
Program Product

L

GC28-0674-4
File No. 8370-37

•

OSjVS2 MVS
System Programming
Library: Service Aids

MVS/System Product:

JES35740-XYN
J ES2 5740-XYS

-~-. ..-
-~~~ - -----~ -..--- ~-~-- - - _ -
---.-~------ - ... -

Fifth Edition (July, 1985)

This is a major revision of, and obsoletes, GC28-0674-3 and Technical Newsletters
GN28-0965, GN28-4944, GN28-4920 and GN28-4686 and Supplements G023-0122-0,
G023-0217-0, and GD23-0178-2.

See the Summary of Amendments following the contents for a summary of the changes to
this manual. Technical changes or additions to the text and illustrations are indicated by
a vertical line to the left of the change.

This edition applies to Version I Release 3.5 of MVS/370 and to all subsequent releases
until otherwise indicated in new editions or technical newsletters. Changes are made
periodically to the information herein; before using this publication in connection with
the operation of IBM systems, consult the latest IBM Sysfem/370 Bibliography,
GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM program product in this publication may be used. Any functionally
equivalent program may be used.

Publications are not stocked at the address given below. Requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for reader's comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Programming
Publications. Department 058, Building 921-2, PO Box 390, Poughkeepsie, N. Y. 12602.
IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever. You may, of course. continue to
use the information you supply.

(<;l Copyright International Business Machines Corporation 1974, 1985

Preface

l

l

The following is a list of requirements for using this publication:

• This publication contains information for the following:

Interactive Problem Control System (IPCS) - SU57

OS/VS2 MVS/System Product - JES3 - Program Number 5740-XYN

OS/VS2 MVS/System Product - JES2 - Program Number 5740-XYS

• Always use the page with the latest date (shown at the top of the page) when
adding pages from different Supplements/TNLs.

Preface iii

IV Service Aids

l

l

l

How to Use the OS/VS2 MVS SPL: Service Aids

Audience

Content

This publication explains how, why, and when to use IBM service aids programs
for MVS when diagnosing and fixing failures in system or application programs.

This publication is for system programmers, system operators and IBM program
support representatives.

The information in this book describes the following service aids:

• GTF (Generalized Trace Facility) - Traces selected system events such as SVC
and I/O interruptions.

• AMBLIST - Formats and prints object modules, load modules, and CSECT
identification records; maps reenterable load module area.

• AMDPRDMP - Formats and prints dump data sets, which may include GTF
trace data, and instruction trace data (created by the console initiated loop
recording).

• AMAPTFLE - Updates an operating system by applying PTFs or by
generating JCL statements needed to apply PTFs or ICRs in a later step.

• AMDSADMP - Operates as a stand-alone program to produce a dump of
instruction trace data (created by the console-initiated loop recording), real
and virtual storage.

• AMASPZAP - Verifies and/or replaces instructions and/or data in a load
module.

Related service aid components are:

• HMASMP - Provides the user with the facility to apply PTFs or user
modifications either selectively or as a group to a VSl or VS2 system or to
the distribution libraries (DLIBs) associated with them. Note: SMP is not
discussed in this publication. For information on SMP, refer to OS/VS2
MVS System Modification Program, System Programmer's Guide.

How to Use the OS/VS2 MVS SPL: Service Aids V

Organization

• IPCS (Interactive Problem Control System) - provides MVS installations with
the expanded capabilities for diagnosing software failures and facilities for
managing problem information and status. Note: IPCS is not discussed in
this publication; however, an overview of IPCS is provided in the
Introduction. For information on IPCS, refer to OSjVS2 MVS Interactive
Problem Control System (IPCS) User's Guide and Reference.

Note: The system activity measurement facility (MF/l) is not supported with
MVS/System Product - JES3 (program Number 5740-XYN) or MVSjSystem
Product - JES2 (Program Number 5740-XYS).

Each service aid is explained in a separate chapter and the chapters are arranged
in alphabetical order. The chapter page numbers show the names of the programs
minus the three-character component identifier (such as AMD).

Please note that throughout the text each service aid is referred to by its
abbreviated name, except where the full name of the program is necessary for
technical accuracy. This means that you should expect to see AMDPRDMP
referred to as simply PRDMP, except in JeL examples and other situations where
the full name is necessary. Although you may be confused by the abbreviations
at first, you will soon find that the shorter names are easier to remember, because
they remind you of the functions that the service aids perform.

Think of the abbreviated names as acronyms, like this:

GTF - Generalized Trace Facility.

LIST - Module Listing Program.

PRDMP - Print Dump Program.

PTFLE - Program Temporary Fix Link Edit Program.

SADMP - Stand-Alone Dump Program.

SPZAP - Superzap (Data Checker and Modifier).

Related Publications

VI Service Aids

Three hardware-oriented service aids, IFCDIPOO, ISDASDAO, and IFCEREPl,
are not documented in this publication, but in publications:

• OS/VS2 SPL: SYSl.LOGREC Error Recording, GC28-0677 - describes how
IFCDIPOO and ISDASDAO can be used to initialize and record data from the
SYSl.LOGREC data set.

• OS/VS2 SYSl.LOGREC Error Recording Logic, SY28-0678 - describes the
internal logic of IFCDIPOO and ISDASDAO.

l

l

l

• OS/VS Environmental Recording Editing and Printing (EREP) Program,
GC28-1178 - describes how EREP can be used to generate reports from
records on SYS1.LOGREC.

• OS/VS Environmental Recording Editing and Printing (EREP) Program Logic,
ZZ28-7032 - describes the internal logic of the IFCEREPI program and
in-storage LOGREC buffer formatter.

Some information about other service aids is not included in this publication, but
is covered in the following publications:

• OSjVS2 Service Aids Logic, SY28-0643 - describes the internal logic of the
service aid programs.

• 370jMVS Debugging Handbook Volume 1, LC28-1385 - describes the
dump-type output of the service aids in VS2.

• OSjVS Message Library: VS2 System Messages, GC38-1008 - describes the
numbered messages issued by the service aids.

• OSjVS Message Library: EREP Messages, GC38-1045 - describes the
messages produced by the IFCEREPI programs.

• OSjVS System Modification Program (SMP) System Programmer's Guide,
GC28-0673 - describes installation and use of SMP.

• OSjVS System Modification Program (SMP) Logic, SY28-0685 - describes
the internal logic and organization of SMP.

• MVS Diagnostic Techniques, SY28-1133 - describes how to print dumps using
PRDMP service aids.

• OS/VS2 MVS Interactive Problem Control System (IPCS) User's Guide and
Reference, GC28-1183.

You should also be familiar with the following publications:

• OS/VS2 MVS Utilities, GC26-3902 - describes how to use utility programs to
print certain types of service aid output.

• Operator's Library: OSjVS2 MVS System Commands, GC28-1031 - describes
how to perform certain basic operations in VS2, such as loading a stand-alone
program.

• Operator's Library: OS/VS2 MVS JES2 Commands, SC23-0048 - describes
how to perform certain basic operations in VS2 with JES2.

• Operator's Library: OSjVS2 MVS JES3 Commands, GC23-0008 - describes
how to perform certain basic operations in VS2 with lES3.

• MVS JCL Reference, GC28-1350 - provides background information to
understanding the use of parameters, cataloged procedures, spatial allocation
of data sets, etc.

How to Use the OSjVS2 MVS SPL: Service Aids Vll

Vlll Service Aids

• MVS JCL Users' Guide, GC28-1349 - describes how to use control
statements to override default parameters, use cataloged procedures, allocate)
space for data sets, etc. ..."

• OS/VS2 MVS SPL: System Management Facilities (SMF), GC28-1030 -
describes how a system interfaces with user exit routines to monitor the job
stream.

Other publications referenced in the text include the following:

• IBM S/370 Principles of Operation, GA22-7000.

• MVS System Codes, GC28-11S7.

• OSjVS2 SPL: Initialization and Tuning Guide, GC28-0681.

• OSjVS2 SPL: Supervisor, GC28-1046.

• OS/VS2 TSO Command Language Reference, GC28-0646.

• OS/VS2 SPL: Data Management, GC26-3830.

• OS/VS Linkage Editor and Loader, GC26-3813.

• OSjVS Linkage Editor Logic, SY26-381S.

• VT AM Debugging Guide, ACF/VT AM, Version 2, Diagnosis Guide,
SC27-061S.

• Data Facility Device Support, DADSM and Common VTOC Access Facility:
Diagnosis Guides, SC26-3968.

l

l

l

Introduction to the OS /VS2 MVS SPL: Service Aids

Information Gathering

Service aids are programs designed to help system programmers and IBM
program support representatives diagnose and fix failures in system or application
programs. Service aids have three general functions:

• To dump real storage, use stand-alone program SADMP. To dump virtual
storage, all real storage (including addresses greater than 16 megabytes), and
instruction trace data (created by the console-initiated loop recording), use the
high-speed version of SADMP. SADMP's output can be formatted and
printed using PRDMP.

• To trace system events such as SVC and I/O interruptions, use GTF (the
Generalized Trace Facility). Its output can be formatted and printed using
the EDIT function of PRDMP.

Formatting and Printing: Mapping

• To summarize and print records in the SYSl.LOGREC data set, use
IDASDAO which is described in the publication OS/VS2 SPL:
SYSI.LOGREC Error Recording.

• To format and print load modules, object modules and CSECT identification
records, or to map the reenterable load module area or the link pack area, use
LIST.

• To format and print SADMP output, other system dumps, and GTF trace
output, use PRDMP.

Generating and Applying Fixes

• To apply a PTF or an ICR, use PTFLE. SMP may be used to apply PTFs or
user modifications. For information on SMP, see the references listed under
"Related Publications." PTF tapes distributed after May, 1974 may be in
SMP format and, therefore, require modification when using with PTFLE.

• To verify and/or replace instructions in a load module, or data on a direct
access device, use SPZAP.

• To initialize the SYSl.LOGREC data set, use IFCDIPOO, which is described
in the publication OS/VS2 SPL: SYSI.LOGREC Error Recording.

How to Use the OS/VS2 MVS SPL: Service Aids IX

IPCS - Interactive Problem Control System

x Service Aids

The OS/VS2 MVS Interactive Problem Control System (lPCS) provides MVS
installations with expanded capabilities for diagnosing software failures and
facilities for managing problem information and status.

IPCS includes facilities for:

• Online examination of storage dumps.

• Analysis of key MVS system components and control blocks.

• Online management of a directory of software problems that have occurred in
the user's system.

• Online management of a directory of problem-related data, such as dumps or
the output of service aids.

IPCS runs as a command processor under TSO, allowing the user to make use of
existing TSO facilities from IPCS, including the ability to create and execute
command procedures (CLISTs) containing the IPCS command and its
subcommands.

IPCS supports three forms of MVS storage dumps:

• High-speed stand-alone dumps produced by AMDSADMP.

• Virtual dumps produced by MVS SDUMP on SYSl.DUMP data sets.

• Virtual dumps produced by MVS SDUMP on data sets specified by the
SYSMDUMP DD statement.

For information about IPCS, refer to the OS/VS2 MVS Interactive Problem
Control System ([PCS) User's Guide and Reference.

For complete information about IFCDIPOO, and ISDASDO, see OSjVS2
SYSI.LOGREC (EREP) Program. For information of SMP, refer to the SMP
publications listed under "Related Publication."

l

Contents

Chapter 1. GTF I-I
In trod ucti on I-I
Using GTF 1-2

Features of GTF 1-2
GTF Trace Output 1-3
Retrieving GTF Trace Output 1-3

How to Start GTF 1-4
How to Specify the START Command 1-4
The Cataloged Procedure Supplied by GTF 1-7

How to Specify GTF Trace Options 1-9
How GTF Identifies Options in SYSl.PARMLIB 1-9
How You Indicate Trace Options 1-9
Summary of GTF Trace Options 1-9
Combining Certain GTF Options 1-12
Prompting 1-13

GTF Examples 1-18
Example 1: Starting GTF Using the GTF Catalogued Procedure 1-18
Example 2: Starting GTF for Internal Tracing Using the GTF Cataloged

Procedure 1-18
Example 3: Directing GTF Trace Output to an Existing Data Set on

Tape 1-19
Example 4: Storing Trace Options in SYSl.PARMLIB 1-19
Example 5: Starting GTF With a User Cataloged Procedure That Does not

Have a SYSLIB DD Statement 1-20
Example 6: Prompting Keywords Stored in SYSl.PARMLIB 1-21
Example 7: Specifying Which System Events GTF Traces, Using Trace Options

SYSP and USR 1-21
Example 8: Starting GTF to Trace VTAM Remote Network Activity 1-22
Example 9: Specifying Which System Events GTF Traces, Using Trace Options

SlOP, lOP, PCI, CCWP, SVC, and JOBNAMEP 1-23
How to STOP GTF 1-24

How to Specify the STOP Command 1-24
Sample STOP Commands 1-24

GTF Storage Requirements 1-26
User Trace Data Created With GTRACE 1-27

EID Assignment for User Events 1-27
How to Print User Data 1-27
General Format of the GTRACE Macro 1-28
List Form of the GTRACE Macro 1-29
Execute Form of the GTRACE Macro 1-30

l
GTF Error Recovery Handling 1-31
GTF Output 1-32

Trace Records 1-32

Contents Xl

Control Records 1-39

Chapter 2. LIST 2-1
Introduction 2-1
JCL Statements 2-2
Control Statements 2-3
Output 2-7
Examples 2-16

Example 1: Listing Several Object Modules 2-16
Example 2: Listing Several Load Modules 2-17
Example 3: Listing IDR Information for Several Load Modules 2-18
Example 4: Verifying an Object Deck 2-19
Example 5: Verifying Several Load Modules 2-20
Example 6: Listing a System Nucleus and Mapping the Link Pack Area 2-21

Chapter 3. PRDMP 3-1
Introduction 3-1
Using PRDMP 3-2
Functions of PRDMP 3-4

Format Control Blocks 3-4
Provide Address Space Summary Information 3-4
Select Storage Locations to Print 3-4

Map the Link Pack Area Active Queue 3-5
Fast Dump Scan 3-5
Print Queue Control Blocks 3-5
Format Generalized Trace Facility (GTF) Trace Output Records 3-5
Clear SYSI.DUMP Data Sets 3-5
AMDPRDMP Return Codes 3-6
Specify the Communications Vector Table Address 3-6
Print a User-Specified Title 3-6
Provide User Interface 3-6
Provide High-Density Dump Output 3-6

How to Specify JCL Statements for PRDMP 3-7
JOB and EXEC Statements 3-8
Input DD Statements 3-10
Output DD Statements 3-12
Cataloged Procedure Provided by PRDMP 3-15
How to Specify Control Statements for PRDMP 3-17
PRDMP Control Statements 3-18

Function Control Statements 3-18
Format Control Statements 3-21
Defaults for EDIT Keywords 3-37
Editing Trace from a Trace Data Set 3-37

Combining PRDMP Control Statements 3-38
User Control Statements 3-39
Correlating PRDMP Output with Other Diagnostic Data 3-39
JCL and Control Statement Examples 3-40
Example 1: Using the Cataloged Procedure 3-40
Example 2: Transferring a Dump Data Set and Processing It in a Later

Job 3-41
Example 3: Transferring a SYSl.DUMP Data Set and Processing It in the Same

Step 3-43
Example 4: Processing Multiple Data Sets 3-44
Example 5: Editing GTF Trace Data from Buffers in a Dump 3-46

XlI Service Aids

Example 6: Editing a GTF Trace Data Set 3-47
Example 7: Processing a Multi-Volume Page Data Set Dump 3-48
Example 8: Fast Dump Scan Display Session 3-49

Chapter 4. PTFLE 4-1
Introduction 4-1
Application Function 4-2
Using the PTFLE Cataloged Procedure 4-4
Executing the Application Function 4-5
Application Function Output 4-5
Generate Function 4-6
Writing JCL for the Generate Function 4-8
Executing the Generate Function 4-8
Generate Function Output 4-9
Control Statements 4-11
PTFLE Control Statement 4-11

Module Name Parameter 4-11
SSI Number Parameter 4-12

IDENTIFY Control Statement 4-12

Chapter 5. SADMP 5-1
Introduction 5-1
Steps to Generate and Execute SADMP 5-1
Coding the Macro Instruction 5-2

High-Speed Dump Program 5-3
Low-Speed Dump Program 5-5

Assembling the Macro Instruction 5-7
Error Messages from AMDSADMP Assembly 5-8
Directing Assembly Output to Tape or DASD 5-10
Assembling Multiple Macro Instructions 5-11

Initializing the Residence Volume 5-11
Error Messages from Stage 2 5-11

Executing SADMP 5-13
IPLing SADMP 5-13
Restarting SADMP 5-15

Operator Communications During Execution 5-16
Messages 5-16
SADMP Messages on the 3480 Display 5-17

SADMP Output 5-19
Low-Speed Output 5-19
High-Speed Output 5-19

SADMP Examples 5-21
Example 1: Accepting All Defaults 5-21
Example 2: Generating a High-Speed, Tape Resident Dump Program 5-22
Example 3: Generating a Low-Speed Dump with Defaults 5-22
Example 4: Generating a Low-Speed Dump Program with Output Directed to

Tape 5-22
Example 5: Specifying Multiple Consoles 5-23

Chapter 6. SPZAP 6-1
Introduction 6-1
Capabilities of SPZAP 6-1
Monitoring the Use of SPZAP
Data Modification and Inspection

6-2
6-2

Contents Xlll

Inspecting and Modifying a Load Module 6-3
Accessing a Load Module 6-3
Inspecting and Modifying a Data Record 6-5
Accessing a Data Record 6-5
Dumping Data 6-5
Updating System Status Information 6-6
Operational Considerations 6-8
JCL Statements 6-8
Return Codes 6-9
Dynamic Invocation of SPZAP 6-9
SPZAP Control Statements 6-11
SPZAP Examples 6-18

Example I: Inspecting and Modifying a Load Module Containing a Single
CSECT 6-18

Example 2: Inspecting and Modifying a 6-19
Example 3: Inspecting and Modifying Two CSECTs in the Same Load

Module 6-21
Example 4: Inspecting and Modifying a Data Record 6-23
Example 5: Entering SPZAP Control Statements Through the Console 6-24
Example 6: Using the BASE Control Statement for Inspecting and Modifying a

Load Module 6-24
SPZAP Output 6-26
The Formatted Hexadecimal Dump 6-26
The Translated Dump 6-26

Appendix A. Writing EDIT User Programs A-I
Introduction A-I
Guaranteeing Cross-System Compatibility for Format Appendages A-I
Interfaces Between User Programs and EDIT A-2
Gaining Control A-2
End-of-File Indicator for User Exits A-2
Using the Parameter List A-3

Input Record A-3
GTF Option Word A-4

Writing a Reentrant Format Appendage A-5
Fonnat Service Routine Used by a Fonnat Appendage A-5

Using the Format Appendage A-6
Returning to EDIT A-6

Exit Routines Return Codes A-6
Format Appendage Return Codes A-7

Handling Errors A-7
Errors in Finding or Loading Your Program A-7
Invalid Return Codes and Program Checks A-8

Avoiding Unrecoverable Errors A-8
Examples of Possible Errors A-9

Sample User Exit A-lO
Sample Format Appendage A-14
Sample Reentrant Format Appendage, Using the Format Service Routine A-16
Debugging a User Program A-22
JCL and Control Statement Examples A-27
Example 1: Link Editing a User Exit Routine into a Library A-27
Example 2: Testing a User Exit Routine A-28
Example 3: Testing a User Format Appendage A-30

Xl V Service Aids

Appendix B. PRDMP User Exit Facility B-1
The Exit Control Table (ECT) B-2
Format of the ECT B-2
Setting Up the ECT B-3
User-Written Formatting Routines B-4
Conditions on Entry to a User Formatting Routine B-5
PRDMP Parameter List B-6
Returning to PRDMP B-8
Guidelines for Writing a User Formatting Routine B-8

Guidelines for User Modules B-8
The Storage Access Service Routine B-9
The Format Service Routine B-ll

Format Patterns for PRDMP Format Routine B-12
The Print Service Routine B-14

PRDMP Output Buffer B-15
The Summary Dump Data Access Service Routine B-15

Specifying Format Routines for Summary Dump Records B-16

Appendix C. Abbreviation Dictionary C-l

Index X-I

Contents xv

J

xvi Service Aids

l

Figures

I-I.
1-2.
1-3.
1-4.
1-5.
1-6.
1-7.
1-8.
1-9.

1-10.
1-11.
1-12.

1-13.

1-14.

1-15.
1-16.
1-17.
I-IS.
1-19.
2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.

3-S.
3-9.
4-1.
4-2.
4-3.

General Format of the START Command for GTF 1-4
GTF Cataloged Procedure 1-7
GTFPARM Member in SYSl.PARMLIB I-S
Combining Certain GTF Options 1-12
General Format of the STOP Command 1-24
GTF Storage Requirements 1-26
General Format of the GTRACE Macro, Standard Form 1-28
An Example of the GTRACE Macro 1-29
General Format of the GTRACE Macro, List Form 1-29
General Format of the GTRACE Macro, Execute Form 1-30

Fields in a Trace Record 1-32
Format of Comprehensive Trace Records for SIO, 10, EXT, SVC,
RNIO, and PGM 1-34
Format of Comprehensive Trace Records for SVC, SlOP, lOP, PCI,
CCWP, and JOBNAMEP 1-35
Format of Minimal Trace Records for SIO, 10, SRB, EXT, SRM, DSP,
PI, LSR, and RNIO 1-36
Format of SLIP Standard Trace Record 1-37
Format of SLIP Standard/User Trace Record 1-37
Format of SLIP User Trace Record 1-38
Format of SLIP DEBUG Trace Record 1-38
General Format of a Time Stamp Control Record 1-39
Sample Module Summary of LISTLOAD 2-7
Sample LISTLOAD Output Load-Module Map 2-9
Sample LISTLOAD Output - Cross-Reference Listing 2-11
Sample LISTOBJ Output 2-13
Sample LISTIDR Output 2-14
Sample LISTLPA Output 2-15
PRDMP Input and Output 3-3
JCL Statements Required for PRDMP Execution 3-7
Sample of a TSO LOGON Procedure 3-14
PRDMP Cataloged Procedure 3-15
PRDMP Function Control Statements 3-18
PRDMP Format Control Statements 3-22
Format of the EDIT Control Statement Showing All Valid
Keywords 3-32
Example of the valid symbols with the associated subsystems 3-36
Combining Free and Restricted Control Statement Verbs 3-38
Flow of Processing for the Application Function 4-3
PTFLE Cataloged Procedure -- Application Function Only 4-4
Sample Job Stream for Executing the Application Function of
PTFLE 4-5

4-4. Flow of Processing for the Generate Function 4-7

Figures XVll

X Vlll Service Aids

4-5. Sample JCL Needed to Execute PTFLE -- Generate Function
Only 4-8

4-6. Sample Job Stream for Executing the Generate Function 4-8
4-7. Linkage Editor JCL and Control Statements Produced by PTFLE

(Generate Function) 4-9
4-8. IEBCOPY JCL and Control Statement Produced by PTFLE (Generate

Function) 4-10
4-9. Example of Assembler and Linkage Editor Output Produced by PTFLE

(Generate Function) 4-10
5-1. Format of AMDSADMP Macro Instruction Used to Generate a

High-Speed Dump Program 5-3
5-2. Format of AMDSADMP Macro Instruction Used to Produce a

Low-Speed Dump 5-5
5-3. Sample JCL Needed to Assemble the AMDSADMP Macro

Instruction 5-7
5-4. Sample Low-Speed Dump 5-20
5-5. Sample JCL Used to Invoke IEBPTPCH to Print Low-Speed SADMP

Output 5-21
5-6. Sample JCL Used to Invoke PRDMP to Print Low-Speed SADMP

Output 5-21
6-1. Sample Assembly Listing Showing Multiple Control Sections 6-4
6-2. SSI Bytes in a Load Module Directory Entry 6-6
6-3. Flag Bytes in the System Status Index Field 6-7
6-4. Sample Formatted Hexadecimal Dump 6-27
6-5. Sample Translated Dump 6-28

A-I. EDIT Parameter List and Related Fields A-3
A-2. Contents of GTF Option Word, Showing GTF Options in Effect during

Trace A-4
A-3. Format Service Routine Parameter List A-5
A-4. EDIT/ABDUMP Actions in Response to Errors in Finding or Loading

User Programs A-8
A-5. Sample Exit Routine A-lO
A-6. Sample Format Appendage A-IS
A-7. Sample Reentrant Format Appendage A-17
A-8. Sample ABEND Dump Showing Fields Needed for Debugging User Exit

Routine ABENDXIT A-24
B-1. EeT Entry Format B-2
B-2. ECT Exit Flag Settings B-2
B-3. Sample ECT B-4
B-4. The PRDMP Parameter List and Extension B-6
B-5. Example Using the Storage Access Routine B-lO
B-6. Example Using the Format Routine B-12
B-7. Format Pattern Description B-12
B-S. Sample Format Patterns B-14
B-9. Example Using the PRINT Routine B-15

B-lO. JCL to Locate FMTTABLE B-17
B-Il. Modifying FMTT ABLE B-17

J

Summary of Amendments
I

Summary of Amendments
for GC28-0674-4
as Updated July, 1985

This is a major revision of the OSjVS2 MVS SPL: Service Aids. It contains new
and updated material in support of MVS/370 System Product Version 1 Release
3.5. It also contains a major reorganization of the topics covered, and minor
technical and editorial changes.

Summary of Amendments
for GC28-0674-3
as Updated December 21, 1984.
by Technical Newsletter GN28-0965

This Technical Newsletter contains information about two PRDMP control
statements:

• TCAMMAP and
• JES3 (which replaces an old formatting routine).

Also, minor editorial and maintenance changes are included in this document.

Summary of Amendments
for GC28-0674-3
as Updated December 30, 1981
by Technical Newsletter GN28-4944

This technical newsletter contains new and updated information in support of
MVS/System Products, and includes the following:

• New trace options in GTF: CCW, CCWP, ASIDP, JOBNAMEP
• New EDIT control options in PRDMP: CCW, CPU
• New 3081 service console in SADMP
• Minor technical and editorial changes

Summary of Amendments XiX

xx Service Aids

Chapter 1. GTF

Introduction

The generalized trace facility is a service aid program which is available under
OS/VS2 to determine and diagnose system problems. GTF records system and
user-defined program events. Through GTF you can trace:

• any combination of system events, such as all I/O interrupts and all SVC
interrupts,

• specific incidences of one type of system event, such as all I/O interrupts on
one particular device,

• user-defined events which are generated by the GTRACE macro.

The GTF output includes system trace records and user trace records. You can
direct output to either a data set (IEFRDER) or to buffers in virtual storage.
You may use PRDMP's EDIT function to format and print the GTF output you
select. See "Chapter 3: PRDMP" and to "Appendix A: Writing EDIT User
Programs" for more information about using EDIT to process GTF output.

Note: Affinity has no meaning for GTF. That is, GTF traces events on all
processors regardless of the specification for GTF on the AFFINITY macro
during system generation.

Chapter 1. GTF 1-1

Using GTF

Features of GTF

1-2 Service Aids

.",

GTF is an integral part of the OS/VS2 system defined at system generation, and
runs as a system task.

When using GTF, you can select from the options listed below for internal and
external tracing. The trace options (shown in parentheses) and associated events
are:

• I/O interrupts, including or excluding PCI, from all devices or only particular
devices. (IO,IOP)

• All START I/O operations or only those for specific devices. (SIO,SIOP)

• All supervisor call interrupts or only those for specific numbers. (SVC,SVCP)

• All program interrupts or only those for specific interrupt codes. (PI,PIP)

• All external interrupts. (EXT)

• All units of work dispatched by the system, that is SRB, LSR, and TCB.
(DSP)

• System recovery routine operations, except those associated with GTF on the J
first-level interrupt handler, and including ST AE/EST AE operations. (RR)

• All invocations of the system resources manager. (SRM)

• All matching SLIP traps with a tracing action specified or all SLIP traps
checked with the SLIP DEBUG option. (SLIP)

• All user/subsystem events defined by GTRACE. (USR)

• All events associated with GTF. (TRC)

• All VTAM remote network activity. (RNIO)

• Channel programs and associated data for I/O events. (CCW,CCWP)

Note: For special considerations in the use of GTF to trace events in indexed
VTOC processing, refer to Data Facility Device Support, DADSM and Common
VTOC Access Facility: Diagnosis Guide.

l
GTF Trace Output

GTF produces system trace records with two kinds of format, comprehensive and
minimal. To see what these records contain for each record type, refer to
Figure 1-12, Figure 1-13, and Figure 1-14.

The GTF trace record output can be maintained in virtual storage (internal mode)
or directed to the IEFRDER data set on an external storage device (external
mode). The external storage device can be either a tape or a direct access device.
If there is not enough space, either in storage for internal mode or on the direct
access output device for external mode, GTF overlays previously stored or written
output beginning at the oldest buffer or physical block.

Retrieving GTF Trace Output

The EDIT function of the PRDMP service aid program provides for formatting
and printing internal and external GTF trace records. In addition, the EDIT user
format appendage facility allows you to format and print the user trace records
generated by the GTRACE macro, and the EDIT user exit facility allows you to
inspect all GTF trace records.

If you request that trace data be included in an ABDUMP/SNAP or SVC dump
via SDATA =TRT, or in a stand-alone dump, and if GTF is active, EDIT can be
used to format the related system records and related user records (created by
GTRACE). This occurs independently of the trace mode or options for GTF.
The number of buffers formatted is determined by the BUF parameter in the
GTF START command. Also, for ABDUMP/SNAP or SVC dumps, only those
records directly associated with the failing address space are formatted.

Chapter 1. GTF 1-3

How to Start GTF

You invoke GTF as a system task in storage, by entering a START command
from the operator's console; you cannot start GTF as a job. Using the START
command, you select the GTF cataloged procedure or your own cataloged
procedure. Optional parameters in the cataloged procedure and START
command allow you to specify internal or external tracing, time-stamps on
records, what action should occur if GTF encounters an error during processing,
and the number of buffers that are to appear on ABDUMP/SNAP or SVC
dumps. To select the trace options, you either specify each option directly
through the console or retrieve (via the cataloged procedure) a set of previously
stored options which exist as a member of SYSl.PARMLIB.

How to Specify the START Command

1-4 Service Aids

Figure 1-1 shows the general format of the START command as it is used to
invoke GTF. Messages go only to the master console. The START command
should be entered only from a console eligible to be a master console. If you
should enter the START command from a console not designated as the master
console, the command is ignored. An appropriate message is issued.

GTF

[.identifier]
[,device name I volserial]
[, (parm) 1
[,MEMBER={GTFPARMluserparm}]

procname
[,keyword=option, ... J

Figure] -1. General Format of the START Command for GTF

The descriptions below explain the parameters of the START command as they
are used by GTF:

GTF
indicates the name of the IBM-supplied cataloged procedure that invokes
GTF. .

procname
identifies the name of the user-written cataloged procedure written by you
that invokes GTF.

identifier
specifies the user-determined name identifying this specific GTF session.
Note that you use this identifier or the device name in the STOP command
to terminate GTF, see Figure 1-5.

device name
specifies an input/output device to contain the trace data set. The device
name provided on the IEFRDER DD statement in the cataloged procedure
is used unless overridden by the START command. Note that you use this
device name or the identifier in the STOP command to terminate GTF; see
Figure 1-5.

vol~rial

indicates the serial number of a magnetic tape or direct access volume that
is to contain the trace data set.

(parm)
overrides the value specified in the PARM parameter of the EXEC
statement in the cataloged procedure and may contain any combination of
the following parameters:

(MODE=[{INTIEXT}]) [,subparameter] ...)

The subparameters are:

TIME={YESINO}
DEBUG={YESINO}

MODE = {INTIEXT}
defines where trace data is to be maintained. MODE = INT indicates that
trace data is to be maintained in GTF memory. MODE = EXT indicates
that trace data is to be maintained in an external trace data set, defined by
the IEFRDER DD statement in the cataloged procedure. If you omit this
parameter, GTF will assume the default specified in the cataloged
procedure, or MODE = EXT if none is specified in the cataloged procedure.

When tracing to an external device, data in the trace data set may be
formatted at a later time by the use of the EDIT function of PRDMP.

When you specify SYSM on your TRACE control statement, the data
recorded consists of minimal trace records. When you use the SYS option
parameter on your TRACE control statement and/or individual keywords,
the data recorded consists of comprehensive trace records. If the
comprehensive record format is requested, the operator is allowed to select
the events to be recorded. The operator is prompted for the trace option
parameters. The specific trace options are discussed below in detail.

BUF=nnn
allows you to specify the number of 4096-byte buffers (10 to 255) formatted
by EDIT when the records are in a SVCDUMP or stand-alone dump and
by the ABEND processor if any task/memory abnormally terminates. If not
specified on the START command, the number of buffers is obtained from
the EXEC parameter in the cataloged procedure. If you do not specify a
value for BUF, a default of lO 4096-byte buffers is used.

Chapter 1. GTF 1-5

1-6 Service Aids

TIME= {~~S }

TIME = YES requests that every logical trace record be time-stamped in
addition to the block time stamp associated with every block of data. The
time stamp is the 8-byte TOD clock value at the local time the record is put
into the trace buffers. TOD clock values are described in IBM S/370
Principles of Operation.

When you specify TIME = YES and trace records are formatted and printed
by PRDMP, a time stamp record follows each trace record. These time
stamp records can be used to calculate the elapsed time between trace
entries. The time stamp record is described in MVS/370 Debugging
Handbook, Volume 1.

The default value is NO when the TIME keyword is not specified either in
the START command or on the EXEC statement of the cataloged
procedure.

DEBUG = {YESINO}
requests termination of GTF when any error is encountered, whether or not
the error was recoverable.

DEBUG = YES
requests that all error recovery be bypassed, making all errors terminal.

Whenever DEBUG = YES is specified and an error occurs, an error message
is issued and GTF immediately terminates.

DEBUG=NO
When DEBUG = NO is in effect, the error message is issued but GTF does
not terminate. Instead, GTF attempts to recover from the error and
continue.

MEMBER = {GTFPARMI userparm}
specifies the member of SYS1.PARMLIB that contains the GTF trace
options. If not specified in the START command, the IBM-supplied GTF
procedure specifies the SYSl.PARMLIB member GTFPARM.

keyword = option
specifies parameters to override or add specific DD parameters in the
IEFRDER DD statement in the cataloged procedure. For example:

• By coding DSNAME = newname, you can specify a different name for
the trace data set.

• By coding DSN = NULLFILE when you are specifying MODE = INT,
you can prevent the system from sending mount messages to the
operator's console.

• By coding DISP = OLD, you can specify an existing data set as the
output data set. (Note: If you specify DISP = MOD, GTF changes the
data set disposition to OLD.)

J

l
• By coding REG = value K, you can specify a REGION parameter.

Note that the minimum value is 800 and that K must be included. See
Figure 1-6 Storage Requirements for further GTF storage information.

The Cataloged Procedure Supplied by GTF

An IBM-supplied cataloged procedure for the Generalized Trace Facility is
supplied in SYSl.PROCLIB with a membername of GTF. The format of the
cataloged procedure is shown in Figure 1-2.

IIGTF
IIIEFPROC
II
IIIEFRDER
II
IISYSLIB

PROC
EXEC

DO

DO

MEMBER=GTFPARM
PGM=AHLGTF,REGION=2880K,
PARM='MODE=EXT,DEBUG=NO,TIME=NO'
DSNAME=SYS1.TRACE,UNIT=SYSDA,
SPACE=(4096,20),DISP=(NEW,KEEP)
DSN=SYS1.PARMLIB(&MEMBER),DISP=SHR

Figure] -2. GTF Cataloged Procedure

The following description explains the statements in the cataloged procedure:

PROC Statement
defines the cataloged procedure named GTF.

EXEC Statement
executes the program AHLGTF, setting th user region size and providing
parameters for AHLGTF to use.

IEFROER DO Statement
defines the trace output data set, according to the following defaults: the
trace output data set has the name SYSl.TRACE; it is directed to a direct
access device with sufficient space to allow the data set to contain twenty
4096-byte physical blocks. When the SYSM option is selected, this allows
approximately 1700 trace entries, averaging 46 bytes each. (The 46 bytes
include a record prefix containing an 8-byte time stamp value.) For the
SYS option, assuming an average record length of 74 bytes, this allows
approximately 1100 trace entries. When the primary allocation is filled,
recording continues at the beginning of the data set.

If the TRACE data set is directed to tape by the operator, normal
end-of-volume processing occurs.

If MODE = INT is specified by the operator, DSN = NULL FILE should be
specified here to prevent allocation of a trace data set, because no external
recording of trace data occurs.

Note that the data set and attributes on the IEFRDER DD statement may
be changed via the START command.

Chapter 1. GTF 1-7

1-8 Service Aids

SYSLIB DD Statement (Optional)
defines a member in the SYSl.PARMLIB data set that contains GTF
options. If such a member exists, GTF does not prompt you to supply
options, but uses the options in the member. If the member does not exist,
GTF issues an error message and stops.

A member is supplied in SYSl.PARMLIB, called GTFPARM, that is
automatically invoked by the GTF cataloged procedure. GTFPARM
causes the following events to be recorded: SVC, 10, PCI, program, and
external interrupts; all dispatcher, SIO, system resource manager and
recovery routine (RR) events; and all USR entries. A minimal set of data is
recorded for each event, except USR events, which are determined by the
length specified in the GTRACE macro. All events associated with GTF
(TRC) are included in the output. Figure 1-3 shows the format of the
GTF-supplied PARMLIB member.

If GTF is started by a user procedure that does not contain a SYSLIB DD
statement, message AHLlOOA is issued requesting that the trace options be
supplied from the console.

TRACE=SYSM,USR,TRC,DSP,PCI,SRM

Figure 1-3. GTFPARM Member in SYS1.PARMLIB

L

How to Specify GTF Trace Options
You select trace options by either directly specifying each option through the
system console or retrieving a set of options previously stored as a member of
SYSl.PARMLIB. When you start GTF using the IBM-supplied cataloged
procedure, GTF retrieves trace options from the GTF-defined member in
SYSl.PARMLIB. If you set up a GTF cataloged procedure, you may define the
SYSl.PARMLIB member and GTF retrieves trace options from it. If you do not
define options, you must specify them directly through the console.

How GTF Identifies Options in SYS1.PARMLIB

GTF identifies the options set up in SYSl.PARMLIB by issuing the console
messages ARLl211 and ARLl03!. You have the opportunity either to accept
these options or to reject them and respecify your own. This sequence appears as:

AHL121I SYS1.PARMLIB INPUT INDICATED
AHL103I TRACE OPTIONS SELECTED -- options from SYS1.PARMLIB
AHL125A RESPECIFY TRACE OPTIONS OR REPLY U

If you start GTF with a user procedure which does not contain a SYSLIB DD
statement, you must reply to supply options to the following message:

IAHL100A SPECIFY TRACE OPTIONS

How You Indicate Trace Options

To respecify new options or specify options for the first time, you respond to the
message AHLl25A or AHLlOOA, TRACE keyword to indicate events to be
traced during GTF execution. The format of this response is:

ITRACE=trace option[,trace option ...]

Note that the trace options you specify determine the GTF storage requirements.
See Figure 1-6.

Summary of GTF Trace Options

The trace option values for GTF are described below:

ASIDP
requests that GTF tracing be limited to a subset of address spaces. ASIDP
requests GTF prompting for one to five address space identifiers that you
want GTF tracing to occur. ASIDP only works with a GTF option that
generates tracing, such as SVC or 10.

Chapter 1. GTF 1-9

1-10 Service Aids

{CCWICCWP}

DSP

EXT

requests tracing of channel programs and associated data for I/O events.
CCWP requests GTF prompting for the following information:

• tracing CCWs for SIO operations on I/O interrupts or both

• maximum number of CCWs for each event

• maximum number of bytes of data for each CCW

• optional IOSB and EW A tracing

• size of the PCI table

CCW and CCWP only work when the trace options you specify include
SIO, SlOP, 10, or lOP.

requests recording for all dispatchable units of work, (that is, SRB, LSR,
TCB and SVC prologue dispatch events). This option is not included by
specification of SYS or SYSM; it must be specified additionally. If DSP is
specified with SYSM, the trace data is in minimal format; otherwise, it is in
comprehensive format.

requests comprehensive recording of all external interrupts.

{IOIIOP}
requests comprehensive recording of all non-PCI I/O interrupts. Unless the
trace option PCI is also specified, PCI interrupts are not recorded. lOP
requests GTF prompting to specify devices for which I/O interrupts are to
be recorded.

JOBNAMEP

PCI

requests that GTF tracing be limited to a subset of jobs. JOBNAMEP
requests GTF prompting for one to five jobnames that you want GTF to
trace. JOBNAMEP only works with a GTF option that generates tracing,
such as SVC or 10.

requests that all I/O interrupts be recorded in the same format as other I/O
trace records being created. If, as a result of prompting for I/O events,
specific devices were selected, the PCI interrupts recorded are only for those
devices selected during prompting. PCI may only be requested in
conjunction with 10.

{PIIPIP}
requests comprehensive recording for all program interrupts (1-19). PIP
requests further GTF prompting for those interrupt codes for which data
should be recorded.

J

l

l

RNIO

RR

requests comprehensive recording of all VTAM network activity. This
option is not included in specification of SYS. To request minimal trace
data recording for this event, specify SYSM and RNIO.

requests that all invocations of recovery routines and ST AE/EST AE
routines be recorded. A trace record describing the activity of the recovery
routine (RR) is created when control is passed from the recovery routine
back to the recovery termination manager (RTM). Data is in minimal
format when requested via SYSM; otherwise, it is in comprehensive format.

{SIOISIOP}

SLIP

SRM

requests comprehensive-format recording for system start I/O operations.
SlOP requests prompting for the specific devices for which SIO events
should be recorded. When prompting is requested, only the specified
devices cause record entries in GTF trace buffers.

requests that a trace entry be made each time that a match occurs for a
SLIP trap that includes a tracing action or each time a SLIP trap with the
SLIP DEBUG option is checked. The amount of data and the type of SLIP
trace record to be built are specified on the SLIP command. The SLIP
option is not included in the specification of SYS or SYSM; it must be
specified separately. Specification of the SYS or SYSM option does not
affect the data collected on the SLIP trace record.

requests that a trace entry be made each time the system resource manager
is invoked. This option is not included in specification of SYS or SYSM; it
must be specified separately. If SRM is specified with SYSM, records are in
minimal format; otherwise, they are in comprehensive format. Further
information about this option is in the section "System Performance
Factors" of the OS/VS2 SPL: Initialization and Tuning Guide.

{svqsvCP}

SYS

requests comprehensive recording for all SVC interrupts. SVCP requests
prompting for those SVC numbers for which data should be recorded.

requests that comprehensive trace data be recorded for six system events:
I/O, SIO, SVC, program and external interrupts, and recovery routines
(RR). Any additional event keywords specified, that is, SRM, nsp, and
RNIO, result in comprehensive trace entries for those events.

SYSM
requests that only minimal trace data be recorded for the six system events:
I/O, SIO, SVC, external and program interrupts, and recovery routines.
Any additional trace event keywords must be specified with SYSM (SRM,
nsp, RNIO) in order to get minimal format trace entries for those events.
F or example, coding TRACE = SYSM, DSP, SRM, USR, RNIO results in
minimal trace data being recorded for all events associated with SYSM as
well as DSP, RNIO, and SRM events. USR entries have the length
specified by you in the GTRACE macro.

Chapter 1. GTF 1-11

Note: Coding SYS or SYSM causes the following trace options to be
ignored if specified in any form: SIO, I/O, SVC, PI, EXT, and RR.

SYSP

TRC

USR

requests the same options as the SYS option, and further GTF prompting
for specific system events being recorded during execution. A prompt is
issued for selection of specific SVC, 110, SIO, and PI events being recorded.
Data recorded is comprehensive in format. Also, any additional trace event
keywords specified (SRM, RNIO, or DSP) result in comprehensive trace
entries for those events.

requests recording of those events being traced that are associated with
GTF. Unless this is requested, the GTF-associated events are filtered out
and not recorded.

requests that all data passed to GTF via the GTRACE macro be recorded
with the system data in the trace data set, or in storage if MODE = INT.
The GTRACE data consists of user event trace records and/or IBM
subsystem event records. The subsystems are VT AM, JES2,
OPEN/CLOSE/EOV, SAM/PAM/DAM, and VSAM; the EID's and
symbolic names associated with these subsystems are listed in Figure A-5 of
Appendix A.

Combining Certain GTF Options

1-12 Service Aids

Figure 1-4 shows those TRACE options that GTF does NOT use in combination.
If you specify two or more options from the same row, GTF uses the option that
has the lower column number and ignores the other options. For example, if you
specify both SYSP and PI (see row D), GTF uses SYSP (column 2) and ignores
PI (column 5).

1 2 3 4 5

A SYSM SYSP SYS SlOP SIO

B SYSM SYSP SYS lOP 10

C SYSM SYSP SYS SVCP SVC

D SYSM SYSP SYS PIP PI

E SYSM SYSP SYS EXT

F SYSM SYSP SYS RR

G CCWP CCW

Figure 1-4. Combining Certain GTF Options

.j

l
Prompting

l

When you specify lOP, SlOP, SVCP, SYSP, PIP, ASIDP, JOBNAMEP, or
CCWP as trace options, GTF prompts you to supply specific values with the
following message:

AHL101A SPECIFY TRACE EVENT KEYWORDS -- keyword=, ... keyword=

The event keywords correspond to those trace option values that request
prompting (lOP, SlOP, SVCP, PIP, SYSP, ASIDP, JOBNAMEP, CCWP) and
that are listed in the message. Only these keywords are accepted in the reply. If
SYSP is specified, all keywords are valid and only those for which specific event
recording is desired need be specified. Keywords not specified default to cause
recording of all events within those classes. END is also a keyword and signifies
that the event definition is complete. If END is not encountered in a reply, the
operator is prompted to continue specification. Event keywords are as follows:

10 = (devaddrl(,devaddr211 .•. ,devaddr50))
specifies up to 50 device addresses for which you want I/O interruptions
traced. All other 10 interruptions are filtered out. If you have specified
lOP or SYSP, and do not specify 10 = in response to the prompting
messages, no I/O interruption filtering takes place.

10 = SIO = (devaddrl(,devaddr211 •.. ,devaddr50))
only valid after requesting SYSP or both lOP and SlOP, specifies up to 50
device addresses for which you want GTF to trace both I/O and SIO events.
All other I/O and SIO events, except those requested specifically by 10 = or
S10 =, are filtered out.

SIO = (devaddrll,devaddr211 •.. ,devaddr50D
specifies up to 50 device addresses for which you want SIO operations
traced. All other SIO operations are filtered out. If you have specified
SlOP or SYSP, and do not specify SIO = in response to the prompting
message, no SIO filtering takes place.

SVC = (svcnumllsvcnum211 .•• ,svcnum50))
specifies up to 50 SVC numbers that you want traced. All other SVC
numbers are filtered out. If you have specified SVCP or SYSP, and do not
specify SVC = in response to the prompting message, no SVC filtering takes
place.

PI = (code 1 (,code211 ••• ,code15,code17,code18))
specifies one to 18 program interrupt codes that you want traced. All other
program interrupts are filtered out. If you have specified PIP or SYSP, and
do not specify PI = in response to this prompting message, no program
interruption filtering takes place.

ASID = (asidl(,asid2)J ... ,asidn))
specifies one to five address space identifiers that you want GTF to trace.
The values 'asidl' through 'asidn' are hexadecimal numbers from X'OOOI' to
the maximum number of entries in the address space vector table (ASVT).
When you specify ASIDP, GTF traces events for the address spaces you

Chapter 1. GTF 1-13

1-14 Service Aids

specify. If you specify ASIDP, but do not specify ASID = before replying
END, then no ASID filtering takes place.

If you use more than one line to specify ASIDs, GTF stacks your replies
until it reaches the maximum of five ASIDs. If a line of your reply contains
an error in the specification of ASIDs, GTF prompts you to respecify the
invalid value, and leaves intact the valid stacked values from other lines of
your reply.

Note: If you specify both ASIDP and JOBNAMEP, GTF might trace
address spaces that ASIDP did not identify. This occurs when the jobs that
JOBNAMEP identified are running in address spaces that ASIDP did not
identify.

JOBNAME = GobI (Job211 .•. Jobol)
specifies one to five jobnames for which you want GTF tracing to occur.
The values 'jobl' through 'jobn' must be valid MVS jobnames. When you
specify JOBNAMEP, GTF traces events for the jobs you specify. If you
specify JOBNAMEP, but do not specify JOBNAME= before replying
END, then no JOBNAME filtering takes place.

If you use more than one line to specify jobnames, GTF stacks your replies
until you specify the maximum of five jobnames. If any line of your reply
contains an error in the specification of jobnames, GTF prompts you to
respecify the invalid value, and leaves intact the valid stacked values from
other lines of your reply.

Note: If you specify both JOBNAMEP and ASIDP, GTF might trace jobs ..J
that JOBNAMEP did not identify. This occurs when the address spaces that
ASIDP identified contain jobs that JOBNAMEP did not identify.

CCW = (SIIISI(,CCWN = nnnll,DATA = nonnoll,IOSBII,PCITAB = 01)
specifies different options for tracing channel programs. If you specify
CCW more than once, GTF uses your last specification of CCW. If you
specify CCWP, but do not specify CCW before replying END, then the
defaults are in effect. If you specify an option more than once in one line,
GTF uses your last specification of that option. An exception is that GTF
uses your first specification of S, I, or SI. If a line contains an error, GTF
prompts you to respecify the invalid value.

SIIISI
specifies the type of I/O event for which you want channel programs traced.
If you specify more than one option, GTF uses the first option that you
specified. If you do not specify any option, SI is the default.

S
specifies GTF tracing of channel programs for SIO and resume I/O
operations. CCW = S works only if you specify SIO or SlOP as trace
options.

l

l

I

SI

specifies GTF tracing of channel programs for I/O interruptions,
including program-controlled interruptions if you specify PCI as a
trace option. CCW = I works only if you specify 10 or lOP as trace
options.

specifies GTF tracing of channel programs for both SIO operations
and I/O interruptions. CCW = SI works only if you specify either SIO
or SlOP and either 10 or lOP as trace options.

CCWN=nnn
specifies the maximum number of CCWs that you want traced for each
event. The value 'nnn' is an integer from 1 to 512. The default is 50.

DATA=nnnnn
specifies the maximum number of bytes of data that you want traced for
each CCW. The value 'nnnnn' is a decimal integer from zero to 32767. The
default is 20.

GTF treats each CCW that belongs to a chain of 'data-chained' CCWs as
one CCW. Therefore, GTF traces 'nnnnn' bytes of data for each CCW on
the data chain. GTF also traces 'nnnnn' bytes of data for each word in an
IDA W (indirect data addressing word) list.

For SIO or resume I/O operations, GTF does not trace data for read, read
backwards, or sense commands in the channel programs. If the SKIPBIT is
on, regardless of the type of I/O operation, GTF does not trace data for
read, read backwards, or sense commands. When the data count in the
CCW is equal to or less than 'nnnnn', GTF traces all data in the data
buffer. When the data count in the CCW is greater than '11nnnn', GTF
traces data only from the beginning and end of the data buffer. The first
half of the traced data is measured from the start of the data buffer. The
second half of the traced data is measured backward from the end of the
data buffer. Examination of the traced data shows whether the channel
completely filled the buffer on a read operation.

Note: GTF uses a different CCW tracing method for a data transfer that is
in progress when an I/O interruption occurs. Instead of using the data count
in the CCW, GTF tracing depends on the transmitted data count. The
transmitted data count is the difference between the data count in the CCW
and the residual count in the CSW. If the residual count in the CSW is
greater than the data count in the CCW, then GTF traces all of the data in
the CCW. When the transmitted data count is less than or equal to
'nnnnn', GTF traces all of the transmitted data. When the transmitted data
count is greater than 'nnnnn', GTF traces data only from the beginning and
end of the transmitted data. The first half of the traced data is measured
from the start of the transmitted data. The second half of the traced data is
measured backward from the end of the transmitted data.

Chapter I. GTF 1-15

1-16 Service Aids

JOSB
specifies tracing of the lOS block (IOSB) and, if available, the ERP work
area (EW A), for all CCW events. If you do not specify 10SB, then GTF
perfonns 10SB and EW A tracing only if it GTF encounters an exceptional
condition when tracing a channel program.

PCITAB=n
specifies the number of 100-entry increments that you want GTF to allocate
in an internal PCI table. The value of 'n' is an integer from 1 to 9. The
default is 1 (100 entries).

The PCI table keeps track of the channel programs that use PCL One entry
in the PCI table contains information about a program-controlled interrupt
in one channel program. An entry in the PCI table includes a CCW address
and an 10SB address.

GTF initializes an entry in the table when the first program-controlled
interrupt occurs for an 10SB that represents a channel program requesting
PCI. For each subsequent program-controlled interruption that occurs
when tracing channel programs, the address of the first CCW traced is taken
from the PC! table. When GTF completes tracing for each event, GTF
updates the entry in the PCI table by changing the CCW address to equal
the CSW address minus eight bytes. GTF deletes the entry when the
channel program tenninates. If the table is not large enough, GTF writes a
message to the trace data set indicating that the GTF trace data might be
incorrect.

PCIT AB is meaningful only when the trace options you specify include PCl. ..,J
When you specify PCIT AB and do not specify PCI, GTF does not allocate
storage for the PCI table, but PCIT AB must have a valid value.

Notes:

• GTF imposes a limit on the number of specific values you can supply through
prompting. If you exceed this limit, GTF issues a message and you must
respecify all values.

• Up to 50 device addresses may be specified for 10 = or SIO =; up to 50
device addresses may be specified by 10 = SIO =; however the sum of device
addresses specified by IO = and 10 = SIO = may not exceed 50; likewise the
sum of device addresses specified by SIO = and 10 = SIO = may not exceed
50.

• Within a given reply, each keyword specified must be complete. If you need
to specify more events for the same category. respecify the keyword in a
subsequent reply with the additional events as follows:

Reply #1 10=(191,192,193) ,SVC=(1,2,3,4,S)
Reply #2 SVC=(6,7,8,9,lO)

l

l

• If you use more than one reply to specify values for the same keyword, the
maximum number of values you can specify for that keyword does not
change. For example:

Reply #1 10=(191,192,193), ASID=(asid1, asid2)
Reply #2 ASID=(asid3, asid4, asid5)

Although you use two replies to specify ASID =, the maximum number of
ASIDs you can specify is still 5.

• To ensure recording 10 events for a device with multiple addresses, specify all
addresses in the reply.

• If END is not encountered within a reply, the following message prompts for
further specification by the user/operator:

AHL102A CONTINUE TRACE DEFINITION OR REPLY END

When trace option specification is complete, the operator is notified which
trace parameters are accepted. (Message AHLI03I).

• For sample prompting sequences, refer to "Example 6: Prompting Keywords
Stored in SYSl.PARMLIB," "Example 7: Specifying Which System Events
GTF Traces, Using Trace Options SYSP and USR," and "Example 9:
Specifying Which System Events GTF Traces, Using Trace Options SlOP,
lOP, PCI, CCWP, SVC, and JOBNAMEP."

• Prompting increases GTF storage requirements. Refer to Figure 1-6 GTF
Storage Requirements for further information.

Chapter 1. GTF 1-17

GTF Examples

In the examples of message sequences given below, the highlighted areas contain
[he messages entered. and the shaded portions contain the messages received at
the console while using GTF.

Example 1: Starting GTF Using the GTF Catalogued Procedure

When GTF is started using the GTF cataloged procedure supplied by IBM, a set
of trace options, specified in the SYSl.PARMLIB member GTFPARM, is used.
GTFPARM contains a record that defines these trace options to be placed in
effect: TRACE = SYSM, DSP, PCI, SRM, TRC, USR.

This example illustrates the use of the GTF cataloged procedure.

START GTF.EXAMPLEl

AHL121I SYS1.PARMLIB INPUT INDICATED

AHL103I TRACE OPTIONS SELECTED--SYSM,USR,TRC,DSP,PCI,SRM

00 AHL125A RESPECIFY TRACE OPTIONS OR REPLY U

R 00,' U'

AHL1031I GTF INITIALIZATION COMPLETE

Example 2: Starting GTF for Internal Tracing Using the GTF Cataloged Procedure

1-18 Service Aids

This example shows GTF started with MODE = INT. The trace data is
maintained in virtual memory and is not recorded on an external device. In this
example, the operator overrides the trace options given in the supplied
SYSl.PARMLIB member.

START GTF.EXAMPLE2", (MODE=INT) , DSN=NULLFILE

AHL121I SYS1.PARMLIB INPUT INDICATED

AHL103I TRACE OPTIONS SELECTED - SYSM,USR,TRC,DSP,PCI,SRM

00 AHL125A RESPECIFY TRACE OPTIONS OR REPLY U

R OO,'TRACE=IO,SIO,SVC,DSP'

AHL103I TRACE OPTIONS SELECTED -- DSP,SVC,SIO,IO

00 AHL125A RESPECIFY TRACE OPTIONS OR REPLY U

R OO,'U'

AHL031I GTF INITIALIZATION COMPLETE

Example 3: Directing GTF Trace Output to an Existing Data Set on Tape

This example shows how the START command is used to direct GTF trace
output to an existing data set residing on tape rather than on a direct access
device. The device name and volume serial number are supplied. The disposition
and name of the trace data set are changed from DISP = (NEW,KEEP) and
DSNAME= SYSl.TRACE to DISP= (OLD,KEEP) and
DSNAME=TPOUTPUT. The specified tape resides on a 2400 tape drive and
has a volume serial of TRCTAP. Note that the GTFPARM member of
SYSl.PARMLIB is used to specify the trace options.

START GTF,2400,TRCTAP,(MODE=EXT),DISP=OLD,DSNAME=TPOUTPUT

AHL103I TRACE OPTIONS SELECTED--SYSM,DSP,PCI,SRM,TRC,USR

00 AHL125A RESPECIFY TRACE OPTIONS OR REPLY U

R 00,' U I

AHL031I GTF INITIALIZATION COMPLETE

Example 4: Storing Trace Options in SYS1.PARMLIB

You can save time when starting GTF by previously storing one or more set
combinations of trace options as members in SYSl.PARMLIB, and including a
SYSLIB DD statement in the cataloged procedure. If you do this, GTF does not
prompt you to supply trace options, but gets them from SYSl.PARMLIB instead.

This example shows the job control statements and utility control statements
needed to add trace options to SYSl.PARMLIB using IEBUPDTE:

IIGTFPARM
II
IISYSPRINT
IISYSUT2
IISYSIN
.j ADD

JOB
EXEC
DD
DD
DD

MSGLEVEL=(l,)
PGM=IEBUPDTE,PARM=NEW
SYSOUT=A
DSNAME=SYS1.PARMLIB,DISP=SHR
DATA

NAME=GTFA,LIST=ALL,SOURCE=O
TRACE=SYSP,USR
SVC=(1,2,3,4,10),IO=(191,192),SIO=282,PI=15
.1 ADD NAME=GTFB,LIST=ALL,SOURCE=O
TRACE=IO,SIO,TRC
.1 ADD NAME=GTFC,LIST=ALL,SOURCE=O
TRACE=SYS,PCI
1*

For a description of each statement, see OSjVS2 MVS Utilities, and OSjVS2
MVS JeL. For further information about SYSl.PARMLIB see "System
Initialization" section of the OSjVS2 SPL: Initialization and Tuning Guide.

A sample SYSLIB DD statement to be included in a GTF cataloged procedure
might look like this:

jjSYSLIB DD DSN=SYS1.PARMLIB(GTFA),DISP=SHR

Chapter 1. GTF 1-19

The new member name can also be specified on the START command while using
the IBM-supplied GTF procedure, as in the following example: j

S GTF",(MODE=EXT,TIME=YES) ,MEMBER=GTFB

Example 5: Starting GTF With a User Cataloged Procedure That Does not Have a SYSLIB
DD Statement

1-20 Service Aids

When GTF is started with a user procedure containing no SYSLIB DD
statement, the operator receives the following message:

IAHL100A SPECIFY TRACE OPTIONS

The operator must then reply with the TRACE = keyword to specify the events to
be recorded during GTF execution.

In the following example, a user cataloged procedure (USRPROC) is invoked to
start GTF in external mode to a direct access data set, ABCTRC, on device 250.
The trace options selected by the operator result in trace data being gathered for
the following:

• SVC and 10 interrupts

• All SIO operations

• All matching SLIP traps with a tracing action specified or SLIP traps in
DEBUG mode

• All dispatcher events

Also, all issuers of the GTRACE macro are to have their user data recorded in
the trace buffers. The trace data is written to the data set ABCTRC. (Note that
when the end of the primary extent is reached, writing continues at the
beginning).

START USRPROC,250,231405, (MODE=EXT) ,DSN=ABCTRC

00 AHL100A SPECIFY TRACE OPTIONS

R OO,'TRACE=SVC,SIO,IO,DSP,SLIP,USR'

AHL103I TRACE OPTIONS SELECTED--USR,DSP,SVC,SIO,IO,SLIP

01 AHL125A RESPECIFY TRACE OPTIONS OR REPLY U

R 01, 'u'

AHL031I GTF INITIALIZATION COMPLETE

Example 6: Prompting Keywords Stored in SYS1.PARMLIB

A SYSLIB DD statement in a cataloged procedure causes the prompting
keywords to be read from the specified SYSl.PARMLIB member. The second
and subsequent logical records in the member should contain only those keywords
for which prompting is allowed (as message AHLl031 indicates).

AHL103I TRACE OPTIONS SELECTED--SYSP,USR
AHL103IIO=(191,192),SIO=(282),SVC=(1,2,3,4,lO)

This message may contain more than one line, depending on the number of
options selected by the operator. If the set of devices specified for 10 and SIO
are identical, message AHL I 031 shows them as if specified by use of 10 = S10.

After being informed of the GTF trace options in effect, you are given an
opportunity to change these options:

AHL125A RESPECIFY TRACE OPTIONS OR REPLY U.

Prompting input from PARMLIB is complete when either the END keyword is
encountered, or when end-of-file is reached on the member. As you specify each
prompting record, each keyword must be complete. If the need arises to indicate
more events for the same keyword, the keyword should be respecified in a
subsequent prompting record with the additional events as follows:

Record #1 TRACE=IOP,SVCP,SIO

Record #2 10=(191,192,193) ,SVC=(1,2,3)

Record #3 SVC=(4,S,6,7,8,9,10),END

When all prompting is complete, whether from you or from PARMLIB, you are
notified which GTF options are in effect as in example two (via message
AHLl03I). You then are given an opportunity to respecify the trace option, or
accept those previously specified (either by you or PARMLIB) via message
AHLl25A.

Example 7: Specifying Which System Events GTF Traces, Using Trace Options SYSP and
USR

In this example, GTF is started in external mode to the data set defined in the
cataloged procedure. The trace options selected request all system event types be
traced as well as user entries generated by use of the GTRACE macro. The 'P'
on SYS requests the ability to select only certain events to be traced within some
event type. Message AHLlOlA informs the operator that he may exercise
selectivity on SVC, 10, S10, and PI event types. Those keywords not included in
the reply to AHLlOIA are all recorded. In this example, the operator selects five
SVCs, two devices for 10 interrupts, and one device for SIO operations. All other
SVC, 10, and SIO events are not recorded. All PI, EXT, and RR events are
recorded.

Chapter 1. GTF 1-21

START MYPROC.EXAMPLE7",(MODE=EXT)

00 AHL100A SPECIFY TRACE OPTIONS

R OO,'TRACE=SYSP,USR'

01 AHL101A SPECIFY TRACE EVENT KEYWORDS--SVC=,IO=,SIO=,PI=

R 01,'SVC=(1,2,3,4,10),IO=(191,192)'

02 AHLI02A CONTINUE TRACE DEFINITION OR REPLY END

R 02,'SIO=282,END'

AHLI03I TRACE OPTIONS SELECTED--SYSP,USR

AHL103I IO=(191,192),SIO=(282),SVC=(1,2,3,4,10)

03 AHL125A RESPECIFY TRACE OPTIONS OR REPLY U

R 03,'U'

Example 8: Starting GTF to Trace VT AM Remote Network Activity

1-22 Service Aids

In the following example, GTF options are not stored in SYSl.PARMLIB; the
operator enters the trace options directly at the console. Three GTF options are
required to record all VT AM traces. They are:

• RNIO must be specified so that the VT AM I/O trace can function for an
NCP or a remote device attached to the NCP.

• 10 or lOP must be specified so that the VT AM I/O trace can function for a
local device.

• USR must be specified so that the VTAM buffer and the NCP line traces can
function.

GTF must be started with the GTF START command before a trace can be
activated from VTAM.

START MYPROC.EXAMPLE8",(MODE=EXT,TIME=YES)

00 AHL100A SPECIFY TRACE OPTIONS

ROO, 'TRACE=RNIO,IO,USR'

AHLI03I TRACE OPTIONS SELECTED--RNIO,IO,USR

01 AHL125A RESPECIFY TRACE OPTIONS OR REPLY U

R 01, 'U'

AHL031I GTF INITIALIZATION COMPLETE

l

l

Example 9: Specifying Which System Events GTF Traces, Using Trace Options SlOP, lOP,
PCI, CCWP, SVC, and JOBNAMEP

In this example, the operator started GTF in external mode to the data set
defined in the cataloged procedure. The operator selected six trace options in
reply 00. Message AHLlOIA instructed the operator to specify values for the 10,
SIO, CCW, and JOBNAME keywords. In reply 01 the operator selected one
device for tracing both 10 and SIO events, limited GTF tracing to one job, and
specified five options for CCW tracing. As a result of the operator's specifications,
GTF would trace CCWs for both SIO operations and I/O interruptions at device
580 for the job BACKWARD, and all SVCs in BACKWARD's address space.
GTF would allocate 200 entries in the PCl table, and trace up to 100 CCWs, up
to 40 bytes of data for each CCW, and the 10SB.

START USRPROC",(MOD=EXT)

00 AHL100A SPECIFY TRACE OPTIONS

ROO, TRACE=SIOP,IOP,PCI,CCWP,SVC,JOBNAMEP

01 AHL101A SPECIFY TRACE EVENT KEYWORDS
--IO=,SIO=,CCW=,JOBNAME=,IO=SIO=

R 01,JOBNAME=(BACKWARD) , IO=SIO=580

02 AHLI02A CONTINUE TRACE DEFINITION OR REPLY END

R 02,CCW=(CCWN=100,DATA=40,PCITAB=2,IOSB,SI) ,END

AHLI03I TRACE OPTIONS SELECTED--PCI,SVC

AHLI03I JOBNAME=(BACKWARD),IO=SIO=(S80)

AHLI03I CCW=(SI,IOSB,CCWN=100,DATA=40,PCITAB=2)

03 AHL125A RESPECIFY TRACE OPTIONS OR REPLY U

R 03,U

Chapter 1. GTF 1-23

How to STOP GTF

To stop GTF processing, you need to know either the identifier or device address
used in the START command. See "Format of the START Command" in this
chapter. If you are not sure of the identifier or device address, use the operator
display command:

D A,LIST

This command causes the system to display the number of:

• Active batch jobs.
• Active time sharing users.
• Mount commands in execution.
• Started tasks.

The LIST parameter causes the system to include jobnames and V = R region
boundaries in the A display. This parameter can be abbreviated by entering L.

How to Specify the STOP Command

Figure 1-5 shows the general format of the STOP command when used to stop
GTF. As with the START command, you must enter this command from a
console eligible to be a master console.

I ~TOP identifier
device address

Figure 1-5. General Format of the STOP Command

The identifier or device address field indicates the identifier or device address
specified in a START command, when GTF was started. If GTF was started in
internal mode and no identifier was specified, the identifier is 'GTF'.

You may enter the STOP command at any time during GTF processing.

Sample STOP Commands

Example 1: Using the Identifier

1-24 Service Aids

This example starts a GTF session with the identifier EXAMPLE and with trace
data maintained in the GTF address space. The DSN keyword is entered to
prevent allocation of an external trace data set as specified in the cataloged
procedure.

S GTF.EXAMPLE, "(MODE=INT) ,DSN=NULLFILE

The following command stops the GTF session started in the previous example:

I P EXAMPLE

Example 2: Using the Device Name

This example starts a GTF session with trace data recorded on a non-labeled tape
mounted on device 282. Each trace record is to be time-stamped. Twenty buffers
are to be formatted if a dump is taken.

S GTF,282" (TIME=YES,BUF=20) ,LABEL=(,NL)

The following command stops the GTF session started in the previous example:

I P 282

Example 3: When You Must Display Active Jobs

This example starts a GTF session with trace data recorded on an external device.
Since it is not apparent which is the GTF recording device, you have to display
active jobs with the D A,LIST command before you can stop GTF. The GTF
session started in this example is to run in an address space whose maximum size
is IOOOK.

IS GTF",(MODE=EXT),REGION=1000K

Chapter 1. GTF 1-25

;;: GTF Storage Requirements
0\

Vl
<'t>

::!
riO
<'t>

;l>
0.:
OJ>

Link Pack Area

Fix = Opt + Prmpt + 8K

Fix: Fixed storage in pageable lPA while GTF
is active.

Opt: Sum of storage required for each GTF option
specified. See the table below to calculate OPT.

Prmpt: Optional additional 1 .5K if any prompting
options specified.

8K: 8K required for services.

Option
SYSM
SYS with DSP and/or SRM
and/or RNIO
SYS, SYSP
PI, DSP, PIP
EXT
10, lOP, SIO, SlOP
SVC, SVCP
SRM, FRR, RNIO
SLIP
USR
PCI, TCB
CCW,CCWP

Notes:

Size Required
4K

7K
18K

2.5K
2K

2.5K
8K
3K
8K

1.5K
No Requirement

9.3K

1. When you specify more than one event from a line, the
size requirement is the same as if you specified only
one option i.e., DSP and PI require 2.5K.

2. For the maximum storage requirement round up the
storage requirement for each option you specified,
to the nearest 4K boundary.

3. For the minimum storage requirement, round up the
'FIX' value to the nearest 4K boundary.

Example -
1) Options = lOP. SlOP, SVC

Fix = 10.5 + 1.5 + 8 = 20K minimum or
= 12 + 1.5 + 8 = 21.5 = 24K maximum

2) Options = SYSM, SRM, USR, TRC
Fix = 8.5 + 0 + 8K = 16.5 = 20K minimum or

= 12 + 0 + 8K = 20K maximum

Figure 1-6. GTF Storage Requirements

~

System Queue Area

SOA = 16500 + REG + SAVE + CBLoe

SQA:

16500:

System Queue Area storage requirement.

16500 bytes for buffer area, when GTF,
is active.

REG: 140 bytes per processor are required for
register save areas, regardless of whether
or not GTF is active. (If MVS/System
Extensions is installed, 204 bytes per
processor are requ ired,)

SAVE: 800 bytes per processor are required
for save/work areas when GTF is active.

CBlOC: 1700-2200 bytes are needed for control
blocks when GTF i'!; active.

Notes:
1. When you specify PCI and either CCW or CCWP,

GTF requires the following additional SQA
storage:
16 + 1200 * (value of PCITAB in bytes)

2. When you specify either CCW or CCWP, GTF
uses 4096 additional bytes of the SQA for each
processor.

\.

Region Storage

SUBPOOL: GTF uses 4-16K in subpools 5 and 6 for
control blocks; this area is fixed while
GTF is active.

REGION:

Note:

GTF requires a minimum of an aOOK
virtual region to execute. Also. if GTF
must hold large amounts of trace data in
its address space, it can use a maximum of
750 pages in the page data set. To acquire
this space you specify the REGION=
parameter on an EXEC card or START
command with one of the following values:

1) G + 700K (only if BUF= specifies a
value of 57 or defaults'!

2) G+1400K

3) G + 2oo0K

4) G + 2770K

G: The amount of address space
required for the maximum size
combination GTF and BSAM.

Coding a large REGION size does not mean that GTF
will use the maximum available address space. The
space is used as long as it is necessary to hold trace
data. and then when the trace data is moved into trace
data set the space is freed: GTF drops to its normal
requirement; G + 40K or G/4K + 10, pages.

'"

User Trace Data Created With GTRACE

If you want your own trace data to be recorded in the GTF trace buffers, you can
use the GTRACE macro instruction to define the data. In one invocation of
GTRACE, an application program can record up to 256 bytes of data in a GTF
trace buffer.

GTRACE is effective only when GTF is active and is accepting user data -- that
is, when GTF is started with at least TRACE = USR specified.

EID Assignment for User Events

Events traced by the GTRACE macro use an event identifier (EID) from one of
the three ranges listed below:

0000-1023
1024-1535
1536-4095

user events
reserved for program products
reserved for IBM components and subsystems

EIDs in the first range are available for general use by all GTF users. EIDs in
the second and third ranges are reserved.

How to Print User Data

Like other trace data, information recorded by the GTRACE macro can be
printed by the EDIT function of PRDMP. Usually, user data is printed in
hexadecimal, because EDIT cannot format records that are not created by GTF.
However, you can write format appendages to format specific types of user data
records. For information about writing EDIT format appendages, see Appendix
A: Writing EDIT User Programs. (Note: If your installation has format
appendages written for use with OS/MFT or OS/MVT, you can still use them in
OSjVS. EDIT recognizes and accepts format appendages named IMDUSRxx as
well as those named HMDUSRxx and AMDUSRxx.)

Every time you issue GTRACE to create a user record, you must specify which
format appendage should process it; you do this by including the optional FID
(format identifier) parameter in the GTRACE invocation. The FID corresponds
to the last two hexadecimal characters in the name of the format appendage,
IMDUSRxx, HMDUSRxx or AMDUSRxx.

Chapter 1. GTF 1-27

General Format of the GTRACE Macro

Figure 1-7 shows the general format of the GTRACE macro, standard form.

[symbol] GTRACE DATA=address,LNG=number,ID=value[,FID=value] [,FAGEIN= NO IYES]

Figure 1-7. General Format of the GTRACE Macro, Standard Form

The individual parameter formats are shown below:

DATA = address address: A-type address or register (2)-(12).

LNG = number number: symbol, decimal digit, hexadecimal
value, or register (2)-(12).

ID=value value: symbol, decimal digit, or hexadecimal
value.

FID=value value: symbol, decimal digit, hexadecimal
value, or register (2)-(12).

Default: FID=O

PAGEIN=YES Default: PAGEIN=NO
PAGEIN=NO

The parameters in the macro are described below.

DATA = address
gives the main storage address of the data to be recorded.

LNG = number
specifies the number of bytes (1 to 256) to be recorded from the address
specified in the DATA parameters. The number may be specified in
decimal or in hexadecimal (as X'number').

ID = value
o to 1023--user events
1024 to 1535--reserved for program products
1536 to 4095--reserved for IBM components and subsystems

The value can be specified in decimal or hexadecimal (as X'value').

FID = value
indicates the format appendage for this record when the trace output is
processed by the EDIT function of PRDMP. The format appendage name
is formed by appending the 2-digit FID value to the names AMDUSR,
HMDUSR, and IMDUSR. FID values are assigned as follows:

o (or FID=parameter omitted)--record to be dumped in hexadecimal
1 to 80--user format identifiers
81 to 255--reserved

1-28 Service Aids

The default value is X'OO'. The value may be specified in decimal or hexadecimal

(as X'value').

PAGEIN={NOIYES}
indicates that paged-out user data is to be processed (YES) or is not to be
processed (NO). To make sure that all user data is always traced, specify
YES.

Figure 1-8 shows how the GTRACE macro can be coded to record 200 bytes of
data, beginning at the address of AREA, with an event identifier of 37, and to be
formatted by the format appendage named IMDUSR40.

Figure 1-8. An Example of the GTRACE Macro

List Form of the GTRACE Macro

Figure 1-9 shows the general format of the GTRACE macro, list form.

[symbol] GTRACE MF=L[,DATA=address] [,LNG=number] [,FID=value]

Figure 1-9. General Format of the GTRACE Macro, List Form

The individual parameter formats are shown below:

DA T A = address address:
Default:

LNG = number number:
Default:

FID= value value:
Default:

MF=L

A-type address.
DATA=O

symbol. decimal digit, or hexadecimal value.
LNG=O

symbol, decimal digit, or hexadecimal value.
FID=O.

The parameters are described under the standard form of the GTRACE macro,
with the following exception:

MI<'=L
indicates that this is the list form of the GTRACE macro.

Chapter 1. GTF 1-29

Execute Form of the GTRACE Macro

1-30 Service Aids

Figure 1-10 shows the general format of the GTRACE macro, execute form.

[symbol] GTRACE MF=(E,prob addr) ,ID=value[,DATA=addressl
[,LNG=numberl [,FID=valuel [,PAGEIN=YESINO]

Figure]-]0. General Format of the GTRACE Macro, Execute Form

The individual parameter formats are shown below:

Mf = (E,prob addr) prob addr: A-lype address, or register (I) or
(2)-(12)

ID = value value: s}mbol, decimal digit, or hexadecimal
value.

DATA = address address: A-lype address, or register (2)-(12).

LNG = number number: symbol, decimal digit, hexadecimal
value, or register (2)-(12).

FID = value value: symbol, decimal digit, hexadecimal
value, or register (2)-(12).

Default: FID=O

Note: If the FlD value is not specified on the execute form of GTRACE, the
FID value defaults to zero. This default overlays any FlD value that may have
been specified on a list form of GTRACE.

PAGEIN=YES
PAGEIN=NO

Default: PAGEIN=NO

The parameters are described under the standard form of the GTRACE macro,
with the following exception:

MF = (E,prob addr)
indicates that this is the execute form of the GTRACE macro using a
remote program parameter list.

l

GTF Error Recovery Handling

GTF recognizes as potentially recoverable all errors that occur while it is building
a trace record as potentially recoverable. Whether or not recovery is attempted
depends on what you specify in the START command.

If you specify DEBUG = YES, GTF does not attempt error recovery. It does
issue an error message and then terminates, so that the contents of the GTF
buffers immediately prior to the error are preserved.

If you specify DEBUG = NO, GTF initiates the following error procedures:

• For minor errors in the routine that builds the trace record (the build
routine), GTF flags the field in the trace record that led to the error and
continues processing. It does not issue a message to the operator's console
nor disable the function that caused the error; instead, it proceeds as if no
error had occurred.

• For severe errors in the build routine, GTF flags the entire record that was
being built, issues a message to the console, suppresses the error and
continues processing without the function that caused the error.

• For errors in the routine that filters trace events, GTF suppresses filtering for
future events of the same type, issues a message to the console, and continues
processing, gathering all events of the type that encountered the error.

Errors that occur outside the build and filter routines are not recoverable; they
result in immediate abnormal termination of GTF.

Note: The termination of GTF never causes termination of a user's task.

Chapter 1. GTF 1-31

GTF Output

Trace Records

length

Number
of Bytes
in Trace
Record
(2 bytes)

00

Always
Zero
(2 bytes)

GTF creates two kinds of records: trace records and control records. For
information about the format of trace records prior to GTF processing. see
OS/ VS2 Service Aids LOKic, and the At VSj370 Dl!bugging Handbook Volume 1.

GTF creates trace records for each system event you select. The records have the
general format shown in Figure I-II.

\ "'" Application Format
Identifier Identifier
(1 byte) (1 byte)

Time stomp

\
Time stamp

(optional, 8 bytes)

EID

Event
Identifier
(2 bytes)

Data

Trace Data
(1-268 bytes)

Figure 1-11. Fields in a Trace Record

1-32 Service Aids

length
indicates the total length of the record in bytes.

00

AID

FID

always zero.

defines whether the data record is a trace record or a GTF control record.

Possible values are:

'FF' Trace record for data
'00' GTF control record
'01' to 'FC' -- reserved

is the format identifier, a one-byte hexadecimal number that identifies the
program that is to format the trace record during EDIT execution. (For
information on specifying FlO in the GTRACE macro, see "General
Format of the GTRACE Macro," in this chapter.)

J

time stamp

EID

data

is the eight-byte TOO clock value (local time) given when the record
construction is completed. To have this value recorded, specify TIME = YES
on the START command. (TOD clock values are described in IBM S/370
Principles 0/ Operation.)

PRDMP formats and prints the TOD clock value in a time stamp record
that follows each trace record. (The time stamp record is described in
MVS/370 Debugging Handbook Volume 1.)

defines the event that caused the trace record to be created. It is not present
in GTF control records. You can determine the EID of a trace record by
issuing the IMDMEDIT mapping macro, which is described in "Appendix
A: Writing EDIT User Programs."

contains the trace data gathered for the requested event. The length of this
field varies according to the event being traced.

Figure 1-12, Figure 1-13, and Figure 1-14 are examples of trace output as
processed by the EDIT function of PRDMP. In all the examples, fields identified
as h-----h are hexadecimal representations, and fields identified as c-----c are
alphameric characters. NjA indicates that the field label does not apply to this
particular record.

Chapter 1. GTF 1-33

VS2R3 RNIO TEST FOR COMPREHENSIVE llCOQnS EXTERNAL TMCE - DD TAl'E PAGE 020

Rl5 00F2C850 RO 00000001 Rl FFFD74B8
PLIST 00028AI0 00028Al4 00028Al8 00028A1C 00028C20 00028C38 00028C80 80028CC8

SIO 0354 ASCB 000106FO CPU 0000 JOBN *AUXSTM* R/V CPA 001EC068 00PEC068 CAW 00003BA8 DSID 00000000
FLGS 00000010 8803 STAT 0600 SK ADDR 00000000 06000F03 CC 4

10 0354 ASCB 000106FO CPU 0000 JOBN ~STM* OLD PSW 070C2000 0002208C TCB 000108D8 DSID 00000000
CSW 001EC090 OCOOOOOI SNS N/A R/V CPA 001EC068 00PEC068 FLG C0108803 2C880000 00

EXT 1004 ASCB 000106.FO CPU 0000 JOBN *AUXSTM* OLD PSW 070C1004 0002208C TCB N/A
TQE FIELDS: ASCB 00000308 FLG/EXI 0384 00FFI018 TCB 00010DF8

SVC 060 ASCB 00PE8720 CPU 0000 JOBN JOBNAME OLD PSW 070C003C 00E4AB94 TCB 00C9CB28 MODN SVC-RES
Rl5 00011610 RO 0000084 Rl 00FEC7CO
PLIST N/A

SVC 010 ASCB 00FE8720 CPU 0000 JOBN JOBNAME OLD PSW 070COOOA 00E4ABD6 TCB OOC9CB28 MODN SVC-RES
R15 00000000 RO E50001EO Rl 00C71E20

EXT 1004 ASCB 00FE8720 CPU 0000 JOBN JOBNAME OLD PSW 070C1004 000678FC TCB 00C9CB28
TQE FIELDS: ASCB 00000308 FLG/EXI 0384 00FF1018 TCB 00010DF8

RNIO ASCB 00FE8720 CPU 0000 JOBN N/A IN F1F04002 E8E3C5E2 0000
SVC 035 ASCB 00FE8720 CPU 0000 JOBN N/A OLD PSW 070C0023 00067.8FC TCB 00C9CB28 MODN INTERSIM

R15 0000002A RO 00000000 Rl 00067E74
PLIST 00238000 OFOC79AC 000C7A28 10004020

SVC 010 ASCB 00FE8720 CPU 0000 JOBN N/A OLD PSW 070COOOA 00E4A036 TCB 00C9CB28 MODN SVC-RES
R15 0000002A RO E50001EO Rl 80E4A034

EXT 1004 ASCB 00PE8720 CPU 0000 JOBN N/A OLD PSW 070CI004 0003A5AE TCB OOC9CB28
TQE FIELDS: ASCB 00FFE3l8 FLG/EXI 0388 000lODF8 TCB 7004E3A4

PGM 017 ASCB 00FE8720 CPU 0000 JOBN N/A OLD PSW 07OC0011 00E4A038 TCB 00C9CB28 MODN SVC-RES VPA OOC71E24
RO 000001EO R1 OOC71E20 R2 FF400001 R3 00011098 R4 00C9CB28 R5 00C9DDD8 R6 00E4AOOO R7 00FE8720
R8 00000000 R9 00C71E20 RlO 00FFF710 R11 40E4A028 Rl2 00E4B027 Rl3 00067CAC R14 0000F364 R15 00000000

EXT 1004 ASCB 00FE8720 CPU 0000 JOBN N/A OLD PSW 07OC1004 00E4A038 TCB OOC9CB28
TQE FIELDS: ASCB OOFD9B10 FLG/EXI 07CO 13065A58 TCB 00C9CCDO

EXT 1004 ASCB 00FD9B10 CPU 0000 JOBN JES2 OLD PSW 070C1004 00017A68 TCB N/A
TQE FIELDS: ASCB 00000308 FLG/EXI 0384 00FF11C8 TCB 00010DF8

*** DATE DAY 212 YEAR 1974 TIME 16.49.02.365709 **

IO 001F ASCB 0000FB48 CPU 0000 JOBN *MASTER* OLD PSW 070C1000 00017A68 TCB 00010220 DSID OOC99BCC
CSW 001F5590 OCOOOOOI SNS N/A R/V CPA 001F5580 00FF5580 FLG 40003302 00000000 00

PGM 017 ASCB 00lED720 CPU 0000 JOBN PROC003 OLD PSW 07OCOOll 00F784D2 TCB N/A MODN N/A VPA 0009BOFF
RO 00FE78AO Rl OQFE7BE8 R2 00F787A6 R3 00FE78CC R4 0009BOOO R5 OOOOOFEA R6 00FF2FFC R7 OOOOOFEA
R8 00FF2FFO R9 00021022 RlO 00000000 Rl1 00035B40 R12 00F783DO R13 000703FO Rl4 00021022 Rl5 00F783DO

SVC 072 ASCB 0000FB48 CPU 0000 JOBN *MASTER* OLD PSW 07OC0048 00F2C9AA TCB 00010220 MODN N/A
R15 00F2C850 RO 00000001 Rl 000289D8

SVC 010 ASCB 0000FB48 CPU 0000 JOBN *MASTER* OLD PSW 07OCOOOA 00E275BE TCB 00010220 MODN SVC-RES
Rl5 00E27660 RO E7000060 R1 '00D1F768

EXT 1004 ASCB 0000FB48 CPU 0000 JOBN *MASTER* OLD PSW 070C1004 000125B8 TCB 00010220
TQE FIELDS: ASCB 00000308 FLG/EXI 0384 00FF11C8 TCB 00010DF8

PGM 017 ASCB 0000FB48 CPU 0000 JOBN *MASTER* OL~PSW 070COOll 00F2CDlA TCB 00010220 MODN VPA D561C140
RO FA000082 R1 00062F78R2 00028A10 R3 00000000 R4 OODIDCCC RS 00028AOC ·R6 00028CA4 R7 00028968
R8 90F2C962 R9 80F2C9AE RlO 50F2C856 Rl1 00028C80 Rl2 00D1BC8C Rl3 00028CC8 R14 BOF2CA9A R15 00000000

SVC 036 ASCB ·0000FB48 CPU 0000 JOBN *MASTER* OLD PSW 070C0024 00F2CFDO TCB 00010220 MODN N/A
RlS 00000000 RO FA000082 Rl 00062F78

PGM 017 ASCB 0000F848 ·CPU 0000 JOBN *MASTER* OLD PSW 07OCOOll 000B68D8 TCB 00010220 MODN SVC-RES VPA 00DB6808
RO FA000082 Rl 00062F78 R2 FF400001 R3 00011098 R4 00010220 R5 00FFC840 R6 000B6808 R7 0000F848
R8 00000000 R9 400122F4 RlO 00FFF710 Rl1 00028C80 Rl2 0001BC8C Rl3 00028cc8 R14 0000F364 R15 00000000

SVC 010 ASCB 0000FB48 CPU 0000 JOBN *MASTER* OLO PSW 070COOOA 000B68FE TCB 00010220 MOON SVC-RES
Rl5 400B68DA RO OOOOOOCE Rl 80DB68FC

PGM 017 ASCB 0000F848 CPU 0000 JOBN *MASTER* OLD PSW 070COOll 00DB6902TCB 00010220 MODN SVC-RES VPA 00063F34

Figure 1-12. Format of Comprehensive Trace Records for SIO, 10, EXT, SVC, RNIO, and PGM

1-34 Service Aids

(J
::r
QO

"0
f'1) .,

o
-l
~

I

W
VI

r r r
EXTERNAL TRACE - DD TAPE PAGE 0004

PLIST 00973F80
SVC 048 ASCB 00FEBB28 CPU 0000 JOBN BACKWARD OLD PSW 071C0030 00DF8D4E TCB 0095AOE8 MODN SVC-RES

R15 C095FB40 RO 00000408 R1 0095FF30 MAJOR SYSIEFSD MINOR RPLL
PLIST 00000000 C0040000 00DF950D 00DF9515 C0040000

SVC 010 ASCB 00FEBB28 CPU 0000 JOBN BACKWARD OLD PSW 071COOOA 00DF8D64 TCB 0095AOE8 MODN SVC-RES
R15 00000000 RO E6000408 R1 0095FB40

SVC 048 ASCB 00FEBB28 CPU 0000 JOBN BACKWARD OLD PSW 075C0030 00D8C718 TCB 0095AOE8 MODN SVC-RES
R15 00480000 RO 00480001 Rl 0096DE80 MAJOR SYSZTIOT MINOR 0·'
PLIST 0096BBD8 C0064100 00D8CB98 0096BE8C 00080096

SVC 000 ASCB 00FEBB28 CPU 0000 JOBN BACKWARD OLD PSW 078DOOOO 00ABBCD6 TCB 0095AOE8 MODN READBACK DDN TAPE
R15 00ABBA50 RO 000E4F80 R1 000E4F80 DCB 000E5FA4 DEB 0096BAD4

SVC 001 ASCB 00FEBB28 CPU 0000 JOBN BACKWARD OLD PSW 078DOOOl 00F9B8FA TCB 0095AOE8 MODN READBACK
R15 00F9B878 RO 00000001 Rl 000E5EB8
PLIST 000E5EB8

SIO 0580 ASCB 00FEBB28 CPU 0000 JOBN BACKWARD R/V CPA 003F3E18 00FF2E18 CAW 800174EO DSIO 0096BAD4
FLGS 00000000 C302 STAT 0400 SK ADDR 00000000 00000000 CC 0 CS 00
CCW CHAIN SIO DEV 0580 ASCB 00 FEBB28 CPU 0000 JOBN BACKWARD
000174EO C3064BAO 70000001 lE IE
000174E8 083F3E18 00000000 lE IE
00FF2E18 013F3B58 24002328 lE IE

IDAW 00396CD8 0328 00010002 00030004 0oo5---- ----0190 01910192 01930194 IE ..•.•..... ---- .•. J.K.L.MIE
IDAW 0014FOOO 0800 01950196 01970198 0199---- ----0590 05910592 05930594 IE.N.O.P.Q.R---- ... J.K.L.MIE
IDAW 0014F800 0800 05950596 05970598 0599---- ----0990 09910992 09930994 lE.N.O.P.Q.R---- ... J.K.L.MIE
IDAW 000E7000 0800 09950996 09970998 0999---- ----0090 OD910D92 OD930D94 lE.N.O.P.Q.R---- ... J.K.L.MIE

*lElE DATE DAY 225 YEAR 1981 TIME 19.43.57.673859 lEIU!

IDAW 000E7800 0800 OD950D96 OD970D98 OD99---- ----1190 11911192 11931194 IE.N.O.P.Q.R---- ... J.K.L.MIE
10 0580 ASCB 00FEBB28 CPU 0000 JOBN BACKWARO OLD PSW 070C2000 00C38E68 TCB 0095AOE8 DSIO 0096BAD4

CSW 803F3E20 OCOOOOOO SNS N/A R/V CPA 003F3E18 00FF2E18 FLG 0000C302 A2000580 00 CS 00
CCN CHAIN 10 DEV 0580 ASCB 00FEBB28 CPU 0000 JOBN BACKWARD
00FF2E18 013F3B58 24002328 IE IE

lOAN 00396CD80328 00010002000300040005---- ----01900191019201930194 IE ---- ... J.K.L.MIE
lOAN 0014FOOO 0800 01950196 01970198 0199---- ----0590 05910592 05930594 IE.H.O.P.Q.R---- .•. J.K.L.MIE
IDAW 0014F800 0800 05950596 05970598 0599---- ----OQ90 09910992 09930994 IE.H.O.P.Q.R---- ... J.K.L.M~
IDAW 000E7000 0800 09950996 09970998 0999---- ----OD90 OD910D92 OD930D94 IE.H.O.P.Q.R---- ... J.K.L.MIE
IDAW 000E7800 0800 OD950D96 OD970D98 0099---- ----1190 11911192 11931194 IE.N.O.P.Q.R---- ... J.K.L.MIE

SVC 000 ASCB 00FEBB28 CPU 0000 JOBN BACKWARD OLD PSW 07800000 00ABBCD6 TCB 0095AOE8 MOON READBACK DON TAPE
R15 00ABBA50 RO 000E4F80 Rl 000E4F80 DCB 000E5FA4 DEB 0096BAD4

SIO 0580 ASCB 00FEBB28 CPU 0000 JOBN BACKWARD R/V CPA 003F3590 00FF2590 CAW 800174EO DSID 0096BAD4
FLGS 00000000 C302 STAT OCOO SK ADDR 00000000 00000000 CC 0 CS 00
CCW CHAIN SIO DEV 0580 ASCB 00FEBB28 CPU 0000 JOBN BACKWARD
000174EO C3064BAO 70000001 IE IE
000174E8 083F3590 00000000 IE IE
00FF2590 OC3F3DF8 04002328 IE IE

SVC 001 ASCB 00FEBB28 CPU 0000 JOBN BACKWARD OLD PSW 078DOOOI 00F9B8FA TCB 0095AOE8 MODN READBACK
R15 00F9B878 RO 00000001 Rl 000E5EEC
PLIST 000E5EEC

10 0580 ASCB 00FEBB28 CPU 0000 JOBN BACKWARD OLD PSW 070EOOOO 00000000 TCB 0095AOE8 OSlO 0096BAD4
C5W 803F3598 OCOOOOOO SNS N/A R/V CPA 003F3590 00FF2590 FLG 0000C302 A2000580 00 CS 00
CCW CHAIN 10 DEV 0580 ASCB 00FEBB28 CPU 0000 JOBN BACKWARD
00FF2590 OC3F3DF8 0400?328 IE IE

IOAW 00396CDC 0409 280F290F 2AOF2BOF 2COF---- ---~1190 11911192 11931194 IE ---- .. J.K.L.MIE
IOAW 003967FF 0800 280B290B 2AOB2BOB 2COB---- ----230F 240F250F 260F270F lE ---- IE
IOAW 00lC2FFF 0800 280729C7 2A072B07 2C07---- ----230B 2408250B 260B270B IE .•........ ---- IE
IDM~ 001C27FF 01100 28032903 2A032B03 2C03---- ----23072407250726072707 l! •••••••••• ---- •••••••••• IE
IDAW 002DIFFF 064F 00010002 00030004 0005---- ----2303 24032503 26032703 l! •••••••••• ---- •••••••.•• IE

SVC 013 ASCB 00FEBB28 CPU 0000 JOBN BACKWARD OLD PSW 078DOOOD 000AOA3E TCB 0095AOE8 MOON READBACK
R15 4002BF5E RO 00000001 Rl 000E5EEC COMP CODE 00000000

Figure 1-13. Format of Comprehensive Trace Records for SVC, SlOP, lOP, PCI, CCWP, and JOBNAMEP

-I
VJ
0-

CIl
<1>

:1
;:;"
<1>

:>
0.:
~

YS2R3 TEST FOR MINIMAL RECORDS EXTERNAL TRACE - aD TAPE PAGE 0454

SID ASCS 000106FO CPU 0000 GPA OOlECF28 00FECF2R CAW 00003BA6 OEV ADD 0354 STATUS OCOO CC 0
10 ASCS 0OO106FO CPU 0000 PSW 070C2000 0002208C TCB OOOl08D6 [lEV ADD 0354 CSW 001ECF50 OCOOOOOI SNS N/A
SRB ASCS 000106FO CPU Geoo PSW 070CCOOO 00018C68 SRB OCFEA560 R15100018C68 Rl 00HA4FO TYPE GLOBAL
EXT ASCB 000106FO CPU OCO)O PSW 070CI004 00C.05F20 TCB N/A TOE TCR OOCI0DF8
SRM ASC!' OOOOFB46 CPU 0000 R15 ooooooeo RO 00010001 Rl 0(,0(10000
SIO ASCB 0OO106FO CPU 0000 CPA 00lECF28 OOFECF2B CAW 0(,003~A B DEY ACID ('354 STATUS OCOO CC 0
10 ASCS 0OO10bFO CPU 0000 PSW 070C2000 000220PC TCB OCOI0808 [lEV ADD 03'i4 CSW 001ECF50 OCOOOOOI SNS N/A
SRB ASCB 00010bFO CPU l'OOC PSW 070COOOO 00018C6B SRB OOFEA5bO R15 00018C68 R1 00FEA4FO TYPE GLOBAL
EXT ASC!' (;OO10bFO CPU OOOu PSW C70C 10,)4 OOG 18C6R TCB N/A T(1E TC8 000100F8
SRM ASCB 00OOFB48 CPU 0000 R 15 'JO';CC 000 RO 0(;0100(11 R 1 CC.OCOOOC
asp ASCB OOFE0210 CPU 0(1)0 DSW 07~C0000 0001?4E4 TCB OOcoCf\?8 R 1~ 000('0(l00 RO 0032776b R 1 0C'C90EC8
DSP ASCB 00FEOlI0 CPU 0000 PSW 070CI000 COF6367C TCEI (lPC9CB28 R15 0(10(10(\('0 RO (1(10<'0002 Rl 0000001B
EXT ASCS OOFED210 CPU OOIJO P5W 070C1004 OOF6R54C TeB (\(:C9CB2B TC'E TCB 00010[)F8
SRM ASCS 0000F~4B CPU 0000 R15 ()OOOOoe,o RO 00010001 Rl 00000000
SRM ASCB OOOOF846 CPU O(nO f;15 00000000 1:0 00010001 Rl 00000000
SRM ASCB OOOOFB48 CPU c,ooe P:l~ COCOLC'c() RO 00010001 P1 0 n (lO'JODO
SRB ASCS 00010bFO CPU 00')" PSW .,7.)Cu('('C· C0(1C!bR7') S"~ (lOFC3J04 R 1~ 0(,C'08f170 Rl 00000000 TYPE LOCAL
SRM ASCB OOOOFt:l41l CPU 0000 R 15 OOL)OC(,CO ~o ('C(l1000l Rl ON)('O(lO(l
DSP ASCB 00F~D210 CPU OOJO P~W C71jC3000 00Fbf'54C 1(", C'OC9CB211 R 15 oooe ('(104 RO 00000001 Rl 00C9C94B
SRM ASCB 0000FB48 CPU oooe R15 l'OO(J(COO ~O 00010001 PI OCOOCOOO
SRtl ASCB vOV:'FB4B CPU <,,)00 ,_, PSW ~70C00UO 0004A67[SRf' Ol C'ZC3111l R15 OC04A67f Rl 0068COF 0 TYPE GLOflAL
SRM ASCB 000OFS48 CPU 0000 RP- 00000(('0 1<0 U0010030 R 1 OO'~ZC3D8

SRM ASCB OOOOFB48 CPU 0(.' •• 0 R 1'j t. OO('I~('('\(' ?0 0001(10('1 R1 (l(l'O0(1:)0
DSP ASCB OOH0210 CPU 0000 PSW L70C30uO OOF6~54C Tefl O()coC~28 R 15 C' OOOCdJ04 RO 00(,('0001 R1 OOCQC94B
EXT ASCB 00FE0210 CPU OOC'O PSW (70CI004 GOF6854C TCR 00C9C'l2R TQE Te'l OCGI0DF8
SRM ASCR OOCOFfl48 CPU 0000 Rl, CO(lOOll,'C R(\ 00010001 R 1 COOO0000
OSP ASCS JOFED210 CPU ',0'00 PSW (7003C~G ~;F6e54C Tefl OCC9C<\ZA P15 COllUOC'4 RO CC ('0000 1 Rl 00C9C94f\
DSP ASCS DOH D210 CPU (;000 PSw (70C30('0 OOF6854C TCB 01,C9C~2R R 15 O'1C'-, 0004 RO coecooo 1 ~1 00C9C94B
EXT ASC£; ()OFEU210 CPU vO'lO PSW 070C10(l4 OCF~854C TCB n(:C<1CR78 TCoF TCF< (I('JloDF6
SRM ASCB 0000ffl4E1 CPU 0000 R15 ('CCO(;(\OO '<0 00C'10001 ~I 00('00000
DSP ASCB (JOFED210 CPU OOjO psw l70C3000 OOF6854C TCA 0(;C9CtlZE R15 0('10('('004 RO 00000001 Rl 00C9C94B
DSP ASCB OOFE0210 CPU OOJO PSW L7LCOOOO 00Fb370b TCf, N'C"'C,7B R15 O('OOOCOO RO 00000018 Rl OOFFD2FO
DSP ASCB JOFE [1210 CPU l,C,)(j PSW L7~C1C00 00Fh3716 TCR (hC9C'I2~ R 15 00000C"0 RO 00C9C9BO Rl 00C9C800
SRB ASCe OO(10FB48 CPU CC.J(l PSW C70C000C. OOOCC2DF SRB OOFFIA50 PIS OOOC-C2DE Rl OOFFIA7C TYPE LOCAL
EXT ASCB (;000FB48 CPU OOOC' PSW 070CIC04 OOOOBFIA TC8 N/A T')E TCB 0(,010DFS
SRM ASCB 0000F948 CPU 0000 R 15 CCODuOOO RO 00010001 R 1 001'00000
DSP ASCS 0000Fb4E1 CPU 0000 PSW 070CI000 OOF2D220 TCB 00010220 RIO; 6000B!l94 RO 00000001 Rl FFFD74B8
PI ASCB 0000F!l48 CPU (;000 PSW U70C~[11 00F2D220 TCB (";010220 VPA 00F2[l220 R15 60008894 R 1 FFFD74B8
PI ASCB OOOOFB48 CPU coo P5W v70C:Oll CCF2COOO TCB 0l'1)10220 Vp~ OOF2COO-: R15 OOF2COOO PI 80028CC8
PI ASCB Ol)OOFB4P CPU 0000 PSW ('·7CC::011 (IJE273EO TCB OLCI0220 VPA 00E273EO RI5 OOF2C850 R 1 00028908
SID ASCB OOOOFB48 CPU OOIJO CPA 001F5600 OOFf56DO CAW C'C'IF56[)0 DEV ADD OOlF STATUS ocon CC 0
asp ASCB 0000FB48 CPU 0000 PSW 070CIOOO OOE27992 TCB 1)(1010220 R15 00035388 RO COFFFC58 Rl 00C9C4E8
DSP ASCB 0000FFl48 CPU 0000 PSW C70CJOOO OOE275&E TCEI CDOI02?0 R15 00000000 RO 00 rlF7C 8 Rl 00DlF768
DSP ASCB 00COFB48 CPU 0000 PSW 070C0000 00F2C9AA TCB 0\.-010220 R 15 0')03531"8 RO 00UlF7C8 R 1 000 1F7b8
DSP ASCB OOFED210 CPU ('000 PSW 070CI000 OOE4AB8b TCB 0C'CQCB2A R15 00011610 RO 00000000 Rl 00FFIA50
DSP ASCS 00FED2l0 CPU 0000 PSW 070C1000 00E4AB94 TCB OrC9CB2R R 15 0001)0000 RO 00000014 Rl 00C9F228
EXT ASCS 00FE0210 CPU 0000 PSW 070CI004 0002C69E TCa O(lC9CR28 TQE TCe 00010DF8
SRM ASCB 0000FB48 CPU 0000 R15 00000000 RO 00010001 R 1 00000000
LSR ASC8 00H0210 CPU CO·J\; PSW 070C2000 0002Cb9E TCB C;uC9CBZe R15 00001000 RO FFOOO010 Rl 00C90BEB
DSP ASCS 00FED210 CPU 0000 PSW 070COOOO 00E4ABD6 TC9 O()C9CR2B R15 00000000 RO FFOOO010 Rl 00C71E20
OSP ASCB 00FE0210 CPU 0000 PSW 070COOOO OD0678FC TCB OOC9CR28 R15 00000000 RO FFOOOOlO Rl 0000017A

~~NIO ASCe OOFED210 CPU 0000 IN FIF040C2 EBE3C5E2 0000
EXT ASCB 00FED210 CPU 0000 PSW 070C1004 000678EA TCB 00C9C62B T~E TCB 00010DF8
SRH ASCB 0000FB48 CPU 0000 RI5 00000000 ~O 00010001 Rl 00000000
SR8 ASCS OOOlOt-FO CPU 00:)0 PSW 070COOOO 00008B70 SRB OOFE3004 R15 00008B70 Rl 00000000 TYPE LOCAL
SIO ASCB 000106FO CPU 0000 CPA 00IECF28 00FECF28 CAW 000036A8 DEY ADD 0354 STATUS OCOO CC 0

Figure 1-14. Format of Minimal Trace Records for SID, 10, SRB, EXT, SRM, DSP, PI, LSR, and RNIO

l, l, 4w

(")
::r'
po
'0
rt ..,

a
-l
'Tj

.....
I

W
-....l

r r

EXTERNAL TRACE - DO TRACE PAGE 0002
*** DATE DAV 289 YEAR 1978 TIME 19.44.36.579936 ***
SLIP STD ASCB 00024870 CPU 0000 JOBN *MASTER" TID PERI ASID 0001 JSP N/A TCB N/A MFLG 6236 EFLG 0000

SFLG 00 DAUN 0000 MODN IEANUCOI OFFS 00068F62 IADR 00068F62 INS 904E33500590 EXSIAD N/A
EXSINS N/A BRNGA N/ A BRNGD N/A OPSW 440CI000 00068F66 PI ILC 00040080 PERC 40 TVP 88

SLIP STD ASCB 00024870 CPU 0000 JOBN "MASTER" TID PERI ASID 0001 JSP N/A TCB N/A MFLG 6236 EFLG 0000
SFLG 00 DAUN 0000 MOON IEANUCOI OFFS 00068F80 IADR 00068F80 INS 47F0902858FB EXSIAD N/A
EXSINS N/A BRNGA N/A BRNGD N/A OPSW 440COOOO 00068F90. PI ILC 00040080 PERC 80 TYP 88

SLIP STD ASCB 00024870 CPU 0000 JOBN "~IASTER" TID PERI ASID 0001 JSP N/A TCB N/A MFLG 6236 EFLG 0000
SFLG 00 DAUN 0000 MODN IEANUCOI OFFS 00068FAA IADR 00068FAA INS 4770908E58AO EXSIAD N/A
EXSINS N/A BRNGA N/A BRNGD N/A OPSW 440C3000 00068FF6 PI ILC 00040080 PERC 80 TVP 88

SLIP STD ASCB 00024870 CPU 0000 JOBN "MASTER" TID PERI ASID 0001 JSP N/A TCB N/A MFLG 6236 EFLG 0000
SFLG 00 DAUN 0000 MODN IEANUCOI OFFS 000690lA IADR 0006901A INS 47F090E89120 EXSIAD N/A
EXSINS N/A BRNGA N/A BRNGD N/A OPSW 440CIOOO 00069050 PI IlC 00040080 PERC 80 TVP 88

Figure 1-15. Format of SLIP Standard Trace Record

SLIP S+U ASCB 00024870 CPU 0000 JOBN "MASTER" TID PER2 ASID 0001 JSP N/A TCB N/A MFLG 6236 EFLG 0000
SFLG 40 DAUN 0000 MODN IEANUCOI OFFS 00040698 IADR 00040698 INS D203F07C3014 EXSIAO N/A
EXSINS N/A BRNGA 00060000 BRNGD 000COA5F OPSW 440CI000 0004069E PI ILC 00060080 PERC 20 TVP 28
RO 00000000 Rl 00030B20 R2 0003D428 R3 00000C5C R4 00FD7D18 R5 00024870 R6 00FD7D70 R7 A0040068
R8 7003E31C R9 00000000 RIO 00808000 RII 00800000 R12 6004001A R13 000616F8 R14 5004036E R15 000616F8
46040COO 000002ES DAOOOOOO 00000000 00000257 78000000 00070COO 0000BAA7 28070ClO 000006FE lC440CI0 00000406
9EOOOOOO 00000000 00070COO 0000BAA7 280008BC 300COO

SLIP S+U ASCB 00024870 CPU 0000 JOBN "MASTER" TID PER2 ASID 0001 JSP N/A TCB N/A MFLG 6236 EFLG 0000
SFLG 40 DAUN 0000 MOON IEANUCOI OFFS 00042B3C IADR 00042B3C INS 900EF0400203 EXSIAO N/A
EXSINS N/A BRNGA 00060000 BRNGD 000COA5F OPSW 440CI000 00042B40 PI ILC 00040080 PERC 20 TVP 28
RO 00000000 Rl 0003DBI0 R2 00030428 R3 00000C5C R4 00FD7928 RS 00024870 R6 00FD7980 R7 A0040068
R8 7003E31C R9 00000000 RIO 01008000 Rll 01000000 R12 6004001A R13 000616F8 R14 5004036E R15 0006l6F8
46040COO 000002E5 DAOOOOOO 00000000 00000257 78000000 00070COO 0000BAA7 28070CIO 000006FE lC440ClO 0000042B
40000000 00000000 00070COO 0000BAA7 280008BC 300COO

~LIP S+U ASCB 00024870 CPU 0000 JOBN "MASTER* TID PER2 ASID 0001 JSP N/A TCB N/A MFLG 6236 EFLG 0000
SFLG 40 OAUN 0000 MOON IEANUCOI OFFS 00042B40 IAOR 00042B40 INS D203F07C3014 EXSIAO N/A
EXSINS N/A BRNGA 00060000 BRNGD 000COA5F OPSW 440ClOOO 00042B46 PI ILC 00060080 PERC 20 TVP 28
RO 00000000 R' 00030BIO R2 00030428 R3 00000C5C R4 00F07928 RS 00024870 R6 00F07980 R7 A0040068
R8 7003E31C R9 00000000 RIO 01008000 Rll 01000000 R12 6004001A R13 000616F8 R14 5004036E R15 000616F8
46040COO 000002E5 OAOOOOOO 00000000 00000257 78000000 00070COO 0000BAA7 28070CI0 000006FE lC440CI0 0000042B
46000000 00000000 00070COO 0000BAA7 280008BC 300COO

Figure 1-16. Format of SLIP Standard/User Trace Record

r

...
I
~
00

*** DATE DAY 291 YEAR 1978 TIME 19.51.03.925752 ***
~
~ SLIP USR 40000000 0600FF15 6800FD78 380004DA 4000FD73 58000000 OOOOFECE 0800FD79 D000069F 66S0068F 6800000C SCOOOOOO
~ 0400FD79 DOOOOOOO 0050078B 5E00068F 62BE040C 00000002 E5DAOOOO 00000000 00000002 57780000 0000070C 000000B8 ~
n' 9000070C 10000006 FE1C440C 10000006 8F780000 00000000 0000070C 30000001 D1S6001F 68480COO Oa01001F 68300002
~ 5778F56C 063AOOFD 7DC0440C 00000006 DB40440C 00000002 7448000C 00000002 FE3A0008 00000003 0440440C 00000006

~
DE400000 00000000 10040002 000D0004 008000AA OFB00004 40000006 8F740000 00060000 00000006 6F081002 0000001E
AB70FFFF FFFFOOOO 00000000 00090000

~ SLIP USR 40000000 0600FF15 6800FD78 380004DA 4000FD73 58000000 OOOOFECE 0800FD79 D000069F 66S0068F 6800000C SCOOOOOO
~ 0400FD79 DOOOOOOO 0050078B 5E00068F 62BE040C 00000002 E5DAOOOO 00000000 00000002 57780000 0000070C 000000B8

9000070C 10000006 FE1C440C 00000006 8F7EOOOO 00000000 0000070C 30000001 D1S6001F 68480COO 0001001F 68300002
5778F56C 063AOOFD 7DC0440C 00000006 DB40440C 00000002 7448000C 00000002 FE3A0008 00000003 0440440C 00000006
DE400000 00000000 10040002 000D0006 008000AA OFB00004 40000006 8F780000 00060000 00000006 6F081002 0000001E
AB70FFFF FFFFOOOO 00000000 00090000

SLIP USR 40000000 0600FF15 6800FD78 380004DA 4000FD73 58000000 OOOOFECE 0800FD79 D000069F 66S0068F 6800000C SCOOFF15
6800FD79 DOOOOOOO 0050078B 5E00068F 62BE040C 00000002 E5DAOOOO 00000000 00000002 57780000 0000070C 000000B8
9000070C 10000006 FE1C440C 00000006 8F800000 00000000 0000070C 30000001 D1S6001F 68480COO 0001001F 68300002
5778F56C 053AOOFD 7DC0440C 00000006 DB40440C 00000002 7448000C 00000002 FE3A0008 00000003 0440440C 00000006
DE400000 00000000 10040002 000D0002 008000AA OFB00004 40000006 8F7EOOOO 00060000 00000006 6F081002 0000001E
AB70FFFF FFFFOOOO 00000000 00090000

Figure 1-17. Format of SLIP User Trace Record

EXTERNAL TRACE - DD TRACE PAGE 000'8

SLIP STD ASCB 00024870 CPU 0000 JOBN *MASTER" TID PER6 ASID 0001 JSP N/A TCB N/A MFlG 6236 EFLG 0000
SFLG 00 DAUN 0000 MODN IEANUC01 OFFS 00068F78 IADR 00068F78 INS D72B337C337C EXSIAD N/A
EXSINS N/A BRNGA N/A BRNGD N/A OPSW 440COOOO 00068F7E PI ILC 00060080 PERC 40 TVP 48

SLIP S+U ASCB 00024870 CPU 0000 JOBN "MASTER* TID PER6 ASID 0001 JSP N/A TCB N/A MFLG 6236 EFLG 0000
SFLG 80 DAUN 0000 MODN IEANUC01 OFFS 00068F78 IADR 00068F78 INS D72B337C337C EXSIAD N/A
EXSINS N/A BRNGA N/A BRNGD N/A OPSW 440COOOO 00068F7E PI ILC 00060080 PERC 40 TVP 48
020000

SLIP STD ASCB 00024870 CPU 0000 JOBN *MASTER" TID PER6 ASID 0001 JSP N/A TCB N/A MFLG 6236 EFLG 0000
SFLG 00 DAUN 0000 MODN IEANUCOI OFFS 00068F7E IADR 00068F7E INS 188147F09028 EXSIAD N/A
EXSINS N/A BRNGA N/A BRNGD N/A OPSW 440COOOO 00068F80 PI ILC 00020080 PERC 40 TVP 48

SLIP S+U ASCB 00024870 CPU 0000 JOBN "MASTER" TID PER6 ASID 0001 JSP N/A TCB N/A MFLG 6236 EFLG 0000
SFLG 80 DAUN 0000 ~10DN IEANUCO 1 OFFS 00068F7E IADR 00068F7E INS 188147F09028 EXSIAD N/A
EXSINS N/A BRNGA N/A BRNGD N/A OPSW 440COOOO 00068F80 PI ILC 00020080 PERC 40 TVP 48
020000

SLIP STD ASCB 00024870 CPU 0000 JOBN *MASTER" TID PER6 ASID 0001 JSP N/A TCB N/A MFLG 6236 EFLG 0000
SFLG 00 DAUN 0000 MODN IEANUCOI OFFS 00068F80 IADR 00068F80 INS 47F0902858FB EXSIAD N/A
EXSINS N/A BRNGA N/A BRNGD N/A OPSW 440COOOO 00068F90 PI ILC 00040080 PERC 40 TYP 48

SLIP S+U ASCB 00024870 CPU 0000 JOBN "MASTER" TID PER6 ASID 0001 JSP N/A TCB N/A MFLG 6236 EFLG 0000
SFLG 80 DAUN 0000 MODN IEANUCOI OFFS 00068F80 IADR 00068F80 INS 47F0902858FB EXSIAD N/A
EXSINS N/A BRNGA N/A BRNGD N/A OPSW 440COOOO 00068F90 PI ILC 00040080 PERC 40 TVP 48
020000

Figure 1-18. Format of SLIP DEBUG Trace Record

l, l., Cw

Control Records

GTF produces three types of control records: time stamp records, lost event
records, and lost block records. The first record in every block of trace output is
a time stamp record. A lost data record tabulates trace events that were not
recorded because the GTF buffers were full. Figure 1-19 shows the general
format of a time stamp record.

time zone time stamp options

1 I
2 ~tes 2 bytes byte byte 4 bytes 8 bytes 4 bytes

Figure 1-19. General Format of a Time Stamp Control Record

The fields in the record contain the following information:

length

00

AID

FlO

indicates total length of the record in bytes.

always zero.

always zero, for control records.

is the format identifier, which for time stamp control records, is always
X'OI'.

time zone
is a copy of the CVT field CVTTZ and is the difference between local time
and Greenwich mean time (GMT) in binary units of 1.048576 seconds.

time stamp
indicates the TOO clock value representing the local time when the control
record was constructed. (TOO clock values are described in IBM Sj370
Principles of Operation.)

PRDMP formats and prints the TOO clock value in a time stamp record
that precedes the printout of each GTF trace buffer. The time stamp record
is described in MVSj370 Debugging Handbook, Volume 1.

options
identifies the GTF options in effect. For detailed information about this
field, see Figure A-2 in "Appendix A: Writing EDIT User Programs."

Chapter 1. GTF 1-39

1-40 Service Aids

Chapter 2. LIST

Introduction

LIST is a service aid that operates as a problem program named AMBLIST. It
produces several kinds of output that you can use to perform certain diagnostic
functions. These functions are described below.

Verifying an object module. LIST produces a formatted listing that contains the
external symbol dictionary (ESD). the relocation dictionary (RLD), the text of the
program containing instructions and data, and the END record.

Mapping CSECTs in a load module. LIST produces a listing of the load module
along with its module map and cross-reference listing. You can examine the
listing to determine the organization of CSECTs within the load module, the
overlay structure. and the cross-references for each CSECT.

Verifying the contents of the nucleus. LIST can produce a map and cross-reference
listing of a nucleus.

Tracing modifications to the executable code in a CSECT. LIST produces a
formatted listing of all information in a load module's CSECT identification
records (lDRs). An IDR provides the following information:

• It identifies the version and modification level of the language translator and
the date that each CSECT was translated. (Translation data is available only
for CSECTs that were produced by a translator that supports IDR
generation.)

• It identifies the version and modification level of the linkage editor that built
the load module and gives the date the load module was created.

• It identifies, by date, modifications to the load module that may have been
performed by SPZAP.

An IDR may also contain optional user-supplied data associated with the
executable code of the CSECTs.

Mapping the link pack area. LIST produces a map of all modules in the fixed link
pack area, the modified link pack area, and the pageable link pack area.

Note: Any load module to be formatted and printed by LIST must have the
same format as those created by the linkage editor.

Chapter 2. LIST 2-1

J CL Statements

2-2 Service Aids

The minimum region for executing AMBLIST is 64K for all functions except
LISTLPA, which requires lOOK. See the next topic, Control Statements.

LIST requires the following JCL statements:

JOB Statement
initiates the job.

EXEC Statement
provides for the execution of the program AMBLIST and is used to set the
appropriate region size for your program to run.

SYSPRINT DD Statement
defines the message data set.

anyname DD Statement
defines an input data set.

Note: Do not concatenate input DD statements; the results are
unpredictable.

SYSIN DD Statement
defines the instream data set that contains LIST control statements.

Control Statements

You control LIST processing by supplying control statements in the input stream.
You must code the control statements according to the following rules:

• Leave column 1 blank, unless you want to supply an optional symbolic name.
A symbolic name must be terminated by one or more blanks.

• If a complete control statement does not fit on a single record, end the first
record with a comma or a non-blank character in column 72 and continue on
the next record. Begin all continuation records in columns 2 - 16. You must
not split parameters between two records; the only exception is the MEMBER
parameter, which may be split at any internal comma.

The control statements and their parameters are:

LISTLOAD [OUTPUT={MODLISTlxREFIBOTH}] [,TITLE=('title' ,position)]

[,DDN=ddname] [,MEMBER={memberl (memberl[,membern] ...)}]

[, RELOC=hhhhhh 1

OUTPUT = {MODLISTIXREFIBOTH}
indicates the type of load module listing to be produced.

MODLIST
requests a formatted listing of the control and text records of a load
module, induding its External Symbol Dictionary and Relocation
Dictionary records.

XREF
requests a module map and cross-reference listing for the load module.

BOTH
requests both a formatted listing of the load module and its map and
cross-references.

Note: If this parameter is omitted, OUTPUT = BOTH is assumed.

TITLE = ('title',position)

title
specifies a title, from one to forty characters long, to be printed below
the heading line on each page of output. (The heading line identifies
the page number and the type of listing being printed, and is not
subject to user control.)

Chapter 2. LIST 2-3

2-4 Service Aids

position
specifies whether or not the title should be indented; if "
TITLE = ('title', 1) is specified, or if the position parameter is omitted, ..""
the title is printed flush left, that is, starting in the first column. If
you want the title indented from the margin, use the position
subparameter to specify the number of characters that should be left
blank before the title. If you specify a position greater than 80, the
indentation defaults to 1.

Note: Do not punctuate your title with commas; because LIST
recognizes a comma as a delimiter, anything that follows an embedded
comma in a title is ignored.

DDN=ddname
identifies the DD statement that defines the data set containing the
input module. If the DDN parameter is omitted, LIST assumes
SYSLIB as the default ddname.

MEMBER = {member I (memberl (,membern) •.•)}
identifies the input load module(s) by membername or alias name. To
specify more than one load module, enclose the list of names in
parentheses and separate the names with commas. If you omit the
MEMBER parameter, LIST prints all modules in the data set.

RELOC = hhhhhh
specifies a relocation or base address of up tosix hexadecimal digits.
When the relocation address is added to each relative map and
cross-reference address, it gives the absolute main storage address for
each item on the output listing. If you omit the RELOC parameter,
no relocation is performed.

LISTOBJ [TITLE=('title' ,position)] [,DDN=ddname]

[,MEMBER={member I (memberl [,membern] ...)}]

TITLE = ('title' ,position)

title
specifies a title, from one to forty characters long, to be printed below
the heading line on each page of output. (The heading line identifies
the page number and the type of listing being printed, and is not
subject to user control.)

position
specifies whether or not the title should be indented; if
TITLE = Cti tie', 1) is specified, or if the position parameter is omitted,
the title is printed flush left, that is, starting in the first column. If
you want the title indented from the margin, use the position
subparameter to specify the number of characters that should be left ..
blank before the title. If you specify a position greater than 80, the ...,
indentation defaults to I.

Note: Do not punctuate your title with commas; because LIST
recognizes a comma as a delimiter, anything that follows an embedded
comma in a title is ignored.

DDN=ddname
identifies the DO statement that defines the data set containing the
input module. If the DON parameter is omitted. LIST assumes
SYSLIB as the default ddname.

MEMBER = {memberl(memberll,membern) ...)}
identifies the input object module(s) by membername or alias name.
To specify more than one object module, enclose the list of names in
parentheses and separate the names with commas. CAUTION: You
must include the MEMBER parameter when the input object modules
exist as members in a partitioned data set. If you do not include the
MEMBER parameter. LIST assumes that the input data set is
organized sequentially and that it contains a single, continuous object
module.

LISTIDR [OUTPUT={IDENTIALL}] [,TITLE=('title' ,position)]

[,DDN=ddname] [,MEMBER=[memberj (memberl[,membernl ...)}]

[,MODLIB]

OUTPUT = {IDENTIALL}
indicates whether LIST should print all CSECT identification records or
only those containing AMASPZAP data and user data.

ALL
indicates that all IORs associated with the module are to be printed.

IDENT
indicates that LIST should print only those IORs that contain SPZAP
data or user-supplied data.

Note: If you omit this parameter, LIST assumes a default of OUTPUT = ALL.
Do not specify OUTPUT if you specify the MODLIB parameter.

TITLE = ('title' ,position)

title
specifies a title, from one to forty characters long, to be printed below
the heading line on each page of output. (The heading line identifies
the page number and the type of listing being printed, and is not
subject to user control.)

Chapter 2. LIST 2-5

2-6 Service Aids

position
specifies whether or not the title should be indented; if
TITLE = ('title', 1) is specified, or if the position parameter is omitted,
the title is printed flush left that is, starting in the first column. If
you want the title indented from the margin, use the position
subparameter to specify the number of characters that should be left
blank before the title. If you specify a position greater than 80, the
indentation defaults to I.

Note: Do not punctuate your title with commas; because LIST recognizes a
comma as a delimiter, anything that follows an embedded comma in a title
is ignored.

Note: There is no point in specifying TITLE if you also specify the
MODLIB parameter, because LIST then ignores TITLE.

DDN= ddname
identifies the DD statement that defines the data set containing the input
module. If you omit the DDN parameter, LIST assumes SYSLIB as the
default ddname.

MEMBER = {memberl(memberll,membern) ...)}
identifies the input load module(s) by membername or alias name. To
specify more than one load module, enclose the list of names in parentheses
and separate the names with commas. If you omit the MEMBER
parameter, LIST prints all modules in the data set. Do not specify
MEMBER if you specify the MODLIB parameter.

MODLIB
prevents LIST from printing the module summary. LIST prints the IDRs
that contain SPZAP data or user-supplied data. No page ejects occur
between modules. When you specify MODLIB, the TITLE parameter is
ignored, and the OUTPUT or MEMBER parameters are not valid
parameters.

I LISTLPA

LISTLPA
lists the link pack area (LPA) only. It does not list the modified link pack
area (MLPA). LISTLPA has no parameters.

Note: The LIST reflects only the system currently operating.

J

Output

LIST produces a separate listing for each control statement that you specify. The
first page of each listing always shows the control sta tement as you entered it.
The second page of the listing is a module summary. unless you requested
LlSTOBJ, LlSTLPA. or MODLIB with LlSTIDR; in that case. no module
summary is produced. and the second page of the listing is the beginning of the
formatted output.

The module summary gives the following information:

• the member name (with aliases)

• the entry point

• linkage editor attributes

• system status index (SSI) information

Figure 2-1 shows a typical module summary. Note that the linkage editor
attributes are not represented by a bit map.

MODULE SUM!<\At<Y •••••

~.EfoIB!.R NA~.E PLI LOAD MAIN J:;NTRY POINT 000720

•• ALIASES •• SECONDARY EN'I t<.Y POINT ADDRE:';S[S ASSOCIATED WI1I-i J.o.LIA5ES:

LINKAGE EDITOR ATTRI BUTES OF MODULE

BIT STATUS BIT STATlJS PiT STATUS "IT STATUS

0 NOT-I1.ENT I NOT-RF.US 2 :-JOT-QVLY 3 NOT-TEST
4 NOT-OL 0 BLOCK b E.XEC 7 MULTI-~CD

8 NOT-DC 9 ZERO-ORG 10 EP > ZERO 11 KLD
12 EDIT 13 NO-SYMS 1 q F-LEVEL IS NO'I-R£.FR

MODULE 55!: NONE

Figure 2-1. Sample Module Summary of LISTLOAD

The third page of the listing (or, for LISTOBJ, LISTLPA, or MODLIB with
LlSTIDR the second page) is the beginning of the formatted output itself.

For LISTLOAD, the output consists of the load module and/or the module map
and cross-reference listing. Figure 2-2 shows an example of LlSTLOAD module
map output. Figure 2-3 shows an example of the cross-reference listing for the
same module.

Chapter 2. LIST 2-7

2-8 Service Aids

For LISTOBJ, the listing contains information specific to the object module:

• the object module listing

• its external symbol dictionary (ESD)

• its relocation dictionary (RLD)

Figure 2-4 shows an example of LISTOBJ output.

For LISTIDR, the third page of the listing begins a complete list of all CSECT
identification records for the module. Figure 2-5 shows an example of LISTIDR
output.

For LISTLPA, the second page of the listing is a map of the link pack area, with
modules in alphabetical order. Figure 2-6 shows an example of LISTLPA
output.

For complete descriptions of the fields in the formatted output listings, see
Linkage Editor Logic.

LISTING OF LOAD MODULE PL1LOAD PAGE 0001

RECOfWtJ 1 TYPE 20 - CESD ESDID 1 ESD SIZE 240

CESO~ SYMBOL TYPE ADDRESS SEGNUM ID/LENGTH I DEC) (HEX)

1 PL1TC02 OO(SO) 000000 1 1206 4B6
2 PL1TC02A OOISDI 0004B8 1 608 260

IHEQINV OtdPR) 000000
IHESADA 02 (£RI 000000
IHESAOB 02(ER) 000000

6 IHEQERR ObCPR' ODOO04
7 IHEQTIC 06(PR) 000008 4
8 IHEMAIN 00 1501 000718 4
9 IHENTRY OO(SOI 000720 12 C

10 IHESAPC 02 (£RI 000000
11 IHEQLWF Obi PRJ GOOOOC
12 IHEQSLA Ob(PR) 000010
13 IHEQLWO 061PR) 000014
14 PL1TC02B 06(PRI 000018
15 PL1TC02C 061PR) OOOOlC

RECORD" 2 TYPE 20 - CESO ESDIO 16 ESO SIZE 240

CESOtJ SYMBOL TYPE ADDRESS SEGNUM IO/LENGTH (DEC 1 (HEX)

16 IHELOOA 02 (ER) 000000
17 IHELOOB 02(ER) 000000
18 IHEIOBT 02 (ER) 000000
19 IHEIOBC 02(ER) 000000
20 IHESAFA 02 (ER) 000000
21 IHESAFB 021ER' 000000
22 AA 02 (ER) 000000
23 C OOISO) 000730 4
24 B 00(50) 000738 4
25 A 001501 000740 4
20 IHESPRT 00 ISO) 0007q8 56 38
27 IHEQSPR Obi PRj 000020 4
28 IHEDNC 021ER) 000000
29 IHEVPF 021ER) 000000
30 IHEOMA 021ER) 000000

KE:CORDtJ 3 TYPE 20 - CESO ESOIO 31 ESO SI ZE 64

CESO# SYMBOL TYPE ADDRESS SEGNUI". IO/LENGTHIOEC) (HEX)

31 IHEVPB 021ER) 000000
32 IHEVSC 02(ER) 000000
33 IHEUPA 02(ER) 000000
34 IHEVQC 02 (ER' 000000

LISTING OF LOAD MODULE PL1LOAO PAGE 00"02

RECORD. 4 TYPE 01 - CONTROL CONTROL SIZE 32 ccw 06000000 40000780

CESO*" LENGTH
1 04B8
2 0260
8 0008
9 0010

23 0008
24 0008
25 0008
26 0038

RECORO_ 5 T E X T

000000 47FOF014 0707D3Fl E3C3FOF2 00000008 000004B8 90EBOOOC 58BOF010 5800FOOC
000020 58FOB020 05EF05AO 419000B8 SODCOO18 9200D062 92010063 92eOoOOO 92020063
000040 F811D090 8132F810 0092B080 FAI10092 B130F821 DOA80090 F82100AB 00910203
000060 DOAEB134 F811D090 B13cF810 00928080 FAII0092 B13AF821 D0820090 F82100BS
000080 00n41AO AD600700 92030063 4110B174 58FOB05C 05EFql10 B1144120 B18358FO
OOOOAD BOSq05EF 92030063 58FOB058 05EF920q 00635880 B010F821 00908000 F8210093
oooocO 8002FA20 00938111 5870B06c D2017000 00910201 70020094 92050063 F8210090
OOOOEO 7000F821 00937002 FA200093 B10F5860 B0680201 60000091 02016002 00949206
000100 00634150 DOAE5050 00944150 00905050 00989680 00984110 009458FO B06405EF
000120 5880B070 02038000 D0909207 0063F811 0090B10C F810D092 B080FA11 00nB10A
000140 F9118000 D0904770 AOc8F911 80020092 4180AOEE 92080063 4110B168 58FOBO 5C
000160 05EF4110 B14058FO B05005EF 92080063 58FOB058 05EF9208 00639210 00634180
000180 001\85080 00984180 OOB25080 009C4180 00905080 00AQ9680 DOA04110 D09858FO
0001AO B04005EF 02050082 00909211 D0630202 D0900082 F9210090 BOD19200 00904780
0001CO A13E9280 00900202 00910085 F9210091 BOCF9200 00914780 A1569280 00910200
0001EO 00940090 D6000094 D0919180 00944780 A19E9212 00634110 B15C58FO B05C05EF
000200 q110S0AD 4120B183 58FOB054 05EF4110 00S24120 B18758FO B05lt05EF 92120063
000220 58FOB058 05EF9213 00634110 B15058FO B05COSEF I&110s094 4120B183 58FOBQ54
000240 05EF9213 D06358FO B05805EF 92140063 58FDB030 05EFq7FO 47FOFOOC 03clE1Fl
000260 00000000 90EBOOOC 18AF41EO A0285830 B0381B22 50203050 58FOB02e 41FOF062
000280 92010084 58E01000 50E00088 4580A03A 07FA05AO 419000BO 50DC001C 92000062
0002AO 92090063 41AOA088 07F80700 47FOFOOC 03C1C3F1 00000258 90EBOOOC 58AOF008
0002CO 45EOA016 92020084 D20700AQ 10009200 DOA458EO 100850EO 00884580 A03A47FO
0002EO A0000700 q7FOFOOC 03C1e3F2 00000258 90EBOOOC S8AOF008 45EQAQ16 92030084
000300 D20700A8 10009200 DOAC58EO 100850EO 00884580 AD3A47FO A08b0700 920B0063
000320 920co063 588000AO F8210090 80005870 DOA4FA21 D0901000 F821D093 8002FA21
000340 00937002 95020084 4780A062 95030084 4780A076 58600088 F8720098 D09QqFEO
000360 009810FE 54EOB078 90EF0098 964E0098 2BOObAOO D0987000 600047FO A0805880
000380 00880201 80000091 02018002 009447FO AD805880 00880205 80000090 58FOB060
0003AO 05EF920D 0063920E 00635880 OOA8F822 D0908000 587000AC FB22n090 7000F822
0003eO 00938003 F822D093 70039502 00844180 AOE89503 0084Q780 AOFC5860 0088F872
0003EO 00980090 4FE00098 10F.E5QEO s07890EF 0098964E 00982BOO bAOOO098 70006000
000400 47FOA106 58800088 02018000 00910201 80020094 Q7FOA106 58800088 02058000
000q20 D09058FO B06005EF 920FD063 58FOB02c 05EFF014 91800001 q780F03C 58200050
000440 12224770 F03C59OC 00104770 F03C5800 0004500C 00109180 00004710 F0325800
000460 000447FO F0225020 D00898EB DOOC07FE 58FOB030 07FF584e 00001244 47BOF056
000480 587C0014 D2033050 70504140 4001504C 00005040 30549200 304C5030 00081803
0004AO 58JC0010 50300004 50DC0010 50200008 50200060 07FEIC44 00001000 000014B8
0004CO 00002qB8 000034B8 000044B~ 000054B8 000064B8 000074B8 00000000 (10000000
0004EO 0000043lf 00000434 00000000 89300008 00000648 41660001 0000021::4 Ol1000'::AC

Figure 2-2 (Part 1 of 2). Sample LISTLOAD Output Load-Module Map

Chapter 2. LIST 2-9

RECORD" 6

RECORD' 7

OOOSOO
000S20
OOOS'O
000560
000580
OOOSAO
OOOSCO
OOOSEO
000600
000620
0006.0
000660
000680
0006AO
0006CO
0006£0
000700
000720
000740
000760

LISTING OF LOAD MODULE PLILOAD

000002S8 00000000 00000000 00000000
00000730 00000738 00000740 00000748
001'001 •• 007D3Fl E3C3F0f'2 606OC306
40CSD9D9 D6D96BCS E7D7C5C3 E1C5C •• 0
.OCIC440 C9E24002 OC040COO 00000S9.
E)CSC"O C140C9E2 40FIF8.E F4FIC940
000C041C 018COC2C OCICOOOO 00000504
E3CS09CS C4.0000C 040COSOc 000C006C
000007.0 80000638 00000748 00000242
00000748 0000016C 80000S34 00000748
0.800620 41C90008 C0800000 lC021ACl
900&47FO 8206D2AF 4000COOO IBFFSOFD
00033BC8 00480MA 05804860 B08050E7
801C9206 701041S0 1I05818C6 41000020
80'0"800 900441FO 80S81B22 80200008
00224820 807A4BDO 80864740 807AIBCC
47F0808A 4ADOB086 4ADOB08' 06208920
58fOF008 07FFOOOO 00000000 S0070034
003C004C D2071024 00201002 00000000
07E2E8E2 07D9C9DS E3000000 00000000

00000000 00000000 00000000 00000000
80000000 00000001 OC020000 0000054.
D4D7D3C5 E3C5C440 00000560 00270027
C1C440C9 E240F4FO 'EF2FOC9 40C2E4E3
002C002C 40C50909 06096BC5 E7D7C5c3
C2E4E340 C100C9E2 4009CSCl 03D3E840
00120012 000701F1 E1C3FOF2 6060C5D5
000C02OC 010cOOlC 0000058C 00000635
80000534 000007.8 0000021C 8000053.
OOOOOOA' 80000534 8903802C 8A060089
95043008 .7808200 02AFCOOO 00009680
00101817 41000038 OAOA98EC 000C07FE
00109180 90064780 80189205 701047FO
1CCCIA05 50070014 18409505 70104770
41100001 19128C20 00084780 80964807
4810B07E lOC11AD2 89000008 41DCOOOl
00081A02 41000000 00000000 .7F0809E
003C004C 0010S8FO 003C004C 58070034
00000004 00000000 00000000 00000000
00000000 00000000 00000000 00000000

TYPE 02 - RLD RLD SIZE 236

R-PTR
2

14
n

1
12

3
13

J
12

2

4
5
1
2
1

16
17
18
19
20
21
22
23

P-PTR
1
1
1
1
1
1
1
1
1
2

2
2
2
2
2
2
2
2
2
2
2
2
2

TYPE OE - RLD

R-PTR P-Pl'R
24 2
2S 2
26 2

2 2
25 2

2 2
26 2

1 2
2 2

26 2
1 2
2 2

26 2
1 2
2 2

26 2
1 2
2 2
1 8

10 9
27 26

fL ADDR FL AOOR FL ADDR
OC 000010
24 00002E
24 00029A
00 0002B4 OC 0002Ec
25 000448 2' 000454
24 000478
2' 000482
2. 000490
25 0004A2 2' OOO'AlI
OD 0004BC 00 0004CO 00 0004C4
OC 000'04
8C 0004D8
8C 0004DC
00 0004EO OC 0004E'
oc 0004FO
00 0004F8 00 0004FC 00 OOOSOO
9C 000508
9c OOOSOC
9C 000510
9C 00051'
9C 0004£8
9C 000S18
9C 00051C
oc 000520

FL ADDR FL ADDR

00 0004C8 00 0004CC

OC OOOSO'

LISTING OF LOAD MODULE PL1LOAD

RLD SIZE 188

FL AODR

00 000400

FL ADOR FL ADDR FL ADDR FL AODR FL ADDR FL ADOR
OC 000524
OC 000S28
OC 000S2C
09 000S3D 09 000S59 09 000S80 09 0005CO 00 0005FB OC 0005FC
OC 000600
08 000605
OC 000608
OC 00060C
08 000611
OC 00061.
OC 000618
08 000610
OC 000620
OC 000624
08 000629
OC 00062C
oc 000630
08 000635
OC 000118
8C 000728
24 000748

•••••• ZND OF LOAD MODULE LISTING

Figure 2-2 (Part 2 of 2). Sample L1STLOAD Output Load-Module Map

2-10 Service Aids

PAGE 000)

PAGE 0004

NUMERICAL MAP AND CROSS-REFERENCE LIST OF LOAD MODULE PL1LOAD PAGE 0001

CONTROL SECTION ENTR~

WOD LOC NAME LENGTH TYPE LMOD LOC CSECT LOC NAME

00 PLITC02 4B6 SD
488 pLlTC02A 260 SD
718 IHEMAIN 04 SD
720 IHENTR'l OC SD
730 C 04 SD
738 8 04 SD
740 A 04 SO
748 IHESPRT 38 SD

LMOD LOC CSECT LOC IN CSECT REFERS TO SYMBOL AT LMOD Lac CSECT LOC IN CSECT

10 10 PLITC02 PLITC01A 4B8 00 PLl Te02A
408 20 PL1TC02A IHESADA $UNRESOLVED
4DC 24 FLl Te02A IHESAOB $UNRESOLVED
4EO 28 PLITC02A PLITC02 00 00 PLtTc02
4E4 2C PLlTC02A PL1TC02 00 00 PLITC02
4E8 30 PLtTc02A IHESAFA $UNRESOLVEO
4F8 40 PL1TC02A PL1TC02 00 00 PLITC02
4Fe 44 PLITC02A PLITC02 00 00 PLITC02
500 48 PLITC02A PLITC02 00 00 PLtTc02
504 4c PLITC02A PLITC02 00 00 PLITC02
508 50 PLITC02A IHELDOA $UNRESOLVED
50C 54 PL1TC02A I HELDO 8 $ UNRESOLVED
510 58 PLITC02A IHEloBT $UNRESOLVED
514 5c PLITC02A IHEIOBC $UNRESOLVED
518 60 PLlTC02A IHESAFB $UNRESOLVED
SIC 64 PL1TC02A AA $ UNRESOLVED
520 68 PLITc02A C 730 00 e
524 6C PLITC02A B 738 00 B
528 70 PLITC02A A 740 00 A
52C 74 PLITC02A IHESFRT 748 00 IHESFRT
600 148 PLITC02A A 740 00 A
608 150 PLITC02A IHESPRT 748 00 IHESPRT
60e 154 PLITC02A PLITC02 00 00 PLtTC02
614 15c PLITC02A IHESPRT 748 00 IHESPRT
618 160 PL1TC02A PLITC02 00 00 PLITC02
620 168 PL1TC02A IHESPRT 748 00 lUESPRT
624 16C PLtTc02A PLITc02 00 00 PLITC02
62C 174 PLITC02A IHESPRT 748 00 IHESPRT
630 178 PL1TC02A PLITC02 00 00 PLl'l'C02
718 00 IHEMAIN PLlTC02 00 00 PLITC02
728 08 IHENTR'i IHESAPC $ UNRESOLVED

LENGTH OF LOAD MODULE 780

NUMERICAL MAP AND CROSS-REFERENCE LI.3T OF LOAD MODULE PL1LQAD PAGE 0002

PSEUDO REGISTEit
V ECTOR Lac NAME LENGTH

00 IHEQINV
04 IHEQEHR
08 IhEQTIC
Oc IHEQLWF
10 IHEQSLA
14 IHEQLWO
18 PLITC02B
lC PL1TC02c
20 IHEQSPR

LENGTH OF PSEUDO REGISTERS 2~

Figure 2-3 (Part 1 of 2). Sample L1STLOAD Output· Cross-Reference Listing

Chapter 2. LIST 2-11

ALPHABETICAL MAP OF LOAD MODULE PL1LOAD

CONTROL SECTION ENTRY
NAME LMOO LOC LENGTH TYPE NAME !.MOD LOC CSECT LOC

A 700 00 SO
S 738 00 SO
C 730 00 SO
IHEMAIN 718 00 SD
IHENTRY 720 DC SD
lHESPRT 7.8 38 SD
PLITC02 00 086 SO
PL1TC02A OS8 260 SO

PSEUDO REGISTER
NAME VECTOR LOC LENGTH

IHEQERR 04
IHEQINV 00
IHEQLWF oc
IHEQLWO 14
IHEQSLA 10
IHEQSPR 20
IHEQTIC DB
PL1TC02B 18
PLITC02C IC

ALPHABETICAL CROSS-REFERENCE LIST OF LOAD MODULE PL1LOAD

SYM.BOL AT LMOD LaC eSECT LOC IN eSEeT IS REFERRED TO BY LMOD LOC CSECT LoC

A 740 00 A 528 70
A 740 00 A 600 148
AA $UNRESOLVEO SIC 64
B 738 00 B 52" 6C
C 730 00 C 520 68
IHElOBC $UNRESOLVED 51" 5C
IHEIOBT $UNRESOLVED 510 58
IHELDOA $UNRESOLVED 508 50
IHELDOB $IINRESOLVEO SOC 54
lBESADA $UNRESOLVEO .OB 20
IHESADB $UNRESOLVEO "DC 2.
IHESAFA $UNRESOLVED 4E8 30
IHESAFB $UNRESOLVED 518 60
IHESAPC $UNRESOLVED 728 08
IHESPRT 748 00 IHESPRT 52C 7"
IHESPRT 748 00 IHESPRT 608 150
IHESPRT 748 00 IHESPRT 614 15C
IHESPRT 7.8 00 IHESPRT 620 168
lHESPRT 748 00 IHESPRT 62c 174
PL1 '!'CO2 00 00 PL1TC02 4EO 28
PLITC02 00 00 PL1TC02 "E4 2c
PL1TC02 00 00 PL1TC02 "F8 40
PL1TC02 00 00 PL1TC02 "FC 44
PLITC02 00 00 PLITC02 500 48
pLlTC02 00 00 PL1TC02 50. 'C
PLITC02 00 00 PL1TC02 60C IS"
PL1TC02 00 00 PL1TC02 618 160
PL1TC02 00 00 PL1TC02 624 16C
PL1TC02 00 00 PL1TC02 630 178
PLITC02 00 00 PL1TC02 718 00
PLlTC02A .B8 00 PLITC02A 10 10

•••••• END OF MAP AND CROSS-REFERENCE LISTING

Figure 2-3 (Part 2 of 2). Sample LIST LOAD Output - Cross-Reference Listing

2-12 Service Aids

CSECT NAME

IN CSECT

PL1TC02A
PL1TC02A
PL1TC02A
PL1Tc02A
PL1TC02A
PLITC02A
PLITC02A
PLITC02A
PL1TC02A
pLITC02A
PL1TC02A
PL1TC02A
PLITC02A
IHENTRY
PLITC02A
PLlTCOn
PLlTC02A
PLlTC02A
PLITC02A
PLITC02A
PLITC02A
PL1TC02A
PL1TC02A
PLlTCOn
PL1TC02A
PLITC02A
PLITC02A
PLITC02A
PL1TC02A
IHEMAIN
PLITC02

PAGE 0003

PAGE 0004

J

(')
::r
Pol

~
(1) ...,
N

t"'"

r

OBJECT MODULE LISTING

TXT:
ADDR~000020 ESDID~ 0001 TEXT: 000002C4 00000028 00000294

TXT:
ADDR=000074 ESDID= 0001 TEXT: 00000008

RLD Kt:.CO!l.D:

TXT:

R PTR
0002
0004
0001

P PTR
0001
0001
0001

FLAGS
OC
1C
Oc

ADDR
0000E8
0000F4
000028

R PTR
0002
0001

P PTR
0001
0001

r

FLAGS
OC
Oc

AD DR
OOOOEC
000020

R PTR
0003
0001

ADDR=000078 ESDID= 0001 TEXT: 800000CC 000000C8 80000000 OOOOOOLO 800000D4

TH:
ADD!l.=0000F8 ESDID= 0001 TEXT: 00000000 00000000 00000110 00000210

HLD .K~CLi!l.D:

TXT:

R PIll.
0001
0001
0001

P PTt{
0001
0001
0001

FLAGS
OC
OC
OC

ADDR
000074
000080
000100

R PTR
0001
0001

hDDH=000108 ESDID= 0001 TEXT: 00000266 0000026E

f<LD KEC(;:W: R PTk
0001

P PI«
0001

FLAGS I\DDR R PTR
OC 000104 0001

P PTR
0001
0001

P PTR
0001

FLAGS
OC
OC

ADDR
000078
000084

R PTH
U001
0001

FLAGS AD DR ll. PTll.
Oc 000108 0001

P PTR
0001
0001

P PTR
0001
0001

P P'!'R
0001

FLAGS
OC
OC

FLAGS
OC
Oc

I\DDR
OOOOFO
000024

I\DDk
00007c
000088

FLAGS I\DDR
OC 00010e

L,m tn.CURD: LENGTH=000002DE DATE 71. 313/1~.47.08

ESD K.t:.COfW:
l.SDID TYPl:.

0001 SO(OO)
NAr/lE

[VAL
ADDtl.

000000
ID/LTH
000000

PAGE 0003

SOLV0017

SOLV0018

SOLV0019

SOLV0020

SOLV0021

SOLV0022

SOLV0023

S(;LV0024

SOLV002~

EVALOOOI

TXT: EVI\L0002
ADDH=OOOOOO ~SDID= 0001 TEXT: 47FOFOOC 07000000 c5E~C103 90ECOOOC 18409820 F0205040 D004~ODO 400807FC 40404040 40404040

020AOl\02 Ob020C12 Ob22

F:SD RLC(;kD:
ioSDID 1 YPE

00U2 :;,,;(U:»

TXT:

NA~jE

rVAL
AODl<

000000
ID/LTd
000018

ADDR=00008R ESDID= 0001 TEXT: 40800000

ESD Hl::COll.D:
FSJID TYPE

00 OJ l:.R (0:;;)
NAME

IECOM#
ADDR

000000
ID/LTH
000000

EVAL0003

EVAL0004

EVI\LOOO~

til Figure 2-4. Sample LlSTOBJ Output
>-l

tv
I

W

r

tv
I LISTIDR FOR LOAD MODULE SAMPLE PAGE 0001
~

[/'J CSECT YR/DAY IMASPZAP DATA
(1; ...,
< SAMPI 71/329 FIX12345 rio
n> SAMP2 71/329 LEVEL003
;.- SAMP4 71/329 PATCHOOI
0.: SAMP4 71/329 PATCH002
rJ> SAMP4 71/329 PATCH003

THIS LOAD MODULE WAS PRODUCED BY LINKAGE EDITOR 360SED521 AT LEVEL 21.01 ON DAY 329 OF YEAR 71.

CSECT TRANSLATOR VR MD YR/DY

SAMPI 360SAS037 21 00 71/329
SAMP2 360SAS037 21 00 71/329
SAMP3 360SAS037 21 00 71/329
SAMP4 360SAS037 21 00 71/329
SAMP5 360SAS037 21 00 71/329

CSECT YR/DAY USER DATA

SAMPI 71/329 CHANGE LEVEL 01
SAMP2 71/329 VERSION 6
SAMP3 71/329 FIX LEVEL 2735
SAMP4 71/329 SORT SUBROUTINE
SAMP5 71/329 CARD SCANNING SUBROUTINE

Figure 2-5. Sample LISTIDR Output

l, ~ l,

(1
::r
I\)
-0
I'D ...
!->

t:
en
-l

N
I

VI

r

LINK PACK MAP - ALPHABETICALLY BY NAME

NAME LOCATION LENGTH EP ADDR MAJOR LPDE NAME
CHLOADTB FDFFEO 000020 FDFFEO
DCM2Bl FDF470 0005B8 FDF470
DCM2D3 FDBOOO 001280 FDBOOO
DCM3Bl FDA490 0005B8 FDA490
DCM3D3 FD6000 001280 FD6000
DCM3El FD5490 0005B8 FD5490
DCM3E3 FD4490 0005B8 FD4490
DCM4Bl FD3490 0005B8 FD3490
DCM4D3 FCFOOO 001280 FCFOOO
DCM4El FCE490 00·05B8 FCE490
DCM4E3 FCD490 0005B8 FCD490
DEVNAMET FCC4B8 OOOICO FCC4B8
IEECB860 FCBCD8 000328 FCBCD8
IEELWAIT FCB2F8 000508 FCB2F8
IEEPDISC FCB210 000060 FCB210
IEEPRTN FCBOD8 000000 FCBOD8
IEEPSN FCADeo 000128 FCADFO
IEERGN FCSF30 000000 FC5F30
IEESMFWR FCS4AO 000608 FC54AO

Figure 2-6. Sample L1STLP A Output

r r

NAME LOCATION LENGTH EP ADDR MAJOR LPDE NAME
DCM2BO FDFA28 0005B8 FDFA28
DCM2D2 FDDOOO 001280 FDDOOO
DCM3BO FDAA48 0005B8 FDAA48
DCM3D2 FD8000 001280 FD8000
DCM3EO FD5A48 0005B8 FD5A48
DCM3E2 FD4A48 0005B8 FD4A48
DCM4BO FD3A48 0005B8 FD3A48
DCM4D2 FDIOOO 001280 FDIOOO
DCM4EO FCEA48 0005B8 FCEA48
DCM4E2 FCDA48 0005B8 FCDA48
DEVMASKT FCC678 000988 FCC678
EMODVOLI FCCOB8 IFG0552J
IEECVGCI FCB800 0004D8 FCB800
IEEPALTR FCB270 000088 FCB270
IEEPPRES FCBIA8 000068 FCBIA8
IEEPRWI2 FCAEE8 000118 FCAEE8
IEEQALTR FC6000 003BE8 FC9680
1EE5B665 FC5AA8 000488 FC5AA8
1EEVDSPI FC4A08 000SF8 FC4A08

- --_ .. --- _ .. -- ---- -

Examples

The following examples show ways to use LIST.

Example 1: Listing Several Object Modules

2-16 Service Aids

In this example, LIST lists all the object modules contained in the data set named
OBJMOD, and three specific object modules from another data set called
OBJMODS.

//OBJLIST JOB MSGLEVEL=(l,l)
//LISTSTEP EXEC PGM=AMBLIST,REGION=64K
//SYSPRINT DD SYSOUT=A
//OBJLIB DD DSN=OBJMODS,DISP=SHR
//OBJSDS DD DSN=OBJMOD,DISP=SHR
//SYSIN DD *

LISTOBJ DDN=OBJSDS,
TITLE=('OBJECT MODULE LISTING OF OBJSDS' ,20)

LISTOBJ DDN=OBJLIB,MEMBER=(OBJ1,OBJ2,OBJ3),
TITLE=('OBJECT MODULE LISTING OF OBJ1 OBJ2 OBJ3' ,20)

/*

OBJLIB and OBJSDS DD Statements
define input data sets that contain object modules.

SYSIN DD Statement
defines the data set in the input stream containing LIST control statements.

LISTOBJ Control Statement #1
instructs LIST to format the data set defined by the OBJSDS DD
statement, treating its members collectively as a single member. It also
specifies a title for each page of output, to be indented 20 characters from
the left margin.

LISTOBJ Control Statement #2
instructs LIST to format three members of the partitioned data set defined
by the OBJLIB DD statement. It also specifies a title for each page of
output, to be indented 20 characters from the left margin.

J

J

L

Example 2: Listing Several Load Modules

In this example, LIST produces formatted listings of several load modules.

//LOADLIST JOB MSGLEVEL=(l,l)
//LISTSTEP EXEC PGM=AMBLIST,REGION=64K
//SYSPRINT DO SYSOUT=A
//SYSLIB DO DSNAME=SYS1.LINKLIB,DISP=SHR
//LOADLIB DO DSNAME=LOADMOD,DISP=SHR
//SYSIN DD *

/*

LISTLOAD OUTPUT=MODLIST,DDN=LOADLIB,
MEMBER=TESTMOD,
TITLE=('LOAD MODULE LISTING OF TESTMOD' ,20)

LISTLOAD OUTPUT=XREF,DDN=LOADLIB,
MEMBER=(MOD1,MOD2,MOD3) ,
TITLE=('XREF LISTINGS OF MODl MOD2 AND MOD3' ,20)

LISTLOAD TITLE=('XREF&LD MOD LSTNG-ALL MOD IN LINKLIB' ,20)

SYSLIB DD Statement
defines an input data set, SYSl.LINKLIB, that contains load modules to be
formatted.

LOADLIB DD Statement
defines a second input data set.

SYSIN DD Statement
defines the instream data set containing the LIST control statements.

LISTLOAD Control Statement #1
instructs LIST to format the control and text records including the external
symbol dictionary and relocation dictionary records of the load module
TESTMOD in the data set defined by the LOADLIB DO statement. It also
specifies a title for each page of output, to be indented 20 characters from
the left margin.

LISTLOAD Control Statement #2
instructs LIST to produce a module map and cross-reference listing of the
load modules MODI, MOD2, and MOD3 in the data set defined by the
LOAD LIB DD statement. It also specifies a title for each page of output,
to be indented 20 characters from the left margin.

LISTLOAD Control Statement #3
instructs LIST to produce a formatted listing of the load module and its
map and cross-reference listing. Because no DDN parameter is included,
the input data set is assumed to be the one defined by the SYSLIB DD
statement. Because no MEMBER parameter is specified, all load modules
in the data set are processed. This control statement also specifies a title for
each page of output, to be indented 20 characters from the left margin.

Chapter 2. LIST 2-17

Example 3: Listing IDR Information for Several Load Modules

In this example, LIST is used to list the CSECT identification records in several
load modules.

//IDRLIST
//LISTSTEP
//SYSPRINT
//SYSLIB
//LOADLIB
jjSYSIN

JOB MSGLEVEL=(l,l)
EXEC PGM=AMBLIST,REGION=64K
DO SYSOUT=A
DO DSN=SYS1.LINKLIB,DISP=SHR
DO DSN=LOADMODS,DISP=SHR
DD *

/*

2-18 Service Aids

LISTIDR
LISTIDR

LISTIDR

LISTIDR

TITLE=('IDR LISTINGS OF ALL MODS IN LINKLIB' ,20)
OUTPUT=IDENT,DDN=LOADLIB,MEMBER=TESTMOD
TITLE=('LISTING OF MODIFICATIONS TO TESTMOD' ,20)
OUTPUT=ALL,DDN=LOADLIB,MEMBER=(MOD1,MOD2,MOD3) ,
TITLE=('lOR LISTINGS OF MODl MOD2 MOD3' ,20)
DDN=LOADLIB,MODLIB

SYSLIB DD Statement
defines the input data set, SYSl.LINKLIB, that contains load modules to
be processed.

LOADLIB DD Statement
defines a second input data set.

SYSIN DD Statement
defines the in stream data set containing the LIST control statements.

LISTIDR Control Statement #1
instructs LIST to list all CSECT identification records for all modules in
SYSl.LINKLIB (this is the default data set because no DDN parameter
was included). LISTIDR also specifies a title for each page of output, to be
indented 20 characters from the left margin.

LISTIDR Control Statement #2
instructs LIST to list CSECT identification records that contain SPZAP or
user-supplied data for load module TESTMOD. TESTMOD is a member of
the data set defined by the LOADLIB DD statement. This control
statement also specifies a title for each page of output, to be indented 20
characters from the left margin.

LISTIDR Control Statement #3
instructs LIST to list all CSECT identification records for load modules
MODI, MOD2, and MOD3. These are members in the data set defined by
the LOAD LIB DD statement. This control statement also specifies a title
for each page of output, to be indented 20 characters from the left margin.

LISTIDR Control Statement #4
instructs LIST to list CSECT identification records that contain SPZAP or
user-supplied data for the LOADLIB data set. The module summary Print." :.
out is suppressed. ..."

Example 4: Verifying an Object Deck

In this example. LIST formats and lists an ohject module included in the input
stream.

IILSTOBJDK JOB
II EXEC
IISYSPRINT DD
IIOBJDECK DD

object deck
1*

MSGLEVEL=(l,l)
PGM=AMBLIST,REGION=64K
SYSOUT=A
*

IISYSIN DD *
LISTOBJ DDN=OBJDECK,

TITLE=('OBJECT DECK LISTING FOR MYJOB' ,25)
1*

OBJDECK DD Statement
defines an instream input data set; in this case, an object deck.

SYSIN DD Statement
defines an instream input data set, which contains LIST control statements.

LISTOBJ Control Statement
instructs LIST to format the data set defined by the OBJDECK DD
statement. It also specifies a title for each page of output. to be indented 20
characters from the left margin.

Chapter 2. LIST 2-19

Example 5: Verifying Several Load Modules

2-20 Service Aids

This example shows how to use LIST to verify more than one module. Assume
that an unsuccessful attempt was made to link edit an object module with two
load modules to produce one large load module.

//LSTLDOBJ JOB MSGLEVEL=(l,l)
II EXEC PGM=AMBLIST,REGION=64K
IISYSPRINT DO SYSOUT=A
IIOBJMOD DO DSN=MYMOD,DISP=SHR
//LOADMODl DD DSN=YOURMOD,DISP=SHR
IILOADMOD2 DD DSN=HISMOD,DISP=SHR
IISYSIN DD *

LISTOBJ DDN=OBJMOD,
TITLE=('OBJECT LISTING FOR MYMOD' ,20)

LISTLOAD DDN=LOADMOD1,OUTPUT=BOTH,
TITLE=('LISTING FOR YOURMOD' ,25)

LISTIDR DDN=LOADMOD1,OUTPUT=ALL,
TITLE=('IDRS FOR YOURMOD' ,25)

LISTLOAD DDN=LOADMOD2,OUTPUT=BOTH,
TITLE=('LISTING FOR HSMOD' ,25)

LISTIDR DDN=LOADMOD2,OUTPUT=ALL,
TITLE=('IDRS FOR HISMOD' ,25)

1*

OBJMOD DD Statement
defines an input load module data set.

LOADMODI and LOADMOD2 DD Statements
define input load module data sets.

SYSIN DD Statement
defines an instream input data set that contains the LIST control
statements.

LISTOBJ Control Statement
instructs LIST to format the data set defined by the OBJMOD DD
statement. It also specifies a title for each page of output, to be indented 20
characters from the left margin.

LISTLOAD Control Statement #1
instructs LIST to format all records associated with the data set defined by
the LOADMODI DO statement. It also specifies a title for each page of
output, to be indented 25 characters from the left margin.

LISTIDR Control Statement #1
instructs LIST to list all CSECT identification records associated with the
data set defined by the LOADMODI DD statement. It also specifies a title
for each page of output, to be indented 25 characters from the left margin.

LISTLOAD Control Statement #2
instructs LIST to format all records associated with the data set defined by
the LOADMOD2 DD statement. It also specifies a title for each page of
output, to be indented 25 characters from the left margin.

J

J

LISTIDR Control Statement #2
instructs LIST to list all CSECT identification records associated with the
data set defined by the LOADMOD2 DD statement. It also specifies a title
for each page of output to be indented 25 characters from the left margin.

Example 6: Listing a System Nucleus and Mapping the Link Pack Area

This example shows how to use the LISTLOAD and LISTLPA control statements
to list a system nucleus and map the fixed link pack area, the modified link pack
area, and the page able link pack area. Note that in this example the data set
containing the nucleus is named SYSl.NUCLEUS, and the nucleus occupies the
member named IEANUCOI.

IILISTNUC JOB
I/STEP EXEC
IISYSPRINT DD
IISYSLIB DD
II VOL=SER=nnnnn
//SYSIN DD

/*

LISTLOAD
TITLE= ('LISTING

LISTLPA

SYSLIB DD Statement

MSGLEVEL=(l,l)
PGM=AMBLIST,REGION=lOOK
SYSOUT=A
DSN=SYS1.NUCLEUS,DISP=SHR,UNIT=3330

*
DDN=SYSLIB,MEMBER=IEANUC01,
FOR NUCLEUS IEANUC01' ,25)

defines the input data set, which in this case contains the nucleus.

SYSIN DD Statement
defines an instream input data set that contains the LIST control
statements.

LISTLOAD Control Statement
instructs LIST to format the control and text records. These records include
the external symbol dictionary and relocation dictionary records for the load
module IEANUCOl, in the data set defined by the SYSLIB DD statement.
LISTLOAD also specifies a title for each page of output, to be indented 25
characters from the left margin.

LlSTLP A Control Statement
instructs LIST to map the fixed link pack area, the modified link pack area,
and the pageable link pack area.

Chapter 2. LIST 2-21

J

2-22 Service Aids

Chapter 3. PRDMP

Introducti~n

AMDPRDMP is an OSjVS2 service aid program that provides the facilities to:

• Format and print dump data sets created by AMDSADMP, SVC dump, and
SYSMDUMP.

• Edit and print system and user trace records created by GTF.

• Transfer the contents of a SYS1.DUMP data set to another data set, freeing
the SYS1.DUMP data set for reuse by SVC dump.

PRDMP only processes dumps taken by OSjVS2 dump programs that are at the
same release level as PRDMP.

Chapter 3. PRDMP 3-1

Using PRDMP

3-2 Service Aids

The operation and formatting done by PRDMP is controlled by user-supplied
control statements. You enter these control statements either through the console
or in the job stream with job control language statements.

In all cases, the PRDMP input is a partial system dump: the content of this dump
determines the capability of PRDMP to perform its formatting of control blocks.
If input is a real storage dump, PRDMP attempts to provide virtual address
formatting and printing by performing address translation for the real storage
contents.

The dump data sets which PRDMP processes consist of the following:

• SADMP unformatted, machine-readable dump data set, including instruction
trace data (created by the console-initiated loop recording) and page data sets.
(Note: Address translation is performed on the real storage dump portion if
you request any PRDMP format control statement except PRINT REAL. If
the translation data (such as the ASCBSTOR, the segment table, or page
tables) is invalid, PRDMP cannot print the virtual storage. In this case, you
may be able to examine the address space's virtual storage by looking in the
page table frame entries (PTFEs) for the real frames assigned to the address
space and specifying PRINT REAL = address range to print these pages.

• SYSl.DUMP data set created by SVC dump. This type of dump input
includes only virtual addresses and instruction trace data (created by the
console-initiated loop recording).

Note: Up to 10 SYSl.DUMP data sets may be defined to OSjVS2 and must
be named SYSl.DUMPOO, SYSl.DUMPOl, through SYSl.DUMP09.

• Private data set containing a dump produced by SVC dump. This type of
dump input includes only virtual addresses and instruction trace data (created
by the console-initiated loop recording).

• SYSMDUMP dump data set. This type of dump input is processed by
virtual addresses only.

• SADMP formatted dump data set which has been written to tape.

The GTF trace data which PRDMP processes consists of:

• GTF external trace data set (usually called SYSl.TRACE).

• GTF trace data in buffers within a dump of real storage. (Note: For GTF
trace records to be included in the dump data set processed by PRDMP, GTF
must have been active at the time the dump was taken. In addition, if the
dump is produced by SVC dump or SNAP macro, the SDATA=TRT option
must be specified.)

Figure 3-1 shows the general characteristics of these types of input and how they
relate to PRDMP processing. Note that AMDPRDMP does not allow an exit
routine to receive control after processing GTF records.

INPUT

Control Statements

(SYSIN

See Figure 3-2. (PRDMP)

Data Sets

DUMPS

o
or

TRACE

AMDSADMP
output.

SYSMDUMP. or
SYS1 . DUMP

GTF External
trace data set.

Figure 3-1. PRDMP Input and Output

PRDMP OUTPUT

~:~=::l I

D

NOTES:

Input DO Statements:

/ /SYSIN - Control statements.

Formatted
output

Messages

/ /TAPE or / /anyname - Dump data sets and
GTF trace data sets.

Output DD Statements:

/ /PRINTER - Formatted autput.

/ /SYSPRINT - PRDMP messages.

Chapter 3. PRDMP 3-3

Functions of PRDMP

Format Control Blocks

PRDMP control statements allow you to select PRDMP functions to vary the
formatting and printing of its input. The functions provided by PRDMP control
statements are:

Major system control blocks for each virtual address space in the system may he
formatted on the output listing. The extent to which formatting can be performed
is a function of the input. If the input, for example, consists of all virtual storage
related to a single virtual address space and you request formatting of control
blocks for all virtual address spaces, your request cannot be completely satisfied.
Control blocks may also be formatted on an address space basis by requesting the
current address spaces or the address space containing a certain jobname to be
printed. (See PRINT CURRENT or PRINT JOBNAME). A printing of the
communications vector table and of selected processor-related data are formatting
options available to you. (See CVTMAP and CPUDATA control statements). If
the input to AMDPRDMP is a low-speed formatted dump, produced by
AMDSADMP, then the preformatted records are printed as they appear in the
input. No additional formatting is provided by PRDMP. (See the FORMAT
control statement).

Provide Address Space Summary Information

A synopsis of the normal and abnormal status of each virtual address space in the
system may be provided in order to:

• Limit the amount of output provided by PRDMP.

• Provide gross address space relationships which serve as a starting point for
problem debugging.

• Establish a base from which decisions concerning further formatting can be
made. (See SUMMARY control statement).

Select Storage Locations to Print

3-4 Service Aids

By exercising certain options provided by the PRINT control statements, the user
may specify that only those portions of real or virtual storage that are relevant to
his problem be printed on the output listing. The user selects what information is
to be printed by specifying the beginning and ending real or virtual addresses of
those areas of storage. The virtual address ranges are qualified to a particular
address space by specifying an address space identifier. If no address space
identifier is provided,AMDPRDMP will attempt to print the four cross-memory
address spaces that are current at the time the dump was taken. If these address
spaces are not in the dump, or if AMDPRDMP cannot identify them the virtual
storage ranges default to the address space that was current at the time the dump
was taken. The user may also specify that only those areas of storage associated ••
with the nucleus or system queue area be printed. You may also request printing ."""

of those areas of virtual storage associated with a particular address space, the
current address space, or a specific job. (See the PRINT control statement).

Map the Link Pack Area Active Queue

Fast Dump Scan

A map of the modules comprising the link pack area active queue may be
provided on a separate page or pages of the PRDMP formatted listing. This map
describes the reenterable system modules from the link pack area that were in use
when the dump was taken. It is useful in diagnosing system failures that occurred
in program modules residing outside the user's region. The entire link pack area
may be mapped using AMBLIST, which is described in Chapter 2. (See the
LPAMAP control statement).

By exercising the options of fast dump scan, the user may display specific areas of
storage quickly and conversationally on either a TSO terminal or the system
console. This is performed by the DISPLAY function of PRDMP. (See the
DISPLAY control statement).

Print Queue Control Blocks

Formatted queue control blocks for all task control blocks in the system are
printed on a separate page or pages of the PRDMP listing. The address of the
major control blocks associated with global resource serialization and the contents
of the control blocks on the global and local resource queues is known as a
QCBTRACE. The QCBTRACE may be used to resolve problems arising from
task contention or system interlock. (See the GRSTRACE or QCBTRACE
control statement.)

Format Generalized Trace Facility (GTF) Trace Output Records

Formatting and printing of GTF trace output records will be performed by the
EDIT function of PRDMP. These trace output records may be in either a GTF
trace data set or in the GTF trace buffers which are a part of a system dump.
(See the EDIT control statement).

Clear SYS1.DUMP Data Sets

You can use AMDPRDMP to transfer the contents of a SYSl.DUMP data set to
another data set for later formatting and printing.

When a SYSUT2 DD statement is included in the AMDPRDMP job control
statements, PRDMP transfers the contents of the input data set to the data set
specified by SYSUT2. If the input data set is a SYSl.DUMP data set, PRDMP
makes it available for SVC dump to reuse.

If a SYSUT2 DD statement is present, no other processing of the input data set is
performed by PRDMP. PRDMP control statements are ignored.

Chapter 3. PRDMP 3-5

AMDPRDMP Return Codes

AMDPRDMP return codes are:

Code Description
o AMDPRDMP request was successful.
4 The data set processed, or one of multiple data sets input, was empty.
8 An uncorrectable I/O error was encountered.

Specify the Communications Vector Table Address

If you believe that the pointer to the communications vector table (CVT) residing
at storage location X'4C' is destroyed or unavailable, you may bypass the pointer
and supply the PRDMP with the address of the CVT. (See the CVT control
statement).

Print a User-Specified Title

Provide User Interface

A title may be specified by the user to be printed at the top of each page of the
dump listing. This title is provided in addition to the title supplied by the dump
program. The AMDPRDMP title may be changed during the execution of the
AMDPRDMP program. Page length may also be controlled by specifying the
number of lines per page to be printed. (See the title Control Statement and the
P ARM = T parameter on the START command).

The PRDMP user interface allows you to write formatting routines tailored to
special interests while taking advantage of the basic PRDMP facilities to retrieve
data from the input dump file. A user routine receives control either because its
associated control statement (verb) is specified or because a user exit out of
PRDMP has been encountered. (See the "Appendix C: PRDMP User Exit
Facility").

Provide High-Density Dump Output

3-6 Service Aids

High-density dump output can be obtained with 64 bytes of storage per line of
dump, as opposed to the normal 32 bytes. Dumps can also be printed at 8 lines
per inch, 80 lines per page on ll-inch long paper. The first capability exists -only
when using the IBM 3800 Printing Subsystem (see PRINTER under "Output DD
Statements" later in this chapter).

L

How to Specify JCL Statements for PRDMP

Job control statements are important in determining what functions PROMP is to
perform. This section describes the JCL statements that are necessary if you use
PROMP. PROMP is started at the console or by statements in the input stream;
the JCL may be in a cataloged procedure, or included in the input stream.
Figure 3-2 shows the JCL statements necessary for PRDMP execution. For more
complete information about using JCL, refer to the publication, MVS JCL.

//jobname
[/*JOBPARM
Iilstepname

JOB
LINECT=801
EXEC PGM=AMDPRDMP

[//TAPE DD
[,PARM=' [T] [,LINECNT=nn) [,S) [,ER=x]')
Note: Use the parameters that
describe the dump data set or

//PRINTER
[//SYSPRINT

DD
DD

the trace data set created by
Generalized Trace Facility.
Generalized Trace Facility.]
SYSOUT=x[,CHARS=DUMP] [,FCB=STD3)
SYSOUT=x)

//SYSUTl
//SYSUT2

[//SYSIN

[/*1

DD UNIT=xxxx,SPACE=(CYL,(xx,yy))
DD VOL=SER=xxxxxx,UNIT=xxxx,DISP=(NEW,KEEP),

DSNAME=xxxxxx,SPACE=(CYL,(xx,yy),RLSE)
LABEL= ([n 1 , xx)

DD *1
(control statements)

Figure 3-2. JeL Statements Required for PRDMP Execution

The descriptions which follow explain each statement in Figure 3-2. These
descriptions are in three groups: JOB and EXEC statements, input DO
statements, and output DO statements.

Chapter 3. PRDMP 3-7

JOB and EXEC Statements

3-8 Service Aids

These statements are coded as follows:

/ fjobname JOB
identifies the AMDPRDMP job to the system. Because AMDPRDMP
executes in a minimum of 128K of virtual storage, a region size of at least
128K should be specified on the JOB statement. If the region is allowed to
default, or the user specifies a region size less that 128K, the results are
unpredictable. For more complete information on region see "Limiting
User Region Size." in OS/VS2 SPL: Supervisor.

I/*JOBPARM LINECT=801
this JES2 statement sets the page overflow line count value to 80 lines per
page for the current job when using the IBM 3800 Printing Subsystem. This
statement ensures that the expected number of lines per page are printed for
explicit or implicit specifications of the PRDMP LINECNT parameter for
line count values up to and including 80 lines per page. For more
information about the I*JOBPARM control statement, see MVS JCL.

//stepname EXEC PGM = AMDPRDMP(,P ARM = 'value')
provides for execution of AMDPRDMP. The operands associated with this
statement are:

PGM = AMDPRDMP
supplies the name of the program (AMDPRDMP).

(,PARM = 'ITJ[,LINECNT = nnll,SlI,ER = xl'J
specifies a list of parameters to be passed to PRDMP. If you use the
PARM = operand, parameters may appear in any order but must be
enclosed in apostrophes and separated by commas with no intervening
blanks. (Do not code a comma between PARM = and the first parameter
specified.) The valid parameters and their meanings are:

T
specifies that the user wishes a WTOR to be issued to the operator
requesting a dump title (message AMDl54D REPLY TITLE,
'SAME', or 'END'). The title may contain a maximum of 64
characters. If T is not specified, no prompting will occur.

LINECNT=nn

s

allows the user to specify the number of lines per page to be printed
on the output listing. The value specified for nn may be any decimal
integers greater than 10 and less than 81. If this parameter is not
specified or is invalid, 58 is the default.

If S is specified, message AMD 156I REPLY WITH STOP TO
TERMINATE CURRENT FUNCTION is issued to the primary
console. If at anytime you reply STOP, processing of the current
function terminates and the next control statement is processed or
message AMDI55D is issued to request more control statements.

J

J

ER=x
specifies the PRDMP edit program action to be taken if, while editing
trace data, an error is detected in an exit routine or a format routine.
The valid values for this parameter and their meanings are:

o -- EDIT displays in hexadecimal the record associated with the error
and ignores the faulty routine in subsequent processing. If the error is
in a format routine, all subsequent records that require processing by
the same format routine are ignored. If the error is in an exit routine,
record formatting continues.

I -- EDIT displays in hexadecimal, the record associated with the
error and ignores the faulty routine in subsequent processing. If the
error is in a format routine, all subsequent records that require
processing by the same format routine are dumped in hexadecimal. If
the error is in an exit routine, record formatting continues.

2 -- EDIT displays in hexadecimal the record associated with the
error; EDIT then terminates, and the next PRDMP verb is executed.

3 -- EDIT allows ABEND to get control if a program check occurs in
an exit or format routine. (If ER = 3 is not specified, EDIT issues the
SPIE macro each time before entering the exit routine or format
appendage and thus bypasses ABEND processing. Issuance of the
SPIE causes a considerable increase in the time it takes to run the
EDIT program.) If the recognized error is not a program check, the
associated record is dumped in hexadecimal; then EDIT terminates
and the next PRDMP verb is executed.

If this value is not included in the PARM = parameter list, a value of
ER = 2 is assumed. Note that ER = 0 and ER = 1 are the same for exit
programs.

Chapter 3. PRDMP 3-9

Input DD Statements

3-10 Service Aids

The two input statements are coded as follows:

//TAPE DD or
//anyname DD

One of these DD statements is used to describe each of the input dump or
GTF trace data sets. If these statements are omitted, PRDMP assumes the
dump or trace information is already on the SYSUTl work data set.

If the input is a GTF trace data set, the ddname must be the same as the
one specified in the DDNAME parameter of the EDIT control statement.
You can define any number of trace data sets, provided that you identify
each data set with a unique ddname and a separate EDIT control statement.
(Note that you can use the same ddname for several trace data sets, as long
as you provide a new tape volume for each.)

If the input data set defined by one of these statements resides on a direct
access device, a SYSUTl DD statement is not needed.

If the input data set is a dump, you can specify any ddname. Remember,
however, that for ddnames other than TAPE, you must use a NEWDUMP
control statement to identify the input data set. You can define any number
of input data sets, as long as each is identified by a different ddname, and
each ddname is specified in a separate NEWDUMP control statement.

When using the anyname DD statement, you must use the NEWDUMP
control statement. The ddname(anyname) must be the same as the ddname
used on the NEWDUMP control statement. The anyname may not be a
ddname normally used to execute PRDMP, such as SYSUTl, SYSPRINT,
PRINTER, SYSUT2, or SYSIN. The DD parameters required to define
the input data set are as follows:

DSNAME = dsname
required for data sets on direct access devices only. This
subparameter supplies the name of the input dump or trace data set.

VOL = SER = (serial-number(,serial-number) ...)
specifies the volume serial numbers for the volumes on which the input
dump or trace data set is written. You specify these volumes in the
order in which they were created.

UNIT = (device-type,P)
informs the operating system that the input dump or trace data set is
being entered from a particular I/O device or device type. "P"
indicates a request for parallel mounting. If P is coded, the system
counts the number of serial numbers specified in the VOLUME
parameter and assigns to the data set as many devices as there are
serial numbers. It is recommended that P be coded if PRDMP must
format dump data sets directly from the tape input.

LABEL = (ldata-set-seq-#II,NLI ,BLP))
only required for data sets on magnetic tape. The first subparameter is
the file number field. When using an unlabelled tape, specify NL;
BLP indicates a labelled tape.

DISP = OLD
indicates that the data set associated with this DD statement already
exists.

Note: Do not omit the TAPE DD statement unless you supply a NEWDUMP
control statement. If you do not define the input data set, PRDMP assumes that
the input is in the SYSUTl data set.

IIISYSIN DD)
describes the PRDMP control statement data set. If control statements are
not supplied or are exhausted before an END verb is encountered, the
operator will be asked for additional control input (message AMD155D
REPLY WITH GO, DESIRED FUNCTION, or END). The most
common operand for this DD statement is: *. This operand indicates that
the data comprising this data set is contained in the input stream.

Chapter 3. PRDMP 3-11

Output DD Statements

3-12 Service Aids

The five output DD statements are coded as follows:

IIPRINTER DD
defines the PRDMP output data set. The DD parameters for this statement
are:

SYSOUT=x
specifies the system output class through which the PRDMP output is
routed. 'x' is the character that identifies the output class. Note:
Default blocking is RECFM = FBA, LRECL = 121, BLKSIZE = 121.
For the 3800, default blocking is RECFM = FBA, LRECL = 204,
BLKSIZE = 204.

(,CHARS = DUMP)
specifies a dump of 64 bytes per line with the UNECNT parameter on
the EXEC job control statement determining the number of lines per
page. The UNECNT parameter default is 58 lines per page. If
CHARS = DUMP is specified on a /*OUTPUT statement for the
//PRINTER DD statement, but not on the //PRINTER DD statement
itself, a dump of 32 bytes per line is printed with the DUMP character
set.

(,CHARS = DUMP,FCB = STD3)
specifies a dump having 64 bytes per line and 8 lines per inch with the
UNECNT parameter on the EXEC job control statement determining
the number of lines per page. The LINECNT parameter default is 80
lines per page. If CHARS = DUMP,FCB = STD3 is· specified on a
/*OUTPUT statement for the / /PRINTER DD statement, but not on
the //PRINTER DD statement itself, a different dump format is
obtained. This format is characterized by 32 bytes per line, 8 lines per
inch, the DUMP character set and a UNECNT parameter default
value of 58 lines per page.

(,FCB = STD3J

Notes:

specifies a dump having 32 bytes per line and 8 lines per inch with the
LINECNT parameter on the EXEC job control statement determining
the number of lines per page. The UNECNT parameter default is 58
lines per page. Note that this can be obtained on the 3800 Printing
Subsystem or, if your installation has defined an equivalent FCB
image named STD3 for a 3211 or other impact printer having the FCB
feature, on that impact printer. (FCB modules for the 3800 and 3211
FCB images are not interchangeable, but can have the same
4-character name.)

• The CHARS = DUMP parameter is supported only when using the IBM 3800
printer.

• If the value of the UNECNT parameter exceeds the JES2 overflow line count \
value, undesired results may be obtained. The JES2 page overflow line countI

may be overridden by use of the I*JOBPARM control statement. See the
"JOB and EXEC Statements" section of this chapter.

• For more information about the /*OUTPUT and /*JOBPARM control
statements. see MVS JCL.

1/ /SYSPRINT DO)
directs PRDMP messages to a sequential message data set. This statement
is optional; if it is not specified, no message log is kept. The only operand
required for this DD statement is:

SYSOUT=x
specifies the system output class to which messages are to be routed.
The output class is identified by a single character (x). The class
designation may be the same as that associated with the PRINTER
DD statement. Note: Blocking is RECFM = F, LRECL = 120,
BLKSIZE = 120.

)//SYSUTl DO)
describes an optional direct access work data set from which direct reference
is made to specific dump information. When the input dump data set is on
magnetic tape, the use of a work data set improves the performance of the
PRDMP program. If the space allocated for SYSUTI is not large enough
to contain the complete input dump from the tape, PRDMP intercepts the
resulting X37 ABEND and continues processing; the dump is processed
from the tape and SYSUTl. If the input dump data set is on a direct access
storage device, the SYSUTl work data set is not used.

Note: Performance improvements of as much as 15:1 can result if the space
allocated for SYSUTl is large enough to hold the complete dump.

The DD parameters required to define the direct access work data set are:

UNIT = Ide vice-address I device = type I group-name)
tells the operating system to allocate the SYSUTI data set on a
specific type of direct access device. The subparameter may be a device
name, a device type, or an esoteric group name.

SPACE = (CYL,(primary-quantityl,secondary-quantity»
specifies the amount of space to be allocated on the direct access
device assigned to the SYSUTl work set. The subparameters specify
the primary and, optionally, the secondary number of cylinders to be
allocated.

Note: Do not use the SYSUTl DD statement and the SYSUT2 DD statement in
the same step. If both are present, PRDMP ignores SYSUTl and uses SYSUT2.

II/SYSUT2 DDJ
identifies an output data set into which PRDMP transfers the input data set.
Whenever the SYSUT2 DD statement is present in the input stream,
PRDMP transfers the input data set into the SYSUT2 data set. PRDMP
ignores any PRDMP format control statements. If the input data set is a
SYSl.DUMP data set, after the contents are transferred, the SYSl.DUMP
data set is made available to SVC dump to reuse.

Chapter 3. PRDMP 3-13

3-14 Service Aids

DSNAME = dsname
required for data sets on direct access devices only.

VOL = SER = (serial = numberl,serial-numberl ...)
specifies the volume serial number or numbers for the volumes on
which the data set is to be transferred. If more than one tape is
indicated, you must specify them in the order in which they were
created.

UNIT = device-type
identifies a particular I/O device type.

LABEL = (ldata-set-seq-#),xx)
required for data sets on magnetic tape only. The first subparameter
indicates the data set sequence number; xx indicates tape label
information.

SPACE = (CYL,(primary-quantity(,secondary-quantity),RLSE)
required for data sets on direct access devices only. It specifies the
amount of space to be allocated on the direct access device assigned to
the SYSUT2 data set. The subparameters specify the primary and,
optionally, the secondary number of cylinders to be allocated.

RLSE
specifies that space allocated to an output data set that is not
used when the data set is closed is to be released.

DISP = (NEW,KEEP)
indicates that this is a new data set (code OLD if the data set already
exists) and that the data set should be kept after PRDMP processing
is complete.

IIISYSTERM DD TERM = TS]
must be included in the user's JCL and allocated to a TSO terminal when
the DISPLAY subverbs are entered from a TSO terminal. If input is from
the master console, SYSTERM must not be used for DISPLAY subverbs.

Figure 3-3 shows a sample of the JCL that might be contained in a LOGON
procedure for TSO. Example 8 assumes that this procedure is used and allocates
the data sets for a print dump run.

//IKJACCNT EXEC PGM=IKJEFT01,DYNAMNBR=3
//SYSUDUMP DD SYSOUT=A
//SYSLBC DD DSN=SYS1.BRODCAST,DISP=SHR
//SYSUADS DD DSN=SYS1.UADS,DISP=SHR
//SYSHELP DD DSN=SYS1.HELP,DISP=SHR
//SYSEDIT DD DSN=&EDIT,UNIT=SYSDA,SPACE=(1688,(50,50))
//SYSPRINT DD SYSOUT=A
//SYSIN DD TERM=TS
//SYSTERM DD TERM=TS

Figure 3-3. Sample of a TSO LOGON Procedure J

L

Cataloged Procedure Provided by PRD MP

To execute PRDMP. there is a cataloged procedure supplied in SYSl.PROCLIB
with a member name of PRDMP. Figure 3-4 the procedure.

//PRDMP
//DMP
//SYSPRINT
//TAPE
//PRINTER
//SYSUTl

PROC
EXEC
DD
DO
DD
DO

OUMP=DUMPOO
PGM=AMDPRDMP
SYSOUT=A
DSN=SYS1.&DUMP,DISP=OLD
SYSOUT=A
UNIT=SYSDA,SPACE=(4104,(1027,191))

Figure 3-4. PRDMP Cataloged Procedure

PROC Statement
defines the default data set number for the symbolic DSN = SYSl.&DUMP
parameter of the TAPE DD statement. This value is used if DUMP = is not
specified.

EXEC Statement
defines the program to be executed as AMDPRDMP. The EXEC statement
that calls this procedure may include DMP.PARM and DMP.COND
parameters.

SYSPRINT DD Statement
the SYSPRINT DD statement defines the data set to be used by PRDMP
for informational and diagnostic messages.

TAPE DD Statement
the TAPE DD statement defines the input dump or trace data set to be
processed by PRDMP. The data set name can be overridden with other
data set names.

PRINTER DD Statement
the PRINTER DD statement defines the output data set.

SYSUTl DD Statement
the SYSUTl DD statement defines the work data set for PRDMP. The
SPACE parameter is defined so that the initial space allocation is large
enough to contain 4000K of storage and that each secondary extent can
contain 750K of s,torage, thus allowing enough space to contain a possible
16000K dump. This SPACE size, if not appropriate, may be overridden.

Note: The SYSIN DD statement has been omitted.

Chapter 3. PRDMP 3-15

3-16 Service Aids

To enter control statements in the input job stream, use:

I / /DMP. SYSIN DD *

and follow this statement with the appropriate PRDMP control statements. If
this statement is omitted, PRDMP prompts the operator to enter control
statements through the console.

J

J

How to Specify Control Statements for PRDMP
Control statements provide flexibility for 'you to use PRDMP. These allow you
to select specific formatting options and to control the basic operation of
PRDMP.

You enter the control statements into the system console or through the SYSIN
data set. If no SYSIN is specified, or the supply of control statements is
exhausted and an END statement is not encountered, PRDMP issues the message:
AMD155D REPLY WITH GO, DESIRED FUNCTION, OR END to the
console requesting that the next control statement be entered.

Several control statements, separated by commas, may be specified in one SYSIN
record or in a user response to a console message. Certain control statements
may appear only in the last position of a single entry. See the section
"Combining PRDMP Control Statements." Because each control statement is
processed as it is encountered, care must be taken by the user to supply them in
the desired sequence. When all statements in one entry have been processed, a
new record is read from the SYSIN data set.

PRDMP recognizes two types of control statements: PRDMP-defined control
statements and user-defined control statements. The PRDMP control statements
control PRDMP processing. The user control statements supplement the
PRDMP processing. All control statements consist of two elements: the first
element, called a verb, directs the PRDMP or user program to perform a specific
function. The second element, called the operand, qualifies, where necessary, a
requested function.

Chapter 3, PRDMP 3-17

PRDMP Control Statements

PRDMP control statements are divided into two sets: function control statements
and format control statements. Function control statements determine PRDMP
program action. Format control statements determine formatting and printing
factors.

Function Control Statements

3-18 Service Aids

The function control statements allow you to control certain operations of the
PRDMP program, such as input tape handling, dump listing titles, and job
termination. See Figure 3-5.

{~VT} = {~hhhhh
!~EGTAB}=hhhhhh

{NEWOUMP} [{ODNAME }= {TAPE }]
ND DD anyname

[{ : ~ILESEQ} =nn]

{ :EWTAPE}

I ~o}
IgNGO![g~~~~~~l

[:~PAMAP]
[{: ~VT} =parm 1

[: ~ORMAT]

: :RINT I parm]

:~DIT} parm]

[,SUMMARY]
[,CVTMAP]
[,CPUDATA]

~ITLE} text

END}
EN

Figure 3-5. PRDMP Function Control Statements

J

CVT = {~hhhhh }

allows you to specify the address of the communications vector table (CVT)
in the dump information. Use this if you think that the CVT pointer in
virtual storage location X'4C' of the system that was dumped has been
destroyed or is unavailable. If you omit this control statement, and
PRDMP cannot locate the CVT at location X'4C', it cannot format most
dump information. Once the CVT has been located, it remains in effect
until a NEWDUMP, NEWTAPE, or another CVT control statement is
encountered.

hhhhhh

P

is a one to six-digit hexadecimal address specifying the location of the
CVT in the input dump information.

specifies that the location found at X'4C' in the system on which
PRDMP is being executed can be used as a valid pointer to the CVT
in the dumped system.

SEGTAB = hhhhhh
allows you to specify the hexadecimal real storage address of the segment
table. SEGTAB is optional and need only be specified when PRDMP is
unable to find a segment table for the purpose of address translation for a
real storage dump. Normally this occurs only when a store status was not
performed or the pointer at location X'31C' or the segment table pointed to
by location X'31C' is unavailable. The hhhhhh should be replaced by the
real address, in hexadecimal, of an available segment table. The
SEGT AB = control statement must precede all format control statements to
be useful when processing a given dump.

NEWDUMP (DDNAME= {TAPE }](,FILESEQ==nn)
anyname

defines an input data set. If you want to process more than one input data
set in a single execution of PRDMP, you must supply a separate
NEWDUMP or NEWT APE control statement for each. If there is only
one input data set, defined by the ddname TAPE, NEWDUMP is not
needed.

When processing the NEWDUMP function, PRDMP resets all switches
and/or reinitializes input data set information pertaining to the former
dump. To insure the new input is recognized, all other processing should be
done after the execution of the NEWDUMP function.

NEWDUMP has two keyword parameters. When the keyword parameters
are omitted, PRDMP assumes that the input is a single data set with only
one dump file. The parameters are described below:

DDNAME=
gives the ddname of the input data set. The ddname used in this
parameter must differ from the ddnames associated with the
permanent data sets used by PRDMP, such as SYSUTl, PRINTER,
SYSPRINT, etc. Otherwise, unpredictable results may occur. This

Chapter 3. PRDMP 3-19

3-20 Service Aids

parameter is not required if the TAPE DD statement describes the
input data set.

FILESEQ=
identifies the sequence number of an input data set that is one of
several data sets on a single magnetic tape volume. If this parameter
is omitted, PRDMP assumes a default value of FILESEQ = 1.

J

NEWTAPE

GO

has the same function as the NEWDUMP statement with parameters
specified as DDNAME = TAPE and FILESEQ = 1.

allows the user to request a group of pre-specified format control statements
making it unnecessary to separately specify each statement each time.
Unless you specify differently by use of the ON GO verb, the GO verb
causes PRDMP to format the dump information as if you specified the
format control statements: EDIT, SUMMARY, and PRINT CURRENT.
If you use a GO verb, it must appear last in any control statement or
console response. See Example I and Example 4.

Note: The ONGO-GO combination is not required for PRDMP execution.
You need not specify ONGO unless you want to change the latest
predefined set of PRDMP verbs. Each PRDMP control statement may be
specified directly at any time.

ONGO IQCBTRACEor. \ ..
GRSTRACEII,LPAMAPIl,CVT = parmll,FORMATIl,PRINT parmI """'"
(,EDIT parmll,SUMMARYII,CVTMAPII,CPUDATA)

allows you to change the pre-specified set of control statements associated
with the GO verb. The new set of control statements is executed each time
a subsequent GO control verb is encountered. The initial and default
ONGO operand consists of the control statements: EDIT, SUMMARY,
and PRINT CURRENT. The eligible ONGO parameters are: CVT=parm,
QCBTRACE or GRSTRACE, LPAMAP, FORMAT, SUMMARY,
CVTMAP, CPUDATA, PRINT parm, ASMDATA, SRMDATA,
SUM DUMP, CPUDATA, LOGDATA, UTAMMAP, and EDIT parm.

The PRINT and EDIT parm control statements are in the restricted
category and cannot be combined. Therefore, on the ONGO verb, if you
specify any parameters on EDIT, do not specify PRINT.
(Note that the rules for combining control statement verbs appear later in
this chapter in Figure 3-9).

The ONGO verb without any operand restores the original GO parameters:
EDIT, SUMMARY, and PRINT CURRENT. See Example 4.

The data following ONGO (or 0) through column 71 is set as the
predefined verbs.

The control statements specified on ONGO cannot exceed 66 characters and
on 0 cannot exceed 69 characters.

Note: The ONGO and GO control statements work together. That is, to
execute the group of statements set by the ONGO, a GO must follow IBID.

TITLE text

END

Format Control Statements

allows you to print a title at the top of each page of the dump listing. If T
is specified in the PARM = field of the EXEC statement, the title
information can be entered as a reply to message AMD154D REPLY
TITLE, SAME, or END. If you enter the control statements from the
console, title information is entered as a reply to message AMDl55D
REPLY GO, DESIRED FUNCTION, or END. If you specify PARM=T
on the START command and you enter the control statements from the
console, you should enter title information as a reply to message
AMDI54D; you enter other control information as a reply to message
AMDI55D. PRDMP considers the first sixty-four (64) characters after the
TITLE verb in the control statement or user's console response as the text
of the dump listing title. No control statement may appear after the TITLE
verb in the same entry. Note that this title is provided in addition to the
title provided by the dumping program and that more than one TITLE verb
is acceptable in a job. If the TITLE verb is not entered, the title from the
dump is printed on each page.

allows you to terminate PRDMP processing. When you enter the END
statement either via a control statement or in response to a console message,
PRDMP closes all data sets and returns control to the system control
program. Any PRDMP control statements encountered after an END
statement are ignored.

Format control statements allow you to choose particular parts of the input to be
formatted and printed. These statements can cause AMDPRDMP to generate
maps or traces of certain control blocks in the dumped information as well as
selectively formatting only those areas of storage in which you are interested. All
formatting operations (with the exception of PRINT REAL) are performed using
virtual addresses. The extent of formatting and printing that PRDMP can
perform is, of course, a function of the input data with which it works. See
Figure 3-6.

Chapter 3. PRDMP 3-21

I §~;~:g~1
LPAMAP
L

FORMAT
F

ASMDATA
SRMDATA
SUMMARY
SUMDUMP
CPUDATA
CVTMAP
LOGDATA
VTAMMAP
JES3 [ASID=nnnnIJOBNAME=jjjjjjjj]

[,DEBUG]
TCAMMAP

{ ~RINT} gURRENT]

,NUCLEUS]
,N

[,SQA]
f ,CSA]
l : ~TORAGE] [~::~~~aSid) 11

(asid,asid[, ... ,asid])
(asid[,NONUC] [,NOCOM])

[=(addreSSer)]
[:~EAL [=(addresses)]

[:~OBNAME =(jObnameS)]

IgISPLAY} (see note)

I LIST} { address. [+off set] }
L symbolic name[+offset]

[L (length) 1
[ASID (n)]

{~gUATE I symbolic-name address

{ HARDCOPY} rON 1
HC OFF

Luser comment
comment C user I RETURN I

RET

{~DIT } parm

Note: A DISPLAY control statement is required to enter DISPLAY mode. The DISPLAY options (LIST, EQUATE, HARDCOPY, C,
or RETURN) may only be used while operating in DISPLAY mode. To terminate the DISPLAY mode, use the RETURN option. Only
one option may be entered per TSO transaction. All DISPLAY option parameters must be separated by at least one blank but may
contain no embedded blanks.

Figure 3-6. PRDMP Format Control Statements

3-22 Service Aids

J

QRSTRACEorQCBTRACE
causes AMDPRDMP to print the address of the major control blocks
associated with global resource serialization and the contents of control
blocks on the global resources queue in the input data set. There is no
parameter associated with this option. The following information is printed
in this order:

• GVT (global vector table) address
• GVTX (global vector table extension) address
• GHT (global hash table) address
• LHT (local has table) address
• GRPT (global resource pool table) address
• LRPT (local resource pool table) address
• the local queue control block data

Major name
Minor name
QCB (queue control block) address
QEL (queue element) address
TCB (task control block) address
ECB/SVRB (event control block/supervisor request block) address

- scope
status
SYSNAME
ASID (address space identifier)

• the global queue data
Major name
Minor name
ACB address
QEL address
TCB address
ECB/SVRB address
scope
SYSNAME
ASID

Note that if the global resources serialization address space is not dumped,
only the GVT and GVTX address is printed, and the following messages
appear:

• GHT DATA NOT AVAILABLE
• LHT DATA NOT AVAILABLE
• GRPT DATA NOT AVAILABLE
• LRPT DATA NOT AVAILABLE

LPAMAP
causes PRDMP to format and list a map of the contents (name, entry point,
length, and starting address) of those link pack area modules that were on
the link pack area active queue at the time the dump was written. There is
no operand associated with this verb. If the input data set does not contain
this area, LPAMAP causes an error message to be printed.

Note that this control statement maps only the active modules in the
reenterable load module area or the link pack area; it does not include any

Chapter 3. PRDMP 3-23

3-24 Service Aids

storage associated with the area. If you want a map of storage, you must
use the PRINT STORAGE = control statement. See Example 3. J

FORMAT
causes PRDMP to format and print the major system control blocks and
data associated with each address space in the dumped system. Information
and control blocks that are formatted and printed (if available) are:

• global SRBs • XSBs • UCBs
• ASCBs • STKEs • RTCT
• local SRBs • virtual storage • RTM2WAs
• ASXBs information • EEDs
• real address of the • load list information • SCBs

segment table • job pack queue • FRRs

• LT • DEBs .IHSA

• ET • task I/O information

• AT • DCBs
• TCBs • IOBs/ICBs/LCBs

• RBs • EXCPD

User exit capabilities are available at the system, address space, and task
levels. If you want to limit the formatting of system control blocks to
specific address spaces, you should specify the proper parameters in the
PRINT control statement instead of using FORMAT. There is no
parameter associated with the FORMAT statement.

Note: Only active TCEs are formatted. Check the NTC and LTC pointers
in the TCB summary for the addresses of completed TCBs.

ASMDATA

Only the current task for the processor from which the dump was
taken will be flagged on a multiprocessing system.

The following control blocks are only formatted for failing tasks:
DCBs, EXCPD, IOBs/ICBs/LCBs, VCBs, and SCBs.

The MVSj370 Debugging Handbook and MVS Diagnostic Techniques
describe the conditions under which the RTM control blocks, such as
the RTCT, are formatted.

causes PRDMP to format and print the contents of the following auxiliary
storage management (ASM) control blocks in the input data set:

• ASM vector table (ASMVT)
• Logical group vector table (LGVT)
• Auxiliary storage page correspondence table (ASPCT)
• ASM control element (ACE)
• Task mode element (TME)
• Paging activity reference table (PART)
• Paging activity reference table entry (PARTE)
• I/O request element (IOE)
• Page allocation ta ble (PAT)
• Performance characteristics table (PCT). J

There is no operand associated with the ASMDATA verb.

SRMDATA
causes PRDMP to format and print the following SRM (System Resources
Manager) control blocks:

• OUCBs (SRM User Control Block) on the WAIT queue
• OUCBs on the OUT queue
• OUCBs on the IN queue
• DMDT (Domain Descriptor Table)

There is no operand associated with the SRMDAT A verb.

Note: If an SVC dump generated the input data set, valid queues might appear
invalid because the queues can change while the SVC dump is running.

SUMMARY
causes PRDMP to print a summary of the dump input file contents, a
system summary, and a problem summary. These summaries are provided
to limit the amount of output provided by AMDPRDMP, to provide gross
address space relationships which serve as a starting point for problem
debugging, and to establish a base from which decisions concerning further
formatting can be made. There is no operand associated with the
SUMMARY verb.

SUMDUMP
causes PRDMP to locate and print the summary dump data provided by
SVC dump. There is no operand associated with the SUMDUMP verb.
See the SDUMP macro instruction in OS/VS2 SPL: Supervisor for
information on the summary dump function The MVSj370 Debugging
Handbook and MVS Diagnostic Techniques also detail the content of the
summary dump and examples of the output. See Appendix C, PRDMP
User Exit Facility, for more information on formatting summary dump
records.

CPUDATA
allows you to request processor-related information which is helpful in
debugging mUlti-processing problems. The information includes all registers
for each processor; the current PSW for each processor, unprefixed storage
0-4K, the common system data area, the PSA's, and logical physical CCAs
for each PSA. There is no operand associated with the CPUDAT A verb.
See Example 2.

Note: If input is a SADMP high-speed data set, and the STORE STATUS
operation was not performed immediately prior to IPLing SADMP, the
STORE STATUS information for the IPLed processor is unpredictable
except for the general-purpose registers, which are always valid for the
IPLed processor.

CVTMAP
allows you to format the communications vector table (CVT). Fields in the
CVT are labelled in the printout. There is no parameter associated with the
CVTMAP statement.

Chapter 3. PRDMP 3-25

3-26 Service Aids

LOGDATA
causes PRDMP to format the in-storage LOGREC buffer records in the
same manner as EREP formats the SYSl.LOGREC records. There is no
operand associated with the LOG DATA verb.

The summary of records found, located at the end of the LOGDATA
output, indicates the number and type of records found in the in-storage
LOGREC buffer. Not all record types are formatted, so the number of
records listed in the summary may not equal the number of records
formatted.

VTAMMAP

JES3

allows you to request selected VT AM control blocks that are helpful in
VT AM problem determination. When VT AMMAP is specified, the VT AM
formatted dump routine locates and formats selected VT AM control blocks
in dumps produced by the AMDSADMP and SVC dump programs. For a
description of the VTAM formatted dump routine and the control blocks
selected, see ACFjVTAM Version 2, Diagnosis Guide.

JES3 [ASID=nnnnIJOBNAME=jjjjjjjj]
[,DEBUG]

causes formatting of the contents of specific JES3 control blocks. When you
code the JES3 control statement and no parameters or you specify the
DEBUG parameter alone, PRDMP formats the contents of the JES3
control blocks for the JES3 address space. If you do not code the JES3
control statement at all, PRDMP does not format any JES3 control blocks.

ASID=nnnn
causes the formatting of the contents of JES3 control blocks for the
specified address space. The address space identifier is a 1- to 4-digit
hexadecimal number. You can format control blocks in either the
JES3 address space or an FSS address space using this parameter.
Only one ASID can be specified. When you specify ASID, you may
specify only DEBUG as a second parameter.

DEBUG
causes a snapshot dump to be written to a JES3SNAP data set if a
program check occurs during the formatting of JES3 control block
contents. The dump contains register contents, storage contents of the
failing module, and the contents of the CSECT (ABNCSECT)
workarea at the time the dump was taken. Register 11 contains the
address of the exit routine (IATAPBR) that was formatting the
control blocks. Register 13 contains the address of the format
workarea.

Note: You can code DEBUG alone.

J

JOBNAME = jjjjjjjj
causes the formatting of the contents of JES3 control blocks for an
address space associated with the specified job. The jobname is 1 to 8
alpha- numeric characters. Only one jobname can be specified on a
single JES3 control statement. When you specify JOBNAME, you
may specify only DEBUG as a second parameter. You can format
control blocks in either the 1ES3 address space or an FSS address
space using this parameter.

Note: The jobname that you specify is the ID for the FSS once it is
started. This is also its FSSNAME.

Note: You must code multiple 1ES3 control statements when control
blocks from the JES3 address space and an FSS address space are to be
formatted from the same dump.

NOTES: Two parameters provide you with the compatibility of previous
versions of the 1ES3 dump exit. They are ON and OFF. These parameters
allow you to continue to use canned PRDMP procedures that must
reference the parameters on the JES3 control statement.

The ON parameter causes the formatting of the contents of the 1ES3
control blocks for the 1ES3 address space. The only parameter that can be
specified with ON is DEBUG.

The OFF parameter suppresses all 1ES3 dump exit processing. It must be
specified alone.

TCAMMAP
allows you to request selected TeAM control blocks that are helpful in
TCAM problem determination. When TCAMMAP is specified, the TCAM
formatted dump routine locates and formats selected TCAM control blocks
in dumps produced by the AMDSADMP and SVC dump programs. For a
description of the TCAM formatted dump routine and the control blocks
selected, see ACF/TCAM Version 2, Diagnosis Guide.

PRINT

PRINT

[CURRENT] [,NUCLEUS] [,SQA] [,CSA]
[,STORAGE[=ASID(asid[:asid])] [=(addresses)]]
(asid-list)

[,REAL(=addresses)] [,JOBNAME=(jobnames)]

allows you to select the particular areas of virtual or real storage that you
wish to print. When a PRINT control statement is used, it must appear last
in the SYSIN data set or user console response. The PRINT control
statement has several parameters. Multiple parameters may be specified in
a single specification of a PRINT control statement. The first parameter in
the parameter string must be separated from the PRINT verb by at least
one space. Subsequent parameters are separated from previous parameters
by a comma with no intervening spaces.

Chapter 3. PRDMP 3-27

3-28 Service Aids

Note: PRDMP cannot print virtual storage pages which were not in real
storage or in a page data set when the dump was taken. Within each
specified or implied virtual address range, only those pages which were in
real storage at dump time are printed. This limitation on PRDMP is due to
SADMP output being restricted to the contents of real storage and specified
page data sets.

CURRENT
causes the PRDMP program to print those areas of the dumped system's
virtual storage that are associated with the address spaces that were current
at the time of the dump. PRINT CURRENT attempts to process the four
cross-memory address spaces (primary, secondary, home and cross-memory
lock). If any of the four address spaces have the same ASID, that address
space is printed only once. If the cross-memory address spaces are not in
the dump or if AMDPRDMP cannot identify them, AMDPRDMP
determines the address space that was current on the processor when the
dump was taken and processes it. The registers, PSW, and the following
major control blocks associated with these address spaces are formatted (if
available):

• Task Control Block (TCB)
• Request Blocks (RBs)
• Problem Program Boundaries
• Load List

• • • • •

Job Pack Queue
Data Extent Block (DEB)
Task Input/Output Table (TIOT)
Data Control Block (DCB)

\ .
I/O Control Block (lOB), or Interrupt Control Block for chamed
scheduling under SAM or BPAM (ICB), or Teleprocessing Line Control
Block (LCB)

• EXCP Debugging Area (EXCPD - XDBA)
• Unit Control Block (UCB)
• Recovery Termination Control Table (RTCT)
• RTM2 Work Area (RTM2WA)
• Extended Error Descriptor Block (EED)
• ST AE Control Block (SCB)
• Current FRR Stack (FRRS)
• Interrupt Handler Save Area (lHSA)
• The real address of the segment table
• Linkage tables (L T)
• Entry tables (ET)
• Authorization tables (AT)
• Cross Memory status blocks (XSB)
• PC LINK stack elements (STKE)
• The address space second table entry (ASTE)

If the input is a dump created by SVC dump, PRDMP formats the address
spaces that were dumped and provides the SVC dump buffer in hexadecimal
if the buffer was requested at the time the dump was taken. A format user
exit capability is available with the PRINT CURRENT operation.

In a multiprocessing system, only the current task for the processor from
which the dump was taken is formatted.

The following control blocks are only formatted for the failing task: DCBs,
IOBs/ICBs/LCBs, EXCPD, UCBs, and SCBs.

NUCLEUS

SQA

CSA

causes PRDMP to print the nucleus portion of the dumped operating
system. A format user exit capability is available with the PRINT
NUCLEUS statement.

causes the PRDMP program to print out in hexadecimal the system queue
area (SQA) portion of the dumped operating system.

causes PRDMP to print out in hexadecimal the common service area (CSA)
portion of the dumped operating system.

STORAGEI = ASID [(asid) j II = (addresses)]
(asid:asid)
(asid,asid.[, ..• ,asid)
(asidl,NONUCII,NOCOM])

allows you to supply the beginning and ending virtual addresses of the areas
that are to be printed. This can be qualified to an address space or group
of address spaces by coding a single ASID, a list of single ASIDs separated
by commas (asid,asid), a range of ASIDs (asid:asid), or not specifying an
asid value which causes PRDMP to default to storage for the address space
that was current at the time the dump was taken. The FFFD and FFFE
ASIDs are restricted AMDSADMP ASIDs and must be printed using
separate print storage statements (for example, P S = ASID(FFFD) and P
S = ASID(FFFE)).

The NONUC and NOCOM keywords are optional keywords used in
conjunction with the ASID keyword. When used, the two fields must be
separated by a comma and must be within parentheses. Either or both
keywords may be specified. The NONUC option suppresses printing of the
nucleus for this input. The NOCOM option suppresses the printing of the
common data area for this input. At least one ASID must appear within the
parentheses.

Specify the value for asid in hexadecimal.

The STORAGE parameter with no subparameters causes AMDPRDMP to
attempt to process the four cross-memory address spaces (home, primary,
secondary, and cross-memory lock). If any of the four cross-memory
address spaces has the same ASID as one of the other three, the address
space is only printed once. If the dumped data set does not contain the
cross-memory address spaces or AMDPRDMP is unable to identify them,
AMDPRDMP determines the address space that was current on the
processor when the dump was taken and processes it.

When you specify a range of ASIDs, the second ASID value must be greater
than or equal to the first ASID value. ASID values of 0 or hexadecimal
FFFF are considered invalid ASIDs. When specifying a list of ranges for
ASIDs, note that if at least one ASID value is not active, a message

Chapter 3. PRDMP 3-29

3-30 Service Aids

indicates that some ASIDs could not be printed. But, the ones found are
printed.

You code beginning and ending virtual addresses, expressed in hexadecimal,
in pairs. All address pairs appearing after the STORAGE keyword must be
enclosed in parentheses. PRDMP prints the contents of the virtual address
space bounded by an address pair. Each specified address is separated from
the preceding address by a comma with no intervening spaces. If only a
single address is supplied, all of virtual storage for that address space
starting at that virtual address and continuing to the upper end of the
address space is printed. If you specify a list or range of ASID's and the
range of addresses to be printed includes some portions of the nucleus, only
the copy of it is printed. If no addresses are specified, the PSW and
registers are printed. Examples of correct use of PRINT STORAGE:

PRINT STORAGE=ASID(1:20)
PRINT STORAGE=ASID(2,4)=(30000,DOOOO)
PRINT STORAGE=(4FOOOO)
PRINT STORAGE=ASID(3,NONUC)
PRINT STORAGE=ASID(l,NOCOM,NONUC)

REALI = (addresses»)
allows you to supply the beginning and ending real storage addresses of the
areas that are to be printed. If you specify the REAL = parameter and the
input file contains a virtual storage dump, your request for print operation
is denied. If you specify PRINT REAL with no addresses, all real storage
contents available on the input file are printed. Beginning and ending real
storage addresses, expressed in hexadecimal, are coded in pairs. All address
pairs must be enclosed in parentheses. The contents of the real storage
bounded by an address pair are printed. Each specified address is separated
from the preceding address by a comma with no intervening spaces. If only
a single address is specified, all real storage contents available on the input
file starting at that real storage address are printed. If no addresses are
specified, the PSW and registers are printed.

JOBNAME = Gobnames)
allows you to limit the scope of the dump output to the major control
blocks and storage associated with the jobs specified in the parameter value
field. Jobnames are enclosed in parentheses and delimited by commas. A
maximum of ten jobnames may be specified. A format user exit capability
is available with the PRINT JOBNAME operation.

DISPLAY
causes PRDMP to enter display mode for interactive use of the DISPLAY
subverbs. Through these subverbs, the user may quickly and
conversationally scan any dump location and display up to 256 bytes per
transaction. See Figure 3-6 for a summary of the DISPLAY subverb
operands. When DISPLAY is entered from the system console, output is
directed to the system console. When DISPLAY is entered from a TSO _
terminal, output is directed to the SYSTERM data set. Multiple DISPLAY
subverbs are not permitted on one entry. For example, LIST 2AC4
followed by LIST Bl23 on the same line would not be allowed. Note: The
parameters for each subverb are separated by at least one blank.

J

LIST {address., ± offset) j'L(length)IIASID(n»)
symbolic namel ± offset)

displays up to 256 bytes of virtual storage. The parameter, address.,
specifies a one- to six-digit hexadecimal address which identifies the
first byte of the display area. A period must be coded after the
hexadecimal address to distinguish it from a symbolic address. The
symbolic name specifies the relative address of the first byte of the
display area. If this parameter is used, it must be preceded by an
EQUATE subverb which equates the symbolic name to a virtual
address. ±offset specifies a one- to six-digit hexadecimal displacement
which when summed with the address supplied by address, or symbolic
name yields a one- to six-digit hexadecimal address which has a
minimum of 0 and a maximum of FFFFFF. L(length) supplies the
length in bytes of the area to be displayed. It has a maximum value
of 256 and the default value is 4. If address + length exceeds
FFFFFF, the address of the last byte to be displayed is set to
FFFFFF. ASID(n) is the address space ID value of the address space
to be displayed. The default is the last ASID specified on a previous
LIST subverb, or if no ASID was previously specified, the ASID of
the address space that was executing at the time of the dump.

EQUATE symbolic-name address
equates a virtual address to a symbolic name. The symbolic name is a
one- to eight-character alphameric label. The address is a one- to
six-digit hexadecimal address. The maximum number of EQUATEs
allowed per display session is 256. A symbolic name must be equated
to an address before that name can be used by a LIST subverb as a
symbolic name.

HARDCOPY { ONIOFF
,user comment

requests printing of a hard-copy backup of the displayed storage. The
operands are mutually exclusive. ON requests that PRDMP print a
hard-copy backup of all requested storage displays. ON remains in
effect until HARDCOPY OFF or RETURN is entered. OFF specifies
that hard-copy backup of displayed storage not be printed. The
HARDCOPY option with a user comment causes PRDMP to print
the user's comments and the storage displayed by the previous LIST
subverb. The comment may not extend beyond column 80, and
continuation statements are not allowed. If no operands are specified,
PRDMP prints a backup copy of the storage displayed by the last
LIST subverb.

C user comment
requests that hard-copy of the user's comments be printed. The
comment may not extend beyond column 80, and continuation
statements are not allowed.

RETURN
terminates the display mode and returns control to PRDMP.

Chapter 3. PRDMP 3-31

EDIT parm
causes PRDMP to attempt to obtain the trace data either from a defined
GTF trace data set or from the storage dump currently being processed.
See Figure 3-7 for a summary of the EDIT control statement keywords.
See also Example 5 and Example 6.

{~DIT} [EXIT=pgmname]

[{:~~NAMEI =ddname]

[,START=(ddd,hh.mm.ss)]

[,STOP=(ddd,hh.mm.ss)]

[{;~OBNAME} =(jobnamel[,jobname2] ... [,jobname5]])]

[,ASCB=(addressl[,address2] ... [,address5])]

[,EOF]

[,SYS]

[1:~g=SIO 1 =(cuul[,cuu2] ... [,cuu50]) 1
,SIO=IO
,SIO

[,10]

[,SIO]

{, SVC }
,SVC=(svcnuml[,svcnum2] ... [,svcnum256])

{ , PI }
,PI=(codel [,code2] ... [,code18] [,code19])

[,EXT]

[,DSP]

[,RR]

[,RNIO]

[,SLIP]

[,SRM]

,USR= (symboll[,symbo12] ... [,symbo120])]
(idvaluel[,idvalue2] ... [,idvalue20])
(idrangel[,idrange2] ... [,idrange20])
ALL

,CCW j ,CCW=SI
,CCW=S
,CCW=I

[,CPU=n]

Figure 3-7. Format of the EDIT Control Statement Showing AU Valid Keywords

3-32 Service Aids

(EXIT = pgmname(
defines the program name of a user-written exit routine that should be given
control to inspect all trace data records. The user-written exit routine is
also given control when the logical EOF of the trace data has been reached.
If the routine does not exist or cannot be successfully loaded, EDIT
execution will terminate and the next control statement is read.

DDNAME = ddname
specifies the name of the DD statement that defines a trace data set to be
edited. DDNAME is required for GTF trace data sets; do not use it for the
storage dump that is being processed.

(START = (ddd,hh.mm.ss»)
(STOP = (ddd,hh.mm.ss»)

specifies that blocks between these times are to be edited; only those records
requested by event-oriented keywords will actually be formatted. If no
START time is specified, the edit will start at the beginning of the data set.
If no STOP time is specified, EDIT will terminate upon reading the end of
the data set. 'ddd' is Julian day, and 'hh.mm.ss' is the hours, minutes and
seconds as set in the TOD clock.

JOBNAME = Oobnamel(,jobname2) •.. (,jobname5))
allows specification of up to five 8-character jobnames for which trace
entries and user records should be formatted. If all jobnames cannot fit on
one line, the continuation technique described below under 10 should be
used. Specifying JOBNAME for editing of minimal trace records (SYSM) is
an error condition. If PRDMP control statements are entered from the
console, the operator is asked if editing is to continue. If control statements
are being entered from SYSIN, EDIT execution is terminated.

ASCB = (addressl(,address2) ... I,addressS»

EOF

SYS

allows specification of up to five ASCB addresses for which trace entries
and user records should be formatted. The ASCB addresses are specified as
one- to eight-digit hexadecimal addresses. If all ASCB addresses cannot fit
on one line, the continuation technique described below under 10 should be
used.

specifies that the exit routine specified by the EXIT = keyword, is to receive
control on all EDIT terminating conditions.

requests that nine system event trace records be formatted (that is, SVC,
SIO, 10, PI, EXT, DSP, RNIO, RR and SRM). SYS is the default option
when only keywords from the following group are specified:

DDNAME=
EXIT=
START=
STOP=
JOBNAME=
ASCB=
EOF

If any other keywords are specified, the default is overridden.

Chapter 3. PRDMP 3-33

3-34 Service Aids

I~~o I =(cuul(,cuul) ... (,cuu50» .'
10=S10 ..,
SIO=IO

10
SIO

SVC

defines up to fifty different devices for which SIO trace records, 10 trace, or
both is formatted. Only trace records associated with the specified devices
are formatted; all others are ignored. 'cuu' is the three-digit device address.
If the specification of this keyword exceeds one line, the first line should be
closed with a right parenthesis, followed by a comma, and the keyword
respecified with the additional device addresses on a subsequent statement
or reply.

Example EDIT DD=SYSTRACE, IO= (191,192,193) ,
IO=(283,284,285)

request all 10 and SIO trace records to be formatted. If both 10 and 10
were specified, all 10 trace records are formatted. The same is true of SIO
and SIO.

SVC = (svcnumll,svcnum21 ... (,svcnum2S6))

PI

requests that all SVC trace records be formatted. SVC = selects only those
records associated with the specified SVC numbers to be formatted.
'svcnum' is a one- to three-digit decimal SVC number from 0 to 255. If
both SVC and SVC = are specified, all SVC trace records are formatted.
The same continuation technique should be used for SVC = as described in .J.'
10=.

PI = (code1l,code2) ... I,code1811,code19»

EXT

nsp

RR

requests that all program interrupt trace records be formatted. PI =
requests that only trace records associated with specific interrupt codes be
formatted. 'Code' is a one- to two-digit decimal interrupt code from 1 to
19. Code 16 specifies that trace records for a segment exception should be
formatted, while code 17 is for page fault-trace records and code 18 is for
translation exception records. Code 19 specifies that SSM interrupts should
be traced. If both PI and PI = are specified, all PI trace records are
formatted. The same continuation technique should be used for PI = as
described under 10 =.

requests that all external interrupts trace records be formatted.

requests that all dispatching event trace records be formatted.

requests that all recovery routine event records be formatted.

RNIO
requests that all VT AM remote network activities be formatted.

SLIP
requests that all SLIP trace records be formatted.

SRM
requests that all system resource manager event records be formatted.

USR = (symbol1 [,symboI2] ... [,symboI20)]
(idvaluel(,idvalue2J ... (,idvalue20)J
(idrangel(,idrange21 •.. (,idrange20»)
ALL

specifies which user/subsystem trace records should be formatted. These are
all records created by use of the GTF GTRACE macro. Up to twenty ID
values or ranges or symbols may be specified, to denote all entries belonging
to one component or subsystem. The GTRACE data consists of user event
trace records and/or IBM subsystem event records. The subsystems are
OPEN/CLOSE/EOV, SAM/PAM,DAM,VTAM, and VSAM. The EIDs
and symbolic names associated with these subsystems are in Figure A-5.
You may indicate up to 20 symbols with USR= keyword. For user trace
records, you may indicate up to 20 ID values or ranges. User trace records
can also be filtered by use of the jobname and ASCB keywords.

The 'symbol' to be used is defined by component when ID values are
assigned to the subsystem.

The 'idvalue' is the three-digit hexadecimal ID which is user specified in the
GTRACE macro.

The 'idrange' is the first and last ID values of range separated by a hyphen
(for example, USR = (OlO-040,BFD-BFF).

'ALL' requests that all user and subsystem trace records be formatted. If
USR = ALL is specified in addition to selected ID values, ranges or symbols,
all user and subsystem trace entries are formatted. The same continuation
techniques should be used for USR = as described under 10 =; (for
example, an ID range should be completed, and followed by a right
parenthesis and a comma; the USR = keyword should then be respecified
on a subsequent statement or reply).

Chapter 3. PRDMP 3-35

3-36 Service Aids

Valid symbols and their corresponding ids are:

SYMBOL IDs FORMATS

DMAI FFF OPEN /CLOSE/EOV

AMOI FF5 VSAM

SPDl FF3 SAM/PAM/DAM

SPD2 FF4 SAM/PAM/DAM

SPD3 FF6 SAM/PAM/DAM

SPD4 FF7 SAM/PAM/DAM

SPD5 FF8 SAM/PAM/DAM

SPD6 FF9 SAM/PAM/DAM

SPD7 FFA SAM/PAM/DAM

SPD8 FFB SAM/PAM/DAM

SPD9 FFC SAM/PAM/DAM

SPDA FFD SAM/PAM/DAM

SPDB FFE SAM/PAM/DAM

TPIO FEF ACF/VTAM buffer contents trace (USER)

CLOI FFI ACF/VTAM buffer contents trace (VTAM)

CL02 FFO ACF/VTAM SMS (buffer use) trace

LINE FF2 ACFjVTAM NCP line or TG trace

INTI FEI ACF/VTAM internal table

APTH FE2 TSO/VTAM TGET/TPUT trace

APTR FE3 VT AM reserved

APTD FE4 ACF/VTAM NCP line type trace

Figure 3-8. Example of the valid symbols with the associated subsystems

CCW
CCW=SI
CCW=S
CCW=I

requests formatting of channel program trace records. If you specify CCW
more than once, PRDMP uses your first specification of CCW. For
PRDMP to format CCW trace records, PRDMP must format SIO base
records or 10 base records or both.

CCW
CCW=SI

requests formatting of all CCW, SIO, I/O, and resumption of I/O trace
records in the specified data set. PRDMP turns on formatting for SIO and
10 base records even if you do not specify the SIO and 10 keywords. When
you specify the SIO and 10 keywords, and either CCW or CCW;= SI,
PRDMP formats CCW trace records for events on the devices the SIO and
10 keywords identify.

CCW=S
requests formatting of CCW trace records for SIO and resume I/O
operations. PRDMP turns on formatting for SIO base records even if you
do not specify the SIO keyword. When you specify the SIO keyword and
CCW = S, PRDMP formats CCW trace records for events on the devices the
SIO keyword identifies.

CCW=I
requests formatting of CCW trace records for I/O events, and, if present,
PCI events. PRDMP turns on formatting for 10 base records even if you
do not specify the 10 keyword. When you specify the 10 keyword and
CCW = I, PRDMP formats CCW trace records for events on the devices the
10 keyword identifies.

CPU=n
requests formatting for events occurring on the CPU whose physical
identifier is 'n'. The value 'n' is a hexadecimal number from 0 to F. The
CPU = n keyword is only effective if you specify the CCW, SIO, or 10
keywords. The CPU identifier does not filter any other events.

Defaults for EDIT Keywords

Unless you specify the options illustrated in Figure 3-7, the default options are as
follows:

SIO, IO, SVC PI, EXT, DSP, RR, SRM, SLIP, RNIO, and CCW

Editing Trace from a Trace Data Set

If the DDNAME = keyword is specified, other specified options will take effect as
shown in Figure 3-7. Those keywords that appear within the same vertical
columns are mutually exclusive and if two or more options within a column are
specified, the option that is highest within the column takes effect. For example,
if both SVC and SVC = are specified, SVC (indicating ALL) will take effect.

In like manner, if 10 = SIO = is specified during the same EDIT execution that 10
and SIO are specified, 10 and SIO will take effect. However, if in the above case,
10 is specified with 10 = SIO = but SIO is not specified, those devices indicated in
10 = SIO = will remain in effect for SIO =. The converse is true also. For
example:

I EDIT DD=DD1,IO=SIO=(284,285),SIO

The above EDIT control statement causes I/O records for devices 284 and 285,
and all SIO records, to be formatted. If either START = or STOP = is specified
more than once, the first specification takes effect. After all optional input has
been processed, a message is written to the SYSPRINT device and/or the console
(depending upon where the options were entered: console or control statements)
identifying the EDIT options in effect. If SYS has been specified, each system
event is individually indicated.

Chapter 3. PRDMP 3-37

Combining PRDMP Control Statements

3-38 Service Aids

If you are controlling PRDMP operation from the system console, you may want
to save time by combining control statements in a single reply to a prompting
message. This section describes the rules for combining control statements.

PRDMP control statements fall into two categories: restricted and free. The
names of the categories refer to the way the control statements in them can be
combined with each other. Figure 3-9 shows the categories and the control
statements they contain.

FREE

ASMDATA
CPUDATA
CVTMAP
CVT=parm

*EDIT
FORMAT

*JES3

LOG DATA
LPAMAP
NEWTAPE
QCBTRACE or GRSTRACE
SEGTAB=parm
SRMDATA
SUMDUMP
SUMMARY
TCAMMAP
VTAMMAP

RESTRICTED

**DISPLAY
*EDIT parm

END
GO

*JES3 parm

NEWDUMP
ONGO
PRINT
TITLE

*Note: A control statement coded with no parameters may fall into the FREE
category, while that same control statement with parameters is RESTRICTED.

**Note: These rules also apply if you are invoking PRDMP via JCL and you
want to combine control statements on a single statement in the input stream.
The only exception is the DISPLAY control statement. It may not be combined
with any other control statements. It cannot be used in the JCL when using the
master console, only when running PRDMP via TSO.

Figure 3-9. Combining Free and Restricted Control Statement Verbs

When you reply to a prompting message, the rules for combining control
statements in the two categories are:

• You can freely combine control statements in the FREE category with e!lch
other.

• You can never combine control statements in the RESTRICTED category
with each other.

• You can combine any number of control statements from the FREE category
with one control statement from the RESTRICTED category, provided that
the control statement from the RESTRICTED category comes last in the
reply.

J

J

J

Here are some examples of control statements combined correctly:

LPAMAP,EDIT,PRINT NUCLEUS
FORMAT,GRSTRACE,EDIT DDNAME=TRACE,SVC,SIO=IO=ALL,PI
NEWTAPE,CVT=parm,LPAMAP,GO
NEWTAPE,TITLE
LPAMAP,END
SEGTAB=parm,FORMAT,PRINT CURRENT

User Control Statements

You can define special control statements to supplement PRDMP processing.
The PRDMP user exit facility allows user-written formatting routines to gain
control when user control statements are in the input stream. The syntax of these
statements is:

I user control statement {parameters}

The control statement must be one to eight characters in length. You must also
include it in the exit control table, AMDPRECT, in order for the appropriate
user-written program to execute. See "Appendix C: PRDMP User Exit Facility."

The optional parameters provide flexibility and control of formatting by your
routine.

Correlating PRDMP Output with Other Diagnostic Data

When the system encounters a software error or a machine failure that the
hardware retry routines cannot correct, it assigns a unique identifier to the error.
If an SVC dump is taken, this error identifier (errorid) appears on the SVC dump
title page and in the console message that indicates the SVC dump was taken.
The same error identifier appears in the SYSl.LOGREC records created as a
result of the error. The existence of the same error identifier in these separate
sources of diagnostic data indicates that they all apply to the same error
condition.

The error identifier in the SVC dump has the following form:

ERROR FOR THIS DUMP=SEQxxxxx CPUyy ASIDzzzz TIMEhh.mm.ss.t

where:

xxxxx
yy
zzzz
hh.mm.ss.t

sequence number
CPU identifier
address space identifier
time stamp(hours,minutes,seconds.tenths of seconds)

Chapter 3. PRDMP 3-39

If an error identifier is not available for an SVC dump, the message

NO ERRORID ASSOCIATED WITH THIS DUMP

appears where the error identifier would otherwise appear.

Note: MVS Diagnostic Techniques shows examples of dumps formatted by
PRDMP and gives advice on when to use the PRDMP control statements.

J CL and Control Statement Examples

The following examples illustrate some of the functions that PRDMP can
perform.

Example 1: Using the Cataloged Procedure

3-40 Service Aids

IBM supplies a cataloged procedure, called PRDMP, that defines the input and
output data sets and a work data set for PRDMP. This example shows how to
use the cataloged procedure.

IIPROCDMP
IISTEPl
//DMP.SYSIN

11*

GO
END

In this example:

PARM.OMP=T

JOB MSGLEVEL={l,l)
EXEC PROC=PRDMP,PARM.DMP=T
DD *

issues message AMDl45D to the operator requesting a dump title.

OMP.SYSIN 00 Statement
defines the data set that contains the PRDMP control statements. The data
set follows immediately.

GO Control Statement
requests formatting and printing according to the EDIT, SUMMARY and
PRINT CURRENT control statements.

END Control Statement
terminates PRDMP processing.

J

L

Example 2: Transferring a Dump Data Set and Processing It in a
Later Job

If you need to clear a SYSl.DUMP data set to make room for more dump
information, you can use PRDMP to transfer its contents to another data set.
This new data set is not formatted or printed during execution of PRDMP, but it
can be used later as input.

This example shows how to transfer a SYS1.DUMP data set that is a cataloged
on a direct access storage device to a tape volume described by the SYSUT2 DD
statement. It also shows how to refer to the transferred data set in a later job.

Notes:

1. When transferring SYS1.DUMP to a SYSUT2 data set, do not use the
cataloged procedure PRDMP; the cataloged procedure contains a SYSUTl DD
statement, and the SYSUT1 and SYSUT2 DD statements may never be used in
the same step.

2. If the SYS1.DUMP data set is date protected, the operator receives message
IECJ07D requesting permission to proceed. You must respond by entering r
00, 'U' to allow PRDMP to continue processing.

3. This example does not include any PRDMP control statements except END. If
other control statements were included, they would be ignored.

IICLEAR
IISTEPl
IISYSPRINT
IIPRINTER
IITAPE
IISYSUT2

IISYSIN

1*

JOB MSGLEVEL=(l,l)
EXEC PGM=AMDPRDMP
DD SYSOUT=A
DD SYSOUT=A
DD DSNAME=SYS1.DUMPOO,DISP=OLD
DD DSN=DUMP1,UNIT=2400,VOL=SER=DUMP,

LABEL=(,NL),DISP=(NEW,KEEP)
DD *

END

**
IIPROCESS
IISTEP
IITAPE
II
IISYSUTl
II
IIPRINTER
IISYSPRINT
IISYSIN

1*

JOB MSGLEVEL=(l,l)
EXEC PGM=AMDPRDMP
DD DSN=DUMP1,VOL=SER=DUMP,LABEL=(,NL),

DISP=OLD,UNIT=2400
DD UNIT=3330,SPACE=(CYL,(lO,20)),

DISP=(NEW,DELETE),VOL=SER=llllll
DD SYSOUT=A
DD SYSOUT=A
DD

FORMAT
CPUDATA
END

*

Chapter 3. PRDMP 3-41

3-42 Service Aids

This example consists of two separate jobs. In the first job:

SYSPRINT DD Statement
defines the message data set.

PRINTER DD Statement
defines the data set to which PRDMP ordinarily directs its output. This
statement must be included, even though its function is not used in this
application.

TAPE DD Statement
defines the input data set, SYSI.DUMPOO.

SYSUT2 DD Statement
defines the data set to which the contents of SYSl.DUMPOO will be
transferred.

SYSIN DD Statement
defines the data set that contains the PRDMP control statements. The data
set follows immediately.

END Control Statement
terminates PRDMP processing. Note that this is the only PRDMP control
statement needed.

Note: If one of the format control statements (such as QCBTRACE,
FORMAT, PRINT, etc.) is included in the input stream, the data transfer
takes place, but no formatting is done; any subsequent statements are
ignored.

In the second job:

TAPE DD Statement
defines the input data set, which in this case is the transferred dump data set
processed in the first job.

SYSUTl DD Statement
defines a work data set into which the input data will be collected and from
which it will be processed.

PRINTER DD Statement
defines the output data set.

SYSPRINT DD Statement
defines the message data set.

SYSIN DD Statement
defines the data set that contains the PRDMP control statements. The data
set follows immediately.

FORMA T Control Statement
requests formatting of important system data areas.

J

L

L

CPUDA T A Control Statement
requests printing of processor-related information including all registers for
each processor, the current PSW for each processor and the common system
data area. (For further information, see PRINT CPUDATA description in
the FORMAT control statements description in this chapter).

END Control Statement
terminates PRDMP processing.

Example 3: Transferring a SYSl.DUMP Data Set and Processing It
in the Same Step

If you want to transfer the contents of a SYSl.DUMP data set to another data
set and process the dump immediately, you can use a job stream like the one
shown here. Note that the dump is directed to a data set defined by the SYSUTl
DD statement, and the SYSUT2 DD statement is not used.

If the SYSl.DUMP data set is date protected, you receive console message
IEC107D requesting permission to proceed. You must respond by entering

r OO'U'

to allow PRDMP to continue.

Note: After the PRDMP run, defined in the example below, is completed, the data
set resides in two locations, the new data set created on the specified disk and on
the SYSl.DUMPOO data set. To clear SYS1.DUMPOO, PRDMP must be run
stating that input is on SYSl.DUMPOO and output to tape (SYSUT2). (Utility
IEBGENER can be used to clear SYSl.DUMPOO instead of running PRDMP a
second time.)

//TRANS JOB MSGLEVEL=(l,l)
IISTEPl EXEC PGM=AMDPRDMP
IISYSPRINT DD SYSOUT=A
//PRINTER DD SYSQUT=A
IITAPE DD DSNAME=SYS1.DUMPOO,DISP=OLD
IISYSUTl DD DSN=DUMP2,UNIT=3330,VOL=SER=666666,
II DISP=(NEW,KEEP),SPACE=4104,(257,1»
IISYSIN DD *

1*

TITLE SYS1.DUMPOO THURSDAY PM
LPAMAP
PRINT STORAGE
END

In this example:

SYSPRINT DD Statement
defines the data set to which PRDMP directs its output, which in this case
is the processed dump.

Chapter 3. PRDMP 3-43

PRINTER DD Statement
defines the output data set.

TAPE DD Statement
defines the input data set, SYSl.DUMPOO.

SYSUTI DD Statement
defines a direct access data set to which the contents of SYSl.DUMPOO will
be transferred, and from which PRDMP will process the transferred dump.
In this example, the SYSUTl data set is to be kept, to allow further
processing at a later time. When you keep the SYSUTl data set, do not
direct more than one dump data set to it.

SYSIN DD Statement
defines the data set that contains the PRDMP control statements. The data
set follows immediately.

TITLE Control Statement
supplies a title for the processed dump.

LPAMAP Control Statement
instructs PRDMP to format and print a map of the contents of the link
pack area active queue at the time the dump was created.

PRINT STORAGE Control Statement
instructs PRDMP to print a map of storage for the memory that was
current at the time the dump was created.

END Control Statement
terminates PRDMP processing.

If you want to process the transferred dump data set again later, define it using a
TAPE DD statement and treat it like any direct access input data set.

Example 4: Processing Multiple Data Sets

3-44 Service Aids

PRDMP can process any number of input data sets in a single execution,
provided that each data set is properly defined by both DD statements and
control statements. This example shows how to process three data sets in the
same execution, two of which are on the same tape volume.

J

L //NOLINK
//STEPl
//SYSPRINT
//PRINTER
//TAPE

JOB MSGLEVEL=(l,l)
EXEC PGM=AMDPRDMP,PARM='T'
DD SYSOUT=A
DO SYSOUT=A
DD UNIT=2400,VOL=SER=DPTAPE,

LABEL=(,NL) ,DISP=OLD
//TODAYDMP DD UNIT=SYSDA,VOL=SER=DADUMP,

OSNAME=DMPDS,OISP=OLD
//SYSUTl DD UNIT=SYSDA,SPACE=(CYL,(lO,20))
//SYSIN DD *

1*

ON GO QCBTRACE,FORMAT,PRINT CURRENT
GO
NEWDUMP
GO
NEWDUMP
ON GO
GO
END

FILESEQ=2

DDNAME=TODAYOMP

SYSPRINT DD Statement
defines the message data set.

PRINTER DD Statement
defines the output data set.

TAPE DD Statement
defines two input data sets on the same tape volume.

TODAYDMP DD Statement
identifies an input data set on a direct access volume.

SYSUTI DD Statement
defines the PRDMP work data set; it is required in this example because
one of the input data sets is on a direct access volume.

SYSIN DD Statement
defines the data set containing the control statements. The data set follows
immediately.

First ONGO Control Statement
alters the default parameters (EDIT, SUMMARY, PRINT CURRENT) for
all subsequent GO statements by deleting the SUMMARY and EDIT
parameters and adding QCBTRACE and FORMAT.

GO Control Statement #1
instructs PRDMP to process the first data set on the volume described by
the TAPE DD statement.

NEWDUMP Control Statement witb FILESEQ = 2
identifies the second data set to be processed. Because a DDNAME
parameter is not specified, PRDMP assumes that the data resides on the
volume described by the TAPE DD statement. FILESEQ = 2 specifies that
the second data set on the volume should be processed.

Chapter 3. PRDMP 3-45

GO Control Statement #2
instructs PRDMP to process the data set described by the NEWDUMP
control statement.

NEWDUMP Control Statement with DDNAME=TODAYDMP
identifies the third data set to be processed. DDNAME= TODA YDMP
specifies that the data set is the one described by the TODA YDMP DD
statement.

Second ONGO Control Statement with No Parameters
restores the original default parameters for the GO control statement.

GO Control Statement #3
instructs PRDMP to process the data set described by the last NEWDUMP
control statement. The original default parameters are used.

END Control Statement
terminates PRDMP processing.

Example 5: Editing GTF Trace Data from Buffers in a Dump

3-46 Service Aids

This example shows how to edit GTF trace buffers from a dump of main storage.

//EDIT JOB MSGLEVEL=(l,l)
/ /STEP1 EXEC PGM=AMDPRDMP .~
//SYSPRINT DO SYSOUT=A ~
//PRINTER DO SYSOUT=A
//TAPE DO UNIT=2400,VOL=SER=DUMP,

LABEL=(,NL),DISP=OLD
//SYSUT1 DO UNIT=SYSDA, SPACE= (CYL, (10,20))
//SYSIN DO *

EDIT
END

/*

In this example:

SYSPRINT DD Statement
defines the message data set.

PRINTER DD Statement
defines the output data set.

TAPE DD Statement
defines the input data set.

SYSUTl DD Statement
defines the PRDMP work data set. Although it is not required unless the
input data set is on a direct access volume or a multivolume tape, it should
be included to reduce PRDMP processing time. When it is included, it must
specify enough space to contain the entire dump.

SYSIN DD Statement
defines the data set containing the PRDMP control statements. The data
set follows immediately.

EDIT Control Statement with No Parameters
instructs PRDMP to format and print GTF trace buffers in the input data
set, according to the default option SYS.

END Control Statement
terminates PRDMP processing.

Example 6: Editing a GTF Trace Data Set

When GTF trace data is recorded in an external data set, you can request the
editing of selected records only. This example shows how to edit trace records
associated with two specific jobs.

//EDIT JOB MSGLEVEL=(l,l)
PGM=AMDPRDMP,PARM='ER=O'
SYSOUT=A

//STEPl EXEC
//SYSPRINT DO
//PRINTER DO SYSOUT=A
//TRACE DO UNIT=2400,LABEL=(,NL) ,VOL=SER=TRACE,

DISP=OLD
//SYSIN DO *

/*

EDIT DDNAME=TRACE,JOBNAME=X57A
EDIT DDNAME=TRACE,JOBNAME=X56B,

SI0=10= (190,191)
END

In this example:

EXEC Statement
invokes PRDMP and specifies the action that PRDMP should take if a
program interruption occurs in a user program.

SYSPRINT DD Statement
defines the message data set.

PRINTER DD Statement
defines the output data set.

TRACE DD Statement
defines the input trace data set.

SYSIN DD Statement
defines the data set containing the PRDMP control statements. The data
set follows immediately.-

Chapter 3. PRDMP 3-47

EDIT Control Statement #1
instructs PRDMP to edit trace records in the data set defined by the
TRACE DD statement. The JOBNAME = X57 A parameter requests editing
for only those records associated with job X57 A.

EDIT Control Statement #2
instructs PRDMP to edit trace records from the data set defined by the
TRACE DD statement; that is, the same data set referred to in the first
EDIT statement. This time, however, only records associated with job
X56B are to be processed; of those, only SIO and I/O interrupt traces for
devices 190 and 191 are edited.

END Control Statement
terminates PRDMP processing

Example 7: Processing a Multi-Volume Page Data Set Dump

IIPAGEPRT
//STEP
IITAPE
II
IISYSIN

1*

3-48 Service Aids

This example shows how to process an input data set that spans two tape
volumes. In this case, the input data set is an AMDSADMP high-speed dump.

JOB
EXEC
DD

DISP=OLD

GO
END

DD

In this example:

EXEC Statement

MSGLEVEL=(l,l)
PROC=PRDMP
UNIT=2400,VOL=SER=(TAPEl,TAPE2),LABEL=(,NL),

*

calls the cataloged procedure to execute AMDPRDMP.

TAPE DD Statement
defines the input dump data set, which is contained on two tape volumes.

SYSIN DD Statement
defines the data set containing the PRDMP control statements.

GO Control Statement
requests PRDMP to process the dump data set using the default parameters,
which are SUMMARY, EDIT, PRINT CURRENT.

END Control Statement
terminates processing.

Example 8: Fast Dump Scan Display Session

This example illustrates how PRDMP might be run from a TSO terminal
emphasizing the DISPLAY verb and its subverbs. DISPLAY mode is entered to
find the asid number for use in the PRINT STORAGE command. It is assumed
that the user has defined a logon procedure similar to Figure 3-3 and that the
dump data set (MYDUMP) is on a direct access device (2314) with an id of
DISKOI.

* LOGON
* ALLOC
* ALLOC

IBMUSER SIZE(128)
FILE(PRINTER) SYSOUT(A)
FILE (SYSUT1) OLD UNIT(2314) DSNAME('MYDUMP')
VOLUME (DISKO 1)

* ALLOC FILE (SYSTERM) DATASET(*)
'SYS1.LINKLIB(AMDPRDMP) , * CALL

DISPLAY
HARDCOPY ON
LIST 4C.
EQUATE CVT xxxxxx

LIST CVT+O
EQUATE TNEW xxxxxx

LIST TNEW+C
EQUATE CURASCB xxxxxx

LIST CURASCB L(250)

enter DISPLAY mode
request hardcopy
find CVT
xxxxxx is address returned from
LIST 4C.
find CVTTCBP
xxxxxx is address returned from
LIST CVT+O
find pointer to current ASCB
xxxxxx is address returned from
LIST TNEW+C
find asid at ASCB + X'24'
and display 250 bytes

RETURN leave DISPLAY mode
PRINT STORAGE=(asid,NONUC,NOCOM)'
CVTMAP
END

* LOGOFF

*These are TSO commands. For a description of these commands, see the
OSjVS2 TSO Command Language Reference.

Chapter 3. PRDMP 3-49

3-50 Service Aids

L

Chapter 4. PTFLE

Introduction

PTFLE is a problem program that you can use to update an operating system
without performing another system generation. It has two different, but related,
functions:

1. The application function updates an operating system by replacing existing
load modules with new load modules containing PTFs (program temporary
fixes). It does this in a single operation, by generating control statements and
dynamically invoking the linkage editor. Note that you cannot use the
application function to apply ICRs (independent component releases) that
require assembly before invoking the linkage editor.

2. The generate function produces a job stream that, when executed, updates an
operating system by replacing existing load modules with new load modules
consisting of PTFs (program temporary fixes) or ICRs (independent
component releases). Note that the generate function does not actually apply
PTFs or ICRs; it only produces a job stream, which you must then execute.

This chapter tells how to use both functions.

Chapter 4. PTFLE 4-1

Application Function

4-2 Service Aids

The PTFLE application function produces control statements needed to apply
PTFs, and invokes the linkage editor to apply the PTFs, all in one operation.
The application function requires the following input:

• JCL to invoke the program AMAPTFLE. IBM provides a cataloged
procedure called PTFLE that includes most of the required JCL. .. ,

• A PTFLE control statement for each CSECT to be updated with a PTF.

• An object deck for each PTF to be applied.

• An IDENTIFY statement to flag each changed CSECT.

• The output from the generation Stage I SYSGEN from the operating system
that is to be updated.

Figure 4-1 shows how PTFLE uses this input to apply PTFs.

The application function requires a region size of 26K, plus the blocksize in bytes
for the data set defined by the PCHF DD statement, plus the storage required for
the linkage editor.

(')
::r"
I>'
'0
II> ...
~

~
'T1
t"'
tTl

.j::>.
I

tJ.l

~
c::
;

....
I -
~

= ~

"
"'C ...
" t')
II>
til

f!l" = IIQ

;' ... -=-II>

>
."
'S!.
;;"
aD
::to

" =
~
c::
= t') -Q"
=

r

INPUT

PTFLE
Control
Statement

OBJECT
DECK

//PCHF

//SYSLMOD

module I to be updated

r

PROCESS

1 . Search SYSGEN Stage 1 output for
module name supplied in PTFLE
control statement"

2. Generate temporary data set
(OUTFl which contains the input
object deck and linkage editor
control statements (from PTFLE
Stage 1 output")

3. Invoke linkage editor to process
temporary data set. update module.
and. thus. apply PTF"

r

OUTPUT

(~)I ~ //SYSLMOD

I I I~ updated;
CSECT flagged

Using the PTFLE Cataloged Procedure

4-4 Service Aids

Figure 4-2 shows the PTFLE cataloged procedure. This IBM supplied procedure
assumes the following:

• all system libraries are cataloged

• Stage I output data set consists of unblocked 80-byte records on a non-labeled
tape.

IIPTFJCL
IIPTF
IIPRINT
IIPCHF

PROC USE='IEWL' ,LIB1=LINKLIB
EXEC PGM=AMAPTFLE,PARM=&USE
DD SYSOUT=A
DD UNIT=SYSSQ,LABEL=(,NL),DISP=OLD,

II VOL=SER=STAG1,DCB=(BLKSIZE=80)
IIOUTF
IISYSUTl
IISYSUT2
IISYSPRINT
IISYSLMOD
IIPARMLIB

DD UNIT=SYSDA, SPACE= (TRK, (20,20))
DD UNIT=SYSDA, SPACE= (TRK, (20,20»
DD UNIT=SYSDA,SPACE=(TRK,(20,20))
DD SYSOUT=A
DD DSNAME=SYS1.&LIB1,DISP=OLD
DD DSNAME=SYS1.PARMLIB,DISP=SHR

Figure 4-2. PTFLE Cataloged Procedure -- Application Function Only

PROC Statement
assigns default values for symbolic parameters in the EXEC and SYSLMOD
DD statements.

EXEC Statement
invokes AMAPTFLE. The PARM parameter supplies a symbolic name for
the linkage editor that PTFLE is to use. The default value, assigned in the
PROC statement, is IEWL.

PRINT DD Statement
defines the message data set for PTFLE.

PCHF DD Statement
defines the output data set from the generation Stage I SYSGEN of the
system that is to be updated. This output must not contain machine control
characters.

OUTF DD Statement
defines a temporary sequential data set used by PTFLE and the linkage
editor. This data set can reside on either a magnetic tape or direct access
volume. Do not attempt to specify the blocksize.

SYSUTl DD Statement
defines a work data set for the linkage editor. This data set must reside on
a direct access device.

SYSUT2 DD Statement
defines a work data set for PTFLE. This data set must reside on a direct
access device. Do not attempt to specify the blocksize.

SYSPRINT DD Statement
defines the message data set for the linkage editor.

SYSLMOD DD Statement
defines the library containing modules that are to be updated. The
DSNAME parameter supplies a symbolic name for the library; the default
value assigned in the PROC statement is LINKLIB.

PARMLIB DD Statement
defines the SYS1.PARMLIB data set. PTFLE requires this statement
whenever it must update the nucleus.

Executing the Application Function

Figure 4-3 is an example of a job stream that executes the application function of
PTFLE.

IIPTFPROC JOB
II EXEC

MSGLEVEL=(l,l)
PTFLE

IIPTF.MODF DD *
IEFSD082 01117251 FIRST PTF

Insert PTF object deck here
IDENTIFY CSECT1('LEVEL1PTF') ,CSECT5('LEVEL3PTF')

IEFSD085 01117251 SAME PTF

1*

Insert PTF object deck here
IDENTIFY CSECTIO ('HERETOO')

Figure 4-3. Sample Job Stream for Executing the Application Function of PTFLE

Application Function Output

When the application function of PTFLE completes processing, all load modules
requiring fixes have been updated. No further processing is necessary.

Note: The application function is used before PTFs are applied to a distribution
library; to avoid having to re-apply a PTF after system generation, be sure you
update the distribution libraries with all PTFs applied to the system.

Chapter 4. PTFLE 4-5

Generate Function

4-6 Service Aids

The PTFLE generate function produces, but does not execute, a job stream that
applies PTFs and ICRs. The job stream must be executed in a later, separate
step.

The generate function requires the following input:

• JCL to invoke the program AMAPTFLE. Because IBM does not provide a
cataloged procedure for this purpose, you must supply your own JCL. (The
next section shows you how to write PTFLE JCL.)

• A PTFLE control statement for each CSECT to be updated. (See "Control
Statements" in this chapter.)

• (Optional) An IDENTIFY statement to flag each changed CSECT. (See
"Control Statements" in this chapter.)

• The output from the generation Stage I SYSGEN of the operating system
that is to be updated.

Note: The generate function does not require a PTF object deck.

The generate function also requires that the distribution libraries are updated to
contain all PTFs and ICRs that are to be applied to the system. The distribution
libraries are input not to PTFLE, but to the program that executes the JCL
produced by PTFLE and applies the PTF and ICRs. Use the linkage editor to
include PTFs and ICRs in the distribution libraries; for information about using
the linkage editor, see the OS/VS Linkage Editor and Loader.

Figure 4-4 shows how the generate function uses input.

The generate function requires region size of 47K plus the blocksize in bytes for
the data set you define on the PCHF DD statement.

The Stage I output tape requires an index of SYSl. for the data set you specified
on the SYSLMOD DD statement that is generated in the output.

(l

i
~

~
t"'
tr:I

f'"
...J

~
= ~

'" ~
SJ
~

= ...
~ a
f')

"' ~
5i"

IIQ

;-.. :r
"'
~
1:1

"' ..
II)

S'
"I'J
= 1:1
f') c·
1:1

r

INPUT

(PTFlE
Control
Statement

r
PROCESS

1. Searches SYSGEN Stage I output
for module name supplied in
PTFlE control statement.

2. Generates job stream to be used in
applying PTF or ICR. Job stream
varies according to attributes found
in SYSGEN Stage I output.

r
OUTPUT

Job Stream

OR

//OUTF

To execute:

• Linkage Editor
• IEBCOPY
• Assembler

Writing JCL for the Generate Function

Figure 4-5 shows the JeL statements that you need to execute the generate
function of PTFLE.

IIGENER
II
jjPRINT

JOB MSGLEVEL=(l,l)
EXEC PGM=AMAPTFLE
DD SYSOUT=A
DD UNIT=2400,LABEL=(,NL), IIOUTF

II
IIPCHF

DISP=(NEW,KEEP),VOL=SER=OUTPUT
DD UNIT=2400,LABEL=(,NL),

DISP=OLD,VOL=SER=SYSGEN,DCB=(LRECL=80,BLKSIZE=80)
IIMODF DD *

Insert Control statements here
1*

Figure 4-5. Sample JCL Needed to Execute PTFLE - Generate Function Only

OUTF DD Statement
defines the output data set, which can be directed to a card punch, a direct
access device, or a tape device. Do not specify a block size.

PCHF DD Statement
defines the output from system generation Stage I.

MODF DD Statement
defines an instream data set that contains control statements.

Executing the Generate Function

jjPTFJCL
II
IIPRINT
IloUTF

IIPCHF

Figure 4-6 is an example of a job stream you might use to execute the generate
function of PTFLE.

JOB MSGLEVEL=(l,l)
EXEC PGM=AMAPTFLE
DD SYSOUT=A
DD UNIT=SYSDA,VOL=SER=OUTPUT,DISP=(NEW,KEEP),

DSNAME=DAOUTPUT,SPACE=(TRK,(20,10»
DD UNIT=2314,DISP=OLD,VOL=SER=SYSGEN,

DCB=(LRECL=80,BLKSIZE=160)
IIMODF DD *
IEBGEN03 05199133
IEX51 02150191

IDENTIFY IEX51000('PTF20191')
IGEOOOOA 03144004
IGEOOOOD 02155012
1*

Figure 4-6. Sample Job Stream for Executing the Generate Function

4-8 Service Aids

For this example, only one module is flagged with an IDENTIFY statement. For
the generate function you may omit the IDENTIFY statement; however, the
information you supply with the IDENTIFY statement is a valuable diagnostic
aid, and it is wise to take full advantage of it.

Generate Function Output

The output of the generate function is a job stream consisting of JCL and control
statements. This job stream invokes a program, either the linkage editor, the
assembler, or IEBCOPY, to update the target module with a PTF or ICR from
the distribution library. If the target module was link edited into the operating
system during system generation, the linkage editor is invoked to apply the PTF.
If the target module was assembled, first the assembler and then the linkage editor
is invoked. If the target module was copied, IEBCOPY is invoked.

PTFLE also provides a listing of the job stream that it produces.

Figure 4-7 is an example of linkage editor-type output produced by the generate
function of PTFLE.

IISYSGENS JOB 1, 'SYSTEM GENERATION',MSGLEVEL=(l,l)
IISG5 EXEC LINKS,PARM='NCAL,LIST,XREF,OVLY,XCAL,LET',
II UNIT='2314' ,SER=SYSRES,N=SYS1,NAME=LINKLIB,P1=' "
II MOD=,P2=' ',OBJ=OBJPDS,CLASS=A
IIAOS04 DD DISP=SHR,VOLUME=(,RETAIN),DSNAME=SYS1.AOS04
IISYSLIN DD *

INCLUDE AOS04(AEWLFMAP)
ENTRY AEWLFROU
ALIAS IEWK,AEWL
ALIAS HEWL,HEWLF064
ALIAS LINKEDIT

INCLUDE SYSLMOD(AEWLF064)
OVERLAY ONE *** VALID EXCLUSIVE CALL TO AEWLFINP ***
INSERT AEWLFINT,AEWLFOPT
OVERLAY ONE **VALID EXCL. CALLS TO AEWLFADA,IEWLCFNI,AEWLFADA
INSERT AEWLFINP,AEWLFESD,AEWLFEND,AEWLFSYM,AEWLFRCG
INSERT AEWLFSCN,AEWLFRAT,AEWLFINC,AEWLFIDR
OVERLAY ONE
INSERT AEWLFMAP

·OVERLAY TWO **VALID EXCL. CALLS TO AEWLFFNL,AEWLFSCD.AEWLFFNL
INSERT AEWLFADA,AEWLFENT,AEWLFENS,AEWLFOUT
OVERLAY TWO *** VALID EXCLUSIVE CALL TO AEWLFFNL ***
INSERT AEWLFREL,AEWLFSCD,AEWLFSIO
OVERLAY TWO *** VALID EXCLUSIVE CALL TO IEWLENAM ***
INSERT AEWLFFNL,AEWLFBTP

SETSSI 99999999
NAME AEWLF064(R)

1*

Figure 4-7. Linkage Editor JCL and Control Statements Produced by PTFLE (Generate
Function)

Figure 4-8 shows an example of IEBCOPY -type output produced by the generate
function of PTFLE.

Chapter 4. PTFLE 4-9

IISG44 EXEC PGM=IEBCOPY,COND=(8,LT)
IISYSUT3 DD DISP=SHR,DSNAME=SYS1.UT3
IISYSPRINT DD SPACE=(121,(SOO,lOO),RLSE),
II DCB=(RECFM=FB,LRECL=121,BLKSIZE=121),
II SYSOUT=A
IICISOS DD DISP=SHR,VOLUME=(,RETAIN),DSNAME=SYS1.CISOS
IISVCLIB DD DSNAME=SYS1.SVCLIB,VOLUME=(,RETAIN,SER=SYSRES),
II UNIT=2314,DISP=OLD
IISYSIN DD *

1*

COpy OUTDD=SVCLIB,INDD=CISOS
SELECT MEMBER=((IGEOOOOA"R»
SELECT MEMBER=((IGEOOOOD"R)
SELECT MEMBER=((IGEOOOOG"R»

Figure 4-8. IEBCOPY JCL and Control Statement Produced by PTFLE (Generate Function)

4-10 Service Aids

Figure 4-9 is an example of Assembler and Linkage Editor output produced by
the generate function of PTFLE.

IISYSGENS JOB 1, 'SYSTEM GENERATION',MSGLEVEL=(l,l)
IISG8 EXEC ASMS,OBJ=OBJPDS,MOD=DCM009,CLASS=A
IISYSIN DD *

PRINT ON,NODATA
DCM009 CSECT

1*

IEECDCM DEVICE=,USE=FC
END

IISG2 EXEC LINKS,PARM='NCAL,LIST,XREF',
II UNIT='2314' ,SER=SYSRES,N=SYS,NAME=LPALIB,P1=' ,
II MOD=,P2=' ',OBJ=OBJPDS,CLASS=A
IISYSLIN DD *

1*

INCLUDE SYSPUNCH(DCM009)
INCLUDE SYSLMOD(DCM009)
SETSSI 33333333
NAME DCM009(R)

Figure 4-9. Example of Assembler and Linkage Editor Output Produced by PTFLE
(Generate Function)

Control Statements

Both functions of PTFLE require a PTFLE control statement for each module to
be updated. The application function also requires a linkage editor IDENTIFY
statement for each module. The IDENTIFY statement is optional in the generate
function. The following sections describe how to code these control statements.

PTFLE Control Statement

IEBGEN04
IEBGEN05
MYMOD
MOD1
MOD2

The PTFLE control statement consists simply of a module name from I to 8
characters long, an 8-character system status information (SSI) number, and any
comments you may wish to add. The module name must begin in column I and
be followed by one or more blanks. The SSI number must begin in column 10
and be followed by one or more blanks. Only blanks may be inserted between the
module name and the SSI number. Here are several examples of PTFLE control
statements coded correctly:

05199134 THIS IS A MODULE TO BE UPDATED
05199135 THIS IS ANOTHER MODULE TO BE UPDATED
06123487 THIS MODULE NAME HAS ONLY FIVE CHARACTERS
06134567 NOTICE THAT THE MODULE NAME CAN BE 1 TO 8 CHARACTERS
06145678 THE SSI NUMBER HOWEVER MUST ALWAYS START IN COLUMN 10

Module Name Parameter

You must supply a PTFLE control statement for each module that you want to
update. For modules that have alias names and that were copied rather than link
edited during system generation, you must supply a separate control statement for
each alias name. Alias-name control statements need not contain SSI numbers.
Here is an example of control statements defining a single module with many alias
names:

MODULE22 05167788 THIS IS THE TRUE MODULE NAME
ALIAS1
ALIAS2
ALIAS3
ALIAS4

In anyone execution of PTFLE, you may include up to 150 control statements.
For the generate function, you must count all alias statements toward this
maximum.

If any module being updated has both a component library name and a system
library name, you need to include only the component library name in a PTFLE
control statement.

With one exception, you can use PTFLE to update a module whose name in the
distribution library differs from the CSECT name in the module. The exception is
any module that was link edited rather than copied during system generation and

Chapter 4. PTFLE 4-11

whose overlay structure was defined using INCLUDE statements rather than
INSERT statements. The FORTRAN H compiler is an example of such a
module.

Modules copied from the distribution library during system generation may be
updated using PTFLE, providing the SELECT statement was used in the copy
operation.

SSI Number Parameter

The number you specify in the SSI field of a PTFLE control statement must be
the number that is listed under the heading "Status Info" on the PTF cover letter.
This number is placed in the library directory entry for the updated module to
indicate that the PTF was changed. If you omit the SSI field from a control
statement containing a true module name, the SSI field in the module is set to
zeros; you can, however, omit the SSI field from alias control statements without
altering the SSI.

IDENTIFY Control Statement

The IDENTIFY control statement allows you to flag the specific CSECT within a
module that is to be updated with a PTF or ICR. PTFLE does not use the
IDENTIFY statement directly, but passes it to the linkage editor for processing.
For the application function, you must include an IDENTIFY statement for eaCh. "\"
module that is to be updated; if you omit the IDENTIFY statement for one"
module, PTFLE issues an error message and terminates processing. For the
generate function, the IDENTIFY control statement is optional.

Code the IDENTIFY statement according to the following rules:

• Always begin the IDENTIFY statement in or after column 2.

• You may specify as many as 40 characters of identifying information for each
CSECT name.

• To continue the IDENTIFY statement, close the first card with a delimiting
comma and a non blank character in column 72, and start the next card in
column 16. Note, however, that PTFLE allows a maximum of 150
IDENTIFY statements in a single execution, and all IDENTIFY continuation
statements must be counted toward this total.

Here are some examples of IDENTIFY control statements:

IDENTIFY MYCSECT('PTF41392547') ,YOURCSCT('PTF12345678')
IDENTIFY CSECT1('***THIS IS A 40 CHARACTER IDENTIFIER****')

IDENTIFY CSECT2('PTF1') ,CSECT3('PTF2'),CSECT4('PRF3')
IDENTIFY CSECT1('PTFA'),CSECT2('PTFB') ,CSECT3('PTFC'),CSECT4('PTFD'), x

CSECT5('PTFE'),CSECT6('PTFF')

4-12 Service Aids

Chapter 5. SADMP

Introduction

SADMP is a stand-alone program that produces either

• a formatted dump of real storage on a tape or printer, or
• an unformatted machine-readable dump of real and virtual storage on a tape.

The formatted dump that is produced by low-speed SADMP and directed to tape
can be printed by the PRDMP service aid or the IEBPTPCH utility program.

The unformatted, machine-readable dump, which is produced by high-speed
SADMP, can be formatted and printed by the PRDMP service aid. Note that the
unformatted dump cannot be directed to a printer.

Steps to Generate and Execute SADMP

AMDSADMP is supplied as a macro definition in the system library
SYSl.MACLIB. The following is a summary of the steps to generate and execute
SADMP:

1. Code the AMDSADMP macro instruction, specifying the type of SADMP
program you want: high-speed or low-speed, residing on tape or direct access
device, with output to tape or printer.

2. Assemble the AMDSADMP macro instruction. This produces the stage 2
JCL and control statements that are used in the following step.

3. Execute the job stream produced in the previous step. Execution of this step
creates the desired SADMP program in executable f9rm and places it on the
SADMP residence volume.

4. Execute the SADMP program via an IPL of the SADMP residence volume.

Notice that steps 1 through 3 are all performed under the operating system. Step
4 is a stand-alone operation.

Chapter 5. SADMP 5-1

Notes:

1. Stand-alone dump uses only real, online devices. When dumping to or from
devices that have both real and virtual addresses, specify only real addresses to
SADMP. Also, stand-alone dump must reside on a real storage device.

2. Do not IPL stand-alone dump via a processor from a channel controlled by the
channel reconfiguration hardware (CRH).

3. SADMP output cannot be directed to its residence volume.

4. The SADMP residence volume and operator console must be attached to the
same CPU or channel set.

5. The output device can be attached to another CPU when the CPU SADMP was
IPLdfrom does not have a device attached to it with the same I/O address.

6. The SADMP operator console must be specified on the CONSOLE keyword.

The remainder of this chapter contains the detailed explanations of how to
perform each of these steps.

Coding the Macro Instruction

5-2 Service Aids

The SADMP program has the following basic variations:

• High-speed, residing on a direct access device, with output directed to a tape
volume.

• High-speed, residing on a tape device, with output directed to a tape volume.

• Low-speed, residing on a direct access device, with output directed to a tape
volume.

• Low-speed, residing on a direct access device, with output directed to a
printer.

The high-speed version of SADMP dumps real storage and areas of virtual
storage in each address space. The output is intended for later machine
processing by PRDMP. The output includes: a dump title, the processor store
status information for each processor, real storage from address 0 to the top of
real storage in real address sequence (some blocks may be missing because of
omine main storage), instruction trace data (created by the console - initiated
loop recording), and selected virtual storage areas.

The system data areas dumped from real storage are:

• The nucleus
• Subpool 245 - SQA
• Subpools 227 and 228 - CSA

I
I ,
I
I

The system data areas dumped from virtual storage are:

• Subpools 231, 239, and 241 - CSA
• Subpool 255 - LSQA
• Subpools 236 and 237 - SW A
• Subpools 229 and 230 - data management areas

The low-speed version of SADMP produces a dump title specified at dump
execution time, followed by processor-related data for each available processor,
followed by a dump of user-selected areas of real storage (from 0 to 16
megabytes).

The following sections describe how to code the AMDSADMP macro instruction
to produce high-speed and low-speed versions of the dump program. For
examples, refer to the Examples section of this chapter.

High-Speed Dump Program

Figure 5-1 shows how to code the AMDSADMP macro instruction to produce a
high-speed dump program.

[symbol] AMDSADMP [TYPE=HI] [,keyword] ...

The keywords are:
IPL={TunitIDunitID3330}
VOLSER={volserI SADUMP}
ULABEL={PURGEINOPURGE}
CONSOLE={(cnum,ctype) I «cnum,ctype), ...) I (OlF,3215)}
SYSUT={unitISYSDA}
OUTPUT={TunitIT282}

Figure 5-1. Format of AMDSADMP Macro Instruction Used to Generate a High-Speed Dump
Program

symbol
is an arbitrary name you can assign to the AMDSADMP macro instruction.
SADMP uses this symbol to create a jobname for use in the initialization
step.

AMDSADMP
is the name of the macro instruction.

TYPE=HI
specifies the high-speed version of the dump program. If you omit this
parameter, TYPE = HI is assumed as the default.

IPL = {TunitIDunitID3330}
specifies the device address or the device type of the SADMP residence
volume. The first character indicates the volume type; T for tape, D for
DASD. The unit character string is used in the stage 2 JCL as the UNIT
value to allocate the residence volume for initialization. IPL = D3330 is the
default.

Chapter 5. SADMP 5-3

5-4 Service Aids

VOLSER = {voiserISADUMP}
specifies the VOL = SER value for the stage 2 JCL to allocate the residence
volume for initialization. If a tape volume is specified, it must be NL (no
labels). VOLSER = SADUMP is the default.

ULABEL = {PURGE I NOPURGE}
specifies whether existing user labels on a DASD residence volume should
be deleted (pURGE) or retained (NOPURGE). If you specify NOPURGE,
the default, the SADMP program is written on cylinder 0 track 0 of the
residence volume, immediately following all user labels. If the user labels
occupy so much space that the SADMP program does not fit on track 0,
the initialization program issues an error message and terminates.

Note that you must specify ULABEL = PURGE when the residence volume
is a 2314 volume that contains user labels.

CONSOLE = {(cDum,ctype)l«cnum,ctype), ...)I(OlF.3215)}
indicates the device addresses and device types of the system consoles that
SADMP is to use while taking the dump. You can specify from 1 to 21
consoles by coding:

CONSOLE = {(cnum,ctype)I«cnum,ctype), ...)}

The default, if you omit this parameter, is a 3215 console printer keyboard
with the unit address of01F. The following device types are valid and
interchangea ble:

• 1052,2150,3210, and 3215 (printer keyboards)
• 3066 (system console)
• 3036, 3158, 3277, 3278, and 3279 (console displays)

Note: When SADMP is IPLed, it loads a wait reason code of X'OOOIFF'
into a wait PSW. If one of the consoles from the CONSOLE list is
available, press enter to cause SADMP to use this console. If no console
from the CONSOLE list is available, ready a tape on the default output
device (OUTPUT) and cause an external interrupt on the processor where
SADMP was being IPLed. This causes SADMP to proceed without a
console using the parameters coded on the AMDSADMP macro to control
its execution.

SYSUT = {unitISYSDA}
specifies the UNIT value for the stage 2 JCL. This is the device to be used
for work files during the initialization stage. The device may be specified as
a group name (for example, SYSDA), a device type (for example, 3330), or
a unit address (for example, 131). SYSUT = SYSDA is the default.

OUTPUT = {TunitIT282}
specifies the unit address of the output device to be used by SADMP as a
default value if the EXTERNAL INTERRUPT key is used to bypass
console communication. (Refer to the note under CONSOLE.) High-speed
dump output must always be directed to a tape device. This parameter does
not allow the same flexibility that the IPL parameter allows (for example"
T2400 is not a valid OUTPUT parameter). With a response to message .."
AMDOOIA, the address that you specify to AMDOOIA on the OUTPUT

L

L

L

Low-Speed Dump Program

parameter can be overridden at execution time. (Note that a null response
causes the OUTPUT value to be used.) The output device need not be
attached to the processor from which AMDSADMP is IPLed.

OUTPUT = T282 is the default.

Figure 5-2 shows how to code the AMDSADMP macro instruction to produce a
low-speed dump program.

[symbol] AMDSADMP TYPE=LO [,keyword]

The keywords are:
IPL={DunitID3330}
OUTPUT={PunitITunitIPOOE}
VOLSER={volserI SADUMP}
ULABEL={PURGEINOPURGE}
CONSOLE={(cnum,ctype) I ((cnum,ctype), ••.) I (OlF,321S)}
SYSUT={unitISYSDA}
ADDR={REAL/VIRTUAL}

Figure 5-2. Format of AMDSADMP Macro Instruction Used to Produce a Low-Speed Dump

symbol
an arbitrary name you can assign to the AMDSADMP macro instruction.
SADMP uses this symbol to create a jobname for use in the initialization
step.

AMDSADMP
the name of the macro instruction.

TVPE=LO
specifies the low-speed version of the dump program. If you omit this
parameter, TYPE = HI is the default.

IPL = {DunitID3330}
specifies the unit address or the device type of the SADMP residence
volume. The first character must be D (for DASD). The unit character
string is used in the stage 2 JeL as the UNIT = value to allocate the
residence volume for initialization. IPL = D3330 is the default.

OUTPUT = {Punit IPOOE I Tuoit}
specifies the device to which SADMP output is to be written. The first
character indicates the output device type; P for printer, T for tape. The
unit character string is the unit address to be used when the EXTERNAL
INTERRUPT key is used to bypass console communication. (See the note
under CONSOLE.)

This parameter does not allow the same flexibility that the IPL parameter
allows (for example, T2400 is not a valid OUTPUT parameter). With a
response to message AMDOOIA, the.address that you specify to AMDOOIA
on the OUTPUT parameter can be overridden at execution time. (Note

Chapter 5. SADMP 5-5

5-6 Service Aids

that a null response causes the OUTPUT value to be used.) The output
device must be attached to the processor from which AMDSADMP is
IPLed ..

OUTPUT = POOE (that is, a printer) is the default.

VOLSER = {volserISADUMP}
specifies the VOL = SER value for the stage 2 JCL to allocate the residence
volume for initialization. VOLSER = SADUMP is the default.

CONSOLE = {(cDum,ctype)l«cDum,ctype), ...)I(OlF,3215)}
indicates a list of the device numbers and device types for the system
console that SADMP may use while taking the dump. You can specify
from 1 to 21 consoles by coding:

CONSOLE = {(cnum,ctype)I«cnum,ctype), ...)

The default, if you omit this parameter, is a 3215 console printer keyboard
with the unit address of01F. The following device types are valid, and are
interchangeable:

• 1052,2150,3210, and 3215 (printer keyboards)
• 3066 (system console)
• 3036,3158,3277, 3278, and 3279 (console displays)

Note: When SADMP is IPLed, it loads a wait reason code of X'OOOlFF'
into a wait PSW. If one of the consoles from the CONSOLE list is
available, press enter to cause SADMP to use this console. If no console
from the CONSOLE list is available, ready a tape on the default output
device (OUTPUT =) and cause an external interrupt on the processor where
SADMP was being IPLed. This causes SADMP to proceed without a
console, using the parameters coded on the AMDSADMP macro to control
its execution.

SYSUT = {unitISYSDA}
specifies the UNIT value for the stage 2 JCL. This is the device to be used
for work files during the initialization stage. The device may be specified as
a group name (for example, SYSDA), a device type (for example, 3330), or
a unit address (for example, 131). SYSUT=SYSDA is the 'default.

ULABEL = {PURGEINOPURGE}
specifies whether existing user labels on a DASD residence volume should
be deleted (PURGE) or retained (NOPURGE). If you specify NOPURGE,
the SADMP program is written on cylinder 0 track 0 of the residence
volume, immediately following all user labels. If the user labels occupy so
much space that the SADMP program does not fit on track 0, the
initialization program issues an error message and terminates.
ULABEL = NOPURGE is the default.

Note that you must specify ULABEL = PURGE when the residence volume
is a 2314 volume that contains user labels.

L

ADDR = {REAL I VIRTUAL}
specifies the default action to be taken by SADMP when the console is
unavailable or when the operator specifies end of block to a prompting
message for the type of dump desired. REAL indicates that real storage
(from 0 to 16 megabytes) is to be dumped in ascending order by real
addresses. VIRTUAL indicates that real storage (from 0 to 16 megabytes)
is to be dumped in ascending order by virtual addresses. The virtual
addresses are in the segment table of the address space in control when the
IPLed processor was stopped or if no store status was done. The default is
REAL.

Note that the ADDR keyword is valid for low-speed SADMP only.

Assembling the Macro Instruction

The next step in generating the stand-alone dump program is assembling the
macro instruction. Figure 5-3 is an example of the JCL statements needed for
this operation. This example uses ASMFC, the standard IBM-supplied cataloged
procedure for invoking an assembler.

IIASMSADMP
II
IIASM.SYSIN

JOB
EXEC
DD
AMDSADMP
END

MSGLEVEL=(l,l)
ASMFC,PARM.ASM='DECK'
*
TYPE=HI

1*

Figure 5-3. Sample JCL Needed to Assemble the AMDSADMP Macro Instruction

JOB Statement
initiates the job.

EXEC Statement
invokes the cataloged procedure ASMFC, which does the following:

• Invokes an assembler.

• Identifies the system macro library (SYSl.MACLIB), which contains the
AMDSADMP macro definition.

• Defines work data sets for the assembler's use.

• Defines two output data sets (SYSPRINT and SYSPUNCH).

The EXEC statement also requests that the assembler output be punched as
a deck.

ASM.SYSIN DD Statement
defines the input stream, which in this case consists of the AMDSADMP
macro instruction and an END control statement.

Chapter 5. SADMP 5-7

Output from this assembly is an object deck and a listing of the statements in the
deck. The deck contains JCL and control statements; these constitute a job '\
stream that creates the stand-alone dump program and initializes it on a tape or """"
direct access volume.

The output listing may also contain error messages that describe errors you may
have made in coding the AMDSADMP macro instruction. To respond to one of
these messages, check your specification of the macro instruction and run the
assembly step again.

Error Messages from AMDSADMP Assembly

5-8 Service Aids

On the following pages are the error messages that can appear on the output
listing when you assemble the AMDSADMP macro. Words beginning with & are
replaced with the value that you specified on the macro.

IPL=&IPL IS INVALID, IPL=D3330 IS ASSUMED

Explanation: The IPL operand is invalid. It is greater than 7 char~cters, or less
than 4 characters, or not prefixed with a 'T' or a 'D'.

Severity Code: 4.

CONSOLE ADDR= IS INVALID, CONSOLE ADDR=OlF IS ASSUMED

Explanation: The console address operand is not three characters.

Severity Code: 4.

CONSOLE TYPE= IS INVALID, CONSOLE TYPE=321S IS ASSUMED

Explanation: An invalid console type was specified. The acceptable consolelypes
are:

1052
2150
3036

3158
3210
3215

3066 3277

3278
3279

The length of the console type is not equal to 4.

Severity Code: 4.

L TYPE=&TYPE IS INVALID, TYPE=HI IS ASSUMED

Explanation: Type operand must be HI or LO.

Severity Code: 4.

ADDR &ADDR IS INVALID. ADDR REAL IS ASSUMED

Explanation: The ADDR operand must be REAL or VIRTUAL.

Severity Code: 4.

OUTPUT=&OUTPUT IS INVALID, OUTPUT=POOE IS ASSUMED

Explanation: For TYPE = LO the output address was not prefixed with a 'T' or
'P' or the address was not a 3-character address.

Severity Code: 4.

PARAMETERS IPL=&IPL2 AND TYPE=&TYPE ARE INCOMPATIBLE
MACRO PROCESSING TERMINATED

Explanation: IPL = Txxx and TYPE = LO are incompatible. A low-speed dump
program may reside only on a direct access device.

Severity Code: 8.

OUTPUT=&OUTPUT IS INVALID, OUTPUT=T282 IS ASSUMED

Explanation: For TYPE = HI the output address was not prefixed by a 'T' or the
address was not three characters.

Severity Code: 4.

Chapter 5. SADMP 5-9

SYSUT=&SYSUT IS INVALID, SYSUT=SYSDA IS ASSUMED

Explanation: The SYSUT operand exceeds 6 characters.

Severity Code: 4.

VOLSER=&VOLSER IS INVALID, VOLSER=SADUMP IS ASSUMED

Explanation: The VOLSER operand exceeds 6 characters.

Severity Code: 4.

ULABEL=&ULABEL IS INVALID, ULABEL=NOPURGE IS ASSUMED

Explanation: The ULABEL operand is not PURGE or NOPURGE.

Severity Code: 4.

Directing Assembly Output to Tape or DASD

5-10 Service Aids

You can override the cataloged procedure ASMFC to direct the object module
output from the assembly to a tape or direct access volume. To direct output to
tape, add the following statement to the JCL shown in Figure 3-3 on page 3-14.

IIASM.SYSPUNCH DO UNIT=2400,LABEL=(,NL),DISP=(NEW,KEEP),
II VOL=SER=SCRTCH

To write the output on a direct access device, use the following statement:

IIASM.SYSPUNCH DO UNIT=SYSDA,SPACE=(TRK,(2,1»,DSN=DMPPACK,
II DISP=(NEW,KEEP),VOL=SER=SCRTCH

Assembling Multiple Macro Instructions

If you anticipate need for more than one version of the stand-alone dump
program in your installation, you can save time by assembling all applicable
variations of the AMDSADMP macro instruction in the same step. Separate the
versions by coding a unique symbol at the beginning of each macro instruction.
SADMP uses the symbol you code to create a jobname for the initialization
program.

Here is an example of a job stream used to assemble four versions of the
AMDSADMP macro instruction. Note that you must specify a different
residence volume for each program you generate. Output from this step is an
object deck and· assembly listing for each of the four versions.

//ASMSADMP JOB
II EXEC
//ASM.SYSIN DO
HITAPE AMDSADMP
HIDISK AMDSADMP
LOT APE AMDSADMP
LOPTR AMDSADMP

END
1*

MSGLEVEL=(l,l)
ASMFC,PARM.ASM='DECK '
*

IPL=T2400,VOLSER=SADMPl
VOLSER=SADMP2
TYPE=LO,OUTPUT=T282,VOLSER=SADMP3

TYPE=LO,VOLSER=SADMP4

L Initializing the Residence Volume

L

You must make sure that the SADMP residence device does not contain a
SYSl.PAGEDUMP data set when you are generating a direct access resident
dump program. If SADMP finds such a data set on the device to be initialized as
the residence device, initialization terminates.

Execution of the stage 2 JCL initializes the SADMP residence volume. During
execution of this stage, a SYSl.PAGEDUMP data set is created (on the residence
volume) that is used to contain the SADMP programs.

Physical output from the initialization step is a listing, that may contain the
following error messages.

Error Messages from Stage 2

These messages identify errors in the keywords of the AMDSADM2 macro that is
generated by the assembly of the AMDSADMP macro. The following list shows
the keywords from the error messages and the corresponding keywords on the
AMDSADMP macro that require correction.

Message
TYPE2
IPL2
OUTPUT2
ADDR2
CONSOL2

AMDSADMP Keyword
TYPE
IPL
OUTPUT
ADDR
CONSOLE list of device addresses and device types

Chapter 5. SADMP 5-11

5-12 Service Aids

Words shown in the error messages that begin with an & are replaced with the
keyword value in error.

To respond to one of these messages, make sure that the input to the assembly
step, output from the assembly step, and input to the initialization step are all
correct and that all three correspond. Then run the initialization step again.

TYPE2=&TYPE2 INVALID; MACRO PROCESSING TERMINATED

Explanation: The TYPE2 operand is not HI or LO.

Severity Code: 12.

OUTPUT2=&OUTPUT2 FOR TYPE=&TYPE2 INVALID;
MACRO PROCESSING TERMINATED

Explanation: For TYPE2 = HI, OUTPUT2 = Pxxx was specified. OUTPUT2
must be Txxx for high-speed dumps.

Severity Code: 12.

OUTPUT2=&OUTPUT2 INVALID; MACRO PROCESSING TERMINATED

Explanation: For TYPE2=HI, the OUTPUT2 operand is not of the form Txxx.
For TYPE2 = LO, the OUTPUT2 operand is not of the form Txxx or Pxxx.

Severity Code: 12.

IPL2=&IPL2 INVALID; MACRO PROCESSING TERMINATED

Explanation: The IPL2 operand is invalid; it must be "D" or "T."

Severity Code: 12.

IPL2=&IPL2 AND TYPE2=&TYPE2 INCOMPATIBLE;
MACRO PROCESSING TERMINATED

Explanation: IPL2 = Txxx and TYPE2 = LO are incompatible. A low-speed dump
must reside on a direct access device.

Severity Code: 12.

,

ADDR = &ADDR INVALID. MACRO PROCESSING TERMINATED

Explanation: The ADDR2 operand must be REAL or VIRTUAL.

Severity Code: 12.

Note: An invalid console device type causes an assembler error in the expansion
of AMDSADM2.

Executing SADMP

IPLing SADMP

To IPL the stand-alone dump program, AMDSADMP, you must use one of the
following procedures.

If you have a 308X console with the system control (SC) operator frame, follow
procedure A. Otherwise, follow procedure B.

Procedure A

1. STOP all tightly-coupled processors using the MP/AP global STOP function;
do not clear storage.

2. Select a processor that was online at the time of the system failure and that
has an operator console attached to it.

3. DO NOT perform a STORE STATUS. The STORE STATUS is done
automatically prior to the first IPL of stand-alone dump.

4. Mount the volume containing the stand-alone dump program; ready the
device.

Note: If this is a tape volume, make sure that the file protect ring is in place.
If it is a disk volume, make sure it is write enabled.

5. IPL stand-alone dump (SADMP) using the SC frame.

6. SADMP loads an enabled wait PSW with wait state code X'IFF' to wait for
a console interrupt. Press the ENTER or ATTENTION key on one of the
consoles that was specified on the CONSOLE keyword. This causes an
interrupt that informs SADMP of the console's address.

Chapter 5. SADMP 5-13

5-14 Service Aids

7. When message AMDOOIA TAPE = or PTR= appears, ready an output
device (for tapes, be sure it is an NL tape that has been initialized with a tape
mark, and the file protect ring is inserted.) Then reply with the tape or
printer address. If console communication with SADMP is impossible, the
output device must be the device specified on the OUTPUT keyword. When
the output device is ready, an external interrupt signals SADMP to begin
execution.

8. For TYPE = LO, message AMD008A ADDR = is issued. Respond with R
for real or V for virtual followed by the address range to be dumped. For
example, the reply format is Rnnnnnn,nnnnnn. You must specify six digits
for both the beginning and ending address. (See the ADDR keyword).

Procedure B

I. STOP all tightly-coupled processors, and do not clear storage.

2. Select a processor that was online at the time of the failure and that has an
operator console attached to it.

3. IMPORTANT: Perform the STORE STATUS operation as described in the
System/370 Operating Procedures manual for your model. Be sure to perform
the STORE STATUS operation only on the processor to be initialized. If the
STORE STATUS operation is not performed, the program continues
processing but most status information is lost. (See the following note on
re-IPLing SADMP.)

4. Set the load unit dials on the system control panel to the address of the device J
where the SADMP residence volume is mounted; or, enter the corresponding
data on the operator console screen.

5. Mount the volume containing the SADMP program and ready the device.

Note: If this is a tape volume, make sure the file protect ring is in place. If it
is a disk volume, make sure it is write enabled.

6. Press the LOAD button or trigger the load operation via interaction with the
operator console screen.

7. SADMP loads an enabled wait PSW with wait state code X'IFF' to wait for
a console interrupt. Press the ENTER or ATTENTION key on one of the
consoles that was specified on the CONSOLE keyword. This causes an
interrupt that informs SADMP of the console's address.

8. When message AMDOOIA TAPE = or PTR= is displayed, ready an output
device. (For tapes, be sure it is an NL tape that has been initialized with a
tape mark, and the file protect ring is inserted.) Then reply with the tape or
printer address. If console communication with SADMP is impossible, the
output device must be the device specified on the OUTPUT = keyword.
When the output device is made ready, an external interrupt signals SADMP
to begin execution.

Restarting SADMP

9. For TYPE=LO, message AMD008A ADDR= is issued. Respond with R
for real or V for virtual followed by the address range to be dumped. For
example, the reply format is Rnnnnnn,nnnnnn. You must specify six digits
for both the beginning and ending address. (See the ADDR keyword.)

Note: If you re-IPL SADMP do not perform step 3, the STORE STATUS
operation, again. Certain locations might not reflect the original contents of real
storage, because these areas could be altered by the initial execution of SADMP.

SADMP can terminate prematurely. For example, if there is a serious I/O error
from the output tape or an internal program error, SADMP terminates.
However, it is often possible to restart SADMP instead of re-IPLing. A restart is
preferable to a re-IPL, because a successful restart maintains a complete dump
data set.

To restart SADMP, you should follow these steps:

I. STOP all tightly-coupled processors.

2. Perform a PSW RESTART on the processor from which you IPLed SADMP.

3. If the restart succeeds, SADMP reinitializes itself and reloads an enabled wait
code X' 1 FF'.

4. Proceed beginning with step 7 listed above.

If you are taking a high-speed dump, the output tape may stop periodically
during the virtual dump execution. This is caused by channel contention between
the input and output devices. To avoid channel contention and gain faster
operation, you should put input and output devices on different channels.

Chapter 5. SADMP 5-15

Operator Communications During Execution

Messages

5-16 Service Aids

SADMP loads an enabled wait PSW with code X' I FF' to wait for a console.
Press ENTER or ATTENTION on one of the consoles defined on the CONSOLE
keyword. If no console is available, the operator can press the EXTERNAL
INTERRUPT key. The dump program then bypasses operator communication
and attempts to dump to the unit address specified on the OUTPUT keyword.

If the dump program is high-speed, or low-speed with output directed to tape, you
receive the following:

I AMD001A TAPE=

This message allows you to accept the tape device specified in the macro
instruction by pressing ENTER, or specify a different tape device by entering its
device address. SADMP checks the output volume to make sure it is non-labeled.
If a label is present, SADMP issues error message AMD002I and reissues message
AMDOOIA, requesting that you identify the address of a tape device that has an
unlabeled tape.

If the dump program is low-speed with output directed to a printer, you receive
the following:

I AMD001A PTR=

This message allows you to accept the printer device specified in the macro
instruction or specify a different printer.

When SADMP accepts an output device specification, it issues message
AM DO 11 A. This message requests that you supply up to 100 characters to be
used as a dump title. You should use this title to indicate why the dump is
required.

After title processing, the low-speed dump program prompts you with the
following message for a real or virtual address range to dump:

I AMD008A ADDR=

The answering format has to be a 'V' or 'R' character immediately followed by a
six-digit starting address, one comma, and a six-digit ending address. For
example, V020000,040000 or R000200,000800 are acceptable. The addresses you
specify are rounded (up and down) to a 4K boundary before dumping. The
default address range is for all real or virtual storage, as specified in the macro
instruction.

L

When SADMP finishes dumping real storage, it issues this message:

I AMD005I REAL DUMP DONE

If the dump program is high-speed, virtual dumping is performed next.

If you want to terminate SADMP before normal termination, press the
EXTERNAL INTERRUPT key any time during virtual storage processing.

Note that when using the 3158 or 3277 operator console in the display mode, the
cursor is set automatically to accept operator responses to given messages (for
example, printer or tape devices). However, once an operator response is
accepted by SADMP, any attempts to modify that response during a later request
for input may cause unpredictable results. For example, you should not attempt
to change the tape device while entering the dump title: the tape device input will
already have been accepted by SADMP during a previous operator response.

Here is a sample exchange between SADMP and an operator during execution of
a high-speed SADMP program.

AMD001A TAPE=580
AMDOllA TITLE=sample high-speed dump
AMD005I REAL DUMP DONE
AMD023I VIRTUAL DUMP COMPLETE FOR CSA
AMD010I PROCESSING ASID=OOOl ASCB=030348 JOBNAME=*MASTER*
AMD010I PROCESSING ASID=0002 ASCB=030EEO JOBNAME=*AUXSTM*
AMD010I PROCESSING ASID=0003 ASCB=FFD4CO JOBNAME=JES2
AMD010I PROCESSING ASID=0004 ASCB=FF61CO JOBNAME=GTFSNP
AMD0231 STAND-ALONE COMPLETE FOR GTF
AMD010I PROCESSING ASID=0005 ASCB=FD9F20 JOBNAME=INIT
AMD023I STAND-ALONE DUMP COMPLETE - 00

In this example, the underlined characters represent the operator's replies.

SADMP also uses wait state codes to communicate with the operator. These are
described in OSjVS2 MVS System Codes.

SADMP Messages on the 3480 Display

When stand-alone dump output is sent to a 3480 magnetic tape subsystem,
SADMP uses the subsystem's eight-character message display to inform and
prompt the operator.

Note: The leftmost position on the message display indicates a requested
operator action. The eighth position (rightmost) gives additional information.

Chapter 5. SADMP 5-17

5-18 Service Aids

The SADMP messages that can appear on the 3480 display are:

Dvolser
MSADMP#N (alternating)

informs the operator that a tape has been rejected and a new tape must be
mounted.

MSADMP#N (blinking)
requests that the operator mount a new tape.

RSADMP#N I • (blinking)
indicates that the SADMP program has finished writing to the tape.

RSADMP#
MSADMP#N (alternating)

informs the operator that an end-of-reel condition has occurred and a new
tape must be mounted.

SADMP#
indicates that the tape is in use by SADMP.

SADMP#
NT RDY (alternating)

informs the operator that some type of intervention is required.

The symbols used in the messages are:

D

M

R

N

volser

is a decimal digit starting at 1 and increasing by 1 after each
end-of-reel condition. When the # value exceeds 9, it is reset to O.

means to demount the tape and retain it for further system use; for
example, as a scratch tape. SADMP has not written on the tape.

means to mount a new tape.

means to demount the tape and retain it for future SADMP use.

means the new tape should not be file-protected and should not have a
label.

is the volume serial number on the existing tape label.

J

SADMP Output

Low-Speed Output

High-Speed Output

The format of SADMP output depends on the version of the stand-alone program
that generated it.

Low-speed SADMP output, if directed to a printer, can be used immediately as a
diagnostic aid. Figure 5-4 shows an example of SADMP low-speed output
directed to a printer. For a full description of the fields, see the MVSj370
Debugging Handbook.

Low-speed SADMP output directed to tape can be printed using either the
IEBPTPCH utility or PRDMP. Figure 5-5 and Figure 5-6 show how to use
IEBPTPCH and PRDMP, respectively, to print low-speed SADMP output. Note:
You can also use the IEBGENER utility program to print low-speed SADMP
output. For information about the IEBGENER program, see the MVSj370 Data
Management Utilities.

High-speed SADMP output must be printed using PRDMP. For information
about Print Dump, see Chapter 3 ..

Printing system dumps of five megabytes or larger may result in a completion
code of 522, a system abend in print dump. To prevent such abends, use the
TIME parameter on the print dump EXEC statement. See MVS JCL for further
information on the use of the TIME parameter.

Chapter 5. SADMP 5-19

VI
I

~ I DUMP TITLE SAMPLE: LOW SPEED DUMP FROM MP SYSTEM

til
n>

~
;:;0
n>

)-
0.:
'"

CURRENT PSW

GR 0-7
GR 8-F

CR 0-1
CR 8-F

FR 0-2
FR 4-6

CURRENT PSW

GR 0-7
GR &-F

CR 0-7
CR 8-F

FR 0-2
FR 4-0

010COOOO 00ECA74C

80058048 OOFF40EC C9C7C5FO 00024868
8005B048 00005048 OuEeA730 8005B048

C080Ee40 OF082eOO FCOOOOOO 00000000
00000000 OOOOOOO~ 00000000 vOOOOOOO

00000000 (iOOOOOOC 00000000 00000000
00000000 00000000 00000(,00 000(,0000

050el000 00033CCE

A0040264 00FF0330 OO~FFAD8 FFFFCOOO
OOFFFAOb 80049304 40049388 00000000

C080eooo OFICECOO FCOOOooo 00000000
00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

STORAGE KEY Ob
00000000 V 00080000 0000130C 00000000 00007FFO
00000020 V 00000000 00000000 00000005 E005A932
00000040 V 00001FFO OCOOOOOO 0000lFEb 00024808
00000000 V 040EOOOO 0001492E OO(iEOOOO (i0031B80
00000080 V 00000000 00000000 00000000 00000000
OOOOOOAO V 00000000 00000000 200000~0 00000000
OOOOOOCO V 00000000 00000000 OOO~OOOO 00000000
OOOOOOEO V 8450F532 BE800000 00000000 00000000
00000100 V 050CI0~J oo033CCE 001F1000 00000000
00000120 V 05001800 b0000800 08000140 00000001
00000140 V 00001&00 b(i000600 0&007800 00000001
00000100 V 00000000 00(i00000 00000000 00000000
00000180 V A0040204'00FFb330 00FFFA08 FFFFCOOO
OooOOIAO V 00FFFA08 80049304 40049388 00000000
000001CO V C080COoo OF1CECOO FCOOOOOO 00000000
OOOOOIED V 00000000 00000000 00000000 00000000
00000200 V 01E2CI40 00010041 OOFFOOlb 001F0018
00000220 V 00000000 00000000 00000000 00000000
00000240 V 00000000 00000000 00000000 00000000
00000200 V A0000264 00000000 AOOO020C OOOOOOOC
00000280 V 00000000 00000000 00000000 00000000

PR 001F5000 CPU 10 00

OOCAE2FO 00CAFI8B 00FF4018 00FF40EC
00000000 00CAE530 00CAE400 OOECA130

00000000 00000000 00000000 00000000
00000000 00000000 EFCOOOOO 001EE2FO

PR 001FI000 CPU 10 01

OOFF0078 00033640 00FFFE94 00FFF020
00049544 00000C5e 0004952C 00000000

OCOOOOOO 00000000 00000000 00000000
oooooaoo O~COOOOO EFCOOOGO 001E9500

oeoooooo 00007FB8 00000000 00000000
00000000 00000000 0000000(0 00000000
FFD4CAFF OOFCEOCO 040EOooO 00025986
00020000 0010AOF2 040EOOOC 0003050b
00000000 00000000 00000000 00000000
00000000 00000000 00000357 00000000
00000000 00000000 7FFFFfF2 b0158000
00000000 00000000 00000000 00000000
31000136 00000005 08000110 b0000005
00000000 00000000 00000400 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
OOFF0078 00033840 OOFFFE94 ooFFFD20
00049544 00000C5C 0004952C 00000000
00000000 00000000 00000000 00000000
00000000 00000000 EfCOOOOO 001E9560
00FF0330 00lF6330 00000000 00000000
00000000 00000000 00000000 00000000
OOOCOOOO 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

•• N ••••• IGEO •••••• SO •• 1 ••••••• *
•• N ••••••••••• N •••••••• V ••• U ••••••

••..••••.••••••.•••.•.••••..•••• *
* •••••••••••••••••••••• ~ ••••••• SO·

•..............•.. •................. • •

• ••••••••••• 0 ••••••••••••••••••••
• ••• Q ••• M •••••••••••••••••••.•••••

•..........••......•..••....•....• •................................•
•.......•.•...•••. •................. • •

•••••••••••••••• 0 ••••••••••••••••• •................................•
• ••• O ••••••••••••• M •••••••••••••••
• ••••••••••••••••••••••• 2 •••••••• • •...•...•....•....•..•...........• •...........................•....•
• ••••••••••••••••••••••••••• 2 •••• •
••• 5 •••••••••••••••••••••••••••••• •..••.•....•.•......•.••••....••.• •........•......................• •.••.....•......•....•••...•.•..••• •••.•.•..•..•...•.•.•..•••.....•.•
•••••••••••• 0 ••••••••••••••••••••
• ••• O ••• M •••••••••••••••••••••••• •.............•..................• •.•..•••.•.•....•..•...•••....••••
·PSA ••••••••••••••••••••••••••••• •................................• •.............••.................• •........................ ~• •....•.•....•.•.••••...•.•..•.•.••

000002EO 0 00000000 00000000 00000000 00000000 8 ••••••••••••••••••••••••••••••• 5 ••
o ••••••••

Figure 5-4. Sample Low-Speed Dump

L L, ~

IIPRINTLO JOB MSGLEVEL=(l,l)
II EXEC PGM=IEBPTPCH
IISYSPRINT DD SYSOUT=A
I/SYSUTI DD UNIT=2400,VOL=SER=DUMPTP,LABEL:(,NL),
II DISP=OLD,DCB=(BLKSIZE=121,RECFM=F)
IISYSUT2 DD SYSOUT=A
IISYSIN DD *

PRINT PERFORM=A
1*

Figure 5-5. Sample JCL Used to Invoke IEBPTPCH to Print Low-Speed SADMP Output

IIPTLODUMP
II
IIDMP.SYSIN

JOB MSGLEVEL=(l,l)

1*

PRINT
END

EXEC PROC=PRDMP
DD *

STORAGE

Figure 5-6. Sample JCL Used to Invoke PRDMP to Print Low-Speed SADMP Output

L SADMP Examples

The following examples show how to code the AMDSADMP macro instruction
to create various kinds of stand-alone dump programs.

Example 1: Accepting All Defaults

In this example, the AMDSADMP macro instruction is used with no parameters
to generate a high-speed dump program residing on a direct access volume.

I DUMPl AMDSADMP

This is equivalent to coding the following parameters:

TYPE=HI
IPL=D3330
VOLSER=SADUMP
ULABEL=NOPURGE
CONSOLE=(OlF,3215)
SYSUT=SYSDA
OUTPUT=T282

Chapter 5. SADMP 5-21

Example 2: Generating a High-Speed, Tape Resident Dump Program

In this example, the IPL parameter is coded to specify that the residence volume
is to be a tape, and the VOLSER parameter is coded to identify that tape. All
other parameters are allowed to default.

I AMD8ADMP IPL=T2400-2,VOLSER=SATAPE

The implied defaults are:

TYPE=HI
CONSOLE=(OlF,3215)
SYSUT=SYSDA
OUTPUT=T282
ULABEL=NOPURGE

Example 3: Generating a Low-Speed Dump with Defaults

In this example, only the TYPE parameter is coded to request a low-speed dump.
All other parameters are allowed to default.

I AMDSADMP TYPE=LO

The implied defaults are:

IPL=D3330
OUTPUT=POOE
VOLSER=SADUMP
CONSOLE=(OlF,3215)
ULABEL=NOPURGE
SYSUT=SYSDA
ADDR=REAL

Example 4: Generating a Low-Speed Dump Program with Output Directed to Tape

5-22 Service Aids

In this example, only the TYPE and OUTPUT parameters are coded. All other
parameters are allowed to default.

I DUMP2 AMDSADMP TYPE=LO,OUTPUT=T282

The implied defaults are:

IPL=D3330
VOLSER=SADUMP
CONSOLE=(OlF,3215)
ULABEL=NOPURGE
SYSUT=SYSDA
ADDR=REAL

J

Example 5: Specifying Multiple Consoles

In this example, one 3215-class and two 327X-class consoles are coded. All other
parameters are allowed to default.

ANDSADMP CONSOLE = ((009,3215) ,(3D1,3279),(3EO,3277))

The implied defaults are:

TYPE
IPL
VOLSER
ULABEL
SYSUT
OUTPUT

= HI
D3330

SADUMP
NOPURGE

= SYSDA
T282

Chapter 5. SADMP 5-23

5-24 Service Aids

Chapter 6. SPZAP

Introduction

SPZAP is a service aid that operates as a problem program. It is designed to
enable authorized personnel to:

• Inspect and modify instructions and data in any load module that is a
member of a partitioned data set.

• Inspect and modify data in a specific record in a direct access data set.

• Dump an entire data set, a specific member of a partitioned data set, or any
portion of a data set residing on a direct access device.

• Update the system status index (SSI) in the directory entry for any load
module.

Capabilities of SPZAP

The functions of SPZAP provide many capabilities. Three of these are described
below:

• Using the inspect and modify functions of SPZAP, you can fix programming
errors that require only the replacement of instructions in a load module
without recompiling the program.

• Using the modify function of SPZAP, you can set traps in a program by
inserting invalid instructions. The invalid instructions force abnormal
termination; the dump of storage provided as a result of the abnormal
termination is a valuable diagnostic tool, because it shows the contents of
storage at a predictable point during execution.

• Using SPZAP to replace data directly on a direct access device, you can
reconstruct VTOCs or data records that may have been destroyed as the
result of an I/O error or a programming error.

Chapter 6. SPZAP 6-1

Monitoring the Use of SPZAP

Because SPZAP provides the ability to modify data on a direct access storage
device, misuse of this program could result in serious damage to both user and
system load modules or data sets. To protect against the occurrence of such
damage by SPZAP, two means of controlling its use are suggested below:

• One means of exercising control is the System Management Facility (SMF),
which provides a system interface with user exit routines to monitor the job
stream. This facility affords an internal means of checking to see whether a
particular user is authorized to execute the program specified on the EXEC
job control language statement. (For further information on the SMF
facility, refer to the publication MVS System Management Facilities (SMF)).

• A second means of protecting against unauthorized use of SPZAP is to store
SPZAP in a "password protected" private library. If SPZAP is located in
such a library, any person trying to execute this program would be required
to include in his JeL statements a JOB LIB DD statement defining the
library, and at initiation time he would be required to give the password
associated with the library. Only personnel knowing the password would then
be able to execute SPZAP. Note, however, that if SPZAP resides in a private
library, the authorized program facility (APF) prevents it from updating a
VTOC. Password protected libraries are discussed in the pUblication OSjVS2
SPL: Data Management.

Data Modification and Inspection

6-2 Service Aids

SPZAP can be used to inspect and modify data in either a specific record of a
direct access data set or a load module that is part of a partitioned data set.

The modification function is controlled by the REP control statement. The REP
control statement allows you to replace instructions or data at a specific location
in a load module or physical record.

The inspection function is controlled by the VERIFY statement. This function
allows you to check the contents of a specific location in a load module or
physical record prior to replacing it. If the contents at the specified location do
not agree with the contents as specified in the VERIFY statement, subsequent
REP operations does not be performed.

To avoid possible errors in replacing data, you should always precede any REP
operation with a VERIFY operation.

Inspecting and Modifying a Load Module

To inspect or modify data in a load module, you must use a NAME control
statement to supply SPZAP with the member name of the load module. The load
module must be a member of the partitioned data set identified by the SYSLIB
DD statement included in the execution JCL.

If the load module being inspected or modified contains more than one control
section (CSECT), you must also supply SPZAP with the name of the CSECT that
is to be inspected or modified. If no CS:eCT name is given in the NAME
statement, SPZAP processes the first CSECT it encounters in the load module.

SPZAP places descriptive maintenance data in the SPZAP CSECT identification
record (lDR) of the load module whenever a REP operation associated with a
NAME statement is performed on a CSECT contained in that module. This
function is performed automatically after all REP statements associated with the
NAME statement have been processed; any optional user data that has to be
placed in the IDR comes from the IDRDATA statement. (See "SPZAP Control
Statements" for an explanation of the IDRDATA statement.)

Accessing a Load Module

Once the CSECT has been found, SPZAP must locate the data that is to be
verified and replaced. This is accomplished through the use of offset parameters
in the VERIFY and REP statements. These parameters are specified in
hexadecimal notation, and define the displacement of the data relative to the
beginning of the CSECT. For example, if a hexadecimal offset of X'40' is
specified in a VERIFY statement, SPZAP finds the location that is 64 bytes
beyond the beginning of the CSECT identified by the NAME statement, and
begin verifying the data from that point.

Normally, the assembly listing address associated with the instruction to be
inspected or modified can be used as the offset value in the VERIFY or REP
statement. However, if a CSECT has been assembled with other CSECTs so that
its origin is not at assembly location zero, then the locations in the assembly
listing do not reflect the correct displacements of data in the CSECT. The proper
displacements must be computed by subtracting the assembly listing address
delimiting the start of the CSECT from the assembly listing address of the data to
be referenced.

To eliminate the need for such calculations and allow you to use the assembly
listing locations, SPZAP provides a means of adjusting the offset values on
VERIFY and REP statements. This is achieved through the use of the BASE
control statement. This statement should be included in the input to SPZAP
immediately following the NAME statement that identifies the CSECT. The
parameter in the BASE statement must be the assembly listing address (in
hexadecimal) at which the CSECT begins. SPZAP then subtracts this value
from the offset specified on any VERIFY or REP statement that follows the
BASE statement, and use the difference as the displacement of the data.

Chapter 6. SPZAP 6-3

For a complete description of the control statements mentioned in this discussion,
see the section "SPZAP Control Statements" in this chapter.

Figure 6-1 is a sample assembly listing showing more than one control section.
To refer to the second CSECT (lEFCVOL2), you could include in the input to
SPZAP a BASE statement with a location of 0398. Then, to refer to the
subsequent LOAD instruction (LR2,CTJCTAD), you could use an offset of 039A
in the VERIFY or REP statements that follow in the SPZAP input stream.

LISTING TITLE

LOC OBJECT CODE

000000

000384 00000000

000388 00000000
0003SC 0200 1000 SOOO

000392 0200 1001 1000

000398
000398 0590
00039A
00039A 5820 COlO

AODRl ADDR2 STMT SOURCE STATEMENT

00000 00000

00001 00000

00010

1 IEFCVOLl CSECT

378 VCNQMSSS
379 •
3S0 VCMSG15
3S1 MVCMSG
382 •
383 MVCSLNRS
384 •

386 IEFCVOL2
387
388
389

DC

DC
MVC

MVC

CSECT
BALR
USING
L

VUEFQMSSS)

VUEFVMG15)
o (l.Rll ,O(RS)

1l1,Rl).0 (Rll

R9.0
.,R9
R2.LCTJCTAD

Figure 6-1. Sample Assembly Listing Showing Multiple Control Sections

6-4 Service Aids

10000017

55S00017
56000017
56100017
56200017
56300017
56400017
56500017

56600017
56700017
56S00017
56900017

Inspecting and Modifying a Data Record

To inspect or modify a specific data record, you must use a CCHHR (cylinder
head record) control statement to specify it's direct access address. This address
must be within the limits of the direct access data set defined in the SYSLIB DD
control statement.

If you request a REP operation for a record identified by a CCHHR control
statement, SPZAP issues message AMA12lI to provide a record of your request.

AMA121I CCHHR UPDATE BY jjjjjjjj ON ser, cchhr, dsn

jiliilii is the name of the job that performed the CCHHR update

ser is the volume serial number of the direct access device containing the modified data set

cchhr is the device record address of the record that was modified

dsn is the name of the modified data set

Accessing a Data Record

Dumping Data

When you use the CCHHR control statement, SPZAP is able to read directly the
physical record you want to inspect or modify. The offset parameters specified in
subsequent VERIFY and REP statements are then used to locate the data that is
to be verified or replaced within the record. These hexadecimal offsets must
define the displacement of data relative to the beginning of the record and include
the length of any key field.

SPZAP's dumping options provide a visual picture of the load module or data
record that has been changed, thus allowing you to double check the
modifications you have made.

The DUMP and ABSDUMP statements are the control statements used to specify
the dumping options. The operation code in the DUMP and ABSDUMP
statements indicates the kind of dump you want, a formatted hexadecimal dump
or a translated dump; the parameters identify the portion of the data to be
dumped. (Use of the DUMP and ABSDUMP statements is discussed in detail
under the topic "SPZAP Control Statements.")

Chapter 6. SPZAP 6-5

Updating System Status Information

6-6 Service Aids

The system status index (SSI) is a 4-byte field created by the linkage editor in the
PDS directory entry of a load module. It is useful for keeping track of any
modifications performed on a load module. SPZAP updates the SSI index
automatically whenever it replaces data in the associated module.

SPZAP also supplies the SETSSI control statement, which you can use to overlay
the existing data in the SSI with your own data. For a complete description of
the SETSSI control statement, see "SPZAP Control Statements" in this chapter.

Not aBload modules contain system status information. The SSI is located in the
last four bytes of the user data field in the directory entry for a load module.
Figure 6-2 shows the position of the SSI in load module directory entries.

I Member Name I TIR C User Data Field SSI

I 8 9 11 12 13 to 70 maximum variable

Figure 6-2. SSI Bytes in a Load Module Directory Entry

Figure 6-3 shows the composition of the system status index field and the flag
bits used to indicate the types of changes made to the corresponding load module
program. The first byte of SSI information contains the member's change level.
When a load module is initially released by IBM, its change level is set at one.
Thereafter, the change level is incremented by one for each release that includes a
new version of that program. If you make a change to the SSI for any of the
IBM-released programs, take care not to destroy this maintenance level indicator
unless you purposely mean to do so. To keep the change level byte at its original
value, find out what information is contained in the SSI before using the SETSSI
function.

Note: Use the LISTLOAD control statement of the LIST service aid to find out
what information the SSI contains.

J

1 byte 1 byte 2 bytes

Flag Serial
Byte Number

//

---- / .. //' J

, ' /

.-/// ,,/
//

/" /
Bits: /0/ 1 2 3 4 5 6 7,

I I I I I I I I I
I

I
I

i I

I -I'

(Reserved) _______________ J
I
I

I
I

Force Flag --------------------!

Local Fix Flag --------------------..1

Program Temporary Fix Flog -----------
I

Depend ency FI ag ---------------------------,

I
I
I

I
I
i
I

I
I
!
I
I
I
I Critical Flag ___________________________________ 1 I
I
I

IBM Flog .---,

Figure 6-3. Flag Bytes in the System Status Index Field

The second byte of the SSI is termed the flag byte. Bits within the flag byte
contain information reflecting the member's maintenance status. You need only
be concerned with two of the eight bits when you are using SPZAP:

• The local fix flag contained in bit 2 is used to indicate that the user has
modified a particular member. (It is not used to reflect modifications made
by IBM-supplied PTFs.) SPZAP sets this local fix flag bit to one after
successfully modifying a load module.

• The program temporary fix flag in bit 3 is set to one when an IBM-authorized
program temporary fix (PTF) is applied to a system library to correct an error
in an IBM module.

All other bits in the flag byte should be retained in the SSI as they appeared
before the SETSSI operation was enacted, so as not to interfere with the normal
system maintenance procedures.

The third and fourth bytes of the system status index are used to store a serial
number that identifies the first digit and the last three digits of a PTF number.
SPZAP does not change these bytes unless you request a change by using the
SETSSI control statement.

Chapter 6. SPZAP 6-7

Operational Considerations

JCL Statements

6-8 Service Aids

Consider the following points when you run SPZAP:

• SPZAP utilizes system OPEN, and therefore cannot modify "read-only" or
inspect "write-only" password protected data sets unless the correct password
is provided at OPEN.

• Unexpired data sets such as system libraries cannot be modified unless the
operator replies r xx,'U' to the expiration message that occurs during OPEN.

• If SPZAP is used to modify an operating system module that is made resident
in virtual storage only at IPL time, an additional IPL is required to invoke
the new version of the altered module. (Note that this includes all modules in
SYS l. LP ALIB.)

• The SYSLIB DD statement cannot define a concatenated or a multi-volume
data set.

• SPZAP supports only the following direct access devices: 2314,2319,2305,
3330,3340, 3344, 3350, 3375 and 3380. One of these devices must be
specified in the unit parameter of the SYSLIB DD statement.

• SPZAP is a non-reusable module.

• When modifying a system data set, such as SYSl.LINKLIB, DISP=OLD
should be specified on the SYSLIB DD statement.

SPZAP can be executed using the following job control statements. The
minimum partition or region for execution is 17K plus the larger of 3K or the
blocksize in bytes for the data set specified on the SYSLIB DD statement.

JOB Statement
marks the beginning of the job.

EXEC Statement
invokes AMASPZAP using either PGM = AMASPZAP or
PGM = IMASPZAP. Currently the only valid parameter specification is
PARM=lGNIDRFULL, which enables SPZAP to override the normal
inhibition on CSECT updates (via NAME and REP) when lDR space for
the module is found to be full.
Caution: PARM = lGNlDRFULL should not be used indiscriminately and
should be avoided for IBM-maintained modules.

SYSPRINT DD Statement
defines a sequential output message data set, that can be written on a
system printer, a magnetic tape volume, or a direct access volume. This
statement is required for each execution of SPZAP.

J

Return Codes

SYSLIB DD Statement (required for each execution)

defines the direct access data set that is accessed by SPZAP when
performing the operations specified on the control statements. The
DSNAME parameter and DISP = OLD or DISP=SHR must always be
defined. The VOLUME and UNIT parameters are necessary only if the
data set is not cataloged. When this data set is the VTOC,
DSNAME= FORMAT4.DSCB must be specified. This statement cannot
define a concatenated or multi-volume data set.

SYSABEND DD Statement (optional)
defines a sequential output data set to be used in case SPZAP terminates
abnormally. This data set can be written to a printer, a magnetic tape
volume, or a direct access volume.

SYSIN DD Statement
defines the input stream data set that contains SPZAP control statements.

SPZAP termination provides one of the following return codes:

o Terminates successfully.

4 Warning of condition which may resuit in future errors if remedial action is not taken.

8 A SPZAP input statement contained an error or was overridden by operator intervention.

12 A requested JCL statement was absent or specified a data set which was not successfully opened.
SPZAP terminates immediately.

16 A permanent I/O error, which may be due to a JCL error such as invalid blocksize.
SPZAP terminates immediately.

Dynamic Invocation of SPZAP

SPZAP can be invoked by an application program at execution time through the
use of the CALL, LINK, XCTL, or ATTACH macro instructions. The program
must supply a list of alternate ddnames of data sets used by SPZAP if the
standard ddnames are not used.

The general form of these macros when used to invoke SPZAP is shown below:

(anyname)
(anyname)
(anyname)
(anyname)

CALL AMASPZAP,(oplistad,ddnamadr),VL
XCTL EP=AMASPZAP
LINK EP=AMASPZAP,PARAM=(oplistad,ddnamadr),VL=l
ATTACH EP=AMASPZAP,PARAM=(oplistad,ddnamadr),VL=l

Chapter 6. SPZAP 6-9

6-10 Service Aids

anyname

indicates an optional statement label on the macro statement.

EP
specifies the symbolic name of SPZAP.

PARAM
specifies, as a sublist, address parameters to be passed from the program to
SPZAP.

oplistad
specifies the address, if present, of either a halfword of zeros (indicating no
options) or a nonzero halfword followed by a character string whose length
is given by the halfword. For possible parameter values, see "JeL
Statements" in this chapter.

ddnamadr
specifies the address of a variable length list containing alternate ddnames
for data sets used during SPZAP processing. If all the standard ddnames,
SYSPRINT, SYSLIB, SYSIN, are used, then this operand may be omitted.

A ddname list must begin on a halfword boundary. The first two bytes
contain a count of the number of bytes in the remainder of the list. The
format of the list is fixed with each entry having eight bytes. Each name of
less than eight bytes must be left justified and padded with blanks. If a
name is omitted in the list, the entry must contain binary zeros; the standard
name is then assumed. Names can be omitted from the end of the ddname
list by shortening the list.

The sequence of 8-byte entries in the list is as follows:

{~~=1}

Entry

0-7
8-15
16-23
24-31
32-39
40-47

Standard name

not applicable
not applicable
not applicable
SYSLIB
SYSIN
SYSPRINT

specifies that the sign bit is to be set to 1 in the last word of the address
parameter list.

J

L

L

SPZAP Control Statements

The SPZAP control statements (entered either through the user's input stream or
through the system console) define the processing functions to be performed
during a particular execution of SPZAP.

SPZAP control statements must be coded according to the following rules:

• SPZAP control statements may begin in any column, but the operation name
must precede the parameters.

• There must be at least one blank between the specified operation name and
the first parameter.

• All parameters must also be separated by at least one blank space.

• Data fields parameters may be formatted with commas for easier visual
check, but embedded blanks within data fields are not permitted.

• Data and offset parameter values must be specified as a multiple of two
hexadecimal digits.

• The size of a SPZAP control statement is 80 bytes.

• Following the last required parameter and its blank delimiter, the rest of the
control statement space can be used for comments. Exceptions to this are the
NAME and DUMP control statements. If the CSECT parameter is omitted
from either of these statements, the space following the load module
parameter should not be used for comments.

• A record beginning with an asterisk and a blank is considered to be a
comment statement.

The control statements are described below.

NAME member (esect)
used to identify a CSECT in a load module that is to be the object of
subsequent VERIFY, REP, or SETSSI operations. The parameters are:

member

esect

indicates the member name of the load module that contains the
control section in which the data to be inspected and/or modified is
resident. The load module must be a member of the partitioned data
set defined by the SYSLIB DD statement.

indicates the name of the particular control section that contains the
data to be verified or replaced. When this parameter is omitted, it is
assumed that the first CSECT contained in the load module is the one
to be referenced. If there is only one CSECT in the load module, this
parameter is not necessary.

Chapter 6. SPZAP 6-11

6-12 Service Aids

Note: More than one NAME statement can be defined in the input to
SPZAP. However, the VERIFY, REP and SETSSI statements associated
with each NAME statement must immediately follow the NAME statement
to which they apply.

CCHHR record address
identifies a physical record on a direct access device that is to be modified
or verified. The record must be in the data set defined by the SYSLIB DD
statement. Any immediately following REP or VERIFY statements
references the data in the specified record. The parameter is:

record address
provides the actual direct access address of the record containing data
to be replaced or verified. It must be specified as a IO-digit
hexadecimal number in the form cccchhhhrr, where cccc is the
cylinder, hhhh is the track, and rr is the record number. For example,
OOOlOOOAOI addresses record I of cylinder 1, track 10.
A zero record number is invalid and defaults to 1.

Note: More than one CCHHR statement can be defined in the input to
SPZAP. However, the VERIFY, REP and SETSSI statements associated
with each CCHHR statement must immediately follow the specific CCHHR
statement to which they apply.

{VERIFY}
VER

offset expected content

causes the contents at a specified location within a control section or
physical record to be compared with the data the user supplies in the
statement. If the two fields being compared are not in agreement, that is, if
the VERIFY operation is rejected, no succeeding REP or SETSSI
operations are performed until the next NAME or CCHHR control
statement is encountered. SPZAP provides a formatted dump of each
CSECT or record for which a VERIFY operation failed.

offset
provides the hexadecimal displacement of data to be inspected in a
CSECT or record. This displacement does not have to be aligned on
a fullword boundary, but it must be specified as a multiple of two
hexadecimal digits (OD, 021C, 014682, etc.). If this offset value is
outside the limits of the CSECT or data record defined by the
preceding NAME or CCHHR statement, the VERIFY statement is
rejected. When inspecting a record with a key, the length of the key
should be considered in the calculation of the displacement; that is,
offset zero is the first byte of the key.

expected content
defines the bytes of data that are expected at the specified location.
As with the offset parameter, the number of bytes of data defined
must be specified as a multiple of two hexadecimal digits. If desired,
the data within the parameters may be separated by commas (never

J

L

blanks), but again, the number of digits between commas must also be
a multiple of two. For example, the data may look like this:

5840C032 (without commas),
or like this:

5840,C032 (with commas)

If all the data does not fit into one VERIFY statement (80-byte
logical record), then another VERIFY statement must be defined.

REP offset data
modifies data at a specified location in a CSECT or physical record that
was previously defined by a NAME or CCHHR statement. The data
specified on the REP statement replaces the data at the record or CSECT
location stipulated in the offset parameter field. (Note that you should
always use the VERIFY function to make sure you know what you are
going to change with the REP function.) Message AMA122I is issued to
record the contents of the specified location as they were before the change
was made.

offset

data

provides the hexadecimal displacement of data to be replaced in a
CSECT or data record. This displacement need not address a fullword
boundary, but it must be specified as a mUltiple of two hexadecimal
digits (OD, 02C8, OOlC52). If this offset value is outside the limits of
data record (physical block) or CSECT being modified, the
replacement operation is not performed. When replacing data in a
record with a key, the length of the key should be considered in the
calculation of the displacement; that is, offset zero is the first byte of
the key.

defines the bytes of data to be inserted at a specified location. As
with the offset parameter, the number of bytes of data defined must be
specified as a multiple of two hexadecimal digits. If desired, the data
within the parameter may be separated by commas (never blanks), but
again, the number of digits between commas must also be a multiple
of two. For example, a REP data parameter may look like this:

4160B820 (without commas)
or like this:

4160,B820 (with commas).

If all the data to be modified does not fit into one REP statement
(80-byte logical record), then another REP statement must be defined.

Notes:

• Remember that SPZAP automatically updates the system status index
(SSI) when it successfully modifies the associated load module. For a
more complete explanation of the value of the SSI to the maintenance
of a load module, refer to "Updating System Status Information" in this
chapter.

• If you are performing multiple VERIFY and REP operations on a
CSECT, you must make sure that all VERIFY statements precede all

Chapter 6. SPZAP 6-13

6-14 Service Aids

REP statements. This procedure ensures that all REP operations are
ignored if one VERIFY reject occurs.

• When you access a record in the VTae (that is, a DSe'p) for
modification, SPZAP issues the message AMAl17D to the console. No
message is issued, however, when an ABSDUMPT operation is
performed on the VTae.

IDRDAT A xxxxxxxx
causes SPZAP to place up to eight bytes of user data into the
SPZAP CSECT identification record of the load module; this is
only done if a REP operation associated with a NAME statement
is performed and the load module has been processed by the
linkage editor to include CSECT identification records. The
parameter is: .

xxxxxxxx
is the eight (or less) bytes of user data (with no embedded
blanks) that is to be placed in user data field of the SPZAP
IDR of the load module. If more than eight characters are
in the parameter field, only the first eight characters are
used.

Note: The IDRDATA statement is valid only when used in
conjunction with the NAME statement. It must follow its associated
NAME statement and precede any DUMP or ABSDUMP statement.
IDRDAT A statements associated with CCHHR statements are ignored.

SETSSI xxyynnnn
places user-supplied system status information in the PDS (partitioned data
set) directory entry for the library member specified in the preceding NAME
statement. The SSI, however, must have been created when the load
module was link edited. The parameter is:

xxyynnnn
represents the 4 bytes of system status information the user wishes to
place in the SSI field for this member. Each byte is supplied as two
hexadecimal digits signifying the following:

xx - change level
yy - flag byte
nnnn - modification serial number

If an error is detected in any previous VERIFY or REP operation, the
SETSSI function is not performed.

Note: Since all bits in the SSI entry are set (reset) by the SETSSI
statement, extreme care must be exercised in its use to avoid altering
information vital to the depiction of the maintenance status of the
program being changed. Message AMAl221 is issued to record the
SSI as it was before the SETSSI operation was performed. (See the
discussion in this chapter entitled "Updating System Status
Information. ")

{DUMP } member {csect }
DUMPT ALL

used to dump a specific control section or all control sections in a load
module. The format of the output of this dump is hexadecimal (see the
discussion in this chapter entitled "SPZAP Output"). The DUMPT
statement differs from the DUMP statement in that it also gives the user an
EBCDIC and instruction mnemonic translation of the hexadecimal data.
The parameters are:

member
the member name of the load module that contains the control
section(s) to be dumped. (Note: This load module must be a member
of a partitioned data set that is defined by the SYSLIB DO
statement.)

csectlALL
the name of the particular control section that is to be dumped. To
dump all the CSECTs of a load module, code "ALL" instead of the
CSECT name; if the CSECT parameter is omitted entirely, SPZAP
assumes that you mean to dump only the first control section
contained in the load module.

Note: DUMP or DUMPT applied to a CSECT consisting only of
space allocations (OS statements) produces no output between the
statement printback and the dump-completed message.

I startaddr stopaddrj
ABSDUMP membername
ABSDUMPT ALL

dumps a group of data records, a member of a partitioned data set, or an
entire data set, as defined in the SYSLIB DO statement. If the key
associated with a record is to be formatted, you can specify
DeB = (KEYLEN = nn). The value "n" indicates the length of the record
key; it should also be specified by the SYSLIB DD statement.

How to dump a VTOC:

Notes:

1. If you are dumping a VTOC, you should specify DCB= (KEYLEN=44)

2. If you are dumping a PDS directory, you should specify
DCB= (KEYLEN=8)

ABSDUMP produces a hexadecimal printout only; ABSDUMPT prints the
hexadecimal data, the EBCDIC translation, and the mnemonic equivalent of
the data (see "SPZAP Output" in this chapter). The variables are:

startaddr
the absolute direct access device address of the first record to be
dumped. This address must be specified in hexadecimal in the form
cccchhhhrr (cylinder, track and record numbers).

Chapter 6. SPZAP 6-15

6-16 Service Aids

stopaddr
the absolute direct access device address of the last record to be
dumped. It must be in the same format as the start address.

Note: Both the beginning and ending addresses must be specified
when this method of dumping records is used, and both addresses
must be within the limits of the data set defined by the SYSLIB DD
statement. The record number you specify in the start address must
be a valid record number. If a record number of 0 is specified,
SPZAP changes it to I because the READ routine skips over such
records.
The record number specified as the stop address need not be a valid
record number, but if it is not, the dump continues until the last
record on the track specified in the stop address has been dumped.

membername

ALL

the name of a member of a partitioned data set. The member can be
a group of data records or a load module. In either case, the entire
member is dumped when this parameter is specified.

indicates that the entire data set defined by the SYSLIB DD statement
is to be dumped. The amount of space dumped for the data set
depends on how the data set is organized:

• For sequential data sets, SPZAP dumps until it reaches end of file.

• For indexed sequential and direct access data sets, SPZAP dumps ..J
all extents.

• For partitioned data sets, SPZAP dumps all extents, including all
linkage editor control records, if any exist.

BASE xxxxxx
adjusts offset values that are specified in any subsequent VERIFY and REP
statements. You need this statement when the displacements given in the
VERIFY and REP statements for a CSECT are obtained from an assembly
listing in which the starting address of the CSECT is not location zero.
For example, assume that CSECT ABC begins at assembly listing location
X'000400', and that the data to be replaced in this CSECT is at locati~n
X'000408'. The actual displacement of the data in the CSECT is X'08'.
However, you can specify an offset of X'0408' in the REP statement if you
include a BASE statement specifying X'000400' prior to the REP statement
in the SPZAP input stream.

When SPZAP processes the REP statement, the base value X'000400' is
subtracted from the offset X'0408' to determine the relative address of data
within the CSECT. The variable is:

xxxxxx
a six-character hexadecimal displacement to be used as a base for
subsequent VERIFY and REP operations. This value reflects the
starting assembly listing address of the CSECT being inspected or
modified.

Note: The BASE statement should be included in the SPZAP input
stream immediately following the NAME statement that identifies the
control section involved in the SPZAP operations. The specified base
value remains in effect until all VERIFY, REP, and SETSSI
operations for the CSECT have been processed.

CONSOLE
indicates that SPZAP control statements are to be entered through the
system console.

When this statement is encountered in the input stream, the following
message is issued to the operator:

AMAl16A ENTER AMASPZAP CONTROL STATEMENT OR END

The operator may then enter any valid SPZAP control statement
conforming to the specifications described in the beginning of this control
statement discussion. After each operator entry through the console is read,
validated, and processed, the message is reissued, and additional input is
accepted from the console until "END" is replied. SPZAP then continues
processing control statements from the input stream until reaching
end-of-file.

Note: The control statements can be entered through the console in either
upper or lower case letters.

* (Comment)
annotates the SPZAP input stream and output listing. Any number of
comment statements can be included in the input stream. When
SPZAP encounters a comment, it writes the entire statement to the
SYSPRINT data set.

Note: The asterisk (*) can be specified in any position of the
statement, but it must be followed by at least one blank space as a
delimiter.

CHECKSUM
CHECKSUM hhhhhhhh

prints or verifies a fullword checksum (parity-check). - A way to check on
the preceding control statements, or on SPZAP initialization, for
typographical errors. CHECKSUM translates the previous parameter
values into hexadecimal and concatenates them as a single string divided
into fullwords. For example, the string 12345678FACE produces the
checksum OD025678. The sum of each fullword is then compared with the
CHECKSUM you supply, or becomes a CHECKSUM, depending on how
you code the the control statement.

hhhhhhhh
is an eight-character hexadecimal value that you want SPZAP to
compare with the existing checksum value.

If you do not code this variable, a message is written giving the actual
value of the checksum, and indicating that the checksum has been
reset.

Cha ter 6. SPZAP 6-17

If the variable is invalid or is not equal to the checksum, SPZAP
issues a message indicating an invalid parameter or checksum error.
REP and SETSSI statements are suppressed until the next NAME or
CCHHR statement. Then it issues a second message giving the actual
value of the checksum, and indicating that the checksum has been
reset.

SPZAP Examples

Example 1: Inspecting and Modifying a Load Module Containing a Single CSECT

6-18 Service Aids

This example shows how to inspect and modify a load module containing a single
CSECT.

//ZAPCSECT
//STEP
//SYSPRINT
//SYSLIB
//SYSIN

NAME
VERIFY
REP
SETSSI
IDRDATA
DUMP

/*

In this example:

JOB
EXEC
DD
DD
DD

IEEVLNKT
0018
0018
01211234
71144
IEEVLNKT

SYSLIB DD Statement

MSGLEVEL=(l,l)
PGM=AMASPZAP
SYSOUT=A
DSNAME=SYS1.LINKLIB,DISP=OLD
*

C9C8,D2D9,D1C2,C7D5
E5C6,D3D6,E6FO,4040

defines the system library SYS1.LINKLIB containing the module
IEEVLNKT that SPZAP is to process.

SYSIN DD Statement
defines the input stream.

NAME Control Statement
tells SPZAP that the operations defined by the control statements that
follow are to be performed on the module IEEVLNKT.

VERIFY Control Statement
requests that SPZAP check the hexadecimal data at offset X'0018' in the
module IEEVLNKT to make sure it is the same as the hexadecimal data
specified in this statement. If the data is the same, SPZAP continues
processing the subsequent statements sequentially. If the data is not
identical, SPZAP does not perform the REP and SETSSI operations
requested for the module. It does, however, perform the requested DUMP
operation before discontinuing the processing. It can also dump a
hexadecimal image of the module IEEVLNKT to the SYSPRINT data set.

J

L

REP Control Statement
causes SPZAP to replace the data at offset X'OOlS' in module IEEVLNKT
with the data given in this control statement (provided the VERIFY
statement is successful).

SETSSI Control Statement
tells SPZAP to replace the system status information in the directory entry
for module IEEVLNKT with the SSI data supplied in the statement
(provided the VERIFY statement is successful). The new SSI is to contain:

• A change level of 01.
• A flag byte of 21.
• A serial number of 1234.

IDRDATA Control Statement
causes SPZAP to update the lOR in module IEEVL~KT with the data
71144 (provided the REP operation is successful).

DUMP Control Statement
requests that a hexadecimal image of module IEEVLNKT be dumped to the
SYSPRINT data set. Because the DUMP statement follows the REP
statement, the image reflects the changes made by SPZAP (provided the
VERIFY operation is successful).

Example 2: Inspecting and Modifying a

CSECT in a Load Module Containing Several CSECTs

This example shows how to apply an IBM-supplied PTF in the form of an
SPZAP fix, rather than a module replacement PTF.

//PTF40228
//STEP
//SYSPRINT
//8Y8L1B
//SYSIN

NAME
IDRDATA
VERIFY
VERIFY
REP
REP
SETSSI
DUMPT

/*

JOB MSGLEVEL=(1,1)
EXEC PGM=AMASPZAP
DO SYSOUT=A
DO DSNAME=SYS1.NUCLEU8,DI8P=OLD
DO *

IEANUC01 IEWFETCH
LOCFIX01
OlFO 47FOC018
0210 5830C8F4
OIFO 4780C072
0210 4130C8F4
02114228
IEANUCOI IEWFETCH

SYSLIB DD Statement
defines the library (SYS1.NUCLEUS) that contains input module
IEANUC01.

Cha ter 6. SPZAP 6-19

6-20 Service Aids

SYSIN DD Statement
defines the input stream that contains the SPZAP control statements.

NAME Control Statement
tells SPZAP that the operations defined by the control statements that
immediately following this statement are to be performed on the CSECT
IEWFETCH. It is contained in the load module IEANUCOI.

IDRDATA Control Statement
causes SPZAP to update the IDR in module IEANUCOI for CSECT
IEWFETCH with the date LOCFIXOI (provided the REP operation is
successful) .

VERIFY Control Statements
request that SPZAP compare the contents of the locations X'OlFO' and
X'021O' in the control section IEWFETCH with the data given in the
VERIFY control statements. If the comparisons are equal, SPZAP
continues processing subsequent control statements sequentially. However,
if the data at the locations does not compare identically to the data given in
the VERIFY control statements, SPZAP dumps a hexadecimal image of
CSECT IEWFETCH to the SYSPRINT data set; the subsequent REP and
SETSSI statements are ignored. The DUMPT function specified is
performed before SPZAP terminates processing.

REP Control Statements
cause SPZAP to replace the data at offsets X'OIFO' and X'0210' from the
start of CSECT IEWFETCH with the hexadecimal data specified on the
corresponding REP statements.

SETSSI Control Statement
causes SPZAP to replace the system status information in the directory for
module IEANUCOI with the SSI data given in the SETSSI statement after
the replacement operations are processed. The new SSI contains:

• A change level of 02.
• A flag byte of 11.
• A serial number of 4228.

DUMPT Control Statement
causes SPZAP to produce a translated dump for CSECT IEWFETCH of
load module IEANUCOI.

L

Example 3: Inspecting and Modifying Two CSECTs in the Same Load Module

This example shows how to inspect and modify two control sections in the same
module.

JOB MSGLEVEL=(1,1)
EXEC PGM=AMASPZAP
DD SYSQUT=A

//CHANGIT
//STEP
//SYSPRINT
//SYSLIB
//SYSIN

DD DSNAME=SYS1.LINKLIB,DISP=OLD
DD *

NAME
VERIFY
REP
IDRDATA
SETSSI
DUMPT
NAME
VERIFY
REP
IDRDATA
SETSSI
DUMPT

IEFX5000 IEFQMSSS
0284 4780,C096
0284 4770,C096
PTF01483
01212448
IEFX5000 IEFQMSSS
IEFX5000 IEFQMRAW
0154 4780,C042
0154 4770,C042
PTF01483
01212448
IEFX5000 IEFQMRAW

/*

SYSLIB DD Statement
defines the data set to be accessed by SPZAP while performing the
operations specified by the control statements. In this case, it defines the
system library SYSl.LINKLIB containing the load module IEFX5000 that
is to be changed by SPZAP.

NAME Control Statement #1
tells SPZAP that the operations requested on the control statements
immediately following it are to be performed on CSECT IEFQMSSS. This
CSECT is contained in load module IEFX5000.

VERIFY Control Statement #1
requests that SPZAP check the hexadecimal data at offset X'0284' in
CSECT IEFQMSSS to make sure it is the same as the data specified in this
control statement. If the data is identical, SPZAP continues processing the
control statements. If the data is not identical, SPZAP does not perform
the REP or SETSSI for CSECT IEFQMSSS, but it does perform the
DUMPT operation. It also provides a hexadecimal dump of CSECT
IEFQMSSS.

REP Control Statement #1
causes SPZAP to replace the data at offset X'0284' in CSECT IEFQMSSS
with the hexadecimal data given in this control statement.

IDRDATA Control Statement #1
causes SPZAP to update the IDR in module IEFX5000 for CSECT
IEFQMSSS with the data PTF01483 (provided the first REP operation is
successful).

Cha ter 6. SPZAP 6-21

6-22 Service Aids

SETSSI Control Statement #1
tells SPZAP to replace the system status information in the directory entry ,.
for module IEFX5000 with the SSI data given. The new SSI contains: ..."

• A change level of 0 1.
• A flag byte of 21.
• A serial number of 2448.

DUMPT Control Statement #1
causes SPZAP to provide a translated dump of CSECT IEFQMSSS.

NAME Control Statement #2
indicates that the operations defined by the control statements immediately
following this statement are to be performed on CSECT IEFQMRA Win
the load module IEFX5000.

VERIFY Control Statement #2
requests that SPZAP perform the VERIFY function at offset X'0154' from
the start of CSECT IEFQMRA W. If the VERIFY operation is successful,
SPZAP continues processing the subsequent control statements sequentially.
If the VERIFY is rejected, SPZAP does not perform the following REP or
SETSSI operations, but it does dump a hexadecimal image of CSECT
IEFQMRA W to the SYSPRINT data set and performs the DUMPT
operation as requested.

REP Control Statement #2
causes SPZAP to replace the data at hexadecimal offset X'0154' from the
start of CSECT IEFQMRA W with the hexadecimal data that is specified in
this control statement.

IDRDATA Control Statement #2
causes SPZAP to update the lOR in module IEFX5000 for CSECT
IEFQMRAW with the data PTF01483 (provided the second REP operation
is successful).

SETSSI Control Statement #2
causes SPZAP to perform the same function as in the previous SETSSI, but
only if the second VERIFY is not rejected.

DUMPT Control Statement #2
causes SPZAP to perform the DUMPT function on control section
IEFQMRAW.

Example 4: Inspecting and Modifying a Data Record

In this example, the data set to be modified is a volume table of contents
(VTOC).

IIZAPIT JOB MSGLEVEL=(l,l)
IISTEP EXEC PGM=AMASPZAP
IISYSPRINT DD SYSOUT=A
IISYSLIB DD DSNAME=FORMAT4.DSCB,DISP=OLD,
II UNIT=3330,VOLUME=SER=111111,DCB=(KEYLEN=44)
IISYSIN DD *

CCHHR 0005000001
VERIFY 2C 0504
REP 2C OAOa
REP 2E 0001,03000102
ABSDUMPT ALL

1*

SYSPRINT DD Statement
defines the message data set.

SYSLm DD Statement
defines the data set to be accessed by SPZAP in performing the operations
specified by the control statements. In this example, it defines the VTOC (a
Format 4 DSCB) on a 3330 volume with a serial number of 111111.
DCB = (KEYLEN = 44) is specified so that the dump produced by the
ABSDUMPT control statement shows the dsname which is a 44-byte key.
Note that this is not necessary for the VERIFY and REP control
statements.

CCHHR Control Statement
indicates that SPZAP is to access the direct access record address
"0005000001" in the data set defined by the SYSLIB DD statement while
performing the operations specified by the following control statements.

VERIFY Control Statement
requests that SPZAP check the data at hexadecimal displacement X'2C'
from the start of the data record defined in the CCHHR statement to make
sure it is the same as the hexadecimal data specified in this control
statement. If the data is the same, SPZAP continues processing the
following control statements sequentially. If the data is not identical,
SPZAP does not perform the REP function but does perform the
ABSDUMPT operation. It also dumps a formatted hexadecimal image of
the data record defined by the CCHHR statement to the SYSPRINT data
set.

REP Control Statements
cause the eight bytes of data starting at displacement X'2C' from the
beginning of the record to be replaced with the hexadecimal data in the
REP control statements. The 2C displacement value allows for a 44-byte
key at the beginning of the record.

Chapter 6. SPZAP 6-23

ABSDUMPT Control Statement
causes SPZAP to dump the entire data set to the SYSPRINT data set.
Because DCB = (KEYLEN = 44) is specified on the SYSLIB DD statement,
the 44-byte dsname is also dumped.

Note: If the VTOC is to be modified, SPZAP issues message AMAl17D to
the operator, requesting permission for the modification.

Example 5: Entering SPZAP Control Statements Through the Console

This example shows how to enter SPZAP control statements through the console.

JOB
EXEC
DO

//CONSOLIN
//STEP
//SYSPRINT
//SYSLIB
//SYSIN

DO
DO

CONSOLE
/*

SYSLIB DD Statement

MSGLEVEL=(l,l)
PGM=AMASPZAP
SYSOUT=A
DSNAME=SYS1.LINKLIB,DISP=OLD
*

defines the data set that contains the module to be updated.

SYSIN DD Statement
defines the input stream.

CONSOLE Control Statement
indicates that SPZAP control statements are to be entered through the
console.

Example 6: Using the BASE Control Statement for Inspecting and Modifying a Load
Module

6-24 Service Aids

This example shows how to inspect and modify a CSECT whose starting address
does not coincide with assembly listing location zero.

//MODIFY
//STEP
//SYSPRINT
//SYSLIB
//SYSIN

NAME
BASE
IDRDATA
VERIFY
REP
DUMP

/*

JOB
EXEC
DO
DO
DO

MSGLEVEL=(l,l)
PGM=AMASPZAP
SYSOUT=A
DSNAME=SYS1.LINKLIB,DISP=OLD
*

IEFMCVOL IEFCVOL2
0398
MOD04
039A 5820COIO
039A 47000000
IEFMCVOL IEFCVOL2

SYSLm DD Statement
defines the data set to be accessed by SPZAP when performing the
operations requested via the control statements. In this case, it defines the
system library, SYSl.LINKLIB, that contains the module IEFMCVOL in
which the CSECT IEFCVOL2 to be changed resides.

SYSIN DD Statement
defines the input stream that contains the SPZAP control statements.

NAME Control Statement
tells SPZAP that the operations defined by the control statements that
immediately following it are to be performed on CSECT IEFCVOL2 in the
load module IEFMCVOL.

BASE Control Statement
provides SPZAP with a base value that is to be used to readjust the
displacements on the VERIFY and REP statements that follow it.

IDRDATA Control Statement
causes SPZAP to update the IDR in module IEFMCVOL for CSECT
IEFCVOL2 with the data MOD04 (provided the REP operation is
successful).

VERIFY Control Statement
requests that SPZAP inspect the data at offset X'039A'. The base value
X'0398' given in the previous BASE statement is subtracted from this
displacement to determine the relative address of the data within CSECT
IEFCVOL2. Therefore, SPZAP checks the data at the location that is
actually displaced X'0002' bytes from the beginning of CSECT IEFCVOL2
to ensure that it is the same as the hexadecimal data specified in this control
statement. If the data is the same, SPZAP continues processing the
following statements in the order in which they are encountered. If the data
is not identical, SPZAP does not perform the REP, SETSSI, or IDRDATA
functions, but it does perform the DUMPs operation; it also dumps a
hexadecimal image of CSECT IEFCVOL2 to the SYSPRINT data set.

REP Control Statement
causes SPZAP to replace the data at offset X'0002' (that is, offset X'039A'
minus a displacement of X'0398') into CSECT IEFCVOL2 with the
hexadecimal data specified in this control statement.

DUMP Control Statement
requests that SPZAP dump a hexadecimal image of CSECT IEFCVOL2 to
the SYSPRINT data set. Because the DUMP statement follows the REP
statement, the image reflects the changes made by SPZAP (assuming no
verification has been rejected).

Chapter 6. SPZAP 6-25

SPZAP Output

SPZAP provides two different dump formats for the purpose of checking the data
that has been verified and/or replaced. These dumps (written to the SYSPRINT
data set specified by the user) may be of the formatted hexadecimal type or the
translated form. Both formats are discussed below in detail with examples
showing how each type looks.

The Formatted Hexadecimal Dump

When you use the DUMP or ABSDUMP control statement, the resulting printout
is a hexadecimal representation of the requested data. Figure 6-4 gives a sample
of the formatted hexadecimal dump. A heading line is printed at the beginning of
each block. This heading consists of the hexadecimal direct access address of the
block, a two-byte record length field, and the names of the member and the
control section that contain the data being printed (if the dump is for specific
CSECT or load module). Each printed line thereafter has a three-byte
displacement address at the left, followed by eight groups of four data bytes each.
The following message:

IAMAl13I COMPLETED DUMP REQUIREMENTS

is printed under the last line of the dump printout.

The Translated Dump

6-26 Service Aids

The DUMPT and ABSDUMPT control statements also provide an operation
code translation and an EBCDIC representation of the data contained in the
dump. Figure 6-5 shows the format of the translated dump. The first byte of
each half word of data is translated into its mnemonic operation code equivalent,
provided such a translation is possible. If there is no equivalent mnemonic
representational value to be given, the space is left blank. This translated line of
codes and blanks is printed directly under the corresponding hexadecimal line.
An EBCDIC representation of each byte of data is printed on two lines to the
right of the corresponding line of text, with periods (.) substituted for those bytes
that do not translate to valid printable characters.

r r r
DUMP I ErlMVESN ALL

**CCHHR- 0022001108 RECORD LENGTH- 0850 MEMBER NAME IEBMVESN CSECT NAME IEHMVSSN
000000 47FOF014 OEC5E2D5 60E6D9Cl D760E4D7 60606000 90ECDOOC 189F5010 D0484110
000020 D048501)0 10045010 D00818Dl 58100000 9200DOOC 92FFD008 9140C20A 4780904A
000040 9200C2F4 D20EC2F5 C2F49108 C20C4710 90E69500 C2FC4780 9064D203 C3009664
000060 9200C2FC D203c320 C31C95FF C32A4770 908A4180 COO141FO 001450EO 964845EO
000080 951858EO 96484520 95705820 C2640700 45109098 00000000 50210000 92801000
OOOOAO 0A1495FF C3274780 910A9108 C20C4710 91685820 C27495.81 20114770 90009102
OOOOCO C2084710 90F89110 C2084710 90F80700 451090D8 00000000 50210000 92801000
OOOOEO OA1447FO 910A9180 C1FC4780 9168947F C1FC47FO 908A0700 45109100 00000000
000100 50210000 92B01000 0A1495FF C3344780 96DC41AO C0089200 C2F49200 C2F89200
000120 C2FC9200 C30094F7 A0429101 C2094780 91689102 C2094710 91685810 C27458FO
000140 10149601 101748EO F0044CEO F0069101 10204710 915E4100 E00847FO 91624100
,)00160 E0104110 FOOOOAOA lB444340 C2245810 C2245830 C27C4833 000E95FF 30024780
000180 918CD505 30041004 47F09192 D505301C 10044780 91E84111 00OC4640 917A4140
0001AO 000C1B14 41400001 D2031000 301095FF 30024780 91COD205 10043004 47F091C6
0001CO 02051004 301C1B33 403096FC D201100A 96FC4130 00019580 10024780 91E24030
0001EO 96FCD201 100A96FC 5010C224 4240C224 9110C208 47109204 9102C208 47109204
000200 47F09236 5810C224 95801002 47709236 D20196FC 100A4820 96FC4122 00014130
000220 00011932 4770922C 41220001 402096FC 0201100A 96FC9140 C2094710 92B85820
000240 00105822 00284832 00005930 92B44780 92B81233 47809268 91203012 4780926
000260 91023003 47109270 41220002 47F09246 0203C228 C2005820 C2000203 2000
000280 D20520 , 4122 000C5020 C2009640 C20947F 004143

218
OOuJ 110002 80964C
000600 41.~OC014 D205FOOO 1 FF 00060201 96 ;,; 6FC 9634926B
000620 FOO04EEO C080F337 F001C080 96FOF004 41FFOOO~ 41FFOO01 4111000C 46009604
000640 581::09648 07FE1BOO 7FFFOOOO 58F09660 58FFOOOO D219C014 FOO19200 C33C07FE
000660 00000708 04000668 41800668 1BF8189F D503C31C 97004780 96D89500 C3284780
000680 96C25881 00001288 478096D8 95801008 4770969A 96FFC334 07FE58BO C32058FO
0006AO 1000D24F FOOOBOOO 41BB0050 50BOC320 1BBB43BO C32806BO 42BOC328 41FOOO08
0006CO 07FE58BO C31C4100 0280181B 41110000 OAOAD707 C31CC31C lBFF07FE 9600C334
0006EO 4180COOl 41FOOO18 50E09648 45E09518 58E09648 45209570 47F09112 8CAOOOOO
000700 00000000 43A0400B

*.CCHtlk- 0022001108 RECORD LENGTH- 0850 MEMBER NAME IEIlMVESN CSECT NAME IEHMVMSN
000000 00000724 0000073F 00000750 00000761 00000775 00000793 000007E6 19E4D5C9
000020 E340D9C5 C340D6D9 40E4D5D3 C1C2C5D3 C5C440E3 C1D7C50F C9C5C8F3 F6F1C940
000040 C4C1E3Cl 40E2C5E3 OF404040 40404040 40C4C1E3 C140E2C5 E312C3D6 D7C9C5C4
000060 40]"3D64 0 E5D6D3E4 D4C54DE2 501C05D6 E340D406 E5C5C460 C3D6D7C9 C5C440E3
000080 0640E5D6 D3E4D4C5 4DE25051 C9c5C8F3 F3F1C940 E4E2C5D9 40D3C1C2 C5D3E240
OOOOAO C109C540 D5D6E340 D4D6E5C5 C461C3D6 07C9C5C4 4B4005D6 40E4E2C5 D940D3C1
OOOOCO C2C5D340 E3D9C1C3 D240C1D3 D3D6C3C1 E3C5C440 C6D60940 C9D5D7E4 E34B66C9
OOOOEO C5C8F3F3 F5C94007 C5D9D4Cl D5C505E3 40C96106 40C509D9 D6D940E6 C8C9D3C5
000100 40B6D9C9 E3C9D5C7 40E4E2C5 D94006E4 E3D7E4E3 40E309C1 C9D3C5D9 40D3C1C2
000120 C5D3E24B 40D5D640 04D6D9C5 40D3Clc2 C5D3E240 E6C903D3 4OC2C540 D7D9D6C3

(j 000140 C5E2E2C5 C44B58BO
:r' aM-Al13I COMPLETED DUMP REQUIREMENTS
~

"0
;:0 ... Figure 6-4. Sample Formatted Hexadecimal Dump ?'
VI

'" N
~

'"
0\

I
tv
-..J

0"1
I HMASPZAP INSPECTS. MODIFIES. AND DUMPS CSECTS OR SPECIFIC DATA RECORDS ON DIRECT ACCES5 STORAGE.
tv OUMPT IEHMVESN ALL 00

•• CCHHR- 0022001108 RECORD LENGTH- 0850 MEMBER NAME IEHMVESN CSECT NAME IEHMVSSN
C'-l 000000 47FO F014 OEe5 E205 60E6 D9Cl D760 E4D7 6060 6000 90EC OOOC 189F 5010 0048 4110 ·.OO •• ESN-WRAP-UP. t'lI

~. BC SRP MVCL STD XC STD STD STM LR ST IA .--- ,•
000020 0048 50DO 1004 5010 0008 1801 5810 0000 9~00 DOOC 92FF D008 9140 C20A 4780 904A ••• , ••• , •••• J •••••

t'lI ST LPR ST LR L MVI MVI 'I'M BC STM •••••••••• B.· ••• ~·
~ 000040 9200 C2F4 020E C2F5 C2F4 9108 C20C 4710 90E6 9500 C2FC 4780 9064 0203 C300 9664 • •• B4K.B5B4 •• B ••• •
0.: MVI MVC TM BC STH CLI BC STM MVC 01 ·.W •• B ••••• K.C •••• en

000060 9200 C2FC 0203 C320 C31C 95FF C32A 4770 908A 4180 COOl 41FO 0014 50EO 9648 45EO ••• B.K.C.C ••• C ••••
MVI MVC CLI BC 5TM LA IA 5T 01 BAL • ••••••• 0 •• & ••••• •

000080 9518 58EO 9648 4520 9570 5820 C264 0700 4510 9098 0000 0000 5021 0000 9280 1000 • •••••••••••• B ••• •
CLI L 01 BAL CLI L BCR BAL STM ST MVI LPR •••.••••• & ••••••••

OOOOAO OAl4 95FF C327 4780 910A 9108 C20C 4710 9168 5820 C274 9581 2011 4770 90DO 9102 ••••• C ••••••• B ••••
SVC CLI BC TM TM BC TM L CLI LPOR BC STH 'I'M ••••• B ••••••••••••

OOOOCO C208 4710 90F8 9110 C208 4710 90F8 0700 4510 9008 0000 0000 5021 0000 9280 1000 ·B •••• 8 •• B •••• 8 •• •
BC 5TM TM BC STM BCR BAL STM ST MVI LPR •••. Q •••• & ••••••••

OOOOEO OA14 47FO 910A 9180 CIFC 4780 9168 947F CIFC 47FO 908A 0700 4510 9100 0000 0000 •••• 0 •••• A •••••• ".
SVC BC TM TM BC TN NI BC STM BCR BAL TM .A •• 0 •••••••••••••

000100 5021 0000 92BO 1000 OAl4 95FF C334 4780 96DC 41A0 C008 9200 C2F4 9200 C2F8 9200 ·, ••••••••••• C ••• •
ST MVI LPR SVC CLI BC 01 IA MVI MVI MVI ••••••••• B4 •• B8 •••

000120 C2FC 9200 C300 94F7 A042 9101 C209 4780 9168 9102 C209 4710 9168 5810 C274 58FO .B ••• C •• 7 •••• B ••• •
MVI NI TM BC TM TM BC TM L L ••••• B ••••••• B •• 0.

000140 1014 9601 1017 48EO F004 4CEO F006 9101 1020 4710 915E 4100 E008 47FO 9162 4100 • •••••••• 0.<.0 ••• •
LPR 01 LPR LH SRP MH SRP TM LPR BC TM LA BC TM LA •••••• ; ••••• 0 •••• •

000160 EOI0 4110 FOOO OAOA IB44 4340 C224 5810 C224 5830 C27C 4833 OOOE 95FF 3002 4780 ••••• 0. • • • •• B ••••
LA SRP SVC SR IC L L LH CLI LPER BC ·B ••• Bi •••••••••• •

000180 918C 0505 3004 1004 117FO 9192 D505 301C 1004 11780 91E8 4111 OOOC 46110 917A 11140 ••• N •••••• O •• N ••••
rM CLC LPER LPR BC TM CLC LPER LPR Be TM IA BCT TM IA •••••• y ••••• . :. .

0001AO OOOC 1B14 11140 0001 0203 1000 3010 95FF 3002 4780 91CO D205 1004 30011 47FO 91C6 •• K ••••••••
SR IA MVC LPR LPER CLI LPER BC 'I'M MVC LPR LPER BC TM ••••••• K •••••• 0 .F.

0001CO 0205 1004 301C IB33 4030 96FC D201 100A 96FC 11130 0001 9580 1002 4780 91E2 4030 ·K ••••••• ••• K ••••
MVC LPR LPER SR STH 01 MVC LPR 01 LA CLI LPR BC TM STH •• • • • • • • • • • • • • S ..

0001EO 96FC D201 100A 96FC 5010 C224 4240 C224 9110 C208 4710 9204 9102 C208 4710 9204 ••• K ••••• '.B •• B ••

01 MVC LPR 01 ST STC TM BC MVI TM BC MVI ••• B ••••••• B ••••••
000200 47FO 9236 5810 C2211 9580 1002 4770 9236 0201 96FC 100A 4820 96FC 4122 0001 4130 •• O •••• B ••••••••• •

BC MV1 L CLI LPR BC MVI MVC 01 LPR LH 01 LA IA ·K ..•.•...•.••.•• •
000220 0001 1932 11770 922C 11122 0001 4920 96FC 0201 100A 96FC 9140 C209 4710 92B8 5820 •............

CR BC MVI LA STH 01 MVC LPR 01 'I'M BC MVI L .K •••••• B ••••••••
000240 0010 5822 0028 11832 0000 5930 92B4 11780 92B8 1233 4780 9268 9120 3012 4780 9268 •................•

L LH C MVI BC MVI LTR BC MVI 'I'M LPER BC MVI •................•
000260 9102 3003 4710 9270 4122 0002 47FO 9246 0203 C228 C200 5820 C200 D203 2000 3010 •••••••••••••• 0 •••

TM LPER BC MVI LA BC MVI MVC L MVC LPDR LPER ·K.B.B ••• B.K ••••• •
000280 0205 2004 301C 4122 OOOC 5020 C200 9640 C209 47FO 92B8 5830 c200 41113 0002 5860 ·K ••••••••• '.B •••

MVC LPDR LPER IA ST 01 BC MVI L IA L .B •• O •••• B •••••• -·
0002AO C224 4156 0004 4170 0001 4180 0001 117F0 B002 FFFF FFFF 9108 C20c 117109296 ·B •••••••••••••• O·

IA IA IA BC TM BC MVI • •••••••••• B ••••• •
0002CO 95FF c327 11780 9296 4110 C008 5010 COOO COOO 5810 C274 4120 COOO 5021 0024

CLI Be MVI LA L~T
~92E,=- 1000 o 002 41AO •.....

Figure 6-5. Sample Translated Dump

~ L ~.

Appendix A. Writing EDIT User Programs

Introduction

You may want to code special programs to supplement GTF and PRDMP/EDIT
operations. EDIT allows for two types of user programs: exit routines and format
appendages. Neither type may occupy more than 10K bytes of main storage.

An exit routine allows you to inspect each input trace record before EDIT begins
processing it; on the basis of the inspection you must decide whether EDIT should
process the record normally or take special action.

A format appendage allows you to format all user trace records of a specified
type. A format appendage can receive control before EDIT processes a record
and/or during ABDUMP processing of a USR record. A format appendage must
be named AMDUSRxx where xx is the hexadecimal form of the format identifier
(FlO) specified in the GTRACE macro when the record was created. EDIT also
accepts format appendages named IMDUSRxx or HMDUSRxx: thus format
appendages that were originally written for use with OS/MFT, OS/MVT, or
OSjVSl need not necessarily be rewritten for use with OSjVS2.

This appendix is meant to help you write efficient, helpful user programs.

Guaranteeing Cross-System Compatibility for Format Appendages

To make sure that an OS/MFT, OS/MVT, or OS/VSI format appendage is
upwardly compatible with OS/VS2 operation, reassemble the module containing
the appendage. If your format appendage depends on specific fields in a trace
record, be sure that it is not affected by differences in record format between
systems.

Appendix A. Writing EDIT User Programs A-I

Interfaces Between User Programs and EDIT

Gaining Control

A user program works with the EDIT function of PRDMP in the following ways:

Until EDIT calls them, user programs reside in SYSl.LINKLIB, or in data sets
concatenated to SYSl.LINKLIB. Once your program is loaded into main
storage, it remains there until EDIT processing is complete.

You name an exit routine in the EXIT parameter of the EDIT control statement.
Your routine gets control every time EDIT reads an input trace record, and
always completes its examination of the record before EDIT processes it.

You identify a format appendage in the GTRACE macro. Your format
appendage gets control only when EDIT encounters a record that contains an
FlO field corresponding to the name of the format appendage. The appendage
remains in main storage until deleted, For further information about GTRACE,
see "User Trace Data Created With GTRACE," in Chapter 1: GTF.

End-of-File Indicator for User Exits

A-2 Service Aids

When the PRDMP EDIT facility passes control to your exit, an end-of-file
indicator is passed in register two as follows:

o - Normal processing (no end-of-file encountered)
4 - End-of-File or EDIT terminating condition encountered.

The end-of-file entrance into user exit routines occurs only when the EOF
keyword is specified on the EDIT control statement. (For a description of the
EDIT control statement, see Chapter 3: PRDMP). Such an entrance allows the
exit routine to perform any necessary summarization and/or cleanup. If a return
code of 4 is passed to the user exit, no input trace record exists; all input has
already been processed.

Note: If the EOF keyword is not specified on the EDIT statement, there is no
need to check for any return codes in register two. In this case, register two
contains a zero for all invocations of your routine and your routine does not
receive control at EDIT termination.

Using the Parameter List

Input Record

When EDIT passes control to a user exit routine or a format appendage, register
I contains the address of a parameter list. The contents of that parameter list,
and its related fields are shown in Figure A-I. The exit routine or format
appendage uses the parameter list (bytes 0 to 20) to find the record it is to
process, determine how to process it, and decide where to put the processed
record. (A format appendage also uses bytes 20 to 32.)

As shown in Figure A-I, the first four bytes of the parameter list give the address
of the input record. The two four-byte fields at offset 12 and 16 point to the event
identifier (EID) field and the data area in the input record.

Register 1 Output area

f LIST

0

4

8

12

Input record

length

LIST

t input record

output area

GTF option word

EID field

(Shaded area is used by
format appendages only.)

Timestamp

-r----------------------,

(120 bytes maximum for user exit)
(110 bytes maximum for format
appendage)

GTF option word

(4 bytes)
See Figure A-2 for details.

Data

Figure A-I. EDIT Parameter List and Related Fields

...

For a description of the input record format after GTF processing, see
Figure 1-10 and Figure 1-11 in Chapter 1: GTF (Generalized Trace Facility).
For a description of the input record format prior to GTF processing, see the
chapter on GTF in OS/VS2 MVS Service Aids Logic .

Appendix A. Writing EDIT User Programs A-3

GTF Option Word

A four-byte field at offset 8 in the parameter list gives the address of the GTF
option word, a four-byte table that summarizes the GTF options in effect when
the input trace records were produced. Figure A-2 lists the contents of the GTF
option word.

BYTES BITS

Byte 1 1 ...
· 1 ..
· .1.
· .. 1

Byte 2 1 ...
· 1 ..
· .1.
... 1

Byte 3 1 ...
· x ..
· . 1.
· .. 1

1 ...
.1 ..
· . x.
· .. 1

1 ...
· 1 ..
· .1.
· .. 1

xxx.
· .. 1

Byte 4 xxxx xxx.
· .. 1

OPTIONS IN EFFECT DURING TRACE

SYSM -- minimal tracing for system events
SYSP -- maximum tracing, prompting requested
SYS maximum tracing for system events
USR all GTRACE-generated interrupts traced
TRC all GTF interrupts traced
DSP all task-switches traced
Reserved
PCI -- program-controlled interrupts traced
SVC -- all SVC interrupts traced
SVCP -- SVc interrupts selected by prompting
SIO -- all SIO events traced
SlOP -- SIO events selected by prompting
PI -- all program interrupts traced
PIP -- program interrupts selected by prompting
10 -- all I/O interrupts traced
lOP -- I/O interrupts selected by prompting
EXT -- external interrupts traced
Reserved
SRM -- all system resource manager events traced
RR -- all recovery termination events traced
Reserved bits
IO=SIO -- identical devices selected for 10 & SIO
Reserved
User timestamp requested

Figure A-2. Contents of GTF Option Word, Showing GTF Options in Effect during Trace

A-4 Service Aids

For more information about any of the GTF options, see Chapter 1: GTF
(Generalized Trace Facility).

L

Writing a Reentrant Format Appendage

Because the user format appendage receives control from both PRDMP and
ABDUMP, you can increase efficiency by writing reentrant user format
appendages, and placing the routines in the SYSl.LPALIB system data set. This
has the advantage of allowing simultaneous execution of the format appendage by
both PRDMP and ABDUMP. It also removes the 10K size restriction placed on
format appendages by PRDMP; because SYSl.LPALIB routines are not brought
into PRDMP's address- space, their size need not be restricted.

To be reentrant, word seven of the parameter list passed to the format appendage
must address a 200-byte work area. (See Figure A-I.) This work area contains
zeros on the first entrance to the format routines for each user trace record. The
format appendage may then use this work area for any purpose. On any
subsequent entry into the format appendage for that same user trace record, the
work area remains intact to allow the format routine to reference any field set by
prior calls. When a new trace record is obtained, the work area is zeroed.
Figure A-6 shows a reentrant format appendage.

Format Service Routine Used by a Format Appendage

PRDMP's format service routine, AMDPRFMT, is available for use by a format
appendage. This routine resides in the link pack area and is pointed to by word
six of the parameter list passed to the format appendage. For a complete
description of the use of AMDPRFMT, see "The Format Service Routine" in
Appendix B: PRDMP User Exit Facility.

Word eight of the PRDMP parameter list contains the address of the parameter
list to be passed to the format service routine. Figure A-3 shows the
AMDPRFMT parameter list as initialized by ABDUMP and EDIT. See
"PRDMP Parameter List" in Appendix B: PRDMP User Exit Facility for a
description of the remaining fields of this parameter list.

Figure A-3. Format Service Routine Parameter List

Appendix A. Writing EDIT User Programs A-5

The third word of the PRDMP parameter list contains the address of the 120-byte
output buffer into which the fonnat service routine fonnats the data. The actual
formatting of this data is directed by the format appendage through the use of
format patterns. See "Format Patterns" in Appendix B: PRDMP User Exit
Facility for a detailed description of the use of format patterns.

Using the Format Appendage

Note that your format appendage must not put any data into the first ten bytes of
the output buffer. These ten bytes are reserved and overlaid by PRDMP or
SNAP/ABDUMP before being printed. The maximum output line remains 110
bytes. Therefore, when your format routine assembles its format patterns, you
must be sure that all output information (labels and/or data) begins at least ten
bytes from the beginning of the output buffer.

Figure A-6 illustrates how a format appendage uses the PRDMP format routine
to format its output.

Note that your format appendage does not have to use the PRDMP format
routine. A user format appendage may choose to fonnat its own data into the
output buffer. In this case, use the output buffer address in the second word of
the PRDMP parameter list. This buffer is 110 bytes long, and data can be placed
in it starting at offset zero (the first ten bytes need not be preserved). The output
buffer may be in a different location when the format appendage receives control
again.

Returning to EDIT

Your program (the user-defined exit routine) must return to EDIT with one of the
return codes listed below. If EDIT receives an invalid return code from your
program, it takes action as specified by the ER subparameter of the PARM
parameter of the EXEC statement that invokes PRDMP. This parameter, its
values and their meanings are described in Chapter 5: PRDMP in the section "Job
Control Language Statements."

Exit Routines Return Codes

A -6 Service Aids

An exit routine must return to EDIT with one of the following return codes:

Code Meaning

o EDIT should print the contents of the output area, clear the area, and return immediately to
the exit routine. This allows the exit routine to print more than one line of output.

4 EDIT should print the contents of the output area and obtain the next logical record.

8 EDIT should format and print the trace record according to the selectivity specified in the
EDIT control statement.

12 EDIT should obtain the next logical input trace record without printing the contents of the
output buffer.

16 EDIT should print the ~ontents of the output buffer but not re-invoke the exit routine, which

is no longer needed.

20 EDIT should format and print the trace record according to the selectivity specified in the
EDIT control statement, but not re-invoke the exit routine, which is no longer needed.

24 EDIT should terminate processing and return control to PRDMP so that the next PRDMP
control statement can be processed.

28 EDIT should format and print this record as though no selectivity had been specified in the
EDIT control statement.

Format Appendage Return Codes

Handling Errors

A format appendage must return to EDIT or ABDUMP with one of the
following return codes:

Code Meaning

o EDIT/ABDUMP should print the contents of the output buffer and return immediately to
the format appendage.

4 EDIT/ABDUMP should print the contents of the output buffer and obtain the next logical
input trace record. .

8 EDIT/ABDUMP should obtain the next logical input trace record without printing the
contents of the output buffer.

12 EDIT/ABDUMP should print this record in hexadecimal and obtain the next logical input
trace record.

EDIT is prepared to handie three types of errors: failures in finding or loading
your program, invalid return codes, and program checks. Other types of errors
and their consequences are discussed later in this appendix, in the section
"Avoiding Unrecoverable Errors."

Errors in Finding or Loading Your Program

There are three probable reasons why EDIT might fail to find or load your
program:

• Your program is incorrectly identified in the EXIT parameter of the EDIT
control statement (for exit routines) or in the FID parameter of the GTRACE
macro (for format appendages).

• Your program does not reside in the designated library.

• Your program is larger than 10K bytes and is not in the link pack area
(LPA). EDIT does not load an exit routine or format appendage that exceeds

. this maximum; instead, it issues this message:

AMD229I MODULE mod EXCEEDS 10K LIMIT

Appendix A. Writing EDIT User Programs A-7

If, for one of these reasons, EDIT cannot find or load your exit routine or format
appendage, it takes action as shown in Figure A-4. ...)

Error Exit Routine Format Appendage
Input Type Not Found Not Loaded Not Found Not Loaded

Dump A A B/C B/C
Trace Data Set A A B A

Action A: EDIT terminates processing, returns control to PRDMP and then obtains the next
PRDMP control statement.

Action B: EDIT dumps the associated record in hexadecimal and obtains the next input trace
record. Any subsequent records that have the same FID are dumped in
hexadecimal.

Action C: ABDUMP dumps the associated record in hexadecimal and obtains the next input
trace record. Any subsequent records that have the same FID are dumped in
hexadecimal.

Figure A-4. EDIT/ABDUMP Actions in Response to Errors in Finding or Loading User
Programs

Invalid Return Codes and Program Checks

EDIT's action in response to invalid return codes and program checks depends on
the value for ER that you specify in the PARM parameter of the EXEC
statement that invokes PRDMP. (Note: ER = 3 should be specified whenever
possible. All other values for ER result in issuance of the SPIE macro prior to
every entrance to an EXIT routine or format appendage. The processing is
extensive; it can adversely affect performance. For further explanation of the
valid values for ER, see "Job Control Language Statements" in Chapter 3.

ABDUMP's action in response to invalid return codes and program checks is
described as "Action C" in Figure A-4.

Avoiding Unrecoverable Errors

A -8 Service Aids

As shown in the previous sections, EDIT can recover from three kinds of errors:
failures in finding or loading your program, invalid return codes, and program
checks. EDIT cannot protect you, however, against errors that you may generate,
for example, in performing I/O operations or issuing GETMAIN macro
instructions. In fact, you should avoid issuing any SVCs in your program.
Ordinarily this is not difficult, because EDIT allows your program to examine
records, manipulate data, and request formatted output to be printed. If you
must issue an SVC, EDIT permits you to do so; you should be prepared,
however, for possibly unpredictable results when an error occurs during the SVC
operation.

Another type of error arises when you invoke more format appendages than
EDIT has room for: when EDIT needs more room to load a new format
appendage, it deletes all previously loaded format appendages and starts loading
format appendages again as needed.

Deletion of a format routine can be critical if the deleted program issues an
OPEN, because the reinitialization that is necessary when the program is reloaded

can cause two DeBs to be open at the same time. (Note that you need not worry
about deletion of an exit routine. EDIT provides a separate 10K block of storage
for an exit routine, so that an exit routine is never be deleted until EDIT
processing is tenninated.)

One way to avoid running out of space for a format appendage is to make your
program reentrant and place it in the link pack area (LPA). No storage is
required and no LPA format appendages are deleted.

If your format appendage must issue a GETMAIN macro, be sure to specify
region large enough to include the amount of storage needed. When you no
longer need the extra storage, be sure to issue a FREEMAIN macro for all
storage that you reserved for your own use. If you do not do this, and your
format appendage is deleted, the storage you reserved remains allocated to you
and thus will be unavailable to subsequent users.

Examples of Possible Errors

A few examples may further clarify the areas in which EDIT does not provide
error recovery:

• Your program, known as module A, issues the LINK SVC for module B. A
program check occurs in module B. EDIT attempts error recovery, because
the error is a program check, but it knows nothing about module B.
Therefore when it produces diagnostic information, it gives the entry point of
module A as the entry point of the failing module and the attributes of the
registers at the time of the program check to module A.

• Your program issues the OPEN SVC (SVC X'13') unsuccessfully and is
posted with a system completion code of 213. EDIT cannot recover, so
EDIT, your program and AMDPRDMP are all terminated.

• Your program opens a DCB. Before it can close the DCB, the program is
deleted to make room for another user program. When the deleted program
is reloaded, it creates a new DCB and opens it. Thus, there are two open
DCBs with the same name in storage at the same time. The operating system
does not tolerate this situation, so your program is abnormally terminated.

• Your program issues the SPIE SVC, thereby nullifying EDIT's SPIE routine.
As a result, any program checks in your program that EDIT would normally
handle now go through your own SPIE routine. Results could be
unpredictable.

Appendix A. Writing EDIT User Programs A-9

Sample User Exit

Figure A-5 shows a sample exit routine. This routine, named ABENDXIT, aids
in diagnosis of abnormal termination condition in a particular job. It scans each
input trace record, suppressing printing until it finds a record with the specified
jobname. When it finds such a record, ABENDXIT signals PRDMP to print that
record. All subsequent records are printed until ABENDXIT encounters an SVC
13 record for the specified jobname; then ABENDXIT instructs PRDMP to print
that record and terminate.

**
* ABENDXIT IS AN EDIT USER EXIT ROUTINE DESIGNED TO CONTROL PRINTING *
* OF ALL GTF RECORDS ASSOCIATED WITH A PROGRAM THAT HAS *
* PROGRAM CHECKED AND ABENDED *
**
ABENDXIT CSECT
* EQUATE STATEMENTS
FRSTREG EQU 0
PARMREG EQU 1
EIDREG EQU 2
DATAREG EQU 3
WORKREG EQU 4
CHAINREG EQU 9
BASE EQU 12
SAVEPTR EQU 13
RETPTR EQU 14
CODEREG EQU 15

STM RETPTR,BASE,12 (SAVEPTR)
BALR BASE,O
USING *,BASE
ST SAVEPTR,SAVE+4
LA CHAINREG,SAVE
ST CHAINREG,8(SAVEPTR)
LR SAVEPTR,CHAINREG
IMDMEDIT

STORE REGISTERS
ESTABLISH ADDRESSABILITY
USING REGISTER 12
BACKWARD CHAINING
MY SAVE AREA POINTER
FORWARD CHAINING
REG 13 ADDRESSES SAVE AREA
SYMBOLIC EID MACRO

/
/
/
/
/
/
/
/
/
/
/

** */
IMDMEDIT MAPPING MACRO

THE IMDMEDIT MACRO MAPS THE EID VALUES ASSOCIATED WITH IBM
SYSTEM AND SUBSYSTEM EVENTS. THE STORAGE FOR ANY OR ALL OF THE
MAPPED VALUES MUST BE CONTAINED IN THE MODULE REFERENCING THE
DESIRED EIDS. IMDMEDIT IS DESIGNED TO BE USED BY IBM-SUPPLIED
FORMAT APPENDAGES, AND USER-SUPPLIED USER EXIT MODULES. ALL
LABELS THAT ARE NOT PREFIXED WITH IMD ARE USED BY THE OTHER
COMPONENTS OF GTF'AND CORRESPOND TO THE NAMES USED IN THE HOOK
AND GTRACE MACROS.
**
IMDMPCI
IMDMSVC
IMDMDSP
IMDMI01
IMDMI02
IMDMSIO
IMDMSSMl
IMDMSSM
IMDMPIPG
IMDMPI
IMDMEXT

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

X'2100'
X'lOOO'
X'0003'
X'5201'
X'5200'
X'5100'
6
o
o
X'6101'
X'6201'

Figure A-5 (Part 1 of 4). Sample Exit Routine

A-IO Service Aids

PCI I/O INTERRUPT
SVC INTERRUPT
DISPATCHER
I/O INTERRUPT
I/O INTERRUPT
SIO OPERATION
SSM INTERRUPT
OS SSM FOR COMPATIBILITY
PAGE FAULT PROGRAM INTERRUPT
PROGRAM INTERRUPT
EXTERNAL INTERRUPT

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

IMDMTINT EQU X'6200' PFLIH
IMDMEOS EQU X'5l0l' ros
IMDMSTAE EQU X'4002' RTM
IMDMFRR EQU X'4003' RTM
IMDMSLSD EQU X'4004' RTM/SLIP STD
IMDMSLSU EQU X'4005' RTM/SLIP STD+USR
IMDMSLUR EQU X'4006' RTM/SLIP USR
IMDMTPI EQU X'SlOO' TPIOS
IMDMTP2 EQU X'S200' TPIOS
IMDMDSPI EQU X'OOOl' DISPATCHER
IMDMDSP2 EQU X'OOO2' DISPATCHER
IMDMDSP3 EQU X'OOO3' DISPATCHER
IMDMDSP4 EQU X'OOO4' SVC EXIT PROLOG DISPATCH
IMDMSVCD EQU X'FlOO' SVCDUMP
IMDMSRM EQU X'400l' SRM
IDAAMOI EQU X'EFF5' VSAM
IMDMDMAI EQU X'EFFF' OPEN/CLOSE/EOV
IECPCI EQU IMDMPCI PCI I/O INTERRUPT
IEASVCH EQU IMDMSVC SVC INTERRUPT
IECIOI EQU IMDMIOI I/O INTERRUPT
IECI02 EQU IMDMI02 I/O INTERRUPT
IECSIO EQU IMDMSIO SIO OPERATION
IEAPINT EQU IMDMPI PROGRAM INTERRUPT
IEAEINT EQU IMDMEXT EXTERNAL INTERRUPT
IEATINT EQU IMDMTINT PFLIH
IECEOS EQU IMDMEOS lOS
IEASTAE EQU IMDMSTAE RTM
IEAFRR EQU IMDMDFRR RTM
IEAVSLSD EQU X'4004' RTM/SLIP STD
IEAVSLSU EQU X'4005' RTM/SLIP STD+USR
IEAVSLUR EQU X'4006' RTM/SLIP USR
ISPTIOl EQU IMDMTPI TPIOS
ISPTI02 EQU IMDMTP2 TPIOS
IEADISPl EQU IMDMDSPl DISPATCHER
IEADISP2 EQU IMDMDSP2 DISPATCHER
IEADISP3 EQU IMDMDSP3 DISPATCHER
IEADISP4 EQU IMDMDSP4 EXIT PROLOG DISPATCH
IEASVCD EQU IMDMSVCD SVCDUMP
IRASRM EQU IMDMSRM SRM
IEAABOF EQU X'F200' ABEND/SNAP-NOT USED BY EDIT
IGGSP169 EQU X'EFFE' SAM/PAM/DAM
IGGSP451 EQU X'EFFD' SAM/PAM/DAM
IGGSP251 EQU X'EFFC' SAM/PAM/DAM
IGGSP145 EQU X'EFFB' SAM/PAM/DAM
IGGSP239 EQU X'EFFA' SAM/PAM/DAM
IGGSP235 EQU X'EFF9' SAM/PAM/DAM
IGGSP119 EQU X'EFF8' SAM/PAM/DAM
IGGSP215 EQU X'EFF7' SAM/PAM/DAM
IGGSP112 EQU X'EFF6' SAM/PAM/DAM
IGGSPOOS EQU X'EFF4' SAM/PAM/DAM
IGGSPOO2 EQU X'EFF3' SAM/PAM/DAM
ISTLNEID EQU X'EFF2' VTAM LINE TRACE
ISTCLEID EQU X'EFFI' VTAM CONTROL LAYER
ISTRPEID EQU X'EFFO' VTAM BUFFER POOL ALLOCATION
ISTTPEID EQU X'EFEF' VTAM TPIOS BUFFER
ISTVIEID EQU X' EFE1' VTAM INTERNAL
ISTTHEID EQU X'EFE2' VTAM RESERVED

Figure A-S (Part 2 of 4). Sample Exit Routine

Appendix A. Writing EDIT User Programs A-II

ISTTREID EQU X'EFE3' VTAM RESERVED
ISTTDEID EQU X'EFE4' VTAM RESERVED
ISTVIEID EQU X'EFEl' VTAM INTERNAL
IMDGPDOl EQU X'EFAF' RESERVED
IMDGPD02 EQU X'EFBO' RESERVED
IMDGPD03 EQU X 'EFBl' RESERVED
IMDGPD04 EQU X'EFB2' RESERVED
IMDGPD05 EQU X'EFB3' RESERVED
IMDGPD06 EQU X'EFB4' RESERVED
IMDGPD07 EQU X'EFB5' RESERVED
IMDGPD08 EQU X'EFB6' RESERVED
IMDGPD09 EQU X'EFB7' RESERVED
IMDGPDI0 EQU X'EFB8' RESERVED
IMDGPDll EQU X'EFB9' RESERVED
IMDGPD12 EQU X'EFBA' RESERVED
IMDGPD13 EQU X'EFBB' RESERVED
IMDGPD14 EQU X'EFBC' RESERVED
IMDGPD15 EQU X'EFBD' RESERVED
IMDGPD16 EQU X'EFBE' RESERVED
IMDGPD17 EQU X'EFBF' RESERVED
IMDGPD18 EQU X'EFCO' RESERVED
IMDGPD19 EQU X'EFCI' RESERVED
IMDGPD20 EQU X'EFC2' RESERVED
IMDGPD21 EQU X 'EFC3' RESERVED
IMDGPD22 EQU X'EFC4' RESERVED
IMDGPD23 EQU X'EFC5' RESERVED
IMDGPD24 EQU X'EFC6' RESERVED
IMDGPD25 EQU X'EFC7' RESERVED
IMDGPD26 EQU X'EFC8' RESERVED
IMDGPD27 EQU X'EFC9' RESERVED
IMDGPD28 EQU X'EFCA' RESERVED
IMDGPD29 EQU X'EFCB' RESERVED
IMDGPD30 EQU X'EFCC' RESERVED
IMDGPD31 EQU X'EFCD' RESERVED
IMDGPD32 EQU X'EFCE' RESERVED
IMDGPD33 EQU X'EFCF' RESERVED
IMDGPD34 EQU X'EFDO' RESERVED
IMDGPD35 EQU X 'EFD1' RESERVED
IMDGPD36 EQU X'EFD2' RESERVED
IMDGPD37 EQU X'EFD3' RESERVED
IMDGPD38 EQU X'EFD4' RESERVED
IMDGPD39 EQU X'EFD5' RESERVED
IMDGPD40 EQU X'EFD6' RESERVED
IMDGPD41 EQU X'EFD7' RESERVED
IMDGPD42 EQU X'EFD8' RESERVED
IMDGPD43 EQU X'EFD9' RESERVED
IMDGPD44 EQU X'EFDA' RESERVED
IMDGPD45 EQU X'EFDB' RESERVED
IMDGPD46 EQU X'EFDC' RESERVED
IMDGPD47 EQU X'EFDD' RESERVED
IMDGPD48 EQU X'EFDE' RESERVED
IMDGPD49 EQU X'EFDF' RESERVED
IMDGPD50 EQU X'EFEO' RESERVED

MEND
TM TERMSW, X ' 0 I' Q/HAS TERMINATION BEEN REQSTD
BC 1,FINISH YES, TELL EDIT TO TERMINATE
L EIDREG,12 (PARMREG) GET POINTER TO EID
L DATAREG,16(PARMREG) GET POINTER TO DATA(JOBNAME)

Figure A-5 (Part 3 of 4). Sample Exit Routine

A -12 Service Aids

*

TM
BC
LA
C
BC
WTOR

WAIT
LA
OC

MYJOBLAB CLC
BC

PRINTSW,X'Ol'
1,PRINTALL
WORKREG,O
WORKREG,ECB1
7,MYJOBLAB
'SPECIFY 8-CHARACTER
MYJOBN,8,ECB1
ECB=ECB1
WORKREG,MYJOBN
Q(8,WORKREG),BLANKS

Q/HAS JOBN ALREADY BEEN FOUND
YES, SO PRINT THIS RECORD
GET ZERO CONSTANT
Q/HAS THIS ECB BEEN POSTED
YES, CHECK IF JOBN FOUND
JOBNAME OF ABENDING PROGRAM',

ADDRESS OF JOB NAME SELECTED
CONVERT LOWER-CASE CHARS TO
UPPER CASE

6 (8,DATAREG) ,MYJOBN Q/IS THIS MY JOBNAME
7,NOPRINT NO -- JUST RETURN

FOUND, SET SWITCH AND PRINT ALL RECORDS UNTIL
SVC 13 (ABEND) CONTAINING THIS JOB NAME

PRINTSW,X'Q01' TURN ON JOBNAME FOUND SWITCH

* ONCE JOBNAME
* ENCOUNTER AN

01
PRINTALL CLC 6 (8,DATAREG) ,MYJOBN Q/ IS THIS AN SVC RECORD

EXIT
*

BC
CLI
BC
CLC
BC
01

PRINTREC LA
RETURN

FINISH
*

NOPRINT

SAVE
SVCEID

*
TERMSW
PRINTSW
ECBl
MYJOBN
BLANKS

/*

L
L
LM
BCR
LA

B
LA
B
DC
DC

DC
DC
DC
DC
DC
END

7,PRINTREC NO, SO PRINT AND CONTINUE
lS(DATAREG),X'OD' Q/IS THIS AN SVC 13 (ABEND)
7,PRINTREC NO, SO PRINT AND CONTINUE
O(8,DATAREG) ,MYJOBN Q/IS THIS MY JOBNAME
7,PRINTREC NO, SO PRINT AND CONTINUE
TERMSW,X'Ol' INDICATE THAT THIS IS LAST

RECORD TO BE PRINTED
CODEREG,8 FORMAT AND PRINT THIS RECORD
SAVEPTR,4 (SAVEPTR) RESTORE SAVE AREA POINTER
RETPTR,12 (SAVEPTR) RESTORE REGISTER 14
FRSTREG,BASE,20(SAVEPTR) RESTORE OTHER REGS EXCEPT 15
15,RETPTR RETURN TO EDIT
CODEREG,24 TERMINATE EDIT PROCESSING

RETURN
CODEREG,12
RETURN
18F'O'
AL2(IMDMSVC)

X'QO'
X'QO'
F'O'
C'
C'

SINCE SVC 13 WAS LAST RECORD
RESTORE REGISTERS AND RETURN
IGNORE RECORD
RESTORE REGISTERS AND RETURN
SAVE AREA
ESTABLISH REAL AREA FOR
EID FROM IMDMEDIT MAP MACRO
INDICATION TO REQUEST TERM
JOBN FOUND, SO PRINT REC IND
FOR POST
PLACE FOR OPR TO PUT JOBNAME
TO CONVERT LOWER TO UPPER CASE

Figure A-5 (Part 4 of 4). Sample Exit Routine

Some instructions in the sample exit routine require special attention. These are
shaded-in in Figure A-5, and they are discussed below.

IMDMEDIT
This mapping macro expands, as shown, into a list of equate statements that
supply symbolic names for the event identifiers (EIDs). You should use the
symbolic name in your program rather than the hexadecimal value; this is
your protection against program failure, if for any reason the EID values
are later changed.

Appendix A. Writing EDIT User Programs A-13

L EIDREG,12(PARMREG)
L DATAREG,16(PARMREG)

These two instructions access the EDIT parameter list. (See Figure A-I.)

WTOR 'SPECIFY 8-CHARACTER JOBNAME OF ABENDING PROGRAM',
MY JOBN,8,ECBl
This instruction requests information that cannot be obtained from the
EDIT parameter list. You can use a WTOR to request any information
that the operator is likely to have, such as the EDIT options in effect.

Note: If you issue an SVC in your program, you risk abnormal termination
when an error occurs during the SVC operation. For more information
about this point, see "Avoiding Unrecoverable Errors" earlier in this
chapter.

SVCEID DC AL2(IMDMSVC)
This establishes a storage location for the value equated to IMDMSVC in
the expansion of the IMDMEDIT mapping macro.

Sample Format Appendage

A-14 Service Aids

Figure A-6 shows how to use the EDIT parameter list and how to handle
mUltiple EIDs. It consists of excerpts from a sample format appendage named
AMDUSROl, which formats three different types of user records. For each
record AMDUSROI produces two lines of output. The first line varies according \
to the record type. The second line is the same for all records. ~

L

* AMDURS01 IS AN EDIT USER FORMAT APPENDAGE MODUL.E THAT PROCESSES *
* THREE DIFFERENT TYPES OF INPUT RECORDS, THUS, THREE DIFFERENT EIDS *
* LINE ONE OF THE FORMATTED OUTPUT VARIES ACCORDING TO THE EID. LINE *
* TWO OF THE FORMATTED OUTPUT IS THE SAME FOR ALL EIDS, AND IS *
* PRODUCED IN COMMON CODE. *

AMDUSR01 CSECT
* EQUATE STATEMENTS
FRSTREG EQU 0
PARMREG EQU 1
EIDREG EQU 2
DATAREG EQU 3
CHAINREG EQU 9
BASE EQU 12
SAVEPTR EQU 13
RETPTR EQU 14
CODEREG EQU 15

*

RTNl

RTN2

RTN3

STM RETPTR,BASE,12 (SAVEPTR)
BALR BASE,O
USING *,BASE
ST SAVEPTR,SAVE+4
LA CHAINREG,SAVE
ST CHAINREG,8(SAVEPTR)
LR SAVEPTR;CHAINREG
L EIDREG,12 (PARMREG)
L DATAREG,16(PARMREG)
TM SWITCH,X'Ol'
BC 1,LINETWO

CLC O(2,EIDREG),EIDI
BC 8,RTN1
CLC O(2,EIDREG),EID2
BC 8,RTN2
CLC O(2,EIDREG),EID3
BC 8,RTN3
LA CODEREG,8
B RETURN

B ZEROCODE

B ZEROCODE

Figure A-6 (Part 1 of 2). Sample Format Appendage

STORE REGISTERS
ESTABLISH ADDRESSABILITY
USING REGISTER 12
BACKWARD CHAINING
MY SAVE AREA POINTER
FORWARD CHAINING
REG 13 ADDRESSES SAVE AREA
GET POINTER TO EID
GET POINTER TO FIRST LINE DATA
Q/ HAS FIRST LINE BEEN OUTPUTTED
YES, BRANCH TO FORMAT LINE TWO
WHICH IS COMMON TO ALL 3 EID RTNS
NO--Q/IS THIS A RECORD WITH EIDl
YES--FORMAT LINE ONE
Q/IS THIS A RECORD WITH EID2
YES--FORMATLINE ONE
Q/IS THIS A RECORD WITH EID3
YES--FORMAT LINE ONE
NO--IF NONE OF THESE EIDS, IGNORE
REC, RESTORE REGS, AND RETURN

SET ZERO RETURN CODE

SET ZERO RETURN CODE

Appendix A. Writing EDIT User Programs A-15

ZEROCODE 01 SWITCH,X'OI' FIRST LINE COMPLETE INDICATOR
OUTPUT THIS LINE AND RETURN
DIRECTLY TO THIS FORMAT APPENDAGE
RESTORE REGISTERS AND RETURN

SR CODEREG,CODEREG
*

B RETURN
LINETWO

NI SWITCH,X'FE' TURN OFF LINE 2 INDICATOR
LA CODEREG,4 OUTPUT THIS LINE--COMPLETE

RETURN L SAVEPTR,4(SAVEPTR) RESTORE SAVE AREA POINTER
L RETPTR,12 (SAVEPTR) RESTORE REGISTER 14
LM FRSTREG,BASE,20 (SAVEPTR) RESTORE OTHER REGS EXCEPT 15
BCR l5,RETPTR RETURN TO EDIT

SAVE DC l8F'O' REGISTER SAVE AREA
SWITCH DC X'OO' READY FOR LINE TWO SWITCH
EIDl DC X'EOO1' EIDI
EID2 DC X'EOO2' EID2
EID3 DC X'EOO3' EID3

END
/*

Figure A-6 (Part 2 of 2). Sample Format Appendage

Sample Reentrant Format Appendage, Using the Format Service
Routine

A -16 Service Aids

Figure A-7 shows how a reentrant format appendage might be written. It
handles the same EIDs as the previous example (Figure A-6). However, this
format appendage uses the PRDMP format service routine to format its output
line. Note that the reentrancy and the use of the PRDMP format routine are not
related; a non-reentrant format appendage could also use the PRDMP format
routine. See the topic "Format Service Routine" in Appendix B: PRDMP User
Exit Facility.

L

* AMDUSR02 IS AN USER FORMAT APPENDAGE WHICH IS REENTRANT TO ALLOW *
* SIMULTANEOUS EXECUTION UNDER BOTH PRDMP EDIT AND ABDUMP/SNAP. It *
* PROCESSES THREE DIFFERENT TYPES OF INPUT RECORDS, DENOTED BY THE *
* THREE DIFFERENT EIDS. THE FIRST FORMATTED LINE VARIES ACCORDING *
* TO THE EID. THE SECOND FORMATTED LINE IS THE SAME FORMAT FOR ALL *
* THREE EIDS. ALL OUTPUT LINES ARE FORMATTED USING THE PRDMP FORMAT *
* SERVICE ROUTINE. *

AMDUSR02
FRSTREG
PARMREG
EIDREG
DATAREG
TEMPSAV
PARMSAV
TEMPREG
CHAINREG
BASE
SAVEPTR
RETPTR
CODEREG

*
*

*
*
*

*

CSECT
EQU 0
EQU 1
EQU 2
EQU 3
EQU 4
EQU 5
EQU 6
EQU 9
EQU 12
EQU 13
EQU 14
EQU 15
STM RETPTR,BASE,12(SAVEPTR) SAVE CALLERS REGISTERS
BALR BASE,O ADDRESSABILITY FOR CODE
USING *,BASE
LR PARMSAV,PARMREG
L TEMPSAV,24 (PARMSAV)
USING WORKSAV,TEMPSAVE

ST SAVEPTR,SAVE+4
LA CHAINREG,SAVE
ST CHAINREG,8(SAVEPTR)
LR SAVEPTR,CHAINREG
L EIDREG,12 (PARMSAV)
L DATAREG,16 (PARMSAV)
TM SWITCH,X'80'

BO LINETWO

SAVE FORMAT APPENDAGE PARAMLIST AD DR
LOCATE 200-BYTE WORK AREA
BASE REGISTER FOR WORK/SAVE AREA
DSECT, PUTTING ALL DYNAMIC AREAS IN
PASSED WORK AREA FOR REENTRANCYS IN
BACK CHAIN, HIS TO MINE
LOCATE MY SAVE AREA IN WORK AREA
FORWARD CHAIN,MINE TO HIS
POINT R13 TO MINE
POINTER TO EID FIELD OF RECORD
POINTER TO FIRST DATA BYTE
Q. HAS FIRST LINE BEEN PROCESSED FOR
THIS INPUT RECORD - SWITCH WILL BE
ZERO FOR FIRST ENTRY FOR EACH INPUT
RECORD
IF SWITCH IS ON, GO FORMAT 2ND LINE,
WHICH IS COMMON TO ALL THREE EIDS

* THE SWITCH WAS ZERO - THE INPUT RECORD CONTAINS A NEW TRACE *
* RECORD. DETERMINE WHICH EID IS IN THE RECORD, AND BRANCH TO THE *
* PROPER ROUTINE TO FORMAT THE RECORD. IF THE RECORD DOES NOT *
* CONTAIN ANY OF THE THREE EIDS, RETURN A CODE OF 8 TO THE CALLER *
* TO IGNORE THIS RECORD. *

CLC O(2,EIDREG),EIDl Q. IS THIS EID1
BE RTNl IF SO, GO FORMAT IT
CLC O(2,EIDREG) ,EID2 Q. IS THIS EID2
BE RTN2 IF SO, GO FORMAT IT
CLC O(2,EIDREG),EID3 Q. IS THIS EID3
BE RTN3 IF SO, FORMAT IT
LA CODEREG,8 IF NONE OF THE ABOVE, SET THE

* PROPER RETURN CODE TO IGNORE
B RETURN GO TO COMMON EXIT CODE

Figure A-7 (Part 1 of 6). Sample Reentrant Format Appendage

Appendix A. Writing EDIT User Programs A-I7

**~
*
*
*
*
*
*
*

THE FOLLOWING ROUTINE USES THE FORMAT SERVICE ROUTINE TO *
FORMAT THE FIRST LINE FOR EID1. THE OUTPUT FOR THIS LINE IS *
TO BE IN THE FOLLOWING FORM: *.

LAB1 XXXX LAB2 CCCCCCCC LAB3 XXXXXXXX

X=HEXADECIMAL DATA, C=EBCDIC DATA

*
LAB4 XXX X *

*
*

* *
* THE INPUT DATA CONSISTS OF XXXXCCCCCCCCXXXXXXXXXXXX, AND *
* MUST BE FORMATTED AS ABOVE, WITH THE LABELS INSERTED. THE DATA *
* REPRESENTED BY X MUST BE CONVERTED TO PRINTABLE HEXADECIMAL. *

RTN1
*
*
*
*

*

*

*
*

MVC FORMAT(28),FMT1

ST DATAREG,FMTDATA

~A FRSTREG,FORMAT

L PARMREG,28 (PARMSAV)

L CODEREG,20(PARMSAV)
BALR RETPTR,CODEREG

B ZERO CODE

MOVE FORMAT PATTERN TO WORK AREA -
DATA ADDRESS MUST BE FILLED IN DUR­
ING EXECUTION', AND THEREFORE TO
REMAIN REENTRANT, PATTERN MUST BE
COPIED.
STORE BEGINNING DATA ADDRESS INTO
PATTERN
RO RUST HAVE FORMAT PATTERNS ADR TO
BE USED
R1 MUST POINT TO FORMAT ROUTINE's
PARAMETER LIST - THIS HAS ALREADY
BEEN INITIALIZED BY OUR CALLER
R15 POINTS TO FORMAT SERVICE ROUTINE
CALL FORMAT SERVICE ROUTINE

SET ZERO RETURN CODE
****************~**
* THIS ROUTINE USES THE FORMAT SERVICE ROUTINE TO FORMAT THE *
* FIRST LINE FOR EID2. THE OUTPUT IS TO BE IN THE FOLLOWING FORM: *

*
*
*

LABS XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
*
*
* * THE INPUT DATA CONSISTS OF A 16 BYTE HEXADECIMAL DATA STRING *

* IT IS TO BE CONVERTED TO PRINTABLE HEXADECIMAL *

RTN2 MVC

ST
LA
L
L
BALR

B

FORMAT (28) , FMT2
DATAREG,FMDATA
FRSTREG,FORMAT
PARMREG,28 (PARMSAV)
PARMREG,20(PARMSAV)
RETPRT,CODEREGA

ZEROCODE

COPY PATTERN TO WORK AREA
POINT PATTERN TO INPUT DATA
RO POINTS TO FORMAT PATTERN
R1 POINTS TO PRDMP PARAMETER LIST
R15 POINTS TO FORMAT ROUTINES EP
CALL FORMAT SERVICE ROUTINE

SET ZERO RETURN CODE

Figure A-7 (Part 2 of 6). Sample Reentrant Format Appendage

A-I8 Service Aids

L

* THIS ROUTINE USES THE FORMAT SERVICE ROUTINE TO FORMAT THE
* FIRST LINE FOR EID3. THE OUTPUT IS TO BE IN THE FOLLOWING FORM:

*
*
*
*
*
*
*

LAB6 CCCCCCCC LAB7 CCCCCCCC LAB8 XXXXXXXX XXXXXXXX

HOWEVER, THE INPUT FOR THIS EID IS AS FOLLOWS:

CCCCCCCCXXXXXXXXXXXXXXXXCCCCCCCC

*
*
*
*
*
*
*
*
*

* NOTE THAT THE INPUT DATA IS NOT IN THE SAME SEQUENCE AS IT *
* APPEARS IN THE OUTPUT. THE FORMAT PATTERNS AT FMT3 ALLOWS FOR THIS *
* AGAIN, C+EBCDIC DATA,X=HEXADECIMAL DATA *

RTN3

ZEROCODE

*
*
*
RETURN

MVC FORMAT(36),FMT3
ST DATAREG,FMDATA
LA TEMPREG,24 (DATAREG)
ST TEMPREG,FMTDATA1
LA TEMPREG,8(DATAREG)
ST TEMPREG,FMTDATA2
LA FRSTREG,FORMAT
L PARMREG,28 (PARMSAV)
L CODEREG,20(PARMSAV)
BALR RETPTR,CODEREG

01 SWITCH,X'SO'
SR CODEREG,CODEREG

L SAVEPTR,4(SAVEPTR)
L RETPTR,12 (SAVEPTR)

COpy PATTERN TO WORK AREA
STORE FIRST DATA AREA POINTER
FIND LOCATION OF SECOND DATA
STORE INTO FORMAT PATTERN
FIND LOCATION OF THIRD DATA
STORE INTO PATTERN
RO POINTS TO FORMAT PATTERN
Rl POINTS TO PRDMP PARAMETER LIST
R15 POINTS TO FORMAT ROUTINE
CALL FORMAT SERVICE ROUTINE

INDICATE FIRST LINE HAS BEEN DONE
SET RETURN CODE TO CALLER TO
OUTPUT THIS LINE AND RETURN TO THIS
FORMAT APPENDAGE WITHOUT GETTING
ANOTHER INPUT RECORD
RESTORE HIS SAVE AREA
RESTORE RETURN ADDRESS

LM FRSTREG,BASE,20(SAVEPTR) RESTORE REMAINING REGISTERS
BR RETPTR RETURN TO CALLER

* THIS ROUTINE FORMATS THE SECOND LINE FOR EACH TRACE RECORD. *
* THE FORMAT IS AS FOLLOWS: *
* *
*
*

COMMONL2 CCCCCCCCCCCCCCCC *
*

* THE INPUT FOR THIS LINE IS ALWAYS 32 BYTES FROM THE START OF *
* THE INPUT DATA, REGARDLESS OF THE EID. ITS IN THE SAME FORM AS THE *
* OUTPUT *

LINETWO MVC

LA
ST
LA
L
L
BALR

FORMAT(16),COMFMT2
TEMPREG,32 (DATAREG)
TEMPREG,FMTDATA
FRSTREG,FORMAT
PARMREG,2S(PARMSAV)
PARMREG,20(PARMSAV)
14,15

MOVE PATTERN TO WORK AREA
FIND DATA
POINT PATTERN TO DATA
RO POINTS TO FORMAT PATTERN
R1 POINTS TO PRDMP PARAMETER LIST
R15 POINTS TO FORMAT ROUTINE
CALL FORMAT SERVICE ROUTINE

Figure A-7 (Part 3 of 6). Sample Reentrant Format Appendage

Appendix A. Writing EDIT User Programs A-19

LA CODEREG,4
*
*
*
*
*

B RETURN
WORKSAV DSECT
SAVE DS F18
SWITCH DS XLI
FORMAT OS OF
*
FMTFLGS DS XLI
FMTLNGS DS XLI
FMTLBOFF DS XLI
FMTDAOFF DS XLI
FMTLBADR DS F
FMTDATA OS F

DS F
FMTDATAI DS F

DS F
FMTDATA2 OS F
AMDUSR02 CSECT
EIDI DC X'EOOl'
EID2 DC X'E002'
EID3 DC X'E003'
LABELS 1 DC C'LABILAB2LAB3LAB4'
LABELS2 DC C'LAB5'
LABELS3 DC C'LAB6LAB7LAB8'
COMLABEL DC C'COMMONL2'
FMTI DS OF

DC XLl'lF'
*
*
*
*
*
*
*

DC XLl'31'
DC FLl'10'

*
*

DC FLl'16'
DC A(LABELS1)

*
DC A(O)
DC XLI' 35'

*
*
*
*
*
*

SET RETURN CODE TO TELL CALLER TO
OUTPUT THIS LINE AND GET NEW INPUT
RECORD. WORKAREA WILL BE ZERO WHEN
ENTRY IS MADE TO THIS ROUTINE FOR
THE NEW RECORD, SO NO NEED TO TURN
OFF SWITCH

REGISTER SAVE AREA
LINE 1 OR LINE 2 INDICATOR
AREA INTO WHICH FORMAT PATTERN IS
COPIED
FLAG FIELD
LABEL AND/OR DATA LENGTHS
LABEL OFFSET
DATA OFFSET
ADDRESS OF LABELS
ADDRESS OF DATA TO BE FORMATTED
FILLER FOR FLAGS,ETC
2ND DATA ADDRESS
FILLER
3RD DATA ADDRESS
RESTART MAIN CSECT
EIDI
EID2
EID3
LABELS FOR LINE 1, EIDI
LABEL FOR LINE 1, EID2
LABELS FOR LINE 1, EID3
LABEL FOR COMMON LINE 2
START OF FORMAT PATTERN FOR LINE 1
SET FLAGS TO INDICATE:

1.DATA IS TO BE CONVERTED
2.ADDRESS OF LABEL IS SUPPLIED

AND A LABEL IS TO BE PLACED IN
OUTPUT BUFFER

3.ADDRESS OF DATA IS SUPPLIED
AND DATA IS TO BE PLACED IN
OUTPUT BUFFER

LABEL IS 4 BYTES, DATA 2
LABEL STARTS AT OFFSET 10 IN OUTPUT

BUFFER - FIRST 10 BYTES WILL BE
OVERLAYED BY EDIT/ABDUMP/SNAP

DATA BEGINS AT OFFSET 16 IN OUTPUT
CHARACTER STRING OF LABELS TO BE

USED
DATA ADDRESS FOUND DYNAMICALLY
SET FLAGS TO INDICATE:

1.DATA NOT TO BE CONVERTED
2.NO LABEL OR DATA ADDRESS IS

SUPPLIED, BUT THEY ARE TO BE
INCLUDED IN THE OUTPUT. THEY
ARE FOUND BY INCREMENTING ADDR­
ESS IN PRECEDING PATTERN

Figure A-7 (Part 4 of 6). Sample Reentrant Format Appendage

A-20 Service Aids

*

*

*
FMT2

*

*
*

FMT3

*

*

*
*
*

*

*

DC
DC
DC
DC

DC
DC

DC
DC

DC
DS
DC

DC
DC
DC
DC
DC

DC

DC
DC
DC
DC
DC
DC
DS
DC

DC
DC
DC
DC
DC

DC

DC
DC
DC
DC

DC

DC
DC
DC
DC
DC
DC
DC
DC
DC

XL1'37'
FL1' 24'
FL1' 30'
XL1'lS'

XL1'33'
FL1'42'

4 BYTE LABEL,8 BYTE DATA
LABEL AT OFFSET 24
DATA AT OFFSET 30
SET FLAGS AS ABOVE, BUT CONVERT

DATA TO PRINTABLE HEXADECIMAL
4 BYTE LABEL, 4 BYTE DATA
LABEL TO APPEAR 42 BYTES FROM BUFFER

START
FLl'48' DATA AT OFFSET 48 FROM BUFFER START
XL1'lS' ,XL1'31' ,FL1'60' ,FL1'66' FORMAT PATTERN FOR LAB4

F'O'
OF
XL1'lF'

XL1'33'
FL1'10'
FL1'16'
A(LABELS2)
A(O)

XL1'14'

AND ITS DATA
INDICATES END OF THIS FORMAT CALL
FORMAT PATTERNS FOR LINE 1 - EID2
INDICATE BOTH LABEL AND DATA ADD-

RESSES FOLLOW
LABEL IS 4 BYTES, DATA 4 BYTES
LABEL IN COLUMN 10 AGAIN
DATA TO GO IN COLUMN 16
ADDRESS OF LABS
DATA ADDRESS FILLED IN DURING
EXECUTION
SET FLAGS TO INDICATE ONLY CONVERTED

DATA IS TO BE PLACED IN BUFFER
XL1'03' NO LABEL,4 BYTES OF DATA
FL1'O' NO LABEL
FLl'26' DATA TO GO INTO OFFSET 26
XLl'14' ,XLl'03' ,FL1'O' ,FL1'36' NEXT DATA AT 36
XL1'14' ,XK1'03' ,FL1'O' ,FL1'46' NEXT DATA AT 46
F'O' END OF PATTERN
OF START OF LINE 1 - EID3
XL1'3F' LABELS AND DATA ADDRESSES FOLLOW,

XL1'37'
FL1'lO'
FL1'16'
A(LABELS3)
A (0)

XL1'3D'

XL1' 37'
FL1' 28'
FL1' 34'
A (0)

XL1'lD'

XLI'33'
FL1'46'
FLl' 52'
A(O)
XL1'14'
XL1'03'
FL1'O'
FL1'62'
A(O)

THIS DATA NOT TO BE CONVERTED
4 BYTE LABEL, 8 BYTE DATA
LABEL STARTS OFFSET 10
DATA TO START OFFSET 16
ADDRESS OF LABEL STRING
ADDRESS OF FIRST DATA TO BE FOR­

MATTED, TO BE FILLED IN LATER
SET FLAGS TO INDICATE NO CONVERSION,

THAT THERE IS A NEW DATA ADDRESS,
AND THAT A LABEL IS TO BE USED
FROM THE PREVIOUS PATTERN

4 BYTE LABEL, 8 BYTE DATA
LABEL AT OFFSET 28
DATA AT OFFSET 34
ADDRESS OF 2nd SECTION OF DATA, TO

BE FILLED IN DURING EXECUTION
SET FLAGS TO INDICATE DATA TO BE

CONVERTED, AND ITS ADDRESS GIVEN
4 BYTE LABEL, 4 BYTE INPUT DATA
LABEL GOES IN AT OFFSET 46
DATA TO START AT OFFSET 52
DATA ADDRESS, TO BE FILLED IN LATER
SET FLAGS TO INDICATE ONLY DATA
NO LABEL,4 BYTES OF INPUT DATA
NO LABEL
DATA STARTS AT OFFSET 62
END OF THIS PATTERN

Figure A-7 (Part 5 of 6). Sample Reentrant Format Appendage

Appendix A. Writing EDIT User Programs A-21

COMFMT2 DS OF FORMAT PATTERN FOR COMMON 2nd LINE
DC XL1' 3F' DATA NOT TO BE CONVERTED,AND ADDRESS

* OF BOTH LABEL AND DATA IS PRESENT
DC XL1'7F' 8 BYTE LABEL,16 BYTES OF DATA
DC FL1'10' LABEL, AS ALWAYS, AT OFFSET 10
DC FL1' 21' DATA STARTS AT OFFSET 21
DC A (COMLABEL) POINT TO LABEL ON COMMON 2ND LINE
DC A(O) DATA ADDRESS IS FOUND DURING

* EXECUTION
DC A(O) END OF FORMAT PATTERN
END AMDUSR02

Figure A-7 (Part 6 of 6). Sample Reentrant Format Appendage

Debugging a User Program

A -22 Service Aids

Figure A-8 shows a sample ABEND dump of the user exit routine ABENDXIT,
shown in Figure A-6. Certain important fields are highlighted in the figure and
marked with numbers; the numbers see the explanations below:

1. PSW for the abnormally-terminating program. The address in the second half
of the PSW is an address in the abnormally-terminated program. To find the
entry point and name of the program, compare this address to the entry point
addresses in the contents directory entry list. The abnormally-terminating
program is the one whose entry point address is closest to and greater than
the address in the PSW.

Note: If the address in the PSW does not immediately indicate the entry
point address of the failing program, you can locate the beginning address of
the abnormally-terminating program by tracing PRDMP's save area chain.
See point 4, below.

2. Part of a contents directory entry (CDE). This shows the name of the
abnormally-terminating program, ABENDXIT, its entry point, X'05D080',
and the pointer to the appropriate entry in the extent list.

3. An extent list entry. This shows the beginning address (not necessarily the
entry point) of the abnormally-terminating program. Subtract this address
from the address in the PSW to find the address of the instruction following
the instruction that failed.

F or example, in this case:

address in PSW - beginning address
5D092 - 5D080 = 12

offset (hex)

The failing instruction in ABENDXIT can be found at offset X'12' in the
program. (See part 2 of Figure A-8, number 3.)

,J

4. The first save area in the save area trace table (system save area) is chained to
the following AMDPRDMP module save areas:

AMDPRCTL - AMDPRDMP control routine
AMDPRMSC - AMDPRDMP scan routine
AMDPRFRM - EDIT control routine
AMDPRFLT - EDIT trace record selection routine
AMDPREXT (or AMDPRAPP) - EDIT user program selection

routine.

5. The user program's registers are stored in AMDPREXT's or AMDPRAPP's
save area. Add the contents of register 12 to X'6AC' to get the address of a
fullword that points to an EDIT communication table. At Offset X'IDO' into
this table are the following:

a. The 8-byte EBCDIC name of the current user program (the failing
program).

b. The entry point address of the current user program (the failing
program).

These fields are shown in part 3 of Figure A-S.

6. Register 1 in AMDPREXT's or AMDPRAPP's save area points to the
parameter list that EDIT passes to the user program. (See Figure A-I.)

Appendix A. Writing EDIT User Programs A-23

JrtB TESTEX IT STEP GO

C('FLETIC~ (PCE 5VSTEM =

osw H ENTRY TO

TC B 03C71B ~ep CCe?BOEE
.ss 0lO3EfFB
FSA OlC687fO
LTC ,ceooeoo
NSTAE cccceeco

'CT IVE .as

T [ME u(,3449

OCf

CD
C(CO(O(lO DEB
fOB 50400 F lG
ccoocoeo TME
(ceccooa ECB
Ce03AFE 8 USER

O~03AF7C

OOO'IBIB
oooooeoo
vOll3EA2C
oooooeoo

TIC OO~3C838
llS 0003DIDO
JST L003C718
S TA 200·)OCOO
DAR (OJooe·oo

CMP
Jl8
NTe
D-PQE
RES V

800C6l00
CCJ3DIF8
c[eocoo"
~0"3E038
CJ"CC~O

TRN
JPQ
OTC
SQS
JSCB

coctGCCO
CCC?OlfB
CCa?AE6B
CGC~AB 70
E1C?00ge

PAGE ~OOI

PRB _ 3F9 EO RESV (tCCcooo ~C-S2-SlAB 00040082 FL-CCE ODC!EAAQ P$W FFF5CGCC ECC5DC~2
,/TTR ccccecoo

SV' E o ~CA3 8 TAB-lN OC ?80220 9FOFlC3 ~C-~ I-STAe OOl20J02 H~
Q/TTR C(i ac '" ~(\4
RG 0-7 Be(C6DEA
RG 8-15 ceCflC20
EHSA JOOO2~eE

C5CIFOFI

3EQEO
OCOOOOOI
00t6855C
tOOOO'OO

Ie 2e505

SVRE 0360EE TA6-LN CCI80eE AP5~ FIFCF5CI
Q/TTR C(004BOI H-LNK CJ03CA38
H 0-7 OCI05EEJ OCC?CAS E BOOIOEeA
RC, 8-15 0003C7I8 "uOIOE22 (C03C7lB
EHSA E2EEE.C9 C 5C IFOF I OCOCJ<lOt

ocecceco CCCCCOct JGI2COO2

LeAt LIST

NE 0(030108 R SP-COE 02(30161 ~E 00030390
NE (v(3057B R SP-COE 0103E26E ~E 0003E6~O
NE OC03ES8B RSP-CDE CI03E2GE ~E 0OO3E91B
NE CCC3ES68 R SP-CDE eJ03E8EE ~E 0OO3EQCO
NE CCOE900 RSP"COE CIC3CFAE NE 0(03E9C8
NE (,103EA70 RSP-CDE (lOE2DE NE 0003EA78

~CE

C 3EAAQ ATRI CB NeeE "COOv ROC-RB JC03E9EC
C~D168 ATR I 30 ~COE 03e3~8 RO(-RB OO~OCOOC
,)3"3tB HRI eo ~COE O,E?SB ROC-RB (Ctccor
o ~E29 B ATR 1 Be ~CCE C!E2CE Roe-Re (;GO~~OCO
03E268 ATRl Be ~CCE J3E2'i8 Roe-R8 CJOleON
o ~ E2 3 8 AT" 1 Be ~eeE C!E268 Roe-RB OJlOCte(
030398 ATR \ C3 HOE c!EE~E RCC-RB CCC[OC.U~
03E438 llR l ~C ~COt C~E4t8 RCC-R8 ';J~JI)OOC

03184B ATRl 03 ~CCE OlEEEB ROC-RB
v3E8EE ATRI C3 ~COE C!EAAO ROC-RB
C 31 338 ATR I Be ~COE C3E3tS ROC-RE
03F.3J8 ATRI B~ ~CCE C!EB8 ROC-RE
03DF~B ATR\ BC ~CDE C 30FD B ROC-RB
03E3D8 ATU E~ HCE e3E~08 RCC-RB
BE2C8 ATRI BO ~COE OBC8 ooe-RB
o 3E4' 6 HRI B. ~CCE 03E43e ROC-RB
?3E3S8 ATA I Be ~CDE OE3C8 RUC-RE

XL L~

03EBFJ SZ CCCCCCIC
03015E 51 (Ceoco 10
'l3F358 5 I coceeclc
o 3E ze 8 Sl "o~eclo
",30258 H e;cocclo
03~228 SZ (e~COOlo
,3056J SZ COCCI
<l3E42E SZ CGCecOIC

Sl (CC(COIC
"ecOIC

00('62110
60063EI6
CO"~J'v
C4F90C60

COOC(00 I
40J~D086
FFO!OCOO

H~

OOO~C718

OJil3C8A4
.OFOFOF3

Rsp-etE
R SP-CCE
RSP-WE
Rsp-etE
Rsp-eDE
Rsp-eeE

~M 'MDFROMP USE
~M IGCOA05~ USE
~M [GGOIgeO USE
~M [GG~lqCJ USE
~M 'GGOI9B~ USE
~~ IGG.;19Be USE
~~ ABHDX I T USE
~~ IGGCI9AB USE

~M

USE
USE
USE
USE
USE
USE
USE
USE

4C~ IN

®

CCllecae PSW ec.; 4cu!! 5CClCfC2

ce,;e';C20 0"50C EC (006064 E
or Of'ol7e 4lCt:3Fl~ ~005DD BO
OCC3CAB4 OtG!CABC E2E8E2C~

""ec(000 PS. FFC.COCC ~CC~AFA6

GC03038 '403C 'IE COC3eA3E
OG03CABC 4C~I0348 'Ot.;tJOG
F4FIFE.0 FbFeFCfc 4CC"~C5

~E ,,';03057_ R SP-CDE UI03E2SE
~E ~JJ3ES6C RSP-CDE "1~303se
NE G":~3Eqev RSP-CDE OlC3E648
NE eO'3E9C8 R ~P-CDE 0103E306
NE ;OJ3EAf8 R 5P-COE a2J3E3b e
~E C~Ctco~o RSP-COE 0203E3H

01 ~5C,38 ATR 2 " Xl/OJ (3EBFJ
u2 ':6AB 58 AlR2 ,8 Xl/~J 030158
02 .: 7E440 ATR. ~~ XL '~J 03E?5B
"2 n,BB~ ATR: .£ 2C Xl ,oJ 03E288
.2 :7C9FJ ATR: ;: 1C XL ,"J 'u3E258
;;2 . 7 DBO;; A1R .£ H Xlf~J C3E2l8

5(080 ATR. XL OJ 0_ v
112 C 1 F-.i 3B ATR 2 2C Xl/oJ ~3 428

PAGE ':C2
t ~, Xl/.J ij3E~70

01 EP~ ",I5C1CU AT •• .l~ XLf~J (3ESSO
.;2 EF~ (7E17B ATR .£ 20 XL/OJ G3E328
(2 EP~ CHOFB ATR, <G XlI~J C3E2FB
01 EP~ C7(BIG ATR 2 .t XlI~J 030F98
02 EH C7E6B~ ATR2 2C XLf~J 03E3C8
J2 EP~ C1 CCOiJ ATR2 2' XL/OJ 03E2C8
02 EP' (HS3B ATR2 2(Xl/MJ C3E3F8
02 EP~ , HE 38 ATR, " XL/oJ 03E388

~CR LN AOR

Figure A-8 (Part 1 of 3). Sample ABEND Dump ShowiogFields Needed for Debugging User Exit Roudne
ABENDXIT .

A-24 Service Aids

®

L

~ 7CQ10 4BC(5CC8 SOO10040 4111CCCO
]70920 <; lC~400 S 478CS114 S l~f2Q34

070940 4711l5C1! 4BOCCCE S14)40C5
)70960 IA~g 14C 2C:C47eC
u1D980 7CCC41EC S11447F':
J 70Q AO 7CC(3CO B C7fE4SEC
17t9CO 20S22C3E CHE1Bee
l709EO <;8EEOCI4 tlFEt7(C

L~AC MC AEENCXIT

asoo~o 90 ECC JSCt5(D0 CGOE'19J
15DOAO 5e31(ul0 9101(12S 4;10((<;6
0500CO OJ05(IAC OC330CCC E,D1CSC3
1500EO Cl04C540 06C640Cl C2CC::O!:C4
'5nl~0 OOeIOA)1 414CC12A 06!74{CO
lS 0 120 C 1224170 ce86~ SOD 3COF417C
1S 014C S800(e04 SBEoceec 5 EOCOt 14
050160 OO(OCO'O 00Ot411B CC(COCCC
(50180 oooecooc oecccece cc(cecce
esc lAO occooeoo OCO(OOOO 3FFFCCCC

LOAC MCQULE IGGO 19AB

SCEBOO14
2C5CCSEF

,AVE ~RE~ TRACE

xMDPRDMP WAS ENTERED VIA LINK

PAGE C 130
C~3712FF 478G'iOlO 1J5Ef,8Jl C'-'404111 GJOCJA37
41ECS114 45E05CEA 5e740C~C 4E6J203E ~1Ci420?0 '

418G5C86 18764177 O(~11817 IBC60A67 91202024
SCCA4SeO 50BE4111 00044580 50BEl.67f 19164160
SCA6C 7J7 3(OB3COB F2233CJD 7~CJ4FF3 OJOe4\lF3 0 .. P 2 3 .. 3'
SCEAIS88 43802(51 l.67841FC 511A691J4 2·J3C47eO * •• K •••••• B ••••••••••••• C •••••••••
4;8C2(42 lA8348Su '5(,084898 :)0"64883 uJCJE40BV K •••••••••• 1 •••••••• II ••••••••

C1000700 FAILING INSTRUCTION .v v •

~~=~C*V~q.18D9 9101C124 4710COC8 584:1"'CC * ••••••••••••••••••• R •• A •••• H •••••
S940C126 4770CG88 4510C072 C'81J5DleO ••••••• A •••••• ••• A ••••••••••• J.· cccll5"o

414NOOO
C~CtEE40
C'iOSC 740
CI320S01
CCB60SC7
C7FE41FC
CCO J~COO
CC~OOCOO
((JCocao

IB21188F
! BF02 034
205C4710

F86CC3C8 CID~C1C3 E3C5CS4~ ClttC2CS ••• J ••••• SPEClfy f.CHARACTER JOBN'
070906C7 OqCI0400 ~A234110 C1U41,0 HME OF ABENOING PROGRAM A
3COOC12A 4770COOO 96JIC125 C5012(.(I") •••••• A.C •• ~.N ••• A ••••••• A.f\ ••••
3(~(JC12(J 4170(Of6 961.11(124 41FOCC08 ••••••••••••••• N ... A ••••••• A •• Q •••

001841F") CCeA41FO OCuC47FO (Je~OOOO O ... C ... , ••• O •••••
uO l'- J(,,\JiJ GCOOGOOC OOCCOtJC.U IJI.lOOGCOO *
Oocooooa OOOOOOJO OuvOOJJO 'uOOOO~J ••••••••••••••••••••••••••••••••••
404C4040 4J4u4040 4Q404040 40404040 •••••••••••••••••

"CGceGOC
412"S06C
3\10C4155

A4S

• •••••• ,", •••••••• , •••••• cc ••••• •
.~ •••••••• y •••••••••••••••••••••• *
•••••••• 0 ••••• lI •••••••••••••••••••

AT EP xMDPRDMP -21. DO ®
SA 06~760 hO 1 eccceoco '" ~A O(O(OCOO LSA OvOSO~7l RET 000243E. EPA o 105D~38 RO FDGCOOOC SYSTEM SAVE Rl OOOt87FO "2 ceccecco R3 SC03EA30 R4 (JOHCCu RS 0003AE68 R6 C;OO;C54~

R7 OOOCC EO P8 CCC3e~C8 R9 OJ03AFEB RIC .. 1l03EA3J Pll oaccocco R l~ 4CC 7Ee SA AREA
xMDPRDMP WAS ENTERED VIA CALL

SA 050nc hC I (OooeOOo H SA CCCfB160 UA COJ5ES98 RET 600SCQOO EPA OCOSCAS8 PC BGCC6CEA

xMDPRCTL PI 0005F085 R2 OCO(0(50 R3 SC03EA30 R4 COObe7FB P5 OCC"OO4 P6 GOOtB7FC
P7 e003CCEC RB OCC3E~C8 R9 CC03AFE8 Rill (",,3EA30 PII 4005(5S, A12 CCCSEFSC

5' OSESQ8 hO I CCCOCOCO .. SA COCS057u LSA 0~C6IFBO PET 4005(01C EP~ 00061848 RO BCO(60EA

xMDPRMsc Rl (0061848 R2 cc cceeoe R3 CCOSE7S8 R4 eOOSFOBB AS 00eO(004 R6 O(C681FC
A7 e003CC8e RB CC03EAC8 A5 800S0(04 RIO 0003EA30 All 600S(A9E R 12 (C05EF S(

SA 06lF80 .Dl 18691B 11 "S~ CCCSES98 L SA C~C6307B RET 5G\l61F74 EPA 00062070 RC BCOC tOEA

xMDPRFRM R 1 C0062070 R2 O(ce .. OOI R3 00e62110 A4 0\10)000 I RS OOo()oe 20 R6 C(,OCOCO 1
R7 CCOOCiO;3 pe CC06B~2U RQ 0(OS0340 RIO ~J~68S5(nl 40061B4E RI2 OOG 5Ef S(

5A 063~78 001 CC04CA23 HSA CC '." tF-BC l SA lJ06417B PET 6uU620CE EPA «0;:63EIO RG BCOCfCEA

PAGE e005
R2 CCCCCCJl R3 (0062110 R4 0)0)0001 G .. ceCCOI xMDPRFLT R8 CCCtBS20 R9 OOJ50340 RIU 0006B5SC GOO5EFSC

SA .. SA CCC63JlE L SA GJ060EeO RET 4~063FIO
R2 CCOteCOI R3 COU62110 R4 OOOtOC-1) I xMDPREXT R8 0(00(20 R9 OCi050340 Rh) 1l0068SSC

SA 060EBO HI BCAB441C h S~ CCOt~11e l SA COO60FAO RET 9u060AC2 EPA FFFFFFFF SAVE AREA Rl (0068lC8 P 2 CCotOF6C 03 C'OS0080 R4 COOOoOOI PS OC~~002u

"7 ce06064E RS CtofBIS8 R9 0006B158 RIG O(1068SS(All 5COH656 IN USER EXIT
SA 060FAO '01 4110CIBS ~ SA oeefOEBO (SA 477084(6 RET 861283F6 EPA 47Fce47, PROGRAM Al 4111COI0 R2 IB31Sf20 R3 C6801222 R4 4700B4LE R5 4590B4B~

R7 8424CAOA Of seleCtee RS 4B3uC 13E RIO 4~3IuOOO R II 070 11~~2

I NTERRUPT AT oS((Q2 5EF50
+6AC

PROCEECING EACK H~ REG I; 5F5FC
5A 064178 hOI CflCC !EF h SA CCtt3C7B L !A OOuo~EBC RET 4J063FlO EPA 000S[080 RO B(oe6DEA

Rl (00t'20C R2 cceccaci 03 ((062110 P4 ""JOouOI '5 OuOlC020 A6 00·0 50C Be
07 eOC6CHB ~ e CCOO(20 RG (00S0340 RIO COO6E5SC Rli oCOOE 16 RIZ 00eSEF5(

Figure A-8 (Part 2 of 3). Sample ABEND Dump Showing Fields Needed for Debugging User Exit Ro,tine
ABENDXIT

Appendix A. Writing EDIT User Programs A-25

.eel
~ccccce

(c«(ccce
cccccec ...

C5 0 4EO CCCCOlJC Jt'Ceel~ e((e,cc~ eeeraeoo
LINES ('~F~CC-O~F~2C 5M~E A~ AeC~E

j5F54C ~:cc(ccc ecc;,ccc CtC5~~C8 JCC~F85J
15F5bJ ra~611!B 20C4!EIO IJI4912C OCO~180A
:5F5B" 4~14SIIJ <00341CC IC4c412e (EC44130
05~5AC ~~((V~~O CCO~C13G !F312:2A c~OCOaAq
=5F5C~)JC=Fl~C ~J~~F12C (005~14f JC05E~38
J5F5EG G~(C~llC JJO!F838 0;C!FCF8 .ce50A34
C5F6CC Cl{!CIEO 03«!C56 ~CECOCCC C!BC412C
~5F6n q llreZ5A 4?\CR(6C 411J~Z21 41~OB2BA
(5F64C 141!GIIO B2!A41Et BIBC41!" B22A5~30
05F66' 92401)01 D2821(02 It(198CI BICA5E6C
05F680 121\4180 BC024i4~ 8(OC4910 CllC410e
)5F6.r 5180C(44 41,08<10 IA,I4333 "C004230
OSHCO 924(1~01 02E20C« 6{C\4980 CI54418e
'5F6EO 58QOGOC4 ~8ECCCOC OiFEle,1 ~~301233
C5"7(11l 924U001 021260C2 6C00I3. 1233417';
05F72J B12E4!90 817441FC BI221813 45,OBeB8
05F740 IEIMIIl JCe(CAJA .,FOB;:C4 5880C(44
~5F760 94EFC15~ 412eteCl <15(6011 <14CO((8
u5F7sn eOD2~2E~ 600(4E80 (1~45Cec CC4447FO
)5F7~O C02CF3~2 8216C(25 ~6FCB21B 0,03C29E
J5F7CC IB(0'll0 0'CC47FC B1C,IBca 18115EFo
C5F7EJ JO((JOOO ~OOCc{ec 6'C5F68E S2C7E~38
05F80C loooeee. :C(((LI8 OcCt352J ((000033
15F820 10C5EF50 FOF:FeFO FCF2404J C<III~07
C5FE4c CJ6EJ006 1501~IFA CC2ECSOF 0206B658

5,Fv
B 17 A 5J ""'~~""'4
~8FoefA~

5A4C87CA
0~Gt4CEO
E?DqCIC3
~)4(40 4C
404~4'14~

J503CC 4~404040 404C4C4' 4:'(4040 4C4(404Q
LINES C~D3E(-O~C4CC 5AJIIE A.5 ABO E

C50420 4J4C4~4C BCC~CC(O 4C.~4J4" 4C4'404(
0'044D 404D4e40 404(4040 4(4e4040 404C404~

LI~E C5C460 SAME 'S ,eeVE
05D48C 4C4r404~ 404C4)4~ 4(4C4C4' 8CCCO~J~
C5(4AO JOOl0101 acccccce (((CJCe~)~COOCO)
l!C4CC 404C4J40 4(.e4(40 .(4C4C4(4(40404C

LINE (5C4EO SAME AS',eCVE
C5D5na 4Q4C4C4C B(eCCllO C'(CeCF8 4C404C4c
050520 OOC61FF8 00C;:Ce9 CCOt48CA 4040404J

\lj ... l,jtJUvv
~ __ ""'-JO oe(jooooc

CC':'5FG2~
U428412J
:;C05FFEJ
COCCOOD
8(05E8S8
C~';luCO':

81(65(,0)
\,A1812FF
C6944100
C.)4(4IA0
BJ8B411'
6(~'::1806

BIB49180
478(BI3E
BllCqll~

49B)C154
911QC15E
05072CuJ
B(44581'
82180277
COZ8C7FF
,)006852"
.)U~:0038
C9C905E3
\1(,(.40(':."1

((COvuDO aCCOJODe
OO~OOL~G Q' L;

OCl5F C58 " 5 cc
O'Jb4CFC 000 90
~(J5FF EC OC'G5fF
00GOO(04 OJeCvJO

~~g~g~~~ ~~z~~~;~~~~~~
elCA5020 "\,081802
4710BIBC 45108032
r0854510 8C4C~~JA
Bl2EI99A 47808072
C(JI5eBJ Cc441EBI
4110822A 5EFOI03~
C15(4780 ECD25BFO
410U~085 451ceOEE
CI5E47EO el1494EF
477DBI2E 45908184
41108152 4980CI50
C1864770 8174e724
CJ484Al0 (1385010
b(01C22A 411(OJJ2
~Ov~CO·Jr OO~tlFBO
OL05FB38 J~n5F704
CuJ5F6CO ~O~5F13C
C5094UJO 0)(O~lL~
COCJJOJ I 04iJOJOJ 1

I
5CE0871'
CIC2C505
40404040
4u404\)4')
uOOCJilOG
4040<040

C654~5EF

IJAO~ 18t I
(15E41Fv
41';CCCci5
477JBI14
E16247FO
C04B4E IG
47F~8C64

ceOCOt(0
~OC5F811
E5v5FflAO
20vOCt (0
S2~5Fe IC

40404(40 4C404040 4v4J4040 4':4(41140
4u404L40 40404040 40404040 404(4040

JOC[00crCOOJ~ O®'04·~ CJl'J00CO
J::;C~C A 4U404li v 4J4~404u
404~4~ 4U4040 4 4~ 404J4C4~

ICI(2C5C5 C4E7C9E3IJOu5C08~I~J"02C5B
4J4)4C4v 586091EO

"C04C
~C.Cf.~tC;4 C611051:::F t..:)Of3 .. 19

;'(f"E8~ 41J00FU. '~O C~l

~~~ m~ ~~! ~~: 
5~E S2~~ C( CJ tc642 6 
1~,'oc:)OI FFO~ C1E3C64j '.589EE 
C4060~4.J {,)ijl:GOA :C':C~~CC (1=3F 
j')C(~)CC ,,(.C((CI;C CCCCCl..lJ :C; 

••••••••••••••••••••••••••••••••• * ,. ................................ .... 
• •••••••••• t ••••••• 9 ••••••••••••• * 
*- ••••• !J •••••••••••••••••••••••••• * 
,. •••••••• • •••••••••••••••• E ••• 0* ........................................ 
.,.1 ••• 1 ••• 1 ••• I ••• V ••••••••••••• * 
* •••••• 8 •••• 8 •••••••••••••••••• L .... 
* •• J •••••••••••••• F ••••••••• K ••••• 

50"240 .F ............... . 
oJ ••••••••••••••••• * 

....... + I DO ::::::::::j:::::~: 
*. • • •••• A •••• K.eF •••• ....... 50510 ..... 1 ••••••••••• * 
............... _ •••••••• A ••••••• A •• O. 
........... v. '" •••••• A .............. *' 
* ••••••••• O.D •••••• A ••••••• A ••••• * 
••• A •••••••••••• N ••• A •••••••••• ~* 
*.K •••••• A •••••• , •••••••••••••••• * 
••• ! •••••• ~ •• K.B ••• K ••• B •••••• O •• • 
* ........ \.1 ••••••• eF ••••••••••••••• * 
••••••••••• t ••• l ••••••• 8 ••• 7M •• 8.* 
••••••••••••••••••••••• 6 ••• 7 ••• 8.* 
••••• cl'a(~ ••• PRINTER ••••••••• * 
,........ ••• ••••••••• • •••••••••• 8 •• 

·.C •••••• K •••••• C •••••••••••••••• 
•••••••• V ••••••••••• (" •••••••••• * 
••••••••••••••••••••••••• 48E~D)IT* 
'T.,C EDC 

• * .. . ....................... .. 
• • • 

•••••••••••••••••••• *' ...................... 
....... 8 

•••• 8 •••••••• 
ABENO);IT •••••••• * 

••••• (C •• I ... D. 

'II.... . .......................... '" 
••••••••••••••••••• L ••••.•••••••• 1(1: 

0)1 •••••• 1< •••••••••••••••••••••••••• 
1(1: •••••••••••••• l ••••••••••••••••• 
••• ••• • ••••••••••••••••••••••••• * 
* •••••••• l.JTF •••••••••••• IHLR* 
*~L"" ••• oJ •••••••••••• "'~L'~311 ••• * 
• •••••••••••••••••••••••••••••••• * 
.................................. \'It 

~6416:' 
~"'41,q\,. 

J~L.j 1~.:' 

1'\641S0 
:64IE: 
)f4 2'" 
H422) 
~64 241"1 
Cf, L 26"l 
jf,423" 
1t:42A:" 
)H2C" 
':642'='1 
16430J 
'~432': 
16434'.1 
: 64 ~6') 
l64)B~ 

~64 3A.J 
:t430 
J b4~Er.:' 
J6440!i 
j6442..; 
It:444'J 
(6 4 46 1 

: <44 BJ 
C644A.j 
1644Ct'I 
'If..i,.4E'j 
:"50" 
C6 It ~ 21) 

~~~C:t:G ~CC=~CCJ C~(CCC(: Ff Fff8~ 

l;~~~~;~~ ~m~~~~ ~~~g~~~: ~C:C,l'. ~. ADDRESS OF FIRST DATA -
~(:cc:c·: t .. ~'::C:A 34(~C~C3 " ''')'~') J RENT TRACE RECORD

:64'.'
:~4560

tf4S8':"
: 645 4.(1

:645CJ

lW~:CC W8m, FC:~"'~ •. C,:~:;:) BYTE OFCUR
t;:((C:I,..·1 r~(""c\., ~(.cc~C(~ ('" '\..dg csc RR T E3C~C441 E4D10tO~ 4CE'E2C5 '70E24'o C~E2 EID IN CU EN
C5E3(5(4 4(.E40?06 D'4CE4E2 '0'1CE2 E4C5 TRACE ADDRESS

E=f:I.S qf:OUEST E)IT ClEL*
~ER.S REG:LEST .F
•• C ••• "'F ••••••••••••• * 502rS29E 411CB2~F 6I F:JJ(E iF~B2A4 -.F)C I~ 1J5EF

~:~~~;~~ ;;i~:~;i ;~~~~~~~ ~~~~~~~ F:~~~; ADDRESS OF GTF OPTIONS ::::::::::B:i:::o~::~:
~~:~~~~~ 6;~~;~~~ ~~;~~~;~ ~ °1~';~~ OUTPUT AREA ADDRESS :;::::::;::::::c:::~::::;::
8122C022 ,6"8128 QFOCd 5" INPUT TRACE RECORD ADDRESS ... , ... c ... c ••• t.J "0
e:lB('41FO ~'1r 15AF(ei 125JF= t!~12 .J ••• .,; ••• c ••••••••••• '; •••• *
BC7C51;::.j B71241E3 fli215ee..i ~il213Ee 4At:H.B68E 4.A8(",B690 ..)t8G~B6((J4C41.A~· T *
6'::174"'80 ebC;Pif1, C;(~4C;5C6 1";J'5411) b12(,D2?B 6iJ41B12C 47FJE12", 411uBee.A K O *
D2~3E1B2 CC~C41FO e13E5'F~ C(4C'2:~ S1EFCC4C q24~B738 C277e73S E7!89tj6 .K •••••• O ••• ~ •• K •• Y ••••• ~ ••••••••
C;ICP!:8~1) CtC41fF3 C,~EI:~E3t C;CC4412·~' 3v""F1:342 81212(Jl qt:FJE72e C2",18125 F .. 3 3 •••••• ,J .. K ••••
(l6et5eelJ CC~CD2':2 e':lCBi2<;; D?()38C1C &:11255£3:) ('14C02",7 3C31E6/J~ 5b8\~9-:14 _ •••••• K ••••• K •••••.•••• K ••••••••••
9H'4EC";3 471C8100 =el=-~I3~Af 5f6C9C 4 D2j3BB86 6(,JI154F: eeS6185F 5C4 ... E71,.o'. * ~ K (: ••••••• *
c;letbtCb. 47CC.~ISA 5b.4(a1,A 5C4:jB70F. 18ES8EE) J~2~41J..J ,,)(3CIDEL ~JFvB71o * " ~u*
5JECA11A 58E'~716 EEE(J(,,2'~ 41~C](3C 1Dc:5,j1=.) P71ESGEJ E716582.,,: P7U4E2,.. >lI ;j *
CC2Cf:21 872,lC(26 ~fF-:q124 02",13C37 F-12?5E2.j 811b4E2" CC2",F321 E72~Cv26 * •• ~ •••••• ~ •• K! •
96F('e724 02e13(34 e;2"!582J ~iLI=4E2,j C"'2-JF~21 6122(026 96F)S724 C2.JP(::1 •• ~ •• I(............. : •••••• "' •• j(... *
~1235A3e C;JC'C;~;~ 3a~5411= ~lE6C2J3 CJ4C87A2 47~Oe1Fa 411L;JJ2 58FCC5F~ •••••••••••••• ~K •••••• :.~ •••• ~:~&*
:5I=-FS4Ef S'J0841F:: B~1)25:':'; D(\:C'9CJC 0':;14",5e·: 41F ·J2'2 lI-P.FS·)OC E6C241F: * IJ.I(••••••••••• C ••••••) ..• .:.*

Figure A-8 (Part 3 of 3). Sample ABEND Dump Showing Fields Needed for Debugging User Exit Routine
ABENDXIT

A-26 Service Aids

JCL and Control Statement Examples

The following examples show how to test a user program.

Example 1: Link Editing a User Exit Routine into a Library

This example shows how to make a user exit routine available to PRDMP by
link-editing it into a system library.

IILKUSRPGM
II
IISYSPRINT
IISYSLMOD
IISYSLIN

/*

object deck
NAME

In this example:

EXEC Statement

JOB
EXEC
DO
DO
DD

MSGLEVEL='(1,1)
PGM=IEWL,PARM='XREF,LET,L!ST,NCAL'
SYSOUT""A
DSNAME""SYS1.LINKLIB,DISP=OLD
*

EXITNAME

invokes the linkage editor and requests maximum diagnostic listings.

SYSPRINT DD Statement
defines the message data set.

SYSLMOD DD Statement
defines the output data set, in this case the linkage library, SYSl.LINKLIB.
The output data set can also be a permanent library to be invoked later by a
JOB LIB or STEPLIB DD statement; in that case the SYSLMOD DD
statement should be coded as follows:

IISYSLMOD DD DSNAME""MYLIB,UNIT""2314,VOL""SER""231400,
II DISP=(NEW,KEEP),SPACE""(1024,(20,2,1»

SYSLIN DD Statement
defines the input data set, in this case, the object deck for the user program.

NAME Control Statement
specifies the member name, and thus the program name, to be assigned to
the user program. In this case, the member name is EXITNAME; to invoke
this program in a later execution of PRDMP, you would have to specify
EXIT = EXITNAME on the EDIT control statement.

Appendix A. Writing EDIT User Programs A-27

Example 2: Testing a User Exit Routine

This example shows how to link edit a user exit routine into a library for testing:

//TSEXTRTN JOB MSGLEVEL=(l,l)
IISTEPl EXEC PGM=IEWL,PARM='XREF,LET,LIST,NCAL'
IISYSPRINT DD SYSOUT=A
IISYSLMOD DD DSNAME=MYLIB,UNIT=2314,VOL=SER=231400,
II DISP=(NEW,KEEP) ,SPACE=(1024,(20,2,1))
IISYSLIB DD *

object deck
NAME MYEXIT

/*
IISTEP2 EXEC PGM=AMDPRDMP,PARM='ER=l'
IISTEPLIB DD DSNAME=MYLIB,UNIT=2314,VOL=SER=231400,
II DISP=OLD
//SYSPRINT DD SYSOUT=A
IIPRINTER DD SYSOUT=A
IITRACEDD DD DSNAME=TRACE2,UNIT=2400,VOL=SER=TRC2TP,
II LABEL=(,NL) ,DISP=OLD
/ISYSIN DD *

1*

A-28 Service Aids

EDIT DDNAME=TRACEDD,SYS,EXIT=MYEXIT

This example consists of two steps.

In the first step:

EXEC Statement
invokes the linkage editor and requests diagnostic information.

SYSPRINT DD Statement
defines the message data set.

SYSLMOO 00 Statement
defines the output data set, in this case a permanent job or step library
named MYLIB.

SYSLm DD Statement
defines the input data set, in this case an object deck containing the user
program.

NAME Control Statement
specifies a member name (program name) to be assigned to the user
program. Specify this program name on the EDIT control statement
(EXIT = MYEXIT) when you need the exit routine for a particular PRDMP
execution.

In the second step:

EXEC Statement
invokes PRDMP and specifies that, if an error occurs in the exit routine,
EDIT should print the record associated with the error and delete the exit
routine. (See the discussion of the EXEC statement in the section "Job
Control Language Statements" earlier in this chapter.)

STEPLm DD Statement
defines the data set that contains the exit routine, which, in this case, is
MYLIB, a data set defined in STEP! by the SYSLMOD DD statement.

SYSPRINT DD Statement
defines the message data set.

PRINTER DD Statement
defines the data set to which PRDMP output will be directed.

TRACEDD DD Statement
defines the data set containing trace records to be processed by the exit
routine.

SYSIN DD Statement
defines the data set that contains the PRDMP control statement. The data
set follows immediately.

EDIT Control Statement
invokes the EDIT function of PRDMP, specifies that the trace data exits as
an external trace data set, and supplies the name of the exit routine. Note
that this name is the same as the member name specified in the NAME
control statement in STEPl.

Appendix A. Writing EDIT User Programs A-29

Example 3: Testing a User Format Appendage

This example shows how to add a user format appendage to a temporary data set
for testing.

//TSTFMT JOB MSGLEVEL=(l,l)
//STEPl EXEC PGM=IEWL,PARM='XREF,LET,LIST,NCAL'
//SYSPRINT DD SYSOUT=A
//SYSLMOD DD DSNAME=&TEMPLIB,UNIT=SYSDA,
II SPACE=(1024,(20,2,1)),DISP=(NEW,PASS)
//SYSLIN DD *

object deck
NAME AMDUSROl

1*
//STEP2 EXEC PGM=AMDPRDMP,PARM='ER=3'
//STEPLIB DD DSNAME=&TEMPLIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//PRINTER DD SYSOUT=A
//TRACEDD DD DSNAME=TRACE,UNIT=2400,VOL=SER=TRCTPE,
/1 LABEL=(,NL) ,DISP=OLD
IISYSIN DD *

1*

A-30 Service Aids

EDIT DDNAME=TRACEDD,USR=ALL

This example consists of two steps.

In the first step:

EXEC Statement
invokes the linkage editor.

SYSPRINT DD Statement
defines the message data set.

SYSLMOD DD Statement
defines a temporary data set that contains the format appendage.

SYSLIN DD Statement
defines the input data set, in this case the object deck containing the format
appendage.

NAME Control Statement
specifies a member name (program name) for the format appendage. Note
that the name shown in this example conforms to the convention for naming
format appendages; that is, it is formed from the prefix AMDUSR
concatenated with the format identifier (FID) to be specified in the
GTRACE macro when user records are created.

In the second step:

EXEC Statement
invokes PRDMP and specifies that ABEND processing should not be
suppressed if a program check occurs in the format appendage. (See the
discussion of the EXEC statement in the section "Job Control Language
Statements" earlier in this chapter.)

STEPLIB DD Statement
defines the data set where the format appendage resides.

SYSPRINT DD Statement
defines the message data set.

PRINTER DD Statement
defines the data set to which the format appendage will direct its output.

TRACEDD DD Statement
defines the trace data set containing the records that the format appendage
will process. In this case, the trace data set is on tape.

SYSIN DD Statement
defines the data set containing PRDMP control statements. The data set
follows immediately.

EDIT Control Statement
invokes the EDIT function of PRDMP, specifies that the trace data exists as
an external trace data set, and specifies that EDIT is to process all
user-created records.

Appendix A. Writing EDIT User Programs A-31

A-32 Service Aids

Appendix B. PRDMP User Exit Facility

PRDMP provides exits for user-written formatting routines that supplement
normal PRDMP formatting and diagnosis of control blocks. These exits make it
possible for you to tailor PRDMP output to your needs.

The advantages of the PRDMP user exit facility are:

• It allows you to have your own set of control statements to format and
diagnose any system or user control blocks, and

• It permits you to supplement normal PRDMP processing and control block
formatting.

The six types of exits available to a user are:

• TCB exit - gets control after PRDMP processes a TCB.

• ASCB exit - gets control after PRDMP processes an ASCB.

• FORMAT exit - gets control when PRDMP processes the PRDMP control
statement FORMAT.

• JOBNAMEjCURRENT exit - gets control when PRDMP processes the
PRDMP control statement PRINT JOBNAME or PRINT CURRENT.

• NUCLEUS exit - gets control when PRDMP processes a PRINT
NUCLEUS statement.

• User-control-statement exit - gets control when PRDMP processes a
user-defined control statement.

The interface between PRDMP and the user formatting routines consist of the
exit control table (ECT) and the PRDMP parameter list.

The ECT is a table that identifies user exits and associated user module names.
You fill it in and link-edit it into SYS1.LINKLIB. PRDMP uses the ECT to pass
control to your modules. See Chapter 3 for more details.

PRDMP passes a two-part parameter list to your user exit routines. All user exit
routines use the first part; it includes the address of a TCB being processed, the
addresses of PRDMP-supplied routines that access storage, format, and print
control blocks or data areas, and the address of the second part of the parameter
list. Only user-control-statement exit routines use the second part of the PRDMP
parameter list (the Extension). The Extension contains the address of the
parameter list your exit routine is passing to PRDMP. See Chapter 3 for details.

Appendix B. PRDMP User Exit Facility B-1

PRDMP permits your exit routine to gain control during its execution. Your
routine receives control when there is an exit flag setting in the EeT or when
PRDMP processes a control statement that you defined for this exit.

The Exit Control Table (ECT)

The exit control table (ECT) resides in SYS1.LINKLIB as the module
AMDPRECT. You indicate, in the EeT, a module name and the point in
PRDMP processing at which this module should receive control.

Format of the ECT

B-2 Service Aids

The EeT contains a 20-byte entry for each user exit module. Figure B-1 shows
an entry in the EeT.

module name reserved user verb or blank

o 8 9 12

Figure B-t. ECT Entry Format

The module Dame is an eight-character load module name that PRDMP uses to
load your program. The name is left-justified and padded with blanks.

The exit flag is a one-byte field that, if any bit is on, causes your routine to
receive control at that exit. The exits are defined by different flag settings.
Shown in Figure B-2.

Flag setting

X'OO'
X'SO'
X'40'
X'20'
X'IO'
X'OS'

Meaning

No exit
TCB exit
ASCB exit
FORMAT exit
PRINT JOBNAME/CURRENT exit
PRINT NUCLEUS exit

Figure B-2. ECT Exit Flag Settings

The reserved field is not used. It contains binary zeros.

20

The user verb is an eight-character name of your control statement. Your routine
receives control every time PRDMP encounters an ECT entry that contains that
verb. The user verb is left-justified and padded with blanks.

Setting Up the ECT

You build an entry in the ECT using the SPZAP service aid program. This is a
two-step procedure.

First you find a free entry using the DUMPT function of SPZAP. You check the
DUMPT output to find a free entry. If it exists, you can use the SPZAP
VERIFY function later. An entry is free if there is no module name, the exit flag
is zero, and the user verb is blank. ECT entries do not have to be consecutive so
you cannot assume that a free entry exists at a 20-byte offset from the last known
entry. Use the following JCL to list the contents of the ECT module
AMDPRECT:

II
IISYSPRINT
//SYSLIB
IISYSIN

EXEC PGM=AMASPZAP
DD SYSQUT=A
DD DSNAME=SYS1.LINKLIB,DISP=SHR
DD *
DUMPT AMDPRECT

/*

Second,You activate an exit using the REP function of SPZAP. You supply a
module name and either include a user verb or leave the verb field blank and turn
on a bit in the exit flag. The JCL and control statements to execute SPZAP are
the same as specified above. You add the following SPZAP control statements,
preceding the DUMPT statement in the input stream:

NAME AMDPRECT
VERIFY offset old-data
REP offset ECT-entry

You replace the following with appropriate values:

offset
is the displacement from the beginning of the ECT where you found a free
entry.

old data
is the contents at that displacement as shown in DUMPT output.

ECT entry
consists of a 20-byte field, in the format of an ECT entry, that contains a
module name, exit flag, reserved field (three bytes as shown in the DUMPT
output), and a user verb or blank field. See Figure B-3 Sample ECT.

The DUMPT statement produces a dump showing the new entry.

For more information on the NAME, VERIFY, REP and DUMPT control
statements, see Chapter 6: SPZAP.

Only one type of user exit should be associated with a module name. However, in
case multiple flag settings occur or a user-verb exit also has an exit flag set, you

Appendix B. PRDMP User Exit Facility B-3

should code your exit routine so its processing does not depend on what kind of
exit caused it to receive control.

Note that, when you set up EeT entries, PRDMP takes exits sequentially. That
is, if four user modules use the TCB exit, then each gets control according to the
list order in the ECT.

Figure B-3 is an example of an EeT containing '2' active entries.

AMDPRECT CSECT
*
*
*
TCB
FORMAT
CUR JOB
NUCLEUS
VERB
*
ECTNTROI

ECTNTR02

ECTNTR03

E X I T F LAG 0 E FIN I T ION S
*
*
*

EQU
EQU
EQU
EQU
EQU

E X I
OS
DC
DC
DC

X'80'
X' 20'
X'lO'
X'08'
x'OO'

T CON T R 0
OCL20
CL8'TSTRAFDl'
ALI (TCB)
3XLl ' OO '

DC CL8 I I

OS OCL20
DC CL8'TSTMYBLK'
DC AL1(VERB)
DC CL8'USERBLOC'
OS OCL20
DC CL8 I ,

DC ALI (VERB)
DC 3XLl'OO'
DC CL8"

EXIT WHEN TCB PROCESS ASSOCIATED BLOCKS
EXIT WHEN FORMAT STMT PROCESSED
EXIT WHEN PRINT JOB/CURR STMT PROCESSED
EXIT WHEN PRINT NUCLEUS STMT PROCESSED
EXIT ONLY IF USER VERB PROCESSED

L TAB L E *
ACTIVE ENTRY FOR TCB EXIT

EXIT USER MODULE NAME
TCB EXIT FLAG SET
RESERVED
USER VERB NAME EMPTY

ACTIVE ENTRY FOR USER VERB
EXIT USER MODULE NAME
NO EXIT FLAG SET
USER CONTROL STMT VERB IS USERBLOC

INACTIVE ENTRY
NO EXIT USER MODULE NAME FILLED IN
NO EXIT FLAG SET
RESERVED
NO USER VERB

* SEVENTEEN ENTRIES, ECTNTR04 - ECTNTR20, FOLLOW WHICH MATCH ECTNT03 *

Figure B-3. Sample ECT

Note that the EeT initially contains twenty 20-byte entries (400 bytes). If you
need to activate more than 20 entries, you can expand the EeT by re-link editing
AMDPRECT, increasing its size.

User-Written Formatting Routines

B-4 Service Aids

Your formatting routine can be a single module or a set of modules. The routine,
including dynamically allocated storage and excluding modules loaded into the
LPA, should not exceed SK. PRDMP guarantees a user routine SK of storage;
however, more may be available depending on the type of PRDMP processing
involved.

Your module must be resident in SYSl.LINKLIB or a private library, JOB LIB or
STEPLIB. For all user modules, PRDMP uses a LOAD macro to get the
module, then passes control via standard linkage.

Conditions on Entry to a User Formatting Routine

• A FORMAT or PRINT JOBNAME/CURRENT/NUCLEUS exit user
routine gets control when PRDMP processes the respective PRDMP control
statement. At the time of entry to your routine, only a title has been printed
and no TCB address or operand information is available.

• For all types of user exits, PRDMP uses standard linkage to pass control to
your routines: register 13 contains the address of a save area, register 14
contains a return address to PRDMP, and register 15 contains the entry point
address in your routine. Register 1 points to the PRDMP parameter list
which is further described, along with a format diagram, as the next topic.

Other conditions on entry to your routine vary depending on the type of exit:

• A TCB routine gets control after PRDMP processes a TCB, including the
case when PRDMP processes a FORMAT, PRINT JOBNAME, or PRINT
CURRENT statement (if these control statements all require TCB
processing).

At the time of entry to a TCB exit routine, PRDMP has printed a title and
TCB with its associated control blocks. The TCB address is available to you
in the PRDMP parameter list.

• An ASCB routine gets control after PRDMP processes control blocks for a
new ASID and including the case when PRDMP processes a FORMAT,
PRINT JOBNAME, or PRINT CURRENT statement (if these control
statements require address-space control block formatting).

At the time of entry to an ASCB exit routine, PRDMP has formatted the
control blocks associated with one ASCB.

• A user-control-statement exit routine gets control when PRDMP processes a
user control statement that matches a user verb in the ECT. At the time of
entry to your routine, PRDMP has started a new page. The routine should
print a title to indicate that it received control. The parameter list extension
points to a list of parameters that appear on the user control statement being
processed.

Appendix B. PRDMP User Exit Facility B-5

PRDMP Parameter List

o

4

8

12

16

20

24

28

44

48

52

The parameter list pointed to by register I begins on a full word boundary and is
fourteen fullwords long. It serves as a communications area for PRDMP, your
routine, and the PRDMP service routines. Its format is shown in Figure B-4,
'The PRDMP Parameter List and Extension.'

Address of rGB being printed

ASID
16 Subpool 17

Address of output buffer

Address of print routine

Address of CVT

Address of storage access routine

Address of format routine

For use by user rautine

Updated address of format pattern label

Updated address of format pattern data

Address of parameter list extension

Reserved

o 4

~
r---"

Address of user
contro I statement
operand list

Figure B-4. The PRDMP Parameter List and Extension

B-6 Service Aids

The IHAABDPL mapping macro maps the PRDMP parameter list, which is the
same as the parameter list passed to user-written formatting routines for ABEND
dumps taken to SYSABEND or SYSUDUMP data sets.

• The first word in the parameter list contains the TeB address if PRDMP is
processing a TeB at the time the parameter list is passed. This field is
always used for TeB exits.

• The second word of the parameter list consists of three fields:

1. The first field is the two-byte AsrD field which identifies the ASrD being
processed.

2. The second field is a one-byte subpool field which contains the number of
the subpool your routine can use for dynamical storage allocation.

3. The last field is a byte field that indicates the version of PRDMP that is
processing. The settings are:

Bit

o

2

3

4-7

Setting and Meaning

0- module loaded by SNAP
1 - module loaded by PRDMP

o -system is OSjVS2
I - system is OSjVSI

For data management formatter under SNAP:
0- format the DEB
1 - format the DEB, DCB, and lOB

Applies to OSjVS2 only:
0- identifies VS2 PRDMP
1 - identifies MVSjIPCS

Reserved

• The third word of the parameter list contains the address of an output buffer.
It is needed by PRDMP service routines and by your module when it does its
own formatting.

• The fouth word of the parameter list contains the address of the print routine.
This is a PRDMP-provided service routine that all user modules must use to
print an output line. See 'TheyPrint Service Routine.' later in this section.

• The fifth word of the parameter list contains the address of the CVT. Note
that when PRDMP is processing a selective dump that does not contain the
CVT, thi~ field might not be filled in. If your routine needs to reference the
CVT, this address must be used.

• The sixth and seventh words of the parameter list are the addresses of two
other PRDMP-supplied service routines: the storage access routine and the
format routine. Your module must use the storage access routine to obtain
data from the dumped data set. This routine is described in detail in 'The
Storage Access Service Routine' later in this section.

Your user module may optionally invoke the format routine to have the
output buffer automatically formatted. This service routine is described in
detail in "The Format Service Routine" later in this section.

• The parameter list has four fullwords of work area, starting at the eighth
word. Your module can use this work area to construct a GETMAIN
parameter list in order to have reentrant code.

• Following the work area are two words used by the format service routine,
starting at the twelfth word. The twelfth word stores the updated address of
a label for the output line. The thirteenth word stores the updated address of
a data item for the output line. If your routine does not supply either of
these addresses in a format pattern, the format service routine uses these fields
to calculate the address. For more information about the format routine and
format patterns, see "The Format Service Routine" later in this section.

Appendix B. PRDMP User Exit Facility B-7

• The fourteenth and last word in the parameter list contains a pointer to the
parameter list extension. The extension consists of one full word that points
to another parameter list associated with the user control statement being
processed. The parameter extension is a full word of binary zeros when there
is no control-statement parameter list. The extension to the PRDMP
parameter list allows your control-statement exit routine to receive parameters
during execution.

Returning to PRDMP

All types of user routines must return control to PRDMP using standard linkage.
Register 15 should contain a return code of 0 indicating processing is complete or
a return code of 4 indicating the storage necessary to process could not be
obtained.

A user-control-statement exit routine may specify an additional return code in the
PRDMP parameter list extension. If an parameter on a user statement contains
an error, the operand list pointer in the extension should be replaced by a code of
4,8, or 12. This code causes PRDMP to print an error message on the
SYSPRINT data set.

The following are the error codes and their corresponding messages:

Code Message

4 DELIMITER ERROR IN OPERAND FIELD OF verb
8 INVALID KEYWORD IN OPERAND FIELD OF verb
12 SYNTAX ERROR IN OPERAND FIELD OF verb

The verb field of these messages contains the user verb associated with the user
control statement.

Guidelines for Writing a User Formatting Routine

You can design a routine to format a specific area of storage, print non-IBM
control blocks, or print IBM control blocks that PRDMP does not process. The
function of your routine should depend on the type of exit where it receives
control; conditions vary as described in the previous section, "Conditions on
Entry to a User Formatting Routine."

Guidelines for User Modules

B-8 Service Aids

For all user modules, some guidelines apply. The following is a summary of these
guidelines:

• Your module must be identified to PRDMP in the ECT and either an exit
flag or user verb or both must indicate when control should be passed.

L

• Your routine must not exceed 8K of storage including a dynamically acquired
area. To have reentrant code, you may use twenty bytes in the parameter list.

• Your routine must use the storage access service routine and the print service
routine when you need to perform their designated functions. If your routine
performs its own formatting, it must use the buffer pointed to in the PRDMP
parameter list.

• If you use the storage access routine, remember that the address boundary
you request (that is, byte, word, 4K), determines the length of data that you
can reference (l byte, I word, 4K). The maximum length available is 4096
bytes on a 4K boundary.

• Your routine may print comments at any time. Informative messages can be
used to identify the module processing. Error messages diagnose conditions
encountered in processing or in analysis of data areas.

• You must provide recovery processing for unexpected incidents. Return
codes generated by any SVC issued within the module and by service routines
invoked within a module should be checked.

• If your module has an associated user control statement, and the statement
has parameters, you must check for valid parameters and be prepared to
handle error or default conditions. PRDMP passes your routine the address
of a parameter list in the parameter list extension. To indicate an error
condition to PRDMP, your routine must replace the address in the extension
with a return code of 4, 8, or 12. See "Returning to PRDMP" earlier in this
section.

• Prior to returning control to PRDMP, your module must free any
dynamically allocated storage and release any other resources it obtained.

When your routine returns control to PRDMP, it must pass a return code of
o or 4 in register 15; a code of 0 indicates user module processing is
completed and a code of 4 indicates that your module was unable to obtain
the storage necessary to process.

The Storage Access Service Routine

The address of the PRDMP storage access routine is the fifth word in the
PRDMP parameter list.

Your routine must pass control to the PRDMP-supplied storage access routine for
all references to system storage because any reference to storage in a dumped
system is really referring to a record in the dump data set.

You pass control to the storage access routine using standard linkage conventions.
Upon entry, register 0 must contain the virtual address to be referenced and
register 1 must contain the original parameter list address.

When the storage access routine returns control to your module, register 0
contains the address of the data requested and register 15 contains a return code.

Appendix B. PRDMP User Exit Facility B-9

The length of data available for reference depends on the boundary of the address
requested. If the address is on a byte boundary, only one byte can be referenced. ~

The maximum length available is 4096 bytes on a 4K boundary. ""'"

In the example in Figure B-S, the subroutine MEMORY uses the storage access
routine, then checks to be sure the data is returned.

Note that your routine must test the contents of register 15 for a return code of 0
to make sure that the storage access routine was successful. A return code of 4
indicates that the requested storage is not in the dump or the service routine is
unable to access it.

You must invoke the storage access routine each time you wish to format system
storage. This is because the address you are requesting may have been overlaid
by another routine (such as the format service routine) that does a storage ac~ess
in the interim between your two requests.

The ASID used for accessing storage is the current ASID being processed by
PRDMP, or in the case of exits called via a verb, the ASID in the dump header.
Any ASID could be specified by the exit program by storing the ASID in the
print dump parameter list. See also the The PRDMP Parameter List and
Extension, Figure B-4.

* THIS ROUTINE IS USED FOR ALL REFERENCES TO STORAGE IN THE SYSTEM.
* 'PREG' ON ENTRY CONTAINS THE ADDRESS WANTED FROM THE SYSTEM; IT
* ALSO 'USES 'PREG' TO RETURN TO THE CALLER THE ADDRESS OF THAT
* REQUESTED DATA. "Rl" ALWAYS CONTAINS THE ADDRESS OF THE
* ORIGINAL PARAMETER LIST.
* IF THE REQUESTED ADDRESS IS NOT AVAILABLE, CONTROL IS PASSED
* TO THE ADDRESS IN 'ERROR'.
MEMORY LR RO,PREG

L R15,PARMMEMA
*

BALR
LR
LTR
BC
B

USEDATA L

R14,R15
PREG,RO
R15,R15
8,USEDATA
ERROR
RADDR,O(PREG)

SET REQUESTED ADDR TO REGISTER °
GET STORAGE ACCESS ADDRESS FROM
PARM LIST
GO TO STORAGE ROUTINE
RETURN REQUESTED ADDR IS SAME REG
IS REQUESTED ADDRESS AVAILABLE
YES--USE IT
NO--GO TO ERROR ROUTINE
GET DATA AT REQUESTED ADDRESS

Figure 8-5. Example Using the Storage Access Routine

B-IO Service' Aids

The Format Service Routine

The PRDMP format routine is available to your module to format its output.
This service routine performs two functions: it converts data to printable
hexadecimal (if necessary) and it formats data in the output buffer.

At each invocation, the format service routine can format one output line. Your
module must provide this input:

• The address of the output buffer in the PRDMP parameter list
• The addresses of data items and/or labels by using the format patterns.

(See the topic "Format Patterns for PRDMP Format Routine" following in this
section.)

The PRDMP parameter list contains the address of the 121-byte buffer where the
output line is to be formatted. It also contains two fullwords of work area needed
by the format service routine. The format patterns indicate data and labels to be
inserted in the output line.

Your module can invoke the format routine two different ways. You may specify
format patterns to create one output line. Or you may invoke the format routine
more than once. Each time, you can specify patterns for part of an output line.
Note that if you choose to format a portion of a line, you must be careful not to
overlay previously-formatted portions.

When a line is formatted, your module must invoke the PRDMP print service
routine to perform the print operation. The format service routine cannot print
the buffer.

Your module obtains the service routine address from the sixth word of the
PRDMP parameter list and must use standard linkage to pass control. You must
pass the address of the first format pattern in register 0 and the address of the
PRDMP parameter list register 1.

When the format routine passes control back to your module, register 15 contains
a return code of 0 or 4. The value of the return code is the same as that received
by the format routine when it used the storage access routine; the meanings of the
codes are the same as for the storage access routine.

Figure B-6 shows how a format routine is invoked. Figure B-8 shows format
patterns associated with that invocation. Also, in Appendix A: Writing EDIT
User Programs, Figure A-7 provides a full example of a user program that uses
the format routine and format patterns.

Appendix B. PRDMP User Exit Facility B-ll

* THIS SECTION ACTUALLY OUTPUTS TWO LINES OF A TAPE UCB THEN SKIPS A LINE
OUTPUTIT LA RO,TAPEl SET ADDR OF LINE 1 FORMAT PATTERN

BAL RLINK, FORMAT GO FORMAT LINE
BAL RLINK, PRINTIT GO TO PRINT IT WITH THE SERVICE RTN
LA RO, TAPEL2 SET AD DR OF LINE 2 FORMAT PATTERN
BAL RLINK, FORMAT GO FORMAT LINE
BAL RLINK, PRINTIT GO TO PRINT IT WITH THE SERVICE RTN
BAL RLINK, PRINTIT GO PRINT A BLANK LINE

*THIS SUBROUTINE CALLS THE FORMAT ROUTINE TO AUTOMATICALLY
*FORMAT AN OUTPUT LINE OF THE UCB. INPUT TO THIS SECTION OF CODE
*IS THE ADDRESS OF THE FIRST FORMAT PATTERN IN REG O. REG 1 MUST
*CONTAIN THE ADDRESS OF THE ORIGINAL PRDMP PARAMETER LIST. IF
*DATA CANNOT BE OBTAINED BY THE SERVICE ROUTINE, CONTROL IS
*PASSED TO AN ERROR SUBROUTINE TO PRINT ERROR MESSAGE
FORMAT L R15,PARMFRMT GET RTN ADDR FROM PARM LIST

BALR R14,R15 GO TO SERVICE ROUTINE TO FORMAT LINE
LTR R15,R15 WAS FORMAT SUCCESSFUL
BCR 8,RLINK YES, GO PRINT LINE IMMEDIATELY
B ERROR NO, GO TO ERROR ROUTINE

Figure B-6. Example Using the Format Routine

Format Patterns for PRDMP Format Routine

o

4

8

The format service routine uses the format pattern to locate information and
position it in the output buffer. A format pattern consists of four to seven fields.
One field indicates how the format routine should process the pattern. Three
fields describe the position, length, and address of a label. Three other fields
describe the position, length, and address of a data item.

If a series of format patterns are set up by your routine, the patterns that describe
one line must be contiguous and have as a last entry a fullword of binary zeros.

The second and subsequent data and label addresses in a series are optional. If
these fields are not provided, the service routine uses the last address plus the
length to locate a data item or label. To keep track of updated addresses, the
format routine uses the twelfth and thirteenth words in the PRDMP parameter
list to store label and data pointers. See Figure B-4 for a diagram of the
PRDMP parameter list.

See Figure B-7 to assist you in defining fields in a format pattern.

2 3

Label Data
Code byte length-l length-l Label offset Data offset

Pointer to label (if present)

Pointer to data (if present)

Figure B-7. Format Pattern Description

B-12 Service Aids

L
Code byte:

This one-byte field identifies the contents of a format pattern. The possible bit
settings and their meanings are:

Bit

o
1
2
3
4

5
6
7

Setting and Meaning

- Unused.
- Unused.
- Data is not to be converted to printable hexadecimal.
- Data is in the caller's storage (not in the dump).
- Data pointer follows (bit 5 must also be on). Either a

dump address or a storage address. (See bit 3)
- Data is to be placed in butTer.
- Label pointer follows (bit 7 must also be on).
- Label is to be placed in buffer.

If you do not set bits 4 and/or 6, then you should omit the label pointer and/or
data pointer field(s).

Label length and data length: Each of these two fields is 4 bits in length and
contains a length count that is one less than the actual input length. PRDMP
uses these fields to update label/data addresses in the parameter list when the
addresses are not included in a pattern.

Label offset and data offset - Each of these one-byte fields indicate the position of
labels and data in the buffer. To indicate the first character of the buffer, specify ° as the offset.

Label pointer: This four-byte field is optional. It contains the address of a
character string to be used for labels. If you include a label pointer in the
pattern, you must set bits 6 and 7 of the code byte. If you do not include this
pointer, PRDMP updates the current label address in the PRDMP parameter list
and uses it.

Data pointer: - This four-byte field is optional. It contains the address of the first
byte of data to be placed in the output line. Note that if this data is not in the
caller's storage, you must set bit 3 of the code byte to 0; this causes the format
routine to use the storage access service routine to obtain the data. If a data
pointer is in the pattern, bits 4 and 5 of the code byte must be set. If this pointer
is not included, the format routine updates the current data address in the
PRDMP parameter list and uses it. If bit 2 is 0, the format routine converts this
data to hexadecimal.

Appendix B. PRDMP User Exit Facility B-13

* THIS CHARACTER STRING DEFINES LABELS TO BE USED BY THE SERVICE ROUTINE
* FOR THE FORMATTED UCB'S
*
TAPELB DC C'SNSVOLISTABFSCTDSCTDSNORESVOPTXTN' UCB LABELS
* THE FOLLOWING FIVE FORMAT PATTERNS DESCRIBE THE FIRST OF THE
* TWO LINES FOR A TAPE UNIT CONTROL BLOCK (UCB). THE FIRST TWO
* PATTERNS ARE EXPLAINED FOR EACH FIELD.
* THIS PATTERN IDENTIFIES A LABEL AND DATA ITEM THAT WILL BE
* INSERTED IN THE FIRST LINE OF A TAPE UCB
TAPELl OS OF THIS PATTERN SETS UP THE SNS FIELD IN

*
*

*

DC X'OF' THIS CODE BYTE IS SET FOR: CONVERSION,

DC
DC
DC
DC
DC

X'23'
FL1'12'
FL1' 17'
A(TAPELB)
A(O)

DATA AND LABEL POINTERS FOLLOWING, AND LABEL
AND DATA ITEM TO BE PLACED IN BUFFER.
LABEL LENGTH-l IS 2.DATA LENGTH-l IS 3
LABEL OFFSET IN OUTPUT LINE IS 12
DATA OFFSET IN OUTPUT LINE IS 17
POINTER TO STRING OF LABELS
ADDR OF DATA TO BE FILLED IN DURING EXECUTION

* NEXT PATTERN SETS THE VOLl FIELD IN THE OUTPUT LINE. THIS
* PATTERN PSES THE SAME LABEL STRING AND DATA ADDRESS. THE
* FORMAT ROUTINE UPDATES ITS LABEL AND DATA ADDRESSES USING
* LENGTH FIELDS. TWO WORDS IN THE PRDMP PARAMETER LIST STORE THE UPDATED
* ADDRESSES.
*

DC
*

DC
DC
DC

*

X'25'

X'35'
FL1' 28'
FL1'33'

CODE BYTE SET FOR: NO CONVERSION, PLACE
LABEL AND DATA IN BUFFER(NO ADDRESSES-DO UPDATE
LABEL LENGTH(4)-1 IS 3. DATA LENGTH(6)-1 IS 5.
LABEL OFFSET IN OUTPUT BUFFER IS 28.
DATA OFFSET IN OUTPUT LINE IS 33.

* THE REMAINING PATTERNS IN THIS LINE ARE CONDENSED
*

*

DC X'05' ,X'31' ,FL1'44' ,FL1'52'
DC X'05',X'33' ,FL1'59' ,FL1'65'
DC X'05' ,X'35' ,FL1'76' ,FL1'81'
DC X'OQ',X'OO' ,FL1'O' ,FL1'O'

STAB FIELD
FSCT FIELD
DSNO FIELD
INDICATES END

* THE SECOND LINE OF THE TAPE UCB IS DEFINED BY A SECOND
* FORMAT PATTERNS, TAPEL2.

OF LINE
SERIES OF

Figure B-S. Sample Format Patterns

The Print Service Routine

B-14 Service Aids

The fourth fullword in the PRDMP parameter list is the address of a
PRDMP-supplied print routine that your module must use to print the contents
of the output buffer.

Your module must pass control to the print routine using standard linkage
conventions. Upon entry to the print routine, register I must contain the address
of the original PRDMP parameter list.

The print routine causes the output buffer pointed to by the parameter list to be
printed and returns a new 121-character buffer (set to blanks) to your module.

L

PRDMP Output Buffer

In the PRDMP parameter list, the output buffer address points to a 12I-character
work area where a print line can be constructed. This buffer is blank on entry.
The first 120 characters of the buffer are used as data for the line. The last
character is a pad character to allow unpacking directly to the buffer. PRDMP
supplies the carriage control character. When a print line is built, the print
routine must be given control to cause the line to be printed. To print a blank
line, your module must pass control with a blank buffer. The PRINT service
routine will not print blank lines at the top of a new page. You define the output
data set on the PRINTER DD statement.

In the example in Figure B-9, the subroutine, PRINT, uses the PRDMP-supplied
subroutine.

* THIS SECTION OUTPUTS A LINE OF A TAPE UCB
OUTPUTIT LA RO,TAPEL2 SET ADDR OF LINE 1 FORMAT PATTERN

BAL RLINK,FORMAT GO TO FORMAT LINE
BAL RLINK,PRINTIT GO PRINT IT WITH SERV RTN
BAL RLINK,PRINTIT GO PRINT A BLANK LINE
B NEXTLINE GO TO PROCESS NEXT LINE

* THIS SECTION OF CODE IS USED TO CALL THE PRINT SERVICE
* ROUTINE. REGISTER 1 MUST CONTAIN THE ADDRESS OF THE ORIGINAL
* PRDMP PARAMETER LIST.
PRINTIT L R15,PARMPRNT

BALR R14,R1S
BR RLINK

Figure B-9. Example Using the PRINT Routine

GET PRINT RTN ADR FROM PARM LIST
GO TO PRINT ROUTINE
RETURN TO SECTION OF CODE ABOVE

The Summary Dump Data Access Service Routine

The summary dump data access service routine (IEA VTFRD) allows your
formatting routine to access the summary dump data contained in an SVC dump.
IEAVTFRD is reenterable and can be loaded from SYSl.LINKLIB.

Your routine passes control to lEA VTFRD via the CALL macro, using standard
linkage conventions. Register I must contain the address of the PRDMP
parameter list. IEA VTFRD uses the eighth word in the parameter list during its
processing. This word must be set to zero prior to the first invocation of·
lEA VTFRD, and must not be changed between invocations.

One summary dump record is read for each invocation of lEA VTFRD. The
records are returned in the same order that they were dumped. IEA VTFRD
reads the summary dump records sequentially from the beginning of the data to
the end. The summary dump data is returned as variable-length records. Each
record contains a header that describes the data in the record. This header is
described by mapping macro IHASMDLR.

You should invoke IEAVTFRD to read all of the available records, rather than
stopping when a particular record has been read. Storage obtained by

Appendix B. PRDMP User Exit Facility B-15

IEA VTFRD is not freed until the end of the summary dump data is reached
(return code 8 or greater) or upon step termination. If all the records are not
read, storage is not freed until step termination.

When IEA VTFRD returns control to your module, register 0 contains the address
of a reconstructed summary dump record (that is, the record appears exactly as it
did when the dump was taken). Register 15 contains a return code. For nonzero
return codes, IEAVTFRD prints an explanatory message in the dump output.

Possible return codes from IEAVTFRD are:

Return
Code

0-

4 -

8 -

12 -

16 -

20 -

24 -

28 -

Explanation

Register 0 contains the address of a completely reconstructed summary dump record.

Register 0 contains the address of a partially reconstructed summary dump record.
During summary dump processing, it was necessary to omit parts of this record. The
missing portions of the record are replaced with asterisks (hexadecimal 5C).

No data is returned. The normal end of the summary dump data was reached.

No data is returned. The end of the summary dump data was reached before the
expected normal end.

There is no summary dump data available in the dump.

The CVT could not be located in the dump.·

The GDA (global data area) could not be located in the dump.·

IEAVTFRD was unable to obtain sufficient storage for its processing.

·Information in the GDA is used to locate the summary dump data. The CVT is used to locate the
GDA.

Specifying Format Routines for Summary Dump Records

B-16 Service Aids

The FMTTABLE table in CSECT IEAVTFTM of load module IEAVTFSD
contains the names of format subroutines. These subroutines format the summary
dump records for an SVC dump when the SUM DUMP control statement is
specified. FMTT ABLE contains an entry for each summary dump record
identifier. (The identifiers are contained in the record header as described by
mapping macro IHASMDLR.) The first entry is for the first identifier, the
second entry is for the second identifier, and so on. Each entry is 28 bytes in
length and contains the following fields:

• The 8-character load module name of the format subroutine to be loaded and
called, or blanks

• The 4-byte address ot-a default format subroutine to be invoked if the load
module name is blank or cannot be loaded

• 16 printable characters that describe the data associated with this summary
dump record identifier.

lEA VTFSD passes control to the format subroutines using standard linkage
conventions. Register 1 contains the address of a 3-word parameter list:

• The address of a pointer to the PRDMP parameter list

• The address of a pointer to the summary dump record to be formatted

• The address of the original virtual address of the data when it was accessed
by summary dump processing

Prior to calling the format subroutines, lEA VTFSD provides a record title
containing information from the summary dump record header and blank lines to
separate the output of the format subroutines.

You can change the format subroutine for a particular summary dump record
identifier in FMTT ABLE. Use SPZAP to put the load module name of the new
format subroutine into FMTTABLE (see Figure B-1O and Figure B-ll), and add
the load module to SYSl.LINKLIB or the equivalent. The load module name
must be left-justified in the first eight bytes of the entry, and must be padded with
blanks if the name has less than eight characters.

To determine the relative address of FMTTABLE, use the sample JCL in
Figure B-IO. The table can be found immediately following its printable
identifier FMTT ABLE.

II EXEC PGM=AMASPZAP
IISYSPRINT DD SYSOUT=A
IISYSLIB DD DSN=SYS1.LINKLIB,DISP=SHR
I/SYSIN DD *

DUMPT IEAVTFSD IEAVTFTM
1*

Figure B-IO. JCL to Locate FMTTABLE

The sample SPZAP control statements in Figure B-ll verify the table identifier
(FMTT ABLE), and verify and replace the module name portion of the second
entry with the characters 'MODULE', assuming that the table identifier is at
location 3EC. (The table identifier is eight bytes long, and each entry is 28
(hexadecimal IC) bytes long.)

NAME IEAVTFSD IEAVTFTM
VER 03EC C6D4E3E3C1C2D3CS
VER 0410 4040404040404040
REP 0410 D4D6C4E4D3C54040

Figure B-I1. Modifying FMTTABLE

Appendix B. PRDMP User Exit Facility B-17

B-18 Service Aids

Appendix C. Abbreviation Dictionary

Abbreviation Meaning

AID record identifier
ASCB address space control block
ASID address space identifier
ASXB address space control block extension
ASVT address space vector table
ASMVT auxiliary storage manager vector table

BCB buffer control block
BSAM basic sequential access method

CAW channel address word
CCH channel check handler
CCT common control table
CCW channel command word
CDE contents directory entry
CESD composite external symbol dictionary
COM common communication area
CS control section name
CSCB command scheduling control block
CSD common system data area
CSECT control section
csrD channel set identifier
CSW channel status word
CVT communication vector table

DA data area or direct access
DCB data control block
DEB data extent block
DUB distribution library
DQE description queue element
DS data set
DSCB data set control block

EBCDIC extended binary-coded-decimal-interchange code
ECB event control block
ECT exit control table
ECTE exit control table entry
EID event identifier
EOF end of file
EOV end of volume
EP entry point name

L EPA entry point address
ERB error recovery block

Appendix C. Abbreviation Dictionary C-I

ESD external symbol dictionary

FID format identifier
FXTAB fix table

GSMQ global service manager queue
GSPL global service priority list queue
GTF generalized trace facility service aid program
GTFBCB GTF buffer control block
GTFBLOK GTF blocking area
GTFBUFR GTF buffer
GTFPCT GTF primary control table

ICR independent component release
IDR CSECT identification record
INITDATA initialization data
I/O input/output
lOS input/output supervisor
IPL initial program load
IQE interruption queue element

JCL job control language
JFCB job file control block
JOBNAME job name

LCCA logical configuration communication area
LCCAVT logical configuration communication area vector table
LGVT logical group vector table
LIST AMBLIST service aid program
LLE load list element J LPA link pack area
LPID logical page identifier
LPRB loaded program request block
LR la bel reference
LRECL logical record length
LSMQ logical service manager queue
LSPL logical service priority list
LSQA local system queue area
LT logical track
LTH logical track header

MC monitor call
MCAWSA monitor call application work/save area
MCCD monitor call class directory
MCCE monitor call control element
MCCLE monitor call class element
MCED monitor call event directory
MCEE monitor call event element
MCHEAD monitor call base table
MCQE monitor call queue element
MCRWSA monitor call router work/save area
MN module name

PCB print control block
PCI program controlled interruption
PDS partitioned data set .~ PER program event recording

C-2 Service Aids

L

PICA
PRDMP
PSW
PTF
PTFLE

QCB
QCR
QEL

RANGETAB
RB
RCSW
RE
RECFM
RLD
RNIO
RQE

SADMP
SD
SDATA
SIO
SLE
SLIP
SPZAP
SQA
SR
SSI
STA
SVC
SYSGEN
SYSIN
SYSOUT

TCAM
TCB
nOT
TOD
TQE
TTR

UCB

VCCT
VOLID
VPA
vs

program interruption control area
AMDPRDMP service aid program
program status word
program temporary fix
AMAPTFLE service aid program

queue control block
queue control record
queue element

range table
request block
real channel status word
record entry
record format
relocatable load dictionary
remote network input/output
reply queue element

AMDSADMP service aid program
section definition
service data area
start input/output
save list element
serviceability level indication processing
AMASPZAP service aid program
system queue area
subroutine
system index status
starting address
supervisor call
system generation
system input
system output

telecommunications access method
task control block
task input/output table
time of day
timer queue element
relative trace and record address

unit control block

virtual common communications table
volume identification
virtual page address
virtual storage

Appendix C. Abbreviation Dictionary C-3

C-4 Service Aids

Index

(parm) parameter of START (GTF)
START control statement (GTF) 1-5

ABDUMJ>/SNAP
GTRACE 1-3

request dump with trace data 1-3
using the START command 1-4

GTF 1-4
AHLIOOA

example 1-20
GTF message 1-8

request trace options 1-8
TRACE = keyword 1-9

tracing events 1-9
AHLl03I

example 1-20
initialization 1-20
select trace options 1-20

AHLl25A
example 1-20

GTF message 1-20
TRACE = keyword 1-9

tracing events 1-9
AID parameter of GTF (TRACE)

TRACE control record (GTF) 1-39
AID parameter of Trace (GTF)

GTF control record (Trace) 1-32
AMBLIST service aid

See LIST service aid
application identifier

See AID
ASID parameter of JES3 (PRDMP) 3-26
ASID = event keyword of GTF (TRACE)

GTF option statement (TRACE) 1-13
ASIDP parameter of GTF

GTF option statement (trace) 1-9

BUF parameter of START (GTF)
START control statement (GTF) 1-5

C
See CPUDAT A control statement in PRDMP

Cataloged procedure, PRDMP
examples 3-40

Catalogued Procedure
control statements(GTF) 1-7

CCW 1-2
CCW = event keyword of GTF (TRACE)

GTF option statement (TRACE) 1-14
CCWN event keyword of GTF (TRACE)

GTF option statement (TRACE) 1-15
CCWP 1-2
CCWP, example 1-23

codes
See return codes, wait reason codes

combining LIST control statements 2-3
comment control statement

See • control statement in SPZAP
console messages

SYSLIB DD, procedures without 1-9
examples 1-9

Control statement of PRDMP
function 3-26
TCAMMAP 3-27
VT AMMAP 3-26

control statements
See also specific service aid component
for LIST 2-3

cross-reference listing output of LIST 2-7, 2-8
CSECT identification record

how to print (LIST) 2-1

D
See DISPLAY control statement in PRDMP

DATA parameter of GTRACE
GTRACE control statement (GTF) 1-28

data parameter of TRACE (GTF)
GTF control record (TRACE) 1-33

DATA= event keyword ofGTF (TRACE)
GTF option statement (TRACE) 1-15

DD statement of the GTF Catalogued Procedure
IEFRDER DD statement (GTF) 1-7

DD statements
in LIST

anyname 2-2
SYSIN 2-2
SYSPRINT 2-2

DD statements in GTF
SYSLIB DD statement 1-8

DDN = parameter
LISTIDR 2-6
LISTLOAD 2-4
LISTOBJ 2-5

DEBUG = NO 1-6
DEBUG = YES 1-6
DEBUG parameter of JES3 (PRDMP) 3-26
DEBUG parameter of START (GTF)

START control statement (GTF) 1-6
defined at system generation

tracing options 1-2
system task 1-2

device name parameter of START (GTF)
ST ART control statement (GTF) 1-5

DSP 1-2
DSP parameter of GTF

GTF option statement (Trace) 1-10
Dump data set, transferring

examples 3-41

Index X-I

dump title, how to specify

E

in LIST
in LISTIDR control statement 2-5
in LISTLOAD control statement 2-3
in LISTOBJ control statement 2-4

See EDIT control statement in PRDMP
EDIT

errors A-7
examples, control statements A-27
examples, JCL A-27
format appendage A-7, A-14

example A-14
return codes A-7

reentrant format appendage A-16
format service routine A-16

return codes A-6
exit routines A-6

EDIT, use of A-6
EID parameter of TRACE (GTF)

GTF control record (TRACE) 1-33
EN

See END control statement in PRDMP
ESTAE 1-2
event identifier

See EID
examples

LIST 2-16
EXEC Statement

GTF Catalogued Procedure 1-7
EXEC statement (GTF) 1-7

EXT 1-2
EXT parameter of GTF

GTF option statement (Trace) 1-10

F
See FORMAT control statement in PRDMP

Fast Dump Scan Display
examples 3-49

FlO parameter of GTF (TRACE)
TRACE control record (GTF) 1-39

FID parameter of TRACE (GTF)
GTF control record (TRACE) 1-32

FID = parameter of GTRACE (GTF)
GTRACE control statement (GTF) 1-28

Format Appendage A-6
format identifier

See FID

G
See GO control statement in PRDMP

Generalized Trace Facility
GTF control statements 1-7

format 1-7
Generate Function, executing

examples 4-8

x -2 Service Aids

GTF Catalogued Procedure
control statements(GTF) 1-7

PROC Statement 1-7
GTF control record

parameters 1-39
AID 1-39
FlO 1-39
length 1-39
options 1-39
time stamp 1-39
time zone 1-39
zero (00) 1-39

GTF control record in TRACE
parameters 1-32, 1-33

data 1-33
EID 1-33
FID 1-32
time stamp 1-33

GTF examples 1-18
GTF output

IEFRDER I-I
buffers in virtual storage 1-1

System trace records I-I
GTF parameters

CCW 1-10
CCWP 1-10

GTF option statement (trace) 1-10
GTF Service aid

Control records
description 1-39

EID assignment 1-27
list 1-27

Error recovery
description 1-31

parameters
GTF catalogued 1-18, 1-19, 1-20, 1-21, 1-22, 1-23

how to start 1-18
internal tracing 1-18
prompting keywords, example 1-21
specify system events for Trace options 1-21
specify system events GTF traces,
example 1-23

storing trace optionsin SYSl.PARMLIB 1-19
SYSLIB DD statement 1-21
SYSLIB DD statement, without 1-20
SYSP 1-21
trace output to existing data set (Tape) 1-19
USR 1-21
VTAM remote network activity, trace 1-22

GTRACE Macro
execute form of macro 1-30
general format 1-28
list form 1-29

Output
description 1-32

Print user data 1-27
description 1-27

Storage requirements 1-26
illustration 1-26

Trace records

L

L

description 1-32
User trace data 1-27

description 1-27
GTF Trace data set, editing

examples 3-47
GTF Trace Data, editing

buffers in a dump 3-46
GTF Trace Options, Using

retrieving a set of stored options 1-9
via system console 1-9

Selecting trace options in SYSl.PARMLIB 1-9
GTFPARM 1-8
GTRACE control statement in GTF

parameters 1-28, 1-29, 1-30
FID = value 1-28
ID = value 1-28
LNG = number 1-28
MF = (E,prob addr) 1-30
MF=L 1-29
PAGEIN=YESINO 1-29

GTRACE control statement
parameters 1-28

DATA = address 1-28

I event keyword of GTF (TRACE)
GTF option statement (TRACE) 1-15

ID= parameter of GTRACE (GTF)
GTRACE control statement (GTF) 1-28

IEFRDER 1-3
IEFRDER DD statement in GTF 1-7

DD statements (GTF) 1-7
IEFRDER 1-7

in virtual storage
directed to IEFRDER 1-3

trace record output 1-3
inspect and modify instructions

load module (PDS) 6-1
records in a DASD 6-1

dump entire data set or portion (DASD) 6-1
interpreting messages for proper response

keywords that correspond to trace options 1-13
requirements 1-l3

invoke GTF as system task in memory
using the START command 1-4

internal and external tracing 1-4
10 1-2
10 parameter of GTF

GTF option statement (Trace) 1-10
lOP parameter of GTF

10 event keyword of GTF (TRACE)
GTF option statement (TRACE) 1-13

10 = SIO = event keyword of GTF (TRACE)
GTF option statement (TRACE) 1-13

lOP 1-2
lOP, example 1-23
IOSB event keyword of GTF (TRACE)

GTF option statement (TRACE) 1-16

JCL
examples 4-8
the Generate Function

JCL examples 3-40
Control statement examples 3-40

JES3 control statement in PRDMP
parameters 3-26, 3-27

ASID 3-26
DEBUG 3-26
JOBNAME 3-27

job control language statements
LIST 2-2, 2-16

JOBNAME parameter of JES3 (PRDMP) 3-27
JOBNAME= event keyword of GTF (TRACE)

GTF option statement (TRACE) 1-14
JOBNAMEP parameter of GTF

GTF option statement (Trace) 1-10
JOBNAMEP, example 1-23

keyword parameter of START (GTF)
START control statement (GTF) 1-6

L
See LPAMAP control statement in PRDMP

length parameter of GTF (TRACE)
TRACE control record (GTF) 1-39

length parameter of Trace (GTF)
GTF control record (Trace) 1-32

link pack area formatting
See LPAMAP control statement in PRDMP

link pack area, how to map
LIST 2-6

LIST Service aid
control statements

LISTIDR 2-5
LISTLOAD 2-3
LISTLPA 2-6
LISTOBJ 2-4
rules for coding 2-3

examples 2-16
function 2-1
JCL statements 2-2
lparm

See parameters
mapping CSECTs in a load module 2-1
output 2-7
verifying an object module 2-1
verifying contents of the nucleus 2-1

LISTIDR control statement in LIST
example 2-18,2-20, 2-21
format 2-5
output 2-8
parameters 2-5, 2-6

DDN= 2-6
MEMBER= 2-6
MODLIB 2-6
OUTPUT= 2-5
TITLE= 2-5

Index X-3

listing a link pack area 2-6
listing a load module 2-3
listing CSECT identification records 2-5
LISTLOAD control statement in LIST

example 2-17,2-20,2-21
format 2-3
output 2-7
parameters 2-3, 2-4

DDN= 2-4
MEMBER= 2-4
OUTPUT= 2-3
RELOC= 2-4
TITLE= 2-3

LISTLP A control statement in LIST
example 2-21
format 2-6
output 2-8

LISTOBJ control statement in LIST
example 2-16,2-19,2-20
format 2-4
output 2-8
parameters 2-4, 2-5

DDN 2-5
MEMBER= 2-5
TITLE= 2-4

LNG = parameter of GTRACE (GTF)
GTRACE control statement (GTF) 1-28

load module listing output of LIST 2-3,2-7,2-17
LPA maps

See link pack area, how to map
LSR 1-2

maps
link pack area 2-1,2-6,2-21
load modules 2-1
nucleus 2-1, 2-21

MEMBER parameter of START (GTF)
START control statement (GTF) 1-6

MEMBER = parameter
LISTIDR 2-6
LISTLOAD (LIST) 2-4
LISTOBJ 2-5

MF=(E,prob addr) parameter ofGTRACE (GTF)
GTRACE control statement (GTF) 1-30

MF = L parameter of GTRACE (GTF)
GTRACE control statement (GTF) 1-29

MODE parameter of START (GTF)
START control statement (GTF) 1-5

MODE= INT 1-7
MODLIB parameter of LISTIDR (LIST) 2-6
Multi-volume page data set

examples 3-48
Multiple data sets

examples 3-44

N
See NEWT APE control statement in PRDMP

ND

X -4 Service Aids

See NEWDUMP control statement in PRDMP
nucleus

how to map using LIST 2-1

object module listing, how to obtain 2-16
LIST service aid
PRDMP service aid; SPZAP service aid

operator communication
See messages

console communications
parameters

options parameter of GTF (TRACE)
TRACE control record (GTF) 1-39

output
of LIST 2-7

OUTPUT= parameter
LISTIDR 2-5
LISTLOAD 2-3

P
See PRINT control statement in PRDMP

PAGEIN parameter of GTRACE (GTF)
GTRACE control statement (GTF) 1-29

PCI parameter of GTF
GTF option statement (Trace) 1-10

PCI, example 1-23
PCIT AB = n event keyword of GTF (TRACE)

GTF option statement (TRACE) 1-16
PI 1-2
PI parameter of GTF

GTF option statement (Trace) 1-10
PI = event keyword of GTF (TRACE)

GTF option statement (TRACE) 1-13
PIP 1-2
PIP parameter of GTF

GTF option statement (Trace) 1-10
PRDMP
PRDMP control statements,combining

free and restricted
rules and guidelines 3-38

PRDMP Output
with other diagnostic data 3-39

PRDMP Service aid
address space status 3-4
AMDPRDMP
anyname DD 3-10
communications vector table 3-6

pointer (CVT) 3-6
Control blocks 3-5

print queue 3-5
description 3-1
DSNAME=xxxxxx 3-10
ER=x 3-9
fast dump scan 3-5

DISPLA Y function 3-5
format control blocks 3-4
functions 3-4
high-density dump 3-6

L

input dd statements 3-10
introduction 3-1
JCL Statements for PRDMP
JOB and EXEC statements 3-8
jobname JOB 3-8
JOBPARM LINECT= 3-8
LABEL = ([data-set-seq-#U,NLI ,BLP)) 3-11
LINECNT = 3-8
link pack area 3-5
Output
parameters
PARM = T,LINECNT = ,S = ,ER = 3-8
PGM = AMDPRDMP 3-8
PGM = AMDPRDMP,PARM 3-8
print, specify storage to 3-4
requirements 3-7
return codes 3-6
S 3-8
SYS1.DUMP data sets 3-5

transfer contents 3-5
T 3-8'
TAPE DD 3-10
Trace output records (GTF) 3-5

format 3-5
UNIT = (device-type,P) 3-10
user control statements 3-2
user interface 3-6

tailored formatting routines 3-6
user-specified title 3-6

dump listing 3-6
VOL = SER = (serial-number[,serial-numberJ ...) 3-10

PRDMP User Exit Facility
printing dumps

See PRDMP service aid
parameters

PROC statement of the GTF Catalogued Procedure
PROC statement (GTF) 1-7

PTFLE
application function 4-2
application function, executing 4-5
cataloged procedure 4-4
control statement 4-12

IDENTIFY 4-12
control statements 4-11
generate function 4-6
introduction 4-1
module name parameter 4-11
output 4-5
SSI number parameter 4-12
update an operating system 4-1

PTFLE Service aid
ptparm

See parameters

Q
See GRSTRACE control statement in PRDMP

QCBTRACE
See GRSTRACE control statement in PRDMP

RELOC = parameter of LIST LOAD (LIST) 2-4
remote network activity

See RNIO
RNIO 1-2
RNIO parameter of GTF

GTF option statement (Trace) 1-11
RR 1-2
RR parameter of GTF

GTF option statement (Trace) I-II

S
See SEFT AB control statement in PRDMP

S event keyword of GTF (TRACE)
GTF option statement (TRACE) 1-14

SIIISI event keywords of GTF (TRACE)
GTF option statement (TRACE) 1-14

SADMP
AMDSADMP status information from 3480

device 5-18
message display examples 5-18

assembling macro instruction 5-7
coding macro instruction 5-2
Dvolser 5-18
error messages (Stage 2) 5-11
error messages(assembly) 5-8
examples 5-21
execution 5-1
generation 5-1
high-speed dump 5-3
high-speed example 5-22
high-speed output 5-19
initialize residence volume 5-11
Introduction 5-1
low-speed dump 5-5
low-speed example 5-22

output directed to tape 5-22
low-speed output 5-19
message display 5-17
messages 5-16
MSADMP#U 5-18
multiple consoles, specifying 5-23
mUltiple macro instructions (assembling) 5-11
NT RDY 5-18
operator responses 5-16
output 5-19
output to DASD 5-10
output to tape 5·10
restarting 5-15
RSADMP# 5-18
SADMP# 5-18
Stand-alone dump 5-1
status information from 3480 device 5-18

message display examples 5-18
status information of 3480 device 5-18

display message examples 5-18
message display examples 5-18
message display examples 5-18

Index X-5

SADMP Service aid
sparm

See parameters
SADMP Wait State Codes
serviceability level indication processing (SLIP)

See SLIP index entries
Sl event keyword of GTF (TRACE)

GTF option statement (TRACE) 1-15
SIO 1-2
SIO parameter of GTF

GTF option statement (Trace) 1-11
SIO = event keyword of GTF (TRACE)

GTF option statement (TRACE) 1-13
SlOP 1-2
SlOP parameter of GTF

GTF option statement (Trace) I-II
SlOP, example 1-23
SLIP 1-2
SLIP parameter of GTF

GTF option statement (Trace) 1-11
SPZAP

accessing a data record 6-5
accessing a load module 6-3
BASE control statement 6-24
dumping data 6-5
dumping formats 6-26
dynamic invocation 6-9
entering through console 6-24
examples 6-18,6-19,6-21,6-23,6-24

data record 6-23
several CSECTs 6-19
single CSECT 6-18
two CSECTs 6-21

formatted hexadecimal dump 6-26
inspecting and modifying 6-19,6-21,6-23,6-24

examples 6-24
inspecting and modifying a data record 6-5
inspecting and modifying a load module 6-18
inspecting and modifying data 6-2
Introduction 6-1

JCL statements 6-8
monitoring use 6-2
operational considerations 6-8
Output
return codes 6-9
translated dump 6-26
updating SSI 6-6

SPZAP Service aid
zparm

See parameters
SRB 1-2
SRM 1-2
SRM parameter of GTF

GTF option statement (Trace) 1-11
STAE 1-2
START control statement in GTF

parameters 1-5, 1-6
BUF 1-5
keyword 1-6
volserial 1-5

X -6 Service Aids

START Command
GTF 1-4

example 1-4
START control statement in GTF

parameter of START 1-5
device name 1-5

parameters 1-5
MODE 1-5

START control statement in GTF
parameter of START 1-4

GTF 1-4
procname 1-4

parameters 1-5,1-6
(parm) 1-5
DEBUG 1-6
MEMBER 1-6
TIME 1-6

START control statement of GTF
parameter of START 1-4

identifier 1-4
STOP command

Device name 1-25
example 1-25

Display active jobs 1-25
example 1-25

Identifier (GTF) 1-24
examples 1-24

master console, using GTF from 1-24
format 1-24

Operator display command 1-24
terminate processing 1-24

storage
See real storage

virtual storage
SVC 1-2
SVC parameter of GTF
SVC, example 1-23
SVC = event keyword of GTF (TRACE)

GTF option statement (TRACE) 1-13
SVCP 1-2
SVCP parameter of GTF

GTF option statement (Trace) 1-11
SYS parameter of GTF

GTF option statement (Trace) 1-11
SYSIN DD statement

used in LIST 2-2
SYSLIB DD statement in GTF

GTF optional statements 1-8
SYSM parameter of GTF

GTF option statement (Trace) 1-11
SYSP parameter of GTF

GTF option statement (Trace) 1-12
SYSPRINT DD statement

used in LIST 2-2
SYSI.DUMP data set, transferring

processing (same step) 3-43

T
See TITLE control statement in PRDMP

L

L

reB 1-2
TIME parameter of START (GTF)

START control statement (GTF) 1-6
time stamp parameter of GTF (TRACE)

TRACE control record (GTF) 1-39
time stamp parameter of TRACE (GTF)

GTF control record (TRACE) 1-33
time zone parameter of GTF (TRACE)

TRACE control record (GTF) 1-39
title, how to specify

See dump title, how to specify
TITLE = parameter

LISTIDR 2-5
LISTLOAD 2-3
LISTOBJ 2-4

TRACE =
GTF use of option combinations 1-12

specifying more than one option 1-12
TRACE data set 1-7
trace options

See GTF trace options
Trace options with GTF prompting

keywords 1-13, 1-14, 1-15, 1-16
ASID= 1-13
CCW= 1-14
CCWN 1-15
DATA= 1-15
I 1-15
10 1-13
10=SI0= 1-13
10SB 1-16
JOBNAME= 1-14
PCITAB=n 1-16
PI= 1-13
S 1-14
SIIISI 1-14
SI 1-15
SIO= 1-13
SVC= 1-13

parameters 1-9,1-10,1-11,1-12
ASIDP 1-9
CCW 1-10
CCWP 1-10
DSP 1-10
EXT 1-10
10 1-10
lOP 1-10
JOBNAMEP l-lO
PCI l-lO
PI 1-10
PIP 1-10
RNIO I-ll
RR I-ll
SIO I-II
SlOP I-II

SLIP I-II
SRM I-II
SVC I-II
SVCP I-II
SYS I-II
SYSM 1-11
SYSP 1-12
TRC 1-12
USR 1-12

Trace record in GTF
parameters 1-32

AID 1-32
length 1-32
zero (00) 1-32

TRC 1-2
TRC parameter of GTF

GTF option statement (Trace) 1-12

user control statements (PRDMP)
defined 3-39

using the EDIT function
user trace records generated 1-3

inspect GTF trace records 1-3
USR 1-2
USR parameter of GTF

GTF option statement (Trace) 1-12

volserial parameter of START (GTF)
START control statement (GTF) 1-5

Writing Edit User Programs
cross-system compatibility (format

appendages) A-I
edit processing A-2
EOF for user exits A-2
format service routine A-5
GTF operations A-I
GTF option word A-4
input record A-3
introduction A-I
parameter list A-3
PRDMPjEDIT operations A-I

with format appendages A-I
reentrant format appendage A-5
user programs and EDIT A-2

zero (00) parameter of GTF (TRACE)
TRACE control record (GTF) 1-39

zero (00) parameter of TRACE (GTF)
GTF control record (TRACE) 1-32

Index X-7

J

X-8 Service Aids

L

OS/VS2 MVS System Programming Library: Service Aids

GC28-0674-4

-....-.. ~ ~ _-. - --------- ~-...... -- - - _ -____ wr_
--_. -®

S370-37

J

Printed in U.S.A.

·~ "0

~:;
0.":
':;~
iD
",I
co
:e-;;
00.
"0

'6i
EE
"iE .. " 0", :::; E ..
2" '" ",s c
Co 0

:5" < ._ 0
"0

:.~ (; ...
E"" l; ~!!, ..
e" "

L o.! 0 .,,,
8~

0.

gil
u"
1: o.D
.9..!
Inn.

~
Z

OS/VS2 MVS
System Programming
Library: Service Aids

GC28-0674-4

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers,
and operators of IBM systems. You may use this form to communicate your comments about this
publication. its organization, or subject matter, with the understanding that IBM may use or distribute
whatever information you supply in any way it believes appropriate without incurring any obligation to
you.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation?

How do you use this publication?

Number of latest Newsletter associated with this pUblication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an
IBM office or representative will be happy to forward your comments or you may mail directly to the

• • •• • p \

OS/VS2 MVS System Programming Library: Service Aids

GC28-0674-4 5370-37

Reader's Comment Form

i
1
I

Fold and tape Please Do Not Staple Fold and tape
---~

IIIIII
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 058, Building 921 -2
PO Box 390
Poughkeepsie, New York 12602

1 ,
.. ------.,1

NO POSTAGE 1

NECESSARY I ,
IF MAILED 1

IN THE I
UNITED STATES 1 ... _---_ ... , , , ······-1 _____ '

------, ······-1 • ______ 1

••••••• 1

•••••• _1 ,
1

1
1
1 --,

Fold and tape Please Do Not Staple Fold and tape

Printed in U.S.A. --- ---.-. .-- --~~ - --_ - ~-~-- -- _ -
-~- ---_. -®

