
• t

--------- -------- - ---- -- --- DFSORT SC33-4035-14

-------_.-
Application Programming: Guide

Release 11

Fifteenth Edition (December 1988)

This edition replaces and makes obsolete the previous edition, SC33-4035-13.

This edition applies to Release 11 of IBM DFSORT, Program Number 5740-SM1, and to any subsequent
releases until otherwise indicated in new editions or technical newsletters.

The changes for this edition are summarized under "Summary of Changes" following the preface.
Specific changes are indicated by a vertical bar to the left of the change. These bars will be deleted at
any republication of the page affected. Editorial changes that have no technical significance are not
noted.

Changes are made periodically to this publication; before using this publication in connection with the
operation of IBM systems, consult the latest IBM System/370, 30xx, 4300, and 9370 Processors Bibli­
ography, GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM licensed
program in this publication is not intended to state or imply that only IBM's program may be used.
Any functionally equivalent program may be used instead.

Requests for IBM publications should be made to your IBM representative or to the IBM branch office
serving your locality. If you request publications from the address given below, your order will be
delayed because publications are not stocked there.

A Reader's Comment Form is provided at the back of this publication. If the form has been removed,
comments may be addressed to IBM Corporation, Programming Publishing, P. O. Box 49023, San Jose,
California, U.S.A. 95161-9023. IBM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you. .

© Copyright International Business Machines Corporation 1973, 1989. All rights reserved.

Trademarks Used In This Document
The following names have been adopted by IBM for trademark use and will be
used throughout this publication:

Enterprise Systems Architecturel370™

hiperspace ™

Hipersorting ™

MVS/ESA™

MVSIXA™

MVS/SpTM

iii

How to Use This Book

About This Book

To the Reader
DFSORT Application Programming: Guide contains all the information you need
to use DFSORT on a continuing basis. DFSORT is a program you use to sort,
merge, or copy information. DFSORT processes your information by manipu­
lating the individual records in your data set.

• When you sort records, you arrange them in a particular sequence,
choosing an order more useful to you than the original one.

• When you merge records, you combine the contents of two or more
previously-sorted data sets into one.

• When you copy records, you make an exact duplicate of each record in your
data set.

You can use many options with these basic procedures to get the exact results
you want.

The ir)formation in this book is designed to help you program DFSORT applica­
tions. The information is not to be used for any other purpose.

Who Should Read This Book
This book is a reference guide for anyone who needs to sort, merge, or copy
records using DFSORT (Data Facility Sort) Licensed Program 5740-SM1. It con­
tains everything you need to know to use DFSORT, and is arranged so you can
locate specific information quickly and easily. It is not designed to teach you
how to use DFSORT, but is targeted at programmers who already have a basic
understanding of the program and need a task-oriented guide to its functions
and options.

If you are a new user, then Getting Started with DFSORT is the first book you
should read. Getting Started with DFSORT is a self-study guide that tells you
what you need to know to begin using DFSORT quickly, with step-by-step exam­
ples and illustrations.

How to Use This Book
DFSORT Application Programming: Guide is a task-oriented reference manual.
To retrieve information quickly, use the Table of Contents to locate headings "
about the procedures you want to use, or the problems you want to solve.

Read the next section, titled "What This Book Covers," for summaries of chap­
ters and appendixes.

Use the Index to locate information about specific topics such as restrictions or
commands, about general topics such as tasks or procedures, and about any­
thing that might be covered in several places in the book.

About This Book V

Q

What This Book Covers

Finally. remember that DFSORT Application Programming: Guide is part of a
more extensive DFSORT library. Six additional books can help you use
DFSORT more effectively:

Task

Evaluating DFSORT

Installing DFSORT

Self-study

Quick reference

Diagnosing failures

Interpreting messages

DFSORT Publication

DFSORT General Information. GC33-4033

DFSORT Benchmark Guide. GG24-3019

DFSORT Installation and Customization. SC33-4034

Getting Started with DFSORT. SC26-4109

DFSORT Reference Summary. SX33-8001

DFSORT Diagnosis Guide. L Y27-9531

DFSORT Messages and Codes. SC26-4525

See "Reading List" on page 389. for other related documents you can use to
take advantage of all the options and facilities of the program.

What This Book Covers
This book is a task-oriented reference manual. The various sections present
related information together. grouped by what you want to do. The first four
chapters of the book explain what you need to know to invoke and use
DFSORT's primary record processing functions. The remaining chapters
explain more specialized features. and how to use DFSORT most effectively.
The appendixes provide specific information about a variety of topics.

• Chapter 1, "Introducing DFSORT" on page 1. presents an overview of
DFSORT, explaining what you can do with the program and how you invoke
DFSORT processing. It discusses how DFSORT works, data set formats and
limitations. and explains the defaults that might have been modified during
installation at your site.

• Chapter 2, "Executing DFSORT with Job Control Language" on page 15,
explains how to use job control language (JCL) to execute your DFSORT
jobs. It explains how to code JOB. EXEC. and DO statements, and how you
can use cataloged procedures and EXEC PARM options to simplify your JCL
and override DFSORT defaults set during installation.

• Chapter 3, "Using DFSORT Program Control Statements" on page 53, pre­
sents the DFSORT control statements you use to sort. merge. and copy
data. It explains how to filter your data so you work only with the records
you need. and how to edit data by reformatting and summarizing records.
It explains how to write statements that direct DFSORT to use your own rou­
tines during execution.

• Chapter 4. "Using Panels to Create and Submit DFSORT Jobs" on
page 145. explains DFSORT Panels, a facility you use to construct. save,
and submit DFSORT jobs in an on-line environment. This chapter also
describes how you can use the on-line HELP facility to get information about
DFSORT and using DFSORT Panels.

• Chapter 5. "Using Your Own Exit Routines" on page 181. describes how to
use DFSORT's program exits to call routines of your own during program
execution. You can write your own routines to delete, insert. alter, and

vi DFSORT: Application Programming: Guide

What This Book Covers

summarize records, and you can incorporate your own error recovery rou­
tines.

• Chapter 6, "Invoking DFSORT from a Program" on page 231, describes
how you use a system macro instruction to initiate DFSORT processing from
your own assembler program. It also lists specific restrictions on invoking
DFSORT from PUI and COBOL.

• Chapter 7, "Improving Efficiency" on page 247, recommends ways you can
maximize DFSORT processing efficiency. This chapter covers the entire
spectrum of improvements you can make, from which operating system is
most appropriate, to designing individual jobs for efficient processing at
your site.

• Chapter 8, "Sample Job Streams" on page 265, contains annotated
example jobstreams for sorting, merging and copying records.

• Appendix A, "Calculating Storage Requirements" on page 311, explains
main storage considerations, and how to estimate the amount of interme­
diate storage you might require when sorting data.

• Appendix B, "Using Extended Function Support (EFS)" on page 315,
explains how to use the Extended Function Support (EFS) interface to tailor
control statements, to handle user-defined data types and collating
sequences, and to havo DFSORT issue customized informational messages
during execution.

• Appendix C, "Specification/Override of DFSORT Options" on page 353, is a
series of tables you can use to find the order of override for corresponding
options that are specified in different sources.

• Appendix D, "Data Format Examples" on page 373, gives examples of the
assembled data formats used with IBM System 370 .

• Appendix E, "EBCDIC and ISCII/ASCII Collating Sequences" on page 377,
lists the collating sequences from low to high order for EBCDIC and
ISCIII ASCII characters.

• Appendix F, "DFSORT Abend Processing" on page 383, describes the
EST AE recovery routine for processing abends, and the Checkpoint/Restart
facility.

About This Book vii

Summary of Changes

Summary of Changes

Release 11, December 1988
Perforl11ance enhancements to the Blockset technique include:

• Hipersorting. a new DFSORT capability that uses hiperspace available with
MVS/ESA on Enterprise Systems Architecture/370.

• New internal algorithms and more extensive use of System/370-XA sorting
instructions for MVS/XA and MVS/ESA (fixed-length records sorting only).

• Use of EXCPVR when sorting and copying data sets for MVS/XA and
MVS/ESA.

• More efficient allocation of dynamic work data sets.

Functional enhancements include:

• New installation and run-time parameters are available to modify the use of:

Hipersorting
EXCPVR
Control interval access for VSAM data sets
DFSORT's EST AE recovery routine.

• PARM options and DFSORT control statements can now be supplied to
DFSORT from a single source data set for JCL and program-invoked
DFSORT jobs.

• The INREC and OUTREC statements have been enhanced:

Character and hexadecimal string constants are now supported as sep­
arators.

Column alignment is now supported for separators and input fields.

The upper limit for the separation repetition factor is raised from 256 to
4095.

• The Conventional technique modules can be installed in a system library to
eliminate the need for the SORTLIB DO statement.

• Duplicate DDNAMEs are ignored after the first-specified DDNAME.

• DDNAMEs SORTWKO through SORTWK9 are now accepted and treated as
duplicates of SORTWKOO through SORTWK09. DDNAMEs SORTINO through
SORTIN9 are now accepted and treated as duplicates of SORTINOO through
SORTIN09.

• DFSORT no longer requires that the SORTINnn data set with the largest
block size and record length be specified first for Blockset merge jobs.

• The maximum length for variable blocked spanned records is increased to
32767.

• Multivolume SORTWKnn data sets are now allowed. but only the first
volume of each data set is used.

Summary of Changes ix

• Ability to handle more complex SUM applications with Blockset and
PeeragelVale.

Additional improvements to DFSORT include:

• The MINLIM default is raised from 200K to 440K.

• The minimum number of data sets Blockset uses for dynamic allocation is
changed from 1 to 2.

X DFSORT: Application Programming: Guide

Contents

Chapter 1. Introducing DFSORT 1
How You Can Invoke DFSORT 3
How DFSORT Works 3

Operating Systems 3
Control Fields and Collating Sequences 4
Program Execution 5

Data Set Considerations 8
When You Sort or Copy Records 8
When You Merge Records 9
Data Set Notes and Limitations 9

Installation Defaults 11
DFSORT Messages and Return Codes 13

Chapter 2. Executing DFSORT with Job Control Language 15
Notational.Conventions 17
Using the JOB Statement .. 19
Using the EXEC Statement 19

Specifying EXEC Statement Cataloged Procedures 19
Specifying EXEC Statement PARM Options 21

Using DO Statements 35
System DO Statements 39
Program DO Statements 40

Chapter 3. Using DFSORT Program Control Statements 53
Control Statement Summary 54

Control Statements 54
General Coding Rules 55

Continuation Lines 57
Inserting Comment Statements 58
Coding Restrictions 58

AL TSEQ Control Statement 60
ALTSEQ Statement Examples 60

DEBUG Control Statement 62
DEBUG Statement Examples 66

END Control Statement 67
END Statement Examples 67

INCLUDE Control Statement 68
INCLUDE/OMIT Statement Notes .. 75
INCLUDE Statement Examples 76

INREC Control Statement 78
INREC Statement Notes 81
INREC Statement Examples ~ " 83

MERGE Control Statement 87
MERGE Statement Examples 89

MODS Control Statement 91
MODS Statement Examples 93

OMIT Control Statement 95
OMIT Statement Example 95

OPTION Control Statement 97
OPTION Statement Examples 117

OUTREC Control Statement 121

Contents xl

OUTREC Statement Notes
OUTREC Statement Examples•

RECORD Control Statement
RECORD Statement Examples

SORT Control Statement
SORT Statement Note
SORT Statement Examples

SUM Control Statement
SUM Statement Notes
SUM Statement Examples

Chapter 4. Using Panels to Create and Submit DFSORT Jobs
Overview of DFSORT Panels

Before You Begin
Getting Around in DFSORT Panels
Using Panels to Create DFSORT Jobs

Beginning a DFSORT Session
Beginning Your Job: The DFSORT Primary Option Menu
Selecting Input Data Sets: SORT/COPY/MERGE Entry Panels, Page 1
Setting Your Task Environment: SORT/COPY/MERGE Entry Panels, Page

2
Specifying the Order of Your Sorted or Merged Records
Using DFSORT Control Statements: Control Statements Selection Panel
Inspecting Your Work: Review Control Statements Panel _ .

Using Panels to Save or Submit Your DFSORT Job . _
Using Foreground Execution _
Using Background Execution

Changing Your DFSORT User Profile
Handling Trace Data and Abends: logging/Abend Control Entry Panel
Specifying DFSORT Panels Job Control language ... _
Handling Messages and Case Conversion: DFSORT Control Entry Panel

Using SORTREC for a Quick and Simple Sort Under ISMF
Getting HELP _ _ _ _ ..

Getting HELP with DFSORT Panels _
Getting HELP for Messages ... _ _ _
Using the HELP Index _ _

Chapter 5. Using Your Own Exit Routines __ _
DFSORT Program Phases _ _

Input Phase _ .
Output Phase _ ..

Functions of Routines at User Exits
DFSORT InpuUExiUOutput Logic Examples _ ..
Opening and Initializing Data Sets __
Modifying Control Fields _ _
Inserting, Deleting, and Altering Records __
Summing Records . _ _ ... _ . _
Handling Special I/O _
Determining Action when Intermediate Storage Is Insufficient __
Closing Data Sets _...............................
Terminating DFSORT

MVS/XA and MVS/ESA Support of User Exits _.................
How Assembler and COBOL User Exit Routines Affect DFSORT

Performance
Summary of Rules for User Exit Routines

xii o FSORT: Application Programming: Guide

123
124
127
130
132
138
138
141
142
143

145
145
145
146
148
148
149
150

151
153
157
166
167
167
168
170
172
172
173
174
175
176
177
177

181
183
183
183
183
183
185
185
185
185
185
187
187
188
188

188
189

How to Load User Exit Routines
User Exit Linkage Conventions
How to Dynamically Link-Edit User Exit Routines

Assembler Exit Routines (Input Phase Exits)
E11 Exit: Opening Data Sets/Initializing Routines
E15 Exit: Passing or Changing Records for Sort and Copy Applications
E16 Exit: Handling Intermediate Storage Miscalculation
E17 Exit: Closing Data Sets
E18 Exit: Handling Input Data Sets
E19 Exit: Handling Output to Work Data Sets
E61 Exit: Modifying Control Fields

Assembler Exit Routines (Output Phase Exits)
E31 Exit: Opening Data Sets/Initializing Routines
E32 Exit: Handling Input to a Merge Only
E35 Exit: Changing Records .
E37: Closing Data Sets
E38: Handling Input Data Sets
E39 Exit: Handling Output Data Sets

Sample Routines Written in Assembler
E15: Deleting Expired Records
E16 Exit: When NMAX Exceeded, Sort Current Records
E35 Exit: Deleting Records

COBOL Exit Routines "
COBOL Exit Requirements

COBOL Exit Routines (Input Phase Exit)
COBOL E15 Exit: Passing or Changing Records for Sort

COBOL Exit Routines (Output Phase Exit) .
COBOL E35 Exit: Changing Records

Sample Routines Written in COBOL
Altering Records: COBOL E15 Exit ..
Inserting Records: COBOL E35 Exit

E15/E35 Return Codes and EXITCK ...

Chapter 6. Invoking DFSORT from a Program
What Are System Macro Instructions?
Using System Macro Instructions

JCL DO Statements
Program Control Statements for the 24-Bit Parameter List
Program Control Statements for the Extended Parameter List

Writing the Macro Instruction
Restrictions for Dynamic Invocation

Merge Restriction
Copy Restrictions

Chapter 7. Improving Efficiency
Designing Your Jobs to Maximize Performance

Use JCL to Invoke DFSORT Processing
Plan Ahead
Specify Efficient Sort/Merge Techniques .. .
Specify Input/Output Data Set Characteristics Accurately
Use Options that Enhance Performance
Avoid Options that Decrease Performance

Using Main Storage Efficiently
Tuning Main Storage
Releasing Main Storage

Contents

189
190
190
192
192
192
195
196
196
199
200
202
202
202
203
206
206
207
207
207
208
208
209
209
212
212
218
218
224
224
225
226

231
232
232
233
233
238
241
245
245
245

247
248
248
248
249
250
251
255
256
256
258

xiii

Allocating Temporary Work Space Efficiently
Direct Access Work Storage Devices
Tape Work Storage Devices

Hipersorting
EXCPVR
ICEGENER Facility

Chapter 8. Sample Job Streams
Sort Examples
Merge Examples
Sort Examples Using VSAM Data Sets
ICEGENER Example

Appendix A. Calculating Storage Requirements ..
Main Storage
Intermediate Storage

Direct Access Storage Considerations
Tape Storage Considerations
Exceeding Intermediate Storage Capacity

Appendix B. Using Extended Function Support (EFS) ..
MVS/XA or MVS/ESA Support of the EFS Program
How EFS Works

DFSORT Phases
DFSORT Calls to Your EFS Program

What You Can Do with EFS
Opening and Initializing Data Sets
Examining, Altering, or Ignoring Control Statements
Processing User-Defined Data Types with EFS Program Exit Routines
Supplying Messages for Printing to the Message Data Set
Terminating DFSORT
Closing Data Sets and Housekeeping

Structure of the EFS Interface Parameter List
Action Codes
Control Statement Request List
Control Statement String Sent to the EFS program
Control Statement String Returned by the EFS Program
Length of Original Control Statement
Length of the Altered Control Statement
EFS Program Context Area
Extract Buffer Offsets List
Record Lengths List .
Information Flags
Message List

EFS Program Exit Routines
EFS01 and EFS02 Function Description
EFS01 Exit Routine
EFS02 Exit Routine
MVS/XA and MVS/ESA Support of EFS Program Exit Routines

EFS Program Return Codes You Must Supply
Record Processing Order
How to Request a SNAP Dump
EFS Program Example

DFSORT Initialization Phase:
DFSORT Termination Phase

xiv DFSORT: Application Programming: Guide

259
260
261
261
261
262

265
268
300
305
309

311
311
311
311
312
313

315
315
316
316
317
322
323
323
325
325
325
325
325
327
328
328
330
334
334
334
335
335
335
337
338
338
339
342
344
345
345
347
348
348
351

Appendix C. Specification/Override of DFSORT Options '"
Main Features of Sources of DFSORT Options

JCL-Invoked DFSORT
Dynamically-Invoked DFSORT with the Extended Parameter List
Dynamically-Invoked DFSORT with the 24-Bit Parameter List

Appendix D. Data Format Examples

Appendix E. EBCDIC and ISCII/ASCII Collating Sequences
EBCDIC
ISCII! ASCII

Appendix F. DFSORT Abend Processing
DFSORT EST AE Recovery Routine
Checkpoint/Restart
DFSORT Abend Categories
Abend Recovery Processing for Unexpected Abends
Processing of Error Abends with A-Type Messages .
CTRx Abend processing
Abend Recovery Processing and Invoking Programs

Summary of Changes for Previous Releases of DFSORT
Release 10. January 1988
Release 9, April 1987

Reading List

Index

..... 353

..... 353
355

..... 360
366

373

377
377
380

383
383
383
384
385
386
386
386

387
387
387

389

391

Contents xv

Introducing DFSORT

Chapter 1. Introducing DFSORT

How You Can Invoke DFSORT 3
How DFSORT Works 3

Operating Systems 3
Control Fields and Collating Sequences 4
Program Execution 5

Data Set Considerations 8
When You Sort or Copy Records 8
When You Merge Records 9
Data Set Notes and Limitations 9

Installation Defaults 11
DFSORT Messages and Return Codes 13

Chapter 1. Introducing DFSORT 1

Introducing DFSORT

This chapter introduces IBM OSIVS DFSORT Licensed Program 5740-SM1, or
DFSORT. DFSORT is a program you use to sort, merge, and copy information.

• When you sort records, you arrange them in a particular sequence,
choosing an order more useful to you than the original one.

• When you merge records, you combine the contents of two or more
previously-sorted data sets into one.

• When you copy records, you make an exact duplicate of each record in your
data set.

(Merging records first requires that the input data sets be identically sorted for
the information you will use to merge them, and in the same order required for
output. You can merge from 2 to 16 different data sets at a time).

In addition to the three basic functions, you can perform other processing
simultaneously:

You can control which records to keep in the final output data set of a DFSORT
run by using INCLUDE and OMIT statements in your job. These statements
work like filters, testing each record against criteria that you supply, and
retaining only the ones you want for the output data set. For example, you
might choose to work only with those records that have a value of "Kuala
Lumpur" in the field reserved for office location. Or perhaps you want to leave
out any record dated after 1987 if it also contains a value greater than 20 for the
number of employees.

You can edit and reformat your records before or after other processing by
using INREC and OUTREC statements. Use INREC and OUTREC to delete fields
from your records, to rearrange the order of the fields within records, and to
insert separators, such as blanks, zeros, or constants, before, between, or after
fields. For example, you might want to create a data set containing financial
data but without any of the names that were there originally. You are probably
interested in improving efficiency; you can use INREC to remove unnecessary
fields from your records before other processing, and save the CPU time
r.equired to manipulate them.

You can sum numeric information from many records into one with the SUM
statement. For example, if you want to know the total amount of a yearly
payroll, you can add the values for a field containing salaries from the records
of all your employees.

You can control DFSORT functions with other control statements, by specifying
alternate collating sequences, invoking user exit routines, overriding installation
defaults, and so on.

You can direct DFSORT to pass control during execution to routines you design
and write yourself. For example, you can write user exit routines to summarize,
insert, delete, shorten, or otherwise alter records during processing (although
you should remember that DFSORT already provides extensive editing capabili­
ties through the INCLUDE, OMIT, INREC, OUTREC, and SUM control state­
ments). You can write your own routines to correct 1/0 errors that DFSORT
cannot handle, or to perform any necessary abnormal end-of-task operation
before DFSORT terminates.

2 DFSORT: Application Programming: Guide

How DFSORT Works

You can write an EFS (Extended Function Support) program to intercept
DFSORT control statements and PARM options for modification prior to use by
DFSORT.

How You Can Invoke DFSORT
You can invoke DFSORT processing in a number of ways, described in this
book at the pages listed below:

• With an EXEC job control statement in the input stream using the name of
the program or the name of a cataloged procedure. See Chapter 2, "Exe­
cuting DFSORT with Job Control Language" on page 15.

• With a program written in basic assembler language using a system macro
instruction. See Chapter 6, "Invoking DFSORT from a Program" on
page 231.

• With programs written in either COBOL or PUI with a special facility of the
language. See the programmer's guide describing the compiler version
available at your location.

• With interactive panels supported under ISPF and ISMF. See
Chapter 4, "Using Panels to Create and Submit DFSORT Jobs" on
page 145.

In this book. the term JeL invoked means that the DFSORT program is initiated
by an EXEC job control statement. The term dynamically invoked means that
the DFSORT program is initiated from another program written in assembler,
COBOL, or PUI.

How DFSORT Works
This section lists the operating systems supported by DFSORT, and how
DFSORT uses control fields and collating sequences to sort, merge, and copy
your records.

Operating Systems
DFSORT operates under your operating system, and must be initiated according
to the appropriate conventions. The operating systems this release supports
are:

• OSIVS2 MVS Release 3.8
• MVS/SP Version 1 Release 3 with MVS/370
• MVS/SP Version 2 Release 1 with MVS/XA
• MVS/SP Version 3 Release 1 with MVS/ESA

and subsequent releases.

DFSORT can execute under MVS/370 running as a guest operating system
under VM/SP, VM/SP High Performance Option (HPO), VM/XA Migration Aid,
VM/370, or VM/XA System Facility (SF). DFSORT can execute under MVS/XA or
MVS/ESA running as a guest operating system under VM/XA Migration Aid, or
VM/XA System Facility (SF).

DFSORT is compatible with all of the IBM processors supported by MVS/370,
MVS/XA, or MVS/ESA, in addition to any device they support for program resi-

Chapter 1. Introducing DFSORT 3

How DFSORT Works

dence. It also operates with any device QSAM or VSAM uses for input or
output.

If you use MVS/ESA, DFSORT can use Hipersorting, which uses hiperspace
available on Enterprise Systems Architecture/370 to improve performance.

If you use MVS/ESA or MVS/XA, DFSORT can:

• Place certain modules and buffers above 16-megabyte virtual, leaving more
space below 16-megabyte virtual for user programs

• Use System/370 Extended Architecture Sorting Instructions to improve per­
formance when sorting fixed-length records

• Use EXCPVR to improve performance when sorting and copying.

On all MVS systems, DFSORT can:

• Replace the IEBGENER system utility with the more efficient DFSORT
ICEGENER facility

• Dynamically allocate the required intermediate work space for sorting.

Control Fields and Collating Sequences
You use DFSORT to process your information by defining control fields to iden­
tify the information you want to sort or merge. When you think of the contents
of your data sets, you probably think of names, dates, account numbers, or
similar pieces of information useful to you. For example, when you sort your
data sets, you might think of arranging your records in alphabetical order, by
family name. By using the byte position and length (in bytes) of the portion of
each record containing a family name, you can define it as a control field to
manipulate with DFSORT.

DFSORT uses the control fields you define as keys in processing. A key is a
concept, such as family name, that you have in mind when you design a record
processing strategy for a particular application. A control field, on the other
hand, is a discrete portion of a record that contains the text or symbols corre­
sponding to that information, in a form that can be used by DFSORT to identify
and sort or merge the records. For all practical purposes, you can think of keys
as equivalent to the control fields DFSORT uses in processing.

When you want to arrange your records in a specific order, you specify one or
more control fields of your records to use as keys. The sequence in which you
list the control fields becomes the order of priority DFSORT uses to arrange
your records. The first control field you specify is called the major control field.
Subsequent control fields are called minor control fields, as in first, second, and
third minor control fields, and so on. If two or more records have identical
values for the first control field, they are arranged according to the values in
the second. Records with identical values for the first and second are arranged
according to the third, and so on, until a difference is found, or no more control
fields are available.

Records with identical values for all the control fields specified retain their ori­
ginal input order or are arranged randomly, depending upon which of the two
options, EQUALS or NOEQUALS, is in effect. You can direct DFSORT to retain
the original input order for records with identical values for all control fields by
specifying EQUALS.

4 o FSORT: Application Programming: Guide

How DFSORT Works

Control fields may overlap. or be contained within other control fields (such as
a three-digit area code. within a 10-diglt telephone number). They do not need
to be contiguous. but must be located within the first 4092 bytes of the record.
DFSORT interprets the collected control fields of each record. arranged In order
of priority. as a single control word. up to a maximum of 4092 bytes In length
(see Figure 1).

~4-----------------------------Reoord--------------------------~

II
--------­Control

field 3

Figure 1. Control Fields

~IIIIIIII~~
'--.----'

Contro I --' Control
field 4 Control field 1 field 2

(major)

• Control Word -------------.~

~I~I
2 3 4

DFSORT contains several standard collating sequences you can use to deter­
mine how to arrange your records. Conceptually. a collating sequence is a
specific arrangement of tharacter priority used to determine which of two
values in the same control field of two different records should come first.
DFSORT uses EBCDIC, the standard IBM collating sequence, or the ISCII/ASCII
collating sequence In sorting or merging records.

The collating sequence for character data and binary data Is absolute; char­
acter and binary fields are not interpreted as having signs. For packed
decimal, zoned decimal, fixed-point. normalized floating-point, and the Signed
numeric data formats, collating is algebraic; each quantity Is interpreted as
having an algebraic sign.

You can modify the standard EBCDIC sequence to collate differently, if. for
example, you want to allow alphabetic collation of national characters. An
alternate collating sequence can be defined during installation with the ICEMAC
AlTSEQ option, or you can define it yourself at execution with the AlTSEQ
program control statement. You can also specify a modified collating sequence
with an E61 user exit or with an Extended Function Support (EFS) program.

Program Execution
Unless you use DFSORT Panels to prepare and submit your job. (see
Chapter 4, "Using Panels to Create and Submit DFSORT Jobs" on page 145).
you must prepare job control language (JCl) statements and DFSORT program
control statements to Invoke DFSORT processing. JCl statements (see
Chapter 2, "Executing DFSORT with Job Control language" on page 15) are
processed by your operating system. They describe your data sets to the oper­
ating system. and initiate DFSORT execution. DFSORT program control state­
ments (see Chapter 3, "Using DFSORT Program Control Statements" on
page 53) are processed by the DFSORT program. They describe the functions
you want to perform, and invoke the processing you specify.

Chapter 1. Introducing DFSORT 5

How DFSORT Works

A sort usually requires intermediate storage as working space during program
execution. Unless you specify dynamic allocation with the OYNALLOC facility,
you must use JCL data definition (~O) statements to indicate the intermediate
storage device or devices to use, and the amount of work space required for
any sort run. Methods for determining how much space to allocate are
explained in Appendix A, "Calculating Storage Requirements" on page 311.
Merge or copy jobs do not require intermediate storage.

Figure 2 illustrates the processing order for record handling exits, statements,
and options. Use this diagram with the text following it to understand the order
OFSORT uses to execute your job.

Sorting or Copying

,
STOPAFT

1'7'1
SORTI
su~

or
COpy

~
li'l 1"'1

ISORTOUTI

Figure 2. Record Processing Order

As shown in Figllre 2, OFSORT processing follows this order:

6 o FSORT: Application Programming: Guide

How DFSORT Works

1. DFSORT first checks for whether you supplied a SORTIN data set for SORT
and COpy jobs, and SORTINnn data sets for MERGE jobs. If so, DFSORT
reads the input records from them.

• If no SORTIN data set is present for a SORT or COPY job, you must use
an E15 exit to insert all the records. (This is also the case if you invoke
DFSORT from a program with the address of an E15 exit in the param­
eter list, because SORTIN will be ignored.) DFSORT can use a COBOL
E15 routine if you specified the E15 exit in the MODS statement.

• If no SORTlNnn data sets are present for a MERGE job, you must use an
E32 exit to insert all the records.

2. If input records for SORT or COPY jobs were read from a SORTIN data set,
DFSORT performs processing specified with the SKIPREC option. DFSORT
deletes records until the SKIPREC count is satisfied. Eliminating records
before SORT or COpy processing gives better performance.

3. If the input records for a SORT or COPY job were read from a SORTIN data
set, DFSORT checks whether you specified a user exit routine at an E15
exit. If so, DFSORT transfers control to the user exit routine. You can use a
COBOL E15 routine if the E15 exit is specified in the MODS statement. The
E15 routine can insert, delete, or reformat records.

4. DFSORT performs processing specified on an INCLUDE or OMIT statement.
If you used an E15 user exit routine to modify the record format, then the
INCLUDE/OMIT control field definitions you specify must apply to the current
format rather than to the original format. If you use the INCLUDE or OMIT
statements to delete unnecessary records before SORT, MERGE, or COPY
processing, your jobs will run more efficiently.

5. For SORT or COPY jobs, DFSORT performs processing specified with the
STOPAFT option. Record input stops after the maximum number of records
(n) you specify have been accepted. DFSORT accepts records for proc­
essing if they are:

• Read from SORTIN or inserted by E15
• Not deleted by SKIPREC
• Not deleted by E15
• Not deleted by INCLUDE/OMIT.

6. DFSORT performs processing specified in an INREC statement. If you
changed record format before this step, the INREC control and separation
field definitions you specify must apply to the current format rather than to
the original format. Use INREC to shorten records before further processing
for better performance.

7. DFSORT performs processing specified in the SORT, MERGE, or OPTION
COPY statement.

• For SORT, all input records are processed before any output record is
processed.

• For COPY or MERGE, an output record is processed after an input
record is processed.

• For SORT or MERGE. if a SUM statement is present, DFSORT processes
it during the SORT or MERGE processing. DFSORT summarizes the
records and deletes duplicates as soon as possible for better perform­
ance. If you made any changes to the record format prior to this step,

Chapter 1. Introducing DFSORT 7

Data Set Considerations

the SORT or MERGE. and SUM field definitions you specify must apply
to the current format rather than to the original format.

8. DFSORT performs processing specified in an OUTREC statement. If you
changed record format prior to this step. the OUTREC control or separation
field definitions must apply to the current format rather than to the original
format.

9. If an E35 exit is present. DFSORT transfers control to your user exit routine
after all of the statement processing is completed. If you changed record
format. the E35 exit receives the records in the current format rather than in
the original format. You can use a COBOL E35 routine if you specify the
E35 exit in the MODS statement. You can use the E35 exit routine to add.
delete. or reformat records.

If a SORTOUT data set is not present. the E35 exit must dispose of all the
records. because DFSORT treats these records as deleted. (This is also the
case if SORT. MERGE. or COPY is invoked with the address of an E35 exit in
the parameter list. because SORTOUT will be ignored.)

10. DFSORT writes your records to the SORTOUT data set. if present.

Data Set Considerations
You must define any data sets you provide for DFSORT according to the con­
ventions your operating system requires. You can use the label checking facili­
ties of the operating system during DFSORT execution. See OS/vS2 MVS
Supervisor Services and Macro Instructions for details.

Unless you use DFSORT Panels to create and submit your jobs. you must
describe all data sets (except those allocated with the DYNALLOC parameter)
in job control data definition (DD) statements. You must place the DD state­
ments in the operating system input stream with the job step that allocates
DFSORT execution.

DFSORT Panels operates in two modes. foreground and background. Back­
ground mode creates DFSORT jobs containing the job control language
(including DD statements) already coded in the DFSORT Panels user profile.
This JCL is the same as that which you code yourself. Foreground mode uses
CLiST processing instead of JCL. so if you choose this technique you do not
need JCL at all. See Chapter 4. "Using Panels to Create and Submit DFSORT
Jobs" on page 145 for more information.

When You Sort or Copy Records
Input to a sort or copy run can be a blocked or unblocked QSAM or VSAM data
set. containing fixed or variable-length records. You can concatenate QSAM
input data sets even if they are on dissimilar devices. See "SORTIN DD
Statement" on page 42 for the restrictions that apply.

Output from a sort or copy run can be a blocked or unblocked QSAM or VSAM
data set. regardless of whether the input is QSAM or VSAM. The output data
set however. must be the same type (fixed or variable) as the input data set.

8 DFSORT: Application Programming: Guide

Data Set Considerations

When You Merge Records
Input to a merge run can be up to 16 blocked or unblocked QSAM or VSAM
data sets. containing fixed or variable-length records. Your input data sets can
be either QSAM or VSAM, but not both. The records in all input data sets must
already be sorted in the same order as that required for output.

Output from a merge run can be a blocked or unblocked QSAM or VSAM data
set, regardless of whether the input is QSAM or VSAM. The output data set
however. must be the same type (fixed or variable) as the input data sets.

Data Set Notes and Limitations

General Considerations
Your records can be EBCDIC, ISCII/ASCII, Japanese, and data types you define
yourself. To process Japanese data types with DFSORT. you can use the IBM
Double Byte Character Set Ordering Support Program (DBCS Ordering),
Licensed Program 5665-360, Release 2.0.

Input and output data sets must be on devices that can be used with QSAM or
VSAM.

The maximum record length DFSORT can handle depends on the amount of
main storage available. Record length can never exceed the maximum record
length you specify. Variable-length records are limited to 32756 bytes. Fixed­
length records are limited to 32760 'bytes. Variable block-spanned records are
limited to 32767 bytes.

The number of records that can be sorted using a given amount of storage is
reduced by:

• Processing control fields of different formats
• Large numbers of control fields
• Large numbers of intermediate data sets.

Providing an Extended Function Support program with an EFS01 exit routine
may limit the record length that can be used when processing variable-length
records.

Minimum block length for tape work data sets is 18 bytes; the minimum record
length is 14 bytes.

The Blockset technique pads or truncates fixed-length records when the output
data set record length is different from that of the input data set. Record
padding and truncation can occur with Blockset sort and copy operations.
Records are not padded when using Blockset merge or other sort techniques
(unless an E15 or E35 exit, or an INREC or OUTREC operation is present). If you
use user exits to modify records, you must ensure that the exit routines pad
and truncate correctly. DFSORT pads records on the right. with binary zeros.

For more information about Blockset, see "Specify Efficient Sort/Merge
Techniques" on page 249.

Chapter 1. Introducing DFSORT 9

Data Set Considerations

QSAM Considerations
• If you use DSN = NULLFILE on your DO statement for an input data set, a

system restriction prevents DFSORT from using the EXCP access method.

• You can use empty input data sets.

• If any of the input data sets are on tape without standard labels, you must
specify DCB parameters on their DO statements.

• ISO/ANSI Version 1 tape files can only be used as input; never as output.

VSAM Considerations
• If a data set is password protected, passwords can be entered at the

console or (with some restrictions) through routines at exits E18, E38 and
E39.

• The same data set must not be specified for both input and output.

• A data set used for input or output must have been previously defined.

• You can use empty input data sets in sort or copy jobs, but not for merge
jobs. If an input data set to a merge job is empty, VSAM returns an open
error code (160) and DFSORT terminates.

• Data sets cannot be concatenated.

• If output is a keyed-sequential data set (KSDS), the key must be the first
control field (or the key fields must be in the same order as the first control
field). VSAM does not allow you to store records with duplicate primary
keys.

• Any VSAM exit function available for input data sets may be used except
EODAD. See the description of E18 use with VSAM in Chapter 5, "Using
Your Own Exit Routines" on page 181.

• You must build the VSAM exit list with the VSAM EXLST macro instruction
giving the address of your routines that handle VSAM exit functions.

• When processing variable-length records with VSAM input and non-VSAM
output, the SORTOUT LRECL must be 4 byles greater than the maximum
record size defined in the cluster. Variable-length records have a record
descriptor word (RDW) field 4 bytes long at the beginning of each record,
but VSAM records do not. The record size defined in the VSAM cluster is
therefore 4 bytes less than the non-VSAM LRECL. DFSORT adds 4 bytes for
the ROW when processing the record. If you use VSAM for both input and
output, these 4 byles are removed. For example:

~lax i mum record size i n VSAl~ c 1 us ter

LRECL for variable-length record

128 up to 128 bytes of data

128 4 bytes ROWand up to
124 bytes of data

132 : 4 bytes ROWand up to
128 bytes of data

• If a non-empty VSAM SORTOUT data set was defined without the reuse.
option, VSAM does not open the data set and issues OPEN error IEC1611
RC84 error code 232(E8):

Reset was specified for a nonreusable data set and the data set
is not empty.

10 o FSORT: Application Programming: Guide

Installation Defaults

After receiving the OPEN return code, DFSORT reopens the data set for
update and one of two things happens:

For an ESDS, DFSORT adds records at the end of the data set.
- For a KSDS, DFSORT inserts records in key order.

Installation Defaults
Some DFSORT default values depend on specifications your system pro­
grammer set with the ICEMAC macro when DFSORT was installed.
i2.installation defaults This book assumes DFSORT was installed at your site
with the defaults it was delivered with. DFSORT Installation and Customization
contains planning considerations and general information about installing
DFSORT. Step-by-step installation procedures are listed in the DFSORT
Program Directory.

The following parameters and functions can be set during installation. See your
system programmer if you need to know what values were used.

Parameters Function

ABCODE Specifies the ABEND code used when DFSORT abends for a crit­
ical error.

ALTSEQ Alters the normal EBCDIC collating sequence.

ARESALL Specifies, for MVS/XA or MVS/ESA, the number of bytes reserved
above 16-megabyte virtual for system use.

ARESINV Specifies, for MVS/XA or MVS/ESA, the number of bytes reserved
above 16-megabyte virtual for the invoking program when
DFSORT is dynamically invoked.

CHALT Translates format CH as well as format AQ, or translates format
AQ only.

CHECK Determines whether record count checking is suppressed for
applications that use the E35 user exit routine without a
SORTOUT data set.

CINV Determines whether DFSORT can use control interval access for
VSAM data sets.

COBEXIT Determines whether the E15 and E35 routines are executed with
the VS COBOL II libraries.

DYNALOC Specifies the default values for device name and number of work
data sets to be dynamically allocated. These default values are
used in conjunction with the ICEMAC option DYNAUTO=YES and
execution option DYNALLOC.

DYNAUTO Determines whether work data sets are dynamically allocated
automatically when no SORTWKnn DO statement is present.

EFS Specifies the name of a user-written Extended Function Support
program to be called by DFSORT.

EQUALS Preserves the input order of equally collating records.

ERET Determines the action to be taken if DFSORT encounters a critical
error.

Chapter 1. Introducing DFSORT 11

Installation Defaults

ESTAE

EXCPVR

EXITCK

Determines whether DFSORT should delete its ESTAE recovery
routine early or use it for the entire run.

Determines whether DFSORT should use EXCPVR when reading
and writing SORTIN, SORTOUT, and SORTWKnn data sets.

Determines whether DFSORT should terminate or continue when
it receives certain invalid return codes from E15 or E35 exit rou­
tines.

GENER Specifies the name of the IEBGENER system utility module to be
used by ICEGENER (DFSORT's facility for IEBGENER jobs).

HIPRMAX Specifies the amount of hiperspace to use for Hipersorting on an
MVS/ESA system.

IEXIT Determines whether DFSORT is to pass control to your site's
ICEIEXIT routine.

IGNCKPT Determines whether the checkpoint/restart facility is to be
ignored if it is requested at execution time and the Blockset tech­
nique (which does not support the checkpoint/restart facility) can
be used.

INVIJCL Determines whether the specified JCL defaults are to be used
when DFSORT is JCL invoked or dynamically invoked. One of
these must immediately follow ICEMAC and be followed, in turn,
by other options. if desired.

LIST Determines whether to print DFSORT program control state­
ments.

L1STX Determines whether to print control statements that have been
returned by an Extended Function Support program.

MAXLIM Sets an upper limit to the amount of address space available
when SIZE/MAINSIZE = MAX.

MINLIM Sets a minimum limit to the amount of address space available.

MSGCON Specifies the class of program messages to be written to the
master console.

MSGDDN Specifies an alternate name for the message data set.

MSGPRT Specifies the class of program messages to be printed on the
message data set.

NOMSGDD Determines whether DFSORT should terminate or continue when
the message data set is required, but not present.

OUTREL Determines whether unused temporary SORTOUT data set space
is to be released.

OUTSEC Determines whether DFSORT should use automatic secondary
allocation for SORTOUT data sets that are temporary or new.

OVERRGN Specifies the amount of main storage above the REGION value
available to Blockset.

PARMDDN Specifies an alternate DDNAME for the DFSORT DFSPARM data
set.

RESALL Reserves storage for system and application use.

12 o FSORT: Application Programming: Guide

RESINV

SIZE

SMF

SORTLIB

STIMER

SVC

TEXIT

TMAXLIM

VERIFY

VIO

VLSHRT

WRKREL

WRKSEC

ZOPRINT

DFSORT Messages and Return Codes

Reserves space for programs invoking DFSORT.

Sets maximum amount of main storage.

Produces SMF records.

Determines whether DFSORT searches a system or private
library for the modules used with a tape work data set sort or
Conventional merge.

Determines whether DFSORT can use the STIMER macro. If
DFSORT does not use the STIMER macro, processor timing data
will not appear in SMF records or in the ICETEXIT statistics.

Specifies a user SVC number for DFSORT and allows an installa­
tion to use two different releases of DFSORT at the same time by
using two different DFSORT SVC modules in conjunction with SVC
109.

Determines whether DFSORT passes control to your site's
ICETEXIT routine.

Specifies, for MVS/XA or MVS/ESA, an upper limit to the total
amount of main storage above and below 16-megabyte virtual
available to DFSORT.

Verifies sequence of output records.

Determines whether virtual allocation of work data sets is
accepted.

Allows DFSORT to continue sorting or merging when it
encounters a variable length record not long enough to contain
all specified control fields.

Determines whether unused temporary SORTWK data set space
is released.

Determines whether DFSORT uses automatic secondary allo­
cation for temporary SORTWK data sets.

Determines whether DFSORT produces printable numbers from
positive ZD fields that result from summarization; that is, whether
the zone of the last digit should be changed from a hexadecimal
C to a hexadecimal F.

Tables showing all the possible sources of specification and order of override
for each option are shown in Appendix C, "Specification/Override of DFSORT
Options" on page 353.

DFSORT Messages and Return Codes
You can determine, during installation or execution, whether DFSORT writes
messages to the message data set, to the master console, or both. You can
also direct an Extended Function Support program to write messages to the
message data set.

Messages written to the message data set can be either critical error mes­
sages, informational error messages, or diagnostic messages, as determined
during installation or execution.

Chapter 1. Introducing DFSORT 13

DFSORTMessages and Return Codes

Messages written to the master console can be either critical error messages
or informational error messages, as determined during installation.

See DFSORT Messages and Codes for complete information about DFSORT
messages and a discussion of DFSORT return codes.

14 o FSORT: Application Programming: Guide

Executing DFSORT with Job Control Language

Chapter 2. Executing DFSORT with Job Control Language

Notational Conventions 17
Using the JOB Statement 19
Using the EXEC Statement 19

Specifying EXEC Statement Cataloged Procedures 19
Specifying EXEC Statement PARM Options 21

Using DD Statements 35
System DD Statements 39
Program DD Statements 40

Chapter 2. Executing DFSORT with Job Control Language 15

Executing DFSORT with Job Control Language

Your operating system uses the job control language (JCl) you supply with
your DFSORT program control statements to:

• Identify you as an authorized user
• Allocate the necessary resources to execute your job
• Execute your job
• Return information to you about the results
• Terminate your job.

Unless you create your jobs with the interactive DFSORT Panels facility (see
Chapter 4, "Using Panels to Create and Submit DFSORT Jobs" on page 145),
you must supply job control language statements with every DFSORT job you
submit.

Required JCl includes a JOB statement, an EXEC statement. and several DO
statements. The statements you need and their exact form depend upon
whether you:

• Invoke DFSORT with an EXEC statement in the input job stream, or with a
system macro instruction within another program.

• Choose to use EXEC statement cataloged procedures to invoke DFSORT.

• Choose to specify various DFSORT control statements or PARM options.

• Want to use program exits to activate routines of your own.

• Want to use dynamic link-editing.

• Want to see diagnostic messages.

DFSORT Panels offers you an alternative to coding JCl directly. When you use
panels to prepare a job to be executed or saved in a data set, much of the
required JCl can be supplied automatically from the contents of the DFSORT
User Profile. DFSORT jobs you prepare for submission in foreground under
TSO use CUST processing rather than JCL. See Chapter 4, "Using Panels to
Create and Submit DFSORT Jobs" on page 145 for details on using DFSORT
Panels.

The JCL statements and their functions are listed below. Details on coding the
individual statements are presented in subsequent sections.

JeL Statement Description

IIJOBUB DO Defines your program link library if it is not already known
to the system.

IISTEPUB DO Same as IIJOBUB DO

IIS0RTUB DO Defines the data set that contains special load modules, if
it is not already known to the system.

I/SYSOUT DOl Defines the message data set.

I/SORTIN DOl Defines the input data set for a sort or copy.

I/SORTINnn DOl Defines the input data sets for a merge.

IIS0RTOUT DOl Defines the output data set for a sort, merge, or copy.

IIS0RTWKnn DOl Defines intermediate storage data sets for a sort.

16 DFSORT: Application Programming: Guide

Notational Conventions

IIDFSPARM DOl Contains DFSORT PARM options and program control
statements.

IISYSIN DO Contains DFSORT program control statements.

IIS0RTCNTL DOl Same as //SYSIN DD

IIS0RTDIAG DO Specifies that all messages and program control state­
ments be printed.

//SORTCKPT DO Defines the data set for checkpoint records.

//SYSUDUMP DO Defines the data set for output from a system ABEND
dump routine ..

//SYSABEND DO Same as //SYSUDUMP DO

//SORTSNAP DO Defines the snap dump data set dynamically allocated by
DFSORT.

//ddname Defines the data set containing exit routines, (as specified
in the MODS program control statement).

The following DO statements are only necessary for dynamic link-editing of exit
routines.

//SYSPRINT DD Defines the message data set for the linkage editor.

//SYSUT1 DO Defines the intermediate storage data set for the linkage
editor.

//SYSLIN DO Defines the data set for control information for the linkage
editor.

IISYSLMOD DO Defines the data set for output from the linkage editor.

//SORTMODS DD Defines the temporary partitioned data set for exit routines
from SYSIN.

1 These are the default DDNAMEs with which DFSORT was delivered. SYSOUT
and DFSPARM might have been changed during DFSORT installation. You can
change all of the indicated DDNAMEs yourself at run time. For override infor­
mation, see Appendix C, "Specification/Override of DFSORT Options" on
page 353.

Notational Conventions
The syntax diagrams in this book are designed to make coding DFSORT
program control statements simple and unambiguous. The lines and arrows
represent a path or flowchart that connects operators, parameters, and delim­
iters in the order and syntax in which they must appear in your completed
statement. Construct a statement by tracing a path through the appropriate
diagram that includes all the parameters you need, and code them in the order
that the diagram requires you to follow. Any path through the diagram gives
you a correctly coded statement, if you observe these conventions:

• Read the syntax diagrams from left to right and from top to bottom.

• Begin coding your statement at the spot marked with the double arrowhead.

-
Chapter 2. Executing DFSORT with Job Control Language 17

Notational Conventions

• A single arrowhead at the end of a line indicates that the diagram continues
on the next line or at an indicated spot.

-
A continuation line begins with a single arrowhead.

-
• Strings in upper-case letters, and punctuation (parentheses, apostrophes,

and so on), must be coded exactly as shown.

Semicolons are interchangeable with commas in program control state­
ments and the EXEC PARM string. For clarity, only commas are shown
in this book.

• Strings in all lowercase letters represent information that you supply.

• Required parameters appear on the same horizontal line (the main path) as
the operator, while optional parameters appear in a branch below the main
path.

-Requi red--TL----J-.---­
Optional

• Where you can make one choice between two or more parameters, the
alternatives are stacked vertically.

~operator---r---ReqUired-Choice-l~
c===Required-Choice-2

Required-Choice-3
t=oPtional-Choice-l~ -

Optional-Choice-2

If one choice within the stack lies on the main path (as in the example
above, left), you must specify one of the alternatives. If the stack is placed
below the main path (as in the example above, right), then selections are
optional, and you can choose either one or none of them.

• The repeat symbol shows where you can return to an earlier position in the
syntax diagram to specify a parameter more than once (see the example
below, left), to specify more than one choice at a time from the same stack
(see the example below, middle), or to nest parentheses (see the example
below, right).

r-'@L ~Choice-l
LChoice-2

Choice-3

Do not interpret a repeat symbol to mean that you can specify incompatible
parameters. For instance, do not specify both ABEND and NOABEND in the
same EXEC statement, or attempt to nest parentheses incorrectly.

Use any punctuation or delimiters that appear within the repeat symbol to
separate repeated items.

18 DFSORT: Application Programming: Guide

Using the EXEC Statement

• A double arrowhead at the end of a line indicates the end of the syntax
diagram.

-
Using the JOB Statement

The JOB statement is the first JCL statement of your job. It must contain a
valid job name in the name field, and the word JOB in the operation field. All
parameters in the operand field are optional, although your site might have
made information such as account number and the name of the programmer
mandatory;

//jobname JOB accounting information, programmer's name, and so on

Using the EXEC Statement
The EXEC statement is the first JCL statement of each job step or of each pro­
cedure step in a cataloged procedure. It identifies OFSORT to the operating
system. You can also specify OFSORT options on the EXEC statement.

The format of the EXEC statement is;

~//stepname EXEC~PGM=ISORT
ICHIAN

PROC,SORT
SORTO

SORT-,------J
SORT

lO.f,ther-o.r ... terslJ
...

If you use a cataloged procedure (discussed in detail below), specify
PROC=SORT or PROC=SORTO. You can omit PROC= and specify simply
SORT or SORTO. However, PROC= can remind you that a cataloged proce­
dure is being used.

If you do not use a cataloged procedure, use PGM = either with the actual
name of the sort module (ICEMAN) or with its alias, SORT. Be sure that the
alias has not been changed at your site.

Specifying EXEC Statement Cataloged Procedures
A cataloged procedure is a set of JCL statements, including 00 statements, that
has been assigned a name and placed in a partitioned data set called the pro­
cedure library. Two cataloged procedures are supplied with the program:
SORT and SORTO. Specify them in the first parameter of the EXEC statement
by PROC=SORT, PROC=SORTO, or simply SORT or SORTO.

Chapter 2. Executing DFSORT with Job Control Language 19

Using the EXEC Statement

SORT Cataloged Procedure
You can use the supplied SORT cataloged procedure when you include user
routines that require link-editing. Using this procedure without using link-edited
user routines is inerticient because the SORT cataloged procedure allocates
linkage editor data sets whether or not you include user routines.

When you specify EXEC PROC = SORT or EXEC SORT, the following JCL state­
ments are generated:

IISORT EXEC
IISTEPLIB DO
IISORTLIB DO
IISYSOUT DO
IISYSPRINT DO
IISYSLNOO DO
IISYSLIN DO
IISYSUTl DO
II

line Explanation

PGI4= I CEt4AN
OSNAME=yyy,OISP=SHR
OSNAI4E=xxx ,OISP=SHR
SYSOUT=A
OU~lMY

OSNN4E=&GOSET,UNIT=SYSDA,SPACE=(3600,(20,20,l))
OSNN4E=&LOADSET,UNIT=SYSDA,SPACE=(80,(10,10))
DSNN4E=&SYSUTl,SPACE=(1024,(60,20)),
UNIT=(SYSDA,SEP=(SORTLIB, SYSLl400, SYSLI N))

00
10
20
30
40
50
60
70
80

00 The stepname of the procedure is SORT. This EXEC statement initiates
the program, which is named ICEMAN.

10 The STEPLIB DD statement defines the data set containing the
sort/merge program modules that reside in a link library. The data is
cataloged, and the data set name represented by yyy is specified at
generation time; it can be SYS1.LlNKLlB.

20 The SORTLIB DD statement defines a private data set containing the
modules needed for a sort using tape work files or a merge using the
Conventional technique. The data set is cataloged, and the data set
name represented by xxx was specified at operation time; it can be
SYS1.S0RTLIB.

If the modules were installed in a system library and ICEMAC
SORTLIB = SYSTEM is used, then the SORTLIB DD statement is unnec­
essary and is ignored.

30 Defines an output data set for system use (messages). It is directed to
system output class A.

40 Defines SYSPRINT as a dummy data set because linkage editor diag­
nostic output is not required.

50 Defines a data set for linkage editor output. Any system direct access
device is acceptable for the output. Space for 20 records with an
average length of 3600 bytes is requested; this is the primary allocation.
Space for 20 more records is requested if the primary space allocation
is not surticient; this is the secondary allocation, which is requested
each time space is exhausted. The last value is space for a directory,
which is required because SYSLMOD is a new partitioned data set.

60 The SYSLIN data set is used by the program for linkage editor control
statements. It is created on any system direct access device, and it has
space for 10 records with an average length of 80 bytes. If the primary

20 o FSORT: Application Programming: Guide

Using the EXEC Statement

space allocation is exhausted, additional space is requested in blocks
large enough to contain 10 records. No directory space is necessary.

70/80 The SYSUT1 DD statement defines a work data set for the linkage
editor.

SORTO Cataloged Procedure
You can use the supplied SORTD cataloged procedure when you do not include
user routines, or include user routines that do not require link-editing.

When you specify EXEC PROC = SORTD or EXEC SORTD, the following JCL
statements are generated:

//SORT EXEC PGM=ICHIAN
//STEPLIB DO OSNAME=yyy)DISP=SHR
//SORTLIB DO OSNAME=xxx)OISP=SHR
//SYSOUT DO SYSOUT=A

Line Explanation

00 The stepname of the SORTD procedure is SORT.

99
19
29
39

10 The STEPLIB DD statement defines the data set containing the
sort/merge program modules that reside in a link library. The data set
is cataloged. and the data set name represented by yyy is specified at
generation time; it can be SYS1.LlNKLIB.

20 The SORTLIB DD statement defines a private data set that contains the
modules needed for a sort using tape work files or a merge that uses
the Conventional technique. The data set name of the program subrou­
tine library, represented by xxx, is speCified at generation time; it can
be SYS1.S0RTLIB.

If the modules were installed in a system library and ICEMAC
SORTLIB = SYSTEM is used, then the SORTLIB DO statement is unnec­
essary and is ignored.

30 Directs messages to system output class A.

Specifying EXEC Statement PARM Options
When you invoke DFSORT with JCL, you can specify some DFSORT options on
the PARM parameter of the EXEC statement. These options include EFS. LIST.
NOLlST, LlSTX. NOLlSTX, MSGPRT, and MSGDDN. which are ignored if speci­
fied in an OPTION statement in SYSIN. Full override and applicability details
are listed in Appendix C. "Specification/Override of DFSORT Options" on
page 353.

Note: If you use the DFSPARM DD statement instead, you can specify both
EXEC PARM options and DFSORT control statements in a single source data set
that overrides all other sources. See "DFSPARM DD Statement" on page 49.

Chapter 2. Executing DFSORT with Job Control Language 21

Using the EXEC Statement

-,PARt~='

,

EN~J
END

ALL=[~J
nK

N~J NV
LLOC L

- -d
-(d)-
r-(,n)-
~(d,n)-
HFF-
'-(OFF)-

nam~j
NONE

UAL~J
UALS

VR1ALL ~~ NOl~RK

NONE

EFS1

EQ
NOEQ
EXCP

E15=
E35=
FILS

HIPR

SIZE

COB
COB

Z=k~J
Ex

t~AX=lOPT IMAL I
n

S~J ST

ST~J
STX
DN=ddname

RT1ALL
CRI~~
NONE

TRE~J
TREL

LL=[~J
nK

I nK-
4AX-
4AX-m-
4AX-mK

REC=z

IME~j
IMER
AFT=n

KRE~J
KREL

KSE~J

22 o FSORT: Application Programming: Guide

I

I

Using the EXEC Statement

ABEND or NOABEND

H~~----,.ABENO--'r-------------------"·""~

lNOABENOJ

Temporarily overrides the ERET installation option, which specifies whether
DFSORT abends or terminates with a return code of 16 if your sort, copy, or
merge is unsuccessful.

ABEND
specifies that if your sort, copy, or merge is unsuccessful, it abends with
a user completion code equal to the appropriate message number, or
with a user-defined number between 1 and 99, as set during installation
with the ICEMAC option ABCODE = n.

When DEBUG ABEND is in effect, a user abend code of zero might be
issued when a tape work data set sort or Conventional merge is unsuc­
cessful.

NOABEND
specifies that an unsuccessful sort, copy, or merge terminates with a
return code of 16.

N~te: RC16=ABE and NORC16 can be used instead of ABEND and
NOABEND, respectively.

Default: Usually the installation default. See
Appendix C, "Specification/Override of DFSORT Options" on page 353 for
more information.

Applicable Functions: See· Appendix C, "Specification/Override of DFSORT
Options."

ARESALL

It ARESALL=Ln]
nK

...

For MVS/XA and MVS/ESA, temporarily overrides the ARESALL installation
option, which specifies the number of bytes to be reserved above
16-megabyte virtual for system use. For more information, see the dis­
cussion of the ARESALL parameter in "OPTION Control Statement" on
page 97.

n
n specifies the number of bytes of storage to be reserved

Limit: 8 digits.

Chapter 2. Executing DFSORT with Job Control Language 23

Using the EXEC Statement

nK
where nK specifies n times 1024 bytes of storage are to be reserved.

Limit: 5 digits.

Note: RESERVEX can be used instead of ARESALL.

Default: Usually the installation default. See
Appendix C, "Specification/Override of DFSORT Options" on page 353 for
more information.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options."

BSAM

~··---------BSM'I--------------------------------------~.-.

For disk processing the EXCP access method is normally used for SORTIN
and SORTOUT. If you encounter a problem related to the use of EXCP, you
can temporarily bypass it by specifying BSAM.

This option is ignored if VSAM SORTIN or SORTOUT data sets are specified.

Default: None; optional. See Appendix C, "Specification/Override of
DFSORT Options" on page 353 for more information.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

CINV or NOCINV

~··--------~-CINV.------------------------------------+·~·
lNOCINVJ

Temporarily overrides the CINV installation option. which specifies whether
DFSORT can use control interval access for VSAM data sets. For more
information. see the explanation of the CINV parameter in "OPTION Control
Statement" on page 97.

CINV
directs DFSORT to use control interval access when possible for VSAM
data sets.

NOCINV
directs DFSORT not to use control interval access.

Default: Usually the installation default. See
Appendix C, "Specification/Override of DFSORT Options" on page 353 for
more information.

Applicable Functions: See Appendix C. "Specification/Override of DFSORT
Options "on page 353.

24 DFSORT: Application Programming: Guide

Using the EXEC Statement

DYNALLOC

.~.---~OYNALLoc-'cgr_--~~-;8----'r--------___ ~·_4

(d,n)

Use this parameter to assign DFSORT the task of dynamically allocating
needed work space. You do not need to calculate and use JCL to specify
the amount of intermediate work space needed by the program. DFSORT
uses the dynamic allocation facility of the operating system to allocate work
space to get the best possible performance for the newest application.

For more information, see the discussion of DYNALLOC in "OPTION Control
Statement" on page 97.

d

n

specifies the device type. You may specify any of the following IBM
devices: 2314, 3330, 3330-1, 3340, 3350, 3375, 3380, 2400, 2400-3, 2400-4,
3400-3, 3400-4, 3480, 3850, or their user-assigned group name, such as
SYSDA.

specifies the maximum number of requested work data sets. The
maximum value of n is 16; if you specify more than 16, 16 is used. If
you specify 1 and the Blockset technique is selected, 2 is used.

Default: None; optional. See Appendix C, "Specification/Override of
DFSORT Options" on page 353 for more information.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

DYNALLOC = OFF

OYNALLOC=r-(OFF~
. LOFF

Directs DFSORT not to aUocate intermediate workspace dynamically.
overriding the ICEMAC installation option DYNAUTO=YES, or the
DYNALLOC parameter (without OFF) specified at execution. For more
information, see the discussion of the DYNALLOC option in "OPTION
Control Statement" on page 97.

OFF
directs DFSORT not to allocate intermediate workspace dynamically.

Default: None; optional. See Appendix C, "Specification/Override of
DFSORT Options" on page 353 for more information.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

Chapter 2. Executing DFSORT with Job Control Language 25

Using the EXEC Statement

EFS

• t EFS=[namEJ
NONE

Temporarily overrides the EFS installation option, which specifies
whether DFSORT is to pass control to an Extended Function Support
program. See Appendix B, "Using Extended Function Support (EFS)"
on page 315 for more information on EFS

name
the name of the EFS program that will be called to interface with
DFSORT.

NONE
means no call will be made to the EFS program.

Default: Usually the installation default. See
Appendix C, "Specification/Override of DFSORT Options" on page 353
for more information.

Applicable Functions: See Appendix C, "Specification/Override of
DFSORT Options" on page 353.

EQUALS or NOEQUALS

...

.... ·----,EQUALS---,,------------------.....
lNOEQUALSJ

Temporarily overrides the EQUALS installation option, which specifies
whether the original sequence of identical collating records for a sort or
a merge should be preserved from input to output. For more informa­
tion, see the discussion of the EQUALS option in "OPTION Control
Statement" on page 97.

EQUALS
specifies that the original sequence must be preserved.

NOEQUALS
specifies that the original sequence need not be preserved.

Default: Usually the installation default. See
Appendix C, "Specification/Override of DFSORT Options" on page 353
for more information.

Applicable Functions: See Appendix C, "Specification/Override of
DFSORT Options" on page 353.

EXCPVR

"'-EXCPVR=IALL ~
NO\oJRK
NONE

For MVS/XA and MVS/ESA, temporarily overrides the EXCPVR installa­
tion option, which specifies the data sets for which DFSORT can use
EXCPVR when sorting or copying fixed- and variable-length records with

26 DFSORT: Application Programming: Guide

Using the EXEC Statement

the BLOCKSET technique. For more information, see the explanation of
the EXCPVR parameter in "OPTION Control Statement" on page 97.

Note: The EXCPVR option is not supported for MVS/370.

ALL
specifies that DFSORT can use EXCPVR for SORTIN, SORTOUT, and
SORTWKnn data sets.

NOWRK
specifies that DFSORT can use EXCPVR for the SORTIN and
SORTOUT data sets only. DFSORT will not use EXCPVR for
SORTWKnn if NOWRK is specified.

NONE
specifies that DFSORT cannot use EXCPVR for SORTIN, SORTOUT,
or SORTWKnn data sets.

Default: Usually the installation default. See
Appendix C, "Specification/Override of DFSORT Options" on page 353
for more information.

Applicable Functions: See Appendix C, "Specification/Override of
DFSORT Options" on page 353.

E15=COB

H~~----E15=COB:--------------------~ ..

Specifies that your E15 routine is written in COBOL, and temporarily
overrides the MODS statement for E15. If you specify E15=COB but do
not identify an E15 module with a MODS statement, the E15=COB is
ignored.

Default: None; optional. See Appendix C, "Specification/Override of
DFSORT Options" on page 353 for more information.

Applicable Functions: See Appendix C, "Specification/Override of
DFSORT Options" on page 353.

E35=COB

H~~----E35=COB-------------------""~-·

Specifies that your E35 routine is written in COBOL, and temporarily
overrides the MODS statement for E35. If you specify E35 = COB but do
not identify an E35 module with a MODS statement, the E35 = COB is
ignored.

Default: None; optional. See Appendix C, "Specification/Override of
DFSORT Options" on page 353 for more information.

Applicable Functions: See Appendix C, "Specification/Override of
DFSORT Options" on page 353.

Chapter 2. Executing DFSORT with Job Control Language 27

Using the EXEC Statement

FILSZ

••

This parameter specifies (1) an exact number of records for a sort or
merge, or (2) an estimated number of records for a sort. Using exact
values forces DFSORT to terminate with an error message if the
number of records sorted or merged is not as expected.

If DFSORT cannot reasonably estimate the number of records to be
sorted, it uses the estimated FILSZ value to aid optimization of interme­
diate storage: otherwise, it does not use the value for this purpose. For
variable-length records, DFSORT uses the length of the longest input
record to determine the total amount of work space to allocate.
DFSORT uses the estimated FILSZ (if specified) for optimization under
these circumstances:

x

• An E15 exit routine is used.
• Input data sets are multivolume or on tape.
• Input data sets are concatenated and Blockset is not selected.

specifies the exact number of records to be sorted or merged: it
must take into account the number of records in the input data
set(s), records to be inserted or deleted by exit E15/E32, and
records to be deleted by INCLUDE/OMIT, SKIPREC, and STOPAFT.

Ex
specifies an estimated number of records to be sorted. This value
must be preceded by a letter E, and be large enough to include the
SORTIN data set, and any records you might add at exit E15.

For example, if you estimate your total data set size to be 5000
records, specify FILSZ=E5ooo.

If you omit the FILSZ operand, DFSORT estimates the number of input
records.

Default: None: optional. See Appendix C, "Specification/Override of
DFSORT Options" on page 353 for more information.

Applicable Functions: See Appendix C, "Specification/Override of
DFSORT Options" on page 353.

HIPRMAX

-HI PRl~AX=~PT mAL I
n

For MVS/ESA, temporarily overrides the HIPRMAX installation option,
which specifies the maximum amount of hiperspace to be committed for
Hipersorting. For more information on this parameter, see the explana­
tion of the HIPRMAX parameter ("OPTION Control Statement" on
page 97).

28 DFSORT: Application Programming: Guide

. ..

• •

Using the EXEC Statement

OPTIMAL

n

specifies that DFSORT determines dynamically the maximum
amount of hiperspace to be committed for Hipersorting. DFSORT
determines the paging activity at the start of the run and selects the
maximum value that causes minimal system impact.

specifies the maximum megabytes Of hiperspace to be committed
for Hipersorting. n must be a value between a and 9999. The actual
amount of hiperspace used will not exceed the HIPRMAX value, but
might be less if DFSORT determines that using the maximum will
increase system paging significantly. If n is a (zero), Hipersorting is
not used.

Default: Usually the installation default. See
Appendix C, "Specification/Override of DFSORT Options" on page 353
for more information.

Applicable Functions: See Appendix C, "Specification/Override of
DFSORT Options" on page 353.

LIST or NOLIST

H •• -------r-LIsTT--------------------------------------~.-.
l~IOLISTJ

Temporarily overrides the LIST installation option, which specifies
whether DFSORT program control statements should be written to the
message data set. See DFSORT Messages and Codes for full details on
use of the message data set.

LIST
specifies that all DFSORT control statements are printed on the
message data set.

NOLIST
specifies that DFSORT control statements are not printed.

Default: Usually the installation default. See
Appendix C, "Specification/Override of DFSORT Options" on page 353
for more information.

Applicable Functions: See Appendix C, "Specification/Override of
DFSORT Options" on page 353.

L1STX or NOLlSTX

H··------~-LISTXT---------------------------------------.~.

lNOLISTXJ

Temporarily overrides the L1STX installation option, which specifies
whether DFSORT writes to the message data set the program control
statements returned by an EFS program. See DFSORT Messages and
Codes for full details on use of the message data set.

Chapter 2. Executing DFSORT with Job Control Language 29

Using the EXEC Statement

LlSTX
means that control statements returned by an EFS program are to
be printed to the message data set.

NOLlSTX
means that control statements returned by an EFS program are not
to be printed to the message data set.

Default: Usually the installation default. See
Appendix C, "Specification/Override of DFSORT Options" on page 353
for more information.

Applicable Functions: See Appendix C, "Specification/Override of
DFSORT Options" on page 353.

Note:

• If EFS = NONE is in effect after final override rules have been
applied, NOLlSTX will be set in effect.

• LlSTX and NOLlSTX can be used independently of LIST and NOLIST.

• For more information on printing EFS control statements, see
DFSORT Messages and Codes.

MSGDDN

H~~----I1·1SGDON=ddname-------------------~ «

Temporarily overrides the MSGDDN installation option. which specifies
an alternate DDNAME for the message data set. See the explanation of
the MSGDDN parameter in "OPTION Control Statement" on page 97 for
more information.

The DDNAME can be any 1- through 8-character name. but must be
unique within the job step; do not use a name that is used by DFSORT
(for example. SORTIN). If the DDNAME specified is not available at exe­
cution. SYSOUT is used instead. For details on using the message data
set. see DFSORT Messages and Codes.

Default: Usually the installation default. See
Appendix C. "Specification/Override of DFSORT Options" on page 353
for more information.

Applicable Functions: See Appendix C, "Specification/Override of
DFSORT Options" on page 353.

Note: MSGDD can be used instead of MSGDDN.

MSGPRT

•• r.1SGPRT=lALL ~
CRITICAL
NONE

Temporarily overrides the MSGPRT installation option, which specifies
the class of messages to be written to the message data set. See
DFSORT Messages and Codes for full details on use of the message
data set

30 o FSORT: Application Programming: Guide

• 'II

Using the EXEC Statement

ALL
means that all messages except diagnostic messages ICE8001 to
ICE9991 are to be printed on the message data set. Control state­
ments are printed only if LIST is in effect.

CRITICAL
means that only critical messages are to be printed on the message
data set. Control statements are printed only if LIST is in effect.

NONE
means that no messages or control statements are to be printed.

Default: Usually the installation default. See
Appendix C, "Specification/Override of DFSORT Options" on page 353 for
more information.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

Note: The forms FLAG(I)IFLAG(U)lNOFLAG, and
MSG = {NOIAPIAqCqcPI PC} are also accepted. The following table lists
the equivalent MSGPRT/MSGCON specifications for these alternate forms:

Option MSGPRT MSGCON
MSG=NO NONE NONE
MSG=AP ALL CRITICAL
MSG=AC NONE ALL
MSG=CC NONE CRITICAL
MSG=CP CRITICAL CRITICAL
MSG=PC ALL ALL
NOFLAG NONE CRITICAL
FLAG(I) ALL CRITICAL
FLAG(U) CRITICAL CRITICAL

OUTREL or NOOUTREL

•• OUTREL
lNOOUTRELJ

Temporarily overrides the OUTREL installation option, which specifies
whether unused temporary SORTOUT data set space is to be released.

OUTREL
means that unused temporary SORTOUT data set space is to be
released.

NOOUTREL
means that unused temporary SORTOUT data set space is not to be
released.

Note: RLSOUT and NORLSOUT can be used instead of OUTREL and
NOOUTREL, respectively.

Default: Usually the installation default. See
Appendix C, "Specification/Override of DFSORT Options" on page 353
for more information.

Applicable Functions: See Appendix C, "Specification/Override of
DFSORT Options" on page 353.

Chapter 2. Executing DFSORT with Job Control Language 31

~ ..

Using the EXEC Statement

RESALL

RESALL=[n]
nK

Temporarily overrides the RESALL installation option, which specifies
the number of bytes to be reserved in a REGION for system use. For
more information, see the explanation of the RESALL parameter
("OPTION Control Statement" on page 97).

n

nK

is an integer specifying the number of bytes of storage to be
reserved, when SIZE/MAINSIZE = MAX is in effect. If you specify
less than 4096, 4096 is used.

Limit: 8 digits.

nK specifies that n times 1024 bytes of storage are to be reserved,
when SIZE/MAINSIZE = MAX is in effect. If you specify less than 4K,
4K is used.

Limit: 5 digits.

Note: RESERVE can be used instead of RESALL.

Default: Usually the installation default. See
Appendix C, "Specification/Override of DFSORT Options" on page 353
for more information.

Applicable Functions: See Appendix C, "Specification/Override of
DFSORT Options" on page 353.

SIZE

...
SIZEln~~

·IAX
.JAX­
·IAX-mK

Temporarily overrides the SIZE installation option, which specifies the
amount of main storage available to DFSORT. See the explanation of
the MAINSIZE parameter in "OPTION Control Statement" on page 97.

n
n is an integer specifying the number of bytes of main storage to be
allocated.

Limit: 8 digits.

32 DFSORT: Application Programming: Guide

...

nk

Using the EXEC Statement

nK specifies n times 1024 bytes of main storage are to be allocated.

Limit: 5 digits.

MAX
instructs DFSORT to calculate the amount of main storage available
and allocate this maximum amount, up to the MAXLIM value (or the
TMAXLIM value for an MVS/XA or MVS/ESA system) set when
DFSORT was installed.

MAX-m
specifies the RESALL value (m), in bytes. MAX-m instructs the
program to calculate the amount of storage available and allocate
this amount up to the MAXLIM value (or the TMAXLIM value for an
MVS/XA or MVS/ESA system) minus the amount of storage reserved
for system and application use (RESALL).

Limit for m: 8 digits.

MAX-mK
specifies the RESALL value (m times 1024) in kilobytes. MAX-mK
instructs the program to calculate the amount of storage available
and allocate this amount up to the MAXLIM value (or the TMAXLIM
value for an MVS/XA or MVS/ESA system) minus the amount of
storage reserved for system and application use (RESALL).

Limit for m: 5 digits.

Specifying a SIZE value equal to your installation's MAXLIM value is
equivalent to specifying SIZE = MAX. If the SIZE or MAINSIZE passed to
DFSORT is equal to the MAXLlM, the MAXLIM value will be used and
DFSORT will set MAX in effect.

Default: Usually the installation default. See
Appendix C, "Specification/Override of DFSORT Options" on page 353
for more information.

Applicable Functions: See Appendix C, "Specification/Override of
DFSORT Options" on page 353.

Note: The forms SIZE(option), CORE =option, and CORE(option) can be
used instead of RESALL=option.

SKIPREC

~H~----SKIPREC=z-------------------~~-~

Specifies the number of records (z) you want to skip before starting to
sort or copy the input data set. SKIPREC is typically used to bypass
records not processed from the previous DFSORT job. For more infor­
mation, see the discussion of the SKIPREC option in "OPTION Control
Statement" on page 97.

Default: None; optional. See Appendix C, "Specification/Override of
DFSORT Options" on page 353 for more information.

Applicable Functions: See Appendix C, "Specification/Override of
DFSORT Options" on page 353.

Chapter 2. Executing DFSORT with Job Control Language 33

Using the EXEC Statement

STIMER or NOSTIMER

...... -----,--STIl·'ER.,--------------------~ •
LNOSTIl~ERJ

Temporarily overrides the STIMER option, which specifies whether
DFSORT can use the STIMER macro.

STIMER
means that an STIMER will be issued and processor t!me data will
appear in SMF records and ICETEXIT statistics.

NOSTIMER
means that no STIMER will be issued and processor time will not
appear in SMF records or ICETEXIT statistics.

Default: Usually the installation default. See
Appendix C, "Specification/Override of DFSORT Options" on page 353
for more information.

Applicable Functions: See Appendix C, "Specification/Override of
DFSORT Options" on page 353.

Note: If your exit or exits take checkpoints, then an STIMER must not
be issued.

STOPAFT

.. ~ ~----STOPAFT=n---------------------< .. - ..

Specifies the maximum number of records (n) you want accepted for
sorting or copying (that is, read from SORTIN or inserted by E15 and not
deleted by SKIPREC, E15 or INCLUDE/OMIT). For more information, see
the discussion of the STOPAFT option in "OPTION Control Statement"
on page 97.

Default: None; optional. See Appendix C, "Specification/Override of
DFSORT Options" on page 353 for more information.

Applicable Functions: See Appendix C, "Specification/Override of
DFSORT Options" on page 353.

Note: If you specify (1) FILSZ =x in the EXEC PARM, or (2) SIZE =x or
FILSZ=x on the OPTION or SORT statement, and the number of records
accepted for processing does not equal x, then DFSORT issues an error
message and terminates.

WRKREL

...... -----,--HRKREL,--------------------.. •
lNQ\oJRKREL J

Temporarily overrides the WRKREL installation option, which specifies
whether unused temporary SORTWKnn data set space will be released.

34 DFSORT: Application Programming: Guide

Using DO Statements

WRKREL
specifies that unused space will be released.

NOWRKREL
specifies that unused space will not be released.

Default: Usually the installation default. See
Appendix C, "Specification/Override of DFSORT Options" on page 353
for more information.

Applicable Functions: See Appendix C, "Specification/Override of
DFSORT Options" on page 353.

Note:

• If you have dedicated certain volumes for SORTWKnn data sets, and
you do not want unused temporary space to be released, you
should specify NOWRKREL.

• RELEASE = ON and RELEASE = OFF can be used instead of WRKREL
and NOWRKREL, respectively.

WRKSEC

~""-----r-bJRKSEC.---------------------,,-...
lNOHRKSECJ

Temporarily overrides the WRKSEC installation option, which specifies
whether DFSORT uses automatic secondary allocation for temporary
SORTWKnn data sets.

WRKSEC
specifies that automatic secondary allocation for temporary
SORTWKnn data sets will be used, and that 25 percent of the
primary allocation will be used as the secondary allocation.

NOWRKSEC
specifies that automatic secondary allocation for temporary
SORTWKnn data sets will not be used.

Default: Usually the installation default. See
Appendix C, "Specification/Override of DFSORT Options" on page 353
for more information.

Applicable Functions: See Appendix C, "Specification/Override of
DFSORT Options" on page 353.

Note: SECOND = ON and SECOND = OFF can be used instead of
WRKSEC and NOWRKSEC, respectively.

Using DD Statements
A oFSORT job always requires DO statements after the EXEC statement. DO
statements fall into two categories:

• System DO statements (discussed in detail in "System DO Statements" on
page 39).

• Program DO statements (discussed in detail in "Program DO Statements"
on page 40).

Chapter 2. Executing DFSORT with Job Control Language 35

Using DO Statements

System DO statements (and some program DO statements) are usually supplied
automatically when you use a cataloged procedure. Others you must always
supply yourself.

The DO statement parameters, the conditions under which they are required,
and the default values, are summarized in Table 1. The subparameters of the
DCB parameter (a DO statement parameter) are described similarly in Figure 3
on page 38.

Note:

• Performance is enhanced if the LRECL subparameter of the DCB is accu­
rately specified for variable-length records. The maximum input record
length you can specify for your particular configuration is given in "Data Set
Notes and Limitations" on page 9.

• When using DFSORT applications, FREE=CLOSE cannot be used on any DD
statements.

Table 1 (Page 1 of 2). DO Statement Parameters Used by DFSORT

Parameter When Required Parameter Values Default Value

DSNAME When the DD statement Specifies the fully qualified The system assigns a
or defines a labeled input data or temporary name of the unique name.
DSN set (for example, SORTIN), data set.

or when the data set being
created is to be kept or cat-
aloged (for example,
SORTOUT), or passed to
another step.

DCB Always required when Specifies information used (See separate subpa-
7-track tape is used; for to fill the data control block rameters in
input on tape without (DCB) associated with the Figure 3 on page 38.)
standard labels; and when data set.
the default values are not
applicable.

UNIT When the input data set is Specifies (symbolically or
neither cataloged nor actually) the type and quan-
passed or when the data set tity of I/O units required by
is being created. the data set.

SPACE When the DD statement Specifies the amount of
defines a new data set on space needed to contain the
direct access. data set.

VOLUME When the input data set is Specifies information used
or neither cataloged nor to identify the volume or
VOL passed, for multireel input volumes occupied by the

or when the output data set data set.
is on direct access and is to
be kept or cataloged.

LABEL When the default value is Specifies information about The system assumes
not applicable. labeling and retention for standard labeling.

the data set.

36 DFSORT: Application Programming: Guide

Using DD Statements

Table 1 (Page 2 of 2). DO Statement Parameters Used by DFSORT

Parameter When Required Parameter Values Default Value

DISP When the default value is Indicates the status and dis- The system assumes
not applicable. position of the data set. (NEW, DELETE).

{AMPI When password-protected Minimum buffer pool value None.
BUFSP} VSAM data sets are used given when creating the

and the password is sup- data set.
plied through E18, E38 or
E39.

Duplicate DDNAMEs

Shared Tape Units

If you specify a particular DDNAME (such as SORTIN) more than once within the
same step, DFSORT uses the first DDNAME and ignores subsequent duplicates.
Processing continues normally.

In addition:

• SORTWKO, SORTWK1 ... S0RTWK9 can be specified instead of SORTWKOO,
SORTWK01 ... SORTWK09, respectively. If you specify both SORTWKx and
SORTWKOx in the same job step, DFSORT treats them as duplicates, and
ignores each usage after the first. For example, SORTWK2 and SORTWK02
are treated as duplicates. (Only SORTWK2 is used.)

Note:

For a tape work data set sort, SORTWKx will not be recognized because of
the existing restriction which allows only SORTWK01,
SORTWK02 ... S0RTWK32. However, duplicates of these accepted DDNAMEs
will be ignored.

• SORTINO, SORTIN1 ... S0RTIN9 can be specified instead ofSORTINOO,
SORTIN01 ... S0RTIN09, respectively. If you specify both SORTINx and
SORTINOx in the same job step, DFSORT treats them as duplicates, and
ignores each usage after the first. For example, SORTIN2 and SORTIN02
are treated as duplicates. (Only SORTIN2 is used.)

Note:

For a conventional merge, SORTINx will not be recognized because of the
existing restriction which allows only SORTIN01, SORTlN02 ... S0RTlN16.
However, duplicates of these accepted DDNAMEs will be ignored.

The following pairs of DFSORT data sets can be aSSigned to a single tape unit:

• The input data set and the first intermediate storage data set (SORTWK01)
• The input data set and the output data set.

If you want to associate the SORTIN data set with SORTWK01, you can include
the parameter: UNIT=AFF=SORTIN in the DD statement for SORTWK01. The
AFF subparameter causes the system to place the data set on the same unit as
the dataset with the DDNAME following the subparameter (SORTIN, in this
case).

Chapter 2. Executing DFSORT with Job Control Language 37

Using DO Statements

In the same way, you can associate SORTIN with SORTOUT by including
UNIT=AFF=SORTIN in the SORTOUT DO statement.

Condition under Summary of
Subparameter which Required Subparameter Values Default Value

DEN When the data set Specifies the density 8ea bpi
is located on a at which the tape was
7-track 24ee-series recorded.
tape unit.

TRTCH When the data set Specifies the technique Converter not
is located on a used to record 8-bit used, translator
7-track 24ee-series bytes on a 7-track type. not used, odd
tape unit. parity.

RECFM Specifies the format of · For old data
the records in the data sets, the
set. value in the

When the DCB data set label.
parameter is Specifies the maximum · For a new SORTOUT

lRECll required and the length (in bytes) of data set, the same
default value is the logical records in as the first
not suitable, the data set. SORTIN, or
except on appropriate
SORTWKnn state- SORTINnn data set.3

BlKSIZE2 ments. Specifies the maximum · No default if
length (in bytes) of input on unlabeled
the physical records tape, or BlP or
in the data set. NSl specified.

OPTCD When processing data Specifies that the
in ISCII/ASCII tape processed is
format. in ISCII/ASCII

format.

BUFOFF When processing data Specifies the length
in ISCII/ASCII of the buffer offset
format. or specifies that the

buffer offs,et is the
block length indicator.

lFor padding and truncating fixed-length records, see
"Data Set Notes and Limitations a in the Table of Contents.

2This is the only subparameter allowed for DO * data sets.

3Blockset merge uses the largest lRECl and BLKSIZE found among
the input data sets. Conventional merge uses the LRECL and BLKSIZE
from SORTINEll.

Figure 3. DCB Subparameters Used by DFSORT

38 o FSORT: Application Programming: Guide

Using DO Statements

System DD Statements
If you choose not to use the SORT or SORTD cataloged procedures to invoke
DFSORT, you might need to supply system DD statements in your input job
stream. (See also the following section for DD statements dedicated to
DFSORT, such as SORTIN). The DD statements contained in the cataloged pro­
cedure (or provided by you) are:

IIJOBllB DO

IISTEPLIB DO

IISYSIN DO

or

is needed to identify your program link library if it is not
already known to the system.

contains DFSORT control statements, comment statements,
blank statements and remarks when DFSORT is invoked with
JCL rather than by another program. It can also contain
user exit routines, in object deck format, to be link-edited by
DFSORT.

• If you use DFSPARM, then SYSIN is not necessary unless
your job requires link-editing.

• The SYSIN data set usually resides in the input stream;
however, it can be defined as a sequential data set or as
a member of a partitioned data set.

• The data set must not be defined as RECFM = U.

• SYSIN cannot be concatenated data sets.

Note: The OPTION statement keywords EFS, LIST, NO LIST,
L1STX, NOLlSTX, MSGPRT, MSGDDN, SORTDD, SORTIN, and
SORTOUT are used only when they are passed by an
extended parameter list, or in the DFSPARM data set. If they
are specified on an OPTION statement read from the SYSIN
or SORTCNTL data set, the keyword is recognized, but the
parameters are ignored.

If you use the DFSPARM DD statement instead, you can
specify both EXEC PARM options and DFSORT control state­
ments in a single source data set that overrides all other
sources. See "DFSPARM DD Statement" on page 49.

If user exit routines are in SYSIN, make sure that:

• The END statement is the last control statement.

• The user exit routines are arranged in numeric order (for
example, E11 before E15).

• The user exit routines are supplied immediately after the
END control statement.

• Nothing follows the last object deck in SYSIN.

• A SORTMODS DD statement is included.

If you are invoking DFSORT dynamically, and you supply the
DFSORT control statements through the 24-bit or extended
parameter list, SORTCNTL, or DFSPARM, SYSIN remains the
source of user exit routines placed in the system input
stream.

Chapter 2. Executing DFSORT with Job Control Language 39

Using DO Statements

IISYSOUT DO identifies the system output data set for messages. Always
use this statement if a cataloged procedure is not used. If
you are invoking DFSORT from another program, you can
specify an alternate DDNAME for the message data set. (If
you are invoking DFSORT from a COBOL program and are
using no DDNAME other than SYSOUT, the use of EXHIBIT or
DISPLAY in your COBOL program can produce uncertain
printing results.) Before printing DFSORT messages, a skip
to a new page is performed.

IISYSUDUMP DO or

IISYSABEND DO defines output from a system ABEND dump routine. Needed
only for debugging.

If you are using the supplied SORT cataloged procedure, the DO statements
mentioned below are automatically supplied. If you are not using the SORT cat­
aloged procedure and you are using the linkage editor, you must supply the fol­
lowing DD statements:

IISYSPRINT DO contains messages from the linkage editor.

IISYSUT1 DO is a work area for the linkage editor.

IISYSLIN DO defines a data set in which DFSORT places control informa­
tion for the linkage editor.

IISYSLMOD DO defines a data set that contains output from the linkage
editor.

Note: If you do not include user routines or you include user routines that do
not require link-editing, you can use the supplied SaRTO cataloged procedure.
If you include user routines that require link-editing, you can use the SORT cat­
aloged procedure.

Program DO Statements
Even if you use the SORT or SaRTO cataloged procedure to invoke DFSORT,
you might need to supply additional dedicated DD statements: The following
list summarizes each of these statements, and a more detailed explanation of
each one follows.

/lSORTLIB DO defines the data set that contains special load modules for
DFSORT, and can usually be omitted.

IISORTIN DO defines the input data set for a sorting or copying applica­
tion. Cannot be used for a merging application or if
SORTINnn is used.

IISORTINnn DO defines the input data sets for a merging application. Cannot
be used for a sorting application or if SaRTIN is used.

IISORTWKnn DO defines intermediate storage data sets. Usually needed for a
sorting application unless dynamic allocation is requested.
Will not be used for a copying or merging application (but
may be opened, if present).

IISORTOUT DO defines the output data set for a sorting, merging, or copying
application.

40 DFSORT: Application Programming: Guide

Using DO Statements

IIS0RTCKPT DO defines a data set for checkpoint records. Required only if
you are using the checkpoint facility.

IIS0RTCNTL DO defines the data set from which additional or changed
DFSORT control statements can be read, when DFSORT is
dynamically invoked.

IIDFSPARM DO defines the data set from which both additional or changed
DFSORT program control statements and EXEC statement
parameters can be read, when DFSORT is JCL-invoked or
dynamically invoked.

IIS0RTDKnn DO defines the data set used for a VIO SORTWKnn allocation by
DFSORT if it is dynamically reallocated; SORTDKnn must
never be specified in the job stream.

IIS0RTDIAG DO specifies that all messages and control statements will be
printed. Needed only for debugging.

IIS0RTMODS DO defines a temporary partitioned data set. This temporary
data set must be large enough to contain all your exit rou­
tines that appear in SYSIN for a given application. If none of
your routines appear in SYSIN, this statement is not
required. If your routines are in libraries, you must include
DO statements defining the libraries.

DFSORT temporarily transfers the user exit routines in SYSIN
to the data set defined by this DO statement before they are
link-edited for execution.

IIS0RTSNAP DO defines the snap dump data set dynamically allocated by
DFSORT. SORTSNAP must never be specified in the job
stream.

SORTLIB DD Statement
The SORTLIB DO statement can usually be omitted. This statement describes
~he data set that contains special DFSORT load modules.

When Required: A SORTLIB DO statement is required only for:

• Sort applications using tape work data sets

• Merge applications for which Blockset cannot be used (see message
ICE8001).

The ICEMAC SORTLIB option determines whether DFSORT searches a system
library or private library for the load modules required by tape work data set
sorts and Conventional merges. If the load modules were installed in a system
library, the SORTLIB DO statement is unnecessary, and is ignored.

Example 1. SORTLIB DO Statement

//SORTLIB DO DSNAME=USORTLIB,DISP=(OLD,KEEP)

This example shows DO statement parameters that define a previously cata­
loged input data set:

Chapter 2. Executing DFSORT with Job Control Language 41

Using DO Statements

DSNAME
causes the system to search the catalog for a data set with the name
USORTLIB. When the data set is found, it is associated with the DDNAME
SORTLIB. The control program obtains the unit assignment and volume
serial number from the catalog and, if the volume is not already mounted,
writes a mounting message to the operator.

DlSP
indicates that the data set is passed or cataloged (OLD) and that it should
be kept after the current job step.

For information on the parameters used in the SORTLIB DO statement, the con­
ditions under which they are required, and the default values assumed if a
parameter is not included, see Table 1 on page 36. The subparameters of the
DCB parameter are described similarly in Figure 3 on page 38. For more
detailed information, see your JCL reference manual.

SORTIN DD Statement
The SORTIN DO statement describes the characteristics of the data set in which
the records to be sorted or copied reside, and indicates its location.

Note: FREE = CLOSE cannot be specified.

When Required: A SORTIN DO statement is required for all sort or copy appli­
cations, unless you both provide an E15 exit that supplies all input to DFSORT,
and include a RECORD statement in the program control statements. The
SORTIN DO statement is ignored if your program invokes DFSORT and passes
the address of your E15 exit in the parameter list.

Data Set Characteristics: DFSORT accepts empty and null non-VSAM data sets
for sorting and copying (be sure to apply DCB parameters). DFSORT also
accepts empty VSAM data sets for sorting or copying. For non-VSAM data sets.
DFSORT examines the OS1LSTAR field in the format-1 DSCB to determine
whether the data set is empty or null. If DS1 LSTAR is zero, DFSORT treats the
data set as empty or null.

Note that a null data set is one that has been newly created. but never success­
fully closed. Null data sets cannot be processed successfully for a tape work
data set sort.

OFSORT accepts an empty (not a nUll) QSAM data set for sorting or copying (be
sure to supply DCB parameters). DFSORT accepts an empty VSAM data set for
sorting or copying. Note that a null QSAM data set is a data set that has been
opened for input. but no records have been written into it. and it has not been
closed successfully.

See "Data Set Notes and Limitations" on page 9 for additional considerations.

The following rules apply to concatenated data sets:

• RECFM must be the same for all data sets in the concatenation, except that
FB and FBS can be mixed.

• BLKSIZE can vary, but the data set with the largest block size must be
speCified on the first DO statement of the concatenation.

42 DFSORT: Application Programming: Guide

Using DO Statements

• With fixed-length records, LRECL must be the same for all data sets. With
variable-length records, LRECL can vary, but the largest size must be speci­
fied for the data set described on the first DD statement.

• If the data sets are on unlike devices you cannot use the EXLST parameter
at exit E18.

• If BSAM is used, all null data sets must precede all non-nUll data sets.

Example 2. SORTIN DO Statement

IISORTIN 00 OSNAME=INPUT,OISP=(OLD,KEEP)

This example shows DD statement parameters that define a previously cata­
loged input data set:

DSNAME
causes the system to search the catalog for a data set with the name
INPUT. When the data set is found, it is associated with the DDNAME
SORTIN. The control program obtains the unit assignment and volume
serial number from the catalog and, if the volume is not already mounted,
writes a mounting message to the operator.

DISP
indicates that the data set is passed or cataloged (OLD) and that it should
be kept after the current job step.

Example 3. Volume Parameter on SORTIN DO

IISORTIN
II

DO DSN=SORTIN,DISP=(OLO,KEEP),UNIT=3400-3,
VOL=SER=(75836,79661,72945)

If the input data set is contained on more than one reel of magnetic tape, the
VOLUME parameter must be included on the SORTIN DO statement to indicate
the serial numbers of the tape reels. In this example, the input data set is on
three reels that have serial numbers 75836, 79661, and 72945.

If a data set is not on a disk or on a standard-labeled tape, you must specify
DCB parameters in its DD statement.

SORTINnn DO statement
The SORTINnn DD statements describe the characteristics of the data sets in
which records to be merged reside, and indicate the locations of these data
sets.

When Required: SORTINnn DD statements are always needed for a merge
unless the merge is invoked from another program and all input is supplied
through a routine at exit E32.

Data Set Chara.cteristics: Input data sets can be either non-VSAM or VSAM. but
not both. Empty and null non-VSAM data sets are accepted. An empty VSAM
data set causes a VSAM open error (code 160), and DFSORT terminates. For
non-VSAM data sets. DFSORT examines the DS1LSTAR field in the format-1

Chapter 2. Executing DFSORT with Job Control Language 43

Using DO Statements

OSCB to determine whether the data set is null or empty. If OS1 LST AR is zero,
OFSORT treats the data set as null or empty. Note that a null data set is one
that has been newly created, but never successfully closed. Null data sets
cannot be processed successfully by the Conventional merge technique.

Data sets can be multivolume, but not concatenated.

RECFM must be the same for all input data sets, except that FB and FBS can be
mixed.

BLKSIZE can vary, but for a Conventional merge, SORTIN01 must specify the
largest blocksize.

With fixed-length records, LRECL must be the same for all data sets. With
variable-length records, LRECL can vary, but for a Conventional merge,the
LRECL from SORTIN01 is used.

See "Data Set Notes and Limitations" on page 9 for additional considerations.

Coding Notes

• You can merge up to 16 data sets. (Blockset might allow more, depending
on available storage.)

• If Blockset merge is used, nn can be any integer from 00 (the initial zero is
optional) to 99, in any order. Remember that Blockset merge treats
DDNAMEs of the form SORTINx and SORTINOx as duplicates, and ignores
any occurrences after the first. For example, if OFSORT reads a DO state­
ment as SORTlN4 DO ... and subsequently reads another as SORTIN04 DO ... ,
the latter DO statement is ignored.

• If Conventional merge is used, nn can range from 01 to 16. The first
number you use must be 01, and the remainder must follow in numeric
order. No numbers can be skipped. Remember that Conventional merge
ignores OONAMEs in the form "SORTINx".

• FREE = CLOSE cannot be specified.

Example 4. SORTIN01-03 DO Statements (Merge)

IISORTIN01 DO
II
II
IISORTIN02 DO
II
II
IISORTI N03 DO
II
II

OS NAf.1 E =MERGEl t VOLUt·1E=SER=000111, 0 I SP=OLD,
LABEL=(,NL),UNIT=3400-3,
DCB= (RECFt4=FB, LRECL=80, BLKSI ZE=240)
DSNAME=MERGE2,VOLUME=SER=000121,DISP=OLD,
LABEL=(,NL),UNIT=3400-3,
DCB=(RECFr4=FB,LRECL=80,BLKSIZE=240)
DSNAt·IE=t4ERGE3, VOLUr4E=SER=000131, D ISP=OLD,
LABEL=(,NL),UNIT=3400-3,
DCB= (RECH1=FB, LRECL=80, BLKSI ZE=240)

44 DFSORT: Application Programming: Guide

Using DO Statements

Example 5. SORTIN01-02 DO Statements (Merge)

IISORTI Ne 1 DO
II

DSNAr~E=INPUTl,VOlUME=SER=e00181, *
UNIT=3330,DISP=OLD *DCB PARM4ETERS

IISORTINe2 DO DSNA~IE= I NPUT2, VOLUt·IE=SER=00820 1, *SUPPLI ED FROM
II UNIT=3338,DISP=OLD *LABELS

SORTWKnn DD Statement
The SORTWKnn DO statements describe the characteristics of the data sets
used as intermediate storage areas for records to be sorted; they also indicate
the location of these data sets.

If more than 32 SORTWKnn DO statements are specified, only the first 32 are
used.

Note: FREE = CLOSE cannot be specified.

When Required: One or more SORTWKnn statements are required for each
sort application (but not a merge or copy), unless:

• Input can be contained in main storage (except for Blockset under certain
conditions). or

• Dynamic allocation has been requested.

For information on how to calculate the amount of storage needed, see "Inter­
mediate Storage" on page 311.

See OPTION FILSZISIZE for further considerations.

Diagnostic message ICE8031 gives information on intermediate storage
allocation/use.

Devices: SORTWKnn data sets can be on disk or on tape, but not both, as
described in "Intermediate Storage" on page 311. Disk types can be mixed.

Tape must be nine-track unless input is on seven-track tape, in which case
work tapes can (but need not) be 7-track.

General Coding Notes

• In the DDNAME (SORTWKnn):

Cylinder allocation is preferable for performance reasons. DFSORT
reallocates temporary SORTWKnn data sets in cylinders.

With disk work areas, nn can be any decimal number from 00 (the initial
zero is optional) through 99 and numbers can be in any order; however,
if more than 32 are specified, only the first 32 are used. Remember that
DFSORT treats DDNAMEs of the form SORTWKx and SORTWKOx as
duplicates, and ignores any occurrences after the first. For example, if
DFSORT reads a DO statement as SORTWK4 DO ... and subsequently
reads another as SORTWK04 DO ... , the latter DO statement is ignored.

Chapter 2. Executing DFSORT with Job Control Language 45

Using DO Statements

Unless the input file is very large, one or two SORTWKnn data sets are
usually sufficient. One or two large SORTWKnn data sets are prefer­
able to several small ones.

With tape work areas, nn can be from 01 through 32; the first must be
01, and the rest must follow consecutively. No numbers can be skipped.
At least three SORTWKnn data sets are required for tapes.

• DO DUMMY must not be used.

• Different SORTWKnn DO statements must not refer to the same physical
data set.

• Do not include parameters relating to ISCII/ASCII data, because ISCIl/ASCIl
input is automatically translated into EBCDIC before being moved into an
intermediate storage area.

Disk Coding Notes

• Data sets must be sequential, not partitioned.

• The SPLIT cylinder parameter must not be specified.

• If no secondary allocation is requested for temporary SORTWKnn data sets,
automatic secondary allocation will be used unless NOWRKSEC is in effect.
(Secondary allocation is limited to 12 work data sets in the Peerage or Vale
sorting techniques only.)

• If the data set is allocated to VIO, there is no automatic secondary allo­
cation.

• Secondary allocation can be requested for work data sets. If more work
data sets are defined they are used with only the primary allocation. (Sec­
ondary allocation is limited to 12 work data sets in the Peerage and Vale
sorting techniques only.)

• DFSORT uses only the space on the first volume specified for a multivolume
data set. Space on the second and subsequent volumes is not used. Multi­
volume SORTWKnn data sets are therefore effectively treated as single­
volume SORTWKnn data sets.

• If primary space is fragmented, then all but the first fragment are handled
as secondary space.

Virtual 1/0: If a SORTWKnn data set is specified on a virtual device:

• With VIO = NO, DFSORT carries out dynamic reallocation using the DDNAME
SORTDKnn on a real device with the same device type as the virtual
device. If a real device corresponding to the virtual device is not available
In the system, DFSORT terminates.

• With VIO=YES, the virtual device is used; performance might be degraded.

46 o FSORT: Application Programming: Guide

Using DO Statements

Example 6. SORTWK01 DO Statement, Disk Intermediate Storage

The following is an example of a SORTWKnn DO statement using a disk device:

/ /SORTHK01 DO SPACE=(CYL, (15,5)) ,UNIT=3380

If you use the checkpoinUrestart facility and need to make a deferred restart,
you must make the following additions to the above statement so that the sort
work data set is not lost:

OS NAt4 E=name 1 ,0ISP=(NEl'i, DELETE, KEEP)

Thus the same SORTWKnn DO statement for a deferred restart would be:

/ /SORHiK01 DO OSNAME=name 1 ,UNIT =3380 ,SPACE=(CYL, (15,5)) ,
/ / OISP=(NHi,OELETE,KEEP)

Example 7. SORTWK01 DO Statement, Tape Intermediate Storage

//SORHiK01 DO UNIT=3400-3,LABEL=(,NL)
//SORHiK02 DO UNIT=3400-3,LABEL=(,NL)
//SORHiK03 00 UNIT=3400-3,LABEL=(,NL)

This is an example of SORTWKnn DO statements using three tape devices.

If DFSORT terminates unsuccessfully and the above DO statements have been
specified, the intermediate storage data sets remain in the system until the step
has been successfully rerun or until the data sets have been deleted by some
other means.

These parameters specify unlabeled data sets on three 3400 series tape units.
Because the OS NAME parameters are omitted, the system assigns unique
names.

SORTOUT DO Statement
The SORTOUT DO statement describes the characteristics of the data set in
which the processed records are to be placed, and indicates its location.

Note: FREE = CLOSE cannot be specified.

When Required: A SORTOUT DO statement is always required, unless you
provide an E35 exit that disposes of all output. The SORTOUT DO statement is
ignored if your program invokes DFSORT and passes the address of your E35
exit in the parameter list.

Chapter 2. Executing DFSORT with Job Control Language 47

Using DO Statements

Data Set Characteristics: See "Data Set Notes and Limitations" on page 9 and
"VSAM Considerations" on page 10.

Note:

• If LABEL = RETPD is specified in the SORTOUT DO statement for a standard
labeled tape, the DCB parameters must also be specified. If the DCB
parameters are not specified, the tape might be opened twice .

• OPTCD =W should not be specified for an IBM 3480 tape unit. If it is speci­
fied for a full function 3480 tape unit, the request is overridden. If it is speci­
fied for a 3480 operating in 3420 compatibility mode (specified as 3400-9),
the request is not overridden, but performance might be degraded.

• If no secondary allocation is requested for a temporary or new SORTOUT
data set, automatic secondary allocation will be used unless NOOUTSEC is
in effect.

Example 8. SORTOUT DD Statement

IISORTOUT DD DSN=C905460.0UTPT,UNIT=J350,SPACE=(CYL,5),
II DISP=(NE\1,CATLG)

DCB
The DCB parameters default to those of SORTIN.

DISP
The data set is unknown to the operating system (NEW), and it is to be cata­
loged (CATLG) under the name C905460.0UTPT.

DSNAME
The data set is to be called C905460.0UTPT.

SPACE
Five cylinders of storage are requested for the data set.

UNIT
Indicates that the data set is on a 3350 unit.

SORTCKPT DD Statement
The SORTCKPT data set can be allocated on any device that operates with the
Basic Sequential Access Method (BSAM). Processing must be restarted only
from the last checkpoint taken.

Example 9. SORTCKPT DO Statement

IISORTCKPT DO DSNAt.1E=CHECK, VOLUI·1E=SER=000123,
II DISP=(NE\oJ,KEEP),UNIT=J400-J

When allocating the SORTCKPT data set, at least one intermediate storage data
set is required.

48 DFSORT: Application Programming: Guide

Using DO Statements

If the CKPT operand is specified on the OPTION or SORT control statement,
more intermediate storage may be required. See "Intermediate Storage" on
page 311.

If you want to use the checkpoinUrestart facility, refer to "Checkpoint/Restart"
on page 383.

SORTCNTL DD Statement
You can use the SORTCNTL data set to read changed and additional DFSORT
control statements, comment statements, blank statements, and remarks, when
DFSORT is invoked from another program (written, for example, in COBOL or
PLII).

• The SORTCNTL data set usually resides in the input stream, but can be
defined as a sequential data set or as a member of a partitioned data set.

• The data set must not be defined as RECFM = U.

• SORTCNTL cannot be concatenated data sets.

• When DFSORT is invoked from a PL/I program, the SORTCNTL or
DFSPARM data set must not be used to supply a new RECORD control
statement.

Example 10. SORTCNTL DO Statement

I {{SORTe.TL 00 •

Note: The OPTION statement keywords EFS, LIST, NOLlST, LlSTX, NOLlSTX,
MSGPRT, MSGDDN, SORTDD, SaRTIN, and SORTOUT are used only when they
are passed by an extended parameter list, or in the DFSPARM data set. If they
are specified on an OPTION statement read from the SYSIN or SORTCNTL data
set, the keyword is recognized, but the parameters are ignored.

If your program invokes DFSORT more than once, you can direct DFSORT to
read different versions of the SORTCNTL data set at each call. See the expla­
nation of the SORTDD parameter of the OPTION program control statement on
page 114.

Note: If you use the DFSPARM DO statement instead, you can specify both
EXEC PARM options and DFSORT control statements in a single source data set
that overrides all other sources. See "DFSPARM DO Statement." For override
rules, see Appendix C, "Specification/Override of DFSORT Options" on
page 353.

DFSPARM DD Statement
The DFSPARM DO statement can be used to read changed or additional
DFSORT program control statements and EXEC statement PARM options from a
single DO source. Because statements in the DFSPARM data set are read
whether DFSORT is dynamically invoked or invoked with JCL, you can specify
EXEC PARM options when invoking DFSORT from another program (unlike
SORTCNTL). DFSPARM accepts all DFSORT program control statements and
all EXEC statement PARM options (including those ignored by SYSIN and
SORTCNTL) and any equivalent options specified on a DFSORT OPTION state­
ment.

Chapter 2. Executing DFSORT with Job Control Language 49

Using DO Statements

DFSPARM also accepts comment statements, blank statements, and remarks.

Full override and applicability details are listed in
Appendix C, "Specification/Override of DFSORT Options" on page 353.

• If you use DFSPARM, SYSIN is not necessary unless your job requires link­
editing.

• The DFSPARM data set usually resides in the input stream, but it can be
defined as a sequential data set or as a member of a partitioned data set.

• The data set must not be defined as RECFM = U.

• DFSPARM cannot be concatenated data sets.

• When DFSORT is invoked from a PUI program, the SORTCNTL or
DFSPARM data set must not be used to supply a new RECORD control
statement.

Note: The DDNAME "DFSPARM" is used throughout this book to refer to this
data set source for EXEC PARM options and DFSORT program control state­
ments. When your system programmers installed DFSORT, they might have
changed this name to one more appropriate for your site with the PARMDDN
option of the ICEMAC installation macro. Verify the correct DDNAME before
attempting to use the features available with DFSPARM.

General Coding Notes: Coding of parameters in the DFSPARM DO statement
follows the same rules used for the JCL EXEC statement PARM options, and the
program control statements specified in SYSIN or SORTCNTL, with these
exceptions:

• Labels are not allowed.

• PARM options and program control statements cannot be mixed on the
same line, but can be specified in any order on different lines.

• PARM options must be specified without the PARM = keyword and without
quote marks.

• Commas (or semicolons) are accepted but not required to continue PARM
options to another line.

• Leading blanks are not required for PARM options, but at least one leading
blank is required for program control statements.

Example 11. DFSPARM DO Statement

//DFSPAm~ DO *
SORT FIElDS=(1,2,CH,A),STOPAFT=3ee

ABEND
OPTION SORTIN=DATAIN
STOPAFT=5ee

In this example the DFSPARM DO data set passes a DFSORT SORT statement,
the ABEND and STOPAFT parameters equivalent to specifying
PARM= IABEND,STOPAFT=500 1 in a JCL EXEC statement, and a DFSORT
OPTION statement.

50 DFSORT: Application Programming: Guide

Using DO Statements

Notes:

1. Neither of the DFSORT program control statements appear on the same line
as the ABEND or STOPAFT PARM options.

2. The PARM option STOPAFT=500 overrides the SORT control statement
option STOPAFT=300.

Example 12. DFSPARM DO Statement

//OFSPARM DO *
SORT FIELDS=(5,2,CH,D),SKIPREC=lS
STOPAFT =10S,BSAt4, SKI PREC=5
OPTION SORTIN=OATAIN,SKIPREC=2S

In this example, the DFSPARM DO data set contains a SORT program control
statement, three PARM options on one line, and an OPTION program control
statement.

Note: Because PARM options override program control statements, OFSORT
uses SKIPREC = 5, and ignores the other SKIPREC specifications.

For information on the parameters used in the DFSPARM DD Matement, the
conditions under which they are required, and any default values assumed if a
parameter is omitted, see "Specifying EXEC Statement PARM Options" on
page 21 and Chapter 3, "Using DFSORT Program Control Statements" on
page 53.

SORTDKnn DO Statement
SORTWKnn data sets can be assigned to VIO. If the ICEMAC parameter VIO is
specified or defaults to NO, VIO SORTWKnn data sets are deallocated and real­
located by DFSORT with the ddname SORTOKnn. The DDNAME SORTDKnn is
reserved for use by DFSORT.

SORTDIAG DO Statement
The SORTDIAG DO statement specifies that all messages, including diagnostic
messages (lCE8001 through ICE9991), and control statements are to be written
to the message data set. The statement can be used for all DFSORT tech­
niques, and provides information on EXCP counts, intermediate storage
allocation/use, and so on. The SORTDIAG DD statement has no effect on
console messages. The statement is intended as a diagnostic tool.

When SORTDIAG is used for a JCL-invoked DFSORT, a SYSOUT DD statement
must be provided. For a dynamically invoked DFSORT job, a SYSOUT DD state­
ment or a DDNAME DD statement (where DDNAME is the alternate message
data set ODNAME specified during installation or execution) must be provided.

Note: If neither an alternate message data set DDNAME statement nor a
SYSOUT DDNAME statement is provided, DFSORT terminates with a return
code of 20.

Chapter 2. Executing DFSORT with Job Control Language 51

Using DO Statements

Example 13. SORTDIAG DO Statement

/ /SORTDIAG 00 OUHI·1Y

SORTSNAP DD Statement
The SORTSNAP DO statement defines the data set where ESTAE recovery
routine snap dumps. and snap dumps requested before or after a call to an EFS
program. are printed. SORTSNAP is dynamically allocated by DFSORT when­
ever it is required. The DDNAME. SORTSNAP, is reserved for DFSORT.

52 o FSORT: Application Programming: Guide

Using DFSORT Program Control Statements

Chapter 3. Using DFSORT Program Control Statements

Control Statement Summary 54
Control Statements 54

General Coding Rules 55
Continuation Lines 57
Inserting Comment Statements 58
Coding Restrictions 58

AL TSEQ Control Statement 60
AL TSEQ Statement Examples 60

DEBUG Control Statement 62
DEBUG Statement Examples 66

END Control Statement 67
END Statement Examples 67

INCLUDE Control Statement 68
INCLUDE/OMIT Statement Notes 75
INCLUDE Statement Examples 76

INREC Control Statement 78
INREC Statement Notes 81
INREC Statement Examples 83

MERGE Control Statement 87
MERGE Statement Examples 89

MODS Control Statement 91
MODS Statement Examples 93

OMIT Control Statement 95
OMIT Statement Example 95

OPTION Control Statement 97
OPTION Statement Examples 117

OUTREC Control Statement 121
OUTREC Statement Notes 123
OUTREC Statement Examples 124

RECORD Control Statement 127
RECORD Statement Examples ,............... 130

SORT Control Statement 132
SGRT Statement Note 138
SORT Statement Examples 138

SUM Control Statement 141
SUM Statement Notes 142
SUM Statement Examples 143

Chapter 3. Using DFSORT Program Control Statements 53

Control Statement Summary

Program control statements direct DFSORT processing of your records. Some
program control statements are required, while others are optional. You use
the control statements to:

• Indicate whether you want to sort, merge, or copy records
• Describe the control fields you want to use
• Indicate program exits for transferring control to your own routines
• Describe DFSORT functions you want to invoke
• Describe your input and output files
• Indicate various options you want to use while processing.

You can supply program control statements to DFSORT from:

• A SYSIN data set
• A SORTCNTL data set
• A DFSPARM data set
• f- 24-Bit parameter list
• An extended parameter list.

See Appendix C, "Specification/Override of DFSORT Options" on page 353 for
an explanation of when you might want to use each source.

DFSORT Panels offers you an alternative to coding program control statements
directly. When you use panels to prepare a job to be run or saved in a data
set, you can create the necessary statements in correct syntax by entering
information and commands on-line. See Chapter 4, "Using Panels to Create
and Submit DFSORT Jobs" on page 145 for details on using DFSORT Panels.

This c;,apter begins with a summary of DFSORT program control statements
and coding rules, and then provides, in alphabetical order, a detailed
description of each statement.

Control Statement Summary

Control Statements
Describing your primary task (sorting. merging, or copying):

The only required program control statement in a DFSORT job is a SORT,
MERGE, or OPTION statement that specifies whether you want to sort, merge,
or copy records. (Copying can be specified on any of the three statements).

SORT

MERGE

OPTION

Describes your control fields if you are coding a sort job, or can
be used to specify a copy job. Indicates whether you want
ascending or descending order.

Describes your control fields if you are coding a merge job, or
can be used to specify a copy job. Indicates whether you want
ascending or descending order.

Overrides installation defaults (such as EQUALS, CHAL T, and
CHECK) and supplies optional information (such as DYNALLOC
and SKIPREC). Can be used to specify a copy job.

54 o FSORT: Application Programming: Guide

General Coding Rules

Including or omitting records from the output data set:

INCLUDE

OMIT

Specifies that only records whose fields meet certain criteria are
included.

Specifies that any records whose fields meet certain criteria are
deleted.

Reformatting and editing records: You can modify individual records by
deleting and reordering fields and inserting blanks, zeros, or constants.

INREC

OUTREC

Specifies how records are reformatted before they are sorted,
copied, or merged.

Specifies how records are reformatted after they are sorted,
copied, or merged.

Invoking additional functions and options: You can use the remaining control
statements to perform a variety of tasks.

ALTSEQ

DEBUG

END

MODS

RECORD

SUM

General Coding Rules

Modifies the standard IBM EBCDIC collating sequence. The mod­
ified sequence is used for any control field whose format is speci­
fied as AQ.

Used for diagnostic purposes.

Causes DFSORT to discontinue reading SYSIN, SORTCNTL, or
DFSPARM.

Required only if you include user exit routines in a DFSORT job.
See Chapter 5, "Using Your Own Exit Routines" on page 181 for
information about user exit routines.

Supplies record length and type information. This statement is
required when you include user exit routines that change record
lengths during DFSORT execution, when there is no SORTIN DO
statement, or when input and output are VSAM data sets.

Specifies that numeric summary fields in records with equal
control fields are summed in one record, and that the other
records are deleted.

See "Inserting Comment Statements" on page 58 for an explanation of how to
use comment statements, blank statements, and remarks. DFSORT program
control statements and EXEC PARM options can also be specified together in a
user-defined DO data set. See "DFSPARM DO Statement" on page 49 for
special coding conventions that apply to this DO source.

All other DFSORT control statements have the same general format, shown in
Figure 4 on page 56. The illustrated format does not apply to control state­
ments you supply in a parameter list. See Chapter 6, "Invoking DFSORT from
a Program" on page 231 for information on the special rules that apply.

Chapter 3. Using DFSORT Program Control Statements 55

General Coding Rules

Column 1 must be blank
unless a label is present

1
(Labe 1) Operation Operand (Remarks)

72 73················80

(Sequence or
Identification)

(Continuation cOlumn)

Figure 4. Control Statement Format

The control statements are free-form; that is, the operation definer, operand(s).
and comment field can appear anywhere in a statement. provided they appear
in the proper order and are separated by one or more blank characters.
Column 1 of each control statement must be blank. unless the first field is a
label.

Label Field: If present. the label must begin in column 1. and must conform to
the operating system requirements for statement labels.

Operation Field: This field can appear anywhere between column 2 and
column 71 of the first line. It contains a word (for example. SORT or MERGE)
that identifies the statement type to the program. In the example below, the
operation definer. SORT. is in the operation field of the sample control state­
ment.

Operand Field: The operand field is composed of one or more operands sepa­
rated by commas or semicolons. This field must follow the operation field. and
be separated from it by at least one blank. No blanks are allowed within the
parameters. but a blank is required at the end of all parameters. If the state­
ment occupies more than one line. the operand must begin on the first line.
Each operand has an operand definer. or parameter (a group of characters that
identifies the operand type to DFSORT). A value or values can be associated
with a parameter. The three possible operand formats are:

• parameter
• parameter=value
• parameter = (value1.value2 valuen)

The following example illustrates each of these formats.

SORT FIELDS=(10,30,A) , FORf4AT=CH,CKPT

Remark Field: This field can contain any information. It is not required. but if it
is present, it must be separated from the last operand field by at least one
blank.

56 DFSORT: Application Programming: Guide

General Coding Rules

Continuation Column (72): Any character other than a blank in this column
indicates that the present statement is continued on the next line. However, as
long as the last character of the operand field on a line is a comma or semi­
colon followed by a blank, the program assumes that the next line is a contin­
uation line. The nonblank character in column 72 is required only when a
comments field is to be continued or when an operand is broken at column 71.

Columns 73 through 80: This field can be used for any purpose.

Continuation Lines

Column 1 must
be blank

1

The format of the DFSORT continuation line is shown in Figure 5.

16 72 73···············80

! ! !
Continued operand or remarks

r
Optional use

Continuation column

Figure 5. Continuation Line Format

The continuation column and columns 73 through 80 of a continuation line have
the same purpose as they do on the first line of a control statement. Column 1
must be blank.

A continuation line is treated as a logical extension of the preceding line.
Either an operand or a comments field can begin on one line and continue on
the next. The following rules apply:

• If a comments field is broken or is to be started on a new line, column 72
must contain a nonblank character. The continuation can begin in any
column from 2 through 71.

• If an operand field is broken after a comma or a semicolon, the continuation
column (72) can be left blank, and the continuation can begin in any column
from 2 through 71. If the comma or semicolon is in column 71 and column
72 contains a nonblank character, the continuation must begin in column 16.

• If an operand field is not broken after a comma or semicolon, the operand
field must be broken at column 71. Column 72 must contain a nonblank
character. The continuation must begin in column 16.

Chapter 3. Using DFSORT Program Control Statements 57

Inserting Comment Statements

1

~

Examples of Valid Continuation Lines:

16

!
SORT FIELDS=(5,8,A,20,2,D),

FORt·1AT =CH
OPTION SKIPREC=2,LIST, SKIP 2 RECORDS-LIST CONTROL STATE~1ENTS-

DYNALLOC USE DYNAtHC ALLOCATION

72

!

INCLUDE COND=(1,10,CH,EQ,C'STOCKHOLM',AND,21,8,ZD,GT,+500,OR,31,4,CH,N*
E,C'HERR')

Inserting Comment Statements
• Specify comment statements by coding an asterisk n in column 1. A

comment statement is printed along with other DFSORT program control
statements, but is not otherwise processed.

• A statement with blanks in columns 1 through 71 is treated as a comment
statement.

• Comment statements are allowed only in the DFSPARM, SYSIN, and
SORTCNTL data sets.

Coding Restrictions
The following rules apply to control statement preparation:

• Labels, operation definers, and operands must be in uppercase EBCDIC.

• Coiumn 1 of each control statement can be used only for a label or for a
comment statement that begins with an asterisk in column 1.

• labels must begin in column 1, and conform to operating system require­
ments for statement labels.

• The entire operation definer must be contained on the first line of a control
statement.

• The first operand must begin on the first line of a control statement. The
last operand in a statement must be followed by at least one blank.

• Blanks are not allowed in operands. Anything following a blank is consid­
ered part of the remark field.

• Values can con,tain no more than eight alphameric characters (except for
estimated data set size, which can contain nine characters).

• Commas, semicolons, and blanks can be used only as delimiters. They can
be used in values only if the values are constants.

• Each type of program control statement can appear only once within a
single source (for example, the SYSIN data set).

58 DFSORT: Application Programming: Guide

Inserting Comment Statements

EFS Restrictions When an EFS Program Is in Effect
In addition to the items above. the following restrictions apply to control state­
ment preparation for an EFS program.

• Non-DFSORT operation definers can be up to 8 bytes long

• An operation definer with no operands is allowed only if it:

Is supplied through SYSIN. SORTCNTL. or DFSPARM

Is the only operation definer on a line; column 72 must contain a blank.

Using Control Statements from Other IBM Programs
The control statements INPFIL and OUTFIL. which are used by other IBM sort
programs. are accepted by this release. but not processed. The information
contained in the INPFIL and OUTFIL statements is supplied to the program in
DD statements.

Because DFSORT now uses the OPTION control statement. OPTION control
statements in any job streams from other IBM sort programs cause DFSORT to
terminate. unless the parameters from the other program conform to the
DFSORT OPTION control statement parameters.

DFSORT accepts SORT. MERGE. RECORD. END. and ALTSEQ statements pre­
pared for other IBM System/360 or System/370 sort/merge programs; any obso­
lete parameters are ignored. However. because of the difference in parameter
specifications. DFSORT does not accept other programs' MODS control state­
ments. with the exception of those used by the IBM Sort/Merge Program
360S-SM-023. and Licensed Program Sort/Merge S734-SM1.

Note that applications using the 360S-SM-023 and 5734-SM1 programs can be
successfully run using DFSORT.

Chapter 3. Using DFSORT Program Control Statements 59

AL TSEQ Control Statement

AL TSEQ Control Statement

r'~ -ALTSEQ CODE=-(-fftt) _____________ t ...

The ALTSEQ statement changes the collating sequence of EBCDIC character
data; it changes only the order in which data is collated, not the data itself. If a
modified version of the collating sequence is available by default at your site,
the AL TSEQ statement overrides it.

When you supply an ALTSEQ statement, DFSORT applies the modified collating
sequence to any control field whose format you specify on the SORT or MERGE
statement as AQ. If you specify AQ without supplying an ALTSEQ statement,
DFSORT uses the default available at your site, if there is one. Otherwise,
DFSORT uses the standard EBCDIC collating sequence.

ff

tt

represents, in hexadecimal, the EBCDIC collating position of the character
whose position is to be changed.

represents, in hexadecimal, the EBCDIC collating position to which the char­
acter is to be moved.

The order in which the parameters are specified is not important.

Note:

• If CHAL T is in effect, control fields with format CH are translated by the
ALTSEQ table in addition to those with format AQ.

• Use of AL TSEQ can degrade performance.

Defauli.· Usually the installation option, but refer to
Appendix C, "Specification/Override of DFSORT Options" on page 353 for full
override details.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

AL TSEQ Statement Examples
ALTSEQ Example 1

I ALTSEQ CODE=(5BEA)

The character represented by X '5B' ($ or national character) is to collate after
'Z' (at position X'EA').

60 o FSORT: Application Programming: Guide

AL TSEQ Control Statement

ALTSEQ Example 2

ALTSEQ CODE=(F8B0,FIBl,F282,F383,F484,F5B5,F6B6,
F7B7,F8B8,F9B9)

The numerals 0 through 9 are to collate before uppercase letters (but after low­
ercase leUers).

Chapter 3. Using DFSORT Program Control Statements 61

DeBUG Control Statement

DEBUG Control Statement
,

EN~J
END
P

1

--OEBUG'---'--"T"""-AB
NOAB
ABST
BSM·
BUFF ERS=-cANY J

BELOl~
CTRx =n

EFSO
f'l

PAFT=(-n)-

f'l
PBFR=(-n)-EFSO

EQUC
I---r--ES

NOES
NOASSIST

OUNT

TA~J
TAE

I

The statement is not intended for regular use; only ABEND, NOABEND, BSAM,
and EQUCOUNT are of general interest. For a tape work sort or a Conventional
merge, only the ABEND or NOABEND parameters of the DEBUG statement are
used. For more information about problem diagnosis, see DFSORT Diagnosis
Guide.

ABEND or NOABEND

...... -----.--ABENO',----------------------t .. _ ..
lNOABENOJ

Temporarily overrides the ERET installation option, which specifies whether
DFSORT abends or terminates with a return code of 16 if your sort, copy, or
merge is unsuccessful.

ABEND
specifies that if your sort, copy, or merge is unsuccessful, it abends with
a user completion code equal to the appropriate message number, or
with a user-defined number between 1 and 99, as set during installation
with the ICEMAC option ABCODE = n.

When DEBUG ABEND is in effect, a user abend code of zero might be
issued when a tape work data set sort or Conventional merge is unsuc­
cessful.

NOABEND
specifies that an unsuccessful sort, copy, or merge terminates with a
return code of 16.

Note: RC16 =ABE and NORC16 can be used instead of ABEND and
NOABEND, respectively.

Default: Usually the installation default, but refer to
Appendix C, "Specification/Override of DFSORT Options" on page 353 for
full override details.

62 DFSORT: Application Programming: Guide

DEBUG Control Statement

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

ABSTP

H •• ----ABSTP--------------------_~ -1

ABSTP prevents loss of needed information in a dump when Blockset termi­
nates. This option overrides ERET, ABEND, and NOABEND. If the DFSORT
application is unsuccessful, an abend is forced with a completion code
equal to the appropriate message number, or with the user ABEND code set
during installation with the ICEMAC option ABCODE = MSG or ABCODE = n.
The message is not written if NOEST AE is in effect.

Default: None; optional

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

BSAM

H -----IB$AM----------------------·

DFSORT normally uses the EXCP access method for SORTIN and SORTOUT.
<u you encounter a problem related to this I/O activity, you can temporarily
bypass it by specifying this parameter. BSAM is ignored for VSAM SORTIN
and/or SORTOUT data sets.

Note: Use of this option might degrade performance.

Default: None; optional.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

BUFFERS

.... BUFFERS=r-ANY'-J ---------------'
LBELmJ

DFSORT normally allocates RSA and buffers above 16-megabyte virtual.
You can temporarily bypass the default by specifying BELOW.

ANY
specifies that the record storage area (RSA) and input/output buffers
may be allocated either above or below 16-megabyte virtual.

BELOW
specifies that the record storage area (RSA) and input/output buffers
must be allocated below 16-megabyte virtual.

Note: BSAM buffers are always allocated below 16-megabyte virtual.

Default: ANY

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

Chapter 3. Using DFSORT Program Control Statements 63

DEBUG Control Statement

CTRx

.. ··----CTRx=n---------------------·

DFSORT keeps a count of the input and output records, and abends with
code OC1 when the count reaches n.

The numbers that can be assigned to x are:

2 Count of input records being moved from the input buffer (not used for
a copy)

3 Count of output records being moved to the output buffer (not used for
a copy or merge)

4 Count of input records inserted by E15 (not used for Blockset)

5 Count of output records deleted by E35 (not used for Blockset)

Default: None; optional.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

EFSDPAFT

f'l
.. t t----IEFSDPAFT~--n-'--------------------.... ...

EFSDPAFT causes a SNAP dump after a Major Call to an EFS program. Any
combination of the numbers can be specified.

The numbers have the following meanings:

2 Take the SNAP dump after Major Call 2 to the EFS program

3 Take the SNAP dump after Major Call 3 to the EFS program

4 Take the SNAP dump after Major Call 4 to the EFS program

5 Take the SNAP dump after Major Call 5 to the EFS program

Default: None; optional.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

EFSDPBFR

.. t .----EFsDPBFR=I:-J'-------------------_ ...

This parameter causes a SNAP dump before a Major Call to an EFS
program. Any combination of the numbers can be specified.

The numbers have the following meanings:

2 Take the SNAP dump before Major Call 2 to the EFS program

64 DFSORT: Application Programming: Guide

DEBUG Control Statement

3 Take the SNAP dump before Major Call 3 to the EFS program

4 Take the SNAP dump before Major Call 4 to the EFS program

5 Take the SNAP dump before Major Call 5 to the EFS program

Default: None; optional.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

ESTAE or NOESTAE

.H·------~~ESTAET--------------------------------------~.~~

LNOESTAEJ

Temporarily overrides the ESTAE installation option, which determines
whether DFSORT should delete its ESTAE recovery routine early, or use it
for the entire run.

DFSORT normally establishes an ESTAE recovery routine at the beginning
of a run. If an abend occurs and the ESTAE option is in effect, the system
passes control to the recovery routine. The routine terminates the run after
attempting to:

• Print additional abend information

• Continue a sort, merge, or copy job after successful output

• Call the EFS program at Major Calls 4 and 5 for cleanup and house­
keeping

• Write an SMF record

• Call the ICETEXIT termination exit.

If an abend occurs and the ESTAE option is not in effect, these functions
might not be performed.

ESTAE
specifies that DFSORT can use its ESTAE recovery routine for the entire
run.

NOESTAE
specifies that DFSORT is to delete its EST AE recovery routine at a point
early in its processing. If DFSORT terminates or abends before this
point is reached, it will not delete its EST AE recovery routine; that is,
NOEST AE will not be in effect.

Default: Usually the installation default. See
Appendix C, "Specification/Override of DFSORT Options" on page 353 for
more information.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options."

Note: See Appendix F, "DFSORT Abend Processing" on page 383 for
more information on the DFSORT EST AE recovery routine.

Chapter 3. Using DFSORT Program Control Statements 65

DEBUG Control Statement

EQUCOUNT

.. H .. ----EQUCOUNT-------------------.-,~-..

Use this parameter to determine the number of records having equal keys
which have been sorted by the Blockset technique (printed in message
ICE1841). For variable-length records, EQUCOUNT cannot be used without
at least one intermediate data set.

Use of EQUCOUNT will degrade performance.

Default: None; optional

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

NOASSIST

H ----NOASSIST·---------------------.. -·

DFSORT uses System/370-XA Sorting Instructions on MVS/XA and
MVS/ESA, when possible. If you do not want to use these instructions, you
can temporarily bypass them by specifying this parameter.

Default: None; optional.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

DEBUG S·'atement Examples
DEBUG Example 1

//SYSIN DO *
SORT FIELDS=(1,6,A,28,5,D),FORMAT=CH
DEBUG EQUCOUNT

Issue message ICE1841 to indicate how many records with equal keys were
sorted by 1he Blockset technique.

66 DFSORT: Application Programming: Guide

END Control Statement

END Control Statement

--END--~·~4

The END statement is required if you want DFSORT to discontinue reading
SYSIN, DFSPARM, or SORTCNTL before end-of-file.

When you link-edit user exit routines dynamically, the END statement marks the
end of the DFSORT control statements and the beginning of exit routine object
decks in SYSIN.

END Statement Examples
END Example 1

//SYSIN DD *
SORT FIELDS=(1,6,A,28,5,D),FO~~AT=CH
RECORD TYPE=V,LENGTH=(200",,80)
END
OPT! ON DYNALLOC

Because the OPTION statement appears after the END statement, it cannot be
read.

END Example 2: SYSIN Input for Dynamic Link-Editing

jjSYSIN DO "
SORT FIELDS=(5,8,CH,A)
MODS E15=(E15,1024,SYSIN,T)
END

~object deck for E15 exit here~

The END statement precedes the E15 exit routine object deck in SYSIN.

Chapter 3. Using DFSORT Program Control Statements 67

INCLUDE Control Statement

1f'~CLUDE Control Statement

-INCLUDE COND=

r--'TAN~,
~ LoR

(pl,ml, f1'~~~r'lP2,m2' f2'r---L..I-),---r�-
GT constant
GE
LT
LE

r--'LAN~,
~ OR

(PI,ml,1~~r'lP2,m2'-r-----'-L-) ,FOR~'AT=f
GT constant
GE
LT
LE

An INCLUDE statement is used if you want only certain records to appear in the
output data set. By using the INCLUDE statement, you select the records that
qualify for inclusion.

The INCLUDE statement defines a logical expression (that is, one or more com­
parisons logically combined) based on fields in the input record. Each compar­
ison can be between two input fields or between an input field and a constant.
If the logical expression is true for a given record, the record is included in the
output data set.

For example, you could compare the first 6 bytes of each record with its last 6
bytes, and include only those records in which those fields are identical. Or
you could compare a field with a specified date, and include only those records
with a more recent date.

By nesting relational conditions within parentheses, you can create logical
expressions of higher complexity. Nesting of parentheses is limited only by the
amount of available storage.

You must not supply both an INCLUDE and an OMIT statement to the same
DFSORT run.

68 DFSORT: Application Programming: Guide

INCLUDE Control Statement

CONI)

The logical expression of the COND parameter can be represented at a
high level by the following format:

---CONIF-(re 1 aU ona 1 condi ti onl ~ 1

'~:r.relational condition2JJ

Default: None; must be specified.

" c

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

FORMAT

Relational Condition

--FORt·IAT=f------------------------..-..

FORMAT=f can be used only when all the fields in the entire COND
expression have the same format. The permissible field formats are shown
under the description of f for fields.

Default: None. Must be specified if not included in the COND parameter.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

The relational condition specifies a comparison to be performed. Relational
conditions can be logically combined, with AND or OR, to form a logical
expression. If they are combined, the following rules apply:

• AND statements are evaluated before OR statements unless parentheses
are used to change the order of evaluation; expressions inside parentheses
are always evaluated first. (Nesting of parentheses is limited only by the
amount of storage available.)

• The symbols & (AND) and I (OR) can be used instead of the words.

Relational Condition Format
Two formats for the relational condition can be used:

--(pl)ml)fl)rEQ~.lp2.m2)f2J)
NE constant
GT
GE
LT
LE

.. II

Or,

Chapter 3. Using DFSORT Program Control Statements 69

INCLUDE Control Statement

•• (pl,ml'~EQ~'1p2,m2:::r)'FORMAT=f NE constant
GT
GE
LT
LE

. ..

Comparison operators:

EQ Equal to

NE Not equal to

GT Greater than

GE Greater than or equal to

LT Less than

LE Less than or equal to

Fields

p1,m1,f1: These variables specify a field in the input record to be compared
either to another field in the input record or to a constant.

• p1 specifies the first byte of the field relative to the beginning of the input
record. 1 The first data byte of a fixed-length record (FLR) has relative posi­
tion 1. The first data byte of a variable-length (VLR) record has relative
position 5 (because the first 4 bytes contain the ROW). All fields must start
on a byte boundary, and no field can extend beyond byte 4092.

• m1 specifies the length of the field. Acceptable lengths for different formats
are in Table 2.

• f1 specifies the format of the data in the field. Permissible formats are
given in Table 2.

If all the data fields contain the same type of data, this value can be
omitted, in which case you must use the FORMAT=f operand.

Table 2 (Page 1 of 2). Permissible Format Codes

Format Length Description

CH 1-256 Character EBCDIC. unsigned.2

AQ 1-256 Character EBCDIC. alternate collating
sequence.

ZD 1-256 Zoned decimal, signed.

PD 1-255 Packed decimal, signed.

FI 1-256 Fixed-point, signed.

1 If your E15 exit routine formats the record, p1 must refer to the record as reformatted by the exit.

2 If CHALT is in effect, CH is treated as AO.

70 DFSORT: Application Programming: Guide

INCl.UDE Control Statement

Table 2 (Page 2 of 2). Permissible Format Codes

Format Length Description

BI 1-256 Binary, unsigned.

AC 1-256 ISCII! ASCII character, unsigned.

CSL or LS 2-256 EBCDIC numeric, leading separate sign.

CST or TS 2-256 EBCDIC numeric, trailing separate sign.

CLO or OL 1-256 EBCDIC numeric, leading overpunch sign.

CTO or OT 1-256 EBCDIC numeric, trailing overpunch sign.

ASL 2-256 ISCII/ASCII numeric, leading separate sign.

AST 2-256 ISCII! ASCII numeric, trailing separate sign.

D2 1-256 User-defined data type. (Requires an EFS
program.)

p2.m2,f2: These parameters specify another field in the input record with which
the p1, m1, and f1 input field will be compared. Permissible comparisons
between input fields with different formats are shown in Figure 6 on page 72.

AC, ASL, and AST formats sequence EBCDIC data using the ISCII! ASCII col­
lating sequence.

Note that, for maximum performance, all comparisons in a complex expression
are checked in a single pass for each record. For this reason, if all records do
not contain aI/INCLUDE/OMIT fields, message ICE015A is issued; that is, you
cannot use a complex expression in which one of the comparisons excludes
variable-length records that are too short to contain other fields in the
expression.

Chapter 3. Using DFSORT Program Control Statements 71

INCLUDE Control Statement

Field
FOR~'AT Bl CH ZO PO Fl AC ASL AST CSL CST CLO CTO AQ 02

Bl X X

CH X X

Zo X X

PO X X

Fl X

AC X

ASL X X

AST X X

CSL X X

CST X X

CLO X X

CTO X X

AQ X

02 X

Figure 6. Permissible Field-la-Field Comparisons for INCLUDE/OMIT

Note to Figure 6: 02 field formats are user-defined.

Constants: A constant can be decimal, character, or hexadecimal. The dif­
ferent formats are shown in detail below. Permissible comparisons between
input fields and types of constants are shown in Figure 7 on page 73.

72 DFSORT: Application Programming: Guide

INCLUDE Control Statement

Self-Defining Term

Field
Format Decimal Character Hexadecimal

Number String String

BI x x

CH x x

ZD x

PD x

FI x

AC x x

ASL x

AST x
r--'

CST x

CSL x

CLO x

CTO x

AQ x x

02 x x x

Figure 7. Permissible Field-to-Constant Comparisons for INCLUDE/OMIT

Note to Figure 1: 02 field formats are user-defined.

Decimal Number Format: The format for coding a decimal constant is:

[±]n

When the decimal constant, n, is compared with a field of FI format, it cannot be
larger than 2147483647 nor smaller than -2147483648.

Chapter 3. Using DFSORT Program Control Statements 73

INCLUDE Control Statement

Examples of valid and invalid decimal constants are:

Valid Invalid

15
+15
-15
18000000

+ +15
15+
1.5
1,500

Too many sign characters
Sign in wrong place
Contains invalid character
Contains invalid character

Character String Format: The format for coding a character string constant is:

C'XX ... X'

The value x may be any EBCDIC character (the EBCDIC character string is
translated appropriately for comparison to an AC or AQ field). You can specify
up to 256 characters.

If you want to include a single apostrophe in the character string, you must
specify it as two single apostrophes. Thus:

Required: O'NEILL Specify: C'O' 'NEILL'

Examples of valid and invalid character string constants are shown below:

Valid Invalid

C'JOHN DOE INC' C"'" Apostrophes not paired
C'$@#' 'ABCDEF' C identifier missing
C'+0.193' C'ABCDEF Apostrophe missing

Hexadecimal String Format: The format for coding a hexadecimal string con­
stant is:

X'yy ... yy'

The value yy represents any pair of hexadecimal digits. You can specify up to
256 pairs of hexadecimal digits.

Examples of valid and invalid hexadecimal constants are shown below.

Valid Invalid

X'FF' X'ABGD' Invalid hexadecimal digit
X'BF3C' X'FlF' Incomplete pair of digits
X 'AF050505 , 'BF3C' Missing X identifier

'BF3C'X X identifier in wrong place

74 o FSORT: Application Programming: Guide

INCLUDE Control ~tement

Padding and Truncation
In a field-to-field comparison, the shorter field is padded appropriately. In a
field-to-constant comparison, the constant is padded or truncated to the length
of the field.

Character and hexadecimal strings are truncated and padded on the right.

The padding characters are:

X '40' For a character string
X '00' For a hexadecimal string

Decimal constants are padded and truncated on the left. Padding is done with
zeros in the proper format.

INCLUDE/OMIT Statement Notes
• The size of the routine generated by DFSORT to handle the INCLUDE/OMIT

function depends on how many fields are referenced, and what lengths and
formats they have. The size of the routine must not exceed 4096 bytes, or
DFSORT will issue a message and terminate.

• Floating point fields cannot be referenced in INCLUDE or OMIT statements.

• Any selection can be performed with either an INCLUDE or an OMIT state­
ment. INCLUDE and OMIT are mutually exclusive.

• If several relational conditions are joined with a combination of AND and
OR logical operators, the AND statement is evaluated first. The order of
evaluation can be changed by using parentheses inside the COND
expression.

• If any changes are made to record formats by exits E15 or E32, the INCLUDE
or OMIT statement must apply to the newest formats.

• DFSORT issues a message and terminates if an INCLUDE or OMIT state­
ment is specified for a tape work data set sort or conventional merge appli­
cation.

Figure 8 on page 76 shows how DFSORT reacts to the result of a relational
condition comparison, depending on whether the statement is INCLUDE or
OMIT and whether the relational condition is followed by an AND or an OR
logical operator.

When writing complex statements, be sure the result will be what you want.
The table in Figure 8 will help you.

Note that, for maximum performance, all comparisons in a complex statement
are checked in a single pass for each record. For this reason, if all records do
not contain aI/INCLUDE/OMIT fields, message ICE015A is issued; that is, you
cannot use a complex statement in which one of the comparisons excludes
variable-length records too short to contain other fields in the statement.

Chapter 3. Using DFSORT Program Control Statements 75

INCLUDE Control Statement

.
Statement Relational Program action if next

Condition logical operator is:

Compare AND

om T True Check next compare, or
if last compare OMIT
record

OmT False I NCLUDE record

INCLUDE True Check next compare, or
if last compare,
INCLUDE record

INCLUDE False 0I4IT record

Figure 8. Logic Table for INCLUDE/OMIT

INCLUDe Statement Examples
INCLUDE Example 1

OR

01·11 T record

Check next compare or
if last compare,
INCLUDE record

INCLUDE record

Check compare, or if
last compare, OMIT.
record

INCLUDE COND=(5,8,GT,13,8,I,105,4,LE,1000),FORMAT=FI

DFSORT includes only records in which:

• The fixed-integer number in bytes 5 through 12 is greater than the fixed··
integer number in bytes 13 through 20.
OR.

• The fixed-integer number in bytes 105 through 108 is less than or equal to
1000.

Note that all four fields have the same format.

INCLUDE Example 2

INCLUDE COND=(l,10,CH,EQ,C'STOCKHOLM',
AND,21,8,ZD,GT,+50000,
OR,31,4,CH,NE,C'HERR')

This statement only includes records in which:

• The first 10 bytes contain STOCKHOLM (this nine-character string was
padded on the right with a blank) AND the zoned-decimal number in bytes
21 through 28 is greater than 50000.

76 DFSORT: Application Programming: Guide

INCLUDE Control Statement

OR,

• Bytes 31 through 34 do not contain HERR.

Note that the AND is evaluated before the OR. ("OMIT Statement Example" on
page 95 illustrates how parentheses can be used to change the order of evalu­
ation.) Also note that ending a line with a comma or semicolon followed by a
blank indicates that the parameters continue on the next line, starting in any
position from columns 2 through 71.

INCLUDE Example 3

INCLUDE COND=((5,1,CH,EQ,8,1,CH),&,
((20,1,CH,EQ,C'A',&,30,1,FI,GT,10),I,
(20,1,CH,EQ,C'B',&,30,1,FI,LT,100),I,
(20,1,CH,NE,C'A',&,20,1,CH,NE,C'B')))

This statement includes only records in which:

• Byte 5 equals byte 8.
AND

• One of the following is true:

Byte 20 equals' A' and byte 30 is greater than 10.

Byte 20 equals 'B' and byte 30 is less than 100.

Byte 20 is not equal to 'A' or 'B'.

Chapter 3. Using DFSORT Program Control Statements 77

INREC Control Statement

INREC Control Statement

-INREC FIELDs=-(-~-rL-c-:J-.---r-~~p s)------I.~~
;,-~

,a

The INREC control statement allows you to reformat the input records before
they are processed; that is, to define which parts of the input record are to be
included in the reformatted input record, in what order they are to appear, and
how they are to be aligned.

You do this by defining one or more fields from the input record. The refor­
matted input record consists of only those fields, in the order in which you have
specified them, and aligned on the boundaries or in the columns you have indi­
cated.

You can also insert blanks, binary zeros, character strings, and hexadecimal
strings as separators before, between, and after the input fields in the refor­
matted input records.

For information concerning the interaction of INREC and OUTREC, see also
"Use Options that Enhance Performance" on page 251.

FIELDS

H •• ---FIELDS=-(-~-rL-J-r--"-L':=L),-----~·~ ..
c: ;;a-

,a

specifies the order and alignment of the input and separation fields in the
reformatted input record.

c:
Indicates the column in which the first position of the associated input
or separation field is to be aligned, relative to the start of the refor­
matted input record. Unused space preceding the specified column is
padded with EBCDIC blanks. The following rules apply:

• c must be a number between 1 and 32000.

• c: must be followed by an input field or a separation field.

• c must not overlap the previous input field or separation field in the
reformatted input record.

• For variable-length records, c: must not be specified before the first
input field (the record descriptor word), nor after the variable part of
the input record.

• The colon (:) is treated like the comma (.) or semicolon (;) for contin­
uation to another line.

78 DFSORT: Application Programming: Guide

INREC Control Statement

For example:

Table 3. Examples of Valid and Invalid Column Alignment

Validity

Valid

Valid

Invalid
Invalid
Invalid
Invalid
Invalid

5

Specified

33:C I State I

20:5,4,30:10,8

0:5,4
:25Z
32001:21,8
5:10:2.5
20.10.6:C I AB I

Result

Columns 1-32 - blank
Colun1ns 33-40 - IState I
Columns 1-19 - blank
Columns 20-23 - input field (5,4)
Columns 24-29 - blank
Columns 30-37 - input field (10,8)
Column value cannot be zero.
Column value must be specified
Invalid - column value must be less than 32001
Column values cannot be adjacent
Column value overlaps previous field

Indicates a separation field to be inserted into the reformatted input
record in the position you code it relative to the other fields. It can be
specified before or after any input field. Consecutive separation fields
can be specified. For variable- length records. s must not be specified
before the first input field (the record descriptor word). or after the vari­
able part of the input record. Permissible values are:

nX Blank separation. n bytes of EBCDIC blanks (Xf401) are
inserted in the reformatted input records. n can be from 1 to
4095. If n is omitted, 1 is used.

For example:

Table 4. Examples of Valid and Invalid Blank Separation

Validity

Valid
Valid
Invalid

Invalid

Specified

X or 1X
4095X
5000X

ox

Result

1 blank
4095 blanks
Too many repetitions. Use two adjacent sepa­
ration fields instead (2500X.2500X, for example)
o is not allowed.

nZ Binary zero separation. n bytes of binary zeros (X100I) are
inserted in the reformatted input records. n can be from 1 to
4095. If n is omitted, 1 is used.

For example:

Table 5. Examples of Valid and Invalid Binary Zero Separation

Validity

Valid
Valid
Invalid

Invalid

Specified

Z or 1Z
4095Z
4450Z

OZ

Result

1 binary zero
4095 binary zeros
Too many repetitions. Use two adjacent sepa­
ration fields instead (4400Z,50Z for example).
o is not allowed.

Chapter 3. Using DFSORT Program Control Statements 79

INREC Control Statement

nC'xx ... x' Character string separation. n repetitions of the character
string constant (C'xx ... x') are inserted into the reformatted
input records. n can be from 1 to 4095. If n is omitted, 1 is
used. x can be any EBCDIC character. You can specify from
1 to 256 characters.

If you want to include a single apostrophe in the character
string, you must specify it as two single apostrophes:

Required: O'NEILL

For example:

Specify: C'O"NEILL'

Table 6. Examples of Valid and Invalid Character String Separation

Validity

Valid
Valid
Valid
Valid
Valid
Valid
Invalid
Invalid
Invalid
Invalid

Invalid
Invalid

Specified

C'John Doe'
C'JOHN DOE'
C'$@#'
C' +0.193'
4000C' ,
20C' ""FILLER""'
C"'"
'ABCDEF'
C'ABCDE
4450C'1 '

OC'ABC'
C"

Result

John Doe
JOHN DOE
$@#
+0.193
8000 blanks
·"FILLER·· repeated 20 times
Apostrophes not paired
C identifier missing
Apostrophe missing
Too many repetitions. Use two adja­
cent separation fields instead
(4000C' 1 , ,450C'1', for example).
o is not allowed
No characters specified

Length

8
8
3
6
8000
200
nfa
nfa
nfa
nfa

nfa
nfa

nX'yy ... yy' Hexadecimal string separation. n repetitions of the
hexadecimal string constant (X'yy ... yy') are inserted in the
reformatted input records. n can be from 1 to 4095. If n is
omitted, 1 is used.

The value yy represents any pair of hexadecimal digits. You
can specify from 1 to 256 pairs of hexadecimal digits.

For example:

Table 7. Examples of Valid and Invalid Hexadecimal String Separation

Validity

Valid
Valid
Valid
Valid
Invalid
Invalid
Invalid
Invalid
Invalid

Invalid
Invalid

Specified

X'FF'
X'BF3C'
3X'OOOOOF'
4000X' FFFF'
X'ABGD'
X'F1F'
'BF3C'
'F2F1 'X
8000X'01 '

OX'23AB'
X"

80 DFSORT: Application Programming: Guide

Result

FF
BF3C
OOOOOFOOOOOFOOOOOF
FF repeated 8000 times
G is not a hexadecimal digit
Incomplete pair of digits
X identifier missing
X in wrong place
Too many repetitions. Use two adjacent
separation fields instead
(4000X '01' ,4000X '01', for example).
o is not allowed
No hexadecimal digits specified

Length

1
2
9
8000
nfa
nfa
nfa
nfa
nfa

nfa
nfa

INREC Control Statement

p,m,a
indicates an input field to be inserted into the reformatted input record
in the position you code it relative to the other fields.

p

m

a

specifies the first byte of the input field relative to the beginning of
the input record.3 The first data byte of a fixed-length record has rel­
ative position 1. The first data byte of a variable-length record has
relative position 5 (because the first 4 bytes contain the RDW). All
fields must start on a byte boundary, and no field can extend
beyond byte 32000. For special rules concerning variable-length
records, see "INREC Statement Notes."

specifies the length of the input field. It must include the sign if the
data is signed, and must be an integer number of bytes. See the
note on page 82 for more information.

specifies the alignment (displacement) of the input field in the refor­
matted input record, relative to the start of the reformatted input
record.

The permissible values are:

H Halfword aligned. This means that the displacement (p-1) of
the field from the beginning of the reformatted input record, in
bytes, is a mUltiple of two (that is, position 1, 3, 5, and so
forth).

F Fullword aligned. The displacement is a multiple of four (that
is, position 1, 5, 9, and so forth).

o Doubleword aligned. The displacement is a multiple of eight
(that is, position 1, 9, 17, and so forth).

Alignment can be necessary if, for example, the data is to be used
in a COBOL application program where COMPUTATIONAL items are
aligned through the SYNCHRONIZED clause. Unused space pre­
ceding aligned fields will always be padded with binary zeros.

Default: None; must be specified.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

INREC Statement Notes
• When INREC is specified, DFSORT reformats the input records after user

exit E15 and/or INCLUDE/OMIT processing is finished. Thus, references to
fields by your E15 exit and INCLUDE/OMIT statements are not affected,
whereas your SORT, OUTREC, and SUM statements must refer to fields in
the reformatted input record. Your E35 exit must refer to fields in the refor­
matted output record (see below).

3 If your E15 exit reformats the record, p must refer to the record as reformatted by the exit.

Chapter 3. Using DFSORT Program Control Statements 81

INREC Control Statement

• When you specify INREC, you must be aware of the change in record size
and layout of the resulting reformatted input records. You must also under­
stand how reformatting of records affects sort performance, and how to use
INREC or OUTREC to achieve the most efficient sort. (See also "OUTREC
Control Statement" on page 121 and "Use Options that Enhance
Performance" on page 251 for more details.)

• For variable-length records, the first entry in the FIELDS parameter must
specify or include the 4-byte record descriptor word (ROW). DFSORT sets
the length of the reformatted record in the ROW.

If the first field in the data portion of the input record is to appear in the
reformatted input record immediately following the ROW, the entry in the
FIELDS parameter can specify both ROWand data field in one. Otherwise,
the ROW must be specifically included in the reformatted input record.

• The length of the INREC/OUTREC record (reformatted length) is not used to
determine the LRECL of SORTOUT. If not specified in the data set control
block (DSCB) or DO statement, the value for SORTOUT LRECL is deter­
mined in the usual way (that is, from the L3 value or SORTIN LRECL). If the
reformatted length does not match the SORTOUT LRECL, the same checks
used when the SORTIN LRECL does not match the SORTOUT LRECL are
made and padding/truncation is performed, if possible.

If the Blockset technique is not selected and the INREC/OUTREC length is
less than the specified or defaulted SORTOUT LRECL, then you must pad
the record to the correct length.

For VSAM data sets, the maximum record size defined in the cluster is
equivalent to the LRECL when processing fixed-length records, and is four
bytes less than the LRECL when processing variable-length records. See
"VSAM Considerations" on page 10 for more iniormation.

• The variable part of the input record (that part beyond the minimum record
length) can be included in the reformatted input record, and if included,
must be the last part. In this case, a value must be specified for pn that is
less than or equal to the minimum record length (see L4 of the RECORD
control statement) plus 1 byte; mn and an must be omitted.

If both INREC and OUTREC are specified, either both must specify position­
only for the last part, or neither must specify position-only for the last part.

If the reformatted input includes only the ROWand the variable part of the
input record, "null" records containing only an ROW could result.

• The input records are reformatted before processing, as specified by INREC.
The output records are in the format specified by INREC, unless OUTREC is
also specified.

• Fields referenced in INREC statements can overlap each other and/or
control fields.

• If input is variable records, the output is also variable. This means that
each record is given the correct ROW by DFSORT before output, even if the
records are treated as fixed internally because they are all the same length.

• In general, use INREC to reduce the length of input records as much as
possible to achieve the most efficient processing. Use OUTREC to reformat
the records for output. However, if overflow might occur during summation,
INREC can be used to create a larger SUM field in the reformatted input

82 DFSORT: Application Programming: Guide

INREC Control Statement

record (perhaps resulting in a larger record for sorting or merging) so that
overflow does not occur.

• DFSORT issues a message and terminates if an INREC statement is speci­
fied for a tape work data set sort or conventional merge application.

INREC Statement Examples
INREC Example 1

INCLUDE COND=(5,1,GE,C'M '),FORMAT=CH
INREC FIELDS=(10,3,20,8,33,11,5,1)
SORT FIELDS=(4,8,CH,A,1,3,FI,A)
SUM FIELDS=(17,4,BI)

OUTREC Example 2

INCLUDE COND=(5, 1 ,GE, C 't4 I) , FORMAT=CH
OUTREC FIELDS=(10,3,20,8,33,11,5,1)
SORT FIELDS=(20,8,CH,A,10,3,FI,A)
SUM FIELDS=(38,4,BI)

The above examples illustrate how a fixed-length input data set is sorted and
reformatted for output. A more efficient sort is achieved by eliminating unnec­
essary fields, before sorting, using INREC. The SORTIN LRECL is 80.

Records are also included or excluded by means of the INCLUDE statement,
and summed by means of the SUM statement.

The reformatted input records are fixed length. with a record size of 23 bytes (a
significant reduction from the original size of 80 bytes). The SORTOUT LRECL
must be specified as 23. They look as follows:

Position
1-3
4-11
12-22
23

Contents
Input positions 10 through 12
Input positions 20 through 27
Input positions 33 through 43
Input position 5

Identical results are achieved with INREC or OUTREC. However. use of INREC
can result in better performance. In either case. the INCLUDE COND parame­
ters must refer to the fields of the original input records. However. with INREC,
the SUM and SORT FIELDS parameters must refer to the fields of the refor­
matted input records. while with OUTREC. the SUM and SORT FIELDS parame­
ters must refer to the fields of the original input records.

Chapter 3. Using DFSORT Program Control Statements 83

INREC Control Statement

INREC Example 3

INREC FIELDS=(1,35,2Z,36,45)
MERGE FIELDS=(20,4,CH,D,10,3,CH,D),FILES=3
sur·, FIELDS=(36,4,BI,40,8,PD)
RECORD TYPE=F, LEtIGTH=(80, ,82)

This example illustrates how overflow of a summary field can be prevented
when three fixed-length data sets are merged and reformatted for output. The
input record size is 80 bytes. To illustrate the use of the RECORD statement,
assume that SORTIN and SORTOUT are not present (that is, all input/output is
handled by user exits).

The reformatted input records are fixed-length, with a record size of 82 bytes
(an insignificant increase from the original size of 80 bytes). They look as
follows:

Position
1-35
36-37
38-82

Contents
Input positions 1 through 35
Binary zeros (to prevent overnow)
Input positions 36 through 80

The MERGE and SUM statements must refer to the fields of the reformatted
input records.

The reformatted output records are identical to the reformatted input records.

Thus, the 2-byte summary field at positions 36 and 37 in the original input
records expand to a 4-byte summary field in positions 36 through 39 of the
reformatted input/output record before merging. This prevents overflow of this
summary field. Note that, if OUTREC were used instead of INREC, the records
would be reformatted after merging, and the 2-byte summary field might over­
now.

Note: This method of preventing overflow cannot be used for negative FI
summary fields because padding with zeros rather than ones would change the
sign.

INREC Example 4

INREC FIELDS=(1,4,15,15,47,S0,101)
SORT FIELDS=(32,4,CH,A)
RECORD TYPE=V,LENGTH=(",1ge,139)
OUTREC FIELDS=(1,4,10Z,5,15,17Z,26,S9,4X,70)

This example illustrates how a variable-length input data set can be sorted
more efficiently by eliminating padding fields before sorting, and reinserting
them after sorting. The resulting output records are not actually reformatted.
The variable part of the input records is included in the output records. The
minimum input record size is 100 bytes, and the maximum input record size
(SORTIN LRECL) is 200 bytes.

84 o FSORT: Application Programming: Guide

INREC Control Statement

The reformatted input records are variable-length, with a minimum record size
of 69 bytes and a maximum record size of 169 bytes (a significant reduction
from the original sizes of 100 and 200 bytes, respectively). They look as follows:

Position
1-4
5-19
20-69
70-n

Contents
RDW (input positions 1 through 4)
Input positions 15 through 29
Input positions 47 through 96
Input positions 101 through n (variable part of input records)

The SORT and OUTREC statements must refer to the fields of the reformatted
input records.

Because padding fields are removed by INREC and reinserted by OUTREC, the
output records are identical to the original input records. The output records
are variable-length, have a minimum record size of 100 bytes, and a maximum
record size (SORTOUT LRECL) of 200 bytes. They look as follows:

Position Contents
1-4 ROW
5-14
15-29
30-46
47-96
97-100
101-n

Binary zeros
Input positions 15 through 29
Binary zeros
Input positions 47 through 96
EBCDIC blanks
Input positions 101 through n (variable part of input records)

Thus, the use of INREC and OUTREC allows sorting of smaller records, although
the output records are not actually reformatted.

INREC Example 5

INREC FIElOS=(20,4,12,3)
SORT FI ElOS= (1,4,0,5,3,0) ,FOR~lAT=CH
OUTREC FIElOS=(5X,l,4,H,8X,l,2,5,3,80Z)

This example illustrates how a fixed-length input data set can be sorted and
reformatted for output. A more efficient sort is achieved by using INREC to
reduce the input records as much as possible before sorting, and using
OUTREC to repeat fields and insert padding after sorting. The SORTIN LRECL
is 80 bytes.

Note: Contrast this example with OUTREC Example 4, where INREC does not
achieve a more efficient sort because no fields can be eliminated before
sorting.

The reformatted input records are fixed-length, with a record size of 7 bytes (a
significant reduction from the original size of 80 bytes). They look as follows:

Position Contents
1-4 Input positions 20 through 23
5-7 Input positions 12 through 14

The SORT and OUTREC statements must refer to the fields of the reformatted
input records.

Chapter 3. Using DFSORT Program Control Statements 85

INREC Control Statement

The reformatted output records are fixed length, with a record size of 103 bytes;
the SORTOUT LRECL is specified as 103. They look as follows:

Position
1-5
6
7-10
11-18
19-20
21-23
24-103

Contents
EBCDIC blanks
Binary zero (for H alignment)
Input positions 20 through 23
EBCDIC blanks
Input positions 20 through 21
Input positions 12 through 14
Binary zeros

Thus, the use of INREC and OUTREC allows sorting of 7-byte records rather
than 80-byte records, even though the output records are 103 bytes long.

86 DFSORT: Application Programming: Guide

MERCE Control Statement

-t·1ERGE FIELDS=

COpy---------'

MERGE Control Statement

CKPT---r'---'
EQUALS--.--t
NOEQUALS
FILES=n
FILSZ=x
SIZE=y
SKIPREC=z
STOPAFT=n

The MERGE control statement must be used when a merge operation is to be
performed. It can also be used to specify a copy application. It provides essen­
tially the same information to DFSORT for a merge as the SORT statement does
for a sort. Like SORT parameters, MERGE parameters can be overridden by
similar parameters specified on the OPTION control statement. The format,
defaults, and specifications for the MERGE statement are similar to the SORT
statement with the following differences:

• The operation definer is MERGE instead of SORT.
• The SKIPREC and STOPAFT options are not used (ignored if specified).
• The DYNALLOC option is not used (ignored if specified).
• The FILSZ/SIZE value takes all the input data sets into account.

When an option can be specified on either the MERGE or OPTION statement, it
is preferable to specify it on the OPTION statement.

A table showing other possible sources for specifying options available on the
MERGE statement and the rules of override are in
Appendix C, "Specification/Override of DFSORT Options" on page 353.

FIELDS

r':]
-FI ELDS= (-p,m, f,s)-------------------I~-..

The FIELDS operand is written exactly the same way for a merge as it is for
a sort. The meanings of P. m, f. and s are described in the discussion of
the SORT statement. The defaults for this and the following parameters are
also given there. See "SORT Control Statement" on page 132.

Chapter 3. Using DFSORT Program Control Statements 87

MERGE Control Statement

FIELDS=COPV

-FIELDs=COPY----------------------o ~

See the discussion of this operand on the OPTION statement, in "OPTION
Control Statement" on page 97.

FORMAT=f

-FORt4AT=f----------------------.. ~~ ..

The FORMAT operand is used in the same way for a merge as for a sort.
See "SORT Control Statement" on page 132.

CKPT

-CKPT------------------------+~~~

See the discussion of this operand on the OPTION statement, in "OPTION
Control Statement" on page 97.

EQUALS or NOEQUALS

H~~---r-EQUALS._----------------------~~~~

lNOEQUALSJ

See the discussion of this operand on the OPTION statement, in "OPTION
Control Statement" on page 97.

FILES

-FILES=nl-------------------------~ ~

specifies the number of input· files for a merge when input is supplied
through the E32 exit.

Default: None.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

FILSZ or SIZE

---rFILSZ=~
SIZE=y

See the discussion of this operand on the OPTION statement, in "OPTION
Control Statement" on page 97.

88 DFSORT: Application Programming: Guide

....

MERGE Control Statement

SKIPREC

-SKIPREC=z-----------------------1--11

See the discussion of this operand on the OPTION statement, in "OPTION
Control Statement" on page 97.

STOPAFT

-STOPAFT=n-----------------------1_-11

See the discussion of this operand on the OPTION statement, in "OPTION
Control Statement" on page 97.

Note: For a merge job. records deleted by an E35 exit routine are not
sequence-checked. If you use an E35 exit routine without a SORTOUT data set,
sequence-checking is not performed. In this case, you must ensure that input
records are in correct sequence.

MERGE Statement Examples
MERGE Example 1. One Control Field. Size Option

MERGE FIELDS=(2,5,CH,A),FILSZ=29483

FIELDS
The control field begins on byte 2 of each record in the input data sets. The
field is 5 bytes long, and contains character (EBCDIC) data that has been
presorted into ascending order.

FILSZ
The input data sets contain exactly 29483 records.

MERGE Example 2. Two Control Fields, User Modification

I MERGE FIELDS=(3,8,ZD,E,40,6,CH,D)

FIELDS
The major control field begins on byte 3 of each record, is 8 bytes long, and
contains zoned decimal data that is modified by your routine before the
merge examines it.

The second control field begins on byte 40, is 6 bytes long, and contains
character data in descending order.

Chapter 3. Using DFSORT Program Control Statements 89

MERGE Control Statement

MERGE Example 3. Two Control Fields. Format Option

MERGE FIELDS=(25,4,A,48,8,A),FORMAT=ZD

FIELDS
The major control field begins on byte 25 of each record. is 4 bytes long.
and contains zoned decimal data that has been placed in ascending
sequence.

The second control field begins on byte 48. is 8 bytes long. is also in zoned
decimal format. and is also in ascending sequence. The FORMAT param­
eter can be used because both control fields have the same data format.

MERGE Example 4. COPY Option

i MERGE FIELOSoCOPY

FIELDS
The input data set is copied to output. No merge takes place.

90 DFSORT: Application Programming: Guide

MODS Control Statement

MODS Control Statement

~
-MODS-ex; t=-(-n,m [I)

, [s1 L,e1

The MODS statement is needed only if you want OFSORT to pass control to
your routines at user exits. The MODS statement associates the user routine(s)
with specific OFSORT exits and provides OFSORT with descriptions of these
routines. For details about DFSORT exits and how user routines can be used,
see Chapter 5. "Using Your Own Exit Routines" on page 181.

To use one of the exits. you substitute its three-character name (for example.
E31) for the word exit in the MODS statement format above. You can specify
any valid exit. except E32. (E32 can be used only in a merge operation invoked
from a program; its address must be passed in a parameter list.)

exit

exit=-(-n,m L I)
, [s1 l,eJ

...

The values that follow "exit" describe the user routine. These values are:

n

m

s

the name of your routine (member name if your routine is in a library).
You can use any valid operating system name for your routine. This
allows you to keep several alternative routines with different names in
the same library.

the number of bytes of main storage your routine uses. Include storage
obtained (via GETMAIN) by your routine (or. for example. by OPEN). and
the storage required to load the COBOL library subroutines.

either the name of the DO statement in your OFSORT job step that
defines the library in which your routine is located or SYSIN if your
routine is in the input stream.

If you do not specify a value for s. DFSORT uses the following search
order to find the library in which your routine is located:

1. The libraries identified by the STEPLIB DO statement
2. The libraries identified by the JOBLIB DO statement (if there is no

STEPLIB DO statement)
3. The link library.

Chapter 3. Using DFSORT Program Control Statements 91

MODS Control Statement

e
indicates the linkage editor requirements of your routine, or indicates
your routine is written in COBOL. e can take the following values:

N

c

T

s

means that your routine has already been link-edited and can be
used in the DFSORT run without further link-editing. This is the
default for e. N (specified or defaulted) can be overridden by the
EXEC PARM parameters 'E15 =COB' and 'E35=COB'.

means that your E15 or E35 routine is written in COBOL. If you code
C for any other exit, it is ignored, and N is assumed. Your
COBOL-written routine must already have been link-edited.

means that your routine must be link-edited together with other rou­
tines to be used in the same phase (for example, E1n routines) of
DFSORT.

This value is not valid for copy processing.

means that your routine requires link-editing but that it must be link­
edited separately from the other routines (for example, E3n routines)
to be used in a particular phase of DFSORT. E11 and E31 exit rou­
tines are the only routines eligible for separate link-editing.

This value is not valid for copy processing.

If you do not specify a value for e, N is assumed.

Default: None. Must be specified. N is the default for the fourth parameter.

Applicable Functions: See Appendix C, "SpeCification/Override of DFSORT
Options" on page 353.

Note:

• The s parameter must be the same or omitted for each routine with N or C
for the e parameter (library concatenation is aOliowed). These routines
cannot be placed in SYSIN. Each such routine must be a load module.

• Each routine for which T or S is specified for the e parameter can be placed
in any library or in SYSIN; they do not all have to be in the same library or
SYSIN (but can be). Some routines can even be in different libraries (or the
same library) and the rest can be in SYSIN. Each such routine, if in a
library, can be either an object deck or a load module; if in SYSIN, it must
be an object deck.

• If the same routine is used in both input (that is, E1n routines) and output
(that is, E3n routines) DFSORT program phases, a separate copy of the
routine must be provided for each exit.

• COBOL E15 and E35 exit routines can also be specified in the EXEC state­
ment parameters (E15 = COB or E35 = COB). In this case, the e parameter
of the MODS statement must not be T. If T is specified, the program termi­
nates with error message ICE034A. COBOL exits must already have been
link-edited and, if the EXEC parm was specified for the exit, the e parameter
must be C, or N, or defaulted to N. (S is not valid for any E15 or E35 exit.)

92 DFSORT: Application Programming: Guide

MODS Control Statement

• If you code C for a conventional merge or a tape work data set sort.
DFSORT issues message ICE153A and terminates.

• exit=(n.m) can be used to omit both the sand e parameters.

• exit = (n.m .. e) can be used to omit the s parameter. but not the e parameter.

• The s parameter must be specified for a conventional merge or tape work
data set sort. or when S or T is specified for the e parameter.

For information on user exit routines in SYSIN. see "System DO Statements" on
page 39.

For details on how to design your routines. refer to "Summary of Rules for User
Exit Routines" on page 189.

When you are preparing your MODS statement. remember that D.FSORT must
know the amount of main storage your routine needs so that it tan allocate
main storage properly for its own use. If you do not know the exact number of
bytes your program requires (including requirements for system services).
make a slightly high estimate. The value of m in the MODS statement is written
the same way whether it is an exact figure or an estimate: You do not precede
the value by E for an estimate.

MODS Statement Examples
MODS Example 1. Two Routines in a Library

MODS E15=(ADDREC,552,MODLIB),E35=(ALTREC,l1032,MODLIB)

E15

E35

At exit E15. DFSORT transfers control to your own routine. Your routine is
in the library defined by a job control statement with the DDNAME MODUS.
Its member name is ADDREC and uses 552 bytes.

At exit E35. DFSORT transfers control to your routine. Your routine is in the
library defined by the job control statement with the DDNAME MODUS. Its
member name is ALTREC and will use 11032 bytes.

MODS Example 2. E15 and E35 written in COSOL

MODS E15=(COBOLE15,70e0"C),
E35=(COBOLE35,7ee0,EXITC,C)

Chapter 3. Using DFSORT Program Control Statements 93

MODS Control Statement

E15

E35

At exit E15, DFSORT transfers control to your own routine. Your routine is
written in COBOL and is in the STEPLlB/JOBLlB or link libraries. Its
member name is COBOLE15 and it uses 7000 bytes.

At exit E3S, DFSORT transfers control to your routine. Your routine is
written in COBOL and is in the library defined by the job control statement
with the DDNAME EXITC. Its member name is COBOLE35 and it uses 7000
bytes.

94 o FSORT: Application Programming: Guide

OMIT Control Statement

OMIT Control Statement

-omT COND=

r--'LAN~, !tI OR

(p1.m1'f1·~~~r,~p2.m2'f2
GT constant
GE
LT
lE

r--·LAN~. (l+ OR

I p1.ml'1~~r'lP2,m2--.-'---.L.I-) , FORf'lAT=f

GT lcons tant
GE
IT
lE

An OMIT statement is used if you do not want all the input records to appear in
the output data set. By using the OMIT statement, you select the records that
do not qualify for inclusion.

The OMIT statement defines a logical expression (that is, one or more compar­
isons logically combined) based on fields in the input record. Each comparison
can be between two input fields or between an input field and a constant. If the
logical expression is true for a given record, that record is omitted from the
output data set. For example, you could compare the first 6 bytes of each
record with its last 6 bytes, and omit those records in which those fields are not
identical. Or you could compare a field with a specified date, and omit those
records with earlier dates.

For further details on this statement, see "INCLUDE Control Statement" on
page 68.

OMIT Statement Example
OMIT Example.

16 72

! !
OMIT COND=(l,10,CH,EQ,C ' STOCKHOLM',&,(21,8,ZD,GT.+50000,1*

,31,4,CH,NE,C 'HERR'))

Chapter 3. Using DFSORT Program Control Statements 95

OMIT Control Statement

This statement omits records in which:

• The first 10 bytes contain STOCKHOLM (the string was padded on the right
with a blank),
AND,

• The zoned-decimal number in bytes 21 through 28 is greater than 50000,
OR, bytes 31 through 34 do not contain HERR.

Note that the AND and OR operators can be written with the AND and OR signs,
and that parentheses are used to change the order in which AND and OR are
evaluated. Also note that the asterisk in column 72 indicates continuation of the
parameters to the next line (starting in position 16).

96 o FSORT: Application Programming: Guide

OPTION Control Statement

-OPTION ARESALL=ln
nK

ARESINV=ln
nK

HALT~-------i

NOCHALT
CHECK----r--------1
NOCHECK

CINV'-,--------I
NOCINV
CKPT·---~--'-"·-:.....-----~--"--'-=1-'- .-

OBEXIT1COBl
COB2

Opy'---------;
OYNALLOC:-,------r--!

EFS '----'-Lname
NONE

EQUALS;--r-------I
NOEQUALS

EXCPVR=tAll
NO\'/RK
NONE

lE:rr
'--r-lE~r

H I PR~lAX=LOPT IMAL
n

LlST---,,...--------I
NOLIST

LlSTX-..---------l
NOLlSTX

Continued at right

OPTION Control Statement

Cont i nued from 1 eft

AINSI

ZE~~~
·lSGOON
SGPRT

=ddname

tALL~~ NONE
CRITICAL

ET
EL
EC
ER
EL
EC

NOBLKS
NOOUTR
NOOUTS
NOSTIM
NO~JRKR

NO~JRKS

RESALL ~nKJ nK
RESINV ~nKJ nK

C=z
=cccc
=ddname
T=ddname
T=n

FYJ

rJ

SKI PRE
SORTDD
SORT HI
SORTOU
STOPAF
VERIFY
NOVERI
VLSHRT
NOVLSHRT

The OPTION control statement allows you to override some of the options avail­
able at installation time (such as EQUALS and CHECK). and to supply other
optional information (such as DYNALLOC. COPY, and SKIPREC).

Some of the options available on the OPTION statement are also available on
the SORT or MERGE statement (such as FILSZ and SIZE). It is preferable to
specify these options on the OPTION statement. For override rules, see
Appendix C, "Specification/Override of DFSORT Options" on page 353.

OPTION parameters used by other IBM sort programs cause DFSORT to termi­
nate unless they conform to the following parameters.

Chapter 3. Using DFSORT Program Control Statements 97

OPTION Control Statement

The keywords EFS, LIST, NOLlST, LlSTX, NOLlSTX, MSGPRT, MSGDDN,
SORTDD, SORTIN, and SORTOUT are used only when they are specified on the
OPTION control statement passed by an extended parameter list, or in the
DFSPARM data set. If they are specified on an OPTION statement read from
the SYSIN or SORTCNTL data set, the keyword is recognized, but the parame­
ters are ignored.

ARESALL

~ARESALL=T:n]
nK

t ..

For MVS/XA and MVS/ESA, temporarily overrides the ARESALL installation
option, which specifies the number of bytes to be reserved above
16-megabyte virtual for system use.

ARESALL applies only to the amount of main storage above 16-megabyte
virtual. This option is normally not needed because of the large amount of
storage available above 16-megabyte virtual (the default for ARESALL is 0
bytes). The RESALL option applies to the amount of main storage below
16-megabyte virtual.

n

nK

specifies the number of bytes of main storage to be reserved.

Limit: 8 digits.

nK specifies n times 1024 bytes of main storage are to be reserved.

Limit: 5 digits.

Default: Usually the installation default, but refer to
Appendix C, "Specification/Override of DFSORT Options" on page 353 for
full override details.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

ARESINV

....

For MVS/XA and MVS/ESA, temporarily overrides the ARESINV installation
option, which specifies the number of bytes to be reserved for an invoking
program or for exits that reside or use space above 16-megabyte virtual.
The reserved space is not meant for the invoking program itself. ARESINV
is used only when DFSORT is dynamically invoked.

ARESINV applies only to the amount of main storage above 16-megabyte
virtual. The RESINV option applies to the amount of main storage below
16-megabyte virtual.

98 DFSORT: Application Programming: Guide

n

nK

OPTION Control Statement

specifies the number of bytes of main storage to be reserved.

Limit: 8 digits.

nK specifies n times 1024 bytes of main storage are to be reserved.

Limit: 5 digits.

Default: Usually the installation default, but refer to
Appendix C, "Specification/Override of DFSORT Options" on page 353 for
full override details.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

CHAL T or NOCHAL T

~~~--r-CHALT~--------------------------------------------~~· 

lNOCHALTJ 

Temporarily overrides the CHALT installation option, which specifies 
whether format CH fields are translated by the alternate collating sequence 
as well as format AQ, or just the latter. 

CHALT 
means that DFSORT translates character control fields with formats CH 
and AQ using the alternate collating sequence. 

NOCHALT 
means that format CH fields are not translated. 

Default: Usually the installation default, but refer to 
Appendix C, "Specification/Override of DFSORT Options" on page 353 for 
full override details. 

Applicable Functions: See Appendix C, "Specification/Override of DFSORT 
Options" on page 353. 

CHECK or NOCHECK 

H~ ~--r-CHECK'.,..--------------------------------------------~~ • 
lNOCHECKJ 

Temporarily overrides the CHECK installation option, which specifies 
whether record count should be checked for applications that use the E35 
user exit routine without a SORTOUT data set. 

CHECK 
means that record counter checking is done at the end of program exe­
cution. 

Chapter 3. Using DFSORT Program Control Statements 99 



OPTION Control Statement 

NOCHECK 
means that record counter checking is not done. 

Default: Usually the installation default, but refer to 
Appendix C, "Specification/Override of DFSORT Options" on page 353 full 
override details. 

Applicable Functions: See Appendix C, "Specification/Override of DFSORT 
Options" on page 353. 

CINV or NOCINV 

~~~--------~r-;CINV.------------------------------------~~~· 
LNOCINVJ

Temporarily overrides the CINV installation ·option, which specifies whether
DFSORT can use control interval access for VSAM data sets. The Blockset
technique uses control interval access for VSAM input data sets, when pos­
sible, to improve performance.

CINV
directs DFSORT to use control interval access when possible for VSAM
data sets.

NOCINV
directs DFSORT not to use control interval access.

Default: Usually the installation default. See
Appendix C, "Specification/Override of DFSORT Options" on page 353 for
more information.

Applicable Functions: See Appendix C, "Specification/Override of OFSORT
Options" on page 353.

CKPT

H---CKPT--~~~·

CKPT causes OFSORT to activate the checkpoint/restart facility of the oper­
ating system. See "Checkpoint/Restart" on page 383 for further details.

If necessary, the Blockset technique can be bypassed so the
checkpoint/restart facility can be used by specifying either IGNCKPT= NO
on the ICEMAC installation macro or NOBLKSET on the OPTION statement.

Checkpoint/restart takes the following checkpoints:

1. Start of sort phase (all tape techniques)

2. Start of each intermediate merge phase pass (balanced and polyphase
tape technique); or at intervals during the intermediate merge phase
(oscillating tape and all disk techniques)

3. Start of final merge phase.

When you use the checkpoint/restart facility, you must write a JCL state­
ment to define a data set for the checkpoint records. How to write this JCL
statement (IISORTCKPT) is described in "SORTCKPT DO Statement" on
page 48. In addition, you might need to specify more intermediate storage
for a sort application. See "Intermediate Storage" on page 311.

1 00 o FSORT: Application Programming: Guide

OPTION Control Statement

Default: None; optional.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

Note: CHKPT can be used instead of CKPT.

COBEXIT

~COBEXIT=1COB1]
COB2

....

indicates whether the E15 and E35 routines written in COBOL are executed
with the VS COBOL II library.

COB1
specifies that E15 and E35 routines written in COBOL are executed with
the OSIVS COBOL library or, in some cases, with no COBOL library.

COB2
specifies that E15 and E35 routines written in COBOL are executed with
the VS COBOL II library.

Default: Usually the installation default, but see
Appendix C, "Specification/Override of DFSORT Options" on page 353 for
full override details.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

COpy

~COPY---+·~"

• COpy causes DFSORT to copy a SORTIN data set and/or inserted records
to a SORTOUT data set unless all records are disposed of by an E35 exit.
Records can be edited by SKIPREC, E15, INCLUDE/OMIT, STOPAFT,
INREC/OUTREC, and/or E35. E35 is entered after each SORTIN or E15
record is copied.

The following must not be used in copy jobs:

• BDAM data sets
• Dynamic link-editing.

Default: None; optional.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

DYNALLOC

-DYNALLOC-,------------,-----------------------------

"']d (d)
(t n)
(d t n)
OFF

(OFF)

Chapter 3. Using DFSORT Program Control Statements 101

OPTION Control Statement

Use this parameter to assign DFSORT the task of dynamically allocating
needed work space. You do not need to calculate and use JCL to specify
the amount of intermediate work space needed by the program. DFSORT
uses the dynamic allocation facility of the operating system to allocate work
space to get the best possible performance for the newest application.

d

n

specifies the device type. You can specify any of the following IBM
devices: 2314. 3330. 3330-1. 3340. 3350. 3375. 3380. 2400. 2400-3. 2400-4.
3400-3. 3400-4. 3480. 3850. or their user-assigned group name. such as
SYSDA.

specifies the maximum number of requested work data sets. The
maximum value of n is 16; if you specify more than 16. 16 is used. If
you specify 1 and the Blockset technique is selected. 2 is used.

For disk work data sets. an estimate of the number of input records and
FILE/SIZE are used as the basis for determining the total work space to
allocate. If DFSORT cannot reasonably estimate the number of input
records (for example. if the input data set is on tape) and FILSZlSIZE is not
specified (see FILSZlSIZE on the OPTION statement for details). 6000 blocks
are dynamically allocated. For variable-length records. DFSORT uses the
length of the longest input record to determine the total amount of work
space to allocate.

When using DYNALLOC to request dynamic allocation with multiple inv­
ocations of DFSORT within the same step. make sure that the first
DYNALLOC request is large enough for all the sorts. Dynamically allocated
work data sets are not deallocated until the step is finished to ensure that
SMF logs data set usage correctly. As a result. in this situation. DFSORT
reuses the work space allocated to the first sort.

For tape work data sets. the number of volumes specified (explicitly or by
default) is allocated to the program. The program requests standard label
tapes.

DYNALLOC is not used if SORTWKnn DO statements are provided.

If VIO =NO is in effect

• Work space is allocated on nontemporary data sets (DSNAME param­
eter specified).

• If the device (d) you specify is a virtual device. DFSORT will ignore
VIO=NO and use the virtual device.

Default: None; optional.

• If DYNALLOC is not specified. and no SORTWKnn DO statements are
present. program execution proceeds according to the specification set
during installation with the ICEMAC DYNAUTO option (YES for dynamic
allocation, NO for no dynamic allocation).

• If DYNALLOC is specified without d, the default for d is that specified (or
defaulted) by the ICEMAC DYNALOC option during installation.

• If DYNALLOC is specified without n, the default for n is that specified (or
defaulted) by the ICEMAC DYNALOC option during installation.

102 DFSORT: Application Programming: Guide

OPTION Control Statement

You can specify DYNALLOC without n, without d, or without both. If
DYNALLOC is specified without n, and the default for the n value of the
DYNALOC installation option is chosen, then at execution:

• If one of the Blockset techniques is chosen, two work data sets will be
requested.

• If a technique other than Blockset is chosen, three work data sets will
be requested.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

Note: Diagnostic messages ICE8061 and ICE8031 give information about
intermediate storage allocation/use.

DYNALLOC = OFF

~DYNALLOC=r-OFF]
L(OFF)

.....

Directs DFSORT not to allocate intermediate workspace dynamically, over­
riding the ICEMAC installation option DYNAUTO =YES, or the DYNALLOC
parameter (without OFF) specified at execution. Use this option when you
know that an in-core sort can be performed, and you want to suppress
dynamic allocation of workspace.

OFF
directs DFSORT not to allocate intermediate workspace dynamically.

Default: None; optional.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

EFS

~EFS=lname]
NONE

• •

Temporarily overrides the EFS installation option, which specifies whether
DFSORT is to pass control to an Extended Function Support (EFS) program.
See Appendix B, "Using Extended Function Support (EFS)" on page 315 for
more information.

name
the name of the EFS program that will be called to interface with
DFSORT.

NONE
means no call will be made to the EFS program.

Default: Usually the installation default, but refer to
Appendix C, "Specification/Override of DFSORT Options" on page 353 for
full override details.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

Chapter 3. Using DFSORT Program Control Statements 103

OPTION Control Statement

Note: EFS is processed only if it is passed on the OPTION control state­
ment in an extended parameter list or in OFSPARM.

EQUALS or NO EQUALS

... ·----.,.EQUALS,_r-------------------· •
lNOEQUALSJ

Temporarily overrides the EQUALS installation option which specifies
whether the original sequence of identical collating records for a sort or a
merge should be preserved from input to output.

EQUALS
specifies that the original sequence must be preserved.

NOEQUALS
specifies that the original sequence need not be preserved.

For sort jobs, the sequence of the records in the output file depends upon
the order of:

• The records from the SORTIN file
• The records inserted by an E15 user exit routine
• The E15 records inserted within input from SORTIN.

For merge jobs, the sequence of the records in the output file depends upon
the order of:

• The records from a SORTlNnn file. Equally-collating records are output
in the order of their file increments. For example, records from
SORTIN01 are output before any equally collating records from
SORTIN02.

• The records from an E32 user exit routine for the same file increment
number. Equally-collating records from E32 are output in the order of
their file increments. For example, records from m1 are output before
any equally-collating records from m2.

Default: Usually the installation default. See
Appendix C, "Specification/Override of OFSORT Options" on page 353 for
more information.

Applicable Functions: See Appendix C, "Specification/Override of OFSORT
Options."

Note:

• When EQUALS is in effect, the total number of bytes occupied by all
control fields must not exceed 4088.

• Use of EQUALS can degrade performance, except when using the
Blockset sort technique for variable-length records. EQUALS is always
used with this technique.

• EQUALS is not used if SUM is specified and a technique other than
Blockset is selected.

• Do not specify EQUALS if variable-length records are sorted using tape
work files and the ROW is part of the control field.

• If Blockset is selected and VLSHRT is in effect, EQUALS is not used.

104 DFSORT: Application Programming: Guide

OPTION Control Statement

EXCPVR

~EXCPVR=IAll ~
NOt'IRK
NONE

...

For MVS/XA and MVS/ESA, temporarily overrides the EXCPVR installation
option, which specifies the data sets for which DFSORT can use EXCPVR
when sorting or copying fixed- and variable-length records with the Blockset
technique. EXCPVR can reduce the CPU time required for a run.

EXCPVR can only be used if the DFSORT SVC is installed.

Using EXCPVR=ALL provides the largest reduction in required CPU time,
but can cause other jobs to be paged in and out. Using EXCPVR = NOWRK
causes less page fixing than EXCPVR = ALL, but still improves DFSORT per­
formance. Use EXCPVR = NONE if avoiding higher paging rates is more
important than reducing CPU time.

Note: The EXCPVR option is not supported for MVS/370.

ALL
specifies that DFSORT can use EXCPVR for SORTIN, SORTOUT, and
SORTWKnn data sets.

NOWRK
specifies that DFSORT can use EXCPVR for the SORTIN and SORTOUT
data sets only. DFSORT will not use EXCPVR for SORTWKnn if NOWRK
is specified.

NONE
specifies that DFSORT cannot use EXCPVR for SORTIN, SORTOUT, or
SORTWKnn data sets.

Default: Usually the installation default, but see
Appendix C, "Specification/Override of DFSORT Options" on page 353 for
full override information.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

Note: EXCPVR = ALL is treated like EXCPVR = NOWRK for Hipersorting and
copying. DFSORT does not use EXCPVR when it determines that the asso­
ciated overhead might cause performance to be degraded.

FILSZ or SIZE

----r:'[lSZ"1;:~
SIZE=L?

Ey

....

This parameter specifies an exact number of records for a sort or merge
job, or an estimated number of records for a sort job. An exact value can
be used to force DFSORT to terminate with an error message if the number
of records sorted or merged is not as expected.

If DFSORT cannot reasonably estimate the number of records to be sorted,
it uses the estimated FILSZ or SIZE value to aid optimization of interme-

Chapter 3. Using DFSORT Program Control Statements 105

OPTION Control Statement

diate storage: otherwise, it does not use the value for this purpose. For
variable-length records, DFSORT uses the length of the longest input record
to determine the total amount of workspace to allocate. Following are the
circumstances under which DFSORT uses the estimated FILSZ or SIZE (if
specified) for optimization:

• An E15 exit routine is used.
• Input data sets are multivolume or on tape.
• Input data sets are concatenated and Blockset is not selected.

FILSZ=x
x is the exact number of records to be sorted or merged: it must take
into account the number of records in the input data set(s), records to
be inserted or deleted by exit E15/E32, and records to be deleted by
INCLUDE/OMIT, SKIPREC, and STOPAFT.

SIZE=y
Y is the exact number of records in the input data set(s) (that is, the
number of records in the SORTIN data set or SORTINnn data sets). It
must take into account the number of records to be deleted by
STOPAFT.

If the actual number of records is not the same as the specified value,
the program terminates with the value x or y placed in the IN field of the
message ICE047A or ICE0541. This applies to both FILSZ and SIZE.

FILSZ=Ex or SIZE=Ey
x or y is the estimated number of records to be sorted; it must be
immediately preceded by the letter E. In either case, it must be large
enough to include both the SORTIN data set and any records you add at
exit E15.

For example, if you estimate your total data set size to be 5000 records,
specify FILSZ=E5000. The program accepts either FILSZ or SIZE, but
FILSZ is always preferable when its use is necessary.

If you omit the FILSZ or SIZE operand, DFSORT estimates the number of
input records to be sorted.

Default: None; optional.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

HIPRMAX

-HI PRI.IAx=lOPT mAL I
n

• 41

For MVS/ESA, temporarily overrides the HIPRMAX installation option, which
specifies the maximum amount of hiperspace to be committed for
Hipersorting. A hiperspace is a high-performance data space that resides
in expanded storage and is backed by auxiliary storage (if necessary).
Because I/O processing is reduced for Hipersorting, elapsed time, EXCP
counts, and channel usage are also reduced.

The amount of hiperspace available for a job is limited by the IEFUSI exit
your site uses. When HIPRMAX=n is specified, DFSORT will not use more
storage than the value of HIPRMAX. When HIPRMAX=OPTIMAL is speci-

106 DFSORT: Application Programming: Guide

OPTION Control Statement

fied, DFSORT selects the amount of hiperspace that will cause minimal
impact on system paging activity.

If the amount of hiperspace available for Hipersorting is insufficient for tem­
porary storage of the records, intermediate DASD storage will be used
along with hiperspace. If the amount of hiperspace is too small to improve
performance, Hipersorting will not be used. DYNAUTO =YES will always be

. in effect for Hipersorting.

Hipersorting might cause a small CPU time degradation. When CPU opti­
mization is a concern, you can use HIPRMAX =0 to suppress Hipersorting.

OPTIMAL

n

specifies that DFSORT determines dynamically the maximum amount of
hiperspace to be committed for Hipersorting. DFSORT determines the
paging activity at the start of the run and selects the maximum value
that causes minimal system impact.

specifies the maximum megabytes of hiperspace to be committed for
Hipersorting. n must be a value between 0 and 9999. The actual
amount of hiperspace used will not exceed the HIPRMAX value, but
might be less if DFSORT determines that using the maximum will
increase system paging significantly. If n is 0 (zero), Hipersorting is not
used.

Default: Usually the default set during installation, but see
Appendix C, "Specification/Override of DFSORT Options" on page 353 for
override information.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

LIST or NOLIST

~··~-.-lIST~--~~·
lNOLISTJ

Temporarily overrides the LIST installation option, which specifies whether
DFSORT program control statements should be written to the message data
set. See DFSORT Messages and Codes for details on use of the message
data set.

LIST
means that DFSORT control statements are printed to the message data
set.

NOLIST
means that DFSORT control statements are not printed to the message
data set.

Default: Usually the installation default, but refer to
Appendix C, "Specification/Override of DFSORT Options" on page 353 for
full override details.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

Note: LIST or NOLIST are processed only if they are passed on the
OPTION control statement in an extended parameter list or in DFSPARM.

Chapter 3. Using DFSORT Program Control Statements 107

OPTION Control Statement

LlSTX or NOLISTX

~··~~-LISTX.T---+.~

lrlOLlSTxJ

Temporarily overrides the LlSTX installation option, which specifies whether
DFSORT writes to the message data set program control statements that
are returned by an EFS program. See DFSORT Messages and Codes for
details on use of the message data set.

LlSTX
means that control statements returned by an EFS program are to be
printed to the message data set.

NOLISTX
means that control statements returned by an EFS program are not to
be printed to the message data set.

Default: Usually the installation default, but refer to
Appendix C, "Specification/Override of DFSORT Options" on page 353 for
full override details.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

Note:

• LlSTX or NOLlSTX are processed only if they are passed on the OPTION
control statement in an extended parameter list or in DFSPARM.

• If EFS = NONE is in effect after final override rules have been applied,
NOLlSTX will be set in effect.

• LlSTX and NOLlSTX can be used independently of LIST and NOLIST.

• For more information on printing EFS control statements, see DFSORT
Messages and Codes.

MAINSIZE

--f.lAINSIZE=Ln~]

l,'IAX

Temporarily overrides the SIZE installation option, which specifies the
amount of main storage available to DFSORT, provided the value you
specify is greater than the MINLIM value set at DFSORT installation time.

For MVS/XA and MVS/ESA systems, MAINSIZE applies to the total amount
of main storage above and below 16-megabyte virtual. DFSORT determines
how much storage to allocate above and below 16-megabyte, virtual but the
total amount of storage cannot exceed MAINSIZE.

Specifying a MAINSIZE value equal to your installation's MAXLIM value is
equivalent to specifying MAINSIZE = MAX. If the MAINSIZE or SIZE passed
to DFSORT is equal to the MAXLlM, the MAXLIM value will be used and
DFSORT will set "MAX" in effect.

For details on main storage allocation, see "Tuning Main Storage" on
page 256 and "Main Storage" on page 311.

108 DFSORT: Application Programming: Guide

n

nK

OPTION Control Statement

specifies the number of bytes of main storage to be allocated. You can
specify a value greater than MAXLIM or TMAXLIM.

Limit: 8 digits

specifies n times 1024 bytes of main storage to be allocated. You can
specify a value greater than MAXLIM or TMAXLIM.

Limit: 5 digits

MAX
instructs DFSORT to calculate the amount of main storage available and
allocate this maximum amount, up to the MAXLIM (or TMAXLIM for
MVS/XA and MVS/ESA systems) value set when DFSORT was installed.

Default: Usually the installation default, but refer to
Appendix C, "SpeCification/Override of DFSORT Options" on page 353 for
full override details.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

MSGDDN

-MSGDDN=ddname--------------------... •

Temporarily overrides the MSGDDN installation option, which specifies an
alternate DDNAME for the message data set. MSGDDN must be in effect if:

• A program that invokes DFSORT uses SYSOUT (for instance, COBOL
uses SYSOUT) and you do not want DFSORT messages intermixed with
the program messages.

• Your E15 and E35 routines are written in COBOL and you do not want
DFSORT messages intermixed with the program messages.

• A program invokes DFSORT more than once and you want separate
messages for each invocation of DFSORT.

The DDNAME can be anyone through eight-character name, but must be
unique within the job step; do not use a name that is used by DFSORT (for
example, SORTIN). If the DDNAME specified is not available at execution
time, SYSOUT is used instead. For details on use of the message data set,
see DFSORT Messages and Codes.

Default: Usually the installation default, but refer to
Appendix C, "Specification/Override of DFSORT Options" on page 353 for
full override details.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

Note: MSGDDN is processed only if it is passed on the OPTION control
statement in an extended parameter list or in DFSPARM.

Chapter 3. Using DFSORT Program Control Statements 109

OPTION Control Statement

MSGPRT

-f.1SGPRT=lALL ~
CRITICAL
NONE

Temporarily overrides the MSGPRT installation option, which specifies the
class of messages to be written to the message data set. For details on
use of the message data set. see DFSORT Messages and Codes.

ALL
specifies that all messages except diagnostic messages (lCE8001 to
ICE9991) are to be printed. Control statements print only if LIST is in
effect.

CRITICAL
specifies that only critical messages will be printed. Control statements
print only if LIST is in effect.

NONE
specifies that no messages and control statements will be printed.

Default: Usually the installation default, but refer to
Appendix C, "Specification/Override of DFSORT Options" on page 353 for
full override details.

Note: MSGPRT is processed only if it is passed on the OPTION control
statement in an extended parameter list or in DFSPARM.

NOBLKSET

-NOBLKSET----------------------... •

DFSORT uses the Blockset technique whenever possible. By use of this
parameter, you can cause DFSORT to bypass the Blockset technique for a
sort or merge application. However. this generally degrades performance.

Default: None; optional.

Applicable Functions: See Appendix C. "Specification/Override of DFSORT
Options" on page 353.

NOOUTREL

-NOOUTREL----------------------... ,

Temporarily overrides the OUTREL installation option, which specifies
whether unused temporary SORTOUT data set space is to be released.
NOOUTREL means that unused temporary SORTOUT data set space is not
to be released.

Default: Usually the installation default. but refer to
Appendix C, "Specification/Override of DFSORT o.ptions" on page 353 for
full override details.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

110 o FSORT: Application Programming: Guide

OPTION Control Statement

NOOUTSEC

-NOOUTSEC----------------------... ,~ ..

Temporarily overrides the OUTSEC installation option, which specifies
whether automatic secondary allocation is to be used for SORTOUT data
sets. NOOUTSEC means that automatic secondary allocation for SORTOUT
data sets is not used.

Default: Usually the installation default, but refer to
Appendix C, "Specification/Override of DFSORT Options" on page 353 for
full override details.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

NOSTIMER

-NOSTIMER'----------------------... '"~ ..

Temporarily overrides the STIMER installation option, which specifies
whether DFSORT can use the STIMER macro. NOSTIMER means that
DFSORT does not use the STIMER macro; processor time data does not
appear in SMF records or in statistics provided to the ICETEXIT termination
installation exit.

If your exit(s) take checkpoints and STIMER = YES is the installation default,
you must specify this parameter.

Default: Usually the installation default, but refer to
Appendix C, "Specification/Override of DFSORT Options" on page 353 for
full override details.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

NOWRKREL

-NOl~RKREL----------------------... ·~ ..

Temporarily overrides the WRKREL installation option, which specifies
whether unused temporary SORTWKnn data set space is to be released.
NOWRKREL means that no unused temporary SORTWKnn data set space
will be released.

Default: Usually the installation default, but refer to
Appendix C, "Specification/Override of DFSORT Options" on page 353 for
full override details.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

Chapter 3. Using DFSORT Program Control Statements 111

OPTION Control Statement

NOWRKSEC

-No\·IRKREL----------------------...........

Temporarily overrides the WRKSEC installation option, which specifies
whether automatic secondary allocation is to be used for SORTWKnn data
sets. NOWRKSEC means that automatic secondary allocation is not used
for SORTWKnn data sets.

Default: Usually the installation default, but refer to
Appendix C, "Specification/Override of DFSORT Options" on page 353 for
full override details.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

RESALL

-RESALL=T:nJ
nK

....

Temporarily overrides the RESALL installation option. which specifies the
number of bytes to be reserved in a REGION for system use. Usually, only
4K bytes (the standard default) of main storage must be available in a
region for system use. However, in some cases, this might not be enough;
for example, if your installation does not have BSAM/QSAM modules resi­
dent, you have exits that open data set(s), or you have COBOL exits.
RESALL is used only when MAINSIZE/SIZE=MAX is in effect.

For MVS/XA and MVS/ESA systems, RESALL applies only to the amount of
main storage below 16-megabyte virtual. The ARESALL option applies to
the amount of main storage above 16-megabyte virtual.

n

nK

specifies the number of bytes of storage to be reserved. If you specify
less than 4096, 4096 is used.

Limit: 8 digits.

nK specifies n times 1024 bytes of storage are to be reserved. If you
specify less than 4K, 4K is used.

Limit: 5 digits.

Default: Usually the installation default. but refer to
Appendix C, "Specification/Override of DFSORT Options" on page 353 for
full override details.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

Note: A better way to release the required storage for user exits is the m
parameter on the MODS statement.

112 DFSORT: Application Programming: Guide

RESINV

~RESINV=1:n]
nK

OPTION Control Statement

Temporarily overrides the RESINV installation option, which specifies the
number of bytes to be reserved in a REGION for the invoking program.
RESINV is used only when DFSORT is dynamically invoked and
MAINSIZE/SIZE = MAX is in effect.

For MVS/XA or MVS/ESA systems, RESINV applies only to the amount of
main storage below 16-megabyte virtual. The ARESINV option applies to
the amount of main storage above 16-megabyte virtual.

This extra space is usually required for data handling by the invoking
program or exits while DFSORT is executing (as is the case with some PLII
and COBOL- invoked sort applications).

The amount of space required depends upon what routines you have, how
the data is stored, and which access method you use. The reserved space
is not meant for the executable code itself.

If your invoking program and its associated exits do not perform data set
handling, you do not need to specify this parameter.

n

nK

n is a decimal value that specifies the number of bytes of main storage
to be reserved.

Limit: 8 digits

nK specifies n times 1024 bytes of main storage are to be reserved.

Limit: 5 digits

Default: Usually the installation default, but refer to
Appendix C, "Specification/Override of DFSORT Options" on page 353 for
full override details.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

Note: A better way to release the required storage for user exits is the m
parameter on the MODS statement.

SKIPREC

~SKIPREC=z------------------------1~--·

z is the number of records you want to skip before starting to sort or copy
the input data set, and is usually used if, on a preceding DFSORT run, you
have processed only part of the input data set.

A job with an input data set that exceeds intermediate storage capacity
usually terminates unsuccessfully. However, for a tape work data set sort,
you can use a routine at E16 (as described in Chapter 5, "Using Your Own
Exit Routines" on page 181) to instruct the program to sort only those
records already read in. It then prints a message giving the number of

Chapter 3. Using DFSORT Program Control Statements 113

OPTION Control Statement

records sorted. You can use SKIPREC in a subsequent sort run to bypass
the previously-sorted records, sort only the remaining records, and then
merge the output from different runs to complete the application.

Default: None; optional.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

Note:

• SKIPREC applies only to records read from SORTIN (not from E15 rou­
tines). (See Figure 2 on page 6.)

• If SKIPREC =0 is in effect, SKIPREC is not used.

SORTDD

-SORTDD=cccc--------------------~ .. -·

You should use this parameter to specify a four-character prefix for
DDNAMEs when you dynamically invoke DFSORT more than once in a
program step. The four characters replace "SORT" in the following
DDNAMEs: SORTlN, SORTOUT, SORTINnn, SORTWKnn, and SORTCNTL.

cccc specifies a four-character prefix. The four characters must all be
alphanumeric or national ($, #, or @). The first character must be alpha­
betic. The first three characters must not be SYS.

Example: If you use ABC# as replacement characters, DFSORT will use DD
statements ABC#IN, ABC#CNTL, ABC#WKnn, and ABC#OUT instead of
SORTIN, SORTCNTL, SORTWKnn, and SORTOUT.

Default: If this parameter is not specified, cccc defaults to SORT.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

Note:

• SORTDD is processed only if it is passed on the OPTION control state­
ment in an extended parameter list, or in DFSPARM.

• If both SORTIN = ddname and SORTDD = cccc are specified, ddname is
used for DFSORT input.

• If both SORTOUT = ddname and SORTDD = cccc are specified, ddname
is used for DFSORT output.

SORTIN

-SORTIN=ddname---------------------· ...

specifies a DDNAME to be associated with the SORTIN data set. This allows
you to dynamically invoke DFSORT more than once in a program step,
passing a different DDNAME for each input file.

The DDNAME can be 1 through 8 characters, but must be unique within the
job step. Do not use DDNAMEs reserved for use by DFSORT (such as
SYSIN).

114 DFSORT: Application Programming: Guide

OPTION Control Statement

Default: If this parameter is not specified, ddname defaults to SORTIN,
unless SORTDD = cccc is specified, unless cccclN is the default.

Applicable Functions; See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

Note:

• SORTIN is processed only if it is passed on the OPTION control state­
ment in an extended parameter list, or in DFSPARM.

• If both SORTIN = ddname and SORTDD = cccc are specified, ddname is
used for the input file. The same DDNAME cannot be specified for
SORTIN and SORTOUT.

• If SORTIN is used for a tape work data set sort, DFSORT terminates.

SORTOUT

-SORTOUT=ddname----------------------4.--4

specifies a DDNAME to be associated with the SORTOUT data sets. This
allows you to dynamically invoke DFSORT more than once in a program
step, passing a different DDNAME for each output file.

The DDNAME can be 1 through 8 characters, but must be unique within the
job step. Do not use DDNAMEs reserved for use by DFSORT (such as
SYSIN).

Default: If this parameter is not specified, ddname defaults to SORTOUT,
unless SORTDD = cccc is specified, in which case ccccOUT is the default.

Applicable Functions; See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

Note:

• SORTOUT is processed only if it is passed on the OPTION control state­
ment in an extended parameter list, or in DFSPARM.

• If both SORTOUT=ddname and SORTDD=cccc are specified, ddname
is used for the output file. The same DDNAME cannot be specified for
SaRTIN and SORTOUT.

• If SORTOUT is specified for a conventional merge or for a tape work
data set sort, DFSORT terminates.

STOPAFT

-STOPAFT=n---------------------......... ~4

n is the maximum number of records you want accepted for sorting or
copying (that is, read from SaRTIN or inserted by E15 and not deleted by
SKIPREC, E15 or INCLUDE/OMIT). When n records have been accepted, no
more records are read from SORTlN; E15 continues to be entered as if EOF
were encountered until a return code of 8 is sent, but no more records are
inserted. If end-of-file is encountered before n records are accepted, only
those records accepted up to that point are sorted or copied.

Default: None; optional.

Chapter 3. Using DFSORT Program Control Statements 115

OPTION Control Statement

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

Note:

o STOPAFT is not used for a tape work data set sort.

o If you specify the FILSZ=x PARM, or FILSZ=x or SIZE=x on the
OPTION or SORT statement, and the number of records accepted for
processing does not equal x, DFSORT issues message ICE047A and ter­
minates.

o If STOPAFT=O is in effect, STOPAFT is not used.

VERIFY or NOVERIFY

~ •• ~~r-V·ERIFY~--~·-~
lNOVERIFyJ

Temporarily overrides the VERIFY installation option, which specifies
whether sequence checking of the final output records must be performed.

VERIFY
specifies that sequence checking is to be performed.

NOVERIFY
specifies that sequence checking is not to be performed.

Note: Use of VERIFY can degrade performance.

Default: Usually the installation default, but refer to
Appendix C, "Specification/Override of DFSORT Options" on page 353 for
full override details.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

VLSHRT or NOVLSHRT

... ·--,--VLSHRT.---; .. --
lNOVLSHRTJ

Temporarily overrides the VLSHRT installation option, which specifies
whether DFSORT is to continue sorting or merging if a variable-length input
record is found to be too short to contain all speCified control fields.
VLSHRT is not meaningful for fixed-length record processing.

VLSHRT
specifies that sorting or merging continues if a "short" record is found.

NOVLSHRT
specifies that sorting or merging terminates if a "short" record is found.

Default: Usually the installation default, but refer to
Appendix C, "Specification/Override of DFSORT Options" on page 353 for full
override details.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

116 DFSORT: Application Programming: Guide

OPTION Control Statement

Note:

• VLSHRT is not used if INCLUDE/OMIT, INREC, OUTREC, and/or SUM are
specified, or if you have an EFS01 routine.

• If Blockset is selected:

DFSORT pads "short" control fields with binary zeroes, thus making the
order predictable for records with equal control fields of different
lengths.

VLSHRT is not used for a merge application. To use VLSHRT for a
merge application, you must specify the NOBLKSET option on the
OPTION control statement.

• If Blockset is not selected:

DFSORT terminates if the first byte of the first (major) control field is not
included in the record.

DFSORT does not pad "short" control fields, thus making the order
unpredictable for records with equal control fields of different lengths.

In certain cases, VLSHRT is not used because of the number and posi­
tion of the control fields.

EQUALS is not used if VLSHRT is in effect.

OPTION Statement Examples
OPTION Statement Example 1. One Control Field and Related Options

SORT FIELOS=(1,20,CH,A)
OPTION SIZE=50000,SKIPREC=5,EQUALS,OYNALLOC

FIELDS
The control field begins on the first byte of each record in the input data set,
is 20 bytes long, contains character data, and is to be sorted in ascending
order.

SIZE
The data set to be sorted contains 50000 records.

SKIPREC
Five records are skipped before starting to process the input data set.

EQUALS
The sequence of equally-collating records is preserved from input to output.

DYNALLOC
Two data sets (by default) are allocated on SYSDA (by default). The space
on the data set is calculated using the SIZE value in effect.

OPTION Example 2. The Relationships Between the OPTION and SORT Control
Statements and the ICEMAC Installation Option

SORT FIELOS=(1,2,CH,A),CKPT
OPTION EQUALS,NOCHALT,NOVERIFY,CHECK

Chapter 3. Using DFSORT Program Control Statements 117

OPTION Control Statement

FIELDS
The control field begins on the first byte of each record in the input data set,
is 2 bytes long, contains character data, and is to be sorted in ascending
order.

CKPT
DFSORT takes checkpoints during this run.

Note: CKPT is ignored if one of the Blockset techniques is chosen. If
checkpoints are required, you must bypass the Blockset technique by speci­
fying the NOBLKSET option, or by specifying IGNCKPT = NO on the ICEMAC
installation macro.

EQUALS
The sequence of equally-collating records is preserved from input to output.

NOCHALT
Only AQ fields are translated through the AL TSEQ translate table. If
CHAL T = YES was specified during installation, then NOCHAL T temporarily
overrides it.

NOVERIFY
No sequence check is performed on the final output records.

CHECK
Record counters are checked at the end of program execution.

OPTION Example 3. Using OPTION to Override SORT

OPTION FILSZ=50,SKIPREC=5,DYNALLOC=3380
SORT FIELDS=(1,2,CH,A),SKIPREC=1,SIZE=200,DYNALLOC=(3350,5)

This example shows how parameters specified on the OPTION control state­
ment override those specified on the SORT control statement, regardless of the
order of the two statements.

FILSZ
DFSORT expects 50 records on the input data set. (Note that there is a dif­
ference in meaning between FILSZ and SIZE, and that the OPTION specifi­
cation of FILSZ is used in place of SIZE.)

SKIPREC
DFSORT causes five records from the beginning of the input file to be
skipped. (SKIPREC = 1 on the SORT statement is ignored.)

DYNALLOC
DFSORT allocates two work data sets (by default) on an IBM 3380.

FIELDS
The control field begins on the first byte of each record in the input data set,
is 2 bytes long, contains character data, and is to be sorted in ascending
order.

OPTION Example 4. Bypassing the Blockset Technique

I OPTION NOBLKSET

118 DFSORT: Application Programming: Guide

OPTION Control Statement

NOBLKSET
DFSORT does not use the Blockset technique for a sort or merge.

OPTION Example 5. Using STOPAFT and COBEXIT

I OPT! Or< 51 OPAFT = 18', COB EXIT =COB1

STOPAFT
DFSORT accepts 100 records before sorting or copying.

COBEXIT
E15 and E35 routines can be executed with the VS COBOL II library.

OPTION Example 6. Passing an OPTION Control Statement through a
SORTCNTL or SYSIN Data Stream

OPTION RESINV=32000,MSGPRT=NONE,
t4SGDDN=SORTMSGS, SORTOD=ABCD, SORT I N=~1Y INPUT»
SORTOUT=MYOUTPUT,NOLIST

This example illustrates the parameters RESINV, MSGPRT, MSGDDN, SORTDD,
SaRTIN, SORTOUT, and NOLlST, and the actions taken when these parameters
are supplied on an OPTION statement read from the SYSIN data set or the
SORTCNTL data set. The parameters are recognized, but not used.

RESINV
32000 bytes of storage are reserved for the user.

MSGPRT=NONE
The keyword is ignored, and messages are printed according to the
installation-supplied default.

MSGDDN = SORTMSGS
The keyword is ignored, and all messages are written to the SYSOUT data
set.

SORTDD=ABCD
The keyword is ignored, and the standard prefix SORT is used.

SORTIN = MYINPUT
The keyword is ignored, and the DDNAME SaRTIN is used to reference the
input data set.

SORTOUT = MYOUTPUT
The keyword is ignored, and the DDNAME SORTOUT is used to reference
the output data set.

NOLIST
The keyword is ignored, and control statements are printed according to the
installation-supplied defaults.

Chapter 3. Using DFSORT Program Control Statements 119

OPTION Control Statement

OPTION Example 7. Passing an OPTION Control Statement in DFSPARM

OPTION RESINV=32eee,MSGPRT=CRITICAL,
MSGDDN=SORTMSGS,SORTDD=ABCD.SORTIN=MYINPUT.
SORTOUT =r·1YOUTPUT • NOll ST

This example illustrates keywords RESINV, MSGPRT, MSGDDN, SORTDD,
SORTIN, SORTOUT, and NOLIST and the actions taken when these keywords
are supplied on the OPTION control statement passed by DFSPARM. These
options can also be passed in an extended parameter list, with the appropriate
syntax changes.

RESINV
32000 bytes of storage are reserved for the user.

MSGPRT=CRITICAL
Only critical messages are printed on the message data set.

MSGDDN = SORTMSGS
Messages are written to the SORTMSGS data set.

SORTDD = ABCD
SORT uses ABCD as a prefix for all sort names.

SORTIN = MYINPUT
The DDNAME MYINPUT is used to reference the input data set.

SORTOUT= MYOUTPUT
The DDNAME MYOUTPUT is used to reference the output data set.

NOLIST
Control statements are not printed.

OPTION Example 8. Using COPY with the OPTION statement

SORT FIELDS=(3.4,CH.A)
OPTION COPY.SKIPREC=le,CKPT
MODS E15=(E15.1024,MODLIB).E35=(E35.1024,MODLIB)

SORT
The sort statement is ignored because the COpy option has been specified.

COPY
The copy processing is always done on a record-by-record basis. Each
record is therefore read from SaRTIN, passed to the E15 exit, passed to the
E35 exit, and written to SORTOUT. (Contrast this with a sort, where all the
records are read from SORTIN and passed to the E15 exit before any
records are passed to the E35 exit and written to SORTOUT.)

SKIPREC
Ten records are skipped before copying starts.

CKPT
The checkpoint option is not used for copy applications.

120 DFSORT: Application Programming: Guide

OUTREC Control Statement

OUTREC Control Statement

--OUTREC FIELDs=-C-! ... L-J-r--r-L,:=L)--------t.--
c: ~

,a

The OUTREC control statement allows you to reformat the input records before
they are output; that is, to define which parts of the input record are to be
included in the reformatted output record, in what order they are to appear, and
how they are to be aligned.

You do this by defining one or more fields from the input record. The refor­
matted output record consists of those fields only, in the order in-which you
have specified them, and aligned on the boundaries or in the columns you have
indicated.

You can also insert blanks, binary zeros, character strings, and hexadecimal
strings as separators before, between, and after the input fields, in the refor­
matted output records.

For information concerning the interaction of INREC and OUTREC, see "Use
Options that Enhance Performance" on page 251.

FIELDS

~ •• ---FIELDS=-C-~.,.L-J-r-..-L':=L)-------'·-..
c: ~~

,a

specifies the order and alignment of the input and separation fields in the
reformatted output records.

c:
Indicates the column in which the first position of the associated input
or separation field is to be aligned, relative to the start of the refor­
matted output record. Unused space preceding the specified column is
padded with EBCDIC blanks. The following rules apply:

• c must be a number between 1 and 32000.

• c: must be followed by an input field or a separation field.

• c must not overlap the previous input field or separation field in the
reformatted output record.

• For variable-length records, c: must not be specified before the first
input field (the record descriptor word), nor after the variable part of
the input record.

• The colon (:) is treated like the comma (.) or semicolon (;) for contin­
uation to another line.

See Table 3 on page 79 for examples of valid and invalid column align­
ment.

Chapter 3. Using DFSORT Program Control Statements 121

OUTREC Control Statement

s
Indicates a separation field to be inserted into the reformatted output
record in the position you code it relative to the other fields. It can be
specified before or after any input field. Consecutive separation fields
may be specified. For variable length records, s must not be specified
before the first input field (the record descriptor word), or after the vari­
able part of the input record. Permissible values are:

nX Blank separation. n bytes of EBCDIC blanks (X '40') are inserted
in the reformatted output records. n can be from 1 to 4095. If n is
omitted, 1 is used.

See Table 4 on page 79 for examples of valid and invalid blank
separation.

nZ Binary zero separation. n bytes of binary zeros (X'OO') are
inserted in the reformatted output records. n can be from 1 to
4095. If n is omitted, 1 is used.

See Table 5 on page 79 for examples of valid and invalid binary
zero separation.

nC'xx ... x' Character string separation. n repetitions of the character
string constant (C'xx ... x') are inserted into the reformatted output
rec;ords. n can be from 1 to 4095. If n is omitted, 1 is used. x can
be any EBCDIC character. You can specify 1 to 256 characters.

If you want to include a single apostrophe in the character string,
you must specify it as two single apostrophes:

Required: Q'NEILL Specify: C'Q"NEILL'

See Table 6 on page 80 for examples of valid and invalid char­
acter string separation.

nX'yy ... yy' Hexadecimal string separation. n repetitions of the
hexadecimal string constant (X'yy ... yy') are inserted in the refor­
matted output records. n can be from 1 to 4095. If n is omitted, 1
is used.

The value yy represents any pair of hexadecimal digits. You can
specify from 1 to 256 pairs of hexadecimal digits.

See Table 7 on page 80 for examples of valid and invalid
hexadecimal string separation.

p,m,a
Indicates an input field to be inserted into the reformatted output record
in the position you code it relative to the other fields.

p
specifies the first byte of the input field relative to the beginning of
the input record.4 The first data byte of a fixed-length record has rel­
ative position 1. The first data byte of a variable-length record has
relative position 5, because the first four bytes are occupied by the
ROW. All fields must start on a byte boundary, and no field may

122 DFSORT: Application Programming: Guide

m

a

OUTREC Control Statement

extend beyond byte 32000. See the following "OUTREC Statement
Notes" for special rules concerning variable-length records.

specifies the length of the input field. It must include the sign if the
data is signed, and must be a whole number of bytes. See note 5
on page 124 for more information.

specifies the alignment (displacement) of the input field in the refor­
matted output record, relative to the start of the reformatted output
record.

The permissible values are:

H Halfword aligned. This means that the displacement (p-1) of
the field from the beginning of the reformatted input record, in
bytes, is a multiple of 2 (that is, position 1, 3, 5: and so forth).

F Fullword aligned. The displacement is a multiple of 4 (that is,
position 1, 5, 9, and so forth).

D Doubleword aligned. The displacement is a multiple of 8 (that
is, position 1, 9, 17, and so forth).

Alignment can be necessary if, for example, the data is to be used
in a COBOL application program where COMPUTATIONAL items are
aligned through the SYNCHRONIZED clause. Unused space pre­
ceding aligned fields are always padded with binary zeros.

Default: None; must be specified.

Applicable Functions: See Appendix C, "Specification/Override of DFSORT
Options" on page 353.

OUTREC Statement Notes
• If input records are reformatted by INREC or E15, OUTREC must refer to

fields in the appropriate reformatted record (see the discussion of p on
page 122).

• When you specify OUTREC, you must be aware of the change in record size
and layout of the resulting reformatted output records. You must also
understand how reformatting of records affects processing performance,
and how to use INREC and/or OUTREC to achieve the most efficient proc­
essing. (See also "INREC Statement Notes" on page 81 and "Use Options
that Enhance Performance" on page 251 for more details).

• The length of the INREC/OUTREC record (reformatted length) is not used to
determine the LRECL of SORTOUT. If not specified in the DSCB or DD
statement, the value for SORTOUT LRECL will be determined in the usual
way (that is, from the L3 value or SORTIN LRECL). If the reformatted length
does not match the SORTOUT LRECL, the same checks used when the
SORTIN LRECL does not match the SORTOUT LRECL are made and
padding/truncation is performed, if possible.

4 If INREC is specified, p must refer to the record as reformatted by INREC. If your E15 exit reformats the record,
and INREC is not specified, p must refer to the record as reformatted by your E15 exit.

Chapter 3. Using DFSORT Program Control Statements 123

OUTREC Control Statement

If the Blockset technique is not selected and the INREC/OUTREC length is
less than the specified or defaulted SORTOUT LRECL, then you must pad
the record to the correct length.

For VSAM data sets, the maximum record size defined in the cluster is
equivalent to the LRECL when processing fixed-length records, and is four
bytes more than the LRECL when processing variable-length records. See
"VSAM Considerations" on page 10 for more information.

• For variable-length records, the first entry in the FIELDS parameter must
specify or include the 4-byte ROW. OFSORT sets the length of the refor­
matted record in the ROW.

If the first field in the data portion of the input record is to appear in the
reformatted output record immediately following the ROW, the entry in the
FIE LOS parameter can specify both ROWand data field in one. Otherwise,
the ROW must be specifically included in the reformatted output record.

• The variable part of the input record (that part beyond the minimum record
length) can be included in the reformatted output record as the last part. In
this case, a value must be specified for pn that is less than or equal to the
minimum record length (L4) plus 1 byte, and mn and an must be omitted. If
INREC and OUTREC are both specified, either both must specify position­
only for the last part, or neither must specify position-only for the last part.

Note that, if the reformatted input includes only the ROWand the variable
part of the input record, "null" records containing only an ROW might result.

• The reformatted output records are in the format specified by OUTREC
regardless of whether INREC was specified.

• Fields referenced in OUTREC statements can overlap each other and/or
control fields.

• If input is variable records, the output is also variable. This means that
each record is given the correct ROW by OFSORT before output even if the
records are treated as fixed internally because they are all the same length.

• When OUTREC is specified, your E35 exit routine must refer to fields in the
reformatted output record.

• OFSORT issues a message and terminates if an OUTREC statement is spec­
ified for a tape work data set sort or conventional merge application.

• When you specify OUTREC, VLSHRT is not used. If VLSHRT is specified, it
is ignored.

OUTREC Statement Examples
See INREC Examples 1, 3, and 4 for applications in which both INREC and
OUTREC statements are used in the same job stream to improve performance.

OUTREC Example 1.

I OUTREC FIELDS=(11.32)

This statement specifies that the output record is to contain 32 bytes beginning
with byte 11 of the input record. This statement can be used only with fixed­
length input records, because it does not include the first 4 bytes.

124 DFSORT: Application Programming: Guide

OUTREC Control Statement

OUTREC Example 2.

I OUTREC FIELOS=(I,4,ll,32,O,lOl)

This statement is for variable-length records of minimum length 100 bytes, and
specifies that the output record is to contain an ROW plus 32 bytes of the input
record starting at byte 11 (aligned on a doubleword boundary, relative to the
start of the record) plus the entire variable portion of the input record.

Note that no extra comma is coded to indicate the omission of the first align­
ment parameter. If you do include an extra comma, you get a syntax error
message and the program terminates.

OUTREC Example 3.

I OUTREC FIELOS=(l,42,O,lOl)

This statement is for variable-length records of minimum length 100 bytes, and
specifies that the output record should contain an ROW plus the first 38 data
bytes of the input record plus the entire variable portion of the input record.

The 10 1 parameter has no effect, because the first field is always placed at the
beginning of the output record.

OUTREC Example 4.

SORT FIELOS=(20,4,CH,O,10,3,CH,O)
OUTREC FIELOS=(7:2B,4,C' FUTURE ',20,2,10,3,lZ,1,9,13,7,24,57,6X ' FF')

This example illustrates how a fixed-length input data set can be sorted and
reformatted for output. The SORTIN LRECL is 80 bytes.

The reformatted output records are fixed-length with a record size of 103 bytes
and look as follows. The SORTOUT LRECL must be specified as 103.

Position Contents
1-6 EBCDIC blanks for column alignment
7-10 Input positions 20 through 23
11-18 Character string: C I FUTURE I

19-20 Input positions 20 through 21
21-23 Input positions 10 through 12
24 Binary zero
25-33 Input positions 1 through 9
34-40 Input positions 13 through 19
41-97 Input positions 24 through 80
98-103 Hexadecimal string: X I FFFFFFFFFFFF I

Chapter 3. Using DFSORT Program Control Statements 125

OUTREC Control Statement

OUTREC Example 5.

SORT FIELDS=(12,4,PD,D)
RECORD TYPE=V,LENGTH=(",100)
OUTREC FIELDS=(l,7,5Z,5X,28,8,6X,101)

This example illustrates how a variable-length input data set can be sorted and
reformatted for output. The variable part of the input records is included in the
output records. The minimum input record size is 100 bytes and the maximum
input record size (SORTIN LRECL or maximum record size for VSAM) is 200
bytes.

The reformatted output records are variable-length. with a maximum record
size of 131 bytes. For variable records. the maximum output record size
(SORTOUT LRECL) must be equal to or greater than the maximum input record
size (SORTIN LRECL), which in this case is 200. The reformatted records look
as follows:

Position
1-4
5-7
8-12
13-17
18-25
26-31
32-n

Contents
RDW (input positions 1 through 4)
Input positions 5 through 7
Binary zeros
EBCDIC blanks
Input positions 28 through 35
EBCDIC blanks
Input positions 101 through n (variable part of input records)

OUTREC Example 6.

MERGE FIELDS=(28,4,BI,A)
OUTREC FIELDS=(l,4,5Z,5X,5,3,28,8,6Z)

This example illustrates how input files can be merged and reformatted for
output. The variable part of the input records is not to be included in the output
records. The SORTINnn LRECL is 50 bytes.

The reformatted output records are variable length. with a maximum record
size of 31 bytes and look as follows. The SORTOUT LRECL must be 50 bytes.

Position
1-4
5-9
10-14
15-17
18-25
26-31

Contents
RDW (input positions 1 through 4)
Binary zeros
EBCDIC blanks
Input positions 5 through 7
Input positions 28 through 35
Binary zeros

126 DFSORT: Application Programming: Guide

RECORD Control Statement

~RECORD TYPE=I~

RECORD Control Statement

LENGTH=(~l I)
t -L2------------l·

Ll
tr-Tt-L3

Ll LL2J

'-r------.--LENGTH= (Ll-------------.-

.-L2'-----------l

.r-T.-L3
LL2J

.r-T.r-T,-L4
LL2J LL3J

.r-T,r-T.r-T,L5
LL2J LL3J LL4J

,r-T.r-T.r-T,r-T,-L6
LL2J LL3J LL4J LL5J

.r-T,r-T.r-T,r--r,r--r,-L7
LL2J LL3J LL4J LL5J LL6J

The RECORD control statement describes the format and lengths of the records
being processed. It is required when:

• You include user exit routines that change record lengths during a DFSORT
program run.

• All of the input is supplied through a user exit.

• Input and output record length information is unavailable.

• A sort is invoked from a program written in PLII.

• VSAM input and VSAM output data sets are used.

Note: L4 through L7 apply only to variable-length records.

If you are working with VSAM input and non-VSAM output data sets, DFSORT
requires the RECORD TYPE =x statement only for tape work data set sorts or
Conventional merges. If you do not specify the record type for VSAM input and
non-VSAM output, DFSORT continues processing using:

• The record type from the non-VSAM output data set.

• A record type of F (for fixed), if the record type is not available from the
non-VSAM output data set.

• A record type of F (for fixed), if there is no output data set.

If you do specify a record type with a VSAM input data set, DFSORT uses your
specified record type to process your data sets.

Chapter 3. Using DFSORT Program Control Statements 127

RECORD Control Statement

The RECORD control statement can also be used when sorting variable-length
records to supply the minimum and average record lengths to the program.

TYPE
--TYPE=x------------------------I~-.. ..

x can take the following values:

For FB
indicates that the records to be processed are fixed-length records.

VorVB
indicates that the records are EBCDIC variable-length records.

o or DB
indicates that the records are ISCII/ASCII variable-length records.

DFSORT accepts the alternate values FB, VB, and DB as equivalents for F,
V, and 0, respectively.

For QSAM records, the format you specify in the TYPE operand must be the
same as the format you used in the RECFM subparameter of the DCB
parameter on the SORTIN and SORTOUT DO statements (described in
Chapter 2, "Executing DFSORT with Job Control Language" on page 15), or
that given on the data set label. If the formats are not the same or TYPE is
not specified, the program uses the format given in the data set label/DD
statement.

Default: Required when SORTIN or SORTINnn RECFM is unavailable; other­
wise, defaults to SORTIN or SORTINnn record format.

Applicable Functions: See Appendix C. "Specification/Override of DFSORT
Options" on page 353.

LENGTH

~~~-----LENGTH=( Ll-------------.- ------......... 

,-L2'----------l 

'1I,-L3 
LL2J 

.1I.1I.-L4 
LL2J LL3J 

.II,II,II.LS 
LL2J LL3J LL 4J 

,II,II,II.II,-L6 
LL2J LL3J LL4J LLSJ 

,1I.II,II,II,II.-L7 
LL2J LL3J LL4J LLSJ LL6J 

This parameter is required when you change record lengths at one or more 
exits. or when the SORTIN or SORTlNnn record length (LRECL or VSAM 
RECSZ) is unavailable. 

Note: L4 through L7 apply only to variable-length records. 

128 DFSORT: Application Programming: Guide 



L1 

L2 

L3 

L4 

RECORD Control Statement 

Input record length, L 1, is required only when the SORTIN or SORTlNnn 
record length is unavailable. L 1 must be at least as large as the 
maximum input record size; if it is larger than needed, performance can 
be degraded. 

For VSAM input data sets, if the L 1 value is not equal to the maximum 
record size defined in the cluster for fixed-length records, it is over­
ridden by the cluster value. If processing variable-length records with 
VSAM input and non-VSAM output, the L 1 value must be four bytes 
more than the value defined in the cluster. See "VSAM Considerations" 
on page 10 for more information. 

Note that parentheses are optional if L 1 alone is specified. If any of L2 
through L7 are specified with or without L 1, then parentheses are 
required. 

Default: The SaRTIN or SORTINnn record length. 

L2 is the record length after E15. It is extremely important to specify an 
accurate value for L2 if you change record lengths at E15. Note that, 
except for Blockset, if you have specified a value for L 1 but not for L2, 
the value you specified acts as a default for L2 even if the L 1 value has 
subsequently been overridden. 

If work units are tape, the minimum length for records to be sorted (L2) 
is 18 bytes. 

Default: Required when E15 changes the record length; otherwise 
defaults to L 1. 

Output record length, L3, can usually be supplied by default: you need 
to specify L3 when the SORTOUT record length is unavailable, and the 
L 1 value is inappropriate. 

For VSAM SORTOUT data sets, if the L3 value is not equal to the 
maximum output record size defined in the VSAM cluster, it is over­
ridden by the cluster value. 

Default: SORTOUT record length, if available; otherwise defaults to L2. 

Specifying the minimum record length, L4, can help performance. 
However, if you specify too large a value, the program fails and issues 
message ICE015A. 

Default: The default for L4 is the minimum length needed to contain all 
control fields; if this length is less than 18 bytes, then 18 bytes is used 
instead-unless the records are shorter than 18 bytes, in which case 
record length is used. L4 is not used for Blockset. 

Chapter 3. Using DFSORT Program Control Statements 129 



RECORD Control Statement 

L5 
LS is the average record length for variable-length records. LS is not 
used for the Blockset technique. 

Default: None; optional. 

L6, L7 
L6 and L7 are accepted, but not used; they are reserved for future use. 

Applicable Functions: See Appendix C, .. Specification/Override of DFSORT 
Options" on page 353. 

Note: 

• You can drop values from the right. For example, LENGTH = (80,70,70,70). 

• You can omit values from the middle or left, provided you indicate their 
omission by a comma or semicolon. For example, LENGTH =(,,,30,80). 

• Parentheses are optional when L 1 alone is specified. If any of L2 through 
L7 is specified, with or without L 1, then parentheses are required. 

RECORD Statement Examples 
RECORD Example 1. Fixed-Length, Three Length Values 

MODS E15=(INEX,1000,EXIT),E35=(OUTEX,2000,EXIT) 
RECORD TYPE=F,LENGTH=(60,40,50) 

TYPE 
The input records are fixed-length. 

LENGTH 
The records in the input data set are each 60 bytes long. Exit E15 is used to 
change the records to 40 bytes in the sort phase and exit E35 is used to 
change the records to 50 bytes in the final merge phase. 

RECORD Example 2. Variable-Length, Five Length Values 

RECORD TYPE=V,LENGTH=(200,175,180,50,80) 

TYPE 
The records in the input data set are EBCDIC variable-length. 

LENGTH 
The maximum length of the records in the input data set is 200 bytes. In 
the sort phase, you reduce the maximum record length to 175 bytes. You 
add five bytes to each record in the final merge phase, making the 
maximum record length in the output data set 180 bytes. The minimum 
record length handled by the sort phase is 50 bytes and the average record 
length is 80 bytes. 

130 DFSORT: Application Programming: Guide 



RECORD Control Statement 

RECORD Example 3. Variable-Length, Two Length Values 

[ RECORD TYPEoV.LENGTH=(290 •••• 89j 

TYPE 
The records in the input data set are EBCDIC variable-length records. 

LENGTH 
The maximum length of the records in the input data set is 200 bytes. You 
do not change record lengths, so you omit L2 and L3; L4 is also omitted. 
The average record length is 80 bytes. 

Chapter 3. Using DFSORT Program Control Statements 131 



SORT Control Statement 

SORT Control Statement 

-SORT FIELDS= 
r-'--:l (--p ,m, f ,s )----r-----r-------------,r-

(-C::J-) ,FORHAT=f ~ 
COpy--------' 

EQUALS----....--t 
NOEQUALS----' 
F I LSZ --~-X---'---r-l 

LEx 
SIZE 

LE~ 
SKIPREC=z------1 
STOPAFT=n-----' 

The SORT control statement must be used when a sorting application is to be 
performed; this statement describes the control fields in the input records on 
which the program sorts. 

A SORT statement can also be used to specify a copy application. 

The options available on the SORT statement can be specified in other sources 
as well. A table showing all possible sources for these options and the order of 
override is given in Appendix C, "Specification/Override of DFSORT Options" 
on page 353. 

When an option can be specifi.3d on either the SORT or OPTION statement, it is 
preferable to specify it on the OPTION statement. 

FIELDS 

-FIELDS=(C: f IJ)-----------------.. -~ 
The program requires four facts about each control field in the input 
records: the position of the field within the record, the length of the field, the 
format of the data in the field, and the sequence into which the field is to be 
sorted. These facts are communicated to DFSORT by the values ofthe 
FIELDS operand, represented by p, m, f, and s. 

All control fields must be located within the first 4092 bytes of a record, and 
must not extend beyond the shortest record to be sorted. The collected 
control fields (comprising the control word) must not exceed 4092 bytes long 
(or, when the EQUALS option is in operation, 4088 bytes). The FIELDS 
operand can be written in two ways. 

132 DFSORT: Application Programming: Guide 



SORT Control Statement 

Use the first FIELDS operand format to describe control fields that contain 
different data formats; use the second format (explained on page 136) to 
describe SORT fields that contain data of the same format. The second 
format is optional; if you prefer, you can always use the first format. 

The program exr.mines the major control field first, and it must be specified 
first. The minor control fields are specified following the major control field. 
p, m, f, and s describe the control fields. The text that follows gives specifi­
cations in detail. 

p 
specifies the first byte of a control field relative to the beginning of the 
input record.5 

The first data byte of a fixed-length record has relative position 1. The 
first data byte of a variable-length record has relative position 5. The 
first 4 bytes contain the record descriptor word. All control fields, 
except binary, must begin on a byte boundary. The first byte of a 
floating-point field is interpreted as a signed exponent; the rest of the 
field is interpreted as the fraction. 

Note that the beginning of a variable-length record must include a 
4-byte ROW that precedes the actual record. This is also true for VSAM 
input records, for which OFSORT supplies the necessary ROWan input 
to the program and removes it again at output (if output is to a VSAM 
data set). You should therefore always add four to the byte position in 
variable-length records. 

Fields containing binary values are described in a "bytes.bits" notation 
as follows: 

1. First, specify the byte location relative to the beginning of the record 
and follow it with a period. 

2. Then, specify the bit location relative to the beginning of that byte. 
Remember that the first (high-order) bit of a byte is bit 0 (not bit 1); 
the remaining bits are numbered 1 through 7. 

Thus, 1.0 represents the beginning of a record. A binary field beginning 
on the third bit of the third byte of a record is represented as 3.2. When 
the beginning of a binary field falls on a byte boundary (say, for 
example, on the fourth byte). you can write it in one of three ways: 

4.0 
4. 
4 

Other examples of this notation are: 

5 If INREC is specified, p must refer to the record as reformatted by INREC. If your E15 exit reformats the record, 
and INREC is not specified, p must refer to the record as reformatted by your E15 exit. 

Chapter 3. Using DFSORT Program Control Statements 133 



SORT Control Statement 

1.6 3.1 

I I , , 

I11111111111111111111 

• 
I 

1.0 
1. 
1 

m 

........ 

• • 
I I 

2.2 3.0 
3. 
3 

specifies the length of the control field. Values for all control fields 
except binary fields must be expressed in integer numbers of bytes. 
Binary fields can be expressed in the notation "bytes.bits". The length 
of a binary control field that is an integer value (d) can be expressed in 
one of th ree ways: 

d.e 
d. 
d 

The number of bits specified must not exceed 7. A control field 2 bits 
long would be represented as 0.2. 

The total number of bytes occupied by all control fields must not exceed 
4092 (or, when the EQUALS option is in operation, 4088 bytes). When 
you determine the total, count a binary field as occupying an entire byte 
if it occupies any part of it. For example, a binary field that begins on 
byte 2.6 and is 3 bits long occupies two bytes. All fields must be com­
pletely contained within the first 4092 bytes of the record. 

This three bit binary control field 

r--------'" 

occupies two bytes 

134 DFSORT: Application Programming: Guide 



SORT Control Statement 

f 
specifies the format of the data in the control field. Acceptable control 
field lengths (in bytes) and available formats are shown in Table 8 on 
page 135. 

Table 8. Control Field Formats and Lengths 

Format Length Description 

CH 1-4092 Character EBCDIC, unsigned. If CHALT is in 
effect, CH is treated the same as AQ. 

AQ 1-256 Character EBCDIC, alternate collating 
sequence. 

ZD 1-32 Zoned decimal, signed. 

PO 1-32 Packed decimal, signed. 

FI 1-256 Fixed-point, signed. 

BI 1 bit- 4092 Binary, unsigned. 
bytes 

FL 1-256 Floating-point, signed. 

AC 1-256 Character ISCII/ ASCII, unsigned. 

CSL or LS 2-256 Signed numeric, leading separate sign. 

CST or TS 2-256 Signed numeric, trailing separate sign. 

CLO or OL 1-256 Signed numeric, leading overpunch sign. 

CTO or OT 1-256 Signed numeric, trailing overpunch sign. 

ASL 2-256 Signed numeric, ISCII/ ASCII, leading separate 
sign. 

AST 2-256 Signed numeric, ISCII/ ASCII, trailing separate 
sign. 

01 1-4092 User-defined data type; requires an EFS 
program. 

The AC format sequences EBCDIC data using the ISCII/ASCII collating 
sequence. 

If you specify more than one control field and all the control fields contain 
the same type of data, you can omit the f parameters and use the optional 
FORMAT operand, described below. 

All floating-point data must be normalized before the program can collate it 
properly. You can use a routine of your own to do this during execution, by 
associating it with one of the program exits. Specify the E option for the 
value of s in the FIELDS operand for each control field you are going to 
modify. 

See Appendix E, "EBCDIC and ISCII/ASCII Collating Sequences" on 
page 377 for data format examples. 

Chapter 3. Using DFSORT Program Control Statements 135 



SORT Control Statement 

s 
specifies how the control field is to be ordered. The valid codes are: 

A-ascending order 
D-descending order 
E-control fields to be modified 

Specify E if you include user routines to modify control fields before the 
program sorts them. After a user routine modifies the control fields, 
DFSORT collates them using the format(s) specified 6 and ascending 
order. 

For information on how to add a user routine to modify a control field, see 
Chapter 5, "Using Your Own Exit Routines" on page 181. 

Default: None; must be specified. 

Applicable Functions: See Appendix C, "Specification/Override of DFSORT 
Options" on page 353. 

FORMAT 

-FORr·IAT=f-----------------------.... ~ .. 

f can be used to specify the format of the data described in the FIELDS 
parameter, if you specify more than one control field and those control 
fields are not all of the same format. The possible values of f are listed in 
Table 8 on page 135. 

If you specify more than one control field, and the data in the several fields 
has different formats, you must specify an f parameter for each field instead 
of using FORMAT. 

If you have specified the COPY operand, FORMAT =f cannot be specified. 

Default: None; must be specified if not included in FIELDS parameter. 

Applicable Functions: See Appendix C, "Specification/Override of DFSORT 
Options" on page 353. 

FIELDS=COPV 

-FIELDS=COPy------------------------~·~ .. 

See the discussion of the COPY parameter on the OPTION statement, dis­
cussed in "OPTION Control Statement" on page 97. 

6 With a conventional merge or a tape work data set sort, control fields for which E is specified are treated as 
binary byte format regardless of the actual format(s) specified. 

136 DFSORT: Application Programming: Guide 



SORT Control Statement 

CKPT 

~KPT----------------------------------------------~J~~ 

See the discussion of this operand on the OPTION statement, discussed in 
"OPTION Control Statement" on page 97. 

DYNALLOC 

See the discussion of this parameter on the OPTION statement. 

EQUALS 

~··~-.-EQUALST------------------------------------------~.~~ 

LNOEQUALSJ 

See the discussion of this parameter on the OPTION statement, discussed 
in "OPTION Control Statement" on page 97. 

FILSZ or SIZE 

L FILSZ x 

LEX~ 
SIZE '---.--y 

LEy 

See the discussion of this parameter on the OPTION statement, discussed 
in "OPTION Control Statement" on page 97. 

SKIPREC 

-SKIPREC=z----------------------------------~·~~ 

See the discussion of this parameter on the OPTION statement, discussed 
in "OPTION Control Statement" on page 97. 

Chapter 3. Using DFSORT Program Control Statements 137 



SORT Control Statement 

STOPAFT 

-STOPAFT=n-------------------------.---

See the discussion of this parameter on the OPTION statement, discussed 
in "OPTION Control Statement" on page 97. 

SORT Statement Note 
If the records are reformatted by INREC or E15, SORT must refer to the appro­
priate fields in the appropriate reformatted record (see the description for "p" 
following "FIELDS" above). 

SORT Statement Examples 
SORT Example 1. One Control Field and File Size Option 

I SORT FIELDS=(2,S,CH,A),FILSZ=29483 

FIELDS 
The control field begins on the second byte of each record in the input data 
set, is five bytes long, and contains character data. It is to be sorted in 
ascending order. 

FILSZ 
The data set to be sorted contains exactly 29483 records. 

SORT Example 2. Five Control Fields, Checkpoint, and Dynamic Allocation 
Options 

SORT FIELDS=(7,3,CH,D,1,5,FI,A.398.4,7.6,BI,D,99.e,23e.2, 
BI.A,452,8,FL,A),CKPT.DYNALLOC=(333e,4) 

FIELDS 
The first four values describe the major control field. It begins on byte 7 of 
each record, is 3 bytes long, and contains character (EBCDIC) data. It is to 
be sorted in descending order. 

The next four values describe the second control field. It begins on byte 1, 
is 5 bytes long, contains fixed-point data, and is to be sorted in ascending 
order. 

The third control field begins on the fifth bit (bits are numbered 0 through 7) 
of byte 398. The field is 7 bytes and 6 bits long (occupies 9 bytes), and 
contains binary data to be placed in descending order. 

The fourth control field begins on byte 99, is 230 bytes and 2 bits long, and 
contains binary data. It is to be sorted in ascending order. 

The fifth control field begins on byte 452, is 8 bytes long, contains normal­
ized floating-point data, which is to be sorted in ascending order. If the 
data in this field were not normalized, you would specify E instead of A and 
include your own routine to normalize the field before the program exam­
ined it. 

138 o FSORT: Application Programming: Guide 



SORT Control Statement 

CKPT 
Instructs the program to take checkpoints during this run. 

Note: If the Blockset technique is chosen, the CKPT option is ignored. If 
checkpoints are required, the Blockset technique can be bypassed by speci­
fying either IGNCKPT = NO on the ICEMAC installation macro or NOBLKSET 
on the OPTION statement. 

DYNALLOC 
Four work data sets are allocated on 3330. The space on each data set is 
calculated using the FILSZ value. 

SORT Example 3. Two Control Fields, User Modification 

I SORT FIELOS=(3,8,lO,E,48,6,CH,O) 

FIELDS 
The first four values describe the major control field. It begins on byte 3 of 
each record, is 8 bytes long, and contains zoned decimal data that is modi­
fied by your routine before sort examines the field. 

The second field begins on byte 40, is 6 bytes long, contains character 
(EBCDIC) data, and is sorted in descending sequence. 

SORT Example 4. Two Control Fields, Format and Equals Options 

SORT FIELDS=(25,4,A,48,8,A),FORMAT=ZD,EQUALS 

FIELDS 
The major control field begins on byte 25 of each record, is 4 bytes long, 
contains zoned decimal data (FORMAT = ZO), and is to be sorted in 
ascending sequence. 

The second control field begins on byte 48, is 8 bytes long, has the same 
data format as the first field, and is also to be sorted in ascending order. 

FORMAT 
The FORMAT = f option can be used because both control fields have the 
same data format. It would also be correct to write this SORT statement as 
follows: 

SORT FIELDS=(25,4,ZD,A,48,8,ZD,A),EQUALS 

Chapter 3. Using DFSORT Program Control Statements 139 



SORT Control Statement 

EQUALS 
specifies that the sequence of equal collating records is to be preserved 
from input to output. 

SORT Example 5. COPY Option 

I SORT FIElDS·COPV 

FIELDS 
The input data set is copied to the output data set without sorting or 
merging. 

140 DFSORT: Application Programming: Guide 



SUM Control Statement 

SUM Control Statement 

r'l 
-SUM FIELDS= (-p,m, f-L)----.----------____ 

r'i 
(-p,m---1-),FORMAT=f 

NONE·-------" 

The SUM control statement specifies that, whenever two records are found with 
equal control fields, the contents of their summary fields are to be added, the 
sum is to be placed in one of the records, and the other record is to be deleted. 

FIELDS 

H •• --FIELDS=-(~~J-)--------------...... 

designates numeric fields in the input record as summary fields. 

p 

m 

f 

specifies the first byte of the field relative to the beginning of the input 
record.7 The first data byte of a fixed-length record has relative position 
1. The first data byte of a variable-length record has relative position 5, 
as the first four bytes are occupied by the ROW. All fields must start on 
a byte boundary, and no field can extend beyond byte 4092. 

specifies the length in bytes of the summary fields to be added. The 
value must include the sign, if signed data. See below for permissible 
length values. 

specifies the format of the data in the summary field: 

Code 
BI 
FI 
PO 
ZO 

Length 
2, 4, or 8 bytes 
2, 4, or 8 bytes 
1-16 bytes 
1-18 bytes 

Description 
Binary, unsigned 
Fixed-point, signed 
Packed decimal, signed 
Zoned decimal, signed 

7 If INREC is specified, p must refer to the record as reformatted by INREC. If your E15 exit reformats the record, 
and INREC is not specified, p must refer to the record as reformatted by your E15 exit. 

Chapter 3. Using DFSORT Program Control Statements 141 



SUM Control Statement 

NONE 
eliminates records with duplicate keys. Only one record with each key 
is kept and no summation is performed. 

Default: None; must be specified. 

Applicable Functions: See Appendix C, "Specification/Override of DFSORT 
Options" on page 353. 

FORMAT 

-FORI4AT=f'-----------------------.......... 

can be used when all the summary fields contain the same type of data. 
The values for f are listed above. 

Default: None. Must be specified if not included in the FIELDS parameter. 

Applicable Functions: See Appendix C, "Specification/Override of DFSORT 
Options" on page 353. 

SUM Statement Notes 
• If input records are reformatted by INREC or E15, SUM must refer to fields 

in the appropriate reformatted record (see the description of p above). 

• The size of the routine generated by DFSORT to handle the SUM function 
depends on how many fields are referenced, and what lengths and formats 
they have. The size of the routine must not exceed 4096 bytes, or DFSORT 
issues a message and terminates. 

• Summary fields must not be control fields. They must not overlap control 
fields, or each other, and must not overlap the ROW. 

• Floating-point fields must not be summed. 

• When records are summed, you can predict which record is to receive the 
sum (and be retained) and which record is to be deleted only when 
EQUALS is in effect and the BLOCKSET technique is used. In this case, the 
first record (based on the sequence described under EQUALS or 
NOEQUALS on page 104) is chosen to contain the sum. 

• Fields other than summary fields remain unchanged and are taken from the 
record that receives the sum. 

• If overflow occurs, the two records involved are left unsummed. That is, the 
contents of the records are left undisturbed, neither record is deleted, and 
the records are still available for summation. Overflow does not prevent 
further summary. 

• DFSORT issues a message and terminates if a SUM statement is specified 
for a tape work data set sort or Conventional merge. 

• Summation of data with invalid sign or digit codes results in a data excep­
tion (DC7 ABEND). 

142 DFSORT: Application Programming: Guide 



SUM Control Statement 

SUM Statement Examples 
SUM Example 1. 

I SUM FIELDS"(41,8,ZD,49,4,FI) 

This statement designates an 8-byte zoned decimal field at byte 41, and a 
4-byte fixed-integer field at byte 49, as summary fields. 

SUM Example 2. 

I SUII FI ELOS'( 41, a ,49, 4), FORMAT'FI 

This statement illustrates the use of the FORMAT operand. The statement des­
ignates two fixed-integer fields, one 8 bytes long starting at byte 41, and the 
other 4 bytes long starting at byte 49. 

Chapter 3. Using DFSORT Program Control Statements 143 





Overview of DFSORT Panels 

Chapter 4. Using Panels to Create and Submit DFSORT Jobs 

Overview of DFSORT Panels 

Before You Begin 

If your site has installed DFSORT Panels under the Interactive System Produc­
tivity Facility (ISPF) or the Interactive Storage Management Facility (ISM F), you 
can perform many DFSORT tasks using interactive panels. You can use 
DFSORT Panels to sort, copy, and merge files in an online environment that lets 
you concentrate on performing the task without spending time in coding job 
control or program control statements. 

You can access the DFSORT program in either foreground or background 
mode, depending on which environment best fits your task at the moment. With 
foreground execution, you submit your DFSORT job for immediate processing 
under TSO. With background execution, you can submit your job for batch 
processing while you perform other tasks, or you can save the completed appli­
cation in a data set to edit or run later. The advantages of using DFSORT in 
panel mode are: 

• You can create a job without coding JCL and DFSORT command syntax. 
You provide information about your application on the appropriate panels, 
and the panels build your DFSORT job automatically. 

• You can use the online HELP facility to get information about DFSORT func­
tions and options during your terminal session. HELP is keyed to individual 
DFSORT panels, so you can also use it as a tutorial. You can get explana­
tions and examples of the panels while you work through them. 

• The panels prime your entry fields with last-used values or with defaults, 
and you can create new jobs with similar control statements by simply 
paging through the panels. To change an existing value, you type over it. 
To reset to a default, type over it with blanks. 

With DFSORT Panels, occasional users can process data sets effectively with 
minimal preparation. Experienced users can access DFSORT functions and 
options more quickly and efficiently. 

If you are unfamiliar with either DFSORT or DFSORT Panels, consider reading 
the tutorial, Getting Started with DFSORT. It introduces both DFSORT and the 
interactive panels in a step-by-step format with illustrations and complete 
examples. While this chapter describes aI/ the functions and options available 
to you with the panels, Getting Started with DFSORT begins with the basics and 
then progresses to advanced topics. 

You can use DFSORT Panels to specify most DFSORT functions and options 
directly by entering information in specific fields or by selecting codes on 
various panels. In some situations, you might want to create a DFSORT job 
with features that the panels do not directly support. For example, you might 
want to use: 

• Tape input or output data sets 
• Additional work data sets 

Chapter 4. Using Panels to Create and Submit DFSORT Jobs 145 



Overview of DFSORT Panels 

• Specific DFSORT subparameters that do not appear in the panels (such as 
DEBUG ABEND) 

• Nonstandard DFSORT control statements or keywords 
• Data types unique to your system 
• Data sets not catalogued or allocated on the system from which you access 

DFSORT Panels 
• Other programs that invoke DFSORT. 

DFSORT Panels provides several solutions to these problems by letting you 
customize your jobs and the way you create them: 

• You can use free form panels to insert control statements into your jobs 
exactly as you have coded them. If your application requires a DFSORT 
feature not listed in a panel, you can simply code the statement yourself, 
and direct DFSORT Panels to use it in your job. 

• You can save your completed job in a data set, and edit or add statements 
later without going through the interactive panels. Using both your text 
editor and DFSORT Panels to build your jobs lets you choose for yourself 
the most efficient way to accomplish your tasks. 

• You can create DFSORT DO and control statements for use by another 
program (such as COBOL) that invokes DFSORT. Just save the completed 
DFSORT job in a data set and copy the required statements to the other job. 

• You can suppress some automatic procedures by changing the settings on 
the panels (for instance, to build a job that uses uncataloged or unallocated 
data set names, see pages 151 and 152). 

Your system programmers can also tailor DFSORT Panels to your needs by 
adding or substituting their own panels for user-defined control statements with 
the User-Defined Panels Interface (UDPI). With UDPI, they can insert additional 
panels that let you create DFSORT jobs with specialized control statements 
unique to your needs. The DFSORT Planning and Installation Guide contains 
specific information on customizing DFSORT Panels with the User-Defined 
Panels Interface. 

Getting Around in DFSORT Panels 
A panel is a formatted screen of information presented on a display terminal. 
Some panels provide information to you on request (such as HELP panels), 
while others require you to enter information. What you enter determines 
which panel you see next, or the function that is performed. Arrows mark the 
fields where you can enter information or specify choices, as shown in 
Figure 9. 

DFSORT PRlllARY OPTIOH HEtlU 
ENTER SELECTION OR COHIWID :u> 

SELECT ONE OF THE FOllOWIIIG ••• 

Figure 9. Command Unes on the Panels Are Shown by Arrows 

146 DFSORT: Application Programming: Guide 



Overview of DFSORT Panels 

Instructions on the panels tell you what keys and commands to use to get the 
results you want, as shown in Figure 10. 

USE EHTER TO COtHltlUEj 
USE HELP COHI~AHD fOR HELP; USE END COHI·IAtlD TO SAVE MID EXIT. 

Figure 10. The Panels Explain the Keys and Commands You Use 

The following commands control panel flow. Some commands are inactive in 
panels for which they are not appropriate. 

ENTER key 

END 

HELP 

RETURN 

UP 

DOWN 

CANCEL 

REINIT 

BROWSE 

On some panels, the ENTER key saves your new values and 
takes you to the next panel. On others, the ENTER key verifies 
that.your panel input is correct. 

On some panels, END saves your new values and exits to the 
previous panel. On others, END cancels your new values and 
exits to the previous panel. If you are using HELP, the END 
command takes you back to the panel from which you invoked 
HELP. 

Takes you to a HELP panel. HELP panels give you more infor­
mation about a particular panel or function. HELP can also give 
you an explanation of DFSORT Panels messages. 

Terminates the application you are currently performing and 
returns you to the DFSORT Primary Option Menu. 

Scrolls the fields on the panel backward by the specified 
number of lines, or takes you to the previous panel in a series. 

Scrolls the fields forward by the specified number of lines, or 
takes you to the next panel in a series. 

Exits the displayed panel without saving any changes. You can 
use CANCEL only on those panels that direct you to "USE END 
TO SAVE AND EXIT." For all other panels, END performs the 
CANCEL function. 

Reinitializes all pages of a panel with default entries or blanks 
in all the fields. Use this command to start over again with all 
new entries. Like CANCEL, REINIT can be used only on panels 
that direct you to "USE END TO SAVE AND EXIT." 

Displays the control statement you generated or entered exactly 
as it would be passed to DFSORT. Enter the command from the 
SORT or MERGE Control Fields Entry panels or from the SORT 
or MERGE Free Form Statement Entry panels. Use BROWSE to 
verify that the control statement does what you intended so that 
you can correct any errors in your panel entries. You can also 
enter the B BROWSE STATEMENT select code on the Control 
Statements Selection panel to display control statements in the 
form in which they would be passed to the DFSORT program. 

Chapter 4. Using Panels to Create and Submit DFSORT Jobs 147 



Overview of DFSORT Panels 

PROFILE Takes you to a menu that lets you view or update your DFSORT 
user profile. The profile controls the way DFSORT Panels con­
structs your applications. For information on what options are 
available and when you might want to change them, see the 
section "Changing Your DFSORT User Profile" on page 170. 
You can enter the PROFILE command from any SORT, COPY, or 
MERGE panel. You see the same panels by entering 0 on the 
DFSORT Primary Option Menu. 

Using Panels to Create DFSORT Jobs 
When you select a sort, copy, or merge task from the DFSORT Primary Option 
Menu, you see the first of a series of panels that let you build and submit or 
save your DFSORT job. Fill them in one by one with information about what 
you want to do. The panels for sorting, copying, and merging data sets are 
similar, and you specify input and output data sets, statements, options, and 
other information in similar ways. Most functions and options available when 
you code JCL and DFSORT statements yourself can also be specified using 
appropriate panels. In fact, if you have used DFSORT before, then it will be 
helpful to keep in mind that DFSORT Panels actually writes and submits or 
saves the same JCL and DFSORT control statements with which you are 
already familiar. 

Using the panels makes it easy to modify DFSORT jobs after you have created 
them. Because the panels retain your final entries between sessions, you can 
use them again the next time you create a job. If you want to change some 
items and keep others, you can view and change individual statements one at a 
time, or choose to turn them off for some jobs and on for others. You can 
submit the job as soon as you complete it, in either foreground or background 
mode. You can also use the background execution environment to save the job 
stream in a data set to edit or submit later. 

Because sorting, copying, and merging are separate applications in DFSORT 
Panels, you can specify different information to appear in the fields when you 
select different tasks. Only information specified in your DFSORT user profile is 
common to sort, copy, and merge jobs. Remember that before you can merge 
data sets, they must be sorted in the same way with respect to the position, 
length, format, and order that you specify in the MERGE control fields. 

The DFSORT panels you work with vary with your task. DFSORT processes the 
panel entries and saves or submits your job as soon as you supply it with all 
the information you told it to expect. You do not need to use all of the panels 
for every job, nor do you always need to look at a panel to use it to construct a 
job. In fact, you can create and submit a fairly sophisticated DFSORT job after 
seeing only three panels. This means that the last panel you see before 
DFSORT processes your entries varies from job to job. 

Beginning a DFSORT Session 
DFSORT Panels is supported under the Interactive System Productivity Facility 
(ISPF). The way in which you invoke DFSORT Panels depends on how it was 
installed at your site. DFSORT Panels might be installed as an option on one or 
more of the following menus: 

• The ISPF Master Application Menu or submenu 

148 DFSORT: Application Programming: Guide 



Overview of DFSORT Panels 

• The ISPF/PDF Primary Option Menu or submenu 
• The ISMF Primary Option Menu. 

Alternatively, your site might use the ISPSORT command to invoke DFSORT 
Panels directly from TSO. If you do not know the actual method used to invoke 
DFSORT Panels, contact your information systems center for help. 

If the Interactive Storage Management Facility (lSMF) is available at your site, 
you can use the SORTREC line operator from the ISMF Data Set Application to 
do a quick and simple sort on a data set. See "Using SORTREC for a Quick 
and Simple Sort Under ISMF" on page 174 for details on how to use this 
feature. 

After you specify the appropriate codes to invoke DFSORT Panels, you can 
begin your session with the DFSORT Primary Option Menu. 

Beginning Your Job: The DFSORT Primary Option Menu 
To begin sorting, copying, or merging records with DFSORT Panels, specify 
your choice in the command line of this panel, as shown in Figure 11. You see 
this menu anytime you begin a DFSORT session, and you use it to terminate 
DFSORT when you are done. For instance, 'if you enter 1 (PERFORM SORT APPLI­
CATION), you can begin to build a sort job with the panels that appear on your 
screen. To copy or merge files, select 2 or 3, respectively. 

OFSORT PRIHARY OPTION '·IENU 
EtHER SELECTIOn OR CDHI~AHD ===> 2 

SELECT DIIE OF THE FOLLOI4ING: 

o DFSORT PROFILE 
1 SORT 
2 COpy 
3 HERGE 
X EXIT 

- Change DFSORT user profile 
- Perfonn Sort Application 
- Perfonn Copy Application 
- Perfonn Herge Application 
- Tenninate DFSORT 

USE HELP COI·II·IAND FOR HELP; USE END CO'·"~At!D TO EXIT. 

Figure 11. DFSORT Primary Option Menu 

You can also change your DFSORT user profile by selecting 0 (CHANGE DFSORT 
USER PROFILE). The entries in the profile affect the way DFSORT Panels creates 
DFSORT jobs, and you might want to update it from time to time if you make 
system changes, or if you want to run a job with unusual requirements. After 
you have set up your profile, DFSORT Panels automatically uses that informa-

Chapter 4: Using Panels to Create and Submit DFSORT Jobs 149 



Overview of DFSORT Panels 

tion in processing your job. See the section, "Changing Your DFSORT User 
Profile" on page 170 for more information. 

Selecting Input Data Sets: SORT/COPY/MERGE Entry Panels, Page 1 
You list the data sets you want to process on the first page of the SORT, COPY, 
or MERGE Entry Panel. You must specify one data set in the first field, but you 
can sort or copy up to 12 different data sets at once by specifying other data set 
names in the remaining fields. DFSORT concatenates the data sets and sorts 
or copies them into a single output data set. You can merge up to 16 data sets 
at once by listing the data sets containing the records you want to combine. 

Type the name of your input data set into the INPUT DSN 1 field, as shown in 
Figure 12. Use the other INPUT DSN fields to list the names of additional data 
sets that you want to process. Remember that the names you use must 
conform to TSO naming conventions. When sorting and copying, you can leave 
blank lines between the names. When merging data sets, you must list the 
names consecutively without any blank lines between them. 

( 
SORT EtlTRV PANEL 

COHHAlID ===> 

SPECIFY ONE OR ~tORE INPUT DATA SET(S): 
INPUT OStl 1 ===> SAHPLLOATAI 

(USE OSN 2 TO 12 FOR CONCATEtMTEO DATA SETS) 
INPUT OSII 2 ===> 
INPUT OSII 3 ===> 
INPUT OSII 4 ===> 
INPUT OStl 5 ===> 
INPUT OSN 6 ===> 
INPUT OStl 7 ===> 
INPUT OSN 8 ===> 
INPUT OSN 9 ===> 
INPUT OSII 10 ===> 
INPUT OStl 11 ===> 
INPUT OSII 12 ===> 

VERI FV INPUT DSN :u> V (Y or tI) 

USE ENTER TO COIlTIllUEj 
USE HELP COI.(t·W10 FOR HELPj USE ElID CDHHAtID TO EXI T. 

Figure 12. SORT Entry Panel (page 1) 

Page 1 of 2 
I 

When you provide all input records to sort or copy jobs through an E15 exit 
routine, specify an asterisk (*) in the INPUT DSN 1 field. The panels check 
remaining fields for errors, but will not use them in your job. If you choose this 
option, you must also select E15 on the MODS Statement Data Entry panel. 
(The E15 exit is not applicable to MERGE jobs.) See Chapter 5, "Using Your 
Own Exit Routines" on page 181 for instructions on how you can prepare user 
exits. 

Use the VERIFY INPUT DSN field to check that your input data set names are 
valid. If you type a Y into the field, you will receive an error message on the 
panel when you press ENTER if any of the input data set names you specified 
are invalid. Type N to suppress validation messages. Incorrect syntax in your 

150 DFSORT: Application Programming: Guide 



Overview of DFSORT Panels 

input data set names always results in an error message no matter what the 
VERIFY INPUT DSN setting is. 

If you know that your input data set names are invalid (as when you construct 
and save a job prior to allocating the input data sets to which it refers), then the 
VERIFY INPUT DSN field must be set to N in order to continue. You cannot 
submit the job from the panels this way, but you can save it in a data set and 
later insert the missing JCL parameters such as volume and unit codes. This 
way you can construct and save jobs that you can then edit for use on systems 
in which your data sets are not cataloged. 

Setting Your Task Environment: SORT/COPY/MERGE Entry Panels, Page 2 
On the second page of the SORT, COPY, or MERGE Entry Panel (see Figure 13), 
you make decisions about how you want to work with your data sets. 

Specifying the Output Data Set 
You must first name the output data set in the OUTPUT DSN field. Whether you 
sort, copy, or merge one or several data sets, the output from a successful job 
is stored in the data set you name in this field. Remember that you can have 
as few as 1 or as many as 16 input data sets depending upon the task that you 
want to perform. DFSORT combines your input into one output data set. This 
lets you work with all the data sets at once and keep the entire output together 
as a single data set. 

( 
SORT WTRY PAllEl 

COI·1IIAIID ===> 

SPECIFY OUTPUT DATA SET: 
OUTPUT DS~I ... > OFS.SORTOUT 
VERIFY OUTPUT DS~I .=.> Y (Y or tl) 

SPECIFY EXECUTION BIVIROImEtH ==.> 1 
1 FOREGROUIID (Execute as TSO job) 
2 BACKGROUIIO (Submit or save job) 

SPECIFY ItITERf.lEDIATE DATA SET SPACE: 
PRlI~ARY QUAtITITY ... > 5 (in Cyl inde.'s) 
SECOI-IOARY QUANTITY -=.> 5 (in Cylinders) 

VIEH COtITROl STAWIEtlTS SElECTlOtl PAtiEl •• => Y (V or N) 

REVIEI-I CONTROL STATHIEtHS BEFORE EXECUTION ••• > Y (Y or tI) 

ENTER SORT COIHROl STATElIEtn IN FREE FORI·I ••• > II (V or tI) 

USE EIITER TO COIIT IUUE; 
USE HELP COm'IAIiD FOR HELP; USE HID COI·II·tAllO TO RETURtl TO PAGE 1 

Figure 13. SORT Entry Panel (page 2) 

Page 2 of 2 
I 

If all output is to be handled by an E35 exit routine, specify an asterisk (*) for 
the output data set name. If you choose this option, you must also select E35 
on the MODS Statement Data Entry panel. See Chapter 5, "Using Your Own 
Exit Routines" on page 181 for instructions on how user exits can be prepared. 

As with your input data set names, you can check whether the panels can 
locate your output data set before you go on. Specify Y in the VERIFY OUTPUT 

Chapter 4. Using Panels to Create and Submit DFSORT Jobs 151 



Overview of DFSORT Panels 

DSN field to allow validation messages, or N to suppress them. Syntax errors in 
your output data set name always result in an error message, even when the 
VERIFY OUTPUT DSN field is set to N. 

If you know that your output data set name is invalid (as when you construct 
and save a job prior to allocating the output data set to which it refers), then 
the VERIFY OUTPUT DSN field must be set to N in order to continue. You cannot 
submit the job from the panels this way, but you can save it in a data set and 
later insert the missing JCL parameters such as volume and unit codes. This 
lets you construct and save jobs which you can then edit for use on systems in 
which your data sets are not cataloged. 

Choosing Between Foreground and Background Execution 
You must also decide between running your job in the foreground or back­
ground by typing a 1 or a 2 in the SPECIFY EXECUTION ENVIRONMENT field. 

Choose the foreground environment to execute your sort, copy, or merge job 
under TSO as soon as you complete the last panel. Foreground invokes a 
CLiST command procedure that places all selected DFSORT ct. ,troi statements 
into a temporary SYSIN data set, allocates the necessary input, output, and 
intermediate data sets, and then issues a call to the DFSORT program. 
Remember that TSO jobs occupy your terminal until they complete. 

Choose the background environment to save the job stream in a data set that 
you name, or to submit the job immediately without losing control of your ter­
minal to the program. Background execution generates a (;omplete job stream 
containing the JCL and DFSORT control statements for processing your job. 

Allocating Space for Intermediate Data Sets 
When you sort records, you can choose how much space to allocate for the 
intermediate data set DFSORT uses to process your job. Type your choice in 
the fields marked PRIMARY QUANTITY and SECONDARY QUANTITY. The defaults 
are five cylinders each for both primary and secondary allocation. See 
Appendix A, "Calculating Storage Requirements" on page 311 for details on 
determining the space you require. 

Note: You can allow dynamic allocation of intermediate sort data sets by speci­
fying the DYNALLOC option on the Option Statement Data Entry (SORT) panel. 
See page 101 for details on using the DYNALLOC parameter. 

Selecting and Editing DFSORT Control Statements 
You can choose to view or edit DFSORT control statements by specifying Y in 
the VIEW CONTROL STATEMENTS SELECTION PANEL field. If you specify N in this 
field, the control statements and options set up in your previous job will be 
used, and the Control Statements Selection panel will not be displayed. 

152 o FSORT: Application Programming: Guide 



Overview of DFSORT Panels 

Reviewing DFSORT Control Statements 
You can still see the DFSORT control statements prior to submitting the job in 
either foreground or background mode by specifying Y in the REView CONTROL 
STATEMENTS BEFORE EXECUTION field. If you do, the control statements you 
chose for your job will be displayed for you later on the Review Control State­
ments panel before you save or submit your job. To change them at that time, 
you must return to the VIEW CONTROL STATEMENTS SELECTION PANEL field, set 
the value to Y, and edit the appropriate panels through the Control Statements 
Selection panel. 

Entering SORT or MERGE Statements in Free Form 
If you are experienced in coding DFSORT statements, you might want to skip 
the panels that help you to create SORT and MERGE statements and code them 
yourself. Specify Y in the ENTER SORT or MERGE CONTROL STATEMENT IN FREE 
FORM field. If you do, the next panel that you see is the SORT or MERGE State­
ment Free Form Entry panel, in which you enter DFSORT program control state­
ments in free form. Use this option when you feel confident that you can save 
time by coding the control fields statements on your own. 

You can also enter program control statements in free form on the General 
Statement Free Form Entry panel. To work with that panel, specify Y in the 
VIEW CONTROL STATEMENTS SELECTION PANEL field. This panel also lets you 
enter statements in free form for COPY applications. 

Free Form panels also let you insert comment statements into your jobs. See 
"Specifying the Order with the SORT or MERGE Statement Free Form Entry 
Panel" on page 155 and "General Free Form Statement" on page 166 for 
details on using comment statements. 

Specifying the Order of Your Sorted or Merged Records 
You can specify a sort or merge order for your output records by describing 
your control fields and collating sequence on the SORT or MERGE Control 
Fields Entry panel, or you can enter a SORT or MERGE statement on your own 
on the SORT or MERGE Statement Free Form Entry panel. 

Specifying the Order with the SORT or MERGE Control Fields Entry Panel 
You see the SORT or MERGE Control Fields Entry panel only if you entered N in 
the ENTER SORT or MERGE STATEMENT IN FREE FORM field on the second page of 
the SORT, COPY, or MERGE Entry Panel. 

The entries you make on the panel (see Figure 14 on page 154) determine 
which control fields and collating sequences DFSORT uses to organize your 
records. There are initially four lines of entry fields on the panel. You must 
specify at least one control field to continue constructing a sort or merge job 
stream, and you can work with up to 100 by adding fields with line commands. 
Valid line commands are shown in Table 9 on page 155. See Figure 14 on 
page 154 for an illustration of the entries you might make using four control 
fields. 

Chapter 4. Using Panels to Create and Submit DFSORT Jobs 153 



Overview of DFSORT Panels 

SORT COIITROL FIELDS EtHRY 
COHllAllD ~==> 

SPECIFY VALUES FOR OIlE OR f10RE SORT FIELDS. 

OPTlOIIALLY SPECIFY LItlE COIIIIAIIDS TO EDIT SORT FIELDS 

ROY 1 OF 4 
SCROLL ~ •• > PAGE 

(I Insert, 0 Delete, R Repeat, H ~Iove, C Copy, A After, B Before). 

(USE ENTER TO COtlTllIUE, UP/DOYN COflllAtIDS TO SCROLL, 
HELP COHUAND FOR HELP, £tiD COllHArlD TO SAVE AND EXIT.) 

LItlE SORT 
COIU-IANO FIELD 110. POSITION LEIIGTH FORHAT 

1 n=> 110 ===> 5 ===> CH 
2 .n> 115 ===> 5 ===> CH 
3 .n> 145 ===> 15 ===> CH 
4 •• => 160 ===> 2 ===> CH 

*"**" EttD OF SORT FIELDS ***** 

Figure 14. SORT Control Fields Entry Panel 

SORT 
ORDER 

===> A 
===> A 
===> A 
===> A 

The sequence in which you list the control fields becomes the order of priority 
DFSORT uses to arrange your records. If two or more records have identical 
values for the first control field, they are sequenced according to the values in 
the second, and so on. Records with identical values for all the control fields 
retain their original input order or are arranged randomly, depending upon the 
defaults set during installation. You can direct DFSORT to retain the original 
input order with the EQUALS option on the OPTION Statement Data Entry panel. 

For each control field that you want to use, you must specify: 

• The position 
• The length 
• The data format 
• Whether you want ascending or descending order. 

DFSORT identifies your control fields by their POSITION a.nd LENGTH. Type the 
position of the first byte of your first control field (the first position in the record 
is byte 1) into the POSITION field, and its length in bytes into the LENGTH field. 
Remember that the Record Descriptor Word (RDW) occupies bytes 1-4 in 
variable-length records. You can combine adjacent control fields into one, if 
they are in the same format, by specifying the position of the first control field 
and the combined length of both control fields. DFSORT processes the com­
bined control fields as a single long one. 

The FORMAT field indicates to DFSORT which format to use to read the data in 
that particular field. The default is CH for character data. See Table 8 on 
page 135 for a complete listing of acceptable data formats and their symbols. 

Specify your choice of ascending or descending order in the SORT ORDER or 
MERGE ORDER field with A or D. You can use ascending and descending order 
simultaneously for different control fields within the same job. You can also 

154 DFSORT: Application Programming: Guide 



Overview of DFSORT Panels 

specify E to indicate that your control fields will be modified by an E61 exit 
routine before DFSORT processing. See "E61 Exit: Modifying Control Fields" on 
page 200 for information on the E61 exit. 

After you finish with your first control field, move on to any others you want to 
use. If you are working with multiple control fields, you can save time by using 
line commands to add, delete or rearrange control fields. You can insert blank 
control fields, delete fields that you do not want to use, or repeat fields once or 
many times. You can also copy or move control fields from place to place 
within the list. Line commands let you quickly modify lists of control fields to 
perform different tasks without having to retype the entire list. Valid line com­
mands are shown in Table 9. 

Table 9. Line Commands You Can Use in DFSORT Panels 

Use: To: 

I Insert a single unused field after a line. 

Ix Insert x unused fields after a line. 

1- Insert a single unused field before a line. 

I-x Insert x unused fields before a line. 

0 Delete a single field. 

Ox Delete x fields, including this one. 

DO Mark the first and last fields of a block of fields to be deleted. 

R Repeat a single field. 

Rx Repeat a single field x times. 

RR Mark the first and last fields of a block of fields to be repeated. 

RRx Mark the first and last fields of a block of fields to be repeated x 
times. 

e Mark a single field to be copied. 

ex Mark the first of x fields to be copied. 

ee Mark the first and last fields of a block of fields to be copied. 

M Mark a single field to be moved. 

Mx Mark the first of x fields to be moved. 

MM Mark the first and last fields of a block of fields to be moved. 

A Designates the field after which fields are to be moved or copied. 

B Designates the field before which fields are to be moved or copied. 

Specifying the Order with the SORT or MERGE Statement Free Form Entry Panel 
You see the SORT or MERGE Statement Free Form Entry panel only if you spec­
ified Y in the ENTER SORT or MERGE CONTROL STATEMENT IN FREE FORM field on 
the second page of the SORT or MERGE Entry Panel. 

The SORT or MERGE Statement Free Form Entry panel lets you write your own 
control statements to use in the job. You enter your control statements with the 
same coding conventions you use when writing a DFSORT application without 

Chapter 4. Using Panels to Create and Submit DFSORT Jobs 155 



Overview of DFSORT Panels 

the panels. Use the Free Form panel to enter DFSORT control statements when 
you do not want to use the Control Fields Entry panels to help you build them. 

The panel contains 15 lines into which you can type DFSORT control state­
ments. Consider the following as you organize statements and insert com­
ments: 

• To continue a statement on the next line, break the line at a blank space 
following a comma or a semicolon. 

• Blank lines are ignored, but any entries you make on the Free Form panel 
are passed to DFSORT exactly as you type them. Free form entries are not 
verified automatically, so you must use correct syntax. 

• DFSORT ignores any blank lines you leave between control statements, but 
any lines that begin with an asterisk (*) in column 1 are inserted into your 
job as comment statements. 

See Figure 15 for an example of how you could use the SORT Free Form Entry 
panel. 

Notes: 

• You can use the Free Form Entry panels to insert non-DFSORT control 
statements to be processed through DFSORT's Extended Function Support 
interface. See Appendix B, "Using Extended Function Support (EFS)" on 
page 315 for details on using EFS. 

• The General Statement Free Form Entry panel lets you insert up to 30 add i­
tionallines of free form control statements into your job. See "General 
Free Form Statement" on page 166 for details. 

SORT STAWtENT FREE FORN ENTRY 
CO~II·tANO ===> 

EtITER SORT STATEHENT ItI FREE FORN: 

aDa> .SORT THREE FIELDS 

===> SORT FIELDS=(10,8,CH,A, 
===> 
J;==> 
111111> 

all_> 

===> 
===> 
===> 

20,2,BI,D, 

5,3,CH,A) 

UPPERCASE COIlVERSIOtl EIIABLED BY PROFILE. 

USE EtlTER TO COIlTlIIUEj 
USE HELP COHIWIO FOR HELPj USE EtID COHIW1D TO SAVE AlIO EXIT. 

Figure 15. SORT Statement Free Form Entry Panel 

156 DFSORT: Application Programming: Guide 



Overview of DFSORT Panels 

Using DFSORT Control Statements: Control Statements Selection Panel 
You see the Control Statements Selection panel only if you entered Y on the 
VIEW CONTROL STATEMENTS SELECTION PANEL field on the second page of the 
SORT, COPY, or MERGE Entry Panel. Use the Control Statements Selection 
panel to select additional DFSORT control statements such as OPTION, 
INCLUDE, INREC, and SUM. 

Activating Control Statements 
Available control statements are listed on the left side of the panel, with their 
descriptions to the right. Only those control statements with "YES" in the 
column headed "ACTIVE" are activated for your job. Statements with "NO" in 
the column are not inserted into your job, but can be activated by typing Y into 
the blank space to the right of the arrow. You deactivate control statements the 
same way by typing N. By turning control statements on or off, you create dif­
ferent applications using different combinations of statements. [)eactivated 
statements are not erased between sessions, and can be inserted into any 
application by reactivating them. 

Figure 16 illustrates the Control Statements Selection (SORT) panel filled out to 
use the INCLUDE control statement without modification, to activate the SUM 
and INREC control statements for modification and use, to deactivate the MODS 
control statement, and to browse the control statements that would be created 
by the General Statement Free Form Entry panel were you to activate it. 

CONTROL STATEfIENTS SELECTION (SORT) 
COI·UlAND ===> 

OPTIONALLY SPECIFY SELECT CODE ON ONE OR I·IORE STATEIIEtITS 
( Y Use statement, N Do not use statement, B Browse statement): 

STATHIENT ACTIVE 
OPTION 1lI2=> NO (Various options) 
ItICLUDE ===> YES (Include only selected records) 
mIlT ===> tiD (Exclude selected records) 
SUI·I ===> Y 1·10 (Summarize/eliminate records with duplicate keys) 
IfIREC ===:> Y YES (Reformat records before sort) 
OUTREC ===> tiD (Reformat records for output) 
ALTSEQ ===> NO (Changes to standard collating sequence) 
nODS ===> tl YES (User exits) 
RECORD =:::1> NO (Unavailable input format/length information) 
DEBUG =c=> 110 (Various debugging options) 
FREEFORI·I ===> B NO (Free form entry of statements) 

USE EtHER TO COtITltIUE; 
USE HElP COHl·IAtiD FOR HELP; USE Ello COHIIAND TO SAVE At/D EXIT. 

Figure 16. Control Statements Selection Panel (SORT) 

Each control statement has one or more panels you use to direct the function of 
the statement in your application. When you press ENTER after speCifying Y 
select codes on the Control Statements Selection panel, you see the panels for 
each statement you specified, one after the other. You can modify them or 
retain them unchanged. After you inspect all specified panels you return to the 
Control Statements Selection panel and can continue constructing your job. 

Chapter 4. Using Panels to Create and Submit DFSORT Jobs 157 



Overview of DFSORT Panels 

Note: Control statement panels must have entries in the fields to remain acti­
vated. For example, if you delete all the entries on a panel and then exit with 
the END command (which saves the blank panel), DFSORT Panels deactivates 
the statement automatically. 

You can also type B (BROWSE STATEMENT) instead of Y or N to display any 
statement as DFSORT Panels would create it based on the current settings of 
its control statement panel. Use this option for a quick look at the statement in 
final format to decide if you want to use or modify it. 

Editing DFSORT Control Statements 
With DFSORT Panels, you can use control statements to perform the same 
operations on your data sets that you perform when you create and submit 
OFSORT jobs in non panel mode. Each control statement has one or more data 
entry panels where you specify necessary parameters, relational conditions, or 
other values. You decide how you want the control statement to function, and 
the panels create the statement for you in correct format. 

Press ENTER to verify your entries. Use END to save changes and go to the 
next control statement panel that you specified (or return to the Control State­
ments Selection panel if no further statements were selected). 

If you decide not to use a particular control statement in your job after you are 
within the data entry panel, you can exit the panel with either the END or the 
CANCEL command. Exiting with END saves the changes you have made to the 
panel. Exiting with CANCEL erases any changes you have made. The END or 
the CANCEL commands take you either to the next data entry panel (if you 
selected any other control statements on the Control Statement Selection 
panel) or back to the Control Statements Selection panel. When you return to 
the Control Statements Selection panel, enter the N select code in the field next 
to any control statements that you decided not to use, and press ENTER to 
deactivate them. 

You can use REINIT from the command line of a data entry panel to reinitialize 
all the pages with default entries or blanks in all the fields. Use REINIT to start 
over with all new entries. 

The control statements in DFSORT Panels work the same way that they do in 
JCL-invoked OFSORT applications. See Chapter 3, "Using DFSORT Program 
Control Statements" on page 53 for information on how control statements 
operate and which parameters are available to you in each of them. The fol­
lowing discussions explain only those features unique to using control state­
ments in OFSORT Panels. 

ALTSEQ Statement: The AL TSEQ statement lets you change the EBCDIC col­
lating sequence for any control fields you specify with format AQ. If CHAL T is 
in effect, your alternate collating sequence is also used for any control fields 
you specify with format CH. Your Al TSEQ statement overrides the default alter­
nate collating sequence set during DFSORT installation at your site. 

The two pages of the panel give you two different ways to define your alternate 
collating sequences. You can use either technique (or both) to indicate which 
EBCDIC characters to collate differently. The EBCDIC sequence is still used for 
any characters you do not change. 

158 o FSORT: Application Programming: Guide 



Overview of DFSORT Panels 

Use the AL TSEQ Data Entry panel to set up your alternate sequence by entering 
one or more pairs of hexadecimal values which represent: 

• The original collating position for the EBCDIC character 
• The new collating position for the EBCDIC character. 

For example, if you want @ (hexadecimal 7C) to collate after Z (hexadecimal 
E9), enter the following values and press ENTER: 

SPECIFY VALUES FOR EACH CHARACTER TO BE I·IOVED: 

CHARACTER TO BE HOVED aa=> 7C (EBCDIC character's hexadecimal value) 

NEW PDSITIOI~ OF CHARACTER ===> EA (EBCDIC character's hexadecimal value) 

The values are accepted and blanked out so that you can enter more values. 
@ now collates after Z. 

If you next want # (hexadecimal 7B) to collate after @ (now at hexadecimal EA), 
type the following values and press ENTER: 

SPECIFY VALUES FOR EACH CHARACTER TO BE I·IOVED: 

CHARACTER TO BE I·IOVED ==5> 7B (EBCDIC character's hexadecimal value) 

NEW POSITION OF CHARACTER ===> EB (EBCDIC character's hexadecimal value) 

The values are again accepted and blanked out so that you can enter more. @ 
now collates after Z, and # collates after @. 

The ALTSEQ Code Table on the next page of the panel can show you all of the 
changes you made for your alternate sequence. You can also change the col­
lating sequence directly from the table. The headings 0 through F for the rows. 
and columns of the table correspond to the first and second hexadecimal digits, 
respectively, of the old EBCDIC characters. To change a collating position for 
any EBCDIC character, locate the blank corresponding to its first and second 
hexadecimal digits, and enter the new collating position in the blank. 

The ALTSEQ Code Table displays the current alternate collating settings when­
ever you enter it. 

For more information about the AL TSEQ statement, see page 60. 

DEBUG Statement: Use the Debug Statement Data Entry panel to select 
various debugging options for your application. Normally, you do not need to 
use these options, but they might be useful when you try to isolate or bypass a 
problem in the DFSORT program. Use these options only if necessary, as their 
use can degrade performance. 

The Debug Statement Data Entry panels for SORT, COPY, and MERGE are 
similar, but only those options which are relevant to .each application appear on 

Chapter 4. Using Panels to Create and Submit DFSORT Jobs 159 



Overview of DFSORT Panels 

the corresponding panels. To select a DEBUG option for inclusion in your job, 
enter an S in the corresponding field. 

See page 62 for detailed information about what these options do and when you 
might want to use them: 

• BSAM (page 63) 
• BUFFERS (page 63) 
• EQUCOUNT (page 66) 
• NOASSIST (page 66). 

INCLUDE Statement: Use the INCLUDE Statement Data Entry panel to limit the 
records in your output data set to those for which a logical expression you 
specify is true. You can specify up to two relational conditions combined with a 
logical AND or OR operator to compare fields to fields, or fields to constants. 
(You can also limit the records in your input data sets by omitting, instead of 
including, those records for which a logical expression is true. See the fol­
lowing section describing the OMIT statement.) 

For a field-to-field comparison, describe the POSITION, LENGTH and FORMAT of 
the first and second control fields in the entry fields marked with a 1, and a 2, 
respectively. Remember that the Record Descriptor Word (RDW) occupies 
bytes 1-4 in variable-length records. Valid format codes are listed on the panel, 
and are explained on page 70. 

Enter a comparison operator in the COMPARISON field. Valid comparison opera­
tors are: 

EQ Equal to 

NE Not equal to 

GT Greater than 

GE Greater than or equal to 

LT Less than 

LE Less than or equal to. 

If you want to compare the first control field with a constant, instead of another 
control field, enter the constant in the CONSTANT field. The correct formats for 
constant strings are identical to those you use in non panel mode: 

Decimal number format: (± In 

Character string format: C'xx ... x' 

Hexadecimal string format: X'xx ... x' 

See page 69 for more information about constants and comparisons. 

Note that if you specify a character constant string. you must ensure that you 
enter uppercase and lowercase characters appropriately between the quote 
marks. DFSORT Panels passes text within the character constant string to the 
program exactly as you enter it on the panel; it cannot determine whether the 
case is correct. 

160 DFSORT: Application Programming: Guide 



Overview of DFSORT Panels 

On the second page of the panel, a second relational condition can be 
described in the same fashion as the first. Direct DFSORT to combine the two 
conditions into a single logical expression by specifying the AND or OR oper­
ator on the second page of the panel. If your expression requires more than 
two relational conditions, use the General Statement Free Form Entry panel to 
specify your INCLUDE statement. 

Padding is a technique that inserts fillers in the data, usually zeros or blanks. 
Truncation is the deletion or omission of a leading or of a trailing portion of a 
string. See "Padding and Truncation" on page 75 for specific information. 

For more information about the INCLUDE statement, see page 68. 

OMIT Statement: The OMIT statement, like the INCLUDE statement, is used to 
screen the records to be included in your output data set. With OMIT, you 
specify a logical expression that, if true, excludes a record from your output 
data set. The two pages of the OMIT Statement Data Entry panel work in the 
same way as the INCLUDE Statement Data Entry panel; see the discussion of 
that panel for details. 

Use either the INCLUDE or the OMIT statement to filter your records, depending 
upon whichever is more convenient for you. You cannot specify both within the 
same job. 

See page 95 for more information about using OMIT. 

INREC and OUTREC Statements: The panels you use to create INREC and 
OUTREC control statements are similar, and you specify information in the 
fields in similar ways. 

Use the INREC Input/Separation Fields Entry panel to reformat records prior to 
further processing during DFSORT execution. You can delete or reorder fields, 
and insert blanks or zeros. DFSORT processes the INREC statement before 
SORT, COPY, MERGE, SUM, OUTREC, and the E35 user exit, but after INCLUDE, 
OMIT, and the E15 user exit. When using INREC, remember that SORT, COPY, 
MERGE, SUM, OUTREC and the E35 user exit always refer to the positions and 
lengths of reformatted records. INCLUDE, OMIT, and the E15 user exit refer to 
the original records. 

Use the OUTREC Input/Separation Fields Entry panel to reformat records after 
all other processing but before the records are written. You construct the 
OUTREC statement from the panel in the same way that you construct the 
INREC statement. As with INREC, you can delete or reorder fields, and insert 
blanks or zeros. You can use INREC and OUTREC statements in the same job 
to reformat records both before and after other processing. 

Both the INREC and OUTREC Input/Separation Fields Entry panels initially 
contain four unused fields, but you can work with up to 100 by adding fields with 
line commands (see Table 9 on page 155). Type the position of the first byte of 
your first input field (the first position in the record is byte 1) into the POSITION 
field, and its length in bytes into the LENGTH field. For variable-length records, 
the first input field must consist of or include the Record Descriptor Word (ROW) 
in bytes 1-4. 

Chapter 4. Using Panels to Create and Submit DFSORT Jobs 161 



Overview of DFSORT Panels 

If you want to alter the alignment of the input fields within your reformatted 
records, you can do so with the ALIGNMENT field on the panel. Specify a value 
in the field indicating your choice of displacement boundaries upon which that 
input field should be placed. (Because displacements start at byte 0 and posi­
tions start at byte 1, the displacement is always one byte less than the posi­
tion.) Specifying an alignment value causes DFSORT to skip bytes before an 
input field, if necessary, so as to align the input field on the boundary you indi­
cate. Binary zeros are placed in the bytes that are skipped. 

The alignment values you can use are: 

H Halfword aligned. The displacement is a multiple of 2 (0, 2, 4, etc.). 

F Fullword aligned. The displacement is a multiple of 4 (0, 4, 8, etc.). 

o Doubleword aligned. The displacement is a multiple of 8 (0, 8, 16, etc.). 

If you specify an alignment value for an input field, you must also specify the 
position and length. 

You can use the entries in the SEPARATION field to insert blanks or binary zeros 
into your records. These can be placed before, between, or after input fields or 
other separation fields. Separation fields permit you to improve the readability 
of data lists. 

Each separation field consists of the length of the separation field followed by 
the separation type. Valid types are X for blank, and Z for binary zero. Length 
can vary from 1 to 256 bytes. For example, ax means to insert eight blanks, 
while 240Z means to insert 240 bytes of binary zeros. 

For variable-length records: 

• Separation fields cannot come before the first input field (the Record 
Descriptor Word) in bytes 1-4. 

• Separation fields cannot come after the last input field if the length is 
omitted (that is, if the last field is for the variable part of the record). 

A SEPARATION field can be specified without also specifying values in the POSI­
TION, LENGTH, or ALIGNMENT fields. 

You can save time by using line commands to add, delete or rearrange entries 
in the INREC or OUTREC panels. The line commands in the INREC and 
OUTREC panels work in the same way as those in the SORT and MERGE 
Control Fields Entry panels (see Table 9 on page 155). 

Because processing is quicker with shorter records, you can save time if you 
use INREC to delete fields and OUTREC to insert blanks or zeros. Rearranging 
the order of fields does not change total record length, so neither statement 
gives you slower processing after reordering fields. Both statements have 
these functions so that you can choose whichever is more convenient for you. 

If processing time is not an issue, you can simplify working with your control 
fields by editing your records with OUTREC. Using OUTREC lets you specify 
positions and lengths in other control fields as they appear in your input data 
sets, while INREC requires that you specify positions and lengths in some of the 
other control statements as they appear in the reformatted records. However, 

162 DFSORT: Application Programming: Guide 



Overview of DFSORT Panels 

INREC can improve performance when you use it to make your records signif­
icantly shorter. 

For more detailed information about the INREC and OUTREC statements, see 
pages 78 and 121. 

MODS Statement: Use the MODS Statement Data Entry panel to direct DFSORT 
calls to user exit routines which you supply. The MODS panel lets you specify: 

• Which exit routines to call 
• Where the exit routines are located 
• Approximately how much main storage each routine uses 
• Whether certain exit routines are written in COBOL. 

The panel lists the exits you can use. Not all exits apply to all applications, so 
the list differs depending upon whether you want to sort, copy, or merge data 
sets. See Chapter 5, "Using Your Own Exit Routines" on page 181 for com­
plete details about each of these exits, as well as restrictions that apply to the 
MODS statement. 

You describe your exit routine in the MEMBER NAME, MAIN STORAGE, and COBOL 
ROUTINE fields. Type the 1- to 8-character member name of that routine in the 
appropriate MEMBER NAME field. For example, if you link-edit an E31 routine 
into 'SYSTEM1.EXITS(SPOPEN) I and an E35 routine into 
'SYSTEM2.EXITS(ADDZIP)I, the E31 and E35 member names would be SPOPEN 
and ADDZIP, respectively. 

You can use any valid operating system name for a routine. You can also keep 
several alternative routines with different names in the same library (for 
example, E35A, and E35B), and select the one that you want to call for a given 
application by its name. 

If you enter a MEMBER NAME, you must also enter the approximate amount of 
bytes of main storage that the routine requires in the corresponding MAIN 
STORAGE field. The value that you specify must be the approximate sum of: 

• The storage required fot the load module of the routine 

• The storage that the routine obtains using system services such as 
GETMAIN and OPEN 

• The storage required to load the COBOL library routine (if the routine is 
written in COBOL). 

If you specify an E15 or E35 exit routine, indicate whether or not your routine is 
written in COBOL by typing Y or N, respectively, in the COBOL ROUTINE field. 

Enter the names of the library (partitioned) data sets containing your exit rou­
tines in the LIBRARY DSN fields. You can use from one to eight data set names 
for sorting, and from one to four data set names for merging and copying, but 
you must have a data set name in the LIBRARY DSN 1 field to continue. If the 
same data set contains two or more members, you need to specify the library 
name only once. Note that the order in which you specify data set names in the 
LIBRARY DSN fields determines the search order used to locate them. DFSORT 
ignores any blank LIBRARY DSN fields. 

Chapter 4. Using Panels to Create and Submit DFSORT Jobs 163 



Overview of DFSORT Panels 

Use the VERIFY LIBRARY DSN field to check that your library data set names are 
valid. If you type a Y into the field, you will receive an error message on the 
panel when you press ENTER if any of the library data set names you specified 
are invalid. Type N to suppress validation messages. Incorrect syntax in your 
library data set names always results in an error message no matter what the 
VERIFY LIBRARY DSN setting is. 

If you know that your library data set names are invalid (as when you construct 
and save a job prior to allocating the library data sets to which it refers), the 
VERIFY LIBRARY DSN field must be set to N to continue. You cannot submit the 
job from the panels this way, but you can save it in a data set and later insert 
the missing JCL parameters such as volume and unit codes. This way you can 
construct and save jobs that you can then edit for use on systems in which your 
data sets are not cataloged. 

For more information about the MODS statement, see page 91. 

OPTION Statement: Use the OPTION Statement Data Entry panel to select 
various DFSORT program options for your application. Only the options rele­
vant to a particular sort, copy, or merge application appear on the corre­
sponding OPTION panel, so some of the following options might not apply to a 
given task. In general, these options let you override DFSORT defaults set 
during installation by your system programmers, and to request optional infor­
mation for your application. What you type into the entry fields depends upon 
the particular option. You might specify Y or N, a number, or simply S to acti­
vate a selection. The necessary values are listed opposite the option entry 
field. 

See the pages listed below for detailed information about what these options 
do, and when you might want to use them: 

ARESALL page 98 
CHALT page 99 
CHECK page 99 
COBEXIT page 101 
DYNALLOC page 101 
EQUALS page 104 
FILSZ page 105 
MAINSIZE page 108 
NOBLKSET page 110 
NOOUTREL page 110 
NOOUTSEC page 111 
NOSTIMER page 111 
NOWRKREL page 111 
NOWRKSEC page 112 
RESALL page 112 
SIZE page 105 
SKIPREC page 113 
STOPAFT page 115 
VERIFY page 116 
VLSHRT page 116. 

RECORD Statement: To process your records, DFSORT must work with their 
format and length. Under certain conditions, this information is unavailable to 
the program from the system control blocks, and must be supplied from the 

164 DFSORT: Application Programming: Guide 



Overview of DFSORT Panels 

Record Statement Data Entry panel. The panels for SORT, COPY, and MERGE 
applications are basically similar and are not discussed separately here. 
Because MERGE applications do not use the E15 user exit routine, references to 
that exit do not apply to the Record Statement Data Entry (MERGE) panel. 

You must specify record type when: 

• You work with VSAM input and VSAM output data sets. 
• You use an E15 exit to provide all of your input records. 
• The system has no record type information about your input data sets. 

Indicate your record type in the OPTIONALLY SPECIFY RECORD TYPE field: 

F Fixed-length records 

V Variable-length records 

D ISCII! ASCII variable-length records. 

You must specify maximum input record length when: 

• You use an E15 routine to provide all your input records. 
• The system has no record length information about your input data sets. 

Indicate the length in the MAXIMUM INPUT RECORD LENGTH (L1) field. For 
variable-length records, the L 1 value you enter must be at least as large as the 
length of your longest input record. 

If you use an E15 exit routine that changes your input record length (for 
example, to eliminate fields within your input records), you must indicate the 
maximum record length after invoking the E15. Enter the number in the 
MAXIMUM LENGTH AFTER E15 (L2) field. For variable-length records, the L2 value 
that you enter must be at least as large as the length of the longest record you 
pass to DFSORT from your exit routine. 

You must specify output record length when it differs from your input record 
length, and the system has no record length information about your output data 
set. Enter your output record length in the MAXIMUM OUTPUT RECORD LENGTH 
(L3) field. For variable-length records, the L3 value that you enter must be at 
least as large as the length of your longest output record. 

For more information about the RECORD statement, see page 127. 

SUM Statement: Use the SUM Summary Fields Entry panel to handle proc­
essing of input records with equal control fields; that is, those records with 
duplicate keys. With SUM, you choose to keep only one record from a group of 
input records with duplicate keys, and can also choose whether or not to sum 
one or more numeric fields from those records. (Select EQUALS on the OPTION 
Statement Data Entry panel to direct DFSORT to retain the first record with each 
unique control field. See page 104 for details on EQUALS). 

To retain only one input record from the set and sum numeric fields, select 1 
(SUMMARIZE RECORDS WITH DUPLICATE KEYS) in the SPECIFY ONE OF THE FOL­
LOWING field. If you choose this option, you must also indicate which of the 
numeric fields (the summary fields) you want to sum. 

To retain only one input record from the set without summing any numeric 
fields, specify 2 (ELIMINATE RECORDS WITH DUPLICATE KEYS) in the same entry 

Chapter 4. Using Panels to Create and Submit DFSORT Jobs 165 



Overview of DFSORT Panels 

field. If you choose this option, you do not need to enter further information on 
the panel. Any existing summary fields on the panel are saved but otherwise 
ignored. 

The other entry fields on the panel let you describe which numeric summary 
fields to sum during oFSORT processing. The panel initially displays four 
unused summary fields but you can work with up to 100 by adding fields with 
line commands. See Table 9 on page 155 for an explanation of the line com­
mands you can use. Type the position of the first byte of each summary field 
(the first position in the record is byte 1) into the POSITION field, and the length 
in bytes into the LENGTH field. Indicate the data format in the FORMAT field. 
Remember that the Record Descriptor Word (ROW) occupies bytes 1-4 in 
variable-length records. Valid format codes are explained on page 141. 
Summary fields can be located anywhere within the first 4092 bytes of your 
input records, as long as they do not overlap control fields, other summary 
fields, or the Record Descriptor Word (ROW). 

For more information about the SUM statement. see page 141. 

General Free Form Statement: Use the General Statement Free Form Entry 
panel to insert complete oFSORT program control statements into your job. 
The General Free Form panel works like the SORT and MERGE Statement Free 
Form panels. You can enter up to 30 lines containing oFSORT control state­
ments. Specify a comment statement by typing an asterisk (*) in column 1. 
Blank lines are ignored, but any entries you make on the Free Form panel are 
passed to oFSORT exactly as you type them. Free form entries are not verified 
automatically, so you must use correct syntax. 

If you enter a control statement (for example, INCLUDE) in the General State­
ment Free Form Entry panel and also use the corresponding data entry panel 
for that statement, both statements are passed to oFSORT. However, because 
oFSORT Panels places the free form statement before the data entry statement, 
OFSORT ignores the data entry statement as a duplicate. 

Note: You can use the General Statement Free Form Entry panel to insert 
non-OF SORT control statements to be processed through OFSORT's Extended 
Function Support interface. See Appendix B, "Using Extended Function 
Support (EFS)" on page 315 for details on using EFS. 

Inspecting Your Work: Review Control Statements Panel 
After you enter all required information describing your OFSORT sort, copy, or 
merge application, you can inspect the completed program control statements 
before saving or submitting the job. You see only the Review Control State­
ments panel if you specified Y in the REVIEW CONTROL STATEMENTS BEFORE EXE­
CUTION field on the second page of the SORT, COPY, or MERGE Entry Panel. 
The panel displays all active control statements as they would be passed to 
OFSORT. 

Use the Review Control Statements panel (see Figure 17 on page 167) to check 
whether you activated the correct control statements, and that they are appro­
priate for your application. If you used free form entry to write some or all of 
the control statements for your job, you can check them here for errors and 
proper syntax. Any program control statements created using OFSORT control 
statements entry panels are already in correct format and syntax. Free form 
entries are not verified automatically. 

166 o FSORT: Application Programming: Guide 



Overview of DFSORT Panels 

REVIEI4 CONTROL STAHI-IENTS 
COt·!HAUD ===> 

(USE £lITER TO PERFORt·1 DFSORT; USE UP/DOl·IN COt·I~IAtlDS TO SCROll; 
USE HELP COIU·IAtiD FOR HELP; USE END COt·!HAUD TO EXIT.) 

SORT FIElDS=(1,75,CH,A) 

LINE 1 OF 1 
SCROLL ===> PAGE 

---------- END OF CONTROL STATEl-iEtHS ------------------------------------------

Figure 17. Review Control Statements Panel 

If the statements are incorrect, or are not appropriate to your task, use END one 
or more times to return to earlier panels that you can use to alter them. You 
activate or deactivate control statements by using the Control Statements 
Selection panel; you modify control statements by using the control statement 
data entry panels. 

If you are satisfied with the way your statements appear, press ENTER to con­
tinue. If you specified foreground execution of the job, DFSORT Panels proc­
esses your job under TSO. If you specified background execution, DFSORT 
Panels takes you on to the panels from which you can submit the job, or save 
the application in a data set for future use. 

Using Panels to Save or Submit Your DFSORT Job 

Using Foreground Execution 
If you specify the foreground environment, DFSORT Panels automatically 
submits your completed application as a TSO job. TSO jobs are processed as 
soon as you complete all required panels, so the last panel that you see 
depends upon whether you are sorting, copying, or merging data sets, and 
whether you chose to work with or review any program control statements. 
While the job is running, your terminal displays TSO and DFSORT messages as 
they are issued. These messages contain important information about your job, 
including any errors detected by TSO or DFSORT, so examine them carefully 
when they appear. These messages are cleared from the screen when you 
press ENTER, and can be regenerated only by rerunning the job. After you 
clear the messages from the screen, DFSORT Panels returns to the first page of 
the SORT, COPY, or MERGE Entry panel that you used to begin building your 
job. 

Chapter 4. Using Panels to Create and Submit DFSORT Jobs 167 



Overview of DFSORT Panels 

Using Background Execution 
If you specify the background environment, you must use the DFSORT Job Sub­
mission Entry Panel to select whether to submit the job immediately, or save it 
in a data set for future use. As with foreground mode, the job is submitted or 
saved as soon as you complete all required panels. 

Choosing to Save or Submit the Job: DFSORT Job Submission Entry Panel 
To submit your background job to the execution queue, type 1 (SUBMIT JOB) in 
the SELECT ONE OF THE FOLLOWING field near the top of the panel. To retain the 
application for future use, specify 2 (SAVE GENERATED JOB IN A DATA SET), as 
shown in Figure 18. If you choose this option, you must also specify values in 
the DATA SET NAME and REPLACE CONTENTS fields to continue. The data set 
must be pre-allocated and cataloged with either fixed or fixed-block format and 
a logical record length of 80. A member of a partitioned data set (PDS) can be 
used provided that the PDS has the characteristics listed above. 

( 
DFSORT JOB SUBHISSlotl EIITRV PAUEL 

COIIHAIID ===> 

SELECT OIIE OF THE FOLLOHIIIG ===> 2 
I SUBIHT JOB 2 SAVE GEIlERATED JOB Itl A DATA SET 

IF OPTIOII "2" IS SELECTED, SPECIFV: 
DATA SET IIAIIE ===> SUB.CIITl(SORT5) 
REPLACE COIlTEIlTS =:0> Y (V or U) 

JOB STATEfIEIiT IIIFORI·IATlOll: (verify before proceeding) 
==-> IIH545711D JOB (TSOUSER) I 'UAUE' 
===> II" 
=.=> II" 
===> II" 
===> II" 
===> II" 
===> II" 

VIH/ OR CHAIIGE EXECUTE STATEIIElITS FROII PROFILE ===> V (V or II) 

USE EIITER TO CorHlI~UE; 
USE HELP COIlIiAIiD FOR HELP; USE ElID COrulAtlO TO EXIT 

Figure 18. DFSORT Job Submission Entry Panel 

You can use the REPLACE CONTENTS field either to write over previous contents 
of the data set or member, or to append your current job to the end of an 
existing data set or member. Specify Y to write over data, or N to concatenate 
your completed DFSORT job to the previous contents. 

The DFSORT Job Submission Entry Panel also displays current JOB statements 
in your DFSORT profile. This JCL typically includes a JOB, JOBUB, or JOBCAT 
statement, and JES2 or JES3 control statements. You can inspect or edit up to 
seven lines of JCL on this panel. 

To edit the JOB statement information for your current application (and also to 
update your default values) before you save or submit it, type over the existing 
text with the statements you want to use. The values are temporarily updated 
in your DFSORT user profile when you save your profile changes. New values 

168 DFSORT: Application Programming: Guide 



Overview of DFSORT Panels 

are saved permanently in your DFSORT user profile only when you completely 
exit DFSORT Panels. If you modify the profile information but encounter an 
abend before exiting DFSORT Panels, then your modifications might be lost. To 
work with the EXEC statement information to be attached to your job, type Y in 
the VIEW OR CHANGE EXECUTE STATEMENTS FROM PROFILE field. 

Note: DFSORT Panels generates SORTIN, SORTOUT, SORTWK01, and SYSIN 
job control statements automatically, but reads the JOB and EXEC statements 
from your DFSORT user profile. See Chapter 2, "Executing DFSORT with Job 
Control Language" on page 15 for information on coding job control language 
for DFSORT Panels. 

Editing the JCL EXEC Statement: DFSORT Execute Statement Entry Panel 
You see this panel only if you specified Y in the VIEW OR CHANGE EXECUTE 
STATEMENTS FROM PROFILE field on the previous panel. It displays the current 
job control language EXEC statements, stored in your DFSORT profile, that are 
used to' process your DFSORT job (see Figure 19). As with the previous panel, 
you can verify or change statements here before you save or submit the job. 
Remember that the values are temporarily updated in your DFSORT user profile 
when you save your profile changes. New values are saved permanently in 
your DFSORT user profile only when you completely exit DFSORT Panels. If 
you modify the profile information but encounter an abend before exiting 
DFSORT Panels, then your modifications might be lost. 

DFSORT EXECUTE STAW1ENT EllTRY PANEL 
COUllAtJD ===> 

SPEC) FY DFSORT EXECUTE STATHIENT ItIFORHATlON: 

===> 11* 
===> II" 
::=> II" 
===> //STEPl EXEC PGI,I=ICHIAII 
===> II" 
===> II" 
-==> II" 
===> IISYSOUT 00 SYSOUT·* 
===> II" 
===> II" 

USE ENTER TO UPDATE PROFILE; 
USE HELP COI'IIIAtJD FOR HELP; USE EtID COHI1AtID TO EXIT 

Figure 19. DFSORT Execute Statement Entry Panel 

The JCL on this panel typically includes an EXEC statement that specifies 
PGM = SORT, PGM = ICEMAN, or a PROC name, and a SYSOUT DO statement 
for DFSORT messages. You can work with up to 10 lines of JCL on the panel. 

Note: DFSORT Panels generates SORTIN, SORTOUT, SORTWK01, and SYSIN 
job control statements automatically, but reads the JOB and EXEC statements 
from your DFSORT user profile. As before. see Chapter 2, "Executing DFSORT 

Chapter 4. Using Panels to Create and Submit DFSORT Jobs 169 



Overview of DFSORT Panels 

with Job Control Language" on page 15 for information on coding job control 
language for DFSORT Panels. 

In both the DFSORT Job Submission Entry Panel and the DFSORT Execute 
Statement Entry Panel, you can reset any line of JCL to the defaults that 
appeared when you entered the panel. Simply type over the line or lines with 
blanks, and press ENTER. The default JCL reappears in the blanked lines, and 
you can r~tain it or modify it again. If you decide to modify the JCL, ensure that 
you follow the procedures and requirements set during installation of DFSORT 
at your site. 

When you finish inspecting or changing the EXEC statements on the panel, 
press ENTER to save or submit your DFSORT job. 

In Figure 20, you see an example of how a job stream created with DFSORT 
Panels might appear after you save it in a data set. The same job stream is 
submitted if you specified background execution. (Jobs executed in the fore­
ground environment use CLIST processing.) 

IIH545711D JOB (TSOUSER) , 'NAHE' 
11* 
11* 
1/" 
1/" 
1/" 
1/* 
1/* 
1/* 
1/* 
I/STEPI EXEC PGt·I=IWIAtl 
11* 
1/" 
IISYSOUT DO SYSOUT=" 
1/" 
1/* 
II" 
I ISORTItI DO DISP=SHR, 
I I DSN=H545711. SAHPlE. DATAl 
IISORTOUT DO DISP=OLD, 
1/ OSN-H545711. SAHPLE. SORTOUT 
IISORTHKOI DO UtllT=SYSOA,SPACE=(CYl, (5,5)) 
IISYS Itl DO * 

SORT FIElDS=(I,75,CH,A) 
/* 

Figure 20. An Example of a Completed Job for Background Execution or Saving 

Changing Your DFSORT User Profile 
The information in your DFSORT user profile controls the way DFSORT Panels 
operates during your terminal session. The profile automatically controls: 

• The logging of trace data 
• How DFSORT Panels recovers from abends 
• What job control language (JCL) is used to process background jobs 
• Whether to issue diagnostic messages 
• Whether to convert your free form entries to uppercase. 

After the correct values are set during your initial use of the panels, you 
normally do not need to use or see the profile to create DFSORT applications. 

170 DFSORT: Application Programming: Guide 



Overview of DFSORT Panels 

The Profile application can be accessed from the DFSORT Primary Option 
Menu, along with the sort, copy, and merge applications. Specify the appro­
priate selection to get to the DFSORT Profile Option Menu, shown in Figure 21. 

DFSDRT PROFILE OPTION 1·IEtIU 
EtITER SELECTlOII OR COIII·IAIID ===> 

SELECT OUE OF THE FOLLOHING: 

1 LOGGING AND ABEllO CONTROL 
2 JOB STATEH£NT INFORHATION 
3 DFSORT EXECUTE STATElIENT ItIFORBATlON 
4 DFSORT CONTROL 
X EXIT, RETURN TO OFSORT PRHlARY OPTION t-IENU 

USE HELP COt-U·IAND FOR HELP; USE END COI·IHAtlD TO EXIT 

Figure 21. DFSORT Profile Option Menu 

You can also access the profile directly by entering the PROFILE command on 
the command line of any sort, merge, or copy functional panel. 

The choices in the profile menu correspond to the panels on which you can 
view or change operating defaults. To see any of the profile panels, specify the 
selection corresponding to that panel and press ENTER. Make any necessary 
changes to the entries on the panel, and press ENTER to save them as your 
new defaults. Then use END to return to the DFSORT Profile Option Menu. 

To return to the DFSORT Profile Option Menu without changing the settings in a 
profile panel, use the END command. Using END erases any changes made to 
a panel, so long as they were not previously saved with ENTER. 

Note: Remember that the values are temporarily updated in your DFSORT user 
profile when you save your profile changes. New values are saved permanently 
in your DFSORT user profile only when you completely exit DFSORT Panels. If 
you modify the profile information but encounter an abend before exiting 
DFSORT Panels, then your modifications might be lost. 

If your system programmers installed DFSORT Panels as an option under ISMF, 
then some modifications you make in your DFSORT User Profile also update the 
settings in your ISMF Profile. The entries on the Logging/Abend Control Entry 
Panel and the JOB Statement Entry Panel in DFSORT Panels occupy the same 
storage as the corresponding entries in the ISMF Profile, so any changes you 
make to these values in one profile also update the values in the other. 

Note: If you select DFSORT from ISPF (outside of ISM F), then the ISMF Profile 
is unaffected by changes you make in DFSORT Panels. 

Chapter 4. Using Panels to Create and Submit DFSORT Jobs 171 



Overview of DFSORT Panels 

Four panels control the OFSORT user profile. They are discussed in sequence 
below, along with the defaults that you can modify with them. 

Handling Trace Data and Abends: Logging/Abend Control Entry Panel 
Use this panel to specify values that control whether to log inter-module trace 
data in the ISPF log data set, and whether OFSORT Panels should be allowed to 
recover from an abend, with a record of the results of a DFSORT Panels 
symptom dump being placed in the ISPF log data sets. 

Specify Y in the LOG INTER-MODULE TRACE field to record the trace data in the 
ISPF log data set. A DFSORT Panels trace record in the log has a FUNCTION ID 
of "TRACE," and includes the following data: MODULE ID(xx). An N iii lfie field 
results in no trace data being recorded in the ISPF log data set. 

Note: The LOG INTER-MODULE TRACE is intended only for diagnosing problems. 
You will get better performance from DFSORT Panels if you leave the field set 
to N. 

Specify Y in the RECOVER FROM ABENDS field to direct DFSORT Panels to 
attempt recovery from abends, and to record the results of a DFSORT Panels 
symptom dump in the ISPF log data set. Specify N if you want DFSORT to 
cancel an operation without a symptom dump if an abend occurs. 

Specifying DFSORT Panels Job Control Language 
Two panels in your user profile control the default JCL that the panels generate 
when you process jobs in the background environment. Unless you save 
updated statements when the job is submitted or saved in a data set for future 
use, the statements in the profile are used for every background job. See 
Chapter 2, "Executing DFSORT with Job Control Language" on page 15 for 
details on JCL for DFSORT. If you decide to modify the JCL used to process 
your job, ensure that you follow the procedures and requirements set during 
installation of DFSORT at your site. 

To reset a line on the panel to the default, type over the entry with blanks and 
press ENTER. DFSORT Panels resets the field to the current default value. 

When you execute DFSORT to submit or save your application, ISPF generates 
the necessary job control language line by line from the entries on the first and 
the second panels. This permits you quite a bit of flexibility in coding your job 
control language. You can enter both JOB and EXEC statements on either 
panel, so long as the JOB statements appear before the EXEC statements. 
Because ISPF reads the JOB Statement Entry Panel before reading the DFSORT 
Execute Statement Entry Panel, you must ensure the correct order of your state­
ments if you choose to combine them between panels. 

Note: DFSORT Panels generates SORTIN, SORTOUT, SORTWK01, and SYSIN 
job control statements automatically, but reads the JOB and EXEC statements 
from your DFSORT user profile. As before, see Chapter 2, "Executing DFSORT 
with Job Control Language" on page 15 for information on coding job control 
language for DFSORT Panels. 

172 DFSORT: Application Programming: Guide 



Overview of DFSORT Panels 

Specifying the JOB Statement: JOB Statement Entry Panel 
Use this panel to specify up to seven lines of job control language for proc­
essing background jobs. This JCL typically includes a JOB, JOBUB, or 
JOBCAT statement, and JES2 or JES3 control statements. 

Specifying the EXEC Statement: DFSORT Execute Statement Entry Panel 
Ten more lines are available to you here for EXEC statements and any other 
JCL that you might want to use in your jobs. This JCL typically includes an 
EXEC statement that specifies PGM = SORT, PGM = ICEMAN, or a PROC name, 
and a SYSOUT DO statement for the DFSORT message set. 

Handling Messages and Case Conversion: DFSORT Control Entry Panel 
The two fields on this panel control whether DFSORT issues diagnostic mes­
sages, and whether your entries on Free Form Entry panels should automat­
ically be converted to uppercase. 

Requesting Diagnostic Messages 
DFSORT normally issues informational and error messages during execution. 
Additional diagnostic messages can be requested to document EXCP counts, 
buffer allocation, and processing techniques. 

You might want to see these diagnostic messages to tune your application or 
determine why a particular processing technique could not be used. To record 
DFSORT diagnostic messages, specify Y in the ISSUE DFSORT DIAGNOSTIC MES­
SAGES field. DFSORT automatically generates a SORTDIAG DO statement for 
messages from background execution, or the corresponding ALLOCATE 
command to achieve the same result from foreground execution under TSO. 
Specifying N in the field directs DFSORT not to issue diagnostic messages. 

Requesting Conversion from Lower to Uppercase 
Lowercase input in DFSORT statements is valid only in comments or in char­
acter constants within the INCLUDE or OMIT control statements. You can 
ensure that all entries on the Free Form panels are converted to uppercase 
automatically. Enter Y in the CONVERT FREE FORM ENTRY TO UPPERCASE field. 
This will probably be your most common setting. If you do need to enter lower­
case text in a Free Form panel, select N in the field to prevent automatic con­
version. You must then use uppercase text in the control statements wherever 
it is required. 

If you select N to retain lowercase text on a Free Form panel, but later change 
your selection to y, note that your input is converted to uppercase if you save 
entries on the Free Form panel again. Do not change the select code from N to 
Y until.you no longer require lowercase input. 

Each Free Form panel tells you whether the lowercase to uppercase conversion 
is ENABLED or DISABLED. 

Chapter 4. Using Panels to Create and Submit DFSORT Jobs 173 



Overview of DFSORT Panels 

Using SORTREC for a Quick and Simple Sort Under ISMF 
If your site has DFSORT Panels installed as an ISMF option, you can perform 
quick, basic sorts using SORTREC, an ISMF data set application line operator. 
SORTREC lets you sort by up to four control fields at a time, using a single 
entry panel. 

Select the ISMF data set application option from the ISMF Primary Option Menu, 
and generate your data set list using the Data Set Selection Entry Panel. When 
the Data Set List panel is displayed, enter SORTREC in the line operator field 
next to the name of the data set whose records you want to sort. 

When the SORTREC Entry Panel is displayed, the data set name from your ISMF 
data set list appears automatically in the SPECIFY ONE OR MORE FOR DATA SET 
field. There are three versions of the SORTREC Entry Panel. The format varies 
slightly depending upon whether your input data set is physical sequential, par­
titioned, or VSAM (the illustration shows the most complex version). 

If you are sorting a partitioned input data set, specify the member name in the 
ENTER MEMBER NAME field of that SORTREC panel. If you are sorting a VSAM 
input data set, specify whether the input record length is fixed or variable by 
entering F or V in the ENTER RECORD TYPE (F OR V) field. Specify the name of 
your output data set in the OUTPUT DSN field, and the member name, if any, in 
the field labeled IF PARTITIONED DATA SET ENTER MEMBER NAME. 

Complete the remaining fields on the SORTREC Entry Panel (see Figure 22 on 
page 175) in the same manner as on the SORT Control Fields Entry panel. 
Type the position of the first byte of your first control field (the first position in 
the record is byte 1) into the POSITION field, and its length in bytes into the 
LENGTH field. Remember that the Record Descriptor Word (ROW) occupies 
bytes 1-4 in variable-length records. Indicate the format of data in the FORMAT 
field (valid format codes are listed in Table 8 on page 135). Specify A or 0 in 
the SORT ORDER field to select ascending or descending sort order, respec­
tively. 

174 DFSORT: Application Programming: Guide 



Getting HELP 

Overview of DFSORT Panels 

SDRTREC EtHRY PAtlEL 

SPECIFY OIlE DR HORE FOR DATA SET: <dsname from ISIIF data set list> 
EUTER IIEHBER IIAt·IE ==:> IUPUT3 

SPECIFY OUTPUT DATA SET: 
OUTPUT DSN =0=> SORT.SAHPDUT 
I F PART mOtlED DATA SET EtHER ~IEtlBER NAt·IE :==> 

SPECIFY ONE DR flORE SORT CONTROL FIELDS: 
SORT SDRT 

FIELD NO. POSITION LENGTH FOR.~T ORDER 
1 ===> 1 ::=> 75 ==.> CH ===> A 
2 .=:> ===> ===> CH ===> A 
3 ===> ===> D~~> CH aU=> A 
4 ===> ===> g==> CH gag> A 

USE ENTER TO PERFORJ.I SORTREC; 
USE HELP COHflAtlO FOR HELP; USE END COHflAND TO EXIT. 

Figure 22. SORTREC Entry Panel tor a Partitioned Input Data Set 

Submit the job for processing by pressing ENTER. Only foreground execution 
under TSO is available with the SORTREC line operator, so the job occupies 
your terminal until it completes. The SORTREC Entry Panel is redisplayed after 
each job completes. You can modify any field except the data set name from 
the ISMF data set list and submit another job for processing. 

Because SORTREC operates under ISMF, entering the PROFILE command from 
the SORTREC Entry Panel invokes the ISMF Profile Application, not the DFSORT 
Profile Application. Using the END command without pressing ENTER returns 
you to the ISMF Data Set List Panel without saving any changes. 

For additional information on using the ISMF line operators, including 
SORTREC, see the MVSIExtended Architecture Interactive Storage Management 
Facility User's Guide. 

DFSORT Panels supports an extensive interactive HELP facility that gives you 
online information about both DFSORT Panels and the DFSORT program. HELP 
is keyed to the individual DFSORT panels, so you can also use it as a tutorial to 
locate specific information and examples while you construct your job. HELP 
can also explain error messages you see on the panels when you make typing 
mistakes or when DFSORT cannot perform an action you want. 

Chapter 4. Using Panels to Create and Submit DFSORT Jobs 175 



Overview of DFSORT Panels 

Getting HELP with DFSORT Panels 
To access HELP, enter HELP on the command line in any panel, or press the 
appropriate PF key. 

The first HELP panel you see usually displays a selection menu that lists spe­
cific topics that you can select for details. To see the HELP panels for addi­
tional topics, enter the selection code corresponding to your choice in the 
command line and press ENTER. 

You can page through all the HELP panels that correspond to a particular 
DFSORT functional panel by pressing ENTER on the first panel, and then on all 
subsequent HELP panels in turn. You can return at any time to the original 
DFSORT functional panel from which you invoked HELP by using the END 
command. 

Using the UP command always returns you to the HELP selection menu that 
includes your current HELP panel as a selection option. Using UP gets you to 
the menu that displays other related topics when you are done with your 
current one. 

As an example, say you want online HELP while entering data in the SORT 
Control Fields Entry panel (illustrated in Figure 14 on page 154). If you enter 
HELP from the SORT Control Fields Entry panel, you see the HELP panel shown 
in Figure 23. 

( 1 
HELP--------------------------SORT COHTROL FIELDS--------------------------HELP 
COIlflAtlD ===> 

Use this series of help panels to assist you in entering values 
for the fields on the SORT COUTROL FIELDS WTRY panel. 

You can see the following topics and SUbtopics (indented) in 
sequence, or choose them by number. After returning to this panel, 
you can use EIITER to continue viewing topics and subtopics in 
sequence from \·/here you I eft off. 

1 Overview 
2 Control Fields 

3 POS !TIOII 
4 LEIlGTH 
5 FORI·IAT 
6 ORDER 

7 SORT Control Fields Entry Example 
B Line Commands 

Use EIHER to cont i nue, EIID to return to the SORT Contro I fi e I ds Entry Pane I 

Figure 23. SORT Control Fields Entry HELP Panel 

The HELP panel lists the topics you can select for specific information. 

176 DFSORT: Application Programming: Guide 



Overview of DFSORT Panels 

Getting HELP for Messages 
You can also use HELP to get information about DFSORT Panels informational 
and error messages. During your terminal session. DFSORT Panels issues 
short messages that appear in the upper right corner of the screen. For 
example. a message might explain that a command you entered was inappro­
priate, or that the job you submitted has completed successfully. 

To see a more detailed version of the message, use the HELP command or 
press the appropriate PF key. A longer version of the error message then 
appears under the command line. 

If you need more detail about why the message occurred. and what you might 
need to do to correct the problem, use the HELP command or PF key again to 
display the HELP panel for that message. Pressing ENTER at this point displays 
the HELP panel for the functional DFSORT panel from which you originally 
entered HELP. Use END to return to the DFSORT functional panel when you are 
done. 

Using the HELP Index 
To display the DFSORT help index. enter INDEX or I on the command line of 
any DFSORT help panel. 

HELP----------------DFSORT HELP INDEX: APPLICATIOtl SELECTI0I1--------------HELP 

CO~II~AllD = u> 

Enter H for an overview of the DFSORT Help Index facility. 

Enter S to select the SORT Help Index, ~Ihich contains index pages 
for general topics and topics specific to the Sort Application. 

Enter C to select the COpy Help Index, which contains index pages 
for general topics and topics specific to the Copy Application. 

Enter H to select the I·IERGE Help Index, which contains index pages 
for gene."al topics and topics specific to the Herge Application. 

On each index page. you can viel~ the help panel for any listed 
subject, or you can move to any other index page by entering the 
first letter of the topic.you are interested in. 

Use END to return to Sort Entry Panel. 

Figure 24. DFSORT Help Index Application Selection Panel 

The first index panel (see Figure 24) is a special Application Selection panel. 
Enter S. C. or M to use the index for SORT, COPY. or MERGE, respectively. 
Each index includes common information on general topics, as well as specific 
information for the application selected. You can also enter H to see an over­
view of the DFSORT Panels help index. 

Chapter 4. Using Panels to Create and Submit DFSORT Jobs 177 



Overview of DFSORT Panels 

If you specify S, for instance. you see the beginning of an alphabetic listing of 
all help topics in the SORT index (see Figure 25 on page 178). 

HELP------------------------SORT HELP IHDEX: A TO B-----------------------HELP 

COHIIAIID = ==> 

To select a topic, enter the two- or three-character option in the 
conmand line: 

Al Abend Recovery Bl 
A2 After: A Line Command B2 
A3 ALlGH~IEHT (IHREC) B3 
A4 ALlGtlUEHT (OUTREC) 84 
AS Alternate CollatiQg 85 

Sequence (ALTSEQ) 
A6 ALTSEQ Statement--Code Table 
A7 ALTSEQ Statement--Data Entry 
AB ALTSEQ Statement Overview 
A9 ABO/OR (IIICLUDE) 
AID AND/OR (OInT) 
All ARESALL (OPT! 011) 

Background Environment 
Before: B Line Command 
BROWSE Command 
BSAU (DEBUG) 
BUFFERS (DEBUG) 

Use EIITER to view the next index letter, EHD to return to DFSORT. 

Figure 25. Help Index for SORT 

To see the help panel for any topic on an index panel, enter its two- or three­
letter select code on the command line. If you chose A2, for example, on the 
SORT HELP INDEX: A TO B panel, you would see the following panel. 

178 o FSORT: Application Programming: Guide 



Overview of DFSORT Panels 

HELP--------------------LIHE COMMANDS: 'A'--------------------HELP 

COHHAlID • = c> 

Use an A command to specify the field after ~Ihich you want to 
copy or move other fields. 

COI·UIAND FIELD NO. 
•• a •••.• 1 <== Causes field 3 

2 to be moved 
•. m •..•• 3 <== after field 1 

4 
•• cc ••.• 5 <== Causes fields 5-7 

6 to be 
...... cc 7 < •• copied 
.. a ..... 8 <== after field 8 

9 

Use EIITER to continue, END to return to Sort Entry Panel. 

Figure 26. Help Panel for Line Commands 

The END command returns you to the functional panel from which you first 
requested help. ENTER returns you to the previous index panel (in this 
example, SORT HELP INDEX: A TO B). 

To see the help panel for a topic not on the index panel currently displayed, 
enter the first letter of that topic in the command line and press ENTER. 
DFSORT then displays the index panel for that topic, and you can select the 
appropriate two- or three-letter select code. For example, to see the help panel 
for the REINIT command, enter R, to get to the appropriate index panel, and 
then R9 to get the help screen for REINIT. You can also page through the index 
panels alphabetically by pressing ENTER. 

Chapter 4. Using Panels to Create and Submit DFSORT Jobs 179 



." ... , 



Using Your Own Exit Routines 

Chapter 5. Using Your Own Exit Routines 

DFSORT Program Phases 
Input Phase ..... . 
Output Phase ..... . ..... . 

Functions of Routines at User Exits ...... . 
DFSORT Input/Exit/Output Logic Examples 
Opening and Initializing Data Sets 
Modifying Control Fields ........... . 
Inserting, Deleting, and Altering Records 
Summing Records ................ " ....... . 
Handling Special I/O ......................... . 
Determining Action when Intermediate Storage Is Insufficient 
Closing Data Sets .............. . 
Terminating DFSORT ....................... . 

MVS/XA and MVS/ESA Support of User Exits .......... . 
How Assembler and COBOL User Exit Routines Affect DFSORT 

Performance ................ . 
Summary of Rules for User Exit Routines . 

How to Load User Exit Routines ..... 
User Exit Linkage Conventions .......... . 
How to Dynamically Link-Edit User Exit Routines 

Assembler Exit Routines (Input Phase Exits) 
E11 Exit: Opening Data Sets/Initializing Routines 
E15 Exit: Passing or Changing Records for Sort and Copy Applications 
E16 Exit: Handling Intermediate Storage Miscalculation . 
E17 Exit: Closing Data Sets ......... . 
E18 Exit: Handling Input Data Sets ..... . 
E19 Exit: Handling Output to Work Data Sets 
E61 Exit: Modifying Control Fields ..... . 

Assembler Exit Routines (Output Phase Exits) 
E31 Exit: Opening Data Sets/Initializing Rqutines 
E32 Exit: Handling Input to a Merge Only .... . 
E35 Exit: Changing Records ......... . 
E37: Closing Data Sets .......... . 
E38: Handling Input Data Sets 
E39 Exit: Handling Output Data Sets 

Sample Routines Written in Assembler .... . 
E15: Deleting Expired Records .............. . 
E16 Exit: When NMAX Exceeded, Sort Current Records 
E35 Exit: Deleting Records .... . 

COBOL Exit Routines ..................... . 
COBOL Exit Requirements ................ . 

COBOL Exit Routines (Input Phase Exit) ........... . 
COBOL E15 Exit: Passing or Changing Records for Sort 

COBOL Exit Routines (Output Phase Exit) .... . 
COBOL E35 Exit: Changing Records ........... . 

Sample Routines Written in COBOL 
Altering Records: COBOL E15 Exit . 
Inserting Records: COBOL E35 Exit 

E15/E35 Return Codes and EXITCK ... 

Chapter 5. Using Your Own Exit Routines 

183 
183 
183 
183 
183 
185 
185 
185 
185 
185 
187 
187 
188 
188 

188 
189 
189 
190 
190 
192 
192 
192 
195 
196 
196 
199 
200 
202 
202 
202 
203 
206 
206 
207 
207 
207 
208 
208 
209 
209 
212 
212 
218 
218 
224 
224 
225 
226 

181 



Using Your Own Exit Routines 

DFSORT can pass control to your own routines at points in the executable code 
called user exits. Your user exit routines can perform a variety of functions, 
including deleting, inserting, altering, and summarizing records. 

If you do need to perform these tasks, however, you should be aware that 
DFSORT already provides extensive facilities for working with your data in the 
various DFSORT program control statements. See the discussions of the 
INCLUDE, OMIT, INREC, OUTREC, and SUM program control statements in 
Chapter 3, "Using DFSORT Program Control Statements" on page 53. You 
might decide that using a program control statement to work with your records 
is more appropriate to your needs. 

Although this chapter discusses only routines written in assembler or COBOL, 
you can write your exit routines in any language that can: 

• Pass and accept the address into general register 1 of a: 
Record 

- Fullword of zeros 
- Parameter list 

• Pass a return code in register 15. 

You can activate user exit routines during execution most easily with the MODS 
program control statement (see "MODS Control Statement" on page 91). Alter­
natively, under certain circumstances you can also activate a user exit routine 
by passing the address of your exit routine in the invocation parameter list. 
See Chapter 6, "Invoking DFSORT from a Program" on page 231 for details. 

Parameters that affect the way user exit routines are handled include: 

• The MODS program control statement, explained in "MODS Control 
Statement" on page 91. 

• The COBEXIT option of the ICEMAC installation macro, explained in "Instal­
lation Defaults" on page 11. 

• The E15 = COB and E35 = COB PARM options of the EXEC statement, 
explained in "Specifying EXEC Statement PARM Options" on page 21. 

• The COBEXIT option of the OPTION program control statement, explained in 
"OPTION Control Statement" on page 97. 

• The ICEMAC installation option EXITCK, explained in "E15/E35 Return Codes 
and EXITCK" on page 226. 

Note: To avoid ambiguity in this chapter, it is assumed that the IBM 
default, EXITCK=STRONG, was selected at your site. 

Certain user exit routines can be written in COBOL, using a special interface. If 
you write your exit routines in PUI, you must use the PUI subroutine facilities. 

You might need to reserve space to be used by your exits. See "Using Main 
Storage Efficiently" on page 256 for more information about storage. 

182 DFSORT: Application Programming: Guide 



Functions of Routines at User Exits 

DFSORT Program Phases 

Input Phase 

Output Phase 

A DFSORT program phase is a large DFSORT component designed to perform a 
specific task, such as writing the output file. Various user exits are contained in 
the input and output phases, and are activated at a particular time during 
DFSORT execution. Figure 27 on page 184 is a representation of DFSORT 
input/output logic. 

The input phase is used only for a sort or copy. For a sort, the input phase 
orders the input data set into sequences and distributes them onto work data 
sets. All sorting techniques use this phase. 

A disk sort can usually operate with no intermediate storage if the input data 
set can be contained in the main storage available. A copy never requires 
intermediate storage. 

The output phase has two uses: 

• It makes the final merge pass of a sorting application, thus creating the 
output data set. 

• It merges the input data sets for a merging application to create the output 
data set. 

• It copies each input record to the output data set for a copy application. 

After this phase runs, DFSORT returns control to the operating system (or 
invoking program). 

Functions of Routines at User Exits 
You can use exit routines to accomplish a variety of tasks: 

• Open and initialize data sets 
• Modify control fields 
• Insert, delete, or alter records 
• Summarize records 
• Handle special I/O conditions 
• Close data sets 
• Terminate DFSORT. 

Figure 27 on page 184, Figure 28 on page 186, and Figure 29 on page 187 
summarize the functions of user exit routines and the exits and phases with 
which they can be associated. 

DFSORT Input/Exit/Output Logic Examples 
Figure 27 on page 184 gives examples of the logic flow for sort, copy, and 
merge applications as it relates to SORTlN(nn), E15, E35, and SORTOUT. The 
intent is to show how your E15 and E35 routines fit into the logic of an applica­
tion. All possible paths are not covered. For simplicity, it is assumed that all of 
the applicable data sets and exits are present and that records are not inserted 
or deleted. (For a merge, similar logic would be used if an E32 supplied the 
records rather than SORTIN(nn) data sets.) 

Chapter 5. Using Your Own Exit Routines 183 



Functions of Routines at User Exits 

r.I'U7 IEXI i /O'JT P:.rT l 0:1: !U::\.iT/E1.liiOUnUT lO:t: 
F::OI. sOla 1-0I"lIC"'!JCf4 feR COOll' "'Pt?LIC"iIOti 

I S'"~' J s ~ .. ::tT 
'----

n I G--·: b--·I I , • . , 
PI:'U· 

~: 
I',::I:.;T/:J!::'J! 

;:t .. ,:"S[ O:t-M$£ I.~.; ,r:~ 
it:i:t.! so~n"1 Iq:,-, S~A.~:!; 

I • 
Ell EiS 

YES B -. [~ 

! '0 

• 
G=:J 

I • 
yr, G 
-" 

~ ! "0 

• 
E:l 

8-.1 
, 

[3GJ , 0:, e 
l~::~ , 

""'.5£ 

m 

L~ , 
I ~ • "-=-8 

D::r 

Y'S G 
-* 3! 

I '0 

• 
,,31 I 

(:<!T 

! 'jP'~T IEX:t/CV;;:'Jl ~ Cj:C 
FO~ .. ,:: ... ;( "';:;;lIC,,':'JO~j 

[ ,,..1 
I , 

B-~l 

l 
[-m J 

I • 

,----, YES r-----, 

Ell 

Figure 27. Examples or DFSORT Input/Exit/Output Logic 

The figures illustrate the following logic: 

• E15 and E35 routines continue to be entered until they pass back a return 
code of 8. If your exit passes a return code of 8 to DFSORT when there are 
still input records to be processed, the records are processed by DFSORT 
without being passed to your exit. 

184 DFSORT: Application Programming: Guide 



Functions of Routines at User Exits 

• Sort: Each record is read from SORTIN and passed to E15. When aI/ of the 
records have been processed in this manner, they are sorted by DFSORT. 
Then, each sorted record is passed to E35 and written to SORTOUT. 

• Copy: Each record is read from SORTIN, passed to E15 and E35, and 
written to SORTOUT. 

• Merge: Initially, one record is read from each SORTINnn data set. The 
record to be output is chosen, passed to E35, and written to SORTOUT. The 
chosen record is then replaced by reading a record from the same 
SORTINnn data set, and the process continues. 

Opening and Initializing Data Sets 
You can write your own routines to open data sets and perform other forms of 
initialization; you must associate these routines with the E11, E15, E31 and E35 
exits. 

To check labels on input files, use the E18 and E38 exits. 

Modifying Control Fields 
You can write a routine to alter control fields before DFSORT compares them. 
This allows you, for example, to normalize floating-point control fields. It also 
allows you to modify the order in which the records are finally sorted or 
merg-ed, a function for which you would usually use DFSORT's ALTSEQ program 
control statement instead. You must associate this routine with the E61 exit. 

Your routine modifies a copy of the control fields, which is used for comparison. 
It does not change the original control fields. Thus your original records are 
not altered. When an E61 exit is used, the subsequent comparisons always 
arrange the modified control fields in ascending order. 

Inserting, Deleting, and Altering Records 
You can write your own routines to delete, insert, or alter records. You must 
associate these routines with the E15, E32, and E35 exits. 

Note: DFSORT also provides INCLUDE and OMIT statements that automatically 
include or delete records based on your field criteria. For more information on 
these control statements, refer to Chapter 3, "Using DFSORT Program Control 
Statements" on page 53. 

Summing Records 
You can sum records in the output data set by using the E35 exit. However, you 
can also use DFSORT's SUM program control statement to accomplish this 
without an exit routine. See "SUM Control Statement" on page 141. 

Handling Special 1/0 
DFSORT contains four exits to handle special I/O conditions: E18 and E38 for 
input, and E19 and E39 for output. They are particularly useful for a tape sort. 
With all disk sorts, E19 and E38 are ignored. 

You can use these exits to incorporate your own or your site"s 1/0 error 
recovery routines into DFSORT. Your read and write error routines must reside 
in a partitioned data set (library). Your library routines are brought into main 
storage with their associated phases. When DFSORT encounters an uncorrec-

Chapter 5. Using Your Own Exit Routines 185 



Functions of Routines at User Exits 

Functions Sort Input Phase Sort Output Phase 

Open/Initialization E11, E15 E31 

Insert, Delete/Alter E15 E35 

Terminate DFSORT E15 E35 

Summarize records E35 E35 1 

Determine action when intermediate E162 N/A 
storage is insufficient 

Handle special I/O conditions: 

QSAM/BSAM and VSAM input 
E18 E382 

E192 E39 
QSAM/BSAM output 

N/A E39 
VSAM output 

Modify control fields E61 N/A 

Close/housekeeping E15, E17 E35, E37 

Notes to Figure 28: 

2 

The SUM control statement can be used instead of your 
own routine to sum records. 

Applies only to a tape work data set sort. 

Figure 28. Functions of Routines at Program Exits (Sort) 

table I/O error, it passes the same parameters as those passed by 
QSAM/BSAM or VSAM. If no user routines are supplied, and an uncorrectable 
read or write error is encountered, DFSORT issues an error message and then 
terminates. 

With QSAM/BSAM, the following information is passed to your synchronous 
error routine: 

• General registers 0 and 1 are unchanged; they contain the information 
passed by QSAM/BSAM, as documented in the data management publica­
tions. 

• General register 14 contains the return address of DFSORT. 

• General register 15 contains the address of your error routine. 

VSAM will go directly to any routine specified in the EXLST macro you passed 
to DFSORT via the E18, E38, or E39 exit, as appropriate. Your routine must 
return to VSAM via register 14. For details, see VSAM Programmer's Guide or 
VSAM User's Guide. 

Routines for Read Errors: You must associate these routines with the E18 and 
E38 exits. They must pass certain control block information back to DFSORT to 
tell it whe!her to accept the record as it is, skip the block, or request termi· 
nation. They can also attempt to correct the error. 

186 DFSORT: Application Programming: Guide 



Functions of Routines at User Exits 

Functions Copy Merge 

Open E31, E15 E31 

Insert E15, E35 E32, E35 

Delete/alter E15,E35 E35 

Terminate DFSORT E15, E35 E32, E35 

Sum records E35 E351 

Handle special 110 conditions: 

QSAM/BSAM and VSAM input 
E38 E38 
E39 E39 

QSAM/BSAM and VSAM output 

Modify control fields N/A E61 

Close/housekeeping E35, E37 E35, E37 

Note to Figure 29: 

The SUM control statement can be used instead of your 
own routine to sum records. 

Figure 29. Functions of Routines at Program Exits (Copy and Merge) 

Routines for Write Errors: You must associate these routines with the E19 and 
E39 exit. These routines can perform any necessary abnormal end-of-task 
operations before DFSORT is terminated. 

VSAM Exit Functions 
There are three exits that can be used with VSAM files to supply passwords or 
an exit list to journal a VSAM data set. They can carry out other VSAM exit 
functions, except EODAD. The exits are E18 for sort Input, E38 for merge or 
copy input, and E39 for output. 

Determining Action when Intermediate Storage Is Insufficient 

Closing Data Sets 

You can write a routine to direct DFSORT program action if DFSORT determines 
that insufficient intermediate storage Is available to handle the input data set; 
you must associate this routine with the E16 exit for sorts using tape work files. 
For a sort that uses tape work files, you can choose between sorting current 
records only, trying to complete the sort, or terminating DFSORT. For more 
details, see "Exceeding Intermediate Storage Capacity" on page 313. 

You can write your own routines to close data sets and perform any necessary 
housekeeping; you must associate these routines with the E15. E17. E35, and 
E37 exits. To write output labels, use the E19 and E39 exits. If you have an 
end-of-file routine you want to use for SORTIN, include it at the E18 exit. 

Chapter 5. Using Your Own Exit Routines 187 



Assembler and COBOL User Exit Routines and DFSORT Performance 

Terminating DFSORT 
You can write an exit routine to terminate DFSORT before all records have 
been processed. You must associate these routines with the E15, E16, E32, and 
E35 exits. 

MVS/XA and MVS/ESA Support of User Exits 
To allow user exits called by Blockset or PeeragelVale (executing in an 
MVS/XA or MVS/ESA system) to reside above or below 16-megabyte virtual, 
and to use either 24-bit or 31-bit addressing, DFSORT supplies these features: 

• To ensure that DFSORT enters your user exit with the correct addressing 
mode, you must observe these rules: 

If the exit name is specified in a MODS control statement, the exit is 
entered with the addressing mode indicated by the linkage editor attri­
butes of the routine (for example, 31-bit addressing in effect if AMODE 
31 is specified). 

If the address of the exit is passed to OFSORT (preloaded exit) via the 
24-bit list, the exit is entered with 24-bit addressing in effect. 

If the address of the exit is passed to OFSORT via the extended param­
eter list (preloaded exit), the exit is entered with 24-bit addressing in 
effect if bit 0 of the exit address in the list is 0, or with 31-bit addressing 
in effect if bit 0 of the exit address in the list is 1. 

• User exits can return to OFSORT with either 24-bit or 31-bit addressing in 
effect. The return address that OFSORT placed in register 14 must be used. 

• Except for the user exit address constant (which is passed to either the 
assembler E15 or E35 exit unchanged), DFSORT handles the user exit 
parameter list addresses (that is, the pointer to the parameter list and the 
addresses in the parameter list) as follows: 

If the exit is entered with 24-bit addressing in effect, OFSORT passes 
clean (zeros in the first 8 bits) 24-bit addresses to the exit. Such an exit 
must pass 24-bit addresses back to OF SORT. These must be clean 
24-bit addresses if the exit returns to OFSORT with 31-bit addressing in 
effect. 

If the exit is entered with 31-bit addressing in effect. DFSORT passes 
clean 24-bit addresses to the exit. Such an exit must pass 31-bit 
addresses or clean 24-bit addresses back to OFSORT. The only excep­
tion is when the high-order byte is used to identify an optional address 
being passed (for example, E18 SYNAO address). In this case, DFSORT 
cleans the 24-bit address. 

How Assembler and COBOL User Exit Routines Affect DFSORT 
Performance 

Before writing a user exit, consider the following factors: 

• Your routines occupy main storage that would otherwise be available to 
OFSORT. Because its main storage is restricted, OFSORT might need to 
execute extra passes to sort the data. This, of course, increases sorting 
time. 

188 DFSORT: Application Programming: Guide 



Assembler and COBOL User Exit Routines and DFSORT Performance 

• User exit routines increase the overall run-time. Note that several of the 
exits give your routine control once for each record until you pass a "do not 
return" return code to DFSORT. You must remember this when designing 
your routines. 

• Use INCLUDE, OMIT, INREC, OUTREC, and SUM instead of exit routines 
whenever possible. 

Summary of Rules for User Exit Routines 
When preparing your routines, remember that: 

• User-written routines must follow standard linkage conventions, and use the 
described interfaces. COBOL E15 and E35 routines must use the special 
interface provided. 

• To use an E32 exit, your invoking program must pass its address to 
DFSORT in the parameter list. 

• To use any other exit, you must associate your routine with the appropriate 
exits using the MODS control statement. See "MODS Control Statement" 
on page 91. 

• Your invoking program can alternatively pass the address of an E15, E18, 
E35, and E39 exit to DFSORT in the parameter list. 

• When a disk technique is used and your exits are reenterable, the entire 
DFSORT program is reenterable. 

• If you are using ISCII/ ASCII input, remember that data presented to your 
exits at user exits are in EBCDIC format (all data is represented internally in 
EBCDIC). If the E61 exit is used to resolve ISCII/ASCII collating for special 
alphabetic characters, substituted characters must be in EBCDIC, but the 
sequencing result depends on the byte value of the ISCII/ASCII translation 
for the substituted character. 

How to Load User Exit Routines 
You must assemble or compile each user exit as a separate program. If your 
user exit operates independently, link-edit it separately into a partitioned data 
set (library) with the member name to be used in the MODS statement. If your 
user exit operates in conjunction with other user exits in the same phase (for 
example, E11, E15, and E17 all use the same DCB), you can request DFSORT to 
dynamically link-edit them together (see MODS statement). Alternatively, you 
can link-edit them together into a partitioned data set following these rules: 

1. Specify RENT as a linkage editor parameter. 

2. Include an ALIAS statement for each exit routine using the external entry 
name of the routine (for example, the CSECT name). 

3. Specify the appropriate ALIAS name for each exit routine on the MODS 
statement. 

DFSORT includes the names and locations of your user exits in the list of 
modules to be executed during each phase. No user exit is loaded more than 
once in a program phase, but the same exit can appear in different phases. For 
example, you can use the same Read Error user exit in both phases, but not 
twice in one phase. 

Chapter 5. Using Your Own Exit Routines 189 



Assembler and COBOL User Exit Routines and DFSORT Performance 

The length you specify for an exit must include storage for the exit itself as well 
as any storage used by the exit outside of the load modules, such as I/O buffers 
or COBOL library subroutines. If you specify a ddname for an exit in the MODS 
statement. it must match the DO statement that defines the library containing 
that exit. For example: 

//NYLIB DO DSNAI·1E=I·1YRTtI, etc. 

1·1ODS E 15= (~1ODNAI·'E ,500, 14YLI B, N) 

User Exit Linkage Conventions 
To enter a user exit. DFSORT loads the address of the DFSORT return point in 
register 14 and the address of the user exit routine in register 15. A branch to 
the address in register 15 is then executed. 

The general registers used by DFSORT for linkage and communication of 
parameters observe operating system conventions (see Figure 30 on 
page 191). 

You can return control to DFSORT by executing a branch to the DFSORT return 
point address in register 14 or by using a RETURN macro instruction. The 
RETURN instruction can also be used to set return codes when multiple actions 
are available at an exit. 

Your exit must save all the general registers it uses. You can use the SAVE 
macro instruction to do this. If you save registers. you must also restore them; 
you can do this with the RETURN macro instruction. 

How to Dynamically Link-Edit User Exit Routines 
You can dynamically link-edit any user exit routine written in any language that 
has the ability to pass the location/address of a record or parameter in general 
register 1 and a return code in register 15 (see MODS statement). This does 
not include E15 and E35 routines written in COBOL. 

On MVS/XA systems. dynamic link-editing does not support AMOOE 31 or 
RMODE 31 for the link-edit option T. The exits that are link-edited together by 
OFSORT are not loaded above 16-megabyte virtual and cannot be entered in 
31-bit addressing mode. Exits link-edited with the S option retain the AMODE 
and RMODE attributes of the object modules, and are loaded above or below 
16-megabyte virtual depending upon the load module's RMOOE; they are 
entered in the addressing mode of the exit. 

Note: 

• The Blockset technique is not used for dynamic link-editing. 

• Dynamic link-editing cannot be used with copy. 

When the link-edit option T is specified for a user exit routine. that routine must 
contain an entry pOint whose name is that of the associated program exit. This 
is to accommodate special DFSORT dynamic link-edit requirements. For 
example, when the link-edit option T is specified on the MODS statement for 

190 DFSORT: Application Programming: Guide 



Register 

1 
13 

14 
15 

Assembler and COBOL User Exit Routines and DFSORT Performance 

Use 

DFSORT places the address of a parameter list in this register. 
DFSORT places the address of a standard save area in this register. The area can be 
used to save contents of registers used by your exit. The first word of the area con­
tains the characters SM1 in its three low-order bytes. 
Contains the address of DFSORT return point. 
Contains the address of your exit. This register can be used as a base register for 
your exit, and your exit can also use it to pass return codes to DFSORT. 

Figure 30. Register Conventions 

Linkage Examples 

E35, the following assembler instructions must be included in the' user exit 
routine associated with the E35 exit: 

ENTRY E35 
E35 

or 

E35 CSECT 

In all other circumstances, the user exit is not required to have an entry point 
whose name is that of the associated program exit. 

When calling your exit, DFSORT places the return address in general register 
14 and your routine's entry point address in general register 15. DFSORT has 
already placed the register's save area address in general register 13. 
DFSORT than makes a branch to your routine. 

Your routine for the E15 exit might incorporate the following assembler 
instructions: 

ENTRY E15 

E15 SAVE (5,9) 

RETURN (5,9) 

This coding saves and restores the contents of general registers 5 through 9. 
The macro instructions are expanded into the following assembler language 
code: 

ENTRY E15 

E15 STf.1 

Lt·, 
BR 

5,9,40(13) 

5,9,40 (13) 
14 

Chapter 5. Using Your Own Exit Routines 191 



Assembler Exit Routines (Input Phase Exits) 

If multiple actions are available at an exit, your routine sets a return code in 
general register 15 to inform DFSORT of the action it is to take. The following 
macro instruction can be used to return to the DFSORT with a return code of 12 
in register 15: 

RETURN RC=12 

A full explanation of linkage conventions and the macro instructions discussed 
in this section is in Supervisor Services and Macro Instructions. 

Assembler Exit Routines (Input Phase Exits) 
You can use these program exits located in the DFSORT input phase: 

E11 
E15 
E16 
E17 
E18 
E19 
E61 

These exits are discussed in sequence. To determine whether a particular exit 
can be used for your application, refer to Figure 28 and Figure 29 on page 187. 
For example, E15 cannot be used for a merge application. 

E11 Exit: Opening Data Sets/Initializing Routines 
You might use routines at this exit to open data sets needed by your other rou­
tines in the input phase, or to initialize your other routines. Return codes are 
not used. 

Note: To avoid special linkage editor requirements (see "Summary of Rules for 
User Exit Routines" on page 189), you can include these functions in your E15 
routine rather than in a separate E11 routine. 

E15 Exit: Passing or Changing Records for Sort and Copy Applications 
If you write your E15 routine in COBOL, see "COBOL Exit Routines" on 
page 209 and "COBOL E15 Exit: Passing or Changing Records for Sort" on 
page 212. 

The ICEMAC installation option EXITCK affects the way DFSORT interprets 
certain return codes from user exit E15. To avoid ambiguity, this section 
assumes that the IBM default, EXITCK = STRONG, was selected at your site. 
For complete information about E15 return codes in various situations with 
EXITCK=STRONG and EXITCK=WEAK, see "E15/E35 Return Codes and 
EXITCK" on page 226. 

DFSORT enters the E15 exit routine each time a new record is brought into the 
input phase. DFSORT continues to enter E15 (even when there are no input 
records) until the exit tells DFSORT, with a return-code of 8, not to return. 

See Figure 27 on page 184 for logic now details. 

Some uses for E15 are: 

• Add records to an input data set 

192 DFSORT: Application Programming: Guide 



Assembler Exit Routines (Input Phase Exits) 

• Pass an entire input data set to DFSORT 
• Delete records from an input data set 
• Change records in an input data set (but not control fields-use E61 exit for 

that). 

If your E15 routine is inserting variable-length records, you must be sure they 
contain a 4-byte record descriptor word (ROW) at the beginning of each record 
before the routine passes it to DFSORT. The format of an ROW is described in 
Data Management Services or System Programming Library: Data Management. 
(Alternatively, you can declare the records as fixed-length, and pad them to the 
maximum length.) 

Note: 

• If you use the E15 exit to pass all your records to DFSORT, the SORTIN DO 
statement can be omitted, in which case you must include a RECORD state­
ment in the program control statements. 

• If you invoke DFSORT from an assembler program and pass the address of 
your E15 exit in the parameter list: 

- DFSORT ignores the SORTIN data set. 
- DFSORT terminates if you specify E15 in a MODS statement. 

• If the SORTIN DO statement is omitted or ignored, all input records are 
passed to DFSORT through your routine at E15: the address of each input 
record in turn is placed in general register 1, and you return to DFSORT 
with a return code of 12. When DFSORT returns to the E15 exit after the last 
record has been passed, return to DFSORT with return code of 8 in register 
15 to indicate "do not return." 

• DFSORT continues to re-enter your E15 exit until a return code of 8 is 
received. However, if STOPAFT is in effect, no additional records are 
inserted to DFSORT (even if you pass back a return code of 12) after the 
STOPAFT count is satisfied. 

• Remember to build an ROW for variable-length VSAM records (see Data 
Management Services). 

Information DFSORT Passes to Your Routine at E15 
The routine at E15 is entered each time a new record is brought into the input 
phase. DFSORT passes two words to your routine each time it is entered: 

• The address of the new record. If there are no records in the input data set, 
this address is zero the first time your E15 is entered. When DFSORT 
reaches the end of the input data set, it sets this address to zero before 
entering your E15 exit. 

After the end of the input data set is encountered, DFSORT will continue to 
enter your exit routine until you pass back a return code of 8. 

• The user exit address constant. If you invoked DFSORT with a user exit 
address constant in the parameter list, the address constant is passed to 
your E15 exit the first time it is entered. This address constant can be 
changed by your E15 exit any time it is entered; the address constant is 
passed along on subsequent entries to your E15 exit and also on the first 
entry to your E35 exit. For example, you can obtain a dynamic storage 
area, use it in your E15 exit, and pass its address to your E35 exit. 

Chapter 5. Using Your Own Exit Routines 193 



Assembler Exit Routines (Input Phase Exits) 

E15 Return Codes 

In general register 1, DFSORT places the address of a parameter list that con­
tains the record address and the user address constant. 

The list is two fullwords long and begins on a fullword boundary. The format of 
the parameter list is: 

Bytes 1 through 4 

Address of the new record 

User exit address constant 

Your routine must pass one of the following return codes to DFSORT, informing 
it what to do with the record you have been examining or changing: 

o No Action/Record Altered 
4 Delete Record 
8 Do Not Return 
12 Insert Record 
16 Terminate DFSORT 

c}-No Action 
If you want DFSORT to retain the record unchanged, place the address of 
the record in general register 1 and return to DFSORT with a return code of 
o (zero). 

c}-Record Altered 
If you want to change the record before passing it back to DFSORT, your 
routine must move the record into a work area, perform whatever modifica­
tion you want, place the address of the modified record in general register 
1, and return with a return code of 0 (zero). If your routine changes record 
size, you must communicate that fact to DFSORT on a RECORD statement. 
(For details of the RECORD statement, see "RECORD Control Statement" on 
page 127 and Supervisor Services and Macro Instructions for further infor­
mation about the length indicator and the RDW.) 

4-0elete Record 
If you want DFSORT to delete the record from the input data set, return to 
DFSORT with a return code of 4. You need not place the address of the 
record in general register 1. 

8-00 Not Return 
DFSORT continues to return control to the user routine until it receives a 
return code of 8. After that, the exit is closed and not used again during the 
DFSORT application. You need not place an address in general register 1 
when you return with return code 8. Unless you are inserting records after 
the end of the data set, you must pass a return code of 8 when the program 
indicates the end of the data set, which it does by passing your routine a 
zero address in the parameter list. 

If your exit passes a return code of 8 to DFSORT and there are still input 
records to be processed, the records are processed without being passed 
to your exit. 

12-lnsert Record 
If you want DFSORT to add a record to the input data set, before the record 
whose address was just passed to your routine, place the address of the 

194 DFSORT: Application Programming: Guide 



Assembler Exit Routines (Input Phase Exits) 

record to be added in general register 1 and return to DFSORT with a return 
code of 12. DFSORT will return to your routine with the same record 
address as before, so that your routine can insert more records at that 
point or alter the current record. You can make insertions after the last 
record in the input data set (after DFSORT places a zero address in the 
parameter list). DFSORT keeps returning to your routine until you pass a 
return code of 8. 

16-Terminate DFSORT 
If you want to terminate DFSORT, return with a code of 16. DFSORT then 
returns to its calling program or to the system with a return code of 16. 

See "E15/E35 Return Codes and EXITCK" on page 226 for complete details of 
the meanings of return codes in various situations. 

E16 Exit: Handling Intermediate Storage Miscalculation 

E16 Return Codes 

For a tape sort, you would use a routine at this exit to decide what to do if the 
sort exceeds its calculated estimate of the number of records it can handle for 
a given amount of main storage and intermediate storage. This exit is ignored 
for a disk sort, because in that case DFSORT uses the WRKSEC option to deter­
mine whether secondary allocation is allowed. See "SORTWKnn DO 
Statement" on page 45. See also "Exceeding Intermediate Storage Capacity" 
on page 313. 

Note: When using magnetic tape, remember that the system uses an assumed 
tape length of 2400 feet. If you use tapes of a different length, the Nmax figure 
is not accurate; for shorter tapes, capacity can be exceeded before "NMAX 
EXCEEDED" is indicated. 

Your routine can choose among three actions, and must use one of the fol­
lowing return codes to communicate its choice to DFSORT: 

o Sort Current Records Only 
4 Try to Sort Additional Records 
8 Terminate DFSORT 

O-Sort Current Records Only 
If you want DFSORT to continue with only that part of the input data set it 
estimates it can handle, return with a return code of O. Message ICE0541 
contains the number of records with which sort is continuing. You can sort 
the remainder of the data set on one or more subsequent runs, using 
SKIPREC to skip over the records already sorted. Then you can merge the 
sort outputs to complete the operation. 

4-Try to Sort Additional Records 
If you want DFSORT to continue with all of the input data set, return with a 
return code of 4. If tapes are used, enough space might be available for 
DFSORT to complete processing, If enough space is not available, DFSORT 
generates a message and terminates. Refer to "Exceeding Intermediate 
Storage Capacity" on page 313. 

8-Terminate DFSORT 
If you want DFSORT to terminate, return with a return code of 8. DFSORT 
then returns to its calling program or to the system with a return code of 16. 

Chapter 5. Using Your Own Exit Routines 195 



Assembler Exit Routines (Input Phase Exits) 

E17 Exit: Closing Data Sets 
Your routine at this exit is executed once at the end of the input phase. It can 
be used to close data sets used by your other routines in the phase or to 
perform any housekeeping functions for your routines. 

Note: To avoid special linkage editor requirements (see "Summary of Rules for 
User Exit Routines" on page 189), you can include these functions in your E15 
routines rather than in a separate E17 routine. 

E18 Exit: Handling Input Data Sets 

Using E18 with QSAM/BSAM 
Your routines at this exit can pass DFSORT a parameter list containing the 
specifications for three data control block (DCB) fields (SYNAD, EXLST, and 
EROPT). Your E18 exit routine can also pass a fourth DCB field (EO DAD) to 
DFSORT. 

Note: If you are using a disk sorting technique, the EROPT option is ignored. 

Your routines are entered first at the beginning of each phase so that DFSORT 
can obtain the parameter lists. The routines are entered again during exe­
cution of the phase at the points indicated in the parameter lists. For example, 
if you choose the EXLST option, DFSORT enters your E18 exit routine early in 
the sort (input) phase. DFSORT picks up the parameter list, including the 
EXLST address. Later in the phase, DFSORT enters your routine again at the 
EXLST address when the data set is opened. 

Information Your Routine Passes to DFSORT at E18: Before returning control to 
DFSORT, your routine passes the DCB fields in a parameter list, the address of 
which is placed in general register 1. The parameter list must begin on a 
fullword boundary and be a whole number of fullwords long. The high-order 
byte of each word must contain a character code that identifies the parameter. 
One or more of the words can be omitted. A word of all zeros marks the end of 
the list. 

If VSAM parameters are specified, they are accepted but ignored. 

The format of the lis't is shown below. 

Byte 1 Byte 2 I Byte 3 I Byte 4 

131 SvtlAD fi e 1 d 

132 £XLST field 

133 1313 I 1313 I EROPT code 

134 £ODAD field 

1313 1313 I 1313 I 1313 

196 o FSORT: Application Programming: Guide 



Assembler Exit Routines (Input Phase Exits) 

SYNAD 
This field contains the location of your read synchronous error routine. This 
routine is entered only after the operating system has tried unsuccessfully 
to correct the error. The routine must be assembled as part of your E18 
routine. When the routine receives control, it must not store registers in the 
save area pointed to by register 13. 

EXLST 
This field contains the location of a list of pointers to routines that you want 
used to check labels and accomplish other tasks not handled by data man­
agement. The list, and the routines to which it points, must be included in 
your read error routine. This parameter cannot be used at the E18 exit if 
the program is reading concatenated input on unlike devices from the 
SORTIN data sets. 

EROPT 
This field indicates what action DFSORT must take when it encounters an 
uncorrectable read error. The three possible actions and the codes associ­
ated with them are: 

X'SO' Accept the Record (Block) As Is 

X'40' Skip the Record (Block) 

X'20' Terminate the Program 

If you include this parameter in the DCB field list, you must place one of the 
above codes in byte 4 of the word. Bytes 2 and 3 of the word must contain 
zeros. 

When you use the EROPT option, the SYNAD field and the EODAD field must 
contain the appropriate address in bytes 2 through 4; or, if no routine is 
available, zeros in bytes 2 and 3, and X '01' in byte 4. You can use the 
assembler instruction DC AL3(1) to set up bytes 2 through 4. 

EODAD 
This field contains the address of your end-of-file routine. If you specify 
EODAD, you must include the end-of-file routine in your own routine. 

A full description of these DCB fields is contained in Data Management Macro 
Instructions. 

Using E18 with VSAM 
If input to DFSORT is a VSAM data set, you can use the E18 exit to perform 
various VSAM exit functions and to insert passwords in VSAM input ACBs. 

Your routine is entered early in the initialization phase when processing under 
Blockset and early in the input phase if Blockset is not selected. 

E1S Restrictions: If passwords are to be entered through an exit and Blockset 
is not selected, the data set cannot be opened during the initialization phase. 
This means that MAINSIZEISIZE = MAX must not be used, because the program 
cannot make the necessary calculations. 

Information Your Routine Passes to DFSORT at E1S: When you return to 
DFSORT, you must place in general register 1 the address of a parameter list: 

Chapter 5. Using Your Own Exit Routines 197 



Assembler Exit Routines (Input Phase Exits) 

Byte 1 Bytes 2 through 4 

05 Address of VSAM exit list 

06 Address of password list 

00 000000 

If QSAM parameters are passed instead, they are accepted but ignored. 

Either address entry can be omitted; if they both are included, they can be in 
any order. 

E18 Password List: A password list included in your routine must have the fol­
lowing format: 

Two bytes on a halfword boundary: 

I Number of entries in list 

Followed by the 16-byte entries: 

8 bytes: ddname 

8 bytes: Password 

The last byte of the ddname field is destroyed by DFSORT. This list must not be 
altered at any time during the program. MAINSIZEISIZE=MAX must not be 
used if this function is used. 

E18 Exit List: The VSAM exit list must be built using the VSAM EXLST macro 
instruction giving the addresses of your routines handling VSAM exit functions. 
VSAM branches directly to your routines, which must return to VSAM via reg­
ister 14. 

Any VSAM exit function available for input data sets can be used, except 
EODAD. If you need to do EODAD processing, write a LERAD exit and check for 
X' 04' in the FDBK field of the RPL. This will indicate input EOD. This field 
must not be altered when returning to VSAM, because it is also needed by 
DFSORT. 

For details, see VSAM Programmer's Guide or VSAM User's Guide. 

Below is an example of code your program can use to return control to 
DFSORT. 

198 DFSORT: Application Programming: Guide 



Assembler Exit Routines (Input Phase Exits) 

ENTRY ElB 

HB LA I, PARt·tLST 
RETURN 
CHOP 0,4 

PARt·ILST DC X'Ol' 
DC Al3 (SER) 
DC X'02' 
DC A13(LST) 
DC X'03' 
DC X'OOOOBO' ERDPT CODE 
DC A(O) 
DC X'04' 
DC AL3 (QSA~tEOD) 
DC X'OS' 
DC AL3(VSAJ.lEXL) 
DC X'06' 
DC All (PI1OLST) 
DC A(O) 

VSAt·tEXL EXLST SytlAD:USYttAD,lERAD=ULERAD 
PHDLST DC H' l' 

DC CLB'SORTlN' SORTItI DDNAfIE 
DC CLB' INPASS' SaRTIN PASSHORD 

USYIIAD VSAtl SYtlCH ERROR RTiI 
ULERAD VSAI-I LOGIC ERROR RHt 
SER QSA/·I ERROR RTN 
LST DC X'B5',Al3(RTtI) EXLST ADDRESS LISTI 
Rnt EXLST ROUTINE 
QSAI·IEOD QSA~I END OF FI LE ROUTII1E 

1. X'85' = X'80' plus X'05', where: 

X '80' means this entry is the LAST ENTRY of the list. 

X'05 1 means this exit is the data control block exit. 

For more information, refer to OS/MVS Data Management Services Guide. 

E19 Exit: Handling Output to Work Data Sets 
This exit is used to handle write error conditions in the input phase when 
DFSORT is unable to correct a write error to a work data set. It is used only for 
a tape work data set sort. 

Using E19 with QSAM/BSAM 
Your routines at this exit can pass DFSORT a parameter list containing the 
specifications for two DeB fields (SYNAD and EXLST). Your routines are 
entered first early in the input phase so that DFSORT can obtain the parameter 
lists. The routines are entered again later in the phase at the points indicated 
by the options in the parameter lists. 

Information Your Routine Passes to DFSORT at E19: Before returning control to 
DFSORT, your routine passes the DeB fields in a parameter list, the address of 
which is placed in general register 1. The list must begin on a fullword 
boundary and must be a whole number of fullwords long. The first byte of each 
word must contain a character code that identifies the parameter. Either word 
can be omitted. A word of all zeros indicates the end of the list. 

If VSAM parameters are passed, they are accepted but ignored. 

Chapter 5. Using Your Own Exit Routines 199 



Assembler Exit Routines (Input Phase Exits) 

The format is shown below. 

Byte 1 Byte 2 I Byte 3 I Byte 4 

01 SYNAD field 

02 EXLST field 

00 00 I 00 I 00 

SYNAD 
This field contains the location of your write synchronous error routine. 
This routine is entered only after the operating system has unsuccessfully 
tried to correct the error. It must be assembled as part of your own routine. 

EXLST 
The EXLST field contains the location of a list of pointers to the routines that 
you want used to process labels and accomplish other tasks not handled by 
data management. This list, and the routines to which it points, must be 
included as part of your own routine. 

A full description of these DCB fields can be found in Data Management Macro 
Instructions. 

E61 Exit: Modifying Control Fields 

Some Uses of E61 

You can use a routine at this exit to lengthen, shorten or alter any control field 
within a record. The E option for the s parameter on the SORT or MERGE 
control statement must be specified for control fields changed by this routine as 
described in Chapter 2. After your routine modifies the control field, DFSORT 
collates the records in ascending order using the format(s) specified.8 

Note: E61 will not be used with EFS fields that have a D1 format. 

Your routine can normalize floating-point control fields or change any other 
type of control field in any way that you desire. You need to be familiar with 
the standard data formats used by the operating system before modifying 
control fields. 

If you want to modify the collating sequence of EBCDIC data, for example, to 
permit the alphabetic collation of national characters, you can do so without the 
need for an E61 exit routine using the AL TSEQ control statement (as described 
in Chapter 2). 

8 With a conventional merge or a tape work data set sort, control fields for which E is specified are treated as 
binary byte format regardless of the actual format(s) specified. 

200 DFSORT: Application Programming: Guide 



Assembler Exit Routines (Input Phase Exits) 

Information DFSORT Passes to Your Routine at E61 
DFSORT places the address of a parameter list in general register 1. The list 
begins on a fullword boundary and is three fullwords long. The parameter list 
for the E61 exit is as follows: 

Byte 1 Byte 2 Byte 3 Byte 4 

aa aa ae Control Field No. 

aa Address of Control Field Image 

Not Used I Control Field Length 

The control field length allows you to write a more generalized modification 
routine. 

The control field number is relative to all fields in the SORT or MERGE state­
ment. For example, if you specify: 

SORT FIELOS=(4)2)CH)A)8)la)CH)E)25)2)BI)E) 

field numbers 2 and 3 will be passed to E61. 

The control field address passed to your routine is that of an extract area to 
which the program has moved the control field, separate from the record. Your 
routine, in effect, changes an image of the control field and not the control field 
itself. 

For all fields except binary, the total number of bytes DFSORT passes to your 
routine is equal to the length specified in the m parameter of the SORT or 
MERGE statement. 

All binary fields passed to your routine contain a whole number of bytes; all 
bytes that contain any bits of the control field are passed. If the control field is 
longer than 256 bytes, DFSORT splits it into fields of 256 bytes each and passes 
them one at a time to your routine. 

Your routine cannot physically change the length of the control field. If you 
must increase the length for collating purposes, you must previously specify 
that length in the m parameter of the SORT or MERGE statement. If you must 
shorten the control field, you must pad it to the specified length before returning 
it to DFSORT. Your routine must return the field to DFSORT with the same 
number of bytes that it contained when your routine was entered. 

When E61 is used, records are always ordered into ascending sequence. If you 
need some other sequence, you can modify the fields further; for example, if 
after carrying out your planned modification for a binary control field, and 
before handing back control to DFSORT, you reverse all bits, the field is in 
effect collated in descending order. You have not affected the record itself, 
because the field is only an extracted image. 

Chapter 5. Using Your Own Exit Routines 201 



Assembler Exit Routines (Output Phase Exits) 

Note that if E61 is used to resolve ISCII/ASCII collating for special alphabetic 
characters, substituted characters must be in EBCDIC, but the sequencing 
depends upon the byte value of the ISCII/ASCII translation for the substituted 
character. 

Assembler Exit Routines (Output Phase Exits) 
You can use these program exits located in the DFSORT output phase: 

E31 
E32 
E35 
E37 
E38 
E39 

The functions of these exits are discussed in sequence. 

E31 Exit: Opening Data Sets/Initializing Routines 
You might use routines at this exit to open data sets needed by your other rou­
tines in the output phase, or to initialize your other routines. Return codes are 
not used. 

Note: To avoid special linkage editor requirements (see "Summary of Rules for 
User Exit Routines" on page 189), you can include these functions in your E35 
routine rather than in a separate E31 routine. 

E32 Exit: Handling Input to a Merge Only 
This exit can be used only in a merge operation invoked from another program, 
and cannot be specified on the MODS statement. When an E32 exit is activated, 
either (1) it must supply all input to the merge, and the parameter list passed to 
the program, or (2) a MERGE statement in SORTCNTL must indicate the number 
of input files. 

If input is variable-length records, you must be sure the beginning of each 
record contains a 4-byte record descriptor word (ROW) before it is handed to 
the merge. The format of an ROW is described in Data Management Services 
Guide. (Alternatively, you can declare the records as fixed-length and pad them 
to the maximum length.) 

See Figure 27 on page 184 for logic now details. 

Information DFSORT Passes to Your Routine at E32 
Your E32 exit routine is entered each time the merge program requires a new 
input record. OFSORT passes a two-word parameter list to your routine. The 
address of the list is in general register 1. 

The parameter list has the format: 

Bytes 1 through 4 

Increment of next file to be used for input 

Address of next input record 

202 DFSORT: Application Programming: Guide 



E32 Return Codes 

Assembler Exit Routines (Output Phase Exits) 

The file increment is 0.4.8 •...• N -4. where N is four times the number of input 
files. Thus. the increment 0 (zero) represents the first input file. 4 the second 
file, 8 the third, and so on. 

Your routine must provide a separate input buffer for each input file used. An 
input buffer containing the first record for a file must not be altered until you 
have passed the first record from each file to OFSORT. 

Before returning control to the merge program, you must: 

• Place the address of the next input record from the requested data set in 
the second word of the parameter list. 

• Put the return code in register 15. 

Your routine must pass one of the following return codes to DFSORT: 

8 End of the Data Set Requested (No Record Returned) 
12 Insert Record 
16 Terminate DFSORT 

E35 Exit: Changing Records 
If you write your E35 routine in COBOL, see "COBOL Exit Routines" on 
page 209, and "COBOL E35 Exit: Changing Records" on page 218. 

The ICEMAC installation option EXITCK affects the way OFSORT interprets 
certain return codes from user exit E35. To avoid ambiguity. this section 
assumes that the IBM default, EXITCK = STRONG, was selected at your site. 
For complete details of the meaning of E35 return codes in various situations 
with EXITCK=STRONG and EXITCK=WEAK, see "E15/E35 Return Codes and 
EXITCK" on page 226. 

The E35 routine is entered each time DFSORT prepares to place a record in the 
output area. 

See Figure 27 on page 184 for logic now details. 

Some uses are: 

• Add. delete. or change records in the output data set. 
• Terminate DFSORT. 

Note: 

• If you use the E35 routine to dispose of all your output records, the 
SORTOUT DO statement can be omitted. 

• If you invoke OFSORT from a program and you pass the address of your E35 
routine in the parameter list: 

- DFSORT ignores the SORTOUT data set. 
- DFSORT terminates if you specify E35 in a MODS statement. 

• If the SORTOUT DO statement is omitted or ignored. your E35 exit routine 
must dispose of each output record and return to OFSORT with a return 
code of 4. When OFSORT returns to your routine after you have disposed of 
the last record, return to OFSORT with return code of 8 to indicate "do not 
return. " 

Chapter 5. Using Your Own Exit Routines 203 



Assembler Exit Routines (Output Phase Exits) 

• If your E35 routine is inserting variable-length records, you must be sure the 
beginning of each record contains a 4-byte record descriptor word (ROW) 
before the routine passes the record to OFSORT. The format of an ROW is 
described in Data Management Services or System Programming Library: 
Data Management. (Alternatively, you can declare the records as fixed­
length, and pad them to the maximum length.) 

• Remember that if input records are variable-length from a VSAM data set, 
they will have been prefixed by a 4-byte ROW. 

• After records have been put into the output area, their lengths cannot be 
increased. 

• For a merge job, records deleted by an E35 exit routine are not sequence­
checked. If you use an E35 exit routine without a SORTOUT data set, 
sequence checking is not performed. In this case, you must ensure that the 
records are sequenced correctly. 

Information DFSORT passes to Your Routine at E35 
Your E35 exit routine is executed each time OFSORT prepares to place a record 
(including the first record) in the output area. OFSORT passes three words to 
your routine: 

• The address of the record leaving DFSORT which usually follows the record 
in the output area. When OFSORT reaches the end of the input data set, it 
sets this address to zero before entering your E35 exit. 

After the end of the input data set is reached, DFSORT continues to enter 
your exit routine until you pass back a return code of 8. 

• The address of a record in the output area. This address is zero the first 
time your routine is entered because there is no record in the output area 
at that time. It remains zero provided you pass a return code of 4 (delete 
record) to OFSORT. 

Note: If the record pointed to is variable-length, it has an ROW at this point, 
even if output is to a VSAM data set. 

• The user exit address constant. This word is passed to your exit exactly as 
it was set by your E15 exit or invoking program's parameter list. 

In general register 1, DFSORT places the address of a parameter list that con­
tains the two record addresses and the user exit address constant. 

The list is three fullwords long and begins on a fullword boundary. The format 
of the parameter list is: 

Bytes 1 through 4 

Address of record leaving DFSORT 

Address of record in output area 

User exit address constant 

204 DFSORT: Application Programming: Guide 



E35 Return Codes 

Assembler Exit Routines (Output Phase Exits) 

Your routine must pass one of the following return codes to DFSORT to inform it 
what to do with the record leaving DFSORT: 

o No Action/Record Altered 
4 Delete Record 
8 Do Not Return 
12 Insert Record 
16 Terminate DFSORT 

O-No Action 
If you want DFSORT to retain the record unchanged, load the address of the 
record leaving DFSORT in general register 1 and return to DFSORT with a 
return code of 0 (zero). 

O-Record Altered 
If you want to change the record before having it placed in the output data 
set, move the record to a work area, make the change, load the address of 
the modified record into general register 1, and return to DFSORT with a 
return code of 0 (zero). If you change record size, you must communicate 
that fact to DFSORT in a RECORD statement. 

4-Delete Record 
Your routine can delete the record leaving DFSORT by returning to DFSORT 
with a return code of 4. You need not place an address in general register 
1. 

8-00 Not Return 
DFSORT keeps returning to your routine until you pass a return code of 8. 
After that, the exit is closed and not used again during the DFSORT applica­
tion. When you return with return code 8, you need not place an address in 
general register 1. Unless you are inserting records after the end of the 
data set, you must pass a return code of 8 when DFSORT indicates the end 
of the data set, which it does by passing your routine zero as the address of 
the record leaving DFSORT. 

If you do not have a SORTOUT data set and would usually return with a 
return code of 8 before EOF, you can avoid getting the ICE025A message by 
specifying NOCHECK on the OPTION control statement (if CHECK = NO had 
not already been specified at installation time). 

If your exit passes a return code of 8 to DFSORT and there are still input 
records to be processed, the records are processed without being passed 
to your exit. 

12-lnsert Record 
To add a record to the SORTOUT data set ahead of the record leaving 
DFSORT, place the address of the new record in general register 1 and 
return to DFSORT with a return code of 12. DFSORT returns to your routine 
with the same address as passed on the previous call to the exit for the 
record leaving DFSORT. DFSORT places the address of the inserted record 
into the output area. You can then make more insertions at that point, or 
delete the record leaving DFSORT. DFSORT does not perform sequence 
checking for disk sorts. For tape sorts, DFSORT does not perform sequence 
checking on records that you insert unless you delete the record leaving 
DFSORT and insert a record to replace it. DFSORT keeps returning to your 
routine until you pass a return code of 8. 

Chapter S. Using Your Own Exit Routines 205 



Assembler Exit Routines (Output Phase Exits) 

16-Terminate DFSORT 
If you want to terminate DFSORT, return with a code of 16. DFSORT then 
returns to its calling program or the system with a return code of 16. 

See "E15/E35 Return Codes and EXITCK" on page 226 for complete details of 
the meanings of return codes in various situations. 

Summing Records at E35 
You can use the SUM control statement to sum records. However, you can 
sum records in the output data set by changing the record in the output area 
and then, if you want, by deleting the record leaving DFSORT. DFSORT returns 
to your routine with the address of a new record leaving DFSORT and the same 
record remains in the output area, so that you can summarize further. If you do 
not delete the record leaving DFSORT, that record is added to the output area, 
and its address replaces the address of the previous record in the output area; 
DFSORT returns with the address of a new record leaving DFSORT. 

E37: Closing Data Sets 
Your routine at this exit is executed once at the end of i2.E37 exit the output 
phase. It can be used to close data sets used by your other routines in the 
phase or to perform any housekeeping functions for your routines. 

Note: To avoid special linkage editor requirements (see "Summary of Rules for 
User Exit Routines" on page 189), you can include these functions in your E35 
routine rather than in a separate E37 routine. 

E38: Handling Input Data Sets 
The routine here is the same as for E18. If you are using a disk sorting tech­
nique, then I/O error conditions cannot be handled through E38. 

Using E38 with VSAM 
This exit can be used during a merge or copy to insert VSAM passwords into 
VSAM input ACBs and to perform various VSAM exit functions. The example 
below shows code your program can use to return control to DFSORT. 

ENTRY E38 

E38 LA I, PARt·ILST 
RETURH 
(NOP 0,4 

PAR~ILST OS OH 
DC X'OS' 
DC AL3 (VSAHEXL) 
DC X'06' 
DC AL3(PHOLST) 
DC A(O) 

VSAHEXL EXLST SYtlAO-USYtlAO,LERAD'ULERAO 
PHOLST DC H'2' 

DC CLa'SORTINOI ' SORTINOI DOtlAtlE 
DC CL8' IIIPASSI ' SORTINOI PASSWORD 
DC CLa' SORTitlO2' SORTIlI02 ODtIAHE 
DC CLa' ItlPASS2' SORTIN02 PASSWORD 

USYIIAO VSAJ.I SYtlCH ERROR RTII 
ULERAO VSAtl LOGIC ERROR RTtI 

206 DFSORT: Application Programming: Guide 



E39 Exit: Handling Output Data Sets 

Using E39 with QSAM/BSAM 

Sample Routines Written In Assembler 

The technique is the same as for E19 for QSAM/BSAM. See "E19 Exit: Handling 
Output to Work Data Sets" on page 199 for details. 

Using E39 with VSAM 
For VSAM, this exit can be used to insert VSAM passwords into VSAM output 
ACBs and to perform various VSAM exit functions. The example below shows 
code your program can use to return control to DFSORT. 

EIITRY E39 

E39 lA 1,PARHlST 
RETURN 
CHOP 0,4 

PARJ.tlST OS OH 
DC X'9S' 
DC Al3(VSAHEXl) 
DC X'06' 
DC Al3 (PWDlST) 
DC A(O) 

VSAt·tEXl EXlST SYNAD=USYNAD,lERADaUlERAD 
PWDlST DC H'l' 

DC Cl8' SORTOUT' SDRTOUT DDtlAHE 
DC Cl8'OUTPASS' SORTOUT PASSWORD 

USYNAD VSAH SYNCH ERROR RTN 
UlERAD VSAH lOGIC ERROR RTN 

Sample Routines Written in Assembler 
This section provides some sample program exits written in assembler. 

E15: Deleting Expired Records 
This routine checks each record's expiration date, and deletes out-of-date 
records. 

Chapter 5. Using Your Own Exit Routines 207 



Sample Routines Written in Assembler 

EI5 CSECT 
USlHG *,12 SET UP BASE REGISTER 
SAVE (14,12) SAVE REGISTERS 
LR 12,15 LOAD BASE REGISTER 
ST 13, SAVEAREA+4 CHAIll BACK~!ARD 
LR 11,13 
LA 13, SAVEAREA 
ST 13,8(11) CHAltI FORHARD 

L 2,0(1) LOAD ADDR OF RECORD INTO R2 
LA 2,0(,2) CLEAR FIRST BYTE 
LTR 2,2 IS ADDR=O? 
BZ EIIPTEST YES- TEST FOR llO IIlPUT 
CLI FIRST HIE, C 'Y' IS IT FIRST THIE THROUGH 
BHE AROUlm BRAUCH IF 110 
mlE DEC OBTAIN TODAY'S DATE 
IIVI FIRSTlIIE,C'N' INDICATE NOT FIRST TillE ANY IIORE 
ST I,DATE SAVE DATE 

RECDATE EQU 4 
DATlEN EQU 4 
RECEASE EQU 2 
AROUND CLC RECDATE (DATLEII, RECBASE) , DATE CHECK EXPIRATIOII DATE 

BUH DELETE IF OBSOLETE, DELETE RECORD 
L 13, SAVEAREA+4 RESTORE R13 
Lf.1 14,12,12(13) RESTORE REGS 
L 1,0(1) POWT TO REC LEAVlHG IIERGE 
SR 15,15 RC=O (110 ACTlOlI) 
BR 14 

E"PTEST CLI FIRSTII'IE,C'V' IS THIS FIRST RECORD? 
Bl~E IIORETRET 1I0-EIID OF DATA SET 
L 13, SAVEAREA+4 YES- IIIPUT DATA SET EIIPTY 
RETURN (14,12) ,RC=16 'TERI""ATE. SORT' CODE 

1l0RETRET L 13, SAVEAREA+4 RESTORE R13 
RETURtI (14,12) ,RC=8 'tiO RETURN' CODE 

DELETE L 13, SAVEAREA+4 RESTORE R13 
RETURN (14,12) , RC=4 'DELETE' CODE 

SAVEAREA OS 18F 
DATE OS F 
FlRSmlE DC C'Y' 

END 

E16 Exit: When NMAX Exceeded, Sort Current Records 
This routine tells DFSORT that, when DFSORT issues the message "NMAX 
EXCEEDED", it must sort only the records already read in. 

E16 CSECT 
LA 
BR 
EIID 

E35 Exit: Deleting Records 

15,0 
14 

SET RETURN CODE 

This routine checks byte 5 of each record. If the byte contains the letter N, the 
exit deletes the record. You can use the INCLUDE or OMIT control statements 
instead. 

208 DFSORT: Application Programming: Guide 



E35 CSECT 
USltIG 
SAVE 
L 
LTR 
BZ 
CLI 
BE 
UI 
SR 
L 
BR 

flO ItIPUT RETURN 
DELETE RETURN 

EtiD 

COBOL Exit Routines 

*,15 
04,12) 
1,0(1) 
1,1 
tlOItiPUT 
4{l) ,X'DS' 
DElETE 
14,12,12(13) 
15,15 
1,00) 
14 
(14,12) ,RC=S 
(14,12), RC=4 

SAVE REGISTERS 
Rl GETS ADDR OF REC FR PARAI·llIST 
IS ADDR ZERO? 
YES-END OF ItiPUT 
DOES BYTE 5 COIiTAItI 'II'? 
YES-DELETE RECORD 
RESTORE REGISTERS 
RC=O (tiO ACT! 011) 
POINT TO RECORD LEAVItlG flERGE 

RETURN ImH 'DO NOT RETURW CODE 
RETURN 11ITH 'DELETE' COOE 

COBOL Exit Routines 

You can perform the same tasks with E15 and E35 exit routines written in 
COBOL that you can perform with E15 and E35 exit routines written in Assem­
bler. However, COBOL routines differ from assembler routines in the way they 
pass information between themselves and DFSORT. Your COBOL routine: 

• Must pass information through fields described in the LINKAGE SECTION of 
the DATA DIVISION. Assembler uses general register 1 and pointers in a 
parameter list. 

• Must use RETURN-CODE, a COBOL special register. Assembler uses reg­
ister 15 for the return code. 

• Must use return code 20 to alter or replace a record. Assembler uses 
return code O. 

• Can use the exit area for E15/E35 communication. Assembler uses the user 
address constant. 

COBOL Exit Requirements 
The following rules apply to COBOL exits. Failure to observe these COBOL exit 
rules can result in termination or unpredictable results. 

• If both E15 and E35 exits are used, they must be in the same version of 
COBOL. 

• Exits written in COBOL must not use STOP RUN statements. To return to 
DFSORT, you must use the GOBACK statement. 

• VS COBOL II exits must be compiled with the RES/RENT compile-time 
option. 

• Compilation of OSIVS COBOL exits with the RES compiler option aids 
migration to VS COBOL II; however, exits compiled with NaRES execute 
under DFSORT. 

• If an exit contains a READY TRACE, EXHIBIT, or DISPLAY statement, the 
DFSORT messages normally written to SYSOUT must be directed to another 
data set using the MSGDDN parameter. For READY TRACE, EXHIBIT, and 
DISPLAY statements, COBOL writes also to SYSOUT. The messages to 
SYSOUT can, therefore, be lost because of interleaving of output. 

Chapter 5. Using Your Own Exit Routines 209 



COBOL Exit Routines 

An alternative is to direct the COBOL output to another data set by using 
the SYSx compiler option for OSIVS COBOL or the OUTDD compiler option 
for VS COBOL II. 

• COBOL exits must not contain a SORT or a MERGE verb. 

• When coding the MODS control statement to describe a COBOL exit, use C 
for the fourth parameter. This instructs DFSORT to build the correct param­
eter list. 

• If invoking DFSORT from a VS COBOL II program, you can use a COBOL 
E15 if the VS COBOL II FASTSRT option is in effect for input, and a COBOL 
E35 if FASTSRT is in effect for output. The COBOL exits must be compiled 
with VS COBOL II. 

• If you are running with VS COBOL II exits, you must use the VS COBOL II 
library. If COBEXIT = COB2 is not the default for your installation, make sure 
you specify the COB2 parameter in the OPTION control statement. Failure 
to do so degrades performance. 

• If COBEXIT=COB2 is in effect for this run, you must use the VS COBOL II 
library, even if your COBOL exit is compiled by the OSIVS COBOL compiler. 

• If you run exits compiled with either the OSIVS COBOL compiler or the VS 
COBOL II compiler and you specify the RES option, the COBOL library rou­
tines must be available at run time. The COBOL library might be required 
for an exit compiled with the OSIVS COBOL, NaRES option. See your 
OSIVS COBOL manual for information on options that require the COBOL 
library. 

• Exits compiled with OSIVS COBOL can be executed with either the OSIVS 
COBOL or VS COBOL II library, or in some cases, with no library. 

• Exits compiled with VS COBOL II must be executed with the VS COBOL II 
library. 

• Exits compiled with OSIVS COBOL and executing with the VS COBOL II 
library must not issue STAEs unless the DFSORT NOESTAE option is in 
effect. (OSIVS COBOL compiler options that cause STAE to be issued are: 
STATE, FLOW, SYMDMP, COUNT, and TRACE.) 

COBOL Requirements for Copy Processing 
For copy processing, all sort requirements apply except for the following 
restrictions: 

• When you invoke DFSORT through JCL and COBEXIT = COB2 is in effect, 
you can use either a separately compiled COBOL E15 exit or a separately 
compiled COBOL E35 exit, but not both. 

• When you invoke DFSORT from a VS COBOL II program, the following limi-
tations apply when FASTSRT is in effect for: 

Input only: You can use a separately compiled E15 exit, but not a sepa­
rately compiled E35 exit. 

Output only: You can use a separately compiled E35 exit, but not a sep­
arately compiled E15 exit. 

Input and output: You can use either a separately compiled E15 or a 
separately compiled E35, but not both together (when COBEXIT=COB2). 

210 DFSORT: Application Programming: Guide 



COBOL Exit Routines 

If separately compiled E15 and E35 exits are found together, DFSORT copy 
processing terminates. Message ICE161A is issued. 

COBOL Storage Requirements 
If you are running COBOL exits compiled with the RES compile-time option, 
make sure that you have enough storage available for the COBOL library sub­
routines. (This does not apply if the library has been installed resident.) 

Besides the minimum DFSORT main storage requirements, you need an addi­
tional 40K bytes of storage in your REGION for the OSIVS COBOL library sub­
routines, and 150K bytes for the VS COBOL II library subroutines. Most of the 
VS COBOL II library subroutines can be resident above 16-megabyte virtual. 
However, whether you can actually load the VS COBOL II library subroutines 
above 16-megabyte virtual depends on how they were installed. 

Under certain conditions, DFSORT can use all the storage in your REGION 
below 16-megabyte virtual, thus leaving no room to load the COBOL library 
subroutines required during execution of your exit. 

On an MVS/XA or MVS/ESA system, main storage is available above 
16-megabyte virtual unless the TMAXLIM or SIZE/MAINSIZE options specify an 
extremely high value (for example, your system limit for main storage above 
16-megabyte virtual), in which case you can use the ARESALL or ARESINV 
option to release storage. 

During execution, the actual amount of storage required for the COBOL library 
subroutines depends on the functions performed in the COBOL exit. You must 
add to the size of the exit a minimum of 40K bytes when running with the 
OSIVS COBOL library subroutines and, in most cases, 20K bytes when running 
with the VS COBOL II library subroutines. If the exit does 1/0, additional 
storage must be reserved for the 1/0 buffers. (See the note on page 211 for 
additional circumstances under which you might need to release additional 
storage for VS COBOL II.) Additional storage for buffers is specified by the m 
parameter on the MODS statement. A VS COBOL II exit requires less storage 
than a similar OSIVS COBOL exit because DFSORT automatically releases 
storage for some of the COBOL library subroutines before the exit is called. 

When SIZE/MAINSIZE = MAX is in effect, an alternative way to release storage 
is to use the RESALL or RESINV option. 

Note: You might need to release an additional 70K bytes of storage when you 
are: 

• Calling both E15 and E35 exits 

• Running with nonresident VS COBOL II library subroutines 

• Executing a sort with DFSORT residing above 16-megabyte virtual. 

This can be done by adding 70K bytes more to one of the following: 

• The m parameter of the MODS statement for the E35 exit (m = E35 exit size 
+ 20K + 70K) 

• The RESALL option when SIZE/MAINSIZE = MAX is in effect. 

Chapter 5. Using Your Own Exit Routines 211 



COBOL Exit Routines (Input Phase Exit) 

COBOL Exit Routines (Input Phase Exit) 

COBOL E15 Exit: Passing or Changing Records for Sort 
The ICEMAC installation option EXITCK affects the way DFSORT interprets 
certain return codes from user exit E15. To avoid ambiguity, this section 
assumes that the IBM default, EXITCK = STRONG, was selected at your site. 
For complete details of the meaning of E15 return codes in various situations 
with EXITCK=STRONG and EXITCK=WEAK, see "E15/E35 Return Codes and 
EXITCK" on page 226. 

DFSORT continues to enter E15 (even when there are no input records) until the 
exit tells DFSORT, with a return code of 8, not to return. 

See Figure 27 on page 184 for logic flow details. 

Some uses for E15 are: 

• Add records to an input data set. 
• Pass an entire input data set to DFSORT. 
• Delete records from an input data set. 
• Change records in an input data set (but not control fields-use E61 exit for 

that). 

Note: 

• If both E15 and E35 exits are used, they must be in the same version of 
COBOL. 

• If you use the E15 exit. you can omit the SORTIN DO statement as long as 
you include a RECORD statement in the program control statements. 

• If you omit the SORTIN DD statement, all input records are passed to 
DFSORT through your COBOL E15 exit. You return to DFSORT with a return 
code of 12. When DFSORT returns to the E15 exit after the last record has 
been passed, return to DFSORT with return code 8 to indicate "do not 
return." 

• DFSORT continues to re-enter your E15 exit until a return code of 8 is 
received. However, if STOPAFT is in effect, no additional records are 
inserted to the sort after the STOPAFT count is satisfied. 

• You cannot use dynamic link-editing with a COBOL E15 exit. 

E15 Interface with COBOL 
Each time the E15 exit is called, DFSORT supplies the following fields: 

• Record flags 
• New record 
• Length of the new record (for variable-length records) 
• Length of exit area 
• Exit area. 

When E15 returns to DFSORT, the E15 exit provides to DFSORT some or all of 
the fields mentioned below. The first field is required; the others can be modi­
fied as appropriate. 

212 DFSORT: Application Programming: Guide 



COBOL Exit Routines (Input Phase Exit) 

• RETURN-CODE (assigned by the exit by setting the COBOL special register 
RETURN-CODE) 

• Return record 
• Length of the return record (for VLR) 
• Length of exit area 
• Exit area. 

For more information on how these fields are used in a COBOL E15 exit, see 
"E35 Linkage Section Fields For Fixed-Length and Variable-Length Records" on 
page 222. 

Figure 31 on page 214 details the interface to COBOL for the E15 exit. 

Chapter 5. Using Your Own Exit Routines 213 



COBOL Exit Routines (Input Phase Exit) 

Rl-
Pointer to Record 
Flags 

4 bytes----j 

---.1 Record Flag~ 
-4 bytes-

Pointer to tlel~ 1---. 
Record 

tlel'j Record ] 
.. bytes-

4 bytes 

Pointer to Return 
Record 

4 bytes 

Pointer to Dummy 
Field 

4 bytes 

Pointer to Dummy 
Field 

4 bytes 

---. Return Reco~ 
.. bytes 

----~y FieiiJ 
4 bytes 

---.~YFie~ 
4 bytes 

VLR: Length of New Record 
Pointer to Length of ---. -4 bytes--------i 
New Record FLR: Dummy Field 

4 bytes,-------' 
-4 bytes 

VLR: Length of Return Record 
Pointer to Length of ---. -4 bytes -----
Return Record FLR: Dummy Field 

4 bytes 

Pointer to Dummy 
Fie ld 

4 bytes 

4 byte~--------' 

---.~YFie~ 
4 bytes 

Pointer to Length of ---.!length of Exit Area I 
Exi t Area L2 bytes----

4 bytes 

Ipointer to Exit Area ---.~it Area ] 
256 bytes 

4 bytes 

tlumber of Bytes 
.. - VLR: Number of bytes is given by the co.'responding length field 

FLR: Number of bytes is equal to the LRECL 

Figure 31. E15 DFSORT Interface with COBOL 

E15 Linkage Examples: Figure 32 is an example of the LINKAGE SECTION code 
for a fixed-length record (FLR) data set with a logical record length (LRECL) of 
100. showing the layout of the fields passed to your COBOL routine. 

214 DFSORT: Application Programming: Guide 



LINKAGE SECTlotl. 
01 RECORD-FLAGS 

BB FI RS T -REC 
BB IIIDDLE-REC 
88 EIlD-REC 

01 tlH/-REC 
01 RETURIl-REC 
01 UIlUSEOl 
01 UUUSED2 
01 UIJUSE03 
01 UilUSED4 
01 UNUSED5 
01 EXITAREA-LEN 
01 EXIT AREA. 

COBOL Exit Routines (Input Phase Exit) 

PIC 9(B) COHPUTATIOHAL. 
VALUE 00. 
VALUE 04. 
VALUE DB. 

PIC X(lOO). 
PIC X(lOO). 
PIC 9(B) COBPUTATIONAL. 
PIC 9(8) COJ.IPUTATIOHAL. 
PIC 9(8) COHPUTATIONAL. 
PIC 9(B) CotIPUTATIOIlAL. 
PIC 9(8) COI·IPUTATlOllAL. 
PIC 9(4) COHPUTATIONAL. 

05 EAREA OCCURS 1 TO 256 THIES 
DEPEtlDING Otl EXITAREA-LEN PIC X. 

Figure 32. LINKAGE SECTION Code Example for E15 (Fixed-Length Records) 

Figure 33 is an example of the LINKAGE SECTION code for a variable-length 
record (VLR) data set with a maximum LRECL of 200, showing the layout of the 
fields passed to your COBOL routine. 

Note: 

• If the data used for input was not created by a COBOL run, you need to 
know the LRECL defined for your data set. For a VLR, the maximum length 
of the record defined in your COBOL exit is 4 bytes less than the LRECL 
value, because COBOL does not include the record descriptor word (ROW) 
as part of the record. (Each VLR begins with an ROW field of 4 bytes. The 
ROW is not included in the record passed to your COBOL exit.) 

• You need to code only up to the last field that your routine actually uses (for 
example, up to RETURN-REC-LEN if you do not use the exit area). 

LWKAGE SECTION. 
01 RECORD-FLAGS 

BB FIRST-REC 
BS HIDDLE-REC 
8B EHD-REC 

PIC 9(8) CotlPUTATIONAL. 

01 tlEH-REC. 

VALUE 00. 
VALUE 04. 
VALUE 08. 

05 HREC OCCURS 1 TO 200 THIES 
DEPENDING Otl tlH/-REC-LEN 

01 RETURIl-REC. 
05 RREC OCCURS 1 TO 200 THIES 

PIC X. 

DEPEtlDItlG ON RETURN-REC-LEI! PIC X. 
01 UNUSEDI PIC 9(8) CO~IPUTATIONAL. 
01 UIlUSED2 PIC 9(8) COHPUTATIOHAL. 
01 NEW-REC-LEN PIC 9(8) COI1PUTATIONAL. 
01 RETURII-REC-LEIl PIC 9(8) COIIPUTATIONAL. 
01 UNUSED3 PIC 9(8) COHPUTATIONAL. 
01 EXITAREA-LW PIC 9(4) COHPUTATIONAL. 
01 EXITAREA. 

05 EAREA OCCURS 1 TO 256 THIES 
DEPENDING Otl EXITAREA-WI PIC X. 

Figure 33. LINKAGE SECTION Code Example for E15 (Variable-Length Record) 

Chapter 5. Using Your Own Exit Routines 215 



COBOL Exit Routines (Input Phase Exit) ~ 

E15 Linkage Section Fields for Fixed-Length and Variable-Length Records 

E15 Return Codes 

The fields in the LINKAGE SECTION are used by DFSORT and your routine as 
stated below. For clarity. the field names from Figure 33 have been used. 

• To give your COBOL routine the status of the passed records, DFSORT uses 
the record nags field (RECORD-FLAGS) in the following way: 

o (FIRST -REC) 
The new record is the first passed record. 

4 (MIDDLE-REC) 
The new record is not the first passed record. 

8 (END-REC) 
There is no new record to pass; all records have 
been passed to your routine or there were no records to pass. 

• DFSORT places the next input record in the new record field (NEW-REC). A 
VLR does not contain an ROW, but DFSORT places the length of this VLR in 
the new record length field (NEW-REC-LEN). The value in the NEW-REC-LEN 
field is the length of the record only and does not include the 4 bytes for the 
ROW. 

• When your routine places an insertion/replacement record in the return 
record field (RETURN-REC), the VLR must not contain an ROW; your routine 
must place the length of this record in the return record length field 
(RETURN-REC-LEN). The value of the RETURN-REC-LEN field is the length 
of the record only and must not include the 4 bytes for the ROW. 

• Each time DFSORT calls your COBOL E15 or COBOL E35 exit, it passes the 
exit a 256-byte exit area field (EXITAREA). The first time the exit area field 
is passed to your COBOL E15 exit, it contains 256 blanks, and the exit area 
length field (EXITAREA-LEN) contains 256. 

Any changes you make to the exit area field or exit area length fields are 
passed back both to your COBOL E15 exit and your COBOL E35 exit. 

Note: 

Do not set the exit area length field to more than 256 bytes. 

You need to code only up to the last field that your routine actually uses 
(for example, up to RETURN-REC if you do not use the exit area). 

Your COBOL E15 routine must pass one of the following return codes to 
DFSORT in the RETURN-CODE field (a COBOL special register) informing it 
what to do with the record you have been examining or changing: 

0 No Action 
4 Delete Record 
8 Do Not Return 
12 Insert Record 
16 Terminate DFSORT 
20 Alter/Replace Record 

216 DFSORT: Application Programming: Guide 



COBOL Exit Routines (Input Phase Exit) 

O-No Action 
If you want DFSORT to retain the record unchanged, return with 
RETURN-CODE set to O. 

4-0elete Record 
If you want DFSORT to delete the record, return with RETURN-CODE set to 
4. 

8-00 Not Return 
DFSORT continues to enter your routine until you return with RETURN-CODE 
set to 8. After that, the exit is not re-entered during the DFSORT applica­
tion. Unless you are inserting records after the end of the data set, you 
must set RETURN-CODE to 8 when DFSORT indicates the end of the data 
set, which it does by entering your routine with the record flags field set to 
8. 

If your exit passes a return code of 8 to DFSORT and there are still input 
records to be processed, the records are processed without being passed 
to your exit. 

12-lnsert Record 
If you want DFSORT to add a record before the new record in the input data 
set: 

• Move the insert record to the return record field. 

• For VLR, move the length to the return record length field. (Do not 
include the 4-byte RDW in this length.) 

• Return with RETURN-CODE set to 12. 

DFSORT re-enters your routine with the same record as before in the new 
record field, allowing your routine to insert more records or handle the new 
record. 

You can also insert records after the end of the data set. DFSORT keeps 
returning to your routine as long as you pass it a RETURN-CODE 12 and 
until you return with a RETURN-CODE set to 8. 

16-Terminate OFSORT 
If you want to terminate DFSORT, return with RETURN-CODE set to 16. 
DFSORT then returns to its calling program or to the system with a return 
code of 16. 

20-Alter Record 
If you want to change the new record: 

• Move the new record to the return record field. 
• Change the record in the return record field. 
• For VLR records, move the length to the return record length field. 
• Return with RETURN-CODE set to 20. 

Note: If your routine changes record size, you must indicate the new size 
on the RECORD statement. 

20-Replace Record 
If you want to replace the new record: 

• Move the replacement record to the return record field. 

• For VLR records, move the length to the return record length field. (Do 
not include the 4-byte RDW in this length.) 

Chapter 5. Using Your Own Exit Routines 217 



COBOL Exit Routines (Output Phase Exit) 

• Return with RETURN-CODE set to 20. 

See "E15/E35 Return Codes and EXITCK" on page 226 for complete details of 
the meanings of return codes in various situations. 

E15 Procedure Division Requirements 
When coding the PROCEDURE DIVISION, the following requirements must be 
met: 

• To return control to DFSORT, you must use the GOBACK statement. 

• In the USING option of the PROCEDURE DIVISION header, you must specify 
each 01-level name in the LINKAGE SECTION. You must specify each name 
in order up to the last one you plan to use, even when you do not use all 
the 01-level names preceding the header. 

Examples: 

For the FLR example, Figure 32 on page 215, you would code: 

PROCEDURE DIVISION USING RECORD-FLAGS, NEH-REC, 
RETURN-REC, UNUSEDl, UNUSED2, UNUSED3, 
UNUSED4, UNUSED5, EXITAREA-LEN, EXITAREA. 

For the VLR example, Figure 33 on page 215, you would code: 

PROCEDURE DIVISION USING RECORD-FLAGS, NEW-REC, 
RETURN-REC, UNUSEDl, UNUSED2, 
NEH-REC-LEN, RETURN-REC-LEN, 
UNUSED3, EXITAREA-LEN, EXITAREA. 

COBOL Exit Routines (Output Phase Exit) 

COBOL E35 Exit: Changing Records 
Note: The ICEMAC installation option EXITCK affects how DFSORT interprets 
certain return codes from user exits E15 and E35. To avoid ambiguity. this 
section assumes that the IBM default, EXITCK = STRONG. was selected at your 
site. For complete details of the meaning of E15 and E35 return codes in 
various situations with EXITCK=STRONG and EXITCK=WEAK. see "E15/E35 
Return Codes and EXITCK" on page 226. 

The E35 routine is entered each time DFSORT prepares to place a record in the 
output area. 

See Figure 27 on page 184 for logic flow details. 

Some uses are: 

• Add. delete. or change records in the output data set. 
• Terminate DFSORT. 

When DFSORT indicates the end of the data set (record flags field set to 8). you 
must set RETURN-CODE to 8 (unless you are inserting records after the end of 
the data set); otherwise. DFSORT continues to enter E35. 

218 DFSORT: Application Programming: Guide 



COBOL Exit Routines (Output Phase Exit) 

Note: 

• If both E15 and E35 exits are used, they must be in the same version of 
COBOL. 

• If you use the E35 exit, you can omit the SORTOUT DO statement, but you 
must include a RECORD statement in the program control statements. 

• If you omit the SORTOUT DD statement, your E35 exit routine must dispose 
of each output record and return to DFSORT with a return code of 4. When 
DFSORT returns to your routine after you have disposed of the last record, 
return to DFSORT with a return code of 8. 

• You cannot use dynamic link-editing with a COBOL E35 exit. 

E35 Interface with COBOL 
Each time your E35 exit is called, DFSORT supplies the following fields: 

• Record flags 
• Record leaving DFSORT 
• Length of record leaving DFSORT (for variable-length records) 
• Length of exit area 
• Exit area. 

When your E35 exit returns to DFSORT, the E35 exit provides to DFSORT some 
or all. the fields mentioned below. The first field is required; the others can be 
modified as appropriate. 

• RETURN-CODE (assigned by the exit by setting the COBOL special register 
RETURN-CODE) 

• Return record 
• Length of return record (for variable-length records) 
• Length of exit area 
• Exit area. 

For more information on how these fields are used in a COBOL E35 exit, see 
"E35 Linkage Section Fields For Fixed-Length and Variable-Length Records" on 
page 222. 

Figure 34 on page 220 details the interface to COBOL for the E35 exit. 

Chapter 5. Using Your Own Exit Routines 219 



COBOL Exit Routines (Output Phase Exit) 

Rl-
Pointer to Record 
Flags 

4 bytes----i 

Pointer to Record 
leaving OF SORT 

--4 bytes---l 

Pointer to Return 
Record 

4 bytes---l 

Pointer to Record in 
Output Area 

4 bytes---l 

Pointer to Owrrny 
Field 

4 bytes---l 

-Gcord FliJ 
4 bytes 

--. Record Leaving DFSORT 
.. bytes-----J 

---~ Gturn Re~ 
.. bytes 

---~ Gcord in Output Areal 
.. bytes-----' 

---~ [iurrmy Fi e ~ 
4 bytes 

Pointer to length of --. 
Record leaving OF SORT 

VLR: length of Record Leaving DFSORT 
4 bytes-----------i 

FLR: OUIlI11Y Field 
4 bytes-----------' 

4 bytes---l 
VLR: Length of Return Record 

Pointer to length of - r--4 bytes--------J 
Return Record' FlR: DUIlI11Y Field 

4 bytes---l 

Pointer to length of 
Record in Output Area 

4 bytes---l 

'--4 bytes--------l 

VLR: Length of Record in Output Area 
~ r:-4 bytes 
~R: Dwrrny Field 

4 bytes,-----------' 

Pointer to length of -~ngth of Exit Areal 
Exit Area L2 bytes----'· 

4 bytes---l 

IPo"'" '0 E,., A, •• 
4 bytes----' 

-~itArea ] 
256 bytes 

Ilumber of Bytes 
.. - VlR: number of bytes is given by the corresponding length field 

FLR: tlumber of bytes is equal to the LRECl 

Figure 34. E35 Interface with COBOL 

E35 Linkage Section Examples: Figure 35 is an example of the LINKAGE 
SECTION code for a fixed-length record (FLR) data set with a logical record 
length (LRECL) of 100, showing the layout of the fields passed to your COBOL 
routine. 

Note: You need to code only up to the last field your routine actually uses (for 
example, up to OUTPUT-REC if you do not use the exit area). 

220 DFSORT: Application Programming: Guide 



COBOL Exit Routines (Output Phase Exit) 

L1HKAGE SECTIOH. 
01 RECORO-fLAGS 

88 FIRST-REC 
88 III DDLE-REC 
88 ElID-REC 

01 LEAVltIG-REC 
01 RETURII-REC 
01 OUTPUT-REC 
01 UtiUSEDl 
01 UtiUSE02 
01 UtiUSED3 
01 UHUSED4 
01 EXITAREA-LEtl 
01 EXIT AREA. 

PIC 9(8) COI·IPUTATlOHAl. 
VALUE 00. 
VALUE 04. 
VALUE 08. 

PIC X(lOO). 
PIC X(lOO). 
PIC X(lOO). 
PIC 9(8) COI·IPUTATIOtIAl. 
PIC 9(8) COI·IPUTATIOtIAL. 
PIC 9(8) COI·IPUTATIOIIAL. 
PIC 9(8) COIlPUTATIotIAL. 
PIC 9(4) COIlPUTATIONAL. 

05 EAREA OCCURS 1 TO 256 THIES 
OEP EtiD IHG ON EX IT AREA- LEN PIC X. 

Figure 35. LINKAGE SECTION Code Example for E35 (Fixed-Length Records) 

Figure 36 is an example of the LINKAGE SECTION code for a variable-length 
record (VLR) data set with a maximum LRECL of 200, showing the layout of the 
fields passed to your COBOL routine. 

Note: 

• VLR records have a 4-byte record descriptor word (RDW) field at the begin­
ning of each record. The maximum record length plus the RDW will be the 
length defined for the LRECL attribute of your output data set. COBOL pro­
grams do not use the ROWand, therefore, the maximum length defined in 
your COBOL exit is 4 bytes less than the LRECL value. 

• You need to code only up to the last field your routine actually uses (for 
example, up to OUTPUT-REC-LEN if you do not use the exit area). 

LINKAGE SECTION. 
01 RECORD-FLAGS 

88 FIRST-REC 
88 f-1IDDLE-REC 
88 END-REC 

01 LEAVING-REC. 

PIC 9(8) CO~'PUTATIONAL. 
VALUE 00. 
VALUE 04. 
VALUE 08. 

05 LREC OCCURS 1 TO 200 T HlES 
DEPENDING ON LEAVING-REC-LEN 

01 RETURN-REC. 
05 RREC OCCURS 1 TO 200 TINES 

PIC X. 

DEPENDING ON RETURN-REC-LEN PIC X. 
01 OUTPUT -REC. 

05 OREC OCCURS 1 TO 200 TIMES 
DEPENDING ON OUTPUT-REC-LEN PIC X. 

01 UNUSED1 PIC 9(8) COMPUTATIONAL. 
01 LEAVING-REC-LEN PIC 9(8) COr·IPUTATIONAL. 
01 RETURN-REC-LEN PIC 9(8) COMPUTATIONAL. 
01 OUTPUT-REC-LEN PIC 9(8) COMPUTATIONAL. 
01 EXITAREA-LEN PIC 9(4) COMPUTATIONAL. 
01 EXIT AREA. 

05 EAREA OCCURS 1 TO 256 THIES 
DEPENDING ON EXITAREA-LEN PIC X. 

Figure 36. LINKAGE SECTION Code Example for E35 (Variable-Length Records) 

Chapter 5. Using Your Own Exit Routines 221 



COBOL Exit Routines (Output Phase Exit) 

E35 Linkage Section Fields For Fixed-Length and Variable-Length Records 
The fields in the LINKAGE SECTION are used by DFSORT and your routine as 
stated below. For clarity, the field names from Figure 36 have been used. 

• To give your COBOL routine the status of the passed records, DFSORT uses 
the record flags field (RECORD-FLAGS) in the following way: 

o (FIRST-REC) 
The record leaving DFSORT is the first passed record. 

4 (MIDDLE-REC) 
The record leaving DFSORT is not the first passed record. 

8 (END-REC) 
There is no record leaving DFSORT to pass; all records 
have been passed to your routine or there were no records to pass. 

• DFSORT places the next output record (which usually follows the record in 
the output area) in the record leaving field (LEAVING-REC). A VLR does not 
contain an RDW; DFSORT places the length of this VLR in the record 
leaving length field (LEAVING-REC-LEN). The value in the 
LEAVING-REC-LEN field is the length of the record only, and does not 
include the 4 bytes for the RDW. 

• When your routine places an insertion/replacement record in the return 
record field (RETURN-REC), the VLR must not contain an RDW; your routine 
must place the length of this record in the return record length field 
(RETURN-REC-LEN). The value in the RETURN-REC-LEN field is the length 
of the record only, and does not include the 4 bytes for the RDW. 

• DFSORT places the record already in the output area in the record in output 
area field (OUTPUT-REC). A VLR does not contain an RDW. DFSORT 
places the length, not including the 4 bytes for RDW, of this VLR in the 
record in output area length field (OUTPUT-REC-LEN). 

• DFSORT passes your COBOL E35 routine a 256-byte exit area field 
(EXITAREA) that can contain information passed by your COBOL E15 
routine. If no information is passed in the EXIT AREA field by your COBOL 
E15 routine the first time the field is passed to your COBOL E35 routine, 
EXIT AREA contains 256 blanks, and the exit area length field 
(EXIT AREA-LEN) contains 256. 

Any changes you make to the exit area field or exit area length field are 
passed back to your COBOL E35 routine each time it is called by DFSORT. 

Note: Do not set the exit area length field to more than 256 bytes. 

E35 Return Codes: Your COBOL E35 routine must pass one of the following 
return codes to DFSORT in the RETURN-CODE field (a COBOL reserved 
keyword) instructing it what to do with the record you have been examining or 
changing: 

o No Action 
4 Delete Record 
8 Do Not Return 
12 Insert Record 
16 Terminate DFSORT 
20 Alter/Replace Record 

222 DFSORT: Application Programming: Guide 



COBOL Exit Routines (Output Phase Exit) 

O-No Action 
If you want DFSORT to retain the record leaving DFSORT unchanged, return 
with RETURN-CODE set to O. 

4-0elete Record 
If you want DFSORT to delete the record leaving DFSORT, return with 
RETURN-CODE set to 4. 

8-00 Not Return 
DFSORT keeps returning to your routine until you pass a RETURN-CODE set 
to 8. After that, the exit is not re-entered during the DFSORT application. 
Unless you are inserting records after the end of the data set, you must set 
RETURN-CODE to 8 when DFSORT indicates the end of the data set, which it 
does by entering your routine with the record nags field set to 8. 

If your exit passes a return code of 8 to DFSORT and there are still input 
records to be processed, the records are processed without being passed 
to your exit. 

If you do not have a SORTOUT data set and would usually return with return 
code 8 before EOF, you can avoid getting the ICE025A message by speci­
fying NOCHECK on the OPTION control statement (if CHECK = NO had not 
already been specified at installation time). 

12-lnsert Record 
If.you want DFSORT to add a record to the SORTOUT data set before the 
record leaving DFSORT: 

• Move the insert record to the return record field. 
• For VLR records, move the length to the return record length field . 
• Return with RETURN-CODE set to 12. 

DFSORT re-enters your routine with the inserted record in the record output 
area field, and with the same record as before in the record leaving 
DFSORT field. In this way, your routine can insert more records or handle 
the record leaving DFSORT. 

You can also insert records after the end of the data set. DFSORT keeps 
returning to your routine as long as you pass it a RETURN-CODE 12 and 
until you return with RETURN-CODE set to 8. 

DFSORT does not perform sequence checking for disk sorts. For tape sorts, 
DFSORT does not perform sequence checking on records that you insert 
unless you delete the record leaving DFSORT and insert a record to replace 
it. 

16-Terminate OFSORT 
If you want to terminate DFSORT, return with RETURN-CODE set to 16. 
DFSORT then returns to its calling program or to the system with a return 
code of 16. 

20-Alter Record 
If you want to change the record leaving DFSORT: 

• Move the record leaving DFSORT to the return record field. 
• Change the record in the return record field. 
• For VLR records, move the length to the return record length field. 
• Return with RETU RN-CODE set to 20. 

Note: If your routine changes record size, you must indicate the new size 
on the RECORD statement. 

Chapter S. Using Your Own Exit Routines 223 



Sample Routines Written in COBOL 

20-RepJace Record 
If you want to replace the record leaving DFSORT: 

• Move the replacement record to the return record field. 
• For VLR records, move the length to the return record length field. 
• Return with RETURN-CODE set to 20. 

See "E15/E35 Return Codes and EXITCK" on page 226 for complete details of 
the meanings of return codes in various situations. 

E35 Procedure Division Requirements 
When coding the PROCEDURE DIVISION, the following requirements must be 
met: 

• To return control to DFSORT, you must use the GO BACK statement. 

• In the USING option of the PROCEDURE DIVISION header, you must specify 
each 01-level name in the LINKAGE SECTION. You must specify each name 
in order up to the last one you plan to use, even when you do not use all 
the 01-level names preceding the header. 

Examples: 

For the FLR example, Figure 35 on page 221. you would code: 

PROCEDURE DIVISION USING RECORD-FLAGS, LEAVING-REC, 
RETURN-REC, OUTPUT-REC, UNUSED1, UNUSED2, 
UNUSED3, UNUSED4, EXITAREA-LEN, EXITAREA. 

For the VLR example, Figure 36 on page 221, you would code: 

PROCEDURE DIVISION USING RECORD-FLAGS, LEAVING-REC, 
RETURN-REC, OUTPUT-REC, UNUSED1, 
LEAVING-REC-LEN, RETURN-REC-LEN, 
OUTPUT-REC-LEN, EXITAREA-LEN, EXITAREA. 

Sample Routines Written in COBOL 
This section provides some sample program exits written in COBOL. 

Altering Records: COBOL E15 Exit 
Figure 37 is an example of a COBOL E15 routine for a data set with fixed-length 
records of 100 bytes. It examines the department field in the passed record and 
takes the following action: 

• If the department is D29, it changes it to J99. 
• If the department is not 029, it accepts the record unchanged. 

224 DFSORT: Application Programming: Guide 



IDEtITIFICATlON DIVIS 1011. 
PROGRAI·I- ID. 

eEls. 
fIIVIROlll1EIIT DIVIS 101'1. 
DATA DIVISIOfl. 

Sample Routines Written in COBOL 

L1I1KAGE SEeTlOI/. 
01 RECORD-FLAGS PIC 9(S) COI·IPUTATIOtIAL. 

SS FIRST-REC 
SS fllDDLE-REC 
SS EIID-REC 

01 /lEW-REC. 
05 tlFILLl 
05 NEW-DEPT 
05 /IF ILL2 

01 RETURtl-REC. 
05 RFllLl 
05 RETURII-DEPT 
05 RFILL2 

VALUE 00. 
VALUE 04. 
VALUE as. 

PIC X(lO). 
PIC X(3). 
PIC X(S7). 

PI C X(lO). 
PIC X(3). 
PIC X(S7). 

PROCEDURE DIVISIOfl USIIIG RECORD-FLAGS, tlE\4-REC, RETURtJ-REC. 

IF EHD-REC 
I·IOVE S TO RETURII-CODE 
GO TO BACK-TO-SORT. 

IF IoIHI-DEPT EQUAL TO "029" 
I·IOVE flEW-REC TO RETURN-REC 
I·IOVE 'J99" TO RETURN-DEPT 
I·IOVE 20 TO RETURN-CODE 

ELSE 
I·IOVE 0 TO RETURII-COOE. 

BACK- TO-SORT. 
GOBACK. 

Figure 37. COBOL E15 Routine Example (FLR) 

Inserting Records: COBOL E35 Exit 
Figure 38 on page 226 is an example of a COBOL E35 routine for a data set 
with variable-length records up to 200 bytes. It examines the department field 
in each passed record (records are assumed to be sorted by the department 
field) and takes the following action: 

• It inserts a record for department K22 in the proper sequence. 
• It accepts all passed records unchanged. 

Chapter 5. Using Your Own Exit Routines 225 



E15/E35 Return Codes and EXITCK 

IDEtHIFICATlOtl DIVISIOU. 
PROGRAlHD. 

C£35. 
EtlVIROIIUEtlT DIVISIOII. 
DATA DIVISIOII. 
WORKIIIG-STORAGE SECTIOU. 
01 ItISERT -DOllE PIC 9(1) VALUE O. 
01 K22-REC. 

05 K22-HAllAGER PIC X(20) VALUE "J. DOE". 
05 K22-DEPT PIC X(3) VALUE "K22". 
05 K22-FUIIC PIC X(20) VALUE "ACCOUtlTItIG". 
05 K22-LATER PIC X(30) VALUE SPACES. 

01 LEAVIIIG-VAR-lEJl PIC 9(8) COHPUTATlOIlAL. 
LItiKAGE SECTIOn. 
01 RECORD-FLAGS PIC 9(S) COHPUTATl0I1AL. 

88 FIRST -REC 
88 IHDDLE-REC 
88 EtID-REC 

01 LEAVIIIG-REC. 
05 LREC-HAtlAGER PIC X(20). 
05 LREC-DEPT PIC X(3). 
05 LREC-FUIIC PIC X(20). 

VALUE 00. 
VALUE 04. 
VALUE 08. 

05 LREC-LATER OCCURS 1 TO 157 TIllES 
DEPEIIDHlG Otl LEAVItlG-VAR-LEN PIC X. 

01 RETURN-REC. 
05 RREC OCCURS 1 TO 200 TIUES 

DEPEIIDHIG Otl RETURII-REC-LEtl PIC X. 
01 OUTPUT-REC. 

05 OREC OCCURS 1 TO 200 TIUES 
DEPENDItlG 011 OUTPUT-REC-LEII PIC X. 

01 UIIUSEDI PIC 9(8) COUPUTATlOIIAL. 
01 LEAVItIG-REC-LEN PIC 9(8) COUPUTATlOtlAL. 
01 RETURU-REC-LEH PIC 9(S) COHPUTATIONAL. 
01 OUTPUT-REC-LEII PIC 9(8) COI·IPUTATlOIlAL. 

PROCEDURE DIVIS 1011 US IIIG RECORD-FLAGS, LEAVItIG-REC, 
RETURII-REC, OUTPUT -REC, UNUSED 1 , LEAVItlG-REC-LEN, 
RETURIl-REC-LErt, OUTPUT-REC-LEti. 

IF EtID-REC 
I·IOVE S TO RETURIl-CODE 
GO TO SACK-TO-SORT. 

IF ItISERT -DOtIE EQUAL TO 1 
HOVE 0 TO RETURII-CODE 
GO TO BACK-TO-SORT. 

SUBTRACT 43 FROU LEAVltlG-REC-LEti 
GIVItlG LEAVItlG-VAR-WI. 

IF LREC-OEPT GREATER THAll K22-DEPT 
HOVE 1 TO IIlSERT -DONE 
I·IOVE 43 TO RETURti-REC-LEN 
I·IOVE K22-REC TO RETURti-REC 
I·IOVE 12 TO RETURtl-CODE 

ELSE 
IIOVE 0 TO RETURIl-CODE. 

SACK- TO-SORT. 
GOBACK. 

Figure 38. COBOL E35 Routine Example (VLR) 

E15/E35 Return Codes and EXITCK 
DFSORT's interpretation of E15 and E35 return codes depends upon whether the 
ICEMAC option EXITCK=STRONG or EXITCK=WEAK was selected during 
installation. The following tables show the exact meaning of each E15 and E35 
return code with EXITCK=STRONG and EXITCK=WEAK in all possible situ­
ations. 

226 o FSORT: Application Programming: Guide 



E15/E35 Return Codes and EXITCK 

Note: 

• You can determine whether EXITCK = STRONG or EXITCK = WEAK is in 
effect from message ICE1321. 

• Use of EXITCK =WEAK can make it difficult to detect errors in the logic of 
your E15 and E35 user exit routines. 

• EXITCK = WEAK is treated like EXITCK = STRONG if tape work data sets are 
specified for a sort application or if the Blockset technique is not selected 
for a merge application. 

Table 10. E15 Without a SaRTIN Data Set 

Meaning with Meaning with 
E15 Return Code EXITCK = STRONG EXITCK = WEAK 

0 Invalid Do not return 

4 Invalid Do not return 

8 Do not return Do not return 

12 Insert record Insert record 

16 Terminate DFSORT Terminate DFSORT 

20 (COBOL only) Invalid Do not return 

All others Invalid Invalid 

Table 11. E15 With a SaRTIN Data Set Before End-ot-File 

Meaning with EXITCK = STRONG 
E15 Return Code and EXITCK = WEAK 

0 No action/record altered 

4 Delete record 

8 Do not return 

12 Insert record 

16 Terminate DFSORT 

20 (COBOL only) Alter/replace record 

All others Invalid 

Chapter 5. Using Your Own Exit Routines 227 



E15/E35 Return Codes and EXITCK 

Table 12. E15 With a SORTIN Data Set After End-of-File 

Meaning with Meaning with 
E15 Return Code EXITCK = STRONG EXITCK = WEAK 

0 Invalid Do not return 

4 Invalid Do not return 

8 Do not return Do not return 

12 Insert record Insert record 

16 Terminate DFSORT Terminate DFSORT 

20 (COBOL only) Invalid Do not return 

All others Invalid Invalid 

Table 13. E35 With a SORTOUT Data Set Before End-of-Input 

Meaning with EXITCK = STRONG 
E35 Return Code and EXITCK = WEAK 

0 No action/record altered 

4 Delete record 

8 Do not return 

12 Insert record 

16 Terminate DFSORT 

20 (COBOL only) Alter/replace record 

All others Invalid 

Table 14. E35 Without a SORTOUT Data Set Before End-of-Input 

Meaning with Meaning with 
E35 Return Code EXITCK = STRONG EXITCK = WEAK 

0 Invalid Delete record 

4 Delete record Delete record 

8 Do not return Do not return 

12 Invalid Delete record 

16 Terminate DFSORT Terminate DFSORT 

20 (COBOL only) Invalid Delete record 

All others Invalid Invalid 

228 DFSORT: Application Programming: Guide 



E15/E35 Return Codes and EXITCK 

Table 15. E35 With a SORTOUT Data Set After End-ot-Input 

Meaning with Meaning with 
E35 Return Code EXITCK = STRONG EXITCK = WEAK 

0 Invalid Do not return 

4 Invalid Do not return 

8 Do not return Do not retu rn 

12 Insert record Insert record 

16 Terminate DFSORT Terminate DFSORT 

20 (COBOL only) Invalid Do not return 

All others Invalid Invalid 

Table 16. E35 without a SORTOUT Data Set Atter End-at-Input 

Meaning with Meaning with 
E35 Return Code EXITCK = STRONG EXITCK = WEAK 

0 Invalid Do not return 

4 Invalid Do not return 

8 Do not return Do not return 

12 Invalid Do not retu rn 

16 Terminate DFSORT Terminate DFSORT 

20 (COBOL only) Invalid Do not return 

All others Invalid Invalid 

Chapter 5. Using Your Own Exit Routines 229 



~: ._ .: ",: ~ f 

; .. 

..• i.···· ./' 

.' :. 

;' .. 



Invoking DFSORT from a Program 

Chapter 6. Invoking DFSORT from a Program 

What Are System Macro Instructions? ...................... 232 
Using System Macro Instructions ......................... 232 

JCL DO Statements ............................... 233 
Program Control Statements for the 24-Bit Parameter List ........ 233 
Program Control Statements for the Extended Parameter List ...... 238 

Writing the Macro Instruction ........................... 241 
Restrictions for Dynamic Invocation ....................... 245 

Merge Restriction ................................ 245 
Copy Restrictions ................................. 245 

Chapter 6. Invoking DFSORT from a Program 231 



Using System Macro Instructions 

DFSORT can be invoked dynamically from programs written in COBOL or PUI. 
Specific information on dynamic invocation is covered in the COBOL and PUI 
programming guides. JCL requirements are the same as those for assembler. 

This section explains what you need to know about DFSORT in order to initiate 
it from within your assembler program with a system macro instruction, instead 
of with an EXEC job control statement in the input stream. Specific restrictions 
on invoking DFSORT from PUI and COBOL are listed in "Restrictions for 
Dynamic Invocation" on page 245. 

What Are System Macro Instructions? 
System macro instructions are macro instructions provided by IBM for commu­
nicating service requests to the control program. You can use these 
instructions only when programming in assembler language; they are proc­
essed by the assembler program using macro definitions supplied by IBM and 
were placed in the macro library when the control program under which you 
operate was installed. 

You can specify one of three system macro instructions to pass control to the 
program: LINK, ATTACH, or XCTL. 

When you issue one of these instructions, the first load module of DFSORT is 
brought into main storage. The linkage relationship between your program and 
DFSORT differs according to which of the instructions you have used. For a 
complete description of the macro instructions and how to use them, refer to 
Supervisor Services and Macro Instructions. 

Using System Macro Instructions 
To initiate DFSORT processing with a system macro instruction, you must: 

• Write the required job control language (JCl) DD statements. 

• Write DFSORT control statements as operands of assembler DC 
instructions. (Using DFSPARM or SORTCNTL data sets to specify program 
control statements can be more convenient. See Chapter 2, "Executing 
DFSORT with Job Control Language" on page 15 for details.) 

• Write a parameter list containing information to be passed to DFSORT and a 
pointer containing the address of the parameter list. DFSORT accepts two 
types of parameter lists: a 24-bit parameter list, and an extended parameter 
list. Although you can choose either parameter list, the extended param­
eter list can perform a superset of the functions in the 24-bit parameter list, 
and thus should be used for new DFSORT applications. 

• Prepare the macro instruction, in which you must specify the entry point 
name of DFSORT. 

Note: The save area passed to DFSORT must begin on a fullword boundary. 

In addition, the following rule applies: 

• If you are invoking DFSORT recursively (for example, from E15 or E35 exit), 
you must always wait for the last invoked sort to end before you can give 
control back to any of your exits in an earlier invoked sort. 

232 DFSORT: Application Programming: Guide 



Using System Macro Instructions 

JCL DD Statements 
JCL DO statements are usually required when invoking DFSORT from another 
program. The statements and their necessary parameters are described in 
detail in Chapter 2, "Executing DFSORT with Job Control Language" on 
page 15. 

Program Control Statements for the 24-Bit Parameter List 
When using the 24-bit parameter list, you must supply the starting and ending 
address of a valid image of each control statement to be used during execution. 
You must provide the image as a character string in EBCDIC format using 
assembler DC instructions. The rules for preparing the program control state­
ments are: 

• SORT (or MERGE) and RECORD statements are always required. 

• The MODS statement is required when exits other than E15, E32, and E35 
are to be used, or when the E15 or E35 routine addresses are not passed by 
the parameter list. 

• AL TSEQ can be used to modify the EBCDIC collating sequence, as 
described in "ALTSEQ Control Statement" on page 60. 

• DEBUG is needed only for debugging. 

• At least one blank must follow the operation definer (SORT, MERGE, 
RECORD, AL TSEQ, DEBUG, or MODS). A control statement can start with 
one or more blanks and must end with at least one blank. No other blanks 
are allowed. 

• The content and format of the statements are as described in 
Chapter 3, "Using DFSORT Program Control Statements" on page 53, 
except: 

Labels are not allowed; a leading blank is optional. 

Because each control statement image must be defined contiguously by 
one or more assembler DC instructions, explicit and implicit continua­
tion of statements is neither necessary nor allowed. 

• Neither comment statements, blank statements, nor remark fields are per­
mitted. 

• If you use ATTACH to initiate the program, you cannot use the 
checkpoint/restart facility and must not specify CKPT in the SORT statement 
image. 

For full override and applicability details, see 
Appendix C, "Specification/Override of DFSORT Options" on page 353. 

SORT Statement Image Example 

SORTBEG DC C' SORT FIELDS=(lD,15,CH,A)' 
SOR TEllO DC C" 

This form, with a trailing blank separately defined, allows you to refer to the last 
byte of the statement (SORT statement end address) by the name SORTEND. 

Chapter 6. Invoking DFSORT from a Program 233 



Using System Macro Instructions 

Format of the 24-Bit Parameter List 
Figure 39 shows the format of the 24-bit parameter list and the pointer con­
taining its address which you must pass to DFSORT. Detailed specifications for 
each of the entries in the parameter list follow. 

For full override and applicability details, see 
Appendix C, "Specification/Override of DFSORT Options" on page 353. 

(Hex) (Dec) Pointer to the beginning of the parameter list 

Byte 1 Byte 2 Bytes 3 and 4 , 
-2 ~2 Unused Unused I tllII1lber of bytes in follo~ling list. tlotes 

2 2 X'DO' Starting address of SORT or I-IERGE statement image. 1 

6 6 X'DO' Ending address of SORT or I·IERGE statement image. 1 

A 10 X'QD' Starting address of RECORD statement image. 1 

E 14 X'QO' Ending address of RECORD statement image. 1 

12 18 X'OO' Address of E15 or E32 routine (zeros if none). I 1 

16 22 X'OO' Address of E35 routine (zeros if none) 1 

lA 26 X'02' Starting address of HODS statement. 2 

IE 30 X'QO' Ending address of ~IODS statement. 2 

22 34 X'OO' Optional main storage value (hex). 3 

26 38 X'Dl' Optional reserved main storage value (hex). 3 

2A 42 X'03' Starting address of message DDIIAI~E. 3 

2E 46 X'04' NlII1lber of input files to a merge-only. 3,4 

32 50 X'05' Starting address of DEBUG statement image. 3 

36 54 X'QO' Ending address of DEBUG statement image. 3,5 

3A 5B X'06' I Starting address of ALTSEQ statement image. 3 

3E 62 X'OD' Ending address of ALTSEQ statement image. I 3,6 

42 66 X'F6' Pointer to ALTSEQ translation table. 3 

46 70 X'F7' User exit address constant. 3 

4A 74 X' FD' Bytes after X'FD' are ignored. 3 

4E 78 X'FE' 

I 
Address of a pOinter to l04-byte ESTAE I"ork area 
(or zeros). 3 

52 B2 X'FF' I Hessage option (HSGPRT). 3 I 
56 B6 Optional 4-character prefix for DDIIAl-IE. 

Figure 39. The 24-Bit Parameter Ust 

234 o FSORT: Application Programming: Guide 



Using System Macro Instructions 

Notes to Figure 39 : 

1. Required entries, which must appear in the relative positions shown. 

2. Optional entries, which, when included, must appear in the relative posi­
tions shown. 

3. Optional entries, which must appear directly after the other entries. They 
can appear in any order, except that those identified by 5. and 6. must be 
consecutive as shown. 

4. Must appear if the MERGE statement is present, and input is supplied 
through E32, unless the FILES option of the MERGE statement is specified 
(see Appendix C, "Specification/Override of DFSORT Options" on 
page 353). 

5. The ending address of the DEBUG statement must appear after the starting 
address. 

6. The ending address of the AL TSEQ statement must appear after the 
starting address. 

The specifications for each of the parameter list entries follow: 

Byte Explanation 

-2 to -1 Unused. 

o to +1 The byte count. This 2-byte field contains the length of the parameter 
list. The length is specified in bytes, in hexadecimal. The field is not 
included when counting the number of bytes occupied by the list. 

The total length of the required entries is 24 (X 10018 1). All optional 
entries are four bytes long, except those referring to control state­
ment images, which are each eight bytes long. 

2-5 The starting address of the SORT or MERGE statement image. Must 
be in the last three bytes of this fullword. The first byte must contain 
XIOOI. 

6-9 The ending address of the SORT or MERGE statement image. Must 
be in the last three bytes. The first byte must contain XIOOI. 

10-13 The starting address of the RECORD statement image. Must be in 
the last three bytes. The first byte must contain X 100 I. 

14-17 The ending address of the RECORD statement. Must be in the last 
three bytes. The first byte must contain XIOOI. 

18-21 The address of the E15 or E32 routine that your program has placed 
in main storage, if any; otherwise, all zeros. Must be in the last 
three bytes. The first byte must contain XIOOI. 

22-25 The address of the E35 routine that your program has placed in main 
storage, if any; otherwise, all zeros. Must be in the last three bytes. 
The first byte must contain XIOOI. 

26-29 The starting address of the MODS statement image. Must be in the 
last three bytes. (If present, it must be in this location.) The first byte 
must contain X '021. 

Chapter 6. Invoking DFSORT from a Program 235 



Using System Macro Instructions 

3()'33 The ending address of the MODS statement. Must be in the last 
three bytes. The first byte must contain X'OO'. (If the MODS state­
ment image is present, this entry must be in this location in the list.) 

34-37 Main storage value. Optional. The first byte must contain X' 00 I. 
The next three bytes contain either the characters MAX or a 
hexadecimal value. You can use this option to temporarily override 
the SIZE installation option. For full override and applicability 
details, see Appendix C, "Specification/Override of DFSORT 
Options" on page 353. For an explanation of this value, see the dis­
cussion of the MAINSIZE parameter in "OPTION Control Statement" 
on page 97. 

38-41 A reserved main storage value. Optional. The first byte must contain 
X '01'. The next three bytes contain a hexadecimal value that speci­
fies a number of bytes to be reserved, where the minimum is 4K. 
For an explanation of this value, see the explanation of the RESINV 
parameter in "OPTION Control Statement" on page 97. 

You can use this option to temporarily override the RESINV installa­
tion option. For full override and applicability details, see 
Appendix C, "Specification/Override of DFSORT Options" on 
page 353. 

42-45 Message ddname. Optional. The DDNAME for the output data set for 
program messages. You can use this option to temporarily override 
the MSGDDN installation option. For full override and applicability 
details, see Appendix C, "Specification/Override of DFSORT 
Options" on page 353. For details on use of the message data set, 
see DFSORT Messages and Codes. 

The first byte must contain X '03'. The next three bytes contain the 
address of an 8-byte field containing the name, padded with blanks if 
necessary. The name can be any valid DDNAME. Make sure it is 
unique. 

46-49 Number of input files to a merge. This entry is needed only if the 
MERGE statement is present without the FILES option and input to 
the merge is supplied through the E32 exit. The first byte must 
contain X '04'. The next three bytes contain the number of files, in 
hexadecimal. For full override and applicability details, see 
Appendix C, "Specification/Override of DFSORT Options" on 
page 353. 

50-53 The starting address of the DEBUG control statement image. Must 
be in the last three bytes. The first byte must contain X 'OS'. 

54-57 The ending address of the DEBUG control statement image. Must be 
in the last three bytes. The first byte must contain X'OO'. 

58-61 The staring address of the ALTSEQ control statement image. Must 
be in the last three bytes. The first byte must contain X '06'. For full 
override and applicability details, see 
Appendix C, "Specification/Override of DFSORT Options" on 
page 353. 

62-65 The ending address of the ALTSEQ control statement image. Must 
be in the last three bytes. The first byte must contain X'OO'. 

236 DFSORT: Application Programming: Guide 



Using System Macro Instructions 

66·69 The address of a 256-byte translate table supplied instead of an 
ALTSEQ statement. The first byte must contain X'F6 1. If this param­
eter is present, the X 106 I parameter is ignored. For full override 
and applicability details, see Appendix C, "Specification/Override of 
DFSORT Options" on page 353. 

70-73 User exit address constant. 

These 4 bytes are passed to E15 (at offset 4 in the E15 parameter 
list) and/or to E35 (at offset 8 in the E35 parameter list) after DFSORT 
replaces the X'F7 1 with an XIOOI. 

74-77 X I FD I in the first byte (the VLSHRT option) specifies that DFSORT is 
to continue sorting or merging if it finds a variable-length input 
record too short to contain all specified control fields. For full details 
of this option, see the discussion of the VLSHRT parameter in 
"OPTION Control Statement" on page 97. You can use this option to 
temporarily override the VLSHRT installation option. For full over­
ride and applicability details, see 
Appendix C, "Specification/Override of DFSORT Options" on 
page 353. 

78-81 If the first byte contains X I FE I, you can use the next three bytes to 
pass an address of a 104-byte field save area where EST AE informa­
tion is saved; these bytes must contain zeros if the ESTAE informa­
tion is not saved. 

If a system or user exit abend occurs, the DFSORT ESTAE recovery 
routine will copy the first 104 bytes of the SDWA into this area before 
returning to any higher level EST AE recovery routines. 

For more information on the DFSORT EST AE recovery routine, see 
Appendix F, "DFSORT Abend Processing" on page 383 

82·85 The message option. The first byte must contain X I FF I. The fol­
lowing three bytes contain the characters NOF, (I), or (U). You can 
use this option to temporarily override the MSGPRT installation 
option. 

NOF Messages and control statements are not printed. Critical 
messages are written to the master console. 

(I) All messages except diagnostic messages (ICE8001 to 
ICE9991) are printed. Critical messages are also written to 
the master console. Control statements are printed only if 
LIST is in effect. 

(U) Only critical messages are printed. They are also written to 
the master console. Control statements are not printed 
(NO LIST is forced). 

All messages are written to the message data set. For details on 
use of the message data set, see DFSORT Messages and Codes. For 
full override and applicability details, see 
Appendix C, "Specification/Override of DFSORT Options" on 
page 353. 

For compatibility reasons, the forms (NO, (AP, (AC, (CC, (CP, and 
(PC are also accepted. 

Chapter 6. Invoking DFSORT from a Program 237 



Using System Macro Instructions 

The following table lists the equivalent specifications for these alter­
nate forms. 

Option MSGPRT MSGCON 
(NO NONE NONE 
(AP ALL CRITICAL 
(AC NONE ALL 
(CC NONE CRITICAL 
(CP CRITICAL CRITICAL 
(PC ALL ALL 

86-89 Four characters, which replace "SORT" in the following DDNAMEs: 
SORTIN, SORTOUT, SORTINnn, SORTWKnn, and SORTCNTl. You 
must use this option when you dynamically invoke DFSORT more 
than once in a program step. 

The four characters must all be alphanumeric or national ($, #, or 
@), the first character must be alphabetic, and the reserved names 
DIAG, BALN, OSCL, POLY, CRCX, PEER, LIST, and SYSc (where c is 
any alphanumeric character) must not be used. Otherwise, the four 
characters are ignored. 

Example: If you use ABC# as replacement characters, DFSORT uses 
statements ABC#IN, ABC#CNTL, ABC#WKnn, ABC#OUT, and 
ABC#INnn instead of SORTlN, SORTCNTL, SORTWKnn, SORTOUT, 
and SORTINnn. 

Note: This parameter is equivalent to the SORTDD = cccc execution option. 

Program Control Statements· for the Extended Parameter List 
When using the extended parameter list, the control statements are written in a 
single area to which the parameter list points. The control statement area con­
sists of: 

• A 2-byte field containing the length (in binary) of the character string to 
follow. 

• A character string in EBCDIC format, using assembler DC instructions and 
containing valid images of the control statements to be used during exe­
cution. 

The rules for preparing the program control statements are: 

• The control statements must be separated by one or more blanks; a blank 
preceding the first statement is optional; however, a trailing blank is 
required. No labels, comment statements, or comment fields are allowed. 
Because each control statement image must be defined contiguously by 
one or more assembler DC instructions, explicit and implicit continuation of 
statements is not necessary or allowed. 

• The MODS statement is required when exits other than E15, E18, E32, E35, 
and E39 are to be used or when the E15, E18, E35, or E39 routine addresses 
are not passed by the parameter list. 

• All of the control statements described in Chapter 3, "Using DFSORT 
Program Control Statements" on page 53 can be specified; none is 
required, but SORT, MERGE, or OPTION COPY must be speCified in the 
parameter list, SORTCNTL, or DFSPARM. 

238 o FSORT: Application Programming: Guide 



Using System Macro Instructions 

• If you use ATTACH to initiate the program, you cannot use the 
checkpoint/restart facility. Do not specify CKPT on the SORT or OPTION 
statement. 

For full override ,and applicability details, see 
Appendix C, "Specification/Override of DFSORT Options" on page 353. 

Format of the Extended Parameter List 

Register 1 

(Hex) (Dec) 

o 0 

4 4 

8 8 

C 12 

10 16 

14 20 

18 24 

lC 28 

20 32 

I 

Figure 40 shows the format of the extended parameter list and the pointer con­
taining its address, which you must pass to DFSORT. 

The first parameter must be specified. A 4-byte field containing X I FFFFFFFF' 
must be used to indicate the end of the parameter list. It can be coded any­
where after the first parameter. 

If a parameter is specified, it must appear in the indicated position and must 
contain a 31-bit address or a clean (the first 8 bits containing zeros) 24-bit 
address. If a parameter is not specified, it is treated as if it were specified as 
zeros. For full override and applicability details, see 
Appendix C, "Specification/Override of DFSORT Options" on page 353. 

Bit 0 

~ 
0 Address of control statements (zero if none) 

f Address of user exit E15 or E32 (zeros if none) 

f Address of user exit E35 (zeros if none) 

User exit address constant (zeros if none) 

Address of ALTSEQ translation table (zeros if none) 

Address of ESTAE area pointer (zeros if none) 

f Address of user exit E18 (zeros if none) 

f Address of user exit E39 (zeros if none) 

X'FFFFFFFF' 

Figure 40. The Extended Parameter List 

Detailed specifications for each of the entries in the parameter list follow: 

Chapter 6. Invoking DFSORT from a Program 239 



Using System Macro Instructions 

Byte Explanation 

0-3 Required. The address of the area containing the DFSORT control 
statements, if any; otherwise, all zeros. The high order bit must be 0 
to identify this as an extended parameter list. 

If you specify this parameter as zeros, you must supply all the 
required control statements in DFSPARM or SORTCNTL. 

4-7 Optional. The address of the E15 or E32 routine that your program 
has placed in main storage (for example, via LOAD), if any; other­
wise, all zeros. 

f (bit 0) has the following meaning when executing in an MVS/XA or 
MVS/ESA system: 

o = Enter the exit with 24-bit addressing in effect (AMODE 24). 
1 = Enter the exit with 31-bit addressing in effect (AMODE 31). 

8-11 Optional. The address of the E35 routine that your program has 
placed in main storage (for example, via LOAD), if any; otherwise, all 
zeros. 

f (bit 0) has the following meaning when executing in an MVS/XA or 
MVS/ESA system: 

o = Enter the exit with 24-bit addressing in effect (AM ODE 24). 
1 = Enter the exit with 31-bit addressing in effect (AMODE 31). 

12-15 Optional. This field will be passed to the E15 and/or E35 routines. 

16-19 Optional. The address of a 256-byte translate table supplied instead 
of an ALTSEQ statement, if any; otherwise, all zeros. If specified, it 
will override any translate table specified at installation. For full 
override and applicability details, see 
Appendix C, "Specification/Override of DFSORT Options" on 
page 353. 

20-23 Optional. The address of a 4-byte field containing the address of a 
112-byte work area where ESTAE information is saved, or all zeros if 
the ESTAE information is not saved. 

If a system or user-exit abend occurs, the DFSORT recovery routine 
will copy the first 112 bytes of the SDWA into this area before 
returning to your EST AE recovery routine. 

24-27 Optional. The address of the E18 routine that your program has 
placed in main storage (for example, via LOAD), if any; otherwise, all 
zeros. 

Note: This parameter is ignored for a merge application and for a 
tape work data set sort application. 

f (bit 0) has the following meaning when executing in an MVS/XA or 
MVS/ESA system: 

o = Enter the exit with 24-bit addressing in effect (AMODE 24). 
1 = Enter the exit with 31-bit addressing in effect (AM ODE 31). 

28-31 Optional. The address of the E39 routine that your program has 
placed in main storage (for example, via LOAD), if any; otherwise, all 
zeros. 

240 DFSORT: Application Programming: Guide 



Writing the Macro Instruction 

Note: This parameter is ignored for a conventional merge applica­
tion and for a tape work data set sort application. This parameter 
must be followed by X I FFFFFFFF I if you specify it. 

f (bit 0) has the following meaning when executing in an MVS/XA or 
MVS/ESA system: 

o = Enter the exit with 24-bit addressing in effect (AM ODE 24). 
1 = Enter the exit with 31-bit addressing in effect (AM ODE 31). 

Note: The list can be ended after any parameter. The last parameter in the list 
must be followed by X' FFFFFFFF·. 

Writing the Macro Instruction 
When writing the LINK. ATTACH. or XCTL macro instruction, you must: 

• Specify SORT (the entry point) in the EP parameter of the instruction. (This 
applies to sort, merge, and copy jobs.) 

• Load the address of the pointer to the parameter list into register 1 (or pass 
it in the MF parameter of the instruction). 

Note: If you are using ATTACH, you might also need the ECB parameter. 

If you provide an E15 exit routine address in the parameter list, DFSORT 
ignores the SORTIN data set; your E15 exit routine must pass all input records 
to DFSORT. The same applies for a merge if you specify an exit E32 address. 
This means that your routine must issue a return code of 12 ("insert record") 
until the input data set is complete, and then a return code of 8 ("do not 
return"). 

Similarly. DFSORT ignores the SORTOUT data set if you provide an E35 exit 
routine address in the parameter list. Your routine is then responsible for dis­
posing of all output records. It must issue a return code of 4 ("delete record") 
for each record in the output data set. When the program has deleted all the 
records, your routine issues a return code of 8 ("do not return"). 

When DFSORT completes execution, it passes control to the routine that 
invoked it. 

When a single task attaches two or more program applications, you must 
modify the standard DDNAMEs so that they are unique. For ways of doing this, 
and for the rules of override, see Appendix C, "Specification/Override of 
DFSORT Options" on page 353. 

If you ATTACH more than one DFSORT application from the same program. you 
must wait for the first to complete before attaching the next, and so 
forth-unless the application is a disk sort, in which case the program is re­
enterable (provided that any exit routines you use are also re-enterable). 

When you initiate DFSORT via XCTL. you must give special consideration to the 
area where the parameter list, address list. optional parameters, and modifica­
tion routines (if any) are stored. This information must not reside in the module 
that issues the XCTL, because the module is overlaid by DFSORT. 

Chapter 6. Invoking DFSORT from a Program 241 



Writing the Macro Instruction 

Examples 

There are two ways to overcome this problem. First, the control information 
can reside in a task that attaches the module that issues the XCTL. Second, 
the module issuing the XCTL can first issue a GETMAIN macro instruction and 
place the control information in the main storage area it obtains. This area is 
not overlaid when the XCTL is issued. The address of the control information in 
the area must be passed to DFSORT in general register 1. 

Example 1. Specifying a Main Storage Option (24-Bit Parameter List) 

Figure 41 shows the format of the 24-bit parameter list you would use to specify 
the main storage option for a sort application. 

(Hex) (Dec) Byte 1 Byte 2 Bytes 3 and 4 

-2 -2 Unused I X'OOIC' 

2 2 X'OO' Starting address of SORT statement 

6 6 X'CO' Ending address of SORT statement 

A 10 X'OO' Starting address of RECORD statement 

E 14 X'CO' Ending address of RECORD statement 

12 18 X'OO' I Zeros (no E15 routine provided) 

16 22 X'CO' Zeros (no E35 routine provided) 

1 
lA 26 X'OO' Hain storage value (in he~adecimal) 

Figure 41. Specifying the Main Storage Option (24-Bit Parameter List) 

Example 2. Supplying Input through Exit E32 and Giving Control to the EST AE 
Routine (24-Bit Parameter List) 

Figure 42 on page 243 shows the format of the 24-bit parameter list that you 
would use for a merge application when you want to supply input through exit 
E32 and give control to the EST AE routine if the program fails. 

242 o FSORT: Application Programming: Guide 



Writing the Macro Instruction 

(Hex) (Dec) Byte 1 Byte 2 Bytes 3 and 4 

-2 -2 Unused I X'ODIC' 
, 

2 2 X'OO' Start ing address of I,IERGE statement 

6 6 X'OO' Ending address of 11ERGE statement 
f-. 

A 10 X'OO' Starting address of RECORD statement 

E 14 X'OO' Ending address of RECORD statement 

12 18 X'OO' Address of E32 routine 

16 22 X'OO' Zeros (no E35 routine provided) 

1A 26 X'04' Number of input files 

IE 30 X'FE' (Zeros-no work area address provided) ---. 
Figure 42. Specifying E32 and ESTAE Routine (24-Bit Parameter Ust) 

Example 3. How a 24-Bit Parameter List Might Appear in Main Storage 

1000 1801001101061 (address of parameter list) 

1004 00 00 00 24 

1008 00 00 10136 

100C 00'00 10 5B 

1010 00 00 10i5C 

1014 00 00 10175 

1018 00 00 20 00 

~':' :Ol~ J 
00 00 65:90 1 Optional 

FF ( U i) 
• 

101C 

1020 

1024 

102C 

Parameter list 

1036 

fl s!o R T fl FJI E L o S = 

( 1 o , 1 5 I 
'I C H , A ) , 

F IiL S Z ~ 417 8 0 6 Ii 

105B 

105C 

= 1 0 0 , T Y P E D Fili 

1075 

Figure 43. The 24-Bit Parameter Us! in Main Storage 

Figure 43 shows how a 24-bit parameter list might appear in main storage. 
General register 1 contains a pointer to the address of the parameter list, which 
is at location 1000. The address points to the parameter list, which begins at 

Chapter 6. Invoking DFSORT from a Program 243 



Writing the Macro Instruction 

location 1006. The first 2-byte field of the parameter list contains, right-justified 
in hexadecimal, the number of bytes in the list (36 decimal). 

The first two fullwords in the parameter list point to the beginning (location 
1036) and end (location 1058) of the SORT control statement. The next two 
fullwords point to the beginning (location 105C) and end (location 1075) of the 
RECORD statement. 

The fifth and sixth fullwords in the list contain the entry point addresses for the 
E15 exit (location 2000) and E35 exit (location 3000). 

The next fullword in the list contains four characters to replace the letters 
I SORT I in the DON AMEs of standard DO statements. 

The next two fullwords in the list specify a main storage value for this applica­
tion and a message option. 

Example 4. Coding a 24-8it Parameter List 

The example in Figure 44 shows, in assembler language, how to code the 
parameters and statement images needed for the 24-bit parameter list in 
Figure 43 on page 243, and how to pass control to DFSORT. 

LA I,PARLST 
ATTACH EPoSORT 

PARLST DC X'SO',AL3(ADLST) 

CNOP 2,4 
ADLST DC AL2(LISTEND-LISTBEG) 
LISTBEG OC A(SORTA) 

DC A(SORTZ) 
DC A(RECA) 
DC A(RECZ) 
DC A(HODI) 
DC A(.IOD2) 
DC C'ABCI/' 
DC F'720000' 
DC X'FF' 
DC C' (U)' 

lISTEND EQU to 

LOAD ADDR OF PARAJ.I POINTER Itl RI 
INVOKE SORT 

POINTER FLAG/ADDRESS OF PARAH LIST 

AlIG!1 TO CORRECT BOUNDARY 
PARAJ.I II ST LENGTH 
BEGItINIIIG ADDRESS OF SORT STHT 
EtID ADDRESS OF SORT SniT 
BEGINIIIIIG ADDR OF RECORD STIlT 
END ADDR OF RECDRD STHT 
ADDR OF El5 RTN 
ADDR OF E35 RTN 
DDNA/·IE CHARACTERS 
DPTlOIIAL .IAIN STORAGE VALUE 
HESSAGE OPTIOII flAG BYTE 
HESSAGE OPT! 011 

SORTA DC C' SORT FIElDS=(IO, 15,CH,A) , , SORT COIITROL STHT 

SORTZ 
RECA 
RECZ 

DC C'FILSZ=47BO' (CONTHIUED) 
DC C" DELIHITER 
DC C' RECORD LEIiGTHsIOD, TYPE-F' RECORD COIITROL SHIT 
DC C" DELIHITER 
DS OH 
USIIIG ·,15 

HODI (routine for exit E15) 

USIIIG ·,15 
.1002 (routine for exit E35) 

Figure 44. Coding a 24-Bit Parameter Ust 

244 o FSORT: Application Programming: Guide 



Restrictions 

Example 5. Coding an Extended Parameter List 

The example in Figure 45 shows. in assembler language. how to use an 
extended parameter list to code parameters and statement images. and pass 
control to DFSORT. 

LA RI. PLl SET ADDRESS OF PARAI·IETER LIST 
* TO BE PASSED TO SORT /I·IERGE 

ST R2,PL4 SET ADDRESS OF GETHAINED AREA 
* TO BE PASSEO TO E15 

LINK EP=SORT INVOKE SORT/f.lERGE 

PLl DC A(CTLST) ADDRESS OF CONTROL STATHIEtlTS 
PL2 DC A(E15) ADDRESS OF E15 ROUT WE 
PL3 DC A(O) tlO E35 ROUTINE 
PL4 OS A USER EXIT ADDRESS COIlSTANT 
PL5 DC F'-I' lllOICATE END OF LIST 
CTLST OS OH COtITROL STATEHENTS AREA 

DC AL2 (CTL2-CTLl) lEtlGTH OF CHARACTER STRING 
CTLl DC C' SORT FIELDS=(4,5,CH,A), 

DC C' OPTION ' 
DC C 'RES IHV=2048. FI LSZ=E25000, HSGDDN=I~SGOUT ' 
DC C' OIHT COI-ID=(5,8,EQ,13,8),FORI·tAT=FI ' 
DC C' RECORD TVPE=F,LENGTH=80 ' 

CTL2 EQU * 
OUT DCB DDNAI·IE=SYSOUT, •••• IYSORT USES SYSOUT 
El5 OS OH E15 ROUTINE 

BR R14 RETURII TO SORT/HERGE 
* 1·IAPPItIG OF PARAI~ETER LIST PASSED TO E15 FRail SORT/HERGE 
SRTLST OS A ADDRESS OF RECORD 
GHA OS A ADDRESS OF AREA GEHIAINED BY 

HYSORT 

Figure 45. Coding an Extended Parameter List 

Restrictions for Dynamic Invocation 

Merge Restriction 

Copy Restrictions 

Merge applications cannot be done when DFSORT is invoked from a PUI 
program. 

• Copy applications cannot be done when DFSORT is invoked from a PUI 
program. 

• If you invoke DFSORT from a COBOL program, the following restrictions 
apply: 

- If using OSIVS COBOL. a copy application cannot be done. 

Chapter 6. Invoking DFSORT from a Program 245 



Restrictions 

If using VS COBOL II. the OPTION COPY statement can be placed in 
either the COBOL II IGZSRTCD data set or the DFSORT SORTCNTL or 
DFSPARM data set. 

If using the COBOL II FASTSRT compile-time option for any part or all of 
the COBOL SORT statement. a copy application can be done. 

If using the COBOL MERGE statement. a copy application cannot be 
done. 

See "COBOL Requirements for Copy Processing" on page 210 for exit require­
ments. 

246 o FSORT: Application Programming: Guide 



Improving Efficiency 

Chapter 7. Improving Efficiency 

Designing Your Jobs to Maximize Performance ................ 248 
Use JCL to Invoke DFSORT Processing . . . . . . . . . . . . . . .. 248 
Plan Ahead .................................... 248 
Specify Efficient Sort/Merge Techniques ................... 249 
Specify Input/Output Data Set Characteristics Accurately ......... 250 
Use Options that Enhance Performance ................... 251 
Avoid Options that Decrease Performance ................. 255 

Using Main Storage Efficiently ........................... 256 
Tuning Main Storage ............................... 256 
Releasing Main Storage ............................. 258 

Allocating Temporary Work Space Efficiently .................. 259 
Direct Access Work Storage Devices ..................... 260 
Tape Work Storage Devices .......................... 261 

Hipersorting ...................................... 261 
EXCPVR ........................................ 261 
ICEGENER Facility .................................. 262 

Chapter 7. Improving Efficiency 247 



Designing Your Jobs to Maximize Performance 

DFSORT is designed to optimize performance automatically. It sets optimiza­
tion variables (such as buffer sizes) and selects the most efficient of several 
sorting and merging techniques. 

You can improve DFSORT performance in several ways: 

• Design your jobs to maximize performance: 

Use JCL to invoke DFSORT processing. 
Plan ahead when designing new applications. 
Specify efficient sort/merge techniques. 
Specify input/output data set characteristics accurately. 
Use options that enhance performance whenever possible. 
Use options that decrease performance only when necessary. 

• Use main storage efficiently. 

• Allocate temporary work space efficiently. 

• Use Hipersorting on MVS/ESA systems. 

• Use EXCPVR on MVS/XA and MVS/ESA systems. 

• Use ICEGENER instead of IEBGENER. 

Designing Your Jobs to Maximize Performance 
Even though DFSORT automatically optimizes performance when your job is 
executed. you can still improve efficiency by using specifications and options 
that permit DFSORT to make the best possible use of available resources. 

Use JeL to Invoke DFSORT Processing 

Plan Ahead 

You can enhance performance by invoking DFSORT with JCL instead of 
invoking it from a COBOL or a PUI program. Generally. COBOL or PUI is used 
for convenience. However. the trade-off can be degraded performance. You 
can improve efficiency by taking advantage of the way DFSORT installation 
defaults and run-time options can be fine-tuned for optimum performance. espe­
cially to make use of control statements that "work together." such as 
INCLUDE/OMIT. INREC/OUTREC, and SUM. You can eliminate records from 
input files, reformat records to eliminate unwanted fields. and combine records 
arithmetically. without requiring routines from other programs. 

You should consider several factors when designing new applications. Some of 
these factors are discussed below. 

Whenever possible: 

• Use either EBCDIC character or binary control fields. 

• Place binary control fields so they start and end on byte boundaries. 

• Avoid using the alternative collating sequence character translation. 

• Specify fixed-point. packed decimal, and zoned decimal control fields (if you 
know they will always be positive) so that they can be sorted or merged as 
if they were binary control fields. 

• Use packed decimal format rather than zoned decimal, 

248 o FSORT: Application Programming: Guide 



Efficient Blocking 

Designing Your Jobs to Maximize Performance 

• If several contiguous character or binary control fields in the correct order 
of significance are to be sorted or merged in the same order (ascending or 
descending), specify them as one control field. 

• Avoid overlapping control fields. 

Performance of DFSORT can be significantly improved if you block your input 
and output records. A block size of 6000 or more bytes is generally considered 
to be a good value for DASD data sets. For large files, files on tape, or files 
that you sort often, you might want to choose a larger block size. In general, 
the larger your input and output block sizes, the better DFSORT's performance. 

Specify Efficient Sort/Merge Techniques 

Sorting Techniques 

Depending on various conditions, DFSORT selects different techniques for 
sorting and merging. Message ICE1431 informs you which technique has been 
selected. 

For copy applications, Blockset is the only technique used. If your program 
cannot use Blockset, DFSORT issues error message ICE160A and stops proc­
essing. 

One condition that affects which sorting technique DFSORT selects is the type 
of device used for intermediate storage. If you use a tape device. the Conven­
tional technique is used. which is less efficient. For more information on using 
tape devices for intermediate storage, see "Tape Work Storage Devices" on 
page 261. 

The Blockset and PeeragelVale techniques can be used only with disk devices. 
These techniques are discussed below. 

Blockset Disk Sorting Techniques: DFSORT's most efficient techniques. 
FLR-Blockset (for fixed-length records) and VLR-Blockset (for variable-length 
records). will be used for most sorting applications. 

Notes: 

• The Blockset technique might require more intermediate work space than 
PeeragelVale. For more information. see "Allocating Temporary Work 
Space Efficiently" on page 259. 

• If Blockset is not selected. you can use a SORTDIAG DO statement to force 
message ICE8001. which gives a code indicating why Blockset cannot be 
used. 

PeeragelVale Disk Sorting Techniques: When the conditions for use of the 
Blockset sorting technique are not met, DFSORT uses PeeragelVale. 

Merging Techniques 
For merging applications, DFSORT uses the Blockset and Conventional tech­
niques. 

Blockset Merging Techniques: DFSORT's most efficient techniques. 
FLR-Blockset (for fixed-length records) and VLR-Blockset (for variable-length 
records), will be used for most merging applications. 

Chapter 7. Improving Efficiency 249 



Designing Your Jobs to Maximize Performance 

Note: If Blockset is not selected, you can use a SORTDIAG DO statement to 
force message ICE8001, which gives a code indicating why Blockset cannot be 
used. 

Conventional Merge Technique: When the conditions for use of the Blockset 
merging technique are not met (for example, if the control field is too long), 
DFSORT uses the Conventional merge technique, which is less efficient. 

Specify Input/Output Data Set Characteristics Accurately 

Data Set Size 

DFSORT uses the information given it (about the operation it is to perform) to 
optimize for highest efficiency. When you supply incorrect information or do not 
supply information such as data set size and record format, the program makes 
assumptions which, if incorrect, can lead to inefficiency or program termination. 

When DFSORT has accurate information about data set size, it can make the 
most efficient use of both main storage and intermediate work storage. There­
fore, if the exact number of records to be sorted is known, use that number as 
the value for the FILSZ run-time option. If an exact FILSZ is not specified, 
DFSORT will estimate the number of records. 

If you are doing a tape work data set sort, the most important information you 
can give DFSORT is an accurate data set size in the FILSZ execution option. 

Variable-Length Records 

Direct Access 

When the input data set consists of variable-length records and dynamic allo­
cation of intermediate data sets is used, specify the average record length as 
accurately as possible in the RECORD statement. 

System performance is improved if storage is specified in cylinders rather than 
tracks. Storage on sort work data sets will be reallocated in cylinders. The 
number of tracks per cylinder for direct-access devices is shown in Table 17. 

Table 17. Number of Tracks per Cylinder for Direct-Access 
Devices 

Device Tracks per Cylinder 

2314/2319 20 

3330/3333 19 

3340/3344 12 

3350 30 

3375 12 

3380 15 

If WRKSEC is in effect and the work data set is not allocated to virtual I/O, 
DFSORT allocates secondary extents as required, even if not requested in the 
JCL. 

250 DFSORT: Application Programming: Guide 



Tape 

Designing Your Jobs to Maximize Performance 

Allocating twice the space used by the input data set(s) is usually adequate for 
the work data sets. Certain conditions can cause additional space require­
ments. These include: 

• Long control words (more than 150 bytes) 
• Using different device types or work data sets 
• Using an alternative collating sequence. 

Care should be taken to ensure that the LRECL parameter of the DCB corre­
sponds to the actual maximum record length contained in your data set. 

Three different techniques are available to the program: Balanced, Polyphase, 
and Oscillating. For information on how to calculate their requirements, see 
Table 18. 

Table 18. External Work Storage Requirements of the Various Tape Techniques 

Tape 
Technique 

Balanced 
tape BALN 

Polyphase 
tape POLY 

Oscillating 
tape OSCL 

Maximum Work Storage Max. No. of 
Input Areas Required Work Area Comments 

15 volumes Min =2(V+ 1) 32 volumes Used if more than three 
tape units work storage tapes are 

provided and file size is 
not given. 

1 volume Min = 3 tape units 17 volumes Used if three work 
storage tapes are pro-
vided. 

15 volumes Min =V+2 or 4 17 volumes File size must be given. 
tape units, which- The tape drive containing 
ever is greater SaRTIN cannot be used 

as a work unit. 

Key to Table 18: 

v = Number of input volumes. 

Note: The value you obtain for "min" is literally a minimum value; if, for 
example, your input uses a more efficient blocking factor than the sort program 
or it is spanned, you will need more work storage. DFSORT selects the most 
appropriate tape technique using these criteria. 

Use Options that Enhance Performance 

COBEXIT 

To obtain optimum performance, you can fine-tune the options specified during 
installation and at run time. Several options that can enhance performance are 
described below. 

To take advantage of the COBOL II interface with DFSORT, and enhance per­
formance, specify COBEXIT=COB2 on the OPTION control statement or define 
it as the installation default when you run exits compiled with VS COBOL II. 

Chapter 7. Improving Efficiency 251 



Designing Your Jobs to Maximize Performance 

EXCPVR 

FASTSRT 

To improve Blockset sorting performance on MVS/XA and MVS/ESA by using 
EXCPVR, specify EXCPVR=ALL. Remember that using EXCPVR reduces CPU 
time at the expense of paging other jobs in and out. You can compromise 
between reducing CPU time and increasing the paging activity for other jobs by 
specifying EXCPVR = NOWRK. If the higher paging rates are a prime concern, 
specify EXCPVR = NONE. 

Note: The EXCPVR option is not supported for MVS/370. See "EXCPVR" on 
page 261 for details. 

By specifying the VS COBOL II FASTSRT compile-time option, you can signif­
icantly reduce DFSORT processor time, EXCPs, and elapsed time. With 
FASTSRT, DFSORT input/output operations are more efficient because DFSORT 
rather than COBOL does the input and output (see Figure 46 on page 253). For 
more details, see the VS COBOL II publications. 

The FASTSRT option does not take effect for input and output if input and output 
procedures are used in the SORT statement. Many of the functions usually per­
formed in an input or output procedure are the same as those done by DFSORT 
INREC, OUTREC, INCLUDE or OMIT, STOPAFT, SKIPREC, and SUM functions. 
You might be able to eliminate your input and output procedures by coding the 
appropriate DFSORT program control statements and placing them in either the 
DFSPARM (DFSORT), SORTCNTl (DFSORT), or IGZSRTCD (COBOL) data set, 
thereby allowing your SORT statement to qualify for FASTSRT. 

252 DFSORT: Application Programming: Guide 



HIPRMAX 

input file 

unsorted 

sorted 

output file 

input fil e 

unsorted 

sorted 
or 
copied 

t 
output file 

.. 

• 

Designing Your Jobs to Maximize Performance 

OS/VS 
COBOL 
or VS 
COBOL II 
without 
FASTSRT 

VS COBOL 
II \~ith 

FASTSRT 

.. 

DFSORT 

• 

~ 

DFSORT 

Figure 46. Faster Sorting with VS COBOL II 

Blockset sorting performance can be improved by using hiperspace along with 
DASD for temporary storage on an MVS/ESA system. 

The HIPRMAX parameter sets the maximum amount of hiperspace to be com­
mitted during a run. Specifying HIPRMAX=OPTIMAL permits DFSORT to opti­
mize the maximum amount of hiperspace allocated for a run dynamically, 
based on system activity at the time the job begins. See "Hipersorting" on 
page 261 for more information. 

INCLUDE or OMIT, STOPAFT, and SKIPREC 
You can use either the INCLUDE or OMIT statement and the STOPAFT and 
SKIPREC options to reduce the size of the input file, which can reduce 
processor and data transfer time. 

• The INCLUDE and OMIT statements allow you to select records by com­
paring fields with constants and/or other fields. 

• The STOPAFT option allows you to specify the maximum number of records 
to be accepted for sorting or copying. 

• The SKIPREC option allows you to skip records at the beginning of the input 
file and sort or copy only the remaining records. 

Chapter 7. Improving Efficiency 253 



Designing Your Jobs to Maximize Performance 

INREC and OUTREC 

SUM 

You can use the INREC statement to reformat the input records before proc­
essing. This can increase efficiency if you reduce the size of the records, or 
reduce efficiency if you increase the size of the records. 

You can use OUTREC to lengthen the record after processing, aligning the data 
fields and introducing blanks to separate fields to make the output more legible. 

When INREC and OUTREC are used with INCLUDE or OMIT, DFSORT first proc­
esses the INCLUDE and OMIT statements, thus reducing the number of records 
for INREC and OUTREC to format. 

You must be aware of: 

• The change in record size and layout of the resulting reformatted 
input/output records 

• Which DFSORT functions must refer to the layout of the reformatted input 
records and which functions must refer to the layout of the original input 
records. 

Three types of fields can be removed by INREC/OUTREC: 

• Padding fields (blanks, constants, or binary zeros) can be removed before 
processing by using INREC, and then reinserted after processing by using 
OUTREC. 

• Fields not needed in the output records can be removed before processing 
by using INREC. 

• If a variable-length file is being processed and only the fixed part of the 
record is needed, the variable part can be eliminated before processing. 
This allows DFSORT to manage the records internally more efficiently. 

You can improve performance by using SUM to add the contents of fields. The 
SUM statement adds the contents of its control fields. The result is placed in 
one record while the other record is deleted, thus reducing the number of 
records to be sorted or merged by DFSORT. SUM is processed after SORT or 
MERGE, INCLUDE or OMIT, and/or INREC. 

As an installation option, you can specify the printing of positive zoned decimal 
fields that result from summing. That is, you can tell DFSORT whether to 
change the last digit of the zone from hex C to hex F. For the correct syntax of 
this specification, see the ZDPRINT option on the ICEMAC macro in DFSORT 
Instal/ation and Customization. 

Eliminating Duplicate Keys: You can eliminate duplicate keys by specifying 

sur·, FI ELDS=NONE 

when using the SUM control statement. 

For a diagram of the processing sequence for record handling statements, 
exits, and options, see Figure 2 on page 6. 

254 DFSORT: Application Programming: Guide 



Designing Your Jobs to Maximize Performance 

Avoid Options that Decrease Performance 

CKPT 

EQUALS 

EQUCOUNT 

NOCINV 

NOWRKSEC 

NOBLKSET 

VERIFY 

Certain options can adversely affect performance, and should be used only 
when necessary. For example, the CKPT option, which activates 
checkpoinUrestart, prevents use of the efficient Blockset techniques. 

The CKPT option might preclude the use of the more efficient Blockset tech­
nique. 

Note: If the installation default IGNCKPT = YES has been selected, DFSORT 
ignores the checkpoinUrestart request and selects the Blockset technique. 

The EQUALS option causes an additional field of 4 bytes to be added to each 
record, which increases the time needed for comparison of records and for data 
transfer. This does not apply to the Blockset technique for sorting variable­
length records, which always uses EQUALS. 

The EQUCOUNT option takes additional time to count the number of records 
with equal keys. 

The NOCINV option precludes the use of control interval access for more effi­
cient VSAM processing. 

The NOWRKSEC option prevents automatic allocation of secondary work data 
set extents. This will cause reuse of the available extents, involving extra reads 
and writes. 

The NOBLKSET option precludes the use of the more efficient Blockset te~h­
nique. 

The VERIFY option degrades performance, because it involves extra processing. 

Tape Work Data Sets 

User Routines 

Use of tape work data for intermediate storage precludes the use of the much 
more efficient disk techniques. 

When user routines are included in an application, the time required to run the 
application is usually increased. 

The execution time required by most user routines is generally small, but the 
routines at exits E15, E32, and E35 are entered for each record of the data 
set(s). For large input data sets, the total execution time of these routines can 
be relatively large. 

Chapter 7. Improving Efficiency 255 



Using Main Storage Efficiently 

Dynamic Link-Editing 

EFS Programs 

Dynamic link-editing of user exit routines degrades performance. 

When EFS programs are included in an application. the time required to run the 
application might increase. 

Using Main Storage Efficiently 
In general. the more virtual storage you make available to DFSORT (up to a 
certain limit). the better the performance. However. your virtual storage allo­
cation must not exceed the amount of real storage generally available for one 
initiator; otherwise. excessive paging might occur. 

DFSORT requires a minimum of 88K bytes. but to get better performance. use a 
much larger amount of storage. Recommended amounts are about 1 megabyte 
for MVS/370 or 4 megabytes for MVS/XA and MVS/ESA. Improved performance 
will be most noticeable with large input files. 

Note: Under MVS/XA and MVS/ESA when using the Blockset technique for a 
sort application. DFSORT can place selected buffers above 16-megabyte virtual. 
This makes more storage available to DFSORT without having to increase the 
region size in the job control language. A region size of at least 440K bytes 
must be available to allow DFSORT to use storage effectively. 

Tuning Main Storage 
Either the REGION value or the MAINSIZE/SIZE value can determine how much 
storage is available to DFSORT. See DFSORT Installation and Customization for 
details. 

Generally. the most efficient way to allocate (virtual) main storage is to specify 
MAINSIZE/SIZE = MAX. However. problems can arise if the values for the 
TMAXLIM and/or MAXLIM installation options have been set excessively high 
(or low). Guidelines for setting these values are given in DFSORT Installation 
and Customization. 

Note: Do not use SIZE/MAINSIZE = MAX with password-protected data sets if 
passwords are to be entered through a routine at an exit. because DFSORT 
cannot then open the data sets during the initialization phase to make the nec­
essary calculations. 

If you specify MAINSIZE/SIZE = n and give n a value less than that specified for 
the MINLIM installation option, MINLIM is used. 

If the MINLIM value is greater than that specified for REGION on the EXEC state­
ment, DFSORT attempts to use the value specified for MINLlM; if it fails to get 
the amount specified by MIN LIM, DFSORT still tries to execute, provided at 
least 88K bytes (below 16-megabyte virtual for MVS/XA or MVS/ESA) are avail­
able to DFSORT. 

Although DFSORT requires a minimum of 88K bytes (below 16-megabyte virtual 
for MVS/XA or MVS/ESA). the minimum amount of main storage required 
depends on the application. 

256 o FSORT: Application Programming: Guide 



Using Main Storage Efficiently 

For best performance, it is strongly recommended that you use significantly 
more than the minimum amount of main storage. 

You will generally need more main storage if you use: 

• Spanned records 

• COBOL user-exit routines 

• ALTSEQ or CHALT 

• INCLUDE, OMIT, SUM, OUTREC, or INREC (although INREC can also reduce 
storage requirements by shortening record sizes). 

• ""'ry large blocks or logical records 

• VSAM data sets (for more information, see your VSAM manuals) 

• An Extended Function Support program 

• An ICETEXIT routine 

• A large ICEIEXIT routine. 

Notes: 

• In some cases, this release of DFSORT might use more storage than prior 
releases for comparable jobs. This might affect the operation of some jobs. 
For example, some jobs that run as in-storage sorts (with no SORTWKnn 
data sets) in previous releases might not run in-storage when using this 
release. The amount of storage allocated is normally controlled by 
TMAXLIM. A REGION size of at least 440K bytes must be available if 
DFSORT is to achieve acceptable performance. The allocation of storage 
can be adversely affected if you have a smaller region value or if DFSORT 
needs to allocate buffers below 16-megabyte virtual. 

• For extremely large sorts (for example, 500 megabytes or more of data), 
use 16 megabytes or more of main storage for best performance. 

The relationship between TMAXLlM, MAXLlM, MIN LIM, and REGION might be 
described as a series of checks and balances. 

Your system programmer has set the default storage values according to your 
site's major sorting requirements. If you have an overnight or batch time 
window that must be met, then increasing storage (using REGION or 
SIZE/MAINSIZE = n) can give you some relief from the time constraint. If you 
are concerned with processor time, then decreasing storage (using REGION or 
SIZE/MAINSIZE = n) can reduce the processor time associated with sorting 
small files. 

In general, when you vary the amount of storage available to DFSORT, several 
things occur: 

1. If you increase the amount of storage: 

• EXCPs are reduced. 

• For larger files, processor time generally decreases; that is, overhead in 
managing the extra storage is offset by DFSORT having to make fewer 
passes over the data. 

Chapter 7. Improving Efficiency 257 



Using Main Storage Efficiently 

• For a very heavily loaded system, elapsed time might increase because 
DFSORT can be swapped out more often. 

• For very small sorts, processor time might remain stable or increase 
because of the overhead in managing the extra storage. For larger 
files, processor time will usually decrease because the overhead in 
managing the extra storage would be less than the benefit gained by 
DFSORT making fewer passes over the data. 

2. If you decrease the amount of storage: 

• EXCPs increase. 

• Elapsed time increases for most sorts. 

• Processor time decreases for very small files, but increases for larger 
files. 

Changing the main storage allocation can affect system efficiency. By reducing 
the amount of main storage allocated, you impair performance of DFSORT in 
order to allow other programs to have the storage they need to operate simul­
taneously; and, by increasing the allocation, you can run large DFSORT applica­
tions efficiently at the risk of decreasing the efficiency of other jobs sharing the 
multiprogramming environment. 

Releasing Main Storage 
Under some circumstances, DFSORT uses all the available storage in your 
REGION. For MVS/XA and MVS/ESA, this normally will not occur for storage 
above 16-megabyte virtual (if it does, use the ARESINV and/or ARESALL options 
or lower your SIZE/MAINSIZE value). This section explains how to release 
storage within your REGION. 

When SIZE/MAINSIZE = n is in effect and n is greater than the REGION param­
eter or the default REGION value for your sort job, or when 
SIZE/MAINSIZE = MAX and MAXLIM (or TMAXLIM for MVS/XA and MVS/ESA 
systems) is greater than your REGION, specify the storage you need released in 
the following way: 

• For jobs with user exits: 

For JCL-invoked DFSORT, you can choose one of the following: 

Use the m parameter of the MODS control statement. 

If SIZE = MAX is in effect, you can use the RESALL option. 

Change your REGION so that REGION is greater than 
SIZE/MAINSIZE (the difference is available). 

If the installation parameter OVERRGN is smaller than your system 
IEALIMIT value on MVS/370, this difference is available. (OVERRGN 
is an installation option that can be modified only by your system 
programmer.) 

For dynamically invoked DFSORT, you can choose one of the following: 

If the exit address is not passed in the parameter list (that is, it is 
specified with a MODS statement), use the m parameter on the 
MODS statement. 

258 DFSORT: Application Programming: Guide 



Allocating Temporary Work Space Efficiently 

If the exit address is passed in the parameter list, and 
SIZE/MAINSIZE = MAX is in effect, use the RESINV option. 

If the exit address is passed in the parameter list, and 
SIZE/MAINSIZE = n is in effect, change your REGION so that the 
REGION is greater than SIZE/MAINSIZE (the difference is available). 

If many of your DFSORT applications pass the exit address in the 
rJarameter list and SIZE/MAINSIZE = n is in effect, then consider 
having the OVERRGN value changed by your system programmer to 
less than your IEALIMIT value. 

• For jobs without user exits: 

For JCL-invoked DFSORT, you can choose one of the following: 

If SIZE/MAINSIZE = MAX is in effect, use the RESALL option. 

If SIZE/MAINSIZE = n is in effect, change your REGION so that 
REGION is greater than SIZE/MAINSIZE (the difference is available). 

Have the OVERRGN value changed by your system programmer to 
less than your IEALIMIT value. 

For dynamically invoked DFSORT, you can choose one of the following: 

If SIZE/MAINSIZE = MAX is in effect, use the RESINV option. 

If SIZE/MAINSIZE = n is in effect, change your REGION so that 
REGION is greater than SIZE/MAINSIZE (the difference is available). 

Have the OVERRGN value changed by your system programmer to 
less than your lEA LIMIT value. 

When SIZE/MAINSIZE is less than REGION, make sure the difference between 
SIZE/MAINSIZE and your REGION specification value or default provides suffi­
cient storage for system or user exit routine use. 

Allocating Temporary Work Space Efficiently 
Performance is enhanced when multiple channels are available. Performance 
is also improved if the device is connected so that two channel paths exist 
between each device and the processor that is running the program. 

The following table shows the relationship of file size and sorting technique to 
the number of cylinders used by work data sets. (For best performance, always 
allocate work storage in cylinders. If a temporary sort work data set is not allo­
cated in cylinders, DFSORT reallocates it in cylinders.) The numbers given are 
estimates of the number of SORTWKnn cylinders the sort uses for a particular 
file size when secondary allocation is allowed. For large data sets, perform­
ance can be improved by the use of larger values for primary and secondary 
allocation. You can make primary and secondary allocations by means of the 
SORTWKnn DD statement or job control language (SPACE =). Automatic sec­
ondary allocation can be specified during installation. However, even if you do 
not allow for secondary allocation and you allocate fewer cylinders than indi­
cated in the table, the sorting technique might still run-but performance is gen­
erally degraded. 

Chapter 7. Improving Efficiency 259 



Allocating Temporary Work Space Efficiently 

SORH/Knn Space Used 1 

File Size 33813 
in Bytes Cyl i nders 

31·' 8 

2131·' 47 

401·' 77 

1501·' 284 

1 This example is based on jobs run using the Blockset technique with a 
SIZE/MAINSIZE parameter of 2048K bytes and one SORTWKnn data set on an 
IBM 3380. 

Direct Access Work Storage Devices 
Program performance is improved if you use devices, storage areas, and chan­
nels efficiently. If you specify a particular device type with the UNIT parameter 
on the DO statements that define intermediate storage data sets (for example, 
UNIT = 3380), DFSORT assigns areas, and some optimization occurs automat­
ically. You can get the best performance using direct-access intermediate 
storage devices when you: 

• Select the storage device with the fastest data transfer rate. 

• Assign one work data set per actuator. 

• Use devices that are of the same type. 

• Use two channel paths to devices. 

• Make all data sets the same size, or as nearly the same size as possible. 

• Assign SORTIN, SORTOUT, and SORTWKnn on different spindles and sepa­
rate channels. 

• Specify contiguous space for work data sets, and make sure there is 
enough primary space so that the automatic secondary allocation is not 
needed. 

Elapsed time is decreased when DFSORT can both read input while writing to' 
SORTWKnn and write output while reading from SORTWKnn. If, for example, 
you have two channels, the best allocation of them is to have SORTIN and 
SORTOUT on one and the SORTWKnns on the other. 

Storage requirements for different disk techniques can be estimated by using 
the guidelines found in Appendix A, "Calculating Storage Requirements" on 
page 311. 

260 DFSORT: Application Programming: Guide 



EXCPVR 

Tape Work Storage Devices 

Hipersorting 

EXCPVR 

The use of tape work storage devices prevents the use of the more efficient 
Blockset technique. Best performance, using tape intermediate storage, is 
usually obtained when you use six or more tape drives of the fastest type. As a 
general rule, you should use as many tapes as you have available for interme­
diate storage. A larger number of tapes increases the number of strings that 
can be merged in one pass, and, therefore, decreases the number of passes 
required in the intermediate merge phase. This then reduces elapsed time 
and, often, the number of 1/0 operations. 

Increasing the number of work units, however, also reduces the block size used 
for intermediate storage; this can become a critical factor if you have relatively 
little main storage available for buffers. For example, if DFSORT has only 88K 
bytes in which to operate, you probably achieve no improvement (and might 
find deterioration) if you use more than four tape work units. Therefore, apply 
the general rule of using as many tapes as possible only when DFSORT has 
more than 100K bytes available. 

For information on how to determine storage requirements when using different 
tape techniques, see Appendix A, "Calculating Storage Requirements" on 
page 311. 

Note: The frequency with which the tape direction changes during DFSORT 
work file operations has more of an impact on the effective data rate of IBM 
3480 Magnetic Tape Subsystems than on IBM 3420 Magnetic Tape Units. 
Because of this characteristic, performance comparisons between these tape 
units for intermediate storage cannot be reliably predicted and can vary widely. 

Hipersorting is a new DFSORT capability which uses hiperspace available with 
MVS/ESA on Enterprise Systems Architecture/370. A hiperspace is a high­
performance data space which resides in expanded storage, and is backed by 
auxiliary storage when necessary. With Hipersorting, hiperspace is used in 
place of and along with DASD for temporary storage of records during a 
Blockset sort. Hipersorting reduces 1/0 processing which in turn reduces 
elapsed time, EXCPs, and channel usage. 

The maximum amount of hiperspace for Hipersorting can be controlled with the 
HIPRMAX option passed to DFSORT at either installation or run time. HIPRMAX 
can direct DFSORT to dynamically determine the maximum amount of 
hiperspace that can be used without affecting system paging or other facilities 
that use expanded storage. HIPRMAX can also be used to suppress 
Hipersorting when CPU time optimization is your major concern, since 
Hipersorting may result in a small CPU time degradation. 

To improve Blockset sorting and copying on MVS/XA and MVS/ESA, DFSORT 
can use EXCPVR when reading and writing SORTIN, SORTOUT. and SORTWKnn 
data sets. 

Chapter 7. Improving Efficiency 261 



EXCPVR 

Three options for EXCPVR (ALL, NOWRK, and NONE) specify the data sets for 
which DFSORT can use EXCPVR (when Hipersorting is requested, EXCPVR will 
not be used for SORTWKnn data sets). 

• Specifying EXCPVR = ALL reduces CPU time requirements the most, but can 
cause other jobs to be paged in and out excessively. 

• Specifying EXCPVR = NOWRK prevents DFSORT from using. EXCPVR for 
SORTWKnn data sets, and therefore compromises between reducing CPU 
time and increasing system paging activity. 

• Specifying EXCPVR = NONE prevents DFSORT from using EXCPVR for any 
data sets. No reduction in CPU time results, but no increases in system 
paging activity occur. 

ICEGENER Facility 
You can achieve more efficient processing for jobs set up to use the IEBGENER 
system utility by using DFSORT's ICEGENER facility. Qualifying IEBGENER jobs 
are processed by the equivalent, but more efficient, DFSORT copy function. If, 
for any reason, the DFSORT copy function cannot be used (for example, if 
IEBGENER control statements are specified), control is automatically transferred 
to the IEBGENER system utility. 

If your site has installed ICEGENER to be invoked by the name IEBGENER, you 
need not make any changes to your jobs to use ICEGENER. If your site has not 
chosen automatic use of ICEGENER, you can use ICEGENER by substituting the 
name ICEGENER for IEBGENER on the EXEC statement (when DFSORT is 
JCL-invoked) or LINK macro (when DFSORT is program-invoked) in any jobs 
you choose. Program-invoked jobs must be recompiled. 

Following is an example of how an IEBGENER job can be changed to use 
ICEGENER by substituting the name ICEGENER for the name IEBGENER in the 
EXEC statement. 

IIGENER JOB ..• 
II EXEC PGM=ICEGENER 
IISYSPRINT DD SYSOUT=* 
IISYSUTl DD DSfl=CONTROU·1ASTER,DISP=OLD, UNIT=3380, VOL=SER=f·1ASTER 
IISYSUT2 DD DSN=CONTROL.BACKUP,DISP=OLD,UNIT=3380,VOL=SER=BACKUP 
I IS YS IN DD DU~1t.jY 

The IEBGENER DO statements SYSUT1 (input), SYSUT2 (output), and SYSPRINJ 
(messages) are used by DFSORT for SORTIN. SORTOUT, and SYSOUT, respec­
tively. These DO statement names will be translated by using an extended 
parameter list to invoke the copy function. If DFSORT cannot be used (for 
example, because IEBGENER control statements are specified), control will be 
transferred to IEBGENER. 

Notes: 

• Whether ICEGENER is JCL- or program-invoked, DFSORT will be program­
invoked using an extended parameter list. Therefore, the ICEMAC INV 
options apply and SORTCNTL can be used to provide additional control 
statements for the copy application; for example, INCLUDE or OPTION. 

262 DFSORT: Application Programming: Guide 



EXCPVR 

• For most error conditions that prevent the use of DFSORT copy, control will 
be transferred to the IEBGENER system utility (using its new name, if appro­
priate). DFSORT messages will not be printed unless a SORTDIAG DO 
statement is supplied. Use of the SORTDIAG DO statement will allow you to 
determine why DFSORT copy could not be used. 

• If DFSORT copy is used, its operation and messages will be equivalent to a 
directly called DFSORT copy application. If an unrecoverable error is 
encountered (for example, an I/O error), DFSORT's return code of 16 will be 
changed by ICEGENER to a return code of 12 to emulate the return code 
from a failing IEBGENER application. 

• DFSORT copy can perform some functions not provided by IEBGENER, such 
as certain padding and truncation operations. 

Chapter 7. Improving Efficiency 263 





Sample Job Streams 

Chapter 8. Sample Job Streams 

Sort Examples .................................... 268 
Merge Examples ................................... 300 
Sort Examples Using VSAM Data Sets ...................... 305 
ICEGENER Example ................................. 309 

Chapter 8. Sample Job Streams 265 



Sample Job Streams 

The table below describes the examples that are provided in this appendix. 

No. Description Input Output 

1 Disk sort Blocked fixed-length records Blocked fixed-length records 
on 3380 on 9-track 

2 3380 sort with exits Blocked fixed-length records Blocked fixed-length records 
on 3380 on 3380. same unit as input 

3 Sort. one exit. Fixed-length unblocked records Fixed-length blocked records 
PROC=SORT on 3380 on 3380 

4 3380 sort. tape I/O. Variable-length records on Variable-length records on 
exits 3400 tape 3400 tape 

5 COpy using DFSPARM Variable-length records Variable-length records 

6 Disk sort. ISCII/ ASCII Variable-length ISCII/ ASCII Variable-length ISCII/ ASCII 
tape I/O records on 9-track tape records on 9-track tape 

7 3380 sort. ISCII/ ASCII Variable-length ISCII/ ASCII Variable length ISCII/ASCII 
tape I/O records on 9-track tape records on 9-track tape 

8 Disk sort Blocked fixed-length records Blocked fixed-length records 
on 9-track tape on 9-track tape 

9 Disk sort with exits Fixed-length blocked records Fixed-length blocked records 
on two unlabeled 9-track on one 9-track tape 
volumes 

10 3380 sort. exits Variable-length blocked Variable-length blocked 
records on 3350 records on 3380 

11 Sort with no Fixed-length blocked records Fixed-length blocked records 
SORTWKnn, 1 exit on 3380 on 3380 

12 Concatenated input, A concatenation of three data Blocked fixed-length records 
dynamically allocated sets, two on 3380 and one on on 9-track tape 
work areas 3400-3 

13 3350 sort called from Fixed-or variable-length Fixed-or variable-length 
another program records records 

14 3350 sort using options Blocked fixed-length records Blocked fixed-length records 
NOOUTREL. 
DYNALLOC, DEBUG, 
and FMT ABEND 

15 3350 sort using control Blocked fixed-length records Blocked fixed-length records 
statements OMIT, 
INREC, and SUM 

16 COpy using SORT Blocked fixed- or variable- Blocked fixed- or variable-
Control Statement length records length records 

17 Sort using COBOL Fixed- or variable-length Fixed- or variable-length 
exits records records 

18 Dynamic link-editing of Fixed- or variable-length Fixed- or variable-length 
user exit routines records records 

266 o FSORT: Application Programming: Guide 



Sample Job Streams 

No. Description Input Output 

19 3380 sort using Blocked fixed-length records Blocked fixed-length records 
extended parameter 
list interface 

20 Merge four files Blocked fixed-length records Blocked fixed-length records 
on two 3350s and two 3380s on one 9-track tape 

21 Merge two 3350 files, Variable-length blocked Variable-length blocked 
exits records on 3350 records on 3350 

22 Merge with equals and Fixed- or variable-length Fixed- or variable-length 
sum records records 

23 Define VSAM cluster VSAM variable-length records VSAM variable-length records 
for DFSORT use 

24 Sort with VSAM input VSAM variable-length records VSAM variable-length records 
and output 

25 Sort with VSAM output, Variable-length records VSAM variable-length records 
exit 

26 Use the ICEGENER Blocked fixed- or variable- Blocked fixed- or variable-
facility length records length records. 

Chapter 8. Sample Job Streams 267 



Sort Examples 

Sort Examples 

INPUT 

OUTPUT 

Example 1. DISK SORT 

Fixed or variable-length records on 3380. 

Fixed or variable-length records on 3400. 

INTERMEDIATE STORAGE Two SYSDA areas of 10 cylinders each. 

IIEXAt4P JOB A402, PROGRAI-I~'ER 01 
IISRT EXEC PGr·'=SORT,PA~I='SIZE=r·'AX' 02 
/ISYSOUT DO SYSOUT =A 03 
/ISORTIN DO UNIT=3380,VOL=SER=000101,DISP=SHR,DSN=INPUT 04 
IISORTOUT DO UNIT=3400-3,DSN=OUTPUT,VOL=SER=222222, 0S 
II DISP=(,KEEP) 06 
IISORT\1K01 DO UNIT=SYSDA,SPACE=(CYL, (10)) 07 
IISORT\~K02 DO UNIT=SYSDA,SPACE=(CYL, (10)) 08 
/ISYSIN DO * 09 

SORT FIELDS=(5,12,CH,A) 10 

line Explanation 

01 The JOB statement introduces this job to the operating system. 

02 The EXEC statement calls the program by its alias SORT and specifies 
that the program should use all the main storage available to it. 

03 The SYSOUT DO statement directs messages and control statements to 
system output class A. 

04 The SORTIN DO statement describes a temporary input data set named 
INPUT. The data set is on a 3380 disk with the serial number 000101. 
The DISP parameter indicates that the data set is known to the oper­
ating system. 

05-06 The SORTOUT DO statement describes the output data set. Output is 
recorded on a 9-track tape and is kept. The data set is placed on a 
standard label tape with tape volume number 222222. By default. 
format. record length. and block size are the same as for SORTIN. 

07-08 These DO statements define temporary work data sets. The two data 
sets are on SYSDA direct access devices. Ten cylinders are specified 
for each data set. 

09 A data set follows in the input stream. 

10 SORT statement. The FIELDS operand describes one field. It begins on 
byte 5 of each record. is 12 bytes long. contains character (EBCDIC) 
data. and is to be sorted in ascending order. 

268 DFSORT: Application Programming: Guide 



INPUT 

OUTPUT 

Example 2. 3380, PROC = SORTD, EXITS 

Blocked fixed-length records on 3380. 

Sort Examples 

INTERMEDIATE STORAGE 

USER ROUTINES 

Blocked fixed-length records on 3380, same unit as input. 

Three 3380 areas of 10 cylinders each. 

Four: two change record lengths, one changes control fields, one 
decides what to do if Nmax is exceeded. 

OPTIONS Maximum main storage allocation. 

IIEXAt4P JOB A402,PROGRAt-l14ER 
IISTEPl EXEC SORTD,PARI·l='SIZE=t4AX' 01 
IISORTIN 00 UNIT=3380,VOL=SER=000101,OISP=(OLO,OELETE), 02 
II OSN=INPUT 03 
IISORTOUT DO UNIT=AFF=SORTIN,VOL=SER=000101,OISP=(OLO, 04 
II KEEP),SPACE=CYL,(21,l)),OSN=OUTPUT, 05 
II DCB=(LRECL=80) 06 
IISORTWK01 DO UNIT=(3380,SEP=(SORTIN,SORTOUT)), 07 
II SPACE=(CYL,(10)"CONTIG) 08 
I ISORTt-JK02 DO UNIT=(3380,SEP=(SORTIN,SORTOUT)), 09 
II SPACE=(CYL,(10)"CONTIG) 10 
I ISORHJK03 DO UNIT=(3380,SEP=(SORTIN,SORTOUT)), 11 
II SPACE=(CYL,(10)"CONTIG) 12 
I 1~10DLlB 00 OStIAl-1E=YOURRTNS,OISP=SHR 13 
IISYSIN 00 * 14 

SORT FIELOS=(3,8,ZD,E,40,6,CH,0) 15 
RECORD TYPE=F,LENGTH=(,100,80) 16 
MOOS EI5=(MODREC,784,MOOLIB),EI6=(EI6,1024,MODLIB), 17 

E35=(ADDUP,912,MOOLIB),E61=(CHGE,1000,MODLIB) 18 

Line Explanation 

01 The EXEC statement specifies the SORTD cataloged procedure. 
SIZE = MAX instructs the program to allocate the maximum amount of 
main storage available for program execution. 

02-03 The SORTIN DO statement describes an input data set on a 3380. DCB 
parameters are supplied by the system (since DISP=OLD). The data 
set is deleted after this job step. 

04-06 The SORTOUT DO statement describes the output data set. 
UNIT = AFF = SORTIN means that the data set is to be placed on the 
same unit as the input data set. The output records have the same 
format and block size as the input records, so these values need not be 
supplied. They are shorter (see the RECORD statement), so LRECL 
must be specified. 

07-12 The three SORTWKnn DO statements describe three work data sets on 
an IBM 3380. Each area contains 10 cylinders. The UNIT specification 
means that the intermediate storage area is not to be located on the 
same device as the SORTIN and SORTOUT data sets. 

13 Defines the data set containing the load modules for the user routines. 

14 A data set follows in the input stream. 

Chapter 8. Sample Job Streams 269 



Sort Examples 

15 SORT statement. The FIELDS operand describes two control fields. The 
first is changed by a user routine (at the E61 exit-see the MODS state­
ment) before the program places it into ascending order. The second 
control field is not modified and is placed in descending order. 

16 RECORD statement. The fixed-length records in the input data set are 
120 bytes long. A user exit routine (at the E15 exit) changes them to 100 
bytes during the sort phase. A user routine at the E35 exit again 
changes the length during the final merge phase, to 80 bytes each. 

17-18 MODS statement. The statement describes four user routines in a 
library that is defined on a job control statement with the ddname 
MODUS; these routines have the member names MODREC, E16, 
ADDUP, and CHGE. 

270 DFSORT: Application Programming: Guide 



INPUT 

OUTPUT 

Example 3. SYSOA SORT, PROC = SaRTO, 1 EXIT 

Fixed-length unblocked records on a 3380. 

Fixed-length blocked records on a 3380. 

Sort Examples 

INTERMEDIATE STORAGE 

USER ROUTINES 

Three SYSDA areas, 1 cylinder each. 

E35 exit routine shortens each record by 30 bytes as it leaves the 
merge. 

OPTIONS 

IIEXAt·1P 
IISTEP1 
IISORTIN 
II 
II 
IISORTOUT 
II 
II 
IISORHJK01 
IISORHJK02 
IISORHJK03 
IIUSERLIB 
IISYSIN 

SORT 
OPTION 
RECORD 
~10DS 

Exact data set size, maximum sort main storage option, message 
option. 

JOB A402. PROGRAI4HER 
EXEC PROC=SORTD. PARI·l- I S I ZE=f·1AX. ~ISGPRT =NONE I 

DO DSNAt·1E=INFILE. VOL=SER=INP214.UNIT=3380. 
DCB=(RECFt4=F ,BLKSIZE=80), 
DISP=(OLD,DELETE) 

DO DSNA~lE=OUTFILE, VOL=SER=DLIB02, UNIT=3380, 
DCB=(RECF~I=FB, LRECL=50,BLKSIZE=500) , 
DISP=(NB.J,KEEP) ,SPACE=(CYL, (8,1)) 

DO UNIT=SYSDA,SPACE=(CYL.(I)) 
DO UNIT=SYSDA,SPACE=(CYL,(I)) 
DO UNIT=SYSDA,SPACE=(CYL,(l)) 
DO DSN=EX35,DISP=SHR 
DO * 
FIELOS=(10,5,CH,A) 
FILSZ=1000 
TYPE=F,LENGTH=(,,50) 
E35=(E35.536,USERLIB) 

Line Explanation 

01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 

01 Invokes the SORTO cataloged procedure; specifies that the maximum 
amount of main storage available is to be allocated for the program's 
execution, and that messages and control statements are not to be 
printed. 

02-04 The input data set consists of fixed-length unblocked records on volume 
INP214 on a 3380. The data set is deleted after this job step. 

05-07 The output data set is composed of fixed-length blocked records that 
requires 8 cylinders on a 3380. Each time space is exhausted, an addi­
tional cylinder is allotted. The data set is retained. 

08-10 Intermediate storage consists of three SYSOA areas of one cylinder 
each. 

11 Defines the library that contains the E35 module. 

12 A data set follows in the input stream. 

13 SORT statement. The FIELOS operand describes one control field that 
begins on byte 10 of each record, is 5 bytes long, and contains char­
acter (EBCDIC) data; it is to be sorted in ascending order. 

14 OPTION statement. The input data set contains exactly 1000 records. 

Chapter 8. Sample Job Streams 271 



Sort Examples 

15 RECORD statement. Indicates that the input data set contains fixed­
length records that are shortened to 50 bytes each as they leave the 
final merge. 

16 MODS statement. Describes a user routine that receives control at 
program exit E35. The name of the routine is E35; it is 536 bytes long 
and is on the data set defined in the USERLIB DO statement. 

272 o FSORT: Application Programming: Guide 



INPUT 

OUTPUT 

Example 4. 3380 SORT, TAPE 110, PROC=SORTD, EXITS 

Sort Examples 

INTERMEDIATE STORAGE 

USER ROUTINES 

OPTIONS 

Variable-length records on 3400. 

Variable-length records on 3400. 

Two 3380 areas of 15 cylinders each. 

E11 routine performs initialization for the E16 Nmax routine. 

Alternate collating sequence. 

IIEXAMP 
IISTEPN 
IISORTIN 
II 
II 
IISORTWK01 
IISORTHK02 
IISORTOUT 
II 
IIUSERLIB 
II 
IISYSIN 

SORT 
RECORD 
t·1ODS 

ALTSEQ 

JOB B999, PROGRAt4~IER 
EXEC SORTO 01 
DO DSNAME=XFILE,VOL=SER=000230,UNIT=3400-3, 02 

DISP=OLD, DCB= (RECH1=VB, LRECL=120, 03 
BLKSIZE=1200) 04 

DO UNIT=3380,SPACE=(CYL,(15» 05 
DO UNIT=3380,SPACE=(CYL,(15» 06 
DO OSNAME=~1999999. YFILE, VOL=SER=000258, 07 

UNIT =3400-3 ,OISP= (NE~J ,CATLG) 08 
DO OSNAME=~1YRTNS,OISP=SHR 09 
DO DSNAME410RTNS,OISP=SHR 10 
DO * 11 
FIELDS=(20,5,AQ,A) 12 
TYPE=V,LENGTH=(120",80,120) 13 
E11= (PREPt·l0D, 504, USERLIB), E16= (t·l0Dt·1AX, 554, 14 
USERLIB) 15 
CODE=(5BEA,7BEB,7CEC) 16 

Line Explanation 

01 Calls the SORTD cataloged procedure. 

02-04 The input data set is named XFILE, resides on 9-track standard labeled 
tape on a 3400 series magnetic tape unit with the volume serial number 
000230, is known to the system, and is not to be deleted. It consists of 
variable-length blocked records. 

05-06 Two intermediate storage areas on 3380s are defined. Each consists of 
15 cylinders. 

07-08 The output data set is named YFILE. and is to be placed on 9-track 
standard-labeled tape on a 3400 series magnetic tape unit with the 
volume serial number 000258. It contains records of the same format as 
the input data set. The data set is being created in this job step and is 
to be cataloged. 

09 Defines the library that contains the E16 user routine. 

10 Defines the library that contains the E11 user routine. 

11 A data set follows in the input stream. 

12 SORT statement. Describes one control field that begins on byte 16 of 
each record data area (not byte 20. because the record descriptor word 
takes 4 bytes). is 5 bytes long. contains character data. which is to be 
collated according to the modified sequence described in the AL TSEQ 
statement (format is AQ). and is to be sorted in ascending sequence. 

Chapter 8. Sample Job Streams 273 



Sort Examples 

13 RECORD statement. Indicates that the input data set contains variable­
length records with a maximum record length of 120 bytes, a minimum 
record length of 80 bytes, and an average length of 120 bytes. The 
RECORD statement is not required for this example, but without it, the 
program assumes a minimum record length of 24 bytes (large enough 
to contain the specified control field) and an average length of 72 bytes 
(the average of maximum and minimum lengths). Maximum length 
could have been supplied by default. 

14-15 MODS statement. Describes two user routines. The first, PREPMOD, 
receives tontrol at exit E11. It is 504 bytes long and resides in 
MORTNS. The second user routine, named MODMAX, receives control 
at exit E16. It is 554 bytes long and resides in MYRTNS. 

16 ALTSEQ statement. Specifies that the three characters $, #, and @ are 
to collate in that order after Z. 

274 DFSORT: Application Programming: Guide 



Sort Examples 

Example 5. COPY USING DFSPARM 

INPUT 

OUTPUT 

INTERMEDIATE STORAGE 

USER ROUTINES 

Variable-length records 

Variable-length records 

None 

None 

OPTION 

IIEXAt4P 
IISI EXEC 
IISYSOUT 
IISORTIN 
IISORTOUT 
II 
IIDFSPARt4 

OPTION 
DEBUG 

COPY,STOPAFT,MSGPRT,ABEND 

JOB B999,PROGRAMMER 01 
PG~l=SORT 02 
DO SYSOUT~A 03 
DO DSNAME=INVl,DISP=OLD 04 
00 DSNAME~OUTVl,OISP=(NE\oJ,KEEP), 05 

UNIT=33S0,SPACE=(TRK,(15,2)),VOL=SER=XYZe03 06 
DO * 07 
STOPAFT=50e,COPY,MSGPRT=CRITICAL 08 
ABEND 09 

Line Explanation 

01 The JOB statement introduces this job to the operating system. 

02 The EXEC statement calls the program by its alias SORT. 

03 The SYSOUT DO statement directs DFSORT messages to output class A. 

04 The SORTIN DO statement describes a cataloged variable length record 
input data set named INV1. 

05-06 The SORTOUT DD statement directs the output to a new data set named 
OUTV1 on volume XYZ003 of a 3380. 

07 The DFSPARM DO statement indicates that data follows in the input 
stream. 

08 THE OPTION statement indicates that a copy is to be done, that only the 
first 500 records are to be copied, and that only error messages are to 
be printed. 

09 The DEBUG statement indicates that if this applicalion fails, an abend 
occurs with a user completion code that is equal to the appropriate 
message number. 

Chapter 8. Sample Job Streams 275 



Sort Examples 

INPUT 

OUTPUT 

Example 6. SYSDA SORT, ISCII/ASCII TAPE 110, PROC=SORTD 

Variable-length ISCII/ASCII records on 9-track tape. 

Variable-length ISCII/ ASCII records on 9-track tape. 

INTERMEDIATE STORAGE Two SYSDA areas of 15 cylinders each and two SYSDA areas of 10 
cylinders each. 

USER ROUTINES None. 

I IEXAt~P JOB A432 t PROGRAM~IER 
IISTEPM EXEC SORTO 
IISORTIN 00 OSNAt~E=SRTFILtOISP=(OLOtOELETE)tUNIT=3400-6t 91 
II OCB=(RECFM=OB tLRECL=S0 tBLKSIZE=404 tOPTCO=Q, 92 
II BUFOFF=L)tVOL=SER=311S90tLABEL=(I,AL) 93 
//SORHSK01 00 UNIT=SYSOA,SPACE=(CYL t (15)) 04 
I ISORHSK02 00 UNIT=SYSOAtSPACE=(CYL t (15)) 05 
//SORHJK93 00 UNIT=SYSOA, SPACE= (CYL t (10)) 06 
//SORHIK94 00 UNIT=SYSOA,SPACE=(CYL t (10)) 07 
IISORTOUT 00 OSN=OUTFIL,UNIT=3400-6tLABEL=(tAL)t 0S 
II OISP=(tKEEP)tOCB=(OPTCO=QtBUFOFF=L),VOL=SER=311S0109 
//SYSIN 00 * 10 

SORT FIELOS=(19 tStAC tO) 11 
RECORO TYPE=OtLENGTH=(,tt29t23) 12 

Line Explanation 

01-03 The input data set SRTFIL is on a 9-track tape with the volume serial 
number 311500. It is known to the system and is deleted after this job 
step. It consists of variable-length ISCII/ASCII records that are blocked 
alid have a maximum length of SO bytes. For this job, the buffer offset is 
the block length indicator. The records are to be translated from 
ISCII/ASCII to EBCDIC (OPTCD=Q). 

04-07 Four intermediate storage data sets are defined on SYSDA. 

OS-09 The output data set is named OUTFIL. It is written on a 9-track tape 
with a density of 6250 bpi and is retained. It has an ISCII/ASCII label 
and contains records with the same RECFM, LRECL, and BLKSIZE 
values as the input (by default). 

10 A data set follows in the input stream. 

11 SORT statement. The FIELDS operand describes a control field that 
begins on byte 6 of each record data area (not byte 10, because the 
record descriptor word takes 4 bytes), and is 8 bytes long. This field 
contains character (ISCII/ASCII) data, and is sorted in descending order. 

12 RECORD statement. All the records in the input data sets are 
ISCII/ASCII records. Their maximum length is supplied by default; the 
minimum is 20. The average length is 23. 

276 DFSORT: Application Programming: Guide 



INPUT 

OUTPUT 

Example 7. 3380 SORT, ISCII/ASCII TAPE I/O, PROC=SORTD 

Sort Examples 

INTERMEDIATE STORAGE 

USER ROUTINES 

Variable-length ISCII/ ASCII records on 9-track tape. 

Variable-length ISCII/ASCII records on 9-track tape. 

One 3380 area of 4 cylinders. 

None. 

IIEXAMP 
I ISTEpr~ 
IISORTIN 
II 
II 
IISORH/K01 
IISORTOUT 
II 
IISYSIN 

SORT 
RECORD 

JOB A432, PROGRAW·IER 
EXEC SORTO 
00 OSNAME=SRTFIL,OISP=(OLO,oELETE),UNIT=3400-6, 01 

oCB= (RECH1=0, LRECL=400,BLKSIZE=404,OPTCO=Q, 02 
BUFOFF=L),VOL=SER=311500,LABEL=(1,AL) 03 

00 UNIT=3380,SPACE=(CYL,(4)) 04 
DO oSN=OUTFIL,UNIT=3400-6,LABEL=(,AL), 05 

DISP=(,KEEP),DCB=(OPTCo=Q,BUFOFF=L),VOL=SER=31150106 
00 * 07 
FIELOS=(10,8,AC,0) 08 
TYPE=0,LENGTH=(",20,80) 09 

Line Explanation 

01-03 The input data set SRTFIL is on a 9-track tape with the volume serial 
number 311500. It is known to the system and is deleted after this job 
step. It consists of variable-length ISCII/ASCII records which are 
blocked and have a maximum length of 400 bytes. It has an ISCII/ASCII 
label. For this job, the buffer offset is the block length indicator. The 
records are to be translated from ISCII/ASCII to EBCDIC (OPTCD=Q). 

04 One intermediate storage data set is defined on a 3380. 

05-06 The output data set OUTFIL is written on a 9-track tape with a density of 
6250 bpi and the volume serial number 311501. It has an ISCII/ ASCII 
label and is kept. It contains records with the same RECFM, LRECL, 
and BLKSIZE values as the input (by default). 

07 A data set follows in the input stream. 

08 SORT statement. The FIELDS operand describes a control field that 
begins on byte 6 of each record data area (not byte 10, because the 
record descriptor word takes 4 bytes), and is 8 bytes long. This field 
contains character (lSCIIIASCII) data, and is tiorted in descending order. 

09 RECORD statement. All the records in the input data sets are 
ISCII/ASCII records. Their maximum length is supplied by default; the 
minimum is 20. The average length is 80. 

Chapter 8. Sample Job Streams 277 



Sort Examples 

INPUT 

OUTPUT 

Example 8. DISK SORT, PGM = SORT 

INTERMEDIATE STORAGE 

USER ROUTINES 

OPTIONS 

Blocked fixed-length records on 9-track tape. 

Blocked fixed-length records on 9-track tape. 

Four SYSDA devices with 10 cylinders each. 

None. 

FORMAT = xx for control fields of like format. 

IIEXAMP 
IISTEPI 
I/SYSOUT 
I/SORTLIB 
I/SORTIN 
1/ 
1/ 
I/SORTOUT 
1/ 
I/SORHJKe1 
I/SORHJK92 
I/SORHIK93 
I/SORHIK94 
//SYSIN 

SORT 

JOB A4e2, PROGRAMt1ER 
EXEC PG~I=SORT 91 

e2 
e3 
e4 
€IS 
e6 
97 
€IS 
99 
Ie 
11 
12 
13 
14 

00 SYSOUT=A 
00 OSNM1E=SMel.SORTLIB,OISP=SHR 
00 OSNM1E=INPUT, VOL=SER=999101, UNIT=34e9-3, 

OISP=(OLO,OELETE),OCB=(RECFM=FB, 
LRECL=Se,BLKSIZE=Sge) 

00 OSNMIE=11999999.0UTPUT ,UNIT=34ge-3, 
oISP=(NHJ,CATLG), VOL=SER=9991e2 

00 UNIT=SYSOA,SPACE=(CYL,(19)) 
00 UNIT=SYSOA,SPACE=(CYL,(19)) 
00 UNIT=SYSOA,SPACE=(CYL,(le)) 
00 UNIT=SYSOA,SPACE=(CYL,(le)) 
00 * 
FIELOS=(1,6,A,2S,5,0) ,FOR~lAT=CH 

Line Explanation 

01 This EXEC statement calls the program module by its alias, SORT. 

02 The SYSOUT DO statement directs messages and control statements to 
system output class A. 

03 The SORTLIB DO statement defines a private data set containing the 
sort program modules. 

04-06 The SORTIN DO statement defines an input data set on 9-track tape with 
fixed blocked records, on volume 000101. 

07-08 The SORTOUT DO statement defines an output data set with the same 
characteristics as the input data set, on volume 000102. 

09-12 The SORTWK DO statements define four SYSDA devices with 10 cylin­
ders each. 

13 A data set follows in the input stream. 

14 SORT statement. The FIELDS operand describes two control fields. The 
first control field begins on byte 1 of each record, is 6 bytes long, con­
tains character (EBCDIC) data, and is to be sorted in ascending order. 
The second control field begins on byte 28 of each record, is 5 bytes 
long, contains character (EBCDIC) data, and is to be sorted in 
descending order. 

278 DFSORT: Application Programming: Guide 



Sort Examples 

Example 9. DISK SORT, PROC=SORTD, EXITS 

INPUT 

OUTPUT 

Fixed-length blocked records on two unlabeled 9-track tap volumes. 

Fixed-length blocked records on one 9-track tape. 

INTERMEDIATE STORAGE 

USER ROUTINES 

Four SYSDA devices with 1 cylinder each. 

Three: two change record lengths, one decides what to do if Nmax 
is exceeded. 

IIEXAt.1P JOB A402, PROGRAN~lER 
IISTEP1 EXEC SORTO 01 
IISORTIN DO DSNM4E=INPUT,VOL=SER=(000333,000343), 02 
II· UNIT=(3400-3,2),DISP=(OLD,DELETE),LABEL=(,NL}, 03 
II DCB=(RECFI·I=FB,LRECL=120,BLKSIZE=480) 04 
IISORTOUT DO DSNAt·IE=OUTPUT ,UNIT=3400-3,DISP=(NE\~,PASS), 05 
II VOL=SER=456,DCB=(RECFl4=FB,LRECL=80, 06 
I I BLKSIZE=32(0) 07 
IISORH!K01 DO UNIT=SYSDA,SPACE=(CYL, (1)) 08 
I ISORHIK02 DO U~HT=SYSDA,SPACE=(CYL, (1)) 09 
IISORHIK03 DO UtIIT=SYSDA,SPACE=(CYL, (1)) 10 
IISORHIK04 DO UNIT=SYSDA,SPACE=(CYL, (1)) 11 
Ilf·IODLIB DO DSNAf.1E=YOURRTNS,DISP=SHR 12 
IISYSIN DO * 13 

SORT FIELDS=(3,8,ZD,A,40,6,CH,D} 14 
RECORD TYPE=F,LENGTH=(120,100,80) 15 
MODS E15=(MODREC,784,MODLIB), 16 

EI6=(E16,1024,MODLIB),E35=(ADDUP,912,MODLIB) 17 
18 

Line Explanation 

01 Specifies the cataloged procedure SORTD. 

02-04 Defines the input data set. The data set consists of fixed-length blocked 
records on two 9-track tape volumes; the UNIT parameter requests the 
system to provide two tape drives, one for each volume of the data set. 
Because the tape is unlabeled, DeB parameters must be supplied. 

05-07 Defines the output data set, which also consists of nxed-Iength blocked 
records. It is on one 9-track tape. 

08-11 Define four intermediate storage data sets on SYSDA devices with 1 cyl­
inder each. 

12 Describes a data set containing the load modules of the user exit rou­
tines. 

13 A data set follows in the input stream. 

14 SORT statement. The FIELDS operand describes two control fields. 

15 RECORD statement. The fixed-length records in the input data set are 
120 bytes long. A modification routine (at exit E15) changes them to 100 
bytes during the sort phase. A user routine at the E35 exit again 
changes the length during the final merge phase, to 80 bytes each. 

Chapter 8. Sample Job Streams 279 



Sort Examples 

16-18 MODS statement. The statement describes four user routines in a 
library that is defined on a job control statement with the ddname 
MODUS. 

280 DFSORT: Application Programming: Guide 



INPUT 

OUTPUT 

Example 10. 3380 SORT, PROC=SORTD, EXITS 

Sort Examples 

INTERMEDIATE STORAGE 

USER ROUTINES 

Variable-length blocked records on 3350. 

Variable-length blocked records on 3380. 

One 3380 area of 6 cylinders. 

Initialization routine at the E11 exit and an NMAX error routine at 
E16. 

OPTIONS Message option (critical messages only). 

IIEXAt.1P JOB A402, PROGRAf.1t,lER 
IISTEPONE EXEC SORTD,PAR~1='t'1SGPRT=CRITICAL,LlST I 01 
IISORTIN DD UNIT=3350,DSNAME=PAY413,VOL=SER=335001, 02 
I I DISP=(OLD,KEEP) 03 
IISORTOUT DD UNIT=3380,DSNA~lE=PAY414,VOL=SER=335004, 04 
II SPACE=(CYL,(15),RLSE),DISP=(NEW,KEEP) 05 
IISORHJK01 DD UNIT=3380,SPACE=(CYL, (6) "CONTIG) 06 
I IUSERLIB DD DSNM4E=JIMSr·l0DS,DISP=SHR 07 
IISYSIN DD * 08 

SORT FIELDS=(20,5,AQ,A) 09 
RECORD TYPE=V,LENGTH=(",80,120) 10 
ALTSEQ CODE=(5BEA,7BEB,7CEC) 11 
MODS El1=(PREPMOD,~04,USERLIB),E16=(MODMAX,554, 12 

USERLIB) 13 

Line Explanation 

01 Specifies the SORTD cataloged procedure. The PARM options indicate 
that critical messages and program control statements are to be 
printed. 

02-03 The name of the input data set is PAY413, and it is on volume 335001 on 
a 3350. The data set is known to the operating system and is to be 
retained. The program takes the DCB parameters from the data set 
label. The records are variable-length, blocked. 

04-05 The output data set is called PAY414, and will be on volume 335004 of a 
3380. It is being created in this job step, and is to be retained. Data set 
DCB parameters is the same as for SORTIN, by default. Unused space 
is released. 

06 One intermediate storage data set is defined on a 3380. 

07 Defines a data set called JIMSMODS, which contains the user exit rou­
tines described on the MODS program control statement. The data set 
is known to the operating system and is not to be deleted after this job 
step. 

08 A data set follows in the input stream. 

09 SORT statement. The FIELDS operand describes one control field that 
begins on byte 16 of each record data area (not byte 20, because the 
record descriptor word takes 4 bytes), is 5 bytes long, contains char­
acter data which is to be collated according to the modified sequence 
described in the ALTSEQ statement (format is AQ), and is to be sorted 
in ascending sequence. 

Chapter 8. Sample Job Streams 281 



Sort Examples 

10 RECORD statement. Indicates that the input data set contains variable­
length records with a minimum record length of 80 bytes, and an 
average length of 120 bytes. The RECORD statement is not required for 
this example, but without it, the program assumes a minimum record 
length of 24 bytes (large enough to contain the specified control field) 
and an average length equal to the average of maximum and minimum 
lengths. 

11 AL TSEQ statement. Specifies that the three characters $, #, and @ are 
to collate in that order after Z. 

12-13 MODS statement. Describes two user routines. The first. PREPMOD, 
receives control at exit E11. It is 504 bytes long. The second routine, 
named MODMAX, receives control at exit E16. It is 554 bytes long. The 
library in which both reside is described in the job control statement 
with the ddname USERLIB. 

282 DFSORT: Application Programming: Guide 



INPUT 

OUTPUT 

Sort Examples 

Example 11. SORT WITH NO SORTWKnn, PROC=SORTD, 1 EXIT 

INTERMEDIATE STORAGE 

USER ROUTINES 

Fixed-length blocked records on 3380. 

Fixed-length blocked records on 3380. 

None. 

One routine shortens the records as they leave the final merge 
phase. 

OPTIONS 

I IEXA~lP 
IISTEPI 
IISORTIN 
II 
IISORTOUT 
II 
II 
IIERTNLIB 
IISYSIN 

SORT 
OPTION 
RECORD 
MOOS 

Exact data set size. 

JOB B600, PROGRAt·U4ER 
EXEC PROC=SORTO, PARt-\= IS IZE (130000) I 
DO OSNAME=INPUT,UNIT=3380,VOL=SER=333001, 

OISP=SHR 
00 OSNAME=OUTPUT,UNIT=3380,VOL=SER=334010, 

OCB=(RECFM=FB,LRECL=S0,BLKSIZE=S00), 
OISP=(NE~/, KEEP) ,SPACE= (CYL, (1,1) ,RLSE) 

00 OSN=EXITS,DISP=SHR 
DO * 
FIELOS=(10,S,CH,A) 
FILSZ=800 
TYPE=F,LENGTH=("S0) 
E3S=(E3S,S34,~RTNLIB) 

01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 

No work areas are defined. If all records cannot be sorted in main storage, the 
program terminates. 

Line Explanation 

01-02 The input data set is named INPUT, is on a 3380 volume 333001, and 
consists of fixed-length records with a length of 80 bytes. The DCB 
information is taken from the data set label. 

03-05 The output data set, named OUTPUT, is on volume 334010 of a 3380 and 
contains fixed-length blocked records. One cylinder is requested for the 
data set; if the space is exhausted, additional cylinders are to be 
assigned one at a time. Unused space is released. Records have been 
shortened at E35, so DCB information is different from SORTIN and 
therefore has to be specified. 

06 Defines a library that contains the E35 routine. 

07 A data set follows in the input stream. 

08 SORT statement. The FIELDS operand describes one control field that 
begins on byte 10 of each record, is 5 bytes long, and contains char­
acter (EBCDIC) data; it is to be sorted in ascending order. 

09 OPTION statement. The input data set contains exactly 800 records. 

10 RECORD statement. Indicates that the input data set contains fixed­
length records and that the record length is changed to 50 bytes as 
records leave the tinal merge. 

11 MODS statement. Descri bes a user exit routine that receives control at 
E35 exit. The name of the routine is E35; it is 534 bytes long and 
resides in the data set described in the ERTNlIB DO statement. 

Chapter 8. Sample Job Streams 283 



Sort Examples 

INPUT 

OUTPUT 

Example 12. CONCATENATED INPUT, DYNAMICALLY ALLOCATED WORK 
AREAS 

A concatenation of three data sets, two on 3380 and one 3400-3. 

Blocked fixed-length records on 9-track tape. 

INTERMEDIATE STORAGE 

USER ROUTINES 

OPTIONS 

Two 3350 areas. 

None. 

FORMAT parameter for control fields of like format. 

IIEXAMP 
IISTEPT 
IISYSOUT 
IISORTLIB 
IISORTIN 
II 
II 
II 
II 
II 
II 
II 
II 
IISORTOUT 
II 
IISYSIN 

SORT 
OPTION 

JOB A400, PROG RAt·1I4 ER 
EXEC PGM=ICE~lAN 01 
00 SYSOUT =A 02 
00 OSNM1E=SYS1.S0RTLIB,OISP=SHR 03 
00 OSNAt4E=INP1,OISP=OLO,UNIT=33S0, 04 

OCB=(RECFM=FB,BLKSIZE=7200,LRECL=S0), 0S 
VOL=SER=XB0001 06 

00 OSNAME=INP2,OISP=OLO,UNIT=3400-3, 07 
OCB=(RECFM=FB,BLKSIZE=4000,LRECL=S0), 0S 
VOL=SER=T33333 09 

00 OSNM1E=INP3,OISP=OLO,UNIT=33S0, 10 
OCB=(RECFM=FB,BLKSIZE=3600,LRECL=S0), 11 
VOL=SER=OISK01 12 

00 OSNM1E=/o1999999.0UTPUT ,UNIT=3400-3, 13 
OISP=(NEW,CATLG),VOL=SER=000102,OCB=(BLKSIZE=S00) 14 

00 * ~ 

FIELOS=(1,6,A,2S,S,0) , FORI·1AT=CH 16 
OYNALLOC=(33S0,2) 17 

Example 12 differs from Example 7 in two ways: The input is a concatenation of 
three input data sets on unlike devices, and work storage is dynamically allo­
cated on tape. 

Line Explanation 

01 The EXEC statement calls the program module by its name, ICEMAN. 

02 The SYSOUT DD statement directs messages and control statements to 
system output class A. 

03 Sort program modules required for a sort using tape work files are on 
SYS1.S0RTLIB. 

04-12 The SORTIN DD statement describes a concatenation of three input data 
sets on unlike devices. 

The INP1 data set is on volume XB0001 of a 33S0. It is known to the 
system, and consists of fixed-length blocked records with a record 
length of 80 and a block size of 7200. Note that this MUST be the 
largest block size of the data sets in the concatenation. 

The INP2 data set is on a 9-track tape with serial number T33333. It is 
known to the system, and consists of fixed-length blocked records with 
a record length of SO and a block size of 4000. 

284 DFSORT: Application Programming: Guide 



Sort Examples 

The INP3 data set is on a 3380 disk with the serial number DISK01. It is 
known to the system, and consists of fixed-length blocked records with 
a record length of 80 and a block size of 3600. 

13-14 Block size is not the same for output as for input, and must therefore be 
specified. 

15 A data set follows in the input stream. 

16 SORT statement. The FIELDS operand describes two control fields. The 
first field begins on byte 1 of each record, is six bytes long, contains 
character (EBCDIC) data (FORMAT = CH), and is to be sorted into 
ascending order. The second field begins on byte 28 of each record, is 
five bytes long, contains character (EBCDIC) data, and is.to be sorted in 
descending order. 

17 OPTION statement. The DYNALLOC operand indicates that two work 
data sets are to be dynamically allocated on 3350. 

Chapter 8. Sample Job Streams 285 



Sort Examples 

INPUT 

OUTPUT 

Example 13. 3350 SORT. USING SORTCNTL AND OPTION 

INTERMEDIATE STORAGE 

USER ROUTINES 

Fixed- or variable-length blocked records. 

Fixed- or variable-length blocked records. 

One 3350 area of 5 cylinders. 

None. 

OPTIONS Exact size file and alternate collating sequence for EBCDIC fields. 

IIEXAMP .JOB A492, PROGRAMt4ER 
IISORTl EXEC PGt4=t4YPGr4 91 
IISTEPLIB DO OSN=NAMEl.NAME2.NM4E3,OISP=SHR 92 
IISYSOUT DO SYSOUT=A 93 
IISYSPRINT DO SYSOUT=A 94 
IISORTIN DO DSN=~'999999.INPUT.FILE,OISP=SHR 9S 
I ISORT\~K91 DO UNIT=33S9,SPACE=(CYL, (S» 96 
IISORTOUT DO DSN=MY.OUTPUT.FILE,UNIT=SYSOA, 97 
II SPACE=(CYL,(3,2»,DISP=(NEW,CATLG) 98 
I ISORTCNTL DO * 99 

OPTION FILSl=2279,CHALT 19 

Line Explanation 

01 Specifies the name of the program calling DFSORT. 

02 The STEPLIB DO statement describes where MYPGM is located. 

03 The SYSOUT DO statement directs messages and control statements to 
system output class A. 

04 MYPGM output is to be directed to system output class A. 

05 The SORTIN DO statement describes an input data set named 
M999999.1NPUT.FILE. The DISP parameter indicates that the data set is 
known to the operating system. 

06 The SORTWK01 DO statement describes a work data set on a 3350. The 
area contains five cylinders. 

07-08 The SORTOUT DO statement describes an output data set named 
M999999.0UTPUT.FILE. The OISP parameter indicates that the data set 
is new and will be cataloged. 

09 The SORTCNTL DO statement defines the data set that contains control 
statements used to provide overrides or optional information for the sort 
application. 

10 OPTION statement. The file size is specified as exactly 2270 records. 
Both CH and AQ format record fields are sorted as if they were AQ 
format. 

286 o FSORT: Application Programming: Guide 



INPUT 

OUTPUT 

Sort Examples 

Example 14. OVERRIDING INSTALLATION OPTIONS AND DEBUGGING 

INTERMEDIATE STORAGE 

USER ROUTINES 

OPTIONS 

Blocked fixed-length records on 3350. 

Blocked fixed-length records on SYSDA. 

Dynamically allocated. 

None. 

Unused temporary SORTOUT space is not to be released: needed 
work space is to be dynamically allocated: debug information is to 
be obtained. 

IIEXAMP JOB A400,PROGRAMMER 01 
IISTEP1 EXEC PGM=SORT,PARM='MSGPRT=CRITICAL,SIZE(800K)I 02 
IISYSOUT 00 SYSOUT=A 03 
IISORTIN 00 OSNA~IE=INP1,DISP=OLO,UNIT=3350, 04 
II DCB=(RECHI=FB,BLKSIZE=7206,LRECL=80), 05 
II VOL=SER=XB6001 06 
IISORTOUT 00 OSNAME=&&OUTPUT,OISP=(,PASS),UNIT=SYSDA, 67 
II SPACE=(CYL,(5,1» 08 
I ISYSIN DO * 09 

SORT FIELDS=(1,6,A,28,5,0) , FORt·IAT=CH 16 
OPTION NOOUTREL,DYNALLOC 11 

* USE BSAM FOR 1/0 12 
DEBUG BSAt~ 13 

1* 14 
IISORTOIAG DO DUI~I·IY 15 

This job is only applicable to MVS systems because of the use of dynamic allo­
cation for work data sets. For purposes of illustration, assume that none of the 
standard defaults for JCL invocation of DFSORT have been changed at installa­
tion time. 

Line Explanation 

01 The JOB statement introduces this job to the operating system. 

02 The EXEC statement calls the program by its alias SORT. 
MSGPRT=CRITICAL specifies that only error messages are to be 
printed, overriding the standard default of MSGPRT=ALL. Because the 
standard default of LIST = YES has not been overridden, control state­
ments are also printed. SIZE (800K) specifies the main storage to be 
allocated to DFSORT, overriding the standard default of SIZE = MAX. 

03 The SYSOUT DO statement directs messages, control statements, and 
the specially formatted dump to system output class A. 

04-06 The SORTIN DO statement describes an input data set named INP1 on 
volume XB0001 of a 3350. It consists of fixed-length blocked records 
with a record length of 80 and a block size of 7200. 

07-08 The SORTOUT DO statement describes a temporary output data set, 
which is passed to the next step for further processing. 

09 The SYSIN DO statement indicates that a data set follows in the input 
stream. 

Chapter 8. Sample Job Streams 287 



Sort Examples 

10 SORT statement. Describes two control fields in the input records. 

11 OPTION statement. NOOUTREL specifies that unused temporary 
SORTOUT space is not to be released, overriding the standard default 
of OUTREL = YES. OYNALLOC specifies that needed work space is to 
be dynamically allocated using the standard default device (SYSOA) and 
number of work data sets (1). 

12 Comment statement. This statement is printed, but otherwise ignored. 

13 DEBUG statement. BSAM specifies that the program is to use BSAM to 
process SORTIN and SORTOUT. 

14 Marks the end of the SYSIN data set. 

15 The SORTDIAG DO statement indicates that all messages (including 
diagnostic messages) and control statements are to be printed, over­
riding MSGPRT=CRITICAL in the EXEC statement. 

Note that the cumulative effect of the SORTOIAG 00 statement, the options in 
the EXEC PARM field, and the control statements in the SYSIN data set is the 
following equivalent set of control statements for the run: 

SORT FIELDS=(1)6)A)28)5)D))FORMAT=CH 
OPTION NOOUTREL)DYNALLOC)MSGPRT=ALL)~'AINSIZE=81g200) LIST 
OEBUG BSAM 

288 o FSORT: Application Programming: Guide 



INPUT 

OUTPUT 

Example 15. OMIT. INREC. AND SUM CONTROL STATEMENTS 

Sort Examples 

INTERMEDIATE STORAGE 

USER ROUTINES 

OPTIONS 

Blocked fixed-length records on 3350. 

Blocked fixed-length records on SYSDA. 

Dynamically allocated. 

None. 

Needed work space is to be dynamically allocated. 

IIEXAMP JOB A400, PROGRAMNER 01 
IISTEPI EXEC PGr1=SORT 02 
IISYSOUT DO SYSOUT=A 03 
I/SORTIN DO DSN~lE=INPl,DISP=OLD,UNIT=3350, 04 
II DCB=(RECFr1=FB,BLKSIZE=7200, LRECL=80), 05 
II VOL=SER=XB0001 06 
IISORTOUT DO DSNAME=&&OUTPUT,DISP=(,PASS),UNIT=SYSDA, 07 
II SPACE=(CYL,(5,1)),DCB=(LRECL=25,BLKSIZE=5000) 08 
I ISYSIN DO * 09 

OMIT COND=(5,I,CH,EQ,C'M') 10 
INREC FIELDS=(10,3,20,8,33,11,2Z,5,1) 11 
SORT FIELDS=(4,B,CH,A,1,3,FI,A),DYNALLOC=(,2) 12 
SUM FIELDS=(17,4,BI) 13 

This example shows how to use the OMIT. INREC. SORT. and SUM control 
statements. This job is only applicable to MVS systems because of the use of 
dynamic allocation for work data sets. For purposes of illustration. assume that 
none ofthe standard defaults for JCL invocation of DFSORT have been changed 
at installation time ... 

Line Explanation 

01 The JOB statement introduces this job to the operating system. 

02 The EXEC statement calls the program by its alias SORT. 

03 The SYSOUT DO statement directs messages and control statements to 
system output class A. 

04-06 The SORTIN DO statement is identical to that in Example 13. The input 
records have a record length of 80 and a block size of 7200. 

07-08 The SORTOUT DO statement is identical to that in Example 13 except 
that the reformatted records have a record length of 25 and a block size 
of 5000. 

09 The SYSIN DO statement indicates that a data set follows in the input 
stream. 

10 OMIT statement. COND specifies that input records with a character M 
in position 5 are to be deleted. 

11 INREC statement. FIELDS specifies how the input records are to be 
reformatted before they are sorted. The reformatted input records are 
fixed-length. with a record size of 25 bytes (a significant reduction from 
the original size of 80 bytes). They look as follows: 

Chapter 8. Sample Jab Streams 289 



Sort Examples 

Position Content 
1-3 Input positions 10 through 12 
4-11 Input positions 20 through 27 
12-22 Input positions 33 through 43 
23-24 Zeros 
25 Input position 5 

12 SORT statement. FIELDS specifies two control fields starting at posi­
tions 4 and 1 in the reformatted record, which correspond to positions 
20 and 10 in the input record. DYNALLOC = (,2) specifies that needed 
work space is to be dynamically allocated using the standard default 
device (SYSDA) and 2 work data sets. 

13 SUM statement. FIELDS specifies a 4-byte binary summary field at posi­
tion 17 in the reformatted record, which corresponds to position 38 in 
the input record. Whenever two reformatted records with the same 
control fields are found, their summary fields are to be added and 
placed in one of the reformatted records, and the other reformatted 
record is to be deleted. 

290 DFSORT: Application Programming: Guide 



Sort Examples 

Example 16. SORT WITH COPY OPTION 

INPUT 

OUTPUT 

INTERMEDIATE STORAGE 

USER ROUTINES 

OPTIONS 

Blocked fixed- or variable-length records 

Blocked fixed- or variable-length records 

None 

One: E35 

FIELDS = COpy 

/IEXAMP JOB A402, PROGRAt·lI~ER 01 
IISTEPI EXEC PGt4=SORT ,PARI4= '~lSGPRT=CRITICAL 1 02 
I/SYSOUT DO SYSOUT=A 03 
IISORTIN DO DSNAME=INP1,DISP=OLD 04 
IISORTOUT DO DSNA~lE=OUT1,DISP=(NEW,KEEP) ,UNIT=33S0, 0S 
II SPACE=(TRK,(lS,2)),VOL=SER=XYZ003 06 
I IMODLIB DO DSNA~IE=MY. LOADLIB ,DISP=SHR, 07 
II UNIT=33S0,VOL=SER=XYZ012 0S 
IISYSIN 00 * 09 

OMIT COND=(I,S,CH,EQ,C' I) 10 
MOOS E3S=(ALTREC,11000,MODLIB) 11 
SORT FIELDS=COPY 

This example shows how a SORT/MERGE control statement can be used to 
specify a copy application. 

Line Explanation 

01 The JOB statement introduces this job to the operating system. 

02 The EXEC statement calls the program by its alias SORT. 
MSGPRT=CRITICAL in the EXEC parm field specifies that only error 
messages are to be printed. 

03 The SYSOUT DD statement ~irects DFSORT messages to output class A. 

04 The SaRTIN DD statement describes a cataloged input data set INP1. 

05-06 The SORTOUT DD statement directs the output to a new data set named 
OUT1 on volume XYZ003 of a 3380. 

07·08 The MODUB DD statement describes the exit library as a data set 
named MY.LOADLlB on a volume XYZ012 of a 3380. 

09 The SYSIN DO statement indicates that data follows in the input stream. 

10 The OMIT statement specifies that records with blanks in the first 8 
bytes of the input records are to be omitted. 

11 The MODS statement specifies an E35 exit named AL TREC that is 11000 
bytes long and in a data set defined by ddname MODLlB. 

12 The SORT statement indicates that a copy is to be done. 

Chapter 8. Sample Job Streams 291 



Sort Examples 

INPUT 

OUTPUT 

Example 17. SORT USING COBOL EXITS 

INTERMEDIA TE STORAGE 

USER ROUTINES 

Fixed- or variable-length records 

Fixed- or variable-length records 

One SYSOA area of 3 cylinders 

Two: E15 and E35 written in COBOL and executed with VS COBOL II 
library subroutines 

OPTIONS Alternate message data set. VS COBOL II library. accept 100 
records 

IIEXAt·1P JOB A402, PROGRAt4t·1ER e1 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 

/ISTEPl EXEC PG~1=SORT , PARM='t4SGOON=MYQUE I 
/ISTEPLIB 00 OSN=SYSl.COB2LIB,OISP=SHR 
/IEXITC 00 OSN=COBEXITS.LOAOLIB,OISP=SHR 
/IMYQUE DO SYSOUT=A 
/ISYSOUT DO SYSOUT=A 
//SORTIN DO OSN=SORTl.IN,OISP=SHR 
/ISORTOUT DO OSN=SORTl.OUT ,OISP=OLO 
IISORHIK01 DO UNIT=SYSOA,SPACE=(CYL,3) 
//SYSIN DO * 

OPTION MAINSIZE=t·1AX,RESALL=70K, 
STOPAFT=10e,COBEXIT=COB2 

SORT FIELOS=(5,4,BI,A),EQUALS 
MODS E15=(COBOLE15,370e0,EXITC,C), 

E35=(COBOLE35,370e0,EXITC,C) 

Line Explanation 

01-02 The EXEC statement calls the program by its alias SORT. The PARM 
statement speCifies that the DFSORT messages are written to a data set 
defined by a DO statement called MYQUE. 

03 The STEPLIB DO statements indicate where the VS COBOL II library is 
located. 

04 The EXITC DO statement defines the library in which the exit routines 
are located. 

05 The MYQUE DO statement specifies the alternate message data set (to 
keep DFSORT messages separate from COBOL messages) for DFSORT 
messages and control statements. 

06 The SYSOUT DO statement specifies the message data set for COBOL 
messages. 

07 The SORTIN DO statement specifies the input data set SORT1.1N. 

08 The SORTOUT DO statement specifies the output data set SORT1.0UT. 

09 The SORTWK01 DO statement describes the work data set on a SYSDA 
device of 3 cylinders. 

10 The SYSIN DO statement indicates that the DFSORT control statements 
follow in the input stream. 

292 DFSORT: Application Programming: Guide 



Sort Examples 

11-12 The OPTION statement. MAINSIZE = MAX instructs the program to cal­
culate the amount of main storage available and allocate the maximum 
amount. STOPAFT indicates that DFSORT accepts 100 records before 
sorting. COBEXIT specifies that E15 and E35 exit routines be executed 
with the VS COBOL II library. 

13 SORT statement. FIELDS describes the control fields in the input 
records on which the program sorts. 

14-15 MODS statement. E15 specifies a user exit routine written in COBOL. 
The name of the routine is COBOLE15, it is 7000 bytes long, and it 
requires 30000 bytes for the COBOL library subroutines. The exit 
routine resides in the data set described in the EXITC DO statement. 
E35 specifies a user exit routine written in COBOL. The name of the 
routine is COBOLE35, it is 7000 bytes long, and it requires 30000 bytes 
for the COBOL library subroutines. The exit routine resides in the data 
set described in the EXITC DO statement. 

Chapter 8. Sample Job Streams 293 



Sort Examples 

Example lB. DYNAMIC LINK-EDITING OF USER EXIT ROUTINES. PROC=SORT 

INPUT 

OUTPUT 

Fixed- or variable-length records. 

Fixed- or variable-length records. 

One SYSDA area of 1 cylinder. INTERMEDIATE STORAGE 

USER ROUTINES 9 user routines; see MODS statement below. 

OPTIONS 4 user routines link-edited together for the input phase; 1 user 
routine link-edited separately for the input phase; 4 user routines 
link-edited together for the output phase. 

IIEXAr4P JOB A4El6,PROGRAr~r4ER Ell 
I lSI EXEC SORT 92 
I/SORTIN DO DSN=SrHTH. INPUT ,DISP=OLD 93 
//SORTOUT DO DSN=Sf.1ITH.OUTPUT,DISP=(NE\oJ,CATLG), 94 
1/ UNIT=3386,SPACE=(TRK,(19,2»,VOL~SER=XYZ6El3 
I/SORT\oJK91 DO UNIT=SYSDA,SPACE=(CYL,(I,I» 95 
//EXIT DO DSN=S~lITH.EXIT.OBJ,DISP=SHR El6 
//EXIT2 DO DSN=Sf.1ITH.EXIT2.0BJ,DISP=SHR 67 
//SORTf40DS DO UNIT=SYSDA,SPACE=(TRK,(19,,3» 68 
I /SYSIN DO * 69 

SORT FIELDS=(1,8,CH,A,26,4,BI,D) 19 
MODS El1=(EXITll,1624,EXIT,S), 11 

EI5=(EI5,1624,SYSIN,T), 
EI7=(EXITI7,IEl24,EXIT2,T), 
EI8=(EXITI8,1624,EXIT,T), 
EI9=(E19,1624,SYSIN,T), 
E31=(PH3EXIT,1624,EXIT,T), 
E35=(PH3EXIT,IEl24,EXIT,T), 
E38=(PH3EXIT,1624,EXIT,T), 
E39=(E39,lEl24,SYSIN,T) 

END 
<object deck for E15 exit here> 
<object deck for E19 exit here> 
<object deck for E39 exit here> 

12 
13 

Line Explanation 

01 The JOB statement introduces this job to the operating system. 

02 The EXEC statement calls the program through the SORT cataloged pro­
cedure. which also sets up the four DO statements (not shown) required 
by the linkage editor. 

03 The SORTIN DO statement describes a cataloged input data set named 
SMITH.lNPUT. 

04 The SORTOUT DO statement directs the output to a new data set named 
SMITH.OUTPUT on volume XYZ003 of a 3380. 

05 The SORTWK01 DO statement specifies that SYSDA space of 1 primary 
cylinder and secondary extents of 1 cylinder each can be used for work 
space by DFSORT. 

06 The EXIT DDstatement specifies the partitioned data set containing the 
object decks for the E11. E18. E31. E35. and E38 exit routines. 

294 o FSORT: Application Programming: Guide 



Sort Examples 

07 The EXIT2 DO statement specifies the partitioned data set containing the 
object deck for the E17 exit routine. 

08 The SORTMODS DO statement defines a partitioned data set to hold 
user exit routine object decks from SYSIN for input to the linkage editor. 
SYSDA space of 10 primary tracks and 3 directory blocks is reserved. 

09 The SYSIN DO statement indicates that data follows in the input stream. 

10 The SORT statement defines two control fields in the input records. 

11 The MODS statement specifies that: 

• The EXIT11 routine in the EXIT library is to be link-edited separately 
from other input phase exit routines and associated with exit E11; 

• The E15 and E19 routines in SYSIN, the EXIT17 routine in EXIT2, and 
the EXIT18 routine in EXIT are to be link-edited together and associ­
ated with exits E15, E19, E17, and E18, respectively; 

• The E31, E35, and E38 routines in the PH3EXIT object deck and the 
E39 routine in SYSIN are to be link-edited together and associated 
with exits E31, E35, E38, and E39, respectively. 

12 The END statement marks the end of the DFSORT control statements 
and the beginning of the exit routine object decks. 

13 The three object decks for E15, E19, and E39 exit routines follow the END 
statement. 

Chapter 8. Sample Job Streams 295 



Sort Examples 

Example 19. EXTENDED PARAMETER LIST INTERFACE 

INPUT 

OUTPUT 

Fixed-length records from a preJoaded E15 exit routine 

Blocked fixed-length records 

INTERMEDIATE STORAGE 

USER ROUTINES 

OPTIONS 

One 3380 area 

None 

The order of identically collating records must be preserved; esti-
mated file size; automatic secondary allocation should not be used. 

/ /EXAMP JOB A400, PROGRAt·l~lER 01 
/ /STEPI EXEC PGt4=1·1YSORT 02 
/ /t·1SGOUT DO SYSOUT=A 03 
/ /STEPLIB DO DSNA/olE=NA~lE1. NAt·IE2. NAt·IE3, DISP=SHR 04 
/ /SORTOUT DO DSNAt·IE=&&OUTPUT ,DISP=( ,PASS) ,UNIT=SYSDA, 05 
/ / SPACE=(CYL, (8,4» ,DCB=(RECF~l=F ,LRECL=1l1) 
//SORT!1K01 DO SPACE=(CYL,(10»,UNIT=3380 06 
/ /SORTCNTL DO * 07 

OPTION EQUALS, FI LSI=E30000, NOHRKSEC 08 
INCLUDE COND=(5,8,GT,13,8),FORMAT=FI 09 
OUTREC FIELDS=(5X,5,8,5X,13,8,5X,I,80) 10 
RECORD TYPE=F ,LENGTH=80 11 

1* 12 
//SYSOUT DO SYSOUT=A 13 

**********************************************~******* ************** 

******************************************************************** 

~IYSORT CSECT 

* 

* 

PLl 
PL2 
PL3 
PL4 
PL5 
CTLST 

CTLl 

LA Rl,PLl 

ST R2,PL4 

LI NK EP=SORT 

DC A(CTLST) 
DC A(E15) 
DC A(0) 
OS A 
DC FI-I' 
DS 0H 
DC AL2(CTL2-CTLl) 

SET ADDRESS OF PARAt·1ETER LIST 
TO BE PASSED TO SORT /t·IERGE 

SET ADDRESS OF GEHIAINED AREA 
TO BE PASSED TO E15 

I NVOKE SORT /~lERGE 

ADDRESS OF CONTROL STA TEt·1ENTS 
ADDRESS OF E15 ROUTINE 
NO E35 ROUTINE 
USER EXIT ADDRESS CONSTANT 
INDICATE END OF LIST 
CONTROL STATHIENTS AREA 
LENGTH OF CHARACTER STRING 

DC C' SORT FIELDS=(4,5,CH,A) I 
DC C I OPTION I 
DC CIRESINV=2048,FILSZ=E25000,MSGDDN=NSGOUT' 
DC C' OMIT COND=(5,8,EQ,13,8),FORMAT=FI I 

296 DFSORT: Application Programming: Guide 

14 

15 

16 

17 

18 
19 

20 



Sort Examples 

CTL2 EQU * 
OUT DCB DDNA~lE=SYSOUT , ••• ~1YSORT USES SYSOUT 
E15 DS 0H E15 ROUTINE 21 

BR R14 RETURN TO SORT /t4ERGE 

Example 19 shows the use of the extended parameter list. The JCL for program 
MYSORT and highlights of the code for program MYSORT are shown in the two 
boxes, respectively. This job is applicable to all systems supported by DFSORT 
in all addressing modes. For purposes of illustration, assume that none of the 
standard defaults for dynamic invocation of DFSORT have been changed at 
installation time. 

Line Explanation 

01 The JOB statement introduces this job to the operating system. 

02 The EXEC statement specifies the name of the program calling DFSORT. 

03 The MSGOUT DO statement directs the DFSORT messages to output 
class A. (The SYSOUT DD statement cannot be used for sort messages 
because it is being used by MYSORT.) 

04 The STEPLIB DO statement describes where MYSORT is located. 

05 The SORTOUT DO statement describes a temporary data set on SYSDA 
with fixed-length records and a logical record length of 111 bytes. 

06 The SORTWK01 DO statement describes a temporary work data set on a 
3380 containing 10 cylinders. 

07 The SORTCNTL DD statement indicates that a data set follows in the 
input stream. 

08 OPTION statement. EQUALS specifies that the order of records with 
equal control fields is to be preserved, overriding the standard default 
of EQUALS=NO. FILSZ=E30000 specifies the estimated number of 
records to be sorted, overriding FILSZ = E25000 in the OPTION state­
ment of the invocation parameter list. NOWRKSEC specifies that no 
automatic secondary allocation is to take place for the temporary work 
data set, overriding the standard default of WRKSEC = YES. 

09 INCLUDE statement. COND and FORMAT specify that input records in 
which the fixed-integer number in positions 5 to 12 is greater than the 
fixed-integer number in positions 13 to 20 are the only input records that 
are included in the output data set. The INCLUDE statement causes the 
OMIT statement of the invocation parameter list to be ignored. 

10 OUTREC statement. FIELDS specifies how the input records are to be 
reformatted before they are output. The output records are fixed length, 
with a record size of 111 bytes. They look as follows: 

Chapter 8. Sample Job Streams 297 



Sort Examples 

Position Content 
1-5 Blanks 
6-13 Input positions 5 through 12 
14-18 Blanks 
19-26 Input positions 13 through 20 
27-31 Blanks 
32-111 Input positions 1 through 80 

11 The RECORD statement. Indicates that the input records are fixed­
length and 80 bytes long. 

12 Marks the end' of the SORTCNTL data set. 

13 The SYSOUT DO statement is used by MYSORT and thus cannot be 
used by DFSORT. 

14 This is the start of the MYSORT program. Assume that it GETMAINs a 
work area, saves its address in register 2, and initializes the work area 
for use by its E15 routine. 

15 Before calling DFSORT, MYSORT places the address of the parameter 
list to be passed to DFSORT in register 1, places the address of the 
GETMAINed work area in the user exit address constant field in the 
parameter list, and indicates that the user exit address constant field is 
the last field in the parameter list (that is, there is no AL TSEQ table or 
STAE routine). Then MYSORT calls DFSORT. 

16 The parameter list which MYSORT passes to DFSORT contains the 
address of the control statements area, the address of the E15 routine, 
and the address of the GETMAINed work area. It indicates there is no 
E35 routine. 

17 The control statements area contains the length of the control state­
ments character string, followed by the character string which contains 
a SORT statement and an OPTION statement. 

18 SORT statement. FIELDS specifies a control field in the input records. 

19 OPTION statement. RESINV=2048 specifies the number of bytes to be 
reserved for the invoking program (MYSORT), overriding the standard 
default of RESINV=O. FILSZ=E25000 specifies the estimated number of 
records to be sorted. (There is no standard default for FILSZ.) 
MSGDDN = MSGOUT specifies the ddname to be used for program mes­
sages, overriding the standard default of MSGDDN = SYSOUT. Note that 
RESINV = 2048 and MSGDDN = MSGOUT cannot be overridden by corre­
sponding options speCified in the SORTCNTL data set; these options are 
ignored when specified in the SORTCNTL data set because it is too late 
to use them when they are read. 

20 OMIT statement. COND and FORMAT specify that input records in 
which the fixed-integer number in positions 5 to 12 is equal to the fixed­
integer number in positions 13 to 20 are to be deleted. 

21 The E15 routine is preloaded; therefore, it generates input records and 
passes them to DFSORT. For this reason, a SORTIN DD statement is 
not used. 

298 o FSORT: Application Programming: Guide 



Sort Examples 

Note that the cumulative effect of the control statements in the SORTCNTL data 
set and the control statements in the invocation parameter list is the following 
equivalent set of control statements for the run: 

SORT FIELDS=(4,5,CH,A) 
OPT I ON EQUALS, FI LSZ=E30000, NQ\oJRKSEC, RESI NV=2048 ,1·1SGDDN=MSGOUT 
INCLUDE COND=(5,8,GT, 13,8) , FORI·1AT=FI 
OUTREC FIELDS=(5X,5,8,5X,13,8,5X,1,80) 

Chapter 8. Sample Job Streams 299 



Merge Examples 

Merge Examples 

INPUT 

OUTPUT 

Example 20. MERGE FOUR DATA SETS, PROC = SORTD 

Four data sets containing blocked fixed-length records; data sets 
are on four devices: two 3350s and two 3380s. 

One data set containing blocked fixed-length records, on one 
9-track tape. 

INTERMEDIATE STORAGE 

USER ROUTINES 

None required for a merge. 

None 

OPTIONS FORMAT=CH for control fields of like format. 

I IEXA~IP JOB A492,PROGIW1t~ER 
IISTEPI EXEC SORTO 91 
IISORTIN91 00 OSNAI~E=t4ERGIN91, VOL=SER=SCR769,OISP=OLO, 92 
II UNIT=33S9,OCB=(RECFM=FB,LRECL=S9,BLKSIZE=6999) 93 
IISORTIN92 00 OSNAf.1E=MERGIN92, VOL=SER=SYS994,OISP=OLO, 94 
II UNIT=3359,OCB=(RECFM=FB,LRECl=S9,BLKSIZE=69ge) 95 
I ISORTIN93 00 OSNAt4E=14ERGIN93, VOL=SER=SCR764,OISP=OLO, 96 
II UNIT=33SB,OCB=(RECFM=FB,LRECL=se,BlKSIZE=69ae) 97 
IISORTINa4 00 OSNAME=f.1ERGIN94, VOL=SER=SYSge5,OISP=OLO, 9S 
II UNIT=3359,OCB=(RECFM=FB,LRECl=S9,BLKSIZE=6999) e9 
IISORTOUT DO OSNAt4E=t4ERGOUT, 19 
II VOL=SER=(, RETAIN,SER=(9aaI91)) ,OISP=(NE\'I, KEEP) , 11 
II LABEL=(,NL),UNIT=34ae-3 12 
IISYSIN 00 * 13 

MERGE FIELOS=(I,6,A,2S,5,0),FORMAT=CH 14 

Line Explanation 

01 The EXEC statement invokes the cataloged procedure SORTO. 

02-09 The SORTINnn DO statements describe the merge input data sets. They 
are all on different devices and consist of fixed-length records with a 
blocking factor of 75. Because they all have the same block size. the 
order in which they are specified is unimportant. Had they been dif­
ferent, the data set with the largest block size would have had to be 
specified first. 

10-12 By default the result of the merge is recorded on 9-track tape at the 
same blocking factor and in the same format as the first input data set 
(SORTIN01). 

13 A data set follows in the input stream. 

14 MERGE statement. The FIELDS operand describes two fields. The first 
begins on byte 1 of each record, is 6 bytes long. contains character 
(EBCDIC) data. and is to be sorted in ascending order. The second field 
begins on byte 28, is 5 bytes long. contains character data, and is to be 
sorted in descending order. The optional FORMAT operand is used 
because both fields contain data of the same format. 

300 DFSORT: Application Programming: Guide 



Merge Examples 

Example 21. MERGE TWO 3350 FILES; PROC=SORTD, EXITS 

INPUT 

OUTPUT 

INTERMEDIATE STORAGE 

USER ROUTINES 

OPTIONS 

Variable-length blocked records on 3350. 

Variable-length blocked records on 3350. 

None. 

E35 (CALC) routine shortens records. 

Exact input data set size. 

IIEXAI4P JOB A402, PROGRAI·1t4ER 
IISTEPONE EXEC SORTO 01 
IISORTI N01 DO DSNAME=~JEEKLY, VOL=SER=000101, UNIT=3350, 02 
II DISP=OlD,DCB=(RECFM=VB,lRECL=240, 03 
I I BlKSIZE=4800) 04 
IisORTIN02 DO DSNAME=DAILY,VOl=SER=000113,UNIT=33S0, 05 
II DISP=(OLD,OELETE),DCB=(RECFM=VB,LRECl=240, 06 
II BlKSIZE=1200) 07 
IlsORTOUT 00 DSNAME=WEEKA,VOL=SER=000111,UNIT=3350, 08 
II OISP=(NEW,KEEP),SPACE=(TRK,(200,10)), 09 
II DCB=(RECFM=VB,LRECL=200,BLKSIZE=2000) 10 
IluSERLIB DO DSNAME=MYMODS,DISP=SHR 11 
II DO DSNAME=XYZ,OISP=SHR 12 
IISYSIN DO * 13 

MERGE FIELDS=(5,6,CH,A) 14 
OPTION FIlSZ=8150 15 
RECORD TYPE=V,LENGTH=(,,200) 16 
MODS E35=(CAlC,800,USERLIB) 17 

Line Explanation 

01 Calls the SORTD cataloged procedure. 

02-04 The first of two input data sets for the merge. The data set, named 
WEEKLY, is on a 3350 disk with the volume serial number 000101. The 
data set is known to the operating system and is to be retained. It con­
tains variable-length blocked records with a maximum record length of 
240 bytes and a block size of 4800. 

05-07 The second input data set, which is named DAILY, is on a 3350 disk 
unit, with the volume serial number 000113. It is old, will be deleted 
after this job step, and contains records of the same format and length 
as the WEEKLY data set; the block size is smaller. 

08-10 The output from the merge is a data set named WEEKA. It is new and 
will be retained in the system on a 3350 disk with the serial number 
000111. The data set is recorded on 200 tracks. If this space is not 
sufficient. additional space is allotted in blocks of 10 tracks. The data 
set consists of variable-length blocked records with a maximum record 
length of 200 (see L3 on the RECORD statement) and a block size of 
2000. 

11-12 The libraries on which the user exit routines reside. Because CALC 
resides in MYMODS, and MODRTN resides in XYZ, these data sets must 
be concatenated. 

Chapter 8. Sample Job Streams 301 



Merge Examples 

13 

14 

15 

16 

17 

A data set follows in the input stream. 

MERGE statement. The FIELDS operand describes one control field. 
The start of the control field is given as byte 5; note that this paints to 
the first byte of the record data itself, because, for a variable-length 
record, the first four bytes are occupied by the record descriptor word. 
The field is six bytes long. 

OPTION statement. The input data set contains exactly 8150 records. 

RECORD statement. Records in, the input data sets are variable length. 
A modification routine (at exit E35) makes the maximum record length in 
the output data set 200 bytes. 

MODS statement. A routine named CALC receives control at exit E35. 
It is approximately 800 bytes long and resides in MYMODS. 

302 o FSORT: Application Programming: Guide 



INPUT 

OUTPUT 

Example 22. MERGE WITH EQUALS AND SUM 

Merge Examples 

INTERMEDIATE STORAGE 

USER ROUTINES 

OPTIONS 

Fixed- or variable-length records. 

Fixed- or variable-length records. 

None 

None 

EQUALS (on MERGE control statement), and SUM 

IIEXAt4P JOB A400,PROGRAMr4ER 01 
02 
03 
04 
05 
06 
07 

IIS1 EXEC PGM=SORT 
IISYSOUT DO SYSOUT=A 
/ISORTIN01 DO DSNAt·1E=r41234.INPUTl,DISP=SHR 
IISORTI N02 DO DSNA~IE=r41234. INPUT2, DISP=SHR 
IISORTIN03 DO DSNAME=r41234.INPUT3,DISP=SHR 
IISORTOUT DO DSNA~IE=r41234. MERGOUT ,DISP= (NEl'}, KEEP) , 
II UNIT=SYSDA,SPACE=(CYL,(l,l)) 
IISYSIN DO * 

MERGE FIELOS=(1,8,CH,A,20,4,FI,A),EQUALS 
08 
09 
10 SUM FIELDS=(32,4,FI} 

This example shows how MERGE with SUM and EQUALS is specified. 

Line Explanation 

01 The JOB statement introduces this job to the operating system. 

02 The EXEC statement calls the program by its alias SORT. 

03 The SYSOUT DD statement directs DFSORT messages to output class A. 

04 The SORTIN01 DO statement describes a cataloged input data set 
named M1234.INPUT1. 

05 The SORTIN02 DO statement describes a second cataloged input data 
set named M1234.1NPUT2. 

06 The SORTIN03 DD statement describes a third cataloged input data set 
named M1234.1NPUT3. 

07 The SORTOUT DO statement directs the output to a new data set named 
M1234.MERGOUT. The data set is written to a SYSOA device. 

08 The SYSIN DD statement indicates that a data set follows in the input 
stream. 

09 The MERGE statement. The FIELDS operand describes two fields. The 
first begins on byte 1 of each record, is 6 bytes long, contains character 
(EBCDIC) data, and is to be merged in ascending order. The second 
field begins on byte 20, is 4 bytes long, contains fixed integer data, and 
is to be merged in ascending order. The optional EQUALS operand 
specifies that the order of output records with equal control fields is the 
same as the original order within a file and is based on the file number 
for records from different files. 

Chapter 8. Sample Job Streams 303 



Merge Examples 

10 The SUM statement specifies that whenever two records with equal 
control fields are found, the contents of their 4-byte fixed integer fields 
beginning at position 32 are added and the sum saved in one of the 
records. The other record is to be deleted. Because of the EQUALS 
parameter on the MERGE statement, the first record always receives 
the sum and is kept. 

304 o FSORT: Application Programming: Guide 



Sort Examples Using VSAM Data Sets 

Sort Examples Using VSAM Data Sets 
Example 23. DEFINE VSAM DATA SETS FOR DFSORT PROCESSING 

//EXAMP JOB A4B2,'JOHN OOE ' 
//OEFINE EXEC PGM=IOCru~S 
//SYSPRINT DO SYSOUT=A 
//DISK 00 UNIT=3339V,VOL=SER=VSM999,° ISP=OLO 
//SYSIN DO * 

DEFINE CL ( NAME(TEST.SORTIN.FILE) -
KEYS(4 7) -
VOL(vsr4999) -
TRK (48 2a) -
RECSZ(91 118) -
BUFSP(S8e9) ) -

DEFINE CL ( NAME(TEST.SORTOUT.FILE) -
KEYS(4 25) -
VOL(VSM999) -
TRK (48 29) -
RECSZ(91 118) -
BUFSP(See9) -
REUSE) 

Line Explanation 

a1 
a2 
93 
a4 
as 
96 
97 
98 
89 
18 
11 
12 
13 
14 
15 
16 
17 
18 

01 The JOB statement introduces this job to the operating system. 

02 The EXEC statement directs the system to execute the IDCAMS utility. 

03 The SYSPRINT statement identifies the output device for messages. 

04 The DISK statement ensures that the required volume is mounted. 

05 The SYSIN DO statement indicates that a data set follows in the input 
stream. 

06-11 The DEFINE CL statement defines a key-sequenced cluster named 
TEST.SORTIN.FILE. Its parameters are: 

• KEYS. which specifies that the length of the key is 4 bytes and that 
the key field begins in the 8th byte (offset 7) of each data record. 

• VOL. which specifies that the cluster is to reside on volume VSM999. 

• TRK. which specifies that 40 tracks are allocated for the cluster's 
space. When the cluster is extended. it is to be extended in incre­
ments of 20 tracks. 

• RECSZ. which specifies that the records are variable-length with an 
average size of 91 bytes and a maximum size of 110 bytes. 

• BUFSP. which specifies that a minimum of 5000 must be provided 
for 1/0 buffers. 

12-17 The second DEFINE CL statement defines a similar cluster 
TEST.SORTOUT.FILE as having keys 4 bytes long beginning in position 
26 (offset 25). 

Chapter 8. Sample Job Streams 305 



Sort Examples Using VSAM Data Sets 

18 The REUSE statement specifies that the cluster can be opened repeat­
edly as a reusable cluster. See "VSAM Considerations" on page 10 for 
the case of a non-empty VSAM SORTOUT data set defined without the 
REUSE parameter. 

306 DFSORT: Application Programming: Guide 



Sort Examples Using VSAM Data Sets 

Example 24. SORT WITH VSAM INPUT AND OUTPUT 

INPUT 

OUTPUT 

VSAM variable-length records 

VSAM variable-length records 

INTERMEDIATE STORAGE 

USER ROUTINES 

OPTIONS 

Three SYSDA areas of five cylinders each 

None 

None 

//SORTI EXEC PGM=SORT 
//SYSOUT 00 SYSOUT=A 
//SORTIN 00 OSN=TEST.SORTIN.FILE,OISP=SHR 
//SORH!K01 OD UNIT=SYSOA, SPACE= (CYL,5) 
//SORTWK02 DO UNIT=SYSOA,SPACE=(CYL,S) 
//SORTWK03 00 UNIT=SYSOA,SPACE=(CYL,S) 
//SORTOUT 00 DSN=TEST.SORTOUT.FILE 
//SYSIN DO * 

SORT FIELDS=(30,4,BI,A) 
RECORD TYPE=V,LENGTH=110 

Line Explanation 

01 
02 
03 
134 
es 
06 
07 
0S 
09 
10 

01 The EXEC statement calls the program using the program name. 

02 The SYSOUT statement identifies the output device for mes­
sages. 

03 The SORTIN DO statement describes as input the VLR VSAM 
data set, TEST.SORTIN.FILE, previously created by DFSORT. 

04-06 The SORTWK DO statements specify that SYSDA space of 5 cyl­
inders each can be used for work space by DFSORT. 

07 The SORTOUT DO statement directs output to a VLR VSAM· data 
set named TEST.SORTOUT.FILE. 

08 The SYSIN DO statement indicates that data follows in the input 
stream. 

09 The SORT statement defines one control rleld in the input 
records that begins in position 30 and is 4 bytes long. Since 
these are variable-length records, 4 bytes have been added for 
the record descriptor word (ROW) which DFSORT supplies at 
input and removes at output for VSAM records. (SORTOUT file 
key at byte position 26 + 4 = 30.) 

Note that in order to produce the output data set in sequence on 
positions 26 (offset 25) through 29 as defined in the cluster defi­
nition shown in Example 23, positions 30 through 33 must be 
specified in the FIELDS entry. 

10 The RECORD statement indicates that the input file is of VLR 
format and the input record length is 110 bytes. 

Chapter 8. Sample Job Streams 307 



Sort Examples Using VSAM Data Sets 

Example 25. NON-VSAM SORTIN DATA SET, VSAM SORTOUT 

INPUT 

OUTPUT 

Variable-length records 

VSAM variable-length records 

INTERMEDIATE STORAGE 

USER ROUTINES 

OPTIONS 

Three SYSDA areas of five cylinders each 

E39 

None 

jjSORT2 EXEC PGM=SORT 
jjSYSOUT DO SYSOUT=A 
jjEXITC DO DSN=TEI~PE39,DISP=SHR 

jjSORTIN DO DSN=SORTINPT,DISP=SHR 
jjSORTWK01 DO UNIT=SYSDA,SPACE=(CYL,S) 
jjSORHIK02 DO UNIT=SYSDA,SPACE=(CYL,S) 
jjSORHIK03 DO UNIT=SYSOA,SPACE=(CYL,S) 
jjSORTOUT 00 DSN=TEST.SORTOUT.FILE,OISP=SHR 
jjSYSIN DO * 

SORT FIELDS=(30,4,BI,A) 
RECORD TYPE=V 
MOOS E39=(E39,7000.EXITC) 

Line Explanation 

01 
02 
03 
04 
0S 
06 
07 
08 
09 
10 
11 
12 

01 The EXEC statement calls the program using the program name. 

02 The SYSOUT statement identifies the output device for mes­
sages. 

03 The EXITC DO statement defines the library in which the exit 
routines are located. 

04 The SORTIN DO statement describes a sequential input data set 
named SORTINPT. 

05-07 The SORTWK DO statements specify that SYSDA space of 5 cyl­
inders each can be used for work space by DFSORT. 

08 The SORTOUT DO statement directs output to a VLR VSAM data 
set named TEST.SORTOUT.FILE. 

09 The SYSIN DO statement indicates that data follows in the input 
stream. 

10 The SORT statement defines one control field in the input 
records that begins in position 30 and is 4 bytes long. 

11 The RECORD statement indicates that the input file is VLR 
format. 

12 The MODS statement describes a user routine that will receive 
control at program exit E39. The name of the routine is E39; it is 
7000 bytes long and is on the data set defined in the EXITC DO 
statement. 

308 DFSORT: Application Programming: Guide 



ICEGENER Example 
Example 26. Using the ICEGENER Facility 

/ /COPY3 EXEC PG~'=ICEGENER 
//SYSPRINT DD SYSOUT=A 
//SYSUTl DD DSN=CTL.MASTER,DISP=OLD 
/ /SYSUT2 DD DSr4=CTL. BACKUP ,D ISP=OLD 
//SYSIN DD DUMMY 

ICEGENER Example 

(n 
02 
03 
04 
0S 

This example shows how to use the ICEGENER facility for an IEBGENER job, if 
your installation has not selected automatic use of lCEGENER for IEBGENER 
jobs. The ICEGENER facility will select the more efficient OF SORT copy function 
for this lEBGENER job. 

Line Explanation 

01 The EXEC statement calls the lCEGENER facility. PGM = IEBGENER has 
been replaced with PGM =ICEGENER. 

02-05 No other changes to the IEBGENER job are required. 

Chapter 8. Sample Job Streams 309 





Intermediate Storage 

Appendix A. Calculating Storage Requirements 

Main Storage 

This appendix describes the guidelines for allocating main storage to DFSORT. 

It also describes storage devices used for intermediate storage and the factors 
determining the amount of intermediate storage required for a DFSORT run. 

The amount of main storage to be made available to DFSORT is defined when 
the program is installed. If for any reason this default value is unsuitable, you 
can override it with the MAINSIZE/SIZE parameter (for ways to specify this 
value, see Appendix D). 

In general. the more (virtual) main storage you make available to the program 
(up to a certain limit), the better the performance. The effect of the main 
storage amount on performance is discussed under "Tuning Main Storage" on 
page 256. More information on efficient use of storage is explained in 
Chapter 7, "Improving Efficiency" on page 247. 

Intermediate Storage 
Most sorting applications need work space on disk or tape. Merge and copy 
applications need none. The amount of space required depends on: 

• The type of device on which you assign storage 

• The number of records in your input data set 

• The amount of main storage assigned to the program 

• The amount of hiperspace used by the job. (MVS/ESA only). 

You can assign intermediate storage on either mixed direct access devices or 
magnetic tape, but not both. 

For best performance, an optimal amount of hiperspace in combination with 
disk intermediate storage is strongly recommended. See ."Hipersorting" on 
page 261 for more information on using the HIPRMAX option. 

Direct Access Storage Considerations 
You can specify a mixture of direct access devices for a given sort application. 
The types of device available for intermediate storage are: 

• IBM 2314/2319 disk 
• IBM 3330/3333 series disks (Model 1 and/or Model 11) 
• IBM 3340/3344 disk 
• IBM 3350 disk 
• IBM 3375 disk 
• IBM 3380 disk 
• IBM 3850 MSS 

System performance is improved if intermediate storage is specified in cylin­
ders rather than tracks. Storage on temporary SORTWKnn data sets is reallo-

Appendix A. Calculating Storage Requirements 311 



Intermediate Storage 

cated in cylinders. The number of tracks per cylinder for direct access devices 
is shown in Table 19. 

Table 19. Number of Tracks per Cylinder for Direct Access Devices 

Tracks per Maximum Bytes 
Device Cylinder used per Track 

2314 20 7193 

3330/3333 series 19 13030 

3340 12 8368 

3350 30 19059 

3375 12 35616 

3380 15 47476 

If WRKSEC is in effect and the work data set is not allocated to virtual 1/0, 
DFSORT allocates secondary extents as required, even if not requested in the 
JCL. 

Allocating twice the space used by the input data set(s) is usually adequate for 
the work data sets. Certain conditions may cause additional space require­
ments. These include: 

• Use of long control words (> 150 bytes). 

• Using different device types or work data sets. 

• Use of an alternate collating sequence. 

Tape Storage Considerations 
IBM 2400 and 3400 series magnetic tape units can be used for intermediate 
storage. If the sort input data set is on 7-track tape, you can use any combina­
tion of 7-track and 9-track tapes for intermediate storage and output, or interme­
diate storage and output can be on direct-access devices. However, if 7-track 
tape is not used for input, it cannot be used for intermediate storage or output. 
When 7-track tape is used for intermediate storage, variable-length records 
cannot be handled. 

If you assign 7-track tapes for input, you can use the data converter. If you 
assign 7-track tapes for intermediate storage, you can use neither the data con­
verter, nor the translation feature for anything but character data. 

Three different techniques are available to the program: Balanced, Polyphase, 
and Oscillating. For information on how to calculate their requirements, see 
Table 20. 

Note: The value you obtain for "min." is literally a minimum value; if, for 
example, your input uses a more efficient blocking factor than the sort program 
or is spanned, you need more intermediate work space. Space requirements 
are also summarized in Table 20 on page 313. DFSORT selects the most 
appropriate tape technique using these criteria. 

312 DFSORT: Application Programming: Guide 



Intermediate Storage 

Table 20. External Work Storage Requirements of the Various Tape Techniques 

Tape Maximum Work Storage Max.No. of 
Tech- Input Areas Required Work Area Comments 
niques 

Balanced 15 volumes Min =2(V + 1)" 32 volumes Used if > 3 work storage tapes 
tape tape units are provided; no file size given 

Polyphase 1 volume Min=3 tape units 17 volumes Used if 3 work storage tapes 
tape provided 

Oscil- 15 volumes Min =V* +2 or 4 17 volumes File size must be given. The 
lating tape units, which- tape drive containing SORTIN 
tape ever is greater cannot be used as a work unit 

Number of input volumes of blocking equals work storage blocking. 

Exceeding Intermediate Storage Capacity 
At the beginning of a sorting operation, DFSORT estimates a maximum sorting 
capacity (Nmax) and generates an informative message: ICE0921 or ICE0931 for 
a disk sort, ICE0381 for a tape sort. See the explanation of these messages for 
details. 

The message gives the approximate capacity in number of records. With disk 
work space, the value is usually based on use of only the first extent of work 
data sets. For variable-length records, the value is based on the maximum 
record length. 

The value printed in message ICE0381 is an average value rounded down to the 
nearest thousand. This value assumes random input. If you have a reversed 
sequenced file and tape work storage, sort capacity may be exceeded at a 
lower value, because of the higher number of partly empty end-of-string blocks. 

If, during sorting, the allocation of secondary space on one of the sort work data 
sets fails, the system issues a B37 informational message. DFSORT can 
recover from this by allocating space on one of the other work data sets, if one 
is available. 

Work Storage on Disk 
DFSORT normally allocates secondary extents for work data sets, even if not 
requested in the JCL. This reduces the probability of exceeding intermediate 
storage capacity. 

Work Storage ~n Tape 
For magnetic tape, a tape length of 2400 feet is assumed in calculating Nmax, 
so, for tapes of other lengths, the figure is not correct. When tapes with mixed 
density are used, the smallest density is used in the calculation. 

If you specify an actual data set size, and that size is larger than the maximum 
capacity estimated by the program (Nmax), the program terminates before 
beginning to sort. If you specify an estimated data set size, or none at all, and 
the number of records reaches the maximum (Nmax), the program gives control 
to your routine at exit E16, if you have written and included one. This routine 
can direct the program to take one of the following actions: 

Appendix A. Calculating Storage Requirements 313 



Intermediate Storage 

Program Action 

• Continue sorting the entire input data set with available intermediate 
storage. If the estimate of the input data set size was high, enough inter­
mediate storage may remain to complete the application. 

• Continue sorting with only part of the input data set; the remainder could be 
sorted later and the two results merged to complete the application. 

• Terminate the program without any further processing. 

If you do not include an E16 routine, the program continues to process records 
for as long as possible. If the intermediate storage capacity is sufficient to 
contain all the records in the input data set, the sort completes normally; when 
intermediate storage is not sufficient, the program terminates. 

The program generates a separate message for each of the three possible 
error conditions. They are: 

ICE041A-N GT NMAX: Generated before sorting begins (for a tape sort) when 
the exact data size supplied on a SORT control statement is greater than Nmax. 

ICE046A or ICE116A-SORT CAPACITY EXCEEDED: Generated when the sort 
has used all available intermediate storage while processing. 

ICE0481-NMAX EXCEEDED: Generated when a tape sort has exceeded Nmax 
and has transferred control to a user-written E16 routine for further action. 

The test for message ICE041A is made with the maximum possible calculated 
value, that is, DFSORT is sure it will fail. In case of doubt. the message is not 
issued. 

314 DFSORT: Application Programming: Guide 



MVS/XA or MVS/ESA Support of the EFS Program 

Appendix B. Using Extended Function Support (EFS) 

Like the user exits described in Chapter 5, "Using Your Own Exit Routines," 
the DFSORT Extended Function Support (EFS) interface is a means by which 
you can pass execution control to an EFS program you write yourself. An EFS 
program is essential if you want to process double-byte character sets (such as 
Japanese characters) with DFSORT. To process Japanese data types with 
DFSORT, you can use the IBM Double Byte Character Set Ordering Support 
Program (DBCS Ordering), Licensed Program 5665-3601, Release 2.0. 

Using an EFS program and EFS program exit routines, you can: 

• Sort or merge user-defined data types (such as double-byte character sets) 
with user-defined collating sequences 

• Include or omit records based on the user-defined data types 
• Provide user-written messages to DFSORT for printing to the message data 

set 
• Examine, alter, or ignore control statements or EXEC PARM options prior to 

processing by DFSORT. 

The EFS program can also perform routine tasks such as opening and in'itial­
izing data sets, terminating DFSORT, and closing data sets. 

You can write your EFS program in any language that uses standard register 
and linkage conventions, and can: 

• Pass a parameter list and a record (if you provide the EFS01 and EFS02 exit 
routines in the EFS program) in register 1 

• Pass a return code in general register 15. 

Note: DFSORT does not support EFS programs for Conventional merge or 
tape work data set sort applications. 

VLSHRT is not allowed if EFS interface processing is in effect and an EFS01 exit 
routine is provided by the EFS program. 

The DFSORT target library, ICEMAC, contains a mapping macro called ICEDEFS. 
ICEDEFS provides a separate Assembler DSECT for the EFS parameter list. 

MVS/XA or MVS/ESA Support of the EFS Program 
You can design the EFS program to reside and execute above or below 
16-megabyte virtual. Residency and addressing mode can be any valid combi­
nation of 24-bit, 31-bit, or ANY. If your EFS program is designed to reside and 
execute below 16-megabyte virtual on an MVS/XA or MVS/ESA system, the EFS 
program must determine the proper return mode. 

Appendix B. Using Extended Function Support (EFS) 315 



DFSORT Phases 

How EFS Works 

DFSORT Phases 

The EFS interface consists of a variable-length parameter list used to communi­
cate between DFSORT and your EFS program. DFSORT activates the EFS 
program you write at specific points during execution, and communicates infor­
mation back and forth across the interface as your EFS program executes. 

You can activate your EFS program during execution with the EFS=name option 
(name is the name of you.r EFS program): 

• As set during DFSORT installation with the ICEMAC macro (see "Installation 
Defaults" on page 11). 

• On the PARM parameter of your EXEC statement when you use job control 
language to invoke DFSORT (see "Specifying EXEC Statement PARM 
Options" on page 21). 

• On the OPTION program control statement (see "OPTION Control 
Statement" on page 97). 

See Appendix C, "Specification/Override of DFSORT Options" on page 353 for 
override information. Figure 47 illustrates the role of the EFS interface in 
linking DFSORT's processing capabilities to the EFS program you write. 

DFSORT and Non-DFSORT I 
i ,Control Statements 
~nd EXEC PARH Opt ions 

I • 
I DFSORT 

I 
I EFS 

I 
Interface .-
PI'ocess ing 

i 
• I I 

i • 
I Input I 

-, 
Output 

~ 
Data 

Set Set 

! I EFS Program 

-
EFS 
Interface ---~l' EFS ~ Interface 

Processing 
'-------' I 

'-----------' 

Figure 47. Relationship Between DFSORT and an EFS Program 

DFSORT code can be divided into execution phases that consist of components 
that perform specific tasks, such as distributing input data onto work data sets 
or writing an output file. 

EFS processing can be invoked during the initialization, input, and termination 
phases of DFSORT. During the initialization phase, DFSORT: 

• Processes control statements from SYSIN. SORTCNTL. DFSPARM. or the 
parameter list in the invoking program 

316 DFSORT: Application Programming: Guide 



DFSORT Calls to Your EFS Program 

• Processes PARM options from DFSPARM or the EXEC statement 
• Opens data sets 
• Obtains storage for use during the run. 

DFSORT always calls the EFS program during the initialization phase. 

During the input phase;DFSORT reads input records, and performs any 
INCLUDE or OMIT logic on the records. If the EFS program generates exit rou­
tines (EFS01 and EFS02), DFSORT calls them during the input phase. 

During the termination phase, DFSORT closes data sets, releases storage, and 
returns control to the calling program or system. DFSORT always calls the EFS 
program from the termination phase. 

DFSORT Calls to Your EFS Program 
DFSORT makes five functional calls (Major Calls 1 through 5) at various phases 
to transfer information across the EFS interface, between DFSORT and your EFS 
program. DFSORT can make multiple calls at Major Calls 1 and 2. Refer to 
Figure 48 on page 318 and Figure 49 on page 319 as you read this section for 
illustrations of the relationships between program phases and calls during exe­
cution. 

Appendix B. Using Extended Function Support (EFS) 317 



DFSORT Calls to Your EFS Program 

318 DFSORT: Application Programming: Guide 



Initialization Phase 

DFSORT Calls to Your EFS Program 

Phase 0 
(Initialization 
Phase) OFSORT Uajor Call 1 

Phase 0 4 • 
Ilodul es EFS EFS 

Processing Program 
1·lajor Call 2 i 

• 

Uajor Call 2 
• 

I 
1 

Phase 3 of 

I I·lerge/Copy 
(Input and OFSORT Ca 11 for each 
Output Phase) Phase 3 EFSOI .. • EFSOI 

Ilodul es and Input Record (Ilerge 
EFS02 Only) 
Parameter 
List 
Processing Copy for each .. • 

L ____ !~ 
Input Record 

I EFS02 

Phase 4 

I (Tennination 
Phase) OFSORT Uajor Ca 11 4 

Phase 4 .. • 
1·lodules EFS EFS 

Processing Program 
flajor Call 5 .. 

I 

Figure 49. EFS Program Calls for a Merge or Copy. The figure also shows the calls to 
the EFS program EFS01 and EFS02 exit routines. 

DFSORT executes Major Calls 1 through 3 during the initialization phase. 

Major Call 1: The EFS program can perform initialization processing such as 
opening data sets and obtaining storage, and can provide user-written mes­
sages to DFSORT's message data set. DFSORT obtains information from the 
EFS program to be used to process the control statements and the two exit rou­
tines, EFS01 and EFS02. The EFS01 routine supports sorting or merging user­
defined data types with user-defined collating sequences. The EFS02 routine 
provides logic to include or omit records based on user-defined data types. 

Information is passed in both directions between DFSORT and the EFS program 
across the EFS interface. 

At Major Call 1, DFSORT supplies your EFS program with fields in the EFS inter­
face containing: 

Appendix B. Using Extended Function Support (EFS) 319 



DFSORT Calls to Your EFS Program 

• An action code indicating that Major Call 1 is in effect 
• Informational flags that describe current processing. 

When the EFS program returns control to DFSORT, it can supply fields in the 
EFS interface containing: 

• A control statement request list, with a list of DFSORT and non-DFSORT 
control statement operation definers, or EXEC PARM options needed by the 
EFS program 

• An EFS Program Context area (a private communication area for the EFS 
program) 

• A list containing messages for printing to the message data set 
• A return code (in general register 15). 

Major Call 2: DFSORT calls your EFS program once for each control statement 
or EXEC PARM you request. At this call, your EFS program can examine, alter, 
or ignore control statements before DFSORT processes them, and provide user­
written messages to the message data set. DFSORT obtains more information 
from the EFS program to process the EFS01 and EFS02 exit routines. 

At Major Call 2, DFSORT supplies your EFS program with fields in the EFS inter­
face containing: 

• An action code indicating that Major Call 2 is in effect 
• The original control statement or EXEC PARM option requested by the EFS 

program 
• The length of the original control statement or EXEC PARM option 
• Informational nags that describe current processing. 

When the EFS program returns control to DFSORT, it can supply fields in the 
EFS interface containing: 

• A modified version of the control statement or EXEC PARM option sent by 
DFSORT to the EFS program. If you plan to sort or merge user-defined data 
types (for which you must define a collating sequence), or include or omit 
user-:defiried data types, then your EFS program must return new formats 
for the SORT/MERGE or INCLUDE/OMIT control statements. These new 
formats (01 and 02) signal OFSORT to call the .EFS01 and EFS02 exit rou­
tines you included with your EFS program. 

• The length of the altered control statement or EXEC PARM option 
• Informational nags signaling DFSORT whether to parse or ignore the control 

statement or EXEC PARM option. 
• A list of messages for OFSORT to print to the message data set. 
• A return code (in general register 15). 

Major Call 3: At Major Call 3, your EFS program provides OFSORT with user­
written ·messages to print to the message data set. OFSORT can call the EFS 
program once for the Blockset tech~ique and once for the PeeragelVale tech­
niques. DFSORT obtains more information at this call from the EFS program to 
process the EFS01 and EFS02 exit routines. 

At Major Call 3, OF SORT supplies your EFS program with fields in the EFS inter­
face containing: 

• An action code indicating that Major Call 3 is in .effect 
• An -extract buffer offsets list needed by the EFS01 exit routine 
• A record lengths list of input and output records 

320 DFSORT: Application Programming: Guide 



Input Phase 

Termination Phase 

DFSORT Calls to Your EFS Program 

• Informational flags that describe current processing 
• An EFS Program Context area (a private communication area for the EFS 

program). 

When the EFS program returns control to DFSORT, it can supply fields in the 
EFS interface containing: 

• An EFS01 exit routine address 
• An EFS02 exit routine address 
• A list of messages for printing to the message data set 
• A return code in general register 15. 

DFSORT executes the two exit routines, EFS01 and EFS02, during the input 
phase. The EFS01 routine supports sorting or merging user-defined data types 
with user-defined collating sequences and is called once for each record. The 
EFS02 routine provides logic to include or omit records on user-defined data 
types and is called one or more times, according to the include/omit logic. 

Information is passed in both c,iirections between DFSORT and the exit routines 
across the EFS01 and EFS02 parameter lists. 

DFSORT supplies the EFS01 routine with fields in the parameter list containing: 

• An Extract Buffer Area, which contains an internal version of the input 
record. The EFS01 routine must move all EFS control fields to this input 
record. See "EFS02 Exit Routine" on page 342 for more information. 

• The input data record. 
• An EFS Program Context Area (a private communication area for the EFS 

program). 

When the EFS01 routine returns control to DFSORT, it must return a return code 
in general register 15. 

DFSORT supplies the EFS02 routine with fields in the parameter list containing: 

• A Correlator Identifier, which identifies a relational condition containing EFS 
fields. See "EFS01 Exit Routine" on page 339 for more information. 

• The input data record. 

When the EFS02 routine returns control to DFSORT, it must return a return code 
in general register 15. 

DFSORT executes Major Calls 4 and 5 during the termination phase. Only one 
call is made at each Major Call. 

Note: If a system abend occurs while DFSORT's ESTAE recovery routine is in 
effect, and Major Calls 4 and 5 have not already been executed, the EST AE 
routine executes them. If an EFS abend occurs during Major Call 1, the ESTAE 
routine does not execute Major Calls 4 and 5. See Appendix F, "DFSORT 
Abend Processing" on page 383 for more information about ESTAE. 

Major Call 4: The EFS program provides any user-written messages for 
printing to the message data set. 

Appendix B. Using Extended Function Support (EFS) 321 



What You Can Do with EFS 

At Major Call 4. DFSORT supplies your EFS program with fields in the EFS inter­
face containing: 

• An action code indicating that Major Call 1 is in effect 
• An EFS Program Context Area (a private communication area for the EFS 

program). 

When the EFS program returns control to DFSORT. it can supply fields in the 
EFS interface containing: 

• A message list containing messages for printing to the message data set 

• A return code (in general register 15). 

Major Call 5: The EFS program performs any termination processing. such as 
closing data sets and releasing storage. 

At Major Call 5. DFSORT supplies your EFS program with fields in the EFS inter­
face containing: 

• An action code indicating that Major Call 5 is in effect 

• An EFS Program Context Area (a private communication area for the EFS 
program). 

When the EFS program returns control to DFSORT. it must supply a return code 
in general register 15. 

What You Can Do with EFS 
You can design your EFS program to perform seven basic tasks at the initializa­
tion. input. and termination phases of DFSORT. Some of the tasks require using 
the EFS program-generated exit routines EFS01 and EFS02. 

Table 21 (Page 1 of 2). Functions of an Extended Function Support (EFS) 
Program 

Initialization Input Termination 
EFS Program Functions Phase Phase Phase 

Opening and initializing EFS Program 

Examining. altering. or EFS Program 
ignoring DFSORT and 
non-DFSORT control state-
ments prior to processing 
by DFSORT 

Sorting or merging user- EFS01 
defined data types with 
user-defined collating 
sequences 

Providing the logic to EFS02 
include or omit records 
based on user-defined data 
types 

322 DFSORT: Application Programming: Guide 



What You Can Do with EFS 

Table 21 (Page 2 of 2). Functions of an Extended Function Support (EFS) 
Program 

Initialization Input Termination 
EFS Program Functions Phase Phase Phase 

Supplying messages to EFS Program EFS 
DFSORT for printing to the Program 
message data set 

Terminating DFSORT EFS Program EFS01, EFS 
EFS02 Program 

Closing data sets and EFS 
housekeeping Program 

Opening and Initializing Data Sets 
Your EFS program can open data sets, obtain necessary storage, and perform 
other forms of initialization needed during a run. 

Examining, Altering, or Ignoring Control Statements 
At Major Call 1, your EFS program can send a control statement request list to 
indicate the control statements and EXEC PARM options you want DFSORT to 
send to your EFS program at Major Call 2. 

At Major Call 2, your EFS program can examine, alter, or ignore control state­
ments and EXEC PARM options that DFSORT reads from the EXEC statement, 
SYSIN, SORTCNTL, DFSPARM, or a parameter list passed from an invoking 
program. Refer to Figure 50 on page 324 for an illustration of the control state­
ment processing sequence used when an EFS program is activated. 

Appendix B. Using Extended Function Support (EFS) 323 



What You Can Do with EFS 

JCL Invocation of OFSORT 

OFSPARH 

I , 

D,ynamic Invocation of OFSORT 

IOFSORT processing of OFSPARt~ 
parameters not requested by 
the EFS program 

, 
,EFS program processing of 
requested OFSPARH parameters 
at Najor Call 2 

, 
OFSORT processing of OFSPARH 
parameters returned by the 
EFS program 

,JCL EXEC statement PARt·t I 
'options 

, 

~ , 
IOFSORT processing of 
SYSIN control statements 
and JCL EXEC statement 
PARH options not requested 
by the EFS program 

, 
EFS program processing of 
requested SYSIN control 
statements and EXEC 

I PARt~ options at ~lajor 
Call 2 

, 
OFSORT processing of 
SYSUI control statements 
and JCL EXEC statement 
PARH options returned by 
the EFS program 

, 
SYSOUT 

, 

Same processing as for 
OFSPARH 

Invoker's parameter list 

, 
ISame processing as for 
OFSPARt~ 

I 

Figure 50. Control Statement Processing Sequence 

324 DFSORT: Application Programming: Guide 



Structure of the EFS Interface Parameter List 

Processing User-Defined Data Types with 'EFS Program Exit Routines 
You can write your EFS program to provide two exit routines to perform various 
tasks during execution. Acceptable data types are EBCDIC, ASCII, or user­
defined. 

Your EFS program exit routines can: 

• Process user-defined data types. Your EFS program can provide an EFS01 
exit routine to alter any control field of an input record. You can also use a 
user-defined collating sequence for user-defined input records. 

• Include or omit records based on user-defined data types. Your EFS 
program can provide an EFS02 exit routine to examine any input field of an 
input record to determine whether or not to include that record for proc­
essing. 

Supplying Messages for Printing to the Message Data Set 
You can use an EFS program to tailor messages for several purposes: 

• To describe new types of operations 
• To describe extended field parameters 
• To customize the message data set to your site 
• To display statistical information about control statements or EXEC PARM 

options. 

You can control whether to print the control statements returned by an EFS 
program on the message data set with: 

• The L1STX operator of the ICEMAC macro (see "Installation Defaults" on 
page 11). 

• The L1STX or NOLlSTX operators in the PARM field of the JCL EXEC state­
ment (see "Specifying EXEC Statement PARM Options" on page 21). 

• The LIST or NOLIST operators of the OPTION program control statement 

Terrriinating DFSORT 
Your EFS program can terminate DFSORT at any of the five Major Calls, and 
also from either of the two EFS program exit routines during the input phase. 

Closing Data Sets and Housekeeping 
At Major Call 5, your EFS program can close data sets, free storage and 
perform any other necessary housekeeping. 

Structure of the EFS Interface Parameter List 
The EFS interface consists of a variable-length parameter list, and is used to 
communicate between DFSORT and your EFS program. DFSORT initializes the 
parameter list to zeros during the initialization phase, except that the list end 
indicator is set to X'FFFFFFFF'. 

The parameter list resides below 16-megabyte virtual, and remains accessible 
while the EFS program is active, although DFSORT might change its storage 
location during execution to optimize use of storage. The actual address in 

Appendix B. Using Extended Function Support (EFS) 325 



Structure of the EFS Interface Parameter List 

register 1 (used to pass the interface parameter list address) can therefore 
change while DFSORT is running. 

Figure 51 illustrates the structure of the EFS interface parameter list. The illus­
trated portions of the list are explained in order in the following pages. EXEC 
PARMs are not described in the figure. but are included in processing. 

Rl-
Action code 

4 bytes 
Address of r--- Control statement 
Control Statement list request list 

L....- ** bytes 
4 bytes 

Address of 
original Control Statement 
including all keywords and Original 
corresponding subparameters r--- control statement string 

'--- * bytes 
4 bytes 

Address of 
modified Control Statement 
including all keywords and ~'odi fi ed 
corresponding subparameters - control statement string 

'--- * bytes 
4 bytes 

Length of 
original Control Statement 
including all keywords and 
corresponding subparameters 

4 bytes 
Length of 
modified Control Statement 
including all keywords and 
corresponding subparameters 

4 bytes 
Address of 

EFS context area 
4 b tes y 

Figure 51 (Part 1 of 2). EFS Interface Parameter List 

326 DFSORT: Application Programming: Guide 



Action Codes 

Structure of the EFS Interface Parameter List 

Address of 
Extract buffer offsets 
(zeros if no EFS fields ex is t) 

4 bytes 
Address of ~ Record lengths 

Record lengths list list 
4 bytes '--- 8 bytes -

RESERVED 
4 bytes 

RESERVED 
4 bytes 

RESERVED 
4 bytes 

Information flags 
4 bytes 

Address of 
message chain 
(zeros if none) 

4 bytes 
RESERVED 

I- 4 bytes 
RESERVED 

4 bytes 
RESERVED 

4 bytes 
Address of 

f EFS01 extract routine 
(zeros if none) 

4 bytes 
Address of 

f EFS02 INCLUDE/OMIT routine 
(zeros if none) 

4 bytes 
list end indicator (X'FFFFFFFF') 

4 b tes y 

** - Length determined by length fields in list 
* - Length determined by corresponding length field 

Figure 51 (Part 2 of 2). EFS Interface Parameter List 

DFSORT sets one of rive action codes before a call to the EFS program: 

o Indicates Major Call 1 to the EFS program. DFSORT sends this action 
code once. 

4 Indicates Major Call 2 to the EFS program. DFSORT might send this 
action code multiple times at Major Call 2 depending on how many 
control statements are requested and found. For example, if the SORT, 
MERGE, and INCLUDE control statements are all supplied in SYSIN and 
are requested, the EFS program is called twice: once for the SORT 
control statement (because SORT and MERGE are mutually exclusive, 
and assuming the SORT statement is speciried first, only the SORT state­
ment is taken) and once for the INCLUDE control statement. 

Appendix B. Using Extended Function Support (EFS) 327 



Structure of the EFS Interface Parameter List 

8 Indicates Major Call 3 to the EFS program. DFSORT can send this action 
code once for the Blockset technique and once for the PeeragelVale 
technique. 

12 Indicates Major Call 4 to the EFS program. DFSORT sends this action 
code once. 

16 Indicates Major Call 5 to the EFS program. DFSORT sends this action 
code once. 

Control Statement Request List 
The control statement request list describes the control statements and the 
PARM options to be sent to the EFS program by DFSORT. The control state­
ment request list consists of control statement operation definers and PARM 
option names. The maximum length allowed for an operation definer or PARM 
option name is eight bytes. If the operation definer or PARM option name is 
longer, DFSORT will use only the first eight bytes. Length field values must not 
include their own length. 

Non-DFSORT operation definers and PARM options must be in EBCDIC format, 
and the first character must be non-numeric. The format of the control state­
ment request list is: 

Chain pointer to 
next operation 
definer or EXEC 

Length of 
operation definer 
or EXEC PARr·t 

PARM option name, 'option name 
or zero for end 
of 1 is t 

Operation definer 
or EXEC PARM 
option name 
(variable length) 

'-- 4 bytes ---'-- 2 bytes ---'-- * bytes __ ...J 

* indicates that the length is determined by the corresponding length field 
(maximum of 8 bytes). 

Control Statement String Sent to the EFS program 
DFSORT scans for the requested control statement from SYSIN, SORTCNTL, 
DFSPARM, or the invoker's parameter list to create a contiguous control state­
ment string; DFSORT will handle any necessary continuation requirements for 
control statements from SYSIN, SORTCNTL, or DFSPARM. DFSORT scans for 
the requested PARM option to create a contiguous PARM option string. 

DFSORT places a copy of the requested control statement or PARM option 
string in a contiguous storage area for the EFS program. No labels are sup­
plied with the control statement; the address of the string always points to the 
first byte of the appropriate operation definer or PARM option. 

DFSORT will send the requested control statement(s) or PARM option(s) to the 
EFS program as found by DFSORT; DFSORT will provide limited syntax checking 
of control statements or PARM option(s) before sending them to the EFS 
program. 

In addition to following the rules in "General Coding Rules·' on page 55, you 
must observe the following rules for non-DFSORT control statements: 

328 DFSORT: Application Programming: Guide 



Structure of the EFS Interface Parameter List 

• DFSORT will recognize a control statement with no operand(s) provided the 
operation definer (1) is supplied in SYSIN, SORTCNTL, or DFSPARM and (2) 
is the only operation definer contained on a line. 

• Operation definers supplied through SYSIN, SORTCNTL, DFSPARM, or the 
extended parameter list and requested by the EFS program will not be 
recognized if they are longer than eight bytes. 

In addition to observing the rules in your JCL manual, you must observe the 
following rule for non-DFSORT PARM options: 

• PARM options requested by the EFS program will not be recognized if they 
are longer than eight bytes. 

DFSORT will send the requested DFSORT or non-DFSORT control statements or 
PARM options that remain after DFSORT override rules have been applied. 

If duplicate DFSORT or non-DFSORT control statements or PARM options are 
supplied through the same source (such as SYSIN), then DFSORT will send the 
first occurrence of the control statement. The second occurrence of the 
DFSORT or non-DFSORT control statement or PARM option will be ignored by 
DFSORT. 

If duplicate DFSORT or non-DFSORT control statements are supplied through 
different sources (such as extended parameter list, SORTCNTL, and DFSPARM), 
then DFSORT will send the control statement remaining after different source 
override rules have been applied, except for the DFSORT OPTION and DEBUG 
control statements (see "Special Handling of OPTION and DEBUG Control 
Statements" on page 330). 

If mutually exclusive DFSORT control statements (such as SORT/MERGE) are 
supplied through the same source (such as SYSIN), then DFSORT will send the 
first occurrence of the control statement. The second occurrence of the 
DFSORT control statement will be ignored by DFSORT. 

If mutually exclusive DFSORT control statements (such as SORT/MERGE) are 
supplied through different sources (such as extended parameter list, 
SORTCNTL, and DFSPARM), then DFSORT will send the control statement 
remaining after different source override rules have been applied. The DFSORT 
control statement not sent will be ignored by DFSORT. 

Thus the EFS program will not be sent duplicate DFSORT or non-DFSORT 
control statements (except for the DFSORT OPTION and DEBUG control state­
ments as explained in "Special Handling of OPTION and DEBUG Control 
Statements" on page 330), or duplicate PARM options. 

If the EFS program supplies non-DFSORT operands on the DFSORT OPTION 
control statement and the OPTION control statement is supplied in the extended 
parameter list, the EFS program must specify the non-DFSORT operands after 
all DFSORT operands. 

DFSORT will free any storage it acquired for the control statement or PARM 
string. 

Note: Blanks and quotes are very important to DFSORT in determining the 
control statement to send to an EFS program. Do not supply unpaired quotes in 
the INCLUDE/OMIT control statements, because DFSORT treats data within 

Appendix B. Using Extended Function Support (EFS) 329 



Structure of the EFS Interface Parameter List 

quotes as a constant, and treats blanks outside of quotes as the major delim­

iter. 

Special Handling of OPTION and DEBUG Control Statements 
The override features of both the DFSORT OPTION and DEBUG control state­
ments, when supplied through different sources, require special handling when 
EFS processing is in effect and either or both control statements are requested 
by the EFS program. 

For example, DFSORT handles override for the OPTION and DEBUG control 
statements as follows: 

• The OPTION control statement supplied in SORTCNTL will selectively over­
ride corresponding options on the OPTION control statement supplied in the 
extended parameter list. 

• The DEBUG control statement supplied in SORTCNTL will selectively over­
ride corresponding options on the DEBUG control statement supplied in the 
24-bit parameter list or the extended parameter list. 

Because of these override features, DFSORT cannot simply send the OPTION 
control statement supplied in SORTCNTL and not send the OPTION control 
statement supplied in the extended parameter list. For the EFS program to 
process all possible operands on the OPTION control statements, DFSORT must 
send the OPTION control statements supplied in both SORTCNTL and the 
extended parameter list. DFSORT will thus send both the OPTION and DEBUG 
control statements supplied through different sources. If duplicate OPTION or 
DEBUG control statements are supplied in the same source and the OPTION or 
DEBUG control statements are also supplied in different sources, DFSORT will 
send the first occurrence of both the OPTION and DEBUG control statements 
supplied through different sources. 

Control Statement String Returned by the EFS Program 

Rules for Parsing 

Your EFS program can alter the control statement or PARM option string and 
replace it in the original contiguous storage area. If the area is too small, your 
program must allocate a new contiguous area. If the string is returned in a new 
storage area, your EFS program will be responsible for freeing the acquired 
storage. 

Your EFS program must set an Informational flag to indicate whether the control 
statement or PARM option in the string should be parsed or ignored by 
DFSORT (see "Information Flags" on page 335 for further details). 

The content and format of the altered control statement to be parsed must cor­
respond to valid DFSORT values as described in Chapter 3, "Using DFSORT 
Program Control Statements" on page 53, except when using the FIELDS 
operand with SORT or MERGE, or the COND operand with INCLUDE or OMIT 
(see "EFS Formats for SORT, MERGE, INCLUDE, and OMIT Control Statements" 
on page 331). 

You must observe the following rules for control statements to be returned to 
DFSORT for parsing: 

• The operation definer and corresponding operands must be in uppercase 
EBCDIC format. 

330 DFSORT: Application Programming: Guide 



Structure of the EFS Interface Parameter List 

• At least one blank must follow the operation definer (SORT, MERGE, 
RECORD. and so forth). A control statement can start with one or more 
blanks and can end with one or more blanks. No other blanks are allowed 
unless the blanks are part of a constant. 

• Labels are not allowed; a leading blank, or blanks. before the control state­
ment name is optional. 

• No continuation character is allowed. 

• Neither comment statements nor comment fields are allowed. 

The content and format of the altered EXEC PARM option to be parsed must 
correspond to valid DFSORT values as described in "Specifying EXEC State­
ment PARM Options" on page 21. 

The following operands will be ignored by DFSORT if returned by an EFS 
program on the OPTION control statement: 

EFS 
LIST 
NOLIST 
L1STX 
NOLlSTX 
MSGDDN 
MSGDD 
MSGPRT 
SORTDD 
SORTIN 
SORTOUT 

The following EXEC PARM options will be ignored by DFSORT if returned by an 
EFS program: 

EFS 
LIST 
NOLIST 
L1STX 
NOLlSTX 
MSGDDN 
MSGDD 
MSGPRT 

EFS Formats for SORT, MERGE, INCLUDE, and OMIT Control Statements 
In addition to using the SORT. MERGE. INCLUDE, and OMIT control statements 
as explained in "Program Control Statements, II you can also use two additional 
formats on the FIELDS and COND parameters. The formats are termed 01 and 
02 and apply as follows: 

• 01 with the SORT or MERGE FIELDS parameter 
• 02 with the INCLUDE or OMIT CONO parameter. 

Use 01 and 02 to reflect data types that require special processing by EFS 
program exit routines EFS01 and EFS02, respectively. 

Appendix B. Using Extended Function Support (EFS) 331 



Structure of the EFS Interface Parameter List 

01 Format on FIELDS Operand 
The syntax for the SORT and MERGE statements using the 01 format on the 
FIELDS operand is as follows. 

r':-J --rSORT--.----FIELDS=(-mp,mm,mf ,ms }-------... ~ ...... 
Lf~ERGEJ 

Where Represents 

mp 

mm 

mf 

ms 

field position within the input record 

field length 

the 01 format that designates this field as an EFS control field 

must be either ascending (A) or descending (D); modification by an 
E61 exit (E) is not allowed. 

Figure 52 gives an example of using the 01 format for a SORT control state­
ment returned to DFSORT by the EFS program. 

You must adhere to the following requirements for the 01 format: 

• The mp, mm, and ms values returned must be valid SORT or MERGE 
control statement values, except: 

The combined value of mp and mm may exceed the record length. 

CHAL T will have no effect on EFS fields and will not limit the length to 
256. 

Value E for ms will not be allowed; EFS fields may not be altered by an 
E61. 

FORMAT = 01 will not be allowed. 

Original SORT control statement sent to EFSPGM 

SORT FIELDS=(15,4,FF,A,29,4,CH,A,49,7,FF,D} 

Altered SORT control statement returned by EFSPGM 

SORT FIELDS=(15,4,Dl,A,29,4,CH,A,49,7,Dl,D} 

where: 

FF is a user-defined format that is modified to 01 
by the EFS program before returning to DFSORT 

Figure 52. 01 Format Returned by an EFS Program 

332 o FSORT: Application Programming: Guide 



Structure of the EFS Interface Parameter List 

D2 Format on COND Operand 
Following is the syntax for the INCLUDE or OMIT statements using the D2 
format on the COND operand. 

( !'-C:rT' 
OMIT NE 

GT constant 
GE 
LT 
LE 

Where Represents 

mc the correlator identifier, a numeric value used to identify each rela­
tional condition 

mm field length 

mf the D2 format designating an EFS field within the relational condition 

constant a valid DFSORT decimal, character, or hexadecimal constant. 

Figure 53 on page 334 gives an example of using a correlator identifier and the 
D2 format for an INCLUDE control statement returned to DFSORT by the EFS 
program. 

Note: The values for the correlator identifiers assigned to each relational con­
dition by the EFS program can be in any chosen order. The example in 
Figure 53 shows a sequential ordering for the correlator identifiers. 

You must adhere to the following requirements for the D2 format: 

• The mc, mm, or constant values returned must be valid INCLUDE or OMIT 
control statement values, except: 

The combined value of mc and mm may exceed the record length. 

Any valid DFSORT constant will be allowed. 

IfCOND=(mc1,mm1,mf1,comparison operator,mc2,mm2,mf2) is used, 
both mf1 and mf2 must be D2. 

CHAL T will have no effect on EFS fields. 

FORMAT=D2 will not be allowed. 

Appendix B. Using Extended Function Support (EFS) 333 



Structure of the EFS Interface Parameter List 

Original INCLUDE control statement sent to EFSPGM 

INCLUDE COND=(15,4,FF,EQ,28,4,FF,AND,48,7,FF,NE,58,7,FF,OR, 
38,2,FF,NE,35,2,FF) 

Altered INCLUDE control statement returned by EFSPGM 

INCLUDE COND=(l,4,D2,EQ,l,4,D2,AND,2,7,D2,NE,2,7,D2,OR, 
3,2,D2,NE,3,2,D2) 

Where: 

• FF is a user-defined format and modified to D2 by the EFS program 
before returning to DFSORT .• 

• The first relational condition specified. (1.4.D2.EQ.1.4.D2). uses 
correlator identifier value 1 to identify this relational condition. 

• The second relational condition specified. (2.7.D2.NE.2.7.D2). 
uses correlator identifier value 2 to identify this relational 
condition. 

• The third relational condition specified. (3.2.D2,NE,3,2,D2), 
uses correlator identifier value 3 to identify this relational 
condition 

Figure 53. Correlator Identifier and 02 Format Returned by an EFS Program 

Length of Original Control Statement 
The control statement includes the first byte of the control statement through 
the last operand of the control statement or, if only an operation definer is sup­
plied, the length of the operation definer. DFSORT does not send labels sup­
plied with the control statement. 

Length of the Altered Control Statement 
The length includes the first byte of the control statement through the last 
operand of the control statement. If leading blanks are provided, the length 
includes the first leading blank. 

EFS Program Context Area . 
The EFS program context area is a private communication area that can be set 
up and used by the EFS program as appropriate. DFSORT sends the context 
area address to the EFS program at each Major Call and at each call to EFS01 
and EFS02. 

The EFS program is responsible for obtaining (at Major Call 1) and releasing (at 
Major Call 5) the necessary storage for the EFS program context area. 

334 OFSORT: Application Programming: Guide 



Structure of the EFS Interface Parameter List 

Extract Buffer Offsets List 
A linked list of offsets into the extract buffer will be passed to your EFS 
program. The offsets show the starting positions into the buffer area of any EFS 
control fields specified on the SORT or MERGE FIELDS operand. The offsets 
are sent only for EFS control fields and are sent in the same order as specified 
on the FIELDS operand. If no EFS control fields exist, the address to the offsets 
is zero. 

DFSORT frees any storage it acquired for the extract buffer offsets list. The 
format of the extract buffer offsets list is: 

Chain pointer to Offset n 
the next offset or 
zero for end of 
1 i st 

- 4 bytes __ ----1. __ 4 bytes __ ....J 

Record Lengths List 

Information Flags 

The record lengths list is a linked list containing the input and output record 
lengths. You must be aware of the possible change in record size during exe­
cution (for example, with an E15 user exit). 

The input and output record lengths are sent to the EFS program for informa­
tional use only. DFSORT ignores any changes to the values made to the record 
lengths list returned by the EFS program. 

DFSORT frees any storage it acquired for the record lengths list. The format of 
the record lengths list is: 

Input record 
length 

Output record 
length 

- 4 bytes _----1 __ 4 bytes -

The information nags are defined as follows: 

Appendix B. Using Extended Function Support (EFS) 335 



Structure of the EFS Interface Parameter List 

bit e 1 2 3 4 5 6 7 8 

e e e e e e e e 

Bit 

Bits 0 and 1 

Bit 2 

Bit 3 

Bits 4 and 5 

Bit 6 

LLlJ..1..JL...I....-_-w"LLl.l.J...l_....LJ...J...LJL..L.L.L-+ Reserved 

e = Inform DFSORT to ignore parsing 
the verb the EFS program returns 
to DFSORT 

1 = Inform DFSORT to parse the verb 
the EFS program returns to DFSORT 

e = Fixed-length records 
1 ; Variable-length records 

e '" PARM option/Control statement not from DFSPAR~l 
1 = PARM option/Control statement from DFSPARM 

o e = No application in effect 
a 1 = SORT application in effect 
1 e = MERGE application in effect 
1 1 = COpy application in effect 

e = SORTDIAG not being used 
1 = SORTDIAG being used 

e :: JCL-invoked 
1 = Dynamically invoked 

e e :: Opt i on from EXEC PAR~I 

e 1 = Control statement from SYSIN 
1 e = Control statement from SORTCNTL 
1 1 = Control statement from invoking parameter list 

Description 

Indicates the source of the control statement being proc­
essed. Information flags 0 and 1 are set by DFSORT 
before a call(s) to the EFS program at Major Call 2 (mul­
tiple calls are possible at Major Call 2). 

Indicates how DFSORT was invoked. Information flag 2 is 
set by DFSORT before Major Call 1 to the EFS program. 

Indicates whether diagnostic messages are to be printed. 
Information flag 3 will be set by DFSORT before Major 
Call 1 to the EFS program. 

Indicate the DFSORT function being executed. Informa­
tion flags 4 and 5 will be set by DFSORT before each 
call(s) at Major Call 2 and Major Call 3 to the EFS 
program (multiple calls are possible at Major Call 2 and 
Major Call 3). 

Indicates the source of PARM options and control state­
ments from DFSPARM. Information flag 6 will be set by 
DFSORT before each call or calls at Major Call 2 to the 
EFS program (multiple calls are possible at Major Call 2). 

336 o FSORT: Application Programming: Guide 



Message List 

Bit 7 

Bit 8 

Structure of the EFS Interface Parameter List 

Indicates whether fixed-length records or variable-length 
records are to be processed. Information flag 7 is set by 
DFSORT before each call(s) at Major Call 3 to the EFS 
program (multiple calls are possible at Major Call 3). 

Set by the EFS program to inform DFSORT whether to 
parse or ignore the control statement returned by the EFS 
program. Printing of the control statement will be 
managed by the LlSTX/NOLlSTX parameters (see 
"OPTION Control Statement" on page 97 for further 
details). Information flag 8 is set by the EFSprogram 
before returning to DFSORT from each call(s) at Major 
Call 2 (multiple calls are possible at Major Call 2). 

Your EFS program can return informational or critical messages. A return code 
of a in general register 15 indicates an informational message while a return 
code of 16 indicates a critical message. If the EFS program has no messages 
to send after a Major Call, it must zero the message list address in the EFS 
interface parameter list. 

At Major Call 2, if the EFS program finds a syntax error in a control statement, it 
can return an offset relative to the start of the string to indicate the location of 
the error. DFSORT will first print the control statement in error and then will 
print another line containing a dollar symbol ($) at the location indicated by the 
offset. 

Because DFSORT associates the relative offset with a critical message, the EFS 
program must return with a return code of 16 in general register 15. If a rela­
tive offset is returned for an EXEC PARM, the relative offset will be ignored. 
The EFS program must free any storage it acquired for its messages. 

The length field values must not include their own length. 

The message list format follows. 

Chain Relative Length of Message 
pointer to offset (to the text 
next syntax message (variable 
message or error) or text length) 
zero for zero' 
1 i st end 

'--4 b tes y 2 b tes y 2 b tes y * b tes-y 

* indicates that the length is determined by the corresponding length field. 

DFSORT imposes no restrictions on the format of the message(s) returned by 
an EFS program. If you wish, you can use the DFSORT message format so that 
messages in the message data set are consistent in appearance. For a 
description of the message format used by DFSORT, see DFSORT Messages 
and Codes. 

Appendix B. Using Extended Function Support (EFS) 337 



EFS Program Exit Routines 

EFS Program Exit Routines 
If you specify EFS control fields (01 format) or EFS fields (02 format), DFSORT 
calls the EFS01 or EFS02 exit routines, respectively, to process those fields. 
The routines are generated by your EFS program, which can return the fol­
lowing information about them at Major Call 3: 

• The address of an extract routine, EFS01, which is used to extract the 
control fields of an input record to a new internal record before a sort or 
merge takes place; EFS01 is not applicable to a copy application. 

• The address of an INCLUDE or OMIT routine, EFS02, which is used to 
process comparison logic for including or omitting records. 

During the termination phase, the EFS program must free any storage used by 
these routines. 

EFS01 and EFS02 Function Description 

Register 

1 

13 

14 

15 

Use 

Each DFSORT control statement describes to DFSORT the type of operation to 
be performed on input data. Through the EFS interface, DFSORT will allow an 
EFS program to provide exit routines to perform functions beyond the capabili­
ties of DFSORT control statements. 

The EFS program will be allowed to provide exit routine EFS01 to supplement 
the function of the DFSORT SORT/MERGE control statements and provide exit 
routine EFS02 to perform the function of the DFSORT INCLUDE/OMIT control 
statements. 

When preparing your EFS program exit routines, remember: 

• The routines must follow standard linkage conventions. 

• The general registers used by DFSORT for linkage and communication of 
parameters follow operating system conventions (see Figure 54). 

• The routines must use the described interfaces (see "EFS01 Parameter 
List" on page 341 and "EFS02 Parameter List" on page 343). 

DFSORT places the address of a parameter list in this register. 

DFSORT places the address of a standard save area in this register. 
The area can be used to save contents of registers used by the 
EFS program exit routine. The first word of the area contains 
the characters SM1 in its three low-order bytes. 

Contains the address of DFSORT return point. 

Contains the address of the EFS program exit routine. This 
register can be used as the base register for EFS program exit 
routine. This register is also used by the EFS program exit 
routine to pass return codes to DFSORT. 

Figure 54. DFSORT Register Convention 

338 o FSORT: Application Programming: Guide 



EFS Program Exit Routines 

EFS01 Exit Routine 
Processing of user-defined data types with the EFS01 exit routine requires using 
the function of altering control statements. EFS program requirements at Major 
Calls 1 and 2 are: 

At Major Call 1, the EFS program must provide the control statement 
request list with the SORT or MERGE operation definer. See "Control State­
ment Request List" on page 328 for further details. 

At Major Call 2, the EFS program must return a new format, 01, on the 
SORT or MERGE control statement which informs DFSORT to call the EFS 
program EFS01 exit routine, (the control fields defined with the 01 format 
are also known as EFS control fields). See "EFS Formats for SORT, MERGE, 
INCLUDE, and OMIT Control Statements" on page 331 for further details. 
The EFS program must also return the final position, length, and sequence 
order. DFSORT uses the final position and length to create a list of offsets. 

At Major Call 3, DFSORT sends the EFS program a list of offsets into a buffer. 
These offsets indicate where in the buffer the EFS program must have the 
EFS01 exit routine move the data indicated by the EFS control fields. See 
"Extract Buffer Offsets List" on page 335 for further details. The buffer, known 
as an extract buffer, contains an internal record created by DFSORT and is 
used by DFSORT in the SORT or MERGE process. At Major Call 3, the EFS 
program must return the address of the EFS01 exit routine to DFSORT. 

During the input phase, DFSORT calls the EFS01 exit routine for each input 
record. 

The internal operation performed by DFSORT for SORT/MERGE is: 

1. The first operation involves creating an internal record by reorganizing a 
copy of the input record so that the control fields specified for each record 
(as described by the FIELDS operand) are placed at the beginning of each 
record. This process is known as control field extraction. 

2. DFSORT then performs the sorting/merging operation using the internal 
record. 

3. The third operation is the reverse of the first operation; the internal record 
is restored to the original input record format. This process is known as 
control field restoration. 

Figure 55 on page 340 shows a picture of the internal record after the 
extraction process and the restoration process. 

EFS01 must perform the first operation, control field extraction, for any EFS 
control fields specified on the SORT/MERGE FIELDS operand (note that EFS01 
will not be called for a Copy application). The EFS01 exit routine must move all 
data indicated by the EFS control fields, in the SORT or MERGE FIELDS 
operand, from the input record to the extract buffer area as specified by the 
offsets in the extract buffer offsets list. For each EFS control field, the total 
number of bytes moved by EFS01 into the buffer area is equal to the total 
number of bytes specified in the mm parameter of the altered SORT or MERGE 
operand. Records are ordered according to the altered ms parameter. 

The EFS01 exit routine is called to extract all EFS control fields to the extract 
buffer area each time a new record is brought into the input phase. Figure 56 

Appendix B. Using Extended Function Support (EFS) 339 



EFS Program Exit Routines 

on page 341 repeats Figure 52 on page 332 to illustrate the extraction opera­
tion required by EFS01. 

1) Before the extraction operation 

Input 
record A B 2 c 

Where 1 a the more significant sorting or merging control field 
2 a the less significant sorting or merging control field 
A. B. and C are not sorting or merging control fields 

2) After the extraction operation 

Internal 
record 2 A 

3) Sort or Merge operation performed with the 
extracted version of the internal record 

4) After the restoration operation 

Internal 
record A B 

B 

2 

Figure 55. Internal Record Created by DFSORT 

340 DFSORT: Application Programming: Guide 

C 

c 



EFS Program Exit Routines 

Original SORT control statement sent to EfSPGI~ 

SORT FIElOS=(IS,4,FF,A,20,4,CH,A,40,7,FF,0) 

Al tered SORT contro I statement returned by EFSPGI·' 

SORT FIElOSg(15,4,01,A,20,4,CH,A,40,7,01,0) 

where: 

1) Before the extraction operation 

Input ~ 
B 2 c 3 o record ~ I 

.~ ____ L-__ ~ ____ ~ ____ L-__ ~ ____ ~ 

IoIhere: 
1 = EFS control field (15,4,01,A) 
2 = non-EFS control field (20,4,CH,A) 
3 = EFS control field (40,7,01,0) 

A, B, C, and 0 are not sorting control fields 

2) After OFSORT's extraction operation for the non-EfS control field and 
EFSOl's extraction operation for the EFS control fields 

record 1 2 3 
Internal ~l 

----'-----'----

3) Sort or Berge operation performed with the 
extracted version of the internal record 

Figure 56. EFS01 Extraction Operation 

EFS01 Parameter List 
DFSORT sends three words to the EFS01 exit routine each time it is entered: 

• The address of the extract buffer area 
• The address of the input record 
• The address of the EFS program context area. 

DFSORT places the address of a parameter list in register 1. The list begins on 
a fullword boundary and is three fullwords long. The format of the parameter 
list is: 

Bytes 1 through 4 

Address of the Extract Buffer Area 

Address of the Input Record 

Address of the EFS Program Context Area 

The EFS01 exit routine must return one of the following return codes in general 
register 15: 

o The extraction of the EFS control field was successful. 

Appendix B. Using Extended Function Support (EFS) 341 



EFS Program Exit Routines 

16 The extraction of the EFS control field was unsuccessful; terminate 
DFSORT. 

EFS02 Exit Routine 
Including or omitting records based on user-defined data types with the EFS02 
exit routine requires using the function of altering control statements. EFS 
program requirements at Major Calls 1 and 2 are: 

At Major Call 1, the EFS program must provide the control statement 
request list with the INCLUDE or OMIT operation definer. See "Control 
Statement Request List" on page 328 for further details. 

At Major Call 2, the EFS program must return a new format, 02, on the 
INCLUDE or OMIT control statement that informs DFSORT to call the EFS 
program EFS02 exit routine (the fields defined with the 02 format are also 
known as EFS fields). See "EFS Formats for SORT, MERGE, INCLUDE, and 
OMIT Control Statements" on page 331 for further details. The EFS 
program must also return the final length and, in place of the position value, 
must send an identifier (known as a correlator identifier) that identifies a 
specific relational condition. For each relational condition containing EFS 
fields, there must be a unique correlator identifier to identify the particular 
relational condition. See "EFS Formats for SORT, MERGE, INCLUDE, and 
OMIT Control Statements" on page 331 for further details. 

At Major Call 3, the EFS program must return the address of the EFS02 exit 
routine to DFSORT. 

During the input phase, DFSORT will call the EFS02 exit routine for each input 
record according to the evaluation defined by the AND, OR, or parentheses. 
Thus, the EFS02 exit routine must use the correlator identifier to determine the 
current relational condition being performed. 

The internal operation performed by DFSORT for INCLUDE/OMIT is to use the 
specified comparison logic on each record to determine if the record satisfies 
the INCLUDE/OMIT requirements. 

Note: EFS02 must perform this operation for any EFS fields specified on the 
INCLUDE/OMIT COND operand. 

The EFS02 exit routine is called to perform the INCLUDE or OMIT comparison 
logic for each relational condition containing an EFS field. During the input 
phase, DFSORT will call the EFS02 exit routine for each input record according 
to the evaluation defined by the AND, OR, or parentheses. The EFS02 exit 
routine must use the correlator identifier to determine the current relational 
condition being performed. EFS02 must perform the comparison logic for the 
current relational condition as identified by the correlator identifier. Figure 57 
on page 343 repeats Figure 53 on page 334 to illustrate an example of the 
calling sequences to an EFS02 by DFSORT. 

342 DFSORT: Application Programming: Guide 



EFS Program Exit Routines 

Original IIICLUDE control statement sent to EFSPGI-I 

INCLUDE COllo: (15,4, FF, EQ, 20, 4, FF ,AND, 40, 7, FF ,NE,50, 7, FF ,OR, 
30,2,FF,t1E,35,2,FF) 

Altered HlCLUoE control statement returned by EFSPGH 

ItICLUoE COIIo: (1 ,4, 02, EQ,l,4,D2,AII[), 2, 7,02, tiE, 2, 7, D2,OR, 
3,2,D2,NE,3,2,02) 

where the calling sequence to EFSOI may be summarized 
with the following tables: 

Relational EFS02 returns oFSORT action when the next 
condit i on a return code logical operator is: 
with of O:True or 

L 4=Fa I se AND 

True Call EFS02 with Correlator 
Identifier 

Id 2 I ,,,,,I,,,, 
1 False Call EFS02 with Correlator Id 3 

I Relational EFS02 returns OF SORT action when the next 

I 
condit ion a return code logical opel'ator is: 
with of O=True or 

4=False OR 

i Carre lator True Include the record 
IIden~ ifier 

False Call EFS02 with Correlator Id 3 

I Re I at i ona I EFS02 returns DFSORT action when the next 
I condit ion a return code logical operator is: 

with of Q=True or 
4'Fa I se None 

Corl'e 1a tor True Include the record 
Identifier 

i 3 False Omit the record 
'---

Figure 57. Calling Sequence to EFS02 by DFSORT 

EFS02 Parameter List 
DFSORT sends three words to the EFS02 exit routine each time it is entered: 

• The address of the correlator identifier 
• The address of the input record 
• The address of the'EFS program context area. 

DFSORT places the address of a parameter list in register 1. The list begins on 
a fullword boundary and is three fullwords long. The format of the parameter 
list is: 

Appendix B. Using Extended Function Support (EFS) 343 



EFS Program Exit Routines 

Byte 1 Byte 2 Byte 3 Byte 4 

Correlator 
ee ee ee identifier 

Address of the input record 

Address of the EFS program context area 

The EFS02 exit routine must return one of the following return codes in general 
register 15: 

o True 

The record passed the INCLUDE or OMIT test for the relational condition 
of an EFS field. If applicable, processing continues with the next relational 
condition. Otherwise, DFSORT accepts the record if INCLUDE is specified 
or omits the record if OMIT is specified. 

4 False 

The record did not pass the INCLUDE or OMIT test for the relational condi­
tion of an EFS field. If applicable, processing continues with the next rela­
tional condition. Otherwise, DFSORT omits the record if INCLUDE is 
specified or includes the record if OMIT is specified. 

16 Terminate 

An error occurred in processing the INCLUDE or OMIT logic; terminate 
DFSORT. 

MVS/XA and MVS/ESA Support of EFS Program Exit Routines 
If the EFS program exit routine executes in an MVS/XA or an MVS/ESA environ­
ment, DFSORT supplies the following features to allow residence above or 
below 16-megabyte virtual and use of either 24-bit or 31-bit addressing: 

f (bit 0 of EFS program exit routine address) 

o Enter the EFS program exit routine with 24-bit addressing in effect. 

1 Enter the EFS program exit routine with 31-bit addressing in effect. 

The EFS program exit routine can return to DFSORT with either 24-bit or 31-bit 
addressing in effect. The return address that DFSORT placed in register 14 
must be used. 

Except for the EFS program context area address (which DFSORT sends to the 
EFS program exit routine unchanged), DFSORT handles the EFS program exit 
routine parameter list addresses (that is, the pointer to the EFS program exit 
routine parameter list and the addresses in the parameter list) as follows: 

• If the EFS program exit routine is entered with 24-bit addressing in effect, 
DFSORT can pass clean (zeros in the first 8 bits) 24-bit addresses and/or 
31-bit addresses to the EFS program exit routine. The EFS program exit 
routine must return clean 24-bit addresses if the EFS program exit routine 
returns to DFSORT with 31-bit addressing in effect. 

344 o FSORT: Application Programming: Guide 



Record Processing Order 

• If the EFS program exit routine is entered with 31-bit addressing in effect, 
DFSORT can pass clean 24-bit addresses and/or 31-bit addresses to the EFS 
program exit routine. The EFS program exit routine must return 31-bit 
addresses or clean 24-bit addresses. 

EFS Program Return Codes You Must Supply 
Your EFS program must pass one of two return codes to DFSORT: 

o Continue Processing 

If you want DFSORT to continue processing for this Major Call, return with 
a return code of zero in general register 15. 

16 Terminate DFSORT 

If you want DFSORT to terminate processing for this Major Call, return 
with a return code of 16 in general register 15. 

If the EFS program returns a return code of 16 from a Major Call prior to 
Major Call 4 or one of its generated exit routines returns a return code of 
16, DFSORT will skip interim Major Calls, where applicable, to the EFS 
program or exit routine, and will call the EFS program at Major Call 4 and 
at Major Call 5 . 

. Multiple calls are possible at Major Call 2 and Major Call 3. If the EFS 
program returns with a return code of 16 from one of the multiple calls at 
Major Call 2, subsequent calls at Major Call 2, if applicable, will be com­
pleted. If the EFS program returns with a return code of 16 from one of 
the multiple calls at Major Call 3, subsequent calls at Major Call 3, if 
applicable, will not be completed. 

If the EFS program returns a return code of 16 at Major Call 4, DFSORT 
will still call the EFS program at Major Call 5. 

Record Processing Order 
The order of record processing when using :i1/record processing order EFS is 
similar to processing without it. Figure 58 on page 346 illustrates the record 
processing sequence for a sort or merge and Figure 59 on page 347 illustrates 
the record processing sequence for a copy when EFS processing is in effect. 

The figures illustrate the same points as described in Figure 2 on page 6 with 
the following exceptions: 

• When record processing is done for an INCLUDE or OMIT control statement, 
an EFS02 exit routine is called to perform the comparison logic for the rela­
tional conditions with EFS fields. 

• When record processing is done for a SORT or MERGE control statement, 
an EFS01 exit routine is called to perform the extraction process for EFS 
control fields. 

Appendix B. Using Extended Function Support (EFS) 345 



Record Processing Order 

Sort App 1i ca t i on 

SORTIN 

, 

T 

, 
I STOrT J 

, 

9 , 
~~EJ 

~------~ I L- I , , 

, 
SORTOUT 

Herge Application 

SORTltlnn 

, 

~ , 

~-~ 
T~ 

~;J~ 
I I , , 

, 
SORTOUT 

Figure 58. EFS Record Processing Sequence for a Sort or Merge 

346 DFSORT: Application Programming: Guide 



How to Request a SNAP Dump 

CoPy Application 

T , 

T 

~"I'fT J 
.. 

~ , 

T 
7- I , , 

, 
I SORTOUT 

Figure 59. EFS Record Processing Sequence for a Copy 

How to Request a SNAP Dump 
You can request a SNAP dump for diagnostic purposes before or after any 
Major Call except Major Call 1. Use either the EFSDPBFR parameter or the 
EFSDPAFT parameter on the DEBUG statement. 

Appendix B. Using Extended Function Support (EFS) 347 



EFS Program Example 

See "DEBUG Control Statement" on page 62 for the correct syntax. 

EFS Program Example 
The following example shows how an EFS program can be used to change 
control statements at execution time. 

The following information is assumed for this example DFSORT run: 

• The EFS program "EFSPGM" resides in the same library as the DFSORT 
modules. 

• The JCL statements for the job are: 

IIEXN4PLEl JOB A12345,'J. SMITH' 
IISI EXEC PGM=SORT,PA~I='EFS=EFSPGM' 
IISYSOUT DO SYSOUT=A 
IISORTIN DO DSNAME=SMITH.INPUT,DISpmSHR, 
II UNIT=3389,SPACE=(TRK,(15,2»,VOL=SER=XYZ993, 
II DCB=(LRECL=S9,BLKSIZE=S9,RECFlt=F) 
IISORTOUT DO DSNAME=SMITH.OUTPUT,DISpm(NEW,KEEP), 
II UNIT=3389,SPACE=(TRK,(15,2»,VOL=SER=XYZ993 
I/SYSIN DO * 

1* 

SORT FIELDS=(5,29,CH,A,13,5,BI,D) 
OPTION STOPAFT=39,DYNALLOC=3339 

DFSORT Initialization Phase: 

Major Call 1 
Prior to Major Call 1, DFSORT sets the following fields in the EFS interface 
parameter list: 

• Action code = 0 

Major Call 1 is in effect. 

• Informational bit flag 2=0 

The DFSORT run is JCL-invoked. 

• Informational bit flag 3 =0 

SORTDIAG is not in effect. 

DFSORT executes Major Call 1 to EFS program EFSPGM and EFSPGM sets the 
following fields in the EFS interface parameter list: 

• Control Statement Request List 

Contains the OPTION operation definer which indicates to DFSORT that the 
OPTION control statement is requested by EFSPGM. 

• EFSPGM Program Context Area 

EFSPGM will be using the context area. 

348 o FSORT: Application Programming: Guide 



Major Call 2 

EFS Program Example 

• Message List=O 

EFSPGM has no messages for DFSORT to print to the message data set. 
General register 15 is set to zero. 

Prior to Major Call 2, DFSORT sets the following fields in the EFS interface 
parameter list: 

• Action code = 4 

Major Call 2 is in effect. 

• Informational bit flag 4=0 and informational bit flag 5=0 

No application is in effect. 

EFSPGM requested the OPTION control statement. DFSORT makes a call to an 
EFS program for each control statement requested; in this case, one. DFSORT 
also sets the following fields in the EFS interface parameter list: 

• Informational bit flag 0 = 0 and informational bit flag 1 = 1 

The requested control statement came from SYSIN. 

• The original OPTION control statement, including all operands and corre­
sponding subparameters 

OPTION STOPAFT=30,DYNALLOC=3330 

• The length of the original OPTION control statement, including all operands 
and corresponding subparameters 

The original control statement string is 31 bytes long. 

DFSORT executes Major Call 2 to EFS program EFSPGM and EFSPGM sets the 
following fields in the EFS interface parameter list 

• Informational bit flag 8 = 1 

DFSORT must parse the control statement returned by EFSPGM. 

• The altered OPTION control statement, including all operands and subpa­
rameters 

OPTION STOPAFT = 30,DYNALLOC = 3380,EQUALS 

• The length of the altered OPTION control statement, including all operands 
and subparameters 

The altered control statement string is 38 bytes long. 

• Message List = 0 

EFSPGM has no messages for DFSORT to print to the message data set. 
General register 15 is set to zero. 

Figure 60 on page 350 shows the original control statement sent to EFS 
program EFSPGM and the altered control statement returned by EFS program 
EFSPGM. 

Appendix B. Using Extended Function Support (EFS) 349 



EFS Program Example 

Major Call 3 

Original OPTION control statement sent to EFSPGM 

OPTION STOPAFT = 30,DYNALLOC = 3330 

Altered OPTION control statement returned by EFSPGM 

OPTION STOPAFT =30,DYNALLOC = 3380,EQUALS 

where: 

STOPAFT = 30 is the original operand and value 
DYNALLOC=3380 is the original operand with a new value 
EQUALS option has been added 

Figure 60. Original and Altered Control Statements 

Prior to Major Call 3, DFSORT sets the following fields in the EFS interface 
parameter list: 

• Action Code = 8 

Major Call 3 is in effect. 

• Informational bit nag 4 = 0 and informational bit nag 5 = 1 

A sort application is in effect. 

• Informational bit nag 7=0 

Fixed-length records are being processed. 

• Record Lengths List values = 80 

The LRECL of the input and output data sets is 80. Because the SORTOUT 
LRECL was not specified, DFSORT defaulted to the SaRTIN LRECL for the 
SORTOUT LRECL. 

• Extract Buffer Offsets List = 0 

No EFS control fields were specified on the SORT control statement. 

DFSORT executes Major Call 3 to EFS program EFSPGM, and EFSPGM sets the 
following fields in the EFS interface parameter list: 

• EFS01 address =0 

Because the SORT control statement has no EFS control fields, the EFS01 
exit routine is not used. 

• EFS02 address=O 

Because no INCLUDE control statement was supplied (with EFS fields), the 
EFS02 exit routine is not used. 

• Message List = 0 

EFSPGM has no messages for DFSORT to print to the message data set. 
General register 15 is set to zero. 

350 DFSORT: Application Programming: Guide 



EFS Program Example 

DFSORT Termination Phase 

Major Call 4 

Major Call 5 

Prior to Major Call 4, DFSORT sets the following fields in the EFS interface 
parameter list: 

• Action Code = 12 

Major Call 4 is in effect. 

DFSORT executes Major Call 4 to EFS program EFSPGM and EFSPGM sets the 
following fields in the EFS interface parameter list: 

• Message List =0 

EFSPGM has no messages for DFSORT to print to the message data set. 

And general register 15 is set to zero. 

Prior to Major Call 5, DFSORT sets the following fields in the EFS interface 
parameter list: 

• Action Code = 16 

Major Call 5 is in effect. 

DFSORT executes Major Call 5 to EFS program EFSPGM and EFSPGM does not 
set any fields in the EFS interface parameter list but sets general register 15 to 
zero. 

Appendix B. Using Extended Function Support (EFS) 351 





Specification/Override of DFSORT Options 

Appendix C. Specification/Override of DFSORT Options 

Listed below are the places in DFSORT where you can specify various options 
that will override the IBM-supplied standard defaults. The sources for the 
options are listed in override order; that is, any option specified in a higher 
place in the list overrides one specified in a lower place. 

JCL Invoked DFSORT 

• DFSPARM data set 
PARM options 

- DEBUG and OPTION control statements 
- Other control statements. 

• EXEC statement PARM options 
• SYSIN data set 

- DEBUG and OPTION control statements 
- Other control statements. 

• Installation macro (ICEMAC JCl). 

Dynamically Invoked DFSORT 

• DFSPARM data set 
PARM options 

- DEBUG and OPTION control statements 
- Other control statements. 

• SORTCNTl data set 
- DEBUG and OPTION control statements 
- Other control statements. 

• Parameter list 
- DEBUG and OPTION control statements 
- Other control statements. 

• Installation macro (ICEMAC INV). 

Note: An EFS program or an installation initialization exit (ICEIEXIT) routine can 
also be used to override options. ICEIEXIT changes override any corresponding 
changes made by an EFS program. 

Main Features of Sources of DFSORT Options 
There are five sources of options in which you can override IBM-supplied 
standard defaults. To help you decide which is most efficient for you, compare 
their main features using the following lists: 

DFSPARM Data Set 
• Use with JCl or dynamic invocation. 
• Overrides all other sources. 
• Accepts all DFSORT program control statements, and all EXEC PARM 

options, including those OPTION statement parameters ignored by SYSIN 
and SORTCNTL. 

• Permits comment statements, blank statements, and remarks. 

Appendix C. Specification/Override of DFSORT Options 353 



Specification/Override of DFSORT Options 

EXEC Statement PARM Options 
• Use with JCL invocation only. 
• Accepts all EXEC PARM options, including those equivalent to the OPTION 

statement parameters ignored by SYSIN and SORTCNTL. 

SORTCNTL Data Set 

SYSIN Data Set 

Parameter lists 

Override Tables 

• Use with dynamic invocation only. 
• Accepts all DFSORT program control statements. 
• Ignores these OPTION statement parameters: EFS, LIST, NOLlST, L1STX, 

NOLlSTX, MSGPRT, MSGDDN, SORTDD, SORTIN, and SORTOUT. 
• Permits comment statements, blank statements, and remarks. 
• Using multiple parameter lists to rename the SORTCNTL data set permits 

different control statements to be used for a program that invokes DFSORT 
more than once. 

• Use with JCL invocation only. 
• Accepts all DFSORT program control statements. 
• Ignores these OPTION statement parameters: EFS, LIST, NOLlST, L1STX, 

NOLlSTX, MSGPRT, MSGDDN, SORTDD, SORTIN, and SORTOUT. 
• Permits comment statements, blank statements, and remarks. 
• Can contain user exit routines in object deck format for link-editing. 

• Use with dynamic invocation only. 
• Extended parameter list accepts aI/ DFSORT program control statements, 

including those OPTION statement parameters ignored by SYSIN and 
SORTCNTL. 

• 24-bit parameter list accepts a subset of DFSORT program control state­
ments. 

• Using multiple parameter lists to rename the SORTCNTL data set permits 
different control statements to be used for a program that invokes DFSORT 
more than once. 

• Can be used to pass the addresses of any exits that your program has 
placed in main storage. 

Note: The extended parameter list can perform a superset of the functions in 
the 24-bit parameter list. 

The following tables show the possible sources of speCification and order of 
override for individual options. 

• The order of override between sources of specification is from left to right. 
A speCification overrides all specifications to its right. 

• The order of override within a source is from top to bottom. A specification 
overrides all specifications below it. 

• EXEC PARM options you can specify in the DFSPARM data set are pre­
ceded by the word U PARM" in the DFSPARM columns of the tables to dis­
tinguish them from control statement options. 

• The Function columns indicate which functions (S = sort, M = merge, or 
C=copy) can use the option. 

354 o FSORT: Application Programming: Guide 



JCL-Invoked DFSORT 

• Although alias names are available for many of the options. they are not 
shown here. 

JCL-Invoked DFSORT 
Table 22 shows where each sort. merge. or copy option may be specified when 
DFSORT is invoked through JCL. 

Appendix C. Specification/Override of DFSORT Options 355 



(,,) 
c.n 
Q) 

o 
~ 
o 
:::0 
:-:I 

» 
" "2.. 
o· 
!!!. 
15· 
:l 

" -. o 
<0 -. 
I\) 

3 
~. 
:l 
If! 
C> 
c: 
a: 
ro 

Table 22 (Page 1 of 4). JCL DFSORT Option Specification/Override 

Specified with DFSPARM Specified with EXEC Specified with SYSIN 
PARM 

NO NO NO 

ALTSEQ CODE NO ALTSEQ CODE 

PARM ARESALL ARESALL OPTION ARESALL 
OPTION ARESALL 

PARM BSAM BSAM DEBUG BSAM 
DEBUG BSAM 

DEBUG NOASSIST NO DEBUG NOASSIST 

DEBUG BUFFERS NO DEBUG BUFFERS 

OPTION CHALTINOCHALT NO OPTION CHALTINOCHALT 

OPTION CHECKINOCHECK NO OPTION CHECKINOCHECK 

PARM CINVINOCINV CINVINOCINV OPTION CINVINOCINV 
OPTION CINVINOCINV 

OPTION COBEXIT NO OPTION COBEXIT 

DEBUG CTRx NO DEBUG CTRx 

DEBUG ABSTP NO DEBUG ABSTP 

DEBUG ESTAEINOESTAE NO DEBUG ESTAEINOESTAE 

PARM DYNALLOC DYNALLOC OPTION DYNALLOC 
OPTION DYNALLOC SORT DYNALLOC 
SORT DYNALLOC 

PARM DYNALLOC DYNALLOC OPTION DYNALLOC 
OPTION DYNALLOC SORT DYNALLOC 
SORT DYNALLOC 

PARM EFS EFS N02 
OPTION EFS 

PARM EQUALSINOEQUALS EQUALSINOEQUALS OPTION EQUALSINOEQUALS 
OPTION EQUALSINOEQUALS SORTIMERGE EQUALSINOEQUALS 
SORTIMERGE EQUALSINOEQUALS 

DEBUG EQUCOUNT NO DEBUG EQUCOUNT 

PARM EXCPVR EXCPVR OPTION EXCPVR 
OPTION EXCPVR 

PARM ABENDINOABEND ABENDINOABEND DEBUG ABENDINOABEND 
DEBUG ABENDINOABEND 

Specified 
with 
ICEMAC 
JCL 

ABCODE 

ALTSEQ 

ARESALL 

NO 

NO 

NO 

CHALT 

CHECK 

CINV 

COBEXIT 

NO 

NO 

ESTAE 

DYNALOCI 

DYNAUTO 

EFS 

EQUALS 

NO 

EXCPVR 

ERET 

Description of Option 

ABEND code 

Alternate sequence 

System storage above 16-megabyte 
virtual 

Force BSAM 

Bypass Sorting Instructions 

Placement of buffers 

CH field sequence 

Record count check 

Control interval access 

COBOL library 

ABEND record count 

Abnormal stop 

ESTAE routine 

Dynamic SORTWKs 

Automatic DYNALLOC 

EFS program specified 

Equal record order 

Equal key count message 

EXCPVR for 110 

Error action 

Func-
tion 

S,M,C 

S,M 

S 

S,M,C 

S 

S 

S,M 

S,M,C 

S,M.C 

S,M.C 

S.M 

S,M,C 

S.M.C 

S 

S 

S,M.C 

S,M 

S 

S,C 

S.M,C 

-~ --

~ 

o 
r 
.!.. 
:J 
< o ,.. 
II) 
Q. 

C 
"11 
t/) 

o 
::u 
-t 



» 
"C -g 
:::J 
Il. ;c. 

n 
en -g 
~. 
::::I 

~ -o· 
:::J 

~ ... ... 
c: 
CD 
o -c 
~ o 
~ 
o 
'g 
o· 
:::J 
III 

w 
(II 
...... 

Table 22 (Page 2 of 4). JCL DFSORT Option Specification/Override 

Specified with DFSPARM Specified with EXEC Specified with SYSIN 
PARM 

NO NO NO 

INCLUDEIOMIT CONO/FORMAT NO INCLUDEIOMIT CONO/FORMAT 

PARM E15=COB E15=COB MODS Exx 
PARM E35=COB E35=COB 
MODS Exx 

NO NO NO 

PARM HIPRMAX HIPRMAX OPTION HIPRMAX 
OPTION HIPRMAX 

NO NO NO 

INREC FIEL.DS NO INREC FIELDS 

OUTREC FIELDS NO OUTREC FIEL.DS 

SORTIMERGEI FIEL.DSIFORMAT NO SORTIMERGE FIEL.DSIFORMAT 

OPTION COpy NO OPTION COPY 
SORTIMERGE FIEL.DS SORTIMERGE FIELDS 

SUM FIELDS/FORMAT NO SUM FIEL.DS/FORMAT 

MERGE FIL.ES NO MERGE FIL.ES 

PARM FILSZ FIL.SZ OPTION FIL.SZIS1ZE 
OPTION FILSZISIZE SORTIMERGE F1LSZISIZE 
SORTIMERGE FILSZISIZE 

OPTION CKPT4 NO OPTION CKPr 
SORTIMERGE CKPT4 SORTIMERGE CKPT4 

RECORD LENGTH NO RECORD LENGTH 

PARM LlSTINOLlST L.ISTINOLIST NOz 
OPTION LlSTINOLlST 

PARM LlSTXINOLlSTX LlSTXINOLlSTX NOz 
OPTION LlSTXINOLlSTX 

NO NO NO 

NO NO NO 

PARM MSGDDN MSGDDN NOz 
OPTION MSGDDN 

NO NO NO 

Specified 
with 
ICEMAC 
JCL 

EXITCK 

NO 

NO 

GENER 

HIPRMAX 

IEXIT 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

IGNCKPT 

NO 

LIST 

L.ISTX 

MAXLIM 

MINLIM 

MSGDDN 

MSGCON 

Description of Option 

E15/E35 return code checking 

IncludelOmit fields 

EXit Exx 
(xx = 11,15-19,31 ,35,37-39, and 61) 

IEBGENER name 

Hipersorting 

ICEIEXIT 

INREC fields 

OUTREC fields 

Control fields 

Copy records 

Sum fields 

Merge input files 

File size 

Checkpoints 

Record lengths 

Print DFSORT control statements' 

Print control statements returned by 
an EFS program' 

MaXimum storage below 16-megabyte 
virtual 6 

Minimum storage 

Alternate message data set 

Write messages on master console 

Func-
lion 

S,M,C 

S,M,C 

S,M,C' 

C 

S 

S,M,C 

S,M,C 

S,M,C 

S,M 

C 

S,M 

M 

S,M 

S,M 

S,M,C 

S,M,C 

S,M,C 

S,M,C 

S,M,C 

S,M,C 

S,M,C 

c:.. o 
r;-
= < o 
~ 
til 
D. 
C 
'TI en 
o 
::u 
-t 



Co) 
U1 co 

o 
~ 
o 
~ 
» 

"C 
"2-
(')" 

~ 

~r 
" 8 ., 
I\) 

3 
3 
:;' 
~ 
G') 
c 
a: 
CD 

Table 22 (Page 3 of 4), JCL DFSORT Option Specification/Override 

Specified with DFSPARM Specified with EXEC Specified with SVSIN 
PARM 

PARM MSGPRT MSGPRTIFLAG N02 
OPTION MSGPRT 

OPTION NOBLKSET NO OPTION NOBLKSET 

NO NO NO 

PARM OUTRELINOOUTREL OUTRELINOOUTREL OPTION NOOUTREL 
OPTION NOOUTREL 

OPTION NOOUTSEC NO OPTION NOOUTSEC 

NO NO NO 

NO NO NO 

PARM RESALL RESALL OPTION RESALL 
OPTION RESALL 

PARM SIZE SIZE OPTION MAINSIZE 
OPTION MAINSIZE 

NO NO NO 

PARM SKIPREC SKIPREC OPTION SKIPREC 
OPTION SKIPREC SORTIMERGE SKIPREC 
SORTIMERGE SKIPREC 

OPTION SORTDD NO N02 

OPTION SORTlN' NO N02 

NO NO NO 

OPTION SORTOUT8 NO N02 

PARM STIMERINOSTIMER STIMERINOSTIMER OPTION NOSTIMER 
OPTION NOSTIMER 

PARM STOP AFT STOPAFT OPTION STOPAFT 
OPTION STOPAFT SORTIMERGE STOPAFT 
SORTIMERGE STOPAFT 

NO NO NO 

NO NO NO 

RECORD TYPE NO RECORD TYPE 

NO NO NO 

Specified 
with 
ICEMAC 
JCL 

MSGPRT 

NO 

NOMSGDD 

OUTREL 

OUTSEC 

OVERRGN 

PARMDDN 

RESALL 

SIZE 

SMF 

NO 

NO 

NO 

SORTLIB 

NO 

STIMER 

NO 

SVC 

TEXIT 

NO 

TMAXLIM 

Description of Option 

Print messages 

Bypass Blockset 

Action when message data set 
missing 

Release SORTOUT space 

SORTOUT secondary allocation 

Storage over REGION 

Alternate DDNAME for DFSPARM 

System reserved storage6 

Storage 

SMF records 

Skip records 

DDNAME prefix 

Alternate input DDNAME 

Conventional module library 

Alternate output DDNAME 

Use of STIMER 

Input limit 

DFSORT SVC Information 

ICETEXIT 

Record format 

Maximum storage above and below 
16-megabyte virtual 6 

Func-
lion 

S,M,C 

S,M 

S,M,C 

S,M,C 

S,M,C 

S,M,C 

S,M,C 

S,M,C 

S,M,C 

S,M,C 

S,C 

S,M,C 

S,C 

S,M 

S,M,C 

S,M,C 

S,C 

S,M,C 

S,M,C 

S,M,C 

S 

I 
I 
, 

C­
O 
r;-
=­< o 
~ 
(I) 
a. 
C 
"T1 
en o 
::a 
-I 



Table 22 (Page 4 of 4). JCL DFSORT Option Specification/Override 

Specified with OFSPARM Specified with EXEC Specified with SYSIN Specified Description of Option Func-
PARM with lion 

ICEMAC 
JCL 

OPTION VERIFYINOVERIFY NO OPTION VERIFYINOVERIFY VERIFY Sequence check S,M 

NO NO NO VIO SORTWK virtual 110 S 

OPTION VLSHRTINOVLSHRT NO OPTION VLSHRTINOVLSHRT VLSHRT Variable records do not contain all S,M 
specified control fields 

PARM WRKRELINOWRKREL WRKRELINOWRKREL OPTION NOWRKREL WRKREL Release SORTWK space S 
OPTION NOWRKREL 

PARM WRKSECINOWRKSEC WRKSECINOWRKSEC OPTION NOWRKSEC WRKSEC SORTWK secondary allocation S 
OPTION NOWRKSEC 

NO NO NO ZDPRINT ZD SUM results S,M 

» 
"0 
"0 
<D 
::l 
Q. 

x' 
r> 
C/I 
"0 
<D 
g. 
::n 
n 
~ o· 
::l 
(5 
< 
<D ., ., 
a: 
<D 
0 Co. -0 n 
"TI r C/I 
0 :::I 
::0 < -I 0 
0 ~ 

-g. CD a. o· c ::l 
fII ." 

tJ) 

Co) 0 
(11 ;U 
U) -I 



Dynamically-Invoked DFSORT with an Extended Parameter List 

Notes to Table 22 on page 356: 

2 

3 

4 

s 

6 

7 

8 

Does not request dynamic allocation; only supplies defaults. 
Not used in SYSIN. 
All functions do not apply to all exits. See Figure 28 on page 186 
and Figure 29 on page 187 for applicable exits. 
Not used if Blockset is selected and IGNCKPT=YES was specified. 
Not used if MSGPRT = NONE is in effect; in this case control state-
ments are not printed. 
Not used unless MAINSIZE = MAX is in effect. 
Overrides SORTDD for the SORT input DDNAME. 
Overrides SORTDD for the SORT output DDNAME. 

Dynamically-Invoked DFSORT with the Extended Parameter List 
Table 23 shows where each sort, merge, or copy option may be specified when 
DFSORT is dynamically invoked and an extended parameter list is passed to it. 

Control statements (other than DEBUG and OPTION) you specify in DFSPARM 
completely override corresponding control statements specified in any other 
source. DEBUG, OPTION, and EXEC PARM options selectively override corre­
sponding options in control statements specified in any other source. 

Control statements (other than DEBUG and OPTION) specified in the SORTCNTL 
data set completely override corresponding control statements specified 
through the extended parameter list. DEBUG and OPTION options selectively 
override corresponding options in control statements specified in any other 
source. 

SORT and MERGE and INCLUDE and OMIT, are considered to be corresponding 
control statements. 

360 o FSORT: Application Programming: Guide 



}> 
't) 
't) 

CD 
:J 
Q. 
;C. 

o 
CJ) 
't) 

~. 
::!I 
o 
!!.:. o· 
:J o 
~ ., ., 
a: 
CD 
o -o 
...... 
CJ) 

o 
~ 
o 
"E. o· 
:J 
If> 

Co) 
en -. 

Table 23 (Page 1 of 5). Extended Parameter List DFSORT Option Specification/Override 

Specified with DFSPARM Specified with SORTCNTL Specified with Extended Parameter 
List 

NO NO NO 

ALTSEQ CODE ALTSEQ CODE Offset 16 entry 
ALTSEQ CODE 

PARM ARESALL OPTION ARESALL OPTION ARESALL 
OPTION ARESALL 

OPTION ARESINV OPTION ARESINV OPTION ARESINV 

PARM BSAM DEBUG BSAM DEBUG BSAM 
DEBUG BSAM 

DEBUG NOASSIST DEBUG NOASSIST DEBUG NOASSIST 

DEBUG BUFFERS DEBUG BUFFERS DEBUG BUFFERS 

OPTION CHALTINOCHALT OPTION CHAL TINOCHAL T OPTION CHALTINOCHALT 

OPTION CHECKINOCHECK OPTION CHECKINOCHECK OPTION CHECKINOCHECK 

PARM CINVINOCINV OPTION CINVINOCINV OPTION CINVINOCINV 
OPTION CINVINOCINV 

OPTION COBEXIT OPTION COBEXIT OPTION COBEXIT 

DEBUG CTRx DEBUG CTRx DEBUG CTRx 

DEBUG ABSTP DEBUG ABSTP DEBUG ABSTP 

DEBUG ESTAEINOESTAE DEBUG ESTAEINOESTAE DEBUG ESTAEINOESTAE 

PARM DYNALLOC OPTION DYNALLOC OPTION DYNALLOC 
OPTION DYNALLOC SORT DYNALLOC2 SORT DYNALLOC 
SORT DYNALLOC 

PARM DYNALLOC OPTION DYNALLOC OPTION DYNALLOC 
OPTION DYNALLOC SORT DYNALLOC SORT DYNALLOC 
SORT DYNALLOC 

PARM EFS NO J OPTION EFS 
OPTION EFS 

PARM EQUALSINOEQUALS OPTION EQUALSINOEQUALS OPTION EQUALSINOEQUALS 
OPTION EQUALSINOEQUALS SORTIMERGE EQUALSINOEQUALS2 SORTIMERGE EQUALSINOEQUALS 
SaRTI MERGE EQUALSINOEQUALS 

-- -

Specified Description of Oplion 
with 
ICEMAC 
INV 

ABCODE ABEND code 

ALTSEQ Alternate sequence 

ARESALL System storage above 
16-megabyte virtual 

ARESINV Storage above 
16-megabyte virtual for 
invoking program 

NO Force BSAM 

NO Bypass Sorting 
Instructions 

NO Placement of buffers 

CHALT CH field sequence 

CHECK Record count check 

CINV Control interval access 

COBEXIT COBOL library 

NO ABEND record count 

NO Abnormal stop 

ESTAE EST AE routine 

DYNALOC· Dynamic SORTWKs 

DYNAUTO Automatic DYNALLOC 

EFS EFS program specified 

EQUALS Equal record order 

Func-
lion 

S,M,C 

S,M 

S 

S 

S,M,C 

S 

S 

S,M 

S,M,C 

S,M,C 

S,M,C 

S,M 

S,M,C 

S,M,C 

S 

S 

S,M,C 

S,M 

C 
'< 
~ 
CI 
3 
g' 
i" 
~ 
< o 
;II;' 

[ 
C 
." 
(() 

o 
::0 ..... 
=e 
;::; 
::r 
CI 
~ 

m 
)( -CD :s 
Q. 

[ 
"'D 
CI 

'" CI 
3 
~ 
CD 

'" C 
~ 



Co) 
en 
I\) 

o 
~ o 
~ 
» 

"C 
"2-
0' 
~ 

~r 
"'U 

c8 ., 
OJ 
3 
3 
5' 

I!=! 
C) 
c c: 
(I) 

Table 23 (Page 2 of 5), Extended Parameter List DFSORT Option Specification/Override 

Specified with DFSPARM Specified with SORTCNTL Specified with Extended Parameter 
Ust 

DEBUG EQUCOUNT DEBUG EQUCOUNT DEBUG EQUCOUNT 

PARM EXCPVR OPTION EXCPVR OPTION EXCPVR 
OPTION EXCPVR 

PARM ABENDINOABEND DEBUG ABENDINOABEND DEBUG ABENDINOABEND 
DEBUG ABENDINOABEND 

NO NO NO 

INCLUDEIOMIT COND/FORMAT INCLUDEIOMIT COND/FORMAT INCLUDEIOMIT COND/FORMAT 

PARM E1S=COB MODS E1S4 Offset 4 entry4 

MODS E1S4 MODS E1S4 

MODS E184 MODS E184 Offset 24 entry4 

MODS E184 

NO NO Ollset 4 entry 

PARM E35=COB MODS E354 Ollset 8 entry4 

MODS E354 MODS E354 

MODS E394 MODS E394 Ollset 28 entry4 

MODS E394 

MODS Exx MODS Exx MODS Exx 

NO NO NO 

PARM .HIPRMAX OPTION HIPRMAX OPTION HIPRMAX 
OPTION HIPRMAX 

NO NO NO 

INREC FIELDS INREC FIELDS INREC FIELDS 

OUTREC FIELDS OUTREC FIELDS OUTREC FIELDS 

SORTIMERGE FIELDS/FORMAT SORTIMERGE FIELDS/FORMAT SORTIMERGE FIELDS/FORMAT 

OPTION COPY OPTION COPY OPTION COPY 
SORTIMERGE FIELDS SORTIMERGE FIELDS 2 SORTIMERGE FIELDS 

SUM FIELDS/FORMAT SUM FIELDS/FORMAT SUM FIELDS/FORMAT 

MERGE FILES MERGE FILES MERGE FILES 
--- -- --------- ---- --

Specified Description of Oplion 
with 
ICEMAC 
INV 

NO Equal key count 
message 

EXCPVR EXCPVR for 110 

ERET Error action 

EXITCK E1S/E35 return code 
checking 

NO IncludelOmit fields 

NO Exit E1S 

NO Exit E18 

NO Exit E32 

NO Exit E35 

NO Exit E39 

NO Exit Exx 
(xx= 11,16.17.19. 
31.37,38, and 61) 

GENER IEBGENER name 

HIPRMAX Hipersorting 

IEXIT ICEIEXIT 

NO INREC fields 

NO OUTREC fields 

NO Control fields 

NO Copy records 

NO Sum fields 

NO Merge input files 

Func-
tion 

S 

S,C 

S,M,C 

S,M,C 

S,M,C 

S,C 

S 

M 

S,M,C 

S,M,C 

S,M,Cs 

C 

S 

S.M.C 

S,M.C 

S,M.C 

S.M 

C 

S,M 

M 

I 

I 
, 

i 

I 

I 

I 

I 

C 
'< 
:::J 
I» 
3 
n' 
I» 

~ 
:::J 
< o 
~ 
CD c.. 
C 
'T1 
C/) 

o 
;U 
-t 
~ .. 
:::J' 
I» 
:::J 
m 
)( .... 
CD 
:::J 
c.. 
~ 
'V 
I» 
'"I 
I» 
3 
!. 
CD 
'"I 

r­
(ii' .... 



» 
"0 
"0 

CI) 
J 
9: 
x 

o 
en 

"0 
CI) 

~, 
=> 
n 
!!l-
0' 
J o 
< 
CI) ..., ..., 
a: 
CD 

sa. 
o 
'T\ en o 
~ 
o 
"E­
o' 
J 
1/1 

Co) 
en 
Co) 

Table 23 (Page 3 of 5), Extended Parameter List DFSORT Option Specification/Override 

Specified with DFSPARM Specified with SORTCNTL Specified with E)(tended Parameter 
List 

PARM FILSZ OPTION FllSZISIZE OPTION FllSZISIZE 
OPTION FILSZISIZE SORTIMERGE FILSZISIZE2 SORTIMERGE FllSZISIZE 
SORTIMERGE FllSZISIZE 

OPTION CKPTo OPTION CKPTb OPTION CKPT6 

SORTIMERGE CKPT" SORTIMERGE CKPT2 ,6 SORTIMERGE CKPT6 

RECORD LENGTH RECORD LENGTH RECORD LENGTH 

PARM L1STINOLIST N03 OPTION L1STINOLIST 
OPTION LlSTINOLlST 

PARM L1STXINOLlSTX NOl OPTION L1STXINOLlSTX 
OPTION LlSTXINOLlSTX 

NO NO NO 

NO NO NO 

PARM MSGDDN NOl OPTION MSGDDN 
OPTION MSGDDN 

NO NO NO 

PARM MSGPRT NOl OPTION MSGPRT 
OPTION MSGPRT 

OPTION NOBLKSET OPTION NOBLKSET OPTION NOBLKSET 

NO NO NO 

PARM OUTRELINOOUTREL OPTION NOOUTREL OPTION NOOUTREL 
OPTION NOOUTREL 

OPTION NOOUTSEC OPTION NOOUTSEC OPTION NOOUTSEC 

NO NO NO 

NO NO NO 

PARM RESAlL OPTION RESAlL OPTION RESALl 
OPTION RESALl 

~ .. ---~ 

Specified Description of Option 
with 
ICEMAC 
INV 

NO File size 

IGNCKPT Checkpoints 

NO Record lengths 

LIST Print DFSORT control 
statements 7 

L1STX P ri nt control state-
ments returned by an 
EFS program 7 

MAXLIM Maximum storage 
below 16-megabyte 
virtual S 

MINUM Minimum storage 

MSGDDN Alternate message 
DDNAME 

MSGCON Write messages on 
master console 

MSGPRT Print messages 

NO Bypass Blockset 

NOMSGDD Action when message 
data set missing 

OUTREL Release SORTOUT 
space 

OUTSEC SORTOUT secondary 
allocation 

OVERRGN Storage over REGION 

PARMDDN Alternate DDNAME for 
DFSPARM 

RESALL System reserved 
storageS 

I 
Func- I 

I tion 
I 

S,M 

S,M 

S,M,C 

S,M,C 

S,M,C 

S,M,C 

S,M,C 

S,M,C 

S,M,C 

S,M,C 

S,M 

S,M,C 

S,M,C 

S,M,C 

S,M,C 

S,M,C 

S,M,C 

o 
'< 
::J 
CI 

3 
C=i" 
CI 

'"f 
::J 
< o 
~ 
I'D 
c.. 
C 
"11 
(J) 

o 
:;0 
-I 

:e 
;; 
::T 
CI 
::J 

m 
>C -I'D 
::J 
c.. 
I'D 
c.. 
'tI 
CI 
"'I 
CI 

3 
I'D -I'D 
"'I 

C 
VI -



w 
G) 
~ 

o 

~ ::u 
:-:I 

» 
'tJ 
"2-
(i" 
!. 
~r 

I 
iil 
3 
3 
S' 
~ 
C') 
c a: 
CD 

Table 23 (Page 4 of 5), Extended Parameter List DFSORT Option Specification/Override 

Specified with DFSPARM Specified with SORTCNTL Specified with Extended Parameter 
Ust 

OPTION RESINV OPTION RESINV OPTION RESINV 

PARM SIZE OPTION MAINSIZE OPTION MAINSIZE 
OPTION MAINSIZE 

NO NO NO 

PARM SKIPREC OPTION SKIPREC OPTION SKIPREC 
OPTION SKIPREC SORTIMERGE SKIPREC2 SORTIMERGE SKIPREC 
SORTIMERGE SKIPREC 

OPTION SORTDD N03 OPTION SORTDD 

OPTION SORTIN9 N03 OPTION SORTIN9 

NO NO NO 

OPTION SORTOUT 1O N03 OPTION SORTOUT1O 

PARM STIMERINOSTIMER OPTION NOSTIMER OPTION NOSTIMER 
OPTION NOSTIMER 

PARM STOP AFT OPTION STOPAFT OPTION STOPAFT 
OPTION STOPAFT SORTIMERGE STOPAFT2 SORTIMERGE STOPAFT 
SORTIMERGE STOPAFT 

NO NO NO 

NO NO NO 

RECORD TYPE RECORD TYPE RECORD TYPE 

NO NO NO 

OPTION VERIFYINOVERIFY OPTION VERIFYINOVERIFY OPTION VERIFYINOVERIFY 

NO NO NO 

OPTION VLSHRTINOVLSHRT OPTION VLSHRTINOVLSHRT OPTION VLSHRTINOVLSHRT 

PARM WRKRELINOWRKREL OPTION NOWRKREL OPTION NOWRKREL 
OPTION NOWRKREL 

~- - ~ 

Specified Description of Option 
with 
ICEMAC 
INV 

RESINV Program reserved 
storageS 

SIZE Storage 

SMF SMF records 

NO Skip records 

NO DDNAME prefix 

NO Alternate Input 
DDNAME 

SORTLIB Conventional mOdule 
library 

NO Alternate output 
DDNAME 

STIMER Use of STIMER 

NO Input limit 

SVC DFSORT SVC informa-
tlon 

TEXIT ICETEXIT 

NO Record format 

TMAXLIM Maximum storage 
above and below 
16-megabyte virtual S 

VERIFY Sequence check 

VIO SORTWK virtual 110 

VLSHRT Variable records do 
not contain all speci-
fied control fields 

WRKREL Release SORTWK 
space 

----- - -

Func-
tlon 

S,M,C 

S,M,C 

S,M,C 

S,C 

S,M,C 

S,C 

S,M 

S,M,C 

S,M,C 

S,C 

S,M,C 

S,M,C 

S,M,C 

S 

S,M 

S 

S,M 

S 

o 
'< :r 
I» 
3 

et 
i 
:r 
C5 
~ 
CD a. 
o ,.. 
tn o 
~ 
!. -=r 
I» 
:r 
m 
~ 
CD 
:r 
a. 
!. 
"'a 
I» ., 
I» 
3 
!. 
CD ., 
r-
i 



Table 23 (Page 5 of 5). Extended Parameter List DFSORT Option Specification/Override 

Specified with DFSPARM Specified with SORTCNTL Specified with Extended Parameter Specified Description of Option Funco 

Ust with lion 
ICEMAC 
INV 

PARM WRKSECINOWRKSEC OPTION NOWRKSEC OPTION NOWRKSEC WRKSEC SORTWK secondary S 
OPTION NOWRKSEC allocation 

NO NO NO ZOPRINT ZO SUM results S,M 
--

c 
'< 
~ 
I» 
3 
n 
!. 

» '1 
"tJ 
"tJ 
CD 

:i' 
< ;:, 

Co x· 
r> 

0 
~ 

&. 
lh 

"tJ 
CD 
0 
:ii 
0 
I\) 

c ,.. 
en 
0 

~ 
g. ~ 
;:, 

2 
CD .., 

;:; 
:T 
I» 
~ .., 

c: 
CD 
a .... 
0 
TI 
lh 
0 

m 
~ 
CD 
~ 
Co a. 

::u 
-I 

-a 
I» 

~ 
c)" 
;:, 
II> 

~ 
I» 
3 
CD -CD 
~ 

(0) r 
(7) 
en iii" -



Dynamically-Invoked DFSORT with 24-Bit List 

Notes to Table 23 on page 361: 

1. 

3 

4 

s 

6 

7 

8 

9 

10 

Does not request dynamic allocation; only supplies defaults. 
Does not override corresponding option in an OPTION statement specified 
via the extended parameter list. 
Not used in SORTCNTL. 
DFSORT terminates if the exit is specified via the parameter list entry and 
the exit is specified in a MODS statement. 
All functions do not apply to all exits. See Figure 28 on page 186 and 
Figure 29 on page 187 for applicable exits. 
Not used if Blockset is selected and IGNCKPT=YES was specified. 
Not used if MSGPRT = NONE is in effect; in this case control statements 
are not printed. 
Not used unless MAINSIZE = MAX is in effect. 
Overrides SORTDD for the sort input DDNAME. 
Overrides SORTDD for the sort output DDNAME. 

Dynamically-Invoked DFSORT with the 24-Bit Parameter List 
Table 24 shows where each sort, merge, or copy option may be specified when 
DFSORT is dynamically invoked and a 24-bit parameter list is passed to it. 

Control statements (other than DEBUG and OPTION) you specify in DFSPARM 
completely override corresponding control statements specified in any other 
source. DEBUG, OPTION, and EXEC PARM options selectively override corre­
sponding options in control statements in any other source. 

Control statements (other than DEBUG) specified in the SORTCNTL data set 
completely override corresponding control statements specified through the 
24-bit parameter list. DEBUG options selectively override corresponding 
options in control statements specified in any other source. 

SORT and MERGE and INCLUDE and OMIT, are considered to be corresponding 
control statements. 

366 DFSORT: Application Programming: Guide 



~ 
'tJ 

~ 
::J 
a. ;C. 

n 
en 
~ 
~ 
n 
~ o· 
a 
< 
CD .., .., 
c: 
CD 

a 
o 
~ 
o 
~ 
o 
"S 
g' 
1/1 

Co) 
c:n ..... 

Table 24 (Page 1 of 4). 24-Bit List DFSORT Option Specification/Override 

Specified with DFSPARM Specified with SORTCNTL Specified with 24-Bit Ust 

NO NO NO 

ALTSEQCODE ALTSEQ CODE X'F6' entry 
ALTSEQ CODE 

PARM ARESALL OPTION ARESALL NO 
OPTION ARESALL 

OPTION ARESINV OPTION ARESINV NO 

PARM BSAM DEBUG BSAM DEBUG BSAM 
DEBUG BSAM 

DEBUG NOASSIST DEBUG NOASSIST DEBUG NOASSIST 

DEBUG BUFFERS DEBUG BUFFERS DEBUG BUFFERS 

OPTION CHALTINOCHALT OPTION CHALTINOCHALT NO 

OPTION CHECKINOCHECK OPTION CHECKINOCHECK NO 

PARM CINVINOCINV OPTION CINVINOCINV NO 
OPTION CINVINOCINV 

OPTION COBEXIT OPTION COBEXIT NO 

DEBUG CTRx DEBUG CTRx DEBUG CTRx 

DEBUG ABSTP DEBUG ABSTP DEBUG ABSTP 

DEBUG ESTAEINOESTAE DEBUG ESTAEINOESTAE DEBUG ESTAEINOESTAE 

PARM DYNALLOC OPTION DYNALLOC SORT DYNALLOC 
OPTION DYNALLOC SORT DYNALLOC 
SORT DYNALLOC 

PARM DYNALLOC OPTION DYNALLOC SORT DYNALLOC 
OPTION DYNALLOC SORT DYNALLOC 
SORT DYNALLOC 

PARM EFS N02 NO 
OPTION EFS 

PARM EQUALSINOEQUALS OPTION EQUALS I NOEQUALS SORTIMERGE EQUALSINOEQUALS 
OPTION EQUALSINOEQUALS SORTIMERGE EQUALSINOEQUALS 
SORTIMERGE EQUALSINOEQUALS 

----

Specified Description of Option 
with 
ICEMAC 
INV 

ABCODE ABEND code 

ALTSEQ Alternate sequence 

ARESALL System storage above 
16-megabyte virtual 

ARESINV Storage above 
16-megabyte virtual for 
invoking program 

NO Force BSAM 

NO Bypass Sorting 
Instructions 

NO Placement of buffers 

CHALT CH field sequence 

CHECK Record count check 

CINV Control interval access 

COBEXIT COBOL library 

NO ABEND record count 

NO Abnormal stop 

ESTAE ESTAE routine 

DYNALOC· Dynamic SORTWKs 

DYNAUTO Automatic DYNALLOC 

EFS EFS program specified 

EQUALS Equal record order 

Func-
tion 

S,M,C 

S,M 

S 

S 

S,M.C 

S 

S 

S.M 

S,M.C 

S,M.C 

S.M,C 

S.M 

S,M.C 

S,M.C 

S 

S 

S.M.C 

S.M 

C 
'< :s 
DI 
3 gO 

'1 
:J 

~ 
[ 
C 
"TI 
C/) 

o 
:::u 
-I 
:e 
::;: 
:so 

~ 
ID 
::;: 
r­
iii" -



w 
Q) 
Q) 

o 
" (J) 

o 
~ 
~ 

"'C 
"2-
i1" 
!!!. o· 
::J 

"t:J 

~ ., 
III 
3 
3 
:;' 

<A 
C> 
!:. 
c. 
(I) 

Table 24 (Page 2 of 4). 24-Bit List DFSORT Option Specification/Override 

Specified with DFSPARM Specified with SORTCNTL Specified with 24-Bit Ust 

DEBUG EQUCOUNT DEBUG EQUCOUNT DEBUG EQUCOUNT 

PARM EXCPVR OPTION EXCPVR NO 
OPTION EXCPVR 

PARM ABENDINOABEND DEBUG ABENDINOABEND DEBUG ABENDINOABEND 
DEBUG ABENDINOABEND 

NO NO NO 

INCLUDEIOMIT COND/FORMAT INCLUDEIOMIT COND/FORMAT NO 

PARM E15=COB MODS E153 Offset 18 entry J 
MOOS E15J MODS E15 3 

NO NO Ollset 18 entry 

PARM E35=COB MODS E35J Offset 22 entryJ 
MODS E35J MODS E353 

MODS Exx MODS Exx MODS Exx 

PARM HIPRMAX OPTION HIPRMAX NO 
OPTION HIPRMAX 

NO NO NO 

NO NO NO 

INREC FIELDS INREC FIELDS NO 

OUTREC FIELDS OUTREC FIELDS NO 

SORTIMERGE FIELDS/FORMAT SORTIMERGE FIELDS/FORMAT SORTIMERGE FIELDS/FORMAT 

OPTION COPY OPTION COpy SORTIMERGE FIELDS 
SORTIMERGE FIELDS SORTIMERGE FIELDS 

SUM FIELDS/FORMAT SUM FIELDS/FORMAT NO 

MERGE FILES MERGE FILES X'04' entry 
MERGE FILES 

PARM FILSZ OPTION FILSZISIZE SORTIMERGE FILSZISIZE 
OPTION FILSZISIZE SORTIMERGE FILSZISIZE 
SORTIMERGE FILSZISIZE 

OPTION CKPT 5 OPTION CKPT 5 SORTIMERGE CKPT 5 

SORTIMERGE CKPT 5 SORTIMERGE CKPT s 

Specified Description of Option 
with 
ICEMAC 
INV 

NO Equal Key count 
message 

EXCPVR EXCPVR for 1/0 

ERET Error action 

EXITCK E15/E35 return code 
checKing 

NO IncludelOmit fields 

NO Exit E15 

NO Exit E32 

NO Exit E35 

NO Exit Exx (xx=11,16-19, 
31,37-39, and 61) 

HIPRMAX Hipersorting 

GENER IEBGENER name 

IEXIT ICEIEXIT 

NO INREC fields 

NO OUTREC fields 

NO Control fields 

NO Copy records 

NO Sum fields 

NO Merge Input files 

NO File size 

IGNCKPT ChecKpoints 

Func-
tion 

S 

S,C 

S,M,C 

S,M,C 

S,M,C 

S,C 

M 

S,M,C 

S,M,C4 

S 

C 

S,M,C 

S,M,C 

S,M,C 

S,M,C 

C 

S,M 

M 

S,M 

S,M 

I 

I 

, 

I 

C 
'< 
::J 
I» 
3 cr 
I» 

"'f 
::J 
< o 
7:' 

a. 
C 
"n en 
o 
;0 
-t 
=e 
;:;: 
:r 
N 
of" 
m 
;:;: 

C 
III -



}> 
"tI 
"tI 
(1) 
~ 
Co ;c. 

r> 
(f) 

al 
n 
;j 
n 
I\) 
::t. 
o 
~ 

~ ., 
~. 
Co 
(1) 

o -o 
~ 
o 
~ 
o 
"g. 
o 
~ 
II) 

Co) 
CD 
CD 

Table 24 (Page 3 of 4). 24-Bit Ust DFSORT Option SpecificationfOverride 

Specified with DFSPARM Specified with SORTCNTL Specified with 24·8it Ust 

RECORD LENGTH RECORD LENGTH RECORD LENGTH 

PARM LlSTINOLIST NOz NO 
OPTION LlSTINOLIST 

PARM LlSTXINOLlSTX NOz NO 
OPTION LlSTXINOllSTX 

NO NO NO 

NO NO NO 

PARM MSGDDN NOz X'03' entry 
OPTION MSGDDN 

NO NO NO 

PARM MSGPRT NOz X'FF' entry 
OPTION MSGPRT 

OPTION NOBLKSET OPTION NOBLKSET NO 

NO NO NO 

PARM OUTRELINOOUTREL OPTION NOOUTREL NO 
OPTION NOOUTREL 

OPTION NOOUTSEC OPTION NOOUTSEC NO 

NO NO NO 

NO NO NO 

PARM RESALL OPTION RESALL NO 
OPTION RESALL 

OPTION RESINV OPTION RESINV X'01' entry 

PARM SIZE OPTION MAINSIZE X'OO' entry 
OPTION MAINSIZE 

NO NO NO 

Specified Description of Option 
with 
ICEMAC 
INV 

NO Record lengths 

LIST Print DFSORT control 
statements6 

lISTX Print control state· 
ments returned by an 
EFS program6 

MAXLIM Maximum storage 
below 16·megabyte 
virtual? 

MINLIM Minimum storage 

MSGDDN Alternate message 
DDNAME 

MSGCON Write messages on 
master console 

MSGPRT Print messages 

NO Bypass Blockset 

NOMSGDD Action when message 
data set missing 

OUTREL Release SORTOUT 
space 

OUTSEC SORTOUT secondary 
allocation 

OVERRGN Storage over REGION 

PARMDDN Alternate DDNAME for 
DFSPARM 

RESALL System reserved 
storage? 

RESINV Program reserved 
storage? 

SIZE Storage 

SMF SMF records 

Func-
lion 

S,M,C 

S,M,C 

S,M,C 

S,M,C 

S,M,C 

S,M,C 

S,M,C 

S,M,C 

S,M 

S,M,C 

S,M,C 

S,M,C 

S,M,C 

S,M,C 

S,M,C 

S,M,C 

S,M,C 

S,M,C 

i 

I 

C 
'< 
::J 
D) 

3 
c:r 
D) 

"f 
::J 
< o 
~ 

a. 
c 
"TI 
en o 
::a .... 
=E 
;:;: 
=r 

~ 
UJ 
::;: 
r 
i 



Co) ..... 
o 

o 
~ o 
~ 
» 
"0 
1!. 
cr 
~ 
cS" 
::J 

-0 .... o 
CO .... 
I\) 

3 
~. 
::J 

C!=! 
C) 
c 

~ 

Table 24 (Page 4 of 4). 24-Bit List DFSORT Option Specification/Override 

specified wilh DFSPARM Specified with SORTCNTl Specified wilh 24-Bil Usl 

PARM SKIPREC OPTION SKIPREC SORTIMERGE SKIPREC 
OPTION SKIPREC SORTIMERGE SKIPREC 
SORTIMERGE SKIPREC 

OPTION SORTDD N02 Prefix entry 

OPTION SORTIN s N02 NO 

NO NO NO 

OPTION SORTOUT" N02 NO 

PARM STIMERINOSTIMER OPTION NOSTIMER NO 
OPTION NOSTIMER 

PARM STOPAFT OPTION STOPAFT SORTIMERGE STOPAFT 
SORTIMERGE STOPAFT SORTIMERGE STOPAFT 
OPTION STOPAFT 

NO NO NO 

NO NO NO 

RECORD TYPE RECORD TYPE RECORD TYPE 

NO NO NO 

OPTION VERIFYINOVERIFY OPTION VERIFYINOVERIFY NO 

NO NO NO 

OPTION VLSHRTINOVLSHRT OPTION VLSHRTINOVLSHRT X'FD' entry 

PARM WRKRELINOWRKREL OPTION NOWRKREL NO 
OPTION NOWRKREL 

PARM WRKSECjNOWRKSEC OPTION NOWRKSEC NO 
OPTION NOWRKSEC 

NO NO NO 

Specified Description of Option 
with 
ICEMAC 
INV 

NO Skip records 

NO DDNAME prefix 

NO Alternate input 
DDNAME 

SORTLIB Conventional module 
library 

NO Alternate output 
DDNAME 

STIMER Use of STIMER 

NO Input limit 

SVC DFSORT SVC informa-
tlon 

TEXIT ICETEXIT 

NO Record format 

TMAXLIM Maximum storage 
above and below 
16-megabyte virtual' 

VERIFY Sequence check 

VIO SORTWK virtual 110 

VLSHRT Variable records do 
not contain all speci-
fied control fields 

WRKREL Release SORTWK 
space 

WRKSEC SORTWK secondary 
allocation 

ZDPRINT ZD SUM results 

Func-
tion 

S,C 

S,M,C 

S,C 

S,M 

S,M,C 

S,M,C 

S,C 

S,M,C 

S,M,C 

S,M,C 

S 

S,M 

S 

S,M 

S 

S 

S,M 

, 

I 
I 

I 

C 
'< 
::I 
I» 
3 
c;" 
I» --< 
.!.. 
::I 
< o 
~ 
(D 
c.. 
C 
"T1 
rJ) 

o 
:::u 
-I 

!. -::r 
~ 
I 

m 
::;: 

c 
UI -



Dynamically-Invoked DFSORT with 24-Bit List 

Notes to Table 24 on page 367: 

2 

3 

4 

s 
6 

7 

8 

9 

Does not request dynamic allocation; only supplies defaults. 
Not used in SORTCNTL. 
DFSORT terminates if the exit is specified via the parameter list 
entry and the exit is specified in a MODS statement. 
All functions do not apply to all exits. See Figure 28 on page 186 
and Figure 29 on page 187 for applicable exits. 
Not used if Blockset is selected and IGNCKPT=YES was specified. 
Not used if MSGPRT=NONE or MSGPRT=CRITICAL is in effect; in 
this case control statements are not printed. 
Not used unless MAINSIZE = MAX is in effect. 
Overrides SORTDD for the sort input DDNAME. 
Overrides SORTDD for the sort output DDNAME. 

Appendix C. Specification/Override of DFSORT Options 371 



:,:.; . ... 



Data Format Examples 

Appendix D. Data Format Examples 

The format descriptions refer to the assembled data formats as used with IBM 
System/370. If. for example. a data variable is declared in PUI as FIXED 
DECIMAL, it is the compiled format of the variable that must be given in the "f' 
field of the SORT control statement, not the PUI declared format. In this case, 
the 'f' field would be PO (packed decimal) because the PUI compiler converts 
fixed decimal to packed decimal form. 

Format Description 

CH (character EBCDIC, unsigned). Each character is represented by its 
8-bit EBCDIC code. 

Example: AB7 becomes 
C1 C2 F7 Hexadecimal 

11000001 1100001011110111 Binary 

ZD (zoned decimal, signed). Each digit of the decimal number is con­
verted into its 8-bit EBCDIC representation. The sign indicator 
replaces the first four bits of the low order byte of the number. 

Example: -247 becomes 
2 4 - 7 Decimal 
F2 F4 07 Hexadecimal 

1111001011110100 11010111 Binary 
The number + 247 becomes 

F2 F4 C7 
111100101111010011000111 

PO (packed decimal, signed). Each digit of the decimal number is con­
verted into its 4-bit binary equivalent. The sign indicator is put into 
the rightmost four bits of the number. 

Example: -247 becomes 
2 4 7 - Decimal 

24 70 Hexadecimal 
00100100 01111101 Binary 

The number +247 becomes 247C in hexadecimal. 

FI (fixed point, signed). The complete number is represented by its 
binary equivalent in either halfword or fullword format. The sign 
indicator is placed in the most Significant bit position. 

o for + or 1 for -. Negative numbers are in 2's complement 
form. 

Example: + 247 becomes in halfword form 
ooF7 Hexadecimal 

0000000011110111 Binary 
The number -247 becomes 

FF09 Hexadecimal 

BI (binary unsigned). Any bit pattern. 

Appendix D. Data Format Examples 373 



Data Format Examples 

Format Description 

FL (floating point, signed). The specified number is in the two-part 
format of character and fraction with the sign indicator in bit posi­
tion O. 

Example: + 247 becomes 
o 1000010 111101110000000 ....... 
+ chara. fraction 
-247 is identical, except that the sign bit is 
changed to 1. 

AC (character ASCII, unsigned). This is similar to format CH but the 
characters are represented with ASCII code. 

Example: AB7 becomes 
41 42 37 Hexadecimal 

01000001 0100001000110111 Binary (ASCII code) 

CSL (signed number, leading separate sign). This format refers to 
decimal data as punched into cards, and then assembled into 
EBCDIC code. 

Example: + 247 punched in a card becomes 
+ 2 4 7 Punched numeric data 
4E F2 F4 F7 Hexadecimal 

01001110111100101111010011110111 Binary EBCDIC code 
-247 becomes 

- 2 4 7 Punched numeric data 
60 F2 F4 F7 Hexadecimal 

01100000 11110010 11110100 11110111 Binary EBCDIC code 

CST (signed numeric, trailing separate sign). This has the same repre­
sentation as the CSL format, except that the sign indicator is 
punched after the number. 

Example: 247 + punched on the card becomes 
F2 F4 F7 4E Hexadecimal 

CL01 (signed numeric, leading overpunch sign). This format again refers 
to decimal data punched into cards and then assembled into 
EBCDIC code. The sign indicator is, however, overpunched with the 
first decimal digit of the number. 

Example: + 247 with + overpunched on 2 becomes 
+ 2 4 7 Punched numeric data 
C2 F4 F7 Hexadecimal 

11000010 11110100 11110111 Binary EBCDIC code 
Similarly -247 becomes 
02 F4 F7 

CTO (signed numeric, trailing overpunch sign). This format has the 
same representation as for the CLO format, except that the sign 
indicator is overpunched on the last decimal digit of the number. 

Example: + 247 with + overpunched on 7 becomes 
F2 F4 C7 hexadecimal 

374 o FSORT: Application Programming: Guide 



Format 

ASL 

AST 

Data Format Examples 

Description 

(signed numeric, ASCII, leading separate sign). Similar to the CSL 
format but with decimal data assembled into ASCII code. 

Example: +247 punched into card becomes 
+ 2 4 7 Punched numeric data 
2B 32 34 37 Hexadecimal 

0101011001100100011010000110111 Binary ASCII code 
Similarly -247 becomes 
20 32 34 37 hexadecimal 

(signed numeric, ASCII, trailing separate sign). This gives the same 
bit representation as the ASL format, except that the sign is 
punched after the number. 

Example: 247 + becomes 
32 34 37 28 hexadecimal 

1 The overpunch sign bit is always X'C' for positive and X'D' for negative. 

A detailed description of CH, ZD, PO, FI, BI, and FL data formats are found in 
the OS/VS-DOS/VSE-VM/370 Assembler Language Manual, Section G. 

Appendix D. Data Format Examples 375 





EBCDIC 

Appendix E. EBCDIC and ISCIl/ASCIl Collating Sequences 

EBCDIC 
Figure 61 shows the collating sequence for EBCDIC character and unsigned 
decimal data. The collating sequence ranges from low (00000000) to high 
(11111111). The bit configurations which do not correspond to symbols (that is, 
o through 73, 81 through 89, and so forth) are not shown. Some. of these corre­
spond to control commands for the printer and other devices. 

Packed decimal, zoned decimal, fixed-point, and normalized floating-point data 
are collated algebraically, that is, each quantity is interpreted as having a sign. 

Collating Bit 
Sequence Configuration Symbol Meaning 

0 00000000 

74 01001010 ¢ Cent sign 
75 01001011 Period, decimal point 
76 01001100 < Less than sign 
77 01001101 ( Left parenthesis 
78 01001110 + Plus sign 
79 01001111 I Vertical bar, Logical OR 
80 01010000 & Ampersand 

90 01011010 Exclamation point 
91 01011011 $ Dollar sign 
92 01011100 Asterisk 
93 01011101 Right parenthesis 
94 01011110 Semicolon 
95 01011111 Logical not 
96 01100000 Minus, hyphen 
97 01100001 / Slash 

Figure 61 (Part 1 of 3). EBCDIC Collating Sequence 

Appendix E. EBCDIC and ISCII/ASCII Collating Sequences 377 



EBCDIC 

Collating Bit 
Sequence Configuration Symbol Meaning 

107 01101011 Comma 
108 01101100 0/0 Percent sign 
109 0110H01 Underscore 
110 01101110 > Greater than sign 
111 01101111 ? Question mark 

122 01111010 Colon 
123 01111011 # Number sign 
124 01111100 @ Commercial At 
125 01111101 Apostrophe. prime 
126 01111110 = Equal sign 
127 01111111 Quotation marks 

129 10000001 a 
130 10000010 b 
131 10000011 c 
132 10000100 d 
133 10000101 e 

134 10000110 f 
135 10000111 g 
136 10001000 h 
137 10001001 

145 10010001 j 
146 10010010 k 
147 10010011 I 
148 10010100 m 
149 10010101 n 
150 10010110 0 

151 10010111 P 
152 10011000 q 
153 10011001 r 

162 10100010 s 
163 10100011 t 
164 10100100 u 
165 10100101 v 
166 10100110 w 
167 10100111 x 
168 10101000 Y 
169 10101001 z 
Figure 61 (Part 2 of 3). EBCDIC Collating Sequence 

378 DFSORT: Application Programming: Guide 



EBCDIC 

Collating Bit 
Sequence Configuration Symbol Meaning 

193 11000001 A 
194 11000010 B 
195 11000011 C 
196 11000100 D 
197 11000101 E 
198 11000110 F 
199 11000111 G 
200 11001000 H 
201 11001001 I 

209 11010001 J 
210 11010010 K 
211 11010011 L 
212 11010100 M 
213 11010101 N 
214 11010110 0 
215 11010111 P 
216 11011000 Q 
217 11011001 R 

226 11100010 S 
227 11100011 T 
228 11100100 U 
229 11100101 V 
230 11100010 W 
231 11100111 X 
232 11101000 Y 
233 11101001 Z 

240 11110000 0 
241 11110001 1 
242 11110010 2 
243 11110011 3 
244 11110100 4 
245 11110101 5 

246 11110110 6 
247 11110111 7 
248 11111000 8 
249 11111001 9 

255 11111111 

Figure 61 (Part 3 of 3). EBCDIC Collating Sequence 

Appendix E. EBCDIC and ISeli/ASCIl Collating Sequences 379 



ISCIII ASCII 

ISCIII ASCII 
Figure 62 shows the collating sequence for ISCII/ASCII, character, and unsigned 
decimal data. The collating sequence ranges from low (00000000) to high 
(01111111). Bit configurations that do not correspond to symbols are not shown. 

Packed decimal, zoned decimal, fixed-point normalized floating-point data, and 
the signed numeric data formats are collated algebraically: that is, each quan-
tity is interpreted as having a sign. 

Collating Bit 
Sequence Configuration Symbol Meaning 

0 00000000 Null 
32 00100000 SP Space 
33 00100001 Exclamation point 
34 00100010 Quotation mark 
35 00100011 # Number sign: 
36 00100100 $ Dollar sign 
37 00100101 % Percent 
38 00100110 & Ampersand 
39 00100111 Apostrophe, prime 
40 00101000 Opening parenthesis 
41 00101001 Closing parenthesis 
42 00101010 Asterisk 
43 00101011 + Plus 
44 00101100 Comma 
45 00101101 Hyphen, minus 
46 00101110 Period, decimal point 
47 00101111 / Slant 
48 00110000 0 
49 00110001 1 
50 00110010 2 
51 00110011 3 
52 00110100 4 
53 00110101 5 
54 00110110 6 
55 00110111 7 
56 00111000 8 
57 00111001 9 
58 00111010 Colon 
59 00111011 Semicolon 
60 00111100 < Less than 
61 00111101 = Equals 
62 00111110 > Greater than 
63 00111111 ? Question mark 
64 01000000 @ Commercial At 
65 01000001 A 
66 01000010 B 
67 01000011 C 
68 01000100 D 
69 01000101 E 

Figure 62 (Part 1 of 3). ISCII/ASCII Collating Sequence 

380 DFSORT: Application Programming: Guide 



ISCIII ASCII 

Collating Bit 
Sequence Configuration Symbol Meaning 

70 01000110 F 
71 01000111 G 
72 01001000 H 
73 01001001 I 
74 01001010 J 
75 01001011 K 
76 01001100 L 
77 01001101 M 
78 01001110 N 
79 01001111 0 
80 01010000 P 
81 01010001 Q 
82 01010010 R 
83 01010011 S 
84 01010100 T 
85 01010101 U 
86 01010110 V 
87 01010111 W 
88 01011000 X 
89 01011001 Y 
90 01011010 Z 
91 01011011 [ Opening bracket 
92 01011100 I Reverse slash 
93 01011101 ] Closing bracket 

94 01011110 " Circumflex, Logical NOT 
95 01011111 Underscore 

96 01100000 Grave Accent 
97 01100001 a 
98 01100010 b 
99 01100011 c 

100 01100100 d 
101 01100101 e 
102 01100110 f 
103 01100111 g 
104 01101000 h 
105 01101001 
106 01101010 j 
107 01101011 k 
108 01101100 
109 01101101 m 
110 01101110 n 
111 01101111 0 

112 01110000 P 
113 01110001 q 
114 01110010 r 
115 01110011 s 
116 01110100 t 
117 01110101 u 

Figure 62 (Part 2 of 3). ISCII/ASCII Collating Sequence 

Appendix E. EBCDIC and ISCII/ASCII Collating Sequences 381 



ISCIII ASCII 

Collating Bit 
Sequence Configuration Symbol Meaning 

118 01110110 v 
119 01110111 w 
120 01111000 x 
121 01111001 y 
122 01111010 z 
123 01111011 { Opening Brace 
124 01111100 I Vertical Line 
125 01111101 } Closing Brace 
126 01111110 Tilde 

Figure 62 (Part 3 of 3). ISCII/ASCII Collating Sequence 

382 o FSORT: Application Programming: Guide 



Checkpoint/Restart 

Appendix F. DFSORT Abend Processing 

This appendix explains how DFSORT processes an abend. It is intended to help 
you get the dump you need in order to diagnose the error causing the abend. 

All abend dumps produced by DFSORT are system abend dumps that can be 
processed by standard dump analysis programs. A dump will be generated if 
you have included a SYSUDUMP, SYSABEND, or SYSMDUMP DO statement in 
your jobstream. The actual output of the system dump depends on the system 
parameters specified in the IEADMPOO, IEAABDOO or IEADMROO members of 
SYS1.PARMLIB by your installation. 

DFSORT ESTAE Recovery Routine 
At the beginning of each run, DFSORT establishes an ESTAE recovery routine to 
trap system or user abends for Blockset and Peer/Vale applications. You can 
delete the routine by specifying ICEMAC ESTAE = NO during installation, or by 
specifying NOEST AE on the DEBUG control statement. We recommend that you 
always run with EST AE in effect so that in the event of an abend the following 
benefits are available: 

• IR general, you get dumps closer to the time of the abend. 

• You get additional information useful in diagnosing the problem causing the 
abend. 

• If you have activated SMF, an ICETEXIT routine, or an EFS program, 
DFSORT attempts to continue processing. That is, an SMF record is 
created, the termination exit is called, and/or major calls 4 and 5 are made 
to the EFS program before the application terminates. Of course, if one of 
these functions caused the abend, that function will not complete success­
fully. 

At the end of its recovery routine, DFSORT always returns control to the system 
to allow termination to continue. The system will then invoke the next higher 
level ESTAE recovery routine. 

Checkpoint/Restart 
Checkpoint/Restart is a facility of the operating system that permits an auto­
matic or deferred restart if a DFSORT sort or merge application abnormally ter­
minates. You must specify certain parameters in the program control 
statements and prepare a JCL DO statement if you want to include this facility 
in a DFSORT execution (see Chapter 3, "Using DFSORT Program Control 
Statements" on page 53). 

No checkpoints are taken: 

• If no work data set is specified. 

• For a copy application. 

• If an invoked merge is handling output through exit E35. 

• If output from a merge application is to be a VSAM data set. 

Appendix F. DFSORT Abend Processing 383 



DFSORT Abend Categories 

• If the output file for a merge application takes up less than one volume. 

• If, for a merge application, you supply the address of your own exit list for 
the SORTOUT DCB at exit E39. 

• If the Blockset technique is selected. 

• Within a user exit routine. This includes SORT/MERGE input and output 
procedures with an invoking COBOL program. 

Notes: 

1. CheckpoinURestart does not apply to the copy function. 

2. The Blockset technique does not support checkpoinUrestart. If the Blockset 
technique is chosen, checkpoint/restart will be ignored. However, if neces­
sary, the Blockset technique can be bypassed so that checkpoints can be 
taken, by specifying either IGNCKPT = NO on the ICEMAC installation macro 
or NOBLKSET on the OPTION statement. 

Also note that no ANSI Standard Tape label files can be open during 
checkpoinUrestart. 

If you want checkpoints taken, you must use the facility provided by DFSORT. 
You cannot use the system checkpoint at End of Volume. 

For more information on the checkpoinUrestart facility, see "Reading List" on 
page 389. 

DFSORT Abend Categories 
There are two categories of abends for DFSORT: unexpected abends and user 
abends i~sued by DFSORT 

• Unexpected abends 

These are system abends or user abends not issued by DFSORT. The 
abend code in these cases is the system abend c.ode or the user abend 
code. See the DFSORT Diagnosis Guide for information about detecting 
common user errors and reporting DFSORT program failures. 

• User abends issued by DFSORT 

DFSORT will issue user abends under the following circumstances: 

The ABEND or ABSTP option is in effect and DFSORT encounters an 
error that prevents completion of the run. 

DFSORT detects an error in its internal logic. 

See DFSORT Messages and Codes for complete information about user 
abends issued by DFSORT. 

384 DFSORT: Application Programming: Guide 



Abend Recovery Processing for Unexpected Abends 

Abend Recovery Processing for Unexpected Abends 
DFSORT normally has an EST AE recovery routine established to trap system or 
user exit routine abends for Blockset and PeerlVale applications. If an abend 
occurs, the system will pass control to this routine. The DFSORT ESTAE 
recovery routine functions are shown below: 

• Abend dump 

The recovery routine will first have the system issue an abend dump to 
capture the environment at the time the error occurred. 

• Termination functions 

DFSORT tries to accomplish the following tasks when they are specified, 
whether the program terminates normally or abnormally. 

Calls4 and 5 to an EFS program 
- Create the SMF record 
- Call the ICETEXIT routine 

The DFSORT recovery routine executes any of the functions specified above 
if they have not already been executed at the time of the abend. 

• Abend information message 

For unexpected system or user exit routine abends, the DFSORT recovery 
routine issues message ICE185A giving information about when the abend 
occurred. The description of this message is in DFSORT Messages and 
Codes. 

• Snap dumps 

The DFSORT recovery routine provides snap dumps of the DFSORT commu­
nication area COMMON and the system diagnostic work area SDWA. The 
snap dumps are written to a dynamically allocated data set whether or not 
a SYSUDUMP (or SYSABEND or SYSUDUMP) DD statement is included in 
the jobstream. 

• Copy system diagnostic work area 

If an invoking program passes the address of an SDWA area in the 24-bit or 
extended parameter list, DFSORT will copy the first 104 or 112 bytes of the 
system diagnostic work area into the user SDWA area. See 
Chapter 6, "Invoking DFSORT from a Program" on page 231 for more infor­
mation. 

• Continuation of an application after successful output 

If an unexpected abend occurs after the sort, merge, or copy application 
completed successfully, DFSORT issues message ICE186A and completes 
the cleanup and termination functions it would have normally completed. A 
sort, merge, or copy application is completed successfully when the output 
of the application has been written to a data set or passed to a user exit 
without error. The output data set written by DFSORT is closed. The run is 
successful except for the function causing the abend. Message ICE186A 
says that the DFSORT output is usable even though the run has abended. 
You can then decide to use the output or rerun the job. 

• DFSORT returns control to the system at the end of its abend recovery proc­
essing so that recovery routines can be invoked. 

Appendix F. DFSORT Abend Processing 385 



Abend Recovery Processing and Invoking Programs 

The DFSORT abend recovery routine functions described above may not be 
performed after an abend if NOESTAE is in effect. The DFSORT ESTAE 
recovery routine is always established at the beginning of a run. It is 
deleted early in DFSORT processing if NOEST AE is in effect. 

Processing of Error Abends with A-Type Messages 
When DFSORT encounters a critical error. it issues an A-type message and ter­
minates. You can specify that DFSORT is to terminate the application with an 
abend through the ABEND or ABSTP options. 

If abend termination is in effect and DFSORT encounters a critical error. 
DFSORT first causes an abend dump to capture the environment at the time of 
the error. Then. it issues the A-type message. It also executes the termination 
functions described earlier before terminating with an abend. The abend code 
will be the error message number. or a number between 1-99. as determined 
during installation with the ICEMAC ABCODE option. 

With NOEST AE and ABEND in effect. the abend dump is produced after the 
A-type message is printed and other termination functions are executed. As a 
result, the dump produced may not reflect the conditions at the time of the 
error. It may not include the module that encountered the error. 

With NOESTAE and ABSTP in effect. the correct module will be dumped but the 
A-type message will not be issued. 

CTRx Abend processing 
The CTRx option can be used to diagnose a problem by requesting that 
DFSORT abend during record input or output processing. See the DEBUG 
control statement in Chapter 3. "Using DFSORT Program Control Statements" 
on page 53. DFSORT will cause an OC1 abend when the CTRx count is satis­
fied. The DFSORT ESTAE recovery routine will process the abend in the same 
way as it does for an unexpected abend described earlier. 

Abend Recovery Processing and Invoking Programs 
The DFSORT ESTAE recovery routine will return control to the system which will 
pass control to any ESTAE recovery routine(s) established by invoking pro­
grams. 

As described earlier. the DFSORT ESTAE recovery routine will save the first 104 
or 112 bytes of the system diagnostic work area in the invoking program's 
SDWA area if the address of the area is passed to DFSORT. 

Since PUI normally has an ESPIE in effect to intercept program checks (OCx 
abend codes). the DFSORT ESTAE recovery routine is not entered after these 
errors unless you have specified NOSPIE. DFSORT abend recovery processing 
will occur for all other types of abends. 

Invocations from COBOL programs or use of COBOL exits can result in more 
than one abend dump. 

386 DFSORT: Application Programming: Guide 



Summary of Changes for Previous Releases of DFSORT 

Summary of Changes for Previous Releases of DFSORT 

Release 10, January 1988 
• Better performance through internal enhance­

ments to the Blockset technique, which reduce 
required SORlWK space, CPU time, and EXCPs. 

• DFSORT Panels, an interactive menu-driven 
facility supported under ISPF and ISMF, that lets 
you use DFSORT on-line with minimal experience. 

• New ICEMAC options: 

With DYNAUTO, you can specify automatic 
dynamic allocation of intermediate data sets. 

With ABCODE, you can customize critical 
error ABEND codes using either the critical 
message numbers as before, or your own 
choice of a number between 1 and 99. 

With EXITCK, you can prevent termination 
when E15/E35 user routines use certain 
"invalid" return codes. 

With NOMSGDD, you can prevent termination 
when a needed message data set is not 
present. 

• The MODS statement allows you to specify that 
user exit routines are in the STEPLIB/JOBLIB or 
link library data sets. 

• A new subparameter for the DYNALLOC execution 
option lets you suppress dynamic allocation of 
intermediate data sets. 

• New parameters added to the EXEC statement let 
you specify options formerly available only on 
ICEMAC or control statements. Alternate param­
eter names (for example, MSGDD for MSGDDN) 
are also available. 

• For increased flexibility, DFSORT now accepts: 

Semicolons interchangeably with commas in 
the EXEC parm string and within control state­
ments. 
Blank statements. 
FB, VB, and DB for RECORD TYPE. 
Duplicate message data set DO statements 
(the first is used). 
SORlWKxx DO statements for a merge job 
(ignored). 
Empty VSAM input data sets for sort and copy 
jobs. 
VSAM input and non-VSAM output without the 
RECORD TYPE parameter. 
Shorter output LRECL for VLR data sets. 
The STOPAFT parameter on the SORT and 
MERGE statements. 

LS, TS, OL, and OT as format types on the 
SORT, MERGE, INCLUDE, and OMIT state­
ments. 

• Automatic estimation of VSAM input data set size 
for intermediate storage optimization. 

• DFSORT uses the job stepname rather than the 
procedure step name in messages and SMF field 
ICESTPNM. 

Release 9, April 1987 
• Improved performance: 

For sort, merge, and copy jobs from internal 
enhancements to the Blockset techniques. 

For fixed-length, nonspanned, VSAM data sets 
from more efficient input processing in the 
Blockset techniques. 

• Installation-written exit (ICEIEXIT and ICETEXIT) 
routines can be used to exercise control over indi­
vidual jobs and to collect job statistics. 

• Use of the more efficient DFSORT copy function 
for qualifying IEBGENER jobs. 

• Improved capability to run two different releases 
of DFSORT at the same time. 

• Additional statistical information in the SMF 
record. 

• Capability to make zoned-decimal positive-sum 
fields printable. 

• User-written Extended Function Support (EFS) 
programs can be used to: 

Examine, alter, and/or ignore DFSORT and 
non-DFSORT control statements or EXEC 
PARM options. 

Support sorting or merging of user-defined 
data types with user-defined collating 
sequences. 

Provide the logic to include or omit records 
based on user-defined data types. 

Provide user supplied messages to DFSORT 
for printing to the message data set. 

• Beginning with Release 9, DFSORT will no longer 
support the OSNS1 environment. Program ser­
vices for OSNS 1 that were announced for 
Release 8.0 will be available for twelve months 
after the release of 9. 

Summary of Changes for Previous Releases of DFSORT 387 



" ~ I ~ . .'~ . 

• '!. ... • I ... • ~" a:" .:', .. 

',.;1. ...... 

",' 

:', 

.. ' ~' ....... II, , ',' 

'.' 

,'" 

'.' .~ 

....... """ 'i.::' :' ~ .. ' 

, .. : . ..;: ! '~' I :.' ~ I, 

• I.' 

" 
,~, ~;. ~ '.,' .' .' .. ' 

'/',' 

.' ; 
> ~ , ' 

". 

" . ~ '" . 

..... '. '. ~', ~' . 
.••••• ! 

':.'" . 

.... : . 

: .. ' ,':", 

... , '.: 



Reading List 

The reading list that follows is divided according to 
the options and facilities of the program and how you 
can use them. 

For All Applications 

The following manuals supplement the JCL informa­
tion given in this guide. You may need them for ref­
erence. 

MVS/Extended Architecture JeL, GC28-1148 

OS/vS2 MVS JCL, GC28-0692 

Planning Checkpoint/Restart 

Complete information on the checkpoint/restart facility 
is contained in: 

MVSIExtended Architecture Checkpoint/Restart 
User's Guide, GC26-4012 

MVS/370 Checkpoint/Restart User's Guide, 
GC26-4054 

OS/VS2 MVS Checkpoint/Restart User's Guide, 
GC26-3877 

COBOL and PUI Users 

See the Programmer's Guide describing the compiler 
version available at your installation site. 

Assembler Language Users 
Assembler H Version 2 Application Programming: 
Language Reference, GC26-4037 

OS/VS - DOS/vS - VMI370 Assembler Language 
Manual, GC33-4010 

Program Initiation with System Macro 
Instructions 

MVS/Extended Architecture System Programming 
Library: Supervisor Services and Macro 
Instructions, GC28-1154 

OSIVS2 MVS Supervisor Services and Macro 
Instructions, GC28-0683 

Data Management 
MVSIExtended Architecture Data Administration 
Guide, GC26-4013 

MVSIExtended Architecture Data Administration: 
Macro Instruction Reference, GC26-4014 

MVSIExtended Architecture System - Data Admin­
istration, GC26-4010 

Reading List 

MVS/370 Data Administration Guide, GC26-4058 

MVS/370 Data Adminisiration: Macro Instruction 
Reference, GC26-4057 

MVS/370 System - Data Administration, GC26-4056 

OS/VS2 MVS Data Management Macro 
Instructions, GC26-3873 

OS/VS2 MVS Data Management Services Guide, 
GC26-3875 

OS/VS2 MVS System Programming Library: Data 
Management, GC26-3830 

Dynamic Allocation 
System Macros and Facilities, Volume 1, 
GC28-1151 

MVS/Extended Architecture System Programming 
Library: System Modifications, GC28-1152 

OSIVS2 MVS System Programming Library: Job 
Management, GC28-0627 

ISCII/ ASCII 
MVS/Extended Architecture Data Administration: 
Macro Instruction Reference, GC26-4014 

MVS/370 Data Administration: Macro Instruction 
Reference, GC26-4057 

OS/VS2 MVS Data Management Macro 
Instructions, GC26-3873 

ISO/ANSI Tape Labels 
Mils/Extended Architecture Magnetic Tape Labels 
and File Structure Administration, GC26-4003 

MVS/370 Magnetic Tape Labels and File Structure 
Administration, GC26-40S4 

OS/VS Tape Labels, GC26-3795 

ISPF 
Interactive System Productivity Facility Dialog 
Management Services, SC34-4021 

Interactive System Productivity Facility/Program 
Development Facility Program Reference, 
SC34-4024 

ISMF 
MVSIExtended Architecture Interactive Storage 
Management Facility: User's Guide, GC26-4266 

Reading Ust 389 



Reading List 

VSAM Users 
MVSIExtended Architecture Integrated Catalog 
Administration: Access Method Services Refer­
ence, GC26-4019 

MVSIExtended Architecture VSAM Administration 
Guide, GC26-4015 

MVSIExtended Architecture VSAM Administration: 
Macro Instruction Reference, GC26-4016 

MVSIExtended Architecture VSAM Catalog Admin­
istration: Access Method Services Reference, 
GC26-4075 

MVSI370 Integrated Catalog Administration: 
Access Method Services Reference, GC26-4051 

MVSI370 VSAM Administration Guide, GC26-4066 

MVSI370 VSAM Administration: Macro Instruction 
Reference, GC26-4074 

MVSI370 VSAM Catalog Administration: Access 
Method Services Reference, GC26-4059 

OSIVS Virtual Storage Access Method (VSAM) 
Options for Advanced Applications, GC26-3819 

390 DFSORT: Application Programming: Guide 

OS/VS Virtual Storage Access Method (VSAM) 
Programmer's Guide, GC26-3838 

OSIVS2 Access Method Services, GC26-3841 

For storage requirements, see 

MVSIExtended Architecture Data Facility Product: 
Planning Guide, GC26-4040 

MVSI370 Data Facility Product: Planning Guide, 
GC26-4052 

Planning for Enhanced VSAM under OSIVS, 
GC26-3842 

For debugging aids, see 

MVSIExtended Architecture Debugging Handbook, 
Volume 1, LC28-1164, Volume 2, LC28-1165, 
Volume 3, LC28-1166, Volume 4, LC28-1167, 
Volume 5, LC26-1168, or all volumes, LBOF-10t5 

OSIVS2 MVS System Programming Library: 
Debugging Handbook, Volume 1, GC28-0708, 
Volume 2, GC28-0709, and Volume 3, GC28-0710 



Index 

A 
ABCODE 

ICEMAC installation option 11, 62 
ABEND 384 

categories :!!!4 
critical 386 
CTRx 386 
DEBUG control statement option 62 
EXEC PARM option 23 
recovery 385, 386 

Abend Recovery Processing and Invoking 
Programs 386 

Abend Recovery Processing for Unexpected 
Abends 385-386 

abends 
recovering from in DFSORT Panels 172 

About This Book vii 
ABSTP 384 

DEBUG control statement option 63 
Action Codes 327 
Activating Control Statements 157-158 
adding records 185 

E15exit 192,212 
E35 exit 218 

ALIAS statement 189 
aligning control fields 162 
alignment field 78, 121 
allocating intermediate storage 152, 259 
allocating main storage 256 

efficiently 256 
Allocating Space for Intermediate Data Sets 152 
allocating temporary work space 152, 259 
Allocating Temporary Work Space 

Efficiently 259-261 
altering records 161, 185 

See also reformatting records 
Altering Records: COBOL E15 Exit 224 
alternate collating sequence 60, 158 
ALTSEQ 

ICEMAC installation option 11 
ALTSEQ Code Table 159 
ALTSEQ control statement 60,61 

ALTSEQ Statement Data Entry panel 158 
defining alternate collating sequence 5 
examples 60 
function 55 
ICEMAC installation option 5 
using 60-61 

ALTSEO Statement Data Entry panel 158 
ALTSEO Statement Examples 60-61 
AMODE 188, 190 
ARESALL 

EXEC PARM option 23 

Reading List 

ARESALL (continued) 
ICEMAC installation option 11 
OPTION control statement option 98 
releasing main storage 258 

ARESINV 
ICEMAC installation option 11 
OPTION control statement option 98 
releasing main storage 258 

Assembler Exit Routines (Input Phase Exits) 192-202 
Assembler Exit Routines (Output Phase 

Exits) 202-207 
ATTACH 232 

writing macro instruction 241 
Avoid Options that Decrease Performance 255 

B 
background environment 

explanation 152 
specifying 152 
submitting a job 168 

Before You Begin 145-148 
Beginning a DFSORT Session 148-149 
Beginning Your Job: The DFSORT Primary Option 

Menu 149-150 
block 

minimum length 9 
blocking records 249 
BROWSE command 147 
BSAM 

DEBUG control statement option 63 
DFSORT Panels 160 

EXEC PARM option 24 
E18 user exit 196 
E19 user exit 199 

BUFFERS 

C 

DEBUG control statement option 63 
OFSORT Panels 160 

Calculating Storage Requirements 314 
CANCEL command 147 
case conversion 173 
cataloged procedure 

SORT 20 
SORTO 21 

CHALT 
ICEMAC installation option 11 
OPTION control statement option 99 

changing collating sequence 60 
changing records 2, 185 

E15 exit 192,212 
E35 exit 203, 218 
See also reformatting records 

Index 391 



Reading List 

Changing Your DFSORT User Profile 170-173 
character constants 74 
CHECK 

ICEMAC installation option 11 
OPTION control statement option 99 

checkpoint/restart 383, 384 
MERGE control statement 88 
restrictions 384 
using 383 

Choosing Between Foreground and Background Exe­
cution 152 

Choosing to Save or Submit the Job: DFSORT Job 
Submission Entry Panel 168-169 

CINV 
EXEC PARM option 24 
ICEMAC installation option 11 
OPTION control statement option 100 

CKPT 
checkpoint/restart 383 
efficiency 255 
MERGE control statement option 88 
OPTION control statement option 100 
SORT control statement option 137 

CLIST command procedure 152 
Closing Data Sets 187,321 

E17 exit 196 
with an EFS program 325 

Closing Data Sets and Housekeeping 325 
closing data sets with user exits 187 
COB EXIT 

efficiency 251 
ICEMAC installation option 11 
OPTION control statement option 101 

COBOL Exit Requirements 209 
COBOL Exit Routines 209-211 
COBOL Exit Routines (Input Phase Exit) 212-218 
COBOL Exit Routines (Output Phase Exit) 218-224 
COBOL E15 Exit: Passing or Changing Records for 

Sort 212 
COBOL E35 Exit: Changing Records 218 
COBOL Requirements for Copy Processing 210 
COBOL Storage Requirements 211 
coding control statements 17, 55 
Coding Restrictions 58-59 
collating sequence 

altering with user exit 185 
alternate 5, 158 
defined· 5 
EBCDIC 5 
ISCII/ASCII 5 
modifying 5, 60 

with DFSORT Panels 158 
specifying 153 

combining adjacent control fields 154 
combining data sets 

See merging records 
commands for DFSORT Panels 147 

392 DFSORT: Application Programming: Guide 

comment statement 58, 153, 156, 166 
comparison 

field-to-constant 160 
field-to-field 160 

comparison operator 70,160 
COND 

02 format (EFS) 333 
INCLUDE control statement option 69 

constants 72 
character string 74 
decimal number 73 
hexadecimal string 74 

continuation column 57 
Continuation Unes 57-58 
continuing control statements 57 
control field 

alighment 162 
combining adjacent 154 
control word 5 
defined 4 
deleting 161 

with INREC control statement 78 
with OUTREC control statement 121 

describing on MERGE control statement 88 
describing on SORT control statement 132 
efficient design 248 
equal 4 
format 5, 135 
FORMAT field in DFSORT Panels 154 
inserting 153 
length 135 
LENGTH field in DFSORT Panels 154 
major 4 
maximum number 153 
merge order 154 
minor 4 
modifying with E61 exit 200 
modifying with line commands 155 
modifying with user exit 185 
multiple blank 155 
POSITION field in DFSORT Panels 154 
priority 154 
reordering 161 

with INREC control statement 78 
with OUTREC control statement 121 

separation fields 162 
sort order 154 
summing 

DFSORT Panels 165 
Control Field Formats and Lengths 135 
Control Fields and Collating Sequences 4-5 
control statement 

activating 157 
browsing 158 
coding 17, 55 
coding restrictions 58 
comment statement 58 
continuation column 57 



control statement (continued) 
deactivating 157 
editing 152,157,158 
EFS coding rules 328, 330 
EFS interface request list 328 
EFS string 328 
format 56 
free form entry 153 
functions 54-55 
label field 56 
obsolete 59 
operand field 56 
operation field 56 
overview 54 
printing with an EFS program 325 
remark field 56 
reviewing 153 

control statement image 
preparing 233 

Control Statement Request List 328 
Control Statement String Returned by the EFS 

Program 330 
Control Statement String Sent to the EFS 

program 328 
Control Statement Summary 54-55 
Control Statements 54-55 
Control Statements Selection panel 157 
Control Statements Selection (SORT) panel 

illustration 157 
control word 5, 132 
COPY 

OPTION control statement option 101 
COPY Entry Panel, page 1 150 
COPY Entry Panel, page 2 151 
copy help index 178 
Copy Restrictions 245-246 
copying records 2 

SORT control statement option 136 
with MERGE control statement 88 

critical errors 386 
CTRx 386 

DEBUG control statement option 64 
CTRx Abend processing 386 
cylinders 250, 311 

D 
DASD 

considerations 311 
efficiency 250, 260 

data set 
closing 187 
closing with user exit routines 196, 206 
defining 8 
handling input with user exit routines 206 
handling output with user exit routines 207 
input 

maximum number 150 
names 150 
shared tape unit 37 

Reading List 

data set (continued) 
input (continued) 

specifying 150 
opening with user exit routines 185, 192,202 
output 

names 151 
specifying 151 

QSAM 8,9,10 
requirements 8 
size and efficiency 250 
VSAM 8,9,10 

Data Set Considerations 8-11 
data set name 

using invalid 151,152 
Data Set Notes and Limitations 9 
DBCS ordering 9, 315 
DO statements 

overview 35 
program DO statements 40 
system DO statements 39 

DDNAMES 
duplicate 37 

deactivating control statements 157 
DEBUG control statement 62, 66 

DEBUG Statement Data Entry panel 159 
examples 66 
function 55 
using 62-66 

DEBUG Statement Data Entry panel 159 
DEBUG Statement Examples 66 
debugging jobs 62 
decimal number constants 73 
deleting control fields 161 

with INREC 78 
with OUTREC control statement 121 

deleting records 185 
E15exit 192,212 
E35 exit 218 
with INCLUDE control statement 68 
with OMIT control statement 95 

Designing Your Jobs to Maximize 
Performance 248-256 

Determining Action when Intermediate Storage Is 
Insufficient 187 

DFSORT 
abend processing 383 
dynamic invocation 232 
exit routines 182 
improving efficiency 247 
invoking 3 

DFSORT Panels 148 
JCL 16 

job control statements 16-52 
messages 13 
override of options 353 
overview 2 
program control statements 54-143 
syntax 17-19 

Index 393 



Reading List 

DFSORT (continued) 
terminating with user exit 188 

DFSORT Abend Categories 384 
DFSORT Abend Processing 386 
DFSORT Calls to Your EFS Program 317 
DFSORT Control Entry Panel 173 
DFSORT ESTAE Recovery Routine 383 
DFSORT Execute Statement Entry Panel 169, 173 

illustration 169 
DFSORT Initialization Phase: 348 
DFSORT Input/Exit/Output logic Examples 183 
DFSORT Job Submission Entry Panel 168 

illustration 168 
DFSORT Messages and Return Codes 13-14 
DFSORT Panels 

advantages 145 
commands 147 
customizing jobs 145 
HELP 176 
HELP index 177 
invoking 148, 149 
overview 145 
UDPI (User-Defined Panels Interface) 146 

DFSORT Phases 316 
initialization 319 
input 321 
output 183 
termination 321 

DFSORT Primary Option Menu 149 
illustration 149 

DFSORT Profile Option Menu 
illustration 171 

DFSORT Program Phases 183 
DFSORT Termination Phase 351 
DFSORT user profile 

changing 149, 170 
DFSORT Control Entry Panel 173 
DFSORT Execute Statement Entry Panel 173 
JOB Statement Entry Panel 173 
Logging/Abend Control Entry Panel 172 

DFSPARM Data Set 353 
DFSPARM DO statement 49, 51 

function 17. 41 
using 49-51 

diagnosis 
EFS program 347 

diagnostic messages 
requesting 173 

Direct Access Storage Considerations 311-312 
direct access storage devices 

See DASD 
Direct Access Work Storage Devices 260 
Double Byte Character Set Ordering Support Program 

See DBCS Ordering 
DOWN command 147 
Duplicate DDNAMEs 37 
DYNALLOC 

EXEC PARM option 25 

394 o FSORT: Application Programming: Guide 

DYNALLOC (continued) 
OPTION control statement, option 101 
SORT control statement option 137 

DYNALLOC= OFF 
EXEC PARM option 25 
OPTION control statement option 103 

DYNALOC 
ICEMAC installation option 11 

dynamic allocation 6 
dynamic link-editing 

See link-editing 
Dynamically-Invoked DFSORT with the Extended 

Parameter List 360-366 
Dynamically-Invoked DFSORT with the 24-Bit Param­

eter List 366-371 
DYNAUTO 

ICEMAC installation option 11 
01 Format on FIELDS Operand 332 
02 Format on COND Operand 333 

E 
EBCDIC 

modifying 
with DFSORT Panels 158 

editing 
control statement 157, 158 
control statements 152 
JCL 169 

Editing DFSORT Control Statements 158-166 
editing records 2 

See also reformatting records 
Editing the JCL EXEC Statement: DFSORT Execute 

Statement Entry Panel 169-170 
efficiency 

See performance 
EFS 

efficiency 256 
EXEC PARM option 26 
exit routines 321 
ICEMAC installation option 11 
initialization phase 319 
input phase 321 
OPTION control statement option 103 
phases 316 
processing 317 
termination phase 321 

EFS Formats for SORT. MERGE. INCLUDE. and OMIT 
Control Statements 331 

EFS interface 
controt statement length 334 
control statement request list 328 
control statement string 328. 330 
defined 325 
DFSORT action codes 327 
01 format 332 
02 format 333 
extract buffer offsets list 335 
function 316 



EFS interface (continued) 
information flags 335 
message list 337 
program context area 334 
record lengths list 335 

EFS program 
activating 316 
closing data sets 325 
examining. altering. ignoring control 

statements 323 
exit routine 325. 342 

function 338 
MVS/XA and MVS/ESA support 344 

functions 315. 322 
MVS support 315 
opening and initializing data sets 323 
return codes 345 
supplying messages 325 
terminating DFSORT 325 

EFS Program Context Area 334 
EFS Program Example 348-351 
EFS Program Exit Routines 338-345 
EFS Program Return Codes You Must Supply 345 
EFS Restrictions When an EFS Program Is in 

Effect 59 
EFSDPAFT 347 

DEBUG control statement option 64 
EFSDPBFR 347 

DEBUG control statement option 64 
EFSOl 339 
EFSOl and EFS02 Function Description 338 
EFSOl Exit Routine 339 
EFSOl Parameter List 341 
EFS02 342 
EFS02 Exit Routine 342 
EFS02 Parameter List 343 
END command 147 
END control statement 67 

examples 67 
function 55 
using 67 

END Statement Examples 67 
ENTER key 147 
Entering SORT or MERGE Statements in Free 

Form 153 
EODAD 197 
EQUALS 4 

DFSORT Panels 154 
efficiency 255 
EXEC PARM option 26 
ICEMAC installation option 11 
MERGE control statement option 88 
OPTION control statement option 104 
SORT control statement option 137 

EQUCOUNT 
DEBUG control statement option 66 

DFSORT Panels 160 
efficiency 255 

Reading List 

ERET 
ICEMAC installation option 11 

EROPT 197 
error recovery routine 

user exit 185 
errors 

critical 386 
debugging jobs 62 
diagnosing EFS 347 
error recovery routines 185 
requesting diagnostic messages 173 

ESTAE 
DEBUG control statement option 65 
ICEMAC installation option 12 
recovery routine 383 

functions 385 
Examining. Altering. or Ignoring Control 

Statements 323 
Exceeding Intermediate Storage Capacity 313-314 
EXCPVR 261.262 

efficiency 252. 261 
EXEC PARM option 26 
ICEMAC installation option 12 
OPTION control statement option 105 

EXEC statement 
cataloged procedure 

SORT 20.40 
SORTD 21.40 

defined 19 
PARM options 21 

EXEC Statement PARM Options 354 
Executing DFSORT with Job Control 

Language 15-52 
execution phase 316 
exit 

Ell 192 
E15 192. 212 
E16 195 
E17 196 
E18 196 
E19 199 
E31 202 
E32 202 
E35 203. 218 
E37 206 
E38 206 
E39 207 
E61 200 
MODS control statement option 91 
See also user exit 

exit routine 
DFSORT Panels 163 
EFS 338 
naming 163 

EXITCK 
ICEMAC installation option 12. 192. 226 
user exit return codes 226 

Index 395 



Reading List 

EXLST 197, 200 
Extended Function Support 

See EFS 
Extract Buffer Offsets Ust 335 
E11 Exit: Opening Data Sets/Initializing Routines 192 
E15 exit 

DFSORT Panels 150 
E15 Exit: Passing or Changing Records for Sort and 

Copy Applications 192 
E15 Interface with COBOL 212 
E15 Unkage Section Fields for Fixed-Length and 
Variable-Length Records 216 

E15 Procedure Division Requirements 218 
E15 Return Codes 194,216 
E15/E35 Return Codes and EXITCK 226-229 
E15: Deleting Expired Records 207 
E15=COB 

EXEC PARM option 27 
E16 Exit: Handling Intermediate Storage Miscalcu­

lation 195 
E16 Exit: When NMAX Exceeded, Sort Current 

Records 208 
E16 Return Codes 195 
E17 Exit: Closing Data Sets 196 
E18 Exit: Handling Input Data Sets 196 
E19 Exit: Handling Output to Work Data Sets 199 
E31 Exit: Opening Data Setsllnitializing Routines 202 
E32 exit 

restriction with MERGE control statement 91 
E32 Exit: Handling Input to a Merge Only 202 
E32 Return Codes 203 
E35 exit 

DFSORT Panels 151 
sequence checking 89 

E35 Exit: Changing Records 203 
E35 Exit: Deleting Records 208 
E35 Interface with COBOL 219 
E35 Unkage Section Fields For Fixed-Length and 

Variable-Length Records 222 
E35 Procedure Division Requirements 224 

E35 Return Codes 205 
E35=COB 

EXEC PARM option 27 
E37: Closing Data Sets 206 
E38: Handling Input Data Sets 206 
E39 Exit: Handling Output Data Sets 207 
E61 exit 154 
ES1 Exit: Modifying Control Fields 200 

F 
FASTSRT 

efficiency 252 
field-to-constant comparison 160 
field-to-field comparison 160 
FIELDS 

01 format (EFS) 332 
INREC control statement option 78 
MERGE control statement option 87 

396 DFSORT: Application Programming: Guide 

FIELDS (continued) 
OUTREC control statement option 121 
SORT control statement option 132 
SUM control statement option 141 

FIELDS=COPV 
MERGE control statement option 88 
SORT control statement option 136 

FILES 
MERGE control statement option 88 

FILSZ 
EXEC PARM option 28 
MERGE control statement option 88 
OPTION control statement option 105 
SORT control statement option 137 

filtering records 68, 95, 160 
floating-point data 75, 135, 142, 185 
foreground environment 

explanation 152 
specifying 152 
submitting a job 167 

FORMAT 
INCLUDE control statement option 69 
SORT control statement option 136 
SUM control statement option 142 

FORMAT field in DFSORT Panels 154 
Format of the Extended Parameter Ust 239-241 
Format of the 24-Bit Parameter Ust 234-238 
FORMAT=f 

MERGE control statement option 88 
free form entry 

case conversion 173 
comment statement 153, 156, 166 
control fields statements 155 

coding conventions 156 
control statement 153, 166 
COpy application 153 
MERGE statement 153 
SORT statement 153 

Functions of Routines at User Exits 183-188 

G 
GENER 

ICEMAC installation option 12 
General Coding Rules 55-59 
General Considerations 9 
General Statement Free Form Entry panel 156, 166 
Getting Around in DFSORT Panels 146-148 
Getting HELP 175-179 
Getting HELP for Messages 177 
Getting HELP with DFSORT Panels 176 

H 
handling input data sets 

E18 exit 196 
E38 exit 206 

handling input to a merge 
E32 exit 202 



handling intermediate storage miscalculation 
E16 exit 195 

Handling Messages and Case Conversion: DFSORT 
Control Entry Panel 173-175 

handling output data sets 
E39 exit 207 

handling output to work data sets 
E19 exit 199 

Handling Special 1/0 185 
Handling Trace Data and Abends: Logging/Abend 

Control Entry Panel 172 
HELP command 147 
HELP facility 

functional panels 176 
messages 177 
overview 175 
using the HELP index 177 

hexadecimal constants 74 
Hipersorting 261 

advantages to using 261 
defined 261 

hiperspace 
defined 261 

HIPRMAX 
efficiency 253, 261 
EXEC PARM option 28 
ICEMAC installation option 12 
OPTION control statement option 106 

How Assembler and COBOL User Exit Routines Affect 
DFSORT Performance 188-189 

How DFSORT Works 3-8 
How EFS Works 322 
How to Dynamically Link-Edit User Exit Routines 190 
How to Load User Exit Routines 189 
How to Request a SNAP Dump 347-348 
How to Use This Book v-vi 
How You Can Invoke DFSORT 3 

ICEGENER 
efficiency 262 

ICEGENER Example 309 
ICEGENER Facility 262-263 
ICEMAC 

parameters 11 
IEALlMIT 258, 259 
IEBGENER 262 
IEXIT 

ICEMAC installation option 12 
IGNCKPT 

ICEMAC installation option 12 
Improving Efficiency 247-263 
INCLUDE 

efficiency 253 
INCLUDE control statement 68, 77 

examples 76 
function 55 
INCLUDE Statement Data Entry panel 160 

Reading List 

INCLUDE control statement (continued) 
logical operator 75 
relational condition 69 

comparison operator 70 
using 68-77 

INCLUDE Statement Data Entry panel 160 
INCLUDE Statement Examples 76-77 
INCLUDE/OMIT Statement Notes 75-76 
including records 2,68 

user-defined data types 315 
index 

copy 178 
merge 178 
sort 178 

Information DFSORT Passes to Your Routine at 
E15 193 

Information DFSORT Passes to Your Routine at 
E32 202 

Information DFSORT passes to Your Routine at 
E35 204 

Information DFSORT Passes to Your Routine at 
E61 201 

Information Flags 335 
Initialization Phase 319 
initializing data sets 185,319 
initializing routines 192 

E11 exit 192 
E31 exit 202 

initiating DFSORT 
See invoking DFSORT 

INPFIL statement 59 
input data set 

requirements 8, 9 
input data sets 

See data set 
input field 81 
Input Phase 183, 321 
INREC 

efficiency 254 
INREC control statement 78, 86 

column alignment 78 
examples 83-86 
function 55 
input field 81 
INREC InputlSeparation Fields. Entry panel 161 
separation field 

binary zero separation 79 
blank separation 79 
character string separation 80 
hexadecimal string separation 80 

using 78-86 
INREC Input/Separation Fields Entry panel 161 
INREC Statement Examples 83-86 
INREC Statement Notes 81-83 
Inserting Comment Statements 58 
Inserting Records: COBOL E35 Exit 225 
Inserting, Deleting, and Altering Records 185 

Index 397 



Reading List 

inspecting control statements 166 
Inspecting Your Work: Review Control Statements 

Panel 166-167 
Installation Defaults 11-13 
installation options 

See ICEMAC 
insufficient intermediate storage 313 
interactive panels 

See DFSORT Panels 
intermedi ate storage 311, 314 

allocating 152 
Introducing DFSORT 1-14 
invoking DFSORT 3 

DFSORT Panels 145 
dynamically 232 
with JCL 16 

Invoking DFSORT from a Program 231-246 
INVIJCL 

ICEMAC installation option 12 
ISMF Panels 

See DFSORT Panels 
ISMF (Interactive Storage Management Facility) 145, 

149, 174 
ISPF panels 

See DFSORT Panels 
ISPF (Interactive System Productivity Facility) 145, 

148 
I/O errors 185 

J 
Japanese characters 9, 315 
JCL 

cataloged procedure 19, 40 
editing with DFSORT Panels 169 
EFS coding rules 329 
EXEC statement 19 
improving DFSORT efficiency 248 
JOB statement 19 
overview 16 
required 16 
specifying with DFSORT Panels 172 

EXEC statement 173 
JOB statement 173 

JCL DO Statements 233-238 
JCL-Invoked DFSORT 355-360 
job control language 

See JCL 
JOB statement 

defined 19 
JOB Statement Entry Panel 173 
job stream 

illustration 170 
JOBLIB DD statement 

function 16 
using 39 

398 o FSORT: Application Programming: Guide 

K 
keyed-sequential data set 

See KSDS 
keys 4 
KSDS 10 

L 
label field 56 
LENGTH 

RECORD control statement option 128 
LENGTH field in DFSORT Panels 154 
Length of Original Control Statement 334 
Length of the Altered Control Statement 334 
limiting records 160 
line commands 155 
LINK 232 

writing macro instruction 241 
link-editing 

performance 256 
user exit routines 190 

linkage conventions 190 
linkage editor 40 
Linkage Examples 191 
LIST 

EXEC PARM option 29 
ICEMAC installation option 12 
OPTION control statement option 107 
with an EFS program 325 

LIST)( 
EXEC PARM option 29 
ICEMAC installation option 12 
OPTION control statement option 108 
with an EFS program 325 

loading user exit routines 189 
logging inter-module trace data 172 
Logging/Abend Control Entry Panel 172 
logical operator 75, 96 

M 
macro instructions 

See system macro instructions 
Main Features of Sources of DFSORT 

Options 353-354 
main storage 256, 311 

allocating 
consequences of increasing 257 

allocating efficiently 256 
factors affecting requirements 257 
MAINSIZE 311 
minimum 256 
releasing 258 
SIZE 311 

MAINSIZE 
allocating storage 256 
OPTION control statement option 108 
releasing main storage 258 



Major Call 1 348 
Major Call 2 349 
Major Call 3 350 
Major Call 4 351 
Major Call 5 351 
maximizing performance 248 
MAXLIM 

allocating storage 256 
ICEMAC installation option 12 
releasing main storage 258 

MERGE Control Fields Entry Panel 153, 154 
MERGE control statement 87, 90 

examples 89-90 
function 54 
using 87-90 

MERGE Entry Panel, page 1 150 
MERGE Entry Panel, page 2 151 
Merge Examples 300-305 
merge help index 178 
Merge Restriction 245 
MERGE Statement Examples 89-90 
MERGE Statement Free Form Entry panel 155 
merging 

records 2, 87 
user-defined data types 315, 321 

Message List 337 
messages 13 
minimum block length 9 
minimum record length 9 
MINLIM 

allocating storage 256 
ICEMAC installation option 12 

modifying collating sequence 60 
Modifying Control Fields 185 

E61 exit 200 
modifying records 161 
MODS control statement 91, 94 

examples 93 
function 55 
MODS Statement Data Entry panel 163 
using 91-94 

MODS Statement Data Entry panel 163 
MODS Statement Examples 93-94 
MSGCON 

ICEMAC installation option 12 
MSGDDN 

EXEC PARM option 30 
ICEMAC installation option 12 
OPTION control statement option 109 

MSGPRT 
EXEC PARM option 30 
ICEMAC installation option 12 
OPTION control statement option 110 

MVS/XA or MVS/ESA Support of the EFS 
Program 315 

MVS/XA and MVS/ESA Support of EFS Program Exit 
Routines 344 

Reading List 

MVS/XA and MVS/ESA Support of User Exits 188 

N 
naming exit routines 163 
NOABEND 

DEBUG control statement option 62 
EXEC PARM option 23 

NOASSIST 
DEBUG control statement option 66 

DFSORT Panels 160 
NOBLKSET 

efficiency 255 
OPTION control statement option 110 

NOCHALT 
OPTION control statement option 99 

NOCHECK 
OPTION control statement option 99 

NOCINV 
efficiency 255 
EXEC PARM option 24 
OPTION control statement option 100 

NOEQUALS 
EXEC PARM option 26 
MERGE control statement option 88 
OPTION control statement option 104 

NOESTAE 
DEBUG control statement option 65 

NOLIST 
EXEC PARM option 29 
OPTION control statement option 107 
with an EFS program 325 

NOLlSTX 
EXEC PARM option 29 
OPTION control statement option 108 
with an EFS program 325 

NOMSGDD 
ICEMAC installation option 12 

NOOUTREL 
EXEC PARM option 31 
OPTION control statement option 110 

NOOUTSEC 
OPTION control statement option 111 

NOSTIMER 
EXEC PARM option 34 
OPTION control statement option 111 

Notational Conventions 17-19 
NOVERIFY 

OPTION control statement option 116 
NOVLSHRT 

OPTION control statement option 116 
NOWRKREL 

OPTION control statement option 111 
NOWRKSEC 

efficiency 255 
OPTION control statement option 112 

Index 399 



Reading List 

o 
OMIT 

efficiency 253 
OMIT control statement 95, 96 

example 95-96 
function 55 
OMIT Statement Data Entry panel 161 
using 95-96 

OMIT Statement Data Entry panel 161 
OMIT Statement Example 95-96 
omitting records 2, 95 

DFSORT Panels 161 
user-defined data types 315 

Opening and Initializing Data Sets 185, 323 
opening data sets 185, 319 

E11 exit 192 
E31 exit 202 

operand field 56 
Operating Systems 3-4 

compatible 3 
operation field 56 
OPTION control statement 97, 120 

examples 117-120 
function 54 
OPTION Statement Data Entry panel 164 
using 97-120 

OPTION Statement Data Entry panel 164 
OPTION Statement Examples 117-120 
OUTFIL statement 59 
output data set 

requirements 8, 9 
output data sets 

See data set 
Output Phase 183 
OUTREC 

efficiency 254 
OUTREC control statement 121, 126 

column alignment 121 
examples 124-126 
function 55 
input field 122 
OUTREC Input/Separation Fields Entry panel 161 
separation field 

binary zero separation 122 
blank separation 122 
character string separation 122 
hexadecimal string separation 122 

using 121-126 
OUTREC Input/Separation Fields Entry panel 161 
OUTREC Statement Examples 124-126 
OUTREC Statement Notes 123-124 
OUTREL 

EXEC PARM option 31 
ICEMAC installation option 12 

OUTSEC 
ICEMAC installation option 12 

overflow 82, 142 

400 o FSORT: Application Programming: Guide 

OVERRGN 259 
ICEMAC installation option 12 
releasing main storage 258 

Override Tables 354 
overriding 

defaults 353 
installation defaults 97 

Overview of DFSORT Panels 145-146 

p 
padding 82 
Padding and Truncation 75 
padding records 9, 75 
panel 

command line 147 
commands 148 
defined 146 

parameter list 
control statements 233, 238 
format 234, 239 

Parameter lists 354 
PARMDDN 

ICE MAC installation option 12 
passing control to user exits 91 
passing records 

E15 exit 192, 212 
performance 

application design 248 
efficient blocking 249 
EXCPVR 261 
Hipersorting 261 
HIPRMAX 261 
ICEGENER 262 
JCL 248 
main storage 256 
maximizing 248 
merging techniques 249 
options that degrade 255 
options that enhance 251 
sorting techniques 249 
specifYing data sets 250 
temporary work space 259 

Plan Ahead 248 
PUI 127 
POSITION field in DFSORT Panels 154 
Processing of Error Abends with A-Type 

Messages 386 
Processing User-Defined Data Types with EFS 

Program Exit Routines 325 
PROFILE application 

See DFSORT user profile 
PROFILE command 148 
Program Action 314 
Program Control Statements for the Extended Param­

eter Ust 238-241 
Program DO Statements 40-52 



Program Execution 5 
program phase 

defined 183 
initialization 319 
input 321 
input phase 183 
output phase 183 
termination 321 

Q 
OSAM 

data set 10 
E18 user exit 196 
E19 user exit 199 

OSAM Considerations 10 
OSAM data set 8, 9 

R 
rearranging records 

See sorting records 
record 

blocking 249 
changing with user exit routines 203 
copying 88 
deleting 68 

with OMIT control statement 95 
describing with RECORD control statement 127 
DFSORT Panels 160 
editing 2 
EFS constraints 9 
filtering 160 
formatting 78 
including 2 
length 10 

DFSORT Panels 165 
limiting 160 
maximum length 9 
merging 87 
minimum length 9 
modifying with user exit 185 
omitting 2 
padding 9, 75 
passing with user exit routines 192 
processing order 6, 7, 75, 81, 82, 123 

EFS 345 
reformatting 121,161 
sorting 132 
storage constraints 9 
summarizing 165 
summing 2, 141 

E35 exit 206 
with user exits 185 

truncation 9, 75 
type 9 

DFSORT Panels 165 
user-defined data types 315 
variable-length 

efficiency 250 

Reading List 

RECORD control statement 127, 131 
coding notes 130 
examples 130-131 
function 55 
RECORD Statement Data Entry panel 164 
using 127-131 

record length 
length 

DFSORT Panels 165 
Record Lengths List 335 
Record Processing Order 345-347 
RECORD Statement Data Entry panel 164 
RECORD Statement Examples 130-131 
record type 9 

specifying 128 
recovering from abends 172 , 
recovering from unexpected abends 385 
reformatting records 2, 161, 1 ~5 

with INREC 78 
with OUTREC 121 

region 256 
allocating storage 256 
determining storage 256 
releasing main storage 258 

REINIT command 147 ' 
Relational Condition 69 

comparison operator 70 
constants 72 

character string format 74 
decimal number format 73 
hexadecimal string format 74 

defined 69 
DFSORT Panels 160 
format 69 

Relational Condition Format 69-74 
Releasing Main Storage 258 
remark field 56 
RENT 189 
reordering control fields 161 

See reformatting records 
Requesting Conversion from Lower to 

Uppercase 173 
Requesting Diagnostic Messages 173 
RESALL 

EXEC PARM option 32 
ICEMAC installation option 12 
OPTION control statement option 112 

RESINV 259 
ICEMAC installation option 13 
OPTION control statement option 113 

Restrictions for Dynamic Invocation '245-246 
return codes 

EFS 345 
RETURN command 147 
Review Control Statements panel 166 

illustration 167 
reviewing control statements 153, 166 

Index 401 



Reading List 

Reviewing DFSORT Control Statements 153 
RMODE 190 
Rules for Parsing 330 

S 
Sample Job Streams 265-309 
Sample Routines Written in Assembler 207-209 
Sample Routines Written in COBOL 224-226 
saving a job stream 168 
Selecting and Editing DFSORT Control 

Statements 152 
Selecting Input Data Sets: SORT/COPY/MERGE Entry 

Panels, Page 1 150-151 
separation field 79, 122 

DFSORT Panels 162 
sequence checking 89 
Setting Your Task Environment: SORT/COPY/MERGE 

Entry Panels. Page 2 151-153 
shared tape unit 37 
Shared Tape Units 37-39 
SIZE 

allocating storage 256 
EXEC PARM option 32 
ICEMAC installation option 13 
MERGE control statement option 88 
OPTION control statement option 105 
releasing main storage 258 
SORT control statement option 137 

SKIPREC 
efficiency 253 
EXEC PARM option 33 
MERGE control statement option 89 
OPTION control statement option 113 
SORT control statement option 137 

SMF 
ICEMAC installation option 13 

SNAP dump 347 
Some Uses of E61 200 
SORT Cataloged Procedure 20-21, 40 
SORT Control Fields Entry Panel 153 

illustration 154 
SORT control statement 132. 140 

effects of EQUALS 132 
examples 138-140 
function 54 
using 132-140, 141 

SORT Entry Panel, page 1 150 
illustration 150 

SORT Entry Panel, page 2 151 
illustration 151 

Sort Examples 268-300 
Sort Examples Using VSAM Data Sets 305-308 
sort help index 178 
SORT Statement Examples 138-140 
SORT Statement Free Form Entry panel 155 

illustration 156 

402 DFSORT: Application Programming: Guide 

SORT Statement Image Example 233 
SORT Statement Note 138 
SORTCKPT DD statement 48, 49 

function 17,41 
using 48-49 

SORTCNTL Data Set 354 
SORTCNTL DD statement 49 

function 17.41 
using 49 

SORTD Cataloged Procedure 21, 40 
SORTDD 

OPTION control statement option 114 
SORTDIAG DD statement 51, 52 

function 17.41 
using 51-52 

SORTDKnn DD statement 51 
function 41 
using 51 

SORTIN 
OPTION control statement option 114 

SORTIN DO statement 42, 43 
function 16, 40 
using 42-43 

sorting 
defined 4 
records 2. 132 
user-defined data types 315 
user-defined data-types 321 

sorting records 132 
SORTINnn DO statement 43, 45 

duplicate 37 
function 16, 40 
using 43-45 

SORTLIB 
ICEMAC installation option 13, 41 

SORTLIB DO statement 41,42 
function 16, 40 
using 41-42 

SORTMODS DO statement 
function 17,41 

SORTOUT 
OPTION control statement option 115 

SORTOUT DO statement 47,48 
function 16, 40 
using 47-48 

SORTREC 149 
invoking 174 

SORTREC Entry Panel 
illustration 175 

SORTSNAP DO statement 52 
function 17,41 
using 52 

SORTWKnn DO statement 45, 47 
duplicate 37 
function 16. 40 
using 45-47 

SPACE 259 



Special Handling of OPTION and DEBUG Control 
Statements 330 

Specification/Override of DFSORT Options 353-371 
Specify Efficient Sort/Merge Techniques 249 
Specify Input/Output Data Set Characteristics Accu-

rately 250 
Specifying DFSORT Panels Job Control 

Language 172-173 
Specifying EXEC Statement Cataloged 

Procedures 19-21 
Specifying EXEC Statement PARM Options 21-35 
Specifying the EXEC Statement: DFSORT Execute 

Statement Entry Panel 173 
Specifying the JOB Statement: JOB Statement Entry 

Panel 173 
Specifying the Order of Your Sorted or Merged 

Records 153-156 
Specifying the Order with the SORT or MERGE Control 

Fields Entry Panel 153-155 
Specifying the Order with the SORT or MERGE State­

ment Free Form Entry Panel 155-156 
Specifying the Output Data Set 151-152 
STEPLIB DO statement 

function 16 
using 39 

STIMER 
EXEC PARM option 34 
ICEMAC installation option 13 

STOPAFT 
efficiency 253 
EXEC PARM option 34 
MERGE control statement option 89 
OPTION control statement option 115 
SORT control statement option 138 

storage 
efficient 250, 251 
exceeding capacity 313 
factors affecting requirements 312 
intermediate 311 

DFSORT Panels 152 
specifying for user exit routine 91, 93 
temporary 259 
tracks versus cylinders 250, 311 
user exit routine 187, 211 

Structure of the EFS Interface Parameter 
List 325-337 

submitting a job 
background environment 168 
foreground environment 167 

SUM 
efficiency 254 

SUM control statement 141. 143 
examples 143 
function 55 
Sum Summary Fields Entry panel 165 
summary field 141 
using 143 

SUM Statement Examples 143 
SUM Statement Notes 142 
Sum Summary Fields Entry panel 165 
summarizing records 141, 165 
summary field 141 
Summary of Changes 

Release 11, December 1988 ix-x 

Reading List 

Summary of Rules for User Exit Routines 189-192 
summing numeric fields 165 
summing records 2,141,185 

E35 exit 206 
Summing Records at E35 206 
Supplying Messages for Printing to the Message Data 

Set 325 
SVC 

ICEMAC installation option 13 
SYNAD 197,200 
syntax diagram 17 
SYSABEND DO statement 

function 17 
using 40 

SYSIN Data Set 354 
SYSIN DO statement 

function 17 
using 39 

SYSLIN DO statement 
function 17 
using 40 

SYSLMOD DO statement 
function 17 
using 40 

SYSOUT DO statement 
function 16 
using 40 

SYSPRINT DO statement 
function 17 
using 40 

System DO Statements 39-40 
system macro instruction 

writing 241 
system macro instructions 

defined 232 
using 232 

SYSUDUMP DO statement 
function 17 
using 40 

SYSUTl DO statement 
function 17 
using 40 

T 
tape 

considerations 312 
efficiency 251, 255, 261 

Tape Storage Considerations 312-313 
Tape Work Storage Devices 261 

Index 403 



Reading List 

Terminating DFSORT 188,325 
E35 exit 218 
with an EFS program 325 
with user exits 188 

Termination Phase 321 
TEXIT 

ICEMAC installation option 13 
TMAXLIM 

allocating storage 256 
ICEMAC installation option 13 
releasing main storage 258 

To the Reader v 
tracks 250, 311 
Trademarks Used In This Document iii 
truncating records 9, 75 
TSO (time sharing option) 149 
Tuning Main Storage 256 
TYPE 

RECORD control statement option 128 

U 
UDPI (User-Defined Panels Interface) 146 
unexpected abends 385 
UP command 147 
Use JCL to Invoke DFSORT Processing 248 
Use Options that Enhance Performance 251 
user exit 

activating 182 
assembler routines 192,202 

input phase 192 
output phase 202 

COBOL routines 212, 218 
input phase 212 
output phase 218 
overview 209 

conventions for routines 189 
DFSORT Panels 163 
DFSORT performance 188 
efficiency 255 
Ell 192 
E15 192,212 

DFSORT Panels 150 
E16 195 
E17 196 
E18 196 
E19 199 
E31 202 
E32 202 
E35 203, 218 

DFSORT Panels 151 
E37 206 
E38 206 
E39 207 
E61 200 

DFSORT Panels 154 
functions 183 
language requirements 182 
linkage conventions 190 

404 DFSORT: Application Programming: Guide 

user exit (continued) 
loading routines 189 
MVS/XA and MVS/ESA support 188 
overview 182 
passing control with MODS control statement 91 
using RECORD control statement 127 

User Exit Linkage Conventions 190 
user profile 

See DFSORT user profile 
Using Background Execution 168-172 
Using Control Statements from Other IBM 

Programs 59 
Using DD Statements 35-52 
Using DFSORT Control Statements: Control State-

ments Selection Panel 157-166 
Using DFSORT Program Control Statements 53-143 
Using Extended Function Support (EFS) 351 
Using E18 with QSAM/BSAM 196 
Using E18 with VSAM 197 
Using E19 with QSAM/BSAM 199 
Using E38 with VSAM 206 
Using E39 with QSAM/BSAM 207 
Using E39 with VSAM 207 
Using Foreground Execution 167 
Using Main Storage Efficiently 256-259 
Using Panels to Create and Submit DFSORT 

Jobs 179 
Using Panels to Create DFSORT Jobs 148-167 
Using Panels to Save or Submit Your DFSORT 

Job 167-170 
Using SORTREC for a Quick and Simple Sort Under 

ISMF 174-175 
Using System Macro Instructions 232-241 
Using the EXEC Statement 19-35 
Using the HELP Index 177-179 
Using the JOB Statement 19 
Using Your Own Exit Routines 181-229 

V 
VERIFY 

efficiency 255 
ICEMAC installation option -13 
OPTION control statement option 116 

VIO 
ICEMAC installation option 13,51 

VLSHRT 
ICEMAC installation option 13 
OPTION control statement option 116 

VSAM 
data set 10 
E18userexit 197 
E38 user exit 206 
E39 user exit 207 
KSDS 10 
maximum record size 

with INREC control statement 82, 124 
using RECORD control statement 127 



VSAM Considerations 10-11 
VSAM data set 8, 9 
VSAM Exit Functions 187 

W 
What Are System Macro Instructions? 232 
What This Book Covers vi-vii 
What You Can Do with EFS 322-325 
When You Merge Records 9 
When You Sort or Copy Records 8 
Who Should Read This Book v 
Work Storage on Disk 313 
Work Storage on Tape 313-314 
Writing the Macro Instruction 241-245 
WRKREL 

EXEC PARM option 34 
ICEMAC installation option 13 

WRKSEC 

x 

EXEC PARM option 35 
ICEMAC installation option 13 

XCTL 232 
writing macro instruction 241 

z 
ZOPRINT 

ICEMAC installation option 13 

Reading List 

Index 405 



.~ 
OJO c .... 
"'", E·-
0.'<: ._ OJ ,,-
0'0 
'" Ql 
0>'" 
.~ .B 
OJ 
'- '" 00. 

'" 0 ,OJ 

:::" 
o '" E E 
u E .- " cO> 
E '-
0'" OJ'<: 
"OJ 
0 0 

:5 5 
.- '" 
~ > 
"':; 
E';;; 
'" c -'" .&J., 
~, 
o.~ 

'" " "'., " '" 0'" u'-
0. 

C '" 0", 

u " 
III Ql 

.!'" 
0.0 
o Ql 

(j)a:: 

~ 
o 
Z 

DF80RT 
Application Programming: Guide 

8C33-4035-14 

Reader's 
Comment 
Form 

This manual is part of a library that serves as a reference source for system analysts. programmers. and operators of IBM systems. 
You may use this form to communicate your comments about this publication. Its organization. or subject matter. with the under­
standing that IBM may use or distribute whatever information you supply In any way it believes appropriate without Incurring any 
obligation to you. Your comments will be sent to the author's department for whatever review and action. if any. are deemed appro­
priate. 

Note: Do not use this form to request IBM publications. U you do, your order will be delayed because publications are not stocked at 
the address printed on the reverse side. Instead, you should direct any requests for copies of publications, or for assistance In using 
your IBM system, to your IBM representative or to the IBM branch omce serving your locality. 

If you have applied any technical newsletters (TNLs) to this book. please list them here: 

Comments (please include specific chapter and page references) : 

If you want a reply. please complete the following information: 

Name ________________________________________________ _ Date __________________________________ _ 

Company ____________________________________________ ___ Phone No. ( _____ ) ______________________ __ 

Address ________________________________________________________________________________________ _ 

Thank you for your cooperation. No postage Is necessary If mailed In the U.S.A. (Elsewhere. an IBM office or representative will be 
happy to forward your comments or you may mall them directly to the address In the Edition Notice on the back of the title page.) 



SC33-4035-14 

Reader's Comment Form 

Fold Bnd tape Please do not staple 

II 1\ II 
BUSINESS REPLY MAIL 
FIRST CLASS MAIL PERMIT NO. 40 ARMONK. NY 

POSTAGE WILL BE PAID BY ADDRESSEE 

IBM Corporation 
Programming Publishing 
P.O. Box 49023 
San Jose, CA 95161-9023 

1,"11 •• 1.1.1'11111111'1111.1111.1 •• 11111 ••• 11.1.1.1 

Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

, , 
, 
, 
, 
, , 
, 
, , 
, , , 
, 

................................................................................................. , 
Fold and tape 

-~------- --_ .... - ~ ----- ~ ---- - - ----------~-,-e 

Please do not staple Fold and !ape 
, 
, , 
, , 
, 
, , 



SC33-4fJ35-14 


	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	replyA
	replyB
	xBack

