-building
under the control of the GLOSRY routine,
and translation of PO-text into P1-text
under the control of the PHCTRL routine.

88 Section 2. Hethod of Operation

During the translation stage, special
processing is performed on READ verb
strings, OPEN verb strings; SORT and MERGE
verb strings ADD, SUBTRACT, and MOVE verb
strings with CORRESPONDING options; SEARCH
verb strings; source program names and
special registers; and syntax errors. If
USE FOR DEBUGGING declaratives exist in the
source program, additiomal special .
processing is performed on procedure names
and ALTER verb strings.

GLOSSARY BUILDING

The PHINIT routine determines from the SYH
bit of the PHZSW1 switch in COMMON whether
a glossary has been requested. If it has
not, the PHINIT routine tests the APPWRO
switch in the SWITCH1 cell in COMMON to
determine if APPLY WRITE-ONLY was specified
in the COBOL source program. If it was,
the PHINIT routine branches to the TSTWRO
routine, which scans the File Section
entries of the dictionary. For each file
definition entry in the dictionary in which
the HRITE ONLY switch is on, the TSTWRO
routine sets the major code to 7 in all the
data-name entries associated with the file.
When all the files have been processed, the
TSTWRO routine branches to the GLORET
routine, which initializes the translation
stage of processing, reads in the first
block of PO-text, and branches to the
PHCTRL routine. If APPLY WRITE-ONLY was
not specified, the PHINIT routine branches
to the GLORET routine, and processing
proceeds as described above.

If a glossary has been requested, the
PHINIT routine branches to the GLOSRY
routine, which prints out the glossary on
SYSPRINT and simultaneously performs the
same function as the TSTWRO routine.

The GLOSRY routine scans the dictionary
with the use of the DICND1 field in COMMON
(pointing to the last Procedure Division
entry created by phase 1B, or UPSI entry
created by phase 22) and the DICND2 field
(pointing to the last Data Division entry
created by phase 22). As each data- name
is encountered in the dictionary, it is
placed in location PRLINE along with
pertinent information from its attributes.
Phase 00 is then called to print PRLINE.
Hhen necessary, the GLOSRY routine converts
nuambers in the attributes from one mode to
another.

TRANSLATION FROHM PO-TEXT TO P1-TEXT

Before the GLORET routine branches to the
PHCTRL routine for the translation stage of
phase 3 operations, it stores the address
of the first PO-text element in location
PNTIN. The GETNXT routine moves the
identification code of the element (the
first halfword) into location GOTTEN. The
PHCTRL routine then tests GOTTEN to
determine the processing that should be
performed.

If the element is a READ or RETURN verb,
the PHCTRL routine calls the READFN routine
to insert the appropriate record-name after
the file-name. If the element is an ADD,
SUBTRACT, or MOVE verb followed by an
elenent for CORRESPONDING, the PHCTRL
routine copies out the entire statement as
Pi1-text, using the SEARCH routine to
determine the uniqueness of the operand.

It uses the CORRTN routine to break down
the statement into simple statements, each
containing one of the matching pairs of
elementary items.

If the element is a source program name,
the PHCTRL routine calls the SEARCH routine
to determine whether it is unique and then
calls the GENOP routine to replace the name
with its dictionary attributes and write it
cut as P1-text. If the name is a special
register, however, the SEARCH routine
generates the appropriate Pi-text element.

If the PHCTRL routine encounters a
SEARCH verb, it calls the STSRCH routine.
If the element is a source card number, the
PHCTRL routine places the number in CARDNO
and then writes the element out unchanged
on SYSUT3. All remaining elements are also
written out on SYSUT3 unchanged.

If the element is a file-name in an OPEN
verb string, the PHCTRL routine sets a
suitch for the GENOP routine to add
information for label and error processing
to the string.

If the element is a VSAH file-name, the
FILENM routine initializes the Key Clause
vorkarea. This information is used by the
PHCTRL routine to determine that the file
specified in a subsequent KEY clause is a
VSAM file and by the DATANH routine to
determine that the data-name specified in
the KEY clause was specified on a RECORD
KEY data-name.

The CORRTN and STSRCH routines each
process the entire string associated with
its special condition. They use the SEARCH
routine to determine whether the names in
the verb string being processed are unique.

Licensed Material - Property of IBM

A1l these routines use the GENOP routine
to replace the names with their dictionary
attributes and write them out as Pi1-text
elements. The GENOP routine also generates
DEF-text for procedure-names if necessary.

The processing routines perform any
diagnostic analysis that requires the
dictionary. When a routine detects an
error requiring action parameters that.only
a subsequent phase can determine, it
substitutes an error symbol for the element
in error. When it detects an error
condition for which it can provide an
entire message, it calls the ERROR routine
with appropriate error parameters before
returning to the PHCTRL routine.

When the PHCTRL routine detects an end-
of-file condition, it branches to the EOF
routine, which releases tables and returns
to phase 00.

READ_Verb sStrinas

The READFN routine checks the next PO-text
element in the input buffer after a READ or
RETURN verb to determine vhether it is a
file-name. If it is not, the READFN
routine uwrites the verb element unchanged
on SYSUT3 and returns to PHCTRL. Phase #
can detect the error without the
dictionary.

If a file-name does follow the READ verb
element, the next dictionary entry after
the file-name entry is checked to determine
wvhether it is a record-name. If it is, the
GENOP routine is used to build a Pl1-text
data-name reference element for the record
and to write it out after the file-nanme.

In the case of multiple records, the
attributes of the longest record in the
file are used. An error symbol is
substituted for the record-name attributes
if the dictionary entry following the file-
name is not a record-name,

Statements_with CORRESPONDING_Options

The CORRTN routine checks to determine
whether the operands in the source
statement are valid. It then matches the
subordinate, lower level data-names defined
within the source statement hierarchies,
and writes a P1-text statement for each
matching pair. This, in effect, breaks
down the CORRESPONDING option source
statements into a series of similar
statements, which together accomplish the
operations implied by the source statement.

Phase 3 89

Licensed Material - Property of IBM

Tuwo sample CORRESPONDING PO-text
statements are given in Fiqures 12 and 13
along with the resulting P1-text. Theé step
numbers given to the left of these figures
refer to the procedure sequence below.

Step_1: The PHCTRL routine writes out as
Pi-text the entire statement up to the next
critical program break. The source
statements are put out so that phase 4 can
perform a syntax check on them.

igg;gggg: ADD CORRESPONDING R TO K 1
} %
(P1-text: |
:Step LK ADD CORRESPONDING R TO K :
:Step 5: ADD R TO K :
:Step 5: ADD R1 TO K1 :
:Step 5: ADD R2 TO K2 :
:Step 5: B :
istep 5: . :
| l
{Step 5: . |
:Step 5: ADD Rn TO Kn :
Estep 6: CORRESPONDI NG ;
Figure 12. Pi-text Resulting from an ADD

CORRESPONDING Option

Step_2: Operand-1 and operand-2 are
checked to ensure that they are both group
items and valid data-names. Various
procedures are followed, depending on what
the checks reveal.

If operand-1 is not an EBCDIC name or
data operand, no more processing is done on
the statement, and the next PO-text element
is read in. Phase 4 can detect this type
of error.

If operand-1 is not an EBCDIC name but
is a data operand (for example, a literal),
the CORRTN substitutes an error symbol for
the operand in P1-text, calls the ERROR
routine to put out error text, and reads in
the next P0O-text element. Phase 4 can
detect this error, but the error symbol
indicates that phase 3 has already produced
an error message.

If operand-1 is not a group item, error
text is generated, an error symbol is
substituted for the operand, and the next
PO0-text element is read in. Phase 4 cannot
detect this error.

90 Section 2. HMethod of Operation

If operand-i is valid, but operand-2 is
neither an EBCDIC name nor a data operand,
an error symbol is substituted for
operand-2 and a P1-text string is produced
as follows:

Verb
Attributes
Preposition
Error symbol

MOVE CORRESPONDING A (1) TO B

1

PO-text: 1
| |
{ |
|Pi-text: {
| |
|Step 1: MOVE CORRESPONDING A(1) TO B |
| |
{Step 5: MOVE A(1)+ TO B+ {
| |
{Step 5: MOVE A(1) ¢ TO BC i
| |
[Step 5: . |
{ |
|Step 5: N |
f |
|Step 5: R §
. |
{Step S: HOVE A(1)¢ TO B® !
| |
|Step 6: CORRESPOKDIKG |
1 L]
Figure 13. Pi-text Resulting from a HOVE

CORRESPONDING Option

The word CORRESPONDING is written after
the string, and then the next PO-text
element 'is read in. The string tells phase
4 that no matching pairs were produced
because of an invalid ocperand-2.

If operand-1 is valid but operand-2 is
not a group item, then error text, a
Pi-text string containing an error symbol,
and the word CORRESPONDING are all written
out, and the next P0-text element is read
in.

Step 3: Assuming both operands are valid,
the subject (operand-1} hierarchy in the
dictionary is scanned for corresponding
items at the same relative level in the
object (operand-2) hierarchy.

Since the source statement operands have
already been checked by the dictionary
handling routines, the CORRTN routine knous
wvhich operand has the highest level
dictionary pointer. Before initiating the

" object hierarchy search, it ensures that

the subject hierarchy pointer is at a lower
level than that of the object hierarchy.
If this is not the case, the operand-2

group becomes the subjeéect hierarchy. This

is done to optimize the scan, since the
dictionary handling routines look for the
latest entry first through the HASH table
(see "Appendix A. Table and Dictionary
Handling") .

If a group item in the subject hierarchy
does not have a matching name at the same
level in the object hierarchy, the rest of
the items in the group are skipped. This
is done because there is no possibility of
finding a match for any of the items in the
group.

Step_U4: The subordinate items in the
hierarchies are checked for conformity to
the source language regulations. (For
example, does the item contain a REDEFINES
or OCCURS...DEPENDING ON clause? If it
does, ignore the item.) No error symbols
or messages are generated unless no match
is found for any of the subject hierarchy
items. In this case, a P1-text string
(verb, error symbol, preposition, error
symbol) is written out to tell phase 4 that
there vere no matching items. '

Step_5: HWhen a correspondence is found,
assuming both items are valid, P1-text
statements similar to the source statement
are generated.

Step_6: If there are no more corresponding
items, a P1-text element for CORRESPONDING
is written out, and the next PO-text
element is gotten. The word CORRESPONDING,
tells phase 4 that the previous element was
the last of a complete CORRESPONDING
statenent.

SEARCH Verb Strings

For each table to be searched there is an
entry in the INDKEY table containing such
information as the length of the table, as

Licensed Haterial - Property of IBN

yell as pointers to attributes in the
dictionary for all the data items
associated with the table. The STSRCH
routine adds some of this information and
attributes to the SEARCH verb string.

The STSRCH routine first writes the verb
element out on SYSUT3 and then examines the
element that follows. This element should
be an EBCDIC name. If it is not, the
STSRCH routine abandons processing the text
as a SEARCH string and returns to the
PHCTRL routine to process it in the normal
manner. No error text is produced, as
phase 4 can detect the error.

If the element is an EBCDIC name, the
STSRCH routine uses the SEARCH routine to
determine that the name is unique. During
its processing the SEARCH routine places
the pointer to the dictionary entry for the
name in location ID1PTR. The STSRCH
routine uses this pointer as an argument to
find an entry in the INDKEY table that
contains the same pointer. This entry, in
turn, contains pointers to entries in the
dictionary for all the index-names, keys,
and OCCURS...DEPENDIRG ON objects
associated with this SEARCH verb string.

Figure 14 shous the PO-text input for a
SEARCH format-1 verb string including a
VARYING clause, along with the resulting
P1-text output. Note that either a data-
name or a literal may be inserted after the
element for identifier-1 to express the
length of the table. Also, depending on
the type of EBCDIC name in the VARYING
clause, any of three combinations of
P1-text elements may be inserted into the
string.

Figure 15 shows input and output for the
SEARCH format-2 (SEARCH ALL) string.

Note that although in the source program
the SEARCH statement may continue beyond
the AT END through a number of conditional
and imperative statements, the STSRCH
routine stops processing before the AT END
and returns to the PHCTRL routine to handle
the remainder of the statement.

Phase 3 91

Licensed Material - Property of IBM

rﬁBLéﬁQ-lQ.Q!LEQL Phase 3 _Output Meaning of Flement Processing by Phase 3
T r .
{44 (SE| {44 |5E] Verb, SEARCH format-1. Copied out unchanged.
—— | NS ——) :

- -

v Ll L) L] 1
23 |EBCDIC Name| |[30(Attributes|
A) [l 1 (]

L) L] 1
|30fAttributes|
1 A]

OR

| 1] 1
{32|Literal |
L 1

= T
|54188] | 54188]
e —_—
Ll R 1 L) L)]
|23 |EBCDIC Name| |36|Attributes|
L 'l J L [}]

OR

-

T 1
23 |EBCDIC Name|
N : 3

r
|36iAttributesi
[1]

—_—
54188}

r T]
|36]Attributes|
——t

Data-name, identifier-1
(table to be
searched) .

Name replaced by its
dictionary attributes.

Attributes taken from
dictionary, using pointer
in INDKEY table entry
that contains pointer to
identifier-1 dictionary
entry.

Data-name, object of
OCCURS...DEPENDING ON.

Literal taken from INDKEY
table entry that contains
pointer to identifier-1
dictionary entry.

Represents maximum
number of occurrences.

VARYING Copied out unchanged.

T M s D D n D om0 —— — G2 > — S s D s s D 5n 2}

Data-name for
index-name-1 that
belongs +~ table.

Name replaced by attributes]
found in dictionary using}
pointer in INDKEY entry |
for identifier-1.

Data-name for
index-name-1 that does
not belong to table,
if specified.

Data-name for
index-name-1 that
belongs to table.

Name replaced by attributes
found in dictionary using
pointer in INDKEY entry
for identifier-i.

Added for phase 4

VARYING convenience.

Data-name for
index-name-1 that does
not belong to table,
if specified.

Name replaced by attributes
found in dictionary.

I i e < D ammn S e G D aacry W D e i WETR ma GRS D m man T nen D

Figure 14. P1-text Written for SEARCH Format-1 PO-text (Part 1 of 2)

92 Section 2. Method of Operation

Licensed HMaterial - Property of IBil

Phase_1B_Output Phase_3_oOutput

Meaning of Element

OR

¥ [] 1
{23 |{EBCDIC Name
!

1 [v
{36jAttributes|
L]]

Cn s e (R S R o G GO e I e RS ST IR e SO0 e — O3 o G —D 3 R LD kS M — —— — kS AITM mCh i mED @)

—
{54188|
| WO N——|
L] L] 1
{30|Attributesji
<]]
[aum ——] T
154170] 154170
[PO S | | BONSN —— |
i S
§541a14 54181}
PI S | T T
{ a B
ﬂ o e

Data-name for
identifier-2 that
does not belong to
table, if specified.

Data-name for
index-name~1 that
belongs to table.

VARYING

Data-name for
identifier-2 that
does not belong to
table, if specified.

AT

END

Processinq by Phase_ 3

Name replaced by attributes
found in dictionary using
pointer in INDKEY entry
for identifier-1.

Added for phase 4
convenience,

Name replaced by attributes
found in dictionary.

Copied out unchanged by
PHCTRL.

Copied out unchanged by

|
|
I
|
|
|
|
|
i
1
|
|
|
|
|
|
|
|
|
|
|
!
|
|
|
{
i
!
!
|
|
|
|
|
PHCTRL. i
|
|
|
|
|

Figure 14. Pi-text Written for SEARCH Format-i PO-text (Part 2 of 2)

Phase 3 93

Licensed Material - Property of IBM

hase_1B_Output Phase_3 Output

Heaning of Element

—T —T
|4l |5F {44 5F]|
L L

I 1} L] L] L] N
|23 |EBCDIC Name| {30jAttributes|
[] A (]

Il L

L) Ll L
| BBjLiteral |
L L

T L . 1
130{Attributes|
) A []

11 k] AL
|30|Attributes|
[l 1 2

[} Y |
{36|Attributes|
[] ']

1) L] il
|30fjAttributesy
1 4]

OR

v 1] Rl
|32{Attributes|
L 1 (]

T i
1541704 {54170
— —
s m T
|S41a1} 154121y
— [T —

|
[
|
|
|
|
{
{
|
{
{
i
|
{
|
i
l
|
|
|
{
|
[
|
|
|
|
|
l
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
{
{
|
|
|
|
|

Verb, SEARCH format-2.

Data-name, identifier-1i
(table to be
searched) .

Literal representing
nunber of keys.

Attributes of first
key.

e
°

Attributes of last
key.

First index-name
attached to table.

Data name, object of
OCCURS...DEPENDING ON.

Literal representing
maximum number of
occurrences.

AT

END

Processing by Phase_ 3

Copied out unchanged.

Name replaced by its
dictionary attributes.

Literal taken from INDKEY
entry that contains
pointer to identifier-t
dictionary entry.

Fame replaced with
dictionary attributes
pointed to in entry
containing pointer to
identifier-1 dictionary
entry.

Name replaced with
dictionary attributes
pointed to in entry
containing pointer to
identifier-1 dictionary
attribute.

Name replaced with
dictionary attributes
pointed to in entry
containing pointer to
identifier-1 dictionary
attribute.

Attributes taken from
dictionary using pointer
in INDKEY table entry
that contains pointer to
identifier-1 dictionary
entry.

Literal taken from
INDKEY table entry
that contains pointer to
identifier-1 dictionary
entry.

Copied out unchanged by
PHCTRL.

Copied out unchanged by
PHCTRL.

iy otn o e N R e, CER S o SR SN cmd WS R a4 G T e O SR O D WS (GO S S s e SR mmn O amen s WA G awp) S s T e S iy - oy, D IO e et S G D - —tin e — e woc cwan T

Figure 15. P1l1-text Written for SEARCH Format-2 PO-text

94 Section 2. HMethod of Operation

vetern.ning the Unlgueness of a lUame

The SERARCH routine moves the source program
pane it is to analyze from the input buffer
to the location WKAREA, I: then determines
from the dictionary vhether the name is
unique. If it is, the SEARCH routine
returns to the PHCTRL routine to replace
the usame with its dictionary attributes and
put the result out as Pi-text.

Special Registers: If the name is not in
the dictionary, the SEARCH routine searches
for it in the SPCREG area, which contains
the names of special registers. Aassociated
with each name is a pointer toc dunmy
attributes in the REGATT area. The SEARCH
reutine replaces the special register nane
with its dummy attributes and calls the
GENDAT routine to have them written as
Pi-text,

Oralifying Wames: In PO-text, a name and
its qualifiers are in reverse ocrder of
their appearance in the source progran,
When the SERRCH routine finds that a name
is a qualifying name, it calls the QUALIF
routine. fThe QUALIF routine searches the
dicticnary for each name in the string of
qualifying and qualified names. If the
gualified name is truly unique, the
location of iits attributes in the
dictionary is returned to the PHCTRL
routine. Its qualifiers are discarded.

Replacing Names vwith Dictionaxry_Attributes

The PHCTRL routine calls the GENOP routine
to replace a name with its dictionary
attributes and then write the result out in
Pi-text format through the GENDAT routine.

Bxcept for condition-names (which are
never passed) and special registers (vhich
contain zeros), the pointer %c the
dictionary entry itself is appended to
these attributes. Although the dictionary
does not exist after phase 3 operations,
phases 50 and 51 use the pointer as an
argument in syntax analysis, and phase 6 or
64 uses it as an identification code.

The GENOP routine determines from the
attributes which kind of P1-text element
should be generated. Special processing
for particular types of names is described
belovw.

- Data-names: Data-name reference elements
are generated for data-names. A unique
data-name reference element is generated if
dataname was specified in a USE ERROR
DECLARATIVE with giving option. If the
Q-Routine bit in the attributes is on, the

Licensed Haterial ~ Property of IBM

QVAR table pointer is used to Locate th
nunber to he added to the attributes.
the case of an eleumentavy item, the GN
nauber in the entry pointed to is used. 1In
the case of a group item, the GN¥ number in
the entry for the next subordinate item is
used.

GN

n

e
I

Fi am File-name reference items are
generated for file-names. IL the Q-Routine
bit in the attributes is on, the QFILE
table iy searched, using the pointer in the
attributes, for a GN number to be added to
the atiributes.

If the OPENSH location contains a 1 (set
by the PHCTRL routine when it encounters an
OPEN werb element), the GENOP routine
searches for the GN numbers following the
iile-name element for label and error
processing. These numbers are inserted
between the attributes and the dictionary
pointer in the resulting Pi-text element.

rf the file is a VSAM file, a VSAHM
file~-name reference element is generated.

Cbh-pames: CD-name reference items are
generated for file-names. If the Q-Routine
bit in the attributes is on, the QFILE
table is searched, using the pointer in the
attributes, for a GN number to be added to
the attributes.

Procedure-names: When the name is a
procedure-name reference in a segmented
prograi, GENOP routine searches the
dictionary for the section in which the
name is defined. It then adds the priority
number of the section to the attributes of
the procedure-name reference.

Copdition-names: When the GENOP routine
encounters a condition-name, it creates a
Pi-text string that associates the item
yith the values for which it is to be
tested. It uses pointers in the dictionary
attributes of the condition-name to find
the dictionary attributes of the item, as
vell as the test values in the VALTRU
table. Figure 16 shows the PO-text input
and Pl-text output for a condition-string
without a VALUE...THRU clause. Figure 19
shous the PO-text and P1-text for a
condition-string with a VALUE...THRU
clause.

Debugging

DEBUG-ITEM references are only valid in USE
FOR DEBUGGING declaratives. During phase 3
processing when the last such declarative
has been processed (END DECLARATIVES or
non-USE FOR DEBUGGING declaratives
encountered) the dictionary entries for a

Phase 3 95

Licensed Material - Property of IBM

DEBUG-ITEM are invalidated (ENDDBG
routine). Further references will result
in diagnostics. The ENDDBG routine
invalidates dictionary references to fields
of the DEBUG-ITEM special register by
inserting an invalid character as the first
character of each debugging special
register in the dictionary. ENDDBG will
guarantee that Procedure Division
references to any DEBUG-ITEHM field will be
flagged.

If ALL PROCEDURES was specified in any
USE FOR DEBUGGING declarative, DTAB is
primed and DTAB entries created for all
proceure-names encountered, except those in
USE FOR DEBUGGING declaratives. PN
definition handling is processed by the
procedure-name handling routine (PRONAH).
If the program has WITH DEBUGGING MODE
specified, and one of the debug
declaratives has specified ALL PROCEDURES,
and this PN definition is not a debug
procedure, then build and add an entry to
the DTAB for phase 35.

The ALTSCAN routine appends a BCD
literal element after each target PN in an
ALTER statement. Phase 35 uses this
routine to build a debug verb for ALTER
procedure-names. ALTSCAN will loop until
an error or all clauses of the ALTER
statement are processed. Process for each
iteration:

o Expects first PO element to be PN1

e Checks for and skips by TO PROCEED TO

96 Section 2. Method of Operation

e Expects next PO element to be PHN2.

¢ If valid ALTBCD, builds and generates
BCD literal. For PN2 after PN2 in
P1-text.

e Any deviation causes exit from ALTSCAN

Error Processing

The processing routines branch to the ERROR
routine when E-text for a complete
diagnostic message can be generated.
parameter list following each branch
consists of the message number, the
severity code, a count of the parameters if
any, and the addresses of the parameters.
The ERROR routine builds E-text for a
message in location ERMSG, calls phase 00
to write it out on SYSUT3 along with the
Pi-text, and then returns to the calling
routine. Phase 3 also sets the ERRSEV cell
in COMMON to the highest error severity
level encountered. If an error (E) or
disaster (D) level message is generated and
the CSYNTAX option is in effect, the SYHTAX
option is forced into effect and the
options suppressed when SYNTAX is in effect
are turned off (see "Compiler Options" in
the chapter "Introduction®). The format of
E-text is shown in "Section 5. Data Areas®”
and the manner in which diagnostic messages
are later generated from it is described in
the chapter “Phases 70, 71, and 72.%

The

Licensed Material - Property of IBM

remaining processing.

*Code identifying type of literal.

1) 1
| Phase_1iB_Output Phase 3 _Output Meaning of Element Processing by_Phase_3 |
| |
| r—v— r—r IF Copied unchanged by PHCTRL. |
(158107} 154407} 1
| —t — |
I |
| r— 1 Condition-name Uses pointer in dictionary |
{123 |[EBCDIC Name| entry for condition-name |
| e—) to £ind entry for |
| elementary item. |
i |
] P . —_ Writes elementary item |
| |30jAttributes| Elementary iten attributes from its |
| Lt 4 dictionary entry. |
| |
| —T |
| 1501061 " EQUALS GENOP generates. |
| | SO S | |
| |
| ¥ 1 1 . '
H |* |Literal | First value to be Taken from VALTRU table {
| L ! tested. entry pointed to in |
{ condition-name |
] attributes. |
| |
| —T |
| 541544 OR GENOP generates. |
| | NP S— | |
i |
{ T |
{ 150106 EQUALS .GENOP generates. |
1 (I T— |
I |
l L) L] L '
| [* |Literal { last value to be Taken from VALTRU entry {
i L—2t ' tested. pointed to in |
| condition-name |
{ attributes. |
| |
| Imperative Imperative GENOP returns to |
| statement statement PHCTRL to handle |
! .
l T
| |
L]

Figure 16. P1-text Written for Condition-String Testing Multiple Values without Using
the VALUE...THRU Clause

Phase 3 97

Licensed Material - Property of IBM

Phase 1B_OQutput Phase 3 _Output Meaning of Element Processing_by_Phase 3

| e R | L e | .

154107 1541071 IF Copied unchanged by PHCTRL.

| FOREOREE NSNS] —t ’

L} L] 1

| 23| EBCDIC Namej Condition-name Uses pointer in dictionary
]

entry for condition-name
to find entry for
elementary item.

T Y 1

{30 Attributes| Elementary itenm Writes elementary item

— ' attributes from its
dictionary entry.

processing.

Al L
| |
| |
| |
{ |
| |
| |
| |
| |
| |
l |
| |
| |
| |
I |
| I
| |
| |
| T |
| 15415CH NOT GENOP generates. |
| —t '
| |
1 —r— |
| {5010A] LESS THAN GENOP generates. i
' | NS — '
| |
| ey : |
| |* |Literali First value in Taken from VALTRU entry |
| D ————— THRU option. pointed to in i
{ condition-name |
{ attributes. |
| |
| —r— ‘ |
i {5415D} AND) GENOP generates. !
i —a 3 |
| |
| —r— |
| 15415CH NOT GENOP generates. |
| [NSNS N . [
| |
| T |
{ 150108} GREATER THAN .GENOP generates. |
| | SUNSSON RS— | |
| |
| —r — |
| I* |Literal| Second value in Taken from VALTRU table |
| —_— THRU option. entry pointed to in |
| condition-name |
| attributes. {
| |
| Imperative Imperative GENOP returns to PHCTRL to |
| statement statement : handle remaining {
! !
|

[

*Code identifying type of literal.

L _

Figure 17. Pi-text Written for Condition-String with VALUE...THRU Clause

98 Section 2. Method of Operation

Phase 35 (IKFCBL35) processes the Procedure
Division for debugging. It first scans the
Declaratives Section for USE FOR DEBUGGING
verbs and their operands, then adds to the
source program's text, the verb necessary
to cause invocation of the USE FOR
DEBUGGING declaratives. Phase 35 is
invoked only if WITH DEBUGGING MODE is
specified, and at least one USE FOR
DEBUGGING declarative is present at
completion of processing, all tables are
released and control is returned to phase
00.

Phase 35 is invoked by phase 00 to
'process USE FOR DEBUGGING declaratives,
verifying each operand. Phase 35 scans
Procedure Division IC-text for data items
for which debugging is specified, and
generates debugging text for processing by
later phases. -

IKFCBL35 first scans the Declaratives
Section for USE FOR DEBUGGING verbs,
analyses each verb, and makes an entry in
the DTAB for each valid operand. If at
least one valid operand exists in a USE FOR
DEBUGGING sentence, a USE FOR DEBUGGING
verb is generated into the P1A-text. Upon
reaching the end of the debug declaratives,
the DTAB is complete and the rest of the
program is scanned for references to USE
FOR DEBUGGING operands.

Two types of debugging verbs are :
generated as references to an operand of a
USE FOR DEBUGGING declarative are
encountered:

1. The DEBUG transfer of control verb
consists of a verb code and an option
byte. The option byte indicates the
type of transfer of control. Phase 35
generates DEBUG transfer verbs for the
situations listed below. If at least
one procedure-name is a USE FOR
DEBUGGING operand, then:

e Prior to a procedure-name
definition, if it is a USE FOR
DEBUGGING operand, but not if it is
a declarative section, or if it is
preceded by a COBOL conditional
sentence, unconditional GO
statement, END-DECLARATIVES control
break, or an EXIT verb.

e Prior to a GO statement

e Prior to an I/0 and/or conditional
sentence.

Licensed Material - Property of IBM

o Following a conditional sentence.

2. The DEBUG verb that later causes a
call to the DEBUG subroutine (ILBOBUG)
to be made. Each call to ILBOBUG
causes at least one DEBUG declarative
to be invoked. The operands of this
verb are the procedure-name number and
priority number for the declarative to
be invoked, an alphanumeric literal
wvhich will be the contents of the
debug-name, a dictonary attributes
item (dummy, if a DEBUG verb is
produced for a procedure-name), Oor an
alphanumeric literal giving the
contents of DEBUG-contents, and an
optional byte giving additional
information about the USE FOR
DEBUGGING operand reference.

When specified as a USE FOR DEBUGGING
operand, the following items cause a DEBUG
verb to be generated:

o Any explicit reference to a QSAM or
VSAH file-name, or a CD-name.

o A Procedure-name reference that is the
first operand of an ALTER verb.

o A procedure-name definition.

o Any explicit reference to an identifier
when specifying, ALL REFERENCES...;
othervwise, only when the identifier is
changed.

Note: Certain verbs, because of where the
language specifies the declarative to be
invoked, requires special processing.

In general, the DEBUG declaratives are
invoked prior to the execution of a
procedure-name and after the execution of a
verb.

Special processing is required for any
USE FOR DEBUGGING operand identifier that
is indexed or subscripted, so that it may
be properly handled by phase 50. A special
bit is set on in the attributes indicating
that this identifier has both subscripting
and debugging. Also, a DBGSS (debugging
subscript) verb string is built and
generated preceding P1-text containing any
such USE FOR DEBUGGING operands.

Source output (P1-text) and DEBUG output
are accumulated in separate tables until
the proper time (usually end-of-verb) when
both tables will be generated to P1A-text.

Phase 35 99

Licensed Material - Property of IBM

Note: At any given generation moment, only
one DEBUG verb will be put to P1A-text per
unique USE FOR DEBUGGING operand
referenced, unless the operand is'a
subscripted or indexed identifier.

Some strings of debugging text are
produced twice (for example, when a
declarative must be invoked on the true and
false paths of a condition).

TABLE HANDLING

P1TEXT: Phase 35 creates this table and
uses it to accumulate each verb string
until debug processing for it has been
completed, at which time the text in this
table is generated. -Phase 35 deletes
P1TEXT upon completion of processing.

DTAB: Phase 35 builds or adds to the DTAB
table, saving the data descriptions of all
valid operands found in the USE FOR
DEBUGGING sentences. Upon completion of
building DTAB (at end of DEBUG declaratives
or END declaratives) it scans the remaining
P1-text for operands that match the entries
in DTAB. Whenever a match occurs,
information from the DTAB entry is used to
build a debug verb for the operand. Phase
35 deletes DTAB upon completion of
processing.

DBGTXT: Phase 35 creates this table and
uses it to accumulate DEBUG verb text while
processing an input verb string. Phase 35
deletes DBGTXT upon completion of e
processing.

VRBDN: Phase 35 creates this table. and
uses it to describe each data item
encountered by the current input in Pi-text
verb string. Phase 35 deletes VRBDN upon
completion of processing.

_______ An internal table used when
analyzing a verb string for USE FOR
DEBUGGING operands. PH35VRBS defines the
proper syntax analysis routine for a
specific verb, and its initial process
control flag settings. Each entry in
PH35VRBS contains the COBOL code for the
verb, initial analysis process control flag
settings, address of the verb analysis
subroutine (VRBANALZ), and the length of
the entry. ¢ :

When phase 35 encounters a verb in the
P1-text input stream, the PH35VRBS table is
searched for the proper entry corresponding
to the verb. The entry, with its initial
settings is then copied into a work area,
VRBINFO, which is utilized by phase 35
during verb analysis.

100 Section 2. Method of Operation

| PROCESSING ROUTINES

PHCTRL: The Phase Controller routine
(PHCTRL) controls the processing of phase
35. Upon entry to phase 35, PHCTRL
performs the following initialization
functions:

l o Prime the DTAB table if not previously
done by phase 30

| o Prime the P1TEXT table

| e Prime the DBGTXT table

' o Prime the VRBDN table

PH35INIT: A subroutine of PHCTRL,
initializes processing, including Tamer
table priming. PHCTRL transfers control to
the ANLZUFDS routine, which analyzes the
USE FOR DEBUGGING sentences and builds a
DTAB table entry for each valid operand.
When control is returned to PHCTRL (no more
USE FOR DEBUGGING sections), it will
determine the category of the next input
element and transfer control to one of two
routines; GOTAVERB (processes all verbs
encountered), or PNDEFRTN (checks a PN
definition for debugging and may generate a
debug transfer verb as well).

ANLZUFDS: A subroutine of PHCTRL, is
called to scan the entire verb sentence for
USE FOR DEBUGGING declaratives (P1-text)
for proper operands until the end of all
debug declaratives, or END DECLARATIVES is
found. The VRBANALZ routine is used to
handle syntax variations, GETDI is used to
build the necessary VRBDN entries and debug
text, and GENTXT is used to generate the
contents of the P1TEXT and DBGTXT tables to
output. The P1-text is read until the
first section PN definition in the
declaratives is found. For each USE FOR
DEBUGGING declarative, the USE FOR
DEBUGGING sentence is examined. A USE FOR
DEBUGGING statement must begin with a
section definition. Each operand is
checked for validity (for example; not RD,
index-name or special register). ANLZUFDS
invokes CKUFDOPS for each USE FOR DEBUGGING
declarative. In turn, CKUFDOPS invokes
CKUFDOP for each operand in the sentence.
CKUFDOP verifies the operand as valid and
unique (QSAM or VSAM file-name, CD-name,
PN, data-name), then adds an entry to the
DTAB table via the DTABADD routine. If a
PN, the BGALLPRC bit in COMMON must be
tested to verify that ALL PROCEDURES had
not been specified. If so, the PN must be
diagnosed as invalid and discarded. A PN
will be entered as FF, plus the PN number
in the DICTPTR field of the DTAB entry.

For a non-PN, the DICTPTR field contains
the dictionary pointer. A special check
must be made against each identifier to

ensure that PAGE-COUNTER, LINAGE-COUNTER,
LINE-COUNTER, or PRINT-SWITCH have not been
used as an operand of the USE, if so, they
are diagnosed and discarded.

Oonce it has been determined that an
identifier is valid, the size of the
operand must be compared to the MAXBGITM
cell in COMMON. At the end of phase 35,
MAXBGITM will contain the size of the
largest element for which debugging is
validly requested. (Maximum allowed,
however is 32K-57.)

If at least one operand in the sentence
is valid, a USE FOR DEBUGGING verb is
generated. Then input text, up to the next
declarative section or END DECLARATIVES, is
generated to output unchanged. When
END-DECLARATIVES or a non-USE FOR DEBUGGING
declarative section is encountered, control
is returned to PHCTRL.

GOTAVERB: determines the verb and passes
control to ANLZVRBS.

ANLZVRBS: ANLZVRBS is a subroutine of
PHCTROL that processes complete P1-text
verb strings for debugging. This
subroutine searches each verb string
looking for operands that were specified in
a USE sentence. VRBANLZ routines are
invoked to handle specific SYNTAX and
processing variations. ANLZVRBS will find
other verbs in the internal phase 35 table
(PH3S5VRBS), and copy the initial VRBANALZ
control flags from the table. (PH35VRBS
defines the proper syntax analysis routine
for a specific verb and its initial process
control flag settings. Each operand
produces only one debug verb for its use in
a given verb string (except subscripted or
indexed variables).

P1-text is kept in the P1TEXT table as
it is being read. The debug verb text is
also accumulated in the DBGTXT table as
debugging operands are matched in the verb
string. The P1TEXT table, and the DBGTXT
table are generated when end of verb is
determined (except for PERFORM, IF, ON, and
SEARCH) . End of verb is determined by
searching for; card.number, verb, or a
special keyword (AT, END, NO (in RECEIVE),
DATA, WHEN, THEN, or AFTER (in PERFORM)).
When one of these occurs, the following is
the sequence of the generation of tables:

e For verbs that end in an IF, UNTIL, or
HHEN condition, or GO TO DEPENDING ON,
DBGTXT is put out first, then P1TEXT.

e For special keywords (except THEN or
AFTER (in PERFORHM) or ATEND (in
RETURN)), the P1TEXT table including
special keywords, is generated, then
DBGTXT.

Licensed Material - Property of IBM

e For special keywords THEN or AFTER (in
PERFORM) DBGTXT table, then P1TEXT
table excluding special keywords, is
generated.

e For special keyword AT END (for RETURN)
the P1TEXT table, excluding special
keywords, is generated, then the DBGTXT
table is generated.

VRBANALZ: The VRBANALZ subroutines invoked
by ANLZVRBS at entry point based on the
address in PH35VRBS. The major objective
of each VRBANALZ subroutine is to process a
given verbs P1-text string, locating and
generating debug text for USE FOR DEBUGGING
operands encountered, with minimal
dependency on syntax analysis (VRBANALZ
subroutines only perform as much syntax
checking as necessary for location
verification).

Ssome VRBANALZ subrouties look only for
specific keywords that will give
information about data items encountered
before and/or after the keywords. Others
may perform more complex operations.

Because of the generality of the
VRBANALZ subroutines, it is possible to
combine the processing of several similar
verbs in one routine. Most of the VRBANALZ
subroutines may be invoked several times
while ANLZVRBS is processing a particular
verb string. On each invocation, most will
process what it recognizes, or copy what it
knows is unimportant (such as extraneous
COBOL words), then return to ANLZVRBS which
nay determine analysis for the current verb
string if finished, and/or pass on the
current P1 element to GETDI which checks if
it is a USE FOR DEBUGGING operand.

Some routines process verbs whose
debugging analysis is very sensitive to
syntax. These routines often are invoked
only once for a given verb occurrence and
will stop analysis immediately if a syntax
incongruity is encountered.

Input to VRBANALZ is the current P1
element addressed by P1TXTPTR (address of
COMMON is in COSADR). Three sets of
control flags (switches) are:

e PH35FLGS: phase control flags
maintained continuously throughout
phase 35.

e CURVFLGS: verb control flags.
original settings copied from PH35VRBS
entry for the current verb and
maintained continuously throughout the
current verbs processing.

e ADDVFLGS: Additional verb control

flags initialized prior to the current
verb processing and maintained

Phase 35 101

Licensed Material - Property of IBM

continuously throughout the current
verbs processing.

output from VRBANALZ is P1-TEXT and
DEBUG-TEXT saved in their respective Tamer
tables, P1TEXT and DBGTEXT (some VRBANALZ

subroutines) will generate these tables to -

P1A-TEXT when analysis deems it necessary.
Input flags (switches) may be reset.

PNDEFRTN: The PNDEFRTN routine checks
procedure-name definitions for debugging.
PNDEFRTN determines if the PN definition is
a USE declarative header. If so, any debug
text for a PN definition is saved in the
DBGTEXT table later to be generated
following the P1-text for the USE verb.

For any other PN definition, the debug text
will be saved in the P1TEXT table. If this
is any PN definition not immediately
following an END DECLARATIVES, a .
conditional sentence, an EXIT verb, or an
unconditional GO statement, a DEBUG
transfer verb is generated. The PN
definition element is saved in the P1TEXT
table. Later, when PN analysis is

complete, GENP1TT is called to generate the

P1TEXT table, including the PN definition
element, and possibly the DEBUG verb text
for the PN definition.

ERROR: The ERROR subroutine builds and
produces E-TEXT for error messages and
associated parameters, and terminates
compilation, if necessary. If error was
disaster level, phase and compiler
terminates, either immediately by ABEND, or
shortly via EOFRTN.

EOFRTN: The EOFRTN routine receives
control at end-of-file to release the
tables and to terminate phase processing.
EOFRTN guarantees that text tables have
been generated, and releases all Tamer
tables used by this phase.

NON-DEBUGGING DECLARATIVE CONSIDERATIONS

Collecting information about various data
items encountered in a verb string as
potential debugging operands is handled by
the VRBDN table in phase 35. Each entry in
the VRBDN table corresponds to a potential
debugging operand in the verb string.
Information stored includes whether the
operand: 1) was found in the DTAB, 2) is
unique, 3) is subscripted, or 4) will
change value. Additionally, the entry
identifies the offset in the DBGTXT table
where the debug verb, if any was built for
this operand, is stored. When text is
generated form the DBGTEXT table, phase 35
references each entry of the VRBDN table to
determine if its corresponding debug verb
should be generated and where in DBGTEXT it
is located.

102 sSection 2. Method of Operation

4

Four features of the debugging language
make it necessary for phase 35 to be aware
of the context in which the operand it is
processing appears:

1. If an identifier is specified as an
operand in a USE sentence without the
ALL REFERENCES phrase, the declarative
is to be invoked only if the
identifier is changed. With the ALL
REFERENCES phrase, the declarative is

- invoked whenever the identifier is
explicitly referenced.

Note: When an identifier is
encountered with certain verbs you
cannot be sure if it will be changed
until a later word is recognized in
the verd (for example;
RELEASE|REWRITE(WRITE. If FROM is
specified, record-name has changed).

Phase 35 is sensitive to the syntax if
the compiler has generated implicit
text. Phase 35 must not generate
debugging verbs for implicit text
operands. The following verbs require
special handling because of
compiler-generated text:

- ADD|SUBTRACT|{MOVE CORRESPONDING
only the first string is eligible
for debugging. Subsegquent
ADD | SUBTRACT|MOVE verbs until
CORRESPONDING (signifying end of
string) are ignored.

- READ|RETURN
Record name has been appended after
file-name. Must be ignored.

- WRITE|REWRITE
File-name has been inserted prior
to record-name. Must be ignored.

- SEARCH
After identifier-1 will be either
identifier or literal. 1Ignore if
identifier as it was generated.

- SEARCH ALL

When BBxxxx is encountered in input
ignore the next xxxx elements (keys
for table).

Next two elements, index-name and
identifier or literal must also be
ignored.

- SORT|MERGE
Phase 30 generates three SORT|MERGE
strings as well as OPEN|CLOSE for
USING|GIVING files. 0Only one
invocation of the debug verb should
be generated for each applicable
operand only after the last string

l

generated for the SORT|MERGE
statement.

3. Upon recognition of certain non~verb
keywords to generate the appropriate
P1TEXT table and DBGTXT table. The
keyvwords are; AT, END, NO (in
RECEIVE), DATA, WHEN, THEN, and AFTER
(in PERFORM).

4. Subscripting or indexing.- When an
identifier is found which qualifies
for debugging, the next operand must
be checked to see if it is a left
parenthesis. If so, a bit is set on
in the attributes of an identifier to
indicate that this subscripted
jdentifier requires debugging.
vill also be put out which will
contain the actual subscript string.
This will be produced prior to the
source verb string.

A verbd

Note: Debugging is only produced once for
any operand in a given verb string, but if
it is subscripted or indexed it will be
invoked once for each occurrence of the
subscripted ‘variable in the verb string.

Output

There are three types of output produced
phase 35:

by

1. DEBUG transfer of control verb

4483
2401nn

DEBUG transfer
~ option byte

where nn has the followng settings:

#GO GO
#FALLTHRU FALL THROUGH
#HMERGE MERGE

Licensed Material - Property of IBM

| 2. DEBUG verb:

448a DEBUG verb

DO0... PN reference of
USE FOR DEBUGGING
declaratives

34... DEBUG-NAME

26/21/25/30%/34... DEBUG-CONTENTS
option byte

24 nnxxk*

* identifier, if subscripted or indexed,
a bit is on.

bit will be set on if this is the last

Kk
DEBUG verb in a series.
l xx has the following settings:
#IDCD ID or CD
#ALTER ALTER
#PN PN
#FDREAD FD for READ
- #FDNREAD FD not for READ
"#$LASTDBG last DEBUG verb

in a series

3. DEBUG subscript verb:

4496

5200 left parenthesis
30.... identifier

5201 right parenthesis

Later phases use the DEBUG transfer verb
to update the Task Global Table with
DEBUG-LINE and type of transfer of control.
These fields are used by the ILBOBUG
subroutine when invoked for procedure-name

to properly set up debug-items.

Phase 35 103

Licensed Material - Property of IBM

Phase 4 (IKFCBL40) continues the
transformation of a source program
Procedure Division into machine-language
instructions. Its main functions are:

e Transforms P1-text into P2-text

e Transforms P2-text into ATM-text for
the UNSTRING verb

e Analyzes syntax and checking for errors
in the P1-text statements.

e If COUNT is in effect, converts all
verbs to Data A-text and defines block
nodes with a counter in both the count
table (Data A-text) and P2-text.

During phase 4, the card number of the
statement currently being processed is kept
in a three-byte cell labeled CARDNO,
internal to phase 4, and in the CURCRD cell
of COMMON.

TRANSLATION OF P1-TEXT TO P2-TEXT

Control flows through routine IDENT. This
routine scans the current input element,
anticipating either a procedure-name
definition, a verb, or a program break. If
the element is a procedure-name definition,
control is given to routine IDLHN. If a
verb is found, control is given to the verb
analyzer routine for that particular verb.
The verb analyzer processes the verb and
its operands. Program breaks are processed
by IDBRK, a subroutine of IDENT.

These routines return control to IDENT,
with the input pointer containing the
address of the next P1-text element.

VERBS

There is a separate verb analyzer routine
for each COBOL verb.

The verb analyzer routines use a number
of tables while building a verb string.

The STRING table is used by most verb
analyzers that produce output. It holds an
output string while it is being built. The
string is held in the table, rather than
being put out in parts as it is built,
because:

104 Section 2. Method of Operation

e A string is not issued unless it is
free of errors. This cannot always be
determined until the entire string is
produced.

e Sometimes the information that appears
at the end of a P1-text statement (for
example, UPON CONSOLE in a DISPLAY
statement) is put at the beginning of
the string as an aid to phase 51.

A string of P2-text is put out with a
maximum of five operands. If more than
five operands are required by a single
verb, a continuation string is put out.

See the discussion of the DISPLAY string.
For an example of a continuation string,
see the discussion of the DISPLAY statement
in the chapter "Phase 51.%

When phase U4 encounters an UNSTRING
verb, it first puts out P2-text for the
verb. All other information is put out on
SYSUT2 in the form of ATM-text for phase U5
to process. Phase 4 sets a bit (PHUSBIT)
in the SWITCH1 cell in COMMON to indicate
that phase 45 is to be called to process
the UNSTRING verb, and passes the ATHM-text
to it. If phase 4 encounters a Q-Routine
control break and the PHUSBIT is on, it
Writes all Q-Routine text on SYSUT2.

The following sections give examples of
phase 4 processing for several types of
verbs. These examples show the general
pattern of analysis for verbs and use most
of the phase 4 tables.

MOVE STATEMENT -- SUBSCRIPTING

Phase 4 processing for the MOVE statement
consists simply of producing a MOVE string
that gives the number of operands and names
the operands. For the input elements

MOVE A TO B
phase 4 generates the string
MOVE (2) A B

The operands of a MOVE statement may be
subscripted. When subscripted operands are
encountered in any statement, the
generating routine first issues a SUBSCRIPT
string for each subscripted operand and
then issues the string for the verb. The
following MOVE statement exemplifies the
building of SUBSCRIPT strings:

Licensed Material - Property of IBM

STRING Table DEFSBS Table

Output

MOVE (2)
SSID1

SUBSCRIPT (3)
A

6

SSID1
SUBSCRIPT (5)
B

c

D

E

L
{

+
|

{

|

|

|

|

(

|

|

| SSID2
[}

e e o e e e e o —
TN Rp——

SUBS CRIPT
SUBSCRIPT (5)

MOVE (2) SSID1 SSID2

(3) A 6 SSID1
BCDE SSID2

e e e s e e e o g

Figure 18.

MOVE A(6) TO B(C,D,E).

Processing for this statement is
illustrated by Figure 18, which shows the
contents of tables built for the statement
and the P2-text strings produced.

EXPLANATION: The MOVE verb, with 2 to
indicate the number of operands, is placed
in the STRING table. Then the first
subscripted operand is processed. For this
operand, a SUBSCRIPT string is built in the
DEPSBS table. (SUBSCRIPT is a special
COBOL verb used only within the compiler;
the DEFSBS table is a table similar to the
STRING table, but it is used only to hold
subscript information.)

The SUBSCRIPT string is used by phase 50
to resolve the subscripted reference. For
the first SUBSCRIPT string shown in Figure
18, this string means “Compute the address
of the sixth occurrence of A; place that
address into a temporary cell called
SSID1." At execution time, the address of
the data item to be moved will be held in
SSID1; therefore, SSID1 becomes the operand
of the MOVE verb. The same applies to the
second operand.

When the period ending the statement is
encountered, all three strings are put out.

DEBUG CARD

If a procedure-name is referred to by a
DEBUG card, phase 4 produces a CALL string.

Tables and Output for the Statement MOVE A(6) TO B(C,D,E)

The output generated for debugging
procedures is illustrated in Figure 19.

When routine IDLHN analyzes a PN
definition, it determines from the
attributes that this PN is referred to on a
DEBUG card. First, it issues a PN
definition element. Then, it obtains a GN
nunber from GNCTR in COMMON and issues a
CALL string with this GN as its operand.

The PN number and GN number are saved
together in table DBGTBL.

When a DEBUG card is encountered, the
DBGTBL table is searched for a PN number
that matches the one on the DEBUG card. 1In
the table, this PN number has a
corresponding GN number, and a GN
definition element is issued for this GN.
Therefore, the GN defines the location of
the debugging procedure.

ALTER STATEMENT

For each ALTER statement in a program, two
statements require ALTER processing: the
ALTER statement itself, and the GO TO
statement named in the ALTER statement.
Either of these statements may be
encountered first. When one statement of
an ALTER/GO TO pair is encountered, a VN
nunber is assigned, and a string of P2-text
is vritten using this VN number. A VNTBL
entry is made, giving the VN number and the
PN number to which it corresponds. When
the second statement of the pair is

r L] L L
| Input Statements | DBGTBL Table | Output |
L o] i]
L] L} L]
{ PN1. ADD... | PN1 GN1 1 PN1. CALL GN1 ADD... |
{ PN2. HMOVE... | PN2 GN2 | PN2, CALL GN2 MOVE... |
| DEBUG PN2 | { GN2. DEBUG PN2 |
| DEBUG PN1 | | GN1. DEBUG PN1 |
L 'l 4]
Figure 19. DBGTBL Entries and P2-text for DEBUG Card Processing

Phase 4 105

Licensed Material ~ Property of IBM

encountered, this VNTBL entry supplies the
VN number for this statement?s P2-text
output.

At execution time, each PN is assigned a
cell in the Program Global Table. (For the
format of the PGT, see the chapter "Object
Module.") In this cell, the address of the
first instruction for the PN is permanently
stored. Each VN is assigned a cell in the
VN field of the Task Global Table. (For
the format of the TGT, see "Appendix B.
Object Module.") However, the contents of
these cells are not permanent. When a
branch instruction is modified by an ALTER
statement (or a PERFORM statement as
described later in this chapter), the
address contained in the VN cell is
changed.

Figure 20 gives an example of phase 4
processing for two ALTER statements.

1 1In this example, the first statement
read is PN1. This is a GO TO statement
referred to by an ALTER (the ALTER
statement follows PN3).

2 When routine IDLHN examines the
definition of PN1, it determines from
the attributes that this statement is
an altered GO TO statement. Then the
GO verb analyzer processes the
statement.

3 It obtains a VN number, which it stores
with PN1 in the VNTBL table, and puts
out two strings.

4 The GO VN1 string indicates that, when
this branch is executed, the branch
address is to be picked up from a
uniquely identified VN cell in the TGT.

5 EQUATE VN1 PN3 indicates that at
execution time the initial contents of
this VN cell is the address of PN3.
Until the value is changed by an ALTER
statement, the cell will be unchanged,

106 Section 2. Method of Operation

and any execution of PN1 will branch to
PN3. The equated address is also
placed in a VN cell in the PGT.

(In a segmented program, the VN is given
the same priority as the PN to which it is
equated.)

2 When the ALTER PN1 statement is read,
the VNTBL table is searched for PN1.
Since an entry is found, the
corresponding VN number (VN1) is used
as the receiving field of the MOVE.

6 At execution time, this MOVE statement
takes the address of PN2, which is
stored in a PN cell in the PGT, and
places it in the VN cell for VN1.

The execution-time operation of this
ALTER/GO TO pair of statements is
illustrated in Figure 21. The flow of
control resulting from this ALTER statement
is shown in Figure 22.

Figure 20 also illustrates a second
ALTER/GO TO pair.

7 In this case, the ALTER statement
(ALTER PN4) is read first.

8 A search of the VNTBL table reveals
that no entry for PN4 has been made, so
the ALTER analyzer ‘obtains a VN number
and enters that VN number with PN4 in
the table.

Special Processing_for Optimization: When
the OPT option is in effect, most PN cells
are eliminated from the Program Global
Table. For addressing PNs without address
constants in the PGT, phases 62, 63, and 64
use Procedure Block base locators. Some GN
and PN cells remain unchanged by phases 62,
63, and 64. Phase U generates P2-text
optimization information elements (changed
to Optimization ‘A-text elements by phase
50) to identify the type of element that
follows.

Licensed Material - Property of IBM

Input Statements VNTBL Table Output

1 PN1. GO TO PN3. 3 PN1 VN1 4 PN1. GO VN1
EQUATE VN1 PN3
7 ALTER PN4 TO PROCEED 8 fN“ VN2 MOVE PN6 VN2
- TO PN6.
PN2.....} PN2.....
GO TO PN1. GO TO PN1
PN3.....F PN3.....

2 ALTER PN1 TO PROCEED 6 MOVE PN2 VN1
TO PN2.

PN4. GO TO PNS. PN4. GO VN2
EQUATE VN2 PN5
PN5..... PN5.....

PN6..... PN6.c...

....___.__.__-___________.—____7-_.
e e e - - - - — —— —————— ————— e ot o}o m— o}
e o o e e e —— . ——— — — s e = o
b o e o —— — s, T e, — —— — T — o —— — — — S e =3

Figure 20. Table Entries and Output for ALTER Statements

{PN2. . simplified assembler coding and the TGT
| . and PGT cells shown below. (Only the
1 GO TO PN1. underscored statements are directly

| PN3. . : involved in the logic of the ALTER

| o statement.)

| ALTER_PN1_TO_PROCEED TO_PN2.

{ GO TO PN1.

L

t

{Assembler '

{coding : L REG,VN PN (cells of PGT)

{for PN1 BR REG P

{GO TO statement : . {a(PN1) {

I . e |

| . {a(PN2) —

|Assembler o e |

{coding for L 0,PN2 | a(PN3) {

{ALTER statement sT O0,VN ——— e

PGT and TGT cells
for execution of
ALTER code

VN (cells of TGT)
=
| a (PN3) (
| IS —

A
|
L

e v - G —————— ——— . S o ——]
e e e S — . — — — — — — — — — — k] — — —— — — — oo o}

Pigure 21. Execution of an ALTER Statement

Phase 4 107

Licensed Material - Property of IBM

Beginning
of
program

(o e = =)
b e o o o

l‘!
] o~ ———]
A

Ly Rl
| {
I |
N {
L |
It) {
L { {
t > PN3 { |
H | { |
i L T ! |
R { {
it - |
i { |
N l l
1 { {
R v {
N v 1 r 1 {
| I i |
e | PN2 | ! ALTER |
| | | |
[l 3] (]

M e e o - —— o — ———————— —— s = - ——— . o

|Note: This illustrates the same example used in Figure 23. Assuming that no other
(ALTER or GO TO statements occur in this program, the flow . of control will follow the
{single-line path the first time through and the double~line path every time after the
|first.

e e e e .) e . — . —— —— —— — — T — . — O — — T T — D cm——— — — —— v —— = o}

Figure 22. Flow of Control for ALTER/GO TO Statements

108 Section 2. Method of Operation

Licensed Material - Property of IBM

PERFORM STATEMENT

Processing of a PERFORM statement resembles
that of an ALTER statement. The return
from a performed procedure is a GO string
with a VN as its object. This GO string is
placed at the end of the performed
procedure, just before the procedure
delimiter.

Phase 4 uses the VNTBL and PFMTBL tables
keep track of the VNs. Figure 23 gives
example of the use of these tables.

to
an

1 The dictionary attributes of
section-name SN2 indicate that it is
the object of the THRU option of a
PERFORN statement.

2 Routine IDLHN obtains a VN number from
the VNCTR cell of COMMON and enters VN1
and SN2 in the VNTBL table.

3 In the PFMTBL table, it enters VN1 and
the delimiter of SN2, which is SN&4.

4 When section-name SNU4 is encountered,
routine IDLHN knows it is the delimiter
of the performed procedure because it
is in the PFMTBL table. Therefore,
before the procedure-name definition
element for SN4 is issued, routine
IDLHN sets up the return from the
performed procedure.

5 It obtains the VN number from the
PFMTBL entry.

6 It issues a GO string to go to VN1.

T Al L BLE 1
| Procedure Statement | VNTBL Table | PFMTBL Table| Output |
L 1 L L I
\| L] L] T Ll
SN1 SECTION. ...		@	SN1. ...
SN2 SECTION. ... 1	SN2 ¥YNT 2	SN4 VN1 3	SN2. ...
PN3. ...		{ PN3. ...	
			GO VN1 5
			EQUATE VN1 SNU4 6
SN4 SECTION. ... 8		[SN4. ... 7	
{ PN5. PERFORH SN1 THRU SN2.			PN5. MOVE VN1 PFMSAV1 9
			MOVE GN1 VN1 1
	l	GO sSN1	
{ {		GN1. MOVE PFMSAV1 VN1	
PN6. ADD...			PN6. ADD...
L L 1 A]
Figure 23. Effect of a PERFORM Statement

7 It issues an EQUATE string to equate
VN1 to SN&4.

8 When the PERFORM statement (PN5) is
encountered, the verb analyzer PRFORM
issues instructions to set up the
return from the performed procedure.

9 It obtains a PFMSAV number from the
PFMCTR cell of COMMON. This number
represents a 4-byte cell in the Task
Global Table of the object program.
The value of VN1, which is the address
of the next sequential instruction

after the performed procedure, is saved -

by moving it into this PFMSAV cell. 1A
GN number is obtained, and this GN is
moved into the VN1 cell. This GN is
defined at the point of return from the
PERFORM. The instructions issued at
this point cause restoration of the
original value of VN1.

At execution time, sections SN1 and SN2
are first executed in-line. VN1 contains
the address of section SN4, and thus the
“"return" from the procedure (the statement
"GO VN1") actually causes control to pass
to SN4, the next sequential instruction.
Later in the program, the execution of
statement PN5 causes SN1 and SN2 to be
executed again. This time, the return is
to GN1. The original value of VN1 is
restored, and PN6 is executed.

Figure 24 gives an example of how a
PERFORM statement operates at execution
time. PFigure 25 illustrates the flow of
control for the program shown in Figure 24.

Phase 4 109

Licensed Material -+ Property of IBM

SEC1

SEC2

SEC3

SECY

SECTION.
SECTION.
SECTION.

SECTION.
GO TO SEC1.

PERFORM SEC2 THRU SEC3.

COBOL_Statements

Coding for
PERFORM

GN

(SEC1)
(SEC2)
(SEC3)

Coding for

Return
(SEC4)

Associated Assembler

Coding

L
ST
L
ST
L
BR
L

4]
L]

whtes o o ¢ o ¢ @
= .

0,VN
0,PFMSAV
0,GN
0,VN
REG,PN+4
REG

0 ,PFHSAV
0,VN

REG,VN
REG

Save initial value.

Branch to performed
procedure.
Reinitialize.

Load A(SECH).
Branch.

o o A s - . S T - . N e ST . o P S . —— — —]

o

elevant PGT and TGT Cells

PN (cells of PGT)

| e —— |
la (SEC1) |

—————
la (SEC2) K
F_______-

la (SEC3) |
la (SECY4) |
| IR —

GN (cells of PGT)

|
—a (GN1) |

1 —

{ VN (cells of TGT)

> —y
la(SECY) |

— 1 <

PFHSAV (cells of TGT)

| S |
L—)[
—— e 2

-

——— . — T —— — —— — —— ——— —— ——— ——— — ———— gy ——— ————————— g — . o

4::)_

e e = — T ——— - . S - o . " — — i S s . = -— - = ———— —— —— o — el o

|
|
4
|
Coding for MVC PFMSAV(4) ,VN Save initial value. |
PERFORM 1A 0,GN |
ST 0,VN T |
L 11,Procedure block of PN ' If necessary. |
BC 15,Displacement of PN(11) Branch to performed |
~ procedure. I
GN MvVC VN (4) ,PFMSAV Reinitialize. |
. ' F s |
. |
(SEC1) . |
. |
(SEC2) . |
- |
(SEC3) . ‘ i
. i o |
Coding for L REG , VN Load A(SECH). {
Return BR REG Branch. |
(SECH) |
]

Figure 24. Execution of a PERFORHM Statement

A10

Section 2.

Method of Operation

Licensed Material - Property of IBM

(O e e . an

LS
|
PERFORH f
{
]
L]
|
|
{
|
v
r] b 1
| SEC2 1 [l
{ SEc3 1< { SEC1 |
| 1< 4 |
| | f |
1 '] L]

r
Yes

>{Reinitialize

N

- o g e o

e e o B e ——— G —

e o o o —— - —— s >

o s s e e Gl S S D M R e ot £ R LD s € R s e e o s -

L) T
i t
1 SECU4 I
| |
[3
u N .
{Note: This illustrates the same PERFORM statement shown in Figure 26. Assuming that

|
|
{
|
|
|
{
|
|
!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!
i

{no other procedure branching statements occur in this program, the flow of control willj
t{£ollov the single-line path the first time through and the double-line path every time |

{after the first.
L

Figure 25.
COHPUTE STATEMENT

Verb analyzer routine COMPUT, with its
major subroutine FORMLA, breaks down the
arithmetic expression of a COMPUTE
statement into a series of simple
arithmetic strings. It uses two tables,
PNOUNT and PSIGNT, in the processing of the
arithmetic expression. PNOUNT contains
operands and PSIGNT contains signs
(operators and parentheses) of the
expression.

These twe tables are needed because the
hierarchy of arithmetic operators may
necessitate a rearrangement of the

Plow of Control for a PERFORM Statement

expression.

The hierarchy in descending
order is: :

unary -
*k

* and /
+ and -

For example, the statement COMPUTE
X = A-B%*C requires strings in the order

MULT C B IR1
SUB IR1 A IR2
STORE IR2Z X

where IR1 and IR2 are intermediate results.

Phase 4 111

Licensed Material - Property of IBM

L] L]
| PNOUNT {PSIGNT |

L8 1
| |
|Input {Table { Table jstrings Stored |
|Element |Contents|Contents|in STRING Table|
+ t } + al
| A | A | 1 |
L i L L 1
L] L] 1 L] Ll
| + | A | + I |
L 4 i 4 []
T 1 L 1 1
| (| A | + | |
| | | (| |
L i [l 1]
T Al ¥] k|
| c | A | + | |
| | C | (i {
[N] i J
L) L] 1 L] 1
| - | A | + | |
| I c { (| |
| | | - | |
L i i 4]
v L]]) L]
| D | A | + | |
| | C | (| |
| | D | - | |
| 4 { t i
| / | A | + | |
| | C | (| |
| | D | - | [
| | | / | |
1 1 i 1 (]
L) L] L] 1 N
| E | A | + | |
| (c 1 (| |
| | D | - | |
| { E | / | |
1 Il i 4]
1) L] 1 1 1
[) | A | + { DIV E D IR1 {
| | C | (| |
| (:) l IR1 | - | |
| I t + {
| | A | + | SUB IR1 C IR2 |
| | IR2 | | |
L [l L 1 '}
L] L v A Ll
| * | A | + { |
| | IR2 | * | |
L L 1 1 1
LS 1 T L Ll
| F | A | + 1 |
| | IR2 | * { {
| | F | | l
t + + % - 1
| - | A | + | MULT F IR2 IR3|
| | IR3 | | |
ENON : ¢ ——1
| | IRY | - | ADD IR3 A IRY |
i - | g A]
" L) L] L] 1
| G | IRG | - | |
| | G | | |
+ } t t 4
| (:) | l | SUB G IRU4 IRS |
|) { | | STORE IRS X |
L 'l 1 1 1
v L]
|Note: The circled numbers in the figure |
|refer to explanations in the text.) |
i]
Figure 26. Evaluation of a COMPUTE

Statement

112 Section 2. HMethod of Operation

Phase 4 builds a simple arithmetic
string to be placed in the STRING table
when the signs in the PSIGNT table indicate
that the arithmetic hierarchy of operators
requires a string. To build a string, the
last operator in the PSIGNT table is made
into a verb, the last two nouns in the
PNOUNT table are used as operands, and an
intermediate result is appended. (The
intermediate result is placed in the PNOUNT
table as an operand.) The following rules
apply when a string is to be built:

o If there are no more input elements,
all remaining strings are built.
(see (3) in Figure 26)

e If a right. parenthesis is encountered,
all strings up to the left parenthesis
proceeding backwards into the tables
are built.

(see in Fiqure 26)

e If an operator is encountered that, in
the hierarchy of arithmetic operators,
is lower than or equal to the last sign
in PSIGNT, a string is built.

(see in Figure 26)

Figure 26 shows the evaluation of the
following COMPUTE statement:

COMPUTE X = A+ (C-D/E) *F-G.

Each row in the figure shows table contents
after processing the input element in the
first column.

Figure 27 gives the final output from
the COHPUTE statement example used in
Figure 26:

COMPUTE X = A+ (C-D/E) *F-G.

EVAL DMAX DCURRENT X ...
DIV E D IR1 (-C)

SUB IR1 C IR2 (*F)

MULT F IR2 IR3 (+1)

ADD IR3 A IR4 (-G)

SUB G IR4 IR5 (ST X)
STORE IR5 X

(o o o gn -
s e o o e ———

Figure 27. Strings Resulting from a

COMPUTE Statement

As an aid to phase 50, an EVAL string is
issued preceding the arithmetic strings.
The EVAL string contains information such
as the maxinum number of decimal places in
any operand, the number of decimal places
in the result, and the presence of ROUNDED
or ON SIZE ERROR clauses. Appended to any
string containing an intermediate result is
an indication of the use of that
intermediate result. For example, IR1 is
used in a subtraction with C.

MULTIPLE RESULTS IN ARITHMETIC STATEMENTS

For COMPUTE with multiple operands before
the equal (=), and for ADD, SUBTRACT,
HULTIPLY, and DIVIDE with multiple GIVING
operands, SETTBL is used to save the result
operands. After determining whether SIZE
ERROR is present, and analyzing the
arithmetic expression for COMPUTE, SETTBL
is used as the input stream to produce the
store into each result. The routine STORAN
is called once for each result.

IF STATEHENT

The IF verb analyzer, assisted by its major
subroutine PFINDL, evaluates IF statements
and issues strings consisting of a
relational verb, two operands to be
compared, and a third operand, which is a
GN reference for branching. The following
example shows the verb string issued from a
sinple IF statement:

Statements Strings

IF A=B DISPLAY C. IF-NOTEQ A B GN1
DISPLAY C

ADD... GN1. ADD...

Note that the condition is reversed in the
string to minimize the number of branches
required. The branch to the GN is taken if
the condition (A=B) is false, that is, if
the DISPLAY is not to be executed.

The PNOUNT and PSIGNT tables are used in
evaluating arithmetic expressions in IF
statements. The strings produced are the
same as for COHMPUTE statements except that
the last string is a relational string (for
example, IF-EQ or IF-NOTGT) instead of a
STORE string.

The PSHTBL ard PTRFLS tables are used in
evaluating IF statements. The PSHTBL table
collects branches to ELSE statements in
nested IF statements, and the PTRFLS table
collects branches within compound IF
statements.

Licensed Material - Property of IBM

ested IF Statement

— ==

Figure 28 shows how the PSHTBL table is
used in evaluating the following statement:

IF A=B THEN IF C=D THEN IF E=F STOP '0°¢
ELSE STOP '3' ELSE STOP '2' ELSE STOP '1¢
ADD...

1 Ll L] a
l |Status of| {
| Procedure| PSHTBL | |
| Statement| Table | Output String |
[4 1 4
q L L] 1
r—>|IF A=B | GN1 |IF-NOTEQ A B GN1|
| ¢ + t 1
$r—>|IF C=D | GN1 |IF-NOTEQ C D GN2|
1l | | GN2 | |
1 F { { 1
| #—>| IF E=F | GN1 | IF-NOTEQ E F GN3|
e | GN2 { 1
e | GN3 | |
(N t 4 14
11t {SToP '0¢ | GN1 {STOP *0° |
i1 1 | GN2 |GO GNU4 |
e | GN3 | {
il ¢ t+ t -
| { “>{ ELSE STOP| GN1 |GN3. STOP '3t |
1 | '3 | | |
H | | GN2 |GO GNU4. |
I 3 3 t 4
| “—>| ELSE STOP| GN1 |GN2. STOP 2! |
| I 2 | | |
| | | |GO GNU4 1
| t ~ —t 4
L——>| ELSE STOP| |GN1. STOP *'1°? |
[| | |
L i) 4 '
v L] LB T
{ADD ... | |GN4. ADD... |
[A A J
Figure 28. Evaluation of a Nested IF

Statement

(IFs and ELSEs are paired from the inside
outward.) The PSHTBL table saves the
procedure-names (GNs) generated for
branching to the ELSE statements. When an
ELSE is encountered, the last GN in the
table is issued as its procedure-name
definition.

SEARCH FORMAT-2 (SEARCH ALL) STATEMENT

The SEARCH ALL statement is executed by a
COBOL library subroutine. (For a
description of the subroutine, see the
publication IBM_0S/VS_COBOL_Subroutine
Library Progqgram lLogic. Therefore, phase 4
does not generate statements to perform the
search. Instead, it produces a parameter
list for the subroutine (the actual call to
the subroutine is generated by phase 50),

Phase 4 113

Licensed Material - Property of IBM

and it creates verb strings for the
imperative statements following AT END and
WHEN clauses.

Figure 29 gives an example of phase 4
output for a SEARCH ALL statement. The
example shows the P2-text that would be
produced for the following statement:

SEARCH ALL TABLE-K AT END GO TO NOT-FOUND
HHEN KEY-1 (INDEX-K) = 5

AND KEY-2 (INDEX-K) = 10

AND KEY-3 (INDEX-K) = DATANAME-K3

¥OYE TABLE-K (INDEX-K) TO ENTRY-FOUND.

1) The verb analyzer first receives, as
P1-text input, and saves TABLE-K and
the maximum number of occurrences.

Then it receives a count of the number
of keys, followed by the keys
themselves. The dictionary pointer for
each key is entered into the KEYTBL
table, with a flag byte of 00.

If any of the keys is found to be
sterling or floating point, a C-level
E-text element is generated, and the
statement is processed as though it were a
SEARCH format-1, with WHEN conditions being
processed by the IF analyzer and no special
WHEN statements generated.

After
analyzer
analyzer
clauses.

the table has been built, the
transfers control to the SEARCH
to scan the HHEN and AT END

To generate verb strings for the
imperative statements following AT END and
WHEN, the SEARCH verb analyzer calls other
verb analyzers. However, the IF analyzer
is not called to generate conditional
statements. Instead, SEARCH returns
control to the SEARCH format-2 analyzer to
do special WHEN processing.

(:) If the imperative statements following
the AT END or WHEN clauses do not

provide exits from the search, phase 4
generates GO TO NEXT SENTENCE. 1In the

114 Section 2. Method of Operation

examnple, this is accomplished via the

GO GN4 statement.

-

GO GN1.
GO PN50.

@
=
N

(vhere PH¥50 is the 2N
number of KOT-FOURD)
WHEN (3)1
TABLE-K
num-occur?
GN2
EVAL DMAX DCURRERT KEY-1.
EQUATE 5 KEY-1.
EVAL DMAX DCURRENT KEY-2.
EQUATE 10 KEY-2.
EVAL DMAX DCURRENT KEY-3.
EQUATE DATANAME-K3 KEY-3.
ENDWHEN (1) INDEX-K.3
SUBSCRIPT (3) TABLE-K INDEX-K SSID1.
MOVE (2) SSID1 ENTRY~FOUND.
(:) GO GN4.
] IGNT. GO GN3.
|GN4. next sentence
£

® GF

— v — —— — G——— —— —— 0 - o)

a
[1If KEY-1 required two levels of
subscripts or indexes, the first
subscript would be put out as the fourth
~operand of the WHEN verb. If three
levels were required, the first tvwo
subscripts would be operands 4 and 5 of
WHEN. All keys must be subscripted or
indexed when used in WHEN conditions,
but phase 4 does not produce SUBSCRIPT
strings or SSIDs for them.

2If TABLE-K has a fixed number of
entries, num-occur is a literal
specifying the number (the value
following OCCURS in the data description}
for TABLE~K). If the table has a 1
variable number of entries, num-occur isj
the name of the data-item which followus {
OCCURS... DEPENDING ON. ¢

- D TE m—— D o - G e W WTED CIT N e S e WA M o SO e SRR e e SN ey e crpn me—

i

|3The lowest level of indexing or i
{ subscripting for KEY~1 is passed as the |
| operand of ENDWHEN, since it is needed |
| for the search. i
3

a

Figure 29.

Example of Phase 4 Output for
SEARCH ALL Statement

GN3f———————

Licensed Material - Property of IBM

{ CALL |
| subroutinef
O —— |
SEARCH ALL |
object-time |
subroutine i
r + \
| | |
| | |
i r > |
| | | |
1 { v | GN2, 4 Exit from SEARCH
l | ' | |Imperative | via GO statement
| | i |statement | or next sentence
| | |5 >|following [= >
] | 1 |HHEN |
{ | | L 4
{ | |
| | |
| | |
| [} | Return at a
| | |specific number - Exit from SEARCH
| { |of bytes after |Inperative | via GO statement
] | End Yes |GN3 (first |statement | or next sentence
| | of + >|following t >
{ { table | executable | AT END |
| | {instruction | @f specified) |
| | | No |immediately | 1
i { | | follous L J
| | | | parameter
| | | |1list)
| —_—
|
L

(The largest box indicates control flow within the SEARCH ALL object-time subroutine;

smaller blocks are executed in-line.)

Figure 30.

Figure 30 is a generalized chart showing
the flow of execution into and out of the
SEARCH ALL object-time subroutine.

Phase 4 checks WHEN conditions for
conformity to language rules by using the
KEYTBL table.

Hhen the first part of the WHEN
condition is processed, the dictionary
pointer for the key named in the condition
is compared to that of the first key in the
KEYTBL table. If it matches, the flag byte
is set to 01 and the condition is valid.
Bach part of the condition should name a
key matching an entry in the KEYTBL table,
and its flag byte will be set.

After the entire WHEN condition has been
processed, the KEYTBL table is examined to
determine whether any key is tested in the
condition without all preceding keys being
tested. If this occurs, E-text is issued
and no P2-text is generated.

Floy of Execution for a SEARCH ALL Statement

The user is not required to name the
keys in the WHEN condition in any
particular order. However, phase 4 must
produce a P2-text string giving the keys in
the order specified in the KEY IS clause.
To produce text in the proper order, the
STRING table is compared to the KEYTBL
table. The STRING table entry that matches
the first KEYTBL entry is used to produce
the first text string, and the entries are
then deleted from both tables. This
process continues until all strings for the
WHEN condition have been put out.

If, in any part of the WHEN condition,
none of the operands named is a key, or if
any other error condition is detected,
E-text is issued and no P2-text is
produced.

Phase 4 115

Licensed Material - Property of IBM

SYNTAX ANALYSIS AND ERROR CHECKING

Phase 4, in subroutine ERROR, issues E-text
vhen an error is detected.

Primarily, phase 4 checks to see that
required COBOL words are present and in the
correct order, and that operands are
compatible with each other and in
permissible format for the statement in
which they are used.

In addition, phase 4 performs a limited
check of the relationship between
statements. For example, it can detect a
conditional statement that has no
conclusion.

It also checks miscellaneous special
requirements, such as: subscripts must be
integers, parentheses in logical and
arithmetic expressions must be paired, and
a maximum of twelve sort keys must not be
exceeded.

If the CSYNTAX or SYNTAX option is in
effect, E-text generated by phase 4 as well
as the E-text passed from phase 3 is
written on SYSUT4. Otherwise, E-text is
written on SYSUT1. Phase 4 also sets the
ERRSEV cell in COMMON to the highest error
severity level encountered. If an error
(E) or disaster (D) level message is
generated and the CSYNTAX option is in
effect, the SYNTAX option is forced into
effect. If the SYNTAX option is in effect,
phase 4 issues an end-of-job call if no
messages Were generated. If messages were
generated, control is returned to phase 00
vhich sets the value of LINKCNT to indicate
that phase 70 is to be executed next; error
messages are listed and the compilation is
terminated. (See "Syntax-checking
Compilations™ in the chapter “Phase 00.")

METHOD OF DEFINING VERB_BLOCKS

The major routines used in defining verb
blocks and the functions they perform are
explained below.

Phase 40 Initialization Routine

This routine turns off the ENTRYSW,
FNDPARNM, NNODEOS, NNODSH, NTIKSH,
TIWMFLOSH, UPPROC, and VBSKIP switches.

116 Section 2. Method of Operation

IDS Routine

Before branching to the verb analyzer
routines, this routine calls TIMCNT.

ISTRUV_Routine

This routine turns on NNODS®W and NNODEOS.

IDBRK Routine

If not a report writer declarative, this
routine turns on NNODSHW, ENTRYSW, UPPROC,
NTIMSW, and turns off NNODEOS and VBSKIP.
If it is a report writer start, IDBRK turns
on VBSKIP; if it is a report writer end, it
turns off VBSKIP.

IDLHO3 Routine

Just before FLOW is tested, this routine
turns on NNODSW, UPPROC, ENTRYSW, FNDPARNH,
and turns off NNODEOS. Then, if FLOW is
on, it turns on TIMFLOSW. Then GENTIM is
called. In addition, if there is a DEBUG
packet, at the end of IDLH10, GENTIN is
called again., Note: the test and code
generation for USE FOR DEBUGGING
paragraph-name precede the tests for FLOH.

SORT, MERGE Routines

Upon final exit from these routines, NNODSH
is turned on if INPUT or OUTPUT procedures
were specified. If INPUT or OUTPUT
procedures are specified, NTIMSW is also
turned on upon exit from processing the
INPUT or OUTPUT procedure phrase.

EOF_Routine

-

If COUNT is on, this routine indicates the
end of the COUNT Table in Data A-Text and
rounds the size of the COUNT Table to the
next even number.

GETNXT (GET13 and GET14) Routine

This routine saves Listing A-Text in order
to maintain the last procedure-name for
GENPAR.

EXITS (EXIT PROGRAM) Routine

Prior to generating this verb, this routine
calls GENTIN, passing zero as the parameter
to be generated. Afterwards, NTIMSW is
turned on.

GENNOD_Routine

If COUNT is off, or if VBSKIP is on, GENNOD
returns. Otherwise, if NNODSW is on,
NODECTR is updated. In any case, Data
A-Text is generated. 1In addition, if
NNODSW is on, a COUNT verb with a counter
is generated, and NNODSW is turned off.

GENPAR_Routine

First GENPAR turns off UPPROC.
COUNT is off GENPAR returnmns.

Then, if
In any case,

Licensed Material - Property of IBH

Data A-Text for the paragraph,
section-name, or missing paragraph-name is
generated (using FNDPARNM) , and FNDPARNM is
turned off.

GENTIM Routine

First GENTIM turns off NTIMSW. If UPPROC
is on, it calls GENPAR. In any case, if
ENTRYSW is off, GENTIM generates a TIMERA
verb (with a zero or PROCCTR as the count,
depending on input parameters) and then
returns. GENTIM turns off ENTRYSW, and if
TIMFLOSW off, generates a TIMERB verb (with
PROCCTR as the count) and returns.
Otherwise it turns off TIMFLOSW and
generates a TIMERC verb with PROCCTR as the
first constant and with ISN or Card-number
as the second constant.

WRSYS4 Routine

This routine puts the Data A-Text on
SYSO004.

Phase 4 117

Licensed Material - Property of IBM

The function of phase 45 (IKFCBL45) is to
produce P2-text on SYSUT1 for the UNSTRING
verb. The phase is given control only if
phase 4 encounters a valid UNSTRING verb
string, in which case, phase 4 sets the
PHYSBIT switch in SWITCH1 in COMMON. Phase
45 is called by phase 00 following phase 4
processing if phase 00 finds the PHU4SBIT
switch on.

Phase 45 operations consist of reading
and analyzing the ATM-text for the UNSTRING
verb, which phase 4 has written on SYSUT2,
and transforming it into P2-text. The
ATM-text consists of a series of subscript
strings followed by an UNSTRING verb
string; one or more of these series may be
present.

INITIALIZATION AND ATM-TEXT_ ANALYSIS

Phase 45 first primes the four tables,
SSCIN, SSDELIM, SSCOUT, and TXTOUT, which

are used during ATM-text analysis. These
tables are used by phase 45 only.
" After priming the tables, phase 45

begins to process the ATM-text from SYSUT2.
The PHU4SCTL control routine examines the
input verb string and gets the count of the
operands in the string. It moves the
operands into work areas labeled DOP1
through DOP5 (hereafter, a reference to a
DOP is a reference to one of these work
areas) . The PH45CTL routine then checks
whether the string is a subscript string.
If it is, the string is saved in the SSCIN
table and another input verb string is
read. If it is an UNSTRING verb string,
PH45CTL branches to the UNSTRING routine to
process it.

The UNSTRING routine scans the operands
and sets the appropriate flags to indicate
operand type. It also checks whether the

118 Section 2. Method of Operation

sending field is subscripted. If it is,
UNSTRING calls the FINDSSC routine to find
the corresponding subscript string and
enter it in the SSCOUT table. The FINDSSC
routine also enters the data item text
element in the TXTOUT table. If the
sending field is not subscripted, the
UNSTRING routine enters the data item text
element in the TXTOUT table only. The
UNSTRING routine branches to the proper
field analyzer to process delimiter fields,
receiving fields, delimiter-in fields,
count-in fields, pointer fields, and
tallying fields. The individual field
analyzers set flags and make entries in the
appropriate tables. When all of the DOPs
have been processed, control is returned to
the PHUS5CTL routine to refill the DOPs.

CREATING_P2-TEXT FOR PHASES_50_AND_51

As ATM-text is analyzed and rearranged,
P2-text is created for phases 50 and 51.
The P2-text is generated so that the
subscript for a subscripted field is
calculated immediately before the field is
referred to. Also, any Q-routines which
must be called following the change of the
object of an OCCURS...DEPENDING ON clause,
are called immediately instead of after the
entire verb string has been analyzed.
P2-text elements, called Data-name
information for UNSTRING (24), are also
created to pass information about UNSTRING
data items, such as address and size, which
is used by phase 51 when it generates
Procedure A-text.

The P2-text is formatted in the SSCOUT
and TXTOUT tables. The SORTXT routine
sorts the corresponding sections of these
tables, putting the text in the correct
order. Finally, P2-text is written on
SYSUT1.

Phase 50 (IKFCBL50) reads elements of
P2-text written by phases 4 and 45 and,
depending upon the type of each element,
either processes it or ‘passes it to phase
51 for processing. Output from phase 50
includes P2-text passed unchanged,
Intermediate A-text, and Intermediate
E-text, all written on SYSUT2 for phase 51,
and Optimization A-text written on SYSUT2
for phase 6 or 62. Intermediate E-text
consists of E-text passed from phase 4 or
generated by phase 50, to which is added a
prefix to make it readily recognizable.
Intermediate A-text consists of Procedure
A-text or Optimization A-text, which is
generated by phase 50 and to which has been
added a prefix. If the SYNTAX or CSYNTAX
option is in effect, no prefix is added to
Internediate A-text.

Procedure A-text is generated by
analyzing P2-text verb strings and
generating elements that correspond to
assembler-language instructiomns. That is,
the elements combine to form nanme,
operation, and operand fields.
optimization A-text is generated for use by
phase 6 or 62 in eliminating duplicate
references.

Input to phase 50 (a combination of
P2-text and E-text) is read from SYSUT1.
output is written on SYSUT2, except for
literals uwritten as Optimization A-text on
SYSUT3 (see the section "Literals and
Virtuals" later in this chapter). 1In
addition, if the SYNTAX or CSYNTAX option
is in effect, E-text is written on a
separate data set, SYSUT4; and the ERRSEV
cell in COMMON is set to the highest error
severity level encountered. (E-text
processing is discussed under "E-text" in
the chapter "Phase 51.")

Routine PH5CTL calls GETNXT, which
obtains P2-text elements, determines what
type they are, and calls the routines
required to process them. The elements may
be of the follouing types:

o Program breaks

o Verb strings

o E-text

o Segmentation control breaks
o PN, GN, and VN definitions

0f these, only program breaks and
certain verb strings are processed by phase

Licensed Material - Property of IBHM

50. The others are passed to phase 51 for
processing. Elements of E-text are
prefixed with headers for identification by
phase 51, and copied as output.
Segmentation control breaks and PN, GN, and
VN definitions are written with an
Optimization A-text prefix. Before a PN,
GN, or VN definition is copied, all entries
in the XSCRPT table, used in calculating
subscript values, are deleted. The section
"Using and Optimizing Subscript References"
explains why this is necessary.

PROGRAM_BREAKS

Routine GETNXT uses program breaks to
determine where to issue a START macro-type
instruction. This indicates where in the
object-time coding the first executable
instruction is generated. The Procedure
Division, beginning-of-declaratives, and
end-of-declaratives breaks are used for
this. (A1l other types of program breaks
are ignored.)

If no beginning-of-declaratives break is
encountered, routine GETNXT issues the
Procedure A-text for START immediately
after finding the Procedure Division break.
If a beginning~of-declaratives break is
encountered, the START Procedure A-text is
issued after the end-of-declaratives break
has been found.

Since the coding for a START macro is
always the same, this A-text is generated
from Constant A-text, which is described
later in this chapter.

VERB_STRINGS

—_—aat ool

The P2-text for a verb string consists of a
verb followed by from one to five operarnds.
Any operands beyond the fifth have been
placed into one or more continuation
strings by phase 4; the first operand of
the first string is the COBOL word FIRST,
and the last element of the last string is
the COBOL word END. (An example of this
appears in the discussion of the DISPLAY
string under "Verbs Requiring Calls to
Object~Time Subroutines" in the chapter
"Phase 51.%)

once routine PHSCTL has established that
an element of P2-text is a ver string, it

Phase 50 119

Licensed Material - Property of IBM

moves the operands into work areas labeled
DOP1 through DOP5 (hereafter, a reference
to a DOP is a reference to one of these
work areas). The verb code for the verb
currently being processed is moved into a
cell called GANLNO, where it is kept until
overlaid by the next verb code.

The PHSCTL routine then calls routine
XIS31, which determines whether any of the
operands are subscripted or indexed
data-names. If one is, the pointer to the
desired occurrence has already been
computed in phase 50 (subscripts and
indexes are resolved by processing
SUBSCRIPT verb strings, which always
precede the verb string in which they are
referenced; see the section "Resolving
Subscripted and Indexed References" later
in this chapter). The routine changes the
idk ({addressing parameters) field in the
DOP from a subscripted or indexed reference
to a data-name reference. (A full
description of the idk field appears in
"Dictionary Entry Formats" of "Section 5.
Data Areas" under the addressing parameters
field of the LD dictionary entry.)

Upon return, routine PH5CTL checks to
see whether the verb string is one that is
to be processed by phase 50. Verb strings
processed by phase 50 include:

ADD

SUBTRACT

MULTIPLY

DIVIDE

EXPONENTIATION

Numeric IF

Numeric MOVE

SEARCH

DEBUG

INSPECT

DEBUG SUBSCRIPT

EVAL

STORE

SUBSCRIPT

EQUATE, when in SEARCH ALL
END OF, vwhen in SEARCH ALL

The last five are verb strings created
by phase 4. If the verb is one of those
listed, an appropriate verb processor is
called. Otherwise, routine PHS5BVB is
called, which performs some checking of
phase 51 verb strings before passing then
as P2-text to phase 51 (see "Handling Phase
51 Verb Strings" in this chapter).

Note: The PHS5CTL routine distinguishes
between numeric and nonnumeric IF and MOVE
verb strings as follows: the numeric IF
verb has a different verb code from the
nonnumeric IF. For all MOVE strings,
control is given to the numeric MOVE
analyzer; if this routine finds nonnumeric
operands, it returns control to routine

120 Section 2. Method of Operation

PH5CTL with an indication that such is the
case. -

VERB PROCESSING

From the verb code, routine PHS5CTL
deternines which verb analyzer to call. 1If
the STATE, TEST, or SYMDMP option is in
effect, phase 50 generates a call to the
object-time COBOL 1library debugging
subroutine entry point ILBODBGU4 before the
code to call any other object-time
subroutine except ILBOFLHW1. The call to
ILBODBGY4 is generated only once per verb,
even if the verb causes calls to more than
one subroutine. For details on the
object-time subroutines, see the
publication IBM_0S/VS_COBOL_Subroutine
Library program Logdgic. In general, there
is a specific routine to analyze each COBOL
verb, but there are a few cases of overlap.
For example, all arithmetic verbs use parts
of a processor known as the arithmetic
translator.

The illustrations in this chapter show
P2-text strings as a verb followed by
data-names, and Procedure A-text elements
as assembler-language instructions. These
are simplifications for the reader: the
texts actually contain codes rather than
verbs, and the P2-text for data-names
contains the dictionary attributes of the
item, rather than its name. The actual
text formats, including the codes, are
shown in "Section 5. Data Areas."

Note: When phases 50 and 51 use registers
14 and 15 in their generated instructions,
Procedure A-text DESTROY and RESERVE
elements are passed to phase 6 or to phases
62, 63, and 64. The purpose of the DESTROY
element is to indicate that the contents of
the registers are not to be relied upon any
longer. The purpose of the RESERVE element

" is to indicate that the register may not be

used by phase 6 or by phases 62, 63, and 64
in the generated code until a FREE element
for that register, issued by phase 50 or
51, is read.

RESOLVING SUBSCRIPTED AND INDEXED
REFERENCES :

This section describes the processing of
the SUBSCRIPT verb string. It shows how
subscripted addresses are calculated and
how the XSSNT and XSCRPT tables are used to
eliminate duplicate calculation. Then the
handling of indexes (which are very similar
to subscripts and use the same tables) is
discussed.

How_Subscripted Addresses_Are Calculated

To refer to a subscripted item, the object
program must know the displacement in bytes
of the desired occurrence from the
beginning of the subscripted field. To
calculate this displacement, the following
mnust be known:

e The number of bytes in the entire
subscripted field.

e The relative position in the field of
the desired occurrence.

The size of the field is known from the
Data Division description of the fielgd,
including the PICTURE clause of the
elementary item. The relative position is
known from the value of the subscripts.

The examples which follow shou three
levels of subscripting. The same concepts
(an@ the same formula) apply to one or two
levels of subscripting.

The formula used to calculate a
subscripted address is:

(subscript1*length1) + (subscript2*length2)
+ (subscript3%*length3) .
- (length1+length2+length3)

This formula is used whether the
calculation is done in phase 50 or in the
ob ject progran.

The following discussions use exanples
based on this entry in the Data Division:

02 FIELD OCCURS 10 TIHES.
03 SUBFIELD OCCURS 10 TIHES.
04 ITEH OCCURS 10 TIHMES PICTURE XX.

Literal Subscripts: When all the
subscripts in a reference are literals,. the
subscripted address can be calculated at
conpile time (the calculation is done by
routine XSCOMP). If a reference is made to
ITEM (9, 8, 7), the calculaticn is:

(9%200) +(8%20) + (7%2)-(200+20+2) .

The value of the result is the displacenment
in bytes of ITEM (9, 8, 7) from the
beginning of the subscripted field.

When the SUBSCRIPT string was first
encountered, an entry was made for it in
the XSCRPT table (the building of this
table is more fully described in the
section "Using and Optimizing Subscript
References"). One field of the entry,
called the idk field, contains a code, i, a
displacement, d, and a base locator (BL)
number, k. (BLs are assigned by phase 22;
for a description, see the chapter "Phase

Licensed Material - Property of IBH

22.") The value of 4 is the displacement
away from the BL of the beginning of the
subscripted field. After the formula has
been calculated, the results are added to
d. If this value is less than 4096 bytes,
it becomes the new value of d. If it is
4096 or greater, it is decremented by 4096;
this decremented value is then placed in
the d field of the XSCRPT table entry, and
the BL number is incremented by one. The
table entry now points to the desired
occurrence at execution time. (Note that
if the value of d exceeds a multiple of
4096, it is decremented by 4096 as many
times as required to make it less than
4096, and 1 is added to the BL for each
decrement. For example, if 4=13,000, it is
decremented by 12,288 and the BL number is
incremented by 3.)

Data-name Subscripts: When the subscripts
are data-names, their values vary at
execution time. Therefore, code must be
generated to perform the calculations in
the object program. This is done in
routine XSCOMP, using the A-text generator.

suppose that reference is made to ITEM
(X, Y, Z). XSCOMP must first determine
wvhether each subscript is binary. If not,
code must be generated to get the value of
the subscript from the data area of the
object program, move it into a work area,
and convert the value in the work area to
binary. It is then handled as a binary
subscript, using the value in the work area
rather than the data area.

The generated code performs the
following actions at execution time:

o The value of 4@ in the XSCRPT table (the
address of the subscripted fieldj is
loaded into. a register.

o The first subscript (X in the example),
in binary, is loaded into another
register. This subscript denotes the
desired occurrence number for FIELD,
the highest level in the hierarchy. If
FIELD is of constant length (that is,
if it does not contain the DEPENDING ON
option) , the value of X in the register
is multiplied by a literal representing
the length of FIELD (200 bytes). If
FIELD does contain the DEPENDING ON
option, a value, instead of the
literal, is picked up from a VLC
(variable-length cell) where it was
placed by a Q-Routine. This value
represents the current length of FIELD.

@ The result of this multiplicaticn is
added to the value of 4 in the first
register, and this process is repeated
for each subscript.

Phase 50 121

Licensed Haterial - Property of IBM

o Phase 50 has generated a literal
(referred to in this discussion as
LITX) whose value is:

(lLength of FIELD + length of
SUBFIELD + length of ITEH).

o When the multiplications have been
finished and the final increment has
been added to the address in the
register, this literal is subtracted
from the register, and the result is
the address of the desired occurrence.

This computation is an exact duplicate
at execution time of the formula applied to
literal subscripts at compile time.

After routine XSCOHP has put out the
Procedure A-text for these instructionmns, it
changes the idk field of the XSCRPT table
entry for ITEM. It replaces the former
contents with the number of the register
vhich at execution time will contain the
calculated address of ITEM (X, Y, Z), and a
code indicating that this is a register
number rather than a displacement.

Hizxed Literal and Data-name_Subscripts:
When the subscripts are mixed literals and
data~names, for example, ITEM (X, 4, Z),
part of the calculation can be done in
phase 50 to save time in the object
program. XSCOMP multiplies the literal
subscript by the length of the field it
vefers to. In the example, this is 4%20
{SUBFIELD is 20 bytes long). This result
is subtracted from LITX before A-text for
LITY is generated. Then, at object time,-
the multiplications and additions will be -
arxformed for ¥ and Z and this new value of
LITX will be subtracted.

Note that, to arrive at a meaningful
value, the entire formula must be
evaluated. The intermediate results of a
subscript calculation are meaningless in
themselves.

Using and _Optimizing Subscript References

Part of the function of the XSCRPT table is
to avoid duplicate calculations for a
subscripted reference. For example, given
the source statements:

PRRAGRAPH1. HMOVE ITEM (X, Y, Z) TO D.
ADD ITEM (X, Y, Z) TO E.

It is unnecessary to calculate the address
of ITEH (¥, Y, Z) twice. When the ADD
statement is executed at object time, the
correct address will already be in a
register.

122 Section 2. Hethod of Operation

The P2-text for these statements would
be:
PN1. SUBSCRIPT (5) ITEM X Y Z SSID1
MOVE (2) SSID1 D
SUBSCRIPT (5) ITEM X Y Z SSID2
ADD (2) SSID2 E

When the first SUBSCRIPT string is
encountered, the XSCRPT table is searched
for a matching entry. Hone ‘is found, so an
entry is made after the instructions for
the subscript calculations have been
generated. This entry includes the idk
field described earlier and the dictionary
pointers for ITEH and all the subscripts.
(Note that the dictionary pointer is used
only because it provides a unique
identifier. The value of the pointer
itself is meaningless.) There is also a
field for the total length of the entry
(the exact format can be found in "Section
5. Data Areas.")

An entry is also made in the XSSHT
table. This entry includes the subscript
aumber (SSID1) and a pointer to the XSCRPT
entry.

After the SUBSCRIPT string has been
processed, the HOVE string is encountered.
Routine XIS31 (also called XSUDB3) searches
the XSSHT table for SSID1. It uses the
pointer in the XSSNT table to pick up the
idk field in the XSCRPT table. This field
replaces SSID1 in the DOP, and the verb is
now processed as if the operand were a
data-name.

The XSSHRT entry for SSID1 is now
deleted, since it will never again be
referenced. This is because phase 4 gave a
unique number to each subscript
calculation.

When the second SUBSCRIPT string is
encountered, the XSCRPT table is searched
for a match. The search is made on total
entry length (if this does not match, the
entries cannot be identical). When the
match is found, an XSSNT entry is made for
SSID2, with a pointer to the same XSCRPT
entry as for SSID1.

If there are not enough registers for
the subscripted address to remain in a-
register for the second time it is
referenced, code is generated before the
register is used to store the address in a
subscript save cell. (These cells are
located in the SUBADR field of the Task
Global Table.) An indication of this,
along with the cell number, is placed in
the XSNIDK field of the XSCRPT entry, so
that the second time the address is needed,
the contents of the cell can be loaded into
another register. The section "Register
and Storage Allocation" later in this

chapter describes how values in registers
are saved.

Thus, the XSNIDK field may ultimately
contain three types of information:

1. If all subscripts used in the
subscripted reference were literals,
the field contains a BL type, BL
nunber, and displacement, in the idk
format.

If one or more subscripts were
data-names, the field has been updated
to contain a register number and the
code indicating that this is a
register.

If the register is needed for some
other purpose before the subscripted
reference is used, the field contains
the number of the subscript save cell
in which the register contents have
been stored, with the appropriate
code.

Every time a PN, GN, or VN definition is
encountered in the P2-text, the entire
XSCRPT table must be deleted. The reason
is shown by the following source program
statements:

ON 2 AND EVERY 2 GO TO

PARAGRAPH2,.

MOVE ITEM (X, ¥, 2) TO D.
PARAGRAPH2., ADD ITEM (X, Y, 2) TO E.

In this example, if PARAGRAPH2 is
entered through the branch in the ON
statement, the subscript calculations
generated for the MOVE will not have been
executed, and the register will contain
whatever value was left from the last time
it was used. Therefore, the calculation
must be performed in PARAGRAPH2. Deleting
all the entries in the XSCRPT table
vhenever a paragraph-name is encountered
assures that the code will be generated.

The XSCRPT table must also be deleted
when any verdb is encountered which can pass
control to any point other than the next
sequential instruction. An example of such
a verb is a SORT verb or any VSAM verb.

A2 A e 2

Indexed references are resolved by the same-

routines, applying the same logic, as
subscripted references. The difference in
their handling occurs because index-name
values are never known at compile time, and
because, at object time, the index-name
cells (each index-name is a 1-word cell in
the INDEX field of the TGT) contain values

Licensed Material - Property of IBM

expressing a displacement in bytes from the
beginning of the indexed field. The value
in the cell corresponds to the following
formula:

(occurrence number - 1) * length of
elementary itenm

It is the responsibility of the source
programmer to set the value in the index-
name via a SET statement before an indexed
reference is made. The SET verb performs
the same calculations for an index-name
that routine SSCRPT does for a subscript.

Indexing may be direct, indirect, or
mixed (indexes and literals). Direct
indexing uses only index-names. Indirect
indexing uses literals as increments or
decrements. Mixed indexing consists of at
least one index with one or more literal

subscripts. Given the Data Division
statements:
02 FIELD OCCURS 10 TIMES INDEXED BY A.

03 SUBFIELD OCCURS 10 TIMES INDEXED BY B.
04 ITEM OCCURS 10 TIMES INDEXED BY C
PICTURE XX.

a reference to ITEM (A, B, C) would be
direct indexing, and a reference to ITEM
(A+4, B-5, C+6) would be indirect indexing.

Direct_Indexing: The P2-text contains a
SUBSCRIPT verb string with a special code
in the operands to indicate that they are
index-names rather than subscripts.
Entries in the XSCRPT and XSSNT tables are
made and used in the same way as for
subscripted references. Object code is
generated to place the value of 3 from the
idk field into a register and add the
values of all the index-names to it.

_________ Routine SSCRPT
determines that there are literals in the
SUBSCRIPT string. These literals are
placed in an information gathering work
area. When the XSCRPT entry is made for
the indexed field referenced, the
dictionary pointers are not entered, to
prevent a match from being found. This
necessary for possibilities such as the
following:

is

MOVE ITEM (A+4, B-5, C+6) TO D.
MOVE ITEM (A, B, C) TO E.

If a normal XSCRPT entry was made for the
first statement, the dictionary pointers
would be identical and the second statement
would use the register set up by the first.
Since . the indexing does not point to the
same place, the operation would be
incorrect.

After routine XSCOMP has generated the
code to add the index-names (as described

Phase 50 123

Licensed Material - Property of IBM

_earlier under "Direct Indexing"), it tests
the information-gathering work area. When
literals are present, the routine generates
additional instructions. These
instructions load the literal into a free
register, multiply the register by the
length in the VLC for that level (in the
example, the literal 4 would be multiplied
by 200), and add this value to the register
pointing to the indexed field (this
register has already been incremented by
the index-name values). This process is
repeated for every literal. The
multiplication must be done because the
literals, unlike the index-names, represent
occurrence numbers, not displacements in
bytes.

Mixed Literal and Direct Indexing: Mixed
indexing is processed as a combination of
direct and indirect. All index-names are
processed first, then each literal is
treated as an indirect increment.

ARITHMETIC VERB STRINGS

The Arithmetic Translator is a group of
verb analyzers used to process arithmetic
verb strings. It is also used for all MOVE
statements and IF statements processed by
phase 50.

Given the source program statement:
COMPUTE X=A+(C-D/E) *F-G.
the following P2-text would be generated:

EVAL DMAX DCURRENT X...
DIV E D IR1 (=C)

SUB IR1 C IR2 (*F)

MULT F IR2 IR3 (+A)

ADD IR3 A IR4 (-G)

SUB G IR4 IR5 (ST X)
STORE IR5 X

For a description of how phase U4 generates
this string, see "COMPUTE Statement" in the
chapter "Phase 4" where this same example
is used.

For each verb string, the Arithmetic
Translator routines do the following:

1. Place information about each operand
in a work area.

2. Determine the sizes of intermediate
and temporary fields, and check for
possible overflow by performing
compile-time atrithmetic.

3. Determine the mode for the operation.

124 Section 2. Method of Operation

4. Allocate registers and temporary
storage for the operation.

5. 'Call the A-text Generator (described
later in this chapter) to produce the
Procedure A-text.

The formats of switches used by the
Arithmetic Translator routines are given in
Figure