Program Product

“Restricted Materials of IBM”
All Rights Reserved

Licensed Materials - Property of IBM
©Copyright IBM Corp. 1982, 1987
LC23-0067-3

File No. S370-36

S\éstem Programming
Library: JES2

User Modifications
and Macros

MVS/System Product - JES2
Version 1 Release 3.6

| LT |
KT
N
II|||||I
4lll
||||||||

Program Product

“Restricted Materials of IBM”

All Rights Reserved

Licensed Materials - Property of IBM
©Copyright IBM Corp. 1982, 1987
LC23-0067-3

File No. S370-36

stem Pro ramming

Library:
User Modlflcatlons

and Macros

MVS/System Product - JES2
Version 1 Release 3.6

Program Number 5740-XYS

1
|
4|l|
jjn

l
1

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Do not replace your existing documentation until you install the JES2
component of MVS/SP Version 1 Release 3.6.

Fourth Edition (February, 1987)

This is a major revision of, and obsoletes, LC23-0067-2. See the Summary of
Amendments following the Contents for a summary of changes made to this manual.
The second cdition (LC23-0067-1) still applics to Version 1 Relcase 3.4 of System
Product - JES2 5740-XYS and may now be ordered using temporary order number
LQ23-0067.

This cdition applics to Version 1 Relcase 3.6 of MVS/System Product - JES2 5740-XYS
and all subsequent releases. Changes are made periodically to the information herein:
before using this publication in connection with the operation of IBM systems, consult
the System{370 Bibliography, GC20-0001. for the editions that are applicable and current.

References in this publication to IBM products. programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an 1BM program product in this publication is not intended to statc or imply
that only IBM’s program product may be used. Any functionally equivalent program
may be used instead.

Publications arc nol stocked at the address given below. Requests for IBM publications
should be made 10 your IBM representative or to the IBM branch office serving your
locality.

A form for reader’s comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Information
Decvclopment, Department D58, Building 921-2, PO Box 390, Poughkeepsie, N.Y. 12602.
IBM may use or distribute any of the information you supply in any way it believes
appropriatc without incurring any obligation to you.

© Copyright International Business Machines Corporation 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Preface

Who Should Use This Book

This book provides the information that you need to:

‘e Plan to modify JES2 with exits

e Implement and test the JES2 exits
o Use JES2 programmer macros

This book is intended for JES2 system programmers or for anyone responsible for
installing, initializing, tuning, and modifying JES2.

Organiiation and Content

The “Table of Contents” listed within the Preface contains a minimal subheadings
listing for each chapter. Use this listing to decide upon which chapter to
reference. Prior to each chapter is a full “Chapter Table of Contents” that
provides a complete listing of all heading within that chapter. Use this listing for
detailed chapter content.

The organization and content of each chapter are as follows:

e Chapter 1, “Introduction,” describes the processing concepts of JES2 exits
and provides a framework within which the JES2 programmer can modify
JES2 operation.

e Chapter 2, “Customizing JES2,” describes how you should go about
modifying JES2 processing. This chapter presents implementation details you
should know to develop your modifications and lists the IBM-defined exits
established for your use.

e Chapter 3, “IBM-Defined Exits” lists the IBM-defined exits and how to use
them. The chapter describes how to choose which exits to implement, and
what to consider when writing an exit routine.

o Chapter 4, “JES2 Programmer Macros,” describes the JES2 programmer
macro instructions that you can use when writing JES2 exit code.

® Appendix A, “Acronym List,” defines those acronyms used in this book.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Preface il

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

e Appendix B, “Hints for Coding JES2 Exit Routines,” presents several hints
and suggestions for writing JES2 user exits to improve code readability,
debugging capability, migration ease, and reduction of coding errors.

e Appendix C, “JES2 Macro List,” provides a summary listing of all JES2
macros. The list contains abbreviated descriptions of and uses for each macro
instruction.

iV JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Related Publications

This book references the following publications for further details about specific
topics. Abbreviated forms of these are used throughout this book. The following
table lists all abbreviated titles, full titles, and their order numbers.

Abbreviated Title Base Publication Order Number

SYSTEM INSTALLATION AND INITIALIZATION

Routing and OS|VS2 Message
Descriptor Codes Library: Routing and
Descriptor Codes GC38-1102
System Codes OS/VS2 Message
Library: VS2 System
Codes GC38-1008
MVS Initialization OS}VS2 System
- and Tuning Programming Library:
Initialization and Tuning GC28-1029
Service Aids OS/VS2 System
Programming Library:
Service Aids GC28-0674
System Generation OS|VS2 System
Reference Programming Library:
System Generation Reference GC26-3792
System Management OS/{VS2 System
Facilities (SMF) Programming Library:
System Management Facilities GC28-1030
Job Management OS/VS2 System
Programming Library:)
Job Management GC28-1303
Data Management OS/VS2 System
Programming Library:
Data Management GC26-3830
Conversion Notebook MVS|SP Version 1 Conversion
Notebook GC28-1122
JES2 Logic JES2 Logic LY24-6006
JES2 Initialization System Programming Library:
and Tuning JES?2 Initialization
and Tuning . S$C23-0046
ACF[VTAM ACF[VTAM Version 2
Planning and Installation
Reference SC27-0610

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Preface V

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Abbreviated Title Base Publication Order Number
OPERATIONS
JES2 Commands Operator’s Library:
JES2 Commands SC23-0048
System Commands Operator’s Library: OS[VS2
MVS System Commands GC28-1206
Remote Terminals Operator’s Library: OS[VS2
(JES2) Remote Terminals (JES2) GC38-0225
Operator’s Library: ACF{VTAM
Operation SC27-0466
USER
JCL MVS|370 JCL User’s Guide GC28-1349
and/or
MVS[370 JCL Reference GC28-1350
System Messages 0S/VS2 Message
Library: System Messages GC38-1002
Linkage Editor and OS/VS2 Linkage Editor
Loader and Loader GC26-3813
Utilities OS{VS2 MVS Utilities GC26-3902
Assembler Assembler H Version 2
Reference Application Programming:
Language Reference GC26-4037
Assembler Assembler H Version 2
Application Programming:
Guide SC26-4036
TSO Extensions: Interactive
Data Transmission Facility
User’s Guide SC28-1104
HARDWARE
IBM 3704 and 3705
Communications Controllers GC30-3008
IBM 3800 Printing Subsystem
Programmer’s Guide GC26-3846
IBM System|{3 MRJE[IWS Support
Reference Manual GC21-7621
System|370 Special Feature:
Channel-to-Channel Adapter GA22-6983
OS|VS2 IBM 3540 Programmer’s
Reference GC24-5111
GENERAL
DP Glossary IBM Vocabulary for Data
Processing, Telecommunications,
and Office Systems GC20-1699

JES2 User Modifications and Macros

LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Referenced Program Products

Listed below are those program products and product numbers referred to in this

book:

Program Product Number

MVS/System Product-JES2 Version 1 5740-XYS

TSO|E Interactive Data Transmission 5665-285
Facility

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Preface Vil

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

viii JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Contents

Chapter

1. Intreduction to Medifying JES2 1-1

Modifying JES2 1-1

What Is

Chapter

a JES2 Exit? 14

2. Customizing JES2 2-1

Choosing Which Exits to Implement 2-1
Writing an Exit Routine 2-7
A Sample Exit Routine 2-20

Multiple

Exit Routines In A Single Module = 2-27

Testing Your Exit Routine 2-30
Establishing Installation-Defined Exits 2-38
Defining JES2 Tables 2-41

Subtask

Management 2-56

$DTEDYN Services 2-56

Chapter

3. IBM-Defined Exits 3-1

Exit Implementation Table 3-3
Exit 0: Pre-Initialization 3-5

Exit 1: Print/Punch Separators 3-8
Exit 2: JOB Statement Scan 3-13

Exit 3: JOB Statement Accounting Field Scan
Exit 4: JCL and JES2 Control Statement Scan

Exit 5: JES2 Command Preprocessor 3-26
Exit 6: Internal Text Scan 3-30

Exit 7: JCT Read/Write (JES2) 3-34

Exit 8: JCT Read/Write (USER) 3-36
Exit 9: Job Qutput Overflow 3-38

Exit 10:
Exit 11:
Exit 12:

$WTO Screen 3-41
Spool Partitioning Allocation ($TRACK)
Spool Partitioning Allocation ($STRAK)

3-16
3-20

3-43
3-49

Exit 13: TSO/E Interactive Data Transmission Facility Screening and
Notification 3-53

Exit 14:
Exit 15:
Exit 16:
Exit 17:
Exit 18:
Exit 19:
Exit 20:
Exit 21:
Exit 22:
Exit 23:

Job Queue Work Select - SQGET 3-58
Output Data Set/Copy Select 3-60
Notify 3-63

BSC RJE SIGNON/SIGNOFF 3-65
SNA RJE LOGON/LOGOFF 3-68
Initialization Statement 3-71

End of Input 3-75

SMF Record 3-77

Cancel/Status 3-79

FSS Job Separator Page (JSPA) Processing

3-82

LC23-0067-3 © Copyright IBM Corp.

1982, 1987

Contents

ix

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Exit 24: Post Initialization 3-85

Exit 25: JCT Read (FSS) 3-88

Exit 26: Termination/Resource Release 3-90

Chapter 4. JES2 Programmer Macros 4-1

Appendix A. Acronym List A-l

Appendix B, Hints for Coding JES2 Exit Routines B-1
Overview B-1

Required Mapping Macros B-3

Appendix C. JES2 Macro List C-1

Appendix D. JES2 Exit Usage Limitations D-1

Index X-1

X JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Figures

1-1.
1-2.
1-3.
2-1.
2-2,
2-3.
2-4.
2-5.

2-7.
2-8.
299,
2-10.

2-11.
2-12.
2-13.
2-14.
3-1.
3-2.
4-1.

Areas of JES2 Modification 1-3

A JES2 EXIT 1-5

EXIT Point Variations 1-6

Exit Selection Table 2-2

JES2 and FSS Address Spaces 2-9

Methods of Packaging 2-18

Sample JES2 Separator Page Exit Routine 2-21
Example of Assembly and Link-Edit of a Installation-Written
Routine 2-27

Example of Providing Multiple Exits within a Single Load
Module 2-28

Exit Routines Load Module 2-32

Exit Placement 2-34

Load Module Initialization 2-36

Linking User Tables to HASP Tables to Extend/Modify JES2
Function 2-42

Master Control Table and Table Pairs 2-44

JES2 Reserved Master Control Table Names 2-50
Three Examples of SSCANTAB Tables 2-51

Two Examples of SPCETAB Tables 2-54

Exit Implementation Table 3-3

Example EXIT13 Routine 3-57

JES2 Macro Selection Table 4-9

JES2 Macro List C-1

LC23-0067-3 © Copyright IBM Corp. 1982, 1987

Figures

xi

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Xil JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Summary of Amendments

Summary of Amendments
for LC23-0067-3
MYVS/System Product — JES2

The following provides an overview of those sections that were revised for MVS
System Product - JES2 Version 1, Release 3.6.

Technical Revisions for this Release
Documentation was added for the following:

e Greater than 99 Printer Support Enhancement, that is, printer support for up
to 9999 “locally-defined” printers.

e Dynamic SPOOL Offload Data Set Allocation introduced by APAR 0Z92050

e New macros -- $DCBDYN

Book Reorganization and Editorial Revisions
e A new appendix, Appendix D, “JES2 Exit Usage Limitations” is added to
provide a table listing those instances when the reader/converter exits (2, 3, 4,

6, and 20) are invoked or not invoked.

e All sections include minor editorial and technical changes.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Summary of Amendments X111

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Summary of Amendments
for LC23-0067-2
MVS/System Product - JES2

The following list provides an overview of those sections of this book that were
revised for MVS System Product - JES2 Version 1, Release 3.6.

Technical Revisions for this Release

Fourteen new executable macros are available and a number of existing macros
have been updated to support the enhancements made to the JES2 product with
this release.

e New Macros:

~ SDCTDYN - Call the Dynamic DCT Service Routine

— SDTEDYN - Call the Dynamic DTE Service Routine

— S$DTETAB - Build and Map DTE Tables

— $MODCHK - Call the Module Verification Routine

— S$NHDGET - Get Network Data Set Header

— SPOSTQ - Quick Post Facility

— 3$SCANCOM - Call the $SCAN Facility Comment Service Routine
— $SCAND - Call the $SCAN Facility Display Service Routine

— $STCK - Call the $STCK Service Routine

— $TGMSET - Call the $STGMSET Service Routine

— S$VERIFY - Call the SVERIFY Service Routine

—~ S$VERTAB - Build the Inline Verification Tables

— S$WSSETUP - Set Work Selection Values

— S$WSTAB - Map and Generate the Work Selection Table Entries

e Modified Macros:

- $#ADD

= SH#GET

— S$#JOE

- $#REM

— $SAMODE

— $BLDTGB
— $CKPT

— S$DCTTAB
— $ERROR

— SEXTP

— S$GETABLE
— SGETMAIN
- $JCTIO

- $SMODULE
- $MODMAP
— SPCETAB

— $PURGE

- $QGET

— SRETURN
— $SCAN

Xiv

JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

— $SCANB

— $SCANTAB
— $STMTLOG
— STIDTAB

— S$TRACK

- S$WTO

e Deleted Macros
— $#ICT
— $BADTG
e New IBM-Defined User Exits
One new exit is available with the support added with this release.
— Exit 26 (Termination/Resource Release)
During JES2 termination, Exit 26 allows the user to free resources
obtained by an exit routine during previous JES2 processing. This exit

can provide this function for any JES2 termination ($P JES2,
initialization termination, or abend).

Book Reorganization and Editorial Revisions

e Appendix C, “Mapping Macro Dependency List” has been deleted. There is
no longer a need for this material because the JES2 $SMODULE macro
determines what the dependencies are and automatically generates the
required JES2 and MVS macros.

e Appendix C, “JES2 Macro List” has been added to summarize all the JES2
macros. This list contains abbreviated descriptions and uses of each macro

instruction.

e All sections include minor editorial and technical changes.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Summary of Amendments XV

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Summary of Amendments

for LC23-0067-1

As Updated October 12, 1984
By TNL LN28-1005
MYVS/System Product — JES2

Documentation for Virtual Storage Constraint Relief (VSCR), Resource Access
Control Facility (RACF), a listing of JES2 mdcro dependencies, and minimum
volume spool partitioning are added by this TNL.

e Virtual Storage Constraint Relief -- three existing macros have been
modified and two new macros created to provide support for JES2
exploitation of MVS/Extended Architecture. These are:

— Macro changes -- SPCETAB, $PGSRVC, STRACE
— New macros -- SAMODE, $PCEDYN

o RACF -- addition of job authorization functions controlled through new
RACEF options added in RACF Version 1, Release 6, causing changes to Exit
16 and two existing macros.

— Exit changes -- Exit 16

~ Macro changes -- SMODULE, $WTO

e Minimum volume spool partitioning -- enhancements to the method of spool
volume allocation causing changes to Exit 11 and Exit 12.

o Appendix C, “Mapping Macro Dependency List,” is added to provide a
consolidated listing of those JES2 macros that have dependencies on other
JES2 and/or MVS macros.

Xvi

JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Chapter 1: Introduction to Modifying JES2

Modifying JES2 1-1
What Is a JES2 Exit? 1-4
Environment 1-7

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter I: Introduction to Modifying JES2

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

JES2 User Modifications and Macros LC23-0067-3 ‘© Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Chapter 1. Introduction to Modifying JES2

Modifying JES2

JES2 is a general job entry subsystem of MVS and sometimes cannot satisfy all
installation-specific needs at a given installation. If you modify JES2 code to
accomplish your specific functions, you then are susceptible to the migration and
maintenance implications that result from installing new versions of JES2. JES2
exits allow you to modify JES2 processing without directly affecting JES2 code.
In this way you keep your modifications independent of JES2 code, making
migration to new JES2 versions easier and making maintenance less troublesome.

Caution:

You should not view the JES2 exits defined by IBM as an unchanging interface;
however, IBM will attempt to make any needed changes as transparent as possible
to the user.

Only an experienced system programmer should attempt to make use of the JES2
exits. The writing of an exit routine and the installation of a new exit require a
thorough knowledge of system programming, of JES2 programming conventions,
and of JES2 internals. If, without having this knowledge, you attempt to write
exit routines or to install new exit points, you run the risk both of seriously
degrading the performance of your system and causing complete system failure.

Therefore, defining exits and writing exit routines is intended to be accomplished
primarily by experienced system programmers; the reader is assumed to have an
advanced knowledge of JES2 internals.

In certain areas of JES2 processing, you may still want to customize JES2 to a
greater extent than that made possible by the standard options, JES2 initialization
statements and their parameters, JES2 operator commands, JES2 control
statements, and JES2 exits. While you are not constrained from making more
extensive changes by directly altering the JES2 source code, direct alteration can
eventually result in problems. For instance, you would have to adapt IBM
maintenance code before applying it to your altered JES2 source code and, during
migration, there would be no simple way of transferring your alterations to a new
release. To avoid this class of problems, use the JES2 exit facility to its fullest
extent; excessive alteration of JES2 code is not recommended.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter I. Introduction to Modifying JES2 1-1

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Figure 1-1 illustrates many of those areas where you can modify JES2 processing
using the JES2 exit facility.

Initialization Processing

You can modify the JES2 initialization process and incorporate your own
installation-defined initialization statements in the initialization process. Also
you can change JES2 control blocks prior to the end of JES2 initialization.
Job Input Processing

You can modify how JES2 scans and interprets a job’s JCL and JES2 control
statements. Also, you can establish a job’s system affinity, execution node,
and priority assignments before the job actually runs.

JES2-to-Operator Communications

You can tailor how JES2 communicates with the operator and implement
additional operator communications for various installation-specific
conditions. Also you can preprocess operator commands and alter, if
necessary, subsequent processing.

Spool Processing

You can alter how JES2 allocates spool space for jobs.

JES2-SMF Processing

You can supply to SMF added information in SMF records.

QOutput Processing

You can selectively create your own unique print and punch separator pages
for your installation output on a job, copy, or data set basis.

RJE Processing

You can implement additional security checks to control your RJE processing
and gather statistics about signons and signoffs.

1-2 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

INITIALIZATION
PROCESSING

RJE
PROCESSING

JOB INPUT
PROCESSING

JES2-SMF
PROCESSING

A

JES2

JES2-TO-OPERATOR
COMMUNICATIONS

SPOOL
PROCESSING
QUTPUT
PROCESSING

Figure 1-1. Areas of JES2 Modification

LC23-0067-3 © Copyright IBM Corp. 1982, 1987

Chapter 1. Introduction to Modifying JES2

1-3

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

What Is a JES2 Exit?

JES2 exits provide a clean, convenient, relatively stable interface between JES2
and your user-written code. Installation-written exit routines are invoked from
standard JES2 processing at various strategic locations in JES2 source code.
These strategic locations in JES2 source code are called exit points. A JES2 exit is
established by one or more exit points.

An exit point is defined by the $SEXIT macro and, as illustrated in Figure 1-2, is
the exact location in JES2 code where JES2 can pass control to your exit routine
(that is, your user-written code). The JES2 exit, identified by the “exit-id code” of
ppp; is defined by one exit point at label JLBL in the JES2 code. It is at JLBL in
JES2 processing that JES2 passes control to your exit routine.

To use the exit facility you perform the following steps, as illustrated in
Figure 1-2.

1.

Package your code into one or more exit routines, identifying each exit
routine with an entry point name. (In Figure 1-2 there is a series of exit
routines noted as entry points X1...Xn.) Then include the exit routine in a
load module. In this case LMOD is the load module containing the exit
routine. You can also include the exit routine in the load module for the

-JES2 code if you wish instead of creating a separate load module.

In the JES2 initialization deck include the LOAD initialization statement,
which causes your exit routine’s load module to be loaded, and the EXITnnn
initialization statement, which identifies your exit routines’ entry point to the
exit point in the JES2 code.

The EXITppp initialization statement matches the exit point “ppp” at label
JLBL for the $SEXIT macro in the JES2 code. The EXITppp initialization
statement identifies the label “X1” as the entry point of the exit routine for
exit point “ppp.” The LOAD initialization statement identifies LMOD as the
load module to be loaded into storage.

1-4 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”

Licensed Materials — Property of IBM

JES2 CODE

JES2 INITIALIZATION STATEMENTS

LOAD =

EXIT ppp

A

LMOD <«

ROUTINE = (X1,. ..,Xn)
A A

JLBL .$EXIT ppp

v
LMOD - LOAD MODULE

(EXIT ROUTINE CODE)

LMOD $MODULE

» X1 $ENTRY

$MODEND

Figure 1-2. A JES2 EXIT

LC23-0067-3 © Copyright IBM Corp. 1982, 1987

Chapter 1. Introduction to Modifying JES2

1-5

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

JES2 can have up to 256 exits, each identified by a number from 0 to 255. You
specify the number on the required “exit-id code™ parameter on the SEXIT
macro.

This exit-id code identifies the JES2 exit. When more than one exit point is
defined for a single exit, the SEXIT macros that defined the multiple exit points
have unique labels but are all specified with the same exit-id code - see

Figure 1-3.
JES2 Code
XXX $EXIT 87,.. ...
CCC $EXIT 87,...... More than one
exit pt. per exit.
YYY $EXIT 87,......

7277 $EXIT 88,. A single exit pt.

/ per exit.
AAA $EXIT 93

Figure 1-3. EXIT Point Variations

JES2 code includes a number of /BM-defined exits. That is, various exit points -
via the $EXIT macro - have already been strategically placed in the JES2 code.
The intended purpose of each of these exits is summarized below in the EXIT
Selection Table - Figure 2-1. For these IBM-defined exits you need only write
your own exit routines and incorporate them via the EXITnnn initialization
statement. The selection of the point in JES2 code where the exit point should be
placed has already been done for you. To ensure a proper implementation you
should thoroughly understand the IBM-defined exit and its JES2 operating
environment. A comprehensive description of each exit is presented in Chapter 3.

Also, the JES2 exit facility allows you to establish your own exits, should the
IBM-defined exits not suffice. Exits established by you are modifications to JES2
and are called installation-defined exits, and you define them by placing the
$EXIT macro yourself at appropriate points in the JES2 code (or in your own
exit routine code). Note, however, that implementing your own exit can be
considerably more difficult than writing an exit routine for an IBM-defined exit.
You should realize that in establishing your own exits, you run a greater risk of
disruption when installing a new version of JES2 code. The new JES2 code into
which you have placed your exits may have significantly changed since your
$EXIT macros were inserted. For more information, see “Establishing
Installation-Defined Exits” in the next chapter.

Every exit, both IBM-defined and installation-defined, has a status of ¢nabled or
disabled which is set at initialization via the EXITnnn initialization statement and
which can be dynamically altered by the $T EXIT operator command. When an
exit is enabled, JES2 checks for the existence of an associated exit routine. If
none are found, standard JES2 processing continues. When an exit is disabled for
a particular job (by use of the job mask), it is automatically bypassed by standard
JES2 processing; that is, JES2 does not pass control to an associated exit routine.
However, if associated exit routines are present JES2 passes control to them. For

1-6 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Environment

certain exits, called job-related exits, (refer to “Job-Related Exits” in Chapter 2)
the status can be altered on a job-by-job basis by the action of an exit routine.

JES2 operates in four environments: JES2 main task, JES2 subtask, user address
space, and functional subsystem address space. JES2 is comprised of the
following four load modules HASPINIT, HASPSSSM, HASJES20, HASPFSSM.
Your exit routine receives control as fully-authorized extensions of JES2, and as
such receives control in one of these four environments depending on where the
associated exit point is placed. JES2 main task and subtask exit points exist in
the HASJES20 load module. Your exit routine has access to various control
blocks and service routines to which the standard JES2 code has access at the exit
point, and it runs with the same authorization as the JES2 code from which your
exit routine was invoked. Exit routines invoked from the JES2 address space run
in supervisor state in either the JES2 main task or JES2 subtask environment with
a protect key of “1.” Exit routines invoked from the user address space (SSSM)
exccute in the key current at the time the SEXIT macro was issued. Exit routines
invoked from the functional subsystem (FSS) address space run in the FSS
environment and usually run in protect key I (as set by the FSS). Also, exit
routines invoked from the FSS address space have access to all service routines
supported by HASPFSSM.

A JES2 exit effector provides linkage services between an exit point and exit
routines. It locates and passes control to your exit routines and returns control to
JES2. There are two exit effectors: one provides linkage to exit routines that run
as extensions to the JES2 main task and the other provides linkage to exit
routines that run as extensions to JES2 subtasks or as extensions to routines in
the user address space. Exit routines that are invoked as extensions to the JES2
main task receive control in the JES2 protect key. Exit routines that are invoked
as extensions to routines in the user address space receive control in the key of the
current PSW.

Your exit routines can affect JES2 processing by directly manipulating JES2 data
areas and by passing back return codes. You can have up to 256 individual exit
routines associated with a single exit on the EXITnnn initialization statement.
These multiple exit routines are all called consecutively in the order of their
appearance on the EXITnnn initialization statement. Consider the example
below:

EXIT175 ROUTINE= (X1, X2, X3, X4, X5,)

For exit 175, the exit routine identified by label X1 is called before the exit
routine identified by X2, and so forth, until all of them (X1 through X5) are
called or until one of them generates a nonzero return code, which causes the exit
effector to return to the JES2 mainline after the exit point.

Note: No exit routines are ever required as part of standard JES2 processing.
The JES2 exit facility is fully optional. If you have not implemented an exit--that
is, if you have not written an exit routine for it, or have not included the exit
routine in a load module, or have not associated the routine with the exit at
initialization time--the presence of the exit point or points that establish the exit is
transparent during standard JES2 processing.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 1. Introduction to Modifying JES2 1-7

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

1-8 JES2 User Modifications and Macros 1.C23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Chapter 2: Customizing JES2

Choosing Which Exits to Implement ~ 2-1

Exit Selection Table
Writing an Exit Routine
Language 2-7

2-2
2-7

Operating Environment 2-7
Synchronization 2-10
Reentrant Code Considerations 2-11

Linkage Conventions
Received Parameters
Return Codes 2-13
Control Blocks 2-14
Service Routine Usage
Exit Logic 2-15

2-11
2-13

2-15

Exit-to-Exit Communication 2-16
Exit-to-Operator Communication 2-16
Other Programming Considerations 2-17

Tracing 2-19
Recovery 2-20
A Sample Exit Routine

2-20

Multiple Exit Routines In A Single Module 2-27
Testing Your Exit Routine 2-30
Integrating the Exit in the System 2-30

Packaging the Exit

2-30

Initializing the Exit in the System 2-32
Passing Control to Exit Routines 2-37

Job-Related Exits

2-37

Tracing Status 2-38
Establishing Installation-Defined Exits 2-38
Defining JES2 Tables 2-41
Modifying JES2 by Defining User Tables 2-41

Table Linkage 2-42
Master Control Table

2-43

General Table Coding Conventions 2-45

LC23-0067-3 © Copyright IBM Corp. 1982, 1987

Chapter 2: Customizing JES2

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Overview of Modifiable Tables
$SCAN Tables 2-45
PCE Tables 2-45
TID Tables 2-45
OPT Tables 2-45
MPS Tables 2-46
DTE Tables 2-46
WSTAB Tables 2-46
JES2 $SCAN Facility 2-46
$SCAN Macros 2-47
$SCAN: 247
$SCANTAB:
$SCANB: 2-47
$SCAND: 2-47
$SCANCOM: 247

2-47

$SCAN-Related Control Blocks
Implementing $SCAN Tables
2-51
2-53
2-54
2-55

Examples of $SCAN Tables
Implementing PCE Tables
Implementing Trace Tables
Implementing DTE Tables
Subtask Management 2-56

Daughter Task Element (DTE) Structure

SDTEDYN Services 2-56

Generalized JES2 Dispatcher Support

2-45

2-48
2-48

2-56

2-57

JES2 User Modifications and Macros

LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Chapter 2. Customizing JES2

Choosing Which Exits to Implement

When considering an alteration to a standard JES2 function, you should
determine whether one of the IBM-defined exits accommodates your intended
change.

Each exit has an intended purpose. If you use an IBM-defined exit for other than
its intended purpose, you increase the risk of performance degradation and system
failure.

The exit selection table (Figure 2-1) summarizes the available exits and their
functions.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-1

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Exit Selection Table

Exit Exit Title

Purpose

Some Specific Uses

0 PRE-INITIALIZATION

Control the initialization process

Provide verification of JES2 initialization options,
specifically SHASP426 and SHASP427 messages.

Acquire user control blocks and user work areas
for use in initialization (such as the user control

table (UCT)).

Provide addresses of user tables in the master
control table (MCT).

Determine whether or not JES2 initialization is
to continue.

Allow implementation of installation-defined
initialization options and parameters.

1 JES2 PRINT/PUNCH
JOB SEPARATOR

Create your own print and punch job
separators and control production of
standard separators.

Selectively produce unique separators or
variations on the standard separators.
Unconditionally produce standard separators.

Unconditionally suppress production of standard
separators.

Selectively produce separators for particular
users or particular job classes.

Provide a different separator card on a punch
device.

Place the company’s logo on header page.

Provide accounting information on trailer page.

2 JOB STATEMENT
SCAN

Scan the complete JOB statement
image and set corresponding fields
in the appropriate JES2 control
blocks.

Alter JOB statement parameters including a
job’s class, priority, and other attributes.
Supply additional JOB statement parameters.
Selectively cancel or purge jobs.

Set the job exit mask in the JCT for subsequent
exits.

Set the spool partitioning mask in the JCT.

Initialize or modify other fields in the JCT,
including your own installation-defined fields.

Modify other job-related control blocks.

Build your own installation-defined job-related
control blocks.

Enforce security and standards.

Figure 2-1 (Part 1 of §). Exit Selection Table

2-2 JES2 User Modifications and Macros

LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”

Licensed Materials — Property of IBM

Exit Title

Purpose

Some Specific Uses

3 JOB STATEMENT
ACCOUNTING FIELD
SCAN

Scan the JOB statement accounting
field and set corresponding fields
in the appropriate JES2 control
blocks.

Alter accounting field information.

Supply additional accounting field information.
Perform your own accounting field scan.
Process nonstandard accounting information.
Selectively cancel jobs.

Set the job exit mask in the JCT for future exits.

Initialize or modify other fields in the JCT,
including your own installation-defined fields.

Pass information to subsequent exits through the
JCT user fields.

Modify other job-related control blocks.
Eanforce security and standards.

4 JCL AND JES2
CONTROL
STATEMENT SCAN

Scan JCL (not including JOB
statements).

Alter JCL parameters.

and JES2 control statements.

Supply additional JCL parameters.

Supply a JCL continuation statement.

Alter JES2 control statements.

Supply an additional JES2 control statement.

Perform your own JES2 control statement
processing.

Suppress standard JES2 processing.

Process your own installation-defined JES2
control statement subparameters.

Selectively cancel or purge jobs.

Enforce security and standards.

5 JES2 COMMAND
PREPROCESSOR

Process JES2 commands received by
the JES2 command processor

Alter received commands.

Alter particular fields, such as those pertaining to
command authority, in the command processor
work area for the PCE to affect subsequent
command processing.

Perform your own command validation checking.

Process your own installation-defined commands,
operands, and suboperands.

Selectively terminate commasnd processing and
notify the operator of command cancellation.

6 INTERNAL TEXT
SCAN

Scan internal text after conversion
from individual JCL images and after
all of the internal text for a particular
job has been created.

Scan the resolved JCL, including PROCLIB
expansion that will be used by the job.
Modify individual internal text images.
Enforce security and standards.

7 JCT READ/WRITE
(JES2)

Receive control whenever JCT I/O is
performed by the JES2 main task.

Read or write your own installation-defined
job-related control blocks to spool along with the
reading and writing of the JCT.

Figure 2-1 (Part 2 of 5). Exit Selection Table

LC23-0067-3 © Copyright IBM Corp. 1982, 1987

Chapter 2. Customizing JES2 2-3

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

receiver that a transmitted file
has arrived.

Exit Exit Title Purpose Some Specific Uses

8 JCT READ/WRITE Receive control whenever JCT 1/O is ©® Read or write your own installation-defined
(USER) performed by a JES2 subtask or by a job-related control blocks to spool along with

routine running in the user address the reading and writing of the JCT.
space (HASPSSSM).

9 JOB OUTPUT Receive control whenever an ® Selectively allow JES2 to follow the
OVERFLOW executing job is producing more defined output overflow error procedure.

output than was estimated. ® Selectively direct JES2 to take special action
for the current job only to:
— Cancel the job
— Cancel the job with a dump
— Allow the job to continue
— Extend the job’s estimated output to a
specific new limit
— Control how often the output overflow
message is displayed
— Suppress the default error message
10 $WTO SCREEN Receive control whenever JES2 is @ Scan messages.
ready to queue a SWTO message. ® Change the text of a message.
©® Alter a message’s console routing.
® Selectively suppress messages.

11 SPOOL Receive control from the main task @ Expand the spool partitioning mask.
PARTITIONING when there are no more track ® Suppress spool partitioning by allowing JES2 to
ALLOCATION - groups available on the spool use the allocation default.
$STRACK volumes from which the current

job is permitted to allocate space.

12 SPOOL Receive control from JES2 subtask ® Expand the spool partitioning mask.
PARTITIONING or user address space (HASPSSSM) @ Suppress spool partitioning by allowing JES2 to
ALLOCATION - when there are no more track groups use the allocation default.
$STRAK available on the spool volumes from

which the current job is permitted to
allocate space.

13 TSO/E INTERACTIVE | Enhance the TSO/E interactive data ® Perform validity checking on the control
DATA TRANSMISSION| transmission facility by screening information for an incoming file and on the basis
FACILITY SCREENING]| incoming files at the receiving of this check:

AND NOTIFICATION | network node and notify the TSO — Delete the transmitted file, not allowing it to

reach the intended receiver.
— Reroute the transmitted file to a TSO user
other than the intended receiver.

— Allow the transmitted file to remain targeted
for the sender’s intended receiver.

Direct JES2 to notify the receiver, via a TSO
SEND command, that a transmitted file has
arrived. In a multi-access spool configuration
specify the system on which the TSO SEND
command will notify the receiver.

Figure 2-1 (Part 3 of 5). Exit Selection Table

2-4 JES2 User Modifications and Macros

LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Exit

Exit Title

Purpose

Some Specific Uses

JOB QUEUE WORK
SELECT

Receive control to search the job
queue for work.

Use tailored search algorithms to select work
from the job queue.

Selectively bypass searching the job queue for
work.

15

OUTPUT DATA
SET/COPY

Receive control to handle the creation
of separator pages on a data set or
copy basis.

Selectively generate separator pages for
each'data set to be printed.

Selectively generate separator pages for each
copy made of a data set.

Selectively vary the number of copies made of a
data set.

Selectively pick data sets and generate separator
pages for them.

Change default print translation tables.

16

NOTIFY

Receive control to examine or modify
messages that are sent.

Alter routing of the notify message.
Examine the notify message before it is sent to
the receiver and make selective modifications.

Suppress sending the notify message to the
receiver.

Replace the notify message before it is sent to
the receiver with an entirely new one.

17

BSC RJE
SIGN-ON/SIGN-OFF

Receive control to manage and
monitor RJE operations for BSC.

Selectively perform additional security checks
over and above the standard password processing
of the sign-on card image.

Selectively limit both the number and types of
remote devices that can be on the system at any
one time.

Selectively bypass security checks.

Implement installation-defined scanning of
sign-on card images.

Collect statistics concerning RJE operations on
the BSC line and report the results of the activity.

18

SNA RIJE
LOGON/LOGOFF

Receive control to manage and
monitor RJE operations for SNA.

Selectively perform additional security checks
over and above the standard password processing
of the logon image.

Selectively limit both the number and types of
remote devices that can be on the system at any
one time.

Selectively bypass security checks.

Implement installation-defined scanning of
images.

Collect statistics concerning RJE operations on
the line and report the results of the activity.

Figure 2-1 (Part 4 of 5).

Exit Selection Table

LC23-0067-3 © Copyright IBM Corp. 1982, 1987

Chapter 2. Customizing JES2 2-5

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Exit Exit Title Purpose Some Specific Uses
19 INITIALIZATION Receive control for each initialization | ® Insert installation initialization statements.
STATEMENT statement. ® Scan an initialization statement prior to the JES2
scan and perform parameter checking.
® Selectively alter values supplied on an
initialization statement to meet specific
installation needs.
® Optionally cause JES2 to bypass a particular
initialization statement.
® Optionally cause JES2 to terminate.
20 END OF JOB INPUT Alter the status of the job at the end ® Selectively assign a job’s system affinity,
of job input. execution node, and priority based on an
installation’s unique requirements and processing
workload.
® Based on an installation’s own defined criteria,
terminate a job’s normal processing and
selectively print or not print its output.
@® Provide job tracking
21 SMF RECORD Receive control when JES2 is ® Selectively queue or not queue the SMF record
about to queue an SMF buffer. for processing by SMF.
® Obtain and create SMF control blocks prior to
queueing.
@ Alter content and length of SMF control blocks
prior to queueing.

22 CANCEL/STATUS Receive control to implement an ® Allow an installation to implement its own
installation’s own algorithms governing algorithms for job queue searching and for TSO
job selection and ownership for TSO CANCEL/STATUS.

CANCEL/STATUS.

23 FSS JOB SEPARATOR | Receive control to modify the job ® Control what information is passed to a
separator page data area (JSPA) that page-mode printer functional subsystem
is used by page-mode printers such application (FSA) via the JSPA.
as the 3800-3 to generate the job ® Suppress the printing of job separator pages.
separator page for an output group ® Suppress the printing of the JESNEWS data set.

24 POST INITIALIZATION| Receive control to make modifications | ® Make final modifications to selected JES2
to JES2 control blocks prior to the control blocks prior to the end of JES2
end of JES2 initialization. initialization.

@ Initialize any special installation-defined control
blocks.
® Terminate JES2 during the initialization process.
25 JCT READ Receive control whenever JCT 1/O ® Read or write your own installation-defined
(FSS) is performed by a JES2 functional job-related control blocks to spool along with
subsystem address space the reading and writing of the JCT.
(HASPFSSM).
26 TERMINATION/ Free resources obtained during ® Free resources obtained by user-exit routine
RESOURCE RELEASE | previous user exit routine processing processing that JES2 continues to hold following
during any JES2 termination a &P JES2 command, JES2 initialization
termination, or JES2 abend.

Figure 2-1 (Part 5 of 5). Exit Selection Table

2-6 JES2 User Modifications and Macros

LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

You can find more detailed information concerning the IBM-defined exits in the
section, “The IBM-Defined Exits,” of Chapter 3. Chapter 3 contains an exit
implementation table (Figure 3-1) that enables you to locate the exit in the JES2
source code itself.

If, after thoroughly examining the IBM-defined exits, you find that none of them
suit your intended change, you may want to consider establishing your own

- optional exit, an exit point you define yourself. However, you should be aware
that the installation of an optional exit can be considerably more difficult than
writing an exit routine for an existing IBM-defined exit. For more information,
see “Establishing Installation-Defined Exits” in this chapter.

Writing an Exit Routine

When you are planning to write a JES2 exit routine, you need to consider the
environment in which the exit routine runs and other general programming
considerations (such as, the programming language to use to code your exit
routine, linkage conventions that are required, return codes to set, and reentrant
code requirements to follow). Chapter 3 provides the specific programming
considerations you need for writing exit routines for the IBM-defined exits. You
should use Chapter 3 in conjunction with the information in this chapter when
writing your exit routine. Should you decide to implement your own
installation-defined exit in JES2, you need to investigate all the exit-specific
programming considerations yourself; see “Establishing Installation-Defined
Exits” later in this chapter for more information.

Language

All JES2 source code is written in basic assembler language (BAL), and your exit
routines must also be written in BAL.

Operating Environment

JES2 has four distinct execution environments as illustrated in Figure 2-2: user
address space, JES2 main task, JES2 subtask, and functional subsystem address
space.

1. Some JES2 routines in the load module HASPSSSM (located in PLPA) run in
the user’s address space. This environment, which enables user programs to
interface with JES2, differs greatly from the JES2 address space environment.
MYVS-wide system services are available to programs in this environment, but
the environment is also more complex; it involves the many integrity and
synchronization considerations of cross-address space communication.

2. For security reasons, the caller of an installation-defined exit in the user’s
address space must be either in supervisor state or be an authorized program.
JES2 will terminate a calling routine with neither of these attributes (for
example, HAMGET and HAMPUT) with a privileged operation exception.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-7

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

3. The JES2 main task is the most common operating environment for JES2

exits. The JES2 main task and the routines that make it up are included in
the primary JES2 load module HASJES20 located in the private area of the
JES2 address space. These JES2 main task routines run under the control of
the JES2 dispatcher (in HASPNUC). The load module, HASPINIT, which
performs JES2 initialization, runs under the main task but is not controlled
by the JES2 dispatcher.

JES2 subtasks also run in the private area of the JES2 address space but run
asynchronously with the JES2 main task. Subtasks run under the control of
the MVS dispatcher and their asynchronous operation enables them to
perform the wait/post type processing representative of external events and
devices without imposing the same wait/post operations on the JES2 main
task.

The functional subsystem (FSS) resides in the functional subsystem address
space (HASPFSSM). You must consider task interaction within the FSS. All
data areas and control blocks are not accessible from the FSS. The accessible
control blocks are the JIB, FSSCB, and FSACB; and available services are
$SAVE and SRETURN.

2-8

JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

SQA
PLPA HASPSSSM ,9 USER HASPFSSM
CSA
= =i=
. JES2
- MAIN TASK
PRIVATE HASJES20
JES2
SUBTASKS
¢ n
|
NUCLEUS

Figure 2-2. JES2 and FSS Address Spaces

When writing an exit routine, vou must consider the calling JES2 environment,
because your exit routine runs as an extension of that calling environment (JES2
main task, JES2 subtask, user address space, and functional subsystem). The
calling environment has broad implications to your exit routine; it determines the
JES2 system services available to your exit routine, the reentry considerations you
should take into account, the linkage conventions that are necessary, and a
number of other essential factors (such as, control block access, synchronization,
recovery, and JES2 programmer macro usage). Specifically, the use of macros in
exit routines is limited. Before attempting to use a particular macro in an exit
routine, be certain to check the “Environment” section of each macro description
in Chapter 4 to determine the environments in which the macro can be used.

Every exit is explicitly defined to JES2 as belonging to one of the four execution
environments. The ENVIRON = operand of the $EXIT exit-point definition
macro is specified as either “JES2,” “SUBTASK,™ “USER,” or “FSS.” The
default SEXIT ENVIRON = value is the same value specified for ENVIRON =
on the SMODULE macro. This specification determines which of two exit
effectors (the JES2 subroutines that establish the linkage between JES2 and an

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-9

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Synchronization

exit routine) will be called when the exit is enabled. One exit effector establishes
linkage to an exit routine from the JES2 main task environment; the other
establishes linkage to an exit routine from either the JES2 subtask environment or
the user environment. In the JES2 main task, JES2 linkage conventions (that is,
$SAVE and SRETURN) are used; in the subtask and user environments, MVS
linkage conventions are used.

Note: If you do not specify the execution environment on either a $EXIT or
$MODULE macro, the environment defaults to that specified on the
&ANVIRON global assembly macro. The &ANVIRON specification can be
explicitly overridden by adding an ENVIRON = statement on the SMODULE to
the exit routine.

You cannot define an exit “across” environments. That is, when an exit is
required to serve the same purpose in two distinct environments, two separate
exits must be defined, each with its own identification number. For example, Exit
11, an IBM-defined exit that can give you control to reset the spool partitioning
mask, is defined as belonging to the JES2 main task environment. Exit 12, which
serves the same functional purpose, is defined as belonging to the user
environment. In implementing these exits, you must write a separate exit routine
for each defined exit and adapt the routine to its calling environment.

To stress again, whether defining an exit or writing an exit routine, you must be
aware of the operating environment; it influences where your exit is to be defined
or what processing your exit routine can really perform. In the descriptions of the
following general programming considerations for writing an exit routine, specific
environmental influences are described.

An exit routine must use synchronization services appropriate to its calling
environment.

An exit routine called from the JES2 main task must use the JES2 $WAIT macro
to wait for a JES2 event, resource, or post of a MVS ECB. An exit routine called
from a JES2 subtask or from the user environment must use the MVS WAIT
macro to wait for a system event. An exit routine called from a functional
subsystem must also use MVS WAIT; SWAIT and $POST are not valid in this
environment.

A JES2 main task exit routine should not invoke operating system services which
may wait (WAIT), either voluntarily or involuntarily. An MVS wait from a JES2
main task exit routine would stop all of the JES2 main task processors, including
any devices--such as readers, printers, and remote terminals--under their control.

2-10 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Reentrant Code Considerations

Linkage Conventions

Reentrant code considerations are contingent on the calling environment.

An exit routine called from the JES2 main task must be reentrant in the JES2
sense. The JES2 dispatching unit, commonly called JES2 processors, running
under a processor control element (PCE) perform the processing for the JES2
main task. The JES2 dispatcher controls what PCE is currently active (that is,
what JES2 processor is currently running). Because a JES2 processor doesn’t
relinquish control to another JES2 processor involuntarily, an exit routine,
invoked out of a JES2 main task processor may use a nonreentrant work area; the
work area is serialized as long as the exit routine doesn’t issue a SWAIT macro or
until the exit routine or service called from an exit routine does issue the SWAIT
macro. When the exit routine issues the $WAIT macro directly or through a
called routine, control returns to the JES2 dispatcher and the serialization on the
nonreentrant work area ceases. The nonreentrant work area may also be passed
between exit routines, or between an exit routine and JES2, prior to 2 SWAIT
macro call. Work areas to be used “across” a SWAIT must either be within the
processor work area established as part of the processor control element (PCE) or
else must be directly owned by the processor. In the same JES2 reentrant sense,
an exit routine may search or manipulate a JES2 queue provided that it has
ownership of the queue and doesn’t issue a SWAIT macro until this action is
completed.

An exit routine called from a JES2 subtask, from the user environment
(HASPSSSM), or functional subsystem (HASPFSSM) must be reentrant in the
MYVS sense. The exit routine must be capable of taking an MVS interrupt at any
point in its processing. The exit routine must be able to handle the simultaneity
of execution with other subtask and user address space, or functional subsystem
(FSS) routines and with the JES2 main task.

When control is passed to an exit routine, certain general registers contain linkage
information. Register 15 always contains the entry point address of the exit
routine, and can be used to establish addressability for the exit routine’s code.
Register 14 contains the address (in the exit effector) to which the exit routine
must return control. In the JES2 main task environment, register 13 always
contains the address of the processor control element (PCE) of the processor that
invoked the exit. In the JES2 subtask environment or the user (HASPSSSM)
environment, register 13 always contains the address of an 18-word save area (as
specified for the SAVAREA = operand on the $EXIT macro). In the JES2 main
task and subtask environments, register 11 always contains the address of the
HCT; and in the functional subsystem environment (HASPFSSM), register 11
always contains the address of the HASP functional subsystem communications
table (HFCT). In the user (HASPSSSM) environment, register 11 always contains
the address of the SSVT. Depending on the exit, registers 0 and 1 may be in use
as parameter registers. The use of registers 2 through 10 and 12, usually used as
pointer registers, is also exit-dependent.

The use of registers 0 through 15 is documented, for each IBM-defined exit, in the
category REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE
EXIT ROUTINE in “The IBM-Defined Exits” reference section in Chapter 3.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-11

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Note that if you install an optional installation-defined exit, you are responsible
for modifying JES2 code, preceding your exit, to load any parameters in registers
0 and 1 and any pointers in registers 2 through 10 and 12 that may be required by
your exit routine.

For multiple exit routines, the exit effector passes registers 2 through 13 to each
succeeding exit routine just as they were originally loaded by JES2 when the exit
was first invoked. However, register 15 contains the entry point address of the
current exit routine and, again, can be used to establish addressability for the exit
routine’s code. Register 14 contains the address to which the exit routine must
return control. This enables you to pass the information to consecutive exit
routines. For more information, see “Multiple Exit Routines In A Single
Module” below.

When any exit routine receives control, it must save the caller’s registers. An exit
routine called from either the JES2 main task or a functional subsystem can save
the caller’s registers by issuing the JES2 $SAVE macro. An exit routine called
from a JES2 subtask or from the user (HASPSSSM) environment must save the
caller’s registers, according to standard MVS linkage conventions, in the 18-word
save area whose address is contained in register 13.

When any exit routine relinquishes control, it must restore the caller’s registers, with
the exception of registers 0, 1, and 15. An exit routine called from either the
JES2 main task or functional subsystem must restore the caller’s registers by
issuing the JES2 SRETURN macro. An exit routine called from a JES2 subtask
or from the user (HASPSSSM) environment can restore the caller’s registers by
reloading them from the save area whose address was originally received in
register 13.

Just before returning control to JES2, an exit routine must place a return code in
register 15 and must place any parameters that it intends to pass, either back to
JES2 or to the next consecutive exit routine, in registers 0 and 1. If the return
code is greater than zero, or if the current exit routine is the last or only exit
routine associated with its exit, this return code is passed back to JES2 at the
point of invocation, along with any parameters placed in registers 0 and 1. If,
however, the return code is zero and the current exit routine is not the last or only
exit routine associated with its exit, the exit effector passes control to the next
consecutive exit routine, along with any parameters placed in registers 0 and 1.
Note that in the JES2 main task environment you can use the $SSTORE macro
prior to the SRETURN macro in order to modify the returned values of registers
0 and 1.

The specific implementation of return registers 0, 1, and 15 is documented, for
each IBM-defined exit, under the category REGISTER CONTENTS WHEN
CONTROL IS PASSED BACK TO JES2 in “The IBM-Defined Exits” reference
section in Chapter 3. Note that if you install an optional installation-defined exit,
you are responsible for modifying JES2 code, following your exit, to receive any
parameters your exit routine passes back as well as any return code above four
that you pass in register 15.

2-12 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Received Parameters

Return Codes

Received parameters, passed by either JES2 or the preceding exit routine in
registers 0 and 1, provide a method of passing information to an exit routine and
of informing an exit routine of the current point of processing.

For any IBM-defined exit that passes parameters (to the first or only associated
exit routine), the specific parameters are documented in the REGISTER
CONTENTS WHEN CONTROL IS PASSED TO THE EXIT ROUTINE
category of the exit’s description in “IBM-Defined Exits” reference section in
Chapter 3. IBM-defined Exit 6, which allows you to receive control both during
and after the conversion of a job’s JCL to internal text, presents a typical
example. After a single JCL statement has been converted to an internal text
image, Exit 6 places a zero in register 0. After all of the JCL for a particular job
has been converted to internal text, Exit 6 places a 4 in register 0. Your exit
routine can determine what action to take by checking this code when it first
receives control.

For some exits, the parameter registers also contain pointers to control blocks, to
certain control block fields, or to other parameter lists. For a discussion of an
exit routine’s use of control blocks, see the “Control Blocks” section below.

They are passed, as modified, from routine to routine. Note that if you install an
installation-defined exit, you must ensure that JES2 passes any parameters
required by your exit routine in registers 0 and 1; this may require some
modification of JES2 source code.

A return code provides a convenient way for an exit routine to affect the course
of subsequent JES2 processing.

The standard return codes are 0 and 4. If 0 is returned by an exit routine that is
not the last or the only exit routine associated with its exit, the exit effector calls
the next consecutive exit routine. However, a 0 returned by the last or only exit
routine associated with its exit directs JES2 to proceed with standard processing.
A 4 returned by any exit routine directs JES2 to proceed unconditionally with
standard processing; any succeeding exit routines remain uncalled.

Note that a standard return code does not necessarily indicate that an exit routine
has opted to take no action. You can write an exit routine to manipulate certain
JES2 data areas and then, by generating a standard return code, direct JES2 to
continue with normal processing on the basis of this altered data. For example,
IBM-defined exits, Exit 7 and Exit 8, have no return codes greater than 4.

The definition of return codes that are greater than 4 is exit-dependent. The
specific implementation of return codes greater than 4 is documented, for each
IBM-defined exit, under the category RETURN CODES in “The IBM-Defined
Exits” reference section of Chapter 3; a brief indication of the standard processing
that results from the return of 0 or 4 is also included for each exit. Note that if
you install an optional installation-defined exit, you are responsible for modifying
JES2 code, following your exit, to receive and act upon any return code greater
than 4 generated by your exit routine.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-13

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

A return code is always a multiple of 4. If your exit routine passes a return code
other than 0 or another multiple of 4 to JES2, results are unpredictable. Also, the
$EXIT exit-point definition macro has a MAXRC= operand that specifies the
exit’s maximum acceptable return code. If your exit routine generates a return
code that exceeds this specification and the exit was called from the JES2 main
task, the exit effector issues the SERROR macro. If the exit was called from a
JES2 subtask, from the user (HASPSSSM), or from the functional subsystem
(HASPFSSM) environment, the exit effector issues the ABEND macro.

Control Blocks

An exit routine has access to various control blocks available in the environment
from which it was called.

To facilitate exit coding, IBM-defined exit routines provide in registers 0-13
pointers to control blocks currently in main storage. Register 1 can contain a
pointer to a parameter list, which contains the addresses of control blocks
currently in main storage. For a list of the specific pointers provided by an
IBM-defined exit, see the REGISTER CONTENTS WHEN CONTROL IS
PASSED TO THE EXIT ROUTINE category of the particular exit’s description
in “The IBM-Defined Exits” reference section of Chapter 3. Note that if you
install an installation-defined exit, you have to ensure that any pointers required
by your exit routine have been placed in the call registers by JES2 prior to the
invocation of your exit; this may require some modification of JES2 source code.

An exit routine can access information available in control blocks. For example,
IBM-defined Exit 5, which allows you to perform your own JES2 command
preprocessing, passes the address of the PCE to an associated exit routine. You
can write your own command validation algorithm by writing an exit routine that
checks various command-information fields in the PCE.

Because an exit routine runs fully authorized, it is free to alter any field in any
control block to which it has access. By altering specific fields in specific JES2
control blocks, an exit routine can pass information to JES2 and to succeeding
exit routines and can thereby affect the course of subsequent JES2 processing.
Note that JES2 has no protection against any change made to any control block
by an exit routine. If you modify a checkpointed control block, you must ensure
that it is written to the checkpoint data set either by your exit routine or by JES2.
For this reason, you should exercise extreme caution in making control block
alterations.

Except where it would seriously degrade system performance, JES2 provides a
reasonable amount of space in its standard control blocks for use by your exit
routines. Some storage-resident control blocks, such as PCEs and DCTs, have
storage reserved for exit routine use. You can use this storage to establish your
own exit-related field or fields within a standard control block or, if you require
more storage, you can use four of the bytes as a pointer to a work area acquired
by an exit routine using the JES2 $GETMAIN, $GETBUF, and SGETWORK
macros or the MVS GETMAIN macro. Disk-resident control blocks provide
considerably more space for exit routine use. For performance reasons, no
checkpoint-resident control blocks reserve space for use by exit routines.

2-14 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Service Routine Usage

Exit Logic

In addition to using reserved space in the standard JES2 control blocks, you can
define and make use of your own installation-specific control blocks by using the
JES2 exit facility. An exit routine can use the JES2 $GETMAIN, $GETBUF,
and SGETWORK macros or the MVS GETMAIN macro to acquire storage and
build a control block at the appropriate point in processing. For example, a
job-related control block can be built by an exit routine associated with
IBM-defined Exit 2. You can then use IBM-defined Exits 7 and 8 to write your
installation-defined control blocks to spool and to read them from spool into
main storage.

Note that if an exit routine references the symbolic name of a control block field,
the DSECT for that control block must be requested in the exit routine’s module
at assembly time (via the SMODULE macro).

Each exit description in “The IBM-Defined Exits” reference section of Chapter 3
includes a list of DSECTs normally required at assembly.

Many service routines available to the JES2 main task are also available to an
exit routine called from the JES2 main task. You can include an executable JES2
macro instruction at any appropriate point in a JES2 main task exit routine. Not
all service routines are available to the functional subsystem environment; those
that can be called must be appropriate. Depending on the macro, it provides
inline code expansion at assembly time or else calls a JES2 service routine, as a
subroutine, in execution.

An exit routine called from a JES2 subtask or from the user (HASPSSSM)
environment can make use of any JES2 service routine that can be called from its
environment as well as any MVS service routine (SVC) that can be called from its
environment. You can include a JES2- or MVS-executable macro instruction at
any appropriate point in the subtask or user routine. Again, depending on the
macro, it provides inline code expansion at assembly time or else calls a JES2 or
MYVS service routine, as a subroutine, in execution.

Each IBM-defined exit should be used for its intended purpose. Using an exit for
other than its intended purpose can increase the risk of degraded performance and
system failure and may cause migration problems.

Within the scope of an exit’s intended purpose, you have a wide degree of
flexibility in devising exit algorithms. For example, you can base spool
partitioning on a simple factor, such as job class, or on a complex comparison of
several job attributes and current spool volume usage. However, you should keep
in mind that as you increase an algorithm’s sophistication, you also increase
overhead and the risk of error. Exit-specific logic considerations are provided in
the “Other Programming Considerations” category for each exit description in
“The IBM-Defined Exits” reference section at the end of this chapter.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-15

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Logic considerations for installing installation-defined exits as well as for
implementing them are provided in “Establishing User-Defined Exits” later in this
chapter.

Note, for both IBM-defined and installation-defined exits, that the ability to
associate multiple exit routines with a single exit enables you to devise modular
logic segments. Each separate function to be performed after exit invocation can
be isolated in its own exit routine. This can be especially useful when you need to
provide alternate types of exit processing for different received parameters.

Exit-to-Exit Communication

Communication among exit routines associated with different exits must be
accomplished via mutually accessible control blocks. Communication among exit
routines associated with the same exit can also be accomplished via mutually
accessible control blocks.

Exit-to-Operator Communication

Except for exit routines called from the HASPCOMM module of HASJES20 and
exit routines called from JES2 initialization and termination, exit routines called
from the JES2 main task environment can communicate with the operator via the
$WTO macro. Exit routines called from the HASPCOMM module can
communicate with the JES2 operator via the $SCWTO macro. Exit routines called
from a JES2 subtask or during JES2 initialization and termination can
communicate with the operator via the $$WTO and $$WTOR macros or via the
MVS WTO and WTOR macros. Exit routines called from the user (HASPSSSM)
or functional subsystem (HASPFSSM) environment can communicate with the
operator via the MVS WTO and WTOR macros. Note that, if a message is to be
associated with jobs processed by a functional subsystem, the job id must be
included with the message.

In addition, certain IBM-defined exits provide alternate methods of operator
notification. Exits 2, 3, and 4 allow you to transmit an exit-generated message to
the operator along with certain return codes by setting a flag in the RXITFLAG
byte. Exit 5 allows you to control the standard SCRET macro “OK” message
and to transmit your own exit-generated message text via the SCRET macro.
Exit 9 allows you to control the standard output overflow message. Exit 10
allows you control over the text and routing of all WTO messages. For details,
refer to the individual exit descriptions in “The IBM-Defined Exits” reference
section of Chapter 3.

2-16 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”

Licensed Materials ~ Property of IBM

Other Programming Considerations

The following programming considerations describe some specific requirements
for coding your exit routine:

Naming and Identifying an Exit Routine

You must begin each exit routine with the JES2 SENTRY macro, which you
use to name the routine and to identify it to JES2. For more information, see
“Packaging Exit Routines” later in this chapter.

Note that you have flexibility in naming your exit routines, in accordance
with standard labeling conventions with the exception of Exit 0 (see the
description of Exit 0 in Chapter 3 for more detail).

Exit Addressability

The SENTRY macro is also used to generate a USING statement for your
exit routine. The BASE = operand is used to specify the register or registers
which provide addressability when the exit routine gets control. However, the
SENTRY macro does not load the base register.

Source Module Conventions

The construction of a source module must follow certain conventions
depending on how you intend to package the exit routine. Through these
conventions, JES2 is able to locate both exit routines and exit points within a
module.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-17

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Figure 2-3 illustrates two ways to package an exit routine:

0 As a totally separate lood module
As part of one of the JES2 load modules (HASPSSM, HASJES20 or
HASPINIT
OBJLIB LINKLIB
JES2 JES2
o LINKEDIT
EXIT EXIT
ROUTINE ROUTINE
0oBJLIB LINKLIB
JES2 JES2
e LINKEDIT
EXIT
EXIT
ROUTINE ROUTINE

Figure 2-3. Methods of Packaging

A JES2 $MODULE macro must be the first code-generating statement
(immediately preceded by COPY $HASPGBL) in a source module to be
assembled and either link edited separately and loaded at initialization or a source
module to be added to a standard JES2 load module. Note that the SMODULE
macro call must occur prior to the first use of SENTRY or $EXIT, and a JES2
$MODEND macro must be coded at the end of both types of source modules.

You can only code one SMODULE and one SMODEND macro in each source
module. Additionally, when link editing exits into their own load modules (other
than HASJES20 or HASPSSSM). each source module must be linked into its own
load module.

The SMODULE macro reserves space for a module information table (MIT),
which points to a MIT entry table (MITETBL); the MIT indicates which exit
points are defined within the module and the MITETBL contains the names and
addresses of exit routines in the module. When JES2 is initialized, the MIT and
MITETBL are used to initialize the exit routines in the system. During assembly,
each SENTRY macro saves the entry point name specified in a global assembly
variable and each $EXIT macro turns on a bit for that exit point in another
global assembly variable. At the end of the assembly, the SMODEND macro

2-18 JES2 User Modifications and Macros LC23-0067-3 < Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Tracing

uses the global assembly variables to assemble the exit bit mask in the MIT and
to create the MITETBL.

To locate the MITs of modules that are added to the standard JES2 load
modules, JES2 uses weak external address constants. To locate the MIT’s of
modules that are linked in their own load modules, JES2 assumes that the MIT is
located at the front of the load module to which it points. The MITETBL is
located at the end of a module loaded at initialization.

Also note, for all exit routine source modules, that if an exit routine references the
symbolic name of a control block field, the mapping macro for that control block
must be included in the SMODULE macro list in the same source module as the
exit routine at assembly time.

Furthermore, refer to Appendix C, “Hints for Coding JES2 Exit Routines” for a
list of required mapping macros for individual exits. These macros are
environment dependent and must be coded to prevent assembly errors and error
messages.

The ENVIRON = operand of the SMODULE macro should be used to specify in
which JES2 operating environment the exit routine(s) is to execute. Each exit

description in the “IBM-Defined Exits” reference section in Chapter 3 includes a
list of MAPPING MACROS NORMALLY REQUIRED AT ASSEMBLY.

Minimal tracing of exit invocation can be performed automatically as part of the
exit facility. For this tracing to occur, two conditions are necessary:

1. The trace ID for exit tracing (ID 13) must be enabled.
The EXITnnn initialization statement or the $T EXITnnn operator command
must have enabled tracing. For more information, see “Tracing Status” in
“Controlling Exit Status” later in this chapter.

This automatic tracing produces a limited trace entry containing such general
information as exit point identification and register contents at the time of exit
invocation.

In addition, to further trace execution of exit routine code, issue the standard
JES2 $STRACE macro call within an exit routine. This results in a full trace
record of exit routine processing.

It is recommended that you use tracing to its fullest extent only in your testing
cycle, and that you limit its use in those areas of the standard processing
environment--for example, in conversion processing--where it is most likely to
degrade system performance.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987

Chapter 2. Customizing JES2 2-19

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Recovery

An exit routine should not depend upon JES2 for recovery. JES2 cannot
anticipate the exact purpose of an exit routine and, therefore, any standard JES2
recovery that happens to be in effect when your exit routine is called is, at best,
minimal for your particular needs. In other areas of processing, no JES2 recovery
environment is in effect, and an exit routine error has the potential to cause JES2
to fail. Consequently, you should provide your own recovery mechanisms within
your exit routines.

For all exits routines for which you provide an ESTAE routine, also be certain to
add the error recovery area DSECT, $ERA, to the SMODULE macro. On return
from the exit, use register 1 to point to the ERA and provide a USING statement
in that recovery routine to use the ERA address.

You can make use of the standard JES2 $ESTAE recovery mechanisms in
implementing your own recovery within the JES2 main task. You can make use
of the MVS ESTAE recovery mechanism in implementing your own recovery in
the SUBTASK, USER, or FSS environments. At minimum, a recovery
mechanism should place a 0 or 4 return code in register 15. Beyond this, recovery
depends on the particular purpose of an exit routine.

A Sample Exit Routine

Below is a sample JES2 user exit routine for a separator page (Exit 1). This code
is a simplified example to show you how to use the JES2 macros provided with
this exit facility.

2-20 JES2 User Modifications and Macros

LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

XIT1 TITLE 'SAMPLE JES2 USER EXIT - PREAMBLE'

* Kk k kkk COMMENT BLOCK GOES HERE RS R EEE R RS EREE SRR SRR R SRR SRR SRR R R R RS SR 1|
* *
* SAMPLE JES2 SEPARATOR PAGE EXIT *
* *
* PURPOSE: *
* TO PRINT A PAGE SEPARATOR ON LOCAL AND REMOTE PRINTERS *
* WITH THE JOB NAME IN BLOCK LETTERS, FOLLOWED BY THE JOB *
* NUMBER AND SYSOUT CLASS (ALSO IN BLOCK LETTERS), AND *
* THEN 40 REPETITIONS OF A DUMMY DETAIL LINE. *
* *
* ENTRY POINT = UEXIT1 *
* *
* INPUT (REGISTERS): *
* RO =0 FOR START-OF-JOB SEPARATOR *
* =4 FOR CONTINUATION SEPARATOR *
* =8 FOR END-OF-JOB SEPARATOR *
* R1 ADDRESS OF PRINTER OR PUNCH DCT *
* R2-9 N/A *
* R10 ADDRESS OF THE JOB'S JCT *
* R11 ADDRESS OF THE JES2 HCT *
* R12 N/A *
* R13 ADDRESS OF THE PRINTER OR PUNCH PCE *
* R14 RETURN ADDRESS *
* R15 ENTRY ADDRESS *
* *
* RETURN (REGISTERS): *
* RO-14 SHOULD CONTAIN THE SAME CONTENTS AS ON ENTRY *
* R15 CONTAINS A RETURN CODE AS FOLLOWS: *
* =0 JES2 WILL PRODUCE THE STANDARD SEPARATOR *
* =4 SAME AS 0, BUT CALL NO OTHER EXIT ROUTINES *
* =8 JES2 WILL UNCONDITIONALLY NOT PRINT A SEPARATOR *
* =12 JES2 WILL UNCONDITIONALLY PRINT A SEPARATOR *
* *
* JES2 MACROS USED: *
* SENTRY, $SAVE, $GETBUF, $SEPPDIR, $PBLOCK, $PRPUT, *
* SFREEBUF, $RETURN, $MODEND, S$MODULE. *
* *
IR R R R R R E R R R R R R R R E R R R R R P R IR R R E R R R EE RS EEE RIS EEEREE R R R SR LS

EJECT 2

COPY $HASPGBL COPY HASP GLOBALS 3

HASPUEX $MODULE RPL, REQ'D BY $BUFFER cC 4

$BUFFER, cC 5

SCAT, C ©

$DCT, c 7

$HASPEQU, REQUIRED FOR REG CONVENTIONS C 8

$HCT, REQ'D BY $SAVE,SRETURN,ETC. c 9

$JCT, C 10

$JOE, REQ'D TO GET SYSOUT CLASS Cc 11

SJQE, C 12

SMIT, REQ'D BY HCT C 13

$PCE, REQ'D BY HCT C 14

$PDDB, C 15

$SPPPWORK REQ'D TO FIND JOE 16

SPACE 1 17

' The line numbers here relate to the numbered notes in the discussion below.

Figure 2-4 (Part 1 of 2). Sample JES2 Separator Page Exit Routine

LC23-0067-3 «© Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-21

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

TITLE 'SAMPLE PRINT/PUNCH SEPARATOR EXIT' 18

USING BFPDSECT,R3 ESTABLISH BUFFER ADDRESSABILITY 19

USING JOE,R7 ESTABLISH JOE ADDRESSABILITY 20

USING JCT,R10 ESTABLISH JCT ADDRESSABILITY 21

SPACE 1 22

UEXIT1 SENTRY BASE=R12 EXIT ROUTINE ENTRY POINT 23
SSAVE SAVE HASPPRPU REGISTERS 24

LR R12,R15 SET LOCAL BASE REGISTER 25

SLR R15,R15 SET ZERO RETURN CODE (FOR PUN) 26

™ PCEID,PCEPUSID IS DEVICE A PUNCH... 27

BO RETURN RETURN IF YES 28

SPACE 1 29
$GETBUF TYPE=HASP,FIX=YES,WAIT=YES GET A WORK BUFFER 30

LR R3,R1 SAVE ADDRESS OF BUFFER 31

PDIR $SEPPDIR (R3) SEND A PDIR IN CASE A SNA RMT 32
SPACE 1 33

LA RO,JCTJNAME POINT TO JOB NAME 34

JOBNAME SPBLOCK BUFFER=(R3),DATA=(RO),SLANT=YES PRINT JOBNAME 35
MVC PCEUSERO(8) , $BLANKS BLANK OUT BUFFER 36

MvC PCEUSERO(1),JCTJOBID GET JOB TYPE 37

MvC PCEUSERO+1(4) ,JCTJOBID+4 AND NUMBER 38

L R7,PPPWKJOE SET WORK JOE BASE 39

MvC PCEUSERO+6 (1) , JOECURCL GET SYSOUT CLASS 40

SPACE 1 41

LA RO, PCEUSERO POINT TO BLOCK PRINT LINE 42

JOBID SPBLOCK BUFFER=(R3),DATA=(RO),SLANT=YES PRT JOBID/CL 43
MVC BUFSTART(132),=CL132'*' START JOB JOB# JOBNAME 44

LA R1,BUFSTART POINT TO PRINT LINE 45

LA RO, 132 LENGTH OF PRINT LINE 46

DETAIL SPRPUT DATA=(R1l),LEN=(RO),COUNT=40,WAIT=YES PUT LINES 47
SFREEBUF (R3) FREE WORK BUFFER 48

SPACE 1 49

LA R15,8 SET RETURN CODE 50

RETURN $RETURN RC=(R15) RETURN TO HASPPRPU 51
SPACE 1 52

DROP R3,R7,R12 DROP ADDRESSABILITIES 53

LTORG 54

$SMODEND 55

END 56

Figure 2-4 (Part 2 of 2). Sample JES2 Separator Page Exit Routine

The following notes provide line-by-line explanation, where required, for the
example exit presented in Figure 2-4.

1. A comment block should go here. The block (designated by asterisks) is an
example of a comment block to document the input, output, and purpose of
the exit.

2. N/A

3. As in JES2 source modules, the SHASPGBL member of SYSI.HASPSRC is
copied to define many symbols used by JES2 macros and user code in this
exit.

2-22 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”

Licensed Materials — Property of IBM

10.
11.
12.
13.
14.

15.

16.

17.
18.

19.

All exit modules must start with a SMODULE macro as the first
code-generating statement. This macro provides a module information table
(MIT) and must come before any executable code. The label must be the
same as the name of the resulting load module. If it is not the same name,
you will receive the SHASP875 MODULE NAME DOES NOT MATCH ITS
MIT message. However, if the routine is to be linked with HASJES20, the
label must be one of the weak externals provided (that is HASPXJ01,
HASPXJ02, ...). (The numbers on these label do not relate to the exit
numbers or routines.) The label that you provide on the SMODULE macro
will be the name in the MIT.

$BUFFER is used by SGETBUF, SFREEBUF, and the exit code that uses a
JES2 buffer as a work area.

The JES2 DSECT mapping macros $JQE, $PCE.,... are required by other
JES2 macros. More DSECTs may have to be added to this list as required by
user code or other JES2 macros. You can also include a request for
SUSERCBS that allows you to define your own DSECTs.

BUFFER fields are required.

CAT fields are required by the HCT.

DCT fields are required by the HCT.

$SHASPEQU is required to establish register conventions.

The HCT is required by the $SAVE and SRETURN macros and also
contains the $SBLANKS constant referenced in line 36.

JCT fields are required by the class attribute table (CAT), which in turn is
required by the HASP communications table (HCT).

The job output element (JOE) is required by this exit to determine the
SYSOUT class. (JOECURCL - see code lines 40.)

Job queue element (JQE) fields are required by the HCT.

MIT fields are required by the SMODEND macro.

Processor control element (PCE) fields are required by the HCT.
PDDB fields are required by the HCT.

The print/punch work area defined by SPPPWORK contains PPPWKJOE,
which is used to find the JOE for this work element.

N/A
N/A

Establish buffer addressability.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-23

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

31.

32

33.

34.

3s.

Establish JOE addressability.
Establish JCT addressability.
N/A

The first executable statement of the user exit routine must be SENTRY. A
label (for example, UEXIT1) must be provided; this is the same name that is
coded on the ROUTINE = parameter on the EXITnnn initialization
statement (see the last coding example at the end of this section).

The $SAVE macro obtains a JES2 save area and save registers 14, 15, 0, and
I through 12. No registers are destroyed by this macro.

This instruction loads the base register. This is necessary because the
$ENTRY sets the USING statement; it does not load the base registers.

This instruction clears register 15 indicating that JES2 should punch the
standard separator card in the event the following branch is taken.

Test the PCEID to determine if this is a punch. The device type is in the
PCE at label PCEID. Register 13 already points to the PCE. USING is not
required because SMODULE contains a "'USING PCE,R13’ statement.

If the device is a local punch, then return with an indication (R15=0). JES2
should produce the standard separator.

N/A

The SGETBUF macro gets a JES2 buffer required by the $SEPPDIR and
$PBLOCK macros. This buffer is also used as a work area to build print
lines.

The address of the JES2 buffer is saved for future use. (Register I is
generally not a safe register to retain this pointer.)

If the printer is on an SNA remote work station, this instruction issues the
$SEPPDIR macro instruction. It is treated as a no-op for local or BSC
remote devices. The buffer is not a keyword parameter, but a positional
parameter. Code it as shown in this example.

N/A

The job name is in the job control table (JCT) at label JCTINAME. Register
10 already points to the JCT.

The SPBLOCK macro can use data directly from a JES2 control block. It
needs a JES2 (HASP-type, fixed) buffer to build the print lines. The letters
can be slanted (SLANT = YES) or not (the default). In addition, the name is
centered as a default. To produce a blank line between these block letters
and the next line of block letters, the SPRPUT macro can be used.

2-24 JES2 User Maodifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”

Licensed Materials — Property of IBM

36.

37.

38.

39.

40.

41.

42,

43.

In the actual standard JES2 separator page, block letters are only printed if
the SEPLINE or RSEPLINE parameters on the PRINTDEF initialization
statement are specified as greater than 29. (SEPLINE and RSEPLINE are
the JES2 initialization parameters that define the separator line counts for
local and remote printers, respectively.)

The user fields in the printer PCE (PCEUSERO and PCEUSERI) are eight
contiguous bytes and are used here to build the 8-byte character string to be
passed to the SPBLOCK macro. If these user fields are not available to this
exit (that is, in use by some other modification or exit) another JES2 buffer
can be acquired as a work area. $BLANKS is a double-word constant of
blanks in the HCT and is used to blank out the eight bytes where the
S-character job ID and 1-character sysout class will be built.

Note: The PCEUSERA fields reside above the 16-megabyte address in virtual
storage; therefore, these fields cannot also be used as input to SPBLOCK as
they are for SPRPUT.

The ‘job type’ used here is either ‘J’ for batch job, ‘S’ for started task, or ‘T”
for time-sharing user.

The job number should be left-justified to be more readable (but is not in this
example.) See code at label PRINTID in the HASPPRPU JES2 source
module for a detailed example. (Refer to JES2 Logic.)

To access the work JOE, get the pointer in the PPPWORK area (at label
PPPWKIJOE), which is an extension of the printer PCE.

Move the sysout class for this work JOE to the right side of the 8-byte input
data area used as input to the PBLOCK routine.

N/A

N/A

Here, the SPBLOCK macro points to data in the same buffer that is being
used as a work area by the PBLOCK service routine. The full eight bytes of
the data are converted to block letters and printed. The scan does not stop

with the first blank character.

To produce a blank line after the block letters and before the first detail line
below, use the $PRPUT macro.

. This MVC is a dummy instruction where the user code would build the detail

print line. For further explanation of how the standard JES2 header/trailer
detail print line is built, see the code at labels PDEST and BLKSKIP in the
HASPPRPU JES2 source module. (Refer to JES2 Logic.)

Also required is a work area unique to this printer to keep this routine
reenterable by JES2. To use the JES2 buffer acquired above (line 30) as a
work area to build a print line, refer to the start of the work area (beyond the
IOB) by label BUFSTART.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-25

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

N/A
N/A

The SPRPUT macro is invoked once at this point to print 40 lines of detailed
information. The data should be fixed because PRPUT uses EXCPVR.

Code WAIT=YES to ensure that the I/O occurs before freeing the buffer (see
line 46 below.) Unlike the PBLOCK routine, PRPUT does not need a JES2
buffer to be passed to it.

Use R1 for the DATA register, and R0 for the LEN (length). Also note that
if CC=M is not eoded on this macro, NO carriage control is assumed.

This example shows 40 lines of detail, but the standard JES2 separator
actually has the number specified by either the SEPLINE or RSEPLINE
parameters on the PRINTDEF statement minus 29 lines. The COUNT
parameter must specify an absolute value; it cannot specify a register to hold
the count.

SFREEBUF is used to free the JES2 buffer obtained as a work area. See line
number 28 above.

N/A

Set register 15 to indicate the appropriate return code to JES2. In this
example, it is set to 8 to indicate that:

e The next exit routine (if any) will not be called.
o JES2 is not to produce the standard separator page.

The $SRETURN macro must include RC=(R15) to generate return codes
other than 0.

N/A
N/A

Code the LTORG before the SMODEND macro to maintain addressability
to the literal constants.

Code the SMODEND at the end of every JES2 module. It generates the MIT
entry table (MITETBL) and the MIT exit mask.

N/A

Figure 2-5 shows how the above routine can be assembled and link-edited,
and how to use the load module name. The source is in SYS1.JESEXITS,
and the load module is linked into SYS1.LINKLIB with the name of
HASPUEX. This name must also appear on the LOAD initialization
statement.

2-26 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

//ASM EXEC PGM=IEV90,PARM='OBJECT,NODECK ,XREF (SHORT) '
//SYSLIB DD DSN=SYS1.HASPSRC,DISP=SHR

// DD DSN=SYS1.MACLIB,DISP=SHR

// DD DSN=SYS1.AMODGEN,DISP=SHR

//SYSUT1 DD UNIT=SYSDA,SPACE=(1700,(1200,300))
//SYSPRINT DD SYSOUT=A

//SYSIN DD DSN=SYS1.JESEXITS (HASPUEX) ,DISP=SHR
//SYSLIN DD DSN=&&0BJ,DISP=(,PASS),UNIT=SYSDA,
// SPACE=(CYL, (1,1))

//LINK EXEC PGM=HEWL,COND=(0,LT,ASM),
PARM='XREF, LET, REUS'

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSLMOD DD DSN=SYS1.LINKLIB,DISP=OLD

//SYSLIN DD DSN=&&0BJ,DISP=(OLD,DELETE)

// DD *
NAME HASPUEX(R)
/*

Figure 2-5. Example of Assembly and Link-Edit of a Installation-Written Routine

The following JES2 initialization statements can be used to load and associate
Exit 1 with the above routine. Note that the name on the LOAD statement must
match the label specified on the SMODULE macro statement, and the name on the
ROUTINE = parameter on the EXITnnn statement must be the same name as on
the SENTRY macro.

LOAD=HASPUEX
EXIT1 ROUTINE=UEXIT1,ENABLE,TRACE=NO

Multiple Exit Routines In A Single Module

When developing and testing user exits, it is probably easier to keep each exit
routine in its own source and load module. In this manner, the routines can be
assembled, loaded, and tested independently. If there are many routines, you may
want to eventually combine them into a single source and load module for easier
maintenance procedures.

Figure 2-6 shows three exit routines in a single module with a general structure
that you may want to follow.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-27

*“Restricted Materials of IBM™”
Licensed Materials — Property of IBM

XITS TITLE 'SAMPLE JES2 USER EXITS - PREAMBLE'

KA AKX AKRAAAA A A AR A AR AR T AR A AR A A A A A AR A A AR A Ak Ak hkhkhkhkhkhkkkhkhk ok ok kokkkhkkhkhksk

* *

* COMMENT BLOCK FOR MODULE GOES HERE *

* *

I E SRR RS RS R R R LSRR R R R R RS SR SR SRR SRS SR SRR SR EE SRR R SRR R R R R R R R R R R R R R R SRR
COPY $HASPGBL COPY HASP GLOBALS

HASPUEX $MODULE RPL, REQ'D BY $BUFFER c
$BUFFER, c
$CAT, o
$DCT, c
SHASPEQU, REQUIRED FOR REG CONVENTIONS c
$HCT, REQ'D BY $SAVE,$RETURN,ETC. c
$JCT, c
$JOE, REQ'D TO GET SYSOUT CLASS C
$JQE, c
SMIT, REQ'D BY HCT c
S$PCE, REQ'D BY HCT C
$PDDB, REQ'D BY $PPPWORK c
$PPPWORK, REQ'D TO FIND JOE o
$RDRWORK

AR I AT AR A AR A AR I AA KR AR AT AR AR A Ak ARk kA bk hk kA hkk kA hkhkkhkhkhkhhkhhkhhkhxk

* *

* ADDITIONAL MAPPING MACROS GO HERE *

* *

I R R R SRR SRR RS EE SRR S SRR AR R R R ERREEREEREEEEEESE]

Figure 2-6 (Part 1 of 2). Example of Providing Multiple Exits within a Single Load Module

2-28 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

*

*

TITLE 'SAMPLE SEPARATOR PAGE EXIT - ROUTINE 1'
AR ERIEIRKRAAhA Ak kKKK KA A AR KA AR AR AR R AR AR KRR R AR AR IR A AR AR R A AR AR Ak K

*

* COMMENT BLOCK FOR EXIT 1 GOES HERE *
* *
X T XXX EE R R SRR SRS LSS S SRR RS SRR SRR RS R R EEE R RS EEEEREEEEEESS]
XIT1RTN1 SENTRY BASE=R12 EXIT ROUTINE ENTRY POINT

$SAVE

LR R12,R15 LOAD BASE REGISTER
khkkhkhhhkhkhkhkhkhkhkhhkkhhhhhArhkhhkhdkhdhhkhrAhkhkhhhkhkhkhkhkhkhkdhkrdhhkhkhkhkdhkhkkdhkhkrhkdx
* *
* USER EXIT CODE FOR EXIT 1 ROUTINE 1 GOES HERE *
* *
I E R R R RS EE XSRS EE SRS SRR SRR R R RS RS SRR S SRS E R R R R R R R EEEEEE R ERSEEESS]

LA R15,8 SET RETURN CODE
RETURN1 $RETURN RC=(R15) RETURN TO HASPPRPU

TITLE 'SAMPLE SEPARATOR PAGE EXIT - ROUTINE 2'
XIT1RTN2 SENTRY BASE=R12 EXIT ROUTINE ENTRY POINT

$SAVE

LR R12,R15 LOAD BASE REGISTER
(RS RS EE R SRR RS SE AR R RS EE R R RS R R R RS R R R R R R R R EREREREEEEEER]
* *
* USER EXIT CODE FOR EXIT 1 ROUTINE 2 GOES HERE *
* *
SRR SRS RS SRR R SRS R RS R R RS R RERE R R R R SRR RS EEREEEREEESERSEE]

LA R15,8 SET RETURN CODE
RETURN2 $RETURN RC=(R15) RETURN TO HASPPRPU

LTORG

TITLE 'JOB CARD SCAN EXIT'
LR R R R T T X

*

* COMMENT BLOCK FOR EXIT 2 ROUTINE 1 GOES HERE *
* *
khkkkkkkhkkhkhkkhkkhkhkkhkhkhkhkhhkhkhkrAkrrtkhkhh A AT A A A A A A XA XA XA A AT RRA R A AR Ak Ak Ak hhkhkkkk
XIT2RTN1 $SENTRY BASE=R12 EXIT ROUTINE ENTRY POINT

$SAVE

LR R12,R15 LOAD BASE REGISTER
I EZ E R X R X R R R R SR RS R RS EE SRR R RS ES SRR SR RS EESEE SRS E SRS SRR SR E S R XN 8
* *
* USER EXIT CODE FOR EXIT 2 ROUTINE 1 GOES HERE *
* *
IR R R R R R R R R R R R R R R EE R R R R R R R X RS E R EI R RS ISR EEE SRS SRS EEE SR E X LSS &3

LA R15,8 SET RETURN CODE

SRETURN RC=(R15) RETURN TO HASPRDR

LTORG

$MODEND

END

Figure 2-6 (Part 2 of 2).

Example of Providing Multiple Exits within a Single Load Module

The following JES2 initialization statements can be used to load and associate exit

points 1 and 2 with the above routines.

LOAD=HASPUEX
EXIT1 ROUTINE=(XIT1RTN1,XIT1RTN2),ENABLE, TRACE=NO
EXIT2 ROUTINE=XIT2RTN1,ENABLE, TRACE=NO

LC23-0067-3 © Copyright IBM Corp. 1982, 1987

Chapter 2. Customizing JES2 2-29

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Testing Your Exit Routine

Integrating the Exit in

Packaging the Exit

To test your exit routine you need to integrate your exit routine in the system,
ensure that it gets control and executes, and verify that the functions it is intended
to perform are performed. Verifying that the exit routine performed its function
is exit routine-dependent and unique for each exit routine; the following
discussion of testing your exit routine only focuses on the following points:

® Integrating the exit routine in the system
e Passing control to the exit routine

Also, you should test and debug your exit routine by running it on a secondary
JES2 first. In this way, any errors that occur do not directly affect your main
JES2 production system. Once the errors in the exit routine are fixed and tested,
you can then integrate it into the production JES2 system. Note that the
following restrictions apply to JES2 functions when using a secondary JES2:

e Started tasks (STCs) can be directed to either a primary or secondary JES.
However, following an IPL, started tasks do not complete start processing
until the primary subsystem has been started and completed initialization.

e Time-sharing users (TSUs) may only interface with the primary JES2.

e The MVS I/O attention table can only be associated with the primary JES.
Therefore, secondary JESs cannot receive the “unsolicited interrupt” required
to support pause-mode for print and punch devices and “hot readers” (that is,
readers started via the physical start button without the $S RDRn JES2
command).

e The MVS log console (SYSLOG) can only be associated with the primary
JES.

e Secondary subsystems are started individually rather than automatically
during IPL by a start command in the master scheduler JCL (MSTJCL) as is
the primary subsystem.

the System

Exit routines need to be packaged into load modules before they can be loaded
into the system and tested. There are two ways to package your exit routines.

Modules that contain exit routines which execute in the JES2 main task or
subtask environment can be linkedited into the standard HASJES20 load module,
which is loaded into the private area of the JES2 address space. Modules that
contain exits in the user or functional subsystem environment can be linkedited
into the standard HASPSSSM load module which must reside in SYS1.LPALIB;
these exits must be loaded into common storage. Do not linkedit multiple exit
points with different environments into the same load module. When you package
your exit routines in this manner, it is required that you make use of a collection

2-30 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

of weak external names for the module names. These names should be the same
as the label used on the SMODULE macro of your exit routine.

For HASPSSSM the “weak external names” are as follows: HASPXS00,
HASPXSO01, ..., HASPSX15.

For HASJES20 the “weak external names” are as follows: HASPXJ(0,
HASPXJO01, ..., HASPXJ31.

Alternatively, a source module containing exit routines can be assembled and link
edited separately. However, you can only code one MIT and MITETBL within
the load module. That is, only one MODULE and $MODEND statement pair
should appear in each exit source module, and each source module must be
linkedited into its own load module. The resulting load module can then be
loaded dynamically during initialization, through use of the LOAD initialization
statement. For this form of packaging you do not need to use the “weak external
name” for the module names of your exit routines. NOTE: If your exit routine is
a separate load module and executes in the USER or FSS environment, you must
ensure that it resides in LPA.

You may choose to use one of these packaging techniques exclusively, or you may
choose to use both methods in combination, assembling and link editing some
routines into the standard JES2 load modules and assembling and link editing
others separately and then loading them at initialization. Creating separate load
modules for your exit routines is recommended. JES2 never makes unconditional
direct references to external addresses or entry points in installation-written code.
The association between exit routines and JES2 source code is resolved during
initialization.

Figure 2-7 illustrates a separately linkedited load module for an exit routine and
the MIT and MITETBL structure associated with it. JES2 initialization uses this
load module and the information in the MIT and MITETBL to initialize the exit
routine in the system. The next topic describes this initialization process.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-31

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

NAME

MIT BIT MAP

A \yireTEL

A

EXIT ROUTINE 1

EXIT ROUTINE 2

NAME V-CON

MITETBL

NAME V-CON

Figure 2-7. Exit Routines Load Module

Initializing the Exit in the System

Initializing an exit and its exit routines involve the use of the following two JES2
initialization statements:

LOAD

Use the LOAD initialization statement to load the modules containing your
exit routines. The only operand of the LOAD initialization statement
specifies the name of the module to be loaded as defined on the NAME
control statement for the linkage editor. The module must be named
according to MVS naming conventions. Be certain that the name you give to
the load module (LOAD =) is the same as the label you coded on the
SMODULE statement. Exit routines to be called from the user environment
must be loaded into LPA (PLPA, MLPA, or FLPA) during IPL. Exit
routines to be called from the JES2 main task and subtask environments
should be loaded in the private area of the JES2 address space.

2-32

JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”

Licensed Materials — Property of IBM

EXITnnn

Use the EXITnnn initialization statement to associate one or more exit
routines with an exit.

Replace nnn, the exit number, with the corresponding exit identification
number specified on the SEXIT macro or macros that define the exit point or
points that establish the exit. EXITnnn can then be followed by from 1 to
255 exit routine names, as specified for the SENTRY macro or macros that
identify the corresponding exit routines. The JES2 exit effector calls multiple
exit routines in the sequence of their specification on the EXITnnn statement.
If you specify more than one EXITnnn statement with the same identification
number, JES2 honors the last statement it encounters during initialization.

Figure 2-9 illustrates the completed control block structure after two separate
load modules (the first containing three routines and the second containing
two routines) have been initialized in the system. Note also that one of the
routines (XITCOMON) is shared by both Exitl and Exit2.

NOTE: The LOAD and EXITnnn initialization statements are not positional and
do not have to be specified in any required order. Figure 2-8 illustrates the
results of this initialization process.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-33

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

SQA

HASPSSSM e
(] [«

PLPA o eee USER

EXITS
L] Dl

CSA

HASJES20 (4
[] []« JES2

® oo MAINTASK
AND
PRIVATE] < AN oK
< EXITS
NUCLEUS
@ vobuLes N HasPSSSM ® voouLes IN HAsIES20
@ SEPARATE LORD MODULES SEPARATE LOAD MODULES
IN HASPSSSM IN HASJES20

Figure 2-8. Exit Placement

2-34 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

During initialization, JES2 uses the EXITnnn statements to build the exit
information table (XIT) and the exit routine table (XRT), both located in CSA.
The XIT contains an entry for each exit. It also contains an index into the XRT,
which contains an entry for each exit routine name and address.

During initialization statement processing, JES2 puts all the information available
from the EXITnnn statements into the XIT and XRT. It also resolves addresses
for XRT entries using the MITs of any modules that are already loaded. For
each LOAD statement encountered and processed, routine addresses in the
dynamically loaded module’s MIT are propagated to the XRT for routine names
already present. Installation-defined exit points in the module are propagated to
the XIT. JES2 builds the load module table (LMT) that contains the names of all
load modules and their MIT addresses. At the end of initialization statement
processing, any routine names that remain outstanding in the XRT, without
resolved addresses, are brought to the operator’s attention. When this process is
complete, the exit effectors can use the XIT and the XRT to provide linkage from
JES2 to exit routines. Note that, because of the manner in which initialization
statements are processed, there is no order dependency between EXITnnn
statements and LOAD parameters.

Figure 2-9 illustrates the completed control block structure after two separate
load modules (the first containing three routines and the second containing two
routines) have been initialized in the system. Note also that one of the routines
(XITCOMON) is shared by both Exitl and Exit2.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-35

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

HCT XIT
FLAGS | #RTNS | USE COUNT
~ ~ o 1 { | # | OUN
~ ~- f
XRT
- EXIT 2 FLAGS] #RTNS 1 USE COUNT
7y 4 xgrT
T LMT
FLAGS | #RTNS | USE COUNT
EXIT 3 I # I ou
4 xrT
HASPUEX Y T
A Mt
UXITTEST
A miT HASPUEX LOAD MODULE
NAME (ON $MODULE)
=~ ~ BITMAP MIT
I MITETBL
t y XRT
XITIRTN1 USE COUNT ["XITIRTNT |)
4 XITIRTNY
XIT1IRTN2 USE COUNT | 'XITIRTNZ® >EXIT 1
< 4 ximirTN?
XIT2RTN 1 USE COUNT | *XITCOMON*
4 xiTcomon
XITIRTN1 | VIXITIRTN1) USE COUNT | *XIT2RTN1"*
XITIRTNZ | VIXIT1IRTN2) MITETBL f XIT2RTN1
XIT2ZRTN1 | V(XIT2RTN 1) USE COUNT | "XIT2RTN2*
> EXIT 2
UXITTEST LOAD MODULE t xnzﬂ?mz
NAME USE COUNT | XITCOMON
A
BITMAP MIT I XITCOMON
4 mITETBL
XIT2RTNZ
»
XITCOMON INITIALIZATION STATEMENTS:
LOAD HASPUEX
XIT2RTNZ | VIXIT2RTN2) }MITUBL LOAC UXITTEST
EXIT 1 ROUTINE = (XITTRTN1, XITIRTN2, XITCOMON)
XITCOMON | V(XITCOMON) EXIT 2 ROUTINE - (XIT2RTN1, XIT2RTN2, XITCOMON)

Figure 2-9. lLoad Module Initialization

2-36 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Passing Control to Exit Routines

Job-Related Exits

Every exit has a status of enabled or disabled. If an exit is enabled, JES2 calls its
associated exit routine(s) whenever one of the exit’s exit points is encountered in
processing JES2 code. (Note: The TYPE=TEST form of the $EXIT macro is an
exception; a TEST-type exit point occurs prior to a TYPE=ENTER exit point to
allow JES2 to determine whether the exit is implemented and enabled. If the exit
is not both implemented and enabled, JES2 saves processing time by bypassing
the call to the exit effector when it encounters the ENTER-type exit point.)

When an exit is disabled, its exit points are transparent in the course of JES2
processing and JES2 does not call the exit’s associated exit routine(s).

An exit’s status is first set at initialization. You can specify either ENABLE or
DISABLE on the EXITnnn initialization statement. If you leave the status of the
exit unspecified, ENABLE is the default.

An exit’s status can then be dynamically controlled by the operator, using the $T
EXITnnn command. Again, the operator has the option of identifying any exit
by number, including a string of exits, a range of exits, or all exits, and specifying
either ENABLE or DISABLE. The operator can display an exit’s status by
identifying the exit by number on the $D EXITnnn command.

When you suspect that an exit routine associated with a particular exit is causing
an error, a simple way of isolating the problem is to disable the exit, via an
operator command (8T EXITnnn), to determine if the error still occurs when the
exit routine is not allowed to execute. You can also enable tracing as a debugging
aid.

An exit can also be dynamically controlled on a job-related basis, using the exit
facility.

Certain exits are identified as job-related exits. For each individual job, exit
routine action can determine whether or not a job-related exit will be taken. For
these exits, the JOBMASK parameter is specified on the $EXIT macro or macros
defining their exit point or points. JOBMASK is specified with the address of the
Jjob exit mask, a 256-bit mask in the job control table (JCT), of which each bit,
except for bit 0, corresponds to an exit identification number; bit 1 corresponds to
Exit 1, bit 2 to Exit 2, and so on. Initially, when the JCT is created, all the bits in
the job exit mask are set to one.

For a job-related exit, the status of its corresponding bit in the job-exit mask
becomes an additional factor in determining its exit status. If an exit has been
enabled in the standard way, by either the EXITnnn initialization statement or the
$T EXITnnn command, and its corresponding bit in the job exit mask is set to
one, the exit has a status of enabled and the exit effector calls its associated exit
routine(s). If, however, the exit has been enabled in the standard way but its
corresponding bit in the job exit mask is set to zero, the exit has a status of
disabled and the exit effector does not call its associated exit routine(s) for that
particular job. If the exit has been disabled in the standard way, the status of its
corresponding bit in the job exit mask is not taken into account; the exit remains
disabled. Note that if JOBMASK is not specified on the $SEXIT macro, or if the

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-37

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Tracing Status

JCT is not in storage, the job exit mask can have no effect on the status of an
exit.

Bits in the job exit mask can be manipulated by an exit routine on a job-by-job
basis. The recommended IBM-defined exit for setting the job exit mask is Exit 2.
Exit 2 is, in most cases, the first exit to be taken for a job, and provides access to
most of the job’s attributes specified in its JCL and placed in its JCT. For more
information, see the description of Exit 2 in “The IBM-Defined Exits” reference
section in Chapter 3.

For each exit description in “The IBM-Defined Exits,” the JOB EXIT MASK

category lists the exit as either job-related or not job-related. Note that Exits 11
and 12 present special cases.

You can also control the status of exit invocation tracing.
Initially, for the tracing to occur automatically, two conditions are necessary:
1. The trace ID for exit tracing (ID 13) must be enabled.

2. The TRACE= operand of the EXITnnn initialization statement must be
specified as, or allowed to default to, TRACE =YES.

If one of these conditions is absent, tracing does not occur.

The status of exit tracing can then be dynamically controlled by the operator,
using the $T EXITnnn command. The operator has the option of identifying any
exit by number, including a string of exits, a range of exits, or all exits, and
specifying either TRACE =YES (or TRACE=Y) or TRACE=NO (or
TRACE=N). The operator can display the status of exit tracing by identifying
the exit by number on the $D EXITnnn command.

The status of exit tracing cannot be controlled on a job-related basis.

Establishing Installation-Defined Exits

JES2 can contain up to 256 exits. IBM has defined some of these. If none of the
IBM-defined exits is suited to a particular modification you would like to make,
you can consider installing an optional installation-defined exit.

In general, establishing your own exit is much more difficult than writing an exit
routine for an existing IBM-defined exit; it requires a thorough knowledge of the
area of processing in which you would like your exit to occur. You should
attempt to place a installation-defined exit in a stable area of processing; the risk
of error increases with the complexity of the JES2 code in which you place the
exit. If possible, you should use your exit in replacing a JES2 function that is
already isolated. As an example, IBM-defined Exit 3 allows you to provide an
exit routine to completely replace the standard HASPRSCN accounting field scan
routine.

2-38 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

You must consider whether the exit will require a single exit point or more than
one. You can determine this based on the requirements of your intended
modification and on the structure of the IBM code in the area of processing that
you intend to modify. You must also consider whether or not the function you
wish to modify is contained within a single JES2 execution environment. If it
occurs in a second environment, you may have to install a second exit as well.

Once you have determined the exact point of processing at which an exit point
must occur, use the SEXIT macro to define it.

First, you should specify the positional ID parameter with the exit’s identification
number. It is recommended that you begin numbering installation-defined exits
with 255 and work down. (If additional IBM-defined exits are added later, your
exit numbers will not conflict with the new IBM-defined exit numbers.)

You must define the exit’s environment to JES2 using the ENVIRON = operand
or let the environment default to what was specified as ENVIRON = on the
module’s SMODULE macro. This is specified as either JES2, SUBTASK, USER,
or FSS. If you use more than one exit point to establish an exit, the environment
specification must be the same on each $SEXIT macro. The same exit cannot be
established in more than one execution environment.

The exit effector for the subtask and user environments assumes MVS linkage
conventions when register 13 contains the address of an available 18-word save
area. However, because of MVS linkage conventions you may need to add code
allowing the SEXIT macro to acquire and dispose of a standard 18-word save
area for use by the subtask and user environment exit effector.

If the exit is to be job-related, specify the address of the job exit mask for the
JOBMASK = operand. Note that if the JCT is not in storage you will have to
point to a copy of the job exit mask.

Specify the SAVAREA = operand only if the exit occurs in a JES2 subtask, in the
user (HASPSSSM) environment, or functional subsystem (HASPFSSM)
environment. If you specify the SAVAREA = operand and ENVIRON = JES2 as
well, an error message is generated. For subtask and user exits, SAVAREA = can
be specified with the address of a save area that the exit effector will pass to an
associated exit routine in register 13. If you don’t specify SAVAREA = for a
subtask or user exit, the exit effector will acquire the necessary area via a
GETMAIN macro whenever the exit is invoked.

Note: There is a distinction between the two save areas, the save area pointed to
by register 13 and that pointed to by the SAVAREA = keyword. Register 13, at
the SEXIT point, contains the address of a save area into which the exit effector
stores the current registers. SAVAREA = provides a save area (typically provided
via an MVS GETMAIN) into which the exit routine stores the exit effector’s
registers.

Use the TYPE= operand to specify the mode of $EXIT macro operation. To
avoid special processing overhead, you can define a TYPE =TEST $EXIT macro
at some location shortly prior to a TYPE=ENTER $EXIT macro in JES2 code.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-39

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

A TEST-type $EXIT macro tests the status of the exit and sets a condition code
(not a return code):

cc=0 No exit routines are to be called
ce=1 Call exit routines, without tracing
cc=2 Call exit routines, with tracing

When JES2 encounters the TYPE=ENTER $EXIT macro, it does not have to
retest the exit’s status; it simply checks the condition code and either bypasses the
exit point or calls the exit effector, with or without tracing. Note that a
TYPE=TEST $EXIT macro and a TYPE=ENTER $EXIT macro must always
be used together. If you omit the TYPE= parameter, the resulting exit point
causes JES2 to both determine the status of the exit and then, depending on the
status, either to bypass the exit point or to call the exit effector.

Use the AUTOTR = operand to specify that automatic exit effector tracing
should (AUTOTR = YES) or should not (AUTOTR =NO) occur. If
AUTOTR=NO is specified, the exit effectors set the condition code on return
from the exit to indicate the tracing requirement:

0 No tracing is required
1 Tracing is required

For more information on exit effector tracing, see “Tracing” in “Writing an Exit
Routine” and “Tracing Status” in “Controlling Exit Status” earlier in this
chapter.

Along with inserting the SEXIT macro in JES2 source code, you may have to
modify the code prior to the exit point to pass parameters and pointers to the exit
routines, and you may have to modify the code following the exit point to receive
exit-generated parameters and to receive any return code greater than 4. For
more information, see “Linkage Conventions,” “Received Parameters,” and
“Return Codes” in “Writing an Exit Routine” earlier in this chapter.

Note: When using the SEXIT macro, you may need to include additional control
block DSECT mappings in that module. If, for example, the module you are
modifying did not previously require the mapping provided by the SEXITPL and
$XIT macros, but these are required to map the exit parameter list and exit
information table (XIT), you must add these to the SMODULE macro coded at
the beginning of the module.

2-40 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Defining JES2 Tables

Modifying JES2 by Defining User Tables

You should attempt to isolate as many of your installation-specific modifications
as possible within user modules. Doing so can speed your migration should you
install a new level of JES2, ease maintenance without having to rework your own
code, and more easily isolate problems. JES2 provides a method of tailoring
many areas of its processing through the use of tables and table pairs.

JES2 provides user fields in a number of the commonly modified control blocks.
For example, the UCT (user communication table) is effectively an extension of
the HCT (HASP communication table). Other extension points are the tables
that define processor control elements (PCEs), daughter task elements (DTEs),
trace ID tables (TIDTABSs), and the scan facility. These “extensions” should not
reside within JES2 inline code, but rather in a user module or dynamic storage
area accessed through user exits. By taking advantage of user exits and JES2
macros, you can build fields to point to your own user tables to override the
default JES2 tables. This eliminates the need to directly modify JES2 control
blocks or copy JES2 code into user modules.

As noted above, a number of JES2 processing areas use tables; that is, a JES2
table contains the elements of a particular area of processing. You can tailor
certain JES2 functions by extending these tables. JES2 provides two tables, a
table pair; one table (the JES2 table) provides the default processing
épecifications. If you do not extend this table, JES2 will remain unmodified.
However, if you choose to fill in the user table of the table pair you will be adding
new function or overriding those JES2 specifications with what you have provided
in the user table. This is so because JES2 searches the user table before the JES2
table whether or not JES2 has defined a particular specification. For example,
JES2 has specified that the minimum length of the RANGE parameter on the
PRINTERnn initialization statement must be 5 (that is, all five characters must be
coded). You can change this requirement by overriding the JES2 table by coding
your own RANGE table entry. If you prefer the minimum number of characters
to be 3, you could then code either RAN, RANG, or RANGE when specifying
this parameter.

The macros required to build these tables are documented in Chapter 4. These
macros call the required service routines to modify JES2 processing. Because
JES2 provides a JES2 table (the table you would be overriding), you are
automatically provided an example of how such a table is coded. (Refer to
“General Table Coding Conventions,” below, for further coding information.)

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-41

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Table Linkage

To implement user extensions, you must create a user control table (UCT). To do
this, you must either:

1. Link-edit the module containing the UCT with HASJES20 by using the
reserved (weak external) names provided by JES2

or
2. Use Exit 0 to place the address of the UCT into the HCT

Figure 2-10 depicts the two linkage procedures.

HCT

: <« — i
$UCT DC V(USERCB) UCT Pointer

o Using Exit O

HASPXITO $MODULE

L R1., UCTLEN
$GETMAIN LEN=(R1)
ST R1, $uCT

9 Using Reserved Names

MY MODULE $MODULE

USERCB £EQ * UCT
DS . . .
DS .
0S .
DC .
\
\

Figure 2-10. Linking User Tables to HASP Tables to Extend/Modify JES2 Function

2-42 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

As noted above you can provide linkage to the MCT through two methods. This
is required in order that the address you provide can be resolved. Either is
adequate and the choice is yours to make. The two methods and some
advantages of each are:

e Use JES2 initialization Exit 0 to store your table addresses in the MCT.

This method requires more code than the method below, but results in a later
binding, that is, at JES2 initialization rather than link-edit time.
Furthermore, Exit 0 is refreshable over a JES2 hot start without changing the
HASJES20 load module.

e Link-edit your tables to JES2 using weak external references.

This technique requires less code than the first method, but it requires that
you modify the JCLIN logic in the system modification program (SMP) by
adding an INCLUDE statement for your user module. Following such a
change to either JES2 or a user module, you must again link-edit the entire
load module.

Master Control Table

The master control table (MCT) is a list of all JES2 table pairs. The MCT is
pointed to by the SMCT field in the HCT and points to the JES2-defined and
user-defined tables. Refer to Figure 2-11 below. This example shows the MCT
with its pointers (using weak external VCONGs) to the PCE, DTE, OPT, MPS, and
SCAN tables.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-43

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

HCT
gMCT \
PCE i
. JES2-Defined
Table Pair Services
/ USERPCET
User-Defined
USER HASP Q :> Services
HASPPCET
V(USERPCET) V(HASPPCET)
V(USERDTET V(USERDTED OTE .
Table Pair JES2-Defined
Services
V(USEROPTT) V(HASPOPTT) USERDTET
Q ﬁ User-Defined
Services
V(USERMPST) | V(HASPMPST) HASPDTET
L] L]
L] L]
L] L]
L] []
[) []
° . SCAN)
Table Pair JES2-Defined
4 : Services
L]
. . USERSCANT
g User-Defined
Services
HASPSCANT
V(USERSCANT) V(HASPSCANT)
JES2/User Selected Modified
$ MCT——> Master Control Table —— = Table Pairs ——> Services ———> JES2 Processing

Figure 2-11. Master Control Table and Table Pairs

2-44 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

General Table Coding Conventions

All tables that you may build already have a JES2 counterpart available as an
example in the JES2 code. The table type is defined by the corresponding macro,
that is, use SPCETAB to build a PCE table, SSCANTAB to build a scan table.
Each JES2 table begins with a TABLE =HASP specification. To code a user
table, begin with a $xxxTAB TABLE =USER specification. Subsequent lines
are added to specify the statement, command, or processor that you are defining,
such as the PCE name and the module containing the processor’s code for a PCE
table entry or the valid parameter length and range in a SCAN table entry. Each
table is then ended by coding a $xxxTAB TABLE =END statement.

Overview of Modifiable Tables

$SCAN Tables

PCE Tables

TID Tables

OPT Tables

Each entry in the MCT points to a pair of tables (the JES2 table and the user
table). A brief description of the tables that may be accessed and overridden
follow. Each is discussed in greater detail later in this section.

Scan tables are used to process initialization statements, their parameters and
subparameters, and commands. Scanning can be recursive until all levels of an
initialization statement or command have been scanned for syntax requirements,
valid range, etc. The $SCAN facility is detailed below.

PCEs define the names, descriptions, IDs, and other characteristics of JES2
processors. User processors (PCEs) can be accessed by using the SPCETAB
macro and linking it to the USERPCET entry in the MCT. (Refer to “Table
Linkage” below for a description of the recommended linkage procedures.) These
tables reside in HASPTABS and are accessed by the SPCETAB macro by using
the TABLE = USER specification. This facility is further described below.

Trace IDs can be mapped and generated by use of the STIDTAB macro. These
tables are defined for formatting entries in the JES2 and user trace tables.

The JES2 initialization OPT (options table) defines the JES2 options, COLD |
WARM, FORMAT | NOFMT, REQ | NOREQ, CONSOLE, LIST | NOLIST,
LOG | NOLOG, PRMCKPT | ALTCKPT, and $P JES2. You can define others
and disable those previously defined by JES2 by modifying this table. (Refer to
JES?2 Initialization and Tuning for a description and use of these options.) These
tables reside in HASPSTAB and are pointed to and accessed by use of the
$SCAN facility. Use $SCANTAB and the related $SCAN macros. This facility
is described in detail below.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-45

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

MPS Tables

DTE Tables

WSTAB Tables

JES2 $SCAN Facility

The main parameter statements (JES2 initialization statements and their
parameters) are defined in the MPS table. (Refer to JES2 Initialization and
Tuning for a description and use of these initialization statements.) These tables
reside in HASPSTAB and are pointed to and accessed by use of the $SCAN
facility. Use $SCANTAB and the related $SCAN macros. This facility is
described in detail below.

Daughter task element (DTE) tables can be mapped and generated by using the
SDTETAB macro and by using the SDTEDYN macro to facilitate subtask
attaches and detaches for the JES2 main task. These tables reside in HASPTABS.

The work selection criteria provided by JES2 to allow printers, punches, and the
offload transmitters and receivers to selectively choose work are present in the
work selection tables (WSTABs). If you find the JES2-defined work selection
criteria inadequate to meet your needs you can define more criteria through use of
the work selection facility. These tables reside in HASPTABS and are pointed to
and accessed by using SWSTAB macro.

JES2 provides a service facility for scanning parameter statement input
(initialization statement and operator commands) called $SCAN. It is a general
facility that defines a general grammar for the input statements to be processed,
allows for definition of the allowed input via tables, and provides for special
processing via exit routines called during the scan.

$SCAN is basically designed to perform most of the scanning required for
processing the JES2 initialization statements, with the remaining processing for
those statements being done by the exits from $SCAN, and to allow the use of
multiple tables to define the allowed parameter input. $SCAN can scan various
input structures, including those that require recursive calls to $SCAN itself. At
each level of recursion, SSCAN can use two tables of specifications that define the
allowed input at that level.

JES2 has implemented the scanning of its initialization options and its
initialization statements using $SCAN and a series of these table pairs. A
JES2-defined table has been built as the second table of each pair, and an
installation table can be defined as the first table to add to or modify the
specifications in the JES2 table. $SCAN can be useful, as well, in implementing
other types of statements within routines called from the $EXIT facility, such as
installation-defined operator commands or JECL statements.

2-46 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

$SCAN Macros

Five macros are provided to aid your use of the $SCAN facility. These macros,
$SCAN, $SCANB, $SCANCOM, $SCAND, and $SCANTAB are fully
documented in Chapter 4, “JES2 Programmer Macros.” It is important that you
review that material and understand the interrelationships of these macros before
attempting to implement any use of the $SCAN facility.

A brief overview of these five macros and their individual functions follows:

SSCAN: This macro is used to scan initialization and control statements and
some JES2 commands and place the specified keyword values in associated
control blocks. Also, $SCAN can be used to display keyword values. A pair of
scan tables, which are built by the $SSCANTAB macro, the parameter or
command input, and a display area and routine (these are used for diagnostic
information in SET and DISPLAY calls) are passed to $SCAN as parameters.

SSCANTAB: To use the $SCAN facility, you must first create scan tables. The
$SCANTAB macro is used to create tables to define permissible input and syntax
for installation-defined statements, and options. Examples of scan table definition
are presented in the example code presented under “Examples of $SCAN Tables”
below.

3SCANB: Use $SCANB to create a backup copy of the control block fields in a
storage area prior to altering them during $SCAN facility execution. This backup
copy protects control block fields that $SCAN will change, and if an error occurs
during the scan, all backup fields are restored to their original values. The
interface between $SCAN and these exit routines is through the scan work area
(SCWA), the address of which is passed in register 1 and which is mapped by the
$SCANWA macro. ($SCANWA is not available for your use but accessed during
the expansion of the $SCAN macro.) $SCANB is only used by installations from
within a pre-scan or post-scan exit routine after it receives control from $SCAN.

SSCAND: This macro allows you to add text to a $SCAN display line during
either pre-scan or post-scan exit routine processing when these exits are called by
the $SCAN. $SCAND is used when $SSCAN=DISPLAY or $SSCAN=SETDISP
is specified and is only valid within an associated $SCAN exit routine called by
$SCAN or from within $SCAN itself.

SSCANCOM: The $SCANCOM macro allows JES2 to scan a text string and
locate the first non-blank, non-comment character. The address of this character
is returned to the calling module (typically 3SCAN) to allow that caller to ignore
the comment text. This scanning is provided for both initialization statements
and commands. Comments on both initialization statements and commands must
be bound by the beginning (/*) and ending (*/) delimiters. If a delimiter is
missing, JES2 returns a note to that effect and passes a return code noting the
invalid comment.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 2. -Customizing JES2 2-47

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

$SCAN-Related Control Blocks

There are several control blocks related to $SCAN. First, the facility recognizes a
set of “primitive” control blocks specified in the scan table entries. They are the
HCT, the current PCE, DCTs, and the user control table (UCT). The UCT is
not generated or specifically used by JES2, but rather is an optional user control
block pointed to by the SUCT field of the HCT. Installations requiring a central
control block for use in exit routines or user modifications should generate a UCT
and use it as their central main task control block rather than adding new fields
to the HCT.

Additionally, scan table entries can indicate the control block from the previous
“level” of scanning or a temporary control block should be used. A subsequent
search for the actual required control block via control block chains and subscript
indexing can also be indicated by the table entries.

Another important control block for the JES2 uses of $SCAN is the JES2 master
control table (MCT). The MCT is pointed to by field SMCT in the HCT and it
contains the addresses of many JES2 statically-defined tables and related routines.
Importantly, the MCT contains the doublewords containing addresses of the scan
table pairs. The MCT is assembled into module HASPTABS in load module
HASJES20.

The scan table entries themselves form control blocks which are mapped by the
$SCANTAB macro. Also, during a scan, a work area is used by $SCAN and
passed to pre-scan and post-scan exit routines. The scan work areas are allocated
via $GETWORK and mapped by the SSCANWA macro.

Implementing $SSCAN Tables

The $SSCANTAB macro should be used to generate a scan table. Your
installation can define, for example, a table that describes the keywords and input
allowed on a JES2 control statement and use $SCAN and that table from a JES2
HASPRDR Exit 4 to implement your own JES2 job control statements.

As mentioned, the JES2 initialization options, initialization parameter statements,
and some operator commands are now implemented using SSCAN. (Refer to
JES2 Commands for a list of these commands.) Scan tables in the HASPSTAB
module make up the JES2 half of the table pairs that define those options and
parameters. Your installation can define its own scan tables to add to or replace
any or all of the JES2 scan table entries.

Each of the pairs of table addresses used in the implementation of the
initialization statements is defined in the MCT in HASPTABS. Your installation
can locate the MCT while running in a JES2 initialization exit (for example, Exit
0) and store the addresses of its tables in the MCTxxxTU fields of the MCT, or
you can point to your installation-defined UCT that contains a pair of table
addresses.

Optionally, the linkage editor can be used to define these table addresses to JES2
by linkediting them (and possibly the UCT) into HASJES20. This is possible
because the MCTxxxTU and SUCT fields are defined as the weak external

2-48 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

symbol names. The installation must name its scan tables with those specific
names (listed in Figure 2-12)

in order to use this method of providing user scan tables for the initialization
statements.

The installation tables can provide entries that define new initialization options or
statements, new parameters on JES2-defined statements, or new commands. Since
the installation table is searched first, JES2-defined entries can be functionally
replaced as well. The following scan tables are involved with the JES2
initialization statements. In each case,the ‘xxx’ described indicates the MCT
labels for the table address pair (MCTxxxTP), the installation table address
(MCTxxxTU), and the JES2 table address (MCTxxxTH), as well as the
installation table WXTRN (USERxxxT) used in the MCTxxxTU fields (the UCT
WXTRN is USERCT).

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-49

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

OPT Initialization options

MPS Main Initialization parameter statements
Master Control Parameters on
Table Name Initialization Statement
APL APPL
BAD BADTRACK
BUF BUFDEF
CAT JOBCLASS
CKT CKPTDEF
CND CONDEF
COM COMPACT
CON CONNECT
DES DESTID
ELC ESTLNCT
EBY ESTBYTE
EPG ESTPAGE
EPN ESTPUN
ETM ESTIME
FSS FSSDEF
INR INTRDR
JOB JOBDEF
JPY JOBPRTY
LNE LINEnnnn
LOG LOGONn
MAS MASDEF
NET NETACCT
NIJE NIJEDEF
NOD NODEnnnn
OFF OFFn.DV
OFL OFFLOADn
oM OFFn.JR*
OJR OFFn.JR
oJT OFFnJT
OPY OUTPRTY
OSM OFFn.SR*
OSR OFFn.SR
OST OFFn.ST
ouT OUTDEF
PAR PITDEF
PCD PCEDEF
PIT INITnonn
PRT PRINTERnn
PTD PRINTDEF
PUD PUNCHDEF
PUN PUNCHnn
RCV RECVOPTS
RDR READERnn
RDV RnnnnDVx
RMT RMTnnnn
RPR RonnnPRx
RPU RnnnnPUx
RRD RnnnnRDx
SCT OUTCLASS
SMF SMFDEF
SPD SPOOLDEF
STC STCCLASS
TPD TPDEF
TRC TRACE
TSU TSUCLASS
XIT EXITnnn
* Indicates that this MCT name is used only to scan the subparameters contained on the

MOD = parameter of this statement.

Figure 2-12. JES2 Reserved Master Coatrol Table Names

2-50 JES2 User Modifications and Macros

LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Examples of $SSCAN Tables
The three examples in Figure 2-13 show

(A) how to add a new simple initialization statement

(B) how to replace a parameter statement specification on the PRINTERnn
statement

(C) how to define a new initialization statement to provide an
installation-specific function with a single parameter.

All the specifications that can be made in scan table entries are described with the
$SCANTAB macro in Chapter 4.

Most of the capabilities of the $SSCANTAB specifications and the $SCAN [acility
are illustrated by reviewing the JES2 tables in HASPSTAB that define the
initialization statements.

The addresses of these tables can be specified to JES2 by including the tables in
an assembly module linkedited into HASJES20 or by having an Exit 0 or Exit 19
routine locate the tables and save their addresses in the MCT.

A

KA AR A KT A AR A A AR AT A AR A RA I AR IR A T RA IR AR AR A AR AR R AR R A A A A Ak Ak kA hkhhhkhk kX

USER TABLE FOR MAIN INITIALIZATION STATEMENTS

'USERCAN' - USER DEFINED STATEMENT THAT SHOULD EFFECT THE
SAME ACTION AS JES2 'CANCEL'

'HASPSSSM' - USER DEFINED REPLACEMENT STATEMENT FOR THE
JES2 HASPSSSM STATEMENT - ALLOWS THE INPUT TO
BE ONLY 3-5 CHARACTERS LONG RATHER THAN 1-8.

* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *

LRSS SRS RS RS SRS AR R R SRR R R RS RS RE R R R EREEREREEEERESERESSEES

SPACE 1
USERMPST $SCANTAB TABLE=USER
$SCANTAB NAME=HASPSSSM,FIELD=SSSMNAM,CB=HCT,CONV=CHARJANS, C

RANGE=(3,5) ,CALLERS=($SCIRPL,$SCIRPLC,$SCDCMDS) , C
MSGID=827
$SCANTAB NAME=USERCAN,FIELD=CIRFLAG1l,CB=PCE,CONV=FLAG, C

VALUE=(,CIRF1CAN,FF),CALLERS=$SCIRPLC
$SCANTAB TABLE=END

Figure 2-13 (Part 1 of 3). Three Examples of $SSCANTAB Tables

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-51

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

(8]

IE S XSRS RS RS S SRS RS SRS RS SRR R SRS R R R R ER AR EEREREEEEEEREEERERERES]

* *
* USER TABLE FOR PRINTER INITIALIZATION STATEMENTS *
* *
* '"USERCLS' - USER DEFINED STATEMENT THAT SHOULD EFFECT THE *
* SAME ACTION AS JES2 'CLASS', EXCEPT ONLY *
* FOR CLASSES A-Z. *
* *
* 'FORMS' - USER DEFINED REPLACEMENT KEYWORD FOR THE *
* JES2 FORMS PARAMETER - ALLOWS THE INPUT TO *
* BE ONLY 3-5 CHARACTERS LONG RATHER THAN 1-8. *
* *
khkkhkkhkhhkhkAAkhkkhhhhdhhhhhhhkrhhkhhhkddhhhrhrrhhbddokhkhhkhkhhkhkhdbhdrhrrhkhhkx

SPACE 1
USERPRTT $SCANTAB TABLE=USER

$SCANTAB NAME=FORMS,CB=PARENT,DSECT=DCTDSECT ,MINLEN=1, c

FIELD=DCTFORMS ,CONV=CHARAN,RANGE=(3,5)
$SCANTAB NAME=USERCLS,CB=PARENT,DSECT=DCTDSECT, CONV=CHARA, C
FIELD=(DCTCLASS,PITCLLEN) ,RANGE=(1,PITCLLEN-1)
$SCANTAB TABLE=END

Figure 2-13 (Part 2 of 3). Three Examples of $SSCANTAB Tables

2-52 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

khkkdkhh A AR A A AR Ik AR ARAR KA Rk kA kA kA Ak hhkhddhhkkhhkkhkdkhhkkhhkhkhhhkhhdhdhkds
* *
* USER TABLE TO DEFINE A NEW INITIALIZATION STATEMENT *
* TO DEFINE THE MAXIMUM NUMBER OF VALID USERS *
* *
* '"USERDEF' - USER DEFINED STATEMENT TO SPECIFY THE *
* NUMBER OF USERS *
* *
* NUM - PARAMETER ON THE 'USERDEF' *
* STATEMENT TO DEFINE THE MAXIMUM *
* NUMBER OF DEFINED USERS *
* *
R R R R R E RS R RS S SRR SRS E S SRR SRS SRR R RS SRR EEEEE
SPACE 1
UDEFTAB $SCANTAB TABLE=USER
$SCANTAB NAME=USERDEF,CB=UCT,CONV=SUBSCAN, c
SCANTAB= (UCTSCANT, UCT) ,
TABLE=END

USUBSCAN $SCANTAB TABLE=USER
$SCANTAB NAME=NUM,CB=UCT,MINLEN=3,DSECT=UCT,FIELD=$UCTNUM, C
CONV=NUM, RANGE=(0,9)
SSCANTAB TABLE=END
SPACE 1
ucT

USERCB EQU
UCTSCANT DC V(USUBSCAN)
SUCTNUM DS F

Figure 2-13 (Part 3 of 3). Three Examples of SSCANTAB Tables

The above examples are only examples of defining and modifying initialization
statements by use of the $SCAN facility. The source module must, of course,
include all standard JES2 statements. such as: SMODULE and $SMODEND.

Implementing PCE Tables

Processor control element (PCE) tables are used by the PCEDYN service to
dynamically add or delete JES2 PCEs that define PCE types and their attributes.
PCE tables are generated in the HASPTABS module by coding the SPCETAB
macro. This macro maps and generates table entries. Use the TABLE=HASP
or TABLE = USER keyword specification to specify the type of table. If you do
not code a label for this line of code the label defaults to HASPPCET for HASP
tables and USERPCET for a USER table. If this keyword is coded. no further
keywords should be coded: and if coded. JES2 ignores them. Only use the
TABLE = keyword to begin the table. The only other notation that can be made
with the TABLE = keyword is the addition of NOENTRY to the

TABLE =USER specification. The NOENTRY operand instructs JES2 not to
generate an ENTRY statement for this label.

LC23-0067-3 « Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-53

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

The succeeding lines coded for the macro specily the module, PCE address, PCE
work area. etc. by using the remaining optional macro keywords. Finally, the
table is ended by coding the TABLE =END specification. No further keywords
or operands can be coded on this line. Figure 2-14 presents two examples of

PCE tables.
UTABLE1l SPCETAB TABLE=USER,NOENTRY BEGIN USER TABLEl
SPCETAB NAME=PCETYPEA ,MODULE=HARRYS, C
WORKLEN=256
SPCETAB TABLE=END END USER TABLE1l
HTABLE1l SPCETAB TABLE=HASP BEGIN HASP TABLE1l
SPCETAB NAME=PCETYPEB,MODULE=LLOYDS,
WORKLEN=128 C
SPCETAB TABLE=END END HASP TABLE1l

Figure 2-14. Two Examples of SPCETAB Tables
Relate the PCE tables to JES2 by one of the two following methods:

e |ocate the master control table (MCT) while running an initialization exit
(Exit 0) and store the address of its table in the MCTPCETU field

e define the table with the reserved name USERPCET and linkedit it with
HASPJES20

Implementing Trace Tables

JES?2 uses trace tables to define both JES2-defined and user-defined trace 1Ds.
These tables are used during JES2 initialization processing of the trace control
bytes in the subsystem vector table (SVT) and by the trace log processor to
provide formatting information when constructing trace table entries. The
$TIDTAB tables located in HASPTABS define each identifier. its associated name
and formatting subroutine. New entries are generated using the $TIDTAB macro
as described below.

Use TABLE=HASP or TABLE =USER on the STIDTAB (trace ID table)
macro to define either a JES2- or user-defined trace table. respectively. This
macro further defines the name for the trace output, a trace identifier. and an
output formatting routine. Currently, there are 16 trace identifiers defined by
IBM. User-defined trace tables should be assigned identifiers beginning with 255
and decreasing. Initial trace option values are defined on the TRACE
initialization statement and modifiable by operator command. (Refer to
Initialization and Tuning for the definition of the trace identifiers and the TRACE
statements.) Specific JES2 activities are traced as defined by the $TRACE macro;
this macro is also required to allocate a JES2 trace table entry. (Refer to the
$TRACE macro in Chapter 4 for further information on this macro.)

2-54 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Trace tables are always ended with a TABLE =END entry. When the TABLE =
keyword is used (to begin or end a table), no other keywords are allowed. An
example of a user-defined table follows:

TID255 $TIDTAB TABLE=USER BEGIN USERTAB255
STIDTAB NAME=S$USERTRC,ID=255, c
FORMAT=TROUT255
STIDTAB TABLE=END END USERTAB255

The above example defines a user trace table named SUSERTRC with associated
identifier of 255 and using the TROUT255 subroutine to format the trace output.

Relate the trace id tables to JES2 by one of the two following methods:

e |ocate the master control table (MCT) while running an initialization exit
(Exit 0) and store the address of its table in the MCTTIDTU field

e define the table with the reserved name USERTIDT and linkedit it with
HASPJES20

Implementing DTE Tables

JES2 uses daughter task element (DTE) tables to define both the JES2-defined
and user-defined subtask management information. These tables are used when
calling service routines in HASPDYN to attach ($DTEDYNA) and detach
($DTEDYND) subtasks. By using DTE tables, JES2 provides a centralized
subtask management facility through a general subtask ATTACH/DETACH
service. This facility is available for your use by creating your own DTE tables.

Use the SDTETAB macro to define general subtask characteristics. This macro
allows you to create subtasks without modifying inline JES2 code. These subtasks
can then be automatically attached during JES2 initialization processing.

At JES2 termination, subtasks, that were previously attached are automatically
detached through a SDTEDYN macro call.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-55

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Subtask Management

The JES2 subtask management function is centralized though a general subtask
ATTACH/DETACH service. This service provides MVS ATTACH/DETACH
processing, centralized subtask management, error checking, and messages to
assist code debugging. You can access and use these subtask management
services without the need of modifying JES2 code in support of user subtasks.

Daughter Task Element (DTE) Structure

The daughter task element structure is comprised of an MVS-style save area, a
common DTE control block foundation and an optional variable length work
area. The DTEs are on a double headed and double threaded chain. The HCT
contains SDTEORG which is the origin of the DTE chain, and SDTELAST, the
last DTE on the chain. The DTEs themselves contain pointers DTENEXT and
DTEPREYV. Within the chain, the DTEs are grouped by subtask type with HCT
pointers into the DTENEXT chain.

In addition to the chain fields, the DTE foundation contains three ECB pairs used
for subtask/main task communication. The DTE contains a pointer to the
subtask task control block (TCB) (the TCB also points back to the DTE). The
DTE foundation contains an error recovery area (ERA) and a general parameter
list area, and if there is a one-to-one relationship between the subtask and a PCE,
the DTE foundation contains a PCE pointer.

SDTEDYN Services

The generalized subtask management service is called $SDTEDYN and invoked
through the SDTEDYN macro. The service, which resides in HASPDYN,
contains two entry points. Those entry points are SDTEDYNA for ATTACH
and SDTEDYND for DETACH. These are two different service routines called
by one macro. The SDTETAB tables are used to define general subtask
characteristics such as whether the subtask is attached during JES2 initialization,
whether a unique subpool 0 is required, and whether the subtask can be forced
down (that is, abnormally terminated through the specification of STAE=YES on
the MVS DETACH macro) during JES2 termination.

You can use the SDTETAB tables to create your own subtasks without modifying
JES2 code. Subtasks can be automatically attached during JES2 initialization,
from a user-defined exit routine or through a user-defined processor. Subtasks
are able to communicate with a user-defined processor using JES2 XECBs or the
generalized dispatcher queues. Subtasks can be detached by a user-defined
processor, exit routine, or automatically detached during JES2 termination. Also,
catastrophic errors ($DOx) are issued by SDTEDYN to catch user logic and table
errors early during testing.

2-56 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Generalized JES2 Dispatcher Support

The JES2 dispatcher is completely generalized, thereby making it easy for you to
add processor (PCE) resource queues without source code modification.

There are 64 general resource queues, of which JES2 uses the first 23. The
resource queue heads are in their own area pointed to by the $DRQUES field of
the HCT. The HCT also contains the event control fields and the SREADY
queue.

You can issue your own SWAITs and $POSTs, using equated symbols (or
hard-coded values, that is, SWAIT 54) in the same manner as JES2. You can
also use $$SPOST to post JES2 main task resources from subtasks or other address
spaces. The cross-system operand (MASPOST =) on the $POST macro is also
supported in this generalized scheme.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 2. Customizing JES2 2-57

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

2-58 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Chapter 3: IBM-Defined Exits

Exit Implementation Table 3-3

Exit 0: Pre-Initialization 3-5

Exit 1: Print/Punch Separators 3-8

Exit 2: JOB Statement Scan 3-13

Exit 3: JOB Statement Accounting Field Scan 3-16

Exit 4: JCL and JES2 Control Statement Scan 3-20

Exit 5: JES2 Command Preprocessor 3-26

Exit 6: Internal Text Scan 3-30

Exit 7. JCT Read/Write (JES2) 3-34

Exit 8: JCT Read/Write (USER) 3-36

Exit 9: Job Output Overflow 3-38

Exit 10: $WTO Screen 3-41

Exit 11: Spool i’artitioning Allocation (STRACK) 3-43

Exit 12: Spool Partitioning Allocation (SSTRAK) 3-49

Exit 13: TSO/E Interactive Data Transmission Facility Screening and
Notification 3-53

Exit 14: Job Queue Work Select - SQGET 3-58

Exit 15: Output Data Set/Copy Select 3-60

Exit 16: Notify 3-63

Exit 17: BSC RJE SIGNON/SIGNOFF 3-65

Exit 18: SNA RJE LOGON/LOGOFF 3-68

Exit 19: Initialization Statement 3-71

Exit 20: End of Input 3-75

Exit 21: SMF Record 3-77

Exit 22: Cancel/Status 3-79

Exit 23: FSS Job Separator Page (JSPA) Processing 3-82

Exit 24: Post Initialization 3-85

Exit 25: JCT Read (FSS) 3-88

Exit 26: Termination/Resource Release 3-90

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3: IBM-Defined Exits

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Chapter 3. IBM-Defined Exits

This is a reference section. It provides the information you need in writing exit
routines for the IBM-defined exits.

The exits are described in the order of their identification numbers, the ID
numbers assigned to them on their respective SEXIT macros. Each exit
description begins with a discussion of its recommended use, followed by a
breakdown of environmental considerations, linkage conventions, and other
programming considerations specific to the particular exit being described. (Note:
For convenience, except where single or multiple exit routines are mentioned
specifically--as in the distinction between return code 0 and return code 4--the
following descriptions imply either one or more exit routines by the inclusive term
“exit routine.” For example, “your exit routine may replace the standard routine”
should be read to imply “your exit routine or exit routines may replace the
standard routine.”) Figure 3-1 summarizes for each exit the exit points in JES2
where your exit routine can get control.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-1

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

3-2 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Exit Implementation Table

The following table is a reference to the various exit points that are defined for
the IBM-defined exits and the JES2 environment in which the exit point is taken.

Use this table as an aid in implementing your exit routines.

Exit | Exit Title Containing CSECT Exit Point(s) Environment
0 PRE-INITIALIZATION HASPIRMA NEXITO Main Task (Initialization)
Job Exit Mask - N/A
1 PRINT/PUNCH SEPARATOR HASPPRPU PEXITSC Main Task
PEXITTR Job Exit Mask - A
2 JOB STATEMENT SCAN HASPRDR RXITJBCD Main Task
RXITIJBCC Job Exit Mask - A
3 JOB STATEMENT ACCOUNTING | HASPRDR RXITACC Main Task
FIELD SCAN Job Exit Mask - A
4 JCL AND JES2 CONTROL HASPRDR RXITCCA Main Task
STATEMENT SCAN : RXITCCB Job Exit Mask - A
RXITCCC
5 JES2 COMMAND HASPCOMM COMMEXIT Main Task
PREPROCESSOR Job Exit Mask - N/A
6 INTERNAL TEXT SCAN HOSCNVT subtask of XCSTCUET Subtask
HASPCNVT XCSTMUEE Job Exit Mask - A
XCSTCUEE
7 JCT READ/WRITE (JES2) HASPNUC JIOEXIT Main Task
Job Exit Mask - A
8 JCT READ/WRITE (USER) HASPSSSM HXJCTO1 User address space
) HXJCTO02 Job Exit Mask - A
HXJCTO03
HXICT04
9 JOB OUTPUT OVERFLOW HASPAM SVCOUTX User address space
. Job Exit Mask - A
10 $WTO SCREEN HASPCON WTOEXIT Main Task
Job Exit Mask - N/A
11 SPOOL PARTITIONING HASPTRAK $TRACKX Main Task
ALLOCATION -- $STRACK Job Exit Mask - A
12 | SPOOL PARTITIONING HASPSSSM $STRAKX User address space
ALLOCATION -- $STRAK Job Exit Mask - A
13 | TSO/E INTERACTIVE DATA HASPNET MAILXIT Main Task
TRANSMISSION FACILITY Job Exit Mask - N/A
SCREENING AND
NOTIFICATION
14 | JOB QUEUE WORK SELECT HASPNUC QVALID Main Task
Job Exit Mask - N/A
15 | OUTPUT DATA SET/COPY HASPPRPU PEXTI15D Main Task
SEPARATORS PEXTI150 Job Exit Mask - A
16 | NOTIFY HASPHOPE OPNEXIT Main Task

Job Exit Mask - A

Figure 3-1 (Part 1 of 2). Exit Implementation Table

LC23-0067-3 © Copyright IBM Corp. 1982, 1987

Chapter 3. IBM-Defined Exits 3-3

“Restricted Materials of IBM”

Licensed Materials — Property of IBM

Exit | Exit Title Containing CSECT Exit Point Environment
17 BSC RJE HASPBSC MSOXITA Main Task
SIGN-ON/SIGN-OFF MSOXITB Job Exit Mask - N/A
MDSXITA
18 SNA RJE HASPSNA MICEXIT Main Task
MALGXIT Job Exit Mask - N/A
MSNALXIT
MSNAXT2
19 INITIALIZATION STATEMENT HASPIRPL NPLEXIT Main Task (Initialization)
Job Exit Mask - N/A
20 END OF JOB INPUT HASPRDR REXITA Main Task
Job Exit Mask - A
21 SMF RECORD HASPNUC SMFEXIT Main Task
Job Exit Mask - N/A
22 CANCEL/STATUS HASPXEQ ZTCSEXIT Main Task
YTCSEXIT Job Exit Mask - N/A
23 JOB SEPARATOR HASPFSSM JSPAXIT Functional Subsystem
PROCESSING (JSPA) Job Exit Mask - A
24 POST INITIALIZATION HASPIRA NEXIT24 Main Task (Initialization)
Job Exit Mask - N/A
25 JCT READ I/O (FSS) HASPFSSM FGDSX25 Functional Subsystem
Job Exit Mask - A
26 TERMINATION/RESOURCE HASPTERM EX26 Main Task (Termination)
RELEASE Job Exit Mask - N/A

Figure 3-1 (Part 2 of 2). Exit Implementation Table

3-4 JES2 User Modifications and Macros

LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM EXIT 0

Exit 0: Pre-Initialization

FUNCTION:

This exit allows you to control the start of the initialization process through
various means, such as:

e Processing JES2 initialization options. specifically the JES2 cataloged
procedure parameter field and;jor the replies to the SHASP426 and SHASP427
WTORs. The options can optionally be altered or bypassed.

e Acquiring installation control blocks and installation work areas for later
initialization

e Providing user fields and addresses of installation-defined tables in the MCT.
The table pointers in the master control table (MCT) allow your installation
to extend JES2 processing of user tables to define JES2 initialization to
extend or tailor certain table-driven JES2 functions. Define user table
pointers in the MCT as MCTstmTU. where ‘stm” is the JES2 initialization
statement that you are replacing. Refer to “Defining JES2 Tables” in
Chapter 2 for a list of the MCT names.

e Dectermining whether or not JES2 initialization is to proceed.
ENVIRONMENT: JES2 main task (Initialization) - JES2 dispatcher disabled
POINT OF PROCESSING:

This exit is taken in the initialization routine that processes the initialization
options (IROPTS. in module HASPIRMA). The initialization options are taken
from the parameter field specified via the JES2 procedure or START command.
or are requested from the operator via the SHASP426 WTOR message if
necessary. The point of processing for this exit is just before parsing and
analyzing the options and setting appropriate flags. Exit 0 may be called a
multiple number of times. because new options may be requested repetitively via
the $SHASP427 WTOR message until valid options are specified or the exit directs
JES2 to bypass the options analysis.

The exit control blocks and the exit effector are not initialized at this point in
IROPTS when Exit 0 gets control. Therefore, the normal JES2 exit facility
initialization parameters cannot be used. IROPTS searches for module
HASPXITO in the HASPINIT load module and then, if nccessary. in the
HASJES20 load module. The name HASPXITO is defined as a weak external
reference (WXTRN) in both load modules. If HASPXITO is not found via this
search, an MVS LOAD is issued for a separate load module named HASPXITO.
If HASPXITO is found through these means. a temporary XIT and XRT are built
for the exit facility and the SEXIT macro. The HASPXITO module’s MIT is
searched for all entry point names of the form "EXITOnnn" and the entry point
names found and the associated addresses are placed in the temporary XRT in the
order they are found.

If HASPXITO is found during JES2 initialization. an entry for that module is
placed in the exit facility LMT as if a LOAD initialization statement had been

LC23-0067-3 © Copyright IBM Corp. 1982. 1987 Chapter 3. IBM-Defined Exits 3-5

EXIT 0

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

processed for it and the module is not deleted. Therefore other exit routines (e.g.,
for Exits 19 and 24) and installation-defined tables (e.g., initialization statement
$SCANTARB tables) can be assembled in the same module with the Exit 0 routines
without having them deleted by JES2 after initialization completes. Note,
however, that HASPXITO will be deleted from storage with HASPINIT if
HASPXITO is linkedited with the HASPINIT load module.

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT
ROUTINE:

RO A code indicating where the initialization options were specified
0 Options passed are from the EXEC card, the PARM field
4 Options passed are from the SHHASP426 message WTOR reply
8 Options passed are from a SHASP427 message WTOR reply

R1 Address of a 2-word parameter list with the following structure:

Word 1 (+0) address of the initialization options string
Word 2 (+4) length of the initialization options string

R2-R10 N/A

R11 Address of HCT
RI2 N/A
R13 Address of initialization PCE - the PCE work arca for this PCE is the common

initialization routine work area, mapped by the SCIRWORK macro.
R14 Return address

R15 Entry address

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:

RO-R1 N/A
RI15 A return code

RETURN CODES:
0 Tells JES2 that if there arc any additional exit routines associated with this exit, call the next
consecutive exit routine. If there are no additional cxit routines associated with this exit.

continue with normal IROPTS processing..

4 Tells JES2 to ignore any additional exit routines associated with this exit and to continue with
normal IROPTS processing.

8 Tells JES2 to bypass processing of the options string and assume the current values for the JES2
initialization options flags are correct.

12 Tells JES2 to terminate processing. This results in the SHASP864 crror message to the operator.
JOB EXIT MASK: This exit point is not subject to job exit mask suppression.

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: SHASPEQU. $HCT, $MIT, $PCE, $SCIRWORK

3-6 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”

Licensed Materials — Property of IBM EXIT O

OTHER PROGRAMMING CONSIDERATIONS:

1.

Tracing for this exit is disabled because of its sequence in the initialization
process.

JES2 does not have a recovery environment established at the processing
point for Exit 0 (the JES2 ESTAE will process termination but not recover).

Because Exit 0 is called early in JES2 initialization, some main task services
may not be functional and most control blocks and interfaces are not yet
established. The JES2 dispatcher is not yet functional, so MVS protocol
should be used in Exit 0 routines (WAIT rather than $WAIT, ESTAE rather
than $ESTAE, etc.).

If Exit 0 returns a return code of 12, IROPTS issues message SHASP864
indicating that Exit 0 terminated initialization. IROPTS then returns to the
IRLOOP with return code 8, indicating that the SHASP428 message should
be issued before final termination.

The initialization options string passed to Exit 0 is first ‘folded’, that is all the
characters are ‘folded’ up to their capitalized versions.

The processing that JES2 does for the initialization options string after calling
Exit 0 is performed using the JES2 $SCAN facility and a table that defines
the options input allowed and how to process it. The table is actually
composed of two tables, an installation-defined table followed by a
JES2-defined table.

By specifying installation-defined tables, an installation can implement its own
initialization options or replace the JES2 definition for existing options. Thus
this function can be accomplished without implementing Exit 0, or in
conjunction with an implementation of Exit 0. Also, the SSCAN facility itself
can be used from an Exit 0 exit routine to process initialization options.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-7

“Restricted Materials of IBM”
EXIT 1 Licensed Materials — Property of IBM

Exit 1: Print/Punch Separators

FUNCTION:

This exit allows you to provide an exit routine to produce your own print/punch
separators and to control production of standard print/punch separators.

When using this exit to create your own separators, you can devise entirely unique
separators or you can create variations on the standard separators. When using
this exit to control the production of standard separators, you can unconditionally
suppress production of standard separators, you can direct JES2 to
unconditionally produce standard separators, or you can allow JES2 to produce
any standard separators that are in effect. Whether or not standard separators
are in effect for any particular device is determined by how the initialization
statement and operator command separator options have been defined at your
installation at any given time; these options are described in the “Other
Programming Considerations™ below.

For punch devices, JES2 provides the option of producing start-of-job header
cards and trailer cards. For printers, JES2 provides the option of producing
start-of-job header pages, continuation-of-job header pages, and trailer pages.
Continuation-of-job header pages are produced at each output data set group
(represented by a work JOE) within a job and for the continuation of a data set
group if printing has been interrupted. In each of these instances, whether or not
the standard separator is in effect, when this exit is implemented and enabled your
exit routine receives control. Therefore, you have the ability to control the
production of separators on a job-by-job basis and, for printers/punches on a data
set group basis.

Each time your exit routine is called, you can direct JES2:

e To produce only your own separator (unconditionally suppressing production
of the standard separator)

e To produce only the standard separator, if it happens to be in effect (without
producing your own separator)

e To produce the standard separator unconditionally
e To produce your own separator followed by the standard separator. if it
happens to be in effect (for example, your own start-of-job header page

followed by the standard start-of-job header page)

e To produce your own separator and then to produce the standard separator
unconditionally

e To produce no separator (by not producing your own separator and by
suppressing production of the standard separator)

Two exit points establish this exit. The first, at label PEXITSC, provides for
insertion of a start-of-job header page/card or a job continuation header page exit

3-8 JES2 User Modifications and Macros LC23-0067-3 « Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM EXIT 1

routine. The second, at label PEXITTR, provides for insertion of a trailer
page/card exit routine.

ENVIRONMENT: JES2 main task
POINT OF PROCESSING:

This exit is taken from the HASPPRPU module in the JES2 main task. Both exit
points occur prior to the check for standard separator pages.

Exit point PEXITSC occurs in the PTESTSEP area of the PHEADER (produce
job header) subroutine, prior to the call of PUNCHSEDP, if a standard separator
card is to be produced, or PRINTSEDP, if a standard separator page is to be
produced.

Exit point PEXITTR occurs in the PPDONE (print/punch processor termination)
routine, prior to the call of PRINTTR, if a standard trailer page is to be
produced.

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT
ROUTINE:

RO A code indicating whether a header page or card, continuation page, or trailer page is
being processed

0 Indicates a start-of-job page or card
4 Indicates a continuation-of-job page
8 Indicates a trailer page or card

R1 Address of the printer or punch DCT
R2-R9 N/A

R10 Address of the JCT

R1l Address of the HCT

RI2 N/A

R13 Address of the PCE

R14 Return address

RI5 Entry address

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:

RO-R1 N/A
R15 A return code

RETURN CODES:

0 Tells JES2 that if there are any additional exit routines associated with this exit, call the next
consecutive exit routine. If there are no additional exit routines associated with this exit,
produce any installation-defined separator that has been created and, if standard separator
production is in effect for the printer or punch, produce a standard separator.

4 Tells JES2 to ignore any additional exit routines associated with this exit, to produce any
installation-defined separator that has been created and, if standard separator production is in
effect for the printer or card punch, produce a standard separator.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-9

EXIT 1

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

12

Tells JES2 to produce any installation separator that has been created and to unconditionally
suppress production of the standard separator.

Tells JES2 to produce any installation separator that has been created and to unconditionally
(that is, even if the printer has been set to S=N) produce the standard separator (following
production of any user separator).

JOB EXIT MASK: This exit is subject to job exit mask suppression.

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: $DCT, $HASPEQU, $HCT, $JCT, $SMIT, $PCE

OTHER PROGRAMMING CONSIDERATIONS:

1.

You cannot use this exit to modify the standard separator routines directly.

If you intend to produce a modified version of a standard separator, your exit
routine must replace the standard separator routine entirely and is responsible
for producing the standard separator elements that you want to retain as well
as your new or modified separator elements.

This exit is available to provide a user-written separator page for local or RJE
printers only. There is no separator page for JES2 or user-supplied
networking output. If separator pages are required for networking output
jobs, they must be supplied (through use of this exit) at the destination node
when printed

The DCTPPSWS flag in the DCT indicates whether or not standard
separators are to be produced for a particular device.

For each device, initialization statements first determine whether or not
standard separators are in effect--that is, whether or not, without the
intercession of an exit routine, JES2 would normally produce or suppress
standard separators.

For a local printer, the NOSEP parameter of the PRTnnnn statement
specifies that separator pages are not to be produced, and the SEP parameter,
the default, specifies that separator pages are to be produced. However, even
if SEP is specified, if the local printer separator page line count parameter,
SEPLINE parameter on the PRINTDEF statement, is set to zero, no
separator pages are produced.

For a remote printer, the NOSEP parameter of the Rnnnn.PRm statement
specifies that separator pages are not to be produced, and the SEP parameter,
the default, specifies that separator pages are to be produced. However, even
if SEP is specified, if the remote printer separator page line count parameter,
RSEPLINE parameter on the PRINTDEF statement, is set to zero, no
separator pages are produced.

For a local card punch, the NOSEP parameter of the PUNnn statement
specifies that separator cards are not to be produced, and the SEP parameter,
the default, specifies that separator cards are to be produced.

3-10 JES2 User Modifications and Macros

LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM EXIT 1

For a remote card punch, the NOSEP parameter of the Rnnnn.PUm
statement specifies that separator cards are not to be produced, and the SEP
parameter, the default, specifies that separator cards are to be produced.

After JES2 has been started, the operator can use the S option of the $T PRT
or $T PUN command to change the status of any printer or card punch. For
any device, the operator issues the $T command with S=Y to specify that
standard separators are to be produced and with S=N to specify that
standard separators are not to be produced.

5. Use the $PRPUT service routine to produce any new separators created by
your exit routine. $PRPUT accesses the same routines used by HASPPRPU
to produce output. It performs all necessary interfacing with the low-level
CCW building and I/O routines in HASPPRPU. $PRPUT constructs a CCW
for each data record to be output. It then calls PPUT to put the CCW into
an output buffer. Note that the data area supplied to SPRPUT must be
fixed. Use SGETBUF to supply this routine with buffers and SFREEBUF to
release them after your separator has been created. Buffers supplied to
$SPRPUT must be HASP-type buffers.

6. When using SPRPUT with WAIT =NO, I/O does not occur synchronously;
the device does not physically process the data areas until either a SPRPUT
macro specified with WAIT = YES is issued or the CCW area is exhausted.
Therefore, do not reuse data areas until after you issue SPRPUT with
WAIT =YES specified.

7. Use the SPBLOCK service routine to create block letters on any new separator
page created by your exit routine. Note that, for a local printer, if the
SPRIDCT separator page line count parameter is specified as less than 30
and, for a remote printer, if the STPIDCT separator page line count
parameter is specified as less than 30, no block letters can be produced. Use
$GETBUF to supply this routine with buffers and SFREEBUF to release
them after your separator has been created. Buffers supplied to SPBLOCK
must be HASP-type buffers rather than PP-type buffers.

8. If the spooling capabilities of a remote SNA device (such as the 3790) are in
use, use the SSEPPDIR service routine to send a peripheral data information
record (PDIR) to the device. Use the SGETBUF macro to supply this
routine with buffers and the SFREEBUF macro to release them after your
separator has been created. Buffers supplied to $SSEPPDIR must be
HASP-type buffers.

9. If a hardware error or intervention situation interrupts SPRPUT processing,
Exit 1 will lose control. Whatever resources (for example, JES2 buffers or
MYVS virtual storage) obtained by this exit routine are not unallocated by
JES?2 at this time. You can prevent this situation from occurring if your exit
routine saves the address of the resources in a PCE field such as PCEUSERO
and checks for an address(es) upon entry to the exit routine. Previously
acquired resources can thereby be reused. Before returning to JES2, this
routine should release these resources and the pointer field(s) used should be
zeroed.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-11

“Restricted Materials of IBM”
EXIT 1 Licensed Materials — Property of IBM

10. To avoid feeding blank pages through your printer, be certain to include a
page eject statement in your exit routine following the trailer separator page.
This is required by some printers because the printer is not repositioned to the
“top of forms” after printing the trailer page.

11. If JES2 abnormally terminates (ABENDS) when Exit 1 is enabled, be certain
to check the following:

o S$PRPUT must be printing from a fixed area of storage, that is, an area
obtained with SGETBUF FIX=YES.

o S$PRPUT is coded with WAIT =YES to ensure that the data is actually
printed prior to {reeing the buffer.

e The returned buffer is not being used.
® The I/O processing does not place data beyond the buffer limit.
e The exit is JES2 reentrant.

12. Note on recovery: There is no JES2 recovery in effect. As with every exit.
you should supply your own recovery within your exit routine.

3-12 JES2 User Modifications and Macros LC23-0067-3 « Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM EXIT 2

Exit 2: JOB Statement Scan

FUNCTION:

This exit allows you to provide an exit routine for scanning the complete JOB
statement image, and for setting the corresponding fields in the appropriate JES2
control blocks. If this exit is implemented and enabled, it is taken whenever JES2
encounters a JOB statement or a JOB continuation statement.

You can also use your exit routine to interpret JOB statement input and, on the
basis of this interpretation, to decide whether to cancel the job, to purge it from
the system, or to allow it to continue processing normally. Your routine can also
alter JOB statement parameters and supply additional JOB statement parameters
(to include accounting information). If necessary, when supplying expanded JOB
statement data, your routine can pass an additional JOB continuation statement
image back to JES2.

You can use this exit to directly alter the JCT. Since, if enabled, this is usually
the first exit taken for a job, you would use this exit if you wanted to control
(enable or disable) other exits on a job-by-job basis by setting the job exit mask in
the JCT. For more information, see “Job-Related Exits” in Chapter 2. If you
want to implement spool partitioning, you can use this exit to set the spool
partitioning mask in the JCT. For more information, see the description of spool
partitioning in the description of Exit 11 below.

If this exit isn’t taken, JES2 continues with the standard HASPRDR JOB
statement scan processing.

This exit is established by two exit points. The first, at label RXITIBCD, gives
control to your routine when JES2 encounters a JOB statement. The second, at
label RXITIBCC, gives control to your routine when JES2 encounters a JOB
continuation statement.

ENVIRONMENT: JES2 main task
POINT OF PROCESSING:

This exit is taken from the JES2 main task, from the HASPRJCS subroutine of
HASPRDR during JOB statement processing.

Exit point RXITIBCD occurs after the JCT and IOT have been obtained and
initialized for a new job but before HASPRDR performs its standard JOB
statement scan and before any spool space has been assigned.

In the case of JOB continuation statements, exit point RXITIBCC occurs in
subroutine RCONTNUE.

Note: Refer to Appendix D, “JES2 Exit Usage Limitations” for a listing of
specific instances when this exit will be invoked or not invoked.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-13

EXIT 2

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT
ROUTINE:

RO A code indicating the type of JOB statement being scanned

0 indicates an initial JOB statement image
4 indicates a subsequent JOB continuation statement

R1 Address of a 3-word parameter list with the following structure:
Word 1 (+0) points to the JOB statement image buffer

Word 2 (+4) points to the exit flag byte, RDWFLAGX, in the PCE
Word 3 (+8) points to the JCTXWRK field in the JCT

R2-R9 N/A

R10 Address of the JCT
RI1 Address of the HCT
R12 N/A

R13 Address of the PCE
R14 Return address

R15 Entry address

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:

RO-R1 N/A
R15 A return code
RETURN CODES:

0 Tells JES2 that if there are any additional exit routines associated with this exit, call the next
consecutive exit routine. If there are no additional exit routines associated with this exit,
continue with normal HASPRDR processing.

4 Tells JES2 to ignore any additional exit routines associated with this exit and to continue with
normal HASPRDR processing.

8 Tells JES2 to cancel the job; output (the incomplete JCL images listing) is produced.

12 Tells JES2 to purge the job; no output is produced.

JOB EXIT MASK: This exit is subject to job exit mask suppression. Note,
however, that because this exit is used to set the job exit mask, it can only disable
itself for a second invocation, for a JOB continuation statement.

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: $PCE, SRDRWORK, $JCT, SHCT, $BUFFER, $MIT,
$SHASPEQU, RPL

OTHER PROGRAMMING CONSIDERATIONS:

1. This exit is suitable for setting default values in the JCT because the JOB or
JOB continuation statements have not been scanned. However, exercise
caution in using this exit to alter the JCT. Because JCL processing is not
complete at this point, subsequent JCL processing can potentially override
certain fields in the JCT that you may intend to set from this exit. Unless

3-14 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”

Licensed Materials — Property of IBM EXIT 2

you are certain that further JCL processing will not override the JCT fields
you intend to set from this exit, consider setting those fields from Exit 3,

which occurs later in the HASPRDR processing routine. However, because
this is usually the first exit taken for a job, this is the optimum exit for certain
JCL alterations--notably, for setting the job exit mask (JCTXMASK) and the
spool partitioning mask (JCTSAMSK).

An 80-byte work area in the JCT, JCTXWRK, is available for use by your
routine. If your routine requires additional work space, use the GETMAIN
macro to obtain storage (and the FREEMAIN macro to return it to the
system when your routine has completed).

When passing a return code of 0 or 4, your exit routine can expand the JOB
statement to include additional input by returning an additional statement
image. JES2 receives this continuation statement as the next statement to be
read and processed by HASPRDR. To return this job continuation statement
to JES2, (1) move a comma into the last byte of the current job statement
image following standard JCL syntax, and (2) move the statement image to
the JCTXWRK field and set RDWXXSNC bit in the RDWFLAGX byte to
one. If, however, an additional statement (not a JOB statement image) is to
be returned to JES2, only step 2 should be followed, and do not add a
comma to the current job statement image.

RDWFLAGX has the following structure:

RDWXJCL (X‘01’) when on indicates that JES2 has detected a JCL statement.
RDWXJECL (X*02’) when on indicates that JES2 has detected a JES2 control statement.
RDWXJOBC (X'04’) when on indicates that JES2 has detected a JOB statement.

RDWXCONT (X‘08’) when on indicates that JES2 has detected a DD DATA or DD *
continuation statement.

RDWXXSNC (X‘10’) when on indicates that an installation exit has supplied the next card
image.

RDWXXSEM (X‘20") when on indicates that an installation exit has supplied an error
message.

When passing a return code of 8, your exit routine can pass an
installation-defined error message to JES2 to be added to the JCL data set
rather than the standard error message. To send an error message, generate
the message text in your exit routine, move it to JCTXWRK, and set the
RDWXXSEM bit in RDWFLAGX to one.

Note on recovery: SESTAE recovery is in effect. The RDRRCVO recovery
routine will attempt to recover from program check errors, including program
check errors in the exit routine itself. However, as with every exit, your exit
routine for this exit should not depend on JES2 for recovery. JES2 cannot
anticipate the exact purpose of your exit routine and can therefore provide no
more than minimal recovery. Provide your own recovery within your exit
routine.

For certain jobs, such as SYSLOG and $TRCELOG, this exit is not taken.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-15

“Restricted Materials of IBM”
EXIT 3 Licensed Materials — Property of IBM

Exit 3: JOB Statement Accounting Field Scan

FUNCTION:

This exit allows you to provide an exit routine for scanning the JOB statement
accounting field and for setting the corresponding fields in the appropriate JES2
control blocks.

You can use your exit routine to interpret the variables in the accounting field
and, on the basis of this interpretation, to decide whether or not to cancel the job.
Use Exit 2 to alter the accounting information and supply new accounting
information at the time the entire JOB statement is first scanned. Use this exit to
record alterations to the accounting field; they will not appear on the user’s
output but are reflected in the JCT and when the SMF type 6 record is written.

This exit is associated with the existing HASPRSCN accounting field scan
subroutine. You can write your exit routine as a replacement for HASPRSCN or
you can use a return code to direct HASPRIJCS to call HASPRSCN after your
exit routine has executed. In either case, when this exit is implemented and
enabled, JES2 treats your exit routine as the functional equivalent of
HASPRSCN. The specification of the ACCTFLD parameter on the JOBDEF
initialization statement, which normally determines whether JES2 is to call
HASPRSCN, becomes an additional factor in determining whether your exit
routine is to be called. The exit is taken only if the ACCTFLD = parameter on
the JOBDEF initialization statement is specified as either REQUIRED or
OPTIONAL. The exit is not taken if ACCTFLD =IGNORE is specified. When
it is called, your exit routine--rather than When it is called, your exit
routine--rather than the ACCTFLD parameter--determines whether HASPRSCN
is to be executed as an additional scan of the accounting field. For a complete
explanation of how the ACCTFLD parameter is specified, refer to JES2
Initialization and Tuning. The relationship of HASPRSCN to this exit is
described in greater detail in the “Other Programming Considerations™ below.

This exit is established by a single exit point, at label RXITACC.
ENVIRONMENT: JES2 main task

Note: Refer to Appendix D, “JES2 Exit Usage Limitations” for a listing of
specific instances when this exit will be invoked or not invoked.

POINT OF PROCESSING:

This exit is taken from the JES2 main task, from the HASPRIJCS JOB statement
scan subroutine of HASPRDR. The exit occurs after JES2 has scanned the entire
JOB statement, but prior to the execution of the HASPRSCN accounting field
scan subroutine, if HASPRSCN is to be called. The JCT has been initialized with
the JES2 and installation defaults; in addition, those fields of the JCT that
correspond to JOB statement parameters other than accounting field parameters
have been set. The JCTWORK field of the JCT contains the accounting field
image.

3-16 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM EXIT 3

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT
ROUTINE:

RO The length of the accounting field, in bytes; if no accounting field has been specified, this
length is zero

R1 Address of a 3-fullword parameter list
Word 1 (+0) points to the accounting field (JCTWORK in the JCT)

Word 2 (+4) points to the exit flag byte, RDWFLAGX in the PCE
Word 3 (+8) points to the JCTXWRK field in the JCT

R2-R9 N/A

R10 Address of the JCT

R11 Address of the HCT

RI12 N/A

R13 Address of the HASPRDR PCE
R4 Return address

RIS Entry address

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:

RO-R1 N/A
R15 A return code

RETURN CODES:

0 Tells JES2 that if there are any additional exit routines associated with this exit, call the next
consecutive exit routine. If there are no additional exit routines associated with this exit, use the
current setting of the ACCTFLD parameter on the JOBDEF statement to determine whether or
not to execute the HASPRSCN subroutine.

4 Tells JES2 to ignore any other exit routines associated with this exit and to use the current
setting of the ACCTFLD parameter on the JOBDEF statement to determine whether or not to
execute HASPRSCN.

8 Tells JES2 to suppress execution of HASPRSCN and to complete HASPRJCS processing.
12 Tells JES2 to cancel the job because an illegal accounting field has been detected. Tells JES2 to

suppress execution of HASPRSCN and to queue the job for output; output (the incomplete JCL
images listing) is produced.

JOB EXIT MASK: This exit is subject to job exit mask suppression.
MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT

ASSEMBLY: $PCE, $SRDRWORK, $JCT, $SHCT, $MIT, $BUFFER,
SHASPEQU, RPL

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-17

EXIT 3

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

OTHER PROGRAMMING CONSIDERATIONS:

L.

The accounting field resides in a 144-byte work area, JCTWORK, in the JCT.
The address of JCTWORK is in the first word of the 3-word parameter list
whose address is passed to the exit routine in R1.

If you need to verify the existence of a JOB rather than a started task (STC)
or TSO logon, this can be done by comparing the JCTJOBID field to a “J.”
The presence of a “J” indicates the existence of a JOB.

The ACCTFLD parameter on the JOBDEF statement indicates whether JES2
should scan the accounting field of a JOB statement. For further details
concerning the use of the ACCTFLD parameter, refer to JES2 Initialization
and Tuning.

If the ACCTFLD parameter indicates that the scan should be performed, and
if this exit is implemented and enabled, then HASPRIJCS calls your exit
routine to perform the scan. If your exit routine passes a return code of 0 or
4 to JES2, then HASPRICS calls the existing HASPRSCN accounting field
scan subroutine after your routine has executed. Note that if both routines
are to be called, your routine should not duplicate HASPRSCN processing.
For example, your routine should not set the fields in the JCT that are set by
HASPRSCN. However, if your routine passes a return code of 8 or 12 to
JES2, it causes JES2 to suppress execution of HASPRSCN. If the
ACCTFLD parameter indicates that the scan should be performed but this
exit is disabled, then only HASPRSCN is called; your exit routine is not
called and is not given the opportunity to allow or suppress HASPRSCN
execution. If the ACCTFLD parameter indicates that a scan should not be
performed, your exit routine is not called, even if this exit is enabled, and
execution of HASPRSCN is also suppressed.

The ACCTFLD parameter on the JOBDEF statement indicates whether JES2
should cancel a job if the accounting field on the JOB statement is invalid or
if a JCL syntax error has been detected during HASPRIJCS processing. Note
that your exit routine can affect this termination processing. For example,
ACCTFLD = REQUIRED indicates that JES2 should scan the accounting
field, that the job should be canceled if the accounting field is invalid, and
that the job should be canceled if a JCL syntax error has been found. If you
pass a return code of 8 to JES2, HASPRSCN is not called and therefore
cannot terminate a job with an invalid accounting field, even though
ACCTFLD =REQUIRED. Also note that HASPRSCN scans the
JCTWORK field of the JCT. Therefore, if your routine alters this field, you
affect HASPRSCN processing.

The specification of the ACCTFLD parameter is stored in the HCT, in field
$RIJOBOPT. If your exit routine is meant to completely replace
HASPRSCN, you may want to access this field for use by your algorithm.

In general, use this exit, rather than Exit 2, to alter the JCT directly. If you
use Exit 2 to alter the JCT, subsequent processing might override your
changes. The job exit mask and the spool partitioning mask are exceptions.
See note 2 of Exit 2 for more information.

3-18 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”

Licensed Materials — Property of IBM EXIT 3

10.

I1.

12.

An 80-byte work area in the JCT, at label JCTXWRK, is available for use by
your routine. If your routine requires additional work space, use the
GETMAIN macro to obtain storage (and the FREEMAIN macro to return it
to the system when your routine has completed).

When passing a return code of 8, your exit routine can pass an
installation-defined error message to JES2 to be added to the JCL data set
rather than the standard error message. To send an error message, generate
the message text in your exit routine, move it to JCTXWRK, and set the
RDWXXSEM bit in RDWFLAGX to one.

RDWFLAGX has the following structure:

RDWXJCL (X‘01") when on indicates that JES2 has detected a JCL statement
RDWXJECL (X‘02’) when on indicates that JES2 has detected a JES2 control statement
RDWXJOBC (X‘04’) when on indicates that JES2 has detected a JOB statement

RDWXCONT (X‘08’) when on indicates that JES2 has detected 2 DD DATA or DD *
continuation statement

RDWXXSNC (X*10’) when on indicates that an installation exit has supplied the next card
image

RDWXXSEM (X*20°) when on indicates that an installation exit has supplied an error
message

If there is no accounting field on a JOB statement, the length passed by JES2
to the exit routine in RO is zero. Your exit routine should take this possibility
into account.

If you intend to use this exit to process nonstandard accounting field
parameters, you should either suppress subsequent execution of HASPRSCN
or you should code your exit routine to delete nonstandard parameters before
passing control to HASPRSCN. If you do neither, that is, if you allow
HASPRSCN to receive the nonstandard parameters, it might cancel the job
because of an illegal accounting field (depending on how the ACCTFLD
parameter on the JOBDEF statement is specified).

If you change the length of the accounting field, you must reload the address
of the last character (or terminator) into field RDWSAVE].

There are two job class fields in the JCT. JES2 uses one to change the job’s
execution class and the other to retain the job’s original job class. JES2 also
uses these two fields to set the job class in the JQE and transfers the other to
the job management record. (JMR) for use in SMF processing. If you intend
to use your exit routine to change the job class, your exit routine should take
both fields into account.

Note on recovery: SESTAE recovery is in effect. The RDRRCVO0 recovery
routine will attempt to recover from program check errors, including program
check errors in the exit routine. However, as with every exit, your exit
routine for this exit should not depend on JES2 for recovery. JES2 cannot
anticipate the exact purpose of your exit routine and can therefore provide no
more than minimal recovery. You should provide your own recovery within
your exit routine.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987

Chapter 3. IBM-Defined Exits 3-19

“Restricted Materials of IBM”
EXIT 4 Licensed Materials — Property of IBM

Exit 4: JCL and JES2 Control Statement Scan

FUNCTION:

This exit allows you to provide an exit routine for scanning JCL and JES2 control
statements. If this exit is implemented and enabled, it is taken whenever JES2
encounters a JCL or JES2 control statement. (Note: JOB statements and internal
reader control statements such as /*DEL are not included in the scan.)

For JCL statements, your exit routine can interpret JCL parameters and, on the
basis of this interpretation, decide whether JES2 should cancel the job, purge the
job, or allow the job to continue normally. Your routine can also alter JCL
parameters and supply additional JCL parameters. If necessary, in supplying
expanded JCL data, your routine can pass a JCL continuation statement back to
JES2. Tt can also pass back a new JCL statement, such as a new DD statement.

For JES2 control statements, your routine can interpret the JES2 control
parameters and subparameters and, on the basis of this interpretation, decide
whether JES2 should cancel the job. purge the job, or allow the job to continue
normally. For any JES2 control statement, you can write your exit routine as a
replacement for the standard HASPRCCS control statement routine, suppressing
execution of the standard JES2 scan, or you can perform your own (partial)
processing and then allow JES2 to execute the standard HASPRCCS control
statement routine. In addition, your routine can alter a JES2 control statement
and then pass the modified statement back to JES2 for standard HASPRCCS
processing, or your routine can pass an entirely new JES2 control statement back
to JES2, to be read (and processed) as the next incoming statement by
HASPRDR.

This exit also allows you to process your own installation-specific JES2 control
statements or to implement new, installation-specific subparameters for existing
JES2 control statements.

Three exit points establish this exit. The first, at label RXITCCA, gives control
to your exit routine when JES2 detects a JES2 control statement or JCL statement
within a job. The second, at label RXITCCB, gives control to your exit routine
when JES2 detects a JES2 control statement or JCL statement outside of a job.
The third, at label RXITCCC, gives control to your exit routine when JES2
detects a JCL DD * or DD DATA continuation statement.

ENVIRONMENT: JES2 main task

Note: Refer to Appendix D, “JES2 Exit Usage Limitations” for a listing of
specific instances when this exit will be invoked or not invoked.

3-20 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM EXIT 4

POINT OF PROCESSING:

This exit is taken from HASPRDR in the JES2 main task. The exit occurs in
HASPRDR’s main processing loop.

Exit point RXITCCA processing JES2 control statements occurs after HASPRDR
has encountered an apparent JES2 control statement or JCL statement within a
job and prior to control statement processing.

Exit point RXITCCB occurs after HASPRDR has encountered an apparent JES2
control statement or JCL statement outside a job and prior to control statement
processing.

Exit point RXITCCC, for processing JCL DD DATA or DD * continuation
statements, occurs after the RCONTNUE subroutine has detected a continuation
statement and just before RCONTNUE returns control to the calling routine.

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT
ROUTINE:

RO A code indicating whether a JES2 control or JCL control statement is being processed

0 indicates a JES2 control statement
4 indicates a JCL statement

R1 Pointer to a 3-word parameter list with the following structure:
Word 1 (+0) address of the control statement image buffer

Word 2 (+4) address of the exit flag byte, RDWFLAGX, in the PCE
Word 3 (+8) address of the JCTXWRK field in the JCT

R2-R9 N/A

R10 Address of the JCT
Ri11 Address of the HCT
R12 N/A

R13 _Address of the PCE
R14 Return address

R15 Entry address

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:

RO-R1 N/A
RIS " A return code
RETURN CODES:

0 Tells JES2 that if there are any additional exit routines associated with this exit, call the next
consecutive exit routine. If there are no additional exit routines associated with this exit,
perform standard HASPRDR processing.

4 Tells JES2 to ignore any other exit routines associated with this exit and to perform standard
HASPRDR processing.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-21

“Restricted Materials of IBM”
EXIT 4 Licensed Materials — Property of IBM

8 For JES2 control statements, tells JES2 not to perform standard HASPRCCS processing;
instead, immediately convert the statement to a command (//*) with the null-on-input flag set to
one and write the statement to the JCL data set. For JCL statements, tells JES2 to perform
standard HASPRDR processing.

12 Tells JES2 to cancel the job because an illegal control statement has been detected; output (the
incomplete JCL images listing) is produced.

16 Tells JES2 to purge the job because an illegal control statement has been detected; no output is
produced.

JOB EXIT MASK: This exit is subject to job exit mask suppression.

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: $HCT, $JCT, SMIT, $PCE, SRDRWORK, $BUFFER,
$HASPEQU, RPL

OTHER PROGRAMMING CONSIDERATIONS:

1. This exit is taken once for each control statement (with the exception of JOB
statements and internal reader control statements) encountered by JES2. A
code in RO indicates whether the current statement is a JCL statement or a
JES2 control statement. Your exit routine gets control for //* comment, /*
(generated), and /* PRIORITY JES2 control statements. Your exit routine
gets control for DD * and DD DATA JCL statements.

2. During HASPRDR processing, JES2 writes the JCL records to a JCL data
set. If an error occurs during HASPRDR processing, it is the JCL data set
that is printed when the job goes through output processing. If the job is
successfully processed by HASPRDR, the JCL data set is the input for the
converter. The converter produces a JCL images data set, which is the data
set that is printed when the job goes to output processing after being
successfully processed by HASPRDR. Normally, when HASPRDR receives a
JES2 control statement HASPRDR first writes the statement to the JCL data
set with the null-on-input flag set to one. Because the statement is
null-on-input it is passed over by the converter; however, because the
null-on-output flag has not been set to one, the statement appears in user’s
copy of the JCL data set if the job bypasses conversion because an error was
detected in HASPRDR processing. Next, HASPRDR calls one of the specific
HASPRCCS control statement processing routines to perform the function
requested by the JES2 control statement. When the standard routine has
completed execution, HASPRDR converts the JES2 control statement to a
comment, sets its null-on-output flag to one, and writes it to the JCL data set.
Because the statement is null-on-output, it does not appear in the user’s copy
of the JCL data set; however, because the null-on-input flag has not been set
to one, the JES2 control statement is read (as a comment) by the converter.
This flagging scheme enables the user to see each JES2 control statement as it
was received by HASPRDR if the job does not go to the converter, and
enables the converter to see each JES2 control statement as a comment, which
will appear in the users output when the JCL images data set is printed.
(Note: The /*$ command and the /¥PRIORITY statements are exceptions.)

When this exit is implemented and enabled, it receives control after the initial
copy of the JES2 control statement, with the null-on-input flag set to one, has
been written to the JCL data set. Therefore, unless your exit routine passes a

3-22 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM EXIT 4

return code of 16, which purges the job with no resulting output, the user sees
the JES2 control statement on his output, just as it was received by
HASPRDR, if the job goes directly to output phase (bypassing converter),
otherwise, the user will see it as a comment in the JCL images file.

If you pass a standard return code (of 0 or 4) from your exit routine, the
standard HASPRCCS routine executes. After the HASPRCCS routine is
finished, HASPRDR writes the statement to the JCL data set as a comment
with the null-on-output set to one. This form of the statement will be seen by
the converter, and the converter will place it in the JCL images file.

If you pass a return code of 8, standard HASPRCCS processing is suppressed
and HASPRDR immediately converts the statement to a comment with the
null-on-output flag set, and writes the statement to the JCL data set. This
form of the statement will be seen by the converter, and will be seen by the
user as a comment in the JCL images file when it is printed. Note that, on
the basis of the JCL images output data set he sees, the user has no indication
that his statement was not processed normally.

If you pass a return code of 12, normal HASPRDR processing is halted, the
statement is not processed by HASPRCCS, nor is it written to the JCL data
set as a comment. The user sees the original statement on his output, as the
last statement in the JCL data set, indicating that this JES2 control statement
caused the job to be cancelled.

Finally, return code 16 also halts normal HASPRDR execution, but with no
resulting output; the user has no indication of why his job failed.

3. When passing a return code of 0, 4, or 8, you may supply an additional
statement image to be read and processed as the next statement in the input
stream. For JCL statements, this can be a continuation statement or a new
statement. For JES2 control statements, this must always be a new
statement. To return this additional statement to JES2, move the statement
image to the JCTXWRK field and set the RDWXXSNC bit in the
RDWFLAGZX byte to one.

RDWFLAX has the following structure:

RDWXJCL (X*01’) when on indicates that JES2 has detected a JCL statement.”
RDWXJECL (X‘02’) when on indicates that JES2 has detected a JES2 control statement.
RDWXJOBC (X‘04’) when on indicates that JES2 has detected a JOB statement.

RDWXCONT (X‘08’) when on indicates that JES2 has detected a JCL DD DATA or DD *
continuation statement.

RDWXXSNC (X‘10°) when on indicates that an installation exit has supplied the next card
image.

RDWXXSEM (X‘20°) when on indicates that an installation exit has supplied an error
message.

4. To entirely replace standard HASPRCCS processing for a particular JES2
control statement, write your routine as a replacement version of the standard
HASPRCCS routine and then pass a return code of 8 back to JES2 to
suppress standard processing. Note that your routine becomes responsible for

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-23

EXIT 4

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

10.

duplicating any HASPRCCS function you wish to retain. If you merely want
to supplement standard HASPRCCS processing, you can write your exit
routine to perform the additional function and then, by passing a return code
of 0 or 4, direct JES2 to execute the standard HASPRCCS routine.

To nullify a JES2 control statement, pass a return code of 8 to JES2 without
using your exit routine to perform the function requested by the statement.
Note that, on the basis of the JCL images output data set, the user is not
informed that the statement was nullified.

To modify a JES2 control statement, also use return code 8. Place the altered
statement in JCTXWRK and set RDWXXSNC to one. If HASPRDR
processing is successful, the user will see in the output of the JCL images file
the original statement (as a comment statement), and the altered statement
(also as a comment statement). Note, that if you modify a JES2 control
statement and then pass a return code of 0 or 4, JES2 performs normal
HASPRDR (HASPRCCS) processing, and the modified version of the
statement will appear on the user’s output in the JCL images file, but the
original statement will not appear unless you go directly to output phase
(bypassing the converter); then, the user will see the original statement when
the JCL data set is printed.

Also use return code 8 in processing your own installation-specific JES2
control statements. Write your exit routine to perform the function requested
by the statement and then pass return code 8 to JES2 to suppress standard
processing and thereby prevent JES2 from detecting the statement as “illegal.”

To process your own installation-specific JES2 control statement
subparameters, you should generally write your exit routine to replace
standard HASPRCCS processing entirely. That is, write your exit routine to
perform the function(s) requested by the standard parameters and
subparameters as well as those requested by any unique installation-defined
subparameters on a statement. Then, from your exit pass a return code of 8
back to JES2. In general, because the parameters and subparameters on a
JES2 control statement are interdependent, you will be limited to this method.
However, if you have defined an installation-specific subparameter which can
be processed independently of the rest of the control statement on which it
appears, you can write your exit routine to process this subparameter alone,
then to delete it, and then to pass a return code of 0 or 4 to JES2. JES2 can
then process the remainder of the statement as a standard JES2 control
statement.

When passing a return code of 12 or 16, it is also possible for your exit
routine to pass an error message to JES2 for display at the operator’s console.
To send an error message, generate the message text in your exit routine,
move it to JCTXWRK, and set the RDWXXSEM bit in RDWFLAGX to
one.

If you intend to use this exit to affect the JCT, your exit routine must ensure
the existence of the JCT upon receiving control. If the JCT has not been
created when your exit routine receives control, the pointer to JCTXWRK,
the third word of the 3-word parameter list whose address is passed to your
exit routine in Rl, is zero. For example, when your exit routine receives

3-24 JES2 User Modifications and Macros

LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”

Licensed Materials — Property of IBM EXIT 4

11.

12.

13.

control for a /*PRIORITY statement, the JCT doesn’t exist yet. In this case,
your routine must store any data to be placed in the JCT until JES2 creates
the JCT.

Your exit routine does not have access to the previous control card image.
You should take this into account when devising your algorithm.

An 80-byte work area, JCTXWRK, is available for use by your exit routine.
If your routine requires additional work space, use the GETMAIN macro to
obtain storage (and the FREEMAIN macro to return it to the system when
your routine has completed).

Note on recovery: SESTAE recovery is in effect. The RDRRCVO recovery
routine will attempt to recover from program check errors, including program
check errors in the exit routine itself. However, as with every exit, your exit
routine should not depend on JES2 for recovery. JES2 cannot anticipate the
exact purpose of your exit routine and can therefore provide no more than
minimal recovery. You should provide your own recovery within your exit
routine.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-25

EXIT 5

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

Exit 5: JES2 Command Preprocessor

FUNCTION:

This exit allows you to provide an exit routine to preprocess JES2 commands
received by the JES2 command processor. If this exit is implemented and
enabled, it receives control every time HASPCOMM receives a JES2 command.

You can use your exit routine to perform your own command validation and,
based on the checking performed by your validation algorithm, decide whether
JES2 should terminate processing for the command or allow normal
HASPCOMM processing to continue. If you use your exit routine to terminate
processing for a command, the command subprocessor is bypassed and the
requested action is not taken.

This exit also enables you to implement your own installation-specific JES2
command operands and suboperands, as well as nonstandard JES2 commands
unique to your installation. Your exit routine must process nonstandard,
installation-specific operands, suboperands, and commands itself, and then
suppress standard HASPCOMM processing. Nonstandard command processing
is considered in greater detail in the “Other Programming Considerations” below.

When suppressing standard HASPCOMM processing, you have the option of
directing JES2 to send the standard “OK” return message to the operator, sending
your own exit-generated message to the operator, or of suppressing standard
HASPCOMM processing without operator notification.

This exit is effected by a single exit point, at label COMMEXIT.
ENVIRONMENT: JES2 main task

POINT OF PROCESSING:

This exit is taken from the JES2 main task, from the HASPCOME command edit
routine of HASPCOMM. The exit point occurs after the command has been
edited but before lookup in the command selection tables (COMFASTR and

COMTAB), before console authority checking, and before the call to the
command subprocessor.

3-26

JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM EXIT S

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT

ROUTINE:

RO-R4 N/A

RS Pointer to the address of the current operand!
R6 Increment value of 41

R7 Pointer to the address of the last operand!
R8-R10 N/A

R11 Address of the HCT

R12 N/A

R13 Address of the HASPCOMM PCE

R14 Return address

RIS Entry address

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:

RO If an exit-generated message is to be passed, this register contains the length of the
message; otherwise, it’s not applicable.

R1 N/A

RIS A return code

RETURN CODES:

0 Tells JES2 that if there are any additional exit routines associated with this exit, execute the next
consecutive exit routine. If there are no other exit routines associated with this exit, continue
with normal command processing.

4 Tells JES2 to ignore any other exit routines associated with this exit point and to continue with
normal command processing.

8 Tells JES2 to terminate standard processing for the command and to issue the SCRET macro to
return control to the main command processor; the command subprocessors are bypassed.

12 Tells JES2 to terminate standard processing for the command and to issue the SCRET macro,
specifying the standard SHASP000 “OK” message, to return control to the main command
processor. The “OK” message is issued and the command subprocessors are bypassed.

16 Tells JES2 to terminate standard processing for the command and to issue the $CRET macro,
specifying a message generated by your exit routine, to return control to the main command
processor. The exit-generated message is issued and the command subprocessors are bypassed.

JOB EXIT MASK: This exit is not subject to job exit mask suppression.

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: $SHASPEQU, $HCT, SMIT, $PCE, $SCOMWORK

OTHER PROGRAMMING CONSIDERATIONS:
1. For a multiple command, this exit is taken once for each command verb.

2. To preprocess a standard JES2 command, a typical exit routine would
perform some type of validation checking. This validation checking would
determine whether JES2 should terminate command processing or allow
standard command processing to continue. You can base a validation
algorithm on various factors. The fields of the command processor work area

1 Refer to “Other Programming Considerations” below for use of these registers in a
networking environment.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-27

EXIT 5

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

of the PCE contain extensive command-related information that can be used
in validation checking. Note, however, that even if your exit routine validates
a command, it is still possible for JES2 to reject the command as a result of
its standard validation checking.

In processing your own installation-specific JES2 commands, your exit routine
should perform its own validation checking to replace the functions normally
performed by HASPCOME. Your routine should validate the command
verb, contained in the COMVERSB field of the PCE’s command processor
work area, with the equivalent of the command table lookup performed by
HASPCOME. This check should determine whether the command has a
valid installation-specific command verb and what action your exit routine
should take based on the verb. Your routine should also perform console
authority checking by testing the COMAUTH field, of the PCE’s command
processor

work area, which contains the command'’s restriction bits. COMAUTH has
the following structure:

COMS (X‘01’) when on indicates that the command should be rejected unless authorized for
the system.

COMD (X‘02’) when on indicates that the command should be rejected unless authorized for
the device.

COMJ (X‘04’) when on indicates that the command should be rejected unless authorized for
the job.

COMR (X‘08’) when on indicates that the command should be rejected if it was entered from
a remote work station.

If your routine validates the command, it can then perform the requested
function, serving as the equivalent to a standard command subprocessor. If,
however, your routine determines that the command is invalid, it must
terminate processing for the command internally before returning control to
JES2. Then, it should pass a return code (of 8, 12, or 16) to terminate
standard HASPCOMM processing, with or without an accompanying
message to the operator.

In general, to process nonstandard operands and suboperands, you must write
your exit routine to replace standard JES2 processing entirely. That is, your
exit routine must process both the nonstandard operands or suboperands as
well as the standard portion of the command, by performing the function of
the standard command subprocessor. This is because, in general, the
command verb and the accompanying operands and suboperands are
interdependent; the operands and suboperands modify the action of the
command verb and cannot be processed independently.

When passing a return code of 16 and issuing an exit-generated message to
the operator, move the text of the message to the COMMAND field of the
command processor work area in the PCE. Place the length of the message in
RO. Also, be certain to issue the SSTORE (R0) macro after loading the
message length in RO but prior to issuing the SRETURN macro because
SRETURN macro destroys the contents on register 0. (When passing a
return code of 12, to cause JES2 to issue the standard “OK” return message,
you do not have to supply the message length in RO0.)

3-28 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM EXIT 5

6. Note on recovery: SESTAE recovery is not in effect while an exit routine
associated with this exit is being processed. However, you can implement
SESTAE recovery within your routine. As with all exits, you are responsible
for your own recovery within your exit routine, whether you choose to
implement $ESTAE recovery or other recovery procedures.

7. Use the SCWTO macro instruction in this exit to communicate to the
operator. If you use the $CWTO macro, you must do all the processing
required by the specified command within your exit routine and provide a
return code indicating that JES2 should bypass any further processing of the
specified command.

8. When this exit routine operates in a networking environment, your exit must
check the contents of the COMINCON field of the PCE pointed to by
register 13. If the X80’ bit is on, the current command is in subsystem
interface (SSI) format, and registers 5, 6, and 7 do not contain pertinent
information. The SSI format command is located at label COSICMDA in
this PCE; the mapping is located in HASPDOC.

9. L=cca processing takes place outside Exit 5. Therefore, if you require this
function, you must provide your own L=cca processing for user commands.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-29

“Restricted Materials of IBM”
EXIT 6 Licensed Materials — Property of IBM

Exit 6: Internal Text Scan

FUNCTION:

This exit allows you to provide an exit routine for scanning internal text. If this
exit is implemented and enabled, it is taken once after each internal text statement
has been converted from a JCL statement and once after all of the JCL for a
particular job has been converted to internal text.

You can use your exit routine to interpret an internal text image and, on the basis
of this interpretation, decide whether JES2 should either cancel the job or allow it
to continue with normal execution. Your routine can also modify any internal
text image. In addition, after all of the JCL for a particular job has been
converted to internal text, this exit again allows you to direct JES2 either to
cancel the job or to allow it to continue with normal execution.

Two exit points effect this exit. The first, at label XCSTCUEE, makes it possible
for your routine to scan individual internal text images. The second, at label
XCSTMUEE, makes it possible for your routine to determine whether or not a
job is to continue after all of its JCL has been converted to internal text.

JCL internal text is represented by ‘keys’ that identify the various JCL
parameters. These keys are documented in the JES2 assembly, HASPDOC, which
calls macros IEFVKEYS and IEFTXTFT, which are distributed in
SYSI.AMODGEN. IEFVKEYS contains the definition of the values for each
key, and IEFTXTFT contains the definition of the format of the internal text.

ENVIRONMENT: JES2 subtask

Note: Refer to Appendix D, “JES2 Exit Usage Limitations” for a listing of
specific instances when this exit will be invoked or not invoked.

POINT OF PROCESSING:

This exit is taken from HOSCNVT, the JCL conversion processor subtask, from
within HASPCNVT.

The first exit point, at label XCSTCUEE, occurs after the OS/VS converter has
converted a single JCL statement into its internal text image. The XTXTEXIT
routine, which performs standard modifications to internal text images created
from certain EXEC statements and from subsystem data set DD statements, has
executed. (Note: XTXTEXIT is a standard JES2 exit routine, not to be confused
with an installation exit.) All of the standard modifications that JES2 will make
to the internal text image are complete when the exit receives control.

The second exit point, at label XCSTMUEE, occurs after all of the JCL for a
particular job has been converted to internal text. It occurs at the return from the
link to the converter, at label XCNVCNYV, and before JES2 creates the scheduler
work area (SWA) control blocks.

3-30 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials —~ Property of IBM

EXIT 6

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT
ROUTINE:

R1

R2-R10

R11

R12

R13

R4

R1S

A code indicating the status of conversion processing

0 Indicates that a JCL statement has been converted to an internal text image .
4 Indicates that all of the JCL for a particular job has been converted to internal text

Address of a 4-word parameter list

Word 1 (+0) address of a 16-byte work area available to the installation.

Word 2 (+4) if the code passed in RO is 0, this word points to the address of the last
single internal text image converted from a JCL statement. If the code
passed in RO is 4, this word contains the address of the converter’s return
code.

Word 3 (+8) Address of the DTE

Word 4 (+12) Address of the JCT

N/A

Address of the HCT

N/A

Address of an 18-word OS-style save area

Return address

Entry address

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:

RO

R1

R2-R10

R11

R12

R13

R14

R15

A code indicating the status of conversion processing

0 Indicates that a JCL statement has been converted to an internal text image
4 Indicates that all of the JCL for a particular job has been converted to internal text

Address of a 4-word parameter list

Word 1 (+0) address of a 16-byte work area available to the installation.

Word 2 (+4) if the code passed in RO is 0, this word points to the address of the last
single internal text image converted from a JCL statement. If the code
passed in RO is 4, this word points to the address of the converter’s return
code.

Word 3 (+8) Address of the DTE

Word 4 (+12) Address of the JCT

N/A

Address of the HCT

N/A

Address of an 18-word OS-style save area

A return address

A return code

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-31

EXIT 6

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

RETURN CODES:

0

Tells JES2 that if there are any additional exit routines associated with this exit, execute the next
consecutive exit routine. If there are no more exit routines associated with this exit point,
continue with normal JES2 processing. If the exit routine was called from exit point
XCSTCUEE, normal processing is the conversion of the next JCL statement to an internal text
image. If the exit routine was called from exit point XCSTMUEE, normal processing is to
queue the job for execution.

Tells JES2 to ignore any additional exit routines associated with this exit for this (internal text)
statement and continue with normal processing. If the exit routine was called from exit point
XCSTCUEE, normal JES2 processing is the conversion of the next JCL statement to an internal
text image. If the exit routine was called from exit point XCSTMUEE, normal JES2 processing
is 10 queue the job for execution.

Tells JES2 to bypass execution and cancel the job; the job is queued for output rather than for
execution.

JOB EXIT MASK: This exit point is subject to job exit mask suppression.

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: SHASPEQU, $HCT, SMIT, $XIT, TEXT, KEYS

OTHER PROGRAMMING CONSIDERATIONS:

L.

When internal text is created, the user’s JCL has been merged with the
expanded JCL from PROCLIB, and all substitutions for symbolic parameters
have been-made. Therefore, this exit gives you the opportunity to scan and
modify the completely-resolved JCL to be used by a particular job.

Use extreme caution in modifying internal text. If any of your modifications
cause a job to fail (because of an interpreter error), there will be no
correlation of the error with the resulting abend on the user’s output. In fact,
because the output JCL images data set is created prior to the conversion of
the JCL to internal text, none of the modifications you make in this exit will
ever appear in your output. If you suspect that an exit routine associated
with this exit is causing a problem, the most expedient method of debugging
is to disable the exit to determine whether the problem still occurs when your
exit routine is not executed. Then, if the problem seems to be within your
exit routine, you can test the routine by turning on the tracing facility. The
trace record serves as a valuable debugging aid because it contains two copies
of each internal text image, one before the call to your exit routine and one
after the call to your exit routine. However, do not turn on tracing in your
normal production environment or you will seriously degrade the performance
of your system.

Note that your routine must take into account the code passed to it by JES2
in RO. Your routine can modify internal text only when this code is 0; any
modifications must be made to a single internal text image immediately after
its conversion. When the code in R0 is 0, you can also extract information
from an internal text image for use by your routine. For instance, your
routine can use parameters from an internal text image to set fields in a
control block written at your installation. When this code is 4, your routine
can determine whether or not the job should be allowed to continue; however,
no internal text modifications can be made and no scanning can be performed
at this time.

3-32 JES2 User Modifications and Macros

LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM EXIT 6

One possibility is to code the first part of your routine, the part that receives
control when the code in RO is 0, to keep certain counters--for instance, the
number of DD cards received. Then, when the JCL for the entire job has
been processed, the second part of your routine, the part that receives control
when the code in RO is 4, can determine whether or not to allow the job to
continue based on the contents of these counters. :

4. If you decide to cancel the job, your routine is responsible for issuing any
error messages to the operator and to the user.

5. JES2 does not create the scheduler work area (SWA) control blocks until all
the JCL for a particular job has been converted to internal text. JES2 sets
certain fields in these control blocks from corresponding internal text
parameters. Therefore, by using this exit to alter internal text images, you
can affect the contents of the SWA control blocks.

6. A 16-byte work area available to the installation, whose address is given as
the first word of the 2-word parameter list pointed to by R1 on entry, is
available for use by your exit routine.

7. The MVS converter provides an internal text buffer that is 8192 decimal (2000
hex) bytes long.

8. Note on recovery: No recovery is in effect when this exit is taken. As with
every exit, you should provide your own recovery within your exit routine.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-33

“Restricted Materials of IBM”
EXIT 7 Licensed Materials — Property of IBM

Exit 7: JCT Read/Write (JES2)

FUNCTION:

This exit allows you to provide an exit routine to receive control whenever JCT
1/O is performed by the JES2 main task. That is, if this exit is enabled, your
routine receives control before the JCT is written out to spool and after the JCT
is read into storage. (Note: Whenever JCT I/O is performed by a JES2 subtask
or by a routine running in the user address space, HASPSSSM, Exit 8 provides
the function of this exit; in the HASPFSSM address space, Exit 25 provides this
function.)

You can use this exit to perform I/O for any installation-specific control blocks
you may have created.

This exit is established by an exit point at label JIOEXIT in HASPNUC.
ENVIRONMENT: JES2 main task

POINT OF PROCESSING:

This exit is taken from the JES2 main task in the HASPNUC module. Exit point
JIOEXIT occurs in the SJCTIOR routine (HASPNUC), just after the JCT is read

from or just before the JCT is written out to spool.

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT

ROUTINE:

RO A code passed to your routine by JES2
0 Indicates that the JCT has been read from spool
4 Indicates that the JCT will be written to spool

R1 Address of the buffer that contains the JCT

R2-R10 N/A

R11 Address of the HCT

R12 N/A

R13 Address of the PCE

R14 The return address

R15 The entry address

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:

RO-R1 N/A

R15 A return code

RETURN CODES:

0 Tells JES2 that if there arc any additional cxit routines associated with this exit, call the

next consecutive exit routine. If there are no other exit routines associated with this exit,
continue with normal processing, which is determined by the particular exit point from
which the exit was called.

4 Tells JES2 that even if there are additional exit routines associated with this exit, ignore

them; continuc with normal processing, which is determined by the particular exit point
from which the exit routine was called.

JOB EXIT MASK: This exit point is subject to job exit mask suppression.

3-34 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM EXIT 7

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: $SHASPEQU, $JCT, $MIT, SPCE

OTHER PROGRAMMING CONSIDERATIONS:

1. For JCT I/O, the JES2 input/output processor, SEXCP, sets the following
condition codes:

1 Indicates that the I/O operation was unsuccessful
3 Indicates that the 1/O operation was successful

2. You can use this exit to determine the queue on which a job resides at any
point of processing at which JCT I/O is performed for the JES2 main task.
First, your exit routine must use the pointer in the JCTIJQE field of the JCT
to locate the JQE. Then, after accessing the JQE, your routine must locate
the JQETYPE field. JQETYPE can then be tested to determine on which
queue, out of nine possible queues, the current job resides. The following
table lists the nine possible queues along with their corresponding
hexadecimal representations in JQETYPE:

SXEQ x40’
SINPUT X20'
SXMIT X10°
SRECEIVE X04'
SOUTPUT X0’
SHARDCOPY Xor
$PURGE X0’
SFREE X‘FF

3. Use the PCEID field to determine which processor is reading or writing the
JCT; this avoids unnecessary processing.

4. Note on recovery: No recovery is in effect when this exit is taken. As with
every exit, you should provide your own recovery within your exit routine.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-35

“Restricted Materials of IBM”
EXIT 8 Licensed Materials — Property of IBM

Exit 8: JCT Read/Write (USER)

FUNCTION:

This exit allows you to provide an exit routine to receive control whenever a JES2
subtask or a routine running in the user address space (HASPSSSM) performs
JCT 1/O. That is, your routine receives control just before the JCT is written out
to spool and just after the JCT is read into storage. (Note: Whenever JCT 1/O is
performed by the JES2 main task, Exit 7 serves the purpose of this exit.)

You can use this exit to perform 1/O for any installation-specific control blocks
you may have created.

Four exit points effect this exit. The first, at label HXJCTOI, can give control to
your exit routine just after JES2 reads the JCT into storage for a job requested by
the MVS initiator and selected by HASPXEQ. The second exit point, at label
HXJCTO02, can give control to your exit routine just before JES2 writes the JCT
to spool for a job whose termination has been requested by the MVS initiator.
The third exit point, at label HXJCTO03, can give control to your exit routine just
before JES2 writes the JCT to spool after the control block checkpoint routines in
HASPSSSM have processed it. The fourth exit point, at label HXJCTO04, can give
control to your exit routine at SYSOUT data set allocation, if JES2 had to alter
the JCT, just before JES2 writes the JCT out to spool.

ENVIRONMENT: User address space
POINT OF PROCESSING:
This exit is taken from the user address space (HASPSSSM).

Exit point HXJCTOI, for receiving control after the JCT has been read into
storage, occurs in the SSI HOSJBSL job selection routine, after HOSJBSL has
reacquired control from the execution processor (HASPXEQ), has verified that a
job has been found for execution, and has successfully read in the JCT.

Exit point HXJCTO02, for receiving control before the JCT is to be written to
spool, occurs in the SSI HOSTERM job termination routine, after HOSTERM
reacquires control from the execution processor (HASPXEQ). The exact point of
processing may vary slightly within HOSTERM, depending on the functioning
HOSTERM performs for a particular caller.

Exit point HXJCTO03, for receiving control before the JCT is to be written to
spool, occurs in the control block checkpoint routine HCBCK in HASPSSSM.
The checkpointing can occur at various points in HASPSSSM processing,
whenever the control block checkpoint routine is called. The JCT is checkpointed
only if it has been changed.

Exit point HXJCTO04, for receiving control before the JCT is to be written to
spool, occurs in the subroutine for allocating SYSOUT data sets (HALO) of the
HOSALLOC allocation routine. It is taken only if the HALCRDSN subroutine
of HASALLOC had to update the JCT, making it necessary for HALO to
checkpoint the JCT after completing SYSOUT data set allocation.

3-36 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM EXIT 8

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT
ROUTINE:

RO A code passed to your routine by JES2
0 Indicates that the JCT has been read from spool
4 Indicates that the JCT will be written to spool

R1 Address of the JCT

R2-R10 N/A

Ril Address of the SVT

R12 N/A

R13 Address of an OS-style save area
R4 Return address

R15 Entry address

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:

RO-R1 N/A
RIS A return code

RETURN CODES:

0 Tells JES2 that if there are any additional exit routines associated with this exit, call the next
consecutive exit routine. If there are no other exit routines associated with this exit, continue
with normal processing, which is determined by the particular exit point from which the exit -
routine was called.

4 Tells JES2 that even if there are additional exit routines associated with this exit, ignore them,;

continue with normal processing, which is determined by the particular exit point from which
the exit routine was called.

JOB EXIT MASK: This exit is subject to job exit mask suppression.

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: SHASPEQU, $JCT, SMIT

OTHER PROGRAMMING CONSIDERATIONS:
1. Be sure your exit routines reside in common storage.

2. Note on recovery: No recovery is in effect when this exit is taken. As with
every exit, you should provide your own recovery within your exit routine.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-37

“Restricted Materials of IBM”
EXIT 9 Licensed Materials — Property of IBM

Exit 9: Job Output Overflow

FUNCTION:

This exit allows you to provide an exit routine to receive control when JES2
detects a job output overflow error. If this exit is implemented and enabled, it is
invoked whenever the current count of output records, pages, or bytes exceeds the
output estimate specified for the current job on the JES2 /*JOBPARM control
statement or through JES2 initialization defaults for lines (ESTLNCT), cards
(ESTPUN), pages (ESTPAGE), or bytes (ESTBYTE) if the /*JOBPARM control
statement is not used. (Note: This exit is not taken for job OUTLIM overflow,
for which a standard SMF exit already exists.)

When your exit routine receives control, you have several defined options from
which to choose in directing JES2 to handle the job output overflow for the
current job. You can direct JES2 to take action based on the standard value
specified on the excessive estimate output option given on the ESTLNCT,
ESTPAGE, ESTPUN, and ESTBYTE statements. Be aware, when blank
truncation is turned off, estimated lines (ESTLNCT) and pages (ESTPAGE) will
not change; only estimated bytes (ESTBYTE) will reflect the change. Therefore,
be certain to consider the value specified for ESTBYTE because the byte count
will increase if truncation is turned off. You can also direct JES2 to base its
action, for the current job only, on the “excessive output option” value supplied
by your exit routine. If the “excessive output option” is specified as 0, the job is
allowed to continue. If the “excessive output option” is specified as 1, the job is
canceled without a dump. If the “excessive output option” is specified as 2, the
job is canceled with a dump. For more information, see the description of the the
“excessive output option” statement in JES2 Initialization and Tuning.

In addition, you can use your exit routine to control the default error message
($HASP375) that JES2 normally sends to the operator when a job has exceeded
its output estimate. You can suppress the standard error message or you can
allow JES2 to send it. You can also control the interval, in excess print lines or
in excess punch cards, at which the message is reissued to the operator. You can
allow the message to be sent at the interval specified at your installation for the
“message interval for exceeding estimated output” initialization statement, or you
can direct JES2 to send the message at the interval specified by your exit routine
for the current job. For more information, see JES2 Initialization and Tuning.

This exit is effected by a single exit point SVCOUTX in routine HEXTCALL.
ENVIRONMENT: User address space

POINT OF PROCESSING:

This exit is taken from the user address space (HASPSSSM), from the SVCHAM
portion (SVC111) of the HASP access method (HASPAM). The exit is taken

during SVC 111 put processing, whenever the current output record count exceeds
the output estimate.

3-38 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

EXIT 9

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT

ROUTINE:
RO N/A
R1 Address of the 7-word parameter list, having the following structure:

R2-R6
R7
R8-R10
Rl
R12
R13
R4
R1§

+0 JCTLINES or JCTPUNCH value (in actual lines)
+4 JCTPAGES value

+8 JCTBYTES value

+ 12 User’s increment for records

+ 16 User’s increment for pages

+20 User’s increment for bytes

+24 Output Overflow Flag

A fullword with the flag in the high-order byte. The flag settings are:

bit 0 = 0 (Cards have not exceeded the limit)
=1 (Cards have exceeded the estimate)

bit 1 = 0 (Lines have not exceeded the limit)
=1 (Lines have exceeded the estimate)

bit 2 = 0 (Pages have not exceeded the limit)
=1 (Pages have exceeded the estimate)

bit 3 = (Bytes have not exceeded the limit)
=1 (Bytes have exceeded the estimate)

bits 4-31 Not Applicable

N/A

Address of the JCT

N/A

Address of the SVT

N/A

OS-style 18-word save area
Return address
Entry address

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:

R15

If the return code (passed in R15) is not 8, the contents of this register are ignored.
However, if the return code is 8, this register contains return processing flags, as follows:

bit 0 =0 Tells JES2 to take action based on the value currently specified for
the “excessive output option™ at your installation.

=1 Tells JES2 to take action based on the value specified for the
“excessive output option” in bits 24-31 of this register.

bit 1 = 0 Tells JES2 to use the output overflow increment specified on the
INT= parameter of the ESTLNCT, ESTPUN, ESTPAGE, or
ESTBYTE initialization statements

=1 Tells JES2 to use the output overflow increment supplied by the exit
routine in the parameter list.

bit 2 = 0 Tells JES2 to send the default error message (SHASP375) to the
operator.

= 1 Tells JES2 to suppress the default error message.
bits 3-23 N/A

bits 24-31 Tells JES2 the execution option for this exit call. If this byte is zero
then continue processing. If this byte is equal to 1 then ABEND
(722) without a dump. If this byte is equal to 2 then ABEND (722)
with a dump.

A return code.

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-39

“Restricted Materials of IBM”
EXIT 9 Licensed Materials — Property of IBM

RETURN CODES:

0 Tells JES2 that, if there are any additional exit routines associated with this exit, it is to execute
the next consecutive exit routine. If there are no additional exit routines, JES2 is to perform
standard job output overflow processing based on the INT= and OPT = parameters on the
ESTLNCT, ESTPUN, ESTPAGE, and ESTBYTE initialization statements.

4 Tells JES2 to ignore any additional exit routines associated with this exit and to-perform
standard job output overflow processing based on the values supplied for the ESTLNCT,
ESTPUN, ESTPAGE, and ESTBYTE initialization statements at your installation.

8 Tells JES2 to take action based on the return processing flags in RO; see the description of the
contents of R0 above.

JOB EXIT MASK: This exit is subject to job exit mask suppression.

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: SHASPEQU, $JCT, $MIT, $SVT

OTHER PROGRAMMING CONSIDERATIONS:

1. If the job output overflow error occurs when output is being produced for the
JES2 job log, for the JES2 messages file, or for the JCL images file, the exit is
taken but the return codes and return processing flags are ignored.

2. This exit is not taken for job OUTLIM overflow. For more information on
standard OUTLIM processing, see the SMF IEFUSO exit in System
Management Facilities (SMF).

3. Be sure your exit routines reside the link pack area (LPA).

4. Note on recovery: There is no JES2 recovery in effect. As with every exit,
you should supply your own recovery within your exit routine.

3-40 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM EXIT 10

Exit 10: SWTO Screen

FUNCTION:

This exit allows you to provide an exit routine to receive control every time that
JES2 is ready to queue a SWTO message for transmission. If this exit is
implemented and enabled, it receives control for all messages destined for remote
stations and for other systems, as well as for all messages with a destination of
local.

However, this exit does not receive control for messages generated by HASPSSSM
or HASPFSSM, the subsystem interface and functional subsystem modules.

You can use your exit routine to interrogate the message’s console message buffer
(CMB) and, on the basis of this interrogation, direct JES2 either to cancel the
message or to queue it for normal transmission. You can also use your exit
routine to change the text of the message or to alter its console routing.

This exit is effected by a single exit point, at label WTOEXIT.
ENVIRONMENT: JES2 main task
POINT OF PROCESSING:

This exit is taken from the JES2 main task, from the HASPWQUE (special
purpose CMB queueing) routine of the HASPCON (console support services)
module, for all JES2 main task $SWTO messages. The exit occurs at the beginning
of HASPWQUIE, after the SWTOR routine has processed the $WTO macro and
before HASPWQUE queues the CMB containing the message for transmission.

If, by passing a return code of 0 or 4, your routine allows the message to
continue, control returns to HASPWQUE, which then queues the message for
transmission. If, however, your exit routine cancels the message by passing a
return code of 8, the transmission queueing performed by HASPWQUE is
bypassed and JES2 gives control to SFRECMBR, the $SFRECMB service routine.

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT

ROUTINE:

RO N/A

R1 Address of the CMB
R2-R10 N/A

R11 Address of the HCT
R12 N/A

R13 Address of the PCE
R14 Return address

R15 Entry address

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:

RO N/A
R1 Address of the CMB
RI15 A return code

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-41

EXIT 10

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

RETURN CODES:

0

Tells JES2 that if there are any more exit routines associated with this exit, execute the next
consecutive exit routine. If there are no more exit routines associated with this exit, continue
with normal processing by queueing the CMB for transmission.

Tells JES2 to ignore any additional exit routines associated with this exit and to continue with
normal processing by queueing the CMB for transmission.

Tells JES2 to discard the message by freeing the CMB; the message is not queued for
transmission.

JOB EXIT MASK: This exit is not subject to job exit mask suppression.

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: 3CMB, $HASPEQU, $HCT, SMIT, $PCE

OTHER PROGRAMMING CONSIDERATIONS:

1.

This exit is taken only for SWTOs issued from the JES2 main task. This exit
will not be taken for $WTOs issued from HASPSSSM, HASPFSSM, JES2
subtask, or any other SWTOs issued from outside the JES2 main task
environment.

To cancel a message, pass a return code of 8 to JES2. This return code
directs JES2 to bypass the HASPWQUE routine, which normally queues the
CMB for the console service processor, and to give control directly to the
$FRECMBR routine, which then discards the message by freeing its CMB.

To change the text of a message, your routine must access either the
CMBTEXT field or the CMBJOBN field. If the message does not contain
the job’s name and number, the message text starts in CMBJOBN. The
length of the message is always in the CMBML field. Your routine can either
retrieve the existing message text and modify it or else generate a completely
new message and then write the new or modified message over the original
message. If the new or modified message is longer or shorter than the
original message, your routine should alter the CMBML field accordingly.
After altering the text of the message, pass a return code of 0 or 4 to direct
JES2 to queue the CMB for transmission. JES2 will then transmit the new or
modified message.

To alter a message’s console routing, your routine should first test the flag
byte CMBFLAG to determine whether the CMBFLAGW, CMBFLAGT, and
CMBFLAGU flags are off. If these three flags are off, the CMBROUT field
contains the MVS console routings. After altering CMBROUT, pass a return
code of 0 or 4 to direct JES2 to queue the CMB for transmission. JES2 will
base its console routing on the new contents of CMBROUT.

If MESSAGE ID =NO, this exit still sees the message (as specified on the
MSGID parameter of the CONDEF statement).

Note on recovery: There is no JES2 recovery in effect. As with every exit,
you should supply your own recovery within your exit routine.

3-42 JES2 User Maodifications and Macros

LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM EXIT 11

Exit 11: Spool Partitioning Allocation ($TRACK)

FUNCTION:

This exit allows you to provide an exit routine to receive control from the JES2
main task when no more track groups are available on the spool volumes from
which the current job is permitted to allocate space. (Note: In the JES2 subtask
and user environments, Exit 12 serves the purpose of this exit. If you intend to
use this exit, you should use Exit 12 as well. The description of Exit 12 presents
the special considerations that apply to it.)

Standard JES2 processing allows all jobs to allocate track groups from all
available spool volumes. However, using the exit facility and/or the FENCE
parameter on the SPOOLDEF initialization statement, you can implement spool
partitioning--that is, you can limit the spool volumes from which a particular job
is permitted to allocate track groups. If you require allocation to a minimum
number of spool volumes for a job, the JES2 FENCE parameter can be used. If
you intend to implement more complicated spool partitioning (for example, by
specific spool volume) you will need to code an Exit 11 routine.

To implement spool partitioning, using Exits 11 and 12, the 32-byte spool
partitioning mask (the JCTSAMSK) can be modified as specified by these exit
routines. The first $SSPOLNUM bits in the JCTSAMSK correspond to the
DASDs. Those bits, when turned on in the JCTSAMSK, indicate the volumes
from which a job may allocate space. The exact correspondence between bits and
spool volumes is described in “Other Programming Considerations” below. A job
is permitted to allocate track groups from those volumes whose corresponding bits
in the spool partitioning work area are set to one.

Initially, when a job is started, JCTSAMSK is set to all zeros. If you haven’t
implemented spool partitioning and have specified the FENCE parameter as
FENCE =NO, JES2 automatically sets JCTSAMSK to all ones the first time that
it issues the $TRACK macro (from HASPRDR). When JCTSAMSK is set to all
ones, the current job can allocate track groups from all available spool volumes
and the existence of JCTSAMSK is transparent; standard JES2 track group
allocation is in effect. However, as a replacement for the allocation default, you
can provide your own exit routine to expand the spool partitioning mask to
include only those particular spool volumes from which you intend to allow the
current job to allocate space. You set the bits corresponding to the designated
spool volumes to one, and you allow the bits corresponding to the other spool
volumes to remain zeros. Note, the exit routine sets bits in a spools-allowed mask
work area that has been previously initialized to the IOTSAMSK field. JES2
then updates the JCTSAMSK to reflect your changes. Your routine must turn on
at least one bit in the mask work area. If it does not, and the FENCE parameter
is set to NO, JES2 responds by providing the default, setting JCTSAMSK to all
ones and allowing the job to allocate track groups from all available spool
volumes.

As an alternative to setting the partitioning mask for the first time from this exit,
you can set the partitioning mask when the JCT is initialized, from Exit 2 (Job
Statement Scan). The relative merits of setting the mask for the first time from
Exit 2 or this exit are discussed in “Other Programming Considerations” below.
Note that Exit 3 cannot be used to set the spool partitioning mask because a

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. 1BM-Defined Exits 3-43

EXIT 11

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

$TRACK has already occurred prior to calling this exit. If you want to provide
spool partitioning for most jobs, such that they will only allocate space from a
minimum number of spool volumes, use the FENCE parameter; specify
FENCE=YES. When FENCE = YES is specified, the JCTSAMSK is not set to
all ones (the default), rather only one bit is set on, and jobs are assigned evenly
across all spool volumes.

Once the spool partitioning mask has been set, whether from this exit or from
another exit, this exit--if it has been implemented--receives control only when no
more track groups are available on the spool volumes designated for the job in its
mask. If only one volume has been designated initially for a particular job but
the job never requires more space than happens to remain available on its single
designated volume, the spool partitioning mask never has to be expanded and the
exit is not invoked. Again, when and if your routine does receive control, it must
allocate at least one additional spool volume. And, again, if it does not expand
the mask at all, JES2 responds by expanding JCTSAMSK to all ones if the
FENCE parameter is specified as FENCE =NO or adding one more volume to
JCTSAMSK if FENCE=YES.

This exit is effected by a single exit point, at label STRACKX.
ENVIRONMENT: JES2 main task
POINT OF PROCESSING:

This exit is taken from the JES2 main task, from the $TRACK subroutine in
HASPTRAK, when there is no space available on the spool volumes from which
the current job is permitted to allocate space. If the job is permitted to allocate
space from any spool volume, that is, if the spool partitioning mask is set to all
ones, this exit is not invoked; it is only invoked when spool partitioning is in
effect.

When $TRACK is called, it first checks the TGB for an available track group
from an eligible spool volume. If a track group is available, STRACK allocates it
to the job. If there is no available track group on an eligible spool volume
represented in the current TGB, $TRACK checks the bit map in SVTMTSPL to
determine whether there are any track groups not represented in the current TGB
that are available on any of the eligible spool volumes. If there are additional
track groixps available, STRACK posts (§POST) the checkpoint processor to
replenish the TGB via the KBLOB routine. However, if there are no more track
groups available on any of the eligible spool volumes, STRACK must determine
whether spool partitioning is in effect. If no spool partitioning is in effect, that is,
if the mask is set to all ones, then STRACK waits (SWAIT) for the JES2
dispatcher to free at least one of the track groups currently in use. If spool
partitioning is in effect, STRACK invokes the exit to expand the copy of the
spool partitioning mask. When the exit routine returns control, $TRACK checks
to see if the mask has been expanded. If not, STRACK expands the spool
partitioning mask to all ones, if FENCE =NO or adds only one bit to the mask if
FENCE=YES. If the mask has been expanded, $STRACK places the spool
partitioning work area (that is, the updated version of the spool partitioning
mask) in the JCTSAMSK. $TRACK then restarts its allocation cycle by checking
the new (replenished) TGB for an available track group.

3-44 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM EXIT 11

Note that this exit is not invoked when there is still space available on the job’s
designated spool volumes but the particular track groups from the designated
spool volumes represented in the TGB have been allocated. That is, the exit is
not invoked merely when the TGB has to be replenished before additional track
groups can be allocated to the job from its designated spool volumes; instead,
JES2 automatically replenishes the TGB, prior to and transparent to this exit.
This distinction is described in greater detail in the “Other Programming
Considerations” provided below.

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT

ROUTINE:
RO N/A
R1 Address of the 3-word parameter list, having the following structure:

word 1 (+0) Address of the IOT
word 2 (+4) Address of the JCT (if available); otherwise 0

word 3 (+8) Address of a 32-byte spool partitioning mask work area, initially set to the

IOTSAMSK field
R2-R10 N/A
R11 Address of the HCT
R12 N/A
R13 Address of the PCE
R14 Return address
R15 Entry address

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:
RO-R14 Unchanged

R15 A return code

RETURN CODES:

0 Tells JES2 that if there are any additional exit routines associated with this exit, execute the next
consecutive exit routine. If there are no additional exit routines associated with this exit point,
this return code tells JES2 to set the spool partitioning mask as indicated by the FENCE
parameter on the SPOOLDEF initialization statement setting and to reissue the STRACK
request.

4 Tells JES2 that even if there are additional exit routines associated with this exit, ignore them;
instead, set the spool partitioning mask as indicated by the FENCE parameter on the
SPOOLDEF initialization statement setting and reissue the STRACK request.

8 Tells JES2 that an updated version of the spool partitioning mask--with at least one additional
bit turned on--has been passed to JES2 in the spool mask work area and will now determine
subsequent spool allocation. It also tells JES2 to reissue the STRACK request.

JOB EXIT MASK: This exit is subject to job exit mask suppression.

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY:

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: SBUFFER, $DAS, $HASPEQU, $HCT, $10T, $JCT, $MIT,
$PCE, $SCAT, $SVT, $TAB, $XECB, RPL

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-45

EXIT 11

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

OTHER PROGRAMMING CONSIDERATIONS:

When your exit routine receives control, it must expand the spool partitioning
mask to include at least one additional spool volume. If your routine passes
a return code of 8 to JES2 but hasn’t actually expanded the mask via the new
mask returned in the spool mask work area, JES2 automatically sets the mask
to all ones or to one bit, as indicated by the FENCE parameter specification.
You can also intentionally direct JES2 to expand the allocation mask by
passing the standard return code of 0 or 4 from your exit routine.

You may implement spool partitioning from Exit 2 or from this exit. In
general, you would set JCTSAMSK from Exit 2 if you intended to base your
allocation algorithm on JOB statement parameters and from this exit if you
intended to base your allocation algorithm on spool volume usage, for
example, if you want to always allocate track groups from the least full spool
volume. Note that the algorithms mentioned here are only suggestions; you
may wish to use other criteria, or some combination of criteria, in
implementing your own spool volume allocation algorithm.

If you set the mask in Exit 2, this exit receives control only when it becomes
necessary to expand the mask. It is also possible to set the mask in Exit 2
and yet not write a mask-expansion routine for this exit. In this case, if the
spool volumes originally designated for the job runs out of space, JES2
provides the default and the job can then allocate track groups from any
available spool volume. Or, you might choose to use this exit to both set the
mask and then, if necessary, expand it. You have considerable flexibility in
implementing spool partitioning and adapting it to the specific needs of your
system.

If you intend to set JCTSAMSK from Exit 2, note that, under exceptional
circumstances, JES2 may have to issue $TRACK before the entire JOB
statement or accounting field has been scanned. For example, if the JOB
statement is exceptionally long and spread out over a number of continuation
statements, and if, at the same time, the JES2 buffer size is small, JES2 may
have to call the STRACK routine before finishing with the JOB statement.
Under these circumstances, if you have written a mask expansion routine for
this exit, it gets control prior to the exit routine which would have set
JCTSAMSK from Exit 2.

If the IOTIJCT field of the IOT contains the address of the JCT, the JCT is
available. Otherwise, the IOTJCT field contains a 0 and the JCT is not
available. For example, the JCT is unavailable when JES2 is acquiring space
for the spooled remote messages or multi-access spool messages, and when
JES2 is acquiring a record for the IOT for the JESNEWS data set. If you
intend to base your allocation algorithm on values contained in fields of the
JCT, you must take into account the fact that the JCT is sometimes
unavailable and write a section of your exit routine to take control in these
instances.

Note that, if implemented, this exit is not invoked every time the $STRACK
routine is called. While track groups remain available on the spool volumes
designated for the job by the spool volume partitioning mask, the exit is not
invoked. It is invoked only when there is no space available on the spool

3-46

JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM EXIT 11

volumes designated for the job by the current setting of the spool partitioning
mask. If all of the track groups from the designated spool volumes
represented in the TGB have been allocated but the spool volumes themselves
still contain unallocated track groups, this exit is not invoked. Instead, when
a processor makes the STRACK request, JES2 automatically determines that
the TGB needs to be replenished. The executing processor then posts
($POST) the checkpoint processor, and issues the SWAIT macro. The
checkpoint processor calls the KBLOB routine to replenish the TGB with
unallocated track groups (from all available spool volumes, which include the
job’s designated spool volumes). When the TGB is replenished, the
checkpoint processor $POSTs the JES2 main task processor that originally
issued the STRACK request. When this processor regains control, the
$TRACK request can then be completed, using track groups from the job’s
designated spool volumes.

6. You must specify the TGBENUM parameter on the SPOOLDEF statement
to specify the size of the TGB with a number large enough to accommodate
all the spool volumes that could be available to JES2 at any one time. If,
after you’ve implemented spool partitioning, the number you specify for this
parameter is too low, results are unpredictable. Potentially, you could
degrade JES2 performance.

When replenishing the TGB with unallocated track groups, the standard
KBLOB routine algorithm provides track groups equally from across all
available spool volumes. That is, KBLOB provides a track group (or track
group cell) from each available volume. If this does not fill the TGB, it again
provides a track group from each available volume, repeating this process
until the TGB is filled. The result--provided that the TGBENUM parameter
on the SPOOLDEEF statement has been specified correctly--is that all
available spool volumes are represented by track groups in a single
replenishment of the TGB. If at least one of the spool volumes from which
the current job is allowed to allocate space is available, a track group from
that volume is available to the job in the TGB. Otherwise, if none of the
spool volumes designated in the job’s spool partitioning mask are available,
results depend on whether or not a mask-expansion routine has been
implemented for this exit. If this exit is implemented and enabled, it is
invoked to expand the mask, after which JES2 can call the $TRACK routine
again. If this exit has not been implemented, JES2 responds by expanding the
mask to all ones.

However, in the case where the number specified for the TGBENUM
parameter on the SPOOLDEF statement is too small, every available spool
volume cannot be represented by at least one track group in a single
replenishment of the TGB. For example, if the size of the TGB is specified as
six track groups but there are eight available spool volumes, only six of the
eight can be represented in any single replenishment of the TGB. The result
is that if JES2 issues the $TRACK macro for a job that is limited by its spool
partitioning mask to the use of a spool volume which is not represented in the
current TGB, JES2 is put into a loop. The loop occurs although the spool
volume was available. The exit routine, which is invoked to expand the mask
when all of the volumes it represents are no longer available, is not invoked
because at least one of the volumes it designates is still available. Therefore,
because it cannot find a track group designated for the current job in the

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-47

EXIT 11

“Restricted Materials of IBM”
Licensed Materials — Property of IBM

current TGB, JES2 posts ($POST) the checkpoint processor to have it
replenish the TGB. However, when the checkpoint processor takes control, it
discovers that the TGB does not have to be replenished because none of its
track groups have been allocated. The checkpoint processor then returns
control to JES2, which reissues the STRACK request and again, finding no
track groups from the designated volumes for the current job available in the
current TGB, posts ($POST) the checkpoint processor. This looping cycle
continues until JES2 times out and fails. For this reason, if you intend to
implement spool partitioning, it is essential that you specify TGBENUM
correctly.

Spool partitioning, as implemented using the JES2 exit facility, is not fully
effective in that you cannot absolutely limit a particular job to particular
spool volumes. You cannot wait for space on an unavailable volume to
become available. Once the volume or volumes to which you have limited a
job are full, you must either expand the partitioning mask yourself in your
exit routine or else allow JES2 to expand it to all ones. This fact, however,
does not negate the usefulness of the spool partitioning that you can
implement. In having the ability to limit a job to particular spool volumes
until they become full, you can still exercise a considerable degree of control
over volume usage, control that you would not have in any degree if you
allowed your system to default to standard track group allocation.

Note on recovery: The STRACK routine can be called from almost any stage
in JES2 processing, with significant variations in standard JES2 recovery
mechanisms from call to call. For example, HASPRDR provides more
extensive recovery than HASPXEQ. Therefore, when $STRACK is called
from HASPRDR, an error in your exit routine may cause only the current
job to fail; however, when $STRACK is called from HASPXEQ, an error in
your exit routine may cause JES2 itself to fail. As with every exit, your exit
routine should not depend on JES2 for recovery. JES2 cannot anticipate the
exact purpose of your exit routine, and therefore any standard JES2 recovery
that happens to be in effect is, in general, minimal. You should provide your
own recovery within your exit routine.

3-48 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”
Licensed Materials — Property of IBM EXIT 12

Exit 12: Spool Partitioning Allocation ($STRAK)

FUNCTION:

This exit allows you to provide an exit routine to receive control from a JES2
subtask or a routine executing in the user address space (HASPSSSM) when no
more track groups are available on the spool volumes from which the current job
is permitted to allocate space. (Note: In the JES2 main task, Exit 11 serves the
purpose of this exit. Like Exit 11, this exit is used in implementing spool
partitioning. For an initial description of spool partitioning and how to
implement it in your system, you should read the description of Exit 11, above,
prior to reading this one. You should not implement Exit 11 or Exit 12 without
implementing its companion exit; therefore, this description concerns itself
primarily with how Exit 12 relates to and differs from Exit 11, and the special
considerations that apply to Exit 12.)

Unlike Exit 11, this exit is not invoked to set the spool partitioning mask for the
first time. The mask is set in Exit 2 or in Exit 11. For any job, the $TRACK
routine is always called to allocate track groups for the first time from
HASPRDR or HASPNET, which are part of the JES2 main task. This exit is
called from the $STRAK routine, which allocates track groups in the subtask and
user environments, rather than $TRACK, which allocates track groups in the
JES2 main task.

This exit, similar to Exit 11, if implemented, receives control only when no more
track groups are available on the spool volumes designated for the job in its
mask. And, just as with Exit [1, once your exit routine receives control it must
allocate at least one additional spool volume. If it does not expand the mask at
all, JES2 responds by expanding JCTSAMSK to all ones if the FENCE parameter
on the SPOOLDEF initialization statement is specifies as NO, or by adding one
bit to the mask if FENCE = YES.

This exit is effected by a single exit point, at label SSTRAKX.
ENVIRONMENT: User address space
POINT OF PROCESSING:

This exit is taken from $STRAK (HASPSSSM), when there is no space available
on the spool volumes from which the current job is permitted to allocate space. If
the job is permitted to allocate space from any spool volume, that is, if the spool
partitioning mask is set to all ones, this exit is not invoked; it is only invoked
when spool partitioning is in effect.

When $STRAK is called, it first checks the TGB for an available track group
from an eligible spool volume. If a track group is available, $STRAK allocates it
to the job. If there is no available track group on an eligible spool volume
represented in the current TGB, $STRAK checks the bit map in SVTMTSPL to
determine whether there are any track groups not represented in the current TGB
that are available on any of the eligible spool volumes. If there are additional
track groups available, $SSTRAK posts ($$POST) the checkpoint processor to
replenish the TGB via the KBLOB routine. However, if there are no more track
groups available on any of the eligible spool volumes, $SSTRAK must determine

LC23-0067-3 © Copyright IBM Corp. 1982, 1987 Chapter 3. IBM-Defined Exits 3-49

“Restricted Materials of IBM”
EXIT 12 Licensed Materials — Property of IBM

whether spool partitioning is in effect. If no spool partitioning is in effect, that is,
if the mask is set to all ones, then $STRAK waits (WAIT) for the JES2 dispatcher
to free at least one of the track groups currently in use. If spool partitioning is in
effect, 3SSTRAK invokes the exit to expand the spool partitioning mask; once the
mask has been expanded, $STRAK restarts its allocation cycle.

As with Exit 11, this exit is not invoked when there is still space available on the
job’s designated spool volumes and the current TGB has to be replenished. The
distinction between the invocation of this exit to expand the spool partitioning
mask and JES2’s automatic replenishment of the TGB is described in greater
detail in the “Other Programming Considerations” below.

REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT

ROUTINE:
RO N/A
R1 Address of the 3-word parameter list, having the following structure;

word 1 (+0) Address of the IOT
word 2 (+4) Address of the JCT (if available); otherwise 0

word 3 (+8) Address of a 32-byte spool partitioning mask work area, initially set to the

IOTSAMSK field
R2-R10 N/A
R11 Address of the SVT
R12 N/A
R13 Address of an OS-style save area
R14 Return address
RIS Entry address

REGISTER CONTENTS WHEN CONTROL IS PASSED BACK TO JES2:
RO-R14 Unchanged

R15 A return code

RETURN CODES:

0 Tells JES2 that if there are any additional exit routines associated with this exit, execute the next
consecutive exit routine. If there are no additional exit routines associated with this exit point,
this return code tells JES2 to set the spool partitioning mask as indicated by the FENCE
parameter on the SPOOLDEF initialization statement setting and to reissue the $STRAK
request.

4 Tells JES2 that even if there are additional exit routines associated with this exit, ignore them;
instead, set the spool partitioning mask as indicated by the FENCE parameter on the
SPOOLDEEF initialization statement setting and reissue the $STRAK request.

8 Tells JES2 that an updated version of the spool partitioning mask--with at least one additional
bit turned on--has been passed to JES2 in the spool mask work area and will now determine
subsequent spool allocation. This return code also tells JES2 to return the $SSTRAK request.

JOB EXIT MASK: This exit is subject to job exit mask suppression.

MAPPING MACROS NORMALLY REQUIRED FOR THIS EXIT AT
ASSEMBLY: $10T, $SDAS, $JCT, $MIT, $TAB, $CSA, $BUFFER,
$HASPEQU, $SVT, RPL

3-50 JES2 User Modifications and Macros LC23-0067-3 © Copyright IBM Corp. 1982, 1987

“Restricted Materials of IBM”

Licensed Materials — Property of IBM EXIT 12

OTHER PROGRAMMING CONSIDERATIONS:

1.

From Exit 11, with the substitution of $STRAK for STRACK, several of the
“Other Programming Considerations™ apply directly to this exit; these are: 1,
7, 8, and 9. In addition, the considerations that follow apply specifically to
this exit.

In general, except for environmental considerations and the possible need to
set the JCTSAMSK initially, the exit routine that you provide for this exit
should duplicate the algorithm that you provide for Exit 11. If you fail to
provide a similar exit routine for this exit, you can seriously degrade your
implementation of spool partitioning. For example, if the vo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>