
" o

Systems

o

o

GC33-4010-5
File No. 5370-21

OS/VS - DOS/VSE - VM/370
Assembler Language

--- ------ - -------- -. ---- - - ----------_.-

Page of GC33-40 10-5
As Updated 28 Dec 1981
By TNL GN20-9372

Sixth Edition (March 1979)

This edition, as amended by technical newsletter GN20-9372, applies to Release 4
of OS/VS1, Release 3 of OS/VS2, Release 2 of VM/370, DOS/VSE, and to any
subsequent releases until otherwise indicated in new editions or technical
newsletters.

Changes are periodically made to the information herein; before using this
publication in connection with the operation of IBM systems, consult the latest
IBM System/370 and 4300 Processors Bibliography, GC20-000 1, for the editions
that are applicable and current.

It is possible that this material may contain reference to, or information about, IBM
products (machines and programs), programming, or services that are not
announced in your country. Such references or information must not be construed
to mean that IBM intends to announce such IBM products, progr'1mming, or
services in your country.

Publications are not stocked at the address given below; requests for IBM
publications should be made to your IBM representative or to the IBM branch
office serving your locality.

A form for reader's comments is provided at the back of this publication. If the
form has been removed, comments may be addressed to IBM Corporation, P.O. Box
50020, Programming Publishing, San Jose, California, U.S.A. 95150. IBM may use
or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation whatever. You may, of course, continue to use the
information you supply.

© Copyright International Business Machines Corporation 1972, 1979

o:~

Read This First

This manual describes the OS/VS - DOS/VSE - VMj370 assembler
language.

The OS/VS - VM/370 assembler languag~ offers the following improvements
over the 08/360 assembler language as processed by the F assembler:

1. New instructions and functions

2. Relaxation of language restrictions on character string lengths,
attribute usage, SET symbol dimensions, and on the number of entries
allowed in the External Symbol Dictionary

3. New system variable symbols

4. New options: for example, for the printing of statements in the
program listings or for the alignment of constants and areas.

The figure on the following pages lists in detail these assembler
language improvements and indicates the sections in the manual where the
instructions and functions incorporating these improvements are
described. If you are already familiar with the OS/360 assembler
language as processed by the F assembler, you need only read those
sections. Also included in the figure on the following pages are the
improvements of the DOS/VS assembler language over the OOS/360 assembler
language as processed by the D assembler.

NOTE: Sections I through L, describing the macro facility and the
conditional assembly language, have been expanded to include more
examples and detailed descriptions.

Note for VM/370 Users

The services provided by the OS Linkage Editor and Loader programs are
paralleled in VM/370 by those provided by the eMS Loader. Therefore,
for any reference in this publication to those OS programs, you may
assume that the eMS Loader performs the same function.

Certain shaded notes in this publication refer to ·OS only· information.
Where you see these notes you may assume the information also applies
for VM/370 users.

Note for DOS/VSE Users

All references to DOS and DOS/VS are also applicable to DOS/VSE.

iii

COMPARISON OF ASSEMBLERS o
Language Fe~ur~ Assemblers

Described in

OOS/360 (0) OS/360 (F)
OS/VS -

OOS/VSE VM/370

1. No of continuation lines allowed in 1 2 2 2 B1B
one statement

2. Location Counter value printed for 3 bytes 3 bytes 3 bytes 4 bytes C4B
EQU, USING, ORG (in ADDR2 field) (up to 3

leading zeros
suppressed)

3. Self·Defining Terms
224.1 224.1 224.1 231 .,

C4E
maximum value:

number of digits
binary: 24 24 24 32
decimal: 8 8 8 10
hexadecimal: 6 6 6 8
character: 3 3 3 4

4. Relocatable and Absolute Expressions C6B
unary operators allowed: no yes no yes
value carried: truncated to truncated to truncated to 31 bits

24 bits 24 bits 24 bits
number of operators: 15 15 15 19
levels of parentheses: 5 5 5 6

5. Alignment of Constants ALIGN/ constants constants constants 02
(with no length modifier) when NOALIGN notaJigned aligned not aligned
NOALIGN option specified: option not

allowed

6. Extended Branching Mnemonics D1H
for R R format instructions: no yes no yes

7. COpy Instruction E1A
nesting depth allowed: none 3 none 5
macro definitions copied: no yes no yes

8. END Instruction

generated or copied END
instructions: no no no yes El

9. All control sections initiated by a no yes no no E2C
CSECT start at location 0 in listing
and object deck

I
10. External Symbol Dictionary Entries E2G

maximum allowed: 255 511 255 399
(including
entry symbols
identified by
ENTRY)

11. DSECT Instruction blank name entry: no yes, no yes E3C

12. DROP Instruction not allowed signifies all not allowed signifies all F1B
blank operand entry: current base Cl'rrent base

registers registers
dropped dropped

13. EQU Instruction G2A
second operand as length attribute: no no no. yes
third operand as type attribute: no no no yes

14. DC/OS Instruction; one multiple multiple mUltiple G3B
number of operands:

1v

COMPARISON OF ASSEMBLERS

Language Feature Assemblers

OSNS- Described in
DOS/360 (D) DOSNSE OS/360 (F) VM./370

b
15. Bit-length specification allowed: no yes yes yes G3B

16. Literal Constants G3C
multiterm expression for

I

duplication factor: no yes no yes
length, scale, and
exponent modifier: no yes no yes
Q. or S-type address constant: no no no yes

17. Binary and Hexadecimal Constants G3D
number of nominal values: one one one multiple G3F

18. Q.type address constant allowed: no no yes yes G3M

19. ORG Instruction sequence symbol sequence symbol sequence symbol any symbol H1A
name entry allowed: or blank or blank or blank or blank

20. Literal cross-reference: no yes no yes H1B

21. CNOP Instruction sequence symbol sequence symbol only sequence any symbol H1C
symbol as name entry: or blank or blank symbol or blank or blank

22_ PRINT Instruction
inside macro definition: no yes no yes H3A

23_ TITLE Instruction H3B
number of characters in name
(if not a sequence symbol): 4 4 4 8

24. OPSYN Instruction: no no yes yes H5A ()
25. PUSH and POP Instructions H6

for saving PRINT and USING status: no no no yes

26. Symbolic Parameters and
Macro Instruction Operands

maximum number: 100 200 200 no fixed J2C
maximum K1B

mixing positional and keyword: all positional all positional all positional keyword param- J3C
parameters parameters parameters eters or operands K3C
or operands or operands or operands can be inter-
must come must come must come spersed among
first first first positional param

eters or operands

27. Generated op-codes START, CSECT, J4B
DSECT, COM allowed no yes no yes

28. Generated Remarks due to generated J4B
blanks in operand field: no no no yes

29. MNOTE Instruction J5D
in open code: no no no yes

30. System Variable Symbols J7
&SYSPARM: yes yes no yes
&SYSDATE: no no no yes
&SYSTIME: no no no yes

31. Maximum number of characters in K5
macro instruction operand: 127 255 255 255

o 32. Type and Count Attribute of L1B
SET symbols: no no no yes
&SYSPARM, &SYSNDX,
&SYSECT. &SYSDATE, &SYSTIME: no no no ves

v

COMPARISON OF ASSEMBLERS

Language Feature Assemblers Described in

00S/360 (0) ! OOS/VSE OS/360 (F) OS/VS -.... ,---

33. SET Symbol Declaration L2
global and local mixed: no, global must no, global must no, global must yes

precede local precede local precede local
global and local must immedi-
ately follow prototype state-
ment, if in macro definition: yes yes yes no

must immediately follow any source
macro definitions, if in open code: yes yes yes no

34. Subscripted SET Symbols L2
maximum dimension: 255 4095 2500 32,767

35. SETC Instruction L3B
duplication factor in operand: no no no yes
maximum number of characters
assigned a 255 a 255

36. Arithmetic Expressions L4A
in conditional assembly

unary operators allowed: no yes no yes
number of terms: 16 16 16 up to 25
levels of parentheses: 5 5 5 up to 11

37. ACTR Instruction allowed anywhere no, only immedi- yes no, only immedi- yes L6C
in open code and inside macro ately after global ately after global
definitions: and local SET and local SET

symbol symbol
declarations declarations

3a. Options for Assembler Program
ALIGN no yes yes yes 02
ALOGIC no no no yes La
MCALL no no no yes JaB
EDECK no yes no no Order No.

GC33-4024

MLOGIC no no no yes La
L1BMAC no no no yes JaA

vi

o

o

Preface
Page of GC33-40 1 0-5
As Updated 28 Dec 1981
By TNL GN20-9372

This is a reference manual for the OS/VS - DOS/VSE - VM/370 assembler
language. It will enable you to answer specific questions about
language functions and specifications. In many cases it also provides
information about the purpose of the instruction you refer to, as well
as examples of its use.

The manual is not intended as a text for learning the assembler language.

Who This Manual Is For

This manual is for programmers coding in the OS/VS - VM/370 or DOS/VSE
assembler language.

Major Topics

This manual is divided into four main parts (aside from the
nlntroductionW and the Appendixes) :

PART I (Sections B and C) describes the coding rules for, and the
structure of, the assembler language.
PART II (Section D) describes the machine instruction types and their
formats.
PART III (Sections E through H) describes the assembler instructions.
PART IV (Sections I through L) describes the macro facility and the
conditional assembly language.

How To Use This Manual

Since this is a reference manual, you should use the Index or the Table
of Contents to find the subject you are interested in.

Complete specifications are given for each instruction or feature of the
assembler language ~xcept for the machine instructions, which are
documented in Principles of Operation -- see "References You May Need") .
In many cases, a "Purpose" section suggests why you might use the
feature; a "Specifications" section explains use of a complex feature;
and one or more figures give examples of coding an instruction.

If you are a present user of the OS Assembler F or the DOS Assembler D,
you need only read those sections listed in the table preceding this
"Preface" which indicates those language features that are different
from the DOS or OS Systern/360 languages.

vii

Page of CC3 3-40 1 o-S
As updated 28 Dec 1981
By TNL GN20-9372

TABS: Tabs mark the beginning of the specifications portion of the
language descriptions. Use the tabs for quick referencing.

-

Tab . USING

OS-DOS DIFFERENCES: Wherever the OS/VS and DOS/VS assembler languages
differ, the specifications that apply only to one assembler or the other
are so marked. The 'OS only' markings also apply for the VM/37Q
assembler.

KEYS: The majority of figures are placed to the right of the text that
describes them. Numbered keys within a figure are duplicated to the
left of the text describing the figure. Use the numbered keys to tie
the underlined passages in the text to specific parts of the figure.

Key- •

GLOSSARY: The glossary at the back of the manual contains terms that
apply to assembler programming specifically and to allied terms in data
processing in general. You can use the Glossary for terms that are
unfamiliar to you.

IBM is grateful to the American National Standards Institute (ANSI) for
permission to reprint its definitions from the American National
Standard Vocabulary for Information Processing, which was prepared by
Subcommittee X3.S on Terminology and Glossary of American National
Standards Commdttee X3.

References You May Need

You may want to refer to

11311 System/370 Principles of Operation, GA22-7000, or 18H 4300
Processors principles of Operation for ECPS:VSE Mode, GA22-7070, the
definitive publications for machine instructions, and to

OS/VS - VM/370 Assembler Programmer's Guide, GC33-4021

for detailed information about the OS/VS - VM/370 Assembler.

Guide to the DOS/VSE Assembler, GC33-4024

for detailed information about the DOS!VSE Assembler.

viii

o

-0

o

SECTION A: INTRODUCTION • • • • • • •• 1

WHAT THE ASSEMELER DOES • • •• 1
A1 -- THE ASSEMBLER LANGUAGE • • • •• 2

Machine Instructions • • • 2.
Asse~bler Instructions • • • •• 3
Macro Instructions • • .. • • •• 3

A2 THE ASSEMBLER PROGRAM • • • • •• 3
A2A -- Assembler processing Sequence 4

Machine Instruction Processing. 5
Assembler Instruction processing 5
Macro Instruction Processing •• 8

A3 -- RELATIONSHIP OF ASSEMBLER TO
OPERATING SYSTEM • • • • • • •• 9
Services Provided by the
Operating System • • • • • 9

A4 -- CODING AIDS • • • • • • • • • • • 10
Symbolic Representation of
Program Elements • • • • • • • • 10
Variety of Data Representation • 10
Controlling Address Assignment • 10
Relocatability 11
Segmenting a Program 11
Linkage Between Source Modules. 11
Program Listings •••••••• 11

PART I: CODING AND STRUCTURE • • • •• 13

SECTION B: CODING CONVENTIONS • • • .. • 15
Standard Assembler Coding Form • 15

B1 CODING SPECIFICATIONS • • • •
B1A -- Field Boundaries • • • •

The Statement Field ••••••
The Identification-Sequence
Field •• • • • • • • • •
The Continuation Indicator
Field •• • • • • • • • • •
Field Positions • • • • •

Bla -- Continuation Lines • • • • •
alC -- Comments Statement Format ••
B1D -- Instruction Statement Format

Fixed Format • • • • • • • • • •
Free Format • • • • • • • • • •
Formatting Specifications • • •

16
16
16

17

17
17
18
19
20
20
20
21

SECTION C: ASSEMBLER LANGUAGE STRUCTURE 25

Cl -- THE SOURCE MOCULE • • • • • • • • 26
C2 -- INSTRUCTION STATEMENTS • • • •• 26

C2A -- Machine Instructions • • •• 29
C2B -- Assembler Instructions • •• 30

Ordinary Assembler Instructions 30
Conditional Assembly
Instructions • • • • • • • • • • 32

C2C -- Macro Instructions • • • •• 33
C3 -- CHARACTER SET • • 34
C4 -- TERMS • • • • • • • • • • • • • • 36

C4A -- Symbols '. • • • • • • • • • • 36
Symbol ,Definition • • • • • •• 38
Restrictio~s on Symbols • •• 40

C4E -- Location Counter Reference. 41

ix

Contents

C4C Symbol Length Attribute
Reference • • • • • • • 44

C4D Other Attribute References. 46
C4E -- Self-Defining Terms • • • • • 46

C5 -- LITERALS • • • • • • • • • • •• 50
C6 -- EXPRESSIONS • • • • • • • • • • • 53

C6A -- Purpose • • • • • • • • • • •
C6B -- Specifications • • • • •

Absolute and Relocatable

53
55

Expressions • • • • • • • • •• 56
Absolute Expressions • • • • • • 57
Relocatable Expressions • • •• 58
Rules for Coding Expressions • • 59
Evaluation of Expressions • 60

PART II: FUNCTIONS AND CODING OF
MACHINE INSTRUCTIONS • • • • • • • 61

SECTION D: MACHINE INSTRUCTIONS • • 63

D1 -- FUNCTIONS • • • • • • • • • • 63

D2
D3
D4
D5

06

D1A -- Fixed-Point Arithmetic • •• 64
Operations Performed • • • • • • 64
Data Constants Used • .. • .. •• 64

D1B -- Decimal Arithmetic • • • •• 65
Operations Performed • • • •• 65
Data Constants Used • • • • •• 65

D1C -- Floating-point Arithmetic • • 66
Operations Performed • • • • • • 66
Data Constants Used • • • • •• 66

D1D -- Logical Operations • • • •• 67
Operations Performed • • 67

D1E -- Branching • • • • • • • • • • 68
Operations Performed • • • • • • 68

D1F -- Status Switching • • • • •• 69
Operations Performed • • • • • • 69

D1G -- Input/Output • • • • • • •• 71
Operations Performed • • • • • • 71

D1H -- Branching with Extended
Mnemonic Codes • • • • • •• 72

D1I -- Relocation Handling • • • 74
ALIGNMENT • • • • • • • • • • • • 75
STATEMENT FORMATS • • • • • • • • 78
MNEMONIC OPERATION CODES • • •• 79
OPERAND ENTRIES • • • • 80

General Specifications for
Coding Operand Entries • 80

D5A -- Registers • • • • • • 82
Purpose and Usage • • • • • •• 82
Specifications • • • • • • • • • 82

-D5B -- Addresses • • • • • • • • • • 84
purpose and Definition ••••• 84
Relocatability of Addresses •• 85
Specifications • • 86
Implicit Address • ~ • 87
Explicit Address • • • • • • • • 87

D5C -- Lengths • • • • ~ • • • • • •
D5D -. Immediate Data • • • • •

EXAMPLES OF COCEC MACHINE
INSTRUCTIONS • • • • •

RR Format
RX Format ••

88
90

92
92
93

RS Format • • • • • • • • • •• 9q
SI Format • • • • • • • • • •• 95
S Format • • • • • • • • • • • • 96
SS Format • • • • • • • • 97

PART III: FUNCTIONS OF ASSEMBLER
INSTRUCTIONS • • • • • • • • • • • •• 99

SECTION E: PROGRAM SECTIONING • 101

E1 -- THE SOURCE MODULE • • • • • 102
The Beginning of a Source
Module • • • • • • • • • • 102
The End of a Source Module 102

E1A -- The COpy Instruction • • • • 103
E1B -- The END Instruction. • •• 105

E2 -- GENERAL INFORMATION ABOUT CONTROL
SECTIONS • • • • • • • • • • •• 107

E2A -- At Cifferent processing

E2B

E2C
E2D
E2E
E2F

Times • • • • • • • • • • •
-- Types •••••••••••
Executable Control Sections • •
Reference Control Sections • •

Location Counter Setting • •
-T First Control Section • • •

The Unnamed Control Section
Literal pools in Control

108
110
110
110
111
113
115

Sections •••••••••• 115
E2G External Symbol Dictionary

Entries. • • • • • • • •• 116
E3 -- DEFINING A CONTROL SECTION ••• 117

E3A The START Instruction. 117
E3B -- The CSECT Instruction. 119
E3C -- The DSECT Instruction • 121

How to Use a Dummy Control
Section •••••••••••• 121
Specifications • • • • • • •• 122

E3D -- The COM Instruction • • •• 12q
How to Use a Common Control
Section • • • • • • • • • • • • 124
Specifications • • • • • • •• 125

E4 -- EXTERNAL DUMMY SECTIONS • • •• 127
Generating an External Dummy
Section • • • • • • • • • • • • 127
How to Use External Dummy
Sections • • • • • • • • • 128

E5 DEFINING AN EXTERNAL DUMMY
SECTION ••••••• 130

E5A -- The DXD Instruction • 130
E5B -- The CXD Instruction • 131

SECTION F: ADDRESSING. • • • • • • • 133

F1 -- ADDRESSING WITHIN SOURCE MODULES:
ESTABLISHING ADDRESSABILITY •• 133

How to Establish Addressability 134
F1A -- The USING Instruction • •• 134

The Range of a USING
Instruction. • • • • 135
The Domain of a USING
Instruction • • • • • 135
How to Use the USING
Instruction. • • • • 137
Specifications for the USING
Instruction •••••••••• 141

x

F1B -- The DROP Instruction • • 1qq
F2 ADDRESSING BETWEEN SOURCE MODULES:

SYMBOLIC LINKAGE • • • • • • lq7
How to Establish Symbolic
Linkage • • • • • • • • • • • • lq7

F2A The ENTRY Instruction • •• 150
F2B The EXTRN Instruction • •• 151
F2C -- The WXTRN Instruction • •• 152

SECTION G: SYMBOL AND DATA DEFINITION 153

Gl -- ESTABLISHING SYMBOLIC

G2

REPRESENTATION •••••••• 153
Assigning Values • • • • • •• 15q
Defining and Naming Data • •• 154

DEFINING SYMBOLS • • • • • • • • 155
G2A -- The EQU Instruction • • •• 155

G3 -- DEFINING DATA • • • • • • • •• 161
G3A -- The DC Instruction • • • • • 162
G3B -- General Specifications for

G3C
G3D
G3E
G3F
G3G

G3H
G3I

G3J

G3I<
G3L
G3M
G3N

Constants • • • • • • • •• 163
Rules for the DC Operand • •• 164
Information about Constants • • 165
padding and Truncation
of Values • • • • • • • • • • • 167
Subfield 1: Duplication Factor 168
Subfield 2: Type. • • • • •• 169
Subfield 3: Modifiers ••••• 170
Subfield q: Nominal Value • • • 179

Literal Constants • • • •• 180
Binary Constant (B) • • •• 181
Character Constant (C) ••• 182
Hexadecimal Constant (X) • • 184
Fixed-Point Constants
(H and F) • • • • • • • •• 186
Decimal Constants (P and Z) 188
Floating-Point Constants
(E, D and L) • • • • • • • • 190

The A-Type and Y-Type Address
Constants • • • • • • • •• 194
The S-Type Address Constant 196
The V-Type Address Constant 198
The Q-Type Address Constant 200
The DS Instruction • • • • • 201

How to Use the rs Instruction • 201
Specifications • • • • • • •• 206

G30 -- The CCW Instruction • • •• 209

SECTION H: CONTROLLING THE ASSEMBLER
PRO~RAM • • • • • • • • • • • 211

Hl -- STRUCTURING A PROGRAM • •
H1A -- The ORG Instruction •
H1B -- The LTORG Instruction •
, The Literal Pool • • • • •

Addressing Considerations • • •
Duplicate Literals • • • • • •
Specifications • • • • • • • •

H1C -- The CNOP Instruction • •
H2 -- DETERMINING STATEMENT FORMAT AND

SEQUENCE • • • • • • • • • •
H2A -- The ICTL Instruction • •
H2B -- The ISEQ Instruction • •

H3 -- LISTING FORMAT AND OUTPUT • • •
H3A -- The PRINT Instruction • • •

211
212
214
215
216
217
217
218

219
219
221
222
222 0, I". ".'

'.Y

o H3B -- The TITLE Instruction •
H3C -- The EJECT Instruction •
H3D -- The SPACE Instruction •

H4 -- PUNCHING OUTPUT CARDS • • •
H4A -- The PUNCH Instruction •
H4B -- The REPRO Instruction •

H5 -- REDEFINING SYMBOLIC OPERATION

224
227
228
228
228
231

CODES • • • • • • • • • • • • •
H5A -- The OPSYN Instruction • • •

H6 -- SAVING AND RESTORING PROGRAMMING

232
232

ENVIRONMENTS • • • • • • • • • •
H6A The PUSH Instruction • • • •
H6B -- The POP Instruction • • • •
H6C -- Combining PUSH and POP • • •

234 •
234
234
235

PART IV: THE MACRO FACILITY • • • • • 237

SECTION I: INTRODUCING MACROS •••• 239

Using Macros • • • • • • • •• 240
The Easic Macro Concept • • • • 243
Defining a Macro • • • • • •• 245
Calling a Macro • • • • • • • • 246
The Contents of a Macro
Definition • • • • • • • • 248
The Conditional Assembly
Language • • • • • 250

SECTION J: THE MACRO DEFINITION • 251

J1 -- USING A MACRO rEFINITION • • 251

J2

J3

J 1A -- Purpose • • • • • • • • •• 251
J1E -- Specifications • 252

Where to Define a Macro in a
Source Module • • • • 252
Open Code • • • • • • • • 252
The Format of a Macro
Definition. • • • • • • • •• 253

PARTS OF A MACRO DEFINITION •• 254
J2A The Macro Definition Header 254
J2B The Macro Definition Trailer 254
J2C The Macro Prototype Statement:

Coding • • • • • • • • • • • 255
Alternate Ways of Coding the
Prototype Statement • • • • • • 256

J2D -- The Macro Prototype Statement:
Entries • • • • • • • • •• 256

The Name Entry • • • • • • •• 256
The Operation Entry • • • 257
The Operand Entry • • • • • • • 258

J2E -- The Body of a Macro
Definition • • • • • • • • • 259

SYMBOLIC PARAMETERS • • • • •• 260
General Specifications • • •• 260
Subscripted Symbolic Parameters 261

J3A positional Parameters • •• 262
J3B -- Keyword Parameters • • • • • 263
J3C -- Combining positional

and Keyword Parameters
J4 -- MODEL STATEMENTS • • • • •

• 265
266
266
266
266

J4A -- Purpose • • • • • • • • • •
J4B -- Specifications • • • • • • •

Format of Model Statements

o Variable Symbols as Points of
Substitution • • • • • • • •• 267
Rules for Concatenation • • • • 268
Rules for Model Statement
Fields • • • • • • • • • • •• 269

Page of GC33-4010-5
As Updated 28 D~\.· 198!
By TNl GN20-9372

J5 -- PROCESSING STATEMENTS • • 272
J5A Conditional Assembly

Instructions • • • • • • • • 272
J5B Inner Macro Instructions • • 272
J5C -- The COPY Instruction • • • • 272
J5D -- The MNOTE Instruction • 273
J5E -- The MEXIT Instruction • 276

J6 -- COMMENTS STATEMENTS • • • • 277
J6A -- Internal Macro Comments

Sta tements • • • • • • • • • 277
J6B -- Ordinary Comments Statements 277

J7 -- SYSTEM VARIABLE SYMBOLS • • •• 278
J7A &SYSDATE • • • • • • • • • • 279
J7B &SYSECT.......... 280
J7C &SYSLIST •••••••••• 281
J7D &SYSNDX.......... 284
J7E &SYSPARM.......... 284
J7F &SYSTIME • • • • • • • • • • 287

J8 -- LISTING OPTIONS • • • • • • •• 287
J8A -- LIBMAC ••••••••••• 287
J8B -- MCALL • • • • • • • • • •• 288

SECTION K: THE MACRO INSTRUCTION • • • 289

K1 -- USING A MACRO INSTRUCTION • •• 289
K1A -- Purpose • • • • • • • • •• 289
K1B -- Specifications ••••••• 290

Where the Macro Instructions can
Appear • • • • • • • • • • 290
Macro Instruction Format • •• 290
Alternate Ways of Coding a Macro
Instruction •••••••••• 291

K2 ENTRIES............ 292
K2A -- The Name Entry • • • • • • • 292
K2B -- The Operation Entry • • •• 293
K2C -- The Operand Entry • • • •• 293

K3 -- OPERANDS • • • • • • • • • • • • 294
K3A positional Operands • • •• 294
K3B -- Keyword Operands • • • • 296
K3C -- Combining positional

and Keyword Operands • • 299
K4 -- SUBLISTS IN OPERANDS • • • • • • 300
K5 -- VALUES IN OPERANDS • • • • 302
K6 -- NESTING IN MACRO DEFINITIONS • • 307

K6A -- Purpose • • • • • • 307
Inner and Outer Macro
Instructions • • • • • • • •• 307
Levels of Nesting • • • • • • • 308
Recursion ••••••••••• 310

K6B -- Specifications ••••••• 311
General Rules and Restrictions 311
passing Values through Nesting
Levels • • • • • • • • • • •• 312
System Variable Symbols in
Nested Macros ••••••••• 314

SECTION L: THE CONDITIONAL ASSEMBLY
LANGUAGE •

L1 -- ELEMENTS AND FUNCTIONS
L1A -- SET Symbols • • • • • •

The Scope of SET Symbols •
Specifications • • • • • •
Subscripted SET Symbols -
Specifications • • • •

L1B -- Data Attributes ••••
What Attributes Are. • • •

••• 317

••• 317
318
319
320

L1C -- Sequence Symbols ••••••

322
323
323
334

xi

Page of GC33-4010-5
As Updated 28 Dec 1981
By TNL GN20-9372

L2 -- DECLARING SET SYMBOLS • • • •• 336
L2A The LCLA, LCLB, and LCLC

Instructions • • • • • • • • 336
L2B -- The GBLA, GELS, and GBLC

Instructions • • • • • • • • 340
L3 -- ASSIGNING VALUES TO SET SYMBOLS 343

L3A -- The SETA Instruction • • • • 343
L3B -- The SETC Instruction • • • • 345
L3C -- The SETB Instruction • • • • 347

L4 -- USING EXPRESSIONS • • • • • •• 349
L4A Arithmetic (SETA)

Expressions • • • • • • •• 349
L4B -- Character (SETC) Expressions 355
L4C -- Logical (SETS) Expressions • 359

L5 -- SELECTING CHARACTERS
FROM A STRING • • • • • • • •• 364

L5A -- Substring Notation • • • • • 364
L6 -- BRANCHING • • • • • • • • • •• 367

L6A The AIF Instruction • • •• 367
L6B -- The AGO Instruction • • •• 369
L6C -- The ACTR Instruction • • 370
L6D -- The ANOP Instruction • • • • 373

L7 -- IN OPEN CODE • • • • • • • • • • 374
L 7A -- Purpose • • • • • • • • •• 374
L7B -- Specifications ••••••• 374

L8 -- LISTING OPTIONS • • • • • • •• 376

APPENDIX I: CHARACTER CODES • • .377

APPENDIX II: HEXADEClMAL-DECI~.AL

CONVERSION TABLE 383

APPENDIX III: ~ACHINE INSTRUCTION
FOR~AT • • 389

IAPPENDIX IV: DELETED • 391-406

APPENDIX V: ASSE~BLER INSTRUCTIONS • 407

APPENDIX VI: SUMMARY OF CONSTANTS •• 411

APPENDIX VII: SUMMARY OF MACRO
FACILITY • • • • • • 413

GLOSSARY • • • • • • • • 421

INDEX • • • • • • • • • • • • • • •• 437

xii

C"" , I
I' I."

o

o

Section A: Introduction

What the Assembler Does

A computer can understand and interpret only machine
language. Machine language is in binary form and, thus,
very difficult to write. The assembler language is a
symbolic prograa~ing language that ypu can use to code
instructions instead of coding in machine language.

Because the assembler language allows you to use meaningful
symbols made up of alphabetic and numeric characters instead
of just the binary digits 0 and 1 used in the machine
language, you can ~ake your coding easier to read,
understand, and change.

The assembler must translate the symbolic assembler language
into machine language tefore the computer can execute ycur
program, as shown in the figure below.

CODING SHEETS

or

TERMINAL

ASSEMBLER

Main Storage of
COMPUTER

SOURCE MODULE
Assembler Language Input

OBJECT MODULE
Machine Language Output

LOAD MODULE

Section A: Introduction 1

Assume that your program, written in the assembler language,
has been punched into a deck of cards called the scun:e
deck. This dec'k, also known as a source module, is the
input to the assembler. (You can also enter a source
module as input to the assembler through a terminal.)

The assembler' processes your source module and produces
an object module in rrachine language (called object cede).
Assume that the assembler punches this object module into
a deck of cards called the object deck.

The object deck or object module can be used as input to
be processed by another processing program, called the
linkage editor. lhe linkage editor produces a load module
that can be loaded later into the main storage of the
computer, which then executes the program. Your source
module and the object code produced is printed, alcng with
other information on a program listing.

Al - The Assembler Language

2

The assembler language is the symbolic prograrrroing language
that lies closest to the machine language in form and
content. You will, therefore, find the asserrbler language
useful when:

• ¥ou need to control your program closely, down to the
byte and even bit level or

• you must write subrcutines for functions that are not
provided by other symbolic programroing languages such as:
ALGOL, COBOL, FORTRAN, or PI/I.

The assembler language is made up of statements that
represent instructions or comments. The instructicn
statements are the working part of the language and are
divided into the following three groups:

1. Machine instructions

2. Assembler instructions

3. Macro instructions.

Machine Instructions

A machine instruction is the symbolic representation of
a machine language instruction of the IBM Systerr/370
instruction set. It is called a machine instruction because
the assembler translates it into the machine language cede
which the computer can execute. Machine instructions are
described in FART IIi SECTION t of this manual.

o

c

Assembler Instructions

An assembler instruction is a request to the asserrbler
program to ~erform certain operations during the assembly
of a source module, for example, defining data constants,
defining the end of the source module, and reserving storage
areas. Except for the instructions that define consta nts,
the assembler does not translate assemtler instructions
into object code. !he assembler instructions are described
in PART Ill; SECTIONS E, F, G, and H and PAR~ IV; SECTIONS
J, K, and L of this manua 1.

Macro Instructions

A macro instruction is a request to the assembler program
to process a predefined sequence of code called a nacro
definition. From this definition, the assembler generates
machine and assembler instructions which it then ~rocesses
as if they were part of the original input in the source
module.

IBM supplies macro definitions for input/output, data
management, and supervisor operations that you can call
for processing by coding the required macro instructi~n.
('I'hese IBM-supplied macro instructions are not described
in this manua 1.)

You can also prepare your own macro definitions and call
them by coding the corresponding macro instructions. This
macro facility is introduced in PART IV; SECTION I. A
complete description of the macro facility, including the
macro definition, the macro instruction and the conditional
assembly language, is given in PART IV; SECTIONS J, K, and
L.

A2 - The Assembler Program

The assembler ~rogram, also referred to as the -assembler-,
processes the maqpine, assembler, and macro instructi~ns
you have coded in theassemtler language and produces an
object module in mac_hiqe _language.

Section A: Introduction 3

A2A - ASSEMBLER PROCESSING SEQUENCE

4

The assembler processes the three types of assembler
language instructions at different times during its
processing sequence. You should be aware of the assembler's
processing sequence in order to code your program correctly.
The figure below relates the assembler processing sequence
to the other times at which your program is processed and
executed.

TIMES

Coding
Time

Pre-Assembly

TitTle

Assembly
Time

Linkage
Edit
Time

Program
Fetch
Time

Execution
Time

•
•
•

PROGRAMMER

ASSEMBLER

LINKAGE
EDITOR

LOADER

can combine
linkage editing
and loading
operations
OS only

CPU of
COMPUTER

The assembler processes most instructions on two occasions;
• first at ere-assembly time and later at assembly time. •

HOwever, 1t does some processing, for example, macro
processing, only at pre-assembly time.

The assembler also produces information for other

•
processors. The linkage editor uses such information at
linkage-edit time to combine object modules into load
modules. The loader loads your program (combined load

•
modules) into virtual storage (see GLOSSARY) at program

I fetch time. Finally, at execution time, the computer
executes the object code produced by the assembler at
assembly tine.' •

o

o

Machine Instruction Processing

The assembler processes all machine instructions and
translates them into oeject code at assemely tine, as shewn
in the figure below.

TIMES

Linkage
Edit

Program
Fetch

Execution

Machine
Instructions

Assembler Instruction Processing

Coded

Assembled
into
object code

Executed

Assembler instructions are divided into two «ain ty~es:

1. Ordinary assembler instructions

2. Conditional assembly inst.r.octions anCt the macro
processing instructions ~ACRO, MENr, MEXl~ and MN01a •

Section A: Introduction 5

6

The assembler processes ordinary assemtler instructions
~ at asserrbly time, as shown in the figure below •

TIMES

Coding

Pre-Assembly

Assembly

Linkage Edit

Program Fetch

Execution

NO'IES:

Ordinary

Assembler
I nstructions and
assembly

•

time
expressions

FuHy
pr~,

G

DC
DS
CCW

'Dat. • .,..
AreasU$td
in execU­
tionef

.'

..

maet\inEI inst:

• ENTRY
EXTRN
WX?RN
Address constants

Provide
link.
information

PrtWid6·
hotd

acfdr~· ••..........

A~" used in .
executlQn o'f\
machine
instructiOfij:

•
1. The assembler eva lua tes absol ute and relocatable
expressions at assembly time; they are sometimes called
asserocly tirre expressions.

~ 2. Some instructions produce output for processing after
asserrcly tirre.

PUNCH
REPRO

.'<

...•.•........•.

'e;

......

V
C8nprov~

link.
oommarldJ.

o

o

•

The assembler processes conditional asserotly instructicns
and macro processing instructions at pre-assembly time,
as shown in the figure telow.

•
•

TIMES

Coding

Pre-Assembly

Assembly

Linkage Edit

Program Fetch

Execution

NOTES:

Conditional Assembly
(and macro processing)
instructions and

•

conditi?nal assembly
ex pressl~on1ifs~Y7:?Y;Y;;]

Fully
processed

• statements

MNOTE

1. The asserobler evaluates the conditional assembly
expressions (arithmetic, logical, and character) at ~re­
asserobly tirre.

2. The assembler processes the machine and asserrbler
instructions generated from pre-assembly processing at
assembly time.

Section A: Introduction 7

8

~acro Instruction Processing

•
The assembler· processes macro instructions at pre-assembly
time, as shown in the figure below.

TIMES

Coding

Pre-Assembly

Assembly

Linkage
Edit

Program
Fetch

Execution

Fully
Processed

Macro
Instructions

Macro
Definitions

Generated
Statements

NOTE: The assembler processes the machine and ordinary
• assembler instructions genera ted from a macro definition

called by a macro instruction at assembly t~rre.

The assembler prints in a program listing all the
information it produces at the various processing tiues
described in the above figures.

c) A3 - Relationship of Assembler to Operating System

'(", : ,/

0';
'"

The assembler is a programming component of the OSjVS,
VM/370, or DOS/VS. These system control programs provide
the assembler with the services:

• For assembling a source module and

• For running the assembled otject module as a progxa~.

In writing a source module you must include instructions
that request the desired service functions from the
operating system.

Services Provided by the Operating System

OS/VS and DOSjVS provide the following services:

1. For assembling the source module:

a. A control program

b. Libraries to contain source code and macro
definitions

c. Utilities

2. For preparing for the execution of the assembler program
as represented by the otject module:

a. A centrol program

b. Storage allocation

c. Input and output facilities

d. A linkage editor

e. A loader.

VM/370 provides the following services:

1. For assembling the source module:

a. An interactive control program

b. Files to contain source code and macro definitions

c. Utilities.

2. For preparing for the execution of the assembler programs
as represented by the object modules:

a. An interactive control program

b. Storage allocation

c. Input and output facilities

d. The eMS Loader.

Section A: Introduction 9

A4 - Coding Aida

10

It can be very difficult to write an assembler language
program using only machine instructions. The assembler
provides additional functions that make this task easier.
They are surrmarized belew.

Symbolic Re~resentation of Program Elements

Symbols greatly reduce programming effort and errcrs.
You can define symbols to represent storage addresses,
displacements, constants, registers, and almost any elerrent
that makes up the assembler language. These elements
include o~erands, operand subfields, terms, and expressions.
Symbols are easier to remember and code than numbers;
moreover, they are listed in a symbol cross-reference table
which is printed in the program listings. Thus, you can
easily find a symbol when searching for an error in your
code.

Variety of rata Representation

You can use decimal, binary, hexadecimal or character
representation which the assembler will convert fer you
into the binary values required by the machine language.

Controlling Address Assignment

If you code the a~pro~riate assembler instruction, the
assembler will compute the displacement from a base address
of any symbolic addresses you specify in a machine
instruction. It will insert this displace~ent, along with
the base register assigned by the assembler instruction,
into the object code of the machine instruction.

At execution time, the object code of address references
must be in the base-displacement form. The computer obtains
the required address by adding the displacement to the
base address contained in the base register.

o

o

o

Relocatability

The assembler produces an object module that can be
relocated fro~ an originally assigned storage area to any
other suitable virtual storage area without affecting
program execution. This is made easier because most
addresses are assembled in their base-displacement forn.

Segmenting a program

You can divide a source module into one or more control
sections. After assembly, you can include or delete
individual central sections from the resulting object
module before you load it for execution. Control secticns
can be loaded separately into storage areas that are not
contiguous.

Linkage Between Source Modules

You can create symbolic linkages tetween separately
assembled scurce modules. lhis allows you to refer
symbolically from one source module to data defined in
another seurce module. You can also use symbolic addresses
to branch between modules.

Program Listings

The assembler produces a listing of your source rocdule,
including any generated statements, and the object code
assembled from the source module. You can control the
form and content of the listing to a certain extent. 1he
assembler also prints messages atout actual errors and
warnings abcut potential errors in your source module.

Section A: Introduction 11

o
j

o

Part I: Coding and Structure

o SECTION B: CODING CONVENTIONS

SECTION C: ASSEMBLER LANGUAGE STRUCTURE

o
13

·' o Section B: Coding Conventions

o

o

This section describes the coding conventions that you must
follow in writing assembler language programs. Assembler
language statements are usually written on a coding form
before they are punched onto cards, or entered as source
statements through other forms of input (for example,
through terminals or directly onto tape).

Standard Asserrbler Ceding Form

You can write asserobler language statements on the standard
ooding form (Order No. GX28-6509) shown celow. ,he cclunns
on this fern corres~cnd to the columns on a punched card
or positions on a source statement entered through a
terninal. ~he form has sface for program identification
and instructions to keypunch o~eratcrs.

IBM IBM Sy,'"m 360 ,. ... mbl.r CodIng Form

25 30

• A ,,.,,dMd c.rd form. IBM .'.etTa 6509. is a",,"'.ble fOT punching lOur~ ,FlItement. from this form.
Inrr",ct;onf for u,ing thi, form 8ft! in .ny IBM Svsrem1360 Auembler Reference M.tlual.
A~SI comments concerning this form to IBM NfNdic L"bor.to,'1. Public.tiOIJI Derelopmenr.
80.962 $. '8' 09 Liding<' 9. $_""".

GX28-6S09-5 U/M 050

Section B: Coding Conventions 15

16

Bl - Coding Specifications

B1A - FIELD BOUNDARIES

Assembler language statement usually occupy one SO-column
line on the standard form ~or statements occupying more
than SO columns, see B1B below). Note that any printable
character punched into any column of a card, or otherwise
entered as a position in a source statement, is reproduced
in the listing printed by the assembler. All characters
are placed in the line by the assembler. Whether they are
printed or not depends on the printer. Each line of
the coding form is divided into three main fields:

~ The Statement field,

~ The Identification -Seguence field, and

~ The Continuation Indicator field.

• • •

The Statement Field

The instructions and comments statements must be written
in the statement field. The statement field starts in
the "begin" column and ends in the "end" column. Any
continuation lines needed must start in the "continue"
column and end in the "end· column. The assembler assumes
the following standard values for these columns:

• The "begin" column is column 1

• The "end" column is column 71, and

• The "continueR column is column 16.

These standard values can be changed by using the ICTL
instruction. However, all references to the "begin",
"end", and ·continue" columns in this manual refer to the
standard value described above.

Stmnt Field

GX28-6SQ9.S U/M 050 IBM IBM System 360 Assembler CodIng Form

',OO'AM I I I ,A :,rintediA~
t-"-OO-'A_-'-' --------------r-oo,,---.'-=1 :'"":;'0.. ll--:-:--H c--+I-1--+--+I-f---+I-+--+c~T,oNuM'" V --:~-

-~- -... l' loJor"l,,·,.t,on.

5I'uu1!f1C1r . .. " '. ,.
" ,0 " .. .s 5S " " '0

OP coo OPER AN OS
I I I R E MA R Kls I' I b< i

I c ojN T I N UA T I O!N LI NIElS 'MUS t .. I , I I

i! !
! i ! i

5T ART liN

!
I I

!

/'..i: I I
A!i

COLUMN 16i

i-:"" I
I \

Ii !
! I

i i

I

! " I : I I i : i I ; I i I i

i ! I ! I ! I, I . i
i ! I I i i; i i: I

; i I! I I ! I I ! I

I ! : r! I i 1 i I ! i !

i
I i I I I I

i \ :
I

I I j i I I ! I
I I I ! I I I i

i • I I I I I I I I I I ! , I

O'~'----~\ , ~ II

o

o

The Identification - Sequence Field

The identification-sequence field can contain identification
characters or sequence numbers or both. If the ISEQ
instruction has been specified to check this field, the
assembler will verify whether or not the source statements
are in the correct sequence.

NOTE: The field the assembler normally checks lies in
columns 73 through 80. However, if the ICTL instruction
has been used to change the begin and end columns, the
boundaries for the identification-sequence field can be
affected.

The Continuation Indicator Field

The continuation indicator field occupies the column after
the end column. Therefore, the standard position for this
field is column 12. A non-blank character in this column
indicates that the current statement is continued on the
next line. This column must be blank if a statement is
completed on the same line; otherwise the assembler will
treat the statement that follows on the next line as a
continuation line of the current statement.

Field Positions

The statement field always lies between the begin and the
end columns. The continuation indicator field always lies
in the column after the end column. The identification­
sequence field usually lies in the field after the
continuation indicator field. However, the ICTL
instruction, by changing the standar1 begin, end, and
continue columns can create a field before the begin column.
This field can then contain the identification-sequence
field.

Section B: Coding Conventions 11

B1B - CONTINUATION LINES

•
•

To continue a statement on another line, the following
applies:

1. Enter a non-blank character in the continuation indicator
field (column 72). This non-blank character must not be
part of the statement coding. When more than one
continuation line is needed, a non-blank character must
be entered in column 72 of each line that is to be
continued.

2. Continue the statement on the next line, starting in
the continue column ~olumn 16). Columns to the left of
the continue column must be blank. Comments may be
continued after column 16.

Note tha t if a n ope rand is con tin ued af ter col umn 16 it
is taken to be a comment. Also if the continuation
indicator field is filled in on one line and the user
tries to start a totally new statement after column 16 on
the next line, this statement will be taken as a comment
belonging to the previous statement.

Only two continuation lines are allowed for a single
assembler language statement. However, macro instruction
statements and the prototype statement of macro definitions
can have as many continuation lines as needed.

IBM IBM System 360 Assembler Coding Form

PUNCHlNO I 'e I
I P.OO 10.TE tNSTAUCTI~S I PUNCH I

STATeMeNT

I
I

No-
B

0_ .. _" " 2.
O";;~ ,. 5' Com_" 6.

I
I

I PU !NciH
(I Nlr IllniJ:" :P Als IEi3 l~iJ:" I~ I ... ,0 N IT ,I,N

, NIE X[T lL !liN I'

I i ,,-
, I • , ! I i , , ,

I

IA 1 ' 1+ 11+ ',+ 1 L+ L+ !11+ '1 1+ 11,+ 11 ,+ !11+ i+ + 1 + +11 +11
1 + 2 II 3 ~

I I RE MlA R K S NE ED N D
I ~O NiT N U!E 'N [C[OIL_

1
I

IA .1 Q+ D + b ,+ .01+ Q

16 M MiE N!TI C: II S IL..P IAIDIE IN T ~EG ,.1:, pVl VIE ~:r is A ,R E M',A
I

I ILIA 1 o + !O + pi+ bl+O
! ~1 r"" EIN T Ci°/\'1 MIE INiT II is LO AiD ED II IN TIO IR IE 'G 11·

, ! i, , i I I I ,

18

Continuation

IPAO.

E 10iNI X

<- ",--

I +D<
b<

I~ ~

+Ir X

R~

+f-. ,*

i

GX28-S509-5 UiM 050

Printed in U S.A.

OF

"
h"n"f,~t,on·

5tQ ... tI(.
13

I

:

:
'-~~

o B1C - COll.~ENTS STATEMENT FORMAT

()

o

Comments statements are not assemcled as part of the ctject
module, but are only ~rinted in the assembly listing.
As many comments statements as needed can te written,
subject to the following rules:

•
1. Comments statements require an asterisk in the begin
column. ~

•

NOTE: Internal ~acro definition comments statements require
a period in the begin column, followed by an asterisk (for
details see J6A).

2. Any characters, including blanks and special characters,
of the IB~ System/370 Character Set (see e3) can te used.

3. Comments statements must lie in the state~ent field
and not run over into the continuation indicator field;
otherwise the statement fcllowing the comments statement
will be considered as a continuation line of that connents
statement.

4. Comments statements must not appear tetween an
instruction statement and its continuation lines.

IBM IBM SYIlem 360 Assembler Cadang Form

OIIQG
"""'",NO I G""''''uC

HOG" " DATI
INSTRUCTIONS I """'"

STATEMENT

I
I

I
1

- a.r.,...-
_

...
I II .. n ,. ,. I • II " • ITHII S IS AN OR 01 NA RV CO MM E NIT S ST AT EM EN T " ~HICH CAN AP PE AIR

III IAN! AS SE MB LER PR OG RA ~. I I
~' I

~~ •. , I I
1 ! 1 ' I , I

i I ! i ;
; ! I ,

I

! !) ! . ;

! i i i J!
I I I I

~ 1 I
i I I i I I

i I ! I , I
1 i i I i i
I . I I i I ' I

U I I I I I I ! ~-.

I ! !

I I
I I
I. ..
AN Vlw HE RE

Comments

1

'AGE

GX28-6S09-S U/M 050

Printed In USA ..
OF

C"fIIO lI.leTRO ffUMHFI .
Idlnf,t""'''' -" " I •

IN
\ ii, I r

!

I

I

!

I I

-

Section B: Coding Conventions 19

B1p

20

• • • o

INStRUCtION StATE~ENt FCR~AT

the statement field of an instructicn stateaent Rust te
foraatted tc include frcm one to four of the following
entries:

1. A naae entry

2. An oferaticn entry

3. An operand entry

4. A reaarks entry.

the standard coding fcrm is divided into fields that frovide
fixed positions for the first three entries, as fcllc~s:

IBM A IBM Sy.tom 360 A ... mbler Coding ,_

'Ooo'AM ~ ...-... I GIl_ I

~. ~Ii 3. lOA,. 'NOT"""'- 1..- I
I'\. n.,.

'.;> : , 1. :' L:. 31 .. II """"- .~ ..
lAB IEL IBIA IR 1114 115 .. ~ .~ IE N TIR Y

II'IIR alp 1110 NA ME IEIN IrlR Y 10M IT TIEIO
: ~

IS,E . ~,T;,O 11"15 Elc T OP IE R ANIO I~ N TRY N niT, 'R E la!lI

InlR G np '1= R .6. N:n It. OM J it " Elo

I i

An a-character name field starting in ccluan 1.

AS-character cferaticn field starting in cclurrn 10.

An oferand field that begins in column 16.

Note that with this fixed format onE tlank sefarates each
field.

Free Format

It is not necessary to code the naae, cferaticn, and c~erand
entries acccrding to the fixed fields on the standard
coding form. Instead, these entries can ce written in
any fcsiticn, subject to the formatting specifications
below.

Instructions

GX2&fI508.5 U/M 060

Printed in U.s.,,-

I I·
I *

• ... if -,.t

liB IE n

i
i
I

!

C .. ,' I,,"

o

Formatting Specifications

Whether using fixed or free format, the following general
rules apply to the coding of an instruction statement:

1. The entries must be written in the following order:
name, operation, operand, and remarks.

2. The entries must be contained in the begin column (1)
through the end column (71) of the first line and, if
needed, in the continue column (16) through the end cclurr-n
(71) of any continuaticn lines.

O 3. The entries must be se{4rated from each other by one
or more blanks.

4It 4. If used, the name entry must start in the begin column.

5. The name and operation entries, each followed by at 4It least one blank, must be contained in the first line cf
an instruction statement •

•
6. Th: operation entry must start at least one colu~n tc
the r1ght of the begin column.

IBM 11M 5YII_ 3&0 AIAmbll. Coding Form

I NOGA_ 1_ ... I - T 1
DAn

............- r I --- STATa T

1

- -. -- -I ,. ,. tI ,. ,. 3. ,. II

NA ME BA L R 1 4 1 5 RE MA RKS - F I XIElo
r- r--:-.: f- f-I-"~

l-
N A:M Elt'" BA L R :/1 4 1 5 I'R EM AR KS - - F R EE Fa RM AT ~

~.: :

I

1 1

..
Flo RM

• 1 4 1 5 f ,ON L Y OP ER!A N;C AlMO REM AR KJS EN TRV AL lO MEO

1-r-8! ! i ~

I i i
ISA L R 1 4 1 5 ~A ME EN TRY OM IT T E,O ~ .1

; j I, i) I
i

I I I 1;1 I I I L- . -

THE NAME ENTRY: The name entry identifies an instruction
statement.

The following applies to the name entry:

1. It is usually optional.

2. It must be a valid symbol at assembly time (after
substitution for variable symbols, if specified); for an
exception see the TITLE instruction (H3E).

!

i

I

i I

1 1
I

..
AT

HE RE

1--

GXze. , U/M OlIO

"'nt..t In U SA ...
...

eNID IUCTI'IO IIIIw.1" ..
--" 71 I.

.1 ,i X i
i
I

I
;

!
j
i

Section B: Coding Conventions 21

22

THE OPERATION ENTRY: The operation entry provides the
symbolic operation code that specifies the machine,
assembler, or macro instruction to te processed~ The
following applies to the operation entry:

1. It is mandatory.

2. For machine and assembler instructions it must be a
valid symbol at assembly time (after substitution for
variable symbols, if specified). The standard syrrbolic
operation codes are five characters or less (see Appendixes
IV and V) •

3. For macro instructions it can be any valid symbol that
is not identical to the operation codes described in 2
above.

THE OPERAND ENTRY: The operand entry has one or more
operands that identify and describe the data used by an
instruction. The following applies to operands:

1. One or more operands are usually required, depending
on the instruction.

2. Operands must be sefarated by commas. No blanks are
allowed between the operands and the commas that separate
them.

3. Operands must not contain embedded blanks, because a
blank normally indicates the end of the operand entry.
However, blanks are allowed if they are included in
character strings enclosed in apostrophes (for example,
C'J N') or in logical expressions (see L4C).

;I"'"
~~)

C'
-~

o

o

'IH! REMARKS ENTRY: The renarks entry is used tc descrit:e
the current instructicn. The following applies to the
remarks entry:

1. It is c~ticnal.

2. It can ccntain any of the 256 characters (or punch
combinations) of the IBM Systen/370 character set, including
blanks and s~ecial characters.

~ 3. It can follow any operand entry.

4. If an c~ticnal c~erand entry is orritted, renarks are
allcwed if the absence of the operand entry is indicated

~ by a comma, preceded and followed ty one cr «cre tlanks.

IBM Sy.'om 360 A ... mbl.r Coding Form

I- """,,"''''' I GR IC I -'-" INIT .. lJCTtOfrd I • """'" -- DATI -,
ITAllMlfrillT --- -~. -I . .. ,. 11 ,. n • 0 Co "

I I
I I

l~ AYS lR 10 8 AR EM AR KJ5 MU 5T BE 5 IE. PA RA TED
SR 1 0 9 AN OP EIR AND EN TR V jev ONE o RI

PU NCH r l A eEL OP CO DE OP R1 OP R 2 ~ BL AN K 51.

1 I
I I

5T ART :-e CO MMA 'I N 01 CiAIT E.5 A~BS EN CiE OF OM IT
. ! i I

iNo I~ 0 1 5E CT I .. RE MA R KiS' Ii : i I

I I"

,
i

~o ~O2 lEN 0 [~ RE MAR K'S I i I 1

i
, Ii

i ' i I I
I ' I :

I I , ' ! I i I

'AG'

GX28-650!H. U/M 050
Printed in U.S.A.

...
CA"OU.ICT"ON~" .

........ _--" '0

FR olM

MO RE

OP NO
j
I
1
i

:

I
I ;
I

Section B: Coding Conventions 23

o

I C·"

o

Section C: Assembler Language Structure

This section describes the structure of the assembler
language, that is, the various statements which are allowed
in the language and the elements that make up those
statements.

Section C: Assembler Language Structure 25

CI -- The Source Module

A source module "is a sequence of assembler language
statements that constitute the input to the assemtler.
The figure on the o~~osite ~age shows an overall picture
of the structure of the assembler language.

C2 Instruction Statements

26

The instruction statements of a source module are comFcsed
of one to four entries that are contained in the statement
field. Other entries outside the statement field are
discussed in B1A. Ihe four statement entries are:

1. A name entry (usually optional)

2. An operation entry (mandatory)

3. An operand entry (usually required)

4. A remarks entry (optional).

NOTES:

1. The figures in this sUbsection show the overail structure
of the statements that represent the assembler language
instructions and are not specifications for these
instructions. The individual instructions, their purposes,
and their specifications are described in other sections of
this manual (as cross-referenced in the figures). ~odel
statements, used to generate assembler language statements,
are described in J4.

2. The remarks entry is not processed by the assembler, but
only copied into the listings of the program. It is
therefore not shown except in the overview opposite.

o

o

o

EITHER

NAME

INSTRUCTION
STATEMENTS

OPERATION

Source Module
made up of
Source Statements

IBM SYSTEM/370
CHARACTER SET

COMMENTS
STATEMENTS

REMARKS

CHARACTER
STRINGS

Section C: Assembler Language Structure 27

(~ •. _:y

o C2A -- MACHINE INSTRUCTIONS

o

o

The machine instruction statements are described in the
figure below.

The instructions themselves are discussed in Part II cf
this manual and summarized in Appendix IV.

NAME
Entry

A
Symbol
(or blank)

OPERATION
Entry

A symbolic
Operation
Code

OPERAND
Entry

One or more
operands
composed of

Exp(Exp,Exp)
or Exp (Exp) or or or

A

Decimal

e.g. 9

any of the
following

or

Location
Counter
Reference
e.g. -Ie

Hexadecimal

e.g. X'D9'

Arithmetic
combination
of terms

Symbol
Length
Attribute
Reference
e.g. L'HERE

Binary

e.g. B '1001'

Exp (,Exp)

Exp = Expression

Which can be
any of the
following

Cha'racter

e.g. C 'JAN'

Section C: Assembler Language Structure 29

C2B -- ASSEMBLER INSTRUCTIONS

30

The assembler instruction statements can be divided into
two main groups:' ordinary assembler instructions and
conditional assembly instructions.

Ordinary Assembler Instructions

Ordinary asse~bler instruction statements are described
in the figure on the opposite page.

These instructions are discussed in Part III of this manual
and summarized in Appendix v.

o

o

NAME
Entry

A
Symbol

(or blank)

Duplication
factor

e.g.

OPERATION
Entry

A symbolic
Operation
Code

Operands can be
composed of one
to four subfields

Type Modifiers

'Decimal
number'

e.g. F '2'

or

Constant
(Nominal
Value)

One or more
constants of
the format
below

e.g. A(ADDR)

1 Discussed more fully where individual instructions are described

or

OPERAND
Entry

One or more
operands

El<pression

e.g.*+4

'Character
string'

e.g. C' A is B'

or

Operands can be
composed of

Character
String

e.g.
'TO BE
PUNCHED'

Symbolic
Option

e.g.

NOGEN

Se--=tion ,.
1...... Assembler Language Structure 31

32

Conditional Assembly Instructions

Conditional assembly instruction statements and the rracrc
processing statements (MACRO, MEND, MEXIT, MNOTE) are
described in the figure below.

The conditional assembly instructions are discussed in
Section L and macro processing instructions in Section
J; both types are summarized in Appendix V.

I
Sequence
Symbol
.SEQ

(or blank)

Sequence
Symbol

NAME
Entry

I
can be

I

or

or

J

Variable
Symbol
& VAR

Variable
Symbol

Arithmetic
Expression

&A+1

or

or

I

OPERATION
Entry

I
must be

I
A symbolic
Operation
Code

Expression

or
(Expression)

I

Which can be any
combination of
variable symbols
and other characters
that constitute an

Logical
Expression

&81 OR &82 ,

or

or

OPERAND
Entry

Zero or more
operands
composed of

Exp,'msg'

MNOTE
3,'ERROR'

Character
Expression

'JAN&C'

or
(exp)seQ sym

(&A EQ1).SEQ

Exp=Expression

o

o

'0·",' ,"

C2C -- MACRO INSTRUCTIONS

Macro instruction statements are described in the figure
below; the prototype statement of a macro definition, which
serves as a model for the macro instruction staterrent,
is also shown.

Macro instruction statewents are discussed in Section R
of this manual and the prototype statement is discussed
in Section J2.

Prototype
Statement

Macro
Instruction
Statement

Ordinary
Symbol
(or blank)

or

Symbolic
Parameter

Sequence
Symbol

or Variable
Symbol

Symbolic
Operation
Code

Character
String

(excluding
blanks)

Zero or more

Symbolic
Parameters

Zero or more
Operands
which can be

or

Each entry
can have a
value

'Character
String'

(including
blanks)

section C: Assembler Language Structure 33

C3 - Character Set

34

Terms, expressions, and character strings used to build
source statements are written with the fellowing characters:

1. Al~hameric Characters

Al~habetic characters (or letters): A through Z, and
$, I, Ql

Cigits (or numerals) : o through 9

2. Special characters

+ - , = • • () • / , tl ank

Examples, showing the use of the above characters are given
in the figure below.

Normally, yeu would use strings of alphameric characters
to represent data (terms, see C4), and special characters
as:

a. Arithmetic c~erators in expressions

b. Data or field delimiters

c. Indicators to the assemtler for specific handling.

Characters are represented ty the card-~unch ccnbinaticns
and internal tit ccnfigurations listed in ~ppendix I.
In addition to the printatle characters listed abcve, any
of the 256 combinations for punched cards listed in A~~endix
I can be used:

1. Between paired apcstrophes

2. As statenent remarks

3. In comments statements

4. In rr.acrc instructicn o~erands (for restrictions see
1(5) •

o

o

Characters

Alphameric

Digits

Special
Characters

+

*
/

+ or -

Blanks

Comma

Apostrophes

Ampersand

Period

Asterisk

Equal sign

Usage

In symbols

As decimal
self-defining
terms

As Operators

Addition

Subtraction

Multiplication

Division

(Unary)

As Delimiters

Between fields

Between operands

Enclosing
character strings

Enclosing subfields
or subexpressions

As indicators
for

Variable symbol

Sequence symbol

Comments statement
in Macro definition

Concatenation

Bit-length
specification

Decimal point

Location counter
reference

Comments statement

Literal reference

Keyword

Example

LABEL NINE# 01

01 9

NINE+FIVE"

NINE-5

9*FIVE

TEN/3

+NINE -FIVE

LABEL AR 3,4

OPNDl,OPND2

C'STRING '

MOVE MVC TO(80),FROM
(A+B*(C-D) 1

&VAR

.SEQ

·*THIS IS A COMMENT

&VAR.A

DC CL.7'AB'

DC F'1.7E4'

* THIS IS A COMMENT

L 6,=F'2 1

&KEY=D

Page of GC33-4010-4
Revised Feb. 25, 1975
By TNL: GN33-8193

Char. Set

Constituting

Terms

Terms

Expressions

Terms

Statement

Operand field

String

Statement
Expression

Term

(label)

Statement

Term

Operand

Operand

Expression

Statement

Statement

Keyword
Parameter

section C: Assembler Language Structu=e 35

C4 -- Terms

A term is the smallest element of
the assembler language that
represents a distinct and separa te
value. It can therefore te used
alone or in cembination with other
terms to form expressions. Terms
have absolute or reloca table values
that are assigned by the assemtler
or are inherent in the terms
themsel ves •

Terms Term Can Be

A term is absolute if its value
does not change upon program
relocation and is relocatable if
its value changes upon relocation.
The various types of terms described
below are summarized in the figure
to the right.

Symbols

Location
Counter
Reference

Symbol
Length
Attribute

Other Data
Attributes

Self·Defining
Terms

Absolute

X

X

X

X

C4A -- SYMBOLS

36

Furpose

You can use a syrebel tc represent storage locations or
arbitrary values.

SYMBOLIC REPRESEN~A~ICN: You can ~rite a symbol in the
name field of an instruction. Yeu can t~en s~ecify this
symtcl in the e~erands cf other instructions and thus refer
to the former instructien symbolically. This symtol
represents a relocatatle address.

You can alsc assign an absolute value to a symbol ty coding
it in the name field of an EQU instructicn with an c~erand
whose value is abselute. This allows you to use this
symbol in instruction operands te represent registers,
displacements in explicit addresses, innediate data,
lengths, and implicit addresses with atsclute values. Fcr
details cf these ~rcgrarr. elements, see t5. The advantages
of symbolic over numeric re~resentation are:

1. Syrrbcls are easier te remember and use than numerical
values, thus reducing prograaaing errcrs and increasing
programming efficiency.

2. Ycu can use neaningful symtcls to descrite the ~rcgran
elements th~y represent; for example, IKFUT can name a
field that 1S to contain input data, er INBEX can nane
a register tote used for indexing.

Relocatable

X

X

Terms

Value Is

Assigned bV Inherent in
Assembler Term

X

X

X

X

X

).;.(;:~ .. :
~r
.,.j:f"

o

o

o

3. You can change the value of one symbol (through an EQU
instructicn) more easily than you can change several
numerical values in nany instructions.

4. Symbols are entered into a crcss-reference table that
the asseutler ~rints in the ~rogram listing. !his tat Ie
helps you to find a symtol in a ~rcgran listing, tecause
it lists (1) the numter of the statenent in which the
sy«tcl is defined (that is, used as the name entry) and
«2) the numters of all the statenents in which the syutcl
is used in the c~erands.

tHE SYMEOl !AELE: ~he assembler ~aintains an internal
tatle called a syntcl tatle. When the asseKtler ~rccesses
your source statenents for the first time, the assemtler
assigns an atsolute or relocatatle value tc every syntcl
that a~~ears in the name field of an instruction. The
assemtler enters this value, which nornally reflects the
setting cf the locaticn ccunter, into the symbol tatle;
it also enters the attritutes asscciated with the data
represented by the syrrbcl. !he values of the symtol and
its attritutes are availatle later when the assentler finds
this syubcl cr attribute reference used as a term in an
operand or expression (Attritute references used as terns
are discussed in C4C and C4t belo.).

Specifications

The three types of symbol recognized
by the assembler are:

1. Ordinary symbols

2. Sequence symbcls

3. Variable symbols.

Symbols

ORDINARY SYMBOLS: Ordinary symbols
can be used in the name and operand
field of machine and assembler
instruction statements. They must
be coded in the format shown in
the figure to the right.

alphabetic character (letter)

~alPhameriC characters

'R DIN S Y M

NOTES:

1. No special characters are allowed
in an ordina:z:y symbol.

2. No blanks are allowed in an
ordinary synbc1

Examples:

HERE
READER
AOOl
B002

N01
1112

@33
$OPEN

x
y
Z
F2A

section C: Assembler Langt:age Structure-' 37

38

VARIABLE SYMBOLS: Variable symbols
can only be used in macro processing
and conditional assembly
instructions. They must be coded
in the format shown in the figure
to the right.

SEQUENCE SYMBOLS: Sequence symbols
can only be used in macro processing
and conditional assembly
instructions. They must be coded
in the format shown in the figure
to the right.

Symbol Definition

An ordinary symbol is considered
defined when it appears as:

1. The name entry in a machine or
assembler instruction of the
assembler language.

2. One of the operands of an EXTRN
or WXTRN instruction.

NOTE: Ordinary symbols that appear
in instructions generated from model
statements at pre-assembly time
are also considered defined.

Var. Sym.

ampersand

alphabetic character (letter)

~6 alphameric characters

& IARSYMI

Examples:
&A &PARAM
&B & KEYWORD
&C &CHAR3

Seq. Sym.

period

~ alphabetic charac ... (letter)

~ alphameric characters

. SIE Q U S Y M

Examples:
.SEQ
.LOOPll
.EXIT20
.TOOOl

o

'0

o

• • •

The assembler assigns a value to
the ordinary symbol in the name
fields as follows:

1. According to the address of the
leftmost byte of the storage field
that contains one of the following:

a. Any machine or assemtler
instruction (exce~t the EQU or
CFSYN instructions)

b. A storage area defined by
the tS instruction

c. Any constant defined by the
DC instruction

d. A channel corrmand word defined
by the CCW instruction.

The address value thus assigned
is relocatable, because the object
code assembled from these items
is relocatable; the relocatability
of addresses is descrited in t5B.

2. According to the value of the
first or only expression specified
in the operand of an EQU instruction.

•
This expressicn can ha ve a

• relocatable or absolute value, which
is then assigned to the ordinary •
symbol. The value of an ordinary
symbol must lie in the range -2 31

through +2311-1.

Assembler Language
Statements

LOAD

AREA

F200

FULL
TWOO

R3

L 3,AREA

DS F

DC F'200'

EQU AREA}.
BQD F200

EQU 3 •

L
A

R3,FULL
R3,TWOO

Absolute
R3=3

Object Code
in Hex

x x xxxxi

Address
of FULL

IS81 31°FI . SA . 3 . a . xxxx .
-------­Address of

TWOO

Section C: Assembler Language Structure 39

o

•

Restrictions on Symbcls

UNIQUE DEFINITION: A sy~bol must
ce defined only once ill a sourcs
module:

either in the name field of a
source statement

or in the operand field of an
EXTRN or WXTRN instruction.

This is true even for a source
module which contains two or more
control sections.

0$.'
ontt'

NOTE: The ordinary symbol that
appears in the name field of an
OPS!'N or TITLE instruction does
not constitute a definition of that
symbol. It can therefore be used
in the name field of any other
statement in a source ~cdule.

40

CONTRCL SECTION NAMES: A duplicate
symbol can, however, be used as
the name entry of a START, CSECT,
DSECT, or COM instruction. The

• first time a symbol is used to name
these instructions, it identifies
the beginning of the centrol section~

O a duplicate use of the sYlibol
identif1es the resumption of an
interrupted control section.

PREVIOUSLY DEFINED SYMBOL: In some
instructions the symbols used in

• their operands must have been defined
in a previous instruction.
Previously defined symbols are
required for the operands of the
following instructions:

EQU

CNOP

eRG

DC and DS (in modifier and
duplication factor expressions).

f8 FIRST START o

EXTRN

REG4,TABLE(INDEX)

B SECOND

OS CL256

SECOND CSECT

L REG3,AORDR

B RESUMEl

DC A (READER) ()
[491 FIRST CSECT

GI£t.£< LA INOEX,20

END

o

o

o

C4B -- LOCATION COUN1ER REFERENCE

Purpose

The assembler runs a location counter
to assign storage addresses to your
program statements. It is the
assemtler's equivalent of the
instruction counter in the computer.#
You can refer to the current value
of the location counter at any place
in a source roodule by s~ecifying
an asterisk as a term in an operand.

THE LOCATION COUNTER: As the
instructions and constants of a
source module are being assemtled,
the location counter has a value
that indicates a location in storage.
The assembler increrrents the location
counter according to the following:

1. After an instruction or constant
has been assembled, the location

O counter indicates the next availatle
location.

2. Before assembling the current
instruction or constant, the
assembler checks the toundary
alignroent required for it and adjusts 4Bt the location counter, if necessary,
to indicate the pro~er boundary.

3. While the instruction or constant
is being asserobled, the location
counter value does not change.
It indicates the lccation of the
current data after boundary alignment

•
and is the value assigned to the
s~ol, if present, in the name
f1eld of the staterrent.

4. After assembling the instruction
or constant, the assembler increments
the location counter ty the length

O
of the asserrbled da ta to indica te

· the next available location.

The assembler maintains a location
counter for each control section
in a source module; fcr complete
details about the location counter
setting in control sections, see
E2C. The assembler carries an
internal location ccunter value
as a 4-byte, 32-bit value, rut it
only uses the low-crder 3 bytes,
Which are printed in the program
listings. However, if you specify
addresses greater than 224-1, you
cause overflow into the high-order
tyte, and the assembler issues ":he
error message -LOCAl ION COUNTER
OVERFLOW- •

Location
in Hex

000004

800000,.
OOOOOS·

OOOOOC.

000010

DONE

BEFORE

eDURING

AFTER

NEXT

Source
Statements

DC CL3'SOB'

EQU '"

DC F'200'

EQU '"

DS D

Section C: Assembler Language Structure 41

NO'l'E: In the figure below, an example of a location counter
overflow (or wrap-around) is shown.

4Dt The internal address value of the symbol E is carried as
a 4-byte value, but the print~d location only includes

~ the low-order 3 bytes.

42

~ The location counter value for instructions or constants
is usually printed as a 3-byte value. However, the 4-byte

~ value, with up to 3 leading zeros suppressed, is printed
- for the addresses specified in the ope~an?sc:>~~hefcllowing

..... in~tr?8t:i.°~.~ :.;.:E~H(.. 9R(~J Cl~f1 ... p.p..!.~~~ .. >O~l'l~~b~i·!~J. :'-
<, "aJ:~ ... P~~·~~~',,~~~;,,·1:~:~~~~j;:.II ... ~~~<·~);)Q~~~n$f,~.~~

•

You can control the setting of the location counter in
a particular control section by using the START or ORG
instructions.

LOC

000000

000000

FFFFFE

000004

Assembly Listings in Hexadecimal Representation

OBJECT CODE ADDR 1 ADDR2

,-•• ,1.

58506004 00008

STMT

1

2

3

(Locatioh coun

4

5

6

SOURCE STATEMENT

A START 0

• ORG ;~+x I FFFFFE I

L 5,4(,6)

r overflow)

B BR 15

C DC A(B)

o EQU C

0)
\~,..:"

~. Specifications

o

~he lccaticr. counter reference is
specified by an asterisk (*). 'Ihe
asterisk can be s~ecified as a
relocatacle term according to the
follcwing rules:

1. It can only be specified in the
cperands cf:

a. Machine instructions

c. The Ie and IS instructions

c. 'Ihe EQU, ORG, and USING
instructions.

•
2. It can alsc be s~ecified in
literal constants (see CS).

~e value of the location ccunter
reference (*) is the current value
cf the lccaticn ccunter cf the
control section in which the asterisk
~) is s~ecified as a terrr. 'Ihe
asterisk has the sarr.e value as the

•
address cf the first byte of the
instruction in which it a~pears
(for the value cf the asterisk in
address constants with du~licaticn
factcrs, see G3J).

Loc. Ctr Ref

Location Source Address
in Hex Statements Value of.

• ,/ I
000104' HERE B *+8 } same HERE
000108 B HERE+8 effect

I 'OOOllC~ONSTANT DC A(*) • CONSTANT
,OOO120KHERE L 3, =A (*) THERE

(
I

5ection'C: AssemD1er Language Structure 43

C4C -- SYMBOL LENGTH ATTRIBUTE REFERENCE

44

Purpose

When you specify a symbol length attribute reference, you
obtain the length of the instruction or data referred to
by a symbol. You can use this reference as a term in
instruction operands to:

1. Specify unknown storage area lengths

2. Cause the assembler to compute length specifications
for you

3. Build expressions to be evaluated by the assembler.

Specifications

The symbol length attribute reference must be specified
according to the following rules:

1. The format must be L' immediately followed by a valid
symbol or the location counter reference C.).

2. The symbol must be defined in the same source modUle
in which the symbol length attribute reference is specified.

3. The symbol length attribute reference can be used in
the operand of any instruction that requires an absolute
term. However, it cannot be used in the form L·. in any
instruction or expression that requires a previously defined
symbol.

o

o

o

The value of the length attribute
is normally the length in bytes
of the storage area required by
an instruction, constant, or field
represented by a symbol. The
assembler stores the value of the
length attribute in the symbol table
along with the address value assigned
to the syrrbcl.

When the assembler encounters a
symbol length attribute reference,
it substitutes the value of the
attribute from the symbol table
entry for the symbol specified.

The assembler assigns the length
attribute values to symbols in the
name field of instructions as
follows:

• F?r machine instructions, it assigns
e~ther 2, 4, or 6, depending on
the format of the instruction.

• ~or th~ DC a~d DS instructions «

~t ass~gns e~ther the implicit or
explicitly specified length. The
length attribute is not affected
~ a duplication factcr.

For the E~U instruction, it assigns

•
the length attribute value of the
leftmost cr only term of the first
expression in the first operand,
unless a specific length attribute
is supplied in a second o~erand.

;'d_ . OrilyoneOt;:~randisall()wedinthe
£QUj.nstr'Uction. ".

Note the ler:gth attribute values
of the following terrrs in an EQU
instructicn:

~. self-defining terns

~. lccaticn ccunter reference •. ~
~he length attribute of the location

• counter reference (L' .) is equal
to the ler:gth attribute of the
instruction in which the L'. a~pears.

For the rerraining assenbler
instructions, see the specificaticns
for the individual instructions.

Source Module

MACHA MVC TO,FROM
MACHB L 3,ADCON
MACHC LR 3,4

TO OS CL80
FROM OS CL240
ADCON DC A (OTHER)
CHAR DC C'YUKON'
DUPL DC 3F" 200'

• RELOCl EQU
RELOC2 EQU
ABSOLl EQU
ABSOL2 EQU

SOT 1 EQU
SDT2 EQU
SDT3 EQU

ASTERISK EQU

LOCTREF EQU

LENGTH 1 DC A(L'*)

LENGTH2 MVC TO (L '*) , FROM
LENGTH3 MVC TO (L' TO-20) ,FRO

Length A ttr.

Value of Symbol
Length Attribute
(at assembly time)

L'MACHA
L'MACHB
L'MACHC

L'TO
L'FROM
L'ADCON
L'CHAR
L'DUPL

L ' RELOC1
L'RELOC2
L'ABSOLI
L'ABSOL2

80
80

240
240

L'SDTI -n L'SDT2
L'SDT3

L'ASTERISK 81

L I LOCTREF 0 1

L'* {4
L I LENGTHI. 4
L'* 6
LITO 80

section C: Assembler Language Structure 45

C4D -- OTHER ATTRIBUTE REFERENCES

There are other attributes which describe the
characteristics and structure of the data you define in
a program. For exarople, the kind of constant you specify
or the number of characters you need to represent a value.
These other attributes are the type (T'), scaling (S'),
integer (I'), count (R'), and number (N') attributes.

NOTE: You can refer to these attributes only in conditional
assembly instructions and expressions; for full details,
see L1B.

C4E -- SELF-DEFINING TERMS

46

Purpose

A self-defining term allows you to specify a value
explicitly. with self-defining terms, you can specify
decimal, binary, hexadecimal, or character data. ~hese
terms have absolute values and can te used as absclute
terms in expressions to represent bit configurations,
absolute addresses, displacements, length or other
modifiers, or duplication factors.

o

'0',·" , .

. ~

C:J Specificaticns

GENEFAL RULES: Self-defining terrrs:

O · Refresent rrachine language binary
values

• Are acsclute terrrsi their values
do not change upon prcgrarr
re1ccaticn.

!he assemc1er carries the values
represented cy self-defining terrr:s 'CI • to 4 tytes cr 32-titsi the higb­
crder bit is the sign bit.

o

Valuesar.,carried,to3bytEs or
241:1ts.

~ECl~AL: ~ decirral self-defining
term is an unsigned decimal number.
1he assemt1er allows:

O. High-crder zercs

•• A maximum of 10 decirra1 digits

•
• A range of values from 0 througt.
2,147,483,647.

-; 'A,aa.xlaUlr,of Bdecimaldigits.

"',,,;ltlta;n<.Je of, values from o through
~,~,17712J5 •

Self-Defining

Self-Defining Decimal Binary
Term Value Value • 15 15 1111

241 241 11110001
B'11111 15 1111
B' 11110001 1 241 11110001
B' 100000001 1 257 100000001
X'F ' 15 1111
X'F1' 241 11110001
X' 101' 257 100000001
C ' 1' 241 11110001
CiA' 193 11000001
C'AB' 49 , 602 1100000111000010

r
4 bytes

l (32 bits)

value bits

31 30 24 16 8 0

L. I I J I

• I value bits I
Isign bit I

1"'Negative Value
():=Positive Value

• .:Q2 • '2147483647' = 231 -18

S'ect1on C: Assembler Language Structure 47

EINA~Y: A tinary self-defining
terrr Rust ~e ceded in the fermat
shown in the figure to the right.
~he asserr~ler: .

~. Assemtles each tinary digit as
it is sJ;ecified

•• Allows a maximum of 32 tinary
digits

• Allows a range of values frerr

•
-2,147,483,648 thrcugh
2,147,483,641.

",.t: ~ Allowact rRJxl.itNi]iiC~2lfbiha:t:j··
digits. ih

48

e" Al·10WS·.·.· · •• · .••• ~i~~~:.~f ~al.ue$ fro.'
o· througb ·1'~771t~·1S'.· .

NOTE: When used as an absolute
term in expressions, a tinary self-

e defining tern has a negative value
. if the high-order tit is 1.

_____________ a1stroPhes must enclose digits

B ',110011 ••••• 101'
\ \
. 1 to 32 binary digits
blnarYtMlIM

Examples Binary Value

B' 101011~t--O kll0~

B'11101010111'

High-order
~nbit

B "11111 ••• 111' =
.~, I 32 d;9;ts.

<¥f.

B ',10 0 0 0 • • • 0 0.,9 ,
• 32 digits

111010101111

o

o

BEXAtECIMAL: A hexadecimal self­
defining tern must be ccded as sho~n
in the figure to the right. ~he
assentler:

• Assembles each hexadecimal digit

•
intc its 4-tit binary equivalent
(listed in the f1gure to the r1ght)

•
• Allows a naxinun cf 8 hexadecimal
digits

• Allows a range cf values from
• -2,147,483,648 through 2,147,483,647.

.... 4~"' ... :;o· .':,_.x~m ~f .. 6 • hexadecimal

,'~,<,~"""" .. :/_ J''"lf' .. : of va 1 uesfrom
~~<>P!I~L •. ,:I:~.~1r7 ~2t5 .•

NOlE: When used as an absolute
term in an expression, a hexadecinal

•
self-defining tern has a negative

· value if the high-order tit is 1.

~r0ph" most enclose digit

X' FF ••• F56 '

\' " hexadecimal 1 to 8 hexadecimal digits

111111.111;:

Conversion Table:

Hexadecimal
Digit

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Examples:

X'A'

X'FFA'

8di9iU8

X'7FFFFFFF'

X'80000000'

•

4-bit
Decimal Binary
Equivalent Representation

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

Binary Value

IOOOOllOH)f

1111 illll111 0 1 01

Section C: Assembler Language Structure 49

Page of GC33-4010-4
Revised Feb. 25, 1975
By TNL: GN33-8193

CHABACTE~: A character self-defining
tera aust te coded as shown in the
figure to the right. ~he asseatler:

• Allows any of the 256 punch
combinations when using punched
cards as input. ~his includes the
printable characters, that is,
blanks and special characters.

• Assembles each character into

O its a-bit binary equivalent. (A
table of characters and their tinary
equivalents can be found in Appendix
I) •

•
• Requires that twc aIl1persands
or apostrophes be specified in the

•
character sequence fer each ampersand
or apostrophe required in the
assemEled term.

•• Allows a maximum of 4 characters.

CS - Literals

50

Purpose

You can use literals as operands
in order to introduce data into
your program. However, you cannot
use a literal as a term in an
expression. The literal represents
data rather than a reference to
data. This is convenient, tecause

1. The data yeu enter as numbers
for computation, addresses, or
messages to be printed is visitle
in the instruction in which the
literal appears, and

2. You avoid defining constants
elsewhere in your source module
and then using their symbolic names
in machine instruction operands.

'. -

,LarstrOph81 must enclose characters

C~
\ 1 to 4 characters
character.!;;_

Example.:

L

Character Characten self-defining
term Assembled

C'A' ~

e'l' 1
C'

, (blank)
C'II' II
e'@' @ /- /e
e'&&' &
C'" , ,
C'L' 'A' L'A
C" f'" II

C'FOUR' FOUR ----•

1,=F'200'
2,=A(SUBRTN)

Hexadecimal
Value

X'Cl'

0
X'F1'
X'40'
X, 7B'
X'7C'

X'50'
X'7D'
X'D37DC1'
X'7D7D'

X'C6D6E4D9'

Binary
Value

1100000~

11110001
01000000
01111011
01111100

01010000
01111101

L
MVe MESSAGE(16},=C'THIS IS AN ERROR'

cl')·.-
I,. {

o

o·

o

The, assembler assembles the data
specified in a literal into a
-literal pool- (fully described
in H1B). It then assembles the
address of this literal data in
the pool into the object code of
the instruction that contains the
literal specification. Thus the
assembler saves you a programming
step by storing your literal data
for you. The assembler also
organizes literal pools efficiently
so that the literal data is aligned
on the proper boundary alignment
and occupies the minimum amount
of space.

LITERALS, CONSTANTS, AND SELF­
DEFINING TERMS: Do not confuse
literals with constants or self­
defining terms. They differ in
three important ways:

1. In where you can specify them
in machine instructicns, that is,
Whether they represent data or an
address of data.

2. In whether they have relocatatle
or atsolute values.

3. In what is assembled into the
object code of the machine
instruction in which theyaj;:pear.

The figure to the right illustrates
the first two points.

•• A Ii teral represents data.

• A constant is rej;:resented ty
• its relocatable address. Note t.1J.a t

a symbol with an atsolute value
does not rej;:resent the address of

• a constant, but represents immediate

•
data (see D5D) or an absolute

· address.

•

• A self-defining term represents
data and has an absclute va lue.

Compare:

A literal with a relocatable address

L
L • 3,=F'33' 31Fe

F33 DC F'33'

} same effect

A Literal with a self-defining term
and a symbol with an absolute value

:~ ~~t4.~mee~~
• FLAG DS X

ZERO EQU X'OO'

A symbol having an absolute address value
with a self.defining term •

~ :' lUill'RE
}same effect

: I, •.

.
LOCORE EQU 1000

ITection C: Assemoler Language Structure 51

52

The figure to the right illustrates
the thi rd point.

•• The address of the literal,
rather than the literal data itself
is asserobled into the abject code.

•• The address of a const ant is
asserobled into the object code.
Note that when a symbol with an

• absolute va lue reJ;:resents immedia te
data, it is the absolute value that
is assembled into the object code.

O · The absolute value of a self-
· defining term is assembled into

the obj ect code.

Loe
nHex

248

24C

250

Source Statements

LITERAL L

RELCON L

ABSCON TM

SELFDT TM

FLAGCON EQU X'B8'

F200 DC F'200'

BYTE DS X

LTORG

r~1 1000000c8I F'200' Pool

Object Code
in Hex

c

o Specifications

A literal must be ceded as shown
in the figure to the right.

o The literal is specified in the
same way as the operand of a DC
instruction (for restrictions see
G3C) •

GENERAL RULES FOR LITERAL USAGE:
A literal is not a term and can
be specified only as a complete
operand in a machine instruction.
In instructions with the RX format
they must not be specified in
operands in which an index register
is also specified.

Because literals provide -read-only­
data, they rrust not be used:

1. In operands that re~resent the
receiving field of an instruction
that rroodifies storage

2. In any shift or 1/0 instructions.

o C6 - Expressions

o

C6A -- PURPOSE

You can use an expression to specify:

o An address

• An explicit length

• A modifier

• A duplication factor

• A complete c~erand

You can write an expression with
a simple term or as an arithmetic
combination of terms. The assembler
reduces multi term expressions to
single values. Thus, you do not
have to ccm~ute these values
yourself.

~:

A EQU

B MVC

C DS

Literals

Literal Specification

'=I'IxB' F3 "
::'~~:~ . ".. ,

,)

o

,
""'1 X-_-Y-+-1-3-_-P-I-

Q
-i,

nominal
value

,
,TO+L'TO-L'FROM ,(L'FROM) ,FROM

0/
<,X-Y,> XL (rIQ-IO) • ..

S~ction C: Assembler Language Structure 53

54

Expressions have absolute or relocatable values. Whether
an expression is absolute or relocatable depends on the
value of the terms it contains. You can use the absolute
or relocatable expression described in this subsection
in a machine instruction or any assembler instruction cther
than a conditional assembly instruction. The assembler
evaluates relocatable and absolute expressions at asserrbly
time. Throughout this manual, the word -expression- refers
to these types of expression.

NOTE: There are three types of expression that you can
use only in conditional assembly instructions: arithmetic,
logical, and character expressions. They are evaluated
at pre-asserr.bly time. In this manual they will always
be referred to by their full names; they are described
in detail in L4.

o

o

o

o

C68 -- SPECIFICATIONS

The figure below defines both absolute and relocatable
expressions.

~NOTE: The relocatable values that are paired must have

•
the opposite sign after the resolution of all unary
operators.

Relocatable
Expression

Absolute
Expression

Expressions

Operators Allowed

Unary: + Positive
- Negative

Binary: + Addition
- Subtraction
* Multiplication
I Division

Abs. Exp = Absolute Expression

Rei. Exp = Relocatable Expression

Section C; .Assembler Language Structure 55

56

Absol~te and Relocatable Expressions

An expression i~ absolute if its
value is not changed ty program
relocation~ it is relocatable if
its value is changed upon program
relocation. A descri~tion of the
factors that determine whether an
expression is absolute or relocatable
follows.

PAIRED RELOCATABLE TERMS: An
expression can be absolute even
though it contains relocatable
terms, provided that all the
relocatable terms are taired. The
pairing of relocatable terms cancels
the effect of relocation. The
assembler reduces paired terms. to
single absolute terms in the
intermediate stages of evaluation.
The assembler considers relocatable
terms as paired under the following
conditions:

O
. The paired terms must be defined
in the saree control section of a
source module ~hat is, have the
same relocatabili ty attribute) •

• The paired terms must have
• opposi te signs after all unary

operators are resolved. In an

•
expression, the paired terms do
not have to be contiguous, that
is, other terms can come between
the paired terms.

• The value represented ty the
• paired terms is absolute.

Source Module

FIRST CSECT
·

Can be e{ A D·S

paired B OS
C DS
LOCTREF EQU
ABSA EQU
ABSB EQU
ABSC EQU

SECOND CSECT ·
~O{

D · OS
paired E OS

F OS
END

Examples:

Paired Relocatable Terms •

B-A ~
C-A ~
+B-+C' > B-C
-A--B ~ -A+B
LOCTREF-C
O-E
F-O

Unpaired Relocatable Terms

B
C
LOCTREF
o

F
F
F

* X'F'
300
CiA'

x
X
X

Absolute
Expressions

1
8" A+ABSA-B

O-E+ABSC
F-D+B-C
'----' t....--.¥

paired paired

Relocatable
Expressions

Unpaired

I+ABSA
g+X'FF'
.-5* (B-C).

paired

o

o

Absolute Expressions

The assembler reduces an absolute
expression to a single absolute
value if the ex~ression:

o 1. Is composed of a symbol with
an absolute value, a self-defining
term, or a symbol length attritute
reference, or any arithmetic

.combination of absolute terms.

8 2. If it contains relocatable terms,
alone or in combination with atsolute

•
terms, and if all these relocatable

· terms are paired.

Source Module

FIRST

A

B

C

ABSA

ABSB

ABSC

ABSD

Absolute
Expressions

CSECT . .
DC

DC

DC

EQU

EQU

EQU

EQU

END

.{i~SA
L'A

F'2'

F'3'

F'4'

100

X'FF'

B-A
~

Paired

'*-A

• {ABSA+ABSC-ABSC*15

Abs. Exp.

~ .
e{N J-. ~

ABSA+15-B+C-ABSD/(C-A+ABSA)

Section C: AssemblE::=r J ·ang\1age Structure 57

•
•

58

Deloca~able Expressions

A relocatable e~pression is one
Whose value changes, for example,
ty a 1000, if the cbject module
into Which it is assembled is
relocated 1000 bytes away from its
originally assigned storage area.
The assembler reduces a reloca table
expression to a single relocatable
value if the expression:

1. Is composed of a single
relocatable term, or

2. Contains relocatable terms, alone
or in combination with absolute
terms, and:

a. All the relocatable terms
but one are paired. Note that
the unpaired term gives the
expression a relocatable value;
the paired relccatable terms
and other absolute terms
constitute increroents or
decrements to the value of the
unpaired term.

b. The relocatability attribute
of the whole expression is that
of the unpaired term.

c. The sign preceding the unpaired
relocatable term must be positive,
after all unary operators have
been resolved.

COMPLEX RELOCATABLE EXPRESSIONS:
Oomple~ relocatable expressions,
unlike relocatable expressions,
can contain:

a. Two or more unpaired
relocatable terms or

b. An unpaired relocatable term
preceded by a negative sign.

Complex relocatable expressions
can be used only in A-type and Y­
type address constants (see G3J) •

Source Module

FIRST CSECT .
A DC H'2'

B DC H'~'

C DC H'4'

ABSA EQU 10

ABSB EQU

ABSC EQU .
END

Relocatable Expresssions:

(Belong to control section named FIRST
and have same relocatable attribute as
A, B and C)

.---'a+ABSA+I0
B-+A+c;:-10*ABSC

Reloc. Exp.

O~.

B-A+'+lOO*ABSA+ABSA/(C-A)

~o~

o

Rules for Coding Expressions

The rules for coding an absolute
or relocatable expression are:

1. Both unary (o~eratin9 on one
value) and binary (operating on
two values) operators are allowed
in expressions.

2. An ex~ression can have one or o more latA operators J?receding any
term n e expression or at the
beginning of the eXJ?ression.

• 3. An expression must not begin
with a binary oEerator, nor can

•
it contain two binary operators
in successicn.

•
4. An expr~ssion mus~ not contain
two terms 1n succeSS1cn.

5. No blanks are allowed between
an operator and a term nor between
two successive operators.

6. An expression can contain up
to 19 unary and binary operators
and up to 6 levels of parentheses.
Note that parentheses that are part
of an operand specification do not
count toward this limit.

7. A single relocatable term is
not allowed in a roul tiply o.r divide
operation. Note that paired
relocatable terms have absolute
values and can be multiplied and
divided if they are ,enclosed in
parentheses.

8. A literal is not a valid term
and is therefore not allowed in
an expression.

Operators

Unary + -,
Binary +,-.*.1

~ .. -- ABS
~j.: .. REL+ "ABS

---.... -ABS
-====~. - REL-ABS

I Unary • '--B-ina-ry--'I Context determines whether
+ or - is unary or binary
operator ~~J~

ABSC;~ABSD+15

REL~ 4ABS

-==-~.~ A+B
-====I.~ ABSC I ABSO+15

----.. REL-ABS

~----t»--------------~

I Multiply I
8

,*3 INVALID
*+3 VALID
--,Locatlon counterl -----------,

I Reference J Context determines whether

~
an asterisk (*) is the binary

, A* I B INVALID operator for multiplication

8 -ABsA + VALID or the location counter
INVALID reference

~ L-________________ -J

I Leftmost operator betwee
two terms is binary

X' FF' (10:!< A) INVALID -.--- ~ -'e---~ >

15B'101' INVALID

Section c: Assembler Lan~uage Structure 59

60

•
e
•

Evaluation of Expressions

The assembler reduces a multiterm
expression to a' single value as
follows:

1. It evaluates each term.

2. It performs arithmetic operations
from left te right. Hewever:

a. It performs unar~ operations
before binary o~erat1ons, arid

b. It performs the binary
operations of mUltiflication
and division befere the binary
operations of addition and
subtract ion.

•
3. In division, it gives an integer

. result; any fractional portion is
dropped. rivision by zero gives
o.

4. In parenthesized ex~ressions,
• the assembler evaluates the inner

most expressions first and then

econsiders them as ~ in the ~
outer level of eXfressions. It •
continues this process until the
outermost expression is evaluated.

5. A term or expression's
intermediate value and computed
result must lie in the range of
-2 31 through +231-1.

NO~E: It is assurred that the
assembler evaluates paired
relecatable terrrs at each level
of expression nesting.

Value of
Absolute Expressions Expression

A=5

A*-- X'A' ~ 5* + 10 §: +50

~.

" A=10 {A+10/B ~ 10+10/2 } 15

B=2 (A+I0) /B ~ (10+10) /2920/2 c:; lU

A=10 A/2) 5

A=ll A/2 ~ 5 }e
A=l { A/2) 0

10*A/2 ~ 10 * 1/2 ~ 10/2;;;:; 5

c

o

Part II: Functions and Coding of Machine Instructions

SECTION 0: MACHINE INSTRUCTIONS

61-

o
;.Y'

o Section D: Machine Instructions

o

This section introduces the main functions of the machine
instructions and ~rovides general rules for coding them
in their symbolic assembler language format. For the
complete specifications of machine instructions, their
object code format, their coding specifications, and their
use of registers and virtual storage (see GLOSSARY) areas
see the Principles of Operation manuals:

• IEM System/360 Principles of Operation, Order No. GA22-
6821

• IB~ System/370 principles of Operation, Order No. GA22-
7000

D1 - Functions

At assembly time, the assembler converts the symbolic
assembler language representation of the machine
instructions to the corresponding object code. It is this
object code that the computer processes at execution time.
Thus, the functions described in this section can be called
execution time functions.

Also at assemtly time, the assembler creates the object
code of the data constants and reserves storage for the
areas you specify in your DC and [S assemtler instructions
~ee G3). At execution time, the machine instructions

can refer to these constants and areas, rut the constants
themselves are not executed.

section D: Machine InstructJol1d 63

D1A -- FIXED-POINT ARITHMETIC

64

purpose

You use fixed-point instructions
when you wish to perfcrm arithmetic
operations on data represented in
binary form. These instructions
treat all numbers as integers.
If they are to o~erate upon data
representing mixed numbers (such
as 3.14 and 0.235) you must keep
track of the decimal paint yourself.
For your constants you must provide
the necessary number of binary
positions to represent the fractional
portion of the number specified
by using the scale mcdifier (see
G3B) •

Operations Performed

Fixed-point instructicns allow you
to perform the operations listed
in the figure to the right.

Data Constants Used

In fixed-point instructions, you
can refer to the constants listed
in the figure to the right •

•
NOTE: Except for the conversion
ooerations, fixed-point arithmetic
is performed on signed binary values.

Fixed - Point
Operations

Add

Subtract

Multiply

Divide

Arithmetic Compare
(taking sign into
account)

Load into registers

Store into areas

Arithmetic Shift of
binary contents of
registers to left or
right (retaining
sign)

Convert (packed)
decimal data to
binary

Convert binary data
to (packed) decimal
data

Constants Used

Fixed-Point

Binary

Hexadecimal

Character

Decimal (packed)

Address

Mnemonic
Operation Codes

AR, A, AH, ALR, AL

SR,S,SH,SLR,SL

MR,M,MH

DR,D

CR,C,CH

LR,L,LH,LTR,LCR,LPR,LNR,LM

ST, STH, STM

SLA,SRA,SLDA,SRDA

CVB

• CVD

Type

Hand F

B

X

C

P
.(-....• \.

: I

... :.-.Y
Y, A, S, V and Q

o

o

o

C1 E -- tECI~AL ARITEME1IC

Furpose

You use the decinal instructions
~hen you wish to perform arith~etic~
cperaticns cn data that has the
binary equivalent of decimal
representatien, either in packed
or zoned form. These instructions
treat all nunbers as integers.
for example, 3.14, 31.4, and 314
are all processed as 314. You rr,ust
keep track cf the decirral peint
yourself.

Operaticns P~rfer!ed
(

Becirral instructiens allo~ you to
perform the operations listed in
the figure te the right.

rata Constants Used

In decimal instructions yeu can
refer tc the censtants listed in
the figure to the right.

•
NOTE: ExceEt fer the ccnversicn
operations, decimal arithnetic is
performed on signed packed decinal
values.

Decimal Mnemonic Operation
Operations Codes

Add AP

Subtract SP

Multiply MP

Divide DP

Arithmetic Compare CP
(taking sign into
account)

Move decimal data MVO
with a 4-bit offset

Shift decimal data SRP
in fields to left or
right

Set 8 field to zero ZAP
and add contents
of another field

Convert zoned to PACK
packed decimal
data • Convert packed to UNPK
zoned decimal
data

Constants Used Type

Decimal (packed) P

(zoned) Z

Section D: Machine Instructions 65

t1C -- FICA~ING-POINT ARI~HMETIC

66

Furpose

You use floating-point instructicns
when yeu wish tc ferfcrn arithmetic
operations on binary data that
represents rcth integers and
fractions. Thus, you do net have
to keep track ef the deci~al point
in ycur ccnfutaticns. Flcating­
point instructions also allow yeu
to perfcrn arith~etic cferations
on both very large numters and very
small nurrbers, with greater precision
than with fixed-point instructions.

Operaticns Perfcrned

Floating-fcint instructicns allow
you to perform the operations listed
in the figure tc the right.

tata Constants Used

In floating-point instructions,
you can refer tc the ccnstants
listed in the figure to the right.

~OTE: Flcating-fcint arithmetic
is performed on signed values that
rrust have a sfecial floating-point
forrrat. ~he fracticnal pcrtion

e Of floating-point numters, when
used in additicn and subtractien,
can have a normalized (no leading
zercs) cr unncrrr.alized format.

-
floating - Point
Operations

Add • Subtract j

Multiply

Divide

Halve
(division by 2)

Arithmetic Compare
(taking sign into
account)

Load into floating·
point registers

Store into areas

Constants Used

Floating· Point

Mnemonic Operation ()
Codes

ADR, AD, AER, AE, AWR
AW, AUR, AU, AXR

SDR, SO, SER, SE, SWR,
SW, SUR, SU, SXR

MDR, MD, MER, ME, MXR,
MXDR,MXD

DDR,DD,DER,DE

HDR, HER

CDR, CD, CER, CE

LDR,LD,LER,LE,LTDR,
LTER, LCDR, LeER, LPDR,
LPER,LNDR,LDER,LRDR,
LRER

STD, STE

Type

E, 0, and L

0 ";'·' , ',I
\ '

o

o

D1D -- LOGICAL OPERATIONS

Purpose

You can use the logical instructions
to introduce data, mcve data, or
inspect and change data.

Operations Performed

The logical instructions allow you
to perform the operations listed
in the figure to the right.

Logical Mnemonic Operation
Operations Codes

Move MVI, MVC, MVN, MVZ, MVCL

Logical Compare CLR, CL, CLI, CLC, CLCL,
(unsigned binary CLM
values)

AND (logical NR, N, NI, NC
multiplication)

OR (logical OR,O,OI,OC
addition)

Exclusive 0 R XR ,X, XI, XC
(either or,
but not both)

Testing binary TM
bit patterns

I nserting characters IC,ICM
into registers

Store characters STC, STCM
into areas

Load address into LA
register

Logical Shift of SLL, SRL, SLDL, SRDL
unsigned binary
contents of
registers to left or
right

Replace argument TR, TRT
values by corresponding
function values from
table (translate)

Edit (packed and ED, EDMK
zoned decimal data)
values in preparation
for printing

Section D: Machine Instructions 67

C1E -- BRANCHING

68

Purpose

You can use several tYfes of
branching instructions, comcined
with the logical instructions listed
in 010, to code and control loops,
subroutine linkages, and the sequence
of processing.

Operations Performed

The branching instructions allow
you to perform the operations listed
in the figure to the right.

NOTE: Additional mnemonics for o branching on conditicn are described
in section ~1H below.

Branching Mnemonic Operation
Operations Codes

~~~dingl SCR, BC 
on the results of 
the preceding a 
operation (that 
sets the condition 
code) 

Branch to a BALR, BAL 
subroutine with a 
return link to 
current code 

.§!:!!l£.!:! according BCTR,BCT 
toa~con-

tained in a register 
(count is decremented 
by one before deter-
mining course of 
action) 

~by comparing 
BXH, BXlE 

~ value to fixed 
comparand, (index 
incremented or de-
cremented before 
determining course 
of action) 

Temporary Branch in EX 
orderto~a 

specific machine 
instruction 



o 

o 

o 

e1F -- STATUS SWITCHING 

purpose 

You can use the status switching 
instructions to communicate between 
your prograrr and the system control 
program. However, some of these 
instructions are privileged 
instructions and you can use them 
only when the CPU is in the 
supervisor state, but not when it 
is in the problem state. The 
privileged instructions are marked 
with a .p. in the figure to the 
right. 

Operations Performed 

The status switching instructions 
allow you to perform the operations 
listed in the figure to the right. 

Status Switching Mnemonic Operation 
Operations Codes 

Load program status information P LPSW 

.I.J;w! sequence of control registers P LCTL 

Set bit patterns for condition code SPM 
and interrupts for program 

Set bit patterns for channel usage P SSM 
by system 

§!l protection ~ for a block of P SSK 
storage 

Set time-of-day clock P SCK 

Insert protection m for storage P 15K 
into a register 

Store time-of-day clock STCK 

Store identification of channel P STI DC, STIDP 
or CPU 

~ (save) sequence of £Q!!!!:Q! P STCTL 
registers 

Call supervisor for system SVC 
interrupt 

Call monitor for interrupts de- MC 
pending on contents of 
control register 

!!!! bit which is subsequently TS 
set to 1 

Write or Read directly to or P WRD, ROD 
from other CPU's 

,-
Set Clock Comparator P SCKC 

Store Clock Comparator P ,~~KC 

Set CPU Ti mer P SPT 

Store CPU Timer P STPT 
,-. 

Store Then AN 0 System Mask P STNSM 

Store Then OR System Mask P STOSM 

Section D: Machine Instructions 69 





c:; 01G -- INPUt/OUTPUt 

'0 

o 

Purpose 

You can use the input/output 
instructions, instead of the IB~­
supplied system macro instructions, • 
when you wish to control your input 
and output operations aore closely. 

Operations Ferformed 

The input or output instructions 
allow you to identify the channel, 
or the device on which the input 
or output operation is to be 
performed. The operations performed 
are listed in the figure to the 
right. However, these are privileged 
instructions, and you can only use 
them when the CPU is in the 
supervisor state, but not when it 
is in the problem state. 

Input or Output Mnemonic Operation 
Operation. Cod •• 

§W11/0 SIO, SIOF 

!:i!!ll/O HIO 

!!!! state of channel TIO,TCH 
or device being used 

Halt Device HOV 

Section D: Machine Instructions 71 



Page of GC33-40tO-O 
Re,·jsed September 29,1972 

By TNL GN33-8148 

D1H -- BRANCHING WITH EXTENDED MNEMONIC CODES 

72 

Purpose 

The branching instructions described below allow you to 
specify a mnemonic code for the condition on which a branch 
is to occur. Thus, you avoid having to specify the mask 
value required by the EC and ECR branching instructions. 
The assembler translates the mnemonic code that represents 
the condition into the mask value, which is then asserrbled 
in the object code of the machine instruction. 

Specifications 

The extended mnemonic codes are given in the figure on the 
opposite page. 

They can be used as operation codes for branching 
~ instructions, replacing the Be and BeR machine instruction. 

codes. Note that the first operand of the Be and BeR 

• 
instructions must not be present in the operand field of 
the extended mnemonic branching instructions. 

~NOTE: The addresses represented are explicit addresses; 
however, implicit addresses can also be used in this type 
of instruction. 

o 



0 Extended Code Meaning Format (Symbolic) Machine 
Instruction Equivalent 

\ 

• • • • \02 (X; ,B2) } B Unconditional Branch RX BC IS,D2(X2,B2) 
BR R2 RR BCR IS,R2 
NOP D2(X2,B2) } No Operation RX BC O,D2(X2,B2) 
NOPR R2 RR BCR O,R2 

Used After Compare Instructions 

BH D2(X2,B2) } Branch on High RX BC 2,D2(X2,B2) 
BHR R2 RR BCR 2,R2 
BL D2(X2,B2} } Branch on Low RX BC 4 ,D2 (X2 ,B2) 
BLR R2 RR BCR 4,R2 
BE D2(X2,B2) } Branch on Equal RX BC 8,D2(X2,B2) 
BER R2 RR BCR 8,R2 
BNH D2(X2,B2) } Branch on Not High RX BC 13,D2(X2,B2) 
BNHR R2 RR BCR 13,R2 
BNL D2(X2,B2) } Branch on Not Low RX BC ll,D2(X2,B2) 
BNLR R2 RR BCR ll,R2 
BNE D2(X2,B2) } Branch on Not Equal RX Be 7,D2(X2,B2) 
BNER R2 RR BCR 7,R2 

Used After Arithmetic Instructions 

BO D2(X2,B2) } Branch on Overflow RX BC I,D2(X2,B2) 
BOR R2 RR BCR I,R2 
BP D2(X2,B2) } Branch on Plus RX BC 2,D2(X2,B2) 

CI BPR R2 RR BCR 2,R2 
BM D2(X2,B2) } Branch on Minus RX BC 4,D2(X2,B2) 
BMR R2 RR BCR 4,R2 
BNP D2(X2,B2) } Branch on Not Plus RX BC 13,D2(X2,B2) 
BNPR R2 RR BCR 13,R2 
BNM D2(X2,B2) } Branch on Not Minus RX BC II,D2(X2,B2) 
BNMR R2 RR BCR ll,R2 
BNZ D2(X2,B2) } Branch on Not Zero RX Be 7,D2{X2,B2) 
BNZR R2 RR OCR 7,R2 
BZ D2(X2,B2) } Branch on Zero RX BC 8,D2(X2,B2) 
BZR R2 RR BCR 8,R2 
BNO D2(X2,B2) } Branch on No Overflow RX BC 14,D2(X2,B2) 
BNOR R2 RR BCR. 14#R2 

Used After Test Under Mask Instructions 

BO D2(X2,B2) } Branch if Ones RX BC I,D2(X2,B2) 
BOR R2 RR BCR I,R2 
BM D2(X2,B2} } Branch if Mixed RX BC 4,D2(X2,B2) 
BMR R2 RR BCR 4,R2 
BZ D2(X2,B2) } Branch if Zeros RX BC 8,D2(X2,B2) 
BZR R2 RR BCR 8,R2 
BNO D2 (X2, B2) } Branch if Not Ones RX BC 14,D2(X2,B2) 
BNOR R2 RR BCR 14,R2 
BNM D2(X2,B2) } Branch if Not Mixed RX BC ll,D2(X2,B2) 
BNMR R2 RR BCR Il,R2 
BNZ D2(X2,B2) } Branch if Not Zeros RX BC 7,D2(X2,B2) 
BNZR R2 RR BCR 7,R2 

D2=displacement,X2=index register,B2=base register,R2=register containing 

0 
branch address 

Section D: Machine Instructions 73 



011 -- RELOCATION HANtLING 

74 

Purpose 

You use the relocation instructions 
in connnection with the relocate 
feature of IBM System/370. 

Operations Performed 

The relocation instructions allow 
you to perforll' the ct:erations listed 
in the figure to the right. However, 
these instructions are privileged 
instructions, and you can use them 
only when the CPU is in the 
supervisor state, but not when it 
is in the problem state. 

Relocation 
Operations 

Load Real Address 

Purge Translation 
Lookaside Buffer 

Reset Reference Bit 

Set Clock Comparator 

Store Clock Comparator 

Set CPU Timer 

Store CPU Timer 

Store and AN 0 System 
Mask 

Store and 0 R System 
Mask 

Mnemonic Operation 
Code 

LRA 

PTLB 

RRB 

SCKC 

STCKC 

SPT 

STPT 

STNSM 

STOSM 



0\ D2 - Alignment 
Alignment 

o 

o 

Purpose 

The assemtler automatically aligns the object code of all 
machine instructions on halfword toundaries. For executicn 
of the IBM Systerr./370 machines, the constants and areas 
do not have to lie on specific boundaries to be addressed 
by the machine instructions. ~ 

However, if the assembler option ALIGN is set, you can 
cause the assembler to align constants and areas; for 
example, on fullword boundaries. This allows faster 
execution of the fullwcrd machine instructions. 

If the NOALIGN option is set, you do not need to align 
constants and areas. They will te assemtled at the next 
available byte, which allows you to save space ~o bytes 
are skipped for alignment). 

Section D: Machine Instructions 75 



76 

Specifications 

MACHINE INSTRUCTIONS: When the 
assembler aligns machine instructions 

• 
on halfword boundaries, it sets 
any bytes skipped to zero. 

CONSTANTS AND AREAS: One of the 
assembler options that can be set 
in the job control language (that 
initiates execution of the assembler 
program) concerns the alignment 
of constants and areas; it can 
be specified as ALIGN or NOALIGN. 

If ALIGN is specified, the following 
applies: 

•
• The assembler aligns constants 
and areas on the boundaries implicit 
in their type, if no length 
specification is sup~lied. 

• The assembler checks all 
• expressions that represent storage 

addresses to ensure that they are 
aligned on the boundaries required 
by the instructions. If they are 
not, the assembler issues a warning 
message. 

If NCALIGN is specified, the 
following applies: 

•
• The assell'bler does not align 

, constants and areas on special 
boundaries, even if the length 
specification is emitted. Note 
that the CCW instruction, however, 
always causes the alignment of the 
channel command word on a doubleword 
boundary. 

•
• The assembler does not check 
storage addresses fer boundary 
alignment. 

NOTE 1: The asserrbler always forces 
alignment if a duplication factor 
of 0 is specified in a constant 
or area without a length modifier 
(for an example, see G3N). Alignment 
occurs when either ALIGN or NOALIGN 
is set. 

Source Statements 

L 

A 

3 /AREA",-

3,CONS~ 

AREA DS F 

CONST DC F' 200' 

L 

A 

3.AREA> 
3,CONST 

AREA DS 

DS 

Object Code 

Full Word 
Boundary 

CONST 

xxxxxxxx 

000000C8 

CONST 

xxxxxxxx 

CONST DC F'200') 000000C8 
DC FL4' 200' Equiv. 

10 
\\ __ / 

(,-,\ 

I,.y 

,

rI",', .) 
l}J.1 



o 

o 

NOTE 2: When NOALIGN is s~ecified, 
the CNOP assembler instruction can 
be used to ensure the ccrrect 
alignment of data referred to ty 
the privileged instructions that 
require specific boundary alignment. 
The mnemonic operaticn codes for 
these instructions are listed in 
the figure to the right. 

Mnemonic Operation Codes Meaning 
for Privileged Operations 

LPSW Load program status word. 

1SK I nsert Storage Key. 

SSK Set Storage Key. 

LCTL Load Control registers. 

SCK Set Clock. 

ST10P Store CPU Identification 

STCTL Store Control registers. 

(Diagnose - not handled by assembler) 

Section 0: Machine Instructions 77 



D3 -- Statement Formats 

Machine instructions are assembled 
into object code according to one 
of the six formats given in the 
figure to the right. 

When you code machine instructions 
you use symbolic formats that 
correspond to the actual rrachine 
language formats. within each tasic 
format, you can also cede variations 
of the symbolic representation 
(Examples of coded rrachine 
instructions, divided into groups 
according to the six basic formats, 
are illustrated in [6 below). 

The assembler converts only the 

• 
operation code and the operand 
entries of the assembler language 
statement into object code. The 

• 
ass emtl er ass igns tc the symbol 
you code as a name entry the value 

• 
of the address of the leftmost 
byte of the assembled instruction. 
When you use this sarre symbol in 
the operand of an assembler language 
statement, the asserrbler uses this 
address value in converting the 

• 

symboli<: operand intc its object 
I code form. The length attribute 

assigned to the syrrbcl de~ends on 
the basic machine language format 
of the instruction in which the 
symbol appears as a name entry 
(for details on the length attribute 
see C4C) • 

• A remarks entry is net converted 
into object code. 

78 

Format 

RR 

RX 

RS 

SI 

s 

SS 

Example: 

Length of Object Code 
Reguired for the Assembled 
I nstruction in Bytes 

2 

4 

4 

4 

4 

6 

• (L'LABEL=4) 

Assembler Language Statement 

LABEL L 4,256(5,10) • 
Operation Register 
Code Operand 

Storage 
Operand 

1------ 4 bytes ------1 
Object Code 

(machine language) ot 
Assembled Instruction 
in Hex 

• 
RX Format 



() ~ - Mnemonic Operation Codes 

o 

Furpose 

You Rust s~ecify an c~eraticn code 
for each machine instruction 
stateRent. 'the Il'nell'cnic cperaticn 
code indicates the type of e~eraticn 
to te perfcrll'ed; fer exam~le, -A­
indicates the -addition- cperaticn. 
Appendix IV ccntains a coa.plete 
list of mnemonic operation codes 
and the fcrnats of the corres~onding 
machine instructions. 

Specificaticns 

'the general format of the machine 
instructicn c~eraticn ccde is sho_n 
in the figure to the right. 

o 'the vert nust always be present. 
It usually consists of one or two 
characters and s~ecifies the 
operation to te perforroed. 'the 
other iteRs in the c~eration code 
are not always present. 'they 
include: 

e. 'Ihe modifier which further defines 
the c~eraticn 

•• The type qualifier, which 
indicates the type of data used 
ty the instructicn in its operation, 
and 

•
• 'the fcrnat qualifier, :R cr I, 
which indicates that an :R:R or 51 
nachine instructicn fcrll'.a t is 
assemtled. 

VERB [MODIFIER] [DATA TYPE] [MACHINE FORMAT] 

Examples: 

o{ 
e{ ih 

Ir--Io-gj-ca-I'""I 

_~B~~(~·~~~~:i~1~ •• "~/ 
I binary I 

·.~.ij'>·· . .; "·,t.:.,,·:·:, 

• I character I 
E>< .... ;/;rr';!'irr;;;i.ll.llll'lllil'\);: 

........ ...-.------'"-------, 

8R 

• 

section D: Machine Instructions 79 



os - Operand Entries 

80 

Furpose 

You rrust s~ecify cne cr mcre o~erands 
in each machine instructicn staterrent 
to ~rcvide the data cr the location 
of the data upon which the machine 
operaticn is to be ~erfcrtted. The 
operand entries consist of cne or 
a.ore fields cr sUbfields de~ending 
on the format of the instruction 
teing ccded. They can s~ecify a 
register, an address, a length, 
and irrreediate data. 

You can code an operand entry either 
with synbcls cr ~ith self-defining 
terms. You can omit length fields 
or sutfields, which the assembler 
will compute for you from the otter 
operand entzies. 

General Specifications for Coding 
Operand Entries 

'Ihe rules for coding o~erand entzies 
are as fcllc~s: 

• A comma must separate operands. 

~Farentheses nust enclcse subfields. 

e A conna nust seearate subfields 
enclosed in parentheses. 

If a sutfield is cnitted because 
it is in implicit in a syrntolic 
address, the farentheses that ~ould 

~have enclosed the sutfield ~ 
te cnitted. 

LM 

MVI 

MVC 

MVC 

MVI 

MVI 

o 

L! C-"\ 4, 8, SA'{E5 

4 (12),C'F' ~ 

'e ,,/ 
TO (80), FROM • 0(80"'),240(8) 

~ II 
4 (12), C 'F' 

KEY, C'F' 

/ 
Implicit 
Address 
See D5B 



o 

If twc sutfields are enclcsed in 
parentheses and separated ty conrras, 
the fcllcwir.g a~~lieE: 

If both sub fields are orr-itted tecause 
they are in'~licit in a synbclic 

e entry, the separating comna and 
the farentheses that ~culd have 
been needed must also te omitted. 

If tbe first subfield is emitted, 

• 
the ~ that separates it frorr 
the seccnd subfield nust be ~ritten 
as well as the enclosing parentheses. 

If the seccnd subfield is omitted, 

• 
the comma that separates it frcrr 
the first subfield rrust be omitted, 
however, the enclosing parentheses 
nust te written. 

~OTE: flanks must not appear within 

• 
the c~erand field, except as part 
of a character self-defining terrr 
or in the s~ecif1caticn cf a 

• character literal. 

L 

L 

L 

L 

MVC 

MVC 

MVC 

MVC 

MVC 

"\ 2,48(4,5) ----2,FIELD 
" Implicit 

Address 

2,48(4,5) 

I 2,48(,5) 

See D5B 

Index Register 
is omitted 

'-3 2 ( ,/0') , 4 0 (10) 
I 

Length 
Specification 
is omitted 

32(8,10) ,40(10) 

32(16,6) ,48(6) 

~ 
TO(l

L
6),_F-R-O-M------__ 

Base Register 
implicit in symbolic 
address TO 

32(C·
I

··S).=CL64'A/B' 

• • 

Section D: Machine Instructions 81 



t5A -- REGISTERS 

82 

Purpose and Usage 

You can specify a register in an 
operand for use as an arithmetic 
accumulator, a base register, an 
index register, and as a general 
depository for data to which you 
wish to refer over and over. 

You must be careful when specifying 
a register whose contents have been 
affected by the execution of another 
machine instruction, the control 
program, or an IEM-supplied system 
macro instruction. 

For some machine instructions you 
are limited in which registers you 
can specify in an operand. 

Specifications 

~he expressions used to specify 
registers must have absolute values; 
in general, registers 0 through 
15 can be specified for machine 
instructions. However, the following 
restrictions on register usage 
apply: 

1. The floating-point registers 
(0, 2, 4, or 6) must be specified 

~ for floating-point instructions: 

• • o 

2. The even numbered registers (0, 
2, 4,6, 8, 10, 12, 14) must be 
specified for the following groups 
of instructions: 

a. The double-shift instructions 

b. The fullword multiply and 
divide instructions 

c. The move long and compare 
logical long instructicns. 

3. The floating-point registers 
o and 4 must be specified for the 

• 
instructions that use extended 
floating-point data: 

AXR, SXR, LRDR, MXR, MXDR, MXt. 

NOTE: The assembler checks the 
registers specified in the 
instruction statements of the above 
groups. If the specified register 
does not comply with the stated 
restrictions, the asseRbler issues 
a diagnostic message and does not 
assemtle the instruction. 

Operation Code 

Examples: L 

LE-

SLDA 

SRDA • SLDL 

SRDL 

.{ M 

D 

o{ MVCL 

CLCL 

• AXR 

;~tAREA 

liFLTAREA 

ifjl 
ji:!2 

Registers 

Both register operands 
must be even-numbered 

(~ 
\~;L,.;i) 



o 

0' 

o 

REGISTER USAGE BY HACEINE 
INSTRUCTIONS: Registers that are 
not explicitly coded in the symbolic 
assembler language representation 
of machine instructions, but are 
nevertheless used by the assembled 
machine instructions, are divided 
into two categories: 

1. ~he base registers that are 
implicit in the symbolic addresses 
specified. These implicit addresses 
are described in detail in DSB • 

• 
The registers can be identified 
by examining the object cede of 

• 
the assembled machine instruction 
or the USING instruction(s) that 
assigns base registers for the 
source module. 

• 
• 

• 
• 
• 

2. The registers that are used by 
machine instructions in their 
operations, but do not appear even 
in the asserrbled object code. They 
are as follows: 

a. For the double shift and 
fullword multiply and divide 
instructions, the odd-numbered 
register whose number is one 
greater than the even-numbered 
register specified as the first 
operand. 

b. For the Move Long and Compare 
Logical Long instructions, the 
odd-numbered registers whose 
number is one greater than the 
even numbered registers specified 
in the two operands. 

c. For the Branch on Index High 
(BXffl and the Branch on Index 

Low or Equal (EXLE) instructions~ 
if the register specified for 
the second operand is an even­
numbered register, the ~ 
higher odd-numbered register 
is used to contain the value 
to be used for coreparison. 

d. For the Translate and Test 
(TRT) instruction ,registers 
1 and 2 are also used. 

e. For the Load Multiple ~) 
and Store Multiple (STM) 
instructions, the registers that 
lie between the registers 
specified in the first two 
operands. 

REGISTER USAGE BY SYSTEM: The 
control program of the IEM System/310 
uses registers 0, 1, 13, 14, and 
15. 

Source Module 

START 0 

BALR 12,0 

USING * ,12 • 

Object Code 
in Hex 

• L 3,FIELD IS81310lclxxxi 

M 

... 
MVCL 

BXH 

4,TWO 

4,6 

Register 5 and 7 
are also used 

3,4,ADRESS 

Isc 14 1 0 I C I xxx I 

18613141clxxxi 

TRT ARGUMENT(10),TABLE 

LM 19813171clxxxi 

Section D:Machine Instructions 83 



D5B -- ADDRESSES 

84 

purpose and Definition 

You can code a symbol in the name 
field of a machine instruction 
statement to represent the address 
of that instruction. You can then 
refer to the symbol in the operands 
of other machine instruction 
statements. The object code for 
the IBM System/370 requires that 
all addresses be assembled in a 
numeric tase-displacement format. 
This format allows you to specify 
addresses that are relocatable or 
absolute. 

You must not confuse the concept 
of relocatability with the actual 
addresses that are coded as 
relocatable, nor with the format 
of the addresses that are assembled. 

DEFINING SY~BOLIC ADDRESSES: You 
define symbols to represent either 
relocatable or absolute addresses. 
You can define relocatable addresses 
in two ways: 

• By us ing a symbol as the label in 
the name field of an assembler 
language statement er 

• 
By equa ~ing a symbol to a relocatatle 
express~on. 

You can define absolute addresses 

• 
(or values) by equating a symbol 
to an absolute expression. 

REFERRING TC ADDRESSES: You can 
refer to relocatable and absolute 
addresses in the operands of machine 
instruction statements. Such address 
references are also called addresses 
in this manual. The two ways of 
coding addresses are: 

~ Implicitly: that is, in a form 
that the assembler must first convert 
into an explicit base-displacement 
form before it can be assembled 
into object cede. 

_ Explici tly: that is, in a form 
that can be directly assembled into 
object code. 

• • • 

• 

Symbolic 
Addresses 
(Defined) 

DC 

EQU 

L 

L 

L 

B 

EQU 

LA 

LA 

3F'37Q' 

II •• 

Address 
References 

3,_jt 
4,hll •• 

4,~/_.~Sj­
~.~ 

5,11:.]1" 

5 ,.illl.'-::' 5,_-

Relocatable 

Addresses 

Absolute 
Addresses 



o 

o 

Relocatability of Addresses 

Addresses in the base-displacement 
form are relocatable, because: 

• Each relocatable address is 

I assembled as a displacement from 
a base address and a base register. 

• 
• The base register contains the 
tase address. 

• If the otject module assembled 
from your source module is relocated, 
only the contents of the base 
register need reflect this 
relocation. This means that the 
location in virtual storage of your 
base has changed and that your base 
register must contain this new base 
address. 

• Your addresses have been assem~led 
as relative to the base address; 
therefore, the sum of the 
displacement and the contents of 
the base register will ~oint to 
the correct address after relocation. 

NOTE: Absolute addresses are also 
assembled in the base-displacement 
form, but always indicate a fixed 
location in virtual storage. This 

O means that the contents of the base 
· register must always be a fixed 

absolute address value regardless 
of relocation. 

Base 

llo 
it) 
(.) 

X 
II ... 
c:: 

~ 
~ 

Q. 

5 

... 
c:: 
Q) 

E 
B 
(U 

C. 
~ 

i5 

TO 

Source Module 

START 0 
BALR 
USING 

DS CLBO 

Object Code 
in Hex 

I Displacement I 

FROM DS CL240 
Register 0 as a base 
register is always 
considered to contain 
the absolute address 
location 0 

LA 

END 

Section D: Machine Instructions' B5 



Page of GC33-4010-4 
Revised July 31, 1976 
By TNL: GN33-82il7 

Specifications 

~ACHINE OR OBJECT CO~E FORMAT: All addresses asserrbled 
into the object cede of the IBM System/370 machine 
instructions have the format given in the figure telow. 

Format 

R5 

5I 

55 

RX 

5 

Coded or Symbolic 
Representation of 
Explicit Addresses 

02(B2) 

01(Bl) 

01 (,Bl) ,02 (B2) 

02(X2,B2) 

01 (Bl1 

Rl and R3 represent registers 
12 represents an immediate value 
L represents a length value 

8 bits 4 bits 4 bits 
Operation 
Code 

'op ccio-e: . R; -:- R3 -
.... _------'. _.-

Object Code 
Representation 
of Addresses 

4 bits 12 bits 
Base Displacement 
Reg-
ister 

B2 

OP CODE: . --i£ -- -I Bl I 01 ____ e. ____ •• __ 

~~ ~Q~~C -. ~ ~ ~ _. ~ ~ 
02 

The addresses represented have a value which is the sum 
of: 

O· A displacement and 

•• The contents of a base register. 

NOTE: In RX instructions, the address represented has 

4 bits I 
Base 
Reg-

ister 

a value which is the sum of a displacement, the ccntents 
~of a base register, and the contents of an index register. 

86 

o 
Addresses 

12 bits 
Displacement 

~"i 
V 



o 

o 

o 

Implicit Address 

An implicit address is specified 

I 
by coding one expression. The 
expression can be relocatable or 
absolute. The assembler converts 

•
all implicit addresses into their 
tase-displacement form before it 
assembles them into object code. 
The assembler converts im~licit 
addresses into explicit addresses 
only if a USING instruction"has 
been specified. The USING 
instruction assigns both a base 
address, from which the assembler 
computes displacements, and a base 
register, to contain the base 
address. The base register must 
be loaded with the correct base 
address at execution time. For 
details on how the USING instruction 
is used when establishing 
addressability, thus allowing 
implicit references, see F1. 

Explicit Address 

AREA 

Source Module 

START 
BALR 
USING 

L 

OS 

LA 

END 

o 
12,0 
*,12 

~"" ""Ee! 3,AREA 

F 

~ .... 
4,1000 

Object Code 
in Hex 

:~;;,:,:::;>:). 

158 I 3 I 0 I c I xxx I 

/\ ~ 
Base Register/ DisPlacement} 

• 14114101013E81 

r---",,--I -.."\ ~ 
Always used as 
base register for 
absolute address Displacement 
between 0 and 
4095 

An explicit address is specified 
by coding two absolute expressions 
as follows: Source Statement Object Code 

in Hex 

The first is an absolute expression 
• for the displacement, whose value 

must lie in the range 0 through 
4095 (4095 is the maximum value 
that can be represented by the 12 
binary bits available for the 
displacement in the object code). 

The second (enclosed in parentheses) 

• 

is an absol ute expression for the 
base register, whose value must 
lie in the range 0 through 15. 

If the base register contains a 

LA 

value that changes when the program L 
is relocated, the assembled address 
is relocatatle. If the base register 
contains a fixed absolute value 
that is unaffected by program 
relocation, the assembled address 
is a1:solute. 

NOTES (for implicit and explicit 
addresses) : 
1. An explicit base register 
designation must not acconpany an 
implicit address. 
2. However, in RX instructions an 

• index register can be coded with 
an implicit address as well as with 
an explicit address. 
3. When two addresses are required, 
one address can be coded as an 

I explicit address and the ether as 
an implicit address. 

vc 

4,X'400' (,10) • 

~~ 
0(80,10},FIELD 
"~ 

1~~}poolC I x';';1 
.. ' .. ~<:( 

Section 0: Machine Instructio~s 87 



D5C -- LENGTHS 

88 

Purpose 

You can specify the length field in an SS~type instruction. 
This allows you to indicate explicitly the number of bytes 
of data at a virtual storage location that is to be used 
by the instruction. However, you can omit the length 
specification, because the assembler computes the numter 
of bytes of data to be used from the expression that 
represents the address of the data. 

Specifications 

IMPLICIT LENGTH: When a length subfield is omitted from 
an Ss-type machine instruction an implicit length is 
assembled into the object code of the instruction. The 
implicit length is either of the following: 

1. For an iroplicit address (see D5B above), it is the 

• 
length attribute of the first or only term in the expression 
representing the implicit address. 

2. For an explicit address (see D5B above), it is the 

• 
length attribute of the first or only term in the expression 
that represents the displacement. 

For details on the length attribute of symbols and other 
terms see C4C. 

EXPLICIT LENGTH: When a length subfield is specified in 

•
an SS-type rea chine instruction, the explicit length thus 
defined always overrides the implicit length. . 

NOTES: 

O 1. An implicit or explicit length is the effective length. 
I The length value assembled is always one less than the 

• 
effective length. If an assembled length value of 0 is 
desired, an explicit length of 0 or 1 can be specified. 

2. In the SS instructicns requiring one length value, the 
allowable range for explicit lengths is 0 through 256. 
In the SS instructions requiring two length values, the 
allowable range for explicit lengths is 0 through 16. 

/~ " 

~"J~/\ 



o Lengths 

Assembler Length Attribute Object Code 
Language of term (symbols) in Hex 
Statement 

L- Length Value 

, Add .... 

Implicit Lengths L TO FROM 

MVe TO,FROM L'TO = 80 I D214F I xxxx I xXXX'] 

0 
L 

o ID214F)xxxxlxxxxl MVC TO+SO,FROM L'TO = 80 

L'AREA 8 
L1 L2 

AP A.REA,TWO = 
L'TWO = ,. IFAI7131 xxxxi xxxxi 

0 \ 
L 

MVC 0 ( ,lO) , SO (10) ;1 I D21 00 I AOOO IA0501 e: L 
L 

MVC FROM-TO(,lO) ,SO(10) L'FROM =240 ID21 EF IAOAO IA050J 
I ~ 

Explicit Lengths • Address 
TO FROM 

MVC TO (160) , FROM L'TO = SO I D219F I xxx x I xxx'il 

• L 

MVC o (8.0 , 1 0) , S 0 ( 1 0 ) 1 I D214FIAOOOIA0501 • I + 
CLC 0(1,10) ,256 (10) 1 ID5100lAOOOIAlOOI 

• 0(b,10) ,256(10) 
... 

CLC 1 I D5100lAOOOIAlOOI 

TO DS CLSO 
FROM DS CL240 o AREA DS PLS 
TWO DC PL4'2' 

section D: Machine Instructions S9 



DSD -- I~MEDIATE CATA 

90 

Purpose 

In addition to addresses, registers, and lengths, some 
machine instruction operands require immediate data. Such 
data is assembled directly into the object code of the 
machine instructions. You use immediate data to specify 
the bit patterns for masks or other absolute values you 
need. 

You should be careful to specify immediate data only where 
it is required. Co not confuse it with address references 
to constants and areas cr with any literals you specify 
as the operands of machine instruction (for a compariscn 
between constants, literals, and immediate data, see C5). 

Specifications 

Immediate data must be specified ~s absolute expressions 
whose range of values depends on the machine instructicn 
for which the data is required. The immediate data is o assembled into its 4 -bi t or ~ tinary representaticn • 
according to the figure on the opposite page. 



o 
Immed. Data 

Machine Instructions Range of Values Examples Object Code 
in which immediate allowed for in Hex 
data is required immediate data 
(Op codes in 

Appendix IV) 

SRP (SS) o through 9 SRP A'B'~ 
IFOl7131xxxxlxxxxi 

Z ~ --;;:--e 
/lenQth oj Addresses 
Field A 

o ~. " All BCR (RR) o through 15 BCR 107 18 13 1 All BC (RX) o through 15 
BC 11,AAA 1471BI Olxxxxi 

I , -AAA 
Address 

10 · ICM (RS) o through 15 STCM 3,~BBB IBEI31Flxxxxi 
STCM ---BBB CLM Address 

Address • SLOT -NI (SI) o through 255 CLI SLOT,C'A' 195 1 C 11 xxxx I 
CLI -. XI 
MVI TM KEY,"?F' 19l17Flxxxxi 

OI ----TM Address 
ROD KEY 
WRO 

SVC (RR) o through 255 SVC 3;28 • 1 OAI80 I 

o 
Section D: Machine Instructions 91 



D6 - Examples of Coded Machine Instructions 

o 

The examples in this sutsection 
are grou~ed according to rrachine 
instruction format. They illustrate 
the various ways in which you can 
code the operands of machine 
instructions. Both syrrbolic and 
numeric representation of fields 
and subfields are shown in the 
examples. You must therefore assurre 
that all syrebcls used are defined 
elsewhere in the same source module. 

!he otject code assembled from at 
least one coded statement per group 
is also included. A ccmplete summary 
of machine instruction formats with 
the ceded assembler language variants 
can be found in Appendix III and 
IV. 

RR Format 

You use the instructions with the 
RR format mainly to move data tetween 
registers. !he oFerand fields must 
th us designate registers, with the 
following exceptions: 

In BCF branching instructions when 
a 4-tit branching rrask reFlaces 
the first register specification 

In SVC instructions, where an 

• 
immediate value (between 0 and 255) 
replaces both registers • 

• 
NO'IE: Syrrbols used in RR 
instruct~ons are assumed to be 
equated tc absolute values tetween 
o and 15. 

92 

Name Operation Operand 

ALPHAI LR 1,2 

ALPHA2 LR INDEX,REG2 

¥ 
GAMMA 1 BCR 0 8 ,12 

DELTA 1 SVC 200. 

DELTA2 SVC TEli 

Assembly Examples: 

Assembler Language Statement Object Code of 
Machine Instruction 

in Hex 

ALPHAI LR , 

RR Format 

2 bytes 

C l 



0'\ 
1 .,r 

o 

o 

RX Format 

You use the instructions with the 
RX format mainly to move data bet~een 
a register and virtual storage. 
By adjusting the contents of the 
index register in the RX-instructions 
you can change the location in 
virtual storage being addressed. 
The operand fields must therefore 
designate registers, including index 
registers, and virtual storage 
addresses, with the following 
exception: 

• 
In Be branching instructicns a 4-
tit tranching roask, with a value 
between 0 and 15, replaces the first 
register specification. 

NOTES: 

1. Symbols used tc represent 
• registers are assumed to be equated 

to atsolute values between 0 and 
15. 

• 
2. Symbols used to rel=resent implicit 
addresses can be either re10catatle 
or atsolute. 

3. Symbols used to represent 
~ displacements in explicit addresses 

are assumed to be equated to abso1ute 
values between 0 and 4095. 

Name Operation 

ALPHA1 L 

ALPHA2 L 

BETA1 L 

BETA2 L 

GAMMA 1 L 

GAMMA2 L 

DELTA1 L 

LAMDA1 BC 

LAMDA2 BC 

Assembly Examples: 

Operand 

1,200(4,10) 

REG1,200(INDEX,BASE) 

"'.~ 2,200(,10) 

4, 

• ' ....•. ,. ADDRESS 

Literal Specification 
See C5 

Assembler Language Statement Object Code of 
Machine Instructio 

in Hex 

ALPHA1 ~. 1'fOO(4,10' 

5 8 o C 8 

RX Format 
Operation Registers Displacement 

Code R 1 I ~ I Base from Base 

15 81 2 14 Ixlx X X I 

GAMMA 1 

Section D: Machine Instructions 93 



94 

RS Format 

You use the instructions with the 
RS format mainly to move data between 
one or more registers and virtual 
storage or to compare data in one 
or more registers (see the BXH and 
BXLE operations in Appendix IV). 

In the Insert Characters under Mask 
(ICM) and the Store Characters Under 

O 
f.'!ask (STCM) instructions, when a 
4-hit mask, with a value between 
o and 15, replaces the second 
register specification. 

NOTES: 

1. Symbols used to re~resent 
• registers are assumed to be equated 

to atsolute values between 0 and 
15 • 

• 
2. Symbols used to re~resent imElicit 
addresses can be either relocatatle 
or absolute. 

3. Symbols used to represent 
• displacements in explicit addresses 

are assumed to be equated to absolute 
values between 0 and 4095. 

Name Operation 

ALPHAl LM 

ALPHA2 LM 

BETA1 STM 

BETA2 STM 

GAMMA 1 SLL 

GAMMA 2 SLL 

DELTA1 ICM 

DELTA2 ICM 

Assembly Examples: 

Assembler Language Statement 

ALPHA1 

RS Format 

DELTAl 

Operand 

4,6,20(12) 

REG4,REG6,20(BASE) 
~.~ 

4,6,AREA. 

4,6,DISPL(BASE) • 2,15 

2,O(1S} 

3, 1024(10} 

REG3 ,MASK, IMPLICIT. 

0 

Object Code of 

Machine Instruction 
In Hex 

1 4 

Displacement 
from Base 

(C! 

o 



o 

o 

o 

SI Format 

You use the instructions with the 
SI format mainly to move immediate 
data into virtual stcrage. The 
operand fields must therefore 
designate inmediate data and virtual 
storage addresses, with the following 
exception: 

o An immediate field is not needed 
in the statements whose o~eration 
codes are: LPSW, SSM, TS, TeE, and 
TIO. 

NOTES: 

1. Symbols used to re~resent 
• immediate data are assumed to be 

equated to absolute values between 
o and 255. 

• 
2. Symbols used to represent implicit 
addresses can be either relocatable 
or absolute. 

3. Symbols used to reFresent 8 displacements in explicit addresses 
are assumed to be equated to absolute 
values between 0 and 4095. 

Name Operation 

ALPHAl CLI 

ALPHA 2 CLI 

BETAl CLI 

BETA2 CLI 

o [GAMMAI LPSW 

GAMMA 2 LPSW 

Assembly Examples: 

Assembler Language Statement 

ALPHAl 

SI Format 

Page of GC33-4010-O 
Revised September 29, 1972 
By TNL GN33-8148 

Operand 

40(9) ,X'40' 

8 DISPL40 (NINE) ' •• ;. 

."'"'-IMPLICIT ,,.....-. 

~EY,C'E' 

o (9) 

NEWSTATE ......... 

Object Code of 
Machine Instruction 

In Hex 

Section 0: Machine Instructions 95 



Page of GC33-4010-O 
Revlsed September 29, 1972 
By TNt GN33-8148 

96 

S Format 

You use the instructions with the 
S format to perform I/O and other 
system operations and not to move 
data in virtual storage. 

The operation codes for these 
instructions are given in the figure 
to the right. They are assembled 
into two bytes. 

Mnemonic 
Operation 
Codes 

SIO 

SIOF 

HIO 

HOV 

STIOP 

STIOC 

SCK 

STCK 

SCKC 

STCKC 

SPT 

STPT 

PTLB 

RR8 

,0,· 
(4..:_c;J 

Assembled Description 
Operation 
Code in 
Hex 

9COO Start I/O 

OC01 Start I/O fast 
release 

9EOO Halt I/O 

9EOl Halt Device 

B202 Store CPU 10 

8203 Store Channel 
10 

B204 Set Clock 

8205 Store Clock 

B206 Set Clock Comparator 

B207 Store Clock Comparator 

B208 Set CPU Timer 
/'~~\ 

B209 Store CPU Timer ~:l 
B200 Purge Translation 

Lookaside Buffer 

8213 Reset Reference Bit 



o 55 Fonnat 

You use the instructions with the 
55 format mainly to move data between 
two virtual storage locations. 
The operand fields and subfields 
must therefore designate virtual 
storage addresses and the ex~licit 
data lengths you wish to include. 
However, note the following 
exception: 

O 
In the Shift and Round r;ecimal (SRP) 
instruction a 4-bit irrmediate data 
field, with a value between 0 and 
9, is specified as a third operand. 

NOTES: 

• 
1. Symbols used to represent base 
registers in explicit addresses 
are assumed to be equated to absolute 
values between 0 and 15. 

• 
2. Symbols used to represent explicit 
lengths are assumed to be equated 
to absolute values between 0 and 
256 for SS instructions with one 
length specification and between 
o and 16 for S5 instructicns with 4:) two length specifications. 

o 

e 3. Symbols used to re~resent imFlici t 
· addresses can be either relocata1:le 

or a1:solute. 

4. Symbols used to represent 
• displacements in explicit addresses 

are assumed to be equated to absolute 
values between 0 and 4095. 

Name Operation Operand 

ALPHAI AP 40(9,8) ,30(6,7) 

ALPHA2 AP 40(NINE,BASE8),30(SIX,BASE7) 

".:><j~ 
ALPHA3 AP FIELDl,FIELD2 e -- . -ALPHA4 AP AREA ( 9) , AREA2 ( 6 ) 

ALPHA5 AP DISP40(,8) ,DISP30(,7) 

~.~ 
BETAI MVC 0(80,8) ,0(7) 

BETA2 MVC DISPO(,8) ,DISPO(7) 

BETA3 MVC TO,FROM 

SRP FIELDl,X'8' ,,0 "e/ ' 
Assembly Examples: 

Assembler Language Statement 

ALPHAI AP 40(9,8) ,30(6,7) 

Object Code of 
Machine Instruction 

in Hex 

~ 
Lengths 

SS Format Operdeation L 1 L2 Sa
1
• Dispfacement Base Displacement 

from Ba<se 1 2 from Base 2 
L 

BETAI MVC ° (8 0 , 8) , 0 ( 7 ) 

Section D: Machine Instructions 97 



(, ~\ 
, i 

-... ; 

o ;;;,-



o 

o 

o 

Part III: Functions of Assembler Instructions 

SECTION E: PROGRAM SECTIONING 

SECTION F: ADDRESSING 

SECTION G: SYMBOL AND DATA DEFINITION 

SECTION H: CONTROLLING THE ASSEMBLER PROGRAM 

99 



o 
This page left blank intentionally. 



o 

o 

o 

Section E: Program Sectioning 

This section explains how you can 
subdivide a large prograre into 
smaller parts that are easier to 
understand and maintain. It also 
explains how you can divide these 
smaller parts into convenient 
sections: for example, one section 
to contain your executable 
instructions and another section 
to contain your data ccnstants and 
areas. 

You should consider two different 
subdivisions when writing an 
assemtler language prograrr: 

1. The source module 

2. The control section. 

You can divide a program into two 

• 
or more source modules. Each source 
module is assembled into a separate 

• object module. The object modules 
can then te combined into load 

• 
modules to form an executable 
program. 

You can also divide a source module 

• 
into two or more control sections. 
Each control section is assembled 
as part of an object module. By 
writing the proper linkage edit 

• 
control stateIl":ents, you can select 
a complete object module or any • 
individual control section of the 
object module to be linkage edited 
and later loaded as an executable 
program. 

SIZE OF PROGRAM PARTS: If a source 
module becomes so large that its 
logic is not easily comprehensible, 
break it up into smaller modules. 

Unless you have special programming 
reasons, you should write each 
control section so that the resulting 
object code is not larger than 4096 
bytes. This is the largest number 
of bytes that can be ccvered by 
one base register (for the assignment 
of base registers to control 
sections, see F1A) • 

COMMUNICATION BETWEEN PROGRAM PARTS: 
You must be able to communicate 
between the. parts of your program: 
that is, be able to refe~ to data 
in a different part or be able to 
branch to another part. 

Source 
Program 

Assembly 
Time 

• • Source Object 
Modules Modules 

r:J¢ A 

D¢ B 

DC 
END ¢ 

Assembly 
Time 

Source Control 
Modules Sections 

Object 
Modules 

A 

B 

Source 
Program 

c 

1 

2 

3 

4 

5 

D 

A 
1 • 02 

3 

4 

0 

r: 
oJ 

6 

Linkage 
Edit 
Time 

Program 
Fetch 
Time 

• Executable 
Program 

Program 
Fetch 
Time 

8 1 

~ 
2 

Executable 

program 

.~ 

Section E: Program Sectioning 101 



To communicate between two or more 
source modules, yeu must symbelically 
link them together; symbolic linkage 
is described in F2. 

To communicate between two or more 
control sectiens within a source 
module, you must establish the 
address ability of each control 
section; establishing addressability 
is descrited in F1. 

El - The Source Module 

K2:{::·' 

A source module is cem~osed of 
source statements in the assembler 
language. You can include these 
statements in the source module 
in two ways: 

1. You write them on a coding form 
~ and then enter them as input, for 

example, through a terminal or, 
using punched cards, through a card 
reader. 

2. You specify one er more COpy 
instructions areong the source 
statements being entered. When 
the assembler encounters a COpy 
instruction, it replaces the COpy 
instruction with a ~redetermined 

• 
set of source statements from a 
library. These statements then 
become a part of the source module. 

The Beginning ofa Seurce Module 

'Ihe first statement of a source 
module can be any assembler language 
statement, except MEXIT and MENC, 
that is described in this manual. 
You can initiate the first control 
section of a source module by using 
the S'IART instruction. However, 
ybu can or roust write some source 
statements before the beginning 
of the first control section (for 
a list of these statements see E2C). 

The End of a Source Module 

',; .• ' .. , ........... . /'.d'.<·. '.' ..... ; -W .. ' .The .. ENJ)··.. ins~~iQl) usllallymat;k$ 
•• '~l'l~.Sen,d. of·f$~~e.Ulod~;~·; ..,: 
;,.' yo1:li~~:i~~"· ..• ~J:a,·l. ....•.. ;EN~., .....•.............•.•••....•..•........... ," 

102 

1n$itX;~~~~~. ..'111eassemblersto~ 
assemJ;llillf-..$U,'tt processes.tbe;· 
firSc1;~C,. i~.tru.c:tiOIl.,I~ no E~ 
inst.rUt';tion is found, the assembler 
"il1'genet:ate .' one .. ,; 

Punched cards 

or 

Source Module 

START 

END 

END 

The 
Assembler 
Program 

Source Mod. 

Library 

processed as comments 
statements if the 
LI BMAC option is 
set (see J8A) 

Q 



o 

o 

o 

tionalaasemblyprocessinq 
l.~~.1D.1ne ,whicbof···· several 
~:t.t'e4 END ina,tructionsis to be 

t.to~l ... sEmtbly 
_!~ .... ;~J ..• ,.·~~.ic~~Ded inS.ct1onL. 

E1A -- iHE COFY INSi~UCTICN 

Purpose 

I 
The CCPY instruction allows you 

. 
to copy eredefined source statements 
from a l1brary and include them 
in a source module. Yeu thereby 
avoid: 

1. Writing the same, often-used 
sequence of code over and over 

2. Keypunching and handling the 
punched cards for that code. 

Source Statement 

START 

COpy EQUATES + 

END 

First Input 
to Assembler 
Program 

Page of GC33-4010-4 
Revised July 31. 1976 
By TNL: GN33-8207 

COpy 

Source Module 

END 

Effective 
Input to 
Assembler 
Program 

Section.E: Program Sectioning 103 



Specifications 

The format of the COpy instruction 
statement is shown in the figure 
to the right. 

Tne symbol in the operand field 
must identify a part of a library 
called: 

A member of a partitioned data 
set 

'~!;.~;;r'; :::.,t"~Qltf~;;"bi;'!~~JCJq;tc~ Sq t~_nt 
'~*~,aq·<t 

This member (or beok) contains the 
coded source statements to be copied. 

The source coding that is copied 
into a source module: 

~. Is inserted immediately after 
the CCPY instruction 

• Is inserted and precessed 

• 
according to the standard instruction 
statement coding forrrat (described 
in B1~ , even if an ICTL instruction 
has teen specified 

• Must not contain either an ICTL 
or ISEQ instruction 

•• Can contain a COpy instruction. 
Up to 5 levels of nesting of the 
COpy instruction are allowed. 

.. Op,to31f!Vf!1,$ ()!nes~in9 are 
M~~\Il:t4.~ 

O. Can contain macro definitions 
(see Section J) • 

104 

If a source macro definition is 
copied into the beginning of a 
source module, both the MACRO and 
MEND statements that delimit the 
definition must be contained in 
the same level of copied code. 

NOTES: 

1. The COpy instruction can also 
be used to copy statements into 
source macro definitions (see J5C). 

2. The rules that govern the 
occurrence of assembler language 
statements in a source module 
also govern the statements copied 
into the source module. 

Name ~on ~ 

Blank COpy 

Source Module • begin 
1 10 

OPEN 

o 

START 

COpy 

BOt; 
EQp. 

One ordinary 
Symbol 

continue 
16 

end 
71 Columns 

COpy CODE2 

END 

Library 
(Partitioned 
data set) 



o 

o 

E1B -- THE ENe INSTRUC~ION 

o 

PUrpose 

You use the END instruction to mark 
the end of a source module. It 
indicates to the asserrbler where 
to stop assembly processing. You 
can also supply an address in the • 
operand field to which control can 
be passed when your program is 
loaded. This is usually the address 
of the first executable instruction 
in a source module. 

Specifications 

The format of the EN!: instru.ction 
statement is shown in the figure 
to the right. 

If specified, the operand entry 
can be generated by substituticn 
into variable symbols. However, 
after substitution, that is, at 
assembly time: 

1. It must be a relocatable 
expression representing an address 
in the source module delimited 
ty the END instructicn, or 

~ 2. If it contains an external symbol, 
the external symbol must be the 
only term in the expressicn, or 

• the remaining terms in the expression 
must reduce to zero. 

3. It must not be a literal. 

Name 

A sequence 
symbol or 
blank 

Operation 

END 

Source Module A 

A START 
ENTERA BALR 

USING 
ENTRY 

END 

o 
12,0 
*,12 

ENTERA 

0 
ENTERA 

Source Module B 

B START 0 
BALR 11,0 
USING *,11 
EXTRN ENTERA 

• 

Operand 

A relocatable 
expression or 
blank 

• END ENTERA + (Subexpression) 

Sectiun E: Prog~arn Sectioning 105 



This page left blank intentionally. 

I~ 
,', J 

'L,..:I 

.•~",\ , J 
'" ~ . 

.,. 



o 

o 

o 

E2 - General Information About Control Sections 

A control section is the smallest subdivision of a prcgram 
that can be relocated as a unit. The assembled control., 
sections contain the object code for machine instructicns, 
data constants, and areas. 

Contrl Sect. 

Section E: Progr.am Sectioning 107 



E2A -- AT DIFFERENT PROCESSING TIMES 

Consider the concept of a control section at different 
processing times. 

ttAT CODING TIME: You create a control section when you 
write the instructions it contains. In addition, you 
establish the addressability of each control section within 
the source module, and provide any symbolic linkages between 
control sections that lie in different source modules. 
You also write the linkage editor control statements to 
combine the desired control sections into a load «odule, 
and to provide an entry point address for the beginning 
of program execution. 

e AT ASSEMBLY TIME: The assembler translates the source 
statements in the control section into object code. Each 
source module is assembled into one object module. The 
entire object module and each of the control sections it 
contains is relocatable • 

• 
AT LINKAGE EDITING TIME: According to linkage editor centrol 
statements, the linkage editor combines the object code 
of one or more control sections into one load module. 
It also calculates the linkage addresses necessary for 
communication between two or more control sections frcrr 
different object modules. In addition, it calculates the 
space needed to accommodate external dummy sections (see 
E4) • 

e AT PROGRAM FETCH TIME: The control program loads the load 
module into virtual storage. All the relocataEle addresses 
are converted to fixed locations in storage • 

• 
AT EXECUTION TIME: The control program passes control 
to the load module now in virtual storage and your program 
is executed. 

108 

NOTE: You can specify the relocatacle address of the 
starting point for program execution in a linkage editor 
control statement or in the operand field of an END 
statement. 

o 

(-", 

V 



·0 

o 

CODING 
TIME 

Source 
Modules 

ASSEMBLY 
TIME 

~III 

Object 
Modules 

LINKAGE 
EDIT 
TIME 

Load 
Modules 

PROGRAM 
FETCH 
TIME 

EXECUTION 
TIME 

X'23000' 

First 
Program 

X'40000' 

Second 
Program 

Section E: Program Sectioning 109 



E2B -- TYPES 

Executable Contrel Sections 

An executable control section is 
one you initiate by using the START 
or CSECT instructions and is 

• assembled into object code. At 
execution time, an executable control 
section contains the binary data 
assembled from your coded 
instructions and constants and is 
therefore executable. 

An executable control section can 
also be initiated as ·private code-, 
without using the S'IART or CSECT 
instruction (see E2E) • 

Reference Control Sections 

A reference control section is one 
you initiate by using the OSEC'!, 
COM, orllfl instruction and is not 
assembled into object code. You 

• 
can use a reference control section 
either to reserve storage areas 
or to describe data to which you 
can refer from executable centrol 
sections. These reference control 
sections are considered te be empty 

• 
at assembly time, and the actual 

, binary data to which they refer 
is not entered until execution time. 

110 

Assembly 
Time 

Source Module Object Module 

EXEC START EXEC 

REFER COM 

.----1. 1 
I , 
I I 

Lr--_' 
• Empty of data 

Execution 
Time 

Load Module 

o 



c:) E2C -- LOCATION COUNTER SETTING 

o 

o 

The assembler maintains a separate 
location counter for each control 
section. The location counter 
setting for each centrol section 
starts at O. The location values 
assigned to the instructicns and 
other data in a control section 
are therefore relative to the 
location counter setting at the 
beginning of that centrol section. 

•
However, for executable control 
sections, the location values that 

• 
appear in the listings do not restart 
~ for each subsequent executable 
control section. They carryon 
from the end of the previous contrel 
section. Your executable control 
sections are usually loaded into 
storage in the order you write them. 
You can therefore match the source 
statements and object code produced 
from them with the contents of a 
dump of your program. 

'~':.til~ "t:ontxol."'MetlO1i~j""':: 
•.... ' ............ ' 'VaJ.~~that .pear 

~;~.;.l~~1n", .• J"'~~/.~r~ .fJ:OJl 
i.~_.~ cotttrol.' .... ,. .' 
~~~.~'~r ..•.. ~·STA,R-.r •. l~.',"'~tio.n 
:·.;.;i~;,;."7~·:t~·q~r$J)<l·~O·

• For reference control sections,
the location values that appear

8 in the listings always start from
• .2,.

Listed Location
in hex

Source Mldule

section E: Program Sectioning 111

•
•

You can continue a control ~ection
that has been discontinued by ancther
control section and thereby
intersperse code sequences from
different control sections. Note
that the location values that appear
in the listings for a control
section, divided into segments,
follow from the end of one segment
to the beginning of the subsequent
segment.

••... ";:";'>:i/. ,,

.::::~~!£~1~~t~?i
as~ig~<3' to ·~,e·.· ... p~~~~d!n9+<;:on~Q+···
sect ioit~, ' , ",

112

Location
in Hex

Source Module

;,1"'_···"';'1

'~

o

o

o

E2D -- FIRST CONTROL SECTION -
SPECIFICATIONS

The specifications below apply to
the first executable centrol section,
and not to a reference control
section.

INSTRUCTIONS THAT ESTAELISH THE
FIRST CONTROL SECTION: Any
instruction that affects the location
counter or uses its current value
estatlishes the beginning of the
first executable control section.
The instructions that establish
the first control section are listed
in the figure to the right.

O
The statements copied into a source
module by a COpy instruction, if
specified, determine whether or
not it will initiate the first
control section.

fi+ ;':0$ NO'IE: The [SECT, COM, andJ:XD
f,lnty instructions initiate reference

control sections and de net establish
the first executable control section.

WHAT MUST COME EEFORE THE FIRST
CONTROL SEC'IION: The following
instructions or groups of
instructions, if s~ecified, must
appear before the first control
section, as shown in the figure
to the right.

• The ICTL instructien, which,
if specified, must be the first
statement in a source module

O . Any source macro definitions
(see J1 B)

• The COpy instructien, if the
code to be copied contains only
OPSYN instructions or com~lete macro
definitions.

Any Machine Instruction

The Following Assembler Instructions:

-

CCW
CNOP

• (COPY)
CSECT
CXD
DC
DROP
DS
END
EQU
LTORG
ORG
START
USING

\ /
These instructions are always
considered a part of the control
section in which they appear.

Source Module

ICTL

OPSYN

MACRO
MACl

MEND

MACRO
MAC 2

MEND

MACRO
MAC 3

MEND

First Contrl Sect.

These instructions or
macro definitions belong
to a Source Module, but
must appear before the
first control section.

Section E: Program Sectioning 113

wHA~ CAN CF~ICNALLY CO~E EEFORE
THE FIRST CON~ROL SEC~ION: ~he
instructions or groups of
instructions that can c~tionally
be specified before the first control
section are shown in the figure
to the right •

•
Any instructions copied by a COpy
instruction or generated by the

•
process ing of a macro instruction
before the first control section
must belong exclusively to one of
the groups of instructions shown
in the figure to the right.

NOTES:

1. The EJECT, ISEQ, PRINT, SPACE,
or TI~LE instructions and comments

• statements must follow the ICTL
instruction, if specified. However,

•
they can precede or appear between

· source macro definitions. The OPSYN
instruction must (1) follow the
ICTL instruction, if specified,
and (2) precede any source macro
definition specified.

2. All the other instructions of
the assembler language must follow
any source macro definitions
specified.

3. All the instructions or groups
of instructions listed in the figure

•
to the right can also appear as
part of a control section.

114

Source Module

COpy
DXD
EJECT
ENTRY
EXTRN
,ISEQ
PRINT
PUNCH
REPRO
SPACE
TITLE
WXTRN

Comments Statements I
Common Control Sections I
Dummy Control Sections I
External Dummy Control Sections I
Any Conditional Assembly Instruct.§ii]

&E

These instruc­
tions or groups
of instructions
belong to a
Source
Module, but
are not con­
sidered as part
of an exe­
cutable
control

c

o

o

o

E2E -- THE UNNAMED CONTROL SECTION

The unnamed control section is an
executable control section that
can be initiated in one of the
following two ways:

o 1. By coding a START or CSECT
instruction without a name entry

2. By coding any instruction, othe~
than the START or CSECT instruction,

O that initiates the first executable
control section.

The unnamed control section is
sometimes referred te as private
code.

All control sections ought to be
provided with names so that they
can be referred to symbolically:

1. Within a source module

2. In EXTRN and WXTRN instructions
and linkage editor centrol statements
for linkage between source modules.

NOTE: Unnamed common control sections
or dummy control sections can be
defined if the name entry is omitted
from a COM or DSECT instruction.

COannon control sections
COM instruction)

•••••• td.····.a-opy ·controlsections
theD$EC'l'···instruction)

E2F -- LITERAL POOLS IN CONTROL
SECTIONS

Literals, collected into pools by
the assembler, are asse~bled as

O pa rt of the e xecutabl e control
section to which the pools belong.
If a LTORG instruction is specified
at the end of each control sectien,
the literals specified for that
section will be assembled into the

OpoOI starting at the LTORG
instruction. If no LTORG instruction
is specified, a literal pool
containing all the literals used
in the entire source module is
assembled at the end of the first
control section. This literal pool

•
appears in the listings after the
END instruction.

NOTE: If any control section is
divided into segments, a LTORG
instruction should be specified
at the end of each segrrent to create
a separate literal pool for that
segment. (For a complete discussion
of the literal pool see H1B.)

Type Code Unnamed Control Notes
Assigned for Sections in separate
External Symbol Source Modules
Dictionary

PC I/START

1/

G END
Unnecessary unless

.. " dictated by specific
programming pur-

~ pose
"-

PC CSECT

.
END

)
Inadvertent and in-

PC ~~ ~ BALR 12,0 advisable initiation

USING *, 12 of first control sec-. tion: instead, precede

END with a named
START instruction

PC signifies "private code"

Location
in hex

o SECT!

Source Modultt

START 0

=A (ADR)

END

Section E: Program Sectioning 115

E2G -- EXTERNAL SYMBOL DICTIONARY
ENTRIES

The assembler keeps a record of
each control section and prints
the following information about
it in an External Symbol tictionary.

1. Its symbolic name, if cne is
specified

2. Its type code

3. Its individual identification

4. Its starting address.

The figure to the right lists:

1. The assembler instructions that

•
def ine control sections and dummy
control sections or identify entry •
and external symbols,

2. The type code that the assembler
assigns to the control sections or
dummy control sections and to the
entry and external symbols.

NOTE: The total number of entries
identifying separate control
sections, dummy control sections,
entry symbols, and external symbols
in the external symbol dictionary
must not exceed 399. External
symbols identified in a Q-type
address constant and specified as the

•
name entry of a DSECT instruction are
counted twice in determining this
total.

DOS The' maxim_·~~~t>f·:external s~l~~;
dictionary entl::'ie~(cont~l, .. sections r~j
dunu:ay .contr()l S.Ct.t~1 .an4 ext +.;' ;~r

:r:~!:~.a~!=;·~:::;~i:~0~~·'· .•.

116

identifie4bythe.'UTRt' ins~cttCJ ,.;;1
.ts20i .• ; ···;b(;;~\f;.,>

Name
Entry

optional

optional

DQ$,

.bl~j:i:,~

optional

DOS
~Wi

o

•

Instruction

START

CSECT
START

CSECT
Any instruction that
initiates the unnamed
control section

'COM

OSECT

ENTRY

EXTRN

DC(V-type ad-
dress constant)

WXTRN

TVpe code en­
tered into external
symbol dictionary

SD} if nam.e
entry IS

SO present

PC } if name
entry is

PC omitted

PC

CM

none

LD

ER

ER

WX

,~
',,:...:p'

0

()
...... ~

o E3 - Defining a Control Section

o

o

You must use the instructions described telow to indicate
to the asse~bler:

• Where a control section begins and

• Which type of centrel section is being defined.

E3A -- THE START INSTRUCTION

Purpose

The START instruction can be used only to initiate the
first or only executable control section of a source ncdule.
You should use the S~AR! instruction for this purpose,
because it allows you:

1. To determine exactly where the first control secticn
is to begin; you thereby avoid the accidental initiation
of the first control section by some other instruction.

2. To give a symbolic name to the first control section,
which can then be distinguished from the other contrel
sections listed in the external symtol dictionary.

3. To specify the initial setting of the location counter
for the first or only control section.

Specifications

The START instruction rrust be the
first instruction of the first
executable control section of a
source module. It must not be
preceded by any instruction that
affects the location counter and
thereby causes the first control
section to be initiated.

The format of the START instruction
statement is given in the figure
to the right.

Name Operation

Any Symbol
or blank START

START

Operand

A self-defining
term, or blank

Section E: Program Sectioning 117

• •

•
• •

118

The symbol in the name field, if
specified, identifies the first
control section. It must be used
in the name field of any CSECT
instruction that indicates the
continuation of the first control
section. This symbol represents
the address of the first byte of
the·control section and has a length
attribute value of 1.

The assembler uses the value of
the self-defining term in the operand
field, if specified, to set the
location counter to an initial value
for the source module. All control
sections are aligned on a doubleword
boundary. Therefore, if the value
specified in the operand is not
divisible by eight, the assembler
sets the initial value of the
location counter to the next higher
doubleword boundary. If the operand
entry is omitted, the assembler
sets the initial value to O.

Location In
Hex

000000

000000

000004
000004

Further Examples:

• 001000 A
001000 B
000020 C • • 000000 0

Source Module

FIRST START o

/~ . ""

END
~-I

START X'1000'
START 4096
START 30

START

0'"
"

o

o

Source Module

•
The source statements that follow
the START instruction are assembled
into the first control section.
If a CSECT instruction indicates
the continuation of the first control

•
sect ion, the source statements tha t
follow this CSECT instruction ar,e
also assembled into the first control
section.

Any instruction that defines a ne~

e or continued control section marks
the end of the preceding control
section or portion of a control
section. The END instruction marks
the end of the control section in
effect.

E3B -- THE CSECT INSTRUCTION

Purpose

FIRST

The CSECT instruction allows you to initiate an executable
control section or indicate the continuation of an
executable control section.

Specifications

The CSECT instruction can be used anywhere in a source
module after any source macro definitions that are
specified. If it is used to initiate the first executable
control section, it must not be preceded ty any instructicn
that affects the location counter and thereby causes the
first control section to be initiated.

The format of the CSEC~ instruction
statement is shown in the figure
to the right.

Name Operation

Any Symbol
CSECT or blank

START o

END

CSECT

Operand

Not required

Section E: Program Sectioning 119

Page of GC33-4010-0
Redscd September 29, 1972

By n~L GN33-8148

o
•
•

The symbol in the name field, if
specified, identifies the control
section. If several CSECt
instructions within a source module
have the same symbol in the name
field, the first occurrence initiates
the control section and the rest
indicate the continuation of the
control section. If the first
control section is initiated by
a START instruction, the symbol
in the name field must be used to
indicate any continuation of the
first control section.

NOtE: A CSECT instruction with
a blank name field either initiates
or indicates the continuation of
the unnamed control section (see
E2E) •

The symbol in the name field o represents the address of the first
byte of the control section and
has a length attribute value of
1.

•
The beg inning of a control section
is aligned on a doubleword boundary.
However, the continuation of a

•
control section begins at the ~
available location in that control
section.

• The source statements that follow
a CSECT instruction that either
initiates or indicates the
continuation of a control section
are assembled into the object code
of the control section identified
by that CSECT instruction.

NOTES:

1. The end of a control section or
portion of a control section is
marked by:

a. Any instruction that defines a
new or continued control section
or

b. The END instruction.

00& 2'~>.~1'i~:t'
~er()~a,clJ , · •.. ,' .. ··.,t

120

en~()'"'J1~~II'~'SS····, ...•.. ,·.·, .. ,· .. · •. , ~~;.~~~~~~
fl9UJ:'e()ft~.> .·ri,~~~,t~~~'Wa,~.t< ,
location ... c()Qnt.eJ:'setting~ wben:"lls'
the· OS/VS· asselfltil.er.)'

Locin
Hex

• 000

Source Module

FIRST START

END

Source ~ .. ~odule

FIRST START 0

END

o

(~,
I '

~-f

Object Module

o

o

o

E3C -- THE DSECT INSTRUCTION

Purpose

You can use the DSECT instruction
to initiate a dummy control section
or to indicate its continuation.

A dummy control sectien is a
reference control section that
allows you to describe the layout
of data in a storage area without
actually reserving any virtual
storage.

How to Use a Dummy Control Section
Loc Source Module Object Modu Ie
in

The figure to the right illustrates Dec
a dummy control sectien.

A dummy control section (dummy
section) allows you to write a

O sequence of assembler language
statements to describe the layout of

•
unformatted data located elsewhere in
your program. The assembler produces
no object code for statements in a
dummy control section and it reserves
no storage for the dummy section.
Rather, the dummy section provides a
symbolic format that is empty of

•
data. However, the assembler assigns
location values to the symbols you
define in a dummy section, relative
to the beginning of that dummy
section.

Therefore, to use a dummy section
you must:

• • Reserve a storage area for the
unformatted data

• Ensure that this data is loaded
into the area at execution time

• Ensure that the locations of
the symbols in the dumIrY section
actually correspond to the locations
of the data being described

•• Establish the addressability
of the dummy section in combination
with the storage area (see F1A) •

•
You can then refer to the unformatted

, data symbolicall¥ by using the
symbols defined 1n the durrmy section.

FIRST START 0 .
• {

LA IO,BUFFER
US:NI UMMY,10

CLI KEY,C'X'

o Bt1FF,R

fl
DS

o
o
I
4

24
44
54
62
68

o

DUMMY DSECT
KEY OS C //
CODE OS CL3 //
NAME OS C~c(
ADDR OS /,/-CL20
WAGES D§.-/ CLIO
HRS /' -I1s CL8
DEDu.e'f OS CL6
p~1 OS CL12

END

Section E: Program Sectioning 121

specifications

The DSECT instruction identifies
the beginning or continuation of
a dummy control section (dummy
section). One or more dummy sections
can be defined in a source module.

The DSECT instruction can be used
anywhere in a source module after
the ICTL instruction, or after any
source macro definitions that may
be specified.

The format of the tSECT instruction
statement is given in the figure
to the right.

The symbol in the name field, if
specified, identifies the dummy
section. If several tSECT
instructions within a source module
have the same symbol in the name

• field, the first occurrence ini tia tes
the dummy section and the rest

• indicate the continuation of the
dummy section.

NOTE: A DSECT instruction with
a blank name field either initiates
or indicates the continuation of
the unnamed dummy section.

The symbol in the name field
represents the first location in
the dummy section and has a length
attribute value of 1.

The location counter fer a dummy

•
section is always set to an initial
value of O. However, the
continuation of a dummy section

• begins at the next available location
in that dummy section.

122

Name

Any Symbol
or blank

Location in
Hex

o

DSECT

Operation Operand

Not required
DSECT

Source Module

FIRST START 0

END

o

o

o

•
The source statements that follow
a DSECT instruction belong to the
dummy section identified by that
DSECT instruction.

NOTES:

1. The assembler language statements
that appear in a dummy control
section are not assembled into
object code.

2. When establishing the

•
addressabili ty of a dummy section,
the symbol in the name field of

e the DSECT instruction or any symbol
defined in the dummy section can
be specified in a USING instruction.

3. A symbol defined in a dummy
section can be specified in an

•
address constant only if the Shbol

· is paired with another symbol rom
the same durrmy section, and if the
symbols have the opposite sign.

FIRST START

USING

DS
DS
OS

SECOND CSECT

ADCON DC

END

o

DUMMY1,lO or USING A,lO

• e

. .,:

• CL30

~
A (FROM-TO

Section E: Program Sectioning 123

E3D THE COM INSTRUCTION

purpose

You can use the COM instruction
to initiate a common control section
or to indicate its continuation.

, A common control section is a
reference control sectien that
allows you to reserve a storage
area that can be used by twe or
more source modules.

How to Use a COffmon Centrol Section

The figure to the right illustrates
a common control sectien.

A common control section (cornmon

•
section) allows you to describe
a common storage area in one or
more source modules.

When the separately assembled object

•
modules are linked as ene program,
the required storage space is
reserved tor the corr~en control
section. Thus, two or more modules
share the common area.

Only the storage area is provided;
the assembler does not assemble
the source statements that rrake
up a common control section into
object code. You must previde the
data for the common area at execution
time.

• The assembler assigns locations
to the symbols you define in a
common section relative to the
beginning of that ceremen section.

O This allows you to refer symbolically
to the data that will be loaded
at execution time. Note that you

• must establish the addressability
of a common control sectien in every
source module in which it is
specified (see F1A). If you code
identical common sections in two

124

or more source modules, yeu can
communicate data symbolically cetween
these modules through this common
section.

NOTE: You can alse cede a common
control section in a source module
written in the FORTRAN language.
This allows you to communicate
tetween assembler language modules
and FCRTRAN modules.

Lac
in
Dec

60

A

Source Modules

START 0

8{ L 10,=A(AREA)
USING AREA,lO • ST 3,SUM

B START 0

8{ L 8,=A(AREA)
USING AREA,8 • L 3,SUM

END

Object Modules

O
~··"~·

'"""" \

L o

()

o

Specifications

The COM instruction identifies the
beginning or continuation of a
common control section (common
section) •

One or m¢re common sections can
be defined in a source module.

The COM instruction can be used
anywhere in a source module after
the ICTL instruction, or after any
source macro definitions that may
be specified.

The format of the COM instruction
statement is given in the figure
to the right.

'''''~'''''' .. ''''. __ ~'''' 'field. if
common

CON
''I[11111'J,'.:a .Q~ttc~e IICdUle

NOTE: A COM instruction with a
blank name field either initiates
or indicates the continuation of
the unnamed common section.

The symbol in the name field
represents the address of the first
byte in the common section and has
a length attribute value of 1.

The location counter for a common

•
section is always set to an initial
value of O. However, the
continuation of a co~mon sectien
begins at the next available location
in that comroon sectien.

If a common section with the same
name ~r unnamed) is specifieu in
two or more source modules, the

~amount of storage reserved for this
common section is equal te that
required by the longest common
section specified.

Name

Any Symbol
or blank

Location in
Decimal

A

B • 0 XY
0 TO

80 FROM

Operation

COM

Source Modules

START 0

END

START 0

COM
DS CL80
OS CL240

Page of GC33-4010..l)
Revised September 29, 1972
By TNL GN33-8148

Operand

Not required

Reserved Storage
for common control
section XYZ when
modules A and B

1200
bytes

•
Section E: Program Sectioning 125

•

The source statements that follow
a CO~ instruction belong to the
common section identified by that
COM instruction.

NOTES:

1. The assembler language statements
that appear in a common control
section are not assembled into
ob ject code.

2. When establishing the

FIRST

•
addressability of a common section, A
the symbol in the name field of B
the COM instructicn or any symbol C
defined in the common section can
be specified in a USING instruction.

DOS Because the name entry of the COM

.,
ins,tru"ction must be blank, a symbol
defined in tbe,common section must
be used as the base address in'a D
USING instruction. E

F

,.

126

Source Module o
START • USING or USING A,ll

END
,.,rr-~
" \

"V

(",'~ , \

J

6

o

o

t14 ... -Iztem.al·Du.mzny sectiON
;;\;0$

;i~1Y

Purpose

An external dummy section is a reference control section
that allows you to describe storage areas for one or ncre
source mod~les, to be used as:

1. Work areas for each source module or

2. Communication areas between two or more source modules.

When the assembled object modules are linked and loaded,
you can dynamically allocate the storage required for all
your external dummy sections at one time froR one source
module (for example, by using the GETMAIN macro
instruction). This is not only convenient but you save
space and prevent fragmentation of virtual storage.

To generate and use external dummy sections, you need to
specify a combination of the following:

1. The DXD or DSECT instruction

2. The Q-type address constant Source Module

3. The CXD instruction.

Generating an External rummy Section

I
An external dummy section is
generated when you specify a ~
instruction or a ~ instruction
in combination with a Q-type address

•
constant that contains the ~
of the DSECT instruction.

8 You use the Q-type address constant
to reserve storage for the offset
to the external du~my section whose
name is specified in the operand.
This offset is the distance in bytes
from the beginning of the area
allocated for all the external dummy

.sections to the beginning of the
external durrmy section specified.
You can use this offset value to
address the external dummy section.
The Q-type address constant is
described in G3M.

FIRST START 0

.{~IAB=====D=XD====3D==~.
DXD 2FL4

e{

EXT
EI
E2
E3
E4

QA
QB
QEXT

DUMMY
D1
D2

SECT
DS
DS
DS
DS

DC
DC
DC

DSECT
DS
DS

END

3C
lC
10H
20F

Q(A)
Q(B)
Q(EXT) •
F
2D

Area allocated to
contain external
dummy sections •

Not an external
dummy section

offset to A

L~ttOB
offset to

EXT

Section E: Prcgram Sectioning 127

How to Use External Cu~ay Sections

~o use an external dumroy section, you rrust do the fcllcwir.9
(as illustrated in the figure telow) :

~IdentifY and define the external dURmy section. ~he
asseabler w111 ccm~ute the length and alignrrent required.

~provide a Q-type ccnstant fcr each external du~~y section
defined.

Use the exc instruction to reserve a full~ord area into

•
which the linkage editor or loader will insert the tctal
length of all the external dURny sectiens that are specified
in the source modules of your program. ~he linkage editer
computes this length frcm the lengths of the individual
external dun-my sections supplied ty the assentler.

~Allocate a sterage area using the cemputed total length.

~Ioad the address of the allocated area into a register
(for this exalTple, register 11). Ncte that register 11 .j'

~ust contain this address throughout the whole pregralT.

~Add, to the address in register 11, the cffset into the
allocated area of the desired external dUlTlTY secticn.
The linkage editor inserts this offset into the fullword
area reserved by the appropriate Q-type address ccnstar.t.

~Estatlish the addressatility of the external dUlT~y section
in conbination with the portion of the allocated area
reserved for the external dURa.y section.

~yoU can now refer s~bolically to the locations iT. the
external dUlTlTY sect1cn.

128

~ote that the source statements in an external dUlTlTY secticn
are not asseatled into object code. ~hus, at execution
time you a.ust insert the data descrited into the area
reserved for the external duaa.y sections.

,.

t. o

-/
B DSECT
ITEM DS
NO DS
SUM DS

TWO START

O{~R • USING

0 • BOFFS DC

ST

•

o

F
F
F

0
I

3,BOFFS
3,11
B,3,.._/

I

;
Q(B)O

9,SUM

~/
II 1

i'l
:,;:1
°1
1

Area to contain
external dummy

I

100
bytes

. Boundary

200
bytes

Section Z: Prog~am Sectioning 129

£8 -Defining an Extem.l· Dum-:!'
OSf:

~*
E5A THE DXD INSTRUCTION

Purpose

The DXD instruction allows you to
identify and define an external
dummy section.

Specifications

The DXD instruction defines an
external durrmy sectien. ~he DXD
instruction can be used anywhere
in a source module, after the. ICTL
instruction or after any source
macro definitions that may be
specified.

NOTE: The DSECT instruction also
defines an external dummy section,
but only if the symbol in the name
field appears in a Q-type address
constant in the same source module.
Otherwise, a DSECT instruction
defines a dummy section.

The format of the tXt instruction
is given in the figure to the right.

• The symbol in the name field must
appear in the operand of a Q-type
address constant. This symtol
represents the address of the first
byte of the external dummy section
defined and has a length attribute
value of 1 •

• The subfields in the oFerand field
are specified in the same way as

130

in the DS instruction. The assembler
computes the amount of storage and
the alignment required for an
external dummy section from the
area specified in the operand field.

The linkage editor or loader uses
the information provided by the
assembler to compute the total
length of storage required for all
external dummy sections specified
in a program.

NOTE: If twC or more external dummy
sections for different source modules
have the same name, the linkage
editor uses the most restrictive
alignment and the largest section
to compute the total length.

./'

Name Operation

A symbol DXD

Example:

A DXD
l
,

AOFFSET DC

Operand

Same format as the operand
of a OS instruction

10FL3 ..
Q(Ar

c

o

()

o

ESB -- THE CXD INSTRUCTION

Purpose

The CXD instruction allows you to
reserve a fullword area in storage.
The linkage editor or loader will
insert into this area the total
length of all external dummy sections
specified in the source modules
that are assembled and linked
together into one ~rcgram.

Specifications

The CXD instruction reserves a
fullword area in storage, a.nd it
can appear in one or more of the
source modules assembl~d and combined
by the linkage editor into one
program.

The format of the eXt instruction
statement is given in the figure
to the right.

The symbol in the name field, if

•
specified, represents the address
~f a fullword area aligned on a
fullword boundary. This symbol
has a length attribute value of

•
4. The linkage editor or loader
inserts into this area the total
length of storage required for all
the external dummy sections specified
in a program.

Name

A symbol
or blank

Example:

LENGTH

Operation

CXD

Operand

Not required

Object Code
in Hex

Section E: Program Sectioning 131

This page left blank intentionally.

-J'

,.

C 1 . ;;/

r"'\
I~;

o

o

o

'Section F: Addressing

This section describes the techniques and instructions
that allow you to use symbolic addresses when referring
to data. You can address data that is defined within the
same-source module or data that is defined in another
source module. Symbolic addresses ar~ more ~eaningful
and easier to use than the corresponding object code
addresses required for machine instructions. Also, the
assemtler can convert the symbolic addresses you specify
into their object code form.

Fl - Addressing Within Source Modules: Establishing Addre88ability

By establishing the address ability
of a control section. yeu can refer
to the symbolic addresses defined
in it in t be operands of ma chine
instructions. This is much easier
than coding the addresses in the
base-displacement ferm required
by the System/370. The symbolic
addresses you code in the instruction

•
operands are called implicit
addresses, and the addresses in
the base-displacement form are 4It called explicit addresses, both
of which are fully described in
:eSB.

The assembler will convert these
implicit addresses fer you into
the explicit addresses required
for the assembled object code of

Xl'O"
10,ADDRESb

I
LA

Equivalent ~

the machine instruction. However, •
you must supply the assembler with:

• 1. A base address from which it
can compute displacements to the

• addresses wi thin a control section
and

•
2. A base register to hold this
tase address.

40 ~DDRESS DC C'SAMPLE'

END

1411 A 10 iC()401
I • \

, Sect.i..OIl F: Addrcssinc; 133

Bow to Estatlish Addressability

To establish the addressability
of a control section, you must,
at coding time:

O. specifE a base address from which
the assem ler can com~ute
displacements

•
• Assign a base register to contain
this base address

•• write the instruction that loads
the base register with the base
address.

At assembly time, the implicit
addresses you code are converted

•
into their eXFlicit case-displacement
~; then, they are assenhled intc
the object code of the machine
instructions in which they have
been coded •

•
At execution tin.e, the case address
is loaded into the case register
and should renain there thrcughout
the execution of your ~rogram.

FIA - THE USING INSTRUCTION

Purpose

Location
in Hex

o
o
2
2

FIRST

BEGIN

jOiSPlacement

22 CONADR

Source Module

START 0
BALR
USING

DC

END

The USING instruction allows you to specify a base address
and assign one or more base registers. If you also load
the base register with the base address, you have
established addressability in a control section.

134

To use the USING instruction correctly you should:

1. Know which locations in a control section are made
addressable by the USING instruction

2. Know where in a source module you can use these
estaclished addresses as implicit addresses in instruction
operands.

BE~IN, •
F'221

Object Code
in Hex

The Range of a USING Instruction

O
· The range of a USING instruction

, ' " (called the USING range) is the

•
4,096 bytes beginning at the ~
address specified in the USING
instruction. Addresses that lie
within the USING range can ce

~ converted frorr their implicit to
their explicit form; those outside

• the USING range cannot be converted.

The USING range does not depend
upon the position of , the USING
instruction in the source module;
rather, it depends upon the location
of the base address specified in
the USING instruction.

NOTE: The USING range is the range
of addresses in a control section

•
that is associated with the base

· register specified in the USING
instruction. If tha USING
instruction assigns reore than one
base register, the composite USING
range is the sum of the USING ranges
that would apply if the base
registers were specified in separate

l
USING instructions. If register 0
is specified as the base register,
the USING range will-se-location 0

O through 4095 regardless of the base
address specified.

The Domain of a USING Instruction

The domain of a USING instruction
(called the USING domain) begins
where the USING instruction appears
in a source module and continues
to the end of the source module.
(Exceptions are discussed later
in this subsection, under NOTES
ABOUT THE USING DOMAIN.) The

• assembler converts implicit address
references into their explicit form:

1. If the address reference appears
in the domain of a USING instruction
and

2. If the addresses referred to
lie within the range of the same
USING instruction.

~ The assembler does not convert
address references that are outside
the USING domain. The USING domain
depends on the position of the USING

O
instruction in the source module

, after conditional asserrbly, if any,
has been performed.

Page of G(,33-40 10-5
As Updated 28 Dec 1981
By TNL GN20-3

Source Module

FIRST START

L 5,INSIDE •
USING BASADR,BASREG ~

USING
domain

L 5,INSIDE •
L 5,OUTSIDE

• BASADR DS F ,.
DS F

BASADR+4095

ST

• OUTSIDE DS

END

Section F: Addressing 135

This page left blank intentionally.' ~

0)

136

I

o

o

o

How to Use the USING Instruction

You should specify your USING
instructions so that:

1. All the addresses in each control
section lie within a USING range
and

2. All the ~eferences for these
addresses lie within the
corresponding USING domain.

You should therefore place all USING
instructions at the beginning of
the source module and specify a
base address in each USING
instruction that lies at the
beginning of each control section.

FOR EXECUTABLE CONTROL SECTIONS:
The figure to the right illustrates
a way of establishing the
addressability of an executable
control section (defined by a START
or CSECT instruction). You specify

• a base address and assign a base
register in the USING instruction •

• At execution time the base register
is loaded with the correct base
address.

Note that for this particular
combination of the BALR and USING
instructions, you should code them
exactly as shown in the figure to
the right.

Location
in Decimal

USING
rmge

o
o
2

6
10

4097

FIRST

BEGIN

A
B
C

Source Module

START 0
BALR 12,0
USING * 12

t ! 1,;th1~""t-~-d;-r:-ss-"'"
DS F II; as BEGIN

DS F;'
DS F

END

Section F: Addressing 137

If a control $ection is longer than 4096 bytes, you must
assign more than one base register. This allows you to
establish the addressability of the entire control section
with one USING instruction as shown in the figure on the
opposite page.

The assembler assumes that the base registers that you

O assign contain the correct base addresses. The address
of HERE is loaded into the first base register. 'Ihe
addresses HERE+4096 and HERE+8192 are loaded into the
second and third base registers respectively.

41tNote that you must define the address, EASES, within the
first part of the total USING range, that ~s, the addresses
covered by base register 9. This is because the explicit

~address converted from the implicit address reference,
is assembled into the LM instruction. At execution time,
the assembled address must have a case register which
already contains a base address at this point; the only ~
base register loaded with its base address is register .
9. .

•
The addressability of addresses in the USING range covered

• the second and third base re isters is not completely

138

esta l~shed until after the LM instruction •.

NOTE: Addresses specified in address constants (exce~t
the S-type) are not ccnverted to their base-displacement
form.

,.

o

o
LONG START

r8 BALR

- USING
HERE LM

aBASES
B
DC

BEGIN DS

II
I HERE+4095 J - I

- I
HERE+4096 J I

USING I-
10 range ,,---"

D l-

=- I HERE+8192 I

o
i_
II

I'--

I HERE+12287 J ioo.- ~ I

o

Source Module

° 9,0
HERE,9,10,11
10,11,_S.
BEGIN

Page of GC33·40 I O·S
As Updated 28 Dec 1981
By TNL GN20·9372

A (HERE+4:$'6, HERE+819 2)
~H

l USING J
domain

END

Section F: Addressing 139

FOR REFERENCE CONTROL SECTIONS:
The figure to the right illustrates
how to estatlish the addressability
of a dummy section. A durrmy section
is a reference control section
defined by the DSEC~ instructions.
Examples of establishing
address ability for the ether
reference control sections are given
in E3C and E4.

o As the tase address, yeu sheuld
specify the address of the first
tyte of the durrrry seetien, Be that
all its addresses lie within the

• ~ertinent USIl\G range.

•
The address you load into the base
register must be the address of
the storage area being formatted
by the dummy section.

Note that the assembler assumes
that you are referring to the

• symbolic addresses of the dummy
section, and it computes
displacements accordingly. However,
at execution time, the assembled

•
addresses refer to the location
of real data in the storage area.

140

FIRST

• INPUT

USING
range

INDATA
A

8 F

Source Module

START 0
BALR 12,0
USING :::,12
LA 11, INPUT
~SING ~INDATAlll :.
DS XL200

L

DSECT
DS

DS

END

3,F-O

F

•

o

o

o

o

Specifications for the USING Instruction

The USING instruction must te coded
as shown in the figure to the right.

The operand, EASE, specifies a base
address, which can be a relocatable
or ~bsolute expression. 1he value
of the expr:ession must lie between
_22~ and 22~-1. J

The rem~ining operands specify from
1 to 16 base registers. ~he operands
must be absolute expressions whose
values lie in the range 0 through
15.

O The assembler assumes tha.t the first
base register (EASREG1) contains

•
the base address BASE at executicn
time. If present, the subsequent
operands, BASREG2, BASREG3, ••• ,
represent registers that the
assembler assumes will contain the
address values, EASE+4096,
BASE+8192, ••• , respectively.

NOTES ABOUT THE USING DOMAIN: The
domain of a USING instruction
continues until the end of a source
module except when:

O. A subsequent tROP instruction
specifies the same base register
or registers assigned by the
preceding USING instruction.

•• A subsequent USING instruction
specifies the same register or
registers assigned by the preceding

-USING instruction.

USING

Name Operation Operand

Sequence USING
symbol or

BASE,BASREGl~BASEREG~ •• blank

Example:

First and
second
USING
range

Third
USING
range

USING BASE,9,lO,11

Logical Equivalent

USING
USING
USING

BREAK

BASEl

BASE,9
BASE+4096,lO
BASE+8l92,11

START o

USING

DS .
• DROP

BASE 2 DS

USING

eUSING

END

Section F: Addressing 141

NOTES ABOUt tEE USING RANGE: t~c
USI~G ranges coincide when the same
tase address is Sfecified in t~c
different USING instructions, even
though the tase registers used are
different. When two USIN~ ranges
coincide, tte assentler uses the o higher numbered register for
asserrtling the addresses ~ithin

• the ccmncn USING range. In the
example, this aff1ies cnly tc the

• implici t addresses that appear after
the second USING instruction. In
effect, the first USING domain is

•
terminated after the seccnd USING
instructicn.

142

common
USING
range

•

,.

Source Module

CONFLICT START 0

USING

A DS

B DS

USING

,;/'

(A+4095)

L

END

first

USING
domain

second
USING

•
•

()' ,

.',',1

o

~wo USING ranges overlap when the
tase address of cne USING instructicn
lies .ithin the range of another

• USING instructicn. When twc ranges
overlap, the assembler computes

• displacements frcn the base address
that gives the smallest displacement;

•
it uses the cerres~ending ~
re~ister .hen it assembles the
ad resses within the range everla~ •

•
~his applies only to imilicit

· addresses ttat a~pear a ter the
seccnd USING instruction.

EASE REGIS~E~S lOR }'ESO~U1E
AD~~ESSES: }.bselute/addresses used
in a source mcdule Rust alse be
~ade addressable. }.bsolute addresses
require a base register cther than
the base register assigned to
relocatable addresses (as described
above) •

However, the asserrbler does net
need a USING instruction to convert

• absolute irrElicit addresses in the
range 0 thrcugh 4,095 to their

.. explicit forre. ~he assen:tler uses
~register 0 as a base register •

•
~isplacements are ceR~uted freR
the base address 0, because the
asseretler assumes that a base cr
inde~ of 0 implies that a zero
quantity' is te be used in fcrning
the address, regardless of the

O
contents ef register O. 1he USING

, domain for this automatic base---­
register assignRent is the ~hcle
of a source medule.

second
USING
range

OVERLAP

(RANGE2 +4095)

Source Module

START o

OS '

OS

OS

L

END

Source Module

ABS START

USING
range LA
0-4095

END

Object Code
in Hex

•

Section F: Addressing 143

Source Module

For acsolute implicit addresses
greater than 4095, a USING
instruction must be specified
according tc the fcllc~ing:

~. with a base address representing
an atsolute expressicn, and

~. with a base register that has
not been assigned by a USING
instructien ir; which a relecatable
base address is specified •

• This tase register Il'ust be leaded
with the base address specified.

FIB - THE DROP INSTRUCTION

purpose

ABS

USING
range
4096-8191

START o

LA

END

You can use the DROP instruction to indicate to the
assembler that one or more registers are no longer available
as base registers. This allows you:

144

1. To free case registers for other programming purposes

2. To ensure that the assembler uses the base register
you wish in a particular coding situation, for example,
when two USING ranges overlap or coincide (as described
above in F1A, Notes about the USING range) •

Object Code
in Hex

1024

;£'h
\~,;i

o

•

o

Specifications·

The CROP instruction must be coded
as shown in the figure to the right.

Up to 16 operands can be specified.
They must be absolute expressions
whose values represent the general
registers 0 through 15. A tROP
instructioh with a blank cperand
field causes all currently active
base registers assigned by USING
instructions to be dropped.

After a DROP instruction, the
assembler will not use the registers
specified in a DROP instruction
as base registers. ~ register made
unavailable as a base register by
a DROP instruction can be reassigned
as a base register by a subsequent
USING instruction.

Name

Sequence
symbol
or blank

USING
range

DROP

Operation Operand

DROP BASREGI [BASREG~ ..•

or blank

Source Module

DROPS START

USING

BASE DS

DROP

END

o

BASE,10

10

restored
USING
domain

Register 10
unavailable
as a base
register

Section F: Addressing 145

~ [ROP instructien is net needed:

• If the base address is being
~ changed cy a new USING instructien,

and the same base register is

•
assigned. Hcwever, the new case
address must be loaded into the
tase register. Nete that the

~ implicit address "E" lies within
the first USING denain, and that

~ the base address to which it refers
lies within tr.e first USING range.

• At the end of a source module.

146

first
USING
range

second
USING
range

CHANGE

A

Source Module

START

USING

OS

END

o

A,9

9,8-·· .. ·•
B,9

(~\
)

o

o

o

F2 - Addressing Between Source Modules: Symbolic Linkage

•

This section describes symbolic
linkage, that is, using symtols
to communicate between different
source modules that are separately
assembled and then linked together J

by the linkage editor.

How to Establish Symbolic Linkage

You must establish symbolic linkage
between source modules so that you
can refer or tranch to sy~bolic
locations defined in the control
sections of external source modules.
~o establish symbolic linkdge with
an external source module you must
do the following:

1. In the current source module,
you must identify the symbols that
are not defined in that source
module, if you wish to use them
in instruction operands. These
symbols are called external symbols,
because they are defined in another
(external) source module. You
identify external symbols in the
EXTRN or WXTRN instruction or the
V-type address constant.

2. In the external source modules,
you must identify the symbols that
are defined in those source modules
and to which you ref~r from the

•
current source module. These symbols
are called entry symbols because
they provide points of entry to
a control section in a source module.
You identify entry symbols wltb
the ENTRY instruction.

3. You must provide the A-ty~e or
y-type address constants needed
by the assembler to reserve storage
for the addresses represented by
the external symbols.

_ The assembler places information
about entry and external symbols
in the External Symbol tictionary.
The linkage editor uses this

•
information to resolve the linkage
addresses identified by the entry
and external symbols.

Current Source
Module

A START

•

...-Bl

'Cl

Other
(External)
Source
Modules

B START

/BI

IIi;,....' -----'

8----

CI

• ,
'-

Linked Object
Modules

A

/ 1--------1

Section F: Addressing 147

10 REFER 1C EXTERNAL tAT!: You

•
should use the EX1RN instructicn
to identify the external symtol
that represents data in an external
source module, if you wish to refer
to this data symtclically.

For example, you can identify the

•
address of a data area as an external
symtol and load the address constant
specifying this symbol into a tase
register. 1hen, ycu use this tase
register when establishing the

• addressat:ility of a dUlnry sect10n
that formats this external data.
You can now refer synt:clically tc
the data that the external area
contains.

you reust also identify, in the
source module that contains the

•
data area, the address cf the data

· as an entry symbol.

148

Source Modules

CURRENT START
EXTRN

e{L lO,ADBUFF
USING DATA,lO

DC A (BUFFER)

DA..TA D.SECT

KEY"" DS C
CODE "" DS CL3
NAME bs CL20
ADDR DS' CL20
WAGES DS ""CLIO
HRS DS cbs-J'
DEDUCT DS CL6 ""
PAY DS CL12 "-

END

OTHER

ENTRY BUFFER •
END

,.

"

Linked
Object Modules

CURRENT

c

C'

o

10 BRANCH 1C AN EXTERNAL AttRESS:
You should use the V-ty~e address

~constant to identify the external
symtol that represents the address
in an external source module to
which you wish tc tranch. Fcr the
specifications of the v-type address
constant, see G3L •

•
For exampl:e, you can lead into a J

register the V-tyte address constant
that identifies t e external synbcl.

•
Using this register, you can then
tranch to the external address
represented by the symtol.

If the syrrtol is tbe nane entry
of a STARt or CSEC1 instruction
in the other source ncdule, and
thus names an executatle control

•
section, it is autcnatically

· identified as an entry symbol.
If the syrrtol re~resents an address
in the middle of a control section,

•
you !rust, hcwever, identify ita s
an entry syrobol for the external
source nodule.

You can also use a comtination of
an EXiRN instructicn tc identify
and an A-ty~e address constant to
contain the external tranch address.
However, the v-type address constant
is more convenient tecause:

1. You do net have to use an EXiRN
instruction.

2. The syrr.bcl identified js not
considered as definep in the source
module and can te uSed as the nane
entry for any other statement in
the same source ncdule.

Source Modules

CURRENT START 0

L 3,EXTADR

8B.R 3

• o
EXTADR DC V(OTHER)

END

GOTHER START 0

ENTRY SUBRTN8

SUBRTN PS OH

END

Section F: Addressing 149

F2A - THE E~TBY INSTRUCTICN

Purpose

The entry instruction allows you
to identify symtcls defined in a
source module so that they can te
referred to in anether seurce nedule.
These symbols are entry symtols.

Specifications

The forrr,at ef the ENTRY instructicn
is shewn in the figure to the right.

ENTRY SYMECIS: The fellewing applies
to the entry syncels identified
in the operand field:

• They must te valid syntols.

• They must be defined in an
• executable control section.

• They must not be defined in a
• durr,my contrel sectien, a cernren

contrel section, or an external
contrel section.

• The length attribute value ef
entry symtols is the sane as the
length attribute/value of the symtol
at its peint ef definition.

A syrrcol used as the name entry
of a START cr eSECT instructien
is also autematically considered

• an entry syncol and dces not have
to be identified by an ENTRY
instruction.

The assembler lists each entry
symtol of a scurce ncdule in an

• External Syrrbol r:ictionary along
w1th entr1es for external syrrccls,
corrmen centrol sections, and external
contrel sections. The maximum
number of External Syrrtcl Dictionary
entries for each source module is
399.

i.$
• NOTE: A syrrce," identified in an

ENTRY instruction counts towards
~rraxinuIr, even theugh it roay
not be used in the name field of

150

a statement in the scurce module
nor constitute a valid entry point.

• FIRST

0
SUBRTN

,.
DUMMY

• INVALID

o

ENTRY

Name Operation Operand

A sequence ENTRY One or more

symbol or relocatable
blank symbols separated

by commas

j'

Source Module Entry in External.
Symbol Dictionary

Symbol Type Code

START 0 FIRST SD

·
ENTRY SUBRTN,INVALID SUBRTN LD

· INVALID LD

DS OH • ·
DSECT DUMMY none

·
DS F INVALID -·
END

o

o

o

F2B - THE EXTRN INSTRUCTICN

Purpose

The EXTRN instruction allows you
to identify symtcls referred tc
in-a source module tut defined in
another scurce ncdule. These syrrbc;s
are external symbols.

Specificaticns

The format cf the ~XTRN instructicn
staterrent is shown in the figure
to the right.

EXTERNAL SY~EOLS: The follcwing
applies to the external symtols
identified in the c~erand field:

•• They must be valid syml:ols.

• They must not be used as the
name entry cf a scurce staterrent
in ~he sourc~ module in which they
are identified.

• They have a length attritute
value of 1.

•
• Tohey Iliust te used a lcne and
cannct be Eaired when used. in an
expression (fer ~air~:n9 cf texlIS
see C6) • ~

The asserrtler lists each external

•
symbcl identified in a source module
in the External Syrrtcl ~icticnar~
along with entries for entry sym ols,
COIlimcn control secticns, and external
contrcl secticns. The maximum
numl:er of External Syrrl:cl Dicticnary
entries for each source module is
399 •

. DO$ ihe Jtaximum number of external
}~yml:ol dictionat;y entries (contrcl

- ;;~ctions andel[ternal.symtols)
allowed is 1'11. The maxiltult
.. 11owable number of entry.symbol,s
identified l:y the EN'!RY.instruetion
is 200~

NOTE: The syrrbcl s~ecified in a

•
v-ty~e address constant is implicitly
identified as an external s~rrbcl
and ccunts tOwards this max~mum.

EXTRN

Name Operation Operand

Sequence EXTRN One or more relocatable
symbol symbols separated by
or blank commas

Source Modules Entry in External.
Symbol Dictionary

Symbol Type Code

CURRENT START 0 CURRENT SD

EXTRN OTHER OTHER ER

· • L 3,EXTAD
BR 3

·
L 4,ADSUBRT
BR 4

· • EXTAD DC A(OTHER)
ADSUBRT DC v (SUBRTN) SUBRTN ER

· • END

OTHER START 0 OTHER SD

ENTRY SUBRTN SUBRTN LD

·
SUBRTN DS OH

·
END

Section F: Addressing 151

p2C - THE wXTRN INSTRUCTICN

Purpose

The ~XTRN instruction allows you
to identify symtcls refer%ed tc
in a source module but defined in
another scurce Rcdule.

The ~XTR~ instruction differs from
the EXTRN instructicn as follc~s:

The EXTRN instruction causes the
linkage editor to rrake an autoRatic
search of libraries to find the
module that ccntains the external
symbcls that you identify in its
operand field. If tr.e rrodule is
found, linkage addresses are
resolved; then the rrcdule is linked
to your module, which contains the
EXTRN instruction.

The ~XTRN instructicn su~~resses
this autcmatic search cf litraries.
The linkage editor will only resolve
the linkage addresses if the external
syrobcls that you identify in the
WXTRN o~erand field are defined:

1. In a module that is linked and
loaded along with the cbject rrcdule
asserrbled fro~ your source module
or

2. In a module brought in from a
library due tc the ~resence cf an
EXTRN instruction in another module
linked and lcaded with ycurs.

Specifications

The format cf the ~XTRN instructicn
staterr-ent is shown in the figure
to the right.

EXTERNAL SYMEOLS: The external
• symbcls identif ied 1:y a wXTRN

instruction have the saIr.e ~rc~erties
as the external symbcls identified

• ty the EXTRN instructicn. However,
the type code assigned to these
external syn1:cls differs.

NOTE: If a symbol, specified in
8a V-type address constant, is also

identified by a wXTRN instruction
in the saRe scurce rr-cdule, it is
assigned the same type code as the
symtol in the WXTRN instructicn.

If an externaL symbol is identified
ty toth an EX7RN and WXTRN
instruction in the same source

•
module, tbe first declaration takes

, arecedence, and subsequent
eclarations are flagged with warning

messages.

152

WXTRN

Name Operation Operand

Sequence WXTRN One or more relocatable
symbol symbols separated by
or blank commas

Source Module. Entry in External
Symbol Dictionary

Symbol Type Code

FIRST START 0 FIRST SD

,. e EX: RN OUT,A __ • OUT ER
, ' ..
~ ii -ER

eWXTRN WOUT,A
•• WARNING •• ~

WOUT WX

• VCON DC v (WOUT) WOUT WX .
END

o Section G: Symbol and Data Definition

This section describes the assembly time facilities which
you can use to:

1. Assign values to symbols

2. Define constants and storage area~

3. Define channel command words.

By assigning an absolute value to a symbol and then using
that symbol to represent, for example, a register or Q

length, you can code machine instructions entirely in
symbolic form.

Gl - Establishing Symbolic Representation

You define symbols tc be used as
elements in your programs. This

~ symbolic representaticn is superior
~ to numeric representation 'because:

• You can give meaningful names
to the element~:

• You can debug a program more
easily, because the symbols are
cross-referenced to where they are
defined and used in your program.
The cross-referenced statement
numbers containing the symbols are
printed in your assembly listing.

Source Module

o

• • •

/.-

• You can maintain a program more
easily, because you can change a
symbolic value in one place and
its value will be changed throughout
a program.

Some symbols represent absolute
values, while others represent
relocatable address values. The
relocatable addresses are of:

instructions

• constants

• storage areas.

You can use these defined symbols
in the operand fields of instruction
statements to refer to the e .. instructions, constants, or areas
represented by the symbol.

FIRST

DATAREG
EIGHTY

• TW040
BASREG

• RELOC

• INSTR

• DATACON • TO

FROM

START
•

EQU 10
EQU 80
EQU 240
EQU 12
EQU •
· • BALR 12,0 • USING *,BASREG

·
B INSTR
• -

MVC TO,FROM r~
L DATAREG,DATACON
•

DC F_' 3'

DS CL{EIGHTY)

DS CL (TW040)

· •
END

......
U

Section G: Symbol and Data Definition 153

Assign1ng Values

You can create symbols and assign"
them absolute or relecatable values
anywhere in a source module with
an EQU instruction (see G2A). You
c~n use these symbols instead of
the numeric value they represent
in the operand of an instruction.

Defining and Naming Data

DATA CONSTANTS: You can define
a data constant at asserebly time
that will be used by the machine
instructions in their operations
at execution time. The three steps
for creating a data constant and
introducing it into your program
in syrebolic form are:

O. define the data

•• prov ide a labe 1 f or the data

•• refer to the data by its label.

O
The symbol used as a label represents

I the address of the ccnstant; it
is not to be confused with the

•
assembled oJ: ject code of the actual
constant.

Defining data constants is discussed
in G3.

LITERALS: You can also define data
at its point of reference in the
operand of a reachine instruction

~ by specifying a literal.

Literal constants are discussed
in G3C.

STORAGE" AREAS: You ~ust usually
reserve space in virtual storage
at assembly time fer insertion and
manipulation of data at execution
time. The three steps for reserving
virtual storage and using it in
your program are:

o. define the space

•• provide a label fer the space

•• refer to the space by its label.

154

Defining storage areas is discussed
in G3N.

Source Code Object Code

• in Hex

Equi valent {:
5,LABEL IOOOOOOCAI

5,=F'202' ----oj" 0

• .LABEL
'\;;;

DC F'202' -IOOOOOOOCA ---- .. ,

0 • •

• ST 5,SPACE

DS
o

F .SPACE

o

o

o

CHANNEL COl'H~ANP WORDS; When you
define a channel command word at
assembly time you create a command
for an input or out~ut operation
to be performed at execution time.
You should;

• define the channel command word

• provide a label fcr the word.

Channel corrrrand words are discussed J

in subsection G3C.

G2 - Defining Symbols

G2A -- IJ:HE E~U INSIJ:FUCIJ:'ION

Purpose

~he E~U instruction allows you to
assign atsolute or relecatable
values to symbols. You can use
it for the following ~ur~eses;

• 1. To assign single al:solute values
to syrrl:ols

8 2. 1]:0 assign the values of previously
defined syrr.tols or ex~ressiens te
new symbols, thus allowing you to
use different mnerrenics fer different
pur~oses.

~3. To comfute eXfres~icnS~bcse
values are unknown a~ coding time
or difficult to calculate. IJ:he

•
value of the expression is then

. assigned to a syrrl:cl.

INSTR BALR 12,0

o
--ABS EQU X'A2'

HEXA2

BEGIN

EQU ABS }

INSTR •

8 EXPR EQU A-(B+C)/33-D
\ , •

Section G: Symbol and Data Definition 155

Specifications

The EQU instruction can be used
anywhere in a source module after
the ICTL instruction, o~after any
source macro definitions, that may
be specified. -Note, however, that
the FQU instruc·tion can initiate
an unnamed control section (private
code) if it is specified before
the first control section (initiated
by a START or CSECT instruction) •

The format of the EQU instruction
statement is given in the figure
to the right.

DOC<o1'llyone()I?~iJid·.·. (~~p:ression 11
~:§c.:.,~~9'~, '"w,-w,- ·;."wiOJ;;." •.•. ,···..0,;.~'"'"

156

Expression 1 represents a value. It
must always be specified and can have
a relocatable or absolute value. The
assembler carries this value as a
signed four-byte (32-bit) number;
all four bytes are printed in the
program listings opposite the symbol.

Any symbols appearing in these three
expressions must have been previously
defined.

EXPRESSION 1 (VALUE): The assembler
assigns the relocatable or absolute
value of expression 1 to the symbol
in the name field at assembly time.

Name Operation

An ordinary EQU
symbol or
a variable
symbol

Operand

I ndicates the
absence of
Expression 2

o

o

o

o

If expression 2 is omitted, the assembler also assigns
a length attribute value to the symbol in the name field
according to the,length attribute value of the leftmost
(or only) term of expression 1. The length attribute value
(described in C4C) thus assigned is as follows ~ee figure

on following page) :

1. If the leftmost term is a lccation ccunter reference
(*), a self-defining term or a symtol length attritute

• value reference, the length attribute value is 1. Note
that this also applies if the leftwpst tern is a syntcl
that is equated tc any cf these values.

2. If the leftmost term is a symbol that is used 1n the name
field of a DC or DS instruction, the length attr1bute value

•
is equal to the implicit or explicit length of the first (or
only) constant specified in the DC or OS operand tield.

3. If the leftmost term is a symbol that is used in the
name field of a machine instruction, the length attribute

• value is equal to the length of the assembled instruction.

4. Symbols that name assembler instructions, except the DC
and OS instructions, have a length attribute value of one •

•
However, the name of a CCW instruction has a length

· attribute value of eight.

I
NOTE: The length attribute value assigned in cases 2-4 only
applies to the assembly-time value of the attribute. Its
value at pre-assembly time, during conditional assembly

, processing, 1S always 1.

Further, if expression 3 is omitted, the assentler assigns
a type attritute value cf ·U· tc the syntcl in the nane
field.

Section G: Symbol and Data Definition 157

Value
assigned
to
symbol
is:

SECTA

RR
RX
SS

FULL
AREA
TO
FROM

AOCONS

AOCCW

Absolute A
Absolute B
Relocatable C
Absolute 0

Relocatable E
Relocatable F
Relocatable G
Absolute H
Relocatable I

Relocatable J
Relocatable K
Relocatable L

Relocatable M

Relocatable N

158

Source Module

START 0
•

LR 3,4
A 3,FULL
MVC TO,FROM

·
DC F'33'
OS XL2000
OS CL240
OS CL80
•

DC AL1(A) ,AL2(B),AL3(C)

·
CCW 2,REAOER,X'48',80
•

EQU X'FF'
EQU L'FROM 0 EQU *+4
EQU A*10

EQU FULL j. EQU AREA+1000
EQU TO
EQU FROM-TO
EQU AOCONS

EQU RR je EQU RX
EQU SS

EQU SECTA

EQU AOCCW •

Length Attribute Value
assigned to symbol
in name field:

At Assembly Time At Pre-assembly Time

• •

.)'

1 1
1 1
1 1
1 1

4 1
2000 1

240 1
80 1

1 1

2 1
4 1
6 1

1 1

8 1

,.

(f-"'"
,)

o

o

o

o

:'~.,,,,p~:2 is
",spec , as ass ns s va ~i a len~th

O attribute value to the symbol in the name field. This
overrides the normal length attribute value implicitly
assigned from expression 1.

value

•
If expression 2 is a self-defining term, the assembler also
assigns the length attribute value to the symbol at
pr~-assembly time (during conditional assembly processing).

'k; ,*';,tl'".~~_.tl§ .. ~·.,'i.;;1'~".;'*~I.<I·· is
' specified, it must be a self.!: 'e ining ~term~ T.he assembler 'e assigns its EBCDIC value as a type attribute value to the

symbol in the name field. This value overrides the normal
type attribute value implicitly assigned from expression 1.
Note that the type attribute value is the EBCDIC character o equivalent of the value of expression 3.

Value Source Module Length Attribute Type Attribute
assigned Value assigned Value assigned

At At Pre-
Assembly auembly
Time Time

.1" J..K~'1' START • ·
AREA OS XL2000 2000 2000 X

· Implicit I
SOT EQU X'FF' Attribute 1 1 U

· Values
1 1 U

ASTERISK EQU *

Value of } A EQU AREA,1000 { 1000 1000 U
AREA

255 B EQU SOT,4 • 4 4 U
Value of 1
Location C EQU ASTERISK,4 4 4 U
Counter at
ASTERISK ./

0 EQU AREA"C IF I 2000 1

~}. E EQU SOT, ,C I N I 1 1
F EQU ASTERISK"C'A ' 1 1

G EQU AREA,lOOO,C ' 11 1000 1000 1
H EQU SOT,4,C cP' 4 4 F
I EQU ASTERIS:K , 4,C t A' 4 4: A

AREA,100 ,198 /'"
~ ~p ~

......... F J EQU 100 100

Section G: Symbol and Data Definition 159

Using preassembly Values

You can use the preassembly values assigned by the assembler
in conditional assembly processing.

If only expression 1 is specified, the assembler assigns a
preassembly value of 1 to the length attribute and a
preassembly value of U to the type attribute of the symbol.
These values can be used in conditional assenlbly (although
references to the length attribute of the symbol will be
flagged). The absolute or relocatable value of the symbol,
however, is not assigned until assembly, and thus may not be
used at preassembly.

~Jft_ ·.iliq.2..uq~;"t-~ •• ~~tlj;. %' .
.. explicit att~:i.b\lteva.lue. in

160

Expression 2 andexpressicul
self-~e~;t~ing te~s

o

o

o

o

THE SYMECL IN THE N}'ME FIELr: The assentlerassigns aT.
absolute cr relocatatle value, a length attritute value,
and a ty~e attribute value tc the symbcl in the name field.

The absolute or relocatable value of the symtol is assigned
at assembly time, and is therefore not available for
conditional assembly processing at pre-asse~tly tine.

G3 - Defining Data

This section descrites the re, tS, and CCw instructicr.s;
these instructions are used to define ccnstants, reserve
storage and s~ecify the contents of channel connand wcrds
respectively. Ycu can also ~rcvide a label for these
instructions and then refer to the data synbclically in
the o~erands of nachine and assenbler instructions. lhis
data is generated and storage is reserved at assently tine,
and used by the machine instructions at eXEcuticn tinE.

section G: Symbol and Data Definition 161

G3A -- THE DC INSTRUCTION

Purpose

You specify the DC instruction to
define the data constants you need
for program execution. The DC
instruction causes the assembler
to generate the binary representation
of the data constant you specify,
into a particular location in the
assembled source module; this is
done at assembly time.

TYPES OF CONSTANTS: The [C
instruction can generate the
following types of constants:

~ Binary constants -- to define bit
patterns

•
Character constants -- to define
character strings or messages

•
Hexadecimal constants -- to define
large bit patterns

O Fixed-Point constants -- for use
by the fixed-point and other
instructions of the standard set

•
Decimal constants -- for use by
the decimal instructions

162

•
Floating-Foint constants' -- for
use by the floating-~oint instruction
set

• Address constants -- to define
addresses mainly for the use of
the fixed-point and ether
instructions in the standard
instruction set.

0 FLAG

• CHAR

• PATTERN

• {FCON

• {peON
AREA

0 { ECON

• { ADCON

DC B'OOOlOOOO'

DC C'STRING OF CHARACTERS'

DC-;l X'FFOOFFOO'

L 3,FCON
DC F'lOO'

AP AREA,PCON
DC P'lOO'
DS P

,~.--;.\

, \

LE 2,ECON ~
DC E'lOO.50'

L 5,ADCON
DC A (SOMWHERE)

o

o

o

G3B -- GENERAL SFECIFICATIONS FOR
CONS'IANTS

'Ihe general format of the rc
instructions statenents is shc~n
in the figure to the right.

The symbol in the name field
represents the address cf the first
byte cf the assembled constant.

~ If several eperands are s~ecified,
the first ccnstant defined is

•
addressatle ty the syntcl in the
name field. 'Ihe other constants

•
can te reached ty relative
addressing.

Each cperand in a rc instruction
statenent ccnsists cf fcur subfields.
'Ihe fermat cf a rc instruction
operand is given in the figure tc
the right.

The first three sutfields describe
the censtant, and the fourth sutfield
specifies the noninal value cf the
constant to be generated.

Name Operation Operand

Any Symbol DC
or blank

IFIRSTCON

8FIRSTCON

I n the format
described in the

next figure

DC • r ,
F'2',X'A1',C'HUM'

D
DC
DC
DC

LA

CLI

Logical Equivalent

F'2'
X'A1'
C'HUM'

3,FIRSTCON

5,4(3)

•

Required Order
if all subfields
are specified

Section G: £yrr.bo1 and Data ~efii'lition 163

Rules for the DC Operand

• 1. The tyte subfield and the nominal
~ value mus always be s~ecified.

2. The duplication factor and
modifier subfields are optional.

~3. When multiple operands are
specified, they can be of different
types.

•
4. When InultiEle nominal values
are specified in the fourth sutfield,
they must be separated by commas
and be of the ~ame type.

• 5. The descriptive subfields aJ;ply
to all the nominal values.

NOTE: Separate constants axe
generated for each separate oJ;erand
and nominal value specified.

6. No blanks are allowed:

• a. Between sUbfields

• b. Between multiple oJ;erands

c. Within any subfields -­
unless they occur as part of

~ •

164

the nominal value of a character
constant or as part of a character
self-defining term in a modifier
expression .or in the duplication
factor subfield.

0 o
MUST DC F ' 200 '

~ • ~~"l
OPRNDS DC C'FIRST',H ' 99 1 ,FL3 1 101' -
SEVERAL DC A(FIRST,SECOND,THIRD)

IVALUES DC F ' 100,200,300 ' I • D Logical Equivalent
Multiple
nominal
values not

SEVERAL DC A(FIRST)
allowed for
character

DC A (SECOND) constant
DC A(THIRD)

VALUES DC F ' 100 '
DC F ' 200 '
DC F ' 300 '

Z~
~IXED DC AL3(ONE,TWO) ,2F ' l,2,3'1

D Logical Equivalent

MIXED DC AL3(ONE)
DC AL3 (TWO)
DC Fill
DC F'2'
DC F ' 3'
DC Fill
DC F'2'
DC F ' 3 1

RETWEEN DC lOFL3 1 +456'
II I 0

SEVERAL DC C'BOO HOO' F'95' H'2'

If If •

WITHIN
A

DC C'MESSAGE HAS BLANKS'
,.

DC XL(A+B-C'N 0 1 +3) 'FOt

I •

.~ o

o

0

0

Information acout Constants

SYMBOLIC ADDRESSES OF CONSTANTS:
Constants defined by the DC
instruction are assembled into an
object module at the location where
the instruction is specified.
However, the type of ccnstant being
defined will determine whether
the constant is to be aligned on
a particular storage boundary or
not. (see celow under Alignment

• of Constants) • The value of the
symbol that names the DC instruction

~is the address of the leftmost byte
(after alignment) of the first or
only constant.

.:-

THE LENGTH ATTRIEUTE VALUE OF SYMBOLS
NAMING CONSTANTS: The length
attribute value assigned to the
symbols in the name field of
constants is equal to:

• The implicit length of the constant
when no explic1t length is specified
in the operand of the ccnstant,
or

~The eXElicitl~ sEecified length
of the constant.

NOTE: If more than cne oferand
is present, the length attribute
value of the symbol is the length
in bytes of the first constant
specified, according to its
implicitly or explicitly specified
length.

Source Code

HEXCON DC

FULLCON DC

DC

Type of Implicit
Examples constant lath'

B as needed DC B'lOOlOOOO'

C as needed DC C'WOW'
DC CL8'WOW'

X as needed DC
DC

H 2 DC H'32'
F 4 DC FL3'32'

P as needed DC P'123'
DC PL4'123'

Z as needed DC Z'123'
DC ZLIO'123'

E 4
D 8
L 16

Y 2 DC Y(HERE)
A 4 DC ALI (THERE)

S 2
V 4
Q 4

1 Depends on type

Object Code
in Hex

Value of Length
Attribute 2

1

3
8

3
2

2
3

2
4
3

10

2
1

2 Depends on whether or not an explicit length is specified in constant

Section G: Symbol and Data Definitiun 165

ALIGNMENT OF CONSTANtS; The
assembler aligns constants on
different boundaries according to
the followin9:

~on boundaries implicit to the type
of constant, when no length
specification is supplied.

e on byte boundaries when an explicit
length spec1f1cat10n is made.

166

Bytes that are skipped to align
a constant at the proper boundary
are not considered part of the
constant. They are filled with
zeros. Note that the automatic
alignment of constants and areas
does not occur if the NOALIGN
assembler option has been specified
in the job control language which
invoked the assembler.

NOTE: Alignment can be forced to
any boundary by a preceding DS (or
DC) instruction with a zero
duplication factor (see G3N). This
occurs when either the ALIGN or
NOALIGN option is set.

IType of -

B

C

X

H

F

p

Z

E

D

L

y

A

S

V

Q

,.

I Implicit Examples ...
A '.1

byte

byte

byte

halfword
DC H'2S"
DC HL3'2S'

~ fu II word DC F'225'

DC FL7'225'

byte DC P'2934' ~
byte DC Z'1235'

DC ZL2'123S'

fu II word DC E'1.2S' ~
DC JL 5 ' 1 • 25 '

doubleword DC SD'95'

DC SDL7'95'

doubleword DC L'2.57E65'

halfword DC Y(HERE) I)
fu II word DC AL3 (THERE)

halfword

fullword

fullword

!"oependS ontype D

.'
Boundary
Alignment

-
halfword
byte

fu II word

byte

byte

byte

byte

fu II word

byte

doubleword

byte

~nl

halfword

byte

~ .. ' "V

o Fadding and ~runcation of Values

The nominal values s~ecified fcr ccnstants are assembled
into storage. The amount of space availatle for tte r.cnir.al
value of a constant is deternined:

1. Ey the ex~licit length specified in the second c~erand
sutfield, cr

2. If nc ex~licit lengtt is s~ecified, by the im~licit
length according to the type of constant defined (see
Appendix VI} •

PADCING: If Rore s~ace is available
than is needed to accommodate the
binary representation cf the nominal
value, the extra space is padded:

Source Code

4It with binary zeros on the left for
the Einary (B), hexadecimal (X),
fixed-point (H,F), packed decimal
(~, and all address (A,Y,S,V,Q) o constants

I ~With EBCDIC zeros en the left

DC BL2'lOl'

o

, (X' FO') for the zoned decimal (Z)
constants

.With EBCDIC blanks cn the right
I (X'40') for the character (C)

constant

NOTE: Floating-point constants
(E,D,l) are also padded on the right

with zeros (see G3I) •

DC XL3 'FFA1'
DC X'FFA'

DC H'255'
DC FL3'255'

DC P'1234'
DC PL4'l23'

DC AL3(5l2)

DC ZL4'l23'
DC ZL4'3'

DC C'FOUR'

DC CL5 'FOUR
DC CL5 'A'

0

}-

Page of GC33-40 10-5
As Updated 28 Dec 19t1l
By TNL GN20-9372

Object Code

2 bytes

Binary
Digits

Hexadeci mal
Digits

Section G: Symbol and Data Definition 167

TRUNCATION: If less s~ace is
available than is needed to
accommodate the nominal value, the
nominal value is truncated and part
of the constant is lost. Truncation
of the nominal value is:

o On the left for the binary (B),
hexadecimal (X), decimal (P and
~ , and address (A and Y) constants.

•
On the right for the character (e)
constant •

•
However, the fixed-Feint constants
(H and ~ will net be truncated,
but flagged if significant bits
would be lost through truncation.

NO~E: Floating-point constants
(E,e,L) are net truncated; they
are rounded (see G3I).

NOTE: The above rules for padding
and truncation also apply when the
tit-length specification is used
(see below under Subfield 3:

Modifiers) •

Subfield 1: Duplication Factor

The duplication factor, if specified,
causes the no~inal value or multiFle
nominal values specified in a o constant to be generated the number
of times indicated by the factor.

•
It is applied after the nominal
value or values are assembled into
the constant.

The factor can be specified by an
.unsigned deci«al self-defining term

e or by an absolute expreSS10n enclosed
, in parentheses.

168

The expression should have a positive
value or be equal to zero.

Any symbols used in the expression
must be previously defined.

Source Code

DC BLl'OOOlOOOOlOl~

DC XL3'FFllFOFO'

DC PL2'l234S' 0 DC ZL3'l234S'

DC AL2(l3l072)

DC CL2'FOUR' }. DC CLl'ABCDE'

DC }. DC FLl

Nominal Values
too large for
space provided

SINGLE DC~'240'

LTIPLE DC 3FLl'3,4,S'

•

-
Truncation

Object Code

1 byte

ie * ERROR* *

* *ERROR* *

Binary
Digits

Hexadecimal
Digits

~
~ 14

1 byte

Duplication

Object Code
in hex

EXPR DC (A-B+lO-3)A(ADDR)

o

0

()

o

o

o

o

•

NOTES:

1. The value of a location counter
reference in a duplication factor is
the value before any align to
boundaries, according to the type of
constant specified.

2. A duplication factor of zero
is permitted with the following
results:

a. No value is assembled.

t. Alignment is fcrced according
to the type of constant s~ecified,
if no length attribute is present
(see atove under Alignment of

Constants) •

c. The length attribute of the
symbol naming the constant is •
established according to the
implicitly or explicitly specified
length.

3. If duplication is specified for
an address constant containing a
location counter reference, the
value of the location counter
reference is incre~ented by the
length of the constant before each
duplication is performed (for
examples, see G3J) •

Subfield 2: Type

~he type subfield must be specified.
It defines the type cf constant
to be generated and is specified
ty a single letter cede as in the
figure to the right.

The type specificaticn indicates
. to the assembler:

1. How the noreinal value(s) specified
in subfield 4 is to be assembled;
that is, which binary representation

O or machine format the object code
of the constant must have.

2. At what toundary the assembler
aligns the const~nt, if no length
specification is present.

3. How much storage the constant
is to occupy, according to the
implicit length of the constant,
if no explicit length specification
is present (for details see above,
under padding and Truncation of
Constants) m

•
Page of GC33-4010-5
As Updated 28 Dec 1981
By TNL GN20·9372

Halfword
boundary

ZERODUP DC OH'3'

• L' ZERODUP=2

NOALIGN DC _ ~3'3'

.. L'NOALIGN=3

Type

C Character a·bit code for each Character
X Hexadecimal 4-bit code for each hexadecimal digit
B Binary Binary format
F Fixed-point Signed, fixed-point binary format;

normally a fullword
H Fixed-point Signed, fixed-point binary format;

normally ahalfword
E Floating-point Short floatin~-point format; normally a

fullword
D Floating-point Long floating-point format; normally a

doubleword
L Floating-point Extended floating-point format; normally

two doublewords
P Decimal Packed decimal format
Z Decimal Zoned decimal format
fA. Address Value of address; normally a fullword
y Address Value of address; normally a halfword
S Address Base register and displacement value;

a halfword
V Address Space reserved for external symbol

addresses; each address normally a
fullword

•..•.. Spece .. ~ forexternaJ dummy section

• ,0,

Object Code
in hex

Examples: DC P'+234' 1234CI

DC C'ABC' ICIC2C31

DC X'FO' II2J
DC H'2' 10002\

Section G: Symbol and Data Definition 169

Subfield 3: Modifiers

~he three modifiers that can be
specified to describe a constant
are:

~ The length modifier (1), which
explicitly defines the length in
eytes desired for a constant.

a 1he scale modifier (S), which is
only used with the fixed-point or
floatingpoint constants (for details
see below under Scale Modifier) •

4ItThe exponent rrodifier (E), that
is only used with fixed-point or
floating-point constants, dnd which
indicates the power of 10 by which
the constant is to be IDultiflied
before conversion to its internal
binary format.

~If multiple modifiers are used,
they must appear in the sequence:
length, scale, exponent.

LENGTH MODIFIER: The length modifier
indicates the number of bytes of
storage into which the constant
is to be assembled. It is written
as Ln, where n is either of the
follOwing:

~ A decimal self-defining term

a An atsolute expressicn enclcsed
in parentheses. It must have a
positive value and any syrrhols it

4It contains must be previously defined.

170

LENGTH

SCALE

EXPON

~LL3

DECSDT DC

EXPR DC

• ...-
DC XLlO'FF'

DC FS8'35.92 i .-• DC EE3'3.4l4'
'-.-' • DC D.hl~~' 2.7182'

I

•

• FL3'9999'

• XL(SYMBO~D)'F7A'

",

o

o

When the length modifier is
specified:

o Its value determines the number
of bytes of storage allocated to
a constant. It therefore determines
whether the nominal value of a
constant must be Fadded or truncated
to fit into the space allocated
(see above under Padding and
1runcation of Constants).

~No boundary alignment, according
to constant type, is provided (see
above under Alignment of Constants).

~Its value must not exceed the maximum
length allowed for the various types
of constant defined. (For the
allowable range of length modifiers,
see the specifications for the
individual constants and areas from
G3~ through G3N.)

Source Code

PADTRUNC DC

IMPLICIT DC C'tlCD~'

For character constant: when no
length is specified, the whole con­
stant is assembled into its implicit
length

NOALIGN DC FL3'5l3'

Assembled at the next
available (byte) boundary

Object Code
in hex

TOOLONG DC FL9'lO' *.LENGTH ERROR •• •

Section G: Symbol and Data Definition 171

Bll-!ENG~H SFECIFIC}'TICN: The length ~odifier can te
specified tc indicate the nu~ter cf bits intc which a
constant is to be assemtled. ~he tit-length specificaticn
is written as L.n, where n is either of the following:

}. decimal self~defining term

An absolute expression enclosed in parent~eses. It nust
have a positive value and any synbcls it ccntains must
be previously defined.

The value of n Rust lie tetween 1 and the nunber of bits
~ multiple of 8) that are required to «ake up the naxinun

number of bytes allowed in the type of constant teing
defined. T~e bit length-specification cannot be used with
the S, V, and ~-type constants.

Source Code j"

HEXCHAR DC XL.4'F'

When only one operand and one nominal
value are specified in a tC
instruction, the following rules
apply:

•
1. The bit-length specification
allocates a field intc which a
constant is to be assembled •

• The field starts at a byte boundary,

•
and can run over one or more Eyte
boundaries, if the Eit-length

• specified is greater than 8. •

byte

Object Code
Binary digits

byte

F •
If the field does not end at a byte HEX3CHAR DC XL.12'FFF'
boundary, if the bit-length specified

•
is not a multiple of 8, the remainder
of the last byte is filled with
zeros.

172

byte

o

o

o

o

o

c

• 2. The nominal value c.f the constant
is assembled into the field:

•
Starting at the high order end for
the C, E, D, and L type ccnstants.

• Starting at the low order end for
the remaining types of constants
that allow bit-length s~ecification.

The nominal value is padded or
truncated to fit the field (see
above under Padding or Truncation
of Constants) •

~ Padding of character constants is
with hexadecimal blanks, X'40';
other constant types are ~added
wi th zeros.

NOTE: The length attribute value
of the symbol naming a DC instruction
with a specified bit-length is equal
to the minirr-um number of integral
bytes needed to contain the bit­
length specified for the constant.
L'TRUNCF is equal to" Thus, a

• reference to TRUNCF would address
the entire two bytes that are
asseml:led.

Source Code

PADC DC

PADF DC FL.13'S79'

TRUNCC

• TRUNCF DC FL.13'8193'

Object code
binary digits

Section G: Symbol and Data Definition 173

When rrore tha~ ene c~erand is
specified in a [C instruction or
more than ene nerrinal value in a
[C o~erand, the above rules atout
tit-length sFecificaticns alse
apFly, exce~t:

•
1. 1he first field allccated starts
at a tyte bcundary, tut the

•
succeeding fields start at the next
available bit.

2. After all the constants have
teen asserrtled intc their res~ective
fields, the bits remaining to make

•
up the last byte are filled ~ith
~.

N01E: If du~licaticn is specified,
filling with zeros occurs once at
the end of all the fields occu~ied
by the du~licated constants.

O 3. 1he length attribute value cf
· the symbol naming the tC instruction

is equal te the nurrber cf integral

174

bytes that ~ou1d te needed te ccntain
the bit-length specified for the
first constant tc be asserrbled.

8 L 1 VALUES=2

Source
Code VALUES DC FL.10'161,21,57'

Object
Code

8 L 'OPERANDS=1

Source OPERANDS DC FL.7'8' ,CL.IO'AB' ,XL.14'C4 1

Code

byte byte

Object ~~~ •• I~~~II~.
Code

,.

Truncation of
B at right

i-"'"
~J

o

o

o

o

• • •

STORAGE REQUIREMENT FOR CONS~ANTS:
The total amount of storage required
to assemble a DC instruction is
the sum of:

1. The reguirerr:ents for the
individual DC oeerands specified
in the instruct10n.

The requirement of a DC operand
is the product of:

a. The length (implicit or
explicit) ,

b. The number of ncrr-inal values,
and

c. The duplication factor, if
specified.

8 2. The number of b~tes skipped
for the toundary a11gnrrent between
different operands.

..
SCALE MODIFIER: The .cale modifier
specifies the amount cf internal
scaling that is desired:

Binary digits for fixed-point (H,F)
constants

He~adecimal digits fer fleating­
point (E,D,l) constants

it can only be used with the above
types of constant.

The scale modifier is written as
$n, where n is either:

o A decimal self-defining term or

•
~n absolute expression enclosed
1n parentheses.

~'~ .. l;~
.p'-~"y'

Both types of specification can
be preceded by a sign; if no sign
is Fresent, a plus sign is assumed.

SPACE DC 10H'3,4,5',10FL3'6,7,S'

Space for Storage'R~uirements

_I OPERAND 1
OPERAND 2

• ALIGNMENT

x;,.
x .::';1..0 • Second operand not

al igned due to presence
of length specification

TOTAL

60
90

o

11501
Bytes

ALIGN DC C'ABC',F'9,10,11'

_/
OPERAND 1

OPERAND 2

• ALIGNMENT

Examples: -DC HS-132'5.55'

9,,\.
X ~' .•••• ;~~l.)
x i.i J" >lJ

First operand can
end on any byte
boundary

3

12

0-3

TOTAL 115-1S\
Bytes

Scale

Allowable Range for
Scale Modifier

Fixed-point
- 187

DC HS3~
Constants through

(H,F) +346

DC FS(A+B-C*3} '2.3'

Floating-point
Constants

DC ES12'19.3"

I
(E,D) o through 14

DC LS22'3.414' (L) o through 28

Section G: Symbol and Data Definition 175

SCALE MODIFIER FOR FIXEP-POINT
CONStANTS: The scale modifier for
fixed-point constants s~ecifies
the power of two by which the fixed­
point constant must be multiplied
after its nominal value has been

• converted to its binary

•
representation, but before it is
assemcled in its final "scaled"

•
form. Scaling causes the binary
point to move from its assumed f1xed
position at the right of the
rightmost bit position.

176

DC H'2'

-J'

Object Code

Binary digits

OOOOOOOofOOOOO~

OOOOOO°of°OOlO~ol

OOOOOOO+OOOl~

OOOOOOOofOOOlO.Oll

o

o

o

o

~O'IES:

1. When the scale ncdifier has a
~ositive value, it indicates the 4It number of binary positions to te
occu~ied ty tEe fractienal ~crticn
of the binary number.

2. When the scale nedifier bas a
negative value, it indicates the

•
number of binary lositions to te
deleted fron the nteger Eorticn
of the binary numcer.

3. When ~esitions are lest tecause
of scaling (or lack of scaling) ,

~ rounding occurs in the leftmost­
tit of the lest ~crticn. the
rounding is reflected in the 4It rightnost pcsiticn saved.

Source Code

DC

DC

Converted to Binar~
Representation

Object Code

Btnary digits

Converted to Binary representation

Converted to Binary representation

Binary
point

Binary
point

.I----+-------f ,.

000001111 •
Converted to Binary representation

Binary
point

1

section G: Symbol and Data Definition 177

SCALE MODIFIER ~:OR FLOA'IING-POINT
CONSTANTS: The scale modifier for
floating-point constants roust have

O
a posi ti ve value. It speci fies
the number of hexadecimal positions
that the fractional portion of the
binary representation of a floating-
point constant is to be shifted

~to the right. The hexadecimal point
is assumed to be fixed at the left
of the leftroost position in the
fractional field. When scaling
is specified, it causes an
unnormalized hexadecimal fraction
to be assembled (unnormalized is
when the leftmost positions of the
fraction contain hexadecimal zeros).
The magnitude of the constant is

•
retained tecause the eXfonent in
the characteristic portlon of the
constant is adjusted u~ward
accordingly. When hexadecimal

OpoSitions are lost, rounding occurs
in the leftmost hexadecimal position
of the lost portion. The rounding

•
is reflected in the rightmost
position saved.

EXPONENT MODIFIER: The exponent
modifier specifies the power of
10 by which the nominal value of
a constant is to be multiplied
before it is converted to its
internal binary representation.
It can only be used with the fixed­
point (H,F) and floating-point
(E,D,L) constants. The exponent
modifier is written as En, where
n can be either of the following:

o A decimal self-defining term.

.. An absolute expression enclosed
V in parentheses.

DOS Any symbols used in the ~xpression
most be" previously defined.

The decimal self-defining term or

•
the express ion can be ~receded by
a sign: if no sign is present, a
plus sign is assumed. The range
for the expon~nt modifier is -85
through +75.

178

Source Code

DC E'4'

DC ES2'4'

DC E'3.3'

I • • .L

Object Code
in Hex

1"4 31010@ 000 I
I • Unnormalized

Fraction

ROUND DC ES2'3.3'

Exponent

Source Decimal Value Object Code
Code before conver-

sion to binary Binary digits

form

DC H'4' 4 I 0 0 0 0 0 0 0 o~ 00001001 • 1000000011100100001 DC HE2'4' 400

•-
DC FE (A-B::'3) '4 -
, • :

DC HE-2'400' 4 100000000100 000100\

("~.,
I~",,)j

(,...-.. _.-..... \

I ! \,--,

o

o

o

NOTES:

• 1. 'the exponent ~odifier is not
to be confused with the expcnent

•
that can be specified in the nominal
value subfield of fixed-~oint and
floating-point constants ~ee
sections G3G and G3I).

•
'l'he exponent modifier affects each

nominal value specified in the J

operand, whereas the ex~onent written
as part of the nominal value subfield

•
only affects the ncroinal value it
follows. If both types of exponent
specification are ~resent in a DC
operand, their values are

• algel::raically added together before
the nominal value is converted to
binary form. However, this sum
must lie within the permissible o range -85 thrcugh + 75 •

•
2. The value of the constant, after
any exponents have been applied,
must be contained in the implicitly
or explicitly specified length of
the constant to be assembled.

Subfield q: Noroinal Value

The nominal value sub field must
always be specified. It defines
the value of the ccnstant (or
constants) described and affected
by the sul::fields that ~recede it.
It is this value that is assend:led
into the internal binary
representation of the constant.
~he formats for s~ecifying nominal
values are described in the figure
to the right.

LI,OSOnly one nominal value is allowed
. 1nbinary(S) and bexadecimal.·""lX)

constants.

How nominal values are specified
and interprete1 by the asserebler
is explained in the subsections
that descril::e each individual
constant, begiDlling at G3:c., - -

•
DC ~~'2.25'~

DC EE+2'2.25,2.25,225'

DC

DC FE-20'2.25E+80'

Values Assembled
in decimal

225,2.25,2.25

225,225,22500

225

o
2.25xl060

Nom. Value

Formats of Nominal
Value Subfields

Constant
Type

C

B'

X
H
F
p

Z
E
0
L ..

A} Y Address e Const.nts

-

Single
Nominal
Values

'Value'

'Value'

(Value)

Multiple
Nominal
Values

Not allowed

'/' value,• val ue:

I multiple values must I
.1 be separated by commas

-\

(V~. v.lue valuei

section G: Symbol and Data Definition 179

Page of GC33-4()1D-4
Revised Feb. 25, 1975
By TNL: GN33-8193

G3C -- LITERAL CONSTANTS

Purpose

Literal constants allow you to
define and refer to data directly
in machine instruction operands.
You do not need to define a constant
separately in another part of your
source module. The difference
between a literal, a data constant,
and a self-defining term is described
in CS.

Specifications

A literal constant is specified
in the same way as the operand of
a DC instruction. The general rules
for the operand subfields of a DC
instruction (as described in G3E
abov~ also apply to the subfield
of a literal constant. Moreover,
the rules that apply to the
individual types of constants, as
described in G3D through G3M, apply
to literal constants.

HOwever, literal constants differ
from CC operands in the following
ways:

O • Literals must be preceded by an
equal sign.

•• Multiple operands are not allowed •

•
• 'I"he duplication factor must not
be zero.

180

o

o
L 3,=F'32'

• MVC FIELD(24},=6CL4'CANT'

,.

o

o

o

o

G3C -- EINARY CONS~AN~ (B)

Furl=cse

The-tinary ccnstant allcws ycu tc s~ecify the I=recise tit
I=attern ycu :want assemtled into storage.

Specifications

The ccnstants of the sutfields defining a binary constant
are described in the figure telow.

O NOTE: Each tinary ccnstant is assenbled into the integral
number of bytes required to contain the tits sl=ecified.

Binary Constants

Subfield a Constant Type

Binary (B)

1. Du lication Factor Yes

2. Modifiers

Implicit Length: (Length
Modifier not present)

Alignment:

As needed

B DC B'10101111' L'B

C DC B'101' L'C

(Length Modifier not present) Byte

Range for Lengtrn
f

Range for Scale:

Range for Exponent:

4. Nominal Value

Represented by:

Enclosed by:

Exponent allowed:

Number of Values per
Operand:

Padding:

Truncation of
Assembled Value:

Not allowed

Not allowed

Binary digits
(0 or 1)

Apostrophes

No

Multiple

With zeros
at left

At left

Data Constants

Section G: Symbol and Data Definition 181

G3E -- CHARAC!ER CONS!AN! (C)

Fur~ose

The cr.aracter constant allo~s yeu tc s~ecify character
strings such as error messages, identifiers, or ether text,
that the asseabler ~ill convert into their cinary (EECrIC)
representation.

Specificaticns

!he centents of the sucfields defining a character cc~stant
are descriced in the figure en the c~pesite ~age.

~ Each character s~ecified in the neainal value subfield
is assembled into one cyte.

Multi~le noainal values are net allc~ed, because if a comma
is s~ecified in the nominal value sutfield, the asseatler

• considers the comma a valid character and therefore ';/
asseacles it intc its cinary (EBCDIC) re~resentatie~. .

NOTE: When apostrophes or ampersands are to be included
in the asseabled ccnstant, doutle a~ostrephes or dcutle

•
ampersands aust ce s~ecified. !hey are asseabled as single
apostro~hes and am~ersands.

182

o

~""'­
(\

U

o

o

o

Character Constants

Subfield 3. Constant Type

Character (C)

1. Duplication Factor Yes

2.~ As needed

Implicit Length: (Length
Modifier not present) C DC C'LENGTH' L'C 6 • Alignment: Byte
(Length Modifier not ''W

present)

Range for length:

Range for Scale:

Range for Exponent:

4. Nominal Value
Represented by:

Enclosed by:

Exponent aUowed:

Number of values per
Operand:

Padding:

Truncation of
Assembled value:

Not allowed

Not allowed

Characters (All 256
&bit combinations)

Apost rophes

One

With blanks at right
(X'40')

At right

DC C'A' 'B'

Assembled
A'B
A&B

DC C'A&&B'

DC C'A,B'
Assembled A

Object Code (hex).

ICI16BI c21

s~ction G: Symbol and Data Definition 183

G3F -- HEX~tECIM~L CCNS!~~T (X)

Furt:0se

You can use hexadecirral ccnstants to generate large tit
~atterns rr.ore conveniently than ~ith binary constants.
~lso, the hexadecimal values you specify in a source ncdule
allow you tc cOlq:are theIr.. directly "ith the hexadecimal
values generated for the object code and address locaticns
printed in the ~rograrr listing.

Specificaticns

!he contents of the sutfields defining a hexadecinal
constant are descrited in the figure on the o~posite fage.

~ Each hexadecimal digit specified in the noninal value

•
sutfield is assent led intc four 1:i ts (their binary ~a. tter9S
can be found in C4E) • The implicit length in tytes cf a .
hexadecimal ccnstant is then half the nurrber of hexadecimal

•
digits specified (assuming that a hexadecinal zerc is added
to an odd nurrter cf digits) •

,.

184

~.
\,,-p!

o

o

o

Subfield

1.Duplication Factor
allowed

2.Modlfiers
Implicit Length: (Length
Modifier not present)

Alignment:
(Length Modifier not

Range for Length:

Range for Scale:

Range for Exponent:

4. Nominal Value

Represented by:

Enclosed by:

Exponent allowed:

Number of Values
per Operand:

Padding:

Truncation of
Assembled value:

Hexadecimal Constents

3. Constant Type

Hexadecimal (X)

Ves

As needed

X DC X'FFOOA2'
Y DC X'FOOA2'

Byte

.1 through .2048 (bit length

Not allowed

Not allowed

Hexadecimal digits (0
through 9 and A through
F)

Apostrophes

Multiple

With zeros at left

At left

.. Onty ...

~

L'X
L'Y

DC X'lF'

DC X'91F'

Obiect Code (hex)

10001111111

. .' .

Sect.ion G: Symboi '''and Oata Definition 185

G3G -- FIXE[-FeINT CCNSTANTS (E AN[F)

Purpose

Fixed-point constants allow you to introduce data that
is in a fcra suitable fer the eperatiens of the fixed-point
rr-achine instructions of the standard instruction set.
The ccnstants you define can alse be autematically aligned
to the prcper fullword or halfword toundary for tte
instructicns that refer te addresses on these boundaries
(unless the NCALGN option has teen specified; see (2) •

You can perform algetraic functicns using this type of
constant because they can have positive or negative values.

Specifications

The contents cf the subfields defining fixed-point constants
are described in the figure on the opposite page.

~ 1he nominal value can be a silned (plus is Assumed if the/

•
number is unsigned) integer, raction, or aixed number.
follo~ed by an exponent (positive or negative). the

O exponent must lie within the perrr.issible range. If an
· exponent rr.odifier (see G3E) is alsc specified, the algebraic
~ ef the exponent and the exponent mOdifier aust lie •
within the perrr-issible range.

186

l'i-~\

1~""J»

(" .,"'--.. '\
... ;'

o H or F

Fixed·Point Constants

Subfield 3. Constant T~ee

: Fuliword(F) Halfword (H)
J

1. Duelication Factor
Allowed Yes Yes

2. Modifiers

Implicit Length: (Length 4 bytes 2 bytes
Modifier not present)

Alignment: Full word Half word
(Length Modifer not present)

.
Range for Length:

1 through 8 (byte length) 1 through 8 (byte length)
.1 through .64 (bit length) .1 through .64 (bit length)

Range for Scale: - 187 through + 346 - 187 through + 346

Range for Exponent: - 85 through + 75 • - 85 through + 75 DC HE+90'2E-88'
value = 2xlO 2

o 4. Nominal Value Decimal digits (O through 9) Decimal digits (0 through 9)
Represented by:

I DC F'-200' DC H'+200'

DC FS4'2.25' DC HS4' .25'

Enclosed by: Apostrophes Apostrophes

Exponent allowed: Yes • Yes

DC/F'2E6' DC H '2E-6'

Number of Values
per Operand:

Multiple Multiple

Padding: With zeros at left With zeros at left

Truncation of Not allowed Not allowed
Assembled value: (error mes:age issued)

o
Section G: Symbol and Data Definition 187

Some examples of the range of values
that can be assembled into fixed­
point constants are given in the
figure to the right.

Length Range of Valu6~ that

0 can be Assembled

The range of values depends on the

•
imPliCitl~ or-,explicitly specified
length (1 scaling is disregarded) •
If the value specified for a
particular constant does not lie
within the allowable range for a
given length, the constant is not
assembled but flagged as an error.

A fixed-~cint constant is asse«bled as fcllo~s:

8

4

2

1.

1. ~he s~ecified num~er, multiplied ty any exponents,
is converted to a tinary numter.

2. Scaling (see G3E) is ~erfcrRed, if s~ecified. If a
scale modifier is not provided the fracticnal portion cf
the number is lost.

3. The tinary value is rcunded, if necessary. ~he
resulting number ~ill not differ from the exact nURter
specified ty Rore than cne in the least significant 'bit
~osition at the right.

4. A negative nUR~er is carried in 2's cOR~lement forrr.

S. Cu~lication is a~~lied after the constant has been
asseRt:led.

G3H -- CECIMAL CONS~AN~S (P AND Z)

Furpcse

The decimal ccnstants allc~ ycu tc intrcduce data that

_2 63

_2 31

_215

_2 7

is in a forre suitable for the operations of the decinal
feature machine instructicns. ~he ~acked decimal constants
(P-ty~e) are used for processing ty the deciRal instructicn
se~. The zcned decirral ccnstants (Z-ty~e) are in the form
~BCCIC representation) that you can use as a print inage
(exce~t the digits in the rightmost tyte).

Specifications

The contents cf the sutfields defining decimal constants
are described in the figure on the opposite page.

~he nominal value can t:e a signed (~lus is assumed if the
nun:ber is unsigned) decimal number. A dec7!r'.al ~oint can
be written any~here in the numter, tut it does net affect

•
the assembly of the constant in any way. ~he specified
digits are assurred tc ccnstitute an integer. Decimal
constants are assemt:led as followS:

188

•
FAC:KEt CECI~AI CCNSTAN~S: Each digit is ccnverted into.
its 4-bit binary equivalent. The sign indicator is
asserrbled intc the rightmost four tits of the ccnstant.

O
ZONEC D~CIMAL CONS~AN~S: Each digit is converted intc •

· its 8-bit EECtIC representation. The sign indicatcr
replaces the first fcur ~its cf the lo~-crder byte of the
constant.

through

"

"

"

263 _1

231 _1

215 _1

27_1 -

o

o

o
I

o

P or Z

Page of GC33-40 10-5
As Updated 28 Dec 1981
By TNL GN20-9372

Decimal Constants

Subfield 3. Constant Ty~e

Packed (P) Zonec1 (Z)

1. Duelication Factor
Yes Yes

Allowed

2. Modifiers

Implicit Length: (Length As needed As needed

Modifier not present) P DC P'+593' Z DC Z'-593'
L'P = 2 L'Z = 3

Alignment:
(Length Modifer not present Byte Byte

Range for Length: 1 through 16 (byte length) 1 through 16 (byte length)
.1 through .128 (bit length) .1 through. 128 (bit length)

Range for Scale: Not allowed Not allowed

Range for Exponent: Not allowed Not allowed

4. Nominal Value Decimal digits (0 through 9) Decimal digits (0 through 9) DC P' 5.5'

DC P'+555' DC Z'-555'
lol5151 c 8 Represented by:

8 Is(sl;'ce ~~IDISI DC P 1 55'

Enclosed by: Apostrophes Apostrophes •
Exponent allowed: No No

Number of Values
per Operand: Multiple Multiple

With Binary zeros With E BCDle zeros

Padding: at left (XIFO')
at left

Truncation of At left At left
Assembled value:

- Section G: Symbol and Data Definition 189

the range of values that can be
assemcled into a decireal constant
is shown in the figure to the right.

Type of Decimal
Constant

PACKED

Range of Values that
can be Specified

10 31 _1 through _10 31

ZONED 1016 _1 through _10 16

G3I -- FLOAtING-POINt CONStANtS (E, 0, and 1)

Floating-~oint constants allow you to introduce data ttat
is in a forn suitacle fcr the c~erations ef the floating­
~oint feature instruction set. These censtants have tte
following advantages ever fixed-Feint censtants.

1. You do not have to consider the fractional perticn ef
a value yeu sFecify, ncr ~orry atcut the ~esitien ef tte
deei~al ~eint when algecraie o~erations are to be ~erferroed.

2. Yeu can specify coth much larger and nuch smaller values.

3. You retain greater Frocessing Frecision, that is, yeur
values are carried in more significant figures.

Specificaticns

the ccntents of the sucfields defining floating-~eint
constants are descrired in the figure cn the o~~osite Fage.

~ the neminal value can be a si1ned (plus is assuned if the
numl:er is uns igned) integer, racticn, cr nixed number.
folle~ed by an exponent (~ositive or negative). the

~exponent must lie within the permi$sitle range. If ar.
exponent rrodifier (see G3B under ~cdifiers) is also
specified, the algebraic sum of the exponent and the
exponent mOdifier must lie within the pe~rrissil:le range.

190

o
Of E or L

Floating Point Constants

Subfield 3. Constant T~l!e

: SHORT (E) LONG (D) EXTENDED (L) ..
1. Duelication Factor

Allowed
Yes Yes Yes

2. Modifiers

I mplicit Length: 4 Bytes 8 Bytes 16 Bytes
(Length Modifier Not

Precent)

Alignment:
(Length Modifier Not Full Word Double Word Double Word

Present)

Range for Length: 1 through 8 (byte length) 1 through 8 (byte length) 1 through 16 (byte length)

.1 through .64 (bit length) .1 through .64 (bit length) .1 through .128 (bit length)

o Range for Scale: o through 14 o through 14 o through 28

Range for Exponent: - 85 through + 75 - 85 through + 75 - 85 through + 75

•
4. Nominal Value Decimal Digits . __ Decimal Digits Decimal Digits

(Othroug~ (0 through 9) (0 through 9)
Represented by: DC E'+S25''''' DC D'1.525' DC L'525'

DC E'5.25' • DC D'+.OOl' • DC L'3.414'_

Enclosed by: Apostrophes Apostrophes Apostrophes

Exponent Allowed: Yes Yes Yes ~~
DC E' lE+60' 8 DC D'-2.SEIO'8 DC L'3.7l2E-3'

Number of Values per Multiple Multiple Multiple
Operand:

Padding: With hexadecimal zeros at With hexadecimal zeros at With hexadecimal zeros at
right right right

Truncation of Assembled Not applicable Not Applicable Not applicable
Value: (Values are rounded) (Values are Rounded) (Values are Rounded)

o
section G: Symbol and Data Definition 191

The range of values that can be
assembled into floating-point
constants is given in the figure
to the right.

If the value specified for a
particular constant does not lie
within these ranges, the constant
is not assembled but flagged as
an error.

FORMAT: The format of the f1oating­
point constants is described below.
The value of the constant is
represented by two parts:

~ 1. An exponent portion, followed
by

• 2. A fractional portien.

• A sign bit indicates whether a
positive or negative number has
been specified. The number specified
must first be converted into a
hexadecimal fraction, befcre it
can be assembled into the proper
internal format. The quantity.
expressed is the product of the o fraction and the number 16 raised.
to a power.

192

Type of Range of Magnitude (M)
Constant of Values (Positive and

E

D

L

Type

E

D

L

,.

Called

Short
Floating-
Point
Number

Long
Floating-
Point
Number

Extended
Floating-
Point

. Number

Negative)

16-65 SM S (1-16-6) x 1663

16-65 SM S (1-16-14) x 16 63
-

16-65 s'M S.(1-16-28) x 1663

(For all ThreeJ
Approximately

5.4 x 10-79~MS7.2 x 1075

.J

Format

-
Bits 0 1 78

7-bit
+ Characteristic

t

Bits 0 1 78

7-bit
+ Characteristic

t
Bits 01 78

7-bit

56-bit
Fraction
$I: .

High-order half of
112-bit Fraction

l

Lo~-order half of
112-bit Fraction

where a,b,c .•.. are hexadecimal d.igits, and E is
an exponent that has a positive or negative value
indicated by the characteristic

OJ. ' .J
,+'

31

63

63

o

c

o

'BINARY REPRESENTATION: The assembler
assembles a floating-point constant
into its binary representation as
follows:

The specified number, multiplied
by any exponents, is converted to
the required two-part format. The
value is translated into:

o 1. A fractional portion represented
J

•

by hexadeciIl1al digits and the sign
indicator. The fraction is then
entered into the leftmost part of
the fraction field of the constant
(after rounding) •

• 2. An exponent portion reFresented

O by the excess 64 binary notation,
which is then entered into the
characteristic field of the constant.

The excess 64 binary notation is
When the value of the characteristic
between +127 and +64 represents
the exponents of 16 between +63
and 0 (by subtracting 64) and the
value of the characteristic between
+63 and 0 represents the exponents
of 16 between -1 and -64.

NOTES:

1. The L-type floating-paint:. constant
resembles two contiguous D-type
constants. The sign of the second
doubleword is assurr.ed to be the
same as the sign of the first.

The charact.eristic· for the second
doubleword is equal to the
characteristic of the first
doubleword minus 14 (the number
of hexadecimal digits in the
fractional portion of the first
doubleword) •

2. If scaling has been specified,
hexadecimal zeros are added to the
left of the normalized fraction
~ausing it to become unnormalized)

and the exponent in the
characteristic field is adjusted
accordingly. (For further details
on scaling see G3E under Modifiers).

3. Rounding of the fraction is
performed according to the implicit
or explicit length of the constant.
The reSUlting number will not differ
from the exact number specified
by more than one in the last place.

4. Negative fractions are carried
in true representation, not in the
2's complement form.

S. Duplication is applied after
the constant has been assembled.

Source Code

DC D'-9.75'

Hexadeci"

7F
7f;

.
800

40
3F
3E

00

Values Expressed
in Characteristic

Binary Representation

65 -64.
&(

63
62

o

Object Code
in Hex

fo
o

-1
- 2

-64

Exponent of 16
expressed by
Characteristic

Excess 64 Binary Notation

Section G: Symbol and Data Definitiun 193

~3J -- THE A-~YPE ANt Y-~YPE AtDRESS CC~S~AN~S

~his subsection and the three following sutsections describe
how the different ty~es of address constants are asserrbled
from expressions that usually represent storage addresses,
and hew the constants are used for addressing wittin ar.d
tetween scurce «cdules.

Furpese

In the A-ty~e and Y-ty~e address ccnstant, yeu can specify
any of the three types of assemtly-time expressiens (see
C6), whose value the asserrbler then corr~utes and asserrbles
into ebject code. You use this expressien cerrputaticr.
as fellows:

1. Relocatable expressions for addressing

2. Absolute expressions for addressing and value
computation.

3. CCRplex relocatable expressions to relate addresses /
in different source ncdules.

Specificaticns

~he centents cf the subfields defining t~e A-ty~e and y­
type address constants are described in the figure on the
opposite page.

NOTES:

~ 1. Nc bit-length specification is allowed when a relccatatle

•
or corrplex relocatatle eXJ:ression is s~ecified. ~he only
explicit lengths that can be specified with these addresses
are:

a. 3 er 4 bytes for A-type constants

b. 2 bytes for y-type constants.

2. The value of the lccatien ceunter reference (*) when
specified in an address constant varies frem constant tc
constant, if any cf the fcllewing cr a ccrrbination of the
follo~ing are specified:

a. ~ultiple cperands

~ b. Multiple nerrinal values

194

• c. A duplication factor.

~he lccation counter is incremented with the length cf
the previeusly.asserrtled constant.

3. ~hen the location counter reference eccurs in a literal
address constant, the value of the locatien counter is
the address of the first tyte of the instruction.

o
Address Constants

A or Y

Address Constants (A and V)

Subfield 3. Constant Ty~

A - Type V-Type • 1. Duelication Factor Yes Yes A DC 5AL1(*-A}
allowed Object Code in Hex _ 0001020304

2. Modifiers

o Implicit Length: (Length 4 bytes 2 bytes
Modifer not present)

Alignment:
(Length Modifier not present) Full word Half word

1 through 4 (byte length) •
Range for Length:

1 through 2 (byte length)

.t- .1 through .32 (bit length) I .1 through .16 (bit length)

Range for Scale: Not allowed Not allowed

Range for Exponent: Not allowed Not allowed

4. Nominal Value Absolute ... locatable. or ~ Abtolute ... locatable. or • Represented by: complex relocatable complex relocatable A DC Y (* -A 1*.+4)
expressions expressions o .5ti DC A (ABSOL+ 10) DC Y (RELOC+32) values

Enclosed by: Parentheses Parentheses

Exponent allowed: No No

Number of Values
per Operand: Multiple Multiple

With zeros at left With zeros at left
Padding:

Truncation of At left At left
Assembled value:

o
section G: Symbol and Data Definition 195

CAUaIQN: S~ecificatien of y-ty~e address constants with
relocatable expressions should be avoided in ~rograms that
are to be executed en ~achines having «-ore than 32,767
tytes of sterage ea~aeity. In any case, Y-type relocatal:le
address constants should not te used in ~rograrrs tc te
executed under IEM Systerr/370 ccntrel.

1he A-ty~e and Y-type address constants are processed
as follows: If the ne~inal value is an al:solute ex~ressicn,
it is com~uted to its 32-tit value and then truncated cn
the left to fit the implicit or explicit length of tte
constant. If the ncrrinal value is a relccatable cr ccrroplex
relocatable expression, it is not completely evaluated
until linkage edit time when the cbject mcdules are
transformed into load modules. ~he 24-tit (er srraller)
relocated address values are then placed in the fields
set aside fcr them at assemtly tirre by the A-ty~e and y­
type constants.

G3K -- ~HE S-1YPE AttRESS CONS1ANT

Furpese

You can use the S-ty~e address censtant te assemble an
explicit address (that is, an address in tase-dis~laeener.t
form). You can specify the explicit address yourself cr
allo~ the assembler to compute it from an implicit address,
using the current l:ase register and address in its
computatien (for details cn ill'~licit and explicit addresses,
see I:5B) •

Specificaticns

The contents cf the sutfields defining the S-ty~e address
constants are descrited in the figure en tbe o~~esite ~age.

The ncminal values can be s~ecified in t~e ~ays:

4Dt 1. As one al:so1ute or relocatat1e expressicn re~resenting
an im~1icit address

• 2. As two absolute eXEressions, the first of which

•
represents the displacement and the secend, the tase.
register. -- ,

,.

196

o

o

o
Address Constants (8)

8ubfield 3. Constant T~l!e

§-Type

1. Duplication Factor
Allowed Yes

2. Modifiers

Implicit length: 2 bytes
(length Modifier not

present)

Alignment: Half word
(length Modifier not

present)

Range for length: 2 only (no bit length)
(in bytes)

Range for Scale: Not allowed

Range for Exponent: Not allowed

0
4. Nominal Value Absolute or 0 DC S(RELOC)

relocatable expression DC S(10~~ Represented by: Two absolute }8 expressions DC S(512(12»

Enclosed by: Parentheses

Exponeot altowed: No

Number of Values
per operand ; Multiple

Padding: Not app1icable

Truncation of
Assembled value: Not applicable

o
Section G: Symbol and Data Definition 197

G3L -- THE V-TYPE ArrRESS CONSTANT

Pur~cse

The V-ty~e address constant allows you to reserve stcrage
for tte address cf a lccaticn in a contrcl section that
lies in another source module. You should use the V-ty~e
address ccnstant cnly tc tranch tc the external address
specified. This use is contrasted with another nethcd,
that is: of specifying an external syrrtcl, identified
by an EXTRN instruction, in an A-type address ccnstant
(for a conparison, see F2).

Because you specify a symbol in
a V-type address constant, the
assembler assumes that it is an

Source
Module

Object Module
in Hex

• external symbol. A value of zero
is assembled into the space reserved

•
for the V-type constant; the correct
relocated value of the address is
inserted into this s~ace by the
linkage editor before your object
program is loaded.

Specificaticns

A
START 0

DC V(OUTSIDE)

END
B

OUTSIDE

The contents cf the sutfields defining the V-ty~e address
constants are descr~ted in the figure on the o~~csite ~age •

• The symtcl specified in the ncninal value subfield does
not ccnst1tute a def1nition of the symtol for the scurce
module in wtich the V-ty~e address constant a~pears.

198

The symbol specified in a V-type constant nust nct re~resent
external data in an cverlay ~rcgran.

,.

•

Load Module
in Hex

o

0'." 1-'

Address Constants (V)

Subfield 3. Constant Type

V-Type

1. Duplication Factor
allowed Yes

2.~

0 Implicit l.ength: (Length 4 bytes
Modifier not present)

Alignment: (Length
Full word Modifier not present)

Range for Length: ._ 4 or 3 only
(inb~t (no bit length)

Range for Scale: Not allowed

Range for Exponent: Not allowed

4. Nominal Value v (MODA) A single relocatable DC
Represented by: symbol -.

DC v (EXTADR)

Enclosed by: Parentheses

Exponent allowed: No

Number of values
per Operand: Multiple

Padding: With zeros at left

0 Truncation of
Not applicable

assembled value:

Section G: Symbol and Data Definition 199

Page of CC33-4CIO-J

Rev iscd S-:-ptember 29, 1972
iSy TNL GN33-8148

QS G3M - ... Tl!i Q-'lYPE ADHI,,:CO,stA'.
QlJIy ."

L.

FurI=cse

You use this constant tc reserve sterage fer the cffset
into a storage area of an external durrrry section. '!he
offset is en~ered intc this sface ty the linkage editcr.
~hen the offset is added to the address of an overall tleck
of storage set aside fer external durrmy sections, it allows
you to address the desired section. (FOr a descrifticr.
of the use cf the Q-tYfe address ccnstant in combination
~ith an external dummy section, see E4.)

Specificaticns

The contents cf the sutfields defining the ~-ty~e address
constant are descrited in the figure telow.

~'lhe symtol specified in the norrinal value subfield must
be I=reviously defined as the latel of a [X[or [SEC'!
stateu:ent.

200

Subfield

1. Duplication Factor
allowed

2. Modifiers

Implicit Length: (Length
Modifier not present)

Alignment: (Length
Modifier not present)

Range for Length:
(in bytes)

Range for Scale:

Range for Exponent:

4. Nominal Value

Represented by

Enclosed by:

Exponent allowed:

Number of Values per
Operand:

Padding:

Truncation of
Assembled Value

3. Constant Type

a-Type

Yes

4 bytes

Fullword

1·4 bytes
(no bit length)

Not allowed

Not allowed

A single relocatable
symbol

Parentheses

No

Multiple

With zeros at left

At left

Address Constants (a)

DC Q(DUMM~EXT10
DC Q(DXDEXT}

~\
\-L,j

o

o

o

G3N -- 'IB! tS INS'I~UC'IICN

Purt=0se

The tS instruction allows you to:

1. Reserve areas cf stcrage

2. Previde :latels fcr these areas

3. Use these areas by referring to the symtols defined
as latels.

The tS instruction causes no data tc be assenbled. Unlike
the tC instruction (see G3E), you do net have te s~ecify
the nominal value (fcurth subfield) of a DS instructien
operand. 'Iherefore, the [5 instruction is tte test way
of sy~bolically defining storage for werk areas,
input/outt=ut buffers, etc.

Named (Mnemonic) Areas Aligned on
Areas for Fixed- Boundary
Point Instructions

Length Attribute of
Symbols Naming Areas
same as Implicit

• Length of Areas

~F-A~R-E~A--D~S~F~~--F-U~II~w-o-rd----~-----------~--4---4
How to Use the DS Instruction

TO RESERVE STORAGE: If yeu wish

•
to take advantage of automatic
toundary alignment (if the ALIGN
option is specified)/and implicit

• lenBjh calculation, yeu should not
supp y a length modifier in your
operand specifications. You should
specify a type subfield that
corresponds to the type of area
you need for your instructions
(S ee individual tyt=es in sections

G3D through G3~ •

HAREA DS H

AAREA OS A

10 full words of
storage reserved

Named Areas for
Floating-Point
Instructions

Half word

Full word

cull word

EAREA OS 3E Full word

DEAREAS D S 9 {) Double word

~!~
LAREA D S L Double word

2

4

L'DUPF=4

.)uplication has no
effect on implicit
length

\
8

16

Section G: S~bo1 and Data Definition 201

•
Using a length modifier can give
you the advantage of explicitly

• specifying the length attribute
value assigned to the label naming
the area reserved. However, your
areas will not be aligned
automatically_ acco.rding to their

• type. If you.omit the nominal value
in the operand, you should use a
length modifier for the binary (S),
character (C), hexadecimal (X),

202

and decimal (P and Z) type areas;

•
otherwise their labels will be given

, a length attribute value of 1.

Area Specified

• TEN OS CLIO

TW056 OS XL256

F3 OS FL3

07 OS OL7

A2 OS AL2

• ~ C1 OS CLl6

C2 OS

C3 OS

Xl OS

X2

X3

Duplication factor
has no effect on
length attribute

Area Length ,f"'\
I,' I

Reserved in Attribute I,.lL .• ,/

in ~ytes t 10

256 256

3 3

7 7

2 2

16 16

16 IE]
1 /'7.'.

200

o

o

o

•
When you need tc reserve large areas ycu can use a
duplication factor. However, you can only refer tc tt.e

• first area ty the .latel in this case. Ycu can also use
the character (e) and hexadecimal (X) field ty~es tc s~ecify

~ large areas using the length Kcdifier.

Area Specified

LARGEC DS 1000C

C2 DS

LARGERX DS 2XL200

Reserved
in Bytes

1000

4000

Automatic
Boundary
Alignment

Length Attribute
of symbol used
as Label

3

4

Duplication has
no effect

NONE 1

NONE 1000

.-

NONE 2000

NONE 2000

Section G: Symbol and Data Definition 203

Although the nominal value is
optional for a OS instruction, you
can put it to good use by letting

~ the assembler comEute the len~th
for areas of the E, C, X, and decimal
(P or Z) type areas. You achieve
this by specifying the general

• format of the 'nominal value that
will be placed in the area at
execution time.

TO FORCE ALIGNMENT: You can use
the DS instruction to force alignment
to a boundary that otherwise would
not be provided. You do this by

~ using a duplication factor of zero.
No space is reserved for such an

•
instruct ion, yet the da ta tha t
follows is aligned on the desired

• toundary.

204

NOTE: Alignment is forced when
either the ALIGN or NOALIGN assembler
option is set (see C2).

Area Specified

CI OS

Xl OS X

X2 OS

PI OS P

P2 OS

Zl OS

.J'

• 0
OS 00 • AREA OS CL128

0
OS OF

KEY DC C'A'
ADCON DC AL3{SOMWHERE)

0
HERE OS OH

3,SUM
3,CONST

3,RESULT

HERE addresses
same location as
following
instruction (LH)

Length Atribute 0 or computed - -,

Area
implicit length
of area

Reserved (duplication
in bytes disregarded)

0
16 16

2 2

60 2

3 3

15 3

5 5

Double word J
AREA jCJ

• Full word

• C

• A Address of
SOMWHERE

Half word

LH
AH

STH

o

0

o

TO NAME FIELDS OF AN AREA: Using a du~lication factor
of zero in a [S instruction also allows you to Frcvide
a lakel for an area cf stcrage without actually reserving

•
the area. You can use [5 or [C instructions to reserve
storage for and assign labels tc fields within the area.
~hese fields can then be addressed symtolically. (Ancther

a way of acccn~lishing this is described in E3C.) The whcle
area is addressable by its lakel. In addition~ tt.e syntclic

•
label will have the length attritute value of the whcle
area. Within the area each field is addressable by its
label. ~he [ATE field has the same address as the sutfield

• [AY. However, DA~E addresses 6 bytes, while DAY addresses
only 2 bytes.

Symbol Length
Attribute

a80

6

20

86
2

2

2

8

8

• • RECAREA os
os CL4

PAYNO OS

NAME OS

DATE OS OCL6

DAY OS CL2}
MONTH .I- DS CL2

YEAR OS CL2

OS CLIO

GROSS OS CL8

TAXES OS CL8

OS CL18

Format of 80
Character Record

DATE
DAY
MONTH
YEAR

~2 byte~1

Area not
Aligned

• 80
bytes
long

Sectio~ G: Symbol and Data Definition 205

Specificaticns_

!he forroat of the rs instruction
stateRent is given in the figure
to the right •

•
The forroat cf the c~erand of a DS
instruction 1S 1dent1cal to that
of the tC o~erand (see G3B).

The two differences in the
specification of subfields are:

The nominal value subfield is
• optional in a tS operand, but it

is mandatory in a tC cEerand. If
~ a no~inal value is specified in

a tS operand, it Rust be valid •

•

206

The rraximum length that can be
specified in a [S operand for the
character (C) and hexadecimal (X)
type areas is 65,535 bytes, rather
than 256 bytes for the same [C
operands.

Name

Any Symbol
or blank

,.

Operation

DS

OPTIONl DS

OPTION2 DS

AMUST DC

LONGC DS

LONGX DS

LIMITEDC DC

LIMITEDX DC

Operand

One or more

3FL3 o...-..A
3FL3

3FL31
CL655358
XL65535

CL256'A'

XL256'00'

o

o

1\ 0

o

!he label used in the name entry of a tS instructien, like
the label fer a CC instructien (see G3E) :

~ 1. Has an address value of the lefta-ost byte of the area
reserved, after any tcundary alignment is perforJred

8 2. Bas a len~th attribute value, de~ending on the implicit
or ex~liclt ength of the type of area reserved.

If· the CS instructien is specified ~ith ~ere than one
operand or:~ore than one nominal va)ue in the o~erand,

•
the label addresses the area reserved for the field tt.at
corresponds te the first nOIr:inal value cf the first o~erand.

8 1he length attribute value is equal to the length ex~licitly
specified or implicit in the first eperand.

C DS 3C

H DS 2H

F DS F

D DS D

A DS 3A

I
l

Explicit Length 1
I
I

EXPL DS FL3 I
•

DS 3DL5 I ,
DS XL7000 I

I
I

OPRNDS DS 3F'3C~
DS FL3,2HL5 I I

VALUES DS A(P,Q,R) I
I
I

MORE DS H'7.8;1 I I

n $CJc:::Jc::J
\(

U I n I]

II
n

Boundary
Alignment

Only if
Length
Modifier
is not
specified

None

None

None

Full word

None

Full word

Half word

Symbol
Length
Attribute

Duplica­
tion has
no effect.

• 1

2

4

8

4

3

5

7000

• 4

3

4

2

St::t,;tion G: Symbol and Data Definition 207

NOTE: Unlike the DC instruction, o bytes skipped for alignment are
not set to zero. Also, nothing

~iS assembled into the storage area
reserved by a DS instruction. No
assumption should be made as to
the contents of the reserved area.

208

The size of a storage area that
can te reserved by a DS instruction
is limited only by the size of
virtual storage or by the maxin.um
value of the location counter,
whichever is smaller.

_-----I End of Last
Data Entry

• ... ---8 bytes--J

.,1

,.

o

o

o

(;30 -- TB:E CC" INS'IRUC'IION

Purpcse

You can use the COW instruction to define and generate
an eight-tyte channel ccnnand ~crd for input/output
operations.

Doubleword
Boundary

bits 0 "1

bits

Command
Code

8 31

The channel command word is an
eight-byte field aligned at a
doubleword toundary, and contains
the information described in the
figure to the right.

Address of data to operate upon I
bits 32

bits

bits

./'

Specifications

Name

37 3839

40 47

Must be Specified
as Zeros

Set to Zeros
by Assembler

48 63 I Byte Count Dr Length of Oa.. I

Operation Operand

Byte

1

2-4

5

6

7-8

The format of the CCW instruction
statement is given in the figure
to the right.

Any symbol
or blank

ccw Four operands separated
. by commas

Section G; SyrlU?ol and Data Definition 209

O All fcur operands must te sEecified
in the order descrited in t e figure
to the right. The generated channel
command word is aligned on a 4It doubleword boundary. ~ny bytes

'skipped are set tc zerc.

•

210

~he symbol in the name field, if
~resent, is assigned the value of
the address of the leftmost tyte
of the channel ccaaand word
generated. The length attritute
value of the symbcl is 8.

• WRITE CCW 1,DATADR,X'48',X'50'

Values are
right justified
in fields

Assembled
into

Double Word
Boundary

Treated as
as 3-byte
A-Type
address
constant

bits

Must be Specified
as Zeros

L'WRITE=8

o

o Section H: Controlling the Assembler Program

o

o

This section describes the assembler instructions that
request the assembler to perform certain functions that
it would otherwise perform in a standard predetermined
way. You pan use these instructions to:

1. Change the standard coding format for writing your
source statements

2. Control the final structure of your assembled program

3. Alter the format of the source module and object code
printed on the assembler listing

4. Produce punched card out~ut in addition to the object
deck

5. Substitute your own mnemonic operation codes for the
standard codes of the assembler language

6. Save and restore ~rograrnming environments, such as the
status of the PRINT options and the USING base register
assignment.

HI -- Structuring a Program

~he instructions described in this subsection affect the
location counter and thereby the structure of a control
section. You can use them to interrupt the normal flew
of assembly and redefine portions of a control section
or to reserve space to receive literal constants. Alse,
you can use them to align data on any desired boundary •

.1-

'.

Section H: Ccntro11ing the AsssmLler Program 211

H1A -- THE ORG INSTRUCTION

Purpose

You use the ORG instruction to alter
the setting of the location counter
and thus control the structure of
the current control section. This
allows you to redefine portions
of a control section.

For example, if you wish to build
a translate table (to convert EBCtIC
character code into soree other
internal code) :

o 1. You define the table as being
filled with zeros.

2. You use the ORG instruction to
alter the location counter so that

•
its counter value indicates a desired
location within the table.

• 3. You redefine the data to be
assembled into that location •

•
4. After :epeating the first three
steps unt1l your translate table
is complete, you use an ORG
instruction with a blank operand
field to alter the location counter

•
so that the counter value indicates
the next available location in the
current control section (after the
end of the translate table).

Both the assembled object code for
the whole table filled with zeros
and the object code for the portions
of the table you redefined are
printed in the program listings.
However, the data defined later
is loaded over the previously defined
zeros and becomes part of your
object prograw, instead of the
zeros.

In other words, the ORG instruction
can cause the location counter to
point to any part of a control

FIRST

TABLE

•

GOON

INPUT

section, even the middle of an ,

212

instruct~on, into which you can
assembleaesired data. It can also
cause the location counter to point
to the next available location so
that your program can continue to
be assembled ~n a sequential fashion.

Source Module

START

DC
ORG
DC
DC

ORG
• -,1

DC
DC

ORG
DC
DC

ORG
DC
DC

ORG
DS

0

0
XL256'00'
TABLE+O
C'O'.
C'l'

TABLE+13

C'D'
C'E'

TABLE+C'D'
AL1(13)
AL1(14)

TABLE+C'O'
AL1(O)
AL1(1)

OH

Object Code

TABLE
(in Hex)

+0

+13

+196

+240

+255

FO
Fl

C4
C5

OD
OE

00
01

TR INPUT, TABLE

DS CL20

END

o

('~
(I

~p'

o

C

o

Specifications

The format :of the ORG instruction
is shown in the figure to the right~

The symbols in the ex~ression in
the operand field must be previously
defined. The unpaired relocatable
term of the expression (see C6E)
must be defined in the sarre control
section in which the ORG statement
appears •

• The location counter is set to the
• value of the expression in the

operand. If the operand is omitted,
the location counter is set to the

~ next available locatiQn for the
current control section.

The expression in the operand of
an ORG instruction must not specify
a location cefore the beginning
of the control section in which

- it appears. In the example to the
• right, the CRG instruction is invalid

if it appears between the beginning
of the current control section and
500 cytes fro~ the beginning of
the same control section. This

•
is because the expression specified
is then negative and will set the
location counter to a value larger
than the assembler can process.
The location counter will ·wrap
around· (the location counter is
discussed in detail in section C4B) •

Name

OS
Any symbol
or blank

SECTA

n Hex

OC08 HERE
OCOC •
0080

100801 •

o FIRST

Operation

ORG

Page of GC33-40tO-O
Revised September 29, 1972
By TNL GN33-8148

Operand

A relocatable
expression
or blank

Sourc;e Module

START

L 3,ADDR
MVC TO,FROM

•
ORG

• L 4,AREA
A 4,TWO
ST 4,SUM

END

Source Module
• Negative

START

.ORG *-500

END

Section H: Controlling the ASFemble!:' Prog:.ram 213

NOTE: using the ORG instruction
to insert data assembled later at
the same location as earlier data
will not always work.

•
In the example to :the right, it
appears as if·the character constant

•
will be loaded over the address
constant. However, after the

•
charact.er constant is loaded into
the same location as the address
constant, the relocation factor

O
required for the address constant
is added to the value of the
constant. This sum then constitutes
the object code that resides in
the four bytes with the address
ADDR.

H1B -- THE LTORG INSTRUCTION

Purpose

You use the LTORG statement so that
the assembler can collect and
assemble literals into a literal
pool. A literal peel ccntains the
literals you specify in a source
module either:

• After the preceding LTORG instruction
or

•
After the beginning of the. source
module.

214

The assembler ignores the borders
between control sections when it
collects literals into pools.
Therefore, you must be careful to
include the literal pools in the
control sections to which they
belong (for details see Addressing
Considerations belcw).

The creation of a literal pool gives
the following advantages:

1. Automatic organization of the
literal data into sections that
are properly aligned and arranged
so that no space is wasted

2. Assembling.of duplicate data
into the same· area

3. Because all literals are cross­
referenced, you can find the literal
constant in the pool into which
it has been assembled.

,.

• 0
ADDR DC A(LOC}

ORG '!'<-4

CHAR DC C'BETA' •
Processing Sequence

~
Relocation facjor

Assembled Loaded added to value

ADORe
of constant CHAR

ADDR ADDR

1 1 UL IX X X XI IC2CSE3Cli

··-4
(ADDR)

1 BETA

IC2CSE3Cli

Source Module

START 0

=lit1

=lit5

o

o

The Literal Pool

A literal pool is created immediately
after a LTORG instruction or, if
no LTCRG instruction is specified,
at the end of the first control
section.

Each Ii teral pool has four segments J

into which the literals are stored
(1) in the order that the literals
are specified and (2) according
to their assembled lengths, which,
for each literal, is the total
explicit or implicit length, as
described below.

• The first segment contains all
literal constants whose assembled
lengths are a multiple of eight.

• The second seQIl'ent contains those
whose assembled lengths are a
multiple of four, but not of eight.

• The third segment contains those
whose assembled lengths are even,
but not a multiple of four.

• The fourth segment contains all
the remaining literal constants
Whose assembled lengths are odd.

The beginning of each literal pool
• is aligned on a doubleword boundary.

Therefore, the literals in the first
segment are always aligned on a
doubleword boundary, those in the

•
second segment on a f~llword

• boundary, and those i-n the third
• segment on a halfword boundary.

FIRST

Literal Pool
Start

•

Source Module

START 0 Assembled into
Segment

MVC TO,=3F'9' • AD 2,=0'7' • IC 2,=XLl'8' • ,=~L3'JAN' • ,=2F'l,2' • • ,=1}'33' • ,=~(ADOR) • ,=XL8'OS' •

section H: Controlling the Assembler Progr.am iis

Addressing Considerations

If you specify'literals in source
modules with multi~le control
sections, you-should:

1. write a LTORG instruction at
the end of each control section,
so that all the literals specified

•
in the section are assembled into
the one literal pool for that
section.' If a contrel section is
divided and interspersed among other
control sections, yeu should write
a LTCRG instruction at the end of
each segment of the interspersed
control section.

2. When establishing the
addressability of each control
section, make sure (a) that the
entire literal pool for that section

•
is also addressable, by including
it within a USING range, and (b)
that the literal specifications

•
are within the corresponding USING
domain. The USING range and domain
are described in FlA.

216

NOTE: All the literals specified
after the last LTORG instruction,
or, if no L'IORG instruction is
specified, all the literals in a
source module are assembled into
a literal peol at the end of the
first control section. You must
then make this literal pool
addressable along with the addresses
in the first control section. This
literal pool is printed in the
program listing after the END
instruction.

USING
range
ONE

USING
range
TWO

,.

ONE

Source Module

START 0

USING ONE,BASREGI

o

o

o

Cuplicate Literals

If you specify duplicate literals
within the part of the source module

•
that is controlled by a LTORG
instruction, only one literal
constant is assembled into the
pertinent literal peel. This also
applies to literals assembled into
the literal pool at 'the end of the
first or only control section of J

a source module that contains no
LTORG instructions.

•
Literals are duplicates only if
their specifications are identical,

•
not if the object code assembled
happens to be identical.

When two literals specifying

•
identical A-type (or y-type) address

, constants contain a reference to
the value of the loeation counter
(*), both literals are assembled
into the literal pool. This is
recause the value of the location
counter is different in the two
literals.

Specifications
.r-

~he format of the LTORG instruction
is given in the figure to the right.

If an ordinary symbol is specified
in the name field, it represents
the first byte of the literal poo1~
this symbol is aligned on a
do'ub1eword t:oundary and has a length
attribute value of one. If bytes
are skipped after the end of a
literal pool to achieve alignment
for the next instructien, constant,
or area, the bytes are not filled
with zeros.

Source Module

BEGIN START 0

Literal pool 1

SECOND

Literal pool 2

END

Name

Any symbol
or blank

Action

first is stored

both are stored, each
into a separate literal
pool

LTORG

Operation Operand

LTORG Not required

Section H: Controlling the Assembler Program 217

H1C -- THE CNOP INSTRUCTION

Purpose

You can use the CNOP instruction
to align any instructicn cr other

• da ta on a specific halfword l:oundary.
The CNOP instruction ensures an
unbroken flow of executable
instructicns by generating ~

~operation instructions to fill the
bytes ski~~ed to ~erforrn the
alignment that you specified.

For exam~le, when ycu code the

•
1inkage to a subroutine, you may
wish to pass parameters to the
subroutine in fields irrrr-ediately
following the branch and link

~instruction. These parameters,
for instance, channel command words
(see G30) , can require alignment

on a specific boundary.

•
The subroutine can then address
the parameters you pass through
the register with the return address.

218

Specificaticns

!he CNOP instruction forces the
a1ignrrent of the 1ccation counter
to a halfword, ful1word, or
doub1eword l:cundary. It does not
affect the location counter if the
counter is already ~ro~erly aligned.
If the specified alignment requires
the location counter tc be
incremented, one to three no­
operation instructions ~CR 0,0
occupying two bytes each) are
generated to fill the skipped l:ytes.
Any single byte ski~~ed to achieve
alignment to the first no-operation
instructicn is filled ~ith zeros.

Register Contents

Assume location

LINK BALR 2,10

CCW lONE

CCW I TWO

CCW I THREE I

2 Return address
(LINKt2)
Address of sub- .

routine

Layout of
Object Code

double half double
word word

rCR 0,0 .j'

8 BCR BCR

BCR

LINK BALR BALR

CCW CCW ONE

CCW CCW TWO

CCW CCW THREE

,.

o

o

o

o

o

o

The format of the CNOP instruction
statement is given in the figure
to the right.

The operands must be absolute
expressions, and any symbols must

•
have been previously defined.
The first oEerand, b, s~ecifies
at.which even-numbered byte in a

•
fullword or doubleword the location
counter is set. The second operand:
w , specifies whether the byte is
in a fullword (w=4) or a doubleword

Name

os Any symbol
or blank

>.~,~
'GOIorJ)t../ .

0
1
4
~

2,4

~
FULLWORD

Operation

CNOP

o,~

Page of GC33-401Q-4
Revised Feb. 25, 1975
By TNL: GN33-8193

CNOP

Operand

b,w

I \ ••
2,4 ,

FULLWORD
(w=8). Valid pairs of b and ware

as indicated in the figure to the
right. HALFWORD HALFWORD HALFWORD HALFWORD

NO'IE: Both 0,4 and 2,4 specify
two locations in a doubleword.

Byte I Byte Byte I Byte Byte I Byte

I
0~8 2/

H2 - Determining Statement Format and Sequence

You can change the standard coding conventions for the
assembler language statements or check the sequence of
source statements by using the fcllowing instructions.

H2A -- THE ICTL INSTRUCTION

purpose

The ICTL instruction allows you to change the begin, end,
and continue columns that establish the coding forrr.at cf
the assembler language source statements.

For example, with the ICTL instruction, you can increase
the number of columns to be used for the identificaticn
or sequence checking of your source statements. By changing
the begin column, you can even create a field before the
begin column to contain identification or sequence numbers.

DOUBLEWORD

!
4,8

Byte I Byte

I
6·8 ,

Section H: Controlling the Assembler Program 219

You can use the ICTL instruction
only once, at the very beginning
of a source module. If you do not
use it, the assembler recognizes
the standard values for th~ begin,
end, and continue columns.

Specifications

The ICTL instructicn, if specified,
must be the first statement in a
source module.

The format of the ICTL instruction
statement is shown in the figure
to the right.

The operand entry must be one to

•
three decimal self-defining terms.
There are only three Fessible ways
of specifying the operand entry.

• The operand b must always be
~ specified. The operand e, when not

specified, is assumed to be 71.
• If the operand c is not specified,

or if e is specified as 80, the
assembler assumes that continuation
lines are not allowed. The values

•
specified for the three operands
depend on each other.

220

NOTE: The ICTt instruction does
not affect the format of statements
trought in by· a COpy instruction
or generated from a library macro
definition. The asserobler processes
these stateme~ts according to the
standard begin, end, and continue
columns described in Section B1A.

,.

r\
I Standard values for Columns I ~

BEGIN CONTINUE END

~~----...I---~ '-------'-:-
1 p...----r-'--t
1 16

Columns

ICTl

Format I
Name Operation Operand

Blank ICTL b or

b,e or • b,e,c

Operands I
Specifies Allowable range

• b Begin column 1 through 40

8 e End column 41 through 80

e c Continue column 2 through 40

• Rules for interactibn of b, e an~ c

The position of the End column must
not be less than the position of the Begin e ?!b+5
column + 5, but must be greater than the
position of the Continue column e >c

The position of the Continue column
must be greater than that of the Begin c>b
column o

o

o

o

R2B -- THE ISEQ INSTRUCTION

PUrpose

You can use the ISEQ instruction
to cause the assembler to check
if the statements in a source module
are in sequential order. In the
!SEQ instruction you specify the

•
columns between which the assembler
is to check for sequence nu~bers.

~he assembler begins sequence

•
checking with the first statement
line following the IS!Q instruction.
The assembler also checks

• continuation lines.

Sequence numbers on adjacent
• statements or lines are compared

according to the a-bit internal
EBCDIC collating sequence. When
the sequence numb~r on one line
is not greater than the sequence
number on the preceding line, a
sequence error is flagged, and a
warning message is issued, but the
assembly is not terminated.

NOTE: If the sequence field in the
preceding line is blank, the
assembler uses the last preceding
line with a non-blank sequence field
to make its comparison.

Specifications

The ISE~ instruction initiates or
terminates the checking of the
sequence of statements in a source
module.

~he format of the ISEQ instruction
is shown in the figure to the right.

• The first option in the operand
entry must be two decimal self­
defining terms. This format of
the ISEQ instruction initiates
§equence checking, beginning at

•
the statement or line following
the ISEQ instruction. Checking
begins at the column re~resented

• by land ends at the column
represented by r. The secohd

•
option of the ISEQ format terminates
the sequence checking operation.

8
73 80 Comp@res made • J 1 ONE ONE with TWO

1 I TWO TWO with THREE
) , I THREE THREE with FOUR

1 FOUR FOUR with FIVE

ttION CARD

[~ FIVE
~

and so on

1

ISEQ

Name Operation Operand

ISEQ Blank
I,

r 8}
or blank I

Column Specifies Rules for interaction

• I~ leftmost column of ISr I must not be
field to be checked greater than r

I'--.....

I and r not allowed
to lie between begin
and end columns

r~
~ • rightmost column r~1 r must not be

of field to be checked less than I

Section H: Controlling the Assembler Program 221

NOTE: The assembler checks only
those statements that are specified
in the coding of a source module.
This includes "any COpy instruction
statement or roacro instruction.

However, the assembler does not
check:

1. Statements inserted by a COpy
instruction

2. Statements generated from model
statements inside macro definitions
or from model statements in open
code (state~ent generation is
discussed in detail in Section J)

3. Statements in library macro
definitions.

H3 .. Listing Format and Output

The instructions described in this
section request the assembler to
produce listings and identify output
cards in the object deck according
to your special needs. They allow
you to determine printing and page
formatting options other than the
ones the assembler program assumes
by default. Among other things,
you can introduce your own page
headings; control line spacing,
and suppress unwanted detail.

H3A -- THE PRINT INSTRUCTION

222

Purpose

The FRINT instruction allows you
to control the amount of detail
you wish printed in the listing
of your programs. The three options
that you can set are given in the
figure to the right.

They are listed in hierarchic order~
if OFF is specified, GEN and rATA
will not apply. If NOGEN is
specified, rATA will not apply to
constants that are generated. The
standard options inherent in the
assembler program are ON, GEN, and
NO DATA. "

Source Module o
FIRST START 0

ISEQ 73,80

T
checking
occurs

ISEQ + -
T

checking
does not
occur

ISEQ 73,80 +
T

checking
resumed

END !

Hierarchy Description PR I NT options

1 A !lUi.!:l.9. is printed ON

No listinais printed OFF

2 All statements generated by the
processing of a macro instruction GEN
are. A.ti.D.Wl.

Statements generated by the
~ processing of a macro instruCfion NOGEN

are .!lSU. p-rinted (Note: The
MNOTE instruction always causes
a message to be printed)

3 Constants are printed.i!:Lfiill in DATA
the listing

Only the leftmost eigtnRY.!!! of
constants are printed in the NODATA
listing

o

o

o

Specifications

~he format of the PRINT instruction
statement is shown in the figure
to the righ t.

o At least one of the operands must
be specified, and at most one of
the options from each group. The
PRINT instruction can be specified
any number of times in a source
module, but only those print options
actually specified in the instruction
change the current print status.

PRINT options can be generated by
macro processing, at pre-assembly
time. However, at assembly time,
all options are in force until the
assembler encounters a new and
opposite option in a PRINT
instruction.

• -rbe PUSH and pOp instructions~'
only described in B6, also influence

the PRI NT options by saving' and
,z;estoring tbe PltlNT.fJ~tulI ..

NO~E: The option specified in a
PRINT instruction takes effect after
the FRINT instruction. If PRINT
OFF is specified, the PRINT
instruction itself is printed, but
not the statements that follow it.
If the NOLIST asse~bler option is
specified in the job control
language, the entire listing for
the assembly is suppressed.

Name

Asequenee
symbol or
blank

Operation

PRINT

PRINT

Operand

{rON] L GEN] [NODATAl
'. OFF NOGEN ,DATA I

Section H~ Controlling the Assembler Program 223

Page ofGC33-4010-S
As Updated 28 Dec 1981
By TNL GN20-9372

H3B -- THE TITLE INSTRUCTION

Purpose

The TITLE instruction allcws you
to:

~ 1. Provide headin~s for each fage
of the assembly l~sting of your
source modules.

2. Identify the assembly output
cards of your ocject roodules. You

•
can specify up to 8 identification
characters that the assembler will

•
punch into all the output cards,
ceginning at column 73.

DOS Up to q identification char.lm:;er.S':,;
ar e allowed ..

O ~he assembler punches sequence
numbers into the columns that are
left, up to column 80.

NOTE: The name field of the TITLE
instruction is generated throughout
the assembly listing, preceding the
generation of the operand data from
any TITLE instruction.

Specifications

The format of the 7ITLE instruction
statement is given in the figure
to the right.

Any of the five options can ce
specified in the name field.

~ The first three options for the
name field have a s~ecial
significance only for the first
TITLE instruction in which they

224

are specified. For subsequent TITLE
instructions, the first three opticns
do not apply • .-

TITLE 'THIS IS A HEADING' o
Program Listing

o THIS IS A HEADING

PROG TITLE ' heading' •
()

PROG 0003

PROG 0002
73 80 , Object Deck
PROG 0001

J' --• •

TITLE

- "'- -- ---- -

Name Operation Operand

..Qfltion

e{;
A string of alpha- TITLE A character
meric characters string up to
A variable symbol 100 charac-
A combination of ters, en-
1 and 2 closed in

4 A sequence symbol apostrophes
5 blank

o

o

o

For the first TITLE instruction
of a source module that has a non­
blank name entry that is not a
sequence symbol, the following
applies:

• Up to eight alphameric characters
can be specified in any combination
in the name field.

These characters are Funched as
identification, beginning at column
73, into all the outFut cards from
the assembly, except those produced
by the PUNCH and REPRO instructions •

•
The assembler substitutes the current
value into a variable symbol and
uses the generated result as
identification characters •

• If a valid. ordinary symbol is
specified, its appearance in the
name field does not constitute a
definition of that symbol for the
source module. It can therefore
be used in the name field of any
other staterrent in the same source
module.

Object
Deck

Examples of TITLE instructions
in separate source modules:

Source Statement Value of
variable symbol

Punched into cards
beginning at col. 73

&ID~~T_I_T_L_E __ ~ __ M __ OD __ 9_9A ____ +-___ M_O_D_9_9_A ____ ~

PGM&N1 TITLE 200 PGM200

1234 TITLE 1234

SYMBOL TITLE SYMBOL •

Section H: Controliling the Assembler Program 225

The character string intheopera:nd

•
field is printed as a heading at
the top ofeacb page of the assembly
listing. The heading is printed
beginning on ~he page in the listing
following the. page on which the
TITLE instruction is specified.
A new heading is printed when a
subsequent TITLE instruction appears
in the source module.

Each TITLE statement causes the
listing to be advanced to a new page
(before the heading is printed)

TITLE 'HEADING ONE'

except when PRINT NOGER is in use. Examples of headings:
.---~--------~------------~----~------------~

Any printable character specified
will appear in the heading, including
blanks. Variable symbols are allowed.
However, the following rules apply
to ampersands and apostrophes:

• A single ampersand initiates

•
an attempt to identify a variable
symbol and to substitute its current
value.

Source Statement

• TITLE 'HEADING aN'

TITLE • HEADING &~ •

•• Double ampersands or apostrophes TITLE' HEADING FOU.,' FIVE'
specIfIed, print as single ampersands
or apostrophes in the heading-

•• A single apostro~he followed
by one or more blan s simply
terminates the heading prematurely.
If a non-blank character follows

226

a single apostrophe, the assembler
issues an error message and prints
no heading.

Only the characters printed in the
heading count toward the maximum
of 100 characters allowed_

NOTE: The TITLE statement itself
is not printed in an assembly
listing_

TITLE 'HEADING FOUR'REMARKS

"ERROR'"

,.

Value Printed Heading
of
Variable
Symbol

TWO HEADING TWO

HEADING 81 '

HEADING FOU

4:) H3C -- THE EJECT INSTRUCTION

o

o

Purpose

The EJECT instruction allows you
to ~top the printing of the assembly
listing on :the current page and
continue the printing cn the next J

page.

Specifications

The format of the EJECT instruction
statement is shown in the figure
to the right.

The EJECT instruction causes the
next line of the assembly listing

O
to be printed at the top of a new
page. If the line before the MECT
instruction appears at the bottom

•
of a page, the EJECT instruction
has no effect. An EJECT instruction
immediately following another EJECT
instruction causes a blank page
in the listing_

NOTE: The EJECT instruction
statement itself is not printed
in the listing.

Name

Asequenee
symbol or
blank

Page
Boundary

Operation

EJECT

Source Module

Operand

Not required

Listing

EJECT

Page
Boundary

_ _ _ _ _ _ _ _ Page
Boundary

o Section H: Controlling the Assembler Program 227

H3e -- THE SPACE INSTRUCTION

Purpose

You can use the SPACE instruction
to insert one or more blank lines
in the listing of a source module.
This allows you to separate sections
of code on the listing ~age.

Specifications

The format of the SPACE instruction
statement is given in the figure
to the right.

The operand entry s~ecifies the
number of lines to be left blank.
A blank operand entry causes one
blank line to be inserted. If the
operand specified has a value greater
than the number of lines rerraining
on the listing page, the instruction
will have the same effect as an
EJECT statement.

NOTE: The SPACE instruction itself
is not listed.

Name Operation

A sequence
symbol or SPACE
blank

H4 - Punching Output Cards

The instructions described in this section produce punched
cards as output from the assembly in addition to those
produced for the object module (object deck) •

H4A -- THE FUNCH INSTRUCTION

228

Purpose

The PUNCH instruction allows you to punch source or other
statements into a single card. With this f~ature you can:

1. Code PUNCH statements in a source module to produce
control statements for the linkage editor. The linkage
editor uses tbese control statements to process the otject
module.

2. Code PUNCH-statements in macro definitions to ~roduce,
for example, ·source statements in other computer languages
or for other processing phases.

The card that is punched has a physical position irrmediately
after the PUNCH instruction and before any other TXT cards
of the object decks that are to follow.

o

SPACE

Operand

A decimal
self-defining term
or blank

o

o

o

Specifications

The PUNCH instruction causes the
data in its operand to be punched
into a card. One PUNCH instruction
produces one punched card, but as
many PUNCH instructions as necessary
can be used.

ihe PUNCH itistruction statement
can appear anywhere in a source

•
module except before and tetween
source macro definitions. If a

•
PUNCH instruction occurs tefore
the first control section, the

•
resultant card punched will precede
all other cards in the object deck.

•
The cards punched as a result of
a PUNCH instruction are not a logical
part of the object deck, even though
they can be physically interspersed
in the object deck.

The format of the PUNCH instruction
statement is shown in the figure
to the right.

All 256 punch combinations of the
IBM System/370 charact,r set are
allowed in the charac~er string
of the operand field. Variatle
symbols are also allowed.

Source Module

•

MACRO
MACDEFl

MACRO
MACDEF2

MEND

PUNCH

FIRST START

PUNCH

PUNCH

END

Name

A sequence
symbol or
blank

0

Operation

PUNCH

Object Module
(Card Deck)

PUNCH

Operand

A character string of
up to 80 characters,
enclosed in apostrophes

Section H: Controlling the Assembler Program 229

•
The position of each character
specified in the PUNCH statement

~corresponds to a column in the card
to be punched. However, the
following rules apply to ampersands
and apostror;:hes:

1. A single amoersand initiates
an attempt to identify a variable

~SYmbOl and to substitute its current
value.

8 2. Double ampers~nds or apostrophes
are punched as s1ngle ampersands
or apostrophes •

•
3. A single aEostrophe followed
by one or more blanks simply
terminates the string cf characters

230

punched. If a non-blank character
follows a single apostrophe, an
error message is issued and nothing
is punched.

Only the characters punched,
including blanks, count toward the
maximum of 80 allowed.

NOTES:

1. No sequence number cr
identification is punched into the
card produced.

2. If the NC~ECK option is specified
in the EXEC statement of the job
control language for the assemtler
program, no cards are punched:
neither for the PUNCE or REPRO
instructions, nor for the object
deck of the assembly.

PUNCH '~IIIIIIIIIIIIIIIIIIIIIIII

o
Position 1 2 3 4 5 6 7

Examples:

Source
Statement

PUNCH

This position ~
is always ..
column 1

13 15

PUNCH 'CHARS • &VAR'

PUNCH 'CHARS • /\ && II,

PUNCH 'CHARS A' B'

~
PUNCH 'CHARS A'REMARKS

* *)',:: ERROR * * *

PUNCH 'CHARS At REMARKS

21

13 15

• Column

Value of
Variable
Symbol

21

Characters
Punched

ABC CHARS ABC

CHARS &'

CHARS A

CHARS A

o

o

o

H4B -- THE REPRO INSTRUCTION

Purpose

~he REPRO instruction causes the
data specified in the statement
that follows to be punched into
a card. Unlike the PUNCH
instruction, the REPRO instruction
does not allow values to be
substituted into variable symbols
before the card is punched.

Specifications

~e REPRO instruction
on the statement line
it to be punched into
corresponding columns
One REPRO instruction
punched card.

causes data
that follo'Ws
the
of a card.
produces one

The REPRO instruction can appear
anywhere in a source module exceEt

• before and between source macro •
definitions. The Eunched cards
are not part of the object deck,
even though they can be physically
interspersed in the object deck.

The format of the REPRO instruction
statement is shown in the figure
to the right.

The line to be reproduced can contain
any of the 256 punch characters,
including blanks, ampersands, and
apostrophes. No substitution is
performed for variable symbols.

NOTES:

Source Module

REPRO
data 2

REPRO
data 3

END

Name

A sequence
symbol or
blank

1. No sequence numbers or identification is punched in
the card.

2. If the NODECK option is specified in the job control
language for the assembleL program, no cards are punched:
neither for the PUNCa or REPRO instru~tions, nor for the
object deck of the assembly.

o

Operation

REPRO

Repro appears before
start of first control
section; punched card
will precede object
deck

OBJECT
DECK

REPRO

Operand

Not required

Section H: ControlLing the Assembler Program 231

H5A -- THE OPSYN INSTRUCTION

Purpose

The OPSYN instruction allows you
to define your own set of symbols
to represent operation codes for:

1. Machine and extended mnemonic
tranch instructions.

2. Assembler instructions including
conditional assembly instructions.

You can also prevent the assembler
from recognizing a symbol that
represents a current operation code.

Specifications

The OPSYN instruction aust be written
after the ICTL instruction and can
be preceded only by the LJECT, ISEQ,
PRINT, SPACE, and TITLE instructions.
The CFSYN instruction must precede
any source macro definitions that
may be specified.

The OPSYN instruction has two basic
formats as shown in the figure to
the right.

The operation code specified in
• the name field or the operand field •

must represent either:

1. The operation code of cne of
the machine or assembler instructions
as described in PARTS II, III, and
PART IV of this manual, or

2. The operation code defined by
a previous CFSYN instruction.

•
The OPSYN instruction assigns the
properties of the operation code
specified in the operand field to
the symbol in the name field. A

~ t1ank in the operand field causes
the operation code in the name field
to lose its properties as an
operation code.

232

Name

Any o symbol or
operation
code

An
operation
code

NEW

,.
MVC

-/

OPSYN

Operation Operand

OPSYN
An operation

COde.

or

OPSYN blank

•
OPSYN MVC

OPSYN •
No longer recognized
by the assembler as
a valid operation code
in current source module

ff-.. ".""\
'\.Y

o

o

•
NOTE: The symbol in the name field
can represent a valId o~eration
code. It loses its current
properties as if it had been defined
in an OPSYN instruction with a blank
operand field. Further, when the
same symbol appears in the ..n.!m!t

• field of two OPSXN instructions

•
the latest definition takes
precedence.

•
Both now possess the
properties of the LR
mechine instruction
operation code

ST

8TH •

Now represents
STH machine
operation

'3ec'i.:iol1 H: Cont.l:·olling Lhe As~embler Program 233

The instructions described in this sUbsection can save
and restore the status of PRINT options and the base
register assLgnment of your' program.

H6A -- THE FUSH INSTRUCTION

Purpose

The PUSH instruction allows you to save the current PRINT
or USING status in "push-down" storage on a last-in, first­
out basis. You can restore this PRINT and USING status
later, also on a last-in, first-out basis, by using a
corresponding POP instruction.

Specifications

The format of the PUSH instruction
statement is shown in the figure
to the righ t.

One of the four options for the
operand entry must be specified.
The PUSH instruction does not change
the status of the current PRINT
or USING instructions; the status
is only saved.

NOTE: When the PUSH instruction
is used in co~bination with the
POP instruction, a maximum of four
nests of PUSH PRINT - POP PRINT
or PUSH USING - POP USING are
allowed.

Name

A sequence
symbol or
blank

Operation

:JPUSH

H6B -- THE FOP INSTRUCTION

234

Purpose

The POP instruction allows you to restore the PRINT or
USING status saved by the most recent PUSH instruction.

Specifications

The format of the POP instruction
is given in the figure to the right.

One of the four options for the
operand entry must be s~ecified.
The FCP instruction causes the
status of the current PRINT or USING
instruction to be overridden by
the PRINT or USING status saved
by the last PUSH instruction.

NOTE: When the POP instruction
is used in combination with the
PUSH instruction, a maximum of four
nests of PUSH PRINT - POP PRINT
or PUSH USING - POP USING are
allowed.

Name

A sequence
symbol or
blank

Operation

POP

PUSH

Operand

Options

PRINT 1
USING 2
PRINT,USING 3
USING,PRINT 4

Operand

Options

PRINT 1
USING 2

:PRINT,U$ING 3
USING,PRINT 4

/~
~ •.)

o

I
o

o

In the opposite example, you can •

•
see how the USING environment is
saved and restored by a combination
of PUSH and PCP instructions.

NOTE: The PUSH instruction does

•
not change the current USING status;
you must do this yourself.

Source Module

MACRO

NEW
PUSH

USING

POP

MEND

FIRST START

USING

USING

BASENEW,l2

USING

BASE,l2

BASENEW,l2

Page of GC33-4010-4
Revised Feb. 25, 1975
By TNL: GN33-8193

Storage Stack
for saved
USING status

lJ

Section H: Controlling the Assembler.- Program 235

o

o

,.

o
236

o

o

o

Part IV: The Macro Facility

SECTION I: INTRODUCING MACROS

SECTION J: THE MACRO DEFINITION

SECTION K: THE MACRO INSTRUCTION

SECTION L: THE CONDITIONAL ASSEMBL V LANGUAGE

237

This page left blank intentionally.

,.

' \

0·,
-".'

o

o

Section I: Introducing Macros

This section introduces the basic macro concepti what you
can use the macro facility for, how you can prepare ycur
own macro definitions, and how you call.these macro
def~nitions for processing by the assemtler.

Read this section straight through ~fore referring to
the detailed descriptions identified by the cross-reference
arrows.

NOTE: IBM supplies macro definitions in system libraries
for input/output and other control program services, such
as the dynamic allocation of main storage areas. ~o ~rccess
these macro definitions ycu only have to write the macro
instruction that calls the definition •

.f'

Section I: Introducing Macros 239·
,J, 1'v· C

Page of GC33-401G-4
Revised Feb. 25, 1975
By TNL: GN33-8193

Using Macros

FOR TEXT INSERTION: The main use of macros is to insert
assembler language statements into a source program.

o

Source Module

BEFORE

J

K

L

Pre-assembly
or macro pro­
cessing time

Macro Definition

Name=TEXTIN

o

E

F

G

H

I

•

YOU call a named sequence of statements (the macro
definition) by using a macro instruction, or macro call.
The assembler replaces the macro call by the statements

I
from the macro definition and inserts them into the source
module at the point of call. The process of inserting
the text of the macro definition is called macro generation
or macro expansion. The assembler expands a macro at ~re­
ass embly t iJl'le:

240

'Ihe expanded stream of code then l:ecomes the input for
processing at assembly time, that is, the time at which
the assembler translates the machine instructions intc
object code.

Source Module

AFTER

K

L

o

10

'0'(" I ,,' I,~

lOR TEXT MODIFICATION: You may want to modify the
statements in a macro definition before they are generated.

I You can do this by su~plying character string values as
operands in a macro call. These values replace parameters
in the statement to be generated. This means that you
can change the content of the generated statements each
time you call the macro definition.

~.ISeeK3>

8' SeeJ3 >

Source Module Macro Definition Generated Result

~ .
C --.

D
E
F

H
I

K

• ---

Name = MODIFY

Section I: Introducirg ~'1acj .. ·op 211

FOR TEXT MANIFULATION: You can also select and reorder
the statements to be generated from a macro definition
by using the conditional assembly language described later
in this section. .

p
Q

:1jlil

R
S

Source
Module

Macro
Definition

Name = SELECT
Parameter: X

If X=O, then generate
first sequence;
If X=1, then generate
second sequence

A
B
C

~. F _____ +_~

Generated
Result

~The conditional assembly language allows you to manipulate
text generation, for exam~le, by branching upon the result
of a condition test. You can choose exactly which

• statements will or will not be generated by varying the
values you specify in the macro call.

,.

242

o

• I See SECTION L)

()

o

o

o

The Basic Macro ConceEt

To use the complete macro facility provided by the assembler
you must:

• prepare a macro definition.and

•. Call t~is definition using a macro instruction.
J

Prototype • ~~_M,A_C_N_AME ____ "

-Th-e-se-s-ta'-te-m-en-ts-- f
Body Of a ' establish limits of

a macro definition macro J
definition

Sequence of
Statements

l------
MEND

Macro Instruction [8 MACNAME

,t:

You can create a macro definition ty enclosing any sequence
of assembler language statements between the MACRO and

~MEND statements, and by writing a prototype staten-ent in

•
which you give your definition a name. This name is then
the operation code that you must use in the macro
instruction to call the definiti-on.

~ I SeeJ2C >
eISeeK2S)

Section I: Introducing Macros 243

~When you write a macro instruction in your source rrodu1e,
you tell the assembler to process a particular maC~

~definition. The assembler produces assembler language
statements from this macro definition for each macro
instruction that calls the definition.

244

Source Module

I MANY I

Definition

Generation of
assembler
language statements

By using the macro facility you reduce programming effort,
because:

1. You write and test the code a macro definition contains
once. You and other programmers can then use the same
code as often as you like by calling the definition~ which
means that you do not have to reconstruct the coding logic
each time you use the code.

2. You need write only one macro instruction to call for
the generation of many assembler language statements fro~
the macro definition.

When you are designing and writing large assembler language
programs, the above features allow you to:

• Prepare macro definitions, containing di~ficult code,
for your· less experienced colleagues. They can then call
your definitions to generate the appropriate statements,
without having to learn the code in the definition.

• Change the code in one place when updating or making
corrections, that is, in the macro definition. Each call
gets the lates~ version automatically, thus providing
standard coding conventions and interfaces.

• Describe the functions of a complete macro definition
rather than the function of each individual statement it
contains, thus providing more comprehensible documentation
for your source module.

o 1 See SECTION k>

.1 See SECTION J >
~\

U

o

o

o

Defining a Macro

Defining a macro means preparing the statements that
oonstitute a macro definition. To define a macro you must:

1. Give it a name

2. -Oeclare:any parameters to be used
J

3. Write the stateroents it contains.

4. Establish its boundaries

.. ... MACRO

Prototype MACIO &PARAMl,&PARAM2
... \

"
I

10 • • • Body of Macro

~MEND

• Macro Instruction MACIO OPERAN01,OPERAN02

~The MACRO and MEN~ instructions establish the boundaries
of a macro definition •

.. .r-

IYOU use the prototype statement to name the macro and to
declare its parameters. In the operand field of the macro

· instruction, you can assign values to the parameters
declared for the called macro definition.

• The bodt of a macro definition contains the staten.ents
that wi 1 be generated when you call the macro. These
statements are called model statements; they are usually
interspersed with conditional assembly statements or ether
processing statements.

• SaeJ2D > • SeaJ3 > • See K2C > • SeeJ2E >

Section I: Introducing Macros 245

WHERE YOU CAN PLACE A MACRO DEFINITION: You can include
a macro definition at the beginning of a source module. 0

1
:>

• This type of def ini tion is called a source macro definition. See J 1 B

you can also insert a macro definition in a systeR or user
library (located, for example, on disk) by using the
appropriate utility program. This type of definition is

~ called a library macro definition. The IBM-supplied macro
definitions mentioned earlier are examples of library «aero
definitions.

Source Module

LIB2

LIB2

Source
Module I

Calling a Macro

Macro Library

Source
Module II

Generated Result

LIB2

SoulCe
Module III

MACRO I:: I . . .

~YOu can call a source macro definition only from the source

•
module in which it is included. You can call a library

• macro definition from any source module.

246

o

o

o

WHERE YOU CAN CALL A MACRO tFFINITION: You can call a

•
macro definition by specifying a macro i.nstruction anywhere 0 I See K 1 B >
in a source module, except before or between any source
macro defin~tions that may be specified.

Source
Module

Macro Definitions

MACRO MACRO

.t.

oil

Generated
Result

You can also call a macro definition from within another

•
macro definition. This type of call is an inner macro
£!!1; it is said to be nested in the macro definition. 8' SeeK6A >

Section I: Introducing Macros 247

The Contents of a Macro pefinition

The body of a macro definition can contain a combination
of model statements, processing statements, and comments
st atements.

Model Statements • A

• X==A
Y==B
z=c

Generated Statements

A

100 QD ml

•
110DEL STA'IE~ENTS: You can write assemtler language .1,-~_J_4_-v~)
statements as model statements. The assemtler copies them _ ~.

I
exactly as they are written when it expands the macro.

248

You can also use variable symbols as points of sutstitution
in a model statement. The assembler will enter values
in place of these points of substitution each time the
macro is called.

,.

o

o

o

The three types of variable symbol in the assembler language
are

1. Symbolic parameters, declared in the prototype statement

2. System variable symbols (see J7)

3. SET symbols, which are part of the conditional assembly
language (see L1A).

The assembler processes the generated statements, with
or without value substitution, at assembly time.

PROCESSING STATEMEN~S: processing statements perform
functions at pre-assembly time when macros are expanded,
but they are not themselves generated for further processing
at assembly time. The processing statements are:

1. Conditional assembly instructions

2. Inner macro calls

3. The MNOTE instruction

4. The MEXIT instruction.

Pre-Assembly Time

Macro
Definition

Assembly Time

Message printed
in program
listings

~ The MNOTE instruction allows you to generate an error
message with an error condition code attached, or to
generate comments in which you can display the results
of pre-assembly computation •

o I SeeJ5D >

• The MEXIT instruction tells the assembler to stop processing 8-1 SeeJ5E >
a macro definition. The MEXIT instruction therefore

•
provides an exit from the middle of a macro definition.
The MEND instruction not only delimits the contents of
a macro definition but also provides an exit from the
aefinition.

Section I: Introducing Macros 249

250

COMMENTS STATEMENTS: One type of comments statement
describes pre-assembly operations and is not generated.
The other type describes assembly-time operations and is
therefore generated (for details see J6).

The Conditional Assembly Language

The conditional assembly language is a programming language
with most of the features that characterize such a language.
For example, it provides:

1. Variables

2. Data attributes

3. Expression computation

4. Assignment instructions

5. Labels for branching
-.1

6. Branching instructions

1. Sul:string operators that select characters from a string.

You can use the conditional assembly language in a macro
definition to receive input from a calling macro
instruction. You can produce output from the conditional
assembly language by using the MNOTE instruction.

You can use the functions of the conditional assembly
language to select statements for generation, to determine
their order of generation, and to perform computations
that affect the content of the generated statements.

The conditional assembly language is fully described in
Section L.

,.

o

o

o

o Section J: The Macro Definition

o

0 1'
J,I.

This section describes macro definitions: where they can
be placed in order to be available to call, how they are
sp~cified, and what they can contain.

Jl -- Using a Macro Definition

J1A -- PURPCSE

A macro definition is a named sequence of statements which
you can call with a macro instruction. When it is called,
the assembler processes and usually generates assembler
language statements from the definition into the source
module. The statements generated can ce:

1. Copied directly from the definition,

2. Modified by parameter values before generation, or

3. Manipulated by internal macro processing to change
the sequence in which they are generated.

You can define your own macro definitions in which any
combination of these three processes can occur. Some ~acro
definitions do nct generate assembler language statements,
but perform only internal processing, like some of the
macro definitions used for system generation.

Section J: The Macro Definition 251

J1B -- SPECIFICATIONS

Where to Define a Macro In a Source
Module

A macro definition within a source
module must be specified at the
beginning of that source roodule.
This type of macro definition is
called a source roacro definition.
A macro definition can also reside
in a system library; this type
of macro is called a library macro
definition. Either type can be
called from the source module by
the appropriate macro instruction.

NOTE: A source macro definition
can be entered into a library and
thereby become a library macro
definition. A library macro
definition can be inctuded at the
beginning of a source module and
thereby become a source macro
definition.

Some control and comments statements
can appear at the beginning ·of a
source module along with the source
macro definitions. They can be
used:

4It Eefore all macro definitions •

• Between macro definitions •

• After macro definitions and before
open code

All other statements of the assemcler
language must appear after any
source macro definitions that are
specified.

Open Code

o Open code is that part of a source
module that lies outside of and
after any source macro definition.
Open code is initiated by any
statement of the assembler language
that appears outside of a macro
definition, except the ICTL, OPSYN,
ISEQ, EJECT, PRINT, SPACE, or TITLE
instruction, or a comments statement.

252

Open Code

Source Module

Conunents

Conunents

•

f"\

'~ ..)

c

o

At coding time, it is important
to distinguish between source
statements that lie in open code
and those that lie inside macro
definitions.

NOTES:

1.· The ISEQ, EJECT, PRINT, SPACE,
and TITLE!instructions, and one
or more comments statements, can
appear between source macro
definitions and the start of open
code. However, in this position,
the above instructions must not
contain any variable symbols.

2. After the start of open code,
variable symbols are allowed in
any statement.

3. A macro definition must not be
specified after the start of open
code.

The Format of a Macro Definition

The general format of a macro
definition is shown in the figure
to the right.

The four parts are described in
detail below.

Macro Defn

MACRO (Header Statement)

ANYNAME (Prototype Statement)

Body of Macro

MEND (Trailer Statement)

Section J: The Macro Definition 253

12 - Part. of a Macro Definition

J2A -- THE ~ACRO DEFINITION HEADER

Purpose

The macro definition header
instruction indicates the beginning
of a macro definition.

Specifications

The MACRO instruction is the macro
definition header; it must be the
first statement of every macro
definition. Its format is given
in the figure to the right.

J2B -- THE MACRO DEFINITION TRAILER

254

purpose

The macro definition trailer
instruction indicates the end of
a macro definition. It also provides
an exit when it is processed during
macro expansion.

specifications

The MEND instruction statement is
the macro definition trailer; it
must be the last stateRent of every
macro definition. Its format is
given in the figure to the right.

Name Operation

Not used, MACRO
must not be
present :,/

Name Operation

A sequence MEND
symbol, or
not used

Header

Operand

Not required

Trailer

Operand

Not required

(r' 'Vi

o

o

o

J2 C -- THE MACRO PROTOTYPE STATEMENT: CODI NG

Purpose

The prototype statement in a macro
definitio~ serves as a model .
~rototype) of the macro instructi~n

you use to call the macro definition.

Specifications

The prototype statement must be
the second statement in every macro
definition. It comes immediately
after the ~ACRO instruction.

The format of the prctoty~e statement
statement is given in the figure
to the right.

-rile maximum number of symbolic
parameters allowed in the operand
field is not fixed.~ It depends
on the amount of virtual storage
available to the program.

If no parameters are specified in
the operand field, remarks are
allowed, if the absence of the
operand entry is indicated by a
comma preceded and ;pllowed by one
or more blanks. ~

Name

A name
field
parameter
or blank

Operation

Prototype

Operand

Zero or more
symbolic
parameters
_parated by

commas

Section J: The Macro Definition 255

Alternate Ways of Coding the
prototype statement

The prototype statement can be
specified in one of the following
three ways:

• The normal way, with all the syml:olic
parameters preceding any remarks.

~ An alternate way, allowing remarks
for each parameter.

• A combination of the first two ways.

NOTES:

1. Any number of continuation lines
is allowed. However, each

•
continuation line must be indicated
by a nonblank character in the column
after the end column on the preceding
card.

2. For each continuation line, the
operand field entries (symbolic

•
parameters) must begin in the continue
column otherwise the whole line and
any lines that follow will be

• considered to contain remarks.

J2D -- THE MACRO PROTOTYPE STATEMENT: ENTRIES

'Ihe Name Entry

Purpose

Prototype Statements

Standard value for
column after End
column ;s72

16 7172

.{

MOVEjO,&FROM,&LENGTH, •.••• ,&PARAM,~
ARAM2,&PARAM3, •••••••••• &PAR

· ~ 1 , ••••• ,PARAM15 REMARKS-

• Comma required
after each parameter

MOVE

•
•

Column 16

\
• MOVE

Comma required
after each
parameter
except last

•

,.

except last

T FIELD TO
FROM, FLO. FROM WHICH
LENGTH, MOVE LENGTH

INDEXl

:;1 f INDEX2

ARAM15 REMARKS CONTINUED
ON NEXT LINE,
AND THE NEXT

One or more
blanks required

TO, ATA MOVED TO
ROM, DATA MOVED FROM

LENGTH, NO OF BYTES
PARAMl,&PARAM2,&PARAM3, ••••••.

ARAM15 REMARKS CONTINUED
N LAST LINE

You can write a name-field parameter similar to the sy~bclic
parameter, as the name entry of a macro prototype statement.
You can then assign a value to this parameter from the
name entry in the calling macro instruction.

256

o

o

o

o

o

Specifications

If used, the name entry must be

I a variable symbol. If this parameter
also appears in the body of a macro,
it will be given the value assigned
to the parameter in the name field
of-the corresponding nacre
instruction. Note that the value J

. assigned to the name field parameter
has special restrictions that are
listed in K2A.

The Operation Entry

Purpose

~he operation entry is a symbol
that identifies the macro definition.
When you specify it in the operation
field of a macro instruction, the
appropria te macro def ini tiOD. is
called and processed by the
assembler.

Specifications

• The symbol in the operation field
of the prototype statement
establishes the name by which a
macro definition must be called •

•
This name becomes the' operation
code required in any macro instruc­
tion that calls the macro.

<;?pe.ratiollcode8 have
m~;:;:W.'Ai.t! 'J:J':~OPS~

, the operation code
specified in the prototype statement
must not be the same as that
specified in:

1. A machine instruction.

2. An assemrler instruction.

3. The prototype statement of another
source (or library) macro definition.

Source Module • .-~'7"'-------I
&NAM MOVE

MVC &TO,&FROM

MEND

~ START 0

HERE MOVE FIELDA,FIELDB

~
HERE MVC FIELDA,FIELDB

END

Section J: The Macro Definition 257

258

The Cperand Entry

Purpose

The operand entry in a prototype statement allows you to
specify positional or keyword parameters. These parameters
represent the values you can pass from the calling macro
instruction to the statements within the body of a macro
definition.

Specifications

The operands of the macro prototype statement must be
symbolic parameters separated by commas. They can be
positional parameters or keyword parameters or both (see
J3) •

NOTE: The operands must be symbolic parameters; parameters
in sublists are not allowed. For a discussion of sublis~,
in macro instruction operands, see R4. .

,.

o

o

J2E -- THE BODY OF A MACRO PEFINITION

Purpose

The body of a macro definition
contains t~e sequence of statements
that constitutes the working part '"
of a macro. You can specify:

1. Model statements to be generated.

2. Processing staterr.ents that, for
example, can alter the content and
sequence of the statements generated
or issue error messages.

3. Comments statements, some of
Which are generated and others which
are not.

". Conditional assembly instructions
to compute results tc be dis~layed
in the message created by the MNOT~
instruction~ without causing any
assembler language statements to
be generated.

Specifications

The statements in the body of a
macro definition must appear between
the macro prototype statement and
the MEND statement of the aefinition.
The three main types)Of statements
allowed in the body 6f a macro are:

4Dt • Model statements (see J4) ,

•• processing statements (see J5) ,
and

•• Comments statements (see J6) •

NOTE: The cody of a macro definition
can be empty, that is, contain no
st at ements.

Conditional
Assembly
Instructions

Macro (Inner)
Instructions

MNOTE
Instruction

MEXIT
Instruction

Internsl

Ordinary

Result of Macro
Expansion

$ection J: The Macro Definition 259

J3 - Symbolic Parameters

Purpose

O
Symbolic parameters allow you to
pass values into the body of a macro
definition from the calling macro

•
instruction. You declare these
parameters in the macro prototype

•
statement. They can serve as points
of substitution in the body of the

•
macro definition and are replaced

· by the values assiqned to them by
the calling macro instruction.

By using symbolic parameters with
meaningful names you can indicate
the purpose for which the parameters
~r substituted values) are used.

General Specifications

Symbolic parameters must be valid
variable symbols, as shown in the
figure to the right.

o They have a local scoFe: that is,
the value they are assigned only

•
applies to the macro definition
in which they have been declared.
The value of the parameter remains
constant throughout the processing
of the containing macro definition
for every call on that definition.

NOTE: Symbolic parameters must

•
not be multiply defined or identical
to any other variable symbols within
the given local scope. This applies
to the system variable symbols

260

described in J1, and local and
global SET symbols described in
L1A.

Source Module

MVe

MEND

OPEN START
I

END

A-
,.----Ampersand

r / . Alphabetic character
.-0 0 to 6 alphameric character

1&lplA RAMI

prototype

MEND

Generated
Result

ir"'\

~.)

o

o

The two kinds of symbolic parameters
are:

•• Positional parameters

•• Reyword parameters.

•
Each positional or keyword parameter
used in the body of a macro

•
definition must be declared in the
prototype statement.

Subscripted Symbolic Parameters

Subscripted symbolic~arameters
must be coded in the~format shown
in the figure to the right.

•
'Ihe subscript can be any arithmetic
expression allowed in the operand
field of a SETA instruction
(arithmetic expressions are discussed
in L4A). The arithmetic expression
can contain subscri~ted variable
symbols. Subscripts can be nested
up to 5 levels of nesting.

The value of the subscript must
be greater than or equal to one •

• 'Ihe subscript indicates the position
of the entry in the sublist that

•
is specified as the value of the
subscripted parameter (sublists
as values in macro instruction
operands are fully described in
R4) •

SOurce Module

It Macro I .
Definition J

MACRO 0 • • -Prototype DEFINED &TO,&FROM=

I MVC &Td I .
MEND
START 0

I Macro J DEFINED FIELDA,FROM=FIELDB Instruction

\

MVC FIELDA,FIELDB

END

Source Module

Format:

MACRO

SUBLISTS &POS,&KEY=

MVC &POS(3)'&KEY(3~

MEND

~ • START o

SUBLISTS (A,B,C,D),KEY=(E,F,G,H)

•
MVC C,G

END

Seetien J: The Macro Definition 2Gi

J3A -- POSITIONAL PARAMETERS

Purpose

You should use a positional parameter
in a macro definition if you wish
to change the value of the parameter
each time you call the macro
definition. This is because it
is easier to supply the value for
a positional parameter than for
a keyword parameter. You only have
to write the value you wish the
parameter to have in the proper
position in the operand of the
calling macro instruction.

For keyword (described below)
parameters, you must write the
entire keyword and the equal sign
that precedes the value to be passed.
However, if you need a large number
of parameters, you should use keyword
parameters. The keywords make it
easier to keep track of the
individual values you must specify
at each call, by reminding you which
parameters are being given values.

Specifications

The general specifications for
symbolic parameters described in
J3 also apply to positional
parameters. Note that the
specification for each positional
parameter declared in the prototype

•
statement definition must be a valid
var iable symbol. Va lues a re assigned
to the positional parameters by

• the corresponding positional operands
specified in the macro instruction
that calls the definition.

262

.-/

Pos. Paramo

Source Module

MACRO
Macro

Definition J--_:_:_:_AR ___ O~O:O~ __ -t

Macro
Instruction

START

POSPAR

..
END

ONE, TWO, THREE •

o

o

o

o
J3B -- REYWORD PARAMETERs

Purpose

You should ~se a keyword parameter
in a macro definition for a value
that changes infrequently. By
specifying a standard default value
to be assigned to the keyword
parameter, you can owit the
corresponding keyword operand in
the calling macro instruction.

Reyword parameters are also
convenient tecause:

1. you can specify the corresponding
keyword operands in any order in
the calling macro instruction.

2. The keyword, re~eated in the
operand, reminds you which parameter
is being given a value and for which
purpose the parameters is being
used.

Specifications

!he general specifications for
symbolic para.weters described in
J3 also apply to keyword parameters.
Each keyword parameter must· be
in the format show.n ill" the figure
to the right.

•
The actual parameter must be a valid
variable symbol.

A value is assigned to a keyword

•
parameter by the corresponding
keyword operand through the name
of the keyword as follows:

~1. If the corresponding keyword
operand is omitted, the standard

.value specified in the prototype
statement becomes the value of the
·parameter for that call (for full
details on values passed see R5).

8 2. If the corresponding keyword
operand is specified, the value
after the equal sign overrides the
standard value in the prototype

•
and becomes the value of the

• parameter for that call (see K5) •

/ Varillble Symbol

~ / Equal Sign

a_---'--, /._L Ste,ndard Value

qKEYWORDI= DEFAULT

IKEYWORDJ= VALUE • Example:
Source Module

MACRO

Key. Paramo

Keyword Parameter
Specification

Keyword Operand
Specification

Prototype KEYS &KEYWORD=ABC,&KEY2=(A,B,C)

MEND

START o
Standard value of
KEYWORD

Section J~ The MaGro Definttion 263

• NO'I'E: A null character string can
be specified as the standard value
of a keyword parameter, and will
be generated if the corresponding

• keyword opera~.j is omitted.

264

OPEN

Source Module
Null character
string

MACRO

FXDPT

L&TYPE
A&TYPE
ST&TYPE

MEND

START

END

®,AREA
®,CONST
®,SUM

0

LH 3,AREA
AH 3,CONST
STH 3,SUM

Null character
string

o

o

Of;'
, '

J3C -- COMBINING POSITIONAL AND
MEYWORD PARAMFTERS

Purpose

By using positional and keyword
parameters in a prototype statement,
you combine :the benefits of both.
You can use positional parameters
in a macro definition for passing
values that change frequently and
keyword parameters for passing
values that do not change often.

Specifications

Positional and keyword parameters

•
can be mixed freely in the nacro
prototype statement. The same
applies to the positional and keyword

• operands of the macro instruction
(s ee K3q. Note, however, tha t

•
the order in which the positional
'parameters appear deterreines the
order in which the positional

•
operands must appear. Interspersed

• keyword parameters or operands do
not affect this order.

MEND

START

MIX •
END

Section J: The Macro Definiti..on 265

14 - Model Statements

J4A -- PURPCSE

Model statements are statements from which assembler
language statements are generated at pre-assembly time.
They allow you to determine the form of the statements
to be generated. By specifying variable symbols as pcints
of substitution in a model statement, you can vary the
content of the statements generated from that model
statement. You can also use model statements into which
you substitute values in open code.

J48 -- SPECIFICATIONS

The following specifications also apply to model staterrents
in open code. Exceptions are noted where applicable.

,/

Format of Model Statements
Columns: Model Statement

i

Model Stmnt

A model statement consists of one
or more fields separated by one
or more blanks.

o _________ ~1

I~I-II II I
Fields:

Each field or subfield can consist
of:

Name Operation Operand Remarks

• An ordinary character string

• A variable symbol as a point of
substitution

• Any combina tion of ordinary
character strings and variable
symbols to form a concatenated
string.

266

The statements generated at pre­
assembly time from model statements
must be valid machine or assembler
instructions, but must not be
conditional assembly instructions.
They must obey the coding rules
described in Section E or they will
be flagged as an error at assembly
time.

,.

Examples:

LABEL L 3,AREA

LABEL L 3,20(4,5)

&LABEL i 3, &AREA

FIELD&A L 3,AREA&C

C,·';-~·" :)

O~"
"

o

o

Variable SyU'bols as Points of
Substitution

Values can be substituted for
variable symbols that appear in
the name, operation, and operand
fields of model statements; thus,
variable symbols represent points
of substitution. The three main
types of variable symbol are:

• symbolic parameters (described in
J3 above).

~system variable symbols (described
in J7 below) , and

• SET symbols (described in L 1A) •

NOTES:

1. Symbolic parameters, SF!' symbols,
and the system variable symbol,
'SYSLIST, can all be subscripted.
The remaining system variable symbols
'SYSNCX, &SYSECT, &SYSPARM, &SYSDATE,
and 'SYSTIME cannot be subscripted.

2. The fields in a statement
generated fron> a model statement

•
appear in the listings in the same.
oolumns as in the model statement.

~ However, when values are substituted
for variable symbols the generated

•
fieldS can be displaced to the
right.

Page of GC33-4010-4
Revised Feb. 25, 1975
By TNL: GN33-8193

Format: Alphabetic Character ~~~n
~ 0'0 6 Alphameric Characters

& 9 'ARIABL' .

Symbols

used in
open code

Examples of
Subscripted
Variable
Symbols:

&PARAM(3)

Name

0

&SYSLIST(l,3)

&SYSLIST(2)

Operation Operand

10 16

MVC AREAl,AREA2

Global
SETA
SETS
SETC

Local
SETA
SETS
SErC

& SETA (10)

&SETC(lS)

model trEL
AREAl,AREA2 +LABEL MVC generate

~NAAE
&Op &TO, &FROM model

(LABEL) (MVC) (AREAl) (AREA2) values

+LABEL MVC AREAl, AREA2 generated

I rAt least one blank between fields I
&A: B &C,&D model ., (AREAl) , (AREA2) }8 -I values to be

~
substituted

(LABEL)
+LABEL FC f-REAl , AREA 2 generated

Section J: The Macro Definition 267

• •

Bules for Concatenation

When variable symbols are
concatenated to ordinary character
strings, the following rules apply
to the use of -~he concatenation
character (a period):

The concatenation character is
mandatory when:

• An alphameric character is to
follow a variable symbol.

• A left parenthesis that does not
enclose a subscript is to follow
a variable symbol.

S · A period (.) is to be generated.
. Two periods must be specified in

the concatenated string following
a variable symbol.

• •
•
•

268

The concatenation character is not
necessary when:

• An ordinary character string
precedes a variable symbol.

• A special character, except left
parenthesis or period, is to follow
a variable symbol.

• A variable symbol follows another
variable symbol.

The concatenation character must
not be used between a variable
syrr~ol and its subscript; otherwise,
the characters will be considered
a concatenated string and not a
subscripted variable symbol.

Concatenated Vai~esto~ Generated I
!(~\

String Substitutet: Result ~,-.y1

Variable Value
symbol

&FIELDoAG &FIELD AREA AREAA
&FIELDA &FIELDA SUM SUM

• &DISP. (&BASE). &DISP 100 lOO{10l
&BASE 10

I Concatenation character is not generated .1

DC D'&INT.,:.:..&FRACT &INT 99 DC 0
1
9.8' • &FRACT 88

DC D ' & INT&FRACT ' DC D'9988' •
DC D' &INT. &FRACT' ./ DC D'9988'

optional

1 Concatenation character is not generated]

• / -'- ".
FIELD&A &A A FIELDA \

~-f

&A,V B/. 3 - Oj &A A rB
*3-0 • &B B

&A&B AB •
& SYM (& SUBSCR)} &SUBSCR 10

{ENTRY • &SYM(lO) ENTRY

o

o

Rules for Model Statement Fields

The fields that can be specified
in model statements are the same
fields that can be specified in
an ordinary assembler language
statement. They are the name,
operation, operand and re~arks
fields. It is also possible to
specify a continuation - indicator J

field, an identification - sequence
field, and a field before the begin
column, if the appropriate ICTL
instruction has been specified.
Character strings in the last three
fields (in the standard format only
oolumns 72 through 80) are generated
exactly as they appear in the model
statement, and no values are
substituted for variable symbols.

Model statements must have an entry
in the operation field, and, in
most cases, an entry in the operand
field in order to generate valid
assembler language instructions.

THE NAME FIELP: The entries allowed
in the name field of a model
statement are given in the figure
to the right, including the allowable
results of generation.

Variacle syubols must not be used

O to generate comments statement
indicators.

NOTE: Restrictions on the name
entry are further specified where
each individual assembler language
instruction is descrfbed in this
manual.

Name Allowed Not Allowed
Field

In~ • blank
Statements • ordinary symbol

• sequence symbol
(before • variable symbol
generation) • any combination

of variable symbols
and other character
strings concatenated
together

In Generated • blank :*l8 Statements • valid ordinary
symbol

(generated
results)

Section J: The Macro Definition 269

THE OPERATION FIELP: The entries
allowed in the operation field of
a model statement are given in the
figure to the right, including the
allowable results of generation.

~ The operation codes ICTL and OPSYN
are not allowed inside a macro

• definition. The MACRO and MEN!:
operation codes are not allowed
in model statements; they are used
only for delirr:iting macro
definitions.

• If the REPRO operation code is
specified in a model statement,

•
no substitution is perforn;ed for
the variable symbols in the statement
line following the REPRO statement.
Variable symbols can be used alone
or as part of a concatenated string
to generate operation codes for:

• - Any machine instruction, or

• - The assembler instructions listed.

• NOTE: The MNOTE and MEXIT statements
are not model statements; they are
described in J5C and J5E
respectively.

The generated operation code must
not be an operation code for the
following (or their OPSYN
equivalents) :

• - A macro instruction,

~- A conditional assembly instruction,
or

41»- The assembler instructions listed.

270

Allowed

• An ordinarv...§Y.!.!l.b.gl that
represents the operatlon

(Before code for:
Generation) - any machine instructio ...

- a macro instruction
- the following Assembler

instructions:

CCW EJECT II1II

g~~PE~~~Y • ~~i~~
COpy EQU START
CSECT EXTRN TITLE
C8! ISEQ USING
DC LTORG WXTRN

~~OP:'~.i :~~ii}

•
DSECT PRINT
:Dim PUNCH

• A variable symbol

• A combination of
variable symbols and
other charact8l1Strings
concatenated together

n Generated • An ordinary_symbol that
• __ m_e_n_ts represents the operation

Generated code for:
Results) - any machine instruction

- the following assembler
instructions:

CCW
CNOP
COM
CSECT
~ ..

DC
DROP
OS
DSECT
-~;

EJECT ~
ENTRY
EQU
EXTRN
LTORG
ORG

' .•
PRINT
PUNCH '-

SPACE
TITLE
USING
WXTRN

(MNOTE) •
•

.. Not AflOWed o
• blank

.. The asse'1lbler
_ operation codes:

8{ICTL
.oPSYN

• {
MACRO
ME1'lD

•

• blank
• a macro instruction

operation code

• a conditional
assembly operation

0 code:
ACTR
AGO
AGOB
AIF
AIFB
ANOP

the following
operation codes:

COpy
ICTL
ISEQ
MACRO
MEND

o

o

o

THE OPERAND FIELD: The entries
allowed in the operand field of
a model statement are given in the
figure to the right, including the
allowable results of generation.

•
NOTE: Variable symbols must not
be used in the operand field of
a COPY, ICTL, ISEQ, or OPSYN
instruction.

./:

THE REMARRS FIELP: Any combination
of characters can be specified in
the remarks field of a mod.el

• statement. No values axe substituted
into variable symbols in this field.

NOTE: One or more blanks must be
used in a model statement to separate

.the name, operation, operand, and
remarks fields from each other.
Blanks cannot be generated between
fields in order to create a complete
assembler language statement.

Operand Allowed Not Allowed
Field

.
In~ .. ~(if.y~lid)
§tatement~ ~ An ordinarY_sv.mbol

(Before ~ A character string.

Generation) combining alphameric
and special charac-
ters (but not variable

symbols)

~ A variable sv.mbol

~ A combination of
variable symbols and
other character
strings concatenated
together

In Generated ~ blank (if valid) ~ operand field of a:
~1@ments COPY, ICTL,

.. Character Slring_ ISEQ or OPSYN
(Generated that represents a statement
Results) valid assembler or '"'

machine instruction • operand field

Remarks Field

Model ~
&NAME+&OPlr &TO,&F~REMARKS

Generated
LABEL !oWe FIELDA,FIELDB REMARKS ABOUT &TO

Example I: LCLC &ADDR

&ADDR SETC

Model LA

Generated LA

Example II: LeLA &A
LCLC &C

&A SETA 100

•

}

Conditional
Assembly

BASE' Statements

Jne or more blanks
must be generated

&C SETC '&A &A NOW IN REGISTER'

Model LA 3,&C LOOK HERE

Generated

,Ai.,

LA 3 'iB6i'oONOW

';'\)~~iOnlJ .·remarks
,i;j~e.~

IN "RE'2;I STER'£~~;~

Section J: The Macro Definition 271

J6 -- Processing Statements

J5A -- CONDITIONAL ASSEMBLY
INSTRUCTIONS

Conditional assembly instructions
allow you to deterreine at pre­
assembly time the content of the
generated statements and the sequence
in which they are generated. The
instructions and their functions
are given in the figure to the
right.

Conditional assembly instructions
can be used both inside macro
definitions and in open code. They
are fully described in Section L.

J5B -- INNER MACRO INS'IBUCTIONS

Conditional Assembly
Instruction

GBLA,GBLB,GBLC
LCLA,LCLB,LCLC

SETA,SETB,SETC

AIF

AGO

ANOP

f~CTR

j'

Macro instructions can be nested inSide macro definitions,
allowing you to call other macros from within your own
definitions. Nesting of rracro instructions is fully
described in 1<6.

J5C -- THE COpy INS!RUC!ION

272

purpose

The COpy instruction, inside macro definitions, allows
yo~ to copy into the macro definition any sequence of
statements allowed in the body of a macro definition.
~hese statements become part of the body of the macro
before macro processing takes place. You can also use
the COpy instruction to copy complete macro definitions
into the beginning of a source module.

The specifications for the COpy instruction, which can
also be used in open code, are described i~ E1A.

Function Performed c
Declaration of initial values
of variable S'/mbois (global
and local SET symbols)

Assignment of values to
variable symbols (SET
symbols) -
Branching

- Conditional (based on
logical test)

- Unconditional

- To next Sequential
instruction (No
operation)

Setting..b2,Qp Counter

o

o

o

J5D -- THE MNOTE INSTRUCTION

Purpose

You can use the MNOTE instruction
to generate your own error messages
or .display intermediate values of
variable symbols computed at pre­
assemtly time.

Specifications

The MNOTE instruction can be used

lin.slidlea:~c~~s d~~~!~f~~S c~~I~~~
created by substitution. The

MNOTE instruction causes the
generation of a message which is
given a statement number in the
printed listing.

~he format of the MNOtE instruction
statement is given in the figure
to the right.

• The n stands for a severity code.
The rules for specifying the contents
of the severity code subfield are
as follows:

• as
1.. The severity code can be specified

any arithmetic expression allowed
1n the operand field of a SETA
instruction. The expression must
have a value in the r~nge 0 through
255 •

• 2. If the severity code is omitted,
hut the comma separating it from
the message is present, the assembler
assigns a default value of 1 as
the severity code.

~ 3. An asterisk in the severity code
subfield causes the message and
the asterisk to be generated as
a comments statement.

•
. 4. If the entire severity code
subfield is omitted, including the
comma separating it from the message,
the assembler generates the message
as a comments statement.

Name

A sequence
symbol or
blank

Examples:

Source Statements

•

Operation

MNOTE

MNOTE

Operand

One of four options allowed:

•
n, 'message' } error

, 'message' message

*. 'message' } comments
'message'

Generated Result

MNOTE 2, 'ERROR IN SYNTAX' 2,ERROR IN SYNTAX

• MNOTE ,'ERROR, SEV l' ,ERROR, SEV 1

• MNOTE *,' NO ERROR' .;~,NO ERROR

MNOTE8. NO ERROR I NO ERROR

Section J: The Macro Definition 273

f

NOTES:

1. An MNOTE instruction causes a message to be printed,
if the current PRINT option is ON, even if the PRINT NOGEN
option is specified.

2. The statement number of the message generated from an
MNOTE instruction with a severity code is listed among
any other error messages for the current source module.
However, the message is printed only if the severity code
specified is greater than or equal to the severity code
-nnn- in the assembler option, FLAG (nnn) , contained in
the EXEC statement that invokes the assembler.

3. The statement number of the comments generated froK
an MNOTE instruction without a severity code is not listed
among other error messages.

Any combination of up to 256 characters enclosed in
apostrophes can be specified in the message subfield.
The rules that apply to this character string are as Y
follows:

e. Variable symbols are allowed (NOTE: variable symbols
can have a value that includes even the enclosing
apostrophes) •

4It ~ Double ampersands and double apostrophes are needed ~
to generate one ampersand or one apostrophe. If variable

•.
SymbolS have ampersands or apostrophes as values, the
values must have double ampersands or apostrophes.

NOTE:

Any remarks for the MNOTE instruction statement must
be separated from the apostrophe that ends the message
by one or more blanks.

,.

274

()

/'--~'\

'",.,,,/

o

o

o

ISeverity Code I

/
MNOTE Operand

3~'THIS IS A MESSAGE'

3, 'DOUBLE &S'

3,'DOUBLE L&APOS&AREA'

3 ' MES SAGE STOP'm:" ,.c
.. ,.,0(, .~

Invalid remarks,
must be separated
from operand by
one or more blanks

3'MESSAGE S:~OF
Valid Remarks

entry

Value of
Variable Symbol

, ,
&PARAM=ERROR

&A=10

Generated
Result

3,THIS IS A MESSAGE

3,ERROR

3,VALUE OF &A IS 10

&AREA=FIELD1 3,L'FIELD1

&S'
&APOS="
&AREA=FIELD1

3,DOUBLE &

3,DOUBLE L'FIELD1

3,MESSAGE STOP RMRKS

Section J: The Macro Definition 275

J5E -- THE MEXIT INSTRUCTION

Purpose

The MEXIT instruction allows you
to provide an exit for the assembler
from any point in the body of a
macro definition. The MEND
instruction provides an exit only
from the end of a macro definition
(see J2B) •

Specifications

The MEXIT instruction statement
can be used only inside macro
definitions. It has the format
given in the figure to the right.

The MEXIT instruction causes the
assembler to exit from a macro

•
definit ion to the next seguential
instruction after the macro
instruction that calls the

276

definition. (This also applies
to nested macro instructions, which
are described in K6.)

,.

Name

Sequence
symbol
or blank

/'

MEXIT
o

Operation Operand

MEXIT Not reOlJirec.

MACRO

EXITS

A
B
C

MEXIT

D
E
F

MEND

START 0

('" i
JI

o

c

o

J6 - Comments Statements

J6A -- INTERNAL MACRO COMMENTS STATEMENTS

Purpose

You write internal macro comments inJthe body of a macro
definition, to describe the operations performed at pre­
assembly time when the macro is processed.

Specifications

Internal macro comments statements
can be used only inside macro
definitions. An example of their
correct use is given in the figure
to the right.

No values are substituted for any
~ariable symbols that are specified
1n macro corements statements.

J6B -- ORDINARY COMMENTS STATEMENTS

Purpose

Ordinary co~ments staterr.ents
(described in B1C) allow you to

make descriptive remarks about the
generated output from a macro
definit ion.

Columns

Specifications Columns

Ordinary comments statements can
be used in macro definitions and
in open code. An example of their
correct use is shown in the figure
to the right.

Even though this type of statement
is generated along with the model
statements of a macro definition,
values ar~ not .. sub~ti tuted for any
variable ~ymbols specified~

Begin column
(standard

value)

(1) (2) (3)

,

*
*

Begin column
(standard

value)

(1) (2)

Period.

WILL NOT BE.

Format
Asterisk }

11/ ~AnY Character String

* ~NT WILL HE GENERATED

Section J: The Macro Definition 277

Page of GC33-401Q-4
Revised July 31, 1976
By TNL: GN33-8207

J7 -- System Variable Symbols

278

purpose

System variable symbols are variable symbols whose values
are set by the assembler according to specific rules.
You can use these symbcls as points of substitution in
model statements and conditional assemtly instructions.

General Specifications for System Variable Symbols

The s stem variable symbols: 4St~J;>A'11 &SYSPARM, and
can be used as points of substitution both inside

macro definitions and in open code. The remaining system
variable symbols: &SYSECT, &SYSLIST, and &SYSNDX, can te
used only inside macro definitions. All system variable
symbols are subject to the same rules of concatenation ~
and substitution as other variable symbols (see J4B) •

System variable symbols must not be used as symbolic
parameters in the macro prototype statement. Also, they
must not be declared as SET symbols (see L2).

The assembler assigns read-only values to system variable
symbols; they cannot be changed by using the SETA, SE!B,
or SETC instructions (see L3).

,.

o

THE SCOPE OF SYSTEM VARIAELE SYMBOLS:
The system variable symbols:

Ie ~:~:~~io~~iS!~:~. an~h~:~:'
that they are assigned a read-only
value for an entire source module;

I
a value that is the same throughout
open code and inside any rr.acro
definitions called. The system
variable symbols: &SYSEC!, &SYSLIST,
and &SYSNDX, have a local scope.
They are assigned a read-only value
each time a macro is called, and

O have that value only within the
. • expansion of the called macro.

J"j·A'""-&SYSDATE

,II:

o

Purpose

You can use &SYSDATE to obtain the
date on which your source module
is assembled.

Specifications

The global system variable symbol
&SYSDATE is assigned a read-only
value of the format given in the
figure to the right.

NOTE: The value of the type attribute
of &SYSDATE (T'&SYStATE) is always
U and the value of the count
attribute (K'&SYSDATE) is always
eight. (Attributes are fully
described in L1B.)

Source Module

MACRO

MACl

MEND

MACRO

MAC 2

KENO

OPEN START

G
L

Format:

Where:

Example:

Syst. Var. Sym.

8 - Character String

~m/dd/YYI
mm gives the month
dd gives the day

yy gives the year

NOTE:

&SYSECT
&SYSLIST
&SYSNDX

are only allowed
inside macro
definitions

&SYSDATE

11/25/72 4-- Corresponds to date
printed in the page
heading of listings,
remains constant for
each assembly

Section J: The Macro Definition 279

Page of GC33-4010·5
As Updated 28 Dec 1981
By TNL GN20·9372

J7B -- &SYSECT

Purpose

You can use &SYSECT in a rracro
definition to generate the name
of the current contrel section.
The current control section is the
control section in which the macro
instruction that calls the definition
appears.

Specifications

The local system variable symbol
&SYSECT is assigned a read-only
value each time a macro definition
is called •

• The value assigned is the symbol
that represents the name of the

4It current control section from which
the macro definition is called.
Note that it is the centrel section
in effect when the macro is called.
A control section that has been

•
ini tiated or continued by
substitution does net affect the
value of &SYSECT for the expansion
of the current macro. However,
it does affect &SYSECT for a

• subseguent macro call. Nested
macros cause the asserrbler to assign

• a value to &SYSECT that depends
on the control sectien in force
inside the outer macro when the
inner macro is called (see K6).

NOTES:

1. The control section whose name
is assigned to &S.YSECT can be defined
by a START, CSECT, tSECT, or COM
instruction.

2. The value of the ty~e attribute
of &SYSECT, T'gSYSECT, is alwa
u, and the value of the

os' attribute .(1' 'SYSIe!) 1.
only .the: .. n~r,.o(chara<1~~'

.>a v.luet:O u,yS~l:: ttr
are fully described in L1E.)

?-80

i~

\~,-~

&SYSECT

Source Module

MACRO MACRO
OUTER &NAME

&NAME CSECT DC A (&SYSECT)

DC A(&SYSECT)
MEND

INNER

END

o J7C -- 'SYSLIST

10

o

Purpose

You can use 'SYSLIST instead of
a positional parameter inside a
macro definition, for example, as
a point of!substi tution. Ey varying J

the subscripts attached to 'SYSLIST,
you can refer to any positional
operand or sublist entry in a macro
call. 'SYSLIST allows you to refer
to positional operands for which
no corresponding positional parameter
is specified in the macro prototy~e
statement.

Specifications

The local system variable symbol
&SYSLIST is assigned a read-only
value each time a macro definition
is called.

&SYSLIST refers to the complete
list of positional operands specified
in a macro instruction. &SYSLIST
does not refer to keyword operands.

However, &SYSLIST cannot be specified
as &SYSLIST alone. One of the two
forms given in the figure to the
right must be used as a point of
substitution:

• 1. To refer to a pos1"tional operand

• 2. To refer to a sublist entry of
a positional operand (sublists are
fully described in K4 below).

• The subscript n indicates the

•
position of the operand referred
to. The subscript m, if specified,
indicates the position of an entry
in the sublist specified in the
operand whose position is indicated
~ the first subscri~t n.

&SYSLIST

Macro
Instruction

CLST

I &SYSLIST I
/ ~
'P1,P2,P3,

Point of substitution
in macro definition

Macro
Instruction

CSUB

Point of substitution }
in macro definition

Sect:ion J: The Macro Definition 281

The subscripts nand m can be any
arithmetic expression allowed in
the operand of a SET~ instruction
(see L3A). The subscript n must

be greater than or equal to O.
The subscript m must be greater
than or equal to 1.

The figure to the right shows
examples of the values assigned
to &SYSLIST according tc the value
of its subscript, m and n.

If the position indicated by n
• refers to an omitted operand or

•
refers past the end of the list
of positional operands specified,
the null character string is
substituted for &SYSLIST(n). If
the position (in a sublist) indicated

8
by the second subscript, m, refers
to an omitted entry or refers past

. the end of the list of entries
specified in the sublist referred
to by the first subscript, n, the
null character string is substituted
for &SYSLIS~(n,m). Further, if
the nth positional operand is not

•
a sublist, &SYSLIST (n, 1) refers
to the operand but &SYSLIST(n,m),
where m is greater than 1, will
cause the null character string
to be substituted.

•
NOTE: If the va. lue of subscript

, n is zero, then &SYSLIS~(n) is
assigned the value specified in

282

the name field of the macro
instruction, except when it is a
sequence symbol.

,.

o
Macro Instruction:

NAME MACALL ONE,TWO,(3,4"6),,EIGH~

Point of substitution Value
in macro definition Substituted

-&SYSLIST(2) TWO
&SYSLIST(3,2) 4

0
&SYSLIST(4) Null

• &SYSLIST(9) Null

• &SYSLIST(3,3) Null

• :!' &SYSLIST{3,5) Null

• &SYSLIST(2,l) TWO
&SYSLIST(2,2) Null

0
&SYSLIST(O) NAME
&SYSLIST(3) (3,4,,6)

C""·' ,I

o

Attribute references can be made
to the previously described forms
of 'SYSLIST. The' attributes will
be the attributes inherent in the
positional operands or sublist
entries to which you refer.
(Attributes are fully described
in L1B.) However, the number
attribute of &SYSLIST, N"SYSLIST,
is -different from the number
attribute described in L1B. One J

of the two forms given in the figure
to the right can be used for the
number attribute:

•
• To indicate the number of
positional operands specified in
a call

•
• To indicate the number of Sublist
entries that have been specified

•
in a positional operand indicated
by the subscript.

NOTES:

1. For N'&SYSLIST, positicnal
• operands are counted if specifically

omitted by specifying the comma
that would normally have followed
the operand.

•
2. For N' &SYSLIST (n) , sublist entries
are counted if specifically omitted
by specifying the comma that would
normally have followed the entry.

1
3. If the operand indicated by n

• is not a sublist, N'&SYSLIST~)
is 1. If it is omitted, __ .
N' &SYSLIST (n) is zero. /'.

ON'&SYSLIST
Macro Value of
Instruction N'&SYSLIST

MACLST 1,2,3,4 4
MACLST A,B, ,D,E ~}. MACLST ,A,B,C,D
MACLST (A,B,C), (D,E,F) 2l Counts sublists I as one operand

MACLST 0
MACLST KEYI=A,KEY2=B ~ lKeyword operands I
MACLST A,B,KEY1=C 2 are not counted

eN' &SYSLIST (n)
Macro • Value of
I.nstruction N'&SYSLIST (2)

(n=2)

MAC SUB A, (1,2,3,4,5),B 5
MACSUB A,(1,,3,,5),B ~}. MAC SUB A, (,2,3,4,5),B
MAC SUB A,B,C 1

0 • MACSUB A\,C 0
MAC SUB A,.kl!;Y= (A, B, C) 0

MAC SUB ~ ,I Keyword sublists J
o are not counted

Section J: The Macro Definition 283

J1D -- &SYSNDX

purpose

You can attach &SYSNDX to the end of a symbol inside a
macro definitlon to generate a unique suffix for that
symbol each time you call the definition. Although the
same symbol is generated by two or more calls to the same
definition, the suffix provided by iSYSNDX produces two
or more unique symbols. ~hus you avoid an error being
flagged for multiply defined symbols.

Source Module
Specifications

The local system variable symbol
&SYSNDX is assigned a read-only
value each time a macro definition
is called from a source module.

• The value assigned to &SYSNI:X is
a q-digit number, starting at 0001
for the first macro called by a

• program. It is incremented by one
for each subsequent macro call
(including nested macro calls,

described in K6) •

•
•

NOTES:

1. &SYSNDX does not generate a valid
symbol, and it must:

a. Follow the symbol to which
it is concatenated

b. Be concatenated to a symbol
containing four characters or
~.

2. The value of the type attribute
of &SYSNDX (T'&SYSNDX) is always
N, and the value of the count
attribute (K'&SYSNCX) is always
four.

~ttributes are fully described
in L lB.)

&Pl&SYSNDX

• AREA&SYSNDX

OPEN

NOTE:
TWO 00 1 0 and
TWO 0011 are
two different
symbols and
thus not mul­
tiply defined

MACRO
CONST &Pl,&P2

DC F'&P2 '

F

MEND

START

AREAOOIO DS

\--~~TWOOOll DC

AREAOOll DS

THREE 30

&SYSNDX

Assume
&SYSNDX··O()()9'1

F

F'200'

F

,THREE0012,DC F'300'
J1E -- &SYSPARM

284

Purpose

You can use &SYSPARM to communicate with an assembler
source module through the job control language. Through
&SYSPARM, you pass a character string into the source
module to be~assembled from a job control language statement
or from a program that dynamically invokes the assembler.
Thus, you can set a character value from outside a source
module and then examine it as part of the source module
at pre-assembly time, during conditional assembly
processing.

F

()

c

o

Specifications

The global system variable symbol

O '&SYSFARM is assigned a read-only
value in a job contrel statement
or in a field set up by a program
that dynamically invokes the
assembler. It is treated as a
global SETC symbol in a source
module, except that its value
cannot be changed.

The largest value that &SYSPARM can
hold when you code your own
procedure is 91 characters, which
can be specified by an invoking
program. However, if the PAffi.1 field
of the EXEC statement is used to
specify its value, the PARM field
restrictions reduce its maximum
possible length.

M$FllBLE
~U"act~<!;# .. thu!l~~i

charaete:c. YQU<C"fl
"StARN. .,;,;

... :.::;.~j;~ ~t;:::1.)~

I:;,. "11)e .1arjeit.U:ue _1':1«,1
cis 8 characters.'

NOTES:

1. No values are substituted for
variable symbols in the specified
value; however, double ampersands
must be used to represent single
ampersands in the value.

·~'.·Since CMS doesnot$t.f~'·"'Pf.tr­
~ands.from t.heva~ia~l~.~l,

'.'f<>'1need not .~ .• ~.f1 .. , d~qt)~' .
'amper$ands forCMS -i':

2. Double apostrophes are needed
to represent single a~ostro~hes
because the entire PARM field
specification is enclcsed in
apostrophes •

.• SinceCMSdoesnot stripsill91e
apostrophes from the variable
$ymbol, you need. not specify
[t!I<)Uble apostrophes fQr CMS ..

&SYSPARM

EXlmple: Job Control Statement

//STEP EXEC ASMFC,PARM=(SYSPARM(DEBUG»

.----.~.~
OPEN

.SKIP

Source Module

START

AIF (. &SYSPARM' NE • DEBUG'). SKIP.

ANOP .~~""'~--~-a-n~--t-o-no-r-ma""'I----~""'~

conditional assembly
processing if &SYSPARM
is not equal to DEBUG

END

Secti.on· J: Tl,1e Macro D'ef ini tion 285

c~

286

3. If SYSPARM is net s~ecified in
a job control statement outside
the source roodule, &SYSPARM is
assigned a default value of the
null character string.

5. CMs·~arse •.• tll.· .. ~~; lin."
breakingtl1e,. in,,~';.ln~(r ei<Jll~:'
character toltensl,·tberefore, th.'
SYSP~ opt:lQnfi.~~' \JJ)d,~VM/l7P
is 1 i~teQ, t()an.:1~h1;""cl1.1t.<:::te~
field. If you < ~anttQ.ftt.rla~.~:
fields orifyouwant~oen~r
par;enthe.~. o~ embeda~ ·.bla~.', ¥q~.
must entertb.!. sPecia18ymb()~ .-14t

(the question mark' sylDbol)In the .
option .~ield.When eMS.' eJiCounters
thissy~linthe. co.an41in.e, it
wi 11 prompt·· you with .. the. message
ENTER SYSp~:, after which you may
enter any characters you want up to
theopti()J,) linE! 'limit qt'OO
characters. The followiriq· cod.!s
~ .. example of howtonsethe ?

. symboli~the.SY$PAlUl f1e14.#

assemble test' (load deck
ENTER SYSPARM:
"am, • b9). ty

o

(: .. ".
~I"

o

Purpose

You can use iSYSTlME to obtain the
time at which your source module
is ·assemble.d.

Specifications

The global system variable symbol
&SYSTIME is assigned a read-only
value of the format given in the
figure to the right.

NOTES:

Format: 5· Character String

'---hh·mm

Where: hh gives the hours
mm gives the minutes

Example: 22.15 ~

&SYSTIME

1. The value of the type attribute
of iSYSTIME (T'&SYSTIME) is always
U and the value of the count
attribute (R'&SYSTIME) is always
5.

\ ----Y'0.15P.m.

"
2. For systems without the internal
timer feature, &SYSTIME is a 5-
character string of blanks.

.r'

Corresponds to the
time printed in the
page heading of
listings, remains
constant for each
assembly

In addition to the PRINT options that you can set fron
inside a source module, you can set other listing options
from outside a source module by using the jot control
language. These options can be speci,fied in the PARM field
of the EXEC statement or by a program that dynamically
invokes the assembler.

J8A -- LIEMAC

Purpose

The LIBMAC option allows you to print in the program
listings .the library macro definitions called from your
source module, and any statements in open code following
the first END statement (coded or generated) that is
processed by the assembler.

Section J: The Macro Defi~ition 287

The LIBMAC op~ion, when set, causes:

• Any statements in open code that
follow the first END statement and

• All library macro definitions called
to be printed in the program listings
after the first (or only) END
statement of the source module.

• NOTE: Multiple ENe statements can
be coded or generated and are
printed, but the first ENt statement
processed ends the asserobly.

The option NOLIBMAC suppresses the
listing of the iterrs mentioned
above. It is the default option
that applies to the assembling of
source modules.

J8B -- MCALL

288

Purpose

The MCALL option allows you to list
all the inner macro instructions
that the asserebler processes.

Specifications

The MCALL option, when set, causes
all inner macro instructions
processed by the assembler to be
listed. The NOMCALL option
suppresses the listing of inner
macro instructions. It is the
default option that a~plies to the
assembling of~source modules.

NOTE: The MLOGIC and ALOGIC options
concern the listing of conditional
assemtly statements. They are
discussed in L8.

OPEN

,.

o
MACRO

MACl

MEND Source _

Macro
MACRO Definitions

MAC 2

MEND

START

MACRO
LINK

.
MEND • MACRO
OPEN .

MEND

o

o Section K: The Macro Instruction

o

~his section describes macro instructions: where they
can be used and how they are specified, including details
on -the name" operation, and operand entries, and what will
be generate'd as a result of that macro call.

After studying this section, you should be able to use
the macro instructions correctly to call the macro
definitions that you write. You will also have a better
understanding of what to specify when you call a macro
and what will be generated as a result of that call.

Kl -- Using a Macro Instruction

R1A -- PURPCSE

The macro instruction provides the assembler with:

1. The name of the macro definition to be processed.

2. The information or values to be passed to the macrc
definition. This information is the input to a macro
definition. The assembler uses the information either
in processing the macro definition. or for substituting
values into a model statement in the definition.

The output from a macro definition, called by a macro
instruction, can be:

./
1. A sequence of statements generated from the model
statements of the macro for further processing at asserrbly
time.

2. Values assigned to global SET symbols. These values
can be used in other macro definitions and in open code
(see L 1A) •

Section K: The Macro Inst.:rnction 289

Page of GC33-4010-O
Rev ised September 29, 1972
By TNL GN33-8148

K1B -- SPECIFICATIONS

Where Macro Instructions Can Appear

•
A macro instruction can be written
anywhere in the open code portion
of a source module. However, the
statements generated from the called
macro definition must be valid
assembler language instructions

•
and allowed where the calling macro
instruction appears. A macro

•
instruction is not allowed before
or between any source macro
definitions, if specified, but it

Ocan be nested inside a macro
definition (see K6) •

290

Macro Instruction Format

The format of a macro instruction
statement is given in the figure
to the right.

The maximum number of operands
allowed is not fixed. It depends
on the amount of virtual storage
available to the program.

If no operands are specified in
the operand field, remarks are
allowed if the absence of the operand
entry is indicated by a comma
preceded and followed by one or
more blanks. ~

The entries in the name, operation,
and operand fields correspond to
entries in the prototype statement
of the called macro definition (see
1(2) •

'.

Source Module

A

Name

MACRO
MACl

START

MACCALL

MACCALL

END

Operation

Any symbol Symbolic
or blank Operation

Code

0

Source
Macro
Definitions

Must not cause generation
of instructions that are not
allowed before the START
instruction

Macro Inst.

Operand

Zero or more operands
separated by commas

(~.-.",y. V,

(~

o
Alternate Ways of Coding a Macro
Instruction

A macro instruction can be s~ecified
in one of the three following ways:

O The norJTlal way , with the cperands
precejing any remarks.

• 'The alternate way, allowing remarks
for each operand.

~ A combination of the first two
ways.

•
NO'IES:

1. Any number of continuation lines
are allowed. However, each
continuation line must se-indicated
ty a non-tlank character in the
column after the end column of the
previcus staterrent line (see B1B) ~

•
2. Operands on continuation lines

O must begin in the continue column,
, or

•

o

3. Otherwise, the assemtler assumes
that any lines that follow contain
reIiiarks.

NOTE: If any entries are made in
the cclumns before the continue
column in continuation lines, the
asseretler issues an error message
and the whole statement is not
processed.

Page of GC33-40 1 0-5
As Updated 28 Del: 1981
By TNL GN20-9372

o
col 16 7 col 72 \

MACNORM TO,FROM,LENGTH,P4,PS, .••......•• P6,x

• MACALT
One or
more
blanks

P7,P8, ,PEND REMARKS

Commas indicate
more operands
to follow

TO, ftIELD INTO WHICH DATA MOVED
FROM/~ FIELD FROM WHICH DATA MOVED

LENGTH'J NUMBER OF BYTES TO MOVE

P4, REMARKS

X

X

X

.~p~' REMARKS
x
X

• MACOMB

P6, REMARKS
P7, REMARKS
P8, REMARKS
KEY=VALUE EVEN KEYWORD OPERANDS

Last Operand requires no
comma, but, if a comma is
used, no error will occur.

TO,FROM,LENGTH, REMARKS

X

X

X

•
~ 4, REMARKS

5, REMARKS
6 , P7 ,

x
X

X

.... P8,P9,x
I --;PlO,PEND

Sectio~ K: The Mac=c J~struction 291

K2 - Entries

K2A -- THE NAME ENTRY

Purpose

You can use the name entry of a
macro instruction:

1. Either to generate an assembly­
time label for a machine or assembler
instruction~

2. Or to provide a conditional
assembly label (see sequence symbol
in L1C) so that you can branch to
the macro instruction at pre-assembly
time if you want the called macro
definition expanded.

Specifications

The name entry of a macro instruction
can be:

• an ordinary symbol

• a variable symbol

•
a character string in which a
variable symbol is concatenated
to other characters

8a blank

O a sequence symbol, which is never
generated.

292

OPEN START

a' HERE I MACNAM

e l ____ I MACNAM

END

o

Parameter must be
coded if anything
is to be generated

In Two Places

I n name field
of prototype

In name field of
statement within
body of macro

Generated result

HERE LR 3,4

Generated result must
be a valid symbol or

'ro-_.L.---+ blank
Joto.:-...;.......;-----_-...J

LR 3,4

LR 3,4

LR 3,4

Nothing will be generated
by sequence symbol

LR 3,4

o

o

o

0,
II',

o

o

I<2B -- THE CPERATION EN'l'RY

Purpose

The symbolic operation code you
specify identifies the rracro
def-ini tion you wish the asseml:ler
to process.'

Specifications

The operation entry for a macro
• instruction must be a valid syml:ol

that is identical to the symbolic
operation code specified in the
prototype staterr.ent of the macro
definition called.

NO'l'E: If a source rracro definition
• wi th the same OEer ation code as

a lil:rary macro definition is called"

•
the assembler processes the source
macro definition.

I<2C -- THE CPERANt EN'l'RY

Purpose

You can use the operand entry of
a macro instruction tp pass values
into the called macro" definition.
These values can be ~ssed through:

1. The symbolic parameters you have
specified in the macro prototype,
or

2. The system variable symbol
&SYSLIST if it is specified in the
body of the macro definition (see
J1C) •

The two types of operands allowed
in a macro instruction are the

. positional cperand and the keyword
operand (see K3). You can specify
a sublist with mUltiple values in
both types of operands (see K4) •
Special rules for the various values
you can specify in operands are
given in K5.

Source Module

START 0

END

System Library

Containing Library Macros

"CALLED"
expanded

Section K: The Macro Instruction 293

K3- Operands

R3A -- POSITIONAL OPERANDS

294

PUrpose

You can use a positional operand to pass a value into a
macro definition through the corresponding positional
parameter declared for the definition. You should declare
a positional parameter in a macro definition when you wish
to change the value ~assed at every call to that macro
definition.

You can also use a positional operand to pass a value to
the system variable symbol iSYSLIST. If &SYSLIST, with
the appropriate subscripts, is specified 1n a macro
definition, you do not need to declare positional pararreters
in the prototype statement of the macro definition. You /
can thus use &SYSLIS! to refer to any positional operand •.
This allows you to vary the number of operands you specify
each time you call the same macro definition. The use
of iSYSLIST is described in J7C.

o

o

o

o

Specifications

o The positional operands of a macro
instruction must be specified in
the same order as the positional

•
parameters declared in the called
macro definition.

•
Each pasi tional operand constitutes
a character string. It is this
character str1ng that is the value
passed through a positional parameter
into a macro definition.

Page of GC33·401()-4
Revised April 29. 1977
By TNL: GN33-8226

Pas.Opnd

Source Module ,....------8-MACRO

ORDER &Pl,&P2,&P3

DC C'&Pl'
DC C'&P2'
DC C'&P3'

MEND

OPEN START o •

END

Examples of Macro Instructions:

MAC CALL

MAC CALL

MACCALL

MACCALL

,
IXP.+!", SYMBOL.

Omitted operand
has null character
value

DC
DC
DC

C'A'
C'B'
C'C'

Each positional
operand can be
up to 255
characters long

Sublists
described in
L4

Section K: The Macro Instruction 295

The figure to the right illustrates
what happens when the number of
positional operands in the macro
instruction differs from the number
of positional parameters declared
in the prototype statement of the
called macro qefinition.

Number of
positional
parameters
in PrototypE
of macro
~efinition

Number of Positional
Operands in macro
instruction

EQUAL GREATER
THAN

Valid, if
Operands
are correctly
specified

Meaningless,
unless &SYSLIST
is specified in
definition to
refer to excess
operands

V

!<3B .- KEYWORD OPERANDS

296

Purpose

You can use a keyword operand to pass a value through a
keyword parameter into a macro definition. The values
you specify in keyword operands override the default values
assigned to the keyword parameters. The default value
should be a value you use frequently. Thus, you avoid
having to write this value every time you code the calling
macro instruction.

When you need to change the default value, you must use
the corresponding keyword operand in the macro instruction.
The keyword can indicate the purpose for which the passed
value is used.

,.

o
LESS
THAN

-

Omitted operands
give null character
values to correspond-
ing parameters (or
&SYSLIST specifi-
~ation)

o

c:> Specifications

o

Any keyword operand specified in
a macro instruction must correspond
to a keyword parameter in the macro
definition called. However, keyword
operands do not have to be specified
in any particular order.

A keyword operand must be coded
in the format shown in the figure
to the right. If a keyword operand

~iS specified, its value overrides

•
the default value specified for
the keyword parameter.

The standard default value obeys
the same rules as the value specified
in the keyword operand (see KS) •

IKEYWORDI=VALUE
fL."

Page of GC33-40 1 0-5
As Updated 28 Dc.: 1981
By TNL GN20-9372

Key Opnd

.;~'':

'~~jW· .. : ; ... , •
Keyword
Operand

Identifying
"Keyword"

symbol has
up to 7
charcters
without
ampersand

Value can be
up to 255
characters long

=DEFAULT "'"'-___ --J

Corresponding
Keyword
Parameter

Examples Of KeywQrd Onerands : Sublist
described
in K4

MACKEY

MACKEY KEYl=1,KEY2=2,KEY3=3

MACKEY KEY3=2000,KEYl=O,KEYWORD=HALLO

Section K: The Macro Instruction 297

The following examples describe
the relationship between keyword
operands and keyword parameters
and the values that the assembler
assigns to these parameters under
different concitions.

OThe keyword of the operand
corresponds to a keyword parameter.
The value in the operand overrides
the default value of the parameter.

•
The keyword operand is not specified.
The default value of the parameter
is used •

•
The keyword of the operand does
not correspond to any keyword
parameter. The assembler issues
an error message, but the macro
is generated using the default
values of the· other parameters.

NOtIE: The defaul t valu~ specified
for a keyword parameter can be the

• null character string. The null
character string is a character
string with a length of zero; it
is not a blank, because a blank
occupies one character position.

298

.................................... .,~N~U~II~ch~a~ra~c~te~r~.,~
• string is default

value

Source Module

MACRQ

MACCORR &KEY1=DEFAULT,&KEY2=,&KEY3=123

SHOW DC C'&KEY1&KEY2&KEY3'

MEND

OPEN START 0

o 0 0
MACCORR KEY1=OVERRIDE,KEY2=O,KEY3=4:i6

MACCORR

END

SHOW DC

Null default
value of KEY 2

o

o

o

o
I

~3C -- COMBINING POSITIONAL AN~ KEYWORD OPERANDS

Purpose

You can use positional and keyword operands in the saRe
macro instruction: use a positional operand for a value
that you change often and a keyword operand for a value
that you cbange infrequently.

MACRO 2 3 4 5

Page of GC33-4010-0
Revised September 29, 1972
By TNL GN33-8148

MIXED &Pl,&P2,&P3,&P4,&P5,&KEYl=lO,&KEY2=A

Specifications

Positional and keyword operands
can be mixed in the macro instruction
operand field. However, the

~ positional operands must be in the
same order as the corresponding

•
positional parameters in the macro
prototype statement.

, It.,~#a~C>:~:t:ands . must precede
.()"Ji'.~ •. jiif .. $pecified ..

&KEYI

END

NOTE: The system variable symbol
~ &SYSLIST (n) refers only to the

•
positional operands in a macro
instruction.

• MEND

START

MIXED

1 2 3 4 5

END

AREA2 DC lOFLS'2024'

Section K: The Macro Instruction 299

K4 -- Sublists in Opera..'1.ds

• • •

300

Purpose

You can use ~ sublist in a positional
or keyword operand to specify several
values. A sublist is one or more
entries separated by commas and
enclosed in parentheses. Each entry
is a value to which you can refer
in a macro definition by coding:

1. The corresponding symbolic
parameter with an appropriate
subscript or

2. The system variable symbol
&SYSLIST with appropriate subscripts,
the first to refer to the positional
operand and the second to refer
to the sublist entry in the operand.

&SYSLIST can refer only to sublists
in positional operands.

Specifications

The value specified in a positional
or keyword operand can be a sublist.

A symbolic parameter can refer to
the entire sublist or to an
individual entry of the sublist.
To refer to an individual entry,
the symbolic parameter must have
a subscript whose value indicates
the position of the entry in the
sublist. The subscript must have
a value greater than or equal to
one.

&KEY(l)

&Pl(l}

OPEN

,.

Sublist

Source Module

value in
DC keyword

DC operand

MEND:;!

START 0

(H20 I H, 200) I (A, a,C)
~.~ .. v.,

FO DC F'O'

H20 DC H'200'

DC A(A/B/C)

END

o

The format of a sublist is given
in the figure to the right. A
sublist, including the enclosing
parentheses, must not contain more
than 255 characters.

The figure to the right shows the
relationship between subscripted
parameters and sublist entries if:

• A sublist entry is omitted,

•
The subscri~t refers past the end
of the subl~st,

•
The value of the operand is not
a sublist,

o The parameter is not subscripted.

NOTE: The system variable symbol,
&SYSLIST(n,m) , can also refer to
sublist entries, but only if the
sublist is specified in a positional
operand.

Parameter

&PAR(3)

&PAR{S)

&PAR

&PAR{l)

&PAR(2)

&PAR

&PAR (1)

&PAR(2)

&PAR

&PAR(l)

&PAR(3)

&PAR(2)

&PAR(l)

&POSPAR(3)

Format:

Examples:

Sub list specified
in corresponding
operand (or as
default value of
keyword parameter)

8(1,2,,4)

8{1,2,3,4)

-'fA

·I~
• (A)'"

(A)

Valid sublist with the
null character string
as the only entry

Value generated
(or used in
computation)

Null character string

Null character string

A

A

Null character string

(A)

A • (A) Null character string
~ Considered as I

() Sublists ()

() Null character string

()~ Null character string

(A~ ,e,D) Nothing

I This blanl(indicates I } <ERROR.
end of operand field Unmatched left

(')
parentheses

Nothmg

Positional Operands

A, (1,2,3,4) 3

&SYSLIST(2,3) A, (1,2,3,4) 3

Section K: The Macro Instruction 301

ItS - Values in Operands

302

Purpose

You can use a, macro instruction operand to pass a value
into the called macro definition. The two types of value
you can pass are:

1. Explicit values or the actual character strings you
specify in the operand.

2. Implicit values, or the attributes inherent in the data
represented by the explicit values.

Attributes are fully described in L1B.

Specifications

The explicit value specified in a macro instruction o~erand
is a character string that can contain one or more variable
symbols. c/'

The character string must not be
greater than 255 characters after
substitution of values for any
variable symbols. This includes
a character string that constitutes
a sublist (see K4).

The character string values, including sublist entries,
in the operands are assigned to the corresponding pararreters
declared in the prototype statement of the called macro
definition. A sublist entry is assigned to the
corresponding subscripted parameter.

,.

o

o

o

o

QMITTED OPERANDS: When a keyword
operand is omitted, the default
value specified for the corresponding
keyword parameter is the value
assigned to the parameter. When o a positional operand or sublist

•
entry Is omitted, the null character
string is assigned to the par~meter.

• NOTE: Blanks appearing between
commas do not signify an omitted
positional operand or an omitted
sublist entry.

SPECIAL CHARACTERS: Any of the
256 characters of the System/370
character set can appear in the
value of a macro instruction operand
(or sublist entry). However, the
following characters require special
consideration:

AMPERSANDS: A single ampersand
indicates the presence of a variable

- symbol. The assembler substitutes o the value of the variable symbol
into the. character string specified
in a macro instruction operand •

• The resultant string is then the
value passed into the macro
definition. If the variable symbol
is undefined, an error message is
issued •

•
Double ampersands must be specified
if they are to be passed to the
macro definition.

Source Module

MACRO
OMIT &Pl,&P2,&P3,&KEYl=DC,&KEY2=C

&KEYl &Pl&KEY2&P2'ALWAYS &P3'

MEND

OPEN START 0

OMIT

END

Value
Specified
In Operand

&VAR

&A+&B+3+&C*lO

Commas indicate

This blank indicates
end of operand field

, ,HERE
&P3considered
omitted,
value =.null

DC C'ALWAYS '

Last positional
operand omitted,
no comma needed

Value Of
Variable

SVmbols •

XYZ

&A=2
&B=X
&C=COUNT

Character
String
Value
Passed

XYZ •
2+X+3+COUNT*lO

BLANK BETWEEN 'BLANK BETWEEN

&®ISTER

NOTE&&&&

Section K: The Macro Instruction 303

Page ofGC33-4010-4
Revised A"ril 29, 1977
By TNL: GN33-8226

APOSTROPHES: A single apostrophe is used: (1) to indicate
the beginning and end of a quoted string, and (2) in a
length attribute notation that is not within a quoted
string.

QUOTED STRINGS: A quoted string is any sequence of o characters that be~ins and ends with a single apostrophe
(compare with cond~tional assembly character expressions

~ described in L4B). Couble apostrophes must ce specified

•
inside each quoted string. This includes substituted
apostrophes.

Macro instruction operands can have values that include
one or more quoted strings. Each quoted string can be
separated from the following quoted string by one or more

•
characters, and each must contain an even number of
apostrophes.

304

/o~
'QUOTED STRING'

Value specified
in Operand

'&&NOTATION'

'&MESSAGE'

, ,

• {'L' 'SYMBOL'

'L' '&VAR'

'"ES'

Indicates end

No apostrophes, single ampersands,
commas, blanks, or equal signs
allowed between quoted strings in
one operand

!AB"CD~E'FGH&&' , ~
Quoted strings

Value of
Variable
Symbol

Value Passed

'&&NOTATION'

BLANKS OK 'BLANKS OK'

, ,

'L" SYt1BOL'

'L' 'SYMBOL'

'QUOTEl 'AND 'QUOTE2

'AB"CD'E'FGH&&'

o

0)

o

o

o

LENGTH ATTRIBUTE NOTATION: In macro
instruction operand values, the

O length attribute notation with
ord~nary symbols can be used outside
of quoted strings, if the length
attribute notation is preceded by

•
any special character except the
ampersand.

PARENTHESES: In macro instruction
operand values, there must be an
equal number of left and right

O
parentheses. They must be paired,
that is, to each left parenthesis

•
belongs a following right parenthesis
at the same level of nesting. An
unpaired (single) left or right

• parenthesis can appear only in a o quoted string.

Kl9

Does not initiate
or end a quoted
string

,.~
OUTERCAL L 1 SYMBOL, 10+1,' AREA:::L t FIELD

~.~

, ,
(PAIRED PARENTHESES)

Examples: These parentheses
...-...

could be enclosing
a sublist

~ (A'B,~) '(A~:) ,C,D)

)UNPAIRED PARENTHESES(Invalid
operand
value

(A(B)C)D(E)
L.....J

level 1

I I L-J
level 2 Level 2

Paired

• fIN' ('STRING;

(THES~) 'UNPAIRED)
I Paired I

Section. K: The Macro Instruction 305

Page of GC33-401 0-5
As Updated 28 Dec 1981
By TNL GN20-9372

o

BLANKS: One or more blanks outside
a quoted string indicates the end
of the entire operand field of
a macro instruction. Thus blanks
should only be used inside quoted
strings.

COMMAS: A comma outside a quoted
string indicates the end of an
operand value or sublist entry.

O Commas that do not delimit values
can appear inside quoted strings

•
or paired parentheses that do not
enclose sublists.

EQUAL SIGNS: An equal sign can
appear 1n the value of a macro
instruction operand or sublist
entry:

o As the first character,

• Inside quoted strings,

• Between paired parentheses, or

• In a positional parameter,
provided that the parameter does
not resemble a keyword parameter.

306

Examples of Macro Instructions: •

MACCALL 'BLANKS c:. ,o~
MACCALL

I Considered as remarks I

MACCALL AREAl,AREA2,MESSAGE

MAC CALL

MACCALL (A,(B,C,D),E,(F,

1 Remarks

,G} ,ft}

Examples of Macro Instructions:

MACCALL A,B,C,D

MACCALL (A,B,C,D)

MACCALL 'IN CASE 1, MESSAGE N03 IS ISSUED'

-' paired I
MACCALL ~3'5f6'

t
•

Also part of character
string if parentheses
do not enclose sublist

Examples of Macro Instructions:

~CCALL ~=F'201" (=~' '~!:~=H'3')
V Character string ------.

.---
MAC CALL A'='B,C(A=B) • • MACCALL (A(B=~) ,C,D,E}

~----------------~

MAC CALL 2X=B
2X is not a valid keyword

•

o

C· "'.'. i)

PERIODS: A period (.) can be used
in the value of an operand or sublist
entry_ It will be passed as a period.

•
However, if it is used immediately
after a variable symbol it becomes

• a concatenation character. Then,

•
two periods are required if ~
is to be passed as a character.

1(6 - Nesting in Macro Definitions

o K6A -- PURPOSE

o

A nested macro instruction is a
macro instruction that you specify
as one of the statements in the
body of a macro definition__ This
allows you to call f07 the expansion
of a macro definition from within
another macro definition.

Inner and Outer Macro Instructions

Any macro instruction you write

•
in the open code of a source module
is an outer macro instruction or
call. Any macro instruction that

A appears wi thin a macro definition
~is an inner macro instruction or

call.

Character String
specified as value Value of
of Operand or Variable
Sublist Entry Symbol

3.4

(3.4,3.5,3.6)

&AS--8 FIELD

&A.1 • 3

&A~ 3

&A&B 8
&A~

&A=AREA}

&B=200

&DISP. (&BASE) &DISP=lOOO

&BA.sE=10

Source Module

MACRO

MEND

MACRO

c==J
MEND

OPEN START 0

-
Value
Passed

3.4

3.4 3.5 3.6

FIELD1

31 •
3~

AREA200

AREA200

1000(10)

These are prototype
statements

Secti0n K: The Macre Instruction 307

Levels of Nesting

•
The code generated by a macro definition called by an inn~~
macro call is nested inside the code generated by the macro
definition that contains the inner macro call. In the
macro definition called by an inner macro call, you can
include a macro call to another macro definition. Thus,
you can nest macro calls at different levels.

~The zero level includes outer macro calls, calls that

•
appear in open code; the first level of nesting includes
inner macro calls that appear inside macro definitions

•
called from the zero level; the second level of nesting
includes inner macro calls inside macro definitions that
are called from the first level, etc.

,.

308

O·~'·' , \

, .

0 Macro Definitions

MACRO MACRO MACRO

'J EJ
MEND

M.END
MEND

Source Module

LEVEL a LEVEL 1 LEVEL 2 LEVEL 3

START a

o

END

SEction X: Th~ Ma=ro Instruction 309

Recursion

You can also call a macro definition

•

recursively, ~hat is, you can write
macro instructions inside macro

•
definitions that are calls to the
containin¥ definition. This allows

310

you to de ine macros to process
recursive functions.

Source Module

MEND

OPEN START 0

END

,.

£/ «:) K6B -- SPECIFICATIONS

o

o

General Rules and Restrictions

Macro instruction statements can
be written inside macro definitions.
Values are substituted in the same
way as they are for the model
statements of the containing macro
definition. The assembler processes
the called macro definition, passing
to it the operand values (after
substitution) from the inner macro
instruction. In addi'tion to the
operand values described in K5
above, nested macro calls can specify
values that include:

• !my of the symbolic parameters
specified in the prototype statement
of the containing macro definition

• Any SET symbols declared in the
containing macro definition

• Any

The number of nestinq levels
permitted depends on-the complexity
and size of the macros at the
different levels, that is: the
number of operands specified, the
number of local and global SET
symbols declared (see L1A) and the
number of sequence symbols used.

Exits taken from the different
levels of nesting when a MEXIT or
MEND instruction is encountered
are as follows:

1. From the expansion of a macro
definition called by an inner macro
call, an exit is taken to the next

•
sequential instruction that appears
after the inner macro call in the
containing macro definition.

2. From the expansion of a macro
definition called by an outer macro,
an exit is taken to the next

•
sequential instruction that, appears
after the outer macro call in the

.- open code of .a source module.

Nesting

Macro Definitions

Prototype

Inner call

MEND

MACRO
Prototype

Inner call IN

Source Module

OPEN START 0

Section K: The Macro Instruction 311

Passing Values thrcugh Nesting
levels

The value ccntained in an outer
macro instruction operand can te
passed through one cr rrcre levels

•
of nesting. However, the value
specified in the inner rracrc
instruction operand must te identical

•
to the corresFonding symbclic
parameter declared in the prototype
of the containing rracrc definition •

312

• 'rhus, a sublist can be passed and o referred to as a sutlist in the

•
macro definition called by the inner
macro call. Also, any symbol that
is passed will carry its inherent
attribute values through the nesting
levels.

Values can be passed from open code
through several levels cf macro
nesting if inner macro calls at
each level are specified with
symbolic parameters as operand
values.

Prototype

Call

Prototype

Call

Source Module

MACRO

OUTER

MEND

MACRO

INNER

L
A
ST

MVC

MEND

START

END

0

&Q,&R,&S

3,&Q(2) •
3, &Q (1) }

3,&Q(3)

&R,&S

&Q &R

L 3,AREA
A 3,F200
ST 3,SUM

MVC TO,FROM

0,
-- 1

I~

V)

o .;,

(o

•
NOTE: If a symbolic parameter is
only a Eart of the value specified
in an inner rracrc instruction

•
operand, only the character string
value given te the farameter by
an outer call is passed through

•
the nesting level. Inner subli st.
entries and attributes of symtols ·
are net available fer reference
in the inner macro.

Prototype

Call

Prototype

Call

Source Module

MACRO

OUTER &P,&Q

(ABC ,A.)
):.<",~.,,: .0.:", ."

INNER

MEND

MACRO

INNER &R,&S

DC A&R (2)

DS XL (&S)

MEND

START 0

A (ADX ,ADY ,ADZ)

XL(TWOO+3}

ND

Section K: The Macro Instruction 313

System Variable Symbols in Nested
Macros

. The global read-onlysyst.em variable
"01" symbol~~. &SYSPARM,II_", and
~.ntv. ISt'S'!_ are not affected by the

nesting of macros. The remaining
system variable symbols are given
local read-only values that depend
on the position of a macro
instruction in code and the operand
value specified in the macro
instruction.

If &SYSLIST is specified in a macro
definition called by an inner macro
instruction, then &SYSLIST refers

O to the positional operands of the
inner macro 1nstruction.

314

Source Module o
MACRO

Prototype OUT

Call IN1 A,B,C

MEND

MACRO

Prototype INl
DC A(&SYSLIST(2»

Call IN2 D,E,F

MEND

MACRO

Prototype IN2

DC Y(&SYSLIST(3»

MEND

START 0

Call

4It The assembler increrrents 'SYSNDX by one each time it
encounters a macro call. It retains the incremented value ~

•
throuahout the expansion of the macro definition that is
calle, that is, within the local scope of the nesting
level.

Source
Module

LEVEL 0

START 0

END

MACRO

OUTER

INNERl

MEND

LEVEL 1

Macro Definitions

MACRO

INNERl

INNER2

MEND

LEVEL 2

MACRO

U
MEND

LEVEL 3

Section K: The Macro Instruction 315

O The assembler gives iSYSECT the character string value
of the name of the control section in force at the point

~where a macro call is made. For a macro definition called
by an inner macro call, the assembler will assign &SYSEC~ ~
the name of the control section generated in the macrc
definition that contains the inner macro call. The control

•
section must be generated before the inner macro call is
processed.

If no control section is generated within a roacro

•
definition, the value assigned to &SYSECT does not change.
It is the same for the next level of macro definition
called by an inner macro instruction ••

O&SYSECT has a local scope; its read-only value remains
constant throughout the expansion of the called macro
definition.

Source Module Macro Definitions

OUTER INNERl INNER2

DC A(&SYSECT)

• DC A(&SYSECT),
INNER2 •

• MEND MEND
INNERl

MEND

LEVEL 0 LEVELl LEVEL2 LEVEL3

• A START 0

316

o

o

o

o

Section L: The Conditional Assembly Language

This section describes the conditional assembly language.
with the conditional assembly language, you can perfor~
general arithmetic and logical computations as well as
many of the other functions you can perform with any ether
programming language. In addition, by writing conditional
assembly instructions in oombinatiort with other assembler
language statements you can:

1. Select sequences of these source statements, called
model statements, from which machine and assembler
instructions are generated

2. Vary the contents of these model statements during
generation

The assembler processes the instructions and expressions
of the conditional assembly language at pre-assembly time.
Then, at assembly time, it processes the generated
instructions. Conditional assembly instructions, however,
are not processed after pre-assembly time.

The conditional assembly language is more versatile when
used to interact with symbolic parameters and the system
variable syrr.bo1s inside a macro definition. However, yeu
can also use the conditional assembly language in open
code as described in L7 below.

Ll - Elements and Functions

~he elements of the conditional assembly language are

1. SET symbols that re~resent data (see L1A)

2. Attributes that represent different characteristics
of data (see L1B)

3. Sequence symbols that act as labels for branching to
statements at pre-assembly time (see L1C) •

The functions of the conditional assembly language are:

Section L: The Conditional Assembly Language 317

1. Declaring SET symbols as variables for use by the
conditional assembly language in its computations (see
L2)

2. Assigning values to the declared SET symbols (see L3)

3. Evaluating conditional assembly expressions used as
values for substitution, as subscripts for variable syrrbols,
or as condition tests for branch instructions (see L4)

4. Selecting characters from strings for substitution in
and concatenation to other strings, or for inspection in
condition tests (see LS)

5. Branching and exiting from conditional assembly loops
(see L6) •

L1A - SET SYMBOLS

318

Purpose

SET symbols are variable symbols that provide you with
arithmetic, binary, or character data, whose values you
can vary at pre-assembly time.

You can use SET symbols as:

1. Terms in conditional assembly expressions

2. Counters, switches, and character strings

3. Subscripts for variable symbols

4. Values for substitution.

Thus, SET symbols allow you to control your conditional
assembly logic and to generate many different statements
from the same model statement.

SUBSCRIPTED SET SYMBOLS: You can use a SET symbol to
represent an array of many values. You can then refer
to anyone of the values of this array by subscripting
the SET symbol.

o

,

0:['\
, ,

o

The Scope of SET Symbols

You must declare a SET symbol before
you can use it. The scope of a
SET symbol is that part of a program
for which the SET symbol has been
declared •

•
If you declare a SET symbol to have
a local scope, you can use it only
in the statements that are part
of:

•• The same macro definition or

•• Open code.

If you declare a SET symbol to have
• a global scope, you can use it in

the statements that are part of:

• The same macro definition, and

• A different macro definition,
and

• Open code.

You must, however, declare the SET

•
symbol as global for each part of
the program (a macro definition
or open code) in which you use it.

You can change the value assigned
to a SET symbol without affecting
the scope of this symbol.

THE SCOPE OF OTHER VARIABLE SYMBOLS:
A symbolic parameter has a local
scope. You can use it only in the
statements that are part of the
macro definition for which the
parameter is declared. You declare
a symbolic parameter in the prototype
statement of a macro definition.

The system variable symbols,
&SYSLIST, &SYSECT, and &SYSNDX have
a local scope; you can use them
only inside macro definitions.
However, the system variable symbols,
&SYSFARM ,;':YP.Ai'I~ . .iD«:'.I.rW.I.

"'have a global scope; you can use
them in both open code and inside
any macro definition.

L

• o

c

•
A

L

Source Module

a

Macro Definitions
Called

Section L: The Conditional Assembly Language 319

•
•

320

Specifications

SET symbols can be used in model
statements from which assembler
language statements are generated,
and in conditional assembly
instructions. The three types of
SET symbols are: SETA, SETE, and
SETC. A SET symbol Jtlust be a valid
variable symbol, as shown in the
figure to the right.

A SET symbol must be declared before
it can be used. The instruction
that declares a SET symbol determines
its scope and type (see L2).

SET Symbols
ampersand

fY~~CM-~6 alphameric charac:tars

Format: & 'S'ETSYMB

Declaration: •
Instruction.

Operation Operand
Type Scope

LCLA &ARITH SETA local
LCLB & BOOLEAN SETB local
LCLC &CHAR SETC > local

GBLA &A SETA global
GBLB &B SETB global
GBLC &C SETC global

(0
\~.;.~)

o

o

O NOTE: . SET symbols can be used in •
the .!!!!!!!.. and operand field of macro
instructions. However, the value

• thus passed through a symbolrc­
parameter Into a macro definition

O iS considered as.a character string
and is generated as such.

Source Module

NAME START 0

LCLC &LIST,&LABEL

SETC
SETC

MAC CALL

:E:ND

, X, Y,
'~.TRINC; ,

•....... <:;,

&LIST\,' '.',;

MACRO
MAC CALL

DC

MEND

Q

Page of GC33-401G-4
Revised Feb. 25, 1975
By TNL: GN33·8193

Macro
Instruction

Macro

Definition

Called

Can only refer

to whole string

STRING DC A(X,Y,Z} Generated
result

Sectipn L: The,Conditional Assembly Language 321

Subscripted SET Symbols -
Specifications

A subscripted SET symbol must be
specified as shown in the figure
to the right.

The subscript can be any arithmetic
expression allowed in the operand
field of a SETA instruction (see
L4A) •

A subscripted SET symbol can be
used anywhere an unsubscripted SFT
symbol is allowed. However,
subscripted SET symbols must be
declared as subscripted by a previous
local or global declaration
instruction.

4It The subscript refers to one of the

•
many positions in an arra~ of values
identified by the SET sym 1. The
value of the subscript must not

• exceed the dimension declared for
the array in the corresponding LCLA,
teLB, LCLC, GBLA, GELE, or GELC
instruction.

322

NOTE: The subscript can be a
~subscripted SET s¥mbcl. Five levels

of sUbscript nest1ng are allowed.

Format: &SETSYM(

Arithmetic Expression
whose value must not
be 0 or negative ,.

Example LeLA &ARRAY(20)

• ARRAY

&ARRAY (10) 5

{

&ARRAY(S)=2

quivalent

&ARRAY(&ARRAY(10})=2

•

o

o

o

o

o

L1B - DATA ATTRIBUTES

What Attributes Are

The data, such as instructions, constants, and areas, which
you define in a source modu~e can ce described in terns
of:

1. Type, which distinguishes one form of data fron ancther:
for example, fixed-point constants from floating-foint
constants, or machine instructions from macro instructions.

2. Length, which gives the number of bytes occupied by
the object code of the data.

3. Scaling, which indicates the number of positions occufied
by the fractional portion of fixed-point and decimal
constants in their object code form.

4. Integer, which indicates the number of positions occupied
by the integer portion of fixed-point and decimal constants
in their object code form.

5. Count, which gives the number of characters that wculd
be required to represent the data, such as a macro
instruction operand, as a character string.

6. Number, which gives the number of sublist entries in
a macro instruction operand.

These six characteristics are called the attributes of
the data. The assembler assigns attribute values to the
ordinary symbols and variable symbols that represent the
data.

Section L: The Conditional Assembly Language 323

,324

Purpose

Specifying attributes in conditional
assembly instructions allows you
to control conditional assembly
logic, which in turn can control
the sequence and contents of the
statements generated from model
statements. The specific purpose
for which you use an attribute
depends on the kind of attribute
being considered. The attributes
and their main uses are shown in
the figure to the right.

NOTE: The number attribute of
• gSYSLIST (m) and &SYSLIST (m,n) is

described in J1C.

Specifications

FORMA'!": The format for an attribute
reference is shown in the figure
to the right •

• The attribute notation indicates

•
the attribute whose value is desired.
The ordinary or variable symbol
represents the data which possesses
the attribute. The assembler
substitutes the value of the

•
attribute for the attribute
reference.

WHERE ALLOWED: An attribute
reference to the type, scaling,
integer, count, and number attritutes
can be used only in a conditional
assembly instruction. The length
attribute reference can be used
both in a conditional assembly
instruction and in a machine or
assembler instruction (for details
on this use see C4C) •

Attribute

Type

Length

Scaling

Integer

Count

Number

•

Purpose

Gives a letter that
identifies type of
data represented

Gives number of
bytes that data
occupies in storage

Refers to the
position of the
decimal point in
decimal, fixed-point
and floating-point
constants

Is a function of
the length and
scaling attributes
of decimal, fixed-
point, and floating-
point constants

Gives the number
of characters
required to repre-
sent data

Gives the number
of sublist entries
in a macro
instruction operand
sublist

Format: Attribute
Notation

' Main Uses

· In tests to distinguish
between different data
types

• For value substitution
· In macros to discover

missing operands

• For substitution into
length fields

· For computation of
storage requirements

• For testing and regulating
the position of decimal
points

• For substitution into a
scale modifier

- To keep track of
significant digits (integers)

• For scanning and
decomposing of
character strings

• As indexes in sub-
string notation

. For scanning sublists
- As counter to test for

end of sublist

Attributes

Apostrophe

,/

Ordinary or

Symbol • '-------
Variable •

Examples:

• Attribute Reference

T'SYMBOL
L'&VAR
K'&PARAM

o

0

o

COMBINATION WITH SYMBOLS: The figure below shows the six
kinds of attributes and the type of symbol with which the
attributes cari be combined.

NOTE: Whether or not an attribute reference is allowed
in open code, in macro definitions, or in toth, depends
on the type of symbol specified.

ATTRIBUTES SPECIFIED

Symbols Type Length Scaling Integer
Specified T' L' S' I'

Ordinary Symbols YES YES YES YES

I IN OPEN CODE 1 SET Symbols YES NO NO NO

System Variable Symbols: YES NO NO NO

&SYSPARM,&SYSDATE,
&SYSTIME

Ordinary Symbols YES YES YES YES

SET Symbols YES NO NO NO

Symbolic Parameters YES YES YES YES

System Variable Symbols. YES YES YES YES
&SYSLIST

&SYSNDX,&SYSPARM,
&SYSDAT~ &SYSECT,

&SYSTIME

Count Numbe
K' N'

YES YES

YES NO

YES NO

NO NO

YES NO

YES YES

YES YES

NO

NO

NO

Sectivn L: "rhe Conditicnal Assembly Language 325

ORIGIN OF VALUES: The value of

•
an attribute for an ordinary symbol
specified in an attribute reference
comes from the data represented

326

by the symbol, as shown in the
figure to the right.

The symbol must appear in the name
field of an assembler or ~achine
instruction, or in the operand field

- of an EXTRN or WXTRN instruction.
'the instruction in which the symbol
is specified:

1. Must appear in open code

2. Must not contain any variable
symbols, and

3. Must not be a generated
instruction.

I Attribute I Notation

I

I

I Ordinary I. Symbol

I
I I

Statement I Operand TI
Label

of
EXTRN or

LI

WXTRN S'

Instruction II

o

o

o

o

1he value of an attrioute for d o variable symbol specified in cin
attribute reference comes from the
value substitutea for the varidble
symbol as follo~s ~ee also the
figure to the right) :

",t;JS 1~'For'SETs;ytribols'and .tliesys1;em
!1only. variable sYtnbols&Sl'S;eCT ,&SYSNDX,

HYSPARM.,&SYSDATE,·· .'·aM&SYSTlME,

• :~r:~~r~~~!ev!i!:e~fc~:S!r~;:!s. I

2. r'or symbolic oararneters and thE"
system variable symLJol, &SYSLIS'l',
the vctlues of the count and number

•
attriDutes come from the operands
of macro instruction~.

•

•

•

The values of the type, length,
scaling, and integer attributes,
however, come from the values
repre~ented by the reacro instruction
operands, as follows:

a. If the operand is a sublist,
the sublist as a whole has
attributes; all the individual
entries and the whole sublist
have the same attributes as those
of the first suboperand in the
sublist (except for 'count',
which can be different, and
'number', which is relevant only
for the whole sublist).

o. If the first character or
characters of the operand (or
sUblist entry) constitute an
ordinary symbol, and this symbol
is followed by either an
arithmetic operator (+,-,*, or
/) , a left parenthesis, a cornmd,
or a blank, then the values of
the attributes for the operand
are the same as for the ordinary
symbol.

c. If the operand (or sublist
entr~ is a character string
other than a sublist or the
character string described in
b. above, the type attribute
is undefinel (0) and the length,
scaling, and integer attributes
are invalid.

K'

Symbolic
parameter
or
&SYSLIST

....-----'-----..
Macro I nstruc-

N' tion Operand ...------------4
N '&SYSLIST
N '&SYSLIST (n)

• Ordinary
Symbol

T I ..---'----.

L I Statement
SI Label
II

o
EXTRN
or
WXTRN
Operand

Character string
not beginning
with a symbol

Symbolic
parameter
as inner
macro
instruction
operand

Section L: The Conditional Assembly Language 327

Page of GC33-40 10-5
As Updated 28 Dec 1981
By TNt GN20-9372

VALUES: Because attribute references
are allowe~ only in conditional
assembly instructions, their values
are available only at fre-assembly
time, except for the length attribute,
which can be referred to outside
conditional assembly instructions
and is therefore also available
at assembly time (see C4C).

NOTE: The system variable symbol,
&SYSLIST, can be used in an attribute
reference to refer to a macro
instruction operand, and, in turn,
to an ordinary symbol. Thus, any
of the attribute values for macro
instruction operands and ordinary
symbols listed below can also be
substituted for an attribute
reference containing &SYSLIST.

THE TYPE ATTRIBUTE (T'): The type
attribute has a value of a single
alphabetic character that indicates
the type of data represented by:

O. An ordinary symbol

DOS NOTE: An ordinary symbol outside a
o~y macro cannot be used as the operand

of T' inside a macro in DOS assembler.

~. A macro instruction operand

NOTE: The type attribute of a
sublist is set to the same value as
the type attribute of the first
element of the sublist.

os
only •

A SET symbol. ~

The type attribute reference can
be used only in the c~erand field
of the SETe instruction or as one
of the values used for comparison
in the operand field of a SETE or
AIF instruction.

NOTE: Ordinary symbcls used in
the name field of an EQU instruction
have the type attribute value nun.

os However, the third operand of an
only EQU instruction can be used

explicitly to assign a type attribute
value to the symbol in the name
field.

328

Type
Attribute

A

B
C
o
E
F
G
H
K
L

T'
~---- -- - ~

Data Characterized

o For ordinary symbols and outer macro instructions
that are symbols

: Defined as labels for DC and OS instructions

A-type constant, implicit length, aligned (alsoCXO
instruction label)
Binary Constant
Character Constant

.~ ...
Long floating-point constant, implicit length, aligned
Short floating-point constant, impliCit length, aligned
Full-word fixed-point constant, implicit length, aligned
Fixed-point constant, explicit length
Half-word fixed-point constant, implicit length, aligned
Floating-point constant, explicit length
Extended floating-point constant, implicit length, aligned
Packed decimal constant Qt .. P

, · ... ·0 ortlY. R
....... Q:iypl~~;~t:irn.,.icit .tngtKaJfglttd

S
V
X
Y

A-, So, Q-, V- or V-type address constant, explicit length
S-type address constant, implicit length, aligned
V-type address constant, implicit length, aligned
Hexadecimal constant
V-type address constant, implicit length, aligned

._--------+--a Z Zoned decimal constant

M
W

J

T
$

: Defined as labels for assembler language statements

Machine instruction
Macro Instruction
CCW instruction

: Identified as control section name

: Identified as external symbol by EXTRN or
WXTRN instruction

A macro Instruction Operand that is:
A self-defining term
Omitted (has a value of a null character string)

c).!

0)

o

o

When a symbol or macro instruction
operand cannot be assigned any of
the type attribute values listed
in the preceding figure, the data
represented is considered to be
undefined and its type attribute
is U. Specific cases of where U
is assigned as a type attribute
value are given in the figure to
the right.

• The type attribute will be set to U
when the same ordinary symbol is used
to define a label in more than one
place, even though only one label
will be generated by conditional
assembly statements.

THE LENGTH ATTRIEUTE (L'): The
• length attribute has a nurr.eric value

equal to the number of bytes occupied
by the data that is re~resented
by the symbol specified in the
attritute reference.

If the length attribute value is
desired for pre-assembly ~rccessing,
the symbol specified in the attribute
reference must ultimately represent
the name entry of a statement in

• open code. In such a statement,
the length modifier (for rc and
DS instructions) or the length field
(for a machine instruction) , if
specified, must be a self-defining

• term. The length modifier or length
field must not be coded as a
multi term expression, because the
assemtler does not evaluate this
expression until assembly time.

The length attribute can also be
specified outside conditional
assemtly instructions. Then, the
length attribute value is not
available for conditional assembly

•
processing, but is used as a value

· at asseml::ly time.

At pre-assembly time, an ordinary
symbol used in the name field of
an EQU instruction has a length
attribute value of 1. At assembly
time, the symbol has the same length
attribute value as the first symbol
of the expression in the first
operand of the EQU instruction.

os However ,the second (,)perad alan IQU
J)nIv instruction can be used. t~assign a

length attribute value to the <8YmDOl
in the name field.

I

Page of GC33-401 0-5
As Updated 28 Del' 1981
By TNL GN20-9372

The Type Attribute Value=U is assigned to the following:

Ordinary symbols that are used as labels:

• for the L TORG instruction

• for the EaU instruction without a third operand

• that are defined more than once 0
• for DC and OS statements that contain variable symbols

Example: Ul DC &X'l'

DOS only

• for DC and OS statements that contain expressions as
duplication factors

Example: DC (AA BB}F'15'

The SETC variable symbol

OSonW. ' ..
Tn. Sy varUtie tymbots: IiSVSPARM, Ic$VSDATE,
lndaSYSTtME ..
Macro instnl~ion operands that specify titerals.

:
Inner ImICro instruction operands that are ordinary symbols,

Source Module

MACRO
LENGTHS &Pl,&P2

AIF (L'&Pl LE 8) .MOVE

. MOVE ANOP
MVC &P2,&Pl

MEND

OPEN START • DATA DC FL7'7E+9'

• AREA DS XL (L 'DA'rA)

LENGTHS DATA ,AREA

MVC AREA ,DATA

Section L: The Conditional Assembly Language 329

330

NOTES:

1. The length attribute reference,
when used in conditional assembly
processing, can be specified only in
arithmetic expressions (see L4) •

2. A length attribute reference to a
symbol with the type attribute value
of M, N, 0, T, U, or $ will be

. flagged. The length attribute for the
symbol will be given the default
value of 1.

THE SCALING ATTRIBUTE (5'): The
scaling attribute can be used only
when referring to fixed-point,
floating-point, or decimal,
constants. It has a numeric value
that is assigned as shown in the
figure to the right.

NOTES:

1. The scaling attribute reference
can be used only in arithmetic
expressions (see L4).

2. When no scaling attribute value
can be determined, the reference is
flagged and the scaling attribute is
given the value of 1.

Constant
Types
Allowed

Fixed-Point

Floating­
Point

Decimal

Examples:

Type
Attributes
Allowed

H,F, and G

D,E,L,and K

Pand Z

Value of Scaling
Attribute Assigned

Equal to the value of the
scale modifier
(-187 through +346

Equal to the value of the
scale modifer
(0 through 14· D,E)
(0 through 28· L)

Equal to the number
of decimal digits
specified to the right
of the decimal point
(0 through 31 - P)
(0 through 16 - Z)

PACKED DC P'+l2.345' S'PACKED=3

S'ZONED=3 ZONED DC Z'+12.345'

C" , I

. ' . .,',)

o

0

THE INTEGER ATTRIBUTE (I'): The integer attribute has

O a numeric value that is a function of (depends on) the
length and scaling attribute values of the data being
referred to by the attribute reference. The formulas
relating the integer attribute to the length and scaling
attributes are given in the figure below.

NOTE: The integer attribute reference can be use.d only
in arithmetic expressions (see L4) •

Constant Formula Examples
Type Relating the
Allowed Integer to the • (attribute Length and
value) Scaling

Attributes

HALFCON DC HS6'-2S.93'
Fixed-point
(H,F, and G)

nt
(D,E,L, and K)

Only for L-Type

Decimal equal to the
number of decimal
digits to the left of
the assumed decimal
point after the
number is assembled

Packed (P)

Zoned (Z)

I'=8*L'-S'-1

I'=2*(L'-1)-S'

when L' > 8
I'=2*(L'-11-S'-2

I'=2*L'-S'-1

I'=L'-S'

8*2-6-1
ONECON DC FS8'100.3E-2'

8*4-8-1

EXTEND DC· LS10'S.3l?'
2*(16-1} -10 -2

PACK DC P'+3.Sl3'
2*3-3-1

ZONE DC Z1 3.Sl3'
4-3

Values
Of the
Integer

} 9

23

4

9

18

2

1

Section L: The Conditional Assembly Language 331

THE COUNT ATTRIBUTE iKe): The count
attribute applies on y to macro
instruction operands, to SET symbols,
and to the system variable symbols.
It has a numeric value that is equal
to the number of characters:

•
• That constitute the macro
instruction operand, or

332

NOTES:

1. The count attribute reference
can be used only in arithmetic
expressions (see L4).

2. The count attribute of an omitted
macro instruction operand has a
default value of O.

Macro Instruction.
Operands

All characters of operand
are included

ALPHA
(SUB,LIST,ALL)
2(10,12)
'A' 'B' , , blank , , null character string

omitted 0 rand)

SET S~mbols •
Delimiting apostrophes

. not included

&C SETC 'ALPHA'
&C SETC , •
&C SETC I I

&B SETB 1
&B SETB 0

&A SETA 399
&A SETA

&A SETA

System Variable Symbols

&SYSNDX= 0912

K'
- "

Value of Count .
Attribute

5
14

8
6
3
2
0

--0

o

o

o

THE NUY.BER ATTRIBUTE (N'): The
number attribute applies only to
the operands of macro instructions •

•

It has a numeric value that is equal
to the number of sublist entries
in the operand.

NOTES:

1. The number attribute reference
can be used only in arithmetic
expressions (see L4) •

2. N'&SYSLIST refers to the number
of positional operands in a macro
instruction, and N'&SYSLIST(m)
refers to t~e number of sublist
entries in the m-th c~erand (for
further details on the number
attribute of &SYSLIST, see J7C) •

Macro Instruction
. Operand Sublist

(A,B,C,D,E)

(A)

A When operand is
not a sublist

(No operands)

Value of
Number A ttnbute

1 + number of commas
separating the entries

• 5

6

4

1

1

o

section L: The Conditional Assembly Language 333

Pale ofOC33-401()'!
As Updated 28 Dec 1981
By TNL ON2()'9312

L1C - SEQUENCE SYMBOLS

purpose

You can use a sequence symbol in the name field of a
statement to branch to that statement at pre-assembly time,
thus altering the sequence in which the assembler processes
your conditional assembly and macro instructions. You
can thereby select the model statements from whict the
assembler generates assembler language statements for
processing at assembly time.

Seq. Sym.

period (or dod

334

Specifications

Sequence symbols must be specified
as shown in the figure to the right.

Sequence symbols can be specified
in the name field of asserr-bler
language statements and model
statements, except as noted in the
figure to the right.

Format: ~alPhabetic character

~o to 6 alphameric characters

·S'EQUENC

Examples: • SEQ

• A1234

• #924

Statements in which
sequence symbols must not
be used as name entries

The following assembler instructions:

COpy
EQU
GBLA
GBLB
GBLC
ICTL
ISEQ
LCLA
LCLB
LCLC
MACRO
OPSYN

J.I!JIIJJii: •• fli

The Macro prototype
instruction

Any instruction that already
contains an ordinary symbol
or vlrllbl, symbol

0, I __ 'i

0)

0 ",1
,I'

o

o

o

Sequence symbols can be specified
in the operand field of an AlE or
AGO instruction to branch to a
statement with the same sequence
symbol as a label.

A sequence symbol has a local scope.
Thus, if a sequence symbol is used
in an AIF or AGO instruction, the
sequence symbol must be defined
as a label in the same part of the
program in which the AIF or AGO

•
instruction appears; that is, in
the same macro definition or in e' open code.

'. NOTE: A sequence symbol in the
name field of a macro instruction
is not substituted for the parameter,
if specified, in the name field
of the corresponding prototype
statement (for specifications about
the name entry of macro instructions
see K2A) •

pen.
ode

Source Module

MACRO

MAC ONE .. r ~ERAT
.GENERAT ANOP

&NAME

:D

DS

MEND
MACRO

MAC TWO

OH

.GENERA~

AGO • GENE RAT

MEND

START
:,:, ;. AGO • THERE

~' ..

DS OH

END

Section L: The Conditional Assembly Language 335

L2 - Declaring Set Symbols

You must declare a SET symbol before
you can use it. In the declaration,
you specify whether it is to have
a global or local scope. The
assembler assigns an initial value
to a SET symbol at its pOint of
declaration.

L2A -- THE LCLA, LCLB, AND LCLC
INSTRUCTIONS

336

purpose

You use the LCLA, LCLB, and LCLC
instructions to declare the local
SETA, SETB, and SETC symbols you
need.

Specifications

The format of the LCLA, LCLB, and
LCLC instruction statements is given
in the figure to the right.

These instructions can be used
anywhere in the body of a macro
definition or in the open code
portion of a source module.

Name

Blank

Operation

LCLA,
LCLB,or
LCLC

Operand

One or more variable
symbols separated
by commas

o

o

o

Any variable symbols declared in
the operand field have a local
scope. They can be used as SET

• symbols anywhere after the pertinent
LeLA, LCLB, or LCLC instructions,

•
but only within the declared local
scope.

MACRO

MEND
MACRO

&A2 cannot be used
here, outside its de -
clared scope

&A2 cannot be used

Section L: The Conditional Assembly Language 337

The assembler assigns initial values
to these SET symbols as shown in
the figure to the right.

LOCAL VARIABLE SYMBOLS MUST NOT
BE MULTIPLY DEFINEC: A local SET
variatle symbol declared by the
LeLA, LCLB, or LCLC instruction
must not be identical to any other
variable symbol used within the
same local scope. The following
rules apply to a local SET variable
symbol:

1. within a macro definition, it
must not be the same as any symbolic o parameter declared in the prototype
statement.

2. It must not be the same as any

•
global variable symbol (see L2E)
declared within the same local
scope.

3. The same variable symbol must
not be declared or used as two

• different types of SET symbols,
for example, as a SETA and a SETB
syrrhol, within the same local scope.

NOTE 1: A local SET symbol should
not begin with the four characters
&SYS, which are reserved for system
variable symbols (see J1).

DOS NOTE. 2tTb~91ob,al. declarati()~$
• must precedetheloq.~ de~ ara1;i~~~~

338

Instruction

LCLA
LCLB
LCLC

Initial Value assigned
to SET variable symbols
in operand fields

0
0
Null character
string

Correct definition
of SETC symbol
(no symbolic
parameters
allowed in
open code)

0,"
I 'I.,

o

SUBSCRIPTED LOCAL SET SYMBOLS:
A local subscripted SFT symbol is
declared by the LCLA, LCLB, or LCLC
instruction. This declaration must
be specified as shown in the figure
to the right.

o The max imum dimension allowed is
32,767.

The dimension indicates the number

•
of SET variables associated with
the subscripted SET sfmbol. The

• assembler assigns an ~nitial value
to every variable in the array thus
declared.

NOTE: A subscripted local SET
-symbol can be used only if the
declaration has a subscript, which
represents a dimension; a
nonsubscripted local SE1' symbol
can be used only if the declaration
had no subscript.

Format:

LCLA }
LCLB,

or LCr.C

Instruction

LCLA

LCLB • LCLC

Example:

•
Format:

Array Defined
Same initial values as for non-subscripted

SET symbols

LCLB & B (10) 10 10 10 I 0 I 0 I 0 I 0 10 I 0 I 0 I

Section L: The Conditional Assembly Language 339

L2B -- THEGBLA, GELP, ANt GELC
INSTRUCTIONS

Furpose

You use the GELA, GELE, and GBLC
instructions to declare the global
SETA, SETB, and SETC symbols you
need.

Specifications

The format of the GBLA, GELE, and
GBLC instruction staterrents is given
in the figure to the right.

These instructions can be used
anywhere in the body of a macro
definition or in the open code
portion of a source module.

Any variable symbols declared in
the operand field have a global
scope. They can be used as SET

•
symbols anywhere after the pertinent
GBLA, GBLS, or GBLC instructions.
However, they can be used only
within those parts of a program
in which they have been declared

•
as global SET symbols, that is in
any macro definition and in open.
code.

NOTE: Values can be ~assed between:

•
• The macro definitions, MAC1,
and MAC2, only by using the variable
symbols &B and &C •

340

•
• The macro definition, MAC2, and
open code, only by using the variatle
symbol &C •

•
• The macro definition, MAC1, and

I open code, only by using the variatle
syIriboi &C.

Name

Blank GBLA,

GBLB, or

GBLC

Source Module

One or more variable
symbols separated
by commas

& Bcannot be used
here, before its

o

o

The assembler assigns initial values
to these SET symbols as shown in
the figure to the right.

The assembler assigns this initial
value to the SET symbol only when

Oit processes the first GBLA, GBLB,
or GBLe instruction in which the
symbol appears. Subsequent GBLA,

•
GBLB, or GBLe instructions do not
reassign an initial value to the
SET symbol.

lI:>T1t "I'be" ··;.,.·.,,·.· .. ·In.traetloi
••• t.prec~etheS.,ARTlna~~l~ ..

Instruction

GBLA
GBLB
GBLC

GBLA &A

MEND

OPEN START o

BLA

END

Initial Value assigned
to SET variable symbols
in operand field

0
0
Null character string

o -.&A=O

value of &A
can be changed
in expansion of

macro FIRST

Processing

Sequence

&A= assigned value

Section L: The Conditional Assembly Language 341

GLOBAL VARIABLE SYMEOLS MUST NOT
BE MULTIPLY DEFINED: A global SET
variable symbol declared by the
GBLA, GBLB, or GELC instruction
must not be identical to any other
variable symbol used in open code
or within the same macro definition.
The following rules apply to a
global SET variable symbol:

1. within a macro definition, it
must not be the same as any symbolic 4It parameter declared in the prototype
statement.

2. It must not be the same as any
• local variable symbol (see L2A)

declared within the same local
scope.

3. The same variable symbol must
not be declared or used as two

• different types of global SET symbol,
for example, as a SETA or SETB
symbol.

NOTE 1: A global SET symbol should
not begin with the fcur characters
&SYS, which are reserved for system
variable symbols (see J7) •

DOS NOTE 2:. The qlobal declarations
• mst preceqe the local. deciarations.

SUBSCRIPTED GLOBAL SET SYMBOLS:
A global subscripted SET symbol
is declared by the GELA, GBLB, or
GBLe instruction. This declaration
must be specified as shown in the
figure to the right.

4It The maximum dimension allowed is
32,767.

The dimension indicates the number
of SET variables associated with

• the subscripted SET sfmbol. The

•
assembler assigns an ~ni tial value

342

to every variable in the array thus
declared.

Source Module

MACRO
MULTGLOB

LCLA

LCLB

LCLC

{

GBLA

GBLB

GBLC

MEND

LCLA

LCLC

l
G~LA

GBLB

GBLC

START

END

&GA

8&G'
&QC1,&GC2

8
&&:1:

•. ~.J.t:~~,~i:;

These variable symbols
communicate values
between the macro
MULTGLOB and

GBLA}
GBLB

GBLC

• ; SET S YM(I di menSionJ)

Instruction

GBLA

GBLB

GBLC

Array Defined

Same initial values as
for non-subscripted SET symbols

Global arrays are assigned initial
values only by the first global
declaration processed, in which
a global subscripted SET symbol
appears

Format:

()

~
(i

~I

o

Source Module

NOTES:

~ 1. A subscripted ~lobal SET symbol
can be used only 1f the declaration
bas a subscript, which represents #

8 a dimension; a nonsubscriited global
SET symbol can be used on y if the
declaration had no subscript.

2. Wherever a particular global
SET symbol is declared with a
dimension as a subscript, the

~dimension must be the same in each
declaration.

f)C)sNO .. ~E: ·The.-GBLB ... ';.'SI~iB(50l·.·

0
·· ·1nstructionmust prec ·e· tbeftART
. instruction.:

L3 -- Assigning Values to Set Symbols

L3A -- THE SETA INSTRUCTION

Purpose

Open

Code

MACRO

MACl

GBLA

GBLB

GBLC

/8
:JiL1 SETA

&C SETC

MEND
MACRO

MAC 2
GBLB

-'" MEND
OPEN START

- . GBLB

END

The SETA instruction allows you to assign an arithroetic
value t.o a SETA symbol. You can specify a single value
or an arithmetic expression from which the assembler will
compute the value to assign.

you can change the values assigned to an arithmetic or
SETA symbol. This allows you to use SETA symbols as
counters, indexes, or for other repeated computations that
require varying values.

&Al'&A2(4~4Et
&SWITCH (50)

&CHAR(lO) ,&C

/0
P2{Z2)

/0
'tlCBAR(6) '

• &SWITCH (50)

0

4Et
&SWITCH (50)

Section L~ The Conditional Assembly Language 343

o

Specifications

The ·format of the SETA instruction
statement is given in the figure
to the right.

The variable symbol in the name
field must have been previously
declared as a SETA symEol in a GBLA
or LCLA instruction.

The assembler evaluates the
arithmetic expression in the operand

•
field as a signed 32-bit arithmetic
value and assigns this value to
the SETA symbol in the name field.
An arithmetic expression is descrited
in L4A.

O SUBSCRI~TED SETA SYM~OLS: 'Ihe SETA
symbol 1n the name f1eld can be
subscripted, but only if the same

•
SETA symbol has been previously
declared in a GBLA or LCLA
instruction with an allowable
dimension.

The assembler assigns the value
of the expression in the operand

•
field to the position in the declared
array given by the value of the
SU5SCript. The subscript expression
must not be 0, or have a negative

O value, or exceed the dimension
actually specified in the
declaration.

344

•

Name Operation Operand

A variable

Symbol.

SETA

LCLA

LCLA

&Al,&A2

• &SUBSCRA(lOO)

SETA

&SUBSCRA(20) SETA 2000
...: ..

Must be an arithmetic
expression allowed in
operand of SETA
instruction

&SUBSCRA Array

1-1 --1-1 ---1._.&.--_..::.1' \2000 I· .. ? 0
f t t t

2 W 100

&SUBSCRA (200) SETA 2000 *ERROR* NO
VALUE ASSIGNE

&Al SETA &SUBSCRA(20)
Value assigned

&Al=2000

o

c:; L3B -- THE SETC INSTRUCTION

o

o

Purpose

The SETC instruction allows you to assign a character
string value to a SETC symbol. You can assign Whole
character strings or concatenate several smaller strings
together. The assembler will assign the composite string
to your SETC symbol. You can also assign parts of a
character string to a SETC symbol by using the substring
notation (see L5) •

You can change the character value assigned to a SETC
symbol. This allows you to use the same SETC symbol with
different values for character comparisons in several
places or for substituting different values into the same
model statement.

Specifications

The format of the SETC instruction
statement is given in the figure
to the right.

The variable symbol in the name
field must have been previously
declared as a SETC symbol in a GBLC
or LCLC instruction.

The four opticns that can be
specified in the operand field are:

A type attribute reference

A character expression (see L4B)

A substring notation (see LS)

A concatenation of substring
notations, or character expressions,
or both.

~The assembler assigns the character
string value represented in the
operand field to the SETC symbol
in the name field. The string
length must be in the range 0 (null
character string) through 255
characters.

ormat:

Name
A variable
symbols

Value Examples:

&CI

BC &C2

BC &C3

BCDEF &C4

Operation
SETC

SETC

SETC

SETC

Operand

SETC
I

One of four options,
exemplified below

T'&DATA
or

T'SYMBOL
Must appear alone
and must not be
enclosed in
apostrophes

Up to 255 characters
enclosed in apostrophes

SETC I, ABC' • 'DEF'
• or

'ABC'.'ABCDEF'(4,3)

Section L: The CondH~ional. Assembly Language 345

NOTE: When a SETA or SETB symbol
is specified in a character o expression, the unsigned decimal
value of the symbol (with leading

•
zeros removed) is the character
~ given to the symbol.

346

Examples: Value of &A1

ICl
IC2
IC3

IC4
ICS

IC6

IC7
Ica

Format:

ICl

IC2

IC3

SETC
SETC
SETC

SETC
SETC

SETC

SETC
SETC

SETC

SETC

IC4A SETC

IC4B SETC

'IAl'
'IAl'
'IAl'

'-200'
'IAl'

'IAl+1'
'1-IA1'

(3) 'ABC'

200
00200
-200

o

30
-30

•
(31 'ABCDE' (1, 31

(31 'ABC' • 'DEF I • ' ABC' • (31 'ABCDEF' (4, 3

Character
Value Assigned
to SETC symbols

~
200
200
200

-200
o

00200

30+1
1-30

Value Assigned
to SETC symbol

Must be in the
range 1 through
255

•

o

(~\
.. ~J)
-',

o

o

10· ' ,

"

• •
SUBSCRIPTED SETC SYMBOLS: The SETC
symbol in the name field can be
subScripted, but only if the same
SETC symbol has been previously
declared in a GBLC or LCLC
instruction with an allowable
dimension.

The assembler assigns the character

•
value represented in the operand
field to the position in the declared
array given by the value of the
subscript. The subscript expression

•
must not· be 0, or have a nega ti ve

· value, or exceed the dimension
actually specified in the
declaration.

•
LCLC
LCLC

&SUBSC~C(l~) SETC

Must be an arithmetic
expression allowed in
the operand of a SET A
instruction

Array:

&SUBSCRC

I
t t

2

'ABCDE' r.
IABCDEI ~ ~ I t '---~t
10 20

&SUBSCRC (25) SETC 'ABCDEF' **ERROR::=* No
~ Value Assigned

&Cl SETC

L3C -- THE SETB INSTRUCIION

Purpose

The SETB instruction allows you to assign a tinary bit
value to a SETB symbol. You can assign the bit values,

'&SUBSCRC (10) ,

o or 1, to a SETE symbol directly and use it as a switch.

If you specify a logical expression (see L4C) in the operand
field, the assembler evaluates this expression to determine
Whether it is true or false and then assigns the values
1 or 0 respectively to the SETB symbol. You can use this
computed value in condition tests or for substitution.

Value assigned

&Cl=ABCDE

Section L: The Conditional Assembly Language 347

Specifications

The format of the SETB instruction
statement is given in the figure
to the right.

The variable symbol in the name
field must have been ~reviously
declared as a SETE symbol in a GELB
or LCLB instruction.

'os The variibl.e',$~olisassigtte,>
only a t1~e attr~.J;)~'t_.!a~ue, of N~ ,

The three options that can be
specified in the operand field are:

• 1. A binary value (0 or 1)

•
2. A binary value enclosed in
parentheses

OSNOTJh An arithmetic value en<:1<?$ea 1

onlY in .• paxenth~~~~.J.$. allowed.. .' T~~", .,.i '>,
val~eca~~~,r~~resent~d by an.""'i<,,:,i
unsigned(}~c~mal self-defining .te~~i';
a . SETA. symJj0:l.! '. or. anattribu~e":'<ji~
refexence other than the type .' ,.... "';::
attrituterefel:'ence~ If: .tllev,l~ :'}1
is O. the assembler assigns a valu,>
of 0 to the symbol in' the name i ,

field. Ifthevalue1s~otO •. :t-be
assemble~ass~9nsavalueof1.:' <;;;

8 3. A logical expression enclosed
in parentheses (see L4C) •

The assembler evaluates the logical
expression, if specified, to
determine if it is true or false.
If it is true, it is given a value
of 1; if it is false, a value of

O
o. 'Ihe assembler assigns the

, explicitly specified binary value
(0 or 1) or the computed logical

value (0 or 1) to the SETB symbol
in the name field.

• SUBSCRIPTED SETB SYMEOLS: The ~
symbol in the name field can be
subscripted, but only if the same

•
SETB symbol has been previously
declared in a GBLB or LCLE
instruction with an allowable
dimension.

348

The assembler assigns the binary
value explicitly specified or
implicit in the logical expression

•
present in the operand field to -
the position in the declared array
given by the value of the subscript.
The subscript expression must not
be 0, or have a negative value,

Oor exceed the dimension actually
specified in the declaration. '

Format:
Name
A variable
symbol

Examples:

&Bl

&B2

&B3A

&B3B

•

Operation

SETB

SETB

SETB

SETB

SETB

LCLB
LCLB

SETS

Operand
One of three options,
exemplified below .-

Values
ASSigned

0 • 0

(1) • 1

(~'Ir·
0

(2 . L'+' 3) true 1
IL~;s thanl

&SUBSCRB(lO) SETB 1

Must be an arithmetic
expression allowed
in operand of a SETA
instruction

Array:
&SUBSCRB

!--~ __ ~~~ { __ ----'I
t t
2 10 50

&SUBSCRB(72) SETB 1

" ** ERROR** No VALUE ASSIGNED

&Bl SETB &SUBSCRB(lO}
Value assigned

&BI=l

,,0
\~"')/

6 L4 - Using Expressions

c

There are three types of expressions that you can use only
in conditional assembly instructions: arithmetic, character,
and logical. The assembler evaluates these conditional
assembly expressions at pre-assembly time.

Do not confuse the conditional assembly expressions with
the absolute or relocatable expressions used in other
assembler language instructions and described in C6. 1he
assembler evaluates absolute and r~locatable expressions
at assembly time.

L4A -- ARITHMETIC (SETA) EXPRESSIONS

Purpose

You can use an arithmetic expression for assi9ning an
arithmetic value to a SETA symbol, or for computin9 a value
used during conditional assembly processing_

An arithmetic expression can contain one or more SET
symbols, which allows you to use arithmetic expressions
wherever you wish to specify varying values, for exam~le
as:

1. Subscripts for SET symbols, symbolic parameters, and
'SYSLIST, and in substring notation.

You can then control loops, vary the results of
computations, and produce different values for substitution
into the same model statement.

Section L: Th.e Conditional As~~mbly Language 349

Specifications

Arithmetic expressions can be used
as shown in the figure to the right.

NOTE: When an arithmetic expression
is used in the operand field of 4Dt a SETC instruction, the assembler
assigns the character value
representing the arithmetic
expression to the SETe symbol, after

• substituting values into any variable
symbols. It does not evaluate the
arithmetic expression.

350

can be U~ In

SETA instruction

AI F instruction
or
SETS instruction

Subscripted SET
symbols

Substring notation
(See L6)

Sublist notation

&SYSLIST

SETC instruction

Used As

operand

comparand
in arithmetic
relation

subscript

subscript

subscript

subscript

character
string in
operand

Example o
&Al SETA &Al+2

AIF (&A*lO GT 30).A

&SETSYM(&A+IO-&C)

'&STRING' (&A*2,&A-l)

sublist (A, B ,C , D)

when &A=1

&PARAM(&A+l) =B

&SYSLIST(&M+l,&N-2)

&SYSLIST(N'&SYSLIST)

• &C SETC '5-10*&A'
if &A=lO ~
then &C=5-10*1

b

o

'the figure below defines an arithmetic expression cself­
defining terms are described in C4E).

Arithmetic
Expression

Scaling
Integer
Count

or
Number

Operators Allowed

Unary: + positive
- negative

Binary: + addition
- subtraction
* multiplication
I division

I

Arith. Exp = Arithmetic Expression

Arith. Exp.

section L: The Conditional Assembly Language 351

352

The variable symbols that are allowed
as terms in an arith~etic expression
are given in the figure to the
right.

Variable
Symbol

SETA

SETB

SETC }

&SYSPARM

.. Restrictions

none

none

value must be an
unsigned decimal
self-defining term
in the range 0
through
2,147,483,647 .Y:t;i __

Symbolic

Parameters
value must be a
self-defining term

&SYSLIST (n) ~corresPOnding
operand or subiist

&SYSLIST (n ,m) entry must be

&SYSNDX

a self-defining
term

none

Example Value
o

&C 123

&SYSPARM 2000

&PARAM X'Al'

&SUBLIST(3) C'Z'

&SYSLIST(3) 24

&SYSLIST(3,2) B'lOl'

b

o

o

RULES FOR COOING ARITHMETIC
EXPRESSIONS: The following is a
summary of coding rules for
arithmetic expressions:

1. Both unary (operating on one
value) and binary ~perating on
two values) operators are allowed
in arithmetic expressions.

•
2. An arithw.etic expression can
have one or more unary operators
preceding any term in the expression
or at the beginning of the
expression.

•
3. An arithmetic expression !!!Y.§.i
not begin with a binary operator,

_ and it must not contain two binary
operators in succession.

4. An arithmetic expression must
• not contain two terms in succession.

S. An arithmetic expression must
not contain blanks between an
operator and a term nor between
two successive operators.

6. An arithmetic expression can
contain up to 24 unary and binary
operators and up to 11 levels of
parentheses.

NOte that the parentheses required
for sublist notation, substring
notation, and subscript notation
count toward this limit.

Examples

Operators

Unary +,-

Binary +, -, * ,/

•• &A JI &A
&B

·C:A

t::::=:> - &A
&A

c::=::> &A-&B

Context determines whether a
+ or - is a Unary or
Binary operator

c=> &A-&B

100 c:::.:::> &A/&B+IOO

~ &C-&D

c:::=> &C * (-&D)

INVALID

INVALID

INVALID
INVALID

_
!
&C*I&D
&C + *&D

'" r---------,I
'" Leftmost operator between

two terms is Binary

X'FF' (lO*&x) INVALID

Jr /' \
"I5"B '101' INVALID

Section L: The Conditional Assembly Language ·353

o

• •

EVALUATION OF ARITHMETIC EXPRESSIONS:
The assembler evaluates arithmetic
expressions at pre-assembly time
as follows:

1. It evaluates each arithmetic
term.

2. It performs arithmetic operations
from left to right. However:

a. It performs unary operations
before binary oferations, and

h. It performs the binary
operations of multiplication
and division before the binary
operations of addition and
sul:tract ion.

• 3. In division, it gives an integer
result; any fractional portion is
dropped. Division by zero gives
a 0 result.

4. In parenthesized arithmetic

•
expressions, the assembler evaluates
the innermost expressions first

•
and then considers them as arithmetic
terms in the next cuter level of •

354

expressions. It continues this
process until the outermost
expression is evaluated.

5. The computed result, including
intermediate values, must lie in
the range -2 31 through +2 31 -1.

. - -- -

Examples of Arithmetic Expressions Value of Arithmetic
Expression

&A*--X ' A' ' ===(>
8:A~
5.f~+10 +50

.I'

&A=10,&B=2

tA+10/&B ==I> 1O~:e21 ==¢
15

(&A+10) /&B =t> 20/2 -===:> 10

&A=lO

&A/2 ===e> 10/2 5

&A=ll

&A/2 :::::::t> 11/2 5

• &A=1

&A/2 ===t> 1/2 Q

&A=l

10~~&A/2 =t> 10/2 5

&A +
1.L 1
(X'FF"2+&B-(~~+'~1 J

Final evaluation

0 1 L4B -- CHARAC'l'ER (SETC) ~PRESSIONS

'0

Purpose

The main purpose of a character expression is to assign
a character value to a SETC symbol. You can then use the
SETC symbol to substitute the character string into a model
statement.

You can also use a character expression as a value for
comparison in condition tests and logical expressions (see
L4C). In addition, a character expression provides the
string from which characters can be selected by the
substring notation (see LS).

Substitution of one or more chaxacter values into a
character expression allows you to use the character
expression wherever you need to vary values for substitution
or to control loops.

can 'be Used in Used As Example

SETC instruction operand &C SETC

Char, Exp,

'STRINGO'

Specifications AIF instruction character AIF (' &C' EO 'STRINGl') .B

Character (SETC) expressions can
be used only in conditional assembly
instructions as shown in the figure
to the right.

or string in
SETS instruction character

relation

Substring notation first part '~0\~.~T' (2,5)=ELECT
(See L5) of notatiol1

t I character ,\
expression

Section L: The Conditional Assembly Language 355

356

A character expression consists of any combination of
characters enclosed in apostrophes. Variable symbols

•
allowed. The assembler substitutes the representation
their values as character strings into the character
expression before evaluating the expression.

are
of

Up to 255 characters are allowed in a character expression.

NOTE: Attribute references are not allowed in character
expr ess ions'.

Must not contain more than
255 characters

(including blanks) • Variable Restrictions Example Value
Symbol Substituted

&A SETA -0201
SETA sign and leading &C SETC I &A I 201

zeros are suppressed
sta'nd alone zero &ZERO SETA 0
is used &C SETC '&ZERO' 0

SETB none &B SETB 1 1

SETC none &Cl SETC 'ABC'

&C2 SETC '&C1 1 ABC

Symbolic none &PARAM=(ABC)
Parameters

&C1 SETC '&PARAM' (ABC}

System none &NUM SETC '&SYSNDX' 0201
Variable

if &SYSNDX= 201
symbols

(rf!'r\
\~~

o

o

o

EVALUATION OF CHARACTER EXPRESSIONS:

•
The value of a character expressioq
is the character string within the
enclosing apostrophes, after the
assembler performs any substitution
for variatle symbols.

•
Character strings, including variatle
symbols, can be concatenated to

•
each other wi thin a character
expression. The resultant string

•

is the value of the expression used
in conditional assembly operations:
for example, the value assigned
to a SETC symtol.

A double apostrophe must be used to
generate a single apostrophe as part
of the value of a character
expression.

A double ampersand will generate a
double ampersand as part of the value
of a character expression. To
generate a single ampersand in a
character expression, use the
substring notation, for example,
(. &&' (1,1)) •

NOTE: To generate a period, two

•
periods must be specified after-a
var1able symbol, or the variable
symbol must have a period as part of
its value.

Examples

Concatenation
operator is
a period (.)

'ABC'

'&PARAM'

'A+B-C*D'

'&A+lO'

'&A&A'

mandatory I

'&C.ABC'
optional I

• '&C.&C'

'&C.+IO*&A'

'ABC&C'

'&C'

'ABC&C.DEF'

.'LIISYMBOL'

'&C'505'

'&C.505'

Value of Value of
Variable Character
Symbols Expression
Used

0
ABC

SYMBOL SYMBOL

A+B-C*D

10 10+10
(Not 20)

15 1515

DEF OEFABCI • DEF DEFDEF

&A=200 } AREA + 10*200
&C=AREA
&C=. ABC .

null null character
string

&C=null ABCDEF

L'SYMBOL

2 2.505

2. 2.505

Resultant Value
must be in the
range 0 through
255 characters

"

SectionL: The Conditional Assembly Language 357

o

o

'0, \'

CONCATENATION OF CHARACTER STRING
VALUES: Character ex~ressions can
be concatenated to each other or
to substring notations in any order:
This concatenated string can then
be used in the operand field of
a SETC instruction or as a value
for comparison in a logical
express ion •

• Ifhe resultant value is a character
string composed of the concatenated
parts •

• NOTE: The concatenation character
(a period) is needed to separate
the apostrophe that ends one
character expressicn from the
apostrophe that begins the next.

L4C -- LOGICAL (SETE) EXPRESSIONS

Purpose

You can use a logical (Boolean)
expression to assign the binary
value 1 or 0 to a SETB syrrhcl.

You can also use a logical expression
to represent the condition test
in an AIF instruction. This use
allows you to code a logical
expression whose value (0 or 1)
will vary according to the values
substituted into the expression
and thereby determine whether or
not a branch is to be taken.

Specifications

Logical (SETB) expressions can be
used only in conditional assembly
instructions as shown in the figure.
to the right.

Concatenated
String

, &C' (4 , 3) • 'DEF '

ttiO .. ll
, &C' (1, 3) • ' &C' (4, 3)

, ABC t • '&C ' (4, 3) 'GHl f

, ABC' • ' &C ' . 'GHI'
'ABC' • ' , • 'GHI'

null character string

Can be Used As Example
used in

SETB
instruction operand &Bl

AIF

Page of CC33-4010-O
Revised Septernber 29, 1972
By TNL CN33-8148

Value of
Variable
Symbol

Resultant
Character
String
Value

SETB

ABCDEF

ABCDEF

HI

ABCGHI
Value must be
in the range 0
through 255
characters

Logical Exp.

(&B2 OR 8 GT 3)

instruction condition AIF (NOT &Bl OR 8 EQ 3~A
test part
of operand

Section L: The Conditional Assembly Language 359

360

The figure on the o~~osite ~age defines a logical
expression.

NOTE: An arithmetic relation is two arithmetic ex~ressions
separated by a relational operator. A character relation
is two character strings (for example, a character
expression and a type attribute reference) separated ty
a relational operator. The relational operators are:

EQ (equal)

NE (not equal)

LE (less than or equal)

LT (less than)

GE (greater than or equal)

GT (greater than)

o

o

o

Arithmetic
Expression
(defined in

L4A)

Logical

Outermost Expression
must be enclosed in
parentheses in SETB
and AIF instructions

Logical Operators Allowed

addition
multiplication
negation

Page of GC33-4010-0
Revised September 29, 1972

By TNL GN33-8148

Expression ... ----r-----------------.;.-.------t

Comparand

or

Optional parentheses
~---I around terms and

expressions at this level

Items optionally
enclosed in
parentheses

Relational Operators Allowed

Substring
Notation
(defined in

L5A)

or

equal
not equal
less than or equal
less than
greater than or equal
greater than

Type
Attribute

Must be in the
range 0 through
255 characters

Must stand alone
and not be enclosed
in apostrophes

Section L: The Conditional Assembly Language 361

RULES FOR CODING LOGIC~L EXPRESSIONS:
The following is a sum~ary of coding
rules for logical expressions:

1. A logical expression must not
contain two logical terms in
success ion.

2. A logical expression can begin
• with the logical operator NOT.

3. A logical expression can contain
two logical operators in succession;

•
however, the only corobina tions
allowed are: OR NOT or ANt NOT.
The two operators must be separated
from each other by one or more
blanks.

4. Any logical term, relation, or
inner logical expression can be
optionally enclosed in parentheses.

5. The relational and logical
operators must be iw.mediately
preceded and followed by at least

• one blank or other sFecial character. 0

362

6. A logical expression can contain
up to 18 logical operators and up
to 17 levels of parentheses.

Note that the relational and other
operators used by the arithmetic
and character expressicns in
relations do not count toward this
total.

Examples of Logical Expressions

(&A GT 100 OR '&C' EQ F)

NOT &8

o

(NOT &B OR &A GE 10 AND &A LE 0)

('&C' ~ 'ALLOC')

~
(, &C ' EQ ' ALLOC ')

(&A NE 10)

blank mandatory

o

o

•
•

•
•
•

EVALUATION OF LOGICAL EXPRESSIONS:
The assembler evaluates logical
expressions as follows:

1. It evaluates each logical term,
which is given a binary value of
o or 1.

2. If the logical term is an
arithmetic or character relation,
the assembler evaluates:

a. The arithmetic or character
expression specified as values
for comparison in these relations,
and then

b. The arithmetic or character
relation, and finally

c. The logical terrr., which is
the result of the relation.
If the relation is true, the
logical term it represents is
given a value of 1. if the
relation is false, the term is
given a value of O.

NOiE: If two comparands in a
character relation have character
values of unequal length, the
assembler always takes the shorter
character value to be less than
the longer one.

3. The assembler performs logical
operations from left to right.
However:

a. It performs logical NOTs
before logical ANDs and ORs,
and

b. It performs logical ANDs
before logical ORs.

Q. In parenthesized logical
expressions, the assembler evaluates o the innermost expressions first

•
and then considers theIr as lOgiCal.
terms in the next outer level of
expressions. It continues this
process until the outermost
expression is evaluated.

Examples of Logical Expressions

}t\
«&A NE 100) •

c:.~
OR T'&AREA EO '&PARAM' (3,4» • ('ABC' LT 'ABCD') Always true

• (given a value of 1)

(&B AND NOT (5 GT 3»

(&B AND (NOT (5 GT 3») •
(&B OR &A AND ('&C' EO 'B'»

(&B OR (&A AND ('&C' EO 'BI») •
~------------,.------------~

(NOT (&Bl OR

Section L: The Conditional Assembly Language 363

LS .. Selectiitg Characters from a String

L5A -- SUBSTRING NOTATION

364

Purpose

The substring notation allows you to refer to one or nere
characters within a character string. You can therefore
either select characters from the string and use them fer
substitution or testing, or scan through a complete string,
inspecting each character. By concatenating substrings
with other substrings or character strings, you can
rearrange and build your own strings.

Specifications

The substring notation can be used only in conditional
assembly instructions as shown in the figure below.

Can be Used as Example
Used in

SETC operand &Cl SETC I ABC I (1,3)
instruction

part of
operand

operand &C2 SETC I &Cl ' (1,2) • I DEF I

SETB or Character
AIF value in AIF (I &STRING I (1,4) EQ 'AREA') .SEQ
instruction comparand
operand of character &B SETB ('&STRING ' (1,4) .19 1 EO I FULL9 I)
(logical relation
expression)

Value Assigned
to SETC symbol

ABC

ABDEF

o

:0

• • •
•

The substring notation must be
specified as shoWn in the figure
to the right.

!he character string is a character
expression from which the substring
is to be extracted. The first
subscript indicates the first
character that is to be extracted
from the'character string. The
second subsdript indicates the
number of characters to be extracted
from the character string, starting
with the character indicated by
the first subscript. Thus the
second subscript specifies the
length of the resulting substring.

EXlll'lpl ..

I ABCDE I (1, 5)

I ABCDE I (2, 3)

t ac I (3,.3)

'aPARAM' (3,3)

Subs tt mg

Valul of V.-iIbII a..cter Value
Symbol of SubstrIng

ABC DE

BCD

ABCDE CDE

,((A+3)*lO) At3

Section L: The Conditional Assembly Language 365

The character string must be a valid
character expression with a length,
N, in the range 1 through 255 characters.

The length of the resulting substring
must be within the range 0-255.

The subscripts, el, an1 e2, must be
arithmetic expressions. The substring
notation is replaced by a value that
depends on the three elements: N, el,
and e2, as summarized below:

4It In the usual case, the assembler
generates a correct substring of
the specified length.

• When e1 has a value of zero or a
negative value, the assembler issues
an error message •

•
When the value of e1 exceeds N, the
assembler issues a warning message,
and a null string is generated.

O When e2 has a value of 0, the
assembler generates the null
character string. Note that if e2

366

is negative, the assembler issues
an error message.

• When e2 indexes past the end of the
character expression (that is,
el+e2 is reater than N+l) ,
u~t~~~_~::~~II.~h.~~i~M~_

generates a substring which
includes only the characters up
to the end of the character expres­
sion specified.

Examples: Assume O<NS255

• O<elS N, O<e2SN, and
eHe2SN+l

, ABCDEF' (2, 5)

.elS0

, ABCDEF' (0 ,,:

eel>N

'ABCDEF' (7,1>

N=6

N=e: *WARNING*

•

e2=O ,
• , ABCDEF 'j., 0)

tif.IV;"'a-'u-e-of-e-l-d-is-rega-rd-ed-1

eO<e1SN, O<e2SN, but
eHe2>N+ 1

Character Value
of Substring

CDEF

null

null

null

''ABCDEF' (3,5) N=6 *WARNING* CDEF

'ABCDEF' (3,4) CDEF

0,

(~'
,)

:0 L6 - Branching

o

o

L6A -- The AIF INSTRUCTION

Purpose

The AIF instruction allows you to branch according to the
result of a condition test. You can thus alter the sequence
in which your assembler language statements are processed.

The AIF instruction also provides loop control for
conditional assembly processing, which allows you to control
the sequence of statements to be generated.

It also allows you to check for error conditions and thereby
to branch to the appropriate MNOTE instruction to issue an
error message.

Specifications

The AIF instruction statement must
be specified as shown in the figure
to the right.

Name

A sequence
Symbol or
Blank

Operation

AIF
Operand

Sequence
symbol
described
in L1C

allowed between
right parenthesis
and sequence
symbol

Section L: The Conditional Assembly Language 367

The assembler evaluates the logical
expression in the operand field

• at pre-assembly time. If the logical
expression is true (logical value=1) ,

•

the next statement processed by
the assembler is the statement named
b: the sequence symbol. If it is

• f lse (logical value =0), the next.
sequential statement is processed. '

368

.CONTINO ANOP

processing continues herw

AIF (

• ERROR ANOP

processing continues here

.OUT

to

Ie· '. '. \

o

Tbesequence symbol in the operand
field is a conditional assembly
label that represents an address
at pre-assembly time. It is the
address of the statement to which
a branch is taken if the logical
expression preceding the sequence
symbol is true.

~e statement identified by the
sequence syrebol referred to in the
AIF instruction can appear before
or after the AIF instruction.
However, the statement must appear

• within the local scope of the
sequence symbol. ThUS, the statement
identified ty the sequence symbol
must appear:

4Et. In 0ten code, if the corresponding
AIF ins ruct10n does or

O. In the same macro definition
in which the corresponding AIF
instruction appears.

The sequence symbols .EACK and
.FORWARD are not multiply defined.
No branch can be taken from open
code into a macro definition or
between macro definitions, regardless
of nested calls to other macro
definitions.

NOTE: For compatibility, the
assemblers described in this manual
will process the AIFB instruction
~OS/360) in the same way they
process the AIF instruction.

L6B -- THE AGO INSTRUC~ION

purpose

open

code

Source Module

AIF (I IC I EO IF I) .FORWARD

AIF (IA GT 5).BACK

ANOP

MEND

START 0

AIF (10 NE 200).FORWARD

AIF ('ICHAR' NE ')').BACK

ANOP

END

The AGO instruction allows you to cranch unconditionally.
You can thus alter the sequence in which your assembler
language statements are processed. This provides yeu with
final exits from conditional assembly loops.

Section L: The Conditional Assembly Language 369

specifications

The AGO instruction statement must
be specified as shown in the figure
to the right. Name Operation

A sequence AGO
symbol or
blank

Source Module

The statement identified by a
sequence symbol referred to in the
AGO instruction can appear before
or after the AGO instruction.
However, the statement must appear o within the local scope of the
sequence syrilboi. Thus, the statement
identified by the sequence symbol
must appear

•
• In open code, if the corresponding
AGO instruction does or

•• In the same macro definition
in which the corresponding AGO
instruction appears.

NOTE: For compatibility, the
assemblers described in this manual
will process the AGOB instruction
~OS/360) in the same way they

process the AGO instruction.

Open
code

L6C -- THE ACTR INSTRUCTION

370

Purpose

The ACTR instruction allows you to set a conditional
assembly loop counter either within a macro definition
or in open code.

Each time the assembler processes an AIF or AGO branching
instruction in a macro definition or in open code, the
loop counter for that part of the program is decremented
by one. When the number of conditional assembly branches
taken reaches the value assigned by the ACTR instructicn
to the loop counter, the assembler exits from the macro
definition or stops processing statements in open code.

AGO • FORWARD

ANOP

AGO • BACK

ANOP

START o

AGO • FORWARD

ANOP

END

,,A"-'''\

~-:II/

By using the ACTR instruction, you
avoid excessive looping during
conditional assembly processing
at pre-assembly time.

Specifications

The format of the ACTR instruction
statement is given in the figure
to the right.

The ACTR instruction can appear
anywhere in open code or within
a macro definition.

A conditional assembly loop counter
is set (or reset) to the value of

~the arithmetic expression in the
operand field. The loop counter

•
has a local scope; its value is
decremented only by AGO and AIF
instructions and reassigned only
by ACTR instructions that appear
wi thin the same scope. Thus, the
nesting of macros has no effect
on the setting of individual loop
counters.

The assembler sets its own internal
loop counter both for open code
and for each macro definition, if
neither contains an ACTR instruction.
The assembler assigns a standard
value of 4096 to each of these
internal loop counters.

Open
Code

Name

Sequence
symbol or
blank

ACTR

ACTR

END

Operation

ACTR

MACRO
OUTER

ACTR

ACTR

ACTR

Operand

MACRO
INNER

•

o

Loop Counter
for Macro

Section L: The Conditional Assembly Language 371

LOOP COUNTER OPERATIONS: within
the local scope of a ~articular
loop counter (including the internal
counters run by the assembler) ,
the following occurs;

1. Each time an AGO or AIF (also
AGOB or AIFB) branch is executed,
the assembler checks the loop counter

. for zero or a negative value.

2. If the count is not zero or
negative, it is decremented by one.

~ 3. If the count is zero, before
decrementing, the assembler will
take one of two actions:

•

•
•

372

a. If it is processing
instructions in open code, the
assembler will process the
remainder of the instructIons in
the source module as comments.
Errors discovered in these
instructions during previous
passes are flagged.

b. If it is processing
instructions inside a macro
defini tion, the asse'l1bler
terminates the expansicn of that
macro definition and processes
the next sequential instruction
after the call1ng macro
instruction. If the macro
definition is called by an inner
macro instruction, the assembler
processes the next sequential
instruction after this inner
call, that is, continues
processing at the next outer
level of nested macros (for
levels of nesting see K6A).

NOTE: The assembler halves the
ACTR counter value when it encounters
serious syntax errors in conditional
assembly instructions.

MACRO MACRO

OUTER INNER

INNER

AIF (&A EO 5) .OUT AGO .OUT

MEND MEND

o

~ L6D -- THE ANOP INSTRUCTION

o

o

• •

Purpose

You can specify a sequence symbol
in the name field of an ANOP
instruction, and use the symbol
as a label for branching purposes.

The ANOP instruction performs no
operation itself, but you can use
it to branch to instructions that
already have symbols in their name
fields. For example, if you wanted
to branch to a SETA, SETB, or SETC
assignment instruction, which
requires a variable symbol in the
name field, you could insert a
labeled ANOP instruction immediately
before the assignment instruction.
By branching to the ANOP instruction
with an AIF or AGO instruction,
you would, in effect, be branching
to the assignment instruction.

Specifications

The format of the ANOP instruction
statement is given in the figure
to the right.

No operation is performed by an
ANOP instruction. Instead, if a
branch is taken to the ANOP
instruction, the asseIl'bler processes
the next sequential instruction.

ANOP

Name Operation Operand

A sequence ANOP Not requirtKi
symbol or
blank

Example

AGO .SEQ.

~SEQ ANOP

&A SETA 10

Section L: The Conditional Assembly Language 373

L7 -- In Open Code

L1A -- PURPOSE

conditional assembly instructions in open code allow yeu:

1. To select at pre-assembly time statements or groups
of statements from the open code portion of a source rredule
according to a pre-determined set of conditions. 'lhe
assembler further processes the selected statements at
assembly time.

2. To pass local variable information from open code through
parameters into macro definitions.

3. To control the comFutation in and generation of If,acre
definitions using global SE~ symbols.

4. To substitute values into the model statements in the
open code of a source module and control the sequence of
their generation.

L1B -- SPECIFICATIONS
Source Module

All the conditional assembly elements
and instructions can be specified
in open code •

•
Conditional assembly instructions
can appear anywhere in open code,
but they must appear after any

• source macro definitions that are
specified.

374

The global andloe.l deelaratio,w:
instructions (see L2llllUst app ... ·,
fir$t in open code; that i$, tit
must follow any so.uJ:c~ macx:<>,>
definitions. specified. andprecea.};
the beginning of the first c<>ntJ'<l1
section.

' .. ::;('\

END

O~I
I

o

o

The specifications for the
conditional assembly language
described in L1 through L6 also
apply in open code. However, the
following restrictions apply:

1. To attributes in open code: For
ordinary symbols, only references
to the type, length, scaling, and
integer attributes are allowed.

NOTE: References to the number
attribute have no meaning in
open code, because 'SYSLIST is
not allowed in open code and
symbolic parameters have no
meaning in open code.

2. To conditional assembly
expressions in open code, as shown
in the figure to the right.

Expression Must not contain

Arithmetic ~ &SYSLIST
(SETA)

~ Symbolic parameters

~ Any attribute references to symbolic parameters,
or &SYSLIST, &SYSECT, &SYSNDX

Character ~ &SYSLIST,&SYSECT,&SYSNDX
(SETC)

~ Attribute references to &SYSLIST, &SYSECT,
& SYSNDX, or to symbolic parameters

• Symbolic parameters

Logical • Arithmetic expressions with the items listed above
(SETB) • Character expressions with the items listed above

Section L: The Conditional Assembly Language 375

376

purpose

The listing options allow you to
print the conditional assembly
statements in the sequence they
are processed. You can thus follow
the conditional assembly logic in
open code or in the code within
any macro definition.

Specifications

Conditional assembly statements
in the open code of a source module
or in a macro definition can be
printed in the program listings
in the order in which they are
processed, including iterations.
This must be requested by specifying
the desired options in the FARM
field of the EXEC statement for
the assembler program (job control
language), or by specifying the
options in fields set up by a program
that dynamically invokes the
assembler. The options are listed
in the figure to the right.

NOTE: For other listing options
see Ja.

Option

NOALOGIC

ALOGIC

NOMLOGIC

MLOGIC

Action

No conditional assembly statements in open code
are printed

All conditional assembly statements in open code
that are processed are printed, including iterations

No conditional assembly statements inside macro
definitions, called from your program, are printed.
NOTE: Conditional assembly statements in source
macro definitions are always printed along with the
rest of the code in a source module (assuming the
PRINT option LIST)

All conditional assembly statements inside macro
definitions, that are processed when you call the
macro, are printed, including iterations

~
") ~ ..

b Appendiz I: Character Codes

r------------T-----------------T---------T---------T-----------------1 I 8-Bi t I Character Set I I I I
I EBCDIC I Punch I I Hexa- I Printer I
I Code I Combination I Decimal I Decimal I Graphics I
.------------+-----------------+---------+---------+-----------------i 00000000 12,0,9,8,1 0 00

00000001 12,9,1 1 01
00000010 12,9,2 2 02
00000011 12,9,3 3 03
00000100 12,9,4 4 04
00000101 12,9,5 5 05
00000110 12,9,6 6 06
00000111 12,9,7 7 07
00001000 12,9,8 8 08
00001001 12,9,8,1 9 09
00001010 12,9,8,2 10 OA
00001011 12,9,8,3 11 OB
00001100 12,9,8,4 12 OC
00001101 12,9,8,5 13 OD
00001110 12,9,8,6 14 OE
00001111 12,9,8,7 15 OF
00010000 12,11,9,8,1 16 10
00010001 11,9,1 17 11
00010010 11,9,2 18 12
00010011 11,9,3 19 13

c
00010100 11,9,4 20 14
00010101 11,9,5 21 15
00010110 11,9,6 22 16
00010111 11,9,7 23 17
00011000 11,9,8 24 18
00011001 11,9,8,1 25 19
00011010 11,9,8,2 26 1A
00011011 11,9,8,3 27 lB
00011100 11,9,8,4 28 lC
00011101 11,9~8,5 29 ID
00011110 11,9,8,6 30 lE
00011111 11,9,8,7 31 IF
00100000 11,0,9,8,1 32 20
00100001 0,9,1 33 21
00100010 0,9,2 34 22
00100011 0,9,3 35 23
00100100 0,9,4 36 24
00100101 0,9,5 37 25
00100110 0,9,6 38 26
00100111 0,9,7 39 27
00101000 0,9,8 40 28
00101001 0,9,8,1 41 29
00101010 0,9,8,2 42 2A
00101011 0,9,8,3 43 2B
00101100 0,9,8,4 44 2C
00101101 0,9,8,5 4S 20
00101110 0,9,8,6 46 2E
00101111 0,9,8,7 47 2F
00110000 12,11,0,9,8,1 48 30
00110001 9,1 49 31

I 00110010 9,2 50 32 L ____________ ~ _________________ L_ ________ ~ _________ ~ _____ ---------__ -J

o
Append~x I: Character Codes 377

r------------T-----------------T---------T---------T------------------1
I 8-Bit I Character Set I I I I
I EBCDIC I Punch I I Hexa- I Printer I '
I Code I combination I Decimal I Decimal I Graphics I
~------------+-----------------+---------+---------+-----------------~

00110011 9,3 51 33 I
00110100 9,4 52 34 I
00110101 9,5 53 35 I
00110110 9,6 54 36 I
00110111 9,7 55 31 I
00,"11000 9,8 56 38 I
00111001 9,8,1 57 39 I
00111010 9,8,2 58 3A I
00111011 9,8,3 59 3B I
00111100 9,8,4 60 3C I
00111101 9,8,5 61 3D I
00111110 9,8,6 62 3E I
00111111 9,8,7 63 3F I
01000000 64 40 blank I
01000001 12,0,9,1 65 41 I
01000010 12,0,9,2 66 42 I
01000011 12,0,9,3 61 43 I
01000100 12,0,9,4 68 44 I
01000101 12,0,9,5 69 45 I
01000110 12,0,9,6 70 46 I
01000111 12,0,9,7 71 47 I
01001000 12,0,9,8 72 48 I
01001001 12,8,1 13 49 i
01001010 12,8,2 74 4A !
01001011 12,8,3 75 4B • (pElriod) I
01001100 12,8,4 76 4C < I
01001101 12,8,5 77 40 (I
01001110 12,8,6 78 4E + I
01001111 12,8,7 79 4F I
01010000 12 80 50 & I
01010001 12,11,9,1 81 51
01010010 12,11,9,2 82 52
01010011 12,11,9,3 83 53
01010100 12,11,9,4 84 54
01010101 12,11,9,5 85 55
01010110 12,11,9,6 86 56
01010111 12,11,9.7 87 57
01011000 12,11~9,8 88 58
01011001 11,8,1 89 59
01011010 11,8,2 90 5A
01011011 11,8,3 91 5B $
01011100 11,8,4 92 5C •
01011101 11,8,5 93 50
01011110 11,8,6 94 5E
01011111 11,8,7 95 SF
01100000 11 96 60
01100001 0,1 91 61 t /
01100010 11,0,9,2 98 62 I
01100011 11,0,9,3 99 63 I
01100100 11,0,9,4 100 64 ~I
01100101 11,0,9,5 101 65 I
01100110 11_0~9_6 102 66 I
01100111 11,0,9,7 103 67 I
01101000 11,0,9,8 104 68 I
01101001 0,8,1 105 69 I
01101010 12,11 106 6A I
01101011 0,8,,3 107 6B I, (comma) I ------------i------___________ i _________ i _________ i _________________ ~

378

o ,------------T-----------------T---------T---------T-----------------,
I 8-Bit I character Set I I I I

EBCDIC I Punch I I Hexa- f Printer I
Code I Combination I Decimal I Decimal I Graphics I

.------------+-----------------+---------+---------+-----------------i 01101100 0,8,4 108 I 6C ~
01101101 0,8,5 109 I 60
01101110 0,8,6 110 I 6E
01101111 0,8,7 111 I 6F
01110000 12,11,0 112 I 70
01110001 12,11,0,9,1 113 L 71
01110010 12,11,0,9,2 114 72
01110011 12,11,0,9,3 115 73
01110100 12,11,0,9,4 116 74
01110101 12,11,0,9,5 117 75
01110110 12,11,0,9,6 118 76
01110111 12,11,0,9,1 119 77
01111000 12,11,0,9,8 120 78
01111001 8,1' 121 79
01111010 8,2 122 7A
01111011 8,3 123 7B #
01111100 8,4 124 7C a
01111101 8,5 125 70 ' (apostrophe)
01111110 8,6 126 7E =
01111111 8,7 127 7F
10000000 12,0,8,1 128 80
10000001 12,0,1 129 81
10000010 12,0,2 130 82
10000011 12,0,3 131 83
10000100 12,0,4 132 84
10000101 12,0,5 133 85
10000110 12,0,6 134 86

c 10000111 12,0,7 135 87
10001000 12,0,8 136 88
10001001 12,0,9 137 89
10001010 12,0,8,2 138 8A
10001011 12,0,8,3 139 8B
10001100 12,0,8,4 140 8C
10001101 12,0,8,5 141 80
10001110 12,0,8,6 142 8E
10001111 12,0,8,7 143 8F
10010000 12,11,8,1 144 90
10010001 12,11,1 145 91
10010010 12,11,2 146 92
10010011 12,11,3 147 93
10010100 12,11,4 ~48 94
10010101 12,11,5 149 95
10010110 12,11,6 150 96
10010111 12,11,1 151 91
10011000 12,11,8 152 98
10011001 12,11,9 153 99
10011010 12,11,8,2 154 9A
10011011 12,11,8,3 155 9B
10011100 12,11,8,4 156 9C
10011101 12,11,8,5 157 90
10011110 12,11,8,6 158 9E
10011111 12,11,8,1 159 9F
10100000 11,0,8,1 160 AO
10100001 11,0,1 161 Al
10100010 11,0,2 162 A2
10100011 11,0,3 163 A3
10100100 11,0,4 164 I A4

~------------~-----------------~---______ ~ _________ ~ _________________ J

o
Appendix' I: Character Codes 379

r------------T-----------------T---------T---------T-----------------,
I 8-Bit I Character Set I I I I
I EBCDIC I Punch I I Hexa- I Printer I
I code I Combination I Decimal 'I Decimal I Graphics I
r------------+-----------------+---------+---------+-----------------~ I 10100101 11,0,5 165 AS I
I 10100110 11,0,6 166 A6 I

10100111 11,0,7 167 A7 I
10101000 11,0,8 168 A8 I
10101001 11,0,9 169 A9
10101010 11,0,8,2 170 AA
10101011 11,0,8,3 171 AB
10101100 11,0,8,4 172 AC
10101101 11,0,8,5 173 AD
10101110 11,0,8,6 174 AE
10101111 11,0,8,7 175 AF
10110000 12,11,0,8,1 176 BO
10110001 12,11.0,1 177 Bl
10110010 12,11,0,2 178 B2
10110011 12,11,0,3 179 B3
10110100 12,11,0,4 180 B4
10110101 12,11,0,5 181 B5
10110110 12,11,0,6 182 B6
10110111 12,11,0,7 183 B7
10111000 12,11,0,8 184 B8
10111001 12,11,0,9 185 B9
10111010 12,11,0,8,2 186 BA
10111011 12,11,0,8,3 187 BB
10111100 12,11,0,8,4 188 BC
10111101 12,11,0,8,5 189 BO
10111110 12,11,0,8,6 190 BE
10111111 12,11,0,8,7 191 BF
11000000 12,0 192 CO
11000001 12,1 193 C1 A
11000010 12,2 194 C2 B
11000011 12,3 195 C3 C
11000100 12,4 196 C4 0
11000101 12,5 197 C5 E
11000110 12,6 198 C6 F
11000111 12,7 199 C7 G
11001000 12,8 200 C8 H
11001001 12,9 201 C9 I
11001010 12,0,9,8,2 202 CA
11001011 12,0,9,8,3 203 CB
11001100 12,0,9,8,4 204 CC
11001101 12,0,9,8,5 205 CO
11001110 12,0,9,8,6 206 CE
11001111 12,0,9,Q,7 207 CF
11010000 11,0 208 DO
11010001 11,1 209 01 J
11010010 11,2 210 02 K
11010011 11,3 211 03 L
11010100 11,4 212 04 M
11010101 11,5 213 05 N
11010110 11,6 214 06, 0
11010111 11,7 215 07 P
11011000 11,8 216 08 Q
11011001 11,9 217 09 R
11011010 12,11,9,8,2 218 OA
11011011 12,11,9,8,3 219 DB
11011100 12,11,9,8,4 220 DC
11011101 12,11,9,8,5 221 I DO I

------------~-----------______ ~ ________ ~L _________ ~ _________________ J,

380

r------------T----------------~--------~---------T-----------------,

o I 8-Bit I Character Set I I I I
I EBCDIC I Punch I I Hexa- I Printer I
I Code I Combination I Decimal I Decimal I Graphics I
~------------+_----------------+---------+---------+-----------------i I 11011110 12,11,9,8,6 222 I DE I
I 11011111 12,11,9,8,1 223 I DF I
r 11100000 0,8,2 224 I EO I
I 11100001 11,0,9,1 225 I El I
I 11100010 0,2 226 I E2 I S
I 11100011 0,3 221 I E3 I T
I 11100100 0,4 228 , E4 1 U
I 11100101 0,5 229 E5 V
I 11100110 0,6 230 E6 W
1 11100111 0,7 231 E1 X

11101000 0,8 232 E8 Y
11101001 0,9 233 E9 Z
11101010 11,0,9,8,2 234 EA
11101011 11,0,9,8,3 235 EB
11101100 11,0,9~8,4 236 EC
11101101 11,0,9,8,5 237 ED
11101110 11,0~9,8,6 238 EE
11101111 11,0,9,8,7 239 EF
11110000 0 240 FO 0
11110001 1 241 F1 1
11110010 2 242 F2 2
11110011 3 243 F3 3
11110100 4 244 F4 4
11110101 5 245 F5 5
11110110 6 246 F6 6
11110111 1 241 F1 1
11111000 8 248 F8 8
11111001 9 249 F9 9

o 11111010 12,11,0,9,8.2 250 FA
11111011 12,11,0,9,8,3 251 FB
11111100 12,11,0,9,8,4 252 FC
11111101 12,11,0,9,8,5 253 FO
11111110 12,11,0,9,8,6 254 FE
11111111 12,11,0,9,8.1 255 FF L ____________ ~ _________________ ~ _________ ~ _________ ~ ________________ -J

Special Gra~ic Characters

C Cent Sign * Asterisk > Greater-than Sign
Period, Decimal Point) Right Parenthesis ? Question Mark

< Less-than Sign ; Semicolon : Colon
(Left Parenthesis -, Logical NOT , Number Sign

+ Plus Sign - Minus Sign, Hyphen @ At Sign

I Vertical Bor, Logical OR / Slash I Prime, Apostrophe
& Ampersand ' Comma = Equal Sign
I Exclamation Paint % Percent II Quototion Mark

$ Dollar Sign - Underscore

Bit Pattern Hole Pattem
Examples Type Bit Positions

I 01 234567 Zone Punches Digit Punches

PF Control Character 00 00 0100 12 -9 - 4
% Special Graphic 01 101100 0-8-4

R Upper Case 11 01 1001 11 - 9
a Lower Case 10000001 12 -0 - 1

o
Control Character, 00 11 0000 12 - 11 - 0 -9 - 8 - 1

I
function not yet I
assigned I

Appendix I~ Character Codes 381

o
This page left blank intentionally.

Q

Appendix II: Hexadecimal-Decimal Conversion Table

The table in this appendix provides for direct conversion of decimal and hexadecimal
numbers in these ranges:

r-------------~---------------1 I Hexadecimal I Decimal I
~--------------+---------------i I 000 to FFF I 0000 to 4095 I L ______________ L-______________ J

Decimal numbers (0000-4095) are given within the 5-part table. The first two characters
(high-order) of hexadecimal numbers (OOO-FFF) are given in the lefthand column of the
table; the third character (x) is arranged across the top of each part of the table.

To find the decimal equivalent of the hexadecimal number OC9, look for OC in the left
colum, and across that row under the column for x = 9. The decimal number is 0201.

To convert from decimal to hexadecimal, look up the decimal number within the table
and read the hexadecimal number by a combination of the hex characters in the left
column, and the value ~or x at the top of the column containing the decimal number. For
example, the decimal number 123 has the hexadecimal equivalent of 07B; the decimal
number 1478 has the hexadecimal equivalent of 5C6.

For numbers outside the range of the table, add the following values to the table

r--------------T-----------,
I Hexadecimal I Decimal I
~--------------+-----------~

1000 4096
2000 8192
3000 12288
4000 16384
5000 20480
6000 24576
7000 28672
8000 32768
9000 36864
AOOO 40960
BOOO 45056
COOO 49152
0000 53248
EOOO 57344
FOOO 61440 ______________ ~ ___________ J

Appendix II: Hexadecimal-Decimal Conversion Table 383

x = 0 1 2 3 " 5

OOx 0000 0001 0002 0003 000" 0005
01x 0016 0017 0018 0019 0020 0021
02x 0032 0033 003f1 0035 0036 0037
03x 00"8 00169 0050 0051 0052 0053

Ollx 0064 0065 0066 0067 0068 0069
05x 0080 0081 0082 0083 008" 0085
06x 0096 0097 0098 0099 0100 0101
07x 0112 0113 011' 0115 0116 0117

08x 0128 0129 0130 0131 0132 0133
09x 0144 0145 0146 0147 0148 011J9
OAx 0160 0161 0162 0163 0161t 0165
OBx 0176 0177 0178 0179 0180 0181

OCx 0192 0193 019. 0195 0196 0197
ODx 0208 0209 0210 0211 0212 0213
OEx 022" 0225 0226 0227 0228 0229
OFx 0240 02'" 0242 0243 02"" 02"5

lOx 0256 0257 0258 0259 0260 0261
llx 0272 0273 027" 0275 0276 0277
12x 0288 0289 0290 0291 0292 0293
13x 03011 0305 0306 0307 0308 0309

14x 0320 0321 0322 0323 032. 0325
15x 0336 0337 0338 0339 0340 03111
16x 0352 0353 035" 0355 0356 0357
17x 0368 0369 0370 0371 0312 0373

18x 038" 0385 0386 0387 0388 0389
19x 0400 0401 0402 0403 040" 0405
lAx 0"'6 0"17 0"'8 01l1!' 0420 0421
lax 0 .. 32 0433 043. 01t35 01t36 0437

lCx 0""8 0449 0450 0451 01152 0453
lDx 0"611 0465 0466 0467 0"68 0469
lEx 01680 0481 0482 0"83 0484 0485
lFx 0496 0497 0498 01699 0500 0501

20x 0512 0513 051. 0515 0516 0517
21x 0528 0529 0530 0531 0532 0533
22x 05 05115 0546 05117 05.8 05119
23x 0560 0561 0562 0563 05" 0565

211x 0576 0577 0578 0579 0580 0581
25x 0592 0593 059_ 0595 0596 0597
26x 0608 0609 0610 0611 0612 0613
27x 06211 0625 0626 0627 0628 0629

28x OUO OUl 06412 06U 06 06415
29x 0656 0657 0658 0659 0660 0661
2Ax 0672 0673 067. 0675 0676 0677
2ax 0688 0689 0690 0691 0692 0693

2Cx 070. 0705 0706 0707 0108 0709
2Dx 0720 0721 0722 0723 072. 0725
2Ex 0736 0737 0731 0139 07110 07111
2Px 0752 0753 075. 0755 0756 0757

30x 0768 0769 0770 0711 0772 0773
31x 07811 0785 0786 0787 0788 0789
32x 0800 0801 0802 0803 080" 0805
33x 0816 0811 0818 0819 0820 0821

311x 0832 0833 083_ 0835 0836 0837
35x 08118 08119 0850 0851 0852 0853
36x 08641 086S 0866 0867 0868 0869
37x 0880 0881 0882 0883 08811 0885

38x 0896 0891 0898 0899 0900 0901
39x 0'12 0913 0"11 0915 0916 0917
3Ax 0928 0929 0930 0931 0932 0933
3ax 09 .. 09115 09116 09.., 09 .. 09119

3ex 0960 0961 0962 0963 09611 0965
3Dx on6 0977 0"1 0979 0980 0981
3zx 0992 0993 09" 0995 0996 0997
3Px 1008 1009 1010 1011 1012 1013

384

6 7 8 9 A

0006 0007 0008 0009 0010
0022 0023 002" 0025 0026
0038 0039 00110 00111 00112
005. 0055 0056 0057 0058

0070 0071 0072 0073 007.
0086 0087 0088 0089 0090
0102 0103 010' 0105 0106
0118 0119 0120 0121 0122

01311 0135 0136 0137 0138
0150 0151 0152 0153 01511
0166 0167 0168 0169 0170
0182 0183 018" 0185 0186

0198 0199 0200 0201 0202
02111 0215 0216 0217 0218
0230 0231 0232 0233 023"
0246 0247 0248 02169 0250

0262 0263 026" 0265 0266
0278 0279 0280 0281 0282
0294 0295 0296 0297 0298
0310 0311 0312 0313 0314

0326 0327 0328 0329 0330
03"2 0343 03"4 03ft5 03"6
0358 0359 0360 0361 0362
0374 0375 0376 0377 0378

0390 0391 0392 0393 03911
0406 0.07 0408 0409 0410
0422 01123 011211 01125 01t26
0438 01139 0 0 01141 0442

0454 0.55 0456 0457 0"51
0"70 01171 " .. 72 01113 047.
0486 0487 0488 0489 0"90
0502 0503 0504 0505 0506

0518 0519 0520 0521 0522
053. 0535 0536 0537 0538
0550 0551 0552 0553 0554
0566 0567 0568 0569 0570

0582 0583 05811 0585 0586
0598 0599 0600 0601 0602
0614 0615 0616 0617 0618
0630 0631 0632 0633 063_

06116 06.., 0648 06'" 0650
0662 0663 06611 0665 0666
0678 0679 0680 0681 0682
069" 0695 Oi96 0697 0698

0710 0711 0712 0713 07111
0726 0721 0728 0729 0730
07"2 07"3 07"- 07fl5 01116
0758 0159 0760 0761 0762

077. 0715 0776 0777 0778
0790 0791 0792 0793 0"4
0806 0807 0808 0809 0810
0822 0823 082' 0825 0826

0831 0839 08'0 0 ... , 08"2
08511 0855 0856 0857 0858
0870 0871 0812 0873 087.
0886 0887 0888 0889 0890

0902 0903 0'0' 0905 0906
0918 0919 0'20 0921 0922
09311 0935 0'36 0931 0938
0950 0951 0'52 0953 09S'

0966 0967 0"8 09" 0970
0982 0983 0'" 0985 0986
0991 0999 1000 1001 1002
10n 1015 1016 1017 1011

a C D

0011 0012 0013
0027 0028 0029
00"3 00"" 00115
0059 0060 0061

0075 0076 0077
0091 0092 0093
0107 0108 0109
0123 012" 0125

0139 0140 0141
0155 0156 0157
0171 0172 0173
0187 0188 0189

0203 02011 0205
0219 0220 0221
0235 0236 0237
0251 0252 0253

0267 0268 0269
0283 0284 0285
0299 0300 0301
0315 0316 0317

0331 0332 0333
0347 03118 03"9
0363 0364 0365
0379 0380 0381

0395 0396 0397
0411 0412 0413
0427 0428 0"29
01643 044" 01t45 .
0459 0"60 0461
0475 0476 0477
0"91 0492 0493
0507 0508 0509

0523 0524 0525
0539 05110 05111
0555 0556 0557
0571 0572 0573

0587 0588 0589
0603 060. 0605
0619 0620 0621
0635 0636 0637

0651 0652 0653
0667 0668 0669
0683 06811 0685
0699 0700 0701

0715 0716 0717
0731 0732 0133
07.., 07118 07119
0763 07641 0765

0719 0780 0181
0795 0796 0791
0811 0812 0813
0827 0828 0829

08113 08 0845
0859 0860 0861
0875 0876 0877
0891 0892 0893

0907 0908 0909
0923 092" 0925
0939 09"0 0941
0955 0956 0957

0911 0972 0973
0987 0988 0989
1003 100" 1005
1019 1020 1021

E

00116
0030
00"6
0062

0078
.00911
0110
0126

0142
0158
017"
0190

0206
0222
0238
025"

0210
0286
0302
0318

0334
0350
0366
0382

0398
0414
0430
0"46

0"62
0478
0494
0510

0526
0542
05!:18
0514

0590
0606
0622
0638

06S11
0670
0686
0702

0718
0734
0750
0766

0782
0798
0814
0830

081+6
0862
0878
089.

0910
0926
09112
0958

09711
0990
1006
1022

F

001 !:I
0031
00«17
000:

007'1
009~
0111
0127

0143
01S}
0175
0191

0207
0223
0239
0255

0271
0287
0303
0319

0335
0351
0367
0383

0399
04'5
01131
0447

046~
047~
04~5
0511

0527
0543
0559
0575

0591
0607
0623
0639

0655
0671
0681
0703

0719
0735
0751
0767

0783
0199
0815
0831

08117
0863
0879
0895

0911
0921
09113
0959

0975
0991
1007
1023

!' .. ~.
I '
\

~f

o x • 0 1 2 3 • 5 6 1 8 9 A B C 0 E F

'Ox 102' 1025 1026 1021 1028 1029 1030 1031 1032 1033 103. 1035 1036 1037 1038 1039
41x 10.0 1 Oil 1 10112 10U 10 .. lOllS lOU 10U 10 ... 10., 1050 1051 1052 1053 10511 1055
42x 1056 1057 1058 1059 1060 1061 1062 1063 1 o ill 1065 1066 1067 1068 1069 1070 1071
43x 1012 1013 101. 1075 1016 1017 1018 1079 1080 1081 1082 1083 10111 10.,5 10.,6 1087

'"x 1088 1089 1090 1091 1092 1093 10,. 1095 1096 1097 1098 1099 1100 1101 1102 1103
45x 110 .. 1105 1106 1101 1108 1109 1110 1111 1112 1113 11 ". 1115 1116 1117 1118 1119
46x 1120 1121 1122 1123 112" 1125 1126 1121 1128 1129 1130 1131 1132 1133 113 .. 1135
"x 1136 1137 1138 1139 11.0 "., 11.2 11 III 114_ lUS 111lt 11117 11_8 111lt 1150 1151

Ux 1152 1153 115. 1155 1156 1151 1158 , .. 59 1160 1161 1162 1163 116 .. 1165 1166 1167
"X 1168 1169 1170 1171 1172 1173 117 .. 1175 1176 1177 1178 1179 1180 1181 1182 1183
IlAx ,,.11 1185 1186 1187 1188 1189 1190 ,,,, 1192 1193 119" 1195 1196 1191 1198 1199
4.x 1200 1201 1202 1203 120 .. 1205 1206 1201 1208 1209 1210 1211 1212 1213 12". 1215

4ex 1216 1211 1218 1219 1220 1221 1222 1223 12211 1225 1226 1227 1228 1229 1230 1231
laDx 1232 1233 123 .. 1235 1236 1237 1238 1239 12110 12111 12112 1243 12 12115 12166 12167
4ax 12la8 12., 1250 1251 1252 1253 125. 1255 1256 1257 1258 1259 1260 1261 1262 1263
'f'x 126 .. 1265 1266 1267 1268 1269 1210 1211 1212 127.3 121. 1215 1216 1211 1218 1219

SOx 1280 1281 1282 1283 12'- 1285 1286 1281 1288 1289 1290 1291 1292 1293 ,29" 1295
51x 1296 1291 1298 1299 1300 1301 1302 1303 13011 1305 1306 1301 1308 1309 1310 1311
52x 1312 1313 131 .. 1315 1316 1311 1318 1319 1320 1321 1322 1323 132" 1325 1326 1321
53x 1328 1329 1330 1331 1332 1333 133. 1335 1336 1337 1338 1339 13 .. 0 13., 13112 13163

5lax 13 .. 13la5 13116 13U 131lS 13., 1350 1351 1352 1353 13511 1355 1356 1351 1358 1359
55x 1360 1361 1362 1363 1361a 1365 1366 1361 1368 1369 1370 1311 1372 1373 137 .. 1375
56x 1316 1311 1378 1379 1380 1381 1382 1383 13811 1385 1386 1387 1388 1389 1390' 1391
'57x 1392 1393 1391a 1395 1396 1397 1398 1399 1400 1401 1402 llt03 "0" 11105 11106 , .. 07

58x ,.08 "09 ,..,0 ,.,1 ,.,2 ,.,3 ,..,. 11"5 1416 ,..,7 ,..18 ,.19 11120 11121 '''22 '''23
5" ,.2" ,..25 '''26 11127 ,.28 ,..29 1UO "31 11132 11133 1113 .. , .. 35 , .. 36 1ft37 11638 , .. 39
SAx ' .. 0

, .. , '''2 1l1li3 , ,..5 , ... 6 ,.U lU8 1ft., ,.50 ,.51 1452 11653 , .. 5 .. '''55
5.x 1U6 ,.51 ,.58 1U9 '''0 11161 '''2 ,.63 146 .. '''5 ,.66 11161 '''8 1ft 69 ,.70 , .. 71

sex 1'72 ,.,3 '''" lla15 ,.,6 ,." ,.78 1479 lUO 1U1 1482 11183 1UII 1U5 1U6 1487
5Dx 1'18 "" 11.90 ,." ,.92 ,.,3 14" ,.,5 ,.,6 ,.,7 lU8 ,.,9 1500 1501 1502 1503
5 .. 1501a 1505 1506 1507 1508 1509 1510 1511 1512 1513 15111 1515 1516 1517 1518 1519
5rx 1520 1521 1522 1523 152' 1525 1526 1521 1528 1529 1530 1531 1532 1533 15311 1535

o
60x 1536 1537 1538 1539 15160 15 .. , 15112 15 .. 3 15 15 .. 5 15166 15 .. 7 1548 1549 1550 1 ~~1
61x 1552 1553 1.55 .. 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1561
62x 1568 1569 1570 1571 1572 1513 15711 1515 1576 1517 1578 1579 1580 1581 1582 1583
63x 15811 1585 1586 1587 1588 1589 1590 1591 1592 1593 159 .. 1595 1596 1597 1598 1599

611x 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1611l 1615
65x 1616 1617 1618 1619 1620 1621 1622 1623 16211 1625 1626 1627 1628 1629 1630 1631
66x 1632 1633 1634 1635 1636 1631 1638 1639 16 .. 0 16 .. , 1642 16113 1644 1645 1646 1647
67x 1648 16119 1650 1651 1652 1653 165 .. 1655 1656 1657 1658 1659 1660 1661 1662 1663

68x 1664 1665 1666 1661 1668 1669 1670 1671 1612 1673 16116 1675 1616 1671 1678 1679
69x 1680 1681 1682 1683 168 .. 1685 1686 1687 1688 1689 1690 1691 1692 1693 1691l 1695
6Ax 1696 1697 1698 1699 1700 1701 1702 1703 170 .. 1705 1706 1707 1708 1709 1710 1111
6Bx 1712 1713 171 .. 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1126 1127

6ex 1728 1129 1730 1731 1732 1733 17311 1735 1736 1737 1738 1739 17 .. 0 11 .. , 1142 1743
60x 17 .. 4 17 .. 5 17 .. 6 1741 111lS 1749 1750 1751 1752 1753 175 .. 1755 1756 1151 1758 1759
6Ex 1760 1761 1762 1763 17'" 1765 1766 1767 1768 1769 1770 1171 1772 1713 11711 1115
6Fx 1776 1711 1778 1179 1780 1781 1782 1183 178" 1785 1786 1787 1788 1789 1790 1791

70x 1792 1793 1794 1195 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
71x 1808 1809 1810 1811 1812 1813 18111 1815 1816 1817 1818 1819 1820 1821 1822 1823
72'x 182" 1825 1826 1821 1828 1829 1830 1831 1832 1833 183 .. 1835 1836 1837 1838 1839
73x 1840 18111 18"2 18113 184 .. 18 .. 5 18 .. 6 1847 1848 18 .. 9 1850 1851 1852 1853 1854 Hl55

7"x 1856 1851 1858 1859 1860 1861 1862 1863 18611 1865 1866 1861 1868 1869 1870 1871
75x 1812 1873 187 .. 1815 1876 1877 1878 1879 1880 1881 1882 1883 1881l 1885 18t16 1887
76x 1888 1889 1890 1891 1892 1893 18911 1895 1896 1897 1898 1899 1900 1901 1902 1903
77x 190 .. 1905 1906 1907 1908 1909 1910 1911 1912 1913 191 .. 1915 1916 1911 1918 1919

78x 1920 1921 1t22 1923 19211 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
19x 1936 1937 1938 1939 " .. 0 19 .. , "'2 " .. 3 19 19 .. 5 19 .. 6 " .. 7 19 .. 8 19 .. 9 1950 1951
lAx 1952 1953 195 .. 1955 1956 1957 1958 "59 1960 1961 1962 1963 1964 1965 1966 1967
7Bx 1968 1969 1970 1971 1972 1913 197 .. 1975 1916 1917 1918 1979 1980 1981 1982 1983

7Cx 198 .. 1985 1986 1981 1988 1989 1990 199T 1992 1993 199" 1995 1996 1997 1998 1999
10x 2000 2001 2002 2003 20011 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7Ex 2016 2011 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7Fx 2032 2033 203" 2035 2036 2037 2038 2039 20 .. 0 2041 20 .. 2 20"3 20 20 .. 5 2046 20167

'0

Appendix II: Hexadecimal-Decimal Conversion Table 385~

x •
i) 1 2 3 4 5 6 7 I 9 A B C 0 E F

lOx 2048 20119 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
81x 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 20711 2075 2076 2077 2078 2079
82x 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
83x 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

84x 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
85x 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
86x 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
87x 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

88x 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
89x 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8Ax 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
88x 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

8Cx 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
8Dx 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
SEx 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8Fx 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

90x 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
91x 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
92x 2336 2331 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 23 .. 9 2350 2351
93x 2352 2353 2354 2355 2356 2351 2358 2359 2360 2361 2362 2363 2364 2365 2366 2361

9"x 2368 2369 2370 2311 2312 2373 2314 2315 2316 2377 2378 2379 2380 2381 2382 2383
95x 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
96x 2400 2et01 2et02 2"03 2et04 2405 2406 2407 2 .. 08 2409 2410 2411 2et12 2413 2414 2415
97x 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 ,
98x 21t32 21t33 2434 2435 21136 2437 2438 2439 2440 2441 2442 2443 2444 2 .. 45 2446 2 .. 47
99x 2 8 24'" 2"50 2451 2452 2453 2454 2 .. 55 2456 2et57 2458 2459 2460 2461 2462 2463
9Ax 2"''' 21ti5 2 .. 66 2461 2468 2469 2410 2471 21672 2473 247et 2et75 2 .. 76 2477 2et78 2 .. 19
9Bx 2480 2et81 2482 2483 2"8" 2485 2486 2481 2488 2489 2 .. 90 2491 2492 2493 2494 2 .. 95

9Cx 2U6 2497 2"98 21199 2500 2501 2502 2503 250et 2505 2506 2501 2508 2509 2510 2511
90x 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 252 .. 2525 2526 2521
91x 2528 2529 2530 2531 2532 2533 253" 2535 2536 2537 2538 2539 25etO 25 .. , 25"2 25"3
9Fx 25 25"5 25'" 25ct1 2548 25,., 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

AOx 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
Alx 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A2x 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A3x 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623

A4x 262" 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A5x 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A6x 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2b71
A7x 2672 2673 267 .. 2675 2676 2677 2678 2679 2680 2681 2682 2683 26R4 2685 2686 2687

A8x 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A9x 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 271 .. 2715 2716 2717 2718 2719
AAx 2720 2721 2722 2723 272et 2725 2726 2727 2728 2729 2730 2731 2732 2733 273 .. 2735
ASx 2736 2737 2738 2739 2740 2741 2742 2743 2744 27 .. 5 2746 2747 2748 2749 2750 2751

ACx 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 276 1' "765 2766 2767
ADx 2768 2769 2770 2711 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEx 2784 2785 2786 2787 2788 2789 2790 2191 2792 2793 2794 2795 2796 2797 2798 2799
AFx 2800 2801 2802 2803 2804 -2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

80x 2816 281 7 2818 2819 2820 2821 2822 2823 28~4 2825 2826 2827 2828 2829 2830 2831
Blx 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
82x 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
83x 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2814 2875 2876 2877 2878 2&79

84x 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
85x 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B6x 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
B7x 2928 2929 2930 2931 2932 2933 2934 2935 29'36 2937 2938 2939 2940 2941 2942 2943

88x 29.4 2945 2946 2947 29", 29'" 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B9x 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2912 2973 29711 2975
SAx 2976 2977 2918 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 B8x 2992 2993 29"94 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

8Cx 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 302~ 3023
8Dx 3024 3025 3026 3027 3028 3029 3030 3031 • 3032 3033 303et 3035 3036 3037 3038 3039
BEx 3040 30111 30112 30U 3044 30"5 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
8Fx 3056 3057 3058 3059 3060 3061 3062 3063 306. 3065 3066 3067 3068 3069 3070 3071

\', \ C
-~

}j

386

x ... 0 1 2 3 II 5 6 7 8 9 A 8 C D E F

COx 3072 3073 30711 3075 3076 J077 3078 3079 3080 3081 3082 3083 3084 ,)110;) J086 3087
Clx 3088 3089 3090 3091 3092 3093 30911 3095 3096 3097 3098 3099 3100 3101 3102 3103
C2x 31011 3105 3106 3107 3108 3109 3110 3111 3112 3113 31111 3115 3116 3117 3118 3119
C3x 3120 3121 3122 3123 31211 3125 3126 3127 3128 3129 3130 3131 3132 3133 31311 3135

Cllx 3136 3137 3138 3139 31160 31161 31112 31113 311111 31115 31116 31117 3148 31119 3150 3151
C5x 'U52 3153 31511 3155 3156 3157 3158 3159 3160 3161 3162 3163 31611 3165 3166 3167
C6x 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C7x 31811 3185 3186 3187 3188 3189 3190 3191 3192 3193 31911 3195 3196 3197 3198 3199

C8x 3200 3201 3202 3203 32011 3205 3206 3207 3208 3209 3210 3211 3212 3213 32111 3215
C9x 3216 3217 3218 3219 3220 3221 3222~ 3223 32211 3225 3226 3227 3228 3229 3230 3231
CAx 3232 3233 32311 3235 3236 3237 3238 3239 3240 32111 32112 3243 32411 3245 32116 3247
CBx 3248 3249 3250 3251 3252 3253 32511 3255 3256 3257 3258 3259 3260 3261 3262 3263

CCx 32611 3265 3266 3267 3268 3269 3270 3271 3272 3213 32711 3275 3276 3277 3278 3279
CDx 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CEx 3296 3297 3298 3299 3300 3301 3302 3303 33~1I 3305 3306 3307 3308 3309 3310 3311
CFx 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 33211 3325 3326 3327

DOx 3328 3329 3330 3331 3332 3333 33311 3335 3336 3337 3338 3339 3340 3341 33112 33113
Dlx 3344 3345 33116 3347 33118 33119 3350 3351 3352 3353 33511 3355 3356 3357 3358 3359
D2x 3360 3361 3362 3363 33611 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
D3x 3376 3377 3378 3379 3380 3381 3382 3383 33811 3385 3386 3387 3388 3389 3390 3391

Dllx 3392 3393 33911 3395 3396 3397 3398 3399 31600 31101 31102 31603 31104 3405 31106 31107
D5x 3408 31109 31110 31111 31112 31113 3111 It 3lt15 3lt16 31117 31118 3lt19 3420 31t21 31122 31123
D6x 311~1I 31125 31126 3427 31128 3U9 31130 3lt31 31132 31133 311311 31135 31t36 3437 31138 31139
D7x 34110 31141 311112 311113 3111111 3U5 316116 316167 3U8 311qg 31150 31651 31652 31153 311511 3455

D8x 3456 31157 31158 31159 3lt60 31161 3462 31163 3lt611 31165 31t66 3U7 31t68 3469 3470 3471
D9x 31672 3413 3474 31675 3lt76 3477 3.78 3lt79 31680 31181 31182 31t83 31184 3485 31186 31187
DAx 31188 3489 31190 3491 3492 31193 311911 31195 31196 31t97 31198 31199 3500 3501 3502 3503
DBx 35011 3505 3506 3507 3508 3509 3510 3511 3512 3513 35111 3515 3516 3517 3518 3519

DCx 3520 3521 3522 3523 35211 3525 3526 3527 3528 3529 3530 3531 3532 3533 35311 3535
DDx 3536 3537 3538 3539 35110 35., 35112 35113 351111 35115 35U 351t1 35118 35qg 3550 3551
DEx 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 35611 3565 3566 3567
DFx 3568 3569 3570 3571 3572 3573 35711 3575 3576 3577 3578 3579 3580 3581 35112 3583

o EOx 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 35911 3595 3596 3597 3598 3599
Elx 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E2x 3616 3617 3618 3619 3620 3621 3622 3623 36211 3625 3626 3627 3628 3629 3630 3631
E3x 3632 3633 3634 3635 3636 3637 3638 3639 36110 3641 36112 36113 361111 3645 3646 3647

Ellx 36118 36119 3650 31)51 3652 3653 36511 3655 3656 3657 3658 3659 3660 3661 3662 3663
E5x 36611 3665 3666 3667 3668 3669 3670 3671 3672 3673 36711 3675 3676 3677 3678 3679
E6x 3680 3681 3682 3683 36811 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E7x 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 370Q 1710 3711

18x 3712 3713 37111 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 31:." 3727
19x 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 37110 3741 3742 3743
EAx 37114 3745 3746 37117 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
IBx 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3171 3772 3773 37711 3775

ECx 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3191
EDx 3792 3793 37911 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3b07
Elx 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EFx 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3b39

FOx 38110 38111 3842 38113 3844 3845 3846 38117 3848 3849 3850 3851 3852 3853 3854 3855
F1x 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3861 3868 3869 3870 3b11
F2x 3872 3873 3874 3815 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 38116 3li87
F3x 3888 3889 3890 3891 3892 3893 38911 3895 3896 3697 3898 3899 3900 3901 3902 3903

Fllx 3904 3905 3906 3907 3908 3909 3910 39" 3912 3913 39111 3915 3916 3917 3918 3919
r5x 3920 3921 3922 3923 3924 3925 3926 n27 3928 3929 3930 3931 3932 3933 3934 3935
F6x 3936 3937 3938 3939 3940 3941 3942 3943 39411 39115 3946 39117 3948 3949 3950 3951
F7x 3952 3953 3951t 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967

F8x 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 39b2 3983
F9x 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FAx 4000 1t00l 4002 1t003 40011 11005 11006 11007 4008 16009 11010 11011 4012 11013 40111 4015
FBx 4016 4017 11018 4019 4020 4021 11022 '023 110211 11025 11026 11027 4028 11029 11030 4031

FCx 11032 4033 40311 4035 4036 1t037 11038 11039 4040 110111 11042 11043 40411 4045 4046 4047
FDx 11048 11049 4050 11051 11052 4053 11054 11055 11056 11057 4058 '059 '060 4061 4062 4063
FEx 11064 '065 4066 11067 4068 1t069 11070 11071 It 072 /f073 4074 11075 4076 11077 4078 4079
Frx 4080 4081 11082 4083 4084 4085 11086 4087 11088 /f089 11090 11091 11092 11093 4094 4095

o
Appendix II: Hexadecimal-Decimal Conversion Table 387

o
This page left blank intentionally.

o

b Appendix III: Machine Instruction Format

ASSEMBLER OPERAND
BASIC MACHINE FORMAT FIELD FORMAT APPLICABLE INSTRUCTIONS

8 4 4 Rl,R2 All RR inst"ructions
Operation # except BCR,SPM,

Code Rl R2 and SVC

RR

8 4 4 Ml,R2 BCR
Operation

Code Ml R2

8 4 Rl SPM
Operation

Code Rl

8 8
Operation I SVC

Code I (See Notes 1,6,8,
and 9)

8 4 4 4 12 Rl,D2(X2,B2)
RX Operation Rl,D~(,B2) All RX instructions Code Rl X2 B2 02 Rl,S2(X2) except BC Rl,S2

8 4 4 4 12 Ml,D2(X2,B2)
Operation Ml,D2 (,B2)

Code Ml X2 B2 02 Ml,S2(X2) BC
Ml,S2

(See Notes 1,6,8,
and 9)

8 4 4 4 12
Operation Rl,R3,D2(B2) BXH,BXLE,CDS,CS,LM,SIGP,

Code Rl R3 B2 D2 Rl,R3',S2 STM,LCTL,STCTL

RS

8 4 4 4 12
Operation Rl,D2(B2) All shift instructions

Code Rl B2 02 Rl,S2

8 4 4 4 12 Rl,M3,D2(B2) ICM, STCM,CLM
Operation Rl,M3,S2

Code Rl M3 B2 02 (See Notes 1-3,7,
8,and 9)

Appendix III: Machine Instruction Format 389

390

ASSEMBLER OPERAND
BASIC MACHINE FORMAT FIELD FORMAT APPLICABLE INSTRUCTIONS

8 8 4 12 All SI instructions except
Operation D1(B1J,I2 those listed for the other

Code 12 B1 01 Sl,I2 SI format.

SI

8 4 12 01(B1) LPSW,SSM,TIO,TCH,TS
Operation Sl

Code B1 01 (See Notes 2,3,6,
7,8 and 10)

16 4 12 01(B1) SCK,STCK,STIDP,SIOF,STIDC,
Two-byte Sl SIO,HIO,HOV

S Operation SCKC,STCKC,SPT,STPT,PTLB,
Code B1 01 RRB

(See Notes 2, CLRIO,IPK,SPKA,SPX,STAP,
3, and 7) STPX

8 4 4 4 12 4 12 01(L1,Bl) ,D2(L2,B2) PACK,UNPK,MVO,AP,
Operation

L2 B1 Code Ll 01 B2 02
Sl(Ll),S2(L2) CP,DP,MP,SP,ZAP

SS

8 8 4 12 4 12 D1(L,Bl),02(B2) NC,OC,XC,CLC,MVC,MVN,
Operation MVZ,TR,TRT,ED,EOMK
Code L B1 01 B2 D2 Sl(L),S2

8 4 4 4 12 4 12 01(Ll,B1),02(B2),I3 SRP
Operation Sl(Ll),S2,I3
Code Ll 13 Bl 01 B2 02 Sl,S2,I3

(See Notes 2,3,5,6,
7 and 10)

Notes for Appendix III:

1. Rl, R2, and R3 are absolute expressions that specify general or floating-point reg­
isters. The general register numbers are 0 through 15; floating-point register num­
bers are 0, 2, 4, and 6.

2. 01 and 02 are absolute expressions that specify displacements. A value of 0 - 4095
may be specified.

3. B1 and B2 are absolute expressions that specify base registers. Register numbers are
o - 15.

4. X2 is an absolute expression that specifies an index register. Register numbers are
o - 15.

5. L, L1, and L2 are absolute expressions that specify field lengths. An L expression
can specify a value of 1 - 256. Ll and L2 expressions can specify a value of 1 -° 16 •
In all cases, the assembled value will be one less than the specified value.

6. I, 12, and 13 are absolute expressions that prov1de immediate data. The value of I
and 12 may be 0 - 255. The value of 13 may be 0 - 9.

7. Sl and S2 are absolute or re10catable expressions that specify an address.

8. RR, RS, and SI instruction fields that are blank under BASIC MACHINE FORMAT are not
examined during instruction execution. The fields are not written in the symbolic
operand, but are assembled as binary zeros.

9. Ml and M3 specify a 4-bit mask.

10. In IBM System/370 the SIO, HIO, HOV and SIOF operation codes occupy one byte and the
low order bit of the second byte. In all other systems the HIO and SIO operation
codes occupy only the first byte of the instruction.

o

o

o

Appendix IV, pages 391-406, has been
removed. The following manuals are
the definitive publications for
machine instructions:

IBM System/370 Principles of
Operation

IBM 4300 Processors Principles of
Operation for ECPS:VSE Mode

Page of GC33-40 1 0-5
As Updated 28 Dec 1981
By TNL GN20-9372

391-406

o

o

o

Appendix IV: Machine Instruction Mnemonic Codes

This appendix contains two tables of the mnemonic operation codes for all machine
instructions that can be represented in assembler language, including extended mnemonic
operation codes.

The first table is in alphabetic order by instruction. The second table is in numeric
order by operation code.

In the first table is indicated: both the mnemonic and machine operation codes, explicit
and implicit operand formats, program interruptions possible, and condition code set.

The column headings in the fir.st table and the information each colwnn provides follow:

Instruction: This column contains the name of the instruction associated with the
mnemonic operation code.

Mnemonic Operation Code: This column contains the mnemonic operation code for the
instruction. This is written in the operation field when coding the instruction.

Machine Operation Code: This column contains the hexadecimal equivalent of the actual
machine operation code. The operation code will apppear in this form in most storage
dumps and when displayed on the system control panel. For extended mnemonics, this
column also contains the mnemonic code of the instruction from which the extended
mnemonic is derived.

Operand Format: This column shows the symbolic format of the operand field in both
explicit and implicit form. For both forms, R1, R2, and R3 indicate general registers in
operand one, two, and three respectively. X2 indicates a general register used as an
index register in the second operand. Instructions which require an index register (X2)
but are not to be indexed are sho1ll.'D with a 0 replacing X2. L, L1, and L2 indicate
lengths for either operand, operand one, or operand two respectively. M1 and M3 indicate
a 4-bit mask in operands one and three respectively. I, 12, and 13 indicate immediate
data eight bits long (I and 12) or four bits long ~3).

FOr the explicit format, D1 and D2 indicate a displacement and B1 and B2 indicate a base
register for operands one and two.

FOr the implicit format, D1, B1, and D2, B2 are replaced by S1, and S2 which indicate a
storage address in operands one and two.

Type of Instruction: This column gives the basic machine format of the instruction (RR,
RX, SI, or SS). If an instruction is included in a special feature or is an extended
mnemonic, this is also indicated.

Program Interruptions possible: This column indicates the possible program interruptions
for this instruction. The abreviations used are: A - Addressing, S - Specification, Ov -
OVerflow, P - Protection, Op - Operation (if feature is not installed), and Other - other
interruptions which are listed. The type of overflow is indicated by: D - DeCimal, E -
Exponent, or F - Fixed Point.

Condition code set: The condition codes set as a result of this instruction are indicated
in this column. (See legend following the table.)

Appendix IV: Machine Instruction Mnemonic Operation Codes 391

Instruction Mnemonic Machine Operand Format
Operation Operation

Code Code Explicit Implicit

Add A 5A R I, 02(X2, B2) ar RI, 02(, B2) RI, S2(X2) or RI, S2
Add AR IA RI,R2
Add Decimal AP FA 01 (Ll, BI), 02(L2,B2) SI(Ll),S2(L2)or SI,S2
Add Ha I fword AH 4A R I, 02(X2, B2)or R 1,02(, B2) R I, S2(X2)or RI, S2
Add Logical AL 5E R I, 02(X2, B2)or R 1,02(, B2) RI, S2(X2)or RI, S2
-Add logicol ALR IE RI,R2

Add Normalized, Extended AXR 36 RI,R2
Add Normal ized, Long AO 6A R I, 02(X2, B2)or R 1,02(, B2) RI,S2(X2)or RI,S2
Add Normalized, Long ADR 2A RI,R2
Add Normalized, Short AE 7A R I, 02(X2, B2)or R 1,02(, B2) RI, S2(X2)or RI, S2
Add Normalized, Short AER 3A RI,R2

Add Unnormalized,Long AW 6E R I, 02(X2, B2)or R 1,02(, B2) RI, S2(X2)or RI, S2
Add Unnormalized, long AWR 2E RI,R2
Add Unnormalized,Short AU 7E R I, 02(X2, B2)or R 1,02(, B2) RI,S2(X2)or RI,S2
Add Unnormalized, Shart AUR 3E RI,R2

And Logical N 54 R I, 02(X2, B2)or R I, 02(, B2) RI,S2(X2)or RI,S2
And Logical NC D4 01 (L, BI), 02(B2) SI(L),S2 or SI,S2
And Logical NR 14 RI,R2
And Logical Immediate NI 94 01(BI),12 SI,I2

Branch and link BAl 45 RI,02(X2,B2)or RI,02(,B2) RI,S2(X2)or RI,S2
Branch and link BAlR 05 RI,R2
Branch and Save BAS 40 RI,02(X2,B2)or RI,02(,B2) Rl,S2(X2)or RI,S2
Branch and Save BASR CD RI,R2

Branch on Condition BC 47 MI,02(X2, B2)or MI ,02(, B2) MI,S2(X2)or MI,S2
Branch on Condition BCR 07 MI,R2
Branch on Count BCT 46 RI,02(X2,B2)or RI,02(,B2) RI,S2(X2)or RI,52
Branch on Count BCTR 06 RI,R2
Branch on Equal BE 47(8C 8) 02(X2, B2) or 02(, B2) S2(X2) or 52
Branch on Eq ual BER 07(8CR 8) R2

Branch on High BH 47(8C 2) 02(X2, B2) or 02(, B2) S2(X2) or S2
Branch on High BHR 07(BCR 2) R2
Branch on IndeX High BXH 86 RI, R3, 02(82) RI,R3,52
Branch on Index Low or Equal BXLE 87 RI, R3, 02(82) RI,R3,S2
Branch on Low BL 47(BC 4) 02(X2, B2) or 02(, B2) S2(X2) or S2
Branch on Low BLR 07(8CR 4) R2
Branch if Mixed BM 47(8C 4) 02(X2, B2) or 02(, B2) S2(X2) or 52
Branch if Mixed BMR 07(8CR 4) R2

Branch on Minus BM 47(8C 4) 02(X2,B2)or 02(,B2) S2(X2) or 52
Branch on Minus BMR 07(8CR 4) R2
Branch on Not Equal BNE 47(BC 7) 02(X2,B2)or 02(,B2) 52(X2) or 52
Branch on Not Equal BNER 07(BCR 7) R2
Branch on Not High BNH 47(8C 13) 02(X2, B2) or 02(, B2) S2(X2) or S2
Branch on Not High BNHR 07(BCR 13) R2
Branch on Not Low BNL 47(BC 11) 02(X2, B2) or 02(, B2) S2(X2) or 52
Branch on Not Low BNlR 07(8CR 11) R2
Branch if Not Mixed BNM 47(BC 111 02(X2,B2) or 02(,B2) 52(X21 or 52
Branch if Not Mixed BNMR 07(BCR 11) R2
Branch on Not Minus BNM 47(8C II) 02(X2, B2) or 02(, B2) 52(X2) or 52
Branch on Not Minus BNMR 07(8CR 11) R2

Branch if Not Ones BNO 47(8C 14) 02(X2, B2) or 02(, B2) S2(X2) or S2
Branch if Not Ones BNOR 07(BCR 14) R2
Branch on No Overflow BNO 47(BC 141 02(X2,B21 or 02(,B2) 52(X2) or 52
Branch on No Overflow BNOR 07(BCR 141 R2
Branch on Not Plus BNP 47(8C 13) 02(X2,B2)or 02(,B2) S2(X2) or S2
Branch on Not Plus BNPR 07(BCR 13) R2
Branch if Not Zeros BNZ 47(BC 7) 02(X2,B21 or 02(,B2) 52(X2) or 52
Branch if Not Zeros BNZR 07(BCR 7) R2
Branch on Not Zero BNZ 47(BC 7) 02(X2, B2) or 02(, B2) S2(X2) or S2
Branch on Not Zero BNZR 07(BCR 7) R2
Branch if Ones BO 47(8C 1) 02(X2, B2) or 02(, B2) 52(X2) or S2
Branch if Ones BOR 07(BCR I) R2
Branch on Overflow BO 47(8C I) 02(X2, B2) or 02(, B2) S2(X2) or S2
Branch on Overflow BOR 07(8CR 1) R2

Branch on Plus BP 47(8C 2) 02(X2, B2) or 02(, B2) 52(X2) or 52
Branch on Plus BPR 07(8CR 2) R2
Branch if Zeros BZ 47(BC 8) 02(X2, B2) or 02(, B2) , 52(X2) or S2
Branch if Zeros BZR 07(8CR 8) R2
Branch on Zera BZ 47(BC 8) 02(X2, B2) or 02(,B2) S2(X2) or S2
Branch on Zera BZR 07(BCR 8) R2
Bran"Ch Unconditional B 47(BC 15) 02(X2,B2)or 02(,B2) S2(X2) or S2
Branch Unconditional BR 07(BCR 15) R2

Clear I/O CLRIO 9001 02(B2) ~ .. ,.'j;;':,}»)'" . Clear Stiw. ~~. CUQtl·' BiJS 02{"2}~ "~>. , .• ,·i<
Compare Algebraic C 59 R I, 02(X2, B2)or R I, 02(, B2) RI,S2(X2 or RI,S2
Compare Algebraic CR 19 RI,R2
Compare and Swap C5 SA Rl, R3, 02, (B2) Rl,R3,S2
Compore Decimal CP F9 01 (L I, BI), 02(L2, 82) S1(Ll),S2(L2)or SI,S2
Compare Double and Swap CDS BB RI, R3, 02(B2) Rl,R3, S2
Compare Halfword CH 49 R I, 02(X2, B2)or R 1,02(,82) RI,S2(X2)or RI,S2
Compare Logical CL 55 R I, 02(X2, B2)or RI, 02(,B2) RI,S2(X2)or RI,S2

Compare Logical CLC 05 01 (L, BI), 02(B2) 51(L),S2 or 51,S2

392

Type of
Progrcm Interruption

Instruction Possible Condition Code Set
Instruction

Instruction A S lad Op Othe 00 01 10 11

Add RX x x F SiJm=O Sum < 0 Sum>O Overflow
Add RR F Sum=O Sum < 0 Sum >0 Overflow
Add Decimal SS,Decimol x o ~ x Dote Sum=O Sum<O Sum>O Overflow
Add Halfword RX x x F Sum=O Sum <0 Sum >0 Overflow
Add Logical RX x x Sum=O@ Sum O@ Sum= 0(D Sum 0 CD
Add Logical RR 5um~0(8) Sum= 0(8) Sum= oCD Sum 0 CD
Add Normalized, Extended RR,Floating Pt. x E x B,C R L M
Add Normalized, Long RX,Floating Pt. x x E x B,C R L M
Add Normol ized, Long RR,Floating Pt. x E x B,C R L M
Add Normalized, Short RX, Floating Pt. x x E x B,C R L M
Add Normolized, 910rt RR, Floating Pt. x E x B,C R L M

Add Unnormalized, Long RX, Floating Pt. x x E x C R L M
Add Unnarmalized, Long RR, Floating Pt. x E x C R L M
Add Unnormalized, Short RX,Floating Pt. x x E x C R L M
Add Unnormalized,Short RR, Floating PI. x E x C R L M

And Logical RX x x J K
And Logical SS x x J K
And Logical RR J K
And Logical Immediate SI x x J K

Branch and Link RX N N N N Branch and Link RR N N N N
Branch and Save RX x N N N N
Branch and Save RR x N N N N

Branch or. Condition RX N N N N
Branch on Condition RR N N N N
Branch on Count RX N N N N
Branch on Count RR N N N N
Branch on Equal RX,Ext.Mnemonic N N N N
Branch on Equal RR, Ext .Mnemonic N N N N

c)

Branch on High RX, Ext.Mnemonic: N N N N
Branch on High RR, Ext .Mnemonic N N N N
Branch on Index High RS N N N N
Branch on Index Low or Equal RS N N N N
Branch on Low RX, Ext.Mnemonic N N N N
Branch on Low RR, Ext. Mnemonic N N N N
Branch if Mixed RX, Ext.Mnemonic N N N N
Branch if Mixed RR, Ext. Mnemonic N N N N

Branch on Minus RX, Ext .Mnemonic N N N N
Branch on Minus RR, Ext.Mnemonic N N N N
Branch on Not Equal RX, Ext.Mnemonic N N N N
Branch on Not Equal RR, Ext .Mnemonic N N N N
Branch on Not High RX, Ext.Mnemonic N N N N
Branch on Not High RR, Ext .Mnemon ic N N N N
Branch on Not Low RX, Ext.Mnemonic N N N N
Branch on Not Low RR, Ext .Mnemonic N N N N
Branch if Not Mixed RX,Ext.MnemoniC N N N N
Branch if Not Mixed RR,Ext.Mnemonic N N N N
Branch on Not Minus RX, Ext.Mnemonic N N N N
Branch on Not Minus RR, Ext .Mnemon ic N N N N

Branch if Not Ones RX, Ext. Mnemonic N N N N
Branch if Not Ones RR, Ext.Mnemonic N N N N
Branch on No OverflOW RX.Ext.Mnemonic N N N N
Branch on No OverflOW RR.Ext.Mnemonic N N N N Branch on Not Plus RX, Ext.Mnemonic N N N N
Branch on Not Plus RR, Ext .Mnemonic N N N N
Branch if Not Zeros RX,Ext.Mnemonic N N N N
Branch if Not Zeros RR,Ext.Mnemonic N N N N
Branch on Not Zeros RX, Ext. Mnemonic N N N N
Branch on Not Zeros RR, Ext . Mnemonic N N N N
Branch if Ones RX, Ext.Mnemonic N N N N
Branch if Ones· RR, Ext.Mnemonic N N N N
Branch on Overflow RX, Ext.Mnemonic N N N 'N
Branch on Overflow RR, Ext .Mnemonic N N N N

Branch on Plus ~, Ext.Mnemonic N N N N
Branch on Plus RR, Ext . Mnemonic N N N N
Branch if Zeros RX, Ext.Mnemonic N N N N
Branch if Zeros RR. Ext .Mnemonic N N N N
Branch on Zera RX, Ext. Mnemonic N N N N
Branch on Zera RR, Ext .Mnemonic N N N N
Branch Unconditional RX, Ext .Mnemonic N N N N
Branch Unconditional RR, Ext .Mnemonic ~ N N N

I.~·.~ Clear~
S A iAAx CC

,
EE KK

Clear Qge Poge S jK IX A,G8
Compare Algebraic RX Ix x Z AA' BB
Compare Algebraic RR Z AA B8
Compare and Swap RS Ix x IK x Z AAW
Compare Decimal SS,Decimal x x Dota Z AA BB
Compare Double and Swap RS x x x x Z AAW
Compare Ha Ifword RX x x Z AA 88
Compare Logical RX x x Z AA BB

o Compare Logi col SS x x Z AA BB

Appendix IV: Machine Instruction Mnemonic Operation Codes 393

Operand Format ~\
1 Ntruction :\L~;/

Implicit

Compare Logical

Compare Logical Characters
under W.ask

RI,M3,S2

Compare Logical Immediate CLI 95 SI,12
Compare Logical Long CLCL OF
Compare, Long CO 69 J , 02(X2, 82)or R 1,02(,82) RI,S2(X2)or RI,S2
Compare, Long CDR 29 1,P,2
Compare, Short CE 79 J, 02(X2, 82)or RI, 02(, 82) RI,S2(X2)or RI,S2

,Short CER 39 I,R2
100IJ\IeE ,. CD: • 02(821' :i'

CV8 4F 1 , 02(X2, 82)or R 1 , 02(,82)
CVD 4E I , 02(X2, 82)or R I, 02(,82)

I:: Pot!t DIP
raoei Pet';

0
Divide DR ,R2
Divide Decimal OP I, (L 1,81), D2(L2, 82) SI(LI), 52(L2)or SI, S2
Divide, Long DO I, D2(X2, 82), or RI, 02(,82) RI,S2(X2) or RI,S2
Divide, Long OOR I,R2
Divide, Short DE I, 02(X2, 82)or R 1,02(,82) RI,S2(X2) or RI,S2
Divide, Short OER I,R2

Edit ED 1 (L, 81),02(82) 5l(L), S2 or 51,52
Edit and Marie EOMK (L,81),02(82) 51(L),52 or 51,52
Exclusive Or X , D2(X2, 82) or RI, 02(,82) RI, S2(X2) or RI,52
Exclusive Or XC (L, 81),02(82) 51(L),52 or SI,S2
Exclusive Or XR ,R2
Exclusive Or Immediate XI 1(81),12 51,12
Execute EX I, D2()(2, 82) or RI, 02(,82) RI,S2(X2) RI,52
Halve, Long HOR I,R2
Ha Ive, 5hort HER I,R2

I See Note I at end af Halt Device HOV ,81 SI

Halt I/O HIO (81) this appendix

100fUV$I tn"rf~ 'PI: fUtSl<
Insert Character IC 43 RI,S2(X2)
Insert Characten under Mask ICM 8F RI,M3, S2
Insert PSW Key IPK 820B
I nsert Storage Key ISK 09 I,R2
Load L 58 I, D2(X2, 82) or RI, 02(,82) RI,S2(X2) or RI,52
Load LR 18 I,R2
Load Address LA 41 I, 02(X2, 82) ar RI, 02(,82) RI,S2(X2) or RI,52
Load and Test LTR 12 I,R2
Load and Test, Long LTDR 22 ,R2
Load and Test, Short LTER 32 I,R2

Load Complement LCR I,R2
Load Complement, Long LCDR I,R2
Load Complement, 5hort LCER I,R2
Load Control LCTL I R3, 02{~~)

I,OOSM8 LOQdFi'OftMIl~ 1St' ;02."
Load Ha I fword LH I, 02(X2, 82) or RI, 02(,82) or RI,52
Load, Long LO I, D2(X2, 82) or RI, 02(,82) R 1,S2(X2) or RI,52
Load, Long LOR RI,R2
Load Multiple LM RI ,R3, 02(82) RI,R3,S2
Load Negative LNR Rl,R2
Load Negative, Long LNOR RI,R2
Load Negative, Short LNER I,R2

Load Positive LPR
Load Positive, Long LPDR
Load Positive, Short LPER

1-
Load P~ LPSW
Loacl It ... 'A.dcfmt I.M
Load Rounded, Extended LRDR
to Long
Load Rounded, Long to Short LRER
Load, Short
Load, Short

394

0 Type of Program Interruptions
Instruction Instruction I Condition Code Set

5 Op Other 00 01 10

Compare Logical RR x Z AA 8B
Compore Logical Characters RS x x x XX yy ZZ
under Mask
Compare Logical Immediote 51 x Z AA BB

Compore Logical Long RR x x x x Z AA BB

Compare, Long RX,Floating Pt. x x x Z AA
Compare, Long RR,Floating Pt. x x x Z AA
Compare, Short RX, Floating Pt. x)()(Z AA
Compare, Short RR,Floating Pt. x)(

~ Z AA

I'~ fC:~~ 15 '}: ;.,<:; ~,Ge; M("" 'XJi: .• ···'
.) .•

Convert to Binary RX Ooto, F N N
Convert to Decimal RX N tr=:: i)tt,Otifltute .• ,. ,;$;~~Q¢.

AM" . .t>tICOl'lM~ S . ~.~

Divide RX x x F N N N N
Divide RR x F N N N N
Divide Decimol 55, Decimol)(x x It D,Oota N N N N
Divide, Long RX,Flaoting Pt. x)(E x B,E N N N N
Divide, Long RR, Floating Pt. x E x: a,E N N N N
Divide, Short RX,Flaoting Pt.)(x E)(B,E N N N N
Divide, Short RR, Floating Pt.)(E x a,E N N N N

Edit SS, Decimol x x Dato S T U
Edit ond Mork SS, Decimal x Data S T U
Exclusive Or RX x)(J K
Exclusive Or SS)()(J K
Exclusive Or RR J K
Exclusive Or Immediate SI x x J K
Execute RX)(x G (Moy be set by this instruction)

Halve, Long RR, Flooting Pt. x)(N N N N
Holve, Short RR, Flooting Pt. x x N N N N
Halt Device S A AAM CC AAL
Holt I/O S A DO CC GG KK

I\D061/VUOftty ~: .. ,.;t. 15 ~, 'A
Insert Character RX)(

/0 Insert ChoNcters under Mask RS x x x TT SS
Insert PSWKey S x A
Insert Storage Key RR x)(A N N N N

Load RX x x N N N N
Load RR N N N N
Load Address RX N N N N
Load ond Test RR J L M
Load and Test, Long RR, Floating Pt. x x R L M
Load ond Test, Short RR, Flooting Pt. x R L M

Load Complement RR F P L M 0
Laod Complement, Long RR, Floating Pt. x x R L M
Load Complement, 910rt RR, Floating Pt. x R L M
Load Control RS x x x x A N N N N

I ; ·~ .. lnUx as I(A At, MO JiGtt ...
Load Holfword RX N N N N
Load, long RX, Floating Pt.)()(x N N N N
Load, long RR, Flooting Pt. x x N N N N
Load Multiple RS)(x N N N N
Load Negative RR J L
Laod Negotive, Long, RR, Floating Pt. x x R L
Load Negative, Short RR, Flaoting Pt. x R L

Load Positive RR J M 0
Load Positive, Long RR, Flooting Pt. x x R L M
Load Positive, Short RR, Floati ng Pt.)(x R L M
Load PSN SI A QQ QQ QQ QQ

I!~;JIi!i:'~""' •. '."' : .•... ;l!.; •.. \'~i.·\.·, A MV 'l.MV~,',~ . jNMP , """"0 "toacf'RouMed, Extended u"" RR, Floating Pt. N N N N
to Long

Load Rounded, Long to Short N N
Load, snort N N
Load, Short N N

:?~~~.~~.~ lAi.sQG' i~.< 'MJ
.-

'~ \;:M~~. rA,O(: '.8K '-AJl
Move Choracters N N
Move Immediate SI x x N N N N

Appendix IV: Machine Instruction Mnemonic Operation Codes 395

I Not OOSIVSI

OO8IVSE 0,.,

396

Instruction

Move long
Move Numerics
Move with Offset

Move Zones
Multiply
MUltiply
Multiply Oecimol
Multiply Extended
Multiply Halfword

Multiply, Long
Multiply, Long
Multipl>j Long to
Extende
Multiply, Long to
Extended
Multiply, Short
Multiply, Short
No Operation
No Operation
Or logical
Or logical
Or logical
Or Logical Immediate
Pack

Pur~e Translation Looka.lde
8uf er
Read Drrect
Reset Reference 8it
R.trl~e StatU. Ciltd Po,,-

:s.t PqOtl Btt.
Set Clock
Set Clock Comparator
Set CPU Timer
Set PreAx
Set Program Mask
Set PSW Key from Acldre ..
Set Storage Key
Set System Mask
Shift and Round Decimal
Shift Left Double Algebraic
Sh ift Left Double Logical
Shift Left Single Algebraic
Shift Left Single Lazical
Shift Right Double Igebraic
Shift Right Double Logical
Shift Right Single Algebraic
Shift Right Single logical

Signal ProcellOf'

Start I/O
Start I/O Fast Release

Store
S~ copocrty c~ .. ,
Store Channel 10
Store Character

Store Characters under
Mask
Store Clock
Store Clock Comparator
Store Control
Store CPU addre ..
Store CPU 10
Store CPU Timer
Store Halfword
Store Long
Store Multiple
Store PreAx
Store Short

Store Then AND System Mask
Store Then OR System Mask
Subtract

Subtract
Subtract Decimal
Subtract Halfword
Subtract logical
Subtract Logical

Mnemonic.
Operation

Code

MVCl
MVN
MVO

MVZ
M
MR
MP
MXR
MH

MO
MOR
MXO

MXOR

ME
MER
NOP
NOPR
0
OC
OR
01
PACK

PTL8

ROO
RRB
RSP

S,.
SCK
SCKC
SPT
SPX
SPM
SPKA
SSK
SSM
SRP
SLOA
SLOL
SLA
SLL
SROA
SRDL
SRA
SRL

SIG,

SIO
SIOF

ST
STCA,"l
STiDC
STC

STCM

STCK
STCKC
STCTl
STAP
STIOP
STPT
STH
STO
STM
STPX
STE

STNSM
STOSM
S

SR
SP
SH
SL
SLR

MachiJ:le
Operation

Code

Of
01
F:

03
5C
lC
FC
26
4C

6C
2C
67

27

7C
3C

47(8C 0)
07(8C 0)
56
D6
16
96
F2

820D

85
8213
08

85
8204
8206
8208
8210
04
B2QA
08
80
FO
8F
8D
88
89
8E
8C
SA
88

AE

9C001
9C01 1

50
12f:F«
8203
42

8E

8205
8207
86
8212
8202
8209
40
60
90
8211
70

AC
AD
58

18
F8
48
Sf
IF

Operand Format

Explicit Implicit

P.l,R2
o 1(l, 81), 02(82)
01(11, 81), 02(L2, 82)

Sl(l), S2 or S1S2
S1(LJ),S2(L2} or 51,S2

01 (L,81),02(82) S1(L), S2 or SI,S2
RI,02(X2,82}or Rl,02(,82) Rl,S2(X2) or Rl,S2
Rl,R2
01 (L I, 81), 02(L2, 82) Sl(LI),S2(L2) or SI,S2
Rl,R2
Rl,02(X2, 82) or Rl, 02(,82) Rl,S2(X2) or Rl,S2

RI,02(X2,82)or Rl, 02(, 82) Rl,S2(X2) or Rl,S2
Rl,R2
Rl,02(X2,82)or Rl,02(,82) Rl,S2(X2) or Rl,S2

Rl,R2

RI,02(X2,82)or Rl,D2(,82) Rl,S2(X2) or Rl,S2
Rl,R2
D2(X2,82) or 02(,82) S2(X2) or S2
R2
Rl, D2(X2, 82~or Rl, D2(, 82) Rl,S2(X2) or Rl,S2
Dl(L,81),D2 2) S1(L), S2 or SI, S2
Rl,R2
Dl~1),12 SI,12
DI Ll,81},D2(L2,82) S1(Ll),S2(L2) or SI,S2

- -
01(81~,'2
01(81

51,12
SI

01 (, 81), 02(82) SI,52
or

01 (81), 02(82) ,_.
Rl,02(a2) Rl,S2
01(81~ SI
01m l SI
01 1 SI
D2(82) S2
Rl
0, (8,) 51
Rl,R2
01(81) SI
C?1 (L 1,81), D2(82), 13 S1(LJ),S2,13 or SI ,S2, 13
Rl,02(82) Rl,S2
Ri,02(82) Rl,S2
Rl,02m2) Rl,S2
Rl,02 2) Rl,S2
Rl,02m2) Rl,S2
Rl,02 2) Rl,S2
Rl,02m2~ Rl,S2
Rl,02 2 Rl,S2
Rl, R3, D2(82) Rl, R3, S2

01(81) SI
01(81) SI

Rl,02(X2,82)or Rl,02(,82) Rl,S2(X2) or Rl, S2
r~Iff<;< '. t:~.;~?t~~lt;· ~<0;tS:L;'[';F:SF;~" "itt):f

Rl,02(X2,82)ar Rl,02(,82) Rl,02(X2) orRl,S2

Rl ,M3, 02(82) Rl,M3,S2

01(81) SI
01(81) SI
Rl,R3,02(82) Rl,Rl,S2
02(82) S2
01(81} SI
01(81) SI
Rl,02(X2,82)or Rl,02(,82) Rl,S2(X2) orRl,S2
Rl,02(X2,82) , Rl,S2(X2) orRl,S2
Rl,R2,02(82) Rl,R2,S2
02(82) S2
Rl,02(X2,82)or Rl,02(,82) Rl,S2(X2} or Rl, S2

01(81),12 SI,12
01(8l)~2 SI,12
Rl,02 2) Rl,S2(X2) orRl,S2

Rl,R2
01(Ll,81),02(L2 82) S1(L1)~2(L2)or S1

S
S2

Rl,02~2,B2~or Rl,02(,82} Rl,S2 2) or Rl, 2
Rl,02 2,B2 or Rl,02(,82) Rl,S2 2) or Rl,S2
Rl,R2

I See Note 2 at end of
this appendix

o

o

'0

1=== r==

o

Instruction

Move long
Move Numerics
Move with Offset

Move Zones
Multiply
Multiply .
Multiply Decimal
Multiply Extended
Multiply Halfword

Multiply, long
Multiply, long
Multiply, lonG!
Extended
Multiply, lon9"
Extended
Multiply, Short
Multiply, Short
No Operation
No Operation
Or Logical
Or logical
Or logical
Or logical Immediate
Pack

~fr.r Translation look~~~C!.

ReQd Direct
Reset Reference Bit
RetrIeve. Status and Page
Set Page Bits
Set cTOcT- -
Set Clock Comparator
Set CPU Timer
Set Prefix
Set Program Mask
Set PSW Key from Address
Set Storage Key
Set System Mask
Shift left Double Algebraic
Shift and Round Decimal

Shift left Double Logical
Shift Left Single Algebraic
Shift Left Single l0,tcal
Shift Right Double Igebraic.
Shift Right Double logical

Shift Right Single Algebraic
Shift Right Single logical
Signal Processor
Start I/O
Start I/O Fast Release

t!~~, ...
Store Character

Store Characters under
Mask
Store Clock
Store Clock Comparatar
Store Control
Store CPU Address
Store CPU 10
Store CPU Timer
Store Ho If word
Store Long
Store Multiple
Store Prefix
Store Short

Store Then AND System Mask
Store Then OR System Mask
Subtract

Subtract
Subtract Decimal
Subtract Ho If word
Subtract Logical
Subtract Logical

Type of
Program Interruptions
Possible Condition Cod. Set

Instruction A ~ 0, p Op Oth.r 00 01 10 11

RR x x x x AM. MB MC AAD
SS x x N N N N
SS x x N N N N

SS x x N N N N
RX x x N N N N
RR x N N N N
SS, Decimal x x x x Data N N N N
RR, Floating Pt. x E x B N N N N
RX x x N N N N

RX,Floating Pt. x x E x Bot N N N N
RR,Floating Pt. x E x B N N N N
RX,Floating Pt. x x E x x B N N N N

RR,Floating Pt. x E x B N N N N

RX,Floating Pt. x x E x B N N N N
RR,Floating Pt. x E x B N N N N
RX,Ext.Mnemonic N N N N
RR, Ext .Mnemanic N N N N
RX x x J K
SS x x J K
RR J K
SI x x J K
SS x x N N N N

S x A N N N N --'.-

51 x x x A N N N N-
S x A MQ AAR AAS MT
5S x x A AIM ABN RS x x A AAQ AAR M5

~1 S x x x x A ME AM
S x x x x A N N N N
S x l(x x A N N N N
S , x A
RR RR RR RR RR
S x A
RR x x x A N N N N
SI x A N N N N
RS x F J l M 0
SS)(0 x x Data J L M 0

RS x N N N N
RS F J l M 0
RS N N N N
RS x J l M
RS x N N N N

RS J l M
RS N N N N
RS x A MY AAZ EE HH
S A MM CC EE KK
S A MM CC EE KK
RX x x

~;B1
x N ·?:;~~'f~'It.\ N N

J~. jf
[A AAH"' I""" "" S x CC MI KK

RX x x N N N N

RS x x x N N N N

S x x x AAJ AAK AAN MG
S x Ix x x A N N N N
RS x Ix x x A N N N N
S x A
S pc Pc x x A N N N N
S pc Pc x x A N N N N
RX pc pc x N N N N
RX,Floating Pt. pc Pc x x N N N N
RS Ix Ix x N N N N
S x A
RX,Floating Pt. pc Ix x x N N N N

SI Ix x x A N N N N
SI Ix x x A N N N N
RX Ix Ix F V X Y 0

RR F V X Y 0
~Decimal Ix p x x Data V X Y 0

Ix Ix F V X Y 0
RX Ix Ix W,H V,I W,.
RR W,H' V,I W,'

Appendix IV: Machine Instruction Mnemonic Operation Codes 397

Mnemonic Machine. Operand Format
Instruction Openltion Operation

Code Cocte Explicit Implicit

Subtract Normalized, SXR
Extended

37 Rl,R2

" Subtract Normalized, long SD 6B Rl ,D2(X2, 82) or Rl, D2(,82) Rl,S2(X2) or Rl,S2
Subtract Normalized, long SDR 28 Rl ,R2 ~
Subtract Normalized, Short SE 7B Rl ,D'2(X2, 82) or Rl, D2(,82) Rl,S2(X2) or Rl, S2
Subtract Normalized, Short SER 38 Rl,R2
Subtract Unnormalized, long SW 61 Rl,D2(X2,82)or Rl,02(,82) Rl,S2(X2) or Rl,S2

Subtract Unnormalized, long SWR 2F Rl,R2
Subtract Unnormalized, Short SU 7F Rl ,D2(X2, 82)or Rl, 02(,82) Rl,S2(X2) or Rl,S2
Subtract Unnormolized, Short SUR 3F Rl,R2
Supervisor Coli SVC OA I
Test and Set TS 93 Dl(81) SI

T est Channel TCH 9F Dl(81) SI
Test I/O TlO 9D Dl(81) SI
Test Under Mask TM 91 Dl(81),12 SI,12
Translate TR DC Dl(L,Bl),D2(82) 51~l),52 or 51,S2
Translate and Test TRT DD D 1(L, B 1), D2(82) 51 l),52 or 51,52

Unpack UNPK F3 Dl (L 1,81), D2(L2,B2) 51 (ll), 52(L2) or SI,S2
Write Direct WRD 8" Dl(81),12 51,12
Zero and Add Decimal ZAP F8 Dl (L 1,81), D2(L2,82) S1(ll), S2(L2)or 51,52

398

0 Type of Program Interruption
I nltru ctl on Instruction Possible Condition Code Set

A S Ov P Op Other 00 01 10 11

Subtract Normalized, Extended RR,Floatlng Pt. x E x a,c R L M
Subtract Normalized, Long RX, Floating Pt. x x E x a,c R L M Q

Subtract Normalized, Long RR, Floating Pt. x E x a,c R L M Q

Subtract Normalized, Short RX, Floating Pt. x x E x a,c R L M Q

Subtract Normalized, Short RR, Floating Pt. x E x a,c R L M Q

Subtract Unnormallezd, Long RX, Floating Pt. x x ! x C R L M Q

Subtract Unnormallezd, Long RR, Floating Pt. x E. x C R L M Q

Subtract Unnormalized, Short RX, Floating Pt. x x E x C R L M Q

Subtract Unnormalized, Short RR, Floating Pt. x E x C R L M Q

Supervisor Call RR N N N N

Test and Set Sl x x SS TT
Test Channel SI A JJ II FF HH
Test I/O SI A LL CC EE KK
Test under Mask SI x UU W WW
Translate SS x x N N N N

Translate ond Telt SS x PP NN 00

Unpack SS x x N N N N
Write Direct SI x x A N N N N
Zero and Add Decimal SS,Decimal x 0 x x Data J L M 0

Program Interruptionl Possible

Under Ov: 0= Decimal Under Other: A Privileged Operation E Floating Point Divide
E = Exponent a Exponent Underflow F Fixed Point Divide
F = Fixed Point C Significance G Execute

D Decimal Divide GA Monitoring

Condition Code Set

H No carry NN Nonzero function byte found before MS Reference bit one, change bit zero

"C
I Carry the first operand field i, exhausted MT Reference bit one, chan;e bit one

, \ J Result = 0 00 Lalt function bytes are zero MU Segment table entry invalid (I-bit one)
K Result is not equal to zero PP All function bytes are zero MV Translation available
L RelUlt i. less than zero QQ Set according to bits 34 and 3S of the MW First and second hand operands equal,
M Result i. greater than zero new PSW loaded second operand replaced by
N Not changed RR Set according to bits 2 and 3 of the the third operand
0 Overflow regilter specified by Rl MX No operation il in progress for
P Result exponent underflows SS Leftmost bit of byte specified = 0 the addressed dev I Ce
Q Result exponent overflows TT Leftmost bit of byte specified = 1 MY Order code accepted
R Result fraction = 0 UU Selected bits are a" zeros; rnotk i. all zeros MZ StatuI stored
S Result field equals to zero W Selected bits are mixed (zeros and ones) ABA Successful, block wal dllcon'lected,
T Result field is less than zero WW Selected bits are all ones index returned
U Result field is greater than zero XX Selected bytes are equal, or mask in zero ABB Poge was already disconnected,
V Difference = 0 yy Selected field of first operand is low index returned
W Difference is not euqal to zero ZZ Selected field of first operand is high ABC Not successful, index returned
X Difference is less than zero AM First operand and second operand counts ABO Page was connected
Y Difference is greater than zero are equal ABE Page was already disconnected
Z First operand equals second operand M8 Flr.t operand count I. lower ABF Index returned, poge is addressoble

AA First operand is less than second operand MC First operand count is higher ABG Index returned, Doge is connected
BB First operand Is greater than second operand MD No mavement because of destructive overlap ABH Index not returned, poge is

CC CSW stored ME Clock value set disconnected
DO Channel and subchannel not working MF Clock value secure ABI Index not returned, address is invalid
EE Channel or subchonnel busy MG Clock not operational ABJ Page was already addressable
FF Channel operating in burst mode MH Channel ID correctly stored ABK Page was addressable
GB Page state MI Chonnel activity prohibited during I D ABL Page was already connected

GC Page transision MJ Clock value Is valid ABM Save valid
GG Burst operation terminated MK Clock value not necessarily valid ABN Save invalid
HH Channel not operational ML Chonnel warklng with another device
II Interruption pending on channel MM Subchannel busy or Interruption pending
JJ Channel available MN C lock in error state
KK Not operational MO Segment- or page-table length violation
LL Available MP Page-table entry invalid (I-bit one)
MM I/O operation initiated and chonnel MQ Reference bit zero, change bit zero

proceeding with its execution MR Reference bit zero, chonge bit one

Appendix IV: Machine Instruction Mnemonic Operation Codes 399

b

o

o

RR Format

Operation

Code

00
01
02
03
04
05
06
07
08
09
OA
OB
OC

OE
OF

10
11
12
13
14
15
16
17
18
19
lA
1B
.1C
10
1E
1F

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
20
2E
2F

30
31
32
33
34
35
36
37
38

Name

Set Program Mask
Branch and Link
Branch on Count
Branch on Condition
Set Storage Key
Insert Storage Key
Supervisor Call

Move Long
Compare Logical Long

Load Positive
Load Negative
Load and Test
Load Complement
AND
Compare Logical
OR
Exclusive OR
Load
Compare
Add
Subtract
Multiply
Divide
Add Logical
Subtract Logical

Load Positive (Long)
Load Negative (Long)
Load and Test (Long)
Load Complement (Long)
Halve (Long)
Load Rounded (Extended to Long)
Multiply (Extended)
Multiply (Long to Extended)
Load (Long)
Compare (Long)
Add Normalized (Long)
Subtract Normalized
Multiply (Long)
Divide (Long)
Add Unnorrnalized (Long)
Subtract Unnormalized (Long)

Load Positive (Short)
Load Negative (Short)
Load and Test (Short)
Load Complement (Short)
Salve (Short)
Load Rounded (Long or Short)
Add Normalized (Extended)
Subtract Normalized (Extended)
Load (Short)

Mnemonic

SPM
BALR
BCTR
BCR
SSK
ISK
SVC

MVCL
CLCL

LPR
LNR
LTR
LCR
NR
CLR
OR
XR
LR
CR
AR
SR
MR
DR
ALR
SLR

LPDR
LNDR
LTDR
LCOR
HDR
LRDR
MXR
MXDR
LDR
CDR
ADR
SDR
MDR
DDR
AWR
SWR

LPER
LNER
LTER
LCER
HER
LRER
AXR
SXR
LER

Remarks

Apl?e_nclix.·,IV;M.a9!.lln~, .. Ins.J:ruction Mneitlonic Operation Codes 401

RR Format

Operation

Code

39
3A
3B
3C
3D
3E
3F

RX Format

40
41
42
43
44
45
46
47
48
49
4A
4B
4C

4E
4F

50
51
52
53
54
55
56
57
58
59
SA
5B
5C
50
5E
SF

60
61
62
63
64
65
66
67
68
69
6A
6B
6C
60
6E
6F

402

Name

Compare (Short)
Add Normalized (Short)
Subtract Normalized (Short)
Multiply (Short)
Divide (Short)
Add Unnormalized (Short)
Subtract Unnormalized (Short)

Store Halfword
Load Address
Store Character
Insert Character
Execute
Branch and Link
Branch on Count
Branch on Condition
Load Halfword
Compare Halfword
Add Halfword
Subtract Halfword
Multiply ijalfword

Convert to Decimal
Convert to Binary

Store

AND
Compare Logical
OR
Exclusive OR
Load
Compare
Add
Subtract
Multiply
Divide
Add Logical
Subtract Logical

Store (Long)

Multiply (Long to Extended)
Load (Long)
Compare (Long)
Add Normalized (Long)
Subtract Normalized (Long)
Multiply (Long)
Divide (Long)
Add Unnormalized (Long)
Subtract Unnormalized (Long)

Mnemonic

CER
AER
SER
MER
DER
AUR
SUR

STH
LA
STC
IC
EX
BAL
BCT
BC
LH
CH
AH
SH
MH

CVD
CVB

ST

N
CL
o
X
L
C
A
S
M
o
AL
SL

STD

MXD
LD
CD
AD
SO
MO
DO
AW
SW

-0
Remarks

o RX Format

Operation

Code

70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F

Name

Store (Short)

Load (Short)
Compare (Short)
Add Normalized (Short)
Subtract Normalized (Short)
Multiply (Short)
Divide (Short)
Add Unnormalized (Short)
Subtract Unnormalized (Short)

RS,SI, and S Format

80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F

AO
A1
A2
A3
A4
AS

Set System Mask

Load PSW
-Diagnose l
Wr'ite Direct
Read Direct
Branch on Index High
Branch on Index Low or Equal
Shift Right Single Logical
Shift Left Single Logical
Shift Right Single
Shift Left Single
Shift Right Double Logical
Shift Left Double Logical
Shift Right Double
Shift Left Double

Store Multiple
Test under Mask
Move (Immediate)
Test and Set
AND (Immediate)
Compare Logical (Immediate)
OR (Immediate)
Exclusive OR (Immediate)
Load Multiple

Start I/O, Start I/O Fast Release
Test I/O
Halt I/O, Halt Device
Test Channel

Mnemonic

STE

LE
CE
AE
SE
ME
DE
AU
SU

SSM

LPSW

WRD
ROD
BXH
BXLE
SRL
SLL
SRA
SLA
SROL
SLDL
SRDA
SLDA

STM
TM
MVI
TS
NI
CLI
01
XI
LM

SIO,SIOF
TIO
HIO,HDV
TCH

Remarks

See Note 2

See Note 1

4C) ___ A_6 __________ ~ ____________ ._. __ ~

Appendix IV: M.llchine Instructlon Mnemonic Operation Codes 403

RS,SI, and S Format

Operation Name

Code

A7
A8
A9
AA
AB
AC Store Then AND System Mask
AD Store Then OR System Mask
AE
AF

BO Connect Page
Bl Load Real Address
B2 (First byte of two-byte operation
B3
B4 Insert Page Bits
BS Set Page Bits
B6 Store Control
B7 Load Control
B8 Load Frame Index
B9
BA
BB
BC
BD Compare Logical Characters under
BE Store Characters under Mask
BF Insert Characters under Mask

SS Format

CO
Cl
C2
C3
C4
C5
C6
C7
C8
C9
CA
CB
CC
CD
CE
CF

DO
Dl Move Numerics
D2 Move (Characters) ,
D3 Move Zones
D4 AND (Characters)
D5 Compare Logical (Characters)
D6 OR (Characters)
07 Exclusive OR (Characters)
08 Retrieve Status and Page
09
DA
DB
DC Translate

404

Mnemonic

STNSM
STOSM

CTP
LRA

codes)

IPB
SPB
STCTL
LCTL
LFI

Mask CLM
STCM
ICM

MVN
MVC
MVZ
NC
CLC
OC
XC
RSP

TR

Remarks

~.',".
~/' ;I

\0

SS FO'rmat

Operation Name Mnemonic Remarks

Code

DO Translate and Test TRT
DE Edit ED
OF Edit and Mark EDMK

EO ~

El
E2
E3
E4
ES
E6
E7
W8
E9
EA
EB
EC
ED
EE
EF

FO Shift and Round Decimal SRP
Fl Move with Offset MVO
F·2 Pack PACK
F3 Unpack UNPK
F4
FS
F6
F7
F8 Zero and Add Decimal ZAP
F9 Compare Decimal CP
FA Add Decimal AP
FB Subtract Decimal SP
Fe Multiply Decimal MP
FD Divide Decimal DP
FE
FF

NOTES

1. Under the System/370 architecture, the machine operations for Halt Device and Halt
I/O ar,e as follows:

11001 1110 XXXX xxxoJ Halt I/O HIO

~OOl 1110 xxx x XXXll Halt Device HDV

(X denotes an ignored bit position)

Appendix IV: Machine Inr;tructioh Mnemonic Operation Cudes 405

2. Under the Systemv370 architecture, the machine operations for Start 1/0 and Start
1/0 Fast Release are as follows:

1001 1100 XXXX XXXO Start 1/0 510

1001 1100 XXXX XXXl Start I/O Fast Release SIOF

(X denotes an ignored bit position)

Operation Name Mnemonic
Code

AE Signal Processor SIGP
SA Compare and Swap CS
BB Compare Double and Swap CDS
9001 Clear I/O CLRIO
B202 Store CPU 10 STIDP
B203 Store Channel 10 STIDC
B204 Set Clock SCI<
B205 Store Clock STCR
B206 Set Clock Comparator SCI<C
B207 Store Clock Comparator STCI<C
B208 Set CPU Timer SPT
B209 Store CPU Timer STPT
B20A Set PSW Rey from Address SPI<A
B20B Insert PSW I<ey IPI<
B20D Purge Translation

Lookaside Buffer PTLB
B210 Set Prefix SPX
B211 Store Prefix STPX
B212 Store CPU Address STAP
B213 Reset Reference Bit RRB
B2l5 Clear Page CLRP
B21B Deconfigure Page DEP
B21C Disconnect Page DCTP
B21D Make Addressable MAD
B21E Make Unaddressable MUN
B2lF Store Capacity Counts STCAP

406

o

C
·~

.1, •..)

~~,'

c

Operation

ACTR

A30

AIF

ANOP

ccw

CNOP

COM

o
I

COpy

CSECT

DC

DROP

OS

DSECT

EJECT

END

ENTRY

o

A sequence symbol
or blank

A sequence symbol
or blank

A sequence symbol
or blank

A sequence symbol
or blank

Any symbol or
blank

Any symbol or
blank

.~ 1ID.y symbol or

.~ blank
Must be blank "v
Must not be present

Any symbol or
blank

Any symbol or
blank

A sequence symbol
or blank

Any symbol or
blank

Any symbol or
blank

MY symbol

A sequence symbol
or blank

A sequence symbol
or blank

A sequence symbol
or blank

Page of GC33·4010-5
. As Updated 28 Del' 1981
By TNL GN20-9372

Appendix V: Assembler Instructions

Operand Entry

A SETA expression

A sequence symbol

A logical expression enclosed
in parentheses, immediately
followed by a sequence symbol

Not required

Four operands, separated by
conunas

Two absolute expressions,
separated by a comma

Not required

Not required

One ordinary symbol

Not required

One or more operands, separa ted
by commas

One to sixteen absolute
expressions, separated by
commas; or blank

One or more operands, separated
by commas

Not required

One or more operands, separated
by commas

Not required

A relocatable expression or
blank

One or more relocatable symbols,
separated by commas

Appendix V: ASsembler Instructions 407

408

Opt~ration

EX'lRN

GALA

GR1JB

GBLC

IC'lL

ISEQ

LeLA

LCLB

LCLC

LTORG

MNO'lE

Name Entry

An ordinary symbol
or a variable
symbol

A sequence symbol
or blank

Operand Entry

One to three operands,
separated by.com!pas
•• ~n~J;C);It. O"~~~i'.i

One or more relocatable symbels,
separated by commas

trust not be present One or more variable symbols
that are to be used as SE"l
symbols, separated by commas 2

~!lust not be present One or more variable syrr,bels
that are to be used as SET
symbols, separated by corrmas2

~ust not be present One or more variable symbols
that are to be used as SE'l
symbols, separated by commas 2

~ust not be present One to three decimal values,
separaten by corr.roas

r'ust not be present Two decimal val ues, separated
by COlIlmas

I

r'ust not be present One or more variable symbols
that are to be used as SEr
symb<;>ls, separated by commas 2

~ust not be present One or more variable symbels
that are to be used as SET
symbols, separated by co~mas2

Pust net be present One or more variable symbols
that are to be used as SEl
symbols, separated by commas 2

Any symbol or
blank

Not required

Must not be present Not required

A sequence symbol
or blank

A sequence symbol
or blank

A sequence symbol
or blank

Not required

Not req:uired

A severity code followed by a
comma (this much is optional)
followed by any combination of
characters enclosed in
a pos trophe s

lean be used only as part of a macro definition.
2SET symbols can be defined as subscripted SET symbols.

o

ORG

PRINT

PUNCH

REPRO

SETA

SETB

SETC

SPACE

START

TITLE

o

A. aaacbine instruc­
·tio~l.mpemoniccode,
an .extended·nmemon-

'.' .J.c:::(l()(}~~a;n assem-
bl~r:Qperation, .an
~per~tl~n ~ode def­
ine~ ·by.a.prevlous
s~ instrtlCtion,

os Any symbol or
only blank
DOS A sequence symbol
only or blank

symbol

A sequence symbol
or blank

A sequence symbol
or blank

A sequence symbol
or blank

A sequence symbol
or blank

A SETA symbol

A SETB symbol

A SErC symbol

A sequence symbol
or blank

Any symbol or
blank

A string of alpha­
meric characters.
A variable symbol.
A combination of
the above.
A sequence symbol.
A blank

,~v

.i_chine·instng4()rt'~~le

. QOQe, anextended iIQ~(:~·;~ode,
:,.cro 0Pf!ratio~,.~,eatbler;

<,;p~r~tJ.onf .. n()~l:'~t~~~ .. ~4.
'(lefined bya pre'ri.9Us,,(),sm "
1A8truetl()n.~ q:r;biank

Blank

A relocatable expression or
blank
A relocatable expression or
blank

One or more operands, separated
bY,a comma

One to three operands

One to eighty characters,
enclosed in apostrophes

One or more operands, separated
by a comma

Not required

An arithmetic expression

Page of GC33-4010-4
Revised Feb. 25, 1975
By TNL: GN33-8193

A 0 or a 1, a SETB symbol, ora logical
expression enclosed in parentheses

A type attribute, a character
expression, a substring
notation, or a concatenation
of character expressions
~dsu})~.tr irl~.n~ta tions •... ' . ..'.i
'~~""P~;~~~~~··',ae~r ...• ·•·· •. ~S~!' .•...... ,.
~~Ir~~~~~n •..• ·e~cl~~~. · ... in·~~~th!ses)

i;eanprecedethe~abOve. If''desl;red.
:. .: ." . . .,:." " ... :' : .. :: ... "." ... :.... . ',. ': .. ,:. ,., .: , :. : .. ~ ,. .. ;::;.

A decimal self-defining
te rm or blank

A self-defining term or blank

One to 100 characters, enclosed
in apostrophes

Appendix V: AssE::mbler Instr,tJCtions 409

410

operation

USING

wXTRN

Instruction

Model Statements3

prototype Statement2

Macro-Instruction
statement2

Assembler Language
statement3

Name Entry

A sequence sYHbol
or blank

A sequence syrobol
or blank

Name Entry

An ordinary symbol,
. a variable symbol,
a sequence
symbol, a combina­
tion of variable
symbols and other
characters that is
equivalent to a
symbol, or blank

A symbolic para­
meter or blank

An ordinary symbol,
a variable symbol,
a sequence symbol,
a combination of
variable symbols
and other charac­
ters that is equiv­
alent to a symbol, 2

or blank

An ordinary symbol,
a variable symbol,
a sequence symbol,
a combination of
variable symbols
and other charac­
ters that is equiv­
alent to a symbol,
or blank

1 Can only be used as part of a macro definition.

Operand Entry

An absolute or relocatable
expression followed by 1 to 16
absolute expressions, separated
by commas

One or more relocatable
symbols, separated by commas

Operand Entry

Any combination of char­
acters (including
variable symbols)

Zero or more oper.ands
that are symbolic parameters,
separated by commas

Zero or more positional
operands and/or zero
or more keyword operands
separated by commas 2

Any combination of charac­
ters (including variable
symbols)

2 Variable symbols appearing in a macro instruction are replaced
by their values before the macro instru~ion is processed.

3 Restrictions on the use of variable symbols
in statement fields are included in the descriptions
for each individual statement and in WRules
for Model Statement Fields· ~ee J4~ •

o

Appendix VI: Summary of Constants

r------T---------T--------T--------T--------------T---------T---------~-------~--------,
I I I I I I NUMBER I I I I
I I I I LENGTH I I OF CON- I I I TRUN- I
I I IMPLICIT I I MODI- I I STANTS I RANGE I RANGE I CATION/ I
I I LENGTH I ALIGN- I FIER I SPECIFIED I PER I FOR EX- I FOR I PADDING I
I TYPE I (BYTES) I MENT I RANGE I · BY I OPERAND I PONENTS I SCALE I SIDE I
.------+---------+--------+--------+--------------+---------+---------+--------+---------i
I C I as I byte 1.1 to I characters lone I I I right I
I I needed I I 256 (1) I I I I I I
~------+---------+--------+--------+--------------+---------+---------+--------+---------1
I X I as I byte 1·1 to I hexadecimal I multi- I I I left I
I I needed I I 256 (1) I digits I pIe I I I I
.------+---------+--------+--------+--------------+---------+---------+--------+---------i
I B I as I byte 1·1 to I binary I multi- I I I left I
I I needed I I 256 I digits I pIe I I I I
~------+---------+--------+--------+--------------+---------+---------+--------+---------~ I F I 4 I word 1.1 to I decimal I multi- I -85 to I -187 tol left (3) I
I I I I 8 I digits I pIe I +15 I +346 I I
.------+---------+--------+--------+--------------+---------+---------f--------+---------i I H I 2 I half 1.1 to I decimal I multi- I -85 to I -187 I left (3) I
I I I word I 8 I digits I pIe I +75 I +346 I I
.------+---------+~-------f--------+--------------+---------+---------f--------+---------i I E I 4 I word 1.1 to I decimal I roulti- I -85 to I I right (3) I
I I I I 8 I digits I pIe I +75 I 0-14 I I
.------+---------+--------+--------f--------------+---------+---------+--------+---------i
I 0 I 8 I double I .1 to I decimal I multi- I -85 to I I right (3) I
I I I word I 8 I digits I pIe I +75 I 0-14 I I
t------t---------t--------+--------t--------------t---------t---------f--------t---------i
I L I 16 I double I .1 to I decimal I mUlti- I -85 to I 0-28 I right (3) I
I I I word I 16 I digits I pIe I +75 I I I
~------+--------+_-------t_------_+------------4--------_+---------i-------i--------,
I P I as I byte 1·1 to I decimal I multi- I I I left I
I I needed I I 16 I digits I pIe I I I I
.------+---------+--------f--------t--------------f---------+---------+--------+---------i
I Z I as I byte 1·1 to I decimal I multi- I I I left I
I I needed I I 16 I digits I pIe I I I I
.------+---------+--------+--------+--------------f---------+---------+--------+---------i
I A I 4 I word 1·1 to I I multi- I I I left I
I I I I 4 (2) I pIe I I I I

I I
I I I I I symbol I pIe I I I I
.------+---------+--------+--------+--------------f---------+---------+--------+---------i
I S I 2 I half I 2 only lone absolute I multi- I I . I I
I I I word I I or relocatab-I pIe I I . I I
I I I I I le expression I I I I I
I I I I I or two absol-I I I I I
I I I I I ute express- I I I I I
I I I I I ions: I I I I I
I I I I I exp (exp) I I I I I
.------+---------f--------+--------+--------------f---------+---------f--------+---------i
I Y I 2 I half 1.1 to I any I multi- I I I left I
I I I word I 2 (2) I expression I pIe I I I I
.------~---------~--------~--------~--------------~---------~---------~-------~--------~ I (1) In a D~ assembler instruction C and X type constants can have length specification I
I to 65535. I
I (2) Bit length specification permitted with absolute expressions only. Relocatable A- I
I type constants, 3 or 4 bytes only; relocatable Y-type constants, 2 bytes only. I
I (3) Errors will be flagged if significant bits are truncated or if the value specified I
I cannot be contained in the implicit length of the constant. I L __ J

Appendix VI: Summary of Constants 411

This page left blank intentionally.

/\
\ I

~-1

o

Appendix VII: Summary of Macro Facility

The four charts in this Appendix summarize the macro facility described in Part IV of
this publication.

Chart 1 indicates which macro language elements can be used in the name and operand
entries of each statement.

Chart 2 is a summary of the expressions that can be used in macro instruction statements.

Chart 3 is a summary of the attributes that may be used in each expression.

Chart 4 is a summary of the variable symbols that can be used in each expression.

Appendix VII: Summary of Macro Facility 413

01:00
I-'
01:00

Vatiabl. SyMiIols

Global SET Symbols LOCGI SET SymIIoll

Symbolic
Statement Porometer SETA SETB SETC SETA SETB SETC

MACRO

Pn>totype Nome
Stat_t Open>nd

GILA OpeRHld

GBlB Operand

GBLC Operand

LCLA Operand

LCU Operand

LCLC Ope",nd

Model Na_ Na_ Name Name Name Name Name
Statement Ope",tion Operation Operation Operotion Operation Operation Operation

Operand Operand Operand Operand Operand Operond Operand

SETA Nome Name
Operand3 Operand9 Ope",n; Ope",nd Operand3 Operand9 Operand

SETB
Opera""

Nome Nome
Ope",ncP Operand Operand6 Operand6 Operand Operan'/>

SETC Name Name
Opeftlnd Operand7 Operand8 Operand Open>nd7 Operand8 Operand

AIF
Opera~ Operand6 Operand Operand6 Operand6 Operand Operand6

AGO

ACTR Operan~ Operand O~rand3 Operand2 Operand Operand3 Operan~

ANOP

MEXIT

MNOTE Operand Operand Operand Operand Operand Operand Operand

MEND

Outer Nome Name Name Name Name Name
Macra Ope",nd Operand Operand Operand Operand Operand

Inner Nome Nome Name Name Name Name Name
Macra Operand Ope",nd Operand Operond Operand Operand Operand

Assembler Name Nome Name Name Name Nome
language Operation Operation Operation Operation Operation Operation
Stot6fllellt Ope",nd Operand Operand Operand Operand Operand

I. Variable symbols in macra-instructians replaced by their volues before processing.
2. Only if value is self-defining term.
3. Converted to arithmetic +1 or -to.
4. Only in character relations.
5. Only in arithmetic relations.
6. Only in arithmetic or character relations.
7. Converted to unsigned number.

8. Converted to charocter I or o. y'';'::k\/:';:;i,.,'"·'·"/ .. ",,,·,,>,,:<:.,,.+/,· ".''' .. ' .. i.',:i'·'''')C:.'·'{'\
9. Only if one ta ten decimal digits l!i"~;:"J"'~.l'Q~r;:\

~ •••• ' .• "I

".~
'~ : -~/

S~ V ... iable S,........II
Attributes

&SYSNDX &SYSECT &SYSUST &SYSPARM &SYSDATE &SYSTIME Type
Sequence

length Scaling Integer Count Number Symbol

Name Name Name Na_ Name

Operation Operation Operotion Operation
Operand Operand Operand Operand Operand Operand

Operand Operan; Operand
9 Operand Operand Operand Operand Operand

Operand6 Operand4 Operand6 Operand
6 Operand4 Operand5 Operand5 Operand5 Operand5 Operand5

Operand Operand Operand Operand Operand Operand Operand

Operond6 Operand4 Operand6 Operand
6 Operand4 Operand5 Operand5 Operand5 Operand5

Name
Operand5 Operand

Name
Operand

Operand Operan~ Operand
2 Operand Operand Operand Operand Operand

Name

Name

Operand Operand Operand Operand Operand Operand Name

Name

Nome Name
Operand Operand Operand

Name Name Nome Nome Nome
Operand Operand Operand Operand Operand Operand

Name

() f~) l;

b

o

Ie

Chart 2. Conditional ASsembly Expressions

Page of GC33-40tO-O
Revised September 29,1972
B}' TNT. GN33-8148

xpression Arithmetic Expressions Character Expressions Logical Expressions

an contain • Self-defining terms

• Length, scaling,
integer, count, and
number attributes

• SET A and SETB
symbols1

• SETC symbols whose
values are a decimal
self-defining term~

• 'SYSPARM if its
value is a decimal
self-defining term

• Symbolic parameters
if the corresponding
operand is a decimal
self-defining term

• 'SYSLIST~) if the
corresponding
operand is a decimal
self-defining term

• 'SYSLIST ~,m) if the
corresponding operand
is a decimal self­
defining term

• 'SYSNDX

Values must be:

1$.,cfrOlltiOj3llrQu!tb 2, ·117j;ISii;ij:I',);

PQs .. fr:9m .. 0 ···tbrou9b99,'~9,,~9j

• Any combination of
characters enclosed
in apostrophes

• Any variable symbol
enclosed in
apostrophes

• A concatenation of
variable symbols and
other characters
enclosed in
apostrophes

• A type attribute
reference

• A 0 or a 1

• SETS symbols

• Arithmetic
relations'

• Character
relations 2

A character relation consists of two character expressions
related by the operator GT, LT, EQ, NE, GE, or LE. Type
attribute notation and Substring notation may also be
used in character relations. The maximum size of the character
expressions that can be compared is 255 characters. If the two
character expressions are of unequal size, the the smaller one
will always compare less than the larger.

Appendix VII: Summar:y of ~~cro Facility 415

Page or GC33-40tO-O
Revised September 29, 1972
By TKL CN33-8148

416

Expression

Operations
are

Range
of values

May be
used in

Arithmetic Expressions

+, - (unary and bi­
nary), *, and I;
parentheses per­
mitted

• SETA operands

Character Expressions

Concatenation, with a
period (.)

o through 255
characters

• SETC operands

• Arithmetic relations • Character relations 2

• Subscripted SET
symbols

• gSYSLIST subscript (s)

• Substring notation

• Sublist notation

Logical Expressions

AND, OR, and NOT
parentheses per­
mitted

o (false) or
1 (true)

• SETS operands

• AlP operands

1 An arithmetic relation consists of two ~rithmetic expressions
related by the operators Gr, LT, EQ, NE, GE, or LE.

2 A character relation consists of two character expressions
related by the operator GT, LT, EQ, NE, GE, or LE. Type
attribute notation and Substring notation may also be
used in character relations. The maximum size of the character
expressions that can be compared is 255 characters. If the two
character expressions are of unequal size, the the smaller one
will always compare less than the larger.

o

a

eL)

.!l

o

"0

o

Chart 3. Attributes

Attribute Notation

T'

ngth L'

Scaling S'

Integer I'

nt X,

r N'

Can be used with:

Ordinary Symbols de­
fined in open code;
symbolic parameters
insije macro defini­
tions; 'SYSLI~T(m) I

'SYSLIST

Ordinary Symbols de-
fined in open code;
symbolic parameters
inside macro defini-
tions; 'SYSLIST (In) I

and 'SYSLIST(m,n) in-
side macro definitions

Ordinary Symbols de-
fined in open code;
symbolic parameters
insije macro defini-
tions; 'SYSLIST (m) I

and iSYSLIST (m,n) in-
side macro definitions

Ordinary Symbols de-
fined in open code;
symbolic parameters
insije macro defini-
tions; 'SYSLIST (m) I

and iSYSLlST (m,n) in-
side macro definitions

Symbolic parameters,
iSYSL 1ST (m) and
iSYSL 1ST (m,n) inside

definitions

Symbolic parameters,
iSYSLIST and
'SYSLIST(m) inside
macro definitions

Can be used only if
type attribute is:

Can be used in

~ay always be used~ 1. SETC operand
fields

Any letter except
M, N, 0, T and U

H,F,G,D,E,L,X,P,
and Z

H,F,G,D,E,L,X,P,
and Z

Any letter

Any letter

2. Character
relations

Arithmetic
expressions

Arithmetic
expressions

Arithmetic
expressions

Arithmetic
expressions

Arithmetic
expressions

NOTE: There are definite restrictions in the use of these attributes (see L1~ • '

Appendix VII: Summary of Macro Facility 417

Chart 4. Variable Symbols (Part 1 of 2)

Variable
Symbol

Symbolic'
parameter

SETA

SETB

SETC

&SYSNDX'

&SYSECT'

&SYSLIST'

&SYSLIST
(n) "
&SYSLIST
(n ,m) ,

Declared by: Initialized,
or set to:

Value changed
by:

prototype
statement

Corresponding ~onstant
macro instruc- throughout
tion operand definition)

LCLA or GBLA
instruction

LCLB or GELS
instruction

LCLC or GELC
instruction

o

o

String of
length 0
(null)

The assembler Macro
instruction
index

The assembler Control
section in
which macro
instruct ion
appears

SETA
instructi:>n

SETB
instructi:>n

SETC
instructi:> n

(Constant
throughout
defini tion;
unique for
each macro
instruct io n)

(Constant
throughout
definition;
set by CSECT,
DSECT, START,
and COM)

The assembler Not applicable Not applicable

The assembler Corresponding (Constant
macro instruc- throughout
tion operand definition)

'Can be used only in macro definitions.

418

May be used in:

• Arithmetic
expressions
if operand
is decimal
self-defining term

• Character
express ions

• Arithmetic
expressions

• Character
expressions

• Ari throe tic
expressions

• Character
expressions

• Logical
expr es s ions

• Arithmetic
expressions
if value is
decimal se1f­
defining term

• Character
expressions

• Arithmetic
expressions

• Character
expr es s ions

• Character
expressions

• N'&SYSLIST in
ari thmetic
expressions

• Arithmetic
expressions
if operand
is decimal
self-defining
term

• Character
expressions

o

o Chart 4. Variable Symbols cont. (Part 2 of 2)
Variable Declared by: lnitializ ed, Value changed May be used in:
Symbol or set to: by:

&SY'SPARM PARM field User defined Constant • Arithmetic
or null throughout expression

assembly if value is
decimal self-
defining term

.
• Character

expression

&SYSTIME The assembler System time Constant • Character
throughout expression
assembly

&SYSDATE The' assembler System date Constant • Character
throughout expression
assembly

1Can be used only in macro definitions.

o
Appendix VII: Summary of Macro Facility 419

This page left blank intentionally.

o

This glossary has three rr.ain types of definitions that
aI=I=ly:

• To the assembler language in I=articular (usually
distinguished by reference to the words -assemtler-,
- assemtly -, etc.)

• To programming in general

• To data processing as a whole

If you do not understand the meaning of a data processing
term used in any of the definitions below, refer to the ~
Oata Processing Glossary, Order No. GC20-1699.

IBM is grateful to the American National Standards Institute
(ANSI) for permission to reI=rint its definitions from the
American National Standard Vocabulary for Information
Processing, which was prepared by Subcommittee X3l<5 on
Terminology and Glossary of Anerican National Standards
Cammi ttee X3.

ANSI definitions are preceded by an asterisk ~).

Glossary

Glossary 421

*absolute address: A pattern of characters
that identifies a unique storage location
without further modification.

acsolute expression: An asseubly-time
expression whose value is not affected by
progzam relocation. An absolute expression
can represent an absolute address.

acsqlute term: A term whose value is not
affected cy relocation.

*address:
1. An identification, as reFresented by a

name, label, or number, for a register,
location in storage, or any cther data
source or destination such as the
location of a station in a
communication network.

2. Loosely, any part of an instruction
that specifies t.he locaticn of an
operand for the instruction. Synonymous
with address reference.

3. See acsolute address, base address,
explicit address, implicit address,
symbolic address.

address constant: A value, or an expression
representing a value, used in the
calculation of storage addresses.

address reference: Same as address (2).

alignment: The positioning of the beginning
of a machine instruction, data constant, or
area on a proper boundary in virtua 1
storage.

alphabetic character: In assembler
programming, the letters A through Z and $,

" Q.

*alphameric: same as alphanumeric.

*alphanumeric: Pertaining to a character set
that contains letters, digits, and usually,
other characters, such as punctuation
marks. Synonymous with alphameric.

*AND: A logic operator having the property
that if P is a statement, Q is a statement,
R is a statement, ••• , then the AND of P, Q,
R,... is true if all statements are true,
false if any statement is false.

arithmetic expression: A conditicnal
assembly expression that is a combination
of arithmetic terms, arithmetic cFerators,
and paired parentheses.

arithmetic operator:
1. In assembler programming, an cperator

that can be used in an absolute or
relocatable expression, or in an
arithmetic expression to indicate the

422

actions to be performed on the terms in
the expression. ~he arithmetic
operators allowed are: +, -, ., /.

2. See binary operator, unary operator.

arithmetic relation: Two arithmetic
&ipressions separated by a relational
operator.

*arithmetic shift:
1. A shift that does not affect the sign

position.
2. A shift that is equivalent to the

multiplication of a number Cy a
positive or negative integral power of
the radix.

arithmetic term: A term that can be used
only in an arithmeitc expression.

array: In assembler programming, a series
of one or more values represented by a SET
symbol.

*assemble: To prepare a machine language
program from a symbolic language program by
substituting absolute operation codes for
symbolic operation codes and absolute or
relocatable addresses for symbolic
addresses.

*assembler: A computer program that
assembles.

assembler instruction:
1. An assembler language statement that

causes the assembler to perform a
specific operation. Unlike the machine
instructions, the assembler
instructions are not translated into
machine language.

2. See also conditional assembly
instruction, macro processing
instruction.

assembler language: A source language that
includes symbolic machine language
statements in which there is a one-to-one
correspondence with the instruction formats
and data formats of the computer. The
assembler language also includes statements
that represent assembler instructIons and
macro instructions.

assembly time: The time at which the
assembler translates the symbolic machine
language statements into their object code
form ~achine instructions). The assemtler
also processes the assembler instructions
at this time, with the exception of the
conditional assembly and macro processing
instructions, which it processes at
pre-assembly time.

~.
\~,~.>{

b

o

attribute: A characteristic of the data
defined in a source module. The assembler
assigns the value of an attribute to the
symbol or macro instruction operand that
represents the data. Synonymous with data
attritute.

*base:
-'-.--A number that is multiplied by itsel~

as many times as indicated by an
exponent.

2. See floating-point base.

*base address: A given address fron which an
absolute address is derived by conbination
with a relative address. NOTE: In
assembler programming, the relative address
is synonymous with displacement.

base register: A register that contains the
base address.

*binary: Pertaining to the number
representation system with a radix of two.

*binary digit: In binary notation, either of
the characters, 0 or 1.

binary operator: An arithmetic operator
having two terms. The binary operators
that can be used in absolute or relocatable
expressions and arithmetic expressions are:
addition (+), subtraction (-),
mul tiplica tion (*), and division (/).
Contrast with unary operator.

*bit: A binary digit.

bit-length modifier: A subfield in the DC
assembler instruction that determines the
length in bits of the area into which the
defined data constant is to be assembled.

bit string: A string of binary digits in
which the position of each binary digit is
considered as an independent unit.

blank: In assembler programming, the same
as space character.

*blank character: Same as space character.

boundary: In assembler progran:rring, a
location in storage that marks the
beginning of an area into which data is
assembled. For example, a fu1lword boundary
is a location in storage whose address is
divisible by four. The other boundaries
are: doubleword (location divisible by
eight), halfword (location divisible by
two), and b¥te (location can be any
number). See alsu· alignment.

* branch: Loosely, a conditional jump.

buffer: An area of storage that is
temporarily reserved for use in performing
an input/output operation, and into which
data is read or from which data is written.

*!2..!!9:: A mistake or malfunction.

byte:
,. A sequence of adjacent binary digits

operated upon as a unit and usually
shorter than a computer word.

2. The representation of a character;
eight binary digits (bits) in
System/370.

call;
.-'-.-To transfer control to a specified

closed subroutine.
2. See also macro call.

* character :
,. A letter, digit, or other symbol that

is used as part of the organization,
control, or representation of data. A
character is often in the form of. a
spatial arrangement of adjacent or
connected strokes.

2. See blank character, character set,
special character.

character exp!~ssion: A chaxacter string
enclosed by apostrophes. It can te used
only in conditional assembly instructions.
~he enclosing apostrophes are not part of
the value represented. Contrast with quoted
string.

character relation: Two character strings
separated by a relational operator.

character set:
*,. A set of unique representations called

characters, for example, the 26 letters
of the English alphabet, 0 and , of the
Boolean alphabet, the set of signals in
the Morse code alphabet, the '28
characters of the ASCII alphabet.

2. In assembler programming, the
alphabetic characters A through Z and
$, I, Q; the digits, 0 through 9; and
the speci al characters + - * / , () =
• • , and the blank character.

*character string: A string consisting
solely of characters.

closed subroutine: A subroutine tha t can be
stored at one place and can be linked to
one or more calling routines. Contrast with
open subroutine.

Glossary 423

*code:
-l-.--A set of unambigous rules specifying

the way in which data tray be
repres ented, for example, the set .. of
correspondences in the standard code
for information interchange.

2. In data processing, to represent data
or a computer program in a symbolic
form that can be accepted by a data

-proce ssor.
3. To write a routine.
4. See condition code, object code,

operation code.

*coding: See symbolic COding.

collating sequence: An ordering assigned to
a set of items, such that any twc sets in
that assigned order can be collated.

*column: A vertical arrangerrent of
characters or other expressions.

comments statement: A statement used to
include information that may be helpful in
running a job or reviewing an cut~ut
listing.

*complement:
1. A number that can be derived from a

specified number by subtracting it from
a second specified number. For
example, in radix notaticn, the second
specified number may be given power of
the radix or one less than the given
power of the radix. The negative of the
number is often represented by its
complement.

2. See radix complement, twos complement.

complex relocatable expression: A
relocatable expression that contains two or
more unpaired relocatable terms or an
unpaired relocatacle term preceded by a
minus sign, after all unary operators have
been resolved. A complex relccatable
expression is not fully evaluated until
program fetch time.

*computer program: A series of instructions
or statements, in a form acceptable to a
computer, prepared in order to achieve a
certain result.

*computer word: A sequence of bits or
characters treated as a unit and capable of
being stored in one computer location.

concatenation character: The period (.)
that is used to separate character strings
that are to be joined tcgether in
conditional assembly processing.

424

condition code: A code that reflects the
result of a previous input/output,
arithmetic, or logical operation.

conditional assembll: An assembler facility
for altering at pre-assembly time the
content and sequence of source statements
that are to be assembled.

conditional assembll expression: An
expression that the assembler evaluates at
pre-assembly time.

conditional assembly instruction: An
assembler instruction that performs a
conditional assembly operation. Conditional
assembly instructions are processed at
pre-assembly time. They include: the LCLA,
LCLB, LCLC, GBLA, GBLB, a nd the GBLC
declaration instructions; the SETA, SETB,
and SETC assignment instructions; the AlP,
AGO, ANOP, and ACT.R branching instructions.

* condi tional j!!!!!E: A jump tha t occurs if
specified criteria are met.

* .£Q!!§~: See figurative constant.

continuation line: A line of a source
statement into which characters are entered
when the source statement cannot ce
contained on the preceding line or lines.

control progf~~: A program that is designed
to schedule and supervise the performance
of data processing work by a computing
system.

control secti2!!= That part of a ~rogram
specified by the programmer to be a
relocatable unit, all elements of which are
to be loaded into adjoining virtual storage
locations. Abbreviated CSECT.

control statement: See linkage editor
control statement.

£2l2l: To reproduce data in a new location
or other destination, leaving the source
data unchanged, although the physical form
of the result nay differ from that of the
source. For example, to copy a deck of
cards onto a magnetic tape.

count attribute (gl): An attribute that
gives the number of characters that would
be required to represent the data as a
character string.

* counter:
~-device such as a register or storage

location used to represent the numter
of occurrences of an event.

2. See instruction counter, location
counter.

o

o

o

CPU: Central processing unit.

CSECT: See control section.

data attribute: Same as attribute.

data constant: See figurative constant.

*drbug: To detect, locate, and remove
m1stakes from a routine or malfunctions
from a compute~.

*decimal: pertaining to the nurrber
representation systero with a radix of ten.

declare: To identifY the variable symbols
to be used by the asserrbler at pre-assembly
time.

*delimiter: A flag that separates and
organizes items of data.

*device: See storage device.

.dictionary: See external syrobcl dictionary.

dimension: The maximum number of values
that can be assigned to a SET symbol
representing an array.

dimensioned SET symbol: A SET syrobcl,
representing an array, followed by a
decimal number enclosed in parentheses. A
dimensioned SET symbol must be declared in
a global (GBLA, GBLB, or GBLC) or local
~CLA, LCLB, LCLC) declaration instruction.

displ acement : .1. Same as relative address.
2. In assembler programming, the

difference in bytes between a symbolic
address and a specified base address.

doubleword: A contiguous sequence cf bits
or characters which coreprises two com~uter
words and is capable of being addressed as
a unit.
NOTE: In assembler programming, the
doubleword has a length of eight bytes and
can be aligned on a doubleword boundary (a
location whose address is divisible by
eight). Contrast with fullword, halfword.

.dummy: Pertaining to the characteristic of
having the appearance of a specified thing
but not having the capacity to function as
such. For example, a dummy control
section.

dummy control section: A control section
that the assembler can use to format an

area of storage without producing any
object code. Synonymous with dummy section.

dummy section: Same as dummy control
section.

duplication factor: In assembler
programming, a value that indica tes the
number of times that the data specified
immediately following the duplication
factor is to be generated. For example, the
first subfield of a DC or DS instruction is
a duplication factor.

.dynamic storage allocation: A storage
allocation technique in which the location
of computer programs and data is determined
by criteria applied at the moment of need.

EBCDIC: Extended binary coded decimal
interchange code.

entry name: A name within a control section
that defines an entry point and can be
referred to by any control section.

.entry point: In a routine, any place to
which control can be passed.

entry symbol:
1. An ordinary symbol that represents an

entry name (identified by the ENTRY
assembler instruction) or control
section name (defined by the CSECT or
START assembler instruction) •

2. See also external symbol.

~: (equal to) See relational operator.

.error message: An indication that an error
has been detected. Contrast with warning
message.

~: External symbol dictionary.

excess sixty-four binary notation: In
assembler prograrrming, a binary notation in
which each exponent of a floating-point
number E is represented by the binary
equivalent of E plus sixty-four.

execution time: ihe time at which the
machine instructions in object code form -
are processed by the central processing
unit of the computer.

explicit address: An address reference
which is specified as two absolute
expressions. One expression supplies the
value of a base register and the other
supplies the value of a displacement. The
assembler assembles both values into the
object code of a machine instruction.

Glossary '125

exponent: .1. In a floating-point representation, the
numeral, of a pair of numerals
representing a number, that indicates
the power to which the base is raised.

2. See also excess sixty-four binary
notation.

exponent modifier: A subfield in the
operqnd of the DC assembler instruction
that indicates the power of ten by which a
number is to be multiplied before being
assembled as a data constant.

expr es s ion:
1. One or more operations represented by a

combination of terms, and paired
parentheses.

2. See absolute expression, arithmetic
expression, complex relocatable
expression, relocatable expression.

3. See also character expression.

extended binary coded decimal interchange
code: A set of 256 characters, each
represented by eight bits.

external name: A name that can be referred
to by any control section or separately
assembled module: that is, a contrel
section name or an entry name in another
module.

external reference: A reference to a symbol
that is defined as an external name in
another module.

external symbol:
1. An ordinary symbol that represents an

external reference. An external symbol
is identified in a source module by the
EXTRN or WXTRN assembler instruction,
or by the V-type address constant.

2. Loosely, a symbol contained in the
external symbol dictionary.

3. See also entry symbol.

external symbol dictionary: Contrel
information associated with an object or
load module which identifies the external
symbols in the module. Abbreviated ESD.

~: External reference.

fetch:
*~o locate and load a quantity of data

from storage.
2. In the Operating System ~S), to obtain

load modules from auxiliary storage and
load them into virtual storage. See
also loader (1).

426

3. In the risk Operating System (OOS), to
bring a program phase into virtual
storage from the core image litrary fer
immediate execution.

4. A control program routine that
accomplishes (1), (2), or (3). See alse
loader (2).

5. The name of the system macro
instruction (FElCH) used to accomplish
(1), (2), or (3).

* figurati ve constant: ~ preassigned, fixed,
character string with a preassigned, fixed,
data name in a particular programming
language.
NCiE: In assembler programming, the two
types of figurative constant are:

a. data and address constants defined
by the DC assembler instruction.

b. symbols assigned values Cy the EQU
assembler instruction.

flag:
*1. Any of various types of indicators used

for identification. For example, in
assembler programming, the paired
apostrophes that enclose a character
expression of a quoted string.

2. In assembler programming, to indicate
the occurrence of an error.

* floating-point base: In floating-point
representation, the fixed positive integer
that is the base of the power. NOTE: In
assembler programming, this base is 16.

fullword: A contiguous sequence of bits or
characters which comprises a computer word
and is capable of being addressed as a
unit.
NCiE: In assembler programming, the
fullword has a length of four bytes and can
be aligned on a fullword toundary (a
location whose address is divisible by
fou~. Contrast with doubleword, halfword.

GE: ~reater than or equal to) See
relational operator.

generate:
*1. To produce a program by selection of

,subsets from a set of skeletal coding
under the control of parameters.

2. In assembler programming, to produce
assembler language statements from the
model statements of a macro definition
when the definition is called by a
macro instruction.

global scope: Pertaining to that part of an
assembler program that includes the tody of
any macro definition called from a source

o

mod ule and the open code portion of the
source module. Contrast with local scope.

global variatle symbol:
1. A variable symbol that can be used to

communicate values between macro
definitions and tetween a macro
defini tion and open code.

2. Contrast'with local variable symbol.

GT: (greater than) See relational operator.

*halfword: A contiguous sequence of bits or
characters which comprises half a com~uter

2. See assembler instruction, conditional
assembly instruction, rrachine
instruction, macro instruction.

* instruction counter: }. counter that
indicates the location of the next computer
instruction to be interpreted.

instruction statement: See instruction (1).

integ~r attriQ~~: An attribute that
indicates the number of digit positions
occupied by the integer portion of
fixed-point, decimal, and floating-point
constants in their object code form.

word and is capable of being addressed as a * interruE!:: To stop a process in such a lIiCly
unit. it can be resumed.
NOTE: In assembler programming, the
halfword has a length of two bytes and can *.!LQ: An abbreviation for input/output.
be aligned on a halfword boundary (a
location whose address is divisible by
twO). Contrast with doubleword, fullword.

hexadecimal: Pertaining to a number system
with a radix of sixteen; valid digits range
from 0 through F, where F represents the
highest units position (15).

iromediate data: Data specified in an SI
type machine instruction that represents a
value to be assembled into the object code
of the machine instruction.

implicit address: An address reference
which is specified as one absclute or
relocatable expression. An implicit address
must be converted into its ex~licit
base-displacement fonn before it can be
assemtled into the object code of a machine
instruction.

index register:
* 1. A regi ster whose content nay be added

to or subtracted from the operand
address prior to or during the
execution of a computer instruction.

2. In assembler programmdng, a register
whose content is added to the cperand
or absolute address derived frcm a
combination of a base address with a
displacement.

inner macro instruction: A macro
instruction that is specified, that is,
nested inside a macro definition. Contrast
with outer macro instruction.

*instruction:
1. A statement that specifies an c~eration

and the values or locations of its
operands.

* jQt con~rol~ta:!:~~:!:: A statement in a job
that is used in identifying the job or
describing its requirements to the
operating system.

* jump:
1. A departure from the normal sequence of

executing instructions in a computer.
2. See conditional jump.

keyw9rd: In assewbler programming, an
ordinary symbol containing up to seven
characters. ~ keyword is used to identify a
parameter, called a keyword paxameter, in a
macro prototype statement and the
corresponding roacro instruction operand.

keyword operand; An operand in a macro
instruction that assigns a value to the
corresponding keyword parameter declared in
the prototype statement of the called macro
definition. Keyword operands can be
specified in any order, because they
identify the corresponding parameter ty
keyword and not by their position.
NOTE: In assembler programming, the
specification of a keyword operand has the
format: a keyword followed by an equal sign
which, in turn, is followed by the value to
be assigned to the keyword parameter.

keyword_p!!~m~:!:~!: A symbolic parameter in
which the symbol fcllowing the ampersand
represents a keyword.
NOTE: In assembler programming, the
declaration of ~eyword parameter has the
format: a keyword parameter followed ty an
equal sign which, in turn, is followed by a
standard - (default) value.

Glossary 427

label:
*~ne or more characters used to identify

a statement or an item of data in a
computer program.

2. In assembler progran.ming, the entry in
the name field of an assembler language
sta tement. The three main types of name
entry are:
a. the ordinary symbol which

represents a label at assembly
time.

b. the sequence symbol which
represents a label at ~re-assembly
time and is used as a conditional
assembly branching destination.

c. the variable symbol that
represents a pre-assembly time
label for conditional assembly
processing and from which ordinary
symbols can be generated to create
assembly-time labels.

* language:
1. A set of representations, conventions,

and rules used to convey infcrwation.
2. See machine language, object language,

source language.

LE: (less than or equal to) See relational
operator.

*l~ngth: See word length.

length attribute eL'): An attribute that
9i ve s the number of bytes to be cccu~ied by
the object code for the data represented,
such as machine instructions, constants, or
areas.

length field: The operand entry cr subentry
in machine instructions that specifies the
number of bytes at a specific address that
are affected by the execution of the
instruction.

length modifier: A subfield in the o~erand
of the DS or DC assembler instruction that
determines the length in bytes of the area
to be reserved or of the area into which
the data defined is to be assembled.

*level: The degree of subordination in a
hierarchy.

library macro definition: A macro
definition stored in a program library.
The IBM-supplied supervisor and data
management macro definitions (such as those
called by GET or PUT) are examples of
library macro definitions. A library macro
definition can be included at the beginning
of a source module: it then becomes a
source macro definition.

428

* link!9:~: In programming, coding that
connects two separately ceded routines.

link~ge edito!: A processing program that
prepares the output of language translators
for execution. It combines separately
produced object or load mcdules; resolves
symbolic cross references among them;
replaces, deletes, and adds control
sections, and generates overlay structures
on request; and produces executatle code (a
load module) that is ready to be fetched
into virtual storage.

linkage editor control statement: An
instruction for the linkage editor.

literal: A symbol or a quantity in a source
program that is itself data, rather than a
reference to data. Contrast with figurative
constant.

literal pool: An area in storage into which
the assembler assembles the values of the
literals specified in a source module.

* load: In programming, to enter data into
storage or working registers.

~~gule: The output of the linkage
editor; a program in a format suitable for
loading into virtual storage for execution.

loader:
1. Under the Operating System (OS), a

processing program that combines the
basic editing and loading functions of
the linkage editor and program fetch in
one job step. It accepts object modules
and load modules created by the linkage
editor and generates executable code
directly in virtual storage. The loader
does not produce load modules for
program libraries.

2. Under the Disk Operating System (tOS),
a supervisor routine that retrieves
program phases from the core image
library and loads the~ into virtual
storage.

local scoee: Fertaining to that part of an
assembler program that is either the tody
of any macro definition called from a
source module or the open code portion of
the source module. Contrast with global
scope.

local variable symbol:
1. A variable symbol that can be used to

communicate values inside a macro
definition or in the open code portion
of a source module.

IC··~·~ .. u .1

x' -"\

'\l.._ .. v'!

o

()

o

2. Contrast with global variable symbol.

*location: Any place in which data rray be
stored.

location counter: A counter whose value
indicates the address of data assembled
from a machine instruction or a ccnstant,
or the address of an area of reserved
storage, re1a ti ve to the beginning of a #

control section.

*logic shift: A shift that affects all
positions.

logical expression: A conditional assembly
expression that is combination of logical
terms, logical operators, and paired
parentheses.

logical operator: In assembler programming,
an operator or pair of operators that can
be used in a logical expression tc indicate
the action to be performed on the terms in
the expression. The logical operatcrs
allowed are: AND, OR, NOT, ANt NOT, and OR
NOT.

logical relation:
1. A logical term in which two expressions

are separated by a relational operator.
The relational operators allowed are:
EQ, GE, GT, LE, LT, and NE.

2. See arithmetic relation, character
relation.

logical term: A term that can be used only
in a logical expression.

loop:
* 1. A sequence of instructions that is

executed repeatedly until a terminal
condition prevails.

2. See loop counter.

loop counter: In assembler prograrrrring, a
counter to prevent excessive looping during
conditional assembly processing.

LT: (less than) See relational operator.

*machine code: An operation code that a
machine is designed to recognize.

machine instruction:
• ,. An instruction that a machine can

recognize and execute.
2. In assembler programming, (locsel~ the

symbolic machine language statements
which the assembler translates into
machine language instructions.

*machine language: A language that is used
directly by a machine.

macro:
;:--roose1y, a macro definition.
2. See also macro definition, macro

generation, rracro instruction, macro
prototype statement.

macro call: Same as macro instruction.

macro definition: A set of assembler
language statements that defines the name
of, format of, and conditions for
generating a sequence of assembler language
statements from a single source statement.

.macro expansion: Same as macro genera tion.

macro generation: An operation in which the
assembler produces a sequence of assemtler
language statements by processing a macro
definition called by a macro instruction.
Macro generation takes place at
pre-assembly time. Synonymous with macro
expansion.

macro instruction:
1. An instruction in a source language

that is equivalent to a specified
sequence of machine instructions.

2. In assembler programming, an assemtler
language statement that causes the
assembler to process a predefined set·
of statements (called a macro
definition) • The staterrents normally
produced from the macro definition
replace the macro instruction in the
source program. Synonymous with macro
call.

macro instruction operand: An operand that
supplies a value to be assigned to the
qorresponding symbolic parameter of the
macro definition called by the macro
instruction. This value is passed into the
macro definition to be used in its
processing.

macro libra~: See program library.

macro processing instruction: An assembler
instruction that is used inside macro
definitions and processed at pre-assemtly
time. These instructions are: MACRO, MRlt,
MEXIT, and MNOTE.

macro prototype: Same as macro prototype
statement •

macro prototype statement: An assemtler
language statement that is used to give a
name to a macro definition and to provide a
model (prototype) for the macro instruction
that is to call the macro definition.

Glossary 429

main stor age:
* 1. The general purpose storage cf a

computer.
Usually, main storage can be accessed
directly by the operating registers.

2. See-also real storage, virtual storage.

* mask:- A pattern of characters that is used
to control the retention or elimination of
portions of another pattern of characters.

mnemonic operation code: An operation code
consisting of mnemonic symbols that
indicate the nature of the operation to be
performed, the type of data used, or the
format of the instruction perforning the
operation.

mnemonic symbol:
* 1. A sym1:ol chosen to assist the human

memory, for example, an abbreviation
such as WmpyW for -multiply-.

2. See also mnemonic operation cede.

value from the entry in the name field of
the macro instruction that corresponds to
the macro prototype statenent.

NE: (not equal to) See relational operator.

* nest: To imbed subroutines or data in other
su1:routines or data at a different
hierarchical level such that the different
levels of routines or data can be executed
or accessed recursively.

nesting level: In assembler programming,
the level at which a term (or
subexpression) appears in an expression, or
the level at which a macro definition
containing an inner macro instruction is
processed by the assembler.

* no OP: An instruction that specifically
instructs the computer to do nothing,
except to proceed to the next instruction
in sequence.

model statement: A statement in the body of * NO!: A logic operator having the property
that if P is a statement, then the NOT of P
is true if P is false, false if P is true.

a macro definition or in open code from
which an assem1:ler language statereent can
be generated at pre-assembly time. Values
can be substituted at one or more points in
a model statement; one or more identical or
different statements can be generated from
the same model statement under the control
of a conditional assembly loop.

* module:
1. A program unit that is discrete and

identifiable with respect to compiling,
oom1:ining with other units, and
loading, for example, the infut to, or
output from, an assembler, ccnpi1er,
linkage editor, or executive routine.

2. See lOad module, object nodule, source
module.

name:
-1-.--A 1- to a-character alphameric term

that identifies a data set, a control
statement, an instruction statement, a
program, or a cataloged procedure. The
first character of the name nust be
alphabetic.

2. See entry name, external name.
3. See also name entry, label.

name entry: Usually syncnymous with label
(2). However, the name entry of a model

statement can be any string ef characters
at pre-asseml::ly tine.

* null character: A control character that
serves to accomplish ~edia fill or time
fill, for example, in ASCII the all zeros
character (not numeric zero). Null
characters may be inserted into or removed
from a sequence of characters without
affecting the meaning of the sequence, l:ut
control of equipment or the format may 1:e
affected. Abbreviated NUL. Contrast with
space character.

null character stri~: Same as null string.

null strin~:
* 1. 'The notion of a string depleted of its

entities, or the notion of a string
prior to establishing its entities.

2. In assembler programming, synonymous
with the null character string.

numbe~rib!!te (N'):
1. An at-tribute of a symbolic parameter

that gives the number of sutlist
entries in the corresponding macro
instruction operand.

2., An attribute that gives the number of
positional operands in a macro
instruction (specified as N"SYSLIST)
or an attribute that gives the numter
of sublist entries in a specific
positional operand (specified as
N' gSYSLIST en)) •

name field parameter: A symbolic parameter a
that is declared in the name field of a * obje.st code: Output from an assembler which ..
macro prototype stateIrent. It is assigned a is itself executable machine code or is . ~;1

430

o

suitable for processing to produce
executable machine code.

* object language: The language to which a
statement is translated. The machine
language for the IBM System/370 is an
object language.

* object module: A module that is the output
of an'assembler or compiler and is input to
a linkage editor.

• object program: A fully compiled cr
assembled program that is ready tc be
loaded into the computer. Contrast with
source program.

open code: That portion of a source module
that lies outside of and after any source
macro definitions that may be specified.

oEen subroutine: A subroutine that is
inserted into a routine at each place it is

the assembler language. Ordinary symbols
are also used to represent operation codes
for assembler language instructions. An
ordinary symbol has one alphabetic
character followed by zero to seven
alphameric characters.

outer macro instruction: A macro
instruction that is specified in open code.
Contrast with inner macro instruction.

* overflow: That portion of the result of an
operation that exceeds the capacity of the
intended unit of storage.

* overlay: The technique of repeatedly using
the same blocks of internal storage during
different stages of a progzam. When one
routine is no longer needed in storage,
another routine can replace all part of it.

used. Contrast with closed subroutine. * padding: A technique used to fill a block
NOTE: In assembler programming, a macro with dummy data.
definition is an open subroutine, because
the statements generated from the paired parentheses: A left parenthesis and
definition are inserted into the source a right parenthesis that belong to the sarre
module at the point of call. level of nesting in an expression; the left

• operand:
1. That which is operated upon.
2. See keyword operand, positional

operand.

• oFerating system: Software which controls
the executi"on of computer programs and
which may provide scheduling, debugging,
input/output control, accounting,
compilation. storage assignrr:ent, data
management, and related services.

* oEeration code: A code that represents
specific operations.

• oEerator:
1. In the description of a process, that

which indicates the action to be
performed on the operands.
NOTE: In assembler prograrrrring,
operands are referred to as terms.

2. See arithmetic operator, binary
operator, logical operator, unary
operator.

3. See also concatenation character.

* OR: A logic operat-or having the property
that if P is a stateroent, Q is a statement,
R is a statement, ••• , then the OR of P, Q,
R ••• is true if at least one staterrent is
true, false if all statements are false.

ordinary symbol: A symbol that represents
an assembly-time value when used in the
name or operand field of an instruction in

parenthesis must appear before its matching
right parenthesis. If parentheses are
nested within paired parentheses, the,
nested parentheses must be paired.

paired relocatable terms: 1wo relocatatle
terms in an expression with the same
relocatability attribute that have
different signs after all unary operations
have teen performed. Paired relocatable
terms have an absolute value.

• parameter:
1. A variable that is given a constant

value for a specific purpose or
process.

2. See keyword parameter, name field
parameter, positional I4rameter,
symbolic parameter.

point of substitution: Any place in an
assembler language statement, particularly
a model statement, into which values can be
substituted at pre-assembly time. Variatle
symbols represent points of substitution.

positio~ope~~nd: An operand in a macro
instruction that assigns a value to the
corresponding positional parameter declared
in the prototype statement of the called
macro definition.

positiQnal par~~: A symbolic parameter
that occupies a fixed position relative to
the other positional parameters declared in
the same macro prototype statement.

Glossary 431

pre-assemtly time: The time at which the
assembler process macro definitions and
performs conditional assembly o~erations.

private code: An unnamed control section.

* program:
1. A series of actions propcsed in order

to achieve a certain result.
2. Loosely, a routine.
3. To design, write, and test a program as

in (1).
4. Loosely, to write a routine.
S. See ·computer program, object ~rogram,

source program.

program fetch time:
1. The time at which a program (in the

form of load modules or phase~ is
loaded into virtual storage for
execution.

2. See also fetch (2), fetch (3).

* Eroqram library: A collection of available
computer programs and routines.

programmer macro definition: Locsely, a
source macro definition.

prototype statement: Sarre as rr.acrc
protatype statement.

* pushdown list: A list that is constructed
and maintained so that the next item to be
retrieved and removed is the most recently
stored item in the list, that is, last in,
first out. Synonymous with pushdown stack.

pushdown stack: Sarr'e as pushdown list.

quoted string: A character string enclosed
by apostrophes that is used in a «-acro
instruction operand to represent a value
that can include blanks. The enclcsing
apostrophes are part of the value
represented. Contrast with character
expression.

* radix: In positional ret:resentaticn, that
integer, if it exists, by which the
significance of the digit place must be
multiplied to give the significance of the
next higher digit place. For example, in
decimal notation, the radix of each place
is ten.

* radix complement: A complement obtained by
subtracting each digit from cne less than
its radix, then adding one to the least -
significant digit, executing all carries

432

required. For exam~le, tens complement in
decimal notation, twos corrplement in binary
notation.

read-only: A type of access to data that
allows it to read but not modified.

real storage: The storage of a IB~
Systemj370 computer from which the central
processing unit can directly- obtain
instructions and data and to which it can
directly return results. Real storage can
occupy all or part of main storage.
Contrast with virtual storage.

recursive: Fertaining to a process in which
each step makes use of the results of
earlier steps.
NOTE: In assembler prograrrming, the inner
macro instruction that calls the macro
definition within which it is nested .
performs a recursive call.

* register: .
1. A device capable of storing a specified

amount of data such as one word.
2. See base register, index register.

relation: The comparison of two expressions
to see if the value cf one is equal te,
less than, or greater than the value of the
other.

relational operator: An operator that can
be used in an arithmetic or character
relation to indicate the comparison to be
performed between the terms in the
relation. The relational cperators are: EQ
(equal) , GE (greater than or equal to), GT
(greater than) , LE (less to or equal to),

LT (less than), NE (not equal to).

* relative addr~~~: The nuwber that specifies
the difference between the absolute address
and the base address. Synonymous with
displacement.

relocatability attribute: An attribute that
identifies the control section to which a
relocatable expression belongs. Two
relocatable expressions have the same
relocatability attribute if the unpaired
term in each of them belongs to the same
control section.

reiocatable expression: An assembly-time
expression whose value is affected by
program reloc~tion. A relocatable
expression can represent a relocatable
address.

relocatable term: A term whose value is
affected by program relocation.

o

o

* relocate: In computer proqramming, to move
a routine from one portion of storage to
another and to adjust the necessary address
references so that the routine, in its new
location, can te executed.

relocation: The modification cf address
constants to compensate for a change in
origin of a module, proqram, or control
section.

* rounding: Same as roundoff.

roundoff: To delete the least significant
digit or digits of a numeral and to adjust
the part retained in accordance with some
rule.

* routine:
1. An ordered set of instructions that may

have some general or frequent use.
2. See sul:routine.

scale modifier: A subfield in the cperand
of the DC assembler instruction that
indicates the number of digits in the
object code to be occupied by the
fractional portion of a fixed-~oint or
floating-point constant.

scaling attribute: An attribute that
indicates the number of digit positions
occupied ty the fractional portion of
fixed-point, decimal, and floating-point
constants in their object code for~.

scope:
1. In assembler programming, that part of

a source prograR in which a variable
symbo~ can communicate its value.

2. See global scope, local scope.

self-defining term: An absolute term whose
value is implicit in the specification of
the term itself.

sequence symbol: A symbol used as a
branching l.tel for conditional assembly
instructions. It consists of a period
followed by one to seven alphameric
characters, the first of which must be
alphatetic.

SFT symbol: A variable symbol used to
communicate values dur ing conditional
assembly processing. It must be declared to
have either a global or local sco~e.

severity code: A code assigned by the
assemtler to an error detected in a source
module. A severity code can also be
specified and assigned to an error message
generated by th~ MNOTE instruction.

* sign ~~: A binary digit occupying the sign
posit1on. .

sign position: A position, normally located
a t one end of a numeral, that contains an
indication of the algebraic Sign of the
number.

* Significant digit: A digit that is needed
for a certain purpose, particularly one
that must be kept to preserve a specific
accuracy or precision.

* ~~ languag~: The language from which a
statement is translated.

source macro definition: A macro definition
included in a source lIDdule. A source
macro definition can be entered into a
program library; it then becomes a library
macro definition.

source module: A sequence of statements in
the assembler language that constitutes the
input to a single execution of the
assembler.

* source program: A computer program written
in a source language. Contrast with object
program.

* space £!,!aracte~: A normally nonprinting
graphic character used to sepazate words.
Synonymous with blank character. Contrast
with null character.

* speCial character: A graphic character that
is neither a letter, nor a digit, nor a
space character.

* statement:
rIn-cOmputer programming, a meaningf ul

expression or generalized instruction
in a source language.

2. See job control statement, linkage
editor control statement, comments
statement, model statement.

* storage:
1. Fertaining to a device into which data

can be entered, in which they can be
held, and from which they can te
retrieved at a later time.

2. Loosely, any device that can store
data.

3. See main storage, real storage, virtual
storage.

* storage allocation:
1; The assignment of blocks of data to

specified blocks of storage.
2. See dynamic storage allocation.

Glossary 433

* storage protection: An arrangement for
preventing access to storage for either
reading, or writing, or both.

storage stack: Loosely, a pushdown list.

* string:
1. A linear sequence of entities such as

characters or physical elements.
2. See bit string, character string, null

string.

~st: A macro instruction operand that
contains one or more entries separated by
commas and enclosed in parentheses.

* subroutine:
1. A routine that can be part of another

routine.

substring:

1. A character string that has teen
extracted from a character expression.

2. See also substring notation.

sutstrinq notation: ~ character expression
immediately followed by two sutscripts,
separated by a cOIt'.ma, and enclosed in
parentheses. It can be used only in
conditional assembly instructions. The
value of the first subscript indicates the
position of the character within the
character expression that begins the
substring. The value of the second
subscript represents the numter of
characters to be extracted from the
character expression.

2. See closed subroutine, o~en subroutine. * switch: A device or ~rogramming technique
~making a selection, for example, a
conditional jump. subscript: One or more elements, enclosed

in parentheses, that appear immediately
after a variatle sylt'bol or character
expression. The value of a subscript
indicates a position in the array or string
of values represented by the variable
symbol or character expressicn.

subscripted &SYSLIST: The system variable
symbol iSYSLIST immediately followed by
either one sutscript or two subscripts
separated by oommas, and enclosed in
parentheses. The value of the first
subscript indicates the position cf a
positional operand in a macro instruction
and the value of the second subscript
indicates the position of the entry in the
sublist of the positional operand indicated
by the first sutscript.

subscripted SET symbol:
1. A SET symbol that is immediately

followed by a subscript. A subscripted
SET symbol must be declared with an
allowable dimensicn before it can be
used. The value of the subscript
indicates the position of the value
given to the subscripted symbcl in the
array represented by the SET symbol.

2. See also dimensioned SET symbcl.

subscripted symbolic parameter: A syrrbolic
parameter that is irrmediately followed by a
subscript. The value of the subscript
indicates the position of the entry in the
sublist in the macro instruction c~erand
referred to by the symbolic parameter.

substitution: The action taken by the
assembler when it replaces a variable
symbol with a value, for example, during
the expansion of a rracro definition.

434

* symbol:
1. A representation of something ty reason

of relationship, association, or
convention.

2. See mnemonic symbol, crdinary symbol,
sequence symbol, SET symbol, variatle
symbol.

* symbolic address: ~n address expressed in
symbols convenient to the computer
programmer.

* symbolic coding: Coding that uses machine
instructions~with symbolic addresses.
NCTE: In assembler programming, any
instruction can contain symbolic addresses.
In addition, any other portion of an
instruction may be represented with
symbols, for example, labels, registers,
lengths and immediate data.

symbolic-E~!!~~!:
1. A vari abl e symbo I dec la red in the

prototype statement of a macro
definition. A symbolic parameter is
usually assigned a value from the
corresponding cperand in the macro
instruction that calls the macro
definition.

2. See also keyword parameter, name field
parameter, positional parameter.

system loader: See loader (2).

system~£Q_Qefinition: Loosely, a library
macro definition supplied by IB~.

~ys~~!2~ln~!B£.E&!!: Loosely, a macro
1nstruction tnat calls for the processing
of an IBM-supplied library macro
definition, fer example, the ATTACH macro.

system variable symbol: A variable symbol
that always begins with the characters

(f~ . . ",
~-.,;.

iI'" ~

o

&SYS. The system variable symbols do not
have to be declared, because the assembler
assigns them read-only values autc~atica11y
according to specific rules.

term:
-1-.--The smallest part of an expression that

can be assigned a value.
2. See absolute term, arithmetic term,

logical term, relocatab1e ter~.

*translate: To transform statements from one
language to another without significantly
changing the meaning.

*truncate: To terminate a computaticnal
process in accordance with so~e rule, for
example, to end ~e evaluation of a power
series at a specified term.
NOTE: In assembler programming, the object
code for data constants can be truncated by
the assembler.

. *twos complement: The radix complement in
binary notation.

tYFe attribute crt): An attribute that
distinguishes one form of data from
another, for example, fixed-pcint ccnstants
from floating-point constants or machine
instructions from macro instructicns.

unary operator: An arith~etic operator
having only one term. The unary operators
that can be used in absolute cr
relecatable, and arithmetic expressions
are: positive (+) and negative (-).

unnamed control section: A control section
that is initiated in one of the following
three ways:
1. By an unnamed STAR-r instructicn.
2. By an unnamed CSECT instruction, if no

unnamed START instruction appears
bef ore the CSEC'I instruction.

3. By any instruction that affects the
setting of the location ccunter.

* variable: A quantity that can assume any of
a given set of values.

variable symbol: In assembler programming,
a symto1, used in macro and conditional
assembly processing, that can assume any of
a given set of values. It consists of an
ampersand (&) followed by one to seven
alphameric characters, the first of which
must be alphabetic.
NOTE: All variable symbols must be declared
except the system variable symbols.

virtual~;!9~: Address space appearing to
the user as real storage from which
instructions and data are mapped into real
storage locations. -rhe size of virtual
storage is limited only by the addressing
scheme of the computing system rather than
by the actual number of real storage
locations. Contrast with real storage.

warning message: An indication that a
possible e~ror has been detected. The
assembler does not assign a severity code
to this type of error. Contrast with error
message.

word:
* ~A character string or bit string

considered as an entity.
* 2. See computer word.

3. See doubleword, fullword, halfword.

* word length: A measure of the size of a
word, usually specified in units such as
characters or binary digits.
NOTE: In assembler programming, the word,
or fu1lword, contains 32 bits (binary
digit~ or 4 bytes.

wrap-around: Loosely, the overflow of the
location counter when the value assigned to
it exceeds 224_1

Glos~xy 435

((~ •••
~J'

This page left blank intentionally.

o

(see period)
+ (see plus sign)
& (see ampersand)
&SYSDATE (system variable symbol) 279

attributes of 279,325
global scope of 279

&SYSECT (system variable symbol) 280
attributes of 280,325
local scope of 279
in nested macros 316

&SYSLIST (system variable symbol) 281
attributes of 283,325
local scope of 279
in nested macros 314
notation allowed 281
number attribute of 283
subscripts for 281,282

&SYSNDX (system variable symbol) 284
attributes of 284,325
local scope of 279
in nested macros 315

&SYSPARM (system variable symbol) 284
attributes of 285,325
global scope of 279
specified in job control

language 285
under CMS 285-286

&SYSTIME (system variable symbol) 286
attributes of 287,325
global scope of 279

$ (see dollar sign)
* (see asterisk)

(see minus sign)
/ (see slash)
, (see comma)
t (see number sign)
Ql (see at sign)

(see apostrophe)
= (see equal sign)

absolute address 84
absolute expression 57,56
A-con (see address constant,

A-type)
ACTR instruction 370
address

absolute 84
base 85,133
base displacement format of 86
defini tion 84
explicit 87
implicit 87
reference 84
re10catable 84
re10catabi1ity of 85

address constant

A-type 194
location counter
reference in 194

defined by DC instruction 162
External Symbol Dictionary
entry for 116

location counter reference in
Q-type 200

for external dummy section
S-type 196
V-type 198
Y-type 194

location counter
reference in 194

address reference 84
(see also explicit address;
implicit address; symbolic
address)

addressing
between source modules 147
within source modules 133

AGO instruction 369
AIF instruction 367
alignment 75

ALIGN option 75
boundary 76,166
of constants and areas 166,76
forcing of 204,76
of machine instructions 75

ALIGN option 75,204
ALOGIC option 376
alphabetic character

of character set 34
in symbols 37,35

alphameric (see character)
alternate statement format

for macro instruction
sta tement 291

for macro prototype statement 256
number of continuation lines

allowed 18
ampersand (&) 35

(see also double ampersand)
as variable symbol indicator

AND operator 361
ANOP instruction 373
apostrophe (')

(see also double apostrophe)
in attribute notation 324
to delimit character strings 35
to delimit quoted strings 304

area (see data area)
arithmetic expression 349
arithmetic operator

binary operator
addition (+) 55,351
division V) 55,351
multiplication (*) 55,351
sUbtraction (-) 55,351

unary operator
negative (-) 55,351
positive (+) 55,351

Indez

Index 437

arithmetic relation 361
arithmetic term

attribute reference 55,351
self-defining 46
SET symbol 318,351
symbolic parameter 260,351
system variable symbol 278,351

array
dimensioned SET symbol 322

assembler instruction 30
conditional assembly 32,317
macro processing 32
ordinary 30

addressing 133
controlling the assembler

program 211
program sectioning 101
symbol and data definition 153

assembler language 2
character set 34
comments statement 19
expressions 53

(see also expression)
assembly time 54,6
conditional assembly 349

instruction statement 20
assembler instructions 99,407
machine instructions 63
macro instructions 244,289

literals 50
option

ALIGN 75
ALOGIC 376
FLAG 214
LIBMAC 286
MCALL 287
MLOGIC 376

program 3
source module 26,102
statement coding 15
structure 25
terms 36

assembler processing sequence 4
assembly time 6
pre-assembly time 7,8

assembly time
assembly into object code 5,108
expression 54,6

absolute 57
complex relocatable 58

instructions processed during 5,6
assignment instructions

arithmetic 343
character 345
logical 347

asterisk (*)
(see also binary opera tor)
as comments statement
indicator 19

as location counter reference
indicator 43

as multiplication operator 55,351
with period, as internal macro

comments statement indicator 277
at sign (al)

as alphabetic character 34
attribute

438

(see also relocatability
attribute)

count (K') 332
integer (I') 331
length (L') 329
notation 324
number (N') 333
reference 324
scaling (5') 330
symbol length 44
type (T') 328

in character relation 361
in SETC operand 345

attribute notation 324
attribute reference

(see attribute)
assembler processing sequence 4

assembler instructions 6,7
machine instructions 5
macro instructions 8

B-con (see data constant, binary)
base address 85

assigned by USING 134
base-displacement form 84

allowing relocatability of
addresses 85

assembled into machine
instruction 86

converted from implicit
address 81,134

base register
assigned by USING 134
loading 134

begin column 16
binary constant (B) 181
binary operator (+,-,*,/)

in absolute and relocatable
expressions 55

in arithmetic expressions 351,353
bit string

in binary self-defining term 48
bit-length modifier 8,112
blank

character 35
in operands 22
opposed to null character
string 298

in self-defining term 50
as special character 34

Bool~an
expression (see logical
expression)

operator (see logical
operator)

boundary (see also alignmen~ 166
boundary alignment (see
alignment)

branching
conditional assembly 367
extended mnemonic for 72
machine instruction for 68

buffer area
formatted by a dummy section 121

o

Oli'
].

C-con (see data constant,
character)

call (see macro instruction)
card (see punched card)
card deck (see deck)
CCW instruction 209
central processing unit 4
channel command word 209
character

alphameric (alphanumeric) 34
digit 34
expression 355
letter 34
relation 360
set 34
special 34
string, null 298,303

character constant (e) 182
character expression 355

concatenation operator 281
between 357,359

in SETC operand 345
in substring notation 365

character relation
in logical expression 361,363

character set 34,35
character string

(see also null character
string)

character constant (C-type) 182
in character relations 360,361
character self-defining term 50
concatenation of character
strings 359,268

in macro instruction operands 302
in MNOTE instruction 274
in PUNCH instruction 229
SETC operand 345
in TITLE instruction 226
type attribute 327

CNOP instruction 218
code

condition 391
machine 1
mnemonic 79
object 2
open 252
operation 22,79
source 2

coding
conventions 15
form 15
time 4-8,108

column
begin 16
continuation-indicator 16
continue 16
end 16

COM instruction 124
to continue common section 124
to initiate common section 124

comma (,) 35
in character constants 182

to indicate omitted
operand field 80
subfield 81

between nominal values in
constants 179

between operands 35
command

(see channel command word)
comments statement 19,27

format 19,27
in macro definitions 277

common control section
COM instruction for 124
definition of 124
establishing addressability of 124

complex relocatable expression 58
only in A-type and y-type

address constants 194,58
concatenation character (.)

between character expressions 359
in model statements 268

concatenation operator (see
concatenation character)

condition code 391
conditional assembly

branching instructions
ACTR 370
AGO 369
AIF 367
ANOP 373

elements 317
data attributes 323
sequence symbol 334
SET symbols 318

expression 349
arithmetic 349
character 355
logical 359

functions of 318
instructions

ACTR 370
AGO 369
AIF 367
ANOP 373
GBLA, GBLB, GBLC 340
LCLA, LCLB, LCLC 336
SETA 343
SETB 347
SETC 345

loop counter 370,372
in open code 374
pre-assembly time 374,7
processing 7
substring notation in 364

constant
address 194-200
data 154,161
defined by DC instruction 161
duplication factor sUbfield 168,163
literal 180
modifier sUbfield 163,170
nominal value sUbfield 163,179
padding of value 167
truncation of value 168
type subfield 163,169

continue column 16

Index 439

continuation
indicator field 11
line 9,18

control program 101
control section 101

common 124
dummy 121
executable, defined by

CSECT 110,119
START 110,111

external symbol dictionary
entries for 116

first 113
literal pools in 115
location counter setting 111
processing times 108
reference, defined by

COM 110,124
DSECT 110,121
DXD 110,130

unnamed 115
COpy instruction 103

input to source module 102
inside macro definitions 212

counter
instruction 41
location 41,111

loop

(see also location
counter)

ACTR instruction 310
count attribute (R') 332
CPU (see central processing unit)
CSECT instruction 119

to continue control section 119,120
external symbol dictionary
entry for 116

to initiate executable control
section 119,120

CXD instruction 131
cumulative length of external

dummy sections 131,128
"for linkage editor 131,128

m
D-con (see floating point
constant, long)

data
area 154,201
attribute 323
constant 154,162

data attribute (see attribute)
data constant

binary (B) 181
character~) 182
decimal ~,Z) 188
defined by DC instruction 162
fixed-point (H,F) 186
floating-point (E,D ,L) 190
hexadecimal (X) 184

data definition 154,161
DC instruction

440

defining data 162
operand 163

subfields in operand 163
arithmetic 65
constants (P and Z) 188
instructions 65
self-defining term 41

decimal constant
integer attribute of 331
packed (P) 188
scaling attribute of 330
zoned (Z) 188

decimal point (.)
for decimal arithmetic 65
in decimal (P,Z) constants 188
for fixed-point arithmetic 64
in fixed-point (H,F) constants 181,116
for floating-point arithmetic 66
in floatinq-point (E,D,L)
constants 191,118

deck
object 1
source 1

declaration instructions
global 340
local 336

dictionary, external symbol 116,150
dimensioned SET symbol

declaration of 339,342
displacement

assembled into machine
instruction 86

computed from base address 81,133
dollar sign ($)

as alphabetical character 34
double ampersand

in character expression 351
in MNOTE instruction 214
in PUNCH instruction 230
in TITLE instruction 226

double apostrophe
in character expression 351
in MNOTE instruction 214
in PUNCH instruction 230
in TITLE instruction 226

doubleword
boundary 166
data constants 166,191

DROP instruction 144
for freeing base registers 144
not needed 146
with USING 145,146

DS instruction 201
defining areas 201
operand 206
subfields in operand 206
w~th 0 duplication factor 204,16

DSECT instruction 121
to continue dummy section 121
external symbol dictionary
entry for 116

to generate external dummy
section 121

to initiate dummy section 121
name in Q-type address
constant 121,200

with USING 140
dummy control section

definition of 121
DSECT instruction for 121

r1\,
~)
.:1

0 ·"
.

:'.',1
)/

i(~\
, /

o

DXD instruction for 130
establishing addressability of 121,140
opposed to external dummy
section 130

duplication factor
in SETC operand 346
subfield of DC/DS operand 168

nXD instruction 130
external symbol dictionary
entry for 116

to generate external dummy
section 127

name in Q-type address
constant 200

II
EBCDIC (see extended binary coded
decimal interchange code) 377

E-con (see floating-point
constant, short)

EJECT instruction 227
end column 16
END instruction 105

to end source module 102
multiple 103

entry symbol
identified by ENTRY 150

entry (see instruction statement
entry; external symbol
dictionary, entries)

ENTRY instruction 150
external symbol dictionary
entry for 150,116

identifying entry symbol 150
for symbolic linkage 147

EQ -- equal to 360
(see also relational opera tor)

I EQU instruction 156
equal sign (=)

to indicate literal 53,180
in macro instruction operand 306

ESD (see external symbol
dictionary)

establishing addressability 133
of common section 124
of dummy section 121,140
of executable control section 120,137
of external dummy section 128
of large control section 138
of reference control section 140

excess-64 binary notation
for exponent in floating-point
constant 193

executable control section 110
establishing addressability of 137
initiated by CSECT 119
initiated by START 117

execution time 4-8,108
explicit address

(see also base~displacement
form)

converted from implicit
address 87,134

in machine instruction 87

exponent
in excess-64 binary notation 193
modifier 170,178
in nominal value of constant 179
portion of floating-point
constant 192

expression
(see also assembly time
expression; conditional
assembly expression)

absolute 57
arithmetic 349
Boolean (see expression,
logical)

character 355
complex relocatable 58
logical 359

arithmetic relation in 361
character relation in 361

operators
arithmetic 55,351
concatenation 357
logical 361

relocatable 58
terms in

arithmetic 351
logical 361

extended floating-point constant 190
extended mnemonic branching
instruction 72,73

external dummy control section
allocation of storage for 127
CXD instruction for 131
DSECT instruction for 127
DXD instruction for 130
establishing addressability of 128
generation of 127
offset to 127

external symbol
identified by EXTRN 151
identified in v-type address
constant 149,198

identified by WXTRN 152
external symbol dictionary 116

entries for 150,151
EXTRN instruction 151

..

for data reference 148
external symbol dictionary
entry for 151

identifying external symbol 151
opposed to V-type addres's
constant 149

opposed to WXTRN instruction 152
for symbolic linkage 147

F-con (see fixed-point constant,
fullword)

fetch (see program fetch time)
first control section

initiated by 113
literal pool in 115,216
statements allowed before 114

Index 441

fixed-point
arithmetic 64
constant 186
instruction 64

fixed-point constant
exponent modifier 178
fullword (F) 186
halfword (H) 186
integer attribute of 331
scale modifier 176
scaling attribute of 330

FLAG option 274
floating-point

arithmetic 66
constant 190
instruction 66

floating-point constant
base for
exponent

excess-64 binary notation
for 193

modifier 178
in nominal value 179

extended precision~) 190
fractional portion 192
integer attribute of 331
long (D) 190
scale modifier 178
scaling attribute of 330
short (E) 190

format
machine language 78,92
source statement 20

formatting
COM instruction for 124
data area using dummy section 121
DSECT instruction for 121

fraction
in fixed-point constants 186
in floating-paint constants 192
scale modifier to provide
digits for 175-178

scaling attribute to indicate 330
number of digits occupied by

fraction bar V -- see slash)
fractional portion

of floating-point constants 192
fullword

boundary (see boundary)
constant 186

GBLA instruction 340
GBLB instruction 340
GBLC instruction 340
GE -- greater than or equal to 360

(see also relational operator)
generation (see macro generation)
global

(see also global scope, global
variable symbol)

declaration '340
global scope

of SET symbol 319
of system variable symbols

442

&SYSDA TE 279'
&SYSPARM 284
&SYSTIME 287

global variable symbol
SET symbol 319
system variable symbols

&SYSDATE 279
&SYSPARM 284
&SYSTIME 287

GT greater than 360
(see also relational opera tor)

m
H-con (see fixed-point constant,

halfword)
halfword

boundary (see boundary)
constant 186
instructions

hexadecimal
constant (X) 184
digit 49
notation in floating-point
constants 193

self-defining term 49

D
II (see integer attribute)
ICTL instruction 219
identification-sequence field 17
immediate data 90
implicit address

converted to explicit address 87,134
in machine instruction 87
in USING domain 125

index register
in address reference 86
in machine instruction operand 87

I inner macro instruction 307
input

to assembler program 2,102
buffer 121
to linkage editor 2,108
to source module 102

input/output instructions 70
inEjtruction

assembler 3,30
conditional assembly 32,317
entry 21
format (see machine
instruction format)

machine 2,29
macro 33,289
statement 16
statement format 20

instruction counter 41
instruction entry (see
instruction statement entry)

instruction statement 2,26

o

o

instruction statement entry
name 21
operand 22
operation 22
remarks 23

instruction statement format 20
integer attribute (I') 331

formula for 331
I/O (see input/output)
ISEQ instruction 221

K' (see count attribute)
keyword operand 296

cOmbining with positional
parameters 299

keyword parameter 263
combining with positional
parameters 265

II
L' (see length attribute)
label

ordinary symbol as 38
sequence symbol as 335
variable symbol as 344,345,348

language (see assembler language)
LCLA instruction 336
LCLB instruction 336
LCLC instruction 336
L-con (see floating-point
constant, extended precision)

LE -- less than or equal to 360
(see also relational opera tor)

length
attribute 329
explicit 88
implicit 88

I modifier 159
length attribute (L') 329

in arithmetic expression 351
in assembler language
statement 45

assembly time 158,159
pre-assembly time 158,159
value

length field
in machine instructions 88
length modifier 170
letter 34
level (see nesting level)

LIBMAC option 286
library

macro definition 252
for statement to be copied 103

library macro definition
IBM supplied 239
opposed to source macro
definition 252

printing of (option LIBMAC) 287
linkage (see linkage edit
processing)

linkage edit processing
control sections 108
ESO entries for 116
external dummy section

CXO instruction 131
Q-type address constant 200

load module 1,108
object module 1,108
symbolic linkage information

ENTRY 150
EXTRN 151
V-type address constant 198
WXTRN 152

linkage-edit time 4-8,108
linkage editor

address constants for
A-type 194
Q-type 200
V-type 198
y-type 194

control statement
created by PUNCH 228
created by REPRO 231

external symbol dictionary 116
instruction for

CXO 131
listing control instructions

EJECT 227
PRINT 222
SPACE 228
TITLE 224

listing options
ALOGIC 376
LIBMAC 286
MCALL 287
MLOGIC 376

literal 50
compared to data constants

and self-defining terms 51
constant 180
duplicate 217
pool 51,215
specification 53
subfields 53

literal pool 215
in control section 115
initiated by LTORG 215

load
instruction

fixed-point arithmetic 64
floating-point arithmetic 66
logical operations 67

module 2,108
time (see program fetch time)

load module
combined from object modules 2,108
loaded by loader 4
loaded at program fetch time 4,108
produced by linkage editor 2,108

load time (see program fetch
time)

loader 4
local

(see also local scope, local
variable symbol)

declaration 336

Index 443

local scope
of ACTR instruction 371
of sequence symbol 325
of SET symbol' 319
of symbolic parameter 260,319
of system variable symbols

&SYSECT 319
&SYSL1ST 319
&SYSNDX 319

local variable symbol
SET symbol 318

declaration of 336
symbolic parameter 260
system variable symbols

&SYSECT 280
&SYSLIST 281
&SYSNDX 284

location counter 41
printed values 42
setting for control sections 111

location counter reference (*) 41
in address constants (A and
Y-type) 194

in expressions 55
in literals 43
in. ORG operand 213

logical expression 359
in AIF operand 367
coding rules for 362
definition of 361
evaluation of 363
operators for 361
in SETB operand 340
terms in 361

logical operator
AND, NOT, OR 361
in logical expression 361

logical relation
(see also arithmetic relation,
character relation)

in logical expression 360
operators for 360

(see also relational
operator)

logical term
in logical expression 361

loop
conditional assembly 370
counter 370

loop counter 370
ACTR instruction for 370

LT -- less than 360
(see also relational operator)

LTORG instruction 214
for literal pool 215

II
machine instruction

address in 84
explicit 87,133
implicit 87,133

alignment of 75
coding examples 92
format of 78
immediate data in 90

444

mnemonic operation code for 79
object code from 78,92-97
operand entry 80
processing 5
register usage in 83
statement format 29,78
types 64-74

machine instruction format
RR 92
RS 94
RX 93
S 96
S1 95
SS 97

machine language 1
macro (see macro definition,

macro instruction)
MACRO assembler instruction 254

(see also macro definition,
header)

macro call (see macro
instruction)

macro definition 245,251
body of 248,259
format 253
header (MACRO) 254
internal comments for 277
library macro definition 246,252

printing of (L1BMAC) 287
as opposed to open code 252
prototype statement of 243,255
source macro definition 246,252
statements in

comments statements 248,277
model statements 248,266
processing statements 249,272

symbolic parameters in 260
trailer (MEND) 254
where to specify 246,252

macro expansion 240
(see also macro generation)

macro generation 240
of comments 277
controlled by conditional

assembly language 242,317
message produced by MNOTE 274,275
model statement for 248,266
of operation codes 270
output from macro definition 240-242
at pre-assembly time

macro instruction 33,289
alternate statement format 291
call to a macro definition 240
entry

name 292
operand 293
operation 293

format of 290
inner 307
nesting of 247,307

levels 308
operand 294

&SYSLIST 281,301
keyword 296
positional 294
sublist 300

outer 307
printing of nested (MCALL) 288

0.

0· .. ·,·".' ,,,

o

processing 8
recursive call 310
statement format 290
values in operands 302
where to specify 247,290

macro instruction operand
combining keyword and
positional 299

keyword 296
positional 294
sublist as value 300
value of 302

macro library 246,252
macro definition in 246

macro prototype statement 255
alternate format 256
entry

name 256
operand 258
operation 257

format of 255
name field parameter in 257
symbolic parameters in 258,260

mask

keyword 263
positional 262

for branching 90
as immediate data 92,94

MCALL option 287
MEND instruction 254

(see also macro definition,
trailer)

as exit from macro definitions 249
MEXIT instruction 276
minus sign (-)

(see also binary operator,
unary operator)

as subtraction operator 355,351
MLOGIC option 376
mnemonic operation code

changing of (OPSYN) 232
creating of, for macros 257
generation of 270
for machine instructions 79
naming a macro definition 243,257
structure of 79
used in macro instruction to
call a macro definition 243

MNOTE instruction 273
model statement 266

concatenation in 268
fields in 267
format of 266
points of substitution in 267
rules for field contents 269
variable symbols in 267

modifier
exponent 178
bit-length 172
length 170
scale 175
subfield in DC/OS operand 170

module (see load module, abject
module, source mo~ule)

m
N' (see number attribute)
name entry

in assembler language
instruction 21

in conditional assembly
instruction 32

in EQU instruct jon 156,160
in machine instruction 29
in macro instruction 292
in macro prototype statement
in model statement 269
in OPSYN instruction 232
in TITLE instruction 224

name field parameter
assigning a value to 292
of macro prototype statement
opposed to symbolic parameter

NE -- not equal to
(see relational operator)

nested macro instruction 247,307
nesting level

for COpy instructions 104
for macro instructions 308

no op (see no operation
instruction)

no operation instruction
extended mnemonic for 73
generated by CNOP instruction

NOALIGN (opposite of ALIGN) 6
NOALOGIC (opposite of ALOGIC)
NOLIBMAC (opposite of LIBMAC)
NOMCALL (opposite of MCALL)
nominal value

subfield in DC/OS operand 179
NOMLOGIC (opposite of MLOGIC)
NOT operator 361
notation (see attribute notation,

excess-64 binary notation,
substring notation)

null character string
as default value of keyword
parameter 264,298

generation of 298,303
in model statement 298,303
opPosed to blank 298
as sublist entry 301
as value in macro instruction

operand 303
number attribute (N') 333

of &SYSLIST 283
in arithmetic expression 351

number representation
for decimal constants 188
for floating-point constants

number sign (#)
as alphabetic character 34

256

256
256,257

218

192

Index 445

m
object code

of addresses 86
of channel command words «CC~ 210
of data constants (DC)

padding 167
truncation 168

entered into
common control section 124
external dummy control
section 128

formats for machine
instructions 78

of lengths
effective 88
explicit 88
implicit 88

of machine instructions 92-97
alignment 75

registers assembled into 83
registers not apparent in 83
representation of decimal
constants 188

representation of floating­
point constants 193

(see also excess-64 binary
notation)

fraction 193
exponent 193

object language (see object code)
object module

area reserved in, by DS 201
assembled from source module 2,108
automatic call for (EXTRN) 152
combined into load module 2,108
common control section in 124
constant assembled into, from

DC instruction 161
as opposed to source module 101

open code
conditional assembly in 374
opposed to code inside macro
definitions 252

operand
(see also operand entry, term)
alternate format for 256,291
combined with remarks in

model statement 271
combining keyword and
positional 299

in DC/OS instruction 163,206
entry in assembler language
instruction 22

field 20
format of 22,80
keyword 296
of macro definition 258
of macro instruction 294
positional 294
subfield in DC/DS instruction 163,206
symbolic parameter as 258,260

operand entry 22
address 84

446

in assembler instruction 31
combined with remarks in

model statement 271

in conditional assembly
instruction 32

immediate data 90
length 88
in machine instruction 29
in macro instruction 33,293
in macro prototype instruction 258
in model statement 271
register 82

operation code (see mnemonic
operation code)

operation entry 22
in assembler instruction 21
in conditional assembly
instruction 32

in machine instruction 29
in macro instruction 293
in macro prototype statement 257
in model statement 270

operator
arithmetic

binary 55,351
unary 55,351

concatenation (see
concatenation character)

logical 361
relational 360

OPSYN instruction 232
option (see assembler, option)
OR operator 361
ordinary symbol 37

as operation code for macro
prototype statement 257

opposed to sequence symbol,
variable symbol 37,38

ORG instruction 212
outer macro instruction 307
output

from assembler program 2,108
buffer 121
from linkage editor 2,108
from source module 2,108

overflow
of location counter 42

padding of constants 167
paired relocatable terms 56

in absolute and relocatable
, expressions 57,58
from dummy section, allowed in
address constants 123

parameter
name field 256
symbolic 260

P-con (see decimal constant,
packed)

period (.)
(see also concatention
character, decimal point)

with asterisk as internal
macro comments statement
indicator 19,277

as bit-length indicator 172

0: .. J

in macro instruction operand
value 307

as sequence symbol indicator 38,334
plus sign (+)

(see also binary operator,
unary operator)

as addition operator 55,351
point of substitution

in model statement 269-271
variable symbol as 261

POP instruction 234
position

of character in line after
REPRO 231

of character in PUNCH operand 230
corresponding to coding sheet

column 15
positional operand 294

combining with keyword
operands 299

in macro instruction 294
positional parameter 262

combining with keyword
parameters 265

pre-assembly time 4-8
expression

arithmetic 349
character 355
logical 359

C· i instructions processed during 7
operation

precision
extended, floating-point
constant (L-con) 190

PRINT instruction 222
private code 115

(see also unnamed control
section)

processing sequence
(see processing time)

processing statements in macro
definitions 272

conditional assembly
instructions 272-317

COpy instruction 272
inner macro instruction 272-307
MEXIT 276
MNOTE 273

processing time
(see also assembler processing
sequence)

assembly 4-8,108
coding 4-8,108
execution 4-8,108
linkage edit 4-8,108
pre-assembly 4-8
program fetch 4-8,108

program
(see also object program,
source program)

execution 108

0\ linkage 101,108
sectioning 101

program fetch time 4,108
program library (see library)

program relocation

I
effect on absolute terms 36
effect on address references
effect on relocatable terms

programmer macro
(see source macro definition)

prototype statement (see macro
~ prototype statement)
PUNCH instruction 228
punched card

containing assembler language
statements 1,15

as input to assembler 102
PUSH instruction 234
pushdown list 234

(see als 0 in GLOSSARY)

Q-con (see address constant,
Q-type)

quoted string 304

iii
read-only storage (see literal

pool)
read-only value

of literals 53
of symbolic parameters 260

Page of GC33-4010·5
As Updated 28 Dec 1981
By TNL GN20-9372

85
36,58

of system variable symbols 270
recursion

of nested macro calls 310
reference control section 110

common section 124
dUITmy section 121
establishing addressability of 140
external dummy secti.on 127
initiated by COM 124
initiated by DSECT 21
initiated by DXD 130

register 82
base 85,133
index 86
as operand in machine

instruction 82
usage in machine instruction
operations 83

relation (see arithmetic
relation, character relation,
logical relation)

relational operator (EQ, GE, GT,
LE, and NF) 360

between arithmetic expressions 361
between character strings 361

relative address (see
displacement)

re locat abil it Y
of addresses 85
attribute 58

Index 447

relocatable address 84
relocatable expression 58,56

complex relocatable
expression 58

processed at assembly time 6
relocatable term 36
relocate

(see also program relocation)
instructions 74

REPRO instruction 231
rounding

of fixed-point constants 177
of floating-point constants 178

RR format 92
RS format 94
RX format 93

S format 96
S' (see scaling attribute)

SI format 95
SS format 97
scale modifier

for fixed-point constants 176
for floating-point constants 178

scaling attribute ~') 330
in formula for integer
attribute 331

S-con (see address constant,
S-type)

scope (see global scope, local
scope)

self-defining term 46
in assembly-time expressions 55
binary 48
character 50
in conditional assembly
expressions 351,361

decimal 47
in EQU operands 156-160
hexadecimal 49

sequence symbol 38
as conditional assembly label 334
format of 334
local scope of 35

SET symbol 318
in arithmetic expression 349
assigning value to 349
in character expression 356
declaration of 336
in logical expression 361
scope of 319
as subscript 318
subscripted 322

SETA instruction 343
SETB instruction 347
SE'l'C instruction 345
severity code

in MNOTE operand 273
sign

448

(see also sign bit)
for decimal numbers 188
for fixed-point numbers 186
for floating-point numbers 190

sign bit
in fixed-point constants 186
in floating-point constants 192
in self-defining terms 47-49

slash V)
(see also binary opera tor)
as division operator 55,351

source language (see assembler
language)

source macro definition
opposed to library macro
definition 252

where to specify in source
module 246,252

source module 26,102
addressing within (USING) 133
assembled into object module 101
beginning of 102
control sections in 101
copying statements into ~OPY) 103
end of (END) 102
input to assembler program 102
literals in 214 .
number of external symbol
dictionary entries allowed in 116

open code of 252
as opposed to object module 101
size of 101
source macro definition in 246,252
statements in

comments 27,19
instruction 26,20

structure of 26
symbolic linkage between 147

source program 101
SPACE instruction 228
special character 34

before attribute notation 305
between operator and term 362

START instruction 117
external symbol dictionary
entry for 116

to initiate first (executable)
control section 113

statements allowed before 113,114
statement

assembler language 2,15
comments 19
field 16
format

fixed 20
free 20

instruction 20
macro prototype 255
model 266,8

status switching instructions 69
storage (see virtual storage,

pushdown list)
storage allocation

for external dummy sections 128
store

not ~llowed with literal 53
operation

string (see bit string, character
string)

sublist
in macro instruction operand 300
in nested macros 312,313

o

{ o
referred to by

subscripted iSYSLIST 300,281
subscripted parameter 300,261

subscript
in iSYSLIST notation 281
to indicate sublist entry 261,281
nesting of 322
for parameter 261
for SET symbol 322
in substring notation 365
for variable 267

subscripted iSYSLIST
in nested macros 31q
reference to positional

operand 281,282
reference to sUblist entry 281,282
subscripts for 282

subscripted character expression
(see substri ng notation)

subscripted parameter 261
in nested macros 312,313
reference to sublist entry 261
subscript for 261

subscripted SET symbol 318,322
nesting of subscripts 322
for SETA symbols 3q4
for SETB symbols 348
for SETC symbols 347

subscripted variable symbol 267
(see also subscripted
&SYSLIST, subscripted
character expression,
subscripted parameter,
subscripted SET symbol)

substitution
point of 267
at pre-assembly time 7,8

substring notation 364
character expression in 366
concatenated to character
expression 359

in SETC operand 345
subscripts for 366

sUppression (see zero
suppression)

symbol
definition of 38
entry 150
external 151

dictionary (ESD) 116
length attribute reference 44
ordinary 37
previously defined 40
sequence 38,334
system variable symbol 278
table 37
variable 38

SET 318
symbolic parameter 260

symbol definition
in assembler language
instruction 38

mnemonic operation code by
OPSYN 232

using EQU instr~ction 155
symbol length attribute reference 44

(see also attribute)
symbolic address reference 84

symbolic linkage 147
symbolic parameter 260

attributes of 325,327
in body of macro definition 260,267
as macro instruction operand
value 311,312 .

in macro prototype statement
operand 255,200

in model statement 266,267
in nested macro instruction 311-313
opposed to name field

parameter 256,292
symbolic representation 36,153
system macro

(see library macro definition)
system variable symbo1278

iSYSDATE 279
&SYSECT 280
iSYSLIST 281
iSYSNDX 284
iSYSPARM 284
&SYSTIME 287

a
T' (see type attribute)
term (sometimes called operand)

absolute 36
ordinary symbol 37
self-defining 46
symbol length attribute
reference 44

arithmetic
attribute reference 46,351
self-defining 46,351
variable symbol 38,352

logical 361
relocatable

location counter reference 41
ordinary symbol 27

terminal
to enter statements 1
input to the assembler 102

TITLE instruction 224
translation (see assembly)
truncation of constants 168
type attribute (T') 328

in logical expression 361
in SETC operand 345
value 328

type subfield in DC/DS operand 169
twos complement

representation for negative
numbers 188

unary operator (+,-)
in absolute and relocatable
expressions 55

in arithmetic expressions J51,353

Index 449

unnamed control section 115
external symbol dictionary
entry for 116

initiation of 115
USING domain

address reference within 135
corresponding USING range 135
definition of 135
rules for 141 /1

USING instruction 134-144
for assigning base address 134
for assigning base registers 134
domain of 135
for establishing
addressability 134,137

range of 135
USING range

address within 135
corresponding USING domain 135
definition of 135
overlapping of 143
rules for 142

variable symbol 38
(see also global variable
symbol, local variable
symbol)

as point of substitution 267
SET symbol 318
symbolic parameter 260
system variable symbol 278

&SYSDATE 279
&SYSECT 280
&SYSLIST 281
&SYSNDX 284
&SYSPARM 284
&SYSTIME 287

V-con (see V-type address
constant)

virtual storage
(see also in GLOSSARy)
allocation of
program loaded into 108

, VM/370
service provided by 9

V-type address constant 198

450

for branching to external
control section 198,149

external symbol dictionary
entry for 116

identifying external symbol 198
opposed to EXTRN instruction 149
for symbolic linkage 147

warning messa~e 76
word

(see also full word)
alignment 166,75
boundary 166
length

wrap-around
(see also overflow)
of location counter 42

WXTRN instruction 152
external symbol dictionary
entry for 116

identifying external symbol 147,152
opposed to EXTRN instruction 152
for symbolic linkage 147

X-con (see data constant,
hexadecima 1)

Y-con (see address constant,
Y-type)

Z-con (see decimal constant,
zoned)

zero suppression
in address values in listing. 42
in SETA symbol values 346

":. ,./

This page left blank intentionally.

'()

o

GC33-401()'5

==-= =~. - --------- - ---- -- ----------_.-

-"'T1

s'
z
?
en w
9
~

§ : :::§~~ / Technical Newsletter
This Newsletter No. GN20-9372

Date 28 December 1981

o Base Publication No. GC33-4010-5

File No. S370-21

Prerequisite Newsletters None

OSjVS-DOSjVSE-VMj370 Assembler Language

© IBM Corp. 1972, 1979

This technical newsletter, a part of Release 4 of OS/VS1, Release 3 of OS/VS2, Release 2 of VM/370,
and DOS/VSE, provides replacement pages for the subject publication. These replacement pages remain
in effect for any subsequent releases unless specifically altered. Pages to be inserted and/or
removed are:

/' cover, ii
./ vii, viii
.; xi, xii
/135

A39,140/
""-167-170
/189,190/
./223,224/
/279,280/

,/285,28~
/291,292/

/297,29g/
/305,306/
./327-330/

--'333,334/

/391-408/
/447,448.-'

A change to the text or to an illustration is indicated by a vertical line to the left of the change.

Summary of Amendments

This technical newsletter contains maintenance changes.

Note: Please file this cover letter at the back of the manual to provide a record of changes.

IBM Corporation, P.O. Box 50020, Programming Publishing;.San Jose, CaHfornia 95150

~riilted in U.S.A.

Ci"

