
Program Product

"Restricted Materials of IBM"
All Rights Reserved
Licensed Materials - Property of IBM
©Copyright IBM Corp. 1982, 1986
L Y28 -11 89 -3
File No. 5370-37

MVS/Extended Architecture
Service Aids Logic

MVS/System Products:

J ES3 Version 2 5665-291
J ES2 Version 2 5740-XC6

-~-. .-
--.~ .-- ----.-- --~ -~ ------ -- _ ----..,-
-~- .. -

Fourth Edition (June, 1986)

This is a major revision of, and obsoletes, L Y28-1I89-2 and Supplements LD23-0337-0
and LD23-0366-0. See the Summary of Amendments following the Contents for a
summary of the changes made to this manual.

This edition applies to Version 2 Release 1.7 of MVS/System Product (5665-291 and
5740-XC6) and to all subsequent releases until otherwise indicated in new editions or
Technical Newsletters. Changes are made periodically to the information herein; before
using this publication in connection with the operation of IBM systems, consult the latest
IBM System/370 Bibliography, GC20-0001, for the editions that are applicable and
current.

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM program product in this publication is not intended to imply that
only IBM's program product may be used. Any functionally equivalent program may be
used instead.

Publications are not stocked at the address given below. Requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for reader's comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Information
Development, Department D58, Building 921-2, PO Box 390, Poughkeepsie, N.Y. 12602.
IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1982, 1986

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

•

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Preface

This publication describes the internal logic and organization of the five service
aid programs provided for use in servicing MVSjXA. The publication is intended
for the IBM programming systems representative who is involved in maintaining
the service aid programs. For information about the use and operation of the
service aid programs, refer to System Programming Library: Service Aids,
GC28-1159.

How This Publication is Organized

This publication contains five chapters preceded by a General Information section
and an Abbreviation Dictionary and followed by an Index. Each of the chapters
corresponds to one of the service aid programs. Notice that the chapters are
arranged in alphabetical order by the shortened service aid program name.

The General Information section introduces the concept of a service aid briefly
describes each of the service aid programs. The Abbreviation Dictionary lists
some of the abbreviations and acronyms used in this publication and their
meanmgs.

Each chapter is divided into the following sections:

• The Introduction - a description of the service aid in general with some
discussion of external characteristics.

• Method of Operation - a functional approach to the program using both
diagrams and text.

• Program Organization - a description of program loading, storage layout,
module calling sequences, and the modules themselves.

• Data Areas - a description of the major data areas used by the service aid
program. Where applicable, this section contains references to detailed
descriptions of the data areas in other publications.

• Diagnostic Aids -- information that can be useful for diagnosing problems in
the service aid program.

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 Preface III

Related Publications

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

The following publications are referred to in the text:

MVS/Extended Architecture System Programming Library: Service Aids,
GC28-1159.

MVS/Extended Architecture SYSJ.LOGREC Error Recording, GC28-U62.

MVS/Extended Architecture Debugging Handbook.

Volume I ~ LC28-1164
Volume 2 ~ LC28-1165
Volume 3 ~ LC28-1166
Volume 4 - LC28-1167
Volume 5 - LC28-1168

MVS/Extended Architecture Interactive Problem Control System Logic and
Diagnosis, LY28-1298

MVS/Extended Architecture Message Library: System Messages, GC28-1156.

MVS/Extended Architecture System Logic Library (multiple volumes). Volume 1,
LY28-1208, contains order numbers for all volumes.

ACF/VTAM Version 2 Diagnosis Guide, SY38-06l5.

IV MVS/Extended Architecture Service Aids Logic L Y28-1189-3 © Copyright IBM Corp. 1982, 1986

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Contents

Chapter 1. Generalized Trace Facility I-I
Section 1: Introduction I-I

Invoking and Controlling GTF I-I
GTF Trace Options 1-2
GTF Hooks 1-3
GTF Output 1-4
Formatting and Printing GTF Output 1-4

Section 2: Method of Operation 1-6
Reading Method of Operation Diagrams 1-6

Section 3: Program Organization I-56
Trace Modules Loaded for Each Selected Option I-57
Module Calling Sequences for GTF Functions I-57

Section 4: Data Areas 1-64
GTF Data Areas 1-64
MC Event Handling/Data Areas 1-66
GTF Control Records 1-68
GTF Trace Records 1-70

Section 5: Diagnostic Aids 1-88
Event Identifier (EID) 1-88
Format Identifier (FID) 1-89
Record Identifier (AID) 1-90
GTF Return Codes 1-91

Section 6: GTF Macro Instructions 1-93
AHLREAD 1-93
AHLST ACK 1-93
GTRACE 1-93
HOOK 1-94
IHLMGTRC 1-95
SETEVENT 1-95

Section 7: Monitor Call (MC) Instruction 1-96

Chapter 2_ Module Map and IDR List (AMBLIST) 2-1
Section 1: Introduction 2-1

Functions 2-1
Environment 2-2
Storage Requirements 2-2
Physical Characteristics 2-2
Operational Considerations 2-3

Section 2: Method of Operation 2-4
Reading Method of Operation Diagrams 2-4

Section 3: Program Organization 2-18
Module Descriptions 2-18

Section 4: Data Areas 2-22
CDETAB 2-22

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 Contents V

..
CESDTAB
CSDTAB

2-22

2-23
Errors 2-23
IDENTDA T 2-23
INDEXT AB 2-24
MESSAGES
MSGLIST
OPTNMAP

2-24
2-24

2-24
RLDTAB 2-25
SCATTAB
SORTAB
TDTAB
TRANTAB
TRNTAB

2-26
2-26

2-26
2-26

2-27
Section 5: Diagnostic Aids 2-28

Register Activity 2-28
SYNAD Routine - HMBLKCTL 2-29

Chapter 3. Print Dump (AMDPRDMP) 3-1
Section 1: Introduction 3-1

Job Control Language Statements 3-1
AMDPRDMP Control Statements 3-2
AMDPRDMP Output 3-4

Section 2: Method of Operation 3-5

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Reading Method of Operation Diagrams 3-5
Section 3: Program Organization 3-44

Program Loading 3-44
Reading Input Data 3-50
Module Calling Sequences for AMDPRDMP Functions 3-54

Section 4: Data Areas 3-60

Address Space Control Block Map (ASCBMAP) 3-60
Exit Parameter List (ABDPL) 3-61
Address Space Identifier Index (ASIDNDX) 3-61
Buffer Map Entry 3-62
Common Communication Area (COMMON) 3-62
CPU Status Area 3-71
Current TCB List (CURRLIST) 3-71
Dump Header Record 3-71
Dump Map Entry 3-72
EDIT Communication Table (AMDPRTAB) 3-72
Exit Control Table (ECT) 3-75
Path Descriptor Element 3-75
Print Control Block (PCB) 3-76
Print Dump Index Description Table (AMDMNDXT) 3-76
TCBLIST Entry 3-78

Section 5: Diagnostic Aids 3-79
AMDPRDMP Register Conventions 3-79
AMDPRDMP Return Codes 3-79

Section 6: AMDPRDMP Macro Instructions 3-83
AMDDATA 3-83
AMDPCBPL 3-83
AMDMNDXT 3-83
BRPRTMSG 3-83
BRREAD 3-83

Vl MVS/Extended Architecture Service Aids Logic LY28-1l89-3 © Copyright IBM Corp. 1982,1986

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

BRWRITE 3-84
COMMON 3-84
EQUATES 3-84
FMTPTRN 3-84
HEXCNVT 3-84
IMDMEDIT 3-84
OUTBUFM 3-87
SYNEPS 3-87

Chapter 4. Stand-Alone Dump (AMDSADMP) 4-1
Section 1: Introduction 4-1

AMDSADMP Macro Instruction 4-1
High-Speed Dump Program 4-2
Low-Speed Dump Program 4-2

Section 2: Method of Operation 4-3
Reading Method of Operation Diagrams 4-3

Method of Operation for the Prologue Format Diagrams
Section 3: Program Organization 4-270

Three Stages of Processing 4-270
Module Calling Sequences for AMDSADMP Functions
Module/Macro Descriptions 4-284

Section 4: Data Areas 4-287
Buffer Control Table (BCT) 4-287
Common Communication/Control Table (CCT) 4-289
Dump Table 4-291
Dynamic Storage Control Element (DSCE) 4-291
Input/Output Device Block (IODB) 4-292
Message Parameter (MSGPARM) 4-296
Page 0 Register Save and PSW Build Areas (PGOMAP)
Real Storage Management Address Space Data (RAD)
Recovery Control Block (RCB) 4-298
Relocation Table (RLT) 4-299
Sense Data Mapping for I/O Devices 4-299
Storage Use Table (SUT) 4-301
SVC Stack 4-302
SVC Status Element 4-302
Swap Address Table (SAT) 4-303
Trace Table 4-303

Section 5: Diagnostic Aids 4-304
Wait Reason Codes 4-304
Error Codes 4-304
Trace Table 4-307
SVC Linkage Stack 4-310

4-206

4-275

4-297
4-298

Storage Assignment (Static and Dynamic) Control Blocks 4-311

Chapter 5. Spzap (AMASPZAP) 5-1
Section 1: Introduction 5-1
Section 2: Method of Operation 5-2

Reading Method of Operation Diagrams 5-2
Section 3: Program Organization 5-14

CSECT Descriptions 5-14
Section 4: Diagnostic Aids 5-15

AMASPZAP Switches 5-16

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 Contents Vll

Index X-I

Vlll MVS/Extended Architecture Service Aids Logic

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986

l

l

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Figures

1-1.
1-2.
1·3.
1-4.
2-1.
2-2.
3·1.
3·2.
3-3.

3-4.
3-5.
4-1.

4-2.

4-3.
4-4.
4·5.

4-6.
4·7.
4-8.
4-9.

4·10.
4-11.
4-12.
4-13.
4-14.
4-15.
4·16.
4-17.

5-1.

Key to Method of Operation Diagrams for GTF 1-7
GTF Storage During Tracing 1-56
Trace Modules Loaded for Each Selected Option 1-57
Example of Calling Sequence Map 1-58
Key to Method of Operation Diagrams for ABMLIST 2-5
AMBLIST Module Organization 2-18
Key to Method of Operation Diagrams for AMDPRDMP 3-6
AMDPRDMP Loading 3-46
AMDPRDMP Storage During EDIT Control Statement
Execution 3-48
Read Buffer Chaining 3-53
Example of Calling Sequence Map 3-54
Key to Method of Operation Diagrams for the Stand·Alone Dump
Program 4-4
Graphic Symbols and Format Used in the Prologue Format
Diagram 4-207
SADMP Absolute Storage after IPL. 4-272
SADMP Absolute Storage During AMDSARDM Execution. 4-272
SADMP Absolute Storage During AMDSADIP Execution.
AMDSADIP and the RLT are in Contiguous Virtual Storage. 4-273
AMDSAPGE Load Module 4-273
SADMP Virtual Storage During AMDSAPGE Execution 4·274
Tape Residence Volume Format 4-274
DASD Residence Volume Format 4-274
Example of Calling Sequence Map 4-275
Trace Table 4-307
Call Event Record 4-307
Return Event Record 4-307
Error ID Record. 4-308
Address Fault Record 4-308
Trace Event IDs and Entry Point Attributes 4-309
SVC Linkage Stack 4·310
Key to Method of Operation Diagrams for AMASPZAP 5-3

L Y28-1l89-3 © Copyright IBM Corp. 1982, 1986 Figures IX

X MVSJExtended Architecture Service Aids Logic

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

l

l

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

General Information

A service aid program is intended to aid in the diagnosis of system and
application program failures. The main functions of a service aid are to:

• Collect data that relates to the failure.
• Format and print the data in a form applicable to debugging.
• Aid in developing and applying an immediate fix for a problem.

The following programs are service aids:

• The generalized trace facility (GTF), which traces selected system and
application program events and records the data for formatting and printing
by the AMDPRDMP service aid program or by the ABEND/SNAP routines.

• AMASPZAP, which inspects and modifies data in a load module that is part
of a partitioned data set or in a specific data record that is contained in a
direct access data set; AMASPZAP also dumps records from data sets
residing on direct access storage devices.

• AMBLIST, which produces formatted object module, load module, nucleus,
and cross-reference listings, as well as load module and link pack area maps
and CSECT identification record information.

• AMDPRDMP, which formats and prints the contents of the AMDSADMP
output data set, the SYSl.DUMPnn data sets, a SYSMDUMP ABEND
dump, or any dumps produced by SVC dump, and the GTF trace data set.

• AMDSADMP, which produces a dump of real storage, instruction trace data
(created by the console-initiated loop recording) and critical areas of each
active address space.

The following service aid is described in the publication MVS/Extended
Architecture SYS1.LOGREC Error Recording Logic.

• IFCDIPOO, which initializes the SYSI.LOGREC data set.

The following service aid is described in Environmental Recording Editing and
Printing (EREP) Program Logic.

• IFCEREPI, which edits records from the SYSl.LOGREC data set and writes
them to a specified output device.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 General Information Xl

XlI MVS!Extended Architecture Service Aids Logic

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Abbreviation Dictionary

Abbreviation

AID
ARB
ASCB
ASID
ASXB
ASVT
ASMVT
BCB
BCT
BSAM
CCT
CCW
CDE
CESD
CHPID
CS
CSCB
CSCH
CSD
CSECT
CVT
DA
DAT
DCB
DEB
DLIB
DQE
DS
DSCB
DSCE
EBCDIC
ECB
ECT
ECTE
EID
EOF
EOV
EP
EPA
ERB
ESD
FID

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

Meaning

record identifier
address range block
address space control block
address space identifier
address space control block extension
address space vector table
auxiliary storage manager vector table
buffer control block
buffer control table
basic sequential access method
common communication/control table
channel command word
contents directory entry
composite external symbol dictionary
channel path identifier
control section name
command scheduling control block
clear subchannel
common system data area
control section
communication vector table
data area or direct access
dynamic address translation
data control block
data extent block
distribution library
description queue element
data set
data set control block
dynamic storage control element
extended binary-coded-decimal interchange code
event control block
exit control table
exit control table entry
event identifier
end of file
end of volume
entry point name
entry point address
error recovery block
external symbol dictionary
format identifier

Abbreviation Dictionary Xlll

FXTAB
GSMQ
GSPL
GTF
GTFBCB
GTFBLOK
GTFBUFR
GTFPCT
HSCH
ICR
IDR
INITDATA
I/O
10DB
lOS
IPL
IQE
IRB
JCL
JFCB
JOBNAME
LCCA
LCCAVT
LGVT
LIST
LLE
LPA
LPID
LPRB
LR
LRECL
LSID
LSMQ
LSPL
LSQA
LSR
LT
LTH
MC
MCAWSA
MCCD
MCCE
MCCLE
MCED
MCEE
MCHEAD
MCQE
MCRWSA
MN
MSCH
PCB
PCI
PDS
PER

XIV MVS/Extended Architecture Service Aids Logic

fix table

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

global service manager queue
global service priority list queue
generalized trace facility service aid program
GTF buffer control block
GTF blocking area
GTF buffer
GTF primary control table
halt subchannel
independent component release
CSECT identification record
initialization data
input/output
I/O device block
input/output supervisor
initial program load
interruption queue element
interruption request block
job control language
job file control block
job name
logical configuration communication area
logical configuration communication area vector table
logical group vector table
AMBLIST service aid program
load list element
link pack area
logical page identifier
loaded program request block
label reference
logical record length
logical slot identifier
logical service manager queue
logical service priority list
local system queue area
local supervisor routine
logical track
logical track header
monitor call
monitor call application work/save area
monitor call class directory
monitor call control element
monitor call class element
monitor call event directory
monitor call event element
monitor call base table
monitor call queue element
monitor call router work/save area
module name
modify subchannel
print control block
program controlled interruption
partitioned data set
program event recording

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986

l

l

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

PFT
PICA
PROMP
PSW
PTF
QCB
QCR
QEL
RAO
RANGETAB
RB
RCB
RCSW
RE
RECFM
RLO
RLT
RNIO
RQE
RSM
SAOMP
SAT
SCSW
SO
SDATA
SLE
SLH
SLIP
SPZAP
SQA
SR
SSCH
SSI
STA
SUT
SVC
SYSGEN
SYSIN
SYSOUT
TCAM
TCB
TIOT
TOO
TQE
TTR
DeB
VCCT
VOLIO
VPA
VS

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986

page frame table
program interruption control area
AMOPROMP service aid program
program status word
program temporary fix
queue control block
queue control record
queue element
RSM address space data
range table
request block
recovery control block
real channel status word
record entry
record format
relocatable load dictionary
relocation table
remote network input/output
replay queue element
real storage management
AMOSAOMP service aid program
swap address table
subchannel status word
section definition
service data area
save list element
subchannellogout handler
serviceability level indication processing
AMASPZAP service aid program
system queue area
subroutine
start subchannel
system index status
starting address
storage use table
supervisor call
system generation
system input
system output
telecommunications access method
task control block
task input/output table
time of day
timer queue element
relative trace and record address
unit control block
virtual common communications table
volume identification
virtual page address
virtual storage

Abbreviation Dictionary XV

XVI MVS/Extended Architecture Service Aids Logic

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986

J

l

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Summary of Amendments

Summary of Amendments
for L Y28-1l89-3
for MVS/System Product Version 2 Release 1.7

This edition contains updated material in support of MVS/System Product
Version 2 Release 1.7.

For Print Dump:

• AVMDATA, causes AMDPRDMP to format and print the contents of the
availability manager control blocks from the input data set.

• The CPUDAT A Control Statement can request the formatting of Vector
Facility data.

• The Print Dump index description table (AMDMNDXT) contains 40 byte
long entries for both KEYFIELDS and TCBSUMMARY. Both are listed
with entry code equates for the index table.

For Stand-Alone Dump:

• Three modules are added:
AMDSAMCI, machine check handler

- AMDSA VEC, vector status dump
- AMDSAEXI, external interrupt handler

• Minor technical and editorial changes.

Summary of Amendments
for LY28-1189-2
MVS/System Product Version 2 Release 1.3
As Updated March 21, 1985

This revision contains new and updated material in support of MVSjSystem
Product Version 2 Release 1.3 and includes the following:

• For AMDPRDMP:
several new AMDPRDMP control statements: JES3, SADMPMSG, and
TCAMMAP.
diagrams of the Verb Exit Processing section are now in table form
minor technical and editorial changes

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 Summary of Amendments XVll

• For AMDSADMP:
- the addition of three new modules:

AMDSAXSM
- AMDSAFCM
- AMDSADCM

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

• numerous changes to HIPOs and extended descriptions
• minor technical and editorial revisions

Summary of Amendments
for LY28-1189-1
MVS/System Product Version 2 Release 1.2
as Updated January 31, 1984

This is a major revision of LY28-1189-0. It contains new and updated information
in support of MVS/System Product and includes the following:

• For AMDPRDMP:
- support for the FORMAT and SUMMARY control statements have

changed
• For AMDSADMP:

- support for the Magnetic Tape Subsystem Display
- support for the 3290 console

• minor technical and editorial changes

xviii MVS/Extended Architecture Service Aids Logic LY28-1189·3 C> Copyright IBM Corp. 1982, 1986

l

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Chapter 1. Generalized Trace Facility

Section 1: Introduction

The generalized trace facility (GTF) traces selected system and application
program events and records the data for later formatting and printing by the
AMDPRDMP service aid program. GTF functions independently of the system
trace facility. If system trace is active when GTF is started, system trace remains
active. Starting GTF does not alter the status of system trace.

Invoking and Controlling GTF

The operator invokes GTF as a system task with a START command specifying
the cataloged procedure. (This procedure has the membername of GTF and is
included in SYSl.PROCLIB at system generation.) The operator controls GTF
processing via parameters in the START command and the TRACE options. The
information supplied in the START command includes the following:

• MODE - Defines whether the trace data is recorded in the GTF address
space (internally) or in an external data set defined by the IEFRDER DD
statement in the cataloged procedure.

• TIME - Provides the option for every logical trace record to be time-stamped
with the TOD clock value at the time the record is placed into the buffer.

• DEBUG - Permits GTF to either attempt recovery or terminate from errors
it encounters while building a trace record.

• BUF-- Specifies the number of trace buffers which GTF makes available for
the ABDUMP/SNAP, SVC dump, or AMDSADMP program to include in
dump output.

• The operator may also specify parameters to override JeL parameters in the
cataloged procedure or values for symbolic parameters in the cataloged
procedure.

For a description of the START command, its GTF parameters, and the GTF
cataloged procedure, refer to Service Aids.

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 1. Generalized Trace Facilit 1-1

GTF Trace Options

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

GTF obtains the trace options from the operator, or, if a SYSLIB DD statement
is provided in the cataloged procedure, from the specific member of
SYSl.PARMLIB. The following options may be specified.

• ASIDP - requests that GTF tracing be limited to specific address spaces
(which the user is prompted to supply).

• CCW - requests recording of channel programs and associated data for start
subchannel and resume subchannel operation and I/O interruptions.

• CCWP . requests recording of channel programs using specific channel
program trace options (which the user is prompted to supply) for start
subchannel and resume subchannel operations or I/O interruptions or both.

• CSCH - requests recording of data for clear subchannel operations.

• DSP - requests recording of comprehensive data (or minimal data if SYSM is
also specified) for all task, LSR, or SRB dispatch events.

• EXT - requests recording of comprehensive data for all external
interruptions.

• HSCH - requests recording of data for halt subchannel operations.

• 10 - requests recording of data for all I/O interruptions except
program-controlled interruptions (PCl's).

• lOP -- requests recording of data for I/O interruptions on specific devices
(which the user is prompted to supply).

• JOBNAMEP - requests that GTF tracing be limited to specific jobs (which
the user is prompted to supply).

• MSCH - requests recording of data for modify subchannel operations.

• PCI - requests recording of data for all intermediate status interruptions. If
lOP or SYSP is also specified, only intermediate status interruptions on the
specified devices will be recorded.

• PI - requests recording of comprehensive data for all program interruptions.

• PIP - requests recording of comprehensive data for program interruptions
with specific interruption codes (which the user is prompted to supply).

• RNIO requests recording of comprehensive data (or minimal data if SYSM
is also specified) for all basic transmission units (BTU's) received by
ACFIVTAM.

• RR - requests recording of comprehensive data (or minimal data if SYSM is
also specified) for all entries to functional error recovery routines such as
ST AE/EST AE routines.

1-2 MVS/Extended Architecture Service Aids Logic L Y28-1 189-3 © Copyright IBM Corp. 1982, 1986

l

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

GTF Hooks

• SIO, SlOP - If you request the SIO or SlOP option, GTF processes your
request as a request for SSCH or SSCHP.

• SLIP - requests recording of data specified by a SLIP trap with a tracing
action when it matches or when any trap is checked with SLIP DEBUG mode
specified.

• SRM - requests recording of comprehensive data (or minimal data if SYSM
is also specified) for all entries to the system resources manager.

• SSCH - requests recording of data for all start subchannel and resume
subchannel operations.

• SSCHP - requests recording of data for start subchannel and resume
subchannel operations on specific devices (which the user is prompted to
supply).

• SVC - requests recording of comprehensive data for all SVC interruptions.

• SVCP - requests recording of comprehensive data for specific SVC numbers
(which the user is prompted to supply).

• SYS - requests recording of comprehensive data for all external
interruptions, program interruptions, recovery routines, and supervisor call
interruptions. SYS causes recording of all I/O interruptions, start subchannel
and resume subchannel operations, clear subchannel operations, halt
subchannel operations, and modify subchannel operations.

• SYSM - requests recording of minimal data for the events listed under SYS.

• SYSP - requests recording of comprehensive data for specific system events
(which the user is prompted to supply).

• TRC - requests recording of data for all events associated with the trace task
itself.

• USR ~ requests that all data passed to GTF via the GTRACE macro
instruction be recorded in the trace data set.

• USRP - causes GTF to build an internal table of the user event identifiers
(EIDs) that the user specifies. The TEST parameter of the GTRACE macro
tests whether or not tracing is active for the specified EIDs.

After the operator starts GTF and selects the trace options, GTF waits for an
event that requires GTF tracing, GTF is notified of such an event by a hook from
another routine. Hooks are issued by IBM users, IBM components, first level
interruption handlers, the I/O supervisor, the dispatcher, the recovery/termination
manager, and the system resources manager. GTF also receives hooks to indicate
that trace data is to be included in a dump; these hooks are issued by ABEND or
SVCDUMP.

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 1. Generalized Trace Facility 1-3

GTF Output

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Two macro instructions provide the hooks into GTF:

• GTRACE - which is a trace hook issued by users and IBM components to
cause GTF to write their data in the GTF output. Events traced by the
GTRACE macro will use an Event Identifier (EID) from one of the three
ranges listed below:

1. 0000 - 1023 user events
2. 1024 - 1535 reserved for program products
3. 1536 - 4095 reserved for IBM components and subsystems

EIDS in the first range are available for general use by all GTF users. EIDS
in the second and third ranges are reserved.

• HOOK - which is issued by system routines to notify GTF of an event to be
traced or of the need for trace data for a dump.

Both of these macro instructions generate the monitor call (MC) instruction (see
Section 6, a maskable interruption).

GTF builds two kinds of records:

• Trace records - which contain information about system events. If the
SYSM (system minimal) option is in effect, the trace record is similar to that
built by the system trace facility. If the trace option is other than SYSM, the
trace record contains more comprehensive data about the system event.

• Control records - timestamp and lost block/event records. The timestamp
record is the first record in every block; it identifies the time of day and date
when the first trace entry was placed in the block. The lost block/event
record contains information about events that were missed.

When trace mode is internal, the records are maintained in 4096-byte buffers in
variable blocked format. When mode is external, the trace records are written in
the external data set (either tape or direct access) defined by the IEFRDER DD
statement in the cataloged procedure. When the end of the data set on a direct
access device is reached, writing continues at the beginning of the data set. The
data will be in variable blocked format with a blocksize of 4096 bytes.

Formatting and Printing GTF Output

The AMDPRDMP service aid program formats the GTF output for printing.
The EDIT control statement in AMDPRDMP provides:

• Data reduction for GTF output.

• Selectivity of data from the trace output data set.

• An interface to user- or component-supplied formatting routines for data
recorded via the GTRACE macro instruction.

1-4 MVS/Extended Architecture Service Aids Logic L Y28-1189-3 © Copyright IBM Corp. 1982, 1986

J

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

For a detailed description of the EDIT function of AMDPRDMP, refer to the
"Print Dump (AMDPRDMP)" chapter in this publication.

While GTF is active and SDATA= TRT is in effect, the ABEND/SNAP routine
formats and prints trace records related to the dumped address space. The
records formatted are those from the n most recent GTF buffers, where n is the
number specified with the BUF = keyword on the START command.

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter I. Generalized Trace Facility 1-5

Section 2: Method of Operation

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

This section describes how GTF collects and manages data about system events.
As shown in GTF Diagrams 1 and 2, the description begins with an overview of
GTF, then describes the stages of the overall processing listed below. Finally, it
describes the processing of the monitor call-routing facility.

• GTF initialization.
• Hook processing.
• Trace record buffering and blocking.
• GTF-writer processing.
• GTF Idump interface.
• Error recovery.
• GTF termination.

Reading Method of Operation Diagrams

Method of operation diagrams are arranged in an input-processing-output layout:
the left side of the diagram contains the data that serves as input to the processing
steps in the center of the diagram, and the right side contains the data that is
output from the processing steps. Each processing step is numbered; the number
corresponds to the verbal description of the step in the extended description.
While the processing step in the diagram is in general terms, the corresponding
text is a specific description that includes a cross-reference to the code for the
processing.

1-6 MVSjExtended Architecture Service Aids Logic L Y28-1189-3 © Copyright IBM Corp. 1982. 1986

l

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

I
Diagram 2

Program
Initialization

Diagram 3

Hook Processing

I
Diagram 4

Record Blocking
and ButTering

Diagram I

GTF Overview

Diagram 5

GTF-Writer
Processing

I
I

Diagram 6

GTF/Dump
Interface

,

Diagram 8

Termination

Diagram 7

Error Recovery

Diagram 9

Me Event Router
Processing

Key to Method of Operation (MOl Diagram Symbols

Entry into processing

--~ Flow of Control

Data Transfer

Pointer to or address of

Reference to data

Figure 1-1. Key to Method of Operation Diagrams for GTF

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

1, 2, etc.

A, B. etc.

I
'<.
[3

Look for corresponding numbers in text

Look for blow-up of item on same page

Look for corresponding-lettered blow-up
on same page

Braces to denote related items

See referenced diagram for detailed
description

Reference to another diagr<,m

Chapter 1. Generalized Trace Facility 1-7

7" GTF Diagram 1. GTF Overview (Part 1 of 2)
00

~
<:
ell --tTl
x
(D'
::s
0-
r!>
0-

>­
ri
:::r
~.
... = @

1(l
::1 g.
>-
0:
'"
b

OQ r;.

t""
-<
N
~ --00
I,C)
I

W

©
(")
o
~
::1.

OQ
:::r = ~
(")
o
fl -I,C)
00
JV
I,C)
00
01

Input Via START Command

START Command

START GTF [MODE=,TIME=
,DEBUG=,BUF= 1

@ ~ EXECJ'ARM-] ~

SYS1·PROCLIB I Console]

[g
From MC
Routing
Facility
(M09)

SYS1.PARMLIB

HOOK EID= ...

or

GTRACE ...

User and
System Data
Areas

STOP Command

STOP GTF

'-'

Process

1 Initialize GTF:

• Select GTF options

• Request MC support using
SETEVENT service

2 Process a hook:

• Trace hook

• ABEND/SNAP/SVC Dump
I nterface hook

3 Terminate GTF

'-'

Output

§
for Details

Filter Tables

Control Register 8
on Each-CPU

Trace Record

See MOs 3-5
for Details

Control Record

See MOs 4-6
for Details

See M08
for Details

'-'

r
~.

l
:: ~ = ~ tti ~ ;;- ;:;-- -'" ~ g.

I 3:
"'CI IIlI a S' -,g ::2.
.. !.
~ '" = s. ---= =3:
:: :r

~
N

~ --00
'P
w

©
n
.g
'< ...
cjii'
~ -CI'
~
n o
~ -\0
00
N

-\0
00
0\

n
0-
I>'
'0
tt ...

Ci
l'1>
::s
l'1> ... e:.
N'
l'1>
p..

--l ...
~
l'1>

."

~
~

-I
\0

r

GTF Diagram 1. GTF Overview (Part 2 of 2)

Extended Description Module

1 The GTF procedure resides in SYS l.PROCLI B. The
operator invokes GTF by use of a ST ART command.

• Four parameters (MODE, TIME, DEBUG, and BUF)
may be specified in the START GTF command or
they may be specified in the EXEC statement in the
GTF procedure. The options for the trace phase of
GTF may be specified by the operator from the
console or they may be included in a member of
SYS1.PARMLI B. GTF obtains storage for tables in
which it places information about the selected
options.

• Before tracing can begin, GTF requires monitor call
(MC) routing-facil ity support_ The MC routing
facility is an extension of the program first-level
interruption handler (PF LI HL GTF issues the
SETEVENT macro instruction to request MC support.
The SETEVENT service constructs MC tables for the
events GTF will trace and turns on the corresponding
class bits in control register 8 for each active CPU.
See Section 6 for a description of the SETEVENT '
macro instruction. If selective event tracing is in
effect, GTF constructs filter tables.

2 When a program issues a HOOK or GTRACE macro
instruction (see Appendix A) for an event to be

traced, the MC routing facility passes control to GTF.
GTF's processing depends on the kind of hook received:

• Trace hooks notify GTF of an event that may be
traced by GTF. GTF collects data about the event
from user and/or system data areas, then records the
data in trace records.

• Dump interface hooks from ABEND/SNAP/SVC
Dump request trace data to be saved for a dump. GTF
builds a control record and saves a copy of the current
buffer contents. During dump processing, ABEND/
SNAP/SVC Dump issues the AHLREAD macro instruc­
tion for GTF to pass the buffer copies to the dump
program.

GTF records reside either in the GTF address space or in
an external data set, depending on the MODE option in
effect.

Label

r

Extended Description Module

3 The operator terminates GTF via a STOP command.
(See MO 8 for GTF termination. Abnormal termina­

tion is described in MO 7_)

r

Label

~ J:

i' r
l ~
3: a
II
~ 3:
S. !a. - ~ '" ::1.
I ;.

~ =
~ :
1 !
~ ::

= -!

7" GTF Diagram 2. Program Initialization (l>art 1 of 8)
o

::::
<
·VJ
ITl
><

" ::l
P­
<ll
P-

» ...,
n
~

" n
>= .,
<ll

VJ
<ll .,
<: ;:;-
<ll

»
c..:
on

r
o

(fQ

ri

r
-<
N
00 ,

00

'f
w

(fi)

(")
o

'1:J
'-< ..,
OQ'
;?;'
.....
1:1:'
~
(")
o ..,
'?
\0
00
.N
\0
00
0\

Input

ENQAHLQNAME,
AHLRNAME E, SYSTEM

CVT

Via START
Command

--,--
I

C:~TGTFSlJ - - - -

I
I
I ___ J

I.egister 1

\.,

STOP ECB

EXEC
PARMLIST

~
E:J!l

Process Output

1 Terminate if GTF already active

To the

• I • Operating
System

2 Issue ESTAE for error protection

3 Issue SETEVENT to request monitor
call support : :>.

4 Obtain and initialize GTF tables

• Primary control table
(GTFPCTI

• initialization table (iNITDATA) ::>

'-'

Message AHL0131

MCQE

I I
• GTFPCT

GTEPCTID

I!STOP ECB
PCT PCITB I!... PCI TABLE

INITDATA I 1
1.I~I:rID

CIB

EXEC Parms

t'"'
~-

I
a: ~ .. !i
If c::-S- ;:;-
Fri,

if ~
'I s-alA" = = --til

!~

\.,

t"'"
-<
N
OC
I --OC

10
I

W

@

(J
o
~
::l.

0tI go
.... = is:
(J
o
~ -10
oc
J'l -10
oc
0\

(J

!
(0 ...

~
::s o
~ N·
8-
>-l

~ o
"Tj

~
~ .

......
I

r

GTF Diagram 2. Program Initialization (Part 1 of 8)

Extended Delcriptlon Module

1 As soon as GTF receives control, it ensures that it is
not already in operation from a previous ST ART

command. It issues an ENQ macro instruction for a
major resource of VS2TRACE and a minor resource of
GTF. If the resources are unavailable, or GTF initializa­
tion is in process or GTF is active, GTF issues message
AHL0131 to the console and returns control to the
system. GTF then terminates .

2 GTF provides error protection for initialization
via an EST AE macro instruction.

3 GTF requests MC support via the SETEVENT
macro instruction. As a result of SETEVENT

processing, an MC queue element (MCQE) for GTF is
established. It is chained off the MC control element
(MCCE) from MCHEAD.

4 GTF obtains space in SQA for its primary control
table, the GTFPCT. A flag is set in the GTF audit

field (AUDITWRDI. indicating that GTFPCT has been
obtained. This field tracks GTF processing and deter­
mines what actions are taken if the GTF initialization
ESTAE recovery routine receives control. GTF also
obtains storage in subpool zero for the initialization
data area INITDATA. If PCI and CCW or CCWP are
requested, GTF builds the PCI table. It clears the
tables and places EBCDIC identifiers in each table.
GTF stores a pointer to the STOPECB in GTFPCT and
stores pointers to the command input buffer (CIB) and
the PARM field of the AHLGTF EXEC statement in
INITDATA. If either area could not be obtained, GTF
issues message AH L 1301 and returns control to the
system.

AHLGTFI

AHLGTFI

AHLGTFI
SETEVENT
service

AHLGTFI

r r

Lebel

t"'" ~ ;:s.
~

Ii '" -~. =- -:: ~ =-III 3: ;;-
::!. III
III ;;-
tii .. S·
I tii

'"
cog -= ~ s: ...

~ ~

co ..., -= s:

';- GTF Diagram 2. Program Initialization (Part 3 of 8) -N

~
~
tr1

><I
~

l
>
rl
e:
~
2" a
1r
:!
~.

~
0..
'"
b

0tI n·

t""'
-<
"-l

~ --00
'P
w

61
(i

~
::I.

C§. ... -t:=
~
(i
o
-? -1.0
00
JV -1.0
00
0-,

Input

Length of START
Command
Parameter Field

CIB

CIBDATA

LNGTH Subfield
in, EXECPARM

Length of EXEC
Statement
Parameter Field

or EXECPARM

I PARMS

or
.-------------------~

Operator Reply

'-'

Process

5 Scan START command and EXEC
statement for user options:

• Initialize with default values
or

• Initialize with user-supplied
values

Invalid
Parameter, WTOR

'-'

BUF = nnn

Output

GTFSTAT

'-'

I:"""

[
~~
~ !!
&;" ;.
Ei!i[
I 3:

"'d =
~ ~
~ iii'
::l. ;:
~ Q
C

..... --= = 3:
:: :s

B
QO
I -

QO
\0
W
@

Q
~
::I.

OQ

~
='
~
n o
-?
\0
QO

.N

\0
QO
Q'I

n
::r
I»

" ~ ...

~
::I
n

~
N'
2-
-l
~
()
n
'Tl

~
-<
....
I

YJ

r

GTF Diagram 2. Program Initialization (Put 4 of 8)

Extended O_iption Module. Label

5 GTF checks the CIBDATLN field of the CIB to AHLSCAN
to determine whether there are parameters in the

START command. If the field is nonzero, GTF obtains
the parameters from the CIBDATA field and sets the
appropriate option bits in the GTFSTAT field of the
GTFPCT. If the CIBDATLN is zero, there are no param­
eters in the START command, so GTF chec.ks the LNGTH
subfield of the EXCPARM field in INITDATA. If it is
nonzero, GTF obtains parameters from the EXEC state­
ment and sets the appropriate bits in GTFSTAT. If an
invalid parameter is encountered, GTF issues a WTOR for
valid options. If parameters were not supplied via the
START command or EXEC statement, the GTF defaults
are in effect .

r r

i,a
II a
li­
~l
i ~
." ;r­II" ::I.

I-

l~
a~
o
i

";""' GTF Diagram 2. Program Initialization (Part 5 of 8)
..j::..

~
<:
CI'l

tTl
~
('1)

:3
0-
('1)

0-

»
n
::r"
;=0'
('1)
n
s::
('1)

CI'l
('1)
<:
(3'
('1)

»
0.:
'" r
o

(JQ
(3'

r
-<
N
00 .
00

'f'
w

iGl
(")
o

"0
'<
QQ'
go -III
~
(")
o
~
'D
00
.J'-l

'D
00
0'\

... INITDATA

-' PARMDCB
SYS1, ---- ------
PARMC ICTFLG1,

... ICTPLIB

...
or

c=J
GTFPCT

l GTFOPTS L

EPALIST

Entry Point
EID of Handler-'

EIDLIST CLASSLIST

I I

RANGETAB

'-'

~6 Obtain trace options.

~

..".. 7 Build EIDLIST/CLASSLIST and
~ RANGETAB using selected trace

event data.

~ 8 Issue SETEVENT for selected trace
options.

'-'

GTFPCT I
GTFSTAT GTFLOAD

I
GTFOPTS GTFEIDL

J. Filter Tables ...
EID LIST

EID t Handler

EID t HandlE!r

EID t Handler

-l)
GTFPCT r I t Handlers for

Filter Events

RANGETAB

Storage Range
for Each Event Handler

MCQE for GTF MCCLE.

r ~ I pJ A J\. I
Event

I , EID It Handler

~MCEE
EID t 'Event Handler

~
;:;"
til
::I
It
Q,

3: ,;
lID ~ -til -.. ..
;" ;:;"
F;;' ~

Q,
I 3:

"'= lID a ~
~

..
;" .. F;;' -~ = = --= = 3: 3: :s

'-'

r' r' ("

t'"" GTF Diagram 2. Program Initialization (Part 6 of 8) ~ I: -< n' i N

~ Extended Description Module Label ~

- I ~. -00 6 GTF determines the source of trace option input: AHLCTL1 Ii \0
~ .:.., either SYS1.PARMLIB or the console. A READJFCB

a.
10

~ © is issued for the SYSLIB DO, and if PARMLIB input is Ii
::3. 10

(') indicated, the ICTPLIB flag in INITDATA is set to 1 and 10 Ii
0 1ii ::3.
'0 SYS1.PARMLIB input is read for the options. If input is 10
'<

to come from the console or if the SYS1.PARMLIB data 1ii
::I. = (J1:I

set open is unsuccessful, the ICTPLIB flag is set to 0 and "C,
::r a -..... ... GTF issues AHL 1 OOA to obtain the options from the can· ~ = = sole. I n either case, GTF obtains the options and sets the AHLTSCN .. ~ s:: -'<
(') appropriate bits in GTFOPIND field of INITDATA. It =,
0 also sets the PCTCA TF bits in GTF PCT. GTF resolves -~ specification of mutually exclusive options. (See = - Service Aids for a discussion of GTF options.) If the ~
\0
00 GTFOPIND bits indicate SVCP, SYSP, SSCHP, lOP, PIP, !'l - ASIDP, JOBNAMEP, or CCWP, GTF prompts the operator AHLTPMT
\0 for selected trace events and specific trace options. After AHLTCTL 00
0\ all options and filter events have been obtained, GTF issues AHLT103

message AHL1031. If selective tracing is in effect, GTF
uses the EBCDIC tables to build filter tables or masks.
The addresses of the filter tables are placed in GTFPCT
except when ~IDP or JOBNAMEP are in effect. If
ASIDP or JOBNAMEP is in effect, the filter tables for
ASIDP or JOBNAMEP (not the addresses of the filter
tables) are placed in the GTFPCT.

(') 7 GTF determines which event handlers are required AHLGTFI (MCOEINIT)
::r based on the options in effect as indicated by the
I\>
'0 GTFOPTS bits. Starting and ending addresses of the

("1)
required modules are determined via the entry point list ..

;- (EPALISTI. GTF constructs an EIDLIST which contains

0 ElDs of events to be traced and the entry points of the
("1)

associated event handler modules. GTF also constructs ::l
("1)

the RANGETAB which contains starting and ending
~
N' addresses of the event handler modules. From this table,
("1) it determines the range of storage required to fix GTF in 0-
>-l storage. This range is set in FIXTAB which is passed as a
I\> parameter on the PGFIX macro instruction. The storage ()
(l)

for F I XT AB is obtained from SOA since it is requ ired to
."
I\> free storage of GTF termination.
~

8 GTF issues the SETEVENT macro instruction with AHLGTFI (MCOEINIT) '<
ADD specified as the action so that the appropriate AHLSETEV

.- MC tables will be constructed for all E I Os and classes of I .- events to be traced.
VI

-I -0\

s::
<:
CIl

til
><
li

~
~ ::r
~.

~
w
So g

~
~

OQ
r;o

t""'
-<
tv

c:o
00

'f'
w

©
n
0

'"C)
'<
:::1.

OQ
::r -= s::
n
0

-? -\0
00

JV -\0
00
01

GTF Diagram 2. Program Initialization (Part 7 of 8)

Input

I.'~-
Output

GTFPCT
I

GTFPCT
GTFMODE CURRBLOK

NEXTBLOK

GTFPCT History Queue

GTFOPTS

HQLENGTH
Use Count V 9 Obtai~ and initialize record. : :> " Empty Queue

blockmg areas and buffers.

CVT

CVTTZ

ECBLlST

'-'

=!======~:~> 10 Issu~ SETEVENT to enable
tracmg.

~===::======~:~:> 11 Ready to receive hooks

4...,

For
Each
Active
CPU

lNext BCB

(~
~GTFBUFR.

4K I
MCCE MCED

L.......----I~CCD :

Register 8

{ Idlass Mask~
CVT

CVTGTFST

Next

BCB
Chain

~I-

.-
Buffers
14K
Each) .

~
~.

I.
3:~ .. I
if s: _. n .. -;ra.

;s:
li
'I iii'
::l Ii'
~ c:> c - -= =;s: 3: :I

'-'

t"""
-<
N
00 ,

00
\0
W
(0)

n o
"0
'<
::J.

(JCl
::r
...... = ~
n o
-?
'\0
00
N -\0
00
0'1

n
::r
I\>

"0
r; ..,

~
::I
(1)

~
N'
(1)

0-

""l ..,
I\>
(")
(1)

'Tl
I\>

~
Q

-I --....l

('

GTF Diagram 2. Program Initialization (Part 8 of 8)

Extended Description Module

9 GTF attaches the writer subtask to initialize
the trace record blocking and buffering areas.

(GTF determines which of three writers to attach based
on whether trace data will be maintained internally or
written to tape or to direct access.) The writer sub­
task issues GETMAIN macro instructions, first for
an SAB to be used in buffering, then for the record·
blocking areas (GFTBLOKsl. The SRB has the
addresses of the GTF ASCB and GTF '5 writer-1iubtask
TCB. The GTFBLOKs are obtained one at a time
in SQA. (If the size of real storage is 768K, GTF
obtains only 3 GTFBLOKs.) The first block to be
filled is initialized with a use count and with the CVTTZ
value. A pointer to it is set in the CUAABLOK field
of the GTFPCT. Remaining blocks are all chained
off the first block. The buffars and buffer control
blocks (GTFBCBs) are obtained from subpools 5
and 6 respectively. The buffers required for the GTF
history queue are chained (via pointers in the
associated BCBs) from the HQHEAD field in GTFPCT.
Each GTFBCB contains a use count which indicates
the number of queues the GTFBCB is on. This use
count is never less than 1, since buffers not currently
in use are on the empty queue.

GTF also attaches and initializes the subtask which
performs asynchronous operator communication during
unrecoverable errors in trace processing .

10 GTF reissues the SETEVENT macro Instruction
.pecifying ACTIVATE to enable tracing after

successful completion of the above. The SETEVENT
service obtain. work/save areail (MCAWSA) to be used
by the MC routing facility. If the CCW option was
requested, the SETEVENT service obtains AHLCCWWK.
It also initializea the class m.k in control register 8 for
each active CPU.

AHLGTFI

AHLCWAIT
AHLIWAIT
AHLWWAIT

AHLGTFI
AHLWTASK

AHLTMON

AHLSETEV

Label

('

Extended Description Module

11 While GTF tracing is active, GTF waits on a list of AHLTMON
ECBs which cause GTF termination when posted.

These are the STOP ECB, termination ECB, the
writer/WTASK error ECB, and the two ATTACH ECBs
for the writer and WTO subtasks. The CVT bits which
indicate that GTF is active are set on. GTF then receives
control from the program check interruption handler
whenever a hook is issued for an evant enabled for tracing.
Asynchronously, the writer and WTO subtasks wait on the
I/O ECB and WTO ECBs, respectively. When either of
these are posted, the writer and/or the WTO subtask
perform the requested function.

Note: During initialization, GTF frees storage for its
temporary tables when they are no longer needed.
These include INITDATA, EIDLlST, the device tables,
and RANGETAB. If the STOP ECB is posted during
initialization, the program terminates after freeing all
resources.

('

Label

-I -00

s:
<:
(I)

tTl
~
(1;

::s
~
0.

:» ...
n
g:
(1;
n ...
s:: ...
(1;

(I)
(1; ...
<:
n'
(1;

:» c.:
'" r
o

O'Q

n'

r
-<:
IV

~

-00

'P
w

@

n o
~
::!,

O'Q

::r -I:tl
s:
n o
~
\0
00
IV

\0
00
0\

GTF Diagram 3. Hook Processing (Part 1 of 20)

Hook From I/O Supervisor

HOOK EID = IECI02,
IECPCI,IECEOS

UCB

[UCBCHAN

PSA

I/O OPSW

PSACPUSA

CVT

+ ASVT. J

10SB

10SASID

10SSNS

10SFLA

10SOPT

10SDVRID

10SLEVEL

10SSRB

\.,

Registers

R2 + 10SB

R3 • SRB

R7 + UCB

ASVT

• ASCB I

JOBNAME

Process

EID = 2100, 5101, 5200

1 If I/O filtering is in effect,
determine whether a device is
selected for tracing.

\.,

Build record for I/O interruption

• I/O trace record

• CCW trace record

Ou

\.,

t"'"
~r

1
:=
III
~
:S. ;.
I

I
=
!

t'"'

~
00 , -
00
\C)

w
@

(]

~ ...
ciQ'
::r --!XI
~
(]
o ...
'? -\C)
00
J"I -\C)
00
0\

(]

!
it ...

~
;
e.
~.
Q.

--l

~
~
~

-I -\C

r

GTF Diagram 3. Hook Processing (part 2 of 20)

Extended DelGrIptIon

When the MC routing fecility passes control to GTF for

Module Libel

hook processing, GTF fint determines if the event AHL TSE LF AHL TSELF
belongs to a specifiad set of jobs or addrass spaces. If 10,

then GTF performsavent filtaring (if selective tracing is in
affect) or it gathers deta to construct a record for the
hook. The record is built in the GTF MC application
work/save area (MCAWSA). The GTF issUis an
AHLSTACK macro instruction to cause the record
prefix to be added and the record to be placed in a AHLSBUF
GTFBLOK. Full GTFBLOKs are copiad into buffers.
(See Diagram 4 for datails.) In the case of a control hook
from ABEND or from SVC Dump, the placement of the
record in a block causes GTF to immediately copy the AHLSBLOK AHLSFEOB
block to a buffer whether the block was full or not.

1 The I/O supervisor issues a HOOK macro instruction
for thrH typel of I/O interruptions:

• For end-of·sense interruption processing. it uses an
EID of I ECEOS.

• For intermediate status interruption processing, it
uses an EID of I ECPCI.

• For I/O interruptions with a valid UCB, it uses an EID
of IECI02.

If interruptions for only certain devices are to be traced,
GTF checks the I/O filter table to determine whether
the current interruption is for one of the selected devices .

SYS
{

SYSM}

a If TRACE· SYSP ,GTF builds an I/O AHL TFCG 10TRCE
10 trace record.
lOP

• If TRACE· {~~p} and TRACE = {:~P } , GTF AHLTCCWG AHLTCCWG

builds CCW trace records in addition to the 10 trace
record.

Information for the records comes from various system
data areas; the diagram shows there areas. The formats of
the output records are in the 'Data Areas' section of this
chapter.

r r

t"" " ;:';' ~

~ !!
l ~.
~ [
~ s:
:!. a
I» t1>
~ .. j;;'

~
...., <=
a :
1i 0:1
~ s:

'-o!! ~

= --0:1
~

';"" GTF Diagram 3. Hook Processing (Part 3 of 20)
N
o

a::
~
~
;

~
Co

:>
(i
c:r

~'
a
S€l
~
§'
:>
~
t"'"
~
0'

t"'"

~
I

00
-.0
.:,;
©
(j
o

"0
'<
::I,

t-.... -= a::
g
~
.....
~
JV
.....
-.0
00
0\

t

Hook from I/O Supervisor

~OOK E~D = I ECSSCH

UCB

I UCBCHAN

PSA

[PSACPUSA I

CVT

+ ASVT J
10SB

10SASID

10SRST

10SVST

10SDSID

10SEEKA

10SGPMSK

10SOPT

10SFMSK

10SDVRID

10SLEVEL

10SUCB

\.,

lItO Filt;r:T;bl~ I
Registers
RO Condition

Code

R2 +IOSB

R3,ORB

ASVT

[.-ASCB J

UCB

UCBLEVEL

UCBCHAN

Process

. EID = 5101

2 If SSCH filtering is in effect,
determine whether a device is
selected for tracing.

Build record for SSCH event.

• SSCH trace record

• CCW trace record

\.,

Output

Return

~

t""
~.
::I
it =-a: "
~ ~
li' ~ -:2. ... ;::).
~

li' r;;
s=-

a:
"'tI ~ a -~
'i :3. ., .. r;; -""!! Q

= -.... --= == 3: a: :s

t'""
-<
N

~
00

'P
w

@

~
~ ... Qti.
::r -Il:l
::::
n
o ...
'?

\0
00
.N
\0
00
0'1

n
::r
I'l

"'0 -<1l ...

a
<1l
:::
<1l ...
e:..
~.
p...

o-l

~

~
Q

-­I
IV --

r

GTF Diagram 3. Hook Processing (Part 4 of 20)

Extended Description

2 The 1/0 supervisor issuesa HOOK macro instruction
with an EID of I ECSSCH for all SSCH events in the

lOS SSCH subroutine. If SSCH events for only certain
devices are to be traced, GTF checks the SSCH filter table
to determine whether the current event is for one of the
selected devices.

{
SYSM} SYS

e If TRACE = SYSP GTF builds an SSCH trace
SSCH record.
SSCHP

{ CCW } {SSCH } e If TRACE = CCWP and TRACE = SSCHP ,

GTF builds CCW trace records in addition to the SSCH
trace record.

Information for the records comes from various system data
areas; the diagram shows these areas. The formats of the
output records are in the 'Data Areas' section of this chapter.

r r

Module Label

AHLTFCG SSTRCE
RSTRCE

AHLTCCNG AHLTCCWG

t"'" I: _. ~
r6 Il
::I _

I. ~.
a::l
III ;" a::
:! .•
!. ~
rIk ;_

I~

'"d Q a
~ ;;
... 3:
~ :s
Q -!

....­
I

IV
IV

~
<:
[/l

tTl
><
;:p
:::s
P­
(j)

P-

;l;-
'""\
n
:=:
;:p
n
~
'""\
(j)

[/l
(j)
'""\

< n·
(j)

;l;­

is.:
C/O

r o
O':l n·

r
-<
IV
00 ,

00
'P
w

It}>

(j
o
'0
'<
'""\ oq.
go -1:0
~
(j
C
'""\

'? -\0
00
tv

\0
00
0\

GTF Diagram 3. Hook Processing (Part 5 of 20)

Input

Hook From I/O Supervisor

HOOK EID = IECCSCH,
IECHSCH I

PSA

I PSACPUSA I

CVT

umASVT I
10SB

10SASID

10SDVRID

IOSLEVEL

10SUCB

UCB

UCBLEVEL

UCBCHAN

UCBSFLS·

UCBSID

UCBIOQ

100

10QAIOQ

100

10010S8

IIOSDVRID]

'-'

Registers

RO Condition
Code

R2.IOSB

ASVT

+ ASCB I

ASCB

JOBNAME

Process
y

EID = 5102,5103

3 Build record for CSCH/HSCH
event.

• CSCH/HSCH trace record

cJ

'-'

Output

CSCH/HSCH Trace Record

'-'

t""
;;'
~
:I

l
a:: :::
~ ~
~ ~
~ :::;" ;- r;-
~ t;-o.

~ ~ ~ 'i ::I,
~ ~
~ FE

= = - ;; = a:: a:: :I

t"""
-<:
tv
~

00
'P
w

01
(')
0

'1:S
'< ...
OQ'
t:r" -= s::
(')
0 ...

':='
\C)
00
J'J
..-
\C)
00
0\

(')
t:r"

~
fii

~
~
E.
[

i
'"!1
"" ~

.....
I

N
VJ

r

GTF Diagram 3. Hook Processing (Part 6 of 20)

Extended Description

3 The I/O supervisor issues a HOOK macro instruction
for clear subchannel and halt subchannel events:

• For clear subchannel event processing. it issues an EID
of I ECCSCH.

• For halt subchannel event processing, it issues an EID
of IECHSCH.

CSM} SYS
If TRACE = SYSP • GTF builds a CSCH/HSCH trace

CSCH record.
HSCH

Information for these records comes from various system
data areas; the diagram shows these areas. The formats of
the output records are in the Data Areas section of this
chapter.

r r

t""" ,a ;:s.
~ n>
::::I rIl

Module Label
~ ..
=- ;:s.

!: ~ =-= 3:
~

:I. = = ~ iii ...
i:r

I iii
'"CI = -. ... -= '"CI = ~ 3: ... - :: ~

AHLTFCG CHTRC = -= !:

'7'" GTF Diagram 3. Hook Processing (Part 7 of 20)
N
~

~
~ m
>< g
~
Po
;>
r!

~
~
~
:!
~.

?
Po
'"
~
~.

r-'
-< N
00
I

-00

'P
©

f ...
~ ...
......
0:1
~
Q
-?
100
00
~ -100
00
0\

Hook From 1/0 Supervisor

I HOOK EID; I ECMSCH I
PSA Registers

I PSACPUSA I RD Condition
Code

CVT R24105B

1 +A5VT I (R3 /seH '"

ASVT

I 4ASCB I I SCHIB I
10SB ASCB

IOOASID ~
1000~ ~
IOSOPT2

10SSCHIB

100LEVEl ~I JOBNAME
10SUCB

I SCHIB I
UCB

UCBLEVEL

UCBCHAN

UCBSID

'--'

EID = 5104

"') 4 Build record for MSCH event
-v)1 MSCH Trace Record I

• MSCH trace record

t'"
;:';'
II>
::I

l
~ rf = - r4. II>
::I • ~. = I1i' ;--

Q.

I ::
"I:j = .. ;--0

1 ::3. = .. I1i' -~ = 0 .., --~ 0:1
~ :s

\." \."

t"'
-< N
00
I

......
00

'P ...,
@

("'l
o
~
<iii"
;r -= ~
("'l
o
-?
......
\0
00

!"
......
\0
00
0\

("'l
::r
I'J
'"0
(t
....

o
(11

::l
(11
Eo
N"
(11

Po

>-l

~
(11

"r1

~
Q

-I
N
Vl

r

GTF Diagram 3. Hook Processing (Part 8 of 20)

Extended Description

4 The I/O supervisor issues a HOOK macro instruction
with an EID of I ECMSCH for all MSCH events:

• If TRACE = ~~~p • GTF builds an MSCH trace {
SYSM}

MSCH record.

Information for these records comes from various system
data areas; the diagram shows these areas. The formats
of the output records are in the Data Areas section of
this chapter.

r r

Module Lilb ..

AHL TFCG MSTRCE

t"'" s:
ri' ~
III !l
l~
a:i
lID
~ ~
:2. lID
lID ~
;r ::I.

lID
r;:

~:
1£ == aas
Q
i

-I
N
0\

a::
<.:
[J) --....
m
~
(l>

::s
0-
2-
;l>
ei e:
(l>
(")

2
(j
[J)
(l>

~
ri'
(l>

;l>
0.:
'" r o

Oll
ri'

r
-<
N
00 .
00
I,C) .
w

ti'
(J
o
"0
~
::::,

Oll
:r -I:I:l
a::
(J
o .,
'0

-I,C)
00
N

I,C)
00

'"

GTF Diagram 3" Hook Processing (Part 9 of 20)

I HOOK EID = IECRSCH I
PSA Registers

I PSACPUSA I Condition
RD Code

R2410SB

CVT ASVT

I .ASVT I I 4ASCB I
IOS8 ASCB

10SASIO

I~~ 10SRST

~ 10SVST

10SDSIO

10SEEKA JOBNAME

10SGPMSK

10SOPT

10SFMSK

10SDURID

10SlEVEl

10SUCB r-.... UCB

UCBlEVEL

UCBCHAN

\.,

- -. ---

EID = 5106

5 Build record for RSCH event

RSCH trace record)I RSCH Trace Record I • -v ...

r'
t=;"
~ =
~ =-
~ ::c = ~

;;- '" -... ...
;" t=;"
~ ~ =-
-=

~ = ... it 0
~

...
~ ;" .. ~ Q'

0
0, - CO
CO ~ ~

\., \.,

r
-<
IV

~

00
'D
,:...

~
n
o
~
~.

~ -o:l
3::
n
o
"?

'D
00

JV

'D
00
0-,

n
::r
"" "0
~

~
::l
I1l

E.
N'
I1l
0..,
....
~
[
:::;:

'-<:

-I tv
-....J

("

GTF Diagram 3, Hook Processing (Part 10 of 20)

Extended DelCl'iption

5 The I/O supervisor issues a HOOK macro instruction
with an EID of IfCRSCH for all RSCH events:

{
SYSM} SYS

• If TRACE = SYSP • GTF builds an RSCH trace
SSCH record.
SSCHP

Information for these records comes from various system
data areas; the diagram shows these areas, The formats of
the output records are in the Data Areas section of this
chapter,

(" r

Module Label

AHL TFCG RSTRC

t"'I I:
Q' ~
~ ~
16, ;;;-

3:£ • ;- 3:
::I. • !!. !i rI> _.

• FJl"
"'CI ~
;; ::
'i = ,. 3:
~ :s

So ...
!

";"" GTF Diagram 3. Hook Processing (Part 11 of 20)
N
00

s::
~
~

i
> ... g.

I"
~
:,J
~"

>
~

i.

~
IV
~ --00
IoC
I

W

©

~
::I"

Otl

~
.....
t=
~
n
o
-? -IoC
00
JV -IoC
00
0'1

.
Hook from VT AM

r
HOOK EID = ISPTIOl I

ISPTI02

RCBREGS

Rl R2 ~ASVT I) I BTU' I ASI Dj I ASVTENTL I
PSA

I PSACPUSA I
I

ASCB

Jobname I ASCBJBNI I
Hook From SVC Interruption Handler

I HOOK EID = I EASVCH I

I FLCSVCN ~--------
I SVC Filter

Mask

PSA LCCA

CPUSA

RO } V~;.bI, SOPSW
I-- Data t

40ld TCB Rl or
AOLD ~ Parmlist + SVCN

Old TCB RB CDE

I M MCDE Namel

ASCB

I. jobname I

I Variable Data I I parmlist I

' ... '-'

, ,

1---,--
I

1--......1

I ~ .
EID - 8100. 8200

> 6 Build record for RNIO event: ...
either

L

1 ") • Minimal trace record '1 Minimal RNIO Record ... --v
or

• Comprehensive trace record .. '1 --v
Comprehensive RNIO Record 1

EID = 1000

~ 7 If SVC filtering in effect, determine
whether event selected for tracing

Build record for program
interruption:

either

Minimal trace record ~
L 1 > •)I SVC Minimal Trace Record ... --v t""'

or r:;"
" " SVC Basic Comprehensive 1 • Basic comprehens ive trace record '1 v Trace Record

or ..
~ SVC Unique Comprehensive 1) • Unique comprehensive trace

Trace Record v
record --v

tD =
~
0-

:: ,3
~ til - f!!. tD ;. r:;"
0;; -til =-I

~
"d I» ... -Q tD

'0:::1 ..
tD j;' ... r;; 4 Q
Q .., --= t= ~ :: ::

'-' ~

t""'
-<
~
I

CoO
10

I
@

~
::I.

OQ

!?:
IXI
~
g
?
......
10
CoO
P
......
~
0\

f ..,
:-

~
;
~
~.

~

i
~
~.

-I
~

r

GTF Diagram 3. Hook Processing (Part 12 of 20)

Extended Dftc:ription

6 VT AM issues a HOOK macro instruction with an EID
of ISPTPI01 or ISPTPI02 for every input or output

BTU. GTF builds one of two records depending on the
GTF options in effect:

• If MODE=INT or TRACE=SYSM, RNIO, the program
builds an ANIO minimal trace record.

• If TRACE=RNIO, GTF builds an RNIO comprehensive
trace record.

Information for the records comes from various system data
.. eas, shown in the diagram. The output record formats
are described in the "Data Areas" section.

7 The SVC interruption handler issues a HOOK macro
instruction with an EID of IEASVCH for all SVC

interruptions. If interruptions for only certain SVC num­
bers are to be traced, GTF checks the SVC filter table
to determine whether the current interruption is for a
selected number. GTF builds one of three records,
depending on the GTF options in effect and the SVC
number:

• If TRACE~SYSM, GTF builds an SVC minimal trace
record.

{
SYS}

• If TRACE = ~~~P ,GTF builds a basic SVC

SVCP
comprehensive trace record.

• In addition to the basic comprehensive trace informa­
tion. for certain SVC numbers GTF adds unique
information to the record.

Information for the records comes from various system
data areas, shown in the diagram. The output record
formats are described in the "Dlta Areas" section.

r

Moduht Label

AHL TVTAM AHLACFV

AHLTVTAM AHLACFV

AHLTSYFL AHLFSVC

AHLTSYSM AHLSVC

AHLTSVC AHLTSVC

AHL TSVC AHL TSVC

r

r"" f

~- :=
::I Il
l~
::[
;. ~
.. lit .- ;­
;;- ::2.

lit
r;;

"t1 => a :
'I =
::l ~

'-"! ~

=>
;;
::

-I
W
o

~
<:
en
---tTl
~
(l
;::l

ft-c.
;l>
(l
::r'
~.
...
~
@

W
~
n"
(l

;l>
i5:
V>

r o
(JQ

n"

r
-<
N
00 ,

00
'D
W

o
n o
~ ...,
ciQ"
::r'
to
~
n o .a
'D
00
N

'D
00
0\

GTF Diagram 3. Hook Processing (Part 13 of 20)

Hook From Dispatcher.

HOOK EID ~ IEADISP1,IEADISP2
I EADISP3,1 EADISP4

PSA LCCA

CPUSA RD

• ASCB
R1

PSW R15

• Old TCB
Global/Local
Indicator

CVT ASVT

I • ASVT I I 4 ASCB I
ASCB Old TCB

I • Jobname I I
,ot RB CDE

CDE Name

Hook from EXT PF LI H

I HOOK EID ~ IEAEINT I
PSA LCCA , ,

CPUID Old PSW

4 ASCB R1

+ PCCA R15

• LCCA TCB

• TCB I • TOE I
parms or PCCA

Physical CPU I + TOE I ,
Interruption ASCB
Code I jobname I

TOE

• TCB

• ASCB
FLAGS

TOEEXIT

~

EID =0001,0002,0003,0004

8 Build record for TCB, LSR, SRB,
or SVC prolog dispatching event

either ..
Minimal trace record >r DSP Minimal Trace Record 1) •

or

Comprehensive trace record)I DSP Comprehensive Trace Record I) • ..

EID = 6201

9 Build record for external
interruption

either

;I EXT Minimal Trace Record 1) • Minimal trace record t'"'

i'
or l

) • Comprehensive trace record L)I EXT Comprehensive Trace Record I
3: " • ~ ;- ", -.. ~, i'
t;;' ;-

=-

Q

I 3:
"l:I • a ;-
'I ~ -~ = = -..

== ! 3:
:s

'-' \,

r
-<
N
~

00
\0

c:..
6
n o

'1:l
'-<
0<;'
;:: -txl a:
n
o

'1:l

'" 00
N

\0
00
0\

n
;:r"

"" '1:l
~

o

('

GTF Diagram 3. Hook Processing (Part 14 of 20)

Extended Description

8 The dispatcher issues a HOOK macro instruction
when dispatching a unit of work:

• For an SRB, it uses an EI D of I EADISP1.

• For an LSR, it uses an EID of IEADISP2.

• For a TCB, it uses an EID of IEADISP3.

The SVC exit prolog issues a HOOK macro instruction
with an EID of I EADISP4 when dispatching a task.
GTF builds one of two records:

• If TRACE=SYSM, DSP, GTF builds a DSP minimal
trace record.

• If TRACE=DSP, GTF builds a DSP comprehensive
trace record.

Information for the records comes from various system
data areas shown in the diagram. The outpu t record
formats are described in the "Data Areas" section.

9 The external FLI H issues a HOOK macro instruction
with an EI D of I EAEI NT for all external interrup­

tions. GTF builds one of two records:

• If TRACE=SYSM, GTF builds an EXT minimal trace
record.

!SYS)
• If TRACE= SYSP ,GTF builds an EXT compre-

EXT
hensive trace record,

~ Information for the records comes from system data e:. areas, shown in the diagram_ The output record formats
~- are described in the "Data Areas" section_
Po
>-1
~
"r:1
~
~
Q

-I W -

Module Label

AHL TXSYS AHLDSP

AHLTPID AHLTDSP
AHLTSRB
AHLTLSR

AHLTSYSM AHLEXT

AHLTEXT AHLTEXT

r r

t'" " n" ::c ; II
I iiS-
~i
;- 3:
:3. • . ;-
I';;' .. 5-
II';;'

"'d e
'i ;;
::l 3:
-..: :s
e

i

.....
I

W
l'-.)

s::
-<
C'-l m
><
fD

l
>
(:l
g:
~

~
W
~
S·
>
is.:
'" t""' o

atl r;.

t""'

~ ..­
..-
00
'D
I
@

("l
o
~
::1.

<§.
.....
1:1:1
s::
Q
-?
..-
~
JV
..-
'D
00
01

GTF Diagram 3. Hook Processing (Part IS of 20)

Input Process Q
Hook From PF LI H

HOOKElD=IEAPINT,IEATrNT]

EID = 6101, 6200

LCCA I PlF~te~MaSkJ---- - -t-- I - ~ 10 If PI filterong in effect,

I LCCAPINT ~ - - - - - - - 1---~ I determine whether event
selected for tracing. Build

PSA LCCA
record for program interruption:

CPUID RO- R15 either

4 ASCB PIOPSW I t Ii>
~Old TCB VPA

• Minimal trace record

or

} : :> AseB TCB RB COE
• Comprehensive trace record

I jobname ~ I.COEI 8 Name

Hook From User EID:- Exxx

GTRACE_OATA = •.. , '::NG = •.• ,ID = J i;? 11
... , FID- ..• ,PAGEIN-YES/NO,

·TEST=YES/NO r- -
Record paged-in user data in
GTF buffers

MCAWSA MCRWSA

I MCAMCR ~ EID Value I
PSA ASCB I ~"'-j-Ob-n-am-e--'

~

User parmlist

, Length '

FID

Validity :
Check ,

1------11-'- - - -'

or

Set return code for paged-out
data

or

Set return code for invalid
data

o

\.,

Output

; >I Minimal PI Trace Record

[comprehenSive PI Trace Record

;t
v

R15

)1 X'20'

R15

~O,20

User Record

1

1

1

\.,

t""
~.

t
3: I:
III f - '" It> -.. .. ;- ;:;-
!;;' ;;-

Q.

"d~
a !
~ _ .
.. !.
~ '" = a. .. -
- 1:1:1

~~

r
-<
IV
00 ,

00
'-0
W

©
("')

.g
'<
aq'
:::r -txl
~
("')
o
~
'-0
00

.N
'-0
00
0'\

("')
g-
i
"1

a
t1>

~
~

[
o-l

~
~
~ .

......
I

W
W

r'

GTF Diagram 3. Hook Processing (Part 16 of 20)

Extended Description

10 The PFLIH issues a branch-type HOOK macro
instruction with an EID of I EAPI NT for all program

interruptions with codes 1-17, 19. It uses an EID of
lEA TI NT for PI 18. If interruptions for only certain
interruption codes are to be traced, GTF checks the PI
filter mask to determine whether the current interruption
was selected for tracing. GTF builds one of two records:

e If TRACE=SYSM, GTF builds a PI minimal trace
record.

Module Lebel

AHL TSYFL AHLFPI

AHLTSYSM AHLPI

{
SYS}

e If TRACE= !~SP ,GTF builds a PI comprehensive AHLTPID AHLTPI

PIP
trace record.

Information for the records comes from system data areas
shown in the diagram. The output record formats are
described in the "Data Areas" section.

11 The IBM user or component issues a GTRACE macro
instruction to have GTF place a user/component record

in the GTF buffen.

e If TRACE=USR or TRACE=USRP is in effect, GTF
accepts the record. GTF checks the validity of the
data passed by the user/component and moves it to
the GTF buffer.

If the user specified the PAGEIN=YES keyword on the
GTRACE macro instruction, code generated by ex pan- AHL TUSR AHLTUSRE
sion of the macro causes the trace data to be paged in.
It the user specified the PAGEIN=NO keyword on the
GTRACE macro instruction and a page fault occurs in the
access of user data, GTF sets a return code of X'20' and
no record is built.

r' r

t"" f

n' ~ ~ = '" ~ -...
Q. n' -s: ~

Q.

to:>
~ ~ ... to:> ;. ~

r;; ... ;.
I r;;

"'= 0
0 --= o:l
~

~ ...
Q'
0 -. -o:l
~

.......
I

VJ
~

~
~
tTl
~
(1)

::l
Q..
(1)

Q..

>
(l
::r
ib
()

;::
@
Vl
(1)
""1
<: ;:;-
(1)

>
0.:
V>

r o
Ot> ;:;-

r
-<
N
00 ,

oc
'D

W

©
('")
o
'0
'< ...
Oti-
:r -0:1
~
('")
o
'?
'D
00
N

\0
00
0'\

GTF Diagram 3. Hook Processing (Part 17 of 20)

Hook From Systems Resource Manager
EID = IEASRM

PSA LCCA

CPUID ~ RD IASIDI
4 Old ASCB Rl

R15
CVT

PSW I. ASVT I
ASVT

ASCB

I • Jobname I • ASCS

Hook From Recovery/Termination Manager
EIO = IEAFRR, IEASTAE

PSA Rl \

CPUIO I 4 RTCA I
+ A?CB

RTCA

Error PSW

Completion Code

Flags

Return Code

Retry Address

...
Hook From ABEND

I HOOK EID = IEAABOF I
PSA LCCA

I R1 (.TCBl I I~ PSAAOLO

ASCB

ASIO

Hook From SVC Dump

I HOOK EID = IEASVCD I I

PSA ASCB

I PSAAOLO vi ASIO I

\.,

EID = 4001

12 Build record for SRM
invocation:

either

'>
.. I • Minimal trace record Minimal SRM Trace Record

-y

or ..
")I Comprehensive SRM Trace Record I Comprehensive trace record • .. v

EID = 4002, 4003

13 Build record for RR event:

either

.. ..
I • Minimal trace record Minimal RR Trace Record -v ..

or

.. • Comprehen sive trace record '>I Comprehensive RR Trace Record I) v r

t'"'
~.

=
EID = F200

...) 14 Build ABOUMP record_ I)I Save Hook Control Record
v

1
a: r 10 -II> -:1o ...
10 n°
~ ~ =-

EID = Fl00

"- 15 Build SVC dump record. I Save Hook Control Record ..

-0

I 3:
""CI 10 a -.,.
'i

... ;0 ... t;;"
~ 0=
0= -- == == 3: a: :s

\., \.,

r
-<
tv
00 ,

00
'>0

w

o
n o
"0
'<
::!.

O<l

~
t:tl
~
n
o
"' "0

'>0
00
.N

\0
00
0-.

n
::T
Il'
-c
ct ..,

a
C1>
::I
C1>

P.l

~
0-...,
P.l
rl
C1>

'TI

~
<'

-I
W
IJl

('

GTF Diagram 3. Hook Processing (Part 18 of 20)

Extended Description

12 The system resources manager issues a HOOK macro
instruction each time it is entered. GTF builds one of

two records:

• If TRACE=SYSM, SRM, then GTF builds an SRM
minimal trace record.

• If TRACE=SRM, then GTF builds an SRM compre­
hensive trace record.

13 The recovery/termination manager issues a HOOK
macro instruction on return from each FRR, STAE,

and ESTAE recovery routine. GTF builds one of two
different records, depending on the options in effect:

• If TRACE=SYSM, then GTF builds an RR minimal
trace record.

Module Label

AHL TXSYS AHLSRM

AHL TFOR AHL TSRM

AHLTSYSM AHLFRR

• If TRACE=RR, then GTF builds an RR comprehensive AHLTFOR AHL TFRR
trace record.

14 The ABEND/SNAP routine issues a HOOK macro
instruction if SDA T A=TRT was specified. GTF

builds a control record specifying that buffer contents
are to be saved for dumping. See Diagrams 4 and 6.

15 The SVC Dump routine issues a HOOK macro
instruction if SDA T A-TRT was specified. GTF

builds a control record specifying that buffer contents
ere to be saved for dumping. See Diagrams 4 and 6.

AHLTDIR

AHLTDIR

r r

t"'" " r;' ::a:;
; 11
l ~.
3:[
~ 3:
.. iii:> ;- tr - .. IOIJ ;-

Iil"
""d 0

a ::
'i == ~ 3:
-...: :s
o -!

7" GTF Diagram 3. Hook Processing (Part 19 of 20)
V.l
0\

~
~
til
;.<

ft

~
)­
tl e:
g e
til
W
~.
)­
is.:
'"
b

O<l o·

s;
N
00
I --00

1.0
I

<.U

©
n o
'0

::!.
::r = ~
g

1.0
00
N

-1.0
00
0'\

Hook From SLIP Processor

EID-IEAVSLSD, IEAVSLSU, IEAVSLUR

MCRWSA PLiST

• PLiST 4 SCE

EID • Registers

j TRDATA Information
PSA (in SCVA)

CPUID MODE/COND Flags

-~ ASCB • DEBUG Data

4 TCB • IEAVTADR

• LCCA Data Unavailable
Counter

TCB

• JSCB
ASCB

• CDE
ASID

• jobname
JSCB

Program SCE
Name TRAP 10

CVT
• SCVA

I • CDE I PER Trap Mode

CDE SCVA

Module TRDATA Information
Name (User-Defined)

• XTLST CSCB

LCCA I JOBNAME I
OldPSW

XTLST
PIC and I LC

~ PER Interrupt
ADDR

Code

\.,

E I 0 = 4004, 4005, 4006 I
-"} 16 Build record for SLIP event ...

either

SLI P standard trace record I •)I SLIP Standard Record
(EID=4004) ...

or ..
SLIP Standard/User Record I • Combined SLIP standard)I .

trace record and user or
debug data (EID=4005) or

or I SLIP DEBUG Record I
• SLIP trace record with u ser-

defined data only (EID=4006) 1 SLIP User Record I ..

~ r:;.
ID
::I

i€
Q.

:: ::
::c = ID

ft" '" -., .,
;. r:;-
r.;- ;;-

=-I ::
""d = .. -0 ID

"C ::I.
Return Next Instruction
After MC

ID = .. 1ii' -~ 0
0 --= = :: :: ::

\., \.,

t""'
-< IV
00
I --00
'0
~

©

Q
~

~ -.... = ~

Q
~
'0
00
~

~
01

=-

r

GTF Diagram 3. Hook Processing (Part 20 of 20)

Extended Description

16 The SLIP processor UEAVTSLP) issues a HOOK macro
instruction for:

• A SLIP event that has been successfully matched with an
enabled SLIP trap and either TRACE or TRDUMP is the
specified action for the trap.

• A SLIP trap that is in DeBUG mode and is inspected by
the SLIP processor as a result of any SLIP event •

GTF builds one of these records:

• If the EID=X'4004', GTF builds a record containing
standard information obtained by GTF from the data
areas shown in the diagram.

• If the eID=X'4005', GTF builds a record containing
SLIP standard information followed by the informa­
tion that is (1) requested by the user via the TRDATA
parameter of the SLIP command, or (2) supplied by
IEAVTSLP when a SLIP trap is DEBUG mode.

• If the EI D=X'4006', GTF builds a record containing
information requested by the user via the TRDATA
parameter of the SLIP command.

If the user-defined data requested is greater than 136 bytes
(including length fields) for a standard/user record, or
greater than 256 bytes (including length fields' for a user
record, the record is truncated.

The output record formats are described in the "Data
Areas" section.

Module Label

AHL TSLIP AHLSLSTD

AHL TSLIP AHLSLSTD
AHLSLUSR

AHL TSLIP AHLSLUSR

r r

t'"' rf rS"
n>
:::I ~
~ ...
=- ;:s. -3: n> =-=» 3: ~ ... =» ;. -n>
(ij' ...

i>r
I (ij'

"l:I Q
Q -~ == .. ~ -'oO!!
Q -== 3:

.......
I

Vol
00

~
<:
CIl

-----tTl
><
fD
::s

8:
;l>
(l

a-
(b
(l

2
6
CIl
(b
<! n·
(b

;l>
5.:
V>

r
o

(Jq

n·

r
-<
tv
00 ,

00
'-D ,
'"

n
o

-0
'<
riO·
::r-

co
:::
n
c
-0

'-D
00
tJ

'-D
00
0\

GTF Diagram 4. Trace-Data Blocking and Buffering (Part 1 of 4)

Input

RO

MCAWSA

From Record-Build Routine Via
AHLSTACK Macro InstrtJ"tion

MCAWSA n Record
Length 1

I
I
I
I
J

Sum < 74K

Process

Blocking

• 1 Reserve space if available to
block the record;

or

Consider the record lost.

Record
Data =======::======::::;:=:>2 Move record into blocking area.

GTFPCT

CURRBLOK
GTFBLOK

Use Count

BLOKLEN

GTFSSRB 1- - -
GTFPCT

GTFBUFRa

l,

"-0

3 Schedule buffering if not already
scheduled.

Ensure buffering can be
performed;

or

I mmediately post GTF writer
to empty buffer.

\.,

Step 3

Return

Output

GTF'PCT

Lost Events Count + 1

SRB for
Buffering

(+) GTFSSRB

ECB

=::======:!:: ~ Writer Work

Terminate

\.,

~
~.

i
3: ,.s
= ~
Ii" -.. ::3. _. t:I

= -~ a.
I 3:
~ ~

~ Ii
'1 EO'
::L FE

'-"i = = -- = = 3: 3: :s

r
-<
t'-'
00 ,

00
'>0
W
(SJ

Ii
o
'0
'<
~.

[Jq
::r

= 3:
Ii
o
'?

'>0
00
IV

'0
00
0\

n
::r
I"
"S-
CD

Q
CD
::s
CD

E.
[
>--l

~
CD

"T1

~
'<

........
I

W
\0

r

GTF Diagram 4. Trace-Data Blocking and Buffering (Part 2 of 4)

Extended Desc:ription

GTF manages the flow of trace data using both record·
blocking areas IGTFBLOKs) and buffers IGTFBUFRs).
Buffers are accessed through their buffer control blocks
IGTFBCBs).

Since multiprocessing will cause concurrent construction,

blocking, and buffering of trace records, GTF uses a series
of use counts and locks to serialize the use of these areas.

GTF also maintains queues of buffers for different
purposes. These are:

• History queue - The n most recent GTF buffers where
n is specified by the BUF;parameter to control the
amount of trace data in a dump. See Service Aids for
information on the specification of n.

• Writer queue - Full buffers to be written to an
external data set or released.

• Release queue - Buffers for which a PGR LSE must
be issued before they are placed on the empty queue.

• Empty queue - Buffers available to receive blocked
trace records.

• Current queue - Buffer currently being filled.

• SLE queue - Buffers being held for a dump routine.

Module

1 GTF checks the length of the constructed trace AHLSBLOK
record. (The length is in the MC application work!

save area IMCAWSA).) If there is insufficient space for
the constructed record in the current GTFBLOK, the next

Label

empty GTFBLOK on the chain is made the current block· IAHLSFEOB)
ing area. The CURRBLOK pointer in the GTFPCT is
updated.

If all the GTFBLOKs are full, GTF updates the lost·events IAHLSFEOB)
count since the trace data in the record will not be saved.
Then, GTF schedules the buffering function as in Step 3.

r

Extended Description

2 Before moving the record into the block, GTF
increments the use count in the block to prevent an

attempt to buffer the data during the blocking process.
GTF reserves space in the block for the record by adding
the length of the new record to the length of already·
blocked data (BLOKLEN). This allows other records to
be entered into the block concurrently. (For concurrent
entry of records, the BLOKUSE count is incremented
accordingly. Buffering only occurs when the count is 0.1
GTF moves the record from the construction area in
MCAWSA to the GTFBLOK. Then it decrements the use
count.

Module

AHLSBLOK

3 GTF determines whether buffering is already scheduled AHLSBLOK
by checking the GTFSSRB value in GTFPCT. If this

value is negative, buffering is not currently scheduled so
GTF issues the SCHEDULE macro instruction.

4 GTF checks the pointer to the empty buffer queue
IEQHEADI in the GTFPCT. If there are no empty

buffers, GTF posts the writer's work ECB so that buffers
can be made available. (See diagram 5 for writer processing.1
Buffering terminates until reenabled by the writer.

AHLSBUF

r

Label

t'"
~ rr

/I)

= '" l -... ;:so

3:
;-
Q.

= ~ it ... ;. ;-
fii ... ;0
I ~

"'d =
Cl

-. -~ == ... 3: -~ :s

=
!

-I
..j:::..
o

a:::
<:
(Jl

tTl
~
o

5-o
p..

;...
(l
2': g
2"
@

1{l
~ (S.
o
;...
i5.:
<J>

b
~.

~
tv
Cf'

00

'f'
w

@

n o
~
:1.

a--= a:::
n o
f3
ID
00
tv

ID
00
0\

GTF Diagram 4. Trace-Data Blocking and Buffering (Part 3 of 4)

Input

l,

Process

Buffering (continued)

- .. f~s~ ~::~: 0 I : >5 Move data from blocking area
to buffer and place buffer on GTF
history and write queues.

GTFPCT

1------1----

=:;:::======;:~> 6 Save a copy of the history queue
if required for a dump request.

1'0 ~ 7 Check for more full blocking areas
to buffer.

8 Continue buffering

or

Allow buffering to be
rescheduled

'-'

Output

SAVELIST

t::
n
~ = ~ =-:: ~

GTFPCT

-GTFS;;-]

r:o ~
;;- ell -a- ::3.

n -i'ii' ~ =-I ::
"'d r:o a ;;-

"CI ::3.
~ r:o ... i'ii' -'< = = -Terminate -= = :: :: :s

'-'

t"'"
-<
~
00
'Cl
W

©
n
~
otj'
::r
.....
1:1'
~
n o
-?
......
'Cl
00
.tV
'Cl
00
0\

n
::r
~

'tS
n-....

~
=' n
;;l

~
c.
>-l

~
~
~.

-~ -

r

GTF Diagram 4. Trace-Data Blocking and Buffering (Part 4 of 4)

Extended Description

5 If buffers are available on the empty queue and there
is a full GTFBLOK, GTF makes the first buffer the

current one (CQHEADI. It copies the GTFBLOK into
the buffer and places it on the end of the history queue
IOTAI LI. It then decrements the use count in the
GTFBLOK. For every buffer placed on the end of the
history queue, one must be removed from the head. The
HOHEAD pointer indicates the buffer to be removed. The
buffer removed is placed on the release queue for later page
release by the GTF writer. From the release queue, the
buffers are replaced on the empty queue.

Module

6 GTF scans the buffer for a record indicating a request AHLSBUF
for trace data for ABEND/SNAP or SVC Dump,

For every such record, GTF builds a save list element
ISLEI and decrements the save count. All the buffers cur·
rently on the history queue are also placed on the SLE
to save them for the dump. After this, GTF removes the
address of the buffer in the current queue pointer
ICOHEADI.

7 For any other full GTFBLOKs, the buffering process AHLSBUF
is repeated,

8 GTF also posts the writer subtask to indicate a buffer AHLSBUF
has been added to the write queue.

r r

Label

t""" ::
j;' ~
ft> tI> = rIl
rIl -a. ~.

::: K
r=
~ ::: .. r= or fl
~ :!. r=

iE
"tI c:\
c:\ -
'1 = ~ :::
'oO!! :1

= -~

.....
~
~
~
tIl
><
(g
::l

~
C.

>
i=! :r
~ s::
~
CIl ro .,
-<:
@'
>
0:
<J>

b
0<1
ri'

r
-<
tv

'f
-00

'P
w

(C')

n
o

"0
'<
QQ'
::r
o;l

s::
n
o .a
1.0
00
r-.;

'-D
Yo
0'

Diagram S_ GTF-Writer Processing (Part 1 of 2),

Input

Work ECB

- I

GTFPCT

EQHEAD

GTFPCT

NEXTCHK

Buffer

Via ECB
Posting

r-­
I
I
I

> 70 I
Lost Events Count = 0 ~ -- - - -1--- :.J

l,

Output

1 Free buffers already written.

GTFPCT

NEXTWRT

2 Write out full buffers if trace is : >1 ;;;!
external

or LI __________ ~

Place buffers on release queue. . ::>

3 Issue PGRLSE and put buffers ~
on empty queue.

.. 4 Ensure record blocking is pro- ==::====:;-1
ceeding smoothly.

5 Wait for another posting of a
writer ECB.

~

BCB

Buffers

}
From

~UbPOOI

}
From

~UbPOOI

Lost Events
Count = 0

l,

t"'"
~-

I
a:: ~ := = fl ;;- ;- ;:s-
~

..... a.
I a::

'"'::l = a ;;-
"g

.. ;. .. ~ ~ 0
0 --= = a:: a:: :::

r
-<
I"
't"

oc
\C!

"-'

'I':,

n
0

"::l
'< .,
o:i"
;:r -o:l
3::
n
0 .,

"0

\C!
oc
t"

\C!
oc

'"

n
::r
t>.l

"0
(; .,

Cl
(1)

::s
(1) .,
:::..
[
...., .,
t>.l
n
(1)

T;
t>.l

8.c
"~

-I
~
W

r

Diagram S. GTF-Writer Processing (Part 2 of 2)

Extended Description

1 For external trace mode, the GTF writer subtask
checks the ECB in the a:CB pointed to by

NEXTCHK. If it has been posted, a CHECK macro
instruction is issued, and then the writer decrements the
usecount field in the associated buffer control block
(GTFBCBI. If the use count is then zero, the writer puts
the GTFBCB on the release queue and increments the
count. GTF will subsequently issue a PGSER FREE macro
instruction for the buffer page. The NEXTCHK pointer is
updated to the chain address in the DECB. When the
address in NEXTCHK is the same as the address in
NEXTWRT, there are no more OECBs to check.

2 If the ECB was posted because buffers are full, pro-
cessing depends on whether an external data set is

defined (external trace model. If there is not external
data set, the writer removes the GTFBCB from the write
queue. If there is an external data set, the writer removes
a full buffer from the write queue and places it on an
available OECB and issues a WRITE macro instruction
with the buffer address as the write record.

Module Label

AHLCWRIT
AHLWWRIT

AHLlWRIT
AHLCWRIT
AHLWWRIT

r

Extended Description

For direct-access output, the writer checks the ECBs
for a code of X'40' in the first byte. This code indicates
that the end of the data set has been reached and wrap­
ping is required. In this case, the next write is to the
beginning of the data set.

3 The writer moves all buffers from the release queue
to the empty queue. I t issues a PGR LSE macro

instruction for each buffer. It then checks the empty
queue (EQHEADI for available buffers. If there are
insufficient buffers on the queue, the writer issues the
GETMAIN macro instruction to obtain 4K buffer stor­
age from subpool 6 and equivalent BCB storage from sub­
pool 5. If the buffering routine has been disabled because
of the lack of available buffers. the writer reenables it.

4 The writer checks the lost record count. If the count
is 400 or greater, a blocking area (GTFBLOK) may

need to be replaced.

5 After its processing, the writer subtasks reenters the
wait state. Should the next ECB posted be the

writer termination ECB, all queue activity is quiesced
before termination. See MO 7 for details.

Module

AHLWWRIT

AHLCWRIT
AHLlWRIT
AHLWWRIT

AHLCWRIT
AHLlWRIT
AHLWWRIT

AHLlWRIT
AHLCWRIT
AHLWWRIT

r

Label

t'"' " n· i:IC
til til

I '" -... n-
== [III

~ == ::! ••
III ~
~ ::1-

III
~

~ = a -~ == ..
== ~ :

= ... -==
==

-I t
a::
~
~ ,
Po
;I>
(l
::r
~.

2 ;::
~

~o
;I>
s:
'" t"" o

O<l n°

t""
><:
tv
00
I

00

'f
w

©
(j
.g
'< dQO
::r
.....
t:!:l
a::
Q
~
......
\0
00

.tv
......
\0
00
0--

GTF Diagram 6. GTF /Dump Interface (Part 1 of 2)

Input

[AHLREAD

PSA

DAT~AREA= 0.0.]

ECB-. 0 o.
[TCB= 0 0 0]

ASCB

From
ABEND/SNAP
orSVC Dump

Process

1 Request transfer of trace data
to area for dump

Output

SRB

14AHLREADR I

Parmlist
inSQA

ASIO

.TCB

ItECB

I 'Data Area

• Current TCB

New ASCB ~ ASID - I SVC Dump

SAVELIST

r I
SLE .-

I4TCB

ASID

Page Count

14 Trace Data

2 Build prefixed list of pages for
dumping

3 Pass one prefixed buffer page

SOA Data Area

Prefix

Page of Control Blocks

SLE Buffer I I at a time to dump v SOA Data Area I Prefix

GTF Data ~
~
::I

Buffer I I ABEND/SNAP 2..
:: ::C
~ ~

SQA ~ ~
Data Area ;. ~ •

Data Base Data Area dump • t I ABEND :,e ~ SQA I 4 p", 0"' b"ff" " ";m"o ! ~ I ""ff" .. [

D 5 Notify dump routine request ECB ~ ~.

~

has been satisfied _ I ;:::. iT
'< ~
~

l, ~

.... -..... = = ::
:: os

B
~
......
00

'f'
w

©
(')

~
::I.

0tI
::r ... -= ~
Q
fI
......
-.0
00
!-l
......
-.0
00
0\

j
~

Cl
1'1>
::l
1'1> e
[
>---l

~
~
~.

....
I

.,J::o.
VI

r'

GTF Diagram 6. GTF /Dump Interface (Part 2 of 2)

Extended o-iptlon Module Label

To provide trace data for ABEND/SNAP or SVC Dump,
GTF saves the required data on a queue (SLE) until it can
be dumped. This function is requestad by HOOKs with
EIDs of IEAABOF and IEASVCD for ABEND/SNAP and
SVC Dump, respectively.

1 When ABEND/SNAP or SVC Dump requires the
trace data for a dump, it issues the AHLREAD macro

instruction and then waits on an ECB. Expansion of
AHLREAD causas a parameter list to be constructed in
the data area provided by ABEND/SNAP or SVC Dump.
An SRB to schedule the trace data transfer is constructed AHLREAD
in subpool 245. Then the SRB is scheduled. However, Macro
if the address space being dumped is the GTF address instruction
space, no trace data will be passad to the dump program.
This is indicated by a POST code for no data available.

2 For an SVC Dump request, GTF passes pages con·
taining control blocks required by AMDPRDMP's

edit function to format trace data. The page is prefixed
with eight bytas of data required by AMDPR DMP. GTF
passas one page of data for each AHLREAD macro
instruction issued.

3 When SVC Dump requests subsequent pages of trace
data, GTF builds the a-byte prefix and passes the

contents of a 4K buffer. If the address contained in the
SLE is for a GTFBCB. GTF gets the buffer address from
the GTFBCB .

AHLREADR

AHLREADR

4 GTF copies the buffer contents one at a time from AHLREADR
the GTF address space to an area in SOA specified

by ABEND/SNAP.

5 The ECB for the asynchronous data transfer is posted. AHLxWRIT
The SAVELIST elementsare then released. The

records are then formatted by ABEND/SNAP (module
IGCOF05A). User records are formatted if the user/
component has provided a formatting routine for usa by
the dump service or the edit function of AMDPRDMP.
If the user formatting routine cannot be loaded.
ABEND/SNAP dumps these records in hexadecimal .

r' r

t"" " _. "
~ f1 :::a _

I ~.

~ i
~ 3:
:I. liD
liD ~
til" .. ;;.
I til"

""d Q

a :
~ = ~ 3:
~ :s
Q -= ::

-I ..j::.
0'1

:=
~
]1
~
::l

2:
>-
6
::r
~:
(") ,....
s::
@

~
~ n°
C1>

>­
i5:
'" r
o

Oll n°

r
-<
t->
00 ,

00
'f'
t..>

6>
n o
~
::lo

Oll

::r
ttl s:
n
c ...

'"?

'-0
00
N

'-0
00
0\

GTF Diagram 70 Error Recovery (Part 1 of 4)

Input

'-'

GTFPCT

ATTCHECB

From
RTM

Process

Error in GTF Initialization

1 Request SVC Dump of GTF

2 Free GTF's MC support

AUDITWRD r - - - ~ - - - - -1-'" 3 Detach writer and WTO subtasks
if attached.

GTFPCT

--,r------r-......) 4 Free storage obtained by GTF
or

FIXTAB
1 __ ml

5 Free GTF resource

'-'

Output

7 1 • Step 5

CVT

Return

'"

I:""'
~.

I
a: " III ~
~ 1! ao ;;.

;r ;r
c:::t.

Irs:
'"d .. a ;;-
~ iii·
=- :;;;'

'-'! =
= -.... -- = = rs: a: :s

r
-<
N
00 ,
00
\0
.:..
~
(j
o
~
::!.

(JQ
:r ... -t:I:l
3::
(j
o
~
\0
00

..N
.....
\0
00
0\

(j
:r
~
it

~
~
E.
[
o-l

~
~
~
......
I

..j:>.
-.l

('

GTF Diagram 7. Error Recovery (Part 2 of 4)

Extended Description Module Label

Error in GTF initialization

1 When an error occurs during GTF initialization, the
recovery/termination manager IATMI passes control

·to the GTF initialization ESTAE routine. The ESTAE AHLGTFI AHLIESTA
routine requests an SVC Dump of GTF and issues message
AHL0161 to inform the operator of the error.

2 Then a SETEVENT macro instruction specifying the AHLGTFI AHLIESTA
FAEE action is issued to free MC routing-facility sup-

port. See Section 6 for a description of the SETEVENT
macro instruction.

3 After freeing MC routing-facility support, GTF posts
the writer subtask for termination. It waits for the

writer to complete its termination and then detaches the
writer. The WTO subtask is detached in the same manner.
If the GTFPCT tracking field IAUDITWADI indicates that
either subtask has not been attached yet, no processing
for that subtask is performed.

4 GTF frees any SQA storage it has obtained. It also
issues the PGSEA macro instruction to free all fixed

storage in LPA occupied by the filter/gather/build rou­
tines. This storage is pointed to by FIXTAB.

5 The GTF resource is then freed by issuing the DEQ
macro instruction. GTF returns control to the sys­

tem with a non-zero return code •

AHLTMON AHLTESTA
or or

AHLGTFI AHLIESTA

AHLTMON AHLTESTA
or or

AHLGTFI AHLIESTA

AHLTMON AHLTESTA
or or

AHLGTFI AHLIESTA

(' ('

t"'" " B' r
l~
::i

t.f
l'E ::I.
I ;.

~ = a ::
1 !
~ :s

So -!

:c GTF Diagram 7. Error Recovery (Part 3 of 4)
00

a::
<:
til

~
(b

2-
(I>

0.

Input

Rl

~SDWA

From

Process

Error in Filter/Gather/Build Routine

:>
~
=- ~L...-. _-----'~ -- - - - --- 6 Retry processing, if possible
~.

2
f:
~
~
~.

:> s:
'"
b
I!!!.
n

~
N
00 ,
00
\0 ,
@

~
~

1:1:1
a::
(')
o
-?
\0
00
J'-l -~
0\

SDWA

SDWAPERC r-------

GTFPCT

GTFDEBUG r------

\..,

Data
Gathering
Routine

7 If error was in II GTF service
routine, terminate ..

Return
to RTM

8 If DEBUG=YES in effect,
terminate , Return

9 Error in record build routine toRTM

• Recoverable error - put
asterisks in record field

and

Continue building record

• Unrecoverable error -
disable handling for
that event

and

Request a dump of GTF

MC Routing To Wait for Next
Facility Trace Event

~

Output

MCAWSA

Current Trace Record

SDWA

Address to
Continue

\..,

t""
ff :::s

l
:: ,;
~ !l
~ -a· iii·
Fil"i,

::
II 'I :I. a;'
o !,
.... -
- til
!~

r
-<
N cr
..-
00
\0
~

((Y

n o
~
:;:!.

~
0;)

~
n o
~
.....
\0
00
J'-l
\0
00
0-,

n
c:r
.§
(;' ...
:-

~
::s
til

~
[
...,
~
~
~.

--~

('

GTF Diagram 7. Error Recovery (Part 4 of 4)

Extended Description

Error in filter/gather/build routine

6 If alternate CPU recovery (ACA) allows, GTF retries
the error-causing processing. This is indicated by the

STAE diagnostic work area (SDWA) passed to GTF by
ATM.

7 If the error occurred in a service, for example, record
blocking (AHLSTACK routine), GTF passes control

to the recovery/termination manager for termination of
GTF.

8 If DEBUG=YES was specified in the START command,
GTF passes control to the recovery/termination man­

ager for enabled termination of GTF.

9 If an error in building a trace record occurred and
DEBUG=NO is in effect, GTF processes as follows:

• Aecoverable error - the record build routine puts an
error indicator in the record field that caused the pro­
blem and places an address in the SDWA (via the
SETAP macro) to point to the place where processing
will resume.

• Unrecoverable error - GTF disables the event handler
by issuing the SETEVENT macro instruction specifying
DISABLE as the action. A SVC Dump is requested.
Finally, message AHLlI81 is issued specifying the
event that is disabled. GTF then returns control to the
MC routing facility to wait for other trace events. How­
ever, if all events are disabled, GTF returns control to
ATM to terminate GTF.

Note: When GTF returns control to ATM for termination,
percolation to the MC routing feeility's error recovery
routine occurs. Thil routine IChldul."on SAB which pOiti

the enabled portion of GTF Ithe talk monitor) for termina­
tion. See MO 8 for detaill of termination procelSing.

Module Label

E vent handler's error
routine

Event handler's error
routine

(' r

~ I:
~. ~

= !. I ~ .
3:£

i.~
til" ii-

;;'

~ ::
~ ==
::l 3:
~ :s

= -!

........
I
Vl o

~
-<
Vl

tTl
;><

rD
:::s
0-
/'l>
0-
;I>
M
[-
/'l>
()

8"
@
Vl
/'l>

~
0'
/'l>

??:
0-
m

t"'" o
0<1
0'

t"'"
-<:
Iv
00 ,
.-
00

'P
w

@

f
::1.
~
~ -o:l
~
n
o .a
'-0
00
IV

'-0
00
0\

GTF Diagram 8, GTF Tennination (Part 1 of 2)

AHLWTASK
ECB

AHLxWRIT
ECB

CVT MCCE --I

MCEEs MCQE

[lGTFPCT

~ I4MCED -
MCCLE _ 4MCCD

0
BLOKLIST

~rs GTF-BLOKS~ I. s GTF-BCBs

Via STOP Command
or Error Processing

...

I
14 s GTF-BUFs I

GTFPCT

• s Event Handlers

'-'

o

) 1 Wait for all trace I/O and WTOs
to complete,

...) 2 Free MC routing facility tables
y yia SETEVENT

} 3 Free buffers and related control
blocks

.. "d) 4 Free all fixed storage occuple
~ by GTF

5 Free GTF resource ... Return
to System

\..,.

~ -V\
--y)

..... ~ ~
External Trace/Message
Data Sets

\..,

~

5
l "
~ r
;- ct
::3. ;;-
;.£
I::
~ ..
= ~ 'R ;" a: = -- = ~ ~

r
-<
N
~ --00
\0 ,
©
(J
0

"'C
'<
;:l.

OIl ::r --til
a:::
(J
0 ..,
'? -\0
00
J'-l -\0
00
0'1

(J

l
~ ..,

~
g
2-
[
...:j

~
~ =:
~

....
I
VI

r

GTF Diqram I. GTF Termination (Part loll)

Extended Delcrlptlon

1 Before termlnltinll. the writer subte.k completl.
I/O for Iny filled buffer •• GTF 1110 complete.

Iny In-procea trlnder of dati for ABEND/SNAP or
SVC Dump. Thlaynchronou. WTO subte.k 1110 com-
plete. Iu proceaing.

2 GTF laue. the SETEVENT mICrO in.truction
specifying the FREE function to fr .. GTF·.

MCQE Ind the event Ind clllS directorle ..

3 The record-blocking er buffer •• Ind buffer con·
trol block •• e freed. The SRB u.d to schedule

bufflrlng i. freed. Thin. GTF fr ... the writer Ind WTO
IUbtuk by illUinll the DETACH meao in.truction.
ThIn it fr ... the mIIIIIII lIble CWMSGT AB) Ind the
SRB it used for IChIduling.

4 GTF u .. the GTFPCT pointer' to thl event hlndling
routine. to unfix the storage required for the routine •.

GTF then fr .. , thlstor. required by GTFPCT.

5 Flnelly. GTF i e, I DEQ mICrO in.truction for the
GTF rllOUrce end return. to the system.

r r

t: " n ~
tD ~

Module

:I _

Libel l iiS·
3: [

{AHLCWRIT} III 3: AHLlWRIT ~
AHLWWRIT ;:!. I»

III Ii'
r;; ::I.

I»
I IE'

""CI S-
AHLTMON a -11 til a 3i

a.
{AHLCWRIT) -= AHLIWRIT 3:

AHLWWRIT

AHLWTASK

AHLTMON

......
I
VI
N

~
-<
CIl

tt1
>I

[
2-
p
Ii
::r
~.

= 01
W
~
~.

~
0-
'" t""'
~
ri·

t""'
-< N

~
00
'0
I

W

©
(1
o
~
::!.
~ --t:C
~
(1
o
-?
.....
'0
00
N

.....
'0
00

'"

GTF Diagram 9 _ Me Event Handling (Part 1 of 4)

~nput I Process

MCHEAD -

I MCHFLGS T~------'-----I-. 1

MCHACT =0

PI Old PSW

I I nterruption Code ~ ~~' -

MCRWSA

MCRWSAF T~--- --­
MCINCTL =,

PI Old PSW

--,
I
I 1---1 2
I
I

r-....J

.--------, = X'40' I Interruption Code ~---I---'

Terminate if monitor call
routing inactive

Ensure routing does not

occur if HOOK is
recursive

MC Instruction
I
I
I

3 Set up error protection

AFI121Bl D, I : I I

Interruption Instruction

581 Rll X21 B21 D2

05 Rl R2

~471Rl1X21B21D2

Location
148-149

Location
157-9

~Class- Oc I ~ode - Oxxx I

l,

I
I
I

L-I-.4

..

~ ..

Get identifier to route control
for th is event.

• From MC instruction
generated by GTRACE or
non-branch HOOK

or

• From simulated MC if
HOOK macro instruction is
branch type

l,

I •. Return

I ~ Return

Output

MCRWSA

MCRWSAF{l

MCINCTL = ,

-'" FRRSTACK

"1.! AHLMCFRRl

1 Oldest FRR T

~i I MCRWS' _LJ I ~ MCREID I

~

~
:::I

~ c.

3: ~
~ ~

It '" -., .,
j;;- ;::)-
[;;" It c.
I 3:
~ ~ a -~

'C
.,

~ j;;-.. ;;; -~ :::I
:::I .., .., --= = ~ ~ "

~
N
~ --00
\D
W

©
n
~
::l­

(JQ
::r -;;
a::
n o
-? -\D
00

.N -\D
00
0"1

j
tt ...

~
;
a
~.
Q.

>-l

~
~
~

-I VI
W

r

GTF Diagram 9. Me Event Handling (Part 2 of 4)

Extended OelCription

The MC interruption handling routine (AHLMCIH)
receives control to trace events from the program
check first-level interruption handler (PFLlHI-

Module

1 The MC interruption handling routine determines AHLMCIH
whether routine is active by checking the MCHACT

flag in MCHEAD_ (The MCHEAD is described in System
Dats Areas.) Unless the flag has been set to 1 by the
SETEVENT service. c<?ntrol is immediately returned to
the caller.

2 If the MCINCTL flag in the work/save area MCAWSA AHLMCIH
is on. recursion through AHLMCIH has occurred.

In this case, control is returned to the PFLIH.

3 The MC interruption handling routine sets the
MCINCTL recursion flag in the MCRWSA_ It also

places the address of its error recovery routine on the
FRA stack via SETFAA.

4 The two-byte EID of the event to be routed is calcu­
lated as follows;

e MC instruction issued - the one-digit class and three­
digit code from the instruction are taken from the MC
hardware locations and combined to form the EID for
the hook. The EID is then placed in the MCREID field
of the MCRWSA.

e Branch-HOOK macro issued - AHLMCIH simulated the
MC instruction by obtaining the class and code from the
NOP instruction following the BALA to AHLMCIH_ It
placed the values in low storage as if a monitor call had

AHLMCIH

AHLMCER

been issued. The EID value is calculated and placed in AHLMCER
the MCAWSA as above.

r r

Label

t"" ~ ;;.
tD
:I '" It -.. =- ;;. -3: tD =-
l1li 3: ;:ti .. l1li
£ii' ;:ti
;r ..

£ii'
;r

"tl =
= -'i = .. 3: -'< :s

= -= 3:

'";-' GTF Diagram 9. Me Event Handling (Part 3 of 4)
V1
.,J::..

~
-<
C/l

tTl
>< -<1>
::s
p..
<1>
p..

;l>
M g:
(])
()

2
(il

C/l
<1>

~
(S.
(])

;l>
is.:
on

r
~ (S.

r
-<
'" "" ,

."" \0 ,
w

j)

n
o

"
:3.

(r:i

:?: -Ili
s:
n
o
?

\C
00
N

\0
00
0\

Input

MCHEAD MCRWSA

Use Count 1 I MCREID r---
~ I MCED

~ Current MCCE v--t. MCEE

• EID Directory
Chain

+Class Directory
MCCD

+ MCCLE

MCEE I
Chain I

EID Value

4 Routine

'MCQE f-

4 Next MCEE -

MCCLEI

I
Class Value

, Routine
, MCQE -
, Next MCCD -

MCHEAD

Use count -1 --------
1

Current MCCE

Old MCCE

l Use Count -----
r SRB I

\.,

Process

f------t-. 5 Route control to each routine
which handles this type of event

") • Each routine for this EID
v

value

"- • Each routine for this class
v

value

--r--1 - ... 6 Schedule SRB to free routing .. tables if no longer needed

I
I
I
I
I ,

__ ...J

-

~

Output
GPR 0 I
1+ MCQE I ..

.,) GPR 2

I,MCQEAT I
GPR 3

14 MCAWSA I
,

MCRWSA
,

Registers 0-15 MCAWSA

"" Application I
Work/Save Area

MCRWSAF •

1=1
MCINFGBR

MCHEAD

I Use Count +1 I

,.
Routine
to Handle
Event

t"" (;.
<'I>
::I
~ c..
~ ~
~ ~ S- -.. ..
;" t=;"
;;- ~

c..
Return I

~ -= ~ .. S-o
1:

..
EQ' ... IE -~ 0

Q -- == == ~ ~ "

'-

r
-<
tJ
oc

oc
-.c ,
,-'"'

n
.g
'<
:l.

Ot>
::r-

c:l
3::
n
c ...,
?

-.c
C)O

t->

-.c
x
::J'

n
::r­
eo;

"S
(l) ...,

o
(1)
;oj
(l) ...,
eo;
~.

(1)

0.

-l ...,
eo;
n
(l)

"T1
eo;

~
-<
..­

I

VI
VI

r

GTF Diagram 9. Me Event Handling (Part 4 of 4)

Extended Description Module

5 The event router issues a CMSET for the home AHLMCER
(PSAAOLD) address space for any non-PFLIH entries

to GTF or for a PFLIH entry when PASID is not equal to
HASID. The event router determines the routines to
receive control for the event by using the E I 0 directory
(MCED) and the class directory (MCCD). The MC control
element (MCCE) contains pointers to both directories.
Before using the MCCE and directories, AHLMCEA
increases the use count in MCHEAD so these tables will
not be released while the event is being handled.

The MCED is searched first for all routines to handle the
event. ALHMCER uses the EID value from MCRWSA
in the search. If an MCEE (event element) specifying the
EID is not found, the class directory (CCD) is searched
for routines to handle the event class. The class (calcu­
lated from the EID in the MCRWSA) is used as an index
into the directory.

If jobname and/or address filtering need to be done,
AH L TSE LF is called. If the ASI 0 or jobname is not
selected for tracing, event routing is terminated. The
event router passes the following information to the rou­
tine to build the record:

• Address of the MC queue element associated with the
routine. (There is one MCOE for each MC user, for
example, GTFJ

• Address of a work/save area (MCAWSA) for the event
handler.

• Address of MCOEAT (for GTF, this is the address of
the GTFPCTI.

After the routine has completed processing, the event
router resets the MCINFGBR to O. The EID link field
(MCEEEIDL) is checked to determine whether another
MCEE or MCCLE exists for this event. I f so, control is
passed to the indicated routine as above.

Label

r

Extended Description

6 The event router issues a CMSET to reset to the
caller's environment if necessary. The event router

attempts to decrease the use count in MCHEAD using a
CDS instruction. If the attempt is unsuccessful,
AHLMCEA determines whether the pointer to the MCCE
in MCHEAD has been changed. If it has, a new set of rou­
ting tables are in effect. In this case, the old use count
from MCHEAD has been saved in the old MCCE.
AHLMCER decreases this count, and if the result is 0,
the tables associated with the old MCCE may be freed.
This is done by scheduling the already initialized SAB
located in the MCCE.

The event router resets the recursion flag (MCI NTLl and
returns to the caller of AHLMCIH. If an error occurs in
an event handler and the event handler does not recover,
the associated MCOE for the MC user is disabled, and that
application is terminated. Other MC users still receive
control for their specified events. I f an error occurs while
the event router is in control, the event router is termi­
nated and message AHL 1321 is issued. All MCOEs are
terminated in this case.

r

Module Label

t"" ::

j:r ::c

~
~
::;-

=- n' -AHLMCER 3: n> =-= :: ;;-.. = i' ;;-
1E ..

i'
F;;'

'"d = a -~ == .. :: q ::

= -= 3:

AHLMCER.

Section 3: Program Organization

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

This section contains the following items which describe the organization of GTF.

• A description of GTF's use of storage during trace processing (see
Figure 1-2).

• A list of the modules that are loaded for each trace option specified.
• Module calling sequences for GTF functions.
• A list of GTF load modules and the object modules they contain.
• A cross-reference table of module and data areas.

SQA MCRWSA
MCAWSA
GTFBLOKs
MC tables

Pageable link pack area

data gatherin¥ routines£
AHLSBLOK
AHLSBUF
AHLMCER1

SETEVENT service

GTF address space - private area

Subpoo16

Subpool5

Nucleus

1 Fixed while GTF is active
2 Always fixed

AHLTMON
AHLxWRIT x = C, I, or W
AHLWTASK

GTFBCBs l

GTFBUFRx

AHLMCIH2

MCHEAD2

Figure 1-2. GTF Storage During Tracing

1-56 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

J

J

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Trace Modules Loaded for Each Selected Option

Trace Option

ASIDP
CCW,CCWP
CSCH
DSP without SYSM
DSP with SYSM
EXT
HSCH
10
lOP
JOBNAMEP
MSCH
PCI
PI
PIP
RNIO without SYSM
RNIO with SYSM
RR
SLIP
SRM without SYSM
SRM with SYSM
SSCH
SSCHP
SVC
SVCP
SYS
SYSM
SYSP

TRC
USR,USRP

Trace Modules

None
AHLTCCWG
AHLTFCG
AHLTPID
AHLTSYSM,AHLTXSYS
AHLTEXT
AHLTFCG
AHLTFCG
AHLTFCG,AHLTSYFL
None
AHLTFCG
None
AHLTPID
AHLTPID, AHLTSYFL
AHLTFOR
AHLTSYSM,AHLTXSYS
AHLTFOR
AHLTSLIP
AHLTFOR
AHLTSYSM,AHLTXSYS
AHLTFCG
AHLTFCG, AHLTSFL
AHLTSVC
AHLTSVC, AHLTSYFL
AHLTFCG,AHLTSVC,AHLTPID,AHLTFOR,AHLTEXT
AHL TSYSM, AHL TFCG
AHLTFCG, AHLTSVC, AHLTPID, AHLTFOR, AHLTEXT,
AHLTSYFL
None
AHLTUSR

Figure 1-3. Trace Modules Loaded for Each Selected Option

Module Calling Sequences for GTF Functions

The following maps show sequential flow of GTF modules. Each map indicates
the active modules for a specific function and describes the operations performed
by those modules. Entry point names are also provided where they may differ
from the module names. Figure 1-4 explains the design of sequence maps.

For more detailed descriptions of the functions, see the diagrams in Section 2:
Method of Operation. A reference to the corresponding diagram accompanies
each map.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 1. Generalized Trace Facility 1-57

GTF Control Flow

Siagle Path Flow

Calling Module

Module A

LMOduleA1

LModule A2

Module B (ENTRYI)

The calling module first calls A,
which then calls A l and A 2.
When A returns, the caller passes
control to B at entry point
ENTRYl.

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Alternate Path Flow

Calling Module

I ~ModuleA
LtModuleB

LModule B1

The calling module determines whether
to call A or B for this operation. If B
receives control, it calls 8 1 before
returning to the caller.

Figure 1-4. Example of Calling Sequence Map

GTF Task Processing

Initialization - Includes initialization for GTF task and for GTF trace processing.

L Task monitor - Acknowledges STOP on termination ECBs while GTF is active.

Hook Processing

MC event-routing facility - Gives control to GTF when a trace event occurs.

L Filter/gather/build routines 8uild GFT records for Selected events. Request record L blocking/buffering via AHLSTACK macro instruction.

Record-blocking routine Stacks trace records into blocking area. Issues
SCHEDULE macro instruction for buffer-copying routine
when blocking area is full.

Buffer Processing

Asynchronous buffering routine - Copies contents of full blocking area to buffer. Issues POST
macro instruction for GFT writer to manage buffer queues. I

POST

L Writer routine Manages buffer queues. Writes trace data to output data set (external trace
mode only).

1-58 MVS/Extended Architecture Service Aids Logic L Y28-1189-3 © Copyright IBM Corp. 1982, 1986

J

l

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Initialization (Diagram 2)

AHLGTFI - Enqueues GTF resource, sets up ESTAE for initialization, requests MC support,
obtains and initializes GTFPCT, AHLPCITB, and INITDATA. Transfers control to
AHLTMON after initialization.

LOAD

AGLSCAN - Obtains GTF options from START command on EXEC statement or uses L defaults. Sets options bits in GTFPCT indicating the START command
options.

AHLTCTLI Controls obtaining and scanning of trace options.

AHLTSCN - Scans options from SYSI.PARMLlB or console. Sets
GTFOPIND of INITDATA. Resolves conflicts of mutually
exclusive options specified.

AHLTPMT - Builds and issues message AHLTl031.

---AHLTl03 - Obtains selective trace events from SYSI.PARMLIB or the
console. Builds EBCDIC device tables for filtering.

AHLTTAB - Converts EBCDIC device tables to filter tables (masks).

I Load appropriate record-building routines.

ATTACH

I- I ~~~~:~iT !Initializes blocking areas and buffers, opens DCB if external trace, l AHLCWRIT completes ECBLIST, gets SRB to schedule butTering, loads and fixes
AHLSBLOK and AHLSBUF.

ATTACH

IAHLWTASK

XCTL

LAHLTMON

Sets up the message table (WMSGT AB) and an SRB to schedule WTO,
builds ECBLIST.

Performs final initialization; issues SETEVENT to: enable MC support,
get CPU-related work areas (chained from LCCA), and initialize control
register 8 on each active CPU. Waits on the ECB list. Posts writer and
WTO EeBs for termination processing. Detaches writer and WTO
subtasks. Cancels MC support.

SVC, EXT, RR, PI Minimal Record Building (Diagram 3)

AHLMCER

CAHLTSELF -j ~:~;;~~s~~~:~~t!occurred within a specified address space or job.

AHL TSYSM AHLPI, AHLFRR, Builds a minimal record in MCA WSA for the L AHLSTAE event; issues AHLSTACK macro instruction to
prefix the record and to cause record blocking.

record-blocking routine (via AHLST ACK macro instruction)

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter I. Generalized Trace Facility 1-59

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

RNIO, SRM, DSP Minimal Record Building (Diagram 3)

AHLMCER - Determines that an event handled by AHLTXSYS has occurred.

L-AHL TSELF - Determines if an event occurred within a specified address space or job.

LAHLTXSYS 11~t~:: j Builds a minimal record in MCAWSA; issues L AHLSRM AHLST ACK macro instruction to prefix the record and
AHLRNIO to cause record blocking.

record-blocking routine (via AHLSTACK macro instruction)

DSP, PI Comprehensive Record Building (Diagram 3)

AHLMCER - Uses hook EID and the event/class directories (MCED and MCCD) to
determine that an event handled by AHL TSYFL or AHL TPID has occurred.

AHLTSELF - Determines if an event occurred within a specified address space or job.

AHLTSYFL - If selective tracing for PI is in effect. determines whether this event is selected
by using the filter tables in GTFPCT.

I
AHL TPID I ~~g~:i j Builds a comprehensive record in MCA WSA for the event; L AHL TPI issues AHLST ACK macro instruction to prefix the record

AHL TSRB and to cause record blocking.

record-blocking routine (via AHLSTACK macro instruction)

RNIO, RR, SRM Comprebensive Record Building (Diagram 3)

AHLMCER - Determines that an event handled by AHL TFOR has occurred. t ARL TSELF .:: ;fjan event occurred within a specified address space or job.

AHLTFOR I AHL TSRM Builds a comprehensive record in MCA WSA for the event;

AHLTRNIO and to cause record blocking. L AHLTSTAE issues AHLSTACK macro instruction to prefix the record

record-blocking routine (via AHLSTACK macro instruction)

EXT Comprebensive Record Building (Diagram 3)

AHLMCER - Determines that an event handled by AHL TEXT has occurred.

~ AHL TSELF - Determines if an event occurred within a specified address space or job.

L AHL TEXT - Builds a comprehensive record in MCA WSA for the event; issues L AHLSTACK macro instruction to prefix the record and to cause record
blocking.

record-blocking routine (via AHLSTACK macro instruction)

1-60 MVS/Extended Architecture Service Aids Logic L Y28-1189-3 © Copyright IBM Corp. 1982, 1986

J

l

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

I/O, SSCH, CSCH, HSCH, MSCH, RSCH Record Building (Diagram 3)

AHLMCER - Determines that an event handled by AHLTFCG, AHLTSYFL, or
AHLTCCWG has occurred.

AHL TSELF - Determines if an event occurred within a specified address space or job.

AHLTSYFL - If selective tracing for I/O and/or SSCH is in effect, determines whether this
event is selected by using the filter tables in GTFPCT.

AHLTFCG {AHLTFCG } Builds a comprehensive record in MCAWSA for the event; L RECST ACK issues AHLST ACK macro instruction to prefix the record
and to cause record blocking.

record-blocking routine (via AHLSTACK macro instruction)

AHLTCCWG - Accesses the proper address spaces through a CMSET; traces the channel L program; builds a trace record in the MCA WSA for the event, issues an
ARLST ACK macro instruction to prefix the record and to cause record
blocking.

record-blocking routine (via AHLSTACK macro instruction)

SVC Comprebensive Record Building (Diagram 3)

AHUylCER - Determines that an event handled by AHLTSYFL or AHLTSVC has
occurred.

AHL TSELF - Determines if an event occurred within a specified address space or job.

AHL TSYFL - If selective tracing for SVC is in effect, determines whether this event is
selected. If so, passes control to AHLTSVC.

AHLTSVC Builds a comprehensive SVC record; issues AHLSTACK macro instruction
to preflX the record and to cause record blocking.

record-blocking routine (via AHLSTACK macro instruction)

User/Component Record Building (Diagram 3)

AHLMCER - Determines that an event handled by AHL TUSR has occurred.

LAHLTSELF - Determines if an event occurred within a specified address space or job.

LAHL TUSR (AHLTUSR) - Builds a record of data received from a user/component after L checking validity of the data. Issues AHLSTACK macro
instruction.

(AHLTUSRE) If a page fault occurred in gathering data, indicates the condition
to be handled by code generated by GTRACE macro instruction.

record-blocking routine (via ARLST ACK macro instruction)

Save Hook Control Record Building (Diagram 3)

AHLMCER - Determines that an event handled by AHL TDIR has occurred.

LARLTSELF - Determines if an event occurred within a specified address space or job.

LAHLTDIR - Builds a save hook control record for trace data requested by L ABEND/SNAP/SVC Dump. Issues AHLSTACK macro instruction.

record-blocking routine (via AHLSTACK macro instruction)

L Y28-1189-3 to Copyright IBM Corp. 1982, 1986 Chapter 1. Generalized Trace Facility 1-61

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

SLIP Trace Record Building (Diagram 3)

AHLMCER - Determines that an event handled by AHLTSLIP has occurred.

L AHLTSLIP {AHLSLSTD } Builds a trace record in MCAWSA for the event; issues L AHLSLUSR AHLST ACK macro instruction to prefix the record and to
cause record blocking.

record-blocking routine (via AHLST ACK macro instruction)

Record Blocking and Buffering (Diagram 4)

Record build routine - Builds trace record in MCAWSA, then issues AHLSTACK macro L instruction which causes record blocking and buffering.

AHLSBLOK (AHLSBLOK) - Places trace record with prefix in a blocking area
(GTFBLOK) in SQA.

(AHLSFEOB) - Swaps to an empty GTFBLOK when a blocking area
becomes full; keeps track of events lost while waiting for a
GTFBLOK. Schedules SRB for the buffering routine
(AHLSBUF) when a GTFBLOK is full or a hook from
ABEND/SNAP/SVC Dump is received.

SCHEDULE

LAHLSBUF - Moves blocked trace data to buffer (GTFBUFR); manages buffer
queues through buffer control blocks (GTFBCBs). Builds save list
element (SLE) if the blocked data contains a save-hook control
record for ABEND/SNAP/SVC Dump. Post writer.

GTF Writer (Diagram 5)

AHLSBUF - Post GTF writer after copying a GTFBLOK to a buffer.
I
POST Note: only one writer module is loaded per GTF trace execution.

AHLCWRIT - Tape writer; writes buffers from the write queue to output tape; maintains
internal history queue.

AHLIWRIT - Internal mode writer; maintains internal history queue of trace data.

AHLWWRIT - Direct-access writer: writes buffers from the write queue to direct-access data
set; maintains internal history queue.

1-62 MVS/Extended Architecture Service Aids Logic L Y28-1189-3 © Copyright IBM Corp. 1982, 1986

J

J

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

GTF - Dump Interfaces (Diagram 6)

SVC Dump - Requests buffers with data related to ASID of failing address space.

or

ABEND/SNAP (IGCOF05A) - Provides interface with GTF. Issues AHLREAD macro instruction L which causes (via scheduling an SRB) trace data to be transferred
from GTF's address space to SQA. Formats records. Calls for user
format appendage or dumps user records in hexadecimal.

AHLREADR is scheduled via AHLREAD macro instruction - Queues request for one page of
trace data to be copied to
SQA.

LAHL'WRIT - Copies a page of data to SQA. Schedules SRB to return to
AHLREADR to post the dump program. Before filling the last
request associated with a dump, the writer removes BCBs from the
SLE.

WTO for Disabled Event (Diagram 7)

Filter/gather/build error-recovery routine - If a disabling error occurs, calls for disabled event message.

L AHLWTO (AHLWTOMD) - Fills in table for message AHLll81 informing operator of I disabled event. Schedules SRB for WTO subtask. .

SCHEDULE

L AHLWTASK (AHLWPOST) - Posts AHLWTASKS's ECB to write the message.
(AHLWTASK) - Writes error message AHLll8I.

Termination Processing (Diagram 8)

AHLTMON - Controls termination of GTF when STOP ECB or abnormal-end ECB is posted. Issues
SETEVENT to free MC routing tables. Notifies writer and WTO subtasks of
termination. Detaches subtask. Frees fixed storage. AHLTMON issues DEQ to free
GTF resource.

AHLxWRIT Ensures all I/O to external data set is complete before freeing butTers,
blocking areas, and related control blocks. Deletes AHLSBLOK and
AHLSBUF.

AHL WT ASK - Frees message table area.

Me Event Handling (Diagram 9)

Program first level
Interrupt handler - Passes control to the MC interrupt handler when MC interrupts or other

checks occur.

AHLMCIH
AHLMCIHB
AHLMCIHC

L AHLVCCR8
AHLUTEST

AHLMCER - calculates EID value for the hook and uses the event directory L (MCED) and class directory (MCeD) Lo route control to each routine
which handles this event type.

record-building routine

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter I. Generalized Trace Facility 1-63

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Section 4: Data Areas

GTF Data Areas

This section contains descriptions of the data areas built and used by GTF and by
the MC event handler. Refer to Data Areas for detailed formats of the data
areas. This section also contains formats of the records built by GTF during
tracing.

The GTF tables described are as follows:

• Buffer control block (GTFBCB).
• Initialization data area (INITDATA).
• Primary control table (GTFPCT).
• Range table (RANGETAB).
• Save list element (SLE).
• CCW trace work area (AHLCCWWK).
• PCI work area (AHLPCITB).

The MC event handler tables are as follows:

• Application work/save area (MCA WSA).
• Base table (MCHEAD).
• Class directory (MCCD).
• Class element (MCCLE).
• Control element (MCCE).
• Queue element (MCQE).
• Router work/save area (MCRWSA).

The GTF record formats are as follows:

• Control records (lost block, lost event, save hook, and timestamp).
• Minimal trace records (DSP, EXT, PI, RNIO, RR, SRM, SVC).
• Comprehensive trace records (DSP, EXT, PI, RNIO, RR, SRM, SVC).
• Trace records (I/O, CSCH, HSCH, MSCH, RSCH, SLIP, SSCH).

Buffer Control Block (GTFBCB)

Created by: AHLx WRIT (x is C, I or W depending on the GTF mode
specification and/or output device).

Updated by: AHLSBUF.

Use: A temporary data area that contains indicators of the GTF options
obtained during initialization. The table is freed at the end of initialization.

1-64 MVS/Extended Architecture Service Aids Logic L Y28-1l89-3 @ Copyright IBM Corp. 1982, 1986

J

J

l

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

PCI Work Area (AHLPCITB)

Created by: AHLGTFI.

Updated by: AHL TCCWG.

Use: A table that contains command codes, flags, and channel program starting
addresses for PCl interrupts.

Primary Control Table (GTFPCT)

Created by: AHLGTFI.

Updated by: AHLxWRIT, AHLREADR, AHLSBLOK, AHLSBUF,
AHLSCAN, AHLTCTLl, AHLTEXT, AHLTFOR, AHLTMON, AHLTPID,
AHLTPMT,AHLTSCN,AHLTFCG,AHLTSVC,AHLTSYFL,AHLTSYSM,
AHLTTAB, AHLTUSR, AHLTXSYS, AHLWTASK, AHLTSLIP.

Referenced by: AHLREADR, AHLSTACK, AHLTl03, AHLWTO, IGCOF05A.

Use: Contains the majority of control information required for GTF operation.
This includes pointers to buffer queues, indicators of options in effect, pointers to
SRBs for scheduling services, pointers to the filter tables.

Range Table (RANGET AB)

Save List Element (SLE)

Created by: AHLGTFI.

Updated by: AHLGTFI.

Use: A temporary data area for GTF initialization that contains starting and
ending addresses of each event-handler routine required for tracing. From this
table, the range of storage required for page fixing is determined. The table is
freed at the end of initialization.

Created by: AHLxWRIT (x is C, I or W depending on the GTF mode and/or
output device).

Updated by: AHLSBUF.

Use: Contains the control information related to a request by ABDUMPjSNAP
or SVC Dump for trace data. This information includes the TCB address for a
dumped task, the ASlD of a dumped address space and pointers to the buffers
containing the required data and/or related buffer control blocks.

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 1. Generalized Trace Facility 1-65

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Me Event Handling/Data Areas

Application WCCk/Save Area (MCA WSA)

Base Table (MCHEAD)

Created by: AHLSETEV, AHLVCON.

Up~ated by: AHLMCER, AHLSBLOK, AHLSETD, AHLSTACK, AHLTDIR,
AHLTEXT, AHLTFOR, AHLTPID, AHLTFCG, AHLTSVC, AHLTSYSM,
AHLTUSR, AHLTXSYS, AHLVCOFF, AHLWTO, AHLTSLIP, AHLMCIH.

Use: Used by the data-gathering routines for register save areas, temporary work
space, and record building. Records are moved, as they are completed, from this
data area to the blocking areas (GTFBLOKs).

Created by: Assembled as part of the MC interruption-handler routine
(AHLMCIH), which is resident in the nucleus.

Updated by: AHLSETEV, lEA VNP17.

Referenced by: AHLMCER, AHLREADR, AHLSETD, AHLVCON,
IGCOF05A.

Use: Contains basic control information for the MC event handler. The
information includes the address of the current (active) control element (MCCE),
a use count indicating the number of routines using this set of tables, and the
current active class mask in control register eight.

CCW Trace Work Area (AHLCCWWK)

Class Directory (MCCD)

Created by: AHLSETEV

Updated by: AHL TCCWG

Use: A temporary work area for CCW trace that contains flags, bit switches,
addresses, and counters. One work area exists for each CPU that is in a
multiprocessing configuration and that is runningCCW trace.

Created by: AHLSETEV.

Referenced by: AHLMCER.

Use: Contains the addresses of MC class elements (MCCLEs); used as an index
to route control of trace events by class.

1-66 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

J

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Class Element (MCCLE)

Control Element (MCCE)

Queue Element (MCQE)

Created by: AHLSETEV.

Referenced by: AHLMCER, AHLSETD.

Use: Specifies a class of events to be traced and the event-handler routine to
receive control for that class.

Created by: AHLSETEV.

Updated by: AHLMCER, AHLSETD.

Referenced by: AHLREADR, AHLSET, IGCOF05A.

Use: Contains the addresses of the routine directories, the MC class directory
(MCCD), and the MC event directory (MCED). Also contains the address of the
first application control table (MCQE) and the SRB used to free the tables
associated with this MCCE.

Created by: AHLSETEV.

Updated by: AHLGTFI (only the MCQE for the GTF application).

Referenced by: AHLxWRIT, AHLMCER, AHLREADR, AHLSETD,
AHLSTACK, AHLTMON.

Use: Contains control information to define an MC application, for example,
GTF. It contains the application's name, the address of the next MCQE, an ECB
used to terminate the application, and the addresses of the chains of MC class
elements (MCCLEs) and of MC event elements (MCEEs).

Event Handler Work/Save Area (MCRWSA)

Created by: IPL/NIP, VARY CPU ONLINE.

Updated by: AHLMCER, AHLMCIH, AHLSETD, AHLSETEV, AHLVCOFF,
AHLVCON,IEAVNPI7.

Referenced by: AHLTEXT, AHLTFOR, AHLTPID, AHLTFCG, AHLTSVC,
AHLTSYFL, AHLTUSR, AHL WTO, AHLTSLIP.

Use: Contains register save area for the MC interrupt and the address of the
MCA WSA. It is located in SQA and is pointed to by the LCCA work/save area
vector table.

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter I. Generalized Trace Facility 1-67

GTF Control Records

Lost Block Record

Lost Event Record

Save Hook Control Record

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

GTF places a lost block control record in the trace buffers whenever data
contained in a GTFBLOK has been lost.

Offset

o
2
4
5

6
10
18

(0)
(2)
(4)
(5)

(6)
(A)
(12)

Size

2
2

4
8
4

Description

Record length in bytes.
X'OOOO'.
Record identifier: X'OO' indicates control record.
Format identifier: X'03'.

X'05' for buffer full condition;
Time zone value,
TOD clock value.
Lost event count.

GTF places a lost data control recQrd in the trace buffers whenever data about an
interruption is missed because buffers were fulL

Offset Size Description

0 (0) 2 Record length in bytes.
2 (2) 2 X'OOOO'.
4 (4) I Record identifier: X'OO' indicates control record.
5 (5) 1 Format identifier: X'02'.

X'OS' for buffer full condition;
6 (6) 4 Time zone value.
10 (A) 8 TOD clock value.
18 (12) 4 Lost event count.

GTF places a save hook control record in the trace buffers whenever a request
from ABENDjSVC Dump is received for trace data.

Offset Size Description

0 (0) 2 Record length in bytes.
2 (2) 2 X'OOOO'.
4 (4) 1 Record identifier: X'OO' indicates control record.
5 (5) Format identifier; X'OO'.

X'OS' for buffer full condition;
6 (6) 4 Time zone value.
10 (A) 8 TOO clock value.
18 (12) 2 EID, F200, FIOO
20 (\4) 2 ASID
22 (l6) 4 TeB

1-68 MVS/Extended Architecture Service Aids Logic L Y28-1189-3 © Copyright IBM Corp, 1982, 1986

J

J

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Time Stamp Control Record

The first record in every variable block.

Offset Size

o (0) 2
2 (2) 2
4 (4) I
5 (5) I
6 (6) 4
10 (A) 8
18 (12) 8

18 (12)
1....
.1..
.. 1.
... 1

19 (13) 1
I...
.1..
.. 1.
... 1

20 (14) I
1. ..
. 1 ..
.. 1.
.. .I

21 (15) I
1...
.1 ..
.. 1.
... 1

22 (16) I
I...
.1..
.. 1.
... 1

23 (17) 3

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

l...
.1..
.. x.
... 1

1...
.1..
.. I.
... 1

1...
.1..
.. 1.
... 1

1...
• XX.

... 1

1...
. xx.
.. .I

Description

Record length in bytes.
X'OOOO'.
Record identifier: X'OO' means this is a control record.
Format identifier: X'OI'.
Time zone value.
TOD clock value.
GTF option bytes.

Option byte i:
SYSM in effect.
SYSP in effect.
SYS in effect.
USR in effect.
TRC in t::ffed
DSP in efTxt.
Reserved
PCI in effect.

Option byte 2:
SVC in effect.
SVCP in effect.
SIO specified; SSCH in effect.
SlOP specified; SSCHP in effecL
PI in effect.
PIP in effect.
lOin effect.
lOP in effect.

Option byte 3:
EXT in effect.
RNIO in effect.
SRM in effect.
RR in effect .
SLIP in effect.
CCW in effect.
CCWP in effect .
10 = SIO: the devices traced selectively for
10 and S10 are identical.

Option byte 4:
CCW = 1 in effect.
CCW = S in effect.
JOBNAMEP in effect.
ASIDP in effect.
USRP in effect.
Reserved .

User timestamp requested in each trace record .

Option byte 5:
SSCH in effect.
SSCHP in effect.
MSCH in effect.
HSCH in effect.
CSCH in effect.
Reserved .
10 = SSCH; the devices traced selectively for 10 aD"
SSCH are identical.
Reserved.

Chapter I. Gcnnali n

GTF Trace Records

CCW Trace Record

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

GTF builds a record that has the following format when TRACE = CCW or
TRACE = CCWP is in effect, and either a start subchannel (SSCH) occurs in the
I/O supervisor SSCH subroutine, or an I/O interruption occurs. To trace channel
programs, TRACE = SSCH or TRACE = I/O must also be in effect.

Offset Size Description

0 (0) 2 Record length in bytes.
2 (2) 2 X'OOOO'.
4 (4) I Record identifier: X'FF' indicates trace record.
5 (5) 1 Format identifier: X'OT.
6 (6) 8 Optional timestamp; if TIME = YES is specified, this field

contains the eight bytes of the TOO clock value.
If TIME = NO, this field does not exist.

14 (E) 2 Event identifier.
16 (10) 4 ASCB.
20 (14) 2 CPUID.
22 (16) 8 10bname.
30 (IE) 2 Device address.
32 (20) 2 Maximum amount of data for each CCW.
34 (22) I Flags for CCW trace formatter.
35 (23) 2 Sequential record count for print dump of this event.
37 (25) I Translate table ID for formatter.
38 (26) 2 Flags describing data.
40 (28) 2 Length of data in this CCW.
42 (2A) I Length of data in this record.

43 (2B) 4 Virtual address of CCW.
47 (2F) 8 CCW being traced.
55 (37) 217 Data area or repeat of offset 37-55 if space available.

CCW Trace Message Record

GTF builds a record that has the following format when CCW trace has to
output messages AHL140D, AHL141D, AHL146I, AHL147I, AHL148I,
AHL149I, AHL150I, AHL151I, AHL152I, AHL153I, or AHLl54L

Offset Size Description

0 (0) 2 Record length in bytes.
2 (2) 2 X'OOOO'.
4 (4) Record identifier: X'FF' indicates trace record.
5 (5) Format identifier: X'OT.
6 (6) 8 Optional timestamp; if TIME = YES is specified, this field

contains the eight bytes of the TOO clock value.
If TIME = NO, this field does not exist.

14 (E) 2 Event identifier.
16 (10) 4 ASCB.
20 (14) 2 cpum.
22 (16) 8 Jobname.
30 {IE) 2 Device address.
32 (20) 2 Not used; contains value used in CCW trace record.
34 (22) 2 Flags for CCW trace formatter.
35 (23) 2 Sequential record count for print dump of this event.
37 (25) 4 'MSG'ID.
41 (29) 4 Not used; zeroes.
45 (20) 2 Length of message.
47 (2F) 225 Message data.

1-70 MYS/Extended Architecture Service Aids Logic L Y28-1189-3 @ Copyright IBM Corp. 1982. 1986

J

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

CSCH/HSCH Trace Record

GTF builds a record that has the following format when either a CSCH or an
HSCH event occurs and TRACE = SYSM, TRACE = SYS, TRACE = SYSP,
TRACE = CSCH, or TRACE = HSCH is in effect. This record is common to
both the CSCH event and the HSCH event. They can be differentiated by the
EID value (X'5105' for CSCH, X'5103' for HSCH) found in the prefix section of
the record at offset X'E'.

Offset Size

0 (0) 2
2 (2) 2
4 (4) I
5 (5) 1
6 (6) 8

14 (E) 2

16 (10) 2
20 (14) 2
22 (16) 8
30 (IE) 2
32 (20) 2
34 (22) 4
38 (26)
39 (27)
40 (28)
41 (29)
42 (2A)

DSP Comprehensive Trace Record

Description

Length of record in bytes.
X'OOOO'.
Record identifier: X'FF' indicates trace record.
Format identifier: X'OO'.
Optional timestamp; if TIME = YES is specified, this field
contains the eight bytes of the TOD clock value.
If TIME = NO, this field does not exist.

Event identifier.
. X'SI02' indicates a CSCH event.

X'SI03' indicates a HSCH event.
ASCB.
CPUID.
10bname.
Device number.
Startability flags.
Subchannel identifier.
Condition code.
Driver identifier.
Associated request driver identifier.
IOSLEVEL.
UCBLEVEL.

GTF builds a record that has the following format when an entry is made to the
dispatcher to dispatch a unit of work and TRACE = DSP is the GTF option in
effect.

Offset

0 (0)
2 (2)
4 (4)
S (5)
6 (6)

14 (E)

16 (10)
20 (14)
22 (16)
30 (IE)
38 (26)
For TCB only:
42 (2A)
For SRB only:

42 (2A)
46 (2E)

L Y28-1189-3 (g Copyright IBM Corp. 1982, 1986

Size

2
2
I
I
8

2

4
2
8
8
4

8

4
I

Description

Length of record in bytes.
X'OOOO'.
Record identifier: X'FF' indicates a trace record.
Format identifier: X'02'.
Optional timestamp; if TIME = YES is specified, this field
contains the eight bytes of the TOD clock value.
If TIME = NO, this field does not exist.
Event identifier.

X'OOOI' indicates SRB dispatching.
X'0002' indicates LSR dispatching.
X'0003' indicates TCD dispatching.
X'0004' indicates exit prolog dispatching.

ASCB.
CPUID.
10bname.
Resume PSW for new task.
New TCB (for LSR and TeB, SRB for SRB).

CDE name.

Parm address.
Global or local.

Chapter I. Generalized Trace Facility 1-71

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

DSP Minimal Trace Record

EW.<It Trace Record

GTF builds a record with the following format when an entry is made to the
dispatcher to dispatch a unit of work and both TRACE = SYSM,DSP are the
GTF options in effect.

Offset

0 (0)
2 (2)
4 (4)
5 (5)
6 (6)

14 (E)

16 (10)
20 (14)
22 (16)
30 (IE)
34 (22)
38 (26)
42 (2A)
46 (2E)

Size

2
2
1
I
8

2

4
2
8
4
4
4
4

Description

Length of record in bytes.
X'OOOO'.
Record identifier: X'FF' indicates trace record.
Format identifier: X'03' indicates AMDSYS03.
Optional timestamp; if TIME = YES is specified, this field
contains the eight bytes of the TOD clock.
If TIME = NO, this field does not exist.
Event identifier.

X'OOOI' indicates SRD dispatching.
X'OOO2' indicates LSR dispatching.
X'OOO3' indicates TCD dispatching.
X'OOO4' indicates exit prolog dispatching.

ASCD.
CPUID.
Resume PSW for work unit being dispatched.
Current TCD or NjA (for TCD and LSR only).
Register 15.
Register 0 or SRD.
Register 1.
For SRD only; global or local.

GTF builds a record that has the following format if an EW A is present when
CCW=IOSB is specified with TRACE = CCW or TRACE=CCWP.

Offset Size Description

0 (0) 2 Length of record in bytes.
2 (2) 2 X'OOOO'.
4 (4) I Record identifier: X'FF' indicates trace record.
5 (5) I Format identifier: X'07'.
6 (6) 8 Optional timestamp; if TIME = YES is specified, this field

contains the eight bytes of the TOD clock value.
If TIME = NO, this field does not exist.

14 (E) 2 Event identifier.
16 (10) 4 ASCD.
20 (14) 2 CPUID.
22 (16) 8 Jobname.
30 (IE) 2 Device address.
32 (20) 2 Not used; contains value used in CCW trace record.
34 (22) I Flags for CCW trace formatter.
35 (23) 2 Sequential record count for print dump of this event.
37 (25) 4 'EWA'ID.
41 (29) 4 Address of EWA.
45 (20) 2 Length ofEWA in this record.
47 (2F) 225 EW A data area.

MVS/Extended Architecture Service Aids Logic LY28-1189-3 C Copyright IBM Corp. 1982, 1986

J

J

l

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

EXT Comprehensive Trace Record

GTF builds a record that has the following format when an external interruption
occurs and either TRACE = SYS or TRACE = EXT is in effect.

Offset Size

0 (0) 2
2 (2) 2
4 (4) I
5 (5) I
6 (6) 8

14 (E) 2

16 (10) 4
20 (14) 2
22 (16) 8
30 (IE) 8
38 (26) 4

For SIGP interrupt:

42 (2A) 4
46 (2E) 2

For clock comparator interrupt.

42 (2A) 2
44 (2C) 4
48 (30) 4

For CPU timer interrupt:

42 (2A) 2
44 (2C) 4

EXT Minimal Trace Record

Description

Length of record in bytes.
X'OOOO'.
Record identifier: X'FF' indicates a trace record.
Format identifier: X'02'.
Optional timestamp; if TIME = YES is specified, this field
contains the eight bytes of the TOO clock value.
If TIME = NO, this field does not exist.
Event identifier: X'6201' indicates an external
interruption.
ASCB.
CPUID.
Jobname.
External old PSW.
Old TCB.

PARMFIELD.
CPUID.

TQE flags.
TQE exit.
TQE ASCB.

TQE flags.
TQE exit.

GTF builds a record with the following format when an external interruption
occurs and TRACE = SYSM is the GTF option in effect.

Offset Size Description

0 (0) 2 Length of record in bytes.
2 (2) 2 X'OOOO'.
4 (4) I Record identifier: X'FF' indicates trace record.
S (5) I Format identifier: X'OY.
6 (6) 8 Optional timestamp; if TIME = YES is specified, this field

contains the eight bytes of the TOO clock value.
If TIME = NO, this field does not exist.

14 (E) 2 Event identifier: X'6201' indicates an external
interruption.

16 (10) 4 ASCB.
20 (14) 2 CPUID.
22 (16) 8 External old PSW.
30 (1 E) 4 TCB of interrupted task or N/A.
34 (22) 4 NTQE TCB or INT CPU or N/A.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 1. Generalized Trace Facility 1-73

IOSB Trace Record

1/0 Trace Record

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

GTF builds a record that has the following format; GTF builds the record either
when CCW=ISOB is specified with TRACE=CCW or TRACE=CCWP, or
when an error message is outputted while tracing a channel program.

Offset Size Description

0 (0) 2 Length of record in byte~.
2 (2) 2 X'OOOO'.
4 (4) I Record identifier: X'FF' indicates trace record.
5 (5) I Format identifier: X'OT.
6 (6) 8 Optional timestamp; if TIME = YES is specified, this field

contains the eight bytes of the TOD clock value.
If TIME = NO, this field does not exist.

14 (E) 2 Event identifier.
16 {I 0) 4 ASCB.
20 (14) 2 CPUID.
22 (16) 8 Jobname.
30 (IE) 2 Device address.
32 (20) 2 Not used; contains value used in CCW trace record.

34 (22) 1 Flags for CCW trace formatter.
35 (23) 2 Sequential record count for print dump of this event.
37 (25) 4 'IOSB'ID.
41 (29) 4 Address of 10SB.
45 (2D) 2 Length of 10SB.
47 (2F) 225 10SB data area.

GTF builds record that has the following format when an I/O interruption occurs
and TRACE = SYSM, TRACE = SYS, TRACE = 10, or TRACE = lOP is in
effect. To trace PCI I/O interruptions, TRACE = PCI must also be in effect.

Offset

0 (0)
2 (2)
4 (4)
5 (5)
6 (6)

14 (E)

16 (10)
20 (14)
22 (16)
30 (IE)
32 (20)
40 (28)
56 (38)
60 (3C)
62 (3E)
64 (40)

65 (41)
66 (42)

Size

2
2

I
8

2

4
2
8
2
8
16
4
2
2
I
I

Description

Length of record in bytes.
X'OOOO'.
Record identifier: X'FF' indicates trace record.
Format identifier: X'OO'.
Optional timestamp; if TIMESTAMP = YES is specified, this field
contains the eight bytes of the TOD clock value.
Event identifier:

X'2100' indicates a PCI 1/0 interruption.
X'5101' indicates an EOS I/O interruption.
X'S200' indicates an I/O interruption with a valid UCB.

ASCB.
CPUID.
Jobname.
Device number.
I/O old PSW.
IRB.
TCB.
Sense bytes.
Flags.
Driver identifier.
IOSLEVEL.
UCBLEVEL.

1-74 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

J

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

MSCH Trace Record

GTF builds a record that has the following format when an MSCH event occurs
and TRACE=SYSM, TRACE=SYS, TRACE=SYSP, or TRACE = MSCH is in
effect.

Offset

0
2
4
S
6

14
16
20
22
30
34
3S
36
37
38
66
67
9S

(0)
(2)
(4)
(S)
(6)

(E)
(10)
(14)
(16)
(IE)
(22)
(23)
(24)
(2S)
(26)
(42)
(43)
(SF)

Size

2
2
1
I
8

2
4
2
8
2
4

28
I
28

Description

Length of record in bytes.
X'OOOO'.
Record identifier: X'FF' indicates trace record.
Format identifier: X'OO'.
Optional timestamp; if TIMESTAMP = YES is specified, this field
contains the eight bytes of the TOD clock value.
Event identifier: X'SI04' indicates an MSCH event.
ASCB.
CPUID.
Jobname.
Device number.
Subchannel identifier.
Condition code.
IOSOPT.
IOSOPT2.
IOSLEVEL.
First SCHIB.
UCBLEVEL.
Second SCHIB.

PI Comprehensive Trace Record

GTF builds a record that has the following format when a program interruption
occurs and either TRACE = PI or TRACE = SYS in effect.

Offset

0 (0)
2 (2)
4 (4)
5 (5)
6 (6)

14 (E)

16 (10)
20 (14)
22 (16)
30 (IE)
38 (26)
42 (2A)
46 (2E)
S4 (36)

L Y28-1189-3 <1';) Copyright IBM Corp. 1982, 1986

Size

2
2
I
1
8

2

4
2
8
8
4
4
8
64

Destription

Length of record in bytes.
X'OOOO'.
Record identifier: X'FF' indicates trace record.
Format identifier: X'02'.
Optional timestamp; if TIME = YES is specified, this field
contains the eight bytes of the TOD clock value.
If TIME = NO, this field does not exist.
Event identifier:

X'6101' indicates a program interruption with codes 1-17, 19,
128.
X'6200' indicates a program interruption with code 18.

ASCB.
CPUID.
Jobname.
Program old PSW.
INTTCB.
Virtual page address.
RB or CDE name.
Registers 0-1 S.

Chapter 1. Generalized Trace Facility 1-7 5

PI Minimal Trace Record

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

GTF builds a record that has the following format when a program interruption
occurs and TRACE = SYSM is the GTF option in effect.

Offset

0 (0)
2 (2)
4 (4)
5 (5)
6 (6)

14 (E)

16 (10)
20 (14)
22 (16)
30 (IE)
30 (I A)
34 (IE)
38 (26)
42 (2A)

Size

2
2
I
I
8

2

4
2
S
S
4
4
4
4

Description

Length of record in bytes.
X'OOOO'.
Record identifier: X'FF' indicates trace record.
Format identifier: X'03'.
Optional timestamp; if TIME = YES is specified, this field
contains the eight bytes of the TOD clock value.
If TIME = NO, this field does not exist.
Event identifier:

X'6101' indicates a program interruption with codes 1-17, 19,
12S.
X'6200' indicates a program interruption with code IS.

ASCB.
CPUID.
10bname.
Program old PSW.
Old TCB.
Virtual page address.
Register 15.
Register I.

RNIO Comprehensive Trace Record

GTF builds a record that has the following format when ACF /VT AM requests an
I/O path information unit (PIU) and the GTF optioll"l in effect are MODE = EXT
and TRACE = RNIO.

Note: ACFjVTAM Version 2 Diagnosis Guide describes the access method used
to create the PIU data.

Offset

0 (0)
2 (2)
4 (4)
5 (5)
6 (6)

14 (E)

16 (10)
20 (14)
22 (16)
30 (IE)

Size

2
2
I
1
8

2

4
2
S
20

1-76 MVSfExtended Architecture Service Aids Logic

Description

Length of record in bytes.
X'OOOO'.
Record identifier: X'FF' indicates trace record.
Format identifier: X'04'.
Optional timestamp; if TIME = YES is specified, this field
contains 4 bytes of the CVTTZ field and the eight bytes
of the TOD clock value.
If TIME = NO, this field does not exist.
Event identifier:

X'S200' indicates PIU output.
X'SIOO' indicates PIU input.

ASCB.
cpum.
Jobname.
RNIO PIU data. Minimum of 10 bytes. Maximum of 20 byt~
The fifth halfword contains the number of remaining bytes. When
PlU data is less than 20 bytes, the field is padded on the right
with blanks.

LY28-1l89-3 © Copyright IBM Corp. 1982, 1986

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

RNIO Comprehensive Trace Record with ACF /VTAM

GTF builds a record that has the following format when ACF /VT AM requests an
I/O path information unit (PIU) and the GTF options in effect are MODE = EXT
and TRACE=RNIO.

Note: ACF/VTAM Version 2 Diagnosis Guide describes the access method used
to create the PIU data.

Offset

0 (0)
2 (2)
4 (4)
5 (5)
6 (6)

14 (E)

16 (10)
20 (14)
22 (16)
30 (IE)

50 (32)

RNIO Minimal Trace Record

Size

2
2
1
1
S

2

4
2
8
20

4

Description

Length of record in bytes.
X'OOOO'.
Record identifier: X'FF' indicates trace record.
Format identifier: X'04'.
Optional timestamp; if TIME = YES is specified, this field
contains the eight bytes of the TOD clock value.
If TIME = NO, this field does not exist.
Event identifier:

X'8200' indicates PIU output.
X'SIOO' indicates PIU input.

ASCB.
CPUID.
Jobname.
RNIO PIU data. Valid range is 1-20 bytes. RO contains the
number of bytes to collect. If RO is greater than 20, 20 bytes
are collected. If RO is less than 20, the field is padded on the
right with blanks.
Contents of Register O.

GTF builds a record that has the following format when ACF/VTAM requests an
I/O path information unit (PIU) and the GTF option in effect is either
MODE = INT or the combination of TRACE = SYSM and TRACE = RNIO.

Note: ACF/VTAM Version 2 Diagnosis Guide describes the access method used
to create the PIU data.

Offset

0 (0)
2 (2)
4 (4)
5 (5)
6 (6)

16 (10)
20 (14)
22 (16)

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986

Size

2
2
1
I
8

4
2
20

Description

Length of record in bytes.
X'OOOO'.
Record identifier: X'FF' indicates trace record.
Format identifier: X'03'.
Optional timestamp; if TIME = YES is specified, this field
contains 4 bytes of the CVTTZ field and the eight bytes
of the TOD clock value.
If TIME = NO, this field does not exist.

X'S200' indicates PIU output.
X'SIOO' indicates PIU input.

ASCB.
CPUID.
RNIO PIU data. Minimum of 10 bytes. Maximum of 20
bytes. The fifth halfword contains number of remaining bytes.
When PIU data is less than 20 bytes, the field is padded on the
right with blanks.

Chapter 1. Generalized Trace Facility 1-77

RNIO Minimal Trace Record with ACF/VTAM

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

GTF builds a record that has the following format when ACF/VTAM requests an
I/O path information unit (PIU) and the GTF option in effect is either
MODE = INT or the combination of TRACE = SYSM and TRACE = RNIO.

Note: ACFjVTAM Version 2 Diagnosis Guide describes the access method used
to create the PIU data.

Offset

0 (0)
2 (2)
4 (4)
5 (5)
6 (6)

14 (E)

16 (10)
20 (14)
22 (16)

42 (2A)

RR Comprehensive Trace Record

Size

2
2
I
I
8

2

4
2
20

4

Description

Length of record in bytes.
X'OOOO'.
Record identifier: X'FF' indicates trace record.
Format identifier: X'03'.
Optional timestamp; if TIME = YES is specified, this field
contains the eight bytes of the TOD clock value.
If TIME = NO, this field does not exist.
Event identifier:

X'8200' indicates PIU output.
X'8100' indicates PIU input.

ASCB.
CPVID.
RNIO PIU data. Valid range is 1·20 bytes. RO contains the
number of bytes to collect. If RO is greater than 20, 20 bytes
are collected. If RO is less than 20, the field is padded on the
right with blanks.
Contents of RO.

GTF builds a record that has the following format when an invocation of a
recovery routine occurs and TRACE = SYS or TRACE = RR is in effect.

Offset Size Description

0 (0) 2 Length of record in bytes.
2 (2) 2 X'OOOO'.
4 (4) 1 Record identifier: X'FF' indicates trace record.
5 (5) 1 Format identifier: X'04' indicates AMDSYS04.
6 (6) 8 Optional timestamp; if TIME = YES is specified, this field

contains the eight bytes of the TOD clock.
If TIME = NO, this field does not exist.

14 (E) 2 Event identifier.
X' 4002' indicates STAE/EST AE invocation.
X'4003' indicates FRR invocation.

16 (10) 4 ASCB.
20 (14) 2 CPUID.
22 (16) 8 10bname.
30 (IE) 8 Name of recovery routine or VIA.
38 (26) 8 PSW current when error occurred.
46 (2E) 4 Completion code.
50 (32) 8 Error flags from system diagnostic work area (SDWA).
58 (3A) 4 Retry address or N/A.
62 (3E) 4 Address of SDW A (ST AE/ESTAE only).

1-78 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

J

J

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

RR Minimal Trace Record

RSCH Trace Record

GTF builds a record that has the following format when an invocation of a
recovery routine occurs and TRACE = SYS is in effect.

Offset Size Description

0 (0) 2 Length of record in bytes.
2 (2) 2 X'OOOO'.
4 (4) 1 Record identifier: X'FF' indicates trace record.
5 (5) 1 Format identifier: X'03' indicates AMDSYS03.
6 (6) 8 Optional timestamp; if TIME = YES is specified, this field

contains the eight bytes of the TOD clock.
If TIME = NO, this field does not exist.

14 (E) 2 Event identifier:
X'4002' indicates STAE/ESTAE invocation.
X'4003' indicates FRR invocation.

16 (10) 4 ASCB.
20 (14) 2 CPUID.
22 (16) 8 Error PSW.
30 (IE) 4 Completion code.
34 (22) 4 Error flags from system diagnostic work area (SDW A).
38 (26) 3 Additional error flags from SDWA.
41 (29) 1 Return code from recovery routine (ST AE/EST AE only).
42 (2A) 4 Retry address or N/A. Note: If no return code at offset

41, begin retry address at offset 41.
46 (2E) 4 Address of SDW A (ST AE/EST AE only). Note: If retry

address begins at offset 41, SDWA address begins at offset 45.

GTF builds a record that has the following format when an RSCH event occurs
and TRACE = SYSM, TRACE = SYS, TRACE = SYSP, or TRACE = RSCH is in
effect.

Offset Size Description

0 (0) 2 Length of record in bytes.
2 (2) 2 X'OOOO'.
4 (4) 1 Record identifier: X'FF' indicates trace record.
5 (5) 1 Format identifier: X'OO'.
6 (6) 8 Optional timestamp; if TIMESTAMP = YES is specified, this field

contains eight bytes of the TOD clock value.
14 (E) 2 Event identifier: X'5106' indicates an RSCH event.
16 (10) 4 ASCB.
20 (14) 2 CPUID.
22 (16) 8 10bname.
30 (IE) 2 Device number.
32 (20) 4 Real address of channel program.
36 (24) 4 Virtual address of channel program.
40 (28) 4 IOSDSID.
44 (2C) I Condition code.
45 (2D) 8 Dynamic seek address.
53 (35) I IOSGPMSK.
54 (36) I IOSOPT.
55 (37) I IOSFMSK.
56 (38) Driver identifier.
57 (39) IOSLEVEL.
58 (3A) UCBLEVEL.

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter I. Generalized Trace Facility 1-79

SLIP Trace Records

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

GTF builds a SLIP trace record when TRACE = SLIP is the GTF option in effect
and:

• A SLIP trap has matched and either TRACE or TRDUMP has been specified
on the SLIP command.

• A SLIP trap is in DEBUG mode (specified on the SLIP command) and is
inspected by the SLIP processor as a result of any SLIP event.

The SLIP trace records are:

• SLIP Standard Trace Record
• SLIP Standard/User Trace Record
• SLIP User Trace Record
• SLIP DEBUG Trace Record

SLIP Standard Trace Record: GTF builds a record that has the following format
when the HOOK macro instruction is issued with an EID of lEA VSLSD.

Notes:

1. U/A indicates the data is unavailable.

2. NjA indicates the data is not applicable.

3. Asterisks (** ... **) are used if an error occurred when attempting to obtain
data or the data is unavailable because it is paged out.

Offset Size Description

0 (0) 2 Length of record in bytes.
2 (2) 2 X'OOOO'.
4 (4) Record identifier: X'FF' indicates trace record.
5 (5) 1 Format identifier: X'04' indicates AMDSYS04.
6 (6) 8 Optional timestamp; if GTF option TIME = YES is

specified, this field contains the eight bytes of the
TOD clock value.

14 (E) 2 Event identifier: X' 4004' indicates a SLIP standard
trace record.

16 (10) 4 ASCB address.
20 (14) 2 CPUID. (Note: When SLIP is entered from RTM2,

the CPUID recorded may be different from the
CPUID when RTM2 was running.

22 (16) 8 Jobname from current address space (or N/A).
30 (IE) 4 SLIP trap ID.
34 (22) 2 ASID of current address space.
36 (24) 8 Job step program name (or U/A or N/A).
44 (2C) 4 TCD address(or N/A).

1-80 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982,1986

J

J

l

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Offset

48 (30)

49

so

51

52

53

(31)

(32)

(33)

(34)

(35)

Size

I
I
. 1..
.. 1.
... 1

I
1...

. 1..

.. 1.

... 1

I
I...
.1..
.. 1.
... 1

I
1...
I
I. ..
. 1..
2

I...
.1
.. 1.
... 1

I...
. 1..
.. 1.

l...
. 1..
.. 1.
... 1

Description

System mode indicators, byte I:
Supervisor control mode.
Disabled for 1/0 and external interrupts .
Global spin lock held .
Global suspend lock held .
Local lock held.
Type I SVC in control.
SRB mode .
TCB mode .

System mode indicators, byte 2:
Recovery routine in control (always zero if a PER
interrupt).
Problem program state .
Supervisor state .
System key .
Problem program key.
Any global lock held .
Any lock held .

Error byte I (or zeros if a PER interrupt):
Program check interrupt.
Restart interrupt.
SVC error .
Abend; task issued SVC 13 .
Paging 1/0 error.
Dynamic address translation error .
Software error caused by machine check .
Abnormal address space termination .

Error byte 2 (or zeros if a PER interrupt):
Memterm.
SLIP flags:
DEBUG record.
Registers collected .
Data unavailable counter (or zeros if DATA was not
specified for the trap).

The following fields apply to PER interrupts only (otherwise set to N/A (or Nor
one-byte fields».

Offset Size Descriptioa

55 (37) 8 Load module name in which the interrupt occurred (or utA
or N/A).

63 (3F) 4 Offset in load module (or UIA or N/A).
71 (47) 6 Instruction content (six bytes of data beginning at the address

of the instruction that caused the PER interrupt).
77 (4D) 4 Target instruction address if EXECUTE instruction (or N/A

or VIA).
81 (51) 66 Target instruction content if EXECUTE instruction (six bytes

of data beginning at the target instruction address), or (N/A
or VIA).

87 (57) 4 Beginning range virtual address if SA (storage-alteration)
specified on SLIP command (or N/A).

91 (5B) 4 Four bytes of storage starting at beginning range virtual
address if SA specified (or N/A or VIA).

95 (SF) 8 Program old PSW.
103 (67) 4 Program interrupt code (PIC) and instruction length code.

IO? (68) PER interrupt code:
I.. Successful-branch event (SB).
. 1.. Instruction-fetch event (IF) .
.. 1. Storage-alteration event (SA) .

LY28·1189·3 © Copyright IBM Corp. 1982, 1986 Chapter 1. Generalized Trace Facility 1-81

Offset Size

108 (6C)
1...
. 1..
.. 1.
... x

109 (6D) 2
111 (6F) 2
113 (71) 2
115 (73) 2
Il7 (75) 1

118 (76) 8

1...
.1..
.. 1.
.. . 1

Description

PER trap mode:

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Successful-branch monitoring (S8) .
Instruction-fetch monitoring (IF).
Storage-alteration monitoring (SA) .
Reserved .
PER trap.
Recovery specified .
Message flag.
Message flag .
Keymask.
SASID.
Authorization index.
PASID.
PSW S bit indicator (F I indicates secondary addressing
mode, FO indicates primary addressing mode).
Reserved.

SLIP Standard + User Trace Record: GTF builds a record that has the
following format when the HOOK macro instruction is issued with an EID of
IEAVSLSU.

Offset Size Description

0 (0) 2 Length of record in bytes.
2 (2) 2 X'OOOO'.
4 (4) I Record identifier: X'FF' indicates trace record.
5 (5) I Format identifier: X'04' indicates AMDSYS04.
6 (6) 8 Optional timestamp; if GTF option TIME = YES is

specified, this field contains the eight bytes of the
TOD clock value.

14 (E) 2 Event identifier: X'4005' indicates a SLIP standard/
user record.

16 (10) 4

through Fields are identical to the SLIP standard record.
118 (76) 18
136 (88) 2 Length of user-defined data.
138 (8A) variable User-defined data (specified via the TRDAT A parameter

on the SLIP command).

SLIP User Trace Record: GTF builds a record that has the following format
when the HOOK macro instruction is issued with an EID of IEA VSLUR.

Offset Size Description

0 (0) 2 Length of record in bytes.
2 (2) 2 X'OOOO'.
4 (4) I Record identifier: X'FF' indicates trace record.
5 (5) I Format identifier: X'04' indicates AMDSYS04.
6 (6) 8 Optional timestamp; if GTF option TIME = YES is

specified. this field contains the eight bytes of the
TOD clock value.

14 (E) 2 Event identifier: X'4006' indicates a SLIP user record.
16 (\0) 2 cupum (See Note 3).
18 (12) 2 Extension number (See Note 3).
20 (14) Continuation length (See Note 3).
21 (15) 2 Length of the user defined data (See Notes 1, 2, and 3).
23 (17) variable User-defined data (specified via the TRDATA parameter

on the SLIP command). (See Note 3).

1-82 MVS/Extended Architecture Service Aids Logic L Y28-1189-3 © Copyright IBM Corp. 1982. 1986

J

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Notes:

1. If the SLIP user requests registers to be placed in the SLIP user record, they
will be the first field in the record.

2. A length field of zero indicates that the user-defined data was not available (for
example, the data is paged out).

3. The TRDATA parameter on the SLIP command specifies one or more data
ranges. The number of records needed to trace these ranges depends on the size
of the ranges specified. The trace contains a standard plus (+) user record
from the next range or a user record followed by as many user records and user
continuation records as needed to trace the ranges specified. The header for
each record contains the CPUID and extension number to help correlate the
output (extension numbers apply only to user and user continuation records).
When a record is partially filled and the data from the next range will not fit in
the remaining space; the AHLSTACK macro instruction writes the partially
filled record to the trace data set. Another user record is built, the extension
number is increased by one, and the continuation length is set to zero. The data
length and data is then copied into this record.

When the length of the data from a range is greater than 249 bytes, the excess
data is put in user continuation records in the following manner. The data
length and first 248 bytes are put in a user record. After writing that record a
user continuation record is built. The extension number is increased by one and
the continuation length is set to the number of bytes of data to be put in this
record. If more than 251 bytes of data are left, 248 bytes are copied into
record, and it is written. User continuation records are built until all the data in
from that range is traced.

SLIP DEBUG Trace Record: GTF builds a record that has the following format
when the HOOK macro instruction is issued with an EID of IEAVSLSU and the
SLIP trap is in DEBUG mode.

Offset Size Description

0 (0) 2 Length of record in bytes.
2 (2) 2 X'OOOO'.
4 (4) 1 Record identifier: X'FF' indicates trace record.
S (5) 1 Format identifier: X'04' indicates AMDSYS04.
6 (6) 8 Optional timestamp; if GTF option TIME"" YES is

specified, this field contains the eight bytes of the
TOD clock value.

14 (E) 2 Event identifier: X' 4005' indicates SLIP standard/

l
user trace record.

16 (10) 4
through Fields are identical to the SLIP standard record.
109 (6D) 27 (See Note I.)

L Y28-JJ89-3 © Copyright IBM Corp. 1982, 1986 Chapter I. Generalized Trace Facility 1-83

Offset

136 (78)

137 (79)

Notes:

Size

1....
.1..

.. \.

... 1

I
l...
.1..
.. 1.
... 1

I...
.1..
.. 1.
... 1

Description

DEBUG byte 1:
ADDRESS test.
ASID test.
COMP test .
DATA test.
ERRTYP test.
JOBNAME test.
JSPGM test.
LPAMOD test.

DEBUG byte 2:
MODE test.
PVTMOD test.
RANGE test.
ASIDSA test.

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

See Note 2.

1. The high-order bit in the SLIP flags (SFLG) field (at offset x' 34') is set on to
indicate a DEBUG record.

2. For each SLIP event, these bytes (at offsets (X'78' and X'79') represent:

• A bit set to one indicates that the corresponding keyword test did not
match.

• Bits set to zero indicate that the corresponding keyword test (1) matched,
or (2) was not performed.

SRM Comprehensive Trace Record J
GTF builds a record that has the following format when an invocation of the
system resource manager occurs and TRACE = SYS or TRACE = SRM is in
effect.

Offset Size Description

0 (0) 2 Length of record in bytes.
2 (2) 2 X'OOOO'.
4 (4) I Record identifier: X'FF' indicates trace record.
S (5) I Format identifier: X'04' indicates AMDSYS04.
6 (6) 8 Optional timestamp; if TIME = YES is specified, this

field contains the eight bytes of the TOD clock.
If TIME = NO, this field does not exist.

14 (E) 2 Event identifier: X'4001'.
16 (10) 4 ASCB.
20 (14) 2 CPUID.
22 (16) 8 Jobname.
30 (IE) 4 Register 15.
34 (22) 4 Register O.
38 (26) 4 Register I.

1-84 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

SRM Minimal Trace Record

SSCH Trace Record

GTF builds a record that has t he following format when an invocation of the
system resource manager occurs and TRACE = SYSM is the GTF option in
effect.

Offset Size Description

0 (0) 2 Length of record in bytes.
2 (2) 2 X'OOOO'.
4 (4) I Record identifier: X'FF' indicates trace record.
5 (5) I Format identifier: X'03' indicates AMDSYS03.
6 (6) 8 Optional timestamp; if TIME = YES is specified, this

field contains the eight bytes of the TOO clock value.
If TIME = NO, this field does not exist.

14 (E) 2 Event identifier: X'4001'.
16 (10) 4 ASCB.
20 (14) 2 cpum.
22 (16) 4 Register 15.
26 (I A) 4 Register O.
30 (IE) 4 Register I.

GTF builds a record that has the following format when an SSCH event occurs
and TRACE = SYSM, TRACE=SYS, TRACE = SYSP, TRACE = SSCH or
TRACE = SSCHP is in effect.

Offset Size Description

0 (0) 2 Length of record in bytes.
2 (2) 2 X'OOOO'.
4 (4) I Record identifier: X'FF' indicates trace record.
5 (5) I Format identifier: X'OO'.
6 (6) 8 Optional timestamp; if TIMESTAMP = YES is specified, this

field contains eight bytes of the TOO clock value.
14 (E) 2 Event identifier: X'5IOS' indicates an SSCH event.
16 (10) 4 ASCB.
20 (14) 2 cpum.
22 (16) 8 Iobname.
30 (IE) 2 Device number.
32 (20) 4 Real address of channel program.
36 (24) 4 Virtual address of channel program.
40 (28) 4 IOSDSm.
44 (2C) I Condition code.
4S (2D) 12 ORB.
57 (39) 8 Dynamic seek address.
65 (31) I IOSGPMSK.
66 (42) I IOSOPT.
67 (43) 1 IOSFMSK.
68 (44) Driver identifier.
69 (45) IOSLEVEL.
70 (46) UCBLEVEL.

L Y28·1l89·3 © Copyright IBM Corp. 1982, 1986 Chapter 1. Generalized Trace Facility 1-85

SV C Comprehensive Trace Records

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

GTF builds SVC comprehensive trace records when an SVC interruption occurs
and either TRACE = SYS or TRACe = SVC is in effect. All SVC records contain
the basic data described below; however, many SVC numbers invoke additional
data recording, described following the basic data.

Basic SVC Comprehensive Trace Record

Offset Size DescriptioD

0 (0) 2 Length of record in bytes.
2 (2) 2 X'OOOO'.
4 (4) I Record identifier: X'FF' indicates trace record.
5 (5) 1 Fonnat identifier: X'OI'.
6 (6) 8 Optional timestamp; if TIME = YES is specified, this field

contains the eight bytes of the TOO clock value.
If TIME = NO, this field does not exist.

14 (E) 2 Event identifier: X'I000'indicates m SVC
interruption.

16 (10) 4 ASCB.
20 (14) 2 CPUID.
22 (16) 8 lobname.
30 (IE) 8 SVC old PSW. The third and fourth bytes contain the

SVC number.
38 (26) 4 Old TCB.
42 (2A) 8 COE name.
50 (32) 4 Register 15.
54 (36) 4 Register O.
58 (38) 4 Register l.

GTF Iiuilds only a basic comprehensive trace record for the following SVCs:

Name Number Name Number

EXIT 3 TEST 97
GETMAINjFREEMAIN 10 SUBMIT 100
TIME 11 QTIP 101
SYNCH 12 XLATE 103
MGCR 34 TOPCTL 104
WTL 36 IMBUB 105
TTROUTER 38 REQUEST 106
CIRB 43 MOOESET 107
TTIMER 46 None 109
TTOPEN 49 OSTATUS 110
NOP 50 JECS III
OLTEP 59 RELEASE 112
TSAV 61 SIR 113
CHATR 72 BLKPAGE 115
(IFBSTAT) 76 None 116
STATUS 79 None 117
SMFWTM 83 DSSPATCH 118
(I GC084) 84 TESTAUTH 119
SWAP 85 GETMAINjFREEMAIN 120
EMSERV 89 None 121
VOLSTAT 91 None 122
TPUTjTGET 93 PURGEDQ 123
TSO terminal control 94 TPIO 124
SYSEVENT 95

1-86 MVS/Extended Architecture Service Aids Logic L Y28-1189-3 © Copyright IBM Corp. 1982, 1986

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Minimal Trace Record

Basic SVC Comprehensive Trace Record with Parameter List Information: Refer
to Debugging Handbook for details of the additional information gathered for the
following SVCs:

Name Number Name Number

EXCP 0 STIMER 47
WAIT/WAITR I DEQ 48
POST 2 SNAP 51

GETMAIN 4 RESTART 52
FREEMAIN 5 RELEX 53
LINK 6 DISABLE 54
XCTL 7 EOV 55
LOAD 8 ENQ/RESERVE 56
DELETE 9 FREEDBUF 57
ABEND \3 RELBUF /REQBUF 58
SPIE 14 STAE 60

ERREXCP 15 DETACH 62
PURGE 16 CHKPT 63
RESTORE 17 RDJFCB 64
BLDL/FIND 18 BTAMTEST 66

OPEN 19 BSP 69
CLOSE 20 GSERV 70
STOW 21 ASGNBFR/BUFINQ/RLSEBFR 71
OPEN TYPE = J 22 SPAR 73
CLOSE TYPE = T 23 DAR 74
DEVTYPE 24 DQUEUE 75
TRKBAL 25 LSPACE 78
CATLG 26 GJP 80
OBTAIN 27 SETPRT 81
CVOL 28 DISKANAL 82
SCRATCH 29 ATLAS 86
RENAME 30 DOM 87

FEOV 31 MOD88 88
ALLOC 32 TCBEXCP 92
IOHALT 33 STAX 96
WTO/WROR 35 PROTECT 98
SEGLD/SEGWT 37 Dynamic allocation 99
LABEL 39 TCAM 102
EXTRACT 40 EXCPVR 114
IDENTIFY 41
ATTACH 42
CHAP 44
OVLYBRCH 45

GTF builds a record that has the following format when an SVC interruption
occurs and TRACE = SYSM is the GTF option in effect.

Offset

0 (0)
2 (2)
4 (4)
5 (5)

14 (E)
16 (10)
20 (14)
22 (16)

30 (IE)
34 (22)
38 (26)
42 (2A)

Size

2
2
I
8

2
4
2
8

4
4
4
4

Description

Length of record in bytes.
X'OOOG'.
Record identifier: X'FF' indicates trace record.
Optional timestamp; if TIME = YES is specified, this field
contains the eight bytes of the TOO clock value.
If TIME = NO, this field does not exist.
Event identifier: X'1000' indicates an SVC interruption.
ASCB.
CPUID.
SVC old PSW. The third and fourth bytes contain the
SVC number.
Old TCB.
Register 15.
Register O.
Register I.

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter I. Generalized Trace Facility 1-87

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Section 5: Diagnostic Aids

Event Identifier (EID)

This section contains the following information to aid the reader in diagnosing
GTF errors:

• A list of event identifiers (EIDs) with their symbolic names and associated
events.

• A list of format identifiers (FIDs) with their associated AMDPRDMP format
modules.

• A list of record identifiers (AIDs) with their associated record types.

• A description of the return codes issued by GTF modules.

Note:

Refer to System Messages for message number, message text, and detecting,
issuing and containing modules.

The event identifier (EID) in GTF trace records is a two-byte hexadecimal
number that defines the event that caused the record to be built. The EID is in
the form cddd where c is the event class (O-F) and ddd is the ID of the event
within the class.

EID EID
(hex) (symbolic name) Issued by Event

0001 IEADISPI Dispatcher SRB dispatch.
000 IEADISP2 Dispatcher LSR dispatch.
0003 IEADISP3 Dispatcher TCB dispatch.
0004 IEADISP4 SVC exit prologue SVC dispatch.
1000 IEASVCH SVC FLIH SVC interrupt.
2100 I ECPCI lOS PCl interrupt.
4001 IRASRM System Resource SYSEVENT event.

Manager
4002 IEASTAE RTM STAEjESTAE event.
4003 IEAFRR RTM FRR event.
4004 IEAVSLSD RTM SLIP event.
4005 IEAVSLSU RTM SLIP event.
4006 IEAVSLUR RTM SLIP event.
5101 I ECEOS lOS End-or-sense interrupt.
5102 IECCSCH lOS Clear subchannel event.
5103 IECHSCH lOS Halt subchannel event.
5104 IECMSCH lOS Modify subchannel event.
5105 IECSSCH lOS Start subchannel event.
5106 IECRSCH lOS Resume subchannel event.
5200 IECI02 lOS Normal I/O interrupt.
6101 IEAPlNT PFLIH Program interrupt (codes 1-17,

19).
6200 IEATINT PFLIH Program interrupt (code 18).
6201 IEAEINT EFLIH External interrupt.
8100 ISPTPIOI VTAM Remote network input received

as a PIU.
8200 ISPTPI02 VTAM Remote network output PIU.

1-88 MVS(Extended Architecture Service Aids Logic L Y28-1189-3 © Copyright IBM Corp. 1982, 1986

J

J

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

EID
(hex)

FIOO

F200
EOOO-E3FF

E400-EBFF
ECOO-EF9F
EFAO-EFA9
EFAA-EFAE
EFAF-EFEO

EFEI
EFE2
EFE3
EFE4
EFES-EFEE
EFEF
EFEF
EFFO
EFFI
EFF2
EFF3
EFF4
EFFS
EFF6
EFF7
EFF8
EFF9
EFFA
EFFB
EFFC
EFFC
EFFE
EFFF

Format Identifier (FID)

EID
(symbolic name)

IEASVCD

IEAAABOF

IMDGPDOl­
IMDGPDSO
ISTVIEID
ISTTHEID
ISTTREID
ISTTDEID

ISTTPEID
ISTTPEID
ISTRPEID
ISTCLEID
ISTLNEID
IGGSP002
IGGSP008
IDAAMOI
IGGSPI12
IGGSP215
IGGSPl19
IGGSP23S
IGGSP239
IGGSPl45
IGGSP2S1
IGGSP4S1
IGGSPI69
IHLMDMAI

Issued by

SVC Dump

ABDUMP/SNAP
GTF user

Not Issued

TCAM

IBM components

VTAM
VTAM
VTAM
VTAM
JES2
VTAM
VTAM
VTAM
VTAM
VTAM
SAM/PAM/DAM
SAMjPAM/DAM
VSAM
SAM/PAM/DAM
SAM/PAM/DAM
SAMjPAM/DAM
SAM/PAM/DAM
SAM/PAM/DAM
SAM/PAM/DAM
SAM/PAM/DAM
SAM/PAM/DAM
SAM/PAM/DAM
OPEN/CLOSE/EOV

Event

SVC Dump requesting trace
data.
ABDUMP requesting trace data.
User data passed by E3FF
GTRACE macro.
Reserved.
Reserved.

Reserved.

VTAM interval trace.
Reserved.
Reserved.
Reserved.

TPIOS butTer.
TPIOS butTer.
Buffer pool allocation.
Control layer.
Line trace.

The format identifier (FID) in GTF records is a one-byte hexadecimal number
that is used to determine the name of the AMDPRDMP EDIT module that will
format the record.

EID EID
(hex) (symbolic name) Issued by Event

00 EOOO-EFE4 User/component CSECT AMDPRHEX
inAMDPRREC

Ol-SO EOOO-E3FF User IMDUSR (01-50)
F9 EFF5 VSAM IMDUSRF9
FD EFEF VTAM IMDUSRFD

EFFO-EFF2
FE EFF3-4 SAM/PAM/DAM IMDUSRFE

EFF6-E
FF EFFF OPEN/CLOSE/EOV IMDUSRFF

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 1. Generalized Trace Facility 1-89

System Records

FlO EID
(hex) (hex)

00 2100
00 S101
00 SI02
00 S103
00 SI04
00 SIOS
00 SI06
00 5200
00 FIOO
00 F200

01 1000
01 N/A

02 6101
02 6200

0001
02 0002

0003
0004

02 N/A

03 1000
03 2100
03 6101
03 6200
03 6201

0001
03 0002

0003
0004

03 4001
03 4002
03 4003
03 N/A

03 8100
03 8200

Record Identifier (AID)

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

AMDPRDMP
Record Type Format Module

Comprehensive PCI AMDSYSOO
Comprehensive EOS AMDSYSOO
Comprehensive CSCH AMDSYSOO
Comprehensive HSCH AMDSYSOO
Comprehensive MSCH AMDSYSOO
Comprehensive SSCH AMDSYSOO
Comprehensive RSCH AM DSYSOO

Comprehensive I/O AMDSYSOO
Save hook control AMDSYSOO
If buffer in full AMDSYSOS
condition, FID = X'OS'
Comprehensive SVC AMDSYSOI
Timestamp CSECT AMDPRCON

in AMDPRREC
Comprehensive PI AMDYSS02
Comprehensive PI AMDSYS02

Comprehensive DSP AMDSYS02

Lost data CSECT AMDPRCON
in AMDPRREC

Minimal SVC AMDSYS03
Minimal PCI AMDSYS03
Minimal PI. AMDSYS03
Minimal PI AMDSYS03
Minimal EXT AMDSYS03

Minimal DSP AMDSYS03

Minimal SRM AMDSYS03
Minimal ST AE/EST AE AMDSYS03
Minimal FRR AMDSYS03
Lost block CSECT AMDPRCON

in AMDPRREC
Minimal RNIO input AMDSYS03
Minimal RNIO output AMDSYS03

The record identifier (AID) in GTF records is a one-byte hexadecimal number
that identifies the record as a trace record or a control record.

Aid
(hex) Record Type

00 Control record.
FF Trace record created by a GTF record build module for an event.

1-90 MVS/Extended Architecture Service Aids Logic L Y28-1189-3 © Copyright IBM Corp. 1982, 1986

J

~

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

GTF Return Codes

Return codes are always passed in register 15.

Entry Return
Module CSECT Point Code Meaning

AHLCWRIT AHLCWRIT AHLCWRIT None

AHLGTFI AHLGTFI AHLGTFI None
AHLIESTA None

AHLIWRIT AHLIWRIT AHLIWRIT None

AHLMCER AHLMCER AHLMCER

AHLMCIH AHLMCIH AHLMCIH None
AHLMCIHB None
AHLMCFRR xx Retry condition

AHLREADR AHLREADR AHLREADR 0 Data transferred.
4 No data transferred; GTF inactive.
8 No data transferred; no matching

SLE.

AHLSBLOK AHLSBLOK AHLSBLOK xx ABEND condition.

AHLSBUF AHLSBUF AHLSBCUI xx
AHLSBUF xx ABEND condition.

AHLSFEOB AHLSFEOB 0 FEOB performed.
4 Cannot perform FEOB; record

will be lost.

AHLSCAN AHLSCAN AHLSCAN 0 Processing completed normally.
8 Error in AHLSCAN.
12 STOP command issued.

AHLSETD AHLSETD AHLSETD 0 All requests have been satisfied.
4 At least 1 request satisfied; at least

I request unsatisfied because of
invalid EID or class.

8 No requests satisfied; invalid func-
tion name or parameter list.

12 No requests satisfied; all invalid
EIDsjclasses.

AHLSETEV AHLSETEV AHLSETEV 0 Processing completed normally.
16 Request not satisfied due to

insufficient storage.
20 Control register 8 could not be set

on one or more CPUs; MC routine
can proceed.

AHLSETMG AHLSETMG NjA
AHLTCCWG AHLTCCWG AHLTCCWG None
AHLTCTLI AHLTCTLI AHLTCTLI 0 Processing completed normally.

12 STOP command was issued.

AHLTCTL2 AHLTCTL2 NjA

AHLTDIR AHLTDIR AHLTDIR None

AHLTEXT AHLTEXT AHLTEXT None
AHLTEXTE None

AHLTFCG AHLTFCG AHLTFCG None

AHLTFOR AHLTFOR AHLTFORE None
AHLTFRR None
AHLTRNIO None
AHLTSRM None
AHLTSTAE None

L Y28-1189-30 Copyright IBM Corp. 1982, 1986 Chapter 1. Generalized Trace Facility 1-91

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Entry Return
Module CSECT Point Code Meaning

AHLTMON AHLTMON AHLTMON None
AHLTESTA None

AHLTMMSG N/A

AHLTPID AHLTPID AHLTDSP None
AHLTLSR None
AHLTPI None
AHLTSRB None

AHLTPMT AHLTPMT AHLTPMT 0 Processing completed normally.
12 STOP command was issued.

AHLTSCN AHLTSCN AHLTSCN 0 Normal completion.
12 STOP command.

AHLTSLIP AHLTSLIP AHLTSLIP None

AHLTSVC AHLTSVC AHLTSVC None

AHLTSYFL AHLTSYFL AHLFIO None
AHLFPI None
AHLFSIO None
AHLFSVC None

AHLTSYSM AHLTSYSM AHLDSP None
AHLEXT None
AHLPI None
AHLSTAE None
AHLSVC None

AHLTTAB AHLTTAB AHLTTAB 0 Normal completion.
S GTF termination requested.

AHLTUSR AHLTUSR AHLTUSR 0 Normal completion.
8 Invalid length; less than I or

greater than 256.

J 12 Invalid data address.
16 Invalid FID.
20 Invalid EID.
24 Not enough space in GTF buffers.
28 Invalid parameter list address.
32 Data was paged out.

AHLTXSYS AHLTXSYS AHLSRB None
AHLSRM None

AHLTI03 AHLTI03 AHLTI03 None

AHLVCOFF AHLVCOFF AHLVCOFF None

AHLVCON AHLVCON AHLVCON None

AHLWTASK AHLWTASK AHLWPOST None

AHLWTMSG AHLWTMSG N/A

AHLWTO AHLWTO AHLWTOMD None
AHLDMPMD 'UN' Could not take SDUMP.

'bb' SDUMP was issued.

AHLWWRIT AHLWWRIT AHLWWRIT None
AHLWRMSG None

1-92 MVS/Extended Architecture Service Aids Logic L Y28-1189-3 © Copyright IBM Corp. 1982, 1986

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Section 6: GTF Macro Instructions

AHLREAD

AHLSTACK

GTRACE

The AHLREAD macro instruction causes scheduling of the AHLREADR routine
to request transfer of trace data requested by the ABDUMPjSNAP or SVC
Dump routine. It builds a parameter list for the routine (AHLREADR) which
locates GTF in storage and queues the data transfer request.

The AHLST ACK macro instruction is used by the GTF record-build routines to
cause the 16-byte prefix for a trace record to be constructed. The prefix is placed
immediately preceding the trace data in the record-builder's work area. The
record-blocking routine (AHLSBLOK) is called to initiate the blocking-buffering
process.

IBM users and components issue the GTRACE macro instruction to cause trace
data that they have collected to be placed in the GTF trace buffers. GTF will not
accept user or component data unless the GTF options in effect include
TRACE = USR or TRACE = USRP.

The GTRACE macro instruction has six parameters: the main storage address of
the data to be recorded, the number of bytes to be recorded, the format identifier
(FlD) that indicates the routine that will process the user or component entry
when the trace output is edited by AMDPRDMP, the ID of the user or
component that built the record, specification of whether paged-out data should
be obtained for recording (PAGEIN=YES/NO) and a TEST parameter. When
TEST = YES is specified, GTRACE determines if GTF is active for the user event
that the ID parameter specifies. The IHLMGTRC mapping macro instruction
generates symbolic names equated to all assigned user/component ID values. For
a description of the format of the GTRACE instruction, refer to Service Aids.

If PAGEIN = YES was specified, code generated by the expansion of the
GTRACE macro instruction will cause the paged-out data to be paged in and the
GTRACE to be issued. IF PAGEIN=NO was specified and a page fault occurs
during the access of user data, GTF passes a return code of X'20' and no record
is built.

The GTRACE macro instruction may be implemented in standard, list, or execute
form. The standard form generates a monitor call (MC) instruction (see Section
7). The list form generates a parameter list for the GTRACE parameters, and the
execute form changes the values of the parameters in the list. The TEST
parameter is only valid on the standard form of the GTRACE macro.

L Y28-1l89-3 © Copyright IBM Corp. 1982, 1986 Chapter I. Generalized Trace Facility 1-93

HOOK

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

The HOOK macro instruction is used by system routines to communicate with
GTF as follows:

• The first level interruption handlers (FLIHs), the I/O supervisor, the
dispatcher, the SVC exit prolog, the system resource manager, and the
recovery/termination manager issue the HOOK macro instruction to notify
GTF of the occurrence of system events that GTF recognizes for tracing. A
HOOK issued by these routines is called a trace hook into GTF.

The HOOK macro instruction has two parameters used in the following
format:

HOOK EIO symbolic name[,TYPE =
P
T
BP
BT
BPN

• EID = symbolic name - is the event identifier (EID) for the event that caused
the HOOK to be issued. The EID is given as a symbolic name that is
equated to a hexadecimal value. For a list of the EID symbolic names and
their hexadecimal equivalents, refer to the "Diagnostic Aids" section of this
chapter.

• TYPE = P - causes the HOOK macro instruction to generate a monitor call
(MC) instruction (see Section 7). The assembler converts the symbolic name
EID to its hexadecimal equivalent of the form X'OcOddd', where c is the class
and ddd is the displacement that is put into the MC instruction. The
following MC instruction is generated when TYPE = P is the parameter:

Instruction 1 (Me instruction) -
OP code: X'AF' •
12: Bits 0-3 = B' 0000' .

Bits 4-7 = c (event class) .
B1: B' 0000' .
01 : ddd (event 10) •

• TYPE = T - causes the HOOK macro instruction to generate the MC
instruction shown under TYPE = P, but only if a designated assembler global
switch is set in the line of the associated module assembly.

• TYPE = BP - causes the HOOK macro instruction to generate a branch into
the MC routing-facility module AHLMCIH without generating an MC
instruction. This parameter is used by the PFLIH for all program
interruptions. The following three instructions are generated when
TYPE = BP is the parameter:

1-94 MVSjExtended Architecture Service Aids Logic L Y28-1189·3 © Copyright IBM Corp. 1982, 1986

J

l

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

IHLMGTRC

SETEVENT

Instruction 1 (load instruction) -

OP code: X'58'
Rl: X'F' (register 15 points to AHLMCIH).
B2: r (base register).
02: ddd (displacement).
L lS,IEACONl

Instruction 2 (BALR instruction) -

OP code:
Rl:

R2 :

X'OS'
X'E' (register 14 points to NSI after

execution) .
X'F' (register 15 points to AHLMCIH) .

Instruction 3 (NOP instruction) -

OP code:
Rl:
X2:
B2:
02:

X'47' .
B' 0000' .
c (event class).
B'OOOO' .
ddd (event 10).

• Type = BPN - causes the HOOK macro instruction to generate a branch into
the MC routing facility module AHLMCIH without generating an MC
instruction. This parameter is used by non-PFLIH routines to enter module
AHLMCIH through secondary entry point AHLMCIHB. The sequence of
instructions generated is the same as for TYPE = BP except that the LOAD
instruction is from IEACON2. (IEACON2 is a V-type address constant for
AHLMCIHB.)

• Type = BT - causes the HOOK macro instruction to generate the three
instructions shown under TYPE=BP, but only if a designated assembler
global switch is set in the line of the associated module assembly.

The IHLMGTRC macro instruction is mapping macro that generates symbolic
names equated to hexadecimal values for IBM components that use the GTRACE
macro instruction. The component specifies its assigned symbolic name as the
operand of the ID = keyword in the GTRACE macro instruction.

The SETEVENT macro instruction is issued by users of the MC instruction (for
example, GTF) as an interface to the MC routine facility. The MC routine
facility passes control to the proper event handler when a requested MC
instruction is issued. Expansion of the macro instruction causes building of a
parameter list for the SETEVENT service. This service then does the actual
manipulation of the Me routing facility to perform the requested function.

LY28-l189-3 © Copyright IBM Corp. 1982, 1986 Chapter 1. Generalized Trace facility 1-95

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Section 7: Monitor Call (MC) Instruction

The monitor call (MC) instruction is a maskable interruption instruction. Both
the HOOK and GTRACE macro instructions generate the MC instruction to pass
control to GTF. The format of the Me is:

o 8 16 20 31

Each monitoring event is defined by the low order four bits of the 12 filed, known
as the class of the event, and by the sum of D1 and B1. The GTF event identifier
(EID) is two bytes of the form cddd where c is the class of the event and ddd is
the event within the class. The GTF EID corresponds to the fields of the Me
instruction as follows:

Me instruction format

o 8 16 20 31

Me instruction for GTF

o c o

o 8 12 16 20 31

(Monitor CctJl instructions generated by either the HOOK or GTRACE macro
instructions for GTF always contain a Bl value of zero.)

1-96 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

J

L

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Chapter 2. Module Map and IDR List (AMBLIST)

Section 1: Introduction

Functions

AMBLIST is a linkage-editor service aid program that provides the user with
formatted listings for use in problem determination. AMBLIST operates as a
problem program under MVS/XA.

The main functions of AMBLIST are:

• Producing formatted object module listings.

• Producing formatted load module listings.

• Producing formatted nucleus listings.

• Producing load module maps and cross-reference listings.

• Formatting the information in the CSECT identification records (IDRs) of a
load module.

• Producing a formatted link pack area map.

An object module listing contains the text of the module, that is, its instructions
and data in hexadecimal representation, and the END record. It also contains the
external symbol dictionary (ESD) and the relocatable load dictionary (RLD).

The contents of a load module listing vary according to the options selected by
the user. A load module listing (including the nucleus) may contain the control
and test records of the stored load module, including the external symbol
dictionary and the relocatable load dictionary, scatter and translation tables,
IDRs, a module map, and a cross-reference listing.

The CSECT identification records (IDRs) can be formatted and listed. The user
can request that all IDRs be displayed or that just those IDRs containing
AMASPZAP service aid program data and those containing optional
user-supplied data be displayed. If a translator supports IDR, the translator, its
version and modification level, and the date of translation for a particular control
section are recorded in the IDR translator data records (subtype 04). The IDR
linkage-editor record (subtype 02) contains information pertaining to the

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 2. Module Map and !DR List (AMBLIST) 2-1

Environment

Storage Requirements

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

linkage-editor that constructed the load module: its version, modification level,
and date of load module creation. AMBLIST also lists any user-supplied data
associated with the executable code of a control section recorded in lOR user data
records (subtype 08). The modifications that AMASPZAP performed on a
specified control section of a load module, including the date and the specific data
modified, are recorded in the lOR AMASPZAP data records (subtype 01).

AMBLIST resides in the system library. AMBLIST is executed as a job step
through specification on an EXEC job control statement in the input stream; or it
receives control through the execution of a LINK. LOAD, ATTACH, or XCTL
macro instruction.

Input to AMBLIST consists of object modules or load modules plus control
statements. Control statement input is defined by the SYSIN DO statement. The
DDN option in a control statement (or the default name of SYSLIB) specifies the
name of the DO statement defining the sequential or partitioned data set
containing the module(s) optionally designated as input in the control statement.
Output from AMBLIST is the listings requested by the control statement plus any
diagnostic messages. The output from AMBLIST goes to any user-defined data
set defined in the SYSPRINT DD statement.

AMBLIST is operational in the minimum configuration required for MVS/XA. It
requires a minimum of 64K bytes of storage. Static data and instructions require
36K bytes of storage, the remainder of the 64K bytes of storage is dynamic
storage, including an allowance for non-resident access method routines.

Physical Characteristics

AMBLIST is a reenterable program and consists of a control module, five
processing modules, two diagnostic modules, and an open exit module for
SYSPRINT:

• Control module: HMBLKCTL.
• Load module processing module: HMBLKLDM.
• Map and cross-reference processing module: HMBLKXRF.
• Object module processing module: HMBLKOBJ.
• Link pack area mapping module: HMBLKLPA.
• CSECT identification record processing module: HMBLKIDR.
• Error message writer: HMBLKERR.
• Text of error messages: HMBLKMSG.
• Open exit module for SYSPRINT: HMBLKSZE.

Each of these modules consist of a single external procedure, except for
HMBLKMSG, which is a CSECT containing two tables.

HMBLKCTL examines the input stream control statement (from the SYSIN data
set) and determines which of the five processing modules must be called.

2-2 MVS/Extended Architecture Service Aids Logic L Y28-1189-3 © Copyright IBM Corp. 1982. 1986

J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Operational Considerations

Operation of AMBLIST depends upon the type of input received and on the user
options specified. The control statements in the input stream re in the format of
an operation and its applicable operands. The formats are shown in Service Aids.
The control routine scans the control statement and turns on the appropriate
switches in the OPTNMAP map to indicate which routines are to be used.

L Y28-1189-3 <6' Copyright IBM Corp. 1982. 1986 Chapter 2. Module Map and IDR List (AMBLIST) 2-3

Section 2: Method of Operation

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

This section shows how AMBLIST provides the user with formatted listings. As
shown in LIST Figure 2-1, the description begins with an overview, then describes
the following stages of overall processing:

• Control processing (MOl).
• Listing processing (M02 - MOS).
• Diagnostic processing (M06).

Reading Method of Operation Diagrams

Method of operation diagrams are arranged in an input-processing-output layout;
the left side of the diagram contains the data that serves as input to the processing
steps in the center of the diagram, and the right side contains the data that is
output from the processing steps. Each processing step is numbered; the number
corresponds to the verbal description of the step in the extended description.
While the processing step in the diagram is in general terms, the corresponding
text is a specific description that includes a cross-reference to the code for the
processing.

2-4 MVSfExtended Architecture Service Aids Logic L Y28-1189-3 © Copyright IBM Corp. 1982, 1986

J

l

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

I I
Diagram 1 Diagram 2

Control Load and Object
Processing Module Listing

AMBLIST

I
I I I I

Diagram 3 Diagram 4 Diagram 5 Diagram 6

Map and Cross- Link Pack !DR Listing Diagnostic
Reference Area Listing Processing

Key to Method of Operation (MO) Diagram Symbols

Entry into processing

.... Flow of Control

:> Data Transfer

• or i Pointer to or address of

... .. Reference to data

1, 2, etc.

A. B, etc .

8
I

'<.
8

Look for corresponding numbers in text

Look for blow-up of item on same page

Look for corresponding-lettered blow-up
on same poge

Braces to denote related items

See referenced diagram for detailed
description

Reference to another diagram

Figure 2-1. Key to Method of Operation Diagrams for ABMLIST

LY28-1l89-3 © Copyright IBM Corp. 1982, 1986 Chapter 2. Module Map and lOR List (AMBLIST) 2-5

t;-> LIST Diagram 1. AMBLIST Control Processing (,Part 1 of 2)
0\

a:
-<
\/J

tTi
><
(;"
::I
0-
(l)

0-

;I>
d
e:
"" (l)
(')

"" s::
(il
\/J
(l)

< 0'
(l)

;I>
0.:
<J>

r o
O<i o·

~
N
'f'

00
'Cl
W
<OJ

n o
~
'" QQ'
~ -0:;

~
n
o
fJ
'Cl
00
N

'Cl
00
a-,

Input

II EXEC PGM=AMBLIST

IIsysi'N DD*
LIST,. , ~

LlSTLOAD OUTPUT=
TITLE=
DDN=
MEMBER=

LlSTOBJ

LlSTIDR

LlSTLPA

TITLE=
DDN=
MEMBER=

OUTPUT=
TITLE=
DDN=
MEMBER=

MLPA,
FLPA,
PLPA

l.,

From MVS

Control Processing

1 Validate control statements and
set switches in OPTNMAP.

2 {Input } Open 0 Data Set
utput

Control Processing'for Load Modules

3 Analyze linkage editor attri,
butes and set switches in
ATNAME.

4 Search partitioned data set
directory.

5 Print module summary.

EOF Processing

6 Return control to system.

'-'

Processing

Module
Processing

RETURN to
Operating System

Output

OPTNMAP

ATNAME

I/SYSPRINT

'-

~
::i-
~ =-::= ~
atI ~
;;- ~
:I. :!.
atI !':I
e;:~

Q.

I ::=
""CI '" a ;--
~ ;-... -- "" ""!! =
0= --=
!~

(' (' r

r LIST Diagram 1. AMBLIST Control Processing (Part 2 of 2) ~ ~

-< ~
N ~ fD
00 1:1 ~ , Extended Description Module Label ~ i;. =-00 3: a-
'D 1 The user can specify four operations in the AMBLl5T =-W

control statement. Each of these operations has
ID 3: a-

(OJ several associated operands. 5ee @ for a diagram :3. ID
HMBLKCTL AAH1 a-n ID

of the operations and operands. (A detailed discussion I;;' :3.
0 ID

"0 of the operations, operands, and options associated I fij'
'< ...

with the operands and their meanings is given in "=
Q

QQ'
::r Service Aids,) HMBLKCTL analyzes a.nd validates a -~ 1:1:1 - the control statements and sets the appropriate 3: o:l ..
~ switches in OPTNMAP. ~ :s

Q

n If Ll5TLOAD or Ll5TIDR is specified, HMBLKCTL HMBLKCTL
.....

0 • AAH1 -...
performs the processing listed in steps 2, 3, and 4.

1:1:1
'? 3:

When Ll5TOBJ is specified on the control statement, HMBLKCTL AAH1 'D • 00
HMBLKCTL performs step 2. !'-'

'D • If an error is discovered, HMBLKCTL passes control
00

to the error processing routine HMBLKERA (MO 5~ 0"-

2 There is one output data set 5Y5PRINT, which HMBLKCTL AAA1
contains all the output of AMBLl5T.

n 3 The linkage editor attributes specified in the HMBLKCTL
::r

directory entry are analyzed and the appropriate $>J
"0 switches are set in ATNAME . (1) ...
!'-' 4 HMBLKCTL scans the partitioned data set (PD5) HMBLKCTL PD5AEAD

~ directory for aliases and secondary entry point
0 addresses, for the system status index (551), for the p..

= access code (APF), and for the main entry point address 0-
~

of the load module.
p:

"0 5 A module summary is prepared by HMBLKCTL for HMBLKCTL CHOW
po
::l the first page of an output listing for a load module.
p..

(A detailed discussion of the contents of the module a summary is found in Service Aids.)
:Al

t: 6 When there are no more control statements to be HMBLKCTL ENDIT
~

> processed, dynamic storage is released and control

~
is returned to the operating system.

I;C
r' -CI:l ...,
'-"

N
I
-.l

tv
I

00

== <:
CJ'J --tr1
>I
@"
::J

2:
»­a
e:
@"
(') -= @
CJ'J
B

S.
~
~
Q.

'"
b

(JQ

o·

B
00
I --00
\0
I

1.0>

~
(")

~ ::l.
(JQ

a'
t:D

== Q
-? -\0
00

.N -\0
00
0\

LIST Diagram 2. Load and Object Module Listing (Part 1 of 2)

Input From ~01 Process

LIST LOAD OUTPUT~ ... ,TITLE~ ... , 1 Print heading and user title, if
DON= ..• ,MEM BER= ... specified.

Data Set
Containing 2 Read load module records,
Load

perform necessary conversions,
Modules to

and print records on sYSPRINT.
Be Listed

3 Read object module records,

LlSTOBJ TITLE= ... , perform necessary conversions,

OON= •.. , MEMBER= ... and print records on sYSPRINT.

Data Set
Containing
Object
Modules to
Be Listed

\., l,

Output

sYSPRINT

Type of module Page No.
listing
user title

TEsTRANdata
CEsD data

TESTRAN data
ESO data

\.,

i
I :: ~
lID ~
;f '" ;. iii·
Iil"[
I::

"tI III a ;;­
'i ~. .. e. - '" '< => e
.... -- = t:D a:::
:: :s

~
N
r' ..­
..-
00

'P
w

@

n o
~
::l.

OCI
::r -t:=
s::
n o
~
--'-0
00
N

..-
'-0
00
0"\

n
::r
~
tt ...
~

s::
8-= ~
s::
I»

'1::1
I» ::s
0-

S
;:0

r'
(ii'
~ s:: = r' -d
tv

I
\0

r

UST Diagram 2. Load and Object Module Listing (part 2 of 2)

Extended Delcription

1 The address of the data set containing the
module(s' to be listed and the address of

SYSPR I NT are obtained from the parameter list
passed from HMBLKCTL. The heading, indicating
which type of module listing follows, and the user
title, if specified, are written in SYSPR INT.

2 The records are read in order from the date
set specified on the control statement. Some

data items within the records are converted. See
the Data Conversions table for details. Finally,
the records are written in SYSPRINT. (Records
are read, converted, and printed one by one.l

3 After all records have been listed, control
is returned to HMBLKCTL. If error condi­

tions arose during processing they are indicated
in the ERRORS bit map in HMBLKCTL, and
diagnostic processing ensues. Otherwise,
HMBLKCTL handles the next user request.

Module

HMBLKLOM/
HMBLKOBJ

HMBLKLOM/
HMBLKOBJ

HMBLKLOM/
HMBLKOBJ

Label

BEGIN/
INITIO

EOJX/
OBJEOF

r r

t':"'" ,3 n'
"' ~ :::II
[(S -.. =- n' -~ "' =-I\)
~ Ii .. I\) -. -I\) "' (;;" :I.
I\)

I (;;"

"C
Q

Q --= = "' ~ .. -~
Q -= s:

~ LIST Diagram 3, Map and Cross-Reference Listing (Part I of 2)
o

a:::
-<
Vl

tTl
:><

[
til
Q.

>
ri
=­~
2
ri
~
::;!
n'
til

>
5.:
'" t'"' o

(JQ

n'

t'"'
-<
IV

~
.-
00
'C
~

t

lISTLOAD OUTPUT=XREF
TlTLE=
or

~
DDN=, MEMBER=

r

I DO
Data Set

~
Containing
Load
Module

From M01 Process

It,
Print heading and user title, if

I"' specified.

r I ~ 2 Read records and build tables.

A

3 Build numerical index; print \0-
numerical map and listing.

4 Build alphabetic index; print (A.

alphabetic map and listing. ..

Output

SYSPRINT

to Type of listing
F 'User title

CESDTAB I
J.. RLDTAB L Numerical map and

SCATTAB I r--rv cross-reference listing v

TRANTAB
Pseudo register data

"-
.....

"--

I
I ..) INDEXTAB .

I Alphabetic map and

J..
cross-reference listing

... Pseudo register data

""-@

Ii
o ,M01 Control Processing

~
::!.

(JQ
:r -= a:::
Ii o ...
'?
'C
00

!'l
'C
00
0'1

\., \.,

Page No.

i
:I
II
Q.

rs: r: . ~
Ii =-ii, ~.
Firi

li
"I ii-all"
= sa. ... --= !=5

\.,

r
-<
N
00 .
00

'" w
'8>
n
o
~ ..,
~.

:r
~

--=
~
n
o ..,
'?

'" 00
N

'" 00
0\

n
:r
I"

~
('I) ..,
N

~
o
0..
C
;-

~
j:O

"0
I" ::s
0..

\:I
:;tI

t:
~

~
~
= r -en
d

N
I

r

LIST Diagam 3. Map and Cross-Reference Listing (Part 2 of 2)

Extended Description

1 The address of the data set containing the load
module to be processed and the address of

SYSPRINT are obtained from the parameter list
passed from HMBLKCTL. The heading, indicating
which type of listing follows and the user title, if
specified, are printed on SYSPRINT.

2 Read load module, enter CESD records in
CESDTAB, enter RLD records in RLDTAB.

If the load module is a nucleus, enter translation
records into TRANTAB. enter scatter records into
SCATTAB. All other records are ignored. If any
table overflows, processing is terminated and control
is returned to HMBLKCTL. When the load module
is a nucleus, CESDTAB and R LOT AB addresses are
converted to loaded addresses using the SCA TT AB
and TRANTAB entries. End of input is indicated
by the end-of-module (EOM) indication.

3 The CESDTAB is sorted into ascending numer-
ical sequence according to the segment number

and the address of the CESDTAB symbol. The
INDEXTAB is built using the CESDID of each
CESDTAB entry. The RLDTAB is sorted into
ascending numerical sequence according to the
address contained in the RLDTAB entry.

The segment numben (in CESDT AB entries) are
converted to the EBCDIC code for decimal digits;
addresses (in CESDTAB or RLDTAB entries) are
converted to EBCDIC code for hexadecimal digits.
A numeric module map and cross·reference are then
printed. If the load module is in overlay format,
the above data is printed segment by segment,
beginning with segment 1. Finally, pseudo
register data is printed. '

Module

HMBLKXRF

HMBLKXRF

HMBLKXRF

HMBLKXRF

HMBlKXRF

r

Label

AUTOINIT

WRITE1

READ

NUC

NCSORT

NRSORT

NACESD

WRITE

Extended Description

4 The CESDTAB is resorted into ascending
alphabetic sequence according to the

CESDTAB symbol. The INDEXTAB is rebuilt
using the CESD 10 of each CESDTAB entry.

Data is converted as in step 3. An alphabetic
module map is then printed. To print an alpha­
betic cross-reference listing ordered by symbol
referred to, R pointers (from the R LDTAB) are
sought to match ESD identifien in the CESDTAB
entries. When a match is found, a cross-reference
line is converted and printed.

After all listings have been printed, control is
returned to HMBLKCTl. If error conditions
arose during processing, they are indicated in
the ERRORS bit map, and diagnostic processing
ensues. Otherwise, HMBLKCTl handles the
next user request.

Module

HMBlKXRF

HMBLKXRF

HMBLKXRF

r

Label

ACSORT

NACESD
ARLO

WRITE

FINISH

t'"" J:
;::;- ~ "' = '" [€ ~-c:a.
s:: 3:
lID

~ ;;-
:1- lID -~

~

:1-
lID
Iii"

:p !. =
~ == ~ ~
'-<! "

= -~

I';-J LIST Diagram 4. Link Pack Area Map Listing (Part 1 of 2)
IV

~
<:
CIl --tTl
>< -0>

8-
0>
Q..

>
(:l
e: -0>
(")

~
W
:;!
§"

~
£' (i.

t""'
...::
N

~
00
'0 ,
IN

@

(j
0

~
::1.
~ --t:D
~
(j
0

-?
'0
00
N

'0
00
0\

Input

\.,

From M01 Process

Perform steps 1 through 3 for each
map requested:

1----l---...I.W'1 Build table using link pack
directory information.

2 Print numeric link pack area
map.

3 Print alphabetic map.

L-I'"

~

CDETAB

Control Processing

Output

SYSPRINT

Numeric Map
in Hexadecimal

Alphabetic Map
in Hexadecimal

\.,

t""
liS·

"' :I
~
Q.

a:
~ -"' ::!. ;.

'I
'R
::l.
'-'l

= -= a:

::
liC
fD

'" -::!. n -a.
:=
~
fD
::!.
!2.
'" = -= :=
"

r'
><:
N
~ --00

'P
w

@

n
~
::J.
~

~
Q
-? -\0
00
.tV
\0
00
0\

f ...
~

~

~
~
~

8-
s
:;a
c
~

'>
~ = c:
d
to.)
I -~

r

UST Diagram 4. Unk Pack AIea Map Ustiq (Part 2 of 2)

Extended DlIICI'lption

1 If the FLPA and/rK MLPA Is being pl'OC8ll8d,
HMBLKLPA Rlrch. the active link pack

directory entry chain frK entri .. pointing to modul ..
In the FLPA and/or MLPA and their extensions.
Otherwi18, HMBLKLPA us .. the pointer in the
CVT (CVTLPOIR) to get the entri. frK the PLPA
and Its extension.

AMBLIST builds the COETAB using the link pack
directory Information. The name, entry point,
end length are moved to the CDET AB.

2 The COET AB is sorted numerically by
module location •

3 The CDETAB is re4Ol1ed alphabetically by
module

Module

HMBLKLPA

HMBLKLPA

r r

Label

HMBLKLPA

t"'" " n' \II:j
fD fD
IiII fII

I ~
3: [
~ 3:
... ID
;- ~
;;- :!.
I ~

'"= Q
Q -~ =
::t. 3:
'< :s
Q -~

~ ,
.......
~

~
<
Vl m
;.<
(1)

::s
p..
(1)
p..

>­
(l
g:
(1)
("J

~
Vl
(1)

~
(=i.
(1)

>-
0:
'"
b

()Q
(=i.

l'
-<
tv
00 ,

00

'P
w

@

()
o

"0
'< ..,
~ -tl:1
~
n o ..,
"?

\0
00

.tv
\0
00
0\

LIST Diagram 5. IDR Listing (Part 1 of 2)

Input From MOl Process
~------------------------~

USTIDR OUTPUT=

/
TITL:=) Print heading and user title. if
DON specified.
MEMBER=
MODUB= .

r---rv' 2 CSDTAB

Output

SYSPRINT

Type of Listing Page
User Title

CSECT Name.

r::==::::=~ Date of AMASPZAP
..., Modification.

AMASPZAP Data
Scan CESD records and build i ~
CSDTAB. ,----..., , ~------~

\.,

Data Set I===!::>3
Containing I· 4
Load
Module

I
I

Read I DR records.
...

ZPRINT t==
Process lOR record according

Program Name.
Linkage Editor

... 1 Version and Level.

to data type:

• AMASPZAP - sort and ~ I
.' I Date of Load

Module Creation

., I CSECT Name.
Translator Name

~'I Version, Compile Date

print data ..111 rF
• U"k.~ ,d'''' - P"d~~ ~ : ! :
• T,,",I.,o, -ON"" "" 7 : TRNPRNT : : :'

print data

UNKOUT I ,A

1
I
I

• User data - sort and print .y ~
data. -v

L..-----11 MO

l,

CSECT Name.
~ Date of Data Entry.

User-Supplied Data
IDPRINT

'-'

r<
~r
j
Q.

== ~ . ~
~ fIJ

S· ~ PEl
I::
l;.
'i :I. a;'
e e --= =::
== :s

r
-<
"" '?"

00
\0
W
(Ql

(j
o
-0
'< ...,
<iQ'
a--eo
~
(j
o
.0
\0
00

!'-J

\0
00
0'1

(j
::r
~

-0
o ...,

""
~
o
0-
t::
0"

~
~
I'> ::s
0-

S
;:a
r
~.

-;
~
eo
r -tI'l
d

IV
I -VI

r

UST Diagram S. lOR Listing (part 2 of 2)

Extended DlICrlption

1 The address of the data set containing the load
module whose lOR's are to be listed end the

address of SYSPRINT are obtained from the param­
eter list passed from HMBLKCTL. If the MODLIB
keyword was specified, only user data and
AMASPZAP data are printed. Printing of the
module summary is suppressed. 'The head, indicating
which type of listing follows and the user title, if
specified, are printed on SYSPRINT.

2 Only CESD records containing SO (section
definition) or PC (private code) entries are

processed. The symbolic names end ESD identifiers
from these records are entered in the CSDTAB table.

3 Read lOR records and determine what type of
data they contain and then process accordingly.

Module

HMBLKIDR

HMBLKIDR

HMBLKIDR

.......

PRNT1

CESDRT

IDRTN

r

Ext Description

4 In the following processing, the ESD identifier
from the lOR is used to learch the CSDTAB.

The CSECT name associated with the matching ESD
identifier in the CSDT AB is then printed with the
lOR data.

• AMASPZAP data - Get CSECT name from
CSDTAB and enter it and AMASPZAP data In
SORTAB, son SORTAB alphabetically by CSECT
name, and print data from the ZPRINT output
area to SYSPRINT.

• Linkage editor data - The data il printed from
the LlNKOUT output area to SYSPRINT.

• Translator data - Get CSECT name from CSDTAB
and enter it in TRNTAB. Enter translator data in
TDTAB; correlate TRNTAB and TDTAB entries
and print data from the TRNPRNT output area to
SYSPRINT.

• User data - Get CSECT name from CSDT AB and
enter it and user data in IDENTDAT,lon
IDENTDAT alphabetically by CSECT name,
and print data from the IDPRINT output area .

The lest lOR is identified by a flag in the subtype
field. After all IDRs have been listed, control is
returned to HMBLKCTL. If error conditions arose
during processing, they are indicated In the ERRORS
bit map in HMBLKCTL, and diagnostic processing
ensues. Otherwise, HMBLKCTL handles the next
user request.

Module

HMBLKIDR

HMBLKIDR

HMBLKIDR

HMBLKIDR

HMBLKIDR

r

t'"" I:

n' ~
no '"

Label = ...
~ :3.
Q. n ... ::a. .. a:: S" .. I\) -.... .. ~

Fil' ;.
I Iii'

ZAPRT
""d Q
C> -
"g == .. a::
~ :s
C> --LKERT
1:1:1 ::

TRl

IDENRT

RET

t;-J LIST Diagram 6. Diagnostic Processing (Part 1 of 2) -0'1

s::
<:
til

~
[
a
> g.
~.
ri
til
~

::1 o·
~

> a:
'"
E o·

~
00 • ..-....
00
\C .
W

@

f
::!.
~ -t:tl s::
g
-?
..-
\C
00
P
..-
\C
00
0'1

Input From M01

ERRORS BIT MAP

l,.

1 Get address of SYSPR INT DCB.

2 Print title.

3 Scan ERRORS bit map and print - -------'
appropriate error messages.

Control Processing

'-'

Output

DIAGNOSTIC DIRECTORY

AMB1131 lOR Information ...

AMB1141 .•.

t""
~.

fD = ~
0-

3: :: ., f ;;- '" -.. ~ . S·
;r ;;-

0-
I 3:

""CI .,
a ;;-
1l .. s· .. ;r
~ Q
Q -. -. --== 1:1:1 ~ 3: ::

\,

r r r

~ UST Diapam 6. Diapostic Proceasing (part 2 of 2) t"" f-t:J r)" ~
00 ~ ~
~ Extended o.cription Module Label ~ s.
~ ~~
'P 1 HMBLKERR obtains the address of the HMBLKERR :: a.
...., SYSPRINT DeB from the parameter lilt ~ ::
@ (PARMLIST) passed from HMBLKCTL. ::I. a-n • ~
.g 2 HMBLKERR then prints the title 'Diagnostic HMBLKERR ~ [
:i. Directory' at the top of a lilting page. '"= :
~ a =
::: 3 The bits in ERRORS, a bit map defined in HMBLKERR '1 !;!
t= HMBLKCTL are checked. Biu were set to ::l .,
s: 1 if HMBLKCTL, HMBLKLDM, HMBLKXRF, -:
Q HMBLKOBJ, or HMBLKIDR detected erroR. :
~ =
:... If a bit i. set to " the anociated m811898 text is HMBLKERR ::
100
~ obtained from the MESSAGES and MSGLlST
• tabla in HMBLKMSG and printed on SYSPRINT.
~ After all error m8llllges have been printed, control
0'1 is returned to HMBLKCTL and the next user request

is processed.

!
~
!V

~
8-s::
R
~
~
• 8-
a
:::0
C
'"
'> s:
t=
c:
d
N
I

-...J

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Section 3: Program Organization

HMBLKCTL

'--
HMBLKERR I

'-- HMBLKMSG \

'-- HMBLKSZE

This section describes the organization of the AMBLIST program. It contains:

• A description of the module organization (see Figure 2-2).

• Descriptions of each AMBLIST module, in alphabetical order by object
module name.

HMBLKIDR f-- HMBLKLDM f-- HMBLKLPA f-- HMBLKOBJ ,--- HMBLKXRF

Figure 2-2. AMBLIST Module Organization

Module Descriptions

HMBLKCTL - Control Module

Entry from: The scheduler when AMBLIST is invoked.

Data areas defined or updated: OPTNMAP, ERRORS.

Routines called: HMBLKLDM, HMBLKPA, HMBLKXRF, HMBLKOBJ,
HMBLKIDR, HMBLKERR.

Exits: At end-of-file for the SYSIN data set, return to the operating system.

MOs: 1.

Operation: Validates the control statement and passes control to the appropriate
processing routine. It also passes control to the error message printer
(HMBLKERR).

2-18 MVS/Extended Architecture Service Aids Logic LY28-1l89-3 © Copyright IBM Corp. 1982, 1986

J

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

HMBLKERR - Error Message Printer

Entry from: HMBLKCTL.

Data areas defined or updated: None.

Routines caUed: MESSAGES and MSGLIST in HMBLKMSG.

Exits: Return to HMBLKCTL.

MOs: 6.

Operation: Obtains the message text from HMBLKMSG and prints the message
in SYSPRINT.

HMBLKIDR - CSECT Identification Record Processing Module

Entry from: HMBLKCTL.

Data areas defined or updated: CSDTAB, IDENTAB, SORTAB, TDBAB,
TRNTAB.

Routines called: None.

Exits: Return to HMBLKCTL.

MOs: 5.

Operation: Reads IDR records, correlates CSECT names with data if necessary,
and prints the IDR data in SYSPRINT.

HMBLKLDM - Load Module Processing Module

Entry from: HMBLKCTL.

Data areas defined or updated: None.

Routines called: None.

Exits: Return to HMBLKCTL.

MOs: 2.

Operation: Reads load module records, performs conversions, and prints the
records in SYSPRINT.

L Y28-1 189-3 © Copyright IBM Corp. 1982, 1986 Chapter 2. Module Map and IDR List (AMBLIST) 2-19

HMBLKLPA - Link Pack Area Mapping Module

Entry from: HMBLKCTL.

Data areas defined or updated: CDETAB.

Routines called: None.

Exits: Return to HMBLKCTL.

MOs: 4.

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Operation: Products a formatted listing of the link pack directory entries that
reside in the fixed link pack area, modified link pack area, pageable link pack
area, and their extensions.

HMBLKMSG - Text of Error Messages

Entry from: HMBLKERR.

Entry point names: MESSAGES, MSGLIST.

Data areas defined or updated: MESSAGES, MSGLIST.

Routines called: N j A.

Exits: NjA.

MOs: 5.

Operation: This nonexecutable module contains the two tables MESSAGES and
MGLIST.

HMBLKOBJ - Object Module Processing Module

Entry from: HMBLKCTL.

Data areas defined or updated: None.

Routines called: None.

Exits: Return to HMBLKCTL.

MOs: 2.

Operation: Reads object module records, performs conversions, and prints the
records in SYSPRINT.

2-20 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

HMBLKSZE - Open Exit Module for SYSPRINT

Entry from: HMBLKCTL.

Data areas defined or updated: None.

Routines called: None.

Exits: Return to HMBLKCTL.

MOs: None.

Operation: This module is an exit list routine for the SYSPRINT DCB.

HMBLKXRF - Map and Cross-Reference Processing Module

Entry from: HMBLKCTL.

Data areas defined or updated: CESDTAB, RLDTAB, INDEXTAB, TRANTAB,
SCATTAB.

Routines called: None.

Exits: Return to HMBLKCTL.

MOs: 3.

Operation: Reads load module records, sorts, CESD and RLD records, performs
conversions and lists the CESD and RLD records both alphabetically and
numerically by address. Produces map and cross-reference listing of the nucleus.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 2. Module Map and lOR List (AMBLIST) 2-21

Section 4: Data Areas

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

This section contains descriptions of the following data areas built and used by
AMBLIST modules:

CDETAB

CESDTAB

• CDETAB

• CESDTAB

• CSDTAB

• ERRORS

• IDENTDAT

• INDEXTAB

• MESSAGES

• MSGLIST

• OPTNMAP

• RLDTAB

• SCATTAB

• SORTAB

• TDTAB

• TRANTAB

• TRNTAB

Size: 21 bytes.

Created by: HMBLKLPA.

Updated by: HMBLKLPA.

Offset Size

0 (0) 8
8 (8) 8
8 (8) 4

12 (C) 4
16 (10) 4
20 (14)

Size: 19 bytes.

Created by: HMBLKXRF.

Updated by: HMBLKXRF.

Offset

o
2

(0)
(2)

Size

2
8

2-22 MVS/Extended Architecture Service Aids Logic

Description

Module name.
Major name or length and location.
Length of module.
Location of module.
Entry point address.
Bit settings Meaning
1... Minor entry .
. 1.. Major entry .
. . xx xxxx Reserved.

DeKription

ESD identifier of symbol from CESD.
8-character symbolic name.

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986

J

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

CSDTAB

Errors

IDENTDAT

Offset Size

10 (A)

II (B) 4)
15 (F) I
16 (10) 3

Size: 12 bytes.

Created by: HMBLKIDR.

Updated by: HMBLKIDR.

Offset

o (0)
8 (8)
10 (A)

Size: 32 bits.

Size

8
2
2

Created by: HMBLCKCTL.

Description

Bit settings Meaning
xxxx 0000 Section definition (SD).
xxxx 0011 Label reference (LR).
xxxx 0100 Private code (PC).
xxxx 0101 Common (CM).
xxxx 0110 Pseudo register (PR).
xxxx 0010 External reference (ER).

xXXX 1010 Weak external reference (WX).
xxxI xlOO Private code marked delete (PD).
Address of symbol.
Segment number in which the symbol appears.
Either chain ID or length of the CSECT from CESD.

Description

CSECT name from CESD.
Reserved.
ESD identifier from CESD.

Updated by: HMBLKLDM, HMBLKLPA, HMBLKXRF, HMBLKOBJ,
HMBLKIDR, HMBLKCTL.

Size: HMBLKERR.

Errors is a 32-bit map. Bits 0 through 31 are correlated to error messages 1
through 32.

Size: 51 bytes.

Created by: HMBLKIDR.

Updated by: HMBLKIDR.

Offset

o (0)

8

II

(8)

(8)

Size

8

3

40

Description

CSECT name associated with the ESD identifier in the lOR
record.
Date on which user data was supplied to the load module via
the linkage editor identify function.
User-supplied data as specified in the linkage editor identify
control statement.

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 2. Module Map and IDR List (AMBLIST) 2-23

INDEXTAB

MESSAGES

MSGLIST

OPTNMAP

Size: 2 bytes.

Created by: HMBLKXRF.

Updated by: HMBLKXRF.

Offset Size

o (0) 2

Defined in: HMBLKMSG.

Used by: HMBLKERR.

Description

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Pointer to a CESD table line. An ID chain pointer, R
pointer, or P pointer is used as an offset into the index table
to find a value which is used as an offset into the CESD table.

MESSAGES is a table containing the text of the error messages. The length of
an entry (MSGxx) in MESSAGES can be obtained from the second halfword of
the corresponding entry in MSGLIST. For example, the length of MSGOI can be
obtained from LSTOI in MSGLIST.

Size: Maximum of 32 4-byte entries.

Defined in: HMBLKMSG.

Used by: HMBLKERR.

Offset Size Field

0 (0) 4 LSTOI

4 (4) 4 LST02

Size: 32 bits

Created by: HMBLKCTL.

Updated by: HMBLKCTL

Used by: HMBLKCTL.

Bit

o
1
2
3

Field

LISTLOAD
LISTOBJ
LISTIDR
LISTLPA

Description

The first two bytes contain the offset in bytes of the message
text from the beginning of MESSAGES. The second 2 bytes
contain the length of the message text in MESSAGES.
Same as above.

Description

LISTLOAD operation specified.
LISTOBJ operation specified.
LISTIDR operation specified.
LISTLPA operation specified.

2-24 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

RLDTAB

Bit

4

5
6
7
8
9
10
II
12
13
14
15-31

Size: 9 bytes.

Field

TITLE
DDN
MEMBER
MODLIST
XREF
IDENT
PO
LASTMEM
LIMIT
MCONTIN
RELOC
Reserved.

Description

TITLE operand specified.
DDN operand specified.
MEMBER operand specified.
LIST option specified.
XREF option specified.
IDENT option specified.
Partitioned data set (PDS).
Last member name indicator.
Too may member names.
MEMBER option continuation.
Relocation factor given.

Updated by: HMBLKXRF.

Used by: HMBLKXRF.

Offset Size Description

0 (0) 2 Entry number of the CESD entry (or translation entry) that indicates which
symbol value is to be used in the computation of the address constant's
value.

2 (2) 2 Entry number of the CESD entry (or translation table entry) that indicates
which CSECT contains the address constant.

4 (4) Flags: When byte format is xxxx LLST, xxxx specifies the type of this RLD
item (address constant):

0000 - nonbranch-type is assembler language. DC A (name).
0001 - branch-type in assembler language. DC V (name).
0011 - pseudo register cumulative displacement value.
1000 and 1001 - this address constant is not be replaced because it refers to
an unresolved symbol.

LL specifies the length of the address constant:

01 - two-byte.
10 - three-byte.
11- four-byte.

S specifies the direction of relocation:

0 - positive
1 - negative.

T specifies the type of the next RLD item:

0 the following RLD item has a different relocation and/or position
pointer.
the following RLD item has the same relocation and position
pointers as this and therefore is omitted.

5 (5) 4 Address of the address constant.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 2. Module Map and IDR List (AMBLIST) 2-25

SCATTAB

SORTAB

TDTAB

TRANTAB

Size: 4 bytes.

Created by: HMBLKXRF.

Offset Size

o (0)

(I) 4

Size: 19 bytes.

Created by: HMBLKIDR.

Used by: HMBLKIDR.

Offset Size

0 (0) 8

8 (8) 3

II (8) 8

Size: 15 bytes.

Created by: HMBLKIDR.

Used by: HMBLKIDR.

Offset

o (0)
10 (A)
12 (C)

Size: 2 bytes.

Size

10
2
3

Created by: HMBLKXRF.

Offset

o (0)

Size

2

2-26 MVS/Extended Architecture Service Aids Logic

Description

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

RSECT, RMODE flag byte
1... RSECT .
. 1.. RMODE.

xxxx .. xx Reserved.

Address assigned by linkage editor to a control section (SD,
PC,orCM).

Description

CSECT name associated with the ESD identifier in the IDR
record.
Date on which AMASPZAP modification was performed on
module.
Data specified during AMASPZAP processing.

Description

Translation name.
Version and modification level information (VVMM).
Date of translation (YYDDD).

Description

Pointer to the scatter table entry that contains the address of
the control section containing this CESD table entry.

LY28-1189-3 © Copyright IBM Corp. 1982. 1986

L

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

TRNTAB

Size: Variable number of 8-byte entries.

Created by: HMBLKIDR.

Used by: HMBLKIDR.

Offset

o
8

(0)
(8)

Size

8
8

The end of the table is marked by blanks.

Description

CSECT name associated with the ESD identifier in the IDR record.
Same as above.

LY28-1189-3 co Copyright IBM Corp. 1982, 1986 Chapter 2. Module Map and lOR List (AMBLIST) 2-27

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Section 5: Diagnostic Aids

Register Activity

HMBLKCTL

HMBLKIDR

HMBLKLDM

This section contains the following information that will help to diagnose
problems in AMBLIST:

• A summary of register activity.
• A description of the SYNAD routines of the AMBLIST control module.

Note: Refer to System Messages for message numbers, message text, and
detecting, issuing, and containing modules.

Register

1
2
4
5
6
7
9
11
12
13
14
15

Register

1
2
3
11
12
13
15

Register

1
2
3
4
5
6
7
II
12
13
14
15

Use

Pointer to parameter lists.
Third base register for addressing static data and code.
Pointer to BLDL list.
Base register for addr.essing DCB DSECT.
Base register for addressing PDS directory DSECT.
Second base register for addressing static data and code.
Column pointer for scanning control cards.
First base register for addressing static data and code.
Base register for addressing the dynamic storage area.
Save area address.
Linkage register for internal calls.
Branch register for external calls.

Use

Pointer to parameter list and to output DCB.
Pointer to input buffer and to data to be converted.
Pointer to input DCB.
Base register for addressing static data and code.
Base register for addressing the dynamic storage area.
Save area address.
Branch register for external calls.

Use

Pointer to parameter list and to output DCB.
Pointer to input DCB or a work register.
Pointer to input buffer or a work register.
Return address from print subroutine.
Return address from conversion subroutine.
Line count.
Loop control register.
Base register for addressing static data and code.
Base register for addressing the dynamic storage area.
Save area address.
Linkage register for internal calls.
Branch register for external calls.

2-28 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982,1986

J

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

HMBLKLPA

HMBLKOBJ

HMBLKXRF

Register

I
2
10

Register

I
5
6
9
II
12
\3
14
IS

Register

I
2

3
4
5
9
II
12
13
14
15

Use

Pointer to parameter list.
Base for contents directory block.
Pointer to packed data.

Use

Pointer to parameter list.
Pointer to input buffer and to output DCB, or work register.
Pointer to output buffer and to input DCB, or work register.
First base register for addressing static data and code.
Second base register for addressing the static data and code.
Base register for addressing the dynamic storage area.
Save area address.
Linkage for calls.
Branch register for external calls.

Use

Pointer to parameter list and to output buffer.
CVD instruction register. loop control register, pointer to
input DCB and to output DCB, or index for sort.
Pointer to input buffer or return address for branches within HMBLKXRF.
Third base register for addressing static data and code.
Pointer to current CESD table line being processed.
Second base register for addressing the static data and code.
First base register for addressing the static data and code.
Base register for addressing the dynamic storage area.
Save area address.
Linkage register for internal calls.
Used as branch register for external calls.

SYNAD Routine - HMBLKCTL

When HMBLKCTL detects an uncorrectable input or output error, control is
passed to an error analysis (SYNAD) routine. If the error occurs while processing
a partitioned data set, the SYSIOPDS routine receives control and issues a WTO
macro instruction to display an error message at the console. Control is then
returned to the system.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 2. Module Map and IDR List (AMBLIST) 2-29

2-30 MVSjExtended Architecture Service Aids Logic

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986

J

l

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Chapter 3. Print Dump (AMDPRDMP)

Section 1: Introduction

The AMDPRDMP service aid program formats and prints the contents of the
AMDSADMP output data set, the SYS1.DUMPnn ABEND dump data set, or
any dumps data sets produced by SVC dump, and the GTF trace data set.

The user controls the operation of AMDPRDMP with JCL statements and
AMDPRDMP control statements.

Job Control Language Statements

JCL statements allow the user to describe:

• The input data sets, SYSIN and SYSTSIN
• The AMDPRDMP table of contents data set, INDEX
• The AMDPRDMP output data set, PRINTER
• The AMDPRDMP message data sets, SYSPRINT and SYSTPRT
• The direct access work data set, SYSUTI
• A data set for transfer of a dump data set, SYSUT2
• The data set that contains the dump, TAPE and/or a user specified DDname

The PARM parameter on the EXEC statement allows the user to specify:

• A title for the AMDPRDMP output listing to be requested from the console

• The number of lines per page to be printed in the output listing

• The option of stopping the AMDPRDMP processing for a function

• The action to be taken if an error occurs in an exit or format routine that is
editing GTF records

For a detailed description of the JCL statements for AMDPRDMP, see MVS/XA
SP L: Service Aids.

I Y?R-ll R9-1 (0 ConvriQht IBM Corn. 1982. 1986 Chanter 3. Print Dumn (A MDPR DMP) 3-1

AMDPRDMP Control Statements

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Control statements allow the user to specify formatting. The user enters the
control statements into the system through either the SYSIN data set or the
console.

AMDPRDMP control statements introduce optional functions into this
AMDPRDMP operation. The following are the AMDPRDMP control
statements:

• ASMDATA - causes ADMPRDMP to format and print the contents of
auxiliary storage manager (ASM) control blocks that exist in the input data
set.

• A VMDAT A - causes AMDPRDMP to format and print the contents of the
availability manager control blocks from the input data set.

• CPUDATA -- causes AMDPRDMP to format and print data related to each
processor in a dumped system.

• CVT - provides the address of the communications vector table if there is
reason to believe that the CVT pointer at virtual storage location X'4C' in a
virtual storage dump has been destroyed.

• CVTMAP - causes AMPRDMP to format and print the communications
vector table (CVT).

• DAEDA T A - causes AMDPRDMP to format and print the dump symptoms
that DAE analyzes in determining whether or not to suppress the dump.

• EDIT - causes AMDPRDMP to obtain, format, and print trace data created
by the generalized trace facility (GTF).

• END - terminates AMDPRDMP processing.

• FORMAT - causes AMDPRDMP to format and print the contents of the
major system control blocks associated with each address space in a dumped
system.

The control statement provides for compatibility with prior versions of
AMDPRDMP and works the same as a SUMMARY FORMAT control
statement.

• GO - causes AMDPRDMP to execute a group of control statements, which
may be provided with the ONGO statement, making it unnecessary for the
user to specify each statement separately.

• GRSTRACE or QCBTRACE - causes AMDPRDMP to format and print
the global and local resource queue control blocks in a dumped system.

• IOSDATA - causes AMDPRDMP to format and print the contents of
certain I/O supervisor (lOS) control blocks in the input data set.

3-2 MVS/Extended Architecture Service Aids Logic L Y28-1189-3 © Copyright IBM Corp. 1982. 1986

J

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

• JES2 - causes AMDPRDMP to format the contents of specific control
blocks in the JES2 address space.

• JES3 - causes AMDPRDMP to format the contents of specific control
blocks in the JES3 address space.

• LOGDATA - causes AMDPRDMP to invoke the formatter for the
in-storage LOGREC buffer.

• LPAMAP - causes AMDPRDMP to format and print a map of the contents
of the dumped system's link pack area directory entries (LPDE) and the
active link pack area modules from the information in the contents directory
entries (CDEs).

• MTRACE - causes AMDPRDMP to format and print the master trace table
for the dumped system.

• NEWDUMP - defines a new input dump data set to AMDPRDMP.

• NEWT APE - used instead of NEWDUMP to define a new tape input dump
data set.

• NUCMAP - causes AMDPRDMP to format a map of the contents (name,
entry point, entry point attributes, and length) of modules in the nucleus
when the dump was generated.

• ONGO - specifies the control statements that will be executed when GO is
issued.

• PRINT - causes AMDPRDMP to print and format particular areas of real
and virtual storage.

• RSMDAT A - causes AMDPRDMP to format and print the contents of the
real storage manager control blocks in the input data set.

• SADMPMSG - causes AMDPRDMP to format and print the stand-alone
dump console message log.

• SEGTAB - provides the hexadecimal real storage address of a segment table.
If the user fails to do a store status prior to the execution of the stand-alone
dump, the SEGTAB will not be found.

• SRMDAT A - causes AMDPRDMP to format and print the contents of
system resources manager control blocks (OUCBs and the Domain Table)
that exist in the input data set.

• SUMDUMP - causes AMDPRDMP to invoke the formatter for summary
dump data that an SVC dump might contain.

• SUMMARY - causes AMDPRDMP to print one of several reports, as
specified by the parameters: FORMAT, KEYFIELD, JOBSUMMARY and
TCBSUMMARY.

• TCAMMAP - causes AMDPRDMP to print selected TCAM control blocks.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 3. Print Dump (AMDPRDMP) 3-3

AMDPRDMP Output

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

• TITLE - provides AMDPRDMP with a title to be printed at the top of each
page of the output listing.

• TRACE - causes AMDPRDMP to format trace entries in the system trace
table.

• VSMDAT A - causes AMDPRDMP to format and print the contents of the
virtual storage manager control blocks in the input data set.

• VTAMMAP - causes AMDPRDMP to print selected VTAM control blocks.

• User-defined exit routines - cause AMDPRDMP to give control to a
previously defined user or component exit module.

Various formats may appear in the AMDPRDMP output listing, depending on
which control statements the user selects. In addition to the formatted
information, each page contains a heading that includes the optional
user-specified title, the name of the module that invoked the dump (if the input
data set was a dump data set), and the date and time that the dump was taken.
The first page of the output lists the title given when the dump was taken. Within
the formatted listing, comments may appear that are a result of invalid control
blocks of AMDPRDMP's inability to locate, format, or print a control block.

After printing the formatted information, AMDPRDMP prints the following
summary information:

• The number of entries to the read routine.

• The number of times that the required address was not found in a buffer.

• The number of blocks read from the dump data set.

• The number of permanent I/O errors encountered during execution.

• The average number of buffers used for each operation performed during
execution.

• The number of GTF records read.

• The ratio of the number of times the read routine was called to the number of
times the requested address was not in a buffer.

For a detailed description of the AMDPRDMP output listing, see MVS/XA
Debugging Handbook.

3-4 MVS(Extended Architecture Service Aids Logic L Y28-1189-3 © Copyright IBM Corp. 1982, 1986

J

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Section 2: Method of Operation

This section describes how AMDPRDMP formats and prints information from an
input data set. As shown in Figure 3-1, the description begins with an overview
of AMDPRDMP, then describes the following stages of the overall processing:

• AMDPRDMP initialization.
• Control statement processing.
• Control statement execution.

Reading Method of Operation Diagrams

Method of operation diagrams are arranged in an input-processing-output layout:
the left side of the diagram contains the data that serves as input to the processing
steps in the center of the diagram, and the right side contains the data that is
output from the processing steps. Each processing step is numbered; the number
corresponds to the verbal description of the step in the extended description.
Whereas the processing step in the diagram is in general terms, the corresponding
text is a specific description that includes a cross-reference to the code for the
processing.

L Y28-1189-3 © Coovri!!ht IBM Coro. 1982. 1986 Chanter 1 Print nnrnn (A MnpUnMP) ~-'\

Diagram I

AMDPRDMP
Overview

I
I I

Diagram 2 Diagram 3

AMDPRDMP Control Statement
Initialization Processing

I

Diagram 4-13

Control
Statement
Execution (see
blow-up at
right)

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Control Statement Execution

Diagram 4

CVT, TITLE, GO,
LPAMAP,ONGO,
NEWDUMP,

NEWT APE, and
SEGTAB Control
Statements

Diagram 5
END Control
Statement

Diagram 7
User Exit
Processing

Diagram 9-10
PRINT
Control Statement

Diagram II
CPUDATA
Control Statement

Diagram 12
EDIT
Control Statement

Figure 3-1 (Part 1 of 2). Key to Method of Operation Diagrams for AMDPRDMP

3-6 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

J

J

"Restricted Materials of IBM"

Licensed Matedals - Property of IBM

Key to Method of Operation (MOl Diagram Symbols

Entry into processing

--~ Flow of Control

'------> Data Transfer

Pointer to or address of

Reference to data

1,2, etc.

A, 8, etc.

I
~
E>

Look for corresponding numbers in text

Look for blow-up of item on some page

Look for corresponding-lettered blow-up
on same page

Braces to denote re.lated items

See referenced diagram for detailed
description

Reference to another diagram

Figure 3-1 (Part 2 of 2). Key to Method of Operation Diagrams for AMDPRDMP

LY28-1189-3 © Co ri ht IBM Co .1982 1986 Cha ter 3. Print Dum AMDPRDMP 3-7

~ PRDMP Diagram l. AMDPRDMP Overview (Part I of 2)
00

a':
<:
Cfl

tTl
:><
n> ::s
0-
n>
0-

;J;>
t=l
=-~
~
'"1
('\)

Cfl
('\)

:;:J ;:;.
('\)

;J;>
5:
'J>

r o
OQ ;:;.

r
-<
IV
00 ,

00
'-0
W
ilJ
n o

'"0
'<
'"1

citi·
;:r
......
1:0
a':
n o
'"1

'?

'-0
00

l'-'

'-0
00
0.

Input

(
(

-
JCL

l-

~ or I/SYSIN

Control Statements

GTF)

..
)(

or

AMDSADMP ":4 I
(High-speed)

or

System ..
Dump

~

Facility

SYS1.DUMP

..

..

\."

L
Process

COMMON

I I)1 Initialize common communi- --"

cation area. v I I
See M02 for Details I I

I I
I I

2 Scan control statements. < Tf
) See M03 for Details v

.. Format Input Data ...

.. 3 Copy tape input to work file. v

4 Format the input data as specifieciA
in the control statements. < ..

SYSUT1

5 Write the print dump abstract.
the formatted data. and the
table of contents in the output
data set to be printed.

6 Write the messages in the output

,',,' ~, '0 "" p,;o"d. ..

See MOs 4-12 for Details RETURN

Clear SYS1.DUMP Data Set

7 Copy input data set.

.. 8 Clear SYS1.DUMP. if direct RETURN
~ access.

See M05 for Details

l.,

Output

0
INDEX 0

0 0

0 0 .. 0 0

r-rv 0 Table of Contents
0

0 0

0 0

0 0

0 ./

"'" 0 PRINTER 0

0 0

0 0

0 0

~~ 0 F·or.matted
0

0 0

0
Output Listing

0

0 -
.......... ./

0
SYSPRINT 0

0 0

0 0

0 0 .. 0 0

0
Messages

0 ..
0 0

0

~ ~ 7 - I:"" ;:S.
~

~

s~ v

Ii
Q.

3: " :=
III !l ~ -.. .. ;. ;:s.
;; ~

Q.

I 3:
"d III
; -~
~ :I.

III .. ;; -'-"'! = = -. -. --! = 3: ~

~

r
-<
N
00 ,

00

'f'
w

(?jl

n
o
'U
'<
'"1

,;Q'
;r
1;0

~
n
o
'"1

'U

>0
00
JV

>0
00
0'1

n
::r'

'" ~
(t)
'"1

W

'"t:l
-;

~.

o
s:: .g
'>
~
o
'"t:l
~ o
~
::9

W
I

1,0

r

PRDMP Diagram I. AMDPRDMP Overview (Part 2 of 2)

Extended Description

1 The user controls pan of the operation of
AMDPRDMP with JCL statements. AMDPRDMP

initializes the common communication area with values
from the PARM field in the EXEC statement.

2 By using control statements, the user specifies the
formatting to be performed by AMDPRDMP

before the data is printed. The user enters the control
statements into the system via either the input stream
or the console. Depending on the function specified in
the control statement, either EDIT modules, executor
modules and their associated service modules, or userl
component modules are brought into storage to perform
the functions requested via the control statements.

3 If the user's JCL includes a SYSUT1 DD statement
and if the input data set is on tape, AMDPRDMP

copies the dump to the SYSUT1 data set. If SYSUT1
cannot contain the entire dump data set, AMDPRDMP
processes the input from both SYSUT1 and tape. If
the input is a SYS1.DUMP data set, AMDPRDMP copies
the contents of the direct access input data set to the
SYSUT1 data set.

4 The input data to be formatted by AMDPRDMP
is from the following sources:

• The output data set from the generalized trace
facility (GTF).

• The output data set from the AMDSADMP service
aid.

• The SYS1.DUMP data set from the system dump
facility, a SYSMDUMP ABEND dump, or any dumps
produced by SVC dump. (The input data for all of
these dumps appears the same to AMDPRDMP.)

The information from these sources is formatted accord·
ing to specifications in the control statements.

MO

2

3

4-12

r

Extended Description

5,6 AMDPRDMP writes the title pages, the formatted
data, and messages in output data sets that will

be printed for the user. If the INDEX DD stat'ement is
included in the JCL, the print dump table of contents
is written to the INDEX data set.

7 If the user's JCL includes a SYSUT2 DO statement,
AMDPR DMP transfers the contents of the dump

data set to the SYSUT2 data set for later processing.
All format control statements are ignored at this time.

S AMDPRDMP clears the SYS1.DUMP deta set so it
can be reused. This processing occurs only if

SYS1.DUMP is on direct access.

r

MO

4-12

5

t""' $0

~. ~

= '"
l -;:s-
a: ~ =-
l1li 3: ~ .. lID ;. ~
(;;' ;.
I ~

~ =-..
<0 -~ I:ICI .. 3: -~ :::
<0 --= :::

"f PRDMP Diagram 2. AMDPRDMP Initialization (Part 1 of 4)
......
o

=::
<!
til

ti1
><
CD

l
>
~
e:
~
2
til
~

~.
> p:
'"
b

OQ
(i'

~
tv
~ --00
100 .
<..)

o
Q
~
::1.

OQ
::r
til
=::
Q
f3
..-
100
00
JV -100
00
01

Input

IIStep 1 EXEC PGM = IKJEFT01,
II PARM = AMDPRDMP L.

Process Output

Common Communication Area
(COMMON)

@ Register 1 fPAAC • I :> 1 'oo'Y" EXEC ... "'- LlNECNT swc
ment parameters .. - T

WTOR

S
SWE ,1 FREESIZE

SWE Field of COM

ER=O,1,2,3 U EDITER j

STOPSW

2 Open output data sets. ~;::==========::::::~~ AOUTDCB APTRDCB

3 Initialize user exit parameter
list address.

ANDXDCB

'"'-~

ABDPLADR j SRAADR

TITLESW = '1' r-t- - ----4.4 OM""dd."t1 I ~ (Set During Step 11

l,

t WTOR I! Co~"] -..
RDRSW

~
5 Determine source of control

statements. ~===============::: ~ ARDRDCB 11 SWA I

6

l, \.,

~
~.
:I

1
3:

s:

r It ;;- -.. ..
iii· n·
;; ;;-

Q.

I
"'d 3: a ;.
~ S· a ;:
=> S,
-. -- til

== 3: 3: ::

r r

~ PRDMP Diagram 2. AMDPRDMP Initialization (part 2 of 4)
tv

'ro --00
I,C)
I
@

f
::!.
~ --I:X'
s=
Q
-? -I,C)
00
JV

Explanation

1 The user may specify a list of parameters for
AMDPRDMP with the operand PARM =

'AMDPRDMP, .• , .. .' in the EXEC statement. (A
detailed discussion of the parameters and their meanings
appears in Service Aids.)

AMDPRDMP analyzes the parameters and places their
values in the common communication area (COMMON)
as follows:

• LlNECNT - If LlNECNT is specified, AMDPRDMP
stores the number of lines in the LlNENUMB field
if it is greater than 10 or less than 32K.

• T - If the title option is specified, AMDPRDMP
turns on bit 3 (TITLESW) of the SWE field. This

~ bit is checked later (see step 4).
0\

n
!
1t

:f a
tl

~
'> s=

~
~

,;:g

Vol
I --

• S - If the stop option is specified, AMDPRDMP
turns on bit 0 (STOPSW) of the SWE field, then
issues message AMD1561 to the operator via a
WTOR macro instruction. However, AMDPRDMP
does not wait for a reply. At any time, the opera·
tor may reply with a STOP, and processing of the
current data set will cease.

• ER - If an action is specified for an error during
execution of the EDIT function (see MO 12),
AMDPRDMP stores the value in the EDITER
field .

2 There are three possible output data sets.
PRINTER contains the formatted output

information, SYSPRINT contains the messages, and
INDEX contains the dump table of contents.
AMDPRDMP stores the address of PRINTER DCB
in the AOUTDCB field of COMMON, the address
of SYSPRINT DCB in the APTRDCB field, and the
address of INDEX DCB in ANDXDCB after it opens
the data sets.

3 AMDPRDMP puts the address of the ABDPL and
the SRA in COMMON and initializes the parameter

list for BLSQEXTI.

Module Label

AMDPRCTL BGN LOOP

AMDPRCTL BEGLCNT

AMDPRCTL BEGTITLE

AMDPRCTL BEGIN5
AMDPRCOM STPWTORM

AMDPRCOM

AMDPRCTL BEGER

AMDPRCOM
AMDPRCOM
AMDPRCOM

AMDPRUIM AMDPRUIM

Explanation

4 AMDPRDMP checks the TITLESW (bit 3) of SWE
to determine whether the title option has been

select"d by the user. If so, AMDPRDMP issues message
AMD154D to the operator via a WTOR macro instruction.
The operator replies with the title.

5 AMDPRDMP tries to open the reader DCB. If it
opens, then there are control statements in the

form of cards in the input stream. AMDPRDMP stores
the address of the reader DCB in COMMON and turns
on bit 7 (RDRSW) of SWA to indicate the presence of
control cards. If the reader DCB does not open, the
control statements must be obtained from the console.

...

r

t"'"' ~ ;:;. ~ ~ = '" Module Label -~ ..
=- ;:5"

AMDPRCTL WRTMSG 3:: ~ =-
AMDPRCTL DUMPMSG "' 3:: ~

:!. = = ~ Eii ..
S·

I Eii
"'d

Q ...,
AMDPRCTL BEGIN6E .. -Q

'I:J == ~ 3:: .. - :: '<
Q ..., -== AMDPRCTL BEGIN7 3::

"f . PRDMP Diagram 2. AMDPRDMP Initialization (Part 3 of 4) -N

~
~ m
><
~

~
0.

~
;:J
::r
~
s:: ...
(0

1(l

~.
(0

~ c.:
(j)

r o
(r.I

n'

r
-<
IV
00 ,

00
'oC) ,
w

6'
n
o

"0
'<
::1.

(r.I

~
;;
~
n
o
fl
'oC)
00
IV

'oC)
00
0\

r,

r--..... ./
I{TAPE

or

I/ANYNAME

'-. .--

Q
Input Dump Data Set

Dump Header Record

•.........
'-'

-'" 6 Copy contents of input data
.. set and build storage map.

--" 7 Initialize COMMON and
.> print title pages.

I

•

\v

J M03
I
To Process
Control
Statements

r-
"""" '" ~ I/SYSUT1

or
.Jo>.. I/SYSUT2

r

Q "- ---
Output Data Set

COMMON) t REALMA' J

Real Dump Map J
COMMON

-'" r-rV
~
~-
=
I

Printer

• • • • 0 •

3: s:
~ r
fD -;- ~-;ri

0 0 ,--Lt... • Title Pages 0

• • • -• -...... -
l~ S"
'i ::2. a ;.
= a. ... -- = ! :;

'-'

r
-<
N

<?O -00
>0
W

6
(j
0
'0
'<
:!.

0<1
:r ... -= a:::
(j
0 ..,
'::'
>0
00
.,N

>0
00
Cl\

(j
:r
~
'0 ;-..,
w

~
::s
~
3
'0

>
a:::
~ :;a
o
== ~

W
I

W

('

PRDMP Diagram 2. AMDPRDMP IDitializatioa (Part 4 of 4)

Exteoded Descriptioa

6 If the input is from a tape or a direct access SYS l.DUMP data set.
AMDPRDMP copies the input data set to the work·file data set and builds
storage maps of the dump. If a work-file data set is not specified.
AMDPRDMP builds the dump storage maps.

If a SYSUT2 data set is specified. AMDPRDMP copies the input data set
to the SYSUT2 data set without building any storage maps.

7 AMDPRDMP initializes the common communication area using values
from the dump header record.

AMDPRDMP writes the fust title page to the print data set.

AMDPRDMP invokes aU header exits including the DAE header exit.

AMDPRDMP formats the abstract title page and the console-initiated
loop trace records.

(' r

t"" I:
~. r

Modale Label l ...
:2.
n

AM DPRLOD AMDPRLOD a: ~ c..
• 3: If

AMDPREAD AMDPREAD :2. • • ~
fr :2. • I fr

AMDPRLOD AMDPRLOD
~ = a -'I = 3: AMDPRMST AMDPRMST a :s

AMDPRCMC AMDPRCMC = -AMDPRMST AMDPRMST = a:
AMDPRUIM FMTABSRH

AMDPRABS AMDPRABS
AMDPRLRF AMDPRLRF

Vol
I
~

~
<:
Vl

----trl
:><
(b
:::s

~
>
6 e:
~ ... = a
~

~.
> s.:
'"

i.

t"""
-< tv
~
00
\0
I
©

~ oq.
:r -=:I
~
(')
o
f3
\0
00
,!-l

\0
00

'"

PRDMP Diagram 3. Control S tatemen t Processing (part 1 of 4)

I t From M02 (for first statement) p
npu orMOs4,7,9,10,11,and12 ~ rocess

I SWA of COMMON I ...
I~ RDRSW l:t~ -L=2 __ I_-:':U'~~;:~'~:;:::~'"~''' .. _ ...
Set in M02 or at SYSIN EOF

~. I

I
I => "

or
I
LJ I_=~ __ I_ Operator console.

Output

WTORMSG Buffer in COMMON

===~===::::;~===~:~~ Control Statement II "
I/SYSIN DD* I:t1t RDRDeB I; I I II ~ JS __ _

• / ~ ~~""~~I """m,"., vem. : >irV-E-R-~---'
r.nMMON

If Delimiter Is Code Is

-
WTOR

.. ~

*Description of Path Descriptor

Path Descriptor Element

Flags I Module 10 I
o 1 4

Flags: !ill
0 ...
1. ..

.xxx xxxx

~
Service module.
Executor module (last element
of path description).
Reserved.

Module 10: Last three characters of the module name.

l,

, 4·12

~ EDIT

END FORMAT

GO LPAMAP

ON GO PRINT

NEWDUMP

NEWTAPE

SEGTAB I CPUDATA

"fITLE User-defined

o
\..,

DGN

.. I Syntax VERBEND 4
Message

DELIMCD 8 Routines
COMOPPTR blank 12

\COMMON COMOPLN

ASYNTAX

I nput to Step 3 < Path Descriptor*

~ (See Diagram 7,
~ VerbExit

Processing for
the parameters
of the user·
defined verb.)

ABDPL
SRA

]
A8DPLEXTN

1

'-'

t""
;::r
tD = ~ =-
a::: ::a = ~ - fiJ
tD -.. :3. iii· ~ -i;j ~

Q.

Irs:
." = a ;;-
~ ~.
:l Fr
~ sa. e -- = = rs: a::: :s

t""'
-< IV

Cf
-00

'P
w

lEi>

n o
~
::!.

I)Q
::r ...
...... = 3::
Q
~
\0
00
JV

\0
00
0-,

n
0-
I»

'"0
(;
....
w

....,

....
S· ...
o
s:::
S

'"0

~
3::
o
"C:l

~
3::
::9

W
I -Vl

r' r'

PRDMP Diagram 3. Control Statement Processing (part 2 of 4)

Explanation

1 AMDPRDMP checks the RDRSW bit to determine
whether there are control statements in the SYSIN

date set. If the bit is on, AMDPRDMP reads one control
card. If an end-of-file condition exists, AMDPRDMP
issues message AMD1701 indicating end-of-file and sets
RDRSW to O. Then, or if the RDRSW bit is off,
AMDPRDMP issues message AMD155D for the operator to
enter a control statement. The contro I statements are
stored one at a time in the WTORMSG buffer in COMMON.

2 AMDPRDMP scans the WTORMSG buffer for the
verb in the control statement. It saves the address

of the beginning and end of the verb in the common area.
It checks for the delimiter and stores a code indicating
the delimiter in the DELIMCD field of COMMON.
Finally, it compares the verb in the buffer to the valid
verbs (listed above). If the verb is a user-defined verb,
AMDPRDMP scans for parameters. If parameters exist,
AMDPRDMP moves them (including parameters con­
tinued on subsequent' input records) to a buffer and
places the address of the buffer in COMOPPTR and the
length of the parameters list in COMOPLN. If the verb
is PRINT, AMDPRDMP scans the statement beyond the
verb level to determine the parameters. If there are
syntax errors in the control statement, AMDPRDMP
writes a message in the SYSPR I NT data set. However,
for the user and other component defined verbs,
AMDPRUIM scans the ECT (exit control table) to
determine if the verb is a valid exit. I f the verb is a
user or component exit, control is passed to the
appropriate module.

AMDPRUIM initializes the user exit interface. The
ABDPL, its extension and the SRA are reinitialized
for each exit invocation. A GETMAIN issued will
obtain storage for an operands buffer. This buffer
Is addressed by the ABDPL extension in two ways.
One manner acquires a direct pointer to operands.

Module Label

AMDPRCTL TRDRSW
RDCARD
RDREOF
WRTMSG1

AMDPRCTL VERBSCN5
VERBSCN3
VERBSCN4
EDIT
OPERANDS

PRINT

AMDPRCOM SYNTAX/
SYNTAXA-E

AMDPRUIM User or other
component
defined verb
exit .

Explanation

The other uses a CPPL to obtain a standard TSO
command buffer form. If the control statement was
FORMAT, AMDPRUIM will translate it into a request
for the SUMMARY verb exit with the FORMAT key­
word. BLSQEXTI is called to load exit service routines
and finish initialization of ABDPL and SRA. The Exit
Services Router is called to invoke the ECT service,
which will scan the ECT and link to the exit. (See
IPCS Logic for a description of BLSQEXTI. the Exit
Services Router, and the exit services.) (See Diagrams
7 and 81.

r

Module label

t"" ?f ~ .
til = '" '" -"'

..
c:a. ~.

::: ~ c:a.
• ::: ~ .. • ;. -"' FE .. ;.

FE

~
Q

Q -'C = til ::: ..
~ ~

Q
...... -= :::

...
::I
Q. ...
::I
0

D-

,-. til
'II" 8 ...
0 0 1"1 0.. :il e:.
.5
~
8 e

Q.,
= 41

!
~

tf.)

e
= Q
U

~

I
is
Q.,

~ =::
Q.,

Z
0
~
~
0
(,)

<II

CI,) fit C
Clfl)(Q > CD ..
~ :gg
<{ <{ (,)

. fI-

..
CD CD
.~ :;
>"tI ... 0
~~

•

M

c:
o ...
~
)(

LU ..
c::
CD
E
CD
!9 en
e ..
c:
8
{:.

3-16 MVS/Extended Architecture Service Aids Logic

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

L Y28-1189-3 © Copyright IBM Corp. 1982. 1986

J

J

t'"'
><:
N

Cf'

00
\C

W
<B

f qq.
~ -tXl
~
("l
o
-? -\C
00
tv

\C
00
0\

("l
::r
IlO

'"0
0-....
w

"tI
::!.
::l
~

o
::
:3

'"0

~
~
o
"tI
;:c
o
s:::
,:9

V.l
I

-..)

(' ('

PRDMP Diagram 3. Control Statement Processing (part 4 of 4)

Explanation

3 The routines for executing function control
statements are resident in virtual storage, and

the function is executed without further processing.

To execute format control statements, AMDPRDMP
loads the appropriate path of service and/or executor
modules shown in Figure 2 or EDIT modules shown in
Figure 3. (The service modules perform functions that
are common to several executor modules. The executor
modules govern the execution of the functions specified
in the control statement.) To load the path, AMDPRDMP
uses the path descriptor for the modules. AM DPR DMP
compares the path descriptor with a list of modules that
have been loaded previously. Previous modules not
required by this control statement are deleted, and the
required modules are loaded. During the load, control
is given to each service module to store entrv. points
in COMMON. The last module in each path that is
loaded is the executor module.

Module Label

AMDPRCTL CVTSET
TITLEVRB
NEWDUMP
END
GO
ONGO
NEWTDUMP
SEGTBSET

AMDPRCTL

CPU DATA
PRNTFMT
PRINT
EDIT

AMDPRSEG LOAD

AMDPRFUB
AMDPRDPS DPBASE

r

t"" r::
ff ~
:I ~
l~
3:

;;-
Q..

l1li ;;- ::
S- ;.
FE ::t ." Irr

~ ::
~ = .. ~ -'<:

= -== 3:

~ PRDMP Diagram 4. The CVT, TITLE, GO, ONGO, NEWDUMP, NEWT APE, SEGT AB, and LPAMAP Control Statements (part 1 of 4)
00

~
~
~
>'4
(;"

I
:>
(=1
::r
W·
~
en
Cl>

~ §.

:>
s.:
'"
b
~ n·

t""
-< tv
~ ----00
\Q

W
©
C1 o
~ dQ.
;:r
63
~
Q
....
? -\Q
00

JV -\Q
00

'"

From M03 Input

COMMON ... I VERBEND I (stored in M03)

Control Statement

I CVT i {hhhh~hhh }

I

I

Control Statement

I TITLE' Text of Title

I
Control Statement

I GO I
COMMON

I ONGOPTR L..-..

OUtput From -Control-

ONGO Processing
~ Statements -

(step 4)

Control Statement

I ONGO , Control Statement(s)

I

Control Statement -
I NEWDUMP. [DDNAME-, FILESEQ-} I

I

\.,

Process Output

CVT

CVT

) 1 Store CVT address specified WORK 1 ...
by the user. fr' r ThCOMMON

II or l=Lrv' CVTADDR I • ~ WORK 1 I CVTPTR SWA ~ I
TITLE

\SETCVTSW
TITLE > 2 Store title to be printed at top

" of each page of output listing. > COMMON

I T1TLEMSG I
GO

"> 3 Supply AMDPRDMP with GO

group of pre-5pecified control
.)COMMON statements to be executed.

Syntax I WTORMSG I , SWA I
L I Message GOSW

Routine

ONGO ONGO
> 4 Change pre-5pecified control

,,> COMMON v
statements associated with the
GO verb. I ONGOPTR

Used in GO
- Control-

Processing (step 3)
- Statement(s)-

NEWDUMP NEWDUMP, NEWTAPE
L

... 5 Define a new input dump data .1 COMMON set for AMDPRDMP. 11
I' I INDO I\ILESEQ I .. r

-Y~ WORK1 = 1 for NEWTAPE

\., ~

t""
~.
::I a
a: ::

~
lID ~

;;- '" -.. :::l • ,. n
;; tD =-
"tl

a:
lID a (;"

~
.. ,. .. ;; -'< 0

0 ---- = = a: a: :::

t""
-< tv
':0
00
'P
l;.}

@

~
'<
:::I.

(JQ
t:r
.....
III
s::
Q
~
.....
'-Cl
00
JV
.....
'-Cl
00
0'1

(')
t:r

~
~ ...,
w

"tJ
:::I.
:I

~
8
'0

~
s::
tl
"tJ

~
~

~
I

10

(' ('

PRDMP Diagram 4. The CVT, TITLE, GO, ONGO, NEWDUMP, NEWTAPE, SEGTAB, and LPAMAP Control Statements (part 2 of 4)

Extended DlI$Cription

1 CVT - If the user believes that the communications
vector table (CVT) pointer at storage location

X'4C' has been destroyed, he supplies AMDPRDMP
with the CVT address in the CVT control statement.
AMDPRDMP finds the parameter via the address in the
VERBEND field of COMMON, then checks the parameter
for syntax errors. Then AMDPRDMP determines what
address is specified. If P is specified, AMDPRDMP
stores the address if the location at X'4C' in the
CVTADDR field of COMMON. If a hexadecimal address
is specified, AMDPRDMP converts the address to binary,
then stores it in the CVTADDR field. Finally, it
indicates that the 'CVT address has been stored by turning
on bit 6 (SETCVTSW) in SWA.

2 TITLE - The user may specify the title to be
printed at the top of each page via the title con­

trol statament. When a title control statement is
encountered, AMDPRDMP locates the parameter via
the address in the VERBEND field, then stores the
title in the TITLEMSG field of COMMON.

3 GO - By issuing the GO control statement the
user causes AMDPRDMP to format the input data

as if the user had specified the EDIT, SUMMARY, and
PRINT CURRENT control statements. By using the
ONGO control statement (see step 4), the user may
change the group of pre-specified control statements
to any combination of CVT, GRSTRACE, or QCBTRACE,
LPAMAP, FORMAT, PRINT (with its parameters),
SEGTAB, SUMMARY, CVTMAP, CPUDATA, SUMDUMP,
SRMDATA, ASMDATA, LOGDATA, VTAMMAP, or
EDIT. When AMDPRDMP encounters a GO control state­
ment, the program Usel the address in the ONGOPTR field
of COMMON to obtain the parameter. The parameter will
be the pre-specified default control statements or, if ONGO
was used, any controlltatements. AMDPRDMP stores the
parameter in the WTORMSG buffer of COMMON, turns on
bit 4 (GOSW) in SWA, and passes the parameter to be
scanned (see M03) and executed al control statements.

Module Label

AMDPRCTL CVTSET
CVTSETA
CHECKCVT
CVTOK
CVTSET2

AMDPRCTL TITLEVRB
TITLMOVE

AMDPRCTL GO
GOON GO
GO
VERBSCN5

Extended Description

4 ONGO - By using the ONGO control statement,
the user changes the group of control statements

associated with GO (see step 31. When AMDPRDMP
encounters an ONGO control statement, it locates
the parameter via the address in the VERBEND field of
COMMON, stores the parameter, and places its address in
the ONGOPTB field of COMMON. When GO is used,
AMDPRDMP will execute the new set of control
statements.

5 NEWDUMP - By using the NEWDUMP control
statement, the user defines a new input dump data

set for AMDPRDMP. Two keyword parameters may be
specified:

• IF DDNAME is specified, AMDPRDMP stores the
DDNAME in the INDO field of COMMON. The
DDNAME identifies the DO statement that
describes the input dump data set.

• If FILESEQ is specified, AMDPRDMP isolates the
value, converts it to binary in WORK 1 buffer of
COMMON, then stores it in the FILESEQ field.

If neither keyword is specified, AMDPRDMP assumes
that the new input dump data set is the same as for
NEWTAPE (see step 6). When NEWDUMP is specified,
AMDPRDMP resets switches associated with the former
dump; it allo resets the CVT and SEGT AB addresses
and the address of the top of real storage.

r

t"" •
~. ~
." rI>

Module Label ~ 5'.
c. n

~i
~ 3:

AMDPRCTL ON GO 3. ~
ONG01 ~ ~

rIl -.
ONG02 e:.
GO rI>

'"0 s..
a -

"1:1 ==

AMDPRCTL NEWDD

NEWFILE

AMDPRCTL NEWTDUMP
NEWRESET

~ 3:
~ ~

=> -. -= ~

W
I

N o

~
<:
CIl

til
>I
tt

~
0-
;l> .., ,.,
e:
~
2 ..,
'" CIl

'"
<:
('i'

'" ;l>
0.:
</>

r
o

O':l
('i'

r
-<!
tv
00 ,

00
'-0
~

(i'jj

('j
o
'0
'<
rjQ'
% -CO
~
('j
o
'?
'-0
00
]'..l

'-0
00
0\

PRDMP Diagram 4, The CVT, TITLE, GO, ONGO, NEWDUMP, NEWTAPE, SEGTAB, and LPAMAP Control Statements· (part 3 of 4)

COMMON'

I I VERBEND

Control Statement NEWTAPE SWA ~,SWC I CVTADDR I
I NEWTAPE

--" 6 Define a new tape input dump Jo.

SETCVTSW=o)l
data set for AMDPRDMP, ... MSTRSW=O

Control Statement SEGTAB

I SEGT AB- , hhhhhhhh) 7 Store segment table address COMMON
I specified by user; set page : I SEGTABOR I t PRSW I size,

Control Statement QSEGTBSW

L LPAMAP , [EPA) [,MODNAME) J
CVT LPDEs

I I----A
LPAMAP

CVTLPDIA 8 Format and print a map of the Jo.

.;> 0 0
Module Name link pack area directory entries 0 II PRINTER 0

EPA
in the link pack area active 0 0

queue, 0 0

0 0

,LPDE Attributes If CVTLPDIA address is not
0 0

0 0
found, or if no reenterable

Major LPDE Name load module queue exists,

Module Length issue message, -
Module Location

(Second Entry)

CVT CDEs

,~
CVTQLPAQ I CDE Attributes

Module Name

It First CDE

EPA

~ Extent List •
Length of CSECT To Get

Next

• CSECT
Control
Statement

~ l., ~

I

I

I
I
I

~
~ .
::I

l
a:: I: = CD ~ ~ -;- ..

;:S'
~ a:
I ::

"'c:I II a ~
~

..
S' .,
I'E -'< = = -.... -- == = :: a:: :s

r
-<:
tv
00 ,

00
'Ci

W

6
(j
o

"0
'<
QQ'
::r -t:I:l
a:::
(j
o
-?
.....
'Ci
00
!->
.....
'Ci
00
01

(j
::r

~
(I>
'
~ ..,
~.

tl
e
S

"0

>
a:::
tl
~
:=a
tl
a:::
,:g

W
I

N

r r

PRDMP Diqram 4. The CVT, TITLE, GO, ONGO, NEWDUMP, NEWTAPE, SEGTAB, and lIAMAP Control Statements (part 4 of 4)

Extended o.cription

8 NEWTAPE - The NEWTAPE controlatatement ia
used in place of NEWDUMP to define new tape

input. There are no keyword peremeten aIIOCiated with
NEWTAPE,IO AMDPRDMP asaumes the TAPE DO
atatement, and FILESEQ-1. It stores the Ulumed
values In the INDO, and FILESEQ fields of COMMON
and resets awitches from the former dump aa it does
for NEWDUMP laee step 6).

7 SEGTAB -If the UMr forgets to perform a store
Stltus operation prior to executing a stand-alone

dump IAMDSADMP), the U18r supplies AMDPRDMP
with the segment table address in the SEGTAB control
statement. AMDPRDMP locates the parameter via
the addraa in the VERBEND field of COMMON,
then stores the SEGTAB addraa in the SEGTABOR
field. Finally, bit 1 IOSEGTBSW) of PRSW iaMt to
Indicate thel8glllent table addraa has been stored

8 LPAMAP - The LPAMAP control statement cau_
AMDPROMP to format a list of the modules in the

link pack area directory entries and the modulea in the
active link pack area queue. LPAMAP then cau_
AMOPRDMP to write the formatted information in the
PRINTER output data set to be printed in two columl1l
in the output lilting.

AMOPRDMP obtainalnformation about the module
names, the entry point addresses IEPAs) in the link
pack area of the link pack directory entry (LPOE),
and the EPAs of the contents directory entry (CDEI.
AMOPRDMP locates the addraa of the first LPDE
in the CVT at CVTLPDIA and the address of the first
CDE on the active queue in the CVT at CVTQLPAQ.
If AMDPRDMP finds a minor entry, it ~btains the
length and the atarting address of the module's
CSECTs from the LPDE and the COE. AMDPR DMP
writas all of the information in the PRINTER data
Nt to be printed on a separate page of the
AMOPRDMP output listing.

Module Label

AMDPRCTL NEWTDUMP

NEWRESET

AMDPRCTL SEGTBSET

AMDPRLPA AMOPRLPA

r

r I:
;::S. ~
II> ~
i ::
~ ($-

~ i.
;. ~ a_ a.
=- ~. 1;-
'"CI = .. -= -! ~
'< :s

= -!

"f PRDMP Diagram S. The END Control Statement (part 1 of 2)
tv
tv

~
<:
til

tTl
><
(;

l
>
6
::r'
~.

2
til
W
~.
e.
Q.
V>

t""' o
Otl
(';.

t""'
-< IV
~ --00
1,0
I

W

iOl
Cl o
'0
'<:
:l.
~
..... = ~
Q
?
1,0
00
JV
1,0
00
0'\

Input

SWD

I NOLOADSW =-=-::-~ :::: ~

ocQ
SYSUT2

[DYSUOCB I [t INDCB J

COMMON

I RDENTRY 1-··_··
RDERCNT I

COMMON

I DCBADDRS I

ONGOPTR I I SWA-SWE II PRSW II LOA DSN I

\.,

From M03

=0

-..,
I
I
I
I

I
I
I
L_ =1

Transfer Input Data Set to SYSUT2

1 Determine type of data sets
specified in JCL for input and
SYSUT2.

2 Open DCBs. then read input
data set information and write
information on SYSUT2.

... Terminate AMDPRDMP Processing

3 Print execution statistics
and dump index.

4 Reinitialize:

• Close DCBs

• Reset SYS1.DUMP on D/A if
SYSUT2 is specified

• Free buffers

• Restore GO values

• Restore line count value

• Zero page number

• Reset switches in COMMON

• Delete user interface modules.

5 Return control to system.

L,

Output

RETURN to the
Operating System

~
COMMON

ASYSUDCB

Register 15

[Return Code = 8

o
o
o
o
o
o
g

//PRINTER

//SYSPRINT

o
o
o
o
o
o

o
o
8
o
o

~

t:;
n
~ = ~
Q.

::
~
;" ..
;'
FE
I

~ ..
Q

'C
n> ..
~
Q -= ::

r -.. r;' -n>
Q.

::
~

;"
:I,
~

FE
Q -= ::
~

r
-<
IV
00 . ,..... ,.....
00
\0
W
@

n
~
::l.

<§. ,... -I:rl
a::
n o
~
.....
\0
00
IV

.....
\0
00
a-,

n
!
S-.... ...,
'"tl
::l.
i:l
tl
§

'1::1

~
a::
~
~
tl
a::

.::g

W
I

N
W

r

PRDMP Diagram 5. The END Control Statement (Part 2 of 2)

Extended Description

When the control statement is END, AMDPRDMP
checks the NDLOADSW switch in COMMON to
determine whether END is the only control state­
ment for this execution of AMDPRDMP. If
NOLOADSW is off, END is the only control
statement for this execution, and the purpose
of the execution is to transfer the contents of an
input data set to the SYSUT2 data for later pro·
cessing by AMDPRDMP. If the data set is
SYS1.DUMP on direct access, the data set is cleared
to allow for more dumps. If NOLOADSW is on, there
were other control statements in this execution of
AMDPRDMP, and END terminates this execution.

1 When END is used to transfer a data set,
AMDPRDMP uses a DEVTYPE macro instruction

to determine the type of input and SYSUT2 data set
that are specified in the JCL. They may be either
tape or direct access volumes.

2 The work data set load module, AMDPR LOD is
loaded to read the specified input data set and

write the data in the SYSUT2 data set. When the
transfer is complete, AMDPRLOD requests termination
of AMDPRDMP by returning a code of 8 in register 15.

3 If the NOLOADSW switch in SWD is on, END is
not the only control statement in this execution

of AMDPRDMP; the purpose of END in this case is to
terminate AMDPRDMP. AMDPRDMP uses the infor­
mation stored in COMMON to write execution sta­
tistics messages in the SYSPRINT data set. The
statistics are not printed when END is used for a
data set transfer. When the JCL does not include an
INDEX DD statement, PRDMP prints the dump index
at the end of the PRINTER data set. When the JCL
includes an INDEX DO statement, the dump index
is output to the INDEX data sat.

Module Label

AMDPRCTL END

AMDPRRDC TSTDEV

AMDPRLOD READNXT

AMDPRCTL ENDSTATO
-EN DSTAT7

r r

Extended Description Module Label

4 The END control statement terminates
AMDPRDMP, both following a data set transfer AMDPRCTL ENLOOP2

and following other formatting operations. Termination
processing includes: closing open DCBs and freeing
associated buffer pools, freeing output and input
buffers, restoring original GO values, freeing
storage occupied by the ONGO buffer, restoring the
default line count, zeroing the page number and
resetting COMMON switches. AMDPRDMP deletes AMDPRUIM AMDUSRDL
the AMDPRFMT and AMDPRECT modules.

AMDPRDMP calls PLSQEXT1 to delete the exit services it
loaded in. since they ere not required for the control
statement execution. (Refer to Diagram 3. Step 3 and
the explanation listed in the Control Statement Process­
ing under Part 31.

5 Finally, AMDPRDMP locates the highest level
save area address and returns control to the

operating system.

AMDPRCTL ENDALL

r
::13 j;'

til til

= '" '" -til
....

Q. j;'

s: ;-
Q.

~ s: ;-... ~

5' -til (;i'
iii'

I (;i'

"'Cl
Q -. ...

Q --= 1:1:1
til

~ ... -~
Q -. -1:1:1 s:

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

PRDMP Diagram 7. Verb Exit Processing Table (Part 1 of 1)

Note: All input is via Register I, which contains the address of the verb exit parameter list, BLSABDPL. Specific modules utilize
AMDPRDMP service routines and are responsible for the processing of the control blocks to produce a printed dump data set.

Verb exits are control statements that represent program modules. They are defined in the exit control table (ECT) which can be found in
BLSCECT, a member of SYSLPARMLIB. AMDPRDMP checks the ECT and passes control to these modules when the corresponding
control statement is specified.

Input Process Module

ASMDATA The ASMDAT A control statement causes AMDPRDMP to format and print the ILRFTMAN
contents of the auxiliary storage manager control blocks from the input data set. For a
list of the control blocks printed, see MVS/XA Service Aids. For a description of
ILRFTMAN, see MVS/XA System Logic Library.

AVMDATA The AVMDAT A control statement causes AMDPRDMP to format and print the AVFRDFMT
contents of specific availability manager control blocks from the input data set.

CVTMAP The CVTMAP control statement causes AMDPRDMP to format the communications AMDPRCVT
vector table and write the formatted information in the PRINTER data set for printing.

DAEDATA The DAEDATA control statement causes AMDPRDMP to invoke ADYHDFMT, the ADYHDFMT
DAE format routine. ADYHDFMT formats and prints information from the dump
header record. For a description of ADYHDFMT output, see the MVS/XA Debugging
Handbook.

FORMAT The FORMAT control statement causes AMDPRDMP, via AMDPRUIM and AMDPRUIM
BLSQSUMI, to format and print the major system control blocks associated with each
address space. AMDPRUIM transposes the FORMAT control statement into
SUMMARY FORMAT and invokes the exit services router to process the SUMMARY
verb exit. For a description of BLSQSUMI, see MVS/XA [pes Logic.

GRSTRACE The GRSTRACE, Q, or QCBTRACE control statement causes AMDPRDMP to format ISGDPDMP
and print the global or local resource queues in the input data set. For a description of
the control blocks printed, see MVS/XA SPL: Service Aids. For a description of
IOSGDPDMP, see Global Resource Serialization Logic.

IOSDATA The IOSDAT A control statement causes AMDPRDMP to format and print the contents IOSVFMT
of specific I/O supervisor (IOS) control blocks from the input data set. For a list of the
control blocks printed, see MVS/XA SPL: Service Aids. For a description of
lOSVFMTH, see MVS/XA System Logic Library, Volume 6, Part 2.

JES2 The JES2 control statement causes AMDPRDMP to format contents of specific control HASPBLKS
blocks within the JES2 address space.

JES3 The JES3 control statement causes AMDPRDMP to format contents of specific control IATABPR
blocks within the JES3 address space.

LOG DATA The LOG DATA control statement causes AMDPRDMP to invoke IFCERFMT via the IFCERFMT
user exit interface. IFCERFMT formats and prints the records in the in-storage
LOGREC buffer at the time of the dump.

MTRACE The MTRACE control statement causes AMDPRDMP to formal and print the contents JEEMB817
of the master trace table for the dumped system in a first-in, first-out order. MVS/XA
Diagnostic Techniques describes this table. MVS/XA System Logic Library, Volume 6, Part
2 describes IEEMB817.

NUCMAP The NUCMAP control statement causes AMDPRDMP to format and print the contents IEAVNUCM
of the nucleus map entries in the dump data set. See MVS/XA SPL: Service Aids for
more information.

RSMDATA The RSMDATA control statement causes AMDPRDMP to format and print the IARRDMP
contents of the real storage manager control blocks from the input data set. For a list of
the control blocks printed, see MVS/XA SPL: Service Aids.

3-24 MVS/Extended Architecture Service Aids Logic LY28-1189-3 (0 Copyright IBM Corp. 1982, 1986

J

J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

SADMPMSG The SADMPMSG control statement causes AMDPRDMP to format and print the
stand-alone dump console message log. See MVSjXA SPL: Service Aids.

SRMDATA The SRMDATA control statement causes AMDPRDMP to format and print the OUCBs
(system resource manager user control block) on the WAIT, OUT, and IN queues and
the DMDT (domain descriptor table).

SUM DUMP The SUMDUMP control statement causes AMDPRDMP to pass control to the summary
dump format routine (IEAVTFSD) via the user exit interface. lEA VTFSD is described
with the summary dump function of SVC dump under the recovery termination
management (RTM) component in the MVSjXA System Logic Library, Volume 6, Part 2.

SUMMARY The SUMMARY control statement causes AMDPRDMP to format and print a job
summary, a TCB summary and/or major system control blocks in full or key-field form.
AMDPRDMP accesses BLSQSUMI to complete the task. For a description of
BLSQSUMI, see MVSjXA [PCS Logic.

TCAMMAP The TCAMMAP control statement causes AMDPRDMP to print ACFjTCAM control
blocks that are helpful in ACFjTCAM problem determination. AMDPRDMP locates
and formats selected ACFjTCAM control blocks in dumps produced by the
AMDSADMP and SVC dump programs. For a description of the ACF/TCAM
formatted dump routine and the control blocks selected, see ACFjTCAM Diagnosis
Guide.

TRACE The TRACE control statement causes AMDPRDMP to pass control to the system trace
formatter controller routine (lEA VETFC) to format and print the system trace table. For
a description of the system trace table, see MVSjXA Diagnostic Techniques. For a
description of the TRACE control statement, see MVSjXA SPL: Service Aids.

VSMDATA The VSMDATA control statement causes AMDPRDMP to format and print the contents
of the virtual storage manager control blocks from the input data set. These control
blocks are described in MVSjXA SPL: Service Aids. For a description ofIGVSfMAN,
see MVSjXA System Logic Library, Volume 6, Part 2.

VTAMMAP The VTAMMAP control statement causes AMDPRDMP to print ACF/VTAM control
blocks that are helpful in ACF/VTAM problem determination. AMDPRDMP locates
and formats selected ACF/VTAM control blocks in dumps produced by the
AMDSADMP and SVC dump programs, For a description of the ACF/VTAM
formatted dump routine and the control blocks selected, see ACFjVTAM Diagnosis
Guide.

AMDSAFCM

IRARMFMT

IEAVTFSD

BLSQSUMI

IEDPRDMP

IEAVETFC

IGVSFMAN

ISTRAFDI

L Y28-1 189-3 Copyright IBM Corp. 1982, 1986 Chapter 3. Print Dump (AMDPRDMP) 3-25

W
I

IV
0\

s::
~

-----tTl
><
(b
::s
~
0-

:>
(l
:=: g
2'
til
til
til

~.
til

:>
0:
'" r
~.
(')

l'
-<:
N

'f'l

00
\Cl

W
@

~
""
~ -= s::
Q
"" ':=' -\Cl
00
J'-i
\Cl
00
01

PRDMP Diagram 9. 1]te PRINT STORAGE/REAL/NUCLEUS/SQA/CSA Control Statements (Part I of 2)

Input From M03 Process

PRINT STORAGE ~'NT CONTROL STATEMENT
Control Statement Values PRINT STORAGE/PRINT REALI

{NO Addresses } L PRINT NUCLEUS/PRINT CSAIPRINT SOA

STORAGE = ASIOi = Beginning t, End t
.. ")1 Build and enqueue PCBs to l! = One t,

print requested storage or pages:
PCBPl IIq PCBPl ' .. PCBPl

lowt= 2 • PRINT STORAGE - Print
lowt =

low t= 1 Beginning t One t
virtual storage range for job

~ Virtual as indicated by control state-

High t =
or High t = or High t = -'\ - r--. Storage ment. If no address space

-v' PCB !r"- is specified AMDPROMP
X'7FFFFFFF' End t X'7FFFFFFF' -.. == f-'-- will attempt to process the - -- I--r--
ASIO ASIO ASIO ~ four cross memory address

spaces. If the cross memory
PRINT REAL address spaces are not in the

Control Statement Values dump data set, or if

{ No Address }
AMOPROMP cannot identify

REAL / = Beginning t, End t
~ Real

them, the addr~ss space active

1/ = One t" on the processor on which
• ~ - r-... Storage the dump was taken will be

PCBPl ' !tPCBPL '"PCBPl ----.I' PC B ~ processed .

low t = 0
lowt= lowt = =1---
Beginning t One t

"""--p I-- ,-- • PRINT REAL - Print real
or or ~ storage range as indicated.

High t = High t = High t = PRINT NUCLEUS - Print • REAlMAX End t REAlMAX OAT -on and OAT -off nucleus.
,

PRINT NUCLEUS
ECT • PRINT CSA - Print common

I ~~~~Ie I ~ENUC servi ce area,
Virtual

~ Storage • PR I NT SQA - Print system _ PCBPl

COMMON 1f low t = 0 -" queue area.

'---

NUCTOP~
High t y -- 3 PRINT REAL/STORAGE-
NUCTOP _'"""liIIIo. Print registers and current

PRINTSQA Virtual
PSWof IPl'ed CPU,

AQAT PCBPl ~ Storage

I I low t = Start of SQA ~",
High i = --

--
lowt Size - --"-

PRINT CSA ~ Virtual

RD PCBPl PCB Storage

I I Ilow t Start of CSA I ...I 1--'--
High t = I y

I

~ ~

Output

.. II PRINTER
r

...... ----

... Exit I
Module

t""
;:;'
~ = til

MO To Get Next ~ =-
3 Control Statement :: :ii

I>:> 11) - til
~ -.. ...
j;;' ;:;'
t;; -t'I> =-
"CI

::
I» a -~

16
...
j;;' .. til" q
0

0 -- == l:1l:I :: :: ~

~

~
N
q<'
....... -00
-.0 .
W

©

~ ...,
clQ.

=-.....
t:I:l
~
n o
fJ --.0
00
JV --.0
00
0'1

n

i ...,
w

'"tI
S·
tl

~
'>
~

~
~
~
,:g

W
I

N
-..l

r ('

PRDMP Diagram 9. The PRINT STORAGE/REAL/NUCLEUS/SQA/CSA Control Statements (Part 2 of 2)

Extended DlIICI'iption

The PR I NT control statement, along with its param­
eters, causes AMOPROMP to format and print areas
of real or virtual storage. During initialization,
AMOPROMP stores information describing the
storage map used during PR INT execution in the
print dump common communication area
(COMMON) •

1 When AMOPROMP encounters a PR INT control
statement with any of the parameters listed below,

it sets up a parameter list (PCBPL) describing the
storage to be printed.

Module

2 e STORAGE - If the user supplied ASI Dis), AMOPRPMS
AMOPROMP places the value in PCBPL. If
no address space is specified AMOPROMP
attllmpts to process tne four cross memory
address spaces (home, primary, secondary,
cross memory lock). If any of the address
spaces have the same ASIO as another, the
address space will only be processed once.
If AMOPROMP is unable to determine
the cross memory address spaces, or if they
are not in the input data set, the default
is the ASIO of the job active on the CPU
from which the dump was taken (from
QASIO in COMMON). The range of the ad­
dress space to be printed is determined from the
control statement. If only one address is
specified, that address is used as the low
address and the highest virtual storage
address as the high address. If no address is
specified, AMOPRDMP prints the entire
address space. The printed output appears as
follows:

• Nonextended and extended private storage
areas for each specified ASI 0 in the dump

e Nonextended COMMON

• PSA (O-4K) and the entire OAT -on nucleus

• Extended COMMON.

Label Extended Description

• REAL - AMOPROMP sets up PCBPL with an
address range for real storage. The high and
low addresses are determined as for STORAGE.

• NUCLEUS - AMOPROMP sets up a PCBPL
for the OAT -on nucleus. If the OAT-off nucleus
is contained in the dump, AMOPROMP sets up
a PCBPL for it. An SVC dump may not con­
tain the OAT -off nucleus.

Module Label

AMOPRPMS

AMDPRNUC

• CSA - Using the address ranges taken from AMOPRNUC
the GOA during print dump initialization,
AMOPROMP sets up a PCBPL for both the
non extended and extended CSA.

• SOA - Using the address ranges taken from the AMOPRNUC
AOA T index tables and the AQA T tables for
each system queue area subpool, AMOPROMP
sets up a PCBPL for both the nonextended and
extended SQA. If the address ranges are not
available, AMOPROMP sets up a PCBPL using
the address ranges from the GOA.

3 For the STORAGE or REAL parameter (with no AMOPROPS
subparameters). AMOPROMP writes the contents

of the 16 general purpose registers, 16 control registers,
4 floating point registers, the prefix register, and the
current PSW from the CPU on which the dump was
taken. If input is from AMOSAOMP, this information
is taken from the CPUSTATUS record. Otherwise, it is
from the dump header record .

r

t'"" " r:;- ~ !'I>
::I
~ -., =- ;;.

s: :;-=-
".. 3: -!'I>
:!. "..
".. :;-
1;;

.,
iii·

I 1;;

'l
Q -"C = !'I> 3: .,

q :s
Q -t:I:l s:

'-f PRDMP Diagram 10. The PRINT CURRENT/JOBNAME Control Statelllents (Part !of4)
tv
00

~
<:
CIl

m
;><
"' t
>
(l
[.
"' ()
~
@
CIl

"'
<:
;:;'
"' >
0.:
'" r
o

(It<

;:;'

r
-<
N
00 .
00
'D

..:...
~

n
o

"0
'<: ..,
cii:i'
~

0:::
3::
n
o ..,
"?
'D
00
N

'D
00
a-.

From
Input M03 Process

PRINT CURRENT

): " ::>

COMMON

CURASCB

QAS~]
1

PRINT JOBNAME

Control Statement

JOSNAME = (name 1, name 2", ,)

ASVT ASCS rl rl. "-J= name· x

\.,

Obtain ASCS addresses:

•

•

PRINT CURRENT - For
SVCDUMP or SYSMOUMP,
AMDPROMP obtains the
cross memory address spaces
from COMMON. For
SADMP, AMDPRDMP obtains
the cross memory address
spaces for each on Ii n e pro-
cessor usi ng the CPU status
record, ASVT, and PSA. If
any of the four cross memory
address spaces (home, primary,
secondary, or cross memory
lock) for a given processor
have the same ASIO, that
address space is only pro-
cessed once. If AMOPRDMP
cannot determine the ASI 0
of the cross memory address
spaces or if they are not in
the dump data set, the ASCS
of the address space that was
current when the dump was
taken is used.

PRINT JOBNAME - Obtain
addresses of ASCBs associ-
ated with jobnames specified
in the control statement,

M011
Part 3

\., '-'

~
~.
::I

l
::
~

~
:2.
~
{i;'

::: r
:2.
~

i I::
~ ~ a ;;­
~ ~.
:1 r.;r

'-'! = = -- = = :: :: ~

r
-<
IV

~

00
\D

W
tEd
n o
~ .,
0;;'
::r -1:1:)

~
n o .,
'?
.....
\D
00
IV

\D
00
0'

n
::r
I"

~
(I) .,
w

'" .,
a"
o
t::
:3
'0

:»
~
o
'i:I

'" I:)

a::: ::g

W
I
tv
'-0

r r

PRDMP Diagram 10. The PRINT CURRENT/JOBNAME Conh'o) Statements (Part 2 of 4)

Extended Description

1 When AMDPROMP encounters a PRINT control
statement with the CURRENT or JOBNAME

parameters, it gets the ASCB(s) associated with the
parameter.

If the exit control table (ECT) indicates the jobnamel
current exit is in effect, AMDPRDMP passes control
to the user-exit module before beginning its processing.

• CURRENT - AMDPRDMP formats and prints the
cross memory address spaces (home, primary,
secondary, and cross memory lock). For SADMP
cross memory address spaces, AMOPROMP formats
and prints ASCBs for each outline processor. For
SVCDUMP or SYSMOUMP cross memory address
spaces, if the cross memory address spaces cannot
be determined, AMOPROMP gets the address of
the current ASCB and the current AS I 0 from the
CURASCB and QASID fields in COMMON respec­
tively. If either value is zero, AMOPRDMP cannot
print CURRENT data and issues a message to that
effect.

Note that if the ASIO of any of the four possible
address spaces is the same, that address space is only
printed once and a message is issued to that effect.

• JOBNAME - AMOPROMP builds a list of job­
names specified in the control statement. It
compares the jobname specified in each ASCB
with the names in the list. Whenever an ASCB
is found with a specified jobname, a switch is
set in the jobname list indicating the name has
occurred.

Module Label

AMOPRUIM AMOUSRXT

AMDPRPCR

AMOPRPJB

r

~,;
m a
l ~.

fl
~ a: a· ;. ;; ..

iii'
IE

." Q

a :
! !
'--oO! :s
Q --!

VJ
I

VJ
o

~
<:
CIl

W
to

l
:>
(l
::r
~'

~
CIl o
:l
~'

?
Q.
til

£'
(:;'

~
N

Cf'
00

'P
w

@

(J
o
"0
'<
QQ'
::r -III
~
(J
o .a
....
\0
00
.N

\0
00
Cl'.

PRDMP Diagram 10. The PRINT CURRENT/JOBNAME Control Statements (Part 3 of 4)
From

Input M011_ Process
PRINT CURRENT/JOBNAME p''''a. ASCB LDA RD FBQE

I I LOA 1'""1 r If PRINT CURRENT/JOBNAME
tFBQE tFree Area

Size 2 Build PCBs for region bounda-.. , ries of ASCB and enqueue PCBs
\

Low' fl to print regions. \
\ Size

P-LiST
I

'---"'.
'---v' Low 4 PCB PRINT CURRENT/JOBNAME

High.
..

Queue r- Oo.

ASID > 3 Format and print control blocks ..
for each ASCB by invoking
SUMMARY FOAMAT verb

PRINT CURRENTfJOBNAME ASCB ASXB exit.

I
:AtSPL

I
TCB

t RB • TIOT I
t DEB

'('-SAB
I PRINT CURRENT

• CDE
• LLE r---~

t XSB • STKE I I 0;:) 4 Print registers and current PSW.

I
Real Address of the Segment Table

• AT
SAB I

I nformation from the L T, AT, ET • IHSA I I I
Status of ASTEICMA Status of ASTESSEM I

SWD in COMMON
I

PRINT CURRENT ~ I GPASFND = 1 ~-----
PRINT CURRENT/JOBNAME

Dump Header

16 General Prefi x Register

}
5 Print storage associated with

Purpose Registers 16 Control Registers
ASID.

Current PSW 4 Floating Point Registers

Output

to.
0 0 ..
0 0,

0 0 if PRINTERo . .. I I

.. ,BLSQSUM1 po ~

~TOGetNext
Control Statement

~ '-' '-'

t'"'
~.

I
3: ~
lID fII

~ '" -... ;; . ;"
;;" ;;-

=-I 3:
"'d lID a ;;-
~

...
;" ... ;;" -~ ¢

¢ --= = 3: 3: :s

r
-<
10
00 ,

00
'0

W
I5J

~
::I.

OQ

a-.... = s:::
Q
-?
--'0
00
10

--'0
00
0\

n
!
co ...
w

." ...
~ ..
o
~

"C:)

);
s::: o
."
i" o
s:::
,:g

W
I

W

r r r

PRDMP Diagram 10. The PRINT CURRENT/JOBNAME Control Statements (part 4 or 4)

Extended Description

2 AMDPRDMP uses the region descriptor to deter-
mine the beginning and ending addresses of the

private area. Then it determines the unallocated
space from the FBQEs for the ASCB. AMDPRDMP
calculates addresses for space allocated to the region.
Then using the addresses in the parameter list,
AMDPRDMP builds a PCB to contain the addresses.
It enqueues the PCB in its proper sequence in the PCB
queue, then reads and formats the storage areas speci­
fied in the PCBs. As the storage is written the
PRINTER data set, AMDPRDMP dequeues the PCBs.

3 PRDMP invokes the SUMMARY verb exit with
the FORMAT keyword for each ASI D selected in

Step 1. SUMMARY formats the ASCB and each TCB.

• RBs pointed to by the TCB.

• Extended status blocks (XSBs) pointed to by
each active request block (RB).

• Queue of PCLlNK stack elements (STKEs)
associated with each XSB.

• Load list.

• Job pack queue area.

• DEBs associated with the TCB.

• Task input/output table (TIOT) for the TCB.

• Data management control blocks for the TCB
(DCB and 10B/ICB/LCBI.

• IDS control blocks for the TCB (XDBA
(EXCPD) and UCB).

• RTM control blocks for the TCB (RTCT,
RTM2WA, EED, SCB, FRRS, and IHSA).

• XSBs and STKEs pointed to by the I HSA.

Modul. label

AMDPRDPS PCBRTN

AMDPRDPS PCBENQ1

AMDPRDPS PRNTSTG

AMDPRUIM AMDUSRXT
BLSQSUM1

IECDAFMT

IECIOFMT

IEAVTFMT

IEAVTFMT

Ext.nded Description Module Label

4 For the CURRENT parameter, AMDPRDMP AMDPRDPS PRTSTGO
writes the contents of the prefix register, the 16

general purpose registers, 16 control registers, the 4
floating point registers and the current PSW (if available'
in the PRINTER data set. AMDPRDMP checks the
GPRSFND bit in SWD of COMMON to determine
whether it should write the registers_ AMDPRDMP AMDPRPCR
will obtain the current ASCB and ASIO. The CVTTCBP
points to a four word table. The fourth word of that
table points to the current ASCB. If the current ASCB
cannot be determined, the following comment is
written:

'UNABLE TO ACCESS CURRENT TASK'

For a SADMP, AMDPROMP determines if the current
address space 'I the dummy wait task.

The address space il the dummy wait task when the
PSAAOlD field in PSA points to the master scheduler's
address space and the PSAANEW field points to WAIT's
address space. The WAIT task has an ASIO of zero. If
the current ASCB is the dummy wait the following
comment is printed:

'CURRENT TASK is DUMMY WAIT TASK'

5 AMDPRDMP prints the storage associated with
the requested address spaces, and fills in PCBPL.

6 AMDPRDMP prints the TCB summary collectad
during formatting of control blocks.

AMDPRDPS AMDPRDPS

I:"'" " n' ~
; f!
l ;:;.
3: ~ =-= 3: ;-... = j;ii' ~
Fii ::1. = I i'ii

."
Q -...

Q -~ = ... 3:
~ :s
Q -= 3:

W
I

W
tv

== <:
CIl --tTl
>=
~
5-
(J>

c..
>­
(l
::r

~
2"
~
CIl
(J>
<: (3.
(J>

>-
0.:
'" r o

Qq
(3.

r
-< IV
~
00
'.c>
.:...
IS
n
o
'0
'<
~.

;?;
.....
t:xl

== n o
~
.....
'.c>
00
,]'V

'.c>
00
0-,

PRDMP Diagram 11. The CPUDATA Control Statement (Part 1 of 2)

Input

CVT CSO

I CVTCSO M
PSA SVT

I PSASVT rI
CVT LCCAVT

+ LCCAT

Process

:>1

:;>2

Format and print common
system data.

Format and print supervisor
vector table.

For Each CPU

) : : >3 Format and print logical con­
figuration communications
area. L-_....II

CVT

+ PCCAT

Dump Header/CPUSTATUS

\.,

16 General Purpose Registen
16 Control Registen
4 Floating Point Registers

Prefix Register
Current PSW
CPU Timer
Clock Comparator

~ 4 Format and print physical
configuration communications
area.

=> 5 Print current PSW and all
registen for CPU. if input is
from stand-alone dump.

6 Format and print prefixed
storage area.

7 Print a message indicating the
ASIO of the cross memory
eddress spaces.

8 Format data in the Vector
Facility (VF) registers.

\.,

LCCA t:= ..
.. I Table

: ~ ~ PCCA
Table

I III

.. Physical
CPU rill Address
Table

I

i

Output

0
0 g /I PRINTER
0
0
0

8

Listing

Message CJ M~/PRINTER

\.,

t""'

[
:: r: .. r
~ -ii- PS-
;r ~ =-
I ::

"'d .. a ~
'i ;.
::l ;:

-..e ~

~ ---- = ! a;

r
-<
IV
00 ,

-00
\0
W
r[j)

n o
~
:l.

(JQ
::r -ttl
~
n
o
?
\0
00
IV

\0
00
0'.

n
::r
~
'tl
to ..,
w

.., ..,
aO
o e
S
"0

>
~
o
'"CI
~ o
~
:E

W
I

W
W

('

PRDMP Diagram 11. The CPUDATA Control Statement (Part 2 of 2)

Extended Description

The CPUDATA control statement causes AMDPRDMP
to format and print processor·related information.

AMDPRGCD invokes AMDPRUIM to initialize the
exit interface and then uses the Control Block For·
matter exit service to format control blocks.

1 AMDPRDMP uses the CVT pointer to locate,
format, and print the common system data area

(CSA).

2 AMDPRDMP uses the PSA pointer (PSASVT) to
locate and print the supervisor vector table (SVT).

3 AMDPRDMP uses the CVT pointer to locate,
format, and print the logical configuration com·

munications area (LCCA) for a processor. If the LCCA
vector table pointers are invalid, the prefixed storage
area (PSA) pointer to the LCCA is used.

4 AMDPRDMP uses the CVT pointer to locate,
format, and print the physical configuration

communications area (PCCA) for a processor. If
the PCCA vector table pointers are invalid, the pro·
gram uses the pointer in the PSA to get the PCCA.
Output comments are issued if pointers are invalid
or if the control block cannot be found.

5 If the input data set is from AMDSADMP, the
PSW and all registers for the processor are

obtained from the CPUSTATUS record. Otherwise,
AMDPRDMP gets this information from the dump
header record. In either case, AMDPRDMP prints
the current PSW and all registers for the processor.
A table of processor addresses is kept to avoid
duplication of processing. An output comment is
issued if the data cannot be printed.

6 AMDPRDMP formats and prints the prefixed
save area (PSA) for the processor and the current

PCLlNK stack element (STKE) queue pointed to by
the PSA.

Module Lebel

AMDPRGCD

AMDPRGCD

AMDPRGCD

AMDPRGCD

AMDPRDPS

AMDPRGCD

AMDPRDPS

('

Extended Description

7 AMDPRDMP prints a one line message that
indicates the ASID of the cross memory address

spaces (home, primary, secondary, and cross memory
lock) held.

8 If the input data set is from the AMDSADMP,
AMDPRGCD invokes the control block

formatter to cause VF data to be formatted. Vector
data can only be formatted on a SADMP processor
that has the Vector Feature installed.

('

Module Label

AMDPRGCD

AMDPRGCD

t"" J:
;:;. I:iI::I

~ !
l ~.
~ i.
;. ~ .. '" ;- ~
i'ij' .. ;r
I i'ij'

""d =
= -'1 =
::l ~
~ ,.
=
!

"f PRDMP Diagram 12. The EDIT Control Statement (Part 1 of 10)
VJ
.J;:o.

~
~
~
tt
5.
8-
>
M
=-
~
2
~
CIJ
(1)

~.
>
E.:
'"
~ t=i.

~
IV
Cf'
OQ
100

~

©

~
::l.
~ ...
..... = ~
(j
o
fj
...-
100
OQ

J'-l
...-
100
OQ
0'1

Input

\..,

From
M03

1 Ob,in EDIT parameters

I
I
I
I
I
L_

2 Obtain GTF record from

• external data set not on
direct access device

or

• external data set on direct l _
access device

or

• dump data set.

l,

Output

INRFCFGS

EXTTRC

\.,

r'
~.

~
~

3: ::
It ~
;- =-.. .. ;- n­
r;; ;r

~

I ~
"'d It ; ;;-
~ ::3.
.., It
4 rr
= a. -
- == == ~ 3: :s

t'"'
-<!
N

~
00
I,C)
I
©

Q
~ ::1.
0tI
::r = ~
Q
-?
.....
I,C)
00
.N

.....
I,C)
00
0'1

~

f ...
.....

."
::I. a

f
>
~

~
~
~
."

W
I

W
VI

r

PRDMP Diagram 12. The EDIT Control Statement (Part 2 of 10)

Extended Description

1 When AMDPRDMP encounten an EDIT control
statement, it initializes the EDIT communications

table (AMDPRTABI pointed to by the AEDITCB field
of COMMON with the EDIT perameter values derived
from the EDIT control statement. It resolves mutually
exclusiva parameter conflicts and sorts selected SSCH,
10, and USR values in ascendini order. Then it issues
a lummary message (AMD2111) to inform the user of
the EDIT options in effect. See Service Aid. for a
description of the EDIT parameten.

2 In order to obtain a GTF record for the fint time,
AMDPRDMP determines the source of the input

data, either an external data set or a dump data let.

• If a DDNAME il specified in the DDNAME field of
AMOPRTAB, AMDPRDMP aaumes that the asso­
ciated DO statement in the AMDPRDMP JCL
describes an extarnal GTF data set. It IatI on the
EXTTRC flag in INRFCFGS field of AMDPRTAB,
then checkl the device to determine whether the
external data set is on a direct access device. If not,
it obtains the first record in the data lat.

• If the data Iat ntlldel on a direct access device,
AMDPRDMP positions to the record with the
oldest timestamp. (If no timlltamp ilawilable,
AMOPRDMP processes the data Iat .. if it were not
on a direct ecC8SS davicej

Module

AMPRCTL

AMDPROOT
AMDPRSCN

AMDPRGET

Label

r

Extended Description

• If the GTF bufferl are in a dump data set,
AMDPRDMP obtains the address of the CVT in the
dump from CVTADDR in COMMON. From the CVT,
AMDPRDMP locates MCHEAD. the control table
of the monitor call (MCI routing facility. From
MCHEAD, AMDPRDMP locates the MC control
element (MCCEI which in turn points to a chain of
MC queue elements (MCOEsl. AMDPRDMP scans
the chain for the GTF application MCOE. The
MCOE contains the address of the GTF control
table, GTFPCT. If the dump is from AMDSADMP.
AMDPRDMP uses the GTFPCT pointer (HOHEADI
to the most recent GTF buffen. AMDPRDMP also
formats the GTFBLOKs in order from oldest to
newest. If the dump is from SVC Dump, AMDPRDMP
uses the GTFPCT pointer to the save queue (SLO
HEADI. The save list element chain is scanned for
ASID of the dump. The bufferl required are then
located. (In either casa, the queue pointer il to a
buffer control block which points to the buffer.)

AMDPRDMP stores the address of the record in the
CURREC field of AM DPRTAB. (For a description
of GTF outPUt records, see the "Data Are IIICtion.)

r

Module Label

r- ~ ~ .
::I '" ~ -... =- n'
:: ;-=-
~ 3: -~ ::! • ~
~ ;-
tii' ... S·
I tii'

"'0 Q

a
....., -'1:1 = ~ 3: ...

-< ::
Q, -= ::

Vol
I

Vol
0'\

~
~ --ttl
>I

[
8-
>
(l
=.
~
s::
t;

~
:!
~'

> s.:
'"
b

OQ

n'

t"'"
-<
IV
00 . --00

'P
I!)l

n o
~
::1,

<§. ... -= ~
n o
~ --.c
00
JV
-.c
oc
C1\

PRDMP Diagram 12. The EDIT Control Statement (Part 3 of 10)

Input

4..,

Time Stamp Record

I ~~~·II ~1'~1' 'I
Lost Event Record

I AID I FID J
X'OO' X'02'

Lost Block Record

1 ~~~·II ~~~3,1
AMDPRTAB

USEREXIT j..---
Parameter List

, I Record II
Output Buffer

GTF Options

EID

Data

From M013
1

Process

3 Format all lost event and lost
block records and associated
timestamp records.

=Nonblank
r~ I 1 ; 4 ,,§ ,~, ""'''' ,. OR"" I routine to:

J • print the contents of the
output area.

or

• bypass the record.

or

• eliminate the user exit routine.

or

• format the record regardless
of EDIT option selectivity.

or

• format record according to
EDIT options selected.

or

• terminate EDIT execution.

~

Output

0 0
0 I/PRINTER 0

0
0 _____ 0

-=---=---=- 0 0

INRFCFGS Field of
AM DPRTAB

DMDFMT=l J

To Get Next Control Statement

4..,

~
~.

I
3:~
~ I)
ftI -:3. :3 • . '" Sf
I 3:

"'CI • a ~
'i ;.
a S
c a.
.... --= !~

t'"'"
-<
tv
00 ,

-00
\0
.:..
rQi
n
o

"Cl
'<
:!.

O<l
;:r
.....
Cl
3::
n o
~
\0
00
tv

\0
00
0'1

n
::r
~

"Cl
;;
....
w

." a'
tl
§

"Cl

'>
3::
tl
."
:;tl
tl
3::
~

W
I

W
-.)

('

PRDMP Diagram 12. The EDIT Control Statement (Part 4 or 10)

Extended Description

3 If the record has an AID of X'OO', it is a control
record (timestamp,lost block, or lost data).

AMDPRDMP initializes the output buffers using the
FMTPTRN macro instruction and convens the
record to the output format. The formatted records
are written in the PRINTER output data set for later
printing in the AMDPRDMP output listing.

4 If the USEREXIT field of AMDPRTAB is non-
blank, AMDPRDMP passes the record to the user

exit module via a S-word parameter list containing the
address of a copy of the input record, the address of
the output buffer, the address of the GTF option word,
and the addresses of the EID and data fields in the
record. On the return, the user exit routine instructs
AMDPRDMP to do one of the following:

• Print the output buffer.

• Bypass the record and get the next one.

• Eliminate the user exit (set the USEREXIT field
to blanks).

• Format the record regardless of the EDIT options
in effect (set the SYSM and SYS bits on in
GENFLAGSI.

• Format the record according to the EDIT OPtions
in effect.

• Terminate a EDIT processing.

Module

AMDPRREC

AMDPRCOM

AMDPRFLT
AMDPREXT

(' r

Lebel

t"" r:: .. ~
~ II
l ~.
3: ~
'~ =-
If 3:
... ~
;- ~
!il" ... iii'
I;;'

,~ ::
''''CS = ! 3:
''-!! ::t

,= '­,=
3:

!..J.J ,
!..J.J
00

~ a
]l
g-
o.
8-
)-
6
a:
~

~
(1)

C/l
(1)

~
~.

)­
c.:
'"
~
~.

~
N
00

I --00
'P
w

@

n o
~
::1.

~
t:tl

==
Q
-? -\0
00
!'->
......
'-D
00
0'

PRDMP Diagram 12. The EDIT Control Statement (Part S of 10)
From M013

Input
Records

Record
HElD = Exxxil FID = nn n
USRNGTAB

ETlJRange :=I

System Records

Record
rT]6bname 1i3--,

JOBNAMES :.

I jobname r--J

Record (!.
, I

USRFLGS in AMDPRTAB

I ALLU = 1 I

SELU = 1

Record
r- -!iO! ASw:J]
I _ I ASCBADDR

L_.j ASCB .,

3

00) FiD~ IE GENFLAGS :
and I SYS . :>

07

Record II FID=04 landISRM=l,RNIO=l,HH=ll 'I
~_o~r~S~L~I~P~=~l~ __________ J---r---~'

Record ;:;_ •. _ .• _-

I I FID - 05 I and OE~X~Tt;=~l~=====:J=~==~
Record GENFLAGS
I I FlO = 06 I and r.R~N~I~O~=~l~------""'......l..--_..J
Record . __ .. _-----

",vrL.u""VI L."''''' :
I I FlO = 07 I andlCCWS lor CCWI - 1 ~

~

5 Filter record to appropriate
format appendages:

• IMOUSRnn - user/component
format appendage

• AMDPRHEX - hexadecimal
dump routine

• AMDSYS03 - SYSM record
format appendage

• One of the following system
format appendages:

• AMOSYSOO - SSCH, 10
format appendage

• AMOSYSOl - SVC format
appendage

• AMOSYS02 - DSP, PI
format appendage

• AMDSYS04 - SRM, RR, RNIO,
SLIP format appendage

• AMDSYS05 - EXT format
appendage

• AMOSYS06 - RNIO (pro-

duced under ACF/VTAM

Version 2) format

appendage

• AMDSYS07 - CCW format
appendage

l,.

IMDUSRXX

Output

o
o
g //PRINTER
g
o
o
o
o
o
o

:::=!=======:::::::::=: :>I ~
o
o
o
8

o
o
o
o
o
o o
o
o
o
8
8 o
o
o

'-'

t"" ;:;-
<'I>
::I
rIJ
<'I> =-
3:
II> -<'I> ... ;-
;;'

I

"1:1 ...
¢ -= <'I> ... -~
¢ -t:tl
3:

~
<'I>

'" --... ;;--<'I> =-
3:
II>
;;-... ;.
;;'
¢ -== 3:

;s

r
-< tv
00 ,

-00
'-0
..:..,

©

Q
~
::1.

IJQ
;r -= s::
n
o
-? -\0
00
tv

-\0
00
01

n
0-
po
'0 ...
~
'"1

W

::,t'
g"
(:)
= 3
'0

'> s::
(:)
'"tl

~
s::
~

\.;oJ
I

\.;oJ
\0

('

PRDMP Diagram 12. The EDIT Control Statement (Part 6 of 10)

Extended Description Module

5 If the user exit specifiesthat the record should be AMOPAFLT
formatted, or if no user exit is included, AMDPAOMP

performs a variety of tests to filter the record to the
appropriate format appendages:

• If the first character of the EIO is E, the record is a
user record. If the ALLU flag is on, or if the SELU
flag is on and the EIO in the record is included in
the EIO ranges specified in the USRNGTAB of AMOPAAPP
AMOPATAB, AMOPROMP passes control to the
user format appendage IMOUSAxx where xx is
the FlO in the record.

• If the FlO in a user record is 00, the user wants the AMOPAAEC
record to be dumped in hexadecimal, so AMDPRDMP
passes the record to the hexadecimal dump routine,
AMDPRHEX, located in AMOPRDMP.

• If the FlO of the record is 03, the record is a SYSM AMOPRAPP
record. AMDPROMP then uses the option bits in
AMDPRTAB and the EID to determine whether the
record is to be formatted. If so, AMOPRDMP passes
control to the minimal record format appendage.

• Ifthe record is not user or SYSM, AMDPROMP AMOPRFLT
interrogates the JDBNAMES field in AMOPRTAB.
If jobnames have been specified, AMDPADMP
verifies that the jobname in the record matches
one of the selected jobnames. If not, it performs
a similar check for ASCBADDR and the ASCB
address in the record. If no match at all occurs,
the record is bypassed. If a match occurs, or if
neither jobnames nor ASCB addresses ware specified,
AMDPROMP filters the record to the proper system
format appendage.

• If the SYS bit is on in the GENFLAGS field, AMOPRAPP
AMOPROMP passes control to AMOSYSxx where
xx is the FlO.

label

('

Extended Description

• If the SYS bit is off and the FlO is 00, AMDPAOMP
verifies that at least one bit is set on in the SIOFLGS
or IOFLGS2 field, then passes control to the SSCH,
10 comprehensive record format appendage.

• If the SYS bit is off and the FlO is 01, AMOPROMP
verifies that at least one bit is on the SVCFLGS
field, then passes control to the SVC comprehensive
record format appendage.

• If the SYS bit is off and the FlO is 02, AMOPROMP
verifies that either the OSP flag in GENF LAGS is on
or that one of the bits in the PIFLGS field is on, then
passes control to the PI, OSP comprehensive record
format appendage.

• If the SYS bit is off and the FlO is 04, AMOPROMP
verifies that either the SRM, RNIO. AR, or SLIP flag
in GENFLAGS is on, then passes control to the SAM,
RNIO, RR, SLIP comprehensive record format
appendage.

r

~ ~
;::s. ~
~ '" Module label ~ s.
Co n

AMDPRAPP ~ [
a. :::
~ = -. -
I» "' - ... '" _.

= 1;;;-
""Cj = ..,
<= -~ = .., :::
4:s

AMOPRAPP So -==
==

AMOPRAPP

• If the SYS bit is off and the FlO is 05, AMDPRDMP AMOPRAPP
verifies that the EXT flag in GENFLAGS in on, then
passes control to the EXT comprehensive record
format appendage.

• If the SYS bit is off and the FlO is 06, AMOPROMP
verifies that the RNIO flag in GENFLAGS is on and
passes control to the format appendage routine
(AMOSYS06I.

• If the SYS bit is off and the FlO is 07, AMOPROMP AMOPROMP
verifies that the CCWS bit in SIOF LGS or the CCWI
bit in IOFLGS2 is on, then passes control to the CCW
comprehensive record format appendage.

'-f PRDMP Diagram 12. The EDIT Control Statement (Part 7 of 10)
~ From M013

a::
<:
Vl

tTl x
~
::l

~
0.

Input
Part 3

Record

I I FID=03 -- JJ and

Record

I I FID = 00, 01~2.04,os==]] and

6 If record matches the EDIT
options in effect, format the
record and its associated
timestamp record:

;t> ,..,
(")

::r'
~.

Record

IT E: {~~:} II Device ,I r
II ! s· All or selected ~YSM records

• All comprehensive system
records

2'
~
Vl
C1l

~
(S"
C1l

;t>
5:
CJ>

b
(JQ
(S"

l'
-<
N
00 ,

00
>0
W
o
n
o
'0
'< ..,
ciQ'
:=:
0::
3:
n o ..,
'0

>0
00
N

'-C
00
0-

SIODVADSI

I] Devi~ .D and

Record

2100 '
5101
5102

EI 5103 > Device
5104
5200
5201 •

10DVADS 1=

I Device t I and

Record

EID = 1000 I SVC Number. I I ,
SVCNUMS 1=

Isvc Number. I and

Record

IT~ :~~~} II PI Code .1 I
T

PICODES I

II t I I and

Record

r'} 0002
EID =

0003
0004 I

L

or

• All SSCH or RSCH records

• Selected SSCH or RSCH
records

• All 10, PCI, EOS, HSCH,
CSCH, or MSCH records

• Selected 10, PCI, EOS, HSCH,
CSCH, or MSCH records

• All SVC records

• Selected SVC records

• All PI records

• Selected PI records

• All DSP records

l,

Output

o
o

"J ~ IIPR INTER
o
o
o

~

t'""
~.

=
~ =-:: " ~ = til

~ rIJ -::2. ~. = r;; ~ =-I
~

""d = a ~
'g ::2. = .. ;; -'-'!i 0
0 -. -- == 0:1 ~ :: :s

r
-<
t-J
00 ,

00
-0
W
(S,'

n
o

'"Cl
'< ciQ.
:=: -o:l
a:::
n
o

'"Cl

-0
00
1'-'
-0
00
a,

(J
;:r'
po

'"Cl
t;
....
w

'"tI ...
g'
o
c
3

'"Cl

-;
a:::
o
'"tI
~ o
a:::
~

\.;.) ,
.j:::..
.......

r

PRDMP Diagram 12. The EDIT Control Statement (Part 8 of 10)

Extended Description

6 The system format appendages perform more tests
on the record to ensure that the record qualifies

for formating according to the EDIT options that are
in effect.

Module

• AMDSYS03 determines whether all SYSM records AMDSYS03
are to be formatted (SYSM bit in GENFLAGS is on)
or just selected event records.

• AMDSYSOO, AMDSYS01, AMDSYS02, AMDSYS04, AMDSYSOO
AMDSYS05, and AMDSYS06 check the SYS bit in AMDSYSOl
GENFLAGS to determine whether all comprehen- AMDSYS02
sive records should be formatted or just selected AMDSYS04
event records. AMDSYS05

• If the user specifies the CPU option, AMDSYSOO
verifies that the given CPU value matches the
CPU 10 in the 10 and/or SSCH record.

• AMDSYSOO"determines whether the record is on
10 or SSCH record by checking the EID field. If it
is an SSCH record, AMDSYSOO checks the
SIOFLGS field. If the ALLS bit in on, or if the
SELS bit is on and the device address in the record
is among those specified in SIODVADS, AMDSYSOO
formats the record. If the record is an 10 record,
AM DSYSOO checks the IOFLGS2 field. If the ALLI
bit is on, or if the SEll bit is on and the device
address in the record is among those included in
10DVADS, AMDSYSOO formats the 10 record.
Either the SSCH or the SIO option cause formatting
of SSCH and RSCH records. The 10 option causes
formatting of the 10, PCI, EOS, HSCH, CSCH, and
MSCH records.

AMDSYS06

AMDSYSOO

AM DSYSOO

r

Label Extended Description Module

• AMDSYS01 checks the SVCFLGS field. If the ALLV AMDSYS01
bit is on, or if the SELV bit is on and the SVC number
of the record corresponds to one in the SVCNUMS
field, AMDSYS01 formats the record.

• AMDSYS02 checks the record EID to determine the AM DSYS02
record type. If the record is a PI record, it checks the
PIFLGS field. If the ALLP bit is on, or if the SELP
bit is on and the PI code in the record corresponds to
one in the PICODES field, AMDSYS02 formats the
record. If the record is a DSP record, AMDSYS02
verifies that the DSP bit in GENFLAGS is on, then
formats the record.

r

Label

t"'"
~ f)'

II> = en

l
.-..
f)'

3: ~ =-
III 3: ~ .. III ;. -II>
1ii .. ;-
I 1ii

a=
Q -'i == .. as ~

Q -== 3:

V.)

b
~
<
r:/J

~
>=
tt

~
>
~ =-~.
;;­
n1
w
~.
> s.:
'"
f
n'

B
~
00
-.0
I

W

@
(]

~
::!.

()Q
t:r' -= a:
Q
f3
.....
'0
00
.JV
.....
'0
00
0'\

~RDMP Diagram 12. The EDIT Control Statement (Part 9 of 10)

From M013

Input

Record
,]~1)=6201
Record I I 8100 II ~~ .. , ~~~u

EID = 8200 and I RNIO - 1 : >
Record

~~~C:l===i--------r-~ I I - -4002 I and '- n n 
. _ EID- 4003 . 
Record 

4004 
EID = 4005 

___ ~006_ 
and r'~~~p~~; : > 

Record 
, , EID = 4001 , and I~-s~~' ',- : ~ 

Record 
" FlO = '06 I and' SYS = 1 

'--y J 

Record and GENF LAGS }. : ::> 
I I EIO = :~~~ I and.' RNIO = 1 

Record GENFLAGS 
I I FlO = 07 I and I CCWS = 1 

~ J 

and 

IIEIO = ~~:II Devic1]] 
SIODVADS 1-

R I} Device +1 1 and L~.:~S __ ~ : ~ 
ecor 

FlO - 07 - , 1 and [J:cWf =D 

Device f 
1= 

\.., 

6 continued 

• All EXT record 

• All RNIO records 

• All RR records 

• All SLIP records 

• All SRM records 

• All RNIO records (produced 
under ACF/VTAM Version 2) 

• All SSCH CCW records 

• Selected SSCH CCW records 

• All 10 CCW records 

• Selected 10 CCW records 

\., 

Output 

o 

=::::;:======~=:>I g !/PRINTER 
o 
o 
o 
o o 
o o 
o 
o 
o 
o 

o 
o 
o 
o 
o 
o 
o o 
o 
8 

To Obtain Next GTF Record 

'-

~ 
~ 
::I 

I 
3: ~ = ...... '" ~ -., ... 
iii' n' 
1n ;;-

=-I 3: 
"I:j = ~ ;;-

'C ... 
~ iii' ., 

1n ~ = = -. ...., -- == = ~ 3: 



r' r' r' 

r PRDMP Diagram 12. The EDIT Control Statement (Part 10 of 10) t"'" ,a -<: ;:';' 
~ t!> tv = fIJ 

00 -. Extended Description Module Label ~ 
.., - ;::;. - =- -00 :: t!> 

'P 6 continued ~ 

w = ~ ~ 
I[j) AMDSYS04 checks the record EID to determine AMDSYS04 .... = a j;' -t!> 
('j the record type. If the record is an SRM record, r;; :!. 
0 = "0 it verifies that the SAM bit in GENFLAGS is on, I iii 
'< ..., 

then formats the record. If the record is an AR "'= 
Q 

QQ' ..., 
0- record, AMDSYS04 verifies that the RR flag in a -.... "g O::l 
..... GENFLAGS is on, then formats the record. If ~ t::r:l .... - :I 

~ the record is an ANIO record, AMDSYS04 verifies ~ 

that the ANIO flag in GENFLAGS is on and then ~ 
('j .... 
0 formats the record. If the record is a SLIP record, -..., == '? AMDSYS04 verifies that the SLIP flag in :: 
'-0 GENFLGSl is on and then formats the record. 
00 
JV • AMDSYS05 verifies that the EXT flag in AMDSYS05 - GENFLAGS is on, then formats the record. '-0 
00 
0'1 • AMDSYS06 verifies that the RNIO flag in AM DSYS06 

GENFLAGS is on, then formats the record. 

a If the user specifies the CPU option, AMDSYS07 AMDSYS07 
verifies that the given CPU value matches the 
CPU I D in the 10 and/or SSCH record. 

• AMDSYS07 checks the CCWS bit and the CCWI AMDSYS07 
bit in GENFLAGS to determine whether CCW trace 

('j records should be formatted for SSCH and 10 
0- events. If either or both CCW bits are on, 
'" "0 AMDSYS07 determines whether the record is an .... 
." 

10 or SSCH record by checking the E I D field . ..., 
:-> When the CCWS bit is on, and the record is an SSCH 

'" record, AMDSYS07 checks the SIOF LGS field. 
::l. If the ALLS bit is on, AMDSYS07 formats all SSCH :::s ... 

CCW records. If the SELS bit is on and the device 0 
t:: address in the record is among those specified in 
S SIODVADS, AMDSYS07 formats selected SSCH "0 

""' CCW records. When the CCWI bit is on, and the 
~ record is an 10 record, AMDSYS07 checks the ~ 
0 IOFLGS2 field. If ALLI bit is on, AMDSYS07 

'" formats all 10 CCW records. If the SE LI bit is on 
iI' 
0 and the device address in the record is among 
~ those specified in 10DVADS, AMDSYS07 formats 

'" selected 10 CCW records. '-" 

w After the record is formatted, AMDPRDMP writes it in AMDPRCOM 
I the PR I NTER output data set for later printing: .j::.. 
w AMDRPDMP then obtains the next GTF record for 

formatting. 



"Restricted Materials of IBM" 

Licensed Materials - Property of IBM 

Section 3: Program Organization 

Program Loading 

This section describes how AMDPRDMP is organized to carry out the formatting 
and printing of information. It has three parts: 

• A description of program loading. 

• Module calling sequences for AMDPRDMP initialization, control statement 
processing and control statement execution. 

• A description of the data-reading operation. 

As shown in Figure 3-2, there are eight modules that are resident in virtual 
storage and link-edited into the single AMDPRDMP load module during system 
generation: 

• AMDPRCTL is the main control module. It initializes the AMDPRDMP 
program and the common communication area, scans the user control 
statements, and initiates the execution of the functions requested by the 
control statements. 

• AMDPRCOM contains the common communication area (COMMON) used 
by all AMDPRDMP modules; it also contains a number of small service 
routines used by other AMDPRDMP modules. 

• AMDPRRDC is the read control module. 

• AMDPRSEG is the segment loading module. It loads AMDPRDMP 
modules from JOBUB, STEPUB, or SYSl.LINKLIB into virtual storage 
when they are needed to perform functions requested by fom1at control 
statements. 

• AMDPRPMG is a message module that contains the addresses and text of 
AMDPRDMP messages. 

• AMDPRUIM is the exit interface module. It loads the service modules 
provided for the exits and invokes BLSQECT to link to exits. 

• AMDPREAD reads the dump records and builds maps of the dump data set 
if SYSUTl is not defined. 

• AMDPRGSA contains glue service routines for user exit storage access, and 
print and index services. 

3-44 MVSjExtended Architecture Service Aids Logic L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 

J 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Executor Modules 

In addition to the modules that are resident in virtual storage, there are four other 
categories of AMDPRDMP modules that are resident in SYSl.LINKLIB: 

• Executor modules for all format control statements except EDIT. 
• Service modules for all format control statements except EDIT. 
• EDIT modules. 
• Read initialization modules. 

AMDPRGCD 
AMDPRLPA 

AMDPRNUC 
AMDPRPCR 

AMDPRPJB 
AMDPRPMS 

L Y28-1189-3 co Copyright IBM Corp. 1982, 1986 Chapter 3. Print Dump (AMDPRDMP) 3-45 



PRINT NUCLEUS 
PRINT SQA 
PRINT CSA 

Executor 

AMDPRNUC 

PRINT REAL 
PRINT STORAGE 

Executor 

PRINT CURRENT 

Executor 

AMDPRPCR 

I 

"Restricted Materials of IBM" 

Licensed Materials - Property of IBM 

PRINT JOBNAME 

Executor 

AMDPRPJB 

AMDPRUIM 
AMDPRPMS 

CPUDATA LPAMAP 

Executor Executor 
AMDPRDPS 

AMDPRGCD AMDPRLPA 

AMDPRDMP load module 

AMDPRCOM AMDPRRDC --I AMDPRMST 1- -I AMDP 

AMDPRCTL AMDPRSEG - -/ AMDPRABS I 
(executor for 

/ AMDPRFMT I function AMDPRUIM --I AMDPRLRF I 
statements) 

AMDPREAD AMDPRPMG --I AMDPRLOD I 
AMDPRGSA 

--I AMDPRCMC I 

I AMDPRECT I 

Figure 3-1. AMDPRDMP Loading 

3-46 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986 

RSLI 1 

J 



"Restricted Materials of IBM" 

Licensed Materials - Property of IBM 

Service Modules 

EDIT Modules 

Executor modules govern the execution of functions requested by all 
AMDPRDMP control statements except EDIT. The EDIT modules form a 
category of their own.) The executor routines for function control statements 
(CVT, TITLE, GO, ONGO, NEWDUMP, NEWTAPE, SEGT AB, and END) are 
part of AMDPRCTL. The executor modules for SUMMARY, FORMAT, 
LPAMAP, CPUDATA, and PRINT are in SYSl.LINKLIB. They are brought 
into virtual storage by AMDPRSEG just before the associated format control 
statement is executed. All other control statements are user exits whose program 
modules are defined in the ECT. They are not loaded by AMDPRSEG, but are 
linked to AMDPRUIM via BLSQECT. 

AMDPRDPS 
AMDPRECT 

AMDPRFMT 
AMDPRFUB 

Service modules perform functions that are either common to several executor 
modules or can be used by user-exit modules. Some small service routines are 
contained in AMDPRCOM. However, the larger service modules are in 
SYSl.LINKLIB. Like the executor modules for these control statements, the 
service modules in SYSl.LINKLIB are brought into virtual storage by 
AMDPRSEG just before the control statement is executed. The service modules 
for user-exit routines are loaded by AMDPRUIM during initialization and are 
resident for the remainder of AMDPRDMP processing. 

AMDPRAPP 
AMDPREID 
AMDPREXT 
AMDPRFLT 
AMDPRFMG 

AMDPRFRM 
AMDPRGET 
AMDPROOT 
AMDPRREC 
AMDPRSCN 

AMDPRSMG 
AMDPRSN2 
AMDPRSN3 
AMDSYSOO 
AMDSYSOI 

AMDSYS02 
AMDSYS03 
AMDSYS04 
AMDSYS05 
AMDSYS06 

AMDSYS07 
AMDSYIOI 
IMDUSRF9 
IMDUSRFE 
IMDUSRFF 

EDIT modules are loaded into virtual storage from SYSl.LPALIB to execute the 
function requested by the EDIT control statement. The EDIT function executes 
in two major loads: EDIT keyword processing and input data set formatting 
(editing). Figure 3-3 represents maps of the AMDPRDMP storage area during 
the two loads. Storage structure during the second load depends on the type of 
input data set, dump or external. 

The three parts of Figure 3-3 contain the resident modules for AMDPRDMP 
(described previously). Figure 3-3A also contains the EDIT initialization module 
(AMDPROOT) and the keyword scan modules (load module name 
AMDPRSCN). Load module AMDPRSCN contains the following EDIT 
modules: 

• AMDPRSCN, the EDIT keyword isolation module. 
• AMDPRSCN2, the EDIT keyword processing module. 
• AMDPRSCN3, the EDIT control statement termination module. 
• AMDPREID, the EID table. 
• AMDPRSMG, a message module. 

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 3. Print Dump (AMDPRDMP) 3-47 



AMDPROOT 

AMDPRSCN 

AMDPRDMP 
Buffers 

Free Area 

AMDPRDMP 
Resident Modules 

High Address 

Low Address 

3A - AMDPRDMP Storage During EDIT Keyword Scan 

AM DPROOT 

AMDPRXED 

User Exit Module 

Format Appendages 

AMDPRDMP 
Buffers 

Free Area 

AMDPRDMP 
Resident Modules 

High Address 

Low Address 

38 - AMDPRDMP Storage During Formatting of Dump Data Set Records 

AMDPROOT 

AMDPRXED 

External Data Set Buffers 

User Exit Module 

Format Appendages 

AMDPRDMP 
Buffers 

Free Area 

AMDPRDMP 
Resident Modules 

High Address 

Low Address 

3C - AMDPRDMP Storage During Formatting of External Data Set Records 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Figure 3·3. AMDPRDMP Storage During EDIT Control Statement Execution 

3-48 MVS/Extended Architecture Service Aids Logic L Y28-\\89·3 © Copyright IBM Corp. 1982, 1986 

J 

J 

J 



"Restricted Materials of IBM" 

Licensed Materials - Property of IBM 

Read Initialization Modules 

The remainder of AMDPRDMP's storage area is buffers used by other 
AMDPRDMP functions. If EDIT is not the first control statement for this 
execution of AMDPRDMP, module AMDPREAD is also in storage. 

Figure 3-3B depicts AMDPRDMP's storage area after EDIT keyword scan, if 
GTF buffers are to be edited from a dump data set. AMDPROOT remains in 
storage because it contains the EDIT communication table (AMDPRTAB) needed 
by all EDIT modules. Load module AMDPRXED has replaced AMDPRSCN in 
storage. AMDPRXED contains the following EDIT modules: 

• AMDPRFRM, the EDIT execution control module. 
• AMDPRGET, the EDIT I/O module. 
• AMDPRFLT, the EDIT record filter module. 
• AMDPREXT, the user exit interface module. 
• AMDPRAPP, the format appendage interface module. 
• AMDPRREC, the control record format and hexadecimal dump module. 
• AMDPRFMG, the EDIT message module. 

Figure 3-3B also contains system and user/component format appendages that are 
loaded by AMDPRAPP, using AMDPRSEG, to format input records. The 
following are format appendages: 

• AMDSYSOO, AMDSYSOl, AMDSYlOl, AMDSYS02, AMDSYS03, 
AMDSYS04, AMDSYS05, AMDSYS06, AMDSYS07 - system format 
appendages. 

• IMDUSRF9 - VSAM format appendage. 

• IMDUSRFE - SAMjPAM/DAM format appendage. 

• IMDUSRFF - OPEN/CLOSE/EOV component format appendage. 

The remainder of the AMDPRDMP storage area is occupied by AMDPRDMP 
buffers that are needed to obtain infonnation from the dump data set and 
optional user exit modules. 

Figure 3-3C differs from 3B in that external data set buffers, into which records 
from an external data set are read, occupy part of the storage devoted to format 
appendages in 3B. Following these buffers are the format appendages, and any 
remaining storage is occupied by AMDPRDMP buffers left from a different 
AMDPRDMP operation, and module AMDPREAD. 

AMDPRLOD 
AMDPRMST 
AMDPRSLI 

AMDPRABS 
AMDPRLRF 
AMDPRCMC 

These modules are brought into virtual storage from SYSl.LINKLIB as they are 
needed. The functions of the modules are as follows: 

• AMDPRLOD, the work data set load module, loads the input data set into 
SYSUTl or SYSUT2. 

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 3. Print Dump (AMDPRDMP) 3-49 



Reading Input Data 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

• AMDPRMST is invoked to store information from the input data set in the 
common communication area (COMMON). The information is used during 
the execution of format control statements. 

• AMDPRSLI obtains dump data information describing the boundaries and 
layout of the storage map, and saves this information in the print dump 
COMMON area. AMDPRSLI is called by AMDPRMST, by the executors 
of the PRINT NUCLEUS, SQA, CSA, and STORAGE control statements 
and by AMDPRFUB (AMDPRFUB determines the private boundaries of a 
given address space). 

• AMDPRABS formats and prints the dump abstract title page. 

• AMDPRLRF formats and prints the console-initiated loop trace records. 

• AMDPRCMC determines cross memory information for the dumped system 
and saves it in COMMON. 

AMDPRDMP maintains a chain of buffers to contain input dump data. The 
resident read control module, AMDPRRDC, manages the buffer chain and 
handles requests for dump data from the other modules. When AMDPRRDC 
receives a request for data not in a buffer, the module calls AMDPREAD to read 
the data if possible. Following are descriptions of the way these modules perform 
data reading and of the manipulation of input buffers. 

Read Control Module - AMDPRRDC 

AMDPRRDC receives control from the other AMDPRDMP modules via a 
BRREAD macro instruction (see Section 6). When the DATA function is 
indicated by the macro instruction, it is a request for input dump data. 
AMDPRRDC's handling of the request depends on whether data requested is for 
a CPU ID or for a real or virtual address within the dump. 

CPU Data Request: AMDPRRDC returns a pointer to the data which is set up 
in a fixed format. (See Section 5: Data Areas for the format of the CPU Status 
Area.) AMDPRRDC gets the information from COMMON; however, if input is 
from AMDSADMP, AMDPRRDC gets the information by searching the 
AMDPRDMP buffers for the CPU status record for that CPU ID. If the record 
is not in a buffer, AMDPRRDC calls AMDPREAD to read the record. If a read 
is unsuccessful AMDPRRDC branches to the error handler in effect. 

Note: The dump header record is saved during print dump initialization 
processing. A pointer to this data is saved in COMMON and is available to all 
print dump modules. Requests for the header record do not use the BRREAD 
facility. They directly access the information based on the address initialized in 
COMMON. 

3-50 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986 



"Restricted Materials of IBM" 

Licensed Materials - Property of IBM 

Requested Data at Real Address: AMDPRRDC verifies that the input contains 
real storage data and that the address (rounded down to a 4K boundary) is valid. 
Then AMDPRRDC determines whether the requested data is already in a buffer 
and, if so, returns a pointer to the buffer. If the data cannot be located in a 
buffer, AMDPRRDC calls AMDPREAD to read the data. If an I/O error occurs 
or if any of the validity checks fails, or if the data is not in the input dump, 
AMDPRRDC branches to the error handler in effect. 

Requested Data at Virtual Address: AMDPRRDC rounds the requested address 
down to a 4K boundary and performs address prefixing, if necessary, using the 
PREFXRBV value in COMMON. Then AMDPRRDC attempts to locate the 
data with one of the following results. 

• The data is already in a buffer. AMDPRRDC returns a pointer to the data 
unless the buffer is marked for invalid data. In that case the active error 
handler receives control. 

• The data is not in a buffer and the dump contains data from real storage 
equivalent so it can get the data from the real portion of the dump. If the 
data is not available in the real portion, AMDPRRDC attempts to get it from 
the virtual dump, if input contains virtual storage data. In any case, 
AMDPRRDC searches the input buffers for the data and calls AMDPREAD 
to read the data if it is not in a buffer. Finally, AMDPRRDC returns a 
pointer to the data in a buffer, or it branches to the active error handler if the 
buffer is marked as having invalid data. 

• The data is not in a buffer and the dump contains only virtual data. 
AMDPRRDC calls AMDPREAD to read the data from the virtual address. 
AMDPRRDC checks the validity of the returned data and either returns to 
the caller or branches to the active error handler, if the data is marked 
invalid. 

Length Specified for Requested Data: AMDPRRDC adds the requested data 
address to the requested length (up to 4K). If the total crosses a page boundary, 
AMDPRRDC does the following: 

• Obtains a 4K buffer to store the requested data. 

• Calls AMDPREAD to obtain the page containing the requested address. 

• Moves the range from the first page to the beginning of the buffer. 

• Calls AMDPREAD to obtain the page containing the remainder of the range. 

• Moves the remainder of the range to the buffer. 

• Returns the address of the 4K buffer. 

• If the requested address range does not cross a page boundary, AMDPRRDC 
processes the request normally. 

LY28-1189-3 © Co ri ht IBM Co .1982,1986 Chapter 3. Print Dumo (AMDPRDMP) J-51 



Read Buffer Manipulation 

"Restricted Materials of IBM" 

Licensed Materials - Property of IBM 

To minimize the number of I/O operations required to obtain information from 
the input data set without constraining the available storage, AMDPRRDC 
obtains a fixed number of dump data set buffers. In addition, it assigns a priority 
to the buffers so that frequently-used information remains in storage where it can 
be accessed without an I/O operation. 

AMDPRDMP builds a buffer map for each buffer, then chains the buffer maps 
together in a queue. The highest priority buffer (represented by the first buffer 
map in the queue) contains the storage block that was last referenced. When a 
different storage block is required, AMDPRRDC rechains the buffer maps to 
cause the buffer containing the required block to be represented first in the buffer 
map queue. In this way, frequently-used data is represented first in the buffer 
map queue, and data that is not referenced is pushed down in the queue until it 
eventually is replaced by new dump information. 

Rechaining the Buffers: As AMDPRRDC fills requests for data, the buffers are 
rechained via their maps as follows (see also Figure 3-4): 

• If there is a request for data that is not in a buffer, and there is an empty 
buffer available (call it buffer D as in PRDMP Figure 3-4), AMDPRRDC 
calls AMDPREAD to read the data into buffer D, enqueues the buffer D 
map as the first buffer map (most-recently referenced buffer), then chains the 
buffer D map to point to the buffer map for the buffer that was previously 
most-recently referenced (buffer C in Figure 3-4). 

• If there is a request for data that is not in a buffer, and there re no empty 
buffers available, AMDPRRDC releases the buffer whose map is last in the 
queue (buffer A in Figure 3-4). It places the address of buffer A map in the 
buffer map queue base, chains the buffer A map to point to the buffer map 
previously first in the queue (buffer D in Figure 3-4), removes the buffer A 
map from its former place in the queue, and calls AMDPREAD to read the 
data into buffer A. 

• If there is a request for data that is already in a buffer (buffer B in 
Figure 3-4), AMDPRRDC places the address of the buffer B map first in the 
queue, chains the buffer B map to point to the buffer map that was previously 
first in the queue (buffer D in Figure 3-4), and removes the buffer B map 
from its former place in the queue. 

3-52 MVS/Extended Architecture Service Aids Logic L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

REQUEST FOR DATA NOT IN BUFFER, BUT EMP1Y BUFFER IS AVAILABLE 

BEFORE: 

D Empty ~ 
C 

AFTER: 

·1 D ·1 c 

REQUEST FOR DATA NOT IN BUFFER, AND NO BUFFERS ARE AVAILABLE 

BEFORE: 

·1 B ~A 

·1 B ~ A 

~------~~~L ___ C __ ~--------~.~LI ___ B __ ~_---------~~L ___ A __ ~ 

AFTER: 

REQUEST FOR DATA ALREADY IN BUFFER B 

BEFORE: 

-".~I D ~------~.~IL-__ c __ ~--------~.·~I ___ B __ ~--------~.~LI ___ A __ ~ 

AFTER: 

,----------0 ~ C CS; 
KEY: 

__ ... ~ Pointer from AMDPRRDC 

[ 1 4K Buffer Represented by Buffer Map 

Figure 3-4. Read Buffer Chaining 

L Y28-1 189-3 ~ .• Copyright IBM Corp. 1982, 1986 Chapter 3. Print Dump (AMDPRDMP) 3-53 



Module Calling Sequences for AMDPRDMP Functions 

"Restricted Materials of IBM" 

Licensed Materials - Property of IBM 

The following maps show sequential flow of AMDPRDMP modules. Each map 
indicates the active modules for a specific function and describes the operations 
performed by those modules. Entry point names are also provided where they 
may differ from the module names. AMDPRDMP Figure 3-5 explains the design 
of sequence map. 

For more detailed descriptions of the functions, see the diagrams in Section 2: 
Method of Operation. A reference to the corresponding diagram accompanies 
each map. 

Single Path Flow 

Calling Module 

Module A 

tMOdU"AI 
Module A2 

Module B (ENTRYI) 

The calling module first calls A, 
which then calls A 1 and A 2. 
When A returns, the caller passes 
control to B at entry point 
ENTRY!. 

Alternate Path Flow 

Calling Module 

I ,ModuleA 

LModuleB 

LModule Bl 

The calling module determines whether 
to call A or B for this operation. If B 
receives control, it calls Bl before 
returning to the caller. 

Figure 3-5. Example of Calling Sequence Map 

3-54 MVS/Extended Architecture Service Aids Logic L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 

J 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Initialization (Diagram 2) 

AMDPRCTL (AMDPRCTL) - Analyzes EXEC statement parameters and stores value s in 
(AMDPRMSC) COMMON; reads in control statements. Scans first formatting 

statement. 

AMDPRCOM (AMDPRWTR, AMDPRMSG) - Opens PRINTER and/or INDEX data 
sets. Gets title from the operator. 

AMDPRUIM (AMDPRUIM) - Initializes exit interfaces: Puts ABDPL and SRA addresses 
in common. 

AMDPRSEG - (after the first formatting statement has been read) 

L AMDPRRDC (AMDPRRDC) - INlT function: Loads AMDPRLOD (if input on 
tape), initializes and maps buffers, loads and deletes 
AMDPRMST, and builds ASCBMAP. 

AMDPRLOD - If tape input, loads dump to SYSUTl workfile 
and builds dump maps. 

AMDPREAD - If SYSUTl was not defined, builds dump maps. 

AMDPRMST - Initializes COMMON with dump data including symptoms 
extracted from the dump header record for an SVC dump to be 
presented as part of the title page output produced by this 
module. 

AMDPRSLI Provides information related to the boundaries 
describing the various areas that comprise the storage 
layout. 

AMDPRUIM - Invokes BLSQECT to link to the user-header exit 
modules 

AMDPRRDC (AMDPRRDD) - Locates the dump records 

L AMDPREAD - Reads records into buffers. 
t-------AMDPRCMC - Determines cross memory ASIDs. 

AMDPRABS 

AMDPRLRF 

Prints the abstract title page. 

Formats and prints the instruction trace data (created by the 
console-initiated loop recording). 

Function Statement Processing (Diagram 4) 

AMDPRCTL (AMDPRMSC) - Processes CVT, GO, ONGO, NEWDUMP, NEWTAPE, I SEGTAB, and TITLE statements. 

~ AMDPRCOM (AMDPRSYN) - Writes syntax error messages. 

LPAMAP (Diagram 4) 

AMDPRCTL (AMDPRMSC) - Scans control statements. 

L AMDPRLPA - Executor: controls formatting and printing of LPA map. 

~AMDPRCOM (AMDPRGFR, AMDPRWTR, AMDPRMSG) - Writes LPA title, L formats output lines, writes messages. 

AMDPRRDC (AMDPRRDD) - DATA function: locates LPA records. 

L AMDPREAD - Reads records into buffers. 

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 3. Print Dump (AMDPRDMP) 3-55 



END Statement (Diagram 5) 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

AMDPRCTL (AMDPREND) - Prints execution statistics or causes transfer of dump to SYSUT2 (if 
END is the only statement). 

AMDPRRDC (AMDPRRDC) - INIT function: loads AMDPRLOD. 

LAMDPRLOD - Transfers dump data set to temporary workfile. 

AMDPRCOM (AMDPRMSG) - Prints statistic messages and prints the dump index on the 
PRINTER file (if the INDEX DD is not included in the 
JCL). 

AMDPRCTL (AMDPRXIT) - Terminates AMDPRDMP. 

L AMDPRRDC (AMDPRRDA) - Free buffers. 

C AMDPRUIM (AMDUSRDL) - Calls BLSQEXTI to delete exit services. 

Formatting Statement Processing (Diagrams 6-10) 

AMDPRCTL (AMDPRMSC) - Scans each control statement and determines processing path. 

AMDPRCOM (AMDPRSYN) - Writes syntax error messages. 

AMDPRUIM (AMDUSRXT) - Invokes BLSQECT to link to the user module 
corresponding'to the user verb, for example, 
SRMDATA, MTRACE or ASMDATA. 

AMDPRRDC (AMDPRRDC) INIT function: ensures initialization for 
dump has been performed. 

BLSQEXTI - Load exit service and initialize ABDPL and SRA. 

BLSQROUT - To invoke BLSQECT to link to exit module. 

AMDPRRDC (AMDPRRDD) DATA function: provides data for exit 
module. 

AMDPRFMT - Provides format service for exit module. 

AMDPRSEG Loads processing path for LPAMAP, EDIT, SUMMARY, L CPUDATA, or PRINT statements; calls for each module to store its 
entry addresses in COMMON. 

AMDPRRDC (AMDPRRDC) - INIT function: ensures initialization for 
dump is performed. 

Executor module for statements processed by AMDPRSEG. 

CPUDATA (Diagram 11) 

AMDPRCTL (AMDPRMSC) - Scans control statement. 

LAMDPRGCD - Executor: Calls the service router (BLSQROUT) to get the control block 
formatting service to format: CSD, SVT, LCCA, PCCA, PSA, and VF 
data. 

AMDPRRDC (AMDPRRDD) - Locates data in the dump. 

L AMDPREAD - Reads data into buffers. 

AMDPRCOM (AMDPRGFR, AMDPRWTR) - Prints tit.le. Formats and writes 
output. 

3-56 MVS/Extended Architecture Service Aids Logic L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 



"Restricted Materials of IBM" 

Licensed Materials - Property of IBM 

Verb Exits Defined in the ECT (Diagram 7) 

AMDPRUIM (AMDUSRXT) - Initializes exit interface. Provides storage access routine 

User exit 

(AMDMEMAR), write routine (AMDWRITR, and index routine 
(AMDINDEX) for user exits. Formats and prints requested 
information. 

AMDPRRDC (AMDPRRDD) - Locates data for user exit. 

L AMDPREAD - Reads records into buffers. 

AMDPRFMT - Formats output. 

AMDPRCOM (AMDPRWTR) - Writes output. 

AMDPRCOM (AMDPRNDX) - Writes index entries. 

PRINT STORAGE/REAL (Diagram 9) 

AMDPRCTL (AMDPRMSC) - Scans control statement. 

LAMDPRPMS - Executor: Determines storage ranges to be printed from PRINT t parameters. 

AMDPRCOM (AMDPRWTR) - Writes print title. 

AMDPRDPS (AMDPRPCB, PRNTSTG) - Builds and enqueues PCBs to describe 
storage ranges for printing. Prints 
storage using PCBs. 

AMDPRRDC (AMDPRRDD) - Locates dump records as required. 

L AMDPREAD - Reads records into buffers. 

AMDPRCOM (AMDPRWTR) - Writes output. 

PRINT NUCLEUS/SQA/CSA (Diagram 9) 

AMDPRCTL (AMDPRMSC) - Scans control statement. 

L AMDPRNUC - Executor: Controls printing of nucleus, system queue area, and common 
service area. 

AMDPRCOM (AMDPRWTR) - Writes nucleus title. 

AMDPRUIM (AMDRUSRXT) - (NUCLEUS only) Interfaces with user's print 
nucleus exit. 

--AMDPRDPS (AMDPRPCB, PRNTSTG) - Builds and queues PCBs for storage to 
be printed. Prints storage. 

AMDPRRDC (AMDPRRDD) - DATA function: Locates records. 

L AMDPREAD - Reads records into buffers. 

AMDPRCOM (AMDPRWTR) - Writes output. 

L Y28-1189-3 1(;) Copyright IBM Corp. 1982, 1986 Chapter 3. Print Dump (AMDPRDMP) 3-57 



PRINT CURRENT (Diagram 10) 

"Restricted Materials of IBM" 

Licensed Materials - Property of IBM 

AMDPRCTL (AMDPRMSC) - Scans control statement. 

L AMDPRPCR Executor: controls formatting and printing of control blocks and of region 
for current task. 

AMDPRCOM (AMDPRWTR) - Writes CURRENT title. 

AMDPRUIM (AMDUSRXT) - Interfaces with CURRENTjJOBNAME exit. 

AMDPRFSC 

AMDPRFUB 

Controls formatting and printing of control blocks related to address 
space and task. 

Determines region boundaries for building PCBs. 

AMDPRUIM (AMDUSRXT) - Interfaces with the SUMMARY FORMAT verb exit to 
format control blocks related to address space and task. 

AMDPRDPS (PRNTSTG) - Prints user region specified by PCBs. L AMDPRRDC (AMDPRRDD) - Locates dump records. 

L AMDPREAD - Reads records into storage. 

AMDPRCOM (AMDPRWTR) - Writes output. 

AMDPRFSR (TCBSMRy) - Writes TCB summary. 

PRINT JODNAME (Diagram 10) 

AMDPRCTL (AMDPRMSC) - Scans control statement. 

L AMDPRJB - Executor: scans jobname in control statement and builds jobname lists; 
controls formatting and printing of control blocks and storage for jobnames. 

1--- AMDPRCOM (AMDPRSYN, AMDPRWTR) - Writes syntax error messages. 
Writes output. 

AMDPRUIM (AMDUSRXT) - Interfaces with CURRENTjJOBNAME exit. module. 

AMDPRRDC (AMDPRRDD) - Locates data in dump. 

L AMDPREAD - Reads required records into buffers. 

AMDPRFSC Controls formatting of system control blocks for each jobname. 

AMDPRFUB Determines region boundaries for ASCBs. 

AMDPRIUM (AMDUSRXT) - Interfaces with the SUMMARY FORMAT verb exit to format 
control blocks related to address space and task. 

I----AMDPRDPS (PRNTSTG) - Formats and controls printing of storage areas. I AMDPRRDC (AMDPRRDD) - Loca ... dam .. d=p. 

LAMDPREAD - Reads records into buffer. 

AMDPRCOM (AMDPRWTR) - Writes output. 

L-__ AMDPRFSR (TCDSMRy) - Prints TCD summary. 

3-58 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

EDIT (Diagram 12) 

AMDPRCTL (AMDPRMSC) - Scans EDIT statement. 

-- AMDPRSCN - Scans EDIT parameters. 

AMDPROOT Initializes AMDPRTAB communications table. 

AMDPRSN2 Processes EDIT parameters. 

AMDPRCOM (AMDPRSYN) - Writes syntax error messages. 

AMDPRSN3 - Processes statement end. Sorts range tables, checks options. 

AMDPRFRM - Controls editing/printing of GTF data. 

AMDPRCOM (AMDPRWTR, AMDPRSYN, AMDPRMSG) - Writes EDIT output. 
Writes syntax error 
messages. Writes 
output messages. 

AMDPRGET - Obtains GTF record for processing. t AMDPRCOM (AMDPRWTR, AMDPRSYN) 

AMDPRRDC - Locates required records. 

Writes output or syntax error 
messages. 

AMDPREAD - Reads records into buffer. 

i------AMDPRREC (AMDPRCON) - Formats GTF control records. 

L AMDPRCOM (AMDPRWTR, AMDPRGFR) - Formats an output line. 
Writes the formatted 
line. 

I-----AMDPRFL T - Checks whether options specify processing the current record. 

AMDPREXT - User exit interface. 

AMDPRCOM (AMDPRSYN, AMDPRWTR) - Syntac error messages. 
Writes output. 

AMDPRSEG - Loads user exit module. 

AMDPRREC (AMDPRHEX) - Formats AID, FID, AND EID fields and 
writes the fields in hexadecimal. 

'----- User exit routines. 

'--------AMDPRAPP - Interfaces with format appendage. 

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 

AMDPRCOM (AMDPRSYN, AMDPRWTR, AMDPRGFR)­
Hexadecimal conversion routine, formats and prints an output line. 

AMDPRSEG - Loads the format appendage. 

AMDPRREC (AMDPRHEX) Formats the AID, FID, and EID L fields of the record. Writes the fields 
in hexadecimal. 

AMDPRCOM (AMDPRGFR, AMDPRWTR) - Formats an 
output line. 

Format appendage 

Writes the 
formatted line. 

Chapter 3. Print Dump (AMDPRDMP) 3-59 



Section 4: Data Areas 

"Restricted Materials of IBM" 

Licensed Materials - Property of IBM 

This section describes the following data areas that are built and used by 
AMDPRDMP modules: 

• Print dump index description table (AMDMNDXT). 
• ASCB map (ASCBMAP). 
• ASID index (ASIDNDX). 
• Buffer map entry. 
• Common communication area (COMMON). 
• CPU status area. 
• Current TCB list (CURRLIST). 
• Dump map entry. 
• EDIT communication table (AMDPRT AB). 
• Exit parameter list (ABDPL). 
• Exit control table (ECT) entry. 
• Exit control table entry mapping (ECTE). 
• Mapping for dump header and processor status input records (AMDDATA). 
• Path descriptor element. 
• Print control block (PCB). 
• TCBLIST entry. 

Address Space Control Block Map (ASCBMAP) 

Size: Variable; depends on number of ASIDs. For each ASID, there is a map 
entry and table entry. 

Map - 16 static bytes - 2 bytes per active ASID (rounded up to double word 
boundary.) 

Table - 8 bytes per active ASID. 

Created by: AMDPRRDC 

Use: Map contains the ASID of each address space on ASCB dispatching queue 
at time of dump. Table contains the corresponding ASCB address and segment 
table address for each ASID in map. 

Map Entry 

Offset Size Field Name Description 

0 (0) 4 ASCBTAB Pointer to the table of addresses of ASCBs and 
segment tables. 

4 (4) 2 ASCBNUM Number of address spaces in the table. 
6 (6) 2 ASCBRESV Reserved. 
8 (8) 4 ASMAPLEN Length of ASCB map. 
12 (C) 4 ASTABLEN Length of ASCB/SEGT AB table. 
16 (10) 2 ASID First address space ID in table. 
xx (xx) 2 Last ASID in table. 

3-60 MVS(Extended Architecture Service Aids Logic L Y28-1189-3 © Copyright IBM Corp. 1982. 1986 



"Restricted Materials of IBM" 

Licensed Materials - Property of IBM 

Table Entry 

Offset 

o (0) 

4 (4) 

Exit Parameter List (ABDPL) 

Size: 96 bytes 

Size 

4 

4 

Created by: AMDPRUIM 

Field Name 

ASCBADDR 

SEGTABAD 

Description 

Address of ASCB associated with first ASID in 
map. X'SO' in the high order byte indicates 
AMDPRRDC was unable to read 
corresponding ASID for this ASCB. ASID 
field is set to FFFF. 

Real address of segment table associated with 
first ASID in map. 

Use: The exit parameter list serves as a communications area between 
AMDPRDMP, user exit routines, and the AMDPRDMP service routines. The 
BLSADPL macro maps the exit parameter list. The exit parameter list is created 
by AMDPRDMP, IPCS and SNAP with the intent of interfacing to exit routines. 
For more detailed information on the mapping, see MVS/XA IPCS Logic & 
Diagnosis. (The IHAABDPL is still available for compatibility. It includes the 
BLSABDPL macro.) 

Address Space Identifier Index (ASIDNDX) 

Size: 112 bytes per table. 

Created by: AMDPREAD or AMDPRLOD. 

Use: The index is searched for the requested ASID from which the corresponding 
map address is found (used to find the block containing the requested address). 

Offset Size Field Name Description 

0 (0) 4 ASDXLNK Pointer to next table or zero. 
4 (4) 36 ASDXASID 18 2-byte fields. each of which contains an 

ASID. 
40 (28) 72 ASDXMAP 18 4-byte fields, each of which contains the 

address of the first dump-data map for the 
corresponding ASID. 

L Y2S-ll89-3 © Copyright IBM Corp. 1982, 1986 Chapter 3. Print Dump (AMDPRDMP) 3-61 



Buffer Map Entry 

Size: 20 bytes. 

Created by: AMDPRRDC. 

Updated by: AMDPRRDC, AMDPREAD. 

"Restricted Materials of IBM" 

Licensed Materials - Property of IBM 

Use: One buffer map entry is built for each AMDPRDMP buffer. 

Offset Size Field Name Description 

0 (0) 4 BUFFLINK Address of next buffer map entry in chain or 
zero if last entry. Buffer map entries re chained 
in order from most-recently referenced buffer to 
least-recently referenced buffer. 

4 (4) 4 BUFFPTR Address of an input buffer. 
8 (8) 4 BUFFREAL Address of real storage location of the 4K block 

of storage contained in the dump record that 
was read into the associated buffer. 

12 (C) 4 BUFFVIRT Address of virtual storage location of the 4K 
block of storage contained in the dump record 
that was read into the associated buffer. 

16 (10) 2 BUFFASID ASID of data in buffer. 
18 (12) 2 BUFFCPU Logical CPU ID if data is a CPU status record. 
20 (14) I BUFFLAG Flags: 

1... INVALFLG Invalid data in the buffer. 
.1.. BUFFCOM ASID of data is FFFF. 
.. xx xxxx Reserved . 

Common Communication Area (COMMON) 

Size: 2884 bytes. 

Created by: AMDPRCOM. 

Used by: All AMDPRDMP modules. 

Use: Communication among AMDPRDMP modules. 

Offset 

0 

4 
8 

12 

16 

20 

24 
32 
36 

(0) 

(4) 
(8) 

(C) 

(10) 

(14) 

(18) 
(20) 
(24 

Size 

4 

4 
4 

4 

4 

4 

8 
4 
4 

3-62 MVSfExtended Architecture Service Aids Logic 

Field Name 

ERRADDR 

VERBGN 
VERBEND 

KYWDBGN 

KYWDEND 

DELIMCD 

WORKI 
SIX 
LINECNT 

Description 

Address of current error routine to receive 
control if a read error occurs. 
Address of verb in current control statement. 
Address of first character following verb in 
current control statement. 
For PRINT control statement only, address of 
keyword. 
For PRINT control statement only, address of 
first character following keyword. 
Code Delimiter: 
X'04' Comma. 
X'08' Equal sign. 
X'OC' Blank. 
X'IO' Left parenthesis. 
X'14' Right parenthesis. 
Doubleword work area. 
Fullword constant: 6. 
Current line number, used to determine when a 
new page is needed. 

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 

J 



"Restricted Materials of IBM" 

Licensed Materials - Property of IBM 

Offset Size Field Name Description 

40 (28) 4 PAGENUMB Current page number in binary. 
44 (2C) 4 CURBUF Address of current output buffer supplied by 

AMDPRWTR. 
48 (30) 4 TCBLIST Origin of TCB list. 
52 (34) 4 CVTADDR Address of CVT in dump system, obtained from 

the dump system or from the CVT control 
statement. 

56 (38) 4 PCBPTR Origin of PCB queue. 
60 (3C) 8 INDD DDNAME of input data set DD statement, set 

by the NEWDUMP control statement or 
default of TAPE. 

68 (44) 4 RDENTRY Count of DATA entries to module 
AMDPRRDC, printed as summary information 
at AMDPRDMP termination. 

72 (48) 4 READNO Number of blocks read from SYSUTI work 
data set or dump tape, printed as summary 
information at AMDPRDMP termination. 

76 (4C) 4 RDERCNT Number of I/O errors while attempting to read 
from SYSUTI work data set or dump tape, 
printed as summary information at 
AMDPRDMP termination. 

80 (50) 4 READTM Number of times data requested was not in an 
input buffer, printed as summary information at 
AMDPRDMP termination. 

84 (54) 2 FILESEQ Value of FILESEQ parameter in NEWDUMP 
control statement, used to open the input tape 
to the correct file. 

86 (56) 2 ONEA Constant: I. 
88 (58) 2 TWO Constant: 2. 
90 (SA) 2 THREE Constant: 3. 
92 (5C) 2 FOUR Constant: 4. 
94 (5E) 2 FIVE Constant: 5. 

L 96 (60) 2 SEVEN Constant: 7. 
98 (62) 2 EIGHT Constant: 8. 
100 (64) 2 TEN Constant: 10. 
102 (66) 2 ELEVEN Constant: II. 
104 (68) 2 TWELVE Constant: 12. 
106 (6A) 2 SIXTEEN Constant: 16. 
108 (6C) 2 LINENUMB Value of LINECNT parameter in PARM field 

of EXEC statement or default of 58. 
110 (6E) 2 LINENUM Value of LINENUMB minus 2. (The number 

of lines per page excluding the title). 
112 (70) RETCODE Return code for PRDMP step. 
113 (71) I SWA Switches: 

\... SYSUTISW SYSUTI data set specified. 
.1.. SYSUT2SW SYSUT2 data set specified. 
.. I. OPSSW Operands buffering in process. 
... 1 NOTPAGES Title pages are not to be repeated after 'CVT =' 

control statement. 
\... GOSW GO control statement being processed. 
.1.. DDSW SYSPRINT DD statement specified. 
.. I. SETCVTSW CVTADDR field in COM has been filled by 

CVT control statement. 
... 1 RDRSW Control statements entered from the SYSIN 

data set: otherwise, from the console. 
114 (72) 1 SWB Switches: 

\... IOERR I/O error while reading from SYSUTI or dump 
tape. 

.1.. FMTERR Requested information not in input data set. 

.. I. PRTSUM SUMMARY called from PRINT. 

.. x. Reserved . 
\... ENDSW END control statement being processed. 
.1.. QSYSUT2 SYSUT2 data set specified. 

L 
.. xx Reserved . 

LY28-1189-3 © Copyright IBM Corp. 1982,1986 Chapter 3. Print Dump (AMDPRDMP) 3-63 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Offset Size Field Name Description 

115 (73) SWC Switches: J 1... MSTRSW AMDPRMST has attempted dump 
initialization. 

.1.. SETFLSH Set FLSHMODE in SWD if error 
occurs. 

.. I. POSITSW Positioning of the input data set 
must be performed. When the main error 
handler in AMDPRCTL is entered and this 
switch is on, an error occurred in input data set 
positioning. 

... 1 TREADIN INDD data set on direct access . 
\... EDITSW EDIT control statement being 

processed. 
.1.. SEGRD EDIT Module indication to loader 

module to issue an initialization read. 
.. xx ---- Reserved . 

116 (74) 1 SWD Switches: 
1.. .. FLSHMODE Control statements are being 

scanned for syntax errors only. 
. xx. ---- Reserved . 
... 1 NOSTDMG Do not issue message AMDl61I 

before servicing caller's request. 
\... NOLOADSW Another control statement 

appeared before END control statement. 
.1.. CONTSW Obtain continuation statement for 

EDIt control statement. 
.. I. GPRSFND Issue CPUSTATUS BRREAD to 

print general register contents in output listing. 
... x ---- Reserved . 

117 (75) SWE Switches: 
I... STOPSW Stop option specified. 
. x .. Reserved . 

J .. I. RESPC Respecify EDIT options 
... 1 TITLESW Title option specified. 

\... BUILDMAP AMDPRLOD or AMDPREAD must scan 
dump to build map(s). 

. xxx Reserved . 
118 (76) I SWF Switches: 

\... QPRDINIT AMDPREAD must be specified. 
. x .. Reserved . 
.. I. QSADMP Input is from AMDSADMP. 
... 1 DMPIC Complete dump contained in buffers. 

\... PAGEOK Switch for AMDPRFCB. 
. x .. Reserved . 
.. I. QUTlLOD SYSUTI is preloaded. 
... x Reserved . 

119 (77) BUFSW Switches: 
xxxx xx .. Reserved. 

.. I. PREFM Preformatted dump tape being processed. 

... 1 SUMFSRSW Communicate AMDPRSUM and 
AMDPRFSR. 
Switch. 

120 (78) 1 PRSW Switches: 
\... Initialize exit interface for mainline print dump 

request. 
.1.. QSEGTBSW Segment table origin supplied by user in 

SEGTAB control statement. 
.. x. Reserved . 
... 1 TTLSW SVC dump header record has been printed in 

PRINTER output data set. 
1... PRNTRL PRINT REAL is current control statement. 
.1.. PRNTREAL Real storage data requested. 
.. xx Reserved . 

121 (79) INDEXSW Dump index switch. 
122 (7A) 3 Reserved. 
125 (7D) 81 WTORMSG Control statement input area. 

3-64 MVS/Extended Architecture Service Aids Logic L Y28-1189-3 Copyright IBM Corp. 1982, 1986 



"Restricted Materials of IBM" 

Licensed Materials - Property of IBM 

Offset 

206 (CE) 
214 (D6) 
219 (DB) 
223 (DF) 
249 (F9) 

Size 

8 
5 
4 
26 
26 

Field Name Description 

BLANKS Character string constant blanks. 
TITLE Character string constant: "TITLE". 
STOP Character string constant: "STOP". 
MSGI ID and skeleton of message AMDl611. 
MSG2 ID and skeleton of message AMDI58I. 

The following nine fields (to offset X'18F') define the AMDPRDMP page title. 

Offset Size Field Name Description 

275 (113) 64 TITLEMSG Title area for user-supplied title. 
339 (153) I One blank. 
340 (154) 15 TITLEMOD Label and field for module name from dump 

data set header record. 
355 (163) I One blank. 
356 (164) 13 TITLEDTE Label and field for data on which dump was 

taken. 
369 (171) 2 Two blanks. 
371 (173) 13 TITLETME Label and field for time at which dump was 

taken. 
384 (180) 2 Two blanks. 
386 (182) 13 TITLEPGE Label and field for page number. 
399 (l8F) 256 CAPTABL Translate table for translating EBCDIC lower 

case to upper case. 
655 (28F) 256 TABLE Translate table to form EBCDIC printout at 

right margin of general format. 
911 (38F) 63 HEXTABL Translate table for first stage of conversion of 

binary to hexadecimal characters. Note: 
TABLE, HEXTABL, and EBCTABL overlap to 
save space. 

974 (3CE) 10 EBCTABL Translate table for second stage of conversion 
of binary to hexadecimal characters. Note: 
TABLE, HEXT ABL, and EBCT ABL overlap to 
save space. 

984 (3D8) 256 BLNK Main scan table. This translate table associates 
the following codes with stopping characters: 
Code Delimiter 
X'04' Comma 
X'08' Equal sign 
X'OC' Blank 
X'IO' Left parenthesis 
X'14' Right parenthesis 

1240 (4D8) 256 NONBLNK Tal>le for nonblank character scan. This table 
recognizes only alphanumerics as nonblank. 

1496 (5D8) 256 NONBLANK Table for nonblank character scan. This table 
recognizes everything except X'40' as non blank. 

1752 (6D8) 4 AWRITE Address of PRINTER data set write routine, 
AMDPRWTR. 

1756 (6DC) 4 APRTMSG Address of SYSPRINT data set write routine, 
AMDPRMSG. 

1760 (6EO) 4 ASYNTAX Address of message writer routine, 
AMDPRSYN. 

1764 (6E4) 4 AFMTLINE Address of general format routine, 
AMDPRGFR. 

1768 (6E8) 4 AADRCNVT Address of 3-byte binary to hexadecimal 
conversion routine in CSECT AMDPRSYN. 

1772 (6EC) 4 AWRDCNVT Address of 4-byte binary to hexadecimal 
conversion routine in CSECT AMDPRSYN. 

L Y28-1189-3 © Copyright I BM Corp. 1982, 1986 Chapter 3. Print Dump (AMDPRDMP) 3-65 



"Restricted Materials of IBM" 

Licensed Materials - Property of IBM 

Offset Size Field Name Description 

1776 (6FO) 4 ARGNBND Address of AMDPRFUB, valid only when the J following control statements are being 
processed: 

PRINT ALL. 
PRINT CURRENT. 
PRINT lOBNAME. 

1780 (6F4) 4 STOPEXIT Address of current stop-exit routine. This 
routine is invoked if the STOP option of 
AMDPRDMP is in effect and the operator 
replies 'STOP' to message AMD 1561. 

1784 (6F8) 4 SYNMSGA Address of message address list which contains 
messages that can be issued by calling 
AMDPRSYN at each of its entry points. 

1788 (6FC) 4 AEREXIT Address of AMDPRDMP termination routine, 
AMDPRXIT. 

1792 (700) 4 ALOADER Address of AMDPRSEG. 
1796 (704) 4 QATMERTN Address of TODCNVRT in AMDPRSEG. 
1800 (708) 4 ATCBSAVE Address of TCB list enqueue routine in CSECT 

AMDPRTSV of AMDPRCOM. 
1804 (70C) 4 ATCVREMV Address ofTCB list dequeue routine in CSECT 

AMDPRTSV in AMDPRCOM. 
1808 (710) 4 ATCBRTRV Address of TCB list element retrieve routine in 

CSECT AMDPRTSV of AMDPRCOM. 
1812 (714) 4 APCBENQ Address of PCB queue enqueue routine, valid 

only when the PRINT with all keywords control 
statements are being processed. 

1816 (718) 4 ASTPROUT Address of STOP option handler. CSECT 
AMDPRSTP in AMDPRCOM. 

1820 (71C) 4 AFORMAT Address of AMDPRFSR, valid only when the 
following control statements are being 
processed. 

FORMAT. 
PRINT CURRENT. 
PRINT lOBNAME. 

1824 (720) 4 APRTSTG Address of AMdPRDPS, valid only when the 
PRINT or CPUDATA control statements are 
being processed. 

1828 (724) 4 BUFSUM Total number of dump data set buffers used 
during this execution of AMDPRDMP. 

1832 (728) 4 BUFREINT Number of times dump data set buffers have 
been initialized during this execution of 
AMDPRDMP. 

1836 (72C) 4 AEND Address of END control statement processing 
routine AMDPREND. 

1840 (730) 4 ONGOOPTR Address of operands specified in the ONGO 
control statement, used by the GO verb to 
determine the functions to be performed. 

1844 (734) 4 Reserved. 
1848 (738) 24 DCBADDRS Origin of AMDPRDMP DCB address array. 
1848 (738) 4 AOUTDCB Address of PRINTER data set DCB. 
1852 (73C) 4 ANDXDC3 Address of INDEX data set DCB. 
1856 (740) 4 APTRDCB Address of SYSPRINT data set DCB. 
1860 (744) 4 ARDRDCB Address of SYSIN data set of DCB. 
1864 (748) 4 AINDCB Address of input data set DCB. 
1868 (74C) 4 Alignment. 
1868 (74C) 1 

l... ENDLIST Constant X'80' to indicate end of DCB address 
array. 

1869 (74D) 3 ASYSUDCB Address of SYSUTl or SYSUT2 data set DCB. 

3-66 MVSjExtended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986 



"Restricted Materials of IBM" 

Licensed Materials - Property of IBM 

The following four fields (to offset X'7SD') are used only for the EDIT function 
of AMDPRDMP. These fields are valid only when the EDIT control statement is 
being processed. 

Offset 

1872 (750) 

1876 (754) 

1880 (758) 

1884 (75C) 

1885 (75D) 

Size 

4 

4 

4 

3 

Field Name 

TRCCOUNT 

AEDITCB 

AROOT 

EDITER 

Additions for release one support. 

Offset Size Field Name 

1888 (760) 4 REAL MAP 
1892 (764) 4 SEGTABOR 
1896 (768) 4 REALMAX 
1900 (76C) 4 QAPFT 

Additions for release one support. 

Offset Size Field Name 

1904 (770) 2 QASID 

1906 (772) 2 IPLCPU 

1908 (774) 4 CURASCB 
1912 (778) 4 PREFXRGR 

1916 (77C) 4 PREFXRGV 

1920 (780) 4 ASVTADDR 
1924 (784) 168 HDRREGS 

2092 (82C) 100 HDRTITLE 
2192 (890) 4 ASIONDX 
2196 (894) 4 CPUMAP 
2200 (898) 4 ASCBMAP 

2204 (89C) 4 BUFERMAP 

2208 (8AO) 4 BRRDDATA 
2212 (8A4) 4 BRRDINIT 
2216 (8A8) 4 BRRDADJ 
2220 (8AC) 4 AASCBFMT 
2224 (8BO) 4 ASRBFMT 
2228 (SB4) 4 AUSRINIT 
2232 (8B8) 4 AUSREXIT 
2236 (8BC) 4 AUSRDEL 
2240 (SCG) 4 AUSRTCBA 

2244 (SC4) 2 AUSRASIO 

2246 (8C6) EXITFLAG 

Description 

Number of GTF trace records processed. i.e., 
the number of entries to module AMDPRGET .. 
Address of the EDIT communications area 
AMDPRTAB. 
Address of AMDPRT AB initialization routine 
AMDPROOT. 
Value of EDIT ER = parameter from 
AMDPRDMP EXEC statement. 
Alignment. 

Description 

Address of real storage dump map. 
Segment table origin. 
Address of the top of real storage. 
Address of page frame table. 

Description 

ASID of IPLed CPU for SADMP; home ASID 
for SVC dump. 
Address of IPLed CPU. Contains 256 if CPU 
status was unavailable; that is, an I/O error 
occurred while reading the CPUSTATUS 
record. 
Address of current ASCB in dumped system. 
Real address in PSA prefix register (SADMP 
input only). 
Virtual address in PSA prefix register (SADMP 
input only.) 
Address of ASVT in dumped system. 
Registers and current PSW from SVC Dump or 
DSS header record. 
Title from dump header record. 
Address of ASIO index. 
Address of CPU STATUS record maps. 
Address of ASCB map created by 
AMDPRRDC. 
Address of first physical buffer map entry in 
AMDPRRDC. 
Address of AMDPRRDC data read routine. 
Address of AMDPRRDC INIT routine. 
Address of BRREAD ADJUST routine. 
Address of AMDPRF AR. 
Address of AMDPRSRB. 
Address of AMDPRUIM initialization routine. 
Address of user-exit interface routine. 
Entry point of AMDPRUIM clean-up routine. 
Address of TCB currently being processed by 
AMDPRFSR. 
ASID of address space being processed by 
AMDPRFAR or AMDPRFSR. 
Flags indicating action to be performed by 
AMDPRUIM. 

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 3. Print Dump (AMDPRDMP) 3-67 



"Restricted Materials of IBM" 

Licensed Materials - Property of IBM 

The following offsets are used in the IBM 3800 printing subsystem: 

~ Offset Size Field Name Description 

2247 (SC7) I3800SW Switches: 
xxxx Reserved. 

I... 13S00KEY Indicates storage key message will be printed in 
page title. 

.1.. 13800ULN User specified line count. 

.. 1. 13S00S0 Print SO lines per page, subject to user specified 
line count. 

... 1 13S00204 Print double density line for storage dump . 
2248 (8C8) 2 RBMAX Maximum number of RBs allowed (50). 
2250 (SCA) 2 LLEMAX Maximum number of LLEs allowed (255). 
2252 (SCC) 2 IPQMAX Maximum number of PQEs (256). 
2254 (SCE) 2 DEBMAX Maximum number of DEBs (200). 
2255 (SDO) 2 DDMAX Maximum number of DDs (1635). 
225S (SD2) 2 SRBMAX Maximum number of SRBs (50). 
2260 (SD4) 2 TCBMAX Maximum number of TCBs (256). 
2262 (SD6) 2 ASCBMAX Maximum number of ASCBs (200). 
2264 (SDS) 4 XLMAX Maximum number of extent lists (25). 
226S (SDC) 4 LPAMAX Maximum number of CDE elements (500). 
2272 (SEO) 16 TITLEKEY Label and field for key or storage data currently 

being dumped. 
2272 (8EO) 12 Reserved for alignment. 
2284 (SEC) 2 TITLESTK Storage key value. 
22S8 (8FO) 12 Z9ERRID Stored from the SVC dump. 
2300 (SFC) 4 APRSTK Address of the STKE formatter. 
2304 (900) 24 CMINFO Information about cross memory environment. 
2304 (900) S CMASID Current ASIDs. 
2304 (900) 2 CMHASID ASID of the HOME address space. 
2306 (902) 2 CMPASID ASID of the PRIMARY address space. 
230S (904) 2 CMSASID ASID of the SECONDARY address space. 
2310 (906) 2 CMCASID ASID of the CML (cross memory lock) address J space. 
2312 (90S) 16 CMASCB Current ASCBs. 
2312 (908) 4 CMHASCB ASCB pointer to the HOME address space. 
2316 (90C) 4 CMPASCB ASCB pointer to the PRIMARY address space. 

2320 (910) 4 CMSASCB ASCB pointer to the SECONDARY address space. 
2324 (914) 4 CMCASCB ASCB pointer to the CML address space. 
232S (91S) S CMPSW PSW passed from SVCDUMP and SYSMDUMP. 
2336 (920) I CMCFLGS Flags needed by AMDPRCMC. 

1... CMDFTCUR Above ASID and ASCB fields should not be used 
by PRINT CURRENT and PRINT 
STORAGE verbs. 

. xxx xxxx Reserved . 
2337 (921) 3 Alignment. 
2340 (924) 4 CMNUMPCB The number of PCBs to be processed and passed 

from AMDPRPMS to AMDPRDPS. 
2344 (928) 200 COMSRES Reserved. 

2520 (908) 16 PDCPPL TSO CPPL. 
2520 (9D8) 4 PDCBUF Address of TSO command buffer. 
2524 (9DC) 4 PDCUPT Address ofTSO UPT. 
2528 (9EO) 4 PDPSCB Address of TSO PSCB. 
2532 (9E4) 4 PDPECT Address of TSO ECT. 
2536 (9E8) 4 ABDPLADR Address of TSO ABDPL. 
2540 (9EC) 4 SRAADR Address of Service Router Area, (SRA). 
2544 (9FO) 4 COMTRCE Anchor for the Console-Initiated Loop Recording 

routine. 
254S (9F4) I PDSW Switches: 

L PSLITERM AMDPRDMP processing must terminate. 
.1.. PSQASPIL The SQA has spilled into the CSA. 
.. J. POVERLAP The storage ranges overlap when enqueuing 

PCBs. 
... 1 PGDAERSW The GDA is unavailable. 

xxxx Reserved. 

3-68 MVS/Extended Architecture Service Aids Logic L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 



"Restricted Materials of IBM" 

Licensed Materials - Property of IBM 

Offset Size Field Name Description 

2549 (9F5) I Reserved. 
2550 (9F6) 2 FBQEMAX Maximum number of FBQEs (100). 
2552 (9F8) 124 PSLlDTA Data initialized by AMDPRSLI. 
2552 (9F8) 8 PCSADlNF CSA starting addresses. 
2552 (9F8) 4 PCSADDR Non-extended CSA starting address. 
2556 (9FC) 4 PCSAEADR Extended CSA starting address. 
2560 (AOO) 8 PCSZINFO CSA size information. 
2560 (AOO) 4 PCSASZ Non-extended CSA size. 
2564 (A04) 4 PCSAESZ Extended CSA size. 
2568 (A08) 8 PSQADlNF SQA starting address. 
2568 (A08) 4 PSQADDR Non-extended SQA starting address. 
2572 (AOC) 4 PSQAEADR Extended SQA starting address. 
2576 (AIO) 8 PSQZINFO SQA size information. 
2576 (AIO) 4 PSQASZ Non-extended SQA size. 
2580 (AI4) 4 PSQAESZ Extended SQA size. 
2584 (AI8) 8 PRIADINF Private starting address. 
2584 (AI8) 4 PRIADDR Non-extended private starting address. 
2588 (AIC) 4 PRIEADR Extended private starting address. 
2592 (A20) 8 PRITAINF Private ending addresses. 
2592 (A20) 4 PRITADDR Non-extended private ending address. 
2596 (A24) 4 PRITEADR Extended private ending address. 
2600 (A28) 8 PRISZINF Private size information. 
2600 (A28) 4 PRISZ Non-extended private size. 
2604 (A2C) 4 PRIESZ Extended private size. 

The following represents the address of the GDA fields for which BRREADS 
were attempted. The address of the GDA fields is used in an output comment 
when a read error occurs. 

Offset Size Field Name Description 

2608 (A30) 8 PCSERRAD Address of GDA fields for CSA addresses. 
2608 (A30) 4 PRDCSAD Address of GDA field for non-extended CSA 

addresses. 
2612 (A34) 4 PRDCSADE Address of GDA field for extended CSA 

starting address. 
2616 (A38) 8 PCSERRSZ Address of GDA fields for CSA size. 
2616 (A38) 4 PRDCSASZ Address of GDA field for non-extended CSA 

size. 
2620 (A3C) 4 PRDCSZE Address of GDA field for extended CSA size. 
2624 (A40) 8 PSQERRAD Addresses of GDA fields for SQA addresses. 
2624 (A40) 4 PRDSQAD Address of GDA field for non-extended SQA 

starting address. 
2628 (A44) 4 PRDSQADE Address of GDA field for extended SQA 

starting address. 
2632 (A48) 8 PSQERRSZ Address of GDA fields for SQA size. 
2632 (A48) 4 PRDSQASZ Address of GDA field for non-extended SQA 

size. 
2636 (A4C) 4 PRDSQSZE Address of GDA field for extended SQA size. 
2640 (A50) 4 PNUCLBND Lowest DAT-on nucleus address. 
2644 (A54) 4 PNUCTOP Highest DAT-on nucleus address. 
2648 (A58) 4 PNUCRLBD Lowest DAT-off nucleus address. 
2652 (A5C) 4 PNUCRTOP Highest DAT-ofTnucleus address. 
2656 (A60) 4 PDFLTNCL Default for lowest DAT-on nucleus address. 
2660 (A64) 4 PDFLTNCT Default for highest DAT-on nucleus address. 
2664 (A68) 12 PAQATNDX Pointers to the SQA AQAT index tables for 

subpools 226, 239, and 245. 

L Y28-1189-3 '0 Copyright IBM Corp. 1982, 1986 Chapter 3. Print Dump (AMDPRDMP) 3-69 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Offset Size Field Name Description 

2264 (A68) 4 PAQNDX26 Pointer to the subpool 226 AQA T index table. 
2268 (A6C) 4 PAQNDX39 Pointer to the subpool 239 AQAT index table. 
2272 (A70) 4 PAQNDX45 Pointer to the subpool 245 AQA T index table. 
2676 (A74) 15 TOPHDR Print storage heading. 
2691 (A83) I Alignment. 
2692 (A84) 20 PSLIDTAI Data initialized by AMDPRSLI. 
2692 (A84) 4 PMAXCOME Maximum ending address of extended common 

area when comparing the end of the extended 
FLPA, MLPA, PLPA, CSA, and SQA. 

2969 (A88) 4 PSMAD Start of the non-FREEMAINable storage 
management area. 

2700 (A8C) 4 PSMSZ Size of the non-FREEMAINable storage 
management area. 

2704 (A90) 4 PPGTAD Start of the non-FREEMAINable page table 
area. 

2708 (A94) 4 PPGTSZ Size of the non-FREEMAINable page table 
area. 

2712 (A98) 4 COMHDR Pointer to a copy of the dump data set header 
record. 

2716 (A9C) 44 COMDSNM Work file data set name' from AMDPRLOD. 
2760 (AC8) 4 COMPRFOR Address of entry in AMDPRFOR to be used by 

AMDPRFXT during format verb processing. 

The following field is an addition for 4K read support. 

Offset Size Field Name Description 

2764 (ACC) 4 COM4KBUF Address of 4K buffer used in 4K BRREAD. 

The following two fields are additions for input record continuation support. 

Offset Size 

2768 (ADO) 4 
2772 (AD4) 4 

Field Name 

COMOPLN 
COMOPPTR 

Description 

Length of operands list. 
Pointer to operands list. 

The following six fields (to offset X'AEB') are used for AMDPRDMP index 
support. 

Offset Size Field Name Description 

2776 (AD8) 4 COMINDXA Address of index entry. 
2780 (ADC) COMINDEX Entry code. 
2781 (ADD) COMINDXL Index level. 
2782 (AD E) 2 COMXASID Insertion data for index. 
2784 (AEO) 4 COMNDXEP Entry point for AMDPRNDX, the dump index 

service routine. 
2788 (AE4) 4 INDXLCNT Index line count work area. 
2792 (AE8) 4 VIRTMAX Highest virtual address. This field is set by 

AMDPRSLI from CVTMZOO, if it can be read 
from the dump. 

2796 (AEC) 16 PDIOPL TSO IOPL. 
2796 (AEC) 4 PDIUPT Address of TSO UPT. 
2800 (AFO) 4 PDIECT Address of TSO ECT. 
2804 (AF4) 4 PDIECB Address of ECB. 
2808 (AF8) 4 PDIIOPBP Address of I/O parameter block. 

3-70 MVS/Extended Architecture Service Aids Logic L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 

J 

J 



"Restricted Materials of IBM" 

Licensed Materials - Property of IBM 

CPU Status Area 

Size: 192 bytes. 

Created by: AMDPRRDC. 

Use: A BRREAD request for CPU status will result in this area being created 
from the input dump header record or CPU status records. The IHAABDLP 
macro contains mapping for this information. 

Offset Size Field Name Description 

0 (0) I AMOCFLAG 
1... CPU is a uniprocessor: CPU address is invalid. 
.1.. SADMP unable to perform store status; only 

CPU address is valid. 
.. 1. Operator did not perform store status; only 

general registers and, if MP, CPU address are 
valid . 

... 1 Non-SAOMP input, only registersjPSW are valid. 
xxxx Reserved. 

I (1) I Reserved. 
2 (2) 2 AMOCPADR CPU address. 
4 (4) 32 AMOCFREG Floating point registers 0-6. 
46 (24) 64 AMOCGREG General purpose registers 0-15. 
100 (64) 64 AMOCCREG Control registers 0-15. 
164 (A4) 8 AMDCCPSW Current PSW. 
172 (AC) 4 AMDCPREG Prefix register value. 
176 (BO) 8 AMOCTIME CPU timer value. 

Note: This is not location 80 time or 
TOO clock. 

184 (88) 8 AMOCLOCK Clock comparator value. 

Current TCD List (CURRLIST) 

Dump Header Record 

Size: 192 bytes. 

Created by: AMDPRSUM. 

Use: SUMMARY control statement uses this data area for storing information 
for the processor that is not in SRB mode. 

Offset 

o 

o 
2 
4 
8 

(0) 

(0) 
(2) 
(4) 
(8) 

Size 

2 
2 
4 
4 

Field Name 

CURENTRY 

CURCPUID 

CURTCBA 
CURASCA 

Description 

List entries -one for each current TCB found 
in the dump. 
CPU identifier for this entry. 
Reserved. 
TCB address for this entry. 
ASCB address for this entry. 

The Dump Header Record is described in the Debugging Handbook. 

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 3. Print Dump (AMDPRDMP) 3-71 



Dump Map Entry 

Size: 16 bytes. 

"Restricted Materials of IBM" 

Licensed Materials - Property of IBM 

Created by: AMDPRREAD and AMDPRLOD. 

Updated by: None. 

Use: One dump map entry is built for each block of records in the input dump 
data set. The dump map eliminates searching the data for a requested record. 

Offset Size Field Name Description 

0 (0) 4 DUMPLINK Address of next entry in this map. 
4 (4) 4 DUMPFADD Address of the first byte of the first record in 

the block of records represented by this entry. 
8 (8) 4 DUMPLADD Address of the first byte of the last record in the 

block of records represented by this entry. 
12 (C) 4 DUMPTTR TTR or block number (tape input) in the input 

data set of the first record in the block of 
records represented by this entry. 

EDIT Communication Table (AMDPRTAB) 

Size: 536 bytes. 

Created by: AMDPROOT. 

Updated by: AMDPRSCN, AMDPROOT, AMDPRSN2, AMDPRSN3, 
AMDPRGET, AMDPRREC, AMDPRFLT, AMDPRFRM, AMDPREXT, 
AMDPRAPP, AMDSYS07. 

Use: Communication among AMDPRDMP modules that execute the EDIT 
function. 

Offset Size Field Name Description 

o (0) 4 AFMG Address of AMDPRFMG message CSECT in 
AMDPRXED. 

4 (4) 4 CURREC Address of current input record. 
8 (8) 12 DEBGFLGS Debug flags: 
8 (8) PTHFLGS1 Flags indicating routine in execution: 

J... ROOT AMDPROOT. 
.1.. SCN AMDPRSCN. 
.. 1. GET AMDPRGET. 
... 1 CON AMDPRGET. 

l... HEX AMDPRCON. 
.1.. FLT AMDPRFLT. 
.. 1. FRM AMDPRFRM. 
... 1 REXT AMDPREXT . 

9 (9) PTHFLGS2 Flags indicating routine in execution: 
Bit Routine 

APP 0 AMDPRAPP. 
1-7 Reserved. 

3-72 MVS/Extended Architecture Service Aids Logic L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 



"Restricted Materials of IBM" 

Licensed Materials - Property of IBM 

Offset Size Field Name Description 

10 (A) 1 INRFCFGS Interface flags: 
l... FLMODE Flush mode. 
. 1.. TERM Termination requested . 
.. 1. SPIE SPIE routine. 
... 1 FMT Formatting of input record requesting by user exit 

routine. 
l... RET Indent output (used by AMdPRAPP). 
. 1.. EXTTRC External data set being processed . 
.. I. EDITSTOP Stop in progress. 
.. .I DMDFMT Unconditional formatting requested by user 

exit routine. 
11 (B) 1 IOFLGS I/O flags: 

l... GETEOF End-of-file. 
. xxx xxxx Reserved . 

12 (C) 8 Reserved. 
20 (14) 4 GTFWDPTR Address of GTF option word, extracted from 

time stamp record. 
24 (18) 8 USEREXIT User exit name, in EBCDIC. 
32 (20) 8 DDNAME DDNAME keyword value in EBCDIC. 
40 (28) 12 STARTIME Start time value: 
40 (28) 8 TIME Timer units. 
48 (30) 2 D Zeros and year. 
50 (32) 2 DAY Julian day. 
52 (34) 12 STOPTIME Stop time value 
52 (34) 8 TIME2 Timer units. 
60 (3C) 2 F Zeros and year. 
62 (3E) 2 DAY2 Julian day. 
64 (40) 40 JOBNAMES Maximum of five jobnames in EBCDIC. 
104 (68) 20 ASCBADDR Maximum of five ASCB addresses in 

hexadecimal. 
124 (7C) SIOFLGS SSCH selectivity flags: 

L l... ALLS EDIT all SSCH records. 
. 1.. SELS EDIT selective SSCH records . 
.. I. EQUIV SSCH = 10 . 
... 1 NOEQU SSCH may not equal 10 . 

l... CCWS Edit CCW records for SSCH events. 
. xxx Reserved . 

125 (7D) 3 Reserved. 
128 (80) 100 SIODVADS Maximum of fifty SSCH device addresses. 
288 (E4) 1 IOFLGS2 I/O selectivity flags: 

l... ALLI EDIT all I/O records. 
. 1.. SELl EDIT selective I/O records . 

I ... CCWI EDIT CCW records for 10 events. 
.. xx .xxx Reserved . 

229 (E5) 3 Reserved. 
232 (E8) \00 10DVADS Maximum of 50 I/O device addresses. 
332 (14C) I SVCFLGS SVC selectivity flags: 

I... ALLV EDIT all SVC records. 
. 1.. SELV EDIT selective SVC records . 
.. xx xxxx Reserved . 

333 (I4D) 3 Reserved. 
336 (150) 32 SVCNUMS SVC bit string: one bit for each SVC number. 
368 (170) 1 USRFLGS User selectivity flags: 

l... ALLU EDIT all user records. 
.1.. SELU EDIT selective user records. 
.. xx xxxx Reserved. 

369 (\71) 3 Reserved. 
372 (\44) 80 USRNGTAB Maximum of 20 user EID ranges. 
452 (lC4) I PIFLGS PI selectivity flags: 

I... ALLP EDIT all PI records. 
. 1.. SELP EDIT selective PI records . 
.. xx xxxx Reserved . 

453 (IC5) 3 Reserved. 
456 (lC8) 32 PICODES PI bit string: one bit for each PI code. 

L Y28-1189-3 :£) Copyright IBM Corp. 1982, 1986 Chapter 3. Print Dump (AMDPRDMPl 3-73 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Offset Size Field Name Description 

488 (IE8) 1 GENFLAGS General flags: J I... EXT EDIT external interruption. 
.1.. DSP EDIT dispatcher event records. 
.. J. SYS EDIT GTF comprehensive trace records. 
... 1 SYSM EDIT GTF minimal trace records. 

l... RNIO EDIT RNIO trace records. 
.1.. SRM EDIT SRM trace records. 
.. J. RR EDIT RR trace records. 
... 1 EOF End-of-file exit in effect. 

489 (IE9) I GENFLGSI General flags: 
l... TS Time stamp needed. 
.1.. EOFINPRO End of file in progress. 
.. J. TSFOUND Time stamp found . 
... 1 FIRSTHSW Hexadecimal dump first time . 

I... SLIPPERM EDIT SLIP records. 
.1.. CPUSEL CPU selection in effect. 
.. xx Reserved . 

490 (lEA) 3 Reserved. 
493 (lED) 3 RECDLL Record length. 
496 (IFO) 8 EXITNM Name of user exit routine or format appendage 

currently in con tro!. 
504 (IF8) 4 EXITADDR User exit routine or format appendage entry 

point address. 
508 (IFC) 4 AEIOCT Address of EDIT I/O control table. 
512 (200) 4 PRFMTADD Address of AMDPRFMT. 
516 (204) 4 REENTWKA Address of workarea. 
520 (208) 4 AFRMAD Address of AMDPRFRM address table. 
524 (20C) 2 OFSTEID Offset of EID in -trace record. 
526 (20E) 2 OFSTDATA Offset of data in trace record. 
528 (210) 4 ADTSBUF Address of timestamp record buffer. 
532 (214) 9 ESTARTME Start time save area. 
532 (214) 3 ESDAY Day. 
535 (217) 2 ESHR Hour. 
537 (219) 2 ESMIN Minutes. 
539 (2IB) 2 ESSEC Seconds. 
541 (2ID) 9 ESTOPTME Stop time save area. 
541 (2ID) 3 ESPDAY Day. 
544 (220) 2 ESPHR Hour. 
546 (222) 2 ESPMIN Minutes. 
548 (224) 2 ESPSEC Seconds. 
550 (226) 4 CVVTZONE CVT time-zone value. 
554 (22A) 8 Reserved. 
562 (232) I CPU CPU for select. 
563 (233) I Reserved. 
564 (234) 4 ASY07WA Address of work area for CCW format 

appendage. 

3-74 MVSfExtended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986 



"Restricted Materials of IBM" 

Licensed Materials - Property of IBM 

Exit Control Table (ECT) 

Size: Variable. The user may use the linkage editor to expand the table. 

Created by: The ECT is in SYSl.LINKLIB as CSECT AMDPRECT in load 
module AMDPRECT. 

Updated by: The user updates the ECT entries using the AMASPZAP service aid 
program. The ECT has at least five available unused entries. 

Use: One twenty-byte entry exists for each user-exit module. AMDPRUIM scans 
the ECT to determine when user-exit modules should receive control. The 
IHAECTE macro maps an ECT entry. 

Offset 

o 
8 

9 

10 
12 

Path Descriptor Element 

(0) 
(8) 

(9) 

(A) 
(C) 

Size: 4 bytes. 

Size Field Name 

8 ECTEMODN 
I EXTEEXIT 
I... EXTEEXTC 
.1. ECTEEXAS 
.. 1. ECTEEXFT 
.. .1 ECTEEXPC 

I... ECTEEXNU 
.1.. ECTEXHD 
.. xx 

I... ECTEIFSA 

. xxx xxxx 
2 ECTERSRV 
8 ECTEVERB 

Created by: AMDPRCTL. 

Updated by: AMDPRCTL. 

Description 

Exit module name. 
Calling flags. 
TCBexit. 
ASCB exit. 
FORMAT exit. 
PRINT CURRENT/JOBNAME exit. 
PRINT NUCLEUS exit. 
Header exit. 
Reserved . 
ECTEIFA T Interface attributes. 
The PRDMP access storage service must treat 
the virtual address input parameter passed to it 
in register 0 as a 24-bit value when it is invoked 
by this module for locations in the dump. 
Although this module limits its requests for 
virtual storage to locations below 16M, it does 
not guarantee that the high order byte of 
register 0 is zero. 
Reserved . 
Reserved. 
User verb name. 

Use: One for each nonresident service and executor module; describes the module 
for loading by AMDPRSEG. 

Offset Size 

0 (0) I 
0 ... 
I... 
.xxx 

(1) 3 

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 

Field Name 

Flags 

xxxx 

Description 

Flags: 
Service module. 
Executor module. 
Reserved 
Module ID: the unique last three characters of 
the module name. 

Chapter 3. Print Dump (AMDPRDMP) 3-75 



Print Control Block (PCB) 

Size: 16 bytes. 

Created by: AMDPRPCB. 

Updated by: None. 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Use: Contains the starting and ending addresses in the dump data set of storage 
areas to be printed by AMDPRDMP. 

Offset Size Field Name Description 

0 (0) 4 PCBLINK Address of next PCB. 
4 (4) 4 PCBSTART Starting address of storage to be printed. 
8 (8) 4 PCBSTOP Ending address of storage to be printed. 
12 (C) 2 PCBASID ID of address space to be printed. 
14 (3) I Flags: 

1... Virtual storage PCB . 
. 1.. Real storage PCB . 
.. 1. Change PCBSTART value to zero. 
... 1 Update TOPICHDR field in COMMON . 

xxxx Reserved. 

Print Dump Index Description Table (AMDMNDXT) 

Size: Each entry is 44 bytes; the total length depends on total number of 
description entries. For each entry, there is a 4-byte table entry description word 
(EDW), and a 40-byte description data area. 

EDW - 4 bytes. 

Data - 40 bytes per each description entry. 

Created by: AMDPRCOM. 

Use: AMDMNDXT is the data area that contains the print dump index 
description table and its entry constants that are in the form of assembler EQU 
instructions. 

EDW format for each entry: 

Offset Size Field Name Description 

0 (0) I Reserved. 
(I) I Insertion data is needed. 

\... 
2 (2) The offset in the description data where data 

is inserted. 
3 (3) Length of the insertion data. 

3-76 MVS/Extended Architecture Service Aids Logic L Y28-ll89-3 © Copyright IBM Corp. 1982. 1986 

J 



"Restricted Materials of IBM" 

Licensed Materials - Property of IBM 

The description table contains the following 40 byte long entries. The 4 byte 
EDW precedes each description entry. 

'PRINT DUMP ABSTRACT INFORMATION . 
'COMMUNICATION VECTOR TABLE (CVT). 
'NUCLEUS STORAGE 
'DAT-ON NUCLEUS .•.. 
'DAT-OFF NUCLEUS .•.•• 
'SYSTEM QUEUE AREA (SQA) STORAGE. 
'COMMON SYSTEM AREA (CSA) STORAGE 
'LINK PACK AREA MAP •••. 
'LPDE SORTED BY NAME MAP 
'LPDE SORTED BY EPA MAP 
'LPA ACTIVE QUEUE MAP 
'SYSTEM SUMMARY •.•. 
'DUMP ADDRESS RANGES SUMMARY 
'ACTIVE CPU LIST SUMMARY .. 
'SCHEDULED SERVICES (SRB) SUMMARY 
'JOB SUMMARY ..•.• 
'PROBLEM LIST SUMMARY 
'PRINT DUMP FORMAT .. 
'SCHEDULED SERVICES (SRB) 
'PRINT DUMP EDIT .•• 
'VIRTUAL STORAGE PRINT . . 
'REAL STORAGE PRINT 
'PRIVATE STORAGE FOR ASID XXXX 
'NON-EXTENDED COMMON STORAGE PRINT 
'NUCLEUS STORAGE PRINT . 
'EXTENDED COMMON STORAGE PRINT • 
'CURRENT STORAGE PRINT. 
'JOBNAME PRINT .•... 
'ADDRESS SPACE XXXX CONTROL BLOCKS 
'TASK CONTROL BLOCK (TCB) 
'TASK CONTROL BLOCK SUMMARY 
'REQUEST BLOCKS (RB) .•.. 
'EXTENDED STATUS BLOCKS (XSB) 
'PROGRAM CALL LINK STACK (STKE) 
'LOAD LIST ........•. 
'JOB PACK QUEUE (JPQ) ...•. 
'lOS DATA EXTENT BLOCKS (DEB) 
'TASK INPUT/OUTPUT TABLE (TIOT) 
'CROSS MEMORY INFORMATION 
'lOS DATA AREAS ....•. 
'RTM DATA AREAS ..... . 
'DATA MANAGEMENT DATA AREAS 
'PROCESSOR RELATED DATA AREAS (CPUDATA) 
'CONSOLE INITIATED LOOP TRACE RECORDS 
'KEYFIELDS . 
'TCBSUMMARY 

The Index Table Entry Code Equates List: 

Field Name 

INDXABS 
INDXCVT 
INDXNUC 
INDXDTN 
INDXDTF 
INDXSQA 
INDXCSA 
INDXLPA 
INDXLPAI 
INDXLPA2 
INDXLPA3 
INDXSUM 

Equate 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 

Description 

AMDPRABS. PRINT DUMP ABSTRACT 
AMDPRCVT. CVT MA 
AMDPRNUC, NUCLEUS PRINT 
AMDPRNUC, DAT-ON NUCLEUS PRINT 
AMDPRNUC, DAT-OFF NUCLEUS PRINT 
AMDPRNUC, SQA PRINT 
AMDPRNUC, CSA PRINT 
AMDPRLPA, LINK PACK AREA MAP INDEX TITLE 
AMDPRLPA, LPDE SORTED BY EPA MAP 
AMDPRLPA, LPDE SORTED BY NAME MAP 
AMDPRLPA, LPA ACTIVE QUEUE MAP 
BLSQSUM4, SYSTEM SUMMARY 

Chapter 3. Print Dump (AMDPRDMP) 3-77 



TCBLIST Entry 

Field Name Equate 

INDXSUM1 13 
INDXSUM2 14 
INDXSUM3 15 
INDXSUM4 16 
INDXSUM5 17 
INDXFXT 18 
INDXFSRB 19 
INDXEDIT 20 
INDXVSPR 21 
INDXRSPR 22 
INDXPAID 23 

INDXPNEC 24 
INDXPNUC 25 
INDXPECS 26 
INDXPCR 27 
INDXPJBN 28 
INDXASCB 29 
INDXFTCB 30 
INDXTSUM 31 
INDXFRB 32 
INDXFXSB 33 
INDXSTKE 34 
INDXFLL 35 
INDXFJPQ 36 
INDXFDEB 37 
INDXTIOT 38 
INDXFXM 39 
INDXIOSD 40 
INDXRTMD 41 
INDXDMDA 42 
INDXCPUD 43 
INDXLRF 44 

INDXKEYF 45 
INDXTCBS 46 
INDXETIT 254 

INDXATIT 255 

Size: 8 bytes. 

Description 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

BLSQSUM4, DUMP ADDRESS RANGES SUMMARY 
BLSQSUM4, CPU LIST SUMMARY 
BLSQSUM4, SCHEDULED SERVICES SUMMARY 
BLSQSUM4, JOB SUMMARY 
BLSQSUM2, PROBLEM LIST SUMMARY 
BLSQSUM2, PRINT DUMP FORMAT 
BLSQSUM2, SCHEDULED SERVICES (SRB) 
AMDPRFRM, PRINT DUMP EDIT 
AMDPRPMS, VIRTUAL STORAGE PRINT 
AMDPRPMS, REAL STORAGE PRINT 
AMDPRPMS, PRIVATE STORAGE FOR ASID XXXX 
AMDPRPMS, PRIVATE STORAGE FOR ASID XXXX 
AMDPRPMS, PRIVATE STORAGE FOR ASID XXXX 
AMDPRPMS, NON-EXTENDED COMMON STORAGE PRINT 
AMDPRPMS, NUCLEUS STORAGE PRINT 
AMDPRPMS, EXTENDED COMMON STORAGE PRINT 
AMDPRPCR, PRINT CURRENT 
AMDPRPJB, PRINT JOBNAME 
BLSQSUM2, ADDR SPACE XXXX CONTROL BLOCKS 
BLSQSUM2, TASK CONTROL BLOCKS (TCB) FORMAT 
BLSQSUM2, TCB SUMMARY 
BLSQSUM2, REQUEST BLOCK (RB) 
BLSQSUM2, EXTENDED STATUS BLOCK (XSB) 
BLSQSUM2, PROGRAM CALL LINK STACK (STKE) 
BLSQSUM2, LOAD LIST 
BLSQSUM2, JOB PACK QUEUE 
BLSQSUM2, lOS DATA EXTENT BLOCKS (DEB) 
BLSQSUM2, TASK INPUT/OUTPUT TABLE (TIOT) 
AMDPRXMT, CROSS MEMORY INFORMATION 
IECIOFMT, lOS DATA AREAS 
lEA VTFMT, RTM DATA AREAS 
IECDAFMT, DATA MANAGEMENT DATA AREAS 
AMDPRGCD, PROCESSOR RELATED DATA AREAS 
AMDPRLRF, CONSOLE INITIATED LOOP TRACE 
RECORDS 
BLSQSUM3, KEYFIELD 
BLSQSUM5, TCBSUMMARY 
AMDPRFRM, INITIALIZATION THROUGH THE EDIT 
CONTROL STATEMENT 
AMDPRABS, INITIALIZATION DURING ABSTRACT 
PROCESSING 

Created by: CSECT AMDPRTSV in AMDPRCOM. 

Updated by: CSECT AMDPRTSV in AMDPRCOM. 

Use: Describes selected TCBs for use by subsequent routines. 

Offset 

o (0) 
4 (4) 

Size 

4 
4 

Field Name Description 

Address of nex.t TCBLIST entry. 
Address of associated TCB. 

3-78 MVS/Extended Architecture Service Aids Logic L Y28-1189-3 ©. Copyright IBM Corp. 1982, 1986 



"Restricted Materials of IBM" 

Licensed Materials - Property of IBM 

Section 5: Diagnostic Aids 

This section contains the following information to aid the reader in diagnosing 
AMDPRDMP errors: 

• AMDPRDMP register usage. 
• Return codes issued by AMDPRDMP modules. 

Note: Refer to System Messages for message text and detecting, issuing, and 
containing modules. 

AMDPRDMP Register Conventions 

Symbol 

PREG 
R2 

BUFREG 
R7 

R9 

BASEl 
COM BASE 

R13 
RETREG 
RI5 

AMDPRDMP Return Codes 

Module 

AMDPRABS 

AMDPRAPP 
AMDPRCMC 
AMDPRCOM 

Register 

I 
2 

6 
7 

9 

II 
12 

13 
14 
15 

CSECT 

AMDPRABS 

Usage 

Parameter register. 
Parameter register in following CSECTs: 

• CSECT AMDPRMSG in AMDPRCOM - Length of message to 
be written. 

• CSECT AMDPRTSV in AMDPRCOM - Contents depend on 
routine: 

I. TCBQSAVE - TCB address. 
2. TCBRTRV - TCBLIST position number. 
3. TCBREMV - Address of TCB to be removed or 0 to indicate 

that all TCBs are to be dequeued. 

Base of DSECT for output line (OUTBUFM). 
TCB address passed to TIOT element enqueue routine in 
AMDPRFUB. 

• During EDIT processing, the address of the EDIT 
communication table (AMDPRTAB). 

• During processing other than EDIT, R9 is the linkage register for 
internal subroutines. 

Base register for all modules. 
Address of AMDPRDMP common communication area 
(COMMON). 
Address of standard register save area. 
Linkage register for CSECT to CSECT subroutine calls. 
Entry point register for CSECT to CSECT subroutine calls. 

Return 
Code 

o 

8 
12 

Meaning 

Header record available, valid dump type 
specified. 
Invalid dump type specified. 
Header record not available. 

AMDPRAPP 
AMDPRCMC 
AMDPRCOM 
AMDPRGFR 
AMDPRMSG 
AMDPRNDX 
AMDPRSTP 
AMDPRSYN 
AM DPRTSV 

None 
None 
None 
None 
None 
None 
None 
None 
o Successful completion of TCBLlST enqueue, 

dequeue, or retrieve operation. 
AMDPRWTR None 

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 3. Print Dump (AMDPRDMP) 3-79 



"Restricted Materials of IBM" 

Licensed Materials - Property of IBM 

Return 
Module CSECT Code Meaning 

AMDPRCTL AMDPRCTL None 
AMDPREND 4 AMDPRDMP termination in progress. 
AMDPRMSC 0 Control statement has been completely 

processed. 
4 Error discovered during control statement 

processing. 
AMDPRXIT None 

AMDPRCVT AMDPRCVT 0 CVT formatting completed. 
4 Storage not available. 

AMDPRDPS AMDPRDPS None 
AMDPRPCB 0 A PCB has been dequeued and the information 

placed in the caller's work area. 
4 PCB queue is empty. 

AMDPREAD AMDPREAD None 
AMDPRECT AMDPRECT Not applicable. 
AMDPREXT AMDPREXT None 
AMDPRFAR AMDPRFAR None 
AMDPRFLT AMDPRFLT None 
AMDPRFMG AMDPRFMG Not 

applicable 
AMDPRFMT AMDPRFMT 0 All formatting completed. 

4 Formatting incomplete. 
AMDPRFOR AMDPRFOR None 
AMDPRFRM AMDPRFRM None 
AMDPRFSR AMDPRFDB None 

AMDPRFIO None 
AMDPRFLD None 
AMDPRFRB None 
AMDPRFSC None 
AMDPRFTC 0 Formatted TCB represents task that was active 

in dumped system. 
4 Formatted TCB represents task that was 

terminated in dumped system. 
AMDPRFUB AMDPRFUB None 
AMDPRFXT AMDPRFXT None 
AMDPRGCD AMDPRGCD None 
AMDPRGET AMDPRGET None 
AMDPRGSA AMDPRGSA None 

AMDPRGFT None 
AMDPRGNX None 

AMDPRJNA AMDPRJNA 0 JOBNAME valid, HOME ASID and ASCB 
address. 

4 ABDPL unavailable. 
8 CVT unavailable. 
12 ASVT unavailable. 
16 No matching jobname. 

AMDPRLOD AMDPRLOD 0 Loading of SYSUTI work data set is 
complete;dump formatting may begin. 

4 The input data set cannot be positioned to the 
requested information. 

8 Terminate AMDPRDMP; load mode requested 
and EOF encountered. 

AMDPRLPA AMDPRLPA None 
AMDPRLRF AMDPRLRF None 
AMDPRMST AMDPRMST None 
AMDPRNUC AMDPRNUC None 
AMDPROOT AMDPROOT None 
AMDPRPCR AMDPRPCR None 
AMDPROOT AMDPROOT None 
AMDPRPJB AMDPRPJB None 
AMDPRPMG AMDPRPMG Not 

applicable 

J 
3-80 MVSjExtended Architecture Service Aids Logic L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 



L 

"Restricted Materials of IBM" 

Licensed Materials - Property of IBM 

Module 

AMDPRPMS 

AMDPRRDC 

AMDPRREC 

AMDPRSCN 

AMDPRSEG 

AMDPRSLI 
AMDPRSMG 
AMDPRSN2 

AMDPRSUM 
AMDPRSUM 

AMDSYSOO 

CSECT 

AMDPRPMS 
AMDPRPMX 
AMDPRRDC 

AMDPRCON 
AMDPRHEX 
AMDPRTME 
AMDPRSCN 

AMDPRSEG 

AMDPRSLI 
AMDPRSMG 
AMDPRSN2 

AMDPRSUM 
AMDPRSUM 

AMDSYSOO 

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 

Return 
Code 

None 
None 
4 

None 
8 
None 
0 

4 

0 

4 

8 

12 

16 

None 
None 
0 

4 

8 

12 

16 

4 
None 
o 
4 

o 

4 

8 

12 

Meaning 

Storage is not available for buffers or there is 
no valid input data set. 

Processing is complete. 

EDIT control statement syntax is correct and 
EDIT processing may continue. 
Discontinue EDIT processing for one of the 
following reasons: 
• AMDPRDMP control statements are being 

entered from the SYSIN data set, the EDIT 
control statement indicates that trace data is 
to be edited from a dump data set, and the 
AMDPRDMP flush mode switch is on. 

• AMDPRDMP control statements are being 
entered from the SYSIN data set and an 
error has been discovered in the EDIT 
control statement. 

Successful completion of module loading, or 
TOD conversion. 
User format appendage greater than 10K and 
could not be loaded, or TOD value was zero. 
Module not found by BLDL macro instruction. 
Module name is given in message AMDI77I. 
I/O error during execution of BLDL macro 
instruction. 
AMDPRSEG attempted to delete a module that 
was not currently in virtual storage. 

A syntax error has been discovered by a 
keyword subroutine; flush mode processing 
must begin. 
Keyword processing is complete; AMDPRSCN 
must determine whether the end of the current 
control statement has been reached. 
AMDPRSCN is requested to determine whether 
unmatched parentheses are in the EDIT control 
statement. 
AMDPRSN2 must issue the invalid parenthesis 
error message. 
Control statement scan is to continue; 
AMDPRSCN will attempt to isolate the next 
EDIT keyword. AMDPRSN3 AMDPRSN3 0 
EDIT control statement syntax is correct. 
Error in EDIT control statement. 

Dump data read was successful. 
Requested data could not be read. 
First output line has been formatted: 
AMDPRAPP should print this line and return 
to AMDSYSOO. 
Second output line has been formatted; 
formatting for this trace record is complete. 
AMDPRAPP should print the line and 
complete processing for this record. 
Error encountered in formatting the trace 
record. or selective editing was in effect and this 
record is not to be edited. 
Record should be dumped in hexadecimal. 

Chapter 3. Print Dump (AMDPRDMP) 3-81 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Return 
Module CSECT Code Meaning 

J AMDSYSOI AMDSYSOI 0 First output line has been formatted: 
AMDPRAPP should print the line and return 
to AMDSYSO I. 

4 Second output line has been formatted; 
formatting for the current record is complete. 
AMDPRAPP should print the formatted line 

S Error encountered in formarting the trace 
record, or selective editing is in effect and this 
trace record is not to be formatted. 

12 Record should be dumped in hexadecimal. 
AMDSYS02 AM DSYS02 0 First output line has been formatted: 

AMDPRAPP should print the line and return 
to AMDSYS02. 

4 Second output line has been formatted; 
formatting for this record is complete. 
AMDPRAPP should print the line. 

S Error encountered in formatting the record, or 
selective editing is in effect and this record is 
not to be formatted. 

12 Record should be dumped in hexadecimal. 
AMDSYS03 AMDSYS03 4 Current trace record has been formatted; 

AMDPRAPP should print the record. 
8 Error encountered in formatting the record, or 

selective editing is in effect and this record is 
not to be formatted. 

12 Record should be dumped in hexadecimal. 
AMDSYS04 AM DSYS04 0 First output line has been formatted: 

AMDPRAPP should print the line and return 
to AMDSYS04. 

4 Second output line has been formatted; 
formatting for this record is complete. 
AMDPRAPP should print the line. J 8 Error encountered in formatting the record, or 
selective editing is in effect and this record is 
not to be formatted. 

12 Record should be dumped in hexadecimal. 
AMDSYS05 AMDSYS05 0 First output line has been formatted; 

AMDPRAPP should print the line and return 
to AMDSYS05. 

4 Second output line has been formatted; 
formatting for this record is complete. 
AMDPRAPP should print the line. 

8 Error encountered in formatting the record, or 
selective editing is in effect and this record is 
not to be formatted. 

12 Record should be dumped in hexadecimal. 
AMDSYS06 AMDSYS06 0 First output line has been formatted: 

AMDPRAPP should print the line and return 
to AMDSYS06. 

4 Second output line has been formatted; 
formatting for this record is complete. 
AMDPRAPP should print the line. 

8 Error encountered in formatting the record, or 
selective editing is in effect and this record is 
not to be formatted. 

AMDSYS07 AMDSYS07 0 The return code is zero when any output line 
except the fmal output line has been formatted. 
AMDPRAPP should print the line and return 
to AMDSYS07. 

4 Final output line has been formatted; 
formatting for this record is complete. 
AMDPRAPP should print the line. 

8 Error encountered in formatting the record, or 
selective editing is in effect and this record is J not be formatted. 

12 Record should be dumped in hexadecimal. 

3-82 MVSfExtended Architecture Service Aids Logic L Y28-1l89-3 © Copyright IBM Corp. 1982, 1986 



L 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Section 6: AMDPRDMP Macro Instructions 

AMDDATA 

AMDPCBPL 

AMDMNDXT 

BRPRTMSG 

BRREAD 

The AMDDATA macro is a mapping macro for the various input record formats 
accepted by AMDPRDMP. AMDPRDMP modules use this macro instruction 
for symbolic references to fields within the input. AMDDATA is also available 
to the AMDSADMP and SVC dump programs to define their output records 
(which are later input to AMDPRDMP). 

The AMDPCBPL macro is a mapping macro for the PCB to be used as input to 
the AMDPRPCB routine in module AMDPRDPS. 

The AMDMNDXT macro generates the index descriptor table. All 
AMDPRDMP modules that have predefined index entries use this macro. 

The BRPRTMSG macro generates linkage to CSECT AMDPRMSG in 
AMDPRCOM in order to write a message in SYSPRINT output data set. The 
BRPRTMSG macro instruction has two parameters: the first is the address of the 
message to be printed and the second is the length of the message. 

The BRREAD macro generates linkage to AMDPRRDC to perform one of three 
functions, depending on the keyword specified as the first or second parameter in 
the macro instruction: 

• ADJUST - causes AMDPRRDC to free buffers and the buffer map. 

• INIT - causes AMDPRRDC to load AMDPRLOD to write the input data 
set into SYSUTl or SYSUT2 (if provided in JCL); to initialize buffers and a 
buffer map; and, for each new dump, to call AMDPRMST to initialize 
COMMON, and to build ASCBMAP. 

• DATA - causes AMDPRRDC to locate the input record that contains the 
requested data and return the address of the data in the buffer to the caller. 
For details of the DATA function, refer to the description of reading input 
data in the "Program Organization" section. 

• LENGTH - is meaningful only as an option of the DATA function. 
LENGTH causes AMDPRRDC to return the specified amount of data (up to 
4K maximum) to the issuer. The default is a length of zero and indicates that 
the length of the data depends on the boundary of the specified address. 

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 3. Print Dump (AMDPRDMP) 3-83 



BRWRITE 

COMMON 

EQUATES 

FMTPTRN 

HEXCNVT 

IMDMEDIT 

"Restricted Materials of IBM" 

Licensed Materials - Property of IBM 

The BRWRITE macro generates the linkage to CSECT AMDPRWTR in 
AMDPRCOM in order to write a line in the PRINTER output data set. The 
information to be written must be in the buffer pointed to by the CURBUF field 
of COMMON. The BRWRITE macro instruction contains two parameters. The 
first is either 1, 2, 3 or SKIP to indicate the number of lines to skip after the 
written line. The second parameter is a keyword, either IMM or AFT (or blank), 
which indicates whether to space immediately or after writing the CURBUF field. 

The COMMON macro is the mapping macro for the common communication 
area (COMMON). It is used by all AMDPRDMP modules to generate the 
COMMON DSECT. For a detailed description of COMMON, see the "Data 
Areas" section of this chapter. 

The EQUATES macro instruction generates a list of EQU instructions used by all 
AMDPRDMP modules. 

The FMTPTRN macro instruction generates a parameter list that is passed to 
CSECT AMDPRGFR in AMDPRCOM in order to format a line of output. 
Each FMTPTRN macro instruction must contain the attributes of the data, the 
length of the label to be assigned, the length of the data, the offset of the label in 
the output line, the offset of the data, and, optionally, the address of the label 
string and the address of the data. 

The HEXCNVT macro instruction generates the code to convert a value from 
internal binary to printable hexadecimal. 

The IMDMEDIT macro instruction generates a list of symbolic names with 
equated hexadecimal event identifiers (EIDs) for events that are traced by GTF. 
IBM components and users that write EDIT user exit routines use the 
1M OM EDIT macro instruction to reference the EID field in a trace record built 
by GTF. 

The IMDMEDIT mapping macro instruction is as follows: 

IMDMSSM EQU 
IMDMSSMI EQU 
IMDMPIPG EQU 
IMDMDSPI EQU 
IEADISPI EQU 
IMDMDSP2 EQU 

o 
o 
o 
X'OOOI' 
IMDMDSPI 
X'OOO2' 

OS SSM FOR COMPATIBILITY 
SSM INTERRUPT 
PAGE FAULT PROGRAM INTERRUPT 
DISPATCHER 
DISPATCHER 
DISPATCHER 

3-84 MVS/Extended Architecture Service Aids Logic L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEADISP2 EQU IMDMDSP2 DISPATCHER 

L 
IMDMDSP EQU X'OOO3' DISPATCHER 
lMDMDSP3 EQU X'OOO3' DISPATCHER 
IEADISP3 EQU IMDMDSP3 DISPATCHER 
IMDMDSP4 EQU X'OOO4' SVC EXIT PROLOG DISPATCH 
IEADISP4 EQU IMDMDSP4 EXIT PROLOG DISPATCH 
IMDMSVC EQU X'IOOO' SVC INTERRUPT 
IEASVCH EQU IMDMSVC SVCINTERRUPT 
IMDMPCI EQU X'2100' PCl I/O INTERRUPT 
I ECPCI EQU IMDMPCI PCI I/O INTERRUPT 
IMDMSRM EQU X'4001' SRM 
IRASRM EQU IMDMSRM SRM 
IMDMSTAE EQU X'4002' RTM 
IEASTAE EQU IMDMSTAE RTM 
IMDMFRR EQU X'4003' RTM 
IEAFRR EQU IMDMFRR RTM 
IMDMSLSD EQU X'4004' RTM/SLIP STANDARD RECORD 
IEAVSLSD EQU IMDMSLSD RTM/SLIP STANDARD RECORD 
IMDMSLSU EQU X'400S' RTM/SLIP STANDARD + USER RECORD 
IEAVSLSU EQU IMDMSLSU RTM/SLIP STANDARD + USER RECORD 
IMDMSLUR EQU X'4006' RTM/SLIP USER RECORD 
IEAVSLUR EQU IMDMSLUR RTM/SLIP USER RECORD 
IMDMSIO EQU X'SIOO' SIO OPERATION 
IECSIO EQU IMDMSIO SIO OPERATION 
IMDMEOS EQU X'5IOI' lOS 
IECEOS EQU lMDMEOS lOS 
IMDMCSCH EQU X'S102' CLEAR SUBCHANNEL GTF RECORD 
IECCSCH EQU IMDMCSCH CLEAR SUBCHANNEL GTF RECORD 
IMDMHSCH EQU X'SI03' HALT SUBCHANNEL GTF RECORD 
IECHSCH EQU IMDMHSCH HALT SUBCHANNEL GTF RECORD 
IMDMMSCH EQU X'SI04' MODIFY SUBCHANNEL GTF RECORD 
IECMSCH EQU IMDMMSCH MODIFY SUBCHANNEL GTF RECORD 
IMDMSSCH EQU X'SIOS' START SUBCHANNEL GTF RECORD 
IECSSCH EQU IMDMMSCH START SUBCHANNEL GTF RECORD 
IMDMRSCH EQU X'SI06' RESUME SUBCHANNEL GTF RECORD 
IECRSCH EQU IMDMRSCH RESUME SUBCHANNEL GTF RECORD 
IMDMI02 EQU X'5200' 1/0 INTERRUPT 
IECI02 EQU IMDMI02 I/O INTERRUPT 
IMDMIOI EQU X'S201' I/O INTERRUPT 
IECIOI EQU IMDMIOI I/O INTERRUPT 
IMDMPI EQU X'6101' PROGRAM INTERRUPT 
IEAPINT EQU IMDMPI PROGRAM INTERRUPT 
IMDMTINT EQU X'6Z00 PFLIH 
IEATINT EQU IMDMTINT PFLIH 
IMDMEXT EQU X'6201' EXTERNAL INTERRUPT 
IEAEINT EQU IMDMEXT EXTERNAL INTERRUPT 
IMDMTPI EQU X'8100' TPIOS 
ISPTPIOI EQU IMDMTPI TPIOS 
IMDMTPZ EQU X'8200' TPIOS 
ISPTPI02 EQU IMDMTP2 TPIOS 
IMDGPDOI EQU X'EFAF' RESERVED 
IMDGPD02 EQU X'EFBO' RESERVED 
IMDGPD03 EQU X'EFBI' RESERVED 
IMDGPD04 EQU X'EFB2' RESERVED 
IMDGPDOS EQU X'EFB3' RESERVED 
IMDGPD06. EQU X'EFB4' RESERVED 
IMDGPD07 EQU X'EFBS' RESERVED 
IMDGPD08 EQU X'EFB6' RESERVED 
IMDGPD09 EQU X'EFBT RESERVED 
IMDGPDIO EQU X'EFB8' RESERVED 
IMDGPDII EQU X'EFB9' RESERVED 
IMDGPD12 EQU X'EFBA' RESERVED 
IMDGPDl3 EQU X'EFBB' RESERVED 
IMDGPDl4 EQU X'EFBC' RESERVED 
IMDGPDIS EQU X'EFBD' RESERVED 
IMDGPDI6 EQU X'EFBE' RESERVED 
IMDGPDI7 EQU X'EFBF' RESERVED 
IMDGPDI8 EQU X'EFCO' RESERVED 
IMDGPDl9 EQU X'EFCl' RESERVED 

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 3. Print Dump (AMDPRDMP) 3-85 



"Restricted Materials of IBM" 

Licensed Materials - Property of IBM 

IMDGPD20 EQU X'EFC2' RESERVED 
IMDGPD21 EQU X'EFC3' RESERVED 

j IMDGPD22 EQU X'EFC4' RESERVED 
IMDGPD23 EQU X'EFC5' RESERVED 
IMDGPD24 EQU X'EFC6' RESERVED 
IMDGPD25 EQU X'EFC7' RESERVED 
IMDGPD25 EQU X'EFCS' RESERVED 
IMDGPD27 EQU X'EFC9' RESERVED 
IMDGPD28 EQU X'EFCA' RESERVED 
IMDGPD29 EQU X'EFCB' RESERVED 
IMDGPD30 EQU X'EFCC' RESERVED 
IMDGPD31 EQU X'EFCD' RESERVED 
IMDGPD32 EQU X'EFCE' RESERVED 
IMDGPD33 EQU X'EFCF' RESERVED 
IMDGPD34 EQU X'EFDO' RESERVED 
IMDGPD35 EQU X'EFDl' RESERVED 
IMDGPD36 EQU X'EFD2' RESERVED 
IMDGPD37 EQU X'EFD3' RESERVED 
IMDGPD3S EQU X'EFD4' RESERVED 
IMDGPD39 EQU X'EFD5' RESERVED 
IMDGPD40 EQU X'EFD6' RESERVED 
IMDGPD41 EQU X'EFD7' RESERVED 
IMDGPD42 EQU X'EFDS' RESERVED 
IMDGPD43 EQU X'EFD9' RESERVED 
IMDGPD44 EQU X'EFDA' RESERVED 
IMDGPD45 EQU X'EFDB' RESERVED 
IMDGPD46 EQU X'EFDC' RESERVED 
IMDGPD47 EQU X'EFDD' RESERVED 
IMDGPD48 EQU X'EFDE' RESERVED 
IMDGPD49 EQU X'EFDF' RESERVED 
IMDGPD50 EQU X'EFEO' RESERVED 
ISTVIEIE EQU X'EFEl' ACF/VTAM INTERNAL TRACE 
ISTTHEID EQU X'EFE2' TSO/VTAM TGET/TPUT TRACE 
ISTTREID EQU X'EFE3' VTAM RESERVED 
ISTTDEID EQU X'EFE4' ACF/VTAM NCP LINE TYPE TRACE 
ISTTPEID EQU X'EFEF' ACF/VTAM USER BUFFER CONTENTS 

TRACE 
ISTRPEID EQU X'EFFO' ACF/VTAM SMS (BUFFER USE) TRACE 
ISTCLEID EQU X'EFFl' ACF/VTAM COMPONENT BUFFER 

CONTENTS TRACE 
ISTLNEID EQU X'EFF2' ACF /VTAM NCP LINE OR TG TRACE 
IGGSPOO2 EQU X'EFF3' SAM/PAM/DAM 
IGGSPOO8 EQU X'EFF4' SAM/PAM/DAM 
IDAAMOI EQU X'EFF5' VSAM 
IGGSPl12 EQU X'EFF6' SAM(PAM/DAM 
IGGSP215 EQU X'EFF7' SAM/PAM/DAM 
IGGSP119 EQU X'EFFS' SAM/PAM/DAM 
IGGSP235 EQU X'EFF9' SAM/PAM/DAM 
IGGSP239 EQU X'EFFA' SAM/PAM/DAM 
IGGSP145 EQU X'EFFB' SAM/PAM/DAM 
IGGSP251 EQU X'EFFC' SAM/PAM/DAM 
IGGSP451 EQU X'EFFD' SAM/PAM/DAM 
IGGSP169 EQU X'EFFE' SAM/PAM/DAM 
IMDMDMAI EQU X'EFFF' OPEN/CLOSE/EOV 
IMDMSVCD EQU X'FlOO' SVCDUMP 
lEASVCD EQU IMDMSVCD SVCDUMP 
IEAABOF EQU X'F200' ABEND/SNAP-OUT-NOT USED BY EDIT 

3-86 MVSfExtended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

OUTBUFM 

SYNEPS 

The OUTBUFM macro instruction is the mapping macro for an output line in 
the PRINTER data set. AMDPRDMP modules use this macro instruction to 
position data in the line. 

The SYNEPS macro instruction is the mapping macro instruction for the entry 
points for CSECT AMDPRSYN in AMDPRCOM. 

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 3. Print Dump (AMDPRDMP) 3-87 



3-88 MVSfExtended Architecture Service Aids Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Chapter 4. Stand-Alone Dump (AMDSADMP) 

Section 1: Introduction 

AMDSADMP Macro Instruction 

The stand-alone dump program is supplied to you as a macro definition, 
AMDSADMP, in the SYSl.MACLIB system library. You code the 
AMDSADMP macro instruction, using the keyword operands to tailor the dump 
program to the installation. For a description of the AMDSADMP macro 
instruction and its keywords, refer to Service Aids. 

After coding the macro instruction, you put the SADMP program onto the 
residence volume in ready-to-Ioad form, using either of two methods. In 
two-stage generation, first you assemble the AMDSADMP macro in order to 
produce stage-two JCL. Then you execute this job in order to initialize the 
SADMP residence volume. In one-step generation, you code the same 
AMDSADMP macro as an input control statement for the AMDSAOSG 
program, and then execute AMDSAOSG. 

In either case, SADMP residence volume initialization consists of three phases: 

1. The assembly of the AMDSADM2 macro produces the SADMP real storage 
dump program AMDSARDM, which dumps real storage, and the SADMP 
common communication table AMDSACCT, an internal control block. 

2. The SADMP build module AMDSABLD puts the output from phase one 
onto the residence volume in ready-to-Ioad form. AMDSABLD relocates the 
SADMP IPL program AMDSAIPL and the SADMP virtual storage dump 
program AMDSAPGE, and puts them onto the residence volume. 

3. If the residence volume is a direct access device, the device utility ICKDSF is 
invoked to put SADMP's IPL text onto the device's IPL track (cylinder 0, 
track 0). 

The SADMP program has four basic variations: 

• High-speed, residing on a direct access device, with output directed to a tape 
volume. 

• High-speed, residing on a tape device, with output directed to a tape volume . 

. .. Tn., ,..., __ ._ 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

• Low-speed, residing on a direct access device, with output directed to a tape 
volume. 

• Low-speed, residing on a direct access device, with output directed to a 
printer. 

High-Speed Dump Program 

The high-speed version of SADMP dumps all real storage and areas of virtual 
storage not backed by real storage. The output is unformatted and intended for 
later machine processing by AMDPRDMP. The output includes: 

• A dump title. 

• The processor store-status information for each processor. 

• Real storage from address 0 to the top of real storage in real address sequence 
(some blocks may be missing because they are offline or are backing the 
hardware system area). 

• Instruction trace data created by the console-initiated loop recording. 

• Vector status data for each processor that has a vector facility installed. 

• Selected virtual storage areas. 

• A log of console messages written during the dumping of MVS virtual 
storage. 

If SADMP detected an internal error, the output might also include one or more 
SADMP self-dumps. SADMP dumps the instruction trace data and paged-out 
virtual storage only when SADMP is able to access virtual storage. 

Notes: 

1. Stand-alone dump uses only online devices. When dumping to or from devices 
that have both real and virtual addresse$, specify only the real address to 
SADMP. SADMP must reside on an online storage device. 

2. You cannot direct SADMP output to its residence volume. 

Low-Speed Dump Program 

The low-speed version of SADMP produces formatted output containing a dump 
title specified at dump execution time, processor related data for each available 
processor, and a dump of user-selected areas of real storage. 

T V"'O lIon..., .-. ........ -



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Section 2: Method of Operation 

This section describes how the stand-alone dump program produces the dumps. 
As shown in SADMP Figure 4-1, the description begins with an overview, then 
describes the following stages of the overall processing: 

• Specification stage 
• Initialization stage 
• Dump execution stage 

Note: SADMP also formats the console message log under IPCS and PRDMP. 

Reading Method of Operation Diagrams 

Method of operation diagrams are arranged in an input-processing-output layout: 
the left side of the diagram contains the data that serves as input to the processing 
steps in the center of the diagram, and the right side contains the data that is 
output from the processing steps. Each processing step is numbered; the number 
corresponds to the verbal description of the step in the extended description. 
While the processing step in the diagram is in general terms, the corresponding 
text is a specific description that includes a cross-reference to the code for the 
processing. 



I SYSGEN J I 

I 
Two-Stage 
Generation 
AMDSADMP 

I 
I IPLl I I 

Stand Alone 
Dump 

I 
Specification I Initialization 

J 
I 

One-Step 
Generation 
AMDSAOSG 

I 
IAMDSADM2 I AMDSABLDI I 

I 
I BOOTSTRAP 

I 
I I 

I Execution 

I 
ICKDSF 

I 

I I 

"Restricted Materials of IBM" 

Licensed Materials - Property of IBM 

I Console Message Log Formatting I 

AMDSAFCM 

I 
I Dumping I 

I 

IPL2 I I AMDSAIPL I AMDSADIP I Real Storage Virtual Storage 

Dump Program Dump Program 

AMDSARDM AMDSAPGE 

Figure 4-1 (Part 1 of 2). Key to Method of Operation Diagrams for the Stand-Alone Dump Program 



"Restricted Materials of IBM" 

Licensed Materials - Property of IBM 

Key to Method of Operation (MOl Diagram Symbols 

Entry into processing 

Flow of Control 

~> Data Transfer 

Pointer to or address of 

Reference to data 

1, 2, etc. 

A, B, etc. 

I 
~ 
E> 

Look for corresponding numbers in text 

Look for blow-up of item on same page 

Look for corresponding-lettered blow-up 
on same page 

Braces to denote related items 

See referenced diagram for detailed 
description 

Reference ta anather diagram 

Figure 4-1 (Part 2 of 2). Key to Method of Operation Diagrams for the Stand-Alone Dump Program 

("'"1 ...... _ .. ~_ A CO ..... _..l A 1 ____ T"'\, _______ I A. lI. .r"IIo.CO.6 .......... ro.' .it C 



::.. 
1\ 

~ 
~ 
~ 

; 
a 
t 
I 
I 
l.. 
I 
l.. 

> , 
) 

r 
;: 
: 
t 

i 
I:l 
I 
I 
s· 
I 

> 
i.: , 
) 
l 
i' 

<: 
..) 

:0 
-10 

P ., 
)l 

') 
) 

! 
i. 
l 

r 
... 
1:1 .. .. 
') 
) 

! 
-D 
Q 
..) 

D 
(I 

" 

Diagram SADMP-l. AMDSAAID - Address Space Locater (Part 1 of 2) 

('ORCB rfTu 
CTASCBM CTASCBA 

I-~ ,v' 

CTAASIDD 

1 Enqueue the AI D RCB. 

2 Set the fields associated with 
the master scheduler address 
space. 

CTAASIDD C- -I ~====::::=:> 3 Dump each address space on the >I 
list. 1...-___ -'--' 

ASLBASID 

4 Call AMDSASIN to swap in 
the address space. 

5 Call AMDSAMDM for dumping. 

6 Call AMDSAGTF. 

?VCHK 

SVC (SVCSI 

SVC (SVCMDM) 

SVC (SVCGTF) 

CTASCBA 

[Asv-rENTYJ 

7 Report any extended storage 
errors by issuing message 
AMD0751. Original RCB Queue 

=!=====~: ~>8 Dequeue the AID RCB from the :> 
RCB queue. 

'-' \, '-' 

t"" 
;So 
tD 
::I 
~ =-
3: ~ 
110 tD - '" tD -::I_ .. 

;S-
IlO -r;; tD =-I 3: 
"'I:j 110 .. -0 tD 

'= .. 
tD iii-.. r;; -'< 0 
0 -. -. -- = = 3: 3: :: 



r r 

;:;; Diagram SADMP-l. AMDSAAID - Address Space Locator (Part 2 of 2) 
IV 
'?" Extended DescriptioD --00 
10 
W 
© 
(') 
o 

"0 
'< 
::I. 

(JQ 
=r -.... 
1:1:1 
~ 
(') 
o 
fl 
10 
00 
.IV -10 
00 
0\ 

(') 

i 
n ... 
~ 

Vl 

[ 
> 
f 
I 
'> 
== ~ 
> 
~ 
.:E 

f"' 
-l 

1 

3 

4 

5 

6 

7 

8 

AMDSAAID enqueues the AID RCB. 

AMDSAAID fills in fields CTASCBM and CTASCBA. 

AMDSAAID dumps each address space on the list of address spaces. 

AMDSAAID calls AMDSASIN to swap in the address space. 

AMDSAAID calls AMDSAMDM to dump the appropriate data areas. 

AMDSAAID calls AMDSAGTF to dump GTF virtual dump buffers. 

If SADMP detected any errors while dumping from extended storage, AMDSAAID writes message 
AMD07SI to the operator console. This is done after all address spaces have been dumped and for 
each address space that had errors dumping from extended storage. 

AMDSAAID dequeues the AID RCB from the RCB queue. 

r 

t"'" ~ n' 
fD fD 

Module Label ~ ~ 
~ :!. =- ~ -~ 

fD =-= ~ -fD 
:!. = -= fD 
1il .. S· 
I 1il 

""= 
0 ... a -~ == .. ~ - :: '< 

0 ... -== ~ 



~ Diagram SADMP·2. AMDSAARD - Address Range Dump (part 1 of 2) 
I 

00 

3: 
<: 
r.tJ 

tTl 
)< ,... 
o 
::l 
P­o 
P-
;J> 
rl 
::r ;:+. 
o 
(') ,... 
s:: 
@ 
r.tJ 
o 
:! o· 
o 
;J> 
0.: 
'" r 
o 

(JQ 

o' 

r 
-< t-> 
00 . -00 
\0 
I 

W 

@ 

n 
o 
'0 
'< .., 
QCi' 
~ -= 3: 
() 
o 
~ 
\0 
00 
JV 

\C 
00 
0\ 

Input 

Register 1 Register 0 

I Address I 

Register 0 

RANGEBEG RANGE END 

I 1 It 
PAGEBDRY PAGESIZE : :> 
I I I I 
RANGEBEG ARBEND 

1 1 1.....-1 _--J 

Output 

RANGEBEG RANGEEND 

1 Receive input address, preset 
return code. 

2 If zero length request, call for 
a dump. If an error in dumping 
occurs, set error return code 
and exit. 

RANGEDMP 

Error. Return 
to Caller 

I 

Register 15 

o 1 

Register 15 

4 

New 
RANGEBEG 
I 3 If non·zero length request,. '\ 

merge the ranges. V L1 _____ ---' 

New 
RANGEEND 

I 

ARBBEG ( : :> 4 Compare input address range .ARB Queue 

~. 

with addresses in ARB queue: 

• If no overlap, enqueue new : :>I 
ARB. 

• If overlap, merge ranges to 
modify existing ARB. 

5 Return to caller. 

l, 

GETARB 
ARB Queue 

ARB 

ARB 

~ 

i 
=:I 
~ 
Q. 

~ " 
JrI ~ ;;- fI.l -S· ii!' - -"" :t 
"'d~ a ;;-
1l ;: a = = .... .... --= ~~ 



r 
-< 
t-J 
00 , 

00 
'D , 
w 

(']) 

n 
o 

:l. 

~ 

cc 
3:: 
n 
o .., 

'D 
00 
N 

'D 

(' 

Diagram SADMP-2. AMDSAARD - Address Ranae Dump (part 2 of 2) 

Extended Description 

AMDSAARD collects and merges the address ranges when 
overlaps occur, for zero length requests, AMDSAARD 
dumps each page within the range. 

1 AMDSAARD receives the input beginning address in 
register 1 and saves the beginning address in 

RANGEBEG. AMDSAARD calculates the ending address 
and saves the ending address.in RANGEEND. AMDSAARD 
presets the return code to zero. 

2 AMDSAARD determines the function to be performed 
according to the value in register O. If the value is 

zero, AMDSAARD calls RANGEDMP to dump every page 
listed in the ARB queue. If the dump fails, RANGEDMP 
sets an error return code of 4 and terminates. 

Module Label 

RANGEDMP 

g:: 3 If register 0 contains a nonzero value, AMDSAARD 

n 
::r 
{l 
~ .., 
f> 
VJ 
Pi 
:l 
C. 

:i> 
0" 
:l 
(I> 

o 
s::: 
:3 

"'0 

'> 
3:: 
o 
VJ 
;l> 
o 
~ 

,::s 

f" 
1.0 

merges the input address range with the address 
ranges on the ARB queue. The ARB queue is in ascending 
order. AMDSAARD examines the ARBs, starting at the 
beginning of the ARB queue. 

4 AMDSAARD compares RANGEBEG to the ARB 
beginning and ending addresses. If the input address 

range does not overlap with any ARBs, AMDSAARD 
calls GETARB to enqueue a new ARB containing the 
input address range. If the input address range does over­
lap with an existing ARB, AMDSAARD merges the input 
address range into that ARB. If AMOSAAUO skips over 
the entire ARB queue because all ARBs end before the 
input address begins, AMDSAAAD adds the new ARB to 
the end of the ARB queue. 

5 AMDSAAAD returns to the caller_ 

GETARB 

(' r 

I:"" ff fi$. 
fI> 

i 
<Il -=- i=i. 

~ 
;;-
=-

lID 

~ ;-
S· ;;-
fil" ::!. 

lID 
I I'ii' 

"'C e .... .. e --g = .. s: -~ ::: 
e .... -== ~ 



f' Diagram SADMP-3. AMDSAASM - Auxiliary Storage Management (Part 1 of 4) --o 

a: 
< 
til 

---ttl 
~ -no 

~ 
Q., 

> 
(i 
e: -no 
(') -= ri 
~ 
~ 
~. 

> s: 
en 

b 
l=)0 

r 
-<: 
N 
~ --00 
\C 
I 

W 

@ 

(1 

~ 
::!. 

OQ 
::r --0:; 

~ 
(1 
o 
-? -\C 
00 
J'> -\C 
00 
0'\ 

Input 

Register 1 BCT , • __ .r---------~ 

CTASMVTB 

I .. MRC
• r1J1J 

BCT . 

BCTSWPDS 

BCTlNDEX 

PARTEUSE 

CTSARTB 

SARUSE 

SREDSBD' 

Register 0 

'-' 

CTPARTB 

EDB 

: : ~ 

1 Receive input BCT, and enqueue 
the ASM RCB. 

2 . Set an error code and return if 
the ASMVT is invalid. 

3 Convert LSI D to a seek, address 
and subch8nnel ID. Set an error 
code and terminate if one of the 
following occurs: 

• The PART or PART entry is 
invalid. 

• The page data set is invalid. 

• The SART or SART entry 
is invalid. 

• The SART entry is not 
in use or the SART data 
set is invalid. 

4 Check validity of the EDB. 

~ 

•.... I~ Return to 
caller 

On Error 
•••• ~ Return to 

Caller 

? VCHK 

Output 

Register 15 

4 

Register 15 

4 

c.., 

t"'" 
t=). 
flO 

~ =-
3: ,; .. .,. - '" flO -::!. :!. .. ~ 

i'ii -.,. Q, 

""CI 
3: .. 

a ~ 
'i .. 

iii' ... i'ii -~ Q 
Q .... .... -- == == 3: 3: :s 



r r 

Diagram SADMP-3. AMDSAASM - AuxiUary Storage Management (Part 2 of 4) 

ExteDIW DeIerlpdoa 

AMDSAASM converts a logical slot identifier (LSI D). which is the auxiliary storage ID for a page. into 
the direct access seek address of the auxiliary storage copy. 

1 AMDSAASM receives the input butTer control table (8C1), and enqueues an ASMRCB. 

1 If the CTASMVTB is on, an error code of 4 is set. 

3 AMDSAASM converts the LSID to a seek address and subchannellD. For the following errors. 

.. 

AMDSAASM sets an error return code of 4, dequeues the ASMRCB, and terminates: 

• The PART control block is invalid. 

• The PART entry or pap data set is invalid. 

• The SART control block or SART entry is invalid. 

• The SART entry is nol in usc. 

• The SART data set is invalid. 

AMDSAASM calls ?VCHK to check the validity of the EDB. If it is iovalid. ?VCHK sets a return 
code of 41Dd AMDSAASM terminates. 

r 

Modale Lallel 

1VCHK 

t'"" I: r,;. ::.= 
no no 
:::I '" 
~ s. =- t") 

3: [ 
! 3: 
:!. = 
III ~ 
~ ::!. 

I ~ 
"1:1 = 
... -= -~ == ~ 3: 
~ os 

= -;; 
:: 



Diagram SADMP·3. AMDSAASM - Auxiliary Storage Management (part 3 of 4) 

Input Process o 

CONVOUT 

F=~======!=> 5 Convert the RBA into an 
'-_____ ~ auxiliary storage address. 

RBA 

ILRCNVRT 

• If convert fails set an error 

return code and terminate. : >I ... ______ .J 

UCB 

RCB Queue 

ASMRCA ~ 

I-.-.JL.... _____ .L. .. '\. 6 Find or create an 10DB. 

Return to 
Caller 

710 

100B 

Register 15 

o 
ASM RCB, and pass the 100B 1---------' 

MBBCCHHR 

Register 1 

IfIOOB I I r LJ'Ub i :> 7 Set a return code, dequeue the ; >I 
to the caller. 

0:0 

~ ~ l, 

t"'" 
~. 
1:1 

I. 
a: I: 

= ~ ~ fIJ -.. :3 • ;. n 
[ij' i 
~ 

3: » 
=> ;r 
1 :3. » .. ;; 
~ c:> 
=> -.... --= 1:1:1 3: a: :s 



J 

r r 

Diagram SADMP-3. AMDSAASM - AuxiUary Storage Management (Part 4 of 4) 

Extea11e4 DesaipdoII 

5 AMDSAASM calls ILRCNVRT to convert the RBA into an auxiliary storage address 
(MBBCCHHR). ILRCNVRT sets a return code of 0 if tbe conversion is successful, or a return code 
of 4 if the conversion is not successful. 

6 AMDSAASM calls '110 to find the )ODB corresponding to the UCB. If the 10DB does not exist, 1)0 
creates one. 

7 AMDSAASM sets a return code of 0, dcqueues the ASMRCB, and returns. Register I points to the 
10DB. 

r 

MM. LHeI 

110 

t"'" ~ 
;S. =-= tD tD 
:I ~ 

I .. ;s. 

:: ~ Q, 
ID :: .... 
~ ID _ ..... 
ID tD 
Fir :I. 

I ;. 
"1:1 

Q .... .. -Q 

'1 = .. :: .... :s ~ 

Q .... -= :: 



~ 
I 

~ 

.. .. ... 
fj 

a 
~ 

f 
l.. 
I 
l.. 

;> 

1 
r 
I 

} 
; 
I 

" I 
l 
5' 
I 

;> 

i..: , 
) 
l 
i' 

< ..) 

'" 

'" D 
oJ 

jI 

J 
) 

! 
L 
I ,. . 
... 
1:1 ,. 
~ 

") 
) 

I 

~ 
o 
) 

~ 
o 
~ 

Diagram SADMP-4. AMDSAAUD - Virtual Storage Dump Error Handling (Part 1 of 4) 

Input _ Process -. 
1 Save entry registers in page o. 

IECAUDIC 

I L r 2 Terminate if there was an error r v 
IECIOSIC in AMDSAAUD, and then 

I 
~ indicate that AMDSAAUD is 

--y in control. 

• If an error occurred, load 
a disabled wait X'4FOD01' 

Current SVC l I 

Stack Top 
) 3 Record the error. 

"V 

4 Terminate if one of the following 
conditions occur: 

• There is recursion through 
AMDSAAUD. 

CCT 

• The master segment table 

CTAUDPL => designation in the CCT is 
invalid. 

• The caller wants to recover 
but the RCB queue is 

IECIOSER 
empty. 

=> There was an error in the • 
I/O service. 

5 If requested, dump SADMP. 

6 Set the exit PSW and select 
the appropriate exit. 

• If a terminating error occurred, 
rewind and unload the output 
tape and load a wait psw. 

~ ~ 

Output 

IECAUDIC 
r- PGOAUDSA I I v 

~ IECAUDER 

->[ 1 
IECIOSER 

I 

I I 
r-- TRACE 

"- e New Entry 
L..-.-

AUDECODE 
I I I 
I 

=nl TERMINAT=ON AUDEREAS 
I 

')/ I I I 

t""' 
n' .,. 

PGOAPSW=MODE LPSW = '" .,. 
:>I X'0108000080000000' I =-

~ ,a 
= .,. 

II WPWRCODE=AUDERWRC 

~ 1 
~ '" -:!. .. 
= n' 
;;: ~ =-I 

~ 
." = a -.,. 

'1:1 :!. .,. = .. ;;: 
-<" Q 
Q .... .... --= = ~ ~ ;s 

l, 



r r 

~ Diagram SADMP-4. AMDSAAUD - Virtual Storage Dump Error Handling (Part 2 of 4) 

. --
© 

-<: 
::1. 

-tEl 

== 

~ 
~ 
;::I 
::Il 
> 
;::I 
~ 
:9 

~ 
I 

Jt 

Exteoded Descriptioa 

1 

2 

AMDSAAUD saves the entry registers in page o. 

AMDSAAUD examines the Internal Error Control (IEC) area to see if either AMDSAAUD or the 
SADMP I/O service was in control when the error occurred. AMDSAAUD sets IECAUDER = I if 
IECAUDIC = I and IECIOSER = I given IECIOSIC = I. If the error was in AMDSAAUD 
(IECAUDER = I and IECIOSER = 0), AMDSAAUD immediately loads a disabled wait PSW. 

3 AMDSAAUD locates the appropriate SVC number and records the error. 

4 AMDSAAUD terminates if any of the following conditions exist: 

• There is an error in the I/O service (lECIOSER = I). 
• The caller wanls 10 recover but the RCB queue is empty (CTAUDRV = I and CTRCB = 0). 

5 AMDSAAUD dumps SADMP if a dump is requested or if a terminal error exists (CT AUDDMP = 
lor TERMINAT = I). 

AMDSAAUD sets the exit PSW equal to X'0108000080000000' and selects an appropriate exit: 

• If a terminating error occurred (CTAUDTRM = I or TERMINAT = I), AMDSAAUD rewinds 
and unloads the outpUI tape and loads a wait PSW. 

Module 

r 

Label 

r"'" ~ ;:r 
~ ~ 
~ -.., 
~ 

;;. 

:s:: ~ ~ 
110 :: ;; 
::I. 110 
110 ~ 
1ii' 

.., 
;D' 

I ;; 

IECAUDER ~ = ... 
i -tEl 

a :: 
:s 

= ... -tEl 
:s:: 



f' Diagram SADMP-4. AMDSAAUD - VirtUal Storage Dump Error Handling (part 3 of 4) -0\ 

3:: 
<: 
CoIl 

~ 

f 
0-

;l> 
;:J 
s: -~ (") 

= @ 
CoIl 
~ 

~ 
n' 
~ 

;l> 
s: 
'" 
b 
]Q 

n' 

r 
-< IV 
00 . -

CCT 

I CTAUDPL I 
RCB Queue 

mc. Y1Jbb 

Process 

• If the caller requested recoverv, 
set up top error recovery 
environment. 

Exit PSW Control Register 1 

1.--_------11 1 1 
Register 11 Register 12 

I IIL..... __ ...... 
Register 13 

PSWIA 
• If no special exit was requested, 

return to the caller. =:!:==========:!:=>I PSWIAor REGL14 

00 ~ ~ r ~ ~ 
@ I 
() 3: ~ o ~ ~ ~ ~ ~ ~. ~ ~ 
]Q ~ .. ;:r Return to Caller ;r [ 

; I 3: 
3: :P a. 
Q 'i ;;. = ~ 
ti ~ ;r 

'-<! = = .... -0 .... _ 

00 _ = ~ =~ -0 

3: :I' 
00 

'" 

~ ~ '-' 



r 
-< 
tv 

Cf' 

00 
\0 
I .... 

@ 

.., 

~ 
" ;l 
3 , 
, 
l>-

t::: ., 
fl 
I>­., .. .. 
g 

~ 
I 
~ 

..J 

r r 

Di .. ram SADMP-4. AMDSAAUD - Virtual Storage Dump Error Haadllng (part 4 of 4) 

Exteade4 Daa ....... 

• If the caller requested recovery (CTAUDRCV = I), AMDSAAUD sets up the top error recovery 
environment (RCB). 

• If no special exit was requested, AMDSAAUD returns to the caller . 

MCMhde 

r 

LMeI 

t'"' I: n· l:C 
l'D l'D = '" I ~ 
a:i • Ii" 3: .. . ;. Ii" 
;r ::I. 
I;' 
:p!. 
= -'I ! a :s 

= -
~ 



f" Diagram SADMP-5. AMDSABLD - Build Module (Part 1 of lO) 

Xl 

~ 
<:: 
;n 

~ 
ft 
::I 
Po. 
g. 
> 
rl e: 
1t 
() 

= ~ 
Vl 
." 

3. 
() 
." 

> s: 
'" t'"' o 
JQ 
('). 

B 
~ 

00 
\0 
I 

\;.> 

@ 

(] 
o 
~ 
::I. 
~ ... 
..... 
tD 
~ 
(] 
o 
~ 
...... 
\0 
00 
IV 
...... 
\0 
00 
0\ 

In 

I======~===::::::=:> 1 Open SYSPRINT data set DCB. 

e:SPUNCJ 

e=:J 
e=:J EJGETEXT 

l, 

For 
TYPE=HI 

2 Check the validity of the input 
parameters. 

• If input parameters are 
invalid, set return code 8. 

_.,..-____ ---..-_> 3 Open data set DCBs. 

• If any data set DCB is not 
opened, return. 

l, 

Error. Return 
to the Caller. 

Retu~n 

TYPE 

r=?1~~ 
IPL 

,--TorO ~ 

LOADPT 

Register 15 

8 

MSG 

,AMD0351 

Register 15 

4 

'-' 

t"'" ;So 
~ = ~ =-
3: " = ~ - '" ~ -:I. :I. = n - .. '" :&. 
I 3: 

'"= = a ~ 
~ :I. .. = _ 1ii 

~ = = .... .... -- = = 3: 
3: " 



r 
-< N 
00 , 

00 

'f' 
w 

@ 

n 
~ 
::!. 
<§. ... -t:= 
~ 
n o 
f} 
\0 
00 
N 

\0 
00 
0, 

n 
! 
S" ... 
f"­
en 

[ 
;I> 
0' 
;:l 
(1) 

o e 
.g 
~ 
~ 
o 
en 
;J> 
o 
~ 
,:g 

~ 
I -­\C) 

r r 

Diagram SADMP-5. AMDSABLD - Build Module (part 2 of 10) 

Extended DescrlptioD 

AMDSABLD performs part of the initialization of the stand-alone dump program. 

2 

3 

AMDSABLD opens the SYSPRINT data set DCB so that error messages can be printed. 

AMDSABLD converts the input parameter, which is a character string, into three parameters; TYPE, 
IPL, and LOADPT. TYPE is the speed of the dump (HI or LOW). IPL specifies the unit type of 
the dump residence volume, either T for tape or D for direct access device. LOADPT is an 
eight-digit hexadecimal number representing the address in real storage at which AMDSARDM will 
be loaded. AMDXCB converts LOADPT from a hexadecimal character string into a binary number. 
AMDSABLD checks the validity of the three input parameters. If any of the input parameters are 
invalid, AMDSABLD sets the return code and calls AMDEXIT to terminate processing and return 
to the caller. 

AMDSABLD opens the data set DCBs for SYSPUNCH, IPLTEXT, IPLDEV, and if TYPE = HI, 
for PGETEXT. If any open was unsuccessful, AMDSABLD calls AMDMESSG to print message 
AMD03Sl. Then AMDSABLD sets the return code and returns to the caller. 

r 

Module Label 

t""" "-
i;" =c 
~ ~ 
::I '" 
~ -.. =- i;" -~ 

~ =-
DlI 
~ ;;-.. DlI 

;" S" 
r;; .. 

£;" 
I r;; 

""C 0 .... 
AMDXCB 

AMDEXIT 

.. 
0 -'= = ttl ~ .., -~ :: 
0 .... -t:= 
~ 

AMDMESSG 



f" ' Diagram SADMP-S.' AMDSABLD - Build Module (Part 3 of 10) 
tv o 

~ 
<: 
en 
tTl 
:1 
(l> 
;:l 
0-
(l> 

0-

> 
(l 
:r 
~. 
n .... e 
@ 
en 
(l> 

~ o· 
(l> 

> 
is.: 
V> 

r o 
OQ ;:;. 

r 
-< 
N 
00 , -00 

'f' 
w 

6> 
(") 
o 
'0 
'< .., 
QQ' 
:r ... -I:C 
:: 
(") 
o .... 
"? 

\0 
00 

.!"" 

\0 
00 
0'. 

TAPEIPL1 TAPEIPL2 

I II I 

I 

/" IPLTEXT ........ 

"'- -
f'...... 1 -Load Module 

'-AMDSAIPL ....... 

~ SYSPUNCH::: 

AMDSACCT Object Module 

AMDSARDM 
'- --" 

\., 

4 Obtain storage for buffers. 

• If GET MAl N fails, return. 

~~rror. Return 
to Caller. 

5 Process tape dump (if IPL=TI 
for both high and low speed 
dumps. 

... • Write I PL 1 and IPL2 to 
> tape . .. .. 
> • Read and process AMDSAIPL, 

I .. AMDSACCT, and AMDSARDM 
> .. 

• Write AMDSAIPL, AMDSACCT 
and AMDSARDM to tape. 

4.v 

)I PINBUF 
-v 

INBUFFER 

POUTBUF 

r 
OUTBUFFER' 

PRLTBUF 
..... 

RLTBUFFR 

MSG 

-> I AMD0421 I 
Register 15 

I 4 I 
L 

> .. 

8 . 
:) .. 

~ 
t':O 
~ = ~ c:a. 

~ 
~ 

IiICI 
II) ~ 

;;- .... -.. i;-iii' 
I'il" -~ c:a. 
I 
~ 

"1:1 II) 

a ;;-
'1 :I. 
::l ;. 

'-I!! .::> 
.::> ----! 1:1:1 
~ :s 

\., 



r r 

~ Diagram SADMP-5. AMDSABLD - Build Module (Part 4 of 10) 
N 
~ Extelllled Delcripdoa 

-00 
\Q 

W 

<5J 
(") 
o 
~ ..., 
ciQ. 

~ 

0' 
3:: 
(") 
o ., 
'? 

\Q 
00 
N 

\Q 
00 
0'-. 

(") 
::r 
~ 
0-., 
~ 

til 
S ::s 
Po 
;i> 
0" 
::s 
n 

o 
a 
"0 

'> 
3:: 
o 
til 
;l> 
o 
~ 
-:g 

~ 
I 

N -

.. AMDSABLD issues GETMAINs to obtain storage for the input butTer, the output butTer, and the 
relocation table (RL 1) butTer. INBUFFER is large enough to hold an input record of any length. 
OUTBUFFER is large enough to contain the storage that SADMP uses at run time. The RL T 
butTer is the area used for building the RLT. If the GETMAIN fails for any of the butTers, 
AMDSABLD calls AMDMESSG to print message AMD0421. AMDSABLD sets the return code 
and returns to the caller. 

5 For tape dump processing of both high and low speed dumps, AMDSABLD calls AMDWRITE to 
write IPLI and IPL2 on to the output tape (IPLDEV). AMDSABLD calls AMDTEXT to read and 
process AMDSAIPL, AMDSACCT, and AMDSARDM. If any errors occur in processing these 
modules, AMDSABLD sets the return code and returns to the caller. If no error occurs, 
AMDSABLD calls AMDWRITE to write AMDSAIPL, AMDSACCT. and AMDSARDM to tbe 
output tape (IPLDEV). 

r 

t""'4 I: 

Module Label 
n" ~ g ~ 
~ ::I. 
Q. " 

3: i 
lID 3: ;:l 
:I. ~ 
lID fD 
FE' ::I. 

ID 
I /i;" 

AMDMESSG '"'d = .. .... = ... 

AMDWRITE 

'il ! a :s 

= -AMDTEXT -
AMDWRITE ! 



~ Diagram SADMP·S. AMDSABLD - Build Module (Part 5 of 10) 
N 
N 

s:: 
~ 

I 
> 
(! 
::r 
~. 

= (il 

~ 

~. 

~ 
i 

Process 

.......... ;;;1 Load Module : : :> 6 If TVPE=HI. pr~cess the high 
speed dump. bUild the RLT. 
and write AMDSAPGE and 
the R L T to tape. 

• If an error occurs in process­
ing either high or low speed 
dump (for IPL=T). return. 

=:!======:::!~=~ l ~r~SAPGE f 

Error. Return 
to the Caller. 

8 

r ~ 
< ~ ~ . ~ ~ - ~ 
;; ;;: ,; ~ » • I.. _ '" .. 6 H: 
n ~ ~ 
.g I ;;: ~ ~ » 

• a ~ ~ ~ ~ - ~ ~ .. ~ Q ~ Q -n _ .. 
Q '" ;;: ~ ;;: , 
-\0 
00 
P -\0 
00 
0\ 

l, 

- -

'-' '-' 



~ 
N 
00 , 

-00 
~ , 
to.> 

@ 

(l 

~ 
::I. 
~ .... .... = ~ 
(l 
o 
fJ -~ 
00 
.N -~ 
00 
0\ 

(l 
~ 

.§ 
~ .... 
~ 

fI) 

[ 
~ g 
o c .g 
'> 
~ 

~ 
~ 
3 

~ 
I 

N 
IN 

r r 

Diagram SADMP-5. AMDSABLD - Build Module (Part 6 of 10) 

Extended Descrlpdoa 

6 For tape dump processing of a high speed dump. AMDSABLD calls AMDTEXT to process 
AMDSAPGE and to build a relocation table. If any errors occur during processing, AMDSABLD 
sets the return code and returns to the caller. If no error occurs, AMDSABLD calls AMDWRlTE to 
write AMDSAPGE and the RL T onto the output tape (IPLDEV). 

Module Label 

AMDTEXT 

AMDWRITE 

r 

t"" " ;:;' i:II:j 
t'D fD = '" a ~, 
::i. 
~ 3: 
... !Ill 
;;- ~ 
;:;;' .. ;' 

r;; 

""'CI = ... .... 
= -11 = 
::1. 3: 
'< :: 

= .... -! 



~ 
I 

~ 

~ 
<:: 
~ 

tIl 
~ 

I 
> 
(! 
:r 
~. 

a 
@ 

W 
~. 
n 

> s: 
'" t"' o 

OQ o· 

t"' 
><: 
tv 
00 
I .... .... 

00 
\.Q 
I 

W 

© 
n 
o 

'"0 
'< .... QQ. 
:r ... -t= 
~ 
n 
o 
f3 
\.Q 
00 
JV .... 
\.Q 
00 
0'1 

Diagram SADMP-S. AMDSABLD - Build Module (Part 7 oliO) 

Input 

6RKDTE~ 

DASDIPL1 DASDIPL2 

Process 
y 

~ 

7 If I PL=D, process DASD dump: 

• Open TRKOTEXT data set 
DCB 

• If data set DCB not opened, 
return. i ---.. 

--,.. 
Error. 
Return 
to Caller. 

Output 

DCB 

~ 
MSG 

~D0351 
Register 15 

I I 4 I 

I I I : : 
DASD. 

> • WritelPL1andlPL2to- W 
• Write page 0 save area to IJ ::~~ 1 eKmJ 

Load Module Object Module 

~ 
AMDSACCT 

~DSAR;: 

Load Module 

QGETEXG 

AMDSAPGE I : : 
'--- ---

l, 

DASD. I I Absolute page 0 
AMDSAIPL 

• Read and process the following: • • • • 

AMDSAIPL 
AMDSACCT 
AMDSARDM 

• Write AMDSAIPL, AMDSACCT, 
AMDSARM, and the real storage 

dump save area to DASD. AMDSACCT ~. t"'" 
• Real Storage IPLDEV Q. 
> 8 If TYPE=HI, process high speed dumps, > Dump Area t=:J ~ 

build the RLT and write AMDSAPGE AMDSARDM =-
and the RLT t~ DASD. AMDSAPGE 3: ~ 

RLT ~ ~ 
~ .... .. .... 

• If an error occurs during processing §.: 1:r 
and I PL=D, return. . 4 '" ~ 

~ Error. I :::::: 

-.------.. Retu rn ~ !! 
..J = tD O to Caller. ~ ::l. 

tD = .. -- '" ~ = = ..., ..., -
- == =:I :::::: 
3: :: 

l, l, 



r r (' 

~ Diagram SADMP-5. AMDSABLD - Build Module (Part 8 of 10) ~ ,a 
N ~ ~ 

'r" Exteudecl Description " Module Label ~ S: 
- =- "" ex; ., ;;) 
~ ~=-
~ ~ :: 

~ 10> 

@ 7 For DASD dump processing of both high and low speed dumps, AMDSABLD opens the e: ~ 
Q TRKOTEXT data set DeB for temporary storage of the boot strap sequence. If the OPEN is '" ;" 
~ unsuccessful, AMDSABLD calls AMDMESSG to print message AMD0351. AMDSABLD sets the I l;;" 
::!. error return code and returns to the caller. If the OPEN is successful, AMDSABLD calls AMDMESSG '"C sa, 
~ AMDWRITE to write IPLl and IPL2 to TRKOTEXT. AMDSABLD creates and empty record to a -
.... be used by the IPL2 channel program to save absolute page zero. AMDSABLD calls AMDMOVE AMDWRITE 16 ~ 
;; to clear the output buffer, and calls AMDWRITE to write absolute page zero to TRKOTEXT. AMDMOVE :4. ~ 
~ ~ ~ 
n AMDSABLD calls AMDTEXT to read and process AMDSAIPL, AMDSACCT, and AMDTEXT -
o AMDSARDM. If any errors occur in the processing of these modules, AMDSABLD sets the error ;; 
-? return code and returns to the caller. If no errors occur in processing, AMDSABLD calls ~ 
_ AMDWRITE, AMDWRITE writes AMDSAIPL to TRKOTEXT, and writes AMDSACCT, 
~ AMDSARDM, and the real storage dump area to DASD IPLDEV. 
N 

- 8 For DASD dump processing of a high speed dump, AMDSABLD builds an RLT and calls AMDTEXT 
~ AMDTEXT to process AMDSAPGE. If an error occurs in processing, AMDSABLD sets the error 
0\ return code and returns to the caller. If no error occurs in processing, AMDSABLD calls 

n ::r­
I\> 
'0 ... 
~ ... 
f'>­
til .... 
I\> 

8-

~ 
~ 

t:l 

~ 
'> 
~ 
t:l 
~ 
t:l 
~ 
~ 

~ 
I 
tv 
VI 

AMDWRITE to write AMDSAPGE and the RLT to DASD IPLDEV. AMDWRITE 



s ... 
to. o 
0\ 

vi 
,~ 

~ 
i 

M .. 
It) 0 

0 
::E 

(!) ~ 

(I) 

::E 

0 

i 
'U c: .. 
~ 
.... 
I­
Z 
~. a.. CII 
(I)'U 

~ 8 
~ E 
o i! 
(J e 
o 
po 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

E CII E 
~ .J:. ~ ... ... '" 
CII 0 > 
0: ... (1) 

is c 
~------------------------------------------------~ 

4-26 MVS/Extended Architecture Service Aids Logic L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 

J 



t"" 
-< 
N 
00 . --00 
\0 
W 
!Eli 
(') 
o 
'0 
'< 
~. 

(JQ 
::r ... .... 
to 
~ 
g 
-? -\0 
00 
.N 
..... 
\0 
00 
0'\ 

(') 
::r 

i 
n ... 
f'­
til 

[ 
> 
0' 
; 
o c 
~ 

~ o 
til 
> o 
a:: 
:3 

f'" 
N 
.....:a 

r 

Diagram SADMP-5. AMDSABLD - Build Module (Part 10 of 10) 

Exteacled Descriptioa 

r 

9 If the following files are open. AMDSABLD closes the files: TRKOTEXT. PGETEXT, IPLDEV, 
IPL TEXT. and SYSPUNCH. AMDSABLD prints message AMD0431 indicating successful 
completion of dump processing. 

10 If SYSPRINT is open, AMDSABLD closes the SYSPRINT file. AMDSABLD sets the return code 
and returns to the system . 

Module Label 

r 

t'"' ~ 
n° ~ 
flO te 
:I '" l ~. 
~ [ 
'" ":iI' !i ;-_ .... 
'" te ;r ;-

I'ii 

." = .. .... 
Q -'i = 
~ ~ 
Q --~ 



f" Diagram SADMP-6. AMDSABUF - BeT/Buffer Acquisition (part 1 of 2) 
N 
00 

~ 
<: en 
tTl 
>< ... 
('l) 

:s 
0-
('l) 

0-

> 
(l 
g: 
('l) 

~ 
t: 
;;J 
en 
('l) .... 
<: 
ri· 
('l) 

> 
0: 
OJ> 

l' o 
(JQ 

ri· 

l' 
-< 
N 

'r" 
00 
\0 

W 
rGl 
(') 
o 

'"0 
'-<: .... 
~. 

~ 
...... 
o::l 
~ 
(') 
o .... 
"? 
\0 
00 

!'-l 

\0 
00 
0\ 

Input 

Register 1 

'--____ --'~ SWAPASID 

SWAPASID 

I Non·zero J 

SWAPASID 

- 0 J 
CTBCTAVQ Queue Of Available BCT 

~ 
CTBCTALL Queue Of All BCT 

LOWBCT 

o J 

l, 

---'-___ --L----J" 

1 Save the input parameters. 

2 If a swap-in is in progress, 
reclaim the BCT used by the 
previous address space. 

3 I f no swap-in is in progress 
obtain a BCT for the caller. 

• Search for a low priority 
BCT. 

• If a BCT is not found, try 
extraordinary stealing. 

• If a BCT is still not found, 
set a return code of 4. 

Output 

CTBCTAVO 

Register 15 

4 

SAVE BACK 

4 Prepare BCT to receive a page, 
retur.n the BCT, and set a return ~ 

Register 15 code. 

1 0 -- I 

'-' 

BCT 

~ 
;:S. 
tD = ~ =-

SAVER1 :: " =-= /II tD - '" tD -.. ::l • ;: ~ -tD =-
BCT 

I :: 
"'1:j /II a -tD 

"g ::l. 
/II .. !;;" 

~ = = .... .... -- == == :: :: :s 

~ 



r 
-< tv 
Cf' 

00 
'>D 

W 

n 
o 

"0 
'< .... Q<i. 
:r -... 
Ctl 
a:: 
n o .... 
"0 

'>D 
00 
hJ 

'>D 
00 
0\ 

n 
:r 
po 

~ 
(1) .... ... 
(/J 

iZ 
::l 
0.. 

:l> 
0-
::l 
(1) 

tJ = 3 
"0 

'> a:: 
tJ 
(/J 

> 
\:I 
a:: 

:::9 

..j:::.. 
I 

N 
\0 

r r 

Diap'am SADMP-6. AMDSABUF - BCT IBuffer AcquisidoD (part 1 of 2) 

Ex'" DeIcrIpdN 

1 AMDSABUF saves the input parameter in SW APASID. 

1 IfSWAPASID is nonzero, AMDSABUF assumes a swap-in is taking place and reclaims the BCT 
used by the previous address space unless: 

• The BCT is already available. 
• The BCT is already involved in paging. 
• The BCT is for the swap-in address space. 

3 When no swap is occurring (SWAPASID = 0), AMDSABUF gets a BCT for the caller and searches 
the BCT for the lowest priority BCT to steal. If AMDSABUF cannot find a low priority BCT to 
steal, AMDSABUF waits for output I/O to complete, assuming that AMDSAIOI will make some 
BCT available or stealable upon completion of output I/O processing. If AMDSAIOI does not 
provide an available or stealable BCT, AMDSABUF sets an error return code of 4. 

AMDSABUF takes the first available BCT, dequeues it, and indicates that the BCT is involved in a 
paging operation. AMDSABUF returns the BCT address as a parameter and sets a return code of o. 

r 

MonIe Label 

t"' " ;:;0 i:I:' 
n> n> = '" 
~ i 
;. 3: .. = ;- ;" 
FE .. 
I;: 

"'CI Q .... .... 
Q -
'g == .... 3: 
~ :s 
Q .... -~ 



~ Diagram SADMP-7. AMDSACON - Virtual Storage Dump Console Service (Part 1 of 2) 
I 
w 
o 

~ 
< 
til 

~ ... 
o = 0-
o 
0-

:> 
;:l 

a-
n o ... 
~ .... o 
til o 

3. 
o o 

? 
0-

'" t""' o 
OQ 

n' 

t""' 

~ 
~ --00 
It:) 

w 
@ 

(j 
o 
~ 
::1. 
~ ... -= ~ 
(j 
o 
-? -It:) 
00 

JV -It:) 
00 
0\ 

Register 1 ~ Message I D 

• , or MeSSage.~:====~=", 
Parameter- ,/ 

CTNOCONS 

Address 
MSGPARMS 

MPSFPRES 

c 
CTNOCONS 

I 
MPFNOCON 

I 
CTSCREND 

REQUEST 

4., 

1 Set CTCONACT to 1 to 
indicate that the console 
routine is active. 

2 If there is no working console, 
preset a return code of 8. 

3 Get the message parameter for 
the input request. 

Output 

WRITECON 

4 Determine if the message should ~ 
be written to the console or only L.. ______ .....I 

included in the console message 
dump. 

5 Write end-of-screen message, if 
necessary. 

6 Write the message and read any 
reply. 

~ 

WRITREAD CTSCREND 

WRITREAD 

r 
AMD029D n' 

til = '" til =-s: ,; 
Ie til 
;;- ~ 
:! . ~. 
~ -til 0=-
I 3: 

'"I:i => ... -Q til 
'"CI :!. 
til => ... r;; -'-< Q a. .... -- = =:I 3: s: :: 

l, 



r 
-< 
N 
~ ..... ..... 
00 

'f w 

@ 

(J 
o 
~ .... 
ciQ' 
go 
...... 
t= 
s::: 
Q 
-? 
>0 
00 
JV 
..... 
>0 
00 
0\ 

(J 
;-
'0 ... 
n .... 
f"-
(/.l ..... 
I» ::s 
P-
I 

~ 
& 
0 
d 
EI 
'0 
,.-.. 

> 
s::: 
0 
(/.l 

> 
0 
g:: 
~ 

f" 
w -

r r 

Diagram SADMP-7. AMDSACON - Virtual Storage Dump Console Service (Part 2 of 2) 

Extended Descrlpdon 

AMDSACON sets CTCONACT = I. 

1 If CTNOCONS is on, AMDSACON sets the global return code RCODE to 8. 

3 Message parameter control blocks (mapped by MSGPARM) describe SADMP messages. If register I 
at entry is greater than 255, it points to a message parameter. Otherwise, register I contains a 
SADMP message ID, which AMDSACON uses to index into a table (MSGPARMS) of message 
parameters. AMDSACON copies the message parameter into REQUEST. 

4 Set WRITECON to 0 if: 

5 

6 

• the message should be suppressed (CTMSG = I and MPFSPRES = I) 
• there is no console (CTNOCONS = I) 
• this message is only for the console message dump (MPFNOCON = 1) 

Otherwise, WRITECON is set to I. 

AMDSACON checks if the message overflows the screen. If CTSCREND is 0, AMDSACON writes 
message AMD029D to ask the operator whether to pause and issue AMD029D again the next time 
the screen is full. If the reply is 'N', AMDSACON sets CTSCREND on. Subroutine WRITREAD 
erases the screen before it writes messages. 

AMDSACON passes REQUEST to WRIT READ to write the message to the console and receive any 
reply. 

Module 

r 

Label 

t"'" ~ 
r)" i:ICI 
~ ~ 
CI fI) 

i ~. 
:: [ 
~ :: 
... I» 
;- ~ 
ti; :I. 

I ~ 
'" Q ... .... 
Q -
'g = 
::l. :: 
'< ~ 
Q .... 
~ 



f" Diagram SADMP-8. WRITREAD - Subroutine of AMDSACON (Part 1 of 2) 
w 
IV 

a:: 
<: en 
tTl 
~ 
<1l 
::s 
P­
<1l 
P-

> 
~ 
~ 
;; 
() 

a ... 
<1l 

en 
<1l 

:! 
('i' 
<1l 

> 
0.: 
~ 

r" o 
~. 
() 

r' 
-< 
IV 
00 , 

00 
-a 
W 

reP 
n 
o 
~ .... 
ciQ' 
~ 
...... 
t;:I 

3:: 
n 
o .... 
"? 

-a 
00 
f-..) 

~ 
ex; 
:l' 

MPWRTLEN 

~ 

Console 
10DB Control Register 6 

D I 
Register 1 CTUNES 

b I 
'MesSage Parm to Be Processed 

Channel Programs 

10DBCON 

Channel Programs 

Message Parm 

I I 

CR6SAVE 

\, 

~ 
> 1 Puts the message in the console, 

v 
message dump. 

"-

2 Mask off all of the devices except 
the CONSO LE. 

" 3 Determine if the screen needs 
to be erased. I f so, update the 
line count. 

4 Obtain the screen address of the 
message, 

> 5 Build the channel program. 

6 Perform the I/O. 

7 Build the wait code and wait 
for a reply. 

8 Read the reply. 

9 Change the reply into upper 
case, ... 

10 Restore I/O interrupt mask. 

l., 

.. 

.. 

~ 

SVC ~ Q (SVCDCM) .. y 

Message on 
Output Tape 

Control Register 6 

" I 
CR6SAVE 

I I 
CTLINES 

v I 
CCWs 

"-
v 

Message 

/1 1 

1 . svc " ) (SVCSIO) 

.. svc L ~ Wait Code ~ '3300 nn' t""' .. (SVCSIO) nn = Message I D ;:)-
~ = ~ . 1 svc "- ) (SVCSIO) 

I 
Reply Area 

" I 
Control Register 6 

I -)I I v 

=-a: ,a 
iii t!> - til 
t!> -... ... ;- ;:)-

I;j -t!> =-I a: 
"= iii a nr 
-= .. 
t!> ;-... I;j 
~ = = .... .... --= = a: a: :s 

\., 



r (' 

S; Diagram SADMP-8. WRITREAD - Subroutine of AMDSACON (Part 2 of 2) 
I'.J 

Of Extended Description 

00 
'D 
W 
!~ 

n 
o 

'"0 
'< 
:::!. 

fJQ 

;:r 
t:I:l 
~ 
n 
o .... 

'"0 

'D 
00 
N 

-.0 
00 
0\ 

1 

3 

4 

5 

6 

If there is message text (MPWRTLEN is greater than 0), WRITREAD calls AMDSADCM to write 
the message to the output tape. 

WRITREAD changes the interrupt subclass mask in control register 6 to permit only console 
interrupts. This serializes all SADMP I/O until the message is complete. WRITREAD saves the 
original value of control register 6 in CR6SA YE. 

WRITREAD increases the count of lines on the screen. If the screen would be filled by that number 
of lines, WRITREAD sets the CCW command to ERASEjWRITE and resets CTLINES to I. 

WRITREAD computes the 12/14-bit screen address from CTLINES and the known screen width 
(SW3277). 

The channel program sends a WRITE or ERASE/WRITE command to the console, unlocks the 
screen if a reply is expected, and furnishes the screen address and the data to be written. 

The ?f0 macro points the console 10DB (XIOBCON) to the channel program and calls 
AMDSASIO. 

7 If a reply is expected, WRITREAD calls AMDSASIO to wait for an attention interrupt caused when 
the operator presses enter. 

n 8 WRITREAD builds a channel program to read the reply and calls AMDSASIO (Steps 5 and 6). 
::T 
~ 

"Q. 9 WRITREAD converts the reply to upper case. 
(1) .... 
="" 10 WRITREAD restores the original value of control register 6 and returns. 

en 
:;;' 
:::s 
0-

> 
0-
:::s 
(1) 

a 
s:: 
:3 

'"0 

'> 
3:: 
a 
en 
:> a 
3:: ,:g 

~ 
I 
~ 
~ 

(' 

t"'" ~ ;:s. 
~ ~ 

:::I <Il 
Module Label .... 

<Il ... 
~ ;:so =- .... 
:: ~ =-= 3: -~ ... = ;0 ~ 
iii ... ;. 
I iii 

"'C1 
Q .... a -'C == ~ 3: ... .... 
" ~ 

Q .... -== :: 



~ 
I 

W 
~ 

~ 
<: 
1;1.1 

]1 
(t 

5-
2-
> 
6 
e: ..... 
~ 

W 
1;1.1 
C1> 

~. 
C1> 

~ 
on 

t"'" o 
OQ 
('i' 

~ 
N 
Cf' ..­
..-
00 
'-0 
I 

t;> 

© 
n 
~ .... 
0Ci' 
::r ..... -t:I:1 
~ 
n o 
~ 
..-
'-0 
00 
JV 
..-
'-0 
00 
01 

Diagram SADMP-9. AMDSADER - DASD Error Recovery (Part I of 2) 

Input 

OASO 
100B 

D 

L--__ ........JI CCWA 

\, 

1 Locate the CCW to be restarted. 

2 Check error conditions and 
take action. 

3 Retry the I/O until it is suc­
cessful or until the number of 
retries is exhausted. 

I ssue a return code. 

'-' 

Output 

CCWA 

DASD 

F =, ~I"' I 
AMD0331 
AMD0341 
AMD0151 

Register 15 

or [ 4 I 

~ 

t'"" 
~. 

= ~ =-:: ~ = ~ - '" ftI -.. ... ;- ;:;-- ~ til c:a. 
I:: 

'"C:j I» 

a ~ "CI _ • 
." I» .. -- '" ~ <:> 

<:> -.... -
- 1:1:1 = :: :: ::: 



r r 

Diagram SADMP-9. AMDSADER - DASD Error Recovery (Part 2 of 2) 

Extended ~riptiOD 

AMDSADER locates the CCW to be restarted. IODBCSW contains the last channel program 
address returned by an I/O interrupt. If this address is not 0, it is decreased by the length of a CCW 
to obtain the address of the failing CCW. If this address is 0, the address of the last CCW started 
(IODBCCWA) is used. 10DBSCSW also contains the IRB status information. 

If using a 3880-11 control unit (lODBPGST is on), the IODB is for a paging exposure. AMDSADER 
uses 10DBBASA to locate the 10DB for the base exposure. This 10DB must be used in all error 
recovery. 

1 The IRB status pointed to by 10DBSCSW and the sense data pointed to by 10DBSENS define the 
error and the action to be taken. 

3 The CCWA contains the address of the CCW that is to be retried. AMDSADER calls AMDSASIO 
to retry the I/O, and performs Steps I through 3 until the I/O is successful, or the retry count is 
exhausted. 

If the I/O succeeds, AMDSADER returns with a return code of O. If the I/O does not succeed, 
AMDSADER writes I/O error message AMD0331 to the console and returns with a return code of 4. 
If sense data is available, AMDSADER also writes message AMD0341. If there can be no more I/O 
with this device, AMDSADER marks the 10DB as unusable (lODBUNAV = I) and writes message 
AMDOISI. 

Module Label 

r 

t"'" " rs· := 
~ ~ 

::I fIJ -~ ::1. 
=- n -a: ~ =-
'" a: -~ ::1. '" -~ 

~ .. ;. 
I;;' 

"1:l = .... .. -= ~ 0:1 .. a: - ~ ~ 

= .... -0:1 
a: 



Diagram SADMP-IO. AMDSADIP - Virtual Storage Dump Initialization (Part 1 of 4) 

Input 

Storage for SVT 

I 
CCT 

RLT 

~ CVT 

Page Frame Table 

~ 

Process 

Master 
OAT 
Tables : :> 

D 
DD 

Storage 

1 Initialize for AMOSADIP 
processi ng. 

2 Turn on DAT. 

3 Check the validity of the control 
blocks used by AMOSADIP. 

4 Locate virtual storage to use 
during virtual dump execution. 

5 Locate real page frames to use 
during virtual dump execution. 

~. 

Output 

=!===~=:> SUT 
...:...:...;..----. 

Storage Range 

SUT 

Control Register 1 , , 

Bad Master 
Segment Table 

Bad CVT 

Bad PVT 

Bad RIT 

Bad PFT 

Bad RLT 

No LPA 

PFT 

~ 

t"" 
~. 

= 
l :: ::: 
'" ~ - '" ~ -S· ~. - -fIJ :l. 
I=: 

'"d lID 
~ ~ 1 ::!. 
::l e. 
'< '" = 
= -.... -.. == = =: 
:: :s 



.:... 

'F;' 

r r 

Diagram SADMP-IO. AMDSADIP - Virtual Storage Dump Initialization (part 2 of 4) 

Extended Description 

AMDSADIP is the first CSECT in load module AMDSAPGE. 
the virtual storage dump program. AMDSADIP loads the 
rest of AMDSAPGE into virtual and real storage. without 
over laving any of the information AMOSAPGE needs to 
dump real storage. 

1 AMOSADIP receives control with DAT off. 
AMDSADIP initializes the restart new PSW. the SVC 

new PSW. and the program check new PSW. AMDSADIP 
checks the validity of the segment table. and loads a wait 
state PSW if the segment table is invalid. AMDSADIP 
initializes the SUT and obtains the virtual address of 
itself. 

2 AMDSADIP turns on OAT bV passing control to an 
internal subroutine OATONOFF. 

3 AMDSAOIP checks the validity of the CVT. PVT. 
RIT. PFT. and RLT control blocks, and loads a wait 

state if any of the control blocks are inval id. 

4 AMDSADIP locates virtual storage for SADMP to 
use during virtual dump processing. The storage 

must be contiguous, within the same segment, in COMMON. 
and free of information that SADMP might eventuallv use. 
AMDSADIP tries to obtain storage from non·directorv 
PLPA or ELPA. 

5 AMDSADIP locates real storage frames to back the 
virtual storage that it has just obtained. AMDSADI P 

takes real storage frames from the DAT -<>ff nucleus to use 
for the segment table for swapped-in address spaces. 
AMDSADIP saves the addresses of usable frames in the 
SUT. 

Module Label 

r 

~ I: 
;:;. !:lei 
!'I> !'I> = ~ l ~. 
::i 
ID 
~ :: 
:I. !a-
ID !'I> 
;r :I. 

I~ 
'"C = .. ..... = -'!~ 
'< :s 

= ..... 

~ 



t Diagram SADMP-IO. AMDSADIP - Virtual Storage Dump Initialization (part 3 of 4) 
00 

~ 
<:: 
til 

~ 
(; 

g. 
Q. 

> a 
e: 
~ 
a 
Cil 
~ 
:! 
rf 
~ 
Q. 

'" 1;' 
JQ n-

Parameter List SUT 

, Read Routine I 
(page Frame Table 

I 

SUT 

t Virtual Dump 
Program 

Master OAT Tables 

D D 
RLT 

I 
I 

I 

- - - -

~ 

6 Turn off OAT. 

... > 7 Read the rest of the virtual 
dump program into the frames 
recorded in the SUT. 

~8 Build the SADMP virtual storage ... 
map and the SADMP real storage 
map. 

~9 Turn on OAT . ... 

~ 10 Move the address constants in the .. virtual dump. 

11 Produce the virtual dump_ 

------

'-' 

Page 
SADMP f F

'-
Virtual 
Storage Page Table 

.. 
--.. 

r\ 
~ 

.... 

t"" 
§-
= ~ =-
:: r:: 

lICI 

---

=0 "' ;;- '" -:I. .. 
=0 

;;. 
Ii;' i 
I :: 
~ =0 .. -Q "' ~ 

.. S· .. Ii;' -~ Q 
Q -. -. -- = = :: :: :s 

'-' 



~ 
IV 
00 
I 

..-
00 
'l:> 

.:... 
@ 

f 
::1. 

OQ 
:r ... -1:0 
~ 
(') 
o 
fJ -'l:> 
00 
JV 
..-
'l:> 
00 
0\ 

(') 

i ... 
~ 

(/} 

~ 
> 
0' 
::I 
n 

i 
'> a: 
o 
~ o a: 
.:E 

t-
w 
\0 

r r 

Diagram SADMP-IO. AMDSADIP - Virtual Storage Dump Initialization (Part 4 of 4) 

Extended Description 

6 AMDSAOIP tumsoff OAT by passing control to an 
internal subroutine DATONOFF. 

7 AMDSAOIP calls a subroutine in AMDSAIPL to 
read the rest of the AMDSAPGE load module, 4K 

at a time. into the real page frames. If the read routine 
fails, the read routine loads a wait state PSW. 

8 AMDSAOIP builds virtual storage and real storage 
maps for SAOMP use. 

9 AMDSAOIP turns on OAT by passing control to 
an internal subroutine OATONOFF. 

10 AMDSAOI P uses the R L T and the SUT to relocate 
the address constants in AMOSAPGE. 

11 AMDSAOIP calls AMOSAPGE to produce the 
virtual storage dump. 

Module Label 

r 

t""" " n' ~ n = '" r6 -::!. =- t') 

~ 
It =-

III 
~ It .. III ;. It 

!;;' .. ;. 
I !;;' 

""CI c 
a .... -'g = .. :: 
~ :s 
c .... -! 



.;:.. 
I 

.;:.. 
o 

3:: a 
-----tT'l 
>< 
<b 
::: 
0-
<I> 
0-

;J> 
M 
[. 
<I> 
U 
::: 
@ 
til 
<I> 

~ o· 
<I> 

;J> 
5: 
'" r 
o 

OCI o· 

r 
-< 
N 
00 , 

00 

'P 
w 

@ 

() 
0 
'0 
'< .., 
OQ' 
::r -t:I:l 
~ 
() 
0 .., 
"? 

'-0 
00 
N 

'-0 
00 
~ 

Diagram SADMP-ll. AMDSAEXI - External Interruption Handler (part 1 of 2) 

AMDSAPGE 
Input 

Control Register 0 

CTAUDPL 

CTAUDRC 

0 

0 

4.., 

:> 

1 Change control register 0 to 
disable external interruptions. 

2 Place pointer to message 
AMD0551 in general register 1. 

3 Initialize the parameter list for 
AMDSAAUD. 

4 Set error reason code. 

5 Call for dump. 

6 Call AMDSAAUD. 

l, 

?IO MSGID 
(AMD0551) 

?ERROR REASON 
(ECCANCEL) 
Terminate Dump 

Output 

Control Register 0 

Register 1 

CTAUDPL=' , B 

4.., 

t"'"' 
;::;' 
til = lI6 =-:: " \ICI 
I» tD 
;;- '" -... ~ . ;' -<;; tD =-I :: 
~ lit 

~ 
'i :I, ... ~ ~ = = .... .... --= ! 3: :s 



, 
-< 
N 
00 , 

00 
'<:J 
W 
iO 
(j 
o 
~ 
::l. 

OQ 

::! 
o:l 
~ 
(') 
o 
-? 
'<:J 
00 
N 

'<:J 
00 
0\ 

(') 
::r 
III 
'0 ... o ... 
~ 

en 
; 
::s 
Co 

:I> 
0' 
::s 
o 

o = 3 
'0 

'> 
~ 
o 
en 
> o a: 
~ 

f" 
~ -

r r 

Diagram SADMP-ll. AMDSAEXI - External Interruption Handler (part 2 of 2) 

Extended DelCl'iption 

AMDSAPGE calls AMDSAEXI (which handles external 
interruptions), writes message AMD0551, and loads a 
disabled wait PSW. Note: AMDSAMSF handles external 
interruptions itself by modifying the external new PSW. 

1 AMDSAEXI changes control register 0, disabling 
external interruptions. 

2 AMDSAEXI calls 710 to issue message AMD0551. 
AMDSAEXI pieces the address of AMD0551 in 

general register 1. 

3 AMDSAEXI initializes the parameter list for 
AMDSAAUD. CTAUDPL isa field in the CCT. 

4 AMDSAEXI sets the error reason code to X'12'. 

5 AMDSAEXI initializes CTAUDDMP and 
CT AUDTRM (which are two fields in the CCT) 

and calls for a dump. 

6 AMDSAEXI calls AMDSAAUD. 

Module Label 

r 

t"" r: 
~. ~ 
= ~ ~ =- n· 
~ 

;0-=-lID 
~ ;0-

S· ;. 
F;;' ::I. 

I~ 
~ 

c ..... 
c ..... 
'i = .. ~ -~ :s 
c ..... ..... 
~ 



.;.. Diagram SADMP-12. AMDSAFRM - Storage DeaIlocation for Error Recovery (Put 1 of 2) 

~ 
~ 
<: 
~ 
~ 
ft 

i 
» 
~ 
2 .... = ... 
n 

~ 
S. 
o 
n 

~ 
'" 
b 

OG 
0' 

t'"" 
....:: 
IV 

<:f' --00 
\0 

~ 

© 
() 
0 
'0 
'< 
:1. 

OG 
::r ..... -!:Xl 
3': 
() 
0 

-? -\0 
00 
!-> -\0 
00 
0'\ 

Input 

TRACEPSW SVCFRM 

[ I --

rr-AMDSAFRM I 

CTSUT 

FREETYPE 

Register 15 

\" 

4 

1 Set up the save area. 

2 COpy the PSW into the trace 
table entry. 

3 Load the SUT address. 

Output 

Register1'G 

Trace Table 

Register 6 

FREETYPE 

4 Indicate that the request is a t/ UNCOND 
FREE and conditional request. I 0 

Register 15 

5 Call FSEARCH to free the 
storage. 

• If FSEARCH fails, set an X'04' 
error code. 

?ERROR 

6 Return with a successful return 0 
code. 

~ 

Save Area 

t'"'" 
n' 
tI> = 

=ECNOALOC ~ =-:: ~ = "' ;;- fI> -... ::! • 
j;' '" -;;; "' =-

~ 
"tl D:I ... -Q "' .. -= ;. tI> ... ;;; -~ <:) 
Q -..., -- = = ~ :: :l: 

'-' 



~ 
IV 

~ 

00 

'f' 
w 

@ 

() 

~ 
::J. 
IQ 
::r ... -= s:: 
() 
o 
~ -'Cl 
00 

~ -'Cl 
00 
0\ 

Q 
~ 
ti 
~ 

[J'l 

~ 
Q. 

> 
5' 
::s 
rD 

i 
3 :s 
~ 
~ 
~ 
"'-! 
~ 
~ 
~ 
:9 

I::. 
l:. 
..o.l 

r (' 

Diagram SADMP-ll. AMDSAFRM - Storage DeaDocation for Error Recovery (Part 1 of 2) 

Extea11e4 Descriptioll 

AMDSAFRM is a branch entry point for AMDSAAUD to recover storage resources not freed when 
?ERROR causes entries to be deleted from the SVC stack. 

1 AMDSAFRM saves the passed save area address and sets up a local save area. 

1 AMDSAFRM calls rrRACE to copy the PSW, the address of AMDSAFRM, and the SVC number 
for FRM into the trace table entry. 

3 AMDSAFRM loads the virtual address of the storage use table (SUT) into register 6 to expedite 
access to the SUT. 

4 

5 

, 

AMDSAFRM sets FREETYPE = 3 to indicate to FREE by SSINDEX, and sets ofT UNCOND to 
indicate a conditional free. 

AMDSAFRM calls FSEARCH to scan the DSCE queue for elements of allocated storage to be 
freed. If FSEARCH fails, AMDSAFRM issues a ?ERROR macro instruction to set an error code of 
X'04'. 

AMDSAFRM sets a successful return code of 0 and returns to the caller. 

Modale 

r 

Label 

t"" s: ;:so ::e 
"' "' ::I '" 

l ~ 
:.: [ 
~ :.: 
... Co:) 

;- ~ 

fij S· 
r;; 

." c:> 

... -c:> -
'g = 
::l :.: 
'< :s 
c:> --= :.: 



~ 
I 
~ 
~ 

~ 
.:: 
IJ 

Ii 
< .. 
~ , 
:l. 
~ 
:l. 

I> 
i 
r. 

~ 
~ 
n 
"I> 

~ 
::;' 
"I> 

» 
:l. 

" 
~ 
<I 
ri' 

r 
-< 
t-.> 
Xl . 
Xl 

'P 
w 

61 
n 
o 
o 
~ .., 
jCj' 

~ 

t:C 
~ 
n 
o .., 
~ 

'.0 
Xl 
t-.> 

'.0 
DC 
0-. 

Diagram SADMP-13. AMDSAGTF - GTF History Queue Dump (Part 1 of 4) 

Input 

MCHCUR 

I 
GTFMCOEA ~MCOE 

MCHCUR GTFMCBEA 

g I or I » I 
PCTPTR 

or I g 

GTFASCBA CTASCBD 

1 
GTFRCB DiiOO 

GBCBPTR VI ~TEBCB 

\., 

') 

rv 

1 Enqueue the GTFRCB 

2 If GTF is not active, set 
an error return code. 

• If the MCQE is invalid, 
set an error return code 
and issue a message. 

3 Dequeue the GTFRCB. 

=:::::===:::: > 4 If the ASCS is not for 
GTF, set an error return 
code. 

:> 

I ... 

5 Enqueue the GTFRCB. 

6 Dump the GTF history 
queue . 

c) 

~ 

Output 

GTFACB .~B 

Aog; ... , 15 un 
I 2 I 

J." 

J.. 

I?VCHK .. 
• :, R";m,, • I 16 

• ..I I MSGID 
'10 . I AMD0181 

... 1 ·1 n:s ACB.,.,.uo 

:::f Register 15 

I 4 

J., 
,TFACB rt:=h 

Now L1tJ 
RCB 

~ 

I 
:: I: 

a r 
~ -:I. :I. ;.i 
~~ a ;r 
'i :I. 
.. !!. 
~ .. 
= So .... -- = = 3: 3: ~ 



J 

r 

Diagram SADMP-I3. AMDSAGTF - GTF History Queue Dump (Put 2 or 4) 

Extended DMcriptlon 

1 AMDSAGTF enqueues I GTF RCB. 

2 AMDSAGTF calls 7VCHK to check the vllidity of 
the MCCe and MCQe to determine if GTF _s 

active. If GTF WIS not Ictive, AMDSAGTF sets In 
error return code of 12. If the MCQe is invalid, 
AMDSAGTF sets an error return code of 16 and cells 
710 to issue error message AMD0181. 

3 AMDSAGTF dequeues the GTF RCB. 

4 AMDSAGTF checks if the ASCB being dumped 
is for GTF. If GTF was not in this address space, 

AMDSAGTF sets an arror return code of 4. 

5 AMDSAGTF enqueues a GTF RCB. 

6 AMDSAGTF dumps the GTF history queue. 

Module L .. I 

AMDSAVCK 7VCHK 

710 

r r 

~ 
II: 

t'D ~ 
1:1 ... 
~ ~ =-
~ i 
I» 

~ ~ ... I» ;: ~ ;. 
I r;; 

"'d = ... .... 
= -'i = ... ~ 
~ " = .... -= ~ 



Diagram SADMP-13. AMDSAGTF - GTF History Queue Dump (part 3 of 4) 

Input 

~ 

Process 

7 Check validity GTFBCB. 

• If GTFBCB is invalid, 
set error return code 
and issue a message. 

8 Issue a successful comple­
tion message, dequeue 
GTFRCB, and return 

~ 

••••• ~ Error. Return 
to the Caller.-

Output 

Register 15 

C 16] 

MSGID 

AMD.0"251 J 

MSGID 

----I.-----: ........ :>i AMD.0571 

• I • [?t;-

Original 
RCB 
Queue m:ro 
Register 15 

o I 

~ 

t"' 
~-
= 
~ 
~ 

:: ~ 
10:> f't> - '" ~ -... ... ;- ;;-- -'IJ f't> c:a. 
13:: 
~ = a ! 'I ;­
~ ;r 
'< c = .... .... -
- == = 3:: 
:: :s 



t""' 

~ 
0/" 

-00 
\C) 
I 

W 

to 
(1 

~ 
::I. 

~ .... .... = E: 
Q 
-? -\C) 
00 
JV 
\C) 
00 

'" 

(1 
c:r 
~ 
ct ... 
~ 

til 

[ 
;» 
0" 
=' (1) 

o 
~ a 

'C 

r 

Diagram SADMP·13. AMDSAGTF - GTF History Queue Dump (Part 4 of 4) 

Extended Description 

7 AMDSAGTF calls 7VCHK to check the validity of 
the GTFBCB. If the GTFBCB is invalid, 

AMDSAGTF sets an error return code of 16, calls 710 
to issue error message AMD0251, and returns. 

8 AMDSAGTF calls 710 to issue completion message 
AMD0571, dequeues the RCB, and returns to the 

caller with a return code of O . 

Module Label 

?VCHK 

710 

710 

r r 

t""' I: 

~. ~ 
l:I fIl 

l~ 
:;;I' S" 
,.;;0, =-
;. ~ 
::3. IG 
IG S" 
;;- :3. 
I;' 

'"::j = .. ..... 
= -~ = ~ ~ 

'-oo!! :s 

= ..... 

~ 



f" Diagram SADMP-14. AMDSAGTM - Dynamic Storage Management (part 1 of 6) 
~ 
00 

~ 
<: 
CIl 

ttl 
>< 
~ 
8-
'" 0-

> 
;:l 
=r 
;:;: 
'" n .... c: 
ri 
en 

'" :;! 
0' 
'" > 
0.: 
'" t""' 
o 

(]<j 

0' 

~ 
!-oJ 
00 , --00 

'f 
w 

@ 

n o 
'0 
'< ..., 
Qq' 
=r .... -0:1 
~ 
n 
o 
-? -'-0 
00 
!-oJ 

'-0 
00 
0\ 

Input 

Register 0 Register 1 

Register 0 Register 15 

CTSUT 

c 
GET GETLEN 

JJ 
UNCOND 

I 1 I 

UNCOND 

o I 

'-' 

1 If SSNUM=SVCGTM, save the 
input parameters and test for 
request type. 

Output 

POOLLEN 

REQLEN2 

UNCOND 

I 
SPNMODE 

SUBPOOLN 

I I 
GET 

SUBPOOLN 

~======~: )2 If SSNUM=SVCGET, save the 
input parameters and test for 
request type, 

~====~: :>{r--~E_T ------. 
I 

I I 
UNCOND 

I 

Load the SUT address, 

=~~====~~)4a For GET requests: 

?ERROR 

• If this is an unconditional 
request and too much storage 
is requested, set an error code 
and terminate. ....aI 

• If this is a conditional request 
and too much storage is 
requested, set an error code 
and a return code. 

l, 

rror, Return 
to Caller 

?ERROR 

CTAUDRC 

I X'Ol' I =ECBI GLEN 

Register 15 

I 4 I 

REQLEN1 

I 

'-' 

t­
;=;' 
t't> = 
~ 
Q.. 

3:: :;.::I 
~ '" - '" t't> ... .., ..., 
§: [ 
'" '" Q.. 

-0 ~ 
.., -
o '" 
~ ;. 
.., -
~ ~ 
o -, --- = == 3:: 3:: ;: 



t"'" 
-< 
N 
<;0 
...... 
...... 
00 

'P w 

iQ) 

(J 
o 

:l. 

;r -I:J:' 
~ 
(J 
o .... 

...... 
\0 
00 
N 

...... 
\0 
00 
0\ 

(J 
::T 
!» 

.... n .... 
~ 

en 
S-::: 
0.. 

> 
0' ::: n 
o 
~ g 
;; 
~ 
o 
en 
~ 
o 
~ 
::s 
~ 
I 

~ 
.0 

r r 

Diagram SADMP-14. AMDSAGTM - Dynamic Storage Management (part 2 of 6) 

Extended Description 

For SSNUM = SVCGTM, AMDSAGTM saves the input parameters pointed to by register 0 and 
tests the value in register I to determine the request type. AMDSAGTM sets the GET field to I if 
register I contains a negative number. AMDSAGTM sets the UNCOND field to I because all 
R-form requests are unconditional. 

2 For SSNUM = SVCGET, AMDSAGTM saves the input parameters pointed to by registers 0 and 15. 
AMDSAGTM tests for the request type and sets the GET and UNCOND fields accordingly, 

3 AMDSAGTM loads the virtual address of the storage use table (SUT) into register 6 to expedite 
access to the SUT. 

4. For GET requests, AMDSAGTM performs GET processing, AMDSAGTM tests the requested 
length of storage. For unconditional requests for too much storage, AMDSAGTM calls ?ERROR to 
set an error code of X'OJ' and terminates. For conditional requests for too much storage, 
AMDSAGTM calls ?ERROR to set an error code of X'OI' and a return code of 4, then continues 
processing. 

r 

r 
::0 ;:;' 

<'I> ." 
:= '" Module Label .... 
'" .... 
." ;:S' =-
s: ;;-

=-
~ 3: <'I> ... I» 
to' ;;-
(ii' 

.., 
r;;' 
(ii' 

"'0 
Q ...... ... 

Q 

== "CI 
<'I> 

~ ~ 
'< 
Q ...... -== ~ 



~ Diagram SADMP-14. AMDSAGTM - Dynamic Storage Management (part 3 of 6) 
VJ 
o 

~ 
~ 
(Jl 

t!i 
>< -(1) 

::s 
0-
o 
0-

;J> 
M 
g: 
o 
(") 

8" 
@ 
(Jl 
(1) 

~. 
(1) 

> 
5: 
'" 
b 
n° 

~ 
N 
~ ..... ..... 
00 
1.0 , ..... 
© 
("} 

~ 
::I. 

~ --0:1 
~ 
("} 
o .... 

..... 
1.0 
00 
~ 
..... 
1.0 
00 
0\ 

OSCE Queue ·0Uu 
UNCOND 

I 1 I 

UNCONO 

1 o I 

~ 

.. >4b Search the DSCE queue for .. 
available storage. 

• If no OSCE is available, set 
an error code and request 
a dump. 

.. 
) • ... If the request is unconditional 

and there is not enough storage 
available, set an error code, 
request a dump, and terminate. 

.. 
> • If the request is conditional .. 

and there is not enough storage 
available, set an error code and 

a return code" 

\., 

~ ,.. 

~ ,.. 

.. 
..... 

CTAUDRC 

.. I X'02' I =ECNODSCE 

--" 
....,.. ?ERROR 

CTAUDRC 

>1 X'03' I =ECNOSTOR 

.. 
..,.. ?ERROR 

CTAUORC Register 15 

>1 X'03' I I 4 I 

.. 
..,.. ?ERROR 

t""' 
;::;" 
1'1> = ~ 
c.. 

3: II: 
:::c 

~ tI> - '" 1'1> -... .. 
et ;;" 

'" ~ =-I :: 
"I:j DO ... -= tI> 

'C .. 
1'1> S-
~ r;; -'< = = .... .... --= = 3: s: :: 

'-' 



r r 

~ Diagram SADMP-14. AMDSAGTM - Dynamic Storage Management (Part 4 of 6) 
IV r> Extended Description 

00 

'P w 

tal 
(J 
.g 
'< 
'"' 0<;' 
::r ... -Ili 
a::: 
(J 
o 
-? 
.-
IJ:) 
00 
IV 

IJ:) 
00 
0'1 

(J 
::r 
.§ ... 
('I) 

'"' 
"'" 
en 
§ 
p,. 

:I> 
0" ::s 
('I) 

o 
§ 

"0 

'> 
a::: 
o 
en 
)-
o 
a::: 
-:9 

~ 
I 
VI ..... 

4b AMDSAGTM searches the OSeE queue for available storage. When it finds an available OSeE, 
AMDSAGTM compares the amount of storage or. the oseE to the requested amount of storage. If 
the available storage that would be left is less than the minimum amount that can be allocated, 
AMDSAGTM takes all of the available storage. If the available storage that would be left is more 
than the minimum amount that can be allocated, AMOSAGTM inserts a new OSeE for the 
remaining unallocated available storage . 

If AMDSAGTM cannot find an available OSeE, AMOSAGTM calls ?ERROR to get an error code 
equal to X'02' and request a dump. For unconditional requests, if AMOSAGTM cannot find 
enough storage to satisfy the request, AMOSAGTM calls ?ERROR to set an error code equal to 
X'03', request a dump. and terminate. For conditional requests, if AMOSAGTM cannot find 
enough storage to satisfy the request, AMOSAGTM calls ?ERROR to set an error code equal to 
X'03', and AMDSAGTM sets an error return code of 4. 

If AMDSAGTM satisfies the request for storage, AMOSAGTM sets a return code of O. 

r 

t"'" ~ n' 
I'D I'D 

Module Label = "" .... 
'" ::l. I'D =- t') .... 
~ 

I'D =-
110 

~ ~ .. 110 ;. .... 
I'D 

iij .. ;. 
iij 

"'C 
Q ..... .. -Q 

"= = I'D ~ .. .... oS ~ 

Q ..... -= 
~ 



t Diagram SADMP-14. AMDSAGTM - Dynamic Storage Management (Part 5 of 6) 
IV 

~ 
<: en ---m 
>< 
CD 

~ 
Po 
)­
(l 
e: 
2 
2 .... 
(1) 

en 
(1) 

~. 
~ 
Po 
r/> 

?;' 
(JQ 

o· 

~ 
IV 
CfJ -00 
\0 
.:., 

Register 15 

I 
UNCOND 

I 

Register 15 

I 
UNCOND 

I 

4 1 .. 
> r 

1 I 

41 .. 
> -y 

01 

• 

5 For a FREE request, call FSEARCH 

to free the storage. 

• If this is an unconditional 
request and FSEARCH fails, 
set an error code, request or 
dump, and terminate. 

• If this is a conditional request 
and FSEARCH fails, set an 
error code. 

6 Dequeue the local save area, pass the 
storage address as a parameter, 
pass the return code, and return. 

.. .. 
FSEARCH 

.. 
?ERROR .. 

.. .. 
?ERROR ...-

© 
(') 
o 
'0 
'< .... 
<§: .... l~ __ - _____ .. 1 -t::tl 
~ 
(') 
o 
-? -\0 
00 
N 

...... 
\0 
00 
0'1 

~ lv 

Register 15 

I Return Code I 
CTAUDRC ... 

)I X'04' I ~ECNOALOC 
r 

CTAUDRC .. 
)I X'04' I 

Save area 

J I 
Register 13 

~ ..I 
Register 1 

r I 
~Storage 
1 I 

t""' 
~. 

tD = ~ =-
3: ~ = ~ '" -:!. .. 
= n' 
r;; tb =-
'"CI 

3: = ... -Q til 
-.:I .. 
tD ji;' ... fij -'< Q 
Q .... .... -- == == ~ 3: 

l" 



~ 
IV 
00 
I --00 
\0 
I 

W 

tal 
n 
~ 
::!. 

(JQ 
::r .... -to 
~ 
n o 
-? -\0 
00 
J'l -\0 
00 
0\ 

f ... 
~ 

CIl 
~ 
8-

~ 
j 
'> 
~ 
o 
CIl 
:> 
'~ 
.::g 

... 
I 

VI 
~ 

r r 
Diagram SADMP-14. AMDSAGTM - Dynamic Storage Management (Part 6 of 6) 

ExteMe4 o.mpdoll 

5 

6 

For FREE requests, AMDSAGTM performs FREE processing. AMDSAGTM calls FSEARCH to 
scan the DSCE queue for elements of allocated storage to be freed. For unconditional requests, if 
FSEARCH fails, AMDSAGTM calls ?ERROR to set an error code of X'04', request a dump, and 
terminate. 

For conditional requests, if FSEARCH fails, AMDSAGTM caiis ·(ERROR to set an error code of 
X'04'. . 

AMDSAGTM dequeues the local save area, passes the storage address in register IS, and arranges 
return by way of AMDSASVI. 

r 

Module Label 

FSEARCH 

t"'" ~ ;::;. 
." ." 

= '" ~ -... 
Q. 

;::;. 

s: ;;-
Q. 

III :: ~ 
::!. III 
III ;;-
<;; ... S· 
I t;; 

." C> .... .. = ;; 'i .. s: -~ :: 

= -. -I:ICI s: 



~ Diagram SADMP·15. AMDSAlOI - Virtual Storage Dump I/O Interruption Handler (Put 1 of 8) 
~ 

a:: 
-< 
ell 

]1 
Ci 

~ 
> a 
e: 

~ 
(;l 

f(l 

~. 
> s: 
'" 
£' o· 

t""' 
;:3 
00 . .­
.-
00 
I,C) . 
IN 

@ 

n 
~ 
::!. 

(JQ 

=-.... -= 
== n o 
~ 
.-
I,C) 
00 
J'-l -I,C) 
00 
0\ 

,".,"',, 

FLCIOPSW 

I I 
I 

100B for interrupting 

FLCIOFP subchannel 

I/O interrupt ~l I parameter 

FLCSIO 

~~bchannell I 
10liABDIABOSUC :7 

IRB I IRBASUBA I 
IIRBAOEVA I 

100B 

IRBSINTA IIOOBSNSC ~ 
IRBSPAIM 

IRBCCWAO 

IRBSSCCC 

IRBSSICC 

IRB r IABSCSW I 
I I 

~ 

.. -"'It ro~_ 
L ') 1 Save the registers and I/O old PSW: 
~v 

Get automatic storage. 

2 Trace the I/O interruption. 

.. 
"> 3 Execute a TSCH to clear status 

pending and get the lAB. 

-----~4 If a unit check occurred. issue a 
sense command to store sense data. 

... 
L 

') 5 If the lAB indicates that the I/O 
.. operation is complete. indicate 

this in the 100B. 

) 6 Update the checkpoint CCW 
.. virtual address in the 100B . 

.. } 7 Save the interrupt SCSW in the 
Of 100B, 

...L 

l, 

vu ..... u .. 

PGOIOISA 1010AEGS .1 I V • 0 In automati 
.. data area 

r 

I IIOIOPSW 

>DSAOMP trace table 

10liAB 
..... 

.]I '. 
100B SENSE 

.. } 100BSENS~ 
'I 710 

I 
100BSENE = 1 after error 

100B 

>I 100BINTX = 1 

100B 

L~ 100BCCWA 
'I 

I I 7LVA 
t"'" ;S. 
~ ::. 

.. SCHIB 
~~ 

=-
100B 

100BSCSW 

J 

:: " :a= = ~ tD '" ..... 
:! • .. 
= ;S. 
fE tD =-r 

100BSCHB 

I :: 
." = .. ..... 
~ ~ 

-= .. 
~ 

;. .. fE ..... 
'< ~ 
~ .... .... --= = :: :: ~ 

l, 



t"'" 
-<: 
N 
00 , 
..-
00 

'P 
UJ 

@ 

n o 
~ .., 

~ -I:Il 
~ 
n 
o 
-? 
..-
'l:l 
00 

P 
'l:l 
00 
0'> 

(j 
::r' 
po 

"0 .... 
CD ... 
-f'-
til 
S-
::s 
0. 

~ 
::s 
CD 

f 
> 
~ o 
til 
:> 
o 
3:: 
:g 

~ 
JI 
J\ 

r r 

Diagram SADMP-15. AMDSAIOI - Virtual Storage Dump I/O Interrupt Handler (Part 2 of 8) 

Extended Description 

2 

3 

4 

AMDSAIOl saves entry registers at PGOIOISA in page 0, obtains automatic storage, saves the I/O 
old PSW at entry at 1000PSW in the autodata area, puts its module identifier ('101') into its save 
area, saves the I/O interrupt parameter (FLC[OFP) in IODBPTR (I/O) interrupt parameters in the 
virtual dump are 100B addresses), and puts the interrupting subsystem identifier (FLCSIO) into 
register 1. 

AMDSAIOl adds a SAOMP trace table entry to show that an I/O interrupt took place. 

AMDSAIOl issues a TSCH instruction to the interrupting subchannel in register I to obtain IRB 
status in 10llRB and clear status pending. Ifno 100B is associated with this interrupt (as may 
happen if the device generated an unsolicited interrupt before the virtual dump was initialized), 
AMDSAIOl determines whether AMDSASIO is trying to clear status pending in order to issue 
SSCH. If this is the case, AMDSAIOI returns to the wait resumption address (I0WATRET) in 
AMDSASIO. If not, AMOSAIOI restores the status at entry. If an 100B is associated with this 
interrupt AMOSAIOl takes further action depending on the type of 10DB and the interrupt status. 

If IRBOSUC = I and [OOBSNSC = 0, AMDSAIOI saves the original operation status 
(IODBOPER and 10DBST A T), issues ?IO SENSE, then restores the operation status. If an error 
occurs, AMOSAIOl sets 100BSENE = I. 

S If all I/O to this subchannel has stopped (IRBASUBA = IRBAOEVA = 0), AMDSAIOl shows that 
no further interrupt is expected (IODBINTX = 0). 

6 

7 

If the CCW address is valid (IRBSINTR = I or IRBSPRIM = I, and IRBSSCCC = O,IRBSSICC 
= O,IODBSNSC = 0), AMOSAIOl subtracts 8 from the IRB CCW address, IRBCCWAD, 
converts the address from real to virtual, and stores it into IOOBCCWA. 

AMDSAIOl copies IRBSCSW to IODBSCSW. 

Module 

r 

Label 

t- :: 
;:;. ~ I'D 
::I ~ 
l(S ~. =- -3: I'D =-
'" 3: ;;-.. ,.. 
;. ;;-
1;;' :3. ,.. 

i'ii' 

~ 
Q ... 

Q -"1:1 0::1 
I'D 3: .. -'< ;: 

Q ... -0::1 :: 



f" Diagram SADMP-lS. AMDSAlOI - VIrtUal Storage Dump I/O Interruption Handler (Part 3 of 8) 
VI 
0'1 

a:: 
-< 
til 

~ 

I 
> g. 
~. 
til 
til 
f1> 

~. 
f1> 

> s: 
'" t­
O 

O<l o· 

t­
-<: 
IV 
00 , 
...... ...... 
00 
10 
W 
@ 

n o 
'0 
'< ... Otj. 

::r -i::t' 
a:: 
n 
o 
f3 
...... 
10 
00 
IV 

10 
00 
0\ 

IRB 

IRBFSSCH ------
IRBSALRT IRB 

IRBSPRIM IRBCC = 1 
-

IRBSSEC IRBSPRIM = 1 

IRBCC 

10DB IRB 

Il0DBCCWA I IRBCC = 1 -
IRBSPRIM =0 

IRB 

I 
IRBCC 1=3 -

IRBDS 
-

IRBSS 

\, 

-----~ 8 Take action on non-zero 
deferred condition codes. 

--- .... a) Deferred condition 
code 1. primary status: 
an immediate I/O 
operation with 
chaining not specified 
is complete. No action .... 

) is taken. .. 
---~ b) D.C.C.l. no primary 

status: prepare to 
restart the I/O. 

----~ c) D.C.C.3: the device 
is not available. Write 
an error message and 
indicate the device 
is not usable. I f it is . 
the output device, ,. 
AMDSAIOI terminates 
SADMP. 

---- ..... 9 Check for errors. 

'-' 

- -- -.- --

I RESCCWA I I- 0 > v 

.. ISVC(SVCERM)P~MD03y 
... ISVC(SVCCON)~~MD030 ... 

I:'"' 

10DB 

~I II-oor1 10DBERR 

;S-
It> 
::: 
'" It> =-
~ 

~ 

:=-::I 
~ ." - ~ It> .... :!-;- n 
i'ii -til Q. 

I s: 
'"'= $>:> .... -= til 

"= ... 
It> j;,;' .... i'ii -'-<!! = = .... .... ;; -= s: ~ :s 

'-' 



t"'" 
-< IV 
00 
I .­
.-
00 

'f' 
w 

© 
(j 
o 

"0 
'< 
:::1. 
~ ... 
..... 
t:C 
~ 
(j 
o 
fl 
.-
'C> 
00 
JV 
.-
'C> 
00 
0'1 

9 
~ ;-
.... 
f>-
CIl 
S" 
5-
:I> 
0" ::s 
(I> 

o r:: a 
"0 

'> 
~ o 
CIl 
> o 
~ 

-:5! 

~ 
I 

VI 
-....J 

r r 

Diagram SADMP-lS. AMDSAlOI - Virtual Storage Dump I/O Interruption Handler (Put 4 of 8) 

Extended Description 

8 a) The deferred condition code is valid if 
IRBFSSCH = 1, and if any of I ABSALAT, 

IABSPRIM or IRBSSEC is 1. 
b) If RESCCWA = 0, I/O does not need to be restarted. 

If RESCCWA I- 0, AMDSAIOI will restart I/O leter. 
c) AMDSAIOI ceUs AMDSAERM to issue AMD0331 

(I/O error message, indicates deferred condition 
code of 3). If the device is the output device 
(JODBOUT = 1 I, AMDSAIOI issues AMD0321 to 
indicate a fetal error on the output tepe, and then 
terminates SADMP with wait code X'4FFDF1'. 

9 AMDSAIOI examines the lAB subchannel status 
(JRBSSI end device status (JRBDS) for error condi­

tions. If any ere found, AMDSAIOI sets 10DBEAA = 1. 

Module Lebel 

r 

r" r:;. ~ 
til til 

= '" ~ -.., =- r:;. 

3: 
tti =-

I» 3: -til .., I» ;0 ~ 
~ 

.., ;0 
I ~ 

~ 0 

Cl 
-. -~ = til 3: ... -'< :: 

0 -. -= 3: 



t- Diagram SADMP·1S. AMDSAlOI- V'JrtuaI Storaae Dump 1/0 Interruption Handler (Put S of 8) 
VI 
00 

3: 
< 
~ 
~ 
S-

l 
> a 
e: 
~ a­
n! 
f 
~. 

~ 
'" 
b 
~. 

t'"' 
-< 
I-..J 
'fl --00 
10 , 
IN 

o 
~ 

~ 
::I. 

OQ 
::r ... -t= 
3: 
~ o 
fJ 
10 
00 

J'l -10 
00 
01 

Output I 

~ ~~~ CPB 

(BCT (BCT 

D U 
100BERR 1--

100BRCVR 

10DBUNAV 

10DBINTX --
10DBRCVR 

I RESCCWA 1=0 

CPB 

T r 
100B 

CPBCHP 
10DBIOap 

10DBINTX 

10DBSNSC 

100BOERP 

'-' 

I .. 10 Channel program blocks (CPBs) .. 
that successfully execute are 
removed. The associated BCTs 
are freed. 

.... 

11 Performs device error recovery. 

----.- ...... a) Calls device error recovery ~ 
routines. ...-

b) Clears the device error r- ... 
recovery block. 

I 
_...J 

12 Restarts interrupted channel 
programs: 

.. 
a) After D.C.C.1. > .. .... 
b) After interruption of CPB 

> chain. 

I 

L, 

. 

"r:rBo BCT 

D I ~ I OEaBCT 

SAOMP-17 

-: IIOIERROR I 100B 
SAOMP-16 

J.. 
100BERB =0 -... 

"I 710 I • Q < ) .. -
)I 

-VI 

"I I 1/0 restarted ?IO 

~ 
~ 
:I 

~ 
~ 

3: 
f-

" II) fD - fit 
fD -S· ~. 
p;j ;; 
~ 

." 
3: 
II) 

a -fD 

1: :3. 
II) .. ;; 

~ = = ---- = 1:1:1 3: 3: :s 

~. 



t""' 
-< IV 

~ -00 
\Q 
I 

W 

(Ql 

Q 
::I. 
::r ..... 
...... = a:: 
(j 
o 

..... 
\Q 
00 
.IV 
..... 
\Q 
00 
0"\ 

(j 

6f 
..... 
C1I ... 
f' 

~ 
::s 
0-
;> 
[ 
o 
~ 
:; 
a:: o 
[Il 

>­o 
~ 
:g 

f'" 
'Jl 
..0 

r (' 

Diagram SADMP-15. AMDSAIOI - Virtual Storage Dump 1/0 Interrupt Handler (Part 6 or 8) 

Extended DescriptioD 

10 If 10DBOUT = I, AMDSAIOI calls subroutine DEQBCT to remove the completed parts of the 
output I/O queue. CPB storage is returned to the available dynamic storage pool, and the BCTs are 
freed. 

11 a) A device error recovery routine is called if an error occurred (IODBERR = I), the last I/O 
service caller to use the device requested error recovery (IODBRCVR = I), and the device is in 
usable condition (IODBUNAV = 0). 

b) AMDSAIOI clears the error recovery block 10DBERB if this is the end of an I/O operation 
(IODBINTX = 0) on which the caller requested error recovery (IODBRCVR = I), provided an 
error occurred (the conditions of IIA were not met). 

12 a) If RESCCWA --, = 0, AMDSAIOI restarts the channel program whose virtual address is 
RESCCWA by issuing '110 REAL. Because the channel program was prematurely interrupted by 
D.C.C.I and has not been translated to virtual, its addresses are real. 
b) If no D.C.C.I I/O is present for restart (RESCCWA = 0), and 

I. I/O is on the queue (IODBIOQP)--, = 0), 

2. I/O is currently inactive (IODBINTX = 0), 

3. The last I/O operation was not a SENSE (IODBSNSC = 0), or 

4. The I/O operation was not started by error recovery (IODBDERP = 0), 

then AMDSAIOI restarts the channel program CPBCHP at the right of the I/O queue by issuing 110 
REAL. 

Module 

(' 

Label 

t""' rf ;:;" 
C1I = '" ~ -... =- ;;" 

:: ~ =-= :: ;:b .. = ;';" ~ 
~ ... 

;;" 
I ~ 

""0 0 .... .. 
0 -"'= = C1I :: ... -'-"! OJ 

0 .... -= :: 



~ Diagram SADMP-15. AMDSAIOI- Virtual Storage Dump I/O Interruption Handler (Part 7 of 8) 
gj 

~ 
<.: 
til 

~ 
ib 

R-p.. 

> 
(l 
e: -2 e .... 
(II 

~ 
:::! 
r;' 
(II 

> s: 
'" r o 

(J(I 
r;' 

r 
--< 
IV 
'1" ..... 
00 

'P 
w 

© 
n 
0 
'0 
'< .... 
ciQ' 
::r -...... = ~ 
n 
0 .... 
~ 

'-0 
00 
N , -'-0 
00 
0\ 

Input 

10lOREGS 

D 
IOIOPSW 

[ 

'-' 

Process 

13 If AMDSASIO is wafting, and the 
I/O is complete, modify the saved 
I/O old PSW returning control to 
AMDSASIO . 

==:::====~~> 14 Restore interrupted status, trace 
the exit and return. 

~ 

Output 

IOIOPSW 

IOWATRET 
__ •• in 

AMDSASIO I SADMP 

Interrupted 
Process 

Trace Table 
...------. 

r 
?;. 
~ = rI) 
~ 
e=-

:: ~ 
= ~ 

ib rI) ..... .. .., 
; . ?;. 

fij' ib 
e=-

'"CI 
:: = .., 
~ 0 

'"1:1 :::!. 
~ = .., 

fij' 
Q" 

0 
0 ..., ... 

== -== ~ 3: 

l., 



r 
-< N 
~ ...... 
...... 
00 
10 
W 
@ 

n 
~ 
::l. 

OCI 
::r ..... 
..... 
txI 
~ 
n 
o 
f3 
...... 
10 
00 
!'J 
...... 
10 
00 
0'1 

n 
~ 
'0 
ft ... 
7'-
Vl ... 
'" ~ 
> g 
~ 

f 
'> 
~ o 
Vl 

> o 
~ 
::9 

~ 
0'\ ..... 

r r 

01 ....... SADMP-1S. AMDSAIOI - Virtual Stonle DuJap I/O Iatempt Haacller (part 8 of 8) 

Ex ... DeIcripdoII 

13 AMDSAIOI decides to return control to the I/O wait resumption point 10WATRET in 
AMDSASIO, rather than to the original I/O old PSW, when the following conditions exist: 

• The wait PSWAIT is set to I in the old PSW, and 

• The count of waiting processes (IODBWCNT) is positive. 

14 AMDSAIOI restores the caller's registers and the I/O old PSW (or return PSW built in 13), releases 
its autodata storage, and I"eloads the 1/0 old PSW. 

M.-ae 

r 

LdIeI 

~ Ie ;:;. ~ 
til "' = '" l ~ ;:;. 

:: ;;-
~ 

'" :: ;;-... = ;.;' ;;-
r;; :I. = 1E 

~ = ... -'g = ... :: 
~ " = --== :: 



~ Diagram SADMP-16. IOIERROR - Subroutine of AMDSAIOI (part 1 of 2) 
I 
0\ 
N 

~ 
<: 
Vl 

~ 
(> 

::l 
0-
(> 

0-

> 
rl 
Q" 

~. 

;;-
.... 
(> 

Vl 
(> 

~ 
ri' 
(> 

> s.: 
til 

r o 
(JQ 

ri' 

r 
...:: 
N 
00 
I 

00 

'f 
w 

© 
('l 

~ .... 
6(i' 
;?;' 
...... 
00 
~ 
('l 
o 
-? 
\0 
00 
N 

\0 
00 
0-, 

Input 

EJ I Co,"o' R".,,,, " 

10DB 

D 

CR6SA [ -

(., 

1 If the mask of interruptions 
is in error, restore con trol 
register 6. 

2 Call the error recovery 
program. 

3420 Tape 

3480 Tape 

3 If recovery succeeded, set 
the 10DB indicator. 

DASD 

==~==::~> 4 Restore the original interruption 
masks. 

~ 

Output 

SVC (SVCTER) 

SVC (SVCTBO) 

SVC(SVCDER) 10DB 

I'OOBERR~O I 

Control Register 6 

--,,-----------------r-vl~ __________ ~ 

It 

~ 
;;" 
ttl 
:I 
~ =-:: :: 
II; ~ 
;- ~ ... ... 
Ai" ;;. 
r;;- ~ =-
'"C ~ ... -Q ttl 

~ ; . 
... -- '" '< Q 
Q ..... 

..... -
- 0::1 0::1 :: 
:: :s 



~ 
I --00 
10 
I 
IN 

«) 

n 
~ 
::1. 

OQ 

a--tI:I 
~ 
n o 
-? -10 
00 
~ -10 
00 
0\ 

f 
~ 

en 

[ 
> 
0" g 

i 
'> 
~ 
1:1 en 
> 
1:1 
~ ,:g 

f" 
0\ w 

r 

DIapam SADMP-l6. IOIERROR - Subroutine of AMDSAIOI (Put lor 2) 

Ex1MRd o._1D1ien 

1 10lERROR Nrlaliza I/O Interrupt by dl_lIngall 
Interrupt IUbel ... axcept the one for the device 

In error. (The DASD Interrupt 1Ube1_1s the only one 
that repreNntl more then one IUbchennel, and only one 
DASD ha active I/O at one time.! It does 10 by saving the 
original velue of control r .... _ 6 in CR6SA and Nttlng 
the Interrupt .ubcl ... mesk In CRS to equal the m .. k 
for the device In error (lODBISCM). 

2 If the device .. a 3420 tape (lODBCLAS- DVCTAPE 
.nd 10DBUTYP - X'OO'), 10lERROR cell. AMDSATER. 

If the devlce ... :MaO tepe ClODBCLAS-DVCTAPE end 
10DBUTYP - DT3480 - X'SO'),IOIERROR cell. 
AM DSATBO. If the device Is. DASD (DVCDASD, 
10lERROR cells AMDSADER. If the device II none of 
theN, 10lERROR .. tl an error return code. 

3 If the return code from error recovery ilO,lOIERROR 
tum. off 10DBERR. 

4 10lERROR ratora control regilter 6 to It. original 
value of CR6SA. 

Module L ..... 

r r 
~ I: 

g r 
I -Do~ 
3:£ 
i 3: 
:!. • . ~ 
Vi ::3. • Vi 

l= 
1~ 
~ :s 

So -~ 



f" Diagram SADMP-17. DEQBCT - Subroutine of AMDSAIOI (Part 1 of 4) 
01 
+:0. 

s:: 
<: 
I:Il 

~ 
C1> 

8. 
C1> 
p.. 

> 
rl e: .... g 

= @ 
I:Il 
C1> 

~ (i. 
C1> 

> s: 
'" t""' 
J6 
(i' 

~ 
tv 
00 , ..... ..... 
00 

'P 
w 

@ 

() 

~ 
iJ· 
a' -1:1:' 
s:: 
() 
o 
fl 
..... 
\0 
00 
lV 
..... 
\0 
00 
0\ 

Input 

QCA 

100B~ 

cS 
QCA 

100B I QCAOOWN 

queue I 
,'--

BCT' " 

BCTlOQP 

l, 

=0 - - - 1 If the I/O queue is empty, do 
nothing. 

2 Find the first CPB whose I/O 
is certain to be complete. 

a. Search from right to left 
along the CPB queue. 

b. StopattheCPB,thecheck-

point CCW address points. =~~==j 

c. Move to the CPB's right 
neighbor if the CPB's I/O 
is not complete. 

l, 

Output 

FOUND = 1 

100B 

PBDONE 

CPB I/O queue 

1008 

PBDONE 

CPB I/O queue 

l, 

t"'" ;::;0 
ft> 

== ~ =-
~ :; 
~ ~ - '" ft> -... .. ;;- ;;-
rr ~ =-

~ 
'"CI ~ ... -= 1'1> -= ::!. 
ft> ~ ... -- '" ~ = = ..., ..., -
- =:I 
=:I ~ 
~ :: 



r 

r 
-< Diagram SADMP-17 _ OEQBCT - Subroutine of AMOSAIOI 
IV 
c:o 
-00 

'f' .... 
@ 

(") 
o 

:J. 

go 
..... 
t:= 
a:: 
(") 
o 

.-
\0 
00 
IV 

.-
\0 
00 
C1\ 

Extended Delcriptian 

2 The 100B and CPBs include queuing control areas 
(OCAI that chain them together. 100B.QCAOOWN 

points to the head (left endl of the CPB 110 queue. The 
I/O queue is doubly threaded by CPB.OCALEFT and 
CPB.OCARIGHT. CPB.QCAUP points to the 100B. and 
CPB.OCAOOWN points to a control block (BCT) associ­
ated with the I/O operation. CPB-s are added by the I/O 
service to the left of the queue and removed from the 
right. Each CPB Includes a channel program legment to 
be executed by the subchannel represented by the 100B. 
The chennel executes tham from right to left. and the 
segments may be chained from right to left by TICs. 
o EOBCT determines which CPBs have been executed 
by the channel. iOOBCCWA Is the eddress of the last 
CCW known to have been executed . 
a).b) OEOBCT first checks one head (left endl of the 

queue. The last CCW was in the channel program 
represented by this CPB if iOOBCCWA points 
within the CPB. o EOBCT then continues to the 
right end of the queue and scans left until it reaches 
the head. Found is set to 1 when a CPB is located. 

(") c) The found CPB is not completed. if an error 
!if occurred (lOOBEAR = 11. or if the last CCW is 

~ .., 
~ 
CI) 

S-
::3 
Q.. 

:> 
0-
::3 
CD 

tJ = 3 o 
; 
a:: 
tJ 
CI) 

> 
tJ 
a:: 
::s! 

.j:::. 
I 
0\ 
lJl 

not the last one in the CP B. 

Module 

r r 

(Part 1 of 4) t"" ~ t=,;. 
CD CD 

= '" -Label l€ ... t=,;. a-
~ :::: a-

100) :::: ~ .. 100) ;. -CD 
;;;" ::!. 

100) 

I r;;" 

~ 
Q ... ... -Q 

'1:1 == CD 

~ ... -~ 
Q ... -== :::: 



~ Diagram SADMP-17. DEQBCT - Subroutine of AMDSAIOI (Part 3 or 4) 

~ 

~ 
< :n 
:r; 

Input 

FOUND ____ -_1 -- -- I 

---~ 

Process 

3 Remove all completed CPSs and 
associated data from the I/O queue. 

Output 

10DB 

Freed 
CPB 

a) Remove completed CPS. from : > 
the queue. 

Completed CPS b) Free the associated BCTs. 

Associated BCT c) Discard used CPBs. 

l., ~ 

D 

p-- , 
• I • • L __ .J 

r--' 
I I 
• I 
~-- .. 

BCTIOQP=O 
BCTlO =0 

Freed storage available for use 

l, 

~ 

f 
I 
3: I: • if 
Ii" ~ i- jS. 
rri ... 
I=: 
'" 81 a ~ 
'i ::L 
::. ;. 
""I! 0 
o ... 
.... --= !~ 



<: 

:Il 
S' 
:::I 
:l.. , 
~ 
5" 
:::I 
~ 

;l 
~ , 
"' »-
~ 
:::I 
Il 
»-
:::I 
~ 
g 

J:o,. 
I 

" ..J 

r 

Diagram SADMP-17 _ DEQBCT - Subroutine of AMUSAIOI 

Extended Description Module 

3 Removes complete:d CPB's If FOUND = 1o 

a) The right and left end pointers CPB.OCARIGHT and 
CPB.OCALEFT of the queue are modified so that 
the completed CPBs are no longer on the queue. 

bl For every BCT attached to a completed CPB, the 
1/0 queue pointer BCTIOOP is set to 0, the 1/0 flag 
BCTlO is set to 0, and if the usage flags show the 
BCT is not in use (BCTUSE = 0), the BCT is put 
onto the BCT available queue (CTBCT AVO). 

c) The completed S;PB s are no longer needed for any 
purpose. Their storage is freed by issuing ?FREEMAIN. 

r r 

(Part 40f 4) r " ;:;0 ::c 
~ fD 

Label = '" .... 
~ 

., 
=- n° 
3: 

;;-
Q, 

"" ~ -~ ... "" So .... 
fD - ., 

'" So 
I 1ii 

"CI => ..... ... -= -= == ~ ~ ... .... :s ~ 

=> ...., -0= 
3: 



~ Diagram SADMP-18. AMDSAIPL - Bootstrap Module (Palt 1 of 6) 

" )0 

= c:: IPL 1 and IPL2 
fJ 

ti 
< 

i 
::.. 
t 
I> 
~ 
~ 

~ 
:! 

~ 
~ 
~ 

S. 
:'l 
~ 

~ 
5: 
" .... 
:, 
rQ 
1)' 

~ 
i'ol 

~ 

Xl 

f' ... 
~ 

~ 
::l. 
rQ 

~ 
;; 
so:: 
'") 
:) 

3 
o 
)0 
'-l 

IPL10P .. 
I 
IPLlOP 

r TAPEREAD I-

8 -L 
IPL 10P 

I OASDREAD I-

,- IPLDEV--
...... -.....-
'- -

'DSCB4 

I 

4.., 

> 1 Determine if the residence 
-... volume is tape or DASD. 

> 2 If the residence volume is tape, 
v load AMDSARDM from tape. 

• If unable to read 
AMDSARDM, set reason 
code. 

L ') 3 If the residence volume is DASD: 
--y 

• Read DASD label. 

- If unable to read label, set 
reason code. 

- If non-standard label, set 
reason code. 

.. 
') 

--y • Read DSCB4 

- If unable to read DSCB4, 
set reason code. 

I 

(., 

. -

IPLlOP IPL10P 

~I I -)j TAPEREAD I DASDREAD I 
Storage 

L 

r 
AMDSARDM 

WPREASON 

)I 
"1 

X'0800' .=WRCNORDM 

WPREASON 

)I X'0100' =WRCLBLRD 
~ 

WPREASON 
)I X'0200' =WRCNSL -,..'1 

WPREASON 
L 

)I X'0300' =WRCDSCB4 

r" 
;:S • 
." 
::I 
~ c:a. 
s: :. 

:= 
III n> 
;-- '" -::!. ~. 
III 
r;;: -." c:a. 
I s: 

'"CI III a !;' 
~ :S. 

III .. r;; -'< ~ 
Q -.... --= = s: s: :s 

4.., 



r 
><: 
tv 
r' ...... ...... 
00 
\0 
I ..., 
© 

r 

Diagram SADMP-18. AMDSAIPL - Bootstrap Module (Part 20f6) 

Extended Description Module Label 

AMDSAIPL locates SYS1.PAGEDUMP and bootstraps all 
of SADMP into the processor to complete the IPL sequence. 

Q 1 AMDSAIPL determines the residence volume type by 

::!. 

::r .... -= ~ 
(") 
o .... 

\0 
00 
tv 

...... 
\0 
00 
C'I 

(") 
::r 
III 

ft ... 
7'­
III 

[ 

f 
t:I 
c:: g 
); 

== t:I 
III 

> 
t:I 
~ ::g 

~ 
I 
0\ 
\0 

checking IPL lOP, the IPLl CCW operation code. 

2 If the residence volume is tape, AMDSAIPL loads 
AMDSAROM from tape. If AMDSAIPL is unable 

to read AMDSARDM, AMDSAIPL sets a wait reason code 
9qual to X'OBOO', AMDSAIPL calls SIORTN to run the 
channel program. 

3 If the residence volume is DASD, AMDSAIPL reads 
the DASD label. If AMDSAIPL is unable to read 

the label, it sets a wait reason code equal to X'OlOO'. If 
the label is not the expected IBM standard label, 
AMDSAIPL sets a wait reason code equal to X'0200'. 

AMDSAIPL reads DSCB4, a format 4 DSCB, to obtain 
information about the DASD. If AMDSAIPL is unable 
to read DSCB4, AMDSAIPL sets a wait reason code 
equal to X'OlOO', 

SIORTN 

r r 

C"" ;::;. ~ II> 
::I ~ 
~ .... 
c:L. a 
:: II> 

c:L. 
III s: ;;-
;- III -II> 
i'ii .... 

£;' 
I i'ii 

:.-= 
Q ... 

Q -ii == .... :: -~ ::: 
Q ... -== s: 



f" Diagram SADMP·18. AMDSAIPL - Bootstrap Module (part 3 of 6) 
-...J o 

~ 
<: 
(Il 

~ 
t; 
::s 
Co 

2-
~ 
d e: 
~ 
~ 
(') 
~ c 
~ 
(Il 
~ 

~. 
~ 
~ 
6: 
'" t"" 
~ 
n' 

t"" 
-< IV 
cr ,.... ,.... 
00 

'f' 
w 

© 

Q 
::I. 
::r ... -t:= 
~ 
n o .... 

,.... 
'0 
00 
IV 
,.... 
'0 
00 
01 

... .- -

DSCB4 

DSCB4TPC 

DASDTBL 

TRKPCYL 

GMDSACCT 

FLCSID DSCB1HI 

I II I 
DSCB1LOW RECPTRK 

I I I I 
TRKPCYL 

I I 

~ 

. --- -- I 

..... 4 Determine the IPL volume device 
> type. 

• If the device type is not supported, 
set reason code. 

• Search the VTOC for 
KEY=SYS1.PAGEDUMP. 

- If SYS1.PAGEDUMP is not 
on the VTOC, set reason 
code. 

--'" • Read AMDSACCT from 
> SYS1.PAGEDUMP . .. 

- If the read fails, set 
reason code. 

~ • Record SYS1.PAGEDUMP 
data into the CCT. 

• Write the storage that 
AMDSARDM uses. 

- If the write to 
SYS1.PAGEDUMP fails, 
set reason code. 

l, 

. 

WPREASON=WRCNOSUP 

..~ X '0400' 
r L 

WPREASON 
--'" 

)I X'0500' =WRCNODS .. 
AMDSACCT 

-" 
r 

WPREASON 
-" 

A X'OSOO' =WRCNOCCT 
1 

CCT 
J. 

r 

0 EJ t-
or r 

t""" 
ri" 
tD = ~ =-
3: ~ 

WPREASON 

/j X'0700' WRCNOWRK 

= ." - ell 
tD -... .. £;. ;;. 
<;; -." Q. 

I :!! 
"'CI = 
Cl -." 

"=' ::!. 
tD = .. i'ii -~ = = .... --- == = a: 3: :s 

~ 



B 
00 
I --00 

'P 
w 

o 
(') 
o 

::1. 

a-.... 
0:1 
~ 

Q 

-\0 
00 

.J"> -\0 
00 
0\ 

r 

Diaaram SADMP-18. AMDSAlPL - Bootstrap Module (Part 4 of 6) 

Extended Dncription 

4 AMOSAIPL uses the cylinder capacity in OSCB4 
and a table of supported OASD cylinder sizes to 

determine the IPL volume device type. If the device 
type is not supported, AMOSAIPL sets a wait reason 
code of X'04OO'. 

AMOSAIPL scans the VTOC searching for 
KEY-SYS1.PAGEOUMP which isthe OSCB1 that 
describes the data set. If SYS1.PAGEOUMP is not on 
the VTOC, AMOSAIPL sets a wait reason code equal 
to X'OSOO', 

AMOSAIPL reads in AMOSACCT from the 
SYS1.PAGEOUMP data set. If the read for AMOSACCT 
fails, AMOSAIPL sets a wait reason code equal to X'06OO·. 

AMDSAIPL records, in the CCT, previously determined 
data about SYS1.PAGEDUMP. AMDSAIPL writes out 
the contents of the storage that AMDSAROM will be 
read into or will use as buffer space. If AMOSAIPL is 
unable to write to SYS1.PAGEOUMP, AMOSAIPL sets a 

Module Lebel 

(') wait reason code equal to X'0700'. 

! 
S" ... 
~ 

til 
~ 

~ 
~ o 

> 
~ 
o 
~ 
~ 
:g 

~ 
-..l -

(' r 

t'"' " ~. ~ 
~ '" ~ =-
~ 

;;-=-.. :: ;;-
&- ~ _ no 
(Il ::I. .. 

c;; 

." co -a -'i == .. :: 
~ :s 

= .... -1:1:1 :: 



+:0-
I 

--..l 
N 

a:: 
<: 
r./'J 

~ 
ft 
;:I 
0-
(I) 

0-

i 
(I) 
(') 

~ 
r./'J 
(I) 

:;! 
~. 

> 
S; 
'" r o 

0.9. 
(') 

r 
-< 
N 
00 . ..... ..... 
00 
\0 . w 

© 
n 
0 

"0 
'< 
::l. 

(JCI 

r:r -t:l:I 
a:: 
n 
0 .... 
'? 
..... 
\0 
00 
N 

..... 
\0 
00 
C\ 

Diagram SADMP-18. AMDSAIPL - Bootstrap Module (Part 5 of 6) 

In 

0°· 

c..., 

Process 

• Read AMDSARDM. 

I f the read fa ils, set reason 
code 

5 If TYPE=LO, dump real storage. 

6 If TYPE=HI, read AMDSADIP. 

• If the read fails, set reason 
code. 

7 Restore real storage to its original 
contents. 

8 Call AMDSADIP. 

"AMDSADIP 

l, 

AMDSARDM 

WPREASON 

x'oaoo' -I=WRCNORDM 

WPREASON 

X'0900' =WRCNODIP 

r ;:;. 
(I) = ell 
It> 
Q. 

:: 3: " co It> ..... l!!-It> 
:!. :!. 
rl co -Cii' It> 
Q. 

~ 
"'C co .. ;;-Q 

:!. "= (I) co ... Cii' -'< Q 
Q .... .... -;; == 
3: ~ :t 

'-' 



r r r 

~ Diagram SADMP-18. AMDSAIPL - Bootstrap Module (Part 6 of 6) ~ ,; 
N <to ." 
00 = ~ 
.:.. Extended DelCription Module Label ~ ::!. =- Z 
00 ." 

~ AMDSAIPL reads AMDSARDM into the storage area that ~ i 
© wesjust copied into SYS1.PAGEDUMP. If the read for ~ ~ 
(j AMDSARDM fails, AMDSABLD sets a wait reason code !t ~ 
o of X'OSOO'. '" ii)' 
~ I [ii 

iJ· 5 AMDSAIPL calls AMDSARDM to dump real storage. :::' S. 
::r If the dump is a low speed dump, AMDSARDM does ~ ;; 
;; not return to AMDSAIPL. ~ ~ 
~ ~ ~ 

(j 6,7 AMDSAIPL reads AMDSADIP if TYPE = HI. If the SIORTN S. 
.~ read for AMDSADIP fails, AMDSAIPL sets a wait ;; 
"? reason code of X '0900' • If the read is successful, :: 
'Cl AMDSAI PL restores the contents of storage that W8$ 

~ occupied bV AMDSARDM. 

~ 8 AMDSAIPL calls AMDSADIP. AMOSADIP loads AMDSADIP 
~ and initialized AMOSAPGE; AMDSAPGE dumps 

(j 
::r 

i .., 
f-
(I) .... 
'" 8-
~ ::s 
." 

t:l 
S 
tI 

> 
~ 
t:l 
(I) 

~ 
~ 
:!:! 

~ 
I 

-...l 
W 

virtual storage. 



01::0-
I 

~ 

~ 
< 
til 

~ 
(;' 

8-
2-
> 
(! 
::r 

~. 
a 
W 
:,J 
n' 
~ 

> 
i5.: 
'" 
E 
n' 

r 
...:: 
IV 
00 
I ..-
..-
00 
\0 
W 
@ 

~ 
::I. 
:JQ 
::r --0:1 
~ 
(') 
0 

? -\0 
00 
]'J -\0 
00 
0\ 

Diagram SADMP-19. AMDSAMDM - Virtual Storage Dump Memory Dump (part 1 of 4) 

Input 

CTASLB 

4.., 

~ASCB : ~ 1 Obtain the JOBNAME for this 
address space and check its 
validity. 

2 Display the address space being 
dumped to the operator. 

3 Obtain storage for the VSMLlST 

CJOBNAME 

AMD0101. 

VSMWORK 
I .. r 14K VSMLlST 

)I Work Area 

work area. Records on 

I) VSMLlST Program SVC (GTMSVCII VSMWORK Doump Tape 
in MVS Nucleus ...- --"~ I 

4 Obtain the address ranges for the T I -v 
LSQA. 

5 Convert the VSMLlST output into 
address ranges and dump them. 

CTASInA 

r~"";;""';'--l:=!::=====::!~=:> 6 If this is the master address space, 
dump the CSA and SQA. 

~ 

Records on Dump Tape o 
VSMRANGE 

~ 

i-= l :: ~ 
lID ~ 
- II> "' ... .. .. ;;. n' 
t;;" i 
I ~ 

"'C:I lID 
~ (;'" 
'1 :I. 
::l !. 
~ II> 

= ~ --- = = ~ s:: :s 



r 
-< 
t-.l 
00 
I 

...... 
00 
\0 
I 

W 

© 
(") 
o 

:1. 

=-... .... = s::: 
(") 
o ... 

\0 
00 
t-.l 

...... 
\0 
00 
0\ 

Q 
I\> 

;-... 
fo 
CI:l ... 
I\> 

8-
> 
0-
; 

i 
): 
s::: 
o 
~ o 
s::: :s 
.j:lo. 
I 
-l 
tJl 

r (" 

Diagmn SADMP-19. AMDSAMDM - Virtual Storage Dump Memory Dump (Part 2 of 4) 

Extended DeKrlptlon 

1 AMDSAMDM obtain •. the jobname from ASCBJBNI 
ur ASCBJBNS. If neither field contains a valid 

jobname, AMDSAMDM substitutes ·UNKNOWN. 

2 AMDSAMDM calls AMDSABIN to convert the 
ASCB address and ASID to EBCDIC, then writes 

message AMD0101 to the console. 

3 AMDSAMDM issues a GETMAIN for 4K of subpool 
104. VSMlIST use. this as a work area. 

4 AMDSAMDM issue. a VSMLlST macro call to put 
address ranges for the LSQA of the current address 

space into the VSMLIST work area. 

5 AMDSAMDM calls internal subroutine VSMRANGE • 
VSMRANGE processes the output from VSMLlST. 

VSMRANGE calls AMDSAARD (via an SVC macro) for 
each block of storage that VSMLlST identifies, and passes 
the length and address of each block to AMDSAARD. 
AMDSAARD accumulates these storage ranges and dumps 
the associated storage. 

• If CTASID-1, AMDSAMDM issue. VSMLlST macros 
for CSA and SQA, then calls VSMRANGE . 

Module Label 

r 

t"'"' " ;;. ::c 
tD tD 
::s '" ~ -... =- ;; . 
;s:: ;;-=-
II> ;s:: ;t 
:!. II> -II> tD 
i'ij :l. 

I !. 
'" 

~ 
=> -. 

'1:1 ;; 
tD ;s:: .. -<.oo! :: 

=> -. -= ;s:: 



~ Diagram SADMP·19, AMDSAMDM - Virtual Storage Dump Memory Dump (part 3 of 4) 
I 
-.I 
0'1 

~ 
<: 
CIl 

~ 
ft 

~ 
p" 

)­
~ 
::r 
~. 
.... c 
@ 
til 
C'O 

:! 
n' 
C'O 

)-

~ 
b 
!G. 
(') 

~ 
IV 

'f' .... ..... 
00 

'P 
w 

© 
("') 
o 
~ 
::!. 

IJQ 
::r .... 
...... 
III 
~ 
("') 
o 
~ 
..... 
>C 
00 
.IV 

>C 
00 

'" 

Input 

CTDT Dump Table 

I 

CTASIDD 

I 
CJOBNAME 

I 
ASXB TCB 

ASXBLTCB ! 

4.., 

Process 

"> 7 Search each entry in the dump 
table for the following conditions: 

L • The current ASI D is in the 
) ASID list. 

) • The current JOBNAME is in .. the JOBNAME list . 

.. • The protect key of the 
") memory's RCB is in the key 

list, 

S If any of the above conditions 
are found, do the following: 

• Dump the address ranges in 
the address list. 

• Dump the subpools in the 
subpool list for every TCB in 
this memory. 

... 

L 

Output 

.. ASID 18+ I I I 
~ 

JOBNAME IB+ I 
Key List 

Address List I 
Subpoof List I I 

.. OT'" > 
L 

SVC (SVCARDl 

t"" 
;:S. 
ro 
::I 

VSMWORK '" ro 

U 
I .. 

OT'" .. 
.. I TCBSCAN 

co. 

3: ~ 
/l.) ro - ~ ro .., .., 
j;;' ;:S' 
r;: -ro co. 

3: 
'i:I /l.) .., -0 ro 

"CI 
.., 

ro j;;' .., r;: q 
0 

0 -. -. -;; 1:1:1 

3: 3: 
:s 

'-' 



~ 
IV 
00 
I -
00 

'P w 

" n o 
~ 
::2. 
rq 
:r ,.. ... 
::0 
~ 
n 
o 
? 
.0 
00 
~ 

.0 
00 
:1\ 

~ 
\) 

:I 
i' 
~ 

~ 

n .. • , 
:.. , 
;. 
)" , 
~ 

~ 
i 
I 
.... ,. .. .. 
j 
~ ,. , .. 
• 
~ 

~ 

-l 
-l 

r r 

Diap'am SADMP·19. AMDSAMDM - Virtual Storaae Dump Memory Dump (Part 4 of 4) 

Ex1iInded Dell:ription 

7 The dump table (OT ABLE, that the CTOT points to) 
contains lists of sublists that specify storage to be 

dumped (by subpool number or address range) in address 
spaces (by ASIO, jobneme, or TCB key). AMOSAMOM 
lIIarches each sublist to determine if one of the following 
three conditions is met: 

• The address space currently being dumped is in the 
ASIO list. 

e The jobname for the address space currently being 
dumped is in the lobname list. 

• The protect key of the memory's TCB for the address 
space currently being dumped is in the key list • 

If the address space meets the criteria that the dump table 
specifies, AMOSAMOM dumps the necessary storage. If 
address ranges were specifiad, AMOSAMOM calls 
AMOSAARO (via an SVC macro) to dump the address 
ranges. If subpools were specified, AMOSAMOM calls 
TCBSCAN to dump the subpools jn the subpool list for 
each TCB in this address space. 

Module Lebel 

r 

l""" " ;So " fD ;. 
~ ... 
=- ;S" 

:: ;;-
=-

lID :: ;;-... lID 
it" ;;-
fA .. 

it· 
fA 

"1:1 = ... .... 
= -'i = 
::l. :: 
'< :: 

= -. -= :: 



~ Diagram SADMP-20. AMDSAMSF - Console Loop Trace Buffer Dump (Part 1 of 6) 
-.J 
::10 

1!:: 
~ 
:i1 
>C 

i 
> 
tl 
:r 
~. 
.... s:: 
ri 
~ 
:! 
~. 

> e: 
r 
n" 

~ 
IV 
00 . ...... 
...... 
00 
'00 . 
W 

@ 

(') 
o 

::1. 
::r 
..... = a:: 
Q 

...... 
~ 
IV 

...... 
~ 
0\ 

Input Process Output 

t---,-----,--o/ 1 Enqueue the MSF RCB . 

FLCENPSW' Control Register 0 CPUVERSN SAVENPSW 

l" 

~ 2 Determine whether execution is 
on a VM machine. 

r..;.;..;;;;..---1------..!-----!....J'" 3 Issue a SIGP SENSE to deter­
mine if a particular processor 
is online. 

I========::!:===tl => 4 Obtain a BCT with a buffer. 

Buffer 

• I II SVC (SVCBUF 

,-- - - I 

CNTLROSV SYSMSKSV 

BCT .... Buffer I r~l ~--"'J 

MSFDBLK 
MSFCMDWD 

t---.r------.....--v5 Initialize the data block and the i ~ 
L..-____ --' command word for MSSF.CA LL. "It-. _____ -1 

MSFDBLNG I 

l., ~ 

~ 
~ = ~ 
I:&. 

~ r = ;- -... ~. ;. 
(;j ;;-

=-, 
~ 

." 110 ... ;;-= "CI .. 
~ j;' ... ir ~ C> = .... .... -- == 1:1:1 ~ ~ ~ 



r 

~ Diapam SADMP·20. AMDSAMSF - Console Loop Trace Buffer Dump 
00 . --00 
\0 . 
t..> 

@ 

~ 
::I. 

~ .... -= =:: 
g 
~ -\0 
00 
~ 

Exutndecl Dacription 

1 AMDSAMSF enqueues the MSF RCB onto the RCB 
queue. 

2 AMDSAMSF stores the processor identifier, to 
determine whether or not execution is on a VM 

machine. If execution is not on a VM machine. 
AMDSAMSF saves its environment. Otherwisa, 
AMDSAMSF passes control to step 12. 

3 AMDSAMSF issues SIGP instruction to a particular 
processor to determine if the processor is on line. 

If it is on line, AMDSAMSF continues proceSsing. If the 
processor is not on line, AMDSAMSF does not parform 
steps 4 through 9. 

\0 4 AMDSAMSF obtains a buffer control table (BCT) 
~ entry end its associated buffer by passing control 

n 
:r 

~ .. 
J>. 

~ ... 
1:1 
:I 
:l. . 
~ 

5' 
j , 
~ 
~ 
) 
.... 
I> 

~ 

~ 
I> , .. .. g 

~ 

.J o 

to AMDSAMSF via an SVC instruction. If AMDSAMSF 
cannot obtain a buffer, it passes control to step 11. 

5 AMDSAMSF clears the BCT buffer for usa es the 
MSSFCALL data block. It saves the length of the 

data block in the block. AMDSAMSF initializes the 
MSSFCALL command word so that a read conlole 
loop trace command is issued to the MSSF . 

Module L.,.' 

AMDSAMSF 

r r 

(Put 2 of 6) ~ so _. ,., 
~ !l 
= -I ~. 
~i: • :: ~ a· ;. - .. ~ -. • I FJ" 
"1:1 c 

a = 11 = 
::l :: 
~ :s 
c --= :: 



~ Diagram SADMP-io. AMDSAMSF --Console Loop Trace Buffer Dump (part 3 of 6) 
:)0 

o 

:: 
<: 
CIl 

~ 
it 

~ 
Po 

> 
r! 
::r' 
~. 

~ 
~ 
~ 
~r 
> 
5.: 
rA 

f o· 

r 
-< 
IV 

c:o 
-00 
\0 
I .... 
© 
() 
o 

:J. 

~ -b:l 
a:: 
() 
o .., 

-\0 
00 
IV -\0 
00 
0'1 

R4 --. MSFDBLK 

D I I 
I R5 

I MSFCMDWD 

Control Register 0 

I 

SAVENPSW CNTLROSV 

I I I 
SYSMSKV 

I 

l, 

.. > 6 Issue a SERVICE CALL or 
r MSSFCALL DIAGNOSE 

instruction. 

a. First. issue the 
SERVICE CALL. 

b. If the SERVICE CALL 
encounters a program 
check. issue an 
MSSFCALL DIAGNOSE. 

>,7 Prepare "to receive the MSSF 
external interr\lpt. 

I )8 If the interrupt is received, 

I 
.. 

prevent further MSSF external 
interrupts from arriving. 

l, 

MSFDBLK 

MSFDBRSP 

" Console Loop 
Trace Data 

FLCENPSW Control Reqister 0 

... I I I 
.l r , 

I PSW 

I I > r 

FLCENPSW Control Register 0 
.I D I 
.1 

r 
r ;:;. 
~ 

I PSW 
-" I I ) .. 

= ~ =-
~ :::c 
~ ~ 

;;- ~ ... ~ . ~. 

;; -~ c:o.. 

:: 
"'CI ~ ... ;;-Cl 
~ 

... 
n> ~. ... [;;' ..... 

""'! Cl 
Cl .., .., -- = == ~ ~ 

'-' 



r 
-< N 
Cf' --00 
\,f;) 
I 

t.;.J 

@ 

(j 
0 
~ 
'-< .... 
OQ' 
::r -..... 
== 
~ 
(j 
0 

~ 
.-
\,f;) 
00 
J'-.l 
.-
\,f;) 
00 
0"-

(j 

~ 
~ 
ct .., 
-!"­
tI:l 
S-
5. 
~ 
::s 
CI> 

i 
'> a:: 
~ o a:: ::g 

~ 
I 

00 -

r (' 

Diagram SADMP-10, AMDSAMSF - Console Loop Trace Buffer Dump (Part 4 of 6) 

Exteaded Descriptioa 

6 AMDSAMSF passes the command word and the address of the data block in registers that the 
SERVICE CALL and DIAGNOSE instructions use. AMDSAMSF issues the SERVICE CALL or 
MSSFCALL DIAGNOSE instruction to obtain the console loop trace butTer. It issues SERVICE 
CALL first; if SERVICE CALL encounters a program checks, it then issues MSSFCALL 
DIAGNOSE. If AMDSAMSF is successful, the console loop trace is stored in the data block passed 
to the MSSF. 

7 AMDSAMSF changes the new external interrupt PSW (FLCENPSW), which passes control to 
EIHANDLER in AMDSAMSF when an external interrupt occurs. AMDSAMSF modifies control 
register 0 to allow MSSF external interrupts and modifies the PSW to enable for external interrupts. 
It then goes into a spin loop to wait for the interrupt. If the TOD clock value is usable, 
AMDSAMSF waits a maximum of 60 seconds for the interrupt. If no interrupt occurs, AMDSAMSF 
stops attempting to obtain the console loop trace and passes control to step II. If the TOO clock is 
not usable, AMDSAMSF is in an endless spin loop . 

8 The MSSF interrupt occurred. AMDSAMSF restores the original contents of the new external 
interrupt PSW and control register O. It then disables the PSW to prevenl further MSSF external 
interrupts. 

r 

r f 
r,;' ~ 
~ ~ 

Module Label 
::I ~ 
~ ... 
Q., r,;' -~ 

~ 
Q., 

I» 
~ ~ ... I» ;. -~ r;: ... 
;' 
r;: 

"CI c ...... ... -c 
~ == ~ 

~ .. 
Q 
c ...... -== 
~ 

EIHANDLER 



~ Diagram SADMP·20. AMDSAMSF - Console Loop Trace Buffer Dump (Part S of 6) 
I 

00 
tv 

== ~ 
~ 
~ 

t 
;I> 
(l 
::r i-
~ 
~ 
< 
~. 

;I> 

~ 
b 

!JQ 
r;' 

B 
00 
I 

...... 
00 
'.c:> 
I ...., 

@ 

~ 
::I. 
I§. --til 
== (') 
o 
-? 
...... 
~ 
JV 
...... 
'.c:> 
00 
0'1 

Input 

MSFDBLK 

MSFDBRSP 

SAVENPSW CNTRLROSV 

I I I 
SYSMSKSV 

I I 

RCB Queue 
MSFRCB ...... .... ..... 

YDUU 

~ 

Process 

9 Write the buffer containing 
r the console loop trace to a 

dump data set. 

I' 

10 Return to step 3 if additional 
processors are online. 

I "> 11 Restore original environment. 

J 
r 

.. ~ 12 Dequeue the MSF RCB. 
r 

- '--------- --- • 

~ 

Output 

Dump Data Set 

Page Containing 

... 
.. I SVC (SVCSIOII 

Console Loop 
Trace Data 

Jo. 

FLCENPSW Control Register 0 .. I I I 
)I 

I PSW .. I I r 

~ 
fI)' 
I'D 
III 

I 
Original RCB Queue 

[JIb!b .. 
> 

r 

3:~ .. I 
If -;;. iii· 
Iii'( 
I~ 

"1:1 .. 
~ If 
'I ;; . 
:l ;;-
~ = = ... ... --= =~ 3: is 

~ 



~ 
N 
~ ..­
..-
00 
\0 
.:u 
([j) 

(') 

~ ::l. 
~ ..... 
t:1:I 
~ 
Q 
-? 
..-
\0 
00 
N 

\0 
00 
0\ 

9 
~ 
t;" ..., 
~ 

til 

[ 
~ 
~ 

~ 
"0 

'> 
~ 
~ 
:> o 
~ 
:3 

~ 
I 

00 
W 

r r 

Diagram SADMP·20. AMDSAMSF - Console Loop Trace Buffer DUlllP (Part 6 of 6) 

Extended Description 

9 If the data block contains console loop trace data 
pass control to AMDSASIO via an SVC instruction . 

AMDSASIO writes the buffer containing the console loop 
trace to the dump data set. 

10 If more processors are online, AMDSAMSF returns 
to step 3. 

11 AMDSAMSF restores its environment to allow 
AMDSADMP to function normally. 

12 AMDSAMSF dequeues the MSF RCB from the RCB 
queue. 

Module Label 

r 

t""' " ;;. ::11:1 

~ 11 l ;;. 
3: [ 
;. 3: .. ~ _. -
~ ~ 

FE' :I. 
I ~ 
~ = .. .... 
= -~ = 
::t. 3: 
~ :s 

= .... -~ 



t- Diagram SADMP.·21. AMDSAOSG - One-Step Generation (Part 1 of 16) 
00 
~ 

a: 
< 
I'll 

~ 

I 
> 
(! 
::r 

~ 
2 
til 
I'll n 

~. 
> s: 
'" 

i 

Input 

S99RBPTR 1 Initialize the DYNALLOC 
model request block. 

2 Call DYNALLOC to allocate 
GENPRINT. 

If the allocation fails, set 
an error return code and 
terminate. 

If the allocation is successful, 
call 10 to open GENPRINT. 

3 Call 10 to open GENPARMS. 

If the open fails, call 10NDPEN 
to write an error message. 

Output 

Register 15 

~=========~:>I 8 I 
Error. Return 
to the Caller. 

10RECA 

~ 
~. 

:::I 

~ ~ ~ ~ ~ 0 :s:~ , ~ . - -. - . -. ~ ~ ~ - . ,'. !!. .. 

- . ~ o ~ 
n .. a 
o " • • _ 1 '" . . 0. ~ ~ 
l!- qo 
- c -- --'" - '" ' .. ~ ~ ~ . 
g 
-? -~ 
.JV 

i 
0\ 

~ ~ '-' 



~ 
tv 
c:o --00 

'P 
t.-.> 

© 
n o 
'0 
'< 
0. 

a--txl 
~ 
Q 
~ 
-.0 
00 
JV 

-.0 
00 
0\ 

n 
! 
(t ... 
fi"" 
til 

[ 
;i.­
S" 
=' C1> 

o 
~ 
'; 
s:: o 
(Il 

> o 
s:: 
:3 

+>-
I 

00 
V. 

r 
Diagram SADMP-21. AMDSAOSG - One-Step Generation (part 2 of 16) 

Extended Description 

AMDSAOSG generates a SADMP program that can be 
IPLed. 

1 AMDSAOSG sets the request block pointer to the 
request block and initializes the DYNALLOC model 

request block. 

2 AMDSAOSG calls DYNALLOC to dynamically 
allocate GENPRINT. If the allocation fails, 

DYNALLOC sets an error return code of 4 and terminates 
abnormally. If the allocation is successful, AMDSAOSG 
calis 10 to open GENPRINT. 

3 AMDSAOSG calls 10 to open GENPARMS. If the 
open fails, 10 calls 10NOPEN to write error message 

AM D0351. 

Model Label 

(' r 

r 
;:S. ;Ie 
t't> t't> 
::::I ~ 
'" t't> 

... 
=- ;:s. -:::: t't> 

Q, 

~ s: tb ., ~ ; . .., 
C;; ... ;. 

{;;' 

"'C 
0 -., 

0 ;:; ~ 
t't> s: .. -'< ~ 

0 -, -= :::: 



f" Diagram SADMP-21. AMDSAOSG - One-Step Generation (part 3 of 16) 
00 
01 

~ 
~ 
~ Input 
~ r---------------------------------~ 
::l 

8: 
> 
(! 
::r 
~. 

~ 
W 
:! 
~. 

~ 
Q. 
'-" 

b 
(JQ 

o· 

t""' 
-< IV 
00 , .... .... 
00 

'P 
w 

@ 

(j 
,g 
~ 
::1. 

~ 
..... 
IX' 
~ 
(j 

~ 
'0 
00 
.IV .... 
'0 
00 
0\ 

4.. 

4 Call DYNALLOC to allocate 
SYSIN. 

• If the allocation fails, set an 
error return code and call 
10 to write an error message. 

• If the allocation is successful, 
call 10 to open SYSIN. 

• If the open fails, call 10NOPEN 
to write an error message. 

\,. 

.... 
...-

... 
" 

.... 
",-

.... 
'If 

....... 
DYNALLOC I ....... 

Register 15 

)I 4 I 
10RECA 

"'I 10 ~ J I 

L AMD0631 
" 

..... 1 10' j 
-r'1 (OPEN OUT, SYSIN) 

10RECA 
...... >t I 10NOPEN I AMD0351 .... 1 

t""' ;:;. 
ft> 
::I 
Kl 
~ 

a: " " • f'D 
~ ~ ... :::I • 
iii' ,.. 
~ ~ 

~ 

"Ci 
a: • a ~ 

'1:1 :::I. 
ft> • ... ~ -~ = = ----= = a: a: :t 

c.. 



"Restricted Materials of IBM" 

Licensed Materials - Property of IBM 

LY28-1189-3 C> Copyright IBM Corp. 1982, 1986 Chapter 4. Stand-Alone Dump (AMDSADMP) 4-87 



~ Diagram SADMP-21. AMDSAOSG - One-Step Generation (Part 5 of 16) 
00 
00 

== 

~ 
S-::s 
0-
2-
> 
:.=! =-
~ . 
.... c a 
~ 

~. 
> e: 
r' o 

0tI o· 

~ 
tv 
00 
I ...... 

00 
'f' 
w 

151 
('} 
o 

't:S 
'< 
;:l. 

0tI ::r .... 
;; 
~ 
('} 
o 
-? 
\0 
00 
JV 
...... 
\0 
00 
0\ 

Input 

4., 

Process 

GENPARMS r----' ____ L ____ LI '5 Call 10 to generate AMDSADMP 

macro input and to copy 
GENPARMS. 

6 Call 10 to close SYSIN and 
GENPARMS. 

7 Call DYNALLOC to allocate 
SYSLlB, SYSUT1, and SYSPUNCH. 

• I f the allocation fai Is, set an 
error return code, call 10 to 
write an error message, and 
terminate . 

l" 

DYNALLOC 

Error. Return 
to the Caller. 

Output 

Register 15 

10RECA 

AMD0631 

4 

4.., 

t"'" 
;:S. 
!1> 
::I 

~ 
Q. 

~ ::c = 1'1> 
t;" '" .... ... .. ;. ;:S. 

<ii ~ =-s: 
"'I;l I» ... .... 
Q 1'1> 

-= .. 
!1> ; . ... 'iJi .-
~ Q 
Q ... -. -iii == 
~ s: 



t"' 
;3 
~ ...... 
00 
\() 
I .... 
© 
n 
~ 
::I. 

OIl 
::r .... 
...... = s:: 
Q 
-? 
...... 
~ 
,!V 
...... 
~ 
a-

n 
~ 

't:I ;-
.... 
~ 

til 
6i 
2-
;> 
0-
~ 
t;I 
= g 
); 
s: 
t;I 
til 
> 
::l 
~ 
~ 

~ 
I 
:>0 
.0 

r 

Diapm SADMP-21. AMDSAOSG - One-Step Generation (Part 6 of 16) 

Extended Description 

6 AMDSAOSG calls 10 and generates input for the 
assembler. Input received from MACVSET1 and 

MACVSET2 instruct AMDSADMP to invoke AMDSADM2 
directly for one-step generation. 

6 AMDSAOSG calls 10 to close SYSIN and GENPAAMS. 

7 AMDSAOSG calls DYNALLOC to allocate SYSLIB • 
SYSUT1. and SYSPUNCH. If any of the allocations 

fail. DYNALLOC sets an error return code of 4. calls 10 
to write error message AMD0631. and terminates 
abnormally. 

Module Lebel 

r r 

t'"" ~ ;:). 
~ tI> = ~ ~ .... 
=- ;:). 

~ 
t;' =-

~ 
~ t;' 

::I. ~ 

~ t;' 
;;; ::I • 

~ 
I ;;; 

'"C:I Q ... .... 
Q ..... 
"0 = ~ ~ .., 
.~ os 
Q .... -= ~ 



~ Diagram SADMP-21. AMDSAOSG - One-Step Generation (Part 7 ot 16) . 
..0 o 

~ 
~ Input 
~ ~~-----------------------, 
S' 
8-a. 
> a 
l:I'" 
~. 

2 
t: 

r. 
> s: 
'" 

i 

t"" 
-< N 
00 
I --00 
\0 
I w 

@ 

n 
0 

~ 
::I. 

(JQ 

l:I'" ... .... = ~ 

Q 

-\0 
00 
J'l -\0 
00 
0\ 

'-' 

8 Call RALSVSP to allocate SYSPRINT. 

• If allocation fails, set an error 
return code, call 10 to write 
an error message, and terminate. 

l, 

, 
.. .. 

DYNAllOC I RAlSYSP 
r 

Register 15 .. 
4 I JI 

r 

IORECM 
_.10. ~ 

I 10 }I AMD0631 
r 

... Error. Return 

r to the Caller. 

t""I 
ti' 
ft 

I 
Do 

3: ~ ; f. .. , 

;:a: 
3: 

l i 
'I ii' 
::L FJ" 
~ = = .... .... --= =3: 3: :r 

~ 



t"'" 
-< 
~ ..­
..-
00 

'f' 
w 

@ 
(") 
o 
~ 
::I. 
~ .... .... 
ttl 
a:: 
(") 
o 
-? -\C) 
00 
~ 
..-
\C) 
00 
0\ 

i 
C1> .... 
~ 

~ 

8-
). 

[ 
o 
§ 

'c::I 

'> a:: o 
~ o 
a:: 
~ 

~ 
I 

1.0 ..... 

r 

Diagram SADMP-21. AMDSAOSG - One-Step Generation (part 8 of 16) 

Extended Description 

8 AMDSAOSG calls RALSYSP to allocate SYSPRINT 
for the assembler. RALSYSP calls DYNALLOC. 

If the allocation fails. DYNALLOC sets an error return 
code of 4. calls 10 to write error message AMD0631. 
and terminates abnormally. 

Module Lebel 

r r 

t"'" " n' ::c 
tD tD 
::I ~ 

~ -a. ~. 
3:: [ 
l1li 

~ == .. l1li 
;- ~ 
t;;' .. ;. 

t;;' 

~ :: 
'i = 
::l. == ~ :s 

So -= 3:: 



:t Diagram SADMP-21. AMDSAOSG - One-Step Generation (Part 9 of 16) 
N 

== 

~ 
I 
> a 
I:r 
~. 

a­
d 
~ 

i· 
> 
~ 
b 
~. 

~ 
IV 
tf ..... ..... 
00 
100 , 
W 

@ 

Q 
~ 
0. 

(JQ 

go 
...... 
t:cI 

== Q 
~ 
~ 
00 
p 
..... 
100 
00 
0\ 

'Input 

GENPRINT 

\, 

Assembler 
Listing 

J 

Process 

9 Assemble the AMOSACCT and 
AMOSAROM modules and 
AMDSAOSG parameter 
statements. 

• If the assembly is successful, 
call COPYPRNT. 

• I f the assembly fails, set an 
error return code, call 10 to 
write an error message, and 
terminate. 

10 Call 10 to open, read, and close 
SYSPUNCH. 

COPYPRNT 

Output 

GENPRINT 

Assembler 

IPLTYPE OSFPTEXT 

1- ----] 1'---_.......1 
IPLUNIT IPLSER 

- ._J __ I _----II 

• If the open fails, caIiIONOPEN. 10RECA 
to write an error message.' .1 10NOPEN :>fr---A-M-O-O-3-5-1 -..., 

11 Call DYNALLOC to allocate 
IPLTEXT, PGETEXT, IPLOEV, 
and TRKOTEXT. • II DYNALLOC 

• If any of the allocations fail, 
set an error return code, call 
10 to write an error message, 
and terminate. •• r 

l, 

Register 15 

10RECA 

[ AMD0631 

~ 

t"" ;;. 
I't> = 
~ =-
a: ~ 
Q:> I't> 
;;- ~ ... ... 
j.;. ;;. 
~ ;;-=-
-= ~ a ;; 
~ ~ . ... -
- III 
'< = = ... ... -
- == == a: a: :s 



t""" 
-< IV 
QO 
I .... .... 

QO 
\0 
~ 

@ 

f ::1. 
~ ..... 
...... 
t;r:I 

~ 
g 
-? 
\0 
QO 

J"" 
..... 
\0 
QO 
0\ 

C"l 
i:T 

i .... 
~ 

til 
S" 

9-
~ o g 
o 
~ 
~ 
o 
til 
:> o 
a:: 
,:g 

t w 

r 
Diapam SADMP-21. AMDSAOSG - One-Step Generation (Part 10 of 16) 

ext..ded Delcrlptlon 

9 AMDSAOSG assembles the AMDSACCT and 
AMDSARDM modules and the AMDSAOSG PIIram­

eter statements by linking to the assembler. If the assembly 
is successful, AMDSAOSG calls COPYPRNT to copy the 
assembler listing to the end of GENPRINT. If the assembly 
fails, AMDSAOSG sets an error return code of 4, calls 10 
to write error rnessege AM 0 0641 , and terminates 
abnormally . 

10 AMDSAOSG calls 10 to open SYSPUNCH. If the 
open fails, 10 calls 10NOPEN to write error mes­

sage AMD036I. 10 reads the parameter statements from 
the AMDSADMP output in SYSPUNCH. AMDSAOSG 
generates the AMDSABLD input parameter, the IPL unit 
class, the IPL unit type, the IPL serial number, and the 
ICKDSF input statements_ AMDSAOSG calls 10 to 
close SYSPUNCH. 

11 AMDSAOSG calls DYNALLOC to allocate I PL TEXT 
for AMDSABLD and ICKDSF, to allocate PGETEXT 

for AMDSABLD, to allocate IPLDEV for AMDSABLD and 
ICKDSF, and to allocate TRKOTEXT for AMDSABLD and 
ICKDSF_ If any allocation fails, DYNALLOC sets an error 
retum code of 4, calls 10 to write error message AMD063I, 
end terminates abnormally • 

Module Libel 

r r 

t- " ;:r " ~ ~ = '" ~ ~ . =- ,.. 
:: [ 
~ :: 
:!. ~ = ~ ;;- :! .. 

I~ 
~ ~ .. ..... 
~ -
~ == 
::l :: 

'-"!! :: 

~ ..... 
; 
:: 



f" Diagram SADMP-21. AMDSAOSG - One-Step Generation (part 11 of 16) i 
\0 
~ 

~ 
<: 
CIl 

~ ;; 

t 
> 
c:l 
::r' 
~. 
.... 
s::: 
@ 

~ 
~ 
(S" 
n 

> 
S; 
'" t""' o 

(Jq 
(S" 

t""' 
-< 
N 
00 
I ..... ..... 

00 

'P 
<.H 

@ 

(') 
o 
~ .., 
Oli" 
::r' .... 
..... 
ilj 

~ 

Q 
-? 
..... 
"" 00 
..N 

"" 00 
0'1 

Input 

GENPRINT 
AMDSABLD 
SYSPRINT 
Data Set 

Assembler 
Listing 

l, 

Process 

12 Call RALSYSP to reallocate 
L ...... SYSPRINT. 

' . RALSYSP ....-

• 1 f the allocation fails, set an 
error return code, calli 0 
to write an error message, ..... 
and terminate. 

" 
10 

Error. Return 
to the Caller. 

-" 13 Link to AMDSABLD. 
) .. • If successful, call ...... 

COPYPRNT" COPYPRNT .... .. 

• If AMDSABLD fails, set an 
error return code, call 10 
to write an error message, L --.lo.. 

and terminate. "" 
10 

....... Error" Return 

--- J .. 
to the Caller. 

~ 

Output 

--to.. 
DYNALLOC J 

"" 
.. 

Register 15 

>1 4 I 
10RECA 

: I AMD0631 I 
GENPRINT 

Assembler 
r Listing 

AMDSABLD 
SYSPRINT 
Data Set 

Register 15 

>I 4 I r 

10RECA 

I AMD0641 I 
~ 
ft> = ! 
== ~ 10) ft> 

~ '" .... .. .. 
iii' r;' 
iii 

.... 
ft> =-

"'C 
3: 
10) 

;; ~ 

~ ::!. 
10) .. iii .... 

'< = = ... ... -- == == == == :s 

'-' 



:< 
N 

~ --00 

'P 
w 

iOl 
n 
o 
'0 
'<: 
::J. 
~ .... 
...... 
~ 

~ 
Q 
? 
\C 
00 

J'-l 

~ 
00 
0'\ 

Q 
I» 
'0 
;-.. 
~ 

til 

[ 
> 
0-; 

i 
'> 
~ 
~ 
> o 
~ .:g 

~ 
I 
\0 
U\ 

r 

Diagram SADMP-21. AMDSAOSG - One-Step Generation (part 12 of 16) 

Extended Description 

12 AMDSAOSG calls RALSYSP to reallocate SYSPRI NT 
for AMDSABLD. RALSYSP calls DYNALLOC. If 

the allocation fails, DYNALLOC sets an error return code 
of 4, calls 10 to write error message AMD0631, and 
terminates abnormally. 

13 AMDSAOSG links to AMDSABLD. If the IPL unit 
is tape, the link initializes the SADMP residence 

volume. If the IPL unit is DASD. AMDSAOSG uses 
ICKDSF to initialize track O. If the link is successful. 
AMDSAOSG calls COPYPRNT to copy the AMDSABLD 
printed output to the end of GENPRINT. If AMDSABLD 
fails. AMDSAOSG sets an error return code of 4. calls 
10 to write error message AMD0641. and terminates 
abnormally. 

Module Label 

(' r 

t'"' ~ ;:r 
~ = ~ ~ 

., 
Q- t=)' 

3: ~ Q-

~ 3: ~ .. ~ 

Dr ~ 
~ .. 

;' 
I ~ 

'"d 
Q ..... a -"= == ~ 3: .. 

~ :t 

Q ..... -== :::: 



f" Diagram SADMP-21. AMDSAOSG - One-Step Generation (part 13 of 16) 
'-0 . 
0'1 

:s: 
~ 
til 

:>< 
S­
::I 

~ 
Q. 

;J> 
M 
::r 
~. 
.... 
$:: 
(j 

~ 
< 
~. 

;J> 
s: 
en 

i. 

r­
oo<: 
IV 

~ -.-. 
00 
\0 
I 

W 

© 
n o 
~ 
::J. 

(Jq 
::r .... 
63 
~ 

Q 
-? -\0 
00 
j"J 
.-. 
\0 
00 
0\ 

Input 

IPLTYPE 

I I=DASD 

4.., 

Process 

14 For a DASD IPL: 
...... 
> a. Call 10 to open, read, and ... 

close SYSI N. 

- If the open fails, call 
10NOPEN to write an 
error message. 

b. Call RALSYSP to reallocate 
SYSPRINT. 

- If allocation fails, set an 
error retu rn code, call 
10 to write an error 
message, and terminate. 

--- -

l, 

... 

" 

Output 

.. 
10 

r 

IGRECA .. 
I 10NOPEN )I AMD0351 

RALSYSP DYNALLGC I .. • 
Register 15 

)I 4 I .. 
IGRECA .. 

10 v)l AMD0631 I r 

.. Error. Return 

J ... to the Ca"er. 

t"" n° 
f'b 
::I 
~ 
til 
Q. 

? ~ - :;c 
:0 ~ 

;;- ~ 
:!O ... 
:0 

;::;0 
v; ;;-

=-
~ 

"'0 ~ ... ;;-
~ 
"0 ... 
~ 

j>;0 
:4- ;;; 
~ 0 
~ -. -. -
I:Q = 
~ 3:: 

~ 



t"' 
-<: 
i'-) 

~ ...... 
00 
'P w 

© 
() 
o 

"0 
'< 
::1. 
I§. .... -= ~ 
() 
o 
-? 
...... 
\0 
00 
j'J 
...... 
\0 
00 
0'1 

() r .... 
(1) .... 
~ 

til 
S" 
5-

i 
(1) 

tl 

~ 
~ 
~ 
tl 
~ 
tl 
~ 
~ 

..j:::o. 
I 
\0 
-......) 

r 

Diagram SADMP-21. AMDSAOSG - One-Step Generation (Part 14 of 16) 

Extended Description 

14 8. For OASO IPL units, AMOSAOSG calls 10 to 
open SYSIN. If the open fails, 10 calls IONOPEN 
to write error message AM00351. If the open is 
successful, AMOSAOSG calls 10 to copy the 
ICKOSF parameters into SYSIN, and close SYSIN. 

b. AMOSAOSG calls AALSYSP to reallocate 
SYSPAINT for OSF. AALSYSP calls 
OYNALLOC. If the allocation fails, 
OYNALLOC sets an error return code of 4, 
calls 10 to write error message AM00631, 
and terminates abnormally. 

Module Label 

r r 

.-
~. :::0 
(1) (1) 

::::I ~ 
~ 

.., 
~ 

;s. 

3: 
;:; 
~ 

= 3: ;:; ... = ~. ;:; 
fij ... ; . 
I fij 

"'C 0 ..... a 
~ 0:1 
... 3: -~ 
0 .... -0:1 
3: 



f' Diagram SADMP·21. AMDSAOSG - One-Step Generation (Part 15 of 16) 
\0 
00 

~ 
< 
CIl 

~ 
n­
::l 

8: 
:> 
(l 
e: 
~ 
i 
~ 

~. 
~ 
'" 
b 

OQ ;. 

~ 
IV 
rro --00 
\0 
I 
\H 

© 

~ 
::I. 

OQ 

~ 
...... = a:: 
Q 
-? 
\0 
00 
J'-l 
\0 
00 
0-, 

Input 

Assembler 
Listing 

AMDSABLD 
SYSPRINT 
Data Set 

~ 

ICKDSF 
SYSPRINT 
Data Set 

Process Output 

c. Link to ICKDSF. "I 
• If successful, call COPYDSFP. • ., COPYDSFP jJf-A-sse-m-b:-:'l-er--t 

Register 15 

• If ICKDSF fails, set an error >I 4 
return code, call 10 to write 
an error message, and 
terminate. 

15 Call 10 to write a completion 
message and to set a return 
code. 

16 Close and deallocate files, and 
v 

return. 

l., 

Error. Return 
to the Caller. 

Return 
to Caller. 

AMDSABLD 
SYSPRINT 

ICKDSF 
SYSPRINT 

'-' 

t'" 
~. 

~ = l€ 
c:>.. 

~ ~ 
I» ~~ - '" ~ -... ;; . ;. -<i;' ~ 

c:>.. 
I 
~ 

'"d I» a ~ -= :I. 
~ I» ... <i;' -'-oo!i <:I 
<:I -. -. -- == == ~ ~ ~ 



r 

~ Diapam SADMP-21. AMDSAOSG - One-Step Generation (Part 1601.16) 

IV 
'?O ...... 
...... 
00 
I,C) 

.:... 
© 
() 
o 

::!. 
::r ... .... = ~ 
() 
o 

Extlnded Dacription 

14 c. AMDSAOSG links to ICKSDF. If the link is 
successful, AMDSAOSG cells COPYDSFP to 
copy the printed output from ICKDSF to 
the end of GENPRINT. If ICKDSF fails, 
AMDSAOSG sets an error return code of 
4, cells 10 to write error message AMD0641, 
and terminates abnormally. 

15 AMDSAOSG calls 10 to write successful com­
pletion message AMD062I, and sets a return code 

of O. 

~ 16 AMDSAOSG closes and deallocates the files and 
~ returns. 

...... 
I,C) 
00 
0'1 

() 
g-
;-
.... 
f> 
til 

[ 
~ 
~ 
o 
~ 
): 
~ 
o 

~ 
~ :g 

~ 
I 
\0 
\0 

Module Label 

r r 

t"" II: ;:;. := 
~ ! 
<Il .. a ;;. 
~ [ 
~ ~ 
.. I» 
£i- ;;­
~ :!-
I ~ 

"'tI = .. .... 
o --,g = 
:4 ~ 
~ :s 

= .... -== ~ 



~ -8 
~ 
<: 
til 

~ ;-

~ 
>­
d 
:r 
~ . 
... 
I:: 
~ 

W 
~. 
>­
i5.: 
'" 
f o· 

~ 
tv 
~ ..... 
00 

'" I 
W 

I!)i 

Q 
~ 
~. 
I§. ... -t::O 
~ 
(") 
o 
p 
..... 
'" 00 
p 
..... 
'" 00 
<1\ 

Diagram SADMP-22. AMDSAPGE - Virtual Storage Dump Initialization and Control (Part 1 of 8) 

Input Output 

P 

l===::::====!:: :> 1 Initialize theSUT. 
CTSUT 

ARDDATA 

XIOOBCON XIODBOUT AMDSAIOI I 

" 
CTNOCONS 

I 

AMDSASVI 

~ 

2 Initialize the program and : '\.FLCPNPSW I 
machine check handlers and VFLCMNPSW L ______ .. 

the error recovery. CTAUDRCR=ON 

3 Initialize the ARB queue. 

4 Initialize the I/O service. 

5 Initialize the SADMP trace 
table. 

6 I nitialize the SVC interrupt 
handler. 

l, 

CTAUOIOX=ON 

FLCINPSW -, Control Register 6 , 

-v 100B Queue 

r'ODB n rn-n 
CTTRACE TRACE 

PGOSVCRT 

10AFC SVC 
Stack 
(Empty) 

'-

r'" 
;:r 
tD = CIJ 
tD 
~ 

;:;: :. 
::c 

I» tD - ~ .,. 
:::!. .... ;;. 
I» -~ a 

!: 
"'1:l !!! .... 

tD Q .... 
~ ~. 
.... ~ -'< Q 
Q .... .... -Cia = !: !: :s 



t"'" 

~ 
~ --00 
1.0 
W 
<eli 

Q 
~ 
::!. 
~ -;; 
~ 
(") 
o 
~ -~ 
,!'J -1.0 

r r 

Diagram SADMP-22. AMDSAPGE - Virtual Storage Dump Initialization and Control (part 2 of 8) 

Extended DelCription 

1 Entry point AMDSAPGE in the CSECT AMDSAPGE 
initializes the virtual dump program and controls its 

execution and termination. 

2 The program new PSW points to module AMDSAPGI. 
The machine check new PSW is a disabled wait PSW 

with code X'370000'. After initialization, any successful 
system restart ceuses AMOSAPGE to reinitialize SADMP 
beginning with this step. System restart is not permitted 
during SADMP initialization. The restart new PSW points 
to AMDSARST, which reloads the restart old PSW. 

3 AMDSAPGE sets the address range block (ARB) queue 
header in ARDDATA to zero. The ARB queue 

header is the last and only ARB in the queue. 

Module Label 

~ 4 The I/O new PSW points to AMDSAIOI. AMDSAPGE 

(") 

f .., 
~ 

til 
S-
8-
~ 
~ 

r 
~ 
~ 
tl 
til 
;J> 
tl 
~ 
::g 

~ -o -

builds the 10DBs and their related control blocks 
using the information found in the CCT. AMDSAPGE 
disables the IPL subchannel and sets control register 6 to 
permit interruptions from the output tape but not the 
console. 

5 SADMP uses the second page of the AMDSAPGE load 
module for its trace table. AMDSAPGE clears the 

page, puts 'TRCT' into the header, and sets the current 
index to zero. 

6 The first virtual page after the AMDSAPGE load mod· 
ule is used for the SVC stack. AMDSAPGE clears the 

page, puts 'SVCS' into the header, and sets the current 
Index to zero. 

r 

r' " ;:;" :;c 

"' "' 
~ ~ 

"' ~. 
Q. n -~ "' Q. 

III 3! ;-... III =. ;;-
iii ... 

=" iii 
~ 

Q 

a .... -'CI == "' 3! ... 
q :s 
Q .... -
== 3:: 



-'=" I -o 
N 

s:: 
<: 

~ 
(t 

~ 
> 
~ 
e: 

~ 
(1 

W 
~. 
~ 
Po 

'" 
b 

OQ 
l=). 

~ 
t-.) 
00 
I --00 
\0 
I 
~ 

@ 

(") 

~ 
::l. 

OQ 
::r ... .... 
1:0 
s:: 
(") 
o 
-? -\0 
00 
JV -\0 
00 
0'\ 

Diagram SADMP-22. AMDSAPGE - Virtual Storage Dump Initialization and Control (part 3 of 8) 

Input Process Output 

1 Initialize the external interruption _..L ________ --'L....I<,"-r ~""'~.,.r~ ... PGOSVCEX 
I OAID 

Control Register 0 

XSAT XRAD 

J ,- - J 

handler. 

8 Initialize dynamic storage 
management. 

CVT PVT i i :>9 I nitialiie swapjn and real 

~ "M ... m," ... ~n. 

rc;- - ~ 10 In;,.U .. 1I0po,.buff". 

l, 

11 I nitialize the system restart 
interruption handler. 

\., 

I 40 I 
SUT OSCE Pages 

".----, 

RAD 

CTRAD rG 
I 

Page 
Buffers 

TopPGT 

SGT 

Page 
Table 

F LCRNPSW PGOSVCSR 

I J------' OAI C 

'-' 

t"" 
~. 

= 
1 
~ ,s 
lID fI> 
~ ~ ;. ~ . 
iii' (. 

"C :. a ~ 
"'= :I. 
I'!> lID 
::l ;: 

'-4!! = o .... 
..... -- = == ~ ~ :s 



~ 
IV 
~ --00 
I() 

~ 

o 

~ :1. 
C§. ..... .... 
tEl 
~ 
g 
-? -I() 
00 
.J'l -I() 
00 
0\ 

('} 

! ;-.., 
~ 

~ 

[ 

r 
i 
'> 
~ 

~ 

~ ,:g 

~ 
I -o 

YJ 

r r 

Diagram SADMP-ll. AMDSAPGE - Virtual Storage Dump InidaHzadon and Control (part 4 of 8) 

Exteade4 Descripdoa 

7 The new external interrupt PSW points to an SVC in page 0 so external interrupts are converted into 
SVC interrupts. Only console interrupts are enabled. 

• The next two unallocated pages are set aside for the dynamic storage control elements (DSCE). The 
next 16 pages, following the DSCE, are set aside for SADMP dynamic storage. Each of the 16 pages 
is mapped by one OSCE. These DSCEs are placed on the OSCE in-use queue. The rest are placed 
on the OSCE available queue. 

9 The swap address table (SAT) contains the real and virtual addresses of the following areas that 
SADMP uses to swap-in an address space: the page tables for segment 0 and the top segment, the 
segment table (allocated from previously unallocated SADMP storage), and SADMP's own page 
table. The CCT points to the SAT and the RAD. 

10 SAOMP storage that is still unallocated is used for SADMP page buffers and the BCTs that support 
them. The BCTs are queued together in the BCT available queue or the queue of all BCTs. 

II The restart new PSW points to an SVC in page 0 by which a system restart is converted into an SVC 
interrupt. 

M ... 

r 

LMeI 

t'"' I: 

n· " fD :1 
i c:-
D. ;;-

:: i 
• ;;- 3: 
::I •. ~ 
• ftj 

FE ::I •• 
I FE 

l= 'i = a =s 
= --1:1:1 :: 



f" Diagram SADMP-22. AMDSAPGE - Virtual Storage Dump Initialization and Control (part 5 of 8) ..... 
o 
~ 

~ 
-< 
CI.l 

----tTl 
>< .... 
(l) 

::l 
0-
(l) 

0-

:> 
6 
2: 
;:; 
Cl .... = til 
CIl 
(l) 

~ §. 

:> s.: 
'" t"" 
~ o· 

t"" 
-< 
IV 
00 , --00 

'f' ..... 
© 
n o 
~ 
::3. 

O'l =---= a= 
n o 
~ 
...... 
\0 
00 
JV 
...... 
\0 
00 
0--

CT3480 

I I 

(, 

12 Call AMDSADMP to enable fdr ....... 
...... SVC dumping. ~ 

...... (SVCPGE) 

13 Initialize the RCB and save 
area stacks. 

~ 14 Assign 3480 tape drive if used 
for output. 

..... ..... svc 
.... ....... (SVCSIO) 

.... ..... svc 
T ...... (SVCCON) 

?Error ..... ..... svc 
Terminate .... r- (SVCAUD 

15 Dump the console loop trace 
buffer. 

.... ....... iSVC 
.... ...... (SVCMSF) 

L. 

.... QTOP' .. 

>< ) AMD0691 

-> I I disabled wait 
I PSW 
I 

I 

~ -.. 
CTRCB RCB 

I r--'1 I 
I 

t""' 
~. 

~ = '" ~ =-s: ::tI 
:0> f't> 
;t ~ .. ... =. ~. 

iii -f't> =-
3: 

'""'Q D; ... ~ e -= ... 
~ ~. .. r;; 
Q" e 
Q -- iii 
1:1:' 
3: 3: 

:: 

~ 



~ 
N 
<:f ..... ..... 
00 

'P 
w 

© 

Q 
~ 
c§: -..... = 
== 
Q 
-? 
..... 
I,C) 
00 
.N 

I,C) 
00 
0\ 

(j 

! 
S' .., 
!'­
rIl 

[ 
~ 
~ 
o 
S 
'> 
== 
~ 
o 
== ." 

f" -o 
V\ 

(' (' 

Diagram SADMP-22. AMDSAPGE - Virtual Storaae Dump Initialization and Control (put 6 of 8) 

Extended Description 

12 AMDSAPGE becomes enabled for I/O and external 
interrupts. This SVC puts the first entry Into 

the SVC stack. 

13 The save area pointer is set to zero. The AMDSAPGE 
RCB defines error recovery for the remainder of 

AMDSAPGE and serves to end error recovery percolation 
sinca it is the last RCB on the RCB queue. The AMDSAPGE 
RCB causes the virtual dump to terminate with an error 
code that indicates the segment of AMDSAPGE last in 
control. 

14 Ifthe output device ill 3480 tape drive, AMDSAPG E 
attempts to aulgn the tepe drive. If the assign com­

mand feils to _111 path groups, AMDSAPGE illUes mes­
sage AMD0691 and terminates SADMP. 

15 AMDSAPGE calls AMDSAMSF (via an SVC macro) 
to dump the console loop trace buffer. 

Module Label 

(' 

r-
~ r;' 

ft> = '" ~ -... 
Q, ;:;-

~ 
;;-
Q, 

= :: ~ ... eo; 
io- ;;-
1;; ... 

ji;' 
rE 

"t:I = ... .... 
= ;; "C 
ft> :: ... 

4 :: 

= .... 
;; 
:: 



~ 
I .... 
~ 

~ 
< 
til 

~ 
;-

l 
> 
r! e: 
~ .... 
~ 
til 
n 
< 
rf 
> s: 
'" 

i. 

l' 
-< N 
00 . ..... ..... 
00 

'P 
w 

I(ji 

n o 
~ 
::l. 

Qq 

a--c:I 
a::: 
n 
o 
-? 
..... 
\0 
00 
JV 
..... 
\0 
00 
0'1 

Diagram SADMP-22. AMDSAPGE - Virtual Storage Dump Initialization and Control (Part 7 of 8) 

ASMVT PART 

I I I 
... ) 16 Initialize the ASM function by 

v :~~:~~~:k~alidltY'Of the ASM ... ASVT SART .. I I I I I 
?VCHK .. 

17 Initialize the dump table. 

=01 18 Process the dump tailoring 
options. ... .. 

SVC (SVCPMTII 

EJ1][rO " 

19 Initializes the extended storage 
function by checking the 
validity of the EST and 
initializing the SADMP XSD. 

a. Dump each address space. 

.. 
r SVC (SVCAIDll .. 

b. Unload the output tape . 

.. 
1 CT3480 

'?IO .. r 

~ 

v 20 Notify the operator that the 
virtual dump is complete. 

a. 

I ?IO .. .. 
21 Write remaining console I message dump buffers. 

a. 
SVC (SVCDCMII 

" 22 Unload the output tape. 
... ---.. I ?IO .. .. -

\., '-' 

. 

... CTDT 
)I .. 

CCT 

1 vi 1 
"-

-v 

OT'~ -
DT'~ -

AMD0561 

"-

v 

Wait PSW 

I X'41 0000' I 

l 
OTo~ -

DTAB 

U 
XSD 

D 
AMD0721 

QT'~ 

.() -Console messages 
on output tape. 

'-' 

i 
::I 

l 
;s: " 
a if 
fI) -::2. :I. 
l1li " ;;- ~ 

ClIo 

13: 
'"CI l1li 

a ! 'i _ . 
::l !!. 
~ CIl = sa. ---= =3: ;s: :: 



t'"" 
-< 
IV 
~ --00 
I,Q 

.:... 
© 

Q 
~ 

~ .... .... = 
~ 

Q 
~ -I,Q 
00 
IV 

-I,Q 
00 
0'\ 

(') 
Q"' 

~ 
it .... 
f'-
CIl 
S" ::s 
0. 

:> 
0-::s 
til 

0 
s:: g 
-.. 
:> s:: 
0 
CIl 
:> 
0 s:: 
:g 

~ 
I -0 

-...l 

r r 

Diagram SADMP-22. AMDSAPGE - Virtual Storage Dump Initialization and Control (Part 8 of 8) 

Exteocled Description 

16 AMDSAPGE checks the validity of the ASM control blocks, the ASMVT, the ASVT, and the 
PART. If the ASVT control blocks are invalid, AMDSAPGE cannot perform paging operations, so 
AMDSAPGE terminates. If the ASMVT or PART is invalid, AMDSAPGE continues processing; 
however, it does not dump virtual storage from page data sets. AMDSAPGE also checks the validity 
of the SART. If the SART is invalid, AMDSAPGE continues processing; however, it does not dump 
swapped-out address spaces. 

17 AMDSAPGE obtains storage for the dump table, and initializes the dump table to request dumping 
of subpools 229, 230, 236, and 231 in all address spaces. 

18 AMDSAPGE calls AMDSAPMT (via an SVC macro) to fill in the dump table using the dump 
tailoring options. 

19 AMDSAPGE checks the validity of the MVS extended storage table (EST). If it is valid, 
AMDSAPGE initializes the SADMP extended storage descriptor (XSD). If it is not valid, 
AMDSAPGE writes message AMD0721. 

10 

11 

11 

13 

AMDSAPGE calls AMDSAAID (via an SVC macro) to dump each address space. 

AMDSAPGE issues message AMD056I. 

AMDSAPGE calls AMDSADCM to write any remaining console message dump buffers to the 
output tape. 

AMDSAPGE waits for the output tape to finish, then unloads the tape. If the output is to a 3480 
drive, AMDSAPGE writes a display message to the tape drive indicating that SADMP has completed 
processing. Also, if the output device is a 3480 tape drive, AMDSAPGE attempts to unassign the 
tape drive. Then, in all cases, AMDSAPGE loads a wait state PSW with an address of X'410000'. 
This notifies the operator that the virtual storage dump completed successfully. 

Module Label 

r 

t'"" ~ n' 
." = '" ~ -.., 
~ n' 

"5 
;;-
~ 

;;- 3: .., ~ 

jj&' ;;-
tii 

.., 
jj&' 
tii 

." c 
d 

...... -16 = .., 3: -...: :s 
c ...... -0:1 
3: 



f"' ...... 
o 
00 

~ 
<: 
til 
tTl 
>< .... 
Cl) 

~ 
~ 
rl 
::r 
~. 

2 
til 
til 
Cl) 

~. 
~ c.: 
'" r o 
IJQ o· 

s; 
IV 
00 
I 

-00 
'-0 
I ...., 

@ 

(") 

~ ... ;. 
a' -t:\:I 
~ 
(") 
o 
~ 
'-0 
::>0 
tv 

-0 
::>0 
:l\ 

Diagram SADMP·23. AMDSAPGI - Virtual Storage Dump Program Check Handler (Part 1 of 4) 

Input 
Program Interrupt 

PGIINUSE 

Program Interrupt Code 
FLCTEA 

PGOPGISA FLCPOPSW 

D 
CTAUDPCE . 

FLCPICOD r-

l, 

1 Save the registers in page o. 

2 If a program check occurs in 
AMDSAPGI itself, terminate. 

Load a disabled 
••• I~ waitPSW 

X'4FFEFF' 

3 Puts a program interrupt 
entry into the trace table. 

4 If a page or segment error occurs: 

• Put a translation exception 
entry into the trace table, 
showing the faulting address. 

• Restore the registers, trace 
the exit from the interrupt 
handlers, and simulate an 
SVC interruption to 
AMDSAUPD. 

5 In case of an expected program 
check or an addressing exception. 
recover without requesting a dump. 

~ 

AMDSAUPD 

AMDSAAUD 

ISA 

TRACE 

New Entry 

TRCT 

FLCSOPSW 

SVC Old PSW 

FLCSVCN SVC Interrupt Code 

I 09 I 
PGIINUSE 

o 

CTAUDPCE 

I 0 I 

TRCT 

rn 

l, 

~ 
fD 

I 
~ " 
II ~ 
A" ~ 
S· ~. 
{;j [ 

"'C~ 
a ! 'i _. 
::1 !.. 
~ ~ 

c:> So --- = =~ 3: :s 



r r 

-~ Di .... am SADMP-13. AMDSAPGI - Virtual Storage Dump Program Cheek Handler (Part 1 of 4) 
IV 
:10 
I Exteodecl DescripdH 

::g Several types of program checks can occur. Program checks in AMDSAPGI are severe errors causing 
~ immediate termination. Translation exceptions are normal, and handled by converting the program check 

into an apparent SVC interrupt. Expected program checks or addressing exceptions are normal. 
AMDSAPGI treats other program checks as SADMP errors that require cautious recovery and possibly 
abnormal termination. 

I AMDSAPGI copies the entry registers into page 0 (PGOPGISA). 

:z If the program check is recursive (PGIINUSE = I), AMDSAPGI terminates immediately by loading 
a disabled wait. If it is not recursive (PGIINUSE = 0), AMDSAPGI protects against recursion by 
seUing PGIINUSE = \. 

3 AMDSAPGI records the program check (program old PSW and trace ID) in the SADMP trace table 
(CTTRACE). 

4 If the interrupt is a translation exception (segment or page fault, FLCPICOD = X'OOIO' or X'OOII'), 
AMDSAPGI also records the faulting address (FLCTEA) in the trace table by putting it into a 
dummy PSW. AMDSAPGI simulates an SVC call to AMDSAUPD by the copying program-check 
old PSW (FLCPOPSW) to the SVC new PSW (FLCSOPSW), placing the SVC number for 
AMDSAUPD into the SVC interrupt code (FLCSYCN), reloading the entry registers, and loading 
the SVC new PSW (FLCSNPSW). AMDSAPGI also traces the exit from AMDSAPGI. 

5 If the program check is an addressing exception (PIC = 5) or the program-check was expected. 
AMDSAPGI sets the recursion lock PGIINUSE and the program-check-expected flag CTAUDPCE 
to 0, and calls AMDSAAUD to give control to the top RCB exit. 

Module 

r 

LaIIeI 

t"'" s: 
;;- r 1'1> = 1 -... n' -3: 1'1> 

c:o. 
lID :: Ii ... III 
iIi- ;;-
~ ... 

iii' 
I l'E 

~ 
Q --'i == 

~ 
~ 
~ 

= .... -== 3: 



<: 

Diagram SADMP-i3. AMDSAPGI - Virtual Storage Dump ProJl'8lll Check Handler (part 3 of 4) 

Input 

'-' 

Process 2 
6 If a page or segment fault does 

not occur and there is a program 
check in the OAT -on module. 
trace call to AMOSAAUD. dump 
and recover. 

~ 

.. 
AMDSAAUD I 

r 

Output 

s:: 
n 
fD 
:I 
i€ 
0-

" 3: l:ICI 
lID !l 
;- ::: .. _. -. " 
=-i 
I a:: 

"U .. 
a if 
"I s' :=. .-
~ = = -::;; = a:: 3: :I 

~ 



l' 
-< 
IV 
00 
I --00 

'P ..., 
1)) 

n o 

::I. 
)Q 

=---= ~ 

Q 

-~ 
IV -'-0 
00 
0\ 

n 
; 
co ... 
f'-

~ 
> 
[ 
o 
S 
> 
~ 
o 
til 
> o 
~ 
"tl 

~ 
I ---

r r 

Diagram SADMP-23. AMDSAPGI - Virtual Storage Dump Program Check Handler (part 4 of 4) 

Extended DescriptiOD 

6 For all other program checks, AMDSAPGI calls for a dump (CTAUDDMP = ON), asks for 
recovery (CTAUDRCV = ON), and calls AMDSAAUD. 

Module 

r 

Label 

t"'" " ;:s. ~ 
!! ! 
l ~o 
=:1 
~ =: 
:I. ,., 
II ;;­
iii ;So 

iii 
"C:i = .. .... 
= -'"1:1 = S. =: 
~ :: 

= .... 

~ 



f' Diagram SADMP-24. AMDSAPMT - Interactive Prompting for Dump Options (part 1 of 2) 
....... 
....... 
tv 

~ 
<: en m 
~ 
<1> 
::l 
0. 
<1> 
0. 

> 
(l 
e: g 
.... = @ 
en 
<1> 

3. 
(') 
<1> 

> s: 
'" r o 
)q 

n' 

r 
-< 
I'-..) 
00 , ..... ..... 
00 

'f 
w 

@ 

(i 
o 

::l. 

~ -o:l 
~ 
(i 
o .... 

..... 
'D 
00 
I'-..) 

'D 
00 
0\ 

CTDT 

Dump Table 

PRSUINE 

Dump Options 
fromSADMP 

Translated Command 

4.., 

Process 

1 Parse and translate the dump 
options passed from the 
SADMP generation. 

2 Request additional dump 
options from the operator, 
then parse and translate 
them. 

3 Correct syntax errors in the 
command. 

4 I f the command is DUMP, 
add more dump options to the 
dump table. 

5 If the command is LIST, list 
the current dump options. 

6 If the command is not END, 
prompt the operator. 

7 If the command is END, 
begin dumping. 

~ 

Output 

Dump Table 

AMD0601 
Error Message 

C) 

AMD0601 - Error Message 
AMD065A - Correction Prompt 

<=) 
Dump Table 

AMD0671 and the 
contents of the 
dump table. 

4.., 

I:""' 
~-
::I 
~ =-
3: ,; 
~ ~ - '" ~ ... .. ., ;- r;. 
rr ;-=-
I a: 

"CI => a Fr 
'g ;. 
::1 ~ 
~ = = ... .... -..... = = a: 3: :s 



~ 
I'-.l 

CfO -00 

'P 
l;.> 

@ 

n 
~ .... 
jQ" 
::r' .... -= ~ 
n o 
~ -I,Q 
00 

!'l -I,Q 
00 
0-, 

n 
::r' 

~ .... 
f'-
1:1) 

p; 
s. 
>-
0' 
~ 
tJ 
I:: 
3 
'0 

> 
~ 
tJ 
1:1) 

> 
tJ 
~ 
~ 

~ 
I ...... ...... 

w 

r (' 

Diagram SADMP-24. AMDSAPMT - Interactive Prompting for Dump Options (part 2 of 2) 

Extended Description 

1 If CTGENDTO is nonzero, CTGENDTO points to 
the dump options text entered during SADMP gen­

eration. AMDSAPMT calls M'lDSAPRS to translate it 
into a dump option set (pointed to by PTHPTRI. then 
compresses the dump option set into a dump table that 
the CTDT points to. 

If CTGENDTO is zero, this indicates that AMDSAPMT 
has no dump options next to translate. 

2 If CTPROMPT=ON, AMDSAPMT writes message 
AMD059D to prompt the operator for more dump 

options. AMDSAPMT reads the reply from the console 
into PRSLlNE, then passes PRSLINE to AMDSAPRS to 
have it parsed and translated. 

3 If the return code from AMDSAPRS is nonzero, an 
error exists in PRSLINE. AMDSAPMT writes mes­

sage AMD0601 to show the syntax error. AMDSAPMT 
repeats PRSLINE and underlines the text that is in error. 
AMDSAPMT writes message AMD065A to ask the 
operator to correct the error. AMDSAPMT reads the 
operator's correction and inserts it into PRSLINE in 
place of the asterisked text. AMDSAPMT continues 
until PRSLINE is free of syntax errors. A return code 
of 0 from AMDSAPRS indicates no more errors in 
PRSLINE. 

4 AMDSAPMT calls internal subroutine COMPRESS 
to compress the dump option set into a list, which 

it appends to the end of the dump table that the CTDT 
points to. 

5 AMDSAPMT calls internal subroutine LlSTDT to 
write message AMD0671 to the console. then 

expands the dump table entries into an EBCDIC form 
that agrees with the dump options syntax. 

6 7 If the command is END, AMDSAPMT exits; 
, otherwise AMDSAPMT reprompts the operator. 

Module Label 

r 

I:'"" ,a rJ· "' == ~ 
l(; ., 
=- ;:;. -~ "' =-
~ :: -"' :l. ro:> 
~ ;;-
tii 

., 
~. 

tii 

-= C> -., 
C> -~ =:I 
"' :: ... -'< 
C> .... -= s:: 



~ 
I ..... ..... 
~ 

~ 
;;3 
~ 
S' 

I 
;l> 
(:l 
e: 
~ 
Z 
~ 

~ 

~. 
;l> 
s: 
'" 
b 

(JQ 

5' 

t"'"' 

~ 
~ .... .... 
00 
I,C 
I 

t.H 

© 
(j 
o 

::1. 
:r .... -= 
~ 
Q 
~ .... 
I,C 
00 
j'J 
.... 
~ 
01 

Diagram SADMP-2S. AMDSAPRS - SADMP Parsing and Translation (Part 1 of 2) 

Input 

Parameter List 

INPLINE 

TKTABLE 

I I I 

'-' 

1 Convert the input text into a 
table of tokens. 

2 Parse and translate the token 
table into a parse·translation 

header (PTH) and possibly a 
dump option set. 

3 If the syntax of the input is 
correct, return the PTH to 
the caller. 

4 If the syntax of the input is 
in error. return the bounds 
of the first token in error 
to the caller. 

l, 

Output 

TKTABLE 

PTH 

PTH 

OUTER BEG 
• r--

OUTEREND 

~ 

i-
::I 

l 
3:: :: 
D:> ~ 
;;- ~ 
... ... ;e ;;. 
Fir' ~ 
I=-

"= ~ a ;;-
~ ::3. 
... !!. 
~ '" 
I:> s.. 
.... -- = = :: 3:: :s 



t'"' 

~ 
oc 
I --oc 
'P 
w 

@ 

(') 
o 
~ 
::l. 

e--= ~ 
(') 
o 
-? -'0 
oc 
.IV -'0 
oc 
0'1 

{ 
... 
~ 

CIl 
S' 
8-
~ g 
t:l 

~ 
'> 
~ 
t:l 
CIl 

> 
~ .:g 

f" ..­..­
Vt 

r r 

Diapm SADMP-2S. AMDSAPRS - SADMP Paniaa'" TnlUllatioD (Part 2 of 2) 

Exanded Dllcription 

1 Subroutine LEXSCAN converts the input Utxt 
ClNPLlNE) into. tok.n Utble (TKTABLE) by 

elimiNltinll bllinks..,d replKinll keywords with l-byte 
svmbolL LEXSCAN .110 doelsynUtx checking. 

2 Subroutine PARSE U.I. ItKk (PSTACK) MId • 
BNF .........,..r to chKk the Iyntu _ t.-.II_ 

the token Utble into. dump optionl .t (DOS) pointed 
to by • PTH. If there wei. syntex error, PARSE 
indic:eUtI which token we. the first to be detected in 
error. 

3,4 The returned pointer to the PTH il OUTPTHP. 
The bounds of the token in error, •• they .ppeer 

in the input Utxt, ere OUTER BEG .nd OUTER END. 

Module Lebel 

r 

t"'" I: 
lIS' IiII:I 
g Il 
I ~. 

~i 
;t :: 
::I. ~ 
lID ~ ;r .. ;. 

;r 

l~ .. :: 
~ :s 

= .... 
! 



f' Diagram SADMP-26. AMDSARDM - Real Storage Dump (Part 1 of 12) ..... -0'1 

~ 
~ 
~ 
CD 

~ 
Q. 

> 
r! 
e: 
2 a­
@ 

~ 
:! 
~. 

> s: 
'" 
£' 
(=i. 

~ 
N 

~ ...... ...... 
00 

'" I .... 
iQl 
('j 

~ 
~ .... 
..... = 
~ 
('j 
o 
~ 
...... 

'" 00 
JV -'" 00 
0\ 

Input 

FL.CNPSWS 

rn 
UIWNPsWS 

rn 
CON LIST 

UIWNPSWS 

rn 
Store Status in 
Absolute Page 0 

I I 

l, 

.. Process 

... 
) 1 Build wait PSWs in low ... 

storage. 

.. ) 2 Locate and enable the sub-
r channels for each console. 

Set and enable the interruption 
subclasses. 

.. 

.. 3 Set up restart capability • 

4 I nitialize the ORB. 

l, 

Output 

PSWSAREA 

rn 
L 

~ .,.. FLCNPSWS 

rn 
Console 
Subchannels 
Enabled 

1 

CTLINES 

CONESTB 

CTNOCONS 

FLCNPSWS 

L rn .") .. t"'" ri-
= 
~ 

FLCRNPSW 

I I 
Store Status Data 
in AMDSARDM 

I I 
.. ORB 
")[ .. 

Q" 

::: " " lID I'D 

~ '" -::3- .. 
n' e.. i '" 

I 3: 
'"d lID a ;;-
'I i· a tii 

= = ... ---= = 3: ::: :s 

l, 



r 

t'"' 
-< Diagram SADMP-26. AMDSARDM - Real Stonge Dump (Put 2 of 12) 
N 
00 . ..... 
00 

'P 
w 

© 
n o 
~ 
::l. 

Otl 
a' -t:tI 
~ 
g 
~ 
..... 
\0 
00 
-P 

Extended Dacription 

1 AMDSARDM saves the caller's new PSWs and replaces 
them with wait PSWs to field all unexpected 

interrupts. 

2 AMDSARDM locates and enables the subchannels for 
each of the consoles in the console list. For each 

console in the list, AMDSARDM sats the interrupt 
subclass. 

3 AMDSARDM sets on appropriate flags so that the 
real storage dump program can be retried at this 

point. AMDSARDM modifies the restart new PSW to 
pass control to this point is a restart interrupt occurs 
during real storage dump processing. AMDSARDM saves 
the store status information for the IPL processor so that 

\0 the information remains valid for any further reltart 
00 • 
0\ processing. 

Q 
I» 

~ ... 
:f'-
en 

[ 
> 
0' 
~ 
o 
S 
'tl 

'> 
~ 
~ 
> o 
~ 
-:g 

+>-
I ---.....l 

4 AMDSARDM initializes the operation requelt block 
(ORB). 

MOdule L.a.. 

r r 

I:"' " ~r i;IO 
III I 
I ~. 
::£ 
;. :: ... .. _. -
.. fD 
IE' :I • .. 

IE' 
"'C:I = .. .... 
= -'i = ::l :: 

'-"! :s 

= .... 
! 



~ Diagram SADMP-26; AMDSARDM - Real Storage Dump (part 3 of 12) 
...... 
...... 
00 

~ 
<: 
CIl 

tTl 
>: 
S 
5. 
~ 
Q.. 

:> 
8 
::r 
~. 

e­
til 
W 
~. 
~ 

:> 
i5.: 
'" 
b 

(JQ 

ri' 

t"'" 
-< 
N 
"f' --00 
'P 
w 

@ 

n o 
'0 
'< 
::l. 

(JQ 
::r -...... 
~ 

~ 
n o 
~ 
'Cl 
00 
J'-l 
'Cl 
00 
0\ 

FLSCID CON LIST 

I I 

'-' 

5 I f tape I P L, attempt to assign the 
tape drive. 

... 

6 Unload any previous output 
tapes. 

7 Wait for a console or external 
interrupt. 

--'> 8 Look up this console. 
r 

9 Request an output tape. 

.... 

~ 

--. 
IPLIO I 

.. 
CONSOLE J .. 

... Q ) Tape ... 

~ Rewound and 
Unloaded Tape 

FLCENPSW FLCINPSW 

! I I I 
Control Register 0 Control Register 6 

I I I I 
I X'140000' I !CTNOCONS=ON I 
CTSID CONDEVN 

I I I I 
... Control Register 0 Console > I I Subchannel 

D c ,., 
~ = 
~ =-

~ ~ :::0 
AMDOO1A = ~ - ell 

r ~ -... ... 
;' ~' 

r;;" -~ =-I 
~ 

~ = 
~ If 
'g ... 

;' ... r;;" 
~ = = ..... ..... --= = ~ :: 'I 

'-' 



B 
~ .­.-
00 
\0 
I ...., 
© 

~ 
::l. 
f§. ..... .... 
t:I:' 
a:: 
(') 
o 
~ 
.-
\0 
00 
JV 
.-
\0 
00 
0'1 

9 
i ... 
~ 

til 

[ 
~ g 

I 
~ 
a:: 
~ 

~ ,:g 

~ --\0 

r 

Diagram SADMP-26. AMDSARDM - Real Storage Dump (Part 4 of 12) 

Extended Delcription 

5 If IPLed from a tape drive, AMDSARDM attempts to 
alsign the tape drive. If the assign fails, AMDSARDM 

ignores the error because it is too late for SADMP to use 
another IPL device. 

6 If an output tape was previously set up, AMDSARDM 
writes an end-of-file mark and unloads the tape. 

7 AMDSARDM sets up the external new PSW and the 
I/O interrupt new PSW to intercept Interrupts. 

AMDSARDM enables for external signal interrupts and 
attention interrupt by setting bits In control registers 0 
and 6. AMDSARDM loads a wait state PSW to wait 
for either interrupt. If AMDSARDM receives an 
external signal Interrupt, AMDSARDM turns on the 
CTNOCONS bit, and SADMP continues processing and 
does not use a console. 

8 If an attention interrupt occurs, AMDSARDM 
searches the console list for the appropriate console, 

and prepares that console for use. 

9 AMDSARDM issues message AMDOO1A to request 
the device number of the output tape. I f no console 

is available, AMDSARDM uses the output tape device 
number that was specified at generation time. 

Module Label 

r r 

~ " ;;. ~ 
~ I 1 ~. 
3: 3: 
;. 3: 
::3. • • ;ti 
~ a· 

~ 
'"CI 0 .. .... 
o -'i ! .. 
~ :: 
0 .... -== 3: 



..... 

D-

III 
.t:. .. ... 
2 .. 
! c 
«I 
.t: 

il . 
iii .~ 
~ ~ 
... " "5 :; 
... C. 
til ... 
III ;, 

CI) 0 

I ~ 
~ .1) 

I""""'" 

~ 
o w 
J: 
o 
oJ 
III 
oJ 

w 
oJ 

~ z 
8 

~~----------~ ~~--------------~ 

.... 
i 

III 

J: o 
CI) .. 
;, 
9-
;, 
0,_---' =L-__________________________ ~ 

4-120 MVSfExtended Architecture Service Aids Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

L Y28-1189-3 @ Copyright IBM Corp. 1982, 1986 



l' 
...-: 
N 
00 , -00 
'>0 

W 

I1J 
(") 
o 

'1:l 
'< .... 
ciQ' 
g--!Xl 
~ 
(") 
o .... 
'? -'>0 
00 
N 

-'>0 
00 
0\ 

(") 
::r 
I'l 

'1:l 
8" .... 

""" 
CIl 

S-
:::: 
0-

> 
0" 
:::: 
(1) 

t:l 
~ a 
"0 

~ 
~ 
t:l 
CIl 
:l> 
t:l 
~ 
::!:l 

+>-
I ..... 
tv ..... 

r 

Diagram SADMP-26. AMDSARDM - Real Storage Dump (Part 6 of 12) 

Extended Description 

10 AMOSAROM converts the device number to a sub-
channel identifier, and -tests the validity of the sub­

channel 10. If the subchannellD is valid, and the device is 
not already in use by SAOMP, AMOSARDM checks if the 
output device is operational. If the device is operational, 
AMOSAROM reads the label on the tape. If AMOSAROM 
accepts the label, or if there is no label, AMOSARDM 
continues using this tape as the output device. 

If output is to a tape drive, AMOSAAOM attempts to 
assign the tape drive. If the assign command is rejected, 
the output device is not a 3480 tape drive. If the assign 
command is accepted, but it fails to assign path groups, 
AMOSAAOM issues message AM00691, rejecting the 
tape drive. 

If the output device is a 3480 tape drive, flag CT3480 is 
set to indicate this. AMOSAROM writes a display message 
to the tape drive indicating that a tape should be mounted. 

If the tape drive is not a 3480 tape drive or it is and has 
been assigned, AMOSAROM reads the label on the tape. 
If AMDSAROM accepts the label, or if there is no label, 
AMOSAAOM continues using this tape as the output 
device. 

If any of these tests fail, AMOSAROM issues message 
AM00481 to prompt the operator for a new device num­
ber. Then AMOSAROM returns control to step S. 

Module Label 

r r 

~ " ~r ~ 
::I '" 

a.~ 
3: ~ Q. 

~ :: ~ ... ~ ;. ~ 
i'il" ... ;. 

i'il" 
'"CI = ... .... 
= -'"CI 1:1:1 
fD :: ... 
~ :s 

= ..., -1:1:1 :: 



~ 
I -IV 

IV 

~ 
-< 
til 

~ 
It 
::I 

~ 
> 
r:l 
:r 
~. 

t: 
w 
~. 
> e: 
i 

r-' 
-< N 

0/' .... -00 
\0 , 
I.lol 

@ 

~ 
::I. 
JQ 
:r .... -= 
~ 
n o 

.... 
\0 
00 
]V 
.... 
\0 
00 
0'1 

Diagram SADMP-26. AMDSARDM - Real Storage Dump (part 7 of 12) 

Input 

FIXTITLE r- _.=:1 

Processor 
Serial Number 

Time of Day 

Process C? 
11 Prompt the operator hr a title. 

CONSOLE J 
} : : >12 Build the dump header record. 

Channel Program : >13 Write the dump header record. I I 

"'~. S .... , 0." Vl 'SA 

I SSPREFIX 0 
Header Page 0 

:J 

CTPREFIX 

'-' 

... OUTPUT I 

} : : :> 14 Obtain processor data and write =:====:::;:-1 
the processor status records. i I 

15 If VM mach ine. calculate the 
top of real storage. 

Q 

c., 

Output 

AMD011A 

:X 

)( .. 

HOMECPU 

CPURINIT 

:)( .. 

TOPREAL 

~ .. 

) 

Header 
Record 

:J 

=:J 

Tape 

I 

DUMPTITL 

Page 0 

CTPREFIX 

J 

'-

t"'" 
~. 

l :: :: 
lID ~ 
~ ~ .. .. ;- t;-
r;- ;-.. 
~f a ~ 'I :I • a l-
e> !, .... --= =:: 
:: II 



t""" 
-<! 
IV 
00 
I -00 

'-C) 

..:.., 
@ 

n o 
~ 
::J. 

(JQ 

::r 
~ 
n o 
-? -'-C) 
00 
JV -~ 
0\ 

n 

i .... 
~ 

til 
S" 
8-
> r 
I 
'> 
== 10 

~ ,:g 

f" -tv 
Vol 

r 

Diagram SADMP-26. AMDSARDM - Real Storage Dump (part 8 of 12) 

Extended Description 

11 AMDSARDM issues message AMD011 A to request 
a dump title from the operator. 

12 AMDSARDM completes the dump header record, 
using the dump title. 

13 AMDSARDM writes the dump header record to the 
output tape. 

14 AMDSARDM obtains the address of the processor 
that is executing SADMP. If the prefix value from 

the original store status points to a valid PSA, AMDSARDM 
saves the PSA. AMDSARDM builds a processor Itatus 
record for the processor that isexecuting SADMP, and 
writes the record to the output tape. 

AMDSARDM Issuel a store status command to each online 
processor. For eech processor, if the prefix value for the 
Ilore status points to a valid PSA, AMDSARDM savel the 
PSA. AMDSARDM builds a processor statUI record for 
each online processor and writes the records to the output 
tape. 

'5 If SADMP il executing on a VM machine, AMDSARDM 
interfaces with the service processor via a SCP INFO 

command. From the data that the SCP INFO command 
return., AMDSARDM calculates the top of real storage and 
.. vas the value in TOPREAL. 

Module Label 

(' (' 

t""" II: ;:s. i:I:I 
g !l 
l ~. 
~ [ 
~ ~ .. ~ ;- ~ 
rr :I. 
I;' 
~ = a :: 
'i == :l ~ 
~ :s 

= .... -tiel :: 



~ Diagram SADMP-26. AMDSARDM - Real Storage Dump (Part 9 of 12) -~ 
s:: 

~ 
l 
:> 
6 
t:r 
~. 

E' 
til 
~ 

~. 

~ 
~ 
~. 

B 
~ ..... ..... 
00 
\0 , 
W 

@ 

f 
::l. eg. 
..... 
..... = s:: 
(') 
o 
-? 
..... 
\0 
00 .t'.) 
..... 
~ 
0\ 

§ or 

§ or 

Real Storage 

[EJ 

~ 

16 Modify program check and 
machine check new PSW's. 

QT~' ~ ") 17 Read page 0 from the IPL 
.. volume and write it. 

18 Obtain pages from the IPL 

Q 
work file. 

Tape 

Header .. ') 19 Obtain and write each page of 

I I .. 
real storage. 

TOPREAL ... 
I I 

20 Restore the original interrupt 
handlers. 

~ 

FLCPNPSW .. 
)I 

Control Register 14 

I I 
Page Buffer .. 

... 

~ 

OUTPUT 1 
~ 

()T'~ 
~ 

OUTPUT J 
r 

FLCPNPSW .. 
)I -... 

PSW Disabled for 
Machine Checks 

I I 

FLCMNPSW 

I I 
I 

I 

QT'~ 

FLEMNPSW 

I I 

~ 

t"'" 
Q' 
::I 

I 
:: I: 
lID ~ 
;f ~ .. .. 
;- t';-
f.i} ~ =-I:: 
~ ~ 
~ :I . 
::L !!. 
~ fIl 

= sa. .... -
- l:1l:I = :: 
:: :s 



~ 
N 

~ .­
.-
00 
'C 
I .... 
@ 

(") 

~ 
::I. a-
..... = 
~ 
(") 
o 
-? 
.-
'C 
00 
N 

.-
'C 
00 
0\ 

(") 
g-
~ .... 
f"­
til 
S" 
5-

~ 
o 
~ 
'> 
~ o 
til 
:> o 
~ 
.:3 

f" -tv 
VI 

r 
DIqram SADIIP·~. AMDSARDM - RIll St .... Dump (Put 100112) 

IEJdMded 0.. ....... 

16 AMDSARDM _ts up 1M nwc:hine check new PSW and 
1M progrem check new PSW to inlerc:ept theIe inter­

rupulf storage errOfl occur while ecceaIng or dumping 
r .. latonlQe. AMDSARDM lneb_ for rnechlne checkI by 
_ttlng bits In control register 14. 

17 AMDSARDM rudI page o from thllPL volume 
workfile. Ind dumps the conlents of pege 0 to thl 

output __ • 

18 AMDSARDM obtain. thl pages .. ved on the IPL 
volume workfill by AMDSAIPL. AMDSARDM dumps 

theI8 pegII to the output tIpe . 

19 AMDSARDM obtainsllCh page of real stor ... Ind 
itlatorege kiV. and dumps the .. to the output tepa. 

If SADMP is executing on I VM machine. AMDSARDM 
u.s the VIIlue in TOPREAL to dllerminl thl high .. t PIlI 
to dump. If SADMP is not Ixecuting on a VM machine. 
AMDSARDM lt18mpts to dump III Plges to the Irchilec­
turll limit. If I PIlI i. not therl. the program check 
handler gets control. The progrlm check handler PI_s 
control beck to this step 10 thlt AMDSARDM cen attempt 
to dump the next page • 

20 AMDSARDM restores the origlnll program check and 
machine check Interrupt environment. 

Module ....... 

r r 

~ s: 

ii' " 
II I l ,,' 
3:i • ~ 3: 
:'I, • • If 
fil" .. 

ii' 
f'i:' 

"'0 = .. .... 
= -'i =:I 
::l. :: 
'< :s 

= .... -
~ 



f' Diagram SADMP-26. AMDSARDM - Real Storage Dump (part 11 of 12) ..... 
N 
0\ 

~ 
<: 
~ 
~ -~ ::s 
0.. 

8-
)­
d ::r 
~. 

2 
ri 
til 
~ 

~ 
§' 
)-
0: 
'J> 

b 
O<l 
0' 

t'"' 
-< 
N 
00 
I -00 

'.f) 
I 

W 

<OJ 

n 
0 
'0 
'< ..., 
OQ' 
:=: 
..... 
ttl 
~ 
n 
0 .... 
'0 -\C) 
00 
N -\C) 
00 
0\ 

Input Process 

CTPREFIX iPSA 

~ __ ~V~~--~II: : > 
CT3480 

CT3480 

4.., 

21 Terminate if no valid prefix '\ 
exists, V 

22 Save the CVT address, the 
master segment table, and the 
PCCA address. 

23 Write an end-of-file on the 
output tape. 

l, 

OUTPUT 

,. 

Tape 

Disabled 
Wait PSW' 

[X'150200' 

Tape 

4.., 

t""' ;:;. 
~ = ~ =-
~ = !it .. ;. 
:;; 
I 

"'C .. 
c::> 
~ .. -'< 

c::> .... -= ::: 

~ 
~ 

'" -.. ;:;. 
!it =-:: = !it 
::!. = :;; 
c::> .... -= ::: :s 



~ 
IV 
00 
I --00 

10 
I ..... 

@ 

n o 
~ 
::I. 
I§. --!:XI 
a:: 
g 
-? -~ 
.IV -10 

r 

Diagram SADMP-16. AMDSARDM - Real Storaae Dump (Part 12 of 12) 

Exanded Delcriptlon 

21 If the prefix address i. not valid, AMDSARDM issues 
message AMD0681 to inform the operator that 

virtual storage cannot be dumped due to an invalid prefix 
address. AMDSARDM then loads a disabled wait state 
PSw. 

If output is to a 3480 tape drive, AMDSARDM writes a 
display message to the tape drive indicating that SADMP 
is complete and attempts to un,ssign the tape drive. 
AMDSARDM the loads a disabled wait state PSW. 

22 AMDSARDM lives the addresses of the CVT and the 
PCCA, and llvas the master IIgment table designation. 

AMDSADIP, the virtual storage dump program initialization 
module, later u .. s this information. 

Module l,abeI 

~ 23 AMDSARDM writes an end-of-file indicator on the 

Q 
.@l 
(D .., 
~ 

til 
!if 
8-r 
I 
> a:: 
t:l 
til 
;I> 
t:l 
a:: 
-= 

t--t-.,) 
........ 

output tepa 10 that if the virtual storage dump pro­
gram cannot be loaded, the tape is complete. 

If the output is to a 3480 tape drive, AMDSARDM 
attempts to una .. ign the tape drive. 

r r 

~ I: 
~III' 
II i 
l~ 
3:[ 
i 3: 
::I. • • If 
;r ::I •• ;r 
""d = ... ... = -'i = ::l 3: 

'04!! :s 

= .... -= 3: 



f" Diagram SADMP-27. CONSOLE - Subroutine of AMDSARDM - Read from and" Write to the Operator Console (part 1 of 4) 
...... 
N 
00 

~ 
< 
CIl 

---tTl 
>< 
(t 

~ 
Q. 

>­
(l 
e: .... g 
..... 
s:: 
@ 

W 
~. 
>­
is: 
'" 
b 

(Jq 

ri' 

l' 
-< IV 
00 , 
...... 
00 
-.0 , 
w 

© 
(j 
o 
~ .., 
oq' 
::r .... -t:= 
~ 
(j 
o 
-? 
-.0 
00 
JJ 

-.0 
00 
01 

Input 

Register 6 

CTLINES 

'-' 

Message 
Parameter 

MPFCONT 

MPLNCNT 

Process 

1 If no console is available, return. 

2 Set up for console I/O. 

3 Compute the position of the 
message on the screen. 

4 If message fills the screen, 
erase it. 

5 Set up the channel program. 

6 Perform the write. 

If an error occurs, set a 
return code. 

\., 

Output 

Control 
Register 6 

Enabled for Console 

[ 0 I Old Value Saved 

Register 1 

L-____ ...JI Console SID 

CTLINES 

Beginning of Message 

Register 7 
(-- - ----] End of Message 

WORKREG3 
(-- -- ] 

AMD029D 

CTLINES 

I CTSCRENn-]- Erase Screen 
Automatically 

Message to 
Console 
r--

'-' 

r ;::;. 
rt> 
::s 
~ =-
:::: ~ = ~ 
~ ~ ... ... 
;~ ;:;. - .... 
'" rt> =-
'" ~ ....... o rt> 

1t ;-... -
Q '" 
o s.. .... -- = = :::: 
3: " 



r r 

l""" 

~ 
Diagram SADMP-27. CONSOLE - Subroutine of AMDSARDM - Read from and Write to the Operator Console (put 2 of 4) 

00 , Extended Description 

~ 1 If no console is available, CONSOLE returns to its 
w caller with a return code of 4. 

6 1 

Q 
'0 
'< .... 
Qq' 
~ -txI 
~ 
(") 
o 
~ 
\0 
00 
IV 

-\0 
00 
0'1 

(") 
::r 
~ 
~ .... 
:I"-
til -I" 
5. 
:> 
0" 
~ 
o s:: a 
'0 

'> 
~ 
o 
til 
> o 
~ 
~ 

~ 
I ...... 
tv 
1.0 

2 CONSOLE enables only for console interruptions by 
setting bits in control register 6. 

3 CONSOLE selects a message to write by examining 
the message parameter list (MSGPARM). The address 

of the message parameter list is passed to CONSOLE in 
register 6. To determine whether the message fits on the 
screen, CONSOLE computes the position of the message 
on the screen. 

4 If the screen does not have room for the message, 
CONSOLE checks whether to prompt the operator 

before erasing the screen. If prompting is specified, 
CONSOLE issues message AMD029D. Whether or not 
prompting is specified, CONSOLE then erases the screen. 

5 CONSOLE fills in the channel program and calculates 
the console buffer address from the screen line 

number. 

6 CONSOLE calls subroutine DUMPSIO to write the 
message to the console. If an error occurs, CONSOLE 

returns to the caller with a return code of 8. 

Module Label 

r 

t-
~ n' 

~ 

== '" l€ -.., =- ;::;. 

~ 
~ 

'"" =-
~ 

~ ~ .., ~ 
j;,;' -r'!> 
iii' 

.., 
j;,;' 
iii' 

"CI 0 ... .., 
0 -"0:1 == r'!> ~ .., 

Q" :: 
0 ... -
== ~ 



f' Diagram SADMP-27. CONSOLE - Subroutine of AMDSARDM - Read from and Write to the Operator Console (Part 3 of 4) -IoN 
o 

~ 

~ 
>c 
g 
Q. 

2-
> g. 
~. 

c a 
~ 
~ 
~. 

> e: 
£' n· 

t""' 
-< N 
00 , .... 
00 
'oC 
W 
@ 

(") 
0 
~ 
::2. 

(JQ 
::r -,... 
eg 
~ 
(") 
0 .a 
.... 
'oC 
00 
]V -'oC 
00 
0"\ 

Input 

l, 

Console 
Interrupt 

Process 

7 Wait for a reply. 

8 Set up channel programs and 
read the reply. 

\., 

Output 

Enabled Wait Code 

Return 

nn=message I D 

~ 
fD 
:I 

l 
:: " .. ~ ;;- Q!I -:!. :3. n .. -;r ft> 

Co 
I :: 

"a ID a ;;-
'I :3. 

ID .. FE -'oO! 0 
=> .... ... --= !~ 

~ 



r r 

t"'" 
-< Diagram SADMP·17. CONSOLE - Subroutine of AMDSARDM - Read from and Write to the Operator Console (Part 4 of 4) 
IV 
r' Extended Description 

-~ 7 I f the written message prompts for a reply, CONSOLE 
W loads an enabled wait stete to wait for a reply. 
I(ji 

g 
~ 
::1. 

OQ 
::r ... 
..... = s:: 
(i 
o 
-? 
..... 
10 
00 
IV 

..... 
10 
00 
0-, 

(i 
::r 
~ 
~ .., 
~ 

CIl 
S" ::s 
Q. 

~ o 
; 
tl s:: 
~ 
~ 
s:: 
tl 
CIl 
:> 
tl 
s:: 
-:9 

~ 
I -W -

8 When CONSOLE receives a console Interrupt, 
CONSOLE filii In the channel program and calls 

subroutine DUMPSIO to read the reply. I f an error occurs, 
CONSOLE returns to the caller with a return code of S. 
If no errors occur, CONSOLE returns to the caller with 8 

return code of O. 

Module Label 

r 

t'"' r ;:s. 
fD 

I -;:}-
== 

~ r:a. 
lID 

== 
~ .. lID ;. -fD 
IE .. ;. 
I Iil" 

"tl = a ...... -~ = fD 

== 
.. -~ ~ 

= ...... -= 
== 



.. 
'a ... 
1 
0 -.... 
E 
~ 
ct 
, I 

~ 
Q 
'~ 
'S 
.~ .... e 
'8 
I'll 

I 
0 

, ... 
I'll 

! 
Q 

aO 
N 

~ 
~ 
I'll 

J 

... 
~ 

5-
~ 

~ 
z 
9 
u. 

Qj E 
c '" c ~ 

'" '" .=; 0 
uct 

4 

IX! 
a: 
o 

~ 
E 
::l 
c 

'" " '> 
'" '0 

'" .=; ... 
,!I! 
'0 
'0 
'0 

:!: 
rn 
c.. 

'0 ... 
'iii '0 

'0 :!: 0 
'0 -'" :c x 
'" c 

i..- W 

o L...----j 1--__________ -1 1-__ .... 

Q. Q. 

2 2 .. :;; 
QI ... ... c ,!: -
0 .Q -. 0 -. c '" .t:. '" '" ... .: .t:. 0 c..!! ... ..... 
::l'O 1:: ... ... c '" 'iii '" '" ... 

:!: en.=; en 

II .... N ('I) 

Co) 
0 .. 
A. 

... 
~ 
CL 
C 

4-132 MVS/Extended Architecture Service Aids Logic 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 

J 



r 
-< 
IV 
~ ..... ..... 
00 
\0 
I 

"" 
© 

g 
~ 

~ -tel 
a:: 
g 
-? 
..... 
\0 
00 
IV 

..... 
\0 
00 
0'\ 

(") 

{ .., 
~ 

CIl 

f 
> 
i 
tl s:: 
8 

'> a:: 
~ 
> 
tl 
a:: 
." 

t--~ 
~ 

r r 

Diagram SADMP-28. DUMPSIO - Subroutine of AMDSARDM - Perfonn I/O (Put 2 of 4) 

Ex ...... Description 

1 DUMPSIO lets up the I/O new PSW 10 that 
DUMPSIO can intercept I/O interrupts. 

2 DUMPSIO issues an SSCH instruction to start the 
I/O. If the device il not operational, DUMPSIO 

processes a restart to start the dump again. 

3 DUMPSIO loads a wait state PSW to wait for the 
I/O to complete. 

Module L8be1 

r 

~ I: 
~. ~ fD 

it 
.... -.. 

~ 
;:;. 

:: ~ ~ • :: If .. • ii' ~ 
;J" .. 

ii' 
;J" 

." = -a -'i = .. :: 
~ :s 

= ... 
;; 
:: 



M 
0 
0 
C 
~ « 

... 
::2 
Q. ... 
::2 
0 

j til .; 

g .E . ~ 0 
QJ QJ '-

'- g,'-
0 m ~ .. 

Q. .... .. --
2 .E 

QJ.s:: 

'- E Q. .. cu g ... 
:il £ u QJ .. 

0 QJ -~ til 
.s:: ~ N .... u 

I • it) CD 
g .. 

D. 

4-134 MVS{Extended Architecture Service Aids Logic 

'0 .. 
'0 
til 

8.~ 
til c: 
1-:::> 

c: 
til 

g 
QJ 
:l 
'0 

" iii 
QJ Q. .. til 
til .. 
.: Q) 

E-fi 
'-
"'0 .. til 
.. 0 
-- C 
Q. 

:l E 
:l g " :: QJ 

r-. 

:!: 
II) 
a.. .. 
-iii 
:!: 
'0 
QJ :c 
:lI 
0 

8 
en 
0 
LI) -x 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 

J 



~ 
~ , ...... ...... 
00 
\0 
~ 

© 

g 
::to 

(JQ 

!:?: .... 
tI:l 
~ 
g 
-? 
...... 
\0 
00 
.JV 
...... 
\0 
00 
0"1 

(') 

{ 
... 
~ 

[ 
r 
f 
'> 
~ 

~ o 
~ 
~ 

f" -w 
VI 

r r 

Diagram SADMP-28. DUMPSIO - Subroutine of AMDSARDM - Perfonn I/O (part" of 4) 

Ex1Itndecl Dell:ription 

4 When DUMPSIO receives the I/O interrupt, 
DUMPSIO checks to see if the I/O is complete. 

If the I/O is not complete, DUMPSIO takes appropriate 
action by either restarting the I/O or waiting for further 
status. 

5 DUMPSIO checks for I/O errors and performs 
appropriate error recovery activities. 

6 If an uncorrectable error occurs, DUMPSIO issues 
message AMDOO31. 

7 If the dump terminates because of the I/O error, and 
the I/O error was not on the output tape, DUMPSIO 

writes an end-of·file indicator on the tape, and rewinds 
and unloads the tepe. DUMPSIO loads a wait state PSW 
to notify the operator that the dump ended abnormally. 

Module Label 

r 

t- " ;::S. lie 
~ Il 
I ~. 
::If 
.. IL 

Ii" 3: 
::3. • .. If 
/'ij" ::I • • !Z" 
~ = ... -. = -'i = ... 3: 
~ ~ 

= .... -ell :: 



f'- Diagram SADMP-29. LBL CHECK - Subroutine of AMDSARDM (Part 1 of 2) 
...... 
'"H 
0\ 

~ 
<: 
Vl 

tTl 
~ 
0> 
::I 
P­
O> 
P-

» .... 
() 

[. 
0> 
() 

2' .... 
0> 

Vl 
0> .... 
<: (S. 
0> 

» 
0: 
en 

t­o 
{JQ 
(S. 

t­
oo< 
N 

'i'" 
-00 

'f' 
w 

© 
n 
o 
~ .... 
dQ' 
g-
O; 
~ 
n o .... 
'? 

'D 
00 
.IV -'D 
00 
~ 

Input 

IRBDSUEX 

TAPELBLI 

TAPELBLI 

1 Read the label. 

2 If an error occurs while reading 
the label, reject the tape. 

) :> 3 Reject password protected tape . 

4 Obtain permission from the 

L ______ }:======~=====~=> operator to write over the label. 

CT3480 

5 Issue tape display. 

6 Rewind the tape. 

'-' '-' 

Output 

AMD050A 

~========:::::::=: > < ) 
AMD047A 

----.-----.-, v < ) 
AMD045D 

~======~: :> < ) 
AMD0491 

< ) 

Enabled Wait PSW 

X'160100' 

! I ' < AMD051A ) 

, ,:>Q >QT.P' 
Tape 

Return to Caller 

~ 

t'"' 
~. 

= l 
:: " 
i» ~ 
~ ~ .. .. 
;- t;-tEa 
I :: 

"'d i» 
a! !;" 
~ ::I. 
.. !!. 
~ til 

is, = ... -- = = :: :: :s 



s; 
IV 
00 , --00 
'P w 

@ 

(") 
o 
~ 
::l. 

0tI 
;or -0;1 

~ 
(") 
o 
-? -\0 
00 
.N -\0 
00 
Q\ 

(") 
::r' 

~ 
~ .... 
f-
CIl s 
8-
:> 
0' 
::l 
C1> 

tl 

! 
-s; 
~ 
tl 

~ 
~ ,::g 

f'" -W 
-.J 

r 

Diagram SADMP-29. LBL CHECK - Subroutine of AMDSARDM (part 2 of 2) 

Extended Description 

1 LBLCHECK calls the OUTPUT subroutine to read 
the tape label. 

2 If the tape has a label that cannot be read, LBLCHECK 
rejects the tape and issues message AMD050A to 

request mounting of another tape. 

3 If the tape is password protected, LBLCHECK rejects 
the tape and issues message AMD047A to request 

mounting of another tape. 

4 If the tape has a readable label. and is not password 
protectad. LBLCHECK issues message AMD045D to 

ask the operator whether or not to use the labeled, unpro­
tected tape. If the operator provides an incorrect reply to 
message AMD045D, LBLCHECK issues message AMD0491 
to inform the operator of the syntax error. If the operator 
rejects the tape. LBLCHECK issues message AMD051A to 
ask the' operator to mount another tape, and repeats 
steps 1·4. 

5 If any of the above tests fail or the tape is rejected, 
and the output is to a 3480 tape drive. LBLCHECK 

writes a display message to the tape drive indicating that 
the labelled tape is rejected and that a new tape should be 
mounted. 

6 If the tape is unlabeled. or if the tape passes the 
above tests. LBLCHECK calls the OUTPUT subroutine 

to determine whether the tape is file protected. If the tape 
is file protected, OUTPUT prompts the operator to put a 
ring in the tape. OUTPUT also rewinds the tape. so that the 
output tape is ready to use. 

Module Label 

r r 

t'"" ;;. :::0 
fD fD 
:::I ~ 
rIl 
t'b 

.. 
=- ;:so 

:::: ~ =-
~ :::: ~ .. = ;. ~ 
Iii' .. 

;' 
Iii' 

'"= 
Q ..... 

a -"C = t'b :::: .. . ~ :: 
0 ..... 
;; 
:::: 



~ Diagram SADMP-30. OUTPUI' - Subroutine of AMDSARDM (Put 1 of 4) • -w 
00 

a: 

i 
I 
> 
~ e: 

I 
w 
~ 
~. 

~ 
en 
t""' o 
~. 

~ 
N 
00 
I -00 
\C 

I ..... 
@ 

~ .., 
~ -t:c 
~ 

Q 
~ 

~ 
J'V 

~ 
0-

Input 

Register 11 Channel Program 

I rl---I ~ 
:.------I ::;::=======!:: ~> 

CTOUTSID 

[ I Output SID 

WRITE EOT I CCWs to Write 
Tape Mark 

RWULDCMD 

I 

'-' 

CCWs to Rewind 
and Unload Tape 

1 Mask off all but the output 
interrupts. 

2 Perform the 1/0. 

3 If successful, return to the caller. 

4 If this is the end of the reel, 
write a tape mark. 

5 Rewind and unload the tape. 

~ 

IRB 

DUMPSIO 

DUMPSIO 

o 

Tape Mark 
on Tape 

Unloaded 
Tape 

4.v. 

t""' 
~ . 
I 
3: 10 
.. ~ 
;- ~ .. .. ;- ;:;-
!n £. 
I=: 

"1:1 .. a ~ 
'i :3. 
.. !!. 
~ '" \:) Sa ... -
- l:1l:I ==: 3: :s 



r 

t"" 
-< Diagram SADMP·30. OUTPUT - Subroutine of AMDSARDM (Part 1 of 4) 
tv 
00 
I --00 

-.0 
I ..., 
© 
() 
o 
~ 
::!. 

0<1 
::r ..... -= ~ 
() 
o .... 
'? 

Extended Description 

1 OUTPUT enables for output tape interrupts by 
setting bits in control register 6. 

2 OUTPUT puts the output subchannel identifier (101 
into register 1, and calls subroutine OUMPSIO to 

perform the I/O. 

3 If the I/O succeeds, OUTPUT returns to the caller. 

4 If OUTPUT reaches the end of the reel, OUTPUT 
calls subroutine OUMPSIO to write a tape mark 

on the tape. 

~ 6 OUTPUT calls subroutine OUMPSIO to rewind and 
JV unload the output tape. --.0 
00 
0'1 

() 

i .... 
f>­
CIl 
iii 
5-
:> 
0" 
; 
o 
S 
'0 

'> 
~ 

~ 
~ 
,:g 

~ 
I -\.;.) 
\0 

Module Label 

r r 

r " ;:;. \IC 
~ flO 

= '" Kl S". =- n 
3:[ 
1>:1 ;;- 3: 
:!. ~ 
1>:1 flO 
~ .. ;: 
"'C = ... .... 
co -~ = 
::l 3: 
~ ~ 

co -! 



~ Diagram SADMP-30. OUTPUT - Subroutine of AMDSARDM (Part 3 of 4) 
..-
~ 

a:: 
~ 
tii 
~ g 
2: 
~ 
~ ::r 
~o 

~ 
~ 

~o 
~ 

~ 

f 
(:;0 

~ 
IV 
~ --00 

Process 

CT3480 

6 Write a message and wait for a ::i 1 
new tape. ttl .. ~ 

DUMPSIO 

CONSOLE 

o Nownp.: : :> 7 Check the label. 

LBLCHECK 

~ ~ ~ o ~. 

f . - ~~ 
OQ CD II> 

a- i ! ;; ;. ;;. 

a:: ;; i-
n 3: o ~ CD .a a ;;-
:... "i ;. 
\0 :l fir 
00 ~ = 
~ = ~ - ~ -\(;) - == 
00 == ~ 
0'1 :: '"; 

~ l,.. ~. 



"Restricted Materials of IBM" 

Licensed Materials - Property of IBM 

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 4. Stand-Alone Dump (AMDSADMP 4-141 



~ -.J::o. 
N 

::: 
< 
til 

~ 
ft 

~ 
:> 
~ a 
e 
Cil 
W 
~. 
:> 
5: 
'" 
b 
~. 

B 
~ --00 

'P 
w 

© 
n o 

'" '< 
::I. 
~ .... -IX' 
a:: 
(J 
o 
~ 
..... 
10 
00 
J'-> 

10 
00 
0\ 

Diagram SADMP-31. AMDSARSM - Real Storage Management (pari 1 of 4) 

Input 

RADRECNO 

1 Initialize fields and enqueue 
RSM RCB. 

MAXAECNO } : :> 2 I ncrease and test the recursion 
counter. 

RITFCSA 

RITFPRVX I - -

4.., 

VAFAULT I 
I "' 

VAFAULT 

• If there are too many recur­
sions, set return code and 
exit. 

• Otherwise, accept input and 
set a pointer to the BCT. 

3 Check the faulting address. 

I :> 4 Compute the origin of the page 
tables and the virtual address of 
the page. 

ORGPGTS 5 If the fault is on a page table, 

1 :> the real SGTE address into the 
BCT. 

L 

Error 
Return 

Output 

PTAVAIL RCODE I 0 I ;...:...:..::.., :"'=""-12 -----., 

ASMACH ft=Ii 
I N'WAC~b 

RADRECNO 

Register 15 

16 

Register 1 BCT 

ORGPGTS PGEINX 

I I Il...------J 
SEGINX pXP I I 1.-------. 
BCTPGT MAPPEDS1 

-] 

~ 

t"" 
n' 
~ = 
~ =-
3:: ~ 
I» ~ 

;;- ~ ., ., 
;. n' 
~ ~ =-
13; 

"tI I» ., -~ ~ 
'i ::!. ., a - '" '< = 
~ .... 
..... -..... = 
IX' 3:: 3:: ;: 



r 

~ Diagram SADMP-31. AMDSARSM - Real Stol'lle Management (Part 2 of 4) 
N 
Cf' Extended Dncription --~ 1 AMDSARSM in itializes PTA VAl L to OF F, presets an 
W error return code, and enqueues an RSM RCB. 

© 

Q 
~ .., 
dQ' 
::r .... = 
~ 
n o 
~ -I,() 
00 
J'-l -I,() 
00 
0'1 

n 
::r-

i .., 
f>­
til 
iii 
8-
:> 
0-
Ii 
~ .g 
'> 
~ 
tl 
til 
> 
~ 
~ 

~ -+:>. w 

2 AMDSARSM increases the recursion counter by 1 and 
compares this count to the maximum allowable number 

of recursions. If RADRECNO exceeds MAXRECNO, 
AMDSARSM sets an error return code of 16 and terminates. 
If RADRECNO does not exceed MAXRECNO, AMDSARSM 
accepts the input and sets a pointer to the input buffer con­
trol table. 

3 AMDSARSM checks if the faulting address is in 
COMMON. If it is, AMDSARSM uses the COMMON 

ASID for reclaiming and dumping_ 

4 AMDSARSM computes the apparent origin of the 
faulting page. It also computes the segment index, 

page index, and address of the page table page. 

5 If the fault is on a page table, AMDSARSM puts the 
real address of the corresponding SGTE into the 

BCT. If the PGT itself maps a PGT, AMDSARSM 
marks the BCT for last-resort stealing only_ 

Module Label 

r r 

t"" ~ ;::)' 
n> = '" flO -a. .. 

n' 
3:: 

;;-
~ 

D:> 3: tD .. ~ 

ii' ;;-
r;; .. 

;' 
I Iii' 

"'d <:> 

a .... -~ = .. 3: -~ :s 

= .... -= 3:: 



f" Diagram SADMP-31. AMDSARSM - Real Storage Management (Part 3 of 4) -t 
s:: 
< 
Vl 

~ 
ft 
I:' 

8: 
:> 
rl 
::r 
~ . 
.... = @ 

g'l 
:! 
~. 

:> 
5: 
'" 
b 

a<:I 
(5' 

r 
-< 
tv 
~ ..­..-
00 
\D 

W 
© 
n 
~ 
'< ..., 
c§: .... 
--t:O 
s: 
n o ..., 
'? 
..-
\D 
00 
]V 

\D 
00 
0'\ 

Input 

PGTINV 

PGTE 

Process 

6 Verify the OAT tables. 

• If the OAT is invalid, set a 
return code and exit. 

7 Place the address of the page's 
PGTE in the BGT. 

8 Place the address of any BGT 
for the page's page table in 
the BCT. 

9 Locate the page in storage. 

•••• ~ Return 

a. Try to reclaim the page from. I I, 
real storage and set a return .... ___ _ 
code. 

b. Search for the page in the 
MPE's for this address space. 

c. Check for page on the swap • I I, 
data set and set a return code. '-. -----....1 

d. Search for the page on 
extended storage and page 
it in. 

e. Check for page on page 
data set. 

If page is on a page data set. 

RCB Queue If page is not on a page 
~. data set. 

Output 

12 

BCT 

BCTPGTEP 

Register 15 

Register 15 

8 

Valid MPE 
found 

If Reclaim 

Register 15 

0 _I 

10 Dequeue the RSM RCB, decrease "-
recursion count and return. ,/ 

Register 15 

12 

Invalid MPE 
found 

Register 15 

OR I 8 

If No Reclaim 

Register 15 

RADRECNO • t [RAD~~!GJ 

'-' ~ '-' 

~ 
;S. 
til 
::::I 
[IJ 
til =-
~ ::0 
:::.. til 

'" ~ .... ... 
j;;' ;S. 

r;; ;" 
=-
~ 

~ ~ .... ,.... 
0 til 
"0 ... 
'" 

;. 
.... r;; 
Q' 

0 
0 -. ..... ..... - ::0 = s: ~ 



r (' 

S; Diagram SADMP-31. AMDSARSM - Real Storage Management (part 4 of 4) 
N ! Extended Description 

-00 

'P 
w 

@ 

("J 
o 

"0 
'< ..., 

~ 
...... 
!Xl 
s::: 
("J 
o 
~ 
.-
'D 
00 

J'-' -'D 
00 
0\ 

("J 

=-
~ 
~ .... 
~ 

V:l .... 
~ 
~ 
:> 
0-
~ 
0 c: 
.§ 
,-.. 
:> 
s::: 
0 
V:l 
:> 
0 s:: ,::g 

~ 
I ...... 
~ 
VI 

6 

7 

8 

9 

10 

AMDSARSM verifies that it is using the correct DA T tables. If the DAT tables are invalid, 
AMDSARSM sets an error return code of 12 and terminates. 

AMDSARSM puts the virtual address of this frame's PGTE into the BCT. 

If the page's page table is in a buffer that is mapped by a SADMP BCT, AMDSARSM puts the 
address of that BCT into the page's BCT. 

AMDSARSM locates the page in real storage, extended storage or auxiliary storage. 

a. AMDSARSM tries to reclaim the page from real storage. If the page is reclaimed, 
AMDSARSM sets a return code of 4. 

b. AMDSARSM searches the MPEs for this address space for an MPE corresponding to this 
page. If it finds one and the MPE is valid, AMDSARSM indicates the page can be paged 
in from auxiliary storage and sets a return code of 8. If it finds one and the MPE is 
invalid, the page cannot be found; AMDSARSM then sets a return code of 12. 

c. If AMDSARSM could not reclaim the page from real storage, it looks for the page on a 
swap data set or in real storage where the page has just been read in by an MVS/XA swap 
in. AMDSARSM sets a return code of 4 if this reclaim succeeds or a return code of 8 if 
reclaim fails. 

d. The page may also be on extended storage; if it is, AMDSARSM calls AMDSAXSM to 
page in the page and sets a return code O . 

If the page is on extended storage, AMDSAXSM pages it in. 

e. If the page is still not found, AMDSARSM looks for the page on a page data set. If the 
page is on a page data set, AMDSARSM sets a return code of 8. If the page is not on a 
page data set, AMDSARSM sets a return code of 12. 

AMDSARSM dequeues the RSM RCB, decreases the recursion counter, and returns to the caller. 

r 

r r 
j;- ::tI 
." ." 
::I rI> 

Module LalJel '" ::i 
." 

~ =-:: ." =-
~ 3: -." ... '" ;. -." r;;' ... ;. 

r:;;' 

"'tl 
Q ..... ... -Q 

"CI == ." 3: ., -'< 
Q ..... 

== :: 



~ Diagram SADMP-33. AMDSASIN - Address Space Initialization (part 1 of 4) 
...... 
~ 
0\ 

s:::: 
~ 
~ 
~ 
=' g-
p.. 

)-

g. 
~. 

g 
~ 
~ 
(I> 

~. 
(I> 

)­
s.: 
en 

l' o ca. 
n 

l' 
....:: 
N 
~ 

00 
I,C) 

.:., 
© 

f 
::l. 

ea--1:1::' 
s:::: 
n o 
-? 
10 
00 
.N 
I,C) 
00 
0'\ 

_. -1- ---

Register 1 rl I ASCB I 
SINRCB Do I rD 

ASCBASID MSTRASID 

I I I I 
I 

RABSWOUT RABSWPR 

I I 1 
I 
I 

SGTE 

I 
I I Old Top 

Page Table 

1 
I Old 0 

Page Table 

RADRECNO 

I 

'-' 

... 
1 Receive the input ASCB, enqueue .. the SINRCB, and check the 

validity of the RAB. 

.. 
>2 If the address space is the master 

scheduler address space, set a 
return code. 

3 If the address space is not the 
master schedu ler address space: 

L 

> • Determine the location of 
r 

the address space . 

.. 
) • Create a segment table. 

y 

) • Create the top page table. 

Create the 0 page table. • y 

)4 Initialize the RSM function and .. 
the address fau It recursion count. 

~ 

SINRCB ... .... ~ 

( 0 0 0 I ... 
~L ?VCHK 1 .... New 

RCB 

Register 15 

>1 0 I 

SGTE 

>1 I t"'" 

>1 I Top 
Page Table 

n' 
~ = l€ 
Q.. 

>1 1 ~age Table 

RADRECNO 

I 0 I r 

~ 
:: 

::c 
~ ~ 

;- ~ -... ::l • ; . ... 
r;;' ~ 

Q.. 

I 
~ 

"'d ~ ... ;;-Q 
"CI ... 
~ 

;. ... r;;' 
~ Q 
Q ..... ..... --= = ~ ~ " 

'-' 



t"" 
-< 
N 
~ 

-00 

'P 
w 

i(JJ 

(') 
o 
"0 
'< 
::l. 

(JQ 

;r -= 3: 
(') 
o 
fl 
'-0 
00 
.N 
'-0 
00 
0'1 

(') 
::r 
"" "0 
tt ..., 
.j::. 

CIl ...... 

"" 5-
> 
0-
~ 
o s:: 
3 
"0 

~ 
3: 
o 
CIl 
:> o 
3: 
~ 

~ 
I ..... 
~ 
--...l 

r 

Diagram SADMP-33. AMDSASIN - Address Space Initialization (Part 1 of 4) 

Extended Description 

AMDSASIN initializes an address space so that SADMP can 
execute in that address space. 

1 AMDSASIN receives the input ASCB, enqueues a SIN 
RCB, and checks the validity of the RAB. 

2 If the address space is the master schedu ler address 
space, AMDSASIN sets a return code of O. 

3 If the address space is not the master scheduler 
address space: 

• AMDSASI N determines whether the address space is 
swapped in, swapped out, or being processed by a 
MVS/XA swap. 

• AMDSASIN creates the segment table first by reading 
and dumping the segment table, and second, by 
copying all common SGTES from the master SGT 
into the new segment table. 

• AMDSASIN creates the top page table, reads in and 
dumps the top page table, and marks the top page 
table entries as invalid. AMDSASIN hooks up the 
top PGT so that the swapped-in address space can 
function . 

• AMDSASIN creates the 0 page table, reads in and 
dumps the 0 page table, and marks the 0 page 
table entries as invalid. AMDSASIN hooks up the 
page 0 DA T tables. 

4 AMDSASIN initializes the RSM function for local 
address space by determining the beginning and 
ending addresses of the virtual storage ranges used 
by page tables in the local address space_ 
AMDSASIN initializes the address fault recursion 
count. 

Module Label 

r r 

t"" ::. ;;. ~ 
~ "' = fIl 

~ 
.... ..... 

=- ;::r 
::: ;-

c=-
D:> :: ~ ... lID 
;.;- ;-
;; ..... ;. 
I IE 

'"1::1 
Q 

a .... -~ = ~ :: ... -<.oo! :: 

<= --= ::: 



.. 
"S 
'" i 
c:: 
.2 

t -I 
U) 

j 
I 

~ 
~ 
! 
:I 
< 
rri 
~ , 
Q 

~ 

J 

i 

II> 

a! Ii 
.c: 

III '61111 
() ';: () 
Ix: 0 Ix: 

10 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

0'----------; 1---------------' 

'0 

..; c: • 
i III 

() 
:I Ix: 
0 ~~ I-
~ en 0 

II> U en .c: c: 
II> ~ ~ 

.c: II> :I 
~ :I ~ 
a. ! !! :I 
~ 

0'. 

eX t!!i 
Ln CD 

II> 
:I 

0 II> 
0 a I-

~ 
III 
() 
Ix: 

... 
i c 

4-148 MVS/Extended Architecture Service Aids Logic LY28-1189-3 C Copyright IBM Corp. 1982, 1986 

J 

J 



;-
'C5 ... 
l 
j 

i -; -I 
fI.I 

I 
I 

~ 
~ 

~ 
tri , 
Q 

~ 

I 

"Restricted Materials of IBM" 

Licensed Materials - Property of IBM 

I .. 
.. 
:I 

I 

.~ ·1 5 ·11 .- .c 
E .: :I ! .. I Is· .. • c 
a; 0 " :I-s .. iI,;'-.. c !' 31 ._.. " 
~.2 .- "lrl"l >"11 c IS'- a 
!ia ':~f5il :I • 

!~I 
U._ "c" 
0:0 .. ! .- ~ Z ... O .. CD o c .. _ I 

GOI mll~ol 01;; 
! --II !~! ie·5~c .. u c .. iai"'$11 %.- ~ 

I .)- i!·~;i i CI.~ C"iI~ 
ZS0 Z .• . 

J mIl c .5 I t!1 ~ I~lc (1)- .. 

I 
o I .: o ~ ! .8 
~5· ~!IICI! C -5 c. ._ 

~ 

G I iii &0 8 

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 4. Stand-Alone Dump (AMDSADMP) 4-149 



f" Diagram SADMP-34. AMDSASIO - Utility for I/O Operations (Part 1 of 2) -VI o 

s= 
-< 
~ 
~ 
8" 

t 
)­
c:l 
::r 
~. -= @ 

~ 
::;! 
g' 
)­
s.: 
'" t'"' o 

(JQ 

o· 

~ 
N 
CfO -00 

'P 
w 

© 
\.l 

~ 
'"1 

ciQ' 
go 
.... 
ec 
a:: 
\.l o 
f3 -\0 
00 

J'-l -\0 
00 
0\ 

Register 1 

I 

~. 

p 

10DB I. 
I .. 

1 Read from the page data set . 

i 
.. 

10DBREAD = 1 
10DBPAGE = 1 - - ---1---- 1--' 

10DBWRIT= 1 
1- ...... 

.. 
----- 2 Write to the output tape. 

10DBOUT = 1 .. 

- .. .. 
10DBCHP = 1 ----- 3 Execute the channel program 

.. supplied by the user. 

10DBSNSC = 1 ----- -. .. 4 Issue a SENSE command. 
v 

.. 
, 

10DBCLDS = 1 1--. .. ----- 5 Close the output tape. 
10DBOUT = 1 .. 

, 

.. 
10DBWAIT= 1 ----- I-- - ... )6 If a wait is requested, wait for an 

.. 1/0 interruption. 

10DBREAD = 1 . 
- - - --f-- - -- - - .. 7 For page-In 1/0 mark the BCT 

10DBPAGE = 1 . ' 
as no longer In use. -iJ 

l, 

o t 

Page of Data in Buffer 

" I 

... 
PAGEIN I 

Q .. g. 0" T.". 

J WRITTAPE I 

... i COMMONIO J 
10DBSENS 

~ 
-:: SIOSENSE I -0_ A_oo"d ..... 

Unloaded 

"I CLOSESCH I .. 
10DB 

t"" 
n' 
~ 
:I 
~ =-

V' BCT 

.,"1 AMDSAWAT ] 1> BCTlO=O 

3: ~ I» ;;- (IJ -.. ~" ;" 
1ii ~ 

0-
I 3: 

'"CI 1:0 .. -¢ ('D 

~ ... 
~ ;;" .. I;;" 
~ = ¢ -..., --= = 3: 3: :: 

~ 



t""' 
-< 
N 
~ --00 

'P w 

@ 

n o 

::!. 
::r --b:I 
3: 
Q 

-\0 
00 
N 

\0 
00 
CI"I 

Q 
I\> 

;-... 
~ 

[ 
:I> 
0' ::s 

t:l 

(' (' 

Diagram SADMP-34. AMDSASIO - UtiUty for ./0 Operations (Part 1 of 2) 

Exteaded Descriptioll 

If a caller requests that a record be read from auxiliary storage (IODBREAD = 1 and IODBPAGE 
= I), AMDSASIO calls the PAGEIN subroutine. 

1 If a caller requests that a record be written to the output tape (IODBWRIT = I and 10DBOUT = 
I), AMDSASIO calls the WRITTAPE subroutine. 

3 If the caller requests that I/O be executed using the caller's supplied channel program (IODBCHP), 
AMDSASIO calls the COMMONIO subroutine. 

4 If the caller requests that a SENSE command be issued (IODBSNSC = I), AMDSASIO calls the 
SIOSENSE subroutine. 

!I If the caller requests that a CLOSE be issued for the output tape (IODBCLOS= 1 and IODBOUT 
= I), AMDSASIO calls the CLOSESCH subroutine. 

6 If the caller requests AMDSASIO to wait for an I/O interrupt (IODBWAIT = I), AMDSASIO calls 
the AMDSAWAT subroutine. The request is valid only if the return code value is zero. That is, when 
starting I/O, no error occurred. 

7 If the request was for a read from auxiliary storage (IODBREAD = I and IODBPAGE = I), 
AMDSASIO frees the buffer control table (BCT) entry by marking it as no longer in use (BCTIO = 
0). 

(' 

Module Label 

~~ 
~ :: 
Ii 
::1. 
~ 3: 
::3. ~ 
!!. = rI.I _. 

ID 
PE 

"tI Q .... .... 
Q -
'g = ~ 3: 
~ :s 
Q .... -== :: 



.l::>-
I ..-

VI 
N 

~ 
<! 
C/l 

~ 
ft = 0.. 

8-
> 
6 
::r 

~. 
@ 
C/l 
CI> 

< 
~. 

~ 
b 
JQ 

o· 

~ 
N 
00 . ..... ..... 
00 

'f' 
w 

© 
(") 
o 

::1. 
::r ... 
...... 
I:l:l 
a;:: 
(") 
o .., 
..... 
'-D 
00 
!'> 
..... 
'-D 
00 
0\ 

Diagram SADMP-3S. PAGEIN - Subroutine of AMDSASIO (Part 10f4) 

Input Process 

L. 'If" 

100B 10DBPGST 

0-- -----
_____ 1 

If the device is a paging storage 
device: 

IODBSEEK _ BCT . 
IODBSRCH V ~) A Copy the cylinder and v 

IODBREQ BCTBUFRA 

) 
head address into the 

IOOBPGST 
paging parameters. 

~ B Set the search address 
to IODBSRCH. 

C Set the input area 

PSCHP address of the page 
buffer. 

Channel Program 

1 to Read a Page 
.. D ) Read in the page . .. 

EJ~~o, 
Swap 
Data Set 

'-' ~ 

Output 

IODBSEEK ~ODBSRCH 
l I 

I 

I) Paging Parameters PSCHP 
"".1 

~ ,,~ 
Set Paging 
Parameters 

"e. SEARCH 

I TIC .. 
> READ 

r 

Buffer 

.. 
) 

" 

t'"' ;:;. 
~ 
::::I 

'" ~ Q. 

:: :::c 
!:! ttl 

~ ~ ... ... 
~ . ;:;. -;;; ttl 

Q. 

I :: 
-= DO .. ;;-c 
1; ::l. 

DO ... ;;; -'< C 
C ..., ..., -- == == :: :: :s 

~ 



t"" 
-< IV 
00 , 
.-.-
00 

'P 
w 

@ 

(') 
0 
~ 
'< 
::I. 

(JQ 
::r .... 
...... 
t:I:i 
~ 
(') 
0 

-? 
.-
\0 
00 
J'-l 
.-
\0 
00 
0\ 

(') 
::r 
I» 
~ 
S" ... 
f'­
til g 
Po 

> 
0' 
i'i! 

I 
): 
~ o 
til 
;l> 
o 
~ 
:g 

~ 
I ....... 
VI 
W 

r 

Diagram SADMP-3S. PAGEIN - Subroutine of AMDSASIO (Part 2 of 4) 

Extended Dacription Module Libel 

1 When the device il a paging storege device: AMDSASIO PAGEIN 

A PAGEIN points the cylinder end heed 
addreu to the paging parameters, PSPCCHH. 

B PAGEIN puts the pointer to the search 
addr ... into the channel program search 
addr .... 

C PAGEIN putl the reel addre .. of the page 
buffer Into the channel program input area 
addreu. 

0 PAGEIN calli the COMMONIO subroutine 
palling it a channel program (PSCHP). 
COMMONIO executes the channel pro-
gram causing a page to be read in from 
auxiliary storage. 

(' r 

t'"" " ?t ::e 
"' "' rIJ ::I -~ ~. =- -:: "' =-= 3: -"' ... ~ iii' f!!> 

;;; .. ;. 
I ;;; 

." = ..., 
a -1E 1:1:1 

3: .. - :s '< = . ... -1:1:1 
3: 



+0-
I -V'I 

+0-

s:: 
r;3 

~ 
l 
)0-

~ 
~ 
~ 

W s. 
~ 
> 
~ 
r-' o 
~. 

~ 
tv 
~ ..... ..... 
00 
\0 . 
t..J 

© 

i 
::1. 

(JQ 
Q" .... 
&; 
~ 

Q 
~ 
...... 
\CI 

~ 
...... 
\CI 
00 
0\ 

Diagram SADMP·35. PAGEIN - Subroutine of AMDSASIO (Part 3 of 4) 

Input Process 
10DBPGST 

0-- r------ ~2 If the device is not a paging storage 
10DB device: 

10DBSEEK 
.. BCT 

~ A Set the seek address in the 

5 --r channel program to 10DBSEEK. 
10DBSRCH 

~ iODBREQ 

B Set the search address to 
Buffer 10DBSRCH. 

DACHP C Set the input area address to 
the address of the page buffer. 

~ Ch."~1 P,.".m 
to Read a Page 

') 0 Read in the page. .. 

~ -... ... 
r-..... -- Page or 

Swap 
Data Set 

...... --

L 

~ 4.., 

Output 

-
10DBSEEK ~DBSR~ 

,( DACHP 

I I 

.;> SEEK 

v) C SEARCH .---
TIC 

} READ 
v f"--.oII Buffer 

~ 

} .. 
~~ COMMONIO J 

t"" 
n" 
II> 
:::I 
~ 
Q. 

3: ,; 
III ft> 
;;- .,.. -.. ;;. ;. 
1ii ;;-

Q. 
I :: 

." ID .. ;;-Q -= .. 
II> !: .. - .,.. 
~ 0 
Q -. .... -- 1:1:1 
== 3: 3: :s 

~ 



r r' r 

S;; Diagram SADMP-3S. PAGEIN - Subroutine of AMDSASIO (Part 4 of 4) ~ ~ 
N t!> t!> 
~ = ~ 
!.. Extended Description Module Lebel ~ :!. 
~ ~. ~ 
'f' 2 When the device is not a paging storage device: AMDSASIO PAGE 1)\1 3: Q, 

w a. 3: 
@ A PAGEIN puts the pointer to the SEEK ~. a. 
,.... address into the channel program SEEK !!. ~ 
t/ fIJ -. 
'0 address. I eo 
~ ~ 

:!. B PAGEIN places the pointer to the search "1:1 So 
~ address into the channel program search a ; 
- address. 'I 3: t:C _ ~ 

s::: C PAGEIN places the real address of the -: ~ 
g page buffer into the channel program :: 
-? Input area address. ! 
::0 0 PAGEIN calls the COMMONIO subroutine 
~ palling it a channel program (DACHPI. 
:... COMMONIO executes the channel program 
~ causing a page to be read in from auxiliary 
0'1 storage. 

j 
~ ... 
~ 

III 

[ 
~ g 

r 
); 
s::: o 
III 
> o 
a:: :g 

~ -VI 
VI 



5 
Q. ... 
:::J 

'" a. 
~ o III 

o 
o 

"Restricted Materials of IBM" 

Licensed Materials - Property of IBM 

0 ...... ________ """'" I-----i 1----------..... 

en 

§ 
e a. 

~ 
Co 

III 
C 
o 

o 
tl 
> 
~ 
u 
> en 

. .; '" .. a.~ ., a. .. E Q) 
.r= 0 ... () 

c: B 0 

'" 0 
> --·u -., ., 
.!!! ~ 

0 
0 .... -- ... - 0; 
::: ~ ... 

~ 
J: 
U 
w 
en o 
~ 

ai a. ., .. 
'" -5 
-a ., 
.2 
c: 
::I 

-a 
c: ., 
-a 
c: 
.~ 

Q) 

a: 
N 

UL-....... --' 

o 
z o 
~ 
~ o u 

0 --
'" .r= .. 
.E ... 
.~ 

.; 
B ... 

Q) 

Q) C. ... E '" .~ 0 
-a u 

-= B 
M 

c,L-__________________________________________________ ~ 

4-156 MVS/Extended Architecture Service Aids Logic L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 



l' 
-<: 
N 

'f' 

-0<> 

'P w 

(j) 

(J 
o 
~ 
::l. 

(JQ 
::r ... -t:tl 
~ 
(J 
o 
-? 

(' 

Diagram SADMP-36. CLOSESCH - Subroutine of AMDSASIO (Part 2 of 2) 

Extended Description 

1 If I/O isactive on the tepe (lODBINTX=1), 
CLOSESCH waits for all I/O to complete. This is 

accomplished bV a recursive call to AMDSASIO via an 
SVC instruction. Control is returned to CLOSESCH 
when all I/O has completed (lODBINTX=OI. 

2 CLOSESCH calls the COMMONIO subroutine, 
passing it a channel program (CLOSECHP) . 

COMMONIO executes the channel program causing the 
output tape to be rewound and unloaded. 

3 CLOSESCH sets an indicator (lODBWAIT=1) so 
that mainline AMDSASIO will wait for the I/O 

Module Label 

AMDSASIO CLOSESCH 

::0 that was started in step 2 to complete. 
0<> 
.N 
'l:i 
0<> 
0\ 

(J 
::r 
~ ... 

C1> ... 
f'>­
CIl 

[ 
> 
0-::s 
C1> 

o 
S 
'0 

); 
~ 
o 
CIl 
> o 
~ 
~ 

~ 
I -VI 

-.) 

(' r 

t"" ;;. ::=c 
ft> ft> 
::I rIl 

~ -.. =- ;;. -~ 
ft> =-

'" ~ ~ .. '" S· ~ 
Cii .. ; . 

Cii 

'"C Q .. ...... 
c ;; ~ 
ft> ~ .. -~ ;: 

Q ...... 
;; 
~ 



~ 
I -VI 

00 

~ 
-< 
Vl 

~ 
(1) 

::s 
0-
(1) 

0-

> 
d 
=-
~ 
= .. 
(1) 

Vl 
(1) 

~ o· 
(1) 

> g: 
b 

(JQ o· 

r 
-< 
N 
00 , .... .... 
00 

'P 
w 

© 
(1 
o 
~ 
::I. 

(JQ 
::r .... -t:C 
~ 
(1 
o 
-? 
'D 
00 
N 

.... 
'D 
00 
0\ 

Diagram SADMP-37. SIOSENSE - Subroutine of AMDSASIO (Part 1 of 2) 

Input 

100B 

D 
100BSENS 

'-' 

========::!:=====~~:> 1 Store the SENSE wait code in· 
the 100B. 

100BSENL 

SENSECCW 

=~=====:::::=> 2 Store the length of the SENSE 
data into the SENSE CCW. 

I :> 3 Store the address of the SENSE 

SENSCSW 

data into the SENSE channel 
program and clear the SENSE 
data area. 

Issue the SENSE. 

'-' 

Output 

10DBWRC 

X'340ddd' 

ddd = device number 

IJ SENSECCW 100SSENS 

COMMONIO 

r ;:;. 
tD = 
'" tD =-
3: ~ 
I» II> 
;;;- '" ... 
::! • ::!. 
I» n ... r;; II> =-I 3: Return 
"'C III 

d S" 
16 ::!. 

III .. r;; -'< Q = ..... .... --= == 3: 3: :s 

'-' 



r 

r 
~ 

Diagram SADMP-37. SIOSENSE - Subroutine of AMDSASIO (Part 2 of 2) 

00 . .-
.-

Extended DelCl'iption 

:::g 1 SIOSENSE places the SENSE wait state code and the 
.:.. device number into the 10DB. 

<ell 
(") 
o 
~ 
::l. 

OCI a-
..... = ~ 
g 
~ 
.-
-.0 
00 

~ 
.-
-.0 
00 
0'1 

(") 

f ... .,.. 
CIl 

[ 
> 
~ 
~ 
~ 
~ 
o 
CIl 

~ 
~ 
'"tI 

~ 
I 
~ 

V'I 
1,,0 

2 SIOSENSE copies the length IODBSEN L of the 
sense data into the leng~h field of the sense CCW. 

3 SIOSENSE places a pointer to the SENSE informa­
tion area into the SENSE channel program and 

clears the SENSE information area. 

4 SIOSENSE calls the COMMONIO subroutine, passing 
it a channel program ISENSECCW). COMMONIO 

executes the channel program causing a SENSE command 
to be issued for the device indicated bV 10DBDEV. 

Module Label 

(" r 

t"" J: 
;:;. ~ ~ = '" i€ -.. =- ;:;-

::: ;;s 
=-

III :: S" .. » 
ji;' -tD 
i'E .. ;;-
I FE' 

-= = .. .... 

= -1 ~ 
'-o!! :: 

= ..... -= ::: 



f" Diagram SADMP-38. COMMONIO - Subroutine of AMDSASIO (part 1 of 2) --0'1 o 

~ 
<:: 
(;Il 

tTl 
>< 
~ 
::s 
p.. 
~ 
p.. 

;I> 
(i 
::r 
~. 

2 
@ 
(;Il 
~ 

~ o· 
~ 

§; 
'" t'"" 
o 

Otl 
o' 

t'"" 
-< 
N 
c;o 

00 

'P 
w 

© 
(j 

~ 
::1. 

Otl 

~ 
'""' to 
~ 
n 
o .... 

"? 

'-0 
00 
N 

'-0 
00 
0-, 

CIOCHP •• Process D 100B .. ' 1____ I I I ~ 1 ~;:::::':~ :::t,""'1 p,o,<om 

Input 

10DBSCH 

C 

~ 2 Initialize th eORB. 

3 I ndicate that an interrupt is 

expected. 

:>4 Load the Subsystem 10 into 

register 1. 

ORB Register 1 ~ > 5 Start the subchannel. 

I 1 
6 I f I/O started, return to caller. 

7 If the status is pending, wait for 

an interruption and retry the I/O. 

8 If the subchannel is busy, set the 

AMDSASIO return code. 

Output 

CIOCHP 

• i .1 SVC(SVCTCP) I I" 1------1 

ORB CIOCHP 

~ b"t-I ----I 

10DB 

• t II AMOSAWAT I 
RCODE 

>f 8 

RCODE 

9 I"h, ,"""h,"ool I, "0', op,,,,,IOool , ! : 16i 
set the return code, indicate that 

there is no interrupt expected, mark 10DB 

the 10DB as unavailable, and 

display an error message to the 

operator. 
'! Ilsvc (SVCCON)I! AM00151 

~~~-><' ) 
Return

'-' l." '-'

C
r'>
t'J)

= rIl
t'J)

.r.
~ :::0
I» t'J)

;:e ~ .., .., ;. ;::;.
r;; ~ =-

:;:
'"tl I» .., -c t'J)

"CI
..,

t'J) ;. .., r;; -"< C
C, ... ;; -== :;: :;: :::

o ,
j

»
':)
)

!
!.
l ,. .
... c

r

Diagram SADMP-38_ COMMONIO - Subroutine of AMDSASIO (part 2 of 2)

':xteJ'ldad Description

1 If the channel program Ilas virtual addresses
(lOOBCHPR = 0), COMMONIO calls AMOSATCP

to translate the addresses tl' real.

2 COMMONIO initializes the operation request block
(ORB) by setting a pointer to the 100B and the

channel program (CIOCHP). COMMONIO indicates that
the CCWs are format 1 CCWS, and that all paths should
be enebled for the device.

3 COMMONIO Indicates that an I/O Interrupt is
expected (J00BINTX=11.

4 COMMONIO places the subsystem identifier ('SID')
into register 1, where it is used by the ~tart sub­

channel command (SSCH).

6 COMMONIO issues the SSCH command passing it
the ORB.

6 If the SSCH command was successful, COMMONIO
had no more processing to do. It returns to the

caller.

7 If the SSCH command indicates that the subehannel
has status pending, COMMONIO calls the subroutine

AMOSAWAT to handle the I/O Interrupt. When
AMOSAWAT completes, COMMONIO executes from
step 2 to retry the SSCH command.

8 If the SSCH command indicates that the subehannel
is busy, 11/0 has already been started to that sub­

channell, COMMONIO sets the return code to 8.

9 If the SSCH command indicates that the subehannel
is not operational, COMMONIO sets the return code

to 16. COMMONIO indicates that no I/O interrupts
are expected (lOOBINTX=O) and that the 100B is
unavailable (lOOBUNAV=1). COMMONIO issues message
AM00151 and if the error occurred on the output volume,
it issues message AM0032J. COMMONIO these messages
by calling the virtual dump console service routine,
AMOSACON, via an SVC instruction.

Module Label

(' r

r ::C ;::;.
", ",

= ~ ~ ...
=- ;::;. -S

",
Q.

~ S ", .. ~
~. t;' ...
'" ~.

ij;"

"'tl 10
10 --,:I == ", s: ~:
10
0;
S

~

~
)
I
I ,

i.

Diagram SADMP-39. WRITT APE - Subroutine of AMDSASIO (Part 1 of 2)

Input

100B BCT buffer

IIOOBREO I 11-1-,~=I

.. I I
TICS in
channel
programs I I I

OUTCHP

~ D

l'008'NTXI·o- - - - - ---

~

1 Create a CPB and build the output
channel program in it.

2 Hook the BCT onto the CPB,
indicating that the BCT is waiting
for the channel program to
complete.

3 Add thti"CPB to the left of the
output I/O queue.

4 If another CPB is on the queue,
chain the current one to its right
neighbor.

5 If this is the only CPB on the queue
and the subchannel is inactive, start
the I/O.

l,

Output

CPB

~ OCP

CPB BCT

IQCAOOWNI I BCTIOQP

100B

SVC (SVCTCP)

COMMONIO

'-'

r
~.

= ~
Q.

a:: ::
III ~"
II> -.. ... ;- ;:;-- -'" a.
I~

"C lID

~ i
"g -.
~ 1!.

'-"! .."

Q e.
.... -- = == :: a:: :s

<:
..,}

.0 ,

.0

P ...
]l

j
;)

~
i
< r ...
;C

~
j
;)

;
o
.0
..,}

-o
.0
l'\

j
l" ,
~
D
1

:..

~ , ,
l.. ..
)" ,
D

?
l ,
"' ..
'" ..
;)
f.l ..
;)

'" ..
g

~
I

'" ~

r r

Diagram SADMP-39. WRITTAPE - Subroutine of AMDSASIO (Part 2 of 2)

Exwnded Dncription

1 WRITREAO increases the count of lines on the
screen. If the screen would be filled by that

amount of lines, WRITREAO sets the CCW command to
ERASE/WRITE and resets CTLINES to 1.

2 WRITREAO computes the 12114-bit screen address
from CTLINES and the known screen width

(SW3217).

3 The channel program sends a WRITE or ERASEI
WRITE command to the console, unlocks the

screen if a reply is expected, and furnishes the screen
address and the data to be written.

4 The 710 macro points the console 100B (XIOBCON)
to the channel program and calls AMOSASIO.

5 If a reply is expected, WRITREAO calls AMOSASIO
to wait for an attention interruption caused when

the operator presses enter.

6 WRITREAD builds a channel program to read the
replv and calls AMDSASIO (Steps 3 and 41.

7 WRJTREAO converts the reply to upper case.

Module Label

r

t"'" ~ ;;.

'" :::s '" '" -",0 ...
=- ~
s: '" =-= s: -'" ... = e: ;'

'"
... ;.

I (;j

~
Q

a
...... -"C == '" s: ... -'-"! 0:

Q -== s:

:.. Diagram SADMP-40. AMDSAWAT - Subroutine of AMDSASIO (part 1 of 2)

" :..

Input Process

100B
WATPSW

L-----...J::=::::::=====~:~) 1 Build a wait code for a wait PSW. ~
100B

l,

I===========~====~~> 2 Wait for the I '.0 if:

100BWCNT

100BWCNT

100BERR--

• Th is is the fi rst interrupt
request.

• This is an intervention request.

• This is a standard wait request.

3 Increase the 100B wait count.

4 Wait for an interrupt.

5 Decrease the 100B wait count.

6 Caller can request to continue
waiting.

• 7 If an error occurred, set the
AMOSASIO return code.

~

ENABLED
WAIT

Return to caller

Output

WaitPSW

RCOOE

ReODE or

o I

~

t"""
~-
=
~ c.
!: ~ = tI>
- til
tI> -.. .. ;- ;:r
;;- ~

c.

"C :: .. -co tI>

~ ;-
::t. Cii
~ co
co -
- == == !: !: ~

(" (' ('

Diagram SADMP-40. AMDSA W A T - Subroutine of AMDSASIO (Part 2 of 2) r' ::
<: ;;" :;Ie
.j ~ n>
~ Extended Deseriptioa Module Label = '" -~

.., - =- ;;"
>0 ~ 0 :: =-I ... 10) :: -n>]I AMDSAWAT builds a wait state PSW. AMDSAWAT places a wait state code and the device AMDSASIO AMDSAWAT ... = ;" ~

number into the PSW. The PSW is enabled for I/O, external, and machine check interrupts. [i;' ::::!" = I r;;

""C <=
Z For an interrupt request (IODBINRQ = I), AMDSAWAT waits, whether or not the device is active; ..., ... -it returns after the first interrupt. = ~ CO

n>

~ ..
For a first interrupt request (IODBFINT = I), AMDSAWAT waits for an interrupt only if the -'<
device is active, then returns once an interrupt is received. =, -For other types of requests, AMDSA WAT waits until no more interrupts are expected (I0DBINTX =
= 0). ::

3 AMDSAWAT increases the wait count in the IODB.

4 AMDSAWAT loads a wait state PSW (WATPSW) via the LPSW instruction.

S After the interrupt is received, AMDSA WAT decreases the wait count in the 10DB. After the I/O AMDSASIO 10WATRCT
has completed or there is a PCI interrupt from a tape, AMDSAIOI (AMDSADMP's virtual d!Jmp
I/O interrupt handler) returns control here.

7 If the 10DB shows an unrecoverable error, AMDSAWAT sets the return code to 12.

Diagram SADMP41. AMDSASkR-System Restart Handler (part 1 of 4)

Input

Entered Via
SVC

Output

1 Reset CTAUDACT flags so
?ERROR will work.

=~====~~ CTAUDIOX I =OFF

CTRCB
RCB Queue

1 : : :> 2 Enqueue the restart RCB.

3 Call for a dump.

CTIODB

1 : 1 :> 4 Wait for ali paging I/O to halt.

i 1 tl

XIODBOUT

5 Wait for all output I/O to halt.

l,. ~

[CTAUDRCR 1 =OFF

CTRCB

New
RCB

?ERROR REASON (ECRESTRT)
DUMP

?IO CLOSE

?IO (XIODBOUT) WAIT

SADMP
Self-dump
on Output
Tape

Paging
Devices
Quiet

Output
Tape
Quiet

~

i
1:1
j€
~

:: "
IiO ~
;- ~
S- ts-
FE fb

~

I ::
'"= II> a tb
1 ~.
:l t;;
'< = Q ...

.... -- = = ::
:: ::s

~

r

Diagram SADMP41. AMDSASRR-System Restart Handler (Part 2 of 4)

Extended Detlcription

1 AMDSASRR turns off CTAUDRCR and CTAUDIOX
to show that all error recovery modules can be used.

3 AMDSASRR sets CT AUDDMP to call for a diagnostic
dump, then calls AMSSAAUD. AMDSASRR assumes

the operator restarted SADMP because of an error.

4 AMDSASRR proceeds down the 10DB queue (CTIODB)
looking for paging 10DBs (lOOBPAGE-ONI. For

Module

each paging 100B that has an active device (lODBINTX=ONI,
AMOSASRR calls AMDSASIO to wait for the paging 1/0
to complete.

5 AMDSASRR calls AMDSASIO to wait until all output
1/0 to the output tape has completed ClODBINTX=OFFI.

The output tape has an 100B of XI ODBOUT.

Label

r r

t"'" " ;::;. ~ I'D = '" It -..
Do

;::;.

~
lb
Do

ID
~ ;;-

:::l. ID
ID ;;-
IE .. S·
I IE
~

0=

i
.... -= .. ~

~ :s
0= -= ~

f" Diagram SADMP-41. AMDSASRR-System Restart Handler (part 3 of 4)
......
0'1
:xl

~
<:
;t.I

til
~

r;
:::I
0.

~
»
;::
:r
~.

8"
nl
;t.I
~

:;!
~.

» s.:
'" r
::l
rQ
ri·

,....
~
~
:x> .
:x>
.a .
~

5l

~
~
:1.
Q

:r ...
;a
~
')
~

~

o
10
..:J

o
10

"

Input Process Output

SUT SADMP Storage

J====~:=====::::: > 6 Reset SUT to indicate that no i ")I I
storage is allocated. Y L-.J

SADMP

Now
Logically
Unallocated

CTRCB RCB Queue : :>7 Dequeue the restart RCB.

~-~ 8 Reinitialize the SADMP virtual
dump.

I
..CTRCB ~

'" '"

To Entry Point
RESTART in
AMDSAPGE

Original
RCB

'"

t"'"
~.

= fIl
~
1:0-

::: ~
CD ~

~
.., -.. .. ;;. ;:;.

~ t;'
Q.

I 3:
"c:I ~ a ~
~ :!.

CD .. 1ii -'-'! = = -.... -- = == 3: ~ ::

r

Diagram SADMP41. AMDSASRR-System Restart Handler (part 4 of 4)

Extended Dnc:ription

6 AMDSASRR setsSUTFUNIN=FUNIN to indicate
that no storage is allocated.

7 AMDSASRR dequeues the restart RCB.

a AMDSASRR branches to label RESTART at the
beginning of AMDSAPGE. This causes AMDSAPGE

to reinitialize all SADMP resources and rerun the virtual
dump.

Module Label

r r

t"" ~ fi'
tD
::I '" ~ -... =- fi'

3:
;;)
=-= 3: ;;) ... = ;. ;;)

:;" ... ;.
:;"

""Cl Q

a -~ = flO 3: ...
q ~

Q
;;
3:

D ,
:I.
D
:I.

~

~ r. ..
D

~
i
fl
D

~
~. ,
~

i:
o

)

~.
~

-<:
-.J
lO
~

lO
C>
I .,
]I

1
)

~
l.
~

~
...
:tI
I:
1
)

3
c
10
..)

C
10

"

Diagram SADMP-42. AMDSASVI-SVC Interruption Handler (Part 1 of 8)

svc
Input

FLCSVCN }----

FLCSVCN FLCOPSW r -
CTSVCSTR

'-'

1 Save the registers in page O.

2 Determine whether th is is a
• return SVC (X'FC') or a call

SVC (all others).

• If this is a return SVC,go to • Step 12
Step 12.

3 Trace the call SVC.
CTTRACE

4 Put a new status element on to : >1 ISVC
the stack and initialize it. Stack

• If the stack is full, call
AMDSAAUD to dump SADMP,
trace the call, and recover.

cJ

4.

TRACE

t:
f')
fD
:I

~
Q.

So 3: " aD fD

~ i!!.
:::!. i=S. aD -I,;;' fD

Q.

I 3:
~ aD a ~
'g :::!.

aD ... ;;; --...: = =, -- == == 3: 3: :s

4.

~

Xl

P
.;)

['j)

'J
:>
~
::1.
C/

:r
....
:xl
~
'J
:>
3
.Q
Xl
v

.Q
Xl
~

'J
::r"

'" ::l
; ...
~

"/l
'" ::I
:l..
I

~

5"
::I
1>

;;l
~
:I
"' I:. ,
:J
"/l
l>
:J ,
:s
J::o.
I

--.l

r ('

Diagram SADMP-42. AMDSASVI - SVC Interrupt Handler (part 2 of 8)

ExteDlled DescriptioD

:z

3

4

AMDSASVI copies the registers at entry into PGOSVISA in page 8.

AMDSASVI detennines whether the SVC is a return SVC (FLCSVCN = X'FC') or a call SVC
(FLCSVCN, = X'FC'). For a return SVC, AMDSASVI goes to Step 12.

AMDSASVI makes a trace table entry (CTTRACE) showing the SVC old PSW and the interrupt
code FLCSVCN. CTSVCSTV points to the SVC stack (SVCST ACK), which contains SVC status
entries (SVCSTAT) for the current SVC calling sequence.

AMDSASVI increases SSINDEX by one to add a new stack entry. If the stack is full, AMDSASVI
branch-enten AMDSAAUD to tenninate the caller. AMDSASVI copies control register I into
SSTDCRl, CTASIDA into SSASID, CTASCBA into SSASCB, the SVC old PSW (FLCSOPSW)
into SSPSW, the caller's save area address (PGOSR13) into SSSAR13, the caller's return point
address (pGOSRI4) into SSORIG14, and the SVC number (FLCSVCN) into SSNUM.

r

t'" ~ ;:;.
It> tt>

'" =
'" ... Module Label It> ;::;. =- ;;-
~ =-- 3: tt> = ::!. ;;-= /ij" :!.

I ~
'"d 0 -0

"= = It> 3: ~
~ :s
0 -= 3:

..J
J

..
il
a
e
~

I
I
l..
I
l..

...
• l

::
~

I
l
t
;
I

f:J
I
1 ;.
I

...
i: ,
)
l ;.

<:
..)
10

10
D ..,
:li
")
)

!
i.
l r,
")
)

I
D
o
.)

D
o
"

Diagram SADMP42. AMDSASVI-SVC Interruption Handler (part 3 of 8)

Input Process

SVC Linkage Table, '\
t=====llndexed by SVC
t::=::::::j Number (FLCSVCN)

CTSTDM CTASCBM CTSTOO '----------III I [_mmm_ mm_ I
CTASIDD CATASCBO

'------------IIIL....--...-.---

'-'

5 Set enablement bits for 110,
external, and machine check
interrupts.

6 Set OAT on or off.

7 If necessary, change the address
in register 1 .

PGOSVISA

PGOSR1

Control Register 1 CTASI DA

L....----......I Lo-..-I ----I

8 Determine whether to execute in '~
the master scheduler address 1 1,.---------,
space or the dump address space. I. ______ -.J

ASCBA

SVC Old PSW

9 Put address of called module into : :>I
PSW.-------'

'-'

Control Register 4
i

Primary
ASIO

'-'

t'"'
;:r
ro = ~ =-
~ :::c
I>:> ro ... '" ro -.., .. ;. ;:'; . - -'J1 f'I)

=-
::::

""0 '" .., -Q f'I)

-= ::::!.
ro '" ... -... '"
'< = Q -. -- = = :::: ~ :s

r

Diagram SADMP42. AMDSASVI-SVC Interruption Handler (Part 4 of 8)

Extended Description

5 The called module has an entry in the SVC table
SVCTABLE indexed by the SVC number. The

table entry SVCLlNK describes the environment and the
entry point address to be given control. If SLDISABL=ON,
AMDSASVI turns off the 1/0, external, and machine
check enablement bits in the SVC old PSW. If
SLENABL=ON, AMoSASVI turns these bits on.

6 .If SLoATOFF=ON, AMoSASVI turns off the OAT
bit in the SVC old PSW. If S LDA TON =ON,

AMoSASVI turns on the OAT bit.

7 If SLREG1=ON, the caller is passing a parameter in
register 1 that may need to be relocated because the

two routines have different OAT modes. Change the
address in register 1 from virtual to real or from real
to virtual, if this is required.

8 AMoSASVI determines whether to execute in the
master address space or the dump address space.

If the called module is OAT-on and SLASIOD=ON, the
called module runs in the dumped address space.
AMoSASVI sets control register 1 to CTSTOD, CTASIOA
to CTASIOD end CTASCBA to CTASCBO.

Module Label

r

Extended Description

If the caller module is OAT -on, SLCR 1 =ON and control
register 1 equals CTSTOo; the called module runs in the
dumped address space.

If the caller module is OAT-on, SLCR 1 =ON and control
register 1 equals CTSTOM; the called module runs in the
master address space. AMoSASVI sets control register 1
to CTSToM, CTASIOA to CTASloM and CTASOBA to
CTASCBM.

If the called module is OAT-on, SLCR1=OFF and either
SLMASTER=ON or the caller is OAT-off, the called
module runs in the master scheduler address space.

If the called module is OAT -on and none of the above
is true, the called module runs in the currently active
address space.

9 AMoSASVI stores SLAooR into PSWIA in the
SVC old PSW.

Module

r

Label

r ;:;. ;II:!
<to <to

= '"
~ -... =- ;::;.

3::
;:;
=-

:0; 3:: ;:; .., = ;. ;:;
r:;; ... ;.
I r:;;

""0
Q -. ..,

Q --= = <to 3:: ...
~
Q -= ::

~ Diagram SADMP-42. AMDSASVI-SVC Interruption Handler (part 5 of 8)

...J
~

!::
c:
n
:a •
~ ,
l. ,
l.

~

i
:r
:1:

~
~
n
~

S.
~
~

5.:
"
:>
q :;.

-< v
)0
I

)0
o
I ...,
y
J
)

3
i
'l :r
....
Xl .. ::..
')
~

l
-D
()

J

D
()

1\

Input Process ~ Output

I PGOSVISA
...

Provide a save area for the Save Area
I : >10

Save area in new SVC stack entry.
~".d mod"'..]]

PGOSRB

., X'OAFC' 11L------I
PGOSR14

11 Point the caller's register 14 to a_--.. ____ ---'

SVC Linkage Table, indexed by
SVC number in top SVC stack
entry.

return SVC instruction.

SSNUM

~

~. -] :> 12 I f ~ecessary, restore caller's
register 1.

top SVC stack entry.

~====::======~:> 13 Restore the original value of
registers 13 and 14, and the
caller's psw.

14 Trace the return, using the
return SVC number and the
orginal SVC old PSW.

o

\,

..... Step 17

PGOSVISA
J>..

]]
v

PGOSR1

PGOSR13

PGOSR14

SVC Old PSW

)I
~ .~--------------~

TRACE

~=========~G New Entry

~

t"'"
~r
:I
~ =-
~ ::
1111 ~
tb ~
:3. ::!.
1111 f') - -'" til =-
"0 ~ ... -o til
~ ::l.
.. e:..
- II> ~ Q
o -.
.... -
- t:=
== 3:: ~ os

r

Diagram SADMP-42. AMDSASVI-SVC Interruption Handler (part 6 of 8)

Extended Description

10 AMDSASVI points the called module"s register 13 at
PGOSR 13 to the SVC stack entry save area SSSAVE.

11 If SLNCR=OFF, AMDSASVI points the called
module's register 14 at PGOSR14 to the return SVC

instruction at PGOSVCRT register 15 to the called mod·
ule's entry point.

12 For return SVC _, AM DSASVI uses the top SVC stack
entry and the SVC linkage table entry for the module

being returned from.

If SLREG1=ON in the linkage table entry and DAT mode
is being changed, AMDSASVI relocates the caller's
register 1.

13 AMDSASVI copies SSAR 13 into PGOSR 13,
SSORIG14 into PGOSR14, and SSPSW into the SVC

old PSW FLCSOPSW.

14 AMDSASVI adds an entry to the trace table, using
the return SVC number and the original SVC old

PSW.

Module Label

r r

t- ~ ;:;.
~

ft)
fI>

~ ::
=- ;:;.

:: ;;-
=-

l1li :: -ft)

::!. l1li
l1li ;;-
Fil" .. S·
I Fil"

~ =
= -~ == .. :: -'< ::

= -== ::

:.. Diagram SADMP-42. AMDSASVI-SVC Interruption Handler (part 7 of 8) ..
...)

"

Control Register 1 CTASID

15 Restore the caller's control
~ I I register 1, the ASI D, and the

ASCB.
CTASCBA

I I
SVC Stack

SVC Stack

"
16 Obtain the next SVC in the stack. ..

PGOSVISA General Registers Control Register 4

~ Primary I .. ASID) 17 Restore registers from page O.
" ..

r-;:S.

FLCSOPSW f!> =
I) 18 Pass control to the new

" environment.

~ =-
~

:;
::0

I» ~ • ;;- '" -.. .. ;;. ;:;.
1ij <i' =-

~
'"0 = .. <i' <:>

"C:I :!.
.." = .. tii 4" Q
Q -. -- = 0=

~ ~

~ ~. ~

t"""
-<
N
00
I

......
00

'f'
w

©
n
o
~
::!.

OQ
::r ...
.....
t=
s::
n
o
?
......
'CI
00
J'..I
......
'CI
00
0\

n
::r

i ...
~

en
S"
5.
>
0"
::s
CD

I
~
s::
ti
~
ti
s::
,:g

.j:o..
I --.l
-.l

('

Diagram SADMP-42. AMDSASVI-SVC Interruption Handler (Part 8 of 8)

Extended Description

15 AMDSASVI loads control register 1 from SSSTDCR 1,
then copies SSASID into CTASIDA and SSASCB

into CT ASCB.

16 AMDSASVI decreases SSINDEX to obtain the next
SVC in the stack.

17 AMDSASVI copiesCTASIDA into control register 4
and loads all 16 general registers from PGOSVISA.

18 AMDSASVI loads the modified SVC old PSW
FLCSOPSW.

Module Label

(' r

r-;=;. ::c
CD CD
::::l til

~ -..,
;:::a.. ~.

3:
CD
Q.

I» S ;;-.. I» ;. ;;-
r;; .., ;.

r;;

'"C 0 -. ..
0

'"1:1 cc
CD :: .. -~
0 -. -== 3:

f" Diagram SADMP43. AMDSATER-Virtual Storage Dump Tape Error Recovery (part 1 of 2,
..-
-...l
00

a:::
-<
U'l

~
('0
:;)
0..
('0

0..

;I>
d e:
8
~ =
Cil
U'l
('0

~
~.

~
0..

'" t"" o
(JQ

0'

~
tv
00 , -00
\C)

~

@

~

~
::I.

(JQ
::r
~

......
CC
a:::
~ o .a
-\C)
00

!V
\C)
00

'"

Input

Register 1

'-'

Process Output

10DB

r Locate the CCW to be restarted. : :>1

IRBDSUC

I==~~====T=:> 2 Translate the channel program
L... _____ -I to virtual.

?TRANSCHP I I , I SVC (SVCSIO) I : :>1 Sense Data

IRB t::=::::!====::::;:~:> 3 Check for error conditions and "
take appropriate action. V

New Tape

QId T,p' U"'ood,d

l=======:!======:~> 4 Retry the I/O. New Tape

SVC (SVCSIO)

5 If the error cannot be remedied ; X
or the retr ies have been exhausted, II ~
get a new tape or terminate.

NEWTAPE

?ERROR DUMP TERMINATE • LI ____

l,

Error Messages

<)
New
Tape

AMD051A

AMD0331
AMD0341
AMD0311

Q ldTape
Unloaded

4.,

C
r6
::I

~ =-
~ ~
II> ~
;- ~ ;- ;:;. - -'" "' =-
I~

'"C lID

a ii
~ _.
.. !!.
~ <Il

Q sa. --- = = :: ~ :s

t"'"
-<
IV

~

-00

'P
w

iEil
("')
o
~ .,
OQ'
::r -I:C
~
("')
o
~
.-
IC>
00

.IV
.-
IC>
00
0'\

("')

.§
t; .,
~

rIl
I'>
::s
Q..

~ o
::s
n

o
~
'>
~ o
rIl

~
~

.::!:!

.j::l..
I .-

-....l
1.0

r r

Diagram SADMP-43. AMDSATER - Virtual Storage Dump Tape Error Recovery (Part 2 of 2)

Extended Description

2

3

4

5

AMDSATER locates the CCW to be restarted. IODBCCWA contains the address of the channel
program to be restarted. If the CCW to be restarted is data chained, AMDSATER decreases the
address of the CCW by the length of a CCW to obtain the starting CCW that failed. 10DBSCSW
also contains the IRB status information .

AMDSATER translates the channel program to be restarted from real to virtual addressing.

The IRB status (IODBCSW) and the sense data pointed to by 10DBSENS define the error and the
appropriate action.

The CCWA contains the address of the CCW that is to be retried. AMDSATER calls AMDSASIO
(via an SVC macro) to retry the I/O, and executes steps I - 3 until the I/O is successful or until the
retry count is exhausted. AMDSATER issues the recovery retry I/O and does not wait for the I/O to
complete. If an error recurs, a new call to AMDSATER handles the error. AMDSATER is disabled,
so no recursion can exist.

If the error is uncorrectable, or if the number of retries is exhausted, AMDSATER attempts to
recover by obtaining a new output tape. AMDSA TER passes control to entry point AMDSANTP
via an SVC if the error is a data check, equipment check, a file protection exception, an intervention
required, a loadpoint error or end-of-reel condition. Ifrecovery fails, or if AMDSATER cannot
obtain a Dew tape, AMDSATER issues message AMD0331 to the console. If SENSE data is
available, AMDSATER also issues message AMD0341. If AMDSATER has no output tape left to
write to, it issues message AMD0311 and terminates SADMP .

Module

r

Label

t"" ::C ;:;'
~ ~

= ~ fIJ
~

..
=- ;:;'

s: !ti =-
.D:I s: !ti .. D:I
;' !ti
F;;" ..

;'
I F;;"

"= = -.. = -'= = ~ s: .. -~ ~

= --= s:

of" -00 o

~
<:
Vl

~
rt ::s
~
Q..

>
(l
::r
~.
(')

2
til
Vl
1'1>

:1
~.

> s:
'" r o

0Cl o·

r
-<
N
00 , --00

'P
w

<OJ
("'l
0

"0
'< .,
o<i'
::r -0:::
~
("'l
0 .,
'?
\J;J
00

!" -\J;J
00
0\

Diagram SADMP-44. NEWT APE-Subroutine of AMDSATER (Part 1 of 2)

Input

'-'

[- I

NTVLSP

r-

NTVLSP

Input
Message
ID

1 Write a tape mark and demount

the old tape.

2 Get a new tape.

3 Read the label.

4 I f there is an error reading the
label, reject the tape,

Output

NTVLSP

Old Tape
Unloaded

AMD0321
(Failure to
Write Tape Mark)

AMDOXXA Q

AMD047A

5 Reject password protected tape.)(' I AMD050A

6 Ask operator whether to use an X I AMD045D
unprotected labeled tape.

Return to caller

l,

c=J AMD0491

Q New tape rewound and
ready to use,

New
Tape

'-'

t-
;=;'
I'D
:::::I
<Jl
I'D =-
s: ...
;:; ..,
j;;'
C;;

'"t:l ..,
c
~
I'D ... -~
C -== :::

~
~

'" -., r:;"
;;
Q"

:::
'" ;; ., ;.
(ij

Q ... -0= :::
::

~
IV

~ --00
\0
I

to.>

©

~
::l.
eg.
....
b:1
~
(1
o
-? -\0
00
j'J

\0
00
C\

(1
=r
po
'0
~ ...
7>­
CI'l
S-= Q..

~
0-
~

~
.g
'>
~ o
CI'l » o
~
~

~
I --~

r
Diaamn SADMP-44. NEWT APE-Subroutine of AMDSA TER (Part 2 of 2)

Extended Delcription

1 AMDSANTP writes a tape mark to the old output
tepe. If the write tape mark fails, AMDSANTP

issues message AMD0321. AMDSANTP then rewinds
and unloads.

2 AMDSANTP Issues messageAMD019A, AMOO04A,
or AMOO51 A to request mounting of a new tape.

If the output tepe is a 3480 tape drive, AMDSANTP
writes an appropriate display message to the tape drive.
Then AMDSANTP walts for the tape to be loaded.

3 AMDSANTP reeds the label on the tape. If the
tape hes no label, AMDSANTP accepts the tape.

4 If the tape has a label that cannot be read,
AMDSANTP rejects the tape and issues message

AMD050A to request mounting of another tape. If the
output tape Is a 3480 tape drive, AMDSANTP writes an
appropriate display message to the tepe drive.

5 If the tape Is pessword protected, AMDSANTP
rejects the tape and issues message AMD047A to

request mounting of another tape. If the output tape
is a 3480 tape drive, AMDSANTP writes an appropriate
display massage to the tape drive .

6 If the tape has a label that can be read, and the tape
is not password protected, NEWT APE issues message

AMD045D to ask the operator whether to use the
-labeled, unprotected tape. If the operator does not give
a correct reply to message AMD045D, NEWTAPE issues
message AMD0491 to inform the operator of the syntax
error .

If the operator rejects the tape, NEWT APE asks the
operator to mount another tape, and repeats steps 3-6. If
the operator accepts the tape, NEWTAPE returns to the
celler.

See Dlagrem 45. AMDSATSO - Virtual Storage Dump.

Module Labe.

(' r

t"'" ~

~. ::c
tt>

::I '"
~

.... ...
=- ?;.

~
~ =-

1:1) ::: ~ .. J:o>
j;;' ~
r;; ... =:;.

r:;;-
"t)

Q ...,
a -"1:1 cc
te ::: .. -~ ~

= -. -== ::

~
I -..

00
IV

a::
<:
til

ttl
>< -<I>

&.
<I>
Po
;J>
t=l
e:
~ = ...
<I>

til
<I>

~.
<I>

~
'" t""' o

!G.
o

t""'
>-<:
N
00 , --00

'P
w

©
(')
o
~ ...
Oti·
::r --I:I:l a::
(')
o
? -'-0
00
,.tv -'-0
00
0\

Diagram 45. AMDSATSO-Virtual Storage Dump Tape Error Recovery for 3480 Tape Drives (Part 1 of 6)

rnput Process

I. Register 1

I ~'ODB
I I ... > 1 Locate the CCW to be ..

restarted.

2 Translate the channel program
to virtual.

: Isvc (SVCTCPll 7 TRANSCHP
... ..

IODBSENE

I I > 3 Terminate if sense command
error occu rs.

?ERROR DUMP
TERMINATE ...

--:",SVC (SVCAUD!t: ..

~ '-'

Output

I
I

RESCCWA
... I I } ..

AMD0331

.. C) }
r

AMD0311

C)
Disabled wait PSW

I X'4F22F1' I

t""' ;:so
I't>
::I

'" I't> =-
3: "
'" ~ - '" I't> -.. .. ;. ;:s.
;; -I't> =-I 3:
-= '" .. ~ <:)
'C ::::!.
I't> '" .. ;; -'-'!! <:)
<:) -- == I:I:l 3: 3: ::

'-'

~
IV
00
I --00

\C)

.:..
@

(j
o
~
::1.

OQ
::r
......
t:=
~
(j
o
fJ -\C)
00
.N -\C)
00
0'1

(j

~
1 ..,
~

t/.)

[
~ g
o
~
'>
~
o
t/.)

> o
~ ,:g

~ -OCI
I.N

r ('

DiaJl'llll 45, AMOSA 1'80-Virtual Storage Dump Tape Error Recovery for 3480 Tape Drives (Part 2 of 6)

Extended Description

1 AMOSATSO loc.tes the CCW to b. rest.rted.
10DBCCWA contains the .ddress of the ch.nnel

progr.m to be restart.d. If the CCW to be rest.rted II
data-ch.lned. AMOSATSO decr the .ddr ... of the
CCW by the I.ngth of. CCW to obtain the starting CCW
th.t f.iled.

2 AMOSAT80 tr.nsl.tes the ch.nnel progr.m to be
restarted from real to virtu.1 .ddressing.

3 If .n error occurred on the .en .. comm.nd iSlued
previou.ly by the 1/0 .ervlces. AMOSATSO writes

error mes •• ges AM00331.nd AMOO31 I .nd termin.tes
SADMP.

Module L.a.el

r

t"'" s:
t')' ~
t'D t'D ::s rI>

l~
~ ;;­

.,;;;0. =-
i ::::
... II) ;;- ;'"
;: :3.

I ~
'"= = ... -= -'g = ... :::: .:t :s

= -= ::

~
I

00
~

~
<
til --tr1
~
C!>
::I
P­
C!>
P-

>
d e: g
a­
@
til
C!>

~
(=i'
C!>

>
5:
'" r
o

(JQ
(=i'

r
-<
N
~ -00

'P
w

©
(j
o
~
::l.

(JQ
::r'
til
~
(j
o
fJ
'Ci
00
p

'Ci
00
0\

Diagram 45. AMDSAT80-Virtual Storage Dump Tape Error Recovery for 3480 Tape Drives (part 3 of6)

Input Process 7 Output

100B

IRB

AMD0331
100BSCW J
100BSENS

=~~====:~~~ 4 Check for error conditions
and false appropriate action. ::;::::::======::!=:: ~ <=)

4.,

SENSE

RESCCWA

I :> 5 Retry the I/O. ... "'1 svc (SVCSIO) I ...

6 If retry is not warranted, get a
new tape or satisfy the inter-

vention required condition. _I I
• svc (SVCNTP)

• _I SVC (SVCINA) 1

6
c..,

New tape

Q
Old tape
unloaded

Q
')

... Error messages

')

~AMD004A
AMD019A
AMD051A
AMD0341

Tape

Q
AMD014A <)

t"" Q.
:::s
~ =-:: ~ = ;;- rI> -... ... ;. ;:;-
~ -tD =-
'"CI

::
= ... ;;-Q

~ ...
tD ;. ... ~ ~ Q
Q,

;; ;;
:: ::

"

4.,

l'
><:
~

0/' --00

'f
w

@

(')
o
~
::l.

<§. = ~
(')
o
fj

\C
00

.J'l -\C
00

'"

(')

=­I>'

~ ...
f-
CIl

S-::s
Co
;>
0"
~
o c:: .g
'>
~
o
CIl
;J>
o
~
~

.J;:a.
I

........
00
Vl

r r

Diapam 45. AMDSATSO-Virtual Storage Dump Tape Error Recovery for 3480 Tape Drives

Extended Description

4 The sense data and the IRB status pointed to by
10DBSCSW define the error and the appropriate

action. AMDSAT80 issues m.sage AMD0331 to notify
the operator what type of I/O error occurred.

5 If the error is a channel data check, a chaining
check, a demark data buffer error, an environ·

mental data present error, a block id sequencing error,
a degraded mode error, or a log and retry error,
AMDSAT80 retries the channel program.

6 If the error Is a tape length error, a unit exception,
or a file protected error, AMDSAT80 Informs the

operator via a message to mount a new tape .
AMDSAT80 passes control to AMDSANTP via an SVC.
AMDSANTP rewinds and unloads the old tape and
obtains a new tape.

If the error Is an intervention required condition, e drive
reset error, a manual unload error, a load failure or a
load assistance error, AMDSAT80 informs tha operetor
that intervention Is required on the tape drive end passes
control to AMDSAINA via an SVC. AMDSAINA han·
dies the intervention required processing .

Module bllel

(part 4 oU)

r

c: " n =-= ttl ttl

= ~ '" ...
ttl ~. =- ;;-s: =-
ID s: -ttl ::l. ID -ID ttl
r;;- ... ;.
1 r;;-

""CI c -c -.::s = ttl s: ..
~ :s
c -= s:

I

~.,.

MM
00 00
:E:E
««

o

oJ
:c
~
~
o
~
o
c
.. G> .- ...
... .. o c
~ .~ _ G>

- ...

~oo
'm u:
~ ('II

"C ('II
G> u.. - .,. .0 •
:I x
i5

a
;:)
« o
>
~
o
> en

a..
:E w
;:)1-
0«
a:z
0-a::E
a: a:
WW
..... 1-

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

~~--~

..
:s
Q. cL-__ ~

4-186 MVS/Extended Architecture Service Aids Logic L Y28-1189-3 C Copyright IBM Corp. 1982, 1986

~

L

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

,-.
10

'e
10 ...
l

J
8.
~
= CIO ...
f"'I .. .s
~ "I

t
~ ...
H ac
rs ~

~ 'I
Ie

2

~
Do

J ..: " ~ c o •

t ¥-
ii~ 0 ... 2~ fI)

J
ac(

~&
c(I

I U) E
0 o ..

=
~ 0 c(..

~
. t

c: S I
Q .. :J

::I t Iii';~
-< liii~

!
-'= 0

vi oc(c(... -U)U)

J I
iiO; .. ~ ..
.fc(1! , ·e

)(..
III ,

LY28·1189·3 © Copyright IBM Corp. 1982, 1986 Chapter 4. Stand·Alone Dumn (AMDSADMP) 4.1 R7

~
I

00
00

~
<!
V:l

~
c;-

~
0.
)-
6 e: g
e ..
Cl>

V:l
Cl>

~.
Cl>

)-
5:
'" t""' o

OCI n·

t""'
-< tv

~ -......
00

'P
w

©
n
0
'0
'<
::l.

OCI :r ...
......
CXl
~
n
0

-?
......
\D
00
!'->
......
\D
00
0\

Diagram SADMP46. AMDSAUCB-UCB Search and [oDB Update (part I of 6)

Input

r---, I : : :> 1 • Receive the input UCB
address.

ucaRea ~

10DB

UCBOB

• Enqueue the UCB RCB.

If there is an unexpected
program check, set an
error return code and exit.

• Preset a return code.

2 Search for an 100B.

If no 10DB is found:

• CreateanlOOB,SCHIB,
sense data area, and DDXD.

• Check the validity of the

Return to the
Caller

UCB. • II ?VCHK

l,

I f the UCB is inval id, set an
error return code.

~

Output

c ,.,
ft> = en
tt>
Q.,

:: ::
:::0

DO ft>

;;- :;!:. ; . ;:;.
:;; ;;-

Q.,

I 3:
'" DO-
<= tt>

~
... ; :;; .-

'< = 0 -..... -- = == ~ 3:

~

t"'"
-< IV
~
00
\0
I w

©
("l
0

Sl
::!.
JQ
:r
.....
1:1:1
~
("l
0

-?
......
\0
00
~
......
\0
00
0\

("l
:r

i ..
f>­
til
11:1

8-
:>
0' ;
tl

~
'>
~
tl
til

~
~
-:g

~ .-
00
\0

r
DiapIm SADMP-46. AMDSAUCB-UCB Search IDd 10DB Update (Part 1 016)

ExtInded o..riptlon Module L

AMDSAUCB COlMlrts I UCB Iddrea into In 10DB
Iddr .. for the macro interfece 110 OPEN.

1 AMDSAUCB at. up the UCB be. map, enqueue. I
UCB RCB, end pr .. ts I return code of O. If

AMDSAUCB encounter. an unexpected progrlm chack
when it triel to enqueue the UCB RCB, AMOSAUCB
ats an error return code of 20 end exits.

2 AMDSAUCB •• ches the queue for an 10DB to
match the UCB. If AMDSAUCB doe. not find a

matchlnglODB, AMDSAUCB cre.teun 100B, end
I corrllPOf\dl"ll SCHIB, ana data •• , and a DDXD,
thin call. 7VCHK to check thl validity of the UCB. If 1VCHK
the UC8 II Invalid, AMDSAUC8 au an error return
code of 4.

r r
~ ::
f;. i;'
~ fIJ
::::s _

j€ :::!.
~ ~

!: ~ ... !: ;:; ., ... _. -... ~ - .. fIJ _. ...
I 1il"

'"C sa.
a -
'i = ., !:
4" "
Q -= !:

f"' Diagram SADMP-46. AMDSAUCB-UCB Search and (ODD Update (Part 3 of6)
.....
~

~
<
~
~
~
8-
B.
:> g.
~.

2:
@
t:Il
~

~
~r
:> s:
'" r' o

0.9.
(")

r'
-<
N
~
00
10
W
©
(J
o
'0
'< ... OQ.
::r
~
CtI
~
(J
o
?
.....
10
00

J'->
.....
10
00
0--

IOOBSCH

r

Register 1

I

SCHV

I

SCHV

r 0

l,

") 3 Check subchannel 10.

- If the subchannel 10 is
invalid, set an error return
code.

IOOBSCH

I ..) 4 Enable the subchannel. ..
- If the subchannel is not

operational, set an error
return code.

.. d .) 5 Check the subchannel eVlce

... number.

..
- If the subchannel device

v
number is invalid, set an
error return code.

L.

Register 15 ..
~ 8 I -y

Register 15

)I 12 I

Register 15 ..
16 I ')I ..

~
!D
::I
~ =-
3: ~
ID !D - fIl
!D -':!. ;;!-
ID
r.;; ;;-

=-I ::::
~ ID .. -C !D

'CI ..
!D ;. .. r.;; -'<

~
~ --= = :::: 3: :s

~

('

r
-< Diagram SADMP46. AMDSAUCB-UCB Search and IODB Update (Part 40(6)
I'-.l

'f'

00

'f' w

©
(]
o
~
~.
:r ...

Extended Description

3 AMDSAUCB checks the subchannellD. If the sub­
channel is invalid, AMDSAUCB sets an error return

code of 8.

4 AMDSAUCB enables the subchannel. If the sub·
channel is not operational, AMDSAUCB sets an

error return code of 12.

;; 5 AMDSAUCB checks SCHV, the subchannel device
s:: number. If the SCHV is invalid, AMDSAUCB sets
Q an error return code of 16.

-?
.....
'-0
00
I'-.l

.....
'-0
00
0\

~
(t ...
~

r
f
':' s:: g
> s::
':' en
>
':' s::
."

Module Label

(' ('

t""' ~

i;l. ~
= '"
.~ ct
Q.

;;.

~
;;-
Q.

ID 3:: ;;;-.. ID
iii· ;;-
1il" ..

iii·
I 1il"

'"= c
Q -"= = ." 3:: .. -~ :s
Q -== 3:

f"' Diagram SADMP-46. AMDSAUCB-UCB Search and IODB Update (Part 5 of6)
......
\0
N

~
<::
[/l

---tTl
~ ...
C1>

5.
C1>
0..
)-

~
~ o ...
c:: ...,
C1>

[/l
C1>

:!
5·
C1>

)-
0.:
CIl

b
OCI
5·

r
><:
N
00 ,

00
\0 ,
v.>

@

(J
o
~
::l.

OCI
::r ...
.....
I:tI
~
(J
o
-?
......
\0
00
,!'->

\0
00
0\

Input

10DBNG 10DBUNAV

10DBNG

'--_---II or

RCB Queue

~

Process

6 Verify that the device can be
used.

• If the 10DB is invalid, sets
fields and issues a message.

• If an 10DB is found, check
if device can be used. If the
device cannot be used, set
an error return code.

7 I f this device is a paging storage
device and the current UCB is
for the base exposure, call
AMDSAUCB to get the 10DB
for the paging exposure and
attach it to the base 10DB.

8 Dequeue the UCBRCB, return
the 10DB address, and return
to the caller.

L

SVC(SVCUCB)

Output

10DBNG 10DBUNAV

Register 15

Paging I OD's

10DBBASA

DDXO

- ~OOXI
~----~ ~I----~

Original

RCB~
Queue

Register 1 100B

l,

r ;:;0
tI> = '" tI> =-
~

r:
:::cI

10> tI>

iii '" -.. ..
;0 ;:;.
r;;' iii =-
'"0

~
10> .. -Q tI>

'CI ..
tI> ;. .. r;;' -~ Q
Q ;; ;;
~ ~ ::

r

t"'" ..:: Diapam SAlJMP46. AMDSAUCB-UCB Search and 1008 Update (Part 6 of 6)
N

~

-00

'f
w

©
(')
o

" -<
::I.
JQ
::r --t=
~
(')
o
?
\0
00
N

\0

Extended Description

6 AMOSAUCB attempts to open the device that the
100B represents. If the 100B is invalid and the

device cannot be opened, AMOSAUCB indicates that the
100B is invalid and marks the 100B as unavailable.
AMOSAUCB calls 710 to issue error message AM00581. If
AMOSAUCB finds a matching 100B for the UCB,
AMOSAUCB verifies that the device can be used. If the
device cannot be used, AMOSAUCB sets an error return
code of 20 and exits.

7 The device is a paging storage device if it is a multiple-
exposure 3360 (UCBTBYT4 = OT3360 and

UCBMTPXP is on). AMOSAUCB turns on 100BPGST to
indicate that the device is a paging storage device.
AMOSAUCB creates the OOXI.

~ 8 AMDSAUCB dequeues the UCB RCB, returns the
100B address in register 1, and returns to the caller.

(')

~
ft ..,
:""
[/l

S" :s
p..

~
0"
;
tl

~
~
~
o
[/l
;J>
o
~
~

t-......

If the device is a paging storage device, the 100B returned
is for a paging exposure.

Module Label

710

(' r

r ;:;. :;I:l
.." .."
:::I ~
'" tD

..,
=- ;:;. -~

tD =-
~

~ ;;-.. ~ ;. ;;-
<ii .. ;.

<ii

"'0
Q -. ..,

Q -'C 0=
.." ~ ..,
Q'
Q -.
0=
~

Diagram SADMP-47. AMDSAUPD-Page-In Management (part 1 o(6)

Input

Register 15

'-'

Process

1 Save registers in save area.

2 Call AMDSABUF to obtain
BCT for page in.

If AMDSABUF fails,
set an error code.

3 Call AMDSARSM to check
page availability.

• If AMDSARSM fails to find a
page, set an error code.

• If AMDSARSM fails to find a
page table, set an error code.

• If AMDSARSM fails with the
address space, set an error code.

• If the page is available in real storage,
reclaim page.

l,

Output

SAVE 1412

AMDSABUF

= ECBUF

Terminate

Return Code

= ECRSMP

= ECRSMS

= ECRSMA

l.,

t""
~.

=
l
~ ~
DO t!>
_ fI)

~
5' ;::';'
Cij ~ =-
I ~

""= D:I a ft
'i ::I. :::\. e.
'<O!! fI)

= So -- = 1:1:1 ~
~ :s

B
'?" --00
10
W
©
(")

~
;" ::r =
~
(")
o

.-
10
00
IV

.-
10
00
0'1

(")
::r
I\>

;-...
f>
til

[
:I>
0'
;
o = g
>
~
o
~ o
~
'"Q

t--I,C)
VI

r

Di SADMP-47. AMDSAUPD - P.ge-m M.nage_eat (P.rt 1 of 6)

ExtetMW DeIcrIpdo.

I AMDSAUPD saves the entry registers in the save area provided by AMDSASVI.

r

1 AMDSAUPD calls AMDSABUF to obtain a BCT for a page in. If AMDSABUF fails to get a BCT,
AMDSAUPD sets the error code to X'OI' and terminates .

3 AMDSAUPD calls AMDSARSM to check if the page is available. If AMDSARSM fails to find the
page, AMDSARSM sets a return code of 12 and AMDSAUPD sets the error code to X'II'. If
AMDSARSM fails to find the page table, AMDSARSM sets a return code of 16 and AMDSAUPD
sets the error code to X'tO'. If AMDSARSM fails with the total address space, AMDSARSM sets a
return code of 20 and AMDSAUPD sets the error code to X'04'. If AMDSARSM determines that
the page is available in real storage, it sets a return code of 4 and AMDSAUPD reclaims the page.
AMDSAUPD reclaims the page by calling AMDSADOS via SVC to copy the page into the buffer.

If AMDSARSM has paged the page in, AMDSARSM sets a return code of O. In this case,
AMDSAUPD does nothing to bring the page in.

r

M04I. Lallel

t"' "
n" " f\l f\l = fIl a. ~"
3::[
= ~ 3::
;- ~
til :5.
1;-

'"C:I 0 .. -
o -~ == =- 3:: ~ :I

o -;;
3::

~ Diagram SADMP-47. AMDSAUP~Page-In Management (Part 3 of 6) -\0
01

~
<
III

]I
ct
:3

2:
~
::r
~.

2
~

W
s.
~
> s:
'"
b
qs.
n

r
~
00
I .­
.-
00

'P
!Eli
()

~
ciCi'
::r --= ~
(j
o
f3
.-
\0
00
!'l
.-
\0
00
01

Register 15

I 4

Register 15

l 0

L

.. ~. If the page is on auxiliary
storage, call AMDSAASM to
get 10DB.

...

• If AMDSAASM fails, set an
error code.

~. If AMDSAASM succeeds, read
the page.

- If unable to read the page into
the buffer, set an error code.

I

~

Register 15

.1 AMDSAASM J
ECODE·

)I X'05' 1= ECASM vi

Buffer

... Page is read

" into buffer.

ECODE

X'06' J = ECREAD)I
"

t"""
;;'
IT>
:::I
l€
Q..

~
::

= ~ ;jj '" -:I,
.,

= ;;'
;; ;jj

Q..

s:
"1:l = ., ;jj = 'i

.,
iii' ., ;; -'< = = ;; -CO s: ~ :s

L

r
-<
N c;o --00
\D
W
<01
n
o

::l.

go -= ~
n
o ...

-\D
00
j'J -\D
00
0\

n
~ -(11 ...
!"­
til

§
Po

>
0'
i:I
(11

o
S
~
~ o
til
> o
~
."

f' -\0
-.l

r

Diagram SADMP-47. AMDSAUPD-Page-In Management (Part 4 of6)

Elttended Description

If AMDSARSM determines that the page is on aultiliary
storage, AMDSARSM sets a return code of 4. AMDSAUPO
then calls AMOSAASM to get the 100B address for the
page. If AMOSAASM fails, it sets a nonzero return code,
and AMDSAUPO sets the error code to X'05'. If
AMDSAASM succeeds, AMDSAASM sets a return code
of 0 and AMOSAUPD reads the page into the BeT. If
AMOSAUPD cannot read the page into the BCT.
AMDSAUPD sets the error code to X '06'.

Module Label

r r

r- rf ;:;"
til = '"
~ -... =- ;:;.

:: ~ =-.., :: tb,
;. ~
!ij ... ;.

!ij

"'C
Q -..

Q -~ == til :: .. -~
Q ..., -== ::

J

..
;:,
5-
;:,
0

..
&.

'-----I

c:
'; ..
.ll
0
0 ..
Ii.
::>
III «
I/)

0
::t «
-~
'iii()
(Jill

~

LL
::>
III «
I/)

o
::t «

Ii.
::>
III

:3 z
()
w

.I!J.'
'iii ... Ii

~8
III ~ « 0
I/) ~

o t
::t c «
= :K

•

Q.
E
::s
-0

• ~ ..
9 ,

C & ~ .. a Q.f
.-0
£ c
• ! ';:
~!!

o
;:::

~ L-________________________________ ~

4-198 MVS/Extended Architecture Service Aids Lo ic

c
~

::s .. .,
a::

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

L Y28-1189-3 © Co ri ht IBM Cor , 1982 1986

B
00
I --00

100
I

\.>

@

i
;:I.

a' -= 3:
g

-100
00
t-.) -100
00
Q'I

r

Diagram SADMP-47. AMDSAUPD-Page-In Management (Part 6 of 6)

EJdended Dncription

4 AMDSAUPD calls AMDSABUF to obtain a buffer.
If AMDSABUF fails, AMDSAUPD sets the error

code to X'07'.

6 AMDSAUPD calls 710 to dump the page to tape.
AMDSAUPD returns to the previous seve area. The

return linkage of AMDSAUPD is via AMDSASVI to the
point of interruption where AMDSAPGI originally hed
control.

Module LIIbeI

r r

t"" I:

ri' ~
::I ~

l ~.
3: [

i ~
S- ;­
r;;' :I.
I ;.

'"C:I 0

a ::
"I = a :;
sa. -~

~
I
tv o o

3:::
-<
f.Il

m
~
(1)

::l
0..
(1)

0..

»
(l

=-....
g

= til
f.Il
(1)

~.
(1)

» s:
'"
b
JQ o·

r
-< N
00 ,

ex>
\0
~

@

(')
o

::1.
JQ
::r
t;D

3:::
(')
o ..,
.....
\0
00
N

.....
\0
00

'"

Diagram SADMP-48. AMDSA VCK-Virtual Storag~ Dump Validity Check (Part 1 of 4)

Input Lprooon

1 Save the I D and address of the
control block to be checked.

_ ro? 2 Enqueue the validity check
RCB.

RCB Queue

ICKRCB~~ L-~3 Perform a validity check

'" appropriate to the control
block ID.

• For an unknown control block
ID, dequeue the validity check
RCB from the RCB queue and I CBER018 I = 'INVALID'

}
call for a dump.

.. 4 Set a return code for failed validity

" checks and issue a message for

I CBER018 I = 'MISSING' invalid control blocks.

l,. l,

Output

Register 0
I

I I i ~R"i"" 1
CBADDR I ~

~VCKRCBfITLJU

New RCB

Original
RCB Queue

.. ODD "

~
?ERROR REASON

• (ECUNKN)
DUMP RECOVER

Register 15

~~I I 4 t:
n
It>
::I
<Il

• ~ ?IOMSGID
(AMD0181)

It> =-
:: ~ = It> - <Il
It> -:l. ...
= n'
;; iti =-
"tI

::
ID .. -= It>

'"g :l.
ID .. ;; -'< = = -- = = :: :: ::

\.,

t""'
;3
00
I --00
\0
W
@

(J
o
~
::1.
IJq
go
....
t:O
3:
(J
o
~ -\0
00
JV
\0
00
c;r,

(J

=-'" "tS
A
'f>-
til ...
'" ::l
0-
I

>
0-
::l
A

~
3
'0 -->
3:
t::I
til
>
t::I
3:
'"tI
-'

~
I

tv
0 -

r ('

Diagram SADMP-48" AMDSAVCK - Virtual Storage Dump Validity Check (Part 2 of 4)

Exteade4 DescrlpdOll

1

3

4

AMDSAVCK saves the ID and address of the control block to be checked.

AMDSA VCK enqueues the validity check RCB.

AMDSAVCK performs the validity check appropriate to the control block 10. The control blocks
whose IDs might be checked are:

• theRAB
• ASCB
• ASXB
• ASVT
• EDB
• GTFBCB
• MCCE
• MCQE
• PART
• SGT
• LPMB
• UCB
• ASMVT
• TCD
• SART
• EST

For an unknown control block 10, AMDSAVCK dequeues the validity check RCD from the RCB
queue and requests a dump.

AMDSAVCK sets a return code of 4 for failed validity checks and issues message AMOOl81 for
invalid control blocks.

Module

r

Label

~
;:S" ::0
~ ~

= '" ~ -..
~

;:S"

~
;;-
~

'" ~ ;;-.. II>
5" -~ r;; ..,

5"
r;;

:.c Q
Q ;; "CI
~ .. ::: -~ ~

Q -t:I:I
~

...
:::J
Q. ...
:::J o

lit
lit
CI.)
Co)
0
"'" Il.

ltl 0

:"2
iii
>
0
0)

"t:I o .,;
u-""

u
;: 0
:l -
~..o
0)-

~ e
'" ~ ~ c:
0) 0

(J) u

•

0)

:l
0)

- :l
~ CJ
.0, C!l
.~ U
00::

C!l
U
C(

~
u
>

ai
u
0::
-"" u
0)

.!:
u

.~
~
iii
>
0)

-£
0)
:l
0)
:l
0-
0)

0

LC)

4-202 MVS/Extended Architecture Service Aids Logic

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

L Y28-1189-3 © Copyright IBM Corn. 19R2. 1 9R(;

J

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

......
0 ..,. .. :;
a..
'-'

.lIII
~ a I
~ ...
:a :;
> .I
Co :::I

! '8
:E

t " c c: .. "0
CD

CIl III

J
l:I (J c a:: 0
u ~
:g u ..
OJ .:::

I > u

~ .. >
0 ..

~
... :§ c

1 !
...
0

~
..
.::: ..

~
.. ..

E ::I

130 " !I
c:

.. ~

~ .2 ! -8
.i

III
~

!i
.. .. (J .. 81 J >

< ~ 0(
CIl (J en

J 1 > o .;
c(~ .~

i en .; c(~

e o.¥
:E g

III 0(1i It)

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 4. Stand-Alone Dump (AMDSADMP) 4-203

~
I

N o
~

a::
<:
t:I.l

ttl
~
til

~
Q..

>
(l
::r
;:;:
g
2
til

t:I.l
(1)

3.
('l
til

:>
0:
'"
b
~.

t""'
-< N
00 , -00

'f'
w

@

n o
'0
'< OC;.
g'
>-<
a:I
a::
n
o
-? -\C
00

.N -\C
00
Cl'I

Diagram SADMP-49. TCBSCAN-Scan TeBs for this Address Space and Dump Associated SUbpools (Part 1 of 2)

Input Process Output

VSMWORK

D VSMLlST input
parameters with
subpools.

======~======::::;) 1 Check the validity of the ASXB.

ASXB
TCB chain

ASXBFTCB

ASXBLTCB

l,

~ : : :>2 Scan the TCB chain backwards
and process each TCB.

3 Check the val idity of each TCB.

?VCHK I I t I
4 Call VSMLlST to translate the L-______ ..J

subpools and TCBs into address
ranges.

?VSMLlST I I II

5 Call AMDSAARD to dump the
storage.

VSMLlST

If the TCB backwards search stops '\
prematurely. repeat steps 2 0/

through 5 using a forward search.

l,

TCB

VSMWORK

• Storage Blocks
(Address and
Length)

Q

Q

r-'
n'
f'D =
~
c=..

~ :;c
I» f'D

CIJ ;; -... :::!. n' I» ;; ~ c=..

""CI
~
'" ;; Q
:::!. ~

til I» ... ~ Q"
Q

Q ..., -- == == ~ ~

l,

r r

t"'"
-< Diagram SADMP-49. TCBSCAN-Scan TCas for this Address Space and Dump Associated SUbPools (Part 2 of 2)
IV

'?"
......
00

'P
w

©

Extended Description

1 TCBSCAN calls AMDSAVCK to check the validity
of the ASXB for this address space.

Q 2 TCBSCAN scans the TCB chain backwards, and
~ processes each TCB. The head of the backward

Module

~. TCB chain is ASXBL TCB and the chain field is TCBBACK.
g-
......
t:tI
~

3 TCBSCAN calls AMDSAVCK to check the validity
of each TCB.

Q 4 TCBSCAN invokes the VSMLlST macro to translate
-? into address ranges all the subpools that are to be
...... dumped in this address space that are also associated with
~ this TCB.
J'l
::0 5 TCBSCAN calls AMDSAARD to accumulate and
~ dump the address ranges.

(j

~ ...
(1)
f­
CIl

[
>
5"
::s
(1)

o s:: g
>
~
o
CIl
> o
~
:g

~
I
tv o
VI

6 If TCBBACK is 0 during the backward scan, the TCB
queue is broken, Rescan the TCB queue in the for·

ward direction by beginning from ASXBFTCB and chain­
ing from TCBTCB. TCBSCAN repeats steps 2-5.

Label

r

~ ~ ~ = '" '" -~
..

=- ;:;. -~
~ =-= ~ ~ .. = ;. ~

Cii .. ;.
Cii

"'C
Q

Q -"CI == ~ ~ ..
q ::
Q -== ~

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Method of Operation for the Prologue Format Diagrams

This section has detailed information for AMDSADMP modules. These modules
are in alphabetical order. The information is broken down into four separate
headings. The four headings and the topics they include are:

Module Description,:

• Descriptive name
• Function (of the entire module)
• Entry point names:

Purpose (of the entry point)
Linkage
Callers
Input
Output
Exit normal
Exit error, if any

• External references:
Routines

- Data areas, if any
- Control blocks

• Tables, if any
• Serialization, if any

Note: These modules are also included in the System Logic Library.

Module Operation:

• Operation, which explains how the module performs its function.
• Recovery operation, which explains how the module performs any

recovery.

Diagnostic Aids, which provide information useful for debugging program
problems:

• Entry point names
• Messages
• Abend codes
• Wait state codes
• Return codes for each entry point. Within each entry point, return codes

might be further categorized by exit-normal and exit-error.
• Entry register contents for each entry point
• Exit register contents for each entry point, which might be further

categorized by exit-normal and exit-error.

Prologue Format Diagram, which illustrates the processing of the module, the
input the module uses, the output it produces, and the flow of control. Some
modules do not have a logic diagram because the processing is sufficiently
explained in the module description, module operation, and diagnostic aids
sections.

4-206 MVSjExtended Architecture Service Aids Logic L Y28-1189-3 © Copyright IBM Corp. 1982, 1986

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

..
--........

t
[)

Key to Symbols Used in Method-of-Operation Diagrams

Primary processing - indicates major funtional flow.

Secondary processing - indicates functional flow
within a diagram.

Data movement, modification, or use.

Data reference -- indicates the testing or reading
of a data area to determine the
course of subsequent processing.

Pointer -- indicates that a data area contains the
address of another data area.

Connector - indicates that a diagram is
continued on the next page.

Figure 4-2. Grapbic Symbols and Format Used in tbe Prologue Format Diagram

Diagram 50. AMDSADCH Stand-Alena Dump Console Hessage Dump

AMDSADCM - MODULE DESCRIPTION

DESCRIPTIVE NAME: Console Message Dump.

FUNCTION:
Hrites virtual dump console massages to the output tape.

ENTitY POINT: AMDSADCM.

PURPOSE: See FUNCTION.

LINKAGE: BALR.

CALLERS: None

INPUT:
Standard parameter list:

1. DCHIFUNC - function code (fullword).
- OPEN (DCHIFUNC=DCHFOPEN)
- PUT (DCHIFUNC=DCHFPUT)
- HRITE (DCHIFUNC=DCHFHRIT)

2. DCHITYPE - message type (PUT only, 1 byte).
3. DCHILEN - message length (PUT only, 1 byte

positive integer).
4. DCHITEXT - message text (PUT only).

OUTPUT:
OPEN - AHDSADCH marks the message dump service ready

for use or unusable.

PUT - If the message length is zero, AHDSADCH
ignores the request. If there is a current
buffer available, AHDSADCH places the massage
into the message buffer, and writes all full
buffers to the output tape. If there are no
buffers available, AMDSADCH increments the
count of discarded messages and sets the
module return code to 4. Note: Hessages
longer than 79 characters are truncated to 79
characters.

HRITE - If the output tape is usable. AHDSADCH writes
all buffered messagas to tape. If an error
occurs while attempting to use the output tapa,
AMDSADCH aarks the massage dump service
unusable and sets the module return code to 4.

EXIT NORMAL: To caller via BR 14.

EXIT ERROR: To caller via BR 14.

EXTERNAL REFERENCES:

ROUTINES:
AHDSAGTH (SVC) - Gats and frees storage.
AMDSASIO I SVC) - Hri tas a massage buffer to the output tape.
AHDSABUF ISVC) - Gats buffers.
AMDSASVI (SVC interrupt handler)

For SVC modules with nama AHDSA---. linkage
is by SVCISVC---) or SVCI---SVC).

CONTROL BLOCKS:

CCT
RCB
IODB
nCH
DCMD

R
CRMD

R
CRM
CRMD

C=craated, R=rafaranced, H=modified, D=deleted
All are private to stand-Alone Dump.

- Common Control Tabla
- Recovery Control Block
- I/O Device Block
- Console Message Dump descriptor
- Console Message Dump Data

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

4-208 MVS Extended Architecture Service Aids Logic L Y28-1189-3 © Copyright IBM Corp. 1982, 1986

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Diagram 50. AMDSADCH stand-Alana Dump Console Hessage Dump

AMDSADCM - MODULE OPERATION

AMDSADCM performs a different function depending on the
input function code (DCMIFUNCI:

- OPEN (DCMIFUNC=DCMFOPEN): Initializes the console
message clump service by performing the following steps:

1. Initializes the console message dump descriptor (DCM).

2. Obtains storage for message buffers and puts the
addresses of the buffers in the DCM.

-- 3. Initializes the buffers.

-- 4. Sets the "open" indicator, DCMOPEN, to 1.

-- 5. Resets the "\.navaiIable" indicator, DCMUNAV, to O.

- PUT (DCMIFUNC=DCMFPUT): Processes the input massage
pa meters:

DCMICODE indicates the type of message and is passed
directly to the tape.

DCMITEXT is the variable-length massage text.
DCMILEN is the message length.

Note: The console message clump data
mapping DCMD maps the message output
buffers, each of which holds
approximately 50 messages of 79
cha cters each.

PUT processing performs the following steps:

-- 1. If the console message dump service is
functional, and the input message text has
nonzero length, AMDSADCM places the
message into the current buffer.

Note: Messages longer than 79 characters
are truncated to 79 characters.

-- 2. If there is no current buffer, AMDSADCM
attempts to obtain a new buffer. If there
are no more buffers, AMDSADCM increments
the count of discarded messages. If there
is no more room in the message dump
address space, AMDSADCM indicates this in
the buffer (DCMDSMAX=1), and marks the
console message dump service unavailable
(DCMUNAV=l).

-- 3. If the currant buffer is full, AMDSADCM
marks the buffer full, and writes full
buffers to the output tape.

-- 4. If the console message dump service is not
functional, AMDSADCM sets the module
return code to 4.

PUT carnot guarantee that every massage will
appear in the dump output because it must
postpone message writing during tape error
recovery. It is possible (but not likely) that
error recovery may generate enough massages to
fill up all available buffers. Furthermore, the
message dump address space is of finite size.

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 Cha ter 4. Stand-Alone Dump (AMDSADMP) 4-209

Diagrem so. AHDSADCM Stand-Alone Dump Console Me.s.ge Dump

AMDSADCM - MODULE OPERATION (Conti~)

Finally, PUT cannot write ss.ge. to • tape tt.t
has be.-,~.

In the .b.ence of SADMP internal errors, AMDSADCM
will .lmost .l_y. have enough buHer .pace to
dump any messages except those that appear after
the dump output device has been logically closed.

- HRlTE I DCMIFUNC=DCMFHRITl: Performs the following .tep.:

-- 1. Ct.nge. the statu. of the current buffer to full.

-- 2. Attempts to write .11 full buffer. to the output t.pe.

Buffer St.te Transition Di.gram

+------------+ GETtURR +------------+ +--->1 Empty 1------------->1 Current 1----+ 1 I DCMSEMPT) 1 1 I DCMSCURR) 1 1
+------------+ +------------+ 1

1
HRITEALL 1 FULLBUFF
(I/O successful) 1

1
+------------+ HRITEALL +------------+ I

+----1 Hrite 1<-------------1 Full 1<---+
1 (DCMSHRIT) 1------------->1 (DCMSFULL) 1
+------------+ HRITEALL +------------+

(I/O f.iled)

RECOVERY OPERATION:
Marks the console mess.ge dump service ""-ISable by setting
DCMUNAV=l .nd exits with return coda 4.

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

4-210 MVSjExtended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, -1986

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Diagram 50. AMDSADCM Stand-Alone Dump Console Hessage Dump

AMDSADCM - DIAGNOSTIC AIDS

ENTRY POINT NAME: AMDSADCH.

MESSAGES: None

ABEND CODES: None

WAIT STATE CODES: None

RETURN CODES:

EXIT NORMAL:

AMDSADCM returns a 0 in register 15.

EXIT ERROR:

AMDSADCM returns a 4 in register 15.

REGISTER CONTENTS ON ENTRY:

R1 - Points to standard parameter list.
R13 - Points to caller's save area.
R14 - Return address.
R15 - Entry point .delre.s.

REGISTER CONTENTS ON EXIT:

EXIT NORMAL:

RO thru R14 - sa .. as at entry.
R15 - Contains return code.

EXIT ERROR:

RO thru R14 - sa.. as at entry.
R15 - Contain. return code.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 4. Stand-Alone Dump (AMDSADMP) 4-211

"Restricted Materials of IBM"

Licensed Materials - Property of IBM
Diagram 50. AHDSADCH Stand-Alone Dump Console Hessaga Dump

AHDSADCH - Console Message Dump. STEP 01

....... "'AS ~> ~------------~AH~CM
DCHIFUNC DCHITYPE
DCMILEN DCHITEXT

L..-__ ,

L-__ --../

PARAMETERS -1---------->
r-I---~I DCHIFUNC .

AHDSARMK J---------->
Ir----~I DCMFOPEN .

AMDSARMK -1----------> 1 DCHFPUT I

AMDSARMK J---------->

I 1 DCMFHRIT

AMDSARMK

~
:) I RCDCHERR

~>
DCHEXIT

AMDSARMK ERREXIT

I~ RCDCHERRI :)

Hritas virtual dump console massagas to
the output· tapa •

sets up the recovery
environment.

If the "open" function is
requested, performs OPEN
processing.

/~\r------------'
\.-./~I ______ O_P_E_N_:_O_8 ______ ~1

If the "put" function is
requested, performs PUT
processing.

/'--'\ \.-./1 I PUT: 11

~ If the "write" function is
requested, performs WRITE
processing.

/~,

I ,.-./1 HRITE: 16

~ If the request is not valid,
sets the module return code
to 4.

~ Normal and abnormal exit:
Deletes the recovery
environment. Returns to the
module caller.

IIDELETE. DCftOCBI

RECOVER

~ Error exit: sets the module
return code to 4, sets the
"DCMUNAV" indicator to 1 to
indicate that the message
dump service is unavailable,
and goes to normal exit.

I

L---...J~MDSARMK

/ISAYENAHEI

c;t
, /

4-212 MVS/Extended Architecture Service Aids Logic L Y28-1189-3 © Copyright IBM Corp. 1982, 1986

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

AMDSADCM - Console Message Dump.

t >DCMEXIT: 06

AMDSARMK ~'>
,--------,.., L-,/
IOCMENOA OCMD I t ___ ~~~~ ___ >

~ Opens the console message
dump service.

A,M_D_S_A_R_M_K _______ ~~lr----~:)
I RCDCMERR !

~ Gets and initializes message
dump buffers.

< >1 SVC SVCBUF

AMDSARMK J---------~~

1 RCREG 1 /
AMDSARMK

IRI ON

[!!] Returns to the subroutine
caller.

AMDDATA

IPRDASCMD I

~> ~ Puts a message in the
console message dump.

PUT

PARAMETERS J---------->
'--1 -----.1 DCMILEN .

~ If the message service is
functional and message text
exists, processes the
message.

A. If there is no current buffer. aUempts
to obtain a buffer.

/L.-I, ,,--,/1 GETCURR: 28
1

A~M_D_S_A_R_M_K ____ ~~~----~:) I~CDCMERR r
B. If unable to obtain a buffer. increments

the lost message count. and sets the
module return code to 4.

C. If there is • current buffer and
massagas were suppressed because of
temporary lack of buffer space. accounts
for lost messages.

: I

Jl
, 1

STEP 08

I

:
I

\AMDSARMK
Ir-----,

BCTPGTEP
BCTSGTEP
BCTKEYl
BCTKEY2
BCTASID
DCMDHDR

\AMDSARMK

II DCHDLOST I

LY28-ll89-3 © Copyright IBM Corp. 1982, 1986 Chapter 4. Stand-Alone Dump (AMDSADMP) 4-213

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Diagr8m SO. AMDSADCH stand-Alone Dump Console Hassage Dump

AMDSADCM - Console Message Dump.

AMDSARMK r----------> D. Copies message to buffer.
• 1\

I DCHDTEXT 1-;: I -------1. E. If buffer i. full, mark. buffer full.
PARAMETERS :

I D_c_HI_L_E_N ___ --'I.J
AMDSARMK

1 DCHDNUM ~
11..-' ___ ---'1

PARAMETERS

I DCHITYPE DCHITEXT..-1--'

AMDSARMK J---------->
IDCMDNUH DCHDMSG I

/~\~--------------~
\r-I/I ... ___ F_UL_L_B_U_F:_Z_4 ___ ~

I~ the message service is
functional, and message text
exists, writes full buffers.

I~\~--------------~
\r-I/ I _____ H_RI_T_E_A_LL_:_Zl __ ~

A,-M_D_SA_R_M_K ___ !,,:-I----':~ ~
I RCDCHERR r

If the message service is
not functional, sets the
module return code to 4.

~>
HRITE

~

[£]

Returns to the subroutine
caller.

Attempts to write the
current buffer to the tape.

If the message service is
~unctional and there is a
current buf~er, marks the
current buffer full.

/~\ \r-I/I I FULLBUF: Z4

[!!] If the message service is
functional, writes all full
buf~ers.

STEP 12D

~----~\AMDSARMK
r------~/~---~

DCHDNUH
DCHDCODE
DCHDTEXT

4-214 MVS/Extended Architecture Service Aids Logic LY28-1l89-3 © Copyright IBM Corp. 1982,1986

J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Diagra. so. AMDSADCM stand-Alone Dump Console Hessage Dump

AMDSADCM - Console Message Dump.

I~'r------------------' ''-'/I~ _____ H_RI_T_E_A_LL_: __ Zl ____ ~

AM~D_S_AR_M_K ______ !~I----~:) ~
\ RCDCHERR r

I~ the message service is
nat functional, sets the
module return code to 4.

~>
HRITEALL

AMDSARMK J----------> .--, ----I
~TNODUHP .

AMDSARMK J---------->
,.....,---~,
~TIO RCREG .

Returns to the subroutine
caller.

~ Attempts to write all full
buffers to the tape.

IE.] Loops through buffers.

A. If the buffer is full and it is possible
to write to the tape, indicates that the
buffer i. being written, and writes the
BeT to the tape.

IO

(XIODBOUT) HRITE PAGE (BeT) HAIT

B. If the write operation was successful,
indicates that the buffer is now empty.

C. If the write operation was NOT
successful, indicates that the buffer is
still full.

~ Returns to the subroutine
caller.

STEP 19

, I

i!

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 4. Stand-Alone Dump (AMDSADMP) 4-215

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Diag~. so. AHDSADCH Stand-Alone Dump Console Hessage Dump

AMDSADCM - Console Message Dump. STEP 24

~>
FULLBUF

AMDSARMK J---------->
~I --------~I 'I DCHENOA DCMO .

AMDSARMK

ON

~>
GETCURR

BUFFLOOP

AMDSARMK .--_--,:)
10FF PAGESlZE~

l.!!J Changes the status oT the
current bUTTer to Tull, and
makes the message dump
service unavailable iT the
message dump address space
is Tull.

~ Marks the current bUTTer
full.

~ I~ the message dump address
space is full, sets the
"DCMUNAV" indicator to 1 to
indicate that the message
dump service is unavailable.

[£] Returns to the subroutine
caller.

~ Searches for an empty buffer
and makes it the current
buTfer.

[!!] Loops through buffers.

A. If the buffer is empty, initializes the
buffer, and make. the buffer the current
buffer.

8. If an empty buffer has been found. exits
the loop.

l!!] Returns to the subroutine
caller.

'\ /

I

I

'I

\AMDSARMK

/1 DCHDSHAX I

\AMDSARMK
I~--..,

BCTVADDR
DCHDHDR
DCMDID
DCHDNUH
DCHDSHAX

4-216 MVSjExtended Architecture Service Aids Logic L Y28-1189-3 © Copyright IBM Corp. 1982, 1986

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Diagram 51. AHDSAFCH SADHP Console Hessaga Dump Formatting Module

AHDSAFCM - MODULE DESCRIPTION

DESCRIPTIVE NAME: stand-Alone Dump console Message Dump Formatting Module.

FUNCTION:
AHDSAFCM, when invoked by IPCS or AHDPRDMP,
formats Stand-Alone Dump messages found in the
console messaga dump.

ENTRY POINT: AMDSAFCM.
PURPOSE: See FUNCTION.

LINKAGE: ATTACH from AHDPRDMP, LINK from IPCS

CALLERS: None

INPUT:
ABDPL - AHDPRDMP/IPCS parameter list.
ADPLSYNO - Syntax check operands only.
ADPLSBPL - Subpool for dynamic storage.
ADPLBUF - Address of output buffer.
ADPLPRNT - Address of print routine.
ADPLMEHA - Address of memory access routine.
PRDSADP - Indicator that a Stand-Alone Dump is baing processed.
PRDASCMD - Console massage dump ASID.
DCHVBEG - First virtual address used to dump console messagas.
DCHVEND - Highest virtual address used to dump console messages.
DCHDNUH - Index of last message in a DCMD.
DCMDHSG - AHDSADMP console message array.

OUTPUT:
Formatted messages from console message dump, a massage stating
that it is not a Stand-Alone Dump baing processed. or a massage
st.ting that no console massage dump messages ware found.

Note: 'lhase messagas do not go to the HVS operator's console.

"iHHf STAND-ALONE DUMP VIRTUAL DUMP MESSAGE LOG iHHf"

"iHHf THE DUMP BEING PROCESSED IS NOT A STAND-ALONE DlJ1P"

"iHHf THERE ARE NO STAND-ALONE DUMP MESSAGE LOG BUFFERS
IN THIS DUMP"

"iHHf Am FURTHER MESSAGES HERE SUPPRESSED BY STAND-ALONE DUMP
BECAUSE THE MESSAGE DUMP ADDRESS SPACE HAS FULL"

" ... dddcIdcIddcld MESSAGE LOG BUFFER(S) ARE MISSING,
PROBABLY DUE TO 110 ERRORS DURING THE STAND-ALONE DUHP"

" ... dddddclddcIcI MESSAGE(S) HERE SUPPRESSED BY STAND-ALONE DUMP
DUE TO A TEMPORARY SHORTAGE OF BUFFER SPACE"

EXIT NORMAL: To caller, via BR 14.

EXIT ERROR: Percolation to caller's racavery.

EXTERNAL REFERENCES:

ROUTINES: ADPLESRV - Performs AHDPRDMP/IPCS ra.d and print services.

DATA AREAS:
ADPLBUFR - Buffer containing a line to ba printed.
ADPLVIRT - Indicates a virtual dump record read request.
ADPLHDR - Indicate. a dump header record read request.
ADPLASID - ASID for virtual dump record read request.
ADPLDLEN - Length for virtual dump record read request.
ADPLPAAD - Dump address to read.
ADPLPART - Address of AHDPRDMP/IPCS buffer.

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 4. Stand-Alone Dump (AMDSADMP) 4-217

Diagralll 51. AHDSAFCH SADHP Console Hassage Dunp Fo~tting Module

AMDSAFCM - MODULE DESCRIPTION (ContinMd)

CONTROL BLOCKS:

.DCHD R
ABDPL RH
PRDINPUT R

C=craated, R=raferencecl, H=modi fied, Dadaleted
.=private to Stand-Alone Dump

Console massage dump data
Exit parameter list
Dl.IIIp ti Ue header record

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

4-218 MVS/Extended Architecture Service Aids Logic L Y28-1l89-3 © Copyright IBM Corp. 1982, 1986

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Diagram 51. AMDSAFCH SADHP Console Massage D'-IIIp Foratting HocIule

AMDSAFCM - MODULE OPERATION

AHDSAFCM is a verb exit for IPCS and AHDPRDMP, and is
invoked by the SADMPMSG control statement. AMDSAFCM processes
Stand-Alone Dump messages found in the console massage
dump. It performs the following steps:

1. AMDSAFCM attempts to read the dump header record. which
indicates what type of dump is baing processed.

2. If the header can be read, and it indicates that the
type of dump baing processed is a stand-Alone Dump,
AHDSAFCM prints:

"**if STAND-ALONE DUMP VIRTUAL DUMP MESSAGE LOG **if"
and continues processing the dump.

3. If the header can ba read, and it indicates that the
type of dump being processed is not a Stand-Alone Dunp,
AMDSAFCM prints:

n.- THE DUMP BEING PROCESSED IS NOT A STAND-ALONE DUMP"
and stops processing the dump.

4. AHDSAFCM reads virtual dump records using the console
message dump ASID IFFFA) starting with the first virtual
address used by AMDSADCM to dump console messages. If
the read for a record is successful, AMDSAFCM formats
the stand-Alone Dump massages in the record.

5. AMDSAFCM reads records and formats messagas until
"NODCMMAX" number of successive reads fail or the
highest address used by AMDSADCM to dump massages
is reachad. This allows for the possibility of soma
records being missing due to I/O errors without
spending excessive time trying to read avery record
in the permitted range.

6. If any reads fail, AHOSAFCM prints:

nH* dddddddddd MESSAGE LOG BUFFERIS) ARE MISSING,
PROBABLY DUE TO I/O ERRORS DURING THE STAND-ALONE DUMP".

7. If any messages Were suppressed, AMDSAFCM prints:

".- dddddddddd MESSAGE'S) HERE SUPPRESSED BY STAND-ALONE Dut1P
DUE TO A TEMPORARY SHORTAGE OF BUFFER SPACE". .

8. If the dump header record cannot ba read, or this is a
Stand-Alone Dump and no DCMOs are found, AHOSAFCM prints

".- THERE ARE NO STAND-ALONE DUMP MESSAGE LOG BUFFERS
IN THIS DUMP".

This occurs, for example, when a real dunp is taken
without a virtual dump.

9. If messages were suppressed due to lack of space
in the message dump address space. AMDSAFCM prints:

".- AtN FURTHER MESSAGES HERE SUPPRESSED BY STAND-ALONE DUMP
BECAUSE THE MESSAGE DUMP ADDRESS SPACE HAS FULL".

RECOVERY OPERATION:
Nona. I f an ABEND occurs and an ABEND dump DO 'SYSUDUMP,
SYSABEND, or SYSMDUMP) is allocated, MVS will take an ABEND
dump.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 4. Stand-Alone Dump (AMDSADMP) 4-219

'" Restricted Materials of IBM"

Licensed Materials - Property of IBM

Diag 51. AMDSAFCH SADtP Conaole Message DuIIp Fo,...tting Modul.

AMDSAFCM - DIAGNOSTIC AIDS

ENTRY POINT NAME: AMDSAFCH.

MESSAGES: None

ABEND CODES: NoM

WAIT STATE CODES: NoM

RETURN CODES:

EXIT NORMAL:

o

REGISTER CONTENTS ON ENTRY:

Rl - Point. to the ABDPL.
Rl3 - Points to caller's ..v. .rea.
R14 - Retum .deI
R1.6 - Entry point .dd

REGISTER CONTENTS ON EXIT: Ir,.l~t

4-220 MVS/Extended Architecture Service Aids Logic L Y28-1189-3 © Copyright IBM Corp. 1982, 1986

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Di_g,... 11. AHDSAFctt SAD"' Cansole DuIIp For.tting Module

AMDSAFCM - stand-Alone Dump Console Message Dump Formatting Module.

BLSABDPL J---------->
r--I ---"1
ADPLSYNO .

A~M-D-S-A-R-MK-------~~I~----~:)
ION OFF ~

AMDDATA j---------->
~I --------~I '/ PRDSADP .

AMDSARMK

ON OFF

BLSABDPL S--------->
r-I---~I
ABDPL .

AHDSAFctt,, invoked by IPCS 01'"

AHDPRDHP, formats stand-Alone Dump
....... ges fOl.l1Cl in the console ssage
ckap.

[2!] If not a syntax check only,
prints the header and prints
a blank line.

/L--J,

'.--./ PRINT: 08

HEADER, LENGTHCHEADERJ

/L--J,
,~/ PRINT: 08

BLANK, LENGTHCBLANK)

~ Tries to read the dump
header record to determine
whether or not this is a
Stand-Alone Dump.

/L--J,

'.--./ ACCESS: 11

0, PRDINPTR

A. If this is not a Stand-Alone Dump,
pl"'ints: "*** THE DUMP BEING PROCESSED IS
NOT A STAND-ALONE DUMP".

/L--J,
,~/ PRINT: 08

NSADHP, LENGTHCNSADHP)

8. If this s to be a stand-Alone Dump,
form.ts and pl"'ints the console massage
ckap data C OCHDs).

/L--J,

I '~/I FORHAT: 04

~ Returns to the module
caller.

~ , /

STEP 01

I '\BLSABDPL

/IADPLHDR

I '\BLSABDPL

/IADPLHDR

I

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 4. Stand·Alone Dump (AMDSADMP) 4-221

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Diagram .51. AMDSAFCH SADHP Console Hessage Dump Fo tting Hodule

AMDSAFCM - Stand-Alone Dump Console Message Dump Formatting Module. STEP 04

AMDSARMK ~'>
1"'---------..., L-,I
... ID_CM_D _____ ...II L __ ~~~:_>
AMDDATA r-------'\
,.---------' ,.---..,1
PRDASCHD

AMDSARMK

ON

~-------------------~I 1041 Reads the DCMDs and prints 1--__ --' \,.8 LSABDPL
~ their messages. r----~/~--~

• ADPLASID
ADPLDLEN
ADPLVIRT

AMDSARMK J----------> I 051
~I --------~I 'I

Reads and prints the DCMDs
until "NODCMMAX" number of
successive reads fail or the DCMD .

AMDSARMK

DCM8EGA DCMENDA
PAGESIZE

AMDSARMK J---------->
r--I ----...1
DCHDLOST .

AMDSARMK J---------->
Ir-------,I '/
DCHDNUM DCMDHSG .

AMDSARMK

DCHDPRNT

AMDSARMK J---------->
Ir-----~I DCHDSHAX _

end of the message dump
address space is reached.

I~'r------------~ 'r---l l ACCESS: 11

BUFADDR, DCt-1DPTR

A. If the prior reads failed, prints: "***
dddddddddd HESSAGE LOG BUFFER(S) ARE
HISSING, *** PROBABLY DUE TO I/O ERRORS
DURING THE STAND-ALONE DUMP".

/~'I"'---------~ 'r---l/I ... ___ H_ISSHSG ___ :_2_2 __ -...I1

B. If massages were suppressed because of a
temporary lack. of buffer space, prints:
"*** dddddddddd MESSAGEIS) HERE
SUPPRESSED BY STAND-ALONE DUMP *** DUE
TO A TEMPORARY SHORTAGE OF BUFFER
SPACE",

/~'r-----------~ 'r---l/I BUFSPMSG, 17 I
. DCHDLOST .

C. Converts the messages in a DCHD message
array to upper case and prints them.

/~,....--------------.
'r---l l PRINT: 08

FOLDAREA, LENGTH(FOLDAREA)

D. If messages _ ... supp sed because of
lack of space in the messaga dump
address space, prints: "*** AN(FURTHER
MESSAGES HERE SUPPRESSED BY STAND
ALONE-DUMP *** BECAUSE THE HESSAGE DUMP
ADDRESS SPACE HAS FULL".

4-222 MVS/Extended Architecture Service Aids Logic L Y28-1189-3 © Copyright IBM Corp. 1982, 1986

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

DiagrM .61. AHDSAFCH SADHP Cansol. Hessage Ounp Foratting Hoci.al.

AMDSAFCM - stand-Alone Dump Console Message Dump Formatting Module.

PARAMETERS ~:>
I LINE LEN n I PRINT
~.-------------. ,. :)

/~'r----------------------'
',---,1 PRINT: 08

BLANK, LENGTHIBLANKl

/~,~--------------------~
',---,/ PRINT: 08

FURSUPP1, LENGTH(FURSUPP1)

I~'~--------------------~ ',---,1 PRINT: 08

FURSUPP2, LENGTH(FURSUPP2)

I~ no DCMDs are ~ound in the
dump, prints: lI~nOE THERE ARE
NO STAND-ALONE DUMP MESSAGE
LOG BUFFERS IN THIS DUMP".

/~,~--------------------~
',---,1 PRINT: 08

NODCMDS, LENGTHINODCMDS)

Returns to the subroutine
caller.

~ Prints a line using the
AMDPRDMP/IPCS print service.

B Prints a line.

IL-....J,

',---,1 ADPLESRV

ABDPL, ADPLSPRT

~ Returns to the subroutine
caller.

, /

, I

STEP 06

I

I

~LSABDPL

IIADPLBUFRI

L Y28-1l89-3 © Copyright IBM Corp. 1982, 1986 Chapter 4. Stand-Alone Dump (AMDSADMP) 4-223

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Diagram 51. AHDSAFCM SADMP Console Message Dump Fo~tting Module

AMDSAFCM - Stand-Alone Dump Console Message Dump Formatting Module.

PARAMETERS

DUMPADDR DATAPTR

AMDSARMK

~>
ACCESS

'--__ ...1,\

'------,/

...------''\
.----------' ...---..,/

RCREG

BLSABDPL

ADPLPART

PARAMETERS

FIXEDIN DECOUT
LENOUT

~>
DECCONV

'-----''\
'------./

PARAMETERS -1---------->
~I --------~I '\/
LENOUT .

AMDSARMK

Rl

l::J

~

~

~

~

~

Reads a dump record using
the AMDPRDMP/IPCS read
service.

Reads a dump record.

/L....-J,\
\.---,/ ADPlESRV

A8DPL, ADPLSACC, ADPLPACC

Returns to the subroutine
caller.

]l
'\ /

Converts the data from
FIXED(311 to printable
decimal, inserts commas, and
supresses leading zeros.
output is 'DD,DDD,DDD,DDD'
left justified in DECOUT,
with the length in LENOUT.

Converts to printable
decimal.

Returns to the subroutine
caller.

]l
\ /

STEP 11

I

I

I

I

I

\BLSABDPL

/IADPlPAADI

'\PARAMETERS

/~ LENOUT
DECour

4-224 MVSjExtended Architecture Service Aids Logic L Y28-1l89-3 © Copyright IBM Corp. 1982, 1986

'I Restricted Materials of IBM"
Licensed Materials - Property of IBM

&tag 11. ~~,~ W~ tonsol. ~.age ~UIIp 'o,..Ulng HoeLl.
AMDSAFCM - stand-Alone Dump Console Message Dump Formatting Module.

PARAMETERS ~>
I MJHSUPP n I BUFSPMSG
~. ----------~ I~------,:;

Prints a message indicating
that messages were
suppressed by Stand-Alone
Dump because of a temporary
lack of buffer space.

[!!] Prints a blank line.

I~\r---------------------~
\.--,1 PRINT: 08

BLANK. LENGTHIBLANK)

Converts the number of
suppressed messages to
printable form. Adds this
number to the message to be
printed.

I~\~--------------------~
\.--,1 DECCONV: 14

NUHSUPP, HSGTEXT(MSGPOSl),
NUHLEN1

~ Prints the first and second
message line and a blank
line.

/~'\r---------------------~
'\r--1/ PRINT: 08

MSGTEXT. EVAL(HSGPOS1-1)

I~\~--------------------~
'\r--11 PRINT: 08

SUPP2. LENGTHISUPP2)

/~,~--------------------~
'r--1/ PRINT: 08

BLANK, LENGTHIBLANK)

Returns to the subroutine
caller.

'\ /

STEP 17

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Di.gram 51. AHDSAFCM SADHP Console Hass.ge Dump Formatting Modul.

AMDSAFCM - Stand-Alone Dump Console Message Dump Formatting Module.

Prints a message indicating
that the message lag buffers
are missing probably because
of I/O errors during the
Stand-Alone Dump.

1231 Prints a blank line.

I~'~--------------------~
',--,/ PRINT: 08

BLANK, LENGTHIBLANK)

Canverts the number af
missing messages to a
printable form. Puts this
number in the message to be
printed.

/~\~--------------------~
\,--,/ DECCONV: 14

EVALI NODCMCNT),
MSGTEXTI MSGPOS2), NUHLEN2

125 I Prints the first and second
message line and a blank
line.

/~\~--------------------~
\,--,/ PRINT: 08

MSGTEXT, EVALIMSGPOS2-1)

/~\~--------------------~
\,--,/ PRINT: 08

BUFMIS2, LENGTH(BUFMIS2)

/~\~---------------------,
'r--1/ PRINT: 08

BLANK, LENGTHIBLANK)

Returns to the subroutine
caller.

\ /

STEP 22

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Diagram 52. AHDSAXSM Stand-Alona Dump Extended storage Manager

AMDSAXSM - MODULE DESCRIPTION

DESCRIPTIVE NAME: Stand-Alana Dump Extended Storage Management.

FUNCTION:
AHDSAXSM executes the PGIN instruction to page data in from
extended storage, and may indicate where a page can be found
on auxiliary storage.

ENTRY POINT: AMDSAXSM.

PURPOSE: See FUNCTION.

LINKAGE: Branch, standard linkage.

CALLERS: None

INPUT:
BCTBUFRA - Real address of buffer for PGIN.
RITEST - Address of the beginning of the EST.
ESTCHNG - Hhen 0, a valid copy of the page exists on auxiliary

storage.
ESTDATA - LSID of the auxiliary storage copy of a page on

extended storage.

OUTPUT:
BUFFER
XSDSPC
XSDDER
XSDBNAC
XSDUEC
BCTlSID

- Frame to which PGIN is dona (return code 0 only).
- Successful PGIN count (return code 0 only).
- Data error COI.rIt (return code 4 or 8).
- Block not available count (return code 4 or 81.
- Unexpected error count (return code 8 only).
- LSID of page on auxiliary storage

(return code 4 only).

EXIT NORMAL: XSMEXIT - to caller, via BR 14.

EXIT ERROR: XSHEXIT - to caller, via BR 14.

EXTERNAL REFERENCES:

ROUTINES:
AHDSAG1l1 (SYC) - Get and free automatic data area.
AHDSA8IN (SVC 1 - Convert to printable hex.
AHDSACON (SVCI - Hrite messagas to console.

CONTROL BLOCKS:
Private to SADMP, in macro AHDSARMK:

BCT - Buffer Control Table.
CCT - Common Communication Table.
RCB - Recovery Control Block (created and deleted I.

HVS control blocks: Nona are modified.
ESTE, RIT, CVT, PVT, XPTE

DillgrM 52. At1DSAXSH Stand-Alone Dunp Ext.-.ded storage t1iInIIger

AMDSAXSM - MODULE OPERATION

AttDSAXSH receive. an ESTE (ExtMCled Storage Table Entry)
and a BeT (Buffer Control Table). AHDSAXSH attempts to
pIIgIl-in the extended storage f,.... specified by the ESTE
into the buffer associated wi th the BCT. AHDSAXSM
performs the following steps:

1. Sets up an RCB (Recovery Control Block) exit.

2. Checks the validi ty of the ESTE and the BCT.

3. If the EST (Extended Storage Table) is present and
valid, and the ESTE is within the bcx.nds of the
EST, AHDSAXSH executes a PGIN instruction to read
the page from the extended storage frame into the
buffer associated with the BeT.

4. If the PGIN instruction is successful (condition
code is 0), AHDSAXSH inc~ts the COU'It of
successful PGIN instructions and sets the module
return coda to o.

5. If the PGIN instruction fails with a condition code
of 1, AHDSAXSH updates the "data error" COIIIt and
issues message AHD071I.

6. If the PGIN instruction fails with a condition code
of 3, AHDSAXSH updates the "block not available"
COUlt and issues message AHD071I.

1. If a valid copy of the page exists on auxiliary
storage, and the PGIN instruction fails, AHOSAXSH
places the LSID (Logical Slot 10) for the auxiliary
storage slot where the page resicias into the 8CT
and sets the module return coda to 4.

8. If • valid copy of the page does not exist on
auxiliary storage, AHDSAXSH sets the module return
coda to 8.

9. If the EST is not present, or the ESTE is not
wi thin the bcx.nds of the EST, AHDSAXSH increments
the "l.n8Xp8Ctad error" count, issues massaga
AHD071I, and sats the module return coda to 8.

10. If the EST is p ent but invalid, AHDSAXSH does not
incr&lll8nt any error COU'Its, and does not issue any
messages, because message AHD071I was already
issued during Stand-Alone Dump initialization.

RECOVERY OPERATION:
If a program check. occurs. processing continues at the
RCB exit (label: ERROR). This error exit coda performs
the following steps:

1. Sats the module return coda to 8 to indicate that the
PGIN operation was not successful.

2. Updates the "unexpected error" count.
3. Issues s.ge AHD071I.

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Diag 52. AHDSAXSH stand-Alone DuIp Ext.1ded storage I'IINger

AMDSAXSM - DIAGNOSTIC AIDS

ENTRY POINT NAME: AHD~.

MESSAGES:
AHD071I ERROR IN EXTENDED STORAGE~ E-FRAHE ••••••••• ~ DATA ERROR

ABEND CODES: ~

WAIT STATE CODES: ~

RETURN CODES:
EXIT NORMAL:

BLOCK NOT AVAILABLE
ESTE· •••••••• , UNEXPECTED ERROR

o I RCXSHOIO - The PIIGII-in froa extMded storage ...
successful.

4 I RCXSHAUX) - The page-in froll extended stONge failed
but a Vlllid copy of the page exi.ts on
auxiliary stONge. The LSID
put into BCTLSID.

8 (RCXSHERR) - The page-in fNIII extMded storage failed
and no Vlllid copy of the page exists on
auxiliary storage.

EXIT ERROR:

8 - The page-in froll extended stoNge failed and no Vlllid
copy of the page exi.ts on auxiliary .tONge.

REGISTER CONTENTS ON ENTRY:

Rl - Point. to standard paraDater li.t.
R14 - Return addre •••
R15 - Entry-point addres ••

REGISTER CONTENTS ON EXIT:

EXIT NORMAL:

Registers 0 - 14 restored.
Register 15 contains return code.

EXIT ERROR:

Registers 0 - 14 restored.
Register 15 contains return code.

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Dieg 52. AMDSAXSM Stand-Alane D\.IIIP Ext..-ded Storage Manager

AMDSAXSM - stand-Alone Dump Extended storage Management.

~>
PARAMETERS L...., ,
r-------...,IAMDSAXSM
IESTEPARH BCTPARH n' :)

AHDSAXSH 'executes the PGIN instruction to
page data in from extended storage. and
may indicate whel"'8 a page can be fOU'\d on
auxiliary storage.

PARAMETERS J----------> ~
"'1 ac-T-PARH---ES-T-E-P-ARH"""I

Initializes.

AMDSARMK r---------->
I'--~_DV_A_LI_D __ --11-;
RIT :
,..-------...,...1
IRITFESTE RITLESTEI

AMDSARMK J---------->
~I ------~I ~
XSDCURR . '

AMDSARMK

XSDUEC RCXSHERR .---...1

sets up the recovery
environment.

Checks the extended storage
control blocks for validity.

A. If the EST is valid and the ESTE is
within the EST, tries a PGIN
instruction.

/~,~---------~
'r-I/~I ___ T_Ry_P_G_I_N_:_O_9 __ --'1

8. If the EST is valid and the ESTE is not
within the EST. sets the module return
code to 8, updates the "unexpected
error" eot.nt and issues message AMD071I.

/~,,..--------------------,
'r-I/ MSG071: 13

ESTE071, ESTEPTR, UNEX071

AMDSARMK J----------> 1041
~I ------~I '/
~DPRES XSDCURR .

If the EST is not valid,
sets the module return code
to 8 to indicate an error on

AMDSARMK

XSDUEC RCXSHERR .---'

the PGIN instruction. If the
EST is not present, updates
the "unexpected error" count
and issues message AMD071I.

/L-..J,.--________________ ~

'r-I/ MSG071: 13

ESTE071, ESTEPTR. UNEX071

~/\ losl Normal and abnormal exit:
~ Deletes the recovery
~XIT environment.

RECOVER

STEP 01

~------,J~MDSARMK

/ISAVENAME\

'---------'~MDSARMK

/IXSDUEC

'---------"~MDSARMK

'/IXSDUEC

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Di.g 52. AMDSAXSM Stand-Alone DUIIP Ext.a.d storage f1Mager

AMDSAXSM - Stand-Alone Dump Extended storage Management.

AMDSARMK ERROR

rl~XS~-D_CU~~R-R_-_-_-~~~~~I------------)
AMDSARMK

XSDUEC RCXSHERR

AMDSARMK

BCTBUFRA

AMDSARMK J---------->
~I--------~I '/ XSOCURR .

AMDSARMK

XSDSPC RCXSt10K

~ Returns to the module
caller.

Error exit: sets the module
return code to 8 to indicate
a PGIN ~ailure. Updates the
"unexpected error" count and
issues message AMD071I.

/~'r---------------------~
'r---1/ HSG071: 13

ESTE071. ESTEPTR. UNEX071

~ Goes to the normal exit.

t>XSHEXIT: 05

~ Attempts to page-in an
extended storage ~rame.

~ If the PGIN condition code
is 0, sets the module return
code to 0, and updates the
successful PGIN count.

[!!] If the PGIN condition code
is not 0, updates the
appropriate error count,
issues message AMD0711, and
sets the appropriate module
return code.

STEP 06

, /

'----..... '\AMDSARMK

/IXSDUEC

I

. ~MDSARMK
/IXSDSPC

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Diag 52. AHDSAXSH stand-Alone DuIIp Extandad sto.-.ge Manager

AMDSAXSM - Stand-Alane Dump Extended Storage Management. STEP llA

AMDSARHK J----------> A. If the PGIN condition coda is 1, updates IL-----JI\AHDSARHK --------..1 '/ the "data error" count and iss~s /
IXSDCURR _ massage AHD071I. IXSDDER

AMDSARMK /~'r-------------------~
\,---,/ MSG071: 13

XSDDER
EFRH071. EFRHID. DERR071

AMDSARMK J----------> B. If the PGIN condition code is 3. updates
r--------,I '/ the "block not available" COU"It and
IXSDCURR _ issues message AHD071I.

AMDSARMK

XSDBNAC

ESTE

ESTVLSID ES'rCHNG
ESTDATA

x PTE

IXPTDATA

x PTE

XPTlSID

A MDSARMK

RCXSHAUX

r----------> , -: t

: /
:
:

I
..J

~
I

/~,.------------~
'.---,/ I1SG071: 13

EFRH071, EFRMID, BNA071

C. If a valid copy of the page exists on
auxiliary storage. puts the LSID of the
page into tha BCT and sets tha module
return coda to 4 to indicate an error
occurred on the PGIN instruction. but a
valid copy of the page exists on
auxiliary storage.

A.-M_D_S_A_R_M_K ____ ~__' 1.-------..;) D.
I RCXSHERR r

If no valid copy of the page exists on
auxiliary storage. sets the module
return code to 8 to indicate that an
error occurred on the PGIN instruction
and no valid copy of the page exists on
auxiliary storage.

4- v

~ Returns to the subroutine
caller.

v

L-----I~\AMDSARMK

/IXSDBNAC

~--~I\AMDSARHK

t/IBCTLSID

, /

R6

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Diagram 52. AI1DSAXSI1 Stand-Alone Dump Extended Storage Manager

AI·1DSAXSM - Stand-Alone Dump Extended Storage Management.

~>
PARA~lETERS MSG071
r-----------------------~,
INSERTl INSERT2
INSERT:>

r---------, /

PARA~IETERS ...--------' ,
r---------------...I ,_--___, /
INSERTl

PL...A_R_A_ME_T_E_R_S ______ ~~,------,:) I INSERT:> !

~ Issues message AMD071I.

~ sets up the inserts for the
massage. Converts the
E-FRAME number or the ESTE
pointer to EBCDIC.

/L......J,

\ .. 1 SVCI

SVCBIN, INSERT2, INS2071,
LENGTH(INSERT2l

~ Hrites the message.

I MSGIDlAMD071I1

IO

~ Returns to the subroutine
caller.

STEP 13

I

Pl
\ /

LV2R-ll RQ-1 tel Convria-ht TRM Corn 1 QR2 1 QRfi Chantp.r 4 Stanci-Alonp. nHmn fAMnSAnMP) 4-2~~

Diagram 53. AMDSAEXI Stand-Alone Dump External Interrupt Handler

AMDSAEXI - MODULE DESCRIPTION

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

DESCRIPTIVE NAME: Stand-Alone Dump Exte~nal Inte~~upt Handle~.

FUNCTION:
Receives control after an external interrupt, then
routes control
- to the stand-alone dump termination routine,

AMDSAEKT, if the interrupt-key was pressed.
- back to the interrupted routine if the interrupt

was not the interrupt-key.

ENTRY POINT: AMDSAEXI.

PURPOSE: See FUNCTION.

LINKAGE: By load of external new PSH.

CALLERS:
Undefined.

Note: AMDSAEXI receives control when an
external interrupt occurs.

INPUT:
- The external old PSH.
- The external interrupt code.
- The general purpose registers.

OUTPUT: See under each 'EXIT NORMAL.'

EXIT NORMAL: To entry point AMDSAEKT in AMDSAPGE.

OUTPUT:
Makes three SADMP trace table entries for the interrupt
and exit:

At entry
At entry
At exit

o 1 2 345 6 7

pp pp pp F8 pp pp pp pp
ee ee 00 F8 cc cc cc cc
04 08 00 FB aa aa aa aa

F8 = external pseudo-SVC
FB = exit pseudo-SVC
pp = external old PSH at entry
ee = external interrupt code at entry
cc = external CPU address at entry
aa = address of AMDSAEKT (AMODE 31)

EXIT NORMAL: To the interrupted process.

OUTPUT:
Makes three SADMP trace table entrles f~r the interrupt
and exit:

F8 =
FB =
pp =
ee =
cc =

o 1 2 3 4 S 6 7

At entry pp pp pp Fa pp pp pp pp
At entry ee ee 00 F8 cc cc cc cc
At exit pp pp pp FB pp pp pp pp

external pseudo-SVC
exit pseudo-SVC
external old PSH at entry
external interrupt code at entry
external CPU address at entry

"'Restricted Materials of IBM"
Licensed Materials - Property of IBM

Diagram 53. AMDSAEXI Stand-Alone Dump External Interrupt Handler

ANDSAEXI - MODULE DESCRIPTION (Continued)

EXTERNAL REFERENCES:

ROUTINES:
At1DSAEKT - Interrupt-key external interrupt termination.

(Entry point in module AMDSAPGEJ

CONTROL BLOCKS:
C = created, R = referenced, M = modified, D = deleted,
I = internal to SADMP.

RM
R~1

RM

ICCT
IpGOMAP -

PSA
ITRACE - RM

- Common Communications Table
Register save areas in page zero.

- Prefixed Save Area.
- Trace table.

SERIALIZATION: Disabled for 1/0 and external interrupts.

Diagram 53. AMDSAEXI Stand-Alone Dump External Interrupt Handler

AMDSAEY.I - MODULE OPERATION

AMDSAEXI saves entry registers in page zero (PGOEXISA),
where they will later be loaded at exit. AMDSAEXI makes
two trace table entries for the external interrupt using
the ?TRACE macro, one showing the old PSH at entry, the
other showing the interrupt code and CPU address, if any.

If the interrupt was the interrupt-key external interrupt,
the operator is requesting SADMP termination. AMDSAEXI
leaves entry registers 0-14 in the page zero save area,
sets register 15 in the save area to the address of
AMDSAEKT, and sets the exit PSH in page zero to give
routine AMDSAEKT control.

If the external interrupt is not the interrupt-key
external interrupt, the interrupt is ignored. A~1DSAEXI
leaves the entry registers in the save area unchanged and
copies the external old PSH into the exit PSH.

AMDSAEXI makes a trace table entry for the exit,
loads all registers fro~ the save area in page zero,
and loads the exit PSH from page zero.

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Diagram 53. AMDSAEXI Stand-Alone Dump External Interrupt Handler

AMDSAEXI - DIAGNOSTIC AIDS

ENTRY POINT NAME: AMDSAEXI.

MESSAGES: None

ABEND CODES: None

WAIT STATE CODES: None

RETURN CODES: None

REGISTER CONTENTS ON ENTRY:

Undefined.

REGISTER CONTENTS ON EXIT:

EXIT NORMAL: To entry point AMDSAEKT in AMDSAPGE.

Register 15 - address of AMDSAEKT.
Others - same as at entry.

EXIT NORMAL: To the interrupted process.

Same as at entry.

'V"\O 1 1 on..., ~ ~ __ ~._':_L ... Tn r"___ 1 no.., t l\OL

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Diagram 53. AMDSAEXI Stand-Alone Dump External Interrupt Handler

AMDSAEXI - Stand-Alone Dump External Interrupt Handler.

Undefined.

Note: AMDSAEXI receives control
wnen an external interrupt
occurs.

~>
AMDSAEXI

AMDSARMK J---------->
~I --------~I \1
BASE REG .

AMDSARMK

RO RIS

P,S_A ____________ ~._----.:)
I PSASPAD FLCEICOD ~

PSA J---------->
~I --------~I 1\ FLCEICOO .

PSA

FLCENPSH

P,S_A _________ !~I~--~:)
IFLCEOPSH r

Receives contrf)l after an extel'nal
interrupt, then routes control
- to the stand-alone dump termination
routine, AMDSAEKT, if the interrupt-key
was pressed.
- back to the interrupted routine if the
interrupt was not the interrupt-key.

~ Performs initialization.

A. Saves the registers in the page zero
save area. Establishes addressability.

B. Places the external interrupt old PSH
into the trace table.

TRACE

PS~H FLCEOPSH) lD(SVCEXI)

C. Saves the external interrupt code and
the associated CPU address in page zero,
and in the trace table.

TRACE

PSH(PGOETRCE) lD(SVCEXI)

~ Performs exit processing for
interrupt-key external
interrupts and unexpected
external interrupts.

A. If the interrupt was the interrupt-key
external interrupt, sets register IS in
the register save area to the address of
AMDSAEKT, and sets up the exit PSW to
route control to AMDSAEKT.

B. If the interrupt was not the
interrupt-key external interrupt, sets
up the exit PSN to return control to the
interrupted routine.

C. Places the exit PSH into the trace
table.

TRACE

PSH(PGOERPSHl IOISVCEXITIl

D. Loads the general registers from the
page zero save area.

I

STEP 01

I

\AMDSARMK
1..-------.

PSI'!
PSHIA
PSHA3l
REGL15

,AMDSARMK

liRe Rlsi

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Diagram 54. AMDSAMCI stand-Alone Dump Machine Check Handler

AMDSAMCI - MODULE DESCRIPTION

DESCRIPTIVE NAME: Stand-Alone Dump Machine Check Handler.

FUNCTION:
Receives control after a machine check. then
- routes control to the current active (top) RCB (recovery

control block) exit if the machine check is vector-related and
expected.

- resumes the interrupted process if the machine check is
vector-related but not expected. or

- terminates stand-alone dump by loading a disabled
wait PSH if the machine check is neither vector-related
nor expected.

ENTRY POINT: AMDSAMCI.

PURPOSE: See FUNCTION.

LINKAGE: By load of machine check new PSH.

CALLERS:
Undefined.

Note: AMDSAMCI receives control when a machine
check interruption occurs.

INPUT:
- The machine check old PSH.
- The machine check interrupt code.
- The machine check logout area.
- The "machine check expected" indicator CTMCIEXP

in the CCT.

OUTPUT: See under each EXIT NORMAL.

EXIT NOR~IAL: To the current active (top) RCB exit

OUTPUT:
- Puts the machine check interrupt code into PGOMCIC and

resets CTMCIEXP.
- If the machine check interrupt code indicates that the

machine check was vector related, disables vector
instructions.

- Makes two SADMP trace table entries for the interrupt:

Byte

At entry
At entry

o 1 2 3 456 7

pp pp pp FF pp pp pp pp
cc cc cc cc cc cc cc cc

FF : machine check pseudo-SVC
pp : machine check old PSH at entry
cc : machine check interrupt code at entry

EXIT NORMAL: To the interrupted process.

OUTPUT:
- Puts the machine check interrupt code into PGOMCIC and

resets CTMCIEXP.
If the machine check interrupt code indicates that the
machine check was vector related. disables vector
instructions.
Makes three SADMP trace table entries for the
interrupt and exit:

Byte

At entry
At entry

o 1 2 345 6 7

pp pp pp FF pp pp pp pp
cc cc cc cc cc cc cc cc

Diagram 54. AMDSAMCI Stand-Alone Dump Machine Check Handler

AMDSAMCI - MODULE DESCRIPTION (Continued)

At exit pp pp pp FB pp pp pp pp

FF = machine check pseudo-SVC
FB = exit pseudo-SVC
pp = machine check old PSH at entry
cc = machine check interrupt code at entry

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

EXIT NORMAL: To a disabled wait PSH with wait state code X'470000'.

OUTPUT:
- Puts the machine check interrupt code into PGOMCIC and

resets CTHCIEXP.
- Makes three SADMP trace table entries for the

interrupt and exit:

Byte

At entry
At entry
At exit

o 1 2 345 6 7

pp pp pp FF pp pp pp pp
cc cc cc cc cc cc cc cc
01 OA 00 FB 00 47 00 00

FF = machine check pseudo-SVC
FB = exit pseudo-SVC
pp = machine check old PSH at entry
cc = machine check interrupt code at entry

EXTERNAL REFERENCES:

ROUTINES: None

CONTROL BLOCKS:
C = created. R = referenced. M = modified. D = deleted.
= internal to SADMP.

- RM - SADMP Common Communication Table. I CCT
LRB - R - Machine check LOGREC buffer record (maps

PSA - R
I RCB - R
I PGOMAP - RM

the machine check interrupt code).
- Prefixed Save Area.
- SADMP Recovery Control Block.
- SADMP save areas in page zero.

SERIALIZATION: Disabled for all interrupts.

4-240 MVS/Extended Architecture Service Aids Lo~ic LY28-1189-1 ((') Convri"ht fRM Corn 19R? 19Rfl

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Diagram 54. AMDSAMCI Stand-Alone Dump Machine Check Handler

AMDSAMCI - MODULE OPERATION

Validates general purpose and control registers by
loading thorn from the machine check logout area in
page zero.

Saves general purpose registers in page zero
(PGOMCISA), where they may later be loaded at exit.

Makes two trace table entries (?TRACE) for the
machine check, one showing the old PSW at entry, the
other showing the interrupt code.

If the machine check is related to the vector facility, AMDSAMCI
disables vector operations by resetting control register 0 bit
14.

If the machine check is expected (CTMCIEXP=l) and v8ctor­
related, At1DSAMCI

- saves the machine check interrupt code in page zero
I PGO~lCIC) ,

- resets the machine check "expected" indicator
(CTMCIEXP),

- routes control to the current RCB exit via the
?ERROR macro.

If the machine check is related to the vector facility and
is not expected, AMDSAMCI

- sets up the return PSW to give control to the interrupted
process,

- makes a trace table entry for the exit,

- restores the interrupted process's registers,

- returns control to the interrupted process, which resumes
as if no machine check has occurred.

If the machine check is not related to the vector facility,
AMDSAMCI

- sets up the return PSH to be a disabled wait with wait state
code X'470000',

- restores the interrupted process's registers,

- makes a trace table entry for the exit,

- terminates SADMP processing by loading the disabled wait PSH.

If an exigent machine check occurs while AMDSAMCI is in control,
the CPU SADMP is running on will enter the check-stop state
since AMDSAMCI is disabled for machine checks.

Diagram 54. A~1DSAMCI Stand-Alone Dump Machine Check Handler

AMDSAMCI - DIAGNOSTIC AIDS

ENTRY POINT NAME: AMDSAMCI.

MESSAGES: None

ABEND CODES: None

WAIT STATE CODES:

X'470000' - unexpected machine check in SADMP. This is intended
to terminate SADMP. It is disabled for 1/0 and
machine interrupts, but is enabled for external
interrupts so that the operator can attempt to write
an end-of-file on the output tape by causing an
interrupt key external interrupt.

RETURN CODES: None

REGISTER CONTENTS ON ENTRY:

Undefined.

REGISTER CONTENTS ON EXIT:

EXIT NORMAL: To the current active (top) RCB exit

Defined by the current active RCB.

EXIT NORMAL: To the interrupted process.

Same as at entry.

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

EXIT NORMAL: To a disabled wait PSH with wait state code X'470000'.

Same as at entry.

"Restricted Materials of IBM"

Licensed. Materials - Property of IBM

Diagram 54. AMDSAMCI Stand-Alone Dump Machine Check Handler

AMDSAMCI - Stand-Alone Dump Machine Check Handler.

Undefined.

Note: AMDSAMCI receIves control
when a machine check
interruption occurs.

~>
AMDSANCI

AMDSARMK -1---------->
'I ------------~I '/ BASE REG CRl5 .

PSA

FlCGRSAV FlCCRSAV..-----'

PSA r--------->
1 FlCGRSAV FlCCRSAV 1- .;
AMDSARMK

REGlOCAL REGlO

LRB r---------->
LIL_R_B_M_FP_D ________ ~I-:
AMDSARMK

I'-C_R_O ________ -'I-J

Receives control after a machine check,
then
- routes ~ontrol to thr current active
Itop) RCB Irecovery control block) exit if
the machine check is vector-related and
expected,
- resumes the interrupted process if the
machine check is vector-related but not
expected, or
- terminates stand-alone dump by loading a
disabled wait PSH if the machine check is
neither vector-related nor expected.

~ Performs initialization.

A. Validates the control registers.
Validates the general registers.
Establishes addressability.

B. Copies the general purpose registers,
and control register zero, from the
machine check logout area to a save area
in page zero.

C. Places the machine check old PSH into
the trace table.

TRACE

PSNIFlCMOPSH) IDISVCMCI) DATOFF

D. places the machine check interrupt code
into the trace table.

TRACE

PSNIFlCMCIC) DATOFF

~ Analyzes and processes the
machine check.

A. If the machine check interrupt code
indicates "instruction processing
damage" with "vector source," or "vector
facility not operational," AMDSAMCI
prevents further vector operations by
resetting control register 0 bit 14, and
indicates that the machine check was
vector related.

STEP 01

'------..JI\AMDSARMK

/~

~

'------'I ,AMDSARMK

/ICRO

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Diagram 54. AMDSA~ICI Stand-Alone Dump Machine Check Handler

AMDSAMCI - Stand-Alone Dump Machine Check Handler.

B. If the machine check interrupt code
indicates neither "processing d~mage"
with "vector source," nor "vector
facility not operational," indicates
that the machine check was not vector
related.

If the machine check is
"expected," and vector
related, performs exit
proc.essing for "expected"
vector facility machine
chscl{s.

PSA ~ :'/ A. Saves the MCIC in paJe zero for later r---------..J ,.... ----,. use by the RCS exi t.

L..I F_L_CM_C_I_C ___ ---..I
. B. Resets the "expected" indicator.

C. Routes control to the current RCB exit.

ERROR

REASON(EXPMCI) SVCNUM(SVCMCI) RECOVER

P S_A _____ !..J, __J:) ~
IFLCMOPSH r

If the machine check was NOT
an "expected" machine check,
but was vector related, sets
up the exit PSt., to return to
the interrupted routine.

If the machine check was not
"expected" and not related
to the vector facility, sets
up the exit PSW to be a
disabled wait PS\'l.

Performs exit processing.

A. Places the exit PSH into the trace
table.

TRACE

PSH(PGOMRPSH) ID(SVCEXITIl DATOFF

B. Loads the general registers from the
page zero save area.

STEP 02B

'-----..J\AMDSARMK

I ,/IRO Risl

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Diagram 55. AMDSAVEC Stand-Alone Dump Vector status Dump

AMDSAVEC - MODULE DESCRIPTION

DESCRIPTIVE NAME: Stand-Alone Dump Vector Status Dump.

FUNCTION:
Dumps vector status data for every CPU in the configuration.

ENTRY POINT: AMDSAVEC.

PURPOSE: See FUNCTION.

LINKAGE: SVCISVCVEC)

CALLERS: AMDSAPGE.

INPUT: None

OUTPUT:
Vector status has been dumped for every CPU in the
complex that has a functioning vector facility.

Each CPU's "vector status data" is defined to be the
following hardware-related data. in the forrnat
defined by the Vector status Save Area IVSSA):

1. The vector status register IVSSAVSRI as stored
by the SAVE VSR IVSRSV) instruction

Z. The vector mask register (VSSAVMRI as stored by
the SAVE VMR (VMRSV) instruction

3. The vector timer (VSSAEVST). the same as the
vector activity CO~lt. as stored by the SAVE VAC
(VACSV) instruction

4. The vector section size (VSSASCSZ). as stored by
the STORE VECTOR PARAMETERS (VSTVP) instruction

5. The partial sum number (VSSAPSUM). as stored by
the STORE VECTOR PARAMETERS (VSTVP) instruction

6. The vector registers (VSSAVREG) marked as in-usa
by the in-use bits in the vector status
register. as stored by the SAVE VR (VRSV)
instruction.

AMDSAVEC inserts an acronym into each VSSA it dumps,
and a pointer to the vector register data.
All other VSSA fields are initialized to zeros.

AMDSAVEC dumps one VSSA for each CPU in pseudo­
address space X'FFFS'. a conceptual block of data
that is dumped and may be accessed under a formatting
program as if it were an MVS address space. but which
corresponds to no actual MVS address space. The
vector dump output records have the format

+X' 0000 ' 0000
+X'OOOZ' pseudo-ASID = X'FFFS'
+X'0004' virtual address
+X'OOOS' 4K of data

The VSSA for the CPU with address n will begin at
address (n*16IM within this address space.

AMDSAVEC mayor may not be able to dump vector status
for a given CPU. depending on the status of the
vector facility on that CPU:

I V?R_ll RO_ ':\ tel r"nv,.ioht TRM r"rn 1 OR? 1 ORI\

Diagram 55. AMDSAVEC Stand-Alone Dump Vector Status Dump

AMDSAVEC - MODULE DESCRIPTION (Continued)

1. The CPU does not exist: AMDSAVEC will not dump
vector status for the CPU.

2. The CPU exists, but the vector facility is not
installed anywhere in its MP complex: AMDSAVEC
will not dump vector status for the CPU.

3. The CPU exists, the vector facility is installed
elsewhere in the complex, but not on the CPU
itself: AMDSAVEC will not dump vector status
for the CPU.

4. The vector facility is installed on the CPU, but
is not available at the time of the dump:
AMDSAVEC will not dump vector status for the
CPU.

5. The vector facility is installed on the CPU and
is available at the time of the dump, but either
the CPU machine checks storing vector status or
an internal SADMP error occurs: AMDSAVEC may
not dump vector status for the CPU, may dump
part of it, or may dump all of it, depending on
the nature of the error and when it occurs.

6. The vector facility is installed on the CPU and
is available, and no errOrS occur while storing
and dumping vector status: AMDSAVEC dumps
vector status for the CPU in the format
described above.

EXIT NORMAL: To caller by BR 14.

EXTERNAL REFERENCES:

ROUTINES:
AMDSAAUD (SVC) - Error recovery, dumping and termination.
AMDSABUF (SVC) - Get a SADMP page buffer.
AMDSAGTM (SVC) - Get and free storage.
AMDSAMCI - Machine check handler.
AMOSAPGI - Program interrupt handler.
AMDSASIO (SVC) - Perform dump output 1/0.
AMDSASVI - SVC interrupt handler.

For SVC modules with name AMDSA---, linkage is by SVC(SVC---)
or CALL SVCIISVC---, •••).

DATA AREAS: XIODBOUT - External IOOB for the output device.

CONTROL BLOCKS:
C = created. R = referenced, M = modified. D = deleted,
= internal to SADMP.

I BCT RM
I IOOB R
I PGOMAP R

PSA CRMO
I RCB CRMO

VSSA CRMO

- SADMP Buffer Control Table Entry.
- SAOMP 1/0 Control Block.
- SADMP page 0 save areas.
- Prefixed Save Area.
- SADMP Recovery Control Block.
- Vector status Save Area.

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Diagram 55. AMDSAVEC Stand-Alone Dump Vector Status Dump

AMDSAVEC - MODULE OPERATION

Saves the caller's registers, obtains an autodata
area, initializes a SADMP Recovery Control Block
(RCB) and puts it on the RCB stack, and initializes
variables and data areas.

Gets two page buffers: one for use as a PSA for
non-IPL CPUs, and one for building a VSSA. Obtains
page buffers, as needed, for the dump routine 1/0
buffers.

Obtains and dumps vector status for each CPU from
address 0 to address 63. If the vector facility is
not installed or if vector status cannot be obtained
for some other reason, continues to the next
CPU.

Dumping vector status on the IPL CPU:

- AMDSAVEC sets the machine check "expected" indicator
(CTMCIEXP), causing the machine check handler to
route control to the current RCB for a machine
check. A vector machine check causes AMDSAVEC to
abandon dumping vectors for the IPL CPU.

- AMDSAVEC sets the program check "expected"
indicator (CTAUDPCI), causing the program interrupt
handler to route control to the current RCB for a
program check. A program check when initializing
for vector operations, or a program check when
executing a vector instruction, causes AMDSAVEC to
abandon dumping vectors for the IPL CPU.

- AMDSAVEC activates the vector facility by setting
the vector control bit, bit 14 in control register
O. If the vector facility is installed and
operational on the IPL CPU, dumps its vector status
as described under OUTPUT.

Dumping vector status on non-IPL CPUs:

- AMDSAVEC issues a SIGP Sense to the target non-IPL
CPU. If the sense indicates that the CPU is
installed, initializes the non-IPL CPU by setting
up its PSA, issuing a SIGP Set Prefix, and issuing
a SIGP Res tart .

- Controls the execution of a non-IPL CPU by setting
up a non-IPL CPU program in its PSA. AMDSAVEC
starts the non-IPL CPU via a SIGP Restart initially
and via a SIGP External-Call subsequently. The
non-IPL CPU executes instructions set up by the IPL
CPU to dump a portion of vector status. The
non-IPL CPU enters an enabled wait when the non-IPL
CPU program completes, program checks, or is
interrupted by a machine check. The IPL CPU spins
until the non-IPL CPU completes, an error is
detected, or until a threshold of 3 (MAXPPRUN)
seconds has passed. The IPL CPU continues or stops
gathering vector data from the non-IPL CPU
depending on the status of fields in the non-IPL
CPU's PSA.

- If the target non-IPL CPU terminates with a machine
or program check, AMDSAVEC stops gathering data for
the target CPU and goes to the next one.
otherwise, AMDSAVEC continues gathering status.
AMDSAVEC dumps the status in the format described
under OUTPUT.

AMDSAVEC - MODULE OPERATION (Continued)

- Hhen the non-IPL CPU stops presenting
vector data, either because of a machine or program
check or because there is no more, AMDSAVEC stops
the non-IPL CPU by issuing a SIGP stop.

Hhen vector status dumping is complete, AMDSAVEC
deletes its RCB, frees autodata storage and returns
to its caller.

RECOVERY OPERATION:
AMDSAVEC defines an RCB to intercept any internal
errors during AMDSAVEC's execution. If no storage is
available, or an internal error occurs during
initialization, AMDSAVEC cleans up resources and
returns to AMDSAPGE.

AMDSAVEC defines an RCB to intercept errors that
occur while processing each target CPU. If an error
occurs, resources are cleaned up for the target CPU,
and processing con'iinues on the next CPU.

AMDSAVEC defines an ReB to intercept errors that
occur while initializing a target CPU. If an error
occurs, control is routed to the next higher RCB exit.

AMDSAVEC defines an RCB to intercept errors that
occur while starting a non-IPL CPU. If an error
occurs, control is routed to the next higher RCB exit.

AMDSAVEC defines an RCB to intercept errors that
occur while obtaining vector status on a target
CPU. If an error occurs, control is routed to the
next higher RCB exit.

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Diagram 55. AMDSAVEC Stand-Alone Dump Vector Status Dump

AMDSAVEC - DIAGNOSTIC AIDS

ENTRY POINT NAME: AMDSAVEC.

MESSAGES: None

ABEND CODES: None

WAIT STATE CODES:

The following wait state codes may be loaded by non-IPL
CPUs during AHDSAVEC's execution.

Coda: Description:

X' OOOAOOOO 00510004' A machine check occurred.

X'010EOOOO 005100D7' A program check occurred. This
indicates that setting the control
registers on the target non-IPL CPU
failed, or that the target non-IPL
CPU could not execute the target
instruction.

X'010EOOOO 005100E2' An SVC was issued. This indicates
that the target instruction
completed successfully on the
target non-IPL CPU.

RETURN CODES: ~

REGISTER CONTENTS ON ENTRY:

Uses standard linkage conventions:

Register 13 - points to caller's save area.
Register 14 - return instruction address.~
Register 15 - entry point address.
others - undefined.

REGISTER CONTENTS ON EXIT:

EXIT NORMAL:

Same as at entry.

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Diagram 55. AMDSAVEC Stand-Alone Dump Vector Status Dump

AMDSAVEC - Stand-Alone Dump vector Status Dump. STEP 01

AMDSAPGE.

~>
AMDSAVEC

Ar-M_D_S_AR_M_K __ --.J----------~

CRI RCB
RCBSTD RCBSH

AMDSARMK

CTRCB SSINDEX
DATABASE BASE REG
SAREG

.---...,1

VECTERM

ArM_D_S_A_RM_K _______ ~~lr----':~ I RCBNEXT r

Dumps vector status data for every CPU
the configuration.

[!!] Establishes label "VECTERM"
as the current RCB exit.

RECOVER

(ADD, RCBVEC J EXIT(VECTERMJ

~ Performs module
initialization.

IL-J\

'r--l /!
INIT: 07

~ Obtains and dumps vector
facility status for each
available cpu.

IL-J,

'r--l /!
LOOPCPU: 16

~ Deletes the current RCB ..

I RCBREGS

I RCBREGS

RECOVER

(DelETE, RCBVEC J

~ Performs module cleanup.

IL-J,

'r--l /!
CLEANUP: lZ

~ Returns to the module
caller.

in

!

I

I

I

I

I

I

I

I

\AMDSARMK
1....---..,

CTRCB
HORKREG
RCBNEXT
RCBSSI
RCBSAVE
RCBEXIT
RCBDATA
RCBBASE

\AMDSARMK

IICTRCB

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Diagram 55. AMDSAVEC Stand-Alone Dump Vector Status Dump

AMDSAVEC - Stand-Alone Dump Vecto~ Status Dump.

~> E.J Pe~fo~ms module
initialization.

INIT

~ Dete~mines the add~ess of
the IPL cpu.

~ Obtains sto~age fo~ a PSA.
If storage is not available.
~outes cont~ol to the
current ReB exit.

PAGEBUF

IGET) BCTIPSABCTPT) BUFFERIPSAPTR)
ERRORINOSTOR)

< >1 SVC SVCBUF

A~M_D_S_A_RM_K _______ ~~I~ ____ ~:;
! BCTBUFVA ON r

< >1 SVC SVCAUD

~ Obtains a page of storage
for VSSA data. If storage is
not available. routes
control to the current ReB
exit.

PAGEBUF

IGET) BCTIVSSABCTP) BUFFERIVSSAPTR)
ERRORINOSTOR)

< >1 SVC SVCBUF

A~M_D_S_A_RM_K _______ ~~I~ ____ ~:;
!SCTBUFVA ON r

< >1 SVC SVCAUD

1

I,
I

I

J
II
1

1
II

STEP 07

-'

I

I

\AMDSARMK
/r----.

CTAUDPL
CTAUDRCV
CTAUDRC

\AHDSARHK
/r----.

CTAUDPL
CTAUDRCV
CTAUDRC

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Diagram 55. AMDSAVEC Stand-Alone Dump Vector status Dump

AHDSAVEC - Stand-Alane Dump vector Status Dump.

~>
CLEANUP

~ Returns to the subroutine
l..!.:J caller.

i!J Performs module cleanup.

~ Frees any storage obtained
for a PSA.

PAGEBUF

(FREE) BCTIPSABCTPT) BUFFERIPSAPTR)

~ Frees any storage obtained
for VSSA data.

PAGEBUF

IFREE) BCTIVSSABCTP) BUFFERIVSSAPTRI

~ Returns to the subroutine
caller.

]

" I

" I

STEP 11

I

I

'\AHDSARHK

I I BCTPGING I

'\AMDSARHK

II BCTPGINGI

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Diagram 55. AMDSAVEC Stand-Alone Dump Vector Status Dump

AMDSAVEC - Stand-Alone Dump vector Status Dump.

~>
lorpcpu

.:!J Obtains and dumps vector
facility status for each
available cpu.

@] For each valid CPU address,
attempts to obtain and dump
vector facility status.

A. Establishes label "lOOPRTRY" as the
current RCB exit.

A.-M_D_S_A_R_M_K __ --., J---------~~
RECOVER

CRI RCB .----...1
RCBSTD RCBSM (ADD. RCBlOOP) EXITIlOOPRTRY)

AMDSARMK
B. Initializes the resources to be used by

CTRC8 SSINDEX
DATABASE BASE REG
SAREG

lOOPRTRY

ArM-D-S-A-R-M-K-------~~lr----~:) I RCBNEXT r

the dump routine for the target CPU.

(~)I DUHPR1N: 69

OPEN. 0

C. Initializes the target CPU for vector
processing.

/L-..J,

'r-t / ! CPUOPEN: 19

D. Attempts to obtain vector facility
status for the CPU.

/L-.I\ \.---./1 VFSTATUS: 60

E. Deletes the current RCB.

I RCBREGS

I RCBREGS

RECOVER

(DELETE. RCBLOOP)

F. Performs cleanup for the target CPU.

/L-.I\ \.---./1 CPUCLOSE: 28

I

I

!

I

I
I

STEP 16

I

•

•

\AMDSARMK
1..-----,

CTRCB
HORKREG
RCBNEXT
RCBSSI
RCBSAVE
RCBEXIT
RC8DATA
RCB8ASE

\AHDSARHK

IICTRCB

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Diagram 55. AMDSAVEC Stand-Alone Dump Vector Status Dump

AMDSAVEC - Stand-Alone Dump vector status Dump.

G. Cleans up resources used by the dump
routine. and indicates that there will
be no more status dumped for the current
CPU.

/~\r-----------------------~
\,--,/ DUMPRTN: 69

CLOSE, 0

Returns to the subrout ine
caller.

~> 2:!J Initializes the target CPU.

CPUOPEN

Clears processing
indicators.

Establishes label "CPURTRY"
as the current RCB exit.

STEP 17G

A M_D_S_A_RM_K __ ---. J----------~ r-----------------. '-----I'\AMDSARMK
CRI RCB
RCBSTD RCBSM

AMDSARf1K

CTRCB SSINDEX
DATABASE BASEREG
SAREG

.------./

AMDSARMK J---------->
r-I-----,I

CRO _

RECOVER

IADD, RCBCPUJ EXITICPURTRYJ

~ If the requested CPU is the
IPL CPU, performs IPL CPU
initialization.

A. Sets the machine check and program check
"expected" indicators.

B. Enables for vector operations on the IPL
CPU.

C. Indicates successful initialization for
the current CPU.

If the requested CPU is not
the IPL CPU, performs
non-IPL CPU initialization.

r-------~/r------,

CTRCB
I'lORKREG
RCBNEXT
RCBSSI
RCBSAVE
RCBEXIT
RCBDATA
RCBBASE

'-----I\AMDSARMK

~\AMDSARMK
/ICRO

J

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Diagram 55. AHDSAVEC Stand-Alone Dump Vector Status Dump

AMDSAVEC - Stand-Alane Dump Vector Status Dump.

AMDSARMK J---------->
r-, -----"

R2 _

A. Issues a SIGP Sense to determine if the
requested non-IPL CPU is installed.

B. Saves the condition code.

I ICCSENSE I

GETCC

C. If the requested non-IPL CPU is
installed. prepares the non-IPL CPU for
running non-IPL CPU programs.

IL-J\

I \ r--11 I PREPCPU: 32

D. If the CPU does not exist or is
inoperative. indicates that
initialization failed for the non-IPL
CPU.

CPURTRV ~ Removes the current RCB
exit.

I
RCBREGS

I

I

ArM_D_S_A_RM_K _______ ~~I~----~:) .-

IRCBNEXT ! RECOVER

(DELETE, RCBCPUJ

~ Resets the proRram check and
machine check I expected"
indicators.

~ If the requested CPU was the
IPL CPU and processing did
nat complete successfully,
or a timeout or other
failure was detected, routes
control to the current RCB
exit.

A~M-D-S-A-R-M-K-------~~I~----~:)
ISVCVEC ON ~

ERROR

SVCNUMISVCVEC) REASON(OPENFAIL) RECOVER

< >1 SVC SVCAUD

I
1

STEP 23A

I \AMDSARMK

IIRl R2

I

I

I

\AMDSARMK

IICTRCB

\AMDSARMK

\AMDSARMK
Ir----..,

CTAUDPL
CTAUDRCV
CTAUDRC
CTAUDSVC

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Diagram 55. AMDSAVEC Stand-Alone Dump Vector Status Dump

AMDSAVEC - Stand-Alone Dump vector status Dump.

~>
CPUCLOSE

AMDSARMK J---------->
r---', --.,

CRO _

AMDSARMK J---------->
,r--" ----"

R2 _

~>
PREPCPU

A..-M_D_S_A_R_M_K __ --. J----------~
. CRl RCB

RCBSTD RCBSM

AMDSARMK

CTRCB SSINDEX
DATABASE BASE REG
SAREG

,..--.,/

1271 Returns to the subroutine
caller.

~ Cleans up resources used by
the target CPU.

~ If the requested CPU is the
IPL CPU. disables for vector
operations on the IPL. CPU.

~ If the requested cpu is not
the IPL. CPU, issues a SIGP
stop to the target non-IPL.
CPU.

~ Returns to the subroutine
caller.

~ Attempts to prepar'e the
target non-IPL. CPU for
running non-IPL CPU
programs.

~ Establishes PREPRTRY as the
current ReB exit.

RECOVER

(ADD, RCBPREP) EXIT(PREPRTRY)

§] Initializes the PSA for the
non-IPL CPU program and sets
up the target of the EXECUTE
instruction.

/L---',\ '\r--1/1 INITPSA: 50

•• " • "L ___ L _____ C" __ .! __ A':...l~

I

STEP 27

I

C
I

y/

'\AMDSARMK

/ICRO

'\AMDSARMK

/IRl R2

'\AMDSARMK
/..-----,

CTRCB
WORKREG
RCBNEXT
RCBSSI
RCBSAVE
RCBEXIT
RCBOATA
RCBBASE

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Diagram 55. AMDSAVEC Stand-Alone Dump Vector Status Dump

AMDSAVEC - Stand-Alone Dump Vector Status Dump.

AMDSARMK J---------->
rl------------'I /'
R2 .

AtlDSARMK

BCTBUFRA

AMDSARMK ,...----'"
,..----------11 ..--___ -../
ISVCVEC ON ~
L..-. __ ----II

AMDSARMK J---------->
r--I Rz------,I

~ Sets the prefix register on
the target CPU to point to
the initialized PSA.

A. Issues a SIGP Set Prefix to the target
CPU.

B. Saves the condition code.

I (CCSETPOF J

GETCC

C. If the SIGP Set Prefix was not accepted.
routes control to the current RCB exit.

ERROR

SVCNUMISVCVECJ REASONISIGPSPFLJ RECOVER

< >1 SVC SVCAUD

.

~ Spins until the prefix has
been set on the target CPU,
or until a threshold of 10
(MAXSETPRl seconds is
exceeded. If the threshold
is exceeded, exits to the
current RCB exit.

/L......J,

',--,/ SPINSIGP: 42

MAXSETPR, SIGPSPFL

§J Starts the non-IPL CPU.

A. Issues a SIGP Restart to the target CPU.

B. Saves the condition code.

I, CCRESTRT)

GETCC

C. If the SIGP Restart was not accepted,
exits to the current RCB exit.

I

1

I

I

STEP 35

~

,
I

,

\AMDSARMK

IIRl R2

\AMDSARMK
1..-------.

CTAUDPL
CTAUDRCV
CTAUDRC
CTAUDSVC

,AMDSARMK

IIRI RZ

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Diagram 55. AMDSAVEC Stand-Alone Dump Vector Status Dump

AMDSAVEC - Stand-Alone Dump Vector Status Dump.

ArM-D-S-A-RM-K-------~~lr----,:;
ISVCVEC ON r

PREPRTRY

A~M-D-S-A-R-M-K-------~~I~----~:;
1 RCBNEXT r

ERROR

SVCNUM(SVCVEC) REASONISIGPREFL) RECOVER

< >\ SVC SVCAUD

~ Spins until the SIGP Restart
has completed on the target
CPU, or until a threshold of
10 (MAXRSTRT) seconds is
exceeded. If the threshold
is exceeded, exits to the
current RCB exit.

/L--J\
\r--,/ SPINSIGP: 42

MAXRSTRT, SIGPREFL

139] Spins until the non-IPL CPU
completes, a timeout occurs,
or an error is detected.

/L--J\ \r--l/I SPINCPU: 46

~ Removes the current RCB
exit.

RECOVER

(DELETE, RCBPREP)

~ Returns to the subroutine
caller.

I

I
J

I

\ /

STEP 38

I

I

\AMDSARMK
/..------..,

CTAUDPL
CTAUDRCV
CTAUDRC
CTAUDSVC

\AMDSARHK

/ICTRCB

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Diagram 55. AMDSAVEC Stand-Alone Dump Vector Status Dump

AMDSAVEC - Stand-Alone Dump Vector Status Dump.

PARAMETERS
~>
SPINSIGP

....------.:) ITHRESHLD ERRCODE

~ Spins until a SIGP Sense to
the target CPU returns a
non-busy condition code, or
until the maximum spin time
threshold is exceeded. If
the threshold is exceeded,
sets the timeout indicator
and routes control to the
current RCB exit with the
provided error reason code.

§] Saves the time at the start
of the spin loop.

§] Spins until a SIGP Sense to
the target CPU returns a
non-busy condition code or
the specified maximum spin
loop time threshold is
exceeded.

PARAMETERS -1---------->
"'-1 ------.1 THRESliLD .

A. If the elapsed time in the spin loop
exceeds the threshold, sets the timeout
indicator and exits to the current RCB
exit with the provided error reason
code.

AMDSARMK .------' \
.-----------' .-----./ ERROR
SVCVEC ON

SVCNUMISVCVEC) REASONIERRCODE) RECOVER
PARAMETERS

ERRCODE
< >1 SVC SVCAUD

AMDSARMK -1---------->
"'--1 -----.1 R2 .

B. Issues a SIGP Sense to the target CPU.

C. Saves the condition code.

IIt=NSEJ
GETCC

~ Returns to the subroutine
caller.

1

I

I

" /

STEP 42

I

I

I

\AMDSARMK
/.----....,

CTAUDPL
CTAUDRCV
CTAUDRC
CTAUDSVC

'\AMDSARMK

/IRl R2

L Y28-1189-3 © Convril!ht IBM Corn. 1982. 1986 Chanter 4. Stand-Alone Dumn (AMDSADMP) 4-259

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Diagram 55. AHDSAVEC Stand-Alone Dump Vector Status Dump

AMDSAVEC - Stand-Alone Dump vector Status Dump. STEP 46

~>
SPINCPU

PSA r---------->
... 1 F_LC_SO_P_SH ___ --'I-:

AMDSARMK

... 1 P_S_HI_A ____ --'I ~
PSA r---------->
IFLCPOPSH FLCMOPSHI-;

AMDSARMK :

..... 1 PSH_IA ___ --'(

AL.M_D_S_A_R_MK ______ ~~·I----~:;
ISVCVEC ON r

Spins until the non-IPL CPU
completes or until an error
is detected. Routes control
to the current RCB exit if
an error is detected. The
error conditions are:
- the time of the loop

exceeds the threshold
of 3 (MAXPPRUN) seconds.
- a machine check occurred

on the non-IPL CPU.
- a program check occurred

on the non-IPL CPU.

Saves the time at the start
of the spin loop.

Spins until the non-IPL CPU
completes or an error is
detected.

A. Saves the current time •

B. If the elapsed time exceeds the
threshold, sets the "timeout" indicator.

C. If a timeout occurred, or an error is
detected sets the failure indicator and
routes control to the current RCB exit.

.-----------------------------~L------~\AMDSARMK
ERROR .------~/r_--~

SVCNUMISVCVECI REASONINOSTATUSI RECOVER

<----> I SVC SVCAUD I 1.--_____ -.-1
1

Returns to the subroutine
caller.

'\ /

CTAUDPL
CTAUDRCV
CTAUDRC
CTAUDSVC

MV lEx tended Architecture Service Aids Lo ic LY28-1189-3 © Co ri ht IBM Co .1982 1986

L

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Diagram 55. AMDSAVEC Stand-Alone Dump Vector Status Dump

AMDSAVEC - Stand-Alone Dump vector Status Dump.

~> ~ Initializes fields in the
PSA for a non-IPL CPU.

INITPSA

~ Clears the PSA for the
non-IPL CPU.

/L-.J\

',--,1 CLEAR: 82

PSAPTR, LENGTHIPSA)

~ sets up wait PSWs in the
following fields:
- machine check interrupt
new PSH.
- program check inter'l"upt
new PSI".
- SVC interrupt new PSW.

~ Copies the static non-IPL
CPU program into the PSA.

~ Copies the EXECUTE
instruction target
instructions into the PSA.

~ sets up the external
interrupt new PSW to route
control to the external
interrupt entry point in the
non-IPL CPU program.

~ sets up the restart
interrupt new PSW to route
control to the restart entry
point in the non-IPL CPU
programs.

~ Sets up the control
registers to be loaded by
the non-IPL CPU program.

A~M_D_S_A_R_M_K _______ ~~I~ ____ ~:)
I BCTBUFRA r ~ Sets up the general

registers to be loaded by
the non-IPL CPU program.

~ Returns to the subroutine
caller.

STEP 50

I

I

,PSA
I~---..,

FLCSNPSH
FLCPNPSH
FLC~INPSH

L
:\PSA

/IFLCENPSHI

,PSA
I '/ I FLCRNPSH I

\ 1

L Y28-1l89-3 © Co right IBM Co . 1982, 1986 Cha ter 4. Stand-Alone Dump (AMDSADMP) 4-261

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Diagram SS. AHDSAVEC StaMd-Alone Dump Vector status Dump

AMDSAVEC - Stand-Alone Dump vector Status Dump.

~>
VFSTATUS

VSSA J---------->
IVSSAFSZB VSSAFSZEI)

AMDDATA

PRDVAVSO PRDVAVSI...--..I

VSSA J---------->
IVSSAFSZB VSSAFSZEI

~ Attempts to obtain vector
facility status for the
requested CPU.

~ Initializes the vector
status Save Area lYSSA) data
area.

/L-.J\

\r---1/ CLEAR: 82

VSSAPTR, VSSADLEN

~ Puts the contents of the
vector status register for
the requested CPU into the
VSSA data area.

/L-.J\

\r---1/1 EXPP: 74

~ Puts the vector mask
register contents for th~
requested CPU into the VSSA
data save area.

/L-.J\

\r---1/1 EXPP: 74

~ Puts the vector timer
contents for the requested
CPU into the VSSA data area.

/L-.J\

\r---1/\ EXPP: 74

~ Puts the vector section size
and the partial sum number
for the requested CPU into
the VSSA data area.

/L-.J\ \,--,/\ EXPP: 74

~ Dumps the fixed-length part
of the VSSA data area.

/L-...J,
\r---1/ DUMPRTN: 69

HRITE, DUMP LEN

STEP 60

I

I

I

\

\

4-262 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982,1986

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Diagram 55. AMDSAVEC Stand-Alone Dump Vector Status Dump

AMDSAVEC - Stand-Alone Dump vector Status Dump.

VSSA ~r----....I:' 1 &71 Dumps the vector registers
,-----------------...... -/ marked in-use. Dumps zeros IVSSASCSZ for vector registers not
..... -------' marked in-use.

~>
PARAMETERS DUMPRTN

IOUMPFUNC .-----------.:)

PARAMETERS -1---------->
'--1 -----.1 OUMPFUNC .

/~,~----------------------,
'r--l/ CLEAR: 82

VSSAPTR, VSSADLEN

/~\~-----------~
'r--l/~I ________ E_X_P __ P_:_7_4 ________ -....I

/~\,-----------------~
'r--l/ DUMPRTN: 69

HRITE, DUMP LEN

Returns to the subroutine
caller.

~ Performs one of three
functions:

OPEN - Initializes dump
routine.
\'1RITE - Copies data to the

output buffer. If needed,
queues
the buffer for I/O, and

obtains a new buffer.
CLOSE - Cleans up resources

used by the dump routine.

~ If the request was "OPEN,"
performs "OPEN" processing.

A. Obtains storage for an I/O buffer. If
storage is not available, routes control
to the current RCB exit.

PAGEBUF

(GET) BCT(DIOBCTPT) BUFFER(DIOPTRJ
ERRORlNOSTOR)

< >l SVC SVCBUF

STEP 67

\ /

1

1\

LY28-1189-3 © Co ri ht IBM Co .1982 1986 Cha ter 4. Stand-Alone Dump AMDSADMP 4-263

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Diagram 55. AMDSAVEC Stand-Alone Dump Vector Status Dump

AMDSAVEC - Stand-Alone Dump vector Status Dump.

A~M_D_S_A_RM_K _______ ~~I~ ____ ~:)
IBCTBUFVA ON r

AMDDATA ..--__ ---1,
...--------.... -----.1

PRDASVEC PRDVAVSO
PRDVAVSI

< >1 SVC SVCAUD

B. Clears the storage obtained.

IL---J,

'r---l l CLEAR: 82

DIOPTR, LENGTHIDIOBUFJ

C. Initializes the BCT for the 110 buffer:
- puts the pseudo-address space
identifier into the BCT.
~ calculates and sets up, in the BeT,
the starting address of the data being
dumped.
- puts the storage keys into the BeT.

lE] If the request was "WRITE,"
performs "WRITE" processing.

A. If the data to be written fits in the
110 buffer, copies the data to the 110
buffer.

IL---J,

'r---l l COPY: 85

ADDR(VSSA),
(ADDR(DIOBUF)+DIONEXT),
DUMP LEN

B. If the data to be written completely
fills the 110 buffer, or is larger than
the 110 buffer, copies as much as
possible into the 110 buffer.

IL-..J,

'r---l l COPY: 85

ADDRIVSSAJ,
IADDRIDIOBUFJ+DIONEXT),
DIOEMPTY

C. If the current 1/0 buffer is full,
queues the buffer for 110.

10

(XIODBOUT) HRITE PAGE(DIOBCTPT->BCT)

II
I

1

J

STEP 708

I

•

I

I

,AMDSARMK
1,---....,

CTAUDPL
CTAUDRCV
CTAUDRC

\AMDSARMK
1...-----.

BeTKEYl
BCTKEY2
BCTASID
BCTVADDR

4-264 MVS/Extended Architecture Service Aids Logic L Y28-1189-3 <0 Copyright IBM Corp. 1982, 1986

J

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Diagram 55. AMDSAVEC Stand-Alone Dump Vector Status Dump

AMDSAVEC - Stand-Alone Dump vector Status Dump.

ArM-D-S-A-R-M-K-------~~lr-----.:)
IBCTBUFVA ON !

ArM-D-D-A-T-A--------~~I~----~:;
IPRDASVEC r

IL.-l,

'r--l l SVCI: 88

SVCSIO. ADDR(XIOOBOUT).
'000100001000000000000000000
OOOOO'B. O. ADDR(DIOBCTPT
->BCTl. 0

O. If the buffer has been queued for I/O,
indicates that the dump routine no
longer requires this I/O buffer.

PAGEBUF

(FREE) BCT(OIOBCTPT) BUFFER(DIOPTR)

E. If a new buffer is needed. obtains
storage for a new I/O buffer. If storage
is not available, routes control to the
current RCB exit.

PAGEBUF

(GET) BCT(DIOBCTPT) BUFFER(OIOPTR)
ERROR(NOSTOR)

< >1 SVC SVCBUF

< >1 SVC SVCAUD

F. If a new buffer was obtained. clears the
storage.

/L-...I\
\,---,/ CLEAR: 82

DIOPTR. LENGTH(DIOBUF)

G. If a new buffer was obtained.
initializes the BCT for the new I/O
buffer:
- puts the pseudo-address space
identifier into the BCT.
- calculates and sets up. in the BCT.
the starting address of the data baing
dumped.
- Copies any remaining data to be
written. into the 1/0 buffer.
- puts the storage keys into the BCT.

1

I,
1

I

STEP 71D

I

I

I

I

,

\AMDSARMK

/IBCTPGINGI

\AMDSARMK
/.----~

CTAUDPL
CTAUDRCV
CTAUDRC

\AMDSARMK
/...-----.

BCTKEYl
BCTKEY2
BCTASID
BCTVADDR

LY28-1189-3 © Co ri ht IBM Co . 1982 1986 Cha ter 4. Stand-Alone Dum AMD AD 4-

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Diagram 55. AHDSAVEC Stand-Alona Dump Vector status Dump

AMDSAVEC - Stand-Alone Dump vector Status Dump.

/L.....J\
\r-,/ COPY: 85

(ADDR(VSSAI+DIOEMPTYI,
(ADDR(DIOBUF)+DIONEXT),
HLENGTH

~ If the request is "CLOSE,"
cleans up resources used by
the dump routine.

A. If the buffer is not empty, queues the
buffer for I/O.

10

(XIODBOUT) HRITE PAGE(DIOBCTPT->BCTI

/L.......I\
\r-,/ SVCI: 88

SVCSIO, ADDR(XIODBOUT),
'000100001000000000000000000
OOOOO'B, 0, ADDR(DIOBCTPT->
Bcn, 0

B. Indicates that the dump routine no
longer requil"'8s this I/O buffer.

PAGEBUF

(FREE) BCT(DIOBCTPT) BUFFERCDIOPTR)

[i!] Returns to the subroutine
caller.

, /

STEP 72

I

I

~MDSARMK

/IBCTPGINGI

MV Ex nded Architecture Service Aids Lo ic L Y28-1l89-3 © Co ri ht IBM Co . 1982, 1986

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Diagram 55. AMDSAVEC stand-Alone Dump Vector status Dump

AMDSAVEC - Stand-Alone Dump vector status Dump.

~> ~ Obtains vector status from
the requested CPU.

EXPP

~ Establishes the label
"EXPPRTRY" as the current
RCB exit.

AMDSARMK J----------~

1

I

CRI RCB I RCBSTD RCBSM

RECOVER

(ADD, RCBEXPP) EXIT(EXPPRTRY)

AMDSARMK

CTRCB SSINDEX I
DATABASE BASE REG
SAREG

~ If the requested CPU is the
IPL CPU, obtains vector
status for the IPL CPU.

A. Sets up the target vector status
instruction for the IPL CPU.

B. Indicates that a program check or
machine check is "expected" when
executing vector instructions.

C. Executes the target vector status
instruction on the IPL CPU. If an error
occurs, EXPPRTRY will receive control.

D. If an error did not occur, resets the
failure indicator.

E] If the requested CPU is NOT
the IPL CPU, obtains status
for the requested non-IPL
cpu.

A. Sets up and executes the target vector
status instruction on the requested
non-IPL CPU.

IL-J\

\ r--11 I INITPSA: 50
I

AMDSARMK _r--------->
.--, ---"
R2 _ B. Spins until the non-IPL CPU completes, a

timeout occurs, or an error is detected.

/L-I\I
\r--11 SPINCPU: 46 I

EXPPRTRY ~ Removes the current RCB
exit.

ArM_D_S_A_R_M_K _______ ~~lr----~:)
I RCBNEXT r RECOVER

(DELETE, RCBEXPP)

STEP 74

I

I

I

I

I

\AMDSARMK
1.--------,

CTRCB
HORKREG
RCBNEXT
RCBSSI
RCBSAVE
RCBEXIT
RCBDATA
RCBBASE

\AMDSARMK

\AMDSARMK

/IRI R2

\AMDSARMK

IICTRCB

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Ulagram 55. AMDSAVEC Stand-Alone Dump Vector Status Dump

AMDSAVEC - Stand-Alone Dump vector Status Dump.

AM~D_S_A_RM_K _______ ~~lr ____ ~:~
ISVCVEC ON r

~>
PARAMETERS CLEAR

.--------.:'/ ICLEARPTR CLEARLENI -

PARAMETERS r--------' ,

..------------' ... -----./
CLEARPTR CLEARLEN

AMDSARMK

R4

1791 Resets the proaram check and
h' h k it t d" mac 1ne c ec expec e

indicators.

80 If an error was detected
during processing, routes
control to the current RCB
exit to discontinue
obtaining status for the
current CPU.

ERROR

SVCNUMISVCVEC) REASONINOSTATUS) RECOVER

< >1 SVC SVCAUD

81 Returns to the subroutine
caller.

~ Clears storage pointed to by
"CLEARPTR" for a length of
"CLEARLEN."

~ Clears requested amount of
stora~e at requested
locatlon.

~ Returns to the subroutine
caller.

I
I

, /

, /

STEP 79

I

~

\AMDSARMK
/r------,

CTAUDPL
CTAUDRCV
CTAUDRC
CTAUDSVC

\AMDSARMK
/fR'2Ril
~

4-268 MVS Extended Architecture Service Aids Lo -c LY28-1189-3 © Co ri ht IBM Co .1982 1986

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Diagram 55. AMDSAVEC Stand-Alone Dump Vector Status Dump

AMDSAVEC - Stand-Alone Dump Vector Status Dump.

~>
PARAMETERS COPY
r---------------------~\

COPYFROM COPYTO
cOPYLEN

.-----,/

PARAMETERS ...------'1 \
r-------------~I.__--_,/
cOPYTO COPY LEN r­
COPY FROM I

AMDSARMK

R4

c

~ Copies data pointed to by
"COPYFROM" to "COPYTO" for a
length of "COPYLEN."

~ Copies requested amount of
stora~e from requested
locat10n to requested new
location.

~ Returns to the subroutine
caller.

\ /

STEP 85

1 \AMDSARMK

/r~
~

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Section 3: Program Organization

This section contains the following information about the organization of the
stand-alone dump program:

• A discussion of the three stages of processing.

The specification stage
The initialization stage
The execution stage

• A series of figures illustrating the various storage layouts during different
stages of processing.

• A description of module calling sequences.

• Module and macro descriptions.

Three Stages of Processing

Specification Stage

Initialization Stage

During the specification stage, you set up SADMP the way you want it. You
specify the type of SADMP program to run, and specify whether additional
storage is to be dumped. You code the AMDSADMP macro instruction,
specifying keyword values that tailor the dump program to the installation. Then
you assemble the macro instruction using either of two methods:

• In two-stage generation, you first assemble the AMDSADMP macro
instruction to produce stage-two JCL. Then, you execute this JCL to
initialize the SADMP residence volume.

• In one-step generation, after coding the AMDSADMP macro as input control
statements, you execute the AMDSAOSG program as a single job step.

The initialization of the SADMP residence volume involves three phases:

1. Assembly of the AMDSADM2 macro produces the SADMP real storage
dump program AMDSARDM, which dumps real storage, and the SADMP
common communication table (AMDSACCT), an internal control block.

2. The SADMP build module AMDSABLD puts the output from phase one
onto the residence volume in ready-to-Ioad form. AMDSABLD locates the
SADMP IPL program (AMDSAIPL) and the SADMP virtual storage dump
program (AMDSAPGE), and puts them onto the residence volume.

3. If the residence volume is on a direct access device, the device utility ICKDSF
is invoked to put SADMP's IPL text onto the device's IPL track (cylinder 0,
track 0).

4-270 MVS/Extended Architecture Service Aids Lo ic L Y28-1189-3 © Co ri ht IBM Co . 1982, 1986

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Execution Stage

4. If the residence volume is on a tape, that tape must be initialized with a tape
mark and have the file protect ring inserted.

The execution of SADMP involves three processes:

1. Channel programs IPLl and IPL2 load AMDSAIPL into page 0 of real
storage. Then the IPL process gives control to AMDSAIPL. AMDSAIPL
loads AMDSACCT into storage, then loads and calls AMDSARDM for the
real storage dump program and AMDSAPGE for the virtual storage dump
program. AMDSADIP locates storage that does not contain data needed by
systems, and loads AMDSAPGE into this storage.

2. AMDSARDM dumps real storage and processor-related information, and
writes title and header records.

3. AMDSAPGE dumps paged-out virtual storage.

Notes:

1. Stand-alone dump uses only real, online devices. When dumping to or from
devices that have both real and virtual storage, specify only real storage
addresses to SADMP. Stand-alone dump must reside in real, online storage.

2. You cannot direct SADMP output to its residence volume.

The SADMP IPL process destroys valuable data because it must include a
processor reset. Therefore, the first part of SADMP is the processor STORE
STATUS (See MVS/XA Principles oJ Operation), done prior to IPL. This copies
the volatile data into main storage at locations in the PSA which, because of their
hardware usage, are not likely to be of value to MVS.

The IPL reads 24 bytes of data (IPLl) into location 0, then executes the channel
program beginning at location 8. When the program successfully completes, the
IPL sequence completes by putting the IPL device subsystem ID into X'30' and
loading the PSW at location O.

The IPLl channel program reads in up to X'90' bytes of data, loads the IPL2
channel program into location X'llO', and issues a transfer in channel instruction
(TIC) to it. The data that IPLl and IPL2 overlaid is lost; fortunately, it is of no
value to SADMP or for debugging. IPL2 saves the remainder of absolute page 0
by writing it onto the IPL device, and reads module AMDSAIPL into X'840'
bytes of storage beginning at storage location X'7CO'.

AT\\;! A n"AD\ .11_ ')71

Hex
o

200

400

600

7CO

1000

Hex address
o

18

B8

CO

110

Up to 1AO

7eO

1000

IPL 1

Subchannel data

IPL2

AMDSAIPL
Pragram

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Figure 4-3. SADMP Absolute Storage after IPL.

When the channel program completes, the PSW that is loaded gives control to
AMDSAIPL. AMDSAIPL copies additional storage onto the residence device
that provides additional working storage. AMDSAIPL loads AMDSARDM and
calls AMDSARDM to dump the processor data and real storage, substituting the
data saved for use by the virtual dump, which requires the data areas to
reconstruct the virtual storage. To accomplish this, the data overlaid when
AMDSARDM was loaded is copied back in. (See Figure 4-4).

Hardware Area

eCT

AMDSAIPL

Data Area

AMDSAIPL
Program

Up to

Hex
LOADPT

LOADPT + 3000

LOADPT + 4000

AMDSARDM
Program

AMDSARDM
Data Area

Figure 4-4. SADMP Absolute Storage During AMDSARDM Execution.

4-

AMDSAIPL then initiates the loading of AMDSAPGE which dumps the
paged-out virtual storage. During the real storage dump, a PSA is located and
information is copied into the CCT. The 4k bytes that it occupied contains no
data required by the virtual dump. It can be used as working storage.
AMDSAIPL reads the first 4K bytes of AMDSAPGE (CSECT AMDSADIP)
into this page, and gives it control.

AMDSADIP locates storage management control blocks and uses them to
determine real storage that is either backing the link pack area or available
(backing nothing). AMDSADIP builds the storage use table SUT to describe this
storage. AMDSADIP also locates a range of contiguous virtual addresses in the

MVS/Exten e Architecture Service Aids Lo ic L Y28-1189-3 © Co ri ht IBM Cor . 1982, 1986

J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

o

200

?

?

600

7CO

1000

LPA, which it remaps (by altering the page table entries) onto the real storage
found earlier. The data contained in that range of virtual addresses cannot be
dumped. The content of the LPA is sufficiently constant that the operator
DUMP command can obtain the contents at a later time.

Once AMDSADIP obtains the storage, AMDSADIP loads the remaining pages of
AMDSAPGE using an 1/0 subroutine in AMDSAIPL. Following AMDSADIP
in the load module is the relocation table (RL T) put there by AMDSABLD
during residence volume initialization (see Figure 4-5, Figure 4-6, and
Figure 4-7). AMDSADIP uses the RL T to relocate the address constants, both
real and virtual, in the rest of AMDSAPGE. After loading is complete,
AMDSAIPL passes control to CSECT AMDSAPGE for initialization.

PSA
Hardware Area

CCT

SUT

AMDSAIPL
Data Area

?

AMDSAIPL
Program

PSA + FOO
PSA + 1000

AMDSADlP
Program

'---___ --1 RLT

Location Unpredictable
+0

+ ?

+1000

Remainder
of RLT

Figure 4-5. SADMP Absolute Storage During AMDSADIP Execution. AMDSADIP and the RL T are in Contiguous
Virtual Storage.

Hex Address
o

1000

2000

?

?

?

AMOSADIP CSECT

RLT

AMOSAPGE CSECT

AMDSAPGI CSECT

Figure 4-6. AMDSAPGE Load Module

OAT-on Modules

OAT-off Modules

On the residence volume, this is divided into 4K blocks.

Hex Address
a

Hardware Area
200

CCT
?

Dump Options
?

EA8

1000
PGO Save Areas

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Hex Relative Address
a

1000

2000

n

n + 1000

n + 3000

n + 12000

n + 14000

lEOOO

80000

SUT

Trace Table (fRCD

AMDSAPG~ Program

SVC Stack (SVCS)

DSCEs

Dynamic Storage

Swap Page Tables

BeT

Page Buffers

Swap Segment Tobie

Figure 4-7. SADMP Virtual Storage During AMDSAPGE Execution

The SADMP page table may be at n - 1000. The SUT address is at
CTSUT(virtual). (See "Section 4: Data Areas" in this chapter.)

FILE # REC# Hex Length Content

I 1 18 IPLI
2 Up to 90 IPL2
3 840 Module AMDSAIPL
4 lK AMDSACCT communications table
5 12K Real storage dump module AMDSARDM
6 to n 4K Virtual storage dump load AMDSAPGE

2 I 4K Storage save area for 0-4K
2,3,4 4K Storage save area for the 12K used by AMDSARDM

Figure 4-8. Tape Residence Volume Format

DDNAME REC# Hex Length Content

IPLDEV I 4K AMDSACCT communications table
2,3,4,5 4K storage save area for the 16K user by AMDSARDM
6,7,8,9 4K real storage dump module AMDSARDM
10 to N 4K virtual storage dump load module AMDSAPGE

TRKOTEXT I 24 IPLl
2 90 IPL2
3 4K storage save area for 0-4K
4 840 module AMDSAIPL

Figure 4-9. DASD Residence Volume Format

J

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

It is not possible to write over a particular record on a tape. To avoid loss of
data, all writing must take place following the last record on the tape that is to be
preserved. Refer to Figure 4-8 and Figure 4-9 to determine the location, length
and description of specific records when using tape or DASD residence volumes.

The virtual storage dump program is a single machine-executable module
(AMDSAPGE) that consists of a number of object modules. These modules
provide operating system functions that are necessary to access data from
different address spaces. For example, AMDSAPGE contains a
program-interrupt handler, auxiliary- and real-storage managers, getmain and
freemain routines, an I/O interrupt handler, I/O error-recovery routines, and an
SVC interrupt handler.

Linkage between modules in AMDSAPGE is through the use of SVCs; an
AMDSADMP SVC interrupt handler performs the linkage. Each module is
assigned an SVC number which other modules use when calling the module. The
SVC calling scheme provides for dynamic address translation for modules that
must operate as part of each different address space processed. See Section 2:
Method of Operation, for more information.

Module Calling Sequences for AMDSADMP Functions

The following maps show sequential flow of AMDSADMP modules. Each map
indicates the active modules for a specific function and describes the operations
performed by those modules. Entry point names are also provided where they
differ from the module names. Figure 4-10 explains the design of sequence maps.

For more detailed descriptions of the functions, see the diagrams in Section 2:
Method of Operation.

Single Path Flow

Calling Module

Module B (ENTRY I)

The calling module first calls A,
which then calls Al and A2.
When A returns, the caller passes
control to B at entry point
ENTRYl.

Alternate Path Flow

Calling Module

I .---Module A

~ModuleB
LModule B1

The calling module determines whether
to call A or B for this operation. If B
receives control, it calls B 1 before
returning to the caller.

Figure 4-10. Example of Calling Sequence Map

AMDSADMP Generation

AMDSADMP Execution

One-Step Generation

AMDSAOSG

AMDSADMP

LAMDSADM2

AMDSABLD

L AMDSAPRS

ICKDSF

Two-Stage Generation

AMDSADMP

AMDSADM2

AMDSABLD

ICKDSF

AMDSABLD (IPLI channel program)

L AMDSABLD (lPL2 channel
program)

LAMDSAIPL

AMDSADM2
(AMDSARDM)

AMDSADIP

LAMDSAPGE

Console Message Formatting

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Initializes the residence volume in one job step.

- Accepts macro specification of SADMP and invokes
AMDSADM2.

Generates the real dump program AMDSARDM and
the CCT.

Initializes the SADMP program in
SYSIPAGEDUMP.

-- Checks the syntax of the dump options.

Puts SADMP IPL text onto track 0, cylinder 0 of a
direct access device.

Accepts macro specification of SADMP and produces
stage-(wo JCL.

Generates the real dump program AMDSARDM and
the CCT.

.. Initializes the SADMP program in
SYSIPAGEDUMP.

Puts SADMP IPL text onto track 0, cylinder 0 of a
direct access device.

IPL channel program, which reads in IPL2.

Saves page 0 on IPL volume and reads in
AMDSAIPL.

SADMP IPL program. Reads the CCT,
AMDSARDM and AMDSADIP into real storage and
gives them control.

Writes header and processor records and dumps
real storage.

Loads the virtual storage dump program into real and
virtual storage.

Dumps paged-out virtual storage and console trace
data.

AMDSAFCM - Formats the SADMP console message log.

4-276 MVS/Extended Architecture Service Aids LOl!:ic LY28-1189-3 © Copvril!:ht IBM Corp. 1982. 1986

'"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Virtual Storage Dump Program

AMDSAPGE

L AMDSAPGE(AMDSADMP)

AMDSAMSF

AMDSAVCK

AMDSAPMT

AMDSAAID

AMDSASIO

AMDSACON

AMDSADCM

Dump of Console Trace Data

AMDSAMSF

~AMDSABUF
LAMDSASIO

Dump of Address Spaces

AMDSAAID

AMDSAVCK

AMDSASIN

AMDSAMDM

AMDSAGTF

AMDSACON

Initializes the virtual storage dump program and
controls dumping.

Dumps console trace data and paged-out virtual
storage.

Dumps console trace data.

Checks the validity of the ASM and address space
control blocks.

Asks the operator for additional storage to dump.

Dumps local address spaces.

Rewinds and unloads the output tape.

Informs the operator that the dump is done.

Initializes and dumps the console message'log.

Dumps console trace data.

Obtains a page buffer.

Writes the page buffer to the output tape.

Locates and initializes address spaces. and causes
dumping of data in them.

Checks the validity of the ASCB.

Initializes (swaps in) the address space.

Dumps relevant data.

Dumps GTF trace data from the GTF address space.

Issues address-space-statistics messages.

Dump 0/ Address Space Data

AMDSAMDM

AMDSATXT (AMDSABIN)

AMDSACON

AMDSAGTM

IGVSLIST

AMDSARRD

LAMDSAAUD

AMDSAAUD

AMDSAVCK

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Scans the dump table and dumps the data in the
address space that the dump table describes.

Converts binary data to EBCDIC.

Writes messages to the console.

Obtains and frees storage for the VSMLIST work area.

Converts high-level descriptions of storage (subpools,
LSQA, etc.) into address ranges.

Dumps address ranges.

Logs errors and recovers from them.

Logs errors and recovers from them.

Checks the validity of address space control blocks.

Note: IGVSLIST (VSMLIST) is a program that resides in the nucleus of the
dumped system and provides the SADMP interface to virtual storage
management.

Dump o/GTF Data

AMDSAGTF t AMDSAVCK

AMDSA TXT (AMDSABIN)

AMDSACON

Prompting for Additional Storage

AMDSAPMT

AMDSAGTM

AMDSACON

AMDSAUUD

AMDSAPRS

LAMDSAGTM

Dumps the GTF history queue.

Checks the validity of the GTF control blocks.

Converts binary fields to EBCDIC.

Writes messages to the console.

Processes dump options specified when SADMP was
generated, and prompts the operator to specify
additional dump options. Adds additional storage to
the dump table.

Allocates and frees storage for AMDSAPMT buffers
and data.

Writes messages to the console.

Logs errors after program checks, GETMAIN failures.
or other unusual events.

Checks the dump option syntax and translates dump
option input text into a dump option set.

- Allocates and frees storage.

Note: AMDSAPRS must run under both SADMP and MVS/XA. AMDSAPRS
issues SVC 120 for storage, which under SADMP becomes a call to
AMDSAGTM.

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Page/Segment Fault Handling and Dumping

AMDSAUPD

AMDSAGTM

AMDSABUF

AMDSARSM

AMDSADOS

AMDSAASM

AMDSASIO

AMDSAAUD

Console Message Dump

AMDSADCM

AMDSAGTM

AMDSAAUD

AMDSABUF

AMDSASIO

Real Storage Management Interface

AMDSADIP

I
AMDSASIN

AMDSAVCK

AMDSABUF

AMDSADOS

AMDSAAUD

AMDSASIO

AMDSACON

AMDSA TXT (AMDSABIN)

AMDSAASM

AMDSAXSM

AMDSARSM

~AMDSAGTM
--AMDSAXSM

Resolves page and segment faults, and dumps all pages
brought in as a result.

Obtains and frees the autodata area.

Allocates a page butTer.

Locates the faulting page in real or auxiliary storage.

Copies real pages.

Converts an LSID into a TTR and device address.

Reads the page from auxiliary storage and dumps it to
the output tape.

Passes control to the recovery environment if the fault
cannot be resolved.

Writes console messages to the output tape.

Obtains and frees the autodata area.

Recovers from unexpected errors.

Obtains dump page butTers.

Writes message-dump butTers to the output tape.

Determines which page frames the virtual dump can be
safely loaded into.

Initializes (swaps in) address spaces.

Checks the validity of control blocks

Obtains page butTers.

Copies real pages.

Recovers from errors and logs them.

Dumps page 1;luffers.

Writes console messages.

Converts data to EBCDIC.

Translates LSIDs into a device address and TIR.

Reads pages from extended storage.

Locates a faulting page in real or auxiliary storage.

Obtains and frees autodata area.

Reads pages from extended storage.

nd-Alone numn (AMOSAOUP) L?7Q

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Auxiliary Storage Management Interface lOS Interface

AMDSAASM

AMDSAGTM

AMDSAVCK

AMDSAUCB

AMDSAGTM

AMDSAVCK

AMDSATXT
(AMDSABIN)

AMDSACON

AMDSAAUD

AMDSAUCB

Extended Storage Interface

AMDSAXSM

~AMDSAGTM
AMDSATXT(AMDSABIN)

AMDSACON

Control Block Validity Checking

AMDSAVCK

AMDSAGTM

AMDSAAUD

AMDSATXT
(AMDSABIN)

AMDSACON

Converts a logical slot identifier into a direct access
device seek/search address and device address.

Obtains and frees autodata area.

Checks the validity of ASM control blocks.

Converts a UCB address into a SADMP 10DB.

Obtains and frees autodata area.

.- Checks the validity of the UCB.

Converts binary data to EBCDIC

Writes messages to the console.

- Logs errors.

Locates other exposures of a multiple-exposure device.

Extended storage manager.

Obtains and frees autodata storage.

Converts binary data to printable EBCDIC

Writes console messages.

Checks the validity of control blocks.

Obtains and frees autodata storage.

Recovers from errors.

Converts binary data to EBCDIC

- Writes messages to the console.

Operator-Controlled Termination and Restart

Recovery (AMDSAEXI)

I AMDSACON

LAMDSAAUD

AMDSAPGE (AMDSASRR)

~AMDSAUUD
AMDSASIO

Handles external interruptions as requests for
premature termination. of SADMP.

Writes messages to the console.

Terminates SADMP.

Reinitializes and restarts the virtual storage dump
program.

Takes a diagnostic dump.

Waits for all 1/0 to complete.

LY2R-ll R9-1 tel Convril1ht TRM Corn 19R? 19Rtl

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Page Buffer Allocation

AMDSABUF

LAMDSAGTM

LAMDSASIO

I/O Device Error Recovery

AMDSADER

AMDSAGTM

AMDSASIO

AMDSACON

AMDSATXT (AMDSABIN)

AMDSA TER (AMDSAERB)

AMDSATER (AMDSAERM)

AMDSATER (AMDSAINR)

AMDSASIO (AMDSATCP)

AMDSATER

AMDSAGTM

AMDSASIO

AMDSACON

AMDSATXT (AMDSABIN)

AMDSATER (AMDSAERB)

AMDSATER (AMDSAERM)

AMDSATER (AMDSAINR)

AMDSATER (AMDSANTP)

AMDSAAUD

AMDSASIO (AMDSA TCP)

AMDSATER (AMDSAERB)

LAMDSAGTM

AMDSATER (AMDSAERM) t AMDSAGTM

AMDSATXT (AMDSABIN)

AMDSACON

Allocates, reclaims and steals page buffers.

- Obtains and frees autodata storage.

- Waits for tape I/O to complete, and free buffers.

Recovers from errors on direct access devices.

Obtains and frees autodata storage.

Executes DASD channel programs.

Writes messages to the console.

Converts binary data to EBCDIC.

Updates error recovery block.

Writes I/O error messages.

Requests intervention on as direct access device.

Translates real channel program addresses to virtual
addresses.

Recovers from tape I/O errors and handles el of-tape
processing.

Obtains and frees autodata storage.

- Executes tape channel programs.

Writes messages to the console.

Converts binary data to EBCDIC.

Updates error recovery block.

Writes I/O error messages.

Requests intervention on a tape.

Unloads old tape and causes a new one to be mounted.

Terminates SADMP if the tape is unusable.

Translates real channel program addresses to virtual
addresses.

Updates device error recovery blocks.

-- Obtains and frees autodata storage.

- Writes I/O error messages.

Obtains and frees auto data storage.

Converts binary data to EBCDIC.

Writes messages to the console.

AMDSATER (AMDSAINR)

~AMDSAGTM
LAMDSACON

AMDSASIO

AMDSATER (AMDSANTP)

AMDSAGTM

AMDSASIO

AMDSACON

AMDSATER (AMDSAINR)

AMDSAT80

AMDSAGTM

AMDSASIO

AMDSACON

AMDSA TER (AMDSAERB)

AMDSATER (AMDSAERM)

AMDSATER (AMDSAINR)

AMDSATER (AMDSANTP)

AMDSA TXT (AMDSABIN)

AMDSAAUD

AMDSASIO (AMDSATCP)

110 Services

AMDSASIO

AMDSAGTM

AMDSA TXT (AMDSABIN)

AMDSACON

AMDSASIO

AMDSAAUD

AMDSAIOI

I
AMDSASIO (AMDSATCP)

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Requests intervention on direct access devices.

Obtains and frees autodata storage.

Writes messages to the console.

Waits for intervention.

Unloads old tape and causes a nevy one to be mounted.

Obtains and frees auto data storage.

Executes tape channel programs to write tape marks,
rewind, unload, and read labels.

Writes messages to the console.

Requests intervention on a tape.

Recovers from tape I/O errors for 3480 tape drives.

Obtains and frees auto data storage.

Executes tape channel programs.

Writes messages to the console.

Updates device error recovery block.

Writes I/O error messages.

Requests intervention on a tape.

Unloads old tape and causes a new one to be mounted.

Converts binary data to EBCDIC.

Terminates SADMP if the tape is unusable.

Translates real channel program addresses to virtual
addresses.

Performs I/O operations by providing channel
programs and issuing SSCH.

Obtains and frees autodata area.

Converts binary data to EBCDIC.

Writes messages to the console.

Waits for I/O to complete.

Terminates SADMP after fatal errors.

Handles I/O interruption (called via on I/O
interruption).

Translates virtual channel program addresses to real
addresses.

J

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

AMDSAIOI

AMDSAGTM

AMDSASIO

AMDSATER

AMDSAT80

AMDSADER

AM DSACON

LAMDSASIO

LAMDSAAUD

Basic Services

AMDSAPGI t AMDSAAUD

AMDSAUPD

AMDSASIO (AMDSATCP)

LAMDSAGTM

AMDSAAUD

AM DSASVI

LAMDSAAUD

AMDSA TXT (AMDSABIN)

AMDSATXT (AMDSAEBC)

AMDSAGTM

LAMDSAAUD

AMDSAAUD

AMDSAGTM (AMDSAFRM)

AMDSADCM

AMDSACON

AMDSASIO

Handles I/O interruption, recovers from errors and
frees used BeT.

Obtains and frees autodata area.

Restarts channel programs.

Recovers from tape errors.

Recovers from tape errors for 3480 tape drive.

Recovers from DASD errors.

Writes messages to the console and reads replies.

Executes console channel program,.

Recovers from errors.

Handles program interruptions.

Recovers from errors, takes internal dumps, and
abnormally terminates SADMP.

Resolves page faults.

Translates channel program addresses from real
addresses to virtual addresses and from virtual
addresses to real addresses.

Obtains and frees autodata storage.

Passes control to the top RCB on the error recovery
stack if the channel program is too long.

Handles SVC interruptions and sets up execution
environments.

Recovers from errors.

Converts binary data to EBCDIC.

Converts EBCDIC data to binary.

Allocates and frees dynamic storage.

Recovers from errors.

Recovers from errors, logs errors, takes dumps, and
abnormally terminates SADMP.

Frees storage owned by abnormally terminating
processes,

Dumps console message dump buffers.

Writes a message to the operator console.

Rewinds and unloads the tape and dumps SADMP
storage to the output tape.

L Y28-1189-3 © Co ri ht IBM Co . 1982, 1986 Chapter 4. Stand-Alone Dumn (AMn~AnMP\ .4_, Sl 1

Module/Macro Descriptions

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

This list includes all CSECTs, entry points, included segments, and executable
macros.

Module/Macro

AMDSAAlD

AMDSAARD

AMDSAASM

AMDSAAUD

AMDSABIN

AMDSABLD

AMDSABUF

AMDSACCW

AMDSACON

AMDSADCM

AMDSADER

AMDSADIP

AMDSADMP

AMDSADM2

AMDSADOS

AMDSAEBC

AMDSAERB

AMDSAERM

AMDSAEXI

AMDSAFCM

AMDSAFRM

AMDSAGTF

AMDSAGTM

AMDSAINR

AMDSAIOI

AMDSAIPL

AMDSAMDM

Description

Searches MVS/XA for all defined address spaces.

Accumulates a list of address ranges dumped for an address space.

Translates an LSID into a page data set CCHHR.

Implements an FRR-like recovery mechanism and manages the self-dumping and
abnormal termination functions.

Alternate entry to AMDSATXT, that converts binary to printable EBCDIC.

Problem program that organizes and prepares the SADMP code for easy loading,
and creates the IPL channel program.

Manages the BCT (butTers/page frames) allocation, reclamation, and stealing.

Contains the tape and DASD channel programs.

Provides the console communication service and contains the console CCWs.

Dumps console messages to the output tape.

DASD error recovery procedures (ERP).

Locates storage (real and virtual) for the virtual dump code, then loads and
relocates it.

Macro that checks the validity of the generation parameters, and punches either
the job stream that initializes the residence volume or, the input to AMOSAOSG.

Macro that generates the various real storage dump routines.

Performs OAT-otT operations.

Alternate entry to AMDSATXT, that converts printable EBCDIC to binary.

Alternate entry to AMDSATER, that updates the ERB.

Alternate entry to AMDSATER, that produces ERP error messages.

Alternate entry AMDSAPGE, that handles external interruptions.

Formats the console message log.

Alternate entry AMDSAGTM that AMDSAAUD uses to recover short short term
storage allocated by modules that are being terminated.

Dumps the GTF trace data.

Manages the dynamic storage by providing support for the R-form GETMAIN
macro (SVC 10 and 120).

Alternate entry to AMDSATER, which handles required intervention.

Handles I/O interruptions.

Bootstraps all of SADMP into the processor with minimal data loss.

Manages the dumping of an address space.

4-284 MVS/Extended Architecture Service Aids Logic L Y28-1189-3 CO Copyri ht IBM Co . 1982, 1986

J

"Restricted Materials of IBM
Licensed Materials - Property of IBM

AMDSAMSG

AMDSANTP

AMDSAOSG

AMDSAPGE

AMDSAPGI

AMDSAPMT

AMDSAPRS

AMDSARDM

AMDSARMK

AMDSARSM

AMDSASAD

AMDSASA2

AMDSASAM

AMDSASAR

AMDSASIN

AMDSASIO

AMDSASSR

AMDSASVI

AMDSATCP

AMDSATER

AMDSATXT

AMDSAT80

AMDSAUCB

AMDSAUPD

AMDSAVCK

AMDSAXSM

SGAMA401

SGAMA501

Problem program message CSECT.

Unloads a tape and causes a new one to be mounted.

A problem program that uses dynamic allocation and invocation to perform the
residence volume initialization as a single job.

Completes the virtual dump initialization after AMDSADIP loads the code.

Program interruption handler.

Handles interactive prompting for additional storage to be dumped.

Parses the responses to interactive prompting.

Module generated by macro AMDSADM2 to dump real storage.

Included segment that contains the executable macros for internal interfaces, the
data area mappings, and constants.

Determines the frame address or LSID of a page for AMDSAUPD.

Contains a TYPE= SAD expansion of AMDSADM2 that supports AMDSAAUD
by dumping real storage and communicating with the console.

Contains the second half of AMDSASAD to allow division into two
noncontiguous pages.

Alternate entry into AMDSASAD to write messages to the console.

Alternate entry into AMDSASAD to unload the output tape.

Swaps in an address space by establishing the minimum DAT structure.

Drives all I/O and manages the I/O for all devices.

Alternate entry into AMDSAPGE that performs a system restart by reinitializing
the virtual dump.

Provides an SVC linkage service that allows address space switching, DAT mode
switching, flow tracing, and recovery check pointing.

Translates channel program addresses from real addresses to virtual addresses or
from virtual addresses to real addresses.

Tape error recovery procedures (ERP).

Message CSECT for AMDSACON.

Tape error recovery procedures (ERP) for 3480 tape drives.

Converts UCB address into a SADMP IODB.

Manages the page/segment fault handling.

Checks the validity of control blocks and data areas.

Reads pages from extended storage.

SYSGEN macro for link-edited SADMP code.

SYSGEN macro for copied SADMP code.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 4. Stand-Alone Dump (AMDSADMP) 4-285

Macro Interfaces

Module/Macro

?ERROR

?FREEMAIN

?GETMAIN

?IO

?LVA

?RCBREGS

?RECOVER

?SVCI

?TRACE

?TRANSCHP

?UPDERB

?VCHK

Description

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Indicates an unusual or error condition and the action to be taken.

Dynamic storage deaIIocation.

Dynamic storage allocation.

I/O services: DASD, tape, console, and UeB to IODB conversion.

Converts a real address to a virtual address within SADMP.

Makes sure that registers are not used across an RCB exit.

Initializes, enqueues, and dequeues an RCB.

Creates an internal PLS procedure that facilitates use of a PLS call with a
parameter list for service routines that have no specific macro interface.

Places entries into the trace table.

Translates channel program addresses.

Keeps track of I/O retries.

Checks the validity of control blocks.

4-286 MVS/Extended Architecture Service Aids Lo ic L Y28-1189-3 © Co ri ht IBM Co . 1982, 1986

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Section 4: Data Areas

Buffer Control Table (BCT)

Size: 72 bytes.

Created by: AMDSAPGE.

Updated by: AMDSABUF, AMDSADER, AMDSAIOI, AMDSRSM,
AMDSASIN, AMDSASIO, AMDSATER, AMDSADCM, AMDSAUPD.

Pointed to by: CTBCTAVQ (available queue head), BCTAVQP (available queue
chain), CTBCT ALL (all BCT queue head), BCTQUEUE (all BCT queue head),
IODBIOQP (output I/O queue head), BCTIOQP (output I/O queue chain). All
pointers are real addresses.

Use: Represents a SADMP page buffer.

BCTs are initialized on the available queue. Whenever a page of data needs to be
brought in from real or virtual storage or needs to be dumped, a BeT is allocated
for a paging operation. After the operation completes, the BeT is placed on the
I/O queue to be written to the dump output device. When output I/O completes,
the BeT is returned to the available queue unless it contains information (such as
a page table) important for further execution.

If no BCT is available to satisfy a request, a BCT is stolen according to an LRU
algorithm. BCTs associated with a terminated address space are automatically
reclaimed.

BCT

Offsets Type

0 (0) STRUCTURE

0 (0) CHARACTER
4 (4) CHARACTER

4 (4) ADDRESS

8 (8) ADDRESS

12 (C) BITSTRING
l...

.1..

. 1

... 1
xxxx

Length Name

64 BCT

4 BCTBCT
16 BCTINIT

4 BCTPGTEP

4 BCTSGTEP

BCTUSE
BCTINUSE

BCTPGING

BCTIO
BCTPGT

Description

ButTer control table entry.

EBCDIC acronym.
This field must be cleared when a BCT is
made available.

Address of page table entry that points to
the page in the butTer. For non-master
address spaces, the page table is in a
SADMP storage buffer and this address is
common virtual. For the master address
space the page table may also be in private
storage. In either case, the PGTE is
accessible from master.

Common virtual or master virtual address of
the segment table entry that points to the
page table in the buffer.

ButTer usage. If zero, BCT is available.
This buffer contains a page which is in use
for DAT.
This BCT is involved in a swapping/paging
operation.
The I/O service is processing this BCT .
The buffer contains a page table .
Reserved.

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Offsets Type Length Name Description

13 (D) BITSTRING 1 BCTSTAT Buffer status Ilags.
x .. Reserved.
.1.. BCTRECLM Virtual addrcs, reclaimed

from real storage.
.. 1. BCTSWPDS Page from swap data set.

14 (E) BITSTRING 2 BCTPICOD Address-fault program interrupt code.
16 (10) UNSIGNED 4 BCTUSID Unreferenced steal interval count down.

Initialize to X'FFFFFFFF if reference bit
for buffer is on when AMDSABUF steals a
buffer; otherwise, it is decreased by one

20 (14) CHARACTER 8 Queue pointers(virtual addresses).
20 (14) ADDRESS 4 BCTQUEUE Chain field for all BCTs.
24 (18) ADDRESS 4 BCTIOQP Next BCT on I/O queue.
24 (18) ADDRESS 4 BCTAVQP Next BCT on available queue.
28 (lC) ADDRESS 4 BCTFRAME Real address of frame to be reclaimed.
28 (lC) UNSIGNED 4 BCTLSID LogICal slot identifier; page's auxilary

storage id.
28 (IC) UNSIGNED Unused.
29 (ID) UNSIGNED BCTINDEX PART/SART entry number.
30 (IE) UNSIGNED 2 BCTRBA Relative block address.
32 (20) ADDRESS 4 BCTBUFRA Real address of buffer.
36 (24) CHARACTER 8 BCTRCHD Header portion of output record containing

the page in the buffer.
36 (24) ADDRESS BCTKEYI Storage key of first 2K.
37 (25) ADDRESS I BCTKEY2 Storage key of last 2K.
38 (26) UNSIGNED 2 BCTASID ASID of data in buffer.
40 (28) ADDRESS 4 BCTVADDR Virtual address of data in buffer (original

ASID).
40 (28) CHARACTER 2 Reserved.
42 (2A) CHARACTER 2 BCTCPU CPU address of the console loop trace from

which the trace was taken.
44 (2C) ADDRESS 4 BCTBUFVA Virtual address of buffer in SADMP virtual J storage.
48 (30) CHARACTER 16 BCTPTRD Page table reclaim data. This field must be

cleared when a BCT is made available.
48 (30) ADDRESS 4 BCTPTBCT Common virtual address of the BCT for the

page table that maps the page in this BCT's
buffer. If 0, the page table is not in a BCT
buffer. This pointer is used to update
BCTPTPGS in the page table's BCT.

52 (34) SIGNED 2 BCTPTGS The number of pages mapped by the page
table in this buffer. If 0, none are mapped,
or this page does not contain a page table,
and this BCT may be safely reclaimed. If
not 0, this BCT may not be reclaimed.

54 (36) CHARACTER 10 Reserved.

OCP

Size: 24 bytes.

Created by: AMDSASIO.

Updated by: AMDSASIO,

Pointed to by: CPB.

Use: OCP is a channel program you can use to write a dump record header and BCT page buffer to
the output tape.

Offsets Type Length Name Description

0 (0) STRUCTURE 24 OCP Writes dump record header and BCT page
buffer to an output tape.

J 0 (0) CHARACTER 8 OCPCCWI CCW to write page header.
0 (0) CHARACTER OCPICMD Write.

A 00

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Offsets Type

(I) CHARACTER
IIII

\...

2 (2) ADDRESS
4 (4) ADDRESS
8 (8) CHARACTER

8 (8) CHARACTER

9 (9) CHARACTER

10 (A) ADDRESS

12 (C) ADDRESS

16 (10) CHARACTER

16 (10) CHARACTER

17 (II) CHARACTER

18 (12) ADDRESS

20 (14) ADDRESS

Length Name

OCPIFLGS

OCPIPCI

2 OCPILEN
4 OCPIADDR
8 OCPCCW2

OCP2CMD

OCP2FLGS

2 OCP2LEN

4 OCP2ADDR

8 OCPCCW3

OCP3CMD

OCP3FLGS

2 OCP3LEN

4 OCP3ADDR

Description

CD, SLI.

Bit is on to cause an I/O interrupt after the
previous interrupt ends,
Length of BCTRCHD.
Address of BCTRCHD.
CCW writes page in buffer.

Not used.

CC, SLl.

Length of buffer (4K).

Address of buffer.

TIC to channel program, next BCT or a
NOP.

NOP or TIC.

Must be 0 for TIC.

Must be 0 for TIC.

Unused or address of next OCP.

Common Communication/Control Table (CCT)

Size: 1024 byte record on the residence volume, 64 bytes during AMDSARDM
execution, 140 bytes during virtual storage dwnp program execution.

Created by: AMDSADM2 macro. AMDSAIPL, AMDSARDM, and
AMDSAPGE complete the functional initialization.

Updated by: All SADMP programs that run at execution time.

Located at: Absolute 512 = X'200'

Use: Central control block for SADMP. The CCT provides communication
among the IPL program, the real storage dump program, and the virtual storage
dump program, The CCT also provides either pointers to most SADMP shared
data areas, or the data areas themselves.

Offset Size Field Name Description

0 (0) 80 CTINITED This section of the CCT is initialized in the form of
the CSECT AMDSACCT, which is generated at
residence volume initialization time.

0 (0) 8 EBCDIC ID.
S (8) 4 CTLOADPT AMDS~RDM load point (page boundary).
12 (C) 4 CTLOADEN First byte after the storage used by AMDSARDM.
16 (10) 4 CTIPLSIO IPL device's subchannel 10,
20 (14) 4 CTCCHHS Beginning of SYSI.PAGEDUMP.
24 (\8) 4 CTCCHHE Ending CCHH of SYSI.PAGEDUMP.
28 (lC) Unused.
29 (10) CTINRPT Number of record tracks for IPL device which

contains SYSI.PAGEDUMP.
30 (IE) 2 CTINTPC Number of tracks/cylinders for IPL device.
32 (20) 4 CTOUTSID Output device subchannel ID.
36 (24) 4 CTCONSID Console subchannel ID.
40 (28) 4 CTLINES Number of lines current on the console screen.

This is used to control screen erasure and to
communicate between AMDSARDM and
AMDSACON.

44 (2C) CTCONTYP Console type.
\... CTCT3277 3277/3278 type.

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 4, Stand-Alone Dump (AMDSADMP) 4-289

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Offset Size Field Name Description

45 (2D) CTOPTION These flags represent generation
options.

\... CTIPL TYP OFF = DASD, ON = TAPE IPL device
type.

.1.. CTDMPFMT Output format ON = PRINTED,
OFF = MACHINE readable.

.. 1. CTVIRTD For printed dumps only, the default
addresses to be used in taking the dump if the
operator cannot communicate with AMDSARDM.
OFF=REAL,ON=VIRTUAL.

... 1 CTMSG OFF=ALL, ON = ACTION only
messages are to be written to the console.

\... CTPROMPT OFF = DO NOT, ON = DO prompt
for dump tailoring options.

46 (2E) CTFLGRS Flags reset on retry
\... CTSCREND OFF=PROMPT before erase;

ON = ERASE then continue.
.1.. CTNODUMP Page buffers must not be written to

the output tape.
.. 1. CTCONACT Messages should not be issued during

error recovery.
47 (2F) CTFLGNR Flags not reset on retry.

x ... Reserved.
. 1.. CTNOCONS No functioning console exists .

48 (30) 4 CTGENDTO Address of the dump tailoring option input from
the DUMP = keyword at generation time.

52 (34) 4 CTPREFIX Processor prefix value obtained from store status
by AMDSARDM. This is the real address where
AMDSADIP is loaded, and the SUT resides.

56 (38) 4 CTCVTP CVT virtual address.
60 (3C) 4 CTSTDM Segment table designation of master address space.
64 (40) 4 CTPCCAV PCCA virtual address.
68 (44) 4 CTSUT Virtual address of the storage use table. J 72 (48) 4 CTRCB RCB queue head (virtual).
76 (4C) 4 CTXSD Extended storage descriptor address.
80 (50) 60 CTUNINIT This portion of the CCT is used only by the virtual

dump modules, and is not initialized in
AMDSACCT. It is set to zeros by AMDSAPGE
during its initialization.

80 (SO) 4 CTIODB Head of the queue of all 10DB (virtual).
84 (54) 4 CTSVCSTV SVC status stack pointer (virtual).
88 (58) 4 CTTRACE Trace table address (real).
92 (5C) 4 CTBCTAVQ Queue of available BCT.
96 (60) 4 CTBCTALL Queue of all BCT.
100 (64) 4 CTAUDPL Parameter list for AMDSAUUD (?ERROR).
100 (64) CTAUDACT Error recovery activity flags.

\... CTAUDRCR No recursion permitted through AMDSAUUD.
.1.. CTAUDIOX Error recovery I/O cannot be called.
.. 1. CTAUDPCE A program check is expected.

101 (65) CTAUDFLG Flags.
x ... Unused.
.1.. CTAUDDMP Dump requested.
.. 1. CTAUDTRM Termination requested.
... 1 CTAUDRCV Recovery requested .

102 (66) 1 CTAUDRC Reason code.
103 (67) 1 CTAUDSVC SVC number.
104 (68) 20 Not used.
104 (68) 2 CTASIDA Active ASID.
106 (6A) 2 CTASIDD ASID being dumped.
108 (6C) 4 CTASCBM Master address space ASCB address.
112 (70) 4 CTASCBA Active address space ASCB address.
1\6 (74) 4 CTASCBD ASCB address for address space being dumped.
120 (78) 4 CTSTDD STD for address space being dumped. STD for

address space being dumped. Used by
AMDSASVI for routine that run in address space
being dumped.

4-290 MVS/Extended Architecture Service Aids Logic L Y28-1l89-3 © Copyright IBM Corp. 1982, 1986

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Dump Table

Size: 26 bytes minimum, 4096 bytes maximwn.

Created by: AMDSAPGE.

Updated by: AMDSAPMT.

Pointed to by: CTDT (virtual).

Use: Describes the paged-out storage that the virtual dwnp program must dwnp
in addition to common storage, GTF data and console trace data.

Offset Size Field Name Description

0 (0) 8 DTHEADER The dump table header.
0 (0) 4 DTHID EBCDIC acronym 'DTAB'.
4 (4) 2 DTHALLOC Length of the storage allocated for this table

(including header).
6 (6) 2 DTHLEN Length of table (including header) in bytes.
8 (8) 0 DTENTRY Table entries.
0 (0) 2 DTLIST Generic name for any/all of the parts of a dump

table entry (DTENTR Y).
0 (0) 2 DTCOUNT The number of members in the array for the list

being mapped.
2 (2) 0 DTARRAY The array of list members. Each PART entry is defined

in this field.
2 (2) 0 DTAS Address space identifier (ASIO) list.
2 (2) 0 DTASINT ASID interval array.
2 (2) 2 DTASLO Smallest ASID in interval.
4 (4) 2 DTASHI Largest ASID in interval.
2 (2) 0 DTJN Job name list.
2 (2) 0 DTJOBNAM Job name array.
2 (2) 0 DTKEY Storage key list.
2 (2) 0 DTKEYINT Key interval array.
2 (2) I DTKEYLO Smallest key in interval.
3 (3) 1 DTKEYHI Largest key in interval.
2 (2) 0 DTADDR Address range list.
2 (2) 0 DTADDRIN Address interval array.
2 (2) 4 DTADDRLO Smallest address interval.
6 (6) 4 DTADDRHI Largest address in interval.
2 (2) 0 DTSP Subpool list.
2 (2) 0 DTSPINT Subpool interval array.
2 (2) I DTSPLO Smallest subpool in interval.
3 (3) DTSPHI Largest subpool in interval.

Dynamic Storage Control Element (DSCE)

Size: 16 bytes each: 256 DSCEs make up a 4096 byte DSCE area.

Created by: AMDSAPGE.

Updated by: AMDSAGTM, AMDSAFRM.

Pointed to by: SUTDSCEU (in-use queue head), SUTDSCEA (available queue
head), DSCESHRT (available queue and short-term storage queue chain),
DSCELONG (long-term storage queue chain).

A "Ill1

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Use: Describes a block of storage that is either for dynamic allocation, or already
allocated. An available for describing a new block of storage. An in-use DSCE
describes unallocated storage, or describes storage that is allocated for short-term
or long term use. An in-use DSCE for short-term storage is automatically freed if
the process that requested the DSCE terminates abnormally. An in-use DSCE
that is allocated for long term storage is never deallocated unless deallocation is
explicitly requested. In-use DSCEs are circularly double-threaded by the long and
short chain fields.

Offset Size Field Name Description

0 (0) 4 DSCESHRT Queue chain used to satisfy short term requests.
0 (0) 4 DSCEAQ The SUTDSCEA queue.
4 (4) 4 DSCELONG Queue chain used to satisfy long term requests.
8 (8) 4 DSCEADDR Real address of the beginning of the area described.
12 (C) 2 DSCELEN Length of the area.
14 (E) DSCESPN Subpool number. 128 or higher is for long-term

request. 15 (F) I DSCESSI SVC stack index that
was current when this storage was allocated. Zero
if storage is unallocated.

Input/Output Device Block (IODB)

Size: 92 bytes.

Created by:. AMDSAUCB (paging device IODBs), AMDSAPGE (all others).

Updated by: All virtual dump modules that use I/O ..

Pointed to by: CTIODB (IODB queue head), IODBNEXT (IODB queue chain).

Use: Represents an I/O device, the current status of the device, and any I/O
operation taking place on the device.

IODB

Offsets Type Length Name Description

0 (0) STRUCTURE 88 IODB Input/Output Device Block.
0 (0) CHARACTER 32 IODBQCA Queuing control area. QCARIGHT places

all the IODB onto a singly threaded queue.
QCADOWN points to a CPB queue of
channel programs to be executed.

0 (0) CHARACTER 4 IODBIODB IODB acronym.
32 (20) CHARACTER 16 10DBDSCH Description of I/O device and subchannel.
32 (20) CHARACTER 8 IODBCDID Device type and model numbers for the

control unit and device, in packed decimal,
as received from the sense ID command
(e.g.FF38801 133500100 from a 3350 model I
with a 3800 model II control unit.

32 (20) CHARACTER I Reserved. Must be X'FF'.
33 (21) CHARACTER 3 IODBCUID Control unit ID.
33 (21) CHARACTER 2 IODBCUT Control unit type number.
35 (23) CHARACTER I IODBCUM Control unit model number.
36 (24) CHARACTER 3 IODBDID Device ID.
36 (24) CHARACTER 2 IODBDT Device type number.
38 (26) CHARACTER I IODBDM Device model number.
39 (27) CHARACTER I Reserved.
40 (28) UNSIGNED 2 IODBDEV Device number.
42 (2A) UNSIGNED 2 IODBSCH Subchannel ID.

A "n..., lI. .. "r~'-r __ __ ..J_..JI'"

.J

"Restricted Materials of IBM"
licensed Materials - Property of IBM

Offsets Type Length Name Description

44 (2C) BITSTRING IODBCLAS Device class copied from an MVS UCB or
equal to the value defined for UCBs.

45 (20) BITSTRING IOOBUTYP Unit type copied from an MVS UCB or
equal to the value defined for UCBs.

46 (2E) BITSTRING IODBISCM Interrupt subclass mask for control register
6.

47 (2F) BITSTRING 100BUSE Use to which the device is put.
I... IODBOUT Dump output volume.
.1.. 10DBPAGE Page dataset.
.. I. 10DBCONS Operator console .
... 1 IODBIPL SADMP IPL device (dump residence

volume).
48 (30) CHARACTER 16 IODBOPER Describes the I/O operation. The standard

parameter list for AMDSASIO is the IODB
followed by 4 parameters that are copied in
order into the 4 unreserved subfields of
IODBOPER.

48 (30) BITSTRING 4 10DBOPTY Operation type flags.
x ... Reserved.
.1.. 10DBCLOS Close a device.
.. I. IODBREAD Read from a device.
... 1 IODBWRIT Write to a device .

I... IODBSNSC Sense.
. x .. Reserved .
.. I. IODBCHP The caller has provided a channel program

address (IODBCHPA).
.. .I 10DBWAIT 10DBWAIT= I, IODBFINT=O. start any

specific I/O operation. then if an interrupt is
expected wait until no more interrupts are
expected. 10DBWAIT= I, 10DBFlNT= I
same, but return after the first interrupt.

49 (31) I... 10DBRCVR Attempt to recover from I/O errors by
calling the device ERP module.

.1.. 10DBINRQ Intervention request. Wait for an interrupt
even if the device is not active.

.. I. 10DBCHPR The channel program virtually addressed by
IODBCCWA has real. not virtual address
fields (used when the I/O service is restarting
a channel program).

.. .I IODBFINT Return after the first interrupt .
1111

SO (32) 1111 1111
51 (33) xxxx xxxx Reserved.
52 (34) ADDRESS 4 10DBCHPA Address of a channel program provided by

the 1/0 service user.
56 (38) ADDRESS 4 IODBREQ Address of SADMP control block that

represents the buffer for the requested I/O
operation.

60 (3C) CHARACTER I Reserved.
61 (3D) BITSTRING 3 10DBWRC If nonzero, this value is to be used as the

wait code while waiting for this I/O.
64 (40) CHARACTER 20 10DBSTAT Status of the device and subchannel and

their current 1/0 operation.
64 (40) UNSIGNED 2 IODBWCNT Number of processes waiting for I/O.
66 (42) BITSTRING 2 IODBSFLG Status flags.

l... IODBUNAV Device unusable.
.1.. IODBINTX Interrupt is expected I/O is currently active.
.. xx xx .. Reserved.

.. I. 10DBERR The last I/O interrupt presented an I/O error
that has not yet been corrected.

... 1 IODBENE Error in sense command.

C4. __ ...l ... , ___ T"'Io. _____ ~ , .. 'III. ,.. .. --

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Offsets Type Length Name Description

67 (43) I... IODBDERP Device error recovery procedures are in
progress.

. xxx xxxx Reserved .
68 (44) ADDRESS 4 IODBSCHB Address of SCHIB. Its SCSW is updated

with the most recent SCSW from a TSCH.
72 (48) ADDRESS 4 IODBCCWA CCW address suitable for restarting the

current channel program. This is either the
last CCW started by SSCH or the last
nonzero CCW address from an SCSW.

76 (4C) ADDRESS 4 IODBSENS Address of sense data.
80 (50) UNSIGNED I IODBSENL Length of sense data.
81 (51) CHARACTER 3 IODBERB Error Recovery Block.
81 (51) CHARACTER 3 ERB
81 (51) CHARACTER I ERBINSID Message ID.
82 (52) UNSIGNED I ERBRCNT Retry count.
83 (53) UNSIGNED 1 ERBMAX Maximum number of retries left.
84 (54) ADDRESS 4 IODBDDX Address of device dependent extension.

DDX

Offsets Type Length Name Description

0 (0) STRUCTURE 8 DDX Device dependent IODB extension, common
fields.

0 (0) CHARACTER 4 DDXID ID field.
4 (4) ADDRESS 4 DDXDDX Pointer to a secondary DDX.

OOXD - direct access extension. Some field names begin with lOB so they will agree with
pre-JBB212S usage.

0 (0) STRUCTURE 24 DDXD Direct access extension.
0 (0) CHARACTER 8 10 field 'ODXD' and secondary extension

pointer (DDXI).
8 (8) ADDRESS 4 IODBUCB Virtual address of the VCB for this device.
12 (C) CHARACTER 8 IODBRID For a page-in operation, this describes where

in the page dataset to find the record that
contains the page. Includes the seek and
search arguments.

12 (C) CHARACTER 8 IODBCCHH Seek address.
12 (C) CHARACTER I IODBM 'M'value.
13 (D) CHARACTER 2 IODBSEEK Beginning of seek address.
15 (F) CHARACTER 4 IODBSRCH Search address.
IS (F) CHARACTER 2 IODBCC Cylinder number.
17 (11) CHARACTER 2 IODBHH Track number.
19 (13) CHARACTER IODBR Record number.
20 (14) BITSTRING IODBFL6 Copied from UCBFL6.
21 (15) BITSTRING IOOBDFLG DASO flags.

J... IODBPGST This .device is a cached auxiliary storage
subsystem (see DDXI).

. x .. Reserved .

.. I. IODBNG The VCB for this device is bad.
22 (16) CHARACTER 2 Reserved.

T Y?R_ll RQ_ < IE) r"nvr;oht TRM r"rn 1 QR? 1 QRIl

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

DDXI - secondary extension for cached auxiliary storage subsystem (CASS) (e.g., 3880/11 + 3350).
These devices are DASDs with a cache and microcode optimized for paging. They use different CCWs
and access UCBs differently from ordinary DASD.

DDXC - console extension.

0 (ot STRUCTURE 9 DDXC Console extension.
0 (0) CHARACTER 8 ID is 'DDXC'.
8 (8) BITSTRING DDXCFLAG Flags.

x ... Reserved.
.J.. DDXCFWAT Wait at the end of the next full screen and

ask for permission to wait at the following
screen.

DDXT - tape extension.

0 (0) STRUCTURE 8 DDXT Tape extension.
0 (0) CHARACTER 8 ID is 'DDXT'.

QCA

Offsets Type Length Name Description

0 (0) STRUCTURE 32 QCA Queuing control area.
0 (0) CHARACTER 8 QCAELEMT Description of the element this QCA is in.
0 (0) CHARACTER 4 QCAETYPI EDCDIC ID to identify the type of the

element.
4 (4) CHARACTER 2 Reserved.
6 (6) UNSIGNED 2 QCAELEN Element length, including the QCA.
8 (8) CHARACTER 18 QCASTRUC Description of the structure this QCA is

implementing.
8 (8) ADDRESS 4 QCALEFT Left pointer for trees and doubly threaded

queues.
12 (C) ADDRESS 4 QCARIGHT Right pointer for trees and doubly threaded

queues, also pointer for singly threaded
structures and stacks.

16 (10) ADDRESS 4 QCAUP Pointer to owning or higher level entity.
This may be a unit of processing the control
block is waiting for.

20 (14) ADDRESS 4 QCADOWN Pointer to owned or lower level entity.
24 (18) BITSTRING I QCASTYPI Type of data structure.
25 (19) BITSTRING I QCASTYP2 Subtype of data structure.
26 (IA) CHARACTER 6 Reserved.

DCA

Offsets Type Length Name Description

0 (0) STRUCTURE 64 DCA DAT change communication area at X'600'.
0 (0) CHARACTER 4 DCAID EBCDIC ID 'DCA'.
4 (4) BITSTRING 4 DCAFUNC Function control bits.

1... DCAFCOPY I = copy.
.1.. DCAFSRCA I = source is described by address in 2nd

parm.
.. 1. DCAFLEN I = 3rd parm is length of data .

8 (8) CHARACTER 56 DCAPARMS Parameters.
8 (8) UNSIGNED 4 DCAPARMI 1st parameter.
8 (8) ADDRESS 4 DCAPRCVR Receiver of operation.
12 (C) UNSIGNED 4 DCAPARM2 2nd parameter.
12 (C) ADDRESS 4 DCAPSRCE Source of operation.
16 (10) UNSIGNED 4 DCAPARM3 3rd parameter.
16 (10) UNSIGNED 4 DCAPLEN Length of data.
20 (14) CHARACTER 44 Reserved.

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 4. Stand-Alone Dump (AMDSADMP) 4-295

TMD

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Offsets Type Length Name Description

0 (0) STRUCTURE 17 TMD Tape Message Display.
0 (0) CHARACTER I TMDFCNTL Format control byte.sq ..

Ill. TMDFOVLY New message overlay 000 = General 001
Dismount 010 = Mount III =
Dismount/Mount.

... 1 TMDFALT Alternating message 0 = Display I msg only
I = Alternate messages.

1... TMDFBLNK Blinking message 0 = Do not blink msg I
= Blink message.

.1.. TMDFDSPL Display message 0 = Display 1st msg only
= Display 2nd msg only ignored if
TMDFALT = I.

.. xx Reserved .

(I) CHARACTER 8 TMDMSGI 1st Display Message.
1 (I) CHARACTER [TMDMIACT Operator Action.
2 (2) CHARACTER 6 TMDMIVSR Tape Volume Serial Number.
2 (2) CHARACTER 5 TMDMIVNM Constant 'SADMP' text.
7 (7) CHARACTER TMDMIVN8 Variable Number (1 to 9).
8 (8) CHARACTER TMDMIAMD Action Modifier.
9 (9) CHARACTER 8 TMDMSG2 2nd Display Message.
9 (9) CHARACTER I TMDM2ACT Operator Action.
10 (A) CHARACTER 6 TMDM2VSR Tape Volume Serial Number.
[0 (A) CHARACTER 5 TMDM2VNM Constant 'SADMP' text.
15 (F) CHARACTER I TMDM2VN8 Variable Number (I to 9).
16 (\0) CHARACTER I TMDM2AMD Action Modifier.

Message Parameter (MSGPARM)

Size: 12 bytes.

Created by: AMDSADM2, AMDSATXT.

Updated by: AMDSACON, AMDSAPMT.

Use: Describes a write/read sequence to the console I/O service. MSGPARM is
located in arrays in AMDSARDM (real dump) and AMDSATXT (virtual dump).

Offset Size Field Name Description

0 (0) MPWRTLEN Length of text to be written.
I (I) 1 MPRDLEN Length of reply to be read.
2 (2) 2 MPRC Name used to access the 12 bit reason code

following MPFLAGS. It must be ANDed with
X·OFFF'.

1111 MPFLAGS
MPFCONT When on, indicates that MPLNCNT contains the

maximum number of lines which may follow.
l... This implies that there is no reply possible after this

line.
.1.. MPFSPRES This message might be suppressed.
.. 1. MPFVLR When off, the entire read buffer is folded to

uppercase (X'OO' to blank). When on, only the
character read in is folded.

... 1 MPFNCON Message should go only to the console message
dump.

xxxx Not used.
xxx x xxxx Reason code used when waiting for the reply. This

value is obtained by ANDing MPRC with
X·OFFFF'.

4-296 MVS/Extended Architecture Service Aids Logic LY28-1189-3 @ Copyright IBM Corp. 1982, 1986

J

J

J

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Offset

4

8
8

(4)
(8)
(8)

Size

4
4
4

Field Name Description

M PTEXT A Real address of text to be written.
PRPY A Real address of reply area.
MPLNCNT Maximum number of lines that may
follow this one. Only valid if MPFCONT is on.

Page 0 Register Save andPSW Build Areas (PGOMAP)

Size: 344 bytes.

Created by: AMDSAPGE.

Updated by: AMDSAAUD, AMDSAIOI, AMDSAPGI, AMDSASVI.

Located at: Absolute 3752 (X'EA8'). The end of PGOMAP is always at the end
of page O.

Use: Register save areas and PSW build areas for interrupt handlers and other
programs that cannot rely on base registers to locate data areas. PGOMAP also
contains common SVC instructions.

Offset Size Field Name Description

0 (O) 8 PGOPGO EBCDIC identifier.
8 (8) 64 PGOACRSA AMDSAAUD control register save area.
8 (8) 4
12 (C) 4 PGOASTD Control register I (segment table designation).
72 (48) 8 PGOAPSW AMDSAAUD PSW to give control to RCB exit.
80 (50) 64 PGOSVISA Register save area.
80 (50) 4 Register O.
84 (54) 4 PGOSRI Register I.
88 (58) 44 Registers 2-12.
132 (84) 4 PGOSRI3 Register 13.
136 (88) 4 PGOSRI4 Register 14.
140 (8C) 4 PGOSRI5 Register 15.
144 (90) 64 PGOPGISA Register save area.
208 (DO) 64 PGOIOISA Register save area.
272 (110) 64 PGOAUDSA Register save area.
336 (150) 8 Reserved.
336 (150) 2 PGOSVCSR The restart new PSW points here. This allows

AMDSASA VI to prepare the environment.
338 (152) 2 PGOSVCEX The external new PSW points here. This allows

AMDASASVI to prepare the environment.
340 (154) 2 PGOSVCRT AMDSASVI alters the general purpose register

14 value to point to this as return linkage.
342 (156) 2 Reserved.

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 4. Stand-Alone Dump (AMDSADMP) 4-297

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Real Storage Management Address Space Data (RAD)

Size: 32 bytes.

Created by: AMDSASIN.

Updated by: AMDSASIN.

Pointed to by: CTRAD (virtual).

Function: Contains information specific to an address space that SADMP needs
to resolve translation exceptions. RAD includes a mapping of the virtual storage
that the page tables occupy.

Offset Size

0 (0) 4
4 (4) 4
8 (8) 4
12 (C) 4
16 (10) 4
20 (14) 4
24 (18) 4
28 (IC) 2

30 (IE) 2

Recovery Control Block (RCB)

Size: 32 bytes.

Field Name

RADIO
RADPBEGA
RADPENDA
RADPBEGB
RADPENDB
RADPBEGC
RADPENDC
RADFHSI

RADRECNO

Description

Acronym.
Beginning of above private PGTs.
End of (beyond) above private PGTs.
Beginning of below private PGT's.
End of below private PGTs.
Beginning of COMMON PGTs.
End of COMMON PGT's.
Index of the first segment that contains a private
page table. SADMP assumes that the page tables
that map this and all segments with larger index
are precisely the high page tables (those that
map other private page tables).
Translation exception recursion number.
SADMP permits only finite number of recursive
page/segment faults.

Created by: Modules that use the SADMP recovery service and execute DAT-on.

Updated by: AMDSAAUD, and modules that use the SADMP recovery service.

Pointed to by: CTRCB (queue head), RCBNEXT (chain).

Use: Saves an environment (error exit, registers, etc.) that a program needs to
regain control when an unusual condition causes the program to terminate its
normal'sequence of execution.

Offset

o (0)
4 (4)

8 (8)
12 (C)
16 (10)

Size

4
4

4
4
4

Field Name

RCBNEXT
RCBSSI

RCBSTD
RCBSAVE
RCBEXIT

4-298 MVS/Extended Architecture Service Aids Logic

Description

Next higher RCB (virtual).
SSINDEX value which can be used to purge calls,
because this RCB was queued from the SVC stack.
Points beyond the top of the stack when RCB is
created.
Control register 1 for exit.
Address of recovery routine register save area.
Address of recovery routine. 20 (14) 4 RCBDATA
Base address of the dynamic data area for the
recovery routine. 24 (18) 4 RCBBASE Base
address of recovery routine.

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Offset

28 (IC)
28 (I C)
29 (I D)

Relocation Table (RL T)

Size

4
I
3

Field Name

RCBSM
RCBECODE

Description

System mask.
Error code from AMDSAAUD indicating why this
recovery routine was given control.

Size: 4352 bytes (1086 entries) maximum. Each entry is 4 bytes.

Created by: AMDSABLD.

Located at: 3840 bytes (X'FOO') into the AMDSAPGE load module on the
residence volume before 1PL.

Use: Describes the relocatable address constants in the AMDSAPGE load
module.

Offset Size Field Name

0 (0) 8 RLTHEADR
0 (0) 4 RLTRLT
4 (4) 2 RLTNPGS
6 (6) 2 RLTLEN
8 (8) 4344 RLTDATA

Relocation Table Proper

8 (8) I RLTGLAGS
x ...
.1.. RLTDATON

.. xx xxxx
9 (9) 3 RLTA

Sense Data Mapping for 1/0 Devices

Size: 24 bytes.

Created by: AMDSAPGE, AMDSAUCB.

Updated by: Channel hardware.

Description

Table header.
'RL T' acronym.
Number of pages in AMDSAPGE load module.
Number of records in RLTDATA.

Reserved.
Indicates whether constant pointed to by RLTA
is to be interpreted with DAT-ON.
Reserved .
Displacement of address constant to be relocated
into AMDSAPGE load module.

Use: Describes the data furnished by a SENSE command. Sense data mapping
for I/O devices is located in the device IODB. Symbols used to describe the I/O
devices are:

• D = DASD only
• S = 3480 tape only
• T = 3420 tape only
• I = Buffered DASD only

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

SENSE

..J Offset Type Length Name Description

0 (0) STRUCTURE 32 SENSE Sense Input Area Mapping.
0 (0) BITSTRING SENSEOO Sense Byte O.

I... SENCR Command Reject.
. 1.. SENIR Intervention Required .
.. f. SENBO Bus Out Check.
... 1 SENEC Equipment Check.

I... SENDC Data Check.
.1.. SENDA Deferred Access.
.. J. SENTeC Track Condition Check (D).
.. 1. SENUCT Unit Check Timing (S).
... 1 SENSC SEEK Check (D).
... 1 SENCC Data Converter Check (T).
... 1 SENAE Assigned Elsewhere (S).

(I) BITSTRING SENSEOI First SENSE byte.
1... SENPE Permanent error (D).
1... SENLBFF Locate block function failed (S).
.1.. SENITF Invalid track format (0).
.1.. SENDOCU Drive online to control unit (S).
.. 1. SENEOC End of cylinder (0).
.. 1. SENTB TU status B bit (T).

... 1 SENMTO Message to operator .

.. .1 SENOSR Out-or-sequence record (S).
1... SENNRF No record found (0).
1... SENLP Load point (T).
1... SENBOT Beginning of tape (S).
.1.. SENFPD File protected DASD (D).
.1.. SENWSTAT Write status (S).
.. 1. SENFPT File protected tape (TS).
.. 1. SENWI Write inhibited DASD (D).
... 1 SENOI Operation incomplete (D).
... 1 SENNC Tape unit not capable (TS).

2 (2) BITSTRING SENSE02 Sense byte 2.
III. SEN SCI Selecting channel interface (S).
t... SENBLF Buffered log full (D).
.1.. SENCO Correctable (D).
.. 1. SENACS Alternate controller selected (I).
.. .1 SENEDP Environmental data present (D).
... 1 SENCACU Channel-adapter control unit (S).

1... SENMDFCU Microprocessor data flow control
Unit (S).

• XX. Reserved .
.. .1 SENBIDPI Block positioning indicator (S).

3 (3) CHARACTER SENSE03 Restart Command code (D).
3 (3) BITSTRING SENERPAC Error recovery procedure action

Code (S).
4 (4) CHARACTER SENSE04 Sense byte 4.

xxxx Reserved.
1111 SENBIDHI High order bits; logical block position

of block identifier (S).
5 (5) UNSIGNED SENSE05 Restart cylinder (D).

III. Unused.
.. .1 SENPEID PE ID burst check (T).

6 (6) UNSIGNED SENSE06 Restart track (D).
7 (7) BITSTRING SENSE07 Format and message.
7 (7) BITSTRING SENSFMT Sense data format (S).

111\ SENFMT Format identifier (I).
111\ SENMSG Message identifier (I).

8 (8) CHARACTER 7 Reserved.
15 (F) CHARACTER 3 SENSI517 Restart displacement (D).
18 (12) CHARACTER 2 SENSl819 Data error offset (0).

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Offset

20 (14)
20 (14)
24 (18)
31 (IF)
31 (IF)

Storage Use Table (SUT)

Type

CHARACTER
CHARACTER
CHARACTER
CHARACTER
UNSIGNED

Length Name Description

4 SENS2023 Correcting data bits 4 bytes ECC (D).
3 SENS2022 Correcting data Bits 3 byte ECC (D).
7 SENS2430 Unused by SADMP (S).
I SENS31 Sense byte 31 (S).

SENDBCNT Data byte count (S).

Size: 540 bytes (129 entries). Each entry is 4 bytes long.

Created by: AMDSADIP.

Updated by: AMDSADIP, AMDSAPGE.

Pointed to by: CTSUT (virtual). CTSUTLOC contains copy of the SUT that
AMDSADIP uses. CTSUTLOC does not contain all usage information, but
contains a description of the real storage that SADMP uses.

Use: Describes the real and virtual addresses and internal usage of the storage
that SADMP occupies. SUT also contains the headers of the DSCE queues and
a real pointer to the page frame table.

Offset Size Field Name Description

0 (0) 4 SUTSUT 'SUT' acronym.
4 (4) 4 SUTVIRTB Beginning of the virtual address range used by

AMDSADMP. Maps to SUTFRAMA (0).
8 (8) 2 SUTNFRMS Index of the last page frame in SUTFRAMA.

Note the last two entries in SUTFRAMA will be
for contiguous frames.

10 (A) 2 SUTFUNIN Index of the first frame not assigned a permanent
use during initialization.

12 (C) 4 SUTMPFTV Virtual address of the system's page frame table.
16 (10) 4 SUTDSCEU Head of the queue of DSCE in use (virtual address).
20 (14) 4 SUTDSCEA Head of the queue of DSCE available (virtual

address).
24 (18) 516 SUTPFT List of frames used by S/A dump.
24 (18) 4 SUTFRAMA An entry.

I. ..
.111 1111 SUTFRNUM The portion of the real address which is the frame
1111 1111 number.
1111

27 (Ib) I SUTUSE Flags for frame usage.
l... SUTSELF Frame contains SUT.
.1.. SUTIRACE Trace table.
.. 1. SUTCODE S/A dump executable code. S/A dump page table.
... 1 SUTPGT

l... SUTDSCEP S/A dump page of DSCE.
.1.. SUTSVCST SVC status element stack.
.. 1. SUTBUF S/A dump page butTer.
... 1 SUTSWAP SWAP-IN DA T table.

SVC Stack

SVC Status Element

Size: 4096 bytes.

Created by: AMDSAPGE.

Updated by: AMDSAAUD, AMDSASVI.

Pointed to by: CTSVCSTV

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Use: Represents the current status of SVC calls. An SVC status element is placed
onto the stack when an SVC call is made and is removed from the stack when
the called module returns.

Size: 96 bytes.

Created by: AMDSASVI.

Updated by: AMDSASVI.

Referred to by: The address of the SVC stack (CTSVCSTR real, CTSVCSTV
virtual) and the index SSINDEX of the current top entry.

Function: Describes the status of a process that was suspended when it made an
SVC call.

Offset Size Field Name Description

0 (0) 8 SSHEAO Unique header portion.
0 (0) 4 SVCSVC Acronym.
0 (4) 4 SSINOEX Index of the entry currently in use.
8 (8) 4032 SSARRAY The stack.
0 (0) 96 SVCSTAT SVC status element.
0 (0) 8 SSPSW SVC old PSW value.
0 (0) 4

1111 1...
.1.. SSPOAT OAT Mode.

4 (4) 4 SSPIA Address of instruction following SVC.
8 (8) 4 SSTOCRI Segment table designation (CRI).
12 (C) I SSNUM Called SVC number.
13 (0) I
14 (E) 2 SSASID CT ASIDA value.
16 (10) 4 SSASCB CT ASCBA value.
20 (14) 4 SSORIGI4 Register 14 original value because the address

of a return SVC is substituted.
24 (18) 72 SSSA Save area passed to called module address in

register 13.
24 (18) 4
28 (IC) 4 SSAR13 Register 13 original back savearea pointer

received from caller.

J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Swap Address Table (SAT)

Trace Table

Size: 36 bytes.

Created by: AMDSAPGE.

Pointed to by: CTSAT (virtual).

Use: Describes the real addresses and master address space virtual addresses of
the DAT tables used to initialize an address space.

Offset Size Field Name Description

0 (0) 4 SATID Acronym.
4 (4) 4 SATMSV Virtual address of the master segment table.
8 (8) 4 SATSPV Virtual address of SADMP's own page table.
12 (C) 4 SATMSV Virtual address in master of the local memory's

segment table.
16 (10) 4 SATLSR Real address of the 8K contiguous real storage

used for local segment tables.
20 (14) 4 SATLPTV Virtual address in master of the local memory's top

page table.
24 (18) 4 SATLPTR Real address of the frame used for the local

memory's top page table, if it wasn't in real storage
already.

28 (lC) 4 SATLPOV Virtual address in master of the local memory's
segment 0 page table.

32 (20) 4 SATLPOR Real address of the frame used for the local
memory's 0 page table, if it wasn't in real storage.

Size: 4096 bytes. Each entry is 8 bytes long.

Created by: AMDSAPGE.

Updated by: AMDSAAUD, AMDSAGTM, ADMSAIOI, AMDSAPGI,
AMDSASVI.

Pointed to by: CTTRACE (real).

Use: Records the 511 most recent significant events that occur during execution
of the virtual storage dump program (SVC calls and returns, program and I/O
interrupts, interrupt handler exits, errors, and others).

Offset Size Field Name Description

0 (0) 4 TRCTRC EBCDIC Identifier.
4 (4) 4 TRCINDEX Index of the last entry used.
8 (8) 4088 TRCTABLE Trace table entry. This is basically a PSW having

additional information.
8 (8) 3 Front of PSW.
II (B) I TRCID Identifier of the module getting control. TRCID

is usually an SVC number. For interrupt
handlers a pseudo SVC number is assigned.

12 (C) 4 TRCMADDR Mode and address.
12 (C) 4 TRCINTAD Address of the interrupt.

L Y28-1l89-3 © Copyright IBM Corp. 1982, 1986 Chapter 4. Stand-Alone Dump (AMDSADMP) 4-303

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Section 5: Diagnostic Aids

Wait Reason Codes
'"

Error Codes

This section contains:

• A description of AMDSADMP wait reason codes.
• A description of AMDSADMP error codes.
• A description of the trace table.
• A description of the SVC linkage stack.

Note: Refer to System Messages for message numbers, message text, and
detecting, issuing, and containing modules.

Wait reason codes identify unusual or error conditions which might occur in
SADMP and provide specific diagnostic information when SADMP is not
running. Each wait reason code is issued at only one location in the SADMP
code even though the same condition might be detected at more than one
location. A wait reason code is not intended to identify a condition, but identifies
how the condition was detected.

A wait reason code is 3 bytes long:

• The first byte is a wait code that indicates the condition.
• The last two bytes are the reason code.

For a description of SADMP wait reason codes, refer to Service Aids.

The low-speed real dump program may be used to diagnose problems in the
high-speed real or virtual dump program. Error codes appear in error trace
records and terminating wait PSWs. They show abnormal conditions in SADMP
ranging in severity from common and not serious to terminating. The rightmost
three bytes of the PSW or trace entry are X'4Fssee'. (ss) is the SVC number or
trace event 1D (pseudo-SVC) of the issuing program, and (ee) is the unique error
identifier.

The virtual dump portion of the high-speed dump program takes diagnostic
dumps to the output tape following a failure in the virtual dump program. A
message is issued to the console informing the operator of the failure and the
module in which the failure may have occurred. An ASID associated with the
failure is also provided. To aid in determining the cause of the dump, a field in
the CCT (CTAUDIT) is provided which may identify the problem. The values
and meanings in CTAUDIT are:

Error
Code

X'0301'
X'0302'

X'080)'

Explanation

Retry is done for a console 1/0 error.

The console is lost due to an 1/0 error.
The segment table is invalid.

Module

AMDSACON

AMDSACON
AMDSASIN

4-304 MYS/Extended Architecture Service Aids Logic LY28-1l89-3 © Copyright IBM Corp. 1982, 1986

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Error
Code

X'0802'

X'OS03'

X'OS04'

X'OSOS'

X'0806'

X'OR07'

X'0901'
X'0904'

X'0905'

X'0906'

X'0907'

X'0910'

X'0911'

X'OAOI'

X'OA02'

X'OA03'

X'OA04'

X'ODOI'

X'OD02'

X'OD03'

X'OD04'

X'OD05'

X'IOOI'

X'IOO2'

X'IOOI'

X'1102'

X'II03'
X'l104'

X'l105'

X'1I06'

X'l107'

X'l108'

X'II09'

X'IION

X'llOB'

X'IIOC'

X'1I0D'

X'1120'

X'1121'
X'1122'

X'1123'

X'1124'

X'1201'

X'13PI'

X'1604'
X'1603'
X'160C'

X'160'

X'1701'
X'IBOI'

X'IB02'

X'IB03'

Explanation Module

The top page table is invalid. AMDSASIN

The page table for segment is invalid. AMDSASIN

No BCT is available. AMDSASIN

AMDSAASM failed. AMDSASIN

The SFT is invalid. AMDSASIN

A DAT table was not read in. AMDSASIN

No BCT is available for paging. AMDSAUPD

RSM control block errors. AMDSAUPD

AMDSAASM failed. AMDSAUPD

SADMP is unable to read the page from the data set. AMDSAUPD

No BCT is available for output. AMDSAUPD

SADMP is unable to resolve the segment fault. AMDSAUPD

SADMP is unable to resolve the page fault. AMDSAUPD

GETMAIN requested more than 4096 bytes. AMDSAGTM

No more DCSEs are available. AMDSAGTM

No storage is available. AMDSAGTM

FREEMAIN was for unallocated storage. AMDSAGTM

Recursion through AMDSAAUD. AMDSAAUD

More than 2 self-dumps requested. AMDSAAUD

Terminating error in or n:cursive entry to the I/O service. AMDSAAUD

Master segment table designation in CCT is invalid. AMDSAAUD

SADMP is unable to recover because ReB queue is empty. AMDSAAUD

An unexpected error occurred. AMDSAARD

GETMAIN for ARBs failed. AMDSAARD

An unexpected error occurred. AMDSAMDM

GETMAIN FOR VSM work area failed. AMDSAMDM

ASXB is invalid. AMDSAMDM

An unexpected error occurred while scanning the dump table. AMDSAMDM

VSMLIST program check processing LSQA. AMDSAMDM

VSMLIST program check processing CSA. AMDSAMDM
VSMLIST program check processing SQA. AMDSAMDM

VSMLlST program check processing private. AMDSAMDM

VSMLIST program check processing subpoollist. AMDSAMDM

An error occurred during backward TeB search. AMDSAMDM

An error occurred during forward TeB search. AMDSAMDM

End of TCB queue was not reached before the count was AMDSAMDM
exhausted.

AMDSAARD failed. AMDSAMDM

Nonzero return code from VSMLIST on LSQA request. AMDSAMDM
Nonzero return code from VSMLIST on CSA request. AMDSAMDM
Nonzero return code from VSMLIST on SQA request. AMDSAMDM

Nonzero return code from VSMLIST on private request. AMDSAMDM

Nonzero return code from VSMLIST on subpoollist request. AMDSAMDM

Recursion limit through AMDSARSM exceeded. AMDSARSM
A permanent I/O error exists on the output tape. AMDSATER
The UCB is invalid. AMDSAUCB
An invalid subchannel ID exists in UCB. AMDSAUCB
The subchannel is not operational. AMDSAUCB

The subchannel is invalid. AMDSAUCB
The input is invalid. AMDSAVCK
An unresolved page fault exists in AMDSAPMT or AMDSAPMT
AMDSAPRS.

Dump table overflow. AMDSAPMT
No console. AMDSAPMT

Error
Code

X'IC13'

X'JDI2'

X'IEOl'
X'IE02'

X'IE03'
X'IE04'

X'IEOS'

X'IE06'

X'IE07'

X'IE08'

X'IE09'

X'IEOA'

X'IEOB'

X'IEOe'

X'IEOD'

X'IEOE'

X'IEOF'

X'IEIO'

X'IEIl'
X'IE13'

X'IE14'

X'2101'

X'22Fl'

X'7801'

X'7802'

X'7803'

X'7804'

X'F901'

X'FDFl'

X'FEcc'

X'FEFF'

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Explanation Module

S ys tern res tart. AMDSASRR

An external interrupt terminated dumping. AMDSAEXI

An error occurred during I/O initialization. AMDSAPGE
An error occurred during dynamic storage management. AMDSAPGE
initialization.

An error occurred during BCT initialization. AMDSAPGE
An error occurred during SVC service initialization. AMDSAPGE
An error occurred during external interrupt handler AMDSAPGE
initialization.

An error occurred during swapping service AMDSAPGE
initialization.

An error occurred during trace table initialization. AMDSAPGE

ASMVT is invalid. AMDSAPGE

ASVT is invalid. AMDSAPGE
PART is invalid. AMDSAPGE

SART is invalid. AMDSAPGE

An error occurred during system restart initialization. AMDSAPGE

An error occurred during machine check handler AMDSAPGE
initialization.

An error occurred calling through SVC service AMDSAPGE
to AMDSADMP entry point.

An error occurred in a dumping routine. AMDSAPGE

An error occurred during dump table initialization. AMDSAPGE

An error occurred when calling AMDSAPMT. AMDSAPGE

An error occurred during system restart. AMDSAPGE

Assign failed for a 3480 tape drive. AMDSAPGE

A channel program for address translation is longer AMDSATCP
than 1024 bytes.

A terminating I/O error occurred on the output AMDSAT80
tape.

GETMAIN requested more than 4096 bytes. AMDSAGTM

No DSCE is available. AMDSAGTM

No storage is available. AMDSAGTM

FREEMAIN was for unallocated storage. AMDSAGTM
The SVC stack is full. A loop probably exists in SADMP AMDSASVI

A termination error occurred on the output tape (no paths AMDSAIOI
available).

Program check. The last byte of the interrupt code is cc. AMDSAPGI

Recursion through the program interrupt handler. AMDSAPGI

T V')SI_II SlQ_1 lEJ r()nvriuht TRM r()m I QSI,) 1 QSlfi

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Trace Table

Locating the Trace Table

Entry Formats

CCT Trace Table

X'200'

+0 TRCTRC

+4 TRCINDEX

SII

X'258' CTIRACE Trace

Entries

Figure 4-11. Trace Table

The trace table can be located from the CCT by its real address (CTTRACE).
The first fullword contains "TRCT" The second fullword (TRCINOEX) contains
the index number of the last entry put into the table. This index wraps around
from 0 through 510. The remaining portion of the page is an array of
doubleword entries.

• Call Event Record

First 3 Bytes of PSW Event ID Address Following SVC

o 3 4 8

Figure 4-12. Call Event Record

A call event record is the SVC old PSW with the fourth byte replaced by an
event 10. The IO is the SVC number of the entry point being called. In the
cases where the event is not an SVC, a pseudo-SVC number is assigned, and
an appropriate old PSW is used. Note that the OAT mode (first byte sixth
bit) must be considered when interpreting the address.

• Return Event Record

First 3 Bytes of PSW Address Returned to

o 3 4 8

Figure 4-13. Return Event Record

One return event occurs for each call event in the reverse order that the calls
occurred. An exception to this is when AMOSAAUO gives control to an
error exit. All calls to routines that do not establish their own RCB are
eliminated as if the routine, whose RCB is current, had never called them.
Note that the DAT mode (first byte sixth bit) must be considered when
interpreting the address.

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 4. Stand-Alone Dump (AMDSADMP) 4-307

• Error 10 Record

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

00 00 00 I on I w,,, Cod,", E~"t Add""

o 3 4 8

Figure 4-14. Error ID Record.

An error ID record has the same format as an event record except that the
first 3 bytes are zeros. The event 10 (fourth byte) is X'OD' indicating that
AMDSAAUD is the source of the entry. The last 3 bytes identify the error
and re the wait-reason code that would be used if SADMP were to terminate.

• Address Fault Record

Pgm lnt Code 00 FE Translation Exception Address

o 2 3 4 8

Figure 4-15. Address Fault Record

An address fault record follows a call event to AMDSAPGI when the program
interruption was a translation exception. The ID is X'FE'. The type is indicated
by the PI code in the first two bytes, and the last 4 bytes reference the address
that caused the exception.

4-308 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

ID Entry Point Called or Event

00 AMDSASIO
03 AMDSACON
06 AMDSAASM
07 AMDSAERM
08 AMDSASIN
09 AMDSAUPD
OA AMDSAGTM
OC AMDSAAID
OD AMDSAAUO or error id

record
OE AMDSABUF
OF AMDSADER
10 AMDSAARD
II AMDSAMOM
12 AMDSARSM
13 AMDSATER
15 AMDSAGTF
16 AMDSAUCB
17 AMDSAVCK
18 AMOSABIN
19 AMDSAEBC
IA AMDSAINR
IB AMDSAPMT
IC AMDSASRR
ID AMOSAEXI
IE AMDSAPGE
IF AMDSAERB
20 AMDSAPRS
21 AMDSATCP
22 AMDSAT80
23 AMDSANTP
24 AMDSAXSM
20 AMDSADOS
2E AMDSADCM
7& AMOSAGET
F9 AMDSASVI
FA AMOSAFRM
FB Exit from an interrupt

handler
FC Return through SVC

linkage
FD AMDSAIOI
FE AMDSAPGI or Address

fault record
FF Machine check

TralWlatioD
Mode Enablement

V D
V D
V
V
V
V D
V 0
V
V D

V D
V D
V
V
V
V D
V
V
V

V
V E
V 0
V 0
V E
V
V E
V 0
V D
V 0
V
R 0
V 0
V 0
V 0
V D

V D
R D

Figure 4-16. Trace Event IDs and Entry Point Attributes

The attributes are as follows:

Symbol Meaning

Depends on the caller, or is not applicable

Address
Spaee

M
M
M

M

M

M

L

L

M
M
M

D Disabled for I/O, external, and machine check interruptions
E Enabled for I/O, external, and machine check interruptions
L Local address space being dumped
M Master address space being dumped
N No reentrancy
R Real address translation mode
V Virtual address translation mode
y Reentrancy

Ree.araaey
Y
Y
Y
N
N
Y
N
N
N

Y
N
N
N
Y
N
N
Y
Y
Y
Y
N
N
N
N
N
N
N
Y
N
N
Y
N
Y
N
N
N

Y
N

LY28-1l89-3 © Copyright IBM Corp. 1982, 1986 Chapter 4. Stand-Alone Dump (AMDSADMP) 4-309

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

How to Read the Trace Data

SVC Linkage Stack

Locating the SVC Stack

Use of the SVC Stack

The events are entered in chronological order. The second word of the table entry
is the index of the last entry mode. To get the displacement of the newest entry
into the page, mUltiply the index by 8 (the length of an entry) and add 8 (length
of the table header). The fourth byte of each entry is the event 10.

The majority of the event IDs refer to synchronous calls through the SVC linkage
interface. These together with 10 X'FC', which indicates a return from the most
recent call, provide an excellent flow of control trace. Several of the other events
represent interruptions that are treated as asynchronous calls. If the wait bit is on
(second byte seventh bit) the address will be a wait reason code giving additional
information about SADMP.

The SVC stack can be located from the CCT using its real address (CTSVCSTR)
or virtual address (CTSVCSTV). The first full word contains "SVCS". The
second full word (SSINDEX) contains the index number of the element currently
at the top of the stack. The remaining portion of the page is an array that
implements the logical stack.. Element I is logically the bottom of the stack and
element SSINDEX is the top of the stack.

CCT SVC Stack

+0 SVCSVC

+4 SSINDEX

X'200'

X'24C' CTSVCSTR

SVC
Stack
Entries

X'2S4' CTSVCSTV

Figure 4-17. SVC Linkage Stack

The SVC stack can be located from the CCT either by its real address
(CTSVCSTR) or its virtual address (CTSVCSTV). An entry is placed in the stack
each time a call is processed by the SVC linkage handler and one is removed each
time a return is handled. An entry is added to the stack by increasing SSINDEX.
When a recovery event occurs and AMDSAAUD passes control to a recovery
routine, SSINDEX is set back down to the value it was when the RCB was
enqueued. This ends any chance of activity in any routine called by the routine
whose ReB exit will be given control. AMDSAFRM is called to free any short

4-310 MVS/Extended Architecture Service Aids Logic L Y28-U89-3 © Copyright IBM Corp. 1982, 1986

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

term storage obtained while one of the popped elements was at the top of the
stock.

One function of the SVC linkage is to provide a save area for the caller's PSW,
STD, and registers. These can be valuable in debugging interface problems.

Storage Assignment (Static and Dynamic) Control Blocks

v

DSCEs are of the following types:

In use header - The header DSCE serves as the queue header for those DSCEs
that represent storage, but it represents no storage itself. It is marked as
representing 0 bytes of storage at location O. Its real address is at SUTX'lO'.

In use for long-term allocated storage - These DSCEs represent storage that is
not normally freed (for example, storage for IODBs and the dump table). They
are identified as being on the in-use queue, having a nonzero SVC stack index and
a subpool number greater than 127. They can usually be found close to the
header USCE along the long-term queue.

In use for short-term allocated storage - These represent storage that is freed
when the program that obtained it finishes (for example, automatic data areas for
reentrant modules). They are identified by being on the in-use queue, having
nonzero SVC stack index, and a subpool number less than 128. They can usually
be found close to the header DSCE along the short-term queue.

In use for unallocated storage - These represent storage that is currently
unallocated. They are identified by being on the in-use queue and having an SVC
stack index of o. They are typically intermixed with the other in-use DCSEs.

Available DCSEs - These do not represent storage, but may be used in the future
to describe new storage blocks. They are identified by being in the set of
available DSCEs, that is implemented as a singly threaded queue headed by
SUTX'14' (real address).

A ':11 1

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

LY28-1189-3 cc CODvriJ[ht IBM COlO. 1982. 1986

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Chapter 5. Spzap (AMASPZAP)

Section 1: Introduction

The AMASPZAP service aid program ena bles a user to:

• Inspect and modify data in any load module that is a member of a partitioned
data set.

• Inspect and modify data in a specific data record which is contained in a
direct access data set.

• Dump records from data sets residing on direct access storage devices.

AMASPZAP runs under the operating system. It normally resides in
SYSl.LINKLIB; however, it may reside in a password protected private library.

For a description of how to use the AMASPZAP service aid, refer to Service
Aids.

LY28-1l89-3 © Copyright IBM Corp. 1982, 1986 ChaDter 5. Snzan (AMASPZAPi 'i-l

Section 2: Method of Operation

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The diagrams in this section show the functions performed by the AMASZAP
service aid. SPZAP Figure 5-1 shows the hierarchy of the diagrams and defines
the symbols used.

Diagram 1 is an overview of AMASPZAP processing. There are four control
statements that determine the path of processing which AMASPZAP will take:

• NAME (Diagram 2) - This statement indicates to AMASPZAP that it will
be working with a CSECT contained in a load module which is a member of
a partitioned data set. As a part of this processing path, AMASPZAP may
replace data in the CSECT, verify the data to be replaced, and/or update SSI
and ID R records.

• CCHHR (Diagram 3) - This statement indicates to AMASPZAP that it will
be working with a physical record contained in a direct access data set. As a
part of this processing path, AMASPZAP may replace data in the record and
verify the data to be replaced.

• DUMP(T) or ABSDUMP(T) (Diagram 4) - These statements indicate to
AMASPZAP that it is to dump a specific control section or all CSECTs in a
load module (DUMP), that it is to dump an entire data set, a member of a
partitioned data set, or a groupd of records residing in a direct access data set
(ABSDUMP).

Reading Method of Operation Diagrams

Method of operation diagrams are arranged in an input-processing-output layout:
the left side of the diagram contains the data that serves as input to the processing
steps in the center of the diagram, and the right side contains the data that is
output from the processing steps. Each processing step is numbered; the number
corresponds to the verbal description of the step in the extended description.
While the processing step in the diagram is in general terms, the corresponding
text is a specific description that includes a cross-reference to the code for the
processing.

5-2 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

I
Diagram 2

Replacing Data
in a Member
and CSECT

Diagram I

Overview of
AMASPZAP

J
I I

Diagram 3 Diagram 4

Replacing Data
in a Physical Producing Dumps
Record

Key to Method of Operation (MO> Diagram Symbols

Entry into processing

Flow of Control

Data Transfer

Pointer to or address of

Reference to data

1, 2, etc.

A,B,etc.

I
~
[3

Figure 5-1. Key to Method of Operation Diagrams for AMASPZAP

L Y28-1189-3 © Co ri ht IBM Co . 1982 1986

Look for corresponding numbers in text

Look for blow-up of item on same page

Look for corresponding-lettered blow-up
on same page

Braces to denote related items

See referenced diagram for detailed
description

Reference to another diagram

r.h~nt .. r" lil. { A ILt" A (!D'7 ... In C '1

C SPZAP Diagram 1. Overview of AMASPZAP

~.
til
><

I
>
d
I:r
~.

2
~

W
~
~.

>
E.:
fIl

b
~.

r
-<:
N
~
00
IQ
I
©
("')
o

::I.

~ = a::
Q
....
IQ
00
.N
....
IQ
00
Q\

Input

OR

SYSI NDevice

~

From Operating System

Note: BASE, VERIFY, SETSSI,
and IDRDATA statements are
optional for this function.

Note: VERIFY statement is
optional for this function .

OR

(D~MP~

Output

1 Process control statements:

• NAME statement-Replace : :>I
data in the specified mem­
ber and CSECT

~
Diagram 2

• CCHHR statement­
Replace data in the spec­
ified physical record

~
Diagram 3

• DUMP(T) or
ABSDUMP(T) statement:

Produce the type of dump
requested

~
Diagram 4

2 When there are no more
control statements, return
to the operating system.

l,

SYSPRINT

To Operating System

Updated Member
and CSECT

l .. upOateo Physical
Record

- Dump

~

t"""
~.
:=I

~ c:a.
3: ::
II) ~
~ ~ ;- ;;. - -<It ~ c:a.
I 3:

'"1:1 II) a ~
"g ::1-.. e.. - "" ~ ~

~ ---- 1:1:1 1:1:1 3:
3: "

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

This page left blank intentionally.

L Y28-1189-3 C Copyright IBM Corp. 1982, 1986 ChaDter 5. Snzan (AMASP7.A.P\ Ci_Ci

'f SPZAP Diagram 2, Replacing Data in a Member and CSECT (Part I of 4)

'"
s::
<:
:n
=T1
><
fir
::s
Co

B.
>
(l
e: g

~
CIl

"' :l §.

> c:
'" r o

0.9.
n

r
-< IV

':r"
00
\0
W
©
(")

~ ..,
~ -t:D
a::
Q
-?
.....
\0
00

.IV
.....
\0
00
0\

Input

I NAME

SYSlIB
(UB2)

I BASE

I VERIFY

I REP

4.v

Member [CSECT] I

~
.......

.-/

r-...,CESD
.-"

r-...,IDR .-"

~CONTROL...,

~TEXT
-"

~CONTROL...,

........TEXT ./

Offset
I

Expected
Offset

Content I

1
Offset Data

I

Process

"> 1 Find the member and CSECT
on SYSlIB. Save the external
svmbol dictionary ID (ESDI D).
which was found in the com-
posite external symbol dictio-
nary (CESD) entry for the
CSECT.

• 2 p ..) oSition to the text record;
-y which contains the CSECT.

save CSECT address.

')3 Save the specified offset.
--v

..) 4 Read the specified record and
v determine if it contains the

expected data:

• Yes - continue pro-
cessing cards.

• No - ignore subse-
quent REP card
dump erroneous

data.~
4.2

">5 Replace (patch) the specified
'Y record providi ng that the veri-

fy operation was successful or
that there was no VERIFY
statement. Indicate that oper-
ation has been performed.

•

c.."

Output

~ CSECTID

1 ~ ESDID r------
I IDSAVE

I ~I I
I

,)! CSECT Address

I
_J

BASE2
~ 1 ~ Offset

-.)! SYSLIB Record' 1
RDAREA 1

IGNOP

~ SYSLIB (LlB2)-....-..... ~U~'OOd- CSECT -- MODIFY

.. CTLBTE2

-JI 1

t'"
n'
/I> = ~
c.

:: ~
Do> /I>

it ~ -.. ::I, =' ...,
r;; -II>

C.
I :=

"C Do>

Cl it
'C ..
/I> =' .. r;; -'< = = -- == == :: :: ~

c.."

~
N
~ ..­
..-
00
\C
~

@

(")

i = a:::
(")
o
-?
..-
\C
00
J'l
..-
\C
00
0\

(")
::r

i ..
~

f
'>
a:::
>

~
VI
I

-...J

r

SPZAP DUpam 2. RepiacinJ Data in a Member IIld CSECT (part 2 0(4)

Expluetlon Module L

1 A BLDL macro instruction isiSlUed to determine if AMASPZAP NAMERTN
the member exists. If It does and a CSECT name NAME01A

is specified, the routine searches the CESO entries for the
CSECT name. If no CSECT name is specified, find the
flm (I~ address) CSECT in the member.

2 Position to the text record containing the CSECT NAME03D
by matching the ESDI 0 with the 10 in the control RODSK4

record which precedes the text record. Add the appro- SPZAPIOR
priate offset to obtain the CSECT start address. If the NAME04
scan finds at laelt one SPZAP lOR record but no unoc-
cupied lOR entries, the return code will be let to 8 and
subsequent REP and 10RDATA statements will be
ignored, unless the IGNIORFULL option has been
specified .

3 If a BASE statement is read, save the specified BASERTN
offset so that it may be subtracted from the offsets

given in sublequent REP and VERIFY statements.

4 If a VERIFY statement is read, find tha record VERYRTN
containing the data to be verified, determine SETUP1

the absolute address of the data, then read and com· NAME07
pare the data. A split verify is made when the data to CCHNOTE
be verified extends over more than one text record. NAME13
If the comparison is negative, do not perform a DUMP01A
replace operation and dump the incorrect data.

6 Find the record containing the data, determine AMASPZAP A EPRTN
the absolute eddress of the data, and then make SETUP1

the replacement (PATCH). A split is made when the NAME07
data to be replaced extends over more than one text CCHNOTE
record. The MODIFY bit is set to 1 when the replace-
ment is completed succeafully.

r r

t"'" J.
;;' ~ ~ fIl :I -Ie ..

fj'
~ !i a: Do
lID :: -~ ;. ~ - .. '" •. lID
I Fir'

"C:I ~ a -'i == .. :: - :s ~

~ -== a:

Y' SPZAP Diagram 2. Replacing Data in a Member and CSECT (Part 3 of 4)
00

a:: a
~
g
0.
<1l
0.

:>
(l
::r

a
~
<1l

V1 o
~
;:So
(1)

:>
0.:
'" r
o

(Jt<

n·

r
-<
N

~

00

'P
w

@

n
o

'"Cl
'< 0;.
::r ... -Ct)

~
n
o .a
'C)
00
N

'C)
00
0\

I SETSSI xxyynnnn I
I RETCODE

I

I IDRDATA User Data I

MODIFY

I
SSIOP

I J

l....

-" 6 Find SSI and update it with

I
the specified information, pro·
viding that the verify and re-
place operations were success-
ful.

" 7 Move I DR data into the lOR
~

buffer in preparation for step
8.

S When a new NAME, CCHHR,
DUMP(T), or ABSDUMP(T)
statement is found, or at end
of job:

J\. • If an I DR exists, update it
v if a replace operation was

performed. Use user-sup·
pi ied data if present.

-" • Update the SSI if a replace
v operation was performed

and no SETSSI statement
appears between the REP
statement and the next
NAME, CCHAR, DUMP(T)
or ABSDUMP(T) state-
ment.

l...,

SYSLIB (LlB2)

~
Updated SSI

v

......

IDRDATA

)I I User Data
~

Updated Local
FIX Flag

SYSLIB (LlB2)

• tisIJ
~ -.......

t"'" r;.
"" = '" "' Updated With

User Data or

=-
:: ~

:::0
Co> re

'NO IDENT' ;;- ;a. .. .,
co· r;.
r;: ;;-

=-
S

""0 I» a -"" "CI
.,

"" co· .. r;: -~ Q
C -. - 0:; = ~ ::

~

t""
-<
N
00 ,
......
......
00
'0
W

61
(")
o
"0
-<
j;i"

~
......
Ij;)

~
(")
o
~

'0
00
N

......
'0
00
0\

'"')
::"

'" j

:;
" J1

IJ
:l

'"' I>

'" ..
I>
fl ..,
...
;.

S

.Il

o

r

SPZAP Diagram 2. Replacing Data in a Member and CSECT (part 4 or 4)

Explanation

6 If a SETSSI statement is read and there have been
no previous errors, the address of the SSI is obtained

and placed in register 4. The user-tpecified SSI is then
moved to the SSI.

7 If an IDRDATA statement is read and there is
an unoccupied SPZAP lOR entry for the module,

the IDRDATA value 15 stored in the user-data field of
the lOR entry (which otherwise will be set to "NO
IDENT"). If there are no empty IDR entries, or no lOR
records, IDRDATA statements are ignored.

8 The I DR record is updated with the contents of
the lOR DATA field (Either user data or "NO

IDENT",. A message is issued giving the current and
maximum number of lOR entries. Clf current-maximum,
an additional message is issued.' If the SSI is to be
updated, the local FIX flag in the SSI is set.

Note: If a CHECKSUM statement is read, the contents
of the checksum accumulator are converted to printable
hexadecimal, and the accumulator is reset. If the
CHECKSUM statement has an operand equal to the
converted checksum value, a checksum-(;orrect message
is written. Otherwise, the IGNOP bit of CTLBTE is set
to inhibit REPs and SETSSls until the next NAME or
CCHHR statement.

Module Label

SSIRTN
INSM1A

IDRRTN

INSMDFY

AMASPZAP CHSUMRTN
CHSUM

r r

r
;::j' ~
~ ~

= ~ '" ttl
.,

c.. ;::j' -:: ~
c..

I» :: ~ ., I» ;. -~ ;;; .,
~.

;;;

'"0
Q, .,

Q

"= 00
~ :: .,

Q
Q,
;
::

f' SlAP Diagram 3. Replacing Data in a Physical Record (part 1 of 2) ...
::>

so::

~
i3
~ • ,
:l..

~
~

~
::r'
~.

~
:t

~
"Jl
no

~.

, ,..

@

::to
JQ
=r

=
n

,..
'" 00
~ -'" 00
0'1

Input

l CCHHR Record Address ,

SYSLIB
(LlB2)

....

I VERIFY Offset
Expected Content I

I REF Offset Data I

~

Process

.. 1 Verify that the address speci-
y ed is valid.

"}2 Get the record.

>3 Compare actual and expected
v contents of the record; indi-

cate if they are unequal.

.. >4 Replace (patch) the record. v

5 Issue message indicating
VOLSER. CCHHR. and
DSNAME of updated record.

l.,

Output

RDAREA1

)I Record to Be Replaced I r

IGNOP

If Unequal r

r---~

~I SYSLIB (LlB2) MO I

4.8\ :
--- 1---- - __ J

c3
i-' Replaced Record ..

r

....

rc:::l v, ~
~.

= MO i€ =-1
--------- ~ "

• ~ ~ Gft -... ...
ED· t;'
~ ~ =-
'"CI
~ • ... ~

i ...
ED' ... ~ ~ = = --= ~ ~ :I

~

t"'"
-< N
~
00
\0 ,
W

©
(")
0
'0
'< ...,
d<j.
::r' --= ~
(")
0

~
.....
\0
00
P
.....
\0
00
0\

(")
::r'
.g
ti ...,
VI

f
'>
~
~

~
VI
I

r

SPZAP Diapam 3, Replacing Data in a Physical Record (Part 2 of 2)

Explanation Module Label

1 The address specified in the CCHHR statement AMASPZAP .CCHHRTN
must be within the limits of the data set specified CCHHSUB

on the SYSLIB DO statement,

2 The record is read from the SYSLI B data set to ROOSK
ROAREA1.

3 If the actual and expected contents do match, the VERYRTN
next record is read. Otherwise, the IGNOP switch SETUP1

is set so that a replace operation is not performed, and a DUMP01AB
dump of the unmatched record is taken.

4 Providing that the verify oparation was successful REPRTN
or if there was no VERIFY statement, the replace- SETUP1

ment is made .

5 Message AMA 1211 is issued if a replace operation INSMOFY
has been performed when a new NAME, CCHHR,

DUMP(T), or ABSOUMP(T) statement is read, or, at end
of job.

r r

t""' " ;:;' ~
n> n>

= '" -~ i;-=- ~
~ =-
li>

~ -n> .. li>
ji;' -n>
<ii :2,

li>
I <ii

0 "1:1 -. .. -0

== "CI
n> ~ .., - :s '<
0 -. -== ~

Y. SPZAP Diagram 4. Produclng Dumps (Part 1 of 2) -N

a::
~
til
><
S'

~
~
8
::I'
~'

= ~

~
~
~r
~ s:
'"
b

(JQ

n'

~
N
~
00
-.0

I
IN

o
n o
~

~ --t:= s::
Q
-? --.0
oc
J'l --.0
oc
Q\

Input

DUMP Member ~ CSECT l
ALL h

OR

DUMPT Member lCSECT ~
ALL

CSECT I 'CSECT Name I(

or ALL ~---- --,
I _--

! Start Addr Stop Addr
ABSDUMP Member Name

ALL

OR

1 Start Addr Stop Addr!
ABSDUMPT ~ember Name

ALL

~

Process

Processing DUMP or DUMPT:

.. 1 Determine if the dump is to
-v be translated (DUMPT).

2 Find the member and CSECT.

3 Position to the text record
containing the CSECT.

/
4 Dump the CSECT; translate --/

if required,

~ - 5 Repeat steps 2-4 if all CSECTs
in the member are to be
dumped.

Proca.!nv ABDUMP or ABDUMPT:
.. ~ 6 Determine if the dump is to ..

be translated (ABSDUMPT).

7 Process request according to
options:

• Start address stop address-

................... to =rJ
MBBCCHHR format. .

• ALL - determine the start
and end addresses of the
data to be dumped.

• Member name - position
to the first record and set
flag to indicate that mem-
bar is being dumped
(MEMDMP).

8 Dump the data, Translate if
required.

~

..
I)I CTLBTl=2 v

/~ CSECTID
~TRANS

" .. I)I ESDID
/

/
/

/
/

• ~

..
I SYSPRINT -JI CTLBTE2

f :)

\TRANS D k-J STCSECT

~ Start Address I
TTRSAVE

Dumped Data

J>.. ~
-)I End Address I ..

r'
i=)'
fD
:=
:€
~

3: ~
=c ..

I)I CTLBTE2 ..
} "MEMDMP

TRAN

• fD

~
(I> -.. ;:;-.-

rr i
3:

"C • a ;ti

'i ::::l.
ID

::l IE
~

~ = -;; 1:1'
3: 3: :s

l,

t"'"
-<
IV
~ --00
-.0
I

W

@

(j

~
~ ... -= ~
(j

~ --.0
00
!V

-.0
00
CI'I

(j
::r'

i ...
VI

CIl

]
'>
~
>
CIl

~
VI
I -W

r

SPZAP Diapam 4. Producina Dumps (Put 2012)

ExpIMRlon Module

1 The TRANS Mitch In CTLBTE II set if DUMPT AMASPZAP
was specified.

2 A BLDL macro Instructlon,ll iuued to dlrtennine
If the module exists. If it does, the routine searches

the CESD (composite external Iymbol dictionary) entries
for the CSECT name.

3 Match the ESDID with the 10 in the control record
which precedes the text record. Add the appropri·

ate offset.

4 The CSECT recorda are reed, formatted, and written
to the SYSPRINT data sat. If DUMPT was specified,

the recorda are translated before being written. The formata
of translated and untranslated dumps are shown in SelVa
AidL

5 If ALL _specified, proceaaing continues until all
CSECTs in the member have been dumped.

6 The TRANS IWitch il set If ABSDUMPT was specified. AMASPZAP

7 When the stan address and Itop address are specified
on the control card, the addresses are convened and

moved into the STCSECT and TTRSA VE fields.

When ALL is specified on the control card, the lten address
of the SYSLIB data set is determined by examining the DEB.
The end address of the data set Is determined by examining
the VTOC via the OBTAIN macro .

When a member name II specified on the control card, the
routine gets the member name and issues the FIND macro
instruction to position to the first record. The MEMDMP
switch is set to Indicate that the dump operation should be
stopped the first time enNf·file Is reached.

r

Label

DUMPRTN

DUMPR1
DUMP04
NAME01A

DUMP01B
DUMP06B
RDDSK4

DUMP1
DUMP01
GRAP1

DUMP04
DUMP06B

ABDMPRTN

ABDMP1B
ABDMP2
CHCONV

ABDMP3
CHCONV

ABDMPS
SCANKEYS

Explanation

8 A dump of the specified data is produced. If
ABSDUMPT _specified, the records are trans­

lated before being written. The formats of translated and
untranslated dumps are shown in SelVa AidL

Sten & Stop adr & ALL

Member

I f translate

Module

r

l8be1

ABDMP5
DUMP1
DUMP01

• t
CONTB

DUMP1
DUMP01

GRAP1

~ r.
;:;' " a !
I ;;S'
::i
;. ::
.. I» ;- ~
Er :I.
I~

""I;j Q,
Q -
1l =
::l ::

'-< :$

Q .., -= ::

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Section 3: Program Organization

CSECT Descriptions

The superzap service aid program consists of one module which contains four
CSECTs:

• AMASPZAP - controls the service aid operations and routes control to the
AMASZDMP and AMASZIOR CSECTs.

• AMASPZAP - dumps data to the SYSPRINT data set.

• AMASPZAP - defines the constants used by the AMASPZAP service aid
program.

• AMASPZAP - performs input/output and exit processing.

AMASPZAP - Control CSECT

Entry from: The operating system.

Entry point names: AMASPZAP.

Data areas defined or updated: None.

Size: 4K

Routines caUed: AMASZIOR, AMASZDMP.

Exits: To AMASZIOR.

Operation: Routes control between subroutines in AMASZDMP and
AMASZIOR; controls the processing.

AMASZCON -Superzap Constants CSECT

Entry from: N / A

Entry point names: N I A

Data areas defined or updated: N/A

Size: 3K.

Routines called: N I A

Exits: NjA

Operation: Contains constants and data areas used by the other three superzap
CSECTs.

5-14 MVSfExtended Architecture Service Aids Logic LY28-1l89-3 © Copyright IBM Corp. 1982, 1986

J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

AMASZDMP - Dump CSECT

Entry from: CSECT AMASPZAP.

Entry point names: AMASZDMP.

Data areas defined or updated: None.

Size: IK.

Routines called: AMASZIOR.

Exits: Return to AMASPZAP.

Operation: Performs DUMP and ABSDUMP processing.

AMASZIOR - "Input/Output and Exit CSECT

Entry from: AMASPZAP, AMASZDMP.

Entry point names: AMASZIOR.

Data areas defined or updated: None.

Size: 2K.

Routines called: None.

Exits: Return to caller or exit to supervisor.

Operation: Performs I/O operations, issues WTO macro instructions, contains
SYNAD routines, and performs clean-up for exit processing.

Section 4: Diagnostic Aids

This section contains the following information to aid the reader in diagnosing
SPZAP errors:

• A list of SPZAP switches that control processing.

Notes:

1. SPZAP consists of one module (AM ASPZAP) with four CSECTs;
AMASPZAP, AMASZCON, AMASZDMP, and AMASZIOR.

2. Refer to System Messagesfor message numbers, message text, and detecting,
issuing, and containing modules.

L Y28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 5. Spzap (AMASPZAP) 5-15

AMASPZAP Switches

Switch Byte Switch

CTLBTE

CTLBTE2

NAMEERR

ENDMOD

OVFLOW

VERYOP

IGNOP

NAMEOP

ONEREC

PSIND

FIRSTPCH

MEMDMP

MULREC

TRAN

MODIFY

CTLBTE3

NAMEIDR

IDRRD

MODFYREC

NOSSr

NOMEM

LMREAD

NENOIDR

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The following defines the switches that AMASPZAP uses to control processing.

Alignment

x ...

.1..

.. 1.

... 1

l...

.1..

.. I.

... 1

l...

. xx.

... 1

l...

.1..

.. I.

... 1

SSIOP

. 1..

.. 1.

... 1

l...

.1..

.. I.

... 1

Description

Not used.

An error in a NAME or CCHHR statement is detected to prohibit sub&equent VER,
REP. SETSSI, and IDRDATA operations. The switch is reset when a valid NAME
or CCHHR statement is found .

The last text record of a load module has been read.

Data to be verified or replaced extends over more than one block of text.

A verify operation is being performed.

A verify operation is unsuccessful. Reset when a NAME, CCHHR, DUMP, or
ABSDUMP statement is read.

A NAME statement is read to indicate that subsequent REP and VERIFY statements
are for a CSECT within a load module.

A load module contains no CESD records.

ABSDUMP(T) ALL has been specified for a sequential data set. It indicates that the
dump should be terminated when end of the file (EOF) is reached.

Not used .

More data may need to be moved into the text of message AMAI22I if the data to be
replaced extends over more than one text record.

A member name is specified in an ABSDUMP statement.

A load module is contained in more than one text record.

The translate (T) option was specified on a DUMP or ABSDUMP statement.

A replace operation has been performed for a CSECT specified in a NAME statement
(contrast with MODFYREC).

I An SSI update requested by a SETSSI card is being performed. If this switch
is off and a replace operation has been performed, AMASPZAP sets the local fix flag
in the SS!.

An IDRDATA statement is read .

IDR space exists for new CSECT update (NAME and REP) entry.

A replace operation has been performed at the address specified in a CCHHR
statement (contrast with MODIFY).

There is no SSI for the module to be updated.

The name of the member whose SSI is to be updated is not found in the PDS
directory.

All CESD records have been read to indicate that the input buffer (RDAREAI)
contains an IDR or control record.

A load module is not editable and contains no CESD records.

5-16 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

L

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Index

ABDUMP I-I
ABEND routine 1-5
AMDPRDMP program 1-4
AMDSADMP program 1-1
asynchronous buffering routine I-58

blocked format, variable 1-4
buffer processing 1-58
build routine 1-58

data collecting 1-6
data managing 1-6
data reduction 1-4
Diagnostic aids (GTF)

AIDs 1-88
EIDs 1-88
FIDs 1-88
return codes 1-88

EDIT control statement
formatting

description 1-4
end-of-file, reaching 1-4
Event identifier

EID 1-88

filter routine 1-58
Format identifier

FID 1-89
formatting, interface to component-supplied 1-4
formatting, interface to user-supplied 1-4
full blocking, copying contents of 1-58

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

gather routine I-58
generalized trace facility

error recovery
logic diagram 1-46, 1-48
module operation 1-47, 1-49

GTF trace options
ASIDP 1-2
CCW 1-2
CCWP 1-2
CSCH 1-2
DSP 1-2
EXT 1-2
HSCH 1-2
10 1-2
lOP 1-2
JOBNAMEP 1-2
MSCH 1-2
PCI 1-2
PI 1-2
PIP 1-2
RNIO 1-2
RR 1-2
SIO, SlOP 1-2
SLIP 1-3
SRM 1-3
SSCH 1-3
SSCHP 1-3
SVC 1-3
SVCP 1-3
SYS 1-3
SYSM 1-3
SYSP 1-3
TRC 1-3
USR 1-3
USRP 1-3

GTF-writer processing
logic diagram 1-42
module operation 1-43

GTF Idump interface
logic diagram 1-44
module operation 1-45

hook processing
logic diagram 1-18, 1-20, 1-22, 1-24, 1-26, 1-28,

I-30, 1-32, 1-34, 1-36
module operation 1-19, 1-21, 1-23, 1-25, 1-27,

1-29, 1-31, 1-33, 1-35, 1-37
introduction 1-1, 1-56

control records 1-4
controlling GTF 1-1
formatting output 1-4
GTF hooks 1-3
invoking GTF 1-1
monitor call (MC) 1-4

Index X-I

output 1-4
printing output 1-4
trace records 1-4

method of operation
introduction 1-6

module, control flow 1-58
modules, calling sequences 1-57
modules, loading I-57

options 1-57
monitor call

error recovery 1-6
GTF initialization 1-6
GTF termination 1-6
GTF-writer processing 1-6
GTF jdump interface 1-6
hook processing 1-6
module operation summary 1-6
trace record buffering and blocking 1-6

monitor call event handling
logic diagram I-52, 1-54
module operation 1-53, 1-55

overview 1-8, 1-9
parameters

BUF 1-1
DEBUG I-I
MODE 1-1
TIME 1-1

program initialization
logic diagram 1-10, 1-12, 1-14, 1-16
module operation 1-11,1-13,1-15,1-17

program organization 1-56
reading

logic diagrams 1-6
termination

logic diagram 1-50
module operation 1-51

trace-data blocking / buffering
logic diagram 1-38, 1-40
module operation 1-39, 1-41

Generalized Trace Facility (GTF)
base table 1-66
CCW trace message records 1-70
CCW trace records 1-70
CCW trace work area 1-66
class directory 1-66
class element 1-67
control element 1-67
control records 1-68
CSCH/HSCH trace record 1-71
data areas 1-64

buffer control block 1-64
MC event handler tables 1-64
PCI work area 1-65
primary control table 1-65
range table 1-65
record formats 1-64
tables 1-64

DSP comprehensive trace record 1-71
DSP minimal trace record 1-72
event handler work/save area 1-67

X-2 MVS/Extended Architecture Service Aids Logic

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

EW A trace record 1-72
EXT comprehensive trace record 1-73
EXT minimal trace record 1-73
I/O trace record 1-74
10SB minimal trace record 1-74
lost block records 1-68
lost event record 1-68
Me event handler 1-66
Minimal trace record 1-87
MSCH trace record 1-75
PI comprehensive trace record 1-75
PI minimal trace record 1-76
queue element 1-67
RNIO comprehensive trace record 1-76

ACFjVTAM 1-77
RNIO minimal trace record 1-77

ACF/VTAM 1-78
RR comprehensive trace record 1-78
RR minimal trace record 1-79
RSCH trace record 1-79
save hook control record 1-68
save list element 1-65
SLIP DEBUG trace record 1-83
SLIP standard trace record 1-80, 1-82
SLIP trace record 1-80
SLIP user trace record 1-82
SRM comprehensive trace record 1-84
SRM minimal trace record 1-85
SSCH trace record 1-85
SVC comprehensive trace record 1-86

parameter list information 1-87
time stamp control record 1-69
trace records 1-70
WCek/save area 1-66

GTF active 1-5
GTF Macro Instructions

AHLREAD 1-93
AHLSTACK 1-93
GTRACE 1-93
HOOK 1-94
IHLMGTRC 1-95
introduction 1-93
MC

monitor call 1-96
Monitor Call

Me 1-96
SETEVENT 1-95

GTF module flow 1-58
GTF tracing 1-3
GTF, system task 1-1

hook processing 1-58
hooks 1-3

LY28-1l89-3 © Copyright IBM Corp. 1982, 1986

J

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

IEFRDER DD 1-4
initialization \-58
interruptions 1-3

JCL, overriding 1-1

lost block/event records 1-4

macro instructions (GTF)
EIDS 1-4
GTRACE 1-4

Module Map and IDR List (AMBLIST)
data areas 2-22
diagnostic aids 2-28
environment 2-2
introduction 2-1
method of operation 2-4
module descriptions 2-18
operational considerations 2-3
physical characteristics 2-2
program organization 2-18
reading method of operation diagrams 2-4

module, flow 1-57
monitor call event-routing facility 1-58
monitoring tasks 1-58

Print Dump (AMDPRDMP)
address space control block map

ASCBMAP 3-60
Address space identifier index

ASIDNDX 3-61
AMDPRDMP control statements 3-2

AVMDATA 3-2
CPUDATA 3-2
CVT 3-2
CVTMAP 3-2
DAEDATA 3-2
EDIT 3-2

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

END 3-2
FORMAT 3-2
GO 3-2
GRSTRACE 3-2
1ES2 3-2
JES3 3-3
LOGDATA 3-3
LPAMAP 3-3
MTRACE 3-3
NEWDUMP 3-3
NEWTAPE 3-3
NUCMAP 3-3
ONGO 3-3
PRINT 3-3
QCBTRACE 3-2
RSMDATA 3-3
SADMPMSG 3-3
SEGTAB 3-3
SRMDATA 3-3
SUMDUMP 3-3
SUMMARY 3-3
TCAMMAP 3-3
TITLE 3-3
TRACE 3-4
user-defined exit routine 3-4
VSMDATA 3-4
VTAMMAP 3-4

AMDPRDMP Macro Instructions
AMDDAT A 3-83
AMDMNDXT 3-83
AMDPCBPL 3-83
BRPRTMSG 3-83
BRREAD 3-83
BRWRITE 3-84
COMMON 3-84
EQUATES 3-84
explanation 3-83
FMTPTRN 3-84
HEXCNVT 3-84
IMDMEDIT 3-84
OUTBUFM 3-87
SYNEPS 3-87

Buffer map entry 3-62
Common communication area

COMMON 3-62
CPU status area 3-71
Current TCB list

CURRLIST 3-71
data areas 3-60
Diagnostic aids

description 3-79
register conventions 3-79
return codes 3-79

Dump header record 3-71
Dump map entry 3-72
EDIT communication table

AMDPRTAB 3-72
Exit control table

ECT 3-75
Exit parameter list

Index X-3

ABDPL 3-61
introduction 3-1
job control statements

JCL 3-1
method of operation 3-5
output 3-4
path descriptor element 3-75
Print control block

PCB 3-76
Print dump index description table

AMDMNDXT 3-76
reading method of operation diagrams 3-5
TCBLIST entry 3-78
Verb exit processing table

user-defined exits 3-24

Record identifier
AID 1-90

record-blocking routine I-58
Return codes (GTF) 1-91

SNAP dump 1-1, 1-5
Spzap (AMASPZAP)

Control CSECT
description 5-14

Diagnostic aids
description 5-15

Dump CSECT
description 5-15

Exit CSECT
description 5-15

Input/Output CSECT
description 5-15

introduction 5-1
method of operation

definition 5-2
reading 5-2

Program organization
description 5-14

Superzap Constants
description 5-14

Switches
definition 5-16

Stand-Alone Dump (AMDSADMP)
auxiliary storage management 4-280
basic services 4-283
console message dump 4-279
console message formatting 4-276
control block validity checking 4-280
Data areas

BCT 4-287

X -4 MVS/Extended Architecture Service Aids Logic

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Buffer Control Table 4-287
CCT 4-289
common communication control table 4-289
DSCE 4-291
dump table 4-291
dynamic storage control element 4-291
input/output device block 4-292
10DB 4-292
message parameter 4-296
MSGPARM 4-296
page 0 register save 4-297
PGOMAP 4-297
PSW build areas 4-297
RCB 4-298
recovery control block 4-298
relocation table 4-299
RLT 4-299
trace table 4-303

Diagnostic aids
description 4-304
entry formats 4-307
error codes 4-304
trace table 4-307
wait reason codes 4-304

DSCEs
types 4-311

dump of address space data 4-278
dump of console trace data 4-277
dump of GTF data 4-278
Execution

defined 4-276
extended storage 4-280
Generation

one-step 4-276
two-stage 4-276

I/O device error recovery 4-281
I/O services 4-282
Introduction

macro instruction 4-1
Macro

details 4-286
Method of operation

description 4-3
overall processing 4-3
prologue format diagrams only 4-206

Module calling sequences
functions 4-275

Module/Macro
descriptions 4-284

operator-controlled termination and restart 4-280
page buffer allocation 4-281
page/segment fault handling 4-279

dumping 4-279
processing stages

execution 4-271
initialization 4-270
specification 4-270

Program organization
processing stages 4-270

prompting for additional storage 4-278

LY28-1189-3 © Copyright IBM Corp. 1982, \986

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Reading method of operation diagrams
explanation 4-3

real storage management 4-279, 4-298
address space data 4-298
RAD 4-298

sense data mapping 4-299
I/O devices 4-299

storage use table 4-301
SUT 4-301

SVC
linkage stack 4-310
use 4-310

swap address table 4-303
SAT 4-303

Trace data
reading 4-310

virtual storage dump 4-277
Stand-Alone Dump (SADMP)

Introduction
high-speed dump 4-2
low-speed dump 4-2

START command I-I

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

SVC dump 1-1

task processing (GTF) 1-58
TIC 4-271
timestamp record 1-4
trace mode, external 1-4
trace mode, internal 1-4
trace output data set 1-4
trace record, stacking I-58
transfer in channel instruction 4-271

variable blocked format 1-4
vector status 4-2

Index X-5

X-6 MVS/Extended Architecture Service Aids Logic

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

LY28-1l89-3 © Copyright IBM Corp. 1982, 1986

L

MVS/Extended Architecture Service Aids Logic

"Restricted Materials of IBM"
All Rights Reserved
Licensed Materials - Property of IBM
©Copyright IBM Corp. 1982, 1986
L '(28-1189-3

--- ------ --~ ... - ~~--- -.. ------_ .. -.-.---.-- -----_. -®

S370-37

Printed in U.S.A.

L

MYSjExtended Architecture
Service Aids Logic

L Y28-1189-3

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers.
and operators of IBM systems. You may use this form to communicate your comments about this
publication, its organization, or subject matter, with the understanding that IBM may use or distribute
whatever information you supply in any way it believes appropriate without incurring any obligation to
you.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation?

How do you use this publication?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an

MVS/Extended Architecture Service Aids Logic

"Restricted Materials of IBM"
All Rights Reserved
licensed Materials - Property of IBM
(Except for Customer-Originated Materials)
(;Copyright IBM Corp. 1982. 1986
LY28-1189-3

Reader's Comment Form

S370-37

(')
c -o .,

i
Fold and tape Please Do Not Staple Fold and tape i

--i

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK. N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 058, Building 921-2
PO Box 390
Poughkeepsie, New York 12602

I .. -----.,1
NO POSTAGE I

NECESSARY 1

IF MAILED I
INTHE !

UNITED STATES i ... _---_.,

-------! , -------!
i -------, -------1
I

i ,
I
I ,
1
I , ,

---J
Fold and tape Please Do Not Staple Fold and tape

Printed in U.S.A.
--..-.
-~ ~ - -_ - -------. ------ -- _ -
-~- .. ---_ ... -®

J

MVS/Extended Architecture
Service Aids Logic

L Y28-ll89-3

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers.
and operators of IBM systems. You may use this form to communicate your comments about this
publication, its organization, or subject matter, with the understanding that IBM may use or distribute
whatever information you supply in any way it believes appropriate without incurring any obligation to
you.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation?

How do you use this publication?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an
____ 4._ ~_ _____ ___ _ -....... .•

MVS/Extended Architecture Service Aids Logic

"Restricted Materials of IBM"
All Rights Reserved
licensed Materials - Property of IBM
(Except for Customer-Originated Materials)
©Copyright IBM Corp. 1982, 1986
LY28-1189-3

Reader's Comment Form

5370-37

o
So
o .,

i
Fold and tape Please Do Not Staple Fold and tape I

---i

Fold and tape

--- ------ --~~ ----- ---. ------ -- ---= =" = ":' =®

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 058, Building 921-2
PO Box 390
Poughkeepsie, New York 12602

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

111,11111,,111

Please Do Not Staple Fold and tape

Printed in U.S.A.

MVS/Extended Architecture
Service Aids Logic

LY28-1189-3

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers,
and operators of IBM systems. You may use this form to communicate your comments about this
pUblication, its organization, or subject matter, with the understanding that IBM may use or distribute
whatever information you supply in any way it believes appropriate without incurring any obligation to
you.

Note: Copies of IBM pUblications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistallce ill usillg your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation?

How do you use this publication?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an
TO l"f': ______ _::11 'L 'L __ "' ___ _...:1 _ _ _____ • ______ .. _______ :1 ..J! ___ .A.1 __ "-_ .. 1-_

MVS/Extended Architecture Service Aids Logic

"Restricted Materials of IBM"
All Rights Reserved
licensed Materials - Property of IBM
(Except for Customer-Originated Materials)
©Copyright IBM Corp. 1982, 1986
LY28-1189-3

Reader's Comment Form

Fold and tape Please Do Not Staple

S370-37

Fold and tape

o
S.

i
1
1
I --;

BUSINESS REPLY MAIL
FI RST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 058, Building 921-2
PO Box 390
Poughkeepsie, New York 12602

11

... -___ -.1
1

NO POSTAGE
NECESSARY
IF MAILED

IN THE

1
1
I
1

1
1

UNITED STATES ! ... -----·1 1 -------i ------1 -------! - ______ 1

1 -------1 -------i

!
I

1
1
1
1
1 -------.--1

Fold and tape

--.. -- ~ --.-. .-- ----~ - --- -. - -. -------- ---=="= ~ =®

Please Do Not Staple Fold and tape

Printed in U.S.A.

1
1
I
1
1
1
1
1
1
1
I
I
1
1
I
1
1

!
1
I

1

