Program Product

“Restricted Materials of IBM”
All Rights Reserved

Licensed Materials - Property of IBM
©Copyright IBM Corp. 1982, 1986
LY28-1189-3

File No. §370-37

MVS/Extended Architecture
Service Aids Logic

MVS/System Products:

JES3 Version 2 5665-291
JES2 Version 2 5740-XC6

[jnnf]
"I"I"
II|||||I
.|||

||||||||

Fourth Edition (June, 1986)

This is a major revision of, and obsoletes, LY28-1189-2 and Supplements LD23-0337-0
and LD23-0366-0. See the Summary of Amendments following the Contents for a
summary of the changes made to this manual.

This edition applies to Version 2 Release 1.7 of MVS/System Product (5665-291 and
5740-XC6) and to all subsequent releases until otherwise indicated in new editions or
Technical Newsletters. Changes are made periodically to the information herein; before
using this publication in connection with the operation of IBM systems, consult the latest

IBM System[370 Bibliography, GC20-0001, for the editions that are applicable and
current.

References in this publication to IBM products, programs, or services do not imply that
1BM intends to make these available in all countries in which IBM operates. Any
reference to an IBM program product in this publication is not intended to imply that
only IBM’s program product may be used. Any functionally equivalent program may be
used instead.

Publications are not stocked at the address given below. Requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for reader’s comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Information
Development, Department D58, Building 921-2, PO Box 390, Poughkeepsie, N.Y. 12602.
IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Preface

This publication describes the internal logic and organization of the five service
aid programs provided for use in servicing MVS/XA. The publication is intended
for the IBM programming systems representative who is involved in maintaining
the service aid programs. For information about the use and operation of the
service aid programs, refer to System Programming Library: Service Aids,
GC28-1159.

How This Publication is Organized

This publication contains five chapters preceded by a General Information section
and an Abbreviation Dictionary and followed by an Index. Each of the chapters
corresponds to one of the service aid programs. Notice that the chapters are
arranged in alphabetical order by the shortened service aid program name.

The General Information section introduces the concept of a service aid briefly
describes each of the service aid programs. The Abbreviation Dictionary lists
some of the abbreviations and acronyms used in this publication and their
meanings.

Each chapter is divided into the following sections:

e The Introduction — a description of the service aid in general with some
discussion of external characteristics.

e Method of Operation — a functional approach to the program using both
diagrams and text.

e Program Organization — a description of program loading, storage layout,
module calling sequences, and the modules themselves.

® Data Areas — a description of the major data areas used by the service aid
program. Where applicable, this section contains references to detailed
descriptions of the data areas in other publications.

e Diagnostic Aids -— information that can be useful for diagnosing problems in
the service aid program.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Preface il

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Related Publications

The following publications are referred to in the text:

MVS/|Extended Architecture System Programming Library: Service Aids,
GC28-1159.

MVS/Extended Architecture SYS1.LOGREC Error Recording, GC28-1162.
MVS|Extended Architecture Debugging Handbook.

Volume 1 — LC28-1164

Volume 2 — LC28-1165

Volume 3 — LC28-1166

Volume 4 — LC28-1167

Volume 5 — LC28-1168

MVS/Extended Architecture Interactive Problem Control System Logic and
Diagnosis, 1.Y28-1298

MVS/Extended Architecture Message Library: System Messages, GC28-1156.

MVS|Extended Architecture System Logic Library (multiple volumes). Volume 1,
LY28-1208, contains order numbers for all volumes.

ACF|VTAM Version 2 Diagnosis Guide, SY38-0615.

1V MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Contents

Chapter 1. Generalized Trace Facility 1-1
Section 1: Introduction 1-1

Invoking and Controlling GTF 1-1

GTF Trace Options 1-2

GTF Hooks 1-3

GTF Output 1-4

Formatting and Printing GTF Output 1-4
Section 2: Method of Operation 1-6

Reading Method of Operation Diagrams 1-6
Section 3: Program Organization 1-56

Trace Modules Loaded for Each Selected Option 1-57

Module Calling Sequences for GTF Functions 1-57
Section 4: Data Areas 1-64

GTF Data Areas 1-64

MC Event Handling/Data Areas 1-66

GTF Control Records 1-68

GTF Trace Records 1-70
Section S: Diagnostic Aids 1-88

Event Identifier (EID) 1-88

Format Identifier (FID) 1-89

Record Identifier (AID) 1-90

GTF Return Codes 1-91
Section 6: GTF Macro Instructions 1-93

AHLREAD 1-93

AHLSTACK 1-93

GTRACE 1-93

HOOK 1-94

IHLMGTRC 195

SETEVENT 1-95
Section 7: Monitor Call (MC) Instruction 1-96

Chapter 2. Module Map and IDR List (AMBLIST) 2-1
Section 1: Introduction ~ 2-1

Functions 2-1

Environment 2-2

Storage Requirements 2-2

Physical Characteristics 2-2

Operational Considerations 2-3
Section 2: Method of Operation 2-4

Reading Method of Operation Diagrams 2-4
Section 3: Program Organization 2-18

Module Descriptions 2-18
Section 4: Data Areas 2-22

CDETAB 2-22

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Contents V

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

CESDTAB 2-22

. CSDTAB 2-23
Errors 2-23
IDENTDAT 2-23
INDEXTAB 2-24
MESSAGES 2-24
MSGLIST 2-24
OPTNMAP 2-24
RLDTAB 2-25
SCATTAB 2-26
SORTAB 2-26
TDTAB 2-26
TRANTAB 2-26
TRNTAB 2-27

Section 5: Diagnostic Aids 2-28

Register Activity 2-28
SYNAD Routine - HMBLKCTL 2-29

Chapter 3. Print Dump (AMDPRDMP) 3-1
Section 1: Introduction 3-1

Job Control Language Statements 3-1

AMDPRDMP Control Statements 3-2

AMDPRDMP Output 3-4
Section 2: Method of Operation 3-5

Reading Method of Operation Diagrams 3-5
Section 3: Program Organization 3-44

Program Loading 3-44

Reading Input Data 3-50

Module Calling Sequences for AMDPRDMP Functions 3-54
Section 4: Data Areas 3-60

Address Space Control Block Map (ASCBMAP) 3-60
Exit Parameter List (ABDPL) 3-61
Address Space Identifier Index (ASIDNDX) 3-61
Buffer Map Entry 3-62
Common Communication Area (COMMON) 3-62
CPU Status Area 3-71
Current TCB List (CURRLIST) 3-71
Dump Header Record 3-71
Dump Map Entry 3-72
EDIT Communication Table (AMDPRTAB) 3-72
Exit Control Table (ECT) 3-75
Path Descriptor Element 3-75
Print Control Block (PCB) 3-76
Print Dump Index Description Table (AMDMNDXT) 3-76
TCBLIST Entry 3-78

Section S: Diagnostic Aids 3-79
AMDPRDMP Register Conventions 3-79
AMDPRDMP Return Codes 3-79

Section 6: AMDPRDMP Macro Instructions 3-83
AMDDATA 3-83
AMDPCBPL 3-83
AMDMNDXT 3-83
BRPRTMSG 3-83
BRREAD 3-83

Vi MVS/Extended Architecture Service Aids Logic 1Y28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

BRWRITE 3-84
COMMON 3-84
EQUATES 3-84
FMTPTRN 3-84
HEXCNVT 3-84
IMDMEDIT 3-84
OUTBUFM 3-87
SYNEPS 3-87

Chapter 4. Stand-Alone Dump (AMDSADMP)

Section I: Introduction 4-1
AMDSADMP Macro Instruction 4-1
High-Speed Dump Program 4-2
Low-Speed Dump Program 4-2

Section 2: Method of Operation 4-3

Reading Method of Operation Diagrams 4-3
Method of Operation for the Prologue Format Diagrams

Section 3: Program Organization 4-270
Three Stages of Processing 4-270

Module Calling Sequences for AMDSADMP Functions

Module/Macro Descriptions 4-284
Section 4: Data Areas 4-287
Buffer Control Table (BCT) 4-287

Common Communication/Control Table (CCT)

Dump Table 4-291

Dynamic Storage Control Element (DSCE) 4-291

Input/Qutput Device Block (IODB) 4-292
Message Parameter (MSGPARM) 4-296

Page 0 Register Save and PSW Build Areas (PGOMAP)
Real Storage Management Address Space Data (RAD)

Recovery Control Block (RCB) 4-298
Relocation Table (RLT) 4-299
Sense Data Mapping for I/O Devices 4-299
Storage Use Table (SUT) 4-301
SVC Stack 4-302
SVC Status Element 4-302
Swap Address Table (SAT) 4-303
Trace Table 4-303
Section 5: Diagnostic Aids 4-304
Wait Reason Codes 4-304
Error Codes 4-304
Trace Table 4-307
SVC Linkage Stack 4-310

Storage Assignment (Static and Dynamic) Control Blocks

Chapter 5. Spzap (AMASPZAP) 5-1
Section 1: Introduction 5-1
Section 2: Method of Operation 5-2
Reading Method of Operation Diagrams 5-2
Section 3: Program Organization 5-14
CSECT Descriptions 5-14
Section 4: Diagnostic Aids 5-15
AMASPZAP Switches 5-16

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

4-206

4-275

4-297
4-298

4-311

Contents

vil

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Index X-1

vili MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Figures

1-1. Key to Method of Operation Diagrams for GTF -7
1-2. GTF Storage During Tracing 1-56
1-3. Trace Modules Loaded for Each Selected Option 1-57
1-4. Example of Calling Sequence Map 1-58
2-1. Key to Method of Operation Diagrams for ABMLIST 2-5
2-2. AMBLIST Module Organization 2-18
3-1. Key to Method of Operation Diagrams for AMDPRDMP 3-6
3-2. AMDPRDMP Loading 3-46
3-3. AMDPRDMP Storage During EDIT Control Statement
Execution 3-48
3-4. Read Buffer Chaining 3-53
3-5. Example of Calling Sequence Map 3-54
4-1. Key to Method of Operation Diagrams for the Stand-Alone Dump
Program 4-4
4-2. Graphic Symbols and Format Used in the Prologue Format
Diagram 4-207
4-3. SADMP Absolute Storage after IPL. 4-272
4-4, SADMP Absolute Storage During AMDSARDM Execution. 4-272
4-5. SADMP Absolute Storage During AMDSADIP Execution.
AMDSADIP and the RLT are in Contiguous Virtual Storage. 4-273
4-6. AMDSAPGE Load Module 4-273
4-7. SADMP Virtual Storage During AMDSAPGE Execution 4-274
4-8. Tape Residence Volume Format 4-274
4-9. DASD Residence Volume Format 4-274
4-10. Example of Calling Sequence Map 4-275
4-11. Trace Table 4-307
4-12. Call Event Record 4-307
4-13. Return Event Record 4-307
4-14. Error ID Record. 4-308
4-15. Address Fault Record 4-308
4-16. Trace Event IDs and Entry Point Attributes 4-309
4-17. SVC Linkage Stack 4-310
5-1. Key to Method of Operation Diagrams for AMASPZAP 5-3

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Figures 1X

“Restricted Materials of IBM?”
Licensed Materials — Property of IBM

X MYVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

General Information

A service aid program is intended to aid in the diagnosis of system and
application program failures. The main functions of a service aid are to:

e Collect data that relates to the failure.
e Format and print the data in a form applicable to debugging.
e Aid in developing and applying an immediate fix for a problem.

The following programs are service aids:

o The generalized trace facility (GTF), which traces selected system and
application program events and records the data for formatting and printing
by the AMDPRDMP service aid program or by the ABEND/SNAP routines.

e AMASPZAP, which inspects and modifies data in a load module that is part
of a partitioned data set or in a specific data record that is contained in a
direct access data set; AMASPZAP also dumps records from data sets

residing on direct access storage devices.

o AMBLIST, which produces formatted object module, load module, nucleus,
and cross-reference listings, as well as load module and link pack area maps
and CSECT identification record information.

e AMDPRDMP, which formats and prints the contents of the AMDSADMP
output data set, the SYSI.DUMPnn data sets, a SYSMDUMP ABEND
dump, or any dumps produced by SVC dump, and the GTF trace data set.

o AMDSADMP, which produces a dump of real storage, instruction trace data
(created by the console-initiated loop recording) and critical areas of each
active address space.

The following service aid is described in the publication MV'S/Extended
Architecture SYSI1.LOGREC Error Recording Logic.

e IFCDIPO00, which initializes the SYSI.LOGREC data set.

The following service aid is described in Environmental Recording Editing and
Printing (EREP) Program Logic.

e IFCEREPI, which edits records from the SYSI.LOGREC data set and writes
them to a specified output device.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 General Information X1

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

X1l MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Abbreviation Dictionary

Abbreviation

AID
ARB
ASCB
ASID
ASXB
ASVT
ASMVT
BCB

" BCT
BSAM
CCT
ccw
CDE
CESD
CHPID
cs
CSCB
CSCH
CSD
CSECT
CVT
DA
DAT
DCB
DEB
DLIB
DQE
DS
DSCB
DSCE
EBCDIC
ECB
ECT
ECTE
EID
EOF
EOV
EP
EPA
ERB
ESD
FID

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

Meaning

record identifier

address range block

address space control block

address space identifier

address space control block extension
address space vector table

auxiliary storage manager vector table
buffer control block

buffer control table

basic sequential access method
common communication/control table
channel command word

contents directory entry

composite external symbol dictionary
channel path identifier

control section name

command scheduling control block
clear subchannel

common system data area

control section

communication vector table

data area or direct access

dynamic address translation

data control block

data extent block

distribution library

description queue element

data set

data set control block

dynamic storage control element
extended binary-coded-decimal interchange code
event control block

exit control table

exit control table entry

event identifier

end of file

end of volume

entry point name

entry point address

error recovery block

external symbol dictionary

format identifier

Abbreviation Dictionary ~ Xiii

FXTAB
GSMQ
GSPL
GTF
GTFBCB
GTFBLOK
GTFBUFR
GTFPCT
HSCH
ICR

IDR
INITDATA
1/0

IODB

I0S

IPL

IQE

IRB

JCL

JFCB
JOBNAME
LCCA
LCCAVT
LGVT
LIST

LLE

LPA

LPID
LPRB

LR
LRECL
LSID
LSMQ
LSPL
LSQA
LSR

LT

LTH

MC
MCAWSA
MCCD
MCCE
MCCLE
MCED
MCEE
MCHEAD
MCQE
MCRWSA
MN
MSCH
PCB

PCI

PDS

PER

Xiv MVS/Extended Architecture Service Aids Logic

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

fix table

global service manager queue
global service priority list queue
generalized trace facility service aid program
GTF buffer control block

GTF blocking area

GTF buffer

GTF primary control table

halt subchannel

independent component release
CSECT identification record
initialization data

input/output

I/O device block

input/output supervisor

initial program load
interruption queue element
interruption request block

job control language

job file control block

job name

logical configuration communication area
logical configuration communication area vector table
logical group vector table
AMBLIST service aid program
load list element

link pack area

logical page identifier

loaded program request block
label reference

logical record length

logical slot identifier

logical service manager queue
logical service priority list

local system queue area

local supervisor routine

logical track

logical track header

monitor call

mouitor call application work/save area
monitor call class directory
monitor call control element
monitor call class element
monitor call event directory
monitor call event element
monitor call base table

monitor call queue element
monitor call router work/save area
module name

modify subchannel

print control block

program controlled interruption
partitioned data set

program event recording

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

PFT
PICA
PRDMP
PSW
PTF
QCB
QCR
QEL
RAD
RANGETAB
RB
RCB
RCSW
RE
RECFM
RLD
RLT
RNIO
RQE
RSM
SADMP
SAT
SCSW
SD
SDATA
SLE
SLH
SLIP
SPZAP
SQA

SR
SSCH
SSI

STA
SUT
SVC
SYSGEN
SYSIN
SYSOUT
TCAM
TCB
TIOT
TOD
TQE
TTR
UCB
VCCT
VOLID
VPA

VS

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

page frame table

program interruption control area
AMDPRDMP service aid program
program status word

program temporary fix

queue control block

queue control record

queue element

RSM address space data

range table

request block

recovery control block

real channel status word

record entry

record format

relocatable load dictionary
relocation table

remote network input/output
replay queue element

real storage management
AMDSADMP service aid program
swap address table

subchannel status word

section definition

service data area

save list element

subchannel logout handler
serviceability level indication processing
AMASPZAP service aid program
system queue area

subroutine

start subchannel

system index status

starting address

storage use table

supervisor call

system generation

system input

system output

telecommunications access method
task control block

task input/output table

time of day

timer queue element

relative trace and record address
unit control block

virtual common communications table
volume identification

virtual page address

virtual storage

Abbreviation Dictionary XV

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

XVl MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Summary of Amendments

Summary of Amendments

for 1LY28-1189-3
for MVS/System Product Version 2 Release 1.7

This edition contains updated material in support of MVS/System Product
Version 2 Release 1.7.

For Print Dump:

e AVMDATA, causes AMDPRDMP to format and print the contents of the
availability manager control blocks from the input data set.

e The CPUDATA Control Statement can request the formatting of Vector
Facility data.

e The Print Dump index description table (AMDMNDXT) contains 40 byte
long entries for both KEYFIELDS and TCBSUMMARY. Both are listed
with entry code equates for the index table.

For Stand-Alone Dump:

e Three modules are added:
— AMDSAMCI, machine check handler
— AMDSAVEC, vector status dump
— AMDSAEX]I, external interrupt handler
® Minor technical and editorial changes.

Summary of Amendments

for LY28-1189-2

MVS/System Product Version 2 Release 1.3
As Updated March 21, 1985

This revision contains new and updated material in support of MVS/System
Product Version 2 Release 1.3 and includes the following:

e For AMDPRDMP:

— several new AMDPRDMP control statements: JES3, SADMPMSG, and
TCAMMAP.

— diagrams of the Verb Exit Processing section are now in table form
— minor technical and editorial changes

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Summary of Amendments Xvil

“Restricted Materials of 1BM”
Licensed Materials — Property of IBM

e For AMDSADMP:
— the addition of three new modules:
— AMDSAXSM
— AMDSAFCM
— AMDSADCM
® numerous changes to HIPOs and extended descriptions
e minor technical and editorial revisions

Summary of Amendments

for LY28-1189-1

MVS/System Product Version 2 Release 1.2
as Updated January 31, 1984

This is a major revision of LY28-1189-0. It contains new and updated information
in support of MVS/System Product and includes the following:

e For AMDPRDMEP:
— support for the FORMAT and SUMMARY control statements have
changed
e For AMDSADMP:
— support for the Magnetic Tape Subsystem Display
— support for the 3290 console
e minor technical and editorial changes

Xviii MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Chapter 1. Generalized Trace Facility

Section 1: Introduction

The generalized trace facility (GTF) traces selected system and application
program events and records the data for later formatting and printing by the
AMDPRDMP service aid program. GTF functions independently of the system
trace facility. If system trace is active when GTF is started, system trace remains
active. Starting GTF does not alter the status of system trace.

Invoking and Controlling GTF

The operator invokes GTF as a system task with a START command specifying
the cataloged procedure. (This procedure has the membername of GTF and is
included in SYS1.PROCLIB at system generation.) The operator controls GTF
processing via parameters in the START command and the TRACE options. The
information supplied in the START command includes the following:

® MODE — Defines whether the trace data is recorded in the GTF address
space (internally) or in an external data set defined by the IEFRDER DD
statement in the cataloged procedure.

e TIME — Provides the option for every logical trace record to be time-stamped
with the TOD clock value at the time the record is placed into the buffer.

e DEBUG — Permits GTF to either attempt recovery or terminate from errors
it encounters while building a trace record.

e BUF — Specifies the number of trace buffers which GTF makes available for
the ABDUMP/SNAP, SVC dump, or AMDSADMP program to include in
dump output.

e The operator may also specify parameters to override JCL parameters in the
cataloged procedure or values for symbolic parameters in the cataloged

procedure.

For a description of the START command, its GTF parameters, and the GTF
cataloged procedure, refer to Service Aids.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 1. Generalized Trace Facility 1-1

GTF Trace Options

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

GTF obtains the trace options from the operator, or, if a SYSLIB DD statement
1s provided in the cataloged procedure, from the specific member of
SYSI.PARMLIB. The following options may be specified.

ASIDP — requests that GTF tracing be limited to specific address spaces
(which the user is prompted to supply).

CCW - requests recording of channel programs and associated data for start
subchannel and resume subchannel operation and I/O interruptions.

CCWP requests recording of channel programs using specific channel
program trace options (which the user is prompted to supply) for start
subchannel and resume subchannel operations or I/O interruptions or both.

CSCH — requests recording of data for clear subchannel operations.

DSP — requests recording of comprehensive data (or minimal data if SYSM is
also specified) for all task, LSR, or SRB dispatch events.

EXT — requests recording of comprehensive data for all external
interruptions.

HSCH — requests recording of data for halt subchannel operations.

IO — requests recording of data for all I/O interruptions except
program-controlled interruptions (PCI’s).

TOP -- requests recording of data for I/O interruptions on specific devices
(which the user is prompted to supply).

JOBNAMEP — requests that GTF tracing be limited to specific jobs (which
the user is prompted to supply).

MSCH — requests recording of data for modify subchannel operations.

PCI — requests recording of data for all intermediate status interruptions. If
IOP or SYSP is also specified, only intermediate status interruptions on the
specified devices will be recorded.

P1 — requests recording of comprehensive data for all program interruptions.

PIP - requests recording of comprehensive data for program interruptions
with specific interruption codes (which the user is prompted to supply).

RNIO - requests recording of comprehensive data (or minimal data if SYSM
is also specified) for all basic transmission units (BTU’s) received by

ACF/VTAM.

RR — requests recording of comprehensive data (or minimal data if SYSM is
also specified) for all entries to functional error recovery routines such s
STAE/ESTAE routines.

1-2 MVSiExtended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

e SIO, SIOP — If you request the SIO or SIOP option, GTF processes your
request as a request for SSCH or SSCHP.

e SLIP — requests recording of data specified by a SLIP trap with a tracing
action when it matches or when any trap is checked with SLIP DEBUG mode
specified.

e SRM — requests recording of comprehensive data (or minimal data if SYSM
is also specified) for all entries to the system resources manager.

o SSCH — requests recording of data for all start subchannel and resume
subchannel operations.

e SSCHP — requests recording of data for start subchannel and resume
subchannel operations on specific devices (which the user is prompted to

supply).
e SVC — requests recording of comprehensive data for all SVC interruptions.

® SVCP — requests recording of comprehensive data for specific SVC numbers
(which the user is prompted to supply).

e SYS — requests recording of comprehensive data for all external
interruptions, program interruptions, recovery routines, and supervisor call
interruptions. SYS causes recording of all I/O interruptions, start subchannel
and resume subchannel operations, clear subchannel operations, halt
subchannel operations, and modify subchannel operations.

® SYSM — requests recording of minimal data for the events listed under SYS.

e SYSP — requests recording of comprehensive data for specific system events
(which the user is prompted to supply).

o TRC — requests recording of data for all events associated with the trace task
itself.

e USR — requests that all data passed to GTF via the GTRACE macro
instruction be recorded in the trace data set.

e USRP — causes GTF to build an internal table of the user event identifiers

(EIDs) that the user specifies. The TEST parameter of the GTRACE macro
tests whether or not tracing is active for the specified EIDs.

GTF Hooks

After the operator starts GTF and selects the trace options, GTF waits for an
event that requires GTF tracing, GTF is notified of such an event by a hook from
another routine. Hooks are issued by IBM users, IBM components, first level
interruption handlers, the I/O supervisor, the dispatcher, the recovery/termination
manager, and the system resources manager. GTF also receives hooks to indicate
that trace data is to be included in a dump; these hooks are issued by ABEND or
SVC DUMP.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 1. Generalized Trace Facility 1-3

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Two macro instructions provide the hooks into GTF:

GTRACE — which is a trace hook issued by users and IBM components to
cause GTF to write their data in the GTF output. Events traced by the
GTRACE macro will use an Event Identifier (EID) from one of the three
ranges listed below:

1. 0000 — 1023 user events

2. 1024 — 1535 reserved for program products
3. 1536 — 4095 reserved for IBM components and subsystems

EIDS in the first range are available for general use by all GTF users. EIDS
in the second and third ranges are reserved.

HOOK — which is issued by system routines to notify GTF of an event to be
traced or of the need for trace data for a dump.

Both of these macro instructions generate the monitor call (MC) instruction (see
Section 6, a maskable interruption).

GTF Output

GTF builds two kinds of records:

Trace records — which contain information about system events. If the
SYSM (system minimal) option is in effect, the trace record is similar to that
built by the system trace facility. If the trace option is other than SYSM, the
trace record contains more comprehensive data about the system event.

Control records — timestamp and lost block/event records. The timestamp
record is the first record in every block; it identifies the time of day and date
when the first trace entry was placed in the block. The lost block/event
record contains information about events that were missed.

When trace mode is internal, the records are maintained in 4096-byte buffers in
variable blocked format. When mode is external, the trace records are written in
the external data set (either tape or direct access) defined by the IEFRDER DD
statement in the cataloged procedure. When the end of the data set on a direct
access device is reached, writing continues at the beginning of the data set. The
data will be in variable blocked format with a blocksize of 4096 bytes.

Formatting and Printing GTF Qutput

1-4 MVS/Extended Architecture Service Aids Logic

The AMDPRDMP service aid program formats the GTF output for printing.
The EDIT control statement in AMDPRDMP provides:

¢ Data reduction for GTF output.
o Selectivity of data from the trace output data set.

¢ An interface to user- or component-supplied formatting routines for data
recorded via the GTRACE macro instruction.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

For a detailed description of the EDIT function of AMDPRDMP, refer to the
“Print Dump (AMDPRDMP)” chapter in this publication.

While GTF is active and SDATA =TRT is in effect, the ABEND/SNAP routine
formats and prints trace records related to the dumped address space. The
records formatted are those from the n most recent GTF buffers, where n is the

number specified with the BUF =keyword on the START command.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 1. Generalized Trace Facility 1-5

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Section 2: Method of Operation

This section describes how GTF collects and manages data about system events.
As shown in GTF Diagrams 1 and 2, the description begins with an overview of
GTF, then describes the stages of the overall processing listed below. Finally, it
describes the processing of the monitor call-routing facility.

GTF initialization.

Hook processing.

Trace record buffering and blocking.
GTF-writer processing.

GTF/dump interface.

Error recovery.

GTF termination.

Reading Method of Operation Diagrams

Method of operation diagrams are arranged in an input-processing-output layout:
the left side of the diagram contains the data that serves as input to the processing
steps in the center of the diagram, and the right side contains the data that is
output from the processing steps. Each processing step is numbered; the number
corresponds to the verbal description of the step in the extended description.
While the processing step in the diagram is in general terms, the corresponding
text is a specific description that includes a cross-reference to the code for the
processing.

1-6 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Diagram 1|
GTF Overview

Diagram 2

Program
Initialization

Diagram 4

Record Blocking
and Buffering

Diagram 3

Hook Processing

Diagram 6

GTF/Dump
Interface

Diagram 5

GTF-Writer
Processing

Diagram 8

Termination

Diagram 7

Error Recovery

Diagram 9

MC Event Router
Processing

oA

Key to Method of Operation (MO) Diagram Symbols

Flow of Control

Data Transfer

Reference to data

Entry into processing

Pointer to or address of

1, 2, etc.

A, B, etc.

Look for corresponding numbers in text

Look for blow-up of item on same page

Look for corresponding-lettered blow-up
on same page

Braces to denote related items

See referenced diagram for detailed

description

Reference to another diagram

Figure 1-1.

Key to Method of Operation Diagrams for GTF

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

Chapter 1. Generalized Trace Facility

1-7

01507 SpIY 301A1a§ 2INIOANIYAIY PIPUAXT/SAIN §-]

9861 ‘7861 "d10D W] 1qSuAdoD o €-6811-8TAT

Input

GTF Diagram 1. GTF Overview (Part 1 of 2)

START Command
START GTF [MODE=TIME=

Via START Command

Process

> 1 Initialize GTF:

,DEBUG=,BUF=]
4
/
|:!) EXEC[PARM=]
I
SYS1.PROCLIB
Consoale

SYS1.PARMLIB

From MC
Routing
Facility
(MO 9)

> ® Select GTF options

‘J GTF
Tables

&

® Request MC support using
SETEVENT service

>2 Process a hook:

HOOK EID=...

or

GTRACE. ..

> ® Trace hook

User and
System Data
Areas

STOP Command

® ABEND/SNAP/SVC Dump
Interface hook

STOP GTF

>3 Terminate GTF

Output

=

MC Tables

N~

>~See MO 2

for Details

Filter Tables

Control Register 8
on Each'CPU

> Trace Record

RSee MOs 3—5

for Details

Control Record

~

>‘ See MOs 4—6

for Details

};See MO8

for Details

Copy of
GTF Buffers

NG] Jo Kpiadod — SPBLId)BJA] PASUN]

«JAE] JO SIBHAIBIN PRIOLIISIY,

9861 ‘7861 'd10D INM]I WSuAdoD © ¢-6811-8TAT

‘1 1awdey)

K108 90BI] PAZI[RISUID)

61

~

GTF Diagram 1. GTF Overview (Part 2 of 2)

Extended Description

1 The GTF procedure resides in SYS1.PROCLIB. The
operator invokes GTF by use of aSTART command.

® Four parameters (MODE, TIME, DEBUG, and BUF)
may be specified in the START GTF command or
they may be specified in the E XEC statement in the
GTF procedure. The options for the trace phase of
GTF may be specified by the operator from the
console or they may be included in a member of
SYS1.PARMLIB. GTF obtains storage for tables in
which it places information about the selected
options.

® Before tracing can begin, GTF requires monitor call
(MC) routing-facility support. The MC routing
facility is an extension of the program first-level
interruption handler (PFLIH). GTF issues the

SETEVENT macro instruction to request MC support.

The SETEVENT service constructs MC tables for the
events GTF will trace and turns on the corresponding
class bits in control register 8 for each active CPU.
See Section 6 for a description of the SETEVENT
macro instruction. [f selective event tracing is in
effect, GTF constructs filter tables.

2 When aprogram issuesa HOOK or GTRACE macro
instruction (see Appendix A) for an event to be

traced, the MC routing facility passes control to GTF.

GTF's processing depends on the kind of hook received:

@ Trace hooks notify GTF of an event that may be
traced by GTF. GTF collects data about the event
from user and/or system data areas, then records the
data in trace records.

@ Dump interface hooks from ABEND/SNAP/SVC

Dump request trace data to be saved for a dump. GTF
builds a control record and saves a copy of the current
buffer contents. During dump processing, ABEND/
SNAP/SVC Dump issues the AHLREAD macro instruc-
tion for GTF to pass the buffer copies to the dump
program.

GTF records reside either in the GTF address space or in
an external data set, depending on the MODE option in
effect.

Module

Label

Extended Description

3 Theoperator terminates GTF via a STOP command.

(See MO 8 for GTF termination. Abnormal termina-

tion is described in MO 7.)

Module

Label

] Jo Ayadosg — S[BLIIBIY PISUIN]

«ANEI JO S[BLIBIA] PIjILISIY,,

o150 SPIy 201A13§ 21N1293Yd2Y PIPUaIXT/SA N 01-1

9861 ‘Z861 "d10D JNMY 1y3ukdoD © ¢-6811-8TAT

GTF Diagram 2. Program Initialization (Yart 1 of 8)

Via START

Output

To the
Operating
System

Message AHLO13I

CVT

CVTGTF

Input Command Process
ENQ AHLONAME, . . .
AHLRNAME E,SYSTEM —_—— —! — —4® 1 Terminate if GTF already active
|
CVvT I
CVTGTFST e — — S
2 Issue ESTAE for error protection
3 Issue SETEVENT to request monitor
call support
STOP ECB 4 Obtain and initialize GTF tables
| egister 1 EXEC A e Primary control table
PARMLIST vV (GTFPCT)
> e initialization table (INITDATA)
ciB
Chain

MCCE

MCCEQEA

GTF MCQE

MCQE

GTFPCT

GTEPCTID

4 sTOP ECB

PCT PCITB

INITDATA

INITID

CciB

EXEC Parms

PCl| TABLE

WEI Jo f1adosg — S[BLIJBEA Pasuadr]

«HI JO S[BUBIA PINOINSIY

9861 ‘z861 "d10D NGI WTuAdoD © €-6811-8TAT

1 1awdey)

AN[IdeJ 20®1] pazI[Blauan)

I1-1

~

GTF Diagram 2. Program Initialization (Part 2 of 8)
Extended Description

1 Assoon as GTF receives control, it ensures that it is

not already in operation from a previous START
command. It issues an ENQ macro instruction for a
major resource of VS2TRACE and a minor resource of
GTF. [f the resources are unavailable, or GTF initializa-
tion is in process or GTF is active, GTF issues message
AHLO13l to the console and returns control to the
system. GTF then terminates.

2 GTF provides error protection for initialization
via an ESTAE macro instruction.

3 GTF requests MC support via the SETEVENT

macro instruction. As a result of SETEVENT
processing, an MC queue slement (MCQE) for GTF is
established. It is chained off the MC control element
(MCCE) from MCHEAD.

4 GTF obtains space in SQA for its primary control

table, the GTFPCT. A flag is set in the GTF audit
field (AUDITWRD), indicating that GTFPCT has been
obtained. This field tracks GTF pracessing and deter-
mines what actions are taken if the GTF initialization
ESTAE recovery routine receives control. GTF also
obtains storage in subpool zero for the initialization
data ares INITDATA. If PCl and CCW or CCWP are
requested, GTF builds the PCI table. It clears the
tables and places EBCDIC identifiers in each table.
GTF stores a pointer to the STOPECB in GTFPCT and
stores pointers to the command input buffer (CIB) and
the PARM field of the AHLGTF EXEC statement in
INITDATA. If either area could not be obtained, GTF
issues message AHL 130l and returns control to the
system.

Module

AHLGTFI

AHLGTFI

AHLGTFI
SETEVENT
service

AHLGTFI

Label

E] Jo Kysadosg — S[BLIAJBIA Pasuddr|

«JAEI JO S[BLIBIA PIOIUISIY,,

21307 SPIY 901A19§ 3INIOAYIIY PAPUaXTF/SAN T7[-1

9861 ‘z861 'd1oD WHI YSuAdoD) & €-6811-8ZA1

GTF Diagram 2. Program Initialization (Part 3 of 8)

Input
INITDATA
LNGTH Subfield
CIB in. EXECPARM
Length of START Length of EXEC
Command Statement

or

Parameter Field

Parameter Field

ciB

CIBDATA

EXECPARM

PARMS

Operator Reply

Process

B Scan START command and EXEC
statement for user options:

Output

GTFPCT

g @ Initialize with default values

or

-3 @ |Initialize with user-supplied
values

MODE
{INT,EXT}

{UI:SE ;o }

DEBUG =
{YES, No}

Invalid

Parameter, WTOR

BUF = nnn

GTFSTAT

G Jo Airadoag — spBUIEy PASUAIT

«AE] JO S[BLABIA] P3joL)say

9861 ‘z861 'dio) WHI WTukdoD @ ¢€-6811-8ZA1

1 Jadey)

Ao 30B1] pazijeIduan

el-1

~

GTF Diagram 2. Program Initialization (Part 4 of 8)
Extended Description

5 GTF checks the CIBDATLN field of the CIB to

to determine whether there are parameters in the
START command. If the field is nonzero, GTF obtains
the parameters from the CIBDATA field and sets the
appropriate option bits in the GTFSTAT field of the
GTFPCT. if the CIBDATLN is zero, there are no param-
eters in the START command, so GTF chec_ks the LNGTH
subfield of the EXCPARM field in INITDATA. Ifitis
nonzero, GTF obtains parameters from the EXEC state-
ment and sets the appropriate bits in GTFSTAT. if an
invalid parameter is encountered, GTF issues a WTOR for
valid options. If parameters were not supplied via the
START command or EXEC statement, the GTF defaults
are in effect.

Module,

AHLSCAN

Label

WG] Jo Apadosgd — S[BUIEBIA PISTN]

«HI JO S{SUNTIA pAoUIsdy,,

21307 SPIV 901AI9G IMIOANYILY PIPUNXT/SAN -]

9861 ‘7861 d10D W1 WFhdoD @ €-6811-8TA'

GTF Diagram 2. Program Initialization (Part 5 of 8)

Input Process
INITDATA
PARMDCB
syst. | L e —— =] - @ Obtain trace options.
PARMLIB LG1
[j ICTFLG «_ctPUiB
or
GTFPCT
GTFOPTS > 7 Build EIDLIST/CLASSLIST and
RANGETAB using selected trace
event data.
EPALIST
Entry Point
EID of Handler *
EIDLIST CLASSLIST
RANGETAB
> 8 Issue SETEVENT for selected trace
options.

Output
GTFPCT
GTFSTAT GTFLOAD
GTFOPTS GTFEIDL
> Filter Tables
EID LIST
EID } Handler
EID * Handler
EID ’ Handler
> GTFPCT

RANGETAB

Handlers for
Filter Events

Storage Range

for Each Event Handler

MCQE for GTF’

MCCLE.

MCEE

Event
EID Handler

EID ’ ‘Event Handler

AL Jo Kyiodorg — S[BLIJBEA PIsuddry
«JAHI JO S[BLIBIN PajoLISaY,

9861 ‘7861 "d10D QI YSuAdoD O ¢-6811-8TA'T

Anpoeq aoe1], pazielsuan | 1s1dey)

SI-1

-~ -~

GTF Diagram 2. Program Initialization (Part 6 of 8)
Extended Description Module Label

6 GTF determines the source of trace option input: AHLCTL1
either SYS1.PARMLIB or the console. A READJFCB

is issued for the SYSLIB DD, and if PARMLIB input is

indicated, the ICTPLIB flag in INITDATA is set to 1 and

SYS1.PARMLIB input is read for the options. If input is

to come from the console or if the SYS1.PARMLIB data

set open is unsuccessful, the ICTPLIB flag is set to 0 and

GTF issues AHL100A to obtain the options from the con-

sole. In either case, GTF obtains the options and sets the AHLTSCN

appropriate bits in GTFOPIND field of INITDATA. It

also sets the PCTCATF bits in GTFPCT. GTF resolves

specification of mutually exclusive options. (See

Service Aids for a discussion of GTF options.) If the

GTFOPIND bits indicate SVCP, SYSP, SSCHP, 10P, PIP,

ASIDP, JOBNAMEP, or CCWP, GTF prompts the operator AHLTPMT

for selected trace events and specific trace options. After AHLTCTL

all options and filter events have been obtained, GTF issues AHLT103

message AHL103I. If selective tracing is in effect, GTF

uses the EBCDIC tables to build filter tables or masks.

The addresses of the filter tables are placed in GTFPCT

except when ASIDP or JOBNAMEP are in effect. If

ASIDP or JOBNAMERP is in effect, the filter tables for

ASIDP or JOBNAMEP (not the addresses of the filter

tables) are placed in the GTFPCT.

7 GTF determines which event handlers are required AHLGTF! (MCQEINIT)

based on the options in effect as indicated by the
GTFOPTS bits. Starting and ending addresses of the
required modules are determined via the entry point list
(EPALIST). GTF constructs an EIDLIST which contains
EIDs of events to be traced and the entry points of the
associated event handler modules. GTF also constructs
the RANGETAB which contains starting and ending
addresses of the event handler modules. From this table,
it determines the range of storage required to fix GTF in
storage. This range is set in FIXTAB which is passed as a
parameter on the PGFIX macro instruction. The storage
for FIXTAB is obtained from SQA since it is required to
free storage of GTF termination.

8 GTF issues the SETEVENT macro instruction with AHLGTFI (MCQEINIT)
ADD specified as the action so that the appropriate AHLSETEV

MC tables will be constructed for all EIDs and classes of

events to be traced.

AdI Jo Aadorg — sjeuajBpy pasuadry

« I JO S[BLIRIBIA PAOLISIY,,

218077 SPIV 901AISS UNANYOIY PIPUANXT/SAN 9[-

9861 ‘7861 'd10D WH] 13uAdoD & €-6811-8TA'T

GTF Diagram 2. Program Initialization (Part 7 of 8)

Input

Process

MCEE

GTFPCT

GTFMODE

GTFPCT
GTFOPTS

Q Obtain and initialize record-

HOLENGTH

CVvT

CVvTTZ |

MCCE

blocking areas and buffers.

MCQE

MCCLE

ECBLIST

>10 Issue SETEVENT to enable
tracing.

>1 1 Ready to receive hooks

Output
GTFBLOKSs
BLOKLIST
1
GTFPCT ' Next
CURRBLOK
NEXTBLOK
History Queue
Empty Queue GTFBCB
> Use Count
BCB
ext BCB Chain
1
Buffers
GTFBUFR- (4K
aK Each) [~
MCCE MCED
MCCD
LECA MCRWSA
Control
Register 8
For 9 AHLCCWWK

cPU

& (]

CVvT
CVTGTFST

NI Jo Apadosd — S[BLIABIN Pasuddl]
JAHI JO S[BURIRIY PaYOLISIY

9861 ‘7861 'd10D NM] WTAdOD & €-6811-8TAT

‘1 1adey)

Aupioe{ aow1] pazi[eiauan

LT-T

(\

GTF Diagram 2. Program Initialization (Part 8 of 8)

E xtended Dascription Module Label

Q GTF attaches the writer subtask to initialize AHLGTFI
the trace record blocking and buffering areas.
(GTF determines which of three writers to attach based
on whether trace data will be maintained internally or

written to tape or to direct access.) The writer sub-
task issues GETMAIN macro instructions, first for

an SRB to be used in buffering, then for the record-
blocking areas (GFTBLOKSs). The SRB has the
addresses of the GTF ASCB and GTF ‘s writer-subtask
TCB. The GTFBLOKS are obtained one at a time

in SQA. (If the size of real storage is 768K, GTF
obtains only 3 GTFBLOKSs.) The first block to be
filled is initialized with a use count and with the CVTTZ
value. A pointer to it is set in the CURRBLOK field
of the GTFPCT. Remaining blocks are all chained

off the first block. The buffers and buffer control
blocks (GTFBCBs) are obtained from subpools 5

and 6 respectively. The buffers required for the GTF
history queue are chained (via pointers in the
associated BCBs) from the HQHEAD field in GTFPCT.
Each GTFBCB contains a use count which indicates
the number of queues the GTFBCB is on. This use
count is never less than 1, since buffers not currently
in use are on the empty queue.

AHLCWRIT
AHLIWRIT
AHLWWRIT

AHLGTFI
AHLWTASK

GTF also attaches and initializes the subtask which
performs asy nchronous operator communication during
unrecoverable errors in trace processing.

10 GTF reissues the SETEVENT macro Instruction AHLTMON

specifying ACTIVATE to enable tracing after
successful completion of the above. The SETEVENT
service obtains work/save areas (IMCAWSA) to be used
by the MC routing facility. If the CCW option was
requested, the SETEVENT service obtains AHLCCWWK.
It also initializea the class mask in control register 8 for
each active CPU,

AHLSETEV

Extended Description Module Label

11 While GTF tracing is active, GTF waits on a list of AHLTMON

ECBs which cause GTF germination when posted.
These are the STOP ECB, termination ECB, the
writer/WTASK error ECB, and the two ATTACH ECBs
for the writer and WTO subtasks. The CVT bits which
indicate that GTF is active are set on. GTF then receives
control from the program check interruption handler
whenever a hook is issued for an event enabled for tracing.
Asynchronously, the writer and WTO subtasks wait on the
1/0 ECB and WTO ECBs, respectively. When either of
these are posted, the writer and/or the WTO subtask
perform the requested function.

Note: During initialization, GTF frees storage for its
temporary tables when they are no longer needed.
These include INITDATA, EIDLIST, the device tables,
and RANGETAB. If the STOP ECB is posted during
initialization, the program terminates after freeing all
resources.

313077 SPIV 3d1A10G AANANYIIY PIPUAXT/SAN -]

9861 ‘7861 "d10D WH] 14SIAdOD © €-6811-8ZA7]

GTF Diagram 3. Hook Processing (Part 1 of 20)

Input

Process

Output

Hook From |/O Supervisor

HOOK EID =1ECIO2,
IECPCI, IECEOS

EID = 2100, 5101, 5200

> 1 1£1/0 filtering is in effect,

UCB
ucecHAN | [170 Filter Table =
PSA Registers
i/0 OPSW R2 4 10sB
PSACPUSA R3 § sRB
R7 Aucs
cVT ASVT
[Aasvr | [Hascs |
10SB ASCB
|OSASID ASCBJBNI
I0SSNS ASCBJBNS \
IOSFLA UCB \1 JOBNAME |
I0SOPT UCBLEVEL
I0SDVRID UCBCHAN
IOSLEVEL SRB
l0ssRB |~ | smBPTCB

determine whether a device is
selected for tracing.

Build record for 1/0 interruption

o 1/0O trace record

® CCW trace record

No

N 1/0 Trace Reco?l

>| CCW Trace Record]

NS Jo Aadosg — spsud)BIy pasuadr]

9861 ‘z861 "d1oD WdI 1yTukdoD & ¢-6811-8TA'T

1 1¢dey)

Apoeg soea] pazijeiausn

61-1

P

GTF Diagram 3. Hook Processing (Part 2 of 20)
Extended Description

When the MC routing facility passes control to GTF for
hook processing, GTF first determines if the event
belongs to e specified set of jobs or address spaces. If so,
then GTF performs event filtering (if selective tracing is in
effect) or it gathers data to construct a record for the
hook. The record is built in the GTF MC application
work/save area (MCAWSA). The GTF issues an
AHLSTACK macro instruction to cause the record

prefix to be added and the record to be placed in a
GTFBLOK. Full GTFBLOK s are copiad into buffers.
(See Diagram 4 for details.) In the case of a control hook
from ABEND or from SVC Dump, the placement of the
record in a block causes GTF to immediately copy the
block to a buffer whether the block was full or not.

1 The 1/0 supervisor issues s HOOK macro instruction
for three types of |/0O interruptions:

o For end-of-sense interruption processing, it uses an
EID of IECEOS.

o For intermediate status interruption processing, it
uses an EID of | ECPCI.

@ For 1/0 interruptions with a valid UCB, it uses an EID
of IECIO2.

If interruptions for only certain devices are to be traced,
GTF checks the 1/0 filter table to determine whether
the current interruption is for one of the selected devices.

SYSM
SYS
e If TRACE = SYSP . GTF builds an 1/O
10 trace record.
10P

10

ccw
e IfTRACE = {chp} and TRACE 10P } . GTF AHLTCCWG AHLTCCWG

builds CCW trace records in addition to the |O trace
record.

Information for the records comes from various system
deta areas; the diagram shows these areas. The formats of
the output records are in the ‘Data Areas’ saction of this
chapter.

Module

AHLTSELF AHLTSELF

AHLSBUF

AHLSBLOK AHLSFEOB

AHLTFCG

Label

IOTRCE

4] Jo Hi1adorg — S[BLId)IBIA] PIsuadI]

«HI JO S[BLIDBIA] P3)OLISAY,,

01807 SPry 901AI3 2IMIOANYOIY PIPUANXA/SAN O0Z- [

9861 ‘z861 "di0oD WdI 14SuidoD & £-6811-8TAT

GTF Diagram 3. Hook Processing (Part 3 of 20)

Process

.

D

Input
Hook from /O Supervisor
HOOK EID = {ECSSCH
ucs
UCBCHAN—l | I/O Filter Table
PSA Registers
I PSACPUSA I RO Condition
Code
r2 AlosB
R34 oRB
cvT ASVT
| dasvt | | Aascs |
10SB ASCB
10SASID ASCBJBNI
IOSRST ASCBJBNS
10SVST
10SDSID
IOSEEKA JOBNAME
IOSGPMSK
10SOPT
IOSFMSK
I0SDVRID
IOSLEVEL ucB
losucs L/ UCBLEVEL
UCBCHAN

-

EID =5101

2 |f SSCH filtering is in effect,
determine whether a device is
selected for tracing.

Build record for SSCH event.

® SSCH trace record

® CCW trace record

No
- Return

Output

SSCH Trace Recordl

Ql CCW Trace Recoil

gl Jo Auiadoig — s[BLAIBIA pasuadr]

«JAQI JO S[BLIRIBEN pajaLIsay,

9861 ‘7861 "d10D W[W3uAdoD © €-6811-8TA1

‘1 19ydey)

Lo 90811 PazZI[BISUID)

121

(\

GTF Diagram 3. Hook Processing (Part 4 of 20)

Extended Description

2 Thel/O supervisor issues a HOOK macro instruction

with an EID of IECSSCH for all SSCH events in the
10S SSCH subroutine. If SSCH events for only certain
devices are to be traced, GTF checks the SSCH filter table
to determine whether the current event is for one of the
selected devices.

SYSM
SYS
e If TRACE =< SYSP GTF builds an SSCH trace
SSCH record.
SSCHP

_ fcew _ JSSCH
e If TRACE = {CCWP and TRACE = SSCHP} R
GTF builds CCW trace records in addition to the SSCH

trace record.

Information for the records comes from various system data
areas; the diagram shows these areas. The farmats of the
output records are in the ‘Data Areas’ section of this chapter.

Module Label

AHLTFCG SSTRCE
RSTRCE

AHLTCCNG AHLTCCWG

NG Jo Auiadoig — s[BLI)BI Pasuadl]

«NHI JO S[BLIBIN PAOSIY,,

213077 SPIY 3D1AISG 2IMIDANNYIIY PIPUAXT/SAN 77~

9861 ‘7861 'd1oD WHI 1YSuAdoD © €-6811-8TA]

GTF Diagram 3. Hook Processing (Part 5 of 20)

Process

Input
Hook From /O Supervisor
HOOK EID = ECCSCH,
IECHSCH
PSA Registers
I PSACPUSA I RO Condition
Code
R2 b10s8
CVvVT ASVT
[4 asvr| | ¥ Aascs|
10SB ASCB
I0SASID ASCBJBNI
IOSDVRID ASCBJBNS
IOSLEVEL
10SUCB
| JOBNAME |
ucsB
UCBLEVEL
UCBCHAN
UCBSFLS
UCBSID
ucsBlOQ
<|oo
10QAIOQ
10Q
10Ql 0SB
JIOSDVRID

EID =5102,5103

3 Build record for CSCH/HSCH
event,

® CSCH/HSCH trace record

Output

>l CSCH/HSCH Trace Aecord |

W41 Jo Kiadoig — sjeHaey Pasuadl
«WHI JO S[BLABIA| PajdLISay,

9861 ‘7861 ‘d10D) W] W3uAdoD O €-6811-8TA'T

"1 131dey)

Anjroeq aoel] pazi[eIdU3D)

Al

(N

GTF Diagram 3. Hook Processing (Part 6 of 20)
Extended Description

3 The I/O supervisor issues 8 HOOK macro instruction
for clear subchannel and halt subchannel events:

® For clear subchannel event processing, it issues an EID
of IECCSCH.

e For halt subchannel event processing, it issues an EID
of [ECHSCH.

SYSM
SYS
1f TRACE =< SYSP %, GTF buildsa CSCH/HSCH trace
CSCH | record.
HSCH

Information for these records comes from various system
data areas; the diagram shows these areas. The formats of
the output records are in the Data Areas section of this
chapter.

Module Label

AHLTFCG CHTRC

AGI Jo Auadold — SIBLIDIBIA] POsudIr]

«JAE] JO S[BLIIBIA PI)OINISAY,

91307 SPIY 301AI0G AMONNYOLY PIPUANXF/SAN $T-1|

9861 ‘7861 ‘10D W] W3ukdoD O €£-6811-8ZA1

Input

GTF Diagram 3. Hook Processing (Part 7 of 20)

Hook From I/0O Supervisor

HOOK EID = IECMSCH

Process

EID = 5104

4 Build record for MSCH event

PSA Registers
| psacpusa | [gq Condition
Code
CcvT R2 A10sB
[Aasvr | AR3 dscHis2
ASVT
| #Aasce | | scHiB |
10SB ASCB
I0SASID ASCBJBNI
(OSOPT ASCBJBNS
|0SOPT2
IOSSCHIB
IOSLEVEL | JoBNAME |
10SUCB
ucs
UCBLEVEL
UCBCHAN
UCBSID

® MSCH trace record

Output

>I MSCH Trace Record

4] Jo Kyadoid — S[BLIABA PIsudd]

«JAHI JO S[BLIBIA PajOLISAY,,

9861 ‘7861 "d10D NI WBuAdoD © £-6811-8ZA'T

‘1 J91dey)

Aujoej asel] pazijeiauan

STl

(\

GTF Diagram 3. Hook Processing (Part 8 of 20)
Extended Description

4 The I/0O supervisor issues a HOOK macro instruction
with an EID of IECMSCH for all MSCH events:

SYSM
SYS .
o If TRACE = , GTF builds an MSCH trace
SYSP rd
mscH | e

Information for these records comes from various system
data areas; the diagram shows these areas. The formats
of the output records are in the Data Areas section of
this chapter.

Module Label

AHLTFCG WMSTRCE

JAM] Jo fpadosg — S[BUIIBIA PISUDN]

«EI JO S|BLIBIA PAOLSIY,

o130 Spry 901A13§ 2IMOANIYDIY PIPUNXT/SAIN 97~

9861 ‘861 "d10D I TukdoD & £-6811-8TAT

GTF Diagram 3. Hook Processing (Part 9 of 20)

Process

>

Input
HOOK EID = [ECRSCH
PSA Registers
| PSACPUSA I Condition
Code
R2410sB
cvT ASVT
| AasvT | | Aascs |
10SB ASCB
I0SASID ASCBJBNI
IOSRST ASCBJBNS
I0SVST
10SDSID
IOSEEKA JOBNAME
10SGPMSK
10SOPT
IOSFMSK
IOSDURID
IOSLEVEL
I0SUCB |\ ucB
UCBLEVEL
UCBCHAN

EID =5106

B Build record for RSCH event

@ RSCH trace record

Output

>| RSCH Trace Record

Ag] Jo A11adosd — S|BLAEBI PISUI]

«AH] JO S[ELIBIA PAIOLNSAY.,,

9861 ‘7861 'dio] WA WT14doD) & £-6811-8TAT

‘1 1dey)

A1oe,] 20B1] pazijeiauan)

LT 1

(\

GTF Diagram 3. Hook Processing (Part 10 of 20)

Extended Description Module Label

B The I/O supervisor issues a HOOK macro instruction
with an EID of IECRSCH for all RSCH events:

SYSM
SYS
e If TRACE =4 SYSP 2, GTF builds an RSCH trace AHLTFCG RSTRC
SSCH | record.
SSCHP

Information for these records comes from various system
data areas; the diagram shows these areas. The formats of
the output records are in the Data Areas section of this
chapter.

WAL J0 Auadosg — S[BUAIBA Pasuadr]

«NH] JO S[BUAEBIA P3jOMISIY,,

01807 SPIY 30IAIOS 31MONYOIY PIPUSIXA/SAN §7-1

9861 ‘7861 "d10D WdI 18uAdoD @ £-6811-8TAT

GTF Diagram 3. Hook Processing (Part 11 of 20)

Input

Hook from VTAM

HOOK EID = ISPTIO1

Process

Output

EID = 8100, 8200

ISPTIO2

RCBREGS

R1
[sTub | asind|

R2 4 ASVT 3
[asvTenTL ”

Hook From SVC Interruption Handler

;)6 Build record for RNIO event:

either

> e Minimal trace record

PSA I

PSAC PUSA

| or

> e Comprehensive trace record

ASCB

Jobname | ASCBJBNI

| Hook EiD -1EASVCH |

—

EID = 1000

ELCSVCN —_— e ———— —_ — _L, 7 1 SVC filtering in effect, determine
T whether event selected for tracing

Build record for program
interruption:

either

> e Minimal trace record

or

® Basic comprehensive trace record

or

> ® Unigue comprehensive trace

svcrier ||
Mask
PSA LCCA v)
CPUSA
RO \ Variable
SOPSW I Data‘
hoidTcB R1 ¢
AOLD
oL R15./] Parmlist *
SVCN
Qld TCB RB CDE
N g N o
ASCB
Variable Data « parmlist

record

_"){ Minimal RNIO Record [

j Comprehensive RNI1O Record I

SVC Minimal Trace Record

SVC Basic Comprehensive

Trace Record

SVC Unique Comprehensive

Trace Record

JNE] Jo Ajtadolrd — s|elIdBIA Pasuddl

A JO SIBLIAIB[pajauIsay,,

9861 ‘7861 "d10D W] 1SuAdoD O £-6811-8ZAT

*1 131dey)

Anioe d0e1] pazi[eIausD

6C1

('\

GTF Diagram 3. Hook Processing (Part 12 of 20)

Extended Description Module Label

6 VTAM issues a HOOK macro instruction with an EID

of ISPTPIO1 or ISPTPIO2 for every input or output
BTU. GTF builds one of two records depending on the
GTF options in effect:

e If MODE=INT or TRACE=SYSM, RN10, the program AHLTVTAM AHLACFV
builds an RNIO minimal trace record.

e If TRACE=RNIO, GTF builds an RNIO comprehensive AHLTVTAM AHLACFV
trace record.

Information for the records comes from various system data
ereas, shown in the diagram. The output record formats
are described in the ““Data Areas" section.

7 The SVC interruption handler issues 8 HOOK macro
instruction with an EID of IEASVCH for all SVC
interruptions. If interruptions for only certain SVC num-
bers are to be traced, GTF checks the SVC filter table AHLTSYFL AHLFSVC
to determine whether the current interruption is for a
selected number. GTF builds one of three records,
depending on the GTF options in effect and the SVC
number:

e If TRACE=SYSM, GTF builds an SVC minimal trace AHLTSYSM AHLSVC
record,

SYS
SYSP . .

e If TRACE= svc , GTF builds a basic SVC AHLTSVC AHLTSVC
SvCP

comprehensive trace record.

e In addition to the basic comprehensive trace informa- AHLTSVC AHLTSVC
tion, for certain SVC numbers GTF adds unique
information to the record.

Information for the records comes from various system
data areas, shown in the diagram. The output record
formats are described in the '‘Data Areas’” section.

NG Jo fuadorg — S[BLIAIBIA] PASUIN]

«EI JO S[BUABI PAdLISAY

013077 SPIV 901A19G UMYV PIPUANXA/SAW (€~

9861 ‘7861 "d10D) d! 14S11kdoD @ €-6811-8TA1

GTF Diagram 3. Hook Processing (Part 13 of 20)

Input

Process

Hook From Dispatcher.

HOOK EID = IEADISP1,IEADISP2
IEADISP3,IEADISP4

EID = 0001, 0002, 0003, 0004

8 Build record for TCB, LSR, SRB,
or SVC prolog dispatching event

either

® Minimal trace record

PSA LCCA)
CPUSA RO
A Ascs R1
PSW R15
‘ Old TCB Global/Local
Indicator
CcVT ASVT
I dasvt | [dasce |
ASCB Qld TCB

| ‘ Jobnam?l |
‘ RB CDE

] I/'FCDE Name |

Hook from EXT PELIH
| HOOKEID = I[EAEINT |

or

> e Comprehensive trace record

EID = 6201

0 Build record for external
interruption

either

> e Minimal trace record

or

PSA LCCA W
CPUID oid PSW
§ AscB A1
d rcca R15
{Lcca TCB
fvcB [A1ae]
parms or PCCA
Physical CPU l ‘ TQE _])
Interruption ASCB
Code Iml
TQE
A TcB
} Asce
FLAGS
TQEEXIT

e Comprehensive trace record

¢

Output

M DSP Minimal Trace Record |

DSP Comprehensive Trace Record—l

j EXT Minimal Trace Record \l

EXT Comprehensive Trace Record |

WA JO Aiadoag — S[RUI)BIN Pasuddry

«H] JO SBHAIBIY PINIMISY,,

9861 ‘7861 "d10D M 3AAOD O €-6811-8ZAT

"1 133dByD

Anpoeq aoely, pazi[eiauan

[e-1

~

GTF Diagram 3. Hook Processing (Part 14 of 20)

Extended Description

8 The dispatcher issues a HOOK macro instruction
when dispatching a unit of work:

e For an SRB, ituses an EID of IEADISP1.
e Foran LSR, itusesan EID of IEADISP2.
e ForaTCB, itusesan EID of IEADISP3.

The SVC exit prolog issues a HOOK macro instruction
with an EID of |IEADISP4 when dispatching a task.
GTF builds one of two records:

e If TRACE=SYSM, DSP, GTF builds a DSP minimal
trace record.

e If TRACE=DSP, GTF builds a DSP comprehensive
trace record.

Information for the records comes from various system
data areas shown in the diagram. The output record
formats are described in the ‘'Data Areas’’ section.

9 The external FLIH issues a HOOK macro instruction
with an EID of IEAEINT for all external interrup-
tions. GTF builds one of two records:

e |f TRACE=SYSM, GTF builds an EXT minimal trace
record.

SYS
® |f TRACE=4{ SYSP}, GTF builds an EXT compre-
EXT
hensive trace record.

Information for the records comes from system data
areas, shown in the diagram. The output record formats
are described in the ““Data Areas’’ section.

Module Label

AHLTXSYS AHLDSP

AHLTPID AHLTOSP
AHLTSRB
AHLTLSR

AHLTSYSM AHLEXT

AHLTEXT AHLTEXT

NG Jo Apadosd — S[BLIIBIN Pasuadl]

«NGI JO SIBHRIA PIPLISIY,

018077 SPIY 301A13§ 2IMOANYIIY PIPUAXHA/SAW 7€~

9861 ‘z861 'd10D WHI WBIAdoD & €-6811-8ZAT

Input

GTF Diagram 3. Hook Processing (Part 15 of 20)

Hook From PFLIH
[Hook Eip - IEAPINT, IEATINT |

Process

Output

= 1

> 1

LLCCA | Pi Filter Maskl'——— _——1—— 7 — —
‘ LCCAPINT |—— _————— - — - —
PSA LCCA
CPUID RO—R15]
A AscB PIOPSW F—
AoidTcs VPA]
ASCB TCB RB CDE
| iobname | | ARB] |ACDE| |cpk
Name
Hook From User
GTRACE DATA=...,LNG=...,ID=
....FID=...,PAGEIN=YES/NO,
‘TEST=YES/NO 1™
MCAWSA MCRWSA User parmlist :
| MCAMCR M EID Value | Length validity |
Check
PSA ASCB FID 4%
[T]

EID = 6101, 6200

0 1pl filtering in effect,
determine whether event
selected for tracing. Build

record for program interruption:

either
o Minimal trace record
or

® Comprehensive trace record

EID = Exxx
1 Record paged-in user data in
GTF buffers
or
Set return code for paged-out
data
or

Set return code for invalid
data

>1 Minimal P| Trace Record I

I Comprehensive Pl Trace Record I

J User Record —l

R15

R15

0, 20

NG jJo Ayiadosg — S{BLIJERN pasuadl]

«JEI JO S[BLIDJBIA] PIIINIISAY ,,

9861 ‘7861 'd10D QI 1YSuAdoDd o ¢-6811-8TAT

"1 1aydey)

Ao 9ov1] pazijeiauan)

ge-l

~

GTF Diagram 3. Hook Processing (Part 16 of 20)
Extended Description Madule Label

10 The PFLIH issues a branch-type HOOK macro
instruction with an EID of IEAPINT for all program
interruptions with codes 1-17, 19, It uses an EID of
IEATINT for Pl 18. If interruptions for only certain
interruption codes are to be traced, GTF checks the Pl AHLTSYFL AHLFPI
filter mask to determine whether the current interruption
was selected for tracing. GTF builds one of two records:

e If TRACE=SYSM, GTF builds a Pl minimal trace AHLTSYSM AHLPI
record.
SYS
SYSP . .
o If TRACE= Pl , GTF builds a Pl comprehensive AHLTPID AHLTPI
PIP

trace record.

Information for the records comes from system data areas
shown in the diagram. The output record formats are
described in the "Data Areas’’ section.

11 The IBM user or component issues a GTRACE macro
instruction to have GTF place a user/component record
in the GTF buffers.

e If TRACE=USR or TRACE=USRP is in effect, GTF
accepts the record. GTF checks the validity of the
data passed by the user/component and moves it to
the GTF buffer.

If the user specified the PAGEIN=YES keyword on the

GTRACE macro instruction, code generated by expan- AHLTUSR AHLTUSRE
sion of the macro causes the trace data to be paged in.

If the user specified the PAGEIN=NO keyword on the

GTRACE macro instruction and a page fault occurs in the

access of user data, GTF sets a return code of X'20’ and

no record is built.

AI Jo Auadord — SjBLIIBLA PIsuad|

«NEI JO S[BLIRIY PIIINSIY,,

213077 SpIVY 231A13§ 21M)29)1Yd1y PapudIXq/SAIN vE-1

9861 'z861 'di1oD gl 3uddoDd & €-6811-8TAT

GTF Diagram 3. Hook Processing (Part 17 of 20)

Input

Hook From Systems Resource Manager
EID = IEASRM

Process

D

PSA LCCA
CPUID RO (ASID)
A 01d AscB R1

R15
cvT
PSW
b AsvT
ASVT

ASCB

’ Jobname ‘ ASCE

EID = |EAFRR, IEASTAE

Hook From Recovery/Termination Manager

PSA R1
CPUID | Arrca |
b} ascs
RTCA
Error PSW

Completion Code

Flags

Return Code

Retry Address

-~
Hook From ABEND
| HooK EID - 1EAABOF |
PSA LCCA
PSAAOLD | |R1(ATcB) |

ASCB

Hook From SVC Dump
[Hook Ep = [EASVCD |
PSA ASCB

| PSAAOLD lJ ASID

EID = 4001

12 Buildrecord for SRM
invocation:

either
e Minimal trace record
or

e Comprehensive trace record

EID = 4002, 4003

13 Buildrecord for RR event:
either

e Minimal trace record
or

e Comprehensive trace record

EID = F200

14 Build ABDUMP record.

EID = F100

15 Build SVC dump record.

Output

>| Minimal SRM Trace Record |

>‘ Comprehensive SRM Trace Record I

Q{ Minimal RR Trace Record |

Comprehensive RR Trace Record—l

)l Save Hook Control Record

¢

Save Hook Control Record |

IAg] Jo Ksadorg — S[BLIDJBIAl Pasuadlr]

JAE] JO S[BLIIBIN POJILISIY,,

9861 ‘7861 "d10D NM] WY3LAdoD & £-6811-8CTA1

‘[19ldeyn)

At VL] PIZijElaual)

St-l

cC

GTF Diagram 3. Hook Processing (Part 18 of 20)
Extended Description

12 The system resources manager issues a HOOK macro
instruction each time it is entered. GTF builds one of
two records:

e If TRACE=SYSM, SRM, then GTF builds an SRM
minimal trace record.

e If TRACE=SRM, then GTF builds an SRM compre-
hensive trace record.

13 The recovery/termination manager issues a HOOK
macro instruction on return from each FRR, STAE,

and ESTAE recovery routine. GTF builds one of two

different records, depending on the options in effect:

e If TRACE=SYSM, then GTF builds an RR minimal
trace record.

e If TRACE=RR, then GTF builds an RR comprehensive
trace record.

14 The ABEND/SNAP routine issues a HOOK macro
instruction if SDATA=TRT was specified. GTF

builds a control record specifying that buffer contents

are to be saved for dumping. See Diegrams 4 and 6.

15 The SVC Dump routine issues a HOOK macro
instruction if SDATA=TRT was specified. GTF

builds a control record specifying that buffer contents

are to be saved for dumping. See Diagrams 4 and 6.

Module Label

AHLTXSYS AHLSRM

AHLTFOR AHLTSRM

AHLTSYSM AHLFRR

AHLTFOR AHLTFRR

AHLTDIR

AHLTDIR

NgI Jo Kuiadoig — S[BLIABIA pasuddr]

«NHI JO S{BLIJIBIAl PaJOU}SIY,,

91507 SPIY 90IAI9S 2IMOANNYOLY PIPUANXT/SAN 9E-|

9861 ‘7861 'd10D W] WFUAdOD O €-6811-8TA1

GTF Diagram 3. Hook Processing (Part 19 of 20)

Input

Hook From SLIP Processor

EID-IEAVSLSD, IEAVSLSU, IEAVSLUR

Process

EID = 4004, 4005, 4006

> 16 Build record for SLIP event

MCRWSA PLIST
) puisT A sce
EID ‘ Registers
} TRDATA Information
PSA {in SCVA)
CPUID MODE/COND Flags
A ascs } DEBUG Data
4 tc8)} IEAVTADR
} Lcea Data Unavailable
Counter
TCB
4 iscs ASCB
‘ CDE ASID
} jobname
JscB
Program SCE
Name TRAPID
cvT | scva
[4 coe | PER Trap Mode
CDE SCVA
Module TRDATA Information
Name (User-Defined)
b xTLST
CSCB
LCCA | JOBNAME |
Old PSW XTLST
PIC and ILC LEN
PER Interrupt ADDR
Code

either

Output

® SLIP standard trace record

|

(EID=4004)

or

SLIP Standard Record —|

e Combined SLIP standard

trace record and user or
debug data (EID=4005)

or

® SLIP trace record with user-

>{ SLIP Standard/User Record 1

or

SLIP DEBUG Record —|

defined data only (EID=4006)

Return Next Instruction
After MC

N

SLIP User Record

2

WAL Jo Kyiadoag — sjBLBy pasuadr]
<M1 JO S[BLIAEIA PA)ILISIY,,

9861 ‘t861 ‘d10D) WdI 1SuLdoD) @ ¢€-6811-8ZAT

T ¥9ydeyn

Ao 2Jkd], pIilielsuasl)

LTl

(\

GTF Diagram 3. Hook Processing (Part 20 of 20)
Extended Description Module

16 The SLIP processor (IEAVTSLP} issues a HOOK macro
instruction for:

® ASLIP event that has been successfully matched with an
enabled SLIP trap and either TRACE or TRDUMP is the
specified action for the trap.

® ASLIP trap that is in DEBUG mode and is inspected by
the SLIP processor as a result of any SLIP event.

GTF builds one of these records:

o If the EID=X'4004', GTF builds a record containing AHLTSLIP
standard information obtained by GTF from the data
areas shown in the diagram.

e |f the EID=X"4005’, GTF builds a record containing AHLTSLIP
SLIP standard information followed by the informa-
tion that is (1) requested by the user via the TRDATA
parameter of the SLIP command, or (2) supplied by
IEAVTSLP when a SLIP trap is DEBUG mode.

o If the EID=X'4006°, GTF builds a record containing AHLTSLIP
information requested by the user via the TRDATA
parameter of the SLIP command.

If the user-defined data requested is greater than 136 bytes
(including length fields) for a standard/user record, or
greater than 256 bytes (including iength fields) for a user
record, the record is truncated.

The output record formats are described in the ““Data
Areas'’’ section.

Label

AHLSLSTD

AHLSLSTD
AHLSLUSR

AHLSLUSR

A1 Jo Ay1adold — S[eLId)BIA pasuadI]

«JAEI JO S[BLINEIA PAJILSIY,,

13077 SPIY 2d1AI3G 2UMINIYIY PIPUANXT/SAIN §¢€-1

9861 "7861 "d10D NG WFAdo]) & €-6811-8TATT

GTF Diagram 4.

Trace-Data Blocking and Buffering (Part 1 of 4)

From Record-Build Routine Via

Input AHLSTACK Macro Instruction Process Output
RO MCAWSA
Record |
Length 1 I GTFBLOK,
I Blocking GTFPCT
GTFPCT I_ - _.Sﬂ i 7ﬂ<_ »] Reserve space if available to N, CURRBLOK IGTFBLOKb
NEXTBLOK| GTFBLOK, | block the record; NEXTBLOK
GTFBLOK
CURRBL\Of/ Chain Pointer | | €
BLOKLEN —J or
Use Count
Consider the record lost.
GTFBLOKb onsiaer record los I Lost Events Count + 1 |
GTFBLOKC GTFBLOK
* Step 3 + Chain Pointer
MCAWSA Use Count
Record BLDKLEN +
Data >2 Move record into blocking area. > Record Length’ SRB tor
Buffering
GTFPCT GTFPCT
CURRBLOK GTFBLOK (+) GTFSSRB
Use Count Return
BLOKLEN
GTFPCT
CTFBCB
GTFSSRB _——— "_(v_i)Ev_alui — |3 Schedule buffering if not already —— a
SCHEDULE scheduled.
GTFPCT Buffering
EQHEAD |--——— —— = — —|— — — — T_| 3».4 Ensure buffering can be GTFBUFR,
Z0 performed;
CQHEAD
CTFBCB, or ECB
GTFBUFRa Immediately post GTF writer Writer Work
to empty buffers
Terminate

JAM] JO K11adoid — S[BLII)BIA PIsuddI

«JAG JO S[BLIABIA PAIOMISIY,

9861 "7861 'd10D Wdl WBuAdod 5 ¢-6811-8TA]

"1 131dey)d

AM[IOB 30€1] PAZI[BIIUAD)

6¢-1

~

GTF Diagram 4. Trace-Data Blocking and Buffering (Part 2 of 4)

Extended Description

GTF manages the flow of trace data using both record-

blocking areas (GTFBLOKSs) and buffers (GTFBUFRSs).
Buffers are accessed through their buffer control blocks
(GTFBCBs).

Since multiprocessing will cause concurrent construction,
blocking, and buffering of trace records, GTF uses a series
of use counts and locks to serialize the use of these areas.

GTF also maintains queues of buffers for different
purposes. These are:

e History queue — The n most recent GTF buffers where
n is specified by the BUF =parameter to control the
amount of trace data in a dump. See Service Aids for
information on the specification of n.

o Writer queue — Full buffers to be written to an
external data set or released.

o Release queue — Buffers for which a PGRLSE must
be issued before they are placed on the empty queue.

e Empty queue — Buffers available to receive blocked
trace records.

@ Current queue — Buffer currently being filled.

® SLE queue — Buffers being held for a dump routine.

1 GTF checks the length of the constructed trace

record. (The length is in the MC application work/
save area (MCAWSA).) (f there is insufficient space for
the constructed record in the current GTFBLOK, the next
empty GTFBLOK on the chain is made the current block-
ing area. The CURRBLOK pointer in the GTFPCT is
updated.

If all the GTFBLOKs are full, GTF updates the lost-events
count since the trace data in the record will not be saved.
Then, GTF schedules the buffering function as in Step 3.

Module Label

AHLSBLOK

{AHLSFEOB)

{(AHLSFEOB)

Extended Description Module

2 Before moving the record into the block, GTF AHLSBLOK

increments the use count in the block to prevent an
attempt to buffer the data during the blocking process.
GTF reserves space in the block for the record by adding
the length of the new record to the length of already-
blocked data (BLOKLEN). This allows other records to
be entered into the block concurrently. {For concurrent
entry of records, the BLOKUSE count is incremented
accordingly. Buffering only occurs when the count is 0.)
GTF moves the record from the construction area in
MCAWSA to the GTFBLOK. Then it decrements the use
count.

3 GTF determines whether buffering is already scheduled AHLSBLOK
by checking the GTFSSRB value in GTFPCT. Hf this

value is negative, buffering is not currently scheduled so

GTF issues the SCHEDULE macro instruction.

4 GTF checks the pointer to the empty buffer queue AHLSBUF
(EQHEAD) in the GTFPCT. if there are no empty

buffers, GTF posts the writer’s work ECB so that buffers

can be made available, (See diagram 5 for writer processing.)

Buffering terminates until reenabled by the writer.

Lebel

JAM] Jo A)13do1g — SIBLIIBA] PIsudI]

«AEI JO SELABI PIILSIY,,

918077 spiy 201AI9g 21MOaYYDIY PAPUAXT/SAIN (-

9861 ‘7861 'd10D WHI 1YS1AdoD © €-6811-8TAT

GTF Diagram 4. Trace-Data Blocking and Buffering (Part 3 of 4)

input Process Output
&TFPCT Buffering (continued) GTFPCT
GTFBLOK '"HQHEAD GTFBCBs
_———— —— Use Count=0 B Move data from blocking area HQTAIL
Trace™ t(? buffer and p.Iace buffer on GTF WQHEAD
R d history and write queues.
ecords >] P
/
r{, P
GTF BCBa
GTFPCT \GTFBUFHa
SAVECNT
CQHEAD > 6 Save a copy of the history queue _|
if required for a dump request.
GTFBCB GTFPCT
a
GTFBUFR CaHEAD =0
SAVELIST
SLE
GTFPCT
—_—_———— e — — — _#0__ —_— 7 Check for more full blocking areas GTFBCBa
to buffer.
GTFBUFR
8 Continue buffering MO 4 . a
Step 4
or
GTFPCT
Allow buffering to be _GTFSSRB
rescheduled

Terminate

NI Jo Auadoag — selElN pasuddry

«JAEI JO S|BLABIA| PI)IISIY,

9861 ‘7861 'd10D WAI WSukdoD © €-6811-8TAT

1 1dey)

Ayqoeg soe1] pazijelauan

-1

(\

GTF Diagram 4. Trace-Data Blocking and Buffering (Part 4 of 4)
Extended Description Module Label

5 If buffers are available on the empty queue and there
is a full GTFBLOK, GTF makes the first buffer the
current one (CQHEAD). It copies the GTFBLOK into
the buffer and places it on the end of the history queue
(QTAIL). It then decrements the use count in the
GTFBLOK. For every buffer placed on the end of the
history queue, one must be removed from the head. The
HQHEAD pointer indicates the buffer to be removed. The
buffer removed is placed on the release queue for later page
release by the GTF writer. From the release queue, the
buffers are replaced on the empty queue.

6 GTF scans the buffer for a record indicating a request AHLSBUF
for trace data for ABEND/SNAP or SVC Dump.

For every such record, GTF builds a save list element

(SLE) and decrements the save count. All the buffers cur-

rently on the history queue are also placed on the SLE

to save them for the dump. After this, GTF removes the

address of the buffer in the current queue pointer

(CQHEAD).

7 For any other full GTFBLOKS, the buffering process AHLSBUF
is repeated.

8 GTF also posts the writer subtask to indicate a buffer AHLSBUF
has been added to the write queue.

AMI Jo A)iadorg — S[BLId)BIN PasuddN]

«HI JO S[BHNBA PIINSY,

91507 SPIY 901A13§ 21n10ANYOIY PIPUANXT/SAIN Th-[

9861 ‘7861 "d1o) gY BukdoD & £-6811-8TAT

Diagram 5. GTF-Writer Processing (Past 1 of 2)

Process

> 1 Free buffers already written.

> 2 Write out full buffers if trace is

external

or

> 3 Issue PGRLSE and put buffers

I Lost Events Count =0 I» _____

Via ECB
Posting
Input
1/0 ECB
DECB GTFPCT
NEXTCHK
BCB
Buffer
Use Count
Next BCB
Work ECB
GTFPCT
| WQHEAD | Buffers
BCBs
—
GTFPCT
I EQHEAD | BCB
\que Count=0
-——
|
1
I
70
279

on empty queue.
- 9 4 Ensure record blocking is pro-
ceeding smoothly.

B Wait for another posting of a
writer ECB.

Place buffers on release queue.

Output
GTFPCT BCB
RQHEAD
Use Count=0
Buffers
GTFPCT
DEC
NEXTWRT ECB BCB
GTFPCT
RQHEAD Buffer
BCB
GTFPCT
EQHEAD BCBs
From
Use Count = 0f | gUbPOOI
Buffers
From
Subpool
6
> GTFPCT Blocking A
oTxing Aree Lost Events
Count=0

o

ANGI Jo Kizadorg — spBLIIBIA PISU3IN]

«JAEI JO S[BUBIN PI)OLIISIY,,

9861 ‘7861 "di0D WEI W3uAdoD & €-6811-8TAT

1 1a1dey)

Apoe 90e1] pazieiausny

vl

C

Diagram 5. GTF-Writer Processing (Part 2 of 2)
Extended Description

1 For external trace mode, the GTF writer subtask
checks the ECB in the DECB pointed to by
NEXTCHK. If it has been posted,a CHECK macro
instruction is issued, and then the writer decrements the
usecount field in the associated buffer control block
(GTFBCB). If the use count is then zero, the writer puts
the GTFBCB on the release queue and increments the
count. GTF will subsequently issue a PGSER FREE macro
instruction for the buffer page. The NEXTCHK pointer is
updated to the chain address in the DECB. When the
address in NEXTCHK is the same as the address in
NEXTWRT, there are no more DECBs to check.

2 |f the ECB was posted because buffers are full, pro-

cessing depends on whether an external data set is
defined (external trace mode). If there is not external
data set, the writer removes the GTFBCB from the write
queue. If there is an external data set, the writer removes
a full buffer from the write queue and places it on an
available DECB and issues a WRITE macro instruction
with the buffer address as the write record.

Module

AHLCWRIT
AHLWWRIT

AHLIWRIT
AHLCWRIT
AHLWWRIT

Label

~

Extended Description

For direct-access output, the writer checks the ECBs

for a code of X'40’ in the first byte. This code indicates
that the end of the data set has been reached and wrap-
ping is required. In this case, the next write is to the
beginning of the data set.

3 The writer moves all buffers from the release queue

to the empty queue. It issues a PGRLSE macro
instruction for each buffer. It then checks the empty
queue (EQHEAD) for available buffers. 1f there are
insufficient buffers on the queue, the writer issues the
GETMAIN macro instruction to obtain 4K buffer stor-
age from subpool 6 and equivalent BCB storage from sub-
pool 5. If the buffering routine has been disabled because
of the lack of available buffers, the writer reenables it.

4 The writer checks the lost record count. If the count
is 400 or greater, a blocking area (GTFBLOK) may
need to be replaced.

B After its processing, the writer subtasks reenters the

wait state. Should the next ECB posted be the
writer termination ECB, all queue activity is quiesced
before termination. See MO 7 for details.

Module

AHLWWRIT

AHLCWRIT
AHLIWRIT
AHLWWRIT

AHLCWRIT
AHLIWRIT
AHLWWRIT

AHLIWRIT
AHLCWRIT
AHLWWRIT

Label

NI Jo fy1adolg — SBLId)BIA] Pasuadr]

«JAHI JO S[ELRJBIN PJILIISaY,

913077 SPIy 301AI9G 21N133JIYIIY PIPUANXA/SAIN -]

9861 ‘7861 'd10D A W3uAdoD & €-6811-8TA]

GTF Diagram 6. GTF/Dump Interface (Part 1 of 2)

From
ABEND/SNAP
or SVC Dump
Input Process
AHLREAD DATAAREA=. ..,
ECB=...,
[TCB= ..]
CVvVT MCCE
CVTGTFST I > 1 Request transfer of trace data
GTF to area for dump
MCQE ASCB
~ |-?cTFasio|
PSA ASCB
| Newasce |9 asio | SVC Dump
SAVELIST
SCE > 2 Build Preflxed list of pages for
dumping
A TCB
ASID
Page Count
‘ Trace Data
3 Pass one prefixed buffer page
SLE Buffer at a time to dump
BCB
Buffer ABEND/SNAP
=
BCB‘
I_JSQA > 4 Pass one buffer at a time to
Data Base Data Area dump
| | B Notify dump routine request
has been satisfied

Output
Parmlist
in SQA
SRB ASID
(8 AHLREADR| (4 TCB
Acecs
‘> Data Area
‘Current TCB

SQA Data Area

> Prefix

SVC Dump

Page of Control Blocks

| SVC Dump|

SQA Data Area

Prefix

GTF Data

SQA
Data Area

Buffer

ECB

i

Return

[]

gl Jo Kiadorg — seLIdBIA pasuadl

A1 JO S|BLIIEI Pa)dLISIY

9861 ‘7861 'd10) WdI 1WBuidoD o £-6811-8TAT

‘1 331dey)d

Aypoe 20BIf PazI[BIaUIN)

Pl

~

GTF Diagram 6. GTF/Dump Interface (Part2of 2)
Extended Description Module Label

To provide trace data for ABEND/SNAP or SVC Dump,
GTF saves the required data on a queue {(SLE) until it can
be dumped. This function is requested by HOOKs with
EiDs of IEAABOF and |IEASVCD for ABEND/SNAP and
SVC Dump, respectively.

1 When ABEND/SNAP or SVC Dump requires the
trace data for a dump, it issues the AHLREAD macro
instruction and then waits on an ECB. Expansion of
AHLREAD causes a parameter list to be constructed in
the data area provided by ABEND/SNAP or SVC Dump.
An SRB to schedule the trace data transfer is constructed AHLREAD
in subpool 245. Then the SRB is scheduled. However, Macro
if the address space being dumped is the GTF address instruction
space, no trace data will be passed to the dump program.
This is indicated by a POST code for no data available.

2 For an SVC Dump request, GTF passes pages con- AHLREADR
taining control blocks required by AMDPRDMP’s

edit function to format trace data. The page is prefixed

with eight bytes of data required by AMDPRDMP. GTF

passes one page of data for each AHLREAD macro

instruction issued.

3 When SVC Dump requests subsequent pages of trace AHLREADR
data, GTF builds the 8-byte prefix and passes the

contents of a 4K buffer. If the address contained in the

SLE is for 8 GTFBCB, GTF gets the buffer address from

the GTFBCB.

4 GTF copies the buffer contents one at a time from AHLREADR
the GTF address space to an area in SQA specified
by ABEND/SNAP.

5 The ECB for the asynchronous data transfer is posted. AHLxWRIT
The SAVELIST elements are then released. The

records are then formatted by ABEND/SNAP (module

IGCOFO05A). User records are formatted if the user/

component has provided a formatting routine for use by

the dump service or the edit function of AMDPRDMP.

|f the user formatting routine cannot be loaded,

ABEND/SN AP dumps these records in hexadecimal.

WA Jo Kadorg — S[BLAIBEY Pasuad]

«EI JO S[BUI)BIA PAJIISIY,,

130 SPIY 2I1AIG AUMIAYAIY PIPUAXT/SAIN Q-

9361 ‘7861 'd10) NI W3ukdoD & €-6811-8TAT

GTF Diagram 7. Error Recovery (Part 1 of 4)

Input

From
RTM

Process

1

SETEVENT GTF, FREE i

> 2

GTFPCT
ATTCHECB

AUDITWRD [———

GTFPCT

L 1

or
FIXTAB

-

>4

>5

I DEQ Macro Instruction I

Error in GTF Initialization

Request SVC Dump of GTF

Free GTF's MC support

Detach writer and WTO subtasks
if attached.

Free storage obtained by GTF

Free GTF resource

Output

Step 5

CvT

Return

CVTGTFST=0

NGI Jo Apadold — S[BUBIA PIsudN]

A JO S[BLIIBIA POIILNISIY

9861 ‘7861 "d10D NF] 14SLdoD @ ¢-6811-8TAT

1 1dey)

Aupoe 99e1], pazijeIsuan

Ly-1

~

GTF Diagram 7. Error Recovery (Part 2 of 4)

Extended Description Module Label
Error in GTF initialization

1 When an error occurs during GTF initialization, the
recovery/termination manager (RTM) passes control
-to the GTF initialization ESTAE routine. The ESTAE AHLGTFI AHLIESTA
routine requests an SVC Dump of GTF and issues message
AHLO16I to inform the operator of the error.

2 Thena SETEVENT macro instruction specifying the AHLGTFI AHLIESTA
FREE action is issued to free MC routing-facility sup-

port. See Section 6 for a description of the SETEVENT

macro instruction,

3 After freeing MC routing-facility support, GTF posts AHLTMON AHLTESTA
the writer subtask for termination. It waits for the or or

writer to complete its termination and then detaches the AHLGTFI AHLIESTA

writer. The WTO subtask is detached in the same manner.

If the GTFPCT tracking field {AUDITWRD) indicates that

either subtask has not been attached yet, no processing

for that subtask is performed.

4 GTF frees any SQA storage it has obtained. It also AHLTMON AHLTESTA

issues the PGSER macro instruction to free all fixed or or
storage in LPA occupied by the filter/gather/build rou- AHLGTFI AHLIESTA
tines. This storage is pointed to by FIXTAB.

B The GTF resource is then freed by issuing the DEQ AHLTMON AHLTESTA
macro instruction. GTF returns control to the sys- or or
tem with a non-zero return code. AHLGTFI AHLIESTA

] Jo Kyadorg — SBLIRJBIN PISUNT
<N JO S[ELIBIA PaJOLISIY,

513077 SpIV 291A19§ 21MIANIYALY Papualxd/SAN {1~

9861 ‘2861 'd10D WHI 1YFuAdoD © ¢€-6811-8ZAT

GTF Diagram 7. Error Recovery (Part 3 of 4)

Input
R1
SDWA
SDWA

SDWAPERC |-— — —— —— —

GTFPCT

GTFDEBUG f—————— -

From
RTM

Process

—~®» (Retry processing, if possible

—®» 7 If error was in A GTF service
routine, terminate

—® 8 If DEBUG=YES in effect,
terminate

9 Error in record build routine

® Recoverable error - put
asterisks in record field

and

| SETRP Macro Instruction I

> Continue building record

e Unrecoverable error -
disable handling for

that event

[SETEVENT. ... DISABLE. .. I

and

Request a dump of GTF

Error in Filter/Gather/Build Routine

Data
Gathering
Routine

aﬂeturn

to RTM

Return
to RTM

Output

MCAWSA

Current Trace Record

SDWA

4:: Address to
Continue

N

MC Routing
Facility

To Wait for Next
Trace Event

—

WEI Jo Auadoag — S[BUNEIN Pasuadr]
«AEI JO SBUANBIN PIANIISAY,

9861 ‘7861 'd10D WdI WY3ukdoD o €-6811-8TAT

‘1 1dey)d

Ajioe, 20811 Pazi[BIaUAD)

6v-1

(\

GTF Diagram 7. Error Recovery (Part 4 of 4)

Extended Description Module Label

Error in filter/gather/build routine

6 !f alternate CPU recovery (ACR) allows, GTF retries Event handler’s error
the error-causing processing, This is indicated by the routine

STAE diagnostic work area (SDWA) passed to GTF by

RTM.

7 If the error occurred in a service, for example, record

blocking (AHLSTACK routine), GTF passes control
to the recovery/termination manager for termination of
GTF.

8 |f DEBUG=YES was specified in the START command,
GTF passes control to the recovery/termination man-
ager for enabled termination of GTF.

9 Ifanerror in building a trace record occurred and Event handler’s error
DEBUG=NO is in effect, GTF processes as follows: routine

@ Recoverable error — the record build routine puts an
error indicator in the record field that caused the pro-
blem and places an address in the SDWA (via the
SETRP macro) to point to the place where processing
will resume.

o Unrecoverable error — GTF disables the event handler
by issuing the SETEVENT macro instruction specifying
DISABLE as the action. A SVC Dump is requested.
Finally, message AHLI1I81 is issued specifying the
event that is disabled. GTF then returns control to the
MC routing facility to wait for other trace events. How-
ever, if all events are disabled, GTF returns control to
RTM to terminate GTF.

Note: When GTF returns control to RTM for termination,
percolation to the MC routing facility’s error recovery
routine occurs. This routine schedules on SRB which posts
the enabled portion of GTF (the task monitor) for termina-
tion. See MO 8 for details of termination processing.

JAM] Jo Auadoag — S[RLIBIA PASUDN]

«] JO S[BUNBY PAAILSIY.,

018077 SPIY 01A19§ 2INIPANYALY PIPUAXF/SAN ()G~ [

9861 "z861 "d10) NEI WFuAdoD) O €-6811-8TA]

GTF Diagram 8. GTF Termination (Part 1 of 2)

Via STOP Command
or Error Processing

Process

> 1 Wait for all trace 1/0 and WTOs
to complete.

> 2 Free MC routing facility tables
via SETEVENT

> 3 Free buffers and related control

Input
AHLWTASK
ECB
AHLXWRIT
ECB
cvT MCCE
MCEEs MCQE
=N
§ mcep
MCCLE § mcco
BLOKLIST
s GTF-BLOKs ‘ s GTF-BCBs
s GTF-BUFs
GTFPCT
‘ s Event Handlers

blocks

> 4 Free all fixed storage occupied

by GTF

B Free GTF resource

Output

*

o

Return
to System

External Trace/Message
Data Sets

AL Jo Apadord — S[BLIIBIA PIsUIIY

«AE] JO S[BU3BIA PALNSIY,,

9861 ‘7861 'dr0D WHI 1Y3uLdoD o €-6811-8TAT

1 @1dey)

A1oB] 90EB11 PIZIBIUSD)

Is-1

~

GTF Diagram 8. GTF Termination (Part 2 of 2)
Extended Description Module Label

1/0 for any filled buffers. GTF also complatas AHLIWRIT
any in-process transfer of data for ABEND/SNAP or AHLWWRIT
SVC Dump. The asynchronous WTO subtask also com-
pletes its processing.

1 Before terminating, the writer subtask completes ' AHLCWRIT }

2 GTF issues the SETEVENT macro instruction AHLTMON
specitying the FREE function to free GTF's
MCQE and the event and class directories.

trol blocks are freed. The SRB used to schedule AHLIWRIT
buffering is freed. Then, GTF frees the writer and WTO AHLWWRIT
subtask by issuing the DETACH macro instruction.
Then it frees the message table (IWMSGTAB) and the
SAB it used for scheduling. AHLWTASK

3 The record-blocking areas, buffers, and buffer con- ' AHLCWRIT }

4 GTF uses the GTFPCT pointers to the event handling
routines to unfix the storage required for the routines.
GTF then frees the storage required by GTFPCT. AHLTMON

® Finally, GTF issues a DEQ macro instruction for the
GTF resourcs and returns to the system.

M1 Jo Kadorg — S[BABIY Pasuadry

<JAM] JO S[BUABIA PAISAY,,

180T SPIY S0IAISG AINVINYIIY PIPUANXA/SAN TG~

0861 ‘T861 "d10D WM]I 1TuAdoD © €-6811-8TAT

GTF Diagram 9. MC Event Handling (Part 1 of 4)

Input

Process

MCHEAD

MCHFLGS ® —

Pl Old PSW

Interruption Code

MCRWSA

MCRWSAF o l@@— — — — — —

MCINCTL =1

Pl Old PSW

Interruption Code

= X'40’

MC I nstruction

AF|(15| By

D

1

Interruption [nstruction

58 | R1| X5 | By | Dy
05 R1 R2
47| R1| X2 Bz D,
Location Location
148-149 157-9
Class - Oc Code ~ Oxxx

_____ —®] Terminate if monitor call

routing inactive

—g» 2 Ensure routing does not
occur if HOOK is
recursive

3 Set up error protection

—®» 4 Get identifier to route control
for this event.

> ® From MC instruction

generated by GTRACE or
non-branch HOOK

or

> e From simulated MC if
HOOK macro instruction is
branch type

) Return

é Return

Output

MCRWSA

MCRWSAF ?

FRRSTACK

MCINCTL =1

§ AHLMCFRR

P -

\

#§ Oldest FRR

C

MCRWSA

MCREID

NE] Jo Apadosd — S[BLIS)BIA PASUIN]

«NH1 JO S[EH3BIN PajdLIsay,,

9861 ‘7861 10D W) WSuAdoD © £-6811-8ZAT

‘1 =deq)

A[Io8,] 30BI] POZI[BIOUAD)

£e-1

(\

GTF Diagram 9. MC Event Handling (Part 2 of 4)
Extended Description

The MC interruption handling routine {AHLMCIH)
receives control to trace events from the program
check first-level interruption handler (PFLIH).

1 The MC interruption handling routine determines

whether routine is active by checking the MCHACT
flag in MCHEAD. {The MCHEAD is described in System
Data Areas.) Unless the flag has been set to 1 by the
SETEVENT service, control is immediately returned to
the caller.

2 fthe MCINCTL flag in the work/save area MCRWSA
is on, recursion through AHLMCIH has occurred.
In this case, control is returned to the PFLIH.

3 The MC interruption handling routine sets the

MCINCTL recursion flag in the MCRWSA. It also
places the address of its error recovery routine on the
FRR stack via SETFRR.

4 The two-byte EID of the event to be routed is calcu-
lated as follows:

e MC instruction issued — the one-digit class and three-
digit code from the instruction are taken from the MC
hardware locations and combined to form the EID for
the hook. The EID is then placed in the MCREID field
of the MCRWSA.

o Branch-HOOK macro issued - AHLMCIH simulated the
MC instruction by obtaining the class and code from the
NOP instruction following the BALR to AHLMCIH. It
placed the values in low storage as if a monitor call had
been issued. The EID value is calculated and placed in
the MCRWSA as above.

Module

AHLMCIH

AHLMCIH

AHLMCIH

AHLMCER

AHLMCER

Label

WAl Jo fuiadoag — SpelABI pasuadry

AE] JO S[BUIIBIY PaRIISIY,

21307 SPIY 20141 2IMIDANYILY PAPUANXT/SAIN G-

9861 ‘7861 'd10D W WBUAdO) & €-6811-8TATT

GTF Diagram 9. MC Event Handling (Part 3 of 4)

Process

L # 5§ Route control to each routine
which handles this type of event

Each routine for this EID

value

Each routine for this class

Use count -1

Input
MCHEAD MCRWSA
Use Count MCREID -
MCED
Current MCCE MCEE
Chain
+EID Directory
’Class Directory mceo
A vccie
MCEE
Chain
EID Value
‘ Routine
& vcae
& Next MCEE
MCCLE
Class Value
Routine
vcae
NextMccD
MCHEAD

value

—®» [Schedule SRB to free routing

> tables if no longer needed

e
i
T
|
Current MCCE |
|
|
|
Old MCCE {
Use Count |———— —— — |
SRB

Output

Routine
to Handle
Event

-

GPR 0O

MCQE

=D GPR 2

MCQEAT

GPR 3

MCRWSA
Registers 0-15

MCRWSAF @
=1

MCAWSA

Application
Work/Save Area

MCINFGBR

MCHEAD

JAMI Jo A11adorg — S[BHAE[N pasuadry
«JNMI JO SIBHI)BIA| PAIDHISAY,,

9861 ‘861 dioD) Wl Wy3ukdo) » €-6811-8TAT

1 amdey)

AN[IoB,{ 9dBI] pazZI[BISUSD)

661

(\

GTF Diagram 9. MC Event Handling (Part 4 of 4)

Extended Description

B The event router issues a CMSET for the home

(PSAAOLD) address space for any non-PFLIH entries
to GTF or for a PFLIH entry when PASID is not equal to
HASID. The event router determines the routines to
receive control for the event by using the EID directory
(MCED) and the class directory (MCCD). The MC control
element (MCCE) contains pointers to both directories.
Before using the MCCE and directories, AHLMCER
increases the use count in MCHE AD so these tables will
not be released while the event is being handled.

The MCED is searched first for all routines to handle the
event. ALHMCER uses the EID value from MCRWSA

in the search. If an MCEE (event element) specifying the
EID is not found, the class directory (CCD) is searched
for routines to handle the event class. The class {calcu-
lated from the EID in the MCRWSA) is used as an index
into the directory.

If jobname and/or address filtering need to be done,
AHLTSELF is called. If the ASID or jobname is not
selected for tracing, event routing is terminated. The
event router passes the following information to the rou-
tine to build the record:

e Address of the MC queue element associated with the
routine. (There is one MCQE for each MC user, for
example, GTF.)

@ Address of a work/save area (MCAWSA) for the event
handler.

e Address of MCQEAT (for GTF, this is the address of
the GTFPCT).

After the routine has completed processing, the event
router resets the MCINFGBR to 0. The EID link field
(MCEEEIDL) is checked to determine whether another
MCEE or MCCLE exists for this event. If so, control is
passed to the indicated routine as above.

Module

AHLMCER

Label

~

Extended Description Module

6 Theevent router issues a CMSET to reset to the AHLMCER
caller’s environment if necessary. The event router
attempts to decrease the use count in MCHEAD using a
CDS instruction. If the attempt is unsuccessful,
AHLMCER determines whether the pointer to the MCCE
in MCHEAD has been changed. If it has, a new set of rou-
ting tables are in effect. In this case, the old use count
from MCHEAD has been saved in the old MCCE.
AHLMCER decreases this count, and if the result is O,
the tables associated with the old MCCE may be freed.
This is done by scheduling the already initialized SRB
located in the MCCE.

The event router resets the recursion flag (MCINTL) and
returns to the caller of AHLMCIH. |fan error occurs in
an event handler and the event handler does not recover,
the associated MCQE for the MC user is disabled, and that
application is terminated. Other MC users still receive
control for their specified events. |f an error occurs while
the event router is in control, the event router is termi-
nated and message AHL132| is issued. All MCQEs are
terminated in this case.

AHLMCER.

Label

NI Jo K1adord — S[BLIdIBJA] Pasuad!

HI JO S[ELIJBIA PI)IIISIY,,

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Section 3: Program Organization

This section contains the following items which describe the organization of GTF.

® A description of GTF’s use of storage during trace processing (see
Figure 1-2).

A list of the modules that are loaded for each trace option specified.
Module calling sequences for GTF functions.

A list of GTF load modules and the object modules they contain.

A cross-reference table of module and data areas.

SQA MCRWSA
MCAWSA
GTFBLOKs
MC tables

Pageable link pack area

data gathering routinesf
AHLSBLOK
AHLSBUF
AHLMCER!
SETEVENT service

GTF address space - private area

AHLTMON
AHLxWRIT x=C,l,or W
AHLWTASK

Subpool 6

GTFBCBs!

Subpool §
GTFBUFRx

Nucleus

AHLMCIH?
MCHEAD?

! Fixed while GTF is active
2 Always fixed

Figure 1-2. GTF Storage During Tracing

1-56 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Trace Modules Loaded for Each Selected Option

Trace Option

ASIDP

CCW, CCWP
CSCH

DSP without SYSM
DSP with SYSM
EXT

HSCH

10

10P

JOBNAMEP
MSCH

PCI

PI

PIP

RNIO without SYSM
RNIO with SYSM
RR

SLIP

SRM without SYSM
SRM with SYSM
SSCH

SSCHP

SvC

SVCP

SYS

SYSM

SYSP

TRC
USR, USRP

Trace Modules

None

AHLTCCWG

AHLTFCG

AHLTPID

AHLTSYSM, AHLTXSYS
AHLTEXT

AHLTFCG

AHLTFCG

AHLTFCG, AHLTSYFL
None

AHLTFCG

None

AHLTPID

AHLTPID, AHLTSYFL
AHLTFOR

AHLTSYSM, AHLTXSYS
AHLTFOR

AHLTSLIP

AHLTFOR

AHLTSYSM, AHLTXSYS
AHLTFCG

AHLTFCG, AHLTSFL
AHLTSVC

AHLTSVC, AHLTSYFL

AHLTFCG, AHLTSVC, AHLTPID, AHLTFOR, AHLTEXT

AHLTSYSM, AHLTFCG

AHLTFCG, AHLTSVC, AHLTPID, AHLTFOR, AHLTEXT,

AHLTSYFL
None
AHLTUSR

Figure 1-3. Trace Modules Loaded for Each Selected Option

Module Calling Sequences for GTF Functions

The following maps show sequential flow of GTF modules. Each map indicates
the active modules for a specific function and describes the operations performed
by those modules. Entry point names are also provided where they may differ
from the module names. Figure 1-4 explains the design of sequence maps.

For more detailed descriptions of the functions, see the diagrams in Section 2:
Method of Operation. A reference to the corresponding diagram accompanies
each map.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 1. Generalized Trace Facility 1-57

GTF Control Flow

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Single Path Flow Alternate Path Flow
Calling Module Calling Module
—Module A Module A
Module A! Module B
Module A2 I—Module B!
L-Module B (ENTRY)

The calling module first calls A, The calling module determines whether
which then calls A and A2, to call A or B for this operation. If B
When A returns, the caller passes receives control, it calls B! before
control to B at entry point returning to the caller.

ENTRY!.

Figure 1-4. Example of Calling Sequence Map

GTF Task Processing
Initialization - Includes initialization for GTF task and for GTF trace processing.

|%Task monitor - Acknowledges STOP on termination ECBs while GTF is active.

Hook Processing

MC event-routing facility - Gives control to GTF when a trace event occurs.

Filter/gather/build routines - Build GFT records for selected events. Request record
blocking/buffering via AHLSTACK macro instruction.

Record-blocking routine - Stacks trace records into blocking area. Issues

SCHEDULE macro instruction for buffer-copying routine
when blocking area is full.

Buffer Processing

Asynchronous buffering routine - Copies contents of full blocking area to buffer. Issues POST
macro instruction for GFT writer to manage buffer queues.

POST

l—— Writer routine - Manages buffer queues. Writes trace data to output data set (external trace
mode only).

1-58 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Initialization (Diagram 2)

AHLGTFI - Enqueues GTF resource, sets up ESTAE for initialization, requests MC support,
obtains and initializes GTFPCT, AHLPCITB, and INITDATA. Transfers control to
AHLTMON after initialization.

—— AGLSCAN - Obtains GTF options from START command on EXEC statement or uses
defaults. Sets options bits in GTFPCT indicating the START command
options.

AHLTCTLI - Controls obtaining and scanning of trace options.

AHLTSCN - Scans options from SYSI.PARMLIB or console. Sets
GTFOPIND of INITDATA. Resolves conflicts of mutually
exclusive options specified.

AHLTPMT - Builds and issues message AHLT1031.

AHLTI103 - Obtains selective trace events from SYSI.PARMLIB or the
console. Builds EBCDIC device tables for filtering.

AHLTTAB - Converts EBCDIC device tables to filter tables (masks).

LOAD

Load appropriate record-building routines.
ATTACH

AHLIWRIT

—) AHLWWRIT | Initializes blocking areas and buffers, opens DCB if external trace,
AHLCWRIT | completes ECBLIST, gets SRB to schedule buffering, loads and fixes

AHLSBLOK and AHLSBUF.
ATTACH
AHLWTASK - Sets up the message table (WMSGTAB) and an SRB to schedule WTO,
builds ECBLIST.
XCTL
I— AHLTMON - Performs final initialization; issues SETEVENT to: enable MC support,

get CPU-related work areas (chained from LCCA), and initialize control
register 8 on each active CPU. Waits on the ECB list. Posts writer and

WTO ECBs for termination processing. Detaches writer and WTO
subtasks. Cancels MC support.

SVC, EXT, RR, PI Minimal Record Building (Diagram 3)

AHLMCER

AHLTSELF - Determines if an event occurred within a specified address space or job.
AHLSVC, AHLEXT

AHLTSYSM AHLPI, AHLFRR, Builds a minimal record in MCAWSA for the
AHLSTAE event; issues AHLSTACK macro instruction to

prefix the record and to cause record blocking.

record-blocking routine (via AHLSTACK macro instruction)

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 1. Generalized Trace Facility 1-59

1-60

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

RNIO, SRM, DSP Minimal Record Building (Diagram 3)

AHLMCER - Determines that an event handled by AHLTXSYS has occurred.

AHLTSELF - Determines if an event occurred within a specified address space or job.

AHLDSP

AHLTXSYS AHLSRB Builds a minimal record in MCAWSA; issues
AHLSRM AHLSTACK macro instruction to prefix the record and
AHLRNIO to cause record blocking.

record-blocking routine (via AHLSTACK macro instruction)

DSP, PI Comprehensive Record Building (Diagram 3)

AHLMCER - Uses hook EID and the event/class directories (MCED and MCCD) to
determine that an event handled by AHLTSYFL or AHLTPID has occurred.

AHLTSELF - Determines if an event occurred within a specified address space or job.

AHLTSYFL - If selective tracing for Pl is in effect, determines whether this event is selected
by using the filter tables in GTFPCT.

AHLTDSP

AHLTPID AHLTLSR Builds a comprehensive record in MCAWSA for the event;
AHLTPI issues AHLSTACK macro instruction to prefix the record
AHLTSRB and to cause record blocking.

—— record-blocking routine {via AHLSTACK macro instruction)

RNIO, RR, SRM Comprehensive Record Building (Diagram 3)

AHLMCER - Determines that an event handled by AHLTFOR has occurred.

AHLTSELF - Determines if an event occurred within a specified address space or job.

AHLTFRR

AHLTFOR AHLTSRM Builds a comprehensive record in MCAWSA for the event,
AHLTSTAE issues AHLSTACK macro instruction to prefix the record
AHLTRNIO and to cause record blocking.

record-blocking routine {via AHLSTACK macro instruction)

EXT Comprehensive Record Building (Diagram 3)
AHLMCER - Determines that an event handled by AHLTEXT has occurred.

——AHLTSELF - Determines if an event occurred within a specified address space or job.

AHLTEXT - Builds a comprehensive record in MCAWSA for the event; issues
AHLSTACK macro instruction to prefix the record and to cause record
blocking.

record-blocking routine {(via AHLSTACK macro instruction)

MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

1/0, SSCH, CSCH, HSCH, MSCH, RSCH Record Building (Diagram 3)

AHLMCER - Determines that an event handled by AHLTFCG, AHLTSYFL, or
AHLTCCWG has occurred.

AHLTSELF - Determines if an event occurred within a specified address space or job.

——AHLTSYFL - If selective tracing for I/O and/or SSCH is in effect, determines whether this
event is selected by using the filter tables in GTFPCT.

——AHLTFCG
RECSTACK | issues AHLSTACK macro instruction to prefix the record
and to cause record blocking.

AHLTFCG } Builds a comprehensive record in MCAWSA for the event;

— record-blocking routine (via AHLSTACK macro instruction)

—— AHLTCCWG - Accesses the proper address spaces through a CMSET; traces the channel
program; builds a trace record in the MCAWSA for the event, issues an
AHLSTACK macro instruction to prefix the record and to cause record
blocking.

L— record-blocking routine (via AHLSTACK macro instruction)

SVC Comprehensive Record Building (Diagram 3)

AHLMCER - Determines that an event handled by AHLTSYFL or AHLTSVC has
occurred.

AHLTSELF - Determines if an event occurred within a specified address space or job.

AHLTSYFL - If selective tracing for SVC is in effect, determines whether this event is
selected. If so, passes control to AHLTSVC.

-AHLTSVC Builds a comprehensive SVC record; issues AHLSTACK macro instruction
to prefix the record and to cause record blocking.

record-blocking routine (via AHLSTACK macro instruction)

User/Component Record Building (Diagram 3)

AHLMCER - Determines that an event handled by AHLTUSR has occurred.

AHLTSELF - Determines if an event occurred within a specified address space or job.

AHLTUSR (AHLTUSR) - Builds a record of data received from a user/component after
checking validity of the data. Issues AHLSTACK macro
instruction.

(AHLTUSRE) If a page fault occurred in gathering data, indicates the condition
to be handled by code generated by GTRACE macro instruction.

record-blocking routine (via AHLSTACK macro instruction)

Save Hook Control Record Building (Diagram 3)

AHLMCER - Determines that an event handled by AHLTDIR has occurred.

AHLTSELF - Determines if an event occurred within a specified address space or job.

L——AHLTDIR - Builds a save hook control record for trace data requested by
L ABEND/SNAP/SVC Dump. Issues AHLSTACK macro instruction.

record-blocking routine (via AHLSTACK macro instruction)

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 1. Generalized Trace Facility 1-61

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

SLIP Trace Record Building (Diagram 3)
AHLMCER - Determines that an event handled by AHLTSLIP has occurred.
Builds a trace record in MCAWSA for the event; issues

AHLSTACK macro instruction to prefix the record and to
cause record blocking.

AHLTSLIP | AHLSLSTD
AHLSLUSR

record-blocking routine (via AHLSTACK macro instruction)

Record Blocking and Buffering (Diagram 4)

Record build routine - Builds trace record in MCAWSA, then issues AHLSTACK macro
instruction which causes record blocking and buffering.

AHLSBLOK (AHLSBLOK) - Places trace record with prefix in a blocking area
(GTFBLOK) in SQA.

(AHLSFEOB) - Swaps to an empty GTFBLOK when a blocking area
becomes full; keeps track of events lost while waiting for a
GTFBLOK. Schedules SRB for the buffering routine
(AHLSBUF) when a GTFBLOK is full or a hook from
ABEND/SNAP/SVC Dump is received.

SCHEDULE
AHLSBUF - Moves blocked trace data to buffer (GTFBUFR); manages buffer
queues through buffer control blocks (GTFBCBs). Builds save list

element (SLE) if the blocked data contains a save-hook control
record for ABEND/SNAP/SVC Dump. Post writer.

GTF Writer (Diagram 5)
AHLSBUF - Post GTF writer after copying a GTFBLOK to a buffer.
POST Note: only one writer module is loaded per GTF trace execution.

AHLCWRIT - Tape writer; writes buffers from the write queue to output tape; maintains
internal history queue.

AHLIWRIT - Internal mode writer; maintains internal history queue of trace data.

AHLWWRIT - Direct-access writer: writes buffers from the write queue to direct-access data
set: maintains internal history queue.

1-62 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

GTF - Dump Interfaces (Diagram 6)
SVC Dump - Requests buffers with data related to ASID of failing address space.

or

ABEND/SNAP (IGCOF05A) - Provides interface with GTF. Issues AHLREAD macro instruction
which causes (via scheduling an SRB) trace data to be transferred
from GTF's address space to SQA. Formats records. Calls for user
format appendage or dumps user records in hexadecimal.

AHLREADR is scheduled via AHLREAD macro instruction - Queues request for one page of
trace data to be copied to
SQA.

AHLxWRIT - Copies a page of data to SQA. Schedules SRB to return to
AHLREADR to post the dump program. Before filling the last

request associated with a dump, the writer removes BCBs from the
SLE.

WTO for Disabled Event (Diagram 7)
Filter/gather/build error-recovery routine - If a disabling error occurs, calls for disabled event message.

AHLWTO (AHLWTOMD) - Fills in table for message AHL118I informing operator of
disabled event. Schedules SRB for WTO subtask. '

SCHEDULE

l— AHLWTASK (AHLWPOST) - Posts AHLWTASKS’s ECB to write the message.
(AHLWTASK) - Writes error message AHL118I.

Termination Processing (Diagram 8)

AHLTMON - Controls termination of GTF when STOP ECB or abnormal-end ECB is posted. Issues
SETEVENT to free MC routing tables. Notifies writer and WTO subtasks of
termination. Detaches subtask. Frees fixed storage. AHLTMON issues DEQ to free
GTF resource.

AHLXxWRIT - Ensures all I/O to external data set is complete before frecing buffers,
blocking areas, and related control blocks. Deletes AHLSBLOK and
AHLSBUF.

AHLWTASK - Frees message table area.

MC Event Handling (Diagram 9)

Program first level
Interrupt handler - Passes control to the MC interrupt handler when MC interrupts or other
checks occur.

AHLMCIH
AHLMCIHB
AHLMCIHC
AHLMCIH AHLSTCLS
AHLVCCRS
AHLUTEST

AHLMCER - calculates EID value for the hook and uses the event direclory
(MCED) and class directory (MCCD) (o route control to each routine
which handles this event type.

record-building routine

LY28-1189-3 & Copyright IBM Corp. 1982, 1986 Chapter 1. Generalized Trace Facility 1-63

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Section 4: Data Areas

This section contains descriptions of the data areas built and used by GTF and by
the MC event handler. Refer to Data Areas for detailed formats of the data
areas. This section also contains formats of the records built by GTF during
tracing.

The GTF tables described are as follows:

Buffer control block (GTFBCB).
Initialization data area (INITDATA).
Primary control table (GTFPCT).
Range table (RANGETAB).

Save list element (SLE).

CCW trace work area (AHLCCWWK).
PCI work area (AHLPCITB).

The MC event handler tables are as follows:

Application work/save area (MCAWSA),
Base table MCHEAD).

Class directory (MCCD).

Class element (MCCLE).

Control element (MCCE).

Queue element (MCQE).

Router work/save area (MCRWSA).

The GTF record formats are as follows:

Control records (lost block, lost event, save hook, and timestamp).
Minimal trace records (DSP, EXT, PI, RNIO, RR, SRM, SVC).
Comprehensive trace records (DSP, EXT, PI, RNIO, RR, SRM, SVC).
Trace records (I/0, CSCH, HSCH, MSCH, RSCH, SLIP, SSCH).

GTF Data Areas

Buffer Control Block (GTFBCB)

Created by: AHLxWRIT (x is C, I or W depending on the GTF mode
specification and/or output device).

Updated by: AHLSBUF.

Use: A temporary data area that contains indicators of the GTF options
obtained during initialization. The table is freed at the end of initialization.

1-64 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

PCI Work Area (AHLPCITB)

Created by: AHLGTFIL.
Updated by: AHLTCCWG.

Use: A table that contains command codes, flags, and channel program starting
addresses for PCI interrupts.

Primary Control Table (GTFPCT)

Created by: AHLGTFI.

Updated by: AHLxWRIT, AHLREADR, AHLSBLOK, AHLSBUF,
AHLSCAN, AHLTCTLI1, AHLTEXT, AHLTFOR, AHLTMON, AHLTPID,
AHLTPMT, AHLTSCN, AHLTFCG, AHLTSVC, AHLTSYFL, AHLTSYSM,
AHLTTAB, AHLTUSR, AHLTXSYS, AHLWTASK, AHLTSLIP.

Referenced by: AHLREADR, AHLSTACK, AHLTI103, AHLWTO, IGCOF05A.
Use: Contains the majority of control information required for GTF operation.

This includes pointers to buffer queues, indicators of options in effect, pointers to
SRBs for scheduling services, pointers to the filter tables.

Range Table (RANGETAB)

Save List Element (SLE)

Created by: AHLGTFI.
Updated by: AHLGTFI.

Use: A temporary data area for GTF initialization that contains starting and
ending addresses of each event-handler routine required for tracing. From this
table, the range of storage required for page fixing is determined. The table is
freed at the end of initialization.

Created by: AHLXxWRIT (x is C, I or W depending on the GTF mode and/or
output device).

Updated by: AHLSBUF.

Use: Contains the control information related to a request by ABDUMP/SNAP
or SVC Dump for trace data. This information includes the TCB address for a
dumped task, the ASID of a dumped address space and pointers to the buffers
containing the required data and/or related buffer control blocks.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 1. Generalized Trace Facility 1-65

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

MC Event Handling/Data Areas

Application WCCk/Save Area (MCAWSA)

Base Table (MCHEAD)

Created by: AHLSETEV, AHLVCON.

Updated by: AHLMCER, AHLSBLOK, AHLSETD, AHLSTACK, AHLTDIR,
AHLTEXT, AHLTFOR, AHLTPID, AHLTFCG, AHLTSVC, AHLTSYSM,
AHLTUSR, AHLTXSYS, AHLVCOFF, AHLWTO, AHLTSLIP, AHLMCIH.

Use: Used by the data-gathering routines for register save areas, temporary work
space, and record building. Records are moved, as they are completed, from this
data area to the blocking areas (GTFBLOKSs).

Created by: Assembled as part of the MC interruption-handier routine
(AHLMCIH), which is resident in the nucleus.

Updated by: AHLSETEV, IEAVNPI17.

Referenced by: AHLMCER, AHLREADR, AHLSETD, AHLVCON,
IGCOF05A.

Use: Contains basic control information for the MC event handler. The
information includes the address of the current (active) control element (MCCE),
a use count indicating the number of routines using this set of tables, and the
current active class mask in control register eight.

CCW Trace Work Area (AHLCCWWK)

Class Directory (MCCD)

Created by: AHLSETEV
Updated by: AHLTCCWG
Use: A temporary work area for CCW trace that contains flags, bit switches,

addresses, and counters. One work area exists for each CPU thatisina
multiprocessing configuration and that is running CCW trace.

Created by: AHLSETEV.
Referenced by: AHLMCER.

Use: Contains the addresses of MC class elements (MCCLEs); used as an index
to route control of trace events by class.

1-66 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Class Element (MCCLE)

Control Element (MCCE)

Queue Element (MCQE)

Created by: AHLSETEV.
Referenced by: AHLMCER, AHLSETD.

Use: Specifies a class of events to be traced and the event-handler routine to
receive control for that class.

Created by: AHLSETEV.

Updated by: AHLMCER, AHLSETD.

Referenced by: AHLREADR, AHLSET, IGCOF05A.

Use: Contains the addresses of the routine directories, the MC class directory
(MCCD), and the MC event directory (MCED). Also contains the address of the

first application control table (MCQE) and the SRB used to free the tables
associated with this MCCE.

Created by: AHLSETEV.
Updated by: AHLGTFI (only the MCQE for the GTF application).

Referenced by: AHLxWRIT, AHLMCER, AHLREADR, AHLSETD,
AHLSTACK, AHLTMON.

Use: Contains control information to define an MC application, for example,
GTF. It contains the application’s name, the address of the next MCQE, an ECB
used to terminate the application, and the addresses of the chains of MC class
elements (MCCLEs) and of MC event elements (MCEEs).

Event Handler Work/Save Area (MCRWSA)

Created by: IPL/NIP, VARY CPU ONLINE.

Updated by: AHLMCER, AHLMCIH, AHLSETD, AHLSETEV, AHLVCOFF,
AHLVCON, IEAVNP17.

Referenced by: AHLTEXT, AHLTFOR, AHLTPID, AHLTFCG, AHLTSVC,
AHLTSYFL, AHLTUSR, AHLWTO, AHLTSLIP.

Use: Contains register save area for the MC interrupt and the address of the
MCAWSA. It is located in SQA and is pointed to by the LCCA work/save area
vector table.

LY28-1189-3 @ Copyright IBM Corp. 1982, 1986 Chapter 1. Generalized Trace Facility 1-67

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

GTF Control Records

Lost Block Record

GTF places a lost block control record in the trace buffers whenever data
contained in a GTFBLOK has been lost.

Offset Size Description
0 {0) 2 Record length in bytes.
2) 2 X’0000".
4 4) 1 Record identifier: X’00’ indicates control record.
5 (5 1 Format identifier: X'03'.
X'05’ for buffer full condition,
6 (6) 4 Time zone value.
10 (A) 8 TOD clock value.
18 (12) 4 Lost event count.

Lost Event Record

GTF places a lost data control record in the trace buffers whenever data about an
interruption is missed because buffers were full.

Offset Size Description

0 (1)) 2 Record length in bytes.

2 2) 2 X'0000°.

4) 1 Record identifier: X’00’ indicates control record.
5 (5) 1 Format identifier: X’02’.

X’05’ for buffer full condition;

6 6) 4 Time zone value.
10 (A) 8 TOD clock value.
18 (12) 4 Lost event count.

Save Hook Control Record

GTF places a save hook control record in the trace buffers whenever a request
from ABEND/SVC Dump is received for trace data.

Offset Size Description
0) 2 Record length in bytes.
2) 2 X’0000".
4 O] 1 Record identifier: X’00’ indicates control record.
S 5 1 Format identifier: X00".
X’05’ for buffer full condition;
6 6) 4 Time zone value.
10 (A) 8 TOD clock value.
18 (12) 2 EID, F200, F100
20 (14 2 ASID
22 (16) 4 TCB

1-68 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Time Stamp Control Record

The first record in every variable block.

Offset Size Description

©
@
“
(3)
6 ()

Record length in bytes.

X'0000°.

Record identifier: X’00’ means this is a control record.
Format identifier: X'01".

Time zone value.

10 (A) TOD clock value.

18 (12) GTF option bytes.

18 a2 1 Option byte 1:
... ... SYSM in effect.
1. SYSP in effect.
WL SYS in effect.
.l USR in effect.
l... TRC in efTect.
.. DSP in effect.
X, Reserved
| PClI in effect.

19 (13) 1 Option byte 2;
I... SVC in effect.
. SVCP in effect.
WL SIO specified; SSCH in effect.
...l SIOP specified; SSCHP in effect
1... PI in effect.
1. PIP in effect.
WL 10 in effect.
| IOP in effect.

20 (14) 1 Option byte 3:
.. . EXT in effect.
d. RNIO in effect.
1L SRM in effect.
| RR in effect.
l.. SLIP in effect.
.. CCW in effect.
.1 CCWP in effect.
...l 10 = SIO: the devices traced selectively for
10 and SIO are identical.

21 (15) 1 Option byte 4:
1. CCW =1 in effect.
1. CCW =S in effect.
IR DR JOBNAMERP in effect.
0 I ASIDP in effect.
. 1. USRP in effect.
XX. Reserved.

vl User timestamp requested in each trace record.

22 (16) 1 Option byte 5:
1. SSCH in effect.
d. . SSCHP in effect.
150 P MSCH in effect.
.l HSCH in effect.
. 1... CSCH in effect.
XX. Reserved.
... IO = SSCH; the devices traced selectively for IO and
SSCH are identical.
23 a7n 3 Reserved.

WA NDO

0 00— = NN

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 1. Geneealis

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

GTF Trace Records

CCW Trace Record

GTF builds a record that has the following format when TRACE =CCW or
TRACE =CCWP is in effect, and either a start subchannel (SSCH) occurs in the
1/O supervisor SSCH subroutine, or an I/O interruption occurs. To trace channel
programs, TRACE =SSCH or TRACE =1/O must also be in effect.

Offset Size Description

0 ©) 2 Record length in bytes.

2) 2 X’0000°".

4 (©))] | Record identifier: X'FF’ indicates trace record.

5 (&)} 1 Format identifier: X'07".

6 ©6) 8 Optional timestamp; if TIME = YES is specified, this field
contains the eight bytes of the TOD clock value.
If TIME =NQO, this field does not exist.

14 (E) 2 Event identifier.

16 10) 4 ASCB.

20 (14) 2 CPUID.

22 (16) 8 Jobname.

30 (1E) 2 Device address.

32 (20) 2 Maximum amount of data for each CCW.

34 (22) 1 Flags for CCW trace formatter.

35 23) 2 Sequential record count for print dump of this event.

37 25) | Translate table 1D for formatter.

38 (26) 2 Flags describing data.

40 (28) 2 Length of data in this CCW.

42 (2A) 1 Length of data in this record.

43 (2B) 4 Virtual address of CCW.

47 (2F) 8 CCW being traced.

55 37 217 Data area or repeat of offset 37-55 if space available.

CCW Trace Message Record

GTF builds a record that has the following format when CCW trace has to
output messages AHL140D, AHL141D, AHL1461, AHL1471, AHL148I,
AHLI149I, AHL1501, AHL1511, AHL1521, AHL153I, or AHL154I.

Offset Size Description

0 ©) 2 Record length in bytes.

2) 2 X'0000".

4) 1 Record identifier: X'FF’ indicates trace record.

S (&) 1 Format identifier: X'07'.

6 (6) 8 Optional timestamp; if TIME = YES is specified, this field
contains the eight bytes of the TOD clock value.
If TIME =NO, this field does not exist.

14 (E) 2 Event identifier.

16 (10) 4 ASCB.

20 (14) 2 CPUID.

22 (16) 8 Jobname.

30 (IE) 2 Device address.

32 (20) 2 Not used; contains value used in CCW trace record.

34 (22) 2 Flags for CCW trace formatter.

35 (23) 2 Sequential record count for print dump of this event.

37 (25) 4 ‘MSG’ ID.

41 (29) 4 Not used; zeroes.

45 (2D) 2 Length of message.

47 (2F) 22§ Message data.

1-70 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

CSCH/HSCH Trace Record

GTF builds a record that has the following format when either a CSCH or an
HSCH event occurs and TRACE=SYSM, TRACE =SYS, TRACE=SYSP,
TRACE =CSCH, or TRACE =HSCH is in effect. This record is common to
both the CSCH event and the HSCH event. They can be differentiated by the
EID value (X’5105" for CSCH, X’5103’ for HSCH) found in the prefix section of

the record at offset X'E’.

Offset

0 0)
2)
4 @
S)
6 ©®
14 (E)
16 (10)
20 (14)
2 (16)
30 (IE)
32 (0
34 (22)
38 (26)
39 27
40 (28)
41 (29)
42 (A)

DSP Comprehensive Trace Record

Size

00 — = NN

_—— e == BN O NN

Description
Length of record in bytes.
X’0000’.
Record identifier: X’FF’ indicates trace record.
Format identifier: X'00".
Optional timestamp; if TIME = YES is specified, this field
contains the eight bytes of the TOD clock value.
If TIME =NO, this field does not exist.
Event identifier.
X’5102" indicates a CSCH event.
X’5103’ indicates a HSCH event.
ASCB.
CPUID.
Jobname.
Device number.
Startability flags.
Subchannel identifier.
Condition code.
Driver identifier.
Associated request driver identifier.
IOSLEVEL.
UCBLEVEL.

GTF builds a record that has the following format when an entry is made to the
dispatcher to dispatch a unit of work and TRACE =DSP is the GTF option in

effect.

Offset

0)

2)

4 @)

5 %)

6 (6)

14 (E)

16 (10)

20 (14)

22 (16)

30 (1E)

38 (26)
For TCB only:
42 (2A)
For SRB only:
42 (2A)

46 (2E)

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

Size

00 = = NN

& 00 00N

Description

Length of record in bytes.
X’0000".
Record identifier: X'FF’ indicates a trace record.
Format identifier: X’02’.
Optional timestamp; if TIME =YES is specified, this field
contains the eight bytes of the TOD clock value.
If TIME =NO, this field does not exist.
Event identifier.

X’0001" indicates SRB dispatching.

X’0002’ indicates LSR dispatching.

X’0003’ indicates TCB dispatching.

X’0004’ indicates exit prolog dispatching.
ASCB.
CPUID.
Jobname.
Resume PSW for new task.
New TCB (for LSR and TCB, SRB for SRB).

CDE name.

Parm address.
Global or local.

Chapter 1. Generalized Trace Facility 1-71

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

DSP Minimal Trace Record

GTF builds a record with the following format when an entry is made to the

dispatcher to dispatch a unit of work and both TRACE =SYSM,DSP are the
GTF options in effect.

Offset Size Description

0 0) 2 Length of record in bytes.

2) 2 X’0000".

4 4) 1 Record identifier: X'FF’ indicates trace record.

S [®) 1 Format identifier: X’03’ indicates AMDSYS03.

6 (6) 8 Optional timestamp; if TIME = YES is specified, this field

contains the eight bytes of the TOD clock.
If TIME = NO, this field does not exist.
14 (E) 2 Event identifier.
X’0001” indicates SRB dispatching.
X’0002’ indicates LSR dispatching.
X’0003’ indicates TCB dispatching.
X’0004’ indicates exit prolog dispatching.

16 (10) 4 ASCB.

20 (14) 2 CPUID.

22 (16) 8 Resume PSW for work unit being dispatched.
30 (1E) 4 Current TCB or N/A (for TCB and LSR only).
34 (22) 4 Register 15.

38 (26) 4 Register 0 or SRB.

42 (2A) 4 Register 1.

46 (2E) 1 For SRB only; global or local.

i.wa irace Record

GTF builds a record that has the following format if an EWA is present when
CCW =10SB is specified with TRACE=CCW or TRACE=CCWP.

Offset Size Description

0 0) 2 Length of record in bytes.

2) 2 X'0000".

4 (4) 1 Record identifier: X’FF’ indicates trace record.

S (5) 1 Format identifier: X'07".

6 6) 8 Optional timestamp; if TIME = YES is specified, this field
contains the eight bytes of the TOD clock value.
If TIME=NO, this field does not exist.

14 (E) 2 Event identifier.

16 (10) 4 ASCB.

20 (14) 2 CPUID.

22 (16) 8 Jobname.

30 (1E) 2 Device address.

32 (20) 2 Not used; contains value used in CCW trace record.

34 (22) 1 Flags for CCW trace formatter.

35 (23) 2 Sequential record count for print dump of this event.

37 (25) 4 ‘EWA’ ID.

41 29) 4 Address of EWA.

45 (20) 2 Length of EWA in this record.

47 (2F) 225 EWA data area.

M VS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM
EXT Comprehensive Trace Record

GTF builds a record that has the following format when an external interruption
occurs and either TRACE =SYS or TRACE =EXT is in effect.

Offset Size Description

0 (U] 2 Length of record in bytes.

2 (@) 2 X’0000".

4 4 | Record identifier: X'FF’ indicates a trace record.

5 [©) 1 Format identifier: X’02".

6 ©6) 8 Optional timestamp; if TIME = YES is specified, this field
contains the eight bytes of the TOD clock value.
If TIME=NO, this field does not exist.

14 (E) 2 Event identifier: X’6201’ indicates an external
interruption.

16 (10) 4 ASCB.

20 (14) 2 CPUID.

22 (16) 8 Jobname.

30 (1E) 8 External old PSW.

38 (26) 4 Old TCB.

For SIGP interrupt:

42 (2A) 4 PARMFIELD.

46 (2E) 2 CPUID.

For clock comparator interrupt.

42 (2A) 2 TQE flags.

44 (2C) 4 TQE exit.

48 30) 4 TQE ASCB.

For CPU timer interrupt:

42 (2A) 2 TQE flags.

44 20) 4 TQE exit.

EXT Minimal Trace Record

GTF builds a record with the following format when an external interruption
occurs and TRACE=SYSM is the GTF option in effect.

Offset Size Description

0) 2 Length of record in bytes.

2) 2 X’0000".

4 “4) 1 Record identifier: X'FF’ indicates trace record.

S (&) 1 Format identifier: X’'03’.

6 6) 8 Optional timestamp; if TIME = YES is specified, this field
contains the eight bytes of the TOD clock value.

If TIME =NO, this field does not exist.

14 (E) 2 Event identifier: X"6201” indicates an external
interruption.

16 (10) 4 ASCB.

20 (14) 2 CPUID.

22 (16) 8 External old PSW.

30 (1E) 4 TCB of interrupted task or N/A.

34 22 4 NTQE TCB or INT CPU or N/A.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 1. Generalized Trace Facility 1-73

IOSB Trace Record

I/O Trace Record

1-74 MVS/Extended Architecture Service Aids Logic

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

GTF builds a record that has the following format, GTF builds the record either
when CCW =ISOB is specified with TRACE=CCW or TRACE=CCWP, or
when an error message is outputted while tracing a channel program.

Offset

RN b O

16
20
22

32
34
35
37
4]
45
47

©
@
@
©)
()

(B
(10)
(14)
(16)
(1E)
(20)
(22)
(23
23
(29)
(2D)
(2F)

Size

00 — — N N

NS &= NN &N

Description
Length of record in bytes.
X0000".
Record identifier: X’FF’ indicates trace record.
Format identifier: X'07".
Optional timestamp; if TIME = YES is specified, this field
contains the eight bytes of the TOD clock value.
If TIME =NO, this field does not exist.
Event identifier.
ASCB.
CPUID.
Jobname.
Device address.
Not used; contains value used in CCW trace record.
Flags for CCW trace formatter.
Sequential record count for print dump of this event.
‘IOSB’ ID.
Address of IOSB.
Length of IOSB.
IOSB data area.

GTF builds record that has the following format when an 1/O interruption occurs
and TRACE=SYSM, TRACE=SYS, TRACE=10, or TRACE=IOP is in
effect. To trace PCI I/O interruptions, TRACE =PCI must also be in effect.

Offset

RN bs O

16
20
22
30
32

56
60
62
64
65
66

)
(2
“
)
()

(B)

(10)
(14)
(16)
(1E)
(20)
(28)
(38)
30O
(3E)
(40)
41
@2

Size

00— = PN

_——— NN S = 00NN

Description

Length of record in bytes.

X’0000°.

Record identifier: X’FF’ indicates trace record.

Format identifier: X’00".

Optional timestamp; if TIMESTAMP = YES is specified, this field

contains the eight bytes of the TOD clock value.

Event identifier:
X2100" indicates a PCI 1/O interruption.
X’5101" indicates an EOS I/O interruption.
X’5200" indicates an I/O interruption with a valid UCB.

ASCB.

CPUID.

Jobname.

Device number.

1/0 old PSW.

IRB.

TCB.

Sense bytes.

Flags.

Driver identifier.

IOSLEVEL.

UCBLEVEL.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

MSCH Trace Record

GTEF builds a record that has the following format when an MSCH event occurs
and TRACE=SYSM, TRACE=SYS, TRACE=SYSP, or TRACE=MSCH is in

effect.

Offset Size Description

0 ©) 2 Length of record in bytes.

2) 2 X’0000".

4 (C)) 1 Record identifier: X'FF’ indicates trace record.

5 (5 1 Format identifier: X'00".

6 6) 8 Optional timestamp; if TIMESTAMP = YES is specified, this field
contains the eight bytes of the TOD clock value.

14 (E) 2 Event identifier: X’5104’ indicates an MSCH event.

16 (10) 4 ASCB.

20 (14) 2 CPUID.

22 (16) 8 Jobname.

30 (1E) 2 Device number.

4 (22 4 Subchannel identifier.

35 (23) 1 Condition code.

36 (24) 1 1I0SOPT.

37 (25) 1 I0SOPT2.

38 (26) 1 IOSLEVEL.

66 (42) 28 First SCHIB.

67 (43) 1 UCBLEVEL.

95 (5F) 28 Second SCHIB.

PI Comprehensive Trace Record

GTF builds a record that has the following format when a program interruption
occurs and either TRACE =PI or TRACE =SYS in effect.

Offset Size Description
0) 2 Length of record in bytes.
2 2) 2 X’0000".
4 (C)) 1 Record identifier: X'FF’ indicates trace record.
5 %)] Format identifier: X'02’.
6 (6) 8 Optional timestamp; if TIME=YES is specified, this field
contains the eight bytes of the TOD clock value.
If TIME =NO, this field does not exist.
14 (E) 2 Event identifier:
X’6101” indicates a program interruption with codes 1-17, 19,
128.
X'6200" indicates a program interruption with code 18.
16 (10) 4 ASCB.
20 (14) 2 CPUID.
22 (16) 8 Jobname.
30 (1E) 8 Program old PSW.
38 (26) 4 INT TCB.
42 (2A) 4 Virtual page address.
46 (2E) 8 RB or CDE name.
54 (36) 64 Registers 0-15.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 1. Generalized Trace Facility 1-75

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

PI Minimal Trace Record

GTF builds a record that has the following format when a program interruption
occurs and TRACE=S8YSM is the GTF option in effect.

Offset Size Description
0 0) 2 Length of record in bytes.
2) 2 X'0000".
4) 1 Record identifier: X’FF’ indicates trace regord.
S) 1 Format identifier: X’'03".
6 6 8 Optional timestamp; if TIME = YES is specified, this field
contains the eight bytes of the TOD clock value.
If TIME=NO, this field does not exist.
14 (E) 2 Event identifier:
X’6101’ indicates a program interruption with codes 1-17, 19,
128.
X’6200" indicates a program interruption with code 18.
16 (10) 4 ASCB.
20 (14) 2 CPUID.
22 (16) 8 Jobname.
30 (1E) 8 Program old PSW.
30 (1A) 4 Old TCB.
34 (1E) 4 Virtual page address.
38 (26) 4 Register 15.
42 (2A) 4 Register 1.

RNIO Comprehensive Trace Record

GTF builds a record that has the following format when ACF/VTAM requests an
1/O path information unit (PIU) and the GTF options in effect are MODE =EXT
and TRACE=RNIO.

Note: ACF|/VTAM Version 2 Diagnosis Guide describes the access method used
to create the PIU data.

Offset Size Description

0) 2 Length of record in bytes.

2) 2 X’0000'.

4 @) 1 Record identifier: X'FF’ indicates trace record.

5 (&) | Format identifier: X'04’.

6 (6) 8 Optional timestamp; if TIME = YES is specified, this field

contains 4 bytes of the CVTTZ field and the eight bytes
of the TOD clock value.
If TIME =NO, this field does not exist.
14 (E) 2 Event identifier:
X’8200" indicates PIU output.
X’8100’ indicates PIU input.

16 (10) 4 ASCB.

20 (14) 2 CPUID.

22 (16) 8 Jobname.

30 (1E) 20 RNIO PIU data. Minimum of 10 bytes. Maximum of 20 bytes

The fifth halfword contains the number of remaining bytes. When
PIU data is less than 20 bytes, the field is padded on the right
with blanks.

1-76 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

RNIO Comprehensive Trace Record with ACF/VTAM

GTF builds a record that has the following format when ACF/VTAM requests an
I/O path information unit (PIU) and the GTF options in effect are MODE = EXT

and TRACE=RNIO.

Note: ACF/VTAM Version 2 Diagnosis Guide describes the access method used

to create the PIU data.

Offset Size
0 (V)] 2
2 (03] 2
4 @ 1
5 (5 1
6 ©6) 8
14 (B 2
16 (10) 4
20 (14) 2
22 (16) 8
30 (1E) 20
50 (32 4

RNIO Minimal Trace Record

Description

Length of record in bytes.
X'0000".
Record identifier: X’FF’ indicates trace record.
Format identifier: X'04".
Optional timestamp; if TIME =YES is specified, this field
contains the eight bytes of the TOD clock value.
If TIME =NO, this field does not exist.
Event identifier:
X’8200" indicates PIU output.
X’8100’ indicates PIU input.
ASCB.
CPUID.
Jobname.
RNIO PIU data. Valid range is 1-20 bytes. R0 contains the
number of bytes to collect. If R0 is greater than 20, 20 bytes
are collected. If RO is less than 20, the field is padded on the
right with blanks.
Contents of Register 0.

GTF builds a record that has the following format when ACF/VTAM requests an
I/O path information unit (PIU) and the GTF option in effect is either
MODE =INT or the combination of TRACE=SYSM and TRACE =RNIO.

Note: ACF/VTAM Version 2 Diagnosis Guide describes the access method used

to create the PIU data.

Offset Size
0 (0 2

2 @ 2

4 @ 1

5 0 1

6 (6 8

16 (10) 4
20 (18 2
2 (16 20

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

Description
Length of record in bytes.
X’0000".
Record identifier: X'FF’ indicates trace record.
Format identifier: X'03’.
Optional timestamp; if TIME = YES is specified, this field
contains 4 bytes of the CVTTZ field and the eight bytes
of the TOD clock value.
If TIME =NO, this field does not exist.
X’8200’ indicates PIU output.
X’8100’ indicates PIU input.
ASCB.
CPUID.
RNIO PIU data. Minimum of 10 bytes. Maximum of 20
bytes. The fifth halfword contains number of remaining bytes.
When PIU data is less than 20 bytes, the field is padded on the
right with blanks.

Chapter 1. Generalized Trace Facility 1-77

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

RNIO Minimal Trace Record with ACF/VTAM

GTF builds a record that has the following format when ACF/VTAM requests an
I/O path information unit (PIU) and the GTF option in effect is either
MODE=INT or the combination of TRACE=SYSM and TRACE=RNIO.

Note: ACF|VTAM Version 2 Diagnosis Guide describes the access method used
to create the PIU data.

Offset Size Description

0 0) 2 Length of record in bytes.

2 Q) 2 X’0000’.

4 @ 1 Record identifier: X'FF’ indicates trace record.

5 (5) 1 Format identifier: X'03".

6 6) 8 Optional timestamp; if TIME = YES is specified, this field

contains the eight bytes of the TOD clock value.
If TIME =NQO, this field does not exist.
14 (E) 2 Event identifier:
X’8200’ indicates PIU output.
X'8100° indicates PIU input.

16 (10) 4 ASCB.
20 (14) 2 CPUID.
22 (16) 20 RNIO PIU data. Valid range is 1-20 bytes. RO contains the

number of bytes to collect. If RO is greater than 20, 20 bytes
are collected. If RO is less than 20, the field is padded on the
right with blanks.

42 (2A) 4 Contents of RO.

RR Comprehensive Trace Record

GTF builds a record that has the following format when an invocation of a
recovery routine occurs and TRACE=SYS or TRACE=RR is in effect.

Offset Size Description

0 (0) 2 Length of record in bytes.

2) 2 X’0000.

4 (4) 1 Record identifier: X'FF’ indicates trace record.

S (5) 1 Format identifier: X'04" indicates AMDSYS04.

6 (6) 8 Optional timestamp; if TIME = YES s specified, this field

contains Lhe eight bytes of the TOD clock.
If TIME =NO, this field does not exist.
14 (E) 2 Event identifier.
X’4002’ indicates STAE/ESTAE invocation.
X’4003' indicates FRR invocation.

16 (10) 4 ASCB.

20 (14) 2 CPUID.

22 (16) 8 Jobname.

30 (1E) 8 Name of recovery rouline or U/A.

38 (26) 8 PSW current when error occurred.

46 (2E) 4 Completion code.

50 32) 8 Error flags from system diagnostic work area (SDWA).
58 (3A) 4 Retry address or N/A.

62 (3E) 4 Address of SDWA (STAE/ESTAE only).

1-78 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”

Licensed Materials — Property of IBM

RR Minimal Trace Record

GTF builds a record that has the following format when an invocation of a
recovery routine occurs and TRACE=SYS is in effect.

Offset

[- QA R N O B o]

16
20
22
30
34
38
41
42

46

RSCH Trace Record

©
@
@
O]
©)

(E)

(10)
(14)
(16)
(1E)
(22)
(26)
(29)
(24)

(2E)

Size

2
2
1
1
8

E-N SRV I N S 3 S RN

N

Description
Length of record in bytes.
X"0000".
Record identifier: X’FF’ indicates trace record.
Format identifier: X’03’ indicates AMDSYSO03.
Optional timestamp; if TIME = YES is specified, this field
contains the eight bytes of the TOD clock.
If TIME =NO, this field does not exist.
Event identifier:

X’4002 indicates STAE/ESTAE invocation.

X’4003' indicates FRR invocation.
ASCB.
CPUID.
Error PSW.
Completion code.
Error flags from system diagnostic work area (SDWA).
Additional error flags from SDWA.
Return code from recovery routine (STAE/ESTAE only).
Retry address or N/A. Note: If no return code at offset
41, begin retry address at offset 41.
Address of SDWA (STAE/ESTAE only). Note: If retry
address begins at offset 41, SDWA address begins at offset 45.

GTF builds a record that has the following format when an RSCH event occurs
and TRACE=S8YSM, TRACE=SYS, TRACE=SYSP, or TRACE=RSCH is in
effect.

()
(0]
@
©)
()

(E)
(10)
(14)
(16)
(1E)
(20)
(24)
28)
(20)
(2D)
39)
36)
@7
(38)
(39)
GA)

wn
s.

GO = = NN

e e = 00— B B BN oo R AN

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

Description

Length of record in bytes.

X’0000’.

Record identifier: X’FF’ indicates trace record.
Format identifier: X’00".

Optional timestamp; if TIMESTAMP = YES is specified, this field
contains eight bytes of the TOD clock value.
Event identifier: X’5106’ indicates an RSCH event.
ASCB.

CPUID.

Jobname.

Device number.

Real address of channel] program.

Virtual address of channel program.

I0SDSID.

Condition code.

Dynamic seek address.

IOSGPMSK.

IOSOPT.

IOSFMSK.

Driver identifier.

IOSLEVEL.

UCBLEVEL.

Chapter 1. Generalized Trace Facility 1-79

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

SLIP Trace Records

GTF builds a SLIP trace record when TRACE =SLIP is the GTF option in effect
and:

® A SLIP trap has matched and either TRACE or TRDUMP has been specified
on the SLIP command.

e A SLIP trap is in DEBUG mode (specified on the SLIP command) and is
inspected by the SLIP processor as a result of any SLIP event.

The SLIP trace records are:

SLIP Standard Trace Record
SLIP Standard/User Trace Record
SLIP User Trace Record

SLIP DEBUG Trace Record

SLIP Standard Trace Record: GTF builds a record that has the following format
when the HOOK macro instruction is issued with an EID of IEAVSLSD.

Notes:
1. U/A indicates the data is unavailable.
2. N/A indicates the data is not applicable.

3. Asterisks (** ... **) are used if an error occurred when attempting 1o obtain
data or the data is unavailable because it is paged out.

Offset Size Description

0 () 2 Length of record in bytes.

2 V)] 2 X'0000".

4 (C))] 1 Record identifier: X'FF’ indicates trace record.

5 (&) 1 Format identifier: X’04” indicates AMDSY S04.

6 ©) 8 Optional timestamp; if GTF option TIME = YES is

specified, this field contains the eight bytes of the
TOD clock value.

14 (E) 2 Event identifier: X’4004’ indicates a SLIP standard
trace record.

16 (10) 4 ASCB address.

20 14) 2 CPUID. (Note: When SLIP is entered from RTM2,

the CPUID recorded may be different from the
CPUID when RTM2 was running.

22 (16) 8 Jobname from current address space (or N/A).
30 (1E) 4 SLIP trap ID.

34 (22) 2 ASID of current address space.

36 24) 8 Job step program name (or U/A or N/A).

44 2C) 4 TCB address (or N/A).

1-80 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Offset

48 (30)
49 31
0 (32)
s (33)
2 (34)
53 (35)

Description

System mode indicators, byte 1:
Supervisor control mode.

Disabled for I/O and external interrupts.
Global spin lock held.

Global suspend lock held.

Local lock held.

Type 1 SVC in control.

SRB mode.

TCB mode.

System mode indicators, byte 2:

Recovery routine in control (always zero if a PER
interrupt).

Problem program state.

Supervisor state.

System key.

Problem program key.

Any global lock held.

Any lock held.

Error byte 1 (or zeros if a PER interrupt):
Program check interrupt.

Restart interrupt.

SVC error.

Abend; task issued SVC 13.

Paging 1/O error.

Dynamic address translation error.
Software error caused by machine check.
Abnormal address space termination.

Error byte 2 (or zeros if a PER interrupt):
Memterm.

SLIP flags:

DEBUG record.

Registers collected.

Data unavailable counter (or zeros if DATA was not
specified for the trap).

The following fields apply to PER interrupts only (otherwise set to N/A (or N or

one-byte fields)).

Offset

55 (37)

63 (3F)
7M@)

77 @4D)
81 (51

87 (57

91 (5B)
95 (5F)
103 (67)

107 (68)

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

Size

Description

Load module name in which the interrupt occurred (or U/A
or N/A).

Offset in load module (or U/A or N/A).

Instruction content (six bytes of data beginning at the address
of the instruction that caused the PER interrupt).

Target instruction address if EXECUTE instruction (or N/A
or U/A).

Target instruction content if EXECUTE instruction (six bytes
of data beginning at the target instruction address), or (N/A
or U/A).

Beginning range virtual address if SA (storage-alteration)
specified on SLIP command (or N/A).

Four bytes of storage starting at beginning range virtual
address if SA specified (or N/A or U/A).

Program old PSW.

Program interrupt code (PIC) and instruction length code.

PER interrupt code:
Successful-branch event (SB).
Instruction-fetch event (IF).
Storage-alteration event (SA).

Chapter 1. Generalized Trace Facility 1-81

Offset
108

109
111
113
1S
117

118

(6C)

(6D)
(6F)
(7m
(73)
(79)

(76)

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Description

PER trap mode:

Successful-branch monitoring (SB).
Instruction-fetch monitoring (IF).
Storage-alteration monitoring (SA).

Reserved.

PER trap.

Recovery specified.

Message flag.

Message flag.

Keymask.

SASID.

Authorization index.

PASID.

PSW S bit indicator (F1 indicates secondary addressing
mode, FO indicates primary addressing mode).
Reserved.

SLIP Standard + User Trace Record: GTF builds a record that has the
following format when the HOOK macro instruction is issued with an EID of

IEAVSLSU.
Offset

0 0)

2 2)

4 @

S (5)

6 (6)
14 (E)
16 (10)
through
118 (76)
136 (88)
138 (8A)

18
2
variable

Description

Length of record in bytes.

X'0000".

Record identifier: X’FF’ indicates trace record.
Format identifier: X’04’ indicates AMDSYS04.
Optional timestamp; if GTF option TIME=YES is
specified, this field contains the eight bytes of the
TOD clock value.

Event identifier: X’4005° indicates a SLIP standard/
user record.

Fields are identical to the SLIP standard record.

Length of user-defined data.
User-defined data (specified via the TRDATA parameter
on the SLIP command).

SLIP User Trace Record: GTF builds a record that has the following format
when the HOOK macro instruction is issued with an EID of IEAVSLUR.

Offset

[= NV g N B)

©
@
(4)
&)
®

(E)

(10)
(12)
(14)
(15)
(n

Size

2
2
1
1
8

NN

o —

variable

1-82 MVS/Extended Architecture Service Aids Logic

Description

Length of record in bytes.

X’0000°.

Record identifier: X’FF’ indicates trace record.
Format identifier: X’04’ indicates AMDSYS04.
Optional timestamp; if GTF option TIME=YES is
specified, this field contains the eight bytes of the

TOD clock value.

Event identifier: X’4006" indicates a SLIP user record.
CUPUID (See Note 3).

Extension number (See Note 3).

Continuation length (See Note 3).

Length of the user defined data (See Notes I, 2, and 3).
User-defined data (specified via the TRDATA parameter
on the SLIP command). (See Note 3).

LY28-1189-3 © Copyright IBM Corp. 1982. 1986

“Restricted Materials of IBM”

Licensed Materials — Property of IBM

Notes:

1.

If the SLIP user requests registers to be placed in the SLIP user record, they
will be the first field in the record.

A length field of zero indicates that the user-defined data was not available (for
example, the data is paged out).

The TRDATA parameter on the SLIP command specifies one or more data
ranges. The number of records needed to trace these ranges depends on the size
of the ranges specified. The trace contains a standard plus (+) user record
from the next range or a user record followed by as many user records and user
continuation records as needed to trace the ranges specified. The header for
each record contains the CPUID and extension number to help correlate the
output (extension numbers apply only to user and user continuation records).
When a record is partially filled and the data from the next range will not fit in
the remaining space; the AHLSTACK macro instruction writes the partially
filled record to the trace data set. Another user record is built, the extension
number is increased by one, and the continuation length is set to zero. The data
length and data is then copied into this record.

When the length of the data from a range is greater than 249 bytes, the excess
data is put in user continuation records in the following manner. The data
length and first 248 bytes are put in a user record. After writing that record a
user continuation record is built. The extension number is increased by one and
the continuation length is set to the number of bytes of data to be put in this
record. If more than 251 bytes of data are left, 248 bytes are copied into
record, and it is written. User continuation records are built until all the data in
from that range is traced.

SLIP DEBUG Trace Record: GTF builds a record that has the following format
when the HOOK macro instruction is issued with an EID of IEAVSLSU and the
SLIP trap is in DEBUG mode.

Offset Size Description

0 0) 2 Length of record in bytes.

2 2) 2 X’0000".

4) 1 Record identifier: X'FF’ indicates trace record.

S (5) 1 Format identifier: X’04” indicaies AMDSYS04.

6 6) 8 Optional timestamp; if GTF option TIME =YES is

specified, this field contains the eight bytes of the
TOD clock value.

14 (E) 2 Event identifier: X’4005’ indicates SLIP standard/
user trace record.

16 (10) 4

through Fields are identical to the SLIP standard record.

109 (6D) 27 (See Note 1.)

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter |. Generalized Trace Facility 1-83

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Offset Size Description

136

137

(78) l DEBUG byte I: \

. ... ADDRESS test.

1. ASID test.

I COMP test.

.1 DATA test.
1... ERRTYP test.
B JOBNAME test. See Note 2.
WL JSPGM test.
.| LPAMOD test.

a9 1 DEBUG byte 2:
1. MODE test.
B I PVTMOD test.
WL RANGE test.
ol ASIDSA test.)

Notes:

The high-order bit in the SLIP flags (SFLG) field (at offset X'34) is set on to
indicate a DEBUG record.

For each SLIP event, these bytes (at offsets (X'78 and X'79’) represent:

® A bit set to one indicates that the corresponding keyword test did not
match.

® Bits set to zero indicate that the corresponding keyword test (1) matched,
or (2) was not performed.

SRM Comprehensive Trace Record

GTF builds a record that has the following format when an invocation of the
system resource manager occurs and TRACE=SYS or TRACE=SRM is in

effect.

Offset Size Description

0) 2 Length of record in bytes.

2) 2 X'0000".

4 “ 1 Record identifier: X'FF’ indicates trace record.

5 (©)] 1 Format identifier: X‘04’ indicates AMDSYS04.

6 ©) 8 Optional timestamp; if TIME = YES is specified, this
field contains the eight bytes of the TOD clock.
If TIME=NQO, this field does not exist.

14 (E) 2 Event identifier: X’4001".

16 (10) 4 ASCB.

20 (14 2 CPUID.

22 (16) 8 Jobname.

30 (1E) 4 Register 15.

34 (22) 4 Register 0.

38 (26) 4 Register 1.

1-84 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”

Licensed Materials — Property of IBM

SRM Minimal Trace Record

GTF builds a record that has t he following format when an invocation of the
system resource manager occurs and TRACE=SYSM is the GTF option in
effect.

Offset

[RV I - S]

14
16
20

26
30

SSCH Trace Record

O
(2
@
&)
(6

B

(10)
(14)
(16)
(1A)
(1E)

0 — = NN

& RNAEN

Description

Length of record in bytes.

X’0000°".

Record identifier: X'FF’ indicates trace record.
Format identifier: X’03’ indicates AMDSYS03.
Optional timestamp; if TIME = YES is specified, this
field contains the eight bytes of the TOD clock value.
If TIME = NO, this field does not exist.

Event identifier: X'4001".

ASCB.

CPUID.

Register 15.

Register 0.

Register 1.

GTF builds a record that has the following format when an SSCH event occurs
and TRACE=SYSM, TRACE=SYS, TRACE=SYSP, TRACE =SSCH or

TRACE =SSCHP is in effect.

Offset

A b NO

16
20
22
30
32
36
40

45
57

66
67

69
70

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

0
)
@
&)
(6)

(E)
(10)
(14)
(16)
(1E)
(20)
(24)
(28)
(20)
(2D)
(39)
E2))
“2)
43)
(44)
(45)
(46)

w
E.

00 = = NN

,_.—.,—.—_.—.ms—&&#lx)ml\)&l\)

Description

Length of record in bytes.

X'0000".

Record identifier: X’FF’ indicates trace record.
Format identifier: X’00".

Optional timestamp; if TIMESTAMP = YES is specified, this
field contains eight bytes of the TOD clock value.
Event identifier: X'5105 indicates an SSCH event.
ASCB.

CPUID.

Jobname.

Device number.

Real address of channel program.

Virtual address of channel program.

10SDSID.

Condition code.

ORB.

Dynamic seek address.

IOSGPMSK.

I0SOPT.

IOSFMSK.

Driver identifier.

IOSLEVEL.

UCBLEVEL.

Chapter 1. Generalized Trace Facility 1-85

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

SVC Comprehensive Trace Records

GTF builds SVC comprehensive trace records when an SVC interruption occurs J
and either TRACE=SYS or TRACe=SVC is in effect. All SVC records contain

the basic data described below; however, many SVC numbers invoke additional

data recording, described following the basic data.

Basic SVC Comprehensive Trace Record

Offset Size Description
0 0 2 Length of record in bytes.
2 2 2 X’0000".
4 4) 1 Record identifier: X'FF’ indicates trace record.
5 5 1 Format identifier: X'01".
6 (6) 8 Optional timestamp; if TIME = YES is specified, this field
contains the eight bytes of the TOD clock value.
If TIME = NO, this field does not exist.
14 (E) 2 Event identifier: X‘1000’ indicates in SVC
interruption.
16 (10 4 ASCB.
20 (14) 2 CPUID.
22 (16) 8 Jobname.
30 (1E) 8 SVC old PSW. The third and fourth bytes contain the
SVC pnumber.
38 (26) 4 Old TCB.
42 (2A) 8 CDE name.
50 (32) 4 Register 15.
54 36) 4 Register 0.
58 (38) 4 Register 1.
GTF builds only a basic comprehensive trace record for the following SVCs:)
Name Number Name Number
EXIT 3 TEST 97
GETMAIN/FREEMAIN 10 SUBMIT 100
TIME 11 QTIP 101
SYNCH 12 XLATE 103
MGCR 34 TOPCTL 104
WTL 36 IMBLIB 105
TTROUTER 38 REQUEST 106
CIRB 43 MODESET 107
TTIMER 46 None 109
TTOPEN 49 DSTATUS 110
NOP 50 JECS 111
OLTEP 59 RELEASE 112
TSAV 61 SIR 113
CHATR 72 BLKPAGE 115
(IFBSTAT) 76 None 116
STATUS 79 None 117
SMFWTM 83 DSSPATCH 118
(1GC084) 84 TESTAUTH 119
SWAP 85 GETMAIN/FREEMAIN 120
EMSERV 89 None 121
VOLSTAT 91 None 122
TPUT/TGET 93 PURGEDQ 123
TSO terminal control 94 TPIO 124
SYSEVENT 95

1-86 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright [BM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Basic SVC Comprehensive Trace Record with Parameter List Information: Refer
to Debugging Handbook for details of the additional information gathered for the

following SVCs:

Name

EXCP
WAIT/WAITR
POST
GETMAIN
FREEMAIN
LINK

XCTL

LOAD
DELETE
ABEND

SPIE
ERREXCP
PURGE
RESTORE
BLDL/FIND
OPEN

CLOSE

STOW

OPEN TYPE = J
CLOSE TYPE = T
DEVTYPE
TRKBAL
CATLG
OBTAIN

CVOL
SCRATCH
RENAME
FEOV

ALLOC
IOHALT
WTO/WROR
SEGLD/SEGWT
LABEL
EXTRACT
IDENTIFY
ATTACH
CHAP
OVLYBRCH

Minimal Trace Record

Number

[~ N B RV R L R =]

Hob B R D LWL WL W LR RN RN RN R R DR = o e e e — — D
VE N = OV WLWh=— OOV HE W —O 0 0N & W

Name

STIMER

DEQ

SNAP
RESTART
RELEX
DISABLE

EOV
ENQ/RESERVE
FREEDBUF
RELBUF/REQBUF
STAE

DETACH
CHKPT
RDJFCB
BTAMTEST
BSP

GSERV
ASGNBFR/BUFINQ/RLSEBFR
SPAR

DAR

DQUEUE
LSPACE

GJp

SETPRT
DISKANAL
ATLAS

DOM

MODS88
TCBEXCP
STAX
PROTECT
Dynamic allocation
TCAM
EXCPVR

Number

47
48

52
53

55
56
57
58
60
62
63

66
69
70
71
73
74
75
78
80
81
82
86
87
88
)
96
98
99
102
114

GTF builds a record that has the following format when an SVC interruption
occurs and TRACE =SYSM is the GTF option in effect.

Offset

0)
2)
4 4
5 (5)
14 (E)
16 (10)
20 (14)
22 (16)
30 (IE)
34 (22)
38 (26)
42 (2A)

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

Size
2

OO = N

o N BN

b S

Description

Length of
X’0000".

Record identifier: X'FF’ indicates trace record.

record in bytes.

Optional timestamp; if TIME = YES is specified, this field

contains the eight bytes of the TOD clock value.

If TIME=

Event identifier: X’1000’ indicates an SVC interruption.

ASCB.
CPUID.

NO, this field does not exist.

SVC old PSW. The third and fourth bytes contain the
SVC number.

Old TCB.

Register 15.

Register 0.
Register 1.

Chapter 1. Generalized Trace Facility

1-87

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Section 5: Diagnostic Aids

Event Identifier (EID)

1-88 MVS/Extended Architecture Service Aids Logic

This section contains the following information to aid the reader in diagnosing
GTF errors:

® A list of event identifiers (EIDs) with their symbolic names and associated
events.

® A list of format identifiers (FIDs) with their associated AMDPRDMP format
modules.

® A list of record identifiers (AIDs) with their associated record types.
® A description of the return codes issued by GTF modules.
Note:

Refer to System Messages for message number, message text, and detecting,
issuing and containing modules.

The event identifier (EID) in GTF trace records is a two-byte hexadecimal
number that defines the event that caused the record to be built. The EID is in
the form cddd where c is the event class (0-F) and ddd is the ID of the event
within the class.

EID EID

(hex) (symbolic name) Issued by Event

0001 IEADISPI Dispatcher SRB dispatch.

000 IEADISP2 Dispatcher LSR dispatch.

0003 IEADISP3 Dispatcher TCB dispatch.

0004 IEADISP4 SVC exit prologue SVC dispatch.

1000 IEASVCH SVC FLIH SVC interrupt.

2100 1ECPCI 10S PCI interrupt.

4001 IRASRM System Resource SYSEVENT event.

Manager

4002 IEASTAE RTM STAE/ESTAE event.

4003 IEAFRR RTM FRR event.

4004 IEAVSLSD RTM SLIP event.

4005 IEAVSLSU RTM SLIP event.

4006 IEAVSLUR RTM SLIP event.

5101 IECEOS 108 End-of-sense interrupt.

5102 IECCSCH 108 Clear subchannel event.

5103 IECHSCH 108 Halt subchannel event.

5104 IECMSCH 108 Modify subchannel event.

5105 IECSSCH 108 Start subchannel event.

5106 IECRSCH 108 Resume subchannel event.

5200 1ECIO2 108 Normal I/O interrupt.

6101 IEAPINT PFLIH Program interrupt (codes 1-17,
19).

6200 IEATINT PFLIH Program interrupt (code 18).

6201 IEAEINT EFLIH External interrupt.

8100 ISPTPIO1 VTAM Remote network input received
as a PIU.

8200 ISPTPIO2 VTAM Remote network output PIU.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

EID
(hex)
F100

F200
E000-E3FF

E400-EBFF
ECO00-EF9F
EFAQ-EFA9
EFAA-EFAE
EFAF-EFEO

EFEI
EFE2
EFE3
EFE4
EFES-EFEE
EFEF
EFEF
EFF0
EFF1
EFF2
EFF3
EFF4
EFF5
EFF6
EFF7
EFF8
EFF9
EFFA
EFFB
EFFC
EFFC
EFFE
EFFF

Format Identifier (FID)

EID
(symbeolic name)

IEASVCD

IEAAABOF

IMDGPDOI-
IMDGPDS50
ISTVIEID
ISTTHEID
ISTTREID
ISTTDEID

ISTTPEID
ISTTPEID
ISTRPEID
ISTCLEID
ISTLNEID
IGGSP002
1IGGSP008
IDAAMOI
IGGSP112
IGGSP215
IGGSP119
1GGSP235
1GGSP239
IGGSP145
IGGSP251
IGGSP451
IGGSP169
THLMDMALI

Issued by
SVC Dump

ABDUMP/SNAP
GTF user

Not Issued
TCAM
IBM components

VTAM
VTAM

VTAM

VTAM

JES2

VTAM

VTAM

VTAM

VTAM

VTAM
SAM/PAM/DAM
SAM/PAM/DAM
VSAM
SAM/PAM/DAM
SAM/PAM/DAM
SAM/PAM/DAM
SAM/PAM/DAM
SAM/PAM/DAM
SAM/PAM/DAM
SAM/PAM/DAM
SAM/PAM/DAM
SAM/PAM/DAM
OPEN/CLOSE/EOV

Event

SVC Dump requesting trace
data.

ABDUMP requesting trace data.
User data passed by E3FF
GTRACE macro.

Reserved.

Reserved.

Reserved.

VTAM interval trace.
Reserved.
Reserved.
Reserved.

TPIOS buffer.

TPIOS buffer.

Buffer pool allocation.
Control layer.

Line trace.

The format identifier (FID) in GTF records is a one-byte hexadecimal number
that is used to determine the name of the AMDPRDMP EDIT module that will
format the record.

EID
(hex)
00
01-50
F9
FD
FE

FF

EID
(symbeolic name)

E000-EFE4

E000-E3FF
EFF5
EFEF
EFFO0-EFF2
EFF3-4
EFF6-E
EFFF

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

Issued by

User/component

User

VSAM

VTAM
SAM/PAM/DAM

OPEN/CLOSE/EOV

Event

CSECT AMDPRHEX
in AMDPRREC
IMDUSR (01-50)
IMDUSRF9
IMDUSRFD

IMDUSRFE

IMDUSRFF

Chapter 1. Generalized Trace Facility 1-89

System Records

FID
(hex)
00
00
00
00
00
00
00
00
00
00

0l
01

02
02

02

02

03
03
03
03
03

03
03
03
03
03

03
03

Record Identifier (AID)

EID
(hex)
2100
5101

5102
5103

5104
5105
5106
5200
F100
F200

1000
N/A

6101
6200
0001
0002
0003
0004
N/A

1000
2100
6101
6200
6201
0001
0002
0003
0004
4001
4002
4003
N/A

8100
8200

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Record Type

Comprehensive PCI
Comprehensive EOS
Comprehensive CSCH
Comprehensive HSCH
Comprehensive MSCH
Comprehensive SSCH
Comprehensive RSCH
Comprehensive 1/O
Save hook control

If buffer in full
condition, FID =X‘05
Comprehensive SVC
Timestamp

Comprehensive PI
Comprehensive Pl

Comprehensive DSP

Lost data

Minimal SVC
Minimal PCl
Minimal PI
Mipimal PI
Minimal EXT

Minimal DSP

Minimal SRM

Minimal STAE/ESTAE
Minimal FRR

Lost block

Minimal RNIO input
Minimal RNIO output

AMDPRDMP
Format Module

AMDSYS00
AMDSYS00
AMDSYS00
AMDSYS00
AMDSYS00
AMDSYS00
AMDSYS00
AMDSYS00
AMDSYS00
AMDSYS0S

AMDSYS01

CSECT AMDPRCON
in AMDPRREC
AMDYSS02
AMDSYS02

AMDSYS02

CSECT AMDPRCON
in AMDPRREC
AMDSYS03
AMDSYS03
AMDSYS03
AMDSYS03
AMDSYS03

AMDSYS03

AMDSYS03
AMDSYS03
AMDSYS03

CSECT AMDPRCON
in AMDPRREC
AMDSYS03
AMDSYS03

The record identifier (AID) in GTF records is a one-byte hexadecimal number

that identifies the record as a trace record or a control record.

Aid

(hex) Record Type

00 Control record.

FF Trace record created by a GTF record build module for an event.

1-90 MVS/Extended Architecture Service Aids Logic

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

GTF Return Codes

Return codes are always passed in register 15.

Moedule
AHLCWRIT
AHLGTFI

AHLIWRIT
AHLMCER
AHLMCIH

AHLREADR

AHLSBLOK
AHLSBUF

AHLSCAN

AHLSETD

AHLSETEV

AHLSETMG
AHLTCCWG
AHLTCTLI

AHLTCTL2
AHLTDIR
AHLTEXT

AHLTFCG
AHLTFOR

CSECT
AHLCWRIT
AHLGTFI

AHLIWRIT
AHLMCER
AHLMCIH

AHLREADR

AHLSBLOK
AHLSBUF

AHLSFEOB

AHLSCAN

AHLSETD

AHLSETEV

AHLSETMG
AHLTCCWG
AHLTCTLI

AHLTCTL2
AHLTDIR
AHLTEXT

AHLTFCG
AHLTFOR

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

Entry
Point

AHLCWRIT

AHLGTFI
AHLIESTA

AHLIWRIT
AHLMCER

AHLMCIH
AHLMCIHB
AHLMCFRR

AHLREADR

AHLSBLOK

AHLSBCUI
AHLSBUF
AHLSFEOB

AHLSCAN

AHLSETD

AHLSETEV

AHLTCCWG
AHLTCTL1

AHLTDIR

AHLTEXT
AHLTEXTE

AHLTFCG

AHLTFORE
AHLTFRR
AHLTRNIO
AHLTSRM
AHLTSTAE

Return

Code
None

None
None

None

None
None
XX

oo b O

XX

XX

[=]

20

N/A
None

12
N/A
None

None
None

None

None
None
None
None
None

Meaning

Retry condition

Data transferred.
No data transferred; GTF inactive.

No data transferred; no matching
SLE.

ABEND condition.

ABEND condition.

FEOB performed.

Cannot perform FEOB; record
will be lost.

Processing completed normally.
Error in AHLSCAN.
STOP command issued.

All requests have been satisfied.
At least | request satisfied; at least
1 request unsatisfied because of
invalid EID or class.

No requests satisfied; invalid func-
tion name or parameter list.

No requests satisfied; all invalid
EIDs/classes.

Processing completed normally.
Request not satisfied due to
insufficient storage.

Control register 8 could not be set
on one or more CPUs; MC routine
can proceed.

Processing completed normally.
STOP command was issued.

Chapter 1. Generalized Trace Facility 1-91

Module
AHLTMON

AHLTPID

AHLTPMT

AHLTSCN

AHLTSLIP
AHLTSVC

AHLTSYFL

AHLTSYSM

AHLTTAB

AHLTUSR

AHLTXSYS

AHLTI03
AHLVCOFF
AHLVCON
AHLWTASK
AHLWTMSG
AHLWTO

AHLWWRIT

CSECT
AHLTMON

AHLTMMSG
AHLTPID

AHLTPMT

AHLTSCN

AHLTSLIP
AHLTSVC

AHLTSYFL

AHLTSYSM

AHLTTAB

AHLTUSR

AHLTXSYS

AHLTI03
AHLVCOFF
AHLVCON
AHLWTASK
AHLWTMSG
AHLWTO

AHLWWRIT
AHLWRMSG

1-92 MVS/Extended Architecture Service Aids Logic

Entry
Point

AHLTMON
AHLTESTA

AHLTDSP
AHLTLSR
AHLTPI

AHLTSRB

AHLTPMT

AHLTSCN

AHLTSLIP
AHLTSVC

AHLFIO
AHLFPI
AHLFSIO
AHLFSVC

AHLDSP
AHLEXT
AHLPI
AHLSTAE
AHLSVC

AHLTTAB

AHLTUSR

AHLSRB
AHLSRM

AHLTI103
AHLVCOFF
AHLVCON
AHLWPOST

AHLWTOMD
AHLDMPMD

AHLWWRIT

“Restricted Materials of IBM”

Licensed Materials — Property of IBM

Return
Code

None
None
N/A

None
None
None
None

12

12
None

None

None
None
None
None

None
None
None
None
None

0w o oo

16
20
24
28
32

None
None

None
None
None
None
N/A
None
(UN)
lbb?
None
None

Meaning

Processing completed normally.
STOP command was issued.

Normal completion.
STOP command.

Normal completion.
GTF termination requested.

Normal completion.

Invalid length; less than 1 or
greater than 256.

Invalid data address.

Invalid FID.

Invalid EID.

Not enough space in GTF buffers.
Invalid parameter list address.
Data was paged out.

Could not take SDUMP.
SDUMP was issued.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Section 6;: GTF Macro Instructions

AHLREAD

AHLSTACK

GTRACE

The AHLREAD macro instruction causes scheduling of the AHLREADR routine
to request transfer of trace data requested by the ABDUMP/SNAP or SVC
Dump routine. It builds a parameter list for the routine (AHLREADR) which
locates GTF in storage and queues the data transfer request.

The AHLSTACK macro instruction is used by the GTF record-build routines to
cause the 16-byte prefix for a trace record to be constructed. The prefix is placed
immediately preceding the trace data in the record-builder’s work area. The
record-blocking routine (AHLSBLOK) is called to initiate the blocking-buffering
process.

IBM users and components issue the GTRACE macro instruction to cause trace
data that they have collected to be placed in the GTF trace buffers. GTF will not
accept user or component data unless the GTF options in effect include
TRACE=USR or TRACE =USRP.

The GTRACE macro instruction has six parameters: the main storage address of
the data to be recorded, the number of bytes to be recorded, the format identifier
(FID) that indicates the routine that will process the user or component entry
when the trace output is edited by AMDPRDMP, the ID of the user or
component that built the record, specification of whether paged-out data should
be obtained for recording (PAGEIN =YES/NO) and a TEST parameter. When
TEST =YES is specified, GTRACE determines if GTF is active for the user event
that the ID parameter specifies. The IHLMGTRC mapping macro instruction
generates symbolic names equated to all assigned user/component ID values. For
a description of the format of the GTRACE instruction, refer to Service Aids.

If PAGEIN =YES was specified, code generated by the expansion of the
GTRACE macro instruction will cause the paged-out data to be paged in and the
GTRACE to be issued. IF PAGEIN =NO was specified and a page fault occurs
during the access of user data, GTF passes a return code of X‘20’ and no record
is built.

The GTRACE macro instruction may be implemented in standard, list, or execute
form. The standard form generates a monitor call (MC) instruction (see Section
7). The list form generates a parameter list for the GTRACE parameters, and the
execute form changes the values of the parameters in the list. The TEST
parameter is only valid on the standard form of the GTRACE macro.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 1. Generalized Trace Facility 1-93

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

HOOK

The HOOK macro instruction is used by system routines to communicate with
GTF as follows:

® The first level interruption handlers (FLIHs), the I/O supervisor, the
dispatcher, the SVC exit prolog, the system resource manager, and the
recovery/termination manager issue the HOOK macro instruction to notify
GTF of the occurrence of system events that GTF recognizes for tracing. A
HOOK issued by these routines is called a trace hook into GTF.

The HOOK macro instruction has two parameters used in the following

format:
P
HOOK EID = symbolic name[,TYPE = T]
BP
BT
BPN

e EID=symbolic name — is the event identifier (EID) for the event that caused
the HOOK to be issued. The EID is given as a symbolic name that is
equated to a hexadecimal value. For a list of the EID symbolic names and
their hexadecimal equivalents, refer to the “Diagnostic Aids” section of this
chapter.

e TYPE=P — causes the HOOK macro instruction to generate a monitor call
(MC) instruction (see Section 7). The assembler converts the symbolic name
EID to its hexadecimal equivalent of the form X‘Oc0ddd’, where c is the class
and ddd is the displacement that is put into the MC instruction. The
following MC instruction is generated when TYPE =P is the parameter:

Instruction 1 (MC instruction) -

OP code: X'AF'.
I2: Bits 0-3 = B'0000"'.
Bits 4-7 = ¢ (event class).
Bl: B'0000"'.
D1: ddd (event ID).

® TYPE=T — causes the HOOK macro instruction to generate the MC
instruction shown under TYPE =P, but only if a designated assembler global
switch is set in the line of the associated module assembly.

e TYPE=BP — causes the HOOK macro instruction to generate a branch into
the MC routing-facility module AHLMCIH without generating an MC
instruction. This parameter is used by the PFLIH for all program
interruptions. The following three instructions are generated when
TYPE =BP is the parameter:

1-94 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Instruction 1 (load instruction) -

OP code: X'58'

R1: X'F' (register 15 points to AHLMCIH).
B2: r (base register).

D2: ddd (displacement).

L 15,IEACON1

Instruction 2 (BALR instruction) -

OP code: X'05!

R1: X'E' (register 14 points to NSI after
execution).

R2: X'F' (register 15 points to AHLMCIH).

Instruction 3 (NOP instruction) -

OP code: X'47'.

R1: B'0000"'.

X2: ¢ (event class).
B2: B'0000"'.

D2: ddd (event ID).

o Type=BPN — causes the HOOK macro instruction to generate a branch into
the MC routing facility module AHLMCIH without generating an MC
instruction. This parameter is used by non-PFLIH routines to enter module
AHLMCIH through secondary entry point AHLMCIHB. The sequence of
instructions generated is the same as for TYPE =BP except that the LOAD
instruction is from IEACON2. (IEACON2 is a V-type address constant for
AHLMCIHB.)

o Type=BT — causes the HOOK macro instruction to generate the three
instructions shown under TYPE =BP, but only if a designated assembler

global switch is set in the line of the associated module assembly.

IHLMGTRC
The IHLMGTRC macro instruction is mapping macro that generates symbolic
names equated to hexadecimal values for IBM components that use the GTRACE
macro instruction. The component specifies its assigned symbolic name as the
operand of the ID =keyword in the GTRACE macro instruction.

SETEVENT

The SETEVENT macro instruction is issued by users of the MC instruction (for
example, GTF) as an interface to the MC routine facility. The MC routine
facility passes control to the proper event handler when a requested MC
instruction is issued. Expansion of the macro instruction causes building of a
parameter list for the SETEVENT service. This service then does the actual
manipulation of the MC routing facility to perform the requested function.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 1. Generalized Trace Facility 1-95

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Section 7: Monitor Call (MC) Instruction

The monitor call (MC) instruction is a maskable interruption instruction. Both
the HOOK and GTRACE macro instructions generate the MC instruction to pass
control to GTF. The format of the MC is:

SI format — MC D|(B,),],

AF I, B, D

0 8 16 20 31

Each monitoring event is defined by the low order four bits of the 12 filed, known
as the class of the event, and by the sum of D, and B,. The GTF event identifier
(EID) is two bytes of the form cddd where c is the class of the event and ddd is
the event within the class. The GTF EID corresponds to the fields of the MC
instruction as follows:

MC instruction format

AF 1, B, D

0 8 16 20 31

MC instruction for GTF

AF 0 c 0 ddd

0 8 12 16 20 31

(Monitor call instructions generated by either the HOOK or GTRACE macro
instructions for GTF always contain a B, value of zero.)

1-96 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Chapter 2. Module Map and IDR List (AMBLIST)

Section 1: Introduction

Functions

AMBLIST is a linkage-editor service aid program that provides the user with
formatted listings for use in problem determination. AMBLIST operates as a
problem program under MVS/XA.

The main functions of AMBLIST are:

e Producing formatted object module listings.

e Producing formatted load module listings.

e Producing formatted nucleus listings.

e Producing load module maps and cross-reference listings.

e Formatting the information in the CSECT identification records (IDRs) of a
load module.

e Producing a formatted link pack area map.

An object module listing contains the text of the module, that is, its instructions
and data in hexadecimal representation, and the END record. It also contains the

external symbol dictionary (ESD) and the relocatable load dictionary (RLD).

The contents of a load module listing vary according to the options selected by
the user. A load module listing (including the nucleus) may contain the control
and test records of the stored load module, including the external symbol
dictionary and the relocatable load dictionary, scatter and translation tables,
IDRs, a module map, and a cross-reference listing.

The CSECT identification records (IDRs) can be formatted and listed. The user
can request that all IDRs be displayed or that just those IDRs containing
AMASPZAP service aid program data and those containing optional
user-supplied data be displayed. If a translator supports IDR, the translator, its
version and modification level, and the date of translation for a particular control
section are recorded in the IDR translator data records (subtype 04). The IDR
linkage-editor record (subtype 02) contains information pertaining to the

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 2. Module Map and IDR List (AMBLIST) 2-1

Environment

Storage Requirements

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

linkage-editor that constructed the load module: its version, modification level,
and date of load module creation. AMBLIST also lists any user-supplied data
associated with the executable code of a control section recorded in IDR user data
records (subtype 08). The modifications that AMASPZAP performed on a
specified control section of a load module, including the date and the specific data
modified, are recorded in the IDR AMASPZAP data records (subtype 01).

AMBLIST resides in the system library. AMBLIST is executed as a job step
through specification on an EXEC job control statement in the input stream; or it
receives control through the execution of a LINK. LOAD, ATTACH, or XCTL
macro instruction.

Input to AMBLIST consists of object modules or load modules plus control
statements. Control statement input is defined by the SYSIN DD statement. The
DDN option in a control statement (or the default name of SYSLIB) specifies the
name of the DD statement defining the sequential or partitioned data set
containing the module(s) optionally designated as input in the control statement.
Output from AMBLIST is the listings requested by the control statement plus any
diagnostic messages. The output from AMBLIST goes to any user-defined data
set defined in the SYSPRINT DD statement.

AMBLIST is operational in the minimum configuration required for MVS/XA. It
requires a minimum of 64K bytes of storage. Static data and instructions require
36K bytes of storage, the remainder of the 64K bytes of storage is dynamic
storage, including an allowance for non-resident access method routines.

Physical Characteristics

AMBLIST is a reenterable program and consists of a control module, five
processing modules, two diagnostic modules, and an open exit module for

SYSPRINT:

Control module: HMBLKCTL.

Load module processing module: HMBLKLDM.

Map and cross-reference processing module: HMBLKXRF.
Object module processing module: HMBLKOBJ.

Link pack area mapping module: HMBLKLPA.

CSECT identification record processing module: HMBLKIDR.
Error message writer: HMBLKERR.

Text of error messages: HMBLKMSG.

Open exit module for SYSPRINT: HMBLKSZE.

Each of these modules consist of a single external procedure, except for
HMBLKMSG, which is a CSECT containing two tables.

HMBLKCTL examines the input stream control statement (from the SYSIN data
set) and determines which of the five processing modules must be called.

2-2 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Operational Considerations

Operation of AMBLIST depends upon the type of input received and on the user
options specified. The control statements in the input stream re in the format of
an operation and its applicable operands. The formats are shown in Service Aids.
The control routine scans the control statement and turns on the appropriate
switches in the OPTNMAP map to indicate which routines are to be used.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 2. Module Map and IDR List (AMBLIST) 2-3

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Section 2: Method of Operation

This section shows how AMBLIST provides the user with formatted listings. As
shown in LIST Figure 2-1, the description begins with an overview, then describes
the following stages of overall processing:

e Control processing (MO1).
e Listing processing (MO2 - MOS).
e Diagnostic processing (MO6).

Reading Method of Operation Diagrams

Method of operation diagrams are arranged in an input-processing-output layout;
the left side of the diagram contains the data that serves as input to the processing
steps in the center of the diagram, and the right side contains the data that is
output from the processing steps. Each processing step is numbered; the number
corresponds to the verbal description of the step in the extended description.
While the processing step in the diagram is in general terms, the corresponding
text is a specific description that includes a cross-reference to the code for the
processing.

2-4 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

AMBLIST
Diagram 1 Diagram 2 Diagram 3 Diagram 4 Diagram 5 Diagram 6
Control Load and Object Map and Cross- Link Pack IDR Listing Diagnostic
Processing Module Listing Reference Area Listing Processing

Key to Method of Operation (MO) Diagram Symbols

Entry into processing 1, 2, etc. Lock for corresponding numbers in text

A, B, etc. Look for blow-up of item on same page
Flow of Control

Look for corresponding-lettered blow-up
on same page

Data Transfer

A

Braces to denote related items

—Pp or Pointer to or address of
See referenced diagram for detailed
description
4—> Reference to data
MO1 Reference to another diagram

Figure 2-1. Key to Method of Operation Diagrams for ABMLIST

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 2. Module Map and IDR List (AMBLIST) 2-5

21307 SPIY 901AI2G 3INJOAIYOLY PIPUAXT/SAWN 9-7

9861 ‘7861 'd10D WEI WBuAdoD & £-6811-8TAT

LIST Diagram 1. AMBLIST Control Processing (Part 1 of 2)

Input From MVS

// EXEC PGM=AMBLIST

Process

Control Processing

1 Validate control statements and

/

/ISYSIN DD*
LIST ...

/(A\ Control Statements
_J

LISTLOAD OUTPUT=
TITLE=
DDN=
MEMBER=

TITLE=

set switches in OPTNMAP.

2

Input

Open |Output

] Data Set

Control Processing for Load Modules

DDN=

3 Analyze linkage editor attri-

MEMBER=

OUTPUT=
TITLE=
DDN=
MEMBER=
LISTLPA MLPA,
FLPA,
PLPA

butes and set switches in
ATNAME.

4 Search partitioned data set
directory.

B Print module summary.

EOF Processing

6 Return control to system.

Module
Processing

Output

OPTNMAP
OPERATIONS
OPERANDS
OPTIONS

ATNAME
ATON
ATOFF

PDS

Alias Indicator

Member or Alias Name

Rel Addr of 1st Text Record

l |

| Entry Pt Addr

SSI

//ISYSPRINT

Module
Processing

RETURN to
Operating System

] Jo Apiadorg — S[BLIdJBIA] PasUadI]
«ANE] JO STBLI3JBIA P3JOLIISIY,,

9861 ‘7861 'd10D W[WYSUAdoD @ €-6811-8TAT

(LSI'TEINY) 1517 ¥l pue dey a[npoN -z 1a1deyn

LT

~

LIST Diagram 1. AMBLIST Control Processing (Part 2 of 2)

Extended Description

1 The user can specify four operations in the AMBLIST

control statement. Each of these operations has
several associated operands. See for a diagram
of the operations and operands. (A detailed discussion
of the operations, operands, and options associated
with the operands and their meanings is given in
Service Aids.) HMBLKCTL analyzes and validates
the control statements and sets the appropriate
switches in OPTNMAP.

® I LISTLOAD or LISTIDR is specified, HMBLKCTL
performs the processing listed in steps 2, 3, and 4.

® When LISTOBJ is specified on the control statement,
HMBLKCTL performs step 2.

@ |If an error is discovered, HMBLKCTL passes control
to the error processing routine HMBLKERR (MO 5)

2 There is one output data set SYSPRINT, which
contains all the output of AMBLIST.

3 The linkage editor attributes specified in the
directory entry are analyzed and the appropriate
switches are set in ATNAME.

4 HMBLKCTL scans the partitioned data set (PDS)

directory for aliases and secondary entry point
addresses, for the system status index (SSl1), for the
access code (APF), and for the main entry point address
of the load module.

B A module summary is prepared by HMBLKCTL for

the first page of an output listing for a load module.
(A detailed discussion of the contents of the module
summary is found in Service Aids.)

6 When there are no more control statements to be
processed, dynamic storage is released and control
is returned to the operating system,

Module

HMBLKCTL

HMBLKCTL

HMBLKCTL

HMBLKCTL

HMBLKCTL

HMBLKCTL

HMBLKCTL

HMBLKCTL

Label

AAH1

AAH1

AAH1

AAA1

PDSREAD

CHOW

ENDIT

M Jo yiadoag — S[BUABY Pasudr]

« €I JO S[BLIRJBIA PajoLIISAY,,

01807 SPIY 20IAISS 2IN02JIYOIY POPURXA/SAN §-T

9861 ‘7861 "d10D Wd]I yBukdoD o £-6811-8TA'T

LIST Diagram 2. Load and Object Module Listing (Part 1 of 2)

Output

SYSPRINT

)

From MO1
Input ‘=n Process
LISTLOAD OUTPUT=.. ,TITLE=.. ., 1 Print heading and user title, if
DDN=...MEMBER=, .. specified
Data Set
Containing 2 Read load module records,
;08: | perform necessary conversions,
ocules to and print records on SYSPRINT,
Be Listed
> 3 Read object module records,
LISTOBJ TITLE=. . ., perform necessary conversions,
DON=, . ., MEMBER-=. .. and print reco|rTs on SYSPRINT.
Data Set
Containing
Object
Modules to
Be Listed

@ Control Processing

BUF

Type of module
listing
user title

TESTRAN data
CESD data

TESTRAN data
ESD data

Page No.

EI JO Auadosd — S[BLIABIA PIsTAd]

«AEI JO S[BUABIA pajoLYSIY,,

9861 ‘861 'd10D WEI 1YSuAdo) © ¢-6811-8TAT

(ILSITEYV) 3517 Y] pue deyy sjnpoy 'z raidey)

6-C

~

LIST Diagram 2. Load and Object Module Listing (Part 2 of 2)

Extended Description Module
1 The address of the data set containing the HMBLKLDM/
module(s) to be listed and the address of HMBLKOBJ

SYSPRINT are obtained from the parameter list
passed from HMBLKCTL. The heading, indicating
which type of module listing foliows, and the user
title, if specified, are written in SYSPRINT.

2 Therecords are read in order from the data HMBLKLDM/
set specified on the control statement. Some HMBLKOBJ

data items within the records are converted. See

the Data Conversions table for details. Finally,

the records are written in SYSPRINT. (Records

are read, converted, and printed one by one.)

3 Afterall records have been listed, control HMBLKLDM/
is returned to HMBLKCTL. If error condi- HMBLKOBJ

tions arose during processing they are indicated

in the ERRORS bit map in HMBLKCTL, and

diagnostic processing ensues. Otherwise,

HMBLKCTL handles the next user request.

Label

BEGIN/
INITID

EOJX/
OBJEOF

] Jo Kjiadoag — s[elIdE[A pasuddr]

«JAM] JO S[BLI)BIA PaJoLIISAY,,

01807 SPIY 901AIaS AIMBIYILY PIPUANXT/SAWN ()[-T

9861 ‘7861 'd10D WHI W3AdOD © £-6811-8TAT

LIST Diagram 3. Map and Cross-Reference Listing (Part 1 of 2)

Input

Process

LISTLOAD OUTPUT=XREF
TITLE=
or

DDN=, MEMBER=

Data Set

Containing

Load
Module

Output

SYSPRINT

Print heading and user title, if

> Type of listing Page No.

specified.

Read records and build tables. ___

CESDTAB
RLDTAB

User title

Numerical map and

SCATTALl
TRANTAB

Build numerical index; print <_I
numerical map and listing.

INDEXTAB

Build alphabetic index; print

alphabetic map and listing. A I

cross-reference listing
Pseudo register data

Alphabetic map and
crossreference listing

ﬁ Pseudo register data

@ Control Processing

4] Jo Ayadory — S[BLIABRN Pasuadr]

«NHI JO STBUINBIA pANOLUISIY,,

9861 ‘2861 'd10D Ng] WBuAdoD & ¢-6811-8TAT

(ILSI'TEN V) 11T ¥ Al pue del s[mpoy -z Jaidey)

I1-C

(\

LIST Diagram 3. Map and Cross-Reference Listing (Part 2 of 2)

Extended Description Module

1 The address of the data set containing the load HMBL KXRF
module to be processed and the address of

SYSPRINT are obtained from the parameter list

passed from HMBLKCTL. The heading, indicating

which type of listing follows and the user title, if

specified, are printed on SYSPRINT.

2 Read load module, enter CESD records in HMBLK XRF
CESDTAB, enter RLD records in RLDTAB.

If the load module is a nucleus, enter translation

records into TRANT AB, enter scatter records into

SCATTAB. All other records are ignored. If any

table overflows, processing is terminated and control

is returned to HMBLKCTL. When the load module HMBLK XRF

is @ nucleus, CESDTAB and RLDTAB addresses are

converted to loaded addresses using the SCATTAB

and TRANTAB entries. End of input is indicated

by the end-of-module (EOM) indication.

3 The CESDTAB is sorted into ascending numer- HMBLKXRF
ical sequence according to the segment number

and the address of the CESDTAB symbol. The

INDEXTAB is built using the CESDID of each

CESDTAB entry. The RLDTAB is sorted into

ascending numerical sequence according to the

address contained in the RLDTAB entry.

The segment numbers (in CESDTAB entries) are HMBLKXRF
converted to the EBCDIC code for decimal digits;

addresses {in CESDTAB or RLDTAB entries) are

converted to EBCDIC code for hexadecimal digits.

A numeric module map and cross-reference are then

printed. If the load module is in overlay format,

the above data is printed segment by segment,

beginning with segment 1. Finally, pseudo

register data is printed.

Label

AUTOINIT

WRITE1

READ

NuC

NCSORT

NRSORT

NACESD

WRITE

Extended Description

4 The CESDTAB is resorted into ascending
alphabetic sequence according to the
CESDTAB symbol. The INDEXTAB is rebuilt

using the CESD ID of each CESDTAB entry.

Data is converted as in step 3. An alphabetic
module map is then printed. To print an alpha-
betic cross-reterence listing ordered by symbol
referred to, R pointers (from the RLDTAB) are
sought to match ESD identifiers in the CESDTAB
entries. When a match is found, a cross-reference
line is converted and printed.

After all listings have been printed, control is
returned to HMBLKCTL. If error conditions
arose during processing, they are indicated in
the ERRORS bit map, and diagnostic processing
ensues. Otherwise, HMBLKCTL handles the
next user request.

Module

HMBLKXRF

HMBLKXRF

HMBLKXRF

Label

ACSORT

NACESD
ARLD

WRITE

FINISH

JNH] J0 Apadorg — S[BHaIBJY PIsuadI

A JO S[BLI3JBIA PAIOLSY,,

01307 SPIY 901AI95 2IMJ0RNIYDIY PIPUAXI/SAN Z[-T

9861 ‘7861 "d10D WHI 1q3ukdoD © €-6811-8ZA1

LIST Diagram 4. Link Pack Area Map Listing (Part 1 of 2)

Input

From MO1

LISTLPA

Process

Perform steps 1 through 3 for each

map requested:

1 Build table using link pack :: 3 CDETAB

Fixed Link Pack Area

Extended Fixed Link Pack Area

Modified Link Pack Area

Extended Modified Link Pack Area

Pageable Link Pack Area

|[Extended Pageable Link Pack Area

directory information.

Output

SYSPRINT

2 Print numeric link pack area

map.

3 Print alphabetic map.

@ Control Processing

—
—

Numeric Map
in Hexadecimal

Alphabetic Map
in Hexadecimal

\/-J

NG] Jo Auadolg — S[BLIABIA Pasuddr]

«NHI JO S|BUIBA pagoLysay,

9861 ‘861 'd10D I 14SuAdoD & €-6811-8ZAT

(LSI'TENYV) 1SI'T Al pue dey smpoy 7 19deq)

¢1-C

~

LIST Diagram 4. Link Pack Area Map Listing (Part 2 of 2)
Extended Description Module Label

1 if the FLPA and/or MLPA is being processed, HMBLKLPA HMBLKLPA
HMBLKLPA searches the active link pack

directory entry chain for entries pointing to modules

in the FLPA and/or MLPA and their extensions.

Otherwise, HMBLKLPA uses the pointer in the

CVT (CVTLPDIR) to get the entries for the PLPA

and Its extension.

AMBLIST builds the CDETAB using the link pack HMBLKLPA
directory information. The name, entry point,
and length are moved to the COETAB.

2 The CDETARB is sorted numerically by
module location.

3 The CDETARB is re-sorted alphabetically by
module name.

JNG] Jo A113doig — S[BLIAIBIA] PAsUdINI]

«HI JO S[BLIABIA PAIINSIY,

01307 sply 901A19§ 2IMI0YOIY PAPUNXA/SAN $[-T

9861 ‘7861 'd10D WHI 1yBukdod & €-6811-8TA"1

LIST Diagram 5. IDR Listing (Part 1 of 2)

Input From MO1 Process Output
SYSPRINT
LISTIDR QUTPUT= Type of Listing Page
TITLE= qJ Print heading and user title, if User Title
32:‘A=BER= specified.

CSECT Name,

Date of AMASPZAP
> 2 Scan CESD records and build ::> CSDTAB > Modification,
CSDTAB. Piahmiine o AMASPZAP Data

MODLIB=

Containing 4 Process IDR record according

Load to data type:
Module

Program Name,
Linkage Editor

® AMASPZAP —sortand %

!
|
|

Data Set > 3 Read IDR records. i ':y ZPRINT
|
|
]

print data i LINKOUT > Version and Level,
) Date of Load
L/ .
e Linkage editor — print data | Module Creation
CSECT Name,
<+
o Translator — correlate and ;> TRNPRNT Translator Name
print data

| Version, Compile Date

. -/ CSECT Name,
® User data — sort and print — IDPRINT > Date of Data Entry,
data. User-Supplied Data

/

MO1

I Jo Suadoirg — s[BLIRIBIA PasuadIT

«H] JO S[BLIIBIA pJOLYSIY,

9861 861 "d10D] SukdoDd @ €-6811-8TAT

(LSITENV) 1517 9] pue dely snpoy ‘7 1adey)

¢I-¢

~

LIST Diagram 5. IDR Listing (Part 2 of 2)

Extended Description Module

1 The address of the data set containing the load HMBLKIDR
module whose IDR’s are to be listed and the

address of SYSPRINT are obtained from the param-

eter list passed from HMBLKCTL. If the MODLIB

keyword was specified, only user data and

AMASPZAP data are printed. Printing of the

module summary is suppressed. " The head, indicating

which type of listing follows and the user title, if

specified, are printed on SYSPRINT.

2 Only CESD records containing SD (section HMBLKIDR
definition) or PC (private code) entries are
processed. The symbolic names and ESD identifiers

from these records are entered in the CSDTAB table.

3 Read IDR records and determine what type of HMBLKIDR

data they contain and then process accordingly.

Label

PRNT1

CESDRT

IDRTN

C

Extended Description

4 Inthe following processing, the ESD identifier

from the {DR is used to search the CSDTAB.
The CSECT name associated with the matching ESD
identifier in the CSDTAB is then printed with the
IDR data.

® AMASPZAP data — Get CSECT name from
CSDTAB and enter it and AMASPZAP data in
SORTAB, sort SORTAB alphabetically by CSECT
name, and print data from the ZPRINT output
area to SYSPRINT.

® Linkage editor data — The data is printed from
the LINKOUT output area to SYSPRINT.

e Trenslator data — Get CSECT name from CSDTAB
and enter it in TRNTAB. Enter transiator data in
TDTAB; correlate TRNTAB and TDTAB entries
and print data from the TRNPRNT output area to
SYSPRINT.

® User data — Get CSECT name from CSDTAB and
enter it and user data in IDENTDAT, sort
IDENTDAT alphabetically by CSECT name,
and print data from the IDPRINT output area.

The last IDR is identified by a fiag in the subtype
field. After all IDRs have been listed, control is
returned to HMBLKCTL. If error conditions arose
during processing, they are indicated in the ERRORS
bit map in HMBLKCTL, and diagnostic processing
ensues. Otherwise, HMBLKCTL handles the next
user request.

Module

HMBLKIDR

HMBLKIDR

HMBLKIDR

HMBLKIDR

HMBLKIDR

ZAPRT

LKERT

TR1

IDENRT

RET

JNG] Jo Auadorg — S[BLIJBIA| Pasuadl]

«NE] JO S[BLIBIAl PajoLISIYy,,

01307 SPIV 301AJ3S 21MI03NYIIY PIPUANXT/SAN 9[-T

9861 ‘7861 'd10D WHI 1Y8uLdoD @ £-6811-8TA'T

LIST Diagram 6. Diagnostic Processing (Part 1 of 2)

Input From MO1 procass Output
PARMLIST SYSPRINT
DIAGNOSTIC DIRECTORY
—_——) e e Get address of SYSPRINT DCB.
Register 1 A bceout » 1
PARMLIST
A > AMB1131 IDR Information. . .
I 2 Printtitle,
beeouT - AMB114]1. ..
1 > 3 Scan ERRORS bit map and print
ERRORS BIT MAP r—l appropriate error messages.

Control Processing

] Jo Aadorg — S[BLIA)BIy PasuN]
«JNM] JO S[BUAJBIA PajOMISaYy,,

9861 ‘7861 "d10D WE] WBuLdoD & ¢£-6811-87A1

(LSITEINV) 18T Ml pue dey snpojy 7 1s1dey)

L1-T

-

LIST Diagram 6. Diagnostic Processing (Part 2 of 2)
Extended Description Module Label

1 HMBLKERR obtains the address of the HMBLKERR
SYSPRINT DCB from the parameter list
(PARMLIST) passed from HMBLKCTL.

2 HMBLKERR then prints the title ‘Diagnostic HMBLKERR
Directory’ at the top of a listing page.

3 Thebits in ERRORS, a bit map defined in HMBLKERR
HMBLKCTL are checked. Bits were st to

1 if HMBLKCTL, HMBLKLDM, HMBLKXRF,

HMBLKOBJ, or HMBLKIDR detected arrors.

if a bit is set to 1, the associated message text is HMBLKERR
obtainad from the MESSAGES and MSGLIST

tables in HMBLKMSG and printed on SYSPRINT.

After al| error messages have been printed, control

is returned to HMBLKCTL and the next user request

Is processed.

W1 Jo Auiadoig — s[BLAIBI Pasuadr|

«INHI JO S[BLIABLA pAjoLISaY,,

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Section 3: Program Organization

This section describes the organization of the AMBLIST program. It contains:

® A description of the module organization (see Figure 2-2).

e Descriptions of each AMBLIST module, in alphabetical order by object
module name.

HMBLKCTL

HMBLKERR HMBLKOBJ

HMBLKIDR HMBLKLDM HMBLKLPA HMBLKXRF

HMBLKSZE

Figure 2-2. AMBLIST Module Organization

Module Descriptions

HMBLKCTL — Control Module
Entry from: The scheduler when AMBLIST is invoked.
Data areas defined or updated: OPTNMAP, ERRORS.

Routines called: HMBLKLDM, HMBLKPA, HMBLKXRF, HMBLKOBJ,
HMBLKIDR, HMBLKERR.

Exits: At end-of-file for the SYSIN data set, return to the operating system.
MOs: 1.
Operation: Validates the control statement and passes control to the appropriate

processing routine. It also passes control to the error message printer
(HMBLKERR).

2-18 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

HMBLKERR — Error Message Printer
Entry from: HMBLKCTL.
Data areas defined or updated: None.
Routines called: MESSAGES and MSGLIST in HMBLKMSG.
Exits: Return to HMBLKCTL.
MOs: 6.

Operation: Obtains the message text from HMBLKMSG and prints the message
in SYSPRINT.

HMBLKIDR — CSECT Identification Record Processing Module
Entry from: HMBLKCTL.

Data areas defined or updated: CSDTAB, IDENTAB, SORTAB, TDBAB,
TRNTAB.

Routines called: None.
Exits: Return to HMBLKCTL.
MOs: 5.

Operation: Reads IDR records, correlates CSECT names with data if necessary,
and prints the IDR data in SYSPRINT.

HMBLKLDM — Load Module Processing Module
Entry from: HMBLKCTL.
Data areas defined or updated: None.
Routines called: None.
Exits: Return to HMBLKCTL.
MOs: 2.

Operation: Reads load module records, performs conversions, and prints the
records in SYSPRINT.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 2. Module Map and IDR List (AMBLIST) 2-19

“Restricted Materials of IBM”
Licensed Materials — Property of IBM
HMBLKLPA — Link Pack Area Mapping Module
Entry from: HMBLKCTL.
Data areas defined or updated: CDETAB.
Routines called: None.
Exits: Return to HMBLKCTL.
MOs: 4.
Operation: Products a formatted listing of the link pack directory entries that

reside in the fixed link pack area, modified link pack area, pageable link pack
area, and their extensions.

HMBLKMSG — Text of Error Messages
Entry from: HMBLKERR.
Entry point names: MESSAGES, MSGLIST.
Data areas defined or updated: MESSAGES, MSGLIST.
Routines called: N/A.
Exits: N/A.
MOs: 5.

Operation: This nonexecutable module contains the two tables MESSAGES and
MGLIST.

HMBILKOBJ — Object Module Processing Module
Entry from: HMBLKCTL.
Data areas defined or updated: None.
Routines called: None.
Exits: Return to HMBLKCTL.
MOs: 2.

Operation: Reads object module records, performs conversions, and prints the
records in SYSPRINT.

2-20 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

HMBLKSZE — Open Exit Module for SYSPRINT

Entry from: HMBLKCTL.

Data areas defined or updated: None.

Routines called: None.

Exits: Return to HMBLKCTL.

MOs: None.

Operation: This module is an exit list routine for the SYSPRINT DCB.
HMBLKXRF — Map and Cross-Reference Processing Module

Entry from: HMBLKCTL.

Data areas defined or updated: CESDTAB, RLDTAB, INDEXTAB, TRANTAB,
SCATTAB.

Routines called: None.

Exits: Return to HMBLKCTL.

MOs: 3.

Operation: Reads load module records, sorts, CESD and RLD records, performs

conversions and lists the CESD and RLD records both alphabetically and
numerically by address. Produces map and cross-reference listing of the nucleus.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 2. Module Map and IDR List (AMBLIST) 2-21

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Section 4: Data Areas

CDETAB

CESDTAB

This section contains descriptions of the following data areas built and used by
AMBLIST modules:

CDETAB
CESDTAB
CSDTAB
ERRORS
IDENTDAT
INDEXTAB
MESSAGES
MSGLIST
OPTNMAP
RLDTAB
SCATTAB
SORTAB
TDTAB
TRANTAB
TRNTAB

Size: 21 bytes.
Created by: HMBLKLPA.

Updated by: HMBLKLPA.

Offset Size Description
0 () 8 Module name.
8 (8) 8 Major name or length and location.
8 (8) 4 Length of module.
12 (&) 4 Location of module.
16 (10) 4 Entry point address.
20 (14) 1 Bit settings Meaning
L. .. Minor entry.
Jooo.. Major entry.
XX XXXX Reserved.
Size: 19 bytes.
Created by: HMBLKXRF.
Updated by: HMBLKXRF.
Offset Size Description
0 0) 2 ESD identifier of symbol from CESD.
2 2 8 8-character symbolic name.

2-22 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982. 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Offset Size Description

10 (A) 1 Bit settings Meaning
xxxx 0000 Section definition (SD).
xxxx 0011 Label reference (LR).
xxxx 0100 Private code (PC).
xxxx 0101 Common (CM).
xxxx 0110 Pseudo register (PR).

xxxx 0010 External reference (ER).
xxxx 1010 Weak external reference (WX).
xxx1 x100 Private code marked delete (PD).
11 (B) 4) Address of symbol.
15 3] 1 Segment number in which the symbol appears.
16 (10) 3 Either chain ID or length of the CSECT from CESD.
CSDTAB
Size: 12 bytes.
Created by: HMBLKIDR.
Updated by: HMBLKIDR.
Offset Size Description
0 ©) 8 CSECT name from CESD.
8 ®) 2 Reserved.
10 (A) 2 ESD identifier from CESD.
Errors
Size: 32 bits.
Created by: HMBLCKCTL.
Updated by: HMBLKLDM, HMBLKLPA, HMBLKXRF, HMBLKOBJ,
HMBLKIDR, HMBLKCTL.
Size: HMBLKERR.
Errors is a 32-bit map. Bits 0 through 31 are correlated to error messages 1
through 32.
IDENTDAT

Size: 51 bytes.
Created by: HMBLKIDR.

Updated by: HMBLKIDR.

Offset Size Description

0) 8 CSECT name associated with the ESD identifier in the IDR
record.

8 ®) 3 Date on which user data was supplied to the load module via
the linkage editor identify function.

11 (B) 40 User-supplied data as specified in the linkage editor identify

control statement.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 2. Module Map and IDR List (AMBLIST) 2-23

INDEXTAB

MESSAGES

MSGLIST

OPTNMAP

Size: 2 bytes.

Created by: HMBLKXREF.

Updated by: HMBLKXRF.

Offset Size
0 (0) 2

Defined in: HMBLKMSG.

Used by: HMBLKERR.

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Description

Pointer to a CESD table line. An ID chain pointer, R
pointer, or P pointer is used as an offset into the index table
to find a value which is used as an offset into the CESD table.

MESSAGES is a table containing the text of the error messages. The length of
an entry (MSGxx) in MESSAGES can be obtained from the second halfword of
the corresponding entry in MSGLIST. For example, the length of MSGOI can be
obtained from LSTOI in MSGLIST.

Size: Maximum of 32 4-byte entries.

Defined in. HMBLKMSG.

Used by: HMBLKERR.

Offset Size Field
o © 4 LSTO1
4 @ 4 LST02

Size: 32 bits
Created by: HMBLKCTL.
Updated by: HMBLKCTL

Used by: HMBLKCTL.

Bit Field

0 LISTLOAD
1 LISTOBJ

2 LISTIDR

3 LISTLPA

2-24 MVS/Extended Architecture Service Aids Logic

Description
The first two bytes contain the offset in bytes of the message
text from the beginning of MESSAGES. The second 2 bytes

contain the length of the message text in MESSAGES.
Same as above.

Description

LISTLOAD operation specified.
LISTOBYJ operation specified.
LISTIDR operation specified.
LISTLPA operation specified.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Bit Field Description

4 TITLE TITLE operand specified.

5 DDN DDN operand specified.

6 MEMBER MEMBER operand specified.
7 MODLIST LIST option specified.

8 XREF XREF option specified.

9 IDENT IDENT option specified.

10 PO Partitioned data set (PDS).

11 LASTMEM Last member name indicator.
12 LIMIT Too may member names.

13 MCONTIN MEMBER option continuation.
14 RELOC Relocation factor given.

15-31 Reserved.

RLDTAB
Size: 9 bytes.
Updated by: HMBLKXRF.

Used by: HMBLKXREF.

Offset Size Description

0 (V)] 2 Entry number of the CESD entry (or translation entry) that indicates which
symbol value is to be used in the computation of the address constant’s
value.

2 @) 2 Entry number of the CESD entry (or translation table entry) that indicates
which CSECT contains the address constant.

4 (O] 1 Flags: When byte format is xxxx LLST, xxxx specifies the type of this RLD

item (address constant):

0000 — nonbranch-type is assembler language. DC A (name).

0001 — branch-type in assembler language. DC V (name).

0011 — pseudo register cumulative displacement value.

1000 and 1001 — this address constant is not be replaced because it refers to
an unresolved symbol.

LL specifies the length of the address constant:

01 — two-byte.
10 — three-byte.
11 — four-byte.

S specifies the direction of relocation:
0 — positive
1 — negative.

T specifies the type of the next RLD item:

0 — the following RLD item has a different relocation and/or position
pointer.
1 — the following RLD item has the same relocation and position
pointers as this and therefore is omitted.
b (&) 4 Address of the address constant.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 2. Module Map and IDR List (AMBLIST) 2-25

SCATTAB

SORTAB

TDTAB

TRANTAB

Size: 4 bytes.

Created by: HMBLKXRF.

Offset Size
0 (0 1
1 m 4

Size: 19 bytes.
Created by: HMBLKIDR.

Used by: HMBLKIDR.

Offset Size
0 ©) 8
8 ®) 3
11 (B) 8

Size: 15 bytes.
Created by: HMBLKIDR.

Used by: HMBLKIDR.

Offset Size
0 (0 10
10 (A 2
12 (© 3

Size: 2 bytes.

Created by: HMBLKXRF.

Offset Size
0 0) 2

2-26 MVS/Extended Architecture Service Aids Logic

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Description

RSECT, RMODE flag byte
1. RSECT.
Ao RMODE.

XXXX ..XX Reserved.

Address assigned by linkage editor to a control section (SD,
PC, or CM).

Description

CSECT name associated with the ESD identifier in the IDR
record.

Date on which AMASPZAP modification was performed on

module.
Data specified during AMASPZAP processing.

Description

Translation name.
Version and modification level information (VVMM).
Date of translation (YYDDD).

Description
Pointer to the scatter table entry that contains the address of
the control section containing this CESD table entry.

1.Y28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

TRNTAB
Size: Variable number of 8-byte entries.
Created by: HMBLKIDR.

Used by: HMBLKIDR.

Offset Size Description
0 (V) 8 CSECT name associated with the ESD identifier in the IDR record.
8 ()] 8 Same as above.

The end of the table is marked by blanks.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 2. Module Map and IDR List (AMBLIST) 2-27

Section S: Diagnostic Aids

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

This section contains the following information that will help to diagnose

problems in AMBLIST:

® A summary of register activity.

® A description of the SYNAD routines of the AMBLIST control module.

Note: Refer to System Messages for message numbers, message text, and
detecting, issuing, and containing modules.

Register Activity

HMBLKCTL

Register

AN -

12
13
14
15

HMBLKIDR

Register

i1
12

15

HMBLKLDM

2-28 MVS/Extended Architecture Service Aids Logic

Use

Pointer to parameter lists.

Third base register for addressing static data and code.
Pointer to BLDL list.

Base register for addressing DCB DSECT.

Base register for addressing PDS directory DSECT.
Second base register for addressing static data and code.
Column pointer for scanning control cards.

First base register for addressing static data and code.
Base register for addressing the dynamic storage area.
Save area address.

Linkage register for internal calls.

Branch register for external calls.

Use

Pointer to parameter list and to output DCB.
Pointer to input buffer and to data to be converted.
Pointer to input DCB.

Base register for addressing static data and code.
Base register for addressing the dynamic storage area.
Save area address.

Branch register for external calls.

Use

Pointer to parameter list and to output DCB.
Pointer to input DCB or a work register.
Pointer to input buffer or a work register.
Return address from print subroutine.

Return address from conversion subroutine.
Line count.

Loop control register.

Base register for addressing static data and code.
Base register for addressing the dynamic storage area.
Save area address.

Linkage register for internal calls.

Branch register for external calls.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

HMBLKLPA
Register Use
1 Pointer to parameter list.
2 Base for contents directory block.
10 Pointer to packed data.
HMBLKOBJ
Register Use
1 Pointer to parameter list.
5 Pointer to input buffer and to output DCB, or work register.
6 Pointer to output buffer and to input DCB, or work register.
9 First base register for addressing static data and code.
11 Second base register for addressing the static data and code.
12 Base register for addressing the dynamic storage area.
13 Save arca address.
14 Linkage for calls.
15 Branch register for external calls.
HMBLKXRF
Register Use
1 Pointer to parameter list and to output buffer.
2 CVD instruction register, loop control register, pointer to

input DCB and to output DCB, or index for sort.

3 Pointer to input buffer or return address for branches within HMBLKXREF.
4 Third base register for addressing static data and code.

S Pointer to current CESD table line being processed.

9 Second base register for addressing the static data and code.

11 First base register for addressing the static data and code.

12 Base register for addressing the dynamic storage area.

13 Save area address.

14 Linkage register for internal calls.

15 Used as branch register for external calls.

SYNAD Routine — HMBLKCTL

When HMBLKCTL detects an uncorrectable input or output error, control is
passed to an error analysis (SYNAD) routine. If the error occurs while processing
a partitioned data set, the SYSIOPDS routine receives control and issues a WTO
macro instruction to display an error message at the console. Control is then
returned to the system.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 2. Module Map and IDR List (AMBLIST) 2-29

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

2-30 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Chapter 3. Print Dump (AMDPRDMP)

Section 1: Introduction

The AMDPRDMP service aid program formats and prints the contents of the

AMDSADMP output data set, the SYS1.DUMPnn ABEND dump data set, or
any dumps data sets produced by SVC dump, and the GTF trace data set.

The user controls the operation of AMDPRDMP with JCL statements and
AMDPRDMP control statements.

Job Control Language Statements
JCL statements allow the user to describe:

The input data sets, SYSIN and SYSTSIN

The AMDPRDMP table of contents data set, INDEX

The AMDPRDMP output data set, PRINTER

The AMDPRDMP message data sets, SYSPRINT and SYSTPRT

The direct access work data set, SYSUT!1

A data set for transfer of a dump data set, SYSUT2

The data set that contains the dump, TAPE and/or a user specified DDname

The PARM parameter on the EXEC statement allows the user to specify:

o A title for the AMDPRDMP output listing to be requested from the console
e The number of lines per page to be printed in the output listing

e The option of stopping the AMDPRDMP processing for a function

e The action to be taken if an error occurs in an exit or format routine that is
editing GTF records

For a detailed description of the JCL statements for AMDPRDMP, see MV S/XA
SPL: Service Aids.

1 Y?28-1189-3 @ Convricht IBM Corn. 1982. 1986 Chaoter 3. Print Dumn (AMDPRDMPY 3-1

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

AMDPRDMP Control Statements

Control statements allow the user to specify formatting. The user enters the
control statements into the system through either the SYSIN data set or the
console.

AMDPRDMP control statements introduce optional functions into this
AMDPRDMP operation. The following are the AMDPRDMP control
statements:

e ASMDATA — causes ADMPRDMP to format and print the contents of
auxiliary storage manager (ASM) control blocks that exist in the input data
set.

o AVMDATA — causes AMDPRDMP to format and print the contents of the
availability manager control blocks from the input data set.

o CPUDATA — causes AMDPRDMP to format and print data related to each
processor in a dumped system.

o CVT — provides the address of the communications vector table if there is
reason to believe that the CVT pointer at virtual storage location X‘4C’in a
virtual storage dump has been destroyed.

e CVTMAP — causes AMPRDMP to format and print the communications
vector table (CVT).

o DAEDATA — causes AMDPRDMP to format and print the dump symptoms
that DAE analyzes in determining whether or not to suppress the dump.

e EDIT — causes AMDPRDMP to obtain, format, and print trace data created
by the generalized trace facility (GTF).

e END — terminates AMDPRDMP processing.

o FORMAT — causes AMDPRDMP to format and print the contents of the
major system control blocks associated with each address space in a dumped
system.

The control statement provides for compatibility with prior versions of
AMDPRDMP and works the same as a SUMMARY FORMAT control
statement.

® GO — causes AMDPRDMP to execute a group of control statements, which
may be provided with the ONGO statement, making it unnecessary for the
user to specify each statement separately.

e GRSTRACE or QCBTRACE — causes AMDPRDMP to format and print
the global and local resource queue control blocks in a dumped system.

e IOSDATA — causes AMDPRDMP to format and print the contents of
certain 1/O supervisor (I0S) control blocks in the input data set.

3-2 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”

Licensed Materials — Property of IBM

JES2 — causes AMDPRDMP to format the contents of specific control
blocks in the JES2 address space.

JES3 — causes AMDPRDMP to format the contents of specific control
blocks in the JES3 address space.

LOGDATA — causes AMDPRDMP to invoke the formatter for the
in-storage LOGREC buffer.

LPAMAP — causes AMDPRDMP to format and print a map of the contents
of the dumped system’s link pack area directory entries (LPDE) and the
active link pack area modules from the information in the contents directory
entries (CDEs).

MTRACE — causes AMDPRDMP to format and print the master trace table
for the dumped system.

NEWDUMP — defines a new input dump data set to AMDPRDMP.

NEWTAPE — used instead of NEWDUMP to define a new tape input dump
data set.

NUCMAP — causes AMDPRDMP to format a map of the contents (name,
entry point, entry point attributes, and length) of modules in the nucleus
when the dump was generated.

ONGO — specifies the control statements that will be executed when GO is
issued.

PRINT — causes AMDPRDMP to print and format particular areas of real
and virtual storage.

RSMDATA — causes AMDPRDMP to format and print the contents of the
real storage manager control blocks in the input data set.

SADMPMSG — causes AMDPRDMP to format and print the stand-alone
dump console message log.

SEGTAB — provides the hexadecimal real storage address of a segment table.
If the user fails to do a store status prior to the execution of the stand-alone
dump, the SEGTAB will not be found.

SRMDATA — causes AMDPRDMP to format and print the contents of
system resources manager control blocks (OUCBs and the Domain Table)
that exist in the input data set.

SUMDUMP — causes AMDPRDMP to invoke the formatter for summary
dump data that an SVC dump might contain.

SUMMARY — causes AMDPRDMP to print one of several reports, as

specified by the parameters: FORMAT, KEYFIELD, JOBSUMMARY and
TCBSUMMARY.

TCAMMAP — causes AMDPRDMP to print selected TCAM control blocks.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 3. Print Dump (AMDPRDMP) 3-3

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

e TITLE — provides AMDPRDMP with a title to be printed at the top of each
page of the output listing.

e TRACE — causes AMDPRDMP to format trace entries in the system trace
table.

e VSMDATA — causes AMDPRDMP to format and print the contents of the
virtual storage manager control blocks in the input data set.

e VTAMMAP — causes AMDPRDMP to print selected VTAM control blocks.

® User-defined exit routines — cause AMDPRDMP to give control to a
previously defined user or component exit module.

AMDPRDMP Output

Various formats may appear in the AMDPRDMP output listing, depending on
which control statements the user selects. In addition to the formatted
information, each page contains a heading that includes the optional
user-specified title, the name of the module that invoked the dump (if the input
data set was a dump data set), and the date and time that the dump was taken.
The first page of the output lists the title given when the dump was taken. Within
the formatted listing, comments may appear that are a result of invalid control
blocks of AMDPRDMP’s inability to locate, format, or print a control block.

After printing the formatted information, AMDPRDMP prints the following
summary information:

e The number of entries to the read routine.

The number of times that the required address was not found in a buffer.
e The number of blocks read from the dump data set.
e The number of permanent I/O errors encountered during execution.

e The average number of buffers used for each operation performed during
execution.

e The number of GTF records read.

e The ratio of the number of times the read routine was called to the number of
times the requested address was not in a buffer.

For a detailed description of the AMDPRDMP output listing, see MVS/XA
Debugging Handbook.

3-4 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Section 2: Method of Operation

This section describes how AMDPRDMP formats and prints information from an
input data set. As shown in Figure 3-1, the description begins with an overview
of AMDPRDMP, then describes the following stages of the overall processing:

¢ AMDPRDMP initialization.
e Control statement processing.
e Control statement execution.

Reading Method of Operation Diagrams

Method of operation diagrams are arranged in an input-processing-output layout:
the left side of the diagram contains the data that serves as input to the processing
steps in the center of the diagram, and the right side contains the data that is
output from the processing steps. Each processing step is numbered; the number
corresponds to the verbal description of the step in the extended description.
Whereas the processing step in the diagram is in general terms, the corresponding
text is a specific description that includes a cross-reference to the code for the
processing.

LY28-1189-3 © Coovright IBM Corp. 1982. 1986 Chanter 3 Print Dumn f/AMNDPRDMPY -4

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Control Statement Execution

Diagram |
AMDPRDMP
Overview
I |
Diagram 2 Diagram 3 Diagram 4-13
AMDPRDMP Control Statement Control
Initialization Processing Statement
Execution (see
blow-up at

right)

Diagram 4
CVT, TITLE, GO,

LPAMAP, ONGO,
NEWDUMP,

NEWTAPE, and
SEGTAB Control

Figure 3-1 (Part 1 of 2). Key to Method of Operation Diagrams for AMDPRDMP

3-6 MVS/Extended Architecture Service Aids Logic

Statements

Diagram 5 Diagram |1

END Control CPUDATA
Statement Control Statement
Diagram 7 Diagram 12

User Exit EDIT

Processing Control Statement
Diagram 9-10

PRINT

Control Statement

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Key to Method of Operatian (MO) Diagram Symbols

Entry into processing 1, 2, etc. Look for corresponding numbers in text

A, B, etc. Look for blow-up of item on same page

Flow of Control

Look for corresponding-lettered blow-up
on some poge

Data Transfer

A

Braoces to denote related items

See referenced diagram for detailed
description

MO1 Reference to another diagrom

l

or Pointer to or oddress of

Reference to data

|

Figure 3-1 (Part 2 of 2). Key to Method of Operation Diagrams for AMDPRDMP

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 3. Print Dump (AMDPRDMP) 3-7

o130 SPy D1AIS AINIOMNYILY PIPUNXF/SAW §-¢

9861 ‘7861 "d10oD) WHI W3uddoD © ¢-6811-8TA'T

PRDMP Diagram 1. AMDPRDMP Overview (Part 1 of 2)

Input

Process

—

>1 Initialize common communi-
cation area.
See MO2 for Details

2 Scan control statements.

See MO3 for Details

Console or //SYSIN

-

Control Statements

Format Input Data

GTF :E
>{)|

or
AMDSADMP \
(High-speed)

or
System
Dump I
Facility

SYS1.DUMP

>3 Copy tape input to work file.

4 Format the input data as specifie
in the control statements.

B Write the print dump abstract,
the formatted data, and the
table of contents in the output
data set to be printed.

6 Write the messages in the output
data set to be printed.

Clear SYS1.DUMP Data Set
7 Copy input data set.

>8 Clear SYS1.DUMP, if direct

:

access.
See MOS5 for Details

Output

COMMON ° INDEX [
L] (]

(] (]

o (]

® Table of Contents °

(] (]

(] (]

o (]

0

—_
<_—|
——

SYSUT1

|

° PRINTER °
(] (]
(] (]
(] (]
(] y (]
o Formatted °
° Output Listing °

—"

See MOs 4-12 for Details - RETURN

SYSPRINT

Messages

[
[
-]
[
[
o
[
[

© 00 000 0O

e 77 T\
<>

pRETURN

NM] Jo fj1adosg — S[BLIIBIA] PISUddNT

«INFI JO S[BLISJEIA] PIjoLI)SIY,

€-6811-8TA'1

D

9861 ‘7861 "d10n W41 w3ukdo)

(dWQIdaNV) dunqg g ¢ aadey)

6-¢

~

PRDMP Diagram 1. AMDPRDMP Overview (Part 2 of 2)

Extended Description MO

1 The user controls part of the operation of 2
AMDPRDMP with JCL statements. AMDPRDMP

initializes the common communication area with values

from the PARM field in the EXEC statement.

2 By using control statements, the user specifies the 3
formatting to be performed by AMDPRDMP

before the data is printed. The user enters the control

statements into the system via either the input stream

or the console. Depending on the function specified in

the control statement, either EDIT modules, executor

modules and their associated service modules, or user/

component modules are brought into storage to perform

the functions requested via the control statements.

3 If the user’s JCL includes a SYSUT1 DD statement
and if the input data set is on tape, AMDPRDMP
copies the dump to the SYSUT1 data set. If SYSUT1
cannot contain the entire dump data set, AMDPRDMP
processes the input from both SYSUT1 and tape. If
the input is a SYS1.DUMP data set, AMDPRDMP copies
the contents of the direct access input data set to the
SYSUT1 data set.

4 The input data to be formatted by AMDPRDMP 4-12
is from the following sources:

e The output data set from the generalized trace
facility (GTF).

® The output data set from the AMDSADMP service
aid.

® The SYS1.DUMP data set from the system dump
facility, a SYSMDUMP ABEND dump, or any dumps
produced by SVC dump. (The input data for all of
these dumps appears the same to AMDPRDMP.)

The information from these sources is formatted accord-
ing to specifications in the control statements.

r

Extended Description

5'6 AMDPRDMP writes the title pages, the formatted

data, and messages in output data sets that will
be printed for the user. If the INDEX DD statement is
included in the JCL., the print dump table of contents
is written to the INDEX data set.

7 M the user’'s JCL includes a SYSUT2 DD statement,
AMDPRDMP transfers the contents of the dump

data set to the SYSUT2 data set for later processing.

All format control statements are ignored at this time.

8 AMDPRDMP clears the SYS1.DUMP data set so it
can be reused. This processing occurs only if
SYS1.DUMP is on direct access.

MO

412

G Jo Apadorg — s{sHNBIN Pasudry

«JAEI JO S[BLIEBIA PI)OLISIY,

Q13077 SPIY 301AISS BIMNYIIY PIPUNXT/SAN (-

9861 ‘7861 "d10D WAI 1SuLdoD © €-6811-8TAT

PRDMP Diagram 2. AMDPRDMP Initialization (Part 1 of 4)

Input
4/Step 1 EXEC PGM = IKJEFTO1,
I PARM = AMDPRDMP
Register 1
4 PARM 4

Process

SWE Field of COM

TITLESW = "1’

(Set During Step 1)

> 1 Analyze EXEC state-
ment parameters.. — gl

LINECNT

Output

Common Communication Area
(COMMON})

T

WTOR
[Console

ER=0,1,2,3

2 Open output data sets.

3 [Initialize user exit parameter

list address.

4 Obtain title.

WTOR

B Determine source of control

statements.

>

LINENUMB | LINENUM | swcC

P SWE FREESIZE

EDITER

—/_/—[/_/\/\-N
TITLESW

STOPSW
w

AOUTDCB APTRDCB

ANDXDCB

o~ —— T
T —

ABDPLADR SRAADR

—

Jr—

TITLEMSG

RDRSW

ARDRDCB SWA

INE1 Jo Ausadosg — SBLIAIBIA PasuRdI)

«INHI JO S[BUNBIA PN,

9861 ‘7861 "d10) WM YB1AdoD O £-6811-8TAT

(dNQIdA V) dunq uuyg ¢ 101dey)

[1-¢

(\

PRDMP Diagram 2. AMDPRDMP Initialization (Part 2 of 4)

Explanation

1 The user may specify a list of parameters for

AMDPRDMP with the operand PARM =
‘AMDPRDMP, . .,... in the EXEC statement. (A
detailed discussion of the parameters and their meanings
appears in Service Aids.)

AMDPRDMP analyzes the parameters and places their
values in the common communication area (COMMON)
as follows:

® LINECNT — If LINECNT is specified, AMDPRDMP
stores the number of lines in the LINENUMB field
if it is greater than 10 or less than 32K,

o T — If the title option is specified, AMDPRDMP
turns on bit 3 (TITLESW) of the SWE field. This
bit is checked later (see step 4).

o S — |f the stop option is specified, AMDPRDMP
turns on bit 0 (STOPSW) of the SWE field, then
issues message AMD1561 to the operator via a
WTOR macro instruction. However, AMDPRDMP
does not wait for a reply. Atany time, the opera-
tor may reply with a STOP, and processing of the
current data set will cease.

e ER — If an action is specified for an error during
execution of the EDIT function (see MO 12},
AMDPRDMP stores the value in the EDITER
field.

2 There are three possible output data sets.
PRINTER contains the formatted output
information, SYSPRINT contains the messages, and

INDEX contains the dump table of contents.
AMDPRDMP stores the address of PRINTER DCB
in the AOUTDCB field of COMMON, the address

of SYSPRINT DCB in the APTRDCB field, and the
address of INDEX DCB in ANDXDCB after it opens
the data sets.

3 AMDPRDMP puts the address of the ABDPL and
the SRA in COMMON and initializes the parameter
list for BLSQEXTI.

Module

AMDPRCTL

AMDPRCTL

AMDPRCTL

AMDPRCTL
AMDPRCOM

AMDPRCOM
AMDPRCTL

AMDPRCOM
AMDPRCOM
AMDPRCOM

AMDPRUIM

-

Label

BGNLOOP

BEGLCNT

BEGTITLE

BEGINS
STPWTORM

BEGER

AMDPRUIM

Explanation

4 AMDPRDMP checks the TITLESW (bit 3) of SWE
to determine whether the title option has been
select~d by the user. If so, AMDPRDMP issues message

AMD154D to the operator via a WTOR macro instruction.

The operator replies with the title.

5 AMDPRDMP tries to open the reader DCB. |f it
opens, then there are control statements in the
form of cards in the input stream, AMDPRDMP stores
the address of the reader DCB in COMMON and turns
on bit 7 (RDRSW) of SWA to indicate the presence of
control cards. If the reader DCB does not open, the
control statements must be obtained from the console.

Module

AMDPRCTL
AMDPRCTL

AMDPRCTL

AMDPRCTL

Label

WRTMSG
DUMPMSG

BEGINGE

BEGIN7

EI 10 K11adoid — S[BLIDIRIA] PAsuddN]

«HI JO S{BLBIN P3JoLSIY,,

51807 SPly 3J1A13G 2AMOANYIY PIPUAXT/SAWN Z[-€

9861 ‘861 'd10D WAl 1yFukdoD o €-6811-8TA1

PRDMP Diagram 2. AMDPRDMP Initialization (Part 3 of 4)

Input

//TAPE

or
//ANYNAME

Process

6 Copy contents of input data

Input Dump Data Set

Dump Header Record

set and build storage map.

> 7 Initialize COMMON and

print title pages.

Output

//SYSUT1
or

//ISYSUT2

Output Data Set

COMMON

> REAL MAP

Real Dump Map

COMMON

MO3

To Process

Control
Statements

Printer
[]

Title Pages

W

WA Jo Apadoag — S[BLIIBIA] Pasuadl]

«INH] Jo S{BLIJBIN PAJOLISIY .,

9861 ‘Z861 'd10) WHI YF4doD O £-6811-8TAT

(dNAdddWV) dunq wud ¢ andey)

el-¢

h

PRDMP Disgram 2. AMDPRDMP Initialization (Part 4 of 4)

Extended Description

6

If the input is from a tape or a direct access SYS1.DUMP data set,
AMDPRDMP copies the input data set to the work-file data set and builds
storage maps of the dump. If a work-file data set is not specified,
AMDPRDMP builds the dump storage maps.

If a SYSUT2 data set is specified, AMDPRDMP copies the input data set
to the SYSUT2 data set without building any storage maps.

AMDPRDMP initializes the common communication area using values
from the dump header record.

AMDPRDMP writes the first title page to the print data set.
AMDPRDMP invokes all header exits including the DAE header exit.

AMDPRDMP formats the abstract title page and the console-initiated
loop trace records.

Module

AMDPRLOD

AMDPREAD

AMDPRLOD

AMDPRMST

AMDPRCMC

AMDPRMST

AMDPRUIM

AMDPRABS
AMDPRLRF

Label

AMDPRLOD

AMDPREAD

AMDPRLOD

AMDPRMST

AMDPRCMC

AMDPRMST

FMTABSRH

AMDPRABS
AMDPRLRF

gL Jo Auadosg — S[BLIYBIA PIsudN]

«NEI1 JO SJBUNEJA pAOLISIY,,

2190 SPIY 201AIBS 2IM3ONYOLY PIPUSIXT/SAIN H[-€

9861 ‘z861 "d1oD WAI 1g3uLdoD © €-6811-8TAT

PRDMP Diagram 3. Control Statement Processing (Part 1 of 4)

From MO2 (for first statement)

Output

WTORMSG Buffer in COMMON

Control Statement

Input or MOs 4,7,9, 10, 11, and 12 Process
SWA of COMMON H
RDRSW XT — — _, 1 Obtain control statement from
<11 = — —» @ SYSIN data set
I
| > or
Set in MO?2 or at SYSIN EOF | _
< L] [—=——|— —pe Operator console.
ysvsinope [} ROROCE v l}
2 Scan control statement for verb.
, -
[4-12
Console WTOR vt EDIT
END FORMAT
GO LPAMAP
ONGO PRINT
NEWDUMP
NEWTAPE
SEGTAB CPUDATA
. TFITLE User-defined
*Description of Path Descriptor
Path Descriptor Element
Flags Module ID

0 1 4
Flags: Bit Means

0....... Service module.

1....... Executor module (last element

of path description).

XXX xxxx Reserved.

Module iD: Last three characters of the module name.

Syntax

Message

Routines
COMMON

ASYNTAX

Input to Step 3 <:

:> {See Diagram 7,

Verb Exit
Processing for
the parameters
of the user-
defined verb.)

COMMON
VERBGN If Delimiter Is |Code Is
VERBEND ’ 4
DELIMCD = 8
COMOPPTR blank 12
COMOPLN

"_‘l Path Descriptor*®
ABDPL

SRA

ABDPLEXTN

=
I

JAFI JO Auddorg — S[BLID)BJA] PIsuddI

«JAE] JO S[BUAIBIN PaIIMISIY,,

9861 ‘7861 'd10D W] 14ySuido) @ £-6811-8TAT

(dNAQYdany) dunq 1uug ¢ Jeidey)

SI-¢

(\

PRDMP Diagram 3. Control Statement Processing (Part 2 of 4)

Explanation Module

1 AMDPRDMP checks the RDRSW bit to determine AMDPRCTL
whether there are control statements in the SYSIN

date set. If the bit is on, AMDPRDMP reads one control

card. If an end-of-file condition exists, AMDPRDMP

issues message AMD1701 indicating end-of-file and sets

RDRSW to 0. Then, or if the RDRSW bit is off,

AMDPRDMP issues message AMD 155D for the operator to

enter a control statement. The control statements are

stored one at a time in the WTORMSG buffer in COMMON.

2 AMDPRDMP scans the WTORMSG buffer for the AMDPRCTL
verb in the control statement. It saves the address
of the beginning and end of the verb in the common area.
It checks for the delimiter and stores a code indicating
the delimiter in the DELIMCD field of COMMON.
Finally, it compares the verb in the buffer to the valid
verbs (listed above). If the verb is a user-defined verb,
AMDPRDMP scans for parameters. If parameters exist,
AMDPRDMP moves them (including parameters con-
tinued on subsequent input records) to a buffer and
places the address of the buffer in COMOPPTR and the
length of the parameters list in COMOPLN. If the verb
is PRINT, AMDPRDMP scans the statement beyond the
verb level to determine the parameters. if there are
syntax errors in the control statement, AMDPRDMP
writes a message in the SYSPRINT data set., However,
for the user and other component defined verbs,
AMDPRUIM scans the ECT (exit control table) to
determine if the verb is a valid exit. |f the verb is a
user or component exit, control is passed to the
appropriate module.

AMDPRCOM

AMDPRUIM

AMDPRUIM initializes the user exit interface. The
ABDPL, its extension and the SRA are reinitialized
for each exit invocation. A GETMAIN issued will
obtain storage for an operands buffer. This buffer
is addressed by tha ABDPL extension in two ways.
One manner acquires a direct pointer to operands.

Label

TRDRSW
RDCARD
RDREOF
WRTMSG1

VERBSCNS
VERBSCN3
VERBSCN4
EDIT

OPERANDS

PRINT

SYNTAX/
SYNTAXA-E
User or other
component
defined verb
exit.

Explanation Module Label

The other uses a CPPL to obtain a standard TSO
command buffer form. If the control statement was
FORMAT, AMDPRUIM will transiate it into a request
for the SUMMARY verb exit with the FORMAT key-
word. BLSQEXTI is called to load exit service routines
and finish initialization of ABDPL and SRA. The Exit
Services Router Is called to invoke the ECT service,
which will scan the ECT and link to the exit. (See
IPCS Logic for a description of BLSQEXTI, the Exit
Services Router, and the exit services.) (See Diagrams
7 and 8).

JAEI Jo Ayiadosd — SJBLI3JBJA] PIsUAdN]

«W4I JO S[ELIJBIA P3JOLIISIY,,

“Restricted Materials of IBM”

Licensed Materials — Property of IBM

uonindax3 1uswalelg jonuo) ol { LL-pSOW “

s1ueIsuo)

ssa1ppy <
adA) -y ———————

NOWWOD

windinQ

sa|npop
a0iAJag

*sajnpow | |3 40 JO1NJBXI
Jo/pue adia1es aleiidoidde peoy £

$532044

(b Jo € 1eg) Furssadoiy JuauI)e)§ [oxpuo) € Weadelq JWAAd

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

3-16 MVS/Extended Architecture Service Aids Logic

9861 ‘z861 "d10D WdI W3ukdoD o ¢€-6811-87A1

(dNAQIdQNV) dung uug ¢ 1deyd

LT-¢

-

PRDMP Diagram 3. Control Statement Processing (Part 4 of 4)
Explanation Module

3 The routines for executing function control AMDPRCTL
statements are resident in virtual storage, and
the function is executed without further processing.

To execute format control statements, AMDPRDMP AMDPRCTL

loads the appropriate path of service and/or executor

modules shown in Figure 2 or EDIT modules shown in

Figure 3. (The service modules perform functions that

are common to several executor modules. The executor

modules govern the execution of the functions specified

in the control statement.} Toload the path, AMDPRDMP

uses the path descriptor for the modules. AMDPRDMP

compares the path descriptor with a list of modules that

have been |oaded previously. Previous modules not AMDPRSEG

required by this control statement are deleted, and the

required modules are loaded. During the load, control

is given to each service module to store entry, points

in COMMON. The last module in each path that is

loaded is the executor module.
AMDPRFUB
AMDPRDPS

Label

CVTSET
TITLEVRB
NEWDUMP
END

GO

ONGO
NEWTDUMP
SEGTBSET

CPUDATA
PRNTFMT
PRINT
EDIT

LOAD

DPBASE

] Jo fsadosg — S{BLIAYBL PasuadN]

«JAEI JO S[BUEIA PaJOLYSIY,,

915077 SPY 201AIDE AMONMYDIY PIPUANXA/SAW §[-€

9861 ‘7861 10D W] 1q3uAdo) @ ¢£-6811-8TA1

PRDMP Diagram 4. The CVT, TITLE, GO, ONGO, NEWDUMP, NEWT APE, SEGTAB, and LPAMAP Control Statements (Part 1 of 4)

Input

From MO3

COMMON

I VERBEND | {stored in MO3)

Control Statement

Process

CVvT

1 Store CVT address specified

P
CVT =
i {hhhhhhhh }

I

Control Statement

by the user.
|

Output

CvT

‘WORK 1 COMMON

TITLE

l TITLE \ Text of Title

Control Statement

0

[co

COMMON

D 2 Store title to be printed at top
of each page of output listing.

GO

3 Supply AMDPRDMP with

ONGOPTR

Control

Output From
® Statements =

ONGO Processing

(step 4)

Control Statement

ONGO } Control Statement!s)4I

group of prespecified control
statements to be executed.

ONGO

4 Change pre-specified control

Control Statement

NEWDUMP

= =]1
[DDNAME ,FILESEQ;]I

statements associated with the
GO verb.

NEWDUMP

5 Define a new input dump data

set for AMDPRDMP.

WORK 1

or CVTADDR
[cvrrTR SWA »

\

TITLE SETCVTSW

>COMMON

GO

> COMMON

Syntax
Message
Routine

|WTORMSG s SWA j

4
GOSw

ONGO

‘> COMMON

ONGOPTR

. Control
Used in GO - Statementm

Processing (step 3)

NEWDUMP, NEWTAPE

WORK1

> COMMON

r INDD I(FILESEQ

=1 for NEWTAPE

AT Jo Aadorg — speudBIy Pasuddr]
«AHI JO S[BUBIA PSR,

9861 ‘7861 'dio) WH] WB1AdoD & €-6811-8TAT

(dNQdddnv) dunq ug ¢ 1dey)

61-¢

(\

C

PRDMP Diagram 4. The CVT, TITLE, GO, ONGO, NEWDUMP, NEWTAPE, SEGTAB, and LPAMAP Control Statements (Part 2 of 4)

Extended Description Module Label

1 CVT — If the user believes that the communications
vector table (CVT) pointer at storage location

X’4C’ has been destroyed, he supplies AMDPRDMP

with the CVT address in the CVT control statement.

AMDPRDMP finds the parameter via the address in the

VERBEND field of COMMON, then checks the parameter AMDPRCTL CVTSET

for syntax errors. Then AMDPRDMP determines what CVTSETA
address is specified. If P is specified, AMDPRDMP CHECKCVT
stores the address if the location at X'4C’ in the CVTOK
CVTADDR field of COMMON. |f 8 hexadecimal address CVTSET2

is specified, AMDPRDMP converts the address to binary,
then stores it in the CVTADDR field. Finally, it
indicates that the CVT address has been stored by turning
on bit 6 (SETCVTSW) in SWA.

2 TITLE — The user may specify the title to be

printed at the top of each page via the title con-
trol statement. When a title control statement is
encountered, AMDPRDMP locates the parameter via
the address in the VERBEND field, then stores the
title in the TITLEMSG field of COMMON.

AMDPRCTL TITLEVRB
TITLMOVE

3 GO - By issuing the GO control statement the
user causes AMDPRDMP to format the input data
as if the user had specified the EDIT, SUMMARY, and
PRINT CURRENT control statements. By using the
ONGO control statement (see step 4}, the user may
change the group of pre-specified control statements
to any combination of CVT, GRSTRACE, or QCBTRACE,
LPAMAP, FORMAT, PRINT (with its parameters),
SEGTAB, SUMMARY, CVTMAP, CPUDATA, SUMDUMP,
SRMDATA, ASMDATA, LOGDATA, VTAMMAP, or
EDIT. When AMDPRDMP encounters a GO control state-
ment, the program uses the address in the ONGOPTR field
of COMMON to obtain the parameter. The parameter will AMDPRCTL GO
be the pre-specified default control statements or, if ONGO GOONGO
was used, any control statements. AMDPR DMP stores the GO
parameter in the WTORMSG buffer of COMMON, turns on VERBSCNS
bit 4 (GOSW) in SWA, and passes the parameter to be
scanned (see MO3) and executed as control statements.

Extended Description

4 ONGO - By using the ONGO control statement,
the user changes the group of control statements
associated with GO (see step 3). When AMDPRDMP
encounters an ONGO control statement, it locates
the parameter via the address in the VERBEND field of
COMMON, stores the parameter, and places its address in
the ONGOPTB field of COMMON. When GO is used,
AMDPRDMP will execute the new set of control
statements.

5 NEWDUMP — By using the NEWDUMP control
statement, the user defines a new input dump data

set for AMDPRDMP. Two keyword parameters may be

specified:

® |F DDNAME is specified, AMDPRDMP stores the
DDNAME in the INDD field of COMMON. The
DDNAME identifies the DD statement that
describes the input dump data set.

e |f FILESEQ is specified, AMDPRDMP isolates the
value, converts it to binary in WORK 1 buffer of
COMMON, then stores it in the FILESEQ field.

1f neither keyword is specified, AMDPRDMP assumes
that the new input dump data set is the same as for
NEWTAPE (see step 6). When NEWDUMP is specified,
AMDPRDMP resets switches associated with the former
dump; it also resets the CVT and SEGTAB addresses
and the address of the top of real storage.

Module Label

AMDPRCTL ONGO
ONGO1
ONGO2
GO

AMDPRCTL NEWDD

NEWFILE

AMDPRCTL NEWTDUMP
NEWRESET

INGI Jo Kyadosg — s[eia)ely PIsuddi|

<A JO S[ELRIY PALSIY,,

213077 SPIy 991419 2IMIAYIIY PIPUAXT/SAWN ()Z-€

9861 ‘z861 "d1oD WHJ WyFukdo) 3 €-6811-8TAT

PRDMP Diagram 4. The CVT, TITLE, GO, ONGO, NEWDUMP, NEWTAPE, SEGTAB, and LPAMAP Control Statements (Part 3 of 4)

Input

Process

COMMON
VERBEND

Control Statement

| NEWTAPE

NEWTAPE

Control Statement

[sEcTAB=|

$ 6 Define a new tape input dump
data set for AMDPRDMP.

SEGTAB

hhhhhhhh |

7 Store segment table address

Control Statement

[Lramap

(EPA] [MODNAME] |

CVT

LPDEs

CVTLPDIA

CVT

specified by user; set page
size,

LPAMAP

Module Name

EPA

.LPDE Attributes

Major LPDE Name

Module Length

Module Location

{Second Entry}

]

CDEs

cvtaLpaa |

CDE Attributes

Module Name

‘ First CDI'E

EPA

Extent List

Length of CSECT

d csect

J‘> 8 Format and print a map of the

link pack area directory entries
in the link pack area active
queue.

If CVTLPDIA address is not
found, or if no reenterable
load module queue exists,
issue message.

Output

[swa oo swc | cvrapDr

D

> SETCVTSW=0

2 MSTRSW=0

COMMON

IiEGTABOR | ¢ PRSW

QSEGTBSW

To Get
Next
Control
Statement

// PRINTER

00000 OO
0oo0o0o0O0OO0OO

\

41 Jo Ayadoag ~ spsLa)Bly pasuadry

«AMI JO SBLINRIA pajaLsay,,

9861 ‘7861 "d10D WEI Y314doD @ €-6811-8TA"

(dINQYdaNyV) dunq g ¢ 1aadey)

1C-¢

c c

PRDMP Diagram 4. The CVT, TITLE, GO, ONGO, NEWDUMP, NEWTAPE, SEGTAB, and LPAMAP Control Statements (Part 4 of 4)

Extended Description Module Label

6 NEWTAPE — The NEWTAPE control statement is
used in place of NEWDUMP to define new tape

input. There are no keyword parameters associated with

NEWTAPE, so AMDPRDMP assumes the TAPE DD

statement, and FILESEQ=1. It stores the assumed AMDPRCTL NEWTDUMP
values in the INDD, and FILESEQ fields of COMMON
and resets switches from the former dump as it does NEWRESET

for NEWDUMP {see step 5).

7 SEGTAB — If the user forgets to perform a store AMDPRCTL SEGTBSET
status operetion prior to executing a stand-alone

dump (AMDSADMP), the user supplies AMDPRDMP

with the segment table address in the SEGTAB control

statement, AMDPRDMP locates the paremeter via

the address in the VERBEND field of COMMON,

then stores the SEGTAB address in the SEGTABOR

field. Finally, bit 1 (QSEGTBSW) of PRSW is set to

indicate the segment table address has been stored

8 LPAMAP — The LPAMAP control statement causes

AMDPRDMP to format a list of the modules in the
link peck area directory entries and the modules in the
active link pack area queue. LPAMAP then causes
AMDPRDMP to write the formatted information in the
PRINTER output data set to be printed in two columns
in the output listing.

AMDPRDMP obtains information about the module
names, the entry point addresses (EP As} in the link
pack area of the link pack directory entry {LPDE],
and the EPAs of the contents directory entry (CDE). AMDPRLPA AMDPRLPA
AMDPRDMP |ocates the address of the first LPDE

in the CVT at CVTLPDIA end the address of the first
CDE on the active queue in the CVT at CVTQLPAQ.
1f AMDPRDMP finds a minor entry, it obtains the
length and the starting address of the module’s
CSECTs from the LPDE and the CDE. AMDPRDMP
writes all of the information in the PRINTER data
set to be printed on a separate page of the
AMDPRDMP output listing.

WA jo fsadosg — S|BLAIBI PasuadN]

«M] JO S[BUAIBIA PAOIISAY,

01507 SPIV 01AJ3S 21N30A1IYIIY PAPUAXT/SAN TT-€

9861 ‘T861 "d10D WHI 1YSnidod o €-6811-8TA1

PRDMP Diagram 5. The END Control Statement (Part 1 of 2)

Input

SWD

or

From MO3

Process

> 1

COMMON
1
[INDD | |SYSUT2I

[oncorTr | [swa-swe][Prsw][LoADsN]

Register 13

[A svsuoce | [§ inoce | [Fiesea |
COMMON
| RoENTRY | | REaDTM | [READNO ”
| roerenT | [BUFREINT | | BUFSuM |
COMMON
[oceapors | | BuFcs | | cursur |

3

I Save Area Address i

— Transfer Input Data Set to SYSUT?2

Determine type of data sets
specified in JCL for input and
SYSUT2.

Output

Open DCBs, then read input
data set information and write
information on SYSUT2.

- Terminate AMDPRDMP Processing

Print execution statistics
and dump index.

Reinitialize:

Close DCBs

Reset SYS1.DUMP on D/A if
SYSUT2 is specified

Free buffers

Restore GO values

Restore line count value
Zero page number

Reset switches in COMMON

Delete user interface modules.

Return control to system.

-

C

\

COMMON
[Asvsuocs |

Register 15

| Return Code = 8 |

//PRINTER

000000000
000000

//SYSPRINT

000000
0000 00

S

RETURN to the
Operating System

JNE] Jo fiiadory — sperIaBIA] pasuddry
«JAE] JO S[BHIIBIA PAIOLISAY,,

9861 ‘7861 "d10D Ng] 14BukdoD) 6 €-6811-8CA1

(dNAIdaNVY) dum@ g ¢ 191deq)

£t

r

PRDMP Diagram 5. The END Control Statement (Part 2 of 2)

Extended Description

When the control statement is END, AMDPRDMP
checks the NOLOADSW switch in COMMON to
determine whether END is the only control state-
ment for this execution of AMDPRDMP. If
NOLOADSW is off, END is the only control
statement for this execution, and the purpose

of the execution is to transfer the contents of an
input data set to the SYSUT2 data for later pro-
cessing by AMDPRDMP. [f the data set is
SYS1.DUMP on direct access, the data set is cleared
to allow for more dumps. If NOLOADSW is on, there
were other control statements in this execution of
AMDPRDMP, and END terminates this execution.

1 When END is used to transfer a data set,
AMDPRDMP uses a DEVTYPE macro instruction

to determine the type of input and SYSUT2 data set

that are specified in the JCL. They may be either

tape or direct access volumes.

2 The work data set load module, AMDPRLOD is
loaded to read the specified input data set and
write the data in the SYSUTZ2 data set. When the
transfer is complete, AMDPRLOD requests termination
of AMDPRDMP by returning a code of 8 in register 15.

3 If the NOLOADSW switch in SWD is on, END is
not the only control statement in this execution
of AMDPRDMP; the purpose of END in this case is to
terminate AMDPRDMP, AMDPRDMP uses the infor-
mation stored in COMMON to write execution sta-
tistics messages in the SYSPRINT data set. The
statistics are not printed when END is used for a
data set transfer. When the JCL does not include an
INDEX DD statement, PRDMP prints the dump index
at the end of the PRINTER data set. When the JCL
includes an INDEX DD statement, the dump index
is output to the INDE X data sat.

Module Label

AMDPRCTL END

AMDPRRDC TSTDEV

AMDPRLOD READNXT

AMDPRCTL ENDSTATO
-ENDSTAT7?7

Extended Description

4 The END control statement terminates
AMDPRDMP, both following a data set transfer
and following other formatting operations. Termination
processing includes: closing open DCBs and freeing

associated buffer pools, freeing output and input
buffers, restoring original GO values, freeing
storage occupied by the ONGO buffer, restoring the
default line count, zeroing the page number and
resetting COMMON switches. AMDPRDMP deletes
the AMDPRFMT and AMDPRECT modules.

AMDPRDMP calls PLSQEXT1 to delete the exit services it

loaded in, since they are not required for the control
statement execution. (Refer to Diagram 3, Step 3 and
the explanation listed in the Control Statement Process-
ing under Part 3).

5 Finally, AMDPRDMP locates the highest level
save area address and returns control to the
operating system,

Module Label

AMDPRCTL ENLOOP2

AMDPRUIM AMDUSRDL

AMDPRCTL ENDALL

G Jo Ayiadorg — S[BLIAJE]N PIsuad]

«AI JO S[ElIRIBIA P3JOLISIAY,,

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

PRDMP Diagram 7. Verb Exit Processing Table (Part 1 of 1)

Note: All input is via Register 1, which contains the address of the verb exit parameter list, BLSABDPL. Specific modules utilize
AMDPRDMP service routines and are responsible for the processing of the control blocks to produce a printed dump data set.

Verb exits are control statements that represent program modules. They are defined in the exit control table (ECT) which can be found in
BLSCECT, a member of SYSI.PARMLIB. AMDPRDMP checks the ECT and passes control to these modules when the corresponding
control statement is specified.

Ioput Process Module

ASMDATA The ASMDATA control statement causes AMDPRDMP to format and print the ILRFTMAN
contents of the auxiliary storage manager control blocks from the input data set. For a
list of the control blocks printed, see MVS/XA Service Aids. For a description of
ILRFTMAN, see MVS/XA System Logic Library.

AVMDATA The AVMDATA control statement causes AMDPRDMP to format and print the AVFRDFMT
contents of specific availability manager control blocks from the input daia set.

CVTMAP The CVTMAP control statement causes AMDPRDMP to format the communications AMDPRCVT
vector table and write the formatted information in the PRINTER data sel for printing.

DAEDATA The DAEDATA control statement causes AMDPRDMP to invoke ADYHDFMT, the ADYHDFMT

DAE format routine. ADYHDFMT formats and prints information from the dump
header record. For a description of ADYHDFMT output, see the MVS/XA Debugging
Handbook.

FORMAT The FORMAT control statement causes AMDPRDMP, via AMDPRUIM and AMDPRUIM
BLSQSUMI, to format and print the major system control blocks associated with each
address space. AMDPRUIM transposes the FORMAT control statement into
SUMMARY FORMAT and invokes the exit services router to process the SUMMARY
verb exit. For a description of BLSQSUMI, see MV S/XA IPCS Logic.

GRSTRACE The GRSTRACE, Q, or QCBTRACE control statement causes AMDPRDMP to format ISGDPDMP
and print the global or local resource queues in the input data set. For a description of
the control blocks printed, see MVS/XA SPL: Service Aids. For a description of
I0SGDPDMP, see Global Resource Serialization Logic.

IOSDATA The IOSDATA control statement causes AMDPRDMP to format and print the contents IOSVFMT
of specific 1/O supervisor (JOS) control blocks from the input data set. For a list of the
control blocks printed, see MVS/XA SPL: Service Aids. For a description of
10SVFMTH, see MVS/XA System Logic Library, Volume 6, Part 2.

JES2 The JES2 control statement causes AMDPRDMP to format contents of specific control HASPBLKS
blocks within the JES2 address space.
JES3 The JES3 control statement causes AMDPRDMP to format contents of specific control TATABPR

blocks within the JES3 address space.

LOGDATA The LOGDATA control statement causes AMDPRDMP to invoke IFCERFMT via the IFCERFMT
user exit interface. IFCERFMT formats and prints the records in the in-storage
LOGREC buffer at the time of the dump.

MTRACE The MTRACE control statement causes AMDPRDMP to format and print the contents TEEMBS817
of the master trace table for the dumped system in a first-in, first-out order. MV.S/XA
Diagnostic Techniques describes this table. MVS/XA System Logic Library, Volume 6, Part
2 describes IEEMBS817.

NUCMAP The NUCMAP control statement causes AMDPRDMP to format and print the contents [EAVNUCM
of the nucleus map entries in the dump data set. See MVS/XA SPL: Service Aids for
more information.

RSMDATA The RSMDATA control statement causes AMDPRDMP to format and print the IARRDMP

contents of the real storage manager control blocks from the input data set. For a kist of
the control blocks printed. see MVS/XA SPL. Service Aids.

3-24 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

SADMPMSG

The SADMPMSG control statement causes AMDPRDMP to format and print the
stand-alone dump console message log. See MVS/XA SPL: Service Aids.

AMDSAFCM

SRMDATA

The SRMDATA control statement causes AMDPRDMP to format and print the OUCBs
(system resource manager user control block) on the WAIT, OUT, and IN queues and
the DMDT (domain descriptor table).

IRARMFMT

SUMDUMP

The SUMDUMP control statement causes AMDPRDMP to pass control to the summary
dump format routine (IEAVTFSD) via the user exit interface. IEAVTFSD is described
with the summary dump function of SVC dump under the recovery termination
management (RTM) component in the MVS/XA System Logic Library, Volume 6, Part 2 .

IEAVTFSD

SUMMARY

The SUMMARY control statement causes AMDPRDMP to format and print a job
summary, a TCB summary and/or major system control blocks in full or key-field form.
AMDPRDMP accesses BLSQSUM1 to complete the task. For a description of
BLSQSUMI, see MVS/XA IPCS Logic.

BLSQSUM1

TCAMMAP

The TCAMMAP control statement causes AMDPRDMP to print ACF/TCAM control
blocks that are helpful in ACF/TCAM problem determination. AMDPRDMP locates
and formats selected ACF/TCAM control blocks in dumps produced by the
AMDSADMP and SVC dump programs. For a description of the ACF/TCAM
formatted dump routine and the control blocks selected, see ACF/TCAM Diagnosis
Guide.

IEDPRDMP

TRACE

The TRACE control statement causes AMDPRDMP to pass control to the system trace
formatter controller routine (IEAVETFC) to format and print the system trace table. For
a description of the system trace table, see MVS/XA Diagnostic Techniques. For a
description of the TRACE control statement, see MVS/X4 SPL: Service Aids.

IEAVETFC

VSMDATA

The VSMDATA control statement causes AMDPRDMP to format and print the contents
of the virtual storage manager control blocks from the input data set. These control
blocks are described in MV S/XA SPL: Service Aids. For a description of IGVSFMAN,
see MVS/XA System Logic Library, Volume 6, Part 2.

IGVSFMAN

VTAMMAP

The VTAMMAP control statement causes AMDPRDMP to print ACF/VTAM control
blocks that are helpful in ACF/VTAM problem determination. AMDPRDMP locates
and formats selected ACF/VTAM control blocks in dumps produced by the
AMDSADMP and SVC dump programs. For a description of the ACF/VTAM
formatted dump routine and the control blocks selected, see ACF/VTAM Diagnosis
Guide.

ISTRAFDI

LY28-1189-3 «© Copyright [BM Corp. 1982. 1986

Chapter 3. Print Dump (AMDPRDMP)

01307 SPIY 901AIS 2IMIVANIYOTY PAPUAXF/SAIN Q7-€

9861 ‘T861 "d10) NHI 1YSAdOoD © €-6811-8TA'T

PRDMP Diagram 9. The PRINT STORAGE/REAL/NUCLEUS/SQA/CSA Control Statements (Part 1 of 2)

Input From MO3 Process Output
PRINT STORAGE PRINT CONTROL STATEMENT
Control Statement Values PRINT STORAGE/PRINT REAL/
No Addresses PRINT NUCLEUS/PRINT CSA/PRINT SQA
STORAGE = ASID/} = Beginning 1, €nd 1
,; - Onil Tm g t.=n] 1 Build and enqueue PCBs to /[PRINTER
," AN print requested storage or pages:
PCBPL y{rcepL “4PCBPL
Low T = Low 1 = 2 ® PRINT STORAGE — Print
Low =1 L Oow " virtual storage range for job
Beginning 1 ne PCB Virtual as indicated by control state-
. _ Storage ment. |f no address space
. _ or|High 1= or| =
Hight= A z{‘;"‘:T:FFFFF, | Pcs is specified AMDPRDMP
X'7FFFFFFF End N |= will attempt to process the
ASID ASID ASID four cross memory address
spaces. |f the cross memory
PRINT REAL address spaces are not in the
Contro! Statement Values dump data set, or if
No Address AMDPRDMP cannot identify
REAL /1 = Beginning 1, End t them, the address space active
! PCB Real ;
/ s\ = 0nety on the processor on which
III < Storage the dump was taken will be
PCBPL 4rcBPL PCBPL PCB processed.
= = =~ jrmm—
Low? =0 L°"§’T_ " L°W1 e PRINT REAL — Print real
or Beginning or One storage range as indicated.
High 1 = High'}“: High T = e PRINT NUCLEUS — Print _ Exit |
REALMAX End REALMAX DAT-on and DAT -off nucleus. Module
PRINT NUCLEUS
ECT ® PRINT CSA — Print common
service area.
Module /ENUC Virtual
Name T rcBrL PCB Storage ® PRINT SQA — Print system
COMMON Tow =0 queue area.
High 1 = % 3 PRINT REAL/STORAGE — To Get Next
NUCTOP NUCTOP Print registers and current Control Statement
PRINT SQA Virtual PSW of IPL’ed CPU,
AQAT PCBPL PCB Storage
I Low 1 = Start of SQA
High T = —)
Low T size
PRINT CSA T Virtual
RD PCBPL PCB Storage
Low 1 = Start of CSA :>
High T =

¢ C ¢

QI JO Auadosd — S[EujEIA pasuadry

«NHI JO S[BLIRJEIA Pa)OLINSaY,,

9861 ‘7861 "d10) WHI SuAdoD © €-6811-8TAT

(ANAQIdANY) dun(uug ¢ 191dey)

LTt

(\

p

PRDMP Diagram 9. The PRINT STORAGE/REAL/NUCLEUS/SQA/CSA Control Statements (Part 2 of 2)

Extended Description

The PRINT control statement, along with its param-
eters, causes AMDPRDMP to format and print areas
of real or virtual storage. During initialization,
AMDPRDMP stores information describing the
storage map used during PRINT execution in the
print dump common communication area
(COMMON).

1 When AMDPRDMP encounters a PRINT control

statement with any of the parameters listed below,
it sets up a parameter list (PCBPL.) describing the
storage to be printed.

2 o STORAGE — If the user supplied ASID(s),
AMDPRDMP places the value in PCBPL. If
no address space is specified AMDPRDMP
attempts to process the four cross memory
address spaces (home, primary, secondary,
cross memory lock). If any of the address
spaces have the same ASID as another, the
address space will only be processed once.
I1f AMDPRDMP is unable to determine
the cross memory address spaces, or if they
are not in the input data set, the default
is the ASID of the job active on the CPU
from which the dump was taken {from
QASID in COMMON). The range of the ad-
dress space to be printed is determined from the
control statement. If only one address is
specified, that address is used as the low
address and the highest virtual storage
address as the high address. If no address is
specified, AMDPRDMP prints the entire
address space. The printed output appears as
follows:

o Nonextended and extended private storage
areas for each specified ASID in the dump

o Nonextended COMMON
o PSA (04K) and the entire DAT-on nucleus
e Extended COMMON.

Module

AMDPRPMS

Label

Extended Description

o REAL — AMDPRDMP sets up PCBPL with an
address range for real storage. The high and

low addresses are determined as for STORAGE.

® NUCLEUS — AMDPRDMP sets up a PCBPL

for the DAT-on nucleus. If the DAT-off nucleus

is contained in the dump, AMDPRDMP sets up
a PCBPL for it. An SVC dump may not con-
tain the DAT-off nucleus.

® CSA — Using the address ranges taken from
the GDA during print dump initialization,
AMDPRDMP sets up a PCBPL for both the
nonextended and extended CSA.

® SQA — Using the address ranges taken from the
AQAT index tables and the AQAT tables for
each system queue area subpool, AMDPRDMP
sets up a PCBPL for both the nonextended and
extended SQA. If the address ranges are not
available, AMDPRDMP sets up a PCBPL using
the address ranges from the GDA.

3 For the STORAGE or REAL parameter {with no

subparameters), AMDPRDMP writes the contents
of the 16 general purpose registers, 16 control registers,
4 floating point registers, the prefix register, and the
current PSW from the CPU on which the dump was
taken. If input is from AMDSADMP, this information
is taken from the CPUSTATUS record. Otherwise, it is
from the dump header record.

Module Label

AMDPRPMS

AMDPRNUC

AMDPRNUC

AMDPRNUC

AMDPRDPS

NEL Jo Aiadord — S[BLYBA PISUIN

« MY JO S[ELANEIA PAYOLISIY,,

51307 SPIY 3J1AI3S 3IN1931YILY PIPUANXF/SAIN Q7€

9861 7861 "d10D WHI 1y3uAdo) @ €-6811-8TA71

PRDMP Diagram 10. The PRINT CURRENT/JOBNAME Control Statements (Part ! of 4)

Input

From
MO3

PRINT CURRENT

PRINT JOBNAME

Control Statement

COMMON

CURASCB

QASID

IJOBNAME = (name 1, name 2,...) I

Process

> 1 Obtain ASCB addresses:

Jobname
ASVT ASCB List
oVT [name-
I j ‘ name
X

e PRINT CURRENT — For

SVCDUMP or SYSMDUMP,

AMDPRDMP obtains the

cross memory address spaces

from COMMON. For

SADMP, AMDPRDMP obtains

the cross memory address

spaces for each online pro-
cessor using the CPU status
record, ASVT, and PSA. If

any of the four cross memory
address spaces (home, primary,

secondary, or cross memory
lock) for a given processor
have the same ASID, that
address space is only pro-

cessed once. |f AMDPRDMP

cannot determine the ASID

of the cross memory address

spaces or if they are not in

the dump data set, the ASCB
of the address space that was

current when the dump was
taken is used.

e PRINT JOBNAME — Obtain

addresses of ASCBs associ-

ated with jobnames specified

in the control statement.

Exit
Module

MO11
Part 3

A Jo Apiadosg — S[BLIIBIA PIsUadNY

«AE1 JO S[BLABIA PAOMISIY,

9861 ‘z861 "d10D WAI WFUAdOD & €-6811-8TA]

(dNQIdany) dung ung ¢ 1aidey)

6t

o c

PRDMP Diagram 10. The PRINT CURRENT/JOBNAME Control Statements (Part 2 of 4)

Extended Description Module Label

1 When AMDPRDMP encounters 8 PRINT control

statement with the CURRENT or JOBNAME
parameters, it gets the ASCB(s) associated with the
parameter.

If the exit control table (ECT) indicates the jobname/ AMDPRUIM AMDUSRXT
current exit is in effect, AMDPRDMP passes control
to the user-exit module before beginning its processing.

o CURRENT — AMDPRDMP formats and prints the AMDPRPCR
cross memory address spaces (home, primary,
secondary, and cross memory lock). For SADMP
cross memory address spaces, AMDPRDMP formats
and prints ASCBs for each outline processor. For
SVCDUMP or SYSMDUMP cross memory address
spaces, if the cross memory address spaces cannot
be determined, AMDPRDMP gets the address of
the current ASCB and the current ASID from the
CURASCB and QASID fields in COMMON respec-
tively. If either value is zero, AMDPRDMP cannot
print CURRENT data and issues a message to that
effect.

Note that if the ASID of any of the four possible
address spaces is the same, that address space is only
printed once and a message is issued to that effect.

o JOBNAME — AMDPRDMP builds a list of job- AMDPRPJB
names specified in the control statement. [t
compares the jobname specified in each ASCB
with the names in the list. Whenever an ASCB
is found with a specified jobname, a switch is
set in the jobname list indicating the name has
occurred.

JAG] Jo Apadold — S[BUAEY Pasuddl]

«JNEI JO SBHIIBIA PI)OU)SARY,,

01807 SPIY 90IAISS BIMIOGHYOIY PIPUNXA/SAN (€€

9861 ‘2861 'd1oD WA WYSukdoD o €-6811-8TA'1

PRDMP Diagram 10. The PRINT CURRENT/JOBNAME Control Statements (Part 3 of 4)

Process

From
Input MO 11
Part 1
PRINT CURRENT/JOBNAME
ASCB LDA RD FBQE
[4LDA .
§ FBQE AFree Area
'\ [size |
A}
Y, | Low A
Y| Size
P-LIST r:
Low A PCB
High § Queue | [~
ASID
\
PRINT CURRENT/JOBNAME ASCB ASXB
TCB LSPL
{ TioT
4 Re | DEB \
A cDE }LLE (sgg =
A xsB A sTKE | i |
Real Address of the Segment Table ‘ AT SRB I
Information from the LT, AT, ET ‘ IHSA -l |
/
Status of ASTEICMA Status of ASTESSEM |
PRINT CURRENT SWD in COMMON]
[cPrsFND =1 |- —— — — —
Dump Header
16 General Prefix Register

Purpose Registers

16 Control Registers

Current PSW

4 Floating Point Registers

PRINT CURRENT/JOBNAME
2 Build PCBs for region bounda-

ries of ASCB and enqueue PCBs
to print regions.

PRINT CURRENT/JOBNAME

> 3 Format and print control blocks

for each ASCB by invoking
SUMMARY FORMAT verb - BLSQSUM1

exit.

PRINT CURRENT

>
> 4 Print registers and current PSW.

PRINT CURRENT/JOBNAME

5 Print storage associated with
ASID.

Output

// PRINTER

.}
a
o

0o o

@ To Get Next

Control Statement

a 6 n o o

NE] jo Ay13do1g — S[BLIAJBIA PISUN]

«JAH] JO S[BLIABIA] PAOLIISIY,,

9861 ‘7861 "d10D WHI YSuAdo) © ¢-6811-8TA'T

(ANAAdANY) dunq julg ¢ 191dey)

[e-¢

~

r

PRDMP Diagram 10. The PRINT CURRENT/JOBNAME Control Statements (Part 4 of 4)

Extended Description

2 AMDPRDMP uses the region descriptor to deter-
mine the beginning and ending addresses of the

private area. Then it determines the unallocated

space from the FBQEs for the ASCB. AMDPRDMP
calculates addresses for space allocated to the region.

Then using the addresses in the parameter list,

AMDPRDMP builds a PCB to contain the addresses.
It enqueues the PCB in its proper sequence in the PCB
queue, then reads and formats the storage areas speci-

fied in the PCBs. As the storage is written the

PRINTER data set, AMDPRDMP dequeues the PCBs.

3

PRDMP invokes the SUMMARY verb exit with
the FORMAT keyword for each ASID selected in
Step 1. SUMMARY formats the ASCB and each TCB.

RBs pointed to by the TCB.

Extended status blocks (XSBs) pointed to by
each active request block (RB).

Queue of PCLINK stack elements (STKEs)
associated with each XSB.

Load list.

Job pack queue area.

DEBs associated with the TCB.

Task input/output table {(TIOT) for the TCB.

Data management control blocks for the TCB
(DCB and 10B/ICB/LCB).

108 control blocks for the TCB (XDBA
{EXCPD) and UCB).

RTM control blocks for the TCB (RTCT,
RTM2WA, EED, SCB, FRRS, and IHSA).

XSBs and STKEs pointed to by the IHSA.

Module

AMDPRDPS

AMDPRDPS

AMDPRDPS

AMDPRUIM
BLSQSUM1

IECDAFMT

IECIOFMT

IEAVTFMT

IEAVTFMT

Label

PCBRTN

PCBENQ1

PRNTSTG

AMDUSRXT

Extended Description Module

4 For the CURRENT parameter, AMDPRDMP AMDPRDPS
writes the contents of the prefix register, the 16

general purpose registers, 168 control registers, the 4

floating point registers and the current PSW (if available)

in the PRINTER data set. AMDPRDMP checks the

GPRSFND bit in SWD of COMMON to determine

whether it should write the registers. AMDPRDMP AMDPRPCR

will obtain the current ASCB and ASID. The CVTTCBP

points to a four word table. The fourth word of that

table points to the current ASCB. If the current ASCB

cannot be determined, the following comment is

written:

'UNABLE TO ACCESS CURRENT TASK"’

For a SADMP, AMDPRDMP determines if the current
address space Is the dummy wait task.

The address space is the dummy wait task when the
PSAAOLD field in PSA points to the master scheduler’s
address space and the PSAANEW field points to WAIT's
address space. The WAIT task has an ASID of zero. If
the current ASCB is the dummy wait the following
comment Is printed:

"CURRENT TASK is DUMMY WAIT TASK’

5 AMDPRDMP prints the storage associated with AMDPRDPS
the requested address spaces, and fills in PCBPL.

6 AMDPRDMP prints the TCB summary collected
during formatting of control blocks.

Lebel

PRTSTGO

AMDPRDPS

JAMI Jo Ajiadorg — SpBLIIBIA PAsuadN]

«JAE] JO S[PUIIBIN PADIISIY,,

013077 sply 201A1ag UMY PapualXd/SAIN 7E-€

9861 ‘7861 "d10D LI 34TuAdod @ €-6811-8TA]

PRDMP Diagram 11. The CPUDATA Control Statement (Part 1 of 2)

Process

> 2

>3

Input

cvT csD

oo VT

PSA SVT__

[psasvt P7| !

CVvT LCCAVT

[4 rccar j‘
LcCA 4 Lcca J

cvT PCCAVT

[A pccar —”

PCCA

PCCA

Dump Header/CPUSTATUS

16 Control Registers

Prefix Register
Current PSW

CPU Timer

Clock Comparator

16 General Purpose Registers

4 Floating Point Registers

Format and print common
system data.

Format and print supervisor
vector table.

For Each CPU

Format and print logical con-
figuration communications
area.

Format and print physical
configuration communications
area.

Print current PSW and all
registers for CPU, if input is
from stand-alone dump.

Format and print prefixed
storage area.

Print a message indicating the
ASID of the cross memory
address spaces.

Format data in the Vector
Facility (VF) registers.

Output

LCCA
Table

PCCA
Table

Physical
CPU
Address
Tablé

// PRINTER

:
3
;
]
§

Listing

Message
°fl J/PRINTER

AT Jo Auadoag — sjeud)Bly PIsuadry

«AHI JO S[BLIJBEA pajoLIjsay,,

9861 ‘7861 "d10) WE[1Y3uAdoD & €-6811-8ZA'T

(dWAQIdQNY) dung g ¢ 1a1dey)

ge e

(\

PRDMP Diagram 11. The CPCUDATA Control Statement (Part 2 of 2)

Extended Description Module Label

The CPUDATA control statement causes AMDPRDMP
to format and print processor-related information.

AMDPRGCD invokes AMDPRUIM to initialize the
exit interface and then uses the Control Block For-
matter exit service to format control blocks.

1 AMDPRDMP uses the CVT pointer to locate,
format, and print the common system data area
(CSA).

AMDPRGCD

2 AMDPRDMP uses the PSA pointer (PSASVT) to
locate and print the supervisor vector table (SVT).

AMDPRGCD

3 AMDPRDMP uses the CVT pointer to locate,

format, and print the logical configuration com-
munications area (LCCA) for a processor. If the LCCA
vector table pointers are invalid, the prefixed storage
area (PSA) pointer to the LCCA is used.

AMDPRGCD

4 AMDPRDMP uses the CVT pointer to locate, AMDPRGCD
format, and print the physical configuration

communications area (PCCA) for a processor. |f

the PCCA vector table pointers are invalid, the pro-

gram uses the pointer in the PSA to get the PCCA.

Qutput comments are issued if pointers are invalid

or if the control block cannot be found.

5 If the input data set is from AMDSADMP, the
PSW and all registers for the processor are

obtained from the CPUSTATUS record. Otherwise,
AMDPRDMP gets this information from the dump
header record. In either case, AMDPRDMP prints
the current PSW and all registers for the processor.
A table of processor addresses is kept to avoid
duplication of processing. An output comment is
issued if the data cannot be printed.

AMDPRDPS

AMDPRGCD

6 AMDPRDMP formats and prints the prefixed

save area (PSA) for the processor and the current
PCLINK stack element (STKE) queue pointed to by
the PSA.

AMDPRDPS

Extended Description Module Label

7 AMDPRDMP prints a one line message that AMDPRGCD
indicates the ASID of the cross memory address

spaces (home, primary, secondary, and cross memory

lock) held.

8 !f the input data set is from the AMDSADMP, AMDPRGCD

AMDPRGCD invokes the control block
formatter to cause VF data to be formatted., Vector
data can only be formatted on a SADMP processor
that has the Vector Feature installed.

WHI Jo H13doig — S[BLIAE pasuadl]

<NHI JO SBHABIN P3jIMISAHY,,

01307 SPIV 301A19§ IMOARYOIY PIPUANXT/SAN €€

9861 ‘7861 'd10D WAI 1y3uLdoD & ¢-6811-8ZAT

PRDMP Diagram 12. The EDIT Control Statement (Part 1 of 10)

Process

From
MO3
Input

WTORMSG
| EDIT... [
AMDPRTAB

DDNAME

//DD C
OR
Oldest Time Stamp GTF
| : MCQE
MCCE

COMMON MCHEAD

CVTADDR I

|
Trace Buffers _I_
CVT GTFPCT
.CVTGTFA HQ HEAD
SLE
SLQHEAD

> 1 Ob‘ain EDIT parameters

I

: SLIP RR SRM

I EXIT ASCB | PI

| DDNAME | sys | EXT

L — —s{sTART 10 DSP
STOP SscH | UsR
JOBNAME | sve | RNIO
ccw cPU | EOF

2 Obtain GTF record from

external data set not on
direct access device

or

external data set on direct

access device
or

dump data set.

Output
COMMON
AEDITCB
AMDPRTAB
USEREXIT | DDNAME STARTIME
STOPTIME |JOBNAMES | ASCBADDR
SIOFLGS [slobvADs |I0FLGS2
— IODVADS |[SVCFLGS SVCNUMS
USRFLGS |USRNGTAB | PIFLGS
PICODES GENFLAGS
Message AMD2111

) ebiTorTions in. .. D

AMDPRTAB INRFCFGS
CURREC EXTTRC
GTF Record |

MO12

Step 4,5

JALI Jo Kyiadorg — sjeLId)BIA PIsuadN]

«WHI JO S[BHBA PAOLIISIY,,

9861 ‘7861 "d10D L] WBUAdoD & ¢£-6811-8TAT

dINQAdANY) dunqg wung ‘¢ 1dey)

Se-t

~

PRDMP Diagram 12. The EDIT Control Statement (Part 2 of 10)

Extended Description

1 When AMDPRDMP encounters an EDIT control

statement, it initializes the EDIT communications
table (AMDPRTAB) painted to by the AEDITCB field
of COMMON with the EDIT parameter values derived
from the EDIT control statement. It resolves mutually
exclusive parameter conflicts and sorts selected SSCH,
10, and USR values in ascending order. Then it issues
a summary message (AMD211]) to inform the user of
the EDIT options in effect. See Service Aids for a
description of the EDIT parameters.

2 Inorder to obtain a GTF record for the first time,
AMDPRDMP determines the source of the input
data, either an external data set or a dump data set.

o |If a DDNAME is specified in the DDNAME field of
AMDPRTAB, AMDPRDMP assumes that the asso-
ciated DD statement in the AMDPRDMP JCL
describes an external GTF data set. |t sets on the
EXTTRC flag in INRFCFGS field of AMDPRTAB,
then checks the device to determine whether the
external data set is on a direct access device. If not,
it obtains the first record in the data set.

o |f the data set resides on a direct access device,
AMDPRDMP positions to the record with the
oldest timestamp. (If no timestamp is svailable,
AMDPRDMP processes the data set as if it were not
on a direct access device.}

Module Label

AMPRCTL

AMDPROOT
AMDPRSCN

AMDPRGET

Extended Description Module

If the GTF buffers are in a dump data set,
AMDPRDMP obtains the address of the CVT in the
dump from CVTADDR in COMMON. From the CVT,
AMDPRDMP locates MCHEAD, the control table

of the monitor call (MC) routing facility. From
MCHEAD, AMDPRDMP locates the MC control
element {MCCE) which in turn points to a chain of
MC queue elements {(MCQEs). AMDPRDMP scans

the chain for the GTF application MCQE. The

MCQE contains the address of the GTF control

table, GTFPCT. If the dump is from AMDSADMP,
AMDPRDMP uses the GTFPCT pointer (HQHEAD)
to the most recent GTF buffers. AMDPRDMP also
formats the GTFBLOKSs in order from oldest to
newest. |f the dump is from SVC Dump, AMDPRDMP
uses the GTFPCT pointer to the save queue (SLQ
HEAD). The save list element chain is scanned for
ASID of the dump. The buffers required are then
located. (In either case, the queue pointer is to a
buffer control block which points to the buffer.)

AMDPRDMP stores the address of the record in the
CURREC fieild of AMDPRTAB. (For a description
of GTF output records, see the “‘Data Areas’’ section.)

Label

NI Jo Kiadorg — sjeud)ey pasuddiy

«AHI JO S[BUEBIA Pa)OINISIY,,

913077 SPIV 301AJG 2INIOAYDIY PIPUAXT/SAIN 9€-€

9861 ‘7861 'd10D WH1 W3ukdoD & ¢-6811-8TAT

PRDMP Diagram 12. The EDIT Control Statement (Part 3 of 10)

Output

/IPRINTER

000000000

AMDPRTAB

From MO13
Part 1
Input Process
Time Stamp Record l
AID FID
X'00’ X01’
Lost Event Record l :> 3 Format ali lost event and lost
block records and associated
AlD FID ¢ timestamp records.
X‘00’ xX'02'
Lost Block Record
AID FID
xlml x:osl
/
=N’tlnﬂalk_ —» 4 Pass trace record to user exit
AMDPRTAB | Q routine to:
USEREXIT _——— | J o print the contents of the
output area.
Parameter List
| or
Record W ® bypass the record.
Output Buffer
or
Record GTF Options

[}

| IE:%J\lft;iL:EID
Data

o eliminate the user exit routine.

or

o format the record regardless

of EDIT option selectivity.

MO12

or Part 5

il

USEREXIT=Blank |

INRFCFGS Field of
AMDPRTAB

| DMDFMT=1 |

o format record according to

EDIT options selected.
MO12

or Part §
o terminate EDIT execution.

GENFLAGS
[sys-1 | sysm-1]

INRFCFGS Field of AMDPRTAB

) | FMT=1 |

@ To Get Next Control Statement

WAl Jo Ausadorg — sjsuaBpy pasuaory
«JAEI] JO S[BLABIY PaIOUISIY,,

9861 ‘7861 'd10D W] 1Y3uAdoD O €-6811-8TA1

(dWaQIddV) durq ung ¢ Jaidey)

LE€

~

PRDMP Diagram 12. The EDIT Control Statement (Part 4 of 10)

Extended Description

3 if the record has an AID of X’00’, it is a control

record (timestamp, lost block, or lost data).
AMDPRDMP initializes the output buffers using the
FMTPTRN macro instruction and converts the
record to the output format. The formatted records
are written in the PRINTER output data set for later
printing in the AMDPRDMP output listing.

4 If the USEREXIT field of AMDPRTAB is non-
blank, AMDPRDMP passes the record to the user

exit module via a 5-word parameter list containing the

address of a copy of the input record, the address of

the output buffer, the address of the GTF option word,

and the addresses of the EID and data fields in the
record. On the return, the user exit routine instructs
AMDPRDMP to do one of the following:

® Print the output buffer.
o Bypass the record and get the next one.

e Eliminate the user exit (set the USEREXIT field
to blanks).

o Format the record regardless of the EDIT options
in effect (set the SYSM and SYS bits on in
GENFLAGS).

o Format the record according to the EDIT options
in effect.

e Terminate a EDIT processing.

Module Label

AMDPRREC

AMDPRCOM

AMDPRFLT
AMDPREXT

AGI Jo Apadosg — sppudIRl Pasuad]

AT JO S[BUAIBIN PALISY,,

21307 SPIY 301AISS SINIOANYIIY PIPUANNT/SAN Q€-€

9861 ‘7861 "d10o) WEI WSuAdo) © ¢-6811-8ZAT

PRDMP Diagram 12. The EDIT Control Statement (Part 5 of 10)

¢

From MO13
Part 3
Input Process
User Records . .
Record USRFLGS in AMDPRTAB b Filter record to appropriate
[[EID = Exxx]| FID =nn |] | ALLU=1 | format appendages:
USRNGTAB > ® |IMDUSRnNN — user/component
| EID Range | I SELU = 1 | format appendage
Record
IleiD = Exxx]| FID =00 |} ® AMDPRHEX — hexadecimal
System Records dump routine
Record
'] FD=03 [T > e AMDSYS03 — SYSM record
Record Record format appendage
| | Jobname ja4-—o ~—fo] ASCE_ 8]]
|
JOBNAMES |= m ASCBADDR
1
jobname - L-— ASCB &
Record 5
00
01
02 GENFLAGS
FID= < 04 and | SYS =1 | > ® One of the following system
05 format appendages:
06
poe > @ AMDSYS00 — SSCH, 10
format appendage
Record SIOFLGS/IOFLGS2
| FD=00 | |and|ALL=10rSEL=1 { ® AMDSYS01 — SVC format
Record SVCFLGS] \ appendage
| FID =01 | Jand[ALLV=10rSELV =1 |
® AMDSYS02 — DSP, PI
Record GENFLAGS | format appendage
FID =0 and |DSP =1
. 21 Jen IP,F,_GS —> e AMDSYS04 — SRM,RR,RNIO,
[ALLP=10rSELP =1 | SLIP format appendage
Record GSEI:IA:LA;GE!NIO e e AMDSYS05 — EXT format
= = =h = appendage
[T FiD=04 []and orSLIP = 1 ppendag
Record GENFLAGS ® AMDSYS06 — RNIO (pro-
[T FiD=05 [Jand[EXT =1 duced under ACF/VTAM
Record GENFLAGS :
[T Fip=06 [Jand[RNIO = 1 I_I‘ Version 2) format
Record SIOF LGS/IOFLGS2 | appendage
[T Fb=07 []and|[CCWS=10orcCCWI =1] > ® AMDSYS07 — CCW format
I I appendage

4 IMDUSRXX

ﬂ Mo13
Step 6

Output

o]
o o
S //PRINTER §
[+ (-]
o o
0 o
[+ -]
-] -]
[+ o]
Q [-]
Q (-]
o

Dl §
[+ [+]
[+ -]
[+}
o
J

AEI Jo Ayxadoid — S[BLIAJBJA] PIsUadI]

«JNE] JO S|BLIRIBIA PAIINLSIY,

9861 ‘T861 ‘d10D WHY 1y3uddoD o €-6811-8ZA7]

(dWaddamy) dunq g ¢ 1adey)

6¢-t

~

PRDMP Diagram 12. The EDIT Control Statement (Part 6 of 10)

Extended Description

5

If the user exit specifies that the record should be

formatted, or if no user exit is included, AMDPRDMP

performs a variety of tests to filter the record to the
appropriate format appendages:

If the first character of the EID is E, the record is a
user record. |f the ALLU flag is on, or if the SELU
fiag is on and the EID in the record is included in
the EID ranges specified in the USRNGTAB of
AMDPRTAB, AMDPRDMP passes control to the
user format appendage IMDUSRxx where xx is

the FID in the record.

If the FID in a user record is 00, the user wants the
record to be dumped in hexadecimal, so AMDPRDMP
passes the record to the hexadecimal dump routine,
AMDPRHEX, located in AMDPRDMP.

If the FID of the record is 03, the record is a SYSM
record. AMDPRDMP then uses the option bits in
AMDPRTAB and the EID to determine whether the
record is to be formatted. If so, AMDPRDMP passes
control to the minimal record format appendage.

If the record is not user or SYSM, AMDPRDMP
interrogates the JOBNAMES field in AMDPRTAB.
If jobnames have been specified, AMDPRDMP
verifies that the jobname in the record matches

one of the selected jobnames. If not, it performs

a similar check for ASCBADDR and the ASCB
address in the record. If no match at all occurs,

the record is bypassed. |f a match occurs, or if
neither jobnames nor ASCB addresses were specified,
AMDPRDMP filters the record to the proper system
format appendage.

If the SYS bit is on in the GENFLAGS field,

AMDPRDMP passes control to AMDSY Sxx where
xx is the FID.

Module Label

AMDPRFLT

AMDPRAPP

AMDPRREC

AMDPRAPP

AMDPRFLT

AMDPRAPP

(\

Extended Description

If the SYS bit is off and the FID is 00, AMDPRDMP
verifies that at least one bit is set on in the SIOFLGS
or IOFLGS2 field, then passes control to the SSCH,

10 comprehensive record format appendage.

If the SYS bit is off and the FID is 01, AMDPRDMP
verifies that at |east one bit is on the SVCFLGS
fieid, then passes control to the SVC comprehensive
record format appendage.

If the SYS bit is off and the FID is 02, AMDPRDMP
verifies that either the DSP flag in GENFLLAGS is on
or that one of the bits in the PIF LGS field is on, then
passes control to the Pi, DSP comprehensive record
format appendage.

If the SYS bit is off and the FID is 04, AMDPRDMP
verifies that either the SRM, RN 1O, RR, or SLIP flag
in GENFLLAGS is on, then passes control to the SRM,
RNIO, RR, SLIP comprehensive record format
appendage.

{f the SYS bit is off and the FID is 05, AMDPRDMP
verifies that the EXT flagin GENFLAGS in on, then
passes control to the EXT comprehensive record
format appendage.

If-the SYS bit is off and the FID is 06, AMDPR DMP
verifies that the RNI1O flag in GENFLAGS is on and
passes control to the format appendage routine
(AMDSYS06).

If the SYS bit is off and the FID is 07, AMDPRDMP
verifies that the CCWS bit in SIOFLGS or the CCWI
bit in IOFLGS2 is on, then passes control to the CCW
comprehensive record format appendage.

Module

AMDPRAPP

AMDPRAPP

AMDPRAPP

AMDPRAPP

AMDPRDMP

Label

AM] 3o Aaadoag — s[eLIAIEIA pasuadNf

WA JO S[ELABI PAISIY,,

91307 SpIy 391A13G 21N103NYDIY PIPUAXA/SAN Op-€

9861 ‘861 'd10D NH] Wy3LAdOD & €-6811-8TAT

PRDMP Diagram 12, The EDIT Control Statement (Part 7 of 10)

From MO13
Part 3

Process

vJ\/ vJ\/vv

Input
Record GENFLAGS
[] FID = 03 | |ana | sysm-=1
Record GENFLAGS
[T FiD=00,01,02,04,05 [Jand [sys-1 |-
Record SIOFLGS
. {5105 | _
E: {5106} Device ALLS=1 T
-
SIODVADS| = or
|—I Device'l I and | SELS =1 I
Record
2100
5101 IOFLGS2
5102 —
El 5103 Device ALLi=1
5104
5200
5201 or
|
IODVADS | =
. _ 1
[Device §]and [seci=1 |}
Record SVCFLGS
.
' EiD=1000 | svc Number}]| | [ALv=1 |
SVCNUMS . or
[sve Number§ | and [sELv=1 |
Record PIFLGS
EiC {8101} PI Code [ALp=1
8200
I
PICODES | =
[V|]ana | seLp=1 |
Record GENFLAGS
0001 DSP =1 ‘I
0002
EID= 1 0003
0004

6

If record matches the EDIT
options in effect, format the
record and its associated

timestamp record:

All or selected SY SM records

All comprehensive system
records

All SSCH or RSCH records

Selected SSCH or RSCH
records

All 10, PCI, EOS, HSCH,
CSCH, or MSCH records

Selected 10, PC|, EOS, HSCH,
CSCH, or MSCH records

All SVC records

Selected SVC records

All Pl records

Selected PI records

All DSP records

000000 00O

\

Output

//PRINTER

0000000

AL Jo Ajadosg — s[BLId)EA] PISUIIN]

JAHI JO S[BLIBIN PAIOLIsay,,

9861 ‘7861 "d10D WEI 1y3ukdo) 5 ¢-6811-8TAT

(dNQIdany) dung ung ¢ 1adey)

Ip-¢

C c

PRDMP Diagram 12. The EDIT Control Statement (Part 8 of 10)

Extended Description Module Label Extended Description Module

6 The system format appendages perform more tests o AMDSYSO01 checks the SVCFLGS field. If the ALLV AMDSYSO1

on the record to ensure that the record qualifies
for formating according to the EDIT options that are
in effect.

bit is on, or if the SELV bit is on and the SVC number
of the record corresponds to one in the SVCNUMS
field, AMDSYS01 formats the record.

e AMDSYSO03 determines whether all SYSM records AMDSYSO03 AMDSYS02 checks the record EID to determine the AMDSYS02
are to be formatted (SYSM bit in GENFLAGS is on) record type. If the record is a Pl record, it checks the
or just selected event records. PIFLGS field. If the ALLP bit is on, or if the SELP

e AMDSYSO00, AMDSYS01, AMDSYS02, AMDSYS04, AMDSYS00 bit is on and the Pl code in the record corresponds to
AMDSYS05, and AMDSYS06 check the SYS bit in AMDSYSO01 one in the PICODES field, AMDSY S02 formats the
GENFLAGS to determine whether all comprehen- AMDSYS02 record. If the record is a DSP record, AMDSY $02
sive records should be formatted or just selected AMDSY S04 verifies that the DSP bit in GENFLAGS is on, then
event records. AMDSYS05 formats the record.

AMDSYS06

o If the user specifies the CPU option, AMDSY S00 AMDSYS00
verifies that the given CPU value matches the
CPU ID in the 10 and/or SSCH record.

® AMDSYSO00 determines whether the record is on AMDSYS00

10 or SSCH record by checking the EID field. If it
is an SSCH record, AMDSYSO00 checks the
SIOFLGS field. If the ALLS bit in on, or if the
SELS bit is on and the device address in the record
is among those specified in SIODVADS, AMDSY S00
formats the record. If the record is an 10 record,
AMDSYS00 checks the IOFLGS2 field. If the ALLI
bit is on, or if the SELI bit is on and the device
address in the record is among those included in
IODVADS, AMDSYS00 formats the 10 record.
Either the SSCH or the SIO option cause formatting
of SSCH and RSCH records. The 10 option causes
formatting of the 10, PCI, EOS, HSCH, CSCH, and
MSCH records.

Label

JAE] Jo A11adolg — S[BLIdJEBIA] PasuddI]

«AEI JO S[BUEIA PIjoH)saYy,,

21807 SPIV 201AISG AIMPRNYIY PIPUAXA(SAN 7€

9861 ‘7861 "d10D QI 1481AdoD © €-6811-8TAT

PRDMP Diagram 12. The EDIT Control Statement (Part 9 of 10)

From MO13
Part
Input Process
6 continued
Record GENFLAGS
| [EmD=6201 | | | ExT=1 [T e Al EXT record
Record 5755 GENFLAGS - -
= d = | e A 10 records
EID 8200 and | RNIO =1
Record 7563 GENFLAGS
= = e All RR records
EID = 4003 and [RR=1_ |_ r
Record
4004 GENFLGS1
EID = 4005 and[stiP=1 | j‘) e Al SLIP records
4006
Record GENFLAGS
[T Em=4001 | Jand[SAM =1 | > e All SRM records
Record i
|1 FID = 06 | Jand| sSys=1 |
. J
Y
Record and Q e AIll RNIO records {produced
— 8100 4 CERTLAGS under ACF/VTAM Version 2)
= an
EID = g200
Record GENFLAGS
| FID = 07 | J]and [ccws=1 |
\ J
ag1dos SIOFLGS
EID =, 00| | Deviced CALLs=1] D Al SSCH CCW records
SIODVADS = or
[Device ¥ Jand [SELS =1 | e Selected SSCH CCW records
Record GENFLAGS
L1 FID = 07 | Jand|[ccwi=1 |
\ Vi
Y
Recordiand
100 IOSFLGS2 —‘
EID ={5200 DeviceT ALLI =1 > e AIll IO CCW records
5101 R
IODVADS 1= r
[Device ®% |and| SELI=1 | e Selected |10 CCW records

Output

e

//PRINTER

00000000000

000000000000000

Mo13 (1 To Obtain Next GTF Record
Step 2

JNGI Jo Aiddoig — S[RLIIBIA PIsuUddI]

« N1 JO S[BLIIJBIA PajoLLIsay,,

9861 ‘7861 'd10D WHI 1YSuhdoD) 0 €-6811-8TK1

(dINAIdANY) dun(g juig ¢ 1eidey)

Ev-t

~

PRDMP Diagram 12. The EDIT Control Statement (Part 10 of 10)

Extended Description Module Label
6 continued

® AMDSYS04 checks the record EID to determine AMDSYS04
the record type. If the record is an SRM record,
it verifies that the SRM bit in GENFLAGS is on,
then formats the record. If therecord is an RR
record, AMDS YS04 verifies that the RR flag in
GENFLAGS is on, then formats the record. [f
the record is an RNIO record, AMDSY S04 verifies
that the RNIO flag in GENFLAGS is on and then
formats the record. If the record is a SLIP record,
AMDSYSO04 verifies that the SLIP flag in
GENFLGS1 is on and then formats the record.

o AMDSYSO05 verifies that the EXT flag in AMDSYS05
GENFLAGS is on, then formats the record.

o AMDSYSO06 verifies that the ARNIO flag in AMDSYS06
GENFLAGS is on, then formats the record.

o If the user specifies the CPU option, AMDSYS07 AMDSYS07

verifies that the given CPU value matches the
CPU ID in the 10 and/or SSCH record.

® AMDSYSO07 checks the CCWS bit and the CCWI AMDSYS07
bit in GENFLAGS to determine whether CCW trace
records should be formatted for SSCH and 10
events. |f either or both CCW bits are on,
AMDSYS07 determines whether the record is an
10 or SSCH record by checking the EID field.
When the CCWS bit is on, and the record is an SSCH
record, AMDSYS07 checks the SIOF LGS field.
If the ALLS bit is on, AMDSYSQ07 formats all SSCH
CCW records. If the SELS bit is on and the device
address in the record is among those specified in
SIODVADS, AMDSYSO07 formats selected SSCH
CCW records. When the CCWI bit is on, and the
record is an 10 record, AMDSYS07 checks the
JIOF LGS2 field. If ALLI bit is on, AMDSYS07
formats all IO CCW records. If the SELI bitis on
and the device address in the record is among
those specified in IODVADS, AMDSYS07 formats
selected |O CCW records.

After the record is formatted, AMDPRDMP writes it in AMDPRCOM
the PRINTER output data set for later printing:

AMDRPDMP then obtains the next GTF record for

formatting.

AG] Jo Kyradorg — S[enAB PIsUIN]

« A JO S[ELIRIBIA P3)OLIISIY,,

‘ “Restricted Materials of IBM”
Licensed Materials — Property of IBM

Section 3: Program Organization

This section describes how AMDPRDMP is organized to carry out the formatting
and printing of information. It has three parts:

Program Loading

A description of program loading.

Module calling sequences for AMDPRDMP initialization, control statement
processing and control statement execution.

A description of the data-reading operation.

As shown in Figure 3-2, there are eight modules that are resident in virtual
storage and link-edited into the single AMDPRDMP load module during system
generation:

AMDPRCTL is the main control module. It initializes the AMDPRDMP
program and the common communication area, scans the user control
statements, and initiates the execution of the functions requested by the
control statements.

AMDPRCOM contains the common communication area (COMMON) used
by all AMDPRDMP modules; it also contains a number of small service
routines used by other AMDPRDMP modules.

AMDPRRDC is the read control module.

AMDPRSEG is the segment loading module. It loads AMDPRDMP
modules from JOBLIB, STEPLIB, or SYS1.LINKLIB into virtual storage
when they are needed to perform functions requested by format control
statements.

AMDPRPMG is a message module that contains the addresses and text of
AMDPRDMP messages.

AMDPRUIM is the exit interface module. It loads the service modules
provided for the exits and invokes BLSQECT to link to exits.

AMDPREAD reads the dump records and builds maps of the dump data set
if SYSUT]1 is not defined.

AMDPRGSA contains glue service routines for user exit storage access, and
print and index services.

3-44 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

In addition to the modules that are resident in virtual storage, there are four other
categories of AMDPRDMP modules that are resident in SYS1.LINKLIB:

e Executor modules for all format control statements except EDIT.
e Service modules for all format control statements except EDIT.
e EDIT modules.
e Read initialization modules.

Executor Modules
AMDPRGCD AMDPRNUC AMDPRPIJB
AMDPRLPA AMDPRPCR AMDPRPMS

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 3. Print Dump (AMDPRDMP) 3-45

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Figure 3-2. AMDPRDMP Leoading

3-46 MVS/Extended Architecture Service Aids Logic

PRINT NUCLEUS
PRINT SQA
PRINT CSA PRINT CURRENT PRINT JOBNAME
Executor Executor
AMDPRNUC AMDPRPCR AMDPRPJB
PRINT REAL
PRINT STORAGE
Executor
AMDPRUIM
AMDPRPMS
CPUDATA LPAMAP
Executor Executor
AMDPRDPS
AMDPRGCD AMDPRLPA
AMDPRDMP load module
AMDPRCOM AMDPRRDC |- -] AMDPRMST |- - AMDPRSLI
AMDPRCTL AMDPRSEG |--| AMDPRABS
(executor for
AMDPRFMT function AMDPRUIM |--| AMDPRLRF
statements)
AMDPREAD AMDPRPMG |- AMDPRLOD
AMDPRGSA
- -| AMDPRCMC
AMDPRECT

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Service Modules

EDIT Modules

Executor modules govern the execution of functions requested by all
AMDPRDMP control statements except EDIT. The EDIT modules form a
category of their own.) The executor routines for function control statements
(CVT, TITLE, GO, ONGO, NEWDUMP, NEWTAPE, SEGTAB, and END) are
part of AMDPRCTL. The executor modules for SUMMARY, FORMAT,
LPAMAP, CPUDATA, and PRINT are in SYSI.LINKLIB. They are brought
into virtual storage by AMDPRSEG just before the associated format control
statement is executed. All other control statements are user exits whose program
modules are defined in the ECT. They are not loaded by AMDPRSEG, but are
linked to AMDPRUIM via BLSQECT.

AMDPRDPS AMDPRFMT
AMDPRECT AMDPRFUB

Service modules perform functions that are either common to several executor
modules or can be used by user-exit modules. Some small service routines are
contained in AMDPRCOM. However, the larger service modules are in
SYS1.LINKLIB. Like the executor modules for these control statements, the
service modules in SYS1.LINKLIB are brought into virtual storage by
AMDPRSEG just before the control statement is executed. The service modules
for user-exit routines are loaded by AMDPRUIM during initialization and are
resident for the remainder of AMDPRDMP processing.

AMDPRAPP AMDPRFRM AMDPRSMG AMDSYS02 AMDSYS07
AMDPREID AMDPRGET AMDPRSN2 AMDSYS03 AMDSY101
AMDPREXT AMDPROOT AMDPRSN3 AMDSYS04 IMDUSRF9
AMDPRFLT AMDPRREC AMDSYS00 AMDSYSO05 IMDUSRFE
AMDPRFMG AMDPRSCN AMDSYSO01 AMDSYS06 IMDUSRFF

EDIT modules are loaded into virtual storage from SYS1.LPALIB to execute the
function requested by the EDIT control statement. The EDIT function executes
in two major loads: EDIT keyword processing and input data set formatting
(editing). Figure 3-3 represents maps of the AMDPRDMP storage area during
the two loads. Storage structure during the second load depends on the type of
input data set, dump or external.

The three parts of Figure 3-3 contain the resident modules for AMDPRDMP
(described previously). Figure 3-3A also contains the EDIT initialization module
(AMDPROOT) and the keyword scan modules (load module name
AMDPRSCN). Load module AMDPRSCN contains the following EDIT
modules:

AMDPRSCN, the EDIT keyword isolation module.
AMDPRSCN2, the EDIT keyword processing module.
AMDPRSCN3, the EDIT control statement termination module.
AMDPREID, the EID table.

AMDPRSMG, a message module.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 3. Print Dump (AMDPRDMP) 3-47

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

High Address

AMDPROOT

AMDPRSCN

AMDPRDMP
Buffers

Free Area

AMDPRDMP
Resident Modules Low Address

3A - AMDPRDMP Storage During EDIT Keyword Scan

High Address

AMDPROOQOT

AMDPRXED

User Exit Module

Format Appendages

AMDPRDMP
Buffers

Free Area

AMDPRDMP
Resident Modules Low Address

3B - AMDPRDMP Storage During Formatting of Dump Data Set Records

High Address

AMDPROOT

AMDPRXED

External Data Set Buffers

User Exit Module

Format Appendoges

AMDPRDMP
Buffers

Free Area

AMDPRDMP
Resident Modules Low Address

3C - AMDPRDMP Storage During Farmatting of External Data Set Records

Figure 3-3. AMDPRDMP Storage During EDIT Control Statement Execution

3-48 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

The remainder of AMDPRDMP’s storage area is buffers used by other

AMDPRDMP functions. If EDIT is not the first control statement for this
execution of AMDPRDMP, module AMDPREAD is also in storage.

Figure 3-3B depicts AMDPRDMP’s storage area after EDIT keyword scan, if
GTF buffers are to be edited from a dump data set. AMDPROOT remains in
storage because it contains the EDIT communication table (AMDPRTAB) needed
by all EDIT modules. Load module AMDPRXED has replaced AMDPRSCN in
storage. AMDPRXED contains the following EDIT modules:

AMDPRFRM, the EDIT execution control module.

AMDPRGET, the EDIT I/O module.

AMDPRFLT, the EDIT record filter module.

AMDPREXT, the user exit interface module.

AMDPRAPP, the format appendage interface module.

AMDPRREC, the control record format and hexadecimal dump module.
AMDPRFMG, the EDIT message module.

Figure 3-3B also contains system and user/component format appendages that are
loaded by AMDPRAPP, using AMDPRSEGQG, to format input records. The
following are format appendages:

e AMDSYS00, AMDSYSO0!, AMDSY10l, AMDSYS02, AMDSYSO03,
AMDSYS04, AMDSYS05, AMDSYS06, AMDSYS07 — system format
appendages.

e [IMDUSRF9 — VSAM format appendage.
¢ IMDUSRFE — SAM/PAM/DAM format appendage.
e IMDUSRFF — OPEN/CLOSE/EOV component format appendage.

The remainder of the AMDPRDMP storage area is occupied by AMDPRDMP
buffers that are needed to obtain information from the dump data set and
optional user exit modules.

Figure 3-3C differs from 3B in that external data set buffers, into which records
from an external data set are read, occupy part of the storage devoted to format
appendages in 3B. Following these buffers are the format appendages, and any
remaining storage is occupied by AMDPRDMP buffers left from a different
AMDPRDMP operation, and module AMDPREAD.

Read Initialization Modules

AMDPRLOD AMDPRABS
AMDPRMST AMDPRLRF
AMDPRSLI AMDPRCMC

These modules are brought into virtual storage from SYSI.LINKLIB as they are
needed. The functions of the modules are as follows:

e AMDPRLOD, the work data set load module, loads the input data set into
SYSUTI or SYSUT2.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 3. Print Dump (AMDPRDMP) 3-49

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

e AMDPRMST is invoked to store information from the input data set in the
common communication area (COMMON). The information is used during
the execution of format control statements.

e AMDPRSLI obtains dump data information describing the boundaries and
layout of the storage map, and saves this information in the print dump
COMMON area. AMDPRSLI is called by AMDPRMST, by the executors
of the PRINT NUCLEUS, SQA, CSA, and STORAGE contro] statements
and by AMDPRFUB (AMDPRFUB determines the private boundaries of a
given address space).

e AMDPRABS formats and prints the dump abstract title page.
e AMDPRLREF formats and prints the console-initiated loop trace records.

e AMDPRCMC determines cross memory information for the dumped system
and saves it in COMMON.

Reading Input Data

AMDPRDMP maintains a chain of buffers to contain input dump data. The
resident read control module, AMDPRRDC, manages the buffer chain and
handles requests for dump data from the other modules. When AMDPRRDC
receives a request for data not in a buffer, the module calls AMDPREAD to read
the data if possible. Following are descriptions of the way these modules perform
data reading and of the manipulation of input buffers.

Read Control Module — AMDPRRDC

AMDPRRDC receives control from the other AMDPRDMP modules via a
BRREAD macro instruction (see Section 6). When the DATA function is
indicated by the macro instruction, it is a request for input dump data.
AMDPRRDC'’s handling of the request depends on whether data requested is for
a CPU ID or for a real or virtual address within the dump.

CPU Data Request: AMDPRRDC returns a pointer to the data which is set up
in a fixed format. (See Section S: Data Areas for the format of the CPU Status
Area.) AMDPRRDC gets the information from COMMON; however, if input is
from AMDSADMP, AMDPRRDC gets the information by searching the
AMDPRDMP buffers for the CPU status record for that CPU ID. If the record
is not in a buffer, AMDPRRDC calls AMDPREAD to read the record. If a read
is unsuccessful AMDPRRDC branches to the error handler in effect.

Note: The dump header record is saved during print dump initialization
processing. A pointer to this data is saved in COMMON and is available to all
print dump modules. Requests for the header record do not use the BRREAD
facility. They directly access the information based on the address initialized in
COMMON.

3-50 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Requested Data at Real Address: AMDPRRDC verifies that the input contains
real storage data and that the address (rounded down to a 4K boundary) is valid.
Then AMDPRRDC determines whether the requested data is already in a buffer
and, if so, returns a pointer to the buffer. If the data cannot be located in a
buffer, AMDPRRDC calls AMDPREAD to read the data. If an I/O error occurs
or if any of the validity checks fails, or if the data is not in the input dump,
AMDPRRDC branches to the error handler in effect.

Requested Data at Virtual Address: AMDPRRDC rounds the requested address
down to a 4K boundary and performs address prefixing, if necessary, using the
PREFXRBY value in COMMON. Then AMDPRRDC attempts to locate the
data with one of the following results.

e The data is already in a buffer. AMDPRRDOC returns a pointer to the data
unless the buffer is marked for invalid data. In that case the active error
handler receives control.

e The data is not in a buffer and the dump contains data from real storage
equivalent so it can get the data from the real portion of the dump. If the
data is not available in the real portion, AMDPRRDC attempts to get it from
the virtual dump, if input contains virtual storage data. In any case,
AMDPRRDOC searches the input buffers for the data and calls AMDPREAD
to read the data if it is not in a buffer. Finally, AMDPRRDC returns a
pointer to the data in a buffer, or it branches to the active error handler if the
buffer is marked as having invalid data.

e The data is not in a buffer and the dump contains only virtual data.
AMDPRRDC calls AMDPREAD to read the data from the virtual address.
AMDPRRDC checks the validity of the returned data and either returns to
the caller or branches to the active error handler, if the data is marked
invalid.

Length Specified for Requested Data: AMDPRRDC adds the requested data

address to the requested length (up to 4K). If the total crosses a page boundary,

AMDPRRDC does the following:

e Obtains a 4K buffer to store the requested data.

e Calls AMDPREAD to obtain the page containing the requested address.

® Moves the range from the first page to the beginning of the buffer.

e Calls AMDPREAD to obtain the page containing the remainder of the range.

e Moves the remainder of the range to the buffer.

e Returns the address of the 4K buffer.

e If the requested address range does not cross a page boundary, AMDPRRDC
processes the request normally.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 3. Print Dump (AMDPRDMPY 3-51

Read Buffer Manipulation

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

To minimize the number of I/O operations required to obtain information from
the input data set without constraining the available storage, AMDPRRDC
obtains a fixed number of dump data set buffers. In addition, it assigns a priority
to the buffers so that frequently-used information remains in storage where it can
be accessed without an I/O operation.

AMDPRDMP builds a buffer map for each buffer, then chains the buffer maps
together in a queue. The highest priority buffer (represented by the first buffer
map in the queue) contains the storage block that was last referenced. When a
different storage block is required, AMDPRRDC rechains the buffer maps to
cause the buffer containing the required block to be represented first in the buffer
map queue. In this way, frequently-used data is represented first in the buffer
map queue, and data that is not referenced is pushed down in the queue until it
eventually is replaced by new dump information.

Rechaining the Buffers: As AMDPRRDOC fills requests for data, the buffers are
rechained via their maps as follows (see also Figure 3-4):

e If there is a request for data that is not in a buffer, and there is an empty
buffer available (call it buffer D as in PRDMP Figure 3-4), AMDPRRDC
calls AMDPREAD to read the data into buffer D, enqueues the buffer D
map as the first buffer map (most-recently referenced buffer), then chains the
buffer D map to point to the buffer map for the buffer that was previously
most-recently referenced (buffer C in Figure 3-4).

e If there is a request for data that is not in a buffer, and there re no empty
buffers available, AMDPRRDC releases the buffer whose map is last in the
queue (buffer A in Figure 3-4). It places the address of buffer A map in the
buffer map queue base, chains the buffer A map to point to the buffer map
previously first in the queue (buffer D in Figure 3-4), removes the buffer A
map from its former place in the queue, and calls AMDPREAD to read the
data into buffer A.

e [f there is a request for data that is already in a buffer (buffer B in
Figure 3-4), AMDPRRDC places the address of the buffer B map first in the
queue, chains the buffer B map to point to the buffer map that was previously
first in the queue (buffer D in Figure 3-4), and removes the buffer B map
from its former place in the queue.

3-52 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

(REQUEST FOR DATA NOT IN BUFFER, BUT EMPTY BUFFER [S AVAILABLE

BEFORE:

AFTER:

REQUEST FOR DATA NOT IN BUFFER, AND NO BUFFERS ARE AVAILABLE

BEFORE:

) D

AFTER:

Lo]

REQUEST FOR DATA ALREADY IN BUFFER B

BEFORE:

AFTER:
KEY:
mmmmlp Fointer from AMDPRRDC
4K Buffer Represented by Buffer Mop
(Figure 3-4. Read Buffer Chaining

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 3. Print Dump (AMDPRDMP) 3-53

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Module Calling Sequences for AMDPRDMP Functions

The following maps show sequential flow of AMDPRDMP modules. Each map
indicates the active modules for a specific function and describes the operations
performed by those modules. Entry point names are also provided where they
may differ from the module names. AMDPRDMP Figure 3-5 explains the design
of sequence map.

For more detailed descriptions of the functions, see the diagrams in Section 2:
Method of Operation. A reference to the corresponding diagram accompanies

each map.
Single Path Flow Alternate Path Flow
Calling Module Calling Module
Module A Module A
Module A! Module B
Module A? Module B!

—Module B (ENTRY1)

The calling module first calls A, The calling module determines whether
which then calls A and A2, to call A or B for this operation. If B
When A returns, the caller passes receives control, it calls B! before
control to B at entry point returning to the caller.

ENTRY1.

Figure 3-5. Example of Calling Sequence Map

3-54 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of 1BM”
Licensed Materials — Property of IBM

Initialization (Diagram 2)

AMDPRCTL (AMDPRCTL) — Analyzes EXEC statement parameters and stores value s in
(AMDPRMSC) COMMON; reads in control statements. Scans first formatting
statement.

——AMDPRCOM (AMDPRWTR, AMDPRMSG) — Opens PRINTER and/or INDEX data

sets. Gets title from the operator.

——AMDPRUIM (AMDPRUIM) — Initializes exit interfaces: Puts ABDPL and SRA addresses
In common.

L AMDPRSEG — (after the first formatting statement has been read)

AMDPRRDC (AMDPRRDC) — INIT function: Loads AMDPRLOD (if input on
tape), initializes and maps buffers, loads and deletes
AMDPRMST, and builds ASCBMAP.

—— AMDPRLOD — If tape input, loads dump to SYSUT1 workfile
and builds dump maps.

—— AMDPREAD — If SYSUTI was not defined, builds dump maps.
——AMDPRMST - Initializes COMMON with dump data including symptoms

extracted from the dump header record for an SVC dump to be
presented as part of the title page output produced by this

module.
—— AMDPRSLI — Provides information related to the boundaries
describing the various areas that comprise the storage
layout.

F——AMDPRUIM — Invokes BLSQECT to link to the user-header exit
modules

——AMDPRRDC (AMDPRRDD) — Locates the dump records

AMDPREAD — Reads records into buffers.
AMDPRCMC — Determines cross memory ASIDs.

L— AMDPRABS — Prints the abstract title page.

——AMDPRLRF — Formats and prints the instruction trace data (created by the
console-initiated loop recording).
Function Statement Processing (Diagram 4)

AMDPRCTL (AMDPRMSC) — Processes CVT, GO, ONGO, NEWDUMP, NEWTAPE,
SEGTAB, and TITLE statements.

AMDPRCOM (AMDPRSYN) — Writes syntax error messages.

LPAMAP (Diagram 4)
AMDPRCTL (AMDPRMSC) — Scans control statements.
AMDPRLPA — Executor: controls formatting and printing of LPA map.

——AMDPRCOM (AMDPRGFR, AMDPRWTR, AMDPRMSG) — Writes LPA title,
formats output lines, writes messages.

AMDPRRDC (AMDPRRDD) — DATA function: locates LPA records.

‘—AMDPREAD — Reads records into buffers.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 3. Print Dump (AMDPRDMP) 3-35

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

END Statement (Diagram 5)

AMDPRCTL (AMDPREND) — Prints execution statistics or causes transfer of dump to SYSUT?2 (if
END is the only statement).

AMDPRRDC (AMDPRRDC) — INIT function: loads AMDPRLOD.
AMDPRLOD — Transfers dump data set to temporary workfile.
AMDPRCOM (AMDPRMSG) — Prints statistic messages and prints the dump index on the
PRINTER file (if the INDEX DD is not included in the
JCL).
AMDPRCTL (AMDPRXIT) — Terminatess AMDPRDMP.

—— AMDPRRDC (AMDPRRDA) — Free buffers.
——AMDPRUIM (AMDUSRDL) — Calls BLSQEXTI to delete exit services.

Formatting Statement Processing (Diagrams 6-10)

AMDPRCTL (AMDPRMSC) — Scans each control statement and determines processing path.
——AMDPRCOM (AMDPRSYN) — Writes syntax error messages.

——AMDPRUIM (AMDUSRXT) -— Invokes BLSQECT to link to the user module
correspondingto the user verb, for example,

SRMDATA, MTRACE or ASMDATA.

——AMDPRRDC (AMDPRRD&Z) — INIT function: ensures initialization for
dump has been performed.

—— BLSQEXTI — Load exit service and initialize ABDPL and SRA.

BLSQROUT — To invoke BLSQECT to link to exit module.

—— AMDPRRDC (AMDPRRDD) — DATA function: provides data for exit
module.

——AMDPRFMT — Provides format service for exit module.

—— AMDPRSEG — Loads processing path for LPAMAP, EDIT, SUMMARY,
CPUDATA, or PRINT statements; calls for each module to store its
entry addresses in COMMON.

—— AMDPRRDC (AMDPRRDC) — INIT function: ensures initialization for
dump is performed.

Executor module for statements processed by AMDPRSEG.

CPUDATA (Diagram 11)

AMDPRCTL (AMDPRMSC) — Scans control statement.

I—AMDPRGCD — Executor: Calls the service router (BLSQROUT) to get the control block
formatting service to format: CSD, SVT, LCCA, PCCA, PSA, and VF
data.

—— AMDPRRDC (AMDPRRDD) — Locates data in the dump.

AMDPREAD — Reads data into buffers.

L——AMDPRCOM (AMDPRGFR, AMDPRWTR) — Prints title. Formats and writes
output.

3-56 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of 1IBM

Verb Exits Defined in the ECT (Diagram 7)

AMDPRUIM (AMDUSRXT) — Initializes exit interface. Provides storage access routine
(AMDMEMAR), write routine (AMDWRITR, and index routine
(AMDINDEX) for user exits. Formats and prints requested
information.

User exit

L AMDPRRDC (AMDPRRDD) — Locates data for user exit.
AMDPREAD — Reads records into buffers.

——AMDPRFMT — Formats output.

——AMDPRCOM (AMDPRWTR) — Writes output.

——AMDPRCOM (AMDPRNDX) — Writes index entries.

PRINT STORAGE/REAL (Diagram 9)
AMDPRCTL (AMDPRMSC) — Scans control statement.

AMDPRPMS — Executor: Determines storage ranges to be printed from PRINT
parameters.

——AMDPRCOM (AMDPRWTR) — Writes print title.

—— AMDPRDPS (AMDPRPCB, PRNTSTG) — Builds and enqueues PCBs to describe
storage ranges for printing. Prints
storage using PCBs.

——— AMDPRRDC (AMDPRRDD) — Locates dump records as required.

AMDPREAD — Reads records into buffers.

—— AMDPRCOM (AMDPRWTR) — Writes output.

PRINT NUCLEUS/SQA/CSA (Diagram 9)
AMDPRCTL (AMDPRMSC) — Scans control statement.

I— AMDPRNUC — Executor: Controls printing of nucleus, system queue area, and common
service area.

——AMDPRCOM (AMDPRWTR) — Writes nucleus title.

—— AMDPRUIM (AMDRUSRXT) — (NUCLEUS only) Interfaces with user’s print

nucleus exit.

—— AMDPRDPS (AMDPRPCB, PRNTSTG) — Builds and queues PCBs for storage to
be printed. Prints storage.

—— AMDPRRDC (AMDPRRDD) — DATA function: Locates records.

AMDPREAD - Reads records into buffers.

t— AMDPRCOM (AMDPRWTR) — Writes output.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 3. Print Dump (AMDPRDMP) 3-57

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

PRINT CURRENT (Diagram 10)
AMDPRCTL (AMDPRMSC) — Scans control statement.

\— AMDPRPCR — Executor: controls formatting and printing of control blocks and of region
for current task.

—— AMDPRCOM (AMDPRWTR) — Writes CURRENT title.
—— AMDPRUIM (AMDUSRXT) — Interfaces with CURRENT/JOBNAME exit.

——AMDPRFSC — Controls formatting and printing of control blocks related to address
space and task.

—— AMDPRFUB — Determines region boundaries for building PCBs.

—— AMDPRUIM (AMDUSRXT) — Interfaces with the SUMMARY FORMAT verb exit to
format control blocks related to address space and task.

——AMDPRDPS (PRNTSTG) — Prints user region specified by PCBs.
AMDPRRDC (AMDPRRDD) — Locates dump records.
AMDPREAD — Reads records into storage.

AMDPRCOM (AMDPRWTR) — Writes output.

—— AMDPRFSR (TCBSMRY) — Writes TCB summary.

PRINT JOBNAME (Diagram 10)

AMDPRCTL (AMDPRMSC) — Scans control statement.

AMDPRJB — Executor: scans jobname in control statement and builds jobname lists;
controls formatting and printing of control blocks and storage for jobnames.

——— AMDPRCOM (AMDPRSYN, AMDPRWTR) — Writes syntax error messages.
Writes output.

—AMDPRUIM (AMDUSRXT) — Interfaces with CURRENT/JOBNAME exit. module.
——AMDPRRDC (AMDPRRDD) — Locates data in dump.

AMDPREAD — Reads required records into buffers.

—AMDPRFSC — Controls formatting of system control blocks for each jobname.
—AMDPRFUB — Determines region boundaries for ASCBs.

—AMDPRIUM (AMDUSRXT) — Interfaces with the SUMMARY FORMAT verb exit to format
control blocks related to address space and task.

AMDPRDPS (PRNTSTG) — Formats and controls printing of storage areas.
——AMDPRRDC (AMDPRRDD) — Locates data in dump.

AMDPREAD — Reads records into buffer.

L—— AMDPRCOM (AMDPRWTR) — Writes output.

AMDPRFSR (TCBSMRY) — Prints TCB summary.

3-58 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

EDIT (Diagram 12)

AMDPRCTL (AMDPRMSC) — Scans EDIT statement.

—— AMDPRSCN — Scans EDIT parameters.

—— AMDPROOT — Initializes AMDPRTAB communications table.

—— AMDPRSN2 — Processes EDIT parameters.

——AMDPRCOM (AMDPRSYN) — Writes syntax error messages.

———AMDPRSN3 — Processes statement end. Sorts range tables, checks options.

—— AMDPRFRM — Controls editing/printing of GTF data.

—— AMDPRCOM (AMDPRWTR, AMDPRSYN, AMDPRMSG) — Writes EDIT output.
Writes syntax error

messages. Writes
output messages.

L—— AMDPRGET — Obtains GTF record for processing.

—— AMDPRCOM (AMDPRWTR, AMDPRSYN) — Writes output or syntax error
messages.

—— AMDPRRDC — Locates required records.
AMDPREAD — Reads records into buffer.

AMDPRREC (AMDPRCON) — Formats GTF control records.

L— AMDPRCOM (AMDPRWTR, AMDPRGFR) — Formats an output line.
Writes the formatted
line.

AMDPRFLT — Checks whether options specify processing the current record.

T——AMDPREXT — User exit interface.

——AMDPRCOM (AMDPRSYN, AMDPRWTR) — Syntac error messages.
Writes output.

—— AMDPRSEG — Loads user exit module.

L—— AMDPRREC (AMDPRHEX) — Formats AID, FID, AND EID fields and
writes the fields in hexadecimal.

User exit routines.

AMDPRAPP — Interfaces with format appendage.

—— AMDPRCOM (AMDPRSYN, AMDPRWTR, AMDPRGFR) —
Hexadecimal conversion routine, formats and prints an output line.

—— AMDPRSEG — Loads the format appendage.

—— AMDPRREC (AMDPRHEX) — Formats the AID, FID, and EID
fields of the record. Writes the fields
in hexadecimal.

AMDPRCOM (AMDPRGFR, AMDPRWTR) — Formats an
output line.
Writes the
formatted line.

Format appendage

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 3. Print Dump (AMDPRDMP) 3-59

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Section 4: Data Areas

This section describes the following data areas that are built and used by
AMDPRDMP modules:

Print dump index description table (AMDMNDXT).
ASCB map (ASCBMAP).

ASID index (ASIDNDX).

Buffer map entry.

Common communication area (COMMON).

CPU status area.

Current TCB list (CURRLIST).

Dump map entry.

EDIT communication table (AMDPRTAB).

Exit parameter list (ABDPL).

Exit control table (ECT) entry.

Exit control table entry mapping (ECTE).

Mapping for dump header and processor status input records (AMDDATA).
Path descriptor element.

Print control block (PCB).

TCBLIST entry.

Address Space Control Block Map (ASCBMAP)

Size: Variable; depends on number of ASIDs. For each ASID, there is a map
entry and table entry.

Map — 16 static bytes — 2 bytes per active ASID (rounded up to double word
boundary.)

Table — 8 bytes per active ASID.
Created by: AMDPRRDC
Use: Map contains the ASID of each address space on ASCB dispatching queue

at time of dump. Table contains the corresponding ASCB address and segment
table address for each ASID in map.

Map Entry

Offset Size Field Name Description

0 ()} 4 ASCBTAB Pointer to the lable of addresses of ASCBs and
segment tables.

4 4 2 ASCBNUM Number of address spaces in the table.

6 6) 2 ASCBRESV Reserved.

8 8) 4 ASMAPLEN Length of ASCB map.

12 ©) 4 ASTABLEN Length of ASCB/SEGTAB table.

16 (10) 2 ASID First address space 1D in table.

XX (xx) 2 ... Last ASID in table.

3-60 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Table Entry
Offset Size Field Name Description
0 (O] 4 ASCBADDR Address of ASCB associated with first ASID in

map. X‘80’ in the high order byte indicates
AMDPRRDC was unable to read
corresponding ASID for this ASCB. ASID
field is set to FFFF.

4 4 4 SEGTABAD Real address of segment table associated with
first ASID in map.

Exit Parameter List (ABDPL)
Size: 96 bytes
Created by: AMDPRUIM

Use: The exit parameter list serves as a communications area between
AMDPRDMP, user exit routines, and the AMDPRDMP service routines. The
BLSADPL macro maps the exit parameter list. The exit parameter list is created
by AMDPRDMP, IPCS and SNAP with the intent of interfacing to exit routines.
For more detailed information on the mapping, see MVS/XA IPCS Logic &
Diagnosis. (The IHAABDPL is still available for compatibility. It includes the
BLSABDPL macro.)

Address Space Identifier Index (ASIDNDX)
Size: 112 bytes per table.
Created by: AMDPREAD or AMDPRLOD.

Use: The index is searched for the requested ASID from which the corresponding
map address is found (used to find the block containing the requested address).

Offset Size Field Name Description

0 (U] 4 ASDXLNK Pointer to next table or zero.

4 4) 36 ASDXASID 18 2-byte fields, each of which contains an
ASID.

40 (28) 72 ASDXMAP 18 4-byte fields, each of which contains the

address of the first dump-data map for the
corresponding ASID.

LY28-1189-3 € Copyright IBM Corp. 1982, 1986 Chapter 3. Print Dump (AMDPRDMP) 3-61

Buffer Map Entry

Size: 20 bytes.

Created by: AMDPRRDC.

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Updated by: AMDPRRDC, AMDPREAD.

Use: One buffer map entry is built for each AMDPRDMP buffer.

Offset
0

12

16
18
20

Common Communication Area (COMMON)

Size: 2884 bytes.

©

@
@®)

©

(10)
(12)
(14)

Size

4

—_—— N N

XXXX

Field Name
BUFFLINK

BUFFPTR
BUFFREAL

BUFFVIRT

BUFFASID
BUFFCPU
BUFFLAG
INVALFLG
BUFFCOM

Created by: AMDPRCOM.

Used by: All AMDPRDMP modules.

Description

Address of next buffer map entry in chain or
zero if last entry. Buffer map entries re chained
in order from most-recently referenced buffer to
Jeast-recently referenced buffer.

Address of an input buffer.

Address of real storage location of the 4K block
of storage contained in the dump record that
was read into the associated buffer.

Address of virtual storage location of the 4K
block of storage contained in the dump record
that was read into the associated buffer.

ASID of data in buffer.

Logical CPU ID if data is a CPU status record.
Flags:

Invalid data in the buffer.

ASID of data is FFFF.

Reserved.

Use: Communication among AMDPRDMP modules.

Offset

16

20

24
32
36

3-62 MVS/Extended Architecture Service Aids Logic

©

@)
@®)

©
(10
(14)

(18)
(20
(24

Size
4

Hobooo

Field Name
ERRADDR

VERBGN
VERBEND

KYWDBGN
KYWDEND

DELIMCD

WORK1
SIX
LINECNT

Description

Address of current error routine to receive
control if a read error occurs.

Address of verb in current control statement.
Address of first character following verb in
current control statement.

For PRINT control statement only, address of
keyword.

For PRINT control statement only, address of
first character following keyword.

Code Delimiter:

X‘04 Comma.

X‘08’ Equal sign.

X‘0C’ Blank.

X*10° Left parenthesis.

X*‘14’ Right parenthesis.

Doubleword work area.

Fullword constant: 6.

Current line number, used to determine when a
new page is needed.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Offset

40 (28)
44 (2C)
48 (30)
52 (34)
56 (38)
60 (3C)
68 (44)
7 (48)
76 (4C)
80 (50)
84 (54)
86 (56)
8 (58)
9 (5A)
92 (50)
94 (5E)
96 (60)
98 (62
100 (64)
102 (66)
104 (68)
106 (6A)
108 (6C)
110 (6E)
112 (70)
113 (71)
114 (72

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

Size

RN NDNMRPDRDNNRNDNDNDN

1
1

Field Name

PAGENUMB
CURBUF

TCBLIST
CVTADDR

PCBPTR
INDD

RDENTRY

READNO

RDERCNT

READTM

FILESEQ

ONEA
TWO
THREE
FOUR
FIVE
SEVEN
EIGHT
TEN
ELEVEN
TWELVE
SIXTEEN
LINENUMB

LINENUM

RETCODE
SWA
SYSUTISW
SYSUT2SW
OPSSW
NOTPAGES

GOswW
DDSW
SETCVTSW

RDRSW

SWB
IOERR

FMTERR
PRTSUM
ENDSW
QSYSUT2

Description

Current page number in binary.

Address of current output buffer supplied by
AMDPRWTR.

Origin of TCB list.

Address of CVT in dump system, obtained from
the dump system or from the CVT control
statement.

Origin of PCB queue.

DDNAME of input data set DD statement, set
by the NEWDUMP control statement or
default of TAPE.

Count of DATA entries to module
AMDPRRDC, printed as summary information
at AMDPRDMP termination.

Number of blocks read from SYSUT1 work
data set or dump tape, printed as summary
information at AMDPRDMP termination.
Number of I/O errors while attempting to read
from SYSUT! work data set or dump tape,
printed as summary information at
AMDPRDMP termination.

Number of times data requested was not in an
input buffer, printed as summary information at
AMDPRDMP termination.

Value of FILESEQ parameter in NEWDUMP
control statement, used to open the input tape
to the correct file.

Constant: 1.

Constant: 2
Constant: 3.
Constant: 4.
Constant: 5
Constant: 7.
Constant: 8.

Constant: 10.

Constant: 11.

Constant: 12,

Constant: 16.

Value of LINECNT parameter in PARM field
of EXEC statement or default of 58.

Value of LINENUMB minus 2. (The number
of lines per page excluding the title).

Return code for PRDMP step.

Switches:

SYSUTI data set specified.

SYSUT?2 data set specified.

Operands buffering in process.

Title pages are not to be repeated after ‘CVT ="
control statement.

GO control statement being processed.
SYSPRINT DD statement specified.
CVTADDR field in COM has been filled by
CVT control statement.

Control statements entered from the SYSIN
data set: otherwise, from the console.
Switches:

1/O error while reading from SYSUT1 or dump
tape.

Requested information not in input data set.
SUMMARY called from PRINT.

Reserved.

END control statement being processed.
SYSUT?2 data set specified.

Reserved.

Chapter 3. Print Dump (AMDPRDMP) 3-63

3-64

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Offset Size Field Name Description

115 (13) 1 SWC Switches:

I... MSTRSW AMDPRMST has attempted dump
initialization.

. SETFLSH Set FLSHMODE in SWD if error
occurs.

L POSITSW Positioning of the input data set
must be performed. When the main error
handler in AMDPRCTL is entered and this
switch is on, an error occurred in input data set
positioning.

.l TREADIN INDD data set on direct access.

l... EDITSW EDIT control statement being
processed.

R SEGRD EDIT Module indication to loader
module to issue an initialization read.

XX ---- Reserved.

116 (74) 1 SWD Switches:

I... FLSHMODE Control statements are being
scanned for syntax errors only.

XX. ---- Reserved.

Ll NOSTDMG Do not issue message AMD1611
before servicing caller’s request.

... NOLOADSW Another control statement
appeared before END control statement.

1. CONTSW Obtain continuation statement for
EDIt control statement.
.1 GPRSFND Issue CPUSTATUS BRREAD to
print general register contents in output listing.
X ---- Reserved.
117 (75 1 SWE Switches:
.. .. STOPSW Stop option specified.
Ko e - Reserved.
L RESPC Respecify EDIT options
P B TITLESW Title option specified.
l... BUILDMAP AMDPRLOD or AMDPREAD must scan
dump to build map(s).
XXX Reserved.
118 (76) | SWF Switches:
L. .. QPRDINIT AMDPREAD must be specified.
Ko e Reserved.
. QSADMP Input is from AMDSADMP.
I I DMPIC Complete dump contained in buffers.
I... PAGEOK Switch for AMDPRFCB.
X.. Reserved.
.l QUTILOD SYSUTI is preloaded.
X Reserved.
119 (77) 1 BUFSW Switches:
XXXX XX.. ---- Reserved.
.1 PREFM Preformatted dump tape being processed.
.l SUMFSRSW Communicate AMDPRSUM and
AMDPRFSR.
Switch.
120 (78) 1 PRSW Switches:
L. .. Initialize exit interface for mainline print dump
request.
doo QSEGTBSW Segment table origin supplied by user in
SEGTAB control statement.
LX. - Reserved.
o TTLSW SVC dump header record has been printed in
PRINTER output data set.
l... PRNTRL PRINT REAL is current control statement.
q.. PRNTREAL Real storage data requested.
..XX Reserved.
121 (79) | INDEXSW Dump index switch.
122 (7A) 3 ---- Reserved.
125 (7D) 81 WTORMSG Control statement input area.

MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Offset Size Field Name Description

206 (CE) 8 BLANKS Character string constant blanks.

214 (D6) 5 TITLE Character string constant: “TITLE”.
219 (DB) 4 STOP Character string constant: “STOP”.
223 (DF) 26 MSGI ID and skeleton of message AMDI1611.
249 (F9) 26 MSG2 ID and skeleton of message AMDI158].

The following nine fields (to offset X*18F”) define the AMDPRDMP page title.

Offset Size Field Name Description

215 (113) 64 TITLEMSG Title area for user-supplied title.

339 (153) 1 --e- One blank.

340 (154) 15 TITLEMOD Label and field for module name from dump
data set header record.

355 (163) 1 - One blank.

356 (164) 13 TITLEDTE Labe] and field for data on which dump was
taken.

369 (171) 2 Two blanks.

37t (173) 13 TITLETME Label and field for time at which dump was
taken.

384 (180) 2 - Two blanks.

386 (182) 13 TITLEPGE Label and field for page number.

399 (18F) 256 CAPTABL Translate table for translating EBCDIC lower
case to upper case.

655 (28F) 256 TABLE Translate table to form EBCDIC printout at
right margin of general format.

911 (38F) 63 HEXTABL Translate table for first stage of conversion of

binary to hexadecimal characters. Note:
TABLE, HEXTABL, and EBCTABL overlap to
save space.

974 (3CE) 10 EBCTABL Translate table for second stage of conversion
of binary to hexadecimal characters. Note:
TABLE, HEXTABL, and EBCTABL overlap to
save space.

984 (3D§) 256 BLNK Main scan table. This translate table associates
the following codes with stopping characters:
Code Delimiter
X‘04’ Comma
X‘08" Equal sign
X‘0C’ Blank
X‘10* Left parenthesis
X‘14’ Right parenthesis

1240 (4D8) 256 NONBLNK Table for nonblank character scan. This table
recognizes only alphanumerics as nonblank.

1496 (SD8) 256 NONBLANK Table for nonblank character scan. This table
recognizes everything except X‘40’ as nonblank.

1752 (6D8) 4 AWRITE Address of PRINTER data set write routine,
AMDPRWTR.

1756 (6DC) 4 APRTMSG Address of SYSPRINT data set write routine,
AMDPRMSG.

1760 (6E0) 4 ASYNTAX Address of message writer routine,
AMDPRSYN.

1764 (6E4) 4 AFMTLINE Address of general format routine,
AMDPRGFR.

1768 (6E8) 4 AADRCNVT Address of 3-byte binary to hexadecimal
conversion routine in CSECT AMDPRSYN.

1772 (6EC) 4 AWRDCNVT Address of 4-byte binary to hexadecimal

conversion routine in CSECT AMDPRSYN.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 3. Print Dump (AMDPRDMP) 3-65

Offset
1776 (6F0)

1780 (6F4)

1784 (6F8)

1788 (6FC)
1792 (700)
1796 (704)
1800 (708)
1804 (70C)
1808 (710)

1812 (714)

1816 (718)

1820 (71C)

1824 (720)

1828 (724)

1832 (728)

1836 (72C)

1840 (730)

1844 (734)
1848 (738)
1848 (738)
1852 (73C)
1856 (740)
1860 (744)
1864 (748)
1868 (74C)
1868 (74C)

1869 (74D)

3-66 MVS/Extended Architecture Service Aids Logic

Size

BN -

-y

——h s bbb A

w

Field Name
ARGNBND

STOPEXIT

SYNMSGA

AEREXIT
ALOADER
QATMERTN
ATCBSAVE
ATCVREMV
ATCBRTRV

APCBENQ

ASTPROUT

AFORMAT

APRTSTG

BUFSUM

BUFREINT

AEND

ONGOOPTR

DCBADDRS
AOUTDCB
ANDXDC3
APTRDCB
ARDRDCB
AINDCB

ENDLIST

ASYSUDCB

“Restricted Materials of [BM”
Licensed Materials — Property of IBM

Description

Address of AMDPRFUB, valid only when the
following control statements are being
processed:

PRINT ALL.
PRINT CURRENT.
PRINT JOBNAME.

Address of current stop-exit routine. This
routine is invoked if the STOP option of
AMDPRDMP is in effect and the operator
replies ‘STOP’ to message AMD1561.

Address of message address list which contains
messages that can be issued by calling
AMDPRSYN at each of its entry points.
Address of AMDPRDMP termination routine,
AMDPRXIT.

Address of AMDPRSEG.

Address of TODCNVRT in AMDPRSEG.
Address of TCB list enqueue routine in CSECT
AMDPRTSV of AMDPRCOM.

Address of TCB list dequeue routine in CSECT
AMDPRTSYV in AMDPRCOM.

Address of TCB list element retrieve routine in
CSECT AMDPRTSYV of AMDPRCOM.
Address of PCB queue enqueue routine, valid
only when the PRINT with all keywords control
statements are being processed.

Address of STOP option handler. CSECT
AMDPRSTP in AMDPRCOM.

Address of AMDPRFSR, valid only when the
following control statements are being
processed.

FORMAT.
PRINT CURRENT.
PRINT JOBNAME.

Address of AMdPRDPS, valid only when the
PRINT or CPUDATA control statements are
being processed.

Total number of dump data set buffers used
during this execution of AMDPRDMP.
Number of times dump data set buffers have
been initialized during this execution of
AMDPRDMP.

Address of END control statement processing
routine AMDPREND.

Address of operands specified in the ONGO
contro! statement, used by the GO verb to
determine the functions to be performed.
Reserved.

Origin of AMDPRDMP DCB address array.
Address of PRINTER data set DCB.
Address of INDEX data set DCB.

Address of SYSPRINT data set DCB.
Address of SYSIN data set of DCB.

Address of input data set DCB.

Alignment.

Constant X‘80’ to indicate end of DCB address
array.
Address of SYSUTI or SYSUT2 data set DCB.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

The following four fields (to offset X‘75D’) are used only for the EDIT function
of AMDPRDMP. These fields are valid only when the EDIT control statement is
being processed.

Offset
1872 (750)

1876 (754)
1880 (758)
1884 (75C)

1885 (75D)

Size
4

4

Field Name
TRCCOUNT

AEDITCB
AROOT

EDITER

Additions for release one support.

Offset

1888 (760)
1892 (764)
1896 (768)
1900 (76C)

H b s

Field Name

REALMAP
SEGTABOR
REALMAX
QAPFT

Additions for release one support.

Offset
1904 (770)

1906 (772)

1908 (774)
1912 (778)

1916 (77C)

1920 (780)
1924 (784)

2092 (82C)
2192 (890)
2196 (894)
2200 (898)

2204 (89C)

2208 (8A0)
212 (8A4)
2216 (8A8)
2220 (8AC)
2224 (8B0)
2228 (8B4)
2232 (8BS)
2236 (8BC)
2240 (8C0)

2244 (8C4)

2246 (8C6)

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

Size

F o S K B -

[

—

Field Name
QASID

IPLCPU

CURASCB
PREFXRGR

PREFXRGV

ASVTADDR
HDRREGS

HDRTITLE
ASIDNDX
CPUMAP
ASCBMAP

BUFERMAP

BRRDDATA
BRRDINIT
BRRDADJ
AASCBFMT
ASRBFMT
AUSRINIT
AUSREXIT
AUSRDEL
AUSRTCBA

AUSRASID

EXITFLAG

Description

Number of GTF trace records processed, i.e.,
the number of entries to module AMDPRGET.
Address of the EDIT communications area
AMDPRTAB.

Address of AMDPRTARB initialization routine
AMDPROOT.

Value of EDIT ER = parameter from
AMDPRDMP EXEC statement.

Alignment.

Description
Address of real storage dump map.
Segment table origin.

Address of the top of real storage.
Address of page frame table.

Description

ASID of IPLed CPU for SADMP; home ASID
for SVC dump.

Address of IPLed CPU. Contains 256 if CPU
status was unavailable; that is, an 1/O error
occurred while reading the CPUSTATUS
record.

Address of current ASCB in dumped system.
Real address in PSA prefix register (SADMP
input only).

Virtual address in PSA prefix register (SADMP
input only.)

Address of ASVT in dumped system.

Registers and current PSW from SVC Dump or
DSS header record.

Title from dump header record.

Address of ASID index.

Address of CPU STATUS record maps.
Address of ASCB map created by
AMDPRRDC.

Address of first physical buffer map entry in
AMDPRRDC.

Address of AMDPRRDC data read routine.
Address of AMDPRRDC INIT routine.
Address of BRREAD ADJUST routine.
Address of AMDPRFAR.

Address of AMDPRSRB.

Address of AMDPRUIM initialization routine.
Address of user-exit interface routine.

Entry point of AMDPRUIM clean-up routine.
Address of TCB currently being processed by
AMDPRFSR.

ASID of address space being processed by
AMDPRFAR or AMDPRFSR.

Flags indicating action to be performed by
AMDPRUIM.

Chapter 3. Print Dump (AMDPRDMP) 3-67

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

The following offsets are used in the IBM 3800 printing subsystem:

Offset
2247

2248
2250
2252
2254
2255
2258
2260
2262
2264
2268
2272

2272
2284
2288
2300
2304
2304
2304
2306
2308
2310

2312
2312
2316
2320
2324
2328
2336

2337
2340

2344
2520
2520
2524
2528
2532
2536
2540
2544

2548

3-68 MVS/Extended Architecture Service Aids Logic

(8C7)

(8C8)
(8CA)
(8CC)
(8CE)
(8DO0)
(8D2)
(8D4)
(8D6)
(8D8)
(8DC)
(8E0)

(8E0)
(8EC)
(8F0)
(8FC)
(900)
(900)
(900)
(902)
(904)
(906)

(908)
(908)
(90C)
(910)
(914)
(918)
(920)

(921)
(924)

(928)
(9DB)
(9D8)
(9DC)
(SE0)
(9E4)
(9ES)
(9EC)
(9F0)

(9F4)

Size

1
XXXX

=)

——00 b A H =

XXXX

Field Name
13800SW

13800KEY

I3800ULN
1380080

13800204
RBMAX
LLEMAX
JPQMAX
DEBMAX
DDMAX
SRBMAX
TCBMAX
ASCBMAX
XLMAX
LPAMAX
TITLEKEY

TITLESTK
Z9ERRID
APRSTK
CMINFO
CMASID
CMHASID
CMPASID
CMSASID
CMCASID

CMASCB
CMHASCB
CMPASCB
CMSASCB
CMCASCB
CMPSW
CMCFLGS
CMDFTCUR

CMNUMPCB

COMSRES
PDCPPL
PDCBUF
PDCUPT
PDPSCB
PDPECT
ABDPLADR
SRAADR
COMTRCE

PDSW
PSLITERM
PSQASPIL
POVERLAP

PGDAERSW

Description

Switches:

Reserved.

Indicates storage key message will be printed in
page title.

User specified line count.

Print 80 lines per page, subject to user specified
line count.

Print double density line for storage dump.
Maximum number of RBs allowed (50).
Maximum number of LLEs allowed (255).
Maximum number of PQEs (256).

Maximum number of DEBs (200).

Maximum number of DDs (1635).

Maximum number of SRBs (50).

Maximum number of TCBs (256).

Maximum number of ASCBs (200).

Maximum number of extent lists (25).
Maximum number of CDE elements (500).
Label and field for key or storage data currently
being dumped.

Reserved for alignment.

Storage key value.

Stored from the SVC dump.

Address of the STKE formatter.

Information about cross memory environment.
Current ASIDs.

ASID of the HOME address space.

ASID of the PRIMARY address space.

ASID of the SECONDARY address space.
ASID of the CML (cross memory lock) address
space.

Current ASCBs.

ASCB pointer to the HOME address space.
ASCB pointer to the PRIMARY address space.
ASCB pointer to the SECONDARY address space.
ASCB pointer to the CML address space.

PSW passed from SVCDUMP and SYSMDUMP.
Flags needed by AMDPRCMC.

Above ASID and ASCB fields should not be used
by PRINT CURRENT and PRINT
STORAGE verbs.

Reserved.

Alignment.

The number of PCBs to be processed and passed
from AMDPRPMS to AMDPRDPS.

Reserved.

TSO CPPL.

Address of TSO command buffer.

Address of TSO UPT.

Address of TSO PSCB.

Address of TSO ECT.

Address of TSO ABDPL.

Address of Service Router Area, (SRA).
Anchor for the Console-Initiated Loop Recording
routine.

Switches:

AMDPRDMP processing must terminate.

The SQA has spilled into the CSA.

The storage ranges overlap when enqueuing
PCBs.

The GDA is unavailable.

Reserved.

LY?28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Offset Size Field Name Description

2549 (9F5) 1 - Reserved.

2550 (9F¢) 2 FBQEMAX Maximum number of FBQEs (100).
2552 (9F8) 124 PSLIDTA Data initialized by AMDPRSLI.
2552 (9F8) 8 PCSADINF CSA starting addresses.

2552 (9F8) 4 PCSADDR Non-extended CSA starting address.
2556 (9FC) 4 PCSAEADR Extended CSA starting address.
2560 (A00) 8 PCSZINFO CSA size information.

2560 (A00) 4 PCSASZ Non-extended CSA size.

2564 (A04) 4 PCSAESZ Extended CSA size.

2568 (A08) 8 PSQADINF SQA starting address.

2568 (A08) 4 PSQADDR Non-extended SQA starting address.
2572 (AOC) 4 PSQAEADR Extended SQA starting address.
2576 (A10) 8 PSQZINFO SQA size information.

2576 (A10) 4 PSQASZ Non-extended SQA size.

2580 (Al4) 4 PSQAESZ Extended SQA size.

2584 (Al8) 8 PRIADINF Private starting address.

2584 (Al8) 4 PRIADDR Non-extended private starting address.
2588 (AIC) 4 PRIEADR Extended private starting address.
2592 (A20) 8 PRITAINF Private ending addresses.

2592 (A20) 4 PRITADDR Non-extended private ending address.
2596 (A24) 4 PRITEADR Extended private ending address.
2600 (A28) 8 PRISZINF Private size information.

2600 (A28) 4 PRISZ Non-extended private size.

2604 (A20) 4 PRIESZ Extended private size.

The following represents the address of the GDA fields for which BRREADS
were attempted. The address of the GDA fields is used in an output comment
when a read error occurs.

Offset Size Field Name Description

2608 (A30) 8 PCSERRAD Address of GDA fields for CSA addresses.

2608 (A30) 4 PRDCSAD Address of GDA field for non-extended CSA
addresses.

2612 (A34) 4 PRDCSADE Address of GDA field for extended CSA
starting address.

2616 (A38) 8 PCSERRSZ Address of GDA fields for CSA size.

2616 (A38) 4 PRDCSASZ Address of GDA field for non-extended CSA
size.

2620 (A3C) 4 PRDCSZE Address of GDA field for extended CSA size.

2624 (A40) 8 PSQERRAD Addresses of GDA fields for SQA addresses.

2624 (A40) 4 PRDSQAD Address of GDA field for non-extended SQA
starting address.

2628 (A44) 4 PRDSQADE Address of GDA field for extended SQA
starting address.

2632 (A48) 8 PSQERRSZ Address of GDA fields for SQA size.

2632 (A48) 4 PRDSQASZ Address of GDA field for non-extended SQA
size.

2636 (A4C) 4 PRDSQSZE Address of GDA field for extended SQA size.

2640 (AS0) 4 PNUCLBND Lowest DAT-on nucleus address.

2644 (AS4) 4 PNUCTOP Highest DAT-on nucleus address.

2648 (AS8) 4 PNUCRLBD Lowest DAT-off nucleus address.

2652 (ASC) 4 PNUCRTOP Highest DAT-off nucleus address.

2656 (A60) 4 PDFLTNCL Default for lowest DAT-on nucleus address.

2660 (A64) 4 PDFLTNCT Default for highest DAT-on nucleus address.

2664 (A68) 12 PAQATNDX Pointers to the SQA AQAT index tables for

subpools 226, 239, and 245.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 3. Print Dump (AMDPRDMP) 3-69

Offset

2264
2268
2272
2676
2691
2692
2692

2969

2700

2704

2708

2712

2716
2760

(A68)
(A6C)
(A70)
(A74)
(A83)
(A84)
(A84)

(A88)
(A8C)
(A90)
(A94)
(A98)

(A9C)
(ACS)

Size

44

Field Name

PAQNDX26
PAQNDX39
PAQNDX45
TOPHDR

PSLIDTAI
PMAXCOME
PSMAD
PSMSZ
PPGTAD
PPGTSZ
COMHDR

COMDSNM
COMPRFOR

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Description

Pointer to the subpool 226 AQAT index table.
Pointer to the subpool 239 AQAT index table.
Pointer to the subpool 245 AQAT index table.
Print storage heading.

Alignment.

Data initialized by AMDPRSLI.

Maximum ending address of extended common
area when comparing the end of the extended
FLPA, MLPA, PLPA, CSA, and SQA.

Start of the non-FREEMAINable storage
management area.

Size of the non-FREEMAINable storage
management area.

Start of the non-FREEMAINable page table
area.

Size of the non-FREEMAINable page table
area.

Pointer to a copy of the dump data set header
record.

Work file data set name from AMDPRLOD.
Address of entry in AMDPRFOR to be used by
AMDPRFXT during format verb processing.

The following field is an addition for 4K read support.

Offset
2764

(ACC)

Size

4

Field Name
COMJ4KBUF

Description
Address of 4K buffer used in 4K BRREAD.

The following two fields are additions for input record continuation support.

Offset

2768
2172

The following six fields (to

(ADO)
(ADA)

support.

Offset

2776
2780
2781
2782
2784

2788
2792

2796
2796
2800
2804
2808

3-70 MVS/Extended Architecture Service Aids Logic

(ADS)
(ADC)
(ADD)
(ADE)
(AEO)

(AE4)
(AE8)

(AEC)
(AEC)
(AF0)
(AF4)
(AF8)

Size

4
4

Field Name

COMOPLN
COMOPPTR

Description

Length of operands list.
Pointer to operands list.

offset X‘AEB’) are used for AMDPRDMP index

Field Name

COMINDXA
COMINDEX
COMINDXL
COMXASID

COMNDXEP

INDXLCNT
VIRTMAX

PDIOPL
PDIUPT
PDIECT
PDIECB
PDIIOPBP

Description

Address of index entry.

Entry code.

Index level.

Insertion data for index.

Entry point for AMDPRNDX, the dump index
service routine,

Index line count work area.

Highest virtual address. This field is set by
AMDPRSLI from CVTMZO0JQ, if it can be read
from the dump.

TSO IOPL.

Address of TSO UPT.

Address of TSO ECT.

Address of ECB.

Address of 1/O parameter block.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

CPU Status Area

Size: 192 bytes.

Created by: AMDPRRDC.

Use: A BRREAD request for CPU status will result in this area being created
from the input dump header record or CPU status records. The IHAABDLP
macro contains mapping for this information.

Offset Size
0 (0 1
I...
1.
L
I
XXXX
) 1
2 2
4 @ 32
46 (24 64
100 (64) 64
164 (Ad) 8
172 (AC) 4
176 (B0) 8

184 (88) 8

Current TCB List (CURRLIST)

Size: 192 bytes.

Field Name
AMDCFLAG

AMDCPADR
AMDCFREG
AMDCGREG
AMDCCREG
AMDCCPSW
AMDCPREG
AMDCTIME

AMDCLOCK

Created by: AMDPRSUM.

Description

CPU is a uniprocessor: CPU address is invalid.
SADMP unable to perform store status; only
CPU address is valid.

Operator did not perform store status; only
general registers and, if MP, CPU address are
valid.

Non-SADMP input, only registers/PSW are valid.
Reserved.

Reserved.

CPU address.

Floating point registers 0-6.

General purpose registers 0-15.

Control registers 0-15.

Current PSW.

Prefix register value.

CPU timer value.

Note: This is not location 80 time or

TOD clock.

Clock comparator value.

Use: SUMMARY control statement uses this data area for storing information

for the processor that is not in SRB mode.

Offset Size
0 @

0) 2

2 Q) 2

4 @ 4

8) 4

Dump Header Record

Field Name
CURENTRY

CURCPUID

CURTCBA
CURASCA

Description

List entries —one for each current TCB found
in the dump.

CPU identifier for this entry.

Reserved.

TCB address for this entry.

ASCB address for this entry.

The Dump Header Record is described in the Debugging Handbook.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

Chapter 3. Print Dump (AMDPRDMP) 3-71

Dump Map Entry

Size: 16 bytes.

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Created by: AMDPRREAD and AMDPRLOD.

Updated by: None.

Use: One dump map entry is built for each block of records in the input dump
data set. The dump map eliminates searching the data for a requested record.

Offset Size Field Name

0 (1)) 4 DUMPLINK
4 ()] 4 DUMPFADD
8 (8) 4 DUMPLADD
12 © 4 DUMPTTR

EDIT Communication Table (AMDPRTAB)

3-72 MVS/Extended Architecture Service Aids Logic

Size: 536 bytes.

Created by: AMDPROOT.

Description

Address of next entry in this map.

Address of the first byte of the first record in
the block of records represented by this entry.
Address of the first byte of the last record in the
block of records represented by this entry.

TTR or block number (tape input) in the input
data set of the first record in the block of
records represented by this entry.

Updated by: AMDPRSCN, AMDPROOT, AMDPRSN2, AMDPRSN3,
AMDPRGET, AMDPRREC, AMDPRFLT, AMDPRFRM, AMDPREXT,

AMDPRAPP, AMDSYSO07.

Use: Communication among AMDPRDMP modules that execute the EDIT

function.
Offset Size Field Name
0) 4 AFMG
4 “) 4 CURREC
8 (6)] 12 DEBGFLGS
8 (8) 1 PTHFLGSI
.. .. ROOT
d. SCN
I PR GET
B0 CON
l... HEX
1. FLT
nE FRM
sl REXT
9 (&) 1 PTHFLGS2
APP

Description

Address of AMDPRFMG message CSECT in
AMDPRXED.

Address of current input record.
Debug flags:

Flags indicating routine in execution:
AMDPROOT.

AMDPRSCN.

AMDPRGET.

AMDPRGET.

AMDPRCON.

AMDPRFLT.

AMDPRFRM.

AMDPREXT.

Flags indicating routine in execution:
Bit Routine

0 AMDPRAPP.

1-7 Reserved.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Offset Size Field Name Description
10 (A) 1 INRFCFGS Interface flags:
| PN FLMODE Flush mode.
AL TERM Termination requested.
IS PR SPIE SPIE routine.
| FMT Formatting of input record requesting by user exit
routine.
l... RET Indent output (used by AMdPRAPP).
A EXTTRC External data set being processed.
e EDITSTOP Stop in progress.
.l DMDFMT Unconditional formatting requested by user
exit routine.
11 (B) 1 IOFLGS 1/0O flags:
l.. .. GETEOF End-of-file.
XXX XXXX Reserved.
12 <) 8 Reserved.
20 (14) 4 GTFWDPTR Address of GTF option word, extracted from
time stamp record.
24 (18) 8 USEREXIT User exit name, in EBCDIC.
32 (20) 8 DDNAME DDNAME keyword value in EBCDIC.
40 (28) 12 STARTIME Start time value:
40 (28) 8 TIME Timer units.
48 (30) 2 D Zeros and year.
50 (32) 2 DAY Julian day.
52 (34) 12 STOPTIME Stop time value
52 (34) 8 TIME2 Timer units.
60 3C) 2 F Zeros and year.
62 (BE) 2 DAY?2 Julian day.
64 (40) 40 JOBNAMES Maximum of five jobnames in EBCDIC.
104 (68) 20 ASCBADDR Maximum of five ASCB addresses in
hexadecimal.
124 (7C) 1 SIOFLGS SSCH selectivity flags:
.. .. ALLS EDIT all SSCH records.
do SELS EDIT selective SSCH records.
I PR EQUIV SSCH = 10.
10 NOEQU SSCH may not equal 10.
. l.. CCWS Edit CCW records for SSCH events.
XXX Reserved.
125 (7D) 3 Reserved.
128 (80) 100 SIODVADS Maximum of fifty SSCH device addresses.
288 (E4) 1 IOFLGS2 1/0 selectivity flags:
.. .. ALLI EDIT all /O records.
do SELI EDIT selective 1/O records.
1. CCWI EDIT CCW records for 10 events.
XX XXX Reserved.
229 (ES) 3 Reserved.
232 (E8) 100 IODVADS Maximum of 50 I/O device addresses.
332 (14C)] SVCFLGS SVC selectivity flags:
| R ALLV EDIT all SVC records.
do SELV EDIT selective SVC records.
XX XXXX Reserved.
333 (14D) 3 Reserved.
336 (150) 32 SVCNUMS SVC bit string: one bit for each SVC number.
368 (170) 1 USRFLGS User selectivity flags:
... ... ALLU EDIT all user records.
Ao SELU EDIT selective user records.
LXX O XXXX - Reserved.
369 (171) 3 Reserved.
372 (144) 80 USRNGTAB Maximum of 20 user EID ranges.
452 (1C4) 1 PIFLGS PI selectivity lags:
| P ALLP EDIT all PI records.
A SELP EDIT selective PI records.
XX XXXX Reserved.
453 (IC9) 3 - Reserved.
456 (1C8) 32 PICODES PI bit string: one bit for each PI code.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 3. Print Dump (AMDPRDMP) 3-73

Offset
488

489

490
493
496

504

508
512
316
520
524
526
528
532
532
535
537
539
541
541
544
546
548
550
554
562
563
564

3-74 MVS/Extended Architecture Service Aids Logic

(1E8)

(IE9)

(1EA)
(IED)
(1F0)

(1F8)

(IFC)
(200)
(204)
(208)
(20C)
(20E)
(210)
(214)
(214)
217
(219)
(21B)
(21D)
(21D)
(220)
(222)
(224)
(226)
(224)
(232)
(233)
(234)

o0 W

S

== O B NN NMNWONNBNMWY PERNND S L LM

Field Name

GENFLAGS
EXT

DSP

SYS

SYSM
RNIO

SRM

RR

EOF
GENFLGSI
TS
EOFINPRO
TSFOUND
FIRSTHSW
SLIPPERM
CPUSEL

RECDLL
EXITNM

EXITADDR

AEIOCT
PRFMTADD
REENTWKA
AFRMAD
OFSTEID
OFSTDATA
ADTSBUF
ESTARTME
ESDAY
ESHR
ESMIN
ESSEC
ESTOPTME
ESPDAY
ESPHR
ESPMIN
ESPSEC
CVVTZONE

CPU

ASY0TWA

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Description

General flags:

EDIT external interruption.

EDIT dispatcher event records.

EDIT GTF comprehensive trace records.
EDIT GTF minimal trace records.
EDIT RNIO trace records.

EDIT SRM trace records.

EDIT RR trace records.

End-of-file exit in effect.

General flags:

Time stamp needed.

End of file in progress.

Time stamp found.

Hexadecimal dump first time.

EDIT SLIP records.

CPU selection in effect.

Reserved.

Reserved.

Record length.

Name of user exit routine or format appendage
currently in control.

User exit routine or format appendage entry
point address.

Address of EDIT I/O control table.
Address of AMDPRFMT.

Address of workarea.

Address of AMDPRFRM address table.
Offset of EID in trace record.

Offset of data in trace record.

Address of timestamp record buffer.
Start time save area.

Day.

Hour.

Minutes.

Seconds.

Stop time save area.

Day.

Hour.

Minutes.

Seconds.

CVT time-zone value.

Reserved.

CPU for select.

Reserved.

Address of work area for CCW format
appendage.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Exit Control Table (ECT)

Size: Variable. The user may use the linkage editor to expand the table.

Created by: The ECT is in SYSI.LINKLIB as CSECT AMDPRECT in load

module AMDPRECT.

Updated by: The user updates the ECT entries using the AMASPZAP service aid
program. The ECT has at least five available unused entries.

Use: One twenty-byte entry exists for each user-exit module. AMDPRUIM scans
the ECT to determine when user-exit modules should receive control. The

IHAECTE macro maps an ECT entry.

Offset Size Field Name
0 (0) 8 ECTEMODN
8 (8)] EXTEEXIT
b .. EXTEEXTC
1. ECTEEXAS
I PR ECTEEXFT
.1 ECTEEXPC
L. ECTEEXNU
g ECTEXHD
XX
9 O] 1
l... ... ECTEIFSA
XXX XXXX
10 (A) 2 ECTERSRYV
12 ©) 8 ECTEVERB

Path Descriptor Element
Size: 4 bytes.
Created by: AMDPRCTL.

Updated by: AMDPRCTL.

Description

Exit module name.

Calling flags.

TCB exil.

ASCB exit.

FORMAT exit.

PRINT CURRENT/JOBNAME exit.

PRINT NUCLEUS exit.

Header exit.

Reserved.

ECTEIFAT Interface attributes.

The PRDMP access storage service must treat
the virtual address input parameter passed to it
in register 0 as a 24-bit value when it is invoked
by this module for locations in the dump.
Although this module limits its requests for
virtual storage to locations below 16M, it does
not guarantee that the high order byte of
register 0 is zero.

Reserved.

Reserved.

User verb name.

Use: One for each nonresident service and executor module; describes the module

for loading by AMDPRSEG.

Offset Size Field Name
0 0) I Flags

0... .

XXX XXXX
1) 3

Description

Flags:

Service module.

Executor module.

Reserved

Module ID: the unique last three characters of
the module name.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 3. Print Dump (AMDPRDMP) 3-75

“Restricted Materials of [BM”
Licensed Materials — Property of IBM
Print Control Block (PCB)
Size: 16 bytes.
Created by: AMDPRPCB.
Updated by: None.

Use: Contains the starting and ending addresses in the dump data set of storage
areas to be printed by AMDPRDMP.

Offset Size Field Name Description
0 ©0) 4 PCBLINK Address of pext PCB.
4 4) 4 PCBSTART Starting address of storage to be printed.
8 ®) 4 PCBSTOP Ending address of storage to be printed.
12 ©) 2 PCBASID ID of address space to be printed.
14 3) 1 Flags:

.. .. Virtual storage PCB.

d. L Real storage PCB.

0% P Change PCBSTART value to zero.
..l Update TOPICHDR field in COMMON.
XXXX Reserved.

Print Dump Index Description Table (AMDMNDXT)

Size: Each entry is 44 bytes; the total length depends on total number of
description entries. For each entry, there is a 4-byte table entry description word
(EDW), and a 40-byte description data area.

EDW — 4 bytes.

Data — 40 bytes per each description entry.

Created by: AMDPRCOM.

Use: AMDMNDXT is the data area that contains the print dump index
description table and its entry constants that are in the form of assembler EQU
instructions.

EDW format for each entry:

Offset Size Field Name Description

0 (0)
] %)

Reserved.
Insertion data is needed.

2) The offset in the description data where data
is inserted.
3 3) 1 .- Length of the insertion data.

3-76 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

The description table contains the following 40 byte long entries. The 4 byte
EDW precedes each description entry.

"PRINT DUMP ABSTRACT INFORMATION
'COMMUNICATION VECTOR TABLE (CVT).
"NUCLEUS STORAGE . . &« &« « &« o o o o o o o o
'DAT=ON NUCLEUS . + « « « v o 4 v o v v o u e v
'DAT-OFF NUCLEUS
'SYSTEM QUEUE AREA (SQA) STORAGE
'COMMON SYSTEM AREA (CSA) STORAGE e e e e
'LINK PACK AREA MAP v v v v v v o v o o
'LPDE SORTED BY NAME MAP

'"LPDE SORTED BY EPA MAP . . . &« « « & « & o « «
'"LPA ACTIVE QUEUE MAP . . . + v & + « & = o « . .
'SYSTEM SUMMARY . . . e e e e e e e
'DUMP ADDRESS RANGES SUMMARY
'"ACTIVE CPU LIST SUMMARY . . . e e e e
' SCHEDULED SERVICES (SRB) SUMMARY . . .+ + v o . .
'JOB SUMMARY . . . e e e e e e e e e e e
'PROBLEM LIST SUMMARY

'PRINT DUMP FORMAT + & & v o « o « « .
'SCHEDULED SERVICES (SRB) . « v & v & @ o« o« o« «
"PRINT DUMP EDIT . . © v & v & v v v v e e e
'VIRTUAL STORAGE PRINT « « « « « . .
'REAL STORAGE PRINT . . . e e e e e e e
'PRIVATE STORAGE FOR ASID XXXX e e e e .
'NON-EXTENDED COMMON STORAGE PRINT
'NUCLEUS STORAGE PRINT . . . e e e e e
'EXTENDED COMMON STORAGE PRINT .

'CURRENT STORAGE PRINT . . « o« &« &« & o o o + .« .

' JOBNAME PRINT e e e e

' ADDRESS SPACE XXXX CONTROL BLOCKS
"TASK CONTROL BLOCK (TCB) . « « & v & o & « o « .
'TASK CONTROL BLOCK SUMMARY + &« & « + o .
"REQUEST BLOCKS (RB) v & & & & & « & o« & o o « .
"EXTENDED STATUS BLOCKS (XSB)
*PROGRAM CALL LINK STACK (STKE) .

'LOAD LIST . . . e e e e e e e

'JOB PACK QUEUE (JPQ) . » « v o v oooeo
'IOS DATA EXTENT BLOCKS (DEB)
'TASK INPUT/OUTPUT TABLE (TIOT)

'CROSS MEMORY INFORMATION
"IOS DATA AREAS . &+ v & v v o v e e e e e
*RTM DATA AREAS . . .

'DATA MANAGEMENT DATA AREAS . .

'PROCESSOR RELATED DATA AREAS (CPUDATA)

'CONSOLE INITIATED LOOP TRACE RECORDS

"KEYFIELDS . « « & & & & o o o o o

"TCBSUMMARY + « . .

The Index Table Entry Code Equates List:

Field Name Equate Description
INDXABS AMDPRABS, PRINT DUMP ABSTRACT

1
INDXCVT 2 AMDPRCVT, CVT MA
INDXNUC 3 AMDPRNUC, NUCLEUS PRINT
INDXDTN 4 AMDPRNUC, DAT-ON NUCLEUS PRINT
INDXDTF 5 AMDPRNUC, DAT-OFF NUCLEUS PRINT
INDXSQA 6 AMDPRNUC, SQA PRINT
INDXCSA 7 AMDPRNUC, CSA PRINT
INDXLPA 8 AMDPRLPA, LINK PACK AREA MAP INDEX TITLE
INDXLPAI 9 AMDPRLPA, LPDE SORTED BY EPA MAP
INDXLPA2 10 AMDPRLPA, LPDE SORTED BY NAME MAP
INDXLPA3 11 AMDPRLPA, LPA ACTIVE QUEUE MAP
INDXSUM 12 BLSQSUM4, SYSTEM SUMMARY

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 3. Print Dump (AMDPRDMP) 3-77

Field Name

INDXSUMI1
INDXSUM2
INDXSUM3
INDXSUM4
INDXSUMS5
INDXFXT
INDXFSRB
INDXEDIT
INDXVSPR
INDXRSPR
INDXPAID

INDXPNEC
INDXPNUC
INDXPECS
INDXPCR
INDXPIBN
INDXASCB
INDXFTCB
INDXTSUM
INDXFRB
INDXFXSB
INDXSTKE
INDXFLL
INDXFJPQ
INDXFDEB
INDXTIOT
INDXFXM
INDXIOSD
INDXRTMD
INDXDMDA
INDXCPUD
INDXLRF

INDXKEYF
INDXTCBS
INDXETIT

INDXATIT

TCBLIST Entry

Size: 8 bytes.

Equate

13
14
15
16
17
18
19
20
2]
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

40
4]
42
43
44

45
46
254

255

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Description

BLSQSUM4, DUMP ADDRESS RANGES SUMMARY
BLSQSUM4, CPU LIST SUMMARY

BLSQSUM4, SCHEDULED SERVICES SUMMARY
BLSQSUM4, JOB SUMMARY

BLSQSUM2, PROBLEM LIST SUMMARY

BLSQSUM?2, PRINT DUMP FORMAT

BLSQSUM2, SCHEDULED SERVICES (SRB)
AMDPRFRM, PRINT DUMP EDIT

AMDPRPMS, VIRTUAL STORAGE PRINT
AMDPRPMS, REAL STORAGE PRINT

AMDPRPMS, PRIVATE STORAGE FOR ASID XXXX
AMDPRPMS, PRIVATE STORAGE FOR ASID XXXX
AMDPRPMS, PRIVATE STORAGE FOR ASID XXXX
AMDPRPMS, NON-EXTENDED COMMON STORAGE PRINT
AMDPRPMS, NUCLEUS STORAGE PRINT
AMDPRPMS, EXTENDED COMMON STORAGE PRINT
AMDPRPCR, PRINT CURRENT

AMDPRPIJB, PRINT JOBNAME

BLSQSUM2, ADDR SPACE XXXX CONTROL BLOCKS
BLSQSUM2, TASK CONTROL BLOCKS (TCB) FORMAT
BLSQSUM2, TCB SUMMARY

BLSQSUM2, REQUEST BLOCK (RB)

BLSQSUM2, EXTENDED STATUS BLOCK (XSB)
BLSQSUM2, PROGRAM CALL LINK STACK (STKE)
BLSQSUM2, LOAD LIST

BLSQSUM?2, JOB PACK QUEUE

BLSQSUM2, I0S DATA EXTENT BLOCKS (DEB)
BLSQSUM2, TASK INPUT/OUTPUT TABLE (TIOT)
AMDPRXMT, CROSS MEMORY INFORMATION
IECIOFMT, 10S DATA AREAS

IEAVTFMT, RTM DATA AREAS

IECDAFMT, DATA MANAGEMENT DATA AREAS
AMDPRGCD, PROCESSOR RELATED DATA AREAS
AMDPRLRF, CONSOLE INITIATED LOOP TRACE
RECORDS

BLSQSUM3, KEYFIELD

BLSQSUMS, TCBSUMMARY

AMDPRFRM, INITIALIZATION THROUGH THE EDIT
CONTROL STATEMENT

AMDPRABS, INITIALIZATION DURING ABSTRACT
PROCESSING

Created by: CSECT AMDPRTSYV in AMDPRCOM.

Updated by: CSECT AMDPRTSYV in AMDPRCOM.

Use: Describes selected TCBs for use by subsequent routines.

Offset
0 ©
4 @

3-78 MVS/Extended Architecture Service Aids Logic

Size

Field Name Description

Address of next TCBLIST entry.
Address of associated TCB.

LY28-1189-3 ©.Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials ~ Property of IBM

Section S: Diagnostic Aids

This section contains the following information to aid the reader in diagnosing
AMDPRDMP errors:

e AMDPRDMP register usage.
e Return codes issued by AMDPRDMP modules.

Note: Refer to System Messages for message text and detecting, issuing, and
containing modules.

AMDPRDMP Register Conventions

Symbol Register Usage
PREG 1 Parameter register.
R2 2 Parameter register in following CSECTs:
® CSECT AMDPRMSG in AMDPRCOM — Length of message to
be written.

® CSECT AMDPRTSYV in AMDPRCOM — Contents depend on
routine:

1. TCBQSAVE — TCB address.

2. TCBRTRV — TCBLIST position number.

3. TCBREMYV — Address of TCB to be removed or 0 to indicate
that all TCBs are to be dequeued.

BUFREG 6 Base of DSECT for output line (QUTBUFM).
R7 7 TCB address passed to TIOT element enqueue routine in
AMDPRFUB.
R9 9 ® During EDIT processing, the address of the EDIT
communication table (AMDPRTAB).
® During processing other than EDIT, R9 is the linkage register for
internal subroutines.
BASEI 11 Base register for all modules.
COMBASE 12 Address of AMDPRDMP common communication area
(COMMON).
R13 13 Address of standard register save area.
RETREG 14 Linkage register for CSECT to CSECT subroutine calls.
R15 15 Entry point register for CSECT to CSECT subroutine calls.
AMDPRDMP Return Codes
Return
Module CSECT Code Meaning
AMDPRABS AMDPRABS 0 Header record available, valid dump type
specified.
8 Invalid dump type specified.
12 Header record not available.
AMDPRAPP AMDPRAPP None
AMDPRCMC AMDPRCMC None
AMDPRCOM AMDPRCOM None
AMDPRGFR None
AMDPRMSG None
AMDPRNDX None
AMDPRSTP None
AMDPRSYN None
AMDPRTSV 0 Successful completion of TCBLIST enquecue,
dequeue, or retrieve operation.
AMDPRWTR None

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

Chapter 3. Print Dump (AMDPRDMP) 3-79

Module
AMDPRCTL

AMDPRCVT

AMDPRDPS

AMDPREAD
AMDPRECT
AMDPREXT
AMDPRFAR
AMDPRFLT
AMDPRFMG

AMDPRFMT

AMDPRFOR
AMDPRFRM
AMDPRFSR

AMDPRFUB
AMDPRFXT
AMDPRGCD
AMDPRGET
AMDPRGSA

AMDPRINA

AMDPRLOD

AMDPRLPA
AMDPRLRF
AMDPRMST
AMDPRNUC
AMDPROOT
AMDPRPCR
AMDPROOT
AMDPRPJB
AMDPRPMG

CSECT

AMDPRCTL
AMDPREND
AMDPRMSC

AMDPRXIT
AMDPRCVT

AMDPRDPS
AMDPRPCB

AMDPREAD
AMDPRECT
AMDPREXT
AMDPRFAR
AMDPRFLT
AMDPRFMG

AMDPRFMT

AMDPRFOR
AMDPRFRM
AMDPRFDB
AMDPRFIO
AMDPRFLD
AMDPRFRB
AMDPRFSC
AMDPRFTC

AMDPRFUB
AMDPRFXT
AMDPRGCD
AMDPRGET
AMDPRGSA
AMDPRGFT
AMDPRGNX
AMDPRINA

AMDPRLOD

AMDPRLPA
AMDPRLRF
AMDPRMST
AMDPRNUC
AMDPROOT
AMDPRPCR
AMDPROOT
AMDPRPJB
AMDPRPMG

3-80 MVS/Extended Architecture Service Aids Logic

Return
Code

None

None
0
4
None

0

4
None

None
None
None
Not
applicable
0

4
None
None
None
None
None
None
None
0

4

None
None
None
None
None
None
None

8

None
None
None
None
None
None
None
None

Not
applicable

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Meaning

AMDPRDMP termination in progress.
Control statement has been completely
processed.

Error discovered during control statement
processing.

CVT formatting completed.
Storage not available.

A PCB has been dequeued and the information
placed in the caller’s work area.
PCB queue is empty.

Not applicable.

All formatting completed.
Formatting incomplete.

Formatted TCB represents task that was active
in dumped system.

Formatted TCB represents task that was
terminated in dumped system.

JOBNAME valid, HOME ASID and ASCB
address.

ABDPL unavailable.

CVT unavailable.

ASVT unavailable.

No matching jobname.

Loading of SYSUT! work data set is
complete;dump formatting may begin.

The input data set cannot be positioned to the
requested information.

Terminate AMDPRDMP; load mode requested
and EOF encountered.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Module
AMDPRPMS

AMDPRRDC

AMDPRREC

AMDPRSCN

AMDPRSEG

AMDPRSLI
AMDPRSMG
AMDPRSN2

AMDPRSUM
AMDPRSUM

AMDSYS00

CSECT

AMDPRPMS
AMDPRPMX
AMDPRRDC

AMDPRCON
AMDPRHEX
AMDPRTME
AMDPRSCN

AMDPRSEG

AMDPRSLI
AMDPRSMG
AMDPRSN2

AMDPRSUM
AMDPRSUM

AMDSYS00

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

Return
Code

None
None

None

None

None
None

Meaning

Storage is not available for buffers or there is
no valid input data set.

Processing is complete.

EDIT control statement syntax is correct and

EDIT processing may continue.

Discontinue EDIT processing for one of the

following reasons:

® AMDPRDMP control statements are being
entered from the SYSIN data set, the EDIT
contro) statement indicates that trace data is
to be edited from a dump data set, and the
AMDPRDMP flush mode switch is on.

® AMDPRDMP control statements are being
entered from the SYSIN data set and an
error has been discovered in the EDIT
control statement.

Successful completion of module loading, or

TOD conversion.

User format appendage greater than 10K and

could not be loaded, or TOD value was zero.

Module not found by BLDL macro instruction.

Module name is given in message AMDI1771.

I/O error during execution of BLDL macro

instruction.

AMDPRSEG attempted to delete a module that

was not currently in virtual storage.

A syntax error has been discovered by a
keyword subroutine; flush mode processing
must begin.

Keyword processing is complete; AMDPRSCN
must determine whether the end of the current
control statement has been reached.
AMDPRSCN is requested to determine whether
unmatched parentheses are in the EDIT control
statement.

AMDPRSN2 must issue the invalid parenthesis
error message.

Control statement scan is to continue;
AMDPRSCN will attempt to isolate the next
EDIT keyword. AMDPRSN3 AMDPRSN3 0
EDIT control statement syntax is correct.
Error in EDIT control statement.

Dump data read was successful.

Requested data could not be read.

First output line has been formatted:
AMDPRAPP should print this line and return
to AMDSYS00.

Second output line has been formatted;
formatting for this trace record is complete.
AMDPRAPP should print the line and
complete processing for this record.

Error encountered in formatting the trace
record, or selective editing was in effect and this
record is not to be edited.

Record should be dumped in hexadecimal.

Chapter 3. Print Dump (AMDPRDMP) 3-81

Module
AMDSYSO01

AMDSYS02

AMDSYS03

AMDSYS04

AMDSYS05

AMDSYS06

AMDSYS07

CSECT
AMDSYS01

AMDSYS02

AMDSYS03

AMDSYS04

AMDSYS05

AMDSYS06

AMDSYS07

3-82 MVS/Extended Architecture Service Aids Logic

Return
Code

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Meaning

First output line has been formatted:
AMDPRAPP should print the line and return
to AMDSYSOI.

Second output line has been formatted;
formatting for the current record is complete.
AMDPRAPP should print the formatted line
Error encountered in formatting the trace
record, or selective editing is in effect and this
trace record is not to be formatted.

Record should be dumped in hexadecimal.
First output line has been formatted:
AMDPRAPP should print the line and return
to AMDSYS02.

Second output line has been formatted;
formatting for this record is complete.
AMDPRAPP should print the line.

Error encountered in formatting the record, or
selective editing is in effect and this record is
not to be formatted.

Record should be dumped in hexadecimal.
Current trace record has been formatted;
AMDPRAPP should print the record.

Error encountered in formatting the record, or
selective editing is in effect and this record is
not to be formatted.

Record should be dumped in hexadecimal.
First output line has been formatted:
AMDPRAPP should print the line and return
to AMDSYS04.

Second output line has been formatted;
formatting for this record is complete.
AMDPRAPP should print the line.

Error encountered in formatting the record, or
selective editing is in effect and this record is
not to be formatted.

Record should be dumped in hexadecimal.
First output line has been formatted;
AMDPRAPP should print the line and return
to AMDSYSO0S.

Second output line has been formatted;
formatting for this record is complete.
AMDPRAPP should print the line.

Error encountered in formatting the record, or
selective editing is in effect and this record is
not to be formatted.

Record should be dumped in hexadecimal.
First output line has been formatted:
AMDPRAPP should print the line and return
to AMDSYS06.

Second output line has been formatted;
formatting for this record is complete.
AMDPRAPP should print the line.

Error encountered in formatting the record, or
selective editing is in effect and this record is
not to be formatted.

The return code is zero when any output line
except the final output line has been formatted.
AMDPRAPP should print the line and return
to AMDSYS07.

Final output line has been formatted;
formatting for this record is complete.
AMDPRAPP should print the line.

Error encountered in formatting the record, or
selective editing is in effect and this record is
not be formatted.

Record should be dumped in hexadecimal.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Section 6: AMDPRDMP Macro Instructions

AMDDATA

AMDPCBPL

AMDMNDXT

BRPRTMSG

BRREAD

The AMDDATA macro is a mapping macro for the various input record formats
accepted by AMDPRDMP. AMDPRDMP modules use this macro instruction
for symbolic references to fields within the input. AMDDATA is also available
to the AMDSADMP and SVC dump programs to define their output records
(which are later input to AMDPRDMP).

The AMDPCBPL macro is a mapping macro for the PCB to be used as input to
the AMDPRPCB routine in module AMDPRDPS.

The AMDMNDXT macro generates the index descriptor table. All
AMDPRDMP moduiles that have predefined index entries use this macro.

The BRPRTMSG macro generates linkage to CSECT AMDPRMSG in
AMDPRCOM in order to write a message in SYSPRINT output data set. The
BRPRTMSG macro instruction has two parameters: the first is the address of the
message to be printed and the second is the length of the message.

The BRREAD macro generates linkage to AMDPRRDC to perform one of three
functions, depending on the keyword specified as the first or second parameter in
the macro instruction:

e ADJUST — causes AMDPRRDC to free buffers and the buffer map.

e INIT — causes AMDPRRDC to load AMDPRLOD to write the input data
set into SYSUT1 or SYSUT?2 (if provided in JCL), to initialize buffers and a
buffer map; and, for each new dump, to call AMDPRMST to initialize
COMMON, and to build ASCBMAP,

e DATA — causes AMDPRRDC to locate the input record that contains the
requested data and return the address of the data in the buffer to the caller.
For details of the DATA function, refer to the description of reading input
data in the “Program Organization” section.

e TENGTH — is meaningful only as an option of the DATA function.
LENGTH causes AMDPRRDC to return the specified amount of data (up to
4K maximum) to the issuer. The default is a length of zero and indicates that
the length of the data depends on the boundary of the specified address.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 3. Print Dump (AMDPRDMP) 3-83

BRWRITE

COMMON

EQUATES

FMTPTRN

HEXCNVT

IMDMEDIT

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

The BRWRITE macro generates the linkage to CSECT AMDPRWTR in
AMDPRCOM in order to write a line in the PRINTER output data set. The
information to be written must be in the buffer pointed to by the CURBUF field
of COMMON. The BRWRITE macro instruction contains two parameters. The
first is either 1, 2, 3 or SKIP to indicate the number of lines to skip after the
written line. The second parameter is a keyword, either IMM or AFT (or blank),
which indicates whether to space immediately or after writing the CURBUF field.

The COMMON macro is the mapping macro for the common communication
area (COMMON). It is used by all AMDPRDMP modules to generate the
COMMON DSECT. For a detailed description of COMMON, see the “Data
Areas” section of this chapter.

The EQUATES macro instruction generates a list of EQU instructions used by all
AMDPRDMP modules.

The FMTPTRN macro instruction generates a parameter list that is passed to
CSECT AMDPRGFR in AMDPRCOM in order to format a line of output.
Each FMTPTRN macro instruction must contain the attributes of the data, the
length of the label to be assigned, the length of the data, the offset of the label in
the output line, the offset of the data, and, optionally, the address of the label
string and the address of the data.

The HEXCNVT macro instruction generates the code to convert a value from
internal binary to printable hexadecimal.

The IMDMEDIT macro instruction generates a list of symbolic names with
equated hexadecimal event identifiers (EIDs) for events that are traced by GTF.
IBM components and users that write EDIT user exit routines use the
IMDMEDIT macro instruction to reference the EID field in a trace record built
by GTF.

The IMDMEDIT mapping macro instruction is as follows:

IMDMSSM EQU 0 OS SSM FOR COMPATIBILITY
IMDMSSMI EQU 0 SSM INTERRUPT

IMDMPIPG EQU 0 PAGE FAULT PROGRAM INTERRUPT
IMDMDSPI EQU X‘0001° DISPATCHER

IEADISPI EQU IMDMDSP1 DISPATCHER

IMDMDSP2 EQU X‘0002’ DISPATCHER

3-84 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

IEADISP2
IMDMDSP
IMDMDSP3
IEADISP3
IMDMDSP4
IEADISP4
IMDMSVC
IEASVCH
IMDMPCI
IECPCI
IMDMSRM
IRASRM
IMDMSTAE
IEASTAE
IMDMFRR
IEAFRR
IMDMSLSD
IEAVSLSD
IMDMSLSU
IEAVSLSU
IMDMSLUR
IEAVSLUR
IMDMSIO
IECSIO
IMDMEOS
IECEOS
IMDMCSCH
IECCSCH

IMDMHSCH

IECHSCH

IMDMMSCH

IECMSCH
IMDMSSCH
IECSSCH
IMDMRSCH
IECRSCH
IMDMIO2
1ECIO2
IMDMIOI
IECIOI
IMDMPI
IEAPINT
IMDMTINT
IEATINT
IMDMEXT
IEAEINT
IMDMTPI
ISPTPIOI
IMDMTP2
ISPTPIO2
IMDGPDO1
IMDGPDO02
IMDGPDO03
IMDGPDO04
IMDGPDO0S
IMDGPDO06
IMDGPDO07
IMDGPDO08
IMDGPD09
IMDGPD10
IMDGPD11
IMDGPD12
IMDGPDI13
IMDGPD14
IMDGPD15
IMDGPD16
IMDGPD17
IMDGPD18
IMDGPD19

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

IMDMDSP2
X'0003’
X‘0003’
IMDMDSP3
X‘0004
IMDMDSP4
X*1000°
IMDMSVC
X2100°
IMDMPCI
X‘4001
IMDMSRM
X'4002
IMDMSTAE
X‘4003°
IMDMFRR
X'4004
IMDMSLSD
X*4005’
IMDMSLSU
X*4006’
IMDMSLUR
X*5100°
IMDMSIO
Xsr
IMDMEOS
X*'5102
IMDMCSCH
X*'510%
IMDMHSCH
X'5104°
IMDMMSCH
X‘5105
IMDMMSCH
X*5106°
IMDMRSCH
X 52000
IMDMIO2
X*'5201°
IMDMIOI
X'6101
IMDMPI
X‘6200
IMDMTINT
X'6201"
IMDMEXT
X‘8100°
IMDMTPI
X‘8200°
IMDMTP2
X‘EFAF’
X‘EFB0’
X‘EFBI’
X‘EFB?
X‘EFBY
X‘EFB4
X‘EFBS’
X'EFB#’
X'EFB7
X'EFB8’
X'EFBY’
X‘EFBA’
X'EFBB’
X‘EFBC
X‘EFBD’
X'‘EFBE’
X‘EFBF’
XEFCO
X‘EFCI’

DISPATCHER

DISPATCHER

DISPATCHER

DISPATCHER

SVC EXIT PROLOG DISPATCH

EXIT PROLOG DISPATCH

SVC INTERRUPT

SVC INTERRUPT

PCI 1/O INTERRUPT

PCI 1/O INTERRUPT

SRM

SRM

RTM

RTM

RTM

RTM

RTM/SLIP STANDARD RECORD
RTM/SLIP STANDARD RECORD
RTM/SLIP STANDARD + USER RECORD
RTM/SLIP STANDARD + USER RECORD
RTM/SLIP USER RECORD

RTM/SLIP USER RECORD

SIO OPERATION

SI0 OPERATION

108

108

CLEAR SUBCHANNEL GTF RECORD
CLEAR SUBCHANNEL GTF RECORD
HALT SUBCHANNEL GTF RECORD
HALT SUBCHANNEL GTF RECORD
MODIFY SUBCHANNEL GTF RECORD
MODIFY SUBCHANNEL GTF RECORD
START SUBCHANNEL GTF RECORD
START SUBCHANNEL GTF RECORD
RESUME SUBCHANNEL GTF RECORD
RESUME SUBCHANNEL GTF RECORD
I/0 INTERRUPT

1/0 INTERRUPT

1/0 INTERRUPT

]/O INTERRUPT

PROGRAM INTERRUPT

PROGRAM INTERRUPT

PFLIH

PFLIH

EXTERNAL INTERRUPT

EXTERNAL INTERRUPT

TPIOS

TPIOS

TPIOS

TPIOS

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

Chapter 3. Print Dump (AMDPRDMP) 3-85

IMDGPD20
IMDGPD21
IMDGPD22
IMDGPD23
IMDGPD24
IMDGPD25
IMDGPD25
IMDGPD27
IMDGPD28
IMDGPD29
IMDGPD30
IMDGPD31
IMDGPD32
IMDGPD33
IMDGPD34
IMDGPD35
IMDGPD36
IMDGPD37
IMDGPD38
IMDGPD39
IMDGPD40
IMDGPD41
IMDGPD42
IMDGPD43
IMDGPD44
IMDGPD45
IMDGPD46
IMDGPDA47
IMDGPD48
IMDGPD49
IMDGPD50
ISTVIEIE
ISTTHEID
ISTTREID
ISTTDEID
ISTTPEID

ISTRPEID
ISTCLEID

ISTLNEID
IGGSP002
IGGSP008
IDAAMOL
1GGSP112
IGGSP215
1IGGSP119
IGGSP235
IGGSP239
IGGSP145
IGGSP251
IGGSP451
IGGSP169
IMDMDMALI
IMDMSVCD
IEASVCD
IEAABQF

3-86 MVS/Extended Architecture Service Aids Logic

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

X‘EFC?
X‘EFC¥
X‘EFC4
X‘EFC%’
X‘EFC6’
X‘EFCT
X'‘EFC8’
X‘EFCY
X‘EFCA’
X‘EFCB’
X‘EFCC’
X'EFCD’
X'EFCE’
X‘EFCF’
X‘EFDO’
X‘EFDI’
X'EFD2
X'EFD3
X'EFD#4’
X'EFD¥%
X‘EFD§’
X'EFDT
X'EFD®’
X'EFDY’
X'EFDA’
X'EFDB’
X‘EFDC’
X‘EFDD’
X‘EFDFE’
X‘EFDF’
X'EFEQ’
X'EFEI’
X‘EFEY
X'EFE3¥
X‘EFE4’
X‘EFEF’

X‘EFF(’
X'EFFI’

X‘EFF2
X‘EFF3
X'EFF4
X‘EFF5
X‘EFF¢’
X‘EFF7T
X‘EFF&
X'EFF9Y’
X‘EFFA’
X‘EFFB’
X‘EFFC
X'EFFD’
X'EFFE’
X‘EFFF’
X‘F100°
IMDMSVCD
X‘F200°

“Restricted Materials of IBM”
Licensed Materials ~ Property of IBM

RESERVED
RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

RESERVED

ACF/VTAM INTERNAL TRACE
TSO/VTAM TGET/TPUT TRACE
VTAM RESERVED

ACF/VTAM NCP LINE TYPE TRACE
ACF/VTAM USER BUFFER CONTENTS
TRACE

ACF/VTAM SMS (BUFFER USE) TRACE
ACF/VTAM COMPONENT BUFFER
CONTENTS TRACE

ACF/VTAM NCP LINE OR TG TRACE
SAM/PAM/DAM

SAM/PAM/DAM

VSAM

SAM/PAM/DAM

SAM/PAM/DAM

SAM/PAM/DAM

SAM/PAM/DAM

SAM/PAM/DAM

SAM/PAM/DAM

SAM/PAM/DAM

SAM/PAM/DAM

SAM/PAM/DAM

OPEN/CLOSE/EOV

SVYCDUMP

SVCDUMP

ABEND/SNAP-OUT-NOT USED BY EDIT

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

OUTBUFM
The OUTBUFM macro instruction is the mapping macro for an output line in
the PRINTER data set. AMDPRDMP modules use this macro instruction to
position data in the line.

SYNEPS

The SYNEPS macro instruction is the mapping macro instruction for the entry
points for CSECT AMDPRSYN in AMDPRCOM.

LY28-1189-3 © Copyright IBM Corp. 1982, 1986 Chapter 3. Print Dump (AMDPRDMP) 3-87

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

3-88 MVS/Extended Architecture Service Aids Logic LY28-1189-3 © Copyright IBM Corp. 1982, 1986

“Restricted Materials of IBM”
Licensed Materials ~ Property of IBM

Chapter 4. Stand-Alone Dump (AMDSADMP)

Section 1: Introduction

AMDSADMP Macro Instruction

The stand-alone dump program is supplied to you as a macro definition,
AMDSADMP, in the SYSI.MACLIB system library. You code the
AMDSADMP macro instruction, using the keyword operands to tailor the dump
program to the installation. For a description of the AMDSADMP macro
instruction and its keywords, refer to Service Aids.

After coding the macro instruction, you put the SADMP program onto the
residence volume in ready-to-load form, using either of two methods. In
two-stage generation, first you assemble the AMDSADMP macro in order to
produce stage-two JCL. Then you execute this job in order to initialize the
SADMP residence volume. In one-step generation, you code the same
AMDSADMP macro as an input control statement for the AMDSAOSG
program, and then execute AMDSAOSG.

In either case, SADMP residence volume initialization consists of three phases:

1. The assembly of the AMDSADM?2 macro produces the SADMP real storage
dump program AMDSARDM, which dumps real storage, and the SADMP
common communication table AMDSACCT, an internal control block.

2. The SADMP build module AMDSABLD puts the output from phase one
onto the residence volume in ready-to-load form. AMDSABLD relocates the
SADMP IPL program AMDSAIPL and the SADMP virtual storage dump
program AMDSAPGE, and puts them onto the residence volume.

3. If the residence volume is a direct access device, the device utility ICKDSF is
invoked to put SADMP’s IPL text onto the device’s IPL track (cylinder 0,
track 0).

The SADMP program has four basic variations:

o High-speed, residing on a direct access device, with output directed to a tape
volume.

o High-speed, residing on a tape device, with output directed to a tape volume.

P) Tr.¥haAT Mol 1NN 100K MNanetne A Ctrnnd Alana Thirmea 7ARMMNCA NMADY 41

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

® Low-speed, residing on a direct access device, with output directed to a tape
volume,

e Low-speed, residing on a direct access device, with output directed to a
printer.

High-Speed Dump Program
The high-speed version of SADMP dumps all real storage and areas of virtual
storage not backed by real storage. The output is unformatted and intended for
later machine processing by AMDPRDMP. The output includes:
e A dump title.
® The processor store-status information for each processor.
e Real storage from address 0 to the top of real storage in real address sequence

(some blocks may be missing because they are offline or are backing the
hardware system area).

e Instruction trace data created by the console-initiated loop recording.
® Vector status data for each processor that has a vector facility installed.
e Selected virtual storage areas.

e A log of console messages written during the dumping of MVS virtual
storage.

If SADMP detected an internal error, the output might also include one or more

SADMP self-dumps. SADMP dumps the instruction trace data and paged-out

virtual storage only when SADMP is able to access virtual storage.

Notes:

1. Stand-alone dump uses only online devices. When dumping to or from devices
that have both real and virtual addresses, specify only the real address to

SADMP. SADMP must reside on an online storage device.

2. You cannot direct SADMP output to its residence volume.

Low-Speed Dump Program

The low-speed version of SADMP produces formatted output containing a dump
title specified at dump execution time, processor related data for each available
processor, and a dump of user-selected areas of real storage.

AN AMAVC ICwtncadad Acakitnnéon Camiina Aldn T Ania T VA0 1100 4 =& ~ e v e -~

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

L Section 2: Method of Operation

This section describes how the stand-alone dump program produces the dumps.
As shown in SADMP Figure 4-1, the description begins with an overview, then
describes the following stages of the overall processing:

e Specification stage
e Initialization stage
e Dump execution stage

Note: SADMP also formats the console message log under IPCS and PRDMP.

Reading Method of Operation Diagrams

Method of operation diagrams are arranged in an input-processing-output layout:
the left side of the diagram contains the data that serves as input to the processing
steps in the center of the diagram, and the right side contains the data that is
output from the processing steps. Each processing step is numbered; the number
corresponds to the verbal description of the step in the extended description.
While the processing step in the diagram is in general terms, the corresponding
text is a specific description that includes a cross-reference to the code for the
processing.

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Stand Alone
Dump
SYSGEN Specification Initialization Execution Console Message Log Formatting
Two-Stage One-Step AMDSAFCM
Generation Generation
AMDSADMP AMDSAOSG
AMDSADM2| | AMDSABLD ICKDSF
BOOTSTRAP Dumping
IPL1 ‘ 1PL2 ‘ AMDSAIPL AMDSADIP Real Storage Virtual Storage

Figure 4-1 (Part 1 of 2).

Dump Program
AMDSARDM

Dump Program
AMDSAPGE

Key to Method of Operation Diagrams for the Stand-Alone Dump Program

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Key to Method of Operation (MO) Diagram Symbols

Entry into processing 1, 2, etc. Look for corresponding numbers in text

A, B, etc. Look for blow-up of item on same page

Flow of Control

Look for corresponding-lettered blow-up
on same page

Data Transfer

Braces to denote related items

Pointer to or address of

See referenced diagram for detailed
description

ol

Reference to data

MO1 Reference to another diagram

Figure 4-1 (Part 2 of 2). Key to Method of Operation Diagrams for the Stand-Alone Dump Program

TVIR 1120 21 A MAanveinht TRR MAva 1009 1004 Mhowmina A Covime A ATa o TS LL0 /ARIVNO A TNR AT A

M4

VIMNL | OPIY TVNISO N waliguwgryve y PP SYessmI DAY Y

MEVL Fual e W TT0BLLE BLA L

Loult

FoulL

Diagram SADMP-1. AMDSAAID — Address Space Locater (Part 1 of 2)

Process

Enqueue the AID RCB.

\/7

2 Set the fields associated with

Input
AIDRCB RCB Queue
CTASCBM CTASCBA
CTAASIDD
RCB Queue

AIDRCB

the master scheduler address
space.

list.

4 Call AMDSASIN to swap in
the address space.

5 Call AMDSAMDM for dumping.

6 Call AMDSAGTF.

7 Report any extended storage
errors by issuing message
AMDO75I.

RCB queue.

> 3 Dump each address space on the

=>8 Dequeue the AID RCB from the

Output
AIDRCB
RCB Queue
CTASCBM CTASCBA

>| ASVTENTY—| | ASVTENTY—|

CTAASIDD

ASLBASID

A VCHK |

SVC (SVCSIN) l

wc (SVCMDM) |

?‘;svc {SVCGTF)

Original RCB Queue

ANMI Jo Ayadodg — S[BLIIBIA] PIsUIIIT

«AH] JO S[BURNBI PIISIY

9861 ‘7861 "d10D WHI Y8UAdOD © £-6811-8TAT

(dNavsany) dunq auojy-puels ‘p 193dey)

Ly

C C

Diagram SADMP-1. AMDSAAID — Address Space Locator (Part 2 of 2)

Extended Description Module

1 AMDSAAID enqueues the AID RCB.

2 AMDSAAID fills in fields CTASCBM and CTASCBA.

3 AMDSAAID dumps each address space on the list of address spaces.
AMDSAAID calls AMDSASIN to swap in the address space.

AMDSAAID calls AMDSAMDM to dump the appropriate data areas.

X h &

AMDSAAID calls AMDSAGTF to dump GTF virtual dump buffers.

7 If SADMP detected any errors while dumping from extended storage, AMDSAAID writes message
AMDO075] to the operator console. This is done afier ali address spaces have been dumped and for
each address space that had errors dumping from extended storage.

8 AMDSAAID dequeues the AID RCB from the RCB queue.

Label

G]I Jo K1iadosg — S|BLIAIBIA] PISUIIN]

«EI JO S[BLIBIA PAJIMISAY,,

21307 SPIV 201A13G AIMOAIYIIY PAPUAXT/SAN §-

9861 ‘7861 'd10D W[3uAdoD & £-6811-8TAT

Diagram SADMP-2. AMDSAARD - Address Range Dump (Part 1 of 2)

Process

1 Receive input address, preset

return code.

Q 2 |f zero length request, call for
adump. If an error in dumping
occurs, set error return code
and exit.

> 3 Ifnon-zero length request,.

Output

RANGEBEG

RANGEEND

RANGEDMP

Register 15

0

Error. Return
to Caller

New

Register 15

4

RANGEBEG

New
RANGEEND

Input
Register 1 Register 0
Address Length
Register 0
RANGEBEG RANGEEND
PAGEBDRY PAGESIZE
RANGEBEG ARBEND
ARBBEG

merge the ranges.

4 Compare input address range

with addresses in ARB queue:

o If no overlap, enqueue new
ARB.

e |f overlap, merge ranges to
modify existing ARB.

5 Return to caller.

ARB Queue

Y

GETARB

ARB Queue

ARB

Modif
ARB

ed

M Jo Kyiadosd — s[BLaIBIA pasuaddr

«HI JO S[BUIBIA PAILISAY,,

9861 ‘7861 "d1oD NGl WBuAdoDd & ¢-6811-8TAT

(dNAVSaWy) dunq suofy-pueis -y 1adey)

6V

r

Diagram SADMP-2. AMDSAARD — Address Range Dump (Part 2 of 2)

Extended Description

AMDSAARD collects and merges the address ranges when
overlaps occur, for zero length requests, AMDSAARD
dumps each page within the range.

1 AMDSAARD receives the input beginning address in

register 1 and saves the beginning address in
RANGEBEG. AMDSAARD calculates the ending address
and saves the ending address.in RANGEEND. AMDSAARD
presets the return code to zero.

2 AMDSAARD determines the function to be performed

according to the value in register 0. If the value is
zero, AMDSAARD calls RANGEDMP to dump every page
listed in the ARB queue. |f the dump fails, RANGEDMP
sets an error return code of 4 and terminates.

3 if register O contains a nonzero value, AMDSAARD
merges the input address range with the address
ranges on the ARB queue. The ARB queue is in ascending
order. AMDSAARD examines the ARBs, starting at the

beginning of the ARB queue.

4 AMDSAARD compares RANGEBEG to the ARB

beginning and ending addresses. |f the input address
range does not overlap with any ARBs, AMDSAARD
calls GETARB to enqueue a new ARB containing the
input address range. If the input address range does over-
lap with an existing ARB, AMDSAARD merges the input
address range into that ARB. If AMDSAAUD skips over
the entire ARB queue because all ARBs end before the
input address begins, AMDSAARD adds the new ARB to
the end of the ARB queue.

B AMDSAARD returns to the caller.

Module

Label

RANGEDMP

GETARB

NEI Jo Kadoag — S[BLIYBIA Pasuadry

JAE] JO S[BUAIBIN PADISIY,,

913077 SPIY 32IAIAS AIMIDAIYIIY PIPUaXF/SAW Q-

9861 ‘7861 "d10D WH] WBAdoD @ €-6811-8TA'T

Input

Register 1 BCT

Process

Diagram SADMP-3. AMDSAASM — Auxiliary Storage Management (Part 1 of 4)

S 1

CTA SMVTB

[]

RCB Queue

ASMRCB

BCT

BCTSWPDS

BCTINDEX | CTPARTB

— 1

> 2

> 3

-

. |
PARTEUSE

[1

PAREDSBD

CTSARTB

SARUSE
1

1
SREDSBD

Register 0 EDB

Receive input BCT, and enqueue
the ASM RCB.

_Set an error code and return if
the ASMVT is invalid.

Convert LSID to a seek, address
and subchannel ID. Set an error
code and terminate if one of the
following occurs:

e The PART or PART entry is
invalid,

e The page data set is invalid.

® The SART or SART entry
is invalid.

® The SART entry is not
in use or the SART data
set is invalid.

— 4 Check vaidity of the EDB.

Output

— Return to
caller

ASMRCB

New
RCB

Register 15

4

Register 15

4

On Error
Return to
Caller

? VCHK

JNMI Jo Anadoad — spBudjBly Pasuddl]

«INH1 JO S[BLIABIA pAjaLI)saY,,

r

e

Diagram SADMP-3. AMDSAASM — Auxiliary Storage Management (Part 2 of 4)
Extended Description

AMDSAASM converts a logical slot identifier (LSID), which is the auxiliary storage ID for a page, into
the direct access seck address of the auxiliary storage copy.

1 AMDSAASM receives the input buffer control table (BCT), and enqueues an ASMRCB.

2 If the CTASMVTB is on, an error code of 4 is set.

AMDSAASM converts the LSID to a seck address and subchannel ID. For the following errors,

AMDSAASM sets an error return code of 4, dequeues the ASMRCB, and terminates:

3
e
e
e
e
e
4

The PART control block is invalid.

The PART entry or page data set is invalid.

The SART control block or SART entry is invalid.
The SART entry is not in use.

The SART data set is invalid.

AMDSAASM calls 7ZVCHK to check the validity of the EDB. If it is invalid, 7VCHK sets a return

code of 4 and AMDSAASM tcrminates.

Module

VCHK

NI Jo Kyadoad — spBLIABA pasuddr]

«INGI JO S[eHBEY PAdLISIY,,

Diagram SADMP-3. AMDSAASM — Auxiliary Storage Management (Part 3 of 4)

Process

5 Convert the RBA into an

auxiliary storage address.

o |If convert fails set an error
return code and terminate.

6 Find or create an IODB.

Input
Register 1 CONVOUT
RBA
UCBPTR ucs
RCB Queue
ASM RCA
A

N 7 Seta return code, dequeue the

ASM RCB, and pass the |I0DB
to the caller.

Output
Register 1
MBBCCHHR
ILRCNVRT
Register 15
4
Return to
Caller 10DB
210
Register 15 Register 1
0 4 1008
Original RCB Queue

WE[Jo Auadorg — S[RLRIB Pasuddy]

JAST JO STELIBIY PAIOLISIY,,

AUFYNL VONILYY Y/ 7 "7l Y FErro

LV

C C

Diagram SADMP-3. AMDSAASM — Auxiliary Storage Management (Part 4 of 4)
Exteaded Description

5 AMDSAASM calls ILRCNVRT to convert the RBA into an auxiliary storage address

(MBBCCHHR). ILRCNVRT sets a return code of 0 if the conversion is successful, or a return code
of 4 if the conversion is not successful.

6 AMDSAASM calls 7O to find the IODB corresponding to the UCB. If the IODB does not exist, 7110

creates one.

7 AMDSAASM sets a return code of 0, dequeues the ASMRCB, and returns. Register 1 points to the

10DB.

Module

Nno

JEI Jo Ayadosd — S[BUIa)BEA] pasuadN]

JAHL] JO BB PAIIISIY,,

viv

bl S - Adhat-hinaniad’™ Eihdhainieh Safidh Sei Sntadilh SN 2l 2 deiie P FA § A §

YU Y LU0 OLA L

Diagram SADMP4. AMDSAAUD — Virtual Storage Dump Error Handling (Part 1 of 4)

Input

Process

IECAUDIC

|IECIOSIC

Current SVC
Stack Top

o

—>

CCT

CTAUDPL

IECIOSER

1 Save entry registers in page O.

> 2 Terminate if there was an error

in AMDSAAUD, and then
indicate that AMDSAAUD is
in control.

e |If an error occurred, load
a disabled wait X’4F0ODO1’

3 Record the error.

4 Terminate if one of the following

conditions occur:

® There is recursion through
AMDSAAUD.

e The master segment table
designation in the CCT is
invalid,

e The caller wants to recover
but the RCB queue is
empty.

® Therewasan error in the
1/0 service.

5 if requested, dump SADMP,

6 Set the exit PSW and select
the appropriate exit.

e If a terminating error occurred,
rewind and unload the output
tape and |load a wait PSW.

Output

IECAUDIC

PGOAUDSA

IECAUDER

IECIOSER

TRACE

Y [New Entry

AUDECODE

TERMINAT=0ON AUDEREAS

PGOAPSW=MODELPSW

1

>| X ‘0108000080000000" I

WPWRCODE=AUDERWRC

! |

AMI Jo Kyiadorg — S[BLIIBLA] PasuaIY
«INHI JO S[EUNEIA PaIOLISAY,,

C C

Diagram SADMP-4. AMDSAAUD — Virtual Storage Dump Error Handling (Part 2 of 4)
Extended Description Module Label

9861 7861 "'A10D WHI 1YsUAGOD O £-6811-8TA’T

dNUVHUNY) aun(g Uojy-puel§ °y 191deyy)

Sy

AMDSAAUD saves the entry registers in page 0.

AMDSAAUD examines the Internal Error Control (IEC) area to see if either AMDSAAUD or the IECAUDER
SADMP I/O service was in control when the error occurred. AMDSAAUD sets IECAUDER = 1 if

IECAUDIC = 1 and IECIOSER = 1 given IECIOSIC = 1. If the error was in AMDSAAUD

(IECAUDER = 1 and IECIOSER = 0), AMDSAAUD immediately loads a disabled wait PSW.

AMDSAAUD locates the appropriate SVC number and records the error.
AMDSAAUD terminates if any of the following conditions exist:

@ There is an error in the I/O service (IECIOSER = 1).
@ The caller wants to recover but the RCB queue is empty (CTAUDRY = | and CTRCB = 0).

AMDSAAUD dumps SADMP if a dump is requested or if a terminal error exists (CTAUDDMP =
1 or TERMINAT =).

AMDSAAUD sets the exit PSW equal to X‘0108000080000000’ and selects an appropriate exit:

If a terminating error occurred (CTAUDTRM = 1 or TERMINAT = 1), AMDSAAUD rewinds
and unloads the output tape and loads a wait PSW.

JNEI Jo Auddoig — S[BMIBIAl PAsUIIIT

JAE] JO S[BUIBI PADUISIY,,

1307 Sply 90IA13G AIN10ANYAY PIPUAXT/SAIN Q-4

9861 "7861 10D WH[1YIUADOD O €-6811-8TAT

Diagram SADMP-4. AMDSAAUD - Virtual Storage Dump Error Handling (Part 3 of 4)

Input

CcCT

CTAUDPL

RCB Queue

CTRCB

Process

@ If the caller requested recovery,

environment.

> set up top error recovery

® |f no special exit was requested,
return to the caller,

Output

Exit PSW Control Register 1

I 1|

|

Register 11 Register 12

~ | 1

]

Register 13

PSWIA

_“)I PSWIA or REGL14 |

Return to Caller

WAl Jo Auaxdorg — s[euUABR PasuadN]

«AH] JO S[BLRAIBIA P3JILISIY,,

9861 (361 A0 WEHI 1Ysladoy O £-6811-87TA7

W@ ryNU VDUV Y uili | JUuVUjy pukly P 191UEY)

a4

C C

Diagram SADMP-4. AMDSAAUD — Virtual Storage Dump Error Handling (Part 4 of 4)
Extended Description Module

@ If the caller requested recovery (CTAUDRCYV =1), AMDSAAUD sets up the top error recovery
environment (RCB).

@® If no special exit was requested, AMDSAAUD returas to the caller.

AT Jo Auadorg — sfeu)BR pasuadN]

«HI JO S|BUBYY PAIUISIY,

J1307 SPIY 3DMAIIS 2INIONIYIIY PIPUAXF/SAN R |-¥

9861 "T861 "'A10D WHI WY3UAAOD O ¢-6811-8TA']

Diagram SADMP-5. AMDSABLD — Build Module (Part 1 of 10)

Input

Process

> 1 Open SYSPRINT data set DCB.

Register 1

2 Check the validity of the input

INPARMS

(C SYSPUNCH)

For
TYPE=HI

LB

parameters.

e [f input parameters are
invalid, set return code 8.

N

)3 Open data set DCBs.

e If any data set DCB is not
opened, return,

Output

TYPE

Hi or LOW

> IPL

LOADPT
Error. Return
to the Caller. Register 15
8
MSG
Return Register 15

[« 1

NG Jo Kyiadorg — S|BUA)BIA Pasuadr]

«JAE] JO S[BUBIA PAILISIY,

9861 ‘7861 "d10D WHI WBuAdOD © €-6811-8TA'T

(dNAVSAWY) dunq suoy-puels " i31dey)

61-v

C C

Diagram SADMP-5. AMDSABLD — Build Module (Part 2 of 10)
Extended Description

AMDSABLD performs part of the initialization of the stand-alone dump program.

1 AMDSABLD opens the SYSPRINT data set DCB so that error messages can be printed.

2 AMDSABLD converts the input parameter, which is a character string, into three parameters; TYPE,
IPL, and LOADPT. TYPE is the speed of the dump (HI or LOW). IPL specifies the unit type of
the dump residence volume, either T for tape or D for direct access device. LOADPT is an
eight-digit hexadecimal number representing the address in real storage at which AMDSARDM will
be loaded. AMDXCB converts LOADPT from a hexadecimal character string into a binary number.
AMDSABLD checks the validity of the three input parameters. If any of the input parameters are
invalid, AMDSABLD sets the return code and calls AMDEXIT to terminate processing and return
to the caller.

3 AMDSABLD opens the data set DCBs for SYSPUNCH, IPLTEXT, IPLDEYV, and if TYPE=HI,
for PGETEXT. If any open was unsuccessful, AMDSABLD calls AMDMESSG to print message
AMDO0351. Then AMDSABLD sets the return code and returns to the caller.

Module

Label

AMDXCB

AMDEXIT

AMDMESSG

NE] JO Kyiadold — S[BHBLA PasuddN

«NEI JO S[BUNEIN PIIINSIY,,

01807 SPLY 301AI3S 2IM)OAIYDIY PAPUAXA/SAN ()T~

€-6811-8TA’T

9861 7861 410D W[wyduido)

Input

TAPEIPL1

TAPEIPL2

Diagram SADMP-5. AMDSABLD — Build Module (Past 3 of 10)

Process

]

AMDSAIPL

AMDSACCT

AMDSARDM

Load Module

Object Module

4 Obtain storage for buffers.

e |If GETMAIN fails, return.

B Process tape dump (if IPL=T)
for both high and low speed
dumps.

Error. Return
to Caller.

> ® Write IPL1 and IPL2 to

tape.

® Read and process AMDSAIPL,

> AMDSACCT, and AMDSARDM

e Write AMDSAIPL, AMDSACCT,

and AMDSARDM to tape.

MSG
AMDO042]

Register 15

Output
4;> PINBUF
INBUFFER
POUTBUF
OUTBUFFER
PRLTBUF
RLTBUFFR

JAM] Jo Auadord — S[BUIBIA PIsuA]

«NHI JO S[BLIABIA PAOLLSIY,

C C

Diagram SADMP-5. AMDSABLD — Build Module (Part 4 of 10)
Exteaded Description Module Label

9861 ‘7861 'd1oD W4l 1y3u&doD o ¢-6811-8TA"1

(dWAVSAWV) dum(suojy-puei§ ‘¢ Jaidey)

[2-v

AMDSABLD issues GETMAINS to obtain storage for the input buffer, the output buffer, and the
relocation table (RLT) buffer. INBUFFER is large enough to hold an input record of any length.
OUTBUFFER s large enough to contain the storage that SADMP uses at run time. The RLT

bufTer is the area used for building the RLT. If the GETMAIN fails for any of the buffers, AMDMESSG
AMDSABLD calls AMDMESSG to print message AMD0421. AMDSABLD sets the return code

and returns to the caller.

For tape dump processing of both high and low speed dumps, AMDSABLD calls AMDWRITE to AMDWRITE
write IPL1 and IPL2 on to the output tape (IPLDEV). AMDSABLD calls AMDTEXT to read and

process AMDSAIPL, AMDSACCT, and AMDSARDM. If any errors occur in processing these AMDTEXT
modules, AMDSABLD sets the return code and returns to the caller. If no error occurs,

AMDSABLD calls AMDWRITE to write AMDSAIPL, AMDSACCT, and AMDSARDM to the AMDWRITE

output tape (IPLDEYV).

NG Jo Anadorg — speuaBpy pasuaar]

«JAMI JO S[BUANBIA PAOLISIY,,

91807 SPIV 201AI3§ BIMANYAIY POPUIT/SAN 77~

9861 ‘z861 'd1oD Wd1 WBukdoDd o £-6811-8TA1

Diagram SADMP-5. AMDSABLD — Build Module (Part 5 of 10)

Input

PGETEXT

AMDSAPGE

Load Module

Process

© If TYPE=HI, process the high

speed dump, build the RLT,
and write AMDSAPGE and
the RLT to tape.

® |f an error occurs in process-
ing either high or low speed
dump {(for IPL=T), return.

Output

AMDSAPGE
> i RLT

Register 15

f

4

Error. Return
to the Caller.

L] Jo Auadord — S[BLIAIB[A Pasuadr]
«IAEI JO S[BLIAIBIA] PAIINNISAY,

9861 ‘7861 'dyopy W] 14Suidop o ¢-6811-8TAT

(dNAVSAWyV) dung suojy-pueis ‘4 1aidey)

X 4n 4

C C

Diagram SADMP-5. AMDSABLD — Build Module (Part 6 of 10)
Extended Description Module Label

6 For tape dump processing of a high speed dump, AMDSABLD calls AMDTEXT to process

AMDSAPGE and to build a relocation table. If any errors occur during processing, AMDSABLD AMDTEXT
sets the return code and returns to the caller. 1f no error occurs, AMDSABLD calls AMDWRITE to
write AMDSAPGE and the RLT onto the output tape (IPLDEV). AMDWRITE

ALI Jo Ayiadorg — S[BII)BIA PasUdIT

<] JO S[BLAIBIY ARSI,

018077 SPIV 201AI9S 3IMOAYIY PIPUAIXT/SAN $Z-b

9861 ‘7861 "d10D WHI YSuAdoD © €-6811-8TAT

Diagram SADMP-5. AMDSABLD — Build Module (Part 7 of 10)

Process

Input
TRKDTEXT
DASDIPL1 DASDIPL2
Load Module Object Module

IPLTEXT

AMDSACCT

AMDSAIPL AMDSARDM

Load Module
PGETEXT

AMDSAPGE

7 1f1PL=D, process DASD dump:

® Open TRKOTEXT data set
DCB

@ |If data set DCB not opened,
return.

® Write IPL1and IPL2 to
DASD.

® Write page O save area to
DASD.

® Read and process the following:

AMDSAIPL
AMDSACCT
AMDSARDM

® Write AMDSAIPL, AMDSACCT,
AMDSARM, and the real storage
dump save area to DASD.

If TYPE=HI, process high speed dumps,
build the RLT, and write AMDSAPGE
and the RLT to DASD.

e |f anerror occurs during processing
and |PL=D, return.

Output

DCB

-

G

Register 15

ms
>| AMDO35|

—

Error.
Return
to Caller.

L+ |

1PL1
IPL2

Absolute page 0
AMDSAIPL

AMDSACCT
Real Storage

> Dump Area
AMDSARDM
AMDSAPGE
RLT

Register 15

Error.
Return
to Caller.

NG Jo fyadosg — sjBLIAIB[PasUAN
«JAE] JO S[BLIRIBIA PA)OI1SAY ,,

9861 ‘7861 'd1oD WdI 1y3ukdo) o ¢-6811-8TAT

(dNAVSANYVY) dun(suoly-puel§ " 1ajdey)

SCv

C C

Diagram SADMP-5. AMDSABLD — Build Module (Part 8 of 10)
Extended Description 2

For DASD dump processing of both high and low speed dumps, AMDSABLD opens the
TRKOTEXT data set DCB for temporary storage of the boot strap sequence. If the OPEN is
unsuccessful, AMDSABLD calls AMDMESSG to print message AMD0351. AMDSABLD sets the
error return code and returns to the caller. If the OPEN is successful, AMDSABLD calls
AMDWRITE to write IPL1 and IPL2 to TRKOTEXT. AMDSABLD creates and empty record to
be used by the IPL2 channel program to save absolute page zero. AMDSABLD calls AMDMOVE
to clear the output buffer, and calls AMDWRITE to write absolute page zero to TRKOTEXT.

AMDSABLD calls AMDTEXT to read and process AMDSAIPL, AMDSACCT, and
AMDSARDM. If any errors occur in the processing of these modules, AMDSABLD sets the error
return code and returns to the caller. If no errors occur in processing, AMDSABLD calls
AMDWRITE, AMDWRITE writes AMDSAIPL to TRKOTEXT, and writes AMDSACCT,
AMDSARDM, and the real storage dump area to DASD IPLDEV.

For DASD dump processing of a high speed dump, AMDSABLD builds an RLT and calls
AMDTEXT to process AMDSAPGE. If an error occurs in processing, AMDSABLD sets the error
return code and returns to the caller. If no error occurs in processing, AMDSABLD calls
AMDWRITE to write AMDSAPGE and the RLT to DASD IPLDEV.

Module

Label

AMDMESSG

AMDWRITE
AMDMOVE

AMDTEXT

AMDTEXT

AMDWRITE

NI Jo £1adoag — S[BLIIBIA PISUN]

«AE] JO S[ELIAEIA PIjaLI)say,,

“Restricted Materials of IBM”

Licensed Materials — Property of IBM

walsAg
ay) 03
winlay

0

G| 1astbey

IEPOANY

DSIN

inding

“apod u.aMmals
195 pue alty INIHdSAS 3010 0L <

INIHJSAS

-abessaw uone|duiod
|nyssaoans 1utid pue sajty aso|D G

;

$$830.4 induy

(01 Jo 6 11ed) ampol ping — A'TAVSAWY "S-dJWAVS WweiSelq

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

4-26 MVS/Extended Architecture Service Aids Logic

9861 ‘2861 "d10D WH] WBuddo)y & ¢-6811-8TAT

(dNAVSAWYV) dunq suojy-pueis 'y 1adey)

LT+

C C

Diagram SADMP-5. AMDSABLD — Build Module (Part 10 of 10)
Extended Description Module Label

If the following files are open, AMDSABLD closes the filess: TRKOTEXT, PGETEXT, IPLDEYV,
IPLTEXT, and SYSPUNCH. AMDSABLD prints message AMDO0431 indicating successful
completion of dump processing.

If SYSPRINT is open, AMDSABLD closes the SYSPRINT filee. AMDSABLD sets the return code
and returns to the system.

NGI Jo Apadosd — S[BLIBIA] PISUN]

I JO S[BLIAIBIA PAIILISIY,,

218077 SPIV 2d1AK0G 21MI0ANYAIY PAPUAXT/SAN 87

9861 ‘7861 "d10D WHI WB1AdoD @ £-6811-8TA]

Diagram SADMP-6. AMDSABUF — BCT/Buffer Acquisition (Part 1 of 2)

Output

Input Process
Register 1
SWAPASID 1 Save the input parameters.
SWAPASID
Non-zero 2 |f aswap-in isin progress,
reclaim the BCT used by the
previous address space.
SWAPASID

CTBCTAVQ

CTBCTALL

[o]

Queue Of Available BCT

Queue Of All BCT

LOWBCT

0

If no swap-in is in progress
obtain a BCT for the caller,

@ Search for a low priority
BCT.

e If a BCT is not found, try
extraordinary stealing.

e |If a BCT is still not found,
set a return code of 4,

Prepare BCT to receive a page,
return the BCT, and set a return
code.

-

CTBCTAVQ

BCT on Available Queue

LOWBCT BCT
Register 15
4
SAVEBACK SAVER1
Register 15 BCT
0 L |

EI Jo Ay1adord — S[eLId)BIA] PasudIN]
«JAI JO S[BUJBIA] PIPLI)SIY,

C C

Diagram SADMP-6. AMDSABUF — BCT/Buffer Acquisition (Part 2 of 2)
Extended Description

9861 ‘7861 dioD WEI y3ukdoDd & €-6811-8ZA1

(dIWAVSAWYVY) dung suojy-puels -t 1a1deyd

6Cv

AMDSABUF saves the input parameter in SWAPASID.

1f SWAPASID is nonzero, AMDSABUF assumes a swap-in is taking place and reclaims the BCT
used by the previous address space unless:

® The BCT is already available.
® The BCT is already involved in paging.
® The BCT is for the swap-in address space.

When no swap is occurring (SWAPASID =0), AMDSABUF gets a BCT for the caller and searches
the BCT for the lowest priority BCT to steal. If AMDSABUF cannot find a low priority BCT to
steal, AMDSABUF waits for output I1/O to complete, assuming that AMDSAIOI will make some
BCT available or stealable upon completion of output 1/O processing. 1If AMDSAIOI does not
provide an available or stealable BCT, AMDSABUF sets an error return code of 4.

AMDSABUF 1akes the first available BCT, dequeues it, and indicates that the BCT is involved in a

paging operation. AMDSABUF returns the BCT address as a parameter and sets a return code of 0.

E] Jo Ayadoid — sjeLId)Rpy pasuadr]

M JO S[ELIEIN PIIOLISIY,,

013077 SPIY 301AIG AUIMVINYAIY PIPUdXT/SAW Of-b

9861 ‘7861 "d10D] W3uAdoD @ €-6811-8TAT

Diagram SADMP-7. AMDSACON - Virtual Storage Dump Console Service (Part 1 of 2)

Input Process
1
CTNOCONS Register 1 Message ID
or Message
I l r Parameter j'> 2
Address
MSGPARMS
> 3
CTMSG
I > 4
MPSFPRES
CTNOCONS
MPFNOCON
CTSCREND — — — — ——[>» b
REQUEST

Set CTCONACT to 1to
indicate that the console
routine is active.

If there is no working console,
preset a return code of 8.

Get the message parameter for
the input request.

Determine if the message should
be written to the console or only
included in the console message

dump,

Write end-of-screen message, if
necessary.

Write the message and read any

reply. ' l

Output

CTCONACT

1

RCODE

REQUEST

WRITECON

WRITREAD

=]

AMDO029D

CTSCREND

WRITREAD

LD

Q] Jo £yadoad — s[eLAIBIA pasudd]

«ING1 JO S[BLIEIA] PIJOLIISIY,,

9861 ‘7861 'd10D MA] 1YSuLdoD © €-6811-8TAT

(dNaVvsSany) dunq suojy-puelrs “f 133dey)

|§% 4

C C

Diagram SADMP-7. AMDSACON — Virtual Storage Dump Console Service (Part 2 of 2)

Extended Description Module Label

1 AMDSACON sets CTCONACT = 1.

2 If CTNOCONS is on, AMDSACON sets the global return code RCODE to 8.

3 Message parameter control blocks (mapped by MSGPARM) describe SADMP messages. If register 1
at entry is greater than 255, it points to a message parameter. Otherwise, register 1 contains a
SADMP message ID, which AMDSACON uses to index into a table (MSGPARMS) of message
parameters. AMDSACON copies the message parameter into REQUEST.

4 Set WRITECON to 0 if:

@ the message should be suppressed (CTMSG = | and MPFSPRES
@ there is no console (CTNOCONS = 1)
@ this message is only for the console message dump (MPFNOCON

1)
1

Il

Otherwise, WRITECON is set to 1.

5 AMDSACON checks if the message overflows the screen. If CTSCREND is 0, AMDSACON writes
message AMDO029D to ask the operator whether to pause and issue AMD029D again the next time
the screen is full. If the reply is 'N’, AMDSACON sets CTSCREND on. Subroutine WRITREAD
erases the screen before it writes messages.

6 AMDSACON passes REQUEST to WRITREAD to write the message to the console and receive any
reply.

NI Jo fiadosd — S[BLIAIBIA PAsudI]

«INGI JO S[BUAIB[A PaJOLIISAY,,

01307 SPIY 201AI3S 21NJ0NYAY PIPUAXT/SAN 7€

9861 ‘7861 "di0D IWH] 1yFuAdoD @ €-6811-8TAT

Diagram SADMP-8. WRITREAD — Subroutine of AMDSACON (Part 1 of 2)

Process

> 1 Puts the message in the console.
message dump.

Input
MPWRTLEN
Console
10D8B Control Register 6
Register 1 CTLINES

the CONSOLE.

3 Determine if the screen needs

Message Parm to Be Processed

Channel Programs

to be erased. If so, update the
line count.

4 Obtain the screen address of the
message.

> B Build the channel program,

I0DBCON

b Perform the 1/0.

Channel Programs

7 Build the wait code and wait
for a reply.

Message Parm

> 8 Read thereply.

CR6SAVE

9 Change the reply into upper
case.

> 10 Restore 1/O interrupt mask.

> 2 Mask off all of the devices except

Output

svC
(SVCDCM)

Message on
Output Tape

Control Register 6

Z;‘

2! |

CRG6SAVE

CTLINES

& 1

CCWs

Message

{SVCSIO)

)

Wait Code = '3300 nn’

svC
(SVCSIO)

) °°
(SVCSIO)

nn = Message |D

=)

Reply Area

Control Register 6

|
|

Return to Caller

C

L]

JAGI Jo Ayiadoid — S[BLIIBIAl PIsUN]

<AMI JO S[BLIIEIA PIOLISIY,,

9861 ‘7861 "d10D g1 w3uddod 3 ¢-6811-8TAT

(dNAVYSANV) dun(suo[y-puels ‘4 1aidey)

£y

- C

Diagram SADMP-8. WRITREAD — Subroutine of AMDSACON (Part 2 of 2)

Extended Description

If there is message text (MPWRTLEN is greater than 0), WRITREAD calls AMDSADCM to write
the message to the output tape.

WRITREAD changes the interrupt subclass mask in control register 6 to permit only console
interrupts. This serializes all SADMP 1/O until the message is complete. WRITREAD saves the
original value of control register 6 in CR6SAVE.

WRITREAD increases the count of lines on the screen. If the screen would be filled by that number
of lines, WRITREAD sets the CCW command to ERASE/WRITE and resets CTLINES to 1.

WRITREAD computes the 12/14-bit screen address from CTLINES and the known screen width
(SW3277).

The changel program sends a WRITE or ERASE/WRITE command to the console, unlocks the
screen if a reply is expected, and furnishes the screen address and the data to be written.

The 710 macro points the console IODB (XIOBCON) to the chanaoel program and calls
AMDSASIO.

If a reply is expected, WRITREAD calls AMDSASIO to wait for an attention interrupt caused when
the operator presses enter.

WRITREAD builds a channel program to read the reply and calls AMDSASIO (Steps 5 and 6).
WRITREAD converts the reply to upper case.

WRITREAD restores the original value of control register 6 and returns.

Module

Label

NI Jo firadorg — S[BLIAIBIA PasudAN

«JAH] JO S[BLIIBIA] PILNSIY,,

918077 SPIV 301A19§ AMIOANYIIY PIPUAXT/SAN -

9861 ‘t861 "d10D WdI 1Bukdo) o €-6811-8TA'T

Diagram SADMP-9. AMDSADER — DASD Error Recovery (Part 1 of 2)

Input

DASD
10DB

Process

D 1 Locate the CCW to be restarte

2 Check error conditions and
take action.

> 3 Retry the 1/0 until it is suc-
cessful or until the number of
retries is exhausted.

I ssue a return code.

Output

CCWA

d.

DASD

SVC (SVCSI0)

Register 15

Page
Buffer

AMDO033i
AMDO034li
AMDO15I

Register 15

!

0]orl

4

JNd] Jo Auadoig — S[BLIAIBIA PasudIIT

«JHI JO S[BUIIBIN| PaLISa,,

C C

Diagram SADMP-9. AMDSADER — DASD Error Recovery (Part 2 of 2)
Extended Description

1 AMDSADER locates the CCW to be restarted. IODBCSW contains the last channel program
address returned by an I/O interrupt. If this address is not 0, it is decreased by the length of a CCW
to obtain the address of the failing CCW. If this address is 0, the address of the last CCW started
(IODBCCWA) is used. IODBSCSW also contains the IRB status information.

If using a 3880-11 control unit (IODBPGST is on), the IODB is for a paging exposure. AMDSADER
uses IODBBASA to locate the IODB for the base exposure. This IODB must be used in all error
recovery.

2 The IRB status pointed to by IODBSCSW and the sense data pointed to by IODBSENS define the
error and the action to be taken.

3 The CCWA contains the address of the CCW that is to be retried. AMDSADER calls AMDSASIO
to retry the I/O, and performs Steps |1 through 3 until the 1/O is successful, or the retry count is
exhausted.

If the I/O succeeds, AMDSADER returns with a return code of 0. If the I/O does not succeed,
AMDSADER writes 1/O error message AMDO033I to the console and rcturns with a return code of 4.
If sense data is available, AMDSADER also writes message AMDO034l. If there can be no more I/O
with this device, AMDSADER marks the IODB as unusable (IODBUNAYV = 1) and writes message
AMDO15I.

Module

Label

M Jo Ay1adosg — S[BLINELN PISUIN]

<IN JO S[ELIBIA PALNSIY,,

Diagram SADMP-10. AMDSADIP — Virtual Storage Dump Initialization (Part 1 of 4)

Input

Storage for SVT

CCT

CVvT

RLT

Header

Master

DAT

Process

Output

Tables

PCCA

PVT

O
(-

PSA

RIT

Page Frame Table

PFT

CvT

D 4

MVS
Storage
Map

Initialize for AMDSADIP
processing.

Turn on DAT.

Check the validity of the control
blocks used by AMDSADIP.

Locate virtual storage to use
during virtual dump execution.

Locate real page frames to use
during virtual dump execution.

CCT

Control Register 1

SUT

X'250100°

X'260200°

X‘250301°

X’'250302’

X‘250303°

X‘250B00°

X'250C00°

> SUT

Storage Range

SUT

SGT

Bad Master
Segment Table
Bad CVT

Bad PVT
Bad RIT
Bad PFT
Bad RLT
No LPA

PFT

PGT

AMDSADIP

V

NEI Jo Auadord — S[BLIAIBIA Pasuddry

«AHI JO S[BLIBIN POU)SIY,,

G40 NPT HHeARL) D o8 IT8CAT]

€301

758601

WAWNUVDUNWN Y Bl BV publy b 49888540

L'V

C C

Diagram SADMP-10. AMDSADIP — Virtual Storage Dump Initialization (Part 2 of 4)

Extended Description Module L abel

AMDSADIP is the first CSECT in load module AMDSAPGE,
the virtual storage dump program. AMDSADIP loads the
rest of AMDSAPGE into virtual and real storage, without
overlaying any of the information AMDSAPGE needs to
dump real storage.

1 AMDSADIP receives control with DAT off.

AMDSADIP initializes the restart new PSW, the SVC
new PSW, and the program check new PSW. AMDSADIP
checks the validity of the segment table, and loads a wait
state PSW if the segment table is invalid. AMDSADIP
initializes the SUT and obtains the virtual address of
itself.

2 AMDSADIP turns on DAT by passing control to an
internal subroutine DATONOFF.

3 AMDSADIP checks the validity of the CVT, PVT,
RIT, PFT, and RLT control blocks, and loads a wait
state if any of the control blocks are invalid.

4 AMDSADIP locates virtual storage for SADMP to

use during virtual dump processing. The storage
must be contiguous, within the same segment, in COMMON,
and free of information that SADMP might eventually use.
AMDSADIP tries to obtain storage from non-directory
PLPA or ELPA.

B AMDSADIP locates real storage frames to back the

virtual storage that it has just obtained. AMDSADIP
takes real storage frames from the DAT-off nucleus to use
for the segment table for swapped-in address spaces.
AMDSADIP saves the addresses of usable frames in the
SUT.

I Jo f1adosd — S[BLIAIBIA] pasuddI]

«AE] JO S[BLIDIBIA PjOLSIY,

J1307 SPIY 3JIAISS 2INIIBIYIIY PIpusiXy/SAN 8¢€-p

9861 (86] 10D WHI 1YsHUAAOD) O ¢-68]11-8CA'T

Diagram SADMP-10. AMDSADIP — Virtual Storage Dump Initialization (Part 3 of 4)

Input

Process

Parameter List

* Read Routine

SUT

SUT

Page Frame Table

6 Turnoff DAT.

|

7 Read the rest of the virtual

Program

Virtual Dump

dump program into the frames
recorded in the SUT.

8 Build the SADMP virtual storage

ALT

Master DAT Tables

map and the SADMP real storage
map.

9 Turnon DAT.

10 Move the address constants in the

virtual dump.

11 Produce the virtual dump.

Output
Page
SADMP Frames
Virtual
Storage Page Table

I jo Auadosg — s[BLIAIBIY PasuddI]

A JO S[BLIJBIY pajoLIIsIY,

9861 ‘7861 "d10D WHI 1q8ukdod & €-6811-8TA'1

(dINAVSANYV) dund suojy-puelg ‘4 1a1dey)

6tV

C C

Diagram SADMP-10. AMDSADIP — Virtual Storage Dump Initialization (Part 4 of 4)
Extended Description Module Label

6 AMDSADIP turns off DAT by passing control to an
internal subroutine DATONOFF.

7 AMDSADIP calls a subroutine in AMDSAIPL to

read the rest of the AMDSAPGE load moduie, 4K
at a time, into the real page frames. If the read routine
fails, the read routine loads a wait state PSW.

8 AMDSADIP builds virtual storage and real storage
maps for SADMP use.

9 AMDSADIP turns on DAT by passing control to
an internal subroutine DATONOFF.

10 AMDSADIP uses the RLT and the SUT to relocate
the address constants in AMDSAPGE.

11 AMDSADIP calls AMDSAPGE to produce the
virtual storage dump.

I Jo f1adosd — S|BLI2JBIA PasuddI']

A JO S[BUAEIA PAILISIY,

01307 SPY 901413 INJIANYDIY PIPUAXT/SAN (p-¥

9861 ‘7861 "d10D NE] WBUADOD @ £-6811-8TAT

Diagram SADMP-11. AMDSAEXI — External Interruption Handler (Part 1 of 2)

Input

AMDSAPGE
Process

Control Register O

00B00040 |: > 1

CTAUDPL

CTAUDRC

> 3

— > 4

CTAUDDMP

CTAUDTRM
Q

6

Change control register O to
disable external interruptions.

Place pointer to message

AMDO55I in general register 1.

Initialize the parameter list for
AMDSAAUD.

Set error reason code.

Call for dump.

Call AMDSAAUD.

Output

Control Register O

00B0O0000

Register 1

TAMDO55I

?10 MSGID
(AMDO551)

CTAUDPL=""B

D

CTAUDRC=ECCANCEL

X112

CTAUDDMP

I

<4mmmm—)

?ERROR REASON
(ECCANCEL)
Terminate Dump

CTAUDTRM

I

WG] Jo Ayodorg — sjeLajRIy PasuadIY
A JO S[BLIJBIA PajALLISIY,,

9861 ‘7861 "d10D WHI WBuAdoD @ €-6811-8TA1

(dNAVSAN V) dungq suoly-puels 'y sa1dey)

8414

C -

Diagram SADMP-11. AMDSAEXY — External Interruption Handler (Part 2 of 2)

Extended Description Module Label

AMDSAPGE calls AMDSAE X1 (which handles external
interruptions), writes message AMDO0551, and loads a
disabled wait PSW. Note: AMDSAMSF handies external
interruptions itself by modifying the external new PSW.

1 AMDSAEXI changes control register 0, disabling
external interruptions.

2 AMDSAEXI calls 210 to issue message AMDOS51.
AMDSAE XI places the address of AMDO055I in
general register 1.

3 AMDSAEXI initializes the parameter list for
AMDSAAUD. CTAUDPL is a field in the CCT.

4 AMDSAEXI sets the error reason code to X'12".

B AMDSAEXI initializes CTAUDDMP and
CTAUDTRM (which are two fields in the CCT)
and calls for a dump.

6 AMDSAEXI calls AMDSAAUD.

EI Jo £&31adorg — S[BUAIBA pasuddN]

«INHI JO SIBU3IBIA| PAIILISIY,,

21307 SPIY 301AI3E 2INI0ANYIIY PIPUAXT/SAN Tt

9861 ‘7861 "d1oD g1 3ukdoD © €-6811-8TAT

Diagram SADMP-12. AMDSAFRM — Storage Deallocation for Error Recovery (Part 1 of 2)

Input Process Output
TRACEPSW SVCFRM Register 13
r | I 1 Set up the save area. 1')'
Save Area
Trace Table
AMDSAFRM > 2 Copy the PSW into the trace TRACEPSW
table entry. ‘ AMDSAFRM
SVCFRM
CTSUT
= ™S 3 Load the SUT address. ™ Register 6
SUT
FREETYPE
FREETYPE
I > 4 Indicate that the request is a > UNCOND
FR EE and conditional request. E
Register 15
5 Call FSEARCH to free the
storage.
FSEARCH
=
Register 15 CTAUDRC 3
s | " e I FSEARCH fails, set an =ECNOALOC 2
error code.
s
?ERROR [
Register 15 %
© Return with a successful return m [
code. :'U
=)
=
-
.t
=)
=
=
=

«NE1 JO S[BLIdEIA] PADINSAY,,

9861 C861 0 WHI 1YsHAUuO) @ £-631178CA']

UANUVSUNY) uung| auvjy-puely "¢ 13jaey)

1A

C C

Diagram SADMP-12. AMDSAFRM — Storage Deallocation for Error Recovery (Part 2 of 2)
Extended Description Module
AMDSAFRM is a branch entry point for AMDSAAUD to recover storage resources not freed when

?ERROR causes entries to be deleted from the SVC stack.

1 AMDSAFRM saves the passed save arca address and sets up a local save area.

2 AMDSAFRM calls 7TRACE to copy the PSW, the address of AMDSAFRM, and the SVC number
for FRM into the trace table entry.

3 AMDSAFRM loads the virtual address of the storage use table (SUT) into register 6 to expedite
access to the SUT.

4 AMDSAFRM sets FREETYPE =3 to indicate to FREE by SSINDEX, and sets off UNCOND to
indicate a conditional free.

5 AMDSAFRM calls FSEARCH to scan the DSCE queue for clements of allocated storage to be
freed. If FSEARCH fails, AMDSAFRM issues a ?YERROR macro instruction to set an error code of
X'04'.

6 AMDSAFRM sets a successful return code of 0 and returns to the caller.

Label

AE] Jo £)1adosd — S[BLIAJBIA] pasuadl]

«JAE JO S[BHEIA PARILIISIY,,

JIOU | SPIY eJAddy eliidei YV POPRes A a/ oA Vv Vv

9861 C861 'd10) WHI IHsHACO) & L 0681 1°8CA']

Diagram SADMP-13. AMDSAGTF - GTF History Queue Dump (Part 1 of 4)

Input

GTFRCB RCB Queue
MCHCUR MCCE
GTFMCQEA MCQE
MCHCUR GTFMCBEA

& or z

PCTPTR
or o
GTFASCBA CTASCBD
C

GTFRCB RCB Queue
GBCBPTR GTEBCB

Process Output
New RCB
GTFRC
1 Enqueue the GTFRCB : 8
Register 15
2 f GTF is not active, set >
an error return code. 2
?VCHK
) Register 15
e If the MCQE is invalid, 16
set an error return code j
and issue a message.
MSGID
710
AMDO18I
3 Dequeue the GTFRCB.
— Original RCB Queue
R Register 15
4 If the ASCB is not for l;
GTF, set an error return 4
code.
> 5 Enqueue the GTFRCB.
GTFRCB
6 Dump the GTF history New
queue, RCB

JAEI Jo Auadosg — S[BLIAJBIA] PAsUadN
«NHI JO S[BLIJB[A| P3JOLIISIY,,

301l YY) WAl HoUAUU) W rTOXLITECA]

J801

NAFYU VOUFYNY)/ U OBYLV PREI V493l

12

>V

(\

Diagram SADMP-13. AMDSAGTF — GTF History Queue Dump (Part 2 of 4)

Extended Description Module Label
1 AMDSAGTF enqueuesa GTF RCB.

2 AMDSAGTF calls ?VCHK to check the validity of AMDSAVCK ?VCHK
the MCCE and MCQE to determine if GTF was

active. |f GTF was not active, AMDSAGTF sets an

error return code of 12. If the MCQE is invalid,

AMDSAGTF sets an error return code of 16 and calls

710 to issue error message AMDO18I. 710

3 AMDSAGTF dequeues the GTF RCB.

4 AMDSAGTF checks if the ASCB being dumped
is for GTF. If GTF was not in this address space,
AMODSAGTF sets an orror return code of 4.

5 AMDSAGTF enqueuesa GTF RCB.

6 AMDSAGTF dumps the GTF history queue.

P

NI Jo Ayiadord — S[BHIIBJA PIsuddl|

JAMI JO SIBUAIBIY PIJILIISIY,,

JeUT SPLY SVIALGN 9lIlO) Il PIPUSIXH/SANW 9P~

YD Wal IH8AARB) @ rtos LT CAT)

(301

J801

Diagram SADMP-13. AMDSAGTF — GTF History Queue Dump (Part 3 of 4)

Input

Process

GTFRCB

7 Check validity GTFBCB.

e If GTFBCB is invalid,
set error return code
and issue a message.

8 Issue a successful comple-

tion message, dequeue
GTFRCB, and return

Output
?VCHK Register 15
16
N\
‘)MSGID
AMDZ25!
210
— Error. Return
to the Caller.-
MSGID
>~ AMD®57I
Original
RCB
Queue
) | 0
Register 15
0

AM] Jo Ayadodd — S[BUAJEBIA] PIsuaddI|
«AT JO S[BLIIBI PAJOLISIY,,

9861 ‘7861 "d10) WA WFukdo) @ €-6811-8TAT

2y dung suojy-pueis ¢ 193deq)

(\

Diagram SADMP-13. AMDSAGTF — GTF History Queue Dump (Part 4 of 4)

Extended Description

7 AMDSAGTF calls ?VCHK to check the validity of

the GTFBCB. If the GTFBCB is invalid,
AMDSAGTF sets an error return code of 16, calls 210
to issue error message AMDO025I1, and returns.

8 AMDSAGTF calls 71O to issue completion message
AMDO0571, dequeues the RCB, and returns to the
caller with a return code of 0.

Module

Label

PVCHK

210

210

~

JAGI Jo A1adorg — S[BLIdJEIA] PIsUdN]

Q] JO S[BLIIBI PAILISIY,,

21307 SPIV 90IAISG AUMIDIYIIY PIPUAXT/SAN 8b-

9861 "z861 "d1oD Wl WBuAdoD O €-6811-8TAT

Diagram SADMP-14. AMDSAGTM — Dynamic Storage Management (Part 1 of 6)

Process

Input
Register O Register 1
I | | |
Register 0 Register 15
| L]
CTSUT
GET GETLEN
Il |
UNCOND

UNCOND

:

1 If SSNUM=SVCGTM, save the
input parameters and test for

2 |fSSNUM=SVCGET, save the

> request type. —
11—

input parameters and test for

request type.

>3 Load the SUT address.

Output
POOLLEN SUBPOOLN
L | | |
REQLEN2 GET
_ 1L |
UNCOND
SPNMODE SUBPOOLN REQLEN1
| | | I
1 GET UNCOND
| | |]
Register 6 SUT
[suteTR] |
CTAUDRC

4a For GET requests:

[xor__] -ecaicLen

e |[f this is an unconditional
request and too much storage

is requested, set an error code
and terminate.

?ERROR

> e If this is a conditional request

and too much storage is
requested, set an error code
and a return code.

Error, Return
to Caller

=),

?ERROR

CTAUDRC

~ECBIGLEN

Register 15

JAG] Jo Auiadorg — SBLIdIRLy PasuddI]

«JAEI JO S|BLI3JE[A] PA)OLISIY,,

9861 ‘7861 'd10D WHI W3AdOD @ £-6811-8ZAT

dWUVSANY) aung suo[y-puel§ 't 13idey)

ovv

C C

Diagram SADMP-14. AMDSAGTM — Dynamic Storage Management (Part 2 of 6)

Extended Description

4a

For SSNUM =SVCGTM, AMDSAGTM saves the input parameters pointed to by register 0 and
tests the value in register 1 to determine the request type. AMDSAGTM sets the GET field to 1 if
register | contains a negative number. AMDSAGTM sets the UNCOND field to 1 because all
R-form requests are unconditional.

For SSNUM =SVCGET, AMDSAGTM saves the input parameters pointed to by registers 0 and 15.

AMDSAGTM tests for the request type and sets the GET and UNCOND fields accordingly.

AMDSAGTM loads the virtual address of the storage use table (SUT) into register 6 to expedite
access to the SUT.

For GET requests, AMDSAGTM performs GET processing. AMDSAGTM tests the requested
length of storage. For unconditional requests for too much storage, AMDSAGTM calls 7ZERROR to
set an error code of X'01" and terminates. For conditional requests for too much storage,
AMDSAGTM calls 7ZERROR to set an error code of X°01’ and a return code of 4, then continues
processing.

Module

Label

AE1 Jo Aaadosd — s[elId)e[A] pasuaddl|

01807 SPIV 301AI3S 3INIMANIYAY PIPUANXF/SAN ()S-F

9861 ‘7861 "d1op WHI WSuAkdoD @ €-6811-8TAT

Diagram SADMP-14. AMDSAGTM — Dynamic Storage Management (Part 3 of 6)

Input

DSCE Queue

Process

UNCOND

UNCOND

[

>4b Search the DSCE gueue for

available storage.

If no DSCE is available, set
an error code and request
adump.

If the request is unconditional
and there is not enough storage
available, set an error code,
request a dump, and terminate.

I the request is conditional
and there is not enough storage
available, set an error code and
a return code.

Output

CTAUDRC

D[xoz_]-ecnoosce

4=m)| =rROR

CTAUDRC

[x'03 "]-ecnosTor
4=m)| =rrOR

CTAUDRC Register 15

S x03] | 4
m)| >crroR

ANM] Jo Aypdorg — SpeLIEA] PISuUDI

«JAMI JO S[BURIBIA PajILIsIY,,

C C

Diagram SADMP-14. AMDSAGTM — Dynamic Storage Management (Part 4 of 6)
Extended Description Module Label

9861 ‘7861 "d10D WHI WTAdOD © €-6811-8ZAT

(ANAVSAWYV) dun(g suoly-puels ' 1a1dey)

[$-v

AMDSAGTM searches the DSCE queue for available storage. When it finds an available DSCE,
AMDSAGTM compares the amount of storage or: the DSCE 1o the requested amount of storage. If
the available storage that would be left is less than the minimum amouat that can be allocated,
AMDSAGTM takes all of the available storage. If the available storage that would be left is more
than the minimum amount that can be allocated, AMDSAGTM inserts a new DSCE for the
remaining unallocated available storage.

1f AMDSAGTM cannot find an available DSCE, AMDSAGTM calls 7JERROR to get an error code
equal to X‘02’ and request a dump. For unconditional requests, if AMDSAGTM cannot find
enough storage to satisfy the request, AMDSAGTM calls TERROR to set an error code equal to
X*'03’, request a dump, and terminate. For conditional requests, if AMDSAGTM cannot find
enough storage to satisfy the request, AMDSAGTM calls PTERROR to set an error code equal to
X'03’, and AMDSAGTM sets an error return code of 4.

Il AMDSAGTM satisfies the request for storage, AMDSAGTM sets a return code of 0.

NG jo Kuadold — S[ELIIEN Pasuadlr|

«WEI JO S[ELIREIA PaYLNSay,,

91307 SPIVY 991AI3S 2IN)INIYIIY PIPUIXT/SAN rd % 4

9861 ‘861 "d10D NE]I 1BuLdo) @ €-6811-8ZA'1

Diagram SADMP-14. AMDSAGTM — Dynamic Storage Management (Part S of 6)

Input

Register 15

-]

UNCOND

Register 15

[<]

UNCOND

[ol

Process

>

5 For a FREE request, call FSEARCH
to free the storage.

FSEARCH

Output

Register 15

CTAUDRC

o |f this is an unconditional

request and FSEARCH fails,
set an error code, request or
dump, and terminate.

?ERROR

CTAUDRC

o If this is a conditional request

and FSEARCH fails, set an
error code.

’ERROR

i) [

6 Dequeue the local save area, pass the

Save area

Register 13

storage address as a parameter,

>Register 1

pass the return code, and return.

Storage

SVC (SVC RETRN)

g1 J0 Auadord — S[RLIABIA pIsuddI

«JAG] JO S[BLIAJBIA PAjOLIIsaYy

9861 ‘7861 'd10D WdI 1YSukdod & €-6811-8TX1

(dNaVSANVy) dunq suopy-puers 4 1adeq)

£ES-v

C C

Diagram SADMP-14. AMDSAGTM — Dynamic Storage Management (Part 6 of 6)
Extesded Description Module Label

5 For FREE requests, AMDSAGTM performs FREE processing. AMDSAGTM calls FSEARCH to FSEARCH
scan the DSCE quecue for elements of allocated storage to be freed. For unconditional requests, if
FSEARCH fails, AMDSAGTM calls 7ZERROR to set an error code of X‘04’, request a dump, and
terminate.

For conditional requests, if FSEARCH fails, AMDSAGTM caiis ZERROR to set an error code of
X'04°.

[AMDSAGTM dequecues the local save area, passes the storage address in register 15, and arranges

return by way of AMDSASVI.

ANG] Jo Kyadosg — S[BLId)BIA] PAsSuDIT

«JAE] JO S[EUAIBI PAIMISIY,

013077 SPIY 301AI3G 2IMOANYOLY PIPUAXT/SAN HS-b

9861 ‘7861 "d10D M y3ukdoD o €-6811-8TAT

Diagram SADMP-15. AMDSAIOI — Virtual Storage Dump 1/0 Interruption Handler (Part 1 of 8)

Input

FLCIOPSW

1/0 Interrunt Process

>1

FLCIOFP

10DB for interrupting
subchannel

1/0 interrupt
parameter

FLCSID

Subchannel
1D

I0IIRB

IRBDSUC =1

IRB | IRBASUBA

IRBADEVA

10DB

IRBSINTR

IRBSPR{M

IODBSNSC

IRBCCWAD

IRBSSCCC

IRBSSICC

IRB

IRBSCSW

N7

Save the registers and [/O old PSW.
Get automatic storage.

Trace the 1/0 interruption.

Execute a TSCH to clear status
pending and get the IRB.

If 8 unit check occurred, issue a
sense command to store sense data.

If the IRB indicates that the |/O
operation is complete, indicate
this in the IODB.

Update the checkpoint CCW
virtual address in the IODB.

Save the interrupt SCSW in the
IODB.

Output
PGOIOISA _ IOIOREGS
T In automatic
N data area
1010PSW
Q SADMP trace table
101{RB
10DB SENSE
>> IODBSENS
710 {ODBSENE = 1 after error
ODB
IODBINTX |[=1
{ODB
|ODBCCWA
* 7LVA
SCHIB
10DB
) 10DBSCSW
IODBSCHB

W] Jo fysadoid — S[BUI)BRA] pasuddN|
«HI JO S[BLIJBIA PajaLIISIY,,

9861 ‘7861 ‘d10) WgI 1SukdoD o ¢€-6811-8ZAT

(dNAVSAN V) aun suoly-puers ‘¢ 1a1deyd

$sv

C C

Diagram SADMP-15. AMDSAIOI — Virtual Storage Dump I/O Interrupt Handler (Part 2 of 8)
Extended Description Module Label

1 AMDSAIOI saves entry registers at PGOIOISA in page 0, obtains automatic storage, saves the 1/O
old PSW at entry at IOIOPSW in the autodata area, puts its module identifier (‘IOI’) into its save
area, saves the 1/O interrupt parameter (FLCIOFP) in IODBPTR (I/O) interrupt parameters in the
virtual dump are IODB addresses), and puts the interrupting subsystem identifier (FLCSID) into
register 1.

2 AMDSAIOI adds a SADMP trace table entry to show that an I/O interrupt took place.

3 AMDSAIOI issues a TSCH instruction to the interrupting subchannel in register 1 to obtain IRB
status in IOIIRB and clear status pending. If no IODB is associated with this interrupt (as may
happen if the device generated an unsolicited interrupt before the virtual dump was initialized),
AMDSAIOI determines whether AMDSASIOQ is trying to clear status pending in order to issue
SSCH. If this is the case, AMDSAIOI returns to the wait resumption address IOWATRET) in
AMDSASIO. If not, AMDSAIOI restores the status at entry. If an IODB is associated with this
interrupt AMDSAIOI takes further action depending on the type of IODB and the interrupt status.

4 If IRBDSUC = 1 and IODBSNSC = 0, AMDSAIOI saves the original operation status
(IODBOPER and 10DBSTAT), issues ?10 SENSE, then restores the operation status. If an error
occurs, AMDSAIOI sets IODBSENE = 1.

L] If all I/O to this subchannel has stopped (IRBASUBA = IRBADEVA = 0), AMDSAIOI shows that
no further interrupt is expected (IODBINTX = 0).

6 If the CCW address is valid (IRBSINTR = | or IRBSPRIM = 1, and IRBSSCCC = 0, [RBSSICC
= 0, IODBSNSC = 0), AMDSAIOI subtracts 8 from the IRB CCW address, IRBCCWAD,
converts the address from real to virtual, and stores it into IODBCCWA.

7 AMDSAIOI copies IRBSCSW to IODBSCSW.

NG Jo fpadosg — s{eudjely pasuadr|

« A JO S[BLINEN PaIIISIY,,

21807 SPIY 2014138 UMANIYOIY PIPUAXA/SAN 9G-

9861 ‘7861 "d10D WHI WBukdoD o ¢€-6811-8TAT

Diagram SADMP-15. AMDSAIOI — Virtual Storage Dump I/0 Interruption Handler (Part 3 of 8)

Process

Output

L3 8 Take action on non-zero
deferred condition codes.

o= a} Deferred condition
code 1, primary status:
an immediate |/O
operation with
chaining not specified
is complete. No action

is taken.

Input

iRB
IRBFSSCH — — — — — —f
IRBSALRT IRB
IRBSPRIM IRBCC -1
IRBSSEC IRBSPRIM | = 1
IRBCC

1008 IRB

| 1ooBCCWA | IRBCC -1

IRBSPRIM |=0

IRB

IRBCC =3 —

IRBDS

IRBSS

LR

b} D.C.C.1, no primary
status: prepare to
restart the 1/0.

D.C.C.3: the device
an error message and
indicate the device

is not usable. Ifitis

the output device,

SADMP.

L 9 Check for errors.

= c)
is not available. Write ﬁ

AMDSAIOI terminates

SVC(SVCERM)

:) RESCCWA | #0

= o)

SVC(SVCCON)

)

IODBERR

=)
ﬁ 10DB
V

#O0or 1

NEI Jo Auiadodd — s[era)e]A pasuadl]

«IAQI JO S[PUAIE[\ PAILISIY,,

9861 ‘7861 'd10py W4l 1BukdoD 5 €-6811-8ZA1

(dWNavsanyv) dun(q suojy-pueigs 4 191dey)

LS

C C

Diagram SADMP-15. AMDSAIOI — Virtual Storage Dump I/O Interruption Handler (Part 4 of 8)

Extended Description Module Label

8 a) The deferred condition code is valid if
IRBFSSCH = 1, and if any of IRBSALRT,

IRBSPRIM or IRBSSEC is 1.

b} If RESCCWA =0, 1/O does not need to be restarted.
If RESCCWA # 0, AMDSAIOI will restart 1/0 later.

c} AMDSAIO! calls AMDSAERM to issue AMDO33I
(1/0 error message, indicates deferred condition
code of 3). If the device is the output device
(IODBOUT = 1}, AMDSAIOI issues AMD032! to
indicate a fatal error on the output tape, and then
terminates SADMP with wait code X‘4FFDF1'.

9 AMDSAIOI examines the IRB subchanne! status
(IRBSS) and device status (IRBDS) for error condi-
tions. If any are found, AMDSAIOI sets IODBERR = 1.

M Jo Ky1adold — s|eLId)Ep Pasudd]

« N1 JO S[ELIEIN pajoLsay,,

Diagram SADMP-15. AMDSAIOI — Virtual Storage Dump I/O Interruption Handler (Part 5 of 8)

018077 SPIV 901AI9S 2INIOMNYIIY PAPUAXT/SAIN 8-

9861 ‘7861 'd1o) WdI W3uAdoD @ €-6811-8ZAT

Input Process Output
Output
I0DB
2> 10 Channel program blocks (CPBs) » Output 10DB ,
that successfully execute are BCT BCT
CcPB CcP8 removed. The associated BCTs
are freed. ~ DEQBCT
jeat)—o=
SADMP-17
BCT BCT
11 Performs device error recovery.
IODBERR |— —|— — —] a) Calls device error recovery
i IOIERROR
\ODBRGVR routines. ~ {ODB
ODBUNAV T > b) Clears the device error SADMP-16
| recovery block. > IODBERB |=0
I0DBINTX | — —| — —]
IODBRCVR 12 Restarts interrupted channel
programs:

a) After D.C.C.1.

v 210
b) After interruption of CPB N
chain.
ﬁ 210

cPB

n
o
‘J \/P

CPBCHP

I0DB f’
I0DBIOQP

IODBINTX
IODBSNSC
IODBDERP

1/0 restarted

] Jo fizadorg — S[BUIBIA PIsuddN]

«HI JO S[BLIABIN P)OLISIY,,

9861 ‘7861 "d1o])] WBUAdOD @ €-681[-8TA]

\dWAVSANWY) aun(suo[y-puel§ 'y 13idey)

65y

C C

Diagram SADMP-15. AMDSAIOI — Virtual Storage Dump I/O Interrupt Handler (Part 6 of 8)
Extended Description Module

10

11

12

If IODBOUT = 1, AMDSAIOI calls subroutine DEQBCT to remove the completed parts of the
output 1/O queue. CPB storage is returned to the available dynamic storage pool, and the BCTs are
freed.

a) A device error recovery routine is called if an error occurred (IODBERR = 1), the last I/O
service caller to use the device requested error recovery (IODBRCVR = 1), and the device is in
usable condition (IODBUNAYV = ().

b) AMDSAIOI clears the error recovery block IODBERB if this is the end of an I/O operation
(IODBINTX = 0) on which the caller requested error recovery (IODBRCVR = 1), provided an
error occurred (the conditions of 11A were not met).

a) If RESCCWA — = 0, AMDSAIOI restarts the channel program whose virtual address is

RESCCWA by issuing 710 REAL. Because the channel program was prematurely interrupted by
D.C.C.1 and has not been translated to virtual, its addresses are real.

b) If no D.C.C.1 1/O is present for restart (RESCCWA = 0), and

1. 1/O is on the queue (IODBIOQP)— = 0),

2. 1/Ois currently inactive (IODBINTX = 0),

3. The last 1/O operation was not a SENSE (IODBSNSC = 0), or

4. The 1/O operation was not started by error recovery IODBDERP = 0),

then AMDSALIOI restarts the channel program CPBCHP at the right of the I/O queue by issuing 710
REAL.

Label

JAG] Jo f1iradesg — s[BLIIBIA] pasuadN]

A 1O S[ELABI PaIILISIY,,

91807 SPIY 901A13§ AIMVANYIIY PPUNXT/SAN ()9-

9861 ‘2861 "d10D WHI 1y3u4LdoD 0 €-6811-8TA1

Diagram SADMP-15. AMDSAIOI — Virtual Storage Dump I/O Interruption Handler (Part 7 of 8)

Input

Process

IOIOREGS

1010PSW

13 If AMDSASIO is waiting, and the
1/0 is complete, modify the saved
1/0 old PSW returning control to
AMDSASIO.

> 14 Restore interrupted status, trace
the exit and return.

Output

1010PSW

A]

IOWATRET
in
AMDSASIO SADMP
Trace Table
Interrupted

Process

AEI JO Ajadosd — S[BLIJBIA PISUN]

JAE] JO S[BLIIBI PALISAY,

9861 ‘7861 'd10D WH] WBAdOD © £-6811-8TA'T

(dWAVSAWY) dung suofy-puels ‘p Iardey)

19-¢

C C

Diagram SADMP-15. AMDSAIOI — Virtual Storage Dump I/O Interrupt Handler (Part 8 of 8)
Exteaded Description Modale

13 AMDSAIOI decides to return control to the I/O wait resumption point IOWATRET in
AMDSASIO, rather than to the original I/O old PSW, when the following conditions exist:

@® The wait PSWAIT is set to | in the old PSW, and
@ The count of waiting processes (IODBWCNT) is positive.

14 AMDSAIOI restores the caller’s registers and the 1/O old PSW (or return PSW built in 13), releases
its autodata storage, and reloads the 1/0O old PSW.

QI jo Auadoag — S[ELIAIBIA] PISUINT

«HT JO S[BLIIBIN PAIILSIY .

018077 SPIV 301A13 2IMIOAIYIIY PIPUAXT/SAN 79t

9861 ‘7861 "d10D WHI YBuLdoD & €-6811-8TAT

Diagram SADMP-16. IOIERROR - Subroutine of AMDSAIOI (Part 1 of 2)

Input

Process

|I0DBISCM Control Register 6

10DB

CR6SA

1 |f the mask of interruptions
is in error, restore control
register 6.

2 Call the error recovery
program.

3420 Tape

3480 Tape

DASD ()

3 |If recovery succeeded, set
the IODB indicator.

4 Restore the original interruption
masks.

Output

Control Register 6

SVC (SVCTER)

SVC (SVCT80)

SVC (SVCDER)

J>

CR6SA

=

10DB

|IODBERR=0

Control Register 6

WEI Jo Ki1adord — s[RI Pasuadr]

<] JO S[ELIBIA PRSI

9861 ‘Z861 ‘d10oD WdI 1qBuidoD o ¢€-6811-8ZA1

(dNAVSaWy) dung suojy-pueis p 11dey)

134

~

Disgram SADMP-16. IGIERROR — Subroutine of AMDSAIOL (Part 2 of 2)

Extended Description Module

1 IOIERROR serializes /O Interrupt by disabling all
Interrupt subclasses except the one for the device

in error. {The DASD interrupt subciass is the only one

that represents more than one subchannei, and only one

DASD has active /O at one time.) It does so by saving the

original velue of control register 6 in CRESA and setting

the Interrupt subcless mask in CR8 to equal the mask

for the devics In error (IODBISCM).

2 If the device Is a 3420 tape (IODBCLAS=DVCTAPE

and |IODBUTYP = X'00°), IOIERROR calls AMDSATER.
If the device is a 3480 tape (IODBCLAS =DVCTAPE and
IODBUTYP = DT3480 = X'80'), IOIERROR calls
AMDSATS0. If the device s a DASD (DVCDASD,
IOIERROR calls AMDSADER. If the davice Is none of
these, IOIERROR sats an error return code.

3 if the return code from error recovery is 0, IOIERROR
turns off IODBERR.

4 I0OIERROR restores control register 6 to its original
value of CRGSA,

Label

P

NI Jo Ksadoigd — SiSUABIY PISUIN]

« M1 JO S|SB PAOINSIY .,

o107 SPIV 301A1aG 2INJOAYOLY PIPUSIXT/SAN +9-4

9861 ‘7861 "d10D WMI 1y8uAkdoD 6 €-6811-8TA’T

Diagram SADMP-17. DEQBCT — Subroutine of AMDSAIOI (Part 1 of 4)

Process

Input
QCA
10DB
QCADOWN =0 — — —
QcaA
10DB
QCADOWN
10DBCCWA
A
1
QCA QCA
CPB 7
- - P}
CPB]
1/0
queue N
TICs in
chained
channel
programs
BCT [
BCTIOQP

1 If the I/O queue is empty, do
nothing.

> 2 Find the first CPB whose 1/0

is certain to be complete.

a. Search from right to left
along the CPB queue.

b. Stop at the CPB, the check-
point CCW address points.

c. Move to the CPB's right
neighbor if the CPB’s 1/0O
is not complete.

Output

100B

)

FOUND =1

PBDONE

AL

10DB

CPB 1/0O queue

PBDONE

CPB 1/0 queue

ANGI Jo Auadosd — SJBLIBIA PISUIN]

«HI JO S[BLIRJBIA P3)OISAY,,

9861 ‘7861 'd10D WM] 1Y3UAdOD O £-6811-8TAT

(dINAVSANYV) aun(suojy-puri§ ‘$ Ja1deyd

$9-v

~

Diagram SADMP-17. DEQBCT — Subroutine of AMDSAIOI (Part 2 of 4)
Extended Description Module Label

2 The lODB and CPBs include queuing control areas
{QCA) that chain them together. IODB.QCADOWN

points to the head (left end) of the CPB 1/0 queue. The

1/0 queue is doubly threaded by CPB.QCALEFT and

CPB.QCARIGHT. CPB.QCAUP points to the 10DB, and

CPB.QCADOWN points to a control block (BCT) associ-

ated with the 1/O operation. CPB's are added by the 1/O

servica to the left of the queue and removed from the

right. Each CPB includes a channel program segment to
be executed by the subchannel represented by tha IODB.

The channel executes tham from right to left, and the

segments may be chained from right to left by TICs.

DEQBCT determines which CPB's have been executed

by the channel. IODBCCWA I[s the address of the last

CCW known to have been executed.

a) b) DEQBCT first checks one head (left end) of the
queue. The last CCW was in the channel program
represented by this CPB if IODBCCWA points
within the CPB. DEQBCT then continues to the
right end of the queue and scans left until it reaches
the head. Found is set to 1 when a CPB is located.

c¢) The found CPB is not completed, if an error
occurred (IODBERR = 1), or if the last CCW is
not the last one in the CPB.

NG] JO A)13dorg — S|elIely pasuddNT

«JAH] JO S|BLINBIA P3jaLISIY.,,

JIBO7] SP1y 3JAJIF AUMINNIYMY PIPUNXH/SAN YY-p

9861 TBOI 'AI0)) WHI IYBUAAOD) @ £-6811-8TA'1

Diagram SADMP-17. DEQBCT — Subroutine of AMDSAIOI (Part 3 of 4)

e Y

ISR ——

V

Input
FOUND
| }----
oDB
PBDONE
| 1
cP8 ™ ™
o |
queue —: 1
8CTs
Completed CPB
PBDONE

Associated BCT

3 Remove all completed CPBs and
associated data from the 1/0 queue.

a) Remove completed CPBs from

the queue.

b) Free the associated BCTs.

¢} Discard used CPBs.

PBDONE
10D8B
CP8 /0 Freed
queue cPB
=3

BCTIOQP =0
BCTIO=0
CTBCTAVQ

Free BCT

[]
L..J —aad
Freed storage available for use

WAI Jo Auadoag — sjsuaEly pasuad)]

«JAE] JO SBURBIN PaIOLIsaY,,

9861 (861 @100 WHI 1YSHACQOD © t-6811-8CA’]

AU VIUN YY) vwi] suvly-puely ¢ 131Aey)

LYy

I

Diagram SADMP-17. DEQBCT — Subroutine of AMUSAIOI (Part 4 of 4)

Extended Description Module Label

3 Removes completed CPB's if FOUND = 1.

a) The right and left end pointers CPB.QCARIGHT and
CPB.QCALEFT of the queue are modified so that
the completed CPBs are no longer on the queue.

b) For every BCT attached to a completed CPB, the
1/0 queue pointer BCTIOQP is set to O, the |/O flag
BCTIO is set to 0, and if the usage flags show the
BCT is not in use (BCTUSE = 0), the BCT is put
onto the BCT available queue (CTBCTAVQ).

c) The completed CPB s are no longer needed for any

purpose. Thelr storage is freed by issuing ?FREEMAIN.

NI Jo Aadord — speuId)ey pasuddIT

«INF] JO S[eHIBIA] PajdLIISIY ,,

DIBU | SPLy JULAIGY FILIIIIId Y POpuciar/ AN beb a4

(0L YWV WH| $4oHaAUL) Q 681 1"8CA’]

Y301

Diagram SADMP-18. AMDSAIPL — Bootstrap Module (Part 1 of 6)

Input

IPL1 and IPL2

Process

IPL10OP

N

IPL10P

TAPEREAD

IPL10P

OASDREAD

DSCB4

1 Determine if the residence
volume is tape or DASD.

2 If the residence volume is tape,
load AMDSARDM from tape.

e If unable to read
AMDSARDM, set reason
code.

3 If the residence volume is DASD:

® Read DASD label.

— If unable to read label, set
reason code.

— If non-standard label, set

reason code.

e Read DSCB4

— If unable to read DSCB4,
set reason code.

Output
1PL10P IPL1OP
TAPEREAD DASDREAD
Storage
v AMDSARDM
WPREASON
X'0800’ ~WRCNORDM
WPREASON
X'0100° —|=WHCLBLRD
WPREASON
N
)| X'0200’ | =WRCNSL
WPREASON
X'0300" —|=wncoscs4

AT Jo Ayadosd — S[BAEBI PIsuadl]

«AE] JO S[BUIBLY PIJIUISIY .,

9861 ‘7861 'AI0D NMI IYSIAAOD O £-6811-8TA]

(dINAVSANYV) aung suojy-puel§ ‘{ 131deyd

69-v

-

Diagram SADMP-18. AMDSAIPL — Bootstrap Module (Part 2 of 6)

Extended Description Module Label

AMDSAIPL locates SYS1.PAGEDUMP and bootstraps all
of SADMP into the processor to complete the IPL sequence.

1 AMDSAIPL determines the residence volume type by
checking IPL10P, the IPL1 CCW operation code.

2 |f the residence volume is tape, AMDSAIPL loads
AMDSAROM from tape. |f AMDSAIPL is unable
to read AMDSARDM, AMDSAIPL sets a wait reason code
equal to X‘0800'. AMDSAIPL calls SIORTN to run the SIORTN
channel program.

3 If the residence volume is DASD, AMDSAIPL reads
the DASD label. If AMDSAIPL is unable to read
the label, it sets a wait reason code equal to X'0100°. [f
the label is not the expected |1BM standard label,
AMDSAIPL sets a wait reason code equal to X'0200°.

AMDSAI|PL reads DSCB4, a format 4 DSCB, to obtain
information about the DASD. |f AMDSAIPL is unable
to read DSCB4, AMDSAIPL sets a wait reason code
equal to X'0300°.

M Jo K1adord — S|BLIAIBIA Pasuadi]

«AHI JO S[ELIABIA P)2LNSAY.,

O1307 SPIY IAIIG IMDAUYILY PIPUNXT/SAWN (L-P

9861 7861 'd10D WHI WSRAAOD O €-6811-8TA'T

Diagram SADMP-18. AMDSAIPL — Bootstrap Module (Part 3 of 6)

Input

Process

Output

DSCB4

DSCB4TPC

DASDTBL

TRKPCYL

FLCSID

AMDSACCT

DSCB1HI

DSCB1LOW

RECPTRK

I

TRKPCYL

L 1

4 Determine the IPL volume device
type.

e |If the device type is not supported,

set reason code.

e Search the VTOC for
KEY=SYS1.PAGEDUMP.

— If SYS1.PAGEDUMP is not
on the VTOC, set reason
code.

e Read AMDSACCT from

SYS1.PAGEDUMP.

— If the read fails, set
reason code.

e Record SYS1.PAGEDUMP
data into the CCT.

e Write the storage that
AMDSARDM uses.

— If the write to
SYS1.PAGEDUMP fails,
set reason code.

|

WPREASON=WRCNOSUP

X‘0400'

WPREASON

X'0500°

AMDSACCT

WPREASON

Tf)l X'0600’

CCT

or

WPREASON

>[X'0700°

=WRCNODS

=WRCNOCCT

=WRCNOWRK

AE] Jo Ayadoag — S|BLIdYBIA] PasudII|

«NEI JO S[BUAEIN pajOLysay,,

9861 ‘7861 'd10D W] WBUAdOD) O €-6811-8TAT

(dNAVSANYV) aun suofy-puei§ ‘¢ 1adeyd

|05 4

r

Diagram SADMP-18. AMDSAIPL — Bootstrap Module (Part 4 of 6)
Extended Description Module Label

4 AMDSAIPL uses the cylinder capacity in DSCB4

and a table of supported DASD cylinder sizes to
determine the IPL volume device type. |f the device
ty pe is not supported, AMDSAIPL sets a wait reason
code of X‘0400'.

AMDSAIPL scans the VTOC searching for
KEY=SYS1.PAGEDUMP which is the DSCB1 that
describes the data set. 1f SYS1.PAGEDUMP is not on
the VTOC, AMDSAIPL sets a wait reason code equal
to X'0500°.

AMDSAIPL reads in AMDSACCT from the
SYS1.PAGEDUMP data set. If the read for AMDSACCT
fails, AMDSAIPL sets a wait reason code equal to X'0600’.

AMDSAIPL records, in the CCT, previously determined
data about SYS1.PAGEDUMP. AMDSAIPL writes out
the contents of the storage that AMDSARDM will be
read into or will use as buffer space. If AMDSAIPL is
unable to write to SYS1.PAGEDUMP, AMDSAIPL sets a
wait reason code equal to X'0700'.

Gl Jo aadord — S[BLINBIA PISUDI]

«NM1 JO S{eLIaIB]A PAOLSIY,,

01807 SPIY 301A13§ IMIORNYIIY PIPUANXT/SAN 7 /-p

9861 ‘7861 ‘d10D WEI 14uAdo) & £-6811-8TAT

Diagram SADMP-18. AMDSAIPL — Bootstrap Module (Part 5 of 6)

Input

Process

AMDSARDM

> 7

Read AMDSARDM.

Output

AMDSARDM

— If the read fails, set reason

code ——I—
AMDSARDM

If TYPE=LO, dump real storage.

If TYPE=HI, read AMDSADIP.

$ WPREASON

X‘0800’

WPREASON

e |If the read fails, set reason

X’0900’

code.

Restore real storage to its original
contents.

Call AMDSADIP.

AMDSADIP

=WRCNORDM

=WRCNODIP

TAGI Jo Apadorg — S[BLIAIBIA| PAsUAIN]

«IANH] JO S[BUABIA PI)ILISAY,,

9861 ‘7861 'd10D INH] 1Y31IAdOD @ €-6811-8TAT

(dINAVSANYVY) aun(duojy-puel§ ‘4 11deyd

tLv

(\

Diagram SADMP-18. AMDSAIPL — Bootstrap Module (Part 6 of 6)

Extended Description Module Label

AMDSAIPL reads AMDSARDM into the storage area that
was just copled into SYS1.PAGEDUMP. If the read for
AMDSARDM fails, AMDSABLD sots a wait reason code
of X'0800°.

5 AMDSAIPL calls AMDSARDM to dump real storage.
I1f the dump is a low speed dump, AMDSARDM does
not return to AMDSAIPL.

6,7 AMDSAIPL reads AMDSADIP if TYPE = HI. If the SIORTN
read for AMDSADIP fails, AMDSAIPL sets a wait

reason code of X‘'0900°. |f the read is successful,

AMDSAI{PL restores the contants of storage that was

occupied by AMDSARDM.

8 AMDSAIPL calls AMDSADIP. AMDSADIP loads AMDSADIP

and initialized AMDSAPGE; AMDSAPGE dumps
virtual storage.

WE] Jo Kadorg — S|y pasuad|

«EI JO S[BLId)BA] PIINLISIY,,

213077 SPly 3DIAISS AUNIIANIYIIY PIPUNXT/SAW p/-p

9861 "T861 'AI0D WG] WYBLAAOD @ ¢€-6811-8TA'T

Diagram SADMP-19. AMDSAMDM — Virtual Storage Dump Memory Dump (Part 1 of 4)

Input

Process

CTASLB

X0

> 1

ASCB

(’ VSMLIST Program

in MVS Nucleus

CTASIDA

6

Obtain the JOBNAME for this

address space and check its
validity.

SVC (SVCBIN)

Display the address space being
dumped to the operator.

SVC (SVCCON)

Obtain storage for the VSMLIST

work area.

il

VvC (GTMSVC)

Output
CJOBNAME |
AMDO10}
VSMWORK
4K VSMLIST
Work Area
Records on
VSMWORK Dump Tape

Obtain the address ranges for the
LSQA.

Convert the VSMLIST output into
address ranges and dump them.

I1f this is the master address space,
dump the CSA and SQA.

VSMLIST

VSMRANGE

Records on Dump Tape

VSMLIST

VSMRANGE

v

EI Jo Auadosg — S[BLIAIEBIA Pasuddl]
«JAE] JO S[BUNBIA PAIINSIY.,

9861 T861 "A10) NHI 14sAAOD) O ¢-6811-8CTAT

dINAVSANYV) aun(y suojy-puei§ ‘¢ 1s1deqn

SL ¥

C C

Diagram SADMP-19. AMDSAMDM — Virtual Storage Dump Memory Dump (Part 2 of 4)
Extended Description Module Label

1 AMDSAMDM obtains the jobname from ASCBJBNI
ur ASCBJBNS. If neither field contains a valid
jobname, AMDSAMDM substitutes *UNKNOWN.

2 AMDSAMDM calls AMDSABIN to convert the
ASCB address and ASID to EBCDIC, then writes
message AMDO101 to the console.

3 AMDSAMDM issues a GETMAIN for 4K of subpool
104. VSMLIST uses this as a work area.

4 AMDSAMODM issues a VSMLIST macro call to put
address ranges for the LSQA of the current address
space into the VSMLIST work area.

5 AMDSAMDM calls internal subroutine VSMRANGE.

VSMRANGE processes the output from VSMLIST.
VSMRANGE calls AMDSAARD (via an SVC macro) for
each block of storage that VSMLIST identifies, and passes
the length and address of each block to AMDSAARD.
AMDSAARD accumulates these storage ranges and dumps
the associated storage.

6 [|fCTASID=1, AMDSAMDM issues VSMLIST macros
for CSA and SQA, then calls VSMRANGE.

JNE] Jo Apadoig — S[BUAIBIA Pasuad]

«AHI JO S[BLABIA PAIILISY,

21307 SPIY 3DIAI3S AIMOANNYDLY PIPUNXT/SAN 9/ -

9861 ‘7861 "d10) WHI 1Y31Ad0D O £-6811-8TAT

Diagram SADMP-19. AMDSAMDM - Virtual Storage Dump Memory Dump (Part 3 of 4)

Process

>7

Input
CTDT Dump Table
CTASIDD
[
CJOBNAME
|
ASXB TCB
ASXBLTCB

Output

Search each entry in the dump

table for the following conditions:

® The current ASID isin the
ASID list.

® The current JOBNAME is in
the JOBNAME list.

® The protect key of the
memory’s RCB is in the key
list.

If any of the above conditions
are found, do the following:

® Dump the address ranges in

the address list.

SVC (SVCARD

® Dump the subpoaols in the

subpool list for every TCB in

this memory. TCBSCAN

Return to Caller

C

9

asioie+ [T | |]

JOBNAME IB+

Address List :I:I:I

Subpool List [4' | |_—|

Tape

VSMWORK
VSMLIST

Tape

W41 Jo fjradold — S[BLIAIBIA PISUIII]

A JO SBHOIEI PIIOLISIY,,

J561 306l F2Y0 Nul HHPLEACU) QO tTo8LLIT8CA]

\UZEUL VORLFU Y/ et IWVLYTpPUoly § 49iuby)

[4

[7%

~

Diagram SADMP-19. AMDSAMDM — Virtual Storage Dump Memory Dump (Part 4 of 4)

Extended Description

7 The dump table (DTABLE, that the CTDT points to)

contains lists of sublists that specify storage to be
dumped (by subpool number or address range) in address
spaces (by ASID, jobname, or TCB key). AMDSAMDM
ssarches each sublist to determine if one of the following
three conditions is met:

@ The address space currently being dumped is in the
ASID list.

e The jobname for the address space currently being
dumped is in the jobname list.

e The protect key of the memory’s TCB for the address
space currently being dumped is in the key list.

If the address space meets the criteria that the dump table
specifies, AMDSAMDM dumps the necessary storage. |f
address ranges were specified, AMDSAMDM calis
AMDSAARD (via an SVC macro} to dump the address
ranges. |f subpools were specified, AMDSAMDM calls
TCBSCAN to dump the subpools jn the subpool list for
each TCB in this address space.

Module

Label

r.

A1 Jo Ayiadoad — S|BLIAJBIA] Pasuadl]

«WEI JO S[BUABI PANSIY,,

OISO SPIY 3JAIAG AMPDAIYDLY PIPUAXH/SAN ¥/ -P

9861 "C861 ‘O WHI IYJUAdOD © €-6811-8TAT

Diagram SADMP-20. AMDSAMSF — Console Loop Trace Buffer Dump (Part 1 of 6)

Process

>1

3

Input
MSFRCB RCB Queue
FLCENPSW* Control Register 0
PSW
CPUAD
Register 1
BCT
Buffer

Enqueue the MSF RCB.

Determine whether execution is
on a VM machine.

Issue a SIGP SENSE to deter-
mine if a particular processor
is online.

Obtain a BCT with a buffer. SVC (SVCBUF)

Output
MSFRCE RCB Queue
CPUVERSN SAVENPSW
N
V)
CNTLROSV SYSMSKSV
BCT Buffer
L/
MSFDBLK
MSFCMDWD

initialize the data block and the

command word for MSSFCALL..

™ MSFDBLNG

A€ Jo A1adoag — S[BLIIBIA PISUDIY

« AT JO S[BUAJBIA PAJOLAISIY

9861 "T861 'Ax0D) WHI WIuAdoD O €-6811-8ZTAT

\GFIULVDUYY V) wein] suu[y-puEly p 19juey)

4

OL

C C

Diagram SADMP-20. AMDSAMSF — Console Loop Trace Buffer Dump (Part 2 of 6)

Extended Description Module Label
1 AMDSAMSF enqueues the MSF RCB onto the RCB

queue.
2 AMDSAMSF stores the processor identifier, to AMDSAMSF

determine whether or not execution is on a VM
machine. If execution is not on a VM machine.
AMDSAMSF saves its environment. Otherwise,
AMDSAMSF passes control to step 12.

3 AMDSAMSF issues SIGP instruction to a particular

processor to determine if the processor is on line.
If it is on line, AMDSAMSF continues processing. if the
processor is not on line, AMDSAMSF does not perform
steps 4 through 9.

4 AMDSAMSF obtains a buffer control table {BCT)
entry and its associated buffer by passing control

to AMDSAMSF via an SVC instruction. |f AMDSAMSF

cannot obtain a buffer, it passes control tostep 11.

5 AMDSAMSF clears the BCT buffer for use as the

MSSFCALL data block. It saves the length of the
data block in the block. AMDSAMSF initializes the
MSSFCALL command word so that a read console
loop trace command is issued to the MSSF .

ML Jo Apadoag — spsuaBy pasuddNT

«NE]1 JO S[BLBIA PJOLISIY,,

013077 SPIY 301A13§ AINIOAYITY PIPUSIXH/SAW ()8~

9861 ‘7861 'd10D WG] W3IAdOD @ €-6811-8TAT

Diagram SADMP-20. AMDSAMSF — Console Loop Trace Buffer Dump (Part 3 of 6)

Input Process

R4 —®» MSFDBLK

Output

MSFDBLK

MSFDBRSP

6 !ssuea SERVICE CALL or

RS MSSFCALL DIAGNOSE
MSFCMDWD instruction,
a. First, issue the

SERVICE CALL.

b. If the SERVICE CALL
encounters a program
check, issue an

Control Register 0 MSSFCALL DIAGNOSE.

>.7 Prepare-to receive the MSSF
external interrupt.

SAVENPSW CNTLROSV

> 8 If the interrupt is received,
SYSMSKV _ prevent further MSSF external

interrupts from arriving.

-

Console Loop

Trace Data
FLCENPSW Control Register 0
PSW
FLCENPSW Control Register 0
PSW

4] Jo f1adoag — sjeiId)ely Pasuadl]
«NE] JO S[BLIJBIA PI)OII)SIY,,

C C

Diagram SADMP-20. AMDSAMSF — Console Loop Trace Buffer Dump (Part 4 of 6)
Extended Description Module Label

9861 ‘7861 'd10D WEI 1W3uAdoD o €-6811-8ZA1

18- (dNAVSAWYV) dunq auojy-pueis ‘4 1a1dey)

AMDSAMSEF passes the command word and the address of the data block in registers that the
SERVICE CALL and DIAGNOSE instructions use. AMDSAMSEF issues the SERVICE CALL or
MSSFCALL DIAGNOSE instruction to obtain the console loop trace buffer. It issues SERVICE
CALL first; if SERVICE CALL encounters a program checks, it then issues MSSFCALL
DIAGNOSE. If AMDSAMSEF is successful, the console loop trace is stored in the data block passed
to the MSSF.

AMDSAMSF changes the new external interrupt PSW (FLCENPSW), which passes control to
EIHANDLER in AMDSAMSF when an external interrupt occurs. AMDSAMSF modifies control
register 0 to allow MSSF external interrupts and modifies the PSW to enable for external interrupts.
It then goes into a spin loop to wait for the interrupt. If the TOD clock value is usable,

AMDSAMSF waits a maximum of 60 seconds for the interrupt. If no interrupt occurs, AMDSAMSF
stops attempling to obtain the console loop trace and passes control to step 11. If the TOD clock is
not usable, AMDSAMSF is in an endless spin loop.

The MSSF interrupt occurred. AMDSAMSF restores the original contents of the new external EIHANDLER

interrupt PSW and control register 0. It then disables the PSW to prevent further MSSF external
interrupts.

NEI Jo A11adosg — S|BUIBIA PAsUAdN]

«JAEI JO S|EHaIE[y PaIdLYSIY.,

o180 SPIV 30IAISE IMIONIYIIY PIPUAXT/SAN 78

9861 ‘861 "d10D WdI WBukdoD & €-6811-8TA1

Diagram SADMP-20. AMDSAMSF — Console Loop Trace Buffer Dump (Part 5 of 6)

Process

O Write the buffer containing

the console loop trace to a

Output

Dump Data Set

Page Containing
Console Loop
Trace Data

dump data set.
‘ | SVC {SVCSI0)

10 Return to step 3 if additional
processors are online.

~

FLCENPSW Control Register O

> 11 Restore original environment.

>

>

Input
MSFDBLK
MSFDBRSP
SAVENPSW CNTRLROSV
SYSMSKSV
MSE RCB Queue
SFRCB A
|
l | I

> 12 Dequeue the MSF RCB.

PSW

Original RCB Queue

AdI Jo Aysadosg — S[BHAIBIA| Pasuad)]
«IAGI JO S[BUA)BIN PAOUISIY,

9861 ‘7861 'd10D NF] WBAdoD O £-6811-8CTAY

(dJNAVSAWY) dunr(suojy-puelg "¢ 1a1dey)

€8y

C C

Diagram SADMP-20. AMDSAMSF — Console Loop Trace Buffer Dump (Part 6 of 6)
Extended Description Module Label

9 If the data block contains console loop trace data

pass control to AMDSASIO via an SVC instruction.
AMDSASIO writes the buffer containing the console loop
trace to the dump data set.

10 If more processors are online, AMDS AMSF returns
to step 3.

11 AMDSAMSF restores its environment to allow
AMDSADMP to function normally.

12 AMDSAMSF dequeues the MSF RCB from the RCB
queue.

AT Jo Ayiadorg — speuRIAl PasuddI

«AHI JO S[BUBIA PUISIY,,

01307 SPIV 991AI3§ 31MOANYIIY PIPUANXT/SAN $8-P

9861 ‘7861 "dxoD WH]I W3uAdoD O £-6811-8TA'T

Diagram SADMP-21. AMDSAOSG — One-Step Generation (Part 1 of 16)

Input

Process

S99RBPTR

o

1 Initialize the DYNALLOC
model request block.

2 Call DYNALLOC to allocate
GENPRINT.

— If the allocation fails, set
an error return code and
terminate.

— If the allocation is successful,
call 1O to open GENPRINT.

3 Call 10 to open GENPARMS.

— If the open fails, call IONOPEN
to write an error message.

OQOutput
J S99RBPTR
S99RB
DYNALLOC
Register 15

L e

Error. Return
to the Caller.

IORECA

AMDO351

U

g1 Jo Lyadoig ~ S[ELIAIBIA PAsUdN]

«AE1 JO S[BLIIBIA PAdLISIY.,

9861 ‘7861 "d10D W] WBuAdo) © €-6811-8TA’]

¢8- (dNAVSaWy) dun(suojy-pueis 'y 1a1dey)

~

Diagram SADMP-21. AMDSAOSG — One-Step Generation (Part 2 of 16)

Extended Description Model Label

AMDSAQSG generates a SADMP program that can be
iPLed.

1 AMDSAQSG sets the request block pointer to the

request block and initializes the DYNALLOC mode!
request block.

2 AMDSAOQSG calls DYNALLOC to dynamically

allocate GENPRINT. If the allocation fails,
DYNALLOC sets an error return code of 4 and terminates
abnormally. if the allocation is successful, AMDSAOSG
calls 10 to open GENPRINT.

3 AMDSAOSG calls 10 to open GENPARMS. If the
open fails, 10 calls IONOPEN to write error message
AMDO35I.

ING] Jo Auadold — S[BlIdIBJAl PasuddI]

«ING1 JO S|BLIIE[A PAIOUISIY .,

01807 SPIV 301A19§ AUNIANYOIY PIPUANXA/SAIN 98-}

9861 ‘7861 "d10D I 1FUAdOD © £-6811-8TA'T

Diagram SADMP-21. AMDSAOSG — One-Step Generation (Part 3 of 16)

input

Process

Output

4 Call DYNALLOC to allocate
SYSIN.

e |f the allocation fails, set an
error return code and call
10 to write an error message.

o If the allocation is successful,
call 10 to open SYSIN.

o [f the open fails, call IONOPEN
to write an error message.

DYNALLOC

Register 15

4

[10
h {OPENOUT, SYSIN)

IORECA

|ORECA

AMDO35I]

INGI Jo Kyxadosy — spBUdIRIA PISUII

«IAH] JO SIPLIBIA PARLISIY,,

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

*ISE00WY 9Bessaw Jousa 831um 03 NIJONO| $I1=0 Ol

‘sjiey uado ayl | ‘NISAS uedo 01 Of Sl DSOVSAWY

"Inys$839N8 51 UONBIOYIR 3L 4| IESOAWY BBessa

40118 811iM 0} o_ $||82 pue $ jJO 8pOd UINJaJ JOJIB UR 168
DOTIVNAQ ‘Si18) UOIIESO|IR 31 §| "NISAS 21800 1€

AjeotweuAp 01 JO0TTVNAC 8182 Dsovsawy ¥

joqey s|npowyy uondisxseg pepunx3

(91 Jo ¥ 1eg) uoneIduIN) dIg-2uQ — DSOVSANY '17-JNAVS wredag

J

4-87

Chapter 4. Stand-Alone Dump (AMDSADMP)

LY28-1189-3 © Copyright IBM Corp. 1982, 1986

91307 SPIV 201A19S 21N303)IYO1Y PIPUAXT/SAN 8R]-1

9861 ‘2861 "d10D WHI WSuLdoDd © €-6811-8TAT

Diagram SADMP-21. AMDSAOSG — One-Step Generation (Part 5 of 16)

Input

Process

GENPARMS

B Call 10 to generate AMDSADMP

[F

macro input and to copy
GENPARMS.

6 Call i0 to close SYSIN and
GENPARMS.

7 Call DYNALLOC to allocate

e |f the allocation fails, set an
error return code, call 1O to
write an error message, and
terminate.

SYSLIB, SYSUT1, and SYSPUNCH.

DYNALLOC

.

Output

Register 15

IORECA

Error. Return
to the Caller.

AMDO63I

INg] J0 A31adosd — S[eLLd)BIA PasudN]

«NEI JO SjBLIElA Pa)INI)say,,

9861 ‘7861 "d10D WHI 1ySukdoD o £-6811-87A1

WdAUVSANYV) aun(suoly-puel§ ‘4 151deq)

oy v

e

Diagram SADMP-21. AMDSAOSG — One-Step Generation (Part 6 of 16)
Extended Description Module Label

5 AMDSAOSG calls 10 and generates input for the
assembler. Input received from MACVSET 1 and
MACVSET 2 instruct AMDSADMP to invoke AMDSADM2

directly for one-step generation.

6 AMDSAOSG calls IO to close SYSIN and GENPARMS.

7 AMDSAOSG calis DYNALLOC to allocate SYSLIB,

SYSUT1, and SYSPUNCH. If any of the allocations
fail, DYNALLOC sets an error return code of 4, calls |10
to write error message AMDOG3I, and terminates
abnormally.

EI Jo Ayiadoid — s[euId)B) pasuady

«JAE] JO S[eLIRELy pajdLsay,

918071 SPIV 201AI0G AIMOANYAIY PIPUANXT/SAN ()6~

9861 ‘7861 "d10D WY 198uidoD @ £-6811-8TAT

Diagram SADMP-21. AMDSAOSG - One-Step Generation (Part 7 of 16) |

Input Process Output
8 Call RALSVSP to allocate SYSPRINT.
o If allocation fails, set an error RALSYSP DYNALLOC
return code, call O to write Register 15
an error message, and terminate. N

IORECM

10 | AMDO631

Error. Return
to the Caller.

I Jo Ayiadorg — S[BLIIJBIA PasuddI]
<A JO S|BUAB] PAOLYSIY,,

9861 ‘7861 'd10D) WH] 1q3uidod © ¢-6811-8ZAT

[6y (dWNavsawy) dunq suopy-puels ‘p 191dey)

r

Diagram SADMP-21. AMDSAOSG — One-Step Generation (Part 8 of 16)
Extended Description Module Label

8 AMDSAOSG calls RALSYSP to aliocate SYSPRINT
for the assembler. RALSYSP calls DYNALLOC.

If the allocation fails, DYNALLOC sets an error return

code of 4, calls |O to write error message AMDO063I,

and terminates abnormally.

A Jo Ayrxdord — selBy pasuddr]

« NI JO S[BLABIY padLISaY,,

2130 SPIVY IDIAIAS 2UNJONIYOIY PIPUAXT/SAN 6-v

9861 ‘z861 "d1o) WHI WBuAdOD & ¢-6811-8TA'T

Diagram SADMP-21. AMDSAOSG — One-Step Generation (Part 9 of 16)

‘Input

Process

Output

GENPRINT

9 Assemble the AMDSACCT and
AMDSARDM modules and
AMDSAQSG parameter
statements.

o If the assembly is successful,

Assembler
Listing

call COPYPRNT.

o If the assembly fails, set an
error return code, call 10 to
write an error message, and
terminate.

10 Call 10 to open, read, and close
SYSPUNCH.

to write an error message.

11 Call DYNALLOC to allocate
IPLTEXT, PGETEXT, IPLDEV,
and TRKOTEXT.

e If any of the allocations fail,
set an error return code, call
10 to write an error message,
and terminate.

@ |f the open fails, call IONOPEN

GENPRINT

COPYPRNT |

Assembler
Listing
Register 15

IORECA

Error. Return
to the Caller.

AMDO064I

IPLTYPE DSFPTEXT

| | |
>[IPLUNIT IPLSER
| | |

IORECA

DYNALLOC

Register 15

| 10 |

Error. Return
to the Caller.

A 4]

IORECA

AMDO63I

4] Jo Kyiadord — SjELIdIBIA Pasuad]

NI JO S[EUAEIN Pa)LIISIY,

9861 ‘7861 ‘d10D WHI 1YSuAdoD O €-6811-8TAT

(dWNAVSanyVv) dunq suopy-puels ‘p Jaidey)

£6-v

e

Diagram SADMP-21. AMDSAOSG — One-Step Generation (Part 10 of 16)
Extended Description Module Label

9 AMDSAOSG assembles the AMDSACCT and
AMDSARDM modules and the AMDSAOSG param-
eter statements by linking to the assembler. If the assembly
is successful, AMDSAOSG calls COPYPRNT to copy the
assembler listing to the end of GENPRINT. If the assembly
fails, AMDSAOSG sets an error return code of 4, calls |O
to write error message AMDO064l, and terminates
abnormally.

10 AMDSAOSG calls 10 to open SYSPUNCH. If the

open fails, 10 calls IONOPEN to write error mes-
sage AMDO351. 10 reads the parameter statements from
the AMDSADMP output in SYSPUNCH. AMDSAOSG
generates the AMDSABLD input parameter, the IPL unit
class, the |IPL unit type, the IPL serial number, and the
ICKDSF input statsments. AMDSAOSG calis 10 to
close SYSPUNCH.

11 AMDSAOSG calls DYNALLOC to allocate IPLTEXT

for AMDSABLD and ICKDSF, to allocate PGETEXT
for AMDSABLD, to allocate IPLDEV for AMDSABLD and

ICKDSF, and to aliocate TRKOTEXT for AMDSABLD and
ICKDSF. If any allocation fails, DYNALLOC sets an error
return code of 4, calis 10 to write error message AMDO63I,
and terminates abnormally.

M Jo Ajsadolg — s[eudjely pasuadry

<] JO S[ELaEly papuIsay,

01807 SPIV 301AI3g 21MI0ANYIIY PIPUAXIA/SAN 6§

9861 ‘7861 'dxoD W1 1yFukdoD) & ¢£-6811-8TA'T

Diagram SADMP-21.

Input

AMDSAOSG — One-Step Generation (Part 11 of 16) |

Process

GENPRINT

AMDSABLD
SYSPRINT
Data Set

Assembler
Listing

12 Call RALSYSP to reallocate
SYSPRINT.

|1 f the allocation fails, set an

error return code, call |0
to write an error message,
and terminate.

> 13 Link to AMDSABLD.

1f successful, call

COPYPRNT. COPYPRNT |

1f AMDSABLD fails, set an
error return code, call |O
to write an error message,
and terminate.

RALSYSP

Output

DYNALLOC

Register 15

L]

IORECA

Error. Return
to the Caller,

>]

GENPRINT

Assembler
Listing

AMDSABLD
SYSPRINT
Data Set

Register 15

Error. Return
to the Caller,

L «]

IO0RECA

AMDO064I

WEI Jo Ayadorg — S[BLIJBJA] PasHad]

«INMI JO S[ELEIN PIjdLISAY,,

9861 ‘Z861 "d1oD WWHI WBrAdoD o €-6811-8TAT

(dNAVSANV) dum(suojy-pum§ ‘p 1dey)d

S6°v

e

Diagram SADMP-21. AMDSAOSG — One-Step Generation (Part 12 of 16)

Extended Description Module Label

12 AMDSAOSG calls RALSYSP to reallocate SYSPRINT

for AMDSABLD. RALSYSP calls DYNALLOC. if
the allocation fails, DYNALLOC sets an error return code
of 4, calls 1O to write error message AMDO063I, and
terminates abnormally.

13 AMDSAOSG links to AMDSABLD. If the IPL unit
is tape, the link initializes the SADMP residence
volume. If the IPL unit is DASD, AMDSAQOSG uses
ICKDSF to initialize track 0. If the link is successful,
AMDSAOSG calls COPYPRNT to copy the AMDSABLD
printed output to the end of GENPRINT. If AMDSABLD
fails, AMDSAOQSG sets an error return code of 4, calls
10 to write error message AMDO064I, and terminates
abnormally.

NEI Jo £11adoag — S[eHIIIBIA PISUI]

NI JO SIEHAIBIA PAIIUISIY,,

918077 SPIY 301AI0§ 2INIOANYOIY PIPUAXT/SAIN 96}

9861 ‘2861 "d10) W4l 18u4do) © ¢£-6811-8TA1

Diagram SADMP-21. AMDSAOSG — One-Step Generation (Part 13 of 16)

Input

IPLTYPE

Process

14 Fora DASD IPL:

a. Call 10 to open, read, and

close SYSIN.

— If the open fails, call
IONQPEN to write an
error message.

b. Call RALSYSP to reallocate
SYSPRINT.

— If allocation fails, set an
error return code, call
10 to write an error
message, and terminate.

RALSYSP

Output

IORECA

AMDO35I

DYNALLOC

Register 15

-

L 4]

I0RECA

10 |

Error. Return
to the Caller.

AMDO63I

4] Jo Auadosd — s|BlId)R|A pasuadl]

<JAG] 1O SjBlIBIA PADNNISIY..

9861 ‘7861 'd10D) WHI 1YSUAdOD) © €-6811-8TAT

(dNAVSANY) dun(suoly-puel§ ‘4 saydey)

L6V

(\

Diagram SADMP-21. AMDSAOSG — One-Step Generation (Part 14 of 16)

Extended Description

14 a. For DASD IPL units, AMDSAOSG calls 10 to
open SYSIN. |f the open fails, |O calls IONOPEN
to write error message AMDO35!. |f the open is
successful, AMDS AOSG calls |O to copy the

ICKDSF parametars into SYSIN, and close SYSIN.

b. AMDSAOSG calls RALSYSP to reallocate
SYSPRINT for DSF. RALSYSP calls
DYNALLOC. If the allocation fails,
DYNALLOC sets an error return code of 4,
calls 1O to write error message AMDO63I,
and terminates abnormally.

Module

Label

Ng] Jo K1iadoig — sjelide|y pasuadry

«AHIT JO S|BLIaIBIA] P3)OLISAY ..

SI807T SPIV 901AI3S INJOANYIIY PIPUANXT/SAN 86

9861 ‘2861 "d10D WHI 143uAdoD @ £-6811-8TA'T

Diagram SADMP-21.

Input

AMDSAOSG - One-Step Generation (Part 15 of 16)

GENPRINT

Process

Assemnbler
Listing

AMDSABLD
SYSPRINT
Data Set

ICKDSF
SYSPRINT

Data Set

15 Call 10 to write a completion m

c. Link to ICKDSF.

:>. If successful, call COPYDSFP.¢ COPYDSFP |

If ICKDSF fails, set an error
return code, call 10 to write
an error message, and
terminate.

message and to set a return
code.

16 Close and deallocate files, and
-
return.

10

AMDO064I

Error. Return
to the Callier.

IORECA

AMDO062I

Register 15

D

Return
to Caller.

Output)
GENPRINT
Assembler
Listing
Register 15 AMDSABLD
ICKDSF
IORECA SYSPRINT

A Jo K11ados — S[BLIIIBIA] PISUIIIY

«AE] JO S[BLINBIA PANOLNSIY,

9861 ‘7861 "d10D JNG] WBuLdoD & €-6811-8TA

(dWAVSAN V) dunq auo[y-puelg “p 1a1dey)d

66V

~

Diagram SADMP-21. AMDSAOSG — One-Step Generation (Part 16 of 16)
Extended Description Module Label

14 <. AMDSAQSG links to ICKSDF. (f the link is
successful, AMDSAOSG calls COPYDSFP to
copy the printed output from ICKDSF to
the end of GENPRINT. If ICKDSF fails,
AMDSAOSG sets an error return code of
4, calls 10 to write error message AMD0641,
and terminates abnormally.

15 AMDSAOSG cails |O to write successful com-
pletion message AMDO0621, and sets a return code
of 0.

16 AMDSAOSG closss and deallocates the files and
returns.

I Jo Auadorg — sppua)Bly pasuadry

«AMI JO S[ELIJBIA P3IILSIY,,

L30T SPIV 301AI3§ 3IN03NYOIY PIPUAXH/SAW Q[-¥

9861 “7861 ‘d10D WAI 193LAdoD O €-6811-8TA'T

Diagram SADMP-22. AMDSAPGE — Virtual Storage Dump Initialization and Control (Part 1 of 8)

Initialize the SUT.

Initialize the program and
machine check handlers and
the error recovery.

Initialize the ARB queue.

Initialize the 1/O service.

Initialize the SADMP trace
table.

Input Process
SUT in Page O
CTSUT
1
_— -
ARDDATA
>3
XIODBCON XIODBOUT AMDSAIOI
L | | | | - > 4
CTNOCONS
5
AMDSASV|
I 6

Initialize the SVC interrupt
handier.

Output
SUT in SADMP
CTSUT Load
» Module
>F LCPNPSW
FLCMNPSW
CTAUDRCR=0ON
CTAUDIOX=0ON
ARDDATA
N
ARDLAST
0
FLCINPSW Control Register 6

I

> I0DB Queue
CTIODB
CTTRACE TRACE
Header
FLCSNPSW
CTSVCSTV
CTSVCSTR
PGOSVCRT
OAFC sVC
Stack
{Empty)

JAg] Jo Ayadoag — S[BMI)BIA Pasuddr]

«JAE] JO S[ELRA PAILISIY,.

9861 ‘T861 'dI0D MI WYIIAAOD O €-6811-8TA'T

(dWNAVSANYV) dun(suojy-puel§ ‘4 191dey)

101-¥

r

Diagram SADMP-22. AMDSAPGE — Virtual Storage Dump Initialization and Control (Part 2 of 8)

Extended Description Module Label

1 Entry point AMDSAPGE in the CSECT AMDSAPGE
initializes the virtual dump program and controls its
execution and termination.

2 The program new PSW points to module AMDSAPGI.

The machine check new PSW is a disabled wait PSW
with code X'370000°. After initialization, any successful
system restart causes AMDSAPGE to reinitialize SADMP
beginning with this step. System restart is not permitted
during SADMP initialization. The restart new PSW points
to AMDSARST, which reloads the restart old PSW.

3 AMDSAPGE sets the address range block {ARB) queue
header in ARDDATA to zero. The ARB queue
header is the last and only ARB in the queue.

4 Thel/O new PSW points to AMDSAIOI. AMDSAPGE

builds the IODBs and their related control blocks
using the information found in the CCT. AMDSAPGE
disables the IPL subchannel and sets control register 6 to
permit interruptions from the output tape but not the
console.

B SADMRP uses the second page of the AMDSAPGE load

module for its trace table. AMDSAPGE clears the
page, puts ‘TRCT' into the header, and sets the current
index to zero.

6 The first virtual page after the AMDSAPGE load mod-

ule is used for the SVC stack. AMDSAPGE clears the
page, puts ‘SVCS’ into the header, and sets the current
index to zero.

C

JNG] Jo Ayiadord — S[BLI3JBIA PISUIDN]

«IN€1 JO S[BLBIA POy,

91307 SPIV 30IAIRG 3INO3UYILY PIPUSIXH/SAN TO[-b

9861 ‘7861 "d10) WHI WTukdo) o ¢€-6811-8TA'T

Diagram SADMP-22. AMDSAPGE — Virtual Storage Dump Initialization and Control (Part 3 of 8)

Input Process Output
7 !nitialize the external interrupti I AL W PGOSVCEX
itializ ruption
1/' Al
handler, I l O D]
Control Register 0
SUT DSCE Pages
XSAT XRAD
| | I —l 8 |Initialize dynamic storage N
management. b - J
CvT PVT 9 Initialize swap~in and real
RIT PET storage management. SAT 0 PGT
CTSAT
CTCVT > Top PGT
10 Initialize 1/O page buffers.
RAD SGT
CTRAD
11 (initialize the system restart L
interruption handler. SADMP
~ Page
) BCT Queue Table
CTBCTALL
CTBCTAVQ
Page
Buffers
FLCRNPSW PGOSVCSR
=

WG] JO Auadosg — SpRHIBIA PasuddI]

<JALI JO S[BLUAEN PAdLISdY,,

9861 ‘7861 'd10D WA WIuLdoD & €-6811-8TA'T

(dNAVSANY) dun(g suoly-puels ‘¢ 131deqd

t01-¥

C C

Diagram SADMP-22. AMDSAPGE — Virtual Storage Dump Initialization and Control (Part 4 of 8)

Extesded Description

The new external interrupt PSW points to an SVC in page 0 so external interrupts are converted into
SVC interrupts. Only console interrupts are enabled.

The next two unallocated pages are set aside for the dynamic storage control clements (DSCE). The
next 16 pages, following the DSCE, are set aside for SADMP dynamic storage. Each of the 16 pages
is mapped by onc DSCE. These DSCE:s are placed on the DSCE in-use queuc. The rest are placed
on the DSCE available queue.

The swap address table (SAT) contains the real and virtual addresses of the following areas that
SADMP uses to swap-in an address space: the page tables for segment 0 and the top segment, the
segment table (allocated from previously unallocated SADMP storage), and SADMP’s own page
table. The CCT points to the SAT and the RAD.

SADMP storage that is still unallocated is used for SADMP page buffers and the BCTs that support
them. The BCTSs are queued together in the BCT available queue or the queue of all BCTs.

The restart new PSW points to an SVC in page 0 by which a system restart is converted into an SVC
interrupt.

Module

Label

A1 Jo Auiadoag — s[BLIA)IBJ Pasudl]

«JAE] JO S{BLNBIA PAOLISIY,,

013077 SPIV 2J1AI3g 2INIOANYOIY PAPUSIXA/SAIN ([-

9861 ‘7861 'd10D WHI 348114doD) & £-6811-8TAT

Diagram SADMP-22. AMDSAPGE — Virtual Storage Dump Initialization and Control (Part 5 of 8)

Input

Process

CT3480

Output

12 Call AMDSADMP to enable for
dumping.

SvC
(SVCPGE)

13 Initialize the RCB and save
area stacks.

> 14 Assign 3480 tape drive if used

for output.

SvC

(SVCSI0)

SvC

(SvcCcOoN)

?Error “
Terminate

Tape

SvC

(SVCAUD

15 Dump the console loop trace
buffer.

Sve
(SVCMSF)

CTRCB

C) AMDO69!

disabled wait
PSW

RCB

I e

INGI Jo Ayiadoag — speLIdjely pasuddl|

« N1 JO S|BLIAEIA PA)OLISAY.,.

9861 ‘2861 'd1oD MI WSuidoD © €-6811-8TAT

(dNAvSANV) dung suo[y-puels ‘4 1a1dey)

SOI-¥

C - C

Diagram SADMP-22. AMDSAPGE — Virtual Storage Dump Initialization and Control (Part 6 of 8)

Extended Description Module Label

12 AMDSAPGE becomes enabled for 1/0 and external
interrupts. This SVC puts the first entry into
the SVC stack.

13 The save area pointer is set to zero. The AMDSAPGE

RCB defines error recovery for the remainder of
AMDSAPGE and serves to end error recovery percolation
since it is the last RCB on the RCB queue. The AMDSAPGE
RCB causes the virtual dump to terminate with an error
code that indicates the segment of AMDSAPGE last in
control.

WM Jo Kiadosg — sjeLId)BIA PIsUad]

14 (f the output device isa 3480 tape drive, AMDSAPGE

attempts to assign the tape drive. If the assign com-
mand fails to assign path groups, AMDSAPGE issues mes-
sage AMDOB9I and terminates SADMP.

15 AMDSAPGE calls AMDSAMSF {via an SVC macro)
to dump the console loop trace buffer.

«EHI JO S|BLI3)BIA] PA)ILINSIY.,

01507] SPIV 9014108 2IMIOANYDIY PIPUNXT/SAN 90 [-

9861 ‘7861 "d10D WMI WYSuLdoD © £-6811-8TA'T

Diagram SADMP-22. AMDSAPGE — Virtual Storage Dump Initialization and Control

Process

(Part 7 of 8)

™ 16 Initialize the ASM function by

Input
ASMVT PART
I | |
ASVT SART
| | |
cvT PVT RIT ESTE
-~

CT3480

checking the validity of the ASM
control block.

17 Initialize the dump table.

18 Process the dump tailoring
options.

19 Initializes the extended storage

function by checking the
validity of the EST and
initializing the SADMP XSD.

a. Dump each address space.

b. Unload the output tape.

> 20 Notify th