SC33-4035-14

DFSORT

Application Programming: Guide

Release 11

D F S O RT SC33-4035-14
Application Programming: Guide

Release 11

Fifteenth Edition (December 1988)
This edition replaces and makes obsolete the previous edition, SC33-4035-13.

This edition applies to Release 11 of IBM DFSORT, Program Number 5740-SM1, and to any subsequent
releases until otherwise indicated in new editions or technical newsletters.

The changes for this edition are summarized under “Summary of Changes” following the preface.
Specific changes are indicated by a vertical bar to the left of the change. These bars will be deleted at

any republication of the page affected. Editorial changes that have no technical significance are not
noted.

Changes are made periodically to this publication; before using this publication in connection with the
operation of IBM systems, consult the latest IBM System/370, 30xx, 4300, and 9370 Processors Bibli-
ography, GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM licensed
program in this publication is not intended to state or imply that only IBM's program may be used.
Any functionally equivalent program may be used instead.

Requests for IBM publications should be made to your IBM representative or to the IBM branch office
serving your locality. If you request publications from the address given below, your order will be
delayed because publications are not stocked there.

A Reader's Comment Form is provided at the back of this publication. If the form has been removed,
comments may be addressed to IBM Corporation, Precgramming Publishing, P. O. Box 49023, San Jose,
California, U.S.A. 95161-9023. IBM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you. '

© Copyright International Business Machines Corporation 1973, 1989. All rights reserved.

Trademarks Used In This Document

The following names have been adopted by IBM for trademark use and will be
used throughout this publication:

Enterprise Systems Architecture/370™
hiperspace™

Hipersorting™

MVS/ESA™

MVS/XA™

MVS/SP™

How to Use This Book

About This Book

To the Reader

DFSORT Application Programming: Guide contains all the information you need
to use DFSORT on a continuing basis. DFSORT is a program you use to sort,
merge, or copy information. DFSORT processes your information by manipu-
lating the individual records in your data set.

* When you sort records, you arrange them in a particular sequence,
choosing an order more useful to you than the original one.

* When you merge records, you combine the contents of two or more
previously-sorted data sets into one.

* When you copy records, you make an exact duplicate of each record in your
data set.

You can use many options with these basic procedures to get the exact results
you want.

The information in this book is designed to help you program DFSORT applica-
tions. The information is not to be used for any other purpose.

Who Should Read This Book

This book is a reference guide for anyone who needs to sort, merge, or copy
records using DFSORT (Data Facility Sort) Licensed Program 5740-SM1. It con-
tains everything you need to know to use DFSORT, and is arranged so you can
locate specific information quickly and easily. It is not designed to teach you
how to use DFSORT, but is targeted at programmers who already have a basic
understanding of the program and need a task-oriented guide to its functions
and options.

If you are a new user, then Gelting Started with DFSORT is the first book you
should read. Getting Started with DFSORT is a self-study guide that tells you
what you need to know to begin using DFSORT quickly, with step-by-step exam-
ples and illustrations.

How to Use This Book

DFSORT Application Programming: Guide is a task-oriented reference manual.
To retrieve information quickly, use the Table of Contents to locate headings
about the procedures you want to use, or the problems you want to solve.

Read the next section, titled “What This Book Covers,” for summaries of chap-
ters and appendixes.

Use the Index to locate information about specific topics such as restrictions or

commands, about general topics such as tasks or procedures, and about any-
thing that might be covered in several places in the book.

About This Book V

What This Book Covers

Finally, remember that DFSORT Application Programming: Guide is part of a
more extensive DFSORT library. Six additional books can help you use
DFSORT more effectively:

Task DFSORT Publication
Evaluating DFSORT DFSORT General Information, GC33-4033

DFSORT Benchmark Guide, GG24-3019
Installing DFSORT DFSORT Installation and Customization, SC33-4034
Self-study Getting Started with DFSORT, SC26-4109
Quick reference DFSORT Reference Summary, SX33-8001
Diagnosing failures DFSORT Diagnosis Guide, LY27-9531

Interpreting messages DFSORT Messages and Codes, SC26-4525

See “Reading List” on page 389, for other related documents you can use to
take advantage of all the options and facilities of the program.

What This Book Covers

vi

This book is a task-oriented reference manual. The various sections present
related information together, grouped by what you want to do. The first four
chapters of the book explain what you need to know to invoke and use
DFSORT’s primary record processing functions. The remaining chapters
explain more specialized features, and how to use DFSORT most effectively.
The appendixes provide specific information about a variety of topics.

e Chapter 1, “Introducing DFSORT" on page 1, presents an overview of
DFSORT, explaining what you can do with the program and how you invoke
DFSORT processing. It discusses how DFSORT works, data set formats and
limitations, and explains the defaults that might have been modified during
installation at your site.

* Chapter 2, “Executing DFSORT with Job Control Language” on page 15,
explains how to use job control language (JCL) to execute your DFSORT
jobs. It explains how to code JOB, EXEC, and DD statements, and how you
can use cataloged procedures and EXEC PARM options to simplify your JCL
and override DFSORT defauits set during installation.

* Chapter 3, “Using DFSORT Program Control Statements” on page 53, pre-
sents the DFSORT control statements you use to sort, merge, and copy
data. It explains how to filter your data so you work only with the records
you need, and how to edit data by reformatting and summarizing records.
It explains how to write statements that direct DFSORT to use your own rou-
tines during execution.

¢ Chapter 4, “Using Panels to Create and Submit DFSORT Jobs"” on
page 145, explains DFSORT Panels, a facility you use to construct, save,
and submit DFSORT jobs in an on-line environment. This chapter also

describes how you can use the on-line HELP facility to get information about

DFSORT and using DFSORT Panels.

¢ Chapter 5, “Using Your Own Exit Routines” on page 181, describes how to
use DFSORT’s program exits to call routines of your own during program
execution. You can write your own routines to delete, insert, alter, and

DFSORT: Application Programming: Guide

What This Book Covers

summarize records, and you can incorporate your own error recovery rou-
tines.

Chapter 6, “Invoking DFSORT from a Program” on page 231, describes
how you use a system macro instruction to initiate DFSORT processing from
your own assembler program. It also lists specific restrictions on invoking
DFSORT from PL/I and COBOL.

Chapter 7, “Improving Efficiency” on page 247, recommends ways you can
maximize DFSORT processing efficiency. This chapter covers the entire
spectrum of improvements you can make, from which operating system is
most appropriate, to designing individual jobs for efficient processing at
your site.

Chapter 8, “Sample Job Streams” on page 265, contains annotated
example jobstreams for sorting, merging and copying records.

Appendix A, “Calculating Storage Requirements” on page 311, explains
main storage considerations, and how to estimate the amount of interme-
diate storage you might require when sorting data.

Appendix B, “Using Extended Function Support (EFS)” on page 315,
explains how to use the Extended Function Support (EFS) interface to tailor
control statements, to handle user-defined data types and collating
sequences, and to have DFSORT issue customized informational messages
during execution.

Appendix C, “Specification/Override of DFSORT Options” on page 353, is a
series of tables you can use to find the order of override for corresponding
options that are specified in different sources.

Appendix D, “Data Format Examples” on page 373, gives examples of the
assembled data formats used with IBM System 370.

Appendix E, “EBCDIC and ISCII/ASCII Collating Sequences” on page 377,
lists the coliating sequences from low to high order for EBCDIC and
ISCII/ASCII characters.

Appendix F, “DFSORT Abend Processing” on page 383, describes the
ESTAE recovery routine for processing abends, and the Checkpoint/Restart
facility.

About This Book Vii

Summary of Changes

Summary of Changes

Release 11, December 1988

Performance enhancements to the Blockset technique include:

Hipersorting, a new DFSORT capability that uses hiperspace available with
MVS/ESA on Enterprise Systems Architecture/370.

New internal algorithms and more extensive use of System/370-XA sorting
instructions for MVS/XA and MVS/ESA (fixed-length records sorting only).

Use of EXCPVR when sorting and copying data sets for MVS/XA and
MVS/ESA.

More efficient allocation of dynamic work data sets.

Functional enhancements include:

New installation and run-time parameters are available to modify the use of:

— Hipersorting

— EXCPVR

— Control interval access for VSAM data sets
— DFSORT's ESTAE recovery routine.

PARM options and DFSORT control statements can now be supplied to
DFSORT from a single source data set for JCL and program-invoked
DFSORT jobs.

The INREC and QUTREC statements have been enhanced:

— Character and hexadecimal string constants are now supported as sep-
arators.

— Column alignment is now supported for separators and input fields.

— The upper limit for the separation repetition factor is raised from 256 to
4095.

The Conventional technique modules can be installed in a system library to
eliminate the need for the SORTLIB DD statement.

Duplicate DDNAMESs are ignhored after the first-specified DDNAME.

DDNAMEs SORTWKO through SORTWKS9 are now accepted and treated as
duplicates of SORTWKO0 through SORTWK09. DDNAMEs SORTINO through
SORTINS are now accepted and treated as duplicates of SORTINGO through
SORTINO9.

DFSORT no longer requires that the SORTINnn data set with the largest
block size and record length be specified first for Blockset merge jobs.

The maximum length for variable blocked spanned records is increased to
32767.

Multivolume SORTWKnn data sets are now allowed, but only the first
volume of each data set is used.

Summary of Changes iX

¢ Ability to handle more complex SUM applications with Blockset and
Peerage/Vale.
Additional improvements to DFSORT include:
+ The MINLIM default is raised from 200K to 440K.

¢ The minimum number of data sets Blockset uses for dynamic allocation is
changed from 1 to 2.

X DFSORT: Application Programming: Guide

Contents

Chapter 1. Introducing DFSORT 1
How You Can Invoke DFSORT 3
How DFSORT Works e e s e e e e e e e e e e e 3
Operating Systems 3
Control Fields and Collating Sequences 4
Program Execution e 5
Data Set Considerations 8
When You Sortor Copy Records 8
When You Merge Records, 9
Data Set Notes and Limitations 9
Installation Defaults 11
DFSORT Messages and ReturnCodes 13
Chapter 2. Executing DFSORT with Job Control Language 15
Notational Conventions 17
Using the JOB Statement 19
Using the EXEC Statement 19
Specifying EXEC Statement Cataloged Procedures 19
Specifying EXEC Statement PARM Options 21
Using DD Statements e 35
System DD Statements L e 39
Program DD Statements 40
Chapter 3. Using DFSORT Program Control Statements 53
Control Statement Summary e e 54
Control Statements e 54
General Coding Rules e e 55
Continuation Lines e e e 57
Inserting Comment Statements oL, 58
Coding Restrictions e 58
ALTSEQ Control Statement 60
ALTSEQ Statement Examples 60
DEBUG Control Statement o ., 62
DEBUG StatementExamples, 66
END Control Statement e e 67
END Statement Examples e 67
INCLUDE Control Statement 68
INCLUDE/OMIT StatementNotes 75
INCLUDE StatementExamples 76
INREC Control Statement, 78
INREC Statement Notes 81
INREC Statement Examples 83
MERGE Control Statement 87
MERGE Statement Examples 89
MODS Control Statement e 91
MODS StatementExamples 93
OMIT Control Statement g5
OMIT Statement Example, 95
OPTION Control Statement 97
OPTION StatementExamples 117
OUTREC Control Statement 121

Contents Xi

OUTREC StatementNotes 123

OUTREC StatementExamples 124
RECORD Control Statement 127
RECORD Statement Examples 130
SORT Control Statement, 132
SORT StatementNote 138
SORT Statement Examples 138
SUM Control Statement 141
SUM Statement Notes 142
SUM Statement Examples, 143
Chapter 4. Using Panels to Create and Submit DFSORT Jobs 145
Overview of DFSORT Panels o..... 145
Before You Begin 145
Getting Around in DFSORT Panels 146
Using Panels to Create DFSORT Jobs 148
Beginning a DFSORT Session 148
Beginning Your Job: The DFSORT Primary Option Menu 149
Selecting Input Data Sets: SORT/COPY/MERGE Entry Panels, Page 1 . 150
Setting Your Task Environment: SORT/COPY/MERGE Entry Panels, Page
2O 151
Specifying the Order of Your Sorted or Merged Records 153
Using DFSORT Control Statements: Control Statements Selection Panel 157
Inspecting Your Work: Review Control Statements Panel 166
Using Panels to Save or Submit Your DFSORT Job 167
Using Foreground Execution 167
Using Background Execution 168
Changing Your DFSORT User Profile 170
Handling Trace Data and Abends: Logging/Abend Control Entry Panel 172
Specifying DFSORT Panels Job Control Language 172
Handling Messages and Case Conversion: DFSORT Control Entry Panel 173
Using SORTREC for a Quick and Simple Sort Under ISMF 174
Getting HELP e e 175
Getting HELP with DFSORT Panels 176
Getting HELP for Messages 177
Usingthe HELP Index 177
Chapter 5. Using Your Own Exit Routines 181
DFSORT Program Phases 183
Input Phase e 183
Output Phase e 183
Functions of Routines at User Exits 183
DFSORT Input/Exit/Output Logic Examples 183
Opening and Initializing Data Sets 185
Madifying Control Fields, 185
Inserting, Deleting, and Altering Records 185
Summing Records e e 185
Handling Special /O 185
Determining Action when Intermediate Storage Is Insufficient 187
ClosingDataSets 187
Terminating DFSORT e 188
MVS/XA and MVS/ESA Supportof UserExits 188
How Assembler and COBOL User Exit Routines Affect DFSORT
Performance e 188
Summary of Rules for User Exit Routines 189

xii DFSORT: Application Programming: Guide

How to Load User Exit Routines 189

User Exit Linkage Conventions 190
How to Dynamically Link-Edit User Exit Routines 190
Assembler Exit Routines (Input Phase Exits) 192
E11 Exit: Opening Data Sets/Initializing Routines 192
E15 Exit: Passing or Changing Records for Sort and Copy Applications 192
E16 Exit: Handling Intermediate Storage Miscalculation 185
E17 Exit: Closing Data Sets 196
E18 Exit: Handling InputDataSets 196
E19 Exit: Handling Output to Work Data Sets 199
E61 Exit: Modifying Control Fields 200
Assembler Exit Routines (Output Phase Exits) 202
E31 Exit: Opening Data Sets/Initializing Routines 202
E32 Exit: Handling InputtoaMerge Only 202
E3S Exit: ChangingRecords 203
E37:ClosingDataSets 206
E38: Handling InputData Sets 206
E39 Exit: Handling OutputData Sets 207
Sample Routines Written in Assembler 207
E15: Deleting Expired Records L., 207
E16 Exit: When NMAX Exceeded, Sort Current Records 208
E35 Exit: Deleting Records e e e e e e 208
COBOL Exit Routines P P 209
COBOL Exit Requirements 209
COBOL Exit Routines (Input Phase Exit) 212
COBOL E15 Exit: Passing or Changing Records for Sort 212
COBOL Exit Routines (Output Phase Exit) 218
COBOL E35 Exit: Changing Records 218
Sample Routines Written in COBOL 224
Altering Records: COBOLE1SExit 224
Inserting Records: COBOL E3SExit 225
E15/E35 Return Codes and EXITCK 226
Chapter 6. Invoking DFSORT from aProgram 231
What Are System Macro Instructions? 232
Using System Macro Instructions 232
JCL DD Statements 233
Program Control Statements for the 24-Bit Parameter List 233
Program Control Statements for the Extended Parameter List 238
Writing the Macro Instructiono oo o oo, 241
Restrictions for Dynamic Invocation 245
Merge Restriction 245
Copy Restrictions 245
Chapter 7. Improving Efficiency 247
Designing Your Jobs to Maximize Performance 248
Use JCL to Invoke DFSORT Processing 248
Plan Ahead 248
Specify Efficient Sort/Merge Techniques 249
Specify Input/Output Data Set Characteristics Accurately 250
Use Options that Enhance Performance 251
Avoid Options that Decrease Performance 255
Using Main Storage Efficiently, 256
Tuning Main Storage 256
Releasing Main Storage e 258

Contents Xiii

Allocating Temporary Work Space Efficiently 259

Direct Access Work Storage Devices 260
Tape Work Storage Devices 261
Hipersorting e e e 261
EXCPVR . . . e 261
ICEGENER Facility e 262
Chapter 8. SampleJob Streams 265
Sort Examples e e e 268
Merge Examples e e 300
Sort Examples Using VSAM DataSets 305
ICEGENER Example e 309
Appendix A. Calculating Storage Requirements 311
Main Storage L e 311
Intermediate Storage e e 311
Direct Access Storage Considerations 31
Tape Storage Considerations 312
Exceeding Intermediate Storage Capacity 313
Appendix B. Using Extended Function Support (EFS) 315
MVS/XA or MVS/ESA Support of the EFS Program 315
How EFS Works o e e 316
DFSORT Phases i it et e e e e e ie e 316
DFSORT Calls to Your EFS Program 317
What You Can DowithEFS, 322
Opening and InitializingDataSets 323
Examining, Altering, or Ignoring Control Statements 323
Processing User-Defined Data Types with EFS Program Exit Routines . 325
Supplying Messages for Printing to the Message Data Set 325
Terminating DFSORT e 325
Closing Data Sets and Housekeeping 325
Structure of the EFS Interface Parameter List 325
Action Codes L e e e e e e 327
Control Statement Request List 328
Control Statement String Sent to the EFS program 328
Control Statement String Returned by the EFS Program 330
Length of Original Control Statement 334
Length of the Altered Control Statement 334
EFS Program Context Areao 334
Extract Buffer Offsets List 335
Record Lengths List 335
Information Flags 335
Message List e 337
EFS Program Exit Routines 338
EFS01 and EFS02 Function Description 338
EFSO1 Exit Routine 339
EFS02 Exit Routine 342
MVS/XA and MVS/ESA Support of EFS Program Exit Routines 344
EFS Program Return Codes You Must Supply 345
Record Processing Order 345
How to Request a SNAPDump 347
EFS Program Example 348
DFSORT Initialization Phase: 348
DFSORT Termination Phase 351

Xiv DFSORT: Application Programming: Guide

Appendix C. Specification/Override of DFSORT Options 353

Main Features of Sources of DFSORT Options 353
JCL-Invoked DFSORT e 355
Dynamically-Invoked DFSORT with the Extended Parameter List 360
Dynamically-Invoked DFSORT with the 24-Bit Parameter List 366
Appendix D. Data FormatExamples 373
Appendix E. EBCDIC and ISCII/ASCII Collating Sequences 377
EBCDIC . . . e 377
ISCH/ASCIH . . . e 380
Appendix F. DFSORT Abend Processing 383
DFSORT ESTAE Recovery Routine 383
Checkpoint/Restart 383
DFSORT Abend Categories 384
Abend Recovery Processing for Unexpected Abends 385
Processing of Error Abends with A-Type Messages 386
CTRx Abend processing e 386
Abend Recovery Processing and Invoking Programs 386
Summary of Changes for Previous Releases of DFSORT 387
Release 10, January 1988 387
Release 9, April 1987 387
Reading List 389
Index e 391

Contents XV

Introducing DFSORT

Chapter 1. Introducing DFSORT

How You Can Invoke DFSORT 3
How DFSORT WOrks o o i e e e e e e e e e e e e e e e e e 3
Operating Systems e e e e e 3
Control Fields and Collating Sequences 4
Program Execution e 5
Data Set Considerations e 8
When You Sortor Copy Records 8
When You Merge Records 9
Data Set Notes and Limitations 9
Installation Defaults 11
DFSORT Messages and ReturnCodes 13
)

Chapter 1. Introducing DFSORT 1

Introducing DFSORT

This chapter introduces IBM OS/VS DFSORT Licensed Program 5740-SM1, or
DFSORT. DFSORT is a program you use to sort, merge, and copy information.

* When you sort records, you arrange them in a particular sequence,
choosing an order more useful to you than the original one.

* When you merge records, you combine the contents of two or more
previously-sorted data sets into one.

* When you copy records, you make an exact duplicate of each record in your
data set.

{Merging records first requires that the input data sets be identically sorted for
the information you will use to merge them, and in the same order required for
output. You can merge from 2 to 16 different data sets at a time).

In addition to the three basic functions, you can perform other processing
simultaneously:

You can control which records to keep in the final output data set of a DFSORT
run by using INCLUDE and OMIT statements in your job. These statements
work like filters, testing each record against criteria that you supply, and
retaining only the ones you want for the output data set. For example, you
might choose to work only with those records that have a value of “Kuala
Lumpur” in the field reserved for office location. Or perhaps you want to leave
out any record dated after 1987 if it also contains a value greater than 20 for the
number of employees.

You can edit and reformat your records before or after other processing by
using INREC and OUTREC statements. Use INREC and OUTREC to delete fields
from your records, to rearrange the order of the fields within records, and to
insert separators, such as blanks, zeros, or constants, before, between, or after
fields. For example, you might want to create a data set containing financial
data but without any of the names that were there originally. You are probably
interested in improving efficiency; you can use INREC to remove unnecessary
fields from your records before other processing, and save the CPU time
required to manipulate them.

You can sum numeric information from many records into one with the SUM
statement. For example, if you want to know the total amount of a yearly
payroll, you can add the values for a field containing salaries from the records
of all your employees.

You can control DFSORT functions with other control statements, by specifying
alternate collating sequences, invoking user exit routines, overriding installation
defaults, and so on.

You can direct DFSORT to pass control during execution to routines you design
and write yourself. For example, you can write user exit routines to summarize,
insert, delete, shorten, or otherwise alter records during processing (although
you should remember that DFSORT already provides extensive editing capabili-
ties through the INCLUDE, OMIT, INREC, OUTREC, and SUM control state-
ments). You can write your own routines to correct I/0 errors that DFSORT
cannot handle, or to perform any necessary abnormal end-of-task operation
before DFSORT terminates.

2 DFSORT: Application Programming: Guide

How DFSORT Works

You can write an EFS (Extended Function Support) program to intercept
DFSORT control statements and PARM options for modification prior to use by
DFSORT.

How You Can Invoke DFSORT

You can invoke DFSORT processing in a number of ways, described in this
book at the pages listed below:

» With an EXEC job control statement in the input stream using the name of
the program or the name of a cataloged procedure. See Chapter 2, “Exe-
cuting DFSORT with Job Control Language” on page 15.

* With a program written in basic assembler language using a system macro
instruction. See Chapter 6, “Invoking DFSORT from a Program” on
page 231.

» With programs written in either COBOL or PL/I with a special facility of the
language. See the programmer’s guide describing the compiler version
available at your location.

* With interactive panels supported under ISPF and ISMF. See
Chapter 4, “Using Panels to Create and Submit DFSORT Jobs" on
page 145,

In this book. the term JCL invoked means that the DFSORT program is initiated
by an EXEC job control statement. The term dynamically invoked means that
the DFSORT program is initiated from another program written in assembler,
COBOL, or PL/IL.

How DFSORT Works

This section lists the operating systems supported by DFSORT, and how
DFSORT uses control fields and collating sequences to sort, merge, and copy
your records.

Operating Systems
DFSORT operates under your operating system, and must be initiated according
to the appropriate conventions. The operating systems this release supports
are:

e 0OS/VS2 MVS Release 3.8

¢ MVS/SP Version 1 Release 3 with MVS/370
* MVS/SP Version 2 Release 1 with MVS/XA
e MVS/SP Version 3 Release 1 with MVS/ESA

and subsequent releases.

DFSORT can execute under MVS/370 running as a guest operating system
under VM/SP, VM/SP High Performance Option (HPO), VM/XA Migration Aid,
VM/370, or VM/XA System Facility (SF). DFSORT can execute under MVS/XA or
MVS/ESA running as a guest operating system under VM/XA Migration Aid, or
VM/XA System Facility (SF).

DFSORT is compatible with all of the IBM processors supported by MVS/370,
MVS/XA, or MVS/ESA, in addition to any device they support for program resi-

Chapter 1. Introducing DFSORT 3

How DFSORT Works

dence. It also operates with any device QSAM or VSAM uses for input or
output.

If you use MVS/ESA, DFSORT can use Hipersorting, which uses hiperspace
available on Enterprise Systems Architecture/370 to improve performance.
If you use MVS/ESA or MVS/XA, DFSORT can:

* Place certain modules and buffers above 16-megabyte virtual, leaving more
space below 16-megabyte virtual for user programs

e Use System/370 Extended Architecture Sorting Instructions to improve per-
formance when sorting fixed-length records

¢ Use EXCPVR to improve performance when sorting and copying.

On all MVS systems, DFSORT can:

* Replace the IEBGENER system utility with the more efficient DFSORT
ICEGENER facility

* Dynamically allocate the required intermediate work space for sorting.

Control Fields and Collating Sequences

You use DFSORT to process your information by defining control fields to iden-
tify the information you want to sort or merge. When you think of the contents
of your data sets, you probably think of names, dates, account numbers, or
similar pieces of information useful to you. For example, when you sort your
data sets, you might think of arranging your records in alphabetical order, by
family name. By using the byte position and length (in bytes) of the portion of
each record containing a family name, you can define it as a control field to
manipulate with DFSORT.

DFSORT uses the control fields you define as keys in processing. A key is a
concept, such as family name, that you have in mind when you design a record
processing strategy for a particular application. A control field, on the other
hand, is a discrete portion of a record that contains the text or symbols corre-
sponding to that information, in a form that can be used by DFSORT to identify
and sort or merge the records. For all practical purposes, you can think of keys
as equivalent to the control fields DFSORT uses in processing.

When you want to arrange your records in a specific order, you specify one or
more control fields of your records to use as keys. The sequence in which you
list the control fields becomes the order of priority DFSORT uses to arrange
your records. The first control field you specify is called the major control field.
Subsequent control fields are called minor control fields, as in first, second, and
third minor control fields, and so on. If two or more records have identical
values for the first control field, they are arranged according to the values in
the second. Records with identical values for the first and second are arranged
according to the third, and so on, until a difference is found, or no more control
fields are available.

Records with identical values for all the control fields specified retain their ori-
ginal input order or are arranged randomly, depending upon which of the two

options, EQUALS or NOEQUALS, is in effect. You can direct DFSORT to retain
the original input order for records with identical values for all control fields by
specifying EQUALS.

4 DFSORT: Application Programming: Guide

How DFSORT Works

Control fields may overlap, or be contained within other control fields (such as
a three-digit area code, within a 10-digit telephone number). They do not need
to be contiguous, but must be located within the first 4092 bytes of the record.
DFSORT interprets the collected control fields of each record, arranged in order
of priority, as a single control word, up to a maximum of 4092 bytes in length
(see Figure 1).

« Record
e
Control Control Control
fleld 3 field 4 Control field 1 fleld 2
(major)
< Control Word »
1 2 3 4

Figure 1. Control Fields

DFSORT contains several standard collating sequences you can use to deter-
mine how to arrange your records. Conceptually, a collating sequence is a
specific arrangement of tharacter priority used to determine which of two
values in the same control field of two different records should come first.
DFSORT uses EBCDIC, the standard IBM collating sequence, or the ISCII/ASCII
collating sequence in sorting or merging records.

The collating sequence for character data and binary data is absolute; char-
acter and binary fields are not interpreted as having signs. For packed
decimal, zoned decimal, fixed-point, normalized floating-point, and the signed
numeric data formats, collating is algebraic; each quantity is interpreted as
having an algebraic sign.

You can modify the standard EBCDIC sequence to collate differently, if, for
example, you want to allow alphabetic collation of national characters. An
alternate collating sequence can be defined during installation with the ICEMAC
ALTSEQ option, or you can define it yourself at execution with the ALTSEQ
program control statement. You can also specify a modified collating sequence
with an E61 user exit or with an Extended Function Support (EFS) program.

Program Execution

Unless you use DFSORT Panels to prepare and submit your job, (see

Chapter 4, “Using Panels to Create and Submit DFSORT Jobs"” on page 145),
you must prepare job control language (JCL) statements and DFSORT program
control statements to invoke DFSORT processing. JCL statements (see
Chapter 2, "Executing DFSORT with Job Control Language” on page 15) are
processed by your operating system. They describe your data sets to the oper-
ating system, and initiate DFSORT execution. DFSORT program control state-
ments (see Chapter 3, “Using DFSORT Program Control Statements” on

page 53) are processed by the DFSORT program. They describe the functions
you want to perform, and invoke the processing you specify.

Chapter 1. Introducing DFSORT §

How DFSORT Works

A sort usually requires intermediate storage as working space during program
execution. Unless you specify dynamic allocation with the DYNALLOC facility,
you must use JCL data definition (DD) statements to indicate the intermediate
storage device or devices to use, and the amount of work space required for
any sort run. Methods for determining how much space to allocate are
explained in Appendix A, “Calculating Storage Requirements” on page 311.
Merge or copy jobs do not require intermediate storage.

Figure 2 illustrates the processing order for record handling exits, statements,
and options. Use this diagram with the text following it to understand the order
DFSORT uses to execute your job.

Sorting or Copying Herging
SORTIN SORTINnn
SKIPREC

{
v

THCLUDE
OHIT
|
v
STOPAFT vy
IMCLUDE
OMIT
|
v
INREC [HREC
SORT/ HERGE
SUM
or
COPY SUM
| [
v v
OUTREC GUTREC
l l v
= e
v
SORTOUT SORTOUT

Figure 2. Record Processing Order

As shown in Figure 2, DFSORT processing follows this order:

6 DFSORT: Application Programming: Guide

How DFSORT Works

1. DFSORT first checks for whether you supplied a SORTIN data set for SORT
and COPY jobs, and SORTINnn data sets for MERGE jobs. If so, DFSORT
reads the input records from them.

* 1f no SORTIN data set is present for a SORT or COPY job, you must use
an E15 exit to insert all the records. (This is also the case if you invoke
DFSORT from a program with the address of an E15 exit in the param-
eter list, because SORTIN will be ignored.) DFSORT can use a COBOL
E15 routine if you specified the E15 exit in the MODS statement.

¢ If no SORTINNn data sets are present for a MERGE job, you must use an
E32 exit to insert all the records.

2. If input records for SORT or COPY jobs were read from a SORTIN data set,
DFSORT performs processing specified with the SKIPREC option. DFSORT
deletes records until the SKIPREC count is satisfied. Eliminating records
before SORT or COPY processing gives better performance.

3. If the input records for a SORT or COPY job were read from a SORTIN data
set, DFSORT checks whether you specified a user exit routine at an E15
exit. If so, DFSORT transfers control to the user exit routine. You can use a
COBOL E15 routine if the E15 exit is specified in the MODS statement. The
E15 routine can insert, delete, or reformat records.

4. DFSORT performs processing specified on an INCLUDE or OMIT statement.
If you used an E15 user exit routine to modify the record format, then the
INCLUDE/OMIT control field definitions you specify must apply to the current
format rather than to the original format. If you use the INCLUDE or OMIT
statements to delete unnecessary records before SORT, MERGE, or COPY
processing, your jobs will run more efficiently.

5. For SORT or COPY jobs, DFSORT performs processing specified with the
STOPAFT option. Record input stops after the maximum number of records
{n) you specify have been accepted. DFSORT accepts records for proc-
essing if they are:

+ Read from SORTIN or inserted by E15
* Not deleted by SKIPREC

* Not deleted by E15

¢ Not deleted by INCLUDE/OMIT.

6. DFSORT performs processing specified in an INREC statement. If you
changed record format before this step, the INREC control and separation
field definitions you specify must apply to the current format rather than to
the original format. Use INREC to shorten records before further processing
for better performance.

7. DFSORT performs processing specified in the SORT, MERGE, or OPTION
COPY statement.

* For SORT, all input records are processed before any output record is
processed.

« For COPY or MERGE, an output record is processed after an input
record is processed.

* For SORT or MERGE, if a SUM statement is present, DFSORT processes
it during the SORT or MERGE processing. DFSORT summarizes the
records and deletes duplicates as soon as possible for better perform-
ance. If you made any changes to the record format prior to this step,

Chapter 1. Introducing DFSORT 7

Data Set Considerations

the SORT or MERGE, and SUM field definitions you specify must apply
to the current format rather than to the original format.

8. DFSORT performs processing specified in an OUTREC statement. If you
changed record format prior to this step, the OUTREC control or separation
field definitions must apply to the current format rather than to the original
format.

9. If an E35 exit is present, DFSORT transfers control to your user exit routine
after all of the statement processing is completed. If you changed record
format, the E35 exit receives the records in the current format rather than in
the original format. You can use a COBOL E35 routine if you specify the
E35 exit in the MODS statement. You can use the E35 exit routine to add,
delete, or reformat records.

If a SORTOUT data set is not present, the E35 exit must dispose of all the
records, because DFSORT treats these records as deleted. (This is also the
case if SORT, MERGE, or COPY is invoked with the address of an E35 exit in
the parameter list, because SORTOUT will be ignored.)

10. DFSORT writes your records to the SORTOUT data set, if present.

Data Set Considerations

You must define any data sets you provide for DFSORT according to the con-
ventions your operating system requires. You can use the label checking facili-
ties of the operating system during DFSORT execution. See OS/VS2 MVS
Supervisor Services and Macro Instructions for details.

Unless you use DFSORT Panels to create and submit your jobs, you must
describe all data sets {(except those allocated with the DYNALLOC parameter)
in job control data definition (DD) statements. You must place the DD state-
ments in the operating system input stream with the job step that allocates
DFSORT execution.

DFSORT Panels operates in two modes, foreground and background. Back-
ground mode creates DFSORT jobs containing the job control language
(including DD statements) already coded in the DFSORT Panels user profile.
This JCL is the same as that which you code yourself. Foreground mode uses
CLIST processing instead of JCL, so if you choose this technique you do not
need JCL at all. See Chapter 4, “Using Panels to Create and Submit DFSORT
Jobs” on page 145 for more information.

When You Sort or Copy Records
Input to a sort or copy run can be a blocked or unblocked QSAM or VSAM data
set, containing fixed or variable-length records. You can concatenate QSAM
input data sets even if they are on dissimilar devices. See “SORTIN DD
Statement” on page 42 for the restrictions that apply.

Output from a sort or copy run can be a blocked or unblocked QSAM or VSAM

data set, regardless of whether the input is QSAM or VSAM. The output data
set however, must be the same type (fixed or variable) as the input data set.

8 DFSORT: Application Programming: Guide

Data Set Considerations

When You Merge Records
Input to a merge run can be up to 16 blocked or unblocked QSAM or VSAM
data sets, containing fixed or variable-length records. Your input data sets can
be either QSAM or VSAM, but not both. The records in all input data sets must
already be sorted in the same order as that required for output.

Output from a merge run can be a blocked or unblocked QSAM or VSAM data
set, regardless of whether the input is QSAM or VSAM. The output data set
however, must be the same type (fixed or variable) as the input data sets.

Data Set Notes and Limitations

General Considerations
Your records can be EBCDIC, ISCII/ASCII, Japanese, and data types you define
yourself. To process Japanese data types with DFSORT, you can use the IBM
Double Byte Character Set Ordering Support Program (DBCS Ordering),
Licensed Program 5665-360, Release 2.0.

Input and output data sets must be on devices that can be used with QSAM or
VSAM.

The maximum record length DFSORT can handle depends on the amount of
main storage available. Record length can never exceed the maximum record
length you specify. Variable-length records are limited to 32756 bytes. Fixed-
length records are limited to 32760 bytes. Variable block-spanned records are
limited to 32767 bytes.

The number of records that can be sorted using a given amount of storage is
reduced by:

* Processing control fields of different formats
e Large numbers of control fields
¢ Large numbers of intermediate data sets.

Providing an Extended Function Support program with an EFS01 exit routine
may limit the record length that can be used when processing variabie-length
records.

Minimum block length for tape work data sets is 18 bytes; the minimum record
length is 14 bytes.

The Blockset technique pads or truncates fixed-length records when the output
data set record length is different from that of the input data set. Record
padding and truncation can occur with Blockset sort and copy operations.
Records are not padded when using Blockset merge or other sort techniques
{unless an E15 or E35 exit, or an INREC or OUTREC operation is present). If you
use user exits to modify records, you must ensure that the exit routines pad
and truncate correctly. DFSORT pads records on the right, with binary zeros.

For more information about Blockset, see “Specify Efficient Sort/Merge
Techniques” on page 249.

Chapter 1. Introducing DFSORT 9

Data Set Considerations

QSAM Considerations

VSAM Considerations

If you use DSN=NULLFILE on your DD statement for an input data set, a
system restriction prevents DFSORT from using the EXCP access method.

You can use empty input data sets.

If any of the input data sets are on tape without standard labels, you must
specify DCB parameters on their DD statements.

ISO/ANSI Version 1 tape files can only be used as input; never as output.

If a data set is password protected, passwords can be entered at the
console or (with some restrictions) through routines at exits E18, E38 and
E39.

The same data set must not be specified for both input and output.
A data set used for input or output must have been previously defined.

You can use empty input data sets in sort or copy jobs, but not for merge
jobs. If an input data set to a merge job is empty, VSAM returns an open
error code (160) and DFSORT terminates.

Data sets cannot be concatenated.

If output is a keyed-sequential data set (KSDS), the key must be the first
control field (or the key fields must be in the same order as the first control
field). VSAM does not allow you to store records with duplicate primary
keys.

Any VSAM exit function available for input data sets may be used except
EODAD. See the description of E18 use with VSAM in Chapter 5, “Using
Your Own Exit Routines” on page 181.

You must build the VSAM exit list with the VSAM EXLST macro instruction
giving the address of your routines that handle VSAM exit functions.

When processing variable-length records with VSAM input and non-VSAM
output, the SORTOUT LRECL must be 4 bytes greater than the maximum
record size defined in the cluster. Variable-length records have a record
descriptor word (RDW) field 4 bytes long at the beginning of each record,
but VSAM records do not. The record size defined in the VSAM cluster is
therefore 4 bytes less than the non-VSAM LRECL. DFSORT adds 4 bytes for
the RDW when processing the record. If you use VSAM for both input and
output, these 4 bytes are removed. For example:

Maximum record size in VSAM cluster 128 : up to 128 bytes of data

LRECL for variable-length record 128 : 4 bytes RDY and up to
124 bytes of data

132 : 4 bytes RDW and up to
128 bytes of data

If a non-empty VSAM SORTOUT data set was defined without the reuse.
option, VSAM does not open the data set and issues OPEN error IEC161I
RC84 error code 232(E8):

Reset was specified for a nonreusable data set and the data set
is not empty.

10 DFSORT: Application Proagramming: Guide

Installation Defaults

After receiving the OPEN return code, DFSORT reopens the data set for
update and one of two things happens:

— For an ESDS, DFSORT adds records at the end of the data set.
— For a KSDS, DFSORT inserts records in key order.

Installation Defaults

Some DFSORT default values depend on specifications your system pro-
grammer set with the ICEMAC macro when DFSORT was installed.
i2.installation defaults This book assumes DFSORT was installed at your site
with the defaults it was delivered with. DFSORT Installation and Customization
contains planning considerations and general information about installing
DFSORT. Step-by-step installation procedures are listed in the DFSORT
Program Directory.

The following parameters and functions can be set during installation. See your
system programmer if you need to know what values were used.

Parameters

ABCODE

ALTSEQ
ARESALL

ARESINV

CHALT

CHECK

CINV
COBEXIT

DYNALOC

DYNAUTO
EFS

EQUALS
ERET

Function

Specifies the ABEND code used when DFSORT abends for a crit-
ical error.

Alters the normal EBCDIC collating sequence.

Specifies, for MVS/XA or MVS/ESA, the number of bytes reserved
above 16-megabyte virtual for system use.

Specifies, for MVS/XA or MVS/ESA, the number of bytes reserved
above 16-megabyte virtual for the invoking program when
DFSORT is dynamically invoked.

Translates format CH as well as format AQ, or translates format
AQ only.

Determines whether record count checking is suppressed for
applications that use the E35 user exit routine without a
SORTOUT data set.

Determines whether DFSORT can use control interval access for
VSAM data sets.

Determines whether the E15 and E35 routines are executed with
the VS COBOL Il libraries.

Specifies the default values for device name and number of work
data sets to be dynamically allocated. These default values are
used in conjunction with the ICEMAC option DYNAUTO =YES and
execution option DYNALLOC.

Determines whether work data sets are dynamically allocated
automatically when no SORTWKnn DD statement is present.

Specifies the name of a user-written Extended Function Support
program to be called by DFSORT.

Preserves the input order of equally collating records.

Determines the action to be taken if DFSORT encounters a critical
error.

Chapter 1. Introducing DFSORT 11

Installation Defaults

ESTAE

EXCPVR

EXITCK

GENER

HIPRMAX

IEXIT

IGNCKPT

INV|JCL

LIST

LISTX

MAXLIM

MINLIM
MSGCON

MSGDDN
MSGPRT

NOMSGDD

OUTREL

OUTSEC

OVERRGN

PARMDDN

RESALL

Determines whether DFSORT should delete its ESTAE recovery
routine early or use it for the entire run.

Determines whether DFSORT should use EXCPVR when reading
and writing SORTIN, SORTOUT, and SORTWKnn data sets.

Determines whether DFSORT should terminate or continue when
it receives certain invalid return codes from E15 or E35 exit rou-
tines.

Specifies the name of the IEBGENER system utility module to be
used by ICEGENER (DFSORT's facility for IEBGENER jobs).

Specifies the amount of hiperspace to use for Hipersorting on an
MVS/ESA system.

Determines whether DFSORT is to pass control to your site’s
ICEIEXIT routine.

Determines whether the checkpoint/restart facility is to be
ignored if it is requested at execution time and the Blockset tech-
nique (which does not support the checkpoint/restart facility) can
be used.

Determines whether the specified JCL defaults are to be used
when DFSORT is JCL invoked or dynamically invoked. One of
these must immediately follow ICEMAC and be followed, in turn,
by other options, if desired.

Determines whether to print DFSORT program control state-
ments.

Determines whether to print control statements that have been
returned by an Extended Function Support program.

Sets an upper limit to the amount of address space available
when SIZE/MAINSIZE =MAX.

Sets a minimum limit to the amount of address space available.

Specifies the class of program messages to be written to the
master console.

Specifies an alternate name for the message data set.

Specifies the class of program messages to be printed on the
message data set.

Determines whether DFSORT should terminate or continue when
the message data set is required, but not present.

Determines whether unused temporary SORTOUT data set space
is to be released.

Determines whether DFSORT should use automatic secondary
allocation for SORTOUT data sets that are temporary or new.

Specifies the amount of main storage above the REGION value
available to Blockset.

Specifies an alternate DDNAME for the DFSORT DFSPARM data
set.

Reserves storage for system and application use.

12 DFSORT: Application Programming: Guide

RESINV
SIZE
SMF

| SORTLIB

STIMER

SvC

TEXIT

TMAXLIM

VERIFY
VIO

VLSHRT

WRKREL

WRKSEC

ZDPRINT

DFSORT Messages and Return Codes

Reserves space for programs invoking DFSORT.
Sets maximum amount of main storage.
Produces SMF records.

Determines whether DFSORT searches a system or private
library for the. modules used with a tape work data set sort or
Conventional merge.

Determines whether DFSORT can use the STIMER macro. If
DFSORT does not use the STIMER macro, processor timing data
will not appear in SMF records or in the ICETEXIT statistics.

Specifies a user SVC number for DFSORT and allows an installa-

tion to use two different releases of DFSORT at the same time by

using two different DFSORT SVC modules in conjunction with SVC
109.

Determines whether DFSORT passes control to your site’s
ICETEXIT routine.

Specifies, for MVS/XA or MVS/ESA, an upper limit to the total
amount of main storage above and below 16-megabyte virtual
available to DFSORT.

Verifies sequence of output records.

Determines whether virtual allocation of work data sets is
accepted.

Allows DFSORT to continue sorting or merging when it
encounters a variable length record not long enough to contain
all specified control fields.

Determines whether unused temporary SORTWK data set space
is released.

Determines whether DFSORT uses automatic secondary allo-
cation for temporary SORTWK data sets.

Determines whether DFSORT produces printable numbers from
positive ZD fields that result from summarization; that is, whether
the zone of the last digit should be changed from a hexadecimal
C to a hexadecimal F.

Tables showing all the possible sources of specification and order of override
for each option are shown in Appendix C, “Specification/Override of DFSORT
Options” on page 353.

| DFSORT Messages and Return Codes

You can determine, during installation or execution, whether DFSORT writes
messages to the message data set, to the master console, or both. You can
also direct an Extended Function Support program to write messages to the
message data set.

Messages written to the message data set can be either critical error mes-
sages, informational error messages, or diagnostic messages, as determined
during installation or execution.

Chapter 1. Introducing DFSORT 13

DFSORT Messages and Return Codes

Messages written to the master console can be either critical error messages
or informational error messages, as determined during installation.

See DFSORT Messages and Codes for complete information about DFSORT
messages and a discussion of DFSORT return codes.

14 DFSORT: Application Programming: Guide

Executing DFSORT with Job Control Language

Chapter 2. Executing DFSORT with Job Control Language

Notational Conventions 17
Using the JOB Statement, 19
Using the EXEC Statement 19
Specifying EXEC Statement Cataloged Procedures 19
Specifying EXEC Statement PARM Options 21
Using DD Statements 35
System DD Statements 39
Program DD Statements 40

Chapter 2. Executing DFSORT with Job Control Language 15

Executing DFSORT with Job Control Language

Your operating system uses the job control language (JCL) you supply with
your DFSORT program control statements to:

¢ |dentify you as an authorized user

* Allocate the necessary resources to execute your job
» Execute your job

* Return information to you about the results

* Terminate your job.

Unless you create your jobs with the interactive DFSORT Panels facility (see
Chapter 4, “Using Panels to Create and Submit DFSORT Jobs” on page 145),
you must supply job control language statements with every DFSORT job you
submit.

Required JCL includes a JOB statement, an EXEC statement, and several DD
statements. The statements you need and their exact form depend upon
whether you:

¢ Invoke DFSORT with an EXEC statement in the input job stream, or with a
system macro instruction within another program.

* Choose to use EXEC statement cataloged procedures to invoke DFSORT.

* Choose to specify various DFSORT control statements or PARM options.

« Want to use program exits to activate routines of your own.

* Want to use dynamic link-editing.

* Want to see diagnostic messages.
DFSORT Panels offers you an alternative to coding JCL directly. When you use
panels to prepare a job to be executed or saved in a data set, much of the
required JCL can be supplied automatically from the contents of the DFSORT
User Profile. DFSORT jobs you prepare for submission in foreground under
TSO use CLIST processing rather than JCL. See Chapter 4, “Using Panels to

Create and Submit DFSORT Jobs” on page 145 for details on using DFSORT
Panels.

The JCL statements and their functions are listed below. Details on coding the
individual statements are presented in subsequent sections.

JCL Statement Description

//JoBLIB DD Defines your program link library if it is not already known
to the system.

//STEPLIB DD Same as //JOBLIB DD

//SORTLIB DD Defines the data set that contains special load modules, if

it is not already known to the system.
/ISYSOUT DD! Defines the message data set.
//SORTIN DD! Defines the input data set for a sort or copy.
//SORTINnn DD! Defines the input data sets for a merge.
//ISORTOUT DD! Defines the output data set for a sort, merge, or copy.

//SORTWKnn DD! Defines intermediate storage data sets for a sort.

16 DFSORT: Application Programming: Guide

Notational Conventions

//DFSPARM DD! Contains DFSORT PARM options and program control
statements.

//SYSIN DD Contains DFSORT program control statements.
//SORTCNTL DD! Same as //SYSIN DD

//SORTDIAG DD Specifies that all messages and program control state-
ments be printed.

//SORTCKPT DD Defines the data set for checkpoint records.

//SYSUDUMP DD Defines the data set for output from a system ABEND
dump routine.

//SYSABEND DD Same as //SYSUDUMP DD

//SORTSNAP DD Defines the snap dump data set dynamically allocated by
DFSORT.

//ddname Defines the data set containing exit routines, (as specified
in the MODS program control statement).

The following DD statements are only necessary for dynamic link-editing of exit

routines.

//SYSPRINT DD Defines the message data set for the linkage editor.

//8YSUT1 DD Defines the intermediate storage data set for the linkage
editor.

//SYSLIN DD Defines the data set for control information for the linkage
editor.

//SYSLMOD DD Defines the data set for output from the linkage editor.

//SORTMODS DD Defines the temporary partitioned data set for exit routines
from SYSIN.

! These are the default DDNAMESs with which DFSORT was delivered. SYSOUT
and DFSPARM might have been changed during DFSORT installation. You can
change all of the indicated DDNAMESs yourself at run time. For override infor-
mation, see Appendix C, “Specification/Override of DFSORT Options” on

page 353.

Notational Conventions

The syntax diagrams in this book are designed to make coding DFSORT
program control statements simple and unambiguous. The lines and arrows
represent a path or flowchart that connects operators, parameters, and delim-
iters in the order and syntax in which they must appear in your completed
statement. Construct a statement by tracing a path through the appropriate
diagram that includes ail the parameters you need, and code them in the order
that the diagram requires you to follow. Any path through the diagram gives
you a correctly coded statement, if you observe these conventions:

* Read the syntax diagrams from left to right and from top to bottom.

+ Begin coding your statement at the spot marked with the double arrowhead.

Chapter 2. Executing DFSORT with Job Control Language 17

Notational Conventions

» A single arrowhead at the end of a line indicates that the diagram continues
on the next line or at an indicated spot.

—_—

A continuation line begins with a single arrowhead.

—

¢ Strings in upper-case letters, and punctuation (parentheses, apostrophes,
and so on), must be coded exactly as shown.

— Semicolons are interchangeable with commas in program control state-
ments and the EXEC PARM string. For clarity, only commas are shown
in this book.

* Strings in all lowercase letters represent information that you supply.

* Required parameters appear on the same horizontal line {the main path) as
the operator, while optional parameters appear in a branch below the main
path.

»——Required >
: I-—Optional—l

¢ Where you can make one choice between two or more parameters, the
alternatives are stacked vertically.

—Required-Choice-2

»—Operator——Required-Choice-1:| I:
—~Required—Choice-3

Optional—-Choi ce—l:’
Optional-Choice-2

If one choice within the stack lies on the main path (as in the example
above, left), you must specify one of the alternatives. If the stack is placed
below the main path (as in the example above, right), then selections are
optional, and you can choose either one or none of them.

* The repeat symbol shows where you can return to an earlier position in the
syntax diagram to specify a parameter more than once (see the example
below, left), to specify more than one choice at a time from the same stack
(see the example below, middle), or to nest parentheses (see the example
below, right).

P b]
a,b,c > > Choice-1—4—"+——
|:Choi ce-ZI
Choice-3
Do not interpret a repeat symbol to mean that you can specify incompatible

parameters. For instance, do not specify both ABEND and NOABEND in the
same EXEC statement, or attempt to nest parentheses incorrectly.

Use any punctuation or delimiters that appear within the repeat symbol to
separate repeated items.

18 DFSORT: Application Programming: Guide

Using the EXEC Statement

+ A double arrowhead at the end of a line indicates the end of the syntax
diagram.

Using the JOB Statement

The JOB statement is the first JCL statement of your job. It must contain a
valid job name in the name field, and the word JOB in the operation field. All
parameters in the operand field are optional, although your site might have
made information such as account number and the name of the programmer
mandatory:

//jobname JOB accounting information, programmer's name, and so on

Using the EXEC Statement

The EXEC statement is the first JCL statement of each job step or of each pro-
cedure step in a cataloged procedure. It identifies DFSORT to the operating
system. You can also specify DFSORT options on the EXEC statement.

The format of the EXEC statement is:

»—//stepname EXEC PGM=-[SORT T >

ICEMAN l_’—] J
,PARM="—options+'

PROC=TSORT
SORT;J_
\\,—other*-parameter‘s|J

SORT

SORT;‘
If you use a cataloged procedure (discussed in detail below), specify
PROC =SORT or PROC=SORTD. You can omit PROC= and specify simply
SORT or SORTD. However, PROC= can remind you that a cataloged proce-
dure is being used.

If you do not use a cataloged procedure, use PGM= either with the actual
name of the sort module (ICEMAN) or with its alias, SORT. Be sure that the
alias has not been changed at your site.

Specifying EXEC Statement Cataloged Procedures
A cataloged procedure is a set of JCL statements, including DD statements, that
has been assigned a name and placed in a partitioned data set called the pro-
cedure library. Two cataloged procedures are supplied with the program:
SORT and SORTD. Specify them in the first parameter of the EXEC statement
by PROC=S8SORT, PROC=S8ORTD, or simply SORT or SORTD.

Chapter 2. Executing DFSORT with Job Control Language 19

Using the EXEC Statement

SORT Cataloged Procedure
You can use the supplied SORT cataloged procedure when you include user
routines that require link-editing. Using this procedure without using link-edited
user routines is inefficient because the SORT cataloged procedure allocates
linkage editor data sets whether or not you include user routines.

When you specify EXEC PROC=SORT or EXEC SORT, the following JCL state-
ments are generated:

//

//SORT EXEC PGM=ICEMAN 00
//STEPLIB DD DSNAME=yyy,DISP=SHR 10
//SORTLIB DD DSNAME=xxx,DISP=SHR 20
//SYSOUT DD SYSOUT=A 30
//SYSPRINT DD DUMMY 40

//SYSLMOD DD DSNAME=8GOSET,UNIT=SYSDA,SPACE=(3600,(20,20,1)) 50
//SYSLIN DD DSNAME=8LOADSET,UNIT=SYSDA,SPACE=(80,(10,10)) 60
//SYSUTL DD DSNAME=8SYSUT1,SPACE=(1024,(60,20)), 70

UNIT=(SYSDA,SEP=(SORTLIB,SYSLMOD,SYSLIN)) 80

Line
00

10

20

30

50

60

Explanation

The stepname of the procedure is SORT. This EXEC statement initiates
the program, which is named ICEMAN.

The STEPLIB DD statement defines the data set containing the
sort/merge program modules that reside in a link library. The data is
cataloged, and the data set name represented by yyy is specified at
generation time; it can be SYS1.LINKLIB.

The SORTLIB DD statement defines a private data set containing the
modules needed for a sort using tape work files or a merge using the
Conventional technique. The data set is cataloged, and the data set
name represented by xxx was specified at operation time; it can be
SYS1.SORTLIB.

If the modules were installed in a system library and ICEMAC
SORTLIB=SYSTEM is used, then the SORTLIB DD statement is unnec-
essary and is ignored.

Defines an output data set for system use (messages). It is directed to
system output class A.

Defines SYSPRINT as a dummy data set because linkage editor diag-
nostic output is not required.

Defines a data set for linkage editor output. Any system direct access
device is acceptable for the output. Space for 20 records with an
average length of 3600 bytes is requested; this is the primary allocation.
Space for 20 more records is requested if the primary space allocation
is not sufficient; this is the secondary allocation, which is requested
each time space is exhausted. The last value is space for a directory,
which is required because SYSLMOD is a new partitioned data set.

The SYSLIN data set is used by the program for linkage editor control
statements. It is created on any system direct access device, and it has
space for 10 records with an average length of 80 bytes. If the primary

20 DFSORT: Application Programming: Guide

Using the EXEC Statement

space allocation is exhausted, additional space is requested in blocks
large enough to contain 10 records. No directory space is necessary.

70/80 The SYSUT1 DD statement defines a work data set for the linkage
editor.

SORTD Cataloged Procedure
You can use the supplied SORTD cataloged procedure when you do not include
user routines, or include user routines that do not require link-editing.

When you specify EXEC PROC=SORTD or EXEC SORTD, the following JCL
statements are generated:

//SORT EXEC PGM=ICEMAN 00
//STEPLIB DD DSNAME=yyy,DISP=SHR 10
//SORTLIB DD DSNAME=xxx,DISP=SHR 20
//SYSOUT DD SYSOUT=A 30

Line Explanation
00 The stepname of the SORTD procedure is SORT.

10 The STEPLIB DD statement defines the data set containing the
sort/merge program modules that reside in a link library. The data set
is cataloged, and the data set name represented by yyy is specified at
generation time; it can be SYS1.LINKLIB.

20 The SORTLIB DD statement defines a private data set that contains the
modules needed for a sort using tape work files or a merge that uses
the Conventional technique. The data set name of the program subrou-
tine library, represented by xxx, is specified at generation time; it can
be SYS1.SORTLIB.

If the modules were installed in a system library and ICEMAC
SORTLIB=SYSTEM is used, then the SORTLIB DD statement is unnec-
essary and is ignored.

30 Directs messages to system output class A.

| Specifying EXEC Statement PARM Options

| When you invoke DFSORT with JCL, you can specify some DFSORT options on
| the PARM parameter of the EXEC statement. These options include EFS, LIST,
| NOLIST, LISTX, NOLISTX, MSGPRT, and MSGDDN, which are ignored if speci-
| fied in an OPTION statement in SYSIN. Full override and applicability details

| are listed in Appendix C, “Specification/Override of DFSORT Options” on

| page 353.

I

I

I

Note: If you use the DFSPARM DD statement instead, you can specify both
EXEC PARM options and DFSORT control statements in a single source data set
that overrides all other sources. See “DFSPARM DD Statement” on page 49.

Chapter 2. Executing DFSORT with Job Control Language 21

Using the EXEC Statement

>, PARMH="

ABEND
lNOABEND]

—ARESALL=1—n
Lo

—BSAN

CINV
NOCII‘IVI

DYNALLOC l=)
(d)
(sm)
(d,n)
OFF
(OFF)

—EFS=Tname J
NONE:

[EQUALS
NOEQUALS

NOWRK

—EXCPVR=[ALL
NONE—

—E15=C08
—E35=C0B

—F1 LSZ=1—ar
Ex

—HI PRMAX=~[0 PT IMALr
n

LIST
I'NOLISTJ

LISTX
I-NOLISTXJ
—MSGDDON=ddname

CRITICAL1

—MSGPRT=[ALL
NONE—

[OUTREL]
NOOUTREL:

—RESALL—l—-.
nk

"'—SIZE LU}

nkK
MAX:
MAX -
MAX -mK
—SKIPREC=2

[STIMERJ
NOSTIMER

—STOPAFT=n

HRKREL
]

lNOI'JRKREL

NOWRKSEC

22 DFSORT: Application Programming: Guide

Using the EXEC Statement

ABEND or NOABEND

ABEND] >
NOABEND

Temporarily overrides the ERET installation option, which specifies whether
DFSORT abends or terminates with a return code of 16 if your sort, copy, or
merge is unsuccessful.

ABEND
specifies that if your sort, copy, or merge is unsuccessful, it abends with
a user completion code equal to the appropriate message number, or
with a user-defined number between 1 and 99, as set during installation
with the ICEMAC option ABCODE =n.

When DEBUG ABEND is in effect, a user abend code of zero might be
issued when a tape work data set sort or Conventional merge is unsuc-
cessful.

NOABEND
specifies that an unsuccessful sort, copy, or merge terminates with a
return code of 16.

Note: RC16 =ABE and NORC16 can be used instead of ABEND and
NOABEND, respectively.

Default: Usually the installation default. See
Appendix C, “Specification/Override of DFSORT Options” on page 353 for
more information.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options.”

ARESALL

>’__"'ARESALL n -
[
nK:

For MVS/XA and MVS/ESA, temporarily overrides the ARESALL installation
option, which specifies the number of bytes to be reserved above
16-megabyte virtual for system use. For more information, see the dis-
cussion of the ARESALL parameter in “OPTION Control Statement” on
page 97.

n
n specifies the number of bytes of storage to be reserved

Limit: 8 digits.

Chapter 2. Executing DFSORT with Job Control Language 23

Using the EXEC Statement

nK
where nK specifies n times 1024 bytes of storage are to be reserved.

Limit: 5 digits.
Note: RESERVEX can be used instead of ARESALL.

Defauit: Usually the installation default. See
Appendix C, “Specification/Override of DFSORT Options” on page 353 for
more information.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options.”

BSAM

- BSAM —

For disk processing the EXCP access method is normally used for SORTIN
and SORTOUT. If you encounter a problem related to the use of EXCP, you
can temporarily bypass it by specifying BSAM.

This option is ignored if VSAM SORTIN or SORTOUT data sets are specified.

Default: None; optional. See Appendix C, “Specification/Override of
DFSORT Options” on page 353 for more information.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

CINV or NOCINV

- CIN «
noc !

Temporarily overrides the CINV installation option, which specifies whether
DFSORT can use control interval access for VSAM data sets. For more
information, see the explanation of the CINV parameter in “OPTION Control
Statement” on page 97.

CINV
-directs DFSORT to use control interval access when possible for VSAM
data sets.

NOCINV
directs DFSORT not to use control interval access.

Default: Usually the installation default. See
Appendix C, “Specification/Override of DFSORT Options” on page 353 for
more information.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

24 DFSORT: Application Programming: Guide

Using the EXEC Statement

DYNALLOC
»————DYNALLOC >
= d
(d)
(sm)
(d,n)

Use this parameter to assign DFSORT the task of dynamically allocating
needed work space. You do not need to calculate and use JCL to specify
the amount of intermediate work space needed by the program. DFSORT
uses the dynamic allocation facility of the operating system to allocate work
space to get the best possible performance for the newest application.

For more information, see the discussion of DYNALLOC in "OPTION Control
Statement” on page 97.

d ‘
specifies the device type. You may specify any of the following IBM
devices: 2314, 3330, 3330-1, 3340, 3350, 3375, 3380, 2400, 2400-3, 2400-4,
3400-3, 3400-4, 3480, 3850, or their user-assigned group name, such as
SYSDA. '

n

specifies the maximum number of requested work data sets. The
maximum value of n is 16; if you specify more than 16, 16 is used. If
you specify 1 and the Blockset technique is selected, 2 is used.

Default: None; optional. See Appendix C, “Specification/Override of
DFSORT Options” on page 353 for more information.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

DYNALLOC =OFF

»—-—-DYNALLOC=E(0FF)—J —
- L—oFF :

Directs DFSORT not to allocate intermediate workspace dynamically,
overriding the ICEMAC installation option DYNAUTO =YES, or the
DYNALLOC parameter (without OFF) specified at execution. For more
information, see the discussion of the DYNALLOC option in “OPTION
Control Statement” on page 97.

OFF
directs DFSORT not to allocate intermediate workspace dynamically.

Default: None; optional. See Appendix C, “Specification/Override of
DFSORT Options™ on page 353 for more information.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options” on page 353.

Chapter 2. Executing DFSORT with Job Control Language 25

Using the EXEC Statement

EFS

EFS= name >
ENONE

Temporarily overrides the EFS installation option, which specifies
whether DFSORT is to pass control to an Extended Function Support
program. See Appendix B, “Using Extended Function Support (EFS)"
on page 315 for more information on EFS

name
the name of the EFS program that will be called to interface with
DFSORT.

NONE
means no call will be made to the EFS program.

Default: Usually the installation default. See
Appendix C, “Specn“catnon/Overnde of DFSORT Options” on page 353
for more information.

Applicable Functions: See Appendix C, “Specification/Override of
DFSORT Options” on page 353.

EQUALS or NOEQUALS

NOEQUALS

Temporarily overrides the EQUALS installation option, which specifies
whether the original sequence of identical collating records for a sort or
a merge should be preserved from input to output. For more informa-
tion, see the discussion of the EQUALS option in “OPTION Control
Statement” on page 97.

EQUALS
specifies that the original sequence must be preserved.

NOEQUALS
specifies that the original sequence need not be preserved.

Default: Usually the installation default. See
Appendix C, “Specification/Override of DFSORT Options™” on page 353
for more information.

Applicable Functions: See Appendix C, “Specification/Override of
DFSORT Options" on page 353.

EXCPVR

NOVIRK

»—-EXCPVR=[ALL —:| >
NONE:

For MVS/XA and MVS/ESA, temporarily overrides the EXCPVR installa-
tion option, which specifies the data sets for which DFSORT can use
EXCPVR when sorting or copying fixed- and variable-length records with

26 DFSORT: Application Programming: Guide

Using the EXEC Statement

the BLOCKSET technique. For more information, see the explanation of
the EXCPVR parameter in “OPTION Control Statement” on page 97.

Note: The EXCPVR option is not supported for MVS/370.

ALL
specifies that DFSORT can use EXCPVR for SORTIN, SORTOUT, and
SORTWKnn data sets.

NOWRK
specifies that DFSORT can use EXCPVR for the SORTIN and
SORTOUT data sets only. DFSORT will not use EXCPVR for
SORTWKnn if NOWRK is specified.

NONE
specifies that DFSORT cannot use EXCPVR for SORTIN, SORTOUT,
or SORTWKnn data sets.

Default: Usually the installation default. See
Appendix C, “Specification/Override of DFSORT Options” on page 353
for more information.

Applicable Functions: See Appendix C, “Specification/Override of
DFSORT Options” on page 353.

E15=COB

- E15=C0B —

Specifies that your E15 routine is written in COBOL, and temporarily
overrides the MODS statement for E15. If you specify E15=COB but do
not identify an E15 module with a MODS statement, the E15=COB is
ignored.

Default: None; optional. See Appendix C, “Specification/Override of
DFSORT Options” on page 353 for more information.

Applicable Functions: See Appendix C, “Specification/Override of
DFSORT Options” on page 353.

E35=COB

>>- £35=C0B >

Specifies that your E35 routine is written in COBOL, and temporarily
overrides the MODS statement for E35. If you specify E35=COB but do
not identify an E35 module with a MODS statement, the E35=COB is
ignored.

Default: None; optional. See Appendix C, “Specification/Override of
DFSORT Options” on page 353 for more information.

Applicable Functions: See Appendix C, “Specification/Override of
DFSORT Options” on page 353.

Chapter 2. Executing DFSORT with Job Control Language 27

Using the EXEC Statement

FILSZ

F ILSZ-l—xI
Ex

This parameter specifies (1) an exact number of records for a sort or
merge, or (2) an estimated number of records for a sort. Using exact
values forces DFSORT to terminate with an error message if the
number of records sorted or merged is not as expected.

If DFSORT cannot reasonably estimate the number of records to be
sorted, it uses the estimated FILSZ value to aid optimization of interme-
diate storage; otherwise, it does not use the value for this purpose. For
variable-length records, DFSORT uses the length of the longest input
record to determine the total amount of work space to allocate.
DFSORT uses the estimated FILSZ (if specified) for optimization under
these circumstances:

* An E15 exit routine is used.
¢ |nput data sets are multivolume or on tape.
* |nput data sets are concatenated and Blockset is not selected.

x
specifies the exact number of records to be sorted or merged; it
must take into account the number of records in the input data
set(s), records to be inserted or deleted by exit E15/E32, and
records to be deleted by INCLUDE/OMIT, SKIPREC, and STOPAFT.

Ex
specifies an estimated number of records to be sorted. This value
must be preceded by a letter E, and be large enough to include the
SORTIN data set, and any records you might add at exit E15.

For example, if you estimate your total data set size to be 5000
records, specify FILSZ=ES5000.

If you omit the FILSZ operand, DFSORT estimates the number of input
records.

Default: None; optional. See Appendix C, “Specification/Override of
DFSORT Options” on page 353 for more information.

Applicable Functions: See Appendix C, “Specification/Override of
DFSORT Options” on page 353.

HIPRMAX

»—H] PRMAX=-[0 PTI MALT
n

For MVS/ESA, temporarily overrides the HIPRMAX installation option,
which specifies the maximum amount of hiperspace to be committed for
Hipersorting. For more information on this parameter, see the explana-
tion of the HIPRMAX parameter (“OPTION Control Statement” on

page 97).

28 DFSORT: Application Programming: Guide

Using the EXEC Statement

OPTIMAL
specifies that DFSORT determines dynamically the maximum
amount of hiperspace to be committed for Hipersorting. DFSORT
determines the paging activity at the start of the run and selects the
maximum value that causes minimal system impact.

specifies the maximum megabytes ¢f hiperspace to be committed
for Hipersorting. n must be a value between 0 and 9999. The actual
amount of hiperspace used will not exceed the HIPRMAX value, but
might be less if DFSORT determines that using the maximum will
increase system paging significantly. If n is 0 (zero), Hipersorting is
not used.

Default: Usually the installation default. See
Appendix C, “Specification/Override of DFSORT Options” on page 353
for more information.

Applicable Functions: See Appendix C, “Specification/Override of
DFSORT Options" on page 353.

LIST or NOLIST

> LIST -
I-N[)LISTJ

Temporarily overrides the LIST installation option, which specifies
whether DFSORT program control statements should be written to the
message data set. See DFSORT Messages and Codes for full details on
use of the message data set.

LIST
specifies that all DFSORT control statements are printed on the
message data set.

NOLIST
specifies that DFSORT control statements are not printed.

Default: Usually the installation default. See
Appendix C, “Specification/Override of DFSORT Options” on page 353
for more information.

Applicable Functions: See Appendix C, “Specification/Override of
DFSORT Options” on page 353.

LISTX or NOLISTX

LISTX -
Lyor 573!

Temporarily overrides the LISTX installation option, which specifies
whether DFSORT writes to the message data set the program control
statements returned by an EFS program. See DFSORT Messages and
Codes for full details on use of the message data set.

Chapter 2. Executing DFSORT with Job Control Language 29

Using the EXEC Statement

LISTX
means that control statements returned by an EFS program are to
be printed to the message data set.

NOLISTX
means that control statements returned by an EFS program are not
to be printed to the message data set.

Default: Usually the installation default. See
Appendix C, “Specification/Override of DFSORT Options” on page 353
for more information.

Applicable Functions: See Appendix C, “Specification/Override of
DFSORT Options” on page 353.

Note:

« |f EFS=NONE is in effect after final override rules have been
applied, NOLISTX will be set in effect.

¢ LISTX and NOLISTX can be used independently of LIST and NOLIST.

¢ For more information on printing EFS control statements, see
DFSORT Messages and Codes.

MSGDDN

»———SGODN=ddname

Y
A

Temporarily overrides the MSGDDN installation option, which specifies
an alternate DDNAME for the message data set. See the explanation of
the MSGDDN parameter in “OPTION Control Statement” on page 97 for
more information.

The DDNAME can be any 1- through 8-character name, but must be
unique within the job step; do not use a name that is used by DFSORT
{(for example, SORTIN). If the DDNAME specified is not available at exe-
cution, SYSOUT is used instead. For details on using the message data
set, see DFSORT Messages and Codes.

Default: Usually the installation default. See
Appendix C, “Specification/Override of DFSORT Options” on page 353
for more information.

Applicable Functions: See Appendix C, “Specification/Override of
DFSORT Options” on page 353.

Note: MSGDD can be used instead of MSGDDN.

MSGPRT

»—————}SGPRT=TALL >
[CRI TICALS
NONE

Temporarily overrides the MSGPRT installation option, which specifies
the class of messages to be written to the message data set. See
DFSORT Messages and Codes for full details on use of the message
data set

30 DFSORT: Application Programming: Guide

Using the EXEC Statement

ALL
means that all messages except diagnostic messages ICE8C0! to
ICEQ99I are to be printed on the message data set. Control state-
ments are printed only if LIST is in effect.

CRITICAL
means that only critical messages are to be printed on the message
data set. Control statements are printed only if LIST is in effect.

NONE
means that no messages or control statements are to be printed.

Default: Usually the installation default. See
Appendix C, “Specification/Override of DFSORT Options” on page 353 for
more information.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

Note: The forms FLAG(l)|FLAG(U)|NOFLAG, and
MSG = {NO|AP|AC|CC|CP|PC} are also accepted. The following table lists
the equivalent MSGPRT/MSGCON specifications for these aiternate forms:

Option MSGPRT MSGCON
MSG=NO NONE NONE
MSG=AP ALL CRITICAL
MSG=AC NONE ALL
MSG=CC NONE CRITICAL
MSG=CP CRITICAL CRITICAL
MSG=PC ALL ALL
NOFLAG NONE CRITICAL
FLAG() ALL CRITICAL
FLAG(U) CRITICAL CRITICAL

OUTREL or NOOUTREL

A 4

[OUTREL] -
NOOUTREL

Temporarily overrides the OUTREL installation option, which specifies
whether unused temporary SORTOUT data set space is to be released.

OUTREL
means that unused temporary SORTOUT data set space is to be
released.

NOOUTREL
means that unused temporary SORTOUT data set space is not to be
released.

Note: RLSOUT and NORLSOUT can be used instead of OUTREL and
NOOUTREL, respectively.

Default: Usually the installation default. See
Appendix C, “Specification/Override of DFSORT Options” on page 353
for more information.

Applicable Functions: See Appendix C, “Specification/Override of
DFSORT Options” on page 353.

Chapter 2. Executing DFSORT with Job Control Language 31

Using the EXEC Statement

RESALL

RESALL-l—u J -
nK

Temporarily overrides the RESALL installation option, which specifies
the number of bytes to be reserved in a REGION for system use. For
more information, see the explanation of the RESALL parameter
(“OPTION Control Statement” on page 97).

n
is an integer specifying the number of bytes of storage to be
reserved, when SIZE/MAINSIZE =MAX is in effect. If you specify
less than 4096, 4096 is used.
Limit: 8 digits.

nK

nK specifies that n times 1024 bytes of storage are to be reserved,
when SIZE/MAINSIZE =MAX is in effect. If you specify less than 4K,
4K is used.
Limit: 5 digits.

Note: RESERVE can be used instead of RESALL.

Default: Usually the installation default. See

Appendix C, “Specification/Override of DFSORT Options” on page 353
for more information.

Applicable Functions: See Appendix C, “Specification/Override of
DFSORT Options” on page 353.

SIZE

-— SIZE=—1n >
nK:
MAX—
MAX ~m—]
MAX -mK-

Temporarily overrides the SIZE installation option, which specifies the
amount of main storage available to DFSORT. See the explanation of
the MAINSIZE parameter in “OPTION Control Statement” on page 97.

n

n is an integer specifying the number of bytes of main storage to be
allocated.

Limit: 8 digits.

32 DFSORT: Application Programming: Guide

Using the EXEC Statement

nk
nK specifies n times 1024 bytes of main storage are to be allocated.

Limit: 5 digits.

MAX
instructs DFSORT to calculate the amount of main storage available
and allocate this maximum amount, up to the MAXLIM value (or the
TMAXLIM value for an MVS/XA or MVS/ESA system) set when
DFSORT was installed.

MAX-m
specifies the RESALL value (m), in bytes. MAX-m instructs the
program to calculate the amount of storage available and allocate
this amount up to the MAXLIM value (or the TMAXLIM value for an
MVS/XA or MVS/ESA system) minus the amount of storage reserved
for system and application use (RESALL).

Limit for m: 8 digits.

MAX-mK
specifies the RESALL value (m times 1024) in kilobytes. MAX-mK
instructs the program to calculate the amount of storage available
and allocate this amount up to the MAXLIM value {or the TMAXLIM
value for an MVS/XA or MVS/ESA system) minus the amount of
storage reserved for system and application use (RESALL).

Limit for m: 5 digits.

Specifying a SIZE value equal to your installation’s MAXLIM value is
equivalent to specifying SIZE=MAX. If the SIZE or MAINSIZE passed to
DFSORT is equal to the MAXLIM, the MAXLIM value will be used and
DFSORT will set MAX in effect.

Default: Usually the installation default. See
Appendix C, “Specification/Override of DFSORT Options” on page 353
for more information.

Applicable Functions: See Appendix C, “Specification/Override of
DFSORT Options” on page 353.

Note: The forms SIZE(option), CORE =option, and CORE(option) can be
used instead of RESALL =option.

SKIPREC

»»——SKIPREC=z

Specifies the number of records (z) you want to skip before starting to
sort or copy the input data set. SKIPREC is typically used to bypass
records not processed from the previous DFSORT job. For more infor-
mation, see the discussion of the SKIPREC option in “OPTION Control
Statement” on page 97.

Default: None; optional. See Appendix C, “Specification/Override of
DFSORT Options” on page 353 for more information.

Applicable Functions: See Appendix C, “Specification/Override of
DFSORT Options” on page 353.

Chapter 2. Executing DFSORT with Job Control Language 33

Using the EXEC Statement

STIMER or NOSTIMER

> STIHER >
—I-NOSTIMERT

Temporarily overrides the STIMER option, which specifies whether
DFSORT can use the STIMER macro.

STIMER
means that an STIMER will be issued and processor time data will
appear in SMF records and ICETEXIT statistics.

NOSTIMER
means that no STIMER will be issued and processor time will not
appear in SMF records or ICETEXIT statistics.

Default: Usually the installation defauit. See
Appendix C, “Specification/Override of DFSORT Options” on page 353
for more information.

Applicable Functions: See Appendix C, “Specification/Override of
DFSORT Options” on page 353.

Note: If your exit or exits take checkpoints, then an STIMER must not
be issued.

STOPAFT

STOPAFT=n >

Specifies the maximum number of records (n) you want accepted for
sorting or copying (that is, read from SORTIN or inserted by E15 and not
deleted by SKIPREC, E15 or INCLUDE/OMIT). For more information, see
the discussion of the STOPAFT option in “OPTION Control Statement”
on page 97.

Default: None; optional. See Appendix C, “Specification/Override of
DFSORT Options” on page 353 for more information.

Applicable Functions: See Appendix C, “Specification/Override of
DFSORT Options” on page 353.

Note: If you specify (1) FILSZ=x in the EXEC PARM, or (2) SIZE=x or
FILSZ=x on the OPTION or SORT statement, and the number of records
accepted for processing does not equal x, then DFSORT issues an error
message and terminates.

WRKREL

1RKREL: -
lNO‘:!RKRELT

Temporarily overrides the WRKREL installation option, which specifies
whether unused temporary SORTWKnn data set space will be released.

34 DFSORT: Application Programming: Guide

Using DD Statements

WRKREL
specifies that unused space will be released.

NOWRKREL
specifies that unused space will not be released.

Default: Usually the installation default. See
Appendix C, “Specification/Override of DFSORT Options” on page 353
for more information.

Applicable Functions: See Appendix C, “Specification/Override of
DFSORT Options” on page 353.

Note:

* If you have dedicated certain volumes for SORTWKnn data sets, and
you do not want unused temporary space to be released, you
should specify NOWRKREL.

« RELEASE=0ON and RELEASE =OFF can be used instead of WRKREL
and NOWRKREL, respectively. '

WRKSEC

- l. WRKSEC] >
NOWRKSEC

Temporarily overrides the WRKSEC installation option, which specifies
whether DFSORT uses automatic secondary allocation for temporary
SORTWKnn data sets.

WRKSEC
specifies that automatic secondary allocation for temporary
SORTWKnn data sets will be used, and that 25 percent of the
primary allocation will be used as the secondary allocation.

NOWRKSEC
specifies that automatic secondary allocation for temporary
SORTWKnn data sets will not be used.

Default: Usually the installation default. See
Appendix C, “Specification/Override of DFSORT Options” on page 353
for more information.

Applicable Functions: See Appendix C, "Specification/Override of
DFSORT Options” on page 353.

Note: SECOND=ON and SECOND =OFF can be used instead of
WRKSEC and NOWRKSEC, respectively.

Using DD Statements

A DFSORT job always requires DD statements after the EXEC statement. DD
statements fall into two categories:

* System DD statements {discussed in detail in “System DD Statements” on
page 39).

¢ Program DD statements (discussed in detail in “Program DD Statements”
on page 40).

Chapter 2. Executing DFSORT with Job Control Language 35

Using DD Statements

System DD statements (and some program DD statements) are usually supplied
automatically when you use a cataloged procedure. Others you must always

supply yourself.

The DD statement parameters, the conditions under which they are required,
and the default values, are summarized in Table 1. The subparameters of the
DCB parameter (a DD statement parameter) are described similarly in Figure 3

on page 38.
Note:

* Performance is enhanced if the LRECL subparameter of the DCB is accu-
rately specified for variable-length records. The maximum input record
length you can specify for your particular configuration is given in “Data Set
Notes and Limitations” on page 9.

* When using DFSORT applications, FREE =CLOSE cannot be used on any DD

statements.

Table 1 (Page 1 of 2). DD Statement Parameters Used by DFSORT

Parameter When Required Parameter Values Default Value
DSNAME When the DD statement Specifies the fully qualified The system assigns a
or defines a labeled input data or temporary name of the unique name.
DSN set (for example, SORTIN), data set.
or when the data set being
created is to be kept or cat-
aloged (for example,
SORTOUT), or passed to
another step.
DCB Always required when Specifies information used (See separate subpa-
7-track tape is used; for to fill the data control block rameters in
input on tape without (DCB) associated with the Figure 3 on page 38.)
standard labels; and when data set.
the default values are not
applicable.
UNIT When the input data set is Specifies (symbolically or
neither cataloged nor actually) the type and quan-
passed or when the data set | tity of I/O units required by
is being created. the data set.
SPACE When the DD statement Specifies the amount of
defines a new data set on space needed to contain the
direct access. data set.
VOLUME When the input data set is Specifies information used
or neither cataloged nor to identify the volume or
VoL passed, for multireel input volumes occupied by the
or when the output data set data set.
is on direct access and is to
be kept or cataloged.
LABEL When the default value is Specifies information about The system assumes
not applicable. labeling and retention for standard labeling.
the data set.
36 DFSORT: Application Programming: Guide

Using DD Statements

Table 1 (Page 2 of 2). DD Statement Parameters Used by DFSORT

Parameter When Required Parameter Values Default Value
DISP When the default value is Indicates the status and dis- | The system assumes
not applicable. position of the data set. (NEW, DELETE).
{AMP| When password-protected Minimum buffer pool value None.
BUFSP} VSAM data sets are used given when creating the
and the password is sup- data set.
plied through E18, E38 or
E39.

Duplicate DDNAMEs
If you specify a particular DDNAME (such as SORTIN) more than once within the
same step, DFSORT uses the first DDNAME and ignhores subsequent duplicates.
Processing continues normally.

Shared Tape Units

In addition:
¢ SORTWKO, SORTWK1...SORTWKS can be specified instead of SORTWKGO0,

SORTWKO1...SORTWKO09, respectively. If you specify both SORTWKx and
SORTWKOx in the same job step, DFSORT treats them as duplicates, and
ignores each usage after the first. For example, SORTWK2 and SORTWKO02
are treated as duplicates. (Only SORTWK2 is used.)

Note:

For a tape work data set sort, SORTWKx will not be recognized because of
the existing restriction which allows only SORTWKO1,
SORTWKO02...SORTWK32. However, duplicates of these accepted DDNAMEs
will be ignored.

SORTINO, SORTIN1...SORTIN9 can be specified instead of SORTINOO,
SORTINO1...SORTINOS, respectively. If you specify both SORTINx and
SORTINOx in the same job step, DFSORT treats them as duplicates, and
ignores each usage after the first. For example, SORTIN2 and SORTINO2
are treated as duplicates. (Only SORTIN2 is used.)

Note:

For a conventional merge, SORTINx will not be recognized because of the
existing restriction which allows only SORTINO1, SORTINO2...SORTIN186.
However, duplicates of these accepted DDNAMEs will be ignored.

The following pairs of DFSORT data sets can be assigned to a single tape unit:

¢ The input data set and the first intermediate storage data set (SORTWKO1)
* The input data set and the output data set.

If you want to associate the SORTIN data set with SORTWKO1, you can include
the parameter: UNIT=AFF=S8ORTIN in the DD statement for SORTWKO01. The
AFF subparameter causes the system to place the data set on the same unit as
the dataset with the DDNAME following the subparameter (SORTIN, in this
case).

Chapter 2. Executing DFSORT with Job Control Language 37

Using DD Statements

In the same way, you can associate SORTIN with SORTOUT by including
UNIT =AFF =SORTIN in the SORTOUT DD statement.

Condition under Summary of
Subparameter which Required Subparameter Values Default Value
DEN When the data set Specifies the density 800 bpi
is located on a at which the tape was
7-track 2400-series recorded.
tape unit.
TRTCH When the data set Specifies the technique Converter not
is located on a used to record 8-bit used, translator
7-track 24060-series bytes on a 7-track type.| not used, odd
tape unit. parity.
RECFM Specifies the format of * For old data
the records in the data sets, the
set. value in the
When the DCB data set label.
parameter is Specifies the maximum + For a new SORTOUT
LRECL!? required and the length (in bytes) of data set, the same
default value is the logical records in as the first
not suitable, the data set. SORTIN, or
except on appropriate
SORTWKnn state- SORTINnn data set.?
BLKSIZE? ments. Specifies the maximum * No default if
length (in bytes) of input on unlabeled
the physical records tape, or BLP or
in the data set. NSL specified.
OPTCD When processing data Specifies that the
in ISCII/ASCII tape processed is
format. in ISCII/ASCII
format.
BUFOFF When processing data Specifies the length
in ISCII/ASCII of the buffer offset
format. or specifies that the
buffer offset is the
block length indicator.
1For padding and truncating fixed-length records, see
“Data Set Notes and Limitations® in the Table of Contents.
2This is the only subparameter allowed for DD * data sets.
3Blockset merge uses the largest LRECL and BLKSIZE found among
the input data sets. Conventional merge uses the LRECL and BLKSIZE
from SORTINOL.

Figure 3. DCB Subparameters Used by DFSORT

38 DFSORT: Application Programming: Guide

System DD Statements

Using DD Statements

If you choose not to use the SORT or SORTD cataloged procedures to invoke
DFSORT, you might need to supply system DD statements in your input job
stream. (See also the following section for DD statements dedicated to
DFSORT, such as SORTIN). The DD statements contained in the cataloged pro-
cedure (or provided by you) are:

/1JOBLIB DD
/ISTEPLIB DD

/ISYSIN DD

or

is needed to identify your program link library if it is not
already known to the system.

contains DFSORT control statements, comment statements,
blank statements and remarks when DFSORT is invoked with
JCL rather than by another program. It can also contain
user exit routines, in object deck format, to be link-edited by
DFSORT.

¢ If you use DFSPARM, then SYSIN is not necessary unless
your job requires link-editing.

* The SYSIN data set usually resides in the input stream;
however, it can be defined as a sequential data set or as
a member of a partitioned data set.

* The data set must not be defined as RECFM=U.
¢ SYSIN cannot be concatenated data sets.

Note: The OPTION statement keywords EFS, LIST, NOLIST,
LISTX, NOLISTX, MSGPRT, MSGDDN, SORTDD, SORTIN, and
SORTOUT are used only when they are passed by an
extended parameter list, or in the DFSPARM data set. If they
are specified on an OPTION statement read from the SYSIN
or SORTCNTL data set, the keyword is recognized, but the
parameters are ignored.

If you use the DFSPARM DD statement instead, you can
specify both EXEC PARM options and DFSORT control state-
ments in a single source data set that overrides all other
sources. See “DFSPARM DD Statement” on page 49.

If user exit routines are in SYSIN, make sure that:
* The END statement is the last control statement.

* The user exit routines are arranged in numeric order (for
example, E11 before E15).

« The user exit routines are supplied immediately after the
END control statement.

¢ Nothing follows the last object deck in SYSIN.
* A SORTMODS DD statement is included.

If you are invoking DFSORT dynamically, and you supply the
DFSORT control statements through the 24-bit or extended
parameter list, SORTCNTL, or DFSPARM, SYSIN remains the
source of user exit routines placed in the system input
stream.

Chapter 2. Executing DFSORT with Job Control Language 39

Using DD Statements

/ISYSOUT DD identifies the system output data set for messages. Always
use this statement if a cataloged procedure is not used. If
you are invoking DFSORT from another program, you can
specify an alternate DDNAME for the message data set. (If
you are invoking DFSORT from a COBOL program and are
using no DDNAME other than SYSOUT, the use of EXHIBIT or
DISPLAY in your COBOL program can produce uncertain
printing results.) Before printing DFSORT messages, a skip
to a new page is performed.

/ISYSUDUMP DD or

/ISYSABEND DD defines output from a system ABEND dump routine. Needed
only for debugging.

If you are using the supplied SORT cataloged procedure, the DD statements
mentioned below are automatically supplied. If you are not using the SORT cat-
aloged procedure and you are using the linkage editor, you must supply the fol-
lowing DD statements:

/ISYSPRINT DD contains messages from the linkage editor.
/1/SYSUT1 DD is a work area for the linkage editor.

//SYSLIN DD defines a data set in which DFSORT places control informa-
tion for the linkage editor.

/ISYSLMOD DD defines a data set that contains output from the linkage
editor.

Note: If you do not include user routines or you include user routines that do
not require link-editing, you can use the supplied SORTD cataloged procedure.
If you include user routines that require link-editing, you can use the SORT cat-
aloged procedure.

Program DD Statements
Even if you use the SORT or SORTD cataloged procedure to invoke DFSORT,
you might need to supply additional dedicated DD statements: The following
list summarizes each of these statements, and a more detailed explanation of
each one follows.

//ISORTLIB DD defines the data set that contains special load modules for
DFSORT, and can usually be omitted.

//SORTIN DD defines the input data set for a sorting or copying applica-
tion. Cannot be used for a merging application or if
SORTINnnN is used.

//SORTINnn DD defines the input data sets for a merging application. Cannot
be used for a sorting application or if SORTIN is used.

/ISORTWKnn DD defines intermediate storage data sets. Usually needed for a
sorting application unless dynamic allocation is requested.
Will not be used for a copying or merging application (but
may be opened, if present).

//SORTOUT DD defines the output data set for a sorting, merging, or copying
application.

40 DFSORT: Application Programming: Guide

Using DD Statements

/ISORTCKPT DD defines a data set for checkpoint records. Required only if
you are using the checkpoint facility.

//SORTCNTL DD defines the data set from which additional or changed
DFSORT control statements can be read, when DFSORT is
dynamically invoked.

/IDFSPARM DD defines the data set from which both additional or changed
DFSORT program control statements and EXEC statement
parameters can be read, when DFSORT is JCL-invoked or
dynamically invoked.

//ISORTDKnn DD defines the data set used for a VIO SORTWKnn allocation by
DFSORT if it is dynamically reallocated; SORTDKnn must
never be specified in the job stream.

IISORTDIAG DD specifies that all messages and control statements will be
printed. Needed only for debugging.

//ISORTMODS DD defines a temporary partitioned data set. This temporary
data set must be large enough to contain all your exit rou-
tines that appear in SYSIN for a given application. If none of
your routines appear in SYSIN, this statement is not
required. If your routines are in libraries, you must include
DD statements defining the libraries.

DFSORT temporarily transfers the user exit routines in SYSIN
to the data set defined by this DD statement before they are
link-edited for execution.

//SORTSNAP DD defines the snap dump data set dynamically allocated by
DFSORT. SORTSNAP must never be specified in the job
stream.

SORTLIB DD Statement

The SORTLIB DD statement can usually be omitted. This statement describes
the data set that contains special DFSORT load modules.
When Required: A SORTLIB DD statement is required only for:
* Sort applications using tape work data sets
* Merge applications for which Blockset cannot be used (see message
ICE800I).

The ICEMAC SORTLIB option determines whether DFSORT searches a system
library or private library for the load modules required by tape work data set
sorts and Conventional merges. If the load modules were installed in a system
library, the SORTLIB DD statement is unnecessary, and is ignored.

Example 1. SORTLIB DD Statement

//SORTLIB DD DSNAME=USORTLIB,DISP=(OLD,KEEP)

This example shows DD statement parameters that define a previously cata-
loged input data set:

Chapter 2. Executing DFSORT with Job Control Language 41

Using DD Statements

DSNAME
causes the system to search the catalog for a data set with the name
USORTLIB. When the data set is found, it is associated with the DDNAME
SORTLIB. The control program obtains the unit assignment and volume
serial number from the catalog and, if the volume is not already mounted,
writes a mounting message to the operator.

DISP
indicates that the data set is passed or cataloged (OLD) and that it should
be kept after the current job step.

For information on the parameters used in the SORTLIB DD statement, the con-
ditions under which they are required, and the default values assumed if a
parameter is not included, see Table 1 on page 36. The subparameters of the
DCB parameter are described similarly in Figure 3 on page 38. For more
detailed information, see your JCL reference manual.

SORTIN DD Statement

42 DFSORT: Applicati

The SORTIN DD statement describes the characteristics of the data set in which
the records to be sorted or copied reside, and indicates its location.

Note: FREE =CLOSE cannot be specified.

When Required: A SORTIN DD statement is required for all sort or copy appli-
cations, unless you both provide an E15 exit that supplies all input to DFSORT,
and include a RECORD statement in the program control statements. The
SORTIN DD statement is ignored if your program invokes DFSORT and passes
the address of your E15 exit in the parameter list.

Data Set Characteristics: DFSORT accepts empty and null non-VSAM data sets
for sorting and copying (be sure to apply DCB parameters). DFSORT also
accepts empty VSAM data sets for sorting or copying. For non-VSAM data sets,
DFSORT examines the DS1LSTAR field in the format-1 DSCB to determine
whether the data set is empty or null. If DS1LSTAR is zero, DFSORT treats the
data set as empty or null.

Note that a null data set is one that has been newly created, but never success-
fully closed. Null data sets cannot be processed successfully for a tape work
data set sort.

DFSORT accepts an empty (not a null) QSAM data set for sorting or copying (be
sure to supply DCB parameters). DFSORT accepts an empty VSAM data set for
sorting or copying. Note that a null QSAM data set is a data set that has been
opened for input, but no records have been written into it, and it has not been
closed successfully.

See “Data Set Notes and Limitations” on page 9 for additional considerations.

The following rules apply to concatenated data sets:

* RECFM must be the same for all data sets in the concatenation, except that
FB and FBS can be mixed.

* BLKSIZE can vary, but the data set with the largest block size must be
specified on the first DD statement of the concatenation.

on Programming: Guide

Using DD Statements

* With fixed-length records, LRECL must be the same for all data sets. With
variable-length records, LRECL can vary, but the largest size must be speci-
fied for the data set described on the first DD statement.

* If the data sets are on unlike devices you cannot use the EXLST parameter
at exit E18.

e If BSAM is used, all null data sets must precede all non-null data sets.

Example 2. SORTIN DD Statement

//SORTIN DD DSNAME=INPUT,DISP=(0LD,KEEP)

This example shows DD statement parameters that define a previously cata-
loged input data set:

DSNAME
causes the system to search the catalog for a data set with the name
INPUT. When the data set is found, it is associated with the DDNAME
SORTIN. The control program obtains the unit assignment and volume
serial number from the catalog and, if the volume is not already mounted,
writes a mounting message to the operator.

DISP
indicates that the data set is passed or cataloged (OLD) and that it should
be kept after the current job step.

Example 3. Volume Parameter on SORTIN DD

//SORTIN DD DSN=SORTIN,DISP=(OLD,KEEP),UNIT=3400-3,
// VOL=SER=(75836,79661,72945)

If the input data set is contained on more than one reel of magnetic tape, the
VOLUME parameter must be included on the SORTIN DD statement to indicate
the serial numbers of the tape reels. In this example, the input data set is on
three reels that have serial numbers 75836, 79661, and 72945.

If a data set is not on a disk or on a standard-labeled tape, you must specify
DCB parameters in its DD statement.

SORTINnn DD Statement

The SORTINnn DD statements describe the characteristics of the data sets in
which records to be merged reside, and indicate the locations of these data
sets.

When Required: SORTINnn DD statements are always needed for a merge
unless the merge is invoked from another program and all input is supplied
through a routine at exit E32.

Data Set Characteristics: Input data sets can be either non-VSAM or VSAM, but
not both. Empty and null non-VSAM data sets are accepted. An empty VSAM
data set causes a VSAM open error (code 160), and DFSORT terminates. For
non-VSAM data sets, DFSORT examines the DS1LSTAR field in the format-1

Chapter 2. Executing DFSORT with Job Control Language 43

Using DD Statements

DSCB to determine whether the data set is nuli or empty. If DS1LSTAR is zero,
DFSORT treats the data set as null or empty. Note that a null data set is one
that has been newly created, but never successfully closed. Null data sets
cannot be processed successfully by the Conventional merge technique.

Data sets can be multivolume, but not concatenated.

RECFM must be the same for all input data sets, except that FB and FBS can be
mixed.

BLKSIZE can vary, but for a Conventional merge, SORTINO1 must specify the
largest blocksize.

With fixed-length records, LRECL must be the same for all data sets. With
variable-length records, LRECL can vary, but for a Conventional merge,the
LRECL from SORTINO1 is used.

See “Data Set Notes and Limitations” on page 9 for additional considerations.

Coding Notes

¢ You can merge up to 16 data sets. (Blockset might allow more, depending
on available storage.)

* If Blockset merge is used, nn can be any integer from 00 (the initial zero is
optional) to 99, in any order. Remember that Blockset merge treats
DDNAMEs of the form SORTINx and SORTINOx as duplicates, and ignores
any occurrences after the first. For example, if DFSORT reads a DD state-
ment as SORTING DD... and subsequently reads another as SORTINO4 DD...,
the latter DD statement is ignored.

« If Conventional merge is used, nn can range from 01 to 16. The first
number you use must be 01, and the remainder must follow in numeric
order. No numbers can be skipped. Remember that Conventional merge
ignores DDNAMEs in the form “SORTINx".

* FREE =CLOSE cannot be specified.

Example 4. SORTINO1-03 DD Statements (Merge)

//SORTINO1 DD DSNAME=MERGE1,VOLUME=SER=000111,DISP=0LD,
// LABEL=(,NL) ,UNIT=3400-3,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=240)
//SORTINO2 DD DSNAME=MERGE2,VOLUME=SER=000121,DISP=0LD,
// LABEL=(,NL) ,UNIT=3400-3,

DCB=(RECFM=FB, LRECL=80,BLKSIZE=240)
//SORTINO3 DD DSNAME=MERGE3,VOLUME=SER=000131,DISP=0LD,
// LABEL=(,NL) ,UNIT=3400-3,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=240)

44 DFSORT: Application Programming: Guide

Using DD Statements

Example 5. SORTIN01-02 DD Statements (Merge)

//SORTING1 DD DSNAME=INPUT1,VOLUME=SER=000101, *

UNIT=3330,DISP=0LD *DCB PARAMETERS
//SORTING2 DD DSNAME=INPUT2,VOLUME=SER=000201, *SUPPLIED FROM
// UNIT=3330,DISP=0LD *LABELS

SORTWKnn DD Statement
The SORTWKnn DD statements describe the characteristics of the data sets
used as intermediate storage areas for records to be sorted; they also indicate
the location of these data sets.

If more than 32 SORTWKnn DD statements are specified, only the first 32 are
used.

Note: FREE =CLOSE cannot be specified.

When Required: One or more SORTWKnn statements are required for each
sort application (but not a merge or copy), unless:

« Input can be contained in main storage (except for Blockset under certain
conditions), or

» Dynamic allocation has been requested.

For information on how to calculate the amount of storage needed, see “Inter-
mediate Storage” on page 311.

See OPTION FILSZ|SIZE for further considerations.

Diagnostic message ICE803I gives information on intermediate storage
allocation/use.

Devices: SORTWKnn data sets can be on disk or on tape, but not both, as
described in “Intermediate Storage” on page 311. Disk types can be mixed.

Tape must be nine-track unless input is on seven-track tape, in which case
work tapes can (but need not) be 7-track.

General Coding Notes
e In the DDNAME (SORTWKnn):

— Cylinder allocation is preferable for performance reasons. DFSORT
reallocates temporary SORTWKnn data sets in cylinders.

— With disk work areas, nn can be any decimal number from 00 (the initial
zero is optional) through 99 and numbers can be in any order; however,
if more than 32 are specified, only the first 32 are used. Remember that
DFSORT treats DDNAMEs of the form SORTWKx and SORTWKOx as
duplicates, and ignores any occurrences after the first. For example, if
DFSORT reads a DD statement as SORTWK4 DD... and subsequently
reads another as SORTWKO04 DD..., the latter DD statement is ignored.

Chapter 2. Executing DFSORT with Job Control Language 45

Using DD Statements

L]

— Unless the input file is very large, one or two SORTWKnn data sets are
usually sufficient. One or two large SORTWKnn data sets are prefer-
able to several small ones.

— With tape work areas, nn can be from 01 through 32; the first must be
01, and the rest must follow consecutively. No numbers can be skipped.
At least three SORTWKnn data sets are required for tapes.

DD DUMMY must not be used.

Different SORTWKnn DD statements must not refer to the same physical
data set.

Do not include parameters relating to ISCII/ASCII data, because ISCII/ASCII
input is automatically translated into EBCDIC before being moved into an
intermediate storage area.

Disk Coding Notes

Data sets must be sequential, not partitioned.
The SPLIT cylinder parameter must not be specified.

If no secondary allocation is requested for temporary SORTWKnn data sets,
automatic secondary allocation will be used unless NOWRKSEC is in effect.
(Secondary allocation is limited to 12 work data sets in the Peerage or Vale
sorting techniques only.)

If the data set is allocated to VIO, there is no automatic secondary allo-
cation.

Secondary allocation can be requested for work data sets. If more work
data sets are defined they are used with only the primary allocation. (Sec-
ondary allocation is limited to 12 work data sets in the Peerage and Vale
sorting techniques only.)

DFSORT uses only the space on the first volume specified for a multivolume
data set. Space on the second and subsequent volumes is not used. Multi-
volume SORTWKnn data sets are therefore effectively treated as single-
volume SORTWKnn data sets.

If primary space is fragmented, then all but the first fragment are handled
as secondary space.

Virtual 1/0: If a SORTWKnn data set is specified on a virtual device:

With VIO=NO, DFSORT carries out dynamic reallocation using the DDNAME
SORTDKnNn on a real device with the same device type as the virtual
device. If a real device corresponding to the virtual device is not available
in the system, DFSORT terminates.

With VIO=YES, the virtual device is used; performance might be degraded.

46 DFSORT: Application Programming: Guide

Using DD Statements

Example 6. SORTWKO1 DD Statement, Disk Intermediate Storage

The following is an example of a SORTWKnn DD statement using a disk device:

//SORTWKO1 DD SPACE=(CYL,(15,5)),UNIT=3380

If you use the checkpoint/restart facility and need to make a deferred restart,
you must make the following additions to the above statement so that the sort
work data set is not lost:

DSNAME=name1,DISP=(NEW, DELETE, KEEP)

Thus the same SORTWKnn DD statement for a deferred restart would be:

//SORTUKO1 DD DSNAME=namel,UNIT=3380,SPACE=(CYL,(15,5)),
// DISP=(NEW,DELETE,KEEP)

Example 7. SORTWKO1 DD Statement, Tape Intermediate Storage

//SORTYKO1 DD UNIT=3400-3,LABEL=(,NL)
//SORTWKO2 DD UNIT=3400-3,LABEL=(,NL)
//SORTWK®3 DD UNIT=3400-3,LABEL=(,NL)

This is an example of SORTWKnn DD statements using three tape devices.

If DFSORT terminates unsuccessfully and the above DD statements have been
specified, the intermediate storage data sets remain in the system until the step
has been successfully rerun or until the data sets have been deleted by some
other means.

These parameters specify unlabeled data sets on three 3400 series tape units.
Because the DSNAME parameters are omitted, the system assigns unique
names.

SORTOUT DD Statement
The SORTOUT DD statement describes the characteristics of the data set in

which the processed records are to be placed, and indicates its location.

Note: FREE =CLOSE cannot be specified.

When Required: A SORTOUT DD statement is always required, unless you
provide an E35 exit that disposes of all output. The SORTOUT DD statement is

ignored if your program invokes DFSORT and passes the address of your E35
exit in the parameter list.

Chapter 2. Executing DFSORT with Job Control Language 47

Using DD Statements

Data Set Characteristics: See “Data Set Notes and Limitations” on page 9 and
“VSAM Considerations” on page 10.

Note:

« If LABEL=RETPD is specified in the SORTOUT DD statement for a standard
labeled tape, the DCB parameters must also be specified. If the DCB
parameters are not specified, the tape might be opened twice.

« OPTCD=W should not be specified for an 1BM 3480 tape unit. If it is speci-
fied for a full function 3480 tape unit, the request is overridden. If it is speci-
fied for a 3480 operating in 3420 compatibility mode (specified as 3400-9),
the request is not overridden, but performance might be degraded.

+ If no secondary allocation is requested for a temporary or new SORTOUT
data set, automatic secondary allocation will be used unless NOOUTSEC is
in effect.

Example 8. SORTOUT DD Statement

//SORTOUT DD DSN=C905460.0UTPT, UNIT=3350, SPACE=(CYL,5),

// DISP=(NEW,CATLG)
pcB
The DCB parameters default to those of SORTIN.
Disp

The data set is unknown to the operating system (NEW), and it is to be cata-
loged (CATLG) under the name C905460.0UTPT.

DSNAME
The data set is to be called C305460.QUTPT.

SPACE
Five cylinders of storage are requested for the data set.

UNIT
Indicates that the data set is on a 3350 unit.

SORTCKPT DD Statement
The SORTCKPT data set can be allocated on any device that operates with the
Basic Sequential Access Method (BSAM). Processing must be restarted oniy
from the last checkpoint taken.

Example 9. SORTCKPT DD Statement

//SORTCKPT DD DSNAME=CHECK,VOLUME=SER=000123,
// DISP=(NEMW,KEEP) ,UNIT=3400-3

When allocating the SORTCKPT data set, at least one intermediate storage data
set is required.

48 DFSORT: Application Programming: Guide

Using DD Statements

If the CKPT operand is specified on the OPTION or SORT control statement,
more intermediate storage may be required. See “Intermediate Storage” on
page 311.

If you want to use the checkpoint/restart facility, refer to “Checkpoint/Restart”
on page 383.

SORTCNTL DD Statement
You can use the SORTCNTL data set to read changed and additional DFSORT
control statements, comment statements, blank statements, and remarks, when
DFSORT is invoked from another program (written, for example, in COBOL or
PLN).

e The SORTCNTL data set usually resides in the input stream, but can be
defined as a sequential data set or as a member of a partitioned data set.

* The data set must not be defined as RECFM=U.
e SORTCNTL cannot be concatenated data sets.

* When DFSORT is invoked from a PL/I program, the SORTCNTL or
DFSPARM data set must not be used to supply a new RECORD control
statement.

Example 10. SORTCNTL DD Statement

//SORTCNTL DD *

Note: The OPTION statement keywords EFS, LIST, NOLIST, LISTX, NOLISTX,
MSGPRT, MSGDDN, SORTDD, SORTIN, and SORTOUT are used only when they
are passed by an extended parameter list, or in the DFSPARM data set. If they
are specified on an OPTION statement read from the SYSIN or SORTCNTL data
set, the keyword is recognized, but the parameters are ignored.

If your program invokes DFSORT more than once, you can direct DFSORT to
read different versions of the SORTCNTL data set at each call. See the expla-
nation of the SORTDD parameter of the OPTION program control statement on
page 114.

Note: [f you use the DFSPARM DD statement instead, you can specify both
EXEC PARM options and DFSORT control statements in a single source data set
that overrides all other sources. See “DFSPARM DD Statement.” For override
rules, see Appendix C, “Specification/Override of DFSORT Options” on

page 353.

DFSPARM DD Statement
The DFSPARM DD statement can be used to read changed or additional
DFSORT program control statements and EXEC statement PARM options from a
single DD source. Because statements in the DFSPARM data set are read
whether DFSORT is dynamically invoked or invoked with JCL, you can specify
EXEC PARM options when invoking DFSORT from another program (unlike
SORTCNTL). DFSPARM accepts all DFSORT program control statements and
all EXEC statement PARM options (including those ignored by SYSIN and
SORTCNTL) and any equivalent options specified on a DFSORT OPTION state-
ment.

Chapter 2. Executing DFSORT with Job Control Language 49

Using DD Statements

DFSPARM also accepts comment statements, blank statements, and remarks.

Full override and applicability details are listed in
Appendix C, “Specification/Override of DFSORT Options” on page 353.

« If you use DFSPARM, SYSIN is not necessary unless your job requires link-
editing.

+ The DFSPARM data set usually resides in the input stream, but it can be
defined as a sequential data set or as a member of a partitioned data set.

e The data set must not be defined as RECFM=U.
e DFSPARM cannot be concatenated data sets.

* When DFSORT is invoked from a PL/I program, the SORTCNTL or
DFSPARM data set must not be used to supply a new RECORD control
statement.

Note: The DDNAME “DFSPARM" is used throughout this book to refer to this
data set source for EXEC PARM options and DFSORT program control state-
ments. When your system programmers installed DFSORT, they might have
changed this name to one more appropriate for your site with the PARMDDN
option of the ICEMAC installation macro. Verify the correct DDNAME before
attempting to use the features available with DFSPARM.

General Coding Notes: Coding of parameters in the DFSPARM DD statement
follows the same rules used for the JCL EXEC statement PARM options, and the
program control statements specified in SYSIN or SORTCNTL, with these
exceptions:

e Labels are not allowed.

* PARM options and program control statements cannot be mixed on the
same line, but can be specified in any order on different lines.

* PARM options must be specified without the PARM = keyword and without
quote marks.

* Commas (or semicolons) are accepted but not required to continue PARM
options to another line.

* Leading blanks are not required for PARM options, but at least one leading
blank is required for program control statements.

Example 11. DFSPARM DD Statement

//OFSPARM DD *

SORT FIELDS=(1,2,CH,A),STOPAFT=300
ABEND

OPTION SORTIN=DATAIN

STOPAFT=500

In this example the DFSPARM DD data set passes a DFSORT SORT statement,
the ABEND and STOPAFT parameters equivalent to specifying

PARM ='ABEND,STOPAFT=500" in a JCL EXEC statement, and a DFSORT
OPTION statement.

50 DFSORT: Application Programming: Guide

Using DD Statements

Notes:

1. Neither of the DFSORT program control statements appear on the same line
as the ABEND or STOPAFT PARM options.

2. The PARM option STOPAFT =500 overrides the SORT control statement
option STOPAFT =300.

Example 12. DFSPARM DD Statement

//DFSPARM DD *
SORT FIELDS=(5,2,CH,D),SKIPREC=10
STOPAFT=100,BSAM, SKIPREC=5
OPTION SORTIN=DATAIN,SKIPREC=20

In this example, the DFSPARM DD data set contains a SORT program control
statement, three PARM options on one line, and an OPTION program control
statement.

Note: Because PARM options override program control statements, DFSORT
uses SKIPREC =5, and ignores the other SKIPREC specifications.

For information on the parameters used in the DFSPARM DD statement, the
conditions under which they are required, and any default values assumed if a
parameter is omitted, see “Specifying EXEC Statement PARM Options” on
page 21 and Chapter 3, “Using DFSORT Program Contro! Statements” on
page 53.

SORTDKnn DD Statement
SORTWKnn data sets can be assigned to VIO. If the ICEMAC parameter VIO is

specified or defaults to NO, VIO SORTWKnn data sets are deallocated and real-
located by DFSORT with the ddname SORTDKnn. The DDNAME SORTDKnn is
reserved for use by DFSORT.

SORTDIAG DD Statement
The SORTDIAG DD statement specifies that all messages, including diagnostic

messages (ICE800! through ICE993l), and control statements are to be written
to the message data set. The statement can be used for all DFSORT tech-
niques, and provides information on EXCP counts, intermediate storage
allocation/use, and so on. The SORTDIAG DD statement has no effect on
console messages. The statement is intended as a diagnostic tool.

When SORTDIAG is used for a JCL-invoked DFSORT, a SYSOUT DD statement
must be provided. For a dynamically invoked DFSORT job, a SYSOUT DD state-
ment or a DDNAME DD statement (where DDNAME is the alternate message
data set DDNAME specified during installation or execution) must be provided.

Note: If neither an alternate message data set DDNAME statement nor a
SYSOUT DDNAME statement is provided, DFSORT terminates with a return
code of 20.

Chapter 2. Executing DFSORT with Job Control Language 51

Using DD Statements

Example 13. SORTDIAG DD Statement

//SORTDIAG DD DUMMY

SORTSNAP DD Statement
The SORTSNAP DD statement defines the data set where ESTAE recovery
routine snap dumps, and snap dumps requested before or after a call to an EFS
program, are printed. SORTSNAP is dynamically allocated by DFSORT when-
ever it is required. The DDNAME, SORTSNAP, is reserved for DFSORT.

52 DFSORT: Application Programming: Guide

Using DFSORT Program Control Statements

Chapter 3. Using DFSORT Program Control Statements

Control Statement Summary 54
Control Statements e 54
General Coding Rules 55
Continuation Lines 57
Inserting Comment Statements oo L L. 58
Coding Restrictions e 58
ALTSEQ Control Statement 60
ALTSEQ Statement Examples o 60
DEBUG Control Statement o oo 62
DEBUG StatementExamples e 66
END Control Statement 67
END Statement Examples e 67
INCLUDE Control Statement 68
INCLUDE/OMIT StatementNotes 75
INCLUDE Statement Examples 76
INREC Control Statement e 78
INREC Statement Notes i 81
INREC Statement Examples 83
MERGE Control Statement e 87
MERGE Statement Examples 0 0. 89
MODS Control Statement e e 91
MODS Statement Examples i e 93
OMIT Control Statement e e 95
OMIT Statement Example i i e g5
OPTION Control Statement 97
OPTION StatementExamples, 117
OUTREC Control Statement 121
OUTREC Statement Notes« 123
OUTREC Statement Examples 124
RECORD Control Statement e 127
RECORD Statement Examples e e e e e e e e e e e 130
SORT Control Statement e e 132
SQRT Statement Note e e e 138
SORT Statement Examples e 138
SUM Control Statement e 141
SUM Statement Notes o i i it e e e 142
SUM Statement Examples e 143

Chapter 3. Using DFSORT Program Control Statements 53

Control Statement Summary

Program control statements direct DFSORT processing of your records. Some
program control statements are required, while others are optional. You use
the control statements to:

« |ndicate whether you want to sort, merge, or copy records

* Describe the control fields you want to use

« Indicate program exits for transferring control to your own routines
+ Describe DFSORT functions you want to invoke

+ Describe your input and output files

» [ndicate various options you want to use while processing.

You can supply program control statements to DFSORT from:

* A SYSIN data set

¢« A SORTCNTL data set

e A DFSPARM data set

* A 24-Bit parameter list

* An extended parameter list.

See Appendix C, “Specification/Override of DFSORT Options” on page 353 for
an explanation of when you might want to use each source.

DFSORT Panels offers you an alternative to coding program control statements
directly. When you use panels to prepare a job to be run or saved in a data
set, you can create the necessary statements in correct syntax by entering
information and commands on-line. See Chapter 4, “Using Panels to Create
and Submit DFSORT Jobs” on page 145 for details on using DFSORT Panels.

This ctapter begins with a summary of DFSORT program control statements
and coding rules, and then provides, in alphabetical order, a detailed
description of each statement.

Control Statement Summary

Control Statements
Describing your primary task (sorting, merging, or copying):

The only required program control statement in a DFSORT job is a SORT,
MERGE, or OPTION statement that specifies whether you want to sort, merge,
or copy records. (Copying can be specified on any of the three statements).

SORT Describes your control fields if you are coding a sort job, or can
be used to specify a copy job. Indicates whether you want
ascending or descending order.

MERGE Describes your control fields if you are coding a merge job, or
can be used to specify a copy job. Indicates whether you want
ascending or descending order.

OPTION Overrides installation defaults (such as EQUALS, CHALT, and
CHECK) and supplies optional information (such as DYNALLOC
and SKIPREC). Can be used to specify a copy job.

54 DFSORT: Application Programming: Guide

General Coding Rules

Including or omitting records from the output data set:

INCLUDE Specifies that only records whose fields meet certain criteria are
included.

oMIT Specifies that any records whose fields meet certain criteria are
deleted.

Reformatting and editing records: You can modify individual records by
deleting and reordering fields and inserting blanks, zeros, or constants.

INREC Specifies how records are reformatted before they are sorted,
copied, or merged.

OUTREC Specifies how records are reformatted after they are sorted,
copied, or merged.

Invoking additional functions and options: You can use the remaining control
statements to perform a variety of tasks.

ALTSEQ Moadifies the standard IBM EBCDIC collating sequence. The mod-
ified sequence is used for any control field whose format is speci-
fied as AQ.

DEBUG Used for diagnostic purposes.

END Causes DFSORT to discontinue reading SYSIN, SORTCNTL, or
DFSPARM.

MODS Required only if you include user exit routines in a DFSORT job.

See Chapter 5, “Using Your Own Exit Routines” on page 181 for
information about user exit routines.

RECORD Supplies record length and type information. This statement is
required when you include user exit routines that change record
lengths during DFSORT execution, when there is no SORTIN DD
statement, or when input and output are VSAM data sets.

SUM Specifies that numeric summary fields in records with equal
control fields are summed in one record, and that the other
records are deleted.

General Coding Rules

See “Inserting Comment Statements” on page 58 for an explanation of how to
use comment statements, blank statements, and remarks. DFSORT program
control statements and EXEC PARM options can also be specified together in a
user-defined DD data set. See “DFSPARM DD Statement” on page 49 for
special coding conventions that apply to this DD source.

All other DFSORT control statements have the same general format, shown in
Figure 4 on page 56. The illustrated format does not apply to control state-
ments you supply in a parameter list. See Chapter 6, “Invoking DFSORT from
a Program” on page 231 for information on the special rules that apply.

Chapter 3. Using DFSORT Program Control Statements 55

General Coding Rules

Column 1 must be blank
unless a label is present

72 730000.0.0.0..0...80

(Label) Operation Operand (Remarks) (Sequence or
Identification)

(Continuation column)

Figure 4. Control Statement Format

The control statements are free-form; that is, the operation definer, operand(s),
and comment field can appear anywhere in a statement, provided they appear
in the proper order and are separated by one or more blank characters.
Column 1 of each control statement must be blank, unless the first field is a
label.

Label Field: If present, the label must begin in column 1, and must conform to
the operating system requirements for statement labels.

Operation Field: This field can appear anywhere between column 2 and
column 71 of the first line. It contains a word (for example, SORT or MERGE)
that identifies the statement type to the program. In the example below, the
operation definer, SORT, is in the operation field of the sample control state-
ment.

Operand Field: The operand field is composed of one or more operands sepa-
rated by commas or semicolons. This field must follow the operation field, and
be separated from it by at least one blank. No blanks are allowed within the
parameters, but a blank is required at the end of all parameters. If the state-
ment occupies more than one line, the operand must begin on the first line.
Each operand has an operand definer, or parameter (a group of characters that
identifies the operand type to DFSORT). A value or values can be associated
with a parameter. The three possible operand formats are:

e parameter
* parameter=value
¢ parameter=(value1,value2...,valuen)

The following example illustrates each of these formats.

SORT FIELDS=(10,30,A),FORMAT=CH,CKPT

Remark Field: This field can contain any information. It is not required, but if it
is present, it must be separated from the last operand field by at least one
blank.

56 DFSORT: Application Programming: Guide

General Coding Rules

Continuation Column (72): Any character other than a blank in this column
indicates that the present statement is continued on the next line. However, as
long as the last character of the operand field on a line is a comma or semi-
colon followed by a blank, the program assumes that the next line is a contin-
uation line. The nonblank character in column 72 is required only when a
comments field is to be continued or when an operand is broken at column 71.

Columns 73 through 80: This field can be used for any purpose.

Continuation Lines

Column 1 must

The format of the DFSORT continuation line is shown in Figure 5.

be blank
16 72 73.0-ooocoooo.oo080
) | |
Continued operand or remarks Optional use
Continuation column

Figure 5. Continuation Line Format

The continuation column and columns 73 through 80 of a continuation line have
the same purpose as they do on the first line of a control statement. Column 1
must be blank.

A continuation line is treated as a logical extension of the preceding line.
Either an operand or a comments field can begin on one line and continue on
the next. The following rules apply:

* If a comments field is broken or is to be started on a new line, column 72
must contain a nonblank character. The continuation can begin in any
column from 2 through 71.

» If an operand field is broken after a comma or a semicolon, the continuation
column (72) can be left blank, and the continuation can begin in any column
from 2 through 71. If the comma or semicolon is in column 71 and column
72 contains a nonblank character, the continuation must begin in column 16.

» If an operand field is not broken after a comma or semicolon, the operand
field must be broken at column 71. Column 72 must contain a nonblank
character. The continuation must begin in column 16.

Chapter 3. Using DFSORT Program Control Statements 57

Inserting Comment Statements

Examples of Valid Continuation Lines:

1 16

FORMAT=CH
OPTION SKIPREC=2,LIST,
DYHALLOC

SORT FIELDS=(5,8,4,20,2,D),

SKIP 2 RECORDS—LIST CONTROL STATEMENTS—
USE DYNAMIC ALLOCATION

INCLUDE COND=(1,10,CH,EQ,C STOCKHOLM',AND,21,8,20,6T,+500,0R,31,4,CH,N*
E,C'HERR")

Inserting Comment Statements

Coding Restrictions

Specify comment statements by coding an asterisk (") in column 1. A
comment statement is printed along with other DFSORT program control
statements, but is not otherwise processed.

A statement with blanks in columns 1 through 71 is treated as a comment
statement.

Comment statements are allowed only in the DFSPARM, SYSIN, and
SORTCNTL data sets.

The following rules apply to control statement preparation:

Labels, operation definers, and operands must be in uppercase EBCDIC.

Coiumn 1 of each control statement can be used only for a label or for a
comment statement that begins with an asterisk in column 1.

Labels must begin in column 1, and conform to operating system require-
ments for statement labels.

The entire operation definer must be contained on the first line of a control
statement.

The first operand must begin on the first line of a control statement. The
last operand in a statement must be followed by at least one blank.

Blanks are not allowed in operands. Anything following a blank is consid-
ered part of the remark field.

Values can contain no more than eight alphameric characters (except for
estimated data set size, which can contain nine characters).

Commas, semicolons, and blanks can be used only as delimiters. They can
be used in values only if the values are constants.

Each type of program control statement can appear only once within a
single source (for example, the SYSIN data set).

58 DFSORT: Application Programming: Guide

Inserting Comment Statements

EFS Restrictions When an EFS Program Is in Effect
In addition to the items above, the following restrictions apply to control state-
ment preparation for an EFS program.

* Non-DFSORT operation definers can be up to 8 bytes long
* An operation definer with no operands is allowed only if it:
— Is supplied through SYSIN, SORTCNTL, or DFSPARM

— Is the only operation definer on a line; column 72 must contain a blank.

Using Control Statements from Other IBM Programs
The control statements INPFIL and OUTFIL, which are used by other IBM sort
programs, are accepted by this release, but not processed. The information
contained in the INPFIL and OUTFIL statements is supplied to the program in
DD statements.

Because DFSORT now uses the OPTION control statement, OPTION control
statements in any job streams from other IBM sort programs cause DFSORT to
terminate, unless the parameters from the other program conform to the
DFSORT OPTION control statement parameters.

DFSORT accepts SORT, MERGE, RECORD, END, and ALTSEQ statements pre-
pared for other IBM System/360 or System/370 sort/merge programs; any obso-
lete parameters are ignored. However, because of the difference in parameter
specifications, DFSORT does not accept other programs’ MODS control state-
ments, with the exception of those used by the IBM Sort/Merge Program
360S-SM-023, and Licensed Program Sort/Merge 5734-SM1.

Note that applications using the 360S-SM-023 and 5734-SM1 programs can be
successfully run using DFSORT.

Chapter 3. Using DFSORT Program Control Statements 59

ALTSEQ Control Statement

ALTSEQ Control Statement

’

»——ALTSEQ CODE=—(fftt) >

The ALTSEQ statement changes the collating sequence of EBCDIC character
data; it changes only the order in which data is collated, not the data itself. If a
modified version of the collating sequence is available by default at your site,
the ALTSEQ statement overrides it.

When you supply an ALTSEQ staiement, DFSORT applies the modified collating
sequence to any control field whose format you specify on the SORT or MERGE
statement as AQ. If you specify AQ without supplying an ALTSEQ statement,
DFSORT uses the default available at your site, if there is one. Otherwise,
DFSORT uses the standard EBCDIC collating sequence.

ff
represents, in hexadecimal, the EBCDIC collating position of the character
whose position is to be changed.

represents, in hexadecimal, the EBCDIT collating position to which the char-
acter is to be moved.

The order in which the parameters are specified is not important.

Note:

* If CHALT is in effect, control fields with format CH are translated by the
ALTSEQ table in addition to those with format AQ.

¢ Use of ALTSEQ can degrade performance.

Defauli: Usually the installation option, but refer to
Appendix C, “Specification/Override of DFSORT Options” on page 353 for full
override details.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

ALTSEQ Statement Examples
ALTSEQ Example 1

ALTSEQ CODE=(5BEA)

The character represented by X'58'($ or national character) is to collate after
‘Z' (at position X'EA"').

60 DFSORT: Application Programming: Guide

ALTSEQ Control Statement

ALTSEQ Example 2

ALTSEQ CODE=(FOBO,F1B1,F282,F383,F4B4,F585,F686,
F787,F8B8,F9B9)

The numerals 0 through 9 are to collate before uppercase letters (but after low-
ercase letiers).

Chapter 3. Using DFSORT Program Control Statements 61

DEBUG Control Statement

DEBUG Control Statement

»~—DEBUG ABEND -
I—NOABENDJ

——ABSTP
BSAM
——BUFFERS= ANY
BELOW

CTRx=n

’

——EFSDPAF T= (—n——)—

’

——EFSDPBFR= (—n——)—

——EQUCOUNT

[ESTAgy
NOESTAE

L NOASSIST

The statement is not intended for regular use; only ABEND, NOABEND, BSAM,
and EQUCOUNT are of general interest. For a tape work sort or a Conventional
merge, only the ABEND or NOABEND parameters of the DEBUG statement are
used. For more information about problem diagnosis, see DFSORT Diagnosis
Guide.

ABEND or NOABEND

ABEND . -
lN70ABENDJ

Temporarily overrides the ERET installation option, which specifies whether
DFSORT abends or terminates with a return code of 16 if your sort, copy, or
merge is unsuccessful.

ABEND
specifies that if your sort, copy, or merge is unsuccessful, it abends with
a user completion code equal to the appropriate message number, or
with a user-defined number between 1 and 99, as set during installation
with the ICEMAC option ABCODE =n.

When DEBUG ABEND is in effect, a user abend code of zero might be
issued when a tape work data set sort or Conventional merge is unsuc-
cessful.

NOABEND
specifies that an unsuccessful sort, copy, or merge terminates with a
return code of 16.

Note: RC16 =ABE and NORC16 can be used instead of ABEND and
NOABEND, respectively.

Default: Usually the installation default, but refer to
Appendix C, “Specification/Override of DFSORT Options™ on page 353 for
full override details.

62 DFSORT: Application Programming: Guide

DEBUG Control Statement

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

ABSTP

=>———ABSTP >

ABSTP prevents loss of needed information in a dump when Blockset termi-
nates. This option overrides ERET, ABEND, and NOABEND. If the DFSORT
application is unsuccessful, an abend is forced with a completion code
equal to the appropriate message number, or with the user ABEND code set
during installation with the ICEMAC option ABCODE=MSG or ABCODE=n.
The message is not written if NOESTAE is in effect.

Defauit: None; optional

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

BSAM

- BSAM -

DFSORT normally uses the EXCP access method for SORTIN and SORTOUT.
¢f you encounter a problem related to this 1/0 activity, you can temporarily
bypass it by specifying this parameter. BSAM is ignored for VSAM SORTIN
and/or SORTOUT data sets.

Note: Use of this option might degrade performance.
Default: None; optional.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

BUFFERS

»————BYFFERS= ANYJ >
BELOW

DFSORT normally allocates RSA and buffers above 16-megabyte virtual.
You can temporarily bypass the default by specifying BELOW.

ANY
specifies that the record storage area (RSA) and input/output buffers
may be allocated either above or below 16-megabyte virtual.

BELOW
specifies that the record storage area (RSA) and input/output buffers
must be allocated below 16-megabyte virtual.

Note: BSAM buffers are always allocated below 16-megabyte virtual.
Default: ANY

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

Chapter 3. Using DFSORT Program Control Statements 63

DEBUG Control Statement

CTRx

- CTRx=n -

DFSORT keeps a count of the input and output records, and abends with
code 0C1 when the count reaches n.

The numbers that can be assigned to x are:

2 Count of input records being moved from the input buffer (not used for
a copy)

3 Count of output records being moved to the output buffer (not used for
a copy or merge)

4 Count of input records inserted by E15 (not used for Blockset)
5 Count of output records deleted by E35 (not used for Blockset)
Default: None; optional.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

EFSDPAFT

N
»»————EFSDPAFT n >

EFSDPAFT causes a SNAP dump after a Major Call to an EFS program. Any
combination of the numbers can be specified.

The numbers have the following meanings:

2 Take the SNAP dump after Major Call 2 to the EFS program
3 Take the SNAP dump after Major Call 3 to the EFS program
4 Take the SNAP dump after Major Cali 4 to the EFS program
5 Take the SNAP dump after Major Call § to the EFS program
Default: None; optional.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

EFSDPBFR

|
»»————————FEFSDPBFR=—"n >

This parameter causes a SNAP dump before a Major Call to an EFS
program. Any combination of the numbers can be specified.

The numbers have the following meanings:

2 Take the SNAP dump before Major Call 2 to the EFS program

64 DFSORT: Application Programming: Guide

DEBUG Control Statement

3 Take the SNAP dump before Major Call 3 to the EFS program
4 Take the SNAP dump before Major Call 4 to the EFS program
5 Take the SNAP dump before Major Call 5 to the EFS program
Default: None; optional.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

ESTAE or NOESTAE

ESTAE
|:NOESTAE]

Temporarily overrides the ESTAE installation option, which determines
whether DFSORT should delete its ESTAE recovery routine early, or use it
for the entire run.

DFSORT normally establishes an ESTAE recovery routine at the beginning
of a run. If an abend occurs and the ESTAE option is in effect, the system
passes control to the recovery routine. The routine terminates the run after
attempting to:

* Print additional abend information
* Continue a sort, merge, or copy job after successful output

» Call the EFS program at Major Calls 4 and 5 for cleanup and house-
keeping

¢ Write an SMF record
¢ Call the ICETEXIT termination exit.

If an abend occurs and the ESTAE option is not in effect, these functions
might not be performed.

ESTAE
specifies that DFSORT can use its ESTAE recovery routine for the entire

run.

NOESTAE
specifies that DFSORT is to delete its ESTAE recovery routine at a point
early in its processing. If DFSORT terminates or abends before this
point is reached, it will not delete its ESTAE recovery routine; that is,
NOESTAE will not be in effect.

Default: Usually the installation default. See
Appendix C, “Specification/Override of DFSORT Options” on page 353 for
more information.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options.”

Note: See Appendix F, “DFSORT Abend Processing” on page 383 for
more information on the DFSORT ESTAE recovery routine.

Chapter 3. Using DFSORT Program Control Statements 65

DEBUG Control Statement

EQUCOUNT

»»——————EQUCOUNT e

Use this parameter to determine the number of records having equal keys
which have been sorted by the Blockset technique (printed in message
ICE184l). For variable-length records, EQUCOUNT cannot be used without
at least one intermediate data set.

Use of EQUCOUNT will degrade performance.
Default: None; optional

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

NOASSIST

»»—————HOASSIST >

DFSORT uses System/370-XA Sorting Instructions on MVS/XA and
MVS/ESA, when possible. If you do not want to use these instructions, you
can temporarily bypass them by specifying this parameter.

Default: None; optional.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options™” on page 353.

| DEBUG Siatement Examples
| DEBUG Example 1

| //SYSIN DD *
| SORT FIELDS=(1,6,A,28,5,D),FORMAT=CH
| DEBUG EQUCOUNT

| Issue message ICE184l to indicate how many records with equal keys were
| sorted by the Blockset technique.

66 DFSORT: Application Programming: Guide

END Control Statement

END Control Statement

»—END -«

The END statement is required if you want DFSORT to discontinue reading
SYSIN, DFSPARM, or SORTCNTL before end-of-file.

When you link-edit user exit routines dynamically, the END statement marks the
end of the DFSORT control statements and the beginning of exit routine object
decks in SYSIN.

END Statement Examples
END Example 1

//SYSIN DD *
SORT FIELDS=(1,6,A,28,5,D),FORMAT=CH
RECORD TYPE=V,LENGTH=(200,,,,80)
END
OPTION DYNALLOC

Because the OPTION statement appears after the END statement, it cannot be
read.

END Example 2: SYSIN Input for Dynamic Link-Editing

//SYSIN DD *
SORT FIELDS=(5,8,CH,A)
MODS E15=(E15,1024,SYSIN,T)
END

<object deck for E15 exit here»

The END statement precedes the E15 exit routine object deck in SYSIN.

Chapter 3. Using DFSORT Program Control Statements 67

INCLUDE Centrol Statement

iINCLUDE Control Statement

»=INCLUDE COND=T pl,ml, fl,T—-EQ—,—Tp2,m2, f2) >
T
GT constant
GE
LT
LE

AND
ORJ— ’

S

pl,ml, p2,m2), FORMAT=f
1T
GT constant
GE
LT
LE

An INCLUDE statement is used if you want only certain records to appear in the
output data set. By using the INCLUDE statement, you select the records that
qualify for inclusion.

The INCLUDE statement defines a logical expression (that is, one or more com-
parisons logically combined) based on fields in the input record. Each compar-
ison can be between two input fields or between an input field and a constant.
If the logical expression is true for a given record, the record is included in the
output data set.

For example, you could compare the first 6 bytes of each record with its last 6
bytes, and include only those records in which those fields are identical. Or
you could compare a field with a specified date, and include only those records
with a more recent date.

By nesting relational conditions within parentheses, you can create logical
expressions of higher complexity. Nesting of parentheses is limited only by the
amount of available storage.

You must not supply both an INCLUDE and an OMIT statement to the same
DFSORT run.

68 DFSORT: Application Programming: Guide

INCLUDE Control Statement

COND
The logical expression of the COND parameter can be represented at a
high level by the following format:

»—COND=—{relational conditionlq)——=

,E\ND ,relational condition2
OR

Default: None; must be specified.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options™ on page 353.

FORMAT

»—FORMAT=F -

FORMAT=f can be used only when all the fields in the entire COND
expression have the same format. The permissible field formats are shown
under the description of f for fields.

Default: None. Must be specified if not included in the COND parameter.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

Relational Condition
The relational condition specifies a comparison to be performed. Relational

conditions can be logically combined, with AND or OR, to form a logical
expression. If they are combined, the following rules apply:

« AND statements are evaluated before OR statements unless parentheses
are used to change the order of evaluation; expressions inside parentheses
are always evaluated first. (Nesting of parentheses is limited only by the
amount of storage available.)

e The symbols & {AND) and | {OR) can be used instead of the words.

Relaticnal Condition Format
Two formats for the relational condition can be used:

»—(pl,ml,fl,TEQ ,Ip2,m2,f21)
NE constant
GT
GE
LT
LE

Or,

Chapter 3. Using DFSORT Program Control Statements 6$

INCLUDE Control Statement

>l

»——(pl,ml,—EQ—T,TP2,m2) ,FORMAT=f
(NE Iconst;‘[

GT

GE

LT

LE

Comparison operators:

EQ Equal to

NE Not equal to

GT Greater than

GE Greater than or equal to
LT Less than

LE Less than or equal to
Fields

p1.m1,f1: These variables specify a field in the input record to be compared
either to another field in the input record or to a constant.

* p1 specifies the first byte of the field relative to the beginning of the input
record.! The first data byte of a fixed-length record (FLR) has relative posi-
tion 1. The first data byte of a variable-length (VLR) record has relative
position 5 (because the first 4 bytes contain the RDW). All fields must start
on a byte boundary, and no field can extend beyond byte 4092.

* m1 specifies the length of the field. Acceptable lengths for different formats
are in Table 2.

* f1 specifies the format of the data in the field. Permissible formats are
given in Table 2.

If all the data fields contain the same type of data, this value can be
omitted, in which case you must use the FORMAT =f operand.

Table 2 (Page 1 of 2). Permissible Format Codes

Format Length Description

CH 1-256 Character EBCDIC, unsigned.?

AQ 1-256 Character EBCDIC, alternate collating
sequence.

ZD 1-256 Zoned decimal, signed.

PD 1-255 Packed decimal, signed.

Fi 1-256 Fixed-point, signed.

1 If your E15 exit routine formats the record, p1 must refer to the record as reformatted by the exit.
2 |f CHALT is in effect, CH is treated as AQ.

70 DFSORT: Application Programming: Guide

INCL.UDE Control Statement

Table 2 (Page 2 of 2). Permissible Format Codes

Format Length Description

Bl 1-256 Binary, unsigned.

AC 1-256 ISCII/ASCII character, unsigned.

CSLor LS 2-256 EBCDIC numeric, leading separate sign.

CSTorTS 2-256 EBCDIC numeric, trailing separate sign.

CLO or OL 1-256 EBCDIC numeric, leading overpunch sign.

CTO or OT 1-256 EBCDIC numeric, trailing overpunch sign.

ASL 2-256 ISCII/ASCH numeric, leading separate sign.

AST 2-256 ISCII/ASCII numeric, trailing separate sign.

D2 1-256 User-defined data type. (Requires an EFS
program.)

p2,m2,f2: These parameters specify another field in the input record with which
the p1, m1, and f1 input field will be compared. Permissible comparisons
between input fields with different formats are shown in Figure 6 on page 72.

AC, ASL, and AST formats sequence EBCDIC data using the ISCIl/ ASCH col-
lating sequence.

Note that, for maximum performance, all comparisons in a complex expression
are checked in a single pass for each record. For this reason, if all records do
not contain all INCLUDE/OMIT fields, message ICEQ15A is issued; that is, you
cannot use a complex expression in which one of the comparisons excludes
variable-length records that are too short to contain other fields in the
expression.

Chapter 3. Using DFSORT Program Control Statements 71

INCLUDE Control Statement

Field
FORMAT

BI

CH

0 | PD | FI | AC | ASL | AST | CSL | CST | CLO | CTO | AQ D2

BI

CH

D

PD

FI

AC

ASL

AST

Cst

CsT

CLo

CT0

AQ

D2

Figure 6. Permissible Field-to-Field Comparisons for INCLUDE/OMIT

Note to Figure 6: D2 field formats are user-defined.

Constants: A constant can be decimal, character, or hexadecimal. The dif-
ferent formats are shown in detail below. Permissible comparisons between
input fields and types of constants are shown in Figure 7 on page 73.

72 DFSORT: Application Programming: Guide

INCLUDE Control Statement

Self-Defining Term
Field
Format Decimal Character Hexadecimal
Number String String
BI X X
CH X X
yi)] X
PD X
FI X
AC X X
ASL X
AST X
CST X
CSL X
CLO X
CT0 X
AQ X X
D2 X X X

Figure 7. Permissible Field-to-Constant Comparisons for INCLUDE/OMIT
Note to Figure 7: D2 field formats are user-defined.

Decimal Number Format: The format for coding a decimal constant is:

[£ln

When the decimal constant, n, is compared with a field of Fl format, it cannot be
larger than 2147483647 nor smaller than -2147483648.

Chapter 3. Using DFSORT Program Control Statements 73

INCLUDE Control Statement

Examples of valid and invalid decimal constants are:

Valid Invalid

15 + +15 Too many sign characters
+15 15+ Sign in wrong place

-15 1.5 Contains invalid character
18000000 1,500 Contains invalid character

Character String Format: The format for coding a character string constant is:

C'xx..x'

The value x may be any EBCDIC character (the EBCDIC character string is
translated appropriately for comparison to an AC or AQ field). You can specify
up to 256 characters.

If you want to include a single apostrophe in the character string, you must
specify it as two single apostrophes. Thus:

Required: O'NEILL Specify: C'O''NEILL'

Examples of valid and invalid character string constants are shown below:

Valid Invalid

C'JOHN DOE INC' croene Apostrophes not paired
crse# 'ABCDEF' C identifier missing
C'+0.193" C'ABCDEF Apostrophe missing

Hexadecimal String Format: The format for coding a hexadecimal string con-
stant is:

X'yy..yy'

The value yy represents any pair of hexadecimal digits. You can specify up to
256 pairs of hexadecimal digits.

Examples of valid and invalid hexadecimal constants are shown below.

Valid Invalid

X'FF! X'ABGD' Invalid hexadecimal digit

X'BF3C! X'F1F' Incomplete pair of digits

X'AF050505°' 'BF3C' Missing X identifier
'BF3C'X X identifier in wrong place

74 DFSORT: Application Programming: Guide

INCLUDE Control Seatement

Padding and Truncation

In
fie
of

a field-to-field comparison, the shorter field is padded appropriately. In a
Id-to-constant comparison, the constant is padded or truncated to the length
the field.

Character and hexadecimal strings are truncated and padded on the right.

Th

e padding characters are:

X'40' For a character string
X'00' For a hexadecimal string

Decimal constants are padded and truncated on the left. Padding is done with
zeros in the proper format.

INCLUDE/OMIT Stat

ement Notes
The size of the routine generated by DFSORT to handie the INCLUDE/OMIT
function depends on how many fields are referenced, and what lengths and
formats they have. The size of the routine must not exceed 4096 bytes, or
DFSORT will issue a message and terminate.

Floating point fields cannot be referenced in INCLUDE or OMIT statements.

Any selection can be performed with either an INCLUDE or an OMIT state-
ment. INCLUDE and OMIT are mutually exclusive.

If several relational conditions are joined with a combination of AND and
OR logical operators, the AND statement is evaluated first. The order of
evaluation can be changed by using parentheses inside the COND
expression.

If any changes are made to record formats by exits E15 or E32, the INCLUDE
or OMIT statement must apply to the newest formats.

DFSORT issues a message and terminates if an INCLUDE or OMIT state-
ment is specified for a tape work data set sort or conventional merge appli-
cation.

Figure 8 on page 76 shows how DFSORT reacts to the result of a relational
condition comparison, depending on whether the statement is INCLUDE or

OMIT and whether the relational condition is followed by an AND or an OR

logical operator.

When writing complex statements, be sure the result will be what you want.
The table in Figure 8 will help you.

Note that, for maximum performance, ail comparisons in a complex statement
are checked in a single pass for each record. For this reason, if all records do
not contain all INCLUDE/OMIT fields, message ICEO15A is issued; that is, you
cannot use a complex statement in which one of the comparisons excludes
variable-length records too short to contain other fields in the statement.

Chapter 3. Using DFSORT Program Control Statements 75

INCLUDE Control Statement

Statement| Relational Program action if next
Condition logical operator is:
Compare AND OR
OMIT True Check next compare, or OMIT record
if last compare OMIT
record
OMIT False INCLUDE record Check next compare or

if last compare,
INCLUDE record

INCLUDE True Check next compare, or
if last compare,

INCLUDE record

INCLUDE record

INCLUDE False OMIT record

Check compare, or if
last compare, OMIT.
record

Figure 8. Logic Table for INCLUDE/OMIT

INCLUDE Statement Examples
INCLUDE Example 1

INCLUDE

COND=(5,8,6T,13,8,|,105,4,LE, 1000) , FORMAT=FI

DFSORT includes only records in which:

¢ The fixed-integer number in bytes 5 through 12 is greater than the fixed-

integer number in bytes 13 through 20.
OR,

* The fixed-integer number in bytes 105 through 108 is less than or equal to

1000.
Note that all four fields have the same format.

INCLUDE Example 2

INCLUDE COND=(1,10,CH,EQ,C'STOCKHOLM",
AND,21,8,2D,GT,+56000,

OR,31,4,CH,NE,C'HERR')

This statement only includes records in which:

¢ The first 10 bytes contain STOCKHOLM (this nine-character string was
padded on the right with a blank) AND the zoned-decimal number in byies

21 through 28 is greater than 50000.

76 DFSORT: Application Programming: Guide

INCLUDE Control Statement

OR,
* Bytes 31 through 34 do not contain HERR.

Note that the AND is evaluated before the OR. (“OMIT Statement Example” on
page 95 illustrates how parentheses can be used to change the order of evalu-
ation.) Also note that ending a line with a comma or semicolon followed by a

blank indicates that the parameters continue on the next line, starting in any

position from columns 2 through 71.

INCLUDE Example 3
INCLUDE COND=((5,1,CH,EQ,8,1,CH),&,
((20,1,CH,EQ,C*A",&,30,1,FI,6T,10),],
(20,1,CH,EQ,C'B",&,30,1,FI,LT,100),],
(20,1,CH,NE,C'A",%,20,1,CH,NE,C'B")))

This statement includes only records in which:

* Byte 5 equals byte 8.
AND

* One of the following is true:

— Byte 20 equals 'A' and byte 30 is greater than 10.

— Byte 20 equals 'B' and byte 30 is less than 100.
— Byte 20 is not equal to 'A' or 'B'.

Chapter 3. Using DFSORT Program Control Statements

77

INREC Control Statement

INREC Control Statement

»—INREC FIELDS (LC:.J Lp, S)
[,a:I

The INREC control statement allows you to reformat the input records before
they are processed; that is, to define which parts of the input record are to be
included in the reformatted input record, in what order they are to appear, and
how they are to be aligned.

You do this by defining one or more fields from the input record. The refor-
matted input record consists of only those fields, in the order in which you have
specified them, and aligned on the boundaries or in the columns you have indi-
cated.

You can also insert blanks, binary zeros, character strings, and hexadecimal
strings as separators before, between, and after the input fields in the refor-
matted input records.

For information concerning the interaction of INREC and OUTREC, see also
“Use Options that Enhance Performance” on page 251.

FIELDS

’

;
FIELDS=—(CILs) -
[,a:|

specifies the order and alignment of the input and separation fields in the
reformatted input record.

c:
Indicates the column in which the first position of the associated input
or separation field is to be aligned, relative to the start of the refor-
matted input record. Unused space preceding the specified column is
padded with EBCDIC blanks. The following rules apply:

* ¢ must be a number between 1 and 32000.
* c: must be followed by an input field or a separation field.

« ¢ must not overlap the previous input field or separation field in the
reformatted input record.

* For variable-length records, c: must not be specified before the first
input field (the record descriptor word), nor after the variable part of
the input record.

* The colon (:) is treated like the comma (,) or semicolon (;) for contin-
uation to another line.

78 DFSORT: Application Programming: Guide

For example:

INREC Control Statement

Table 3. Examples of Valid and Invalid Column Alignment

Validity Specified

Result

Valid 33:.C'State '

Valid 20:5,4,30:10,8

Invalid 0:5.4

Invalid 1252

Invalid 32001:21,8
Invalid 5:10:2,5
Invalid 20,10,6:C'AB!

Columns 1-32 — blank

Columins 33-40 — 'State '

Columns 1-19 — blank

Columns 20-23 — input field (5,4)
Columns 24-29 — blank

Columns 30-37 — input field (10,8)
Column value cannot be zero.
Column value must be specified
Invalid — column value must be less than 32001
Column values cannot be adjacent
Column value overlaps previous field

Indicates a separation field to be inserted into the reformatted input
record in the position you code it relative to the other fields. It can be
specified before or after any input field. Consecutive separation fields
can be specified. For variable- length records, s must not be specified
before the first input field (the record descriptor word), or after the vari-
able part of the input record. Permissible values are:

nX Blank separation. n bytes of EBCDIC blanks (X*40') are
inserted in the reformatted input records. n can be from 1 to
4095. If n is omitted, 1 is used.

For example:

Table 4. Examples of Valid and Invalid Blank Separation

Validity Specified Result
Valid Xor 1X 1 blank
Valid 4095X 4095 blanks

Invalid 5000X

Invalid oX

Too many repetitions. Use two adjacent sepa-
ration fields instead (2500X,2500X, for example)
0 is not allowed.

nZ Binary zero separation. n bytes of binary zeros (X'00') are
inserted in the reformatted input records. n can be from 1 to
4095. If n is omitted, 1 is used.

For example:

Table 5. Examples of Valid and Invalid Binary Zero Separation

Validity Specified Result
Valid Zor1Z 1 binary zero
Valid 40952 4095 binary zeros

Invalid 4450Z

Invalid 0z

Too many repetitions. Use two adjacent sepa-
ration fields instead (4400Z,50Z for example).
0 is not allowed.

Chapter 3. Using DFSORT Program Control Statements 79

INREC Control Statement

nC’xx...x"

Character string separation. n repetitions of the character
string constant (C’'xx...x’) are inserted into the reformatted
input records. n can be from 1 to 4095. If n is omitted, 1 is
used. x can be any EBCDIC character. You can specify from
1 to 256 characters.

If you want to include a single apostrophe in the character
string, you must specify it as two single apostrophes:

Required: O'NEILL Specify: C'O''NEILL'

For example:

Table 6. Examples of Valid and Invalid Character String Separation

Validity Specified Result Length
Valid C'John Doe' John Doe 8
Valid C'JOHN DOE! JOHN DOE 8
Valid C'$@H! S@# 3
Valid C'+0.193' +0.193 6
Valid 4000C* ! 8000 blanks 8000
Valid 20C*'**FILLER™*™! **FILLER™" repeated 20 times 200
Invalid Crivne Apostrophes not paired n/a
Invalid 'ABCDEF! C identifier missing n/a
Invalid C'ABCDE Apostrophe missing n/a
Invalid 4450C'1! Too many repetitions. Use two adja- n/a
cent separation fields instead
(4000C'1',450C'1*, for example).
Invalid OC'ABC! O is not allowed n/a
Invalid c No characters specified n/a

nX’yy...yy’ Hexadecimal string separation. n repetitions of the

hexadecimal string constant (X'yy...yy’) are inserted in the
reformatted input records. n can be from 1 to 4095. If n is
omitted, 1 is used.

The value yy represents any pair of hexadecimal digits. You
can specify from 1 to 256 pairs of hexadecimal digits.

For example:

Table 7. Examples of Valid and Invalid Hexadecimal String Separation

Validity Specified Result Length
Valid X'FF! FF 1
Valid X'BF3C! BF3C 2
Valid 3X'00CCOF ! GOOCOFO0000F000COF 9
Valid 4000X'FFFF! FF repeated 8000 times 8000
Invalid X'ABGD' G is not a hexadecimal digit n/a
Invalid X'FiF! Incomplete pair of digits n/a
invalid '‘BF3C' X identifier missing n/a
Invalid 'F2F1'X X in wrong place n/a
Invalid 8000X'01"* Too many repetitions. Use two adjacent n/a

separation fields instead

(4000X'01',4000X'01", for example).
Invalid 0X'23AB' 0 is not allowed n/a
Invalid X No hexadecimal digits specified n/a

80 DFSORT: Application Programming: Guide

INREC Control Statement

p,m,a
indicates an input field to be inserted into the reformatted input record
in the position you code it relative to the other fields.

P
specifies the first byte of the input field relative to the beginning of

the input record.? The first data byte of a fixed-length record has rel-
ative position 1. The first data byte of a variable-length record has
relative position 5 (because the first 4 bytes contain the RDW). All
fields must start on a byte boundary, and no field can extend
beyond byte 32000. For special rules concerning variable-length
records, see “INREC Statement Notes.”

specifies the length of the input field. It must include the sign if the
data is signed, and must be an integer number of bytes. See the
note on page 82 for more information.

specifies the alignment (displacement) of the input field in the refor-
matted input record, relative to the start of the reformatted input
record.

The permissible values are:

H Halfword aligned. This means that the displacement (p-1) of
the field from the beginning of the reformatted input record, in
bytes, is a multiple of two (that is, position 1, 3, 5, and so
forth).

F Fullword aligned. The displacement is a multiple of four (that
is, position 1, 5, 9, and so forth).

D Doubleword aligned. The displacement is a multiple of eight
(that is, position 1, 9, 17, and so forth).

Alignment can be necessary if, for example, the data is to be used
in a COBOL application program where COMPUTATIONAL items are
aligned through the SYNCHRONIZED clause. Unused space pre-
ceding aligned fields will always be padded with binary zeros.

Default: None; must be specified.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options™ on page 353.

INREC Statement Notes
¢ When INREC is specified, DFSORT reformats the input records after user
exit E15 and/or INCLUDE/OMIT processing is finished. Thus, references to
fields by your E15 exit and INCLUDE/OMIT statements are not affected,
whereas your SORT, OUTREC, and SUM statements must refer to fields in
the reformatted input record. Your E35 exit must refer to fields in the refor-
matted output record (see below).

3 If your E15 exit reformats the record, p must refer to the record as reformatted by the exit.

Chapter 3. Using DFSORT Program Control Statements 81

INREC Control Statement

* When you specify INREC, you must be aware of the change in record size
and layout of the resulting reformatted input records. You must also under-
stand how reformatting of records affects sort performance, and how to use
INREC or OUTREC to achieve the most efficient sort. (See also “OUTREC
Control Statement” on page 121 and “Use Options that Enhance
Performance” on page 251 for more details.)

* For variable-length records, the first entry in the FIELDS parameter must
specify or include the 4-byte record descriptor word (RDW). DFSORT sets
the length of the reformatted record in the RDW.

If the first field in the data portion of the input record is to appear in the
reformatted input record immediately following the RDW, the entry in the
FIELDS parameter can specify both RDW and data field in one. Otherwise,
the RDW must be specifically included in the reformatted input record.

¢ The length of the INREC/OUTREC record (reformatted length) is not used to
determine the LRECL of SORTOUT. If not specified in the data set control
block (DSCB) or DD statement, the value for SORTOUT LRECL is deter-
mined in the usual way (that is, from the L3 value or SORTIN LRECL). If the
reformatted length does not match the SORTOUT LRECL, the same checks
used when the SORTIN LRECL does not match the SORTOUT LRECL are
made and padding/truncation is performed, if possible.

If the Blockset technique is not selected and the INREC/OUTREC length is
less than the specified or defaulted SORTOUT LRECL, then you must pad
the record to the correct length.

For VSAM data sets, the maximum record size defined in the cluster is
equivalent to the LRECL when processing fixed-length records, and is four
bytes less than the LRECL when processing variable-length records. See
“VSAM Considerations” on page 10 for more information.

* The variable part of the input record (that part beyond the minimum record
length) can be included in the reformatted input record, and if included,
must be the last part. In this case, a value must be snecified for pn that is
less than or equal to the minimum record length (see L4 of the RECORD
control statement) plus 1 byte; mn and an must be omitted.

If both INREC and OUTREC are specified, either both must specify position-
only for the last part, or neither must specify position-only for the last part.

If the reformatted input includes only the RDW and the variable part of the
input record, “null” records containing only an RDW could result.

* The input records are reformatted before processing, as specified by INREC.
The output records are in the format sipecified by INREC, unless OUTREC is
also specified.

* Fields referenced in INREC statements can overlap each other and/or
control fields.

< |f input is variable records, the output is also variable. This means that
each record is given the correct RDW by DFSORT before output, even if the
records are treated as fixed internally because they are all the same length.

* In general, use INREC to reduce the length of input records as much as
possible to achieve the most efficient processing. Use OUTREC to reformat
the records for output. However, if overflow might occur during summation,
INREC can be used to create a larger SUM field in the reformatted input

82 DFSORT: Application Programming: Guide

INREC Control Statement

record (perhaps resulting in a larger record for sorting or merging) so that
overflow does not occur.

» DFSORT issues a message and terminates if an INREC statement is speci-
fied for a tape work data set sort or conventional merge application.

INREC Statement Examples
INREC Example 1

INCLUDE COND=(5,1,GE,C'M"),FORMAT=CH
INREC FIELDS=(10,3,20,8,33,11,5,1)
SORT FIELDS=(4,8,CH,A,1,3,F1,A)

SUM FIELDS=(17,4,BI)

OUTREC Example 2

INCLUDE COND=(5,1,GE,C'M"),FORMAT=CH
OUTREC FIELDS=(10,3,20,8,33,11,5,1)
SORT FIELDS=(20,8,CH,A,10,3,FI,A)
SUM FIELDS=(38,4,BI)

The above examples illustrate how a fixed-length input data set is sorted and
reformatted for output. A more efficient sort is achieved by eliminating unnec-
essary fields, before sorting, using INREC. The SORTIN LRECL is 80.

Records are also included or excluded by means of the INCLUDE statement,
and summed by means of the SUM statement.

The reformatted input records are fixed length, with a record size of 23 bytes (a
significant reduction from the original size of 80 bytes). The SORTOUT LRECL
must be specified as 23. They look as follows:

Position Contents

1-3 Input positions 10 through 12
4-11 Input positions 20 through 27
12-22 Input positions 33 through 43
23 Input position 5

Identical results are achieved with INREC or OUTREC. However, use of INREC
can result in better performance. In either case, the INCLUDE COND parame-
ters must refer to the fields of the original input records. However, with INREC,
the SUM and SORT FIELDS parameters must refer to the fields of the refor-
matted input records, while with OUTREC, the SUM and SORT FIELDS parame-
ters must refer to the fields of the original input records.

Chapter 3. Using DFSORT Program Control Statements 83

INREC Control Statement

INREC Example 3

INREC FIELDS=(1,35,2Z,36,45)
MERGE FIELDS=(20,4,CH,D,10,3,CH,D),FILES=3
SUM FIELDS=(36,4,B1,40,8,PD)
RECORD TYPE=F,LENGTH=(86,,82)

This example illustrates how overflow of a summary field can be prevented
when three fixed-length data sets are merged and reformatted for output. The
input record size is 80 bytes. To illustrate the use of the RECORD statement,
assume that SORTIN and SORTOUT are not present (that is, all input/output is
handled by user exits).

The reformatted input records are fixed-length, with a record size of 82 bytes
(an insignificant increase from the original size of 80 bytes). They look as
follows:

Posiiion Contents

1-35 Input positions 1 through 35

36-37 Binary zeros (to prevent overflow)
38-82 Input positions 36 through 80

The MERGE and SUM statements must refer to the fields of the reformatted
input records.

The reformatted output records are identical to the reformatted input records.

Thus, the 2-byte summary field at positions 36 and 37 in the original input
records expand to a 4-byte summary field in positions 36 through 39 of the
reformatted input/output record before merging. This prevents overflow of this
summary field. Note that, if OUTREC were used instead of INREC, the records
would be reformatted after merging, and the 2-byte summary field might over-
flow.

Note: This method of preventing overflow cannot be used for negative Fl
summary fields because padding with zeros rather than ones would change the
sign.

INREC Example 4

INREC FIELDS=(1,4,15,15,47,50,101)

SORT FIELDS=(32,4,CH,A)

RECORD TYPE=V,LENGTH=(,,,100,130)

OUTREC FIELDS=(1,4,10Z,5,15,17Z,20,50,4X,70)

This example illustrates how a variable-length input data set can be sorted
more efficiently by eliminating padding fields before sorting, and reinserting
them after sorting. The resulting output records are not actually reformatted.
The variable part of the input records is included in the output records. The
minimum input record size is 100 bytes, and the maximum input record size
{SORTIN LRECL) is 200 bytes.

84 DFSORT: Application Programming: Guide

INREC Control Statement

The reformatted input records are variable-length, with a minimum record size
of 69 bytes and a maximum record size of 169 bytes (a significant reduction
from the original sizes of 100 and 200 bytes, respectively). They look as follows:

Position Contents

1-4 RDW (input positions 1 through 4)

5-19 Input positions 15 through 29

20-69 Input positions 47 through 96

70-n Input positions 101 through n (variable part of input records)

The SORT and OUTREC statements must refer to the fields of the reformatted
input records.

Because padding fields are removed by INREC and reinserted by OUTREC, the
output records are identical to the original input records. The output records
are variable-length, have a minimum record size of 100 bytes, and a maximum
record size (SORTOUT LRECL) of 200 bytes. They look as follows:

Position Contents

1-4 RDW

5-14 Binary zeros

15-29 Input positions 15 through 29

30-46 Binary zeros

47-96 Input positions 47 through 96

97-100 EBCDIC blanks

101-n Input positions 101 through n (variable part of input records)

Thus, the use of INREC and OUTREC allows sorting of smaller records, although
the output records are not actually reformatted.

INREC Example 5

INREC FIELDS=(20,4,12,3)
SORT FIELDS=(1,4,D,5,3 D),FORMAT=CH
OUTREC FIELDS=(5X,1,4,H,8X,1,2,5,3,807)

This example illustrates how a fixed-length input data set can be sorted and
reformatted for output. A more efficient sort is achieved by using INREC to
reduce the input records as much as possible before sorting, and using
OUTREC to repeat fields and insert padding after sorting. The SORTIN LRECL
is 80 bytes.

Notz: Contrast this example with OUTREC Example 4, where INREC does not
achieve a more efficient sort because no fields can be eliminated before
sorting.

The reformatted input records are fixed-length, with a record size of 7 bytes (a
significant reduction from the original size of 80 bytes). They look as follows:

Position Contents
1-4 Input positions 20 through 23
5-7 Input positions 12 through 14

The SORT and OUTREC statements must refer to the fields of the reformatted
input records.

Chapter 3. Using DFSORT Program Control Statements 85

INREC Control Statement

The reformatted output records are fixed length, with a record size of 103 bytes;
the SORTOUT LRECL is specified as 103. They look as follows:

Position Contents

1-5 EBCDIC blanks
6 Binary zero (for H alignment)
7-10 Input positions 20 through 23

11-18 EBCDIC blanks

19-20 Input positions 20 through 21
21-23 input positions 12 through 14
24-103 Binary zeros

Thus, the use of INREC and OUTREC allows sorting of 7-byte records rather
than 80-byte records, even though the output records are 103 bytes long.

86 DFSORT: Application Programming: Guide

MERGE Control Statement

MERGE Control Statement

3

’ ’

»>HERGE FIELDS=—7(p,m,T,s) L —

(——p,m,s——) ,FORMAT=f— L, CKPT
—EEQUALS
NOEQUALS
COPY FILES=n
FILSZ=x
[:SIZE=y—|
——SKIPREC=z—]
—STOPAF T=n—

The MERGE control statement must be used when a merge operation is to be
performed. It can also be used to specify a copy application. It provides essen-
tially the same information to DFSORT for a merge as the SORT statement does
for a sort. Like SORT parameters, MERGE parameters can be overridden by
similar parameters specified on the OPTION control statement. The format,
defaults, and specifications for the MERGE statement are similar to the SORT
statement with the following differences:

* The operation definer is MERGE instead of SORT.

* The SKIPREC and STOPAFT options are not used (ignored if specified).
* The DYNALLOC option is not used (ignored if specified).

* The FILSZ/SIZE value takes all the input data sets into account.

When an option can be specified on either the MERGE or OPTION statement, it
is preferable to specify it on the OPTION statement.

A table showing other possible sources for specifying options available on the
MERGE statement and the rules of override are in
Appendix C, “Specification/Override of DFSORT Options” on page 353.

FIELDS

’

»—FIELDS=(-p,m, f,s) -

The FIELDS operand is written exactly the same way for a merge as it is for
a sort. The meanings of p, m, f, and s are described in the discussion of
the SORT statement. The defaults for this and the following parameters are
also given there. See “SORT Control Statement” on page 132.

Chapter 3. Using DFSORT Program Control Statements 87

MERGE Control Statement

FIELDS =COPY

»»——F [ELDS=COPY o

See the discussion of this operand on the OPTION statement, in “OPTION
Control Statement” on page 97.

FORMAT=f

»»——FQORMAT=T >

The FORMAT operand is used in the same way for a merge as for a sort.
See “SORT Control Statement” on page 132.

CKPT

»——CKPT —

See the discussion of this operand on the OPTION statement, in “OPTION
Control Statement” on page 97.

EQUALS or NOEQUALS

EQUALS -
[Noeoumsr

See the discussion of this operand on the OPTION statement, in “OPTION
Control Statement” on page 97.

FILES

> FILES=n >

specifies the number of input-files for a merge when input is supplied
through the E32 exit.

Default: None.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

FILSZ or SIZE

lFI LSZ=x -
SI1ZE=y

See the discussion of this operand on the OPTION statement, in "OPTION
Control Statement” on page 97.

88 DFSORT: Application Programming: Guide

MERGE Control Statement

SKIPREC

»»——SKIPREC=z -

See the discussion of this operand on the OPTION statement, in “OPTION
Control Statement” on page 97.

STOPAFT

»——STOPAFT=n -

See the discussion of this operand on the OPTION statement, in “OPTION
Control Statement” on page 97.

Note: For a merge job, records deleted by an E35 exit routine are not
sequence-checked. If you use an E35 exit routine without a SORTOUT data set,
sequence-checking is not performed. In this case, you must ensure that input
records are in correct sequence.

MERGE Statement Examples

MERGE Example 1. One Control Field, Size Option

MERGE FIELDS=(2,5,CH,A),FILSZ=29483

FIELDS
The control field begins on byte 2 of each record in the input data sets. The
field is 5 bytes long, and contains character (EBCDIC) data that has been
presorted into ascending order.

FILSZ
The input data sets contain exactly 29483 records.

MERGE Example 2. Two Control Fields, User Modification

MERGE FIELDS=(3,8,20,E,40,6,CH,D)

FIELDS
The major control field begins on byte 3 of each record, is 8 bytes long, and
contains zoned decimal data that is modified by your routine before the
merge examines it.

The second control field begins on byte 40, is 6 bytes long, and contains
character data in descending order.

Chapter 3. Using DFSORT Program Control Statements 89

MERGE Control Statement

MERGE Example 3. Two Control Fields, Format Option

MERGE FIELDS=(25,4,A,48,8,A) ,FORMAT=ZD

FIELDS
The major control field begins on byte 25 of each record, is 4 bytes long,
and contains zoned decimal data that has been placed in ascending
sequence.

The second control field begins on byte 48, is 8 bytes long, is also in zoned
decimal format, and is also in ascending sequence. The FORMAT param-
eter can be used because both control fields have the same data format.

MERGE Example 4. COPY Option

MERGE FIELDS=COPY

FIELDS
The input data set is copied to output. No merge takes place.

90 DFSORT: Application Programming: Guide

MODS Control Statement

MODS Control Statement

v
»—+HM0DS—exit=—r(-n,m [[) ~
’ sihe

The MODS statement is needed only if you want DFSORT to pass control to
your routines at user exits. The MODS statement associates the user routine(s)
with specific DFSORT exits and provides DFSORT with descriptions of these
routines. For details about DFSORT exits and how user routines can be used,
see Chapter 5, “Using Your Own Exit Routines” on page 181.

To use one of the exits, you substitute its three-character name (for example,
E31) for the word exit in the MODS statement format above. You can specify
any valid exit, except E32. (E32 can be used only in a merge operation invoked
from a program; its address must be passed in a parameter list.)

exit

»—-—exit=—-—(—n,mT ')
s’ t,e

?

The values that follow “exit" describe the user routine. These values are:

n
the name of your routine (member name if your routine is in a library).
You can use any valid operating system name for your routine. This
allows you to keep several alternative routines with different names in
the same library.

the number of bytes of main storage your routine uses. Include storage
obtained (via GETMAIN) by your routine {or, for example, by OPEN), and
the storage required to load the COBOL library subroutines.

either the name of the DD statement in your DFSORT job step that
defines the library in which your routine is located or SYSIN if your
routine is in the input stream.

If you do not specify a value for s, DFSORT uses the following search
order to find the library in which your routine is located:

1. The libraries identified by the STEPLIB DD statement

2. The libraries identified by the JOBLIB DD statement (if there is no
STEPLIB DD statement)

3. The link library.

Chapter 3. Using DFSORT Program Control Statements 91

MODS Control Statement

indicates the linkage editor requirements of your routine, or indicates
your routine is written in COBOL. e can take the following values:

N
means that your routine has already been link-edited and can be
used in the DFSORT run without further link-editing. This is the
default for e. N (specified or defaulted) can be overridden by the
EXEC PARM parameters 'E15=COB' and 'E35=COB".

means that your E15 or E35 routine is written in COBOL. If you code
C for any other exit, it is ignored, and N is assumed. Your
COBOL-written routine must already have been link-edited.

means that your routine must be link-edited together with other rou-
tines to be used in the same phase (for example, E1n routines) of
DFSORT.

This value is not valid for copy processing.

means that your routine requires link-editing but that it must be link-
edited separately from the other routines (for example, E3n routines)
to be used in a particular phase of DFSORT. E11 and E31 exit rou-
tines are the only routines eligible for separate link-editing.

This value is not valid for copy processing.

If you do not specify a value for e, N is assumed.
Default: None. Must be specified. N is the default for the fourth parameter.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

Note:

e The s parameter must be the same or omitted for each routine with Nor C
for the e parameter (library concatenation is allowed). These routines
cannot be placed in SYSIN. Each such routine must be a load module.

* Each routine for which T or S is specified for the e parameter can be placed
in any library or in SYSIN; they do not all have to be in the same library or
SYSIN (but can be). Some routines can even be in different libraries (or the
same library) and the rest can be in SYSIN. Each such routine, if in a
library, can be either an object deck or a load module; if in SYSIN, it must
be an object deck.

* [If the same routine is used in both input (that is, E1n routines) and output
(that is, E3n routines) DFSORT program phases, a separate copy of the
routine must be provided for each exit.

*+ COBOL E15 and E35 exit routines can also be specified in the EXEC state-
ment parameters (E15=COB or E35=COB). In this case, the e parameter
of the MODS statement must not be T. If T is specified, the program termi-
nates with error message ICE034A. COBOL exits must already have been
link-edited and, if the EXEC parm was specified for the exit, the e parameter
must be C, or N, or defaulted to N. (S is not valid for any E15 or E35 exit.)

92 DFSORT: Application Programming: Guide

' MODS Control Statement

» If you code C for a conventional merge or a tape work data set sort,
DFSORT issues message ICE153A and terminates.

¢ exit={(n,m) can be used to omit both the s and e parameters.
* exit=(n,m,.e) can be used to omit the s parameter, but not the e parameter.

» The s parameter must be specified for a conventional merge or tape work
data set sort, or when S or T is specified for the e parameter.

For information on user exit routines in SYSIN, see “System DD Statements” on
page 39.

For details on how to design your routines, refer to “Summary of Rules for User
Exit Routines™ on page 189.

When you are preparing your MODS statement, remember that DFSORT must
know the amount of main storage your routine needs so that it ¢can allocate
main storage properly for its own use. If you do not know the exact number of
bytes your program requires (including requirements for system services),
make a slightly high estimate. The value of m in the MODS statement is written
the same way whether it is an exact figure or an estimate: You do not precede
the value by E for an estimate.

MODS Statement Examples
MODS Example 1. Two Routines in a Library

MODS E15=(ADDREC,552,MODLIB),E35=(ALTREC,11032,MODLIB)

E15
At exit E15, DFSORT transfers control to your own routine. Your routine is
in the library defined by a job control statement with the DDNAME MODLIB.
Its member name is ADDREC and uses 552 bytes.

E35
At exit E35, DFSORT transfers control to your routine. Your routine is in the
library defined by the job control statement with the DDNAME MODLIB. Its
member name is ALTREC and will use 11032 bytes.

MODS Example 2. E15 and E35 written in COBOL

MODS E15=(COBOLE15,7000,,C),
£35=(COBOLE35,7000,EXITC,C)

Chapter 3. Using DFSORT Program Control Statements 93

MODS Control Statement

E15
At exit E15, DFSORT transfers control to your own routine. Your routine is
written in COBOL and is in the STEPLIB/JOBLIB or link libraries. Its
member name is COBOLE15 and it uses 7000 bytes.

E35
At exit E35, DFSORT transfers control to your routine. Your routine is
written in COBOL and is in the library defined by the job control statement
with the DDNAME EXITC. Its member name is COBOLE35 and it uses 7000
bytes.

94 DFSORT: Application Programming: Guide

OMIT Control Statement

OMIT Control Statement

ANDT—,
’ OR;T—

A T]

pl,ml, f1,7-EQ—T,—Tp2,m2, f2
e [

»»——0MIT COND=1

J

—_

~—
Y
A

GT
GE
LT
LE

,——ANDT—,
Lord

AT

(L —p1,ml, £Q ,—[pZ,mE j),FORMAT=fJ

constant

NE
GT
GE
LT
LE

constant

An OMIT statement is used if you do not want all the input records to appear in
the output data set. By using the OMIT statement, you select the records that
do not qualify for inclusion.

The OMIT statement defines a logical expression (that is, one or more compar-
isons logically combined) based on fields in the input record. Each comparison
can be between two input fields or between an input field and a constant. If the
logical expression is true for a given record, that record is omitted from the
output data set. For example, you could compare the first 6 bytes of each
record with its last 6 bytes, and omit those records in which those fields are not
identical. Or you could compare a field with a specified date, and omit those
records with earlier dates.

For further details on this statement, see “INCLUDE Control Statement” on
page 68.

OMIT Statement Example
OMIT Example.

16 72

| |

OMIT COND=(1,10,CH,EQ,C'STOCKHOLH®,&, (21,8,2D,6T,+50000, | *
,31,4,CH,NE,C'HERR"))

Chapter 3. Using DFSORT Program Control Statements 95

OMIT Control Statement

This statement omits records in which:

* The first 10 bytes contain STOCKHOLM (the string was padded on the right
with a blank),
AND,

¢ The zoned-decimal number in bytes 21 through 28 is greater than 50000,
OR, bytes 31 through 34 do not contain HERR.

Note that the AND and OR operators can be written with the AND and OR signs,
and that parentheses are used to change the order in which AND and OR are
evaluated. Also note that the asterisk in column 72 indicates continuation of the
parameters to the next line (starting in position 16).

96 DFSORT: Application Programming: Guide

OPTION Control Statement

OPTION Control Statement

'

»—0PTION—

]

—ARESALL=Tn
L

—ARESI NV-—‘[u |
K

n
HALT
-EEOCHALH
CHECK T
NOCHECK

CINV
Lnocinv
—CKPT e
—COBEXIT= COBl]i
C0B2

—COPY

—OYNALLOC
L,
(d)
(>n)
(da")
OFF
(OFF)
—EFS name
lNONEJ
-EEQUALS J
NOEQUALS
—EXCPVR= ALL
NOI'JRK]
NONE
FILSZ X
[[,]
SIZE=—[—y
Ey
—HIPRMAX OPTIMAL
[T
LIST J
NOLIST
LISTX
I—NOLISTX;r

J

r Continued at right Jy

Continued from left

—MAINSIZE n ﬂ

FnK
‘MAX
—HMSGDON=ddname
—MSGPRT= FALL:
FNONE——
"CRITICAL-
—NOBLKSET
—NOOUTREL
—NOQUTSEC
—NOSTIMER
—NOWRKREL
—NOVYRKSEC:
_RESALL n
L]
—RESINV n
L]
—SKIPREC=z

—SORTDD=cccce

—SORTIN=ddname

—SORTOUT=ddname

—STOPAFT=n

VERIFY T
NOVERIFY

VLSHRT]
NOVLSHRT

The OPTION control statement allows you to override some of the options avail-
able at installation time (such as EQUALS and CHECK), and to supply other
optional information (such as DYNALLOC, COPY, and SKIPREC).

Some of the options available on the OPTION statement are also available on
the SORT or MERGE statement (such as FILSZ and SIZE). It is preferable to
specify these options on the OPTION statement. For override rules, see
Appendix C, “Specification/Override of DFSORT Options” on page 353.

OPTION parameters used by other IBM sort programs cause DFSORT to termi-
nate unless they conform to the following parameters.

Chapter 3. Using DFSORT Program Control Statements

97

OPTION Control Statement

The keywords EFS, LIST, NOLIST, LISTX, NOLISTX, MSGPRT, MSGDDN,
SORTDD, SORTIN, and SORTOUT are used only when they are specified on the
OPTION control statement passed by an extended parameter list, or in the
DFSPARM data set. If they are specified on an OPTION statement read from
the SYSIN or SORTCNTL data set, the keyword is recognized, but the parame-
ters are ignored.

ARESALL

»»—ARESALL [uJ -
nk

For MVS/XA and MVS/ESA, temporarily overrides the ARESALL installation
option, which specifies the number of bytes to be reserved above
16-megabyte virtual for system use.

ARESALL applies only to the amount of main storage above 16-megabyte
virtual. This option is normally not needed because of the large amount of
storage available above 16-megabyte virtual (the default for ARESALL is O
bytes). The RESALL option applies to the amount of main storage below
16-megabyte virtual.

n
specifies the number of bytes of main storage to be reserved.

Limit: 8 digits.

nK
nK specifies n times 1024 bytes of main storage are to be reserved.

Limit: 5 digits.

Default: Usually the installation default, but refer to
Appendix C, “Specification/Override of DFSORT Options” on page 353 for
full override details.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options™” on page 353.

ARESINV

»—ARESINV=1—n
[W
nK

For MVS/XA and MVS/ESA, temporarily overrides the ARESINV installation
option, which specifies the number of bytes to be reserved for an invoking
program or for exits that reside or use space above 16-megabyte virtual.
The reserved space is not meant for the invoking program itself. ARESINV
is used only when DFSORT is dynamically invoked.

ARESINV applies only to the amount of main storage above 16-megabyte
virtual. The RESINV option applies to the amount of main storage below
16-megabyte virtual.

98 DFSORT: Application Programming: Guide

OPTION Control Statement

" specifies the number of bytes of main storage to be reserved.
Limit: 8 digits.

nK
nK specifies n times 1024 bytes of main storage are to be reserved.
Limit: 5 digits.

Default: Usually the installation default, but refer to
Appendix C, “Specification/Override of DFSORT Options” on page 353 for
full override details.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

CHALT or NOCHALT

>“—I.—'CHALT J >
NOCHALT

Temporarily overrides the CHALT installation option, which specifies
whether format CH fields are translated by the alternate collating sequence
as well as format AQ, or just the latter.

CHALT
means that DFSORT translates character control fields with formats CH
and AQ using the aiternate collating sequence.

NOCHALT
means that format CH fields are not translated.

Default: Usually the installation default, but refer to
Appendix C, “Specification/Override of DFSORT Options” on page 353 for
full override details.

Applicable Functions: See Appendix C, "“Specification/Override of DFSORT
Options” on page 353.

CHECK or NOCHECK

»—l—CHECK] >
NOCHECK

Temporarily overrides the CHECK installation option, which specifies
whether record count should be checked for applications that use the E35
user exit routine without a SORTOUT data set.

CHECK
means that record counter checking is done at the end of program exe-
cution.

Chapter 3. Using DFSORT Program Control Statements 99

OPTION Control Statement

NOCHECK
means that record counter checking is not done.

Default: Usually the installation default, but refer to
Appendix C, “Specification/Override of DFSORT Options™ on page 353 full
override details.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options™ on page 353.

CINV or NOCINV

> CINV >~
[NOCINV-|

Temporarily overrides the CINV installation option, which specifies whether
DFSORT can use control interval access for VSAM data sets. The Blockset
technique uses control interval access for VSAM input data sets, when pos-
sible, to improve performance.

CINV
directs DFSORT to use control interval access when possible for VSAM
data sets.

NOCINV
directs DFSORT not to use control interval access.

Default: Usually the installation default. See
Appendix C, “Specification/Override of DFSORT Options” on page 353 for
more information.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

CKPT

»=——CKPT —>

CKPT causes DFSORT to activate the checkpoint/restart facility of the oper-
ating system. See “Checkpoint/Restart” on page 383 for further details.

If necessary, the Blockset technique can be bypassed so the
checkpoint/restart facility can be used by specifying either IGNCKPT =NO
on the ICEMAC installation macro or NOBLKSET on the OPTION statement.

Checkpoint/restart takes the following checkpoints:
1. Start of sort phase (all tape techniques)

2. Start of each intermediate merge phase pass (balanced and polyphase
tape technique); or at intervals during the intermediate merge phase
(oscillating tape and all disk techniques)

3. Start of final merge phase.

When you use the checkpoint/restart facility, you must write a JCL state-
ment to define a data set for the checkpoint records. How to write this JCL
statement (//SORTCKPT) is described in “SORTCKPT DD Statement” on
page 48. In addition, you might need to specify more intermediate storage
for a sort application. See “Intermediate Storage” on page 311.

100 DFSORT: Application Programming: Guide

OPTION Control Statement

Defauit: None; optional.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

Note: CHKPT can be used instead of CKPT.
COBEXIT

>>—COBEXIT=~[COBII >
C0B2

indicates whether the E15 and E35 routines written in COBOL are executed
with the VS COBOL Il library.

CcOB1
specifies that E15 and E35 routines written in COBOL are executed with
the OS/VS COBOL library or, in some cases, with no COBOL library.

coB2
specifies that E15 and E35 routines written in COBOL are executed with
the VS COBOL Il library.

Defauit: Usually the installation default, but see
Appendix C, “Specification/Override of DFSORT Options” on page 353 for
full override details.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

coPY

=——COPY ——

" COPY causes DFSORT to copy a SORTIN data set and/or inserted records
to a SORTOUT data set unless all records are disposed of by an E35 exit.
Records can be edited by SKIPREC, E15, INCLUDE/OMIT, STOPAFT,
INREC/OUTREC, and/or E35. E35 is entered after each SORTIN or E15
record is copied.

The following must not be used in copy jobs:

» BDAM data sets
* Dynamic link-editing.

Default: None; optional.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options™ on page 353.

DYNALLOC

DYNALLOC L ;
(d)
(sn)
(dyn)
OFF:
(OFF)

Chapter 3. Using DFSORT Program Control Statements 101

OPTION Control Statement

Use this parameter to assign DFSORT the task of dynamically allocating
needed work space. You do not need to calculate and use JCL to specify
the amount of intermediate work space needed by the program. DFSORT
uses the dynamic allocation facility of the operating system to allocate work
space to get the best possible performance for the newest application.

d
specifies the device type. You can specify any of the following IBM
devices: 2314, 3330, 3330-1, 3340, 3350, 3375, 3380, 2400, 2400-3, 2400-4,
3400-3, 3400-4, 3480, 3850, or their user-assigned group name, such as
SYSDA.

n

specifies the maximum number of requested work data sets. The
maximum value of n is 16; if you specify more than 16, 16 is used. If
you specify 1 and the Blockset technique is selected, 2 is used.

For disk work data sets, an estimate of the number of input records and
FILE/SIZE are used as the basis for determining the total work space to
allocate. If DFSORT cannot reasonably estimate the number of input
records (for example, if the input data set is on tape) and FILSZ/SIZE is not
specified (see FILSZ/SIZE on the OPTION statement for details), 60600 blocks
are dynamically allocated. For variable-length records, DFSORT uses the
length of the longest input record to determine the total amount of work
space to allocate.

When using DYNALLOC to request dynamic allocation with multiple inv-
ocations of DFSORT within the same step, make sure that the first
DYNALLOC request is large enough for all the sorts. Dynamically allocated
work data sets are not deallocated until the step is finished to ensure that
SMF logs data set usage correctly. As a result, in this situation, DFSORT
reuses the work space allocated to the first sort.

For tape work data sets, the number of volumes specified (explicitly or by
default) is allocated to the program. The program requests standard label
tapes.

DYNALLOC is not used if SORTWKnn DD statements are provided.
If VIO=NO is in effect

e Work space is allocated on nontemporary data sets (DSNAME param-
eter specified).

» |f the device (d) you specify is a virtual device, DFSORT will |gnore
VIO=NO and use the virtual device.

Default: None; optional.

« If DYNALLOC is not specified, and no SORTWKnn DD statements are
present, program execution proceeds according to the specification set
during installation with the ICEMAC DYNAUTO option (YES for dynamic
allocation, NO for no dynamic allocation).

« If DYNALLOC is specified without d, the default for d is that specified (or
defaulted) by the ICEMAC DYNALOC option during installation.

* |If DYNALLOC is specified without n, the default for n is that specified (or
defaulted) by the ICEMAC DYNALOC option during installation.

102 DFSORT: Application Programming: Guide

OPTION Control Statement

You can specify DYNALLOC without n, without d, or without both. If
DYNALLOC is specified without n, and the default for the n value of the
DYNALOC installation option is chosen, then at execution:

* |If one of the Blockset techniques is chosen, two work data sets will be
requested.

« |f a technique other than Blockset is chosen, three work data sets will
be requested.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

Note: Diagnostic messages ICE806! and ICE803I give information about
intermediate storage allocation/use.

DYNALLOC=OFF

»——0DYNALLOC=1—0FF J -
(OFF)

Directs DFSORT not to allocate intermediate workspace dynamically, over-
riding the ICEMAC installation option DYNAUTO =YES, or the DYNALLOC
parameter (without OFF) specified at execution. Use this option when you
know that an in-core sort can be performed, and you want to suppress
dynamic allocation of workspace.

OFF
directs DFSORT not to allocate intermediate workspace dynamically.

Default: None; optional.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

EFS

»»——FFS=Tname <
[NONEI

Temporarily overrides the EFS installation option, which specifies whether
DFSORT is to pass control to an Extended Function Support (EFS) program.
See Appendix B, “Using Extended Function Support (EFS)” on page 315 for
more information.

name
the name of the EFS program that will be called to interface with
DFSORT.

NONE
means no call will be made to the EFS program.

Default: Usually the installation default, but refer to
Appendix C, “Specification/Override of DFSORT Options” on page 353 for
full override details.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options™” on page 353.

Chapter 3. Using DFSORT Program Control Statements 103

OPTION Control Statement

Note: EFS is processed only if it is passed on the OPTION control state-
ment in an extended parameter list or in DFSPARM.

EQUALS or NOEQUALS

- [EQALS— —
NOEQUALS

Temporarily overrides the EQUALS installation option which specifies
whether the original sequence of identical collating records for a sort or a
merge should be preserved from input to output.

EQUALS
specifies that the original sequence must be preserved.

NOEQUALS
specifies that the original sequence need not be preserved.

For sort jobs, the sequence of the records in the output file depends upon
the order of:

¢ The records from the SORTIN file
¢ The records inserted by an E15 user exit routine
* The E15 records inserted within input from SORTIN.

For merge jobs, the sequence of the records in the output file depends upon
the order of:

¢ The records from a SORTINnn file. Equally-collating records are output
in the order of their file increments. For example, records from
SORTINO1 are output before any equally collating records from
SORTINO2.

¢ The records from an E32 user exit routine for the same file increment
number. Equally-collating records from E32 are output in the order of
their file increments. For example, records from m1 are output before
any equally-collating records from m2.

Default: Usually the installation default. See
Appendix C, “Specification/Override of DFSORT Options” on page 353 for
more information.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options.”

Note:

« When EQUALS is in effect, the total number of bytes occupied by all
control fields must not exceed 4088.

¢ Use of EQUALS can degrade performance, except when using the
Blockset sort technique for variable-length records. EQUALS is always
used with this technique.

* EQUALS is not used if SUM is specified and a technique other than
Blockset is selected.

* Do not specify EQUALS if variable-length records are sorted using tape
work files and the RDW is part of the control field.

» |f Blockset is selected and VLSHRT is in effect, EQUALS is not used.

104 DFSORT: Application Programming: Guide

OPTION Control Statement

EXCPVR
»——EXCPVR=TALL -
{NONR&{
NONE

For MVS/XA and MVS/ESA, temporarily overrides the EXCPVR installation
option, which specifies the data sets for which DFSORT can use EXCPVR
when sorting or copying fixed- and variable-length records with the Blockset
technique. EXCPVR can reduce the CPU time required for a run.

EXCPVR can only be used if the DFSORT SVC is installed.

Using EXCPVR =ALL provides the largest reduction in required CPU time,
but can cause other jobs to be paged in and out. Using EXCPVR=NOWRK
causes less page fixing than EXCPVR = ALL, but still improves DFSORT per-
formance. Use EXCPVR=NONE if avoiding higher paging rates is more
important than reducing CPU time.

Note: The EXCPVR option is not supported for MVS/370.

ALL
specifies that DFSORT can use EXCPVR for SORTIN, SORTOUT, and
SORTWKnn data sets.

NOWRK
specifies that DFSORT can use EXCPVR for the SORTIN and SORTOUT
data sets only. DFSORT will not use EXCPVR for SORTWKnn if NOWRK
is specified.

NONE
specifies that DFSORT cannot use EXCPVR for SORTIN, SORTOUT, or
SORTWKnn data sets.

Default: Usually the installation default, but see
Appendix C, “Specification/Override of DFSORT Options” on page 353 for
full override information.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

Note: EXCPVR=ALL is treated like EXCPVR=NOWRK for Hipersorting and
copying. DFSORT does not use EXCPVR when it determines that the asso-
ciated overhead might cause performance to be degraded.

FILSZ or SIZE

>>—I:FILSZ=rx J -
Ex

S1Z E=Ty
Ey

This parameter specifies an exact number of records for a sort or merge
job, or an estimated number of records for a sort job. An exact value can
be used to force DFSORT to terminate with an error message if the number
of records sorted or merged is not as expected.

If DFSORT cannot reasonably estimate the number of records to be sorted,
it uses the estimated FILSZ or SIZE value to aid optimization of interme-

Chapter 3. Using DFSORT Program Control Statements 105

OPTION Control Statement

diate storage; otherwise, it does not use the value for this purpose. For
variable-length records, DFSORT uses the length of the longest input record
to determine the total amount of workspace to allocate. Following are the
circumstances under which DFSORT uses the estimated FILSZ or SIZE (if
specified) for optimization:

e An E15 exit routine is used.
* Input data sets are multivolume or on tape.
* |nput data sets are concatenated and Blockset is not selected.

FILSZ=Xx
x is the exact number of records to be sorted or merged; it must take
into account the number of records in the input data set(s), records to
be inserted or deleted by exit E15/E32, and records to be deleted by
INCLUDE/OMIT, SKIPREC, and STOPAFT.

SIZE=y
y is the exact number of records in the input data set(s) (that is, the
number of records in the SORTIN data set or SORTINnn data sets). It
must take into account the number of records to be deleted by
STOPAFT.

If the actual number of records is not the same as the specified value,
the program terminates with the value x or y placed in the IN field of the
message ICEO47A or ICE054l. This applies to both FILSZ and SIZE.

FILSZ=Ex or SIZE=Ey
x or y is the estimated number of records to be sorted; it must be
immediately preceded by the letter E. In either case, it must be large
enough to include both the SORTIN data set and any records you add at
exit E15.

For example, if you estimate your total data set size to be 5000 records,
specify FILSZ=ES000. The program accepts either FILSZ or SIZE, but
FILSZ is always preferable when its use is necessary.

If you omit the FILSZ or SIZE operand, DFSORT estimates the number of
input records to be sorted.

Default: None; optional.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

HIPRMAX

»—H] PRI-1AX=-[0PT IMAL [
n

For MVS/ESA, temporarily overrides the HIPRMAX installation option, which
specifies the maximum amount of hiperspace to be committed for
Hipersorting. A hiperspace is a high-performance data space that resides
in expanded storage and is backed by auxiliary storage (if necessary).
Because 1/0 processing is reduced for Hipersorting, elapsed time, EXCP
counts, and channel usage are also reduced.

The amount of hiperspace available for a job is limited by the IEFUSI exit
your site uses. When HIPRMAX =n is specified, DFSORT will not use more
storage than the value of HIPRMAX. When HIPRMAX =OPTIMAL is speci-

106 DFSORT: Application Programming: Guide

OPTION Control Statement

fied, DFSORT selects the amount of hiperspace that will cause minimal
impact on system paging activity.

If the amount of hiperspace available for Hipersorting is insufficient for tem-
porary storage of the records, intermediate DASD storage will be used

along with hiperspace. If the amount of hiperspace is too small to improve
performance, Hipersorting will not be used. DYNAUTO =YES will always be

“in effect for Hipersorting.

Hipersorting might cause a small CPU time degradation. When CPU opti-
mization is a concern, you can use HIPRMAX =0 to suppress Hipersorting.

OPTIMAL
specifies that DFSORT determines dynamically the maximum amount of
hiperspace to be committed for Hipersorting. DFSORT determines the
paging activity at the start of the run and selects the maximum value
that causes minimal system impact.

specifies the maximum megabytes of hiperspace to be committed for
Hipersorting. n must be a value between 0 and 9999. The actual
amount of hiperspace used will not exceed the HIPRMAX value, but
might be less if DFSORT determines that using the maximum will
increase system paging significantly. If n is O (zero), Hipersorting is not
used.

Default: Usually the default set during installation, but see
Appendix C, “Specification/Override of DFSORT Options™ on page 353 for
override information.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options" on page 353.

LIST or NOLIST

LIST >
I'NOLISTJ

Temporarily overrides the LIST installation option, which specifies whether
DFSORT program control statements should be written to the message data
set. See DFSORT Messages and Codes for details on use of the message
data set.

LIST
means that DFSORT control statements are printed to the message data
set.

NOLIST
means that DFSORT control statements are not printed to the message
data set.

Default: Usually the installation default, but refer to
Appendix C, "Specification/Override of DFSORT Options” on page 353 for
full override details.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options™ on page 353.

Note: LIST or NOLIST are processed only if they are passed on the
OPTION control statement in an extended parameter list or in DFSPARM.

Chapter 3. Using DFSORT Program Contral Statements 107

OPTION Control Statement

LISTX or NOLISTX

\ i
A

> LISTX
I:NOLISTXI

Temporarily overrides the LISTX installation option, which specifies whether
DFSORT writes to the message data set program control statements that
are returned by an EFS program. See DFSORT Messages and Codes for
details on use of the message data set.

LISTX
means that control statements returned by an EFS program are to be
printed to the message data set.

NOLISTX
means that control statements returned by an EFS program are not to
be printed to the message data set.

Defauit: Usually the installation default, but refer to
Appendix C, “Specification/Override of DFSORT Options” on page 353 for
full override details.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

Note:

e LISTX or NOLISTX are processed only if they are passed on the OPTION
control statement in an extended parameter list or in DFSPARM.

« If EFS=NONE is in effect after final override rules have been applied,
NOLISTX will be set in effect.

e LISTX and NOLISTX can be used independently of LIST and NOLIST.

+ For more information on printing EFS control statements, see DFSORT
Messages and Codes.

MAINSIZE

»»——HAINSIZE n
L»nKJ
MAX

Temporarily overrides the SIZE installation option, which specifies the
amount of main storage available to DFSORT, provided the value you
specify is greater than the MINLIM value set at DFSORT installation time.

For MVS/XA and MVS/ESA systems, MAINSIZE applies to the total amount
of main storage above and below 16-megabyte virtual. DFSORT determines
how much storage to allocate above and below 16-megabyte, virtual but the
total amount of storage cannot exceed MAINSIZE.

Specifying a MAINSIZE value equal to your installation’s MAXLIM value is
equivalent to specifying MAINSIZE =MAX. If the MAINSIZE or SIZE passed
to DFSORT is equal to the MAXLIM, the MAXLIM value will be used and
DFSORT will set “MAX" in effect.

For details on main storage allocation, see “Tuning Main Storage” on
page 256 and “Main Storage” on page 311.

108 DFSORT: Application Programming: Guide

OPTION Control Statement

n
specifies the number of bytes of main storage to be allocated. You can
specify a value greater than MAXLIM or TMAXLIM.
Limit: 8 digits

nK
specifies n times 1024 bytes of main storage to be allocated. You can
specify a value greater than MAXLIM or TMAXLIM.
Limit: 5 digits

MAX

instructs DFSORT to calculate the amount of main storage available and
allocate this maximum amount, up to the MAXLIM (or TMAXLIM for
MVS/XA and MVS/ESA systems) value set when DFSORT was installed.

Default: Usually the installation default, but refer to
Appendix C, “Specification/Override of DFSORT Options” on page 353 for
full override details.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

MSGDDN

»»——MSGDDN=ddname >

Temporarily overrides the MSGDDN installation option, which specifies an
alternate DDNAME for the message data set. MSGDDN must be in effect if:

¢ A program that invokes DFSORT uses SYSOUT (for instance, COBOL
uses SYSOUT) and you do not want DFSORT messages intermixed with
the program messages.

¢ Your E15 and E35 routines are written in COBOL and you do not want
DFSORT messages intermixed with the program messages.

« A program invokes DFSORT more than once and you want separate
messages for each invocation of DFSORT.

The DDNAME can be any one through eight-character name, but must be
unique within the job step; do not use a name that is used by DFSORT (for
example, SORTIN). If the DDNAME specified is not available at execution
time, SYSOUT is used instead. For details on use of the message data set,
see DFSORT Messages and Codes.

Default: Usually the installation default, but refer to
Appendix C, “Specification/Override of DFSORT Options” on page 353 for
full override details.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

Note: MSGDDN is processed only if it is passed on the OPTION control
statement in an extended parameter list or in DFSPARM.

Chapter 3. Using DFSORT Program Control Statements 109

OPTION Control Statement

MSGPRT

I

CRITICAL1

»——MSGPRTTLL
NONE——

Temporarily overrides the MSGPRT installation option, which specifies the
class of messages to be written to the message data set. For details on
use of the message data set, see DFSORT Messages and Codes.

ALL
specifies that all messages except diagnostic messages (ICE8CO0I to
ICE999I) are to be printed. Control statements print only if LIST is in
effect.

CRITICAL
specifies that only critical messages will be printed. Control statements
print only if LIST is in effect.

NONE
specifies that no messages and control statements will be printed.

Default: Usually the installation default, but refer to
Appendix C, “Specification/Override of DFSORT Options” on page 353 for
full override details.

Note: MSGPRT is processed only if it is passed on the OPTION control
statement in an extended parameter list or in DFSPARM.

NOBLKSET

»>——NOBLKSET -

DFSORT uses the Blockset technique whenever possible. By use of this
parameter, you can cause DFSORT to bypass the Blockset technique for a
sort or merge application. However, this generally degrades performance.

Default: None; optional.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

NOOUTREL

»»——NOOUTREL >

Temporarily overrides the OUTREL installation option, which specifies
whether unused temporary SORTOUT data set space is to be released.
NOOUTREL means that unused temporary SORTOUT data set space is not
to be released.

Default: Usually the installation default, but refer to
Appendix C, “Specification/Override of DFSORT Options” on page 353 for
full override details.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

110 DFSORT: Application Programming: Guide

OPTION Control Statement

NOOUTSEC

»——NOOUTSEC >

Temporarily overrides the OUTSEC installation option, which specifies
whether automatic secondary allocation is to be used for SORTOUT data
sets. NOOUTSEC means that automatic secondary allocation for SORTOUT
data sets is not used.

Default: Usually the installation default, but refer to
Appendix C, “Specification/Override of DFSORT Options” on page 353 for
full override details.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

NOSTIMER

Y
A

»——NOSTIMER

Temporarily overrides the STIMER installation option, which specifies
whether DFSORT can use the STIMER macro. NOSTIMER means that
DFSORT does not use the STIMER macro; processor time data does not
appear in SMF records or in statistics provided to the ICETEXIT termination
installation exit.

If your exit(s) take checkpoints and STIMER = YES is the installation default,
you must specify this parameter.

Default: Usually the installation default, but refer to
Appendix C, “Specification/Override of DFSORT Options” on page 353 for
full override details.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

NOWRKREL

»——NOWRKREL >

Temporarily overrides the WRKREL installation option, which specifies
whether unused temporary SORTWKnn data set space is to be released.
NOWRKREL means that no unused temporary SORTWKnn data set space
will be released.

Default: Usually the installation default, but refer to
Appendix C, “Specification/Override of DFSORT Options” on page 353 for
full override details.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

Chapter 3. Using DFSORT Program Control Statements 111

OPTION Control Statement

NOWRKSEC

»——NOWRKREL -

Temporarily overrides the WRKSEC installation option, which specifies
whether automatic secondary allocation is to be used for SORTWKnn data
sets. NOWRKSEC means that automatic secondary allocation is not used
for SORTWKnn data sets.

Default: Usually the installation default, but refer to
Appendix C, “Specification/Override of DFSORT Options” on page 353 for
full override details.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

RESALL

>’_—'RESALL n »—t
Lol
nK

Temporarily overrides the RESALL instaliation option, which specifies the
number of bytes to be reserved in a REGION for system use. Usually, only
4K bytes (the standard default) of main storage must be available in a
region for system use. However, in some cases, this might not be enough;
for example, if your installation does not have BSAM/QSAM modules resi-
dent, you have exits that open data set(s), or you have COBOL exits.
RESALL is used only when MAINSIZE/SIZE =MAX is in effect.

For MVS/XA and MVS/ESA systems, RESALL applies only to the amount of
main storage below 16-megabyte virtual. The ARESALL option applies to
the amount of main storage above 16-megabyte virtual.

n
specifies the number of bytes of storage to be reserved. If you specify
less than 4096, 4096 is used.
Limit: 8 digits.

nK

nK specifies n times 1024 bytes of storage are to be reserved. If you
specify less than 4K, 4K is used.

Limit: 5 digits.

Default: Usually the installation default, but refer to
Appendix C, “Specification/Override of DFSORT Options” on page 353 for
full override details.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

Note: A better way to release the required storage for user exits is the m
parameter on the MODS statement.

112 DFSORT: Application Programming: Guide

OPTION Control Statement

RESINV

”_RESINV-rn >
nk

Temporarily overrides the RESINV installation option, which specifies the
number of bytes to be reserved in a REGION for the invoking program.
RESINV is used only when DFSORT is dynamically invoked and
MAINSIZE/SIZE =MAX is in effect.

For MVS/XA or MVS/ESA systems, RESINV applies only to the amount of
main storage below 16-megabyte virtual. The ARESINV option applies to
the amount of main storage above 16-megabyte virtual.

This extra space is usually required for data handling by the invoking
program or exits while DFSORT is executing (as is the case with some PL/|
and COBOL- invoked sort applications).

The amount of space required depends upon what routines you have, how
the data is stored, and which access method you use. The reserved space
is not meant for the executable code itself.

If your invoking program and its associated exits do not perform data set
handling, you do not need to specify this parameter.

n
n is a decimal value that specifies the number of bytes of main storage
to be reserved.

Limit: 8 digits

nK
nK specifies n times 1024 bytes of main storage are to be reserved.

Limit: 5 digits

Default: Usually the installation default, but refer to
Appendix C, “Specification/Override of DFSORT Options” on page 353 for
full override details.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

Note: A better way to release the required storage for user exits is the m
parameter on the MODS statement.

SKIPREC

»»——SKIPREC=2z >

z is the number of records you want to skip before starting to sort or copy
the input data set, and is usually used if, on a preceding DFSORT run, you
have processed only part of the input data set.

A job with an input data set that exceeds intermediate storage capacity
usually terminates unsuccessfully. However, for a tape work data set sort,
you can use a routine at E16 (as described in Chapter 5, “Using Your Own
Exit Routines” on page 181) to instruct the program to sort only those
records already read in. It then prints a message giving the number of

Chapter 3. Using DFSORT Program Control Statements 113

OPTION Control Statement

records sorted. You can use SKIPREC in a subsequent sort run to bypass
the previously-sorted records, sort only the remaining records, and then
merge the output from different runs to complete the application.

Default: None; optional.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

Note:

* SKIPREC applies only to records read from SORTIN (not from E15 rou-
tines). (See Figure 2 on page 6.)

* |f SKIPREC=0is in effect, SKIPREC is not used.
SORTDD

»»——SO0RTDD=cccc —>

You should use this parameter to specify a four-character prefix for
DDNAMEs when you dynamically invoke DFSORT more than once in a
program step. The four characters replace “SORT” in the following
DDNAMESs: SORTIN, SORTOUT, SORTINnn, SORTWKnn, and SORTCNTL.

cccc specifies a four-character prefix. The four characters must all be
alphanumeric or national ($, #, or @). The first character must be alpha-
betic. The first three characters must not be SYS.

Example: If you use ABC# as replacement characters, DFSORT will use DD
statements ABC#IN, ABCHCNTL, ABCK#WKnn, and ABC#OUT instead of
SORTIN, SORTCNTL, SORTWKnn, and SORTOUT.

Default: If this parameter is not specified, cccc defaults to SORT.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

Note:

* SORTOD is processed only if it is passed on the OPTION control state-
ment in an extended parameter list, or in DFSPARM.

* If both SORTIN =ddname and SORTDD =cccc are specified, ddname is
used for DFSORT input.

e If both SORTOUT =ddname and SORTDD =cccc are specified, ddname
is used for DFSORT output.

SORTIN

»»——SO0RTIN=ddname >

specifies a DDNAME to be associated with the SORTIN data set. This allows
you to dynamically invoke DFSORT more than once in a program step,
passing a different DDNAME for each input file.

The DDNAME can be 1 through 8 characters, but must be unique within the
job step. Do not use DDNAMESs reserved for use by DFSORT (such as
SYSIN).

114 DFSORT: Application Programming: Guide

OPTION Control Statement

Default: If this parameter is not specified, ddname defaults to SORTIN,
unless SORTDD =cccc is specified, unless ccccIN is the default.

Applicable Functions: See Appendix C, "‘Speciﬁcation/Override of DFSORT
Options™” on page 353.

Note:

* SORTIN is processed only if it is passed on the OPTION control state-
ment in an extended parameter list, or in DFSPARM.

* If both SORTIN=ddname and SORTDD =cccc are specified, ddname is
used for the input file. The same DDNAME cannot be specified for
SORTIN and SORTOUT.

* If SORTIN is used for a tape work data set sort, DFSORT terminates.
SORTOUT

»»——SORTOUT=ddname >

specifies a DDNAME to be associated with the SORTOUT data sets. This
allows you to dynamically invoke DFSORT more than once in a program
step, passing a different DDNAME for each output file.

The DDNAME can be 1 through 8 characters, but must be unique within the
job step. Do not use DDNAMESs reserved for use by DFSORT (such as
SYSIN).

Default: If this parameter is not specified, ddname defaults to SORTOUT,
unless SORTDD =cccc is specified, in which case ccccOUT is the default.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

Note:

¢ SORTOUT is processed only if it is passed on the OPTION control state
ment in an extended parameter list, or in DFSPARM.

« |f both SORTOUT =ddname and SORTDD =cccc are specified, ddname
is used for the output file. The same DDNAME cannot be specified for
SORTIN and SORTOUT.

+ If SORTOUT is specified for a conventional merge or for a tape work
data set sort, DFSORT terminates.

STOPAFT

»»—STOPAFT=n e

n is the maximum number of records you want accepted for sorting or
copying (that is, read from SORTIN or inserted by E15 and not deleted by
SKIPREC, E15 or INCLUDE/OMIT). When n records have been accepted, no
more records are read from SORTIN; E15 continues to be entered as if EOF
were encountered until a return code of 8 is sent, but no more records are
inserted. If end-of-file is encountered before n records are accepted, only
those records accepted up to that point are sorted or copied.

Defauit: None; optional.

Chapter 3. Using DFSORT Program Control Statements 115

OPTION Control Statement

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

Note:
« STOPAFT is not used for a tape work data set sort.

+ If you specify the FILSZ=x PARM, or FILSZ=x or SIZE=x on the
OPTION or SORT statement, and the number of records accepted for
processing does not equal x, DFSORT issues message ICE047A and ter-
minates.

* If STOPAFT =0 is in effect, STOPAFT is not used.
VERIFY or NOVERIFY

>>—l—VERIFY >
NOVERIFY]—

Temporarily overrides the VERIFY installation option, which specifies
whether sequence checking of the final output records must be performed.

VERIFY
specifies that sequence checking is to be performed.

NOVERIFY
specifies that sequence checking is not to be performed.

Note: Use of VERIFY can degrade performance.

Default: Usually the installation default, but refer to
Appendix C, “Specification/Override of DFSORT Options” on page 353 for
full override details.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

VLSHRT or NOVLSHRT

>>—rVLSHRTJ >
NOVLSHRT

Temporarily overrides the VLSHRT installation option, which specifies
whether DFSORT is to continue sorting or merging if a variable-length input
record is found to be too short to contain all specified control fields.
VLSHRT is not meaningful for fixed-length record processing.

VLSHRT
specifies that sorting or merging continues if a “short” record is found.

NOVLSHRT
specifies that sorting or merging terminates if a “short” record is found.

Default: Usually the installation default, but refer to
Appendix C, “Specification/Override of DFSORT Options” on page 353 for full
override details.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options™ on page 353.

116 DFSORT: Application Programming: Guide

OPTION Control Statement

Note:

* VLSHRT is not used if INCLUDE/OMIT, INREC, OUTREC, and/or SUM are
specified, or if you have an EFS01 routine.

* If Blockset is selected:

— DFSORT pads “short” control fields with binary zeroes, thus making the
order predictable for records with equal control fields of different
lengths.

— VLSHRT is not used for a merge application. To use VLSHRT for a
merge application, you must specify the NOBLKSET option on the
OPTION control statement.

* If Blockset is not selected:

— DFSORT terminates if the first byte of the first (major) control field is not
included in the record.

— DFSORT does not pad “short” control fields, thus making the order
unpredictable for records with equal control fields of different lengths.

— In certain cases, VLSHRT is not used because of the number and posi-
tion of the control fields.

— EQUALS is not used if VLSHRT is in effect.

OPTION Statement Examples
OPTION Statement Example 1. One Control Field and Related Options

SORT FIELDS=(1,20,CH,A)
OPTION SIZE=50000,SKIPREC=5,EQUALS,DYNALLOC

FIELDS
The control field begins on the first byte of each record in the input data set,

is 20 bytes long, contains character data, and is to be sorted in ascending
order.

SIZE
The data set to be sorted contains 50000 records.

SKIPREC
Five records are skipped before starting to process the input data set.

EQUALS
The sequence of equally-collating records is preserved from input to output.

DYNALLOC
Two data sets (by default) are allocated on SYSDA (by default). The space
on the data set is calculated using the SIZE value in effect.

OPTION Example 2. The Relationships Between the OPTION and SORT Control
Statements and the ICEMAC Installation Option

SORT FIELDS=(1,2,CH,A),CKPT
OPTION EQUALS,NOCHALT,NOVERIFY,CHECK

Chapter 3. Using DFSORT Program Control Statements 117

OPTION Control Statement

FIELDS ‘
The control field begins on the first byte of each record in the input data set,
is 2 bytes long, contains character data, and is to be sorted in ascending
order.

CKPT
DFSORT takes checkpoints during this run.

Note: CKPT is ignored if one of the Blockset techniques is chosen. If
checkpoints are required, you must bypass the Blockset technique by speci-
fying the NOBLKSET option, or by specifying IGNCKPT=NO on the ICEMAC
installation macro.

EQUALS
The sequence of equally-collating records is preserved from input to output.

NOCHALT
Only AQ fields are translated through the ALTSEQ translate table. If
CHALT=YES was specified during installation, then NOCHALT temporarily
overrides it.

NOVERIFY
No sequence check is performed on the final output records.

CHECK
Record counters are checked at the end of program execution.

OPTION Example 3. Using OPTION to Override SORT

OPTION FILSZ=50,SKIPREC=5,DYNALLOC=3380
SORT FIELDS=(1,2,CH,A),SKIPREC=1,S1ZE=200,DYNALLOC=(3350,5)

This example shows how parameters specified on the OPTION control state-
ment override those specified on the SORT control statement, regardless of the
order of the two statements.

FILSZ
DFSORT expects 50 records on the input data set. (Note that there is a dif-
ference in meaning between FILSZ and SIZE, and that the OPTION specifi-
cation of FILSZ is used in place of SIZE.)

SKIPREC
DFSORT causes five records from the beginning of the input file to be
skipped. (SKIPREC=1 on the SORT statement is ignored.)

DYNALLOC
DFSORT allocates two work data sets (by default) on an IBM 3380.

FIELDS
The control field begins on the first byte of each record in the input data set,
is 2 bytes long, contains character data, and is to be sorted in ascending
order.

OPTION Example 4. Bypassing the Blockset Technique

OPTION NOBLKSET

118 DFSORT: Application Programming: Guide

OPTION Control Statement

NOBLKSET
DFSORT does not use the Blockset technique for a sort or merge.

OPTION Example 5. Using STOPAFT and COBEXIT

OPTION STOPAFT=100,COBEXIT=C0B2

STOPAFT
DFSORT accepts 100 records before sorting or copying.

COBEXIT
E15 and E35 routines can be executed with the VS COBOL Il library.

OPTION Example 6. Passing an OPTION Control Statement through a
SORTCNTL or SYSIN Data Stream

OPTION RESINV=32000,MSGPRT=NONE,
MSGDDN=SORTMSGS , SORTDD=ABCD, SORTIN=MYINPUT,
SORTOUT=MYQUTPUT,NOLIST

This example illustrates the parameters RESINV, MSGPRT, MSGDDN, SORTDD,
SORTIN, SORTOUT, and NOLIST, and the actions taken when these parameters
are supplied on an OPTION statement read from the SYSIN data set or the
SORTCNTL data set. The parameters are recognized, but not used.

RESINV
32000 bytes of storage are reserved for the user.

MSGPRT=NONE
The keyword is ignored, and messages are printed according to the

installation-supplied default.
MSGDDN=SORTMSGS

The keyword is ignored, and all messages are written to the SYSOUT data
set.

SORTDD=ABCD
The keyword is ignored, and the standard prefix SORT is used.

SORTIN=MYINPUT
The keyword is ignored, and the DDNAME SORTIN is used to reference the

input data set.

SORTOUT=MYOUTPUT
The keyword is ignored, and the DDNAME SORTOUT is used to reference
the output data set.

NOLIST
The keyword is ignored, and control statements are printed according to the

installation-supplied defauits.

Chapter 3. Using DFSORT Program Control Statements 119

OPTION Control Statement

OPTION Example 7. Passing an OPTION Control Statement in DFSPARM

OPTION RESINV=32000,MSGPRT=CRITICAL,
MSGDDN=SORTMSGS,SORTDD=ABCD, SORTIN=HYINPUT,
SORTOUT=MYOUTPUT ,NOLIST

This example illustrates keywords RESINV, MSGPRT, MSGDDN, SORTDD,
SORTIN, SORTOUT, and NOLIST and the actions taken when these keywords
are supplied on the OPTION control statement passed by DFSPARM. These
options can also be passed in an extended parameter list, with the appropriate
syntax changes.

RESINV
32000 bytes of storage are reserved for the user.

MSGPRT=CRITICAL
Only critical messages are printed on the message data set.

MSGDDN=SORTMSGS
Messages are written to the SORTMSGS data set.

SORTDD=ABCD
SORT uses ABCD as a prefix for all sort names.

SORTIN=MYINPUT
The DDNAME MYINPUT is used to reference the input data set.

SORTOUT=MYOUTPUT
The DDNAME MYOUTPUT is used to reference the output data set.

NOLIST
Control statements are not printed.

OPTION Example 8. Using COPY with the OPTION statement

SORT FIELDS=(3,4,CH,A)
OPTION COPY,SKIPREC=10,CKPT
MODS E15=(E15,1024,M0DLIB),E35=(E35,1024,MODLIB)

SORT
The sort statement is ignored because the COPY option has been specified.

COPY
The copy processing is always done on a record-by-record basis. Each
record is therefore read from SORTIN, passed to the E15 exit, passed to the
E35 exit, and written to SORTOUT. (Contrast this with a sort, where all the
records are read from SORTIN and passed to the E15 exit before any
records are passed to the E35 exit and written to SORTOUT.)

SKIPREC
Ten records are skipped before copying starts.

CKPT ,
The checkpoint option is not used for copy applications.

120 DFSORT: Application Programming: Guide

OUTREC Control Statement

OUTREC Control Statement

I ’
C: p,lﬂ‘rj—]
,a

The OUTREC control statement allows you to reformat the input records before
they are output; that is, to define which parts of the input record are to be
included in the reformatted output record, in what order they are to appear, and
how they are to be aligned.

You do this by defining one or more fields from the input record. The refor-
matted output record consists of those fields only, in the order in-which you
have specified them, and aligned on the boundaries or in the columns you have
indicated.

You can also insert blanks, binary zeros, character strings, and hexadecimal
strings as separators before, between, and after the input fields, in the refor-
matted output records.

For information concerning the interaction of INREC and OUTREC, see “Use
Options that Enhance Performance” on page 251.

FIELDS

(’
FIELDS=—(C T) -
c: Pa"'—rj‘l

specifies the order and alignment of the input and separation fields in the
reformatted output records.

c:
Indicates the column in which the first position of the associated input
or separation field is to be aligned, relative to the start of the refor-
matted output record. Unused space preceding the specified column is
padded with EBCDIC blanks. The following rules apply:

¢ ¢ must be a number between 1 and 32000.
e ¢: must be followed by an input field or a separation field.

« ¢ must not overlap the previous input field or separation field in the
reformatted output record.

¢ For variable-length records, c: must not be specified before the first
input field (the record descriptor word), nor after the variable part of
the input record.

* The colon (:) is treated like the comma (,) or semicolon (;) for contin-
uation to another line.

See Table 3 on page 79 for examples of valid and invalid column align-
ment.

Chapter 3. Using DFSORT Program Control Statements 121

OUTREC Control Statement

Indicates a separation field to be inserted into the reformatted output
record in the position you code it relative to the other fields. It can be
specified before or after any input field. Consecutive separation fields
may be specified. For variable length records, s must not be specified
before the first input field (the record descriptor word), or after the vari-
able part of the input record. Permissible values are:

nX Blank separation. n bytes of EBCDIC blanks (X'40') are inserted
in the reformatted output records. n can be from 1to 4095. If nis
omitted, 1 is used.

See Table 4 on page 79 for examples of valid and invalid blank
separation.

nZ Binary zero separation. n bytes of binary zeros (X'00') are
inserted in the reformatted output records. n can be from 1 to
4095. If n is omitted, 1 is used.

See Table 5 on page 79 for examples of valid and invalid binary
zero separation.

nC’xx...x" Character string separation. n repetitions of the character
string constant (C'xx...x") are inserted into the reformatted output
records. n can be from 1 to 4095. If n is omitted, 1 is used. x can
be any EBCDIC character. You can specify 1 to 256 characters.

If you want to include a single apostrophe in the character string,
you must specify it as two single apostrophes:

Required: O'NEILL Specify: C'0''NEILL'

See Table 6 on page 80 for examples of valid and invalid char-
acter string separation.

nX’yy...yy’ Hexadecimal string separation. n repetitions of the
hexadecimal string constant (X’yy...yy’) are inserted in the refor-
matted output records. n can be from 1 to 4095. If n is omitted, 1
is used.

The value yy represents any pair of hexadecimal digits. You can
specify from 1 to 256 pairs of hexadecimal digits.

See Table 7 on page 80 for examples of valid and invalid
hexadecimal string separation.

p.m,a
Indicates an input field to be inserted into the reformatted output record
in the position you code it relative to the other fields.

p
specifies the first byte of the input field relative to the beginning of
the input record.* The first data byte of a fixed-length record has rel-
ative position 1. The first data byte of a variable-length record has
relative position 5, because the first four bytes are occupied by the
RDW. All fields must start on a byte boundary, and no field may

122 DFSORT: Application Programming: Guide

OUTREC Control Statement

extend beyond byte 32000. See the following “OUTREC Statement
Notes™ for special rules concerning variable-length records.

m
specifies the length of the input field. It must include the sign if the
data is signed, and must be a whole number of bytes. See note 5
on page 124 for more information.

a

specifies the alignment (displacement) of the input field in the refor-
matted output record, relative to the start of the reformatted output
record.

The permissible values are:

H Halfword aligned. This means that the displacement (p-1) of
the field from the beginning of the reformatted input record, in
bytes, is a multiple of 2 (that is, position 1, 3, 5, and so forth).

F Fullword aligned. The displacement is a multiple of 4 (that is,
position 1, 5, 9, and so forth).

D Doubleword aligned. The displacement is a multiple of 8 (that
is, position 1, 9, 17, and so forth).

Alignment can be necessary if, for example, the data is to be used
in a COBOL application program where COMPUTATIONAL items are
aligned through the SYNCHRONIZED clause. Unused space pre-
ceding aligned fields are always padded with binary zeros.

Default: None; must be specified.

Applicable Functions: See Appendix C, “Specification/Override of DFSORT
Options” on page 353.

OUTREC Statement Notes
+ If input records are reformatted by INREC or E15, OUTREC must refer to

fields in the appropriate reformatted record (see the discussion of p on
page 122).

* When you specify OUTREC, you must be aware of the change in record size
and layout of the resulting reformatted output records. You must also
understand how reformatting of records affects processing performance,
and how to use INREC and/or OUTREC to achieve the most efficient proc-
essing. (See also “INREC Statement Notes” on page 81 and “Use Options
that Enhance Performance” on page 251 for more details).

¢ The length of the INREC/OUTREC record (reformatted length) is not used to
determine the LRECL of SORTOUT. If not specified in the DSCB or DD
statement, the value for SORTOUT LRECL will be determined in the usual
way (that is, from the L3 value or SORTIN LRECL). If the reformatted length
does not match the SORTOUT LRECL, the same checks used when the
SORTIN LRECL does not match the SORTOUT LRECL are made and
padding/truncation is performed, if possible.

4 If INREC is specified, p must refer to the record as reformatted by INREC. If your E15 exit reformats the record,
and INREC is not specified, p must refer to the record as reformatted by your E15 exit.

Chapter 3. Using DFSORT Program Control Statements 123

OUTREC Control Statement

If the Blockset technique is not selected and the INREC/OUTREC length is
less than the specified or defauited SORTOUT LRECL, then you must pad
the record to the correct length.

For VSAM data sets, the maximum record size defined in the cluster is
equivalent to the LRECL when processing fixed-length records, and is four
bytes more than the LRECL when processing variable-length records. See
“VSAM Considerations” on page 10 for more information.

« For variable-length records, the first entry in the FIELDS parameter must
specify or include the 4-byte RDW. DFSORT sets the length of the refor-
matted record in the RDW.

If the first field in the data portion of the input record is to appear in the
reformatted output record immediately foliowing the RDW, the entry in the
FIELDS parameter can specify both RDW and data field in one. Otherwise,
the RDW must be specifically included in the reformatted output record.

¢ The variable part of the input record (that part beyond the minimum record
length) can be included in the reformatted output record as the last part. In
this case, a value must be specified for pn that is less than or equal to the
minimum record length (L4) plus 1 byte, and mn and an must be omitted. If
INREC and OUTREC are both specified, either both must specify position-
only for the last part, or neither must specify position-only for the last part.

Note that, if the reformatted input includes only the RDW and the variable
part of the input record, “null” records containing only an RDW might result.

* The reformatted output records are in the f<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>