
Program Product

"Restricted Materials of IBM"
All Rights Reserved
Licensed Materials - Property of IBM
QCopyright IBM Corp. 1982, 1987
LC23-0067 -3
File No. 5370-36

System Programming
Library: J ES2
User Modifications
and Macros

MVS/System Product - J ES2
Version 1 Release 3.6

--- --~~~ ---~~ -~~ - --------~----_ -
-~-.-

~ Program Product

"Restricted Materials of IBM"
All Rights Reserved
Licensed Materials - Property of IBM
@Copyright IBM Corp. 1982, 1987
LC23-0067 -3
File No. 5370-36

System Programming
Library: J ES2
User Modifications
and Macros

MVS/System Product - JES2
Version 1 Release 3.6

Program Number 5740-XVS

--- ---..-. ~ ----.~ - ~-. - ~-~-----------_ ---_.-

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Do not replace your existing documentation until you install the JES2
component of MVS/SP Version 1 Release 3.6.

Fourth Edition (February, 1987)

This is a major revision of. and obsoletes, LC23-0067-2. See the Summary of
Amendments following the Contents for a summary of changes made to this manual.
The second edition (LC23-0067-1) still applks to Version I Release 3.4 of System
Product - JES2 5740-XYS and may now be ordered using temporary order number
LQ23-0067.

This edition applies to Version I Release 3.6 of MVS/Syslem Product - JES2 5740-XYS
and all suhsequent releases. Changes arc made periodically to the information herein:
before using this publication in connection with the operation of IBM systems, consult
the Sysfem/370 Bihliography. GC20-000L for the editions lhat are applicable and curren\.

References in this publicalion to IBM products. programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM program product in this publication is not intended to state or imply
that only IBM's program product may be used. Any functionally equivalent program
may be used instead.

Publications are not stocked althe address given below. Requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for reader's comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Information
Development, Department D58, Building 921-2. PO Box 390, Poughkeepsie, N.Y. 12602.
I BM may usc or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

<9 Copyright International Business Machines Corporation 1982, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Preface

Who Should Use This Book

This book provides the information that you need to:

• Plan to modify JES2 with exits
• Implement and test the JES2 exits
• Use JES2 programmer macros

This book is intended for JES2 system programmers or for anyone responsible for
installing, initializing, tuning, and modifying JES2.

Organization and Content

The "Table of Contents" listed within the Preface contains a minimal subheadings
listing for each chapter. Use this listing to decide upon which chapter to
reference. Prior to each chapter is a full "Chapter Table of Contents" that
provides a complete listing of all heading within that chapter. Use this listing for
detailed chapter content.

The organization and content of each chapter are as follows:

• Chapter I, "Introduction," describes the processing concepts of JES2 exits
and provides a framework within which the JES2 programmer can modify
JES2 operation.

• Chapter 2, "Customizing JES2," describes how you should go about
modifying JES2 processing. This chapter presents implementation details you
should know to develop your modifications and lists the IBM-defined exits
established for your use.

• Chapter 3, "IBM-Defined Exits" lists the IBM-defined exits and how to use
them. The chapter describes how to choose which exits to implement, and
what to consider when writing an exit routine.

• Chapter 4, "JES2 Programmer Macros," describes the JES2 programmer
macro instructions that you can use when writing JES2 exit code.

• Appendix A, "Acronym List," defines those acronyms used in this book.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Preface III

"Restricted Materials of mM"

Licensed Materials - Property of IBM

• Appendix B, "Hints for Coding JES2 Exit Routines," presents several hints
and suggestions for writing JES2 user exits to improve code readability,
debugging capability, migration ease, and reduction of coding errors.

• Appendix C, "JES2 Macro List," provides a summary listing of all JES2
macros. The list contains abbreviated descriptions of and uses for each macro
instruction.

IV JES2 User Modifications and Macros LC23-0067-3 C Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Related Publications

This book references the following publications for further details about specific
topics. Abbreviated forms of these are used throughout this book. The following .
table lists all abbreviated titles, full titles, and their order numbers.

Abbreviated TItle Base PubHeatioD Onler Number

SYSTEM INSTALLATION AND INITIAUZATION

Routing and OS/VS2 Message
Ducriptor Codes Library: Routing and

Descriptor Codes GC38-1l02

System Codes OS/VS2 Message
Library: VS2 System
Codes GC38-1008

MVS Initialization OS/VS2 System
and Tuning Programming Library:

Initialization and Tuning GC28-1029

Service Aids OS/VS2 System
Programming Library:
Ser.ice Aids OC28-0674

System Generation OS/VS2 System
Reference Programming Library:

System Generation Reference OC26-3792

System MtU/lJgement OS/VS2 System
Fadlities (SMF) Programming Library:

System MtU/lJgernent FacUlties QC28-1030

Job MtU/lJgement OS/VS2 System
Programming Library:
Job MtU/lJgement GC28-1303

Data MtU/lJgement OS/VS2 System
Programming Library:
Data MtU/lJgement OC26-3830

Comersion Notebook MVSjSP Version J Corwersion
Notebook OC28-1122

JES2 Logic JES2 Logic LY24-6006

JES2 Initialization System Programming Library:
and Tuning JES21nitialization

and Tuning SC23-1lO46

ACF/VTAM ACF/VTAM Version 2
Planning and Installation
Reference SC27-Q610

LC23-0067-3 C Copyright IBM Corp. 1982, 1987 Preface V

Abbreviated Title

OPERATIONS

JES2 Commands

System Commands

Remote Terminals
(JES2)

USER

JCL

System Messages

Linkage Editor and
Loader

Utilities

Assembler
Reference

Assembler

HARDWARE

GENERAL

DP Glossary

VI JES2 User Modifications and Macros

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Base Publication Order Number

Operator's Library:
JES2 Commands SC23-0048

Operator's Library: OS/VS2
MVS System Commands GC28-1206

Operator's Library: OS/VS2
Remote Terminals (JES2) GC38-0225

Operator's Library: ACFjVTAM
Operation SC27-0466

MVS/370 JCL User's Guide GC28-1349
and/or
MVS/370 JCL Reference GC28-1350

OSjVS2 Message
Library: System Messages GC38-1OO2

OSjVS2 Linkage Editor
and Loader GC26-3813

OSjVS2 MVS Utilities GC26-3902

Assembler H Version 2
Application Programming:
Language Reference GC26-4037

Assembler H Version 2
Application Programming:
Guide SC26-4036

TSO Extensions: Interactive
Data Transmission Facility
User's Guide SC28-1104

IBM 3704 and 3705
Communications Controllers GC30-3008

IBM 3800 Printing Subsystem
Programmer's Guide GC26-3846

IBM System/3 MRJE/WS Support
Reference Manual GC21-7621

System/370 Special Feature:
Channel-to-Channel Adopter GA22-6983

OSjVS21BM 3540 Programmer's
Reference GC24-5 11 1

IBM Vocabulary for Data
Processing. Telecommunications.
and Office Systems GC20-1699

LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"
Lieeosed Materials - Property of IBM

Referenced Program Products

Listed below are those program products and product numbers referred to in this
book:

Program Product

MVS/System Product-JES2 Version 1
TSO/E Interactive Data Transmission

Facility

LC23-0067-3 Cl Copyright IBM Corp. 1982, 1987

Number

5740-XYS
5665-285

Preface VII

Vlll JES2 User Modifications and Macros

"Restricted Materials of IBM"
Lieeosed Materials - Property of IBM

LC23-0067-3 C Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"
Lic:ensed Materials - Property of IBM

Contents

Chapter 1. Introduction to Modifying JESZ 1-1
Modifying JES2 1-1
What Is a JES2 Exit? 1-4

Chapter 2. Customizing JES2 2-1
Choosing Which Exits to Implement 2-1
Writing an Exit Routine 2-7
A Sample Exit Routine 2-20
Multiple Exit Routines In A Single Module 2-27
Testing Your Exit Routine 2-30
Establishing Installation-Defined Exits 2-38
Defining JES2 Tables 2-41
Subtask Management 2-56
$DTEDYN Services 2-56

Chapter 3. IBM-Defined Exits 3-1
Exit Implementation Table 3-3
Exit 0: Pre-Initialization 3-5
Exit I: PrintfPunch Separators 3-8
Exit 2: JOB Statement Scan 3-13
Exit 3: JOB Statement Accounting Field Scan 3-16
Exit 4: JCL and JES2 Control Statement Scan 3-20
Exit 5: JES2 Command Preprocessor 3-26
Exit 6: Internal Text Scan 3-30
Exit 7: JCT Read/Write (JES2) 3-34
Exit 8: JCT ReadfWrite (USER) 3-36
Exit 9: Job Output Overflow 3-38
Exit 10: $WTO Screen 3-41
Exit 11: Spool Partitioning Allocation ($TRACK) 3-43
Exit 12: Spool Partitioning Allocation ($STRAK) 3-49
Exit 13: TSO/E Interactive Data Transmission Facility Screening and

Notification 3-53
Exit 14: Job Queue Work Select - $QGET 3-58
Exit 15: Output Data Set/Copy Select 3-60
Exit 16: Notify 3-63
Exit 17: BSC RlE SIGNON/SIGNOFF 3-65
Exit 18: SNA RlE LOGON/LOGOFF 3-68
Exit 19: Initialization Statement 3-71
Exit 20: End of Input 3-75
Exit 21: SMF Record 3-77
Exit 22: Cancel/Status 3-79
Exit 23: FSS Job Separator Page (JSPA) Processing 3-82

LC23·0067·3 10 Copyright IBM Corp. 1982, 1987 Contents ix

Exit 24: Post Initialization 3-85
Exit 25: JCf Read (FSS) 3-88

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Exit 26: Termination/Resource Release 3-90

Chapter 4. JESl Programmer Macros 4-1

Appendix A. Acronym List A-I

Appendix B. Hints for Coding JESl Exit Routines B-1
Overview B-1
Required Mapping Macros B-3

Appendix C. JESl Macro List C-l

Appendix D. JES2 Exit Usage Limitations D-l

Index X-I

x JES2 User Modifications and Macros LC23-OO67-3 e Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Figures

1-1. Areas of JES2 Modification 1-3
1-2. A JES2 EXIT 1-5
1-3. EXIT Point Variations 1-6
2-1. Exit Selection Table 2-2
2-2. JES2 and FSS Address Spaces 2-9
2-3. Methods of Packaging 2-18
2-4. Sample JES2 Separator Page Exit Routine 2-21
2-5. Example of Assembly and Link-Edit of a Installation-Written

Routine 2-27
2-6. Example of Providing Multiple Exits within a Single Load

Module 2-28
2-7. Exit Routines Load Module 2-32
2-8. Exit Placement 2-34
2-9. Load Module Initialization 2-36

2-10. Linking User Tables to HASP Tables to Extend/Modify JES2
Function 2-42

2-11. Master Control Table and Table Pairs 2-44
2-12. JES2 Reserved Master Control Table Names 2-50
2-13. Three Examples of $SCANTAB Tables 2-51
2-14. Two Examples of $PCETAB Tables 2-54
3-1. Exit Implementation Table 3-3
3-2. Example EXIT13 Routine 3-57
4-1. JES2 Macro Selection Table 4-9
Col. JES2 Macro List Col

LC23-0067-3 C Copyright IBM Corp. 1982.1987 Figures Xl

xii JES2 User Modifications and Macros

"Restricted Materials of ffiM"

Licensed Materials - Property of ffiM

LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Summary of Amendments

Summary of Amendments
for LC23-OO67-3
MVS/System Product - JES2

The following provides an overview of those sections that were revised for MVS
System Product - JES2 Version 1, Release 3.6.

Technical Revisions for this Release

Documentation was added for the following:

• Greater than 99 Printer Support Enhancement, that is, printer support for up
to 9999 "locally-defined" printers.

• Dynamic SPOOL Offioad Data Set Allocation introduced by APAR OZ92050

• New macros -- $DCBDYN

Book Reorganization and Editorial Revisions

• A new appendix, Appendix D, "JES2 Exit Usage Limitations" is added to
provide a table listing those instances when the reader/converter exits (2, 3, 4,
6, and 20) are invoked or not invoked.

• All sections include minor editorial and technical changes.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Summary of Amendments XUl

Summary of Amendments
for LC23-0067-2
MVS/System Product - JES2

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

The following list provides an overview of those sections of this book that were
revised for MVS System Product - JES2 Version 1, Release 3.6.

Technical Revisions for this Release

Fourteen new executable macros are available and a number of existing macros
have been updated to support the enhancements made to the JES2 product with
this release.

• New Macros:

- $DCTDYN - Call the Dynamic DCT Service Routine
- $DTEDYN - Call the Dynamic DTE Service Routine
- $DTETAB - Build and Map DTE Tables
- $MODCHK - Call the Module Verification Routine
- $NHDGET - Get Network Data Set Header
- $POSTQ - Quick Post Facility
- $SCANCOM - Call the $SCAN Facility Comment Service Routine
- $SCAND - Call the $SCAN Facility Display Service Routine

$STCK - Call the $STCK Service Routine
$TGMSET - Call the $TGMSET Service Routine
$VERIFY - Call the $VERIFY Service Routine

- $VERTAB - Build the Inline Verification Tables
- $WSSETUP - Set Work Selection Values
- $WSTAB - Map and Generate the Work Selection Table Entries

• Modified Macros:

- $#ADD
$#GET

- $#JOE
- $#REM

$AMODE
- $BLDTGB
- $CKPT
- $DCTTAB
- $ERROR
- $EXTP
- $GETABLE

$GETMAIN
- $JCTIO

$MODULE
- $MODMAP
- $PCETAB

$PURGE
- $QGET
- $RETURN
- $SCAN

XIV JES2 User Modifications and Macros LC23-0067 -3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$SCANB
$SCANTAB
$STMTLOG
$TIDTAB
$TRACK
$WTO

• Deleted Macros

$#JCT

$BADTG

• New IBM-Defined User Exits

One new exit is available with the support added with this release.

Exit 26 (Termination/Resource Release)

During JES2 termination. Exit 26 allows the user to free resources
obtained by an exit routine during previous JES2 processing. This exit
can provide this function for any JES2 termination ($P JES2,
initialization termination, or abend).

Book Reorganization and Editorial Revisions

• Appendix C, "Mapping Macro Dependency List" has been deleted. There is
no longer a need for this material because the JES2 $MODULE macro
determines what the dependencies are and automatically generates the
required JES2 and MVS macros.

• Appendix C, "JES2 Macro List" has been added to summarize all the JES2
macros. This list contains abbreviated descriptions and uses of each macro
instruction.

• All sections include minor editorial and technical changes.

LC23-0067-3 © Copyright IBM Corp. 1982. 1987 Summary of Amendments XV

Summary of Amendments
for LC23-0067-1
As Updated October 12, 1984
By TNL LN2S-1005
MVS/System Product - JES2

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Documentation for Virtual Storage Constraint Relief (VSCR), Resource Access
Control Facility (RACF), a listing of JES2 macro dependencies, and minimum
volume spool partitioning are added by this TNL.

• Virtual Storage Constraint Relief -- three existing macros have been
modified and two new macros created to provide support for JES2
exploitation of MVS/Extended Architecture. These are:

Macro changes -- $PCETAB, $PGSRVC, $TRACE

New macros -- $AMODE, $PCEDYN

• RACF -- addition of job authorization functions controlled through new
RACF options added in RACF Version I, Release 6, causing changes to Exit
16 and two existing macros.

- Exit changes -- Exit 16

Macro changes -- $MODULE. $WTO

• Minimum volume spool partitioning -- enhancements to the method of spool
volume allocation causing changes to Exit II and Exit 12.

• Appendix C, "Mapping Macro Dependency List," is added to provide a
consolidated listing of those JES2 macros that have dependencies on other
.IFS2 and/or MVS macros.

XVI JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Chapter 1: Introduction to Modifying JES2

Modifying JES2 I-I
What Is a JES2 Exit? 1-4

Environment 1-7

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 1: Introduction to Modifying JES2

JES2 User Modifications and Macros

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

LC23-0067-3 '@ Copyright IBM Corp. 1982. 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Chapter 1. Introduction to Modifying JES2

Modifying JES2

JES2 is a general job entry subsystem of MVS and sometimes cannot satisfy all
installation-specific needs at a given installation. If you modify JES2 code to
accomplish your specific functions. you then are susceptible to the migration and
maintenance implications that result from installing new versions of JES2. JES2
exits allow you to modify JES2 processing without directly affecting JES2 code.
In this way you keep your modifications independent of JES2 code, making
migration to new JES2 versions easier and making maintenance less troublesome.

Caution:

You should not view the JES2 exits defined by IBM as an unchanging interface;
however, IBM will attempt to make any needed changes as transparent as possible
to the user.

Only an experienced system programmer should attempt to make use of the JES2
exits. The writing of an exit routine and the installation of a new exit require a
thorough knowledge of system programming, of JES2 programming conventions,
and of JES2 internals. If, without having this knowledge, you attempt to write
exit routines or to install new exit points, you run the risk both of seriously
degrading the performance of your system and causing complete system failure.

Therefore, defining exits and writing exit routines is intended to be accomplished
primarily by experienced system programmers; the reader is assumed to have an
advanced knowledge of JES2 internals.

In certain areas of JES2 processing, you may still want to customize JES2 to a
greater extent than that made possible by the standard options, JES2 initialization
statements and their parameters, JES2 operator commands, JES2 control
statements, and JES2 exits. While you are not constrained from making more
extensive changes by directly altering the JES2 source code, direct alteration can
eventually result in problems. For instance, you would have to adapt IBM
maintenance code before applying it to your altered JES2 source code and, during
migration, there would be no simple way of transferring your alterations to a new
release. To avoid this class of problems, use the JES2 exit facility to its fullest
extent; excessive alteratiOJi of JES2 code is not recommended.

LC23-0067-3 (t, Copyright IBM Corp. 1982. 1987 Chapter I. Introduction to Modifying JES2 1-1

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Figure I-I illustrates many of those areas where you can modify JES2 processing
using the JES2 exit facility.

• Initialization Processing

You can modify the JES2 initialization process and incorporate your own
installation-defined initialization statements in the initialization process. Also
you can change JES2 control blocks prior to the end of JES2 initialization.

• Job Input Processing

You can modify how JES2 scans and interprets a job's JCL and JES2 control
statements. Also, you can establish a job's system affinity, execution node,
and priority assignments before the job actually runs.

• JES2-to-Operator Communications

You can tailor how JES2 communicates with the operator and implement
additional operator communications for various installation-specific
conditions. Also you can preprocess operator commands and alter, if
necessary, subsequent processing.

• Spool Processing

You can alter how JES2 allocates spool space for jobs.

• JES2-SMF Processing

You can supply to SMF added information in SMF records.

• Output Processing

You can selectively create your own unique print and punch separator pages
for your installation output on a job, copy, or data set basis.

• RJE Processing

You can implement additional security checks to control your RJE processing
and gather statistics about signons and signoffs.

1-2 JES2 User Modifications and Macros LC23-0067-3 <0 Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

INITIALIZATION
PROCESSING

RJE
PROCESSING

JES2-SMF
PROCESSING

Figure 1-1. Areas of JES2 Modification

LC23-0067-3 © Copyright IBM Corp. 1982, 1987

JOB INPUT
PROCESSING

JES2

JES2-TO-OPERATOR
COMMUNICATIONS

~,--------,
\ ~ SPOOL

PROCESSING

OUTPUT
PROCESSING

Chapter 1. Introduction to Modifying JES2 1-3

What Is a JES2 Exit?

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

JES2 exits provide a clean, convenient, relatively stable interface between JES2
and your user-written code. Installation-written exit routines are invoked from
standard JES2 processing at various strategic locations in JES2 source code.
These strategic locations in JES2 source code are called exit points. A JES2 exit is
established by one or more exit points.

An exit point is defined by the $EXIT macro and, as illustrated in Figure 1-2, is
the exact location in JES2 code where JES2 can pass control to your exit routine
(that is, your user-written code). The JES2 exit, identified by the "exit-id code" of
ppp, is defined by one exit point at label JLBL in the JES2 code. It is at JLBL in
JES2 processing that JES2 passes control to your exit routine.

To use the exit facility you perform the following steps, as illustrated in
Figure 1-2.

1. Package your code into one or more exit routines, identifying each exit
routine with an entry point name. (In Figure 1-2 there is a series of exit
routines noted as entry points Xl...Xn.) Then include the exit routine in a
load module. In this case LMOD is the load module containing the exit
routine. You can also include the exit routine in the load module for the
JES2 code if you wish instead of creating a separate load module.

2. In the JES2 initialization deck include the LOAD initialization statement,
which causes your exit routine's load module to be loaded, and the EXITnnn
initialization statement, which identifies your exit routines' entry point to the
exit point in the JES2 code.

The EXITppp initialization statement matches the exit point "ppp" at label
JLBL for the $EXIT macro in the JES2 code. The EXITppp initialization
statement identifies the label "Xl" as the entry point of the exit routine for
exit point "ppp." The LOAD initialization statement identifies LMOD as the
load module to be loaded into storage.

1-4 JES2 User Modifications and Macros LC23-0067-3 @ Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

JES2 INITIALIZATION STATEMENTS

-
-
-

-

LOAD = LMOD

-

-

-

EXIT ppp ROUTINE - (Xl •...• Xn)
-- A t - ~

-

"
LMOD - LOAD MODULE

JES2 CODE

I
- I

(EXIT ROUTINE CODE) I
I

- I
I
I
I - I LMOD $MODULE I
I - I -I

.$EXIT ppp
I

JLBL I -
I
I -- I
I
I -- I
I .. $ENTRY - I r Xl
I
I -- I
I
I -- I
I
I -- I
I -I - I
I -
I L ____

-"Xn $ENTRY

-
-
-

-
-

$MODEND

Figure 1-2. A JES2 EXIT

LC23-0067-3 © Copyright IBM Corp. 1982. 1987 Chapter I. Introduction to Modifying JES2 1-5

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

JES2 can have up to 256 exits, each identified by anum ber from 0 to 255. You
specify the number on the required "exit-id code" parameter on the $EXIT
macro.

This exit-id code identifies the 1ES2 exit. When more than one exit point is
defined for a single exit, the $EXIT macros that defined the multiple exit points
have unique labels but are all specified with the same exit-id code - see
Figure 1-3.

JES2 Code

XXXSEXIT.7 •..... ~ eec $EXIT 87 •.....

YYY $EXIT 87 •......

: :::,: :: " =-===-=-=-
Figure 1-3. EXIT Point Variations

More than one
exit pt. per exit.

A single exit pt.
per exit.

JES2 code includes a number of IBM-defined exits. That is, various exit points -
via the $EXIT macro - have already been strategically placed in the 1ES2 code.
The intended purpose of each of these exits is summarized below in the EXIT
Selection Table - Figure 2-1. For these IBM-defined exits you need only write
your own exit routines and incorporate them via the EXITnnn initialization
statement. The selection of the point in 1ES2 code where the exit point should be
placed has already been done for you. To ensure a proper implementation you
should thoroughly understand the IBM-defined exit and its 1ES2 operating
environment. A comprehensive description of each exit is presented in Chapter 3.

Also, the 1ES2 exit facility allows you to establish your own exits, should the
IBM-defined exits not suffice. Exits established by you are modifications to 1ES2
and are called installation-defined exits, and you define them by placing the
$EXIT macro yourself at appropriate points in the 1ES2 code (or in your own
exit routine code). Note, however, that implementing your own exit can be
considerably more difficult than writing an exit routine for an IBM-defined exit.
You should realize that in establishing your own exits, you run a greater risk of
disruption when installing a new version of 1ES2 code. The new 1ES2 code into
which you have placed your exits may have significantly changed since your
$EXIT macros were inserted. For more information, see "Establishing
Installation-Defined Exits" in the next chapter.

Every exit, both IBM-defined and installation-defined, has a status of enabled or
disabled which is set at initialization via the EXITnnn initialization statement and
which can be dynamically altered by the $T EXIT operator command. When an
exit is enabled, 1ES2 checks for the existence of an associated exit routine. If
none are found, standard 1ES2 processing continues. When an exit is disabled for
a particular job (by use of the job mask), it is automatically bypassed by standard
1ES2 processing; that is, 1ES2 does not pass control to an associated exit routine.
However, if associated exit routines are present 1ES2 passes control to them. For

1-6 JES2 User Modifications and Macros LC23-0067-3 <D Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Environment

certain exits, called job-related exits. (refer to "Job-Related Exits" in Chapter 2)
the status can be altered on a job-by-job basis by the action of an exit routine.

JES2 operates in four environments: JES2 main task, JES2 subtask, user address
space, and functional subsystem address space. JES2 is comprised of the
following four load modules HASPINIT, HASPSSSM, HASJES20, HASPFSSM.
Your exit routine receives control as fully-authorized extensions of JES2, and as
such receives control in one of these four environments depending on where the
associated exit point is placed. JES2 main task and subtask exit points exist in
the HASJES20 load module. Your exit routine has access to various control
blocks and service routines to which the standard JES2 code has access at the exit
point, and it runs with the same authorization as the JES2 code from which your
exit routine was invoked. Exit routines invoked from the JES2 address space run
in supervisor state in either the JES2 main task or JES2 subtask environment with
a protect key of" I." Exit routines invoked from the user address space (SSSM)
execute in the key current at the time the $EXfT macro was issued. Exit routines
invoked from the functional subsystem (FSS) address space run in the FSS
environment and usually run in protect key I (as set by the FSS). Also. exit
routines invoked from the FSS address space have access to all service routines
supported by HASPFSSM.

A JES2 exit effector provides linkage services between an exit point and exit
routines. It locates and passes control to your exit routines and returns control to
JES2. There are two exit effectors: one provides linkage to exit routines that run
as extensions to the JES2 main task and the other provides linkage to exit
routines that run as extensions to JES2 subtasks or as extensions to routines in
the user address space. Exit routines that are invoked as extensions to the JES2
main task receive control in the JES2 protect key. Exit routines that are invoked
as extensions to routines in the user address space receive control in the key of the
current PSW.

Your exit routines can affect JES2 processing by directly manipulating JES2 data
areas and by passing back return codes. You can have up to 256 individual exit
routines associated with a single exit on the EXfTnnn initialization statement.
These lIlultiple exit routines are all called consecutively in the order of their
appearance on the EXITnnn initialization statement. Consider the example
below:

EXITl75 ROUTINE= (Xl, X2, X3, X4, X5,)

For exit 175, the exit routine identified by label XI is called before the exit
routine identified by X2, and so forth, until all of them (Xl through X5) are
called or until one of them generates a nonzero return code, which causes the exit
effector to return to the JES2 mainline after the exit point.

Note: No exit routines are ever required as part of standard JES2 processing.
The JES2 exit facility is fully optional. If you have not implemented an exit--that
is, if you have not written an exit routine for it, or have not included the exit
routine in a load module, or have not associated the routine with the exit at
initialization time--the presence of the exit point or points that establish the exit is
transparent during standard JES2 processing.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter I. Introduction to Modifying J ES2 1-7

1-8 JES2 User Modifications and Macros

"Restricted Materials of mM"

Licensed Materials - Property of mM

LC23-0067-3 @ Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Chapter 2: Customizing JES2

Choosing Which Exits to Implement 2-1
Exit Selection Table 2-2

Writing an Exit Routine 2-7
Language 2-7
Operating Environment 2-7
Synchronization 2-10
Reentrant Code Considerations 2-11
Linkage Conventions 2-11
Received Parameters 2-13
Return Codes 2-13
Control Blocks 2-14
Service Routine Usage 2-15
Exit Logic 2-15
Exit-to-Exit Communication 2-16
Exit-to-Operator Communication 2-16
Other Programming Considerations 2-17
Tracing 2-19
Recovery 2-20

A Sample Exit Routine 2-20
Multiple Exit Routines In A Single Module 2-27
Testing Your Exit Routine 2-30

Integrating the Exit in the System 2-30
Packaging the Exit 2-30
Initializing the Exit in the System 2-32
Passing Control to Exit Routines 2-37
lob-Related Exits 2-37
Tracing Status 2-38

Establishing Installation-Defined Exits 2-38
Defining JES2 Tables 2-41

Modifying JES2 by Defining User Tables 2-41
Table Linkage 2-42
Master Control Table 2-43
General Table Coding Conventions 2-45

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 2: Customizing JES2

Overview of Modifiable Tables 2-45
$SCAN Tables 2-45
PCE Tables 2-45
TID Tables 2-45
OPT Tables 2-45
MPS Tables 2-46
DTE Tables 2-46
WST AB Tables 2-46

JES2 $SCAN Facility 2-46
$SCAN Macros 2-47

$SCAN: 2-47
$SCANT AB: 2-47
$SCANB: 2-47
$SCAND: 2-47
$SCANCOM: 2-47

$SCAN-Related Control Blocks 2-48
Implementing $SCAN Tables 2-48

Examples of $SCAN Tables 2-51
Implementing PCE Tables 2-53
Implementing Trace Tables 2-54
Implementing DTE Tables 2-55

Subtask Management 2-56

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Daughter Task Element (DTE) Structure 2-56
$DTEDYN Services 2-56

Generalized JES2 Dispatcher Support 2-57

JES2 User Modifications and Macros LC23-0067-3 @ Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Chapter 2. Customizing JES2

Choosing Which Exits to Implement

When considering an alteration to a standard JES2 function, you should
determine whether one of the IBM-defined exits accommodates your intended
change.

Each exit has an intended purpose. If you use an IBM-defined exit for other than
its intended purpose, you increase the risk of performance degradation and system
failure.

The exit selection table (Figure 2-1) summarizes the available exits and their
functions.

LC23-0067-3 C Copyright IBM Corp. 1982,1987 Chapter 2. Customizing JES2 2-1

Exit Selection Table

Exit Exit Title Purpose

0 PRE-INITIALIZATION Control the initialization process

I JES2 PRINT/PUNCH Create your own print and punch job
JOB SEPARATOR separators and control production of

standard separators.

2 JOB STATEMENT Scan the complete JOB statement
SCAN image and set corresponding fields

in the appropriate JES2 control
blocks.

Figure 2-1 (Part 1 of 5)_ Exit Selection Table

2-2 JES2 User Modifications and Macros

"Restricted Materials of mM"

Licensed Materials - Property of mM

Some Specl6c Uses

• Provide verification of JES2 initialization options,
specifically SHASP426 and SHASP427 messages.

• Acquire user control blocks and user work areas
for use in initialization (such as the user control
table (UeT).

• Provide addresses of user tables in the master
control table (MeT).

• Determine whether or not JES2 initialization is
to continue.

• Allow implementation of installation-defined
initialization options and parameters.

• Selectively produce unique separators or
variations on the standard separators.

• Unconditionally produce standard separators.

• Unconditionally suppress production of standard
separators.

• Selectively produce separators for particular
users or particular job classes.

• Provide a different separator card on a punch
device.

• Place the company's logo on header page.

• Provide accounting information on trailer page.

• Alter JOB statement parameters including a
job's class, priority, and other attributes.

• Supply additional JOB statement parameters.

• Selectively cancel or purge jobs.

• Set the job exit mask in the JCT for subsequent
exits.

• Set the spool partitioning mask in the JeT.

• Initialize or modify other fields in the JCT,
including your own installation-defined fields.

• Modify other job-related control blocks.

• Build your own installation-defined job-related
control blocks.

• Enforce security and standards.

LC23-0061-3 @ Copyright IBM Corp. 1982, 1981

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Exit Exit Title Purpose

3 JOB STATEMENT Scan the JOB statement accounting
ACCOUNTING FIELD field and set corresponding fields
SCAN in the appropriate JES2 control

blocks.

4 JCL AND JES2 Scan JCL (not including JOB
CONTROL statements).
STATEMENT SCAN

S JES2COMMAND Process JES2 commands received by
PREPROCESSOR the JES2 command processor

6 INTERNAL TEXT Scan internal text after conversion
SCAN from individual JCL images and after

all of the internal text for a particular
job has been created.

7 JCT READfWRITE Receive control whenever JCT I/O is
(JES2) performed by the JES2 main task.

Figure 1-1 (part 1 of 5). Exit Selection Table

LC23-0067-3 () Copyright IBM Corp. 1982, 1987

Some Specifk Uses

• Alter accounting field information.
• Supply additional accounting field information.

• Perform your own accounting field scan.

• Process nonstandard accounting information.

• Selectively cancel jobs.

• Set the job exit mask in the JCT for future exits.

• Initialize or modify other fields in the JCT,
including your own insta11ation-c:lefmed fields.

• Pass information to subsequent exits through the
JCT user fields.

• Modify other job-related control blocks.

• Enforce security and standards.

• Alter JCL parameters.
and JES2 control statements.

• Supply additional JCL parameters.

• Supply a JCL continuation statement.

• Alter JES2 control statements.

• Supply an additional JES2 control statement.

• Perform your own JES2 control statement
processing.

• Suppress standard JES2 processing.

• Process your own installation-c:lefmed JES2
control statement subparameters.

• Selectively cancel or purge jobs.

• Enforce security and standards.

• Alter received commands.
• Alter particular fields, such as those pertaining to

command authority, in the command processor
work area for the PCE to affect subsequent
command processing.

• Perform your own command validation checking.

• Process your own installation-c:lefmed commands,
operands, and suboperands.

• Selectively terminate command processing and
notify the operator of command cancellation.

• Scan the resolved JCL, including PROCUB
expansion that will be used by the job.

• Modify individual internal text images.

• Enforce security and standards.

• Read or write your own installation-c:lefined
job-related control blocks to spool along with the
reading and writing of the JCT.

Chapter 2. Customizing JES2 2-3

Exit Exit TItle Purpose

8 JCT READ/WRITE Receive control whenever JCT 1/0 is
(USER) performed by a JES2 subtask or by a

routine running in the user address
space (HASPSSSM).

9 JOB OUTPUT Receive control whenever an
OVERFLOW executing job is producing more

output than was estimated.

10 SWTOSCREEN Receive control whenever JES2 is
ready to queue a SWTO message.

11 SPOOL Receive control from the main task
PARTITIONING when there are no more track
ALLOCATION - groups available on the spool
STRACK volumes from which the current

job is permitted to allocate space.

12 SPOOL Receive control from JES2 subtask
PARTITIONING or user address space (HASPSSSM)
ALLOCATION - when there are no more track groups
SSTRAK available on the spool volumes from

which the current job is permitted to
allocate space.

13 TSOIE INTERACTIVE Enhance the TSOIE interactive data
DATA TRANSMISSION transmission facility by screening
FACILITY SCREENING incoming files at the receiving
AND NOTIFICATION network node and notify the TSO

receiver that a transmitted file
has arrived.

Figure 2-t (Part 3 of 5). Exit Selection Table

2-4 JES2 User Modifications and Macros

"Restricted Materials of mM"

Licensed Materials - Property of mM

Some Specific Uses

• Read or write your own installation-defmed
job-related control blocks to spool along with
the reading and writing of the JCT.

• Selectively allow JES2 to follow the
defined output overflow error procedure.

• Selectively direct JES2 to take special action
for the current job only to:

- Cancel the job

- Cancel the job with a dump

- Allow the job to continue

- Extend the job's estimated output to a
specific new limit

- Control how often the output overflow
message is displayed

- Suppress the default error message

• Scan messages.
• Change the text of a message.

• Aller a message's console routing.

• Selectively suppress messages.

• Expand the spool partitioning mask.

• Suppress spool partitioning by allowing JES2 to
use the allocation default.

• Expand the spool partitioning mask.
• Suppress spool partitioning by allowing JES2 to

use the allocation default.

• Perform validity checking on the control
information for an incoming file and on the basis
of this check:
- Delete the transmitted file, not allowing it to

reach the intended receiver.
- Reroute the transmitted file to a TSO user

other than the intended receiver.

- Allow the transmitted file to remain targeted
for the sender's intended receiver.

• Direct JES2 to notify the receiver, via a TSO
SEND command, that a transmitted file has
arrived. In a multi-access spool configuration
specify the system on which the TSO SEND
command will notify the receiver:

LC23-0067-3 C> Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Exit Exit Title Purpose

14 JOB QUEUE WORK Receive control to search the job
SELECT queue for work.

IS OUTPUT DATA Receive control to handle the creation
SET/COPY of separator pages on a data set or

copy basis.

16 NOTIFY Receive control to examine or modify
messages that are sent.

17 BSC RJE Receive control to manage and
SIGN-ON/SIGN-OFF monitor RJE operations for BSC.

18 SNA RJE Receive control to manage and
LOGON/LOGOFF monitor RJE operations for SNA.

Figure 2-1 (Part 4 of 5). Exit Selection Table

LC23-0067-3 © Copyright IBM Corp. 1982, 1987

Some Specific Uses

• Use tailored search algorithms to select work
from the job queue.

• Selectively bypass searching the job queue for
work.

• Selectively generate separator pages for
each'data set to be printed.

• Selectively generate separator pages for each
copy made of a data set.

• Selectively vary the number of copies made of a
data set.

• Selectively pick data sets and generate separator
pages for them.

• Change default print translation tables.

• Aiter rouLing of the notify message.

• Examine the notify message before it is sent to
the receiver and make selective modifications.

• Suppress sending the notify message to the
receiver.

• Replace the notify message before it is sent to
the receiver with an entirely new one.

• Selectively perform additional security checks
over and above the standard password prooessing
of the sign-on card image.

• Selectively limit both the number and types of
remote devices that can be on the system at any
one time.

• Selectively bypass security checks.

• Implement installation-defined scanning of
sign-on card images.

• Collect statistics concerning RJE operations on
the BSC line and report the results of the activity.

• Selectively perform additional security checks
over and above the standard password processing
of the logon image.

• Selectively limit both the number and types of
remote devices that can be on the system at any
one time.

• Selectively bypass security checks.

• Implement installation-defined scanning of
images.

• Collect statistics concerning RJE operations on
the line and report the results of the activity.

Chapter 2. Customizing JES2 2-5

Exit Exit Tide Purpose

19 INITIALIZATION Receive control for each initialization
STATEMENT statement.

20 END OF JOB INPUT Alter the status of the job at the end
of job input.

21 SMFRECORD Receive control when JES2 is
about to queue an SMF buffer.

22 CANCEL/STA TUS Receive control to implement an
installation's own algorithms governing
job selection and ownership for TSO
CANCEL/STA TUS.

23 FSS JOB SEPARATOR Receive control to modify the job
separator page data area (JSPA) that
is used by page-mode printers such
as the 3800-3 to generate the job
separator page for an output group

24 POST INITIALIZATION Receive control to make modifications
to JES2 control blocks prior to the
end of JES2 initialization.

2S JCTREAD Receive control whenever JCT 1/0
(FSS) is performed by a JES2 functional

subsystem address space
(HASPFSSM).

26 TERMINATIONI Free resources obtained during
RESOURCE RELEASE previous user exit routine processing

during any JES2 termination

Figure 2-1 (Part 5 of 5). Exit Selection Table

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Some Specific Uses

• Insert installation initialization statements.
• Scan an initialization statement prior to the JES2

scan and perform parameter checking.

• Selectively alter values supplied on an
initialization statement to meet specific
installation needs.

• Optionally cause JES2 to bypass a particular
initialization statement.

• Optionally cause JES2 to terminate.

• Selectively assign a job's system affinity,
execution node, and priority based on an
installation's unique requirements and processing
workload.

• Based on an installation's own defined criteria,
terminate a job's normal processing and
selectively print or not print its output.

• Provide job tracking

• Selectively queue or not queue the SMF record
for processing by SMF.

• Obtain and create SMF control blocks prior to
queueing.

• Alter content and length of SMF control blocks
prior to queueing.

• Allow an installation to implement its own
algorithms for job queue searching and for TSO
CANCEL/STA TUS.

• Control what information is passed to a
page-mode printer functional subsystem
application (FSA) via the JSPA.

• Suppress the printing of job separator pages.
• Suppress the printing of the JESNEWS data set.

• Make final modifications to selected JES2
control blocks prior to the end of JES2
initialization.

• Initialize any special insta1lation-defined control
blocks.

• Terminate JES2 during the initialization process.

• Read or write your own installation-defined
job-related control blocks to spool along with
the reading and writing of the JCT.

• Free resources obtained by user-exit routine
processing that JES2 continues to hold following
a &P JES2 command, JES2 initialization
termination, or JES2 abend.

2-6 JES2 User Modifications and Macros LC23-0067-3 C Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

You can find more detailed information concerning the IBM-defined exits in the
section, "The IBM-Defined Exits," of Chapter 3. Chapter 3 contains an exit
implementation table (Figure 3-1) that enables you to locate the exit in the JES2
source code itself.

If, after thoroughly examining the IBM-defined exits, you find that none of them
suit your intended change, you may want to consider establishing your own
optional exit, an exit point you define yourself. However, you should be aware
that the installation of an optional exit can be considerably more difficult than
writing an exit routine for an existing IBM-defined exit. For more information,
see "Establishing Installation-Defined Exits" in this chapter.

Writing an Exit Routine

Language

When you are planning to write a JES2 exit routine, you need to consider the
environment in which the exit routine runs and other general programming
considerations (such as, the programming language to use to code your exit
routine, linkage conventions that are required, return codes to set, and reentrant
code requirements to follow). Chapter 3 provides the specific programming
considerations you need for writing exit routines for the IBM-defined exits. You
should use Chapter 3 in conjunction with the information in this chapter when
writing your exit routine. Should you decide to implement your own
installation-defined exit in JES2, you need to investigate all the exit-specific
programming considerations yourself; see "Establishing Installation-Defined
Exits" later in this chapter for more information.

All JES2 source code is written in basic assembler language (BAL), and your exit
routines must also be written in BAL.

Operating Environment

JES2 has four distinct execution environments as illustrated in Figure 2-2: user
address space, JES2 main task, JES2 subtask, and functional subsystem address
space.

1. Some JES2 routines in the load module HASPSSSM (located in PLPA) run in
the user's address space. This environment, which enables user programs to
interface with JES2, differs greatly from the JES2 address space environment.
MVS-wide system services are available to programs in this environment, but
the environment is also more complex; it involves the many integrity and
synchronization considerations of cross-address space communication.

2. For security reasons, the caller of an installation-defined exit in the user's
address space must be either in supervisor state or be an authorized program.
JES2 will terminate a calling routine with neither of these attributes (for
example, HAMGET and HAMPUT) with a privileged operation exception.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing J~2 2-7

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

3. The JES2 main task is the most common operating environment for JES2
exits. The JES2 main task and the routines that make it up are included in
the primary JES2 load module HASJES20 located in the private area of the
JES2 address space. These JES2 main task routines run under the control of
the JES2 dispatcher (in HASPNUC). The load module, HASPINIT, which
performs JES2 initialization, runs under the main task but is not controlled
by the JES2 dispatcher.

4. JES2 subtasks also run in the private area of the JES2 address space but run
asynchronously with the JES2 main task. Subtasks run under the control of
the MVS dispatcher and their asynchronous operation enables them to
perform the wait/post type processing representative of external events and
devices without imposing the same wait/post operations on the JES2 main
task.

5. The functional subsystem (FSS) resides in the functional subsystem address
space (HASPFSSM). You must consider task interaction within the FSS. All
data areas and control blocks are not accessible from the FSS. The accessible
control blocks are the JIB, FSSCB, and FSACB; and available services are
$SAVE and $RETURN.

2-8 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

PRIVATE

SQA

PLPA

CSA

~

'.

NUCLEUS

I HASPSSSM [~~~

/0
/

I
HASJES20 I:

'" .

Figure 2-2, JES2 and FSS Address Spaces

USER HAS PFSSM

JES2
MAIN TASK

JES2
SUBTASKS

When writing (/n exit routine. you must consider the calling JES2 environment,
because your exit routine runs as an extension of that calling environment (JES2
main task, JES2 subtask, user address space, and functional subsystem). The
calling environment has broad implications to your exit routine; it determines the
JES2 system services available to your exit routine, the reentry considerations you
should take into account. the linkage conventions that are necessary, and a
number of other essential factors (such as, control block access, synchronization,
recovery, and JES2 programmer macro usage). Specifically, the use of macros in
exit routines is limited. Before attempting to use a particular macro in an exit
routine, be certain to check the "Environment" section of each macro description
in Chapter 4 to determine the environments in which the macro can be used.

Every exit is explicitly defined to JES2 as belonging to one of the four execution
environments. The ENVIRON = operand of the $EXIT exit-point definition
macro is specified as either "JES2," "SUBTASK," "USER," or "FSS." The
default $EXIT ENVIRON = value is the same value specified for ENVIRON =
on the $MODULE macro. This specification determines which of two exit
effectors (the JES2 subroutines that establish the linkage between JES2 and an

LC23-0067-3 '9 Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-9

Synchronization

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

exit routine) will be called when the exit is enabled. One exit effector establishes
linkage to an exit routine from the JES2 main task environment; the other
establishes linkage to an exit routine from either the JES2 subtask environment or
the user environment. In the JES2 main task, JES2 linkage conventions (that is,
$SA VB and $RETURN) are used; in the subtask and user environments, MVS
linkage cOJ?ventions are used.

Note: If you do not specify the execution environment on either a $EXIT or
$MODULE macro, the environment defaults to that specified on the
&ANVIRON global assembly macro. The &ANVIRON specification can be
explicitly overridden by adding an ENVIRON = statement on the $MODULE to
the exit routine.

You cannot define an exit "across" environments. That is, when an exit is
required to serve the same purpose in two distinct environments, two separate
exits must be defined, each with its own identification number. For example, Exit
11, an IBM-defined exit that can give you control to reset the spool partitioning
mask, is defined as belonging to the JES2 main task environment. Exit 12, which
serves the same functional purpose, is defined as belonging to the user
environment. In implementing these exits, you must write a separate exit routine
for each defined exit and adapt the routine to its calling environment.

To stress again, whether defining an exit or writing an exit routine, you must be
aware of the operating environment; it influences where your exit is to be defined
or what processing your exit routine can really perform. In the descriptions of the
following general programming considerations for writing an exit routine, specific
environmental influences are described.

An exit routine must use synchronization services appropriate to its calling
environment.

An exit routine called from the JES2 main task must use the JES2 $W AIT macro
to wait for a JES2 event, resource, or post of a MVS ECB. An exit routine called
from a JES2 subtask or from the user environment must use the MVS WAIT
macro to wait for a system event. An exit routine called from a functional
subsystem must also use MVS WAIT; $W AIT and $POST are not valid in this
environment.

A JES2 main task exit routine should not invoke operating system services which
may wait(W AIT), either voluntarily or involuntarily. An MVS wait from a JES2
main task exit routine would stop all of the JES2 main task processors, including
any devices--such as readers, printers, and remote terminals--under their control.

2-10 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982,1987

"Restricted Materials of mM"

Licensed Materials - Property of IBM

Reentrant Code Considerations

Linkage Conventions

Reentrant code considerations are contingent on the calling environment.

An exit routine called from the JES2 main task must be reentrant in the JES2
sense. The JES2 dispatching unit, commonly called JES2 processors, running
under a processor control element (PCE) perform the processing for the JES2
main task. The JES2 dispatcher controls what PCE is currently active (that is,
what JES2 processor is currently running). Because a JES2 processor doesn't
relinquish control to another JES2 processor involuntarily, an exit routine,
invoked out of a JES2 main task processor may use a nonreentrant work area; the
work area is serialized as long as the exit routine doesn't issue a $W AIT macro or
until the exit routine or service called from an exit routine does issue the $W AIT
macro. When the exit routine issues the $W AIT macro directly or through a
called routine, control returns to the JES2 dispatcher and the serialization on the
nonreentrant work area ceases. The nonreentrant work area may also be passed
between exit routines, or between an exit routine and JES2, prior to a $W AIT
macro call. Work areas to be used "across" a $W AIT must either be within the
processor work area established as part of the processor control element (PCE) or
else must be directly owned by the processor. In the same JES2 reentrant sense,
an exit routine may search or manipulate a JES2 queue provided that it has
ownership of the queue and doesn't issue a $W AIT macro until this action is
completed.

An exit routine called from a JES2 subtask, from the user environment
(HASPSSSM), or functional subsystem (HASPFSSM) must be reentrant in the
MVS sense. The exit routine must be capable of taking an MVS interrupt at any
point in its processing. The exit routine must be able to handle the simultaneity
of execution with other subtask and user address space, or functional subsystem
(FSS) routines and with the JES2 main task.

When control is passed to an exit routine, certain general registers contain linkage
infonnation. Register 15 always contains the entry point address of the exit
routine, and can be used to establish addressability for the exit routine's code.
Register 14 contains the address (in the exit effector) to which the exit routine
must return control. In the JES2 main task environment, register 13 always
contains the address of the processor control element (PCE) of the processor that
invoked the exit. In the JES2 subtask environment or the user (HASPSSSM)
environment, register 13 always contains the address of an IS-word save area (as
specified for the SAVAREA= operand on the $EXIT macro). In the JES2 main
task and subtask environments, register 11 always contains the address of the
HCT; and in the functional subsystem environment (HASPFSSM), register 11
always contains the address of the HASP functional subsystem communications
table (HFCT). In the user (HASPS SSM) environment, register 11 always contains
the address of the SSVT. Depending on the exit, registers 0 and 1 may be in use
as parameter registers. The use of registers 2 through 10 and 12, usually used as
pointer registers, is also exit-dependent.

The use of registers 0 through 15 is documented, for each IBM-defined exit, in the
category REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE
EXIT ROUTINE in <'The IBM-Defined Exits" reference section in Chapter 3.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-11

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Note that if you install an optional installation-defined exit, you are responsible
for modifying JES2 code, preceding your exit, to load any parameters in registers
o and 1 and any pointers in registers 2 through 10 and 12 that may be required by
your exit routine.

For multiple exit routines, the exit effector passes registers 2 through 13 to each
succeeding exit routine just as they were originally loaded by JES2 when the exit
was first invoked. However, register IS contains the entry point address of the
current exit routine and, again, can be used to establish addressability for the exit
routine's code. Register 14 contains the address to which the exit routine must
return control. This enables you to pass the information to consecutive exit
routines. For more information, see "Multiple Exit Routines In A Single
Module" below.

When any exit routine receives control, it must save the caller's registers. An exit
routine called from either the JES2 main task or a functional subsystem can save
the caller's registers by issuing the JES2 $SAVE macro. An exit routine called
from a JES2 subtask or from the user (HASPS SSM) environment must save the
caller's registers, according to standard MVS linkage conventions, in the 18-word
save area whose address is contained in register 13.

When any exit routine relinquishes control, it must restore the caller's registers, with
the exception of registers 0, 1, and IS. An exit routine called from either the
JES2 main task or functional subsystem must restore the caller's registers by
issuing the JES2 SRETURN macro. An exit routine called from a JES2 subtask
or from the user (HASPSSSM) environment can restore the caller's registers by
reloading them from the save area whose address was originally received in
register 13.

Just before returning control to JES2, an exit routine must place a return code in
register IS and must place any parameters that it intends to pass, either back to
JES2 or to the next consecutive exit routine, in registers 0 and I. If the return
code is greater than zero, or if the current exit routine is the last or only exit
routine associated with its exit, this return code is passed back to JES2 at the
point of invocation, along with any parameters placed in registers 0 and I. If,
however, the return code is zero and the current exit routine is not the last or only
exit routine associated with its exit, the exit effector passes control to the next
consecutive exit routine, along with any parameters placed in registers 0 and 1.
Note that in the JES2 main task environment you can use the SSTORE macro
prior to the SRETURN macro in order to modify the returned values of registers
o and 1.

The specific implementation of return registers 0, 1, and IS is documented, for
each mM-defined exit, under the category REGISTER CONTENTS WHEN
CONTROL IS PASSED BACK TO JES2 in "The IBM-Defined Exits" reference
section in Chapter 3. Note that if you install an optional installation-defined exit,
you are responsible for modifying JES2 code, following your exit, to receive any
parameters your exit routine passes back as well as any return code above four
that you pass in register 15.

2-12 JES2 User Modifications and Macros LC23-0067-3 C Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Received Parameters

Return Codes

Received parameters, passed by either JES2 or the preceding exit routine in
registers 0 and I, provide a method of passing information to an exit routine and
of informing an exit routine of the current point of processing.

For any IBM-defined exit that passes parameters (to the first or only associated
exit routine), the specific parameters are documented in the REGISTER
CONTENTS WHEN CONTROL IS PASSED TO THE EXIT ROUTINE
category of the exit's description in "IBM-Defined Exits" reference section in
Chapter 3. IBM-defined Exit 6, which allows you to receive control both during
and after the conversion of a job's JCL to internal text, presents a typical
example. After a single JCL statement has been converted to an internal text
image, Exit 6 places a zero in register O. After all of the JCL for a particular job
has been converted to internal text, Exit 6 places a 4 in register O. Your exit
routine can determine what action to take by checking this code when it first
receives control.

For some exits, the parameter registers also contain pointers to control blocks, to
certain control block fields, or to other parameter lists. For a discussion of an
exit routine's use of control blocks, see the "Control Blocks" section below.

They are passed, as modified, from routine to routine. Note that if you install an
installation-defined exit, you must ensure that JES2 passes any parameters
required by your exit routine in registers 0 and I; this may require some
modification of JES2 source code.

A return code provides a convenient way for an exit routine to affect the course
of subsequent JES2 processing.

The standard return codes are 0 and 4. If 0 is returned by an exit routine that is
not the last or the only exit routine associated with its exit, the exit effector calls
the next consecutive exit routine. However, a 0 returned by the last or only exit
routine associated with its exit directs JES2 to proceed with standard processing.
A 4 returned by any exit routine directs JES2 to proceed unconditionally with
standard processing; any succeeding exit routines remain uncalled.

Note that a standard return code does not necessarily indicate that an exit routine
has opted to take no action. You can write an exit routine to manipulate certain
JES2 data areas and then, by generating a standard return code, direct JES2 to
continue with normal processing on the basis of this altered data. For example,
IBM-defined exits, Exit 7 and Exit 8, have no return codes greater than 4.

The definition of return codes that are greater than 4 is exit-dependent. The
specific implementation of return codes greater than 4 is documented, for each
IBM-defined exit, under the category RETURN CODES in "The IBM-Defined
Exits" reference section of Chapter 3; a brief indication of the standard processing
that results from the return of 0 or 4 is also included for each exit. Note that if
you install an optional installation-defined exit, you are responsible for modifying
JES2 code, following your exit, to receive and act upon any return code greater
than 4 generated by your exit routine.

LC23-0067-3 @ Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-13

Control Blocks

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

A return code is always a multiple of 4. If your exit routine passes a return code
other than 0 or another multiple of 4 to JES2, results are unpredictable. Also, the
$EXIT exit-point definition macro has a MAXRC = operand that specifies the
exit's maximum acceptable return code. If your exit routine generates a return
code that exceeds this specification and the exit was called from the JES2 main
task, the exit effector issues the SERROR macro. If the exit was called from a
JES2 subtask, from the user (HASPSSSM), or from the functional subsystem
(HASPFSSM) environment, the exit effector issues the ABEND macro.

An exit routine has access to various control blocks available in the environment
from which it was called.

To facilitate exit coding, IBM-defined exit routines provide in registers 0-13
pointers to control blocks currently in main storage. Register 1 can contain a
pointer to a parameter list, which contains the addresses of control blocks
currently in main storage. For a list of the specific pointers provided by an
IBM-defined exit, see the REGISTER CONTENTS WHEN CONTROL IS
PASSED TO THE EXIT ROUTINE category of the particular exit's description
in "The IBM-Defined Exits" reference section of Chapter 3. Note that if you
install an installation-defined exit, you have to ensure that any pointers required
by your exit routine have been placed in the call registers by JES2 prior to the
invocation of your exit; this may require some modification of JES2 source code.

An exit routine can access information available in control blocks. For example,
IBM-defined Exit S, which allows you to perform your own JES2 command
preprocessing, passes the address of the PCE to an associated exit routine. You
can write your own command validation algorithm by writing an exit routine that
checks various command-information fields in the PCE.

Because an exit routine runs fully authorized, it is free to alter any field in any
control block to which it has access. By altering specific fields in specific JES2
control blocks, an exit routine can pass information to JES2 and to succeeding
exit routines and can thereby affect the course of subsequent JES2 processing.
Note that JES2 has no protection against any change made to any control block
by an exit routine. If you modify a checkpointed control block, you must ensure
that it is written to the checkpoint data set either by your exit routine or by JES2.
For this reason, you should exercise extreme caution in making control block
alterations.

Except where it would seriously degrade system performance, JES2 provides a
reasonable amount of space in its standard control blocks for use by your exit
routines. Some storage-resident control blocks, such as PCEs and DCTs, have
storage reserved for exit routine use. You can use this storage to establish your
own exit-related field or fields within a standard control block or, if you require
more storage, you can use four of the bytes as a pointer to a work area acquired
by an exit routine using the JES2 SGETMAIN, $GETBUF, and $GETWORK.
macros or the MVS GETMAIN macro. Disk-resident control blocks provide
considerably more space for exit routine use. For performance reasons, no
checkpoint-resident control blocks reserve space for use by exit routines.

2-14 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of ffiM"

Licensed Materials - Property of IBM

Service Routine Usage

Exit Logic

In addition to using reserved space in the standard JES2 control blocks, you can
define and make use of your own installation-specific control blocks by using the
JES2 exit facility. An exit routine can use the JES2 SGETMAIN, SGETBUF,
and SGETWORK. macros or the MVS GETMAIN macro to acquire storage and
build a control block at the appropriate point in processing. For example, a
job-related control block can be built by an exit routine associated with
IBM-defined Exit 2. You can then use IBM-defined Exits 7 and 8 to write your
installation-defined control blocks to spool and to read them from spool into
main storage.

Note that if an exit routine references the symbolic name of a control block field,
the DSECT for that control block must be requested in the exit routine's module
at assembly time (via the SMODULE macro).

Each exit description in "The IBM-Defined Exits" reference section of Chapter 3
includes a list of DSECTs normally required at assembly.

Many service routines available to the JES2 main task are also available to an
exit routine called from the JES2 main task. You can include an executable JES2
macro instruction at any appropriate point in a JES2 main task exit routine. Not
all service routines are available to the functional subsystem environment; those
that can be called must be appropriate. Depending on the macro, it provides
inline code expansion at assembly time or else calls a JES2 service routine, as a
subroutine, in execution.

An exit routine called from a JES2 subtask or from the user (HASPSSSM)
environment can make use of any JES2 service routine that can be called from its
environment as well as any MVS service routine (SVC) that can be called from its
environment. You can include a JES2- or MVS-executable macro instruction at
any appropriate point in the subtask or user routine. Again, depending on the
macro, it provides inline code expansion at assembly time or else calls a JES2 or
MVS service routine, as a subroutine, in execution.

Each IBM-defined exit should be used/or its intended purpose. Using an exit for
other than its intended purpose can increase the risk of degraded performance and
system failure and may cause migration problems.

Within the scope of an exit's intended purpose, you have a wide degree of
flexibility in devising exit algorithms. For example, you can base spool
partitioning on a simple factor, such as job class, or on a complex comparison of
several job attributes and current spool volume usage. However, you should keep
in mind that as you increase an algorithm's sophistication, you also increase
overhead and the risk of error. Exit-specific logic considerations are provided in
the "Other Programming Considerations" category for each exit description in
"The IBM-Defined Exits" reference section at the end of this chapter.

LC23-OO67-3 C Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-15

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Logic considerations for installing installation-defined exits as well as for
implementing them are provided in "Establishing User-Defined Exits" later in this
chapter.

Note, for both IBM-defined and installation-defined exits, that the ability to
associate mUltiple exit routines with a single exit enables you to devise modular
logic segments. Each separate function to be performed after exit invocation can
be isolated in its own exit routine. This can be especially useful when you need to
provide alternate types of exit processing for different received parameters.

Exit-to-Exit Communication

Communication among exit routines associated with different exits must be
accomplished via mutually accessible control blocks. Communication among exit
routines associated with the same exit can also be accomplished via mutually
accessible control blocks.

Exit-to-Operator Communication

Except for exit routines called from the HASPCOMM module of HASJES20 and
exit routines called from JES2 initialization and termination, exit routines called
from the JES2 main task environment can communicate with the operator via the
$WTO macro. Exit routines called from the HASPCOMM module can
communicate with the JES2 operator via the $CWTO macro. Exit routines called
from a JES2 subtask or during JES2 initialization and termination can
communicate with the operator via the $$WTO and $$WTOR macros or via the
MVS WTO and WTOR macros. Exit routines called from the user (HASPS SSM)
or functional subsystem (HASPFSSM) environment can communicate with the
operator via the MVS WTO and WTOR macros. Note that, if a message is to be
associated with jobs processed by a functional subsystem, the job id must be
included with the message.

In addition, certain IBM-defined exits provide alternate methods of operator
notification. Exits 2, 3, and 4 allow you to transmit an exit-generated message to
the operator along with certain return codes by setting a flag in the RXITFLAG
byte. Exit 5 allows you to control the standard $CRET macro "OK" message
and to transmit your own exit-generated message text via the $CRET macro.
Exit 9 allows you to control the standard output overflow message. Exit 10
allows you control over the text and routing of all $WTO messages. For details,
refer to the individual exit descriptions in "The IBM-Defined Exits" reference
section of Chapter 3.

2-16 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Other Programming Considerations

The following programming considerations describe some specific requirements
for coding your exit routine:

• Naming and Identifying .~n Exit Routine

You must begin each exit routine with the JES2 SENTRY macro, which you
use to name the routine and to identify it to JES2. For more information, see
"Packaging Exit Routines" later in this chapter.

Note that you have flexibility in naming your exit routines, in accordance
with standard labeling conventions with the exception of Exit 0 (see the
description of Exit 0 in Chapter 3 for more detail).

• Exit Addressability

The SENTRY macro is also used to generate a USING statement for your
exit routine. The BASE = operand is used to specify the register or registers
which provide addressability when the exit routine gets control. However, the
SENTRY macro does not load the base register.

• Source Module Conventions

The construction of a source module must follow certain conventions
depending on how you intend to package the exit routine. Through these
conventions, JES2 is able to locate both exit routines and exit points within a
module.

LC23-0067-3 C Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-17

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Figure 2-3 illustrates two ways to package an exit routine:

o
•

As a totally separate load module

As port of one of the JES2 load modules (HASPSSM, HASJES20 or
HASPINID

8 o=>
EXIT
ROUTINE

.8=>
EXIT
ROUTINE

Figure 2-3. Methods of Packaging

L1NKEDIT

L1NKEDIT

EXIT
ROUTINE

L1NKLIB

JES2

EXIT
ROUTINE

A JES2 $MODULE macro must be the first code-generating statement
(immediately preceded by COpy $HASPGBL) in a source module to be
assembled and either link edited separately and loaded at initialization or a source
module to be added to a standard JES2 load module. Note that the $MODULE
macro call must occur prior to the first use of $ENTR Y or $EXIT, and a JES2
$MODEND macro must be coded at the end of both types of source modules.

You can only code one $MODULE and one $MODEND macro in each source
module. Additionally, when link editing exits into their own load modules (other
than HASJES20 or HASPSSSM). each source module must be linked into its own
load module.

The $MODULE macro reserves space for a module information table (MIT).
which points to a MIT entry table (MITETBL); the MIT indicates which exit
points are defined within the module and the MITETBL contains the names and
addresses of exit routines in the module. When JES2 is initialized. the MIT and
MITETBL are used to initialize the exit routines in the system. During assembly.
each $ENTRY macro saves the entry point name specified in a global assembly
variable and each $EXIT macro turns on a bit for that exit point in another
global assembly variable. At the end of the assembly. the $MODEND macro

2-18 JES2 User Modifications and Macros LC23-0067-3 c~ Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Tracing

uses the global assembly variables to assemble the exit bit mask in the MIT and
to create the MITETBL.

To locate the MITs of modules that are added to the standard JES2 load
modules, JES2 uses weak external address constants. To locate the MIT's of
modules that are linked in their own load modules, JES2 assumes that the MIT is
located at the front of the load module to which it points. The MITETBL is
located at the end of a module loaded at initialization.

Also note, for all exit routine source modules, that if an exit routine references the
symbolic name of a control block field, the mapping macro for that control block
must be included in the $MODULE macro list in the same source module as the
exit routine at assembly time.

Furthermore, refer to Appendix C, "Hints for Coding JES2 Exit Routines" for a
list of required mapping macros for individual exits. These macros are
environment dependent and must be coded to prevent assembly errors and error
messages.

The ENVIRON = operand of the $MODULE macro should be used to specify in
which JES2 operating environment the exit routine(s) is to execute. Each exit
description in the "IBM-Defined Exits" reference section in Chapter 3 includes a
list of MAPPING MACROS NORMALLY REQUIRED AT ASSEMBLY.

Minimal tracing of exit invocation can be performed automatically as part of the
exit facility. For this tracing to occur, two conditions are necessary:

1. The trace ID for exit tracing (ID 13) must be enabled.
2. The EXITnnn initialization statement or the $T EXITnnn operator command

must have enabled tracing. For more information, see "Tracing Status" in
"Controlling Exit Status" later in this chapter.

This automatic tracing produces a limited trace entry containing such general
information as exit point identification and register contents at the time of exit
invocation.

In addition, to further trace execution of exit routine code, issue the standard
JES2 $TRACE macro call within an exit routine. This results in a full trace
record of exit routine processing.

It is recommended that you use tracing to its fullest extent only in your testing
cycle, and that you limit its use in those areas of the standard processing
environment--for example, in conversion processing--where it is most likely to
degrade system performance.

LC23-0067-3 @ Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-19

Recovery

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

An exit routine should not depend upon JES2 for recovery. JES2 cannot
anticipate the exact purpose of an exit routine and, therefore, any standard JES2
recovery that happens to be in effect when your exit routine is called is, at best,
minimal for your particular needs. In other areas of processing, no JES2 recovery
environment is in effect, and an exit routine error has the potential to cause JES2
to fail. Consequently, you should provide your own recovery mechanisms within
your exit routines.

For all exits routines for which you provide an ESTAE routine, also be certain to
add the error recovery area DSECT, $ERA, to the $MODULE macro. On return
from the exit, use register 1 to point to the ERA and provide a USING statement
in that recovery routine to use the ERA address.

You can make use of the standard JES2 $ESTAE recovery mechanisms in
implementing your own recovery within the JES2 main task. You can make use
of the MVS EST AE recovery mechanism in implementing your own recovery in
the SUBT ASK, USER, or FSS environments. At minimum, a recovery
mechanism should place a 0 or 4 return code in register 15. Beyond this, recovery
depends on the particular purpose of an exit routine.

A Sample Exit Routine

Below is a sample JES2 user exit routine for a separator page (Exit 1). This code
is a simplified example to show you how to use the JES2 macros provided with
this exit facility.

2-20 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

XITI TITLE 'SAMPLE JES2 USER EXIT - PREAMBLE'
****** COMMENT BLOCK GOES HERE *********************************** 11
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

SAMPLE JES2 SEPARATOR PAGE EXIT

PURPOSE:
TO PRINT A PAGE SEPARATOR ON LOCAL AND REMOTE PRINTERS
WITH THE JOB NAME IN BLOCK LETTERS, FOLLOWED BY THE JOB
NUMBER AND SYSOUT CLASS (ALSO IN BLOCK LETTERS), AND
THEN 40 REPETITIONS OF A DUMMY DETAIL LINE.

ENTRY POINT = UEXITI

INPUT
RO

(REGISTERS) :

Rl
R2-9
RIO
R11
R12
R13
R14
R15

=0 FOR START-OF-JOB SEPARATOR
=4 FOR CONTINUATION SEPARATOR
=8 FOR END-OF-JOB SEPARATOR
ADDRESS OF PRINTER OR PUNCH OCT
N/A
ADDRESS OF THE JOB'S JCT
ADDRESS OF THE JES2 HCT
N/A
ADDRESS OF THE PRINTER OR PUNCH PCE
RETURN ADDRESS
ENTRY ADDRESS

RETURN (REGISTERS):
RO-14 SHOULD CONTAIN THE SAME CONTENTS AS ON ENTRY
R15 CONTAINS A RETURN CODE AS FOLLOWS:

=0 JES2 WILL PRODUCE THE STANDARD SEPARATOR
=4 SAME AS 0, BUT CALL NO OTHER EXIT ROUTINES
=8 JES2 WILL UNCONDITIONALLY NOT PRINT A SEPARATOR
=12 JES2 WILL UNCONDITIONALLY PRINT A SEPARATOR

JES2 MACROS USED:
$ENTRY, $SAVE, $GETBUF, $SEPPDIR, $PBLOCK, $PRPUT,
$FREEBUF, $RETURN, $MODEND, $MODULE.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

**
EJECT
COPY $HASPGBL

HASPUEX $MODULE RPL,
$BUFFER,
$CAT,
$DCT,
$HASPEQU,
$HCT,
$JCT,
$JOE,
$JQE,
$MIT,
$PCE,
$PDDB,
$PPPWORK

SPACE 1

COpy HASP GLOBALS
REQ'D BY $BUFFER

REQUIRED FOR REG CONVENTIONS
REQ'D BY $SAVE,$RETURN,ETC.

REQ'D TO GET SYSOUT CLASS

REQ'D BY HCT
REQ'D BY HCT

REQ'D TO FIND JOE

I The line numhers here relate to the numbered notes in the discussion below.

Figure 2-4 (Part I of 2). Sample JES2 Separator Page Exit Routine

2
3

C 4
C 5
C 6
C 7
C 8
C 9
C 10
C 11
C 12
C 13
C 14
C 15

16
17

LC23-0067-3 (,;, Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-21

TITLE 'SAMPLE
USING
USING
USING

PRINT/PUNCH
BFPDSECT,R3
JOE,R7
JCT,R10

SEPARATOR EXIT'

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

ESTABLISH BUFFER ADDRESSABILITY
ESTABLISH JOE ADDRESSABILITY
ESTABLISH JCT ADDRESSABILITY

SPACE 1

18
19
20
21
22
23
24
25
26
27
28

UEXIT1

SPACE 1

PDIR
SPACE 1

JOBNAME

SPACE 1

JOBID

DETAIL

SPACE 1

RETURN
SPACE 1

$ENTRY BASE=R12 EXIT ROUTINE ENTRY POINT
SAVE HASPPRPU REGISTERS $SAVE

LR
SLR
TM
BO

R12,R15 SET LOCAL BASE REGISTER
R15,R15 SET ZERO RETURN CODE (FOR
PCEID,PCEPUSID IS DEVICE A PUNCH ...
RETURN RETURN IF YES

PUN)

29
$GETBUF TYPE=HASP,FIX=YES,WAIT=YES GET A WORK BUFFER 30
LR R3,R1 SAVE ADDRESS OF BUFFER 31
$SEPPDIR (R3) SEND A PDIR IN CASE A SNA RMT 32

LA RO,JCTJNAME POINT TO JOB NAME
$PBLOCK BUFFER=(R3) ,DATA=(RO) ,SLANT=YES PRINT JOBNAME
MVC PCEUSERO(8) ,$BLANKS BLANK OUT BUFFER
MVC PCEUSERO(l) , JCTJOBID GET JOB TYPE
MVC PCEUSERO+1(4),JCTJOBID+4 AND NUMBER
L R7,PPPWKJOE SET WORK JOE BASE
MVC PCEUSERO+6(1) , JOECURCL GET SYSOUT CLASS

LA RO,PCEUSERO POINT TO BLOCK PRINT LINE
$PBLOCK BUFFER=(R3) ,DATA=(RO) ,SLANT=YES PRT JOBID/CL
MVC BUFSTART(132),=CL132'*' START JOB JOB# JOBNAME
LA R1,BUFSTART POINT TO PRINT LINE
LA RO,132 LENGTH OF PRINT LINE
$PRPUT DATA=(R1),LEN=(RO),COUNT=40,WAIT=YES PUT LINES
$FREEBUF (R3) FREE WORK BUFFER

LA R15,8
$RETURN RC=(R15)

DROP R3,R7,R12
LTORG
$MODEND
END

SET RETURN CODE
RETURN TO HASPPRPU

DROP ADDRESSABILITIES

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

Figure 2-4 (Part 2 of 2). Sample JES2 Separator Page Exit Routine

The following notes provide line-by-line explanation, where required, for the
example exit presented in Figure 2-4.

1. A comment block should go here. The block (designated by asterisks) is an
example of a comment block to document the input, output, and purpose of
the exit.

2. N/A

3. As in JES2 source modules, the $HASPGBL member of SYSI.HASPSRC is
copied to define many symbols used by JES2 macros and user code in this
exit.

2-22 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

4. All exit modules must start with a $MODULE macro as the first
code-generating statement. This macro provides a module information table
(MIT) and must come before any executable code. The label must be the
same as the name of the resulting load module. If it is not the same name,
you will receive the $HASP875 MODULE NAME DOES NOT MATCH ITS
MIT message. However, if the routine is to be linked with HASJES20, the
label must be one of the weak externals provided (that is HASPXJOI,
HASPXJ02, ...). (The numbers on these label do not relate to the exit
numbers or routines.) The label that you provide on the $MODULE macro
will be the name in the MIT.

SBUFFER is used by SGETBUF, $FREEBUF, and the exit code that uses a
JES2 buffer as a work area.

The JES2 DSECT mapping macros $JQE, SPCE, ... are required by other
JES2 macros. More DSECTs may have to be added to this list as required by
user code or other JES2 macros. You can also include a request for
$USERCBS that allows you to define your own DSECTs.

5. BUFFER fields are required.

6. CAT fields are required by the HCT.

7. DCT fields are required by the HCT.

8. $HASPEQU is required to establish register conventions.

9. The HCT is required by the $SAVE and $RETURN macros and also
contains the $BLANKS constant referenced in line 36.

10. JCT fields are required by the class attribute table (CAT), which in turn is
required by the HASP communications table (HCT).

II. The job output element (JOE) is required by this exit to determine the
SYSOUT class. (JOECURCL - see code lines 40.)

12. Job queue element (JQE) fields are required by the HCT.

13. MIT fields are required by the $MODEND macro.

14. Processor control element (PCE) fields are required by the HCT.

15. PDDB fields are required by the HCT.

16. The print/punch work area defined by $PPPWORK contains PPPWKJOE,
which is used to find the JOE for this work element.

17. N/A

18. N/A

19. Establish buffer addressability.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-23

20. Establish JOE addressability.

21. Establish JCT addressability.

22. N/A

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

23. The first executable statement of the user exit routine must be $ENTRY. A
label (for example, UEXITl) must be provided; this is the same name that is
coded on the ROUTINE = parameter on the EXITnnn initialization
statement (see the last coding example at the end of this section).

24. The $SAVE macro obtains a JES2 save area and save registers 14, 15,0, and
I through 12. No registers are destroyed by this macro.

25. This instruction loads the base register. This is necessary because the
$ENTRY sets the USING statement; it does not load the base registers.

26. This instruction clears register 15 indicating that JES2 should punch the
standard separator card in the event the following branch is taken.

27. Test the PCEID to determine if this is a punch. The device type is in the
PCE at label PCEID. Register 13 already points to the PCE. USING is not
required because $MODULE contains a 'USING PCE,R13' statement.

28. If the device is a local punch, then return with an indication (R15 =0). JES2
should produce the standard separator.

29. N/A

30. The $GETBUF macro gets a JES2 buffer required by the $SEPPDIR and
$PBLOCK macros. This buffer is also used as a work area to build print
lines.

31. The address of the JES2 buffer is saved for future use. (Register I is
generally not a safe register to retain this pointer.)

32. If the printer is on an SNA remote work station, this instruction issues the
$SEPPDIR macro instruction. It is treated as a no-op for local or BSC
remote devices. The buffer is not a keyword parameter, but a positional
parameter. Code it as shown in this example.

33. NjA

34. The job name is in the job control table (JCT) at label JCTJNAME. Register
10 already points to the JCT.

35. The $PBLOCK macro can use data directly from a JES2 control block. It
needs a JES2 (HASP-type, fixed) buffer to build the print lines. The letters
can be slanted (SLANT = YES) or not (the default). In addition, the name is
centered as a default. To produce a blank line between these block letters
and the next line of block letters, the $PRPUT macro can be used.

2-24 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

In the actual standard JES2 separator page, block letters are only printed if
the SEPLINE or RSEPLINE parameters on the PRINTDEF initialization
statement are specified as greater than 29. (SEPLINE and RSEPLINE are
the JES2 initialization parameters that define the separator line counts for
local and remote printers, respectively.)

36. The user fields in the printer PCE (pCEUSERO and PCEUSERl) are eight
contiguous bytes and are used here to build the 8-byte character string to be
passed to the $PBLOCK macro. If these user fields are not available to this
exit (that is, in use by some other modification or exit) another JES2 buffer
can be acquired as a work area. $BLANKS is a double-word constant of
blanks in the HCT and is used to blank out the eight bytes where the
5-character job ID and I-character sysout class will be built.

Note: The PCEUSERn fields reside above the 16-megabyte address in virtual
storage; therefore, these fields cannot also be used as input to $PBLOCK as
they are for $PRPUT.

37. The 'job type' used here is either 'J' for batch job, 'S' for started task, or'T'
for time-sharing user.

38. The job number should be left-justified to be more readable (but is not in this
example.) See code at label PRINTID in the HASPPRPU JES2 source
module for a detailed example. (Refer to JES2 Logic.)

39. To access the work JOE, get the pointer in the PPPWORK area (at label
PPPWKJOE), which is an extension of the printer PCE.

40. Move the sysout class for this work JOE to the right side of the 8-byte input
data area used as input to the PBLOCK routine.

41. N/A

42. N/A

43. Here, the $PBLOCK macro points to data in the same buffer that is being
used as a work area by the PBLOCK service routine. The full eight bytes of
the data are converted to block letters and printed. The scan does not stop
with the first blank character.

To produce a blank line after the block letters and before the first detail line
below, use the $PRPUT macro.

44. This MVC is a dummy instruction where the user code would build the detail
print line. For further explanation of how the standard JES2 header/trailer
detail print line is built, see the code at labels PDEST and BLKSKIP in the
HASPPRPU JES2 source module. (Refer to JES2 Logic.)

Also required is a work area unique to this printer to keep this routine
reenterable by JES2. To use the JES2 buffer acquired above (line 30) as a
work area to build a print line, refer to the start of the work area (beyond the
lOB) by label BUFSTART.

LC23-0067-3 C Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-25

45. N/A

46. N/A

"Restricted Materials of mM"

Licensed Materials - Property of mM

47. The $PRPUT macro is invoked once at this point to print 40 lines of detailed
information. The data should be fIXed because PRPUT uses EXCPVR.
Code WAIT = YES to ensure that the I/O occurs before freeing the butTer (see
line 46 below.) Unlike the PBLOCK routine. PRPUT does not need a JES2
buffer to be passed to it.

Use Rl for the DATA register. and RO for the LEN (length). Also note that
if CC = M is not coded on this macro. NO carriage control is assumed.

This example shows 40 lines of detail. but the standard JES2 separator
actually has the number specified by either the SEPLINE or RSEPLINE
parameters on the PRINTDEF statement minus 29 lines. The COUNT
parameter must specify an absolute value; it cannot specify a register to hold
the count.

48. $FREEBUF is used to free the JES2 buffer obtained as a work area. See line
number 28 above.

49. N/A

50. Set register 15 to indicate the appropriate return code to JES2. In this
example. it is set to 8 to indicate that:

• The next exit routine (if any) will not be called.
• JES2 is not to produce the standard separator page.

51. The $RETURN macro must include RC=(R15) to generate return codes
other than o.

52. N/A

53. N/A

54. Code the LTORG before the $MODEND macro to maintain addressability
to the literal constants.

55. Code the SMODEND at the end of every JES2 module. It generates the MIT
entry table (MITETBL) and the MIT exit mask.

56. N/A

Figure 2-5 shows how the above routine can be assembled and link-edited.
and how to use the load module name. The source is in SYSl.JESEXITS.
and the load module is linked into SYS1.LINKLIB with the name of
HASPUEX. This name must also appear on the LOAD initialization
statement.

2-26 JES2 User Modifications and Macros LC23·0067·3 @ Copyright IBM Corp. 1982. 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

IIASM EXEC
IISYSLIB
II
II
IISYSUTl
IISYSPRINT
IISYSIN
IISYSLIN
II
IILINK EXEC
II
IISYSPRINT
IISYSUTl
IISYSLMOD
IISYSLIN
II

PGM=IEV90,PARM= 'OBJECT,NODECK,XREF (SHORT) ,
DD DSN=SYS1.HASPSRC,DISP=SHR
DD DSN=SYS1.MACLIB,DISP=SHR
DD DSN=SYS1.AMODGEN,DISP=SHR
DD UNIT=SYSDA,SPACE=(1700,(1200,300))
DD SYSOUT=A
DD DSN=SYS1.JESEXITS(HASPUEX),DISP=SHR
DD DSN=&&OBJ,DISP=(,PASS),UNIT=SYSDA,

SPACE=(CYL,(l,l))
PGM=HEWL,COND=(O,LT,ASM),
PARM='XREF,LET,REUS'
DD SYSOUT=A
DD UNIT=SYSDA,SPACE=(CYL,(l,l))
DD DSN=SYS1.LINKLIB,DISP=OLD
DD DSN=&&OBJ,DISP=(OLD,DELETE)
DD *

NAME HASPUEX(R)
1*

Figure 2-5. Example of Assembly and Link-Edit of a Installation-Written Routine

The following JES2 initialization statements can be used to load and associate
Exit I with the above routine. Note that the name on the LOAD statement must
match the label specified on the $MODULE macro statement, and the name on the
ROUTINE = parameter on the EXITnnn statement must be the same name as on
the $ENTRY macro.

LOAD=HASPUEX
EXITl ROUTINE=UEXIT1,ENABLE,TRACE=NO

Multiple Exit Routines In A Single Module

When developing and testing user exits, it is probably easier to keep each exit
routine in its own source and load module. In this manner, the routines can be
assembled, loaded, and tested independently. If there are many routines. you may
want to eventually combine them into a single source and load module for easier
maintenance procedures.

Figure 2-6 shows three exit routines in a single module with a general structure
that you may want to follow.

LC23-0067-3 ,0 Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-27

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

XITS TITLE 'SAMPLE JES2 USER EXITS - PREAMBLE'

* *
*
*

COMMENT BLOCK FOR MODULE GOES HERE *
*

HASPUEX
COPY $HASPGBL
$MODULE RPL,
$BUFFER,
$CAT,
$DCT,
$HASPEQU,
$HCT,
$JCT,
$JOE,
$JQE,
$MIT,
$PCE,
$PDDB,
$PPPWORK,
$RDRWORK

COPY HASP GLOBALS
REQ'D BY $BUFFER

REQUIRED FOR REG CONVENTIONS
REQ'D BY $SAVE,$RETURN,ETC.

REQ'D TO GET SYSOUT CLASS

REQ'D BY HCT
REQ'D BY HCT
REQ'D BY $PPPWORK
REQ'D TO FIND JOE

* *
*
*

ADDITIONAL MAPPING MACROS GO HERE *
*

Figure 2-6 (Part 1 of 2). Example of Providing Multiple Exits within a Single Load Module

C
C
C
C
C
C
C
C
C
C
C
C
C

2-28 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

TITLE 'SAMPLE SEPARATOR PAGE EXIT - ROUTINE l'

* *
*
*

COMMENT BLOCK FOR EXIT 1 GOES HERE *
*

XIT1RTN1 $ENTRY BASE=R12 EXIT ROUTINE ENTRY POINT

$ SAVE
LR R12,R15 LOAD BASE REGISTER

* *
*
*

USER EXIT CODE FOR EXIT 1 ROUTINE 1 GOES HERE *
*

RETURN1

XIT1RTN2

LA R15,8
$RETURN RC=(R15)
TITLE 'SAMPLE SEPARATOR
$ENTRY BASE=R12
$SAVE

SET RETURN CODE
RETURN TO HASPPRPU

PAGE EXIT - ROUTINE
EXIT ROUTINE ENTRY

LR R12,R15 LOAD BASE REGISTER

2'
POINT

*
*
*

USER EXIT CODE FOR EXIT 1 ROUTINE 2 GOES HERE
*
*
*

RETURN2
LA R15,8
$RETURN RC=(R15)
LTORG
TITLE 'JOB CARD SCAN

SET RETURN CODE
RETURN TO HASPPRPU

EXIT'

* *
*
*

COMMENT BLOCK FOR EXIT 2 ROUTINE 1 GOES HERE *
*

XIT2RTN1 $ENTRY BASE=R12 EXIT ROUTINE ENTRY POINT

$SAVE
LR R12,R15 LOAD BASE REGISTER

*
*
*

USER EXIT CODE FOR EXIT 2 ROUTINE 1 GOES HERE
*
*
*

LA R15,8
$RETURN RC=(R15)
LTORG
$MODEND
END

SET RETURN CODE
RETURN TO HASPRDR

Figure 2-6 (Part 2 of 2). Example of Providing Multiple Exits within a Single Load Module

The following JES2 initialization statements can be used to load and associate exit
points 1 and 2 with the above routines.

LOAD=HASPUEX
EXIT1 ROUTINE=(XIT1RTN1,XIT1RTN2) ,ENABLE,TRACE=NO
EXIT2 ROUTINE=XIT2RTN1,ENABLE,TRACE=NO

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-29

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Testing Your Exit Routine

To test your exit routine you need to integrate your exit routine in the system,
ensure that it gets control and executes, and verify that the functions it is intended
to perform are performed. Verifying that the exit routine performed its function
is exit routine-dependent and unique for each exit routine; the following
discussion of testing your exit routine only focuses on the following points:

• Integrating the exit routine in the system
• Passing control to the exit routine

Also, you should test and debug your exit routine by running it on a secondary
JES2 first. In this way, any errors that occur do not directly affect your main
JES2 production system. Once the errors in the exit routine are fixed and tested,
you can then integrate it into the production JES2 system. Note that the
following restrictions apply to JES2 functions when using a secondary JES2:

• Started tasks (STCs) can be directed to either a primary or secondary JES.
However, following an IPL, started tasks do not complete start processing
until the primary subsystem has been started and completed initialization.

• Time-sharing users (TSUs) may only interface with the primary JES2.

• The MVS I/O attention table can only be associated with the primary JES.
Therefore, secondary JESs cannot receive the "unsolicited interrupt" required
to support pause-mode for print and punch devices and "hot readers" (that is,
readers started via the physical start button without the $S RDRn JES2
command).

• The MVS log console (SYSLOG) can only be associated with the primary
JES.

• Secondary subsystems are started individually rather than automatically
during IPL by a start command in the master scheduler JCL (MSTJCL) as is
the primary subsystem.

Integrating the Exit in the System

Packaging the Exit

Exit routines need to be packaged into load modules before they can be loaded
into the system and tested. There are two ways to package your exit routines.

Modules that contain exit routines which execute in the JES2 main task or
sub task environment can be linkedited into the standard HASJES20 load module,
which is loaded into the private area of the JES2 address space. Modules that
contain exits in the user or functional subsystem environment can be linkedited
into the standard HASPS SSM load module which must reside in SYS1.LPALlB;
these exits must be loaded into common storage. Do not Iinkedit multiple exit
points with different environments into the same load module. When you package
your exit routines in this manner, it is required that you make use of a collection

2-30 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

of weak external names for the module names. These names should be the same
as the label used on the $MODULE macro of your exit routine.

For HASPS SSM the "weak external names" are as follows: HASPXSOO,
HASPXSOl, ... , HASPSX15.

For HASJES20 the "weak external names" are as follows: HASPXJOO,
HASPXJOl, ... , HASPXJ31.

Alternatively, a source module containing exit routines can be assembled and link
edited separately. However, you can only code one MIT and MITETBL within
the load module. That is, only one $MODULE and $MODEND statement pair
should appear in each exit source module, and each source module must be
linkedited into its own load module. The resulting load module can then be
loaded dynamically during initialization, through use of the LOAD initialization
statement. For this form of packaging you do not need to use the "weak external
name" for the module names of your exit routines. NOTE: If your exit routine is
a separate load module and executes in the USER or FSS environment, you must
ensure that it resides in LP A.

You may choose to use one of these packaging techniques exclusively, or you may
choose to use both methods in combination, assembling and link editing some
routines into the standard JES2 load modules and assembling and link editing
others separately and then loading them at initialization. Creating separate load
modules for your exit routines is recommended. JES2 never makes unconditional
direct references to external addresses or entry points in installation-written code.
The association between exit routines and JES2 source code is resolved during
initialization.

Figure 2-7 illustrates a separately linkedited load module for an exit routine and
the MIT and MITETBL structure associated with it. JES2 initialization uses this
load module and the information in the MIT and MITETBL to initialize the exit
routine in the system. The next topic describes this initialization process.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-31

NAME

BIT MAP

~ MITETBL

EXIT ROUTINE 1

EXIT ROUTINE 2

NAME V-CON

NAME V-CON

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

...

Figure 2-7. Exit Routines Load Module

Initializing the Exit in the System

Initializing an exit and its exit routines involve the use of the following two JES2
initialization statements:

• LOAD

Use the LOAD initialization statement to load the modules containing your
exit routines. The only operand of the LOAD initialization statement
specifies the name of the module to be loaded as defined on the NAME
control statement for the linkage editor. The module must be named
according to MVS naming conventions. Be certain that the name you give to
the load module (LOAD =) is the same as the label you coded on the
$MODULE statement. Exit routines to be called from the user environment
must be loaded into LPA (PLPA, MLPA, or FLPA) during IPL. Exit
routines to be called from the JES2 main task and subtask environments
should be loaded in the private area of the JES2 address space.

2-32 JES2 User Modifications and Macros LC23-0067-3 (~Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

• EXITnnn

Use the EXITnnn initialization statement to associate one or more exit
routines with an exit.

Replace nnn, the exit number, with the corresponding exit identification
number specified on the $EXIT macro or macros that define the exit point or
points that establish the exit. EXITnnn can then be followed by from 1 to
255 exit routine names, as specified for the $ENTRY macro or macros that
identify the corresponding exit routines. The JES2 exit effector calls multiple
exit routines in the sequence of their specification on the EXITnnn statement.
If you specify more than one EXITnnn statement with the same identification
number, JES2 honors the last statement it encounters during initialization.

Figure 2-9 illustrates the completed control block structure after two separate
load modules (the first containing three routines and the second containing
two routines) have been initialized in the system. Note also that one of the
routines (XITCOMON) is shared by both Exitl and Exit2.

NOTE: The LOAD and EXITnnn initialization statements are not positional and
do not have to be specified in any required order. Figure 2-8 illustrates the
results of this initialization process.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-33

SQA

HASPSSSM

PLPA 0
D D.;.

CSA

~

HASJES20

8
D D

PRIVATE

NUCLEUS

o MODULES IN HASPSSSM

SEPARATE LOAD MODULES
IN HASPSSSM

Figure 2-8. Exit Placement

2-34 JES2 User Modifications and Macros

...
•••

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

e
D

D

D .-..L

•••
}

USER
EXITS

e
D ...

}

JES2
MAINTASK
AND
SUBTASK
EXITS

MODULES IN HASJES20

SEPARATE LOAD MODULES
IN HASJES20

LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

During initialization, JES2 uses the EXITnnn statements to build the exit
information table (XIT) and the exit routine table (XRT), both located in CSA.
The XIT contains an entry for each exit. It also contains an index into the XRT,
which contains an entry for each exit routine name and address.

During initialization statement processing, JES2 puts all the information available
from the EXITnnn statements into the XIT and XRT. It also resolves addresses
for XRT entries using the MITs of any modules that are already loaded. For
each LOAD statement encountered and processed, routine addresses in the
dynamically loaded module's MIT are propagated to the XRT for routine names
already present. Installation-defined exit points in the module are propagated to
the XIT. JES2 builds the load module table (LMT) that contains the names of all
load modules and their MIT addresses. At the end of initialization statement
processing, any routine names that remain outstanding in the XRT, without
resolved addresses, are brought to the operator's attention. When this process is
complete, the exit effectors can use the XIT and the XRT to provide linkage from
JES2 to exit routines. Note that, because of the manner in which initialization
statements are processed, there is no order dependency between EXITnnn
statements and LOAD parameters.

Figure 2-9 illustrates the completed control block structure after two separate
load modules (the first containing three routines and the second containing two
routines) have been initialized in the system. Note also that one of the routines
(XITCOMON) is shared by both Exit! and Exit2.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-35

HCT

t XIT

{
• I LMT

HASPUEX

t MIT

UXITIEST

t MIT

t/.3 EXIT 2{

EXIT 3{

T

XIT

FLAGS I tfRTNS I USE COUNT

t XRT

FLAGS I tfRTNS I USE COUNT

t XRT

FLAGS I #RTNS I USE COUNT

t XRT

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

~

~~ HASPUEX LOAD MODULE

1-------1 r_N_A_M_E_(_O_N_S_M_O_D_U_L_E_l ----i} MIT
~v -""/ BITMAP

T J t MITETBL

XIT1RTN1

XIT1 RTN2

XIT2RTN 1

XIT1RTN1 V(XIT1 RTN 1)

XIT1 RTN2 V(XIT1 RTN2)

XIT2RTN 1 V(X IT2 RTN 1)

UXITIEST LOAD MODULE

NAME

BITMAP

t MITETBL

XIT2RTN2

XITCOMON

~ XRT

I~
USE COUNT I 'X1T1 RTN1 ' "'

tXIT1RTN1

USE COUNT I 'X1T1 RTN2'

t XIT1 RTN2

USE COUNT I 'XITCOMON'

> EXIT 1

}~ t XITCOMON

Il\ USE COUNT I 'XIT2RTN1'

t XIT2RTN1

USE COUNT I 'XIT2RTN2'

t XJT2RTN2

(: EXIT 2

USE COUNT I' XITCOMON'

t XITCOMON 1-"

~

INITlALlZATION STATEMENTS:

XIT2RTN2

XITCOMON

V(X!T2RTN2l }

V(XITCOMONl
MITETBL

LOAD HASPUEX
LOAD UXITIEST
EXIT 1 ROUTINE = (X1T1 RTN 1, XIT1 RTN2, XITCOMON)
EXIT 2 ROUTINE = (XIT2RTN1, XIT2RTN2, XITCOMON)

Figure 2-9. Load Module Initialization

2-36 JES2 User Modifications and Macros LC23-0067-3 ,L Copyright I BM Corp. 1982. 1987

"Restricted Materials of IBMot

Licensed Materials - Property of IBM

Passing Control to Exit Routines

Job-Related Exits

Every exit has a status of enabled or disabled. If an exit is enabled, JES2 calls its
associated exit routine(s) whenever one of the exit's exit points is encountered in
processing JES2 code. (Note: The TYPE = TEST form of the $EXIT macro is an
exception; a TEST -type exit point occurs prior to a TYPE = ENTER exit point to
allow JES2 to determine whether the exit is implemented and "enabled. If the exit
is not both implemented and enabled, JES2 saves processing time by bypassing
the call to the exit effector when it encounters the ENTER-type exit point.)
When an exit is disabled, its exit points are transparent in the course of JES2
processing and JES2 does not call the exit's associated exit routine(s).

An exit's status is first set at initialization. You can specify either ENABLE or
DISABLE on the EXITnnn initialization statement. If you leave the status of the
exit unspecified, ENABLE is the default.

An exit's status can then be dynamically controlled by the operator, using the $T
EXITnnn command. Again, the operator has the option of identifying any exit
by number, including a string of exits, a range of exits, or all exits, and specifying
either ENABLE or DISABLE. The operator can display an exit's status by
identifying the exit by number on the $D EXITnnn command.

When you suspect that an exit routine associated with a particular exit is causing
an error, a simple way of isolating the problem is to disable the exit, via an
operator command ($T EXITnnn), to determine if the error still occurs when the
exit routine is not allowed to execute. You can also enable tracing as a debugging
aid.

An exit can also be dynamically controlled on a job-related basis, using the exit
facility.

Certain exits are identified as job-related exits. For each individual job, exit
routine action can determine whether or not a job-related exit will be taken. For
these exits, the JOBMASK parameter is specified on the $EXIT macro or macros
defining their exit point or points. JOBMASK is specified with the address of the
job ex;t mask, a 256-bit mask in the job control table (JCT), of which each bit,
except for bit 0, corresponds to an exit identification number; bit 1 corresponds to
Exit 1, bit 2 to Exit 2, and so on. Initially, when the JCT is created, all the bits in
the job exit mask are set to one.

For a job-related exit, the status of its corresponding bit in the job-exit mask
becomes an additional factor in determining its exit status. If an exit has been
enabled in the standard way, by either the EXITnnn initialization statement or the
$T EXITnnn command, and its corresponding bit in the job exit mask is set to
one, the exit has a status of enabled and the exit effector calls its associated exit
routine(s). If, however, the exit has been enabled in the standard way but its
corresponding bit in the job exit mask is set to zero, the exit has a status of
disabled and the exit effector does not call its associated exit routine(s) for that
particular job. If the exit has been disabled in the standard way, the status of its
corresponding bit in the job exit mask is not taken into account; the exit remains
disabled. Note that if JOBMASK is not specified on the $EXIT macro, or if the

LC23-0067-3 e Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-37

Tracing Status

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

JCT is not in storage, the job exit mask can have no effect on the status of an
exit.

Bits in the job exit mask can be manipulated by an exit routine on a job-by-job
basis. The recommended IBM-defined exit for setting the job exit mask is Exit 2.
Exit 2 is, in most cases, the first exit to be taken for a job, and provides access to
most of the job's attributes specified in its JCL and placed in its JCT. For more
information, see the description of Exit 2 in "The IBM-Defined Exits" reference
section in Chapter 3.

For each exit description in "The IBM-Defined Exits," the JOB EXIT MASK
category lists the exit as either job-related or not job-related. Note that Exits 11
and 12 present special cases.

You can also control the status of exit invocation tracing.

Initially, for the tracing to occur automatically, two conditions are necessary:

1. The trace ID for exit tracing (ID 13) must be .enabled.

2. The TRACE = operand of the EXITnnn initialization statement must be
specified as, or allowed to default to, TRACE = YES.

If one of these conditions is absent, tracing does not occur.

The status of exit tracing can then be dynamically controlled by the operator,
using the $T EXITnnn command. The operator has the option of identifying any
exit by number, including a string of exits, a range of exits, or all exits, and
specifying either TRACE = YES (or TRACE=y) or TRACE=NO (or
TRACE = N). The operator can display the status of exit tracing by identifying
the exit by number on the $D EXITnnn command.

The status of exit tracing cannot be controlled on a job-related basis.

Establishing Installation-Defined Exits

JES2 can contain up to 256 exits. IBM has defined some of these. If none of the
IBM-defined exits is suited to a particular modification you would like to make,
you can consider installing an optional installation-defined exit.

In general, establishing your own exit is much more difficult than writing an exit
routine for an existing IBM-defined exit; it requires a thorough knowledge of the
area of processing in which you would like your exit to occur. You should
attempt to place a installation-defined exit in a stable area of processing; the risk
of error increases with the complexity of the JES2 code in which you place the
exit. If possible, you should use your exit in replacing a JES2 function that is
already isolated. As an example, IBM-defined Exit 3 allows you to provide an
exit routine to completely replace the standard HASPRSCN accounting field scan
routine.

2-38 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

You must consider whether the exit will require a single exit point or more than
one. You can determine this based on the requirements of your intended
modification and on the structure of the IBM code in the area of processing that
you intend to modify. You must also consider whether or not the function you
wish to modify is contained within a single JES2 execution environment. If it
occurs in a second environment, you may have to install a second exit as well.

Once you have determined the exact point of processing at which an exit point
must occur, use the $EXIT macro to define it.

First, you should specify the positional ID parameter with the exit's identification
number. It is recommended that you begin numbering installation-defined exits
with 255 and work down. (If additional IBM-defined exits are added later, your
exit numbers will not conflict with the new IBM-defined exit numbers.)

You must define the exit's environment to JES2 using the ENVIRON= operand
or let the environment default to what was specified as ENVIRON = on the
module's $MODULE macro. This is specified as either JES2, SUBTASK, USER,
or FSS. If you use more than one exit point to establish an exit, the environment
specification must be the same on each $EXIT macro. The same exit cannot be
established in more than one execution environment.

The exit effector for the subtask and user environments assumes MVS linkage .
conventions when register 13 contains the address of an available IS-word save
area. However, because of MVS linkage conventions you may need to add code
allowing the $EXIT macro to acquire and dispose of a standard IS-word save
area for use by the subtask and user environment exit effector.

If the exit is to be job-related, specify the address of the job exit mask for the
JOBMASK = operand. Note that if the JCT is not in storage you will have to
point to a copy of the job exit mask.

Specify the SA V AREA = operand only if the exit occurs in a JES2 subtask, in the
user (HASPSSSM) environment, or functional subsystem (HASPFSSM)
environment. If you specify the SA V AREA = operand and ENVIRON = JES2 as
well, an error message is generated. For subtask and user exits, SAVAREA = can
be specified with the address of a save area that the exit effector will pass to an
associated exit routine in register 13. !fyou don't specify SAVAREA= for a
subtask or user exit, the exit effector will acquire the necessary area via a
GETMAIN macro whenever the exit is invoked.

Note: There is a distinction between the two save areas, the save area pointed to
by register 13 and that pointed to by the SAVAREA= keyword. Register 13, at
the $EXIT point, contains the address of a save area into which the exit effector
stores the current registers. SA VAREA = provides a save area (typically provided
via an MVS GETMAIN) into which the exit routine stores the exit effector's
registers.

Use the TYPE = operand to specify the mode of $EXIT macro operation. To
avoid special processing overhead, you can define a TYPE = TEST $EXIT macro
at some location shortly prior to a TYPE = ENTER $EXIT macro in JES2 code.

LC23-OO67-3 e Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-39

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

A TEST-type $EXIT macro tests the status of the exit and sets a condition code
(not a return code):

cc=O No exit routines are to be called
cc=1 Call exit routines, without tracing
cc=Z Call exit routines, with tracing

When JES2 encounters the TYPE = ENTER $EXIT macro, it does not have to
retest the exit's status; it simply checks the condition code and either bypasses the
exit point or calls the exit effector, with or without tracing. Note that a
TYPE = TEST $EXIT macro and a TYPE = ENTER $EXIT macro must always
be used together. If you omit the TYPE = parameter, the resulting exit point
causes JES2 to both determine the status of the exit and then, depending on the
status, either to bypass the exit point or to call the exit effector.

Use the AUTOTR= operand to specify that automatic exit effector tracing
should (AUTOTR=YES) or should not (AUTOTR = NO) occur. If
AUTOTR = NO is specified, the exit effectors set the condition code on return
from the exit to indicate the tracing requirement:

o No tracing is required
J Tracing is required

For more information on exit effector tracing, see "Tracing" in "Writing an Exit
Routine" and "Tracing Status" in "Controlling Exit Status" earlier in this
chapter.

Along with inserting the $EXIT macro in JES2 source code, you may have to
modify the code prior to the exit point to pass parameters and pointers to the exit
routines, and you may have to modify the code following the exit point to receive
exit-generated parameters and to receive any return code greater than 4. For
more information, see "Linkage Conventions," "Received Parameters," and
"Return Codes" in "Writing an Exit Routine" earlier in this chapter.

Note: When using the $EXIT macro, you may need to include additional control
block DSECT mappings in that module. If, for example, the module you are
modifying did not previously require the mapping provided by the $EXITPL and
$XIT macros, but these are required to map the exit parameter list and exit
information table (XIT), you must add these to the $MODULE macro coded at
the beginning of the module.

2-40 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Defining JES2 Tables

Modifying JES2 by Defining User Tables

You should attempt to isolate as many of your installation-specific modifications
as possible within user modules. Doing so can speed your migration should you
install a new level of JES2, ease maintenance without having to rework your own
code, and more easily isolate problems. JES2 provides a method of tailoring
many areas of its processing through the use of tables and table pairs.

JES2 provides user fields in a number of the commonly modified control blocks.
For example, the UCT (user communication table) is effectively an extension of
the HCT (HASP communication table). Other extension points are the tables
that define processor control elements (PCEs), daughter task elements (DTEs),
trace ID tables (TIDTABs), and the scan facility. These "extensions" should not
reside within JES2 inline code, but rather in a user module or dynamic storage
area accessed through user exits. By taking advantage of user exits and JES2
macros, you can build fields to point to your own user tables to override the
default JES2 tables. This eliminates the need to directly modify JES2 control
blocks or copy JES2 code into user modules.

As noted above, a number of JES2 processing areas use tables; that is, a JES2
table contains the elements of a particular area of processing. You can tailor
certain JES2 functions by extending these tables. JES2 provides two tables, a
table pair; one table (the JES2 table) provides the default processing
specifications. If you do not extend this table, JES2 will remain unmodified.
However, if you choose to fill in the user table of the table pair you will be adding
new function or overriding those JES2 specifications with what you have provided
in the user table. This is so because JES2 searches the user table before the JES2
table whether or not JES2 has defined a particular specification. For example,
JES2 has specified that the minimum length of the RANGE parameter on the
PRINTERnn initialization statement must be 5 (that is, all five characters must be
coded). You can change this requirement by overriding the JES2 table by coding
your own RANGE table entry. If you prefer the minimum number of characters
to be 3, you could then code either RAN, RANG, or RANGE when specifying
this parameter.

The macros required to build these tables are documented in Chapter 4. These
macros call the required service routines to modify JES2 processing. Because
JES2 provides a JES2 table (the table you would be overriding), you are
automatically provided an example of how such a table is coded. (Refer to
"General Table Coding Conventions," below, for further coding information.)

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter·2. Customizing JES2 2-41

Table Linkage

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

To implement user extensions, you must create a user control table (UCT). To do
this. you must either:

I. Link-edit the module containing the UCT with RASJES20 by using the
reserved (weak external) names provided by JES2

or

2. Use Exit 0 to place the address of the UCT into the RCT

Figure 2-10 depicts the two linkage procedures.

HCT

$UCT DC V(USERCBl
< UCT Po i n t e r

o Using Exit 0

HASPXITO $MOOULE

L R1, UCTLEN
$GETMAIN LEN=(R1l
ST R1, $UCT

UsinQ Reserved Names

MY MODULE $MOOULE

USERCB EQ
OS
OS
OS
OC
V
V

* UCT

Figure 2-10. Linking User Tables to HASP Tables to Extend/Modify JES2 Function

2-42 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Master Control Table

As noted above you can provide linkage to the MCT through two methods. This
is required in order that the address you provide can be resolved. Either is
adequate and the choice is yours to make. The two methods and some
advantages of each are:

• Use JES2 initialization Exit 0 to store your table addresses in the MCT.

This method requires more code than the method below, but results in a later
binding, that is, at JES2 initialization rather than link-edit time.
Furthermore, Exit 0 is refreshable over a JES2 hot start without changing the
HASJES20 load module.

• Link-edit your tables to JES2 using weak external references.

This technique requires less code than the first method, but it requires that
you modify the JCLIN logic in the system modification program (SMP) by
adding an INCLUDE statement for your user module. Following such a
change to either JES2 or a user module, you must again link-edit the entire
load module.

The master control table (MCT) is a list of all JES2 table pairs. The MCT is
pointed to by the $MCT field in the HCT and points to the JES2-<iefined and
user-defined tables. Refer to Figure 2-11 below. This example shows the MCT
with its pointers (using weak external VCONs) to the PCE, DTE, OPT, MPS, and
SCAN tables.

LC23-0067·3 C Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-43

HCT

$MCT

USER

V(USERPCED

V(USERDTED

V(USEROpm

V(USERMPSTl

•
•
•

• •
•

•
•
•

V(USERSCAND

PCE
Table Pair

~ USERPCET

(HASP ~"------ I~
HASPPCET

V(HASPPCED

V(USERDTED
DTE

\
Table Pair

V(HASPOpm USERDTET

HASPDTET
V(HASPMPSD

•
• ·
•
•
• SCAN

Table Pair

~
•
•
• USERSCANT

HASPSCANT

V(HASPSCAND

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

JES2-Defined
Services

User-Defined
Services

JES2-Defined
Services

User- Defi ned
Services

JES2-Defined
Services

User-Defined
Services

JES2/User Selected Modified
$ MeT ------7 Master Control Table ----»::;. Table Pairs -----"">)> Services ~ JES2 Processing

Figure 2-11. Master Control Table and Table Pairs

2-44 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

General Table Coding Conventions

All tables that you may build already have a JES2 counterpart available as an
example in the JES2 code. The table type is defined by the corresponding macro,
that is, use $PCETAB to build a PCE table, $SCANTAB to build a scan table.
Each JES2 table begins with a TABLE = HASP specification. To code a user
table, begin with a $xxxT AB TABLE = USER specification. Subsequent lines
are added to specify the statement, command, or processor that you are defining,
such as the PCE name and the module containing the processor's code for a PCE
table entry or the valid parameter length and range in a SCAN table entry. Each
table is then ended by coding a $xxxT AB TABLE = END statement.

Overview of Modifiable Tables

$SCAN Tables

PCE Tables

TID Tables

OPT Tables

Each entry in the MCT points to a pair of tables (the JES2 table and the user
table). A brief description of the tables that may be accessed and overridden
follow. Each is discussed in greater detail later in this section.

Scan tables are used to process initialization statements, their parameters and
subparameters, and commands. Scanning can be recursive until all levels of an
initialization statement or command have been scanned for syntax requirements,
valid range, etc. The $SCAN facility is detailed below.

PCEs define the names, descriptions, IDs, and other characteristics of JES2
processors. User processors (PCEs) can be accessed by using the $PCETAB
macro and linking it to the USERPCET entry in the MCT. (Refer to "Table
Linkage" below for a description of the recommended linkage procedures.) These
tables reside in HASPT ABS and are accessed by the $PCET AB macro by using
the TABLE = USER specification. This facility is further described below.

Trace IDs can be mapped and generated by use of the $TIDT AB macro. These
tables are defined for formatting entries in the JES2 and user trace tables.

The JES2 initialization OPT (options table) defines the JES2 options, COLD I
WARM, FORMAT I NOFMT, REQ I NOREQ, CONSOLE, LIST I NOLIST,
LOG I NOLOG, PRMCKPT I ALTCKPT, and $P JES2. You can define others
and disable those previously defined by JES2 by modifying this table. (Refer to
JES2 Initialization and Tuning for a description and use of these options.) These
tables reside in HASPSTAB and are pointed to and accessed by use of the
$SCAN facility. Use $SCANTAB and the related $SCAN macros. This facility
is described in detail below.

LC23-0067-3 @ Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-45

MPS Tables

DTE Tables

WSTAB Tables

JES2 SSCAN Facility

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

The main parameter statements (JES2 initialization statements and their
parameters) are defined in the MPS table. (Refer to JES2 Initialization and
Tuning for a description and use of these initialization statements.) These tables
reside in HASPST AB and are pointed to and accessed by use of the $SCAN
facility. Use $SCANTAB and the related $SCAN macros. This facility is
described in detail below.

Daughter task element (DTE) tables can be mapped and generated by using the
$DTETAB macro and by using the $DTEDYN macro to facilitate subtask
attaches and detaches for the JES2 main task. These tables reside in HASPTABS.

The work selection criteria provided by JES2 to allow printers, punches, and the
offioad transmitters and receivers to selectively choose work are present in the
work selection tables (WSTABs). If you find the JES2-defined work selection
criteria inadequate to meet your needs you can define more criteria through use of
the work selection facility. These tables reside in HASPTABS and are pointed to
and accessed by using $WST AB macro.

JES2 provides a service facility for scanning parameter statement input
(initialization statement and operator commands) called $SCAN. It is a general
facility that defines a general grammar for the input statements to be processed,
allows for definition of the allowed input via tables, and provides for special
processing via exit routines called during the scan.

$SCAN is basically designed to perform most of the scanning required for
processing the JES2 initialization statements, with the remaining processing for
those statements being done by the exits from $SCAN, and to allow the use of
multiple tables to define the allowed parameter input. $SCAN can scan various
input structures, including those that require recursive calls to $SCAN itself. At
each level of recursion, $SCAN can use two tables of specifications that define the
allowed input at that level.

JES2 has implemented the scanning of its initialization options and its
initialization statements using $SCAN and a series of these table pairs. A
JES2-defined table has been built as the second table of each pair, and an
installation table can be defined as the first table to add to or modify the
specifications in the JES2 table. $SCAN can be useful, as well, in implementing
other types of statements within routines called from the $EXIT facility, such as
installation-defined operator commands or JECL statements.

2-46 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$SCAN Macros

Five macros are provided to aid your use of the $SCAN facility. These macros,
$SCAN, $SCANB, $SCANCOM, $SCAND, and $SCANTAB are fully
documented in Chapter 4, "JES2 Programmer Macros." It is important that you
review that material and understand the interrelationships of these macros before
attempting to implement any use of the $SCAN facility.

A brief overview of these five macros and their individual functions follows:

$SCAN: This macro is used to scan initialization and control statements and
some JES2 commands and place the specified keyword values in associated
control blocks. Also, $SCAN can be used to display keyword values. A pair of
scan tables, which are built by the $SCANT AB macro, the parameter or
command input, and a display area and routine (these are used for diagnostic
information in SET and DISPLAY calls) are passed to $SCAN as parameters.

$SCANTAB: To use the $SCAN facility, you must first create scan tables. The
$SCANTAB macro is used to create tables to define permissible input and syntax
for installation-defined statements, and options. Examples of scan table definition
are presented in the example code presented under "Examples of $SCAN Tables"
below.

$SCANB: Use $SCANB to create a backup copy of the control block fields in a
storage area prior to altering them during $SCAN facility execution. This backup
copy protects control block fields that $SCAN will change, and if an error occurs
during the scan, all backup fields are restored to their original values. The
interface between $SCAN and these exit routines is through the scan work area
(SCW A), the address of which is passed in register I and which is mapped by the
$SCANW A macro. ($SCANW A is not available for your use but accessed during
the expansion of the $SCAN macro.) $SCANB is only used by installations from
within a pre-scan or post-scan exit routine after it receives control from $SCAN.

$SCAND: This macro allows you to add text to a $SCAN display line during
either pre-scan or post-scan exit routine processing when these exits are called by
the $SCAN. $SCAND is used when $SCAN=DISPLAY or $SCAN=SETDISP
is specified and is only valid within an associated $SCAN exit routine called by
$SCAN or from within $SCAN itself.

$SCANCOM: The $SCANCOM macro allows JES2 to scan a text string and
locate the first non-blank, non-comment character. The address of this character
is returned to the calling module (typically $SCAN) to allow that caller to ignore
the comment text. This scanning is provided for both initialization statements
and commands. Comments on both initialization statements and commands must
be bound by the beginning U*) and ending (*') delimiters. If a delimiter is
missing, JES2 returns a note to that effect and passes a return code noting the
invalid comment.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 2 .. Customizing JES2 2-47

$SCAN-Related Control Blocks

"Restricted Materials of mM"

Licensed Materials - Property of mM

There are several control blocks related to $SCAN. First, the facility recognizes a
set of "primitive" control blocks specified in the scan table entries. They are the
HCT, the current PCE, DCTs, and the user control table (UCT). The UCT is
not generated or specifically used by JES2, but rather is an optional user control
block pointed to by the $UCT field of the HCT. Installations requiring a central
control block for use in exit routines or user modifications should generate a UCT
and use it as their central main task control block rather than adding new fields
to the HCT.

Additionally, scan table entries can indicate the control block from the previous
"level" of scanning or a temporary control block should be used. A subsequent
search for the actual required control block via control block chains and subscript
indexing can also be indicated by the table entries.

Another important control block for the JES2 uses of $SCAN is the JES2 master
control table (MCT). The MCT is pointed to by field $MCT in the HCT and it
contains the addresses of many JES2 statically-defined tables and related routines.
Importantly, the MCT contains the doublewords containing addresses of the scan
table pairs. The MCT is assembled into module HASPTABS in load module
HASJES20.

The scan table entries themselves form control blocks which are mapped by the
$SCANT AB macro. Also, during a scan, a work area is used by $SCAN and
passed to pre-scan and post-scan exit routines. The scan work areas are allocated
via $GETWORK and mapped by the $SCANW A macro.

Implementing $SCAN Tables

The $SCANT AB macro should be used to generate a scan table. Your
installation can define, for example, a table that describes the keywords and input
allowed on a JES2 control statement and use $SCAN and that table from a JES2
HASPRDR Exit 4 to implement your own JES2 job control statements.

As mentioned, the JES2 initialization options, initialization parameter statements,
and some operator commands are now implemented using $SCAN. (Refer to
JES2 Commands for a list of these commands.) Scan tables in the HASPSTAB
module make up the JES2 half of the table pairs that define those options and
parameters. Your installation can define its own scan tables to add to or replace
any or all of the JES2 scan table entries.

Each of the pairs of table addresses used in the implementation of the
initialization statements is defined in the MCT in HASPTABS. Your installation
can locate the MCT while running in a JES2 initialization exit (for example, Exit
0) and store the addresses of its tables in the MCTxxxTU fields of the MCT, or
you can point to your installation-defined UCT that contains a pair of table
addresses.

Optionally, the linkage editor can be used to define these table addresses to JES2
by linkediting them (and possibly the UCT) into HASJES20. This is possible
because the MCTxxxTU and $UCT fields are defined as the weak external

2-48 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

symbol names. The installation must name its scan tables with those specific
names (listed in Figure 2-12)
in order to use this method of providing user scan tables for the initialization

statements.

The installation tables can provide entries that define new initialization options or
statements, new parameters on lES2-defined statements, or new commands. Since
the installation table is searched first, JES2-defined entries can be functionally
replaced as well. The following scan tables are involved with the JES2
initialization statements. In each case, the 'xxx' described indicates the MCT
labels for the table address pair (MCTxxxTP), the installation table address
(MCTxxxTU), and the JES2 table address (MCTxxxTH), as well as the
installation table WXTRN (USERxxxT) used in the MCTxxxTU fields (the UCT
WXTRN is USERCT).

LC23-0067-3 ~ Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-49

OPT Initialization options

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

MPS Main Initialization parameter statements

Master Control
Table Name

APL
BAD
BUF
CAT
CKT
CND
COM
CON
DES
ELC
EBY
EPG
EPN
ETM
FSS
INR
JOB
JPY
LNE
LOG
MAS
NET
NJE
NOD
OFF
OFL
OJM
OJR
OJT
OPY
OSM
OSR
OST
OUT
PAR
PCD
PIT
PRT
PTD
PUD
PUN
RCV
RDR
RDV
RMT
RPR
RPU
RRD
SCT
SMF
SPD
STC
TPD
TRC
TSU
XIT

Parameters on
Initialization Statement

APPL
BADTRACK
BUFDEF
JOBCLASS
CKPTDEF
CONDEF
COMPACT
CONNECT
DESTID
ESTLNCT
ESTBYTE
ESTPAGE
ESTPUN
ESTIME
FSSDEF
INTRDR
JOBDEF
JOBPRTY
LINEnnnn
LOGONn
MASDEF
NETACCT
NJEDEF
NODEnnnn
OFFn.DV
OFFLOADn
OFFn.JR*
OFFn.JR
OFFn.JT
OUTPRTY
OFFn.SR*
OFFn.SR
OFFn.ST
OUTDEF
PITDEF
PCEDEF
INITnnnn
PRINTERnn
PRINTDEF
PUNCHDEF
PUNCHnn
RECVOPTS
READERnn
RnnnnDVx
RMTnnnn
RnnnnPRx
RnnnnPUx
RnnnnRDx
OUTCLASS
SMFDEF
SPOOLDEF
STCCLASS
TPDEF
TRACE
TSUCLASS
EXITnnn

• Indicates that this MCT name is used only to scan the subparameters contained on the
MOD = parameter of this statement.

Figure 2-12. JES2 Reserved Master Control Table Names

2-50 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982. 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Examples of $SCAN Tables

o

The three examples in Figure 2-13 show

(A) how to add a new simple initialization statement

(B) how to replace a parameter statement specification on the PRINTERnn
statement

(C) how to define a new initialization statement to provide an
installation-specific function with a single parameter.

AIl the specifications that can be made in scan table entries are described with the
$SCANT AB macro in Chapter 4.

Most of the capabilities of the $SCANTAB specifications and the $SCAN facility
are illustrated by reviewing the JES2 tables in HASPSTAB that define the
initialization statements.

The addresses of these tables can be specified to JES2 by including the tables in
an assembly module linkedited into HASJES20 or by having an Exit 0 or Exit 19
routine locate the tables and save their addresses in the MeT.

*
*
*
*
*
*

USER TABLE FOR MAIN INITIALIZATION STATEMENTS

'USERCAN' - USER DEFINED STATEMENT THAT SHOULD EFFECT THE
SAME ACTION AS JES2 'CANCEL'

*
*
*
*
*
*

* 'HASPSSSM' - USER DEFINED REPLACEMENT STATEMENT FOR THE *
* JES2 HASPSSSM STATEMENT - ALLOWS THE INPUT TO *
* BE ONLY 3-5 CHARACTERS LONG RATHER THAN 1-8. *
* *

SPACE 1
USERMPST $SCANTAB TABLE=USER

$SCANTAB NAME=HASPSSSM,FIELD=SSSMNAM,CB=HCT,CONV=CHARJANS, C
RANGE=(3,5) ,CALLERS=($SCIRPL,$SCIRPLC,$SCDCMDS), C
MSGID=827

$SCANTAB NAME=USERCAN,FIELD=CIRFLAGI,CB=PCE,CONV=FLAG, C
VALUE=(,CIRFICAN,FF),CALLERS=$SCIRPLC

$SCANTAB TABLE=END

Figure 2-13 (Part 1 of 3). Three Examples of $SCA:'\ITAB Tables

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-51

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

* *
*
*
*
*
*
*
*
*
*
*

USER TABLE FOR PRINTER INITIALIZATION STATEMENTS

'USERCLS' - USER DEFINED STATEMENT THAT SHOULD EFFECT THE
SAME ACTION AS JES2 'CLASS', EXCEPT ONLY

'FORMS'

FOR CLASSES A-Z.

- USER DEFINED REPLACEMENT KEYWORD FOR THE
JES2 FORMS PARAMETER - ALLOWS THE INPUT TO
BE ONLY 3-5 CHARACTERS LONG RATHER THAN 1-8.

*
*
*
*
*
*
*
*
*
*

SPACE 1

USERPRTT $SCANTAB TABLE=USER
$SCANTAB NAME=FORMS,CB=PARENT,DSECT=DCTDSECT,MINLEN=I, C

FIELD=DCTFORMS,CONV=CHARAN,RANGE=(3,5)
$SCANTAB NAME=USERCLS,CB=PARENT,DSECT=DCTDSECT,CONV=CHARA, C

FIELD=(DCTCLASS,PITCLLEN),RANGE=(I,PITCLLEN-l)
$SCANTAB TABLE=END

Figure 2-13 (Part 2 of 3). Three Examples of $SCANTAB Tables

2-52 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

*
*
*
*
*
*
*
*
*
*
*

USER TABLE TO DEFINE A NEW INITIALIZATION STATEMENT
TO DEFINE THE MAXIMUM NUMBER OF VALID USERS

'USERDEF' - USER DEFINED STATEMENT TO SPECIFY THE
NUMBER OF USERS

NUM - PARAMETER ON THE 'USERDEF'
STATEMENT TO DEFINE THE MAXIMUM
NUMBER OF DEFINED USERS

*
*
*
*
*
*
*
*
*
*
*

SPACE 1

UDEFTAB $SCANTAB TABLE=USER
$SCANTAB NAME=USERDEF,CB=UCT,CONV=SUBSCAN, C

SCANTAB=(UCTSCANT,UCT),
TABLE=END

USUBSCAN $SCANTAB TABLE=USER
$SCANTAB NAME=NUM,CB=UCT,MINLEN=3,DSECT=UCT,FIELD=$UCTNUM, C

CONV=NUM,RANGE=(O,9)
$SCANTAB TABLE=END
SPACE 1
UCT

USERCB
UCTSCANT
$UCTNUM

EQU
DC
OS

V(USUBSCAN)
F

Figure 2-13 (Part 3 of 3). Three Examples of $SCANTAB Tables

The above examples are only examples of defining and modifying initialization
statements by use of the $SCAN facility. The source module must. of course.
include all standard 1ES2 statements. such as: $MODULE and $MODEND.

Implementing peE Tables

Processor control element (PCE) tables are used by the $PCEDYN service to
dynamically add or delete JES2 PCEs that define PCE types and their attributes.
peE tables are generated in the HASPT ABS module by coding the $PCET AB
macro. This macro maps and generates table entries. Use the TABLE = HASP
or TABLE = USER keyword specification to specify the type of table. If you do
not code a label for this line of code the label defaults to HASPPCET for HASP
tables and USERPCET for a USER table. If this keyword is coded. no further
keywords should be coded: and if coded. JES2 ignores them. Only use the
TABLE = keyword to begin the table. The only other notation that can be made
with the TABLE= keyword is the addition of NOENTRY to the
TABLE = USER specification. The NOENTRY operand instructs JES2 not to
generate an ENTRY statement for this label.

LC23-0067-3.l' Copyright IBM Corp. 1982.1987 Chapter 2. Customizing JES2 2-53

UTABLEl

HTABLEl

$PCETAB
$PCETAB

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

The succeeding lines coded for the macro specify the module. PCE address, PCE
work area. etc. by using the remaining optional macro keywords. Finally. the
table is ended by coding the TABLE = END specification. No further keywords
or operands can be coded on this line. Figure 2-14 presents two examples of
PCE tables.

TABLE=USER,NOENTRY BEGIN USER TABLEl
NAME=PCETYPEA,MODULE=HARRYS, C

WORKLEN=256
$PCETAB TABLE=END END USER TABLEl
$PCETAB TABLE=HASP BEGIN HASP TABLEl
$PCETAB NAME=PCETYPEB,MODULE=LLOYDS,

WORKLEN=128 C
$PCETAB TABLE=END END HASP TABLEl

Figure 2-14. Two Examples of $PCETAB Tables

Relate the PCE tables to JES2 by one of the two following methods:

• locate the master control table (MCT) while running an initialization exit
(Exit 0) and store the address of its table in the MCTPCETU field

• define the table with the reserved name USERPCET and linkedit it with
HASPJES20

Implementing Trace Tables

JES2 uses trace tables to define both JES2-defined and user-defined trace IDs.
These tables are used during JES2 initialization processing of the trace control
bytes in the subsystem vector table (SVT) and by the trace log processor to
provide formatting information when constructing trace table entries. The
$TIDT AB tables located in HASPT ABS define each identifier. its associated name
and formatting subroutine. New entries are generated using the $TIDT AB macro
as described below.

Use TABLE = HASP or TABLE = USER on the $TIDTAB (trace ID table)
macro to define either a JES2- or user-defined trace table. respectively. This
macro further defines the name for the trace output. a trace identifier. and an
output formatting routine. Currently, there are 16 trace identifiers defined by
IBM. User-defined trace tables should be assigned identifiers beginning with 255
and decreasing. Initial trace option values are defined on the TRACE
initialization statement and modifiable by operator command. (Refer to
Initialization and Tuning for the definition of the trace identifiers and the TRACE
statements.) Specific JES2 activities are traced as defined by the $TRACE macro;
this macro is also required to allocate a JES2 trace table entry. (Refer to the
$TRACE macro in Chapter 4 for further information on this macro.)

2-54 JES2 User Modifications and Macros LC23-0067-3 Ii) Copyright I BM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

TID255

Trace tables are always ended with a TABLE = END entry. When the TABLE =

keyword is used (to begin or end a table), no other keywords are allowed. An
example of a user-defined table follows:

$TIDTAB TABLE=USER
$TIDTAB NAME=$USERTRC,ID=255,

FORMAT=TROUT255
$TIDTAB TABLE=END

BEGIN USERTAB255
C

END USERTAB255

The above example defines a user trace table named $USERTRC with associated
identifier of 255 and using the TROUT255 subroutine to format the trace output.

Relate the trace id tables to JES2 by one of the two following methods:

• locate the master control table (MCT) while running an initialization exit
(Exit 0) and store the address of its table in the MCTTIDTU field

• define the table with the reserved name USERTIDT and linkedit it with
HASPJES20

Implementing DTE Tables

JES2 uses daughter task element (DTE) tables to define both the JES2-defined
and user-defined subtask management information. These tables are used when
calling service routines in HASPDYN to attach ($DTEDYNA) and detach
($DTEDYND) subtasks. By using DTE tables, JES2 provides a centralized
subtask management facility through a general subtask ATTACH/DETACH
service. This facility is available for your use by creating your own DTE tables.

Use the $DTET AB macro to define general subtask characteristics. This macro
allows you to create subtasks without modifying inline JES2 code. These subtasks
can then be automatically attached during JES2 initialization processing.

At JES2 termination, subtasks, that were previously attached are automatically
detached through a $DTEDYN macro call.

LC23-0067-3<;: Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-55

Subtask Management

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

The JES2 subtask management function is centralized though a general subtask
ATTACH/DETACH service. This service provides MVS ATTACH/DETACH
processing, centralized subtask management, error checking, and messages to
assist code debugging. You can access and use these subtask management
services without the need of modifying JES2 code in support of user subtasks.

Daughter Task Element (DTE) Structure

The daughter task element structure is comprised of an MVS-style save area, a
common DTE control block foundation and an optional variable length work
area. The DTEs are on a double headed and double threaded chain. The HCT
contains $DTEORG which is the origin of the DTE chain, and $DTELAST, the
last DTE on the chain. The DTEs themselves contain pointers DTENEXT and
DTEPREV. Within the chain, the DTEs are grouped by subtask type with HCT
pointers into the DTENEXT chain.

In addition to the chain fields, the DTE foundation contains three ECD pairs used
for subtask/main task communication. The DTE contains a pointer to the
subtask task control block (TCD) (the TCD also points back to the DTE). The
DTE foundation contains an error recovery area (ERA) and a general parameter
list area, and if there is a one-to-one relationship between the subtask and a PCE,
the DTE foundation contains a PCE pointer.

$DTEDYN Services

The generalized subtask management service is called $DTEDYN and invoked
through the $DTEDYN macro. The service, which resides in HASPDYN,
contains two entry points. Those entry points are $DTEDYNA for ATTACH
and $DTEDYND for DETACH. These are two different service routines called
by one macro. The $DTET AD tables are used to define general subtask
characteristics such as whether the subtask is attached during JES2 initialization,
whether a unique subpool 0 is required, and whether the subtask can be forced
down (that is, abnormally terminated through the specification of ST AE = YES on
the MVS DETACH macro) during JES2 termination.

You can use the $DTETAD tables to create your own subtasks without modifying
JES2 code. Subtasks can be automatically attached during JES2 initialization,
from a user-defined exit routine or through a user-defined processor. Subtasks
are able to communicate with a user-defined processor using JES2 XECDs or the
generalized dispatcher queues. Subtasks can be detached by a user-defined
processor, exit routine, or automatically detached during JES2 termination. Also,
catastrophic errors ($DOx) are issued by $DTEDYN to catch user logic and table
errors early during testing.

2-56 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Generalized JES2 Dispatcher Support

The JES2 dispatcher is completely generalized, thereby making it easy for you to
add processor (PCE) resource queues without source code modification.

There are 64 general resource queues, of which JES2 uses the first 23. The
resource queue heads are in their own area pointed to by the $DRQUES field of
the HCT. The HCT also contains the event control fields and the $READY
queue.

You can issue your own $WAITs and $POSTs, using equated symbols (or
hard-coded values, that is, $W AIT 54) in the same manner as JES2. You can
also use $$POST to post JES2 main task resources from subtasks or other address
spaces. The cross-system operand (MASPOST =) on the $POST macro is also
supported in this generalized scheme.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-57

2-58 JES2 User Modifications and Macros

"Restricted Materials of IBMtt

Licensed Materials - Property of IBM

LC23-0067-3 © Copyright IBM Corp. 1982. 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Chapter 3: IBM-Defined Exits

Exit Implementation Table 3-3
Exit 0: Pre-Initialization 3-5
Exit I: Print/Punch Separators 3-8
Exit 2: JOB Statement Scan 3-13
Exit 3: JOB Statement Accounting Field Scan 3-16
Exit 4: JCL and JES2 Control Statement Scan 3-20
Exit 5: JES2 Command Preprocessor 3-26
Exit 6: Internal Text Scan 3-30
Exit 7: JCT Read/Write (JES2) 3-34
Exit 8: JCT Read/Write (USER) 3-36
Exit 9: Job Output Overflow 3-38
Exit 10: $WTO Screen 3-41
Exit II: Spool Partitioning Allocation ($TRACK) 3-43
Exit 12: Spool Partitioning Allocation ($STRAK) 3-49
Exit 13: TSO/E Interactive Data Transmission Facility Screening and

Notification 3-53
Exit 14: Job Queue Work Select - $QGET 3-58
Exit 15: Output Data Set/Copy Select 3-60
Exit 16: Notify 3-63
Exit 17: BSC RJE SIGNON/SIGNOFF 3-65
Exit 18: SNA RJE LOGON/LOGOFF 3-68
Exit 19: Initialization Statement 3-71
Exit 20: End of Input 3-75
Exit 21: SMF Record 3-77
Exi t 22: Cancel/Status 3-79
Exit 23: FSS Job Separator Page (JSPA) Processing 3-82
Exit 24: Post Initialization 3-85
Exit 25: JCT Read (FSS) 3-88
Exit 26: Termination/Resource Release 3-90

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3: IBM-Defined Exits

JES2 User Modifications and Macros

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

LC23-0067-3 @ Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Chapter 3. ffiM-Defined Exits

This is a reference section. It provides the infonnation you need in writing exit
routines for the IBM-defined exits.

The exits are described in the order of their identification numbers, the ID
numbers assigned to them on their respective $EXIT macros. Each exit
description begins with a discussion of its recommended use, followed by a
breakdown of environmental considerations, linkage conventions, and other
programming considerations specific to the particular exit being described. (Note:
For convenience, except where single or multiple exit routines are mentioned
specifically--as in the distinction between return code 0 and return code 4--the
following descriptions imply either one or more exit routines by the inclusive tenn
"exit routine." For example, "your exit routine may replace the standard routine"
should be read to imply "your exit routine or exit routines may replace the
standard routine.") Figure 3-1 summarizes for each exit the exit points in JES2
where your exit routine can get control.

LC23-0067-3 @ Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-1

3-2 JES2 User Modifications and Macros

"Restricted Materials of ffiM"

Licensed Materials - Property of IBM

LC23·0067·3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Exit Implementation Table

The following table is a reference to the various exit points that are defined for
the IBM-defined exits and the JES2 environment in which the exit point is taken.
Use this table as an aid in implementing your exit routines.

Exit Exit Title ContainiDg CSECT Exit Point(s) Environment

0 PRE-INITIALIZATION HASPIRMA NEXITO Main Task (Initialization)
Job Exit Mask - N/A

I PRINT/pUNCH SEPARATOR HASPPRPU PEXITSC Main Task
PEXITTR Job Exit Mask - A

2 JOB STATEMENT SCAN HASPRDR RXITJBCD Main Task
RXITJBCC Job Exit Mask - A

3 JOB STATEMENT ACCOUNTING HASPRDR RXITACC Main Task
FIELD SCAN Job Exit Mask - A

4 JCL AND JES2 CONTROL HASPRDR RXITCCA Main Task
STATEMENT SCAN RXITCCB Job Exit Mask - A

RXITCCC

5 JES2 COMMAND HASPCOMM COMMEXIT Main Task
PREPROCESSOR Job Exit Mask - N/A

6 INTERNAL TEXT SCAN HOSCNVT subtask of XCSTCUET Subtask
HASPCNVT XCSTMUEE Job Exit Mask - A

XCSTCUEE

7 JCT READfWRITE (JES2) HASPNUC JlOEXIT Main Task
Job Exit Mask - A

8 JCT READ/WRITE (USER) HASPSSSM HXJCTOI User address space
HXJCT02 Job Exit Mask - A
HXJCT03
HXJCT04

9 JOB OUTPUT OVERFLOW HASPAM SVCOUTX User address space
Job Exit Mask - A

10 $WTOSCREEN HASPCON WTOEXIT Main Task
Job Exit Mask - N/A

II SPOOL PARTITIONING HASPTRAK. $TRACKX Main Task
ALLOCATION -- STRACK Job Exit Mask - A

12 SPOOL PARTITIONING HASPSSSM $STRAKX User address space
ALLOCATION -- $STRAK Job Exit Mask - A

13 TSO/E INTERACTIVE DATA HASPNET MAILXIT Main Task
TRANSMISSION FACILITY Job Exit Mask - N/A
SCREENING AND
NOTIFICATION

14 JOB QUEUE WORK SELECT HASPNUC QVALID Main Task
Job Exit Mask - N/A

IS OUTPUT DATA SET/COPY HASPPRPU PEXTI5D Main Task
,

SEPARATORS PEXTI50 Job Exit Mask - A

16 NOTIFY HASPHOPE OPNEXIT Main Task
Job Exit Mask - A

Figure 3-1 (Part 1 of 2). Exit Implementation Table

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-3

Exit Exit Title Containing CSECf

17 BSC RJE HASPBSC
SIGN-ONjSIGN-OFF

i8 SNARJE HASPSNA

19 INITIALIZATION STATEMENT HASPIRPL

20 END OF JOB INPUT HASPRDR

21 SMFRECORD HASPNUC

22 CANCEL/STATUS HASPXEQ

23 JOB SEPARATOR HASPFSSM
PROCESSING (JSPA)

24 POST INmALIZATION HASPIRA

2S JCf READ I/O (FSS) HASPFSSM

26 TERMINATION/RESOURCE HASPTERM
RELEASE

Figure 3-1 (part 2 of 2)_ Exit Implementation Table

3-4 1£82 User Modifications and Macros

"Restricted Materials of IBM"
LiceDsed Materials - Property of IBM

Exit Point Eovlroomeat

MSOXITA Main Task
MSOXITB Job Exit Mask - NjA
MDSXJTA

MICEXIT Main Task
MALGXIT Job Exit Mask - NjA
MSNALXIT
MSNAXT2

NPLEXIT Main Task (Initia1ization)
Job Exit Mask - NjA

REXITA Main Task
Job Exit Mask - A

SMFEXIT Main Task
Job Exit Mask - NjA

ZTCSEXIT Main Task
YTCSEXIT Job Exit Mask - N/A

JSPAXIT Functional Subsystem
Job Exit Mask - A

NEXIT24 Main Task (Initialization)
Job Exit Mask - N/A

FGDSX2S Functional Subsystem
Job Exit Mask - A

EX26 Main Task (Termination)
Job Exit Mask - N/A

LC23-0067-3 e Copyright IBM Corp. 1982,1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM EXIT 0

Exit 0: Pre-Initialization

FUNCTION:

This exit allows you to control the start or the initialization process through
various means, such as:

• Processing JES2 initialization options, specifically the JES2 cataloged
procedure parameter field and/or the replies to the $HASP426 and $HASP427
WTORs. The options can optionally be altered or bypassed.

• Acquiring installation control blocks and installation work areas ror later
initialization

• Providing user fields and addresses or installation-defined tables in the MCT.
The table pointers in the master control table (MeT) allow your installation
to extend JES2 processing or user tables to define JES2 initialization to
extend or tailor certain table-driven JES2 runctions. Define user table
pointers in the MeT as MCTstmTU. where 'stm' is the JES2 initialization
statement that you are replacing. RcI"er to "Defining JES2 Tables" in
Chapter 2 ror a list of the MCT names.

• Determining whether or not JES2 initialization is to proceed.

ENVIRONMENT: JES2 main task (Initialization) - JES2 dispatcher disabled

POINT OF PROCESSING:

This exit is taken in the initialization routine that processes the initialization
options (IROPTS. in module HASPIRMA). The initialization options are taken
rrom the parameter field specified via the JES2 procedure or START command.
or are requested from the operator via the $HASP426 WTOR message if
necessary. The point of processing ror this exit is just berore parsing and
analyzing the options and setting appropriate flags. Exit 0 may be called a
mUltiple number or times. because new options may be requested repetitively via
the $HASP427 WTOR message until valid options are specified or the exit directs
JES2 to bypass the options analysis.

The exit control blocks and the exit efrector are not initialized at this point in
IROPTS when Exit 0 gets control. Therefore, the normal JES2 exit facility
initialization parameters cannot be used. IROPTS searches for module
HASPXITO in the HASPINIT load module and then, ir necessary, in the
HASJES20 load module. The name HASPXITO is defined as a weak external
reference (WXTRN) in both load modules. If HASPXITO is not found via this
search, an MVS LOAD is issued for a separate load module named HASPXITO.
If HASPXITO is round through these means. a temporary XIT and XRT are built
for the exit facility and the $EXIT macro. The HASPXITO module's MIT is
searched for all entry point names of the rorm "EXITOnnn" and the entry point
names round and the associated addresses are placed in the temporary XRT in the
order they are found.

If HASPXITO is round during JES2 initialization, an entry ror that module is
placed in the exit facility LMT as if a LOAD initialization statement had been

LC23-0067-3 {) Copyright IBM Corp. 1982. 1987 Chapler 3. IBM-Defined Exits 3-5

EXIT 0
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

processed for it and the module is not deleted. Therefore other exit routines (e.g.,
for Exits 19 and 24) and installation-defined tables (e.g., initialization statement
$SCANT AB tables) can be assembled in the same module with the Exit 0 routines
without having them deleted by JES2 after initialization completes. Note,
however, that HASPXITO will be deleted from storage with HASPINIT if
HASPXITO is linkedited with the HASPINIT load module.

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT
ROUTINE:

RO A code indicating where the initialization options were specified

o Options passed arc from the EXEC card. the PARM field
4 Options passed arc from the SlIASP426 message WTOR reply
8 Options passed are from a $HASP427 message WTOR reply

R I Address of a 2-word parameter list with the following structure:

R2-RIO

RII

RI2

RI3

Word I (+ 0) address of the initialization options string
Word 2 (+4) length of the initialization options string

N(A

Address of HCT

NiA

Address of initialization PCE - the PCE work area for this PCE is the common
initialization routine work area. mapped by the $CIRWORK macro.

R 14 Return address

R IS Entry address

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:

RO-RI N/A
RI5 A rcturn code

RETURN CODES:

o Tells JES2 that if there arc any additional exit routines associated with this exit. call the next
consecutive exit routine. If there are no additional exit routines associated with this exit.
continue with normal IROPTS processing ..

4 Tells JES2 to ignore any additional exit routines associated with this exit and to continue with
normal IROPTS processing.

II Tells JES2 to bypass processing of the options string and assume the current values for the JES2
initialization options nags are correct.

12 Tells JES2 to terminate proc~ssing. This results in the SHASP864 error message to the operator.

JOB EXIT MASK: This exit point is not subject to job exit mask suppression.

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: $HASPEQU. $HCT, $MIT. $PCE. $CIRWORK

3-6 JES2 User Modifications and Macros LC23-0067 -3 © Copyright rBM Corp. 1982. 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

OTHER PROGRAMMING CONSIDERATIONS:

EXIT 0

1. Tracing for this exit is disabled because of its sequence in the initialization
process.

2. JES2 does not have a recovery environment established at the processing
point for Exit 0 (the JES2 EST AE will process termination but not recover).

3. Because Exit 0 is called early in JES2 initialization, some main task services
may not be functional and most control blocks and interfaces are not yet
established. The JES2 dispatcher is not yet functional, so MVS protocol
should be used in Exit 0 routines (WAIT rather than $WAIT, ESTAE rather
than $ESTAE, etc.).

4. If Exit 0 returns a return code of 12, IROPTS issues message $HASP864
indicating that Exit 0 terminated initialization. IROPTS then returns to the
IRLOOP with return code 8, indicating that the $HASP428 message should
be issued before final termination.

5. The initialization options string passed to Exit 0 is first 'folded', that is all the
characters are 'folded' up to their capitalized versions.

6. The processing that JES2 does for the initialization options string after calling
Exit 0 is performed using the JES2 $SCAN facility and a table that defines
the options input allowed and how to process it. The table is actually
composed of two tables, an installation-defined table followed by a
JES2-defined table.

By specifying installation-defined tables, an installation can implement its own
initialization options or replace the JES2 definition for existing options. Thus
this function can be accomplished without implementing Exit 0, or in
conjunction with an implementation of Exit O. Also, the $SCAN facility itself
can be used from an Exit 0 exit routine to process initialization options.

LC23-0067-3 ~ Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defmed Exits 3-7

"Restricted Materials of IBM"

EXIT 1 Licensed Materials - Property of IBM

Exit 1: Print/Punch Separators

FUNCTION:

This exit allows you to provide an exit routine to produce your own print/punch
separators and to control production of standard print/punch separators.

When using this exit to create your own separators. you can devise entirely unique
separators or you can create variations on the standard separators. When using
this exit to control the production of standard separators. you can unconditionally
suppress production of standard separators. you can direct JES2 to
unconditionally produce standard separators, or you can allow JES2 to produce
any standard separators that are in effect. Whether or not standard separators
are in effect for any particular device is determined by how the initialization
statement and operator command separator options have been defined at your
installation at any given time; these options are described in the "Other
Programming Considerations" below.

For punch devices, JES2 provides the option of producing start-of-job header
cards and trailer cards. For printers, JES2 provides the option of producing
start-of-job header pages, continuation-of-job header pages, and trailer pages.
Continuation-of-job header pages are produced at each output data set group
(represented by a work JOE) within a job and for the continuation of a data set
group if printing has been interrupted. In each of these instances. whether or not
the standard separator is in effect. when this exit is implemented and enabled your
exit routine receives control. Therefore. you have the ability to control the
production of separators on a job-by-job basis and, for printers/punches on a data
set group basis.

Each time your exit routine is called, you can direct JES2:

• To produce only your own separator (unconditionally suppressing production
of the standard separator)

• To produce only the standard separator. if it happens to be in effect (without
producing your own separator)

• To produce the standard separator unconditionally

• To produce your own separator follO\ved by the standard separator. if it
happens to be in effect (for example. your own start-of-job header page
followed by the standard start-of-job header page)

• To produce your own separator and then to produce the standard separator
unconditionally

• To produce no separator (by not producing your own separator and by
suppressing production of the standard separator)

Two exit points establish this exit. The first. at label PEXITSC. provides for
insertion of a start-of-job header page/card or a job continuation header page exit

3-8 JES2 User Modifications and Macros LC23-0067-3< Copyright IBM Corp. 1982.1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM EXJrTl

routine. The second, at label PEXITTR, provides for insertion of a trailer
page/card exit routine.

ENVIRONMENT: JES2 main task

POINT OF PROCESSING:

This exit is taken from the HASPPRPU module in the JES2 main task. Both exit
points occur prior to the check for standard separator pages.

Exit point PEXITSC occurs in the PTESTSEP area of the PHEADER (produce
job header) subroutine, prior to the call of PUNCHSEP, if a standard separator
card is to be produced, or PRINTSEP, if a standard separator page is to be
produced.

Exit point PEXITTR occurs in the PPDONE (print/punch processor termination)
routine, prior to the call of PRINTTR, if a standard trailer page is to be
produced.

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT
ROUTINE:

RO A code indicating whether a header page or card, continuation page, or trailer page is
being processed

o Indicates a start-of-job page or card
4 Indicates a continuation-of-job page
8 Indicates a trailer page or card

RI Address of the printer or punch OCT

R2-R9 N/A

RIO Address of the JCT

RII Address of the HCT

RI2 N/A

RI3 Address of the PCE

RI4 Return address

RIS Entry address

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:

Ro-RI N/A
RIS A return code

RETURN CODES:

o Tells JES2 that if there are any additional exit routines associated with this exit, call the next
consecutive exit routine. If there are no additional exit routines associated with this exit,
produce any installation-defined separator that has been created and, if standard separator
production is in effect for the printer or punch, produce a standard separator.

4 Tells JES2 to ignore any additional exit routines associated with this exit, to produce any
installation-defined separator that has been created and, if standard separator production is in
effect for the printer or card punch, produce a standard separator.

LC23-0067-3 ~ Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-9

"Restricted Materials of IBM"

EXIT 1 Licensed Materials - Property of IBM

8 Tells JES2 to produce any installation separator that has been created and to unconditionally
suppress production of the standard separator.

12 Tells JES2 to produce any installation separator that has been created and to unconditionally
(that is, even if the printer has been set to S = N) produce the standard separator (following
production of any user separator).

JOB EXIT MASK: This exit is subject to job exit mask suppression.

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: $DCT, $HASPEQU, $HCT, $JCT, $MIT, $PCE

OTHER PROGRAMMING CONSIDERATIONS:

1. You cannot use this exit to modify the standard separator routines directly.
If you intend to produce a modified version of a standard separator, your exit
routine must replace the standard separator routine entirely and is responsible
for producing the standard separator elements that you want to retain as well
as your new or modified separator elements.

2. This exit is available to provide a user-written separator page for local or RJE
printers only. There is no separator page for JES2 or user-supplied
networking output. If separator pages are required for networking output
jobs, they must be supplied (through use of this exit) at the destination node
when printed

3. The DCTPPSWS flag in the DCT indicates whether or not standard
separators are to be produced for a particular device.

4. For each device, initialization statements first determine whether or not
standard separators are in efTect--that is, whether or not, without the
intercession of an exit routine, JES2 would normally produce or suppress
standard separators.

For a local printer, the NOSEP parameter of the PRTnnnn statement
specifies that separator pages are not to be produced, and the SEP parameter,
the default, specifies that separator pages are to be produced. However, even
if SEP is specified, if the local printer separator page line count parameter,
SEPLINE parameter on the PRINTDEF statement, is set to zero, no
separator pages are produced.

For a remote printer, the NOSEP parameter of the Rnnnn.PRm statement
specifies that separator pages are not to be produced, and the SEP parameter,
the default, specifies that separator pages are to be produced. However, even
if SEP is specified, if the remote printer separator page line count parameter,
RSEPLINE parameter on the PRINTDEF statement, is set to zero, no
separator pages are produced.

For a local card punch, the NOSEP parameter of the PUNnn statement
specifies that separator cards are not to be produced, and the SEP parameter,
the default, specifies that separator cards are to be produced.

3-10 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM EXIT 1

For a remote card punch, the NOSEP parameter of the Rnnnn.PUm
statement specifies that separator cards are not to be produced, and the SEP
parameter, the default, specifies that separator cards are to be produced.

After JES2 has been started, the operator can use the S option of the $T PRT
or $T PUN command to change the status of any printer or card punch. For
any device, the operator issues the $T command with S=Y to specify that
standard separators are to be produced and with S = N to specify that
standard separators are not to be produced.

5. Use the $PRPUT service routine to produce any new separators created by
your exit routine. $PRPUT accesses the same routines used by HASPPRPU
to produce output. It performs all necessary interfacing with the low-level
CCW building and I/O routines in HASPPRPU. $PRPUT constructs a CCW
for each data record to be output. It then calls PPUT to put the CCW into
an output buffer. Note that the data area supplied to $PRPUT must be
fixed. Use $GETBUF to supply this routine with buffers and $FREEBUF to
release them after your separator has been created. Buffers supplied to
$PRPUT must be HASP-type buffers.

6. When using $PRPUT with WAIT = NO, I/O does not occur synchronously;
the device does not physically process the data areas until either a $PRPUT
macro specified with WAIT = YES is issued or the CCW area is exhausted.
Therefore, do not reuse data areas until after you issue $PRPUT with
WAIT = YES specified.

7. Use the $PBLOCK service routine to create block letters on any new separator
page created by your exit routine. Note that, for a local printer, if the
$PRIDCT separator page line count parameter is specified as less than 30
and, for a remote printer, if the $TPIDCT separator page line count
parameter is specified as less than 30, no block letters can be produced. Use
$GETBUF to supply this routine with buffers and $FREEBUF to release
them after your separator has been created. Buffers supplied to $PBLOCK
must be HASP-type buffers rather than PP-type buffers.

8. If the spooling capabilities of a remote SNA device (such as the 3790) are in
use, use the $SEPPDIR service routine to send a peripheral data information
record (PDIR) to the device. Use the $GETBUF macro to supply this
routine with buffers and the $FREEBUF macro to release them after your
separator has been created. Buffers supplied to $SEPPDIR must be
HASP-type buffers.

9. If a hardware error or intervention situation interrupts $PRPUT processing,
Exit I will lose control. Whatever resources (for example, JES2 buffers or
MVS virtual storage) obtained by this exit routine are not unallocated by
JES2 at this time. You can prevent this situation from occurring if your exit
routine saves the address of the resources in a PCE field such as PCEUSERO
and checks for an address(es) upon entry to the exit routine. Previously
acquired resources can thereby be reused. Before returning to JES2, this
routine should release these resources and the pointer fie1d(s) used should be
zeroed.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-11

EXIT 1
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

10. To avoid feeding blank pages through your printer. be certain to include a
page eject statement in your exit routine following the trailer separator page.
This is required by some printers because the printer is not repositioned to the
"top of forms" after printing the trailer page.

II. If JES2 abnormally terminates (A BENDS) when Exit 1 is enabled. be certain
to check the following:

• $PRPUT must be printing from a fixed area of storage, that is, an area
obtained with $GETBUF FIX = YES.

• $PRPUT is coded with WAIT = YES to ensure that the data is actually
printed prior to freeing the buffer.

• The returned buffer is not being used.

• The I/O processing does not place data beyond the buffer limit.

• The exit is JES2 reentrant.

12. Notc all rccovclY: There is no JES2 recovery in effect. As with every exit.
you should supply your own recovery within your exit routine.

3-12 JES2 User Modifications and Macros LC23-0067-3 ((1 Copyright IBM Corp. 1982. 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Exit 2: JOB Statement Scan

FUNCTION:

EXIT 2

This exit allows you to provide an exit routine for scanning the complete JOB
statement image, and for setting the corresponding fields in the appropriate JES2
control blocks. If this exit is implemented and enabled, it is taken whenever JES2
encounters a JOB statement or a JOB continuation statement.

You can also use your exit routine to interpret JOB statement input and, on the
basis of this interpretation, to decide whether to cancel the job, to purge it from
the system, or to allow it to continue processing normally. Your routine can also
aIter JOB statement parameters and supply additional JOB statement parameters
(to include accounting information). If necessary, when supplying expanded JOB
statement data, your routine can pass an additional JOB continuation statement
image back to JES2.

You can use this exit to directly alter the JCT. Since, if enabled, this is usually
the first exit taken for a job, you would use this exit if you wanted to control
(enable or disable) other exits on a job-by-job basis by setting the job exit mask in
the JCT. For more information, see "Job-Related Exits" in Chapter 2. If you
want to implement spool partitioning, you can use this exit to set the spool
partitioning mask in the JCT. For more information, see the description of spool
partitioning in the description of Exit II below.

If this exit isn't taken, JES2 continues with the standard HASPRDR JOB
statement scan processing.

This exit is established by two exit points. The first, at label RXITJBCD, gives
control to your routine when JES2 encounters a JOB statement. The second, at
label RXITJBCC, gives control to your routine when JES2 encounters a JOB
continuation statement.

ENVIRONMENT: JES2 main task

POINT OF PROCESSING:

This exit is taken from the JES2 main task, from the HASPRJCS subroutine of
HASPRDR during JOB statement processing.

Exit point RXITJBCD occurs after the JCT and JOT have been obtained and
initialized [or a new job but before HASPRDR performs its standard JOB
statement scan and before any spool space has been assigned.

In the case of JOB continuation statements, exit point RXITJBCC occurs in
subroutine RCONTNUE.

Note: Refer to Appendix D, "JES2 Exit Usage Limitations" for a listing of
specific instances when this exit will be invoked or not invoked.

LC23-0067-3 (p Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-13

EX][T 2
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT
ROUTINE:

RO A code indicating the type of JOB statement being scanned

o indicates an initial JOB statement image
4 indicates a subsequent JOB continuation statement

RI Address of a 3-word parameter list with the following structure:

Word I (+0) points to the JOB statement image buffer
Word 2 (+4) points to the exit flag byte, RDWFLAGX, in the PCE
Word 3 (+8) points to the JCfXWRK field in the JCT

R2-R9 N/A

RIO Address of the JCT

Rll Address of the HCT

RI2 N/A

RI3 Address of the PCE

RI4 Return address

RIS Entry address

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:

RO-RI N/A
RIS A return code

RETURN CODES:

o Tells JES2 that if there are any additional exit routines associated with this exit, call the next
consecutive exit routine. If there are no additional exit routines associated with this exit,
continue with normal HASPRDR processing.

4 Tells JES2 to ignore any additional exit routines associated with this exit and to continue with
normal HASPRDR processing.

8 Tells JES2 to cancel the job; output (the incomplete JCL images listing) is produced.

12 Tells JES2 to purge the job; no output is produced.

JOB EXIT MASK: This exit is subject to job exit mask suppression. Note,
however, that because this exit is used to set the job exit mask, it can only disable
itself for a second invocation, for a JOB continuation statement.

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: SPCE, SRDRWORK, $JCT, $HCT, $BUFFER, SMIT,
$HASPEQU, RPL

OTHER PROGRAMMING CONSIDERATIONS:

1. This exit is suitable for setting default values in the JCT because the JOB or
JOB continuation statements have not been scanned. However, exercise
caution in using this exit to alter the JCT. Because JCL processing is not
complete at this point, subsequent JCL processing can potentially override
certain fields in the JCT that you may intend to set from this exit. Unless

3-14 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM EXIT 2

you are certain that further JCL processing will not override the JCf fields
you intend to set from this exit, consider setting those fields from Exit 3,
which occurs later in the HASPRDR processirtg routine. However, because
this is usually the first exit taken for a job, this is the optimum exit for certain
JCL alterations-notably, for setting the job exit mask (JCTXMASK) and the
spool partitioning mask (JCTSAMSK).

2. An 80-byte work area in the JCf, JCTXWRK, is available for use by your
routine. If your routine requires additional work space, use the GETMAIN
macro to obtain storage (and the FREEMAIN macro to return it to the
system when your routine has completed).

3. When passing a return code of 0 or 4, your exit routine can expand the JOB
statement to include additional input by returning an additional statement
image. JES2 receives this continuation statement as the next statement to be
read and processed by HASPRDR. To return this job continuation statement
to JES2, (1) move a comma into the last byte of the current job statement
image following standard JCL syntax, and (2) move the statement image to
the JCTXWRK field and set RDWXXSNC bit in the RDWFLAGX byte to
one. If, however, an additional statement (not a JOB statement image) is to
be returned to JES2, only step 2 should be followed, and do not add a
comma to the current job statement image.

RDWFLAGX has the following structure:

RDWXJCL

RDWXJECL

RDWXJOBC

RDWXCONT

RDWXXSNC

RDWXXSEM

(X'OJ') when on indicates that JES2 has detected a JCL statement.

(X'02') when on indicates that JES2 has detected a JES2 control statement.

(X'04') when on indicates that JES2 has detected a JOB statement.

(X'OS') when on indicates that JES2 has detected a DD DATA or DD •
continuation statement.

(X'IO') when on indicates that an installation exit has supplied the next card
image.

(X'20') when on indicates that an installation exit has supplied an error
message.

4. When passing a return code of 8, your exit routine can pass an
installation-defined error message to JES2 to be added to the JCL data set
rather than the standard error message. To send an error message, generate
the message text in your exit routine, move it to JCTXWRK, and set the
RDWXXSEM bit in RDWFLAGX to one.

5. Note on recovery: SEST AE recovery is in effect. The RDRRCVO recovery
routine will attempt to recover from program check errors, including program
check errors in the exit routine itself. However, as with every exit, your exit
routine for this exit should not depend on JES2 for recovery. JES2 cannot
anticipate the exact purpose of your exit routine and can therefore provide no
more than minimal recovery. Provide your own recovery within your exit
routine.

6. For certain jobs, such as SYSLOG and $TRCELOG, this exit is not taken.

LC23-0067-3 e Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-15

"Restricted Materials of IBM"

EXIT 3 Licensed Materials - Property of IBM

Exit 3: JOB Statement Accounting Field Scan

FUNCTION:

This exit allows you to provide an exit routine for scanning the JOB statement
accounting field and for setting the corresponding fields in the appropriate JES2
control blocks.

You can use your exit routine to interpret the variables in the accounting field
and, on the basis of this interpretation, to decide whether or not to cancel the job.
Use Exit 2 to alter the accounting information and supply new accounting
information at the time the entire JOB statement is first scanned. Use this exit to
record alterations to the accounting field; they will not appear on the user's
output but are ref1ected in the JCT and when the SMF type 6 record is written.

This exit is associated with the existing HASPRSCN accounting field scan
subroutine. You can write your exit routine as a replacement for HASPRSCN or
you can use a return code to direct HASPRJCS to call HASPRSCN after your
exit routine has executed. In either case, when this exit is implemented and
enabled, JES2 treats your exit routine as the functional equivalent of
HASPRSCN. The specification of the ACCTFLD parameter on the JOBDEF
initialization statement, which normally determines whether JES2 is to call
HASPRSCN, becomes an additional factor in determining whether your exit
routine is to be called. The exit is taken only if the ACCTFLD = parameter on
the JOBDEF initialization statement is specified as either REQUIRED or
OPTIONAL. The exit is not taken if ACCTFLD = IGNORE is specified. When
it is called, your exit routine--rather than When it is called, your exit
routine--rather than the ACCTFLD parameter--determines whether HASPRSCN
is to be executed as an additional scan of the accounting field. For a complete
explanation of how the ACCTFLD parameter is specified, refer to JES2
Initialization and Tuning. The relationship of HASPRSCN to this exit is
described in greater detail in the "Other Programming Considerations" below.

This exit is established by a single exit point, at label RXITACC.

ENVIRONMENT: JES2 main task

Note: Refer to Appendix D, "JES2 Exit Usage Limitations" for a listing of
specific instances when this exit will be invoked or not invoked.

POINT OF PROCESSING:

This exit is taken from the JES2 main task, from the HASPRJCS JOB statement
scan subroutine of HASPRDR. The exit occurs after JES2 has scanned the entire
JOB statement, but prior to the execution of the HASPRSCN accounting field
scan subroutine. if HASPRSCN is to be called. The JCT has been initialized with
the JES2 and installation defaults; in addition, those fields of the JCT that
correspond to JOB statement parameters other than accounting field parameters
have been set. The JCTWORK field of the JCT contains the accounting field
image.

3-16 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM EXIT 3

REGISTER CONTENTS WIJEN CONTROL IS PASSED TO THE EXIT
ROUTINE:

RO The length of the accounting field, in bytes; if no accounting field has been specified, this
length is zero

Rl Address of a 3-fullword parameter list

Word 1 (+0) points to the accounting field (JCT\VORK in the JCT)
Word 2 (+4) points to the exit flag byte, RDWFLAGX in the PCE
Word 3 (+8) points to the JCTXWRK field in the JCT

R2-R9 N/A

RIO Address of the JCT

Rll Address of the HCT

RI2 N/A

RI3 Address of the HASPRDR PCE

RI4 Return address

RIS Entry address

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:

RO-Rl N/A
RI5 A return code

RETURN CODES:

o Tells JES2 that if there are any additional exit routines associated with this exit, call the next
consecutive exit routine. If there are no additional exit routines associated with this exit, use the
current setting of the ACCTFLD parameter on the JOBDEF statement to determine whether or
not to execute the HASPRSCN subroutine.

4 Tells JES2 to ignore any other exit routines associated with this exit and to use the current
setting of the ACCTFLD parameter on the JOBDEF statement to determine whether or not to
execute HASPRSCN.

8 Tells JES2 to suppress execution of HASPRSCN and to complete HASPRJCS processing.

12 Tells JES2 to cancel the job because an illegal accounting field has been detected. Tells JES2 to
suppress execution of HASPRSCN and to queue the job for output; output (the incomplete JCL
images listing) is produced.

JOB EXIT MASK: This exit is subject to job exit mask suppression.

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: $PCE, $RDRWORK, $JCT, $HCT, $MIT, $BUFFER,
$HASPEQU, RPL

LC23-0067-3 Q Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-17

EXIT 3
"Restricted Materials of ffiM"

Licensed Materials - Property of ffiM

OTHER PROGRAMMING CONSIDERA TIONS:

1. The accounting field resides in a 144-byte work area, JCTWORK, in the JCT.
The address of JCTWORK is in the first word of the 3-word parameter list
whose address is passed to the exit routine in RI.

2. If you need to verify the existence of a JOB rather than a started task (STC)
or TSO logon, this can be done by comparing the JCTJOBID field to a "J."
The presence of a "J" indicates the existence of a JOB.

3. The ACCTFLD parameter on the JOBDEF statement indicates whether JES2
should scan the accounting field of a JOB statement. For further details
concerning the use of the ACCTFLD parameter, refer to JES2 Initialization
and Tuning.

If the ACCTFLD parameter indicates that the scan should be performed, and
if this exit is implemented and enabled, then HASPRJCS calls your exit
routine to perform the scan. If your exit routine passes a return code of 0 or
4 to JES2, then HASPRJCS calls the existing HASPRSCN accounting field
scan subroutine after your routine has executed. Note that if both routines
are to be called, your routine should not duplicate HASPRSCN processing.
For example, your routine should not set the fields in the JCT that are set by
HASPRSCN. However, if your routine passes a return code of 8 or 12 to
JES2, it causes JES2 to suppress execution of HASPRSCN. If the
ACCTFLD parameter indicates that the scan should be performed but this
exit is disabled, then only HASPRSCN is called; your exit routine is not
called and is not given the opportunity to allow or suppress HASPRSCN
execution. If the ACCTFLD parameter indicates that a scan should not be
performed, your exit routine is not called, even if this exit is enabled, and
execution of HASPRSCN is also suppressed.

4. The ACCTFLD parameter on the JOBDEF statement indicates whether JES2
should cancel a job if the accounting field on the JOB statement is invalid or
if a JCL syntax error has been detected during HASPRJCS processing. Note
that your exit routine can affect this termination processing. For example,
ACCTFLD = REQUIRED indicates that JES2 should scan the accounting
field, that the job should be canceled if the accounting field is invalid, and
that the job should be canceled if a JCL syntax error has been found. If you
pass a return code of 8 to JES2, HASPRSCN is not called and therefore
cannot terminate a job with an invalid accounting field, even though
ACCTFLD = REQUIRED. Also note that HASPRSCN scans the
JCTWORK field of the JCT. Therefore, if your routine alters this field, you
affect HASPRSCN processing.

5. The specification of the ACCTFLD parameter is stored in the HCT, in field
$RJOBOPT. If your exit routine is meant to completely replace
HASPRSCN, you may want to access this field for use by your algorithm.

6. In general, use this exit, rather than Exit 2, to alter the JCT directly. If you
use Exit 2 to alter the JCT, subsequent processing might override your
changes. The job exit mask and the spool partitioning mask are exceptions.
See note 2 of Exit 2 for more information.

3-18 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM EXIT 3

7. An SO-byte work area in the JCT, at label JCTXWRK, is available for use by
your routine. If your routine requires additional work space, use the
GETMAIN macro to obtain storage (and the FREEMAIN macro to return it
to the system when your routine has completed).

S. When passing a return code of S, your exit routine can pass an
installation-defined error message to JES2 to be added to the JCL data set
rather than the standard error message. To send an error message, generate
the message text in your exit routine, move it to JCTXWRK, and set the
RDWXXSEM bit in RDWFLAGX to one.

RDWFLAGX has the following structure:

ROWXJCL

ROWXJECL

ROWXJOBC

ROWXCONT

ROWXXSNC

ROWXXSEM

(X'OI') when on indicates that JES2 has detected a JCL statement

(X'02') when on indicates that JES2 has detected a JES2 control statement

(X'04') when on indicates that JES2 has detected a JOB statement

(X'OS') when on indicates that JES2 has detected a DD DATA or DD •
continuation statement

(X'IO') when on indicates that an installation exit has supplied the next card
image

(X'20') when on indicates that an installation exit has supplied an error
message

9. If there is no accounting field on a JOB statement, the length passed by JES2
to the exit routine in RO is zero. Your exit routine should take this possibility
into account.

10. If you intend to use this exit to process nonstandard accounting field
parameters, you should either suppress subsequent execution of HASPRSCN
or you should code your exit routine to delete nonstandard parameters before
passing control to HASPRSCN. If you do neither, that is, if you allow
HASPRSCN to receive the nonstandard parameters, it might cancel the job
because of an illegal accounting field (depending on how the ACCTFLD
parameter on the JOBDEF statement is specified).

If you change the length of the accounting field, you must reload the address
of the last character (or terminator) into field RDWSA VEl.

11. There are two job class fields in the JCT. JES2 uses one to change the job's
execution class and the other to retain the job's original job class. JES2 also
uses these two fields to set the job class in the JQE and transfers the other to
the job management record. (JMR) for use in SMF processing. If you intend
to use your exit routine to change the job class, your exit routine should take
both fields into account.

12. Note on recovery: SEST AE recovery is in effect. The RDRRCVO recovery
routine will attempt to recover from program check errors, including program
check errors in the exit routine. However, as with every exit, your exit
routine for this exit should not depend on JES2 for recovery. JES2 cannot
anticipate the exact purpose of your exit routine and can therefore provide no
more than minimal recovery. You should provide your own recovery within
your exit routine.

LC23-0067-3 ~ Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-19

"Restricted Materials of IBM"

EXIT 4 Licensed Materials - Property of IBM

Exit 4: JCL and JES2 Control Statement Scan

FUNCTION:

This exit allows you to provide an exit routine for scanning JCL and JES2 control
statements. If this exit is implemented and enabled, it is taken whenever JES2
encounters a JCL or JES2 control statement. (Note: JOB statements and internal
reader control statements such as /*DEL are not included in the scan.)

For JCL statements, your exit routine can interpret JCL parameters and, on the
basis of this interpretation, decide whether JES2 should cancel the job, purge the
job, or allow the job to continue normally. Your routine can also alter JCL
parameters and supply additional JCL parameters. If necessary, in supplying
expanded JCL data, your routine can pass a JCL continuation statement back to
JES2. It can also pass back a new JCL statement, such as a new DO statement.

For JES2 control statements, your routine can interpret the JESl control
parameters and subparameters and, on the basis of this interpretation, decide
whether JES2 should cancel the job. purge the job, or allow the job to continue
normally. For any JES2 control statement, you can write your exit routine as a
replacement for the standard HASPRCCS control statement routine, suppressing
execution of the standard JES2 scan, or you can perform your own (partial)
processing and then allow JES2 to execute the standard HASPRCCS control
statement routine. In addition. your routine can alter a JES2 control statement
and then pass the modified statement back to JES2 for standard HASPRCCS
processing, or your routine can pass an entirely new JES2 control statement back
to JES1. to be read (and processed) as the next incoming statement by
HASPRDR.

This exit also allows you to process your own installation-specific JES2 control
statements or to implement new, installation-specific subparameters for existing
JES2 control statements.

Three exit points establish this exit. The first, at label RXITCCA, gives control
to your exit routine when JES2 detects a JES2 control statement or JCL statement
within a job. The second, at label RXITCCB, gives control to your exit routine
when JESl detects a JESl control statement or JCL statement outside of a job.
The third, at label RXITCCC. gives control to your exit routine when JES2
detects a JCL DO * or DO DATA continuation statement.

ENVIRONMENT: JES2 main task

Note: Refer to Appendix 0, "JES2 Exit Usage Limitations" for a listing of
specific instances when this exit will be invoked or not invoked.

3-20 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Lieensed Materials - Property of mM

POINT OF PROCESSING:

EXIT 4

This exit is taken from HASPRDR in the JES2 main task. The exit occurs in
HASPRD R's main processing loop.

Exit point RXITCCA processing JES2 control statements occurs after HASPRDR
has encountered an apparent JES2 control statement or JCL statement within a
job and prior to control statement processing.

Exit point RXITCCB occurs after HASPRDR has encountered an apparent JES2
control statement or JCL statement outside a job and prior to control statement
processing.

Exit point RXITCCC, for processing JCL DD DATA or DD * continuation
statements, occurs after the RCONTNUE subroutine has detected a continuation
statement and just before RCONTNUE returns control to the calling routine.

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT
ROUTINE:

RO A code indicating whether a JES2 control or JCL control statement is being processed

o indicates a JES2 control statement
4 indicates a JCL statement

RI Pointer to a 3-word parameter list with the following structure:

Word I (+ 0) address of the control statement image buffer
Word 2 (+4) address of the exit flag byte, RDWFLAGX, in the PCE
Word 3 (+ 8) address of the JCTXWRK. field in the JCT

R2-R9 N/A

RIO Address of the JCT

Rll Address of the HCT

RI2 N/A

RU Address of the PCE

RI4 Return address

R15 Entry address

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:

ROoRI N/A
R15 A return code

RETURN CODES:

o Tells JES2 that if there are any additional exit routines associated with this exit, call the next
consecutive exit routine. If there are no additional exit routines associated with this exit,
perform standard HASPRDR processing.

4 Tells JES2 to ignore any other exit routines associated with this exit and to perform standard
HASPRDR processing.

LC23-0067-3 C Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-21

"Restricted Materials of IBM"

EXIT 4 Licensed Materials - Property of IBM

8 For JES2 control statements, tells JES2 not to perform standard HASPRCCS processing;
instead, immediately convert the statement to a command UI*) with the null-on-input flag set to
one and write the statement to the JCL data set. For JCL statements, tells JES2 to perform
standard HASPRDR processing.

12 Tells JES2 to cancel the job because an illegal control statement has been detected; output (the
incomplete JCL images listing) is produced.

16 Tells JES2 to purge the job because an illegal control statement has been detected; no output is
produced.

JOB EXIT MASK: This exit is subject to job exit mask suppression.

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: $HCT, $JCT, $MIT, $PCE, $RDRWORK., $BUFFER,
$HASPEQU, RPL

OTHER PROGRAMMING CONSIDERA TlONS:

1. This exit is taken once for each control statement (with the exception of JOB
statements and internal reader control statements) encountered by JES2. A
code in RO indicates whether the current statement is a JCL statement or a
JES2 control statement. Your exit routine gets control for / /* comment, /*
(generated), and /* PRIORITY JES2 control statements. Your exit routine
gets control for DD * and DD DATA JCL statements.

2. During HASPRDR processing, JES2 writes the JCL records to a JCL data
set. If an error occurs during HASPRDR processing, it is the JCL data set
that is printed when the job goes through output processing. If the job is
successfully processed by HASPRDR, the JCL data set is the input for the
converter. The converter produces a JCL images data set, which is the data
set that is printed when the job goes to output processing after being
successfully processed by HASPRDR. Normally, when HASPRDR receives a
JES2 control statement HASPRDR first writes the statement to the JCL data
set with the null-on-input flag set to one. Because the statement is
null-on-input it is passed over by the converter; however, because the
null-on-output flag has not been set to one, the statement appears in user's
copy of the JCL data set if the job bypasses conversion because an error was
detected in HASPRDR processing. Next, HASPRDR calls one of the specific
HASPRCCS control statement processing routines to perform the function
requested by the JES2 control statement. When the standard routine has
completed execution, HASPRDR converts the JES2 control statement to a
comment, sets its null-on-output flag to one, and writes it to the JCL data set.
Because the statement is null-on-output, it does not appear in the user's copy
of the JCL data set; however, because the null-on-input flag has not been set
to one, the JES2 control statement is read (as a comment) by the converter.
This flagging scheme enables the user to see each JES2 control statement as it
was received by HASPRDR if the job does not go to the converter, and
enables the converter to see each JES2 control statement as a comment, which
will appear in the users output when the JCL images data set is printed.
(Note: The 1*$ command and the /*PRIORITY statements are exceptions.)

When this exit is implemented and enabled, it receives control after the initial
copy of the JES2 control statement, with the null-on-input flag set to one, has
been written to the JCL data set. Therefore, unless your exit routine passes a

3-22 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM EX][T 4

return code of 16, which purges the job with no resulting output, the user sees
the JES2 control statement on his output, just as it was received by
HASPRDR, if the job goes directly to output phase (bypassing converter),
otherwise, the user will see it as a comment in the JCL images file.

If you pass a standard return code (of 0 or 4) from your exit routine, the
standard HASPRCCS routine executes. After the HASPRCCS routine is
finished, HASPRDR writes the statement to the JCL data set as a comment
with the null-on-output set to one. This form of the statement will be seen by
the converter, and the converter will place it in the JCL images file.

If you pass a return code of 8, standard HASPRCCS processing is suppressed
and HASPRDR immediately converts the statement to a comment with the
null-on-output flag set, and writes the statement to the JCL data set. This
form of the statement will be seen by the converter, and will be seen by the
user as a comment in the JCL images file when it is printed. Note that, on
the basis of the JCL images output data set he sees, the user has no indication
that his statement was not processed normally.

If you pass a return code of 12, normal HASPRDR processing is halted, the
statement is not processed by HASPRCCS, nor is it written to the JCL data
set as a comment. The user sees the original statement on his output, as the
last statement in the JCL data set, indicating that this JES2 control statement
caused the job to be cancelled.

Finally, return code 16 also halts normal HASPRDR execution, butwith no
resulting output; the user has no indication of why his job failed.

3. When passing a return code of 0, 4, or 8, you may supply an additional
statement image to be read and processed as the next statement in the input
stream. For JCL statements, this can be a continuation statement or a new
statement. For JES2 control statements, this must always be a new
statement. To return this additional statement to JES2, move the statement
image to the JCTXWRK field and set the RDWXXSNC bit in the
RDWFLAGX byte to one.

RDWFLAX has the following structure:

RDWXJCL

RDWXJECL

RDWXJOBC

RDWXCONT

RDWXXSNC

RDWXXSEM

(X'OI') when on indicates that JES2 has detected a JCL statement.

(X'02') when on indicates that JES2 has detected a JES2 control statement.

(X'04') when on indicates that JES2 has detected a JOB statement.

(X'08') when on indicates that JES2 has detected a JCL DD DATA or DD •
continuation statement.

(X'IO') when on indicates that an installation exit has supplied the next card
image.

(X'20') when on indicates that an installation exit has supplied an error
message.

4. To entirely replace standard HASPRCCS processing for a particular JES2
control statement, write your routine as a replacement version of the standard
HASPRCCS routine and then pass a return code of 8 back to JES2 to
suppress standard processing. Note that your routine becomes responsible for

LC23-0067-3 C Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-23

lEXlI'f4
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

duplicating any HASPRCCS function you wish to retain. If you merely want
to supplement standard HASPRCCS processing, you can write your exit
routine to perform the additional function and then, by passing a return code
of 0 or 4, direct JES2 to execute the standard HASPRCCS routine.

5. To nullify a JES2 control statement, pass a return code of 8 to JES2 without
using your exit routine to perform the function requested by the statement.
Note that, on the basis of the JCL images output data set, the user is not
informed that the statement was nullified.

6. To modify a JES2 control statement, also use return code 8. Place the altered
statement in JCTXWRK. and set RDWXXSNC to one. If HASPRDR
processing is successful, the user will see in the output of the JCL images file
the original statement (as a comment statement), and the altered statement
(also as a comment statement). Note, that if you modify a JES2 control
statement and then pass a return code of 0 or 4, JES2 performs normal
HASPRDR (HASPRCCS) processing, and the modified version of the
statement will appear on the users output in the JCL images file, but the
original statement will not appear unless you go directly to output phase
(bypassing the converter); then, the user will see the original statement when
the JCL data set is printed.

7. Also use return code 8 in processing your own installation-specific JES2
control statements. Write your exit routine to perform the function requested
by the statement and then pass return code 8 to JES2 to suppress standard
processing and thereby prevent JES2 from detecting the statement as "illegal."

8. To process your own installation-specific JES2 control statement
subparameters, you should generally write your exit routine to replace
standard HASPRCCS processing entirely. That is, write your exit routine to
perform the function(s) requested by the standard parameters and
subparameters as well as those requested by any unique installation-defined
subparameters on a statement. Then, from your exit pass a return code of 8
back to JES2. In general, because the parameters and subparameters on a
JES2 control statement are interdependent, you will be limited to this method.
However, if you have defined an installation-specific subparameter which can
be processed independently of the rest of the control statement on which it
appears, you can write your exit routine to process this subparameter alone,
then to delete it, and then to pass a return code of 0 or 4 to JES2. JES2 can
then process the remainder of the statement as a standard JES2 control
statement.

9. When passing a return code of 12 or 16, it is also possible for your exit
routine to pass an error message to JES2 for display at the operator's console.
To send an error message, generate the message text in your exit routine,
move it to JCTXWRK, and set the RDWXXSEM bit in RDWFLAGX to
one.

10. If you intend to use this exit to affect the JCT, your exit routine must ensure
the existence of the JCT upon receiving control. If the JCT has not been
created when your exit routine receives control, the pointer to JCTXWRK,
the third word of the 3-word parameter list whose address is passed to your
exit routine in RI, is zero. For example, when your exit routine receives

3-24 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM EXIT 4

control for a /*PRIORITY statement, the JCT doesn't exist yet. In this case,
your routine must store any data to be placed in the JCT until JES2 creates
the JCT.

II. Your exit routine does not have access to the previous control card image.
You should take this into account when devising your algorithm.

12. An SO-byte work area, JCTXWRK, is available for use by your exit routine.
If your routine requires additional work space, use the GETMAIN macro to
obtain storage (and the FREEMAIN macro to return it to the system when
your routine has completed).

13. !vote on recovery: $ESTAE recovery is in effect. The RDRRCVO recovery
routine will attempt to recover from program check errors, including program
check errors in the exit routine itself. However, as with every exit, your exit
routine should not depend on JES2 for recovery. JES2 cannot anticipate the
exact purpose of your exit routine and can therefore provide no more than
minimal recovery. You should provide your own recovery within your exit
routine.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-25

"Restricted Materials of IBM"

EXIT 5 Licensed Materials - Property of IBM

Exit 5: JES2 Command Preprocessor

FUNCTION:

This exit allows you to provide an exit routine to preprocess JES2 commands
received by the JES2 command processor. If tlus exit is implemented and
enabled, it receives control every time HASPCOMM receives a JES2 command.

You can use your exit routine to perform your own command validation and,
based on the checking performed by your validation algorithm, decide whether
JES2 should terminate processing for the command or allow normal
HASPCOMM processing to continue. If you use your exit routine to terminate
processing for a command, the command subprocessor is bypassed and the
requested action is not taken.

This exit also enables you to implement your own installation-specific JES2
command operands and suboperands, as well as nonstandard JES2 commands
unique to your installation. Your exit routine must process nonstandard,
installation-specific operands, suboperands, and commands itself, and then
suppress standard HASPCOMM processing. Nonstandard command processing
is considered in greater detail in the "Other Programming Considerations" below.

When suppressing standard HASPCOMM processing, you have the option of
directing JES2 to send the standard "OK" return message to the operator, sending
your own exit-generated message to the operator, or of suppressing standard
HASPCOMM processing without operator notification.

This exit is effected by a single exit point, at label COMMEXIT.

ENVIRONMENT: JES2 main task

POINT OF PROCESSING:

This exit is taken from the JES2 main task, from the HASPCOME command edit
routine of HASPCOMM. The exit point occurs after the command has been
edited but before lookup in the command selection tables (COMFASTR and
COMT AB), before console authority checking, and before the call to the
command subprocessor.

3-26 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM]EX1I:T5

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT
ROUTINE:

N/A RO-R4
as
R6

Pointer to the address of the current operandi
Increment value of 41

R7
R8-RI0
Rll
Rl1
R13
R14
R15

Pointer to the address of the last operandi
N/A
Address of the HCT
N/A
Address of the HASPCOMM PCE
Return address
Entry address

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:

RO If an exit-generated message is to be passed, this register contains the length of the
message; otherwise, it's not applicable.

Rl N/A

R15 A return code

RETURN CODES:

o Tells JES2 that if there are any additiona1 exit routines associated with this exit, execute the next
consecutive exit routine. If there are no other exit routines associated with this exit, continue
with norma1 command processing. .

4 Tells JES2 to ignore any other exit routines associated with this exit point and to continue with
normal command processing.

8 Tells JES2 to terminate standard processing for the command and to issue the SCRET macro to
return control to the main command processor; the command subprocessors are bypassed.

11 Tells JES2 to terminate standard processing for the command and to issue the SCRET macro,
specifying the standard SHASPOOO "OK" message, to return control to the main command
processor. The "OK" message is issued and the command subprocessors are bypassed.

16 Tells JES2 to terminate standard processing for the command and to issue the SCRET macro,
specifying a message generated by your exit routine, to return control to the main command
processor. The exit-generated message is issued and the command subprocessors are bypassed.

JOB EXIT MASK: This exit is not subject to job exit mask suppression.

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: $HASPEQU, SHCf, $MIT, SPCE, $COMWORK

OTHER PROGRAMMING CONSIDERATIONS:

1. For a mUltiple command, this exit is taken once for each command verb.

2. To preprocess a standard JES2 command, a typical exit routine would
perform some type of validation checking. This validation checking would
determine whether JES2 should terminate command processing or allow
standard command processing to continue. You can base a validation
algorithm on various factors. The fields of the command processor work area

Refer to "Other Programming Considerations" below for use of these registers in a
networking environment.

LC23-0067-3 Q Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-27

EXIT 5
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

of the PCE contain extensive command-related information that can be used
in validation checking. Note, however, that even if your exit routine validates
a command, it is still possible for JES2 to reject the command as a result of
its standard validation checking.

3. In processing your own installation-specific JES2 commands, your exit routine
should perform its own validation checking to replace the functions normally
performed by HASPCOME. Your routine should validate the command
verb, contained in the COMVERB field of the PCE's command processor
work area, with the equivalent of the command table lookup performed by
HASPCOME. This check should determine whether the command has a
valid installation-specific command verb and what action your exit routine
should take based on the verb. Your routine should also perform console
authority checking by testing the COMAUTH field, of the PCE's command
processor
work area, which contains the command's restriction bits. COMAUTH has
the following structure:

COMS (X'OJ') when on indicates that the command should be rejected unless authorized for
the system.

COMD (X'02') when on indicates that the command should be rejected unless authorized for
the device.

COMJ (X'04') when on indicates that the command should be rejected unless authorized for
the job.

COMR (X'OS') when on indicates that the command should be rejected if it was entered from
a remote work station.

If your routine validates the command, it can then perform the requested
function, serving as the equivalent to a standard command subprocessor. If,
however, your routine determines that the command is invalid, it must
terminate processing for the command internally before returning control to
JES2. Then, it should pass a return code (of 8, 12, or 16) to terminate
standard HASPCOMM processing, with or without an accompanying
message to the operator.

4. In general, to process nonstandard operands and suboperands, you must write
your exit routine to replace standard JES2 processing entirely. That is, your
exit routine must process both the nonstandard operands or suboperands as
well as the standard portion of the command, by performing the function of
the standard command subprocessor. This is because, in general, the
command verb and the accompanying operands and suboperands are
interdependent; the operands and suboperands modify the action of the
command verb and cannot be processed independently.

5. When passing a return code of 16 and issuing an exit-generated message to
the operator, move the text of the message to the COMMAND field of the
command processor work area in the PCE. Place the length of the message in
RO. Also, be certain to issue the $STORE (RO) macro after loading the
message length in RO but prior to issuing the $RETURN macro because
$RETURN macro destroys the contents on register O. (When passing a
return code of 12, to cause JES2 to issue the standard "OK" return message,
you do not have to supply the message length in RO.)

3-28 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM EXJI'f5

6. Note on recovery: $EST AE recovery is not in effect while an exit routine
associated with this exit is being processed. However, you can implement
$EST AE recovery within your routine. As with all exits, you are responsible
for your own recovery within your exit routine, whether you choose to
implement $EST AE recovery or other recovery procedures.

7. Use the $CWTO macro instruction in this exit to communicate to the
operator. If you use the $CWTO macro, you must do all the processing
required by the specified command within your exit routine and provide a
return code indicating that JES2 should bypass any further processing of the
specified command.

8. When this exit routine operates in a networking environment, your exit must
check the contents of the COMINCON field of the PCE pointed to by
register 13. If the X'SO' bit is on, the current command is in subsystem
interface (SSI) format, and registers 5, 6, and 7 do not contain pertinent
information. The SSI format command is located at label COSICMDA in
this PCE; the mapping is located in HASPDOC.

9. L = cca processing takes place outside Exit 5. Therefore, if you require this
function, you must provide your own L=cca processing for user commands.

LC23-0067-3 C Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-29

"Restricted Materials of IBM"

EXIT 6 Licensed Materials - Property of IBM

Exit 6: Internal Text Scan

FUNCTION:

This exit allows you to provide an exit routine for scanning internal text. If this
exit is implemented and enabled, it is taken once after each internal text statement
has been converted from a JCL statement and once after all of the JCL for a
particular job has been converted to internal text.

You can use your exit routine to interpret an internal text image and, on the basis
of this interpretation, decide whether JES2 should either cancel the job or allow it
to continue with normal execution. Your routine can also modify any internal
text image. In addition, after all of the JCL for a particular job has been
converted to internal text, this exit again allows you to direct JES2 either to
cancel the job or to allow it to continue with normal execution.

Two exit points effect this exit. The first, at label XCSTCUEE, makes it possible
for your routine to scan individual internal text images. The second, at label
XCSTMUEE, makes it possible for your routine to determine whether or not a
job is to continue after all of its JCL has been converted to internal text.

JCL internal text is represented by 'keys' that identify the various JCL
parameters. These keys are documented in the JES2 assembly, HASPDOC which
calls macros IEFVKEYS and IEFTXTFT, which are distributed in
SYSl.AMODGEN. IEFVKEYS contains the definition of the values for each
key, and IEFTXTFT contains the definition of the format of the internal text.

ENVIRONMENT: JES2 sub task

Note: Refer to Appendix D, "JES2 Exit Usage Limitations" for a listing of
specific instances when this exit will be invoked or not invoked.

POINT OF PROCESSING:

This exit is taken from HOSCNVT, the JCL conversion processor subtask, from
within HASPCNVT.

The first exit point, at label XCSTCUEE, occurs after the OS/VS converter has
converted a single JCL statement into its internal text image. The XTXTEXIT
routine, which performs standard modifications to internal text images created
from certain EXEC statements and from subsystem data set DD statements, has
executed. (Note: XTXTEXIT is a standard JES2 exit routine, not to be confused
with an installation exit.) All of the standard modifications that JES2 will make
to the internal text image are complete when the exit receives control.

The second exit point, at label XCSTMUEE, occurs after all of the JCL for a
particular job has been converted to internal text. It occurs at the return from the
link to the converter, at label XCNVCNV, and before JES2 creates the scheduler
work area (SW A) control blocks.

3-30 JES2 User Modifications and Macros LC23-0067 -3 (\) Copyright IBM Corp. 1982. 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM EXIT 6

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT
ROUTINE:

RO A code indicating the status of conversion processing

o Indicates that a JCL statement has been converted to an internal text image
4 Indicates that all of the JCL for a particular job has been converted to internal text

RI Address of a 4-word parameter list

Rl-RIO

RII

RI2

RI3

RI4

RIS

Word I (+0) address of a l6-byte work area available to the installation.

Word 2 (+4) if the code passed in RO is 0, this word points to the address of the last
single internal text image converted from a JCL statement. If the code
passed in RO is 4, this word contains the address of the converter's return
code.

Word 3 (+8) Address of the DTE

Word 4 (+ 12) Address of the JCT

N/A

Address of the HCT

N/A

Address of an IS-word OS-style save area

Return address

Entry address

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:

RO A code indicating the status of conversion processing

o Indicates that a JCL statement has been converted to an internal text image
4 Indicates that all of the JCL for a particular job has been converted to internal text

Rl Address of a 4-word parameter list

Rl-RIO

RII

RI2

Rl3

RI4

R1S

Word I (+0) address of a 16-byte work area available to the installation.

Word 2 (+ 4) if the code passed in RO is 0, this word points to the address of the last
single internal text image converted from a JCL statement. If the code
passed in RO is 4, this word points to the address of the converter's return
code.

Word 3 (+ 8) Address of the DTE

Word 4 (+ 12) Address of the JCT

N/A

Address of the HCT

N/A

Address of an IS-word OS-style save area

A return address

A return code

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-31

EXIT 6

RETURN CODES:

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

o Tells JES2 that if there are any additional exit routines associated with this exit, execute the next
consecutive exit routine. If there are no more exit routines associated with this exit point,
continue with normal JES2 processing. If the exit routine was called from exit point
XCSTCUEE. normal processing is the conversion of the next JCL statement to an internal text
image. If the exit routine was called from exit point XCSTMUEE. normal processing is to
queue the job for execution.

4 Tells JES2 to ignore any additional exit routines associated with this exit for this (internal text)
statement and continue with normal processing. If the exit routine was called from exit point
XCSTCUEE. normal JES2 processing is the conversion of the next JCL statement to an internal
text image. If the exit routine was called from exit point XCSTMUEE, normal JES2 processing
is to queue the job for execution.

8 Tells JES2 to bypass execution and cancel the job; the job is queued for output rather than for
execution.

JOB EXIT MASK: This exit point is subject to job exit mask suppression.

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: $HASPEQU, $HCT, SMIT, $XIT, TEXT, KEYS

OTHER PROGRAMMING CONSIDERATIONS:

1. When internal text is created, the user's JCL has been merged with the
expanded JCL from PROCLIB, and all substitutions for symbolic parameters
have been -made. Therefore, this exit gives you the opportunity to scan and
modify the completely-resolved JCL to be used by a particular job.

2. Use extreme caution in modifying internal text. If any of your modifications
cause a job to fail (because of an interpreter error), there will be no
correlation of the error with the resulting abend on the user's output. In fact,
because the output JCL images data set is created prior to the conversion of
the JCL to internal text, none of the modifications you make in this exit will
ever appear in your output. If you suspect that an exit routine associated
with this exit is causing a problem, the most expedient method of debugging
is to disable the exit to determine whether the problem still occurs when your
exit routine is not executed. Then, if the problem seems to be within your
exit routine, you can test the routine by turning on the tracing facility. The
trace record serves as a valuable debugging aid because it contains two copies
of each internal text image, one before the call to your exit routine and one
after the call to your exit routine. However, do not tum on tracing in your
normal production environment or you will seriously degrade the performance
of your system.

3. Note that your routine must take into account the code passed to it by JES2
in RO. Your routine can modify internal text only when this code is 0; any
modifications must be made to a single internal text image immediately after
its conversion. When the code in RO is 0, you can also extract information
from an internal text image for use by your routine. For instance, your
routine can use parameters from an internal text image to set fields in a
control block written at your installation. When this code is 4, your routine
can determine whether or not the job should be allowed to continue; however,
no internal text modifications can be made and no scanning can be performed
at this time.

3-32 JES2 User Modifications and Macros LC23-0067-3 C Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM EXIT 6

One possibility is to code the first part of your routine, the part that receives
control when the code in RO is 0, to keep certain counters--for instance, the
number of DD cards received. Then, when the JCL for the entire job has
been processed, the second part of your routine, the part that receives control
when the code in RO is 4, can determine whether or not to allow the job to
continue based on the contents of these counters.

4. If you decide to cancel the job, your routine is responsible for issuing any
error messages to the operator and to the user.

5. JES2 does not create the scheduler work area (SW A) control blocks until all
the JCL for a particular job has been converted to internal text. JES2 sets
certain fields in these control blocks from corresponding internal text
parameters. Therefore, by using this exit to alter internal text images, you
can affect the contents of the SW A control blocks.

6. A 16-byte work area available to the installation, whose address is given as
the first word of the 2-word parameter list pointed to by Rl on entry, is
available for use by your exit routine.

7. The MVS converter provides an internal text buffer that is 8192 decimal (2000
hex) bytes long.

8. Note on recovery: No recovery is in effect when this exit is taken. As with
every exit, you should provide your own recovery within your exit routine.

LC23-0067-3 e Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-33

"Restricted Materials of IBM"

EXIT 7 Licensed Materials - Property of IBM

Exit 7: JeT Read/Write (JES2)

FUNCTION:

This exit allows you to provide an exit routine to receive control whenever JCT
I/O is performed by the JES2 main task. That is, if this exit is enabled, your
routine receives control before the JCT is written out to spool and after the JCT
is read into storage. (Note: Whenever JCT I/O is performed by a JES2 subtask
or by a routine running in the user address space, HASPSSSM, Exit 8 provides
the function of this exit; in the HASPFSSM address space, Exit 25 provides this
function.)

You can use this exit to perform I/O for any installation-specific control blocks
you may have created.

This exit is established by an exit point at label JIOEXIT in HASPNUC.

ENVIRONMENT: JES2 main task

POINT OF PROCESSING:

This exit is taken from the JES2 main task in the HASPNUC module. Exit point
JIOEXIT occurs in the $JCTIOR routine (HASPNUC), just after the JCT is read
from or just before the JCT is written out to spool.

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT
ROUTINE:

RO A code passed to your routine by JES2
o Indicates that the JCT has been read from spool
4 Indicates that the JCT will be written to spool

RI
R2-RlO
RII
R12
RI3
RI4
Rl5

Address of the buffer that contains the JCT
N/A
Address of the HCT
NjA
Address of the PCE
The return address
The entry address

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:

RO-RI NjA
R 15 A return code

RETURN CODES:

o Tells JES2 that if there arc any additional exit routines associated with this exit. call the
next consecutive exit routine. If there arc no other exit routines associated with this exit.
continue with normal processing. which is determined by the particular exit point from
which the exit was called.

4 Tells JES2 that even if there arc additional exit routines associated with this exit. ignore
them; continue with normal processing, which is determined by the particular exit point
from whieh the exit routine was called.

JOB EXIT MASK: This exit point is subject to job exit mask suppression.

3-34 JES2 User Modifications and Macros LC23-0067-30 Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM EXIT 7

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: SHASPEQU, SJCT, SMIT, $PCE

OTHER PROGRAMMING CONSIDERA TlONS:

1. For JCT I/O, the JES2 input/output processor, $EXCP, sets the following
condition codes:

1 Indicates that the I/O operation was unsuccessful
3 Indicates that the I/O operation was successful

2. You can use this exit to determine the queue on which a job resides at any
point of processing at which JCT I/O is performed for the JES2 main task.
First, your exit routine must use the pointer in the JCTJQE field of the JCT
to locate the JQE. Then, after accessing the JQE, your routine must locate
the JQETYPE field. JQETYPE can then be tested to determine on which
queue, out of nine possible queues, the current job resides. The following
table lists the nine possible queues along with their corresponding
hexadecimal representations in JQETYPE:

SXEQ X'40'
$INPUT X'lO'
SXMIT X'IO'
$RECEIVE X'04'
$OUTPUT X'02'
SHARDCOPY X'O)'
SPURGE X'OO'
SFREE X'FF'

3. Use the PCEID field to determine which processor is reading or writing the
JCT; this avoids unnecessary processing.

4. Note on recovery: No recovery is in effect when this exit is taken. As with
every exit, you should provide your own recovery within your exit routine.

LC23-0067-3 C Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-35

"Restricted Materials of IBM"

EXIT 8 Licensed Materials - Property of IBM

Exit 8: JeT Read/Write (USER)

FUNCTION:

This exit allows you to provide an exit routine to receive control whenever a JES2
subtask or a routine running in the user address space (HASPSSSM) performs
JCT I/O. That is, your routine receives control just before the JCT is written out
to spool and just after the JCT is read into storage. (Note: Whenever JCT I/O is
performed by the JES2 main task, Exit 7 serves the purpose of this exit.)

You can use this exit to perform I/O for any installation-specific control blocks
you may have created.

Four exit points effect this exit. The first, at label HXJCTOl, can give control to
your exit routine just after JES2 reads the JCT into storage for a job requested by
the MVS initiator and selected by HASPXEQ. The second exit point, at label
HXJCT02, can give control to your exit routine just before JES2 writes the JCT
to spool for a job whose termination has been requested by the MVS initiator.
The third exit point, at label HXJCT03, can give control to your exit routine just
before JES2 writes the JeT to spool after the control block checkpoint routines in
HASPS SSM have processed it. The fourth exit point, at label HXJCT04, can give
control to your exit routine at SYSOUT data set allocation, if JES2 had to alter
the JCT, just before JES2 writes the JCT out to spool.

ENVIRONMENT: User address space

POINT OF PROCESSING:

This exit is taken from the user address space (HASPSSSM).

Exit point HXJCTOl, for receiving control after the JeT has been read into
storage, occurs in the SSI HOSJBSL job selection routine, after HOSJBSL has
reacquired control from the execution processor (HASPXEQ), has verified that a
job has been found for execution, and has successfully read in the JCT.

Exit point HXJCT02, for receiving control before the JeT is to be written to
spool, occurs in the SSI HOSTERM job termination routine, after HOSTERM
reacquires control from the execution processor (HASPXEQ). The exact point of
processing may vary slightly within HOSTERM, depending on the functioning
HOSTERM performs for a particular caller.

Exit point HXJCT03, for receiving control before the JCT is to be written to
spool, occurs in the control block checkpoint routine HCBCK in HASPSSSM.
The checkpointing can occur at various points in HASPSSSM processing,
whenever the control block checkpoint routine is called. The JeT is checkpointed
only if it has been changed.

Exit point HXJCT04, for receiving control before the JeT is to be written to
spool, occurs in the subroutine for allocating SYSOUT data sets (HALO) of the
HOSALLOC allocation routine. It is taken only if the HALCRDSN subroutine
of HASALLOC had to update the JCT, making it necessary for HALO to
checkpoint the JCT after completing SYSOUT data set allocation.

3-36 JES2 User Modifications and Macros LC23-0067 -3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM 1EX][T 8

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT
ROUTINE:

RO A code passed to your routine by JES2
o Indicates that the JCT has been read from spool
4 Indicates that the JCT will be written to spool

Rl
R2-RIO
RlI
R12
R13
R14
RI5

Address or the JCT
N/A
Address or the SVT
N/A
Address or an OS-style save area
Return address
Entry address

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:

RO-RI N/A
RI5 A return code

RETURN CODES:

o Tells JES2 that ir there are any additional exit routines associated with this exit, call the next
consecutive exit routine. If there are no other exit routines associated with this exit, continue
with normal processing, which is determined by the particular exit point from which the exit
routine was called.

4 Tells JES2 that even ir there are additional exit routines associated with this exit, ignore them;
continue with normal processing, which is determined by the particular exit point rrom which
the exit routine was called.

JOB EXIT MASK: This exit is subject to job exit mask suppression.

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: $HASPEQU, $JCT, $MIT

OTHER PROGRAMMING CONSIDERA T10NS:

1. Be sure your exit routines reside in common storage.

2. Note on recovery: No recovery is in effect when this exit is taken. As with
every exit, you should provide your own recovery within your exit routine.

LC23-0067-3 II) Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-37

"Restricted Materials of IBM"

EXIT 9 Licensed Materials - Property of IBM

Exit 9: Job Output Overflow

FUNCTION:

This exit allows you to provide an exit routine to receive control when JES2
detects a job output overflow error. If this exit is implemented and enabled, it is
invoked whenever the current count of output records, pages, or bytes exceeds the
output estimate specified for the current job on the JES2 /*JOBPARM control
statement or through JES2 initialization defaults for lines (ESTLNCT), cards
(ESTPUN), pages (ESTPAGE), or bytes (ESTBYTE) if the /*JOBPARM control
statement is not used. (Note: This exit is not taken for job OUTUM overflow,
for which a standard SMF exit already exists.)

When your exit routine receives control, you have several defined options from
which to choose in directing JES2 to handle the job output overflow for the
current job. You can direct JES2 to take action based on the standard value
specified on the excessive estimate output option given on the ESTLNCT,
ESTPAGE, ESTPUN, and ESTBYTE statements. Be aware, when blank
truncation is turned off, estimated lines (ESTLNCT) and pages (ESTPAGE) will
not change; only estimated bytes (ESTBYTE) will reflect the change. Therefore,
be certain to consider the value specified for ESTBYTE because the byte count
will increase if truncation is turned off. You can also direct JES2 to base its
action, for the current job only, on the "excessive output option" value supplied
by your exit routine. If the "excessive output option" is specified as 0, the job is
allowed to continue. If the "excessive output option" is specified as 1, the job is
canceled without a dump. If the "excessive output option" is specified as 2, the
job is canceled with a dump. For more information, see the description of the the
"excessive output option" statement in JES2 Initialization and Tuning.

In addition, you can use your exit routine to control the default error message
($HASP375) that JES2 normally sends to the operator when a job has exceeded
its output estimate. You can suppress the standard error message or you can
allow JES2 to send it. You can also control the interval, in excess print lines or
in excess punch cards, at which the message is reissued to the operator. You can
allow the message to be sent at the interval specified at your installation for the
"message interval for exceeding estimated output" initialization statement, or you
can direct JES2 to send the message at the interval specified by your exit routine
for the current job. For more information, see JES2 Initialization and Tuning.

This exit is effected by a single exit point SVCOUTX in routine HEXTCALL.

ENVIRONMENT: User address space

POINT OF PROCESSING:

This exit is taken from the user address space (HASPSSSM), from the SVCHAM
portion (SVC111) of the HASP access method (HASPAM). The exit is taken
during SVC 111 put processing, whenever the current output record count exceeds
the output estimate.

3-38 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM EXIT 9

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT
ROUTINE:

RO N/A
RI Address of the 7-word parameter list, having the following structure:

+0 JCTLINES or JCTPUNCH value (in actual lines)

Rl--R6
R7
RB-RIO
Rll
Rll
RI3
RI4
RIS

+4 JCTPAGES value
+ B JCTBYTES value
+ 12 User's increment for records
+ 16 User's increment for pages
+20 User's increment for bytes
+24 Output Overflow Flag

A fullword with the Dag in the high-order byte. The Dag settings are:

bit 0 =0
= I

bit I =0
= I

bit 2 =0
= I

bit 3 =0
= I

bits 4-31

N/A
Address of the JCT
N/A
Address of the SVT
N/A

(Cards have not exceeded the limit)
(Cards have exceeded the estimate)

(Lines have not exceeded the limit)
(Lines have exceeded the estimate)

(Pages have not exceeded the limit)
(Pages have exceeded the estimate)

(Bytes have not exceeded the limit)
(Bytes have exceeded the estimate)

Not Applicable

OS-style 18-word save area
Return address
Entry address

REGISTER CONTENTS WHEN CONTROL ·IS PASSED BACK TO JES2:

RO If the return code (passed in RI S) is not 8, the contents of this register are ignored.
However, if the return code is 8, this register contains return processing Dags, as follows:

bit 0 =0 Tells JES2 to take action based on the value currently specified for
the "excessive output option" at your installation.

= I Tells JES2 to take action based on the value specified for the
"excessive output option" in bits 24-31 of this register.

bitt =0 Tells JES2 to use the output overDow increment specified on the
INT= parameter of the ESTLNCT, ESTPUN, ESTPAGE, or
ESTBYTE initialization statements

=1 Tells JES2 to use the output overflow increment supplied by the exit
routine in the parameter list.

bill =0 Tells JES2 to send the default error message (SHASP37S) to the
operator.

= 1 Tells JES2 to suppress the default error message.

big3-13 N/A

big 24-31 Tells JES2 the execution option for this exit call. If this byte is zero
then continue processing. If this byte is equal to I then ABEND
(722) without a dump. If this byte is equal to 2 then ABEND (722)
with a dump.

RIS A return code.

LC23-0067-3 C Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-39

EDT 9

RETURN CODES:

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

o Tells JES2 that, if there are any additional exit routines associated with this exit, it is to execute
the next consecutive exit routine. If there are no additional exit routines, JES2 is to perform
standard job output overflow processing based on the INT= and OPT= parameters on the
ESTLNCT, ESTPUN, ESTPAGE, and ESTBYTE initialization statements.

4 Tells JES2 to ignore any additional exit routines associated with this exit and to·perform
standard job output overflow processing based on the values supplied for the ESTLNCT,
ESTPUN, ESTPAGE, and ESTBYTE initialization statements at your installation.

8 Tells JES2 to take action based on the return processing flags in RO; see the description of the
contents of RO above.

JOB EXIT MASK: This exit is subject to job exit mask suppression.

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: $HASPEQU, $JCT, $MIT, $SVT

OTHER PROGRAMMING CONSIDERA TIONS:

1. If the job output overflow error occurs when output is being produced for the
JES2 job log, for the JES2 messages file, or for the JCL images file, the exit is
taken but the return codes and return processing flags are ignored.

2. This exit is not taken for job aUTUM overflow. For more information on
standard aUTUM processing, see the SMF IEFUSa exit in System
Management Facilities (SMF).

3. Be sure your exit routines reside the link pack area (LPA).

4. Note on recovery: There is no JES2 recovery in effect. As with every exit,
you should supply your own recovery within your exit routine.

3-40 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Exit 10: $WTO Screen

FUNCTION:

EXIT 10

This exit allows you to provide an exit routine to receive control every time that
JES2 is ready to queue a $WTO message for transmission. If this exit is
implemented and enabled, it receives control for all messages destined for remote
stations and for other systems, as well as for all messages with a destination of
local.

However, this exit does not receive control for messages generated by HASPSSSM
or HASPFSSM, the subsystem interface and functional subsystem modules.

You can use your exit routine to interrogate the message's console message buffer
(CMB) and, on the basis of this interrogation, direct JES2 either to cancel the
message or to queue it for normal transmission. You can also use your exit
routine to change the text of the message or to alter its console routing.

This exit is effected by a single exit point, at label WTOEXIT.

ENVIRONMENT: JES2 main task

POINT OF PROCESSING:

This exit is taken from the JES2 main task, from the HASPWQUE (special
purpose CMB queueing) routine of the HASPCON (console support services)
module, for allJES2 main task $WTO messages. The exit occurs at the beginning
of HASPWQUE, after the $WTOR routine has processed the $WTO macro and
before HASPWQUE queues the CMB containing the message for transmission.
If, by passing a return code of 0 or 4, your routine allows the message to
continue, control returns to HASPWQUE, which then queues the message for
transmission. If, however, your exit routine cancels the message by passing a
return code of 8, the transmission queueing performed by HASPWQUE is
bypassed and JES2 gives control to $FRECMBR, the $FRECMB service routine.

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT
ROUTINE:

RO
Rl
R2-Rl0
Rll
R12
R13
RI4
RI5

NjA
Address of the CMB
NjA
Address of the HCT
NjA
Address of the peE
Return address
En try address

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:

RO NjA
RI Address of the CMB
RI5 A return code

LC23-0067-3 Ii) Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-41

EXIT]10

RETURN CODES:

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

o Tells JES2 that if there are any more exit routines associated with this exit, execute the next
consecutive exit routine. If there are no more exit routines associated with this exit, continue
with normal proces~ing by queueing the eMB for transmission.

4 Tells JES2 to ignore any additional exit routines associated with this exit and to continue with
normal processing by queueing the eMB for transmission.

8 Tells JES2 to discard the message by freeing the eMB; the message is not queued for
transmission.

JOB EXIT MASK: This exit is not subject to job exit mask suppression.

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: $CMB, $HASPEQU, $HCT, $MIT, $PCE

OTHER PROGRAMMING CONSIDERATIONS:

1. This exit is taken only for $WTOs issued from the JES2 main task. This exit
will not be taken for $WTOs issued from HASPSSSM, HASPFSSM, JES2
subtask, or any other $WTOs issued from outside the JES2 main task
environment.

2. To cancel a message, pass a return code of 8 to JES2. This return code
directs JES2 to bypass the HASPWQUE routine, which normally queues the
CMB for the console service processor, and to give control directly to the
$FRECMBR routine, which then discards the message by freeing its CMB.

3. To change the text of a message, your routine must access either the
CMBTEXT field or the CMBJOBN field. If the message does not contain
the job's name and number, the message text starts in CMBJOBN. The
length of the message is always in the CMBML field. Your routine can either
retrieve the existing message text and modify it or else generate a completely
new message and then write the new or modified message over the original
message. If the new or modiJled message is longer or shorter than the
original message, your routine should alter the CMBML field accordingly.
After altering the text of the message, pass a return code of 0 or 4 to direct
JES2 to queue the CMB for transmission. JES2 will then transmit the new or
modified message.

4. To alter a message's console routing, your routine should first test the flag
byte CMBFLAG to determine whether the CMBFLAGW, CMBFLAGT, and
CMBFLAGU flags are off. If these three flags are off, the CMBROUT field
contains the MVS console routings. After altering CMBROUT, pass a return
code of 0 or 4 to direct JES2 to queue the CMB for transmission. JES2 will
base its console routing on the new contents of CMBROUT.

5. If MESSAGE ID = NO, this exit still sees the message (as specified on the
MSGID parameter of the CONDEF statement).

6. Note on recovery: There is no JES2 recovery in effect. As with every exit,
you should supply your own recovery within your exit routine.

3-42 JES2 User Modifications and Macros LC23-0067-3 ~ Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM EXIT 11

Exit 11: Spool Partitioning Allocation ($TRACK)

FUNCTION:

This exit allows you to provide an exit routine to receive control from the JES2
main task when no more track groups are available on the spool volumes from
which the current job is permitted to allocate space. (Note: In the JES2 subtask
and user environments, Exit 12 serves the purpose of this exit. If you intend to
use this exit, you should use Exit 12 as well. The description of Exit 12 presents
the special considerations that apply to it.)

Standard JES2 processing allows all jobs to allocate track groups from all
available spool volumes. However, using the exit facility and/or the FENCE
parameter on the SPOOLDEF initialization statement, you can implement spool
partitioning--that is, you can limit the spool volumes from which a particular job
is permitted to allocate track groups. If you require allocation to a minimum
number of spool volumes for a job, the JES2 FENCE parameter can be used. If
you intend to implement more complicated spool partitioning (for example, by
specific spool volume) you will need to code an Exit 11 routine.

To implement spool partitioning, using Exits 11 and 12, the 32-byte spool
partitioning mask (the JCTSAMSK) can be modified as specified by these exit
routines. The first $SPOLNUM bits in the JCTSAMSK correspond to the
DASDs. Those bits, when turned on in the JCTSAMSK, indicate the volumes
from which a job may allocate space. The exact correspondence between bits and
spool volumes is described in "Other Programming Considerations" below. A job
is permitted to allocate track groups from those volumes whose corresponding bits
in the spool partitioning work area are set to one.

Initially, when a job is started, JCTSAMSK is set to all zeros. If you haven't
implemented spool partitioning and have specified the FENCE parameter as
FENCE = NO, JES2 automatically sets JCTSAMSK to all ones the first time that
it issues the $TRACK macro (from HASPRDR). When JCTSAMSK is set to all
ones, the current job can allocate track groups from all available spool volumes
and the existence of JCTSAMSK is transparent; standard JES2 track group
allocation is in effect. However, as a replacement for the allocation default, you
can provide your own exit routine to expand the spool partitioning mask to
include only those particular spool volumes from which you intend to allow the
current job to allocate space. You set the bits corresponding to the designated
spool volumes to one, and you allow the bits corresponding to the other spool
volumes to remain zeros. Note, the exit routine sets bits in a spools-allowed mask
work area that has been previously initialized to the IOTSAMSK field. JES2
then updates the JCTSAMSK to reflect your changes. Your routine must turn on
at least one bit in the mask work area. If it does not, and the FENCE parameter
is set to NO, JES2 responds by providing the default, setting JCTSAMSK to all
ones and allowing the job to allocate track groups from all available spool
volumes.

As an alternative to setting the partitioning mask for the first time from this exit,
you can set the partitioning mask when the JCT is initialized, from Exit 2 (Job
Statement Scan). The relative merits of setting the mask for the first time from
Exit 2 or this exit are discussed in "Other Programming Considerations" below.
Note that Exit 3 cannot be used to set the spool partitioning mask because a

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. 18M-Defined Exits 3-43

EXIT JlJl
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$TRACK has already occurred prior to calling this exit. If you want to provide
spool partitioning for most jobs, such that they will only allocate space from a
minimum number of spool volumes, use the FENCE parameter; specify
FENCE = YES. When FENCE = YES is specified, the JCTSAMSK is not set to
all ones (the default), rather only one bit is set on, and jobs are assigned evenly
across all spool volumes.

Once the spool partitioning mask has been set, whether from this exit or from
another exit, this exit--if it has been implemented--receives control only when no
more track groups are available on the spool volumes designated for the job in its
mask. If only one volume has been designated initially for a particular job but
the job never requires more space than happens to remain available on its single
designated volume, the spool partitioning mask never has to be expanded and the
exit is not invoked. Again, when and if your routine does receive control, it must
allocate at least one additional spool volume. And, again, if it does not expand
the mask at all, JES2 responds by expanding JCTSAMSK to all ones if the
FENCE parameter is specified as FENCE = NO or adding one more volume to
JCTSAMSK if FENCE = YES.

This exit is effected by a single exit point, at label $TRACKX.

ENVIRONMENT: JES2 main task

POINT OF PROCESSING:

This exit is taken from the JES2 main task, from the $TRACK subroutine in
HASPTRAK, when there is no space available on the spool volumes from which
the current job is permitted to allocate space. If the job is permitted to allocate
space from any spool volume, that is, if the spool partitioning mask is set to all
ones, this exit is not invoked; it is only invoked when spool partitioning is in
effect.

When $TRACK is called, it first checks the TGB for an available track group
from an eligible spool volume. If a track group is available, $TRACK allocates it
to the job. If there is no available track group on an eligible spool volume
represented in the current TGB, $TRACK checks the bit map in SVTMTSPL to
determine whether there are any track groups not represented in the current TGB
that are available on any of the eligible spool volumes. If there are additional
track groups available, $TRACK posts ($POST) the checkpoint processor to
replemsh the TGB via the KBLOB routine. However, if there are no more track
groups available on any of the eligible spool volumes, $TRACK must determine
whether spool partitioning is in effect. If no spool partitioning is in effect, that is,
if the mask is set to all ones, then $TRACK waits ($W AIT) for the JES2
dispatcher to free at least one of the track groups currently in use. If spool
partitioning is in effect, $TRACK invokes the exit to expand the copy of the
spool partitioning mask. When the exit routine returns control, $TRACK checks
to see if the mask has been expanded. If not, $TRACK expands the spool
partitioning mask to all ones, if FENCE = NO or adds only one bit to the mask if
FENCE = YES. If the mask has been expanded, $TRACK places the spool
partitioning work area (that is, the updated version of the spool partitioning
mask) in the JCTSAMSK. $TRACK then restarts its allocation cycle by checking
the new (replenished) TGB for an available track group.

3-44 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM EXIT 11

Note that this exit is not invoked when there is still space available on the job's
designated spool volumes but the particular track groups from the designated
spool volumes represented in the TGB have been allocated. That is, the exit is
not invoked merely when the TGB has to be replenished before additional track
groups can be allocated to the job from its designated spool volumes; instead,
JES2 automatically replenishes the TGB, prior to and transparent to this exit.
This distinction is described in greater detail in the "Other Programming
Considerations" provided below.

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT
ROUTINE:

RO N/A
Rl Address of the 3-word parameter list, having the following structure:

R2-RIO
Rll
Ril
R13
R14
R15

word 1 (+ 0) Address of the lOT

word 2 (+4) Address of the JCT (if available); otherwise 0

word 3 (+8) Address of a 32-byte spool partitioning mask work area, initially set to the
IOTSAMSK field

N/A
Address of the HCT
N/A
Address of the PCE
Return address
Entry address

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:

RD-RI4 Unchanged

RI5 A return code

RETURN CODES:

o Tells JES2 that if there are any additional exit routines associated with this exit, execute the next
consecutive exit routine. If there are no additional exit routines associated with this exit point,
this return code tells JE52 to set the spool partitioning mask as indicated by the FENCE
parameter on the SPOOLDEF initialization statement setting and to reissue the STRACK
request.

4 Tells]E52 that even if there are additional exit routines associated with this exit, ignore them;
instead, set the spool partitioning mask as indicated by the FENCE parameter on the
SPOOLDEF initialization statement setting and reissue the STRACK request.

8 Tells JES2 that an updated version of the spool partitioning mask-with at least one additional
bit turned on-has been passed to JES2 in the spool mask work area and will now determine
subsequent spool allocation. It also tells JES2 to reissue the STRACK request.

JOB EXIT MASK: This exit is subject to job exit mask suppression.

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY:

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: SBUFFER, $DAS, $HASPEQU, SHCT, SlOT, $JCT, $MIT,
SPCE, SSCAT, SSVT, $TAB, SXECB, RPL

LC23-OO67-3 C Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-45

EXIT 11
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

OTHER PROGRAMMING CONSIDERA TIONS:

1. When your exit routine receives control, it must expand the spool partitioning
mask to include at least one additional spool volume. If your routine passes
a return code of 8 to JES2 but hasn't actually expanded the mask via the new
mask returned in the spool mask work area, JES2 automatically sets the mask
to all ones or to one bit, as indicated by the FENCE parameter specification.
You can also intentionally direct JES2 to expand the allocation mask by
passing the standard return code of 0 or 4 from your exit routine.

2. You may implement spool partitioning from Exit 2 or from this exit. In
general, you would set JCTSAMSK from Exit 2 if you intended to base your
allocation algorithm on JOB statement parameters and from this exit if you
intended to base your allocation algorithm on spool volume usage, for
example, if you want to always allocate track groups from the least full spool
volume. Note that the algorithms mentioned here are only suggestions; you
may wish to use other criteria, or some combination of criteria, in
implementing your own spool volume allocation algorithm.

If you set the mask in Exit 2, this exit receives control only when it becomes
necessary to expand the mask. It is also possible to set the mask in Exit 2
and yet not write a mask-expansion routine for this exit. In this case, if the
spool volumes originally designated for the job runs out of space, JES2
provides the default and the job can then allocate track groups from any
available spool volume. Or, you might choose to use this exit to both set the
mask and then, if necessary, expand it. You have considerable flexibility in
implementing spool partitioning and adapting it to the specific needs of your
system.

3. If you intend to set JCTSAMSK from Exit 2, note that, under exceptional
circumstances, JES2 may have to issue $TRACK before the entire JOB
statement or accounting field has been scanned. For example, if the JOB
statement is exceptionally long and spread out over a number of continuation
statements, and if, at the same time, the JES2 buffer size is small, JES2 may
have to call the $TRACK routine before finishing with the JOB statement.
Under these circumstances, if you have written a mask expansion routine for
this exit, it gets control prior to the exit routine which would have set
JCTSAMSK from Exit 2.

4. If the IOTJCT field of the lOT contains the address of the JCT, the JCT is
available. Otherwise, the IOTJCT field contains a 0 and the JCT is not
available. For example, the JCT is unavailable when JES2 is acquiring space
for the spooled remote messages or multi-access spool messages, and when
JES2 is acquiring a record for the lOT for the JESNEWS data set. If you
intend to base your allocation algorithm on values contained in fields of the
JCT, you must take into account the fact that the JCT is sometimes
unavailable and write a section of your exit routine to take control in these
instances.

5. Note that, if implemented, this exit is not invoked every time the $TRACK
routine is called. While track groups remain available on the spool volumes
designated for the job by the spool volume partitioning mask, the exit is not
invoked. It is invoked only when there is no space available on the spool

3-46 JES2 User Modifications and Macros LC23-0067-3© Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM EXIT 1:8.

volumes designated for the job by the current setting of the spool partitioning
mask. If all of the track groups from the designated spool volumes
represented in the TGB have been allocated but the spool volumes themselves
still contain unallocated track groups, this exit is not invoked. Instead, when
a processor makes the $TRACK request, JES2 automatically determines that
the TGB needs to be replenished. The executing processor then posts
($POST) the checkpoint processor, and issues the $W AIT macro. The
checkpoint processor calls the KBLOB routine to replenish the TGB with
unallocated track groups (from all available spool volumes, which include the
job's designated spool volumes). When the TGB is replenished, the
checkpoint processor $POSTs the JES2 main task processor that originally
issued the $TRACK request. When this processor regains control, the
$TRACK request can then be completed, using track groups from the job's
designated spool volumes.

6. You must specify the TGBENUM parameter on the SPOOLDEF statement
to specify the size of the TGB with a number large enough to accommodate
all the spool volumes that could be available to JES2 at anyone time. If,
after you've implemented spool partitioning, the number you specify for this
parameter is too low, results are unpredictable. Potentially, you could
degrade JES2 performance.

When replenishing the TGB with unallocated track groups, the standard
KBLOB routine algorithm provides track groups equally from across all
available spool volumes. That is, KBLOB provides a track group (or track
group cell) from each available volume. If this does not fill the TGB, it again
provides a track group from each available volume, repeating this process
until the TGB is filled. The result--provided that the TGBENUM parameter
on the SPOOLDEF statement has been specified correctlY-Mis that all
available spool volumes are represented by track groups in a single
replenishment of the TGB. If at least one of the spool volumes from which
the current job is allowed to allocate space is available, a track group from
that volume is available to the job in the TGB. Otherwise, if none of the
spool volumes designated in the job's spool partitioning mask are available,
results depend on whether or not a mask-expansion routine has been
implemented for this exit. If this exit is implemented and enabled, it is
invoked to expand the mask, after which JES2 can call the $TRACK routine
again. If this exit has not been implemented, JES2 responds by expanding the
mask to all ones.

However, in the case where the number specified for the TGBENUM
parameter on the SPOOLDEF statement is too small, every available spool
volume cannot be represented by at least one track group in a single
replenishment of the TGB. For example, if the size of the TGB is specified as
six track groups but there are eight available spool volumes, only six of the
eight can be represented in any single replenishment of the TGB. The result
is that if JES2 issues the $TRACK macro for a job that is limited by its spool
partitioning mask to the use of a spool volume which is not represented in the
current TGB, JES2 is put into a loop. The loop occurs although the spool
volume was available. The exit routine, which is invoked to expand the mask
when all of the volumes it represents are no longer available, is not invoked
because at least one of the volumes it designates is still available. Therefore,
because it cannot find a track group designated for the current job in the

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-47

EXIT 1111
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

current TGB, JES2 posts ($POST) the checkpoint processor to have it
replenish the TGB. However, when the checkpoint processor takes control, it
discovers that the TGB does not have to be replenished because none of its
track groups have been allocated. The checkpoint processor then returns
control to JES2, which reissues the $TRACK request and again, finding no
track groups from the designated volumes for the current job available in the
current TGB, posts ($POST) the checkpoint processor. This looping cycle
continues until JES2 times out and fails. For this reason, if you intend to
implement spool partitioning, it is essential that you specify TGBENUM
correctly.

7. Spool partitioning, as implemented using the JES2 exit facility, is not fully
effective in that you cannot absolutely limit a particular job to particular
spool volumes. You cannot wait for space on an unavailable volume to
become available. Once the volume or volumes to which you have limited a
job are full, you must either expand the partitioning mask yourself in your
exit routine or else allow JES2 to expand it to all ones. This fact, however,
does not negate the usefulness of the spool partitioning that you can
implement. In having the ability to limit a job to particular spool volumes
until they become full, you can still exercise a considerable degree of control
over volume usage, control that you would not have in any degree if you
allowed your system to default to standard track group allocation.

8. Note on recovery: The $TRACK routine can be called from almost any stage
in JES2 processing, with significant variations in standard JES2 recovery
mechanisms from call to call. For example, HASPRDR provides more
extensive recovery than HASPXEQ. Therefore, when $TRACK is called
from HASPRDR, an error in your exit routine may cause only the current
job to fail; however, when $TRACK is called from HASPXEQ, an error in
your exit routine may cause JES2 itself to fail. As with every exit, your exit
routine should not depend on JES2 for recovery. JES2 cannot anticipate the
exact purpose of your exit routine, and therefore any standard JES2 recovery
that happens to be in effect is, in general, minimal. You should provide your
own recovery within your exit routine.

3-48 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Exit 12: Spool Partitioning Allocation ($STRAK)

FUNCTION:

EXIT 12

This exit allows you to provide an exit routine to receive control from a JES2
subtask or a routine executing in the user address space (HASPSSSM) when no
more track groups are available on the spool volumes from which the current job
is permitted to allocate space. (Note: In the JES2 main task, Exit II serves the
purpose of this exit. Like Exit II, this exit is used in implementing spool
partitioning. For an initial description of spool partitioning and how to
implement it in your system, you should read the description of Exit II, above,
prior to reading this one. You should not implement Exit 11 or Exit 12 without
implementing its companion exit; therefore, this description concerns itself
primarily with how Exit 12 relates to and differs from Exit II. and the special
considerations that apply to Exit 12.)

Unlike Exit II, this exit is not invoked to set the spool partitioning mask for the
first time. The mask is set in Exit 2 or in Exit II. For any job, the $TRACK
routine is always called to allocate track groups for the first time from
HASPRDR or HASPNET, which are part of the JES2 main task. This exit is
called from the $STRAK routine, which allocates track groups in the subtask and
user environments, rather than $TRACK, which allocates track groups in the
JES2 main task.

This exit, similar to Exit II, if implemented, receives control only when no more
track groups are available on the spool volumes designated for the job in its
mask. And, just as with Exit II, once your exit routine receives control it must
allocate at least one additional spool volume. If it does not expand the mask at
all, JES2 responds by expanding JCTSAMSK to all ones if the FENCE parameter
on the SPOOLDEF initialization statement is specifies as NO, or by adding one
bit to the mask if FENCE = YES.

This exit is effected by a single exit point, at label $STRAKX.

ENVIRONMENT: User address space

POINT OF PROCESSING:

This exit is taken from $STRAK (HASPSSSM), when there is no space available
on the spool volumes from which the current job is permitted to allocate space. If
the job is permitted to allocate space from any spool volume, that is, if the spool
partitioning mask is set to all ones, this exit is not invoked; it is only invoked
when spool partitioning is in effect.

When $STRAK is called, it first checks the TGB for an available track group
from an eligible spool volume. If a track group is available, $STRAK allocates it
to the job. If there is no available track group on an eligible spool volume
represented in the current TGB, $STRAK checks the bit map in SVTMTSPL to
determine whether there are any track groups not represented in the current TGB
that are available on any of the eligible spool volumes. If there are additional
track groups available, $STRAK posts ($$POST) the checkpoint processor to
replenish the TGB via the KBLOB routine. However, if there are no more track
groups available on any of the eligible spool volumes, $STRAK must determine

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-49

lEXJI1' 11.2
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

whether spool partitioning is in effect. If no spool partitioning is in effect, that is,
if the mask is set to all ones, then $STRAK waits (WAIT) for the JES2 dispatcher
to free at least one of the track groups currently in use. If spool partitioning is in
effect, $STRAK invokes the exit to expand the spool partitioning mask; once the
mask has been expanded, $STRAK restarts its allocation cycle.

As with Exit 11, this exit is not invoked when there is still space available on the
job's designated spool volumes and the current TGB has to be replenished. The
distinction between the invocation of this exit to expand the spool partitioning
mask and JES2's automatic replenishment of the TGB is described in greater
detail in the "Other Programming Considerations" below.

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT
ROUTINE:

RO N/A
RI Address of the 3-word parameter list, having the following structure:

RZ·RIO
RII
RI2
RI3
RI4
RIS

word I (+ 0) Address of the lOT

word Z (+4) Address of the JCT (if available); otherwise 0

word 3 (+8) Address of a 32-byte spool partitioning mask work area, initially set to the
IOTSAMSK field

N/A
Address of the SVT
N/A
Address of an OS-style save area
Return address
Entry address

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:

RO-RI4 Unchanged

RIS A return code

RETURN CODES:

o Tells JE82 that if there are any additional exit routines associated with this exit, execute the next
consecutive exit routine. If there are no additional exit routines associated with this exit point.
this return code tells 1E82 to set the spool partitioning mask as indicated by the FENCE
parameter on the SPOOLDEF initialization statement setting and to reissue the SSTRAK
request.

4 Tells JES2 that even if there are additional exit routines associated with this exit, ignore them;
instead, set the spool partitioning mask as indicated by the FENCE parameter on the
SPOOLDEF initialization statement setting and reissue the SSTRAK request.

8 Tells 1ES2 that an updated version of the spool partitioning mask-with at least one additional
bit turned on--has been passed to 1ES2 in the spool mask work area and witl now determine
subsequent spool allocation. This return code also tells 1E82 to return the SSTRAK request.

JOB EXIT MASK: This exit is subject to job exit mask suppression.

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: $IOT, $DAS, $JCT, $MIT, $TAB, $CSA, $BUFFER,
$HASPEQU, $SVT, RPL

3-50 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM EXIT 11.2

OTHER PROGRAMMING CONSIBERA TlONS:

1. From Exit 11, with the substitution of $STRAK for $TRACK, several of the
"Other Programming Considerations" apply directly to this exit; these are: 1,
7, 8, and 9. In addition, the considerations that follow apply specifically to
this exit.

2. In general, except for environmental considerations and the possible need to
set the JCTSAMSK initially, the exit routine that you provide for this exit
should duplicate the algorithm that you provide for Exit 11. If you fail to
provide a similar exit routine for this exit, you can seriously degrade your
implementation of spool partitioning. For example, if the volumes designated
for use by a particular job happen to run out of space while the job is being
processed in a subtask environment and if you haven't implemented this exit,
JES2 automatically expands the mask as indicated by the FENCE parameter
setting, in spite of whatever allocation algorithm you have implemented for
Exit 11. Now, not only is the job able to allocate track groups from more
volumes from the subtask environment, but the JCTSAMSK field in the job's
JCT is permanently expanded.

3. If the IOTJCT field of the lOT contains the address of the JCT, the JCT is
available. Otherwise, the IOTJCT field contains a 0 and the JCT is not
available. If you intend to base your allocation algorithm on values
contained in fields of the JCT, you must take into account the fact that the
JeT is sometimes unavailable and write a section of your exit routine to take
control in these instances.

4. Note that, if implemented, this exit is not invoked every time the $STRAK
routine is called. As long as track groups remain available on the spool
volumes designated for the job by the spool volume partitioning mask, the
exit is not invoked. It is invoked only when there is no space available on the
spool volumes designated for the job by the current setting of the spool
partitioning mask. If all of the track groups from the designated spool
volumes represented in the TGB have been allocated but the spool volumes
themselves still contain unallocated track groups, this exit is not invoked.
Instead, when the subtask or user routine makes the $STRAK request, JES2
automatically determines that the TGB needs to be replenished. The
$STRAK routine then posts (SSPOST) the checkpoint processor and issues
the SW AIT macro; the subtask or user routine remains idle until the TGB is
replenished. The checkpoint processor calls the KBLOB routine to replenish
the TGB with unallocated track groups (from all available spool volumes,
which include the job's designated spool volumes). When the TGB is
replenished, the checkpoint processor posts (SSPOST) the subtask or routine
that originally issued the $STRAK request. When the subtask or user routine
regains control, the $STRAK request can then be completed, using track
groups from the job's designated spool volumes.

5. Each spool volume is represented by a direct access spool entry (DAS). There
are $SPOLNUM OASes as defined by the SPOOLNUM parameter on the
SPOOLDEF initialization statement. The first $SPOLNUM bits in the
JCTSAMSK have a one-to-one correspondence with the OASes. Although
there are always $SPOLNUM OASes, not all may be in use at anyone time.
The DAS entries are contiguous in storage with copies both in the JES2

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-51

EXIT 12
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

private area and CSA. Exit 12 can only access the DAS copies in CSA. The
CSA copies of the DAS are pointed to by SVTDASA (and the first DAS is
pointed to by SVTDAS1). Each DAS in CSA is DASSIZC in length.

DASVOLID contains the 5- to 6-character volume ID. The total number of
track groups in a spool volume is contained in the field DASNOTGE.
DASTGALC contains the number of track groups allocated by this volume.
DASMTCSZ is the size of TGSIZE for this volume. DASALLOC in
DASFLAG is used to indicate whether any unused track groups from this
volume will be put in the TGB for allocation. DASEXSTS indicates whether
this DAS is currently being used to represent a volume. Other flags in
DASFLAG give more status information on the volume. DASMASK gives
the bit setting for this volume that matches the bit for this volume to be used
with JCTSAMSK.

In the $TRACK exit, the DASs can be looped through using the
DASTRAKQ. This queue contains offsets of the next DAS in the queue.
This is anchored out of the $HCT by field $DASTRKQ. This permits the
user to just scan DASs that are represented in the track group map (in the
order they are in the track group map). This would ensure only defined
volumes are scanned (except a volume just beginning the start process may
not be on the queue yet). The $STRAK exit cannot use this queue since they
do not have access to the header. They must loop through every DAS.
Reaching a DAS that is not being used does not mean the remaining DASs
are not used. The empty DAS could have represented a volume that is now
drained.

6. Be sure your exit routines reside in common storage.

3-52 JES2 User Modifications and Macros LC23-0067-3 ~ Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM EXIT 13

Exit 13: TSO IE Interactive Data Transmission Facility Screening
and Notification

FUNCTION:

This exit allows you to provide an exit routine for enhancing the functions of the
TSO/E interactive data transmission facility. (Note: For a description of this
facility. see TSOjE Interactive Data Transmission Facility User's Gllide. The
facility is part of Program Product 5665-285.) You can use this exit to screen
incoming files as they arrive at the receiver's network node and to notify the
receiver that a transmitted file has arrived. If this exit is implemented and
enabled. it is taken every time the JES2 network SYSOUT receiver reads and
processes the network data set header (NDH) of a file transmitted via the TSO/E
interactive data transmission facility.

To screen an incoming file. write an exit routine to perform a validity check on
the file's control information contained in the network job header (NJH). the
network data set header (NDH). and the peripheral data definition block
(PDDB). On the basis of this check. the exit routine can decide to delete the file.
to route it 10 another user. or to allow it to remain targeted for the TSO receiver
requested by the sender. Provided that the sender is identified in the NJHGUSID
field of the NJH, JES2 sends the following message back to the sender after
deleting the file:

$IlASP548 MAIL TO nodename!userid DELETED, INVALID USERID

The message identifies the intended receiver as userid and the intended receiver's
node as nodentlme. When deleting a transmitted file. the exit routine can also
modify the message text ("DELETED, INVALID USE RID") or replace the
message text with a text of its own. Use an exit-generated text to provide the
sender with the specific reason for the deletion.

To direct JES2 to notify the TSO receiver that a transmitted file has arrived. write
an exit routine to pass a return code of 8 to JES2. As with screening. you can
write an exit routine to examine control information and. on that basis. notify
selected receivers. To notify every receiver unconditionally. write an exit routine
to generate a return code of 8 whenever it is entered--that is. every time a file
arrives via the TSO/E interactive data transmission facility. When passed a return
code of 8 from this exit. JES2 invokes the TSO SEND function to issue the
following message to the receiver:

$:lASP549 MAIL FROM nodename!user id RECORDS nnn

The message identifies the sender as userid. indicates the system of origin as
l1odellame, and indicates the number of records in the file by 11I11l. When ready,
the TSO user can now issue the TSOjE RECEIVE command to accept the file. If
the receiving node is a multi-access spool configuration, you can use your exit
routine to specify the system on which the TSO/E SEND command will notify the
receiver.

Note that if the exit routine deletes a transmitted file--even when the exit routine
has generated a return code of 8--JES2 automatically suppresses the $HASP549
notification message. If the exit routine routes a file to an alternate receiver (that

LC23-0067-3 ~~ Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-53

EXIT 11.3
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

is, a TSO user other than the sender's intended receiver) and generates a return
code of 8, $HASPS49 is sent to the alternate receiver; the original receiver is not
notified.

This exit is established by a single exit point, at label NSRNMXIT.

ENVIRONMENT: JES2 main task

POINT OF PROCESSING:

This exit is taken from the JES2 main task, from the network SYSOUT receiver.
Exit point MAILXIT occurs in the NSRDSH area of HASPNET, the SYSOUT
receiver main entry point. It occurs just after the network SYSOUT receiver has
read and processed the network data set header (NOH) of a file transmitted via
the TSO/E interactive data transmission facility. JES2 has built a peripheral data
definition block (PDDD) from the information in the NDH but has not yet
written the POOD to spool.

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT
ROUTINE:

RO N/A
RI Pointer to a S-word parameter list with the following structure:

Word I (+ 0) address of the network job header (NJH)

Word 1 (+4) address of the network data set header (NOH)

Word 3 (+8) address of the peripheral data definition block (POOB) built for the
received file

Word 4 (+ C) address of a I-byte binary field containing the sysid value for the
multi-access spool member on which the intended receiver is currently
logged on; if the intended receiver is not currently logged on, this field
contains a zero

Word 5 (+ 10) address of a 700byte me5l!age text area for SHASPS48; JES2 has initialized
this area to 'DELETED, INVALID USE RID'

Rl-R9 N/A
RIO Address of the JCT
Rll Address of the HCT
Rll N/A
RI3 Address of the PCE
Rt4 Return address
Rt! Entry address

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:

ROoRl N/A
RI! A return code

RETURN CODES:

o Tells JES2 that if there are any additional exit routines associated with this exit. call the next
consecutive exit routine; if there are no additional exit routines associated with this exit, continue
with normal network SYSOUT receiver processing. Note, however, that if the exit routine has
set to one the POBINSOT bit in the PDBFLAGI byte of the POOB, normal processing is to
delete the file. If the exit routine has altered the PDBWTRlO field of the POOB, normal
processing is to route the file to a user other than the sender's intended receiver.

3-54 JES2 User Modifications and Macros LC23-OO67-3 0 Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM lExrr 13

4 Tells JES2 to ignore any additional exit routines associated with this exit and to continue with
normal network SYSOUT receiver processing. Note, however, that if the exit routine has set to
one the POBINSOT bit in the POBFLAGI byte of the POOB. normal processing is to delete
the file. If the exit routine has altered the PDBWTRID field of the PODB, normal processing is
to route the file to a user other than the sender's intended receiver.

8 Tells JES2 to issue the SHASPS49 notification message to the intended receiver of the
transmitted tile. Note, however, that if the exit routine has set to one the PDBINSOT bit in the
POBFLAG I byte of the PODB, JES2 ignores this return code and suppresses the SHASPS49
message. If the exit routine has altered the POBWTRIO field of the PODB, JES2 routes the
SHASPS49 message to the user now indicated by the contents of PDBWTRID; the sender's
intended receiver does not receive this notification message.

JOB EXIT MASK: This exit is not subject to job exit mask suppression.

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: $HASPEQU, $HCT, $JCT, $MIT, $NHD, $PCE, $PODB

OTHER PROGRAMMING CONSIDERA TlONS:

1. This exit will not be taken if a file is received from another member of the
same multi-access spool configuration. If you require notification between
different members of the same multi-access spool configuration, use the
TSO/E TRANSMIT exit (INMXZOl).

2. When using the exit to screen transmissions, you can code your exit routine to
examine any of the control characteristics of an incoming file. By making use
of the received parameter list, the exit routine can interrogate any fields in the
NJH, the NOH, or the PDDB. You can devise a fairly simple algorithm,
with the validity check based on a single factor. For example, the exit routine
can check the intended receiver's userid in the PDBWTRID field of the
PDDB and compare it to a list of authorized receivers in an
installation-written control block. Alternately, you can devise a more
sophisticated algorithm, basing the validity check on the comparison of
several factors. For example, you can limit a sender to certain authorized
receivers, or you can limit a receiver to certain authorized senders.

3. In using the exit to initiate receiver notification, you can also code your exit
routine to examine any of the control characteristics of an incoming file. A
selective notification algorithm would perform comparison checks similar to
those performed by a screening algorithm, and, as with a screening algorithm,
can be as simple or as sophisticated as you choose to write it. To implement
universal--as opposed to selective--notification, write an exit routine that
generates a return code of 8 whenever it is entered. This exit, if implemented
and enabled, is taken whenever a file arrives via the TSOJE interactive data
transmission facility; all receivers are notified. However, the intended receiver
is notified only if logged on or if the exit has been coded such that the desired
SYSIO value is moved to the address given as the fourth word of the received
parameter list.

4. To delete an incoming file, set to one the PDNINSOT bit in the PDBFLAG 1
byte of the PODB. Note that even if the exit routine generates a return code
of 8, setting the PDNINSOT bit to one causes JES2 to suppress the
$HASP549 notification message.

LC23-0067-3 4::> Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-55

EXler Jl3
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

5. When deleting a file, the exit routine can alter the standard text of the
$HASP548 message by moving the replacement text to the 70-byte area whose
address is the fifth word of the received parameter list. You may want to
code your exit routine with several alternate message texts, each
corresponding to the particular condition that caused the exit routine to delete
the file.

6. To reroute an incoming file to a user other than the intended receiver, replace
the contents of the PDBWTRID field of the PDDB with the userid of the
alternate receiver. The alternate userid must be defined at the network node
that has received the file. Note that if the exit routine alters the PDBWTRID
field and also sets to one the PDINSOT bit in the PDBFLAGI byte, the file
is deleted rather than rerouted to the alternate receiver.

7. When you write an exit routine that reroutes a file to an alternate receiver
and, at the same time, generates a return code of 8, JES2 issues the
$HASP549 message to the alternate receiver and not to the receiver intended
by the sender.

8. If a TSO user submits a job to a JES2 job entry network and specifies the
NOTIFY = option on the JOB statement, when the job's system output
reaches its ultimate destination the SYSOUT receiver issues a notification
message to the TSO user. This message ($HASP546 SYSTEM OUTPUT
RECEIVED AT nodename) indicates that the job's SYSOUT was received
and at which node it was received. NOTIFY = is automatically specified for
transmissions that enter the network via the TSO/E interactive data
transmission facility. Since NOTIFY = is automatically specified and since
JES2 views these transmissions as SYSOUT data sets, JES2 automatically
routes the $HASPS46 notification message to the TSO sender whenever a
transmitted file arrives at this destination node. However, because a number
of factors can influence the transmission of the file between its arrival at the
destination node and its actual receipt by a TSO end user, users at your
installation should be informed that receipt of the $HASP546 message in no
way confirms successful transmission to the intended TSO receiver. Users
should also be informed that the $HASP546 message is not controlled by the
NOTIFY option on the TSO/E TRANSMIT command; JES2 sends this
message regardless of whether or not return notification has been requested.

9. To specify the particular system in a multi-access spool configuration on
which the TSO/E SEND function will perform receiver notification, code the
exit routine to move the desired sysid value to the address given as the fourth
word of the received parameter list. The field at this address is one byte in
length and contains the sysid of the system in the multi-access spool
configuration to which the intended receiver is currently logged on; if the
intended receiver is not currently logged on, this field contains a zero. You
may want to code your exit routine to interrogate the SYSID value byte
before modifying it; if this field contains a zero (indicating that the intended
receiver is not logged on), JES2 sends no message. However, if you code
your exit routine to set a value in the SYSID field and if the user has
previously logged off, the $HASPS49 message will be sent to the
SYSl.BRODCAST data set.

3-56 JES2 User Modifications and Macros LC23-0067-3 @ Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM EXIT 13

10. Unless you have written an exit routine to perform receiver validation, JES2
does not check to ensure that a received file is destined for a valid TSO
userid. Files that arrive with invalid userids may accumulate on receiving
spools. Therefore, you should periodically use the JES2 $0 F command to
examine receiving spools at your installation. The $0 F command enables
you to display the names of all files that have entered the system via the
TSOjE interactive data transmission facility, along with their target userids
(external writer names). If necessary, you can then use the TSOjE RECEIVE
command to clear any accumulated files from receiving spools. Specifying the
target userid (external writer name) of a particular file on the RECEIVE
command allows you to examine the contents of the file and then either to
delete it or to reroute it to an alternate (valid) TSO userid.

11. Two JES2 initialization statements can affect the functioning of the TSOjE
interactive data transmission facility. Unless your installation uses the TSOjE
OUTUM parameter, of the TSOjE macro, INMXP, to control the size of
transmission files, the JES2 ESTPUN statement should be specified with a
value sufficient in size to accommodate transmission files. Setting the
NUM = parameter on the ESTPUN statement too low will cause the
TRANSMIT command processor to terminate abnormally (037 ABEND)
when a transmission file exceeds the ESTPUN limit. Also, specifying the
JES2 TSUCLASS initialization statement with the NOOUTPUT option
prevents the TRANSMIT command from functioning. Therefore, you should
omit the NOOUTPUT option if you intend to allow users at your installation
to transmit files via the TSOjE interactive data transmission facility.

12. Note 011 recollery: No recovery is in effect when this exit is taken. As with
every exit, you should provide your own recovery within your exit routine.

Figure 3-2 This is a sample JES2 Exit which exists for the sole purpose of setting
the return code to 8 so that JES2 will notify users of incoming files from the
TSOjE Interactive Data Transmission Facility.

UEXIT13 TITLE 'HASP TSO/E NOTIFY EXIT'
COPY $HASPGBL COPY HASPGBL PARAMETERS

HASPU13 $MODULE $BUFFER,
$JCT,
$JQE,
$PCE,
$CAT,
$HCT,
$MIT,
$HASPEQU

UEXIT13 $ENTRY BASE=R12
$SAVE

LR R12,R15 LOAD BASE REGISTER
$RETURN RC=8 RETURN TO CALLER
$MODEND

END ,

Figure 3-2. Example EXIT13 Routine

C
C
C
C
C
C
C

LC23-0067-3 It:) Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-57

EXIT 14
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Exit 14: Job Queue Work Select - $QGET

FUNCTION:

This exit allows you to provide an exit routine that incorporates your own search
algorithms for finding work on the job queue. You use your exit routine to
search for an appropriate JQE on the job queue and to indicate when normal
JES2 JQE processing should resume.

ENVIRONMENT: JES2 main task

This exit is associated with the $QGET routine, in HASPNUC, which is entered
to acquire control of a job queue element (JQE).

The $QGET routine scans the appropriate queue for an element that is not held,
is not already acquired by a previous request to the job queue service routines,
has system affinity to the selecting system, and has independent mode set in
agreement with the current mode of the selecting system.

This exit is established by a single exit point at label QV ALID.

POINT OF PROCESSING:

This exit is taken from the JES2 main task, from the $QGET routine of
HASPNUC, after $QGET first obtains control of the shared queues and verifies
that the system is not draining but before it selects a JQE from the appropriate
queue. The exit point is before QNEXT in HASPNUC.

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT
ROUTINE:

RO N/A
Rl Pointer to a QGET parameter list having the following structure:

R2-RIO
RlI
R12
R13
RI4
Rl5

+0 (word I) Address of the node table
+4 (word 2) Address of control block

+8 (word 3)
+ 12 (word 4)
+ 16 (word 5)

N/A

• PIT -- if INWS
• OCT -- if OJTWS or OJTWSC

Address of class list (if applicable)
Address of the JQE
each byte is set as follows:

+ 16 Length of the class list
+ 17 Queue type (refer to the $QGET macro description for a list of

these) This byte is set to '00' for queue types INWS. OJTWSC.
and OJTWS. Byte 18 (the type flag) is used to differentiate
between these three queue types.

+ 18 Work selection type flag
+ 19 Reserved

Address of the HCT
N/A
Address of the PCE
The return address
The entry address

3-58 JES2 User Modifications and Macros LC23-0067-30 Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM EXJI'lf 14

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:

RO N/A
Rl Address of a QGET parameter list having the following structure:

R2-RI4
R15

+0 (word 1)
+4 (word 2)
+8
+12 (word 4)
+16 (word 5)

N/A
A return code

RETURN CODES:

Address of the node table
Address of the control block
Address of the class list
Address of the JQE
each byte is set as follows:

+ 16 Length of the class list

+ 17 Queue type (refer to the SQGET macro description for a list of
these) This byte is set to '00' for queue types INWS, OJTWSC,
and OJTWS. Byte 18 (the type flag) is used to differentiate
between these three queue types.

+ 18 Work selection type flag

+ 19 Reserved

o Tells JES2 that if there are any additional exit routines associated with this exit, call the
next consecutive exit routine. If there are no additional exit routines associated with this
exit continue normal queue scan processing.

4 Tells JES2 to ignore any other exit routines associated with this exit and to continue
normal queue scan processing.

8 Tells JES2 to bypass normal queue scan processing because a JQE was found by the exit
routine. The address of the JQE the exit routine fo~d is provided in the fourth word of
the QGET parameter list (the address of which is returned in register I). Continue JES2
processing at label QGOT in HASPNUC.

12 Tells JES2 to bypass normal processing because a JQE was not found. Continue JES2
processing at level QEXIT in HASPNUC.

JOB EXIT MASK: This exit is not subject to job exit mask suppression.

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: $HASPEQU, $HCf, SJQE, SMIT, $PCE

OTHER PROGRAMMING CONSIDERATIONS:

I. The SQSUSE control of the checkpoint record is not maintained if your exit
routine issues a $W AIT or invokes a service that issues a SW AIT. You
should ensure in your exit routine that you retain control of the checkpoint
record before returning to JES2.

2. You must ensure that the spool volume that contains the JQE you pass back
to JES2 is online. Also, the JQE cannot be busy, held, or on an
inappropriate queue (such as the hardcopy queue).

LC23-0067-3 e Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-59

EXIT 15
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Exit 15: Output Data Set/Copy Select

FUNCTION:

This exit allows you to create separator pages for each data set printed or for
each copy requested of a data set.

The data set separator page exit point allows the exit routine to place a separator
page between data sets. This is similar to the function provided by Exit!,
separator page exit.

You could also use your exit routine to reset the addresses of the PRTRANS
table and the eew translate tables. The default addresses for both the
PRTRANS table and the eew command code translate tables are set in the
parameter list before your exit routine is called. You can change the defaults by
changing the parameter list to point to your own PRTRANS table and to point to
your own eew command code translate tables.

The PRTRANS table translates user data and changes each line to be printed on
a local 1403 or remote printer. The default PRTRANS table changes lowercase
letters to uppercase and any characters that are invalid on a specific universal
character set (UeS) to blanks. The eew table translates user-specified channel
commands into installation-defined channel commands. Caution: Translation of
initialization, diagnostic, or control CCWs may cause unpredictable results.

ENVIRONMENT: JES2 main task

POINT OF PROCESSING:

This exit is taken from the JES2 main task in HASPPRPU at exit points
PEXTl50 and PEXT15D. The exit is taken once for each output data set where
the PODS matches the job output element (JOE) and once for each copy of the
data set.

Exit point PEXTJ50 occurs where the final PODS checking is performed.

Exit point PEXT15D occurs for creating a data set separator page.

3-60 JES2 User Modifications and Macros LC23-0067-3 1<;') Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"
Liceosed Materials - Property of IBM lEXJ['f 15

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT
ROUTINE:

RO A code indicating whether the exit call is for a copy of an output data set or whether the
exit call is for a data set.

o indicates the exit call is for a data set select (PEXTISO)
4 indicates the exit call is for a copy of a data set (PEXTISD)

RI Address of a IO-word parameter list, having the following structure:

Rl-RIO

Word I (+0)

Word 1 (+4)
Word3(+8)
Word 4 (+12)
Word S (+16)
Word 6 (+20)
Word 7(+24)
Word 8 (+18)
Word 9 (+3l)
Word 10 (+36)

N/A

original number of copies of the data set to be printed (this number
does not reflect changes made by this exit)
address of the work JOE
address of the JCT
address of the PDDB
address of the DCT
number of copies currently printed
print translate table address
CCW translate table address
copy group address
current copy group count

Rll Address of the HCT

Rll NjA

RI3 Address of the peE

RI4 Return address

RIS Entry address

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:

RO-RI N/A

RIS A return code

RETURN CODES:

o Tells JES2 that if there are any additional exit routines associated with this exit, call the
next consecutive exit routine. If there are no additional exit routines associated with exit
continue normal JES2 processing.

4 Tells JES2 to ignore any other exit routines associated with this exit and to continue
normal JES2 processing.

8 Tells JES2 not to select this PDDB (applies for RO=O only).

JOB EXIT MASK: This exit is subject to job exit mask suppression.

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: $DCT, $HASPEQU, $HCT, $JCT, $JOE, SMIT, $PDDB, $PCE

LC23-0067-3 @ Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-61

EXIT 15
"Restricted Materials of IBMtt

Licensed Materials - Property of IBM

OTHER PROGRAMMING CONSIDERA TlONS:

1. The following fields can be changed via the parameter list

a. Copies to be printed (255 maximum).
b. Pointer to translate table
c. CCW translate table

2. Separator pages should not be produced from the data set select call (RO = 0),
because printer setup processing has not occurred yet.

3. The data set copy count and copy group count cannot be changed on the
separator page call to Exit 15 (RO=4) because setup processing has already
occurred; rather, these changes should be made on the data set select call to
Exit 15, word 1 (RO=O).

4. Separator pages produced by this exit will be affected by the data set copy
group count. The copy group count is sent to the 3800 printer prior to the
call to Exit 15. The printer will repeat all pages, including separator pages, as
specified by the copy group count.

5. If the spooling capabilities of a remote SNA device (such as the 3790) are
operating, use the $SEPPDIR service routine to send a peripheral data
information record (PDIR) to the device. Use the SGETBUF to supply this
routine with buffers and the SFREEBUF macro to release them after your
separator has been created. Buffers supplied to SSEPPDIR must be
HASP-type buffers.

3-62 JES2 User Modifications and Macros LC23-0067-3 C Copyright IBM Corp. 1982. 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM EXIT 16

Exit 16: Notify

FUNCTION:

This exit allows you to change notify message routing and to examine and modify
$WTO messages before they are sent to the TSO user.

Use your exit routine and the CMB to access the intended message, change it
inplace, or replace it with a new message.

This exit is established by the exit point at label OPNEXIT in HASPHOPE.

ENVIRONMENT: JES2 main task

POINT OF PROCESSING:

This exit is taken from the output processor in HASPHOPE before sending the
$WTO notify message.

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT
ROUTINE:

RO A code indicating if this is the first or succeeding $HASP165 (JOB nnnnn ENDED -­
reason text) message

o Indicates that this is the first (and possibly only) message indicating the end of the
job

4 Indicates that this is not the first message for this job going through the output
processor

Rl Address of a 3-word parameter list with the following structure:

R2-RIO

RII

R12

R13

R14

RI5

Word I (+ 0) address of the message that is to be sent
Word 2 (+ 4) address of the $WTO parameter list
Word 3 (+ 8) address of the JCT

N/A

Address of the HCT

NjA

Address of the output processor PCE

Return address

Entry address

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:

RO N/A

Rl Address of the 3-word parameter list

R15 A return code

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-63

EXIT 16

RETURN CODES:

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

o Tells JES2 that if there are any additional exit routines associated with this exit, call the
next consecutive exit routine. If there are no additional exit routines associated with exit
continue normal notify processing.

4 Tells JES2 to ignore any other exit routines associated with this exit and to continue
normal notify processing.

8 Tells JES2 not to issue the notify $WTO.

JOB EXIT MASK: This exit is subject to job exit mask suppression.

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: $CMB, $JCT, $HASPEQU, $HCT, $MIT, $PCE

OTHER PROGRAMMING CONSIDERA TIONS:

1. The CMB maps the $WTO parameter list. You map the parameter list by
performing a USING on CMBWTOPL.

2. CMBML in the $WTO parameter list is the length of the message that is
intended to be sent. Whether your exit routine changes the messages in place
or replaces it, you must update CMBML with the length of the new message.
The intended message can be changed in place for up to a length of 86 bytes.

3. To change the node where the notify message is to be sent, move correct node
number NITNUM (of the NIT) to CMBTONOD.

4. To change the TSO user that the notify message is to go to store the TSO
user id (7-character id) in CMB user.

5. On return from the exit, JES2 uses the address of the message in the first
word of the parameter list.

6. For a return of 8 from your exit routine, JES2 resumes processing at
OPNOTX in HASPPRPU.

3-64 JES2 User Modifications and Macros LC23-0067-3 CO Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Exit 17: Bse RJE SIGNON/SIGNOFF

FUNCTION:

EXIT 17

This exit allows you to exercise more control over your BSC RJE remote devices.
With this exit you can implement exit routines to:

• Selectively perform additional security checks over and above the standard
password processing of the sign-on card image.

• Selectively limit both the number and types of remote devices that can be on
the system at anyone time.

• Selectively bypass security checks.

• Implement installation-defined scanning of sign-on card images.

• Collect statistics concerning RJ E operations on the BSC line and report the
results of the activity.

ENVIRONMENT: JES2 main task

POINT OF PROCESSING:

This exit is taken from the JES2 main task, during BSC RJE sign-on and sign-off
processing of HASPBSC. Three exit points are defined; two sign-on exit points
for performing additional security or checks and one sign-off exit point for
gathering statistics about terminal usage.

The sign-on exit points are in the MSIGNON routines of HASPBSC. One exit
point MSOXIT A is before sign-on and password processing; the other MSOXITB
is after sign-on and password processing.

The exit point MSOXIT A before sign-on and password processing allows your
exit routine to scan the incoming sign-on card. Your exit routine may also bypass
both the JES2 syntax checking of the sign-on and the remote and line password
parameters on the sign-on card or just bypass only the sign-on syntax checking.
The exit point MSOXITB after sign-on and password processing allows your exit
routine to provide additional setup of the remote terminal environment.

HASPBSC calls the sign-off exit point MDSXIT A after writing the disconnect
message at label MDSWTO.

LC23-0067 -3 © Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-65

EXIT 17
"Restricted Materials of IBM"

lieeosed Materials - Property of IBM

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT
ROUTINE:

RO Indicates whether sign-on or sign-off processing is in effect. The following values apply:

o indicates a sign-on before sign-on parameters are processed.
4 indicates a sign-on af\er the sign-on parameters have been processed.
8 indicates sign-off processing.

Rl Address of a S-word parameter list, having the following structure:

Word I (+0) address of the remote attn"bute table (RAT) (for RO=O only) address of
the RAT entry (for RO=4 or 8)

Word :2 (+4) address of the line DCT

Word 3 (+8) zero (reserved for SNA)

Word 4 (+ 11) address of the card image (for RO=O only)

Otherwise not applicable

Word 5 (+16) length of the card image for RO=O only) Otherwise not applicable

(The length is always SO.)

R2-RI0 N/A

RIl Address of the HCT

RI:2 N/A

RI3 Address of the line manager or remote reader PCE

R14 Return address

RlS Entry address

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO lE52:

RO Address of the remote's RAT entry when the return code in RIS is 12 or 16 and the
sign-on indication in RO is "0"

Otherwise not applicable

RI N/A

RIS A return code

RETURN CODES:

o Tells JES2 that if there are any additional exit routines associated with this exit, call the
next consecutive exit routine. If there are no additional exit routines associated with this
exit continue normal sign-on/sign-off processing continues.

4 Tells JES2 to ignore any other exit routines associated with this exit and to continue
normal sign-on/sign-off processing.

8 Tells JES2 to terminate normal sign-on processing.

11 Tells JES2 to bypass syntax but not password processing.

16 Tells JES2 to bypass both syntax and password processing.

Note: RC 8, 12, and 16 are only valid for the exit when called from label MSOXITA (that is, the first
call to the exit, RO = 0).

3-66 JES2 User Modifications and Macros LC23-0067-3 C Copyright IBM Corp. 1982. 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM EXIT 17

JOB EXIT MASK: This exit is not subject to job exit mask suppression.

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: $OCT, $HASPEQU, $HCT, $MIT, $PCE, $RAT

OTHER PROGRAMMING CONSIDERATIONS:

1. For exit point MSOXITA (RO=O) your exit routine has the option to return
a return code that allows the user to specify that the sign-on should be
rejected. A return code of 12 or 16 indicates that normal HASPBSC sign-on
processing can be bypassed. In this case your user exit routine is responsible
for performing all the necessary syntax processing that HASPBSC does and
for returning a valid RAT entry pointer in RO.

2. For the sign-off exit point your exit routine should return a return code of 0
or 4 so that normal processing can continue.

3. To define and implement an installation-defined remote name, change the
remote name to a standard JES2 remote name on the sign-on card and return
with a return code of 0, or supply a valid RAT pointer (valid for the
installation-defined remote name) and return with or return code of 12 or 16.

4. Your user exit routine should not issue a $W AIT or invoke a service routine
that issues a $W AlT.

5. The password on a sign-on card begins in column 24. (For the syntax of the
sign-on card see JES2 Initialization and Tuning.)

6. The $RETURN macro destroys the contents of register o. Therefore, if you
return the RAT address in RO, be certain to have provided a $STORE RO
instruction prior to the $RETURN to place the contents of RO in the current
save area prior to return to JES2.

LC23-0067-3 @ Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-67

EXIT 18
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Exit 18: SNA RJE LOGON/LOGOFF

FUNCTION:

This exit allows you to exercise more control over your SNA RJE remote devices.
With this exit you can implement exit routines to:

• Selectively perform additional security checks over and above the standard
password processing of the sign-on card image.

• Selectively limit both the number and types of remote devices that can be on
the system at anyone time.

• Selectively bypass security checks.

• Implement installation-defined scanning of sign-on card images.

• Collect statistics concerning RJE operations on the SNA line and report the
results of the activity.

ENVIRONMENT: JES2 main task

POINT OF PROCESSING:

This exit is taken from the JES2 main task during the SNA RJE logon and logoff
processing of HASPSNA. Three exit points are defined for logon processing:

• At exit point MSNALXIT for a normal logon during REQ END processing
after label MSNALPAR, your exit routine can be invoked to:

continue normal logon processing.

terminate normal logon processing.

perform password checking but not syntax checking.

bypass syntax and password checking.

• At exit point MSNALXT2 your exit can get control when the remote terminal
is logged on.

• Just before checkpointing the remote autologon at exit point MALGXIT,
your exit can control autologon for the remote terminal.

One exit point (MICEXIT) is defined for logoff processing. This exit point is
after label MICEDMSG in the session control subroutines of HASPSNA before
the remote logoff message is issued. You can use this exit point for gathering
statistics and reporting remote device activity.

3-68 JES2 User Modifications and Macros LC23-0067 -3 © Copyright I BM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM EXiT 18

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT
ROUTINE:

RO A logon or logoff indication having the following meanings:

o indicates syntax processing for a normal logon

4 indicates logon processing for a normal logon after logon parameters have been
processed

8 indicates logoff processing

12 indicates auto logon processing

RI Address of a S-word parameter list having the following structure:

R2-RIO

RII

R12

R13

RI4

RIS

Word I (+0) address of the remole attribute table (RAT) when RO indicates a normal
logon process of "0"

Word 2 (+4)

address of a RAT entry when RO indicates other than a normal logon
process (i.e., RO contains a value of 4, 8, or 12).

• 0 during syntax processing (that is, RO = 0)

• address of the line DCT after logon is complete (that is, RO ;CO)

Word 3 (+8) address of the ICE

Word 4 (+ 12) address of the bind user data when RO indicates normal logon processing
(that is, RO=O).

Word 5 (+ 16) length of the bind user data when RO indicates normal logon processing
(that is, RO=O).

N/A

Address of the HCT

N/A

Address of the line manage PCE

Return address

Entry address

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:

RO Address of the RAT entry when RIS contains a return code of 12 or 16 and the logon
indication in RO is O.

Otherwise a portion of register 0 is ignored.

RI N/A

RIS A return code

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-69

JEX]['f 18

RETURN CODES:

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

o Tells lES2 that if there are any additional exit routines associated with this exit, call the
next consecutive exit routine. If there are no additional exit routines associated with this
exit continue normallogonjlogofT processing.

4 Tells lES2 to ignore any other exit routines associated with this exit and to continue
normal logonjlogofT processing.

8 Tells lES2 to terminate normal logon processing (RO = 0 or 12 only).

12 Tells JES2 to perform password checking but bypass logon syntax processing (RO = 0
only).

16 Tells JES2 to bypass logon password and syntax processing (RO=O only).

JOB EXIT MASK: This exit is not subject to job exit mask suppression.

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: $DCT, $HASPEQU, $HCT, $ICE, $MIT, $PCE, $RAT

OTHER PROGRAMMING CONSIDERATIONS:

1. In the case of logoff processing, JES2 does not expect a return code from
your exit routine. Normal logoff processing proceeds.

2. Your user exit routine should not issue a $W AIT or use a service routine that
issues a $W AlT.

3. To define and implement a installation-defined remote name, change the
remote name to a standard JES2 remote name on the remote logon card and
return with a return code of 0, or supply a valid RAT pointer (valid for the
installation-defined remote name) and return with a return code of 12 or 16.

3-70 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Exit 19: Initialization Statement

FUNCTION:

EXIT 19

This exit allows you to process each JES2 initialization statement before JES2
processes the statement. You can use your exit routine to do any of the following
functions:

• check or analyze each initialization statement.

• alter values supplied on an initialization statement.

• implement your own initialization statements.

• tailor the initialization statement stream to provide for specific requirements
of this start of 1ES2 (e.g., add or delete parameters based on the period
within administrative cycles or the operator shift).

Your exit routine can modify, replace, delete, or insert statements in the
initialization statement stream. Also, Exit 19 can optionally indicate to JES2 that
this initialization of JES2 should be terminated and JES2 should exit the system
rather than continue.

ENVIRONMENT: JES2 main task (Initialization) - JES2 dispatcher disabled

POINT OF PROCESSING:

This exit is taken during JES2 initialization from the initialization routine (IR)
that processes parameter input (lRPL) in HASPIRPL. The exit point is at label
NPLEXIT. IRPL is called out of the initialization routine processing loop
(IRLOOP) in HASPIRA before most other IRs have been called. Previously
executed IRs have processed the initialization options, analyzed the SSI status,
and allocated a series of temporary and permanent control blocks. Exit 0
routines, called during initialization options processing, may have allocated
installation control blocks that may be used now by Exit 19 routines.

HASPIRPL opens the initialization parameter data set (HASPPARM) and then
begins a loop; get an initialization statement from HASPPARM or the operator
console or a previous insertion by Exit 19, pass it to Exit 19, log the statement,
process the statement using the $SCAN facility if Exit 19 has not indicated it
should be deleted. When all input is exhausted, IRPL closes the parameter and
log data sets.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-71

EXIT 19
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

REGISTER CONTENTS WHEN CONTROL IS PA.SSED TO THE EXIT
ROUTINE:

RO An indication of how the initialization input was supplied. The following values in RO
are possible: .
o input came from the HASPARM parameter library file

4 input came from the console

8 input came from a previous insertion by an Exit 19 routine.

RI A 4-word parameter list having the following structure

Rl-RIO

RlI

Rll

RI3

RI4

RI5

Word 1 (+0) address of the initialization statement about to be processed. You can
modify the statement or replace the statement by altering this field.

Word 1 (+ 4) length of the complete initialization statement passed. If you alter the
passed statement or replace it, you should reset this field to the correct
new statement length.

Word 3 (+8) a word that can be used by Exit 19 to specify the address of an
initialization statement you want to insert at the next possible statement
insertion point. JES2 will log an information diagnostic indicating the
statement was inserted by Exit 19.

Word 4 (+ 11) length of the initialization statement pointed to by word 3.

N/A

Address of the HCT

N/A

Address of initialization PCE - the PCE work area for this PCE is the common
initialization routine work area, mapped by the SCIRWORK macro.

Return address

Entry address

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:

RO-RI N/A

RI5 A return code

RETURN CODES:

o Tells JES2 that if there are any additional exit routines associated with this exit, caU the
next consecutive exit routine. If there are no additional exit routines associated with this
exit continue normal initialization statement processing. The exit routines might have
changed or replaced the initialization statement passed.

4 As for return code 0, except JES2 should ignore any other exit routines associated with
this exit.

8 Tells JES2 to bypass this initialization statement and continue with the next statement.
JES2 will log the statement and a diagnostic information message indicating it was
bypassed by Exit 19.

11 Tells JES2 to terminate all initialization processing and exit the system. HASPIRPL
issues message SHASP864 and returns to the IRLOOP with a return code of 8.

JOB EXIT MA.SK: This exit is not subject to job exit mask suppression.

3-72 JES2 User Modifications and Macros LC23-0067-3 C Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM EXIT 19

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: $CIRWORK, $HASPEQU, $HCT, $MIT, $PCE

OTHER PROGRAMMING CONSIDERATIONS:

1. Your EXITnnn and LOAD initialization statements for this exit must be
placed in the initialization deck ahead of those initialization statements that
your exit routine is to scan. The EXITnnn statement must ENABLE the exit;
the $T EXITnnn command cannot be used to ENABLE the exit at a later
time since the point of processing for Exit 19 is prior to the time at which the
command processor is made functional.

2. Tracing for this exit is disabled because of its sequence in the initialization
process.

3. JES2 does not have a recovery environment established at the processing
point for Exit 19 (the JES2 ESTAE will process termination, but not recover).

4. Because Exit 19 is called early in JES2 initialization, some main task services
may not be functional and some control blocks and interfaces may not be
established. The JES2 dispatcher is not yet functional, so MVS protocol
should be used'in Exit 19 routines (WAIT rather than $WAIT, ESTAE rather
than $ESTAE, etc).

5. The CONSOLE statement simulated after all other parameter input is
exhausted if the CONSOLE initialization option was specified is not presented
to Exit 19 exit routines.

6. Exit 19 routines may change the initialization statement passed or replace it
by changing the address and length in the exit parameter list. They may also
indicate, via a return code, that JES2 should bypass processing of the
statement (perhaps because the routine has processed the statement already).
Note that JES2 writes the statement (and any later diagnostics) to the log
data set and hardcopy console only after return from the exit. Therefore the
exit routines may want to log the statement passed from JES2, for diagnostic
purposes, before changing or replacing it. The $STMTLOG macro and
service routine is provided to perform the logging function.

7. Independent of the actions of the exit routine that effect the status of the
statement passed, a new initialization statement may be inserted into the
parameter stream by the exit routine by returning a statement address and
length in the exit parameter list. The inserted statement will be processed as
soon as the current statement is completely processed. Note that the current
statement is not completely processed until either it is bypassed by exit 19,
successfully scanned and processed by JES2, or found to be in error by JES2
and the resultant operator interaction by JES2 is complete. Since the
operator interaction may involve input of multiple new initialization
statements from the operator, the inserted statement may not be processed
until after later calls to Exit 19. Also, when there are multiple exit 19
routines, only one routine can perform a statement insertion. For that
reason, Exit 19 routines should verify that the insertion statement address and
length in the exit parameter list are zero before using those fields to insert a
statement.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-73

EXIT 19
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

8. The processing that JES2 does for each statement after calling Exit 19 is
performed using the JES2 $SCAN facility and a collection of tables. The
tables define the parameter input allowed and how to process it. The scan
may involve multiple levels of scanning, i.e. parameters which have
sub-parameters, etc. At each level, a new table is used. Each table is actually
composed of two tables, an installation-defined table followed by a
JES2-defined table.

By specifying installation-defined tables, an installation can implement its own
initialization parameters on existing JES2 statements, or replace the JES2
definition for existing statements or parameters. Thus this function can be
accomplished without implementing Exit 19, or in conjunction with an
implementation of Exit 19. Also, the $SCAN facility itself can be used from
an Exit 19 routine to process initialization statements.

3-74 JES2 User Modifications and Macros LC23-0067-3 <0 Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Exit 20: End of Input

FUNCTION:

This exit allows you to do the following:

EXIT 20

• Selectively assign a job's system affinity, execution node, and priority based
on an installation's unique requirements and processing workload.

• Based on installation-defined criteria, terminate a job's normal processing and
selectively print or not print its output.

Note: Refer to Appendix D, "JES2 Exit Usage Limitations" for a listing of
specific instances when this exit will be invoked or not invoked

ENVIRONMENT: JES2 main task

POINT OF PROCESSING:

This exit is taken at exit point REXIT A in the subroutine RJOBEND of
HASPRDR in the JES2 main task.

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT
ROUTINE:

RO Zero (0)

RI-R9 N/A

RIO Address of the JCT

Rll Address of the HCT

RI2 N/A

R13 Address of the HASPRDR PCE

RI4 Return address

RI5 Entry address

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:

RO-Rl N/A

RI5 A return code

RETURN CODES:

o Tells JES2 that if there are any additional exit routines associated with this exit. call the
next consecutive exit routine. If there are no additional exit routines associated with this
exit continue normal processing.

4 Tells JES2 to ignore any other exit routines associated with this exit and to continue
normal processing.

8 Tells JES2 to terminate normal processing and print the output.

12 tells JES2 to terminate normal processing without printing the output.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-75

EXJ['f 20
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

JOB EXIT MASK: This exit is subject to job exit mask suppression

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: $JCT, $HCT, $PCE, $HASPEQU, $MIT, $RDRWORK.,
$BUFFER, RPL

OTHER PROGRAMMING CONSIDERATIONS:

1. To change system affinity, set the RDWSIAFF field in the HASPRDR PCE
work area.

2. To change the priority set JCTIPRIO in the JCT.

3. Validate all fields in the JCT prior to using them because not all fields
contain valid values each time Exit 20 is invoked.

4. This exit will not be taken if the JES2 input service processor fails the job due
to an invalid JES control statement or if the submittor has included a /*DEL
or /*PURGE control statement.

5. Note on recovery: $EST AE recovery is in effect. The RDRRCVO recovery
routine will attempt to recovery from program check errors, including
program check errors in the exit routine itself. However, as with every exit,
your exit routine should not depend on JES2 for recovery. JES2 cannot
anticipate the exact purpose of your exit routine and can therefore provide no
more than minimal recovery. You should provide your own recovery within
your exit routine.

3-76 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Exit 21: SMF Record

FUNCTION:

This exit allows you to do the following:

EXIT 21

• Selectively queue or not queue the SMF record of JES2 control blocks for
processing by SMF.

• Obtain and create SMF control blocks prior to queueing.

• Alter content and length of SMF control block prior to queueing.

ENVIRONMENT: JES2 main task

POINT OF PROCESSING:

This exit is taken in HASPNUC at exit point SMFEXIT whenever a JES2
processor queues an SMF record for eventual processing by the JES2-SMF
subtask. The $QUESMFB routine in HASPNUC places a JES2-SMF buffer on
the queue of busy JES2-SMF buffers. (The $SMFBUSY cell in the HCT points
to the busy queue.)

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT
ROUTINE:

RO Zero (0)

Rl SMF buffer address

Rl-RIO N/A

Rll Address of the HCT

R12 N/A

R13 Address of the caller's PCE

R14 Return address

R15 En try address

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:

RO-Rl N/A

R15 A return code

RETURN CODES:

o

4

8

Tells JES2 that if there are any additional exit routines associated with this exit, call the
next consecutive exit routine. If there are no additional exit routines associated with this
exit continue nonnal SMF queue processing.

Tells JES2 to ignore any other exit routines associated with this exit and to continue
normal SMF queue processing.

Tells JES2 to terminate normal SMF queue processing.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-77

]EX][T 21
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

JOB EXIT MASK: This exit is not subject to job exit mask suppression.

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: $HASPEQU. $MIT. $PCE. $SMF

OTHER PROGRAMMING CONSIDERA TlONS:

1. When modifying the SMF record, your exit routine can increase the size of
the SMF record up to a length of SMFLNG (bytes).

2. You can issue $GETSMFB and $QUESMFB in your exit routine.

3. The SMF record type is detected by examining the SMFHDRTY field, not
the SMFTYPE field of the SMF DSECT.

3-78 JES2 User Modifications and Macros LC23-0067-3 ~ Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Exit 22: Cancel/Status

FUNCTION:

EXIT 22

This exit allows your installation to implement its own algorithms for job queue
searching and for TSO CANCEL/STATUS.

ENVIRONMENT: JES2 main task

Your exit routine can perform its own search for a requested job and indicate
whether or not it has found the job, or it can let JES2 perform the standard
search.

POINT OF PROCESSING:

This exit is taken just prior to searching the JES2 job queue for a "status" or
"cancel" request in HASPXEQ of the JES2 main task. Two exit points,
ZTCSEXIT (for cancel/status) and YTCSEXIT (for mUltiple status overflow) in
HASPXEQ exist where HASPXEQ performs the cancel and status functions for
the TSO user (XPTCS).

The cancel and status functions execute when a subsystem job block (SJB) is
queued (via its SJBCHN chain field) on the SVTTSCS queue in the SSVT. The
cancel/status support routine in HASPSSSM performs this queueing.
HASPSSSM then issues aWAIT (against SJBECB) to wait for the completion of
the cancel/status processing.

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT
ROUTINE:

RO An indication that tells why the cancel/status exits are being called. The following
reasons apply:

o indicates a single cancel request or the first status request determined by examining
Lhe function bit (SJBTFUNC) in the SJB.

4 indicaLes a multiple status recall request.

8 indicates a multiple staLus overnow condition. The buffer that holds the status
information is too small.

RI Address of a I-word parameter list. having the following structure:

Word I (+0) address of the SJB

R2-RIO N/A

RII Address of the HCT

R12 N/A

R\3 Address of the HASPXEQ PCE

RI4 Return address

RI5 EnLry address

LC23-0067-39 Copyright IBM Corp. 1982. 1987 Chapter 3. IBM-Defined Exits 3-79

EXIT 22
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:

RO N/A

RI Address of the JQE for return codes of 8 and 12; otherwise not applicable

RIS A return code

RETURN CODES:

o Tells JES2 that if there are any additional exit routines associated with this exit. call the
next consecutive exit routine. If there are no additional exit routines associated with this
exit. continue normal processing.

4 Tells JES2 to ignore any other exit routines associated with this exit and to continue
normal processing.

8 Tells JES2 to process a single request.

12 Tells JES2 to process a multiple request.

16 Tells JES2 that the exit routine has done all the processing requested. HASPXEQ returns
a code of 0 to HASPSSSM.

20 Tells JES2 that the job is not found. HASPXEQ returns a code of 4 to HASPSSSM.

24 Tells JES2 that an invalid combination was requested. HASPXEQ returns a code of 8 to
HASPSSSM.

28 Tells JES2 that jobs with the same job name were found. HASPXEQ returns a code of
12 to HASPSSSM.

31 Tells JES2 that the status buffer is too small to hold all the data requested. HASPXEQ
returns a code of 16 to HASPSSSM.

36 Tells JES2 that the job was not cancelled because it is on the output queue. HASPXEQ
returns a code of 20 to HASPSSSM.

40 Tells JES2 that an invalid cancel request was made. HASPXEQ returns a code of 28 to
HASPSSSM.

Note: RC 12 -- 40 are only valid for this exit when called from label ZTCSEXIT (that is,
RO = 0 or 4 only).

The returned code causes the correct message to be presented to the TSO
interface. In the case of multiple status requests (RC = 12), register RI must be
returned with a zero to end the processing and cause the messages to be issued.

JOB EXIT MASK: This exit is not subject to job exit mask suppression.

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: SHASPEQU, $HCT, SMIT, $PCE, $SJB

3-80 lES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

OTHER PROGRAMMING CONSIDERA TlONS:

EXIT 22

I. The return code from your exit routine will cause HASPXEQ to pass back
the proper return code to HASPSSSM. HASPS SSM propagates that return
code to TSO to issue the appropriate message.

2. In the case of multiple cancel status requests, (your exit routine returned a
return code of 12), HASPXEQ returns a 0 return code to HASPSSSM in the
subsystem job block (SSJB). HASPSSSM propagates that return code to
TSO in SSOBRETN.

3. To end a multiple status request your exit routine must return a "0" JQE
address in Rl and issue a return code of 12.

4. The $JCAN macro can be used in your exit routine.

5. Message IKJ56216I can be misleading. The second level message tells the
user that the job queues were searched for job names consisting of the userid
plus one character. You can code your exit so that the job queue is searched
for all of the user's jobs.

6. First level messages such as IKJ56190I, IKJ56192I, IJK56197I, and
IJK56211I can also be misleading if the exit returned a JQE address in Rl
and a return code of 12. The jobname in these messages is constructed by
TSO using the TSO user's userid and the last character of the job name in the
JQE that was selected by this exit. Depending on the job(s) selected by the
exit, the jobname(s) taken from the JQE may not begin with the userid;
however, the jobid in the message(s) is correct for the job processed.

LC23-0067-3 10 Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-81

EXIT 23
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Exit 23: FSS Job Separator Page (JSP A) Processing

FUNCTION:

This exit allows you to modify the job separator page data area (JSPA) that is
used by the functional subsystem application (FSA) to generate the separator
pages for an output group. When JES2 assigns a data set to a functional
subsystem application, a JSPA is created. The JSPA provides job- and data
set-level information for the data set. This infonnation is used by the FSA to
generate job header, job trailer, and data set header pages if required for this data
set. Exit 23 can be used to modify this separator page information.

Additionally, you can use this exit to suppress the assignment of a JESNEWS
data set. To suppress the assignment of the JESNEWS data set, turn off the flag
bit in the JOE information block (JIB) that indicates JESNEWS printing. If this
exit returns a return code of 8, both the JESNEWS data set and the separator
pages are suppressed.

ENVIRONMENT: Functional subsystem (HASPFSSM)

POINT OF PROCESSING:

This exit is invoked via the exit effector in HASPSSSM from the HASPFSSM
module during GETDS processing. Whenever a new JIB is initialized during
GETDS processing, Exit 23 is invoked in HASPFSSM. At this time, the
associated JCT, lOT, and checkpoint records are read and the JSPA is built.

Refer to "Other Programming Considerations" below for further coding
requirements associated with this exit.

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT
ROUTINE:

RO 0

RI Address of a S-word parameter list. having the following structure:

R2-R10

RII

RI2

RI3

wordl (+0) JSPA address
word2 (+4) 1IB address
nord3 (+ 8) FSACB address
word4 (+ 12) FSSCB address
wordS (+ 16) GETDS parameter list address (IAZFSIP)

NjA

Address of the HFCT

N/A

The address of an 18-word save area where the exit routine stores the exit effector's
registers

RI4 Return address

RIS Entry address

3-82 JES2 User Modifications and Macros LC23-0067-3 It'. Copyright IBM Corp. 1982. 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM EXJlT 23

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:

RO-Rl
R2-R14
R15

N/A
Unchanged
A return code

RETURN CODES:

o Tells JES2, if additional exit routines are associated with this exit, to call the next consecutive
exit routine. If no additional exit routines are associated with this exit a zero return code tells
the FSA to produce any separator that has been defined by the installation based on the
information contained in the JSPA.

4 Tells JES2 to ignore any additional exit routines associated with this exit. However, all other
processing noted for return code 0 is accomplished.

8 Tells JES2 to unconditionally suppress production of the job separator page. The JESNEWS
data set is not assigned.

12 Tells JES2 to uneoncIItionally (that is, even if the printer has been set to S = N) produce any job
separator page.

JOB EXIT MASK: This exit is subject to job exit mask suppression.

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: SFSACB, SFSSCB, SHASPEQU, SHCT, $HFCT, SnB, SJSPA,
ETD, FSIP

OTHERPROGRAMMINGCONSIDERAflON&

1. A save-area type control block is obtained for use as the parameter list loaded
into register 1 when control is passed to the exit routine.

2. The save area whose address is loaded into register 13 when control is passed
to the exit routine is obtained via the SGETBLK and passed to the effector
via the SAVAREA = keyword on the SEXIT call statement. The SAVAREA
is returned via SRETBLK upon return from the exit routine.

3. The assignment of the JESNEWS data set can be checked in the JOE
information block (nB). The JIBFNEWS bit can be set or reset by the exit
routine; however, if a return code of 8 is returned, the JESNEWS is not
assigned; this is independent of the nBFNEWS bit setting.

4. IAZFSIP maps the GETDS parameter list.

S. IAZJSPA maps the JSPA parameter list.

6. Exit 23 routines should issue SSAVE after the SENTRY macro and return to
the exit effector using $RETURN. These routines also can call subroutines of
their own which also use SSA VE/SRETURN logic.

7. This exit must be linkedited to SYS1.LPALIB. This can be done separately
or with HASPSSSM. Do Dot linkedit this exit to HASPFSSM.

LC23-OO67-3 C Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Dermed Exits 3-83

EXIT 23
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

8. Information from the PDDBs is available through this exit. Because there is
no JES2 datil. set separator exit for print services facility (pSF), information
from the data set PDDBs must be obtained through this exit. The PDDB
information can then be moved to the job separator page data area (JSPA)
user field (or by providing a pointer to the GETMAINed user area) so as to
then be available to the PSF exits.

3-84 JES2 User Modifications and Macros LC23-0067-3 ID Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Exit 24: Post Initialization

FUNCTION:

EXIT 24

This exit allows you to make modifications to JES2 control blocks before JES2
initialization ends and to create and initialize control blocks that your installation
defines for its own special purposes.

ENVIRONMENT: JES2 Main Task (Initialization) - JES2 dispatcher disabled

The following JES2 initialization steps have been performed prior to your exit
routine getting control. Essentially all JES2 initialization is done. but the JES2
warm start processor has not been dispatched yet to perform it's initialization-like
processIng.

I. The JES2 initialization options are obtained from the operator or the PARM
parameter on the EXEC statement and converted into status bits.

') The JES2 ini tializa tion statement da ta set is read and processed

3. The direct-access devices are scanned. and eligible spooling volumes are
identified and allocated to JES2.

4. The spooling and checkpoint data sets are examined and initialized for JES2
processmg.

5. The subsystem interface control blocks are constructed and initialized.

6. The unit-record devices, remote job entry lines. and network job entry lines
are scanned; eligible and specified devices are located and allocated.

7. JES2 sub tasks are attached, and exit routines are located.

8. SMF processing is started by generating a type 47 SMF record.

9. The JES2 control blocks, such as the HASP communications table (HCT), the
device control tables (DCT), the data control blocks (DC B), the processor
control elements (PCE), the data extent blocks (DEB), and the buffers (lOB),
are constructed and initialized.

POINT OF PROCESSING:

When Exit 24 is called, HASPIRA has called each JES2 initialization routine (IR)
in turn to perfonn JES2 initialization. After all the IRs have successfully
completed, HASPIRA calls the Exit 24 routine(s) before tracing the JES2
initialization and returning control to the HASJES20 load module (HASPNUC).
Upon return from HASPINIT, HASPNUC deletes the HASPINIT load module
(if not part of HASJES20) and passes control to the asynchronous input/output
processor, $ASYNC, resulting in the dispatching of JES2 processors.

LC23-0067-3 ,0 Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-85

EXIT 24
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT
ROUTINE:

RO

RI-RIO

RlI

RI2

R13

The value "0"

N/A

Address of the HCT

N/A

Address of initialization PCE - the PCE work area for this PCE is the common
initialization routine work area, mapped by the $CIRWORK macro.

R14 Return address

R15 Entry address

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:

RO-Rl N/A

R15 A return code

RETURN CODES:

o Tells JES2 that if there are any additional exit routines associated with this exit, call the
next consecutive exit routine. If there are no additional exit routines associated with this
exit continue the normal initialization process.

4 Tells JES2 to ignore any other exit routines associated with this exit and to continue
normal initialization processing.

8 Tells JES2 to terminate normal initialization. This results in the HASP864 error message
to the operator.

JOB EXIT MASK: This exit is not subject to job exit mask suppression.

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: $CIRWORK, $HASPEQU, $HCT, $HFCT, $PCE, ETP, FSIP

OTHER PROGRAMMING CONSIDERA TlONS:

1. The EXITnnn statement for Exit 24 must specify ENABLE the for the exit;
the $T EXITnnn command cannot be used to ENABLE the exit at a later
time since the point of processing for Exit 24 is prior to the time at which the
command processor is made functional.

2. JES2 does not have a recovery environment established at the processing
point for Exit 24 (the JES2 EST AE will process termination, but not recover).

3. Because Exit 24 is called from JES2 initialization, the JES2 dispatcher is not
yet functional; so MVS protocol should be used in Exit 24 routines (for
example, WAIT rather than $W AIT and EST AE rather than $EST AE).

4. If Exit 24 returns a return code of 8, HASPIRA issues message $HASP864
INITIALIZA TION TERMINATED BY USER EXIT 24. The $HASP428
message will also be issued before final termination.

3-86 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM EXIT 24

5. Your exit routine can access JES2 control blocks through the HCT. Your
exit routine can then access DCTs, PCEs, buffers. the VCT, etc for making
modifica tions.

6. Your exit routine is responsible for establishing addressability to your own
special control blocks. The HCT points to the optional user-defined VCT
and other areas are provided in the HCT for various installation uses,
identified by labels $VSERI through $VSER5.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-87

"Restricted Materials of IBM"

EXIT 25 Licensed Materials - Property of IBM

Exit 25: JeT Read (FSS)

FUNCTION:

This exit allows you to provide an exit routine to receive control whenever a JES2
functional subsystem address space (HASPFSSM) performs JCT I/O. That is,
your routine receives control just after the JCT is read into storage by the
HASPFSSM module which executes as part of the FSS address space. (Note:
Whenever JeT I/O is performed by the JES2 main task, Exit 7 serves the purpose
of this exit, and Exit 8 is used whenever a JES2 subtask or a routine running in
the user address space (HASPSSSM) performs JeT I/O.)

You can use this exit to perform I/O for any installation-specific control blocks
you may have created.

A single exit point effects this exit. The exit point, at label FGDSX25, can give
control to your exit routine just after the FSMGETDS routine in HASPFSSM
reads the JeT for the job owning the JOE from which a data set will be selected
(except if cancelled on a setup request) for assignment to a functional subsystem
application (FSA).

ENVIRONMENT: Functional subsystem (HASPFSSM).

POINT OF PROCESSING:

This exit is taken from the functional subsystem address space (HASPFSSM).

Exit point FGDSX25, receives control after the JeT has been read into storage,
occurs during JIB initialization processing in the FSMGETDS routine of
HASPFSSM if the JeT read was successful and prior to initialization of the job
separator page area (IAZJSPA) with fields from the JeT. The JeT read belongs
to the job owning the JOE from which data set(s) will be selected for assignment
to the FSA via the functional subsystem interface (FSI) GETDS function. Exit
point FGDSX25 occurs prior to the invocation of exit point 23 (JSPA
modi fica tion).

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT
ROUTINE:

RO A code passed to your routine by JES2

RI

R2-RIO

Rll

R12

R\3

RI4

R15

o Indicates that the JeT has been read from spool
4 Indicates that the JeT will be wrillcn to spool

Address of the JeT

N/A

Address of the HFCT

N/A

Address of an OS-style save area

Return address

Entry address

3-88 JES2 User Modifications and Macros LC23-0067-3 .{; Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM EXIT 25

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:

ROoRI N/A

RIS A return code

RETURN CODES:

o Tells JES2 that if there are any additional exit routines associated with this exit, call the next
consecutive exit routine. If there are no other exit routines associated with this exit, continue
with normal processing, which is determined by the particular exit point from which the exit
routine was called.

4 Tells JES2 that even if there are additional exit routines associated with this exit, ignore them;
continue with normal processing, which is determined by the particular exit point from which
the exit routine was called.

JOB EXIT MASK: This exit is subject to job exit mask suppression.

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: $HASPEQU, $JCT, $HFCT, ETP, FSIP

OTHER PROGRAMMING CONSIDERATIONS:

I. Be sure your exit routines reside in common storage.

2. The $SAVE and $RETURN services are available in the FSS environment.

3. The service routines provided in the HASPFSSM module may be used within
your exit routine. In particular, the $BUFIO and $BUFCK services can be
used to perform spool I/O. Also, the cell pool services, $GETBLK and
$RETBLK can be used to acquire save areas and other predefined storage
cells dynamically. You are responsible for returning all storage cells explicitly
acquired.

4. This exit must be linkedited to SYSl.LPALIB. This can be done separately
or with HASPSSSM. Do not Unkedit this exit with HASPFSSM.

5. Note on recovery: No recovery is in effect when this exit is taken. As with
every exit, you should provide your own recovery within your exit routine.
The $EST AE facility is inoperative within the FSS execution environment,
rather the MVS ESTAE facility must be used to provide recovery. Also note
that the FSS may have recovery routines in effect and that these depend on
the FSS implementation.

LC23-0067-3 C Copyright IBM Corp. 1982,1987 Chapter 3. IBM-Defined Exits 3-89

"Restricted Materials of IBM"

EXIT 26 Licensed Materials - Property of IBM

Exit 26: Termination/Resource Release

FUNCTION:

This exit allows you to free resources obtained during previous user exit routine
processing at any JES2 termination. At a JES2 termination (that is, $P JES2
command, JES2 initialization termination, or an abend), Exit 26 receives control
to free whatever resources your exit routines continues to hold. To control the
release of resources, this exit permits access to the termination recovery
communication area (TRCA) and the HASP communications table (HCT). With
such access available, your installation is provided sufficient flexibility to
withdraw or free all services and resources you may have previously acquired.
This exit can also be used to permit your installation to modify the termination
options and edit operator responses to those options.

ENVIRONMENT: JES2 main task (Termination) -- JES2 dispatcher disabled

POINT OF PROCESSING:

This exit is taken from HASPTERM during JES2 termination processing
($HEXIT).

At a JES2 termination, the operator receives the message $HASP098 ENTER
TERMINA TION OPTION. Following the operator response but prior to
response processing, this exit gains control. Exit processing completes. and upon
return from the exit, processing continues with the scanning of the operator
response to the $HASP098 message.

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT
ROUTINE:

RO

Rl
R2-RIO
RII
Rl2
R13
Rl4
Rl5

A code passed to your routine by JES2
o Indicates that Exit 26 is invoked for the first time
4 Indicates that Exit 26 is invoked for other than the first time
Address of the JES2 main task TRCA
N/A
Address of the HCT
N/A
Address of the HASPTERM PCE
The return address
The en try address

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:

RO

Rl
R2-RIO
RII
RI2
RI3
RI4
RI5

A code passed to your routine by JES2
o Indicates that Exit 26 is invoked for the first time
4 Indicates that Exit 26 is invoked for other than the first time
Address of the JES2 main task TRCA
N,'A
Address of the HCT
N/A
Address of the HASPTERM PCE . (this is a special PCE located in HASPTERM)
The return address
A return code

3-90 JES2 User Modifications and Macros LC23-0067-3 (') Copyright IBM Corp. 1982, 1987

"Restrieted Materials of IBM"

Licensed Materials - Property of IBM

RETURN CODES:

EXIT 26

o Tens JES2 that if there are additional exit routines associated with this exit, caD the next
consecutive exit routine. If there are DO other exit routines associated with this exit, continue
with nonnal processing, which is determined by the particular exit point from which the exit
routine was called.

4 Tells JES2 that even if there are additional exit routines associated with this exit, ignore them;
continue with normal processing, which is determined by the particular exit point from which
the exit routine was called.

JOB EXIT MASK: This exit point is not subject to job exit mask suppression.

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: SERA, SHASPEQU, SHCT, SMIT, SPCE, SSVT, STRCA

OTHER PROGRAMMING CONSIDERATIONS:

1. Note on recovery: Exit 26 is protected by an ESTAE routine. If an error
occurs during Exit 26 processing in your code, the EST AE issues message
$HASP082 USER EXIT 26 ABEND to the operator. The ESTAE provides
an SDUMP (if possible), returns control to JES2 termination processing
(SHEXIT), and proceeds with normal termination. If this ESTAE does
receive control, JES2 does not permit Exit 26 to receive control again.

,

LC23·0067·3 C Copyright IBM Corp. 1982, 1987 Chapter 3. IBM·Defined Exits 3-91

3-92 JES2 User Modifications and Macros

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Chapter 4: JES2 Programmer Macros

Macro Overview 4-1
Basic Notation Used To Describe Macro Instructions 4-4

Operand Representation 4-5
Operands with Value Mnemonics 4-5
Coded Val ue Operands 4-6
Metasymbols 4-7

Special Register Notation 4-7
Register Transparency 4-8
Macro Descriptions 4-9
Macro Selection Table 4-9
S$POST - Post a JES2 Event Complete from Another Task 4-10

Format Description 4-10
Environment 4-12

$$WTO - JES2 Subtask Write to Operator 4-13
Format Description 4-13
Environment 4-13

$$WTOR - JES2 Subtask Write to Operator with Reply 4-14
Format Description 4-14
Environment 4-14

$#ADD - Add a Work/Characteristics JOE Pair to the JOT 4-15
Format Description 4-15
Environment 4-15

$#ALCHK - Obtain a Spool Record for Output Check pointing 4-16
Format Description 4-16
Environment 4-17

$#BLD - Format JOEs 4-18
Format Description 4-18
Environment 4-18

$#CAN - Cancel All Work Items Not Currently Being Processed for a Specific
Job 4-19

Format Description 4-19
Environment 4-19

$#CHK - Process print/punch checkpoint spool I/O 4-20

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4: JES2 Programmer Macros

Fonnat Description 4-20
Environment 4-21

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$#GET - Search the JOT Class Queues for an Output Element which Matches
the Requesting Specification 4-22

Fonnat Description 4-22
Environment 4-23

$#JOE - Find and Validate Queue 4-24
Fonnat Description 4-24
Environment 4-25

$#MOD - Move a Work JOE from One Queue to Another in the JOT 4-26
Fonnat Description 4-26
Environment 4-26

$#PDBCAN - Cancel a JOE's Nonheld Data Sets 4-27
Fonnat Description 4-27
Environment 4-27

$#PDBLOC - Find a PDDB by Data Set Key 4-28
Fonnat Description 4-28
Environment 4-28

$#POST - Post Output Device Processors 4-29
Fonnat Description 4-29
Environment 4-30

$#PUT - Return an Unfinished Job Output Element (JOE) to the JOT for
Later Processing 4-31

Fonnat Description 4-31
Environment 4-31

$#REM - Remove a Work/Characteristics JOE Pair from the JOT 4-32
Fonnat Description 4-32
Environment 4-32

$ACTIVE - Specify Processor is Active 4-33
Fonnat Description 4-33
Environment 4-33

$ALLOC - Allocate a Unit Record Device 4-34
Fonnat Description 4-34
Environment 4-34

$AMODE - Set the Addressing Mode 4-35
Fonnat Description 4-35
Environment: 4-36

$BFRBLD - Construct a JES2 Buffer Prefix 4-37
Fonnat Description 4-37
Environment 4-37

$BLDQC - Call the Quick Cell Build/Extend Routine. 4-38
Fonnat Description 4-38
Environment 4-38

$BLDTGB - Queue TGBs to the HASPOOL Processor 4-39
Fonnat Description 4-39
Environment 4-39

$BUFCK - Check Buffer I/O 4-40
Fonnat Description 4-40
Environment 4-40

$BUFIO - Read or Write a Buffer 4-41
Fonnat Description 4-41
Environment 4-42

$CALL - Call a Subroutine from JES2 4-43

JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of mM"

Licensed Materials - Property of IBM

Format Description 4-43
Environment 4-43

SCKPT - Schedule the Checkpoint of an Element 4-44
Format Description 4-44
Environment 4-45

SCOUNT - Count Selected Occurrences 4-46
Format Description 4-46
Environment 4-46

SCWTO - Command Processor Write to Operator 4-47
Format Description 4-47
Environment 4-48

SDCBDYN - Call the Dynamic DCB Service Routine 4-49
Format Description 4-49
Environment 4-49

SDCTDYN - Call the Dynamic DCT Service Routine 4-50
Format Description 4-50
Environment 4-51

SDCTT AB - Map DCT table entries 4-52
Format Description 4-52
Environment 4-57

SDEST - Convert Symbolic Destination to Route Code 4-58
Format Description 4-58
Environment . 4-59

SDISTERR - Indicate Disastrous Error 4-60
Format Description 4-60
Environment 4-60

SDOM - Delete Operator Message 4-61
Format Description 4-61
Environment 4-61

SDORMANT - Specify Processor is Inactive 4-62
Format Description 4-62
Environment 4-62

SDTEDYN - Call the Dynamic DTE Service Routines 4-63
Format Description 4-63
Environment 4-65

$DTETAB - Build and Map the DTE Tables 4-66
Format Description 4-66
Environment 4-67

$ENTRY - Provide Entry to JES2 Processor or Function 4-68
Format Description 4-68
Environment 4-69

SERROR - Indicate Catastrophic Error 4-70
Format Description 4-70
Environment 4-71

$EST AE - JES2 Error Recovery Environment 4-72
Format Description 4-72
Environment 4-73

$EXCP - Execute JES2 Channel Program 4-74
Format Description 4-74
Environment 4-75

SEXIT - Provide Exit Point 4-76
Format Description 4-76
Environment 4-78

LC23-0067-3 e Copyright IBM Corp. 1982, 1987 Chapter 4: JES2 Programmer Macros

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Environment 4-109
SGETQC - Can the Quick Cell Get Routine. 4-110

Format Description 4-110
Environment 4-111

SGETSMFB - Acquire a JES2 SMF Buffer from the JES2 SMF Buffer
Pool 4-112

Format Description 4-112
Environment 4-112

SGETUCBS - Obtain a UCB Address 4-113
Format Description 4-113
Environment 4-113

SGETUNIT - Acquire a Unit Device Control Table (OCT) 4-114
Format Description 4-114
Environment 4-114

SGETWORK - Obtain a Work Area 4-115
Format Description 4-115
Environment 4-116

SIOERROR - Log Input/Output Error 4-117
Format Description 4-117
Environment 4-117

SJCAN - Cancel Job 4-118
Format Description 4-118
Environment 4-120

SJCTIO - Can the SJCTIOR Routine 4-121
Format Description 4-121
Environment 4-122

$MID - Assign JES2 Message Identification 4-123
Format Description 4-123
Environment 4-123

SMODCHK - Call the MODCHECK Verification Routine 4-124
Format Description 4-124
Environment 4-126

SMODEND - Generate End of Module 4-127
Format Description 4-127
Environment 4-127

$MODULE - Provide a Module Information Table 4-128
Format Description 4-128
Environment 4-134

$MSG - Write to Operator Message Area 4-135
Format Description 4-135
Environment 4-136

$NHDGET - Get the Network Header Section 4-137
Format Description 4-137
Environment 4-138

$PATCHSP - Generate Patch Space 4-139
Format Description 4-139
Environment 4-139

SPBLOCK - Block Letter Services 4-140
Format Description 4-140
Environment 4-141

$PCEDYN - Attach or Delete a JES2 PCE 4-142
Format Description 4-142
Environment 4-143

LC23-0067-3 C Copyright IBM Corp. 1982, 1987 Chapter 4: JES2 Programmer Macros

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

SEXTP - Initiate Remote Terminal Input/Output Operation 4-79
Format Description 4-79
Environment 4-80

SFRECEL - Free Common Storage Area (CSA) Cell 4-81
Format Description 4-81
Environment 4-81

SFRECMB - Free a Console Message Buffer 4-82
Format Description 4-82
Environment 4-82

SFREEBUF - Return a JES2 Buffer to the JES2 Buffer Pool 4-83
Format Description 4-83
Environment 4-84

SFRELOK - Free the MVS CMS Lock, LOCAL, or JES2 Job Lock 4-85
Format Description 4-85
Environment 4-85

$FREMAIN - Branch-Entry FREEMAIN Services 4-86
Format Description 4-86
Environment 4-87

SFREQC - Free Quick Cell 4-88
Format Description 4-88
Environment 4-89

SFREUCBS - Free UCB Parameter List Storage 4-90
Format Description 4-90
Environment 4-90

SFREUNIT - Release a Unit Device Control Table (DCT) 4-91
Format Description 4-91
Environment 4-91

$FSILINK - Link the Functional Subsystem Interface. 4-92
Format Description 4-92
Environment 4-92

$GETABLE - Get HASP/USER Table Entries 4-93
Format Description 4-93
Environment 4-94

SGETASCB - Retrieve the Primary, Secondary, or Home ASCB 4-95
Format Description 4-95
Environment 4-96

SGETBLK - Get a Storage Cell from a Free Cell Pool 4-97
Format Description 4-97
Environment 4-97

SGETBUF - Acquire a Buffer from a JES2 Buffer Pool 4-98
Format Description 4-98
Environment 4-100

SGETCEL - Acquire a Common Storage Area Cell 4-101
Format Description 4-101
Environment 4-102

SGETCMB - Get Console Message Buffers 4-103
Format Description 4-103
Environment 4-104

SGETLOK - Acquire the MVS CMS, LOCAL, or JES2 Job Lock 4-105
Format Description 4-105
Environment 4-106

SGETMAIN - Branch-Entry GETMAIN Services 4-107
Format Description 4-107

JES2 User Modifications and Macros LC23-0067·3 C Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of mM

$PCETAB - Generate or Map PCE Table Entries 4-144
Format Description 4-144
Environment 4-147

$PGSRVC - Perform a Virtual Page Service 4-148
Format Description 4-148
Environment 4-149

$POST - Post a JES2 Event Complete 4-150
Format Description 4-150
Environment 4-153

$POSTQ - Quick Post Facility 4-154
Format Description 4-154
Environment 4-154

$PRPUT - Create Separator Pages 4-155
Format Description 4-155
Environment 4-156

$PURGE - Return Direct-Access Space 4-157
Format Description 4-157
Environment 4-157

$QADD - Add Job Queue Element to the JES2 Job Queue 4-158
Format Description 4-158
Environment 4-159

$QCTGEN - Define a Quick Cell Control Table 4-160
Format Description 4-160
Environment 4-161

$QGET - Obtain Job Queue Element from the JES2 Job Queue 4-162
Format Description 4-162
Environment 4-164

$QJIX - Add a Job Queue Element (JQE) to the Job Index Table
(JIX) 4-165

Format Description 4-165
Environment 4-165

$QLOC - Locate Job Queue Element for Specific Job 4-166
Format Description 4-166
Environment 4-166

$QMOD - Modify Job Queue Element in the JES2 Job Queue 4-167
Format Description 4-167
Environment 4-168

$QPUT - Return Job Queue Element to the JES2 Job Queue 4-169
Format Description 4-169
Environment 4-169

$QREM - Remove Job Queue Element from the JES2 Job Queue 4-170
Format Description 4-170
Environment 4-170

$QSUSE - Synchronize to Use Shared Queues 4-171
Format Description 4-171
Environment 4-171

$QUESMFB - Queue a JES2 SMF Buffer on the Busy Queue 4-172
Format Description 4-172
Environment 4-172

$RELEASE - Release the Checkpoint Reserve 4-173
Format Description 4-173
Environment 4-173

$RESERVE - Request Checkpoint Reserve 4-174

JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Format Description 4-174
Environment 4-174

$RESTORE - Restore Registers from the Current Processor Save Area 4-175
Format Description 4-175
Environment 4-175

$RETBLK - Return a Storage Cell to a Free Cell Pool 4-176
Format Description 4-176
Environment 4-176

$RETSAVE - Return a JES2 Save Area 4-177
Format Description 4-177
Environment 4-177

$RETURN - Restore Registers, Free the JES2 Save Area, and Return to the
Caller 4-178

Format Description 4-178
Environment 4-179

$RETWORK - Return a Work Area 4-180
Format Description 4-180
Environment 4-180

$SAVE - Obtain JES2 Save Area and Save Registers 4-181
Format Description 4-181
Environment 4-182

$SCAN - Scan Initialization Parameters 4-183
Format Description 4-183
Return Codes 4-185
Environment 4-185

$SCANB - Backup Storage for a Scan 4-186
Format Description 4-186
Environment 4-187

$SCANCOM - Call the $SCAN Facility Comment Service Routine 4-188
Format Description 4-188
Environment 4-188

$SCAND - Call the $SCAN Facility Display Service Routine 4-189,
Format Description 4-189
Environment 4-190

$SCANTAB - Scan Table 4-191
Format Description 4-192
Environment 4-199

$SDUMP - Take a SDUMP of Storage 4-200
Format Description 4-200
Environment 4-201

$SEPPDIR - Create a User Peripheral Data Information Record
(PDIR) 4-202

Format Description 4-202
Environment 4-202

$SETRP - Set Recovery Processing Options 4-203
Format Description 4-203
Environment 4-203

$STCK - Call the $STCK Service Routine 4-204
Format Description 4-204
Environment 4-204

$STIMER - Set Interval Timer 4-205
Format Description 4-205
Environment 4-205

LC23-0067-3 ~ Copyright IBM Corp. 1982, 1987 Chapter 4: JES2 Programmer Macros

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$STMTLOG - Log an Initialization Statement 4-206
Format Description 4-206
Environment 4-207

$STORE - Store Registers in the Current Processor Save Area 4-208
Format Description 4-208
Environment 4-209

$TGMSET - Call the $TGMSET Service Routine 4-210
Format Description 4-210
Environment 4-211

$TIDTAB - Generate the Trace ID Table DSECT 4-212
Format Description 4-212
Environment 4-212

$TRACE - Trace a JES2 Activity 4-213
Format Description 4-213
Environment 4-216

$TRACK - Acquire a Direct-Access Track Address 4-217
Format Description 4-217
Environment 4-218

$TTIMER - Test Interval Timer 4-219
Format Description 4-219
Environment 4-219

$VERIFY - Call the $VERIFY Service Routine 4-220
Format Description 4-220
Environment 4-220

$VERTAB - Build the Inline Verification Tables 4-221
Format Description 4-221
Environment 4-222

$VFL - Variable Field Length Instruction Operation 4-223
Format Description 4-223
Environment 4-224

$WAIT - Wait for a JES2 Event 4-225
Format Description 4-225
Environment 4-228

$WSSETUP - Set Values Required for Work Selection 4-229
Format Description 4-229
Environment 4-229

$WSTAB - Map and Generate the Work Selection Table Entries 4-230
Format Description 4-231
Environment 4-235

$WTO - JES2 Write to Operator 4-236
Format Description - Standard Form 4-236
Format Description - Execution Form 4-237
Format Description - List Form 4-237
Environment 4-244

$XMPOST - POST Task in Another Address Space 4-245
Format Description 4-245
Environment 4-245

JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Chapter 4. JES2 Programmer Macros

JES2 programmer macros are provided for your use in your installation-exit routines. Only an experienced
JES2 system programmer should attempt to use the macros; that is you should have advanced knowledge of
JES2 internals. Changes to the structure of JES2 can cause incompatible changes to existing macros.

Macro Overview

The following JES2 control service programs provide a comprehensive set of
services that aid the JES2 processors in performing their respective tasks in an
efficient manner without burdening the programmer with needless detail. These
services are requested by the processor through the use of JES2 macro
instructions. The macros should not be used in code executing outside the control
of the JES2 dispatcher unless stated in the description of the individual macro
instruction.

• General storage management: Provide for the acquisition and release of JES2
buffers

• Work area management services: Provide for the acquisition and return of
work areas that are chained off the processor control element (PCE)

• Virtual page service macros: Provide for the acquisition and release of virtual
pages

• Job queue services: Provide for the alteration of job queues

• Direct-access space services: Provide for the allocation and deallocation of
JES2 direct-access storage space

• Unit services: Provide for the acquisition and release of JES2 input/output
units

• Input/output services: Provide communication with operating system
input/output supervisor

• Console services: Provide all communication with the operator and
manipulate associated buffer resources

• Time services: Provide for the setting and interrogation of the interval timer

LC23-0067-3 <{) Copyright IBM Corp. 1982. 1987 Chapter 4. JES2 Programmer Macros 4-1

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

• Synchronization services: Provide synchronization and communication
between JES2 processors, the JES2 dispatcher, and the operating system

• System management facilities services: Provide the processors with an
interface to the MVS SMF routines

• Installation exit services: Provide the $EXIT macro that is used to define exit
points in JES2

• Debug services: Provide facilities for aid in debugging JES2

• Error services: Provide a uniform way of processing detected errors

• Recovery processing aids: ,Provide macros to aid in recovery processing

• Coding aid services: Provide the JES2 programmer with coding aids not
usually available in the operating system, but useful in coding JES2 routines

• Print/punch output services: Provide macros used to define separator pages
and create peripheral data information records

• Job output services: Provide macros used for job output services

• Initialization services: Provide macros to generate initialization statement
(and parameter) tables and checkpoint information tables

• Verify services: Provide facilities to build control block verification tables to
verify spool-resident control blocks

• Table services: Provide facilities for scanning JES2 initialization statements,
dynamically creating control blocks for DCTs, PCEs, and DTEs.

• Miscellaneous services: Provide miscellaneous services such as modify the
current JESNEWS data set and switch addressing mode

Some of the above services are provided by inline code expansion wherever the
macro instruction is used. The remaining services are provided by routines that
are integral parts of the control service programs. For more information about
these routines, refer to Chapter 3. Code generated wherever the macro instruction
is used links to these routines. At execution time, the macro expansion passes
information to the control program routine to specify the exact nature of the
service to be performed. This information is broken down into parameters and,
in general, is passed to the routine through general purpose registers called
parameter registers.

The macro expansion can contain load instructions (LA, L, LH, etc.) that load
parameters in parameter registers, and it can contain instructions (LR, ...) that
load parameter registers from registers loaded by the processor. The processor
can also load parameters directly. Registers I and 0 are generally used as
parameter registers.

Each parameter resulting from the expansion of a macro instruction is either an
address or a value. An address parameter is a standard 31-bit address. Any

4-2 JES2 User Modifications and Macros LC23-0067 -3 to Copyright IBM Corp. 1982, 1987

"Restricted Materials of 18M"

Licensed Materials - Property of IBM

exception to this rule will be stated in the individual macro instruction
description.

An address parameter is always an effective address. The control service program
is never given a l6-bit or 20-bit explicit address of the form D(B) or D(X,B) and
then required to form an effective address. When an effective address is to be
resolved. it is formed either by the macro expansion or before the macro
instruction is issued.

A value parameter is a field of data other than an address. It is of variable length
and is usually in the rightmost bits of a parameter register. The value parameter
always has a binary format. The leftmost unused bits in the parameter register
should contain all zeros. Any exception to this rule is stated in the individual
macro instruction description.

Certain value parameters can be placed in a register along with another
parameter, which can either be an address or a value parameter. In this case, a
value parameter is in other than the rightmost bits. Two or more parameters in
the same register are called packed parameters.

Parameters are specified by operands in the macro instruction. An address
parameter can result from a relocatable expression or, in certain macro
instructions, from an implicit or explicit address. A value parameter can result
from an absolute expression or a specific character string. Address and value
parameters can both be specified by operands written as an absolute expression
enclosed in parentheses. This operand form is called register notation. The value
of the expression designates a register into which the specified parameter must be
loaded by the processor before the macro instruction is issued. The contents of
this register are then placed in a parameter register by the macro expansion.

The programmer writes an operand in a JES2 macro instruction to specify the
exact nature of the service to be performed. Operands are of two types, positional
operands and keyword operands.

A positional operand is written as a string of characters. This character string can
be an expression. an implied or explicit address. or some special operand form
allowed in a particular macro instruction. Positional operands must be written in
a specific order. If a positional operand is omitted and another positional
operand is written to the right of it, the comma that would normally have
preceded the omitted operand must be written. This comma should be written
only if followed by a positional operand; it need not be written if followed by a
keyword operand or a blank.

In the following examples, EXl has three positional operands. In EX2. the
second of three positional operands is omitted but must still be delimited by
commas. In EX3. the first and third operands are omitted: no comma need be
written to the right of the second operand.

EXl $EXAMP A,B,C
EX2 $EXAMP A"C
EX3 $EXAMP IB

A keyword operand is written as a keyword immediately followed by an equal
sign and an optional value.

LC23-0067-3 © Copyright IBM Corp. 1982. 1987 Chapter 4. JES2 Programmer Macros 4-3

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

A keyword consists of one through seven letters and digits, the first of which must
be a letter. It must be written exactly as shown in the individual macro
instruction description.

An optional value is written as a character string in the same way as a positional
operand.

Keyword operands can be written in any order. but they must be written to the
right of any positional operands in the macro instruction.

In the following examples, EXI shows two keyword operands. EX2 shows the
keyword operands written in a different order to the right of any positional
operands. In EX3, the second and third positional operands are omitted; they
need not be delimited by commas, because they are not followed by any
positional operands.

EXl $EXAMP KW1=X,KW2=Y
EX2 $EXAMP A,B,C,KW2=Y,KW1=X
EX3 $EXAMP A,KW1=X,KW2=Y

Certain operands are required in a macro instruction if the macro instruction is to
make a meaningful request for a service. Other operands are optional and can be
omitted. Whether an operand is required or optional is indicated in the individual
macro instruction description.

Basic Notation Used To Describe Macro Instructions

JES2 macro instructions are presented in this section by means of macro
instruction descriptions, each of which contains an illustration of the macro
instruction format. This illustration is called a format description. An example
of a format description is as follows:

[symbol] $EXAMP namel-value mnemonic,name2-CODED VALUE, c
KEYWD1=value mnemonic, c
KEYWD2=CODED VALUE, c
KEYWD3=(label,value) c

Operand representations in format descriptions contain the following elements:

• An operand name, which is a single mnemonic word used to refer to the
operand. In the case of a keyword operand, the keyword is the name. In the
case of a positional operand, the name is merely a reference. In the above
format description, namel, name2, KEYWDl, and KEYWD2 are operand
names.

• A value mnemonic. which is a mnemonic used to indicate how the operand
should be written if it is not written as a coded value. For example, addr is a
value mnemonic that specifies that an operand or optional value is to be
written as either a relocatable expression or register notation.

• A coded value, which is a character string that is to be written exactly as it is
shown. For example, RDR is a coded value.

4-4 JES2 User Modifications and Macros LC23-0067-3 ,0 Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Operand Representation

• Parentheses are always required around a list of specifications or values
specified for a keyword with multiple values, such as KEYWD3 =. These
parentheses are optional if only one value is coded or the keyword is allowed
to default.

The format description also specifies when single operands and combinations of
operands should be written. This information is indicated by notational elements
called metasymbols. For example, in the preceding format description, the
brackets around symbol indicate that a symbol in this field is optional.

Positional operands are represented in format descriptions in one of two ways:

• By a three-part structure consisting of an operand name, a hyphen, and a
value mnemonic, for example: name l-addr

• By a three-part structure consisting of an operand name, a hyphen, and a
coded value, for example: namel-RDR.

Keyword operands are represented in format descriptions in one of two ways:

• By a three-part structure consisting of a keyword, an equal sign, and a value
mnemonic, for example: KEYWD 1 = addr

• By a three-part structure consisting of a keyword, an equal sign, and a coded
value, for example: KEYWDI = RDR

The most significant characteristic of an operand representation is whether a value
mnemonic or coded value is used; these two cases are discussed next.

Operands with Value Mnemonics

When a keyword operand is represented by:

KEYWORD=value mnemonic

the programmer first writes the keyword and the equal sign and then a value of
one of the forms specified by the value mnemonic.

When a positional operand is represented by:

name-value mnemonic

the programmer writes only a value of one of the forms specified by the value
mnemonic. The operand name is merely a means of referring to the operand in
the format description; the hyphen simply separates the name from the value
mnemonic. Neither is written.

The following general rule applies to the interpretation of operand representations
in a format description; anything shown in uppercase letters must be written
exactly as shown; anything shown in lowercase letters is to be replaced with a
value provided by the programmer. Thus, in the case of a keyword operand, the
keyword and equal sign are written as shown. and the value mnemonic is

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-5

Coded Value Operands

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

replaced. In the case of a positional operand, the entire representation is
replaced.

The value mnemonics listed below specify most of the allowable operand forms
that can be written in JES2 macro instructions. Other value mnemonics, which
are rarely used, are defined in individual macro instruction descriptions.

• symbol: The operand can be written as a symbol.

• relexp: The operand can be written as a relocatable expression.

• addr: The operand can be written as (1) a relocatable expression or (2)
register notation designating a register that contains an address. The
designated register must be one of the registers 2 through 12, unless special
notation is used.

• addrx: The operand can be written as (1) an indexed or nonindexed implied
or explicit address or (2) register notation designating a register that contains
an address. An explicit address must be written in the RX form of an
assembler language instruction.

• adval: The operand can be written as (1) an indexed or nonindexed implied
or explicit address or (2) register notation designating a register that contains
a value. An explicit address must be written in the RX form of an assembler
language instruction.

• absexp: The operand can be written as an absolute expression.

• value: The operand can be written as (1) an absolute expression or (2)
register notation designating a register that contains a value.

• text: The operand can be written as a character constant as in a DC data
definition instruction. The format description shows explicitly if the character
constant is to be enclosed in apostrophes.

• code: The operand can be written as one of a large set of coded values; these
values are defined in the macro instruction description.

Operands that are not represented in format descriptions by value mnemonics are
represented by one or more uppercase character strings that show exactly how the
operand should be written. These character strings are called coded values, and
the operands for which they are written are called coded value operands.

A coded value operand results in either a specific value parameter or a specific
sequence of executable instructions.

If a positional operand can be written as anyone of two or more coded values, all
possible coded values are listed in a format description and are separated by
vertical strokes indicating that only one of the values is to be used.

4-6 JES2 User Modifications and Macros LC23-0067-3 0 Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Metasymbols

Metasymbols are symbols that convey information about how to code such as
whether keywords and operands are optional or required when coding macro
instructions; they are never written in the coded macro. They show the
programmer how and when an operand should be written. The metasymbols used
in this section are:

Metasymbol Meaning and Use

{} Braces - denote grouping of alternative operands, one of which must be selected. For example:

I ~~S)
[I Brackets - denote optional operands. Anything enclosed within brackets can be either omitted or

written once in the macro instruction. For example:

[USE=code]

In the example above, the keyword and its operand can either be written or omitted; its use is
optional.

Underscore - denotes the JES2 default if the particular keyword is not coded. For example:

I YES 1
WAIT= NO

In the example above, YES is the default. To override the default, you must code WAIT = NO.
The WAIT = keyword is therefore optional; any keyword with a default is enclosed within
brackets in the syntax diagrams throughout this chapter, similar to the next example.

Metasymbols are nested in almost any combination throughout the macro
instruction descriptions that follow. Whether any set of keywords and operands
are optional or required is determined by the outermost set of metasymbols. For
example:

I YES 1 ,WAIT=
NO

The entire keyword/operand statement is optional, but if you do code the
WAIT = keyword, the only valid options are either WAIT = YES or WAIT = NO.

Uppercase operands must be coded as written in the syntax diagrams. Also,
punctuation such as commas, parentheses, and single quotes are not metasymbols;
if present in the syntax diagrams they must be coded. Operands in lowercase are
not to be coded as written; they denote variables that are explained in the
description of the particular keyword for the macro instruction.

Special Register Notation

Many JES2 macro instruction keywords allow you to code a register as a valid
specification. If you do code a register (for example, RO or R15), be certain to
enclose the symbol representing that register in parenthesis. A symbol enclosed in
parenthesis is called register notation (for example, (RO) or (Rl)).

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-7

Register Transparency

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

If an operand of a JES2 macro instruction is written using register notation. the
resulting macro expansion loads the parameter contained in the designated
register into either parameter register I or parameter register O.

For example, if an operand is written as (RIS) and if the corresponding parameter
is to be passed to the control program in register 1, the macro expansion would
contain the instruction:

LR Rl,R15

Prior to macro expansion, the processor can load parameter registers; this is called
pre-loading When preloading a parameter register, use the JES2 equated symbols
for register 0 or I (that is. Rl or RO) to indicate to the macro which registers
contain values to be passed. If you do not use the JES2 equated symbols. you
will cause the generation of an extra instruction.

For example, RONE, an absolute symbol equated to RL should not be specified
on the macro statement if the register required is Rl. The macro will not
recognize RONE as register I and will attempt to load the parameter register RI
from the RONE specification with the following redundant instruction:

LR Rl,RONE

The format description shows whether special register notation can be used. and
for which operands. This is demonstrated by the following example:

[symbol]
$EXAMP Iabc-addrx], fdef-addrx]

l (Rl) l (RO)

Both operands can be written in the addrx form. and therefore can be written
using register notation. Ordinary register notation indicates that the parameter
register should be loaded from the designated register by the macro expansion.
The format description also shows that the abc operand can be written as (Rl),
and the def operand can he written as (RO). If either of these special notations is
used, the processor must have loaded the designated parameter register before the
execution of the macro instruction.

In general the following registers cannot be considered transparent across a 1ES2
macro expansion and the associated link to the control service program:

RI4
RlS
RO
Rl

All other registers are transparent unless specifically stated in the individual
macro instruction description.

4-8 JES2 User Modifications and Macros LC23-0067-3 (l) Copyright IBM Corp. 1982. t 987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Macro Descriptions

Macro Selection Table

General FlII1Ction

General Storage Management

Figure 4-1 summarizes the available JES2 programmer macros by the function
they perform. Following Figure 4-1 are the individual macros descriptions,
presented in alphabetical order.

Warning: A number of JES2 macros located in data set SYSl.HASPSRC are not
documented in this book. These macros are not intended for general use. H you use
these undocumented macros, be aware that unpredictable results may occur.

JES2 Programmer Macros

$BFRBLD $FRECEL $FREEBUF $FREMAIN SGETBUF SGETCEL SGETMAIN

Work Area Management Services SGETWORKSRETWORK

Virtual Page Services SPGSRVC

Job Queue Services SJCAN SQADD SQGET SQJIX SQLOC SQMOD SQPUT SQREM

Direct-Access Space Services SBLDTGB SPURGE STGMSET STRACK

Unit Services SALLOC SFREUCBS SFREUNIT SGETUCBS SGETUNIT

Input/Output Services SEXCP SEXTP SJCTIO

Console Services SSWTO $SWTOR SCWTO SDOM SFRECMB SGETCMB SMID SMSG SWTO

Time Services SSTCK SSTIMER STTIMER

Synchronization Services SACTIVE SDORMANT SFRELOK SGETLOK SPOST SPOSTQ SSPOST SQSUSE
SRELEASE SRESERVE SWAIT SXMPOST

System Management Facility Services SGETSMFBSQUESMFB

User Exit Services SEXIT

Debug Services SCOUNT SSDUMP STRACE

Error Services SDISTERR SERROR SIOERROR

Recovery Processing Services SESTAE SSETRP

Coding Aid Services SCALL SENTRY SMODEND SMODULE SRESTORE SRETSAVE SRETURN
SSA VE SSTORE SVFL

Print/Punch Output Services SPBLOCK SPRPUT SSEPPDIR

Job Output Services $#ADD $#ALCHK S#BLD $#CAN $#CHK $#GET $#JOE $#MOD $#PDBCAN
$#PDBLOC S#POST $#PUT $#REM

Initialization Services SSTMTLOG

Table Services SDCTTAB SDTETAB SGETABLE SPCETAB SSCANTAB STIDTAB SVERTAB SWSTAB

Dynamic Service Access Services SDCBDYN SDCTDYN, SDTEDYN SPCEDYN

Verify Services SVERIFY SVERTAB

Scan Services SSCAN SSCANB SSCANCOM $SCAND

Work Selection SWSSETUP

Miscellaneous SAMODE $CKPT SDEST SGETASCB

Figure 4-1. JES2 Macro Selection Table

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-9

$$POST
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$$POST - Post a JES2 E~ent Complete from Another Task

Format Description

Use $$POST to post certain specific JES2 processors or resources by setting
indicators that cause JES2 processors to begin executing.

[symbol] $$POST !TYPE=IC:::rx))
ELMT=

(Rl)

['Rll·I:~~~) 1

TYPE =
Specifies the resource that is to be posted. One of the following must be
specified:

ABIT
Waiting for the next dispatcher cycle

ALOC
A dynamic allocation has completed

BUF
A JES2 buffer has been released

CKPTP
A checkpoint cycle has completed

CKPT
A JES2 checkpoint write has completed

CKPTW
A JES2 checkpoint should be written

CMB
A console message buffer has been released

CNVT
A converter has been released

FSS
A functional subsystem has completed FSS-Ievel processing

HOPE
An output processor has been released

4-10 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

IMAGE
A UCS or FCB image has been loaded

JOE
A JOE has been released

JOT
A JES2 job output element has changed status

JOB
A JES2 job queue element has changed status

LOCK
A lock has been released

MAIN
Storage is available

PSO

$$POSl'

A process SYSOUT request has been queued for the JES2 PSO
processor(s)

PURGE
A JES2 job queue element (JQE) has been placed on the purge queue

PURGS
Purge resources from $PURGER have been released

RSV
A JES2 RESERVE has been satisfied

SMF
AN SMF buffer has been released

TRACK
A track group from the JES2 spooling data set has been released

UNIT
A device control table has been released

value
An installation-defined dispatcher resource name or number

ELMT=
Specifies the address of the element where the event indicator is to be set.
Symbolic names for these indicator elements are as follows:

• SVTCOMM - Post command processor
• SVTJOB - Post execution processor
• SVT ASYNC - Post asynchronous I/O processor
• SVTXSTIM - Post time excess processor
• SVTTIMER - Post timer processor
• SVTIRD R - Post all internal reader processors

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-11

"Restricted Materials of IBM"

$$"POSl' Licensed Materials - Property of IBM

Environment

• SVTTRPCE - Post trace logger
• SVTSPOOL - Post spool manager
• SVTMLLM - Post line manager

The corresponding processor control elements are posted by the JES2
dispatcher upon recognizing the post elements line in $$POST.

If register notation is used, the designated register must be loaded with the
address of the element prior to executing this macro. Do not use register 2
for this address.

Rl1=
Specifies which of the three standard control blocks register 11 addresses as
follows:

HCT
Register 11 addresses the beginning of the HASP communications
table (HCT). The user must provide mapping of this table as well as
the subsystem vector table (SSVT).

SSVT (default)
Register 11 addresses the beginning of the SSVT. The user must
provide mapping of this table.

HFCT
Register 11 addresses the beginning of the HASP FSS communications
table (HFCT).

If this operand is omitted, Rll = address of SSVT is assumed.

Notes:

1. The execution of this macro requires registers 0, 1,2,11, and 15.

2. This macro instruction should not be used when executing code that runs
under control of the main JES2 task program request block. It is for use
by sub tasks, timer exit routines. and routines within the HASPSSSM
module operating on behalf of other tasks.

3. Either TYPE or ELMT operands must be specified but not both.

4. If this macro is executed in the functional subsystem environment, the
content of.register 3 does not remain constant.

• Subtask, user, and functional subsystem (HASPFSSM).
• WAIT cannot occur.

4-12 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $$WTO

$$WTO - JES2 Subtask Write to Operator

Format Description

Environment

Use $$WTO to initiate the display of an operator message from a JES2 subtask
or during JES2 initialization or tennination. The message is issued via an MVS
execute-form WTO macro after supplying the JES2 command 10 character.

$SWTO stores the message text within the message area; therefore, your program
becomes non-reentrant after using this macro. Your program remains reentrant if
the message area is acquired (via GETMAIN) and refreshed each time the macro
is issued.

[symbol] $$WTO

message

I message-addrx I
(Rl)

Specifies the address of a list-form MVS WTO message. If register notation
is used. the address must be loaded into the designated register before
execution of this macro instruction. If descriptor code I, 2, 3, or II was
specified. the identification number (24 bits, right-justified) is returned in
register I. Otherwise, register I is left unchanged.

• Subtask or main task.
• $W AIT cannot occur.

LC23-0067 -3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-13

$$WTOR
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$$WTOR - JES2 Subtask Write to Operator with Reply

Format Description

Environment

Use $$WTOR to initiate the display of an operator message, requiring a reply,
from a JES2 subtask. The message is issued via an MVS execute-form WTOR
macro instruction after supplying the JES2 command ID character.

$$WTOR stores the message text within the message area; therefore, your
program becomes non-reentrant after using this macro. Your program remains
reentrant if the message area is acquired (via GETMAIN) and refreshed each time
the macro is issued.

[symbol] $$WTOR

message

! rnessage-addrx 1
(Rl)

Specifies the address of a list-form MVS WTOR message. If register
notation is used, the address must he loaded into the designated register
before execution of this macro instruction. The identification number (24
bits, right-justified) is returned in register 1.

Notes:

1. From JES2 subtasks. HASPINIT and HASPTERM. it is the
responsibility of the issuer of this macro instruction to issue a WAIT
macro instruction. the ECB of which will be posted when the operator has
replied to the message.

2. From the main task it is the respollsibility 4 the issuer of this macro
instruction to issue a $ WAIT with the XECB option.

• Subtask.
• Main task (during JES2 initialization and termination).
• $W AIT cannot occur.

4-14 JES2 User Modifit:ations and Macros LC23-0067-3 (l,) Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $#ADD

$#ADD - Add a Work/Characteristics JOE Pair to the JOT

Format Description

Environment

Use $#ADD to add a job output element (JOE) to the appropriate job output
table (JOT) queue and add the characteristics JOE to the characteristics queue.

[symbol] $#ADD 1 addrx)
WORK=

RO

1 addrx)
,CHAR=

Rl

WORK=
Specifies the address of a prototype work JOE that is to be added to the
JOT.

CHAR =

Specifies the address of a prototype characteristics JOE that is to be merged
into the characteristics queue.

Notes:

1. The condition code upon exit from the $#ADD macro instruction is set to
reflect the following status of the request:

RC=O
The service was successfully performed.

RC=4
The JOT is full; the request must be tried again later.

2. The queue to which the work JOE is added is determined by the current
class of the JOECURCL and JOEROUT fields of the .JOE or by the
offload stallls ill the JOEFLAG2 field.

3. If tire JOECURCL of the work JOE is invalid, $#ADD terminates .JES2
with a $ERROR, CATASTROPHIC ABEND J07 INVALID SYSOUT
CLASS FOUND.

• Main task.
• $W AIT can occur.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. j ES2 Programmer Macros 4- I 5

$#ALCHK
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$#ALCHK - Obtain a Spool Record for Output Checkpointing

Format Description

Use $#ALCHK to obtain a spool record for output checkpointing.

[symbolJ $#ALCHK

JOE=

[!addrxl
JOE=

(Rl)

[! addrx l
,IOT=

(RO)

[,WRIOT=! ::s l
[! addrx l

,JCT=
(R15)

1

1

1

1

[, WRJCT=! ::s l 1
[,OKRET=addrxJ

[,ERRET=addrxJ

[, LOCK=! ::s II
Specifies the address of a work JOE. The spool record for this work JOE is
to be obtained. If register notation is used. the designated register must
contain the address of the work JOE prior to the execution of the macro. If
this operand is omitted. register I is assumed.

IOT=
Specifies the address of the lOT that is to be used for allocating the spool.
If register notation is used, the designated register must contain the address
of the lOT prior to the execution of the macro. If this operand is omitted,
the lOT is read from the spool. An indication is set in the generated inline
parameter list whether or not the lOT was passed.

WRIOT=
Specifies whether the lOT should be written back out to the spool after
$TRACK obtains the spool record. The lOT is marked as an allocation
lOT (lOTIALOC).

4-16 JES2 User Modifications and Macros LC23-0067-3rc Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $#ALCHK

Environment

JCT=
Specifies the address of the JCT. If this operand is omitted, the JCT is read
from the spool. If register notation is used, the designated register must
contain the address of the JCT prior to the execution of the macro. An
indication whether or not the JCT was passed is set in the generated inline
parameter list.

WRJCT=
Specifies whether or not the JCT is to be written back to the spool. If
WRJCT = YES is specified and the JQE indicates that the job is still in
execution, the JCT is not written back to the spool. Otherwise, it is.

OKRET=
Specifies the address of a routine that is to receive control if the return code
is zero.

ERRET=
Specifies the address of an error routine that is to receive control if the
return code is not zero.

LOCK =
Specifies whether or not the job lock is to be obtained. LOCK = NO
indicates that a wait will occur for IOT/JCT serialization.

• Main task.
• $W AIT can occur.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. 1ES2 Programmer Macros 4-17

$#BLD
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$#BLD - Format JOEs

Format Description

Environment

Use $#BLO to format a pair of work and characteristics job output elements
(JOEs) in the provided work area.

[symbol] $#BLO I addrx I
JOES=

(Rl)

I addrx I
,POOB=

(RO)

I addrx I
,JQE=

(R15)

.JOES=
Specifies the address of the work area that is to be formatted into work and
characteristics JOEs. If register notation is used, the address must be loaded
into the designated register before the execution of this macro instruction.

PDDB=
Specifies the address of the peripheral data definition block (POOB) whose
contents are used to format the work and characteristics JOEs. If register
notation is used, the address must be loaded into the designated register
before the execution of this macro instruction .

.JQE=
Specifies the location of the job queue element (JQE) to which the POOB
belongs. The location is specified as the offset in bytes of the JQE from the
start of the job queue. If an address is used, it specifies the address of a
fullword whose two right-most bytes contains the JQE offset. If a register is
used, the JQE offset must have been loaded into the designated register
before the execution of this macro instruction.

• Main task.
• $W AIT can occur.

4-18 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $#CAN

$#CAN - Cancel All Work Items Not Currently Being Processed for a Specific Job

Format Description

Environment

Use $#CAN to remove from the JOT all available work items for a job. Work
items removed are not processed by any output processor.

[symbol] $#CAN 1 addrx l
JQE=

(Rl)

JQE=
Specifies the address of the job queue element for which all JOT entries are
to be purged.

Note: The specified job is purged from the system if all of its output
requirements are removed and its current queue position is $HARDCPY.

• Main task.
• $W AIT can occur.

LC23-0067-3 <i',i Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-19

$#CHK
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$#CHK - Process print/punch checkpoint spool I/O

Format Description

Use $#CHK to process print/punch checkpoint spool I/O.

[symboll $#CHK !
READ 1 TYPE=
WRITE

[,BUF=!::X II
, JOE=! addrx 1

(RO)

[, WAIT=! ::s 11

[,ocT=!PPPDADCTll
addrx

[,OKRET=addrxl

[,ERRET=addrxl

TYPE =
Specifies whether the operation is a checkpoint read or write. The read or
write indication is placed in an inline parameter list (CHK I RD for read and
CHKI WR for write). This operand must be specified or an error occurs at
assembly time.

BUF=
Specifies the address of the checkpoint I/O buffer. If register notation is
used, the designated register must contain the address of the buffer. If this
operand is omitted. BUF=(Rl) is assumed.

JOE=
Specifies the address of the work JOE associated with the spool I/O. If
register notation is used. the designated register must contain the address of
the work JOE prior to execution of the macro. This keyword is required.

4-20 JES2 User Modilications and Macros LC23-0067-3 i? Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $#CHJK

Environment

WAIT =
Specifies whether or not to wait for the spool I/O to complete and whether
or not to set a return code. WAIT = YES indicates to wait for the I/O to
complete and to set a return code. WAIT = NO indicates to not wait for the
I/O to complete and to not set a return code. If this operand is omitted,
WAIT = YES is assumed.

Note: Specifying WAIT = NO nullifies the use of both the OKRET = and
ERRET = keywords.

DCT=
Specifies the DCT address needed to perform the spool I/O. If this operand
is omitted, PPPDADCT is used.

OKRET=
Specifies the address of a routine that is to receive control if the return code
is zero. NOTE: Specifying WAIT = NO nullifies the use of OKRET.

ERRET=
Specifies the address of an error routine that is to receive control if the
return code is not zero. NOTE: Specifying WAIT=NO nullifies the use of
ERRET. Also, ERRET take precedence over OKRET when both
operands are specified.

• Main task.
• $W AIT can occur.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-21

$#GET
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$#GET - Search the JOT Class Queues for an Output Element which Matches the
Requesting Specification

Format Description

Use $#GET to search the JOT for output work.

[symbol] $#GET I addrx I
DCT=

(Rl)

['HAVE=j ::s 11
[,NONE=relexp]

[, FOUND=relexp]

DCT=
Specifies the address of the JES2 device control table (OCT) for the
requesting processor. The device setup fields in the OCT are used in the
process of selecting work.

HAVE=
Specifies that if a selectable JOE is found it is not to be assigned to the
requester (NO), or if a selectable JOE is found it is to be assigned to the
requester (YES).

NONE=
Specifies a label or an address in a register to branch to if there are no
selectable JOEs found.

FOUND=
Specifies a label or address in a register to branch to if a selectable JOE is
found.

CHAIN =
Specifies either that all (YES) eligible job-related JOEs are to be chained to
the transmitter chain and returned to the caller, or only the first (NO)
eligible JOE is to be returned to the caller.

4-22 JES2 User Modifications and Macros LC23-0067 -3 ((;I Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

TYPE=

$#GET

Specifies that for this $#GET call, either the network queue (NET) is
searched or the work selection (WS) algorithm is used.

Environment

• Main task.
• $W AIT can occur.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-23

$#JOE
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$#JOE - Find and Validate Queue

Format Description

Use the $#JOE to cause the output service processors to generate the address for
the head of a specified queue. You can then reference the first JOE on the queue
through the JOENEXT field. You must establish addressability to the JOT
before you use this macro instruction.

[symbol] $#JOE 1 addrx 1
Q= JOTNTWKQ

Q=

R=

,R=Rn

[,INV=relexp]

Specifies the address of the storage location containing the requested
SYSOUT class, or the address of the offset into the network queue
(.JOTNTWKQ).

Specifies the register (Rn) into which the address of the desired queue head
is to be loaded.

INV=
Specifies the label of the statement to which control is to be returned if the
requested queue is invalid. If you omit this parameter. no check is made to
ensure the validity of the queue. Do not code this operand if you also specify
Q = JOTNTWKQ.

DEST=
Specifies the destination queue within the class specified by the Q = operand.
Possible values are as follows:

LOC (default)

RMT

The local class queue.

The remote class queue. Do not code DEST = RMT if you specified
Q = JOTNTWKQ.

4-24 JES2 User Modifications and Macros LC23-0067-3 (0 Copyright IBM Corp. 1982. 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Elllironment

• Main task..
• $WAIT cannot occur.

LC23-0067-3 C! Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-25

$#MOD
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$#MOD - Move a Work JOE from One Queue to Another in the JOT

Format Description

Environment

Use $#MOD to remove a work JOE from the queue it is currently on and to
place it on the proper queue as determined by its routing (JOE ROUT) or
SYSOUT class (JOECURCL). $#MOD should be issued after a JOE's queue
status has been changed.

[symbol] $#MOD 1 addrx l
JOE=

(Rl)

JOE =

Specifies the address of the work JOE that is to be moved from one queue
to another.

• Main task.
• $W AIT can occur.

4-26 JES2 User Modifications and Macros LC23-0067 -3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $#PDBCAN

$#PDBCAN - Cancel a JOE's Nonheld Data Sets

Format Description

Environment

Use $#POBCAN to mark a JOE's nonheld data sets as non-printable, so that
when the held data is later released by the process SYSOUT processor (PSO),
only held data sets can be gathered together under the original JOE name.

[symbol] $#PDBCAN I relexp]
lOT=

(Rl)

I addrx]
,PDDB=

(Rn)

lOT =
Specifies the input/output table track address.

PDDB=
Specifies the address of the POOB associated with held data sets for this
job.

• Main task.
• $W AIT can occur.

LC23-0067-3 {Q Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-27

$#PDBLOC
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$#PDBLOC - Find a PDDB by Data Set Key

Format Description

Environment

Use $#POBLOC to locate a POOB using a specific data set key as the search
argument.

[symbol] $#PDBLOC I addrx)
lOT=

(Rl)

I relexp)
,KEY=

(RO)

lOT =

Specifies the address of the in storage lOT chain from which a POOB is to
be located. If register notation is used. the address of the lOT must be
loaded in the designated register before the execution of the $#POBLOC.

KEY =

Specifies the data set key search argument to be used to locate the POOD.
If register notation is used. the data set key must be loaded into the
designated register before execution of $#POBLOC.

Note: All lOTs must be in storage. The lOT whose address is supplied must be
in storage.

• Main task.
• $W AIT cannot occur.

4-28 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $#POST

$#POST - Post Output Device Processors

Format Description

Use $#POST to post device processors that are waiting for work associated with
specific output devices. $#POST ensures that when a new piece of work hecomes
available for processing, only those processors associated with the devices eligible
to select the work are posted. JES2 uses $#POST when a JOE is added or
returned to the JOT. $#POST is also used 1) when a message is spooled for a
remote, 2) when a node's remote or local output device becomes available for use,
3) when a console or printer is added to notify when a node, remote processor, or
device becomes available for use, or 4) when a new path becomes available to a
node.

[symbol) $#POST

TYPE=

TYPE= (
JOE 1 JQE

MSG
XMIT

[(addrxll ,ADDR=
(Rl)

[, MASPOST"(::s 1]

Specifies what type of $#POST to issue. You can specify one of four types.
JOE specifies a work JOE $#POST. JQE specifies a JQE and associated
work JOE(s) $#POST. MSG specifies a spooled message $#POST. XMIT
specifies a SYSOUT transmitter $#POST. You must specify this operand;
there is no default.

ADDR=
Specifies an address. The address depends on the TYPE selected. For
TYPE=JOE, ADDR is the address of the work JOE that is to be
$#POSTed. For TYPE =JQE, ADDR is the address of the JQE whose
work JOE(s) are to be $#POSTed. For TYPE = MSG, ADDR is the
address of the route code for the remote printers or consoles that are to be
$#POSTed. For TYPE = XMIT, ADDR is the address of the line DCT
associated with the SYSOUT transmitter(s) that is to be $#POSTed; if this
address is specified as zero, then all SYSOUT transmitters that are waiting
are $#POSTed.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-29

$#POST

Environment

MASPOST=

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Specifies whether the work JOE(s) that are to be $#POSTed should have
their JOE post flags reset so that the post is propagated to all members in a
multi-access spool complex. MASPOST = is valid only when TYPE = JOE
or TYPE = JQE is specified.

Notes:

1. The MASPOST flag is passed in the first byte of the, inline parameter list.

2. You need control of the checkpoint data set (obtained Ilia $QSUSE) prior to
issuing this macro.

• Main task.
• $W AIT cannot occur.

4-30 JES2 User Modifications and Macros LC23-0061-3 <1:) Copyright IBM Corp. 1982, 1981

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $#PUT

$#PUT - Return an Unfinished Job Output Element (JOE) to the JOT for Later Processing

Format Description

Environment

Use $#PUT in a processor to return a JOE to the JOT for later processing.
Optionally, the status of the JOE is maintained for a warm start of the system or
restart of the work.

[symbol] $#PUT I addrx 1 WORK=
(Rl)

[, PRC=(~::~x } 1
VALID

WORK =

Specifies the address of a work JOE that is to be returned to the JOT class
queues for future selection.

PRC=
Specifies the address of a checkpoint buffer if the current status of the work
item is to be stored. If PRC = is not specified or is specified as
PRC = NONE, the work item is reset to reflect its initial entry status. If
PRC = VALID is specified, no change is made to the current status of the
work item.

• Main task.
• $W AIT can occur.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-31

$#REM
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$#REM - Remove a Work/Characteristics JOE Pair from the JOT

Format Description

Environment

Use $#REM to remove a work and characteristics JOE pair from the JOT after
the output requirement they represent has been satisfied.

[symboll $#REM

WORK =

WORK=workjoe-addr

[,IOT=spinjoe-IOT addrl

[, PURGE~I ::s 11

[,WAITt:s 11

Specifies the address of a work JOE that is to be returned to the queue of
free JOEs in the JOT. If the related characteristics JOE is not being shared
by another work JOE, it is also returned to the free queue.

IOT=
Specifies the address of the spin lOT used to free the track groups used by
spin data sets if the lOT is already in storage. If the lOT is not in storage
(that is, not specified), it will be read.

PURGE =
Specifies whether (YES) or not (NO) to purge the track groups held for the
spin lOT.

WAIT =

Specifies whether (YES) or not (NO) the $#REM service routine is
permitted to $WAIT for IOT buffers if none are available. WAIT = YES is
the default.

Note: The related job is purged from the system if all of its JOEs are removed
and its current queue position is $HARDCPY.

• Main task.
• $W AIT can occur if WAIT = YES is specified.

4-32 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $ACTIVE

$ACTIVE - Specify Processor is Active

Format Description

Environment

Use $ACTIVE to indicate to JES2 that the associated processor is performing
activities on behalr of the JES2 main task; this prevents JES2 rrom being cleanly
withdrawn from the system (via $P JES2) when JES2 is processing a job or task.

[symbol] $ACTIVE [R=Rn]

R=
Specifies the work register which is to be used by the $ACTIVE macro
instruction. Do note enclose the register (R =) value in parenthesis.
Register 1 is the default.

Notes:

1. J ES2 is considered actil'e Il'hen the actin' count is greater than 0
($DORMANT decreases the active count). When the active count is O.
JES2 issues $HASP099.

2. Do not use R = O.

• Main task.
• $W AIT cannot occur.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-33

$ALLOC
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$ALLOC - Allocate a Unit Record Device

Format Description

Environment

Use $ALLOC to allocate a device to JES2.

[symbol] $ALLOC I dct-addrx I

det

error

(Rl)

[,error-relexp]

Specifies the address of the OCT to be allocated.

Specifies a location to which control is returned if the device (OCT) cannot
be allocated. The condition code is set to reflect the allocation of the OCT
as follows:

cc=o
The device could not be allocated.

CC;l:O
The device was successfully allocated.

• Main task.
• $W AIT can occur.

4-34 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $AMODE

$AMODE - Set the Addressing Mode

Format Description

Use the $AMODE macro instruction to set MVSj370 (24-bit) and MVSjXA
(3 I-bit) addressing modes. This macro can be specified when running JES2 on
either an MVSj370 or MVSjXA system; however, if this macro specifies a switch
to 31-bit mode when running on a MVSj370 system, no mode switch occurs and
the macro instruction is ignored.

[symbol] $AMODE

[
[

mode

mode

PUSHR=Rn

[POPR=Rn]

'R~I::51
[,RELATED=char-string]

Specifies the addressing mode to be used by the code that follows this macro
until it is again specified. This is a positional parameter and must be
specified if PUSHR = is also specified. Do not use this operand if POPR =
is specified.

24
Specifies 24-bit addressing mode.

31
Specifies 31-bit addressing mode.

PUSHR=
Specifies a register to be used to store the current addressing mode. If mode
is specified, this keyword is also required.

Note: Do not enclose the specified register in parenthesis.

POPR=
Specifies a register to be used to restore the previous addressing mode. The
register specified here must have been previously loaded by a $AMODE
mode PUSHR = instruction. Do not specify this keyword if mode and
PUSHR = are specified.

Note: Do not enclose the specified register in parenthesis.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-35

SAMODE

Environment:

R=

"Restricted Materials of IBM"

Lic:eosed Materials - Property of IBM

Specifies a work register to be used by this macro instruction. Register ISis
the default.

Note: Do not enclose the specified register in parenthesis.

RELATED =
Specifies a character string used to self-document this macro instruction call.
Any specification type valid for macro keywords can be used here. This
field is useful for documenting the inline pairing of SAMODE macros.

• Main task. subtask. user address space (HASPSSSM). and functional
subsystem address space (HASPFSSM).

• waits cannot occur.

4-36 JES2 User Modifications and Macros LC23-0067-3 C Copyright IBM Corp. 1982. 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $BFRBLD

$BFRBLD - Construct a JES2 Buffer Prefix

Format Description

Environment

Use $BFRBLD to construct an lOB or RPL in the front of a JES2 buffer. The
lOB or RPL is used to read into or write from the data portion of the buffer.

[symbol] $BFRBLD 1 buffer-addrx 1
(Rl)

buffer

[,TYPE=type-code]

Specifies the address of a buffer in which the prefix (an lOB or an RPL) is
to be constructed. If an address is used, it specifies a word in storage
containing the buffer address.

If the notation is used, the buffer address must have been loaded into the
designated register before the execution of this macro instruction.

TYPE =
Identifies the type of buffer and specifies whether an lOB or RPL is to be
constructed at the beginning of the buffer, according to the type code as
follows:

HASP (default)
A local buffer; an lOB is to be constructed

BSC
A TP buffer; an lOB is to be constructed

VTAM
A TP buffer; an RPL is to be constructed

PAGE
A local 4096-byte buffer; an lOB is to be constructed

PP
A local print/punch buffer; an lOB is to be constructed

• Main task.
• $W AIT cannot occur.

LC23-0067-3 (~'J Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-37

$BLDQC
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$BLDQC - Call the Quick Cell Build/Extend Routine.

Format Description

Environment

Use $BLDQC to call the quick cell build/extend routine to build or extend a
quick cell pool.

[symbol) $BLDQC TYPE= 1 type-code 1
(RO)

TYPE =

Specifies the type of quick cells to build.

type-code

(RO)

specifies the type code as defined in the $QCTGEN macro for the
quick-cell type to build. Quick cell types are defined as one of the
following;

Quick cell
Type-Code

SAVE

JIB

BUF

RPL

GETRC

Meaning

Standard save area for MVS linkage conventions as described in
Supervisor Services

JOE information block

Standard 4K buffer

Request parameter lists for GETDS processing

Control block areas for GETRC processing

Specifies the register that contains the type-code; if coded, be certain
that the two low-order bytes of the register contain the quickcell
type-code as defined in the $QCTGEN macro; the two high-order
bytes must be zeroed.

The TYPE = keyword must be specified.

• Functional subsystem (HASPFSSM)
• MVS WAIT can occur

4-38 JES2 User Modifications and Macros LC23-0067 -3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $BLDTGB

$BLDTGB - Queue TGBs to the HASPOOL Processor

Format Description

Environment

Use $BLDTGB to build track group blocks (TGBs) and queue them off of the
$SPOOLQ in the HCT. The TGB represents a bad track group for which the
HASPSPOL processor attempts recovery.

[symbol] $BLDTGB ADDR=addrx

1 TGM l ID-
, MTTR

ADDR=
Specifies the address of the track group map (TGM) that contains bad track
groups or the MTTR (JES2 spool track address) of a single bad track
group.

ID=
Specifies whether the ADDR = keyword specifies a TGM Of MITR.

• Main task.
• $W AIT cannot OCCUf.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-39

$BUFCK

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$BUFCK - Check Buffer I/O

Format Description

Environment

Use $BUFCK to verify the completion of buffer I/O that was initiated by
$BUFIO.

[symbol] $BUFCK

[,ERRET=relexp)

BUF=
Specifies the address of the buffer that is to be checked for I/O completion.
If register notation is used, the designated register must contain the address
of the buffer prior to execution of the macro. If this keyword is omitted.
BUF=(Rl) is assumed.

ECB=
Specifies the address of the ECB to be lIsed for the buffer I/O operation. If
register notation is used, the designated register must contain the address of
the ECB prior to the execution of the macro. If this operand is omitted,
ECB = (RO) is assumed.

ERRET=
Specifies the address of the error routine that is to receive control if a
nonzero return code is passed back.

• Functional subsystem (HASPFSSM)
• MVS WAIT can occur.

4-40 JES2 User Modifications and Macros LC23-0067-3 c"' Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $BUFIO

$BUFIO - Read or Write a Buffer

Format Description

Use $BUFIO to read or write a buffer from or to spool. Note that an I/O
request is initiated and control is returned without waiting for the completion of
that 1/0 request.

[symbol} $BUFIO j READ) TYPE= WRITE

[_jaddrx)]
,BUF-

(Ri)

[jaddrx)] ,MTTR=
(R2)

[, Ecsoj ~::~x) 1

[, ERRET=relexp}

TYPE=
Specifies whether the buffer 1/0 operation is to be a read or write. This
operand must be specified or an error occurs at assembly time. If
TYPE = WRITE is specified, BUF = must also be specified.

BUF=
Specifies the address of the buffer that is to be read or written to the spool.
If you use register notation. the designated register must contain the address
of the buffer before the execution of this macro. If TYPE = WRITE is
specified, this keyword must also be specified. If TYPE = READ is specified
and BUF = is not specified. an 1/0 buffer will be acquired and formatted;
the address of the buffer is returned in register I.

MTTR=
Specifies the spool track address of the record that is to be read or written.
If an invalid MTTR is passed, a return code of 4 is returned. If you use
register notation, the designated register must contain the address of the
MTTR before the execution of this macro. If you omit this keyword,
MTTR = (R2) is assumed.

ECB=
Specifies the address of the ECB to be used for this buffer 1/0 operation. If
you use register notation, the designated register must contain the address of
the ECB before the execution of this macro. If you omit this keyword,
ECB = (RO) is assumed.

LC23-0067-3 © Copyright IBM Corp. 1982. 1987 Chapter 4. JES2 Programmer Macros 4-41

$B1lJlFJIO

Environment

ERRET=

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Specifies the relocatable expression that is the address of an error routine
that gets control if a nonzero return code is returned as a result of the
buffer I/O.

• Functional subsystem (HASPFSSM)
• $W AIT is not applicable.

4-42 JES2 User Modifications and Macros LC23-0067-3 Q Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $CALL

$CALL - Call a Subroutine from JES2

Format Description

Environment

Use $CALL to call a subroutine from a JES2 module. Note that $CALL will
attempt to branch to a local routine before attempting to branch to a global one.
Therefore, ensure that if you have defined two routines with the same name that
your routine branches to the desired one.

arg

[symbolJ $CALL arg-addr

[, PARM=advalJ

[,ERRET=addrxJ

Specifies the address of the subroutine to be called. An A-type address is
generated if the argument address is not a type "U"; otherwise a V-type
address is generated. If register notation is used, the designated register
must contain the address of the subroutine to be called prior to executing
$CALL.

PARM=
Specifies a parameter value that is to be passed to the called subroutine via
register I. Use of a register, label, or assembler literal address are the only
possibilities. If register notation is used, the designated register must
contain the address of the parameter value.

ERRET=
Specifies the address of an error routine that is to get control if the called
subroutine passes back a nonzero return code (in register 15).

• Main task, subtask, and user address space.
• $W AIT can occur depending on the routine that is called.

LC23-0067-3 -I;l Copyright IBM Corp. 1982, 1987 Chapter 4. J ES2 Programmer Macros 4-43

$CKPT
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$CK PT - Schedule the Checkpoint of an Element

Format Description

Use $CKPT to schedule the checkpoint of an element in a JES2 checkpoint table
that has been altered.

[symbol] $CKPT ID=kit-id-code

ID=

[I addrx 11 ,ADDR=
(Rl)

[, POST=\ ::s 1 j

Specifies the checkpoint information table (KIT) to be used. This value
must be the 1- to 4-character identifier in the KIT for the element to be
checkpointed. If more than 4 characters are specified. only the first 4 are
used. The valid identifiers include:

DAS
The direct access control blocks.

JQE
The job queue element.

JOE
The job output table.

JIX
The job queue index table.

RSO
The remote sign-on table.

PST
The JOE flag bytes

LCK
The spool offload checkpoint element

TGM
The track group maps

AD DR =

Specifies the address of the element to be checkpointed. If this parameter is
omitted, only the header of the checkpoint area that is specified is
checkpointed.

4-44 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

POST =

$CKlPT

Specifies whether or not a post will occur for the checkpoint.

Environment

Note: You must have control of the checkpoint data set when you issue this
macro.

• Main task.
• $W AIT cannot occur.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-45

$COUNT
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$COUNT - Count Selected Occurrences

Format Description

Environment

Use $COUNT conditionally to increase a counter every time the macro
instruction is executed and to determine the number of times a particular event
occurs or a particular section of code is entered. The counter is a halfword
(modulo 32,768), which is located 22 bytes into the macro expansion (symbol
120); this counter is increased if DEBUG = YES was specified during JES2
initialization.

[symbol] $COUNT [R=\ :::: I]

R=
Specifies a register to be used in performing the counting operation. If this
parameter is omitted, register 1 is used.

• Main task and during JES2 initialization and termination.
• $W AIT cannot occur.

4-46 JES2 User Modifications and Macros LC23-0067-3 (0 Copyright IBM Corp. 1982. 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $CWTO

$CWTO - Command Processor Write to Operator

Format Description

Use $CWTO to cause a write to operator to take place. This macro instruction
returns control to the code issuing the macro. The command processor PCE must
be in control when you issue this macro instruction. Note that, you cannot use
$CWTO in Exit 5 if the exit routine determines that JES2 should process the
command. If you use this macro in Exit 5, your routine must do all required
processing within the exit. When this processing is completed, your routine must
notify HASPCOMM.

[symbol) $CWTO I addr l
MSG= J...R1l

'text'

,L=value

,MSGID=code

MSG=

L=

Specifies either the address of the text for the message or the text itself. If
you specify the text, enclose the character string in single quotes ('). If you
want the text to include single quotes, code two single quotes together.

Specifies the length, in bytes, of the message text. The length does not
include the extra single quote coded to allow the use of a single quote within
the text.

MSGID=
Specifies a 3-digit decimal number, from 001-999, to be written out with the
message. You must include leading zeros.

JOB=
Specifies whether or not the WTO is job related. Code JOB = as follows:

YES
The job name and number are inserted in the message.

NO (default)
The message text remains unmodified.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-47

$CWTO

Environment

TRUNC=

YES

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Any multiple-line WTO is truncated. Additional $CWTO or $CRET
macro executions specifying message text result in the issuance of an
SVC34. The SVC34 treats the message text as a command to JES2.

NO (default)
No truncation takes place.

• Main task.
• $W AIT can occur.

4-48 JES2 User Modifications and Macros LC23-0067-3 ID Copyrigbt IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $DCBDYN

$DCBDYN - Call the Dynamic DCB Service Routine

Format Description

Environment

Use $DCBDYN macro as the interface to the $DCBDYN service routine to
attach or detach a JES2 data control hlock (DCB) and data extent hlock (DEB)
for a specified device control tahle (OCT).

[symbol] $DCBDYN I ATTACH)

DETACH

(
label)

,DCT= (Rn)
l.Rll

ATTACH
Requests that a DCB and/or DEB (if one is required) be dynamically
created. If the OCT does not require a DeB (for example, one has already
been created). JES2 takes no further action.

DETACH
Requests that the specified DCB/DEB be dynamically deleted. If the OCT
does not require a DCB or if there is no DCB already attached, JES2 takes
no further action.

DCT=
Specifies a lahel or register containing the address of the OCT to either he
attached or detached.

Return Code Meaning

o DCB successfully ATTACHed or DETACHed as requested
4 DCB ATTACH failed (GETMAIN unsllccessful)

• Main task
• 31-bit addressing mode only
• $W AIT can occur

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-49

$DCTDYN
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$DCTDYN - Call the Dynamic DCT Service Routine

Format Description

Use $DCTDYN macro as the interface to the $PCTDYN service routine to
attach or find a JES2 device control table (DCT). This macro passes the DCT
name and subscript and type of request to the calling routine.

[symbol] $DCTDYN \
ATTACH \

FIND

\
label \ , NAME =
(Rl)

action
Specifies the action requested.

ATTACH
Requests that the specified DCT be located, or if it doesn't exist, that
a new one should be created. AITACH is only a valid specification if
this macro is called by JES2.

FIND
Requests that the specified DCT be located.

NAME =
Specifies the address of an 8-byte field that contains the name of the
specified DCT. NAME can be specified as a register (1 to 12) or the name
of the field containing the address of the DCT name. The address is loaded
into register 1.

NUMBER =
Specifies the subscript (the binary value) of the DCT. NUMBER can be a
register (0, 2 to 12) or the name of a field containing the subscript. The
value is loaded into register o.

4-50 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $DCTDYN

Environment

Return Code Meaning

o OCT successfully found for either FIND or AITACH request

4 OCT successfully A IT ACHed if A IT ACH requested

8 OCT not found -- A IT ACH not specified

12 OCT FINOjAITACH not successful. The subscript specified by NUMBER= was
either: not within the valid range, required and not specified, or not required and
specified.

16 OCT A IT ACH not successful - error in $GETMAIN

20 OCT FINDjAITACH not successful-- OCT table not found

24 OCT FIND/AITACH not successful- ucr not found

• Main task
• $W AIT cannot occur

LC23-0067-3 C Copyright IBM Corp. 1982, 1987 Chapter 4. 1ES2 Programmer Macros 4-51

$DCTTAB

$DCTT AB - Map DCT table entries

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Use $DCTTAB to map and generate DCT table entries.

Format Description

(label]
\HASP [,NDENTRY] I

$DCTTAB TABLE= USER
END

,NAME=dct-namel

[,ALIAS=dct-namc2]

,DESC=desc-text

[, PCETAB=label]

~PCEPTR= [II field [I: ~~: II [) I 1
,DEVTP=device

,SIZE=dct-size

~ CDUNT= [I If i e ld [\: ::: I] [) I 1

[\ Q II ,DEVID=
device-id

[,ROUTINE=label]

[,RANGE=nlow-nhigh]

~ SUBTYPE=\ ::S II
[,PARENT=dctdev-type]

[,SUBCHAIN=dct-field]

~ CHAIN' [I If ie 1 d [!: ::: II [) I 1

~ DISPLAY=\ ::S II

~DCB=Ug~ 11

4-52 JES2 User Modifications and Macros LC23-0067-3 f: Copyright IBM Corp. 1982. 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

TABLE =

,WSTAB=

PRWS
PUWS
OJTWS

OJRWS
OSTWS
OSRWS

[,WSDEF=labell

$DCTTAB

Specifies the start (TABLE=HASP) and end (TABLE = ENO) of a OCT
table. If neither this keyword nor NAME = is specified, 1£S2 generates the
OTAB OSECT.

HASP
Specifies that this is a HASP table.

NOENTRY
Specifies that an ENTRY statement need not be generated for the
label of this OCT table.

USER

END

NAME=

Specifies that this is a USER table.

Specifies the end of the OCT table.

Note: If TABLE = is specified, all other keywords on this macro are
ignored.

Specifies a 1- to 8-character OCT name for tills OCT type.

ALIAS =

Specifies a 1- to 8-character OCT name to be used as an alternate

DESC=
Specifies a I - to 24-character description of this OCT type. Blanks are
allowed if the text is enclosed in single quotes. This keyword is used for
documentation purposes only.

LC23-0067-3 \) Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-53

$DCTTAB

PCETAB=

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Specifies the label on the PCE table entry in the same assembly module that
corresponds to this OCT type. This keyword causes this OCT to be defined
in a one-to-one PCE-OCT correspondence.

Note: PCETAB= and PCEPTR= are mutually exclusive.

PCEPTR=
Specifies the name of a full word field that contains the address of the PCE
that handles OCTs of this type when not organized in a one-to-one
PCE-OCT correspondence as specified by PCET AB =.

Note: PCETAB = and PCEPTR = are mutually exclusive.

field

RCT

UCT

DEVTP=

Specifies an HCT field if this is a HASP table and a UCT field if this
is a USER table.

Indicates an HCT field.

Indicates a VCT field.

Specifies a unique value used for the I-byte OCTOEVTP field that defines
this OCT type. This is a required keyword.

WSTAB=
Specifies the type of work selection table that corresponds to this OCT.

PRWS
Indicates that this is a printer work selection table.

PUWS
Indicates that this is a punch work selection table.

OJTWS
Indicates that this is an offioad job transmitter (OFFn.JT) work
selection table.

OJRWS
Indicates that this is an offioad job receiver (OFFn.JR) work selection
table.

OSTWS
Indicates that this is an offioad SYSOVT transmitter (OFFn.ST) work
selection table.

4-54 JES2 User Modifications and Macros LC23-0067-3 C Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $])CTTAB

OSRWS
Indicates that this is an offload SYSOUT receiver (OFFn.SR) work
selection table.

Notes:

J. This keyword is required for DCTs that support work selection.

2. If this keyword specification is other that those listed above. JES2
assumes that the table type is user defined.

3. If WSTAB is specified. you must also specify WSDEF= .

WSDEF=
~pecifies the address of the default work selection list for this device.

SIZE =
Specifies the size of this OCT type. This can be specified either as an
equated symbol or computed as SIZE - OCT.

CHAIN =
Specifies the name of a fullword field from which all OCTs of this type are
to be chained.

field

HCT

UCf

COUNT =

Specifies an HCT field if this is a HASP table and a UCT field if this
is a USER table.

Indicates an HeT field.

Indicates a UCT field.

Specifies the name of a fullword field that contains the number of OCTs
defined for this DCT type.

field

HCf

UCT

DEVID=

Specifies an HCT field if this is a HASP table and a UCT field if this
is a USER table.

Indicates an HCT field.

Indicates a UCT field.

Specifies the device 10 that is placed into the first byte of the OCTDEVID
field. If a device does not have a device 10, this field is set to O.

LC23-0067-3 e Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-55

SDCTIAB
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

ROUTINE =
Specifies the name of the routine used to initialize the OCTs.

RANGE =
Specifies the lower (nlow) and upper (nhigh) range limits of the subscript
values that are allowed for this OCT type. If this keyword is not specified,
the OCTs will not contain subscripts.

SUBTYPE =
Specifies whether this OCT has other OCTs chained off it within a
subchain. The default is NO.

PARENT =
Specifies the OCTOEVTP of the OCT off which this OCT is chained.

Note: If this keyword is specified, SUBCHAIN = must also be specified.

SUBCHAIN=
Specifies the name of the field in this OCT which chains the OCT off the
parent OCT and any other OCT types within the subchain.

DISPLAY =
Specifies whether (yES) or not (NO) this OCT will be displayed by a $0 U
operator command.

YES

NO

DCB=

Indicates that this OCT is chained within the OCTPOOL chain and
therefore displayed by the $D U operator command. This is the
default.

Indicates that this OCT is chained within the DCTPOL2 chain and
therefore not displayed by the $0 U operator command.

Specifies whether either a OCB or OEB is built for this OCT.

EXCP
Indicates that both an EXCP OCB and DEB be built.

BSAM

NO

Indicates that a BSAM OCB be built.

Indicates that neither a DCB nor a DEB be built for this DCT. This
is the default.

4-56 JES2 User Modifications and Macros LC23-0067-3 Q Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Environment

$JDC'I'TAB

• JES2 main task or during initialization and termination

• $W AIT is not applicable -- this macro generates a DSECT or a static table
entry; it does not generate executable code.

LC23-0067-3 e Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-57

$DEST
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$DEST - Convert Symbolic Destination to Route Code

Format Description

Use $DEST to convert a symbolic destination to a binary route code. The route
code is returned in register 1.

[symbol] $DEST

dest-addrx

1 dest-addrx l
(Rl)

,1 default-addrx l
(RO)

[,ERR=relexp]

,LEN=value

Specifies the address of the symbolic destination for which a binary route
code is obtained. If register notation is used, the destination address must
be loaded into the designated register prior to the execution of this macro
instruction.

default-addrx
Specifies the address of the word in storage containing, in its rightmost two
bytes, the default node number used in constructing the binary route code.
If register notation is used, the default is loaded into the designated register
prior to the execution of this macro instruction.

ERR =

Specifies a location to which control is returned if the specified destination
is invalid.

If this operand is omitted, the condition code is set to reflect the validity of
the specified destination as follows:

cc=o
The destination is invalid.

CC:;60
Register 1 contains the associated route code.

LEN=
Specifies the length of the symbolic destination. If the length of the
symbolic destination is less than eight bytes, the characters must be padded
to eight bytes with blanks. This operand must be specified.

4-58 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Environment

• Main task.
• $W AIT cannot occur.

LC23-0067-3 II:) Copyright IBM Corp. 1982,1987

SDlEST

Chapter 4. JES2 Programmer Macros 4-59

$DISTERR
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$DISTERR - Indicate Disastrous Error

Format Description

Environment

Use $DISTERR to indicate that a disastrous error has occurred. The macro
instruction causes the message $HASP096 DISASTROUS ERROR AT SYMBOL
symbol IN CSECT module to be printed out on the $ERR and $LOG consoles.

[symbol] $DISTERR [BUFFER=addrx]

symbol
Consists of a symbol to be used to generate the error message and so that it
can be referenced in the assembler cross reference for the indicated module.
This symbol must be specified.

BUFFER =
Specifies the address of a buffer that contains information concerning the
disastrous error. This buffer information is traced. If BUFFER = is
omitted no disastrous error information is traced.

JOB=
Specifies the address of either the JCT or the JQE of the job being
processed at the time the error occurred. If JOB = is specified, the job ID
and job name are added to the start of the $HASP096 message.

• Main task.
• $W AIT can occur.

4-60 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $DOM

$DOM - Delete Operator Message

Format Description

Environment

Use $DOM to delete an operator message.

[symbol] $DOM

CMB=
Specifies the address of the command message buffer (CMB) containing the
operator message to be deleted. If register notation is used the register must
contain the address of the CMB prior to executing the $DOM. If eMB = is
not specified register 1 is assumed to contain the address of the eMB.

• Main task.
• $W AIT cannot occur.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-61

$DORMANT
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$DORMANT - Specify Processor is Inactive

Format Description

Environment

Use $DORMANT to indicate to the JES2 dispatcher that the associated JES2
processor has completed the processing of a job or task.

R

[symbol] $ DORMANT [R=Rl]

Specifies the register which is to be used by the $DORMANT macro
instruction. If R is omitted, register 1 is used.

Note: Do not enclose the specified register in parenthesis.

Caution: The $DORMANT macro instruction should never be used unless a
corresponding $ACTIVE macro instruction has been used for the same processor.

• Main task.
• $WAIT cannot occur.

4-62 JES2 User Modifications and Macros LC23-0067-3 ({) Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $DTEDYN

$DTEDYN - Call the Dynamic DTE Service Routines

Format Description

Use the $DTEDYN macro instruction to call the dynamic DTE service routines
($DTEDYNA and $DTEDYND) located in HASPDYN that handles DTE
management and subtask attaches and detaches for the JES2 main task.

[symbol] $DTEDYN I ATTACH 1
DETACH

,PARM=parameter

,ID=subtask-id

[,nTE=1 ~::~x II
[I addrx II

,ERRET= (Rn)

ATTACH I DETACH
Specifies whether to call the $DTEDYNA (ATTACH) or $DTEDYND
(DETACH) service routine.

ATTACH
Informs $DTEDYNA to obtain and initialize a new DTE and to
attach the sub task for the caller. Return codes from $DTEDYNA are
as follows:

RC= Meaning

o Processing successful

4 Processing failed. SGETWORK failed to obtain the new DTE storage.

8 Processing failed. The MVS ATTACH macro processing returned a nonzero
return code (returned to the caller of $DTEDYN in register I).

DETACH
Informs $DTEDYND to free up the DTE and to detach the subtask.
Return codes from $DTEDYND are as follows:

RC= Meaning

o Processing s uccessf ul

LC23-0067 -3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-63

$DTEDYN

"Restricted Materials of mM"

Licensed Materials - Property of mM

WAIT =
Specifies whether $DTEDYN should wait for subtask initialization and/or
termination.

ATTACH Processing

ECB
Indicates that $DTEDYNA should wait for the subtask to post the
initialization ECB.

XECB

NO

Indicates that $DTEDYNA should $WAIT (XECB style) for the
subtask to post the initialization ECB.

Indicates that $DTEDYNA is not to wait.

DETACH Processing

ECB
Indicates that $DTEDYND should wait for MVS to post the subtask
termination ECB.

XECB

NO

Indicates that $DTEDYND should $WAIT (XECB style) for MVS to
post the subtask termination ECB.

Indicates that $DTEDYND is not to wait.

PARM=

ID=

Specifies a fullword parameter to be passed to the subtask during ATTACH
processing. Do not use this keyword during DETACH processing.

Specifies the subtask identifier as defined in the $DTE control block. The
subtask ID is passed to the $DTEDYN service in register 1. If this keyword
is not specified, an assembly error will occur.

DTE=
Specifies the address of the DTE to be freed by $DTEDYND.

Note: This keyword must be specified for $DTEDYN DETACH; it is not
valid for $DTEDYN ATTACH.

ERRET=
Specifies the address of an error routine that is to get control if an error
occurs during dynamic DTE processing.

4-64 JES2 User Modifications and Macros LC23-0067-3 C Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Environment

• Main task
• $W AIT can occur in JES2 main task
• MVS WAIT can occur during initialization and termination

$D'flEDYN

LC23-0067-3 IC) Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-65

$DTETAB
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$DTET AB - Build and Map the DTE Tables

Format Description

Use the $DTET AB macro instruction to build the DTE tables accessed by the
$GET ABLE service.

[symbol]$DTETAB NAME=subtask-name

,ID=subtask-id

, EPNAME=entry-point-name

,EPLOC=[(]eploc-offset[,control-block[)]]

,HEAD=[(]type-head-offset[,control-block[)]]

I work-area-len)
,WORKLEN=

Q

I YES)
,GEN=lNO

IYEs)
,STAE=lNO

I YES)
,SZERO=lNO

r {USER []) j , NOENTRY
,TABLE=[(] :::P [)]

NAME=

ID=

Specifies the subtask name that HASP messages use to identify the subtask
to the operator.

Specifies the subtask identifier used in the $DTE DSECT.

EPNAME=
Specifies the entry point name used by $DTEDYNA for the MVS
IDENTIFY macro call.

EPLOC=
Specifies the offset into the specified control block and, optionally, the
control block name from which the entry point address is obtained. The
control block name defaults to either MODMAP (if this macro is used to

4-66 JES2 User Modifications and Macros LC23-0067-3 (9 Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $DTETAB

Environment

build a HASP DTE table) or UCT (if this macro is used to build a USER
DTE table). If the 'control block name' is specified here it overrides either
default value.

HEAD =
Specifies the offset and control block name of the subtask type chain head.
The control block name defaults to either HCT (if this macro is used to
build a HASP DTE table) or UCT (if this macro is used to build a USER
DTE table).

WORKLEN=
Specifies the length of the subtask work area extension. If specified, this
length is added to the DTE length (DTELEN) when $DTEDYNA obtains
DTE storage. WORKLEN=O (no storage) is the default.

GEN=
Specifies whether (YES) or not (NO) the subtask is ATTACHed during
IRMVS processing. YES indicates that the DTEIFLAG flag, DTEIAUTO
is set on to indicate subtask ATTACH. GEN = NO is the default.

STAE=
Specifies whether (YES) or not (NO) the subtask is DETACHed if STAB is
specified on the DETACH macro. YES indicates that the DTEIFLAG
flag, DTEISTAE is set on to indicate subtask DETACH. STAB=NO is
the default.

SZERO=
Specifies whether (yES) or not (NO) the DTEFLAG 1 flag, DTESUBO, is
set on at the MVS ATTACH call. YES indicates that the DTEFLAGI flag,
DTEISUBO is set on. SZERO = YES is the default.

TABLE =
Specifies either the beginning of a USER or HASP DTE table
(TABLE = USER or TABLE = HASP, respectively) or the end of a
previously specified table (TABLE = END). The NOENTRY operand
indicates that the ENTRY statement will not be generated for this specific
DTE table. If TABLE = is specified, all other keywords on this macro are
ignored.

• JES2 main task or during JES2 initialization or termination

• $W AIT is not applicable -- this macro generates a DSECT or a static table
entry; it does not generate executable code.

LC23·0067-3 e Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-67

$ENTRY

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$ENTRY - Provide Entry to JES2 Processor or Function

Format Description

Use $ENTRY to identify and document an entry point to a JES2 processor
function or installation exit routine. The documentation consists of the entry
point name, padded with blanks to 8 characters and starting on a doubleword
boundary.

Note: $ENTRY must be used to identify the entry point to an installation exit
routine and either ENTRY = YES (the default) or CSECT = YES must be
specified.

[symbol) $ENTRY

symbol

[BASE=I :~~iR2' ...) II
[, CSECT=/ ::S II
[, ENTRY=/ ::S II
[, REGUSE=I (Rn) II

(R15)

Specifies the entry point name. It must be provided.

BASE =
Specifies the registers that provide addressability to the entry point. If two
or more registers are specified, they must be separated by commas and
enclosed in parentheses. If BASE is not specified, BASE = R8 is assumed.
A USING statement is generated using the specified registers.

Note: Although the $ENTRY macro is used, you must still load the base
register with the address of the entry point.

ENTRY=
Specifies whether or not an ENTRY statement is to be generated. The
default is YES; however, no ENTRY statement is generated if
CSECT = YES was speci fied.

CSECT=
Specifies whether or not a CSECT statement should be generated. The
default is NO. If a CSECT statement is generated, the JES2 version number
is included in the documentation.

4-68 JES2 User Modifications and Macros LC23-0067-3 '.[: Copyright IBM Corp. 1982. 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM SENTRY

Environment

REGUSE=
Specifies the register containing the address of the entry point. This register
is used as a base register in a "branch" instruction that causes processing to
bypass the inline documentation. The default is register 15.

Notes:

1. It is recommended that you have only one CSECT for each source module.

2. If your specify ENTRY= YES or CSECT= YES, then a new MIT entry table
(MITETBL) is generated.

• Main task, subtask, or user address space.
• $W AIT not applicable

LC23-0067-3 C Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-69

$ERROR
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$ERROR - Indicate Catastrophic Error

Format Description

Use $ERROR to indicate that a catastrophic error has occurred and to abend the
JES2 main task. The macro instruction causes a $HASP095 message to be
printed out on the console by the JES2 EST AE routine, which receives control on
the abend.

symbol $ERROR

symbol

err-code

[,1 :::::::TE II
1 TEXT=text 1

' RTEXT=relexp

[,RIPL=l ::s II
['REASON=l~::~x II

Consists of a 1- to 4-character symbol indicating the type of error that
occurred. This symbol is required.

err-code
Specifies the JES2 catastrophic error code. It is a I-to 4-character symbol
(usually a letter and two digits) preceded by a dollar sign ($) when printed
as the error code in the message.

option-code
Specifies whether or not recovery should take place. This can be coded as
follows:

RECOVER (default)
Recovery is to be attempted; that is, it is possible to recover from this
error.

TERMINATE

TEXT =

Recovery is not to take place and an abend is to occur; that is, it is
impossible to recover from this error.

Specifies the explicit text to be included in the catastrophic error message.
A DC statement is generated for this character string. This text is used in
the content of the $HASP095 message.

4-70 JES2 User Modifications and Macros LC23-0067-3 'l:J Copyright IBM Corp. 1982, 1987

"Restricted Materials or WM"
Licensed Materials - Property or WM $ERJROR.

Environment

RTEXT=
Specifies the symbol used on another SERROR macro instruction
invocation from which the text for this catastrophic error message is to be
taken. This is used when there is an existing SERROR macro instruction
invocation with the desired text.

RIPL=
Specifies whether or not the system needs an IPL to recover from this error.
This can be coded as follows:

YES
The system needs an IPL.

NO (default)
The system does not need an IPL.

REASON =
Specifies the reason code that appears in the SHASP095 error message.

addrx
Indicates the address of a fullword field that contains the reason code.

Rn
Indicates a register that contains the reason code.

• Main task.
• Will ABEND with MVS system code X'02D'

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-71

$ESTAE
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$EST AE - JES2 Error Recoyery Enyironment

Format Description

Use $EST AE to generate the calling sequence to one of the three JESl recovery
service routines in HASPNUC for the purpose of creating, replacing or cancelling
the current processor recovery element (PRE). Each PRE represents an error
recovery routine that will gain control in the case of a JESl detected error.

Use this macro to:

• Create a new JESl error recovery environment by establishing another
recovery routine

• Replace the current error recovery routine with a different routine

• Cancel the accessibility of the current error recovery routine

If you issue a $ESTAE macro instruction with a recovery address (RECADDR =)
specified within code that is logically bracketed by $SA VE and $RETURN
macros, the PRE created is cancelled automatically in $RETURN processing.

[symbol] $ESTAE [action-code]

[I addrx II
,RECADDR= (Rl)

[,NAME=symbol]

action-code
Specifies if the current PRE is to be cancelled or replaced as follows:

CANCEL
Cancel the current PRE.

REPLACE
Replace the current PRE with a new one.

If you omit this operand, a new PRE is created and stacked LIFO on the
PRE stack.

RECADDR=
Specifies the address of the recovery routine to gain control if JESl detects
an error. I I' you specify this address as 0, recovery is suspended.

4-72 JES2 User Modifications and Macros LC23-0067-3 '\0) Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $ESl'AE

Environment

NAME =
Specifies the 8-character identifier to be associated with the PRE created
when you have specified either REPLACE or nothing as the first positional
operand. If you omit this parameter, the identifier will default to the label
of the $EST AE macro call. If you have no label specified, it will default to
a system-generated identifier.

Notes:

1. Should you code either CANCEL or REPLACE on the $ESTAE macro, there
must be a current PRE at the current save area level or JES2 catastrophic error
$ER1 is issued and JES2 terminates.

2. $EST AE assumes addressability to the error recovery area (ERA) that is
associated with the error that caused the recovery routine to he entered.
Therefore, be certain to add the $ERA DSECT to the $MODULE macro for
any routine for which you provide error recovery.

• Main task.
• $W AIT cannot occur.

LC23-0067-3 C Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-73

$EXCP
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$EXCP - Execute JES2 Channel Program

Format Description

Use $EXCP to initiate JES2 input/output activity.

dct

[symbol] $EXCP I dct-addrx)

(Rl)

[,TYPE=VR]

Specifies either the address of a pointer to a device control table (OCT) or
the address of a OCT. The OCT represents a device upon which
input/output activity is to be initiated. If dct is written as an address, it
represents the address of a full word which contains the address of the OCT.
If dct is written using register notation (either regular or special register
notation), it represents the address of the OCT. If register notation is used,
the address must have been loaded into the designated register before the
execution of this macro instruction.

TYPE=VR
Specifies that I/O is to be initiated through the EXCPVR macro instruction.
If this parameter is omitted, EXCP is used.

WAIT =
Specifies whether the $EXCP service routine is to cause the routine issuing
this macro instruction to wait ($W AIT 10) until the I/O operation has been
completed (WAIT = YES), or is to return control as soon as the request has
been scheduled (WAIT=NO or parameter omitted.)

If WAIT = YES is specified, the service routine exits after normal I/O
completion. If any I/O error is detected. the service routine issues the
$IOERROR macro instruction, which issues the JES2 1;0 error message.
$HASP094, then returns control to the $EXCP issuer. On return, register 1
points to the I/O buffer, and the condition code mask is set as follows:

CC=l
The I/O completed without error.

CC=4
Permanent I/O error was encountered.

4-74 JES2 User Modifications and Macros LC23-0067 -3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Environment

• Main task.

$EXCP

• $W AIT can occur (if you code WAIT = YES on the macro).

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-75

$EXIT
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$EXIT - Provide Exit Point

Format Description

Use $EXIT to establish an exit point.

[symbol] $EXIT cxitid-codc

l (JES2)J SUBTASK

,ENVIRON= ~~~R

[,JOBMASK=relexp]

[,SAVAREA=(register)]

[, TYPE=(TEST II
ENTER

l ' AUTOTR~(::s II
['MAXRC~(:Ode 11

symbol
Although a label for this macro instruction is not required. it is highly
recommended for tracing purposes.

exitid-code
Specifies the numeric id (0-255) of this $EXIT macro.

El'l'IRON=
Specifies the environment in which the exit is to be taken. This determines
which of the two exit effectors are used to establish correct linkage to the
user-supplied exit routine(s). If ENVIRON = is not specified the
environment set in the global macro variable &ANVIRON is used. Possible
environments include:

JES2
Specifies that the exit point is in the JES2 main task.

SUBTASK
Specifies that the exit point is in a subtask of the JES2 main task.
Refer to the note for the SA V AREA = keyword below for
information concerning save area types in the subtask environment.

4-76 JES2 User Modifications and Macros LC23-0067 -3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $1EXrf

USER

FSS

Specifies that the exit point is in a user address space executing code
in the subsystem support module (HASPSSSM). Refer to the note for
the SA V AREA = keyword below for information concerning save
area types in the user environment.

Specifies that the exit point is in a functional subsystem address space
executing code in the FSS support module (HASPFSSM).

JOBMASK=
Specifies the address of a 256-bit job exit mask. This mask shows the status
of each of the 255 possible exit ids ('0' = inactive, '1' = active). Use this
operand only if the exit point is job-related, because the mask is used to
determine whether or not the exit should be taken for a given job.

SAVAREA=
Specifies the address of an area to be passed to the exit effector for use as a
save area. Use this operand except when you specify ENVIRON = JES2.

Note: The save area specified by the SA V AREA = keyword is distinct
from, and should not be confused with, the save area pointed to by register
13. Register 13, at the $EXIT point in the code, contains the address of the
save area into which the exit effector stores the current registers. The save
area specified by the SA V AREA = keyword is the save area into which the
exit routine will store the exit effector's registers. or ENVIRON = USER.
If you omit this operand, the exit effector obtains a save area via an MVS
GETMAIN and passes its address to the exit routine(s). Register notation
is required for this parameter.

TYPE =
Specifies how the exit effector is to treat this exit point.

TEST
The exit effector tests the status of the exit point, and the exit effector
sets a condition code as follows:

cc=o
Either the specific job mask bit for this exit is 0 or the exit id is
not enabled (that is, no exit routines are to be called).

CC 1
The exit id is enablea but tracing is wsabled.

CC=2
Both the exit id and tracing are active.

LC23-0067-3 II} Copyright IBM Corp. 1982. 1987 Chapter 4. JES2 Programmer Macros 4-77

$EXIT

Environment

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

ENTER
The exit routine is to be entered through the exit effector without
checking the status of the exit point. A $EXIT macro instruction
should be coded with TYPE = TEST to confirm exit point status
before coding a $EXIT macro with TYPE = ENTER.

If this parameter is omitted, the status of the exit point is to be
determined and, if the exit is enabled, the exit effector is called to
invoke the appropriate user exit routine(s).

AUTOTR=
Specifies whether or not tracing for this exit point is to be automatically
provided by the exit effector. Possible values are as follows:

YES (default)

NO

MAXRC=

This only allows tracing to take place. Tracing occurs only if trace id
13 is turned on (via a $TRACE command), and either the EXITnnn
initialization statement specified A UTOTR = YES or the operator has
entered a $T EXITnnn, TRACE = Y command for this exit point.

No tracing takes place.

Specifies the maximum acceptable return code to be set by the user exit
routine(s). If this parameter is omitted, the default is 4.

• Main task, subtask, user, or FSS address space.

• $W AIT can occur if installation exit routine issues a $W AIT or invokes a
routine that issues a $WAIT.

4-78 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $EXTP

$EXTP - Initiate Remote Terminal Input/Output Operation

Format Description

Use $EXTP to initiate a remote terminal or network device input/output action or
operation.

[symbol] $EXTP type-code

! dct-addrx)
,DCT=

(Rl)

[!loc-addrx) 1
,PARM=

(RO)

type
Specifies the type of operation as follows:

OPEN
Initiate processing

GET
Receive one record

PUT
Send one record

CLOSE
Terminate processing

NCLOSE
Abnormally terminate processing

READ
Receive one N1E record

WRITE
Send one N1E record

DCT=
Specifies either a pointer to a OCT or the address of a OCT that represents
the remote terminal device; in the case of a read or write, it represents a line
OCT. If dct is written as an address, it represents the address of a fullword,
which in its three rightmost bytes contains the address of the remote
terminal device OCT. This word must be located on a word boundary in
storage. If dct is written using register notation (either regular or special
register notation), it represents the address of the remote terminal device
OCT.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-79

$1EXTIP

Environment

PARM=

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

If type specifies either OPEN, CLOSE, NCLOSE, READ, or WRITE, this
parameter should not be specified. If type specifies GET, this parameter
specifies the address of an area into which the input record will be placed.
The input area must be defined large enough to contain the largest record to
be received.

If the type-code is specified as PUT, this keyword specifies the address of a
parameter area containing a CCW command code which contains the
carriage control (or stacker select), the data length, and the starting address
of the data in the following format:

ALl CCW command word
AL3 Data length
AlA Starting address

If register notation is used, the appropriate address must be loaded into the
designated register before the execution of this macro instruction.

Upon return, the condition code is set as follows:

When type is OPEN,PUT,CLOSE,NCLOSE,READ,WRITE

CC>O
Successful completion

CC=O
Unsuccessful completion

When type is GET

CC>O
Successful GET processing

CC=O
Unsuccessful GET processing

CC>O
End-of-file received

• Main task.
• $W AIT can occur.

4-80 JES2 User Modifications and Macros LC23-0067-3 (0 Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $FRECEL

$FRECEL - Free Common Storage Area (CSA) Cell

Format Description

Environment

Use $FRECEL to return a storage area to the cell pool.

[symbol) $FRECEL [(addrx II CELL=
(Rl)

CELL=
Specifics the address of the storage cell to he freed. I f register notation is
used. the designated register must be loaded with the address of the storage
cell. If this operand is omitted. CELL = (R I) is assumed.

Notes:

1.

.,

The storage cell to be freed must contain as its first \!'Ord the address (~(the
CC E associated with the storage area. The proper jimn for this address is
obtained hy the execution of a $CiETCEL /I/([cro instruction and should remain
unaltered and restored prior to executing the $FRECEL macro instructions.

Although the freeing of storage cells that are obtained hy $GETCEL or through
supporting routines ;n the HASPSSSM module via t/,le $FRECEL macro
instruction is 0l1~1' (lvailable to routines within the J ES2 main processors, other
tasks mar use the HASPSSSM suhroutines direct~l' I\'ithout using this macro

instruction.

• Main task.
• $W AIT cannot occur.

LC23-0067-3 © Copyright IBM Corp. 1982. 1987 Chapter 4. JES2 Programmer Macros 4-81

$FRECMB
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$FRECMB - Free a Console Message Buffer

Format Description

Environment

Use $FRECMB to return a console message buffer to the free queue.

[symbol] $FRECMB I addrx 1
CMB=

(Rl)

[,COUNT=I ::5 II
CMB=

Specifies the address of the console message buffer to be placed on the free
queue. If register notation is used, the address of the console message
buffer must be loaded into the designated register prior to executing this
macro instruction.

COUNT =
Specifies whether or not the console lockout security count contained in
SVTCOMCT is to be increased by 1 as follows:

YES
The count is to be increased.

NO (default)
The count is not to be increased.

If the console lockout security count was decreased when a console message
buffer .was removed from the free queue, the count must be increased when
the buffer is returned.

• Main task.
• $W AIT cannot occur.

4-82 JES2 User Modifications and Macros LC23-0067 -3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of 18M"

Licensed Materials - Property of IBM $FREEBUF

$FREEBUF - Return a JES2 Buffer to the JES2 Buffer Pool

Format Description

Use $FREEBUF from the JES2 main task or user environment to return a JES2
buffer to the JES2 buffer pool.

[symbol) $FREEBUF ! bUffer-addrx)

(Rl)

buffer

[, MULTIPLE)

['TYPE=!g~i~OT)l

Specifies either a pointer to a buffer or the address of a buffer to be
returned to the buffer pool as follows:

• If buffer is written as an address, then it represents the address of a full
word which contains the address of the buffer to be returned in its three
rightmost bytes.

• If buffer is written using register notation (either regular or special
register notation), then it represents a register containing the address of
the butTer to be returned.

• If register notation is used, the address must have been loaded into the
designated register before the execution of this macro instruction.

MULTIPLE
Indicates that the specified buffer is the first of a chain of buffers, linked
through their BUFCHAIN fields. If MULTIPLE is specified, the entire
chain is returned to the buffer pool. If the parameter is omitted, only the
specified buffer is returned to the pool.

TYPE =

A=

Specifies the type of buffer that is to be returned to the JES2 buffer pool.

PROT Indicates a protected butTer
UNPROT indicates an unprotected buffer
HASP Indicates a HASP buffer

Specifies the starting address of the buffer to be returned. This address is
loaded into register 1.

LC23-0067-3 (9 Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-83

$FREEBUF

Environment

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Caution: The specified bnffer(s) must have been obtained by a SGETBUF macro
instruction. Otherwise, the action of the macro instruction is unpredictable.

TYPE = and A = apply only to the user environment (HASPSSSM) and should
be omitted in the JES2 main task environment.

• Main task or user address space (MULTIPLE is ignored in the user
environment.).

• $WAIT cannot occur.

4-84 JES2 User Modifications and Macros LC23-0067-3 0 Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $FRELOK

$FRELOK - Free the MVS CMS Lock, LOCAL, or JES2 Job Lock

Format Description

Environment

Use $FRELOK to free the CMS lock, LOCAL, or JES2 job lock obtained via the
$GETLOK macro instruction.

[symbol] $FRELOK [I CMS II TYPE= LOCAL
[(]JOB,JQE=relexp[)]

TYPE =
Specifies the lock to be freed as follows:

CMS (default)
The cross-memory services lock is freed. All other operands are
ignored.

LOCAL (valid in the HASPFSSM environment only)
The local lock is freed. All other operands are ignored.

JOB (valid in the JES2 main task only)

JQE=

The JES2 job lock is freed; you must specify a job queue element
address (JQE =).

Specifies the address of a fullword containing the address of the JQE.

• Main task and functional subsystem (HASPFSSM).
• $W AIT can occur.

LC23-0067-3 if) Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-85

$FREMAIN
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$FREMAIN - Branch-Entry FREEMAIN Services

Format Description

Use $FREMAIN in both the JES2 main task and the user environment
(HASPSSSM) to free an area of storage obtained via MVS GETMAIN services.
$FREMAIN invokes the $GETMAIN macro with all the parameters originally
specified and adds the FREMAIN = YES parameter.

[symbol] $FREMAIN [type-code)

, Lv=l value 1
(RO)

{ : ::I~:~:ll
1 l

key-ValUe
,KEY= 1

PSW

1 1 YES 11 ,TeB= NO
JOBSTEP

11

type-code

LV=

SP=

A=

Identifies the type of GETMAIN/FREEMAIN request. You can only
specify an unconditional FREEMAIN request. Caution: If the area of
storage referred to has not been obtained via MVS GETMAIN services prior
to this point, your subsystem will abend.

The way to specify requests is as follows:

R or RU or U - An unconditional FREEMAIN request.

Specifies the length of the area to be freed. This value is loaded into
register O.

Identifies the subpool number. Subpool zero is the default if no subpool is
specified. You must specify this parameter if you want to free an entire
subpool. (In that case, do !lot code the A = parameter.)

Specifies the starting address of the storage to be freed. This address is
loaded into register 1. This parameter is required unless you need to free an
entire subpool. in which case you specify the SP = parameter and not the
A = parameter. This keyword applies to the JES2 main task environment.

4-86 JES2 User Modifications and Macros LC23-0067-3 (L, Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM $FREMAIN

Environment

For the user (HASPSSSM) environment, specifies the address of the TeD
associated with the storage to be freed; this parameter is required for this
environment.

KEY =
Specifies the key of the storage you want to free. The default is "1." This
keyword applies to the user environment (HASPSSSM). Specifying "PSW"
is valid for only the user environment.

TCB=
Specifies that the address specified by A = is the TeD address (feD = YES).
Specifies that the address specified by A = is the starting address of the
storage to be freed (feD = NO). The default is TeD = NO. Specifying
"JODSTEP" for the job step TeD is valid for only the user environment.

• Main task or user address space.
• SW AIT cannot occur.

LC23-0067-3 C Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-87

$FREQC

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$FREQC - Free Quick Cell

Format Description

Use $FREQC to free the storage obtained for the quick cells.

[symbol] $FREQC TYPE= ! type-code 1
(RO)

TYPE=
Specifies the type of quick cells that are to be freed.

type-code

(RO)

NUM=

Specifies the type code as defined in the $QCTGEN macro for the
quick cell to be freed.

Specifies that register 0 contains the quick cell type-code as defined in
the $QCTGEN macro. The two low-order bytes of the register must
contain the type-code and the two high-order bytes must be zeroed.

Note: This keyword must be specified or an error will occur at
assembly time.

Specifies the number of quick cells to be returned to the quick cell pool.

nnn

(Rn)

Specifies the number (1-255) of quick cells. The value assigned to
NUM = must not exceed the specification of QCTLIMIT; exceeding
this value causes an execution error (FO I FSI catastrophic error), and
the $HASP750 message is issued. The default is I.

Specifies the register in which the number of quick cells is held.

4-88 JES2 User Modifications and Macros LC23-0067 -3 (0 Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $1FREQC

Environment

STACK =
Specifies whether the quick cells should be dechained or chained together.
The chaining field offset is specified in the QCT.

YES

CHAIN =

Specifies that the quick cells specified by this macro are taken off a
stack identified by the QCT for the specified type-code.

Specifies that the quick cells specified by this macro are chained
together and can be freed one at a time while while progressing
through the chain.

Specifies the register that contains the address of the first cell of the chain of
quick cells that are to be freed. Register 0 and 1 cannot be used. This
keyword must be coded if STACK = NO is coded or allowed to default.

• Functional subsystem (HASPFSSM)
• $W AIT not applicable.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-89

$FREUCBS
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$FREUCBS - Free UCB Parameter List Storage

Format Description

Environment

Use $FREUCBS to free UCB parameter list storage

[symbol) $FREUCBS

UPLADDR=

!parmlist-addrx]
UPLADDR=

(Rl)

Specifies the address of the UCB parameter list that is to be freed. If
register notation is used, the register must be initialized with the UCB
parameter list address prior to the execution of the macro.

• Main task.
• $W AIT cannot occur.

4-90 JES2 User Modifications and Macros LC23-0067 -3 (0 Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $FREUNIT

$FREUNIT - Release a Unit Device Control Table (OCT)

Format Description

Environment

Use $FREUNIT to release a device control table (OCT).

dct

[symbol] $FREUNIT 1 dct-addrx 1
(Rl)

Specifies either a pointer to a OCT or the address of a OCT to be released.
If dct is written as an address, then it represents the address of a full word,
which in its three rightmost bytes contains the address of the OCT to be
released. If dct is written using register notation (either regular or special
register notation), then it represents the address of the OCT to be released.
If register notation is used, the address must be loaded into the designated
register before the execution of this macro instruction.

Notes:

1. The execution of this macro instruction may cause a $WTO macro
instruction to he executed.

2. When a device that was allocated by M VS allocation facilities goes into
the DRAINED status, the device is deallocated. To use the device, it
must be first started by the operator using the $S device command and the
device must he obtained via the $GETUNIT macro instruction.
Otherwise. the system replies device unavailable.

Caution: The specified DCT must have been obtained by a $GETUNIT
macro instruction. The action of the macro instruction is unpredictable in other
cases.

• Main task.
• SWAIT can occur.

LC23-0067-3 (~) Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-91

$FSILINK
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$FSILINK - Link the Functional Subsystem Interface.

Format Description

Environment

Use $FSILINK to provide base register setup for the major control blocks
required hy the JES2 functional suhsystem interface (FSI) service routines.
Specify this macro at the entry point of an FSI service routine. $FSILINK sets
up registers to point to the functional subsystem control block and functional
subsystem application control block.

symbol $FSILINK REQUEST= function-name

[1 addrx I]
fERRET= (Rn)

~ TRAcEro=! ~: II

symbol
A symbol must be specified on this macro instruction.

REQUEST =
Specifies the function id of this FSI service. The function id specified is
compared to that passed in the FSI parameter list at the time of the FSI
call. If they do not match. a return code of 4 is placed in register 15 and. if
specified by the ERRET = keyword, a branch is taken to an error routine.

ERRET=
Specifies the label or a register containing the address in which to branch if
an invalid function id was specified on the REQUEST = keyword.

TRACEID=
Specifies whether trace id 14 (trace GETDS, RELDS, SEND) or trace id 15
(trace GETREC, FREEREC, CHKPT) is to be used for tracing. This
macro supports these two trace ids only.

• Functional subsystem (HASPFSSM)
• MVS WAIT can occur.

4-92 JES2 User Modifications and Macros LC23-0067-3 Q Copyright IBM Corp. 1982. 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $GETABLE

$GETABLE - Get HASP/USER Table Entries

Format Description

Use the $GETABLE macro to return table entries of the HASP/USER table
pairs.

OCT
[symbol] $GETABLE TABLE= {

PCE 1
TID
DTE

([, ID,I ~~~hNT 111
, LOOP=symbol

[I relexp 11 ,ERRET=
(Rn)

TABLE =

10=

Specifies the type of table pairs to be used.

peF. - indicates the PCE table (SPCETAB).
TID - indicates the trace id table (STIDTAB).
DCT - indicates the OCT table (SDCTT AB).
DTF. - indicates the DTE table (SDTETAB).

Specifies the table entry id associated with the table entries to be returned to
the table pairs.

CURRENT indicates that the id for the current environment is to be used -
that is, PCEID (for TABLE = PCE) or TTEID (for TABLE=TID).
DCTDEVID (for TABLE = DCT), or DTESTID (for TABLE = DTE). If
register notation is used, the designated register must contain the table entry
id prior to executing this macro.

LOOP =
Specifies a label that serves as the terminating point of the loop that is the
table entries.

If LOOP = is omitted, a single table entry lockup is performed.

ERRET=
Specifies the address of the error routine that is to receive control if the
table entry is invalid or the end of the table(s) is reached.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-93

$GETABLE

Environment

Notes:

1. ID= and/or LOOP = must be specified.

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

2. You must preserve register 0 before executing $GETABLE in a loop.

• Main task and during JES2 initialization and termination.
• $WAIT cannot occur.

4-94 JES2 User Modifications and Macros LC23-0067-3 IC Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $GETASCB

$GETASCB - Retrieve the Primary, Secondary, or Home ASCB

Format Description

Use the $GETASCB macro instruction for a specific asid to place the primary,
secondary, or home ASCB address into a register.

[symbol] $GETASCB [ASCBREG=!:::: II
[,WORKREG=j(Rn) II

(R15)

[jPRlMARY II
,TYPE= ~~~~NDARY

[j addrx II ,ASID=
(Rn)

ASCBREG=
Specifies the register where the ASCB address is to be stored. Register 1 is
the default.

WORKREG=
Specifies a work register that can be used in processing your request.
Register 15 is the default.

TYPE =
Specifies the type of ASCB that is to be located.

PRIMARY (the default)
indicates the primary address space's ASCB.

SECONDARY
indicates the secondary address space's ASCB.

HOME
indicates the home address space's ASCB.

ASID=
Specifies the address of the storage location containing the ASID for the
address space whose ASCB address is to be returned or specifies the register
containing the ASID.

Note: The TYPE = operand is ignored if ASID = is specified.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-95

$GETASCB

Environment

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

• Main task, subtask, or user address space.
• $W AIT cannot occur.

4-96 JES2 User Modifications and Macros LC23-0067-3 rc Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $GETBLK

$GETBLK - Get a Storage Cell from a Free Cell Pool

Format Description

Environment

Use $GETBLK to obtain a specified number of predefined storage cells from one
of several free cell pools.

[symbol] $GETBLK

TVPE=

TYPE=

SAVE
JIB
BUF

RPL
GTRC
SSOB

Specifies the type of storage cell that is Lo be obtained and from which cell
pool the cell is to be obtained. The following storage cell types may be
coded:

Cell Type

SAVE
JIB
BUF
RPL
GTRC
S80B

NUM=

Meaning

An MVS-type save area
A JOE information hlock
An I/O bufTer of 4K bytes
A request parameter list control block chain
A GETREC chain control block
A subsystem options block

Specifies the number of storage cells that are to be obtained. Specify this
number (nnn) as a valid number not greater than that specified on the
$QCTGEN macro LIMIT = keyword or place the number in a register
(Rn). If STACK = YES was coded on the $GETQC macro, the cells
specified by this macro are chained in a stack. If NUM = is specified as
greater than 1, the blocks will be chained using the chain field specified in
the QCT for that storage type.

• Functional subsystem (HASPFSSM)
• MVS WAIT can occur.

LC23-0067 -3 © Copyright IBM Corp. 1982. 1987 Chapter 4. JES2 Programmer Macros 4-97

$GETBUF

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$GETBUF - Acquire a Buffer from a JES2 Buffer Pool

Format Description

Use $GETBUF in the JES2 main task or user environments to obtain a buffer
from a buffer pool and return the address of this buffer in register 1.

[symbol] $GETBUF [none-relexp]

none

HASP
BSC
VTAM

,TYPE= PAGE
PP
PROT
SPXFR

Specifies a location to which control is returned if there are no buffers
available. (If WAIT = YES is specified, this operand is ignored.)

If this operand is omitted. the condition code is set to reflect the availability
of a buffer as follows:

cc=o
No buffer is available.

cc#o
Rl contains the address of the buffer.

NUM=
Specifies the number of buffers or a register containing the number of
buffers to be obtained. (This keyword is ignored if this macro instruction is
issued from the user environment.) One buffer is the default.

4-98 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

TYPE =

$GlE'fBUF

Specifies the type of buffer to be obtained, and whether the buffer is to
contain an lOB or an RPL, by type code as follows:

HASP (default)

BSC

A local buffer in which an input/output buffer (lOB) is to be
constructed

A teleprocessing (TP) buffer in which an lOB is to be constructed

VTAM
A TP buffer in which a request parameter list (RPL) is to be
constructed

PAGE
A local 4096-byte buffer in which an lOB is to be constructed

PP
A local print/punch buffer in which an lOB is to be constructed

PROT
A protected buffer in which an lOB is to be constructed. This
keyword value only applies when you use this macro in the user
(HASPSSSM) environment.

SPXFR
A local spool offioad buffer.

Note: You must specify WAIT = YES if TYPE = SPXFR is specified.

FIX =
Specifies whether the buffer is to be page-fixed (YES); if FIX = NO is
specified or this parameter is omitted, the page containing the buffer is not
fixed.

WAIT =
Specifies whether the $GETBUF service routine is to cause the routine
issuing the macro to wait ($W AIT BUF) until buffers are available
(WAIT = YES), or whether control is to be returned immediately
(W AIT= NO or parameter omitted) if buffers are not available. If
TYPE = SPXR is specified, you must also specify WAIT=YES

Note: TYPE = is the only keyword applicable in the user environment
(HASPSSSM).

Caution: The JES2 buffer that is obtained by using the SGETBUF macro contains
a prefix area that must not be altered. This prefix area is used by the $FREEBUF
macro; unpredictable results may occur if the prefix area is altered.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-99

$GJEl'lBUJF

Environment

• JES2 or user environment.

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

• $W AIT can occur if you specify WAIT = YES on the macro.

4-100 JES2 User Modifications and Macros LC23-0067-3 @ Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $GETCEL

$GETCEL - Acquire a Common Storage Area Cell

Format Description

Use $GETCEL to obtain a storage area for use in communicating information
between the JES2 main task and the HASPSSSM module when user job and task
ownership is required.

[symbol] $GETCEL I addrx l
SJB=

(RO)

I addrx l
,TCB=

(Rl)

I value l
,SIZE=

(R15)

[, NONE=relexp]

SJB=
Specifies the primary ownership of the storage cell. The specification is a
subsystem job block (SJB) address; therefore, the storage block is freed
automatically when the job terminates. The user should ensure that the
processor has control of the SJB prior to getting the storage cell and
working with the control block.

If register notation is used, the designated register must contain the address
of the SJB.

TCB=
Specifies the secondary ownership of the storage cell. This specification
should either be 0 or the address of a task control block (TCB) associated
with the SJB specified in the SJB operand. If a TCB address is specified,
the storage cell automatically is freed upon termination of the job or task;
therefore, the processor must ensure that logic between the processor and
the end of task exit of the HASPSSSM module does not permit freeing of
storage while the processor is working with the cell.

If register notation is used. the designated register must be loaded with the
address of the TCB or set to 0 prior to execution of this macro instruction.

SIZE=
Specifies the storage size in bytes of the cell. The value specified must be
between I and 32767. inclusive. If register notation is used, the designated
register must be loaded with the value prior to execution of this macro
instruction.

LC23-0067-3 I(~ Copyright IBM Corp. 1982. 1987 Chapter 4. JES2 Programmer Macros 4-101

$GE'fCEL

Environment

NONE =

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Specifies the address of a routine that is to be given control if the storage
cell was not obtained.

Notes:

,1. Upon obtaining a storage cell, the first word of the storage block contains the
address of the controlling cell central element (CCE). This work must be left
within the storage area if the $FRECEL macro instruction or HASPSSSM
explicit cell freeing subroutine is to be used to free the storage.

2. Although the use of this macro instruction for obtaining storage cells is available
only to routines within the JES2 main task processors, other tasks may use the
HASPSSSM subroutines directly without using this macro instruction.

3. Registers 0, 1, 14, and 15 are used during the execution of this macro
instruction. Caution: H the routines and macro instructions provided for
control of storage cells are not used or the subsystem job block (8JB) and task
interlocking mechanisms are not strictly followed, results are unpredictable and
generally disastrous in nature.

• Main task.
• $W AIT can occur.

4-102 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $GETCMB

$GETCMB - Get Console Message Buffers

Format Description

Use $GETCMB to obtain one or more console message buffers from the free
queue and return the address of the first buffer in register 1.

[symbol) $GETCMB [! value II NUMCMB= 1 R 1)

[!value II ,COUNT= ~RO)

[.SPECCT~! ::s II
[. WAIT~! ::s II

NUMCMB=
Specifies the number of console message buffers required. If register
notation is used, the number of required console messages must be loaded
into the designated register prior to the execution of this macro instruction.

If this operand is omitted, NUMCMB = I is assumed.

COUNT =
Specifies the amount that the console lockout security count in
SVTCOMCT should be decreased as a result of a successful $GETCMB
execution. If the count goes to 0 (SPECCT = NO) or below an
installation-specified minimum (SPECCT = YES), the $GETCMB request is
rejected.

If register notation is used, the count must be loaded into the designated
register prior to execution of this macro instruction.

If this operand is omitted, COUNT = 0 is assumed.

SPECCT=
Specifies whether the console lockout security count in SVTCOMCT should
go to 0 or the count should go below a system-specified minimum before
rejecting the $GETCMB request. Specifications are as follows:

YES
Reject if the count goes below the system-specified minimum.

LC23-0067 -3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-103

$GlETCMlIJ

Environment

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

NO (default)
Reject if the count goes to 0

If this operand is omitted, SPECCT = NO is assumed.

WAIT =
Specifies the action to be taken in the event insufficient console message
buffers (CMBs) are available to satisfy the request, as follows:

YES
Control is not returned until the request is satisfied.

NO (default)
An immediate return is made. The condition code on return has the
following meaning:

cc=o
The request was rejected.

cc#o
All console message buffers requested are chained together with
register 1 pointing to the first and the chain field of the last
buffer set to O.

Notes:

J. When console message buffers are obtained for the purpose of
queuing the command to the command processor input queue, the
COUNT specification should be the same as NUMCMB.

2. When console message buffers are obtained for the purpose of
issuing a $WTO with the CLASS=$DOMACT operand
specification. the COUNT specification should be the same as
NUMCMB. and SPECCT= YES must be specified.

3. When console message buffers are obtained without specifying a
corresponding count, the processor must not issue a $WTO without
providing the CMB= YES parameter either directly or using a
facility that does issue the $WTO. The processor also must not wait

• Main task.

($ WAIT) for a resource owned by another processor that issues a
$WTO or unconditionally attempts to get console message buffers.
If these rules are violated, the system experiences serious console
message buffer lockout problems.

• $W AIT can occur (if you specify WAIT = YES on the macro).

4-104 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $GETLOK

$GETLOK - Acquire the MVS eMS, LOCAL, or JES2 Job Lock

Format Description

Use $GETLOK to acquire either the MVS CMS, LOCAL, or JES2 job lock
depending on the type of lock requested and the environment from which it is
requested.

Also, use $GETLOK to obtain the cross-memory services (CMS) lock to serialize
the JES2 main task with other routines executing on behalf of other tasks in the
system. The CMS lock is required when modifying certain operating system
control blocks and, in some cases, when interfacing with the HASPSSSM module.
After obtaining the CMS lock, the user should not execute any code that allows
the execution of any SVC instructions until after first freeing the lock via
$FRELOK macro instruction.

Obtaining the local lock serializes the use of resources such as queues and control
blocks among several tasks running within the same address space. The
functional subsystem interface (FSI) service routines running in the functional
subsystem address space require the local lock for serialization of queues, buffer
pools, and control blocks such that many separate functional subsystem
application (FSA) tasks can use these resources.

Obtaining the JES2 job lock prevents job queue elements (JQEs) from being
changed by any code except the issuer of the job lock.

Note: The reason for executing the $GETLOK macro instruction should be fully
documented in your code.

[symbol] $GETLOK [1 CMS II TYPE= LOCAL
[(]JOB,JQE=relexp[)]

[WAIT~l ::s II
TYPE =

Specifies the lock to be obtained as follows:

CMS (default)
The cross-memory lock is to be obtained. All other operands are
ignored.

LOCAL

JOB

The MVS local lock is to be obtained. All other operands are
ignored.

The JES2 job lock is to be obtained. In this case a job queue element
address (JQE =) must be specified.

LC23-0067 -3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-105

$GlE'fLOK

Environment

JQE=

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Specifies the address of a fullword containing the address of the specified
JQE in its three right-most bytes. JQE = must be specified for
TYPE = JOB.

WAIT =
Specifies whether or not to $W AIT for the JOB lock to be obtained. This
keyword only applies to a TYPE = JOB request; otherwise, it is ignored.
WAIT = YES is the default.

• Main task and functional subsystem (HASPFSSM).
• SWAIT can occur (if you specify WAIT = YES on the macro).

4-106 JES2 User Modifications and Macros LC23-0067-3 0 Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $GETMAIN

$GETMAIN - Branch-Entry GETMAIN Services

Format Description

Use $GETMAIN in the JES2 main task or user environments to obtain an area
of storage from MVS GETMAIN/FREEMAIN services or to free an area of
storage obtained by this method.

[symbol] $GETMAIN [type-code]

~LV=(~::~e 1]

I' A=(addrx 1
(Rl)

~ sP=(:bsexp 11

I' BNDRY=(PAGE 11
DBLWD

['FREMAIN=(::s 11

~ KEY=(i;~ 11

[' TCB=(~~s 1
JOBSTEP

~ LOC=(:::ow 11

type-code
Identifies the type of GETMAIN/FREEMAIN request. The types of
requests are defined as follows:

Type !\leaning

R An unconditional GETMAIN or FREEMAIN request

C A conditional GETMAIN request that returns a condition code in register IS.
(CC = 0 indicates a valid GETMAIN. CC > 0 indicates otherwise.)

RC A conditional GETMAIN request that returns a condition code in register 15.
(CC=O indicates a valid GETMAIN. CC>O indicates otherwise.)

LC23-0067-3 l> Copyright IBM Corp. 1982. 1987 Chapter 4. JES2 Programmer Macros 4-107

$GlETMAIlN

LV=

A=

sp=

U

RU

BC

BU

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

An unconditional FREEMAIN request. If type-code is not specified on this macro
instruction, this is the default.

An unconditional FREEMAIN request. In the user's environment, this is the default.

A conditional GETMAIN request for a buffer that returns a condition code in
register 15. (CC=O indicates a valid GETMAIN, CC>O indicates otherwise.) BC
can be used only in the user's environment.

An unconditional FREEMAIN request for a buffer. BU can be used only in the user's
environment.

Specifies the length of the area to be obtained or freed. This value is loaded
into register O.

Specifies the address of the storage area to be freed. This keyword is only
valid if FREMAIN = YES is also specified.

Identifies the subpool number. Subpool zero is the default if no subpool is
specified. This parameter must be specified if you want to free an entire
subpool. (In that case, do not code the A = parameter.)

BNDRY=
Specifies that the storage requested be located on either a page or
doubleword boundary. This keyword is ignored if the type-code you specify
indicates a FREEMAIN request.

PAGE
Indicates that the storage be located on a 4096-byte (page) boundary.

DBLWD
Indicates that the storage be located on a doubleword boundary.

FREMAIN = (applies only to the user environment)
Specifies whether this request is to free (FREMAIN = YES) or get
(FREMAIN = NO) storage. Getting storage (FREMAIN = NO) is the
default. FREMAIN can only be used in the user's environment.

KEY = (applies only to the user environment)
Specifies the key of the storage that is either to be acquired or freed. If the
keyword is omitted, KEY = I is used.

TCB indicates to use the TCBPFK key of the current TCB.

PSW indicates to use the current PSW storage key.

4-108 JES2 User Modifications and Macros LC23-0067-3 ro Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $G1El'MA][N

Environment

TeD = (applies only to the user environment)
Specifies what TCB protect key to use for this GETMAIN or FREEMAIN.

YES - indicates the current TCB.

NO (the default) - indicates that a TCB protect is not being used.

JOBSTEP - indicates the jobstep TCB.

Notes:

1. You set the global assembly variable &ANVIRON= USER prior to executing
the $GETMAIN macro in order to select the user environment.

2. You set the global assembly variable &ANVIRON=JES2 prior to executing the
$GETMAIN macro in order to select the JES2 main task environment.

• Main task or user address space.
• $W AIT can occur for the main task environment.
• $W AIT cannot occur for the user environment.

LC23-0067-3 0 Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-109

$GETQC

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$GETQC - Call the Quick Cell Get Routine.

Format Description

Use $GETQC to obtain storage cells from a previously-built quick cell pool. This
macro instruction assists the efficient management of the work areas and buffer
storage requirements for the JES2 functional subsystem support routines
(HASPFSSM). The dynamic quick cell feature provides a high-performance
method for allocation and deallocation of fixed-length cells of storage. These
quick cells (that is, quickly obtainable blocks of storage) are defined, created, and
controlled in the quick cell control table (QCT) for use by the functional
subsystem support routines (HASPFSSM). Cell types include save areas, I/O
buffers, and JOE information blocks (JIBs).

[symbol] $GETQC TYPE= [
type-code 1

TYPE=

(RO)

['NUM=[F~) I]
[, STACK=[::S I]

Specifies the type as defined in the $QCTGEN macro for the quick cell to
be obtained.

type-code

(RO)

NUM=

Specifies that the type-code and all equated symbols for each
type-code are defined in the $QCTGEN macro.

Specifies that the register contains the quick cell type-code as defined
in the $QCTGEN macro, the two low-order bytes must contain the
type-code and the two high-order bytes must be zeroed.

Not/!: The TYPE = keyword must be specified.

Specifies the n um ber of quick cells to get from the quick cell pool. The
value assigned to NUM = must not exceed the specification of QCTLIMIT:
exceeding this value will cause an error condition.

nnn
Specifies the number (1-255) of quick cells. The default value is 1.

4-110 JES2 User Modifications and Macros LC23-0067-3£) Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $GlETQC

Environment

(Rn)

STACK =

Specifies that register notation is used. The register specified contains
the number of quick cells.

Specifies whether the quick cells should be pushed onto a stack or chained
together. The chaining field offset is specified in the QCT.

YES
Specifies that the quick cells specified by this macro are pushed onto a
stack identified by the QCT.

Specifies that the quick cells specified by this macro are chained
together and the address of the head of the chain is passed back to the
caller.

Note: Register 11 must contain the address of the HASP function control
table (HFCT) prior to executing $GETQC.

• Functional subsystem (HASPFSSM).
• MVS WAIT can occur.

LC23-0067-3 @ Copyright IBM Corp. 1982. 1987 Chapter 4. JES2 Programmer Macros 4-111

$GETSMFB
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$GETSMFB - Acquire a JES2 SMF Buffer from the JES2 SMF Buffer Pool

Format Description

Environment

Use $GETSMFB to obtain a buffer from the JES2 SMF buffer pool, clear the
buffer contents to binary zeroes, and return the address of this buffer in register 1.
The macro returns condition code 0 and a 0 in register I if no buffers were
available and WAIT=NO was specified in the macro.

[symbol] $GETSMFB

WAIT =
Specifies the action to be taken in the event no JES2 SMF buffers are
available as follows:

YES

NO

Control is not returned to the caller until a JES2 SMF buffer has
become available.

An immediate return is made. If no buffers are available, register 1
contains a 0 upon return to the calling routine. The condition code is
nonzero if a buffer is available or 0 if no buffers are available.

• Main task.

• SWAIT can occur (if you specify WAIT = YES on the macro).

4-112 JES2 User Modifications and Macros LC23-0067-3 '9 Copyright IBM Corp. 1982, 1987

"Restricted Materials of 18M"

Licensed Materials - Property of IBM $GETUCBS

$GETVCBS - Obtain a VCB Address

Format Description

Environment

Use $GETUCBS to obtain a single UCB address or a number of UCB addresses.

[symbol] $GETUCBS I (RO) 1 CLASS=
(Rn)

CLASS =

Specifies the device class of the UCB or UCBs that are requested.

CONT=
Specifies whether a single UCB is to be obtained (CaNT = NO) or whether
multiple UCB addresses are to be obtained (CaNT = YES). CaNT = NO is
the default. Register 1 must be preserved in the loop when CONT = YES.

• Main task or during JES2 initialization and termination.
• $W ArT cannot occur.

LC23-0067-3 «('J Copyright I BM Corp. 1982. 1987 Chapter 4. J ES2 Programmer Macros 4-113

$GETUNIT
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$GETUNIT - Acquire a Unit Device Control Table (DCT)

Format Description

Environment

Use $GETUNIT to assign a device control table (OCT) to a specific device.

det

(symbol] $GETUNIT (
dct-addrx 1
(Rl)

(,not-avail-relexp]

Specifies either a pointer to a OCT or the address of a OCT to be obtained.
If dct is written as an address, then it represents the address of a full word
containing the address of the OCT to be obtained. If dct is written using
register notation (either regular or special register notation), then it
represents the address of the OCT to be obtained. If register notation is
used, the address must be loaded into the designated register before the
execution of the macro instruction. DCT address must be specified.

not-avail
Specifies a location to which control is returned if the specified OCT is not
available. If this operand is omitted, the condition code is set to reflect the
availability of a OCT as follows:

CC=O
The OCT is not available.

Cc~o

Rl contains the address of the available OCT.

• Main task.
• $W AIT cannot occur.

4-114 JES2 User Modifications and Macros LC23-0067-3 «; Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $GETWORK

$GETWORK - Obtain a Work Area

Format Description

Use $GETWORK to obtain a work area in subpool I in the JES2 address space.
If the size of the requested area is appropriate. storage is allocated from
JES2-maintained storage pools.

[symbol] $GETWORK ! number l
WORDS=

(Rnl

,USE=code

[!labelll
,ERRET= (Rn)

[,WAIT=! ::s II
WORDS =

Specifies the size of the work area in full words or a register that contains
the size of the work area in full words.

USE=
Specifies the 4-character identifier to be placed in the first four bytes of the
work area.

The address returned in register I will be four bytes into the actual work
area (bypassing the prefix). You do not have to adjust this value to point
past the identifier.

JES2 issues catastrophic error $GW 1 if the size requested on the WORDS =
operand is greater than the largest size work area supported.

ERRET=
Specifies the label or register (R2-R12) that indicates where to branch if
$GETWORK cannot successfully allocate required storage. If ERRET = is
not specified or if the allocate fails for any reason, $GETWORK issues the
catastrophic ABEND, GWl. If ERRET is specified. $GETWORK issues a
catastrophic abend for internal errors only. for other errors, (e.g., a
GETMAIN failure) register IS returns a return code of 4. This keyword is
not valid if WAIT = YES is also specified.

WAIT
Specifies whether (yES) or not (NO) the $GETWORK service routine is
permitted to $WAIT for storage. This keyword is not valid if ERRET= IS

also specified.

LC23-0067-3 (~) Copyright IBM Corp. 1982. 1987 Chapter 4. JES2 Programmer Macros 4-115

$GETW01RK

Environment

LOC=

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Specifies the location of the virtual and real storage to be allocated.

BELOW

ANY

Indicates that the storage is to be allocated below the 16-megabyte
line.

Indicates that the storage can either be located above or below the
16-megabyte line.

• Main task.
• $W AIT can occur if WAIT = YES is specified.

4-116 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $IOERROR

$IOERROR - Log Input/Output Error

Format Description

Environment

Use $IOERROR to log an input/output error on the operator's console.

[symbol]

buffer

$IOERROR !bUffer-addrx]

(Rl)

Specifies either a pointer to a JES2 buffer or the address of the buffer that
has been associated with a JES2 input/output error.

If buffer is written as an address, it represents the address of a fullword that
contains the address of the buffer in error in its 3 rightmost bytes. If buffer
is written using register notation (either regular or special register notation),
it represents the address of the buffer in error. If register 1 is used, the
address must be loaded into the register before the execution of the macro
instruction.

• Main task.
• $W AIT can occur.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-117

$JCAN

$JCAN - Cancel Job

Format Description

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Use $JCAN to prepare the job represented by the specified job queue element for
the cancellation of its normal execution, cancellation of its normal execution as
well as output, or cancellation upon completion of its current activity.

[symbol] $ JCAN

JQE=

[JQE~I ;::x I]
~ ENTER~I ::s Il
~ TYPE~I ~~~~ I]

[,NOTJOB=relexp]

[, NOP=re lexp]

[,OK=relexp]

[, NOJOE=relexp]

[,OFFLINE=relexp]

Specifies the address of the job queue element that represents the job to be
cancelled. If register notation is used,[the address must be loaded into the
designated register before the execution of this macro instruction unless
ENTER = NO is specified.

ENTER =
Specifies whether or not actual entry to the job cancel service routine is to
be affected. If this operand is omitted or YES is specified, the routine is
entered. If the specification is NO, the execution of this macro instruction
is for the purpose of setting parameter values in register 0 based upon the
specifications in the TYPE and DUMP operands. Operands other than
ENTER, TYPE, and DUMP should be omitted when ENTER = NO is
specified, and the value of register 0 must not be altered until after a
subsequent $JCAN macro with ENTER = YES specified or omitted.

TYPE =
Specifies the action to be taken. If CANXEQ is specified, a normal batch
job, which is in the system queues prior to execution or in execution, is
queued for output. A request for a job in $OUTPUT is considered a no
operation, and control is given to the location specified by the NOP

4-118 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $JCAN

.'
operand. IT the job is a started task control (STC) or time-sharing user
(fSU) job prior to being executed or in execution, the request is rejected,
and control is given to the location specified by the NOTJOB operand. IT
CANALL is specified, the job is cancelled from its current activity and
queued for purge. IT the job is an STC or TSU job prior to or in execution, .
the request is rejected, and control is given to the location specified by the
NOTJOB operand. IT STOP is specified, the action is the same as for
CANALL except that the job's current activity is not deleted. IT this
operand is omitted, register 0 must have been set by a previous execution of
a $JCAN macro instruction specifying ENTER = NO.

Notes:

1. If the job queue element is currently owned by a processor. queuing to
SOUTPUT or SPURGE is delayed until the next SQMOD. SQPUT. or
SQADD macro instruction execution.

2. The CANXEQjunction may be negated by the execution processor if a
reenqueue function is requested.

3. The CANXEQjunction results in cancellation oj output if a previous
request has been made using the STOP junction request.

NOTJOB=
Specifies the location to be given control if the job to be cancelled is a STC
or TSU job in the system prio~ to or in execution.

NOP=

OK=

Specifies the location to be given control if TYPE = CANXEQ is specified
and the job has passed the execution phase. If this operand is omitted,
control is given to the location specified by the OK operand.

Specifies the location to be given control if the execution of the request is
successful. IT this operand is omitted, control is given to the location
following the macro instruction if the request is successful.

DUMP =
Specifies whether or not the system is to attempt a storage dump of the
specified job whose execution is being canceled. If the specification is
DUMP = YES and TYPE=CANXEQ or TYPE=CANALL is specified,
and if the job is in execution and is not an STC or TSU job, the system
attempts to dump the job in a manner compatible with the MVS CANCEL
jobname, DUMP command.

NOJOE=
Specifies the location to be given control if the specified number of JOEs
were found.

LC23-0067-3 C Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-119

$JCAN

Environment

OFFLINE =

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Specifies the location to be given control if the job's spool(s) is omine.

Note: OK =. NOJOE =. OFFLINE = must all be specified in order for anyone
of them to be recognized.

• Main task.
• $W AIT can occur.

4-120 JES2 User Modifications and Macros LC23-0067-3 @ Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $JCTIO

$JCTIO - Call the $JCTIOR Routine

Format Description

Use the $JCTIO macro instruction to call the $JCTIOR routine in HASPNUC to
read or write a JCT from spool.

[symbol] $JCTIO

TYPE=

TYPE=j READ l
WRITE

rJQE=jfield-namel
(Rn)

['JCTBUF=j:::~d-name II
[, FREE=j ::s II
['ERRET=j:::~d-name II

Specifies the type (READ or WRITE) of I/O operation requested by this
macro.

JQE=
Specifies a register or the name of a field that contains the address of the
JQE for the job whose JCT is required to be read or written.

JCTBUF=
Specifies a register or the name of a field that contains the address of the
buffer into which the JCT is to be read or from which the JCT is to be
written.

Note: This keyword is required if TYPE = WRITE is specified.

FREE=
Specifies whether (YES) or not (NO) to free the JCT buffer following the
I/O operation. If TYPE = READ is specified, this keyword is ignored.

ERRET=
Specifies the name of the field that contains the address to which JES2
branches if an I/O error is detected or an invalid JeT is read.

LC23-0067-3 @ Copyright IBM Corp. 1982, 1987 Chapter 4. J ES2 Programmer Macros 4-121

$JCTIO

Environment

• JES2 main task
• $W AIT can occur

4-122 JES2 User Modifications and Macros

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

LC23-0067-3 Q Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM $MID

$MID - Assign JES2 Message Identification

Format Description

Environment

Use $MID to set the global variable[symbol] &MID to an EBCDIC character
string so that, when the variable[symbol] is coded as the first portion of the
message text field of an operating system WTO macro instruction, the correct
message identification is displayed with the message. This macro instruction
should be coded directly prior to the WTO macro instruction.

[symbol] $MID id-value

id-value
Specifies the numeric 3-digit message identification of the message appearing
in the succeeding WTO macro expansion.

Note: Coding should not depend upon the exact length or format of the
character string assigned to the &MID variable symbol.

• Main task, subtask, or user address space.
• $W AIT cannot occur.

LC23-0067 -3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-123

$MODCHK
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$MODCHK - Call the MODCHECK Verification Routine

Format Description

Use the $MODCHK macro instruction to call the MODCHECK verification
routine located in the HASPNUC load module. The MODCHECK routine can
test:

1. if the module resides below the 16-megabyte line
2. if the module resides in common storage
3. if the module assembled at the same version as the JES2 nucleus and with the

correct level of macros
4. if the module name matches that specified in the MIT (MITNAME)
5. if the exit point can be propagated from the MIT to the exit information

table eXIT)
6. if the XIT entry address can be resolved in the exit routine table (XRT).

Specifically, this macro is useful to guarantee that you have not inadvertently
attempted to mix MVS versions and that all modules are assembled at the same
system product (SP) level. This early verification and notification prevents an
attempt by JES2 to load an incorrect module and eventually terminate. An
unsuccessful verification causes JES2 to issue message $HASP875 with a specific
reason text.

[symbol] $MODCHK NAME=j~~~~~~~~~~ll
(Rl)

[,ADDR=jfield-namell

(RO) J

[,LOAD=j ::s 11
RMODE24
,COMMON
,MIT

,TEST=[(] ,VERSION [)]
,NAME
,EXITPTS
,EXITRTNS

[j
field-namell

,ERRET=
(Rn)

['MESSAGEt:s II

4-124 JES2 User Modifications and Macros LC23-0067-3 ,e Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

NAME =

$MODCHK

Specifies the name of the module to be verified by MODCHECK. Specify a
1- to 8-character module name, a label referencing the beginning of the
module, or a register containing the address of the module. This is a
required keyword.

ADDR=
Specifies the address of this module by either a field name or a register
containing the module address. If LOAD = YES is specified, this parameter
must not also be coded.

WAD =
Specifies that the module should (LOAD = YES) be loaded prior to
verification checking. If LOAD = NO is specified, you must specify
ADDR =. If LOAD = YES is specified, do not also code the ADDR =
keyword.

TEST =
Specifies the tests for which this module is to be verified. If you specify
more than one test type, enclose the list in parenthesis and separate each by
a comma, for example, TEST = (NAME,RMODE24,VERSION)

Test Type

RMODE24

COMMON

MIT

VERSION

NAME

EXITPTS

EXITRTNS

ERRET=

Meaning

Tests that the module resides below the 16-megabyte line

Tests that the module resides in common storage

Tests that the module is large enough to contain the MIT, the MIT entry table
pointer points to a valid field within the module, and that the MIT is located
at the beginning of the module. This test is only valid if LOAD = YES is
specified.

Tests that the version of JES2 and this module are at the same level and that
all macros contained in the module are assembled at the correct level of JES2.

Tests that the NAME = keyword specifies the same name as the MITNAME
specified in the MIT.

Test if the exit point can be propagated from the MIT to the XIT.

Test if the XIT entry address can be resolved in the XRT.

Specifies the address of an error routine that is to get control if the module
is not successfully verified by MODCHECK. Specify the address by either
a field name or a register containing the address of this module. An error
message can be returned based if MESSAGE = YES is also coded.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-125

$MODCHK

Environment

MESSAGE =

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Specifies whether (YES) or not (NO) JES2 will issue message $HASP875
with an appropriate text if an error is detected by MODCHECK.

Return Code
o
4
8

Meaning
Tesl(s) and load (if requested) successful
Load failed
Verification test(s) failed -- the previously loaded module is deleted

• JES2 main task
• MVS WAIT may occur

4-126 JES2 User Modifications and Macros LC23-0067 -3 ~ Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $MODEND

$MODEND - Generate End of Module

Format Description

Environment

Use $MODEND to generate the MIT entry table (MITETBL) to fill in the
256-bit mask field in the MIT according to what exits are defined within the
module. and to calculate the length for the CSECT created by $MODULE.

This macro instruction must be coded at the end of every module, with no
exceptions.

[symbol] $MODEND

• Main task, sub task, or user address space.
• $WAIT is not applicable.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-127

$MODULE

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$MODULE - Provide a Module Information Table

Format Description

Use $MODULE to generate a module information table (MIT) for the given
module to establish the values of assembler global variables, and to generate
DSECTs and EQUs for the assembly. It must be coded once in a module and
must appear immediately after a COPY of $HASPGBL and before any other
code. There are no JES2 modules that are exceptions to this rule.

Every time a $ENTRY macro instruction is invoked to establish a new entry
point, another entry is added to the MIT entry table (MITETBL). Also, within
the MIT there is a 256-bit mask used to indicate which exit points are defined
within the given module.

A number of 1ES2 mapping macros require that you also request one or more
1ES2 or MVS macros to provide necessary mapping support. If you do not
explicitly include the required macro(s), 1ES2 automatically generates them and
issues a warning note during module assembly. For example, the 1ES2 macro
$PSO requires that you code the 1ES2 macro, $PDDB, and the MVS macro
SSOB. But if you only included $PSO, JES2 will generate both the missing JES2
and MVS macros.

[symbol] $MODULE [(NONE II NOTICE= value
(value,value)

[,SYSP=(print,gen,data,listmvs,listjes»)

[,TITLE=module title]

l' ENVIRON=(g~i~]1
SUBTASK
FSS

[,ENTRIES=(namel,name2, ... »)

[,dsectname,dsectname, ...)

symbol
Specifies the module name to appear in all cross reference lists and to be the
name of the CSECT stated by the $MODULE macro.

NOTICE =
Specifies whether or not the IBM copyright notice is to be generated and
what release applies to this module. The 1ES2 release that created and last
modified the module can be specified. Or a list of the creating release

4-128 JES2 U~er Modifications and Macros LC23-0067-3C Copyright IBM Corp. 1982. 1987

"Restricted Materials of mM"

Lieeosed Materials - Property of IBM $MODULE

followed by the last modifying release can be specified. The value can be
coded as follows:

NONE (the default)
No copyright notice is generated.

SPI30
Indicates that this module was created or last updated by SPI.3.0
(SP1.2.0).

SPI33
Indicates that this module was created or last updated by SP1.3.3.

SPI34
Indicates that this module was created or last updated by SP1.3.4.

SPI36
Indicates that this module was created or last updated by SP1.3.6.

SP215
Indicates that this module was last created or updated by SP2.l.S.

SYSP = (print,gen,data,tistmvs,listjes)
Specifies the parameter defaults for global assembly variables.

Note: These parameters can be overridden by using the assembler
'SYSPARM' option.

print

gen

data

Specifies the JES2 default print option for certain expansions with
JES2 module DSECTs. This specification is used in an assembler
PRINT instruction and must be either GEN or NOGEN. The default
is NOGEN.

Specifies a default specification for the printing non-mapping macro
expansions in a JES2 assembly. This specification is used in an
assembler PRINT instruction and must be either CBREQ. GEN. or
NOGEN.

Specifies a default specification for the printing of data constants in a
JES2 assembly. This specification is used in an assembler PRINT
instruction and must be either DATA or NODATA.

LC23-0067-3 e Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-129

$MODULE
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

listmvs

listjes

TITLE =

Specifies a default specification for the printing of the MVS control
block DSECTs. This specification must be either GEN or NOGEN.

Specifies a default specification for the printing of JES2 control block
DSECTs. This specification must be either GEN or NOGEN.

Specifies a character string title for this module.

ENVIRON =
Specifies to what environment this module is to apply

JES2 (default)
indicates the JES2 main task environment

SUBTASK
indicates the JES2 subtask environment

USER
indicates the user (HASPSSSM) environment

FSS
indicates the functional subsystem (HASPFSSM) environment

You specify the ENVIRON = keyword to set the &ANVIRON global
assembly variable, which is used by other macros; this specification will be
the default for the ENVIRON = keyword for other macros.

ENTRIES =
Specifies additional entry point names in your module that are not defined
by the $ENTRY macros. These additional entry names are added to the
MIT entry table (MITETBL).

dsectname,dsectname, ...
Identifies the MVS and JES2 DSECT mappings that are required to
assemble this module. $MODULE expands the requested mappings using
the appropriate MVS and JES2 macros. The dsect names can be specified
in any order. They will be expanded in the proper order that provides for
the limitations of the assemblers.

Each dsectname value can be specified as one of the DSECnDs shown in
the table below, or as (dsectid,genid). genid can either be specified as GEN
or NOGEN and is used to override the "listmvs" and "listjes" values (for
the particular macro) specified via the SYSP operand.

4-130 JES2 User Modifications and Macros LC23-0067 -3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

DSECTID

ACB
ACBXL
ACEE
ASCB
ASVT
ASX8
ATB
BASEA
CDE
CMAUP
CSCB
CVT
DCB
DEB
DYN
DYN
ECB
ETD
EWA
FDA
FSCT
FSIP
FSVT
GDA
IDX
10CM
IOSB
lESCT
IFCB
]FCB
JSCB
JSPA
KEYS
LCT
MGCR
NEL
NIB
ORE
PDS
PPL
PSA
PSCB
RB
RESPA
RMR
RPL
RQE
SDWA
SlOT
SJDLP
SJEXP
SJFNP
SJGEP
SJPRFX
SJPUP
SlREP
SIRUP
SMCA
SPP
SRB
SSCT
SSIB
SSOB

Macro(s)

IFGACB
IFGEXLST
IHAACEE
IHAASCB
IHAASVT
IHAASXB
IECDATB
IEEBASEA
IHACDE
IEFCMAUP
IEECHAIN
CVT
DCBD
IEZDEB
IEFZB4DO
IEFZB4D2
IHAECB
IHAETD
EWAMAP
IKlEFFDF
IAZFSCT
IAZFSIP
IAZFSVT
IAHGDA
IAZIDX
IECDIOCM
IECDIOSB
IEFIESCT
IEFJFCBN
IEFJFCBE
IEZlSCB
IAZlSPA
IEFVKEYS
IEFALLCT
IEZMGCR
IEFNEL
ISTDNIB
IHAORE
IHAPDS
IECDPPL
IHAPSA
IKJPSCB
IKlRB
IAZRESPA
IDARMRCD
IECRPL
IECDRQE
IHASDWA
IEFASIOT
IEFSJDLP
IEFSJEXP
IEFSJFNP
IEFSJGEP
IEFSIPFX
IEFSJPUP
IEFSJREP
IEFSJRUP
IEESMCA
IHASPP
lHASRB
IEFJSCVT
IEFISSIB
IEFJSSOB

LC23-0067-3 C Copyright IBM Corp. 1982, 1987

$MODULJE

Description of Code Generated

MVS access method control block DSECT
MVS access method control block exit list DSECT
MVS accessor environmental element control block DSECT
MVS address space control block DSECT
MVS address space vector table DSECT
MVS address space extension block DSECT
MVS attention table DSECT
MVS master scheduler resident data area DSECT
MVS contents directory entry DSECT
MVS common authorization check parameter list
MVS command scheduling control block DSECT
MVS communication vector table DSECT
MVS data control block DSECT
MVS data extent block DSECT
MVS dynamic allocation (SVC 99) parameter list
MVS dynamic allocation (SVC 99) text unit keys
MVS event control block DSECT
MVS cross-memory entry table description DSECT
MVS IOS/ERP error work area DSECT
MVS DAIRFAIL parameter list DSECT
MVS functional subsystem control table DSECT
MVS functional subsystem interface parameter DSECT
MVS functional subsystem vector table DSECT
MVS global data area DSECT
MVS print/punch SYSOUT record index DSECT
MVS I/O supervisor communication area DSECT
MVS I/O supervisor block DSECT
MVS job entry subsystem control table DSECT
MVS job file control block DSECT
MVS job me control block 3800 extension DSECT
MVS job step control block DSECT
MVS FSI job separator page area DSECT
MVS internal text key definitions
MVS linkage control table DSECT
MVS MGCR (SVC 34) parameter list DSECT
MVS JCL converter/interpreter entry list DSECT
MVS VT AM node initia1ization block DSECT
MVS operator reply element DSECT
MVS partitioned data set directory entry DSECT
MVS protected step control block DSECT
MVS prefIXed save area DSECT
MVS protected step control block DSECT
MVS request block DSECT
MVS FSI order response area DSECT
MVS VSAM record management return codes
MVS ACB request parameter list DSECT
MVS EXCP request queue element DSECT
MVS system diagnostic work area DSECT
MVS step 1/0 table DSECT
MVS S1F delete SWB parameter list DSECT
MVS SJF extract parameter list DSECT
MVS SJF find SWB chain parameter list DSECT
MVS S]F get SWB parameter list DSECT
MVS SJF NIE SWB prefIX parameter list DSECT
MVS SJF put SWB parameter list DSECT
MVS SJF retrieve SWB parameter list DSECT
MVS SJF update SWB parameter list DSECT
MVS SMF control table DSECT
MVS SETPRT parameter list DSECT
MVS service request block DSECT
MVS subsystem communications vector table DSECT
MVS subsystem identification block DSECT
MVS subsystem options block DSECT

Chapter 4. JES2 Programmer Macros 4-131

$MODULE

DSECTID

TCB
TCT
TEXT
TlOT
UCB
UCM
UCSIT
WPL
WQE
XTLST
SACT
SAPT
SBFD
SBPW
SBPM
SBTG
SBUFFER
SCAT
SCCA
SCCE
SCCW
SCHK
SCIRWORK
SCK
SCKPWORK
SCMB
SCNVWORK
SCOMWORK
SCPT
SCSA
SCWA
SDAIR
SDAS
socr
SDCTTAB
SDSSCB
SDTE
SDTEACCT
SDTECNV
SDTEIMG
SDTEOFF
SDTESPL
SDTETAB
SDTEVTAM
SDVA
SERA
SERPL
SEST
SEXITPL
SFMH
SFSACB
SFSAXB
SFSIEQU
SFSSCB
SFSSWORK
SFSSXB
SGCB
SHASPEQU
SHCT
SHDP
SHFCT
SICE
SlOT

Macro(s)

IKJTCB
IEFTCT
IEFI'XTFT
IEFTIOTI
IEFUCBOB
IEECUCM
IGGUCSIT
IEZWPL
lHAWQE
IHAXTLST
SACT
SAPT
SBFD
SBPW
SBPM
SBTG
SBUFFER
SCAT
SCCA
SCCE
SCCW
SCHK
SCIRWORK
SCK
SCKPWORK
SCMB
SCNVWORK
SCOMWORK
SCPT
SCSA
SCWA
SDAIR
SDAS
SDCT
SDCTTAB
SDSSCB
SDTE
SDTEACCT
SDTECNV
SDTEIMG
SDTEOFF
SDTESPL
SDTETAB
SDTEVTAM
SDVA
$ERA
SERPL
$EST
SEXlTPL
$FMH
SFSACB
SFSAXB
SFSIEQU
SFSSCB
SFSSWORK
SFSSXB
SGCB
SHASPEQU
$HCT
SHDP
SHFCT
SICE
SlOT

4-132 JES2 User Modifications and Macros

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Description of Code Generated

MVS task control block DSECT
MVS SMF timing control table DSECT
MVS internal text format DSECT
MVS task I/O table DSECT
MVS unit control block DSECT
MVS unit control module DSECT
MVS UCS image table DSECT
MVS WTO/WTOR/MLWTO/WTP parameter list DSECT
MVS WTO queue element DSECT
MVS extent list DSECT
HASP automatic command table DSECT
HASP NJE/SNA application table DSECT
HASP generalized subsystem dataset buffer DSECT
HASP 3800 buffer work area DSECT
HASP buffer pool map DSECT
HASP badtrack group element DSECT
HASP I/O buffer DSECT
HASP class attribute table DSECT
HASP cell control area DSECT
HASP cell control element DSECT
HASP channel command word definitions
HASP (MVS) FSI checkpoint record DSECT
HASP common initialization routine PCE work area
HASP checkpoint block DSECT
HASP checkpoint processor PCE work area DSECT
HASP console message buffer DSECT
HASP conversion processor PCE work area DSECT
HASP command processor PCE work area DSECT
HASP compaction table DSECT
HASP console service area DSECT
HASP MCS console work area DSECT
HASP DAIRFAIL parameter list DSECT
HASP direct access spool data set DSECT
HASP device control table DSECT
HASP DCT table (SGETABLE) DSECT
HASP data set services DSECT
HASP daughter task element DSECT
HASP account (SMF) subtask DTE work area DSECT
HASP converter subtask DTE work area DSECT
HASP image subtask DTE work area DSECT
HASP spool omoad subtask DTE work area DSECT
HASP spool subtask DTE work area DSECT
HASP DTE table (SGETABLE) DSECT
HASP VT AM subtask DTE work area DSECT
HASP device type parameter area DSECT
HASP error recovery area DSECT
HASP SERROR parameter list DSECT
HASP estimated counts DSECT
HASP SEXIT parameter list DSECT
HASP SNA function management header DSECT
HASP functional subsystem application control block DSECT
HASP functional subsystem application extension DSECT
HASP FSI equates
HASP functional subsystem control block DSECT
HASP functional subsystem support PCE work area DSECT
HASP functional subsystem control block extension DSECT
HASP GETREC chain control block DSECT
HASP equates (general register and bit definitions)
HASP communication table DSECT
HASP Control block header DSECT
HASP FSS communication table DSECT
HASP SNA interface control element DSECT
HASP 1/0 table DSECT

LC23-OO67-3 C Copyright IBM Corp. 1982. 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

DSECTID

SJAW
SJCT
SJDR
SJDRWORK.
SJFL
SJFW
SJlB
SJOE
SJOT
SJQE
SKEYLIST
SKIT
SLCK
SLGRR
SLMT
SLRC
SMCODE
SMCT
SMIT
SMITETBL
SMLMWORK.
SMODMAP
SNAT
SNCC
SNETACCT
SNHD
SNIT
SNJTWORK.
SNMR
SNPMWORK.
SNSP
SNSRWORK.
SNSTWORK.
SOCR
SOCT
SOUTWORK.
SPCE
SPCETAB
SPCIE
SPDDB
SPIT
SPPPWORK.
SPQE
SPQH
SPRE
SPRGWORK.
SPRMD
SPSO
SPSOWORK.
SQCT
SQGET
SQSE
SRAT
SRCPWORK.
SRDRWORK
SRDT
SRESWORK.
SRVSTACK
SRWL
SSCANTAB
SSCANWA
SSCAT
SSCR

Macro(s)

$JAW
SJCT
SJDR
SJDRWORK.
SJFL
SJFW
SJlB
SJOE
SJOT
SJQE
SKEYLIST
SKIT
SLCK
SLGRR
SLMT
SLRC
SMCODE
SMCT
SMIT
SMITETBL
SMLMWORK.
SMODMAP
SNAT
SNCC
SNETACCT
SNHD
SNIT
SNJTWORK.
SNMR
SNPMWORK.
SNSP
SNSRWORK
SNSTWORK
SOCR
SOCT
SOUTWORK
SPCE
SPCETAB
SPCIE
SPDDB
SPIT
SPPPWORK
SPQE
SPQH
SPRE
SPRGWORK
SPRMD
SPSO
SPSOWORK
SQCT
SQGET
SQSE
SRAT
SRCPWORK
SRDRWORK
SRDT
SRESWORK
SRVSTACK
SRWL
SSCANTAB
SSCANWA
SSCAT
SSCR

LC23-0067-3 @ Copyright IBM Corp. 1982, 1987

Description of Code Generated

JES2 authorization work area
HASP job control table DSECT
HASP job disposition request DSECT
HASP JDR processor PCE work area DSECT
HASP JCL facility list DSECTS
HASP JCL facility work area DSECT
HASP JOE information block DSECT
HASP job output element DSECT
HASP job output table DSECT
HASP job queue element DSECT
HASP SWB keylist table entry DSECT

$MODULJE

HASP checkpoint information table DSECT
HASP spool offload checkpoint element DSECT
HASP LOGREC record SDWAVRA DSECT
HASP load module table DSECT
HASP logical record DSECT
HASP BSC code table DSECT
HASP master control table DSECT
HASP module information table DSECT
HASP module information table entry table DSECT
HASP line manager processor PCE work area DSECT
HASP module map directory DSECT
HASP network nodes attached table
HASP network connection control DSECT
HASP network account table format and DSECT
HASP network header/trailer DSECTS
HASP network information table DSECT
HASP network job transmitter processor PCE work area DSECT
HASP network communication message record DSECT
HASP network path manager processor PCE work area DSECT
HASP network services procedure RU-cleanup unit DSECT
HASP network SYSOUT receiver processor PCE work area DSECT
HASP network SYSOUT transmitter processor PCE work area DSECT
HASP output control record DSECT
HASP output control table DSECT
HASP output processor PCE work area DSECT
HASP processor control element DSECT
HASP PCE table (SGETABLE) DSECT
HASP program controlled interrupt element DSECT
HASP peripheral data definition block DSECT
HASP partitioned information table DSECT
HASP print/punch processor PCE work area DSECT
HASP 3800 page queue entry DSECT
HASP 3800 pending page queue header DSECT
HASP processor recovery element DSECT
HASP purge processor PCE work area DSECT
HASP process mode table entry DSECT
HASP process SYSOUT work area DSECT
HASP PSO processor PCE work area DSECT
HASP quick cell control table DSECT
HASP SQGET parameter list DSECT
HASP shared queue control element DSECT
HASP remote attribute table DSECT
HASP remote console processor PCE work area DSECT
HASP reader services PCE work area DSECT
HASP remote destination table DSECT
HASP resource manager PCE work area DSECT
HASP error recovery work stack DSECT
HASP remote work look-up table
HASP SCAN table (SSCAN) DSECT
HASP SSCAN facility work area DSECT
HASP SYSOUT class attribute table DSECT
HASP spool control record DSECT

Chapter 4. JES2 Programmer Macros 4-133

$MODULE

DSECTID

SSDB
$SJB
SSIXB
$SMF
SSPMWORK
SSVT
SSWBIT
STAB
STGB
$TIDTAB
$TLGWORK
STQE
$TRCA
$TRP
$TTE
$UPL
SVERTAB
$WARMWRK
$WORK
SWSTAB
SXECB
SXEQWORK
$XFMWORK
SXIT
SXRT

Environment

Macro(s)

$SDB
SSJB
SSIXB
$SMF
SSPMWORK
SSVT
SSWBIT
STAB
STGB
STIDTAB
$TLGWORK
$TQE
STRCA
STRP
$TIE
SUPL
SVERTAB
SWARMWRK
SWORK
SWSTAB
SXECB
SXEQWORK
SXFMWORK
SXIT
SXRT

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Description of Code Generated

HASP subsystem data set block DSECT
HASP subsystem job block DSECT
HASP subsystem job extension block DSECT
HASP SMF butTer DSECT
HASP spool manager processor PCE work area DSECT
HASP (MVS) subsystem vector table DSECT
HASP SWB information table DSECT
HASP track allocation block DSECT
HASP allocation track group block DSECT
HASP trace ID table (SGETABLE) DSECT
HASP trace log processor PCE work area DSECT
HASP timer queue element FORMAT
HASP termination/recovery control area DSECT
HASP STRACE parameter list DSECT
HASP trace table entry DSECT
HASP UCB parameter list DSECT
HASP SVERIFY table entry DSECT
HASP warm start processor PCE work area DSECT
HASP SGETWORK/SRETWORK general work area DSECT
HASP work selection tables DSECT
HASP extended ECB element DSECT
HASP execution processor PCE work area DSECT
HASP XFR I/O manager processor PCE work area DSECT
HASP exit information table DSECT
HASP exit routine table DSECT

• Main task, subtask, user address space or functional subsystem
(HASPFSSM).

• MVS WAIT and $W AIT are not applicable.

4-134 JES2 User Modifications and Macros LC23-0067-3 10 Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $MSG

$MSG - Write to Operator Message Area

Format Description

Use $MSG to generate a message text area to be referenced by the message
operand of the $WTO macro instruction.

id

[symbol] $MSG id-value

[,'message-text' [,SYMB=symbol-name]]

Specifies the numeric 3-digit message identification that is to be displayed
with the message text when the MSGID parameter on the CONDEF
initialization statement is set to YES.

message
Specifies the character string enclosed within single quotes that is to be
displayed as the informational portion of the message. If the purpose of
this macro instruction is to generate only the message identification, this
operand should be omitted.

SYMB=
Specifies the symbol-name that is to be assigned to the message text portion
of the area generated by the macro instruction. If this operand is specified,
the message operand must be specified. This symbol may be used to modify
variable portions of the message text before executing the corresponding
$WTO macro inst.ruction. It must not be referred to directly by the $WTO
macro instruction; the symbol assigned to the beginning of the area must be
used for this purpose.

JOB=
Specifies whether or not the user, at $WTO macro execution time, has
placed the IS-byte job identification information into the beginning of the
text portion using the symbol as specified by the SYMB operand. The
format of the job identification is as follows:

Byte Content
0-7 Job identification (JOBnnnn. STCnnnn. or TSUnnnn)
8 Blank
9-16 Job name
17 Blank

LC23-0067-3 (~) Copyright I BM Corp. 1982. 1987 Chapter 4. JES2 Programmer Macros 4-135

$MSG

Environment

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Specifications for the JOB operand are as follows:

YES
The user places job information into the message text portion of the
area prior to executing a $WTO macro instruction.

NO (default)
The user does not place job information into the message area but can
require the $WTO macro instruction to extract job information from
the job control table and append the information to the console
message buffer copy of the message during $WTO macro execution
time.

• Main task.
• $WAIT cannot occur.

4-136 JES2 User Modifications and Macros LC23-0067-3 @ Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $NHDGET

$NHDGET - Get the Network Header Section

Format Description

Use $NHDGET to search the network job header, job trailer, or data set header
to locate a specified section of a control block. If the control block section is
located, the address is returned in register I. This address can then be used to
access the control block section if you need to modify that header or trailer
information.

(symbol] $NHDGET

HEADER =

(
addrx 1

HEADER=
(Rl)

[
bit-mask 1

,TYPE= label
(Rn)

r (bit-mask II
rMOD= 7:~)l

[ERRET=(~:~' II
r (labelll
tNOSEC= (Rn)

Specifies the address of the control block within the section indicated by the
TYPE = keyword is to be located.

TYPE=
Specifies an 8-bit mask which indicates the type of section to be located.
Valid types and their corresponding masks are defined in the $NHD macro
(the job header DSECT). TYPE = can be specified as either a register
whose low-order byte contains the address of the type mask, or TYPE = can
be specified as a I-byte label.

MOD=
Specifies an 8-bit mask which indicates the value of the modifier field of the
control block section to be located. The valid bit mask settings are also
located in the $NHD macro.

ERRET=
Specifies a label or register of an error routine which receives control if the
specified header type is invalid.

LC23-0067-3 (~) Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-137

$NHDGE'f

Environment

NOSEC=

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Specifies a label or register of an error routine which receives control if the
specified header type is not found.

Notes:

1. Register 1 contains the address of the control block section if it is located.

2. Registers 0.1, and 15 are used by this macro; do not use them.

• Main task
• $W AIT cannot occur

4-138 JES2 User Modifications and Macros LC23-0067-3 @ Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $PATCHSP

$P A TCHSP - Generate Patch Space

Format Description

Environment

Use $PATCHSP to cause a specified number of bytes of patch space to be
generated. This patch space is divided into halfwords and listed in the assembly
in such a way that both the assembly location (for REP and AMASPZAP patch
statements) and the base displacement (in the form BODO) are printed for each
halfword.

[symbol] $PATCHSP length-number

length
Specifies the length of the patch space in bytes.

DSECT=
Specifies how the specified patch space will be generated.

YES

NO

Indicates that the specified patch space is generated with all binary
zeroes.

Indicates that the specified patch space is generated with halfwords of
S-type ADCONS (that is, S(*)).

Caution: Local addressability is required for this macro instruction to assemble
correctly.

• Main task, subtask, user address space, or functional subsystem
(HASPFSSM).

• MVS WAIT and $W AIT are not applicable:

LC23-0067-3 © Copyright IBM Corp. 1982. 1987 Chapter 4. JES2 Programmer Macros 4-139

$PBLOCK
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$PBLOCK - Block Letter Services

Format Description

Use $PBLOCK to create block letters from the job name in the job control table
(JCT), and from the job type and job number in the processor control element
(PCE).

In a user exit routine associated with the separator page JES2 exit point in the
HASPPRPU module, use $PBLOCK to create block letters from I to 8 characters
as specified in the DATA = parameter.

[symbol] $PBLOCK I addrx I
DATA=

(RO)

I addrx I
, BUFFER=

(Rl)

[. 5LANT-l ::5 Il
[. CENTER~1 ::5 II

DATA =
Specifies a register or name of a field containing the address, in register
format, of the data to be used to create the block letters. The length of the
data must be no greater than 8 characters. If you specify less than 8
characters, this field must include trailing blanks; this macro always ends its
scan for characters after getting 8 characters.

BUFFER =
Specifies a register or name of a field containing the address of a HASP
output buffer. TIus buffer area is the I/o data area; therefore, if $GETBUF
is used to obtain this area, be certain to add FIX = YES to that macro
statement.

SLANT =
Specifies whether or not the block letters should be slanted as follows:

YES
The job name and number are to be slanted.

NO (default)
Everything is to remain unslanted.

4-140 JES2 User Modifications and Macros LC23-0067-3 (0 Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $1PlBlLOCK

Environment

CENTER =
Specifies how the separator page block letters are placed on the page as
follows:

YES (default)

NO

The block letters are to be centered. However, if the field containing
the character string is filled with trailing zeroes rather than blanks, the
block letters will not be centered.

The block letters are to be left-justified.

• Main task.
• $W AIT can occur.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-141

$PCEDYN
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$PCEDYN - Attach or Delete a JES2 PCE

Format Description

This macro provides the interface to those services that perform all generating
(A IT ACHing) and deletion (DETACHing) of JES2 processors (PCEs).

[label] $PCEDYN action

I addrx]
,PCE=

(Rl)

I addrx]
,PCETAB=

(Rl)

I addrx]
,DCT=[(] [,label]

(Rl)
[)]

[Ilabel]]
,ERRET= (Rx)

action
Specifies the type of action requested.

ATTACH
Generate a new PCE(s). These PCEs are dispatched based on the
DISPTCH keyword on the associated $PCET AB entries.

DETACH
Dequeue and delete a PCE(s).

DETACHTEST
Determine if a PCE(s) can be detached at this time.

PCE=
Specifies the address of a PCE. This address can be either a register (1-12)
or the name of a field containing the PCE address. Rl is loaded with the
value.

If Action is: This keyword indicates:

A IT ACH Specifies an existing PCE of a PCE type (PCEID value) for which another
PCE (I) will be generated.

DETACH Specifies a PCE to detach.

DETACHTEST Specifies to test a peE and determine if this PCE can be deleted (that is,
determine if any resources are still outstanding).

4-142 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM SPCEDYN

Environment

PCETAD=
Specifies the address of a PCE table entry for a PCE type. This address can
be either a register (1-12) or the name of a field containing the entry
address.

If ActioD Is: This keyword Iodlcates:

ATIACH Specifies a table eotry ror a PCE type that is not one-to-one with a DCT
type. A PCE or this type is to be generated.

DETACH PCETAB= cannot be specified ror DETACH. $PCEDYN cannot detach
an arbitrary PCE or a PCE type.

DETACHTEST PCETAB= cannot be specified ror DETACH. $PCEDYN cannot detach
an arbitrary PCE or a PCE type.

DCT=
Specifies the address of a device control table (OCT). This address can be
either a register (1-12) or the name of a field containing the DCT address.
Rl is loaded with the value.

Additionally, to indicate a DCT chain field that should be used to attach or
detach PCEs for the DCT chain starting with the DCT specified, use a
second positional parameter. When a DCT chain is to be processed,
$PCEDYN will attach or detach PCEs, connect or disconnect DCTs and
their 'managing' PCEs, or do nothing as indicated by the associated DCT
and PCE table entries (for example, a DCT not owned or managed by a
specific processor).

Notes:

J. If a DCT chain ;s specified, no PCE is attached for DCTs for which
DCTPCE is already nonzero.

2. If any PCE ATTACH fails for a DCT in the chain, the entire DCT chain
is processed as if DETACH had been requested.

ERRET=
Defines an error routine location (label or register) to branch to if R15 is
not zero on return from ATTACH.

Caution: Before using this macro, it may be useful to renew the table structures
Involved, i.e. the PCE table aud the DCT table in HASPT ADS (macros SPCET AD
and SDCTIAB). Also, the mappiug macros for the PCE (SPCE) and nCT (snCT)
pronde further understanding of these control blocks.

• JES2 Main task.
• $WAITs cannot occur.

LC23-0067-3 C Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-143

$PCETAB

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$PCET AB - Generate or Map PCE Table Entries

Format Description

[symbol] $PCETAB

Use $PCET AB to map and generate PCE table entries.

[, NAME=name]

[,DESC=char-string]

[,MACRO=macro-name]

[,DCTTAB=dct-Iabel]

[,MODULE=mod-name]

~ ENTRYPT= [(I field [!::~:MAP 11 [) I 1

[, CHArN= [[I f ield[! ::~: 11 [)] 1
[, COUNTS= [(] field [, CB] [) II

[,PCEID=[(I!value l[)] 1
vall,val2

[, WORKLEN=! ~nn 11

~PCEFLGI=!:lgS-VaIUe 11

[, orIPTCH=! ~g~~ 11

[, GEN=! ~~~~IC 11
STATIC

4-144 JES2 User Modifications and Macros LC23·0067·3 n Copyright IBM Corp. 1982. 1987

"Restricted Materials of mM"

Licensed Materials - Property of IBM

TABLE =

SPCETAB

Specifies the first entry in the HASP or user PCE table. If TABLE = is
specified, all other operands are ignored. TABLE = END specifies the end
of a PCE table; this must be coded at the end of all PCE tables.

HASP
Specifies the first entry in a HASP table.

USER
Specifies the first entry in a user PCE table.

(USER,NOENTRy)

END

NAME =

Specifies that the ENTRY statement normally generated for the user
PCE table is suppressed.

Specifies the end of the defined USER or HASP table.

Specifies a 1- to 8-character name for the PCE type.

DESC=
Specifies a 1- to 24-character description of the PCE type. The word
processor is appended to the end of this description.

MACRO =
Specifies a 1- to 8-character macro name for the macro that maps the PCE
work area for this PCE type. This keyword is for documentation only.

DCTTAB=
Specifies the label provided on the DCT table entry that corresponds to the
DCTs that have a one to one correspondence with the PCE type (if any).

MODULE =
Specifies a 1- to 8-character module name that contains all or most of the
processor's code. This keyword is for documentation only.

ENTRYPT=
Specifies the name of a fullword field containing the processor entry point
address.

field
Specifies a MODMAP field if this is a HASP table or a UCT field if
this is a user table.

(field,MODMAP)
Explicitly specifies a MODMAP field.

(field,UCI')
Explicitly specifies a UCT field.

LC23-0067-3 C Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-145

$PCETAB

CHAIN =

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Specifies the name of a full word field that can be used to point to the first
PCE of this type within the entire PCE chain that is anchored in $PCEORG
in the PCE. The $PCEDYN service maintains this field.

field
Specifies an HCT field.

(field,HCT)
Explicitly specifies an HCT field.

(field,UCT)
Explicitly specifies a VCT field.

COUNTS =
Specifies the name of a full word field that contains two halfword counts for
this PCE type. The first count is the count of defined PCEs, and must be
set during JES2 initialization (prior to invoking Exit 24). The second count
is the count of allocated PCEs; this count is maintained by the $PCEDYN
service.

field
Specifies the name of the field used by this keyword.

field,HCT
Explicitly specifies an HCT field.

field,UCT
Explicitly specifies a VCT field.

PCEID=
Specifies the values for the PCEID field. The second byte of the PCEID in
user table entries should start at 255 and decrease. The two-byte PCEID
must uniquely deline a PCE type.

value
Specilies the PCEID as the 2-byte value deli ned by a DC of
All (O,value).

(vall,vaI2)
Specilies the PCEID as the 2-byte value deli ned by a DC of
All (vall, vaI2).

WORKLEN=
Specilies the length of the PCE work area for this PCE type. This value
defaults to 0, and is typically specilied using an equate in a PCE work area
mapping macro.

PCEFLGS=
Specilies the nags to place in the PCEFLAGS field during initialization.
The nag values are delined with the PCEFLAGS field in the PCE mapping
macro. The default is O.

4-146 J ES2 User Modifications and Macros LC23-0067-3t Copyright IBM Corp. 1982. 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $J?CE'fAB

Environment

DISPfCH=
Specifies the initial dispatching status for PCEs of this type once they are
created.

WARM

!NIT

Specifies that PCEs are dispatched immediately if initialization and
warm-start processing have completed, otherwise, the PCEs are
$WAITed on HOLD. At the end of warm-start processing, aU PCEs
are POSTed for HOLD.

Specifies that PCEs are made ready immediately then dispatched at
the completion of initialization processing (at the same time that warm
start processing begins).

WORK

GEN=

Specifies that PCEs are $W AITed on work until $POSTed by later
processing.

Specifies when this specific PCE type is to be generated by the $PCEDYN
macro.

Specifies that PCEs are to be generated during JES2 initialization
processing (that is, after most initialization, but prior to calling Exit
24).

DYNAMIC
Specifies that PCEs are to be generated by using the $PCEDYN
service after initialization.

STATIC
Specifies that this type PCE should not be generated.

Note: This specification is only used for the HASP initialization PCE.

FSS=
Specifies whether this PCE type is permitted (YES) or not (NO) to run in
functional subsystem (FSS) mode. If FSS = YES is specified, then the larger
of the JES2-mode PCE work area or the FSS-mode work area is used. The
default is NO.

• Main task or during JES2 initialization or termination.

• $W AIT is not applicable -- this macro generates a DSECT or a static table
entry; it does not generate executable code.

LC23-0067-3 C Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-147

$PGSRVC
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$PGSRVC - Perform a Virtual Page Service

Format Description

Use $PGSRVC to page-fix, page-free, or page-release an area of JES2 storage
through a branch entry to the MVS virtual storage manager.

[symbol] $PGSRVC type-code

, (area-addrx I
(Rl)

, (length-addrx I
(RO)

type-code

area

Specifies the type of function to be performed:

FIX
Page-fix a JES2 storage area (uses $PGFIX service routine)

FREE
Page-free a previously fixed JES2 storage area (uses $PGFREE service
routine)

RLSE
Page-release a JES2 storage area (uses $PGRLSE service routine)

Specifies the starting address of the area of storage. If an address is
specified, it must be the address of a word in storage containing the address
of the area. If register notation is used, the area address must have been
loaded into the designated register before the execution of this macro
instruction.

length
Specifies the length, in bytes, of the storage area. If an address is used, it
specifies a word in storage containing the area length. If register notation is
used, the area length must have been loaded into the designated register
before execution of this macro instruction.

4-148 JES2 User Modifications and Macros LC23-0067-3 ~ Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $PGSRVC

Environment

RELEASE =

XA=

Specifies whether the storage is released or not during a fix or free
operation. Use this parameter to prevent unnecessary page-ins and
page-outs.

y

N

Indicates that the storage is released before fixing or freeing. Only
specify YES if you have no need for the current storage contents.

Indicates that the storage is not released before fixing or freeing.

Specifies whether it is permissible (yES) or not (NO) for the storage
requested by this macro instruction to reside above the 16-megabyte line,
that is, in 31-bit addressing mode.

Note: This keyword only has meaning for a JES2 Version 1 system; if it is
specified for a JES2 Version 2 system, it is ignored.

Notes:

1. Paging is done synchronously; that is, on return from $PGSRVC the paging
action is complete, and no other JES2 processor receives control during this
processing.

2. For page-Jree requests, the page is made pageable only when the number of
page-Jree requests specifying the page equals the number of page-fix requests for
the page. If the designated area is not page-fixed, the area is unaffected by the
execution of this macro instruction.

3. For page-release operations, if the area does not encompass one or more
complete pages, the area is unaffected by the execution of this macro
instruction.

4. Register 15 is used to pass control to the specified service routine.

5. Refer to Supervisor for further information concerning virtual page services.

• Main task.
• $W ArT cannot occur.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-149

$POST
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$POST - Post a JES2 Elent Complete

Format Description

Use $POST to indicate that one or more JES2 resources should be posted by
turning off specified inhibitors in the $HASPECF field of the HASP
communications table (HCT). Use $POST also to post a specific PCE that a
JES2 event has occurred; if all inhibitors are reset by the action, the PCE is
requeued to the JES2 dispatcher's $READY queue. Inhibitors turned off in the
$HASPECF field cause requeuing of all PCEs on the resource wait queues by the
dispatcher.

pce

(symbol] $POST I pce-addrx 1
(Rl)
$HASPECF

,event/resource

[· TYPE=I ~!!~T I]

Specifies the specific processor control element (PCE) that is to be posted or
specifies that the $HASPECF field within the HASP communication table
(HCT) is to be posted. If register I is used, register I must refer to a PCE
and must be loaded with the address of the PCE prior to executing the
macro instruction. This is a positional operand and must be specified first.

event/resource
Specifies one or more events/resources that are to be posted. This operand
must be consistent with the allowable events acceptable for the first operand
as follows.

• If PCE was specified, the following JES2 events can be be specified:

Event

null
The specified PCE is made ready for dispatching if it has no wait
flags on (a $W AIT with INHIBIT = NO is issued).

FORCE
The specified PCE is made ready for dispatching regardless of its
wait flags.

4-150 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM SJPOST

HOLD
An operator has entered a $S command.

10
An input/output operation has completed (logically).

OPER
An operator has activated a processor. (There are no posts
(SPOST) with OPER in the distributed system.)

POST
An MVS POST of an ECB has been performed.

WORK
Work is available for the specified processor.

• If $HASPECF was specified, the following JES2 resource can be
specified:

Resource

ABIT
Waiting for the next dispatcher cycle

ALOC
A dynamic allocation has completed

BUF
A JES2 buffer has been released

CKPI'P
A checkpoint cycle has completed

CKPT
A JES2 checkpoint write has completed

CKPTW
A JES2 checkpoint should be written

CMB
A console message buffer has been released

CNVT
A converter has been released

FSS
A functional subsystem has completed FSS-Ievel processing

LC23-0067-3 e Copyright IBM Corp. 1982. 1987 Chapter 4. JES2 Programmer Macros 4-151

$POST

TYPE =

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

HOPE
An output processor has been released

IMAGE
A UCS or FCB image has been loaded

JOE
A JOE has been released

JOT
A JES2 job output element has changed status

JOB
A JES2 job queue element has changed status

LOCK
A lock has been released

MAIN

PSO

Storage is available

A process SYSOUT request has been queued for the JES2 PSO
processor(s)

PURGE
A JES2 job queue element (JQE) has been placed on the purge
queue

PURGS
Purge resources from SPURGER have been released

RSV
A JES2 RESERVE has been satisfied

SMF
AN SMF buffer has been released

TRACK
A track group from the JES2 spooling data set has been released

UNIT
A device control table has been released

Specifies the type of action for a SPOST of a resource. This keyword is
ignored for PCE SPOSTs of events, FORCE, or null.

SET
Indicates that the resource should be POSTed (that is, the resource
flag(s) set on)

4-152 JES2 User Modifications and Macros LC23-0067-3 @ Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $JPOST

EDViromnent

RESET
Indicates that the resource should be unPOSTed (that is, the resource
flag(s) set off)

TEST
Indicates that the resource should be tested to determined if it was
SPOSTed.

MASPOST=
Specifies whether (YES) or not (NO) the resource SPOST is to be
propagated to all members of the multi-access spool complex. This keyword
is only valid for resources within the JES2 main task.

• Main task.
• SWAIT cannot occur.

LC23-0067-3 C Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-153

$POSTQ
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$POSTQ - Quick Post Facility

Format Description

Environment

Use the $POSTQ macro to quick post an ECB (event control block). This macro
produces the necessary inline code to either quick post (that is, bypass the POST
routine) an ECB and/or issue an MVS POST if the specified ECB is currently
waiting on an event.

[symbol) $POSTQ ECB=!labell
(RO)

[! Q II ,CODE=
absexp

[, svc=! ::s II
ECB=

Specifies the address of the ECB to be quick posted. If the ECB is currently
waiting and you also specify SVC = YES on this macro, JES2 then requests
that an MVS POST of the ECB be issued. If this keyword is not specified,
an assembly error will occur.

CODE=
Specifies a 30-bit post code to be quick posted into the ECB. The default is
o.

SVC=
Specifies whether (YES) or not (NO) an MVS POST should be issued if the
ECB is currently waiting (that is, the ECB wait bit is on). If SVC = NO is
specified, no MVS POST is issued and a condition code is returned to the
caller to signify whether the quick post was successful (CC = 0) or
unsuccessful (CC = I). The default is YES.

• JES2 main task, subtask, user address space, and HASPFSSM address space.
• $W ArT cannot occur

4-154 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $PRPUT

$PRPUT - Create Separator Pages

Format Description

Use $PRPUT to create user-defined separator page(s). The created separator
page can replace or add to the standard separator page. The separator page JES2
Exit I is in module HASPPRPU and Exit 23 is in module HASPFSSP.

[symbol] $PRPUT ! addrx 1
DATA=

(Rl)

! addrx 1
,LEN=

(RO)

[!absvalll ,COUNT=
1

~ WAIT=! ::s II
[,CC=m]

[,OPTCD=J]

DATA =
Specifies, a register or name of a field containing the address of the data to
be printed or punched. The address of this data must not be a 31-bit
address. If you do specify a 31-bit address, unpredictable results may occur.
The data pointed to by this register must be a fixed-data field because this
data area is the I/O data area. Therefore, if $GETBUF is used to obtain
this area, be certain to add FIX = YES to that macro statement.

LEN=
Specifies a register or name of the field containing the length of the
fixed-data field, including any carriage control and 3800 table reference
characters (TRC) if present.

COUNT =
Specifies the number of times the data is to be produced. Default is no
repetitions.

WAIT =
Specifies whether or not to wait until I/O has completed as follows:

YES
Wait for I/O completion.

NO (default)
Do not wait for I/O to complete.

LC23-0067 -3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-155

$lP'RPU'f

Environment

CC=m

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Specifies that machine carriage control is desired. If this parameter is
omitted, no carriage control is assumed.

OPTCD=J
Specifies that the 3800 table reference character (TRC) is present in the
data. If this parameter is omitted, 3800 TRC is not assumed to be present.

• Main task.
• $W AIT can occur if WAIT = YES is specified.

4-156 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of 18M"

Licensed Materials - Property of IBM $PURGE

$PURGE - Return Direct-Access Space

Format Description

Environment

Use $PURGE to return the direct-access space that was allocated for a given job
or data set.

[symbol] $PURGE IOT=addrx

lOT =
Specifies the address of the primary allocation lOT from which track group
allocation elements (TGAEs) are to be returned. Secondary allocation
lOTs, if any, are processed by the $PURGER routine in $PURGER in
HASPTRAK. This address is passed in register 1.

• Main task.
• $W AIT can occur.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-157

$QADD
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$QADD - Add Job Queue Element to the JES2 Job Queue

Format Description

Use $QADD to add an element to the JES2 job queue, placing it in the specified
logical queue. The address of the job queue element in which the element image
has been placed is returned in register I if the element is successfully added.

[symbol] $QADD 1 element-addrx)

(Rl)

,1 queUe-value)

(RO)

[,full relexp]

element

queue

full

Specifies the address of an element image which is to be added to the JES2
job queue. If register notation is used, the address must be loaded into the
designated register before the execution of this macro instruction.

Specifies the logical queue in which the job queue element is to be placed.
This value must always be one of the eight logical queue types. If register
notation is used, one of these values must be loaded into the designated
register before the execution of this macro instruction.

The queue type specifications may be ignored if the job queue element has
been flagged for cancellation. The resulting logical queue is as follows:

• JQEIOCAN bit on and JQEIPURG bit off. Any $QADD with a
$XEQ or $XMIT specification is altered to $OUTPUT.

• JQEIOCAN bit off and JQEIPURG bit on. Any $QADD with
JQEJOECT and JQEHLDCT fields 0 is altered to $PURGE. Any
$QADD with a JQEJOECT or JQEHLDCT field nonzero is altered to
$HARDCPY.

Specifies a location to which control is returned if the JES2 job queue is
full. If this operand is omitted, the condition code is set to reflect the status
of the JES2 job queue as follows:

cc=o
The queue is full and the element cannot be accepted.

CC =1=0
The element was successfully added to the queue.

4-158 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Environment

• Main task.
• $W AIT can occur.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987

$Q AD D

Chapter 4. JES2 Programmer Macros 4-159

$QCTGEN
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$QCTGEN - Define a Quick Cell Control Table

Format Description

Use $QCTGEN to define the attributes of a quick cell type in a quick cell control
table (QCT). Note that all the keywords on this macro are required.

[symbol] $QCTGEN NAME=cellnarne

,SIZE=nnn

, NOFFS=nnn

,COFFS=nnn

,INIT=nnn

,EXT=nnn

,SP=nnn

,LIMIT=nnn

NAME=
Specifies (in EBCDIC) the name of the quick cell control table.

SIZE =
Specifies the size (in bytes) of an individual quick cell.

NOFFS=
Specifies the offset of the NAME field in the quick cell.

COFFS=
Specifies the offset of the CHAIN field in the quick cell.

INIT=
Specifies the number (0-32767) of quick cells created in the initial quick cell
pool.

EXT=
Specifies the number (0-32767) of quick cells in a quick cell pool extension.

SP=
Specifies the storage subpool number in which the quick cell pool resides.

LIMIT =
Specifies the maximum number (0-32767) of quick cells to GET/FREE at
anyone time.

4-160 JES2 User Modifications and Macros LC23-0067 -3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Environment

• Functional subsystem (HASPFSSM)
• MVS WAIT and $W AIT not applicable.

$QCTGEN

LC23-0067 -3 © Copyright IBM Corp. 1982, 1987 Chapter 4. J ES2 Programmer Macros 4-161

$QGET
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$QGET - Obtain Job Queue Element from the JES2 Job Queue

Format Description

Use $QGET to obtain a job queue element from the specified logical queue of the
JES2 job queue and return the address of this element in register I.

[symbol] $QGET queue-type

[,T¥PE=class-list-prefix]

[,FOUND=relexp]

[,NONE=relexp]

queue type
Specifies the logical queue from which the job queue element is to be
obtained. This queue type is indicated in the inline parameter list generated
by the macro expansion. Valid queue types and their meanings are:

$DUMMY
Reserved queue.

$FREE
Indicates that the JQE is to be obtained from the JES2 free queue.

$HARDCPY
Indicates that the JQE is to be obtained from the JES2 hardcopy
queue.

$INPUT
Indicates that the JQE is to be obtained from the JES2 input queue.

$INWS
Indicates a QGET call for initiators.

$OJTWS
Indicates that the JQE work selection algorithms are used to select an
eligible job for this transmitter.

4-162 lES2 User Modilications and Macros LC23-0067-3 ~; Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $QGIE'f

$OJTWSC
Indicates that the JQE work selection algorithms are used to select an
eligible job for this transmitter and that the conversion queue ($XEQ)
is scanned for work.

$OUTPUT
Indicates that the JQE is to be obtained from the JES2 output queue.

SPURGE
Indicates that the JQE is to be obtained from the JES2 purge queue.

SRECEIVE
Indicates that the JQE is to be obtained from the JES2 SYSOUT
receive queue.

SSETUP
Indicates that the JQE is to be obtained from the JES2 setup queue.

SXEQ
Indicates that the JQE is to be obtained from the execution queue.

SXEQCLAS
Indicates that the JQE is to be obtained from the JES2 execution class
queue.

SXMIT
Indicates that the JQE is to be obtained from the JES2 transmit
queue.

Note: Although $INWS, $OJTWS, and $OJTWSC are not actual
queue types, they can be used to indicate work selection for offload
job transmitters or a call for initiators.

TYPE =
Specifies the prefix of the class list used if the queue type is SINWS,
$OJTWS, or $OJTWSC. The value specified must be a valid control block
DSECT name, for example, DCT or PIT. This value is also used to
determine the offset of the class list field. If TYPE = is not specified, the
class list defaults to DCTCLASS for offload job transmitters and
PITCLASS for initiators.

FOUND =
Specifies a label or address in a register to which JES2 branches if a
selectable JQE is found.

NONE =

CB=

Specifies a label or address in a register to which JES2 branches if no
selectable JQE is found.

Specifies the address of a control block which is to be used for work
selection or an initiator call. This keyword is only valid if either the queue
type is specified as $INWS, $OJTWS or $OJTWSC.

LC23-0067-3 @ Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-163

$QGET

Environment

MF=

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Specifies the required form of this macro.

Indicates the list form of the macro.

EX
Indicates the executable form of the macro.

NODETBL=
Specifies the location of the MOCTNOOS field in the job transmitter's line
device control table (OCT). If the queue type specification is not $XMIT,
this keyword should not be used. If register notation is used, the address
must have been loaded into the designated register before execution of this
macro instruction.

• Main task.
• $W AIT can occur.

4-164 JES2 User Modifications and Macros LC23-0067-3 [; Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $QJIX

$QJIX - Add a Job Queue Element (JQE) to the Job Index Table (JIX)

Format Description

Environment

Use $QJIX to get a job number for a specified JQE and to add that JQE to the
job index table (JIX).

[symbol] $QJIX I addrx l
JQE=

(Rl)

JQE=
Specifies the address of the JQE to be added to the JIX. If you use register
notation, this address must be loaded into the specified register prior to the
execution of this macro instruction.

• Main task.
• $W AIT can occur.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-165

$QLOC
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$QLOC - Locate Job Queue Element for Specific Job

Format Description

Environment

Use $QLOC to locate the job queue element associated with the job specified by a
job number and return the address of this element in register 1.

[symbol] $QLOC I jObnO-adval)

(Rl)

jobno

none

[, none-re lexp]

Specifies the binary job number associated with the job for which the job
queue element is being searched. If an address is used, it specifies the
address of a halfword that contains the binary job number. This halfword
must be located on a halfword boundary. If register notation is used, the
binary job number must be loaded into the designated register before the
execution of this macro instruction.

Specifies a location to which control is returned if the specified job number
is not locatable in the JES2 job queue.

If this operand is omitted, the condition code is set to reflect the status of
register 1 as follows:

cc=o
The specified job is not locatable.

CC=l=O
The specified job is locatable, and RI contains the address of the
associated job queue element.

• Main task.
• $W AIT can occur.

4-166 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $QMOD

$QMOD - Modify Job Queue Element in thc JES2 Job Qucue

Format Description

Use $QMOD to remove a modified job queue element from the JES2 job queue
and place it back on the queue in the specified logical queue in accordance with
the priority of the job queue element.

[symbol] $QMOD [
element-addrx l
(Rl)

[
queue-value l
(RO)

[,ALONE]

element

queue

Specifies the address of an element that has been modified and is to be
requeued in the JES2 job queue. If register 1 is used, the address must be
loaded into register 1 before execution of this macro instruction.

Specifies the logical queue in which the job queue element is to be placed.
This value must always be one of the eight logical queue types. If register 0
is used, one of these values must be loaded into register 0 before the
execution of this macro instruction.

The queue type operands may be ignored if the job queue element has been
flagged for cancellation. The resulting logical queue is as follows:

• JQEIOCAN bit on and JQEIPURG bit off. Any $QMOD with a
$XEQ specification is altered to $OUTPUT.

• JQEIOCAN bit off and JQElPURG bit on. Any $QMOD with a
JQEJOECT and JQEHLDCT field 0 is altered to $PURGE. Any
$QMOD with a JQEJOECT or JQEHLDCT field nonzero is altered to
$HARDCPY.

Caution: If the processor issuing the $QMOD does not have exclusive
ownership of the JQE via $QSUSE, the results of the $QMOD macro
instruction are unpredictable. One way to guarantee exclusive ownership is to
obtain the JQE via a $QGET or $QADD macro instruction or with the
$GETLOK macro instruction.

LC23-0067-30Copyright IBM Corp. 1982.1987 Chapter 4. J ES2 Programmer Macros 4-167

$QMOD

Environment

ALONE

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Indicates that the busy flags associated with the moved element are to
remain unchanged. If ALONE is not specified, the busy flags associated
with the moved element are turned off.

Once the queues have been obtained, all modifications must be made to the
JES2 job queues before a $W AIT macro can be issued. Issuing a $WAIT
macro implies that the processor no longer requires the queues.

• Main task.
• $W AIT can occur.

4-168 JES2 User Modifications and Macros LC23-0067-3 (g Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $QPUT

$QPUT - Return Job Queue Element to the JES2 Job Queue

Format Description

Environment

Use $QPUT to return a job queue element to the JES2 job queue, placing it in the
specified logical queue.

[symbol] $QPUT 1 element-addrx

(Rl)

1
queue-value I
(RO)

element

queue

Specifies the address of an element which is to be returned to the JES2 job
queue. If register 1 is used, the address must be loaded into register I
before the execution of this macro instruction.

Specifies the logical queue in which the job queue element is to be placed.
This value must always be one of the eight logical queue types. If register 0
is used, one of these values must be loaded into register 0 before the
execution of this macro instruction. If $XEQ is specified and the execution
node is not equal to the local node, the queue type is altered to $XMIT.

The queue type specifications may be ignored if the job queue element has
been flagged for cancellation. The resulting logical queue is as follows:

• JQEIOCAN bit on and JQEIPURG bit off. Any $QPUT with a $XEQ
or $XMIT specification is altered to $OUTPUT.

• JQEIOCAN bit off and JQEIPURG bit on. Any $QPUT with a
JQEJOECT and JQEHLDCT fields 0 is altered to $PURGE. Any
$QPUT with a JQEJOECT or JQEHLDCT field nonzero is altered to
$HARDCPY.

Caution: The specified job queue element must be previously obtained with a
$QGET or $QADD macro instruction or the action of the $QPUT macro
instruction is unpredictable.

• Main task.
• $W AIT can occur.

LC23-0067 -3 © Copyright I BM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-169

$QREM
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$QREM - Remove Job Queue Element from the JES2 Job Queue

Format Description

Environment

Use $QREM to remove a specified job queue element from the JES2 job queue.

[symbol] $QREM

clement

1 element-addrx)

(Rl)

Specifies the address of an element that is to be removed from the JES2 job
queue. If register notation is used, the address must be loaded into the
designated register before the execution of this macro instruction.

Caution: The specified job queue clement must have been previously obtained with a
$QGET or $QADD macro instruction or the action of the $QREM macro
instruction is unpredictable.

• Main task.
• $W AIT can occur.

4-170 JES2 User Modifications and Macros LC23-0067-3'~' Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $QSUSE

$QSUSE - Synchronize to Use Shared Queues

Format Description

Environment

Any JES2 processor that begins an access to any information in the checkpoint
records (which are shared if the system is a multi-access spool environment) must
execute the $QSUSE macro instruction prior to such access in order to update
checkpoint records.

The contents of the checkpoint records include: shared queue control elements
(QSEs), checkpointed RCT variables (beginning at $SAVEBEG, including job
queue headers), remote message spooling queues, remote sign-on table, master
track group map, job queue, and job output table (JOT).

[symbol] $QSUSE

TYPE =
Execution of the macro tests the $QSONDA bit and $CKPT ACT bit in the
$ST ATUS field of the RCT. Updating any checkpointed information is
permitted only if both bits are o.

If TYPE = WAIT is coded or defaulted, the calling processor waits ($WAIT
CKPT) access to update the checkpoint records is permitted. The
checkpoint processor is activated, if necessary, and it later posts ($POST) all
other processors forced to wait ($W AIT CKPT).

If TYPE = TEST is coded, an immediate return to the caller occurs, with a
zero condition code if updating is permitted.

The permission to update is granted by execution of this macro expires as
soon as the processor executes any $W AIT macro instruction, actual or
imbedded in another macro.

• Main task.
• $W AIT can occur if TYPE = WAIT is specified.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. J ES2 Programmer Macros 4-171

$QUESMFB
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$QUESMFB - Queue a JES2 SMF Buffer on the Busy Queue

Format Description

Environment

Use $QUESMFB to place a JES2 SMF buffer address on the busy queue
($SMFBUSY) and MVS post (POST) the HASPACCT subtask.

[symbol] $QUESMFB 1 buffer-addr 1
(Rl)

buffer-addr
Specifies the address of the buffer to be queued. If register notation is used,
the buffer address must be loaded into the designated register prior to the
execution of this macro instruction.

Caution: The JES2 SMF services should not be used if the BUFNUM parameter
on the SMFDEF initialization statement is set to less than 2.

• Main task.
• $WAIT cannot occur.

4-172 JES2 User Modifications and Macros LC23·0067 -3 © Copyright I BM Corp. 1982, 1987

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

$RELEASE - Release the Checkpoint Reserve

$RELEASE

Use $RELEASE to release a checkpoint via MVS RELEASE services.

Format Description

[symbol] $RELEASE

The shared checkpoint value is released.

Environment

• Main task.
• $W AIT can occur.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-173

$RESERVE
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$RESERVE - Request Checkpoint Reserve

Format Description

Environment

Use $RESERVE to reserve a checkpoint via MVS RESERVE services.

[symbol] $RESERVE

WAIT =

Specifies the action to be taken in the event that the checkpoint was not
RESERVED.

YES

NO

Control is not to be returned to the caller until the checkpoint is
reserved.

Control is to be returned immediately with a return code of 4 in
register 15.

• Main task.
• $W AIT can occur.

4-174 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $RESTORE

$RESTORE - Restore Registers from the Current Processor Save Area

Format Description

Environment

Use $RESTORE to restore one or morc registers from the current processor's
current save area (that is, from the save area built by the most recently issued
$SA VE macro instruction).

list

[symbol] $RESTORE list

Specifies a list of one or more registers, and/or groups of registers to be
restored. If more than one register is being restored, the entire list must be
enclosed in parentheses.

A register group is indicated by a pair of registers enclosed in parentheses.
All registers, beginning with the first register specified and ending with the
second register, are restored. The order of restoring a group of registers is:
R14, R15, RO-R12. If the list consists of a single group, the outer (list)
parentheses are not required.

Note: All registers must be specified symbolically. The accepted register
symbols are: RO, Rl, R2, ... , R15.

Examples:

Restore register 2
$RESTORE (R2) or
$RESTORE R2

Restore registers 15 through 8
$RESTORE ((R15,R8) or
$RESTORE (R15,R8)

Restore register 3 and register 10
$RESTORE ((R3),(R10» or
$RESTORE ((R3),R10) or
$RESTORE (R3,(R10»)

Restore registers 0, 3 through 5, and 8
$RESTORE (R8,RO,(R3,R5)

Note: The sublist order is unimportant.

• Main task.
• $W AIT cannot occur.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-175

$RETBLK
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$RETBLK - Return a Storage Cell to a Free Cell Pool

Format Description

Environment

Use $RETBLK to return a number of predefined storage cells to one of several
previously established free cell pools.

[symbol] $RETBLK

TYPE =

TYPE=

SAVE
JIB
BUF

RPL
GTRC
SSOB

[I addrx II ,ADDR=
(Rl)

Specifies the type of storage cell to be returned to the free cell pool.
Specifications are as follows:

Specification

SAVE
JIB
BUF
RPL
GTRC
SSOB

ADDR=

Meaning

An MVS-lype save area
A JOE information block
A 4K I/O buffer
A request parameter list control block chain
A GETREC chain control block
A subsystem options block

Specifies the address of the first cell to be returned. If register I is used, it
must contain the address of the first cell to be returned prior to executing
this macro.

• Functional subsystem (HASPFSSM)
• MVS WAIT cannot occur

4-176 JES2 User Modifications and Macros LC23-0067-3 '9 Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $RETSAVE

$RETSA VE - Return a JES2 Save Area

Format Description

Environment

Use $RETSA VE to return the current JES2 save area to the JES2 free pool of
save areas.

[symbol] $RETSAVE

Note: Only registers 14, 15,0, 1,2 are saved across this macro call. (The
RET SA VA routine performs the register saving.)

• Main task.
• $W AIT cannot occur.

LC23-0067-3 It, Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-177

$RETURN

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$RETURN - Restore Registers, Free the JES2 Saye Area, and Return to the Caller

Format Description

Use $RETURN to restore the caller's registers saved in the current processor save
area and return that save area to the save area pool.

Note: If this macro is coded within a functional subsystem environment,
$RETURN generates inline code to place the save area pointed to by register 13
onto the unused save area stack. All necessary code for standard linkage
conventions is also generated.

[symbol] $RETURN

RC=
Specifies a numeric return code to be returned in register 15. If this operand
is not specified, the return code is set to O.

If register 15 is used, the return code value must be loaded into register 15
prior to the execution of this macro instruction.

Note: The condition code is preserved across the execution of this macro
instruction.

TRACE =YES
Specifies that $RETURN is traced via the JES2 event trace facility. The
PCE address and the returned registers. 14, 15,0, and 1, are traced
(TRACE ID = 2). and an 8-character symbol designating where the
$RETURN macro was issued is also traced.

TRACE = NO (default)
Indicates that the $RETURN macro is not traced. This is the default when
the TRACE parameter is not specified.

FSACB=
Used to determine whether processor tracing is on. The use of this keyword
is only valid in the functional subsystem environment. If an FSACB
specification is not provided, only global $RETURN tracing is done.

4-178 JES2 User Modifications and Macros LC23-0067 -3 [, Copyright IBM Corp, 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $REl'URN

Environment

PARM=
Specifies whether (yES) or not (NO) $RETURN processing should skip
over an inline parameter list when control is returned to the calling module
from the current save area. Return is through register 14.

Note: The first byte of the parameter list must contain the length of the
parameter list. (The length must also include this first byte.)

Notes:

1. You must have the address of the HCT in register 11 prior to executing this
macro.

2. If this macro is issued when a PRE ($ESTAE) currently exists for the save
area level about to be returned, the $EST AE is cancelled.

3. The use of the $RETURN macro assumes that register 11 contains either the
address of the HASP communication table (HCT) for the JES2 main task
environment or the HASP function communication table (HFCT) for a
functional subsystem module.

• Main task or functional subsystem (HASPFSSM).
• $W AIT cannot occur.

LC23-OO67-3 C Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-179

$RETWORK
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$RETWORK - Return a Work Area

Format Description

Environment

Use $RETWORK to return a work area obtained with the $GETWORK macro
instruction.

[symbol]

location

$RETWORK !location-addrx]

(Rl)

Specifies the address of the work area to be returned. (This address is
loaded into register 1.)

The work area to be returned must have been obtained via a previous
$GETWORK macro instruction.

• Main task.
• $W AIT cannot occur.

4-180 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $SAVE

$SAVE - Obtain JES2 Save Area and Save Registers

Format Description

The $SA VE macro instruction obtains a register save area from a JES2-managed
save area pool and saves registers 14, 15, and 0 through 12 in the save area. No
registers are destroyed by executing this macro. If this macro is coded within a
functional subsystem environment, $SA VE will save the registers in the save area
pointed to by register 13. All necessary code for standard linkage conventions is
also generated. For information on linkage conventions, see Chapter 2, "Linkage
Conventions. "

[symbolJ $SAVE

[,NAME=symbolJ

TRACE =
Specifies whether or not the $SA VE macro is traced as follows:

YES
Specifies the PCE address; the contents of registers 14, 15, 0 and 1;
and an 8-character symbol designating where the $SAVE macro
instruction was issued and traced.

NO (default)
Indicates that the $SA VE macro instruction is not traced. This is the
default when the TRACE parameter is not specified.

NAME =symbol
Specifies the name associated with this $SA VE macro for tracing and
diagnostic purposes. If NAME is not specified, the label (symbol) on the
$SA VE macro is used for identification. If neither NAME or symbol is
specified, the current CSECT name is used.

REGS=
Specifies whether a starting store mUltiple instruction (STM) and ending
load mUltiple instruction (LM) are used. This specification is only valid in
the functional subsystem environment.

LC23-0067-3 (~j Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-181

$SAVE

Environment

FSACB=

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Used to determine whether processor tracing is on. The use of this keyword
is only valid in the functional subsystem environment. If an FSACB
specification is not provided, only global $RETURN tracing is done.

Note: The use of the $SA VE macro assumes register 11 contains either the
address of the HASP communication table (HCT) for the JES2 main task
environment or the HASP function communication table (HFCT) for a
functional subsystem environment.

Caution: The TRACE = YES parameter is provided so that normal JES2 operations
are traced via the JES2 trace facility. Most JES2 central services specify
TRACE = YES on their respective $SA VE macros. An individual routines issuing
the $SA VE macro should not specify TRACE = YES if the routine is called an
excessive number of times, unless the routine is considered an integral part of the
normal JES210gic tlow. If a routine is traced on an infrequent basis, a trace ID
can be assigned to that function so it can be traced independently.

Also, you must have stored in register 11 the address of the HCT (or the HFCT if
running in an FSS environment) prior to executing this macro.

• Main task or Functional subsystem (HASPFSSM)
• $W AIT cannot occur.

4-182 JES2 User Modifications and Macros LC23-0067-3 CI Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $SCAN

$SCAN - Scan Initialization Parameters

Format Description

Use $SCAN to scan parameter statements, placing specified values in associated
control blocks or displaying values associated with specified keywords.

[symbol] $SCAN I SET 1 SCAN=[(] SETDISP [,SINGLE] [)]

SCAN=

DISPLAY

I table-addrxl
,TABLES=

(Rn)

[I caller-value I]
,CALLER=

(Rn)

I parrn-addrx 1
,PARM=

(Rn)

I length-value 1
,PARMLEN=

(Rn)

I outarea-addrx 1
,DISPOUT=

(Rn)

I out len-value 1
,DISPLEN=

(Rn)

I rtn-relexp 1
,DISPRTN=

(Rn)

[I addrx I]
,CBADDR= (Rn)

Specifies either a scan of a parameter statement specifying values to be
scanned and placed in control blocks, or a scan of a parameter statement
requesting display of the values associated with specified keywords.

SET
indicates to scan a parameter statement specifying values to be
scanned and placed in control blocks. The DISPOUT =.
DISPLEN =, and DISPRTN = keywords are not required if
SCAN = SET is also specified.

LC23-0067 -3 l~') Copyright I BM Corp. 1982, 1987 Chapter 4. J ES2 Programmer Macros 4-183

$SCAN
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

SETDISP
Indicates that a SET operation is to be completed immediately
followed by a DISPLAY operation. The display shows the results of
the SET. This is all performed within a single cali to $SCAN.

DISPLAY
indicates to scan a parameter statement speCifying keywords, the
associated values for which should be displayed.

SINGLE

TABLES =

indicates to limit the scan to a single parameter keyword (and any
subscanning required for that keyword).

Specifies the address of a two-word area containing the addresses of two
scan tables (generated via the $SCANTAB macro). These scan tables are
used in scanning parameter statements. One or the other, but not both, of
these table addresses may be zero. If register notation is used, the register
must contain the address of the two-word area prior to executing $SCAN.
This operand is required.

CALLER =
Specifies a caller id for use during the scan. The id can be a value from 1 to
255. JES2 ids are assigned using I and ascending values, and ids should be
assigned for installation uses of $SCAN, if required, using 255 and
descending values. When CALLER is specified, only the scan table
($ SCANT AB) entries having this caller id specified for their CALLER =
keyword and those entries not specifying CALLER = are the entries that
are used in the scan. If this operand is not specified, then all entries in the
$SCANT AB tables are used when processing the request.

PARM=
Specifies the address of the parameter statement that is to be scanned. If
register notation is used, the register must contain the address of the
parameter prior to executing $SCAN. This operand is required.

PARMLEN=
Specifies the length (that is, the length plus I) of the parameter statement
specified for the PARM = operand. If register notation is used, the register
must contain the parameter length value prior to executing the macro. This
operand is required.

DISPOUT=
Specifies the address of the output area where the display lines are placed
for the routine specified by DISPRTN =. This operand is required.

DISPLEN=
Specifies the length of the output area specified for the DISPOUT =
operand. This operand is required.

4-184 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $SCAN

Retnrn Codes

Environment

•

DISPRTN=
Specifies the address of the routine to be invoked to display the scan results.
The routine is passed the address of the current scan work area, which
contains aU pertinent information, in register 1. This routine receives
control to issue diagnostic error messages. This operand is required.

CBADDR=

o

4

8

12

Specifies the oldest parent control block. If CBADDR = is specified,
SSCAN does not search for a control block for this level of scanning.
However, SSCAN does perform whatever scanning or indexing that is
requested by SSCANT AB using this specified control block.

Indicates the SSCAN request executed successfully.

Indicates the scan found an obsolete keyword (as indicated by a
SSCANTAB entry specifying OBS=YES).

Indicates the scan found an keyword not supported in the tables, or not
supported for this caller id.

Indicates the scan encountered scanning errors (invalid syntax, etc.) that
could not be resolved.

• Main task and during JES2 initialization.

• SW AIT cannot occur during JES2 initialization but can occur during
command processing .

LC23-OO67-3 C Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-185

$SCANB
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$SCAN B - Backup Storage for a Scan

Format Description

Use $SCANB to backup a copy of a storage area before it is possibly changed
during execution of the $SCAN facility. $SCANB may be used only within a
pre-scan or post-scan exit routine specified via the PRESCAN and PSTSCAN
operands of the $SCANT AB macro.

The $SCAN facility uses $SCANB to backup all control block fields before they
are changed. If, at any time during the scan, an error is found, $SCAN uses the
backups created by $SCANB to restore all the changed fields to their contents
prior to the start of the scan. If a $SCAN pre-scan or post-scan exit routine
changes a storage area, it should first backup that area using the $SCANB macro.

[symbol] $SCANB (
addrx l

SCWA=
(Rl)

(
addrx l

,ADDR=
(RO)

(
label l

,LENGTH=
(Rn)

[(
BACKUP l] ,TYPE= DISPLAY
ERROR

SCWA=
Specifies the address of the current scan work area, mapped by the
$SCANW A macro.

ADDR=
Specifies the address of the storage area to backup before the scan possibly
changes it.

LENGTH =
Specifies the length (in bytes) of the storage area indicated by the ADDR
operand. If register notation is used, only registers 2 through 12 are valid.

4-186 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $SCANB

Environment

TYPE =
Specifies that an area of storage is to be used following a SET and
DISPLAY $SCAN request or if an error occurs within a $SCAN call.

DISPLAY
Indicates to save an area of storage to use to display the results of a
SCAN = SET request. The value that is set is passed to $SCAN and
used as input for a SCAN = DISPLAY request, for example:

$SCANB SCAN=DISPLAY,ADDR=addrx,LENGTH=

This value must, therefore, also be scannable by $SCAN.

ERROR
Indicates to save an area of storage to use if an error is encountered
during a $SCAN call. $SCAN then returns this· keyword value to
point to the location of the error.

BACKUP
Indicates to produce a backup copy of the storage area before it is
possibly changed during the execution of $SCAN.

• Not applicable.

LC23-0067-3 Q Copyright IBM Corp. 1982. 1987 Chapter 4. JES2 Programmer Macros 4-187

$SCANCOl\;1

"Restricted Materials of 18M"

Licensed Materials - Property of IBM

$SCANCOM - Call the $SCAN Facility Comment Service Routine

Format Description

Environment

Use the $SCANCOM macro to search for and locate the first non-blank,
non-comment character in a specified text string. This facility allows the $SCAN
facility to ignore (skip over) comment text provided in both initialization
statements and commands. A return code is passed in register 15. JES2 returns
the address of the non blank. non-comment character in register 1.

[symbol] $SCANCOM TEXTBEG=jlabelj
(Rl)

j
labelj

,TEXTEND=
(RO)

TEXTBEG=
Specifies the address of the beginning of the text that is to be scanned by the
$SCAN facility.

TEXTEND=
Specifies the address of the end of the text that is to be scanned by the
$SCAN facility.

Return Code Meaning

o Non-blank and no comments found

4 Valid comment, non-blank found

8 End of statement encountered. no non-blanks. or non-comment characters found

12 No asterisk-slash (*!), the comment ending delimiter. found and an invalid comment
encountered

• JES2 main task
• $W AIT cannot occur

4-188 JES2 User Modifications and Macros LC23-0067-3 rD Copyright IBM Corp. 1982. 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM
$SCAND

$SCAN D - Call the $SCAN Facility Display Service Routine

Format Description

Use the $SCANO macro instruction to call the display service exit routines called
by $SCAN to add text to a display line being created for the SCAN = OrSPLA Y
request. This macro instruction can only be called from a $SCAN exit routine or
$SCAN itself.

[symbol] $SCAND ! addrx 1
SCWA=

(Rl)

! I text I 1
,TEXT=

(RO)

! label 1
,LENGTH=

(Rn)

[,BRKOPT"! ::s I]
['DEBLANK"! ::s I.

SCWA=
Specifies the address of the current scan work area. This can either be
provided as the actual address, a label, or a register (RI-RI2).

TEXT =
Specifies the text (specifies in single quotes) to be added to the display line
or the address of that text as specified in a register (R2-RI2).

LENGTH =

Specifies the length of the text to be added. This can either be a label or a
register (R2-RI2). If the actual text is provided on the TEXT = keyword.
the length specification on this keyword defaults to the length of that text.

BRKOPT
Specifics that the text specified by the TEXT = keyword will be separated
(YES) or not (NO) from the text already passed.

DEBLANK
Specifies whether (YES) or not (NO) the blanks and X'OO's are to be
removed from the front and end of the text.

LC23-0067-3 © Copyright IBM Corp. 1982. 1987 Chapter 4. JES2 Programmer Macros 4-189

$SCAND

Enviromnent

• mS2 main task
• $WAIT cannot occur

4-190 JES2 User Modifications and Macros

"Restrieted Materials of IBM"

Licensed Materials - Property of IBM

LC23-OO67-3 C Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$SCANT AB - Scan Table

$SCANTAB

Use $SCANT AB to create scan tables to be used in conjunction with the $SCAN
facility, defining the allowed input and syntax for initialization parameter
statements and some operator commands. JES2 uses $SCANT AB to define the
initialization parameter statements. initialization options, and selected operator
commands.

$SCANT AB entries are used to define the start of a user table ($SCANT AB
TABLE = USER ...) or JES2 table ($SCANT AB TABLE = HASP ...) and the end
of a table ($SCANT AB TABLE = END). Each entry defines:

• a keyword allowed in the stalement input

• how to find the correct control block and field(s) related to the keyword

• what the allowed input can be

• how to convert the input for storing into the field(s) or convert the contents
of the fields for display Because $SCANTAB generates only tables, not
executable code, register notation may not be used for any of the operands.

By default. the $SCANTAB macro does not expand the table entry in the
assembly listing. If you require this information use either of the following
methods:

• Assemble your module with:

$MODULE SYSP=(PRINT,GEN,DATA,NOGEN,NOGEN)

• Set the SYSPARM keyword on the EXEC statement as:

EXEC IEV90,PARM='SYSPARM=(PRINT",,)'

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-191

$SCANTAB

Format Description

[symbol) $SCANTAB

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

[I [() HASP [, NOENTRY) [») II
TABLE= ~~bUSER[,NOENTRY] [)]

,NAME=char-name

NUM
HEX
CHARxxxx

,CONV= FLAG
SUBS CAN
VECTOR
ALIAS

,CB=

HCT
PCE
DCT

UCT
(TEMP,size)
PARENT

,CBIND=(fieldnamel,dsectl,instructionl,
fieldname2, ...)

[)]

I ,HCT 1 low-val,high-val
,UCT

, SUBSCRP= [()

I' HCT 1 low,high,length
,UCT

,FIELD=[(]fieldname[,length) f»)

, DSECT=dsect-name

,RANGE=(vl,v2)

,VALUE=(vl,flvl,f2vl,v2,flv2,f2v2, ...)

,CALLERS=(vl,v2, ...)

,PRESCAN=routine-name

,PSTSCAN=routine-name

I,MCT 1 ,SCANTAB=[(]table-name --- f»)
,UCT

,VCOUNT=[()nnn[,IGNORE] f)]

[,OBS~ I::s II

'-------

,MINLEN=lkevword-len 1
min-keyword-len

,MSGID=nnn

4-192 JES2 User Modifications and Macros LC23-0067-3 ~'Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

TABLE =

$SCAN'fAB

Specifies the start or end of a scan table.

Specify TABLE = HASP or TABLE = USER to start the corresponding
table, and optionally a second parameter of NOENTRY (e.g.
TABLE=(USER,NOENTRy») to indicate no ENTRY statement need be
generated for the label of the scan table.

Specify TABLE = END to terminate a scan table.

Other operands are ignored if TABLE is specified, and a label is required on
the $SCANTAB macro if a table is being started. If TABLE = and
NAME = are both not specified, only the mapping of an $SCANT AB entry
is generated by the macro.

NAME =
Specifies a 1- to 8-character name for the scan table entry that indicates the
scan keyword being defined (for example, PRINTER, CONSOLE, or
JOENUM parameter on the OUTDEF statement). If TABLE = and
NAME= are both not specified, only the mapping of an $SCANTAB entry
is generated by the macro.

CONV=
Specifies the conversion to be done (and defines the valid input) when the
keyword defined by NAME = is encountered during a scan. CONV = is
required if $SCANTAB is used to generate a table entry. The following
specifications are valid:

NUM

HEX

indicates the keyword represents a numeric value that is stored in
binary. An optional second and third positional (e.g.
CONV = (NUM,8, 1 00)) define a multiple to round the input value to
before storing and a value by which the value of the keyword is
multiplied before storing.

indicates the keyword represents a hexadecimal value that is stored in
binary. The optional second and third positional operands are as for
CONV=NUM.

CHARxxxx
indicates the keyword represents a character value and defines the
allowed character input. If the first positional for CONY = is CHAR,
any characters not required for syntax within $SCAN (i.e., all except
commas, parentheses, dashes, and equal signs) are valid for the value
unless a specific list of characters is provided as described below. If
the first positional is CHARxxxx, for a 1- to 4-character string xxxx,
the input must fall within the character sets defined by the xxxx or be
one of the specific list of characters that may be optionally provided
as described below. Within the xxxx specification 'A' indicates the
alphabetic character set A-Z, 'N' indicates numerics 0-9, and'S'
indicates the special nationals $ @ and #. Additionally, an 'F'
indicates the first character of input must be alphabetic or a 'J'

LC23-0067-3 ~ Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-193

$SCANTAB

CB=

"Restricted Materials of mM"
Licensed Materials - Property of mM

indicates the first character of input must be alphabetic or special
national (JCL rules), even though the remaining input may have less
strict input rules.

A specific list of allowed characters may be specified as the second,
third, and etc. positional operands for CONV. They may be specified
as single characters, or a 2-character hex values.

FLAG
indicates the keyword represents a flag value that is stored as the
setting of one or more bits within a single flag byte. The allowed
values and associated bit settings are defined by VALUE = .

ALIAS
indicates the keyword is the alias of anothel; keyword and
SCANT AB = specifies the label of the scan table entry mapping that
other keyword.

VECfOR
specifies the keyword represents a vector of values. Another 'level' of
scan is used to process the vector of values which is specified within
parentheses. Therefore each value is dermed, positionally, by another
scan table pointed to by SCANTAB=.

SUBSCAN
specifies the keyword requires another level of scanning to scan
suboperands. Unlike the CONV = VECTOR subscanning, a
completely recursive level of scanning is done, allowing suboperands
of any of the CONV types specified above, not just a vector of values.
SCANTAB = specifies the address of a doubleword containing the
addresses of two scan tables to pass to the recursive $SCAN call.

Specifies one of the 'primitive' control blocks known by $SCAN as the
control block containing the fields representing the value of the keyword, or
as the starting point for a control block search for that field. If a control
block is not found for a keyword during a scan, and a PRESCAN routine
for the keyword does not then suppiy the control block address, $SCAN
issues a $ERROR. CB = is required if CONV = is not specified as
SUBSCAN, VECTOR, or ALIAS unless PRESCAN = is specified.

HCT

peE

DCT

indicates the JES2 HCT control block.

indicates the current processor control element (PCE) at the time of
the scan.

indicates a JES2 device control table (DCT), found by scanning all the
nCTs for one whose DCTDEVN field corresponds to the NAME =
specified and the device number found during the scan.

4-194 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

UCT

$SCANTAB

indicates the installation-defined user control table (UCT), which is
pointed to by the $UCT field of the HCT.

TEMP
indicates a temporary control block should be allocated with a length
defined by the second positional operand.

size
Indicates the length (in bytes) of the control block

PARENT

CBIND=

indicates the control block determined at the scan level 'above' this
scan level should be used, i.e., when a control block is found for a
CONY = SUBSCAN or CONV = VECTOR keyword, that control
block is the parent control block for the resulting subscanning.

Specifies how to find the control block required for this keyword, if the
primitive control block is not it. The search starts from the primitive
control block address, and performs a series of operations of fields within
each control block along the way. The fields used are defined by the first
and second operands and the operation is defined by the third operand in
each of a set of operand triplets defined to CBIND =. CBIND must be
specified as a list consisting of a mUltiple of these three operands. That is,
operand I defines a field name, operand 2 defines a dsect name for that
field, and operand 3 defines the operation to be performed, with the current
control block address, against the field.

The allowed operations are L (load), LA (load address), A (add), AH (add
halfword), AL (add logical), S (subtract), SH (subtract halfword), and SL
(subtract logical). If the operation specified is preceded by an asterisk (e.g.
*LA), then any subscript indexing for the control block search is done
before this CBIND operation, rather than after all CBIND operations.
Subscript indexing is defined by the SUBSCRP = operand.

SUBSCRP=
Specifies an allowable subscript range for the input specifying this keyword.
If SUBSCRP is specified, the allowable input forms for $SCAN are
'keyword(subscript)' and 'keywordsubscript'. SUBSCRP is specified as a list
of 2, 3 or 4 values, with the first being the lowest allowed subscript value
and the second being the highest allowed value. The first and second
operands must be numeric values with one exception; single character
alphanumeric subscripts can be used, with 'A' corresponding to value X'CI',
'4' to value X'F4', etc.

The optional third value specifies an index value optionally used during the
search for the control block for this keyword. After (by default) or during
the CBIND processing in that search, the subscript value is used to index
into the current control block to find the correct sub-block for the keyword.
The lowest subscript is assumed to correspond to the Oth sub-block and the
length of each sub-block is defined by the third positional value of
SUBSCRP.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-195

$SCANTAB
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

The optional fourth value specifies that the "high" and "low" values are to
be used as offset values into the HASP (HCT) or USER (UCT) control
tables.

FIELD =
Specifies the name and length of the field associated with the keyword value
in the specified control block. The field must be within the DSECT
specified by DSECT=. or must be an absolute offset if DSECT=O is
specified. The length is defined by the second positional parameter, and
defaults to the assembler-defined length of the field label. FIELD = is
required unless CON V = is SUBSCAN, VECTOR or ALIAS.

DSECT=
Specifies the DSECT name required to resolve the field specified by
FIELD = in the control block found by the $SCAN search. If FIELD = is
specified as an absolute offset into the control block, DSECT should be
specified as DSECT = O.

RANGE =
Specifies the allowed range for the input. For keywords for which CONV is
NUM, HEX, or CHARN RANGE specifies a binary range. For keywords
for which CONY is CHARxxxx. for CHARxxxx not equal to CHARN,
RANGE specifies a length range. RANGE and VALUE are mutually
exclusive.

VALUE =
Specifies the allowed specific values a keyword may have. VALUE is used
to limit input to only certain values, instead of using RANGE to limit the
input to a range of values. RANGE and VALUE are mutually exclusive.

For keywords for which CONV = is not specified as FLAG, this keyword is
specified as a list of allowed values. Note that the input must match the
VALUE = specification exactly. For example. if the value 000293 is
specified as input, it is within the allowed range for RANGE = (66,400), that
is between 66 and 400. but it does not match the VALUE=(36,2,99,293,4)
specification, exactly.

For CON V = FLAG keywords, VALUE is specified as a list making up a
set of triplets of input, that is VALUE = (aLbl ,ci ,a2,b2,c2, ...). For each set
of three operands. as shown, the first (a) is the allowed value the keyword
may have, the second (b) is a flag byte setting to 'or' on in the FIELD if the
keyword is given this value, and the third (c) is a flag bytes setting to 'and'
off in the FIELD. For example. to implement a keyword with values of
YES or NO, which is represented by a single flag bit setting specify the
following:

CONV=FLAG,VALUE=(YES,YESFLAG/FF,NO/O/F~ - YES~LAG)

If the keyword have no input value, i.e., there is value in the keyword being
specified alone. VALUE should consist of one triplet with the first operand
null.

4-196 JES2 User Modifications and Macros LC23-0067-3 tt; Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

CALLERS =

$SCANTAJB

Specifies one or more caller ids (in a parenthesized list) for which this scan
table entry is to be used. If CALLERS is not specified, the table entry is
used for any $SCAN caller. This operand is useful, for example, when a
scan table is to be used for multiple parameter statement purposes and not
all keywords are valid in every case. Note that $SCAN supports multiple
entries specified in a scan table for the same NAME = keyword with
different CALLERS = specifications. Valid callers are:

Valid
Callers

SSCOPTS
SSCIRPL
SSCIRPLC
SSCDCMDS
SCSCMDS
SCDOCMD

PRESCAN=

Identifies
the:

JES2 initialization options (for example, COLD, WARM, REQ, NOREQ)
JES2 initialization statements
console-issued commands during JES2 initialization
display commands in HASPCOMM
set commands in HASPCOMM
short form(s) of the display commands

Specifies the name of a routine to be entered just after determining the
parameter input contains this keyword and before scanning the input any
further. If the routine name is undefined in the current assembly, a VCON
is generated rather than an ACON. Register 1 points to the scan work area
(SCW A) on entry to the routine and the routine can change the SCW A
fields and use return codes to direct the actions of $SCAN. An optional
second positional parameter of SET or DISPLAY on PRESCAN indicates
that the PRESCAN routine should be called only for a SET or DISPLAY
$SCAN call.

PSTSCAN
Specifies the name of a routine to be entered after all scanning (including
possible subscanning) is done for this keyword. PSTSCAN = and the
routine interface are as for PRESCAN = .

SCANTAB=
Specifies another scan table(s) or table entry required when scanning this
keyword. For CONY = ALIAS, it specifies the address of another scan
table entry defining the keyword of which this keyword is an alias. For
CONY = VECTOR, it specifies the address of another complete scan table
defining the values allowed for each element of the vector. For
CON = SUBSCAN, it specifies the address of a doubleword containing the
addresses of two complete scan tables, e.g. one user scan table and one JES2
scan table, to be used in the recursive $SCAN call that performs the
subscanning required.

If CONY = VECTOR or CONY = SUBSCAN is specified, the pointer to the
next set of scan tables is calculated as an offset into either the MCT or

LC23-0067-3 CO Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-197

$SCANTAB
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

UCT. This is specified by the second positional operand on this keyword.
For example:

$SCANTAB SCANTAB=(MCTPRTU,MCT) ...

generates (MCTPRTU - MCT) for the offset into the $MCT of the scan
table pair.

$SCANTAB SCANTAB=(UCTPRTU,UCT) ...

generates (UCTPRTU - UCT) for the offset into the $MCT of the scan
table pair.

VCOUNT=
Specifies the number of vector elements this scan table entry defines.
VCOUNT is ignored unless specified for an entry in a scan table specified to
SCANT AB = for a CONV = VECTOR keyword. It allows a single scan
entry to define mUltiple elements of a vector, with the associated fields for
the elements being FIELD, FIELD plus the field length, FIELD plus twice
the field length, etc. The default is 1.

An optional second positional parameter of IGNORE in VCOUNT
indicates that null input for vector elements is allowed and the associated
fields should not be changed in any way.

OBS=
Specifies whether the keyword specified for NAME = is to be considered
obsolete (the default is OBS = NO). If OBS is specified as YES, $SCAN
should consider it to be an error if this keyword is found during a scan, but
return a less severe return code and message to the caller.

MINLEN=
Specifies the minimum character length of the keyword defined by this
$SCANT AB entry that may be used to reference the keyword in parameter
input. For example, if NAME = FORMS is specified, and MINLEN = 2,
then: Fa, FOR, FORM, and FORMS are valid keyword references; F,
FOX, and FORMSX are invalid. If MINLEN = is not specified, the valid
keyword specification is the entire keyword; no abbreviated forms are
allowed.

MSGID=
Specifies the 3-digit message ID for the $HASPnnn message identifier that is
used when a SCAN = DISPLAY includes a display line in a $SCAN call.
This message ID is ignored by $SCAN except at the highest level of
scanning. For example, it is used for the PRINTERnn statement, but it is
ignored for the FORMS = keyword on the PRINTERnn statement.

4-198 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Environment

$SCANTAB

• JES2 main task or during initialization and termination.

• SW AITs is not applicable -- this macro generates a DSECT or static table
entry; it does not generate executable code.

LC23-0067-3 C Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-199

$SDUMP
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$SDUMP - Take a SDUMP of Storage

Format Description

Use $SDUMP to dump the storage of selected address spaces.

[symbol] $SDUMP

[, ROMEO\ ::s I]
[,APPENOt:S I]

TITLE =
Specifies the title of the dump. You can specify the title of the dump as
straight text within quotes or you can supply a symbol that identifies the
beginning of the textual title or you can supply a register whose contents is
the address of the textual title. If you supply a symbol or register. the
symbol or register must point to a one byte length field followed by the text.
If TITLE is not specified a default title for the dump is used.

ASIDLST=
Specifies a list of asids (up to two) associated with the address spaces to be
dumped in addition to the home address space if HOME = YES. Labell
and label2 must define halfwords that contain the asids. Rn and Rm are
two different registers that contain the asids in the right-most half of each
register. The left-most half of each register must be zero.

HOME =

Specifies whether or not the home asid is dumped. HOME = YES is the
default indicating that the home asid is to be dumped.

ERR OPT =
Specifies the action to be taken should the dump fai\.
ERROPT= RETURN indicates that when the dump fails, return to the
caller should take place. ERROPT = WAIT indicates that a WTOR is to be
issued to the operator and the $SDUMP processing is to wait for an
appropriate reply. ERROPT = RETURN is the default.

4-200 JES2 User Modifications and Macros LC23-0067-3 c Copyright IBM Corp. 1982. 1987

"Restricted Materials of IBM"
Liceased Materials - Property of IBM $SDUMP

Environment

APPEND =
Specifies whether or not the title supplied with TITLE = is to be appended
to the default title. APPEND = NO is the default and indicates that the title
supplied is not to be appended to the default title.

• Main task.
• MVS WAIT can occur (if ERROPT= WAIT).

LC23-OO67-3 C Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-201

$SEPPDIR
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$SEPPDIR - Create a User Peripheral Data Information Record (PDIR)

Format Description

Environment

Use $SEPPDIR to send a PDIR to an output device immediately prior to sending
a separator. The PDIR is a required control record that is sent to a SNAjRJE
remote that is using its spooling capability to allow data set printing. The PDIR
record is used to describe the data set (every output record, separator pages, and
cards) being sent. If no separator is being sent, do not use this macro instruction.
JES2 sends a PDIR preceding the print header and trailer separators. Also. JES2
sends a PDIR preceding a punch separator; no PDIR is sent following a punch
file. This macro supports the separator exits (Exit 1 and Exit 15) in modules
HASPPRPU. It is not used for the FSS separator exit (Exit 23) in module
HASPFSSM.

[symbol] $SEPPDIR I addrx 1
(Rl)

The specified register contains the address of a JES2 buffer.

• Main task.
• $W AIT can occur.

4-202 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $SETRP

$SETRP - Set Recovery Processing Options

Format Description

Environment

Use $SETRP in a recovery routine to indicate how control will be received when
the $RETRY routine is complete. Specifies if and how recovery is to take place.

(
[(]RECOVER,RESUME=resume-relexp[)] 1

[symbol] $SETRP TERMINATE
PERCOLATE

RECOVER
Specifies that recovery is to take place. All functions are to resume as
normal at the address specified by the RESUME = parameter.

RESUME =
Specifies where normal processing is to resume when error recovery is
successful. This parameter is required when RECOVER is specified.

TERMINATE
Specifies that an abend is to take place and no recovery is to be attempted.

PERCOLATE
Specifies that this particular recovery attempt was unsuccessful but that
termination is not to take place. Each of the higher level recovery routines
is to be entered until either there are no more routines (in which case an
abend occurs) or recovery is successful (in which case all functions resume
as normal).

Note: $SETRP assumes addressability to the error recovery area (ERA) that is
associated with the error that caused the recovery routine to be entered.
Therefore, be certain to add the $ERA DSECT to the $MODULE macro for a
routine for which you provide error recovery.

• Main task.
• $W AIT cannot occur.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-203

$STCK
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$STCK - Call the $STCK Sen-ice Routine

Format Description

Environment

Use the $STCK macro instruction to call the $STCK (store clock) service routine
located in HASPNUC. This service routine obtains the current TOD clock and
stores the current value at the location you specify.

[symbol) $STCK 1 addrx 1
ADDR=

(RO)

ADDR=
Specifies the address at which the current TOD clock value is stored. This
specification can be either an address or a register.

• JES2 main task
• $W AIT cannot occur

4-204 JES2 User Modifications and Macros LC23-0067-3 0 Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $STIMER

$STIMER - Set Inten-a) Timer

Format Description

Environment

Use $STIMER to set a time interval for the programmed interval timer.

toc

[symbol] $STIMER !loc-addrx I
1.B1J..

Specifies the address of a JES2 timer queue element (TQE). Before this
macro instruction is executed, the TQE must be initialized. TQETIME
must be initialized with the interval to be set in the following manner:

• If x seconds are desired, the TQETIME should be set to x.

• If y hundredth-seconds (0.01 seconds) are desired, then TQETIME
should be set to the twos complement of y.

TQEPCE must be initialized with the address of the processor control
element (PCE) to be posted.

If register notation is used, the address must be loaded into the designated
register before the execution of this macro instruction.

Note: An unlimited number of independent $STIMER time intervals can be
active at any time provided that each has been furnished with a unique JES2
timer queue element.

• Main task.
• $W AIT cannot occur.

LC23-0067-3 (9 Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-205

$STMTLOG

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$STMTLOG - Log an Initialization Statement

Format Description

Use $STMTLOG to log initialization statements and related diagnostic
information. This macro can be used by either JES2 or Exit 19 (Initialization
Statement).

[symbol] $STMTLOG [jaddrxll DIAG= (Rl)
label

[j COMMENT 11 ,TYPE= WARNING
ERROR

DIAG=
Specifies the address of the diagnostic information associated with the last
analyzed initialization statement or specifies the actual text of the diagnostic
information when "label" is the keyword value. The message can be
formatted to contain a message ID and/or message length as well as the
actual text. The following table provides the required format information:

MESSAGE ID LENGTH DIAGNOSTIC FORMAT *

NO NO Text 'DDDDDD ... '
YES NO Text 'XXXDDD ... '
NO YES Text ***Error***
YES YES Text ***Error***
NO NO Address LDDDDDDD ...
YES NO Address XXXLDDDD ...
NO YES Address DDDDDDDD ...
YES YES Address XXXDDDDD ...

* XXX message ID
L length
DDD diagnostic

4-206 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $Sl'MTLOG

Environment

TVPE=
Specifies the type of diagnostic message that is to be logged for the last
analyzed initialization statement.

COMMENT
Log the diagnostic information to hardcopy only.

WARNING
Log the diagnostic information to hardcopy if the source of the last
analyzed initialization statement is not the console. If the source is a
console also log the diagnostic information to the console.

ERROR

MSGID=

Log the current parameter statement to the console and hardcopy
along with the diagnostic information.

Specifies whether (YES) or not (NO) a message ID ($HASPnnn) is included
in the diagnostic text that is passed to the STMTLOG routine.

YES

NO

LEN =

Indicates that the message ID is supplied as part of the diagnostic text.

Indicates that the message ID is not supplied as part of the diagnostic
text.

Specifies the address of the length (1-80 characters) of the diagnostic
message. If this keyword is not specified, JES2 assumes that the length of
the message is imbedded in the message.

Note: When no operands are specified, the last analyzed initialization statement
is logged.

• Only Exit 19 during JES2 initialization.
• $WAIT cannot occur.

LC23-0067-3 II'> Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-207

$STORE

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$STORE - Store Registers in the Current Processor Save Area

Format Description

Use $STORE to store one or more registers in the current processor save area
(that is, the most recently issued $SA VE macro instruction). The stored registers
are returned to a calling routine upon execution of a $RESTORE macro
instruction.

list

[symbol] $STORE list

Specifies a list of one or more registers, and/or groups of registers to be
stored. If more than one register is to be stored, the entire list must be
enclosed in parentheses.

A register group is indicated by a pair of registers enclosed in parentheses.
All registers, beginning with the first register specified and ending with the
second register, are stored. The order of storing a group of registers is: RI4,
R15, RO-RI2. If the list consists of a single group, the outer (list)
parentheses are not required.

Note: All registers must be specified symbolically. The accepted register
symbols are: RO, RI, R2, ... , R15.

Examples:

Store register 2
$STORE (R2) or
$STORE R2

Store registers 15 through 8
$STORE «R15,RS» or
$STORE (R15,RS)

Store register 3 and register 10
$STORE «R3), (R10» or
$STORE «R3),R10) or
$STORE (R3,(R10»

Restore registers 0, 3 through 5, and S
$STORE (RS, RO,(R3, R5»

Note: The sublist order is unimportant.

4-208 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Environment

• Main task.
• $W AIT cannot occur.

LC23-0067-3 @ Copyright IBM Corp. 1982, 1987

$§'fORlE

Chapter 4. JES2 Programmer Macros 4-209

$TGMSET
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$TGMSET - Call the $TGMSET Service Routine

Format Description

Use the $TGMSET macro instruction to generate the calling sequence to
$TGMSET in HASPTRAK. $TGMSET tests and/or sets a bit in the specified
track group map (TGM) and updates the DAS and $HCT field counts if
COUNT = YES is specified. This macro can also be used to allocate and return
track groups and mark track groups as "bad."

[symbol] $TGMSET jmttr I MTTR=
(Rl)

1 addrx I
,ADDR

(RO)

[,SPOLMSK=addrx]

[,ERRET=addrx]

MTTR=
Specifies the MTTR of the track group for which the specified bit needs to
be either tested and/or set.

ADDR=
Specifies the address of the track group map (TGM) for which the specified
bit is either to be tested and/or set.

SPOLMSK=
Specifies the address of the spool mask to be used by the $TGMSET routine
for validation of track group deallocation.

SET=
Specifies whether to turn the bit on (ON) or off (OFF). The default is to
set the bit to 0 (OFF).

4-210 JES2 User Modifications and Macros LC23-0067-3 D Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $'fGMSE'f

Environment

QSUSE=
Specifies whether (YES) or not (NO) it is necessary for JES2 to obtain the
QSUSE (shared queue control elements) prior to setting the bit in the
specified TGM and checkpointing the TGM change.

TYPE =
Specifies the type and degree of error checking that is performed before the
specified bit is set in the specified TGM.

SET
Indicates that the specified bit is set in the TGM; no error checking is
performed.

TEST
Indicates that the specified bit is tested as follows:

• If the bit is already set the same as specified by the SET =
keyword the bit is not set; an error is returned.

• If the SPOLMSK = keyword is coded, a check is made to
determine if the specified bit is on for a spool volume specified in
the spool mask; if the bit is not on a spool mask volume, the bit is
not set and an error is returned.

• If the bit is to be set off is currently set on in the bad track group
map, the bit is not set.

Note: Specifying TEST only indicates that the three tests are
performed and appropriate error returns are made; the bit tested is Dot
set.

TESTSET

COUNT =

Indicates that the specified bit is tested as noted for TEST, above;
however, if appropriate, the bit is set.

Specifies whether (YES) or not (NO) the corresponding count fields
(DASTGALC in the DAS and $TGALLOC and $TGFREE in the HCI')
are updated as specified by the SET = keyword.

ERRET=
Specifies the address of an error routine if an error is returned from the
$TGMSET routine. A return code of 0 indicates that the validity test
passed; 4 indicates it failed.

• JES2 main task
• $W AIT can occur if QSUSE = YES is specified

LC23-OO67-3 C Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-211

$TIDTAB
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$TIDT AB - Generate the Trace ID Table DSECT

Format Description

Environment

Use $TIDTAB to map and generate trace ID (TID) table entries.

[symbol] $TIDTAB

[,NAME=char-name]

[,ID=valuel

[,FORMAT=relexp]

TABLE =

Specifies the first entry in the HASP or user TID table or end of a TID
table. If TABLE = is specified, all other operands are ignored.

NAME=

ID=

Specifies a 1-8 character name for the TID type. This name is used on the
first line of output for the trace record. If NAME = is not specified,
DSECT mapping is generated, an all other keywords are ignored.

Specifies a trace identifier, a value from 1-255. The HASP table currently
defines identifiers from 1-16.

Note: User entries should use identifiers from 255 down to prevent overlap
of trace table ID numbers.

FORMAT =
Specifies the name of a formatting routine that will format the trace records
for this type. If the symbol used as the name of this formatting routine is
not defined in the assembly module containing this $TIDT AB macro, then
the TID table field is defined using a VCON rather than an ACON.

Note: If you omit all the operands on the $TIDT AB macro. a DSECT mapping
of a TID table entry is generated; otherwise, an actual TID table entry is
generated.

• Main task or during JES2 initialization and termination.
• $WAIT is not applicable -- this macro generates a DSECT or a static table

entry; it does not generate executable code.

4-212 JES2 User Modifications and Macros LC23-0067-3 ,I) Copyright IBM Corp. 1982. 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $TRACE

$TRA CE - Trace a JES2 Activity

Format Description

Use the $TRACE macro instruction to allocate a JES2 trace table entry (TIE) in
an active trace table and return its address. Optionally, $TRACE initializes the
TTE based upon parameters passed. The JES2 event trace facility is called to
perform the TTE allocation.

$TRACE can be specified anywhere in the JES2 system (including the
HASPSSSM module) except in routines running as disabled interrupt exits (for
example, an lOS appendage). R13 must point to a usable OS-style save area. Be
certain to also code the $TRP macro on the $MODULE statement to provide
required mapping.

On exit, register I contains the address of the allocated TTE. Any changes to the
TTE must be accomplished prior to issuing a wait (WAIT or $WAIT, explicit or
implied). A nonzero condition code on exit indicates that the TTE was
successfully allocated; condition code 0 indicates unsuccessful allocation either
because tracing is not activated or the individual ID is not currently being traced.

In environments other than the JES2 main task, a $TRACE RELEASE request
must be made after the formatted TTE is ready. The $TRACE facility is
serialized using a resource that is realized by that request.

[symbol] $TRACE [RELEASE]

[,NAME=symbol]

['LEN~li~~x I]
[I addrx I]

,DATA= ~Rl)

[· BASE~I :::T I]
[I TRUNC I] , TYPE=

SPIN

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-213

$TRACE
"Restricted Materials of IBM"

Licensed Materials - Property of IBM

l'ENVIRON=(g~i~)J
SUBTASK
FSS

RELEASE

ID=

Specifies the release of the trace buffer. This positional operand must be
used in either the user or the sub task environment after the trace table entry
fields are coded.

Notes:

1. If this operand is specified, all other operands except BASE= and
ENVIRON= are ignored.

2. Before issuing a $TRACE RELEASE, he certain you have loaded register
o with the value returned in register 0 from the previous $TRACE macro
call.

Specifies the ID associated with this trace entry. The 10 is a value between
1 and 255. If 0 is specified, JES2 does not create a TIE but instructs the
event trace facility to spin-off the current trace log data set (if logging is
activated). 10 = 0 is specified in JES2 routines controlling trace activities
and should not be specified outside of these areas.

Note: IBM trace IDs start from I and increase. User trace IDs should
start at 255 and decrease to prevent overlap of 10 numbers.

OFF =
Specifies the address that is given control if tracing is not currently being
used. If register notation is used, the designated register must be previously
loaded with the address.

If this operand is omitted, control is given to the location after the macro
expansion with condition code O.

NAME = symbol
Specifies the 1- to 8-character identifier to be associated with this macro
call. If this operand is omitted, the label symbol used by the $TRACE
macro call is used. If neither is specified, the current CSECT name is used.

LEN=
Specifies (by a valid expression or through register notation) the length of
the trace table entry (TTE) to be allocated. If register notation (R2 - R12)
is used, the designated register must be previously loaded with the length.
The address (addrx) of either a fullword or halfword containing the length

4-214 JES2 User Modifications and Macros LC23-0067 -3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $TRACE

can be used if neither register notation (Rx) nor a specified value or equated
value is used for length. The maximum length is:

(pAGE x 4096) - 68

Where:

PAGE PAGE parameter on the TRACE initialization statement

68 represents the current header lengths in JES2 trace table
control blocks

DATA =
Specifies the address or a register that points to the location where the data
to be logged can be found. If this keyword is specified, all activity for the
new TIE is performed by the $TRACE facility. If this keyword is not
specified or DATA = 0 is specified and ENVIRON = is specified as USER,
SUBT ASK, or FSS, you must issue a $TRACE RELEASE. The returned
TIE should be formatted and then a $TRACE RELEASE must be issued.

BASE =
Specifies the base address in register 11 to be used by the $TRACE macro.

Preload register 11 with the address of the HCT.

SSVT

TYPE =

Preload register II with the address of the SSVT. SSVT should be
used when using the $TRACE macro instruction in the HASPS SSM
environment.

Specifies the action to be taken ifID = O.

TRUNC

SPIN

the current trace table is to be truncated, and the trace table is passed
to the trace log processor (if logging is active).

The event trace facility is to spin off the current trace log data set and
truncate the current trace table, passing the table to the trace log
processor (if logging is active).

ENVIRON::=:
Specifies the environment in which the $TRACE is issued. The environment
determines where the save area is to be located. ENVIRON = defaults to
the &ANVIRON global variable which is set by the ENVIRON = keyword
on the $MODULE macro.

JES2
Represents the 1ES2 main task as the environment for tracing.
BASE = HCT must be specified or allowed to default.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-215

$TRACE

Environment

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

SUBTASK
Represents a subtask of the JES2 main task as the environment for
tracing.

USER

FSS

Represents a user address space as the environment for tracing.

Represents the functional subsystem address space as the environment
for tracing.

• JES2 main task, subtask, user, or functional subsystem (HASPFSSM)

• $W AIT cannot occur; however, in other than the JES2 main task
environment, an MVS WAIT can occur.

4-216 JES2 User Modifications and Macros LC23-0067-3 Cl Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $TRACK

$TRACK - Acquire a Direct-Access Track Address

Format Description

Use $TRACK to obtain a track address on a JES2 spool volume and return this
track address in register I.

[symbol] $TRACK

TAB =

TAB=j tab-addr]
(Rl)

,JQE=jjQe-addr]
(RO)

[, WAIT=! ::8 II
[,ERRET= !::::xll
[, WRPRIM=! ::8 II

Specifies the address of the track allocation block (TAB).

JQE=
Specifies the address of the job queue element (JQE). This is required for
the JES2 main task environment.

WAIT =
Specifies whether (YES) or not (NO) to wait if $TRACK is unable to
successfully allocate a track group. If YES is specified, the service routine
will issue a $WAIT TRAK if no tracks are currently available. routine will
issue a $WAIT TRAK if no tracks are currently available.

ERRET=
Specifies the address (or register that contains the address) of an error
routine that gets control if register 15 contains a non-zero return code from
$STRAK.

Return Code Meaning (User Address Space)

o Allocation successful
8 Error encountered in $STRAK

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-217

"Restricted Materials of IBM"

$TRA CK Licensed Materials - Property of IBM

Environment

Return Code Meaning (JES2 Address Space)

o Allocation successful within the same track group
4 Allocation successful in a different track group
8 WAIT = NO was specified -- no track group returned

WRPRIM=
Specifies whether (YES) or not (NO) to write the primary allocation lOT if
a new track group is allocated. WRPRIM = YES is the default.

Return Code
o
4
8

Meaning
Allocation successful within the same track group
Allocation successful in a different track group
WAIT = NO was specified -- no track group returned

• Main task and user address space.
• $W AIT can occur.

4-218 JES2 User Modifications and Macros LC23-0067-3 @ Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $TTIMER

$TTIMER - Test Interval Timer

Format Description

Environment

Use $TTIMER to obtain the time remaining in the associated time interval that
was previously set with $STIMER macro instruction. The value of the remaining
time interval is returned in register 0 in seconds (rounded to the nearest second) ..
The $TTIMER macro instruction can also be used to cancel the associated time
interval.

loe

[symbol] $TTlMER !loc-addrx I
(Rl)

[,CANCEL]

Specifies the address of the timer queue element. If register notation is
used, the address must have been loaded into the designated register before
the execution of this macro instruction.

If the timer queue element is not active or if the interval has expired before
the $TTIMER macro instruction is executed, the value of the time interval
returned is O.

CANCEL
Specifies that the interval in effect should be cancelled.

If this operand is omitted, processing continues with the unexpired portion
of the interval still in effect.

If the timer queue element is not active or if the interval has expired before
the $TTIMER macro instruction is executed, the CANCEL operand has no
effect.

• Main task.
• $W AIT cannot occur.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-219

$VERIFY

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$VERIFY - Call the $VERIFY Senice Routine

Format Description

Environment

Use the $VERIFY macro instruction to call the $VERIFY service routine located
in the HASPSSSM load module to validate control block contents when read in
from spool.

[symbol) $VERIFY TYPE=type-code

1 addrx 1
, BUFAD=

(RO)

[1 addrx II
,KEYFLD= (Rl)

[,ERRET=(addrx}]

TYPE =

Specifies the $VERIFY type-code (0-255) as mapped in $HASPEQU. This
type code is required for control block verification.

BUFAD=
Specifies the address of the buffer that contains the control block to be
verified.

KEYFLD=
Specifies the address of the field to be used to verify the control block.

ERRET=
Specifies the address of an error routine that is to get control if an control
block error is detected or the control block is not verified

• JES2 main task, user task, or HASPFSSM address space
• No waits can occur

4-220 JES2 User Modifications and Macros LC23-0067-3 (C Copyright IBM Corp. 1982. 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $VERTAB

$VERT AB - Build the Inline Verification Tables

Format Description

Use the $VERT AB macro instruction to build the inline verification tables used
by the $VERIFY service routine.

[symbol] $VERTAB TYPE=type-code

,10-

JCT
lOT
OCT

SWBI
CHK
ANY

, IOOFF=id-offset

[,KEYOFF=key-offset]

[,KEYLEN=key-length]

TYPE=

ID=

Specifies the $VERIFY type-code (0-255) as mapped in $HASPEQU. This
type code is required for the control block verification table that this macro
is building.

Specifies the EBCDIC identifier (maximum of 4 characters) for the control
block verification table that this macro builds.

IDOFF=
Specifies the offset of the control block identifier.

KEYOFF=
Specifies the offset of the key field for the control block verification field
that this macro builds.

KEY LEN =
Specifies the length of the key field for the control block verification field
that this macro builds.

TABLE=
Specifies the beginning (HASP) or end (END) of the verification table.

Note: The verification table is prefixed by a control block pool header.

LC23-0067-3 (\) Copyright IBM Corp. 1982, 1987 Chapter 4. J ES2 Programmer Macros 4-221

$VElR'fAB

Environment

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

• JES2 main task, user task, and HASPFSSM address space

• $W AIT is not applicable -- this macro generates a DSEcr or a static table
entry; it does not generate executable code.

4-222 JES2 User Modifications and Macros LC23-0067-3 @ Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $VFL

$VFL - Variable Field Length Instruction Operation

Format Description

Use $VFL to provide certain storage-to-storage operations where the field lengths
exceed 256 bytes or where no assembler instructions exist.

[symbol] $VFL

op-codc

op-code

,I to-addrx 1
(Rl)

,1 from-addrx 1
(R15)

, Ilen9th-addrx 1
(RO)

Specifies the storage-to-storage operation as one of the following:

NC
And operation

xc
Exclusive or operation

OC
Or operation

MVC
Nondestructive overlapping move operation (see note 3)

to-addrx
Specifies the address of the first field (see note 1).

from-addrx
Specifies the address of the second field (note 2).

length-addrx
Specifies the total number of bytes in the field (see note 1).

Notes:

1. If the length operand is written as an address, the register contains the address
of a jill/word which contains the address of the field (which contains the field
length) .

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-223

$VFL

Enviroument

"Restricted Materials of IBM"

Licensed Materials - Property of mM

If the length operand is written using register notation, it represents the address
of the field that contains the field length. If register notation is used, the
address (or field length) must be loaded into the designated register before the
execution of the macro instruction.

2. Condition codes from the execution of this macro are not usable.

3. When MVC is specified, a shift character long operation is performed. The
number of bytes specified by length is moved from the from address to the to
address. The origin and destination fields may overlap in any desired manner;
the character string is moved intact without propagating the nonoverlap ping
portion of the fields. $VFL MVC is intended to be used in exceptional
situations. For performance reasons, it should not be used where MVCL or an
executed MVC would suffice.

• Main task and subtask (where Rl1 = address of HCT).
• User address space (where Rll = address of SSVT)
• $WAIT cannot occur.

4-224 JES2 User Modifications and Macros LC23-0067-3 @ Copyright IBM Corp. 1982, 1987

"Restricted Materials of 18M"

Licensed Materials - Property of IBM $WAIT

$WAIT - Wait for a JES2 Event

Format Description

Use $WAIT to place the associated processor in a JES2 wait state and specify the
event or resource for which the processor is waiting.

Optionally, use $WAIT to specify an extended ECB structure (XECB) which may
be posted by OS/VS service or some other task. If the XECB has already been
posted, $W AIT returns immediately to the processor; otherwise, $W AIT initializes
the extended ECB and places the processor in a JES2 wait state.

[symbol] $WAIT event/resource

[. INHIBIT~I ::s I]
[I addrx I] ,XECB=

(Rl)

event/resource
Specifies the JES2 event or resource for which the processor is to wait as
one of the following:

Event:

HOLD
Waiting for a $S operator command

10
Waiting for the completion of an input/output operation

OPER
Waiting to be reactivated

POST
Waiting for some resource or any $POST

WORK
Waiting for more work

LC23-0067 -3 © Copyright I BM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-225

$WAJ[T

Resource:

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Waiting for the next dispatcher cycle

ALOC
Waiting for allocation

BUF
Waiting for a JES2 buffer

CKPTP
Waiting for a checkpoint post

CKPT
Waiting for the completion of a JES2 checkpoint

CKPTW
Waiting for checkpoint work

CMB
Waiting for a console message buffer

CNVT
Waiting for a converter

FSS
Waiting for completion of FSS-Ievel processing

HOPE
Waiting for an output processor

IMAGE
Waiting for a UCS or FCB image load completion

JOE
Waiting for a JOE to be freed

JOT
Waiting for job output table service

JOB
Waiting for a job

LOCK
Waiting for a lock

MAIN
Waiting for storage

PSO
PSO processor waiting for work

4-226 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $WAIT

PURGE
Purge processor is waiting for work

PURGS
Waiting for purge resources from $PURGER

RSV
Waiting for RESERVE

SMF
Waiting for an SMF buffer

TRAK
Waiting for a direct-access track address

UNIT
Waiting for a device control table

INIDBIT=
Specifies whether the processor issuing this macro instruction is to be
dispatched if specifically posted ($POST).

YES

NO

XECB=

All posts ($POST) specifying this processor are ignored, except for the
one indicating completion of the event specified in this macro
instruction, or the one indicating the optional XECB has been
POSTed.

The processor issuing this macro instruction is to be dispatched if
specifically posted ($POST) for any event.

Specifies the address of an XECB. The processor issuing this macro
instruction will be dispatched when the XECB is posted, or immediately
resumes control if the XECB has already been posted. If register notation is
used, the designated register must be loaded with the address of the XECB
prior to executing this macro.

Notes:

1. The execution of this macro instruction requires register 15; additionally,
register 1 is required if the XECB option is used.

2. The JES2 processor is dispatched if either the JES2 event/resource is posted or
the ECB in the XECB control block is posted.

Caution:

• H tbe XECB option is used, tbe processor is dispatched by eitber tbe JESl event
occurrence or tbe POST of tbe XECB.

LC23-0067-3 <C Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-227

$WAlI'f

Environment

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

• Upon return from $WAIT, the XECB may not be free for other uses; it may
still be chained within a JES2 dispatcher queue.

• Main task.
• $WAIT is not applicable.

4-228 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $WSSETUP

$WSSETUP - Set Values Required for Work Selection

Format Description

Environment

Use the $WSSETUP macro instruction to set those values that are required to
support work selection.

[symbol) $WSSETUP DEVADDR=! label 1
(Rl)

l
,TYPE=cb-name 1
,VOL=dev-vol-field

,VOLNUM=dev-vol-num

DEVADDR=
Specifies the address of either a OCT or PIT. Specify this address either by
a label or a register; the address is loaded in register 1.

TYPE=
Specifies the device control block name used to calculate the offset for the
fields specified by the VOL = and VOLNUM = keywords. If this keyword
is specified, both VOL = and VOLNUM = must also be specified.

VOL=
Specifies the device's volume field. The offset for this field is calculated
using the name specified by the TYPE = keyword. If this keyword is
specified, both TYPE = and VOLNUM = must also be specified.

VOLNUM=
Specifies the volume number field. The offset for this field is calculated
using the name specified by the TYPE = keyword. If this keyword is
specified, both TYPE = and VOL = must also be specified.

• JES2 main task
• $W AIT sannot occur

LC23-0067-3 ((~ Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-229

$WSTAB

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$WSTAB - Map and Generate the Work Selection Table Entries

Use the $WST AB macro instruction to map and generate the work selection table
entries.

4-230 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Format Description

[symbol] $WSTAB [I [(] HASP [, NOENTRY] [)] II
TABLE= ~~bUSER[,NOENTRY] [)]

NAME=criterion-name

[I len-value
,MINLEN=

criterion-name

[, ALIAS=name]

,RTN= {
FLAG } COMPARE

RANGE
ws-rtn

[,LEN=len-value]

lcontrol-blk-namel
,CB=

o
,FLD=field-name

[,FLAG=flag-value]

length II

lcontrol-blk-namel
,DEVCB=

o

[,DEVFLD=field-name]

,DEVNUL=flag-value

[,DEVFLAG=flag-value]

[,DEVRNG=(field-name,field-name)]

[, MODRTN=! ~~~~ II
rtn-name

[,MODFLD=field-name]

[,MODCB=dsect-name]

[,MODLEN=length]

[,MODSRC=field-name]

['MODSCB"!:~: II
[,MODFLAG=flag-value]

[,MODVAL=flag-value]

[,MODNULL=flag-value]

$WSTAB

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-231

$WSTAB

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

NAME =
Specifies a 1- to 8-character name for an individual work selection criterion.

MINLEN=
Specifies the minimum length that is acceptable for the criterion name
specified on the NAME= keyword. This keyword does not also support
the ALIAS = keyword. If this keyword is not specified, the length defaults
to the length of the ws-name specified by the NAME = keyword.

ALIAS =
Specifies an alternate (alias) 1- to 4-byte character name for the work
selection criterion. MINLEN = does not support this keyword.

RTN=

CB=

Specifies the name of the routine used to check the comparison field against
the device field. This keyword is required.

FLAG
Indicates to call the general flag routine for this criterion during work
selection.

COMPARE
Indicates to call the general compare routine for this criterion during
work selection.

RANGE
Indicates to call the general range routine for this criterion during
work selection.

ws-name
Specifies any other valid work selection routine that is to be called.

Specifies the control block name required to resolve the field specified by
the FLD = keyword. This keyword is required. The valid control block
names follow.

Control Block Meaning

JQE JQE required

WJOE Work JOE required

CJOE Character JOE required

HCT HCT required

NJHO Spool offload header section

NJHG General section of job header required

NJHl JES2 section of job header required

NJHU User section of job header required

NDHG General section of data set header required

4-232 JES2 User Modifications and Macros LC23-0067-3 C Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

NDHA

NDRS

NDHU

$WSTAB

3800 Printer section of data set header required

Data stream section of data set header required

User section of data set header required

ZERO No control block required for specified criterion. IfCB=ZERO is specified,
both FLD = and FLAG = keywords (if also specified) are ignored.

FLD=
Specifies the name of the work selection comparison field against which the
device field is compared. If the FLAG = keyword is specified, this keyword
is used as a flag byte to be compared against the flag byte setting specified
by FLAG=.

FLAG =
Specifies the label of the field in the FLD = byte to be tested under mask
for work selection. If FLAG = is specified, FLD = must also be specified.

LEN =
Specifies the length of a character comparison between a control block field
and a device field. This keyword defaults to the length of the comparison
field specified by the FLD = keyword.

TABLE =
Specifies the start or end of a work selection table.

Specify TABLE = HASP or TABLE = USER to start the corresponding
table, and optionally a second parameter of NOENTRY (e.g.
TABLE = (USER,NOENTRy) to indicate no ENTRY statement need be
generated for the label of the scan table.

Specify TABLE = END to terminate a scan table.

Other operands are ignored if TABLE is specified, and a label is required on
the $WST AB macro if a table is being started. If TABLE = and NAME =
are both not specified, only the mapping of an $WST AB entry is generated
by the macro.

DEveB=
Specifies the control block name required to resolve the field specified by
the DEVFLD= keyword. The valid control block names follow.

Control Block Meaning

DCT DCT required

PIT PIT required

RCT RCT required

UCT UCT required

ZERO No control block required for specified criterion. If DEVCB = ZERO is
specified, both DEVFLD = and DEVFLAG = keywords (if also specified) are
ignored.

LC23-0067-3 CO Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-233

$WSTAB

DEVFLD=

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Specifies the name of the device field against which work selection
comparison field (FLD =) is compared. If the DEVFLAG = keyword is
specified, this keyword is used as a flag byte to be compared against the flag
byte setting specified by DEVFLD =. Also, if DEVFLD = is specified,
DEVRNG= cannot also be specified.

DEVFLAG=
Specifies the label in the DEVFLD = byte to be tested under mask for work
selection. If DEVFLAG = is specified, DEVRNG = cannot also be
specified.

DEVRNG=
Specifies the names of the upper and lower device fields against which the
control block field (as specified by the CB = and FLD = keywords) is
compared. If either DEVFLAG = or DEVFLD = are specified, this
keyword cannot also be specified.

DEVNUL=
Specifies the value for the device flag byte that is used to determine if a null
value was specified for this criterion.

MODRTN=
Specifies the name of the routine used to modify the criterion following
selection by a offioad receiver. This keyword is required if the criterion is
to be modified.

FLAG
Indicates that the general flag routine is to be called

CHAR
Indicates that the general character routine is to be called

rto-name
Indicates a valid modify routine that is to be called

MODFLD=
Specifies the name of the field that is to be modified when the job or
SYSOUT is reloaded.

MODCB=
Specifies the DSECT name required to resolve the field specified by the
MODFLD= keyword. Valid field names are:

Field Name

NJHG
NJHO
NJH2
NJHU
NDHG
NJHA
NDHS
NDHU

Meaning

General section of the job header
Spool offload header section
JES2 section of the job header
User section of the job header
General section of the data set header
3800 printer section of the data set header
Data stream section of the data set header
User section of the data set header

4-234 JES2 User Modifications and Macros LC23-0067-3 C Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $WSTAB

Environment

MODLEN=
Specifies the length of the field that is to be modified. If this length is not
specified, it defaults to the length of the name specified by the MODFLD =
keyword.

MODSRC=
Specifies the name of the field in the control block indicated by the
MODSCB = keyword that contains the value that replaces the current value
in the field specified by the MODFLD= keyword. IfMODRTN= is set to
either FLAG or CHAR this keyword is required.

MODSC)I==
Specifies the name of the valid control block (OCT or VCT) containing the
MODSRC field. This keyword is required if MODSRC = is specified.

MODFLAG=
Specifies the flag value to be set in MODFLD if MODRTN == FLAG is
specified. This keyword is required if MODRTN = FLAG is specified.

MODVAL=
If MODRTN = FLAG is specified, this keyword specifies a mask that is
compared against the byte specified by the MODSRC= keyword. If the
flag is set, then the flag specified by the MODFLAG= keyword is turned
off in the byte specified by the MODFLD = keyword. If the flag is not set,
then the flag specified by the MODFLAG = keyword is turned ofT in the
byte specified by MODFLD=. This keyword is required if MODRTN= is
specified.

Note: MODVAL and MODNULL must both map to the same
MODFLD= byte.

MODNULL=
If MODRTN = FLAG is specified, this keyword specifies a mask that is
compared against the value specified by the MODSRC = keyword. If the
null flag is set, then the device characteristic in the MOD = list has
previously been set to NULL and is not modified.

Note: MODNULL and MODFLD must both map to the same
MODFLD = byte.

• JES2 main task

• $W AIT cannot occur in a routine specified by either the RTN = or
MODRTN = keywords

LC23-0067-3 C Copyright IBM Corp. 1982, 1987 Chapter 4. J£82 Programmer Macros 4-235

$WTO

$WTO - JES2 Write to Operator

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Use $WTO to initiate the display of a message intended for the operator either on
one or more operating system consoles or a .JES2 remote work station console or
printer device.

Format Description - Standard Form

[symbol] $WTO

4-236 JES2 User Modifications and Macros

!
message-addrx 1

(Rl)

,!length-abSeXp 1

(RO)

[, JOB.! ::5 I]
[, WAIT=! ~~s 11

relexp

[!
SVC3sI1

,TYPE= ~~~34

[, ROUTE=code]

l !$DORMANT IJ $ALWAYS
,CLASS= $ACTION

$NORMAL
$TRIVIA

[,PRI.! ~ 11

[,eMS.!::5 I]

[,RMT.! ::5 1 i
[,ueM.! ::5 1]

LC23-0067-3:c Copyright IBM Corp. 1982. 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Format Description - Execution Form

[symbol]

Format Description - List Form

name $WTO

LC23-0067-30 Copyright IBM Corp. 1982, 1987

$WTO !message-addrx)

(Rl)

[.! ~::~th-abSeXp) 1

[. CMB~! ::5) 1
[,WAIT=relexp 1

[! E, name) 1
,MF= EX,name

[, length-absexp]

[. JOB~! ::5) 1

[. WAIT~! ::5) 1

[· TYPE·U~~i~) 1
[,ROUTE=code]

l' CLASS= (i~~~~~~Tl J
$NORMAL
$TRIVIA

[.PRI.! m)]
[.MF·!:X) 1

[. RMT.! ::5) 1

[. UCM~! ::5) 1

$WTO

Chapter 4. J ES2 Programmer Macros 4-237

$WTO

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

message
Specifies the address of a message which is to be displayed on the designated
consoles or the address of a console message buffer (CMB) in which the
message resides if CMB = YES is specified. If register notation is used, the
address must be loaded into the designated register before the execution of
this macro instruction.

length
Specifies the length of the above message. If register notation is used, the
value must be loaded into the rightmost byte of the register (RO) before the
execution of the macro instruction. The rest of the register must be 0 unless
the message is being sent to a remote terminal (see RMT operand).

Note: When using the execute and list forms of the macro instruction as a
pair, the length must be specified in one of the macro instructions but not
both.

JOB =
Specifies whether the job identification and job name from the job control
table (JCT) or the job queue element (JQE) are appended to the start of the
messages as follows:

YES (default)
The job information is appended to the message.

NO
The job information is not appended to the message.

If this operand is omitted, JOB = YES is assumed.

Caution: If JOB = YES is specified, register 10 must be loaded with the
address of either the job control table entry or the job queue element before
the execution of this macro instruction, or the job infonnation printed is
unpredictable.

WAIT =
Specifies the action to be taken in the event that no console message buffers
are available as. follows:

YES

NO

Return is not made until a console message buffer has become
available and the message has been queued.

An immediate return is made with the condition code set as follows:

CC=O
No console message buffers are available. The message was not
accepted and the macro instruction must be reissued.

CC#:o
The message was accepted.

4-238 JES2 User Modifications and Macros LC23-0067-3 @ Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

relexp

$W'fO

A location to which control is returned if eMB = YES is not specified and
no console message buffers are available; or a location to which control is
returned if eMB = YES is specified and the control of the ML WTO
resource was required but not obtained.

If this operand is omitted, WAIT = YES is assumed.

Notes:

1. The specification of WAIT= YES or WAIT= NO has no meaning when
the console message buffer is provided by the user and CMB= YES is
specified.

2. The specification of WAIT=relexp has no meaning if MF=L or LX.

CMB=
Specifies whether or not the user of the $WTO macro instruction has
provided a console message buffer for use by console services as follows:

NO (default)

YES

A console message buffer has not been provided, and the message
operand refers to message text.

A console message buffer has been provided, and the message operand
refers to the console message buffer containing the user's message.

If this operand is omitted, eMB = NO is assumed.

Notes:

1. IfCMB= YES is specified, the message must appear in the appropriate
locations within the console message buffer as follows:

JOB =YES
Message starts in CMBTEXT field

JOB =NO
Message starts in CMBJOBN field

2. If CMB= YES and an address is not specified by the WAIT operand as a
non process exit, the user must test the condition codes following the macro
instruction when multiline write-to-operator messages (M L WTO) are
specified. The condition codes indicate the following:

CC=o
The MLWTO was rejected, and the CMB is available to the caller.

CC#o
The message has been queued for display, and the console message
buffer is not available for use by the user.

LC23-0067-3 C Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-239

$WTO

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

3. If CMB= YES is specified. the CMB must have been obtained by the use
of the $GETCMB macro instruction which deletes the previously-obtained
CMB.

4. The $MSG macro instruction should be used to generate the message text
or. if dynamically generated. at least the message identification section.

TYPE =
Specifies the logical meaning of the ROUTE operand as follows:

SVC35 (default)
The message is to be displayed on the dynamically designated remote
work station console or the operating system consoles which have
been set to receive the message category.

Note: If this option is selected, use one and only one of the following
specifications: ROUTE= or UCM= or RMT=

SVC34

WPL

ROUTE =

The message is to be given to the operating system as a command. If
this option is selected, ROUTE=, UCM=, and RMT= have no
meaning.

The message is to be displayed on the operating system consoles;
however, the message address must be an MVS WTO parameter list
(WPL). (You can generate this list by using the list form of the MVS
WTO macro.) Refer to Supervisor Macros for a description and use of
this MVS macro. Also, the specified WPL must include routing and
descriptor codes.

Note: If this option is selected, CMB=NO must be specified (or
defaulted), and MF=, RMT=, UCM=, and ROUTE= are ignored,
if also specified.

When using standard and MF = L forms, specifies the JES2 logical routings
which are converted to operating system equivalent routings as follows:

Designation
SLOG
SERR
SUR
$TP
$TAPE
SMAIN
SALL
o

Coosole Specified
Hard-copy console
Error console(s)
Unit-record operations area
Teleprocessing operations area
Tape operations area
Chief operator's area
All of the above consoles
UCMID or logical console are specified dynamically.

When using the MF = LX format, the operating system console routings
must be specified directly using the X'xxxx' or B'xxxxxxxxxxxxxxxx' form.

If this operand is omitted, the $LOG console is assumed unless UCM = YES
or RMT = YES is specified.

4-240 JES2 User Modifications and Macros LC23-0067-3 !O Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM $WTO

Caution: The designation SALL should not be used in conjunction with any
other console but should be specified alone; otherwise, results are
unpredictable.

RMT=
Specifies whether or not the display location is to be a JES2 remote work
station.

NO

YES

UCM=

The destination is not a remote work station and therefore must be
logical routing or UCM.

The destination is a work station, and the following action is required
prior to executing execution forms of the macro instruction:

• For standard or MF = E forms, the remote number is set in
register 0 (RO); 0 must be set into bits 0-7, the remote number
must be set into bits 8-23, and the length of the message must be
set into bits 24-31. RO must be specified in the executing macro
instruction's length operand.

• For MF = EX form, the remote number must be placed in the
MF = LX half word field corresponding to CMBRMT field of the
CMBDSECT.

Specifies whether or not the display location is to be a specific operating
system console identified by a unit control module (UCM) number.

NO

YES

The destination is not a UCM console number and therefore must be
logical routing or RMT.

The destination is a UCM console number, and the following action is
required prior to executing execution forms of the macro instruction:

• For standard or MF=E forms, the UCM console number must be
set into register 0 (RO) with bits 0-15 set to zero, the UCM
console id in bits 16-23, and the length in bits 24-31.

• For MF=EX form, UCM console, UCM console area, and
ML WTO line type information must be placed in the MF = LX
field corresponding to the CMBUCM, CMBUCMA, and
CMBLMET fields of the CMBDSECT.

When using extended forms of the WTO macro instruction, the MF= LX
format of macro is used to create a partial parameter list in the format of
the resulting console message buffer (CMB) used to queue the message for
display. This list can be mapped by the $CMB macro instruction offset so
that byte 1 of the macro expansion corresponds with the CMBFLAG field.
The parameter list is 14 bytes long. The fields corresponding to the

LC23-0067-3 e Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-241

$W']['O

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

CMBTO control fields must be set into the parameter list prior to execution
of the corresponding MF = EX form of the $WTO macro instruction.
Normally this is done by moving in the $SYSID field of the HASP
communications table (HCf). Other fields may be required depending upon
options specified in the MF = LX format as follows:

ROUTE = specified
No setting required in the CMBOUT field.

UCM=YES and RMT=YES are prohibited.

RMT =YES
Remote work station number must be set in the CMBRMT byte of
the CMBOUT field.

ROUTE and UCM = YES are prohibited.

UCM =YES

CLASS =

Operating system UCM information is required:

• UCM number is set in CMBUCM.

• UCM area for MLWTOs is set in CMBUCMA (CMBUCMA set
to 0 indicates single line WTO).

• UCM.ML WTO line type is set in CMBLINET (required for
CMBUCMA nonzero.)

Use of MLWTO formats of the parameter list is reserved for the
command processor.

Precautions must be taken not to issue a normal $WTO by the
command processor or any processor on which the command
processor waits from the time the first (control) ML WTO line $WTO
is issued until the last (END) ML WTO line $WTO is issued. A
violation of this rule might cause console lock out.

Specifies the class of the message as one of the following:

$DOMACT
The message requires immediate action and is always written.

$ALWAYS
The message is essential and is always written.

$ACTION
The message requires eventual operator action.

4-242 JES2 User Modifications and Macros LC23-0067-3 10 Copyright IBM Corp. 1982. 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

SNORMAL

$Wl'O

The message is considered important to normal computer operations.

STRIVIA
The message is considered unimportant to normal computer
operations.

If this operand is omitted, $NORMAL is assumed.

The $OOMACT specification is reserved for $WTOs issued to logical
consoles. On return from $WTO processing, register I contains the address
of the console message buffer (CMB) containing the message. The CMB is
retained in the system until a corresponding $OOM is executed using the
returned pointer.

PRI=
Specifies the priority of the message as one of the following:

SRI
High priority

SST
Standard priority

SLO
Low priority

If this operand is omitted, SST priority is assumed.

Notes:

1. MF=L or MF=E are forms of the $WTO macro instruction that allow the
predefinition of parameter lists similar to MVS supervisor services macros
specified with the "execute" or "list" forms.

2. MF=LX or MF=EX are extendedforms of MF=L or MF=E. respectively.
These extended forms allow you to specify the $ WTO macro instruction without
using $GETCMBJormatting the CMB in detail, and using $WTO
CMB=YES.

3. The CMBTO field in the CMB can befilled out to route messages to another
node in the JES2 network or to another member in the multi-access spool JES2
complex. Field CMBUCM can be set to indicate not only the console id, but
also the console area. MLWTOs can be used with explicit route and descriptor
codes. To do this, you must format the console area with the CMB mapping
and the MF=EXform of the $WTO macro instruction.

4. The MF=LXform of the $WTO macro instruction only allows explicit route
codes via ROUTE = B'xxxxxxxxx ... ' or X'xxxx'. Descriptor codes cannot be
specified using the M F= LX form of the $ WTO macro.

5. The CMB mapping starts with the CMBFLAG field and not the CMBDSECT
field.

LC23-0067-3 e Copyright IBM Corp. 1982, 1987 Chapter 4. JES2 Programmer Macros 4-243

$W'fO

Environment

• Main task.

"Restricted Materials of mM"
Licensed Materials - Property of mM

• $W AIT can occur depending on how WAIT = is specified.

4-244 JES2 User Modifications and Macros LC23-0067-3 Q Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$XMPOST - POST Task in Another Address Space

Format Description

Use $XMPOST to POST a task in another address space.

[symbol]

element

$XMPOST 1 element-addrx 1
(Rl)

$XMPOST

Specifies either register I which contains the address or the address of a
3-word POST element formatted as follows:

+0
Address of ECB to be posted ($POST)

+4
Address of related ASCB

+8
Address of error return

Environment

• Main task.
• $W AIT cannot occur.

LC23-0067-3 (0 Copyright IBM Corp. 1982. 1987 Chapter 4. JES2 Programmer Macros 4-245

4-246 JES2 User Modifications and Macros

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

LC23-0067-3 Q Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Appendix A: Acronym List

LC23-0067-3 © Copyright IBM Corp. 1982. 1987 Appendix A: Acronym List

JES2 User Modifications and Macros

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

LC23-0067-3 @ Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Appendix A. Acronym List

ACB access control block
ACF advanced communication function
APAR authorized program analysis report
APT application table
BAL basic assembler language
BSAM basic sequential access method
BSC binary synchronous communication
BSCA binary synchronous communication

adapter
CCE cell control element
CCW channel command word
CLPA common link pack area
CMB console message buffer
CMS cross memory services
CSA common service area
CSECT control section
CTC channel-to-channel
DAS direct access control blocks
DASD direct access storage device
DCT device control table
DTE daughter task element
EBCDIC - extended binary-coded decimal

interchange code
EM end of media
EOF end I..lf file
ERA error recovery area
FCB forms control buffer
FSA functional subsystem

application
FSACB functional subsystem

application control block
FSS functional subsystem
FSSCB functional subsystem

control block
FSVT functional subsystem

vector table
GRS global resources serialization
HASP Houston automatic spooling priority
HCT HASP communication table
HFCT HASP functional

subsystem communication table
I/O input/output

LC23-0067-3 e Copyright IBM Corp. 1982, 1987

lOT input/output table
IPL initial program load
IPS installation performance specification
JES2 job entry subsystem 2
JCL job control language
JCT job control table
JIB JOE information block
JIX job queue index
JMR job management record
JOE job output element
JOT job output table
JQE job queue element
JSPA job separator page data area
LMT load module table
LPA link pack area
LRECL logical record length
LU logical unit
MCT master control table
MIT module information table
MLU multiple logical unit
MSS mass storage system
MTTR module relative track/record
MVS multiple virtual storage
NACT network account table
NAT nodes attached table
NCP network control program
NCP/VS - network control programjVS
NDH network data set header
NIT nodes information table
NJE network job entry
NJH network job header
NPM network path manager
PCE processor control element
PDDB peripheral data definition block
PDIR peripheral data information record
PID Program Information Distribution
PIT partition information table
PLPA pageable link pack area
PPL purge' parameter list
PRE processor recovery element
PSO process SYSOUT processor
PTF program temporary fix

Appendix A. Acronym List A-I

PU physical unit
QCT quick cell control table
QSE shared queue element
RACF Resource Access Control Facility
RAT remote attribute table
RMT remote
RPL request parameter list
RPS rotational position sensing
RTAM remote terminal access method
RTP remote terminal program
SAM sequential access method
SCWA scan work area
SDLC synchronous data link control
SMF system management facility
SMP system modification program
SNA system network architecture
SPOOL simultaneous peripheral operations

online
SRM system resources manager
SSVT subsystem vector table
STC started task control
SVC supervisor call instruction
SWA scheduler work area
SWB scheduler work block
SYSIN system input

A-2 JES2 User Modifications and Macros

SYSOUT -
TGAE
TGB
TOD
TRC
TRCA

TSO
TSO/E
TSU
TTE
UCB
UCM
UCS
UCT
VIO
VTAM

WS
WTO
WTOR
XA
XlT
XFER
XRT

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

system output
track group allocation element
track group block
time-of-day
table reference character
termination recovery communication
area
time-sharing option
time-sharing option extension
time-sharing user
trace table entry
unit control block
unit control module
universal character set
user control table
virtual input/output
virtual telecommunication access
method
work selection
wri te-to-operator
write-to-operator with reply
extended architecture
exit information table
transfer
exit routine table

LC23-0067-3 ro Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Appendix B: Hints for Coding JES2 Exit Routines

Overview B-t
Assembler Instructions B-l
Constants B-2
DSECTs B-2
Registers B-2
Miscellaneous B-2

Required Mapping Macros B-3
1£S2 Main Task Environment Exits B-3

Assuming you minimally code the following for each exit. B-3
Req uired Macros: B-4

JES2 User or Subtask Task Environment Exits B-4
Assuming you minimally code the following for each exit. B-4
Required Macros: B-4

Functional Subsystem Address Space Environment Exits B-4
Assuming you minimally code the following for each exit. B-4
Required Macros: B-4

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Appendix B: Hints for Coding JES2 Exit Routines

JES2 User Modifications and Macros

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Appendix B. Hints for Coding JES2 Exit Routines

Overview

Assembler Instructions

This appendix presents several hints and suggestions for writing JES2 installation
exits. Following these hints can help you in the following ways:

• Improve your code's readability and simplify debugging of your exit code.
• Ease migration to a new release or maintenance level.
• Reduce the number of errors in your exit code.

• All USING/DROP statements should be paired. No overriding USINGs
should be used except when PUSH/pOP is used. This helps prevent errors
caused by incorrect base registers.

• All TM (test-under-mask) instructions should use
BO/BOR/BNO/BNOR/BM/BMR branch instructions rather than
BZ/BZR/BNZ/BNZR branch instructions. If this technique is used. the logic
of the branch instruction does not have to be modified when adding or
deleting flags in the instruction mask.

• Branches to *- or * + should not be used except in macro code. This reduces
the possibility of causing errors when inserting new lines of code that change
the offset of the instruction to which the code is branching.

• Branch tables should be fully coded and documented. Branches to a
non-labeled line immediately after the branch table should not be used.

• To increase code readability. all branch instructions should use the extended
mnemonic instructions for both RX and RR machine instruction formats.

• All flag bits in flag-byte fields should be defined by equated symbols. Explicit
hexadecimal constants should not be used within instructions to represent
flag-bit settings. This allows easy reference to a given flag setting. The SI
format instructions TM. 01. NI. and XI should also use equated symbols. To
provide easy reference. these instructions should use equated symbols for their
masks.

LC23-0067-3 C Copyright IBM Corp. 1982, 1987 Appendix B. Hints for Coding JES2 Exit Routines B-1

Constants

DSECTs

Registers

Miscellaneous

"Restricted Materials of mM"

Licensed Materials - Property of IBM

• When the implied length of the target field cannot be used. instructions
containing length fields should use equated symbols. not hard-coded lengths.
Therefore. only a reassembly is necessary if the length of the field is changed.

• Rather than using literals. the HCT/HFCT/SSVT DSECTs define many
constants which you should use whenever possible. The following are a few
examples from the HCT:

$ZEROES - doubleword of binary zeroes
$FI - fullword binary one
$H4 - half word binary four
$BLANKS - doubleword of EBCDIC blanks (X'40')

• For ease of migration, mapping DSECTs used as templates should not be
explicitly duplicated within source code. An example of this technique is the
use of JES2 $PDDB macro.

• Whenever possible. the use of locally-defined DSECTs, macros, or equated
symbols should be avoided. This technique helps to avoid future migration
problems.

• Equated symbols for general purpose registers 0 to 15 (RO-RI5) should be
used.

• The general-purpose register equates used throughout JES2 are as follows:

RO Parameter passing
RI Parameter passing
Rll HCT addressability (JES2 main task)
RII HCT addressability (JES2 subtasks)
Rll HFCT addressability (HASPFSSM)
RII SSVT addressability (HASPSSSM)
R12 Lo<:a.I addressability if $SA VE/SRETURN
Rl3 PCE addressability (JES2 main task)
RI3 Save area address (HASPFSSM)
R14 Return address
RIS Entry address/return code

• Returned information used for routines and subroutines should use return
codes, not condition codes. All return codes should be passed in register 15.

• Except in critical performance areas, the use of dynamic work areas rather
than PCE work areas (for example, using $GETCMB to obtain a message
building work area) is recommended. Dynamic work areas should be used to

B-2 JES2 User Modifications and Macros LC23-0067-3 C Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

prevent unnecessary wasted storage caused by defining many unique PCE
work area fields.

• The inclusive OR instruction (OC) should not be used to test whether a field
is zero or non-zero. The OC can cause unnecessary page-outs, thus incurring
needless system overhead. Rather, the CLC (compare logical) instruction can
be used to compare the field with an appropriate constant (for example,
$ZEROES).

• All code should be documented clearly and concisely. A good rule is to
document every line of code. In addition, block comments should be used to
document every module, routine. and subroutine. These comments should
include detailed information on the function of the routine, register values
required on entry and exit, register usage within the routine, and possible
return codes.

Required Mapping Macros

Depending on the environment in which an exit executes, you will need to provide
the appropriate set of mapping macros to map storage areas. Below, listed by
environment, are the standard mapping macros required in order that your exit
routine will assemble properly. You should also note that individual exits also
require other specific mapping macros. These are listed under the "Mapping
Macros Normally Required for This Exit At Assembly" heading provided for
each exit.

Note: The addition of $MODULE in each exit will caused JES2 to "pull in"
required mapping macros. However, all macros should be explicitly coded to
prevent the return of MNOTEs and the possibility of assembly errors. Be certain
your exit routines conform to JES2 coding conventions. This will allow easier
diagnosis if an error should occur.

JES2 Main Task Environment Exits

0-5
7
10 - 11
13 - 22
24
26

Assuming you minimaUy code the joUowing jor each exit.

START
$MODULE
$ENTRY
$SAVE
$RETURN
$MODEND
END

LC23-0067-3 e Copyright IBM Corp. 1982, 1987 Appendix B. Hints for Coding JES2 Exit Routines B-3

Required Macros:

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

SHASPEQU (required for standard JES2 equates)
SHCT (required by SSA VB I SRETURN)
SMIT (required by SMODULE)
SPCE (required by SMODULE)

JES2 User or Subtask Task Environment Exits

6
8-9
12

Assuming you minimally code the foBowing for each exit.

START
SMODULE
SENTRY
STM R14,RI2,R12(R13)
LM RI4,R12,RI2(R13)
SMODEND
END

Required Macros:

SHASPEQU (required for standard JES2 equates)
SMIT (required by SMODULE)

Functional Subsystem Address Space Environment Exits

23
25

Assuming you minimaBy code the foBowing for each exit.

START
$MODULE
SENTRY
SSAVE
SRETURN
$MODEND
END

Required Macros:

SHASPEQU (required for standard JES2 equates)
SHFCT (required to support SSA VB I $RETURN)
ETD (required to support $HFCT)
FSIP (required to support $HFCT)

B-4 JES2 User Modifications and Macros LC23-0067-3 Q Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Appendix C: JES2 Macro List

LC23-0067-3 © Copyright IBM Corp. 1982. 1987 Appendix C: JES2 Macro List

JES2 User Modifications and Macros

"Restricted Materials of mM"
. Licensed Materials - Property of mM

LC23-0067-3 e Copyright IBM Corp. 1982. 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Appendix C. JES2 Macro List

Macro Title

$$POST Post a JES2 Event
Complete from Another
Task

$$WTO JES2 Subtask Write to
Operator

$$WTOR JES2 Subtask Write to
Operator with Reply

S#ADD Add a
Work/Characteristics JOE
Pair to the JOT

$#ALCHK Obtain a Spool Record for
Output Checkpointing

$#BLD Format JOEs

$#CAN Cancel All Work Items
Not Currently Being
Processed for a Specific
Job

$#CHK Process Print/Punch
Checkpoint Spool I/O

S#GET Search the JOT Class
Queues for an Output
Element that Matches the
Requesting Specification

$#JOE Find and Validate Queue

$#MOD Move a Work JOE from
One Queue to Another in
the JOT

Figure C-l (part 1 of 8). JES2 Macro List

LC23-0067-3 Cl Copyright IBM Corp. 1982, 1987

Use

Post specific JES2 processors or
resources

Initiate the display of an operator
message from a JES2 subtask or
at JES2 initialization termination

Initiate the display of an operator
message, requiring a reply, from a
JES2 subtask

Add a JOE to the appropriate
JOT queue and add the
characteristics JOE to the JOE
queue

Obtain a spool record for output
checkpointing

Format a pair of work and
characteristic JOEs in the
provided work area

Remove from the JOT all
available work items for a job

Process print/punch checkpoint
spool I/O

Search the JOT for output work

Cause the output service
processors to generate the address
for the head of specific queues

Remove a work JOE from the
queue it is on and place it on the
proper queue as determined by its
routing, SYSOUT class, or
offload status

Appendix C. JES2 Macro List C-l

Macro Title

$#PDBCAN Cancel a JOE's Nonheld
Data Sets

$#PDBLOC Find a PDDB by Data Set
Key

$#POST Post Output Device
Processors

$#PUT Return an Unfinished JOE
to the JOT for Later
Processing

$#REM Remove a Work
Characteristics JOE Pair
from the JOT

$ACTIVE Specify Processor is Active

$ALLOC Allocate a Unit Record
Device

$AMODE Set the Addressing Mode

$BFRBLD Construct a JES2 Buffer
Prefix

$BLDQC Call the Quick Cell
Build/Extend Routine

$BLDTGB Queue TGBs to the
HASPOOL Processor

$BUFCK Check Buffer I/O

$BUFIO Read or Write a Buffer

$CALL Call a Subroutine from
JES2

$CKPT Schedule the Checkpoint of
an Element

$COUNT Count Selected Occurrences

Figure C-I (Part 2 of 8). JES2 Macro List

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Use

Mark a JOE's nonheld data sets
for subsequent gathering for
printing

Locate a PDDB using a specific
data set key as the search
argument

Post device processors that are
waiting for work associated with
specific output devices

Return a JOE to the JOT for later
processing

Remove a work and
characteristics JOE pair from the
JOT after the output has been
completed

Indicate to JES2 that the
associated processor is performing
work for the JES2 main task

Allocate a device to JES2

Set the appropriate addressing
mode for either MVS/370 or
MVS/XA

Construct an lOB or RPL in the
form of a JES2 buffer

Call the quick cell build/extend
routine to build or extend a quick
cell pool

Build TGBs and queue them off
of the $SPOOLQ in the HCT

Verify the completion of buffer
I/O that was initiated by $BUFIO

Read or write a buffer from or to
spool

Call a subroutine from a JES2
module

Schedule the checkpoint of an
element in a JES2 checkpoint
table that has been altered

Increase a counter to determine
the number of times a particular
piece of code is entered

C-2 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

I
I
I
I

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Macro

$CWTO

SDCBDYN

SDCTDYN

SDCTTAB

$DEST

SDISTERR

$DOM

$DORMANl

$DTEDYN

SDTETAB

SENTRY

$ERROR

$ESTAE

$EXCP

$EXIT

$EXTP

$FRECEL

Title

Command Processor Write
to Operator

Call the Dynamic DCB
Service Routine

Call the Dynamic DCT
Service Routine

Map DCT Table Entries

Convert Symbolic
Destination to a Route
Code

Indicate Disastrous Error

Delete Operator Message

Specify Processor is
Inactive

Call the Dynamic DTE
Service Routine

Build the DTE tables

Provide Entry to JES2
Processor or Function

Indicate Catastrophic Error

JES2 Error Recovery
Environment

Execute JES2 Channel
Program

Provide Exit Point

Initiate Remote Tenninal
Input/Output Operation

Free Common Storage Cell

Figure C-I (Part 3 of 8). JES2 Macro List

LC23-0067-3 e Copyright IBM Corp. 1982, 1987

Use

Cause a write to operator

Provide the interface to the
$DCBDYN service to attach or
detach a JES2 data control block
and/or data extent block.

Provide the interface to the
SDCTDYN service to attach or
find a JES2 device control table.

Map and generate DCT table
entries

Convert a symbolic destination to
a binary route code

Indicate that a disastrous error
occurred

Delete an operator message

Indicate to the JES2 dispatcher
that the associated JES2 processor
has completed job or task
processing

Call the daughter task element
(DTE) dynamic service routine to
provide A TT ACH/DET ACH
services for user-defined subtasks.

Build the DTE tables

Identify and document an entry
point to a JES2 processor
function or installation exit
routine

Indicate that a catastrophic error
has occurred and to abend the
JES2 main task

Generate the calling sequence to a
recovery service routine in
HASPNUC

Initiate JES2 input/output activity

Establish an exit point

Initiate a remote terminal or
network device input/output
action or operation

Return a storage area to the cell
pool

Appendix C. JES2 Macro List C-3

Macro Title

$FRECMB Free a Console Message
Buffer

$FREEBUF Return a JES2 Buffer to
the JES2 Buffer Pool

$FRELOK Free the MVS CMS Lock,
LOCAL, or JES2 Job Lock

$FREMAIN Branch-Entry FREEMAIN
Services

$FREQC Free Quick Cell

$FREUCBS Free UCB Parameter List
Storage

$FREUNIT Release a Unit Device
Control Table

$FSILINK Link the Functional
Subsystem Interface

$GETABLE Get HASP/USER Table
Entries

$GETASCB Retrieve the Primary,
Secondary, or Home ASCB

$GETBLK Get a Storage Cell from a
Free Cell Pool

$GETBUF Acquire a Buffer from a
JES2 Buffer Pool

$GETCEL Acquire a Common
Storage Area Cell

$GETCMB Get Console Message
Buffers

$GETLOK Acquire the MVS CMS,
LOCAL, or JES2 Job Lock

$GETMAIN Branch-Entry GETMAIN
Services

$GETQC Call the Quick Cell Get
Routine

$GETSMFB Acquire a JES2 SMF
Buffer from the JES2 SMF
Buffer Pool

Figure C-l (part 4 of 8). JES2 Macro List

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Use

Return a console message buffer
to the free queue

Return a JES2 buffer to the JES2
buffer pool

Free the CMS lock, LOCAL, or
JES2 job lock obtained by
$GETLOK

Free an area of storage obtained
via MVS GETMAIN services.

Free the storage obtained for the
quick cells

Free UCB parameter list storage

Release a DCT

Provide the base register setup for
the functional subsystem

Return table entries for the
HASP/USER table pairs

Access the ASID to place the
primary, secondary, or home
ASCB address into a register

Obtain a specified number of
predefined storage cells from one
of several cell pools

Obtain a buffer from a buffer
pool and return the address

Obtain a storage area for use in
communicating infonnation
between the JES2 main task and
HASPSSSM

Obtain console message buffers
from the free queue

Obtain the MVS CMS, LOCAL,
or JES2 job lock as required

Obtain or free an area of storage
from MVS
GETMAIN/FREEMAIN services

Obtain storage cells from the
previously built quick cell pool

Obtain a buffer from the JES2
SMF buffer pool

C-4 JES2 User Modifications and Macros LC23-0067-3 Q Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Macro

$GETUCBS

$GETUNIT

SGETWORK

SIOERROR

$JCAN

SJCTIO

$MID

SMODCHK

$MODEND

SMODULE

$MSG

$NHDGET

$PATCHSP

$PBLOCK

SPCEDYN

$PCETAB

$PGSRVC

$POST

Tide

Obtain a UCB Address

Acquire a Unit Device
Control Table (DCT)

Obtain a Work Area

Log Input/Output Error

Cancel Job

Call the JCTIOR Routine

Assign JES2 Message
Identification

Call the MODCHK
Verification Routine

Generate End of Module

Provide a Module
Information Table

Write to Operator Message
Area

Get Network Header
Section

Generate Patch Space

Block Letter Services

Attach or Delete a JES2
PCE

Generate or Map PCE
Table Entries

Perform a Virtual Page
Service

Post a JES2 Event
Complete

Figure C-l (Part 5 of 8). JES2 Macro List

LC23-0067-3 e Copyright IBM Corp. 1982, 1987

Use

Obtain UCB addresses

Assign a unit device control table
to a specific device

Obtain a work area chained off
the current PCE

Log an input/output error on the
operator's console

Prepare a specific job for current
processing cancellation

Call the JCTIOR routine in
HASPNUC to read or write a
JCT from spool.

Set the global variable symbol
&MID to an EBCDIC character
string

Verify module residence, level,
and name.

Generate the MIT entry table to
fill the mask field in the MIT

Generate a module information
table to establish assembler global
variable values, DSECTs, and
EQUs

Generate a message text area to
be used by $WTO

Search through the network job
header, job trailer, or data set
header to locate a specified
section of a control block.

Generate a specified number of
bytes of patch space

Create block letters from the JCT
and PCE for separator pages

Provide interface to those services
that perform generating and
deleting of JES2 processors

Map and generate PCE table
entries

Page-fix, page-free, or
page-release an area of JES2
storage

Indicate that a JES2 resource
should be posted using the HCT

Appendix C. JES2 Macro List C-5

Macro Title

$POSTQ Quick Post Facility

$PRPUT Create Separator Pages

$PURGE Return Direct-Access Space

$QADD Add Job Queue Element to
the JES2 Job Queue

$QCTGEN Define a Quick Cell
Control Table

$QGET Obtain Job Queue Element
from the JES2 Job Queue

$QJIX Add a Job Queue Element
to the Job Index Table
(JIX)

$QLOC Locate Job Queue Element
for Specific Job

$QMOD Modify Job Queue Element
in the JES2 Job Queue

$QPUT Return Job Queue Element
to the JES2 Job Queue

$QREM Remove Job Queue
Element from the JES2 Job
Queue

$QSUSE Synchronize to Use Shared
Queues

$QUESMFB Queue a JES2 Buffer on
the Busy Queue

$RELEASE Release the Checkpoint
Reserve

$RESERVE Request Checkpoint
Reserve

$RESTORE Restore Registers from the
Current Processor Save
Area

$RETBLK Return a Storage Cell to a
Free Cell Pool

$RETSAVE Return a JES2 Save Area

Figure C-I (Part 6 of 8). JES2 Macro List

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Use

Quick post an ECB or issue an
MVSPOST

Create user-defined separator
pages

Return the direct access space that
was allocated for a job or data set

Add an element to the JES2 job
queue and place it into a specified
logical queue

Define the attribute of a quick cell
control table

Obtain a job queue element from
a specified logical queue of the
JES2 job queue

Get a job number for a specified
JQE and add the JQE to the JIX

Locate the JQE associated with
the specified job

Remove a modified JQE from the
JES2 job queue and return it to
the specified logical queue

Return a JQE to the JES2 job
queue and place it in the specified
logical queue

Remove a specified JQE from the
JES2 job queue

Update the checkpoint records to
access any checkpoint information

Place a JES2 SMF buffer address
on the busy queue and MVS
POST the HASPACCT subtask

Release the checkpoint through
MVS RELEASE services

Reserve a checkpoint through
MVS RESERVE services

Restore registers from the current
processor's save area

Return predefined storage cells to
previously defined free cell pools

Return the current JES2 save area
to the JES2 free pool of save
areas

C-6 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1~82, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Macro

$ RETURN

$RETWORK

$SAVE

$SCAN

$SCANB

$SCANCOM

$SCAND

$SCANTAB

$SDUMP

$SEPPDIR

$SETRP

$STCK

$STIMER

$STMTLOG

$ STORE

$TIDTAB

$TGMSET

Title

Restore Registers, Free the
JES2 Save Area, and
Return to the Caller

Return a Work Area

Obtain JES2 Save Area
and Save Registers

Scan Initialization
Parameters and Operator
Commands

Backup Storage for a Scan

Call the $SCAN Facility
Comment Service Routine

Call the $SCAN Facility
Display Service Routines

Scan Table

Take an SDUMP of
Storage

Create a User Peripheral
Information Record
(PDIR)

Set Recovery Processing
Options

Call the $STCK Service
Routine

Set Interval Timer

Log an Initialization
Statement

Store Registers in the
Current Processor Save
Area

Generate the Trace ID
Table CSECT

Call the $TGMSET Service
Routine

Figure C-l (Part 7 of 8). JES2 Macro List

LC23-0067-3 © Copyright IBM Corp. 1982, 1987

Use

Restore the caller's registers saved
in the current processor save area
and return the save area

Return a work area obtained with
the $GETWORK. macro

Obtain a register save area from
the JES2 save area pool and save
registers 14, 15, and 0 through 12.

Scan JES2 parameters and option
statements and operator
commands and place values in or
create control blocks, or display
keyword values

Backup a copy of a storage before
it is changed by $SCAN

Use the $SCAN comment service
facility to skip over imbedded
comments in both initialization
statements and commands.

Add text to a display line created
by the $SCAN macro

Create scan tables used by
$SCAN to define syntax for
initialization statements and
operator commands

Dump the storage of selected
address spaces

Send a PDIR to remote SNA
devices that require a PDIR to use
their spooling capabilities

Indicate where control is passed
following a $RETRY

Call the $STCK (store clock)
service routine

Set a time interval for the
programmed interval timer

Log initialization statements and
related diagnostics

Store registers in the current PSA
created by $SA VE

Generate and map trace ID (TID)
table entries

Generate the calling sequence to
$TGMSET

Appendix C. JES2 Macro List C-7

Macro Title

$TRACE Trace a JES2 Activity

$TRACK Acquire a Direct Access
Track Address

$TTIMER Test Interval Timer

$VERIFY Call the $VERIFY Service
Routine

$VERTAB Build the Inline
Verification Tables

$VFL Variable Field Length
Instruction Operation

$WAIT Wait for a JES2 Event

$WSSETUP Set Values Required for
Work Selection

$WSTAB Map and Generate the
Work Selection Table
Entries

$WTO JES2 Write to Operator

$XMPOST POST Task in Another
Address Space

Figure C-J (Part 8 of 8). JES2 Macro List

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Use

Allocate a JES2 trace table entry
(TTE) in a active trace table

Obtain a track address on a JES2
spool volume

Obtain the time remaining in the
associated time interval set by
$STIMER

Call the $VERIFY service routine
to validate spool-resident control
blocks

Build the inline verification tables
used by the $VERIFY service
routine

Provide storage-to-storage
operations when the field length
exceeds 256 bytes or there are no
associated assembler instructions

Place the associated processor in a
JES2 wait state and specify the
specific event

Set specific values that are
required to support work selection

Map and generate the work
selection table entries

Initiate the display of a message
for the operator on a specified
device

POST a task in another address
space

e-8 JES2 User Modifications and Macros LC23-0067-3 Cl Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

I Appendix D: JES2 Exit Usage Limitations

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Appendix D: JES2 Exit Usage Limitations

JES2 User Modifications and Macros

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

LC23-Q067-3 @ Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

I Appendix D. JES2 Exit Usage Limitations

The following table notes those instances when reader and converter exits (Exits 2,
3, 4, 6, and 20) are invoked or not invoked. Be certain to consider this
information when attempting to implement these exits.

LC23-0067-3 IQ Copyright IBM Corp. 1982, 1987 Appendix D. JES2 Exit Usage Limitations D-l

Notes:

Source of Job

Job from local reader
Job from remote reader
SYSOUT data from spool offload
TSO session logon (TSU)
TSO submitted job
Started task
Job with I*ROUTE XEQ
Job following I*XMIT JECL
Job from NJE job receiver:

Job for this node
Store and forward

Job from NJE SYSOUT receiver:
Job for this node
Store and forward

Job internally generated
(SYSLOG-RMTMSG) by JES2

Spool offload job receiver1

Spool offload SYSOUT receiver
XBM invocation
XBM joblet

Special Case JCL and JECL

JCL from cataloged procedure
11* COMMENT cards
I*PRIORITY statements
I*$command statements3

1* end of SYSIN data
II null statements
Generated DD* statement
1* with invalid verb
II with invalid verb
I*EOF internal reader
I*DEL internal reader4

I*PURGE internal reader4

I*SCAN internal reader

Y Exit is invoked
N Exit is not invoked

Not applicable

2

Y
y
N
Y
y
y
Y
N

Y
N

N
N

N
y
N
Y
Y

-
-
-
-
-
-
-
-
-
-
-
-
-

Input

3

yl
yl
N
yl
yl
yl
yl
N

yl
N

N
N

N
yl
N
yl
yl

-
-
-
-
-
-
-
-
-
-
-
-
-

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Exits Taken For:

Service Converter

4 20 6

Y y y
Y y Y
N N N
y Y 'l
Y Y Y
Y Y Y
Y Y N
N N N

y Y Y
N Y N

N N N
N N N

N N N
Y Y Y
N N N
Y y Y
N N N

N - y
N - -
Y - -- y -
N - -
N - -
Y - -
Y N -
Y Y -
N - -
N N N
N N N
N - N

I Exit 3 is taken only if ACCTFLD=REQUIRED or OPTIONAL is specified on the JOBDEF initialization statement. Exit 3 will be
taken even if there is no accounting information provided on the JOB statement.

2 This may be the second (or more) pass through these exits for this job.

3 Commands must be outside of a job; they will invoke Exit 4 but will not have a JCT (RJ 0 = 0).

4 DEL and PURGE INTRDR control statements causes a job to bypass Exit 20.

D-2 JES2 User Modifications and Macros LC23-0067-3 Q Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

Index

I Special Characters I

&ANVIRON global assembly macro 2-10
&RJOBOPT usage 3-18
SSPOST macro 4-10
SSPOST macro (exit 12) 3-49
$SWTO macro 2-16, 4-13
S$WTOR macro 2-16,4-14
S#ADD macro 4-15
S#ALCHK macro 4-16
S#BLD macro 4-IS
S#CAN macro 4-19
S#CHK macro 4-20
S#GET macro 4-22
S#JOE macro 4-24
S#MOD macro 4-26
S#PDBCAN macro 4-27
S#PDBLOC macro 4-28
S#POST macro 4-29
S#PUT macro 4-31
S#REM macro 4-32
SACTlVE macro 4-33
SALLOC macro 4-34
SAM ODE macro 4-35
SBFRBLD macro 4-37
SBLDQC macro 4-38
SBLDTGB macro 4-39
SBUFCK macro 4-40
SBUFIO macro 4-41
SCALL macro 4-43
SCKPT macro 4-44
SCOUNT macro 4-46
$CRET macro 2-16
$CWTO macro 2-16,4-47
SD EXITnnn command 2-37
SD F command 3-57
SDCBDYN macro 4-49
SDCTDYN macro 4-50
SDCTTAB macro 4-52
SDEST macro 4-58
SDISTERR macro 4-60
SDOM macro 4-61
SDORMANT macro 4-62
SDTEDYN macro 4-63
SDTET AB macro 4-66
SENTRY macro 2-17,2-18,4-68
SERROR macro 2-14,4-70
SEST AE macro 2-20, 4-72
SEXCP macro 4-74
SEXlT macro 2-IS, 2-40, 4-76

MAXRC= operand 2-14
SEXTP macro 4-79
SFRECEL macro 4-81
$FRECMB macro 4-S2

LC23-0067-3 © Copyright IBM Corp. 1982, 1987

SFREEBUF macro 3-11. 4-83
$FRELOK macro 4-85
$FREMAIN macro 4-S6
SFREQC macro 4-88
SFREUCBS macro 4-90
$FREUN IT macro 4-91
SFSILINK macro 4-92
SGETABLE macro 4-9:1
$GETASCB macro 4-95
SGETBLK macro 4-97
$GETBUF macro 3-11. 4-98
SGETCEL macro 4-101
SGETCMB 4-103
SGETLOK macro 4-105
SGETMAIN macro 4-107
SGETQC macro 4-110
SGETSMFB macro 4-112
$GETSMFB usage (exit 21) 3-78
SGETUCBS macro 4-113
SGETUNIT macro 4-114
SGETWORK 4-115
SGETWORK macro 2-48
SHASPGBL copying 2-18
SHASP375 message 3-38
SHASP426 message 2-2. 3-5
SHASP427 message 2-2, 3-5
$HASP428 message 3-7
SHASP.546 message 3-56
$HASP864 message 3-6, 3-72, 3-86
SIOERROR macro 4-117
SJCAN macro 3-81,4-118
SJCTIO macro 4-121
SMID macro 4-123
SMODCHK macro 4-124
SMODEND macro 2-18,4-127
$MODULE macro 2-18.4-128
SMSG macro 4-135
SNHDGET macro 4-137
SPATCHSP macro 4-139
SPRLOCK macro 4-140
$PBLOCK service routine 3-11
SPCEDYN macro 4-142
SPCETAB macro 4-144
$PGSR VC macro 4-148
SPOST macro 3-44. 4-150
SPOSTQ macro 4-154
SPRPUT macro 4-155
SPURGE macro 4-157
$QADD macro 4-158
$QCTGEN macro 4-160
SQG ET macro 4-162
$QJIX macro 4-165
SQLOC macro 4-166
SQMOD macro 4-167
SQPUT macro 4-169
SQREM macro 4-170

Index X-I

SQSUSE macro 4-171
SQUESM FB macro 4-172
SQUESMFB usage (exit 21) 3-78
SRELEASE macro 4-173
$RESERYE macro 4-174
SRESTORE macro 4-175
SRETBLK macro 4-176
$RETSA YE macro 4-177
$RETURN macro 2-12,4-178
SRETWORK macro 4-180
$SAYE macro 2-12,4-181
SSCAN facility 2-46, 3-7, 3-74, 4-186
SSCAN macro 4-183
$SCAN table examples 2-51
SSCANB macro 4-186
SSCANCOM macro 4-188
SSCAND macro 4-189
SSCANTAB macro 4-191
SSCANW A macro 2-48
SSDUMP macro 4-200
$SEPPDIR macro 4-202
$SETRP macro 4-203
$STCK macro 4-204
$STIMER macro 4-205
SSTMTLOG macro 3-73, 4-206
SSTORE macro 2-12,4-208
SSTRAK (exit 12) 3-49
SSYMTSPL bit map 3-44
ST EXIT command 3-73
ST EXITnnn command 2-37
ST EXITnnn operator command 2-19
STGMSET macro 4-210
STIDTAB macro 4-212
STRACE macro 2-19,4-213
STRACK (exit II) 3-43
STRACK macro 4-217
STTIMER macro 4-219
S{]SER1 (through $USER5) 3-87
$YERIFY macro 4-220
SYERTAB macro 4-221
SYFL macro 4-223
SW AIT macro 3-44. 4-225
SWSSETUP macro 4-229
SWSTAB macro 4-230
SWTO

screen (exit 10) 3-41
SWTO macro 4-236
SWTO messages. modifying 3-63
SWTO parameter list usage 3-64
$WTO screen exit 3-3, 3-41

CMBFLAG usage 3-42
CMBI0BN usage 3-42
CMBROUT usage 3-42
CMBTEXT usage 3-42
exit points 3-3
general description 2-4
recovery 3-42
specific description 3-41
WTOEXIT exit point 3-41

X-2 JES2 User Modifications and Macros

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

SXMPOST macro 4-245

abend codes
037 3-57

account field scan 3-3
accounting field (JCTWORK) 3-18
accounting field scan exit 3-16
acquire a buffer

$GETBUF macro 4-98
acquire a DCT

SGETUNIT macro 4-114
acquire a lock

SGETLOK macro 4-105
acquire a track address

$TRACK 4-217
acquire SMF buffer

SGETSMFB macro 4-112
acquire storage

$GETMAIN macro 4-107
acquire storage area cell

$G ETCEL macro 4-101
acronyms A-I
across environment exits 2-10
active processor (SACTIYE) 4-33
add job queue element

SQADD macro 4-158
add lQE to lIX

SQJJX macro 4-165
add work JOE to lOT

S#ADD macro 4-15
address space

getting the ASCB 4-95
posting a task 4-245
storage dump (SSDUMP macro) 4-200

addressability of the exit 2-17
affinity, system 3-75
allocate a unit record device

SALLOC macro 4-34
allocation

spool partitioning (SSTRAK) 3-49
spool partitioning (STRACK) 3-43

alter console routing 3-42
alter SM F control blocks 3-77
altering operating states of exits 1-6
analyzing initialization statements 3-71
areas of modification in JES2 1-2
assembler language for exits 2-7
assembly macro

&ANYIRON 2-10
assign message id

SMID macro 4-123
assigning system affinity 3-75
attach or delete a lES2 PCE

SPCEDYN macro 4-142

LC23-0067-3 I{'J Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

authorized receivers, limiting 3-55
automatic tracing 2-19

basic notation for macros 4-4
bit map ($SVMTSPL) 3-44
block letters

generating, SPBLOCK macro 4-140
BSC RJE devices, controlling 3-65
BSC RJE sign-on/sign-off exit 3-4, 3-65

exit points 3-4
general description 2-5
MDSXITA exit point 3-65
MSOXITB exit point 3-65
specific description 3-65

buffer
acquiring ($GETBUF) 4-98
acquiring ($GETSMFB macro) 4-112
freeing (SFREEBUF) 4-83
prefix

building (SBFRBLD macro) 4-37
build a buffer prefix

SBFRBLD macro 4-37
build and map the DTE tables

S DTET A B macro 4-66
build backup storage for a scan

SSCANB 4-186
build the verification table

SVERTAB macro 4-221

call a subroutine
$CALL macro 4-43

call dynamic DTE service routines
SDTEDYN macro 4-63

call quick cell build routine 4-38
call quiek cell extend routine

SBLDQC macro 4-38
call the SSCA N facility comment service

SSCANCOM macro 4-188
call the $SCAN facility display service routines

SSCAND macro 4-189
call the SSTCK service routine

SSTCK macro 4-204
call the STGMSET service routine

STGMSET macro 4-210
call the SVERIFY service routine

SVERIFY macro 4-220
call the dynamic DCB service routine

SDCBDYN macro 4-49
call the dynamic DCT service routine

SDCTDYN macro 4-50

LC23-0067-3 I~i Copyright IBM Corp. 1982, 1987

call the JCTlOR routine
SJCTlO macro 4-121

call the MODCHECK verification routine
SMODCI-IK macro 4-124

calling environment 2-9
cancel

exit (exit 22) 3-79
cancel a job

SJCAN macro 4-118
cancel non-held data sets

S#PDBCAN macro 4-27
cancel status exit 3-79
cancel work items

S#CAN macro 4-19
cancel/status exit 3-4

SJCAN macro 3-81
SSVTSCS queue usage 3-79
exit points 3-4
general description 2-6
IKJ562161 message 3-81
specific description 3-79
YTCSEXIT exit point 3-79
ZTCSEXIT exit point 3-79

catastrophic errors
SGWI 4-115
indicating 4-70
indicating (SDISTERR) 4-60

change notify routing 3-63
changing message text (exit 10) 3-42
channel program

executing (SEXCP) 4-74
characteristics JOEs

formatting 4-18
remove a pair from the JOT 4-32

check buffer I/O
$BUFCK macro 4-40

checking initialization statements 3-71
checkpoint

releasing (SRELEASE macro) 4-173
reserving (SRESERVE macro) 4-174
scheduling one (SCKPT macro) 4-44

choosing exits to use 2-1
coded value operands 4-6
codes

exit-dependent return codes 2-13
return (greater than 4) 2-13
return codes 2-13

coding considerations
SENTRY macro 2-17
addressability of the exit 2-17
control blocks for exits 2-14
exit-dependent return codes 2-13
linkage conventions 2-11
main task exits 2-11
multiple exit routines 2-12
naming the exit 2-17
nonreentrant 2-10
packaging the exit 2-18, 2-30
received pa rameters 2-12

Index X-3

recovery for exits 2-19
reentrant 2-10
return codes (greater than 4) 2-13
return codes for exits 2-13
service routine usage 2-15
source module conventions 2-17
subtask exits 2-11
tracing the exit 2-19

coding language for exits 2-7
COMAUTH structure 3-28
command

$D EXITnnn 2-37
$D F 3-57
$T EXIT 3-73
operator ($T EXITnnn) 2-19
preprocessor exit 3-26
RECEIVE 3-53
SEND 3-53
TRANSMIT 3-56

command processor
write to operator

$CWTO macro 4-47
communication

$CWTO macro (exit 5) 3-29
among exits 2-16
exit-to-operator 2-16
J ES2-to-operator 1-2

console
message butTer, acquiring 4-103

CONSOLE initialization statement 3-73
console message buffer (CMB)

CMBFLAG usage (exit 10) 3-42
CMBJOBN usage (exit 10) 3-42
CMBROUT usage (exit 10) 3-42
CMBTEXT usage (exit 10) 3-42
freeing (SFRECMB macro) 4-82
interrogating (exit 10) 3-41
usage (exit 16) 3-64

control blocks for exits 2-14
controlling BSC RJE devices 3-65
controlling SNA RJE devices 3-68
convert destination

SDEST macro 4-58
COPY $HASPGBL 2-18
count occurrences

SCOUNT macro 4-46
create a user PDIR

SSEPPDIR macro 4-202
create scan tables 4-191
create separator pages

$PRPUT macro 4-155
create SMF control blocks 3-77
creating installation control blocks 3-85
cross memory services

lock 4-105
CSA storagc

freeing ($FRECEL macro) 4-81
current PCE

work area obtaining 4-1 15

X-4 JES2 User Modifications and Macros

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

customizing J ES2 2-1

data set
separator exit 3-60

data set(s)
cancelling non-held ones

S#PDBCAN macro 4-27
log data set 3-73

DCT table map
SDCTT AB macro 4-52

DCTPPSWS flag usage 3-10
define a quick cell control table

$QCTGEN macro 4-160
delete operator message

SDOM macro 4-61
deleting initialization statements 3-71
descriptions of macros 4-9
destination

converting ($DEST macro) 4-58
device

allocating a unit record one 4-34
BSC RJE remote 3-65
SNA RJE remote 3-68

device control table (DCT)
acquiring ($GETUNIT macro) 4-114
releasing ($FREUNIT macro) 4-91
usage (exit I) 3-10

direct access
acquiring a track address 4-217
returning space, SPURGE macro 4-157

disabled exit state 1-6
disabling the exit 2-37
DTEDYN

call dynamic DTE service routine 4-63
dual execution environments 2-10
dump storage

SSDUMP macro 4-200
dynamic service routine

DTE, $DTEDYN macro 4-63

enabled exit state 1-6
enabling trace (ID 13) for tracing 2-19
end of job input exit 3-4, 3-75

exit points 3-4
general description 2-6
JCTIPTIO usage 3-76
PCE work area usage 3-76
REXITA exit point 3-75
specific description 3-75

LC23-0067-3 it;) Copyright IBM Corp. 1982. 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

end of module
generating, SMODEND macro 4-127

environments for exits
caller's environment 2-9
execution environment 2-9
JES2 main task 2-7
JES2 subtask 2-7
user address space 2-7

error recovery environment
SESTAE 4-72

errors
SGWI 4-115
D37 abend 3-57
indicating catastrophic ones 4-70
indicating disastrous ones 4-60
isolating them 2-37

events
posted complete 4-10
posting, SPOST macro 4-150
waiting for (SWAIT macro) 4-225

examples, $SCAN tables 2-51
execute JES2 channel program

SEXCP macro 4-74
execution environments

FSS (functional subsystem address space) 2-9
JES2 (main task) 2-9
SUBT ASK (subtask) 2-9
USER (user address space) 2-9

execution node 3-75
exit descriptions 3-1
exit effector 2-35
exit effector definition 1-7
exit effector tracing 2-40
exit effectors 2-9
exit facility (using) 1-4
exit facility introduction 1-1
exit implementation table 3-3
exit information table (XIT)

building 2-35
exit module

source conventions 2-17
exit points

$STRAKX (exit 12) 3-49
STRACKX (exit 11) 3-44
COMMEXIT (exit 5) 3-26
definition 1-4
FGDSX25 (exit 25) 3-88
HXJCTOI (exit 8) 3-36
HXJCT02 (exit 8) 3-36
HXJCT03 (exit 8) 3-36
HXJCT04 ~exit 8) 3-36
identifying them 1-4
JCTEXIT in HASPNUC (exit 7) 3-34
logoff 3-68
logon 3-68
MDSXITA (exit 17) 3-65
MICEXIT (exit 18) 3-68
MSNALXIT (exit 18) 3-68
MSNALXT2 (exit 18) 3-68

LC23~0067-3 If) Copyright IBM Corp. 1982, 1987

MSOXIT A (exit 17) 3-65
MSOXITB (exit 17) 3-65
NPLEXIT (exit 19) 3-71
NSRNMXIT (exit 13) 3-54
OPNEXIT (exit 16) 3-63
PEXITSC (exit I) 3-8
PEXITTR (exit I) 3-9
PEXTl5D (exit 15) 3-60
PEXTI50 (exit 15) 3-60
QVALID (exit 14) 3-58
RDJCTXIT in HASPJOS (exit 7) 3-34
REXITA (exit 20) 3-75
RXITACC (exit 3) 3-16
RXITCCA (exit 4) 3-20
RXITCCB(exit 4) 3-20
RXITCCC (exit 4) 3-20
RXITJBCC in exit 2 3-13
RXITJBCD in exit 2 3-13
sign-off 3-65
sign-on 3-65
SMFEXIT (exit 21) 3-77
SVCOUTX (exit 9) 3-38
variations 1-6
WTOEXIT (exit 10) 3-41
XCSTCUEE (exit 6) 3-30
XCSTMUEE (exit 6) 3-30
YTCSEXIT (exit 22) 3-79
ZTCSEXIT (exit 22) 3-79

exit routine
definition 1-4
integration 2-30
language used 2-7
load module 2-32
loading one 2-27
multiple ones 1-7,2-27
passing them control 2-36, 2-37
placement 2-34
sample 2-20
writing one 2-7

exit routine table (XRT)
building 2-35

exit selection table 2-1
general description

exit 0 2-1
exit 1 2-1
exit 10 2-3
exit 11 2-4
exit 12 2-4
exit 13 2-4
exit 14 2-5
exit 15 2-5
exit 16 2-5
exit 17 2-5
exit 18 2-5
exit 19 2-5
exit 20 2-5
exit 21 2-6
exit 22 2-6
exit 24 2-6

Index X-5

exit 0

exit 3 2-1.2-2
exit 4 2-2
exit 5 2-2
exit 6 2-3
exit 7 2-3
exit 8 2-3
exit 9 2-3

SHASP426 message 3-5
SHASP427 message 3-5
$HASP428 message 3-7
$HASP864 message 3-6
LOAD macro 3-5
locates scan tables 2-51

exit 1
$FREEBUF macro 3-11
SFREEBUF usage 3-11
SOETBUF macro 3-11
SGETBUF usage 3-11
SPBLOCK usage 3-11
$PRPUT usage 3-11
$SEPPDlR usage 3-11
DCTPPSWS flag usage 3-10
PEXITSC exit point 3-8
PEXITTR exit point 3-9
recovery 3-12

exit 10
CMBFLAO usage 3-42
CMBJOBN usage 3-42
CMBROUT usage 3-42
CMBTEXT usage 3-42
recovery 3-42
WTOEXIT exit point 3-41

exit II
&NUMTGBE initialization parameter 3-47
$POST usage 3-44
$TRACKX exit point 3-44
SWAIT usage 3-44
JCTSAMSK usage 3-43
KBLOB routine usage 3-44
recovery 3-48

exit 12
SSPOST macro 3-49
SSTRAKX exit point 3-49
IOTJCT usage 3-51
JCTSAMSK usage 3-49
SVTMTSPL usage 3-49
TOB usage 3-49
WAIT macro 3-50

exit 13
SD F command 3-57
SHASP546 message 3-56
$HASP548 message 3-53
SHASP549 message 3-53
D37 ahend 3-57
INXP macro 3-57
network data set header (NDH) 3-53
network job header (NJH) 3-53
NOOUTPUT option 3-57

X-6 JES2 User Modifications and Macros

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

NOTIFY = option 3-56
NSRNMXIT exit point 3-54
PDBFLAOI usage 3-54
PDBWTRID usage 3-54
peripheral data definition block (pOD B) 3-53
RECEIVE command 3-53
recovery 3-57
sample exit 3-57
screen incoming files 3-53
SEND command 3-53
TRANSMIT command 3-56
TSUCLASS statement 3-57

exit 14
CCW translate table usage 3-60
finding job queue work 3-58
PRTRANS table 3-60
QV ALID exit point 3-58

exit 15
PEXTl 5D exit point 3-60
PEXTI50 exit point 3-60

exit 16
change notify routing 3-63
CMB usage 3-64
modify SWTO messages 3-63
OPNEXIT exit point 3-63

exit 17
MDSXIT A exit point 3-65
MSOXITA exit point 3-65
MSOXITB exit point 3-65

exit 18
MICEXIT exit point 3-68
MSNALXIT exit point 3-68
MSNALXTI exit point 3-68

exit 19
SHASP864 message 3-72
SSCAN facility usage 3-74
SSTMTLOG macro 3-73
ST EXIT command 3-73
CONSOLE initialization statement 3-73
EXITnnn usage 3-73
LOAD usage 3-73
locates scan tables 2-51
NPLEXIT exit point 3-71

exit 2
FREEMAIN macro 3-15
OETMAIN macro 3-15
JCTSAMSK usage 3-15
JCTXMASK usage 3-15
RDWFLAOX flag structure 3-15
recovery 3-15
RXITJBCC exit point 3-13
RXITJBCD exit point 3-13

exit 20
JCTIPTIO usage 3-76
PCE work area usage 3-76
REXIT A exit point 3-75

exit 21
SOETSMFB usage 3-78

LC23-OO67-3 C Copyright IBM Corp. 1982. 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$QUESMFB usage 3-78
SMFEXIT exit point 3-77

exit 22
$JCAN macro 3-81
$SVTSCS queue usage 3-79
IIO 562161 message 3-81
YTCSEXIT exit point 3-79
ZTCSEXIT exit point 3-79

exit 23 3-82
exit 24

$HASP864 message 3-86
$T EXIT command usage 3-86
$USERI (through $USER5) 3-87
EXITnnn statement 3-86
recovery 3-86

exit 25
FGDSX25 exit point 3-88

exit 26 3-90
exit 3

&RJOBOPT usage 3-18
HASPRSCN replacement 3-16
JCTJOBID usage 3-18
JCTWORK. usage 3-18
JCTXWRK. usage 3-19
recovery 3-19
RXITACC exit point 3-16

exit 4
HASPRCCS replacement 3-20
recovery 3-25
RXITCCA exit point 3-20
RXITCCB exit point 3-20
RXITCCC exit point 3-20

exit 5
$CWTO macro 3-29
COMAUTH structure 3-28
COMMEXIT exit point 3-26
recovery 3-29

exit 6
CNVWORK usage 3-33
recovery 3-33
XCSTCUEE exit point 3-30
XCSTMUEE exit point 3-30

exit 7
JCTEXIT exit point 3-34
JCTJQE usage 3-35
JQETYPE usage 3-35
PCEID usage 3-35
RDJCTXIT exit point 3-34
recovery 3-35

exit 8
HXJCTOI exit point 3-36
HXJCT02 exit point 3-36
HXJCT03 exit point 3.-36
HXJCT04 exit point 3-36
recovery 3-37, 3-89

exit 9
$HASP375 message 3-38
ESTBYTE initialization statement 3-40
ESTLNCT initialization statement 3-40

LC23-0067-3 e Copyright IBM Corp. 1982, 1987

ESTPAGE initialization statement 3-40
ESTPUN initialization statement 3-40
recovery 3-40
SVCOUTX exit point 3-38

exit-to-exit communication 2-16
EXITnnn initialization parameter 2-19
exits

$WTO screen 3-3,3-41
across environments 2-10
addressability 2-17
BSC RJE sign-on/sign-off 3-4, 3-65
cancel/status 3-4, 3-79
choosing ones to use 2-1
control block usage 2-14
end of job input 3-4,3-75
exit 0 description 3-5
exit I description 3-8
exit 10 description 3-41
exit II description 3-43
exit 12 description 3-49
exit 13 description 3-53
exit 14 description 3-58
exit 15 description 3-60
exit 16 description 3-63
exit 17 description 3-65
exit 18 description 3-68
exit 19 description 3-71
exit 2 description 3-13
exit 20 description 3-75
exit 21 description 3-77
exit 22 description 3-79
exit 23 description 3-82
exit 24 description 3-85
exit 25 description 3-88
exit 26 description 3-90
exit 3 description 3-16
exit 4 description 3-20
exit 5 description 3-26
exit 6 description 3-30
exit 7 description 3-34
exit 8 description 3-36
exit 9 description 3-38
exit-to-exit communication 2-16
exit-to-operator communication 2-16
IBM-defined 1-6,3-1
implementation table 3-3
individual purposes 2-1
initialization JCL 2-26
initialization statement 3-4
initialization statement scan 3-71
initializing in the system 2-32
installation-defined 1-6, 2-38
integrating exit routines 2-30
internal text scan 3-3, 3-30
introduction I-I
JCL/JES2 control statement scan 3-3, 3-20
JCT read (FSS) 3-88
JCT read/write 3-3
JCT read/write (JES2) 3-3, 3-34

Index X-7

JCT read/write (USER) 3-3, 3-36
J ES2 command preprocessor 3-3, 3-26
job output overflow 3-3, 3-38
job queue work select 3-3, 3-58
job separator page processing 3-82
job statement account field scan 3-3, 3-16
job statement scan 3-3, 3-13
job-related 2-37
job-related (defined) 1-7
linkage conventions 2-11
logic 2-15
mask (JOBMASK) 2-37
multiple exit routines 1-7

linkage conventions 2-12
naming the exit 2-17
notify 3-63
operating environment 2-7
output data set/copy separators 3-3, 3-60
packaging 2-30
packaging the code 2-18
passing control to them 2-36, 2-37
post initialization 3-4, 3-85
pre-initialization 3-3
pre-initialization (exit 0) 3-5
print/punch job separator 3-8
print/punch separator 3-3
received parameters 2-12
recovery considerations 2-19
reentrant code considerations 2-10
return code responsibility 2-12
return codes 2-13
sample exit routine 2-20
service routine usage 2-15
SMF record 3-4, 3-77
SNA RJE logon/logoff 3-4, 3-68
source module conventions 2-17
specific individual uses 2-1
specific titles of each 2-1
specific uses 2-1
spool partitioning allocation ($STRAK) 3-3, 3-49
spool partitioning allocation ($TRACK) 3-3, 3-43
status (enabled, disabled) 2-37
synchronization 2-10
termination 3-90
testing exit routines 2-30
tracing status 2-38
tracing their execution 2-19
TSO/E interactive data transmission facility

screening and notification 3-3, 3-53
using control blocks 2-14
writing an exit routine 2-7

external names 2-31

X-8 JES2 User Modifications and Macros

find a PODB

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

S#PCBLOC macro 4-28
find and validate queue

$#JOE macro 4-24
format the JOEs

S#BLO macro 4-18
free a CMB

SFRECMB 4-82
free CMS or job lock

$FRELOK macro 4-85
free CSA cell

SFRECEL macro 4-81
free quick cells

$FREQC macro 4-88
freeing storage

$r:REMAIN macro 4-86
UCB parameter list ($FREUCBS macro) 4-90

FREEMAIN macro 3-15

generate block letters
$PBLOCK macro 4-140

generate end of module
$MOOEND macro 4-127

generate patch space
$PATCHSP macro 4-139

get a storage cell
$GETBLK macro 4-97

get console message buffers
$GETCMB 4-103

get HASP/USER table entries
$GETABLE macro 4-93

get network header section
$NHDGET macro 4-\37

get quick cell
SGETQC macro 4-110

GETMAIN macro 3-15
global assembly macro

&ANVIRON 2-10

hardcopy console 3-73
HASJES20 2-16,2-18,2-48
HASJES20, location 2-8
HASPCOMM 2-16
HASPINIT 2-8,2-18
HASPIRPL 3-71

LC23-0067 -3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

HASPSSSM 2-16, 2-18
HASPSSSM, location 2-7
HASPST AB 2-48, 2-51
home ASCB

retrieving, $GETASCB macro 4-95

I/O
See input/output (I/O)

I/O error
logging, $IOERROR macro 4-117

IBM-defined exits 1-6
descriptions 3-1

identifying the exit 2-17
IKJ562161 message 3-81
illustration of a JES2 exit 1-5
implementation

table for exits 3-3
implementing initialization statements 3-71
inactive processor ($DORMANT) 4-62

$DORMANT macro 4-62
incoming files, screening 3-53
indicate a catastrophic error

$ERROR macro 4-70
indicate a disastrous error

$DISTERR macro 4-60
initialization

&NUMTGBE parameter 3-47
&RJOBOPT usage 3-18
ESTBYTE statement 3-40
ESTLNCT statements 3-40
ESTPAGE statement 3-40
ESTPUN statements 3-40
EXIT statement 1-4
EXITnnn parameter 2-19
EXITnnn statement 2-33
EXITnnn TRACE = usage 2-38
exits in the system 2-32
JCL 2-26
LOAD statement 1-4, 2-31. 2-32
modifying control blocks (exit 24) 3-85
options 2-49
placement of exits 2-34
pre-initialization exit 3-5
processing 1-2
TSUCLASS statement 3-57

initialization statement
checking and analyzing 3-71
CONSOLE 3-73
exit 19 3-71
EXITnnn 3-73
implementing 3-71
LOAD 3-73
logging (SSTMTLOG) 4-206
tailoring 3-71

initialization statement exit 3-4

LC23-0067-3 © Copyright IBM Corp. 1982, 1987

initialization statement scan exit 3-71
$HASP864 message 3-72
$SCAN facility usage 3-74
$STMTLOG macro 3-73
$T EXIT command 3-73
CONSOLE initialization statement 3-73
exit points 3-4
EXITnnn usage 3-73
general description 2-6
LOAD usage 3-73
NPLEXIT exit point 3-71
specific description 3-71

initializing an exit 2-26
initializing the exit in the system 2-32
initiate remote terminal I/O

$EXTP macro 4-79
input/output (I/O)

JCT(exit 7) 3-34
input/output table (lOT)

IOTJCT(exit 12) 3-51
inserting initialization statements 3-71
installation

choices of exits 2-1
control blocks (exit 24) 3-85
exits 1-6
tables 2-49
work areas (exit 24) 3-87

installation-defined exits 2-38
installing JES2

maintenance implications I-I
integrating the exit routine 2-30
internal text scan exit 3-3, 3-30

CNVWORK usage 3-33
exit points 3-3
general description 2-3
recovery 3-33
specific description 3-30
XCSTCUEE exit point 3-30
XCSTMUEE exit point 3-30

interrogate CMB 3-41
interval timer

setting ($STIMER macro) 4-205
testing ($TTIMER macro) 4-219

introduction I-I
lOT

See input/output table (lOT)
isolating an exit error 2-37

JCL
See job control language (JCL)

JCL and JES2 control statement scan exit
exit points 3-3
general description 2-3
HASPRCCS replacement 3-20

Index X-9

recovery 3-25
RXITCCA exit point 3-20
RXITCCB exit point 3-20
RXITCCC exit point 3-20
specific description 3-20

JCL/JES2 control statement scan exit 3-3, 3-20
JCT

See also JCT, job control table
available (IOTJCT) 3-51
JCTIPTIO usage (exit 20) 3-76
JCTJOBID usage 3-18
JCTJQE usage 3-35
JCTSAMSK usage (exit II) 3-43
JCTWORK usage 3-18
JCTXWRK usage 3-19
job control table 1-1
job exit mask address 2-37
read/write (exit 7) 3-34

JCT read (FSS) 3-88
JCT read (FSS) exit

general description 2-6
JCT read/write (JES2) exit 3-3, 3-34

exit points 3-3
general description 2-3
JCTEXIT exit point 3-34
JCTJQE usage 3-35
JQETYPE usage 3-35
PCEID usage 3-35
RDJCTXIT exit point 3-34
recovery 3-35
specific description 3-34

JCT read/write (USER) exit 3-3, 3-36
JCT read/write exit 3-3
JCT read/writer (USER) exit

exit points 3-3
FGDSX25 exit point 3-88
general description 2-4
HXJCTOI exit point 3-36
HXJCT02 exit point 3-36
HXJCT03 exit point 3-36
HXJCT04 exit point 3-36
recovery 3-37, 3-89
specific description 3-36

JES2
$EST AE macro usage 2-20
$SCAN facility 2-46, 3-7
acronyms A-I
address space 2-9
areas of modification 1-2
customizing 2-1
dispatching unit (PCE) 2-11
execute channel program 4-74
exit (what is it?) 1-4
exit effectors 2-9
exit illustration 1-5
JES2-SMF processing 1-2
load modules

HASJES20 1-7
HASPFSSM 1-7

X-I0 JES2 User Modifications and Macros

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

HASPINIT 1-7
HASPSSSM 1-7

main task 2-7
modifying I-I
posting events complete 4-10
primary load module (HASJES20) 2-8
processors 2-11
programmer macros 4-1
recovery environment 4-72
reentrant sense 2-11
source language (assembler) 2-7
subtasks execution 2-8
terminating 3-79

JES2 command preprocessor exit 3-3, 3-26
$CWTO macro 3-29
COMAUTH structure 3-28
COMMEXIT exit point 3-26
exit points 3-3
general description 2-3
recovery 3-29
specific description 3-26

JES2-to-operator communications 1-2
JMR

job
See job management record (JMR)

end of input exit 3-75
exit mask (JOBMASK) 2-37
input processing 1-2
lock 4-105
lock freeing ($FRELOK) 4-85
priority 3-75
related exits (defined) 1-7
statement (NOTIFY =) 3-56
terminating processing 3-75

job cancellation
$JCAN macro 4-118

job control language (JCl)
initializing an exit 2-26

job control table (JCT)
read write (USER) exit 3-36
read/write (JES2) exit 3-34

job entry subsystem (JES2) 1-1
job exit mask 2-38
job input

end (exit 20) 3-75
end of (exit 20) 3-75
processing 1-2

job management record (JMR)
usage 3-19

job output
overflow (exit 9) 3-38
processing 1-2

job output eiement(JOE)
add JOE pair to JOT

$#ADD macro 4-15
formatting them ($#BLD macro) 4-18
moving one ($#MOD) 4-26
returning one ($#PUT macro) 4-31

lC23-0067-3 ~ Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

searching for ($#GET macro) 4-22
unfinished 4-31

job output overnow exit 3-3, 3-38
SHASP375 message 3-38
EST BYTE statement 3-40
ESTLNCT statement 3-40
ESTPAGE statement 3-40
ESTPUN statement 3-40
exit points 3-3
general description 2-4
recovery 3-40
specific description 3-38
SVCOUTX exit point 3-38

job output table (JOT)
adding a JOE ($#ADD macro) 4-15
returning a JOE ($#PUT macro 4-31
search for a JOE 4-22

job queue
finding work (exit 14) 3-58
work select exit 3-58

job queue element (JQE)
acquiring control (exit 14) 3-58
adding to JIX ($QJIX macro) 4-165
adding, $QADD macro 4-158
call quick cell build/extend routine ($BLDQC

macro) 4-38
define a quick cell ($QCTGEN macro) 4-160
get quick cell (SGETQC macro) 4-110
JQETYPE usage 3-35
link the functional subsystem interface ($FSILINK

macro) 4-92
locating ($QLOC macro) 4-166
modifying ($QMOD macro) 4-167
obtaining, $QGET macro 4-162
removing ($Q REM macro) 4-170
returning ($QPUT macro) 4-169

job queue work select exit 3-3, 3-58
exit points 3-3
finding job queue work 3-58
general description 2-5
QVALID exit point 3-58
specific description 3-58

job separator page processing 3-82
job statement account field scan exit 3-3, 3-16
job statement accounting field scan exit

&RJOBOPT usage 3-IR
exit points 3-3
general description 2-2
HASPRSCN replacement 3-16
JCTJOBID usage 3-18
JCTWORK usage 3-18
JCTXWRK usage 3-19
recovery 3-19
RXITACC exit point 3-16
specific description 3-16

job statement scan exit 3-3, 3-13
exit points 3-3

LC23-0067-3 .t1 Copyright IBM Corp. 1982. 1987

FREEMAIN macro 3-15
general description 2-2
GETMAIN macro 3-15
JCTSAMSK usage 3-15
JCTXMASK usage 3-15
RDWFLAGX nag structure 3-15
recovery 3-15
specific description 3-13

job-related exits 2-37
JOBMASK parameter 2-37
JOE

See job output element(JOE)
JOT

See job output table (JOT)
JQE

See job queue element (JQE)

KBLOB routine 3-44

limiting authorized receivers 3-55
link the functional subsystem interface

$FSILINK macro 4-92
linkage conventions 2-11
linkage conventions to exits 2-11
LMT

See load module table (LMT)
LOAD initialization statement 2-31, 3-6
LOAD macro 3-5
load module initialization 2-36
load module table (LMT) 2-35

usage (exit 0) 3-5
loading an exit routine 2-27
locating a JQE

SQLOC macro 4-166
lock

cms
acquiring ($GETLOK macro) 4-\05

freeing CMS or job lock 4-85
job

acquiring ($GETLOK macro) 4-105
log an initialization statement

$STMTLOG macro 4-206
log data set 3-73
log I/O error

SIOERROR macro 4-117
logic of an exit 2-15
logon/logoff

SNA exit 3-68

Index X-II

macro
coded value operands 4-6
descriptions 4-9
metasymbols 4-6
notation 4-4
operand representation 4-5
operands with value mnemonics 4-5
register notation 4-7
register transparency 4-8
value mnemonics

descriptions 4-6
macro keyword specification 4-5
macro overview 4-1
macro parameters 4-2
macro selection table 4-9
macro services

coding aid services 4-2
console services 4-1
debug services 4-2
direct-access space services 4-1
error services 4-2
general storage management 4-1
how provided 4-2
initialization services 4-2
input/output services 4-1
installation exit services 4-2
job output services 4-2
job queue services 4-1
parameters passed 4-2
print/punch output services 4-2
recovery processing aids 4-2
synchronization services 4-1
system management facilities services 4-2
table services 4-2
time services 4-1
unit services 4-1
virtual page services 4-1
work area management 4-1

macros
$$POST 3-49.4-10
$SWTO 4-13
$SWTOR 4-14
S#ADD 4-15
$#ALCHK 4-16
S#BLD 4-18
$#CAN 4-19
$#CHK 4-20
S#GET 4-22
S#JOE 4-24
S#MOD 4-26
$#PDBCAN 4-27
S#PDBLOC 4-28
S#POST 4-29
$#PUT 4-31
$#REM 4-32

X-12 JES2 User Modifications and Macros

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

SACTIVE 4-33
SALLOC 4-34
SBFRBLD 4-37
SBLDQC 4-38
SBLDTGB 4-39
SBUFCK 4-40
SBUFIO 4-41
SCALL 4-43
SCKPT 4-44
SCOUNT 4-46
SCWTO 3-29. 4-47
SDCTT AB 4-52
$DEST 4-58
SDiSTERR 4-60
SDOM 4-61
SDORMANT 4-62
$DTEDYN 4-63
SENTRY 4-68
SERROR 4-70
SESTAE 4-72
SEXCP 4-74
SEXIT 4-76
SEXTP 4-79
SFRECEL 4-81
SFRECMB 4-82
SFREEBUF 3-11. 4-83
$FRELOK 4-85
SFREMAIN 4-86
$FREQC 4-88
SFREUCBS 4-90
SFREUNIT 4-91
SFSILINK 4-92
SGETABLE 4-93
SGETASCB 4-95
SGETBLK 4-97
$GETBUF 3-11.4-98
$GETCEL 4-101
SGETCMB 4-103
SGETLOK 4-105
SGETMAIN 4-107
SGETQC 4-110
SGETSMFB 4-112
SGETUCBS 4-113
SGETUNIT 4-114
SGETWORK 2-48.4-115
SIOERROR 4-117
SJCAN 3-81,4-118
SMID 4-123
SMODEND 4-127
SMODULE 4-128
SMSG 4-135
$PATCHSP 4-139
SPBLOCK 4-140
$PCETAB 4-144
SPGSRVC 4-148
SPOST 4-150
SPRPUT 4-155
SPURGE 4-157

LC23-0067 -3 © Copyright I BM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

$QADD 4-158
$QCTGEN 4-160
$QGET 4-162
$QJIX 4-165
SQLOC 4-166
SQMOD 4-167
SQPUT 4-169
$QREM 4-170
SQSUSE 4-171
SQUESMFB 4-172
SRELEASE 4-173
$RESERVE 4-174
SRESTORE 4-175
SRETBLK 4-176
$RETSAVE 4-177
$RETURN 4-178
$RETWORK 4-180
$SAVE 4-181
$SCAN 4-183
$SCANB 4-186
SSCANTAB 4-191
SSCANW A 2-48
$SDUMP 4-200
$SEPPDIR 4-202
$SETRP 4-203
$STIMER 4-205
$STMTLOG 3-73, 4-206
$STORE 4-208
$TIDTAB 4-212
$TRACK 4-217
$TTIMER 4-219
$VFL 4-223
$WAIT 4-225
$WTO 4-236
$XMPOST 4-245
LOAD 3-5
WAIT 3-50

main task
protect key 1-7

main task environment 2-7
map and generate work selection table entries

$WST AB macro 4-230
map PCE table entries

$PCETAB macro 4-144
map trace id table

$TIDTAB macro 4-212
master control table (MCT)

scanning 2-48
maximum return code 2-14
MAXRC= operand ($EXIT macro) 2-14
MCT

See master control table (MCT)
message

$HASP375 3-38
$HASP426 2-2, 3-5
$HASP427 2-2, 3-5
$HASP428 3-7
$HASP546 3-56
$HASP548 3-53

LC23-0067-3 © Copyright IBM Corp. 1982, 1987

$HASP549 3-53
SHASP864 3-6. 3-72. 3-86
alter console routing 3-42
buffer, acquiring 4-103
IKJ562161 (exit 22) 3-81
modify SWTO messages (exit 16) 3-63

message id
$M ID macro 4-123

metasymbols 4-6
methods of packaging the exit 2-18
MIT

See module information table (MIT)
MIT exit table (MITETBL)

illustration 2-31
usage 2-18

MITETBL 2-18,2-31
See also MIT exit table (MITETBL)

modification
areas in JES2 1-2

modify $WTO messages 3-63
modify the JQE

$QMOD macro 4-167
modifying initialization statements 3-71
modifying JES2 I-I
modifying JES2 control blocks 3-85
module information table (MIT)

providing, $MODULE macro 4-128
usage 2-18

move work JOE
$#MOD macro 4-26

multiple exit points 1-6
multiple exit routines 1-7,2-27

linkage conventions 2-12
single module (example) 2-27

mvs
EST AE macro usage 2-20
LOAD macro 3-5
reentrant sense 2-11
WTO macro 2-16
WTOR macro 2-16

naming the exit 2-17
network data set header (NDH)

exit 13 3-53
network job header (NJH)

exit 13 3-53
nonreentrant considerations for exits 2-10
nooutput option (TSUCLASS statement) 3-57

tsoe.recovery 3-57
notify exit 3-63

change notify routine 3-63
CM B usage 3-64
exit points 3-3
general description 2-5

Index X-13

modify $WTO messages 3-63
specific description 3-63

NOTIFY = option 3-56

obtain a save area
$SA VE macro 4-181

obtain a spool record
S#ALCHK macro 4-16

obtain a UCB address
SGETUCBS macro 4-113

obtain a work area
SGETWORK 4-115

obtain job queue element
$QG ET macro 4-162

operands
coded values 4-6
keyword 4-3
optional 4-4
positional 4-3
required 4-4
types 4-3

operating environment for exits 2-7
operating states (exits)

altering (via $T EXIT) 1-6
disabled 1-6
enabled 1-6

operator
$CWTO macro (exit 5) 3-29
SO EXITnnn command usage 2-38
$T EXlTnnn command usage 2-38
command ($T EXlTnnn) 2-19
communicating from the exit 2-16
communication with JES2 1-2
writing to 4-236

operator message
area

writing, SMSG macro 4-135
deleting, $OOM macro 4-61

operator-to-exit communication 2-16
other programming considerations 2-16
output

data set/copy separator exit 3-60
output data set/copy separators exit 3-3, 3-60

CCW translate table usage 3-60
exit points 3-3
general description 2-5
PEXT 150 exit point 3-60
PEXTI50 exit point 3-60
PRTRANS table 3-60
specific description 3-60

output processing 1-2
overview

macros 4-1

X-14 JES2 User Modifications and Macros

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

packaging the exit 2-18, 2-30
packed parameters 4-3
page fix

$PGSRVC macro 4-148
page free

SPGSRVC macro 4-148
page release

$PGSRVC macro 4-148
parameter types

addresses 4-2
values 4-2

paramctcrs
&NUMTGHE 3-47
&TSU 3-57
EXlTnnn 2-19
JOBMASK 2-37
received by exits 2-12
specifying 4-3

passing control to exit routines 2-36, 2-37
patch space

generating, $PATCHSP macro 4-139
PCE

See processor control element (PCE)
PCE table

generating entries, $PCET AB macro 4-144
saving registers 4-208
work area obtaining 4-115

peripheral data definition block (POOB)
checking (exit 15) 3-60
exit 13 3-53
POBFLAGI usage (exit 13) 3-54
POBWTRID usage (exit 13) 3-54

peripheral data information record (POIR) 4-202
placement of exits 2-34
post a JES2 event complete

$$POST macro 4-10
post a task in another address space

SXMPOST macro 4-245
post an event complete

$POST macro 4-150
post initialization exit 3-4, 3-85

$HASP864 3-86
ST EXIT command usage 3-86
SUSERI (through SUSER5) 3-87
exit points 3-4
EXITnnn statement 3-86
general description 2-6
recovery 3-86
specific description 3-82, 3-85, 3-88

post output device processors
S#POST macro 4-29

posting
tasks 4-245

LC23-0067-3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of 18M"

Licensed Materials - Property of IBM

posting events
$POST macro 4-150

posting resources
$POST macro 4-150

pre-initialization exit 3-3
SHASP426 message 3-5
SHASP428 message 3-7
SHASP864 message 3-6
exit points 3-3
general description 1-2
LOAD macro 3-5
specific description 3-5

primary ASC8
retrieving, SGETASCB macro 4-95

print/punch job separator exit 3-8
SFREEBUF usage 3-11
SGETBUF usage 3-11
$PBLOCK usage 3-1 I
SPRPUT usage 3-11
SSEPPDlR usage 3-11
DCTPPSWS flag usage 3-10
exit points 3-3
general description 2-2
PEXITSC exit point 3-8
PEXITTR exit point 3-9
recovery 3-11
specific description 3-8

print/punch separator exit 3-3
priority 3-75
process checkpoint spool I/O

S#CHK macro 4-20
processing

disabled exits 2-37
enabled exits 2-37
job-related exits 2-37

processor
specify as active (SACTIVE) 4-33
specify as inactive (SDORMANT) 4-62

processor control element (PCE)
PCEID usage 3-35
work area for HASPRDR 3-76

programming considerations
$ENTRY macro 2-17
addressability of the exit 2-17
exit initialization 2-32
exit logic 2-15
exit-to-exit communication 2-16
exit-to-operator communication 2-16
integrating the exit routine 2-30
multiple exit routines 2-12
naming the exit 2-17
other ones for exits 2-16
packaging the exit 1-18. 2-30
passing control to exit routines 2-36, 2-37
recovery for exits 2-19
service routine usage 2-15
source module conventions 2-17
testing exit routines 2-30
tracing status of exits 2-38

LC23-0067-3 © Copyright IBM Corp. 1982. 1987

tracing the exit 2-19
provide a MIT

SMODULE macro 4-128
provide an entry point

SENTR Y macro 4-68
provide an exit point

SEXIT macro 4-76
purpose of each exit 2-1

queue
finding (S#JOE macro) 4-24
validating ($#JOE macro) 4-24

queue a SM F buffer
SQUESM FB macro 4-172

queue SMF records 3-77
queue track group blocks

$BLDTGB macro 4-39
q lie lies

shared
synchronizing the use ($QSUSE macro) 4-171

quick post facility
SPOSTQ macro 4-154

RDWFLAGX flag structure 3-15
read or write a buffer

$BUFIO macro 4-41
RECEIVE command 3-53
received parameters for exits 2-12
receiver notification 3-53
receivers, limiting 3-55
recovery

exit 1 3-12
exit 10 3-42
exit 11 3-48
exit 13 3-57
exit 2 3-15
exit 24 3-86
exit 25 3-89
exit 3 3-19
exit 4 3-25
exit 5 3-29
exit 6 3-33
exit 7 3-35
exit 8 3-37
exit 9 3-40
options ($SETRP macro) 4-203

recovery for exits 2-19
recursive scanning 2-46
reentrant

Index X-IS

J ES2 sense 2-11
MVS sense 2-11

reentrant considerations for exits 2-10
register

linkage information for exits 2-11
notation in macros 4-7
transparency (macros) 4-8

register notation (macros) 4-7
register transparency (macros) 4-8
registers

restoring (SRESTORE macro) 4-175
saving ($SAVE macro) 4-181
storing ($STORE macro) 4-208

release a DCT
SFREUNIT macro 4-91

release storage
$FREMAIN macro 4-86

release the checkpoint
$RELEASE macro 4-173

remote attribute table (RAT)
usage (exit 17) 3-66
usage (exit 18) 3-69

remote job entry (RJE)
BSC sign-on/sign-off exit 3-65
processing 1-2
SNA logon/logoff exit 3-68

remote terminal
initiate I/O ($EXTP macro) 4-79

remove a lQE
$QREM macro 4-170

remove JOE pair from JOT
$#REM macro 4-32

replacing initialization statements 3-71
reserve a checkpoint

$RESERVE macro 4-174
resources

posting, $POST macro 4-150
waiting for ($W AIT macro) 4-225

restore caller's registers
$RETURN macro 2-12

restore registers
$RESTORE macro 4-175
$RETURN macro 4-178

retrieve the ASCB
SGETASCB macro 4-95

return a lES2 buffer 4-83
return alOE

S#PUT macro 4-31
return a lQE

$QPUT macro 4-169
return a save area

$RETSAVE macro 4-177
return a storage cell to pool

$RETBLK macro 4-176
return a work area

$RETWORK macro 4-180
return codes from exits 2-13
return direct access space

$PURGE macro 4-157

X-16 JES2 User Modifications and Macros

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

return to the caller
SRETURN macro 4-178

RJE
See remote job entry (RJE)

route code
converting destination to 4-58

routines
$QGET (exit 14) 3-58
KBLOB 3-44
TSO/E INXP macro 3-57
used by exits 2-15

sample exit (13) 3-57
sample exit routine 2-20
save area

freeing ($RETURN macro) 4-178
obtaining ($SAVE macro) 4-181
returning ($RETSAVE macro) 4-177
storing registers (SSTORE macro) 4-208

save caller's registers
$SA VE macro 2-12

scan
$SCAN facility 2-46
$SCANTAB 4-191
accounting field (exit 3) 3-16
backup storage 4-186
initialization statement exit 3-71
initialization statements

$SCAN 4-183
input structures 2-46
internal text (exit 6) 3-30
lCL/JES2 control statements (exit 4) 3-20
recursively 2-46
scan 2-46
tables ($SCANT AB) 4-191

scanning parameter statements 2-46
schedule a checkpoint

$CKPT macro 4-44
screen incoming files (exit 13) 3-53
search JOT for 10E

$#GET macro 4-22
secondary ASCB

retrieving, $GET ASCB macro 4-95
selecting an exit 2-1
SEND command 3-53
separator page exit routine example 2-20
separator pages

copies 3-60
creating, $PRPUT macro 4-155
data sets 3-60
PRTANS table (exit 15) 3-60

service routine usage 2-15
service routines

usage 2-15

LC23-0067 -3 © Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

services (macros)
called routines 4-2
intine code 4-2

services for synchronizing 2-10
main task

$W AIT macro 2-10
set address mode

$AMODE macro 4-35
set interval timer

$STIMER macro 4-205
set recovery processing options

$SETRP macro 4-203
set work selection values

$WSSETUP macro 4-229
shared queues

synchronizing ($QSUSE macro) 4-171
sign-on/sign-off

BSC exit 3-65
single exit point 1-6
single module for multiple exit routines 2-27
SMF

See also SMF
buffer

queueing ($QUESMFB macro) 4-172
buffer obtaining 4-112
control block creation/alteration 3-77
JES2-SMF processing 1-2
queueing records 3-77
record exit 3-77

SMF record exit 3-4, 3-77
$GETSMFB usage 3-78
$QUESMFB usage 3-78
exit points 3-4
general description 2-6
SMFEXIT exit point 3-77
specific description 3-77

SNA RJE devices, controlling 3-68
SNA RJE logon/logoff exit 3-4, 3-68

exit points 3-4
general description 2-5
MICEXIT exit point 3-68
MSNALXIT exit point 3-68
MSNALXT2 exit point 3-68
specific description 3-68

source module conventions 2-17
specific uses of exits 2-1
specify processor as active

$ACTIVE macro 4-33
specify processor inactive 4-62
specifying parameters 4-3
spool

partitioning allocation ($STRAK) 3-49
partitioning allocation ($TRACK) 3-43
partitioning allocation ($TRACK) exit 3-43
partitioning mask (JCTSAMSK) 3-43, 3-49
processing 1-2
record

obtaining ($#ALCHK macro) 4-16
spool partitioning allocation ($STRAK) exit 3-3, 3-49

LC23-0067-3 @ Copyright IBM Corp. 1982, 1987

$$POST macro 3-49
$STRAKX exit point 3-49
exit points 3-3
general description 2-4
IOTJCT usage 3-51
JCTSAMSK usage 3-49
specific description 3-49
SVTMTSPL usage 3-49
TGB usage 3-49
WAIT macro 3-50

spool partitioning allocation ($TRACK) exit 3-3, 3-43
&NUMTGBE initialization parameter 3-47
$POST usage 3-44
$TRACKX exit point 3-44
$W AIT usage 3-44
exit points 3-3
general description 2-4
JCTSAMSK usage 3-43
KBLOB routine usage 3-44
recovery 3-48
specific description 3-43

SSVT
See subsystem vector table

statements
EST BYTE 3-40
ESTLNCT 3-40
ESTPAGE 3-40
ESTPUN 3-40

status
changing exit status 2-37
exit (exit 22) 3-79
exit status 2-37
tracing exit status 2-38

storage
acquiring ($GETMAIN macro) 4-107
cell acquiring ($GETCEL macro) 4-101
dumping ($SDUMP macro) 4-200
freeing ($FREMAIN macro) 4-86
freeing CSA 4-81

store registers
$STORE macro 4-208

subroutine
calling, $CALL macro 4-43

subsystem job block 3-79
subsystem vector table

$SVMTSPL (exit 11) 3-44
$SVTSCS queue (exit 22) 3-79
SVTMTSPL (exit 12) 3-49

subtask
protect key 1-7

subtask environment 2-8
synchronization services

for exits 2-10
main task 2-10

synchronize
shared queues ($QSUSE macro) 4-171

synchronize use of shared queues
$QSUSE macro 4-171

system affinity 3-75

Index X-I7

system initializing for exits 2-32
system management facilities (SMF)

record exit 3-77

table maps
SOCTTAB macro 4-52
SSCANTAB 4-191
$TIDTAB 4-212
PCE, $PCETAB macro 4-144

tables
SSCAN tables 2-48
$SCANTAB 4-191
CCW translate table (exit 15) 3-60
exit implementation table 3-3
exit selection table 2-1
LMT 2-35
macro selection table 4-9
XIT 2-35
XRT 2-35

tailoring initialization statements 3-71
task

posting
$XMPOST macro 4-245

terminate/resource release exit
general description 2-6, 3-4

terminating a job 3-75
terminating JES2 3-79
termination (JES2) exit 3-90
termination exit

(JES2) 3-90
test interval timer

STTIMER macro 4-219
testing

exit routines 2-30
tracing usage 2-19
TYPE=TEST (SEX IT macro) 2-40

TGB
See track group block (TGS)

timer
setting (SSTIMER macro) 4-205
testing ($TTIMER macro) 4-219

titles of exits 2-1
trace

id table map ($TIDT A B macro) 4-212
trace a JES2 activity

STRACE macro 4-213
tracing

$D EXITnnn command usage 2-38
ST EXITnnn command usage 2-38
automatic tracing 2-40
automatically 2-19
AUTOTR = ($EXIT macro) 2-40
disabled (exit 19) 3-73
enabling trace (ID 13) 2-19, 2-38

X-I8 JES2 User Modifications and Macros

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

exit effectors 2-40
exit status 2-38
exits 2-19
job-related tracing 2-38
necessary conditions 2-19
TRACE = usage on EXITnnn 2-38

tracing status of exits 2-38
track

address, acquiring ($TRACK macro) 4-217
track group block (TGB)

exit 12 3-49
usage (exit II) 3-47

track group blocks
queueing, SBLDTGB 4-39

TRANSMIT command 3-56
TSO CANCEL/STATUS (exit 22) 3-79
TSO/E interactive data transmission facility screening

and notification exit 3-3, 3-53
$D F command 3-57
$HASP546 message 3-56
$HASP548 message 3-53
$HASP549 message 3-53
D37 abend 3-57
exit points 3-3
general description 2-4
INXP macro 3-57
network data set header (NOH) 3-53
network job header (NJH) 3-53
NOOUTPUT option 3-57
NOTIFY = option 3-56
NSRNMXIT exit point 3-54
PDBFLAG I usage 3-54
PDBWTRID usage 3-54
peripheral data definition block (PDDB) 3-53
RECEIVE command 3-53
sample exit 3-57
screen incoming files 3-53
SEND command 3-53
specific description 3-53
TRANSMIT command 3-56
TSUCLASS statement 3-57

TSO/E OUTUM parameter 3-57
TSUCLASS initialization statement 3-57

UCB
See unit control block (UeS)

UCB address
obtaining, SGETUCSS macro 4-113

UCT
See user control table (UCT)

unfinished JOE 4-31
unit control block (UCB)

freeing UCS parameter list 4-90
obtaining its address (SG ETUCBS) 4-113

LC23-0067-3 (\J Copyright IBM Corp. 1982, 1987

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

unit record
allocation ($ALLOC macro) 4-34

user address
protect key 1-7

user address space environment 2-7
user control table (UCT)

usage (exit 24) 3-87
using control blocks in exits 2-14
using service routines in exits 2-15
using the exit facility \-4

Variable field length operation
SVFL macro 4-223

verify a job's existence 3-18
virtual page services

SPGSRVC macro 4-148

wait for an event
$W AIT macro 4-225

WAIT macro 3-50
weak external names 2-31
work

select exit 3-58
work area

SUSER I (through SUSER5) 3-87

LC23-0067-3 '0 Copyright IBM Corp. 1982, 1987

CNVWORK 3-33
HASPRDR PCE 3-76
JCTXWRK (exit 3) 3-19
obtaining (SGETWORK macro) 4-115
returning (SRETWORK macro) 4-\80

work JOEs
cancelling ($#CA N macro) 4-19
formatting 4-18
remove a pair from the JOT 4-32

work/characteristic JOE pair 4-15
write to operator

$$WTOR macro (with reply) 4-14
JES2 subtask (with reply $SWTOR) 4-14

write to the operator
$$WTO macro 4- \3
$WAIT macro 4-236
command processor

SCWTO macro 4-47
J ES2 subtask ($$WTO) 4-13
message area

SMSG macro 4-135
with reply (JES2 subtask)

SSWTOR macro 4-14
writing an exit routine 2-7

XIT
See exit information table (XIT)

XRT
See exit routine table (XRT)

Index X-19

X-20 JES2 User Modifications and Macros

"Restricted Materials of IBM"

Licensed Materials - Property of IBM

LC23-0067-3 © Copyright IBM Corp. 1982, 1987

System Programming
Library: JES2
User Modifications
and Macros

LC23-0067-3

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers,
and operators of IBM systems. You may use this form to communicate your comments about this
publication, its organization, or subject matter, with the understanding that IBM may use or distribute
whatever information you supply in any way it believes appropriate without incurring any obligation to
you.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation?

How do you use this publication?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an
IBM office or representative will be happy to forward your comments or you may mail directly to the
address in the Edition Notice on the back of the title page.)

System Programming Library: J E52 User Modifications and Macros

"Restricted Materials of IBM"
All Rights Reserved
Licensed Materials - Property of IBM
(Except for Customer-Originated Materials)
©Copyright IBM Corp. 1982, 1987
LC23-0067 -3

Reader's Comment Form

Fold and tape Please Do Not Staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK. N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 058, Building 921 -2
PO Box 390
Poughkeepsie, New York 12602

5370-36

._-_. Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

11

Fold and tape Please Do Not Staple Fold and tape

Printed in U.S.A. --- --~~~ ---~~ ----- ----- ---~-=~=~=@

o
c:::
r+

o .,

J

System Programming Library: JES2 User Modifications and Macros

"Restricted Materials of IBM"
All Rights Reserved
Licensed Materials - Property of IBM
©Copyright IBM Corp. 1982, 1987
LC23-0067-3

--... -. .---.-. .-- ---.-- --- ~.-- -.. ------ ---~---,- ----
- ---- - Y -0{)

S370-36

Printed in U.S.A.

LC23-0067-03

	0000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	1-001
	1-002
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-001
	2-002
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	2-58
	3-001
	3-002
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	3-69
	3-70
	3-71
	3-72
	3-73
	3-74
	3-75
	3-76
	3-77
	3-78
	3-79
	3-80
	3-81
	3-82
	3-83
	3-84
	3-85
	3-86
	3-87
	3-88
	3-89
	3-90
	3-91
	3-92
	4-0001
	4-0002
	4-0003
	4-0004
	4-0005
	4-0006
	4-0007
	4-0008
	4-001
	4-002
	4-003
	4-004
	4-005
	4-006
	4-007
	4-008
	4-009
	4-010
	4-011
	4-012
	4-013
	4-014
	4-015
	4-016
	4-017
	4-018
	4-019
	4-020
	4-021
	4-022
	4-023
	4-024
	4-025
	4-026
	4-027
	4-028
	4-029
	4-030
	4-031
	4-032
	4-033
	4-034
	4-035
	4-036
	4-037
	4-038
	4-039
	4-040
	4-041
	4-042
	4-043
	4-044
	4-045
	4-046
	4-047
	4-048
	4-049
	4-050
	4-051
	4-052
	4-053
	4-054
	4-055
	4-056
	4-057
	4-058
	4-059
	4-060
	4-061
	4-062
	4-063
	4-064
	4-065
	4-066
	4-067
	4-068
	4-069
	4-070
	4-071
	4-072
	4-073
	4-074
	4-075
	4-076
	4-077
	4-078
	4-079
	4-080
	4-081
	4-082
	4-083
	4-084
	4-085
	4-086
	4-087
	4-088
	4-089
	4-090
	4-091
	4-092
	4-093
	4-094
	4-095
	4-096
	4-097
	4-098
	4-099
	4-100
	4-101
	4-102
	4-103
	4-104
	4-105
	4-106
	4-107
	4-108
	4-109
	4-110
	4-111
	4-112
	4-113
	4-114
	4-115
	4-116
	4-117
	4-118
	4-119
	4-120
	4-121
	4-122
	4-123
	4-124
	4-125
	4-126
	4-127
	4-128
	4-129
	4-130
	4-131
	4-132
	4-133
	4-134
	4-135
	4-136
	4-137
	4-138
	4-139
	4-140
	4-141
	4-142
	4-143
	4-144
	4-145
	4-146
	4-147
	4-148
	4-149
	4-150
	4-151
	4-152
	4-153
	4-154
	4-155
	4-156
	4-157
	4-158
	4-159
	4-160
	4-161
	4-162
	4-163
	4-164
	4-165
	4-166
	4-167
	4-168
	4-169
	4-170
	4-171
	4-172
	4-173
	4-174
	4-175
	4-176
	4-177
	4-178
	4-179
	4-180
	4-181
	4-182
	4-183
	4-184
	4-185
	4-186
	4-187
	4-188
	4-189
	4-190
	4-191
	4-192
	4-193
	4-194
	4-195
	4-196
	4-197
	4-198
	4-199
	4-200
	4-201
	4-202
	4-203
	4-204
	4-205
	4-206
	4-207
	4-208
	4-209
	4-210
	4-211
	4-212
	4-213
	4-214
	4-215
	4-216
	4-217
	4-218
	4-219
	4-220
	4-221
	4-222
	4-223
	4-224
	4-225
	4-226
	4-227
	4-228
	4-229
	4-230
	4-231
	4-232
	4-233
	4-234
	4-235
	4-236
	4-237
	4-238
	4-239
	4-240
	4-241
	4-242
	4-243
	4-244
	4-245
	4-246
	A-001
	A-002
	A-01
	A-02
	B-001
	B-002
	B-01
	B-02
	B-03
	B-04
	C-001
	C-002
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	D-001
	D-002
	D-01
	D-02
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	X-07
	X-08
	X-09
	X-10
	X-11
	X-12
	X-13
	X-14
	X-15
	X-16
	X-17
	X-18
	X-19
	X-20
	replyA
	replyB
	xBack

